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Shiping Lu, China
Gert Lube, Germany
Nazim Idrisoglu Mahmudov, Turkey
Oluwole Daniel Makinde, South Africa
Francisco J. Marcellán, Spain
Guiomar Mart́ın-Herrán, Spain
Nicola Mastronardi, Italy
Michael McAleer, The Netherlands
Stephane Metens, France
Michael Meylan, Australia
Alain Miranville, France
Ram N. Mohapatra, USA
Jaime E. Munoz Rivera, Brazil
Javier Murillo, Spain
Roberto Natalini, Italy
Srinivasan Natesan, India
Jiri Nedoma, Czech Republic
Jianlei Niu, Hong Kong
Roger Ohayon, France
Javier Oliver, Spain
Donal O’Regan, Ireland
Martin Ostoja-Starzewski, USA
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As an important branch of applied mathematics, optimiza-
tion theory, especially stochastic optimization, becomes an
important tool for solving multiobjective decision-making
problems in random process recently. Many kinds of indus-
trial, biological, engineering, and economic problems can be
viewed as stochastic systems, for example, area of communi-
cation, gene, signal processing, geography, civil engineering,
aerospace, banking, and so forth. Stochastic optimization
is suitable to solve the decision-making problems in these
stochastic systems.

This special issue includes 16 high-quality peer-reviewed
papers that deal with different aspects of stochastic optimiza-
tion problems. These papers contain some new, novel, and
innovative techniques and ideas. We hope that all the papers
published in this special issue can stimulate the continuing
efforts to understand this field, particularly new stochastic
optimization algorithms and new applications in related
fields.

In the paper entitled “Qualitative and quantitative inte-
grated modeling for stochastic simulation and optimization,”
the authors propose a qualitative and quantitative combined
modeling specification based on a hierarchical model struc-
ture framework. The new modeling approach is based on a
hierarchical model structure which includes the meta-meta
model, the metamodel, and the high-level model.

In the paper entitled “Estimating time-varying beta of price
limits and its applications in China stock market,” the authors
propose an estimation method of time-varying beta of price

limits. It uses China stock market trading data to estimate
time-varying beta and researches on systemic risk in China
stock market.

In the paper entitled “Doubly constrained robust blind
beamforming algorithm,” the authors propose doubly con-
strained robust least squares constant modulus algorithm
(LSCMA) to solve the problem of signal steering vector
mismatches via the Bayesian method and worst-case per-
formance optimization, which is based on the mismatches
between the actual andpresumed steering vectors. A theoreti-
cal analysis for the proposed algorithm in terms of complexity
cost, convergence performance, and SINR performance is
presented in this paper.

In the paper entitled “Smoothing techniques and aug-
mented Lagrangian method for recourse problem of two-
stage stochastic linear programming,” the authors apply the
smoothing techniques and a fast Newton-Armijo algorithm
for solving an unconstrained smooth reformulation of this
problem. Computational results and comparisons are given
to show the effectiveness and speed of the algorithm.

In the paper entitled “New results on robust stability and
stabilization of linear discrete-time stochastic systems with con-
vex polytopic uncertainties,” the authors propose new delay-
dependent mean square robust stability conditions for linear
polytopic delay-difference stochastic equations with interval
time-varying delays in terms of LMIs. An application to
robust stabilization of linear discrete-time stochastic control
systems is given in this paper.
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In the paper entitled “Layer-based data aggregation and
performance analysis in wireless sensor networks,” the authors
focus on theminimum-latency data aggregation problem and
propose a new efficient scheme for it.The basic idea is to build
an aggregation tree by ordering nodes into layers and then use
a scheduling algorithm on the basis of the aggregation tree
to determine the transmission time slots for all nodes in the
network with collision avoiding.

In the paper entitled “Optimal waveform selection for
robust target tracking,” the authors assume a one-dimension
target model which will try to escape the radar detection
to degrade the tracking performance and propose a new
optimal waveform selection algorithm based on game theory
for robust tracking. The optimal parameters for transmitted
waveform are finally found by the minimization of the trace
of the estimated state error covariance.

In the paper entitled “Adaptive waveform design for
multiple radar tasks based on constantmodulus constraint,” the
authors propose a waveform design method which can effi-
ciently synthesize waveforms and provide a trade-off between
estimation performance and detection performance and then
apply the technique of generating a constant modulus signal
with the given Fourier transformmagnitude to thewaveform.
Finally a waveform that has constant modulus property can
be obtained.

In the paper entitled “Univex interval-valued mapping
with differentiability and its application in nonlinear program-
ming,” the authors introduce interval-valued univex func-
tions for differentiable programming problems and derive
optimality and duality results for a class of generalized
convex optimization problems with interval-valued univex
functions.

In the paper entitled “Study on indefinite stochastic linear
quadratic optimal control with inequality constraint,” the
authors study the indefinite stochastic LQ optimal control
problem with unequally terminal state constraint, which
can be transformed into a hybrid constrained mathematical
programming problem and design a dynamic programming
algorithm to solve the constrained indefinite stochastic LQ
issue.

In the paper entitled “A fast optimization method for
reliability and performance of cloud services composition
application,” the authors propose a fast optimization method
for reliability and performance of cloud services composition
application based on Universal Generating Function and
Genetic Algorithm.The model and algorithm can be applied
in online prediction and optimization for reliability and
performance of cloud services composition application.

In the paper entitled “Dynamicmean-variancemodel with
borrowing constraint under the constant elasticity of variance
process,” the authors study a continuous-time dynamicmean-
variance portfolio selection problem with the constraint of a
higher borrowing rate, in which stock price is governed by a
constant elasticity of variance (CEV) process.

In the paper entitled “An improved hybrid genetic algo-
rithm with a new local search procedure,” the authors propose
a novel, simplified, and efficient HGA with a new individual
learning procedure that performs a LS only when the best
offspring (solution) in the offspring population is also the

best in the current parent population and develop a new LS
method based on a three-directional search (TD), which is
derivative-free and self-adaptive.

In the paper entitled “Reflected backward stochastic differ-
ential equations driven by countable brownian motions,” the
authors deal with a new class of reflected backward stochastic
differential equation driven by countable Brownian motions.
The existence and uniqueness of the RBSDEs is obtained via
Snell envelope and fixed theorem.

In the paper entitled “Pareto optimal solutions for stochas-
tic dynamic programming problems via Monte Carlo sim-
ulation,” the authors propose a heuristic algorithm for a
class of stochastic discrete-time continuous-variable dynamic
programming problems submitted to non-Gaussian dis-
turbances. This new idea is carried out by using Monte
Carlo simulations embedded in an approximate algorithm
proposed for deterministic dynamic programming problems.
The new method is tested in instances of the classical
inventory control problem.

In the paper entitled “On iterative learning control for
remote control systems with packet loss,” the authors propose
an ILC for a time-varying system with random packet
dropouts. The ILC law adopts an iteration-average operator
and a revised learning gain that takes into consideration the
probabilities of data-dropout factors.
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This paper studies the indefinite stochastic linear quadratic (LQ) optimal control problem with an inequality constraint for the
terminal state. Firstly, we prove a generalized Karush-Kuhn-Tucker (KKT) theorem under hybrid constraints. Secondly, a new type
of generalized Riccati equations is obtained, based on which a necessary condition (it is also a sufficient condition under stronger
assumptions) for the existence of an optimal linear state feedback control is given by means of KKT theorem. Finally, we design a
dynamic programming algorithm to solve the constrained indefinite stochastic LQ issue.

1. Introduction

The study on LQ control problems can be traced back to
the pioneering work of Kalman [1] and Wonham [2] several
decades ago. The LQ control theory is elegantly established
and developed, and the main work can be seen in [3–11]. In
particular, it is found [6] that a stochastic LQ problem with
indefinite control weighting matrices may still be well-posed.
This discovery evokes a series of subsequent researches,
and many important achievements are obtained [5, 12–16].
Up to now, most work deals with the indefinite stochastic
LQ problems without constraints. However, as a practical
optimization problem, the indefinite stochastic LQ problem
unavoidably has various constraints on the state or control; in
particulary the inequality constraints often appear.

For the constrained indefinite stochastic LQ problems,
[17] studied the equally constrained stochastic LQ optimiza-
tion for Itô systems. In this paper, we will study the stochastic
LQ problem with inequality constraint.

Firstly, we present and prove the generalized KKT the-
orem under hybrid constraints. Secondly, a necessary con-
dition for the existence of an optimal linear state feedback
control is given by means of the generalized KKT theorem.
Thirdly, if we strengthen the condition, we can obtain a
necessary and sufficient condition for the existence of the

optimal linear feedback control to indefinite stochastic LQ
optimal control problem with inequality constraint. Finally,
we give a dynamic programming algorithm to solve the
stochastic LQ problem with the inequality constraint. We
provide an example to demonstrate the effectiveness of our
main theoretical results.

The outline of this paper is organized as follows. In
Section 2, we present a generalized KKT theorem under
hybrid constraints. Section 3 proposes a KKT condition for
the existence of an optimal linear state feedback control. In
Section 4, we provide a necessary and sufficient condition
and a dynamic programming algorithm for the stochastic LQ
problem with inequality constraint. Section 5 concludes the
paper.

For convenience, throughout the paper, we adopt the
following notations: 𝐴𝑇 denotes the transpose of a matrix 𝐴.
𝐴 > 0 (𝐴 ≥ 0): 𝐴 is a positive definite (positive semidefinite)
symmetric matrix. tr(𝐴): trace of a square matrix. 𝑅𝑚×𝑛: the
space of all𝑚 × 𝑛 real matrices. 𝑆𝑛: a 𝑛 × 𝑛 symmetric matrix
space.

2. Preliminaries

Consider the following indefinite stochastic LQ control.
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Problem 1. Consider

min 𝐽 (𝑥
0
, 𝑢) = 𝐸∫

𝑇

0

[𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡)

+𝑢
𝑇
(𝑡) 𝑅 (𝑡) 𝑢 (𝑡)] 𝑑𝑡,

(1a)

s.t. 𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)] 𝑑𝑡

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

(1b)

𝑥 (0) = 𝑥0, (1c)

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐, (1d)

where 𝑥(𝑡)=[𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is an 𝑛-dimensional

state variable, 𝑢(𝑡) ∈ 𝑅𝑚 is a control input, 𝑤(⋅) is a one-
dimensional standard Brownian motion defined on a filtered
probability space (Ω, 𝐹, 𝐹

𝑡
, 𝑃). We denote the information

flowF
𝑡
= 𝜎[𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇]. 𝑢(⋅) belongs toL2F(𝑅

𝑚
),

where L2F(𝑅
𝑚
) is a space of all 𝑅𝑚-valued, F

𝑡
-adapted

measurable processes satisfying 𝐸∫𝑇
0
‖𝑢(𝑡)‖

2
𝑑𝑡 < +∞. For

each admissible control, the corresponding trajectory satisfies
the constraint (1c). 𝑐 in constraint (1c) is a given nonnegative
constant. 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡), 𝑄(𝑡), and 𝑅(𝑡) are time-
varying matrices of suitable dimensions. 𝑄(𝑡) and 𝑅(𝑡) in
objective functional are symmetric matrices. To study the
issue, we first put forward the following Assumption H

1
.

Assumption 𝐻
1
. 𝐴(𝑡), 𝐶(𝑡) ∈ L∞(0, 𝑇, 𝑅𝑛×𝑛),𝑄(𝑡) ∈ L∞(0,

𝑇, 𝑆
𝑛
), 𝐵(𝑡), 𝐷(𝑡) ∈ L∞(0, 𝑇, 𝑅𝑛×𝑚), and 𝑅(𝑡) ∈ L∞(0, 𝑇,

𝑆
𝑚
), where 𝐿∞(0, 𝑇,𝑋) := {𝑓(𝑡) : 𝑋-valued essential bound-

ed measurable function and ess sup
𝑡∈[0,𝑇]

‖𝑓(𝑡)‖ < +∞}.
In this paper, the weighting matrices in the objective

functional are not required to be definite. Therefore Problem
1 is an indefinite stochastic LQ optimal control problem. For
later use, we recall KKT theorem for this type ofmathematical
programming (MP) problems:

min 𝑓 (𝑥)

s.t. g (𝑥) ≤ 0,

h (𝑥) = 0,

(2)

where g(𝑥)=(𝑔
1
(𝑥), . . . , 𝑔

𝑝
(𝑥)), and h(𝑥)=(ℎ

1
(𝑥), . . . , ℎ

𝑞
(𝑥)).

TheKKT conditions [18–20], which are also known as the
Kuhn-Tucker (KT) conditions, are the first-order necessary
conditions for a solution in nonlinear programming to
be optimal, provided that some regularity conditions are
satisfied.The Lagrange multiplier method, which allows only
equality constraints, can be viewed as a special case of KKT
conditions.

Regularity Condition (or Constraint Qualification). In MP
above, let 𝐼∗ = {𝑖 | 𝑔

𝑖
(𝑥
∗
) = 0} (𝑔

𝑖
(𝑥
∗
) 𝑖 ∈ 𝐼

∗ be active
constraints at 𝑥∗). The gradient vectors ∇𝑔

𝑖
(𝑥
∗
), 𝑖 ∈ 𝐼

∗, and

∇ℎ
𝑗
(𝑥
∗
), 𝑗 = 1, . . . , 𝑞, are linearly independent, is known as

a linear independent constraint qualification (LICQ).

Regular Point. In MP above, 𝑥∗ is said to be a regular point of
the constraints if the gradient vectors ∇𝑔

𝑖
(𝑥
∗
), ∇ℎ
𝑗
(𝑥
∗
), 𝑖 ∈

𝐼
∗
, 𝑗 = 1, . . . , 𝑞, are linearly independent.

KKT Theorem. In MP above, we assume that the functions
𝑓, g = (𝑔

1
, . . . , 𝑔

𝑝
)
𝑇
, h = (ℎ

1
, . . . , ℎ

𝑞
)
𝑇 are twice contin-

uously differentiable and we assume that all the constraints
satisfy the regularity condition LICQ. Let 𝑥∗ be a point
satisfying all the constraints and let 𝑥∗ be a regular point of
the above constraints. Now suppose that this regular point 𝑥∗
is also a relativeminimumpoint for the originalMP.Then it is
shown that there exist a vector 𝜆 ≥ 0 ∈ 𝑅 and a vector 𝜇 ∈ 𝑅,
such that

∇
𝑥
𝐿 (𝑥
∗
, 𝜆
∗
, 𝜇
∗
) = 0,

𝜆
∗

𝑖
𝑔
𝑖
(𝑥
∗
) = 0, 𝑖 = 1, . . . , 𝑝,

(3)

where 𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑇g(𝑥) + 𝜇𝑇h(𝑥) is the Lagrangian
function and 𝜆∗

𝑖
𝑔
𝑖
(𝑥
∗
) = 0, 𝑖 = 1, . . . , 𝑝, are complementary

clackness condition.
It is particularly important to check the regularity condi-

tion before we apply the conclusion of KKT theorem. If it is
not so, the conclusion of KKT theorem would not be valid,
just as the following example shows.

Example 2. Consider

min 𝑓 (𝑥
1
, 𝑥
2
) = −2𝑥

1
− 3𝑥
2
,

s.t. g (𝑥
1
, 𝑥
2
) = 𝑥
2

1
+ 𝑥
2

2
= 0.

(4)

Obviously, the minimum point is 𝑥∗(0, 0)𝑇. According to
KKT theorem, we obtain

2 − 𝜆𝑥
∗

1
= 0,

3 − 𝜆𝑥
∗

2
= 0,

𝑥
∗

1

2
+ 𝑥
∗

2

2
= 0.

(5)

The conclusion of KKT theorem does not hold at point
𝑥
∗
(0, 0)
𝑇, because ∇g(0, 0) = (0, 0)𝑇 is not linearly indepen-

dent. It does not satisfy the LICQ regularity condition.
In order for a minimum point 𝑥∗ to satisfy the above

KKT conditions, it should satisfy some regularity conditions.
Except for LICQ regularity condition, the most used ones are
listed below.

Constant Rank Constraint Qualification. For each subset of
the gradients of the active inequality constraints and the
gradients of the equality constraints the rank at a vicinity of
𝑥
∗ is constant.

Mangasarian-Fromovitz Constraint Qualification. The gradi-
ents of the active inequality constraints and the gradients of
the equality constraints are linear independent at 𝑥∗.

Constant Positive LinearDependence ConstraintQualification.
For each subset of the gradients of the active inequality



Journal of Applied Mathematics 3

constraints and the gradients of the equality constraints, if it
is positive-linear dependent at 𝑥∗, then it is positive-linear
dependent at a vicinity of 𝑥∗.

The Slater condition for a convex MP is also a common
regularity condition.

Remark 3. In this paper, for convenience, when we use the
KKT theorem, we always assume that the local optimal 𝑥∗
meets the LICQ regularity condition.The same goes for other
regularity conditions.

Definition 4 (see [21]). Let 𝑋 be a vector space, 𝑌 a normed
space, and 𝑇 a transformation from𝑋 to 𝑌. If the limit

𝛿𝑇 (𝑥; ℎ) = lim
𝛼→0

[𝑇 (𝑥 + 𝛼ℎ) − 𝑇 (𝑥)]

𝛼
(6)

exists, it is called the Gateaux differential of 𝑇 at 𝑥with incre-
ment ℎ. If the limit exists for each ℎ ∈ 𝑋, the transformation
𝑇 is said to be Gateaux differentiable at 𝑥.

Definition 5 (see [21]). Let𝑋 be a vector space and𝑍 a Banach
space with a positive cone 𝑃 having nonempty interior. Let 𝐺
be a mapping from 𝑋 to 𝑍 which has a Gateaux differential
that is linear in its increment. A point 𝑥

0
∈ 𝑋 is said to be

a regular point of the inequality 𝐺(𝑥) ≤ 0, if 𝐺(𝑥
0
) ≤ 0 and

there is an ℎ ∈ 𝑋 such that 𝐺(𝑥
0
) + 𝛿𝐺(𝑥

0
; ℎ) < 0.

Definition 6 (see [21]). Let𝑋 be a vector space and𝑍 a Banach
space. Let 𝐻(𝑥) = [ℎ

1
(𝑥), . . . , ℎ

1
(𝑥)]
𝑇 be a mapping from

𝑋 to 𝑍 which has a Gateaux differential that is linear in its
increment. A point 𝑥

0
∈ 𝑋 is said to be a regular point of

the equality𝐻(𝑥) = 0, if 𝛿ℎ
1
(𝑥
0
; ℎ), . . . , 𝛿ℎ

𝑛
(𝑥
0
; ℎ) are linearly

independent.
On the basis of the definitions above, let us discuss the

KKT theorem in Banach space, where the objective function
and the constraint functions in MP are functionals.

Let us consider

min 𝑓 (𝑥)

s.t. 𝐺 (𝑥) ≤ 0

𝐻 (𝑥) = 0.

(MP I)

As a special case,

min 𝑓 (𝑥)

s.t. 𝐺 (𝑥) ≤ 0

(MP II)

has the local necessary condition as follows.

Lemma 7 (see [21] (generalized KKT theorem)). Let 𝑋 be
a vector space and 𝑍 a Banach space having positive cone 𝑃.
Assume that 𝑃 contains an interior point. Let 𝑓 be a Gateaux
differentiable functional on 𝑋 and 𝐺 a Gateaux differentiable
mapping from 𝑋 to 𝑍. Assume that the Gateaux differentials
are linear in their increments. Suppose that 𝑥

0
minimizes 𝑓

subject to 𝐺(𝑥) ≤ 0 and that 𝑥
0
is a regular point of the

inequality 𝐺(𝑥) ≤ 0. Then there is a 𝑧∗
0
≥ 0 in 𝑍, such that

the Lagrangian function 𝑓(𝑥) + 𝑧∗
0
𝐺(𝑥) is stationary at 𝑥

0
.

Furthermore 𝑧∗
0
𝐺(𝑥
0
) = 0.

The following theorem is the local necessary condition of
(MP I).

Theorem 8. Let 𝑋 be a vector space and 𝑍 a Banach space
having positive cone 𝑃. Assume that 𝑃 contains an interior
point. Let 𝑓 be a Gateaux differentiable functional on 𝑋.
Let 𝐺 and 𝐻 be Gateaux differentiable mappings from 𝑋 to
𝑍. Assume that the Gateaux differentials are linear in their
increments. Suppose that 𝑥

0
minimizes 𝑓 subject to 𝐺(𝑥) ≤ 0,

𝐻(𝑥) = 0 and that 𝑥
0
is a regular point of𝐺(𝑥) ≤ 0,𝐻(𝑥) = 0.

Then there is a 𝜆∗ ≥ 0 in 𝑍, 𝜇∗ ∈ 𝑍, such that the Lagrangian
function 𝑓(𝑥) + 𝜆∗𝐺(𝑥) + 𝜇∗𝐻(𝑥) is stationary at 𝑥

0
. Namely,

𝛿𝑓(𝑥
0
; ℎ) + 𝜆

∗
𝛿𝐺(𝑥
0
; ℎ) + 𝜇

∗
𝛿𝐻(𝑥
0
; ℎ) = 0. Furthermore,

𝑧
∗

0
𝐺(𝑥
0
) = 0.

Proof. 𝐻(𝑥) = 0 is equivalent to 𝐻(𝑥) ≤ 0 and −𝐻(𝑥) ≤
0. If 𝑥

0
is a regular point of 𝐻(𝑥) = 0, then 𝛿ℎ

1
(𝑥
0
; ℎ), . . . ,

𝛿ℎ
𝑛
(𝑥
0
; ℎ) are linearly independent. So 𝛿ℎ

1
(𝑥
0
; ℎ), . . . ,

𝛿ℎ
𝑛
(𝑥
0
; ℎ) are all nonzero, because the Gateaux differentials

are linear in their increments. Using Definition 5, it is easy
to verify that 𝑥

0
is a regular point of both −𝐻(𝑥) ≤ 0

and 𝐻(𝑥) ≤ 0. According to Lemma 7, we know that the
multiplier 𝜇∗ of equality 𝐻(𝑥) = 0 has no nonnegative
requirement.

Definition 9 (see [22]). Suppose that 𝑓(𝑋) is a scalar-valued
function of the elements 𝑥

𝑖𝑗
of𝑋.Then the gradient matrix of

𝑓(𝑋) is defined as

∇ [𝑓 (𝑋)] =
𝜕𝑓 (𝑋)

𝜕 (𝑋)
(7)

with

[
𝜕𝑓 (𝑋)

𝜕 (𝑋)
]

𝑖𝑗

=
𝜕𝑓 (𝑋)

𝜕𝑥
𝑖𝑗

. (8)

Based on Definition 9, we can easily extend KKT theorem
from Banach space to matrix space. Because 𝑋(𝑡) can be
treated as a vector [𝑋

1
(𝑡), . . . , 𝑋

𝑛
(𝑡)]
𝑇, one can work out

∇[𝑋
𝑖
(𝑡)] and the KKT theorem holds.
When we apply the matrix KKT theorem, we need to

give the partial list of gradient matrices [22] that we will
use in this paper. In the following formulas, 𝑋 is an 𝑛 × 𝑚
matrix. The formulas are not valid if the elements 𝑥

𝑖𝑗
of 𝑋

are not independent. 𝐴, 𝐵 are assumed to have appropriate
dimensions determined from context.

Consider the following:

𝜕

𝜕𝑋
tr (𝑋) = 𝐼,

𝜕

𝜕𝑋
tr (𝑋𝑋𝑇) = 2𝑋,

𝜕

𝜕𝑋
tr (𝐴𝑋𝑇) = 𝐴,

𝜕

𝜕𝑋
tr (𝐴𝑋) = 𝐴𝑇,
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𝜕

𝜕𝑋
tr (𝐴𝑋𝑇𝐵) = 𝐵𝐴,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵) = 𝐴𝑇𝐵𝑇,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵𝑋𝑇) = 𝐴𝑇𝑋𝐵𝑇 + 𝐴𝑋𝐵,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵𝑋) = 𝐴𝑇𝑋𝑇𝐵𝑇 + 𝐵𝑇𝑋𝑇𝐴𝑇.

(9)

3. KKT Conditions and a New Type of GDREs

Definition 10. Problem 1 is well-posed, if for any 𝑥
0
∈ 𝑅
𝑛,

−∞ < 𝑉(𝑥
0
) = inf

𝑢(⋅)∈𝑈ad
{𝐽(𝑥
0
, 𝑢(⋅))}. 𝑢

∗
is called an optimal

control, if𝑉(𝑥
0
) = 𝐽(𝑥

0
, 𝑢
∗
), and 𝑥

∗
denotes the correspond-

ing optimal trajectory.
Let the control law be 𝑢 = 𝐾𝑥 (𝐾 ∈ 𝐶

𝑚×𝑛
[0, 𝑇]), and

𝑋(𝑡) = 𝐸[𝑥(𝑡)𝑥
𝑇
(𝑡)]. By substituting 𝑢 = 𝐾𝑥 into (1a) of

Problem 1, we obtain the new objective functional:

𝐽 (𝑋,𝐾) = tr ∫
𝑇

0

[𝑄𝑋 + 𝐾
𝑇
𝑅𝐾𝑋]𝑑𝑡, (10)

where 𝐶𝑛×𝑛[0, 𝑇] is the space of 𝑛-order square matrix whose
elements are continuous functions. By substituting 𝑢 = 𝐾𝑥
into (1b) of Problem 1, we obtain a closed-loop system:

𝑑𝑥 = (𝐴 + 𝐵𝐾) 𝑥𝑑𝑡

+ (𝐶 + 𝐷𝐾) 𝑥𝑑𝑤, 𝑥 (0) = 𝑥0.

(11)

By applying Itô’s formula to𝑋(𝑡), we obtain

𝑋 = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
,

𝑋 (0) = 𝑋0 = 𝑥0𝑥
𝑇

0
.

(12)

Define the transformation 𝐻(𝑋,𝐾) from 𝐶
𝑛×𝑛
[0, 𝑇] × 𝐶

𝑚×𝑛

[0, 𝑇] to 𝐶𝑛×𝑛[0, 𝑇]:

𝐻(𝑋,𝐾) := 𝑋 (𝑡) − 𝑋 (0)

− ∫

𝑡

0

[(𝐴 + 𝐵𝐾)𝑋 + 𝑋 (𝐴 + 𝐵𝐾)
𝑇

+(𝐶 + 𝐷𝐾)𝑋 (𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡.

(13)

By substituting 𝑢 = 𝐾𝑥 into (1c) of Problem 1, we obtain

tr𝑋(𝑇) − 𝑐 ≤ 0. (14)

Define the transformation 𝐺(𝑋,𝐾) from 𝐶𝑛×𝑛[0, 𝑇] to 𝑅1:

𝐺 (𝑋 (𝑇)) := tr𝑋(𝑇) − 𝑐. (15)

So the original stochastic Problem 1 can be transformed into
the deterministic Problem 11 as follows.

Problem 11. Consider the following:

min 𝐽 (𝑋,𝐾) = tr ∫
𝑇

0

[𝑄𝑋 + 𝐾
𝑇
𝑅𝐾𝑋]𝑑𝑡, (16a)

s.t. 𝐻 (𝑋,𝐾) = 0, ∀𝑡 ∈ [0, 𝑇] , (16b)

𝐺 (𝑋 (𝑇)) ≤ 0. (16c)

Lemma 12. 𝐽(𝑋,𝐾),𝐻(𝑋,𝐾), and 𝐺(𝑋(𝑇)) have continuous
Gateaux derivative as follows:

𝛿𝐽
𝑋 (𝑋,𝐾; Δ𝑋) = tr∫

𝑇

0

(𝑄 + 𝐾
𝑇
𝑅𝐾)Δ𝑋𝑑𝑡,

𝛿𝐽
𝐾 (𝑋,𝐾; Δ𝑋) = tr∫

𝑇

0

(Δ𝐾
𝑇
𝑅𝐾𝑋 + 𝐾

𝑇
𝑅Δ𝐾𝑋)𝑑𝑡,

𝛿𝐻
𝑋 (𝑋,𝐾; Δ𝑋) (𝑡)

= Δ𝑋 (𝑡) − tr ∫
𝑡

0

[(𝐴 + 𝐵𝐾)Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)Δ𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡,

𝛿𝐻
𝐾 (𝑋,𝐾; Δ𝐾) (𝑡)

= − tr∫
𝑡

0

[𝐵Δ𝐾𝑋 + 𝑋Δ𝐾
𝑇
𝐵
𝑇
+ (𝐶 + 𝐷𝐾)𝑋(𝐷Δ𝐾)

𝑇

+ (𝐷Δ𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡,

𝛿𝐺
𝑋 (𝑋; Δ𝑋 (𝑇)) = trΔ𝑋 (𝑇) .

(17)

Proof. We prove only the most complicated one.The rest can
be verified in the same way. From Definition 4,

𝛿𝐻
𝑋 (𝑋,𝐾; Δ𝑋) = lim

𝛼→0

[𝐻 (𝑋 + 𝛼Δ𝑋,𝐾) − 𝐻 (𝑋,𝐾)]

𝛼
,

𝐻 (𝑋,𝐾)

:= 𝑋 (𝑇) − 𝑋 (0) − ∫

𝑡

0

[(𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡.

(18)

Replace the𝑋 in𝐻(𝑋,𝐾)with (𝑋+𝛼Δ𝑋) and then let𝛼 → 0

showing the conclusion.

Lemma 13 (see [21]). If 𝛼(𝑡) and 𝛽(𝑡) are continuous in [𝑡
1
, 𝑡
2
]

and ∫𝑡2
𝑡
1

[𝛼(𝑡)ℎ(𝑡) + 𝛽(𝑡)ℎ(𝑡)]𝑑𝑡 = 0 for every continuously dif-
ferentiable ℎ(𝑡) with ℎ(𝑡

1
) = ℎ(𝑡

1
) = 0, then 𝛽 is differentiable

and 𝛼(𝑡) ≡ 𝛽(𝑡) in [𝑡
1
, 𝑡
2
].
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Lemma 14 (see [21]). If 𝛼(𝑡) is continuous in [𝑡
1
, 𝑡
2
] and

∫
𝑡
2

𝑡
1

[𝛼(𝑡)ℎ(𝑡)]𝑑𝑡 = 0 for every continuously differentiable ℎ(𝑡)
with ℎ(𝑡

1
) = ℎ(𝑡

1
) = 0, then 𝛼(𝑡) ≡ 0 on [𝑡

1
, 𝑡
2
].

Theorem 15. Assume that 𝐾
∗
is the optimal solution of Prob-

lem 1, and then there exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛
[0, 𝑇] and a nonnegative 𝜆 ∈ 𝑅1, such that

− ̇𝑃 = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
) + (𝐴 + 𝐵𝐾

∗
)
𝑇
𝑃

+ (𝐶 + 𝐷𝐾
∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

(19a)

𝑃 (𝑇) = 𝜆𝐼𝑛, (19b)

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0, (19c)

𝜆 [ tr𝑋 (𝑇) − 𝑐] = 0, (19d)

where 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] is a matrix space whose elements are
bounded functions in [0, 𝑇] with 0 value at point 0 and right
continuous at (0, 𝑇).

Proof. 𝐾
∗
is also the optimal solution of Problem 11. Problem

11 is the type of (MP I). Assume that the optimal solution
to Problem 11 is (𝑋

∗
, 𝐾
∗
). Using Theorem 8 and Lemma 12,

there exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉
𝑛×𝑛
[0, 𝑇] and a

nonnegative 𝜆 ∈ 𝑅1, such that

tr∫
𝑇

0

(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡

+ tr∫
𝑇

0

{Δ𝑋 (𝑡)

− ∫

𝑡

0

[(𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾

∗
)
𝑇

+ (𝐶 + 𝐷𝐾
∗
) Δ𝑋(𝐶 + 𝐷𝐾

∗
)
𝑇
] 𝑑𝑡} 𝑑𝑃

+𝜆 tr [Δ𝑋 (𝑇)] = 0,
(20)

tr∫
𝑇

0

(Δ𝐾
𝑇
𝑅𝐾
∗
𝑋
∗
+ 𝐾
𝑇

∗
𝑅Δ𝐾𝐾

∗
) 𝑑𝑡

− tr∫
𝑇

0

{∫

𝑡

0

[𝐵Δ𝐾𝑋
∗
+ 𝑋
∗
Δ𝐾
𝑇
𝐵
𝑇

+ (𝐶 + 𝐷𝐾
∗
)𝑋
∗
(𝐷Δ𝐾)

𝑇
+ (𝐷Δ𝐾)𝑋∗

× (𝐶 + 𝐷𝐾
∗
)
𝑇
] 𝑑𝑡} 𝑑𝑃 = 0,

(21)

𝜆 [tr𝑋 (𝑇) − 𝑐] = 0. (22)

For all (Δ𝑋, Δ𝐾) ∈ C𝑛×𝑛[0, 𝑇] × 𝐶𝑚×𝑛[0, 𝑇], (20)-(21) are
established. According to Riesz representation theorem, we
obtain the second item of (20) and the same of (21).

Without loss of generality, let 𝑝(𝑇) = 0. Integrate (20) by
parts yielding

tr∫
𝑇

0

(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡 + tr ∫

𝑇

0

Δ𝑋𝑑𝑃

+ tr∫
𝑇

0

{𝑃 [(𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾

∗
)
𝑇

+(𝐶 + 𝐷𝐾
∗
)
𝑇
Δ𝑋(𝐶 + 𝐷𝐾

∗
)
𝑇
] } 𝑑𝑡

+ 𝜆 tr [Δ𝑋 (𝑇)] = 0.

(23)

Clearly, 𝑃 has no jump on [0, 𝑇). But 𝑃 has a jump at 𝑇, and
the value is −𝜆𝐼

𝑛
. Because the above results are established for

all continuous Δ𝑋, then

∫

𝑇

0

Δ𝑋𝑑𝑃 = 𝑃Δ𝑋|
𝑇

0
− ∫

𝑇

0

𝑃Δ𝑋𝑑𝑡 = −∫

𝑇

0

𝑃Δ𝑋𝑑𝑡. (24)

Thus, (20) becomes

tr∫
𝑇

0

[(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋 + 𝑃 (𝐴 + 𝐵𝐾

∗
) Δ𝑋

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃Δ𝑋 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
Δ𝑋

− 𝑃Δ𝑋]𝑑𝑡 = 0.

(25)

From Lemma 13, 𝑃 is differential in [0, 𝑇) and (19a) is ob-
tained.

In the same way, integrating (21) by parts, we obtain

tr∫
𝑇

0

[𝐾
𝑇

∗
𝑅 (Δ𝐾𝑋

∗
) + 𝑃𝐵 (Δ𝐾𝑋

∗
)

+ (𝐶 + 𝐷𝐾
∗
)
𝑇
𝑃𝐷 (Δ𝐾𝑋

∗
)] 𝑑𝑡 = 0.

(26)

From Lemma 14, (19c) is obtained.
To ensure the continuity of 𝑃, replace 𝑃(𝑇) = 0with 𝑃(𝑇)

= 𝜆𝐼
𝑛
(i.e., (19b)).

Equation (19d) is called complementary slackness condi-
tions.

Remark 16. Equations (16b)-(16c) of Problem 11 and (19a)–
(19c) of Theorem 15 are 2𝑛-dimensional, first-order differen-
tial equations including 2𝑛 terminal conditions and 𝑚 alge-
braic equations. Equation (19d) is called a complementary
slackness condition. By using these conditions,𝑋

∗
,𝐾
∗
,𝑃, and

𝜆 are obtained.

Remark 17. As for the complementary slackness condition,
if the inequality constraint of Problem 11 is strict, then
𝜆 = 0, and the problem becomes easier. If the inequality
constraint of Problem 11 is an equality constraint, it simplifies
Theorem 15 as Lagrange multiplier method.
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Definition 18. 𝑀 ∈ 𝑅
𝑛×𝑛 is a given matrix. One calls𝑀+ the

Moore-Penrose generalized inverse of𝑀, if

𝑀𝑀
†
𝑀 = 𝑀, 𝑀

†
𝑀𝑀
†
= 𝑀
†
,

(𝑀𝑀
†
)
𝑇

= 𝑀𝑀
†
, (𝑀

†
𝑀)
𝑇

= 𝑀
†
𝑀.

(27)

Based onDefinition 18, we can rewriteTheorem 15 by express-
ing 𝐾
∗
in terms of 𝑃.

Lemma 19 (see [13]). Let matrices 𝐿,𝑀, and𝑁 be given with
appropriate sizes. Then the matrix equation

𝐿𝑋𝑀 = 𝑁 (28)

has a solution𝑋 if and only if

𝐿𝐿
†
𝑁𝑀
†
𝑀 = 𝑁. (29)

Moreover, any solution to 𝐿𝑋𝑀 = 𝑁 is represented by

𝑋 = 𝐿
†
𝑁𝑀
†
+ 𝑆 − 𝐿

†
𝐿𝑆𝑀𝑀

†
, (30)

where 𝑆 is a matrix with an appropriate size.

Theorem 20. If𝐾
∗
is optimal solution of Problem 1, then there

exist a unique 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] and a nonnegative 𝜆 ∈ 𝑅1,
such that

− ̇𝑃 = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃 + (𝐶 + 𝐷𝐾

∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

𝑃 (𝑇) = 𝜆𝐼𝑛,

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0,

𝜆 [ tr𝑋 (𝑇) − 𝑐] = 0,

𝐾
∗
= − (𝑅 + 𝐷

𝑇
𝑃𝐷)
†

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

+ 𝑌− (𝑅 + 𝐷
𝑇
𝑃𝐷)
†

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝑌,

(31)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

Proof. Form (19c) in Theorem 15, we obtain

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝐾

∗
= − (𝐵

𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (32)

According to Lemma 19,

𝐾
∗
(𝑅 + 𝐷

𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷𝑇𝑃𝐶) + 𝑌

− (𝑅 + 𝐷
𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)𝑌,

(33)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

As a special case, let us consider the following discrete sto-
chastic LQ control problem without inequality constraint.

Problem 21. Consider the following.

min 𝐽 (𝑋,𝐾) = tr∫
𝑇

0

[𝑄𝑋 (𝑡) + 𝐾(𝑡)
𝑇
𝑅𝐾 (𝑡)𝑋 (𝑡)] 𝑑𝑡

s.t. 𝑋 = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇

𝑋 (0) = 𝑋0.

(34)

Corollary 22. If 𝐾
∗
is optimal solution of Problem 21, then

there exists a unique 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] to the following con-
strained GDRE [13]

− ̇𝑃 = 𝑃𝐴 + 𝐴𝑃
𝑇
+ 𝐶
𝑇
𝑃𝐶 + 𝑄

− (𝑃𝐵 + 𝐶
𝑇
𝑃𝐷) (𝑅 + 𝐷

𝑇
𝑃𝐷) (𝑃𝐵 + 𝐶

𝑇
𝑃𝐷)
𝑇

,

𝑃 (𝑇) = 0,

(𝑅 + 𝐷
𝑇
𝑃𝐷) (𝑅 + 𝐷

𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

= 𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶,

(𝑅 + 𝐷
𝑇
𝑃𝐷) ≥ 0,

𝐾
∗
= − (𝑅 + 𝐷

𝑇
𝑃𝐷)
†

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

+ 𝑌 − (𝑅 + 𝐷
𝑇
𝑃𝐷)
†

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝑌,

(35)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

Proof. Because of Problem 21 without the equality constraint,
𝜆 = 0, therefore 𝑃(𝑇) = 0. Theorem 20 yields this corollary
directly.

4. Application

4.1. A Necessary and Sufficient Condition. In Theorem 15,
to ensure the uniqueness of 𝜆 and 𝑃, let us strengthen the
condition (𝑅 + 𝐷𝑇𝑃𝐷) ≥ 0 as (𝑅 + 𝐷𝑇𝑃𝐷) > 0.

Theorem 23. If 𝐾
∗
is optimal solution of Problem 1, then 𝑃 ∈

𝑁𝐵𝑉
𝑛×𝑛
[0, 𝑇] and 𝜆 ∈ 𝑅1 > 0, such that

− ̇𝑃 = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃 + (𝐶 + 𝐷𝐾

∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

𝑃 (𝑇) = 𝜆𝐼𝑛,

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0,

𝜆 [ tr𝑋(𝑇) − 𝑐] = 0,

(36)
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and if (𝑅 + 𝐷𝑇𝑃𝐷) > 0 hold, then Problem 1 is well posed. The
optimal solutions of Problem 1 are

𝑈
∗
= −(𝑅 + 𝐷

𝑇
𝑃𝐷)
−1

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) 𝑥,

𝐽
∗
= 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐.

(37)

Proof. In Remark 3, in order for a minimum point 𝑥∗ of a
mathematical programming to satisfy the KKT conditions,
we have assumed that 𝑥∗ satisfies LICQ regularity condition.
From (19c) of Theorem 15, we obtain

𝐾
∗
(𝑅 + 𝐷

𝑇
𝑃𝐷) = − (𝐵

𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (38)

Because (𝑅 + 𝐷𝑇𝑃𝐷) > 0, Problem 11 has a unique solution;
namely,

𝐾
∗
= −(𝑅 + 𝐷

𝑇
𝑃𝐷)
−1

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (39)

From the relationship between Problems 1 and 11 and by using
Itô’s formula, we have

𝐽
∗
= 𝑉 (𝑥

0
) = 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐. (40)

4.2. A Dynamic Programming Algorithm. Amethod for solv-
ing the indefinite stochastic linear quadratic (LQ) optimal
control problem with unequal terminal state constraint is
proposed as follows.

Reconsider the following LQ Problem 1

𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)] 𝑑𝑡

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

𝑥 (𝑠) = 𝑦,

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 {𝑥

𝑇
(𝑇) 𝑥 (𝑇)} ≤ 𝑐,

𝐽 (𝑥
0
, 𝑢) = 𝐸{∫

𝑇

0

[𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑅 (𝑡) 𝑢 (𝑡)]} 𝑑𝑡,

𝑉 (𝑠, 𝑦) = inf
𝑢(⋅)∈𝑈ad

𝐽 (𝑠, 𝑦; 𝑢 (⋅)) .

(41)

Then the backward dynamic programming optimality
principle [8] yields the following theorem.

Theorem 24. Let 𝑥
∗
(⋅) and 𝑢

∗
(⋅) be an optimal solution of

Problem 1, then 𝑥
∗
(⋅), and 𝑢

∗
(⋅) satisfy the following Bellman

equation:

𝑉 (𝑠, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑠+ℎ

𝑠

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡

+𝑉 (𝑠 + ℎ, 𝑥
∗ (𝑠 + ℎ)) } ∀ℎ > 0,

𝑉 (𝑇 − ℎ, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑇

𝑇−ℎ

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] } 𝑑𝑡,

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐.

(42)

Proof. By applying the backward dynamic programming
optimality principle, we obtain recursive relationships
between 𝑉(𝑠, 𝑥

∗
(𝑠)) and 𝑉(𝑠 + ℎ, 𝑥

∗
(𝑠 + ℎ)) as follows:

𝑉 (𝑠, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑠+ℎ

𝑠

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+ 𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡

+ 𝑉 (𝑠 + ℎ, 𝑥
∗ (𝑠 + ℎ)) } ,

(43)

where 𝑉(𝑠, 𝑥
∗
(𝑠)) is the objective of [𝑠, 𝑇] and 𝑉(𝑠 + ℎ, 𝑥

∗
(𝑠 +

ℎ)) of [𝑠 + ℎ, 𝑇]. Let 𝑉(𝑠, 𝑥
∗
(𝑠)) be the objective of [𝑇 − ℎ, 𝑇]

and then

𝑉 (𝑇 − ℎ, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸∫

𝑇

𝑇−ℎ

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡.

(44)

Combine the terminal state constraint

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐,

𝑢 (𝑡) = 𝐾𝑥 (𝑡) (𝐾 is given by Theorem 20) ;

(45)

thus we can solve the above recursive relations. Furthermore,
let ℎ → 0 generating the dynamic programming algorithm.

Remark 25. The dynamic programming algorithm can be
applied to solve the stochastic LQ problem with inequality
constraint except for a heavy computation. Nonetheless, it
makes more sense in theory.
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Example 26. In Problem 1, let

𝐴 = −1, 𝐵 = 1, 𝐶 = −2,

𝐷 = 0, 𝑐 =

(1 + 𝑒
2
)
2

4𝑒2
,

𝑥
0
= 1, 𝑄 = 0,

𝑅 = 1, 𝑇 = 1.

(46)

ByTheorem 15, we have

− ̇𝑃 = 𝐾
2

∗
+ 2𝑃 (−1 + 𝐾

∗
) + 4𝑃,

𝑃 (1) = 𝜆,

𝐾
∗
+ 𝑃 = 0,

𝜆[

[

𝑋 (1) −

(1 + 𝑒
2
)
2

4𝑒2
]

]

= 0,

𝜆 ≥ 0.

(47)

The constraints of Problem 11 are

−𝑋 = 2𝑋 + 2𝐾𝑋,

𝑋 (0) = 1,

𝑋 (1) ≤

(1 + 𝑒
2
)
2

4𝑒
2𝑡

.

(48)

Via a series of computations, we obtain

𝑋
∗
=

(1 + 𝑒
2
)
2

4𝑒2𝑡
, 𝑃 =

2

1 + 𝑒2𝑡
,

𝜆 =
2

1 + 𝑒2
, 𝐾

∗
= −

2

1 + 𝑒2𝑡
.

(49)

In Problem 11, the inequality constraint is

𝐺 (𝑋
∗ (1)) = 𝑋∗ (1) − 𝑐 ≤ 0. (50)

When 𝑇 = 1,

𝑋
∗ (1) =

(1 + 𝑒
2
)
2

4𝑒2
= 𝑐. (51)

Hence

𝐺 (𝑋
∗ (1)) = 𝑋∗ (1) − 𝑐 = 0. (52)

This shows that the optimal solution of Problem 11 satisfies the
inequality constraint. In this case, the inequality constraint is
a nonactive constraint. Because (𝑅 + 𝐷𝑇𝑃𝐷) = 1 > 0, using
Theorem 23, the optimal control of Problem 1 is

𝑢
∗ (𝑡) = −

2

1 + 𝑒2𝑡
𝑥
∗ (𝑡) , (53)

and the optimal value is

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐 =

1 − 𝑒
−2

2
. (54)

5. Conclusion

We have studied the indefinite stochastic LQ optimal control
problem with unequal terminal state constraint, which can
be transformed into a hybrid constrained mathematical
programming problem. By applying KKT theorem, we have
presented a necessary condition for the constrained indefinite
stochastic LQ optimal control problem. By adding some
conditions, we obtain a necessary and sufficient condition
for indefinite stochastic LQ optimal control problem with
inequality constraint. We demonstrate that the solvability
of the generalized Riccati equation is sufficient for the well
posedness of the indefinite LQ problem. Since this kind
of LQ control problems can be transformed into a hybrid
constrained mathematical programming, we have given a
dynamic programming algorithm.
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The problem of iterative learning control (ILC) is considered for a class of time-varying systems with random packet dropouts.
It is assumed that an ILC scheme is implemented via a remote control system and that packet dropout occurs during the packet
transmission between the ILC controller and the actuator of remote plant. The packet dropout is viewed as a binary switching
sequence which is subject to the Bernoulli distribution. In order to eliminate the effect of packet dropouts on the convergence
property of output error, the hold-input scheme is adopted to compensate the packet dropout at the actuator. It is shown that the
hold-input scheme with average ILC can achieve asymptotical convergence along the iteration axis for discrete time-varying linear
system. Numerical examples are provided to show the effectiveness of the proposed method.

1. Introduction

Iterative learning control (ILC) is an attractive technique
when dealing with systems that execute the same task repeat-
edly over a finite time interval [1]. This technique has been
the center of interest of many researchers over the two
decades [2–5] and covered a wide scope of research issues
such asmodel uncertainty [6–8], disturbance uncertainty and
stochastic noise [9], the initial condition and desired trajec-
tory uncertainty [10–12], continuous-time nonlinear system
control [13], and parameter interval uncertainty [14].

On the other hand, the remote control systems have
been the focus of several research studies over the last few
years [15–21]. In the remote control systems, one feature is
that the control loops are closed through a real-time com-
munication channel which transmits signals from the sensors
to the controller and from the controller to the actuators
[17]. The remote control systems eliminate unnecessary
wiring reducing the complexity and overall cost in design-
ing and implementing the control systems. However, the
introduction of communication networks makes the analysis
and control design more complicated than classical feedback

loops. Data packet dropout can randomly occur due to node
failure or network congestion and impose one of the most
important issues in remote control systems. In [18, 19], the
authors are concerned with the stability problem for remote
control systems with the packet dropout. In the work [20, 21],
decentralized stabilization of remote control systems with
nonlinear perturbations is studied.

Besides the stability issue, trajectory tracking is a chal-
lenging issue for remote control systems. Fortunately, for
periodic systems, iterative learning control offers a systematic
design that can improve the tracking performance by itera-
tions in a fixed time interval. ILC is in principle a feedforward
technique; thus it can send the controller signals obtained
from previous trials. It is still an open research area in ILC
which is implemented via a remote systems setting, except
for certain pioneer works [22–29]. In [22, 23], the authors
designed an optimal ILC controller for a class of linear
systems with random packet dropouts. Bu et al. [26] studied
the stability of first and high order ILC with data dropout
when the plant is subject to measurement signal dropout.
In [24, 25], the authors investigated the implementation of
ILC in a remote control systems environment and specifically
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focused on compensation when both random data dropouts
and delays occur at the communication network between
the sensors and the controller. In [27], a sampled-data ILC
approach was proposed for a class of nonlinear remote
control systems to analyze the effect of packet loss. In [28], the
author considered the problem of ILC for a class of nonlinear
systemswith control signal dropouts andmeasurement signal
dropouts, but the convergence analysis needs controller and
actuator to know the received signal whether lost or not.
Huang and Fang [29] discussed the wireless remote iterative
learning control system with random data dropouts.

In this paper, we proposed an ILC for a time-varying
system with random packet dropouts. As depicted in pre-
vious studies [22–29], there are two different kinds of
packet dropouts in remote ILC systems: control input signal
dropouts and output measurement signal dropouts. For the
sake of convenience, we only consider the control signal
dropouts in this paper, but the results can be extended to the
measurement signal dropouts.The packet dropouts would be
described as a binary sequence which is subject to a Bernoulli
distribution taking the value of one or zero with certain
probability.The ILC law adopts an iteration-average operator
and a revised learning gain that takes into consideration
the probabilities of data-dropout factors. As a result, the
ensemble average of the output tracking errors can be made
to converge along the iteration axis. In this paper, we consider
a class of discrete time linear plants with output matrixC and
input matrix B; our results refer only to CB of full-column
rank.

The paper is organized as follows. Section 2 formulates
the system problem. Section 3 formulates the hold-input
scheme with average ILC algorithm and proves the conver-
gence property of ILC for linear varying discrete-time plants.
Section 4 presents numerical examples, and Section 5 draws
the conclusions.

2. Problem Formulation

Consider the ILC system with network communication
depicted in Figure 1. The discrete time linear plant with actu-
ators and sensors is described by

x
𝑖 (𝑡+1) = A (𝑡) x𝑖 (𝑡)+B (u𝑖 (𝑡)+w𝑖 (𝑡))

𝑡∈{0, 1, 2, . . . , 𝑇} ,

y
𝑖 (𝑡) = Cx

𝑖 (𝑡) + v
𝑖 (𝑡) ,

(1)

where 𝑖 ∈ Z
+
denotes the iteration index; 𝑇 ∈ Z

+
is a given

finite time; x
𝑖
(𝑡) ∈ R𝑛, u

𝑖
(𝑡) ∈ R𝑞, and y

𝑖
(𝑡) ∈ R𝑚 are state,

control, and output, respectively; A(𝑡) ∈ R𝑛×𝑛 is unknown
matrix, while B ∈ R𝑛×𝑞 and C ∈ R𝑚×𝑛 are known; w

𝑖
(𝑡) ∈ R𝑞

and v
𝑖
(𝑡) ∈ R𝑚 are random noises with E[w

𝑖
(𝑡)] = 0 and

E[v
𝑖
(𝑡)] = 0; for all 𝑖 ∈ Z

+
, the initial state x

𝑖
(0) is a random

variable of E[x
𝑖
(0)] = x

0
with a fixed point x

0
∈ R𝑛. Assume

that CB has full-column rank. The discrete time controller
consists of a ILC algorithm and amemory.The controller and
the actuators are connected via a communication network
through which the controller transmits data to the actuators,
while the controller is directly connected to the sensors. The

plant and the controller are assumed to be time driven and
synchronized.

At each 𝑡 ∈ {0, . . . , 𝑇} of the 𝑖th iteration stage, the con-
troller output û

𝑖
(𝑡) is computed, the controller transmits û

𝑖
(𝑡)

to the actuators through the network. The transmission may
succeed or fail. For a successful transmission, it is assumed
that the transmission delay through the network is negligible.
With the negligible delay, the actuators can employ u

𝑖
(𝑡) =

û
𝑖
(𝑡), when û

𝑖
(𝑡) is transmitted successfully. Of course, when

the transmission fails, the actuators receive no û
𝑖
(𝑡) and have

to employ u
𝑖
(𝑡) = u

𝑖
(𝑡 − 1) (this paper prescribes u

𝑖
(−1) = 0).

Overall, the scheme of actuators is

u
𝑖 (𝑡) = 𝛾𝑖 (𝑡) û𝑖 (𝑡) + (1 − 𝛾𝑖 (𝑡)) u𝑖 (𝑡 − 1) , (2)

where

𝛾
𝑖 (𝑡) = {

1, if the transmission of û
𝑖 (𝑡) succeeds,

0, if the transmission of û
𝑖 (𝑡) fails.

(3)

Specially, this paper assumes that, for all 𝑖 ∈ Z
+
, for all

𝑡 ∈ {0, . . . , 𝑇}, 𝛾
𝑖
(𝑡) is a random variable of E[𝛾

𝑖
(𝑡)] =

𝛾 with a constant 𝛾 ∈ (0, 1) as well as that 𝛾
𝑖
(𝑡
1
) and

𝛾
𝑗
(𝑡
2
) are independent either when 𝑖 ̸= 𝑗 or when 𝑡

1
̸= 𝑡
2
. In

addition, TCP-like protocol is assumed, in which there is an
acknowledgment for a successful transmission, and hence the
controller has indicators of whether the current controller
output is received or not by the actuators.

Assumption 1. Given an output reference trajectory y
𝑑
(𝑡),

which is realizable; that is, there exists a unique desired con-
trol input u

𝑑
(𝑡) ∈ R𝑞 such that

x
𝑑 (𝑡 + 1) = A (𝑡) x𝑑 (𝑡) + Bu

𝑑 (𝑡)

y
𝑑 (𝑡) = Cx

𝑑 (𝑡) ,

x
𝑑 (0) = x

0
. (4)

The purpose of this paper is to design an iterative learning
control law for the above plant with network communication
such that y

𝑖
(𝑡) tracks y

𝑑
(𝑡) as closely as possible when 𝑖 is large

enough.

3. ILC Algorithms and Convergence Analysis

Denote e
𝑖
(𝑡) ≜ y

𝑑
(𝑡) − y

𝑖
(𝑡). The control law is a D-type ILC

with average operator that employs updating mechanism:

û
𝑖+1 (𝑡) =

1

𝑖

𝑖

∑

𝑗=1

u
𝑗 (𝑡) +

𝑖 + 1

𝑖
L
𝑖

∑

𝑗=1

e
𝑗 (𝑡 + 1)

= A [u
𝑖 (𝑡)] + (𝑖 + 1) LA [e𝑖 (𝑡 + 1)] ,

(5)

where the gain matrix L ∈ R𝑞×𝑚. From (2) and (5), the hold-
input scheme with average ILC is expressed as

u
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) û𝑖+1 (𝑡) + (1 − 𝛾𝑖+1 (𝑡)) u𝑖+1 (𝑡 − 1)

= 𝛾
𝑖+1 (𝑡) (A [u𝑖 (𝑡)] + (𝑖 + 1) LA [e𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) u𝑖+1 (𝑡 − 1) .

(6)
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Figure 1: The schematic diagram of the networked control system.

Define the input and state errors

Δu
𝑖+1 (𝑡) ≜ u

𝑑 (𝑡) − u
𝑖+1 (𝑡) ,

Δx
𝑖+1 (𝑡) ≜ x

𝑑 (𝑡) − x
𝑖+1 (𝑡) .

(7)

And subtracting u
𝑑
(𝑡) from both sides of (6) yields

Δu
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (A [Δu𝑖 (𝑡)] − (𝑖 + 1) LA [e𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) (Δu𝑖+1 (𝑡 − 1) + 𝛿 (𝑡)) ,

(8)

where (this paper prescribes u
𝑑
(−1) = 0 and hence 𝛿 (0) =

u
𝑑
(0)) 𝛿 (𝑡) ≜ u

𝑑
(𝑡) − u

𝑑
(𝑡 − 1). Noticing that 𝛾

𝑖+1
(𝑡) is

independent ofA[Δu
𝑖
(𝑡)],A[e

𝑖
(𝑡 + 1)] and Δu

𝑖+1
(𝑡 − 1) and

taking expectation on both sides of (8), we have

E [Δu
𝑖+1 (𝑡)]

= 𝛾 (E [A [Δu
𝑖 (𝑡)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 + 1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 1)] + 𝛿 (𝑡)) .

(9)

Expanding expression (9) from E[Δu
𝑖+1
(𝑡 − 1)] to

E[Δu
𝑖+1
(0)], we have

E [Δu
𝑖+1 (𝑡 − 1)]

= 𝛾 (E [A [Δu
𝑖 (𝑡 − 1)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 2)] + 𝛿 (𝑡 − 1)) ,

E [Δu
𝑖+1 (𝑡 − 2)]

= 𝛾 (E [A [Δu
𝑖 (𝑡 − 2)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 − 1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 3)] + 𝛿 (𝑡 − 2))

...

E [Δu
𝑖+1 (0)]

= 𝛾 (E [A [Δu
𝑖 (0)]] − (𝑖 + 1) LE [A [e𝑖 (1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (−1)] + 𝛿 (0))

= 𝛾 (E [A [Δu
𝑖 (0)]] − (𝑖 + 1) LE [A [e𝑖 (1)]])

+ (1 − 𝛾) 𝛿 (0) .

(10)

The above expression can be arranged later below (this paper
prescribes ∑𝑘2

𝑘=𝑘
1

= 0 when 𝑘
2
< 𝑘
1
)

E [Δu
𝑖+1 (𝑡 − 1)] =

𝑡−1

∑

𝑘=0

𝛾(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘 − 1)]]

− (𝑖 + 1) L
𝑡−1

∑

𝑘=0

𝛾(1 − 𝛾)
𝑘
E [A [e

𝑖 (𝑡 − 𝑘)]]

+

𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘 − 1) .

(11)

From (1) and (4), we have

Δx
𝑖 (𝑡 + 1) = A (𝑡) Δx𝑖 (𝑡) + B (Δu

𝑖 (𝑡) − w
𝑖 (𝑡))

e
𝑖 (𝑡) = CΔx

𝑖 (𝑡) − k
𝑖 (𝑡) .

(12)
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Taking expectation on both sides of (12) and expanding
expression from E[Δx

𝑖
(𝑡 + 1)] to E[Δx

𝑖
(1)], we obtain

E [Δx
𝑖 (𝑡 + 1)] = A (𝑡)E [Δx𝑖 (𝑡)] + BE [Δu

𝑖 (𝑡)] ,

E [Δx
𝑖 (𝑡)] = A (𝑡 − 1)E [Δx𝑖 (𝑡 − 1)]

+ BE [Δu
𝑖 (𝑡 − 1)] ,

...

E [Δx
𝑖 (1)] = A (0)E [Δx𝑖 (0)] + BE [Δu

𝑖 (0)] .

(13)

The above expression can be arranged later (this paper pre-
scribes∏𝜏2

𝜏=𝜏
1

= I when 𝜏
2
< 𝜏
1
)

E [Δx
𝑖 (𝑡 + 1)] =

𝑡

∑

𝜏=0

𝑡

∏

]=𝜏+1

A (])BE [Δu𝑖 (𝜏)]

E [A [e
𝑖 (𝑡 + 1)]] = CE [A [Δx

𝑖 (𝑡 + 1)]]

= C
𝑡

∑

𝜏=0

𝑡

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] .

(14)

For any 𝑎 > 1 and any 𝜆 > 1, denote

E [A [Δu𝑖]]
(𝜆,𝑎)

≜ max
𝑡∈{0,1,...,𝑇}

𝑎
−𝜆𝑡E [A [Δu𝑖 (𝑡)]]

2
,

(15)

E [A [e𝑖]]
(𝜆,𝑎)

≜ max
𝑡∈{0,1,...,𝑇}

𝑎
−𝜆𝑡E [A [e𝑖 (𝑡)]]

2
. (16)

Lemma 2. For all 𝑎 > 1, for all 𝜆 > 1, and for all 𝑖 ∈ Z
+
,

𝛾 max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘
𝑡−𝑘−1

∑

𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(17)

Proof. From (17), we have

𝛾 max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤ 𝛾 max
𝑡∈{0,...,𝑇}

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑎
−𝜆𝜏E [A [Δu𝑖 (𝜏)]]

2
𝑎
−(𝜆−1)𝑡

𝑎
(𝜆−1)𝜏

≤ 𝛾 max
𝑡∈{0,...,𝑇}

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘E [A [Δu𝑖]]

(𝜆,𝑎)

×

𝑡−𝑘−1

∑

𝜏=0

𝑎
−(𝜆−1)𝑡

𝑎
(𝜆−1)𝜏

≤
E [A [Δu𝑖]]

(𝜆,𝑎)
max
𝑡∈{0,...,𝑇}

𝛾

×

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘 𝑎
−(𝜆−1)𝑘

− 𝑎
−(𝜆−1)𝑡

𝑎𝜆−1 − 1

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
max
𝑡∈{0,...,𝑇}

𝛾
1 − (1 − 𝛾)

𝑡+1

1 − (1 − 𝛾)

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(18)

Theorem 3. For the system with network communication
described in Section 2 and the iterative learning controller (5),
suppose

𝜌 ≜
I − 𝛾LCB

 < 1. (19)

Then for all A
0
, . . . ,A

𝑇
∈ R𝑛×𝑛, for all 𝜖 > 0, there exist 𝑎 > 1

and 𝜆 > 1 such that

lim
𝑖→∞

E [e𝑖]
(𝜆,𝑎)

< 𝜖. (20)

Proof. From definition of average operator, note the relation

A [Δu
𝑖+1 (𝑡)] =

1

𝑖 + 1
(Δu
𝑖+1 (𝑡) +

𝑖

∑

𝑗=1

Δu
𝑗 (𝑡))

=
1

𝑖 + 1
(Δu
𝑖+1 (𝑡) + 𝑖A [Δu𝑖 (𝑡)]) .

(21)

Applying the ensemble operatorE[⋅] to both sides of (21)
and substituting the relationship (8), we can obtain

E [A [Δu
𝑖+1 (𝑡)]]

=
1

𝑖 + 1
E [Δu

𝑖+1 (𝑡)] +
𝑖

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]]

=
𝛾

𝑖 + 1
(E [A [Δu

𝑖 (𝑡)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 + 1)]])

+
1 − 𝛾

𝑖 + 1
(E [Δu

𝑖+1 (𝑡 − 1)] + 𝛿 (𝑡))

+
𝑖

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] .

(22)
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Substituting (11) into (22) leads to the following relationship:

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] − 𝛾LE [A [e𝑖 (𝑡 + 1)]]

+
𝛾

𝑖 + 1

𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾L
𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1

E [A [e
𝑖 (𝑡 − 𝑘)]]

+
1 − 𝛾

𝑖 + 1
(

𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘 − 1) + 𝛿 (𝑡))

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾L
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘
E [A [e

𝑖 (𝑡 − 𝑘 + 1)]]

+
1

𝑖 + 1

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘) .

(23)

Now let us handle the third term on the right hand side
of (23); we will express E[A[e

𝑖
(𝑡 − 𝑘 + 1)]] with E[A[u

𝑖
]].

Substituting the state error dynamics (14) into (23) leads to
the following relationship:

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡−1

∑

𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘

∑

𝜏=0

𝑡−𝑘

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡)

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡

∑

𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑡−𝑘

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]]

− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘BE [A [Δu

𝑖 (𝑡 − 𝑘)]] + 𝜇𝑖 (𝑡) ,

(24)

where 𝜇
𝑖
(𝑡) ≜ (1/(𝑖 + 1))∑

𝑡

𝑘=0
(1 − 𝛾)

𝑘+1
𝛿(𝑡 − 𝑘).

Next, combining analogous terms on the right hand of
(22), we obtain

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡

∑

𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑡−𝑘

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]]

− 𝛾LC
𝑡

∑

𝑘=1

(1 − 𝛾)
𝑘BE [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LCBE [A [Δu
𝑖 (𝑡)]] + 𝜇𝑖 (𝑡)

= (
𝑖 + 𝛾

𝑖 + 1
I − 𝛾LCB)E [A [Δu

𝑖 (𝑡)]]

+ (
𝛾

𝑖 + 1
I − 𝛾LCB)

𝑡

∑

𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑡−𝑘

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡) .

(25)

The relationship (25) can be rewritten as follows:

E [A [Δu
𝑖+1 (𝑡)]]

= (
𝑖 + 𝛾

𝑖 + 1
I − 𝛾LCB)E [A [Δu

𝑖 (𝑡)]]

+ (
𝛾

𝑖 + 1
I − 𝛾LCB)

𝑡−1

∑

𝜏=0

(1 − 𝛾)
𝑡−𝜏

E [A [Δu
𝑖 (𝜏)]]
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− 𝛾LC
𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑

𝜏=0

𝑡−𝑘

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡) .

(26)

To simplify expression of ((𝑖+𝛾)/(𝑖+1))I−𝛾LCB, (𝛾/(𝑖+1))I−
𝛾LCB, and 𝛾LC∑𝑡

𝑘=0
(1−𝛾)

𝑘, we choose 𝑎 > 1 and 𝜆 > 1 such
that

𝑎 > ‖A (])‖ ∀] ∈ {0, . . . , 𝑇} , (27)

𝛾 ‖LCB‖ + 𝛾 + ‖LC‖ ‖B‖
𝑎𝜆−1 − 1

<
1 − 𝜌

4
, (28)

‖C‖ ‖B‖ 1

𝑎𝜆−1 − 1

2𝛼

1 − 𝜌
< 𝜖, (29)

where

𝛼 ≜ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

2

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘+1
‖𝛿 (𝑡 − 𝑘)‖2

≥ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡𝜇𝑖 (𝑡)

2
.

(30)

Taking 𝜆-norm on both sides of (26), we obtain

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤


I − 𝛾LCB − 1 − 𝛾

𝑖 + 1
I


E [A [Δu𝑖]]
(𝜆,𝑎)

+ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡𝜇𝑖 (𝑡)

2

+



𝛾

𝑖 + 1
I − 𝛾LCB


max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

×

𝑡−1

∑

𝜏=0

(1 − 𝛾)
𝑡−𝜏E [A [Δu𝑖 (𝜏)]]

2

+ 𝛾 ‖LC‖ ‖B‖ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

×

𝑡

∑

𝑘=0

(1 − 𝛾)
𝑘
𝑡−𝑘−1

∑

𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2
.

(31)

Using Lemma 2, it can be proved that, for all, 𝑎 > 1, for
all 𝜆 > 1, and for all 𝑖 ∈ Z

+
,

max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡−1

∑

𝜏=0

(1 − 𝛾)
𝑡−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(32)

Combining Lemma 2, (31) and (32) yields
E [A [Δu𝑖+1]]

(𝜆,𝑎)

≤ (𝜌 +
1 − 𝛾

𝑖 + 1
+
𝛾 ‖LCB‖ + 𝛾 + ‖LC‖ ‖B‖

𝑎𝜆−1 − 1
)

×
E [A [Δu𝑖 (𝑡)]]

(𝜆,𝑎)
+ 𝛼.

(33)

There exists𝑀 ∈ Z
+
such that (1−𝛾)/(𝑖+1) < (1−𝜌)/4when

𝑖 ≥ 𝑀. Now for 𝑖 > 𝑀, (28) and (33) imply that

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤
1 + 𝜌

2

E [A [Δu𝑖]]
(𝜆,𝑎)

+ 𝛼,

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤ (
1 + 𝜌

2
)

𝑖+1−𝑀
E [A [Δu𝑀]]

(𝜆,𝑎)

+

𝑖−𝑀

∑

𝑗=0

(
1 + 𝜌

2
)

𝑗

𝛼

≤ (
1 + 𝜌

2
)

𝑖+1−𝑀
E [A [Δu𝑀]]

(𝜆,𝑎)

+
1 − ((1 + 𝜌) /2)

𝑖+1−𝑀

1 − ((1 + 𝜌) /2)
𝛼.

(34)

Consequently, we obtain

lim
𝑖→∞

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤
2𝛼

1 − 𝜌
. (35)

According to the relationship (14) between the input error
and output error, we have

E [A [e
𝑖 (𝑡)]] = C

𝑡−1

∑

𝜏=0

𝑡−1

∏

]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] . (36)

Similar to the proof of Lemma 2, one can prove that

max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡E [A [e𝑖 (𝑡)]]

2

≤ ‖C‖ ‖B‖ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡−1

∑

𝜏=0

𝑎
𝑡−1−𝜏E [A [Δu𝑖]]

2

≤ ‖C‖ ‖B‖
E [A [Δu𝑖]]

(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(37)

Finally, from (29), (35), and (37), we can obtain

lim
𝑖→∞

E [A [e𝑖+1]]
(𝜆,𝑎)

≤ ‖C‖ ‖B‖ 2𝛼

1 − 𝜌

1

𝑎𝜆−1 − 1
< 𝜖

(38)

because lambda can be chosen arbitrarily large in (38).
This completes the proof.
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Figure 2: The max tracking error versus iteration with 5% packet
dropout.

Remark 4. In this paper, we consider D-type iterative learn-
ing control with average operator, and the result obtained can
be extended to P-type iterative learning control with average
operator.

4. Numerical Examples

In this simulation test, let us consider system (1) andmatrices
given by

A (𝑡) = [
0 1

−1 − 10
−3
𝑡 −2 − 10

−3
𝑡

] ,

B = [0
1
] , C = [1 1] .

(39)

The random noises w
𝑖
(𝑡) and v

𝑖
(𝑡) have uniform distribution

on the intervals [−0.05, 0.05] and [−0.01, 0.01], respectively.
In this control problem, the desired output trajectory for
𝑡 ∈ {0, 1, . . . , 50} is given to be y

𝑑
(𝑡) = sin(2𝜋𝑡/50), and the

initial states 𝑥
1𝑖
(0) and 𝑥

2𝑖
(0) have uniform distribution on

the intervals [−0.01, 0.01] and [−0.02, 0.02], respectively. The
fixed time interval 𝑇 is 50. The control profile of the first
iteration is 𝑢

1
(𝑡) = 0. Random packet dropout in controller-

actuator channel is subject to Bernoulli distribution of
expected value 𝛾 (1 means transmission success while 0
means transmission failure).

For expected value 𝛾 = 0.95, we compare our algorithm
with the other 2 algorithms.

Algorithm 1 (classic ILC). The control signal is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (𝑢𝑖 (𝑡) + L𝑒

𝑖 (𝑡 + 1))

+ (1 − 𝛾
𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1)

(40)

with L = 0.2 satisfying ‖ 1 − 𝛾LCB ‖= 0.81 < 1.
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Figure 3:Themathematical expectation of the tracking error versus
iteration with 5% packet dropout.

Algorithm 2 (zero-input scheme with average ILC). The con-
trol signal is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (A [𝑢𝑖 (𝑡)] + (𝑖 + 1) 𝐿A [𝑒𝑖 (𝑡 + 1)]) (41)

with 𝐿 = 0.2.

Algorithm 3.Now, we consider the proposed algorithm. From
(2) and (5), the control signal 𝑢

𝑖+1
(𝑡) is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) �̂�𝑖+1 (𝑡) + (1 − 𝛾𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1)

= 𝛾
𝑖+1 (𝑡) (A [𝑢𝑖 (𝑡)] + (𝑖 + 1) LA [𝑒𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1) ,

(42)

where the learning gain 𝐿 = 0.2 and expected value 𝛾 = 0.95.

As shown in Figure 2, the tracking error profiles for
the proposed algorithm are much lower than the other two
algorithms with 5% packet dropout. In Figure 3, the math-
ematical expectation of the tracking error versus iterations
is shown, and the proposed hold-input scheme with average
ILC achieves the convergent performance.

5. Conclusion

In this work we address a remote control system problem
with random packet dropout in controller-actuator channel.
The hold-input scheme with average ILC is applied to handle
this remote control problem with repeated tracking tasks.
Through analysis we illustrate the desired convergence prop-
erty of the hold-input scheme with average ILC. In our future
work, we will also explore the extension to more generic
stochastic process such as Markov chain.
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Nomenclature

R: The set of all real numbers
Z
+
: The set of all positive integers

A[k
𝑚
]: The average operatorA[k

𝑚
] = (1/𝑚)∑

𝑚

𝑖=1
k
𝑖

E[⋅]: The expected value of a random variable
P[⋅]: The probability of an event
‖ ⋅ ‖: The maximal singular value of a matrix
‖ ⋅ ‖
2
: The Euclidean norm of a vector

I: Identity matrix of appropriate dimensions
0: Zero matrix of appropriate dimensions.

Acknowledgment

This work is supported by the 973 program of China (Grant
no. 2009CB320603).

References

[1] S. Arimoto, S. Kawamura, andF.Miyazaki, “Berrering operation
of robots by learning,” Journal of Robot Systems, vol. 1, no. 1, pp.
123–140, 1984.

[2] Z. Bien and K.M. Huh, “Higher-order iterative learning control
algorithm,” IEE Proceedings D, vol. 136, no. 3, pp. 105–112, 1989.

[3] Y. Chen and K. L. Moore, “Harnessing the nonrepetitiveness
in iterative learning control,” in Proceedings of the 41st IEEE
Conference on Decision and Control, pp. 3350–3355, Las Vegas,
Nev, USA, December 2002.

[4] K. L.Moore, Y. Chen, andH.-S. Ahn, “Iterative learning control:
A tutorial and big picture view,” in Proceedings of the 45th IEEE
Conference on Decision and Control (CDC ’06), pp. 2352–2357,
December 2006.

[5] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of
iterative learning control: A learning-based method for high-
performance tracking control,” IEEE Control SystemsMagazine,
vol. 26, no. 3, pp. 96–114, 2006.

[6] Y. Chen, Z. Gong, and C. Wen, “Analysis of a high-order
iterative learning control algorithm for uncertain nonlinear
systems with state delays,” Automatica, vol. 34, no. 3, pp. 345–
353, 1998.

[7] A. Tayebi andM. B. Zaremba, “Robust iterative learning control
design is straightforward for uncertain LTI systems satisfying
the robust performance condition,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 1, pp. 101–106, 2003.

[8] C. Yin, J.-X. Xu, and Z. Hou, “A high-order internal model
based iterative learning control scheme for nonlinear systems
with time-iteration-varying parameters,” IEEE Transactions on
Automatic Control, vol. 55, no. 11, pp. 2665–2670, 2010.

[9] S. S. Saab, “A discrete-time stochastic learning control algo-
rithm,” IEEE Transactions on Automatic Control, vol. 46, no. 6,
pp. 877–887, 2001.

[10] M. Sun andD.Wang, “Iterative learning control with initial rec-
tifying action,” Automatica, vol. 38, no. 8, pp. 1177–1182, 2002.

[11] Y. Chen, C. Wen, Z. Gong, and M. Sun, “An iterative learning
controller with initial state learning,” IEEE Transactions on
Automatic Control, vol. 44, no. 2, pp. 371–376, 1999.

[12] R. Chi, Z. Hou, and J. Xu, “Adaptive ILC for a class of discrete-
time systems with iteration-varying trajectory and random ini-
tial condition,” Automatica, vol. 44, no. 8, pp. 2207–2213, 2008.

[13] J.-X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning
Control, vol. 291 of Lecture Notes in Control and Information
Sciences, Springer, Berlin, Germany, 2003.

[14] H.-S. Ahn, K. L.Moore, and Y. Chen, Iterative Learning Control:
Robustness and Monotonic Convergence for Interval Systems,
Communications and Control Engineering Series, Springer,
London, UK, 2007.

[15] L.-S. Hu, T. Bai, P. Shi, and Z. Wu, “Sampled-data control of
networked linear control systems,” Automatica, vol. 43, no. 5,
pp. 903–911, 2007.

[16] M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels,
and H. Nijmeijer, “Stability of networked control systems with
uncertain time-varying delays,” IEEE Transactions on Auto-
matic Control, vol. 54, no. 7, pp. 1575–1580, 2009.

[17] J. Nilsson, Real time control systems with delay [Ph.D. thesis],
Lund Institute of Technology, 1998.

[18] L. A. Montestruque and P. Antsaklis, “Stability of model-based
networked control systems with time-varying transmission
times,” IEEE Transactions on Automatic Control, vol. 49, no. 9,
pp. 1562–1572, 2004.

[19] D. Wu, J. Wu, and S. Chen, “Robust𝐻
∞
control for networked

control systems with uncertainties and multiple-packet trans-
mission,” IET Control Theory & Applications, vol. 4, no. 5, pp.
701–709, 2010.

[20] L. Bakule and M. De La Sen, “Decentralized stabilization of
networked complex composite systems with nonlinear per-
turbations,” in Proceedings of the IEEE International Confer-
ence on Control and Automation (ICCA ’09), pp. 2272–2277,
Christchurch, New Zealand, December 2009.

[21] L. Bakule and M. De La Sen, “Decentralized resilient 𝐻
∞

observer-based control for a class of uncertain interconnected
networked systems,” in Proceedings of the American Control
Conference (ACC ’10), pp. 1338–1343, Baltimore, Md, USA, July
2010.

[22] H.-S. Ahn, K. L. Moore, and Y. Chen, “Discrete-time inter-
mittent iterative learning controller with independent data
dropouts,” in Proceedings of the 17th World Congress, Interna-
tional Federation of Automatic Control (IFAC ’08), Seoul, Korea,
July 2008.

[23] H.-S. Ahn, K. L. Moore, and Y. Chen, “Stability of discrete-
time iterative learning control with random data dropouts and
delayed controlled signals in networked control systems,” in
Proceedings of the 10th International Conference on Control,
Automation, Robotics and Vision (ICARCV ’08), pp. 757–762,
December 2008.

[24] C. Liu, J. Xu, and J. Wu, “Iterative learning control for network
systems with communication delay or data dropout,” in Pro-
ceedings of the 48th IEEE Conference on Decision and Control
Held Jointly with the 28th Chinese Control Conference (CDC/
CCC ’09), pp. 4858–4863, Shanghai, China, December 2009.

[25] C. Liu, J. Xu, and J. Wu, “Iterative learning control for remote
control systems with communication delay and data dropout,”
Mathematical Problems in Engineering, vol. 2012, Article ID
705474, 14 pages, 2012.

[26] X. Bu, Z. Hou, and F. Yu, “Stability of first and high order itera-
tive learning control with data dropouts,” International Journal
of Control, Automation and Systems, vol. 9, no. 5, pp. 843–849,
2011.

[27] Y.-J. Pan, H. J. Marquez, T. Chen, and L. Sheng, “Effects of
network communications on a class of learning controlled non-
linear systems,” International Journal of Systems Science, vol. 40,
no. 7, pp. 757–767, 2009.



Journal of Applied Mathematics 9

[28] X. Bu, F. Yu, Z. Hou, and F.Wang, “Iterative learning control for
a class of nonlinear systemswith randompacket losses,”Nonlin-
ear Analysis: Real World Applications, vol. 14, no. 1, pp. 567–580,
2013.

[29] L.-X. Huang and Y. Fang, “Convergence analysis of wireless
remote iterative learning control systemswith dropout compen-
sation,”Mathematical Problems in Engineering, vol. 2013, Article
ID 609284, 9 pages, 2013.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 801734, 9 pages
http://dx.doi.org/10.1155/2013/801734

Research Article
Pareto Optimal Solutions for Stochastic Dynamic
Programming Problems via Monte Carlo Simulation

R. T. N. Cardoso,1 R. H. C. Takahashi,2 and F. R. B. Cruz3
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A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems
submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of
the decision variables is kept along the process, while Pareto frontsweighted by all quantiles of the objective function are determined.
Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations
embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in
instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in
solving these important stochastic optimization problems.

1. Introduction

Since Bellman [1] proposed the dynamic programming tech-
nique for multistage optimization problems, his method has
been very successfully applied to a wide range of problems,
as it is well documented (see, for instance, [1–5]). This
paper considers a dynamic programming-based method to
solve stochastic discrete-time continuous-variable dynamic
programming problems. A standard formulation of this
problem is given by

min
𝑢[0],...,𝑢[𝑛−1]

𝐸[

𝑛−1

∑

𝑘=0

𝑔
𝑘 (𝑥 [𝑘] , 𝑢 [𝑘]) + 𝑔𝑛 (𝑥 [𝑛])] , (1)

subject to
𝑥 [𝑘 + 1] = 𝑓 (𝑥 [𝑘] , 𝑢 [𝑘] , 𝑤 [𝑘]) , 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 [0] = 𝑥0, 𝑥 [𝑛] = 𝑥
∗
,

(2)
in which 𝑘 = 0, 1, . . . , 𝑛 are the time stages, 𝑥[0], . . . , 𝑥[𝑛]
are the state variables, 𝑢[0], . . . , 𝑥[𝑛 − 1] are the decision

variables, 𝑤[0], . . . , 𝑤[𝑛 − 1] are the disturbance variables,
𝑓(𝑥[𝑘], 𝑢[𝑘], 𝑤[𝑘]) is the state equation, 𝑔

𝑘
(𝑥[𝑘], 𝑢[𝑘]) is the

cost associated to stage 𝑘,𝑔
𝑛
(𝑥[𝑛]) is the cost associated to the

final stage, 𝑛, and 𝐸[𝑋] is the expectation of random variable
𝑋.

The state variables track the system dynamics throughout
the states, and the decision variables are actions that should
be taken in order to achieve the optimization objective. Addi-
tionally, the disturbance variables are assumed as random
variables, from any given distribution.The objective function
is assumed separable in all variables and stages.

In discrete-variable dynamic programming problems, a
resolution algorithm might involve a sequential search in a
graph, the nodes being the admissible states, the arcs being
the possible control actions, and the arc costs being the
respective transition probabilities. Although accurate, such
an algorithm certainly would have a tremendous computa-
tional cost, suffering from what is known as the “curse of
dimensionality.” That is, the processing costs would increase
exponentially with the number of possible states (for details,
see [1, 2, 6]).
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In continuous-variable dynamic programming problems,
an exact solution can be obtained only when the system
dynamics is linear and the objective function is quadratic.
In the general case, only approximate solutions are possible,
which are usually based on a state space discretization, such
as a uniform grid discretization of points over the state space.
However, this is also not an efficient procedure due to the
exponential growth of the number of states. In order to cope
with this problem, computationally efficient approximate
discretization procedures have been tried out already (see, for
instance, [7, 8]).

In this paper, we propose numerical heuristic solutions,
coupled with Monte Carlo simulations, obtainable within
a quite reasonable amount of computational effort. Monte
Carlo simulation is a well-known and usefulmethod to deter-
mine probabilities by using highly intensive computational
experiments [9]. Solving a dynamic programming problem
by simulation is not a novelty. However, while widely used in
many contexts, Monte Carlo simulations have not been used
often in solving dynamic programming problems, perhaps
because of their high computational costs. Just recently, now
coupled with heuristics and approximations, Monte Carlo
simulations started to be considered again. Its prohibitive
computational costs were exchanged by solutions without
strict guarantee of optimality.

Indeed, neurodynamic programming is a well-known
dynamic programming approach that employs Monte Carlo
sampling in stochastic settings [10]. Another very successful
example is reported by de Farias and van Roy [11], which
reformulated the stochastic dynamic programming problem
as a linear programming problem and approximated the large
resulting number of constraints by Monte Carlo sampling.
Also Thompson and Cluett [12] considered Monte Carlo
simulation to calculate integrals related to the expected
value of the objective function of a unidimensional dual-
optimal control problem that has to be decided by iterative
dynamic programming [13]. A number-theoretic method,
called quasi-Monte Carlo, uses number theory and numerical
analysis to generate a point set that is uniformly spaced. This
technique has been successfully used byCervellera et al. [7, 8],
along with neural networks, to improve a computationally
tractable approximate method of discretization. Those are
few examples of well-succeeded reductions in the “curse of
dimensionality.”

For most of the stochastic dynamic optimization prob-
lems considered in the literature, a usual model for dis-
turbances is a zero mean and 𝜎2 variance Gaussian white
noise, although in some cases a nonzero mean may also
appear [14].These assumptions can be suitable for some real-
world applications but it certainly will not be the case for
many of them. The focus of this paper is stochastic discrete-
time continuous-variable dynamic programming problems
submitted to non-Gaussian probability distribution functions
for disturbances𝑤[𝑘]. In those problems, the analytical form
of the expected value of the objective function may be really
complex or even lead to solutions impossible to be found
by means of classic dynamic programming techniques. If
disturbances 𝑤[𝑘] are Gaussian, it is possible that the best
optimization reference is the expected value of the objective

function. However, in many practical applications, mainly
under non-Gaussian disturbances, it is almost certain that
other quantiles, greater or smaller than themedian, are better,
as we will show shortly. Thus, a multiobjective approach
seems to be quite justified [15]. That is, instead of finding
the control sequence that optimizes the expected value of the
objective function, this paper proposes finding Pareto fronts
instead, weighted by all quantiles of the objective function.

In multiobjective optimization problems [16], there may
not be a single solution that is the best (or the global
optimum) with respect to all the objectives. The presence
of multiple objectives in a problem usually gives rise to a
family of nondominated solutions, called Pareto optimal set,
in which each objective can only be improved by degrading at
least one of the other objectives. Since none of the solutions
in the nondominated set is absolutely better than the others,
any one of them is an acceptable solution. For instance, Li and
Haimes [17] presented a survey on multiobjective dynamic
programming, and Trzaskalik and Sitarz [18] proposed a
procedure that considers a partially ordered criteria structure
in dynamic programming. However, we remind that the
approach proposed here is out of the traditional multiobjec-
tive discrete-time dynamic programming methods.

A highlight of the contributions of this paper is:

(i) We propose a scheme based on Monte Carlo sim-
ulations coupled with a deterministic discrete-time
dynamic programming method, which is exact for
continuous-variable problems and asymptotically
accurate for discrete-variable problems. Details will
be given shortly, but the main idea of this dynamic
programming method is to study the system dynam-
ics as an iteration operated on closed sets, essentially
considering the problem from a geometrical point
of view, instead of using a more traditional way of
studying it in the arcs of the graph. Since the scheme
proposed is based on simulations, it will be possible to
use non-Gaussian probability distribution functions
for disturbances.

(ii) Using the proposed scheme, a multiobjective
approach is employed, because why should one ever
consider only the expected value as the reference
for the optimization when it is possible to take
into account all quantiles? To deal with this point, a
Pareto front is presented as the answer of the problem,
weighted by a function of the empirical quantiles of
the decision variables. This is true because quantiles
are functions of the random variables, which can be
sampled by Monte Carlo simulations.

The proposed methodology and the algorithm are
explained in detail in Section 2. A case study based on a clas-
sical inventory control problem is conducted and presented
in Section 3. Finally, in Section 4, we summarize this paper
and conclude it with topics for future research in the area.
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algorithm
read input;
for 𝑖 = 1 until sampleSize do
generate randomly a sequence of disturbances with a

given probability distribution function;
find a sequence of decision variables that optimizes

the objective-function, as if it were a
deterministic dynamic programming problem;

end for
mount the Pareto front of the decision variables,
weighted by its quantiles;

take the box-plot, the average, or any other quantile of
these variables as the answer of the problem.

end algorithm

Algorithm 1

2. Proposed Approach

We propose here a computationally tractable scheme for
stochastic dynamic programming problems formulated as
in (1). Our heuristic method consists of a multiobjective
approach based on Monte Carlo simulations embedded in
a deterministic dynamic programming method. For our
convenience, the deterministic method chosen here was a
geometrical algorithm, described in detail in Cardoso [19]
and Cardoso et al. [15], which is exact for continuous-
variable problems and asymptotically exact for discrete-
variable problems.

In the geometrical algorithm described by Cardoso [19],
the system dynamics is supposed to be linear, with real
variables, or else with integer variables that could be relaxed.
The objective functions could be of any type, not necessarily
quadratic, although quadratics are the most used functions
in the literature. The geometrical algorithm is inspired by
approximate dynamic programming methods, namely, the
certainty equivalent control technique and the model predic-
tive control technique (detailsmay be found in [2]). An open-
loop optimal control computation is used in conjunction
with a rolling horizon, which means that more than one
control move is generally calculated. Finally, we remark that
the scheme is flexible enough to work under any other
fast deterministic dynamic programming method as well.
The proposed algorithm may be summarized as shown in
Algorithm 1.

We remind that because the proposed procedure is
based on simulations, it would be no trouble to consider
disturbances from any probability distribution, including
those for which an analytical solution is difficult, impossible,
or mathematically intractable. For example, it is possible to
consider multivariate-Gaussian distributions with different
means and variances per coordinate, or evenmultimodal and
asymmetrical distributions. This fact is very convenient in
accurately representing real-life phenomena.Themultiobjec-
tive approach explicitly considers the random distribution of
the control variables and implicitly takes into account the
random distribution of the state variables and of the objective
functions. In other words, all variables are to be treated as

random, which is possible because they are functions of the
disturbance random variables. As a result, we can find box-
plots, histograms, and quantiles for all decision variables, as
outcomes of the proposed method for the problem at hand.

As a final remark, according to the formulation presented
in (1), Monte Carlo simulations should have been used to
compute the sequence of control variables to optimize the
expected value of the objective function for several distur-
bances randomly generated. Instead, the proposed algorithm
presents the expected value of a sequence of decision variables
to optimize the objective function, for several randomly
generated disturbances. In the appendix, we present a the-
orem that shows that (i) the result found by the proposed
methodology is a lower bound for a classical solutionmethod
and (ii) the equality is valid if the decision variable minimizes
the objective function for almost all disturbances. Under
a practical point of view, the equality occurs, for example,
if the decision variables are constrained to compact sets,
as usually happens in linear problems that are solved by
numerical methods. Finally, we remind that the convergence
of this algorithm relies on the convergence of Monte Carlo
simulations [9].

3. Simulations

3.1. Preliminaries. The algorithm was implemented in MAT-
LAB (MATLAB is a trademark ofTheMathWorks, Inc.), and
all cases were run in a common PC. For all simulations,
5,000 disturbance vectors 𝑤[𝑘] were generated. However,
with only 100 vectors 𝑤[𝑘], convergence could be verified
[20].The purpose of these case studies is just to show a simple
and yet interesting application of the proposed methodology.
Then, a classical stochastic dynamic programming example
is considered, namely, the inventory control. Details may be
found in Bertsekas [2], but in few words the problem consists
in determining optimal orders to be placed for some items
at discrete-time stages so as to meet a stochastic demand.
Moreover, it is requested that the available stock at the final
stage is null. For such a problem, the variables are inherently
discrete since items are counted, but the range of levels for
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Figure 1: Case 1, box-plots for first product optimal orders.

an item is too large to be practical for a discrete-variable
dynamic programming solution. Then, the discrete variables
will be relaxed and they will be considered as real numbers.
The initial stock will also be a decision variable.This dynamic
optimization problem can be formulated as

min
𝑢[0],...,𝑢[𝑛−1]

𝐸[

𝑛−1

∑

𝑘=0

(𝑐
𝑘
𝑥 [𝑘] + 𝑑𝑘𝑢 [𝑘]) + 𝑐𝑛𝑥 [𝑛]] , (3)

subject to

𝑥 [𝑘 + 1] = 𝑥 [𝑘] + 𝑢 [𝑘] − 𝑤 [𝑘] , 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 [𝑘] ≥ 0, 𝑢 [𝑘] ≥ 0,

𝑥 [0] = 𝑥0, 𝑥 [𝑛] = 𝑥
∗
,

(4)

in which each stage 𝑘 corresponds to each month, 𝑛 is
the horizon, each state vector 𝑥[𝑘] represents the inventory
level (the stock available) at the beginning of stage 𝑘, each
control action vector 𝑢[𝑘] is the amount ordered at the
beginning of stage 𝑘, and each disturbance vector 𝑤[𝑘] is
a stochastic customer demand during stage 𝑘, given from
some probability distribution, each vector having size 𝑚
corresponding to the number of products considered.

The inventory level evolves according to the linear
discrete-time dynamic system:

𝑥 [𝑘 + 1] = 𝑥 [𝑘] + 𝑢 [𝑘] − 𝑤 [𝑘] . (5)

A linear cost function per stage is composed by a penalty for
each positive stock, represented by a row per unit cost vector
𝑐
𝑘
, added to the purchasing cost, represented by a rowper unit

cost vector 𝑑
𝑘
.

We consider the following three instances of the stochas-
tic inventory control problem, all of them having an opti-
mization horizon 𝑛 = 12, vectors 𝑐

𝑘
and 𝑑

𝑘
unitary, and

programming goal 𝑥∗ equal to the null vector. The decision
criterion of the multiobjective approach is the trade-off
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Figure 2: Case 1, band of values for first product optimal orders.

between the probabilities of having some stock at the end and
the probability of not attending some demand. The instances
are as follows.

Case 1. Customer demands follow a Gaussian probability
distribution, with multiproducts and a coupling constraint.
Case 1 is composed by 𝑚 = 3 products. Demands follow
Gaussian distributions, with mean 30 and standard deviation
10, for first product, mean 60 and standard deviation 10, for
second, andmean 30 and standard deviation 20, for third.The
coupling constraint says that 2 units of product 1 and 1 unit of
product 2 are necessary to produce each unit of product 3.

Case 2. Customer demands follow a bimodal probability
distribution function. Case 2 is composed by just 𝑛 = 1

product, with demands following a mix of Gaussian distri-
butions having mean 100 and standard deviation 10, with
probability 0.3, and mean 200 and same standard deviation,
with probability 0.7.

Case 3. Customer demands follow an asymmetric probability
distribution function. Also, only 𝑛 = 1 product is considered,
with demand that follows a zero-truncated log-normal distri-
bution, with mean 2 and standard deviation 1.

3.2. Results for Case 1. For Case 1, described earlier, the
simulation results are presented in Figures 1–5. Only results
for the first product are shown, as similar outputs (not
presented) were obtained for the other two products. Figure 1
shows box-plots for the first product optimal order, and
Figure 2 presents the corresponding band of values, between
quantiles 0.3 and 0.7. As expected, it is noticeable here an
increase in the uncertainty of the orders, what is evident from
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Figure 3: Case 1, box-plots for first product inventory levels when
ordering by the median.
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Figure 4: Case 1, box-plots for first product inventory levels when
ordering by 70th percentile.

the band enlargement that is observed as time goes by. Figures
3 and 4 illustrate what is expected to happen to the inventory
level, when the orders are made by the median values and by
quantile 0.7, respectively. These are values easily obtainable
from the algorithm. From Figure 3, we can roughly estimate
that 50%-50% are the probabilities of having and not having
stock by the end of the planning horizon, which is expected
because of the probability distribution of the demands being
symmetrical. We see here a reduction in the probability of
a negative stock, in case product orders would be placed
by quantile 0.7, Figure 4. Actually, the decision maker could
play with these two conflicting objectives, namely, (i) a low
probability of having stock at the end of the horizon period
and (ii) a low probability of not having stock at all, which
would mean that some demand would not be attended.
Figure 5 presents the respective Pareto front that resulted
from our simulations.
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Figure 5: Case 1, Pareto front for a trade-off between the probabili-
ties of having and not having stock.
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Figure 6: Case 2, box-plots of optimal orders.

3.3. Results for Case 2. Results for Case 2 are depicted in
Figures 6–10.The box-plots for optimal orders and respective
band of values are presented in Figures 6 and 7, which
follow basically the same pattern observed for Case 1; that
is, we observe an increase in the width (uncertainty) of the
band of values to be ordered along the time. Comparing two
strategies of placing orders, that is, from the median values
or else from percentile 0.7, leads to the results presented in
Figures 8 and 9, from which we can notice that, by the final
stage, the probabilities of having and not having stock are
not 50%-50% anymore, for orders taken frommedian values.
This results from the asymmetry of demands. On the other
hand, ordering from quantile 0.7 will increase significantly
the probability of having stock at the final stage. Of course,
we could also estimate these probabilities for any ordering
strategy we wish, as seen in Figure 10. As a final remark, it
can be seen in this case that bimodality in demands creates
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Figure 7: Case 2, band of values for optimal orders.
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Figure 8: Case 2, box-plots for inventory levels when ordering by
the median.

some difficulty for traditional approaches for planning order
placements, as a median-based order no longer guarantees
50%-50% probabilities of having and not having stock by the
end of the stages.

3.4. Results for Case 3. Figures 11, 12, 13, 14, and 15 show
the results for Case 3, which accounts for asymmetrical
distributed demands. In this case, orders taken by themedian
lead to approximately 82% of probability of having stock at
the final stage and, of course, 18% of probability of not having
stock at all at the final stage. On the other hand, orders taken
by quantile 0.7 lead to approximately 37% of probability of
having stock at the end of stages and 63% of not having any
stock at the end. By means of our methodology, it would
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Figure 9: Case 2, box-plots for inventory levels when ordering by
70th percentile.
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Figure 10: Case 2, Pareto front for a trade-off between the probabil-
ities of having and not having stock.

be easy to identify, for instance, that the target of 50%-50%
would be reached if orders were to be placed from quantile ≈
0.64.

4. Discussions and Conclusions

In this paper, we proposed a multiobjective approach for
stochastic discrete-time real-variable dynamic programming
problems, which is based on Monte Carlo simulations cou-
pled with a deterministic dynamic programming algorithm.
Our approach was shown to be able to deliver suboptimal
(heuristic) solutions by using common desktop computers,
within a reasonable amount of computational time. Once a
Pareto front for the problem becomes built, decision makers
can choose any quantile that is perceived to be advantageous
for the specific situation. In addition, a band of values,
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Figure 11: Case 3, box-plots of the optimal orders.
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Figure 12: Case 3, band of values for optimal orders.

histograms of the decision variables, and their box-plots
are provided as outcomes of the proposed method for a
given problem, instead of just the decision variable values
that optimize the expected value of the objective function.
For a more effective understanding of the method proposed
and the results delivered, we presented a case study based
on a classical inventory control problem. The numerical
results obtained in the simulations showed that Monte Carlo
simulations were quite effective in solving realistic cases and
that the methodology is a promising technique.

Future research will investigate the application of the
proposed methodology in instances of real-world dynamic
problems larger than those ones treated here. Additionally,
more realistic and complexmodeling of the random variables
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Figure 13: Case 3, box-plots for inventory levels when ordering by
the median.
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Figure 14: Case 3, box-plots for inventory levels when ordering by
70th percentile.
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Figure 15: Case 3, Pareto front for trade-off between the probabili-
ties of having and not having stock.
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will be considered, for instance, with variable-dependency.
These are some few topics for future research in this area.

Appendix

ThisAppendix presents a theorem that validates the proposed
algorithm.The random variables are considered to be contin-
uous but the discrete variable case could be treated similarly.
The improper integral, which comes from the expected value
of the continuous random variable, is supposed to converge.
If a minimum does not exist, just replace it by the infimum.
All minimization could be for almost all 𝑤 instead of for all
𝑤. The theorem is based on a review of the Fatou Lemma, as
follows.

LemmaA.1 (review of Fatou Lemma). Let𝑓 : R2 → R be an
integrable function in the first coordinate and with minimum
in the second one. Thus,

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 ≤ min

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.1)

Proof. For each fixed 𝑤, consider

𝑢 (𝑤) = argmin
𝑢
𝑓 (𝑤, 𝑢) . (A.2)

Then, one has that

𝑓 (𝑤, 𝑢 (𝑤)) ≤ 𝑓 (𝑤, 𝑢) , ∀𝑢. (A.3)

As the integral operator preserves monotonicity

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢 (𝑤)) 𝑑𝑤

≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤, ∀𝑢.

(A.4)

As this expression holds for all 𝑢, it holds for

𝑢
𝑜
= argmin

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.5)

Thus,

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 ≤ min

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.6)

In other words, the expected value of the minimum is
always a lower bound for theminimumof the expected value.

Theorem A.2 (validation of the algorithm). Let 𝑓 : R2 →

R be an integrable function in the first coordinate and with
minimum in the second one. If there exists 𝑢 that does not
depend on 𝑤, such that

𝑓 (𝑤, 𝑢) = min
𝑢
𝑓 (𝑤, 𝑢) , ∀𝑤, (A.7)

the following equality holds:

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 = min

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.8)

Proof. (⇒) Suppose that there exists

𝑢 = argmin
𝑢
𝑓 (𝑤, 𝑢) , ∀𝑤. (A.9)

Consider

𝑢
𝑜
= argmin

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.10)

By Lemma A.1,

∫𝑓 (𝑤, 𝑢) 𝑑𝑥 = ∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤

≤ min
𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢

𝑜
) 𝑑𝑤.

(A.11)

As 𝑢
𝑜
minimizes the integral, it is true that

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 ≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤, ∀𝑢. (A.12)

In particular, for 𝑢, which is fixed and minimizes 𝑓, for
all 𝑤

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 ≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.13)

Therefore, the following equality holds:

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.14)

In other words,

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 = min

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.15)

Thus, if minimums exist, they must coincide

𝑢
𝑜
= argmin

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤 = 𝑢 = argmin

𝑢
𝑓 (𝑤, 𝑢) . (A.16)

(⇐) Suppose that, for all 𝑢
𝑜
given, there exists a set 𝑊

with positive measure, for which

𝑢
𝑜
̸= argmin

𝑢
𝑓 (𝑤, 𝑢) , ∀𝑤 ∈ 𝑊 ⇒

𝑢
𝑜
̸= argmin

𝑢
𝑓 (𝑤, 𝑢) , ∀𝑤.

(A.17)

In other words, ∀𝑤 ∈ 𝑊, there exists a 𝑢 which depends
on 𝑤, such that

𝑢 (𝑤) = argmin
𝑢
𝑓 (𝑤, 𝑢) . (A.18)

Therefore,

𝑓 (𝑤, 𝑢 (𝑤)) < 𝑓 (𝑤, 𝑢𝑜) , ∀𝑤 ∈ 𝑊. (A.19)

By the monotonicity of the integral

∫
𝑊

𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫
𝑊

min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤

< ∫
𝑊

𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤, ∀𝑢

𝑜
⇒

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 < ∫𝑓 (𝑤, 𝑢

𝑜
) 𝑑𝑤, ∀𝑢

𝑜
.

(A.20)
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In particular,

𝑢
𝑜
= argmin

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.21)

Thus, the inequality just holds:

∫min
𝑢
𝑓 (𝑤, 𝑢) 𝑑𝑤 < min

𝑢
∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.22)

Therefore, the equality is valid, for example, if 𝑓 is linear
and 𝑢 is considered constrained to compact sets.
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This paper studies a continuous-time dynamicmean-variance portfolio selection problemwith the constraint of a higher borrowing
rate, inwhich stock price is governed by a constant elasticity of variance (CEV) process. Firstly, we apply Lagrange duality theorem to
change an original mean-variance problem into an equivalent optimization one. Secondly, we use dynamic programming principle
to get the Hamilton-Jacobi-Bellman (HJB) equation for the value function, which is a more sophisticated nonlinear second-order
partial differential equation. Furthermore, we use Legendre transform and dual theory to transform the HJB equation into its dual
one. Finally, the closed-form solutions to the optimal investment strategy and efficient frontier are derived by applying variable
change technique.

1. Introduction

The main purpose of this paper is to focus on the portfolio
selection problem under the constant elasticity of variance
(CEV) model. The CEV model was originally proposed by
Cox and Ross [1] as an alternative diffusion process for Euro-
pean option pricing. It is a natural extension of the geometric
Brownian motion (GBM). The advantage of the CEV model
is that it can explain the empirical bias exhibited by Black
and Scholes [2] model, such as volatility smile. Therefore, the
CEV model was often applied to analyze the option pricing
formulas, for example, Schroder [3], Phelim and Yisong [4],
Davydov and Linetsky [5], and so forth. Recently, the CEV
model has been introduced into annuity contracts to study
the optimal investment strategy in the defined contribution
and defined benefit pension plan (referring to Xiao et al. [6],
Gao [7, 8]), but thosemodels were all considered in the utility
function framework. In the existing literatures, as far as our
knowledge, the CEVmodel in the mean-variance framework
has not been reported.

In most of the real-world situations, different interest
rates for borrowing and lending are often faced by the
investors. It is clear that portfolio selection models with

borrowing constraintwillmake itmore practical.This attracts
the attention of many authors, referring to Paxson [9],
Fleming and Zariphopoulou [10], Vila and Zariphopoulou
[11], Teplá [12], and Zariphopoulou [13]. However, those
models were usually dealt with under expect utility criterion,
and the risky asset price was usually supposed to be driven
by a GBM. In addition, the risk and return relationship
is implicit in the utility function approach and cannot be
disentangled at the different level of the optimal strategy. As
a matter of fact, the optimal investment strategy under the
utility maximizing criterion is not necessarily mean-variance
efficient.

This paper introduces a CEV model and borrowing
constraint into the classical portfolio selection problem
in a continuous-time mean-variance framework. For the
mean-variance portfolio selection problem, stochastic linear-
quadratic (LQ) control technique is an effective method (e.g.,
Zhou and Li [14], Li et al. [15], and Chiu and Li [16], Xie et al.
[17]). But borrowing constraint forces this problem to become
piecewise linear-quadratic and is hence no longer a LQ
control problem (see [18]). In addition, the introduction of
the CEV model gives rise to some new difficulties, which are
not easily dealt with in solving the associated HJB equation.
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In this paper, we firstly apply Lagrange duality theorem to
change an originalmean-variance problem into an equivalent
optimization one. Secondly, we use dynamic programming
principle to get the Hamilton-Jacobi-Bellman (HJB) equa-
tion for the value function, which is a more sophisticated
nonlinear second-order partial differential equation. Further,
we use Legendre transform and dual theory to transform
the HJB equation into its dual one. Finally, the closed-form
solutions to the optimal investment strategy and efficient
frontier are derived by applying variable change technique.
There are several innovations in this paper: (i) stock price
is supposed to follow the CEV model, which is a natural
extension of geometric Brownian motion; (ii) we consider
a dynamic mean-variance portfolio selection problem with
borrowing constraints under a CEV model and assume that
the borrowing rate is larger than the risk-free interest rate;
(iii) the closed-form solutions to the optimal investment
strategy and the efficient frontier are obtained.

The paper is organized as follows. In Section 2, we intro-
duce a CEV model and describe portfolio selection problem
with borrowing constraint in a mean-variance framework.
In Section 3, the closed-form solution to optimal investment
strategy is derived by applying Legendre transform and
dual theory. Section 4 gives the main results on the optimal
strategy and the efficient frontier. Section 5 concludes this
paper.

2. Mean-Variance Model

In this paper, we consider a financial market where two
assets are traded continuously over [0, 𝑇]. One asset is a
bond with price 𝑃

𝑡
at time 𝑡, whose price process 𝑃

𝑡
with

borrowing constraint can be expressed in the following
ordinary differential equation (see Fu et al. [18]):

𝑑𝑃
𝑡
= {

𝑟𝑃
𝑡
𝑑𝑡, if 𝑃

𝑡
≥ 0, 𝑡 ∈ [0, 𝑇]

𝑅𝑃
𝑡
𝑑𝑡, if 𝑃

𝑡
< 0, 𝑡 ∈ [0, 𝑇]

, 𝑃
0
= 𝑝
0
> 0, (1)

where the constant 𝑟 > 0 is the interest rate of the bond and
𝑅 is the borrowing rate being larger than 𝑟.

Letting 𝑥
−

= −min(𝑥, 0), then (1) can be rewritten as

𝑑𝑃
𝑡
= (𝑟𝑃
𝑡
− (𝑅 − 𝑟) 𝑃

−

𝑡
) 𝑑𝑡, 𝑃

0
= 𝑝
0
> 0. (2)

The another asset is a stock with prices 𝑆
𝑡
at time 𝑡, whose

price process 𝑆
𝑡
is supposed to follow the constant elasticity

of variance (CEV) model:

𝑑𝑆
𝑡
= 𝑆
𝑡
[𝜇𝑑𝑡 + 𝑘𝑆

𝛽

𝑡
𝑑𝑊
𝑡
] , 𝑆

0
= 𝑠
0
> 0, (3)

where 𝜇 (𝜇 > 𝑅 > 𝑟) is the instantaneous return rate of
the stock. 𝑘 and 𝛽 are constant parameters, the elasticity
parameter 𝛽 satisfies the general condition: 𝛽 ≤ 0. 𝑘𝑆

𝛽

𝑡

is defined as the instantaneous volatility of the stock, and
𝑊
𝑡
is a one-dimensional standard and adapted Brownian

motion defined on the filtered complete probability space
(Ω,F, 𝑃, {F

𝑡
}
𝑡≥0

).

Remark 1. Note that there are four special interpretations for
the elasticity parameter 𝛽:

(i) if 𝛽 = 0, the CEV model is reduced to a geometric
Brownian motion (GBM);

(ii) if 𝛽 = −1, it is the Ornstein-Uhlenbeck process;
(iii) if 𝛽 = −1/2, it is the model first presented by Cox

and Ross [1] as an alternative diffusion process for
valuation of options;

(iv) if 𝛽 < 0, this means that the instantaneous volatility
𝑘𝑆
𝛽

𝑡
increases as the stock price decreases and can

generate a distribution with a fatter left tail (referring
to Gao [7]).

Suppose that short-selling of the stock is allowed and
transaction cost and consumption are not considered. We
denote by 𝑋

𝑡
the wealth of the investor at time 𝑡 ∈ [0, 𝑇]

and by𝑁
𝑖
(𝑡) the share of asset 𝑖th held by the investor at time

𝑡, 𝑖 = 1, 2. Let 𝜋
𝑡

= 𝑁
2
(𝑡)𝑆
𝑡
be the amount invested in the

stock at time 𝑡, 𝑡 ∈ [0, 𝑇]. Clearly, the amount invested in
the bond is 𝜋

0

𝑡
= 𝑁
1
(𝑡)𝑃
𝑡

= 𝑋
𝑡
− 𝜋
𝑡
. The wealth process

𝑋
𝑡
= 𝑁
1
(𝑡)𝑃
𝑡
+ 𝑁
2
(𝑡)𝑆
𝑡
corresponding to trading strategy 𝜋

𝑡

is subject to the following stochastic differential equation:

𝑑𝑋
𝑡
= 𝑁
1 (𝑡) 𝑑𝑃𝑡 + 𝑁

2 (𝑡) 𝑑𝑆𝑡

= 𝑁
1 (𝑡) (𝑟𝑃𝑡 − (𝑅 − 𝑟) 𝑃

−

𝑡
) 𝑑𝑡

+ 𝑁
2 (𝑡) 𝑆𝑡 (𝜇𝑑𝑡 + 𝑘𝑆

𝛽

𝑡
𝑑𝑊
𝑡
)

= (𝑟𝑁
1 (𝑡) 𝑃𝑡 − (𝑅 − 𝑟)𝑁1 (𝑡) 𝑃

−

𝑡
) 𝑑𝑡

+ 𝜋
𝑡
(𝜇𝑑𝑡 + 𝑘𝑆

𝛽

𝑡
𝑑𝑊
𝑡
) .

(4)

That is, we have

𝑑𝑋
𝑡
= (𝑟𝑋

𝑡
+ (𝜇 − 𝑟) 𝜋

𝑡
− (𝑅 − 𝑟) (𝑋𝑡 − 𝜋

𝑡
)
−
) 𝑑𝑡

+ 𝜋
𝑡
𝑘𝑆
𝛽

𝑡
𝑑𝑊
𝑡
, 𝑋
0
= 𝑥
0
> 0.

(5)

The investor’s objective is to find an optimal portfolio 𝜋
𝑡

such that the expected terminal wealth satisfies E𝑋
𝑇

= 𝐶, for
some constant𝐶 ∈ R, while the riskmeasured by the variance
of the terminal wealth

Var𝑋
𝑇

= E[𝑋
𝑇
− E𝑋
𝑇
]
2
= E(𝑋

𝑇
− 𝐶)
2 (6)

is minimized. The problem of finding out such a portfolio 𝜋
𝑡

is referred to as the mean-variance portfolio choice problem.
In the modern portfolio selection theory, a portfolio 𝜋

𝑡

is said to be admissible if it is integrable and {F
𝑡
}
𝑡>0

-adapted,
and (5) has a unique solution corresponding to𝜋

𝑡
. In this case,

we refer to (𝑋
𝑡
, 𝜋
𝑡
) as an admissible pair.Therefore, themean-

variance problem can be formulated as a linearly constrained
stochastic optimization problem:

Minimize Var𝑋
𝑇

= E(𝑋
𝑇
− 𝐶)
2

subject to E𝑋
𝑇

= 𝐶

(𝑋
𝑡
, 𝜋
𝑡
) satisfies (5) .

(7)
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Finally, an optimal investment strategy of the above problem
is called an efficient portfolio corresponding to 𝐶, the corre-
sponding (𝐶,Var𝑋

𝑇
) is called an efficient point, whereas the

set of all the efficient points, when the parameter 𝐶 runs over
[𝑥
0
𝑒
𝑟𝑇

, +∞), is called an efficient frontier.

Remark 2. If 𝜋
𝑡

< 0, this means that the investor is short-
selling the stock. If 𝑋

𝑡
− 𝜋
𝑡

< 0, then the investor needs
borrowing themoney from the bank at interest rate𝑅 and the
amount to borrow is |𝑋

𝑡
− 𝜋
𝑡
|. Otherwise, we do not borrow

the money to run the portfolio.

3. The Optimal Portfolio

To find out an optimal investment strategy for the problem
(7) corresponding to the constraint E𝑋

𝑇
= 𝐶, we introduce

a Lagrange multiplier 2𝜆 ∈ 𝑅 and arrive at a new objective
function:

𝐽 (𝜋
𝑡
, 𝜆) = E [(𝑋

𝑇
− 𝐶)
2
+ 2𝜆 (𝑋

𝑇
− 𝐶)]

= E(𝑋
𝑇
− (𝐶 − 𝜆))

2
− 𝜆
2
.

(8)

Letting 𝛾 = 𝐶 − 𝜆, we obtain the following stochastic control
problem:

Minimize 𝐽 (𝜋
𝑡
, 𝛾) = E(𝑋

𝑇
− 𝛾)
2
− (𝐶 − 𝛾)

2

subject to (𝑋
𝑡
, 𝜋
𝑡
) satisfies (5) .

(9)

The link between problem (7) and (9) is provided by Lagrange
duality theorem (see Fu et al. [18] and Luenberger [19]):

Minimize Var𝑋
𝑇

= Max
𝜆∈R

Min
𝜋
𝑡

𝐽 (𝜋
𝑡
, 𝜆)

= Max
𝛾∈R

Min
𝜋
𝑡

𝐽 (𝜋
𝑡
, 𝛾) .

(10)

For a fixed constant 𝛾, the problem (9) is clearly equiva-
lent to

Minimize E(𝑋
𝑇
− 𝛾)
2

subject to (𝑋
𝑡
, 𝜋
𝑡
) satisfies (5) .

(11)

We define the value function 𝐻(𝑡, 𝑠, 𝑥) as

𝐻(𝑡, 𝑠, 𝑥) = Min
𝜋
𝑡

E ((𝑋
𝑇
− 𝛾)
2
| 𝑆
𝑡
= 𝑠,𝑋

𝑡
= 𝑥) (12)

with boundary condition 𝐻(𝑇, 𝑠, 𝑥) = (𝑥 − 𝛾)
2.

According to dynamic programming principle, 𝐻(𝑡, 𝑠, 𝑥)

can be taken as the continuous solution to the following HJB
equation:

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ Min
𝜋
𝑡

{ [𝑟𝑥 + (𝜇 − 𝑟) 𝜋
𝑡
− (𝑅 − 𝑟) (𝑥 − 𝜋

𝑡
)
−
]𝐻
𝑥

+
1

2
(𝜋
𝑡
𝑘𝑠
𝛽
)
2

𝐻
𝑥𝑥

+ 𝑘
2
𝑠
2𝛽+1

𝜋
𝑡
𝐻
𝑥𝑠
} = 0,

(13)

where 𝐻
𝑡
, 𝐻
𝑠
, 𝐻
𝑠𝑠
, 𝐻
𝑥
, 𝐻
𝑥𝑥
, and 𝐻

𝑥𝑠
denote first-order and

second-order partial derivatives with respect to time 𝑡, stock
price 𝑆

𝑡
, and wealth process 𝑋

𝑡
.

Let us firstly describe borrowing situation. Not borrowing
and investing in the bond means that 𝑥 − 𝜋

𝑡
≥ 0 and

borrowing to invest in the stock means that 𝑥 − 𝜋
𝑡
< 0. We

define the nonborrowing region Θ in the (𝑡, 𝑥)-plane to be

Θ = {(𝑡, 𝑥) ∈ [0, 𝑇] × R | 𝑥 − 𝜋
𝑡
≥ 0} . (14)

Taking borrowing situation into consideration, we rewrite the
HJB equation (13) as

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ Min
𝜋
𝑡

{[𝑟𝑥 + (𝜇 − 𝑟) 𝜋
𝑡
]𝐻
𝑥
+

1

2
(𝜋
𝑡
𝑘𝑠
𝛽
)
2

𝐻
𝑥𝑥

+ 𝑘
2
𝑠
2𝛽+1

𝜋
𝑡
𝐻
𝑥𝑠
} = 0, if (𝑡, 𝑥) ∈ Θ,

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ Min
𝜋
𝑡

{[𝑅𝑥 + (𝜇 − 𝑅) 𝜋
𝑡
]𝐻
𝑥
+

1

2
(𝜋
𝑡
𝑘𝑠
𝛽
)
2

𝐻
𝑥𝑥

+ 𝑘
2
𝑠
2𝛽+1

𝜋
𝑡
𝐻
𝑥𝑠
} = 0, if (𝑡, 𝑥) ∉ Θ.

(15)

The optimal value 𝜋
∗

𝑡
of (15) is given by

𝜋
∗

𝑡
=

{{{{{

{{{{{

{

− (𝜇 − 𝑟)𝐻
𝑥
− 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠

𝑘2𝑠2𝛽𝐻
𝑥𝑥

, if (𝑡, 𝑥) ∈ Θ,

− (𝜇 − 𝑅)𝐻
𝑥
− 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠

𝑘2𝑠2𝛽𝐻
𝑥𝑥

, if (𝑡, 𝑥) ∉ Θ.

(16)

Putting (16) into (15), we have

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ 𝑟𝑥𝐻
𝑥
−

1

2𝑘2𝑠2𝛽𝐻
𝑥𝑥

× [(𝜇 − 𝑟)𝐻
𝑥
+ 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠
]
2

= 0, if (𝑡, 𝑥) ∈ Θ,

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ 𝑅𝑥𝐻
𝑥
−

1

2𝑘2𝑠2𝛽𝐻
𝑥𝑥

× [(𝜇 − 𝑅)𝐻
𝑥
+ 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠
]
2

= 0, if (𝑡, 𝑥) ∉ Θ.

(17)

Letting 𝜏 = 𝑟, if (𝑡, 𝑥) ∈ Θ; 𝜏 = 𝑅, if (𝑡, 𝑥) ∉ Θ, we get

𝐻
𝑡
+ 𝜇𝑠𝐻

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝐻
𝑠𝑠

+ 𝜏𝑥𝐻
𝑥

−
1

2𝑘2𝑠2𝛽𝐻
𝑥𝑥

[(𝜇 − 𝜏)𝐻
𝑥
+ 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠
]
2

= 0.

(18)

According to the convexity of the value function, we can
define a Legendre transform:

�̂� (𝑡, 𝑠, 𝑧) = sup
𝑥>0

{𝐻 (𝑡, 𝑠, 𝑥) − 𝑧𝑥} , (19)

where 𝑧 > 0 denotes the dual variable to 𝑥.
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The value of 𝑥which themaximum in the above equation
will be attained at is denoted by 𝑔(𝑡, 𝑠, 𝑧), so we have

𝑔 (𝑡, 𝑠, 𝑧) = inf
𝑥>0

{𝑥 | 𝐻 (𝑡, 𝑠, 𝑥) ≥ 𝑧𝑥 + �̂� (𝑡, 𝑠, 𝑧)} . (20)

The functions 𝑔(𝑡, 𝑠, 𝑧) and �̂�(𝑡, 𝑠, 𝑧) are closely related and
we will refer to either one of them as the dual function of
𝐻(𝑡, 𝑠, 𝑥). In this paper, wewill workmainlywith the function
𝑔(𝑡, 𝑠, 𝑧).

The function �̂�(𝑡, 𝑠, 𝑧) is related to 𝑔(𝑡, 𝑠, 𝑧) by 𝑔(𝑡, 𝑠, 𝑧) =

−�̂�
𝑧
(𝑡, 𝑠, 𝑧).
Noting that 𝐻(𝑇, 𝑠, 𝑥) = (𝑥 − 𝛾)

2, we can define the
following Legendre transform at terminal time:

�̂� (𝑇, 𝑠, 𝑧) = sup
𝑥>0

{(𝑥 − 𝛾)
2
− 𝑧𝑥} ,

𝑔 (𝑇, 𝑠, 𝑧) = inf
𝑥>0

{(𝑥 | 𝑥 − 𝛾)
2
≥ 𝑧𝑥 + �̂� (𝑇, 𝑠, 𝑧)} .

(21)

So we have

𝑔 (𝑇, 𝑠, 𝑧) =
1

2
𝑧 + 𝛾. (22)

According to (19), we have 𝐻
𝑥
(𝑡, 𝑠, 𝑥) = 𝑧, and this leads to

𝑔 (𝑡, 𝑠, 𝑧) = 𝑥, �̂� (𝑡, 𝑠, 𝑧) = 𝐻 (𝑡, 𝑠, 𝑔) − 𝑧𝑔. (23)

Referring to Jonsson and Sircar [20], Xiao et al. [6], and
Gao [7], we get the following transformation rules:

𝐻
𝑡
= �̂�
𝑡
, 𝐻

𝑥
= 𝑧, 𝐻

𝑥𝑥
= −

1

�̂�
𝑧𝑧

,

𝐻
𝑠
= �̂�
𝑠
, 𝐻

𝑠𝑠
= �̂�
𝑠𝑠

−
�̂�
2

𝑠𝑧

�̂�
𝑧𝑧

, 𝐻
𝑥𝑠

= −
�̂�
𝑠𝑧

�̂�
𝑧𝑧

.

(24)

Putting transformation rules (24) into (18), we get

�̂�
𝑡
+ 𝜇𝑠�̂�

𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

�̂�
𝑠𝑠

+ (𝜏𝑔) 𝑧

+
(𝜇 − 𝜏)

2
𝑧
2

2𝑘2𝑠2𝛽
�̂�
𝑧𝑧

− (𝜇 − 𝜏) 𝑠𝑧�̂�
𝑠𝑧

= 0.

(25)

Differentiating �̂� with respect to 𝑧, we derive the follow-
ing dual equation:

𝑔
𝑡
+ 𝜏𝑠𝑔
𝑠
+

1

2
𝑘
2
𝑠
2𝛽+2

𝑔
𝑠𝑠

+ (
(𝜇 − 𝜏)

2

𝑘2𝑠2𝛽
− 𝜏)𝑧𝑔

𝑧

+
(𝜇 − 𝜏)

2

2𝑘2𝑠2𝛽
𝑧
2
𝑔
𝑧𝑧

− (𝜇 − 𝜏) 𝑠𝑧𝑔
𝑠𝑧

− 𝜏𝑔 = 0,

(26)

where 𝜏 = 𝑟, if (𝑡, 𝑥) ∈ Θ; 𝜏 = 𝑅, if (𝑡, 𝑥) ∉ Θ.
Taking (22) into consideration, we can fit a solution to

(26) with the following structure:

𝑔 (𝑡, 𝑠, 𝑧) = {

𝑓
𝑟
(𝑡, 𝑦) 𝑧 + ℎ

𝑟
(𝑡) , 𝑦 = 𝑠

−2𝛽
, if (𝑡, 𝑥) ∈ Θ;

𝑓
𝑅
(𝑡, 𝑦) 𝑧 + ℎ

𝑅
(𝑡) , 𝑦 = 𝑠

−2𝛽
, if (𝑡, 𝑥) ∉ Θ.

(27)

Considering 𝜏 = 𝑟, if (𝑡, 𝑥) ∈ Θ; 𝜏 = 𝑅, if (𝑡, 𝑥) ∉ Θ, we can
rewrite 𝑔(𝑡, 𝑠, 𝑧) as

𝑔 (𝑡, 𝑠, 𝑧) = 𝑓
𝜏
(𝑡, 𝑦) 𝑧 + ℎ

𝜏
(𝑡) , 𝑦 = 𝑠

−2𝛽
, (28)

with boundary conditions given by 𝑓
𝜏
(𝑇, 𝑦) = 1/2 and

ℎ
𝜏
(𝑇) = 𝛾.
Further, we have

𝑔
𝑡
= 𝑓
𝜏

𝑡
𝑧 + ℎ
𝜏

𝑡
, 𝑔

𝑠
= 𝑓
𝜏

𝑦
(−2𝛽) 𝑠

−2𝛽−1
𝑧,

𝑔
𝑠𝑧

= 𝑓
𝜏

𝑦
(−2𝛽) 𝑠

−2𝛽−1
,

𝑔
𝑠𝑠

= 𝑓
𝜏

𝑦𝑦
((−2𝛽) 𝑠

−2𝛽−1
)
2

⋅ 𝑧

+ 𝑓
𝜏

𝑦
(−2𝛽) (−2𝛽 − 1) 𝑠

−2𝛽−2
𝑧,

𝑔
𝑧
= 𝑓
𝜏
, 𝑔

𝑧𝑧
= 0.

(29)

Putting the above partial derivatives into (26), we get

[𝑓
𝜏

𝑡
+ (2𝛽 (𝜇 − 2𝜏) 𝑦 + 𝛽 (2𝛽 + 1) 𝑘

2
) 𝑓
𝜏

𝑦

+2𝛽
2
𝑘
2
𝑦𝑓
𝜏

𝑦𝑦
+ (

(𝜇 − 𝜏)
2

𝑘2
𝑦 − 2𝜏)𝑓

𝜏
] 𝑧

+ ℎ
𝜏

𝑡
− 𝜏ℎ
𝜏
= 0.

(30)

Eliminating the dependence on 𝑧, we obtain

ℎ
𝜏

𝑡
− 𝜏ℎ
𝜏
= 0, ℎ (𝑇) = 𝛾; (31)

𝑓
𝜏

𝑡
+ (2𝛽 (𝜇 − 2𝜏) 𝑦 + 𝛽 (2𝛽 + 1) 𝑘

2
) 𝑓
𝜏

𝑦
+ 2𝛽
2
𝑘
2
𝑦𝑓
𝜏

𝑦𝑦

+ (
(𝜇 − 𝜏)

2

𝑘2
𝑦 − 2𝜏)𝑓

𝜏
= 0, 𝑓

𝜏
(𝑇, 𝑦) =

1

2
.

(32)

The solution to (31) is

ℎ (𝑡) = 𝛾𝑒
−𝜏(𝑇−𝑡)

. (33)

Lemma 3. Assume that the structure of the solution to (32) is
𝑓
𝜏
(𝑡, 𝑦) = 𝐴

𝜏
(𝑡)𝑒
𝐵
𝜏
(𝑡)𝑦, with the boundary conditions given by

𝐴
𝜏
(𝑇) = 1/2 and 𝐵

𝜏
(𝑇) = 0; then𝐴

𝜏
(𝑡) and 𝐵

𝜏
(𝑡) are given by

(43) and (42), respectively.

Proof . Putting 𝑓
𝜏
(𝑡, 𝑦) = 𝐴

𝜏
(𝑡)𝑒
𝐵
𝜏
(𝑡)𝑦 into (32), we have

[𝐴
𝜏
(𝑡)

𝑑𝐵
𝜏
(𝑡)

𝑑𝑡
+ 2𝛽 (𝜇 − 2𝜏)𝐴

𝜏
(𝑡) 𝐵
𝜏
(𝑡)

+2𝛽
2
𝑘
2
𝐴
𝜏
(𝑡) 𝐵
𝜏2

(𝑡) +
(𝜇 − 𝜏)

2

𝑘2
𝐴
𝜏
(𝑡)] 𝑦

+
𝑑𝐴
𝜏
(𝑡)

𝑑𝑡
+ 𝛽 (2𝛽 + 1) 𝑘

2
𝐴
𝜏
(𝑡) 𝐵
𝜏
(𝑡) − 2𝜏𝐴

𝜏
(𝑡) = 0.

(34)
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By matching the coefficients, we get

𝑑𝐴
𝜏
(𝑡)

𝑑𝑡
+ 𝛽 (2𝛽 + 1) 𝑘

2
𝐴
𝜏
(𝑡) 𝐵
𝜏
(𝑡)

− 2𝜏𝐴
𝜏
(𝑡) = 0, 𝐴

𝜏
(𝑇) =

1

2
,

(35)

𝑑𝐵
𝜏
(𝑡)

𝑑𝑡
+ 2𝛽 (𝜇 − 2𝜏) 𝐵

𝜏
(𝑡) + 2𝛽

2
𝑘
2
𝐵
𝜏2

(𝑡)

+
(𝜇 − 𝜏)

2

𝑘2
= 0, 𝐵

𝜏
(𝑇) = 0.

(36)

Equation (36) can be reduced to

𝑑𝐵
𝜏
(𝑡)

𝑑𝑡
= −2𝛽

2
𝑘
2
𝐵
𝜏2

(𝑡) − 2𝛽 (𝜇 − 2𝜏) 𝐵
𝜏
(𝑡)

−
(𝜇 − 𝜏)

2

𝑘2
, 𝐵

𝜏
(𝑇) = 0.

(37)

Let Δ denote the discriminant of the quadratic equation
−2𝛽
2
𝑘
2
𝐵
𝜏2
(𝑡) − 2𝛽(𝜇 − 2𝜏)𝐵

𝜏
(𝑡) − ((𝜇 − 𝜏)

2
/𝑘
2
) = 0.

Easy calculation leads to Δ = 4𝛽
2
(2𝜏
2
− 𝜇
2
). Assume that

Δ > 0, that is, −√2𝜏 < 𝜇 < √2𝜏, then the quadratic equation
has two real roots:

𝑚
𝜏

1
=

− (𝜇 − 2𝜏) + √2𝜏2 − 𝜇2

2𝛽𝑘2
,

𝑚
𝜏

2
=

− (𝜇 − 2𝜏) − √2𝜏2 − 𝜇2

2𝛽𝑘2
.

(38)

So (37) can be rewritten as

1

𝑚
𝜏

1
− 𝑚
𝜏

2

∫

𝑇

𝑡

(
1

𝐵𝜏 (𝑡) − 𝑚
𝜏

1

−
1

𝐵𝜏 (𝑡) − 𝑚
𝜏

2

)𝑑𝐵
𝜏
(𝑡)

= −2𝛽
2
𝑘
2
(𝑇 − 𝑡) .

(39)

Further, we obtain

𝐵
𝜏
(𝑡) =

𝑚
𝜏

1
𝑚
𝜏

2
(1 − 𝑒

−2𝛽
2
𝑘
2
(𝑚
𝜏

1
−𝑚
𝜏

2
)(𝑇−𝑡)

)

𝑚
𝜏

1
− 𝑚
𝜏

2
𝑒−2𝛽
2
𝑘
2
(𝑚
𝜏

1
−𝑚
𝜏

2
)(𝑇−𝑡)

. (40)

Letting

𝜆
𝜏

1
=

− (𝜇 − 2𝜏) + √2𝜏2 − 𝜇2

2𝛽
,

𝜆
𝜏

2
=

− (𝜇 − 2𝜏) − √2𝜏2 − 𝜇2

2𝛽
.

(41)

We get

𝐵
𝜏
(𝑡) = 𝑘

−2
𝐼
𝜏
(𝑡) ,

𝐼
𝜏
(𝑡) =

𝜆
𝜏

1
𝜆
𝜏

2
(1 − 𝑒

−2𝛽
2
(𝜆
𝜏

1
−𝜆
𝜏

2
)(𝑇−𝑡)

)

𝜆
𝜏

1
− 𝜆
𝜏

2
𝑒−2𝛽
2
(𝜆
𝜏

1
−𝜆
𝜏

2
)(𝑇−𝑡)

.

(42)

Plugging (42) into (35) yields

𝐴
𝜏
(𝑡) =

1

2
𝑒
−∫
𝑇

𝑡
(2𝜏−𝛽(2𝛽+1)𝐼

𝜏
(𝑡))𝑑𝑡

. (43)

Therefore, Lemma 3 is completed.

Finally, summarizing the above results, we obtain the
optimal trading strategy for the problem (11).

Theorem 4. For a given 𝜆, 𝑇 and 𝐶 ⩾ 𝑥
0
𝑒
𝑟𝑇, the optimal

investment strategy with borrowing constraint under a mean-
variance criterion corresponding to the problem (11) is

𝜋
∗

𝑡
=

{{{{{{{{{{

{{{{{{{{{{

{

−
(𝜇 − 𝑟)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾𝑒
−𝑟(𝑇−𝑡)

) �̃�
𝑟
(𝑡) ,

if 𝑋
𝑡
⩾ 𝛾𝜌 (𝑡) , 𝑟 < 𝜇 < √2𝑟,

−
(𝜇 − 𝑅)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾𝑒
−𝑅(𝑇−𝑡)

) �̃�
𝑅
(𝑡) ,

if 𝑋
𝑡
< 𝛾𝜌 (𝑡) , 𝑅 < 𝜇 < √2𝑅,

(44)

where 𝐾
𝜏
(𝑡) and 𝜌(𝑡) are given by (48) and (50), respectively.

Proof . Under the transformation rules, the optimal strategy
(16) is derived as follows:

𝜋
∗

𝑡
=

− (𝜇 − 𝜏)𝐻
𝑥
− 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠

𝑘2𝑠2𝛽𝐻
𝑥𝑥

=
− (𝜇 − 𝜏)𝐻

𝑥
/𝐻
𝑥𝑥

− 𝑘
2
𝑠
2𝛽+1

𝐻
𝑥𝑠
/𝐻
𝑥𝑥

𝑘2𝑠2𝛽

=
(𝜇 − 𝜏) 𝑧�̂�

𝑧𝑧
− 𝑘
2
𝑠
2𝛽+1

�̂�
𝑠𝑧

𝑘2𝑠2𝛽

=
− (𝜇 − 𝜏) 𝑧𝑔

𝑧
+ 𝑘
2
𝑠
2𝛽+1

𝑔
𝑠

𝑘2𝑠2𝛽
.

(45)

Taking (33),(35), and Lemma 3 into consideration, we have

𝜋
∗

𝑡
=

− (𝜇 − 𝜏) 𝑧𝑔
𝑧
+ 𝑘
2
𝑠
2𝛽+1

𝑔
𝑠

𝑘2𝑠2𝛽

=

− (𝜇 − 𝜏) 𝑧𝑓
𝜏
+ 𝑘
2
𝑠
2𝛽+1

𝑧𝑓
𝜏

𝑦
(−2𝛽) 𝑠

−2𝛽−1

𝑘2𝑠2𝛽

=
− (𝜇 − 𝜏) (𝑔 − ℎ

𝜏
(𝑡)) + 𝑘

2
𝑧𝐴
𝜏
(𝑡) 𝐵
𝜏
(𝑡) 𝑒
𝐵
𝜏
(𝑡)𝑦

(−2𝛽)

𝑘2𝑠2𝛽

=
− (𝜇 − 𝜏) (𝑥 − ℎ

𝜏
(𝑡)) + 𝑘

2
𝐵
𝜏
(𝑡) (−2𝛽) (𝑥 − ℎ

𝜏
(𝑡))

𝑘2𝑠2𝛽

=
− (𝜇 − 𝜏) (𝑥 − ℎ

𝜏
(𝑡)) + 𝐼

𝜏
(𝑡) (−2𝛽) (𝑥 − ℎ

𝜏
(𝑡))

𝑘2𝑠2𝛽

= −
(𝜇 − 𝜏) + 2𝛽𝐼

𝜏
(𝑡)

𝑘2𝑠2𝛽
(𝑥 − ℎ

𝜏
(𝑡)) .

(46)
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Therefore, the optimal strategy is reduced to

𝜋
∗

𝑡
=

{{{{{{{{{

{{{{{{{{{

{

−
(𝜇 − 𝑟)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾𝑒
−𝑟(𝑇−𝑡)

) �̃�
𝑟
(𝑡) ,

if (𝑡, 𝑥) ∈ Θ, 𝑟 < 𝜇 < √2𝑟,

−
(𝜇 − 𝑅)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾𝑒
−𝑅(𝑇−𝑡)

) �̃�
𝑅
(𝑡) ,

if (𝑡, 𝑥) ∉ Θ, 𝑅 < 𝜇 < √2𝑅,

(47)

where

�̃�
𝜏
(𝑡) = [1 +

2𝛽𝐼
𝜏
(𝑡)

𝜇 − 𝜏
] , 𝜏 = 𝑟, if (𝑡, 𝑥) ∈ Θ,

𝜏 = 𝑅, if (𝑡, 𝑥) ∉ Θ.

(48)

As the boundary condition of borrowing themoney from
the bank is 𝑋

𝑡
− 𝜋
∗

𝑡
= 0; that is,

𝑋
𝑡
+

(𝜇 − 𝑅)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾𝑒
−𝑅(𝑇−𝑡)

) �̃�
𝑅
(𝑡) = 0. (49)

Denoting by 𝛾𝜌(𝑡) the borrowing curve, we yield

𝜌 (𝑡) =

((𝜇 − 𝑅) /𝑘
2
𝑆
2𝛽

𝑡
) 𝑒
−𝑅(𝑇−𝑡)

�̃�
𝑅
(𝑡)

1 + ((𝜇 − 𝑅) /𝑘2𝑆
2𝛽

𝑡
) �̃�𝑅 (𝑡)

. (50)

Therefore, nonborrowing region Θ in the (𝑡, 𝑥)-plane can be
rewritten as

Θ = {(𝑡, 𝑥) ∈ [0, 𝑇] × R | 𝑋
𝑡
⩾ 𝛾𝜌 (𝑡)} . (51)

Hence, the proof of theTheorem 4 is completed.

Remark 5. We can draw some conclusions from (44).

(i) If 𝑋
𝑡
⩾ 𝛾𝜌(𝑡) and 𝑟 < 𝜇 < √2𝑟, the investor need not

borrowing the money from the bank and the optimal
amount invested in the stock can be calculated by the
first equation of (44), while the amount invested in
the bond is 𝑋

𝑡
− 𝜋
∗

𝑡
.

(ii) If 𝑋
𝑡
< 𝛾𝜌(𝑡) and 𝑅 < 𝜇 < √2𝑅, the optimal amount

invested in the stock is given by the second equation
of (44). In addition, investors need to borrow the
money to invest the stock and the amount to borrow
is |𝑋
𝑡
− 𝜋
∗

𝑡
|, while the bond need not be invested.

4. The Efficient Frontier

In this section, we apply Lagrange duality theorem to derive
the efficient frontier for themean-variance portfolio selection
problem (7). To simplify the presentation, we denote by 𝜏

either the interest rate 𝑟 or the borrowing rate 𝑅, and letting

𝜃
𝜏
=

𝜇 − 𝜏

𝑘𝑆
𝛽

𝑡

, (52)

where 𝜏 = 𝑟, if 𝑋
𝑡
⩾ 𝛾𝜌(𝑡) and 𝜏 = 𝑅, if 𝑋

𝑡
< 𝛾𝜌(𝑡).

In both cases above, the wealth equation (5) is reduced to

𝑑𝑋
𝑡
= (𝜏𝑋

𝑡
+ (𝜇 − 𝜏) 𝜋

𝑡
) 𝑑𝑡 + 𝜋

𝑡
𝑘𝑆
𝛽

𝑡
𝑑𝑊
𝑡
, 𝑋
0
= 𝑥
0
> 0.

(53)

For any fixed 𝛾, under the efficient strategy in theTheorem 4,
the dynamics of the wealth equation (5) are

𝑑𝑋
𝑡
= ((𝜏 − (𝜃

𝜏
)
2
�̃�
𝜏
(𝑡))𝑋

𝑡
+ (𝜃
𝜏
)
2
𝛾𝑒
−𝜏(𝑇−𝑡)

�̃�
𝜏
(𝑡)) 𝑑𝑡

− 𝜃
𝜏
(𝑋
𝑡
− 𝛾𝑒
−𝜏(𝑇−𝑡)

) �̃�
𝜏
(𝑡) 𝑑𝑊

𝑡
, 𝑋
0
= 𝑥
0
> 0.

(54)

Applying Itô’s lemma to the wealth process (54), we yield

𝑑𝑋
2

𝑡
= ( [2𝜏 + (𝜃

𝜏
)
2
(�̃�
2𝜏

(𝑡) − 2�̃�
𝜏
(𝑡))]𝑋

2

𝑡

− (𝜃
𝜏
)
2
2𝛾𝑒
−𝜏(𝑇−𝑡)

(�̃�
2𝜏

(𝑡) − �̃�
𝜏
(𝑡))𝑋

𝑡

+(𝜃
𝜏
)
2
(𝛾𝑒
−𝜏(𝑇−𝑡)

�̃�
𝜏
(𝑡))
2

) 𝑑𝑡

− 𝜃
𝜏
(𝑋
𝑡
− 𝛾𝑒
−𝜏(𝑇−𝑡)

) �̃�
𝜏
(𝑡) 2𝑋𝑡𝑑𝑊

𝑡
, 𝑋
2

0
= 𝑥
2

0
> 0.

(55)

Taking expectations on both sides of (54) and (55),
respectively, one has

𝑑E𝑋
𝑡
= ((𝜏 − (𝜃

𝜏
)
2
�̃�
𝜏
(𝑡))E𝑋

𝑡
+(𝜃
𝜏
)
2
𝛾𝑒
−𝜏(𝑇−𝑡)

�̃�
𝜏
(𝑡)) 𝑑𝑡,

E𝑋
0
= 𝑥
0
> 0,

(56)

𝑑E𝑋
2

𝑡
= ([2𝜏 + (𝜃

𝜏
)
2
(�̃�
2𝜏

(𝑡) − 2�̃�
𝜏
(𝑡))]E𝑋

2

𝑡

− (𝜃
𝜏
)
2
2𝛾𝑒
−𝜏(𝑇−𝑡)

(�̃�
2𝜏

(𝑡) − �̃�
𝜏
(𝑡))E𝑋

𝑡

+(𝜃
𝜏
)
2
(𝛾𝑒
−𝜏(𝑇−𝑡)

�̃�
𝜏
(𝑡))
2

) 𝑑𝑡, E𝑋
2

0
=𝑥
2

0
> 0.

(57)

The solution of the linear ordinary differential equation
(56) is

E𝑋
𝑡
= 𝑥
0
𝑒
∫
𝑡

0
(𝜏−(𝜃

𝜏
)
2
�̃�
𝜏
(𝑡))𝑑𝑡

+ 𝛾𝑒
−𝜏(𝑇−𝑡)

[1 − 𝑒
−∫
𝑡

0
(𝜃
𝜏
)
2
�̃�
𝜏
(𝑡)𝑑𝑡

] ,

(58)

and it results in

E𝑋
𝑇

= 𝑥
0
𝑒
∫
𝑇

0
(𝜏−(𝜃

𝜏
)
2
�̃�
𝜏
(𝑡))𝑑𝑡

+ 𝛾 [1 − 𝑒
−∫
𝑇

0
(𝜃
𝜏
)
2
�̃�
𝜏
(𝑡)𝑑𝑡

] . (59)

Similarly, by solving (57), one has

E𝑋
2

𝑇
= 𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

(𝑥
0
𝑒
𝜏𝑇

− 𝛾)
2

+ 2𝛾𝑒
−∫
𝑇

0
(𝜃
𝜏
)
2
�̃�
𝜏
(𝑡)𝑑𝑡

(𝑥
0
𝑒
𝜏𝑇

− 𝛾) + 𝛾
2
.

(60)



Journal of Applied Mathematics 7

Therefore, the objective function of the problem (9), as a
explicit function of parameter 𝛾, is given by

𝐽min (𝜋
∗

𝑡
, 𝛾) = E(𝑋

𝑇
− 𝛾)
2
− (𝐶 − 𝛾)

2

= E𝑋
2

𝑇
− 2𝛾E𝑋

𝑇
+ 2𝛾𝐶 − 𝐶

2

= 𝛾
2
(𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

− 1)

+ 2𝛾 (𝐶 − 𝑥
0
𝑒
𝜏𝑇

𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

)

+ 𝑥
2

0
𝑒
2𝜏𝑇

𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

− 𝐶
2
.

(61)

Using (10) obtained by Lagrange duality theorem, the mini-
mum variance Var𝑋

𝑇
is achieved for

𝛾
∗

𝜏
=

𝐶 − 𝑥
0
𝑒
𝜏𝑇

𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

1 − 𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

. (62)

In addition, we obtain

𝐽max min (𝜋
∗

𝑡
, 𝛾
∗

𝜏
) =

(𝐶 − 𝑥
0
𝑒
𝜏𝑇

)
2

𝑒
∫
𝑇

0
(𝜃
𝜏
)
2
(�̃�
2𝜏
(𝑡)−2�̃�

𝜏
(𝑡))𝑑𝑡

− 1

. (63)

Letting Var𝜏𝑋
𝑇

= 𝐽max min(𝜋
∗

𝑡
, 𝛾
∗

𝜏
). The optimal value of

𝛾 and the minimum variance Var𝑋
𝑇
are

Var𝑋
𝑇

= Max {Var𝑟𝑋
𝑇
,Var𝑅𝑋

𝑇
}

= Max
{

{

{

(𝐶 − 𝑥
0
𝑒
𝑟𝑇

)
2

𝑒
∫
𝑇

0
(𝜃
𝑟
)
2
(�̃�
2𝑟
(𝑡)−2�̃�

𝑟
(𝑡))𝑑𝑡

− 1

,

(𝐶 − 𝑥
0
𝑒
𝑅𝑇

)
2

𝑒
∫
𝑇

0
(𝜃
𝑅
)
2
(�̃�
2𝑅
(𝑡)−2�̃�

𝑅
(𝑡))𝑑𝑡

− 1

}

}

}

,

(64)

𝛾
∗

= {
𝛾
∗

𝑟
, if Var𝑟𝑋

𝑇
= Var𝑋

𝑇
,

𝛾
∗

𝑅
, if Var𝑅𝑋

𝑇
= Var𝑋

𝑇
.

(65)

Putting (65) into the optimal strategy (44) inTheorem 4,
we can summarize ourmain results in the following theorem.

Theorem 6. The optimal investment strategy for the mean-
variance portfolio selection problem (7) with borrowing con-
straint under a CEV process is

𝜋
∗

𝑡
=

{{{{{{{{{

{{{{{{{{{

{

−
(𝜇 − 𝑟)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾
∗
𝑒
−𝑟(𝑇−𝑡)

) �̃�
𝑟
(𝑡) ,

if 𝑋
𝑡
⩾ 𝛾
∗
𝜌 (𝑡) , 𝑟 < 𝜇 < √2𝑟,

−
(𝜇 − 𝑅)

𝑘2𝑆
2𝛽

𝑡

(𝑋
𝑡
− 𝛾
∗
𝑒
−𝑅(𝑇−𝑡)

) �̃�
𝑅
(𝑡) ,

if 𝑋
𝑡
< 𝛾
∗
𝜌 (𝑡) , 𝑅 < 𝜇 < √2𝑅.

(66)

Moreover, the efficient frontier is given by

Var𝑋
𝑇

= Max
{

{

{

(𝐶 − 𝑥
0
𝑒
𝑟𝑇

)
2

𝑒
∫
𝑇

0
(𝜃
𝑟
)
2
(�̃�
2𝑟
(𝑡)−2�̃�

𝑟
(𝑡))𝑑𝑡

− 1

,

(𝐶 − 𝑥
0
𝑒
𝑅𝑇

)
2

𝑒
∫
𝑇

0
(𝜃
𝑅
)
2
(�̃�
2𝑅
(𝑡)−2�̃�

𝑅
(𝑡))𝑑𝑡

− 1

}

}

}

,

(67)

where 𝐾
𝜏
(𝑡) and 𝜌(𝑡) are given by (48) and (50), respectively.

Remark 7. When 𝛽 = 0, the results in the Theorem 6 are
reduced to the ones under a geometric Brownian motion
model, which is obtained by [18]. When 𝛽 = −1/2 and 𝛽 =

−1, the corresponding results are all given by (66) and (67).
Therefore, extending a geometric Brownian motion to a CEV
model is the most important innovation in our paper.

5. Conclusions

This paper is concerned with a continuous-time dynamic
portfolio selection problem in a mean-variance framework,
in which the constraint of the borrowing rate higher than the
lending rate is allowed and stock price process is supposed
to follow the constant elasticity of variance (CEV) model.
The closed-form solution to the optimal investment strategy
is derived by applying Legendre transform and dual theory.
In addition, the efficient strategy and efficient frontier are
derived by using Lagrange duality theorem.

In future research, we will continue to concentrate on
continuous-time portfolio selection problems under a CEV
model. It would be interesting to extend our model to those
with more sophisticated cases, such as introducing con-
sumption and transaction cost, short-selling constraint, and
liability process. We leave these problems and corresponding
verification theorem for future research.
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At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important
revolution of software industry. The cloud services composition is one of the key techniques in software development. The
optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization
problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the
cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques,
for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and
easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these
defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on
universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service
composition application based on the multiple state system theory is presented. Then the reliability and performance definition
based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is
presented. In the end, the illustrative examples are given.

1. Introduction

Cloud computing is an emerging trend for the provision of IT
infrastructure as services, with the potential of transforming
the way of offering business services [1]. Based on cloud
computing platform, software development becomes promi-
nent and accessible for all without the expensive investing in
hardware resources and themanaging andmaintaining costs.

On cloud computing platform, the cloud services com-
position (CSC) is a fashionable approach of software devel-
opment based on cloud services [2–4]. In the framework
of CSC, cloud services are considered as self-contained,
self-describing, modular applications that can be published,
located, and invoked across the web.

How to select and integrate cloud services to satisfy user’s
functional requirements is an important issue, which has
widely attracted attention of researchers [5]. Great progress
has been made in this field [6–8]. However, little research

focused on reliability model and simulation for CSC.
Recently, there has been growing interest in this field. Meth-
ods and technologies related to reliability model and simula-
tion for CSC have attracted attention because they can fore-
cast the QoS that users will obtain from CSC [9–11]. In addi-
tion, it is helpful to analyze whether there are some relia-
bility bottlenecks within CSC applications. Thus, reliability
prediction is the basis of reliability optimization for the CSC
applications.

The service-oriented architecture (SOA) is the most rep-
resentative technological architecture to build the cloud ser-
vices application on cloud computing platform [12–14]. How-
ever, because SOA supposed by services composition tech-
nique is of dynamic and cooperative essential characteristic,
the traditional software reliability predictionmethods are not
suitable to the cloud services application based on SOA.

From the aspect of software architecture, cloud services
application is a kind of Internetware based on cloud services,
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which is built by cloud services composition technique [15,
16]. As a kind of abstract of distributed software system run-
ning on the Internet which is opened, dynamic, and difficult
to control, there are many differences between the Inter-
netware and traditional software system, such as structure,
operation mechanism, correctness guarantees, development
method, and life cycle. Due to the static, closed, and control-
lable running environment, the traditional software model is
of finite autonomy, fixed encapsulation, monotonic interac-
tion, tightly coupled structure, and offline evolution. Being
different from the traditional software model, the cloud
services application, as a kind of Internetware, exists in each
node on the cloud service platformwith a subjective software
service form. In the running environment, which is opened,
dynamic, and difficult to control, the cloud services applica-
tion has some new characters, such as flexible evolution, con-
tinuous reaction, and multitarget self-adaption. Due to being
difficult to adapt to these new characters, traditional software
reliability assurancemethods cannot be adopted for the cloud
services application which is built based on service composi-
tion technique. Quite different to traditional software relia-
bility assurance technique, the reliability assurance method
for the cloud services application pays more attention to the
mechanism of flexible reliability measure, predication and
self-adapting based on summative evaluation of operation
information in opened running environment [17, 18]. So,
the fast reliability prediction method for the cloud services
application has great theory research value.

From the aspect of software online evolution, cloud
services application confronts fast and continuous change
of user’s requirement and running environment. So, cloud
services application must have the ability to apperceive the
changes in outrunning environment and dynamically evolve
according to functionality and performance requirement
with this kind of change. In order to provide better QoS to
users, cloud services application must have more adaptability
to collect various changes realtimely and adjust oneself online
according to preestablished strategies in runtime [19]. How-
ever, with the closed, controllable, and static user’s require-
ment in the background, traditional software reliability
prediction methods lack the ability to dynamically adapt
themselves to the changes of running environment and user’s
requirement.Therefore, it cannot be employed in the reliabil-
ity prediction for cloud services application. So, the fast reli-
ability prediction method for the cloud services application
has important realistic technology requirement.

At the present time, the researches on reliability predic-
tion for cloud services application are still just starting Due
to the opened and dynamic running environment, continu-
ous variable user’s requirement, randomly selected member
services and its own characters of loose coupling and long
transaction, the severe challenges are confronted the reli-
ability prediction for cloud services application, which is
seriously restricting the further development, application,
and extension of cloud services application. In the face of
urgent demands of high reliable cloud services application
frommany government, economy, and commerce fields such
as e-government, e-commerce, and e-bank, the fast reliability
optimization becomes the key to promote the successful

development, application, and extension of the cloud services
application.

Facing the challenge, this paper researches the reliability
model of cloud services application. On this basis, a fast
reliability optimization for cloud services application is pre-
sented. The paper is organized as follows. Section 2 presents
the reliability model for cloud service application based on
the multiple state system (MSS) theory. The reliability and
performance of cloud service and cloud services composition
application are defined in Section 3. Section 4 presents a relia-
bility and performancemodel for cloud services composition
application based on universal generating function (referred
to as UGF) technique. A fast reliability optimization algo-
rithm by using the UGF technique is presented in Section 5.
Section 6 provides some illustrative examples.

2. Reliability Model for Cloud Service
Composition Application

2.1. Multiple State SystemTheory. TheMSSwas introduced in
the middle of the 1970s in [20–23]. In these works, the basic
concepts of MSS reliability were primarily formulated, the
system structure functionwas defined, and its propertieswere
initially studied.The notions of minimal cut set and minimal
path set were introduced in the MSS context, as well as the
notions of coherence and element relevancy.

Some systems can perform their tasks with various distin-
guished levels of efficiency usually referred to as performance
rates. A system that can have a finite number of performance
rates is called a multistate system. Any system consisting of
different units that have a cumulative effect on the entire sys-
tem performance has to be considered as a MSS [24]. So the
cloud service application can be regard as a multiple state
system.

MSS reliability analysis relates to systems for which one
cannot formulate an “all or nothing” type of failure criterion.
Such systems are able to perform their task with partial
performance (intensity of the task accomplishment). Failures
of some system elements lead only to the degradation of the
system performance.

2.2. Reliability and Performance Definition for Cloud Ser-
vices Composition Application. From the aspect of users,
the reliability of cloud service application can be defined
as the probability that its performance rates satisfy user’s
requirements, described as a vector pair (w, q), where w =

{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
} is a vector of user’s requirement rates 𝑤

𝑗
,

(𝑗 = 1, . . . ,𝑀), and q = {𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑀
} is the vector of steady

state probability 𝑞
𝑗
= Pr{𝑊 = 𝑤

𝑗
}, (𝑗 = 1, . . . ,𝑀), according

to a certain user’s requirement rate, where 𝑊 is a random
variable that represents the performance rates of cloud service
application.

Based on the above definition, the reliability function of
cloud service application under steady state can be defined as

𝑅 (𝑡) = Pr {𝑇
𝑓
≥ 𝑡 | 𝐹 (𝐺 (0) ,𝑊 (0)) ≥ 0} . (1)

And the one under transient state can be defined as

𝑅 (𝑡) = Pr {𝐹 (𝐺 (𝑡) ,𝑊 (𝑡)) ≥ 0} , (2)
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where 𝐺(𝑡) is the integral performance rate of cloud service
application.

In the interval [0, 𝑇], the reliability function of cloud
service application can be defined as

𝑅
𝑇
=
1

𝑇
∫

𝑇

0

1 (𝐹 (𝐺 (𝑡) ,𝑊 (𝑡)) ≥ 0) 𝑑𝑡. (3)

Based on the above definition, the reliability function of
cloud service application under dynamically changing user’s
requirements can be defined as

𝑅 (w, q) =
𝑀

∑

𝑚=1

𝑅 (𝑤
𝑚
) 𝑞
𝑚

=

𝑀

∑

𝑚=1

𝑞
𝑚

𝐾

∑

𝑘=1

𝑝
𝑘
1 (𝐹 (𝑔

𝑘
, 𝑤
𝑚
) ≥ 0) .

(4)

In order to calculate the probability distribution of reli-
ability, failure time 𝑇

𝑓
, time between failures 𝑇

𝑏
, and failure

number𝑁
𝑇
are defined.

2.3. Probability Distribution of Performance Rates for Cloud
Service. Furthermore, the performance rates for cloud ser-
vice can be defined. According to its performance rates, the
cloud service 𝑗 to build a cloud service application can be of 𝑘

𝑗

kinds of various states, described by g
𝑗
= {𝑔
𝑗1
, 𝑔
𝑗2
, . . . , 𝑔

𝑗𝑘
𝑗

},
where 𝑔

𝑗𝑖
is the performance rate of cloud service 𝑗 under

the state 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑘
𝑗
}. The performance rate 𝐺

𝑗
(𝑡)

corresponding to the cloud service 𝑗 in any time 𝑡 ≥ 0 is a
random variable that gets the value from g

𝑗
: 𝐺
𝑗
(𝑡) ∈ g

𝑗
. The

probability of performance rates of the cloud service 𝑗 under
various states in any time 𝑡 can be described as a set,

p
𝑗 (𝑡) = {𝑝

𝑗1 (𝑡) , 𝑔𝑗2 (𝑡) , . . . , 𝑔𝑗𝑘
𝑗
(𝑡)} , (5)

where 𝑝
𝑗𝑖
(𝑡) = Pr{𝐺

𝑗
(𝑡) = 𝑔

𝑗𝑖
}. Because cloud service 𝑗 is

in one and only one of 𝑘
𝑗
kinds of various states in any time

𝑡, these states form a mutual exclusion events complete set.
Therefore, the formula∑𝑘𝑗

𝑖=1
𝑝
𝑗𝑖
(𝑡) = 1, (0 ≤ 𝑡 ≤ 𝑇) is satisfied.

In the end, the set of value pairs ⟨𝑔
𝑗𝑖
, 𝑝
𝑗𝑖
(𝑡)⟩ completely

determines the probability distribution of performance rates
corresponding to a cloud service 𝑗 in any time 𝑡.

2.4. Structure Function of Performance Rates for Cloud Service
Application. Based on the above definition of the perfor-
mance rates of cloud service application and cloud service,
the structure function of cloud service application can be
defined. Let

𝐿
𝑛
= {𝑔
11
, . . . , 𝑔

1𝑘
1

} × {𝑔
21
, . . . , 𝑔

2𝑘
2

} × ⋅ ⋅ ⋅ × {𝑔
𝑛1
, . . . , 𝑔

𝑛𝑘
𝑛

}

(6)

be the possible combinations of performance rates of all cloud
services and 𝑀 = {𝑔

1
, . . . , 𝑔

𝑘
} the possible values range

of performance rates of cloud service application. Then the
transform function 𝜙(𝐺

1
(𝑡), . . . , 𝐺

𝑛
(𝑡)) : 𝐿

𝑛
→ 𝑀, called

the structure function of cloud service application, can map

the performance rates space of cloud services into one of
cloud service applications. Hence, a general reliability model
of cloud service application can be defined as

g
𝑗
, p
𝑗 (𝑡) , 1 ≤ 𝑗 ≤ 𝑛, 𝜙 (𝐺

1 (𝑡) , . . . , 𝐺𝑛 (𝑡)) . (7)

The structure function of cloud service application estab-
lishes a feasible way to calculate the reliability of cloud service
application using one of cloud services.

3. Reliability and Performance Definition
for Cloud Service Composition Application
Based on UGF

3.1. UGF Technique. The methods of MSS reliability assess-
ment are based on four different approaches: (1) an exten-
sion of the Boolean models to the multivalued case; (2)
the stochastic process (mainly Markov and semi-Markov)
approach; (3) the Monte-Carlo simulation technique; and (4)
the UGF approach.

The approach based on the extension of Boolean models
is historically the firstmethod that was developed and applied
for the MSS reliability evaluation. It is based on the natural
expansion of the Boolean methods to the multistate systems.

The stochastic process methods that are widely used for
the MSS reliability analysis are more universal. The method
can be applied only to relatively small MSS because the
number of system states increases dramatically with the
increase in the number of system elements.

Even though almost every real world MSS can be rep-
resented by the Monte-Carlo simulation for the reliability
assessment, the main disadvantages of this approach are the
time and expenses involved in the development and execu-
tion of the model.

The computational burden is the crucial factor when one
solves optimization problems where the reliability measures
have to be evaluated for a great number of possible solutions
along the search process. This makes using the three above-
mentioned methods in reliability optimization problematic.
On the contrary, the UGF technique is fast enough.This tech-
nique allows one to find the entire MSS performance distri-
bution based on the performance distribution of its elements
by suing a fast algebraic procedure. An analyst can use the
same recursive procedures for MSS with a different physical
nature of performance and different types of element interac-
tion.

For the above reasons, we choose UGF technique to study
a fast reliability optimizationmethod for cloud services com-
position network. The UGF generalizes the technique that is
based on using a well-known ordinary generating function.
The basic ideas of the method were introduced by Ushakov
[25]. The approach proved to be very convenient for numer-
ical realization. It requires relatively small computational
resources for evaluatingMSS reliability indices and, therefore,
can be used in complexes reliability optimization algorithms.
Because the relationship between system state probability and
system output performance rates can be expressed definitely
by UGF, and the 𝑢-function of system can be obtained by
calculating the 𝑢-function of components simply, UGF is
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approved as an efficient reliability assessment approach that is
suitable to various MMS.Therefore, UGF can be successfully
applied for the reliability assessment and optimization of
MMS.

In most studies on the prediction and optimization of
system reliability based on the UGF, the system structure
and composite form of research object are relatively simple,
such as electric power system and mechanical system. The
presented design methods and calculation methods of the
𝑢-function composite operators are only applicable to some
simple structure forms, such as series, parallel, series parallel
hybrid, and bridge structure, which limits the application
range of the UGF method. Different from the above research
objects, the cloud services composition is of complex, flexible
and dynamic structure form. The adaptability to complex,
flexible and dynamic system, such as the cloud services com-
position application, becomes advantage and characteristic of
our presented method.

3.2. Reliability Definition of Cloud Service Composition Appli-
cationBased onUGF. Based on the reliabilitymodel for cloud
service application described in Section 2, the reliability of
cloud service composition can be defined by UGF. The
general form of the definition is as follows.

The reliability of a cloud service composition (or a cloud
service) is a random variable𝑋.Therefore, the corresponding
𝑢-function can be defined as

𝑢 (𝑧) =

𝐾

∑

𝑘=1

𝑝
𝑘
⋅ 𝑧
𝑋
𝑘 , (8)

where the discrete variable 𝑋 has 𝐾 possible values and 𝑝
𝑘

is the reliability when 𝑋 is in the state 𝑋
𝑘
. Based on this

definition, the reliability of a cloud service composition (or a
cloud service) can be expressed as

𝑈 (𝑡, 𝑧) =

𝐾

∑

𝑘=1

𝑝
𝑘 (𝑡) ⋅ 𝑧

𝐺
𝑘 . (9)

Because 𝑈(𝑧) is correlative with the state probability 𝑝
𝑘

and the reliability rate 𝐺
𝑘
, which correspond to the cloud

service composition (or a cloud service), describes the reli-
ability of cloud service composition (or a cloud service). On
this basis, we can define related performance operators fur-
thermore, such as usability operator 𝛿

𝐴
, output performance

operator 𝛿
𝐺
and unfinished performance operator 𝛿

𝑈
, to

describe related reliability indexes.
Based on the above performance operators, the related

reliability indexes for cloud service composition (or a cloud
service) can be defined as follows.

(i) The usability is defined as

𝐸
𝐴
= 𝐸
𝐴
(𝑊, 𝑞) =

𝑀

∑

𝑚=1

𝑞
𝑚
⋅ 𝛿
𝑅
(𝑈 (𝑧) , 𝐹,𝑊𝑚) . (10)

(ii) The output performance expectation is defined as

𝐸
𝐺
= 𝛿
𝐺 (𝑈 (𝑧)) = 𝛿

𝐺
(

𝐾

∑

𝑘=1

𝑝
𝑘
⋅ 𝑧
𝐺
𝑘)

=
𝑑𝑈

𝑑𝑧
(1) =

𝐾

∑

𝑘=1

𝑝
𝑘
⋅ 𝐺
𝑘
.

(11)

(iii) The unfinished performance requirement is defined
as:

𝐸
𝑈
(𝑊, 𝑞) =

𝑀

∑

𝑚=1

𝑞
𝑚
⋅ 𝛿
𝑈
(𝑈 (𝑧) , 𝐹,𝑊𝑚) , (12)

where

𝛿
𝑈
(𝑈 (𝑧) , 𝐹,𝑊𝑚)

= 𝛿
𝑈
(

𝐾

∑

𝑘=1

𝑝
𝑘
⋅ 𝑧
𝐺
𝑘 , 𝐹,𝑊

𝑚
)

=

𝐾

∑

𝑘=1

𝑝
𝑘
⋅max {−𝐹 (𝐺

𝑘
,𝑊
𝑚
) , 0} .

(13)

3.3. Composite Operators of Reliability and Performance
Indexes Based on UGF. Based on the above reliability defi-
nition expressed by UGF for cloud services, the 𝑢-function
composite operators Ω can be designed for various perfor-
mance indexes of the diverse composition patterns. The reli-
ability of cloud service composition can be worked out based
on theΩ calculation of cloud services’ reliability.

Two rules must be satisfied in the design of 𝑢-function
composite operatorsΩ as follows:

(1) Ω (𝑈
1 (𝑧) , . . . , 𝑈𝑘 (𝑧) , 𝑈𝑘+1 (𝑧) , . . . , 𝑈𝑛 (𝑧))

= Ω (𝑈
1 (𝑧) , . . . , 𝑈𝑘+1 (𝑧) , 𝑈𝑘 (𝑧) , . . . , 𝑈𝑛 (𝑧)) ;

(2) Ω (𝑈
1 (𝑧) , . . . , 𝑈𝑘 (𝑧) , 𝑈𝑘+1 (𝑧) , . . . , 𝑈𝑛 (𝑧))

= Ω (Ω (𝑈
1 (𝑧) , . . . , 𝑈𝑘 (𝑧)) , Ω (𝑈

𝑘+1 (𝑧) , . . . , 𝑈𝑛 (𝑧))) .

(14)

The generic form of composite operators Ω can be
expressed as

Ω(∑

∀𝑘

𝑝
𝑘
⋅ 𝑧
𝐺
𝑘 ,∑

∀𝑙

𝑝
𝑙
⋅ 𝑧
𝐺
𝑙) = ∑

∀𝑘

∑

∀𝑙

𝑝
𝑘
⋅ 𝑝
𝑙
⋅ 𝑧
𝑓(𝐺
𝑘
,𝐺
𝑙
)
, (15)

where𝑓(𝐺
𝑘
, 𝐺
𝑙
) can be defined according to the performance

indexes and composition structures of the cloud service
application.

4. Reliability and Performance Model of
Cloud Services Composition Application
Based on UGF

4.1. Fault TolerantModel of Cloud Services Composition Appli-
cation. To strengthen the capability of fault tolerant of cloud
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service composition applications to improve its reliability
and performance, the component duplication technique has
been introduced into the design of cloud service composition
applications. By deploying a number of functionally equiva-
lent software versions for each cloud service, the cloud service
composition applications can avoid the global failure due to
the fault of one cloud service as far as possible.We assume that
𝑛
𝑐
functionally equivalent software versions are available for

each cloud service 𝑐. Each software version 𝑖 has an estimated
reliability 𝑟

𝑐𝑖
and response time 𝜏

𝑐𝑖
(it includes the execution

time of software version and the network transmission time
used transfer computing results to other software version, end
users, etc.). Failures of software versions in each cloud service
are statistically independent, as well as the total failures of the
different cloud services.

In many cases, the information about the software ver-
sion’s reliability and the response time is available from sepa-
rate testing and/or reliability prediction models. This infor-
mation can be incorporated into a fault-tolerant program
model in order to obtain an evaluation of its reliability and
performance.

According to the generally accepted model, the cloud
service composition application consists of 𝐶 cloud services.
Each cloud service performs a subtask and the sequential
execution of the cloud services performs a major task.

To assure that all of the computing tasks can correctly be
executed by cloud service, the cloud services broker (referred
to as CSB) and the check mechanism are established in the
cloud service composition application.The checkmechanism
presumes that software versions send their computing results
to the CSB. Then the CSB compares received computing
results with each other. The CSB sends the computing results
to the next cloud service in the service flow, if at least 𝑘 out of
𝑛 computing results agree. Otherwise, the CSB discards these
received computing results and recalls the cloud services. If
the consistent results cannot be obtained after trying a certain
number of times, the CSB will stop the execution of the cloud
services composition application.

The software versions in each cloud service 𝑐 run on
parallel hardware units. The total number of units is ℎ

𝑐
. The

units are independent and identical. The availability of each
unit is 𝑎

𝑐
. The number 𝐻

𝑐
of units available at the moment

determines the amount of available computational resources
and, therefore, the number of software versions that can
be executed simultaneously 𝐿

𝑐
(𝐻
𝑐
). No hardware unit can

change its state during the execution.
The software versions of each cloud service 𝑐 start their

execution in accordance with a predetermined ordered list.
𝐿
𝑐
first software versions from the list start their execution

simultaneously (at time zero). If the number of terminated
software versions is less than 𝑘

𝑐
, after termination of each

software version a new software version from the list starts its
execution immediately. If the number of terminated software
versions is not less than 𝑘

𝑐
, after termination of each software

version the CSB compares the outputs. If 𝑘
𝑐
outputs are

identical, the CSB terminates its execution (terminating all
the software versions that are still executed), otherwise a new
software version from the list is executed immediately.

If after termination of 𝑛
𝑐
software versions the number of

identical outputs is less than 𝑘
𝑐
then the entire cloud services

application fail.
The execution time of the CSB includes the execution

time and data transmission time spent by all cloud services
invoked by the CSB and itself. In the case that CSB gets not
less than 𝑘

𝑐
consistent results successfully, the time of the

entire CSB execution𝑇
𝑐
is equal to the termination time of the

software version that has produced the 𝑘
𝑐
th correct output (in

most cases, the time needed by the CSB to make the decision
can be neglected). It can be seen that the CSB execution time
is a random variable depending on the reliability and the
response time of the software versions and on the availability
of the hardware units.

The sum of the random execution times of each CSB gives
the random task execution time for the entire system 𝑇. In
order to estimate both the system’s reliability and its perfor-
mance, different measures can be used, depending on the
application.

In cloud service applications where the response time of
each task is of critical importance, the system’s acceptability
function is defined as 𝐹(𝑇, 𝑤) = 1(𝑇 < 𝑤), where 𝑤 is a max-
imal allowed system response time. The system’s reliability
𝑅(𝑤) = 𝐸(𝐹(𝑇, 𝑤)) in this case is the probability that the cor-
rect output is produced in time less than 𝑤. The conditional
expected system response time 𝜀(𝑤) = 𝐸(𝑇×1(𝑇 < 𝑤))/𝑅(𝑤)

is considered to be a measure of the system’s performance.
This index, defined according to (16), determines the system’s
expected response time given that the system and network do
not fail:

𝜀 (𝑤) =

𝐸 (𝐺)

Pr {𝐹 (𝐺,𝑊) = 1}
=
𝐸 (𝐺𝐹 (𝐺,𝑊))

𝐸 (𝐹 (𝐺,𝑊))
. (16)

In cloud service applications where the system’s average
productivity (the number of executed tasks) over a fixed mis-
sion time is of interest, the system’s acceptability function is
defined as𝐹(𝑇) = 1(𝑇 < ∞), the system’s reliability is defined
as the probability that it produces correct outputs regard-
less of the total response time (this index can be referred
to as 𝑅(∞)), and the conditional expected system response
time 𝜀(∞) is considered to be a measure of the system’s
performance.

4.1.1. Number of SoftwareVersionsThatCanBe Simultaneously
Executed. The number of available hardware units in cloud
service 𝑐 can vary from 0 to ℎ

𝑐
. Given that all of the units are

identical and have availability 𝑎
𝑐
, one can easily obtain proba-

bilities 𝑄
𝑐
(𝑥) = Pr{𝐻

𝑐
= 𝑥} for 0 ≤ 𝑥 ≤ ℎ

𝑐
:

𝑄
𝑐 (𝑥) = Pr {𝐻

𝑐
= 𝑥} = (

ℎ
𝑐

𝑥
) 𝑎
𝑥

𝑐
(1 − 𝑎

𝑐
)
ℎ
𝑐
−𝑥
. (17)

The number of available hardware units 𝑥 determines the
number of software versions that can be executed simultane-
ously: 𝑙

𝑐
(𝑥). Therefore,

Pr {𝐿
𝑐
= 𝑙
𝑐 (𝑥)} = 𝑄

𝑐 (𝑥) . (18)

The pairs 𝑄
𝑐
(𝑥), 𝑙
𝑐
(𝑥) for 0 ≤ 𝑥 ≤ ℎ

𝑐
determine the

probability mass function (referred to as p.m.f. as follows) of
the discrete random value 𝐿

𝑐
.
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4.1.2. Termination Times of Software Version. In each cloud
service 𝑐, a sequence where each software version starts its
execution is defined by the numbers of software versions.This
means that each software version 𝑖 starts its execution not ear-
lier than software versions 1, . . . , 𝑖 − 1 and not later than soft-
ware versions 𝑖 + 1, . . . , 𝑛

𝑐
. If the number of software versions

that can run simultaneously is 𝑙
𝑐
, then we can assume that

the software versions run on 𝑙
𝑐
independent processors. Let

𝛼
𝑚
be the time when processor 𝑚 terminates the execution

of a software version and is ready to run the next software
version from the list of not executed software versions.
Having the response time of each software version 𝜏

𝑐𝑖
(1 ≤

𝑖 ≤ 𝑛
𝑐
), one can obtain the termination time 𝑡

𝑐𝑖
(𝑙
𝑐
) for each

software version 𝑖 using the following simple algorithm.

(1) Assign 𝛼
1
= ⋅ ⋅ ⋅ = 𝛼

𝑙
𝑐

= 0 (all of the units are ready to
run the software versions at time 0).

(2) For 𝑖 = 1, . . . , 𝑛
𝑐
repeat the following:

(a) find any𝑚 (1 ≤ 𝑚 ≤ 𝑙
𝑐
) : 𝛼
𝑚
= min{𝛼

1
, . . . , 𝛼

𝑙
𝑐

}

(𝑚 is the number of the earliest processor that
is ready to run a new software version from the
list),

(b) obtain 𝑡
𝑐𝑖
(𝑙
𝑐
) = 𝛼
𝑚
+ 𝜏
𝑐𝑖
and assign 𝛼

𝑚
= 𝑡
𝑐𝑖
(𝑙
𝑐
).

Times 𝑡
𝑐𝑖
(𝑙
𝑐
), (1 ≤ 𝑖 ≤ 𝑛

𝑐
), correspond to intervals

between the beginning of cloud service execution and the
moment when the software versions produce their outputs.
Observe that the software versions that start execution earlier
can terminate later: 𝑗 < 𝑦 does not guarantee that 𝑡

𝑐𝑗
(𝑙
𝑐
) ≤

𝑡
𝑐𝑦
(𝑙
𝑐
). In order to obtain the sequence, in which the soft-

ware versions produce their outputs, the termination times
should be sorted in increasing order 𝑡

𝑐𝑚
1

(𝑙
𝑐
) ≤ 𝑡

𝑐𝑚
2

(𝑙
𝑐
) ≤

⋅ ⋅ ⋅ ≤ 𝑡
𝑐𝑚
𝑛𝑐

(𝑙
𝑐
) which gives the order of software versions

𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
𝑐

corresponding to times of their termination.
The ordered list𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
𝑐

determines the sequence
of software version outputs. Now one can consider the
cloud service 𝑐 as a system in which the 𝑛

𝑐
software

versions are executed consecutively according to the order
𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
𝑐

and produce their outputs at times 𝑡
𝑐𝑚
1

(𝑙
𝑐
),

𝑡
𝑐𝑚
2

(𝑙
𝑐
), . . . , 𝑡

𝑐𝑚
𝑛𝑐

(𝑙
𝑐
).

4.2. Definition of Reliability and Performance of the Cloud
Service and the Cloud Services Composition Application. Let
𝑟
𝑐𝑚
𝑖

be the reliability of the software version that produces 𝑖th
output in cloud service 𝑐 (𝑟

𝑐𝑚
𝑖

is equal to the probability that
this output is correct). Consider the probability that 𝑘 out
of 𝑛 first software versions of cloud service 𝑐 succeed. This
probability can be obtained as

𝑅
𝑘
= [

𝑛

∏

𝑖=1

(1 − 𝑟
𝑐𝑚
𝑖

)]

× [

[

𝑛−𝑘+1

∑

𝑖
1
=1

𝑟
𝑐𝑚
𝑖1

1 − 𝑟
𝑐𝑚
𝑖1

𝑛−𝑘+2

∑

𝑖
2
=𝑖
1
+1

𝑟
𝑐𝑚
𝑖2

1 − 𝑟
𝑐𝑚
𝑖2

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑘
=𝑖
𝑘−1
+1

𝑟
𝑐𝑚
𝑖
𝑘

1 − 𝑟
𝑐𝑚
𝑖
𝑘

]

]

.

(19)

The cloud service 𝑐 produces the correct output directly
after the end of the execution of 𝑗 software versions (𝑗 ≥ 𝑘

𝑐
)

if the𝑚
𝑗
th software version succeeds and exactly 𝑘

𝑐
−1 out of

the first executed 𝑗 − 1 software versions succeed.
The probability of such event 𝑝

𝑐𝑗
(𝑙
𝑐
) is

𝑝
𝑐𝑗
(𝑙
𝑐
) = 𝑟
𝑐𝑚
𝑗

[

𝑗−1

∏

𝑖=1

(1 − 𝑟
𝑐𝑚
𝑖

)]

× [

𝑛−𝑘
𝑐
+1

∑

𝑖
1
=1

𝑟
𝑐𝑚
𝑖1

1 − 𝑟
𝑐𝑚
𝑖1

𝑛−𝑘
𝑐
+2

∑

𝑖
2
=𝑖
1
+1

𝑟
𝑐𝑚
𝑖2

1 − 𝑟
𝑐𝑚
𝑖2

⋅ ⋅ ⋅

𝑗−1

∑

𝑖
𝑘𝑐
−1=𝑖
𝑘𝑐−2
+1

𝑟
𝑐𝑚
𝑖
𝑘𝑐−1

1 − 𝑟
𝑐𝑚
𝑖
𝑘𝑐−1

]

]

.

(20)

Observe that 𝑝
𝑐𝑗
(𝑙
𝑐
) is the conditional probability that the

cloud service response time is 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
) given that 𝑙

𝑐
software

versions can be executed simultaneously:

𝑝
𝑐𝑗
(𝑙
𝑐
) = Pr {𝑇

𝑐
= 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
) | 𝐿
𝑐
= 𝑙
𝑐
} . (21)

Having the p.m.f. of 𝐿
𝑐
we can now obtain for 1 ≤ 𝑥 ≤ ℎ

𝑐

Pr {𝑇
𝑐
= 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐 (𝑥))}

= Pr {𝑇
𝑐
= 𝑡
𝑐𝑘
𝑗

(𝑙
𝑐 (𝑥)) | 𝐿𝑐 = 𝑙

𝑐 (𝑥)}Pr {𝐿𝑐 = 𝑙
𝑐 (𝑥)}

= 𝑝
𝑐𝑗
(𝑙
𝑐 (𝑥)) 𝑄𝑐 (𝑥) .

(22)

Thepairs 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
(𝑥)),𝑝

𝑐𝑗
(𝑙
𝑐
(𝑥))𝑄

𝑐
(𝑥), obtained for 1 ≤ 𝑥 ≤

ℎ
𝑐
and 𝑘

𝑐
≤ 𝑗 ≤ 𝑛

𝑐
, determine the p.m.f. of software version

response time 𝑇
𝑐
.

Since the events of successful cloud service execution ter-
mination for different 𝑗 and 𝑥 are mutually exclusive, we can
express the probability of cloud service 𝑐 success as

𝑅
𝑐 (∞) = Pr {𝑇

𝑐
< ∞} =

ℎ
𝑐

∑

𝑥=1

[

[

𝑄
𝑐 (𝑥)

𝑛
𝑐

∑

𝑗=𝑘
𝑐

𝑝
𝑐𝑗
(𝑙
𝑐 (𝑥))

]

]

.

(23)

Since failure of any cloud service constitutes the failure
of the entire application, the application’s reliability can be
expressed as

𝑅 (∞) =

𝐶

∏

𝑐=1

𝑅
𝑐 (∞) . (24)

For cloud services, there are four kinds of execution
patterns in cloud services composition application: sequence,
parallel, split, and loop. From the p.m.f. of response times
𝑇
𝑐
for each cloud service 𝑐 one can obtain the p.m.f. of the

response time of the entire application in accordance with
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the composition structures and execution logics of the cloud
services composition application:

𝑇 =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝐶

∑

𝑐=1

𝑇
𝑐

for sequence structure,

max (𝑇
1
, . . . , 𝑇

𝑐
) for parallel structure,

𝐶

∑

𝑐=1

𝑝
𝑐
𝑇
𝑐

for split structure,

𝐿

∑

𝑙=1

𝐶

∑

𝑐=1

𝑇
𝑐

for loop structure,

(25)

where the 𝑝
𝑐
is the probabilities that the 𝑐th split is chosen to

be executed.The 𝐿 is the number of times of loop that𝐶 cloud
services are executed repeatedly. 𝑝

𝑐
and 𝐿 can be obtained

from separate testing and/or prediction models.

5. Fast Optimization Algorithm of
Reliability and Performance for Cloud
Services Composition Application Based
on UGF and GA

5.1. Using UGF to Evaluate the Response Time Distribution
of Cloud Services. In order to obtain the response time
distribution for a cloud service 𝑐 for a given 𝑙

𝑐
in the form

𝑝
𝑐𝑗
(𝑙
𝑐
), 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
) (𝑘
𝑐

≤ 𝑗 ≤ 𝑛
𝑐
) one can determine the

realizations 𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
) of the response time𝑇

𝑐
(𝑙
𝑐
) using the algo-

rithm presented in Section 4.1.2 and the corresponding prob-
abilities 𝑝

𝑐𝑗
(𝑙
𝑐
) using (20). However, the probabilities 𝑝

𝑐𝑗
(𝑙
𝑐
)

can be obtained in a much simpler way using a procedure
based on the UGF technique.

Let the random binary variable 𝑠
𝑐𝑚
𝑖

be an indicator of the
success of software version 𝑚

𝑖
in cloud service 𝑐 such that

𝑠
𝑐𝑚
𝑖

= 1 if the software version produces the correct output
and 𝑠
𝑐𝑚
𝑖

= 0 if it produces the wrong output.The p.m.f. of 𝑠
𝑐𝑚
𝑖

can be represented by the 𝑢-function

𝑢
𝑐𝑚
𝑖
(𝑧) = 𝑟

𝑐𝑚
𝑖

𝑧
1
+ (1 − 𝑟

𝑐𝑚
𝑖

) 𝑧
0
. (26)

It can be easily seen that using the operator ⊗
+
we can obtain

the 𝑢-function

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) = ⨂

+

(𝑢
𝑐𝑚
𝑖
(𝑧) , . . . , 𝑢𝑐𝑚

𝑗
(𝑧)) (27)

that represents the p.m.f. of the number of correct outputs in
cloud service 𝑐 after the execution of a group of first 𝑗 software
versions (the order of elements 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
𝑐

and, there-
fore,𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) depend on 𝑙

𝑐
). Indeed, the resulting polynomial

relates the probabilities of combinations of correct andwrong
outputs (the product of corresponding probabilities) with the
number of correct outputs in these combinations (the sum
of success indicators). Observe that after collecting the like
terms (corresponding to obtaining the overall probability of

a different combination with the same number of correct
outputs) 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) takes the form

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) =

𝑗

∑

𝑘=0

𝜋
𝑗𝑘
𝑧
𝑘
, (28)

where 𝜋
𝑗𝑘
is the probability that the group of first 𝑗 software

versions produces 𝑘 correct outputs.
Note that𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) can be obtained by using the recurrent

expression:

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) = 𝑈
𝑐𝑗−1

(𝑧, 𝑙
𝑐
)⨂

+

[𝑟
𝑐𝑚
𝑗

𝑧
1
+ (1 − 𝑟

𝑐𝑚
𝑗

) 𝑧
0
] . (29)

According to its definition, 𝑝
𝑐𝑗
(𝑙
𝑐
) is the probability that

the group of first 𝑗 software versions produces 𝑘
𝑐
correct

outputs and the group of first 𝑗−1 software versions produces
𝑘
𝑐
− 1 correct outputs given that 𝑙

𝑐
software versions can be

executed simultaneously. The coefficient 𝜋
𝑗𝑘
𝑐

in polynomial
𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) is equal to the conditional probability that the group

of first 𝑗 software versions produces 𝑘
𝑐
correct outputs given

that 𝑙
𝑐
software versions can be executed simultaneously.

In order to let the coefficient 𝜋
𝑗𝑘
𝑐

in polynomial 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
)

be equal to 𝑝
𝑐𝑗
(𝑙
𝑐
), the term with the exponent equal to 𝑘

𝑐

should be removed from 𝑈
𝑐𝑗−1

(𝑧, 𝑙
𝑐
) before applying (29)

(excluding the combination in which 𝑗 − 1 first software
versions produce 𝑘

𝑐
correct outputs while the 𝑚

𝑗
th software

version fails).
If after the execution of 𝑗 first software versions the num-

ber of correct outputs produced is 𝑘 and 𝑘 + 𝑛
𝑐
− 𝑗 < 𝑘

𝑐
, then

the required number of correct outputs 𝑘
𝑐
cannot be obtained

even if all the 𝑛
𝑐
− 𝑗 subsequent software versions produce

correct outputs.Therefore, the terms𝜋
𝑗𝑘
𝑧
𝑘 with 𝑘 < 𝑘

𝑐
−𝑛
𝑐
+𝑗

can be removed from 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
).

The above considerations lie at the base of the following
algorithm for determining all of the probabilities 𝑝

𝑐𝑗
(𝑙
𝑐
) (𝑘
𝑐
≤

𝑗 ≤ 𝑛
𝑐
).

(1) For the given 𝑙
𝑐
, determine the order of software ver-

sion termination𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
𝑐

using the algorithm
from Section 4.1.2.

(2) Determine the 𝑢-function of each software version of
cloud service 𝑐 according to (26).

(3) Define 𝑈
𝑐0
(𝑧, 𝑙
𝑐
) = 1. For 𝑗 = 1, 2, . . . , 𝑛

𝑐
,

(a) obtain 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) using (28) and, after collecting

like terms, represent it in the form (29),
(b) remove from 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) all the terms 𝜋

𝑗𝑘
𝑧
𝑘 for

which 𝑘 < 𝑘
𝑐
− 𝑛
𝑐
+ 𝑗,

(c) If 𝑗 ≥ 𝑘
𝑐
, assign 𝑝

𝑐𝑗
(𝑙
𝑐
) = 𝜋
𝑗𝑘
𝑐

and remove term
𝜋
𝑗𝑘
𝑐

𝑧
𝑘
𝑐 from 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
).

5.2. Evaluating Response Time Distribution of the Cloud
Services CompositionApplication. Having the pairs𝑝

𝑐𝑗
(𝑙
𝑐
(𝑥)),

𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
(𝑥)) for each possible realization 𝑙

𝑐
(𝑥) of 𝐿

𝑐
(1 ≤ 𝑥 ≤

ℎ
𝑐
) and probabilities Pr{𝐿

𝑐
= 𝑙
𝑐
(𝑥)} = 𝑄

𝑐
(𝑥), one can obtain

the p.m.f. of random response times 𝑇
𝑐
for each cloud service
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by applying (22). If the conditional p.m.f. 𝑝
𝑐𝑗
(𝑙
𝑐
(𝑥)),

𝑡
𝑐𝑚
𝑗

(𝑙
𝑐
(𝑥)) are represented by the 𝑢-function

�̃�
𝑐
(𝑧, 𝑙
𝑐 (𝑥)) =

𝑛
𝑐

∑

𝑗=𝑘
𝑐

𝑝
𝑐𝑗
(𝑙
𝑐 (𝑥)) 𝑧

𝑡
𝑐𝑚𝑗
(𝑙
𝑐
(𝑥)) (30)

then the 𝑢-function representing the p.m.f. of the random
value 𝑇

𝑐
takes the form

�̃�
𝑐 (𝑧) =

ℎ
𝑐

∑

𝑥=1

𝑄
𝑐 (𝑥) �̃�𝑐 (𝑧, 𝑙𝑐 (𝑥)) . (31)

In accordance with the four kinds of execution patterns of
cloud services in cloud services composition application, we
present four kinds of composition operators for 𝑢-function
operation corresponding to formula (25):

(1) The composition operator ⊗sequ for sequence execu-
tion pattern:

�̃� (𝑧) = �̃�
1 (𝑧)⨂

sequ
�̃�
2 (𝑧)

=

𝐿
1

∑

𝑙
1
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

) 𝑧
�̃�
1𝑙1⨂

sequ

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
�̃�
2𝑙2

=

𝐿
1

∑

𝑙
1
=1

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

)Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
�̃�
1𝑙1
+�̃�
2𝑙2 .

(32)

(2) The composition operator ⊗para for parallel execution
pattern:

�̃� (𝑧)

= �̃�
1 (𝑧)⨂

para
�̃�
2 (𝑧)

=

𝐿
1

∑

𝑙
1
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

) 𝑧
�̃�
1𝑙1⨂

para

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
�̃�
2𝑙2

=

𝐿
1

∑

𝑙
1
=1

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

)Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
max(�̃�

1𝑙1
,�̃�
2𝑙2
)
.

(33)

(3) The composition operator ⊗split for split execution
pattern:

�̃� (𝑧)

= �̃�
1 (𝑧)⨂

split
�̃�
2 (𝑧)

=

𝐿
1

∑

𝑙
1
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

) 𝑧
�̃�
1𝑙1⨂

split

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
�̃�
2𝑙2

= 𝑝
1

𝐿
1

∑

𝑙
1
=1

Pr (𝑇
1𝑙
1

= �̃�
1𝑙
1

) 𝑧
�̃�
1𝑙1 + 𝑝

2

𝐿
2

∑

𝑙
2
=1

Pr (𝑇
2𝑙
2

= �̃�
2𝑙
2

) 𝑧
�̃�
2𝑙2 ,

(34)

where the 𝑝
1
and 𝑝

2
are the probabilities that the

splits, corresponding to �̃�
1
(𝑧) and �̃�

2
(𝑧), are chosen

to execute.
(4) The composition operator ⊗loop for loop execution

pattern.

The composition operator ⊗loop can be expressed by mul-
tiple composition operators ⊗sequ, because the loop execution
pattern can be transformed to an accumulation of multiple
sequence execution patterns. The number of composition
operators ⊗sequ transformed is equal to the number of times
of repeated execution in loop pattern.

Hence, one can obtain the 𝑢-function �̃�(𝑧) representing
the p.m.f. of the random entire application response time 𝑇
as

�̃� (𝑧) = ⨂

𝑓

(�̃�
1 (𝑧) , . . . , �̃�𝐶 (𝑧))

= ⨂

𝑓

(

ℎ
𝑐

∑

𝑥=1

𝑄
𝑐 (𝑥) �̃�𝑐 (𝑧, 𝑙𝑐 (𝑥))) ,

(35)

where the composition operator ⊗
𝑓
is an abstract composi-

tion operator that it can be one of the composition operators
⊗sequ, ⊗para, ⊗split, and ⊗loop.

In accordance with the composition patterns in cloud
services composition application, the concrete 𝑢-function
�̃�(𝑧) representing the p.m.f. of𝑇 can be obtained by replacing
⊗
𝑓
by one of the composition operators ⊗sequ, ⊗para, ⊗split, and

⊗loop.

5.3. Evaluating Response Time Distribution of Different Cloud
Services Executed on the Same Hardware. Now consider the
case where all of the software cloud services are consecutively
executed on the same hardware consisting of ℎ parallel
identical modules with the availability 𝑎. The number of
available parallel hardware modules𝐻 is random with p.m.f.
𝑄(𝑥) = Pr{𝐻 = 𝑥}, 1 ≤ 𝑥 ≤ ℎ, defined in the same way as in
(17).

When 𝐻 = 𝑥, the number of software versions that can
be executed simultaneously in each cloud service 𝑐 is 𝑙

𝑐
(𝑥).

The 𝑢-functions representing the p.m.f. of the corresponding
cloud service response time𝑇

𝑐
are �̃�
𝑐
(𝑧, 𝑙
𝑐
(𝑥)) defined by (30).

The 𝑢-function �̂�(𝑧, 𝑥) representing the conditional p.m.f. of
the entire application response time𝑇 (given that the number
of available hardware modules is 𝑥) can be obtained for any
𝑥 (1 ≤ 𝑥 ≤ ℎ) as

�̂� (𝑧, 𝑥) = ⨂

+

(�̃�
1
(𝑧, 𝑙
1 (𝑥)) , . . . , �̃�𝐶 (𝑧, 𝑙𝐶 (𝑥)))

=

𝐶

∏

𝑐=1

�̃�
𝑐
(𝑧, 𝑙
𝑐 (𝑥)) .

(36)

Having the p.m.f. of the random value 𝐻 we obtain the
𝑢-function �̃�(𝑧) representing the p.m.f. of 𝑇 as

�̃� (𝑧) =

𝐻

∑

𝑥=1

𝑄 (𝑥) �̂� (𝑧, 𝑥) . (37)
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Table 1: Parameters of fault-tolerant cloud services and software versions.

No. of cloud services 𝐿
𝑐

𝑘
𝑐

Software versions
1 2 3 4 5 6 7 8

1 1 1
𝑐 5 15 7 8 12 6 — —
𝜏 17 10 20 32 30 75 — —
𝑟 0.71 0.85 0.85 0.89 0.95 0.98 — —

2 2 2
𝑐 5 15 7 8 12 — — —
𝜏 28 55 35 55 58 — — —
𝑟 0.71 0.85 0.85 0.89 0.95 — — —

3 4 3
𝑐 4 3 4 6 5 4 9 6
𝜏 17 20 38 38 48 50 41 63
𝑟 0.80 0.80 0.86 0.90 0.90 0.94 0.98 0.98

4 1 2
𝑐 12 16 17 17 — — — —
𝜏 17 10 20 32 — — — —
𝑟 0.75 0.85 0.93 0.97 — — — —

5 3 1
𝑐 5 9 11 7 12 — — —
𝜏 30 54 40 65 70 — — —
𝑟 0.70 0.80 0.80 0.80 0.89 — — —

5.4. Optimizing the Structure of Cloud Service Composition
Application with Fault-Tolerant Mechanism Based on UGF
and GA. When a fault-tolerant cloud service application is
designed, one has to choose software versions for each cloud
service and find the sequence of their execution in order to
achieve the entire application’s greatest reliability subject to
cost constraints. The software versions are chosen from a list
of the available products. Each software version is character-
ized by its reliability, response time, and cost. The total cost
of the entire application is defined according to the cost of its
software versions. The cost for each software version can be
the purchase cost if the software versions are commercial and
the off-the-shelf cost, or it can be an estimate based upon the
software version’s size, complexity, and performance.

Assume that 𝐵
𝑐
functionally equivalent software versions

are available for each cloud service 𝑐 and that the number 𝑘
𝑐
of

the software versions that should agree in each cloud service
is predetermined.The choice of the software versions and the
sequence of their execution in each cloud service determine
the entire application’s reliability and performance.

The permutation x∗
𝑐

of 𝐵
𝑐
different integer numbers

ranging from 1 to 𝐵
𝑐
determines the order of the software

version that can be used in cloud service 𝑐. Let 𝑦
𝑐𝑏
= 1 if the

software version 𝑏 is chosen to be included in cloud service 𝑐
and 𝑦

𝑐𝑏
= 0 otherwise. The binary vector 𝑦

𝑐
= {𝑦
𝑐1
, . . . , 𝑦

𝑐𝐵
𝑐

}

determines the subset of software versions chosen for cloud
service 𝑐. Having the vectors x∗

𝑐
and y
𝑐
one can determine the

execution order 𝑥
𝑐
of the software versions chosen by remov-

ing from x∗
𝑐
any number 𝑏 forwhich y

𝑐𝑏
= 0.The total number

of software versions in cloud service 𝑐 (equal to the length of
vector y

𝑐
after removing the unchosen software versions) is

determined as

𝑛
𝑐
=

𝐵
𝑐

∑

𝑏=1

𝑦
𝑐𝑏
. (38)

The application structure optimization problem can now
be formulated by finding vectors 𝑥

𝑐
for 1 ≤ 𝑐 ≤ 𝐶 that maxi-

mize 𝑅(𝑤) subject to cost constraint

Ω =

𝐶

∑

𝑐=1

∑

𝑏∈𝑥
𝑐

𝜔
𝑐𝑏
≤ Ω
∗
, (39)

where 𝜔
𝑐𝑏
is the cost of software version 𝑏 used in cloud ser-

vice 𝑐, Ω is the entire application cost and Ω∗ is the maximal
allowable application cost. Note that the length of vectors
x
𝑐
can vary depending on the number of software versions

chosen.
In order to encode the variable-length vectors x

𝑐
in the

GA using the constant length integer strings one can use
(𝐵
𝑐
+ 1)-length strings containing permutations of numbers

1, . . . , 𝐵
𝑐
, 𝐵
𝑐
+ 1. The numbers that appear before 𝐵

𝑐
+ 1

determine the vector x
𝑐
. For example, for 𝐵

𝑐
= 5 the permu-

tations (2, 3, 6, 5, 1, 4) and (3, 1, 5, 4, 2, 6) correspond to x
𝑐
=

(2, 3) and x
𝑐
= (3, 1, 5, 4, 2) respectively. Any possible vector

x
𝑐
can be represented by the corresponding integer substring

containing the permutation of 𝐵
𝑐
+1 numbers. By combining

𝐶 substrings corresponding to different cloud services one
obtains the integer string 𝑎, that encodes the entire applica-
tion structure.

The encoding method is used in which the single permu-
tation defines the sequences of the software versions chosen
in each of the 𝐶 cloud services. The solution encoding string
is a permutation of 𝑛 = ∑

𝐶

𝑐=1
(𝐵
𝑐
+ 1) integer numbers

ranging from 1 to 𝑛. Each number 𝑗 belonging to the interval
∑
𝑚−1

𝑐=1
(𝐵
𝑐
+ 1) + 1 ≤ 𝑗 ≤ ∑

𝑚

𝑐=1
(𝐵
𝑐
+ 1) corresponds to software

version 𝑗 − ∑
𝑚−1

𝑐=1
(𝐵
𝑐
+ 1) of cloud service. The relative order

in which the numbers corresponding to the software versions
of the same cloud service appear in the string determines the
structure of this cloud service.
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Figure 1: 𝑅(𝑤) functions for the solutions obtained.

Table 2: Parameters of solutions obtained for 𝑤 = 250.

Ω
∗ Sequence of software versions 𝑇min 𝑇max Ω 𝑅(250) 𝜀(∞)

160 231 | 541 | 37162 | 324 | 214 166 307 159 0.913 188.34
140 34 | 241 | 64231 | 234 | 123 173 301 140 0.868 194.43
120 5 | 431 | 31562 | 43 | 21 205 249 119 0.752 217.07
100 3 | 241 | 4562 | 43 | 41 205 270 100 0.598 220.52

6. Illustrative Examples

Consider a fault-tolerant cloud services composition applica-
tion consisting of five cloud services in serial running on fully
available hardware. The parameters of the software versions
that can be used in these cloud services are presented in
Table 1. This table contains the values of 𝑘

𝑐
and 𝐿

𝑐
for each

cloud service and the cost, reliability, and response time for
each software version.

Two sets of solutions were obtained for the maximal
allowable application response times 𝑤 = 250 and 𝑤 = 300.
For each value of 𝑤, four different solutions were obtained
for different cost constraints.These solutions are presented in
Tables 2 and 3.The tables contain the application correspond-
ing cost and reliability for each optimal solution, the expected
conditional response time, minimal and maximal possible
application response times, and the corresponding optimal
execution sequences of the software versions chosen.

Comparing the entire application cost and the reliability
of the optimal solutions corresponding to 𝑤 = 250 and
𝑤 = 300 in Tables 2 and 3, it can be seen that the entire
application cost and the reliability of the optimal solution cor-
responding to 𝑤 = 300 are always equal or greater than ones
corresponding to𝑤 = 250 in the case of the same value ofΩ∗.

Comparing the entire application cost and the reliability
of the optimal solutions corresponding to the different 4max-
imal allowable application costs in Tables 2 and 3, it can be
seen that the entire application cost and the reliability of the
optimal solution corresponding to largerΩ∗ are always equal
or greater than ones corresponding to smallerΩ∗ in the case
of the same value of 𝑤.

From Tables 2 and 3, it can also be seen that the software
versions executed in practice gradually become more and
more along with the growth of the value of Ω∗.

These phenomenon above indicates that the selection of
suitable Ω∗ and 𝑤 is helpful to improve the reliability of the
cloud services composition application and cut down the
cost.

To help the designers of the cloud services composition
application to select the suitable Ω

∗ and 𝑤, the values of
the functions 𝑅(𝑤) of all of solutions obtained are drawn in
Figure 1. At first, the designers can intuitively find out which
curves cross over the value of reliability demand. On this
basis, the designers can easily findwhich points (solution) can
meet the maximal allowable response time. The approach
abovementioned can be easily realized by software. Thus, it
can be applied in online prediction and optimization situa-
tion.
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Table 3: Parameters of solutions obtained for 𝑤 = 300.

Ω
∗ Sequence of software versions 𝑇min 𝑇max Ω 𝑅(300) 𝜀(∞)

160 341 | 4521 | 85632 | 324 | 41 188 369 160 0.951 210.82
140 53 | 541 | 28361 | 431 | 51 173 301 140 0.868 194.43
120 6 | 241 | 61372 | 241 | 31 240 307 120 0.813 252.87
100 4 | 142 | 2386 | 43 | 41 219 295 100 0.672 238.05

7. Conclusions

The traditional reliability and performance prediction and
optimization techniques, for example, Markov model and
state space analysis, have some defects such as being too
time consuming and easy to cause state space explosion
and unsatisfied the assumptions of component execution
independence by Markov model. Aiming at the defects of
Markov model, an optimization model of reliability and
performance based on MSS for cloud services application
is proposed in this paper, which eliminates the limitation
for component execution independence, and more fits the
actual execution of cloud services composition application.
On this basis, aiming at the defects of state space analysis
technique, a fast optimization algorithmwith very small time
consumption based on UGF and GA for the reliability and
performance of cloud services composition application is
presented in this paper, which eliminates the risk of state
space explosion. The model and algorithm presented in this
paper can be applied in online prediction and optimization
for reliability and performance of cloud services composition
application.
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This paper deals with a new class of reflected backward stochastic differential equations driven by countable Brownian motions.
The existence and uniqueness of the RBSDEs are obtained via Snell envelope and fixed point theorem.

1. Introduction

The nonlinear backward stochastic differential equations
(BSDEs in short) were introduced by Pardoux and Peng [1],
who proved the existence and uniqueness of the solution
under the Lipschitz conditions for giving the probabilistic
interpretation of semilinear parabolic partial differential
equations. Since then,many authorswere devoted to studying
the BSDEs (see, e.g., [2–8] and the references therein).
At present, the theory of BSDEs becomes a powerful tool
to solve practical matters. In 1994, Pardoux and Peng [9]
firstly studied the backward doubly stochastic differential
equations (BDSDEs in short), which are driven by two kinds
of Brownian motions. Later, Boufoussi et al. [10] established
the connection between a class of generalized BDSDEs and
semilinear stochastic partial differential equations with a
Neumann boundary condition.

Reflected backward differential equations (RBSDEs in
short) were introduced by El Karoui et al. [11]. Later, many
researchers discussed various kinds of RBSDEs for their deep
application in mathematical finance and partial differential
equations. Ren and Hu [12] proposed the RBSDEs, driven
by Teugels martingales and Brownian motion, and derived
the existence and uniqueness of the solution by means of
the Snell envelope and the fixed point theorem when the
barrier was right continuous with left limits. Ren and El
Otmani [13] discussed the generalized reflectedBSDEs driven
by Lévy process. Recently, Ren et al. [14] studied a new class

of reflected backward doubly stochastic differential equations
driven by Lévy process and Brownian motion.

As in all the previous works, the equations are driven
by finite Brownian motions. To the best of our knowledge,
there are no papers on the reflected backward stochastic
differential equations driven by countable Brownianmotions.
In this paper, we aim to derive the existence and uniqueness
of the solution for the RBSDEs driven by countable Brownian
motions.

The structure of the paper is organized as follows. In
Section 2, we give some notations. Section 3 is devoted to the
main result.

2. Notations

Let 𝑇 be a positive constant. Throughout the paper (Ω,F,P)

is a complete probability space equipped with the natural
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions. {𝛽
𝑗
(𝑡)}
∞

𝑗=1

aremutual independent one-dimensional standard Brownian
motions on the probability space.𝑊(𝑡) is a standard Brown-
ianmotion onR𝑑 which is independent of 𝛽

𝑗
(𝑡). Assume that

F
𝑡
= (

∞

⋁

𝑗=1

F
𝛽
𝑗

𝑡,𝑇
)⋁F

𝑊

𝑡
⋁N, (1)

where for any process {𝜂
𝑡
}, F𝜂
𝑠,𝑡

= 𝜎{𝜂
𝑟
− 𝜂
𝑠
: 𝑠 ≤ 𝑟 ≤ 𝑡},

F
𝜂

𝑡
= F
𝜂

0,𝑡
, andN denotes the class of P-null sets ofF.
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For the convenience, let us introduce some spaces:

(i) H2 = {(𝜑
𝑡
)
0≤𝑡≤𝑇

: anF
𝑡
-progressively measurable,R-

valued process such that 𝐸∫𝑇
0
|𝜑
𝑡
|
2d𝑡 < ∞};

(ii) S2 = {(𝜓
𝑡
)
0≤𝑡≤𝑇

: an F
𝑡
-progressively measurable,

R𝑑-valued continuous process such that
𝐸(sup

0≤𝑡≤𝑇
|𝜓
𝑡
|
2
) < ∞};

(iii) A2 = {(𝐾
𝑡
)
0≤𝑡≤𝑇

: anF
𝑡
-adapted, continuous, increas-

ing process such that𝐾
0
= 0, 𝐸|𝐾

𝑡
|
2
< ∞}.

With the previous preparations, we consider the following
RBSDEs:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝛽
𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾𝑇 − 𝐾𝑡, 0 ≤ 𝑡 ≤ 𝑇,

(2)

where 𝑓 : Ω × [0, 𝑇] × R × R𝑑 → R and 𝑔
𝑗
: Ω × [0, 𝑇] ×

R ×R𝑑 → R.

Definition 1. A solution of (2) is a triple ofR×R𝑑 ×R
+
value

process (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

, which satisfies (2), and

(i) (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2;
(ii) 𝑌
𝑡
≥ 𝑆
𝑡
;

(iii) 𝐾
𝑡
is a continuous and increasing process with𝐾

0
= 0

and ∫𝑇
0
(𝑌
𝑡
− 𝑆
𝑡
)d𝐾
𝑡
= 0.

In order to get the solution of (2), we propose the
following assumptions:

(H1) 𝜉 is an F
𝑇
measurable square integrable random

variable;
(H2) the obstacle {𝑆

𝑡
: 0 ≤ 𝑡 ≤ 𝑇} is an F

𝑡
-progressive

measurable continuous real valued process which
satisfies 𝐸 sup

0≤𝑡≤𝑇
(𝑆
𝑡
)
2
< ∞. We always assume that

𝑆
𝑇
≤ 𝜉, a.s.;

(H3) 𝑓(⋅, 𝑦, 𝑧) and 𝑔
𝑗
(⋅, 𝑦, 𝑧) are two progressive measur-

able functions such that, for any 𝑡 ∈ [0, 𝑇], 𝑦
1
, 𝑦
2
∈ R,

𝑧
1
, 𝑧
2
∈ R𝑑,

(3a) 𝑓(𝑠, ⋅, ⋅) is continuous and |𝑓(𝑠, 𝑦, 𝑧)| ≤ 𝑀(1 +

|𝑦| + |𝑧|);
(3b) 𝐸∫𝑇

0
|𝑓(𝑡, 0, 0)|

2dt < ∞,
∑
∞

𝑗=1
𝐸∫
𝑇

0
|𝑔
𝑗
(𝑡, 0, 0)|

2dt < ∞;
(3c) |𝑓(𝑠, 𝑦

1
, 𝑧
1
) − 𝑓(𝑠, 𝑦

2
, 𝑧
2
)|
2

≤ 𝐶(|𝑦
1
− 𝑦
2
|
2
+

|𝑧
1
− 𝑧
2
|
2
), |𝑔

𝑗
(𝑠, 𝑦
1
, 𝑧
1
) − 𝑔
𝑗
(𝑠, 𝑦
2
, 𝑧
2
)|
2

≤

𝐶
𝑗
|𝑦
1
− 𝑦
2
|
2

+ 𝛼
𝑗
|𝑧
1
− 𝑧
2
|
2, where 𝑀, 𝐶,

𝐶
𝑗
, and 𝛼

𝑗
are nonnegative constants with

∑
∞

𝑗=1
𝐶
𝑗
< ∞ and 𝛼 = ∑∞

𝑗=1
𝛼
𝑗
< 1.

3. Main Result

In order to get the solution of (2), we consider the following
RBSDEs driven by finite Brownian motions:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝛽
𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾𝑇 − 𝐾𝑡, 0 ≤ 𝑡 ≤ 𝑇.

(3)

Firstly, we consider a special case of (3); that is, the
functions 𝑓 and 𝑔 do not depend on (𝑌, 𝑍):

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠) − ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠)

+ 𝐾
𝑇
− 𝐾
𝑡
, 0 ≤ 𝑡 ≤ 𝑇, 𝑛 ≥ 1.

(4)

Wewill get the existence and uniqueness of the solution of
(4) bymeans of Snell envelope andmartingale representation
theorem.

Theorem 2. Assume that (H1)-(H2), 𝑓 ∈ H2, 𝑔 ∈ H2. Then,
there exists a triple (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2 which is
a solution of (4).

Proof. Let

C
𝑡
= F
𝑊

𝑡
⋁(

𝑛

⋁

𝑗=1

F
𝛽
𝑗

𝑡,𝑇
) , (5)

and we define 𝜂 = {𝜂
𝑡
}
0≤𝑡≤𝑇

as

𝜂
𝑡
= 𝜉1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠) .

(6)

Then, 𝜂 isC
𝑡
-adapted continuous process; furthermore;

sup
0≤𝑡≤𝑇

𝜂𝑡
 ∈ 𝐿
2
(Ω) . (7)

So, the Snell envelope of 𝜂 is given by

𝑆
𝑡
(𝜂) = ess sup

]∈T
𝐸 [𝜂] | C𝑡] , (8)

whereT is the set of allC
𝑡
stopping time such that 0 ≤ ] ≤ 𝑇.



Journal of Applied Mathematics 3

By the definition of 𝜂, we can deduce that

𝐸[ sup
0≤𝑡≤𝑇

𝑆𝑡 (𝜂)


2
] < ∞. (9)

Due to the Doob-Meyer decomposition, we have

𝑆
𝑡
(𝜂) = 𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠) + 𝐾𝑇 | C𝑡]

]

− 𝐾
𝑡
,

(10)

where {𝐾
𝑡
}
0≤𝑡≤𝑇

is a C
𝑡
-adapted, continuous, and nonde-

creasing process such that 𝐾
0
= 0 and 𝐸𝐾

2

𝑇
< ∞. So, we

have

𝐸
[
[

[

sup
0≤𝑡≤𝑇



𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗
(𝑠)d𝛽
𝑗
(𝑠) + 𝐾

𝑇
| C
𝑡
]

]



2

]
]

]

< ∞.

(11)

Martingale representation theoremyields that there exists
C
𝑡
-progressive measurable process {𝑍

𝑡
} ∈ R𝑑 such that

𝑀
𝑡
≜ 𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠) + 𝐾𝑇 | C𝑡]

]

= 𝑀
0
+ ∫

𝑡

0

𝑍
𝑠
d𝑊(𝑠) , 0 ≤ 𝑡 ≤ 𝑇.

(12)

Let 𝑌
𝑡
= ess sup]∈T𝐸[𝜉1{]=𝑇} + 𝑆]1{]<𝑇} + ∫

]

𝑡
𝑓(𝑠)d𝑠 +

∑
𝑛

𝑗=1
∫
]

𝑡
𝑔
𝑗
(𝑠)d𝛽
𝑗
(𝑠) | C

𝑡
]; then,

𝑌
𝑡
+ ∫

𝑡

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠)

= 𝑆
𝑡
(𝜂) = 𝑀

𝑡
− 𝐾
𝑡

= 𝑀
0
+ ∫

𝑡

0

𝑍
𝑠
d𝑊(𝑠) − 𝐾𝑡, 0 ≤ 𝑡 ≤ 𝑇.

(13)

Therefore,

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾𝑇 − 𝐾𝑡.

(14)

By the definitions of 𝑌
𝑡
and 𝑆
𝑡
(𝜂), 𝜉 ≥ 𝑆

𝑇
,

𝑌
𝑡
+ ∫

𝑡

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠)

= 𝑆
𝑡
(𝜂) ≥ 𝜂

𝑡

= 𝜉1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠)

≥ 𝑆
𝑇
1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗 (𝑠) d𝛽𝑗 (𝑠) .

(15)

So, we have 𝑌
𝑡
≥ 𝑆
𝑡
.

Finally, fromHamadène [15], we get∫𝑇
0
(𝑆
𝑡
(𝜂)−𝜂

𝑡
)d𝐾
𝑡
= 0;

that is,

∫

𝑇

0

(𝑌
𝑡
− 𝑆
𝑡
) d𝐾
𝑡
= 0. (16)

It shows that the process (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

is a solution of (4).

Theorem 3. Under the assumptions of (H1)–(H3), there exists
a unique solution (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

of (3).

Proof. LetP = S2 ×H2 be endowed with the norm

‖(𝑌, 𝑍)‖𝛽 = (𝐸[∫

𝑇

0

𝑒
𝛽𝑠
(
𝑌𝑠


2
+
𝑍𝑠



2
) d𝑠])

1/2

(17)

for a suitable constant 𝛽 > 0. We define the map
Φ from P into itself and (�̃�, 𝑍) and (𝑌, 𝑍) are two
elements of P. Define (𝑌, 𝑍) = Φ(�̃�, 𝑍), (𝑌, 𝑍) =

Φ(𝑌, 𝑍), where (𝑌, 𝑍,𝐾) and (𝑌, 𝑍, 𝐾) are solutions of (4)
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associated with (𝜉, 𝑓(𝑡, �̃�, 𝑍), 𝑔
𝑗
(𝑡, �̃�, 𝑍), 𝑆), and (𝜉, 𝑓(𝑡, 𝑌,

𝑍), 𝑔
𝑗
(𝑡, 𝑌, 𝑍), 𝑆


), respectively. Set (𝑌, 𝑍) = (𝑌

𝑡
− 𝑌


𝑡
, 𝑍
𝑡
−

𝑍


𝑡
) and

Ψ
𝑀 (𝑥) = 𝑥

21
{−𝑀≤𝑥≤𝑀}

+𝑀(2𝑥 −𝑀) 1{𝑥>𝑀}

−𝑀(2𝑥 +𝑀) 1{𝑥<−𝑀}.
(18)

If we defineΨ
𝑀
(𝑥)/𝑥 = 2, when𝑥 = 0, then, 0 ≤ Ψ

𝑀
(𝑌
𝑠
)/𝑌
𝑠
≤

2. Applying Itô formula to 𝑒𝛽𝑡Ψ
𝑀
(𝑌
𝑠
), we have

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑍
𝑠



2

d𝑠

= ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)


2

d𝑠

−

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)) d𝛽
𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
)𝑍
𝑠
d𝑊(𝑠)

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (d𝐾

𝑠
− d𝐾
𝑠
) .

(19)

Taking expectation on both sides of (19) and noticing that
∫
𝑇

𝑡
𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
)(d𝐾
𝑠
− d𝐾
𝑠
) ≤ 0, we have

𝐸𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝐸𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑍
𝑠



2

d𝑠

≤ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)


2

d𝑠

≤ 2𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
(𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)


2

d𝑠

≤
2𝐶

1 − 𝛼
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠



2

d𝑠

+ (

∞

∑

𝑗=1

𝐶
𝑗
+
1 − 𝛼

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
− 𝑌
𝑠



2

d𝑠

+
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑍
𝑠
− 𝑍
𝑠



2

d𝑠.

(20)

Let 𝛾 = 2𝐶/(1 − 𝛼), 𝐶 = 2(∑
∞

𝑗=1
𝐶
𝑗
+ ((1 − 𝛼)/2))/(1 + 𝛼),

𝛽 = 𝛾 + 𝐶, and𝑀 → ∞; we have

𝐶𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
− 𝑌


𝑠



2

d𝑠 + 𝐸∫
𝑇

𝑡

𝑒
𝛽𝑠
𝑍
𝑠
− 𝑍


𝑠



2

d𝑠

≤
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝐶


𝑌
𝑠
− 𝑌
𝑠



2

+

𝑍
𝑠
− 𝑍
𝑠



2

) ;

(21)

that is,

(𝑌𝑠, 𝑍𝑠)


2

𝛽
≤
1 + 𝛼

2


(𝑌


𝑠
, 𝑍


𝑠
)


2

𝛽
. (22)

It follows that Φ is a strict contraction on P with the
norm ‖ ⋅ ‖

𝛽
, where 𝛽 is defined as above. Then, Φ has a fixed

point (𝑌, 𝑍,𝐾) which is the unique solution of (4) from the
Burkholder-Davis-Gundy inequality.

With all the preparations, we will give the main result of
this paper as follows.

Theorem 4. Under the conditions of (H1)–(H3), there exists a
unique solution (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2 of (2).

Proof (existence). By Theorem 3, for any 𝑛 ≥ 1, there exists a
unique solution of (3), denoted by (𝑌𝑛

𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
),

𝑌
𝑛

𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) d𝛽
𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑍
𝑛

𝑠
d𝑊(𝑠) + 𝐾

𝑛

𝑇
− 𝐾
𝑛

𝑡
.

(23)

In the following parts, we will claim that (𝑌𝑛
𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
) is a

Cauchy sequence inS2×H2×A2. Without loss of generality,
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we let 𝑛 < 𝑚. Applying general Itô formula to |𝑌𝑛
𝑡
− 𝑌
𝑚

𝑡
|
2, we

have.

𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2
+ ∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠

= 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑓 (𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝑠

+

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡


𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)


2

d𝑠

− 2

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝛽
𝑗 (𝑠)

− 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠
) d𝑊(𝑠)

+ 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (d𝐾𝑛
𝑠
− d𝐾𝑚
𝑠
) .

(24)

Taking expectation on both sides of (24) and noting that
∫
𝑇

𝑡
(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
)(d𝐾𝑛
𝑠
− d𝐾𝑚
𝑠
) ≤ 0, we obtain

𝐸
𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2
+ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠

≤ 2𝐸∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑓 (𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝑠

+

𝑚

∑

𝑗=𝑛+1

𝐸∫

𝑇

𝑡


𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)


2

d𝑠.

(25)

By (H3) and elementary inequality 2𝑎𝑏 ≤ 𝛽𝑎2 + (1/𝛽)𝑏2, 𝛽 >
0, we obtain

𝐸
𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2
+ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠

≤
2𝐶

1 − 𝛼
𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠



2d𝑠 + 1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠



2d𝑠

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠 + 𝛼𝐸∫
𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠

+ [

[

𝑚

∑

𝑗=𝑛+1

𝐶
𝑗
]

]

𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠



2d𝑠.

(26)

Furthermore,

𝐸
𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2
+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2d𝑠

≤ 𝐶
𝑝
𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠



2d𝑠,

(27)

where 𝐶
𝑝
= (2𝐶/(1 − 𝛼)) + ((1 − 𝛼)/2) + ∑

𝑚

𝑗=𝑛+1
𝐶
𝑗
.

By Gronwall’s inequality and Burkholder-Davis-Gundy
inequality, we have

𝐸[ sup
0≤𝑡≤𝑇

∫

𝑇

𝑡

𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠



2d𝑠] → 0. (28)

Denote the limit of (𝑌𝑛
𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
) by (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
); we will

show that (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
) satisfies (2). If it is necessary, we can

choose a subsequence of (3). By Hölder’s inequality,

𝐸



∫

𝑇

𝑡

(𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)) d𝑠



2

≤ 𝑇𝐸∫

𝑇

𝑡

(𝑓 (𝑠, 𝑌𝑠, 𝑍𝑠) − 𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
))


2d𝑠 → 0.

(29)

From (27), we know

𝐸∫

𝑇

0

𝑌
𝑛

𝑡
− 𝑌
𝑡



2d𝑡 → 0, (30)

and 𝑌𝑛
𝑡
→ 𝑌
𝑡
, a.e., so

√𝐸∫

𝑇

0

𝑌
𝑛+1

𝑡
− 𝑌
𝑛

𝑡



2d𝑡 ≤ 1

2𝑛
. (31)

For any 𝑛,

𝑌
𝑛

𝑡

 ≤

𝑌
1

𝑡


+

𝑛−1

∑

𝑖=1


𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡


≤

𝑌
1

𝑡


+

∞

∑

𝑖=1


𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡


. (32)

Then, we have

√𝐸∫

𝑇

0

sup
𝑛

𝑌
𝑛

𝑡



2d𝑡

≤ √𝐸∫

𝑇

0

(
𝑌
1

𝑡

 +

∞

∑

𝑖=1

𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡

)

2

d𝑡

≤ √𝐸∫

𝑇

0

𝑌
1

𝑡



2d𝑡 +
∞

∑

𝑖=1

√𝐸∫

𝑇

0

𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡



2d𝑡

≤ √𝐸∫

𝑇

0

𝑌
1

𝑡



2d𝑡 +
∞

∑

𝑖=1

1

2𝑖
.

(33)

From (H4), it follows

𝐸∫

𝑇

0

sup
𝑛

𝑓 (𝑠, 𝑌𝑠, 𝑍𝑠) − 𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
)


2d𝑠

≤ 2𝐶𝐸∫

𝑇

0

(sup
𝑛

𝑌
𝑛

𝑠



2
+
𝑌𝑠


2
+ sup
𝑛

𝑍
𝑛

𝑠



2
+
𝑍𝑠



2
) d𝑠 < ∞.

(34)
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Applying Lebesgue dominated convergence theorem, we
deduce that (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
) is the solution of (2) by continuity of

the functions 𝑓 and 𝑔.

Uniqueness. Let (𝑌𝑖
𝑡
, 𝑍
𝑖

𝑡
, 𝐾
𝑖

𝑡
) (𝑖 = 1, 2) be two solutions of

(2), 𝑌
𝑡
= 𝑌
1

𝑡
− 𝑌
2

𝑡
, 𝑍
𝑡
= 𝑍
1

𝑡
− 𝑍
2

𝑡
. We apply Itô formula to

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
), for any 𝛽 ∈ R,

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑍
𝑠



2

d𝑠

= ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

1

𝑠
, 𝑍
1

𝑠
) − 𝑓 (𝑠, 𝑌

2

𝑠
, 𝑍
2

𝑠
)) d𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)


2

d𝑠

−

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
)

× (𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)) d𝛽
𝑗 (𝑠)

− ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
)𝑍
𝑠
d𝑊
𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠
) (d𝐾1

𝑠
− d𝐾2
𝑠
) .

(35)

Taking expectation on both sides of (35),

𝐸𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑍
𝑠



2

d𝑠

≤ 2𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
(𝑓 (𝑠, 𝑌

1

𝑠
, 𝑍
1

𝑠
) − 𝑓 (𝑠, 𝑌

2

𝑠
, 𝑍
2

𝑠
)) d𝑠

+

∞

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌

𝑠
≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)


2

d𝑠

≤ (
2𝐶

1 − ∑
∞

𝑗=1
𝛼
𝑗

+

∞

∑

𝑗=1

𝐶
𝑗
+

1 − ∑
∞

𝑗=1
𝛼
𝑗

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠



2

d𝑠

+

1 + ∑
∞

𝑗=1
𝛼
𝑗

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑍
𝑡



2

d𝑠.

(36)

Let𝑀 → ∞, and applyingmonotone convergence theorem,
we have

𝐸𝑒
𝛽𝑡
𝑌
𝑡



2

+ (𝛽 −
2𝐶

1 − 𝛼
−

∞

∑

𝑗=1

𝐶
𝑗
−
1 − 𝛼

2
)

× 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠



2

d𝑠

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑍
𝑠



2

d𝑠 ≤ 0.

(37)

When 𝛽 is taken sufficiently large, we have 𝑌
𝑡
= 0, a.e.,

for all 𝑠 ∈ [𝑡, 𝑇]. So, we have 𝑍
𝑡
= 0, a.e. Then, we complete

the proof.
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One important challenge of a hybrid genetic algorithm (HGA) (also called memetic algorithm) is the tradeoff between global
and local searching (LS) as it is the case that the cost of an LS can be rather high. This paper proposes a novel, simplified, and
efficient HGA with a new individual learning procedure that performs a LS only when the best offspring (solution) in the offspring
population is also the best in the current parent population. Additionally, a newLSmethod is developed based on a three-directional
search (TD), which is derivative-free and self-adaptive. The new HGA with two different LS methods (the TD and Neld-Mead
simplex) is compared with a traditional HGA. Four benchmark functions are employed to illustrate the improvement of the
proposed method with the new learning procedure. The results show that the new HGA greatly reduces the number of function
evaluations and converges much faster to the global optimum than a traditional HGA.The TD local searchmethod is a good choice
in helping to locate a global “mountain” (or “valley”) but may not perform the Nelder-Mead method in the final fine tuning toward
the optimal solution.

1. Introduction

Genetic algorithms (GAs) perform well as a global search
technique, but they may often take a relatively long time
to converge to a global optimum [1–4]. Local search (LS)
techniques have been incorporated into GAs to improve
their performance through what could be termed as learning.
Such HGAs, often known as memetic algorithms (MAs),
were first introduced by Moscato [5, 6] and are viewed as a
form of population-based genetic algorithms hybridized with
an individual learning procedure capable of fine tuning the
global search.

MAs represent one of the recent growing areas of research
in evolutionary computation [7, 8]. Any population-based
metaheuristic search method (inspired by Darwinian princi-
ples of natural selection) hybridized with any individual lea-
rning (inspired by Dawkins’ notation “meme” [9]) procedure
that belongs to the class of MAs [7]. In diverse contexts, MAs
have also been referred to as hybrid evolutionary algorithms,
Baldwinian evolutionary algorithms, Lamarkian evolution-
ary algorithms, cultural algorithms, or a genetic local search.

MAs have been successfully applied to hundreds of real-
world problems in a wide range of domains [3, 7, 8, 10].
An important challenge of MAs is the tradeoff between
global searching and local searching in terms of the time and
computational effort [3, 10–14]; that is, the yet unanswered
questions are when to apply a LS technique; to which
individuals in the GA (or any other evolutionary algorithms)
population should the LS technique be applied; and how
much computational effort should be devoted to the LS
technique. Recent literature presented several nonclassical
MA methods that have been successful in reducing the total
computational costs associated with an LS technique and that
produce a profitable synergy from the hybridization of the
GA (or any other evolutionary algorithms) and LS methods
[7, 14–19]. But none of the nonclassical MAs are commonly
accepted [10, 14]. Additionally, some of these methods, such
as Seront and Bersini [15], Tang et al. [17], and Molina et al.
[18, 19], may require the need for extra parameters.

Another challenge of MAs is the choice of successful LS
techniques. Ning et al. [20] investigated the choice of LS
techniques in HGAs and concluded that the choice affects
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the search performance significantly and no single HGA
always performs best on a diverse set of benchmark test
functions.

In this study, to reduce the computational effort of an LS
method without any extra parameters, a new HGA, called
“a best-offspring HGA,” denoted by BOHGA, is developed
with a new individual learning procedure; that is, BOHGA
performs an LS only when the best offspring (solution) in the
offspring population is also the best in the current parent pop-
ulation. Additionally, a new LS method, a three-directional
local search (TD), is introduced which is derivative-free
and self-adaptive. The main idea of TD is that when the
offspring performs better than both of its parents, three
potential directions are constructed from parents to one of
their offspringwith a certain step length.We compare the new
individual-learning HGA, BOHGA, with a traditional HGA,
each using two memes: our TD method and the Neld-Mead
simplexmethod. Both of thesememes are derivative-free and
suitable for real applications.

The remainder of this paper is organized as follows. We
first briefly review the traditional GA and HGA. Our new
HGA is introduced with its new individual learning proce-
dure on when to perform the LS and on which offspring.
We then present the two memes, respectively: one is the
three-directional search (TD) and the other is the Nelder-
Mead simplex meme. Through two benchmark functions,
we present results for comparing the four HGAs for eight
different settings of the GA operators and two different
stopping rules. Finally, we present conclusions, discussions,
and suggestions for future work.

2. The Genetic Algorithm and Hybrid
Genetic Algorithm

Genetic algorithms (GAs) are iterative optimization proce-
dures that repeatedly apply GA operators (such as selection,
crossover, and mutation) to a group of solutions until some
criterion of convergence has been satisfied. In a GA, a
search point (solution), a setting in the search space with
𝑘 dimensions (𝑘 variables), is coded into a string, x =
[𝑥
1
, . . . , 𝑥

𝑘
]
, which is analogous to a chromosome in bio-

logical systems. The string/chromosome is composed of 𝑘
characters, 𝑥

1
, . . . , 𝑥

𝑘
, which are analogous to the k genes.

A set of multiple concurrent search points or a set of
chromosomes (or individuals) is called a population. Each
iterative step where a new population is obtained is called a
generation. A GA hybridized with a local search procedure is
called a hybrid genetic algorithm (HGA).

A basic HGA procedure has the following steps.

(1) Define an objective/fitness function, and set the GA
operators (such as population size, parent/offspring
ratio, selection method, number of crossovers, and
mutation rate).

(2) Randomly generate the initial population as the cur-
rent parent population.

(3) Evaluate the objective function for each individual
(chromosome or solution) in the initial population.

(4) Generate an offspring population by using GA oper-
ators (such as selection/mating, crossover, and muta-
tion).

(5) Evaluate the objective function of each individual in
the offspring population.

(6) Perform a local search on each offspring, evaluating
fitness of each new location, and replace the offspring
if there exists a locally improved solution.

(7) Decide which individuals to include in the next
population. This step is referred to as “replacement”
in that individuals from the current parent population
are “replaced” by a new population consisting of those
individuals from the offspring and/or the parent
populations.

(8) If a stopping criterion is satisfied, then the procedure
is halted. Otherwise, go to Step 4.

Without Step 6, an HGA is just a GA. Therefore, HGAs
have all the properties possessed byGAs. LikeGAs, HGAs are
a large family of algorithms that have the same basic structure
but differ from one another with respect to several strategies
such as stopping rules, operators which control the search
process, and the local search meme.

Based on previous experiences, in this study, we use a
continuous HGA where chromosomes are coded as contin-
uous measurement variables. Suppose there are 𝑘 variables;
that is, there are 𝑘 genes in each chromosome. We also make
the following assumptions. The (parent) population size is
2𝑘 and the offspring population size is also 2𝑘. The type of
selectionwe utilize is randompairing.Theblending crossover
is utilized and the number of crossover points depends on
the number of dimensions of a specific objective function.
Random uniform mutation is utilized and the mutation rate
is set around or equal to 1/𝑘. The type of replacement over
both parent and offspring populations is either ranking or
tournament. For details on the setting of the GA operators;
see, for example, [21–25].

There are many choices of local search memes [20], two
of which are used in this study. Onememe is our newly devel-
oped “three-directional LS (TD),” introduced in Section 4.
A second meme is a popular LS meme, the Nelder-Mead
Simplex method, introduced in Section 5.

3. The Best-Offspring Hybrid Genetic
Algorithm

As mentioned, our goal is to reduce the total costs associated
with the LS. It has been noticed that the LSmay be repeatedly
performed on the same “mountain” (for finding a maximum)
or “valley” (for finding a minimum) [15]. Therefore, it is
possible that, after local searching, several chromosomes
in a generation are very close to each other, standing on
the same top of a mountain or at the same bottom of a
valley. This may make it harder for the GA to maintain
diversity in its population, an important consideration in
avoiding converging to a local optimum [25]. Therefore, we
propose the best-offspring HGA (BOHGA) where the LS
is only performed on the best offspring in the offspring
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population when it is also the best overall chromosomes in
the current parent population. When such a best offspring
appears, it is very likely that the best offspring is located on
a new, higher mountain or on a new lower valley. As will be
soon demonstrated, this action tends to make BOHGAmore
computationally efficient and helps to prevent converging to
a local optimum.

The general procedure for BOHGA is the same as that of
HGA, except that in the ith generationwe change Step 6 from
the original HGA procedure into Steps 6.1–6.3 as follows.

(6.1) Is the best offspring in the offspring population also
the best over the current parent population?

(6.2) If no, directly go to Step 7; that is, there is no LS in
this generation.

(6.3) If yes, then perform an LS on the best offspring
considered as a starting point. Find the best locally
improved solution and replace the best offspring by
it. Then go to Step 7.

Actually, the BOHGA process is a special HGA process
where an LS is not performed on every new offspring but only
on the offspring which are best in both the offspring and the
current parent populations. It is possible that not every gen-
eration of BOHGA requires an LS. The BOHGA procedure,
therefore, strongly agrees with the original idea of MA, first
introduced by Mascato in 1989 [5]; that is, initially let the GA
explore a wide search space. Once a potential search solution
is found by a GA, a fine tuning search will be conducted by an
LS. Similar to both the GA and the HGA, the whole process
is iterated until some appropriate stopping rule is satisfied.

4. A Three-Directional (TD) Meme

The idea of the TD meme is to construct three potential
directions for an offspring whose performance is better than
both of its parents in a generation. Thus, three paths are
declared without requiring the gradient. When an offspring
shows improvement from its parents in terms of the objective
function, it may be possible to make continuous improve-
ments by moving along the directions/paths from its parents
to the offspring; that is, some search points are “collected”
along the paths until no further improvement can be found.
These parents can be considered as two different starting
points. Both of their first steps from the two starting points
go to the same point: the offspring. So two directions are
established: one direction is from one of the parents to the
offspring; the other is from the second of the parents to the
offspring. Both directions have obtained improvement, since
the best offspring of interest is an improvement over both its
parents in terms of values of an objective function.

For example, consider a 2-dimensional (𝑘 = 2) problem
along with the contours of a response (or values of an
objective function) as illustrated in Figure 1. The offspring is
denoted by 𝑂 (expressed as x

𝑂
= [𝑥
𝑂1
, . . . , 𝑥

𝑂𝑘
]
) and its

parents are denoted by 𝑃1 (x
𝑃1
= [𝑥
𝑃11
, . . . , 𝑥

𝑃1𝑘
]
) and 𝑃2

(x
𝑃2
= [𝑥
𝑃21
, . . . , 𝑥

𝑃2𝑘
]
). Obviously, there are two directions:

one is from 𝑃1 to 𝑂, expressed as 𝛿
𝑃1𝑂
= x
𝑂
− x
𝑃1
=

[𝛿
11
, 𝛿
12
, . . . , 𝛿

1𝑘
]
, and the other is from 𝑃2 to 𝑂, expressed

X2

X1

O

P1

P2

Θ

Figure 1: A contour plot of a 2-dimensional problem with the three
directions indicated: Parent 1 direction is from 𝑃1 to 𝑂; Parent 2
direction is from 𝑃2 to 𝑂; the common direction is a horizontal
dotted line, starting at 𝑂 towards the positive values on the𝑋

1
axis.

The three “stars” represent the three points stopped on the three
paths with no further improvement.

as 𝛿
𝑃2𝑂
= x
𝑂
−x
𝑃2
= [𝛿
21
, 𝛿
22
, . . . , 𝛿

2𝑘
]
. We refer to these two

directions as Parent 1 and Parent 2 directions.
The third direction is the “common” direction, expressed

as 𝛿 = [𝛿
31
, 𝛿
32
, . . . , 𝛿

3𝑘
]
, and based on the two parent

directions. If 𝛿
1𝑖
and 𝛿

2𝑖
, for 𝑖 = 1, . . . , 𝑘, are both positive

(negative), then 𝛿
3𝑖

is positive (negative); that is, if both
the parent directions are in common, say, both positive
(negative) along the 𝑋

𝑖
axis, then the third direction is

positive (negative) along the 𝑋
𝑖
axis. If 𝛿

1𝑖
and 𝛿

2𝑖
, for 𝑖 =

1, . . . , 𝑘, are opposite in direction, then 𝛿
3𝑖
is set to 0; that is, if

the parent directions are not in common on the𝑋
𝑖
axis, then

the third direction has no movement along the 𝑋
𝑖
axis. For

more details on the three directions and determining their
moving distances for each moving step, see the Appendix.

Figure 1 illustrates the three defined directions. The opti-
mal point is denoted by “Θ.” It is easy to see the two parents
directions, expressed as 𝛿

𝑃1𝑂
= [𝛿

11
, 𝛿
12
]
 and 𝛿

𝑃2𝑂
=

[𝛿
21
, 𝛿
22
]
, respectively. The third direction 𝛿 = [𝛿

31
, 𝛿
32
]
.

Obviously, 𝛿
31
> 0 since both 𝛿

11
> 0 and 𝛿

21
> 0; that is, the

common direction in this case is positive along the 𝑋
1
axis.

And 𝛿
32
= 0 since 𝛿

12
> 0 and 𝛿

22
< 0; that is, the common

direction has no relative movement along the𝑋
2
axis.

Once the three directions are defined, starting at 𝑂, the
TD method moves along the three directions/paths, with
some appropriate step length for each moving step until no
improvement is found in terms of an objective function. In
Figure 1, the three “stars” on the paths denote that the three
best points found on each path and the processes of moving
along the paths will be stopped at their next points due to no
further improvement.

The choice of the size of step length 𝑑 depends on the
degree of bumpiness of the surface of an objective function.
We recommend that 𝑑 should be in the physical range of
0.01 to 1.0. If the surface is very bumpy relative to the region
of the domain, then the appropriate 𝑑 should be relatively
small. Otherwise, the appropriate 𝑑 should be relatively large
to make HGA more efficient.
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In our BOHGA procedure, the TD meme will only be
performed for the best offspring in the offspring population
that is also the best in the current parent population. In
our HGA procedure, the TD meme will be performed for
those offspring whose performances are better than both of
their parents. Since not every offspring performs better than
either one of its parents, the TDmeme will not be performed
on every offspring, which is the major difference from a
traditional HGA.

5. Nelder-Mead Simplex Meme

The Nelder-Mead simplex method [26] is a very popular
derivative-free method for finding a local minimum of a
function [8]. For a two-dimensional problem, a simplex is a
triangle, and the method is a pattern search that compares
function values at the three vertices of a triangle. The worst
vertex, where 𝑓(𝑥, 𝑦) is largest, is rejected and replaced with
a new vertex. A new triangle is formed and the search is
continued. The process generates a sequence of triangles
(which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of
the triangles is iteratively reduced and the coordinates of
the minimum point are found. The simplex algorithm can
easily be extended to higher dimensions [26]. In many
numerical tests, the simplex method succeeds in obtaining a
good reduction in the function value using a relatively small
number of function evaluations but it is easy to converge to
a local optimum and is generally not suitable for a highly
nonlinear objective function [26].

Like the TD meme, the simplex meme requires a pre-
specified step length parameter, representing a guess of the
problem’s characteristic length scale. In this study, the step
length parameter is set to the same size as 𝑑 for the fair
comparison between the simplex and TDmemes.The C code
for the simplex method is obtained from Numerical Recipes
in C [27].

6. Examples: Benchmark Functions

Using benchmark functions, our goal is to compare our
BOHGA with a traditional HGA, with each procedure using
one of the two LS techniques: our new TD method or
the simplex method; that is, we compare the computational
efficiency of four MAs: BOHGA with simplex (denoted
as “BOHGAS”), BOHGA with TD (“BOHGATD”), HGA
with simplex (“HGAS”), and HGA with TD (“HGATD”) in
computational efficiency for the four objective benchmark
functions. As mentioned, HGATD is different from the
traditionalHGA in that the TD local searchwill be performed
only for those offspring whose performances are better than
both their parents.

To make the comparisons comparable, the settings of the
GA operators and the starting random numbers that are used
to generate the initial populations are the same for each of the
four MAs. In addition, since different starting random seeds
may result in a different number of function evaluations to
find an optimum, aMonteCarlo experiment is performed 100

times; that is, these four algorithms are run 100 times with
100 different starting random seeds.The fourmethods will be
compared by averaging the results over the 100 replications of
the experiment.

A different setting of GA operators may result in a differ-
ent number of function evaluations. We choose 20 (𝑘 = 20)
as a number of dimensions for the four benchmark functions.
Therefore, as indicated in Section 2, both parent and offspring
population sizes are 40. The number of crossover points is 4
or 8.Themutation rate is 0.05 (= 1/𝑘) or 0.06, a slightly larger
value than 1/𝑘. The type of replacement over both parent and
offspring populations is ranking or tournament. Therefore,
there are a total of eight combinations of crossover, mutation,
and replacement type; that is, there are eight GA settings used
for comparisons.

Also two stopping rules are utilized for the experiment.
The first stopping rule (rule 1) is that a method will be halted
when a preset cut-off value (considered as a near-global
optimum) is achieved. The cut-off value represents the user’s
best guess of the optimal value of the objective function.
Rule 1 can be used to compare the computational efficiencies
of the four methods in finding a near-global optimum of an
objective function. The mean of a total number of function
evaluations over 100 replications of each MA will be used
for comparisons. Since sometimes the global and near-global
optimal values are unknown, a second stopping rule (rule 2)
is also considered. The second stopping rule is that a method
will be halted at a preselected number of generations. Under
rule 2, the number of function evaluations it takes for the
four methods to converge to a global “mountain” or “valley”
or even to a global optimum is compared; that is, the rate of
convergence to a near-global or global optimum is compared
across the four methods. Obviously, it is not relevant to
compare the total number of function evaluations required
given a fixed total number of generations. Graphs will be
used to illustrate the comparisons of the four methods, by
plotting mean best values of the objective function over 100
replications at each generation found by each method versus
mean cumulative number of function evaluations at each
generation by each algorithm. Four benchmark functions
(the Rastrigin’s, Schwefel’s, Rosenbrock’s, andGriewank’s) are
used for the comparisons, but, due to similar results and
limited space, only the first two functions are presented as
follows.

6.1. Comparisons for the Rastrigin’s Function in 20Dimensions.
A generalized Rastrigin’s function is given by

𝑓 (x) =
𝑘

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) ,

where − 5.12 ≤ 𝑥
𝑖
≤ 5.12,

(1)

where 𝑘 is the number of dimensions of the function (𝑘 =
20 in the study). Figure 2 shows its 1- and 2-dimensional
surfaces. The surfaces are very bumpy in a narrow range
(−5.12, 5.12). The goal is to find a minimal value and its
corresponding location. The minimum of this function is
known asmin(𝑓(x)) = 𝑓(0, . . . , 0) = 0.0. From the left plot of
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Figure 2: Surface of Rastrigin’s function: (a) 1-dimension; (b) 2-dimension.

Table 1: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD in terms of mean number of evaluations under the eight settings of GA
operators for the Rastrigin’s function in 20 dimensions by stopping rule 1.

8 settings of GA operators Mean (evaluation)
Replacement Crossover Mutation BOHGAS HGAS BOHGATD HGATD

Ranking
4 0.05 29174 510436 41352 39420

0.06 29688 549620 46608 40174

8 0.05 33951 463661 30980 34720
0.06 30052 510260 35135 33627

Tournament
4 0.05 62758 988761 132271 112930

0.06 113071 1424709 258692 265373

8 0.05 91747 1054834 214672 208569
0.06 212320 1538475 765658 880024

Overall average 75345 880095 190671 201855

Figure 2, a solutionmust be located on the global valleywhere
the value of the objective function is less than about 1.0.

The step length for the TD meme is set to 0.05, the same
value as for the simplex meme. The cut-off value used by
rule 1, which is a near-global optimum, is set to 0.05. The
preselected number of generations used by stopping rule 2 is
5,000.

Under stopping rule 1, Table 1 presents the mean number
of function evaluations as a summary of the 100 repetitions
for the Rastrigin’s function in 20 dimensions for comparisons
of the four algorithms. Table 1 shows that the number of
evaluations required to obtain a value of the objective
function is within 0.05 of the true minimum. BOHGAS
consistently performs the best with much smaller mean
numbers of function evaluations than the BOHGATD and
HGATD, which are quite competitive to each other. Inmost of
all the GA settings, BOHGAS has the smallest mean number
of function evaluations, followed byBOHGATD, HGATD, and
HGAS. In addition, themean number of function evaluations
greatly depends on the GA settings. The GA using ranking
replacement obviously performs much better than the GA
with tournament replacement in all of the four methods
indicating that tournament replacement in MAs is not as
efficient as ranking replacement. The mutation rate of 0.05
performs better than the rate of 0.06 in most cases.

Under stopping rule 2 with 5,000 generations, Figure 3
shows the mean best minimums of Rastrigin’s function
versus mean cumulative number of function evaluations at
each generation over 100 replications by BOHGAS, HGAS,
BOHGATD, and HGATD, respectively. The GA parameters
were set at the ranking replacement, four crossover points,
and 0.05 mutation rate. This figure illustrates that HGAS did
not converge in the 50,000 mean function evaluations but
the other three methods did converge. In the left plot of
Figure 3, the BOHGAS procedure converged the fastest to
the global “valley,” followed closely by the BOHGAS and the
HGATD methods. The right plot in Figure 3, in an expanded
scale, reveals that the BOHGAS procedure is actually the
first to converge to the cutoff of 0.05 at about 38,000 mean
cumulative function evaluations, followed by theHGATD and
the BOHGATD methods. It is clear that these three methods
have very similar behavior for this function.

6.2. Comparisons for the Schwefel’s Function in 20 Dimensions.
A generalized Schwefel function from Schwefel [28] is given
by

𝑘

∑

𝑖=1

− 𝑥
𝑖
sin(√𝑥𝑖

) , where − 500 ≤ 𝑥
𝑖
≤ 500, (2)
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Figure 3: Best minimums of Rastrigin’s function in 20 dimensions versus number of function evaluations at each generation averaged over
100 replications of the four MAmethods under the GA setting (ranking replacement, 4 crossover points, and 0.05 mutation rate). (a) Overall
view in a full scale; (b) highlighted view in an expanded scale.
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Figure 4: Surface of Schwefel’s function: (a) 1-dimension; (b) 2-dimension.

where 𝑘 is the number of dimensions of the function. The
minimum of the objective function is given by min(𝑓(x)) =
𝑓(420.9687, . . . , 420.9687). Theminimum is dependent on 𝑘,
the number of dimensions. When 𝑘 = 20, the minimum
value is −8,379.66. Figure 4 shows the 1- and 2-dimensional
surfaces for the Schwefel function. In the left plot of the figure,
a solution must be located in the deepest valley, when value
of the objective function is less than about −300.0 in the 1-
dimensional case.

Although the Schwefel function has a nonlinear bumpy
surface, its surface is relatively smooth in a range (−500, 500)
when compared to the surface of the Rastrigin’s function.The
step length for the TD meme is set to 0.5, the same as for the

simplex meme. The preselected number of generations used
by stopping rule 1 is 1,000.The cut-off near-global value is set
to −8,379.0.

Similar to Table 1, under stopping rule 1, Table 2 presents
the mean total number of function evaluations as a summary
of the 100 repetitions for the Schwefel’s function for
comparison of the four algorithms. Table 2 shows that
the numbers of evaluations required to obtain a value of
the objective function smaller than −8,379.0 by BOHGAS,
BOHGATD, and HGATD are all consistently much less than
required by HGAS overall settings. BOHGAS consistently
performs the best with much smaller mean numbers of
function evaluations than theHGATD and BOHGATD, which
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Table 2: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD in terms of mean of the number of evaluations under the eight settings
of GA operators for the Schwefel’s function in 20 dimensions by stopping rule 1.

8 settings of GA operators Mean (evaluation)
Replacement Crossover Mutation BOHGAS HGAS BOHGATD HGATD

Ranking
4 0.05 13595 471668 26792 31243

0.06 15049 471251 26972 31590

8 0.05 13230 518101 20588 28070
0.06 13792 546366 20207 29972

Tournament
4 0.05 28631 1059412 47893 132294

0.06 37991 1404750 94763 281186

8 0.05 37792 1408634 74805 221730
0.06 57270 1824465 214563 815384

Overall average 27169 963081 65823 196434
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Figure 5: Best minimums of Schwefel’s function in 20 dimensions versus number of function evaluations at each generation averaged over
100 replications of the four MA methods under the GA setting (ranking replacement, four crossover points, and 0.05 mutation rate). (a)
Overall view in a full scale; (b) highlighted view in an expanded scale.

are quite competitive to each other. Overall the GA settings,
BOHGAS has the smallest mean numbers of function eval-
uations, followed by BOHGATD, then HGATD, and finally
HGAS. In addition, the GA setting with ranking replacement
performs much better than with tournament replacement in
all of the four methods. This again indicates that tournament
replacement inMAs is not as efficient as ranking replacement.
Themutation rate of 0.05 performs better than the rate of 0.06
in most cases.

Similar to Figure 3, under stopping rule 2 with 1,000
generations, Figure 5 shows the mean best minimum of
the Schwefel’s function versus mean cumulative number of
function evaluations at each generation over 100 replications
obtained by each MA in the GA setting with the ranking
replacement, four crossover points, and 0.05 mutation rate.

The left plot of Figure 5 shows that HGAS is the slowest to
converge while BOHGATD and BOHGAS have converged to
a global “valley” at a similar yet faster rate than HGATD.
The right plot of Figure 5, in an expanded scale, shows in
detail that BOHGAS is the fastest to converge to the cutoff of
−8379.0 at about 1,400mean cumulative function evaluations,
followed by the BOHGATD, followed by the HGATD.

7. Conclusion and Discussion

The importance of memetic algorithms in both real-world
applications and academic research has lead to the establish-
ment of the series of international Workshops On Memetic
Algorithms (WOMA) and a dedicated book [13]. From these
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workshops, the following important questions are raised: (1)
when to apply local improvement heuristics, (2) to which
individuals in the evolutionary algorithms population should
local searches be applied, and (3) how much computational
efforts to devote to local search algorithms. These questions
remain unanswered, and more research effort is required
to gain the understanding and insights that may lead to
guidelines for the design of efficient and effective algorithms
[13].

This paper presents an improved and simplified MA,
BOHGA, with a novel individual learning procedure on
when to perform a local search (or individual learning).
Unlike a classical MA/HGA procedure, where a local search
is performed on each offspring (solution), our new MA
performs a local search when the best offspring is also found
to be the best among the current parent population.This new
learning procedure does not require any extra parameters.

We also develop a new meme, a three-directional local
search, TD, which is derivative-free and self-adaptive. The
main idea of TD is that three potential directions are
constructed fromparents to their offspringwith a certain step
length, when the offspring performs better than both of its
parents.

The four well-known benchmark functions with very
different experimental ranges are used to compare BOHGAS,
HGAS, BOHGATD, and HGATD. The results under stopping
rule 1 (that an algorithm is halted when a near-global-
optimum cutoff is achieved)match the results under stopping
rule 2 (that an algorithm is halted at a preselected number
of generations) for both functions.These results indicate that
BOHGA with the new individual learning procedure works
much more efficiently than the traditional HGA, whichever
meme is chosen. HGATD, where the LS is performed only
on those offspring that have an objective function values
superior to both of their parents, is quite competitive to
BOHGA. These results also indicate that the TD meme is
likely to help algorithms converge faster to a global “valley”
but does not appear to converge as quickly during the final
fine tuning stage as the simplex meme. The results from the
Rosenbrock’s and the Griewank’s functions (which are not
presented here) are similar to those from the Rastrigin’s and
the Schwefel’s functions.

During the comparisons of the four MAs, we used eight
different settings of GA operators and found that ranking
replacement performs uniformly better than tournament
replacement for both functions. The mutation rate of 0.05
(which is 1/𝑘, 𝑘 = 20 in both of the benchmark functions)
performed better than the rate of 0.06 in most cases. The
different number of crossover points had no obvious effect
on the number of function evaluations.

In summary, our new HGA with an individual learning
procedure performs a LS only when the best offspring is also
the best within the parent population.Our newHGAnot only
reduces the number of function evaluations required by the
LS, but also improves accuracy and efficiency in finding an
optimal solution. The TD meme is a good choice in helping
finding a global “valley” or “peak” but may not perform as
well as the Nelder-Mead method at the final fine tuning. It is
noted that ourHGAhas combined our newmemewith a GA.

We speculate that our new procedure would also be effective
when combined with other evolutionary algorithms.

Several issues remain for further study. For example, the
three derivative-free directions defined in the TDmememay
not be optimal. Another issue concerns the appropriate step
length, once the directions are chosen. The size of a step
length, arbitrarily chosen by us, may affect the efficiency of
the MAs. We found that the TD may converge faster to a
global “valley” or “peak” than the simplex meme but may be
not as fast at finding an optimum at the fine tuning stage.
In a future study, we may combine the TD and simplex
memes together, using TD first to reach the global “valley”
or “peak,” followed by the simplex meme to fine tune the
solution. A further issue involves the optimal settings of the
GA operators. In this study, the three main GA operators:
the type of replacement, the number of crossover points, and
the mutation rate, have been studied. However, there may be
some other operators affecting the GA performance, such as
the population size and the parent/offspring ratio. We plan to
study these issues in future work.

C++ code is available upon request from the authors.

Appendix

Mathematical Representation of the Three-
Direction: A Local Search

We first introduce our notation. Parent 1 (𝑃1) is given by
x
𝑃1
= [𝑥
𝑃11
, . . . , 𝑥

𝑃1𝑘
]
, where x is a vector of size 𝑘 × 1 where

𝑘 is the number of factors or the number of dimensions.
Similarly, Parent 2 (𝑃2) is given by x

𝑃2
= [𝑥
𝑃21
, . . . , 𝑥

𝑃2𝑘
]
,

and their offspring (𝑂) is expressed as x
𝑂
= [𝑥
𝑂1
, . . . , 𝑥

𝑂𝑘
]
.

Parent 1 direction (from 𝑃1 to 𝑂) is expressed as 𝛿
𝑃1𝑂

and
Parent 2 direction (from𝑃2 to𝑂) is as 𝛿

𝑃2𝑂
. And the common

direction is simply denoted as 𝛿. The new points after the
first step along the three directions are expressed as xNew1 =
[𝑥New11, . . . , 𝑥New1𝑘]

, xNew2 = [𝑥New21, . . . , 𝑥New2𝑘]
, and

xNew = [𝑥New1, . . . , 𝑥New𝑘]
, corresponding to Parent 1, Parent

2, and their common direction, respectively. The appropriate
moving distance on each axis in eachmoving step is expressed
as 𝑑.

Parent 1 direction, which essentially is the different
distances on each dimension between points 𝑃1 and 𝑂, is
expressed as

𝛿
𝑃1𝑂
= x
𝑂
− x
𝑃1
= [𝛿
11
, 𝛿
12
, . . . , 𝛿

1𝑘
]

. (A.1)

Similarly, the Parent 2 direction is expressed as

𝛿
𝑃2𝑂
= x
𝑂
− x
𝑃2
= [𝛿
21
, 𝛿
22
, . . . , 𝛿

2𝑘
]

. (A.2)

To keep the same directions and move along the three
paths, the moving distance on each axis should be in con-
stant proportion to each other, as the method of steepest
ascent/descent in response surface methodology (RSM). (In
RSM, the constant proportion on the 𝑖th dimension is defined
as 𝛽
𝑖
/𝛽
×, where the 𝛽

𝑖
is the 𝑖th estimated coefficient in

the estimated first-order model and the 𝛽∗ is the largest
coefficient in magnitude among the 𝑘 estimated coefficients,
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that is, 𝛽∗ = max
𝑖=1,...,𝑘
|𝛽
𝑖
|.) From this ratio, we can see that

the proportion only depends on the 𝛽
𝑖
, the 𝑖th coefficient.The

moving distance on the 𝑖th dimension is defined as (𝛽
𝑖
/𝛽
∗
) ∗

𝜌, where the 𝜌 is an appropriate fixed distance. (For more
details, please see Myers and Montgomery [29, Pages 205–
207]).

In our GA application, the main idea in moving along the
Parent 1 path is the same as that in the method of steepest
ascent/descent; that is, to keep the constant proportion in
each dimension and move some appropriate fixed distance
(which is 𝑑 in our case) along Parent 1 path. But the difference
between our GA case and RSM is the starting point. In the
GA case, the starting points are 𝑃1 and 𝑃2, not 𝑂; that is, the
first step has already been completed. So the nextmoving step
starts at𝑂. The largest moving distance in the first step is also
not 𝑑, but max

𝑖=1,...,𝑘
|𝛿
1𝑖
|, where the 𝛿

1𝑖
is the moving distance

on 𝑖th axis in (A.1). Let 𝛿∗
1
denote max

𝑖=1,...,𝑘
|𝛿
1𝑖
|. In our study,

if 𝛿∗
1
< 𝑑, then the moving distant in the next step will be 𝛿∗

1
.

Otherwise, the distance in the next stepwill be𝑑.Thedistance
𝑑 is obviously utilized to control the next moving distance.

The procedure of moving along the Parent 1 direction is
as follows.

(1) Calculate 𝛿
𝑃1𝑂

and then find 𝛿∗
1
= max

𝑖=1,...,𝑘
|𝛿
1𝑖
|, the

largest distance in the first moving step.
(2) If 𝛿∗

1
< 𝑑, then the next new position on the 𝑖th axis,

𝑖 = 1, . . . , 𝑘, is defined as 𝑥New1𝑖 = 𝑥𝑂𝑖 + (𝛿1𝑖/𝛿
∗

1
) × 𝑑.

Otherwise, the new position is 𝑥New1𝑖 = 𝑥𝑂𝑖 + 𝛿1𝑖.
(3) Check the region of the new point xNew1 =
[𝑥New11, . . . , 𝑥New1𝑘]

. If 𝑥New1𝑖 is greater than its upper
bound (which is the largest value in the 𝑖th domain),
then let it be the upper bound. Similarly, if it is less
than its lower bound (which is the lowest value in the
𝑖th domain), then let it be the lower bound. (Usually,
the upper bounds and lower bounds have been given
through defining the objective function.)

(4) Evaluate the new point xNew1 by the objective func-
tion. If the new point performs worse than the point
x
𝑂
, then the process of moving along the Parent 1

direction is halted. If the new point performs better
than the x

𝑂
, then replace the point xNew1 by the next

new point xNew1 + Δ𝑁1𝑂, where Δ𝑁1𝑂 = xNew1 −
x
𝑂
. (The “N1O” means “New point from Parent 1” to

“Offspring.”) Then return to Step 3.

The procedure for moving along the Parent 2 direction
is the same as that for the Parent 1 direction. However, the
procedure for the common direction is slightly different from
them, due to the different starting points. The starting points
from the parents directions are 𝑃1 or 𝑃2, while the starting
point in the common direction is 𝑂.

As mentioned earlier, building the common direction
depends on whether both parent directions are consistent or
not. If they are consistent on 𝑖th axis (either both positive
or both negative), then move the same direction on the 𝑖th
axis as the parent directions. Otherwise, stay on that axis
without any movement, due to inconsistent directions. There
is a special case: one of the moving distances on an axis in

the parent directions is zero and the other is nonzero. In this
case, we recommend movement in the same direction with
the parent direction with nonzero moving distance on the
axis.

The procedure for movement along the common direc-
tion is as follows.

(1) Calculate 𝛿
𝑃1𝑂

and 𝛿
𝑃2𝑂

as (A.1) and (A.2).
(2) The next new point is defined as xNew =

[𝑥New1, . . . , 𝑥New𝑘]
 along the path from the common

direction. To establish the common direction, three
situations on each axis/dimension are possible: (a)
the 𝛿
1𝑖
× 𝛿
2𝑖
> 0 which means that there is a common

direction on the 𝑖th axis; (b) The 𝛿
1𝑖
× 𝛿
2𝑖
< 0 which

means that there is not a common direction on the
𝑖th axis; and (c) the 𝛿

1𝑖
× 𝛿
2𝑖
= 0 which means that at

least one of 𝛿
1𝑖
and 𝛿
2𝑖
equals zero.

(2.1) If the situation is (a), then the newpoint position
on the 𝑖th axis is given by𝑥New𝑖 = 𝑥𝑂𝑖+min(|𝛿

1𝑖
|,

|𝛿
2𝑖
|, 𝑑) if both 𝛿

1𝑖
and 𝛿
2𝑖
are positive, or 𝑥New𝑖 =

𝑥
𝑂𝑖
− min(|𝛿

1𝑖
|, |𝛿
2𝑖
|, 𝑑) if both 𝛿

1𝑖
and 𝛿

2𝑖
are

negative.
(2.2) If the situation is (b), the new point position

on the 𝑖th axis is given by 𝑥New𝑖 = 𝑥𝑂𝑖 (no
movement on the 𝑖th axis in this situation).

(2.3) If the situation is (c), there are three subcases:
(1) 𝛿
1𝑖
= 0 and 𝛿

2𝑖
̸= 0; (2) 𝛿

1𝑖
̸= 0 and 𝛿

2𝑖
= 0;

and (3) 𝛿
1𝑖
= 0 and 𝛿

2𝑖
= 0.

(2.3.1) For case (1), if |𝛿
2𝑖
| ≥ 𝑑, then𝑥New𝑖 = 𝑥𝑂𝑖+𝑑

(when 𝛿
2𝑖
> 0) or 𝑥New𝑖 = 𝑥𝑂𝑖 − 𝑑 (when

𝛿
2𝑖
< 0). Otherwise, 𝑥New𝑖 = 𝑥𝑂𝑖 + 𝛿2𝑖.

(2.3.2) For case (2), similar to case (1), if |𝛿
1𝑖
| ≥ 𝑑,

then 𝑥New𝑖 = 𝑥𝑂𝑖 ± 𝑑. Otherwise 𝑥New𝑖 =
𝑥
𝑂𝑖
+ 𝛿
1𝑖
.

(2.3.3) For case (3), 𝑥New𝑖 = 𝑥𝑂𝑖.

(3) Check the range of the new point xNew.
(4) Evaluate the point xNew. If the new point performs

worse than the point x
𝑂
, then the process for moving

along the common direction is stopped. If the new
point is better than x

𝑂
, then replace the point xNew

by the next new point xNew + ΔNCO, where ΔNCO =
xNew − x𝑂. (The “NCO” means “New from Common
directions” and “Offspring”). Return to Step 3.
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Due to the similarity and correlation among sensed data in wireless sensor network, it is an important way to reduce the number
of packets transmitted with data aggregation technology so as to prolong the network lifetime. However, data aggregation is still a
challenging issue since quality-of-service, such as end-to-end delay, is generally considered as a severe criterion required in many
applications. We focus on the minimum-latency data aggregation problem and proposed a new efficient scheme for it. The basic
idea is that we first build an aggregation tree by ordering nodes into layers, and then we proposed a scheduling algorithm on the
basis of the aggregation tree to determine the transmission time slots for all nodes in the network with collision avoiding. We have
proved that the upper bound for data aggregation with our proposed scheme is bounded by (15𝑅 + Δ − 15) for wireless sensor
networks in two-dimensional space. Extensive simulation results have demonstrated that the proposed scheme has better practical
performance compared with related works.

1. Introduction

Recent advances in microelectronics, low-power embedded
modulators, and wireless networking have led to the emer-
gence of the wireless sensor network [1]. All these sensor
nodes are self-organized and cooperated in similar way as
the ad hoc network. Such characteristics make it possible
to deploy sensor network to obtain information about the
covered area in an inaccessible location. It is expected that
sensor networks open new vistas for many potential appli-
cations. Data aggregation [2] is generally considered as an
important method in the sensor networks by aggregating and
forwarding the raw data which is originated from multiple
sources. In this way, the data collection from all nodes in the
network is in fact donewith the aggregation tree, in which the
sink serves as the root and the nonleaf nodes will aggregate all
raw data from their children and forward the result to their
parents. This helps to minimize the traffic in the network,
reduce the energy consumption, and increase the network
lifetime accordingly.

Quality-of-Service (QoS), such as end-to-end delay, is
generally considered as a severe criterion required in many

applications. When data is collected by local nodes in the
network, the sensed data is generally required to reach
the root within a given time delay. To provide end-to-
end delay guarantee is pioneering and challenging with the
data aggregation problem in wireless sensor networks due
to two separate observations. Firstly, the nonleaf nodes on
the aggregation tree cannot forward to their parents until
they have gathered all data from their descendants, which
is possible to increase end-to-end delay especially in case
that the aggregation tree is rather high. Secondly, due to the
broadcasting characteristic of wireless communication, the
exposed/hidden problem is the main factor which not only
reduces capacity of the wireless network but also increases
one-hop transmission delay. A careful scheduling algorithm
concerned with the transmission time slots for all nodes
in the network is rather necessary and important for data
aggregation problem aiming at providing minimum end-to-
end delay while utilizing the data aggregation scheme and
eliminating the above collision problem.

The minimum-latency data aggregation problem in
two-dimensional wireless sensor networks is well studied
and proved to be NP hard [3]. Chen et al. had designed
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a Δ—approximation algorithm for this problem, where Δ

denotes themaximumnode degree in the network [3]. Huang
et al. introduced a constant approximation algorithm with
the latency bounded by (23𝑅 + Δ − 18) [4] by building the
aggregation tree with the help of maximum independent
set (MIS), where 𝑅 denotes the network radius. Wang et
al. improved the idea of Huang and proposed a scheduling
algorithm with the latency bound as (15𝑅 + Δ − 15) [5].
In this work, we have proved that the theoretic bound for
data aggregation with our proposed scheme is also (15𝑅 +

Δ − 15) for wireless sensor networks in two-dimensional
space However, the proposed scheme has better performance
compared with the previously mentioned related works [4, 5]
especially in dense networks.

With the rapid development of applications in three-
dimensional networks, such as underwater acoustic monitor-
ing [6, 7], underground tunnels [8], space sensor network [9],
and aerosphere pollutionmonitoring [10], it is interesting and
challenging to study the minimum-latency data aggregation
problem with three-dimensional wireless sensor networks
too. Most of the current works in three-dimensional sensor
networks aimed at providing connectivity, coverage, or loca-
tion solutions [11]. In this work, we have also extended our
efficient scheme to the case in three-dimensional network.
We also demonstrated its practical performance compared
with works originated from the two-dimensional networks.

The rest of this paper is organized as follows. we intro-
duce the related works in Section 2 and present preliminary
in Section 3. Section 4 introduces a new minimum-latency
data aggregation (MDA) scheme. Section 5 has analyzed the
correctness and performance of MDA scheme. In Sections 6
and 7, we present simulation results and conclusion.

2. Related Works

Data aggregation is considered as an important solution
for the wireless sensor networks. The main goal of data-
aggregation algorithms is to gather and aggregate data in an
energy-efficient manner so that network lifetime is enhanced
[2]. Krishnamachari et al. illustrated the impact of data aggre-
gation by comparing its performancewith traditional end-to-
end routing schemes [12].The optimal data aggregation prob-
lem was proven to be NP hard, and heuristic algorithms were
proposed to gather data from multiple sources to the sink.

The process of aggregating data could reduce the trans-
mission of data in the network, hence to reduce energy
consumption. Most previous works have mainly focused on
energy-saving issue and it has been investigated in [12, 13].
Wireless sensor networks often use tree topologies.This is not
only because tree’s structure is suitable for a network with one
sink node, but also their simplicity is very attractive when
network resources are limited. There are some papers that
build a data aggregation tree to control the delay [3–5, 14–22].

Broadcast and data aggregation are themost fundamental
and useful applications in wireless sensor networks. Data
aggregation is sometimes referred to converge cast. Anna-
malai et al. designed a heuristic algorithm [14] which con-
structs a tree for both broadcast and converge cast. Simulation

results show that latency of this algorithm is very high, and
this algorithmhas high requirements for hardware of wireless
sensor. Upadhyayula et al. [15] designed a heuristic algorithm
for converge cast alone and purposed to reduce the latency
and energy consumption. This algorithm constructs a tree
using a greedy approach where new nodes are added to the
tree so that weight on the branch to which it is added is less.

Chen et al. first proved that the minimum data aggre-
gation time problem is NP hard and designed a Δ—
approximation algorithm for this problem [3], where Δ

denotes themaximumnode degree in the network.This algo-
rithm is centralized and has a high latency, which makes this
algorithm impractical. In paper [16], the authors focused on
the latency performance of data aggregation and considered
applications for which the total delay of the sensed data is
important instead of the maximum delay. Wan et al. [17]
designed a distributed algorithm to construct a dominating
tree.The algorithm is to construct amaximal independent set
and then select connected nodes to construct a dominating
tree. Wan et al. [18] constructed three aggregation schedules
of latency (15𝑅 + Δ − 4), (2𝑅 + 𝑂(log 𝑅) + Δ), and ((1 +

𝑂(log𝑅/
3
√𝑅))𝑅 + Δ).

Huang et al. proposed a scheduling algorithm with the
latency bound (23𝑅 + Δ − 18) [4], where 𝑅 is the network
radius and Δ is the maximum node degree. However, this
algorithm has obvious errors in the first-fit algorithm so that
the schedules are not collision-free in many cases. We will
modify this algorithm and compare with it in simulation. Yu
et al. proposed a distributed scheduling algorithm, named
DAS, the latency bound (24𝐷 + 6Δ + 16) [19], where 𝐷 is
the network diameter. Xu et al. [20, 21] constructed a data
aggregation tree using an existing approach with a small
modification. Then, they presented an efficiently centralized
algorithmand a distributed scheduling implementation.They
proved that the latency bound is at most (16𝑅 + Δ − 14).
They focused on data aggregation scheduling problem and
proved that the lower latency bound under any interference
model is max{log 𝑛, 𝑅} in paper [20], where 𝑛 is the network
size.Wang et al. designed a scheduling algorithm, Peony-tree-
based data aggregation (PDA), and proved the latency bound
is (15𝑅 + Δ − 15) [5].

Some works [22–27] concerned with the delay control.
Yuan et al. designed a Multi-level Fusion Synchronization
Protocol to achieve the desired trade-offs between the
credibility and the aggregation latency [22]. Some works
have investigated the energy latency tradeoff [23–25]. Given
a deadline, they minimized the amount of missed data
[23], minimized overall energy dissipation of sensor nodes
[24], or minimized the maximum energy consumption [25].
Many applications of sensor networks require real-time data
aggregation. Chipara et al. proposed dynamic conflict-free
query scheduling [26], a novel scheduling technology based
on TDMA, which is a natural choice for real-time sensor
network applications.

Event-triggered data aggregation refers to no node need
to send data until a relevant, unpredicted event occurs in the
network. A distributed TDMA scheduling protocol for data
aggregation is proposed in paper [27], which is called DATP.
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The sensor nodes send dummy packets in order to determine
whether they are interfered with each other, if not, they are
assigned the same time slot.

In this paper, we aimed at the minimum latency data
aggregation problem with the data aggregation tree. We
designed a novel approach to build the aggregation tree,
which selects the maximum independent set in even layers.
We have proved that the upper bound for data aggregation
with our proposed scheme is bounded by (15𝑅 + Δ − 15)

for wireless sensor networks in two-dimensional space. We
also simulated the case in three-dimensional wireless sensor
networks. The results have demonstrated that the proposed
scheme has better performance comparedwith relatedworks.

3. Preliminary

In this section, we will describe the system model, related
terms and give a detailed problem definition.

3.1. Network Model. We consider a wireless sensor network
with a sink node 𝑠 and𝑁 sensor nodes. Each node is equipped
with a wireless radio by which a node can receive/transmit
data packet. Assume that all nodes have the same transmis-
sion range 𝑟

𝑐
; the topology of wireless sensor network can

be represented as an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉

is the set of all nodes and 𝐸 ⊆ 𝑉
2 is the set of undirected

links. 𝐸 is defined as 𝐸 = {(𝑢, V) ∈ 𝑉
2
| 𝑑
𝑢V ≤ 𝑟

𝑐
}, in which

𝑑
𝑢V is the Euclidean distance between node 𝑢 and V, 𝑟

𝑐
is the

transmission radius.

3.2. Interference Model. Here, we use the symbol time slot
to denote the period that one node is used to send or
receive data packet. The radio generally works in half-
duplex mode and thus one node cannot transmit and receive
packet simultaneously due to broadcast characteristic of
wireless communication, which is generally named as the
hidden/exposed terminal problems. Here, we assume that the
interference range is identical to the transmission range [28].

3.3. Related Terms

3.3.1. Data Aggregation. We assume that the network is
designed with simple data aggregation function, such as max,
min, and average. In this way, the final result after aggregation
generally has the same property as the incoming originally
data, such as packet length and prior. And all these results
can be sent or received during one single time slot operation.

3.3.2. Independent Set (IS). Given an undirected graph 𝐺 =

(𝑉, 𝐸) and 𝐼 ⊆ 𝑉, 𝐼 is called an independent set if any two
nodes in 𝐼 are not adjacent. It is obvious that two nodes 𝑢, V ∈

IS denotes that both 𝑢 and V are not within the transmission
range of each other. A maximum independent set is used
to represent the independent set with maximum number of
nodes for a given graph 𝐺.

3.3.3. Connected Dominating Set (CDS). Given an undirected
graph 𝐺 = (𝑉, 𝐸) and 𝐷 ⊆ 𝑉, 𝐷 is called a dominating set if

𝐷 induces a connected subgraph of 𝐺 and every node in 𝐺

either belongs to𝐷 or is adjacent to a node in 𝐷.

3.3.4. Concurrent Set (CS). The concurrent set denotes a set
of nodes, in which each node can transmit without conflict
with the transmission of other nodes.

3.4. Data Aggregation Scheduling. With the terms mentioned
previously, the data aggregation scheduling problem in the
wireless sensor networks is defined to find a sequence of
concurrent set 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑇
so that the latency is minimized,

where⋃𝑇
𝑖=1

𝑆
𝑖
= 𝑉−{𝑠}. For any 𝑖 ̸= 𝑗, 𝑆

𝑖
∩𝑆
𝑗
= 0.This problem

has been proved to be NP hard [14].

4. Proposed Scheme

In this section, we give the detailed description of our
proposed scheme for the minimum-latency data aggregation
(MDA) problem. The basic idea is that we firstly construct
a data aggregation tree by dividing the nodes into layers
and then design a scheduling scheme in which each node is
assigned with one time slot for transmission while collision is
avoided.The notations used in the algorithm are summarized
in Notations.

4.1. Data Aggregation Tree Construction

4.1.1. Initialization. For a given network graph, initially we
can divide all nodes into 𝑅 layers with the breadth-first
searching algorithmwhich starts from the sink.The sinknode
𝑠 is in the layer 0. 𝐿

𝑖
denotes the set of the nodes that are 𝑖-

hop away from the sink 𝑠. Here we use 𝐿
𝑖
to denote the set of

nodes which are 𝑖-hop away from the sink 𝑠. The sink node 𝑠

is in the layer 0.

4.1.2. Independent Set Construction for Each Layer. Here, we
use the independent set to construct the data aggregation tree.
The idea is described as follows. Initially, we add the sink
node 𝑠 to the independent set in layer 0. Obviously, there is
only node in layer 0, and no conflict occurs. Let 𝐷

0
= {𝑠}, in

which 𝐷
0
denotes the independent set of layer 0. Generally,

we select independent set 𝐷
𝑖
in layer 𝑖 if 𝑖 is an even, and

the process starts from layer 0. In layer 𝑖, we check each
node in sequence to find whether it conflicts with nodes in
set 𝐷
𝑗
(𝑗 = 0, 2, . . . , 𝑖 − 2). If not, the node is added to 𝐷

𝑖
;

otherwise, we will move it to layer (𝑖 + 1). The corresponding
pseudocode is given in Algorithm 1. After the independent
sets 𝐷

𝑖
(𝑖 = 0, 2, 4, . . .) have been selected, we can obtain the

total independent set as𝐷 = ∪𝐷
𝑖
(𝑖 = 0, 2, 4, . . .).

4.1.3. Construct the Aggregation Tree. Thebasic idea is that we
construct a connected dominating set as the aggregation tree
based on the previous independent set.Obviously, sink node 𝑠
in layer 0 is the root of data aggregation tree. We add 𝑠 to𝐷

0
.

We find that 𝐷
2
with Algorithm 1 and the nonindependent

nodes are moved to layer 3. Each node 𝑢 in layer 𝑖, 𝑖 > 2

can check its neighbors in upper layer and adds them to
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Input: Graph 𝐺, 𝐿
1
, 𝐿
2
, . . ., 𝐿

𝑅
, layer number 𝑖;

Output:Maximum Independent set𝐷
𝑖
,𝐷, and 𝐿

𝑖
.

(1)𝐷
𝑖
= Ø;

(2) for each node 𝑢 ∈ 𝐿
𝑖
;

(3) if 𝑢 ∉ {𝑥 | (𝑥, V) ∈ 𝐸, V ∈ 𝐷}, then
(4) 𝐷

𝑖
= 𝐷
𝑖
∪ {𝑢};

(5) else 𝐿
𝑖
= 𝐿
𝑖
− {𝑢}; 𝐿

𝑖+1
= 𝐿
𝑖+1

∪ {𝑢};
(6) end if
(7) end for

Algorithm 1: Layer independent set construction.

the set 𝑢𝑝𝑝𝑒𝑟(𝑢). Node 𝑢 is moved to layer (𝑖 + 1) in case
that |𝑢𝑝𝑝𝑒𝑟(𝑢)| = 0. In each even layer, we build the layer
maximum independent set and move other nodes down to
the next layer. The next step is to build the children list for
each node. Firstly, node 𝑢 in layer (𝑖−1) checks the neighbors
in layer 𝑖 and adds the neighbor to the set 𝑙𝑜𝑤𝑒𝑟(𝑢). Repeat
the previous process and the data aggregation tree can be built
finally.

From the process of aggregation tree construction, we can
clearly see that the children of nodes in IS are either leaf nodes
or connecting nodes, while the children of the connecting
node are nodes in IS.The pseudocode of the data aggregation
tree construction process is presented in Algorithm 2.

4.2. Data Aggregation Scheduling. Nodes are scheduled
according to their roles on the tree. We firstly schedule leaf
nodes and then the nodes in connected dominating set.

4.2.1. Aggregation of Leaf Nodes. In this process, we are to
assign time slots for each leaf nodes on the data aggregation
tree, and the leaf nodes can send data packet to their parent
during the assigned time slots. In order to avoid interference
andminimize the latency at this phase, leaf nodes are divided
into 𝑘 concurrent sets and nodes in each set can transmit data
simultaneously with interference avoided, which is denoted
as 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
, where 𝑘 is the number of the concurrent sets.

Nodes in 𝑆
𝑖
are scheduled to transmit data in the 𝑖th time slot.

In the following, we will introduce that the process leaf nodes
are separated into different concurrent sets. Firstly, there is
no concurrent sets and 𝑘 = 0. Then, we choose a node 𝑥

from 𝐿
𝑅
and try to insert 𝑥 inserted into one concurrent set.

Obviously, we need to create a new set and let 𝑘 = 1, and we
can insert 𝑥 into 𝑆

1
. Then, we pick another node 𝑦 in layer 𝑅

and determine whether it conflicts with any node in current
concurrent set 𝑆

𝑖
(𝑖 = 1, 2, . . . , 𝑘) or not. If 𝑆

𝑖
is found, 𝑦 is

inserted into it; otherwise, a new concurrent set is necessary,
and we have 𝑘 increased by one and insert 𝑦 into the new set.
This process continues until all leaf nodes are assigned to a set.

The pseudocode of concurrent set construction is pre-
sented in Algorithm 3.

4.2.2. Aggregation of Connected Dominating Nodes. When all
leaf nodes are assigned time slots to transmit data packet
to their parents, we are to schedule the time slots for

nonleaf nodes on the aggregation tree. Starting from the
bottom of the tree, the algorithm assigns the sending time
to all connected dominating nodes. According to the tree
construction process, the dominating nodes are located in
even layers and connecting nodes in odd layer. Hence, the
algorithm will construct concurrent set in every layer. That
is, the dominating nodes in layer 𝑑 are divided into 𝑚

𝑑
sets

if 𝑑 is even. Similarly, the connected nodes in odd layer
𝑐 are also divided into 𝑛

𝑐
sets. Due to the fact that the

latency of the aggregation of leaf nodes is 𝑘, we schedule
all connected dominating nodes from the tree bottom to
the root. Generally, for each node 𝑢 ∈ 𝐿

𝑖
, if 𝑢 is assigned

to the 𝑗th set in layer 𝑖, the scheduled time slot for 𝑢 is
(𝑘 + 𝑗 + ∑

𝑖−2

𝑑=𝐻
𝑚
𝑑
+ ∑
𝑖−1

𝑐=𝐻
𝑛
𝑐
) in case that 𝑖 is even, where 𝐻

denotes the depth of the data aggregation tree. And the result
is (𝑘 + 𝑗 + ∑

𝑖−2

𝑐=𝐻
𝑛
𝑐
+ ∑
𝑖−1

𝑑=𝐻
𝑚
𝑑
) in case that 𝑖 is odd.

4.2.3. Data Aggregation Scheduling Algorithm. After the
previous two steps, the sending time of all nodes in the
network are assigned.Thepseudocode of the data aggregation
scheduling is presented in Algorithm 4. As we can observe
from the algorithm details, the time of the sink 𝑠 received is
latency = 𝑘 + ∑

𝑖=1

𝑖=𝐻
(𝑚
𝑖
+ 𝑛
𝑖
) + 1. Particularly, we have 𝑛

𝑖
= 0

in case that mod(𝑖, 2) = 1, and otherwise𝑚
𝑖
= 0.

4.3. Example Demonstration. In this section, we use an
example to demonstrate the process of data aggregation tree
construction in detail. Figure 1(a) shows the topology of
a random network with 20 nodes, in which each node is
represented by a cycle, and the node identification is marked
below the cycle. There is a link/edge between two nodes if
they are within the transmission range of each other. Here,
we assume that the sink node; that is, 𝑠 is located at the center
of the network.

Initially, we can organize the network topology into
layers, Algorithm 1, and nodes in each layer can be observed
in Figure 1(b). For example, there are only one node, that is,
𝑠, in layer 0, and five nodes, that is, 1, 2, 3, 4, and 5 in layer
2. There are totally 5 layers in this example with the network
radius as 4. It is obvious that the layer number for each node
denotes the distance from the node to the sink.

The second process is to build theMIS for each even layer.
The process is carried out in increasing order of the layers.
Firstly, there is only one node in layer 0, and the node 𝑠 is
added to the independent set for layer 0, that is, 𝐷

0
= {𝑠},

which is marked as black in Figure 1(b). Note that nodes in
layer 1 are one hop away from node 𝑠, and thus they are
not possible to be included into the IS, and they are added
into the aggregation tree with their parent as 𝑠. The next step
is to select IS for layer 2. With Algorithm 2, we can obtain
𝐷
2

= {6, 8, 9, 11, 12, 13} which is also marked black in the
figure; 7, 10, and 14 are dependent nodes and they are moved
down to layer 3 (the process is simulated via dash line in
Figure 1; then we can select parent nodes form nodes in 𝐷

2
,

which are marked as gray in Figure 1(b). In this way, the tree
construction process for previous three layers is finished.

Now, consider nodes in layer 3. Note that 7, 10, and 14
are moved from previous layer to layer 3, and it is possible
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Input: Graph 𝐺 = (𝑉, 𝐸);
Output: Data aggregation tree 𝑇 = (𝑉


, 𝐸

), the dominated set𝐷

𝑖
, 𝑖 = 2, 4, . . ., the set of connective nodes 𝐶

𝑖
, 𝑖 = 1, 3, . . .

(1) 𝑉 = 𝑉, 𝐸

= Ø;

(2) Breadth first search graph 𝐺 with the root as 𝑠;
(3) Divide all node of 𝑉 into layers 𝐿

0
, 𝐿
1
, . . . , 𝐿

𝑅
;

(4)𝐷
1
= {𝑠};

(5) for each node 𝑥 ∈ 𝐿
1
, par(𝑥) = 𝑠; 𝐸 = 𝐸


∪ {(𝑥, 𝑠)};

(6) for 𝑖 = 2 to 𝑅 do
(7) calculate upper(𝑢), 𝑢 ∈ 𝐿

𝑖

(8) if 𝑢𝑝𝑝𝑒𝑟 (𝑢)
 = 0 and 𝑢 ∈ 𝐿

𝑖
, then 𝐿

𝑖
= 𝐿
𝑖
/𝑢, 𝐿
𝑖+1

= 𝐿
𝑖+1

∪ {𝑢};
(9) if 𝑖 is even, construct the layer independent set𝐷

𝑖
, and sequence the lower(𝑦) with decreasing order of the set size as

𝑦
1
, 𝑦
2
, . . . , 𝑦 ∈ 𝐿

𝑖−1
, and the set size as 𝑦

1
, 𝑦
2
, . . . , 𝑦 ∈ 𝐿

𝑖−1
;

(10) 𝑗 = 1;
(11) while 𝐿

𝑖
!= empty do

(12) for each node 𝑢 ∈ lower(𝑦
𝑗
)

(13) par(𝑢) = 𝑦
𝑗
, 𝐸 = 𝐸


∪ {(𝑢, 𝑦

𝑗
)}, 𝐿
𝑖
= 𝐿
𝑖
/𝑢;

(14) if 𝑖 is even then 𝐶
𝑖
= 𝐶
𝑖
∪ 𝑦
𝑗
;

(15) end for
(16) 𝑗 = 𝑗 + 1;
(17) end while
(18) end for

Algorithm 2: Data aggregation tree construction.

Input: Data aggregation tree 𝑇, 𝐺;
Output: Concurrent Set 𝑆

1
, 𝑆
2
, . . ., 𝑆

𝑘
.

(1) initialize 𝑆
𝑖
= Ø, 𝑖 = 0, 1, . . .;

(2) for each layer 𝑖 from 𝑅 to 1;
(3) select one leaf node 𝑢 from layer 𝑖;
(4) 𝑗 = 1;
(5) if 𝑆

𝑗
= Ø, then 𝑆

𝑗
= 𝑆
𝑘
∪ {𝑢}, go to step 3;

(6) for each V ∈ 𝑆
𝑗
,

(7) if (𝑢, 𝑝𝑎𝑟 (V)) ∉ 𝐸 and par(𝑢) ̸= par(V), then 𝑆
𝑗
= 𝑆
𝑗
∪ {𝑢}, break;

(8) end for
(9) if 𝑢 ∉ 𝑆

𝑗
, then 𝑗 = 𝑗+ 1, go to step 5;

(10) end for

Algorithm 3: Concurrent set construction.

Input: Data aggregation tree 𝑇= (𝑉, 𝐸), depth of the data aggregation tree𝐻;
Output: Sending time 𝑡(𝑢) for each node 𝑢, and latency.
(1) for each node 𝑢 ∉ 𝐶𝐷𝑆, run Algorithm 3 to construct the concurrent set 𝑆

1
, 𝑆
2
, . . ., 𝑆

𝑘
;

(2) if 𝑢 ∈ 𝑆
𝑗
then 𝑡(𝑢) = 𝑗;

(3) 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑘;
(4) for 𝑖 = 𝐻 to 1
(5) if 𝑖 is even, then
(6) all nodes 𝑢 ∈ 𝐿

𝑖
, construct the concurrent set 𝑆𝐷

1
, 𝑆𝐷
2
, . . ., 𝑆𝐷

𝑚
;

(7) if 𝑢 ∈ 𝑆𝐷
𝑗
, then 𝑡(𝑢) = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑗, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑚;

(8) else
(9) all nodes 𝑢 ∈ 𝐿

𝑖
, construct the concurrent set 𝑆𝐶

1
, 𝑆𝐶
2
, . . ., 𝑆𝐶

𝑛
;

(10) if V ∈ 𝑆𝐶
𝑗
, then 𝑡(V) = latency + 𝑗, latency = latency + 𝑛;

(11) end if
(12) end for

Algorithm 4: Minimum-latency data aggregation.



6 Journal of Applied Mathematics

1 2

3

4
5

6

7

8

9
10

11

12

1314

15

16

17

19

20
21

22

23

24

25

18

s

(a) Network topology

1 2 3 4 5

6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23

24 25

s

(b) Former three layers

1 2 3 4 5

6 8 9

10

11 12 13

2215 16 17 18 19 20 21 23 14

24 25

s

7

(c) Former four layers

1 2 3 4 5

6 8 9

10

11 12 13

23

15 16

17

18 19 14 20

25

21

24 22

s

7

(d) Data aggregation tree

Figure 1: An example to demonstrate the process of MDA algorithm.

that some nodes in layer 3 cannot find their parents in upper
layer, that is, layer 2. With Algorithm 2, we calculate the set
upper for each node in layer 3, and we have |𝑢𝑝𝑝𝑒𝑟(17)| = 0,
|𝑢𝑝𝑝𝑒𝑟(22)| = 0, |𝑢𝑝𝑝𝑒𝑟(23)| = 0. As we can observe from
Figure 1(b), 17 can connect to sink 𝑠 via 7; however, 17 cannot
find proper parent in layer 2 since 7 is moved to layer 3.
The case is similar to 22 and 23, and all these three nodes
are moved down to layer 4, which is marked with dash line
in Figure 1(b). After these processes are done, we can select
parent for nodes in layer 3 and add them into the tree.

There are five nodes, that is, 17, 22, 23, 24, and 25 in layer 4.
We firstly check whether they can find their parents in upper
layers before building the independent set. It can be seen that
set upper is not empty for all nodes in layer 4; secondarily, we
build the MIS for layer 4, and 𝐷

4
= {17, 22, 24, 25} which is

marked black; 23 is moved down to layer 5; finally, we choose

parent for nodes in layer 4, and 7, 14, 19, and 20 are selected
accordingly and included in set 𝐶

3
which is marked gray.

In this way, the tree construction for former four layers is
finished which is illustrated in Figure 1(c).

Note that there is only 23 in layer 5 with parent 22 in layer
4, and it can be inserted into the tree directly. So far, all nodes
in the network are included in the aggregation tree with the
height as 5. The final result is demonstrated in Figure 1(d).

The last process is to schedule the aggregation process on
the tree with Algorithms 3 and 4. Following the idea of our
scheduling scheme, the leaf nodes on the tree are scheduled
firstly. It starts from the final layer, and all leaf nodes are
scheduled into collision-free time slots. As we can see from
Figures 1(a) and 1(d), these leaf nodes can be divided into two
separate sets, {23, 15, 10, 21, 5} and {16, 18}. Nodes in the first
set are assigned to the first time slot, and nodes in the second
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set are assigned to second time slot. In this way, we use only
2 time slots to ensure that all leaf nodes can send to their
parents while collision is avoided. Then, we are to schedule
the nonleaf nodes on the tree. It can be seen that nodes in
𝐷
4
= {17, 24, 22, 25} can be scheduled with one time slot, that

is, slot 3. The process is carried out in the same way until all
nodes are scheduled. And we can see that in time slot 11 the
sink node can collect all data from all nodes in the network.

5. Performance Analysis

Lemma1. Given the original network radius R, the depth of the
data aggregation tree by our MDA algorithm does not exceed
(2𝑅 − 1).

Proof. As shown in the process of the tree construction, nodes
in layer 0 and layer 1 are not moved down.

In layer 2, we select the layer maximum independent
set 𝐷
2
and move the nonindependent nodes to layer 3. 𝐿

2

denotes the set of the nodeswhichmoved from layer 2 to layer
3. Since each node in 𝐿



2
is adjacent to at least one node in

𝐷
2
, it finds its parent in 𝐷

2
. Layer 3 is the base for nodes in

original layer 2.
In layer 3, some nodesmay not find their neighbors in𝐷

2
.

Their neighbors have been moved to the set 𝐿
2
in the same

layer with them. Nodes in layer 3 cannot find their neighbors
as their parent in upper layer, which should bemoved to layer
4.𝐿
3
denotes the set of nodeswhichmove from layer 3 to layer

4. Hence, each node in 𝐿


3
can find its neighbor as its parent in

𝐿


2
. We should select the layer maximum independent set𝐷

4

in layer 4, so some nodes in 𝐿


3
may be as the nonindependent

nodes moved to layer 5. 𝐿
3
denotes the set of nodes which

move from layer 3 to layer 5. Since each node in 𝐿


3
is adjacent

to one node in 𝐷
4
at least, it finds its parent in 𝐷

4
. Layer 5 is

the lowest layer the nodes in original layer 3 can be moved.
In layer 4, because there may be some nodes whose

neighbors are all in the set 𝐿
3
, they should be moved to layer

6 with the nodes in 𝐿


3
moving to layer 5. 𝐿

4
denotes the set of

nodes which moves from layer 4 to layer 6. We should select
the layer maximum independent set 𝐷

6
in layer 6, so some

nodes in 𝐿


4
may be as the nonindependent nodes moved to

layer 7. 𝐿
4
denotes the set of nodes which moves from layer 4

to layer 7. Because each node in 𝐿


4
is adjacent to at least one

node in 𝐷
6
, it finds its parent in 𝐷

6
. Layer 7 is the base layer

that nodes in original layer 4 can be moved.
After analyzing the nodes moving cases in the four layers,

we can get the number of layers each node is displaced from
its original position depending on its neighbor in upper
layer. When a node was moved to an even layer, the layer
independent set should be selected in this even layer, so the
node may be as a nonindependent node moved to the next
layer. Then, the node in the odd layer can find its neighbor
in the maximum independent set; the node will no longer be
moved. In this way, it would move into its final position in an
odd layer. Therefore, in the worst case, a node’s moving layer
is the moving layer of its neighbor in upper layer plus 2. For a
node 𝑢 in layer 𝑘, if all its neighbors in layer (𝑘−1) have been

moved to layer (2(𝑘−1)−1), at worst, they have to bemoved to
layer (2𝑘−3). We can infer that the final layer which 𝑢moved
to is equal to the sum of the layer (2𝑘 − 3) which neighbors
of 𝑢moved to plus 2, that is, layer 2(𝑘 − 1). Given the original
network radius 𝑅, in the worst case, the nodes in layer 𝑅may
be moved to layer (2𝑅 − 1).

Lemma 2. The latency of aggregation from leaf nodes is Δ− 1.

Proof. Given the maximum node degree Δ, the latency of
aggregation from leaf nodes is (Δ − 1) [4, 5].

Theorem 3. The latency bound of the connected dominating
nodes aggregation is 15𝑅 − 14.

Proof. Now, we will estimate the data aggregation of con-
nected dominating nodes. According to Lemma 1, the depth
of data aggregation tree is at most (2𝑅 − 1). In the tree, the
number of layers of the dominative nodes except the sink 𝑠 is
(𝑅−1).Thenumber of layers of the connective nodes is (𝑅−1),
because connective nodes cannot be in layer 𝑅. According to
[4, 5], the latency bound of data aggregation from dominative
nodes to connective nodes is 4, and the latency bound of data
aggregation from connective nodes to dominative nodes is
11. Particulary, the sink node 𝑠 is the root of the tree. Thus,
connective nodes in layer 1 are its children and it takes atmost
12 time slots to finish the transmission.

Based on the previous analysis, the latency bound of the
connected dominating nodes aggregation is 4(𝑅−1)+11(𝑅−

2) + 12 = 15𝑅 − 14.

Theorem 4. The total latency bound of data aggregation is
15𝑅 + Δ − 15.

Proof. According to the MDA, the total latency is the sum of
latencies of leaf nodes aggregation and connected dominating
nodes aggregation. The total latency bound of data aggrega-
tion is (Δ − 1) + (15𝑅 − 14) = 15𝑅 + Δ − 15.

Theorem 5. The time complexity with the MDA algorithm is
𝑂(𝑅𝑛
2
+ 𝑛Δ), in which n is the node number, 𝑅 is the network

radius, and Δ is the maximum node degree.

Proof. Initially, we use the breadth search algorithm to con-
struct the layer structure for a given network, and the
complexity with Algorithm 1 is 𝑂(𝑛

2
).

During the tree construction process of Algorithm 2, we
check each node whether they can find their parent, and the
time complexity is𝑂(𝑛

2
). Secondarily, we select independent

set for even layers with the rest nodes excluded in the IS
moved down, and the time complexity for this operation
is 𝑂(𝑛). Finally, each node will select its parent and be
added into the aggregation tree; the time complexity is𝑂(𝑛

2
).

Assume the network radius as 𝑅, the time complexity for the
tree construction is 𝑂(𝑅𝑛

2
).

During the scheduling process, we first schedule the leaf
nodes and then nonleaf nodes. Note that we schedule these
nodes from layers far away from the sink, and the collision
conflict occurs only in case that the transmission is carried
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Figure 2: Simulation results in two-dimensional networks with different network sizes.

out simultaneously by neighbors of its parent, and thus the
scheduling time complexity is 𝑂(𝑛Δ).

In this way, the time complexity with ourMDA algorithm
is 𝑂(𝑛

2
) + 𝑂(𝑛

2
) + 𝑂(𝑅𝑛

2
) + 𝑂(𝑛Δ) = 𝑂(𝑅𝑛

2
).

Based on the previous analysis, we could know that the
total latency bound of data aggregation obtained by MDA is
the same as [5] in two-dimensional space, which is the best
result we have ever known. Besides, our proposed algorithm
could achieve better performance by reducing the height of
the aggregation tree without increasing the time complexity.
The later experimental results also validate the efficiency of
the method.

6. Simulation Results

Our simulation is accomplished by generating a random
wireless sensor network in MATLAB software. We evaluate
the performance of the proposed MDA and related in two-
and three-dimensional networks.

6.1. Simulation Results in Two-Dimensional Networks. In this
simulation part, the network topology is randomly generated

by placing nodes in a fixed region of size 100m × 100m. We
compare our MDAwith the algorithm proposed by Huang et
al. in [15] (denoted as HUANG in short in the figures) and
PDA proposed by Wang in [19].

6.1.1. Impact of Network Size. The first group of simulations
estimates the impact of network size. The transmission range
of each sensor is fixed to 10m. The aggregation latency is
measured when the network size varies from 300 to 800.
We compare its average performance by building 11 different
network topologies.

Figure 2(a) compares the network radius after construct-
ing the data aggregation tree by using these algorithms. As
mentioned in the previous section, the worst case for the tree
height with the MDA algorithm is 2𝑅 − 1. However, it can be
seen that the upper bound is seldom met in the simulations.
This is because nodes are not always moved during the tree
construction process with our MDA algorithm, which leads
to the reduction of tree height. However, the results with
HUANG and PDA are almost always 2𝑅−1. It is seen that the
network radius of HUANG and PDA is approximately twice
as much as MDA. Our algorithm shows great improvement
on the tree height as we can observe from Figure 2(a).
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Figure 3: Simulation results in two-dimensional networks with different communication ranges.

Figure 2(b) shows the simulation result of aggregation
latency of leaf nodes. Due to the fact that independent set
is selected only in even layers with our MDA, the number
of connected dominating nodes is less than the other two
algorithms, and thus the number of leaf nodes is larger than
the other two algorithms. So, it is reasonable that, in some
case, the delay for leaf nodes scheduling costs more time slots
with our MDA algorithm, which can be seen in case that
network size is 850.

Figure 2(c) compares the aggregation latency of nodes
in the connected dominating sets. As mentioned previously,
the MDA algorithm only selects dominating nodes in even
layers, and thus it leads to less number of dominating nodes
compared with the other two algorithms. And accordingly,
the required number of time slots for aggregation is generally
smaller.

The total latency for the data aggregation process is
calculated with the previous two parts. As we can see from
Figure 2(d), our MDA algorithm runs better than HUANG
and PDA, which is more significant in case that the network
size is very large.

6.1.2. Impact of Communication Range. The second group of
simulations estimates the impact of communication range.
The network size is fixed to 1000 while the communication
range varies from 6m to 15m. Figure 3(a) shows the network
radius after constructing the data aggregation tree by using
HUANG, PDA, and MDA. With the communication range
becoming larger, the node degree increases, and accordingly
the radius decreases. Figure 3(c) compares the latency of
aggregation from leaf nodes. The latency of aggregation
from leaf nodes decreases when the communication range
becomes larger. The total latency is the sum of latencies
of leaf nodes aggregation and connected dominating nodes
aggregation. The smaller the transmission range, the more
independent nodes, the more connected dominating nodes
accordingly. Hence, the total latency is mainly determined by
the latency of aggregation from connected dominating nodes.
When the transmission range becomes larger, the node
degree increases; thus, the number of leaf nodes increases.
Now, the total latency depends on latency of aggregation from
leaf nodes. The latency is large at both ends of curves and
relative small in middle, as shown in Figure 3(d).
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Figure 4: Simulation results in three-dimensional networks with different network sizes.

6.2. Simulation Results in Three-Dimensional Networks. In
the part, the network topology is randomly generated by
placing nodes in a 100 × 100 × 100m3 cube. We compare
our MDAwith HUANG and PDAwhen applied to the three-
dimensional networks.

6.2.1. Impact of Network Size. The third group of simulations
estimates the impact of network size in three-dimensional
networks. Similar to the first group of simulations, the results
of this group are shown in Figure 4.

6.2.2. Impact of Communication Range. The last group of
simulations estimates the impact of communication range
in three-dimensional networks. Similar to the first group of
simulations, the results of this group are shown in Figure 5.

7. Conclusions

Data aggregation is an import technology used to reduce the
energy consumption in the wireless sensor networks. In this
paper, we focused on the minimum latency data aggregation
problem in wireless sensor networks and proposed a novel

minimum-latency data aggregation (MDA) algorithm to
build the aggregation tree as well as scheduling scheme for
the node transmission in the network. We proved that the
theoretical latency bound for MDA in the plane is (15𝑅+Δ−

15). We have also simulated the case in three-dimensional
wireless sensor networks. Extensive simulation results have
demonstrated that our algorithm has good performance
compared with the related algorithms. In the future work, we
are to develop a distributed version of the proposed MDA
algorithm with energy considered by constructing a load
balance aggregation tree. Furthermore, we will extend our
work to the multisink wireless sensor networks.

Notations

𝑑𝑖𝑠𝑡(𝑢, V): Euclidean distance between 𝑢 and V
𝑁(𝑢): The set of neighbors for node 𝑢

𝑅: The network radius
𝐻: Depth of the data aggregation tree
Δ: Maximum node degree
𝐿
𝑖
: The set of nodes that are 𝑖-hop away from the

sink 𝑠

𝑢𝑝𝑝𝑒𝑟(𝑢): The set of neighbors in upper layer of node 𝑢
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Figure 5: Simulation results in two-dimensional networks with different communication ranges.

𝑙𝑜𝑤𝑒𝑟(𝑢): The set of neighbors in lower layer of node 𝑢

𝑡𝑎𝑔(𝑢): The tag whether 𝑢’s sending time is
determined

𝑝𝑎𝑟(𝑢): The parent node of node 𝑢 on the data
aggregation tree.
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We propose doubly constrained robust least-squares constant modulus algorithm (LSCMA) to solve the problem of signal steering
vector mismatches via the Bayesian method and worst-case performance optimization, which is based on the mismatches between
the actual and presumed steering vectors. The weight vector is iteratively updated with penalty for the worst-case signal steering
vector by the partial Taylor-series expansion and Lagrange multiplier method, in which the Lagrange multipliers can be optimally
derived and incorporated at each step. A theoretical analysis for our proposed algorithm in terms of complexity cost, convergence
performance, and SINR performance is presented in this paper. In contrast to the linearly constrained LSCMA, the proposed
algorithm provides better robustness against the signal steering vector mismatches, yields higher signal captive performance,
improves greater array output SINR, and has a lower computational cost. The simulation results confirm the superiority of the
proposed algorithm on beampattern control and output SINR enhancement.

1. Introduction

Adaptive beamforming, as an attractive solution to signal
detection and estimation in harsh environments, has received
considerable attention in the fields of radar, sonar, seismol-
ogy, radio astronomy, medical imaging, artificial intelligence,
andneural network [1–5].Manymethods have beenproposed
and received great attention in the last twenty years.The class
of blind adaptive beamforming algorithms is generally known
as LSCMA, which can be rapidly convergent and globally
stable for any linearly independent set of input signals. How-
ever, in the complex communication environments, adaptive
beamforming algorithms may suffer significant performance
degradation in the presence of the signalmismatches between
the actual and assumed signal steering vectors. Such a type
of mismatches may occur due to the unknown deformation
of the antenna or sensor array, steer direction errors, and the
drifting effect in the electronics or themultipath propagation,
and so forth. Many solutions have been proposed such as
convex quadratic constraints [6] and Bayesian approach [7]
to account for the steering direction error of the target source.
The eigenspace-based algorithm [8, 9] is also a good approach
for robust beamforming.However, it is inefficient at low input
signal-to-noise ratio (SNR) due to the substantial possibility

of subspace swap. Recently, some advanced methods have
been proposed [10–19]. It is proven thatmany robust adaptive
beamformers belong to the family of the diagonal loading
method. With the generalization of the sphere uncertainty
set to ellipsoid, the optimal diagonal loading level can be
calculated efficiently by the proposed methods [10, 11]. A
very effective approach developed to the design of robust
adaptive beamforming is based on the principle of worst-case
performance optimization [12–14]. This approach delimits
the uncertainty set of steering vectors by upper-bounding
the norm of the difference between the actual and presumed
steering vectors, that is, the norm of themismatch vector.The
value of the upper bound is assumed to be known. Regret-
tably, the second-order cone programming (SOCP) method
does not provide a closed-form solution for the weight vector,
and even it cannot be implemented online [15]. The general
rank case has been considered, and an elegant closed-form
solution has been obtained [16]. In a multiuser multiple-
input single-output (MISO) cognitive radio network, the
design of robust downlink beamforming is presented [17].
To reduce the impact of the channel state information (CSI)
errors, two robust beamforming schemes are proposed in
[18], which recover the large fraction of the SINR lost due to
the channel estimation errors, but ultimately a large enough
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channel mismatch can eliminate the secrecy advantage of
using artificial noise. To mitigate the detrimental effect of
interferers, we extend the one-dimensional covariance fitting
approach to multidimensional covariance fitting, modeling
the source steering vector by means of uncertainty sets [19].

In this paper, robust LSCMA based on double constraints
is proposed via the worst-case performance optimization.
The quadratic constraint on the weight vector can improve
robustness to the signal steering vector mismatches. In order
for LSCMA to provide improved performance, the updating
weight vector subject to the constraints of distortionless array
response is derived by the partial Taylor-series expansion
and Lagrange multiplier method, in which the multipliers
can be optimally derived and incorporated at each step. The
implementation of the proposed algorithm based on iterative
minimization eliminates the covariance matrix inversion
estimation, so it has a low computational load. Compared
with the linearly constrained LSCMA, the proposed algo-
rithm suffers the least distortion from the direction near the
desired steering angle, yields better signal captive perfor-
mance, and has superior performance on SINR improvement.
The theoretical analysis and simulation results have been
carried out to demonstrate effectiveness and superiority of the
proposed algorithm in the signal steering vector mismatches.
So the proposed algorithm can be an appealing technique
and be implemented in digital system to improve the receiver
performance.

2. Problem Formulation

2.1. Signal Model. We assume that there are 𝑀 sen-
sors and 𝐷 unknown sources impinging from directions
{𝜃
0
, 𝜃
1
, . . . , 𝜃

𝐷−1
}. The sensors receive the linear combination

of the source signals in the presence of additive white Gaus-
sian noise (AWGN). Therefore, the received signal vector is
given by

x (𝑘) = 𝑠
0 (𝑘) a (𝜃0) + i (𝑘) + n (𝑘)

= A
𝐷
S (𝑘) + n (𝑘) ,

(1)

where x(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑀
(𝑘)]

T is the observed
signal vector, a(𝜃

0
) is the desired signal steering vector,

A
𝐷
= [a(𝜃

0
), a(𝜃
1
), . . . , a(𝜃

𝐷−1
)] is the array manifold, S(𝑘)

is the vector of 𝐷 transmitted signals, i(𝑘) is the interference
components, and n(𝑘) is the noise components with zero
mean. The aim of blind adaptive beamforming is to estimate
the source signal 𝑠

0
(𝑘) using only the observed data x(𝑘). We

write the estimated source signal as

𝑦 (𝑘) = wHx (𝑘) , (2)

where w = [𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
]
T is the complex weight vector

and (⋅)
T and (⋅)

H stand for the transpose and Hermitian
transpose, respectively.The signal-to-interference-plus-noise
ratio (SINR) has the following form:

SINR =

𝜎
2

𝑠


wHa (𝜃

0
)


2

wHR
𝑖+𝑛

w
, (3)

where 𝜎
2

𝑠
is the signal power and R

𝑖+𝑛
is the 𝑀 × 𝑀

interference-plus-noise covariance matrix:

R
𝑖+𝑛

= 𝐸 {(i (𝑘) + n (𝑘)) (i (𝑘) + n (𝑘))H} , (4)

where 𝐸[⋅] denotes statistical expectation.
In the array signal processing, the objective of adaptive

beamforming is to enhance the desired signal and suppress
the noise and interference signals, which improves the array
output SINR. In the adaptive array antenna system, the output
SINR achieved the optimal one by regulating the weight
vector.

2.2. The Linearly Constrained LSCMA. The linearly con-
strained LSCMA that is an effective solution to the problemof
interference capture can be used for equalization, blind adap-
tive beamforming, and other similar applications when the
desired signal has a constant envelope [20]. It is formulated
as the following optimization problem:

min 𝑔 (w) =
𝐾

∑

𝑖

𝑓𝑖 (w)


2
= ‖f (w)‖2

2

subject to wHa (𝜃
0
) = 1,

(5)

where f(w) = [𝑓
1
(w), . . . , 𝑓

𝐾
(w)]T and 𝑓

𝑖
(w) = |wHx(𝑖)| − 1.

We define X
𝐾

= [x(1), x(2), . . . , x(𝐾)] and solve (5) to
obtain the weight vector

w (𝑘 + 1) = w (𝑘) − R̂−1
𝐾
[X
𝐾
eH + a (𝜃

0
) 𝛿] , (6)

where

R̂
𝐾
=

𝐾

∑

𝑖=1

x (𝑖) xH (𝑖) ,

𝛿 = −
1 − aH (𝜃

0
)w (𝑘) + aH (𝜃

0
) R̂−1
𝐾
X
𝐾
eH

aH (𝜃
0
) R̂−1
𝐾
a (𝜃
0
)

,

e = [𝑒
1
, . . . , 𝑒

𝐾
] = [𝑦

1
−

𝑦
1

𝑦1


, . . . , 𝑦
𝐾
−

𝑦
𝐾

𝑦𝐾


] .

(7)

From (6), we note that the constrained LSCMA requires
the precise steering vector of the desired signal. But in
practical applications, this may bring the mismatch between
the presumed and actual signal steering vectors, because
some of the underlying assumptions on the environments,
sources, or sensor array can be violated. Therefore, the
linearly constrained LSCMA is very sensitive to the signal
steering vector mismatches, which causes serious cancella-
tion problem of the desired signal.

3. Robust Constrained LSCMA under
Double Constraints

To overcome the above-mentioned problem, robust con-
strained LSCMA is proposed, which provides excellent
robustness against signal steering vector mismatches, sup-
presses the interference signals effectively, and enhances
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the array output SINR. In practical applications, the array
beampattern error is formulated as

𝜗
2
= wH

[∫

𝜃
0
+Δ𝜃

𝜃
0
−Δ𝜃

cos 𝜃 (ã − a) (ã − a)Hd𝜃]w

= wHQw,

(8)

where Q = ∫
𝜃
0
+Δ𝜃

𝜃
0
−Δ𝜃

(ããH − ãaH − aãH + a ⋅ aH)d sin 𝜃, a is the
assumed steering vector, and ã is the estimated steering vector
with mismatches.

The cost function of robust constrained LSCMA can be
written as

minw 𝑔 (w) =
𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

subject to wHQw ≤ 𝜉
2
,

(9)

where 𝜉 is a given integer. The new formulation (9) is
based on the worst-case performance optimization because it
implies that 𝑔(w) is minimized subject to the constraint and
the distortionless array response will be maintained for the
worst-case mismatch Δ𝜃.

The quadratic constraint is adjoined to the cost function
by the Lagrange multiplier 𝜂, and we can obtain the Lagrange
function𝐻(w, 𝜂):

𝐻(w, 𝜂) = 1

2

𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

+
1

2
𝜂 (wHQw − 𝜉

2
) . (10)

The partial Taylor-series expansion of (10) is

𝐻(w + d, 𝜂) = 1

2


f (w) + JH (w) d

2

2

+
1

2
𝜂 (wHQw − 𝜉

2
) + 𝜂wHQHd,

(11)

where d is the offset vector and J(w) is the Jacobian of f(w):

J (w) = ∇wf (w) = [∇w𝑓1 (w) , . . . , ∇w𝑓𝐾 (w)] ,

∇w𝑓𝑖 (w) = ∇w {

wHx (𝑖) − 1} = x (𝑖)

𝑦
∗

𝑖

𝑦𝑖


.

(12)

Take the gradient of𝐻(w + d, 𝜂) with respect to d:

∇d (𝐻 (w + d, 𝜂)) = J (w) JH (w) d + J (w) f (w) + 𝜂Qw.
(13)

By equating (13) to zero, the offset vector d can be calculated
as

d = −[J (w) JH (w)]
−1

[J (w) f (w) + 𝜂Qw] . (14)

Using (12), we can derive the following equation simply:

J (w) JH (w) = X
𝐾
XH
𝐾
= R̂
𝐾
,

J (w) f (w) = X
𝐾
eH.

(15)

Combining (15) and (14), we can rewrite the offset vector

d = −R̂−1
𝐾
[X
𝐾
eH + 𝜂Qw] . (16)

Then, using (16), the updating weight vector for robust con-
strained LSCMA becomes

w (𝑘 + 1) = w (𝑘) − R̂−1
𝐾
[X
𝐾
eH + 𝜂Qw (𝑘)]

= (I − 𝜂R̂−1
𝐾
Q)w (𝑘) − R̂−1

𝐾
X
𝐾
eH.

(17)

From (6) and (17), we remark that the major computa-
tional demand to derive the weight vector comes from the
covariance matrix inversion, which requires 𝑂(𝑀3) flops.
This leads to a high computational cost. In our proposed
algorithm, to solve this problem, the iterative method is used
to calculate the covariancematrix inversion. Using thematrix
inverse lemma, we can obtain

G (𝐾) = R−1
𝐾

= [G (𝐾 − 1) −
G (𝐾 − 1) x (𝐾) xH (𝐾)G (𝐾 − 1)

1 + xH (𝐾)G (𝐾 − 1) x (𝐾)
] .

(18)

Inserting (18) into (17), the weight vector is updated as

w (𝑘 + 1) = (I − 𝜂G (𝑘)Q)w (𝑘) − G (𝑘)X𝐾e
H
. (19)

Equation (19) is substituted into the quadratic constraint in
(9), which yields

(F (𝑘) − 𝜂D (𝑘))
HQ (F (𝑘) − 𝜂D (𝑘)) = 𝜉

2
, (20)

where

F (𝑘) = w (𝑘) − G (𝑘)X𝐾e
H
,

D (𝑘) = G (𝑘)Qw (𝑘) .

(21)

To solve (20), the Lagrange multiplier 𝜂 has the following
form:

𝜂 =

Re [FH (𝑘)QD (𝑘)] − Re [𝜌 (𝑘)]
DH

(𝑘)QD (𝑘)
, (22)

where

𝜌
∗
(𝑘) 𝜌 (𝑘) = (Re [FH (𝑘)QD (𝑘)])

2

− [DH
(𝑘)QD (𝑘) (FH (𝑘)QF (𝑘) − 𝜉2)] .

(23)

In order to detect the desired signal under directional
uncertainty, we can impose another constraint on an average
steering vector via the Bayesian approach.We assume that the
direction of arrival (DOA) is a discrete random variable with
known a priori probability density function (pdf) 𝑞(𝜃) that
reflects the level of uncertainty about the source DOA. For
computational simplicity, we assume that 𝑞(𝜃) is defined only



4 Journal of Applied Mathematics

on a discrete set of𝐿points,Θ = {𝜃
1
, 𝜃
2
, . . . , 𝜃

𝐿
}, in the a priori

parameter space.
When interferers are present, the a posteriori probability

density function 𝑝(𝜃
𝑖
| X
𝐾
) is difficult to implement because

it is a function of R
𝑖+𝑛

, which is unknown and hard to
estimate. We derive approximate p(𝜃

𝑖
| X
𝐾
) with a simpler

expression [7]

𝑝 (𝜃
𝑖
| X
𝐾
) =

𝑞 (𝜃
𝑖
) exp {𝛽𝐾(aH (𝜃

𝑖
) R̂−1
𝐾
a (𝜃
𝑖
))
−1

}

∑
𝐿

𝑗=1
𝑞 (𝜃
𝑗
) exp {𝛽𝐾(aH (𝜃

𝑗
) R̂−1
𝐾
a (𝜃
𝑗
))
−1

}

,

(24)

where 𝛽 is a monotonically increasing function of SNR.
At low SNR, it will be relatively flat over all DOAs and

revert to the a priori pdf. At high SNR, the a posteriori
probability of the true DOA will approach one, whereas the
posteriori probability of the other DOAs will approach zero.

Based on (24), we can consider that a further form of
robust constrained LSCMA (9) is expressed as

minw
𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

subject to wHâv = 1, wHQw ≤ 𝜉
2
,

(25)

where âv is an average steering vector averaged over 𝑝(𝜃
𝑖
|

X
𝐾
):

âv =
𝐿

∑

𝑖=1

a (𝜃
𝑖
) 𝑝 (𝜃

𝑖
| X
𝐾
) = Ap, (26)

where A = [a(𝜃
1
), a(𝜃
2
), . . . , a(𝜃

𝐿
)] is the 𝑀 × 𝐿 matrix of

steering vectors and p is the 𝐿 × 1 vector.
Gauss’s method updates w by the offset

⌣

d that minimizes
the partial Taylor-series expansion of (25) subject to the
double constraints; that is,

minw 𝑔(w+
⌣

d) ≈

f (w) + JH (w)

⌣

d


2

2

subject to wHâv = 1, wHQw ≤ 𝜉
2
.

(27)

Using the Lagrange multiplier method, the optimal solu-
tion to (27) is obtained byminimizing the following function:

⌣

𝐻 (w+
⌣

d, 𝜆, 𝛾) =
1

2


f (w) + JH (w)

⌣

d


2

2

+ 𝜆 (wHâv − 1)

+
1

2
𝛾 (wHQw − 𝜉

2
) + 𝜆âHv

⌣

d +𝛾wHQH ⌣d,
(28)

where 𝜆 and 𝛾 are the Lagrange multipliers.

The gradient of𝐻(w+
⌣

d, 𝜆, 𝛾) with respect to
⌣

d is

∇⌣
d
(
⌣

𝐻 (w+
⌣

d, 𝜆, 𝛾))

=
1

2
∇⌣
d
{[f (w) + JH (w)

⌣

d]
H
[f (w) + JH (w)

⌣

d]}

+ 𝜆âv + 𝛾Qw

= J (w) f (w) + J (w) JH (w)
⌣

d +𝜆âv + 𝛾Qw.

(29)

We can obtain the offset vector
⌣

d:
⌣

d= −[J (w) JH (w)]
−1

[J (w) f (w) + 𝜆âv + 𝛾Qw] . (30)

Then, the updating weight vector for robust constrained
LSCMA becomes

w (𝑘 + 1) = w (𝑘) − G (𝑘) [X𝐾e
H
+ âv𝜆 + 𝛾Qw (𝑘)]

= (I − 𝛾G (𝑘)Q)w (𝑘) − G (𝑘)X𝐾e
H
− 𝜆G (𝑘) âv.

(31)

Substituting (31) into the linear constraint of (27), we can get

𝜆 = 𝛼 (pTAHw (𝑘) − pTAHG (𝑘)X𝐾e
H

−𝛾pTAHG (𝑘)Qw (𝑘) − 1) ,

(32)

where 𝛼 = (pTAHG(𝑘)Ap)−1.
By inserting the multiplier 𝜆 into (31), the weight vector

can be rewritten as

w (𝑘 + 1)

= w (𝑘) − G (𝑘)X𝐾e
H
− 𝛼G (𝑘) pTAHw (𝑘)Ap

+ 𝛼G (𝑘) pTAHG (𝑘)X𝐾e
HAp + 𝛼G (𝑘)Ap

− 𝛾 [G (𝑘)Qw (𝑘) − 𝛼G (𝑘) pTAHG (𝑘)Qw (𝑘)Ap] .
(33)

Inserting (33) into the quadratic constraint of (27), we can
obtain

𝛾 =

Re [PH
(𝑘)QV (𝑘)] − Re [𝜒 (𝑘)]
VH

(𝑘)QV (𝑘)
, (34)

where

P (𝑘) = w (𝑘) − G (𝑘)X𝐾e
H
− 𝛼G (𝑘) pTAHw (𝑘)Ap

+ 𝛼G (𝑘) pTAHG (𝑘)X𝐾e
HAp + 𝛼G (𝑘)Ap,

(35)

V (𝑘) = G (𝑘)Qw (𝑘) − 𝛼G (𝑘) pTAHG (𝑘)Qw (𝑘)Ap,

𝜒
∗
(𝑘) 𝜒 (𝑘) = (Re [PH

(𝑘)QV (𝑘)])
2

− [VH
(𝑘)QV (𝑘) (PH

(𝑘)QP (𝑘) − 𝜉)] .
(36)
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4. Performance Analysis

4.1. The Implementation Complexity Cost. The complexity
cost of the conventional LSCMA and the proposed robust
LSCMA can be shown in Tables 1 and 2.

4.2. Convergence Performance. The proposed robust con-
strained LSCMA is globally stable and convergent via Agee’s
inequalities.The first input stream is successfully extracted by
establishing the following inequalities, given that 𝑖 > 0 [21]:

0 ≤
y1 (𝑖)



2

2
≤
y1 (𝑖 + 1)



2

2
≤ 𝐾,

0 ≤
y1 (𝑖 + 1) − y

1 (𝑖)


2

2
≤ 𝑔 (w

1 (𝑖)) ≤
y1 (𝑖 + 1)



2

2
≤ 𝐾,

0 ≤ 𝑔 (w
1 (𝑖 + 1)) ≤ 𝑔 (w

1 (𝑖)) −
y1 (𝑖 + 1) − y

1 (𝑖)


2

2
≤ 𝐾,

(37)

where y
1
(𝑖) = wH

1
(𝑖)X
1
(𝑖) and X

1
(𝑖) = X

𝐾
.

To extract the second input stream, we begin with the
convergence of X

2
(𝑖) and then we have y

2
(𝑖) = wH

2
(𝑖)X
2
(𝑖),

which is convergent via

0 ≤
y2 (𝑖)



2

2
≤
y2 (𝑖 + 1)



2

2
≤ 𝐾. (38)

Then, each output stream is convergent via

0 ≤
y𝑚 (𝑖)



2

2
≤
y𝑚 (𝑖 + 1)



2

2
≤ 𝐾. (39)

For 𝑖 > 0, the overall performance may either improve
or be maintained; thus the convergence performance of the
proposed LSCMA is established.

4.3. Output SINR Performance. The output signal of the
proposed beamformer can be expressed as

𝑦 (𝑘) = wH
(𝑘) x (𝑘)

= 𝑒
𝑗𝜑(𝑘)

+ 𝜔𝑚 (𝑘) 𝑒
𝑗𝜙(𝑘)

,

(40)

where 𝜑(𝑘) is the phase of the desired signal 𝑠
0
(𝑘), 𝜔 controls

the SINR, and𝑚(𝑘) and 𝜙(𝑘) are the magnitude and phase of
the interference term, respectively. The normalized output is

𝑙 (𝑘) =
𝑦 (𝑘)

𝑦 (𝑘)


= 𝜏𝑠
0 (𝑘) + 𝜌𝑧 (𝑘) + 𝜐 (𝑘) , (41)

where the parameters 𝜏, 𝜌 determine the power of the desired
signal and the interference and 𝜐(𝑘) contains the intermodu-
lation terms. Here we are interested only in the power of the
desired signal and the interference in the normalized output,
and the intermodulation terms are ignored.

Assuming that the initial beamformer SINR is known, the
SINR of the normalized output signal 𝑙(𝑘) can be calculated
[22]:

SINR =
𝜏
2

𝜌2
=

𝐸 [𝑠0 (𝑘) 𝑙
∗
(𝑘)]



2

|𝐸 [𝑧 (𝑘) 𝑙
∗
(𝑘)]|
2
. (42)

Table 1: The complexity cost of the conventional LSCMA.

The complexity cost
R̂
𝐾

𝑂(𝑀
2
× 𝐾)

R̂−1
𝐾

𝑂(𝑀
3
)

𝛿 𝑂(2𝑀
2
+𝑀 × 𝐾 + 2𝑀 + 𝐾 + 1)

R̂−1
𝐾
X
𝐾
eH 𝑂(𝑀

2
× 𝐾 +𝑀 × 𝐾)

R̂−1
𝐾
a(𝜃
0
)𝛿 𝑂(𝑀

2
+𝑀)

Total
complexity cost 𝑂(𝑀

3
+ (2𝐾 + 3) ×𝑀

2
+ (2𝐾 + 3) ×𝑀+𝐾+ 1)

Table 2: The complexity cost of the proposed LSCMA.

The complexity cost
Q(𝑘) 𝑂(4𝑀

2
)

G(𝑘) 𝑂(3𝑀
2
+ 2𝑀)

Ap 𝑂(𝑀 × 𝐿)

d 𝑂(2𝑀
2
+ (𝐾 + 𝐿 + 2) ×𝑀)

𝜆 𝑂(𝑀
2
+ 4𝑀 + 2)

P(𝑘) 𝑂(4𝑀
2
+ (𝐾 + 1) ×𝑀 + 𝐾)

V(𝑘) 𝑂(3𝑀
2
+𝑀)

𝜒(𝑘) 𝑂(3𝑀
2
+ 3𝑀 + 1)

Total complexity cost 𝑂(20𝑀
2
+ (2𝐾 + 2𝐿 + 13) ×𝑀 + 𝐾 + 3)

We assume 𝜔 ≪ 1, so the cross-correlation of 𝑠
0
(𝑘) and 𝑙(𝑘)

is

𝜏 = 𝐸 [ (1 + 𝜔𝑚 (𝑘) 𝑒
𝑗(𝜑(𝑘)−𝜙(𝑘))

)

× (1 − 𝜔𝑚 (𝑘) cos (𝜑 (𝑘) − 𝜙 (𝑘))) ] ≃ 1.

(43)

Similarly the cross-correlation of 𝑧(𝑘) and 𝑙(𝑘) is

𝜌 = 𝐸 [ (𝑚 (𝑘) 𝑒
𝑗(𝜙(𝑘)−𝜑(𝑘))

+ 𝜔𝑚
2
(𝑘))

× (1 − 𝜔𝑚 (𝑘) cos (𝜑 (𝑘) − 𝜙 (𝑘))) ]

=
𝜔

2
.

(44)

Inserting (43) and (44) to (42), we can obtain the output SINR
as 4/𝜔2, so the normalized output of the proposed algorithm
increases the array output SINR.

5. Simulation Results

In this section,Matlab software is used to evaluate the perfor-
mance of the proposed algorithm.The sampling frequency is
𝐹 = 3𝑓

𝑠
in the narrowband signal processing, where 𝑓

𝑠
is

the maximal signal frequency. The sine wave signal source
has been used for simulations. The block diagram to clarify
the simulation scenario is shown in Figure 1. A uniform
linear array of 𝑀 = 10 sensors spaced half-wavelength
apart is considered. All results are obtained by averaging
100 independent simulation runs. In all experiments, the
nondirectional noise is assumed to be a spatially white
Gaussian noise with unit covariance. It is assumed that there
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snapshots 

Robust constrained LSCMA
beamformer 

The output desired
signal

Initialize the 
parameters

Compute

and  matrix Q

Compute 𝜆(k) by using
(32), and then calculate 𝛾(k)

by using (34)

Use 𝜆(k) and 𝛾(k)
obtained in (33) to
update the weight

vector w(k)

steering vector âv

Figure 1: The simulation scenario diagram.

is one desired source at 3∘ and two interfering sources at −50∘
and 50∘. The a priori uncertainty in the DOA is over the
region 𝑢 = sin(𝜃) ∈ [−0.2, 0.2]. The set Θ is composed of
𝐿 = 20 evenly spaced points on the interval [−0.2, 0.2]. First,
we show the performance of array beampattern. Next, we
investigate the performance of SINR improvement brought
by the proposed method. The constrained parameter 𝜉2 =
0.03 is chosen for robust constrained LSCMA.

Example 1 (array beampatterns of two algorithms). The
SNR is equal to 10 dB. The aforementioned algorithms are
simulated by using a mismatched steering vector of the
desired signal, where the practical angle of incidence equals
6∘. This corresponds to a Δ = 3

∘ mismatch in the signal
look direction. Figure 2 shows the array beampatterns of
the above-mentioned algorithms against snapshots for the
no mismatch case. The vertical line in the figure represents
direction of arrival of the desired signal. It is clear that in
the two algorithms deep nulls are formed at the directions
of interferences and the array has magnitude response. The
mismatch case is illustrated in Figure 3, where the vertical line
represents the direction of the actual signal. We find out that
at a small mismatch the linearly constrained LSCMA treats
the desired signal as a main beam interferer and is trying
to suppress it, which leads to performance degradation.
However, the proposed algorithm is better at providing
robustness and having resolution compared with the linearly
constrained LSCMA.

Example 2 (output SINR versus snapshots). In the sec-
ond experiment, the SINR performance of the aforesaid
algorithms for the fixed SNR = 0 dB against the array
imperfections is illustrated in Figures 4 and 5. In this example,
the constrained LSCMA is very sensitive even to slight
mismatches, which can cause signal cancellation problem.
The result in Figure 5 shows that the proposed method
offers about 5 dB improvement over the linearly constrained
LSCMA and makes output SINR close to the optimal one
due to the efficient handling of the average steering vector
and worst-case performance optimization. It is clear that
the proposed algorithm has superior performance on SINR
improvement for no array imperfections.
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Figure 2: Array beampattern (in no mismatch case).
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Figure 5: Output SINR versus𝑁 (in the mismatch case).

Example 3 (output SINR versus input SNR). In this experi-
ment, we evaluate the SINR performance versus input SNR
with DOA error for the fixed sample data size 𝑁 = 100.
The simulation results in Figures 6 and 7 indicate that
the proposed method has slight performance degradation
with the increasing of input SNR, and it is not sensitive
to the power of the target signal. In this example, the
performance of the linearly constrained LSCMA degrades
when the signal power increases. Robust constrained LSCMA
is known theoretically not to reach the optimal performance,
but it is seen that for positive SNR the performance is almost
identical to the optimal SINR. As expected, the sensitivity

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

4

8

12

16

20

SNR (dB)

O
ut

pu
t S

IN
R 

(d
B)

Linearly constrained LSCMA
Robust constrained LSCMA
Optimal SINR

Figure 6: Output SINR versus SNR (in no mismatch case).
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Figure 7: Output SINR versus SNR (in the mismatch case).

to signal steering vector mismatches can be significantly
lowered by the proposed algorithm. As a result, the proposed
algorithm can provide sufficient robustness to pointing errors
in perturbation situations.

6. Conclusions

In this paper, a novel robust LSCMA algorithm based on
double constraints is proposed via the Bayesian approach and
worst-case performance optimization. To improve robust-
ness, the weight vector is optimized to involve minimization
of the objective function with penalty for the worst-case
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signal steering vector by the partial Taylor-series expansion
and Lagrange multiplier method, in which the parameters
can be precisely derived at each iterative step. Moreover, the
online implementation of the proposed algorithm eliminates
the covariance matrix inversion estimation, which has a
low computational load. The proposed robust constrained
LSCMA has a faster convergence rate, provides better robust-
ness against the signal steering vector mismatches, and
yields improved array output performance compared with
the linearly constrained LSCMA.The theoretical analysis and
simulation experiments have been carried out to illustrate
the significant performance improvement of the proposed
method for the signal steering vector mismatches.
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Cognitive radar is an intelligent system, and it can adaptively transmit waveforms to the complex environment. The intelligent
radar system should be able to provide different trade-offs among a variety of performance objectives. In this paper, we investigate
the mutual information (MI) in signal-dependent interference and channel noise. We propose a waveform design method which
can efficiently synthesize waveforms and provide a trade-off between estimation performance and detection performance. After
obtaining a local optimal waveform, we apply the technique of generating a constant modulus signal with the given Fourier
transform magnitude to the waveform. Finally we obtain a waveform that has constant modulus property.

1. Introduction

Cognitive radar (CR) is a new concept of radar system pro-
posed by Haykin in 2006 [1, 2]. In CR, the radar continuously
learns about the environment through experience gained
from interactions of the receiver with the environment, the
transmitter adjusts its illumination of the environment in an
intelligent manner and the whole radar system constitutes a
closed-loop dynamic system. Therefore, adaptive waveform
design is important to the performance of radar system.
Recently, advances in flexible waveform generators and high-
speed signal processing hardware have made it possible for
transmitted waveforms to vary with the complex environ-
ment.

Many researches focused on waveform design for differ-
ent tasks, for example, target detection, estimation, tracking,
and recognition. An early attempt to the problem of matched
waveform design for detecting a known target in additive
Gaussian noise was addressed via the SNR criterion in [3].
From the frequency domain approach, the SNR-based opti-
mal matched waveform for a known target in signal-depend-
ent interference was derived in [4]. Information theory is
also an important tool for waveform design. Bell [5] firstly
proposed the method of maximizing the mutual information
between the received signal and target impulse response to
optimize the waveform, and many articles also used mutual

information as the optimal criterion for waveform design [6,
7]. Because a more flexible design framework is required, CR
should be able to provide different trade-offs among a variety
of performance objectives. Haykin et al. [8] proposed a wave-
form design method that efficiently synthesizes waveforms
which provide a trade-off between estimation performance
for aGaussian ensemble of targets and detection performance
for a specific target in channel-noise-only environment.

In this paper, we will consider a situation when the sig-
nal-dependent interference is not negligible, and provide an
optimal trade-off between the detection and estimation cri-
teria. Thus we seek to maximize the mutual information be-
tween a random target impulse response and the received
radar waveform, subjected to a lower bound on the SINR for
the target and energy constraints. We assume that the target
hypotheses are statistically characterized by known power
spectral density (PSD) as in [9]. Therefore, the actual target
realization is an unknown sample function generated from
the PSD of the true target class.

One consideration in forming practical radar waveforms
is the constant modulus constraint, which permits efficient
use of the front-end power amplifier [10]. With proper
manipulation of the waveforms in the temporal domain, it
should be possible to design constant modulus waveforms
that approximate MI-based waveform spectrum with some
loss of optimality. Pillai et al. give us a technique of generating
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a constant modulus signal with the given Fourier transform
magnitude in [11]; thus we can use this method to get a
waveform that has constant modulus property.

This paper is organized in the followingmanner. Section 2
describes the target model for waveform design in signal-
dependent interference. Section 3 explains how to gener-
ate the constant modulus waveform from a given Fourier
transform magnitude. Section 4 shows the derivation of the
mutual information between the random target impulse
response and the received radar waveform in signal-
dependent interference and waveform design technique for
target detection and estimation in signal-dependent inter-
ference. Section 5 shows some simulation results. The whole
paper is summarized in Section 6.

2. Signal Model

The block diagram in Figure 1 represents the signal model
of a target ensemble in ground clutter being considered. Let
𝑥(𝑡) be a finite-energy waveform with duration 𝑇. Let 𝑔(𝑡)
be a zero-mean extended target with energy spectral variance
𝜎
2

𝐺
(𝑓). Let 𝑇

𝑔
be the time duration where most of the target

impulse’s energy resides. It is necessary to have 𝑇
𝑔

> 𝑇 to
capture the target impulse response’s energy. The clutter 𝑐(𝑡)
is a zero-mean complexGaussian randomprocesswith power
spectral density (PSD) 𝜎

2

𝐶
(𝑓), and 𝑛(𝑡) is the zero-mean

receiver noise process with one-sided PSD𝑃
𝑛
(𝑓). In addition,

𝑛(𝑡) is assumed to be statistically independent of the transmit-
ted waveform 𝑥(𝑡), the target impulse response 𝑔(𝑡), and the
clutter 𝑐(𝑡).

The waveform received at the receiver is filtered by the
ideal lowpass filter 𝐵(𝑓), passing only frequencies in the
band 𝜔. This is just a statement of the fact that we assume
that the transmitted signal has no significant energy outside
the frequency interval 𝑤 = [−𝑊,𝑊]. Since 𝑧(𝑡) and 𝑑(𝑡) are
the response of a linear time-invariant system to the trans-
mitted signal, they do not have significant energy outside the
frequency interval 𝑤 = [−𝑊,𝑊]. Hence we will not consider
frequencies outside this interval.

Let 𝑦(𝑡) be the received signal given by

𝑦 (𝑡) = 𝑧 (𝑡) + 𝑑 (𝑡) + 𝑛 (𝑡) . (1)

𝑧(𝑡) and 𝑑(𝑡) are defined by

𝑧 (𝑡) = 𝑥 (𝑡) ∗ 𝑔 (𝑡) ,

𝑑 (𝑡) = 𝑥 (𝑡) ∗ 𝑐 (𝑡) ,

(2)

where ∗ denotes the convolution operator.

3. Constant Envelope Signals with Given
Fourier Transform Magnitude

Pillai et al. give us a technique of generating a constant mod-
ulus signal with the given Fourier transform magnitude in
[11]. It is summarized as follows.

Let 𝐶
𝑀

denote the set of functions {𝑔(𝑡)} that have the
prescribed Fourier transform magnitude 𝑀(𝜔) over a pre-
scribed frequency set Ω. The operator 𝑃

𝑀
will assign every

g(t)

c(t)

n(t)

x(t) y(t)z(t)

d(t)

Ideal
LPF B(f)

Figure 1: Signal model of a target ensemble in signal-dependent
interference.

arbitrary function 𝑥(𝑡) a “nearest neighbor” 𝑃
𝑀
𝑥(𝑡) that be-

longs to 𝐶
𝑀

such that there exists no other element 𝑔 ∈ 𝐶
𝑀

for which ‖𝑥 − 𝑔‖ < ‖𝑥 − 𝑃
𝑀
𝑥‖ is satisfied.

Given an arbitrary function 𝑥(𝑡), its corresponding Fou-
rier transform is𝑋(𝜔) = |𝑋(𝜔)|𝑒

𝑗Ω(𝜔) and themagnitude pro-
jection of 𝑥(𝑡) is defined as

𝑃
𝑀
𝑥 (𝑡) ←→ {

𝑀(𝜔) 𝑒
𝑗Ω(𝜔)

, 𝜔 ∈ Ω

𝑋 (𝜔) , 𝜔 ∈ Ω

.

(3)

For a constant envelope signal 𝑥(𝑡), it can be expressed as

𝑥 (𝑡) = 𝐴𝑒
𝑗𝜃(𝑡)

, (4)

where 𝐴 is a suitable positive constant that can be used to
maintain a prescribed energy level for 𝑥(𝑡).

Interestingly, constant envelope signals also share prop-
erties similar to the Fourier transform magnitude situation.
Notice that if 𝐶

𝐴
denotes the set of functions {𝑔(𝑡)} which

have constant envelope level 𝐴, the operator 𝑃
𝐴
will assign

every arbitrary function 𝑥(𝑡) a nearest neighbor 𝑃
𝐴
𝑥(𝑡) that

belongs to 𝐶
𝐴
such that no other element 𝑔 ∈ 𝐶

𝐴
satisfies

‖𝑥 − 𝑔‖ < ‖𝑥 − 𝑃
𝐴
𝑥‖.

Given an arbitrary signal 𝑥(𝑡) = 𝑎(𝑡)𝑒
𝑗𝜃(𝑡), the projection

procedure is

𝑃
𝐴
𝑥 (𝑡) = {

𝐴𝑒
𝑗𝜃(𝑡)

, 𝑡 ∈ 𝑇

𝑥 (𝑡) , otherwise.
(5)

The magnitude and amplitude projection are combined
according to

𝑥
𝑘+1

= 𝑃
𝐴
𝑃
𝑀
𝑥
𝑘
, (6)

where 𝑥
𝑘
is the 𝑘th iterative function. After a number of mag-

nitude and amplitude projections, the function 𝑥
𝑘
satisfies

the constant modulus property exactly while approximately
maintaining the prescribed Fourier transform magnitude.

4. Waveform Design Based on Constant
Modulus Constraint

We note that 𝑥(𝑡) is a deterministic waveform. It is explicitly
denoted in 𝐼(𝑦(𝑡); 𝑔(𝑡) | 𝑥(𝑡)) because the mutual informa-
tion is a function of 𝑥(𝑡), and we are interested in finding
those functions 𝑥(𝑡) that maximize 𝐼(𝑦(𝑡); 𝑔(𝑡) | 𝑥(𝑡)) under
constrains on their energy and bandwidth.
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Bell proposed the derivation of the mutual information
in the channel-noise-only case and derived the information-
based waveform solution. Here we provide the derivation of
the mutual information in the presence of signal-dependent
clutter.

Here we have a channel (as shown in Figure 2) with input
𝑍 (a zero-mean Gaussian random variable with variance 𝜎2

𝑍
),

clutter 𝐷 (a zero-mean Gaussian random variable with var-
iance 𝜎

2

𝐷
), and additive zero-mean Gaussian noise 𝑁 with

variance 𝜎2
𝑁
. The mutual information 𝐼(𝑌; 𝑍) between 𝑌 and

𝑍 is

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍) . (7)

The differential entropies𝐻(𝑌) and𝐻(𝑌 | 𝑍) are

𝐻(𝑌) =
1

2
ln 2𝜋𝜎

2

𝑌
=

1

2
ln 2𝜋 (𝜎

2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷
) ,

𝐻 (𝑌 | 𝑍) =
1

2
ln 2𝜋 (𝜎

2

𝑁
+ 𝜎
2

𝐷
) .

(8)

Thus the mutual information is given by the expression

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍) =
1

2
ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁
+ 𝜎
2

𝐷

) . (9)

Consider again the signal model of Figure 1. Assume that
�̂�
𝑘
(𝑡), 𝑦
𝑘
(𝑡), 𝑑
𝑘
(𝑡), and 𝑛

𝑘
(𝑡) are the sample signal in the fre-

quency band 𝐹
𝑘
= [𝑓
𝑘
, 𝑓
𝑘
+Δ𝑓] and the sampling rate is 2Δ𝑓.

The samples �̂�
𝑘
(𝑡) are independent, identically distributed

random variables with zero mean and variance 𝜎2
𝑍
. Note that

the total energy of �̂�
𝑘
(𝑡) is

𝜀
𝑍
(𝐹
𝑘
) = 2Δ𝑓

𝑋 (𝑓
𝑘
)


2
𝜎
2

𝐺
(𝑓
𝑘
) . (10)

The factor 2 in the previous formula is due to the fact that
𝑋(𝑓
𝑘
) is the two-sided spectrumof 𝑥(𝑡) and that we are carry-

ing out our calculations using only positive frequencies. In the
time interval 𝑇

𝑦
, the total samples statistically independent

are 2Δ𝑓𝑇
𝑦
. So the variance of each sample is

𝜎
2

𝑍
=

𝜀
𝑍
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=
2Δ𝑓

𝑋 (𝑓
𝑘
)


2
𝜎
2

𝐺
(𝑓
𝑘
)

2Δ𝑓𝑇
𝑦

=

𝑋 (𝑓
𝑘
)


2
𝜎
2

𝐺
(𝑓
𝑘
)

𝑇
𝑦

.

(11)

The clutter process has the total energy on the interval 𝑇
𝑦

given by

𝜀
𝐷
(𝐹
𝑘
) = 2Δ𝑓

𝑋 (𝑓
𝑘
)


2
𝜎
2

𝑐
(𝑓
𝑘
) 𝑇
𝑦
. (12)

The variance of each sample is

𝜎
2

𝐷
=

𝜀
𝐷
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=

2Δ𝑓
𝑋 (𝑓
𝑘
)


2
𝜎
2

𝐶
(𝑓
𝑘
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𝑦

2Δ𝑓𝑇
𝑦

=
𝑋 (𝑓
𝑘
)


2
𝜎
2

𝐶
(𝑓
𝑘
) .

(13)
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D

Figure 2: Channel model in the presence of clutter and additive
Gaussian noise.

The noise process has the total energy on the interval 𝑇
𝑦

given by

𝜀
𝑁
(𝐹
𝑘
) = Δ𝑓𝑃

𝑛
(𝑓) 𝑇
𝑦
. (14)

Hence, the variance 𝜎2
𝑁
of each sample is

𝜎
2

𝑁
=

𝜀
𝑁
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=

Δ𝑓𝑃
𝑛
(𝑓) 𝑇
𝑦

2Δ𝑓𝑇
𝑦

=
𝑃
𝑛
(𝑓)

2
. (15)

Themutual information between each sample𝑍
𝑚
of �̂�
𝑘
(𝑡)

and the corresponding sample 𝑌
𝑚
of 𝑦
𝑘
(𝑡) is

𝐼 (𝑌
𝑚
; 𝑍
𝑚
) =

1

2
ln[

[

1 +
2
𝑋 (𝑓
𝑘
)
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𝜎
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𝐺
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𝑘
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𝑛
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𝑘
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2

𝐶
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𝑘
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.

(16)

Now there are 2Δ𝑓𝑇
𝑦
statistically independent sample

values for both �̂�
𝑘
(𝑡) and 𝑦

𝑘
(𝑡) in the observation interval 𝑇

𝑦
.

Thus,

𝐼 (𝑦
𝑘 (𝑡) ; �̂�𝑘 (𝑡) | 𝑥 (𝑡))

= 2Δ𝑓𝑇
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𝐼 (𝑌
𝑚
; 𝑍
𝑚
)

= Δ𝑓𝑇
𝑦
ln[

[
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𝑘
)


2
𝜎
2

𝐶
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𝑘
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]

.

(17)

If we now consider the frequency interval 𝜔 = [0,𝑊],
partition it into a large number of disjoint intervals of band-
width Δ𝑓; then let the number of intervals increase as Δ𝑓 →

0, in the limit we obtain an integral for the mutual infor-
mation 𝐼(𝑦(𝑡); 𝑧(𝑡) | 𝑥(𝑡)), where we assume the 𝑥(𝑡), 𝑦(𝑡),
and 𝑧(𝑡) are confined to the frequency interval 𝜔. Hence the
mutual information 𝐼(𝑦(𝑡); 𝑧(𝑡) | 𝑥(𝑡)) is

𝐼 (𝑦 (𝑡) ; 𝑧 (𝑡) | 𝑥 (𝑡))

= 𝑇
𝑦
∫
𝑊

ln(1 +
2
𝑋 (𝑓)
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𝜎
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𝐺
(𝑓)
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𝑦
{𝑃
𝑛
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𝑋 (𝑓)


2
𝜎
2

𝐶
(𝑓)}

)𝑑𝑓,

(18)
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as

𝐼 (𝑦 (𝑡) ; 𝑔 (𝑡) | 𝑥 (𝑡)) = 𝐼 (𝑦 (𝑡) ; 𝑧 (𝑡) | 𝑥 (𝑡)) . (19)

Thus the mutual information between the random target
impulse response and the received radar waveform is

𝐼 (𝑦 (𝑡) ; 𝑔 (𝑡) | 𝑥 (𝑡))

= 𝑇
𝑦
∫
𝑊

ln(1 +
2
𝑋 (𝑓)



2
𝜎
2

𝐺
(𝑓)

𝑇
𝑦
{𝑃
𝑛
(𝑓) + 2

𝑋 (𝑓)


2
𝜎
2

𝐶
(𝑓)}

)𝑑𝑓.

(20)

For the MI waveform derivation, we treat the receiver
filter as an ideal lowpass filter with approximate time duration
𝑇
𝐵
≤ 𝑇 and 𝑇

𝐵
≤ 𝑇
𝑔
. Therefore 𝑇

𝐵
can be effectively ignored,

and the receive filter simply becomes an explicit statement
that the radar system is band limited. Therefore, 𝑇

𝑦
is

𝑇
𝑦
= 𝑇 + 𝑇

𝑔
. (21)

The mutual information between the random target im-
pulse response and the received radar waveform is shown in
formula (20).The output SINR is defined to be the ratio of the
average power of the signal component to the average power
of the noise and interference component [12]. Thus, SINR is
expressed as

SINR = ∫
𝑊

2
𝑋 (𝑓)



2
𝜎
2

𝐺
(𝑓)

𝑃
𝑛
(𝑓) + 2

𝑋 (𝑓)


2
𝜎
2

𝐶
(𝑓)

𝑑𝑓. (22)

We can assume a lower bound SINR
0
on the SINR for the

target

∫
𝑊

2
𝑋 (𝑓)
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(𝑓) + 2

𝑋 (𝑓)


2
𝜎
2

𝐶
(𝑓)

𝑑𝑓 ≥ SINR
0
. (23)

The energy constraint in the band𝜔 = [0,𝑊] is expressed
as

∫
𝑊

𝑋(𝑓)


2
𝑑𝑓 ≤ 𝐸

𝑥
. (24)

With these constraints in mind, we can now formulate
the arbitrary waveform design problem as the following con-
strained optimization problem:

max 𝑇
𝑦
∫
𝑊

ln(1 +
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∫
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2
𝑑𝑓 − 𝐸

𝑥
≤ 0.

(25)

The previous constrained problem can be formulated as
a convex optimization problem by introducing the autocor-
relation sequence of the transmitted signal. Then an interior-
point method can be used to carry out the optimization task.
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Figure 3: Closed-loop radar system.

Although the solution to this formulation is local optimal,
this process is complicated. We need to solve the nonlinear
constrained maximization problem.

After applying the technique of generating a constant
modulus signal with the given Fourier transform magnitude
to the above obtained waveform, we can get a waveform
under multiple constraints.

Figure 3 represents the closed-loop radar system in sig-
nal-dependent interference proposed for target detection and
estimation. In this figure, the CR signal processing involved is
best described by a block labeled “COGNITIVERADAR”. CR
is an intelligent system. Through sensing the environment,
CR transmits the waveform suited to the working conditions.
The radar returns and environment factors help to construct
the new waveform that achieves a trade-off between the
mutual information and the SINR for the target, that is,
an optimal trade-off between the detection and estimation
criteria. Then it reconstructs a signal with constant envelope
property in the time domain according to its Fourier trans-
form magnitude. The signal satisfies the constant modulus
property exactly while approximately maintaining the pre-
scribed Fourier transform magnitude. Then the waveform is
transmitted to the environment. It forms a feed-back loop,
and the cycle goes on and on.

5. Simulation

We consider an arbitrary target spectrum and clutter spec-
trum shown in Figure 4. The total energy is 1. The noise var-
iance is 0.1. The lower bound SINR

0
is −8 dB. The number of

sample points is 128. Sampling frequency is 2. Modulus value
is 0.25.

Figure 5 is energy spectrum of unconstrained waveform.
It shows that the optimized radar waveform only selects
the dominant frequency components of the target spectrum.
However, it does not distribute energy amongdifferentmodes
of the target. Investigating the reason, there are approximately
two: one is the spectrum amplitudes scale in order to com-
pensate for the clutter spectrum, and the other is to balance
the detection performance. Hence it provides an optimal
trade-off between the detection and estimation criteria.

Figure 6 is energy spectrum of constant modulus con-
strained waveform. It shows that the constant modulus
constraint spreads the waveform energy into additional fre-
quency bands, but the four peak amplitudes are maintained.
The energy spectrum of constant modulus constrained wave-
form in Figure 6 is similar to the energy spectrum of uncon-
strained waveform in Figure 5. Thus it guarantees the perfor-
mance of the nonconstant modulus optimized waveform.
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Figure 5: Energy spectrum of unconstrained waveform.
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Figure 7: Complex constellation of constant modulus constrained
waveform.

Figure 7 shows the time domain representation of the
signal in the complex domain with real and imaginary parts
of each instant plotted as 𝑥-axis and 𝑦-axis. The figure shows
that after applying the constant modulus constraint, the tem-
poral waveformhas constant amplitude.Thus the transmitted
waveform has no longer high peak amplitude in time domain
and can effectively through DAC and PA of transmitter.

6. Conclusions

In this paper, we investigate the mutual information between
the target impulse response and received radar waveform in
signal-dependent interference and channel noise. Then we
discuss the problem of radar waveformdesign undermultiple
constraints. Here we consider a situation when the signal-
dependent interference is not negligible. An optimal trade-
off between the detection and estimation criteria is provided.
After applying the technique of generating a constant mod-
ulus signal with the given Fourier transform magnitude to
the optimal waveform, a waveform that has constant mod-
ulus property is obtained. Simulation results have a signif-
icant meaning in the waveform design in cognitive radar.
They show that the energy spectrum of constant modulus
constrained waveform is similar to the energy spectrum of
unconstrainedwaveform.Hence the performance of the non-
constant modulus optimized waveform is guaranteed. The
waveform can also be applied to a CR performing target iden-
tification.
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This paper proposes a new optimal waveform selection algorithm for intelligent target tracking. In radar systems, optimal waveform
is inspired by the improvements in performance. When the target is intelligent and tries to escape from detection, it will maximize
the estimation error to degrade the target tracking performance. So the conventional tracking algorithms are not suitable for this
situation. In this paper, we assume a one-dimension target model which will try to escape the radar detection to degrade the
tracking performance. A new optimal waveform selection algorithm is proposed based on game theory for robust tracking. The
robust received filter is first reviewed according to zero-sum game with the derivation of estimated state error covariance. The
parameters for transmitted waveform that need to be optimized are found to be related to the robust filter. The optimal parameters
for transmitted waveform are finally found by the minimization of the trace of the estimated state error covariance. Simulation
results show the effectiveness of this new proposed algorithm for optimal waveform selection for intelligent target tracking.

1. Introduction

Since traditional radar/sonar systems lack adaptivity to the
different targets, interference, and clutter without utilizing
prior measurements or knowledge, they could not adaptively
adjust transmitted waveforms to the variant environment. So,
the modern radar/sonar systems needmore intelligent ability
in order to improve the radar performance. Cognitive radar
is proposed as a new generation radar system by Haykin
[1, 2], which can adaptively and intelligently interrogate a
propagation channel using all available knowledge. The most
important conclusion of cognitive radar system is that it
must be able to adaptively generate and transmit the optimal
waveforms to improve the accuracy of the radar system.

There are two strategies of generating optimal waveforms,
that is, selection anddesign.However, it is not clearwhich one
is better. Many researchers focused on the optimal waveform
technology for different tasks, for example, target detection,
estimation, and target tracking [3–17]. The general method
is to find signal/filter pairs to maximize the signal-to-clutter
plus interference ratio (SCIR) for detecting the target. Pillai
et al. developed an eigensolution for optimal signal/filter
pairs for target detection when the target and clutter can
be seen as linear time invariant random processes [3, 4].

Then they extended this approach to optimize the waveform
for target identification. The waveform optimization for
target identification is addressed by relating SCIR to the
Mahalanobis distance [5, 6]. Information theoretic approach
is also an important tool for the waveform optimization.
Bell proposed to maximize the mutual information (MI)
between the received signal and target impulse response to
optimize the waveform [7]. In [8], the authors introduced the
relative entropy to optimal waveform for target identification
based upon the synthesis of a sequence of probing signals
to maximize classification performance, which can extract
as much information as possible from the observations. Kay
derived the optimal NP detector firstly, which shows that
the NP detection performance does not immediately lead
to an obvious signal design criterion so that a divergence
criterion is proposed for signal design, also based on the
relative entropy in signal inputmultiple output radar scenario
[9]. Goodman et al. adopted sequential hypothesis testing
combination with mutual information and maximizing the
signal-to-noise ratio (SNR) that decides when hard decision
may be made with adequate confidence to design the wave-
form [10]. By comparing the performance of two different
waveform design techniques based on information theory
[7] and eigensolution [5], Romero et al. also found the
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relationship between the MI and maximizing the SNR in the
context of waveform design for stochastic target [11]. In [12],
the authors extended Goodman’s method, which considered
the target detection before the recognition procedure.

There are two main approaches of designing the optimal
waveform for target tracking, that is, the control theoretic and
information theoretic approaches. The first one is treated as
a control problem, since the parameters of the transmitted
waveform as an input vector, which is selected or designed
to affect the next observation and the tracker, update in a
feedback loop. In [13], the authors created the cost function
that includes the parameters of transmitted waveform for
the next step. The second one also made use of the mutual
information (MI) between the target and the observations
[14, 15]. In [14], the authors designed the libraries where
the waveform was selected through maximizing the mutual
information (MI) between the targetmodel and observations.
Then they extended this method to interacting multiple
model trackers for different dynamic models [15]. In [13],
Kershaw and Evans used the control theoretic approach to
optimize the waveform for one-dimensional target tracking
in a feedback loop system. They derived the Cramer-Rao
lower bound (CRLB) for estimating error variance from the
curvature of the peak of the ambiguity function (AF). then
the measurement noise covariance matrix that is related to
the parameters of the transmitted waveform can be evaluated
from the CRLB in high SNR condition. The minimization
of the tracking mean square error and the validation gate
volume are performed to select the next transmitted wave-
form. Kershaw and Evans extended their work in clutter
and imperfect detection situation [16]. This method was also
introduced to the wideband environment for multiple targets
tracking in clutter condition [17].

In this paper, we adopt the control theoretic approach to
find the optimal waveform for one dimension target tracking
[13]. In this paper, we assume a one-dimension target model
which will try to escape the radar detection to degrade the
tracking performance. A new optimal waveform selection
algorithm is proposed based on game theory for robust
tracking [18]. The robust received filter is first reviewed
according to zero-sum game with the derivation of esti-
mated state error covariance. The parameters for transmitted
waveform that need to be optimized are found to be related
to the robust filter. The optimal parameters for transmitted
waveformare finally found by theminimization of the trace of
the estimated state error covariance. Simulation results show
the effectiveness of this new proposed algorithm for optimal
waveform selection for intelligent target tracking.

This paper is organized in the followingmanner. Section 2
reviews the control approach in [13] and presents the problem
for target tracking. Section 3 describes the optimal waveform
selection for robust target tracking. Section 4 shows the sim-
ulation results. The conclusion is summarized in Section 5.

2. Problem Formulation

We begin with a brief overview of the control approach for
one-dimension target tracking in [13]. In radar/sonar system,

the transmitted signal can be written as

𝑠
𝑇 (𝑡) = √2Re {√𝐸

𝑇
𝑠 (𝑡) 𝑒
𝑗𝜔
𝑐
𝑡
} , (1)

where 𝑠(𝑡) is the complex envelope,𝜔
𝑐
is the carrier frequency,

and 𝐸
𝑇
is the energy of the transmitted signal. When the

target exists, the received waveform envelope is

𝑟 (𝑡) = √𝐸
𝑅
𝑒
𝑗𝜙
𝑠 (𝑡 − 𝜏

0
) 𝑒
𝑗]
𝑜
𝑡
+ 𝑛 (𝑡) , (2)

where 𝐸
𝑅
is the energy of the received signal. 𝑛(𝑡) is zero-

mean complexwhiteGaussian noisewith real spectral density
𝑁
0
/2. 𝜏
0
and 𝜐
0
denote the target timedelay andDoppler shift,

respectively.
The ambiguity function corresponding to the received

waveform in frequency domain is written as

𝐴 (𝜏, ]) = ∫

∞

−∞

𝑆 (𝜔 −
]

2
) 𝑆
∗
(𝜔 +

]

2
) 𝑒
−𝑗𝜔𝜏

𝑑𝜔/2𝜋. (3)

The receiver parameter vector is 𝛼 = [𝜏, ]]𝑇.
The target state model as discrete time is defined by

x
𝑘+1

= Fx
𝑘
+ Gw
𝑘
. (4)

The measurement vector equation is given as

y
𝑘
= Hx
𝑘
+ n
𝑘
, (5)

where y
𝑘

= [r, ̇r] denotes the measurement vector. 𝑟 is
the range and ̇𝑟 is the target velocity. x

𝑘
is the target state

vector at time 𝑘. F, G, and H are given matrices for one-
dimensional target tracking. w

𝑘
and n

𝑘
are the zero-mean

white Gaussian noise vectors with covariance matrices Q
𝑘

and N(𝜃
𝑘
), respectively. The vector 𝜃

𝑘
characterizes the

waveform parameters at time k.
According to Lemma 3.1 in [13], build the relationship

between the receiver estimation parameter vector 𝛼 and
measurement vector y through a linear transformationT, that
is, y = T𝛼. And the measurement noise covariance matrix is
dependent on waveform parameter 𝜃 as follows:

N (𝜃) =
1

𝜂
TJ−1 (𝜃)T, (6)

where T = diag(𝑐/2, 𝑐/2𝜔
𝑐
), J is the Fisher information and

Cov(𝛼) = J−1(𝜃).
After finding the relationship between the measurement

noise covariance matrix and the waveform parameter, the
Kalman filter equations are dependent on 𝜃 as follows:

S
𝑘
(𝜃
𝑘
) = HP

𝑘/𝑘−1
H𝑇 + N (𝜃

𝑘
) ,

K
𝑘
(𝜃
𝑘
) = P
𝑘/𝑘−1

H𝑇S−1
𝑘

(𝜃
𝑘
) ,

x̂
𝑘/𝑘

(𝜃
𝑘
) = x̂
𝑘/𝑘−1

− K
𝑘
(𝜃
𝑘
) (y
𝑘
− Hx̂
𝑘/𝑘−1

) ,

P
𝑘/𝑘

(𝜃
𝑘
) = P
𝑘/𝑘−1

(𝜃
𝑘
) − K
𝑘
(𝜃
𝑘
) S
𝑘
(𝜃
𝑘
)K𝑇
𝑘
(𝜃
𝑘
) ,

x̂
𝑘+1/𝑘

(𝜃
𝑘
) = Fx̂

𝑘/𝑘
(𝜃
𝑘
) ,

P
𝑘+1/𝑘

(𝜃
𝑘
) = FP

𝑘/𝑘
(𝜃
𝑘
) F𝑇 + GQ

𝑘
G𝑇.

(7)
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In order to improve the tracking performance, mini-
mizing the trace of the mean square tracking error as cost
function is used to select the next transmittedwaveform.That
is,

𝜃
∗

𝑘+1
= arg min

𝜃
𝑘+1
∈Θ

Tr {P
𝑘+1/𝑘+1

(𝜃
𝑘+1

)} . (8)

In addition,minimization of the validation gate volume as
another cost function is to select next transmitted waveform,
which will reduce the number of false alarms in high SNR
or clutter environment. So the next transmitted waveform is
determined by

𝜃
∗

𝑘+1
= arg min

𝜃
𝑘+1
∈Θ

det {S
𝑘+1

(𝜃
𝑘+1

)} . (9)

When the target is intelligent enough to maximize the
estimation error, it could deliberately degrade the tracking
performance and even break the tracking task down. In
this case, the target state model has a fictitious adversary
disturbance that includes some unknown noise, which could
be “smart” enough to maximize the estimation state error
and decrease the target tracking performance [18]. Thus
the Kalman filter and its relative optimal waveform method
mentioned before are not suitable for this case. Thus, we
should consider the robust tracking problem, aminimax filter
based on zero-sum game is needed for target tracking, and
a new method for optimal waveform will be presented in
Section 3.

3. Minimax Filter and Waveform Selection

3.1. Minimax Filter. In order to guarantee the target tracking
performance for “smart” target, the minimax filter is needed.
Like [18, 19], the discrete linear time-invariant system in
adversary disturbance which existed is expressed by

x
𝑘+1

= Fx
𝑘
+ Gw
𝑘
+ d
𝑘
, (10)

y
𝑘
= Hx
𝑘
+ n
𝑘
, (11)

where

d
𝑘
= L
𝑘
(H (x
𝑘
− x̂
𝑘/𝑘−1

) + k
𝑘
) . (12)

Equation (12) is adversary disturbance signal which could
increase the estimated error. L is a gain to be determined; k

𝑘
is

Gaussian noise vector with zero mean and covariance matrix
R. The other parameters, x, y,H,G,w, and n, in (10) and (11),
are the same as in (4) and (5).

Based on zero-sum game, the predicted state is

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ K
𝑘
(y
𝑘
− Hx̂
𝑘/𝑘−1

) , (13)

where x̂
𝑘+1/𝑘

is the predicted state, K is the minimax filter
gain, and the prediction state error is defined by

e
𝑘/𝑘−1

= x
𝑘
− x̂
𝑘/𝑘−1

. (14)

Substituting (10) and (13) into (14), we have

e
𝑘+1/𝑘

= F (x
𝑘
− x̂
𝑘/𝑘−1

) − K
𝑘
(y
𝑘
− Hx̂
𝑘/𝑘−1

) + Gw
𝑘
+ d
𝑘
.

(15)

Substituting (11) and (12) into (15), the final prediction
error at time 𝑘 + 1 is

e
𝑘+1/𝑘

= (F − KH + LH) e𝑘/𝑘−1 + Gw
𝑘
+ Lk
𝑘
− Kn
𝑘
. (16)

From (15), it can been seen that the adversary part, d
𝑘
, can

increase the estimation error. To prevent this, the estimation
error in (16) can be decomposed as follows:

e
𝑘+1/𝑘

= e𝐾
𝑘+1/𝑘

+ e𝐿
𝑘+1/𝑘

, (17)

where

e𝐾
𝑘+1/𝑘

= (F − K
𝑘
H + L

𝑘
H) e𝐾
𝑘/𝑘−1

+ Gw
𝑘
− K
𝑘
n
𝑘
,

e𝐾
0

= x
0
,

e𝐿
𝑘+1/𝑘

= (F − K
𝑘
H + L

𝑘
H) e𝐿
𝑘/𝑘−1

+ L
𝑘
k
𝑘
,

e𝐿
0
= 0.

(18)

Motivated by [18, 19] the cost function is defined by

𝐽 (K, L) = trace(
𝑇

∑

𝑘=0

𝐸 [

e𝐾
𝑘+1/𝑘



2

−

e𝐿
𝑘+1/𝑘



2

]) . (19)

The minimax filter designed based on zero-sum game is
to find the optimized filter gain K and the robust filter gain
L. The gain K should be optimized to minimize the 𝐽 so that
the tracking performance is better, since the prediction error
e𝐾
𝑘+1/𝑘

is relative to noises of w
𝑘
and n

𝑘
. The gain L should

be optimized to maximize the 𝐽, since the e𝐿
𝑘+1/𝑘

is relative to
the noise of k

𝑘
, which makes the worst possible disturbance.

Let K∗ and L∗ denote the optimized gains, which satisfies a
saddle-point equilibrium, that is,

𝐽 (K∗, L) ≤ 𝐽 (K∗, L∗) ≤ 𝐽 (K, L∗) . (20)

To solve (20), the cost function (19) needs to be written in
a more convenient form. Define Z

𝑘
as follows:

Z
𝑘
= F − K

𝑘
H + L

𝑘
H. (21)

Let P𝐾
𝑘+1/𝑘

= 𝐸[(e𝐾
𝑘+1/𝑘

)(e𝐾
𝑘+1/𝑘

)
𝑇

] and P𝐿
𝑘+1/𝑘

=

𝐸[(e𝐿
𝑘+1/𝑘

)(e𝐿
𝑘+1/𝑘

)
𝑇

]; we have

P𝐾
𝑘+1/𝑘

= Z
𝑘
P𝐾
𝑘/𝑘−1

Z𝑇
𝑘
+ GQ

𝑘
G𝑇 + K

𝑘
NK𝑇
𝑘
,

P𝐿
𝑘+1/𝑘

= Z
𝑘
P𝐿
𝑘/𝑘−1

Z𝑇
𝑘
+ L
𝑘
RL𝑇
𝑘
.

(22)

The cost function (19) can be rewritten by

𝐽 (K, L) = trace(
𝑇

∑

𝑘=0

P
𝑘+1/𝑘

) , (23)

where P
𝑘+1/𝑘

= P𝐾
𝑘+1/𝑘

− P𝐿
𝑘+1/𝑘

= Z
𝑘
P
𝑘/𝑘−1

Z%
𝑘

+ GQ
𝑘
G𝑇 +

K
𝑘
NK𝑇
𝑘
− L
𝑘
RL𝑇
𝑘
.

Let

U
𝑘
= GQ

𝑘
G𝑇 + K

𝑘
NK𝑇
𝑘
− L
𝑘
RL𝑇
𝑘
. (24)
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Then P
𝑘+1/𝑘

= Z
𝑘
P
𝑘/𝑘−1

Z𝑇
𝑘
+ U
𝑘
. According to Theorem 1 in

[18], the game equilibrium is derived by

K∗
𝑘
= FΣ
𝑘
H𝑇N−1,

L∗
𝑘
= FΣ
𝑘
H𝑇R−1,

Σ
−1

𝑘
= P−1
𝑘/𝑘−1

+ H𝑇 (N−1 − R−1)H.

(25)

After obtaining the game equilibrium (K∗
𝑘
, L∗
𝑘
), substitute

K∗
𝑘
and L∗

𝑘
into (21) and (24), respectively. the covariance

matrix P
𝑘+1/𝑘

can be expressed by

P
𝑘+1/𝑘

= FΣ
𝑘
F𝑇 + GQG𝑇. (26)

Finally, the minimax filter based on zero-sum game
equations is

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ K∗
𝑘
(y
𝑘
− Hx̂
𝑘/𝑘−1

) ,

P
𝑘+1/𝑘

= FΣ
𝑘
F𝑇 + GQG𝑇,

Σ
−1

𝑘
= P−1
𝑘/𝑘−1

+ H𝑇 (N−1 − R−1)H,

K∗
𝑘
= FΣ
𝑘
H𝑇N−1,

L∗
𝑘
= FΣ
𝑘
H𝑇R−1.

(27)

The minimax filter based on the game theory is suitable
for the robust target tracking. However, the minimax filter
only considers the tracking performance in the receiver. in
order to improve the robust tracking performance better, the
transmitter waveform could be considered for “smart” target,
and then, we will deliberate the waveform selection for robust
target tracking

3.2. Waveform Selection. According to the review of the
control approach in [13], the minimax filter is related to the
waveform parameter by the measurement noise covariance.
So considering thewaveformparameter, (27) could be rewrit-
ten as

x̂
𝑘+1/𝑘

(𝜃
𝑘
) = Fx̂

𝑘/𝑘−1
+ K∗
𝑘
(𝜃
𝑘
) (y
𝑘
− Hx̂
𝑘/𝑘−1

) ,

P
𝑘+1/𝑘

(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
) F𝑇 + GQG𝑇,

Σ
−1

𝑘
(𝜃
𝑘
) = P−1
𝑘/𝑘−1

+ H𝑇 (N−1 (𝜃
𝑘
) − R−1)H,

K∗
𝑘
(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
)H𝑇N−1 (𝜃

𝑘
) ,

L∗
𝑘
(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
)H𝑇R−1,

(28)

where 𝜃
𝑘
is the waveform parameter vector. The minimax

filter in (28) contains the transmitted waveform parameters,
which is similar to the results of (27) when the transmitted
waveform parameter 𝜃

𝑘
is fixed. However, it does not indicate

what is the relationship between the next step transmitted
waveform and corresponding tracking performance. Equa-
tion (27) just found that the current waveform parameter
impects the next step prediction error.

Our aim is to find the relationship between the transmit-
ted waveforms and its corresponding tracking performance,
build the optimization criterion, and select the optimal
waveform to improve the robust tracking performance better
compared to the minimax filter.

Like standard Kalman filter

x̂
𝑘/𝑘

= x̂
𝑘/𝑘−1

+ G
𝑘/𝑘−1

(y
𝑘
− Hx̂
𝑘/𝑘−1

) , (29)

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘

, (30)

where x̂
𝑘/𝑘

is the estimated state and G
𝑘/𝑘−1

is the filter gain.
Substituting (29) into (30), we have

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ FG
𝑘/𝑘−1

(yHx̂
𝑘/𝑘−1

) . (31)

Compared to (13), the relationship between the two gains,
G and K, is

G
𝑘/𝑘−1

= F−1K
𝑘
. (32)

The estimated state error is defined by

e
𝑘+1/𝑘+1

= x̂
𝑘+1

− x̂
𝑘+1/𝑘+1

. (33)

According to (11), (29) and (33), the estimated state error
could be derived by

e
𝑘+1/𝑘+1

= (I − G
𝑘+1/𝑘

H) e
𝑘+1/𝑘

− G
𝑘+1/𝑘

n
𝑘+1

, (34)

where I is the identity matrix.
The covariance of the estimated state error is defined by

P
𝑘+1/𝑘+1

= 𝐸 (e
𝑘+1/𝑘+1

e𝑇
𝑘+1/𝑘+1

) . (35)

Substituting (34) into (35) and considering the transmit-
ted waveform parameter, we have

P
𝑘+1/𝑘+1

(𝜃
𝑘+1

) = M
𝑘+1/𝑘

P𝐾
𝑘+1/𝑘

M𝑇
𝑘+1/𝑘

+ M
𝑘+1/𝑘

P𝐿
𝑘+1/𝑘

M𝑇
𝑘+1/𝑘

+ G
𝑘+1/𝑘

N (𝜃
𝑘+1

)G𝑇
𝑘+1/𝑘

,

(36)

whereM
𝑘+1/𝑘

= (I − G
𝑘+1/𝑘

H).
Now, the relationship between the next transmitted

waveform parameter and its corresponding target tracking
performance is built. Thus, the optimization criterion is
to select one transmitted waveform parameter from the
parameter database to minimize the trace of the estimated
state covariance, that is

𝜃
∗

𝑘+1
= min
𝜃
𝑘+1
∈Θ

tr {P
𝑘+1/𝑘+1

(𝜃
𝑘+1

)} . (37)

When the next optimal transmitted waveform parameter
is selected, the measurement noise covariance matrix is
known, which improves the robust tracking performance.

Theproposed optimalwaveform selection can be summa-
rized as follows.

(1) When theminimax filter gets the target state informa-
tion at time 𝑘 through (28), compute the gain G

𝑘+1/𝑘

through (32).
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(2) Compute the measurement covariance matrix
N(𝜃
𝑘+1

) through (6) for every waveform parameter
stored in the database.

(3) According to (36) , compute the trace of every esti-
mation error covariance for every waveform param-
eter and find the minimization of the values. The
waveform parameter, which is corresponding to the
minimization value, is the optimal selection for next
transmitted waveform.

4. Simulation Results

The proposed method is examined in this section. The
discrete linear time-invariant systemmatrices are followed by

F = [

[

1 1 0.5

0 1 1

0 0 1

]

]

,

G = [

[

1 0 0

0 1 0

0 0 1

]

]

,

H = [
1 0 0

0 1 0
] ,

Q = [

[

0.001 0 0

0 0.01 0

0 0 0.01

]

]

,

S = [
0.9 0

0 0.9
] .

(38)

The normal target trajectory is as follows:

𝑥 = 100 + 0.2𝑡 + 0.1𝑡
2
+ cos (5𝜋𝑡) . (39)

Considering the adversary disturbance, the intelligent
target model is

x
𝑘+1

= Fx
𝑘
+ 0.08 (x

𝑘
+ x̂
𝑘/𝑘−1

) . (40)

Some simulation parameters are adopted from [13], the
carrier frequency 𝜔

𝑐
is 25 kHz, and the speed of the transmit-

ted signal 𝑐 is 1500m/s. the return pulse signal-to-noise ratio
𝜂 is modeled by

𝜂 = (
1000

𝑟
)

4

𝜂
1000

, (41)

where 𝜂 is the returned pulse signaltonoise for a target at
1000m. 𝜂

1000
≈ 0 dB. 𝑟 is the target range. The triangular-

shaped pulse belongs to amplitude-only modulation that is
used as transmitted pulse. The waveform parameter is the
wavelength 𝜆. We set the parameter database as follows:

𝜆 = [0.1 :0.05 :0.3] , (42)
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5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

50
100
150
200
250
300
350
400
450
500

Ra
ng

e (
m

)

Figure 1: Estimation of the intelligent target by the minimax filter
with selected waveform.
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Minimax filter with fixed pulse
Target trajectory

Figure 2: Estimation of the intelligent target by the minimax filter
with fixed waveform.

where 0.05 is the step length. The relationship between the
wavelength 𝜆 and the measurement noise covariance is [13]

𝑅 (𝜆
𝑘+1

) =

[
[
[
[
[

[

𝑐
2
𝜆
2

𝑘+1

(12𝜂)
0

0
5𝑐
2

(2𝜔2
𝑐
𝜆
2

𝑘+1
𝜂)

]
]
]
]
]

]

. (43)

Firstly, the minimax filters with selected waveform and
fixed waveform are used to estimate the intelligent target,
respectively. The estimation trajectory of the minimax filter
with selected waveform and the target trajectory are shown
in Figure 1. The estimation trajectory of the minimax filter
with fixed waveform and the target trajectory are shown in
Figure 2. It can be seen that two filters can overcome the
adversary noise that deliberately maximizes the estimation
error and estimate the true target trajectory well.

The performance of the twominimax filters with selected
waveform and fixed waveform is shown in Figures 3 and 4.
Figure 3 shows the the pulse length is selected in every time
in the minimax filter with selected waveform. Figure 4 shows



6 Journal of Applied Mathematics

5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

Pu
lse

 le
ng

th
 (s

)

Selected pulse length
Maximum pulse length

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3: Parameter selection.
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Figure 4: Estimation errors.

the position errors in the two different minimax filters. It
can be seen that sometimes, the minimax filter with selected
waveform selects the parameters which are the same as the
one with fixed waveform. the position errors by the two
filters are almost the same.While, in other times, the position
error by the minimax filter with selected waveform is smaller
than the one by the minimax filter with fixed waveform,
since the measurement noise covariance is impacted by the
transmitted waveform parameter. When the target range is
known, the measurement noise covariance is only changed
by the different waveform parameters. The system will select
the “best” waveform in order to minimize the the trace of the
estimated state covariance. however, the minimax filter with
fixedwaveform generates the fixed trace of the estimated state
covariance when the target range is know

5. Conclusion

This paper focuses on the optimal waveform selection for
robust target tracking.When the target is assumed to have the
“smart” ability, which could increase the estimation error and
degrade the target tracking performance, the minimax filter
based on the game theory could address the robust tracking

problemwell from the receiver. On this basis, we improve the
minimax filter combining with the waveform selection from
the transmitter and derive its the estimation error covariance.
Then, according to the relationship between the waveform
parameter andmeasurement noise covariance, the estimation
error covariance is related to waveform parameter. Build
the optimization criterion that minimizes the estimation
error covariance by selecting the waveform parameter at
every transmission.The simulation results show the proposed
method make the performance of the robust target tracking
better than the minimax filter with fixed waveform based
game theory.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 61004052 and no. 61104005),
the Natural Science Foundation of Hebei Province (no.
F2013501075), the Fundamental Research Funds for the Cen-
tral Universities (no. N110323005) and the Doctoral Scientific
Research Foundation of Liaoning Province (no. 20131030).

References

[1] S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal
Processing Magazine, vol. 23, no. 1, pp. 30–40, 2006.

[2] S. Haykin, “Cognition is the key to the next generation of radar
systems,” inProceedings of the 13th IEEEDigital Signal Processing
Workshop and 5th IEEE Signal Processing Education Workshop
(DSP/SPE ’09), pp. 463–467, January 2009.

[3] S. U. Pillai, D. C. Youla, H. S. Oh, and J. R. Guerci, “Optimum
transmit-receiver design in the presence of signal-dependent
interference and channel noise,” in Proceedings of the 33rd
Asilomar Conference on Signals, Systems, and Computers, vol. 2,
pp. 870–875, Pacific Grove, Calif, USA, 1999.

[4] S. U. Pillai, H. S. Oh, D. C. Youla, and J. R. Guerci, “Optimum
transmit-receiver design in the presence of signal-dependent
interference and channel noise,” IEEE Transactions on Informa-
tion Theory, vol. 46, no. 2, pp. 577–584, 2000.

[5] J. R. Guerci and S. U. Pillai, “Theory and application of optimum
transmit-receive radar,” in Proceedings of the IEEE International
Radar Conference, pp. 705–710, Alexandria, Va, USA,May 2000.

[6] J. R. Guerci and S. U. Pillai, “Adaptive transmission radar: the
next “wave”?” in Proceedings of the IEEENational Aerospace and
Electronics Conference (NAECON ’00), pp. 779–786, Dayton,
Ohio, USA, October 2000.

[7] M. R. Bell, “Information theory and radar waveform design,”
IEEE Transactions on Information Theory, vol. 39, no. 5, pp.
1578–1597, 1993.

[8] S. M. Sowelam and A. H. Tewfik, “Waveform selection in radar
target classification,” IEEE Transactions on Information Theory,
vol. 46, no. 3, pp. 1014–1029, 2000.

[9] S. Kay, “Waveformdesign formultistatic radar dsetection,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 45, no. 3,
pp. 1153–1166, 2009.

[10] N. A. Goodman, P. R. Venkata, and M. A. Neifeld, “Adaptive
waveform design and sequential hypothesis testing for target
recognition with active sensors,” IEEE Journal on Selected Topics
in Signal Processing, vol. 1, no. 1, pp. 105–113, 2007.



Journal of Applied Mathematics 7

[11] R. A. Romero, J. Bae, and N. A. Goodman, “Theory and appli-
cation of SNR and mutual information matched illumination
waveforms,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 2, pp. 912–927, 2011.

[12] Y. Wei, H. Meng, Y. Liu, and X. Wang, “Radar phase-coded
waveform design for extended target recognition under detec-
tion constraints,” in Proceedings of the IEEE Radar Conference,
pp. 1074–1079, May 2011.

[13] D. J. Kershaw and R. J. Evans, “Optimal waveform selection
for tracking systems,” IEEE Transactions on InformationTheory,
vol. 40, no. 5, pp. 1536–1550, 1994.

[14] S. D. Howard, S. Suvorova, and A. Nehorai, “Waveform libraries
for radar tracking applications,” in Proceedings of the Interna-
tional Conference on Waveform Diversity and Design, pp. 1–5,
Edinburgh, UK, November 2004.

[15] S. Suvorova, S. D. Howard, W. Moran, and R. J. Evans, “Wave-
form libraries for radar tracking applications: maneuvering
targets,” in Proceedings of the 40th Annual Conference on
Information Sciences and Systems (CISS ’06), pp. 1424–1428,
Princeton, NJ, USA, March 2006.

[16] D. J. Kershaw and R. J. Evans, “Waveform selective probalilistic
data association,” IEEETransactions onAerospace and Electronic
Systems, vol. 33, pp. 1180–1188, 1997.

[17] S. P. Sira, A. Papandreou-Suppappola, and D. Morrell,
“Dynamic configuration of time-varying waveforms for agile
sensing and tracking in clutter,” IEEE Transactions on Signal
Processing, vol. 55, no. 7, pp. 3207–3217, 2007.

[18] D. Gu, “A game theory approach to target tracking in sensor
networks,” IEEE Transactions on Systems,Man, and Cybernetics,
Part B, vol. 41, no. 1, pp. 2–13, 2011.

[19] D. Simon, “A game theory approach to constrained minimax
state estimation,” IEEETransactions on Signal Processing, vol. 54,
no. 2, pp. 405–412, 2006.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 682159, 8 pages
http://dx.doi.org/10.1155/2013/682159

Research Article
Estimating Time-Varying Beta of Price Limits and
Its Applications in China Stock Market

Rongquan Bai,1 Zuoquan Zhang,1 and Menggang Li2

1 School of Science, Beijing Jiaotong University, Beijing 100044, China
2 China Center for Industrial Security Research, Beijing 100044, China

Correspondence should be addressed to Zuoquan Zhang; zqzhang@bjtu.edu.cn

Received 6 December 2012; Accepted 16 June 2013

Academic Editor: Rung Ching Chen

Copyright © 2013 Rongquan Bai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes an estimation method of time-varying beta of price limits. It uses China stock market trading data to estimate
time-varying beta and researches on systemic risk in China stock market. By comparing prediction errors of market model, SS
market model, and Censored-SS market model, it verifies the effectiveness of Censored-SS market model. Furthermore it has some
meaningful conclusions in China stock market.

1. Introduction

Since the foundation of the Capital Asset Pricing Model
(CAPM), many researchers focus a great deal of attention on
estimating the beta.Themost commonmethod of estimating
systemic risk is to estimate the slope of CAPM. It is actually a
constant and does not vary with time.

In recent years, a growing number of researches have
shown that systemic risk of portfolio is unstable, and it
will vary with time. There are some works in the literature
about estimations of time-varying beta. M-GARCHmethod,
Kalman filtering method, and time-varying market model
method proposed by Schwert and Seguin are the most
common methods [1].

M-GARCH method was first introduced by Bollerslev
[2]. It uses the conditional variance and conditional covari-
ance generated by the multivariate GARCH model to build
time-varying beta sequence. Many studies, such as Brooks et
al., have applied this method [3–6].

Another method is kalman filtering. It assumes that
beta is subjected to a random process firstly. And then it
estimates the time-varying beta and generates the relevant
parameters of the market model recursively from the initial
value. Groenewold and Fraser have studied this method [7].

The third method is extended market model method
proposed by Schwert and Seguin. They introduce the

heteroscedasticity of comprehensive market volatility and
time-varying characteristics of beta to themarketmodel. And
the time-varying beta sequence is calculated by estimating the
model’s parameters. The relevant researches have Episcopos,
Reyes, and so on [8, 9].

Brooks et al. make a comparison of the three methods in
the Australian market. They find that the results of the three
methods are significantly different. By comparing the MSEs
of estimating betas they believe that kalman filtering is the
best method in Australian stock market [10].

Although there have been several estimating methods of
time-varying beta and empirical researches of these methods
in the literaturs, institutional factors such as price limits’
effects on estimation of time-varying beta have not been
taken into account. Price limits that restrics daily highest
change rate of the stock market are introduced as a mech-
anism to stabilize the market. Many countries and areas in
the world have this restriction, such as China, Australia,
France, Japan, and Korea. However, as daily price fluctuation
is limited within a predetermined range, it will make the
observed return deviate from balanced return and change the
randomcharacteristics of return sequence; worse still, instead
of using balanced return, using observed return to do the
regression estimation leads to a biased estimation of model
parameters naturally [11]. So these methods are not suitable
for estimating beta of price limits [12–19].
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Our research will be based on the extendedmarketmodel
proposed and censoredmodel.We call it Censored-SSmarket
model.

2. Censored-SS Market Model

2.1. Market Model. Traditional market model is:

𝑅
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
𝑖
𝑅
𝑚,𝑡

+ 𝜀
𝑖,𝑡
, (1)

where 𝑅
𝑖,𝑡
is the return of portfolio 𝑖 at 𝑡; 𝑅

𝑚,𝑡
is the return of

comprehensive market at 𝑡; the slope 𝛽
𝑖
of regression model

is the beta of portfolio 𝑖, and it represents the systemic risk of
portfolio 𝑖.

The estimation of beta in (1) is

𝛽
𝑖
=
cov (𝑅

𝑖,𝑡
, 𝑅
𝑚,𝑡
)

𝜎2
𝑚

, (2)

where the numerator is the covariance between portfolio’s
return and comprehensive market’s return, and the denom-
inator is the variance of comprehensive market’ return. So
the estimation of beta based on market model is a constant
actually, and it will not vary with time.

2.2. Censored Regression Model. Censored regression model
is a kind of limited dependent variable models [12]. Censored
refers to the observed values of samples in a range that are
used by a same value. When regression model is censored,
the model is a censored model. Its expression is

𝑦
∗

𝑖
= 𝑥


𝑖
𝛽 + 𝜀
𝑖
,

𝑦
𝑖
=

{{

{{

{

𝑐
1
, 𝑦
∗

𝑖
≤ 𝑐
1
,

𝑦
∗

𝑖
, 𝑐
1
< 𝑦
∗

𝑖
< 𝑐
2
,

𝑐
2
, 𝑦
∗

𝑖
≥ 𝑐
2
,

(3)

where 𝑦∗
𝑖
is the real dependent variable, 𝑦

𝑖
is the censored

dependent variable, 𝑥
𝑖
is the independent variable matrix, 𝛽

is the parametric vector, and 𝜀
𝑖
is the disturbance term. 𝑐

1
and

𝑐
2
are two fixed values, and they represent the left and right

censored points.
It generally uses the maximum likelihood estimation to

estimate (3). Its log-likelihood function is

𝐿 (𝛽, 𝜎) = ∑

𝑦
∗

𝑖
≤𝑐
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log𝐹(
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1
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𝛽

𝜎
)
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1
<𝑦
𝑖
<𝑐
2

log𝑓(
𝑦
𝑖
− 𝑥


𝑖
𝛽

𝜎
)

+ ∑

𝑦
∗

𝑖
≥𝑐
2

log[1 − 𝐹(
𝑐
2
− 𝑥


𝑖
𝛽

𝜎
)] ,

(4)

where 𝐹 is the cumulative distribution function of the distur-
bance item and 𝑓 is the density function of the disturbance
item.

2.3. SSMarketModel. Schwert and Seguin proposed amarket
model of time-varying beta based on market model (namely
SS market model) [1]. It is defined as

𝑅
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
𝑖,𝑡
𝑅
𝑚,𝑡

+ 𝜀
𝑖,𝑡
, (5)

where beta is a variable changing with time. And it can be
divided into two parts:

𝛽
𝑖,𝑡
= 𝛽
𝑖
+

𝛿
𝑖

𝜎
2

𝑚,𝑡

, (6)

where 𝛽
𝑖
and 𝛿

𝑖
are constants and 𝜎

2

𝑚,𝑡
is the conditional

variance of comprehensivemarket return. Equation (6) shows
the relationship between systemic risk and comprehensive
market fluctuation. If 𝛿

𝑖
> 0, systemic risk and comprehen-

sive market fluctuation have a negative relation, and if 𝛿
𝑖
< 0,

systemic risk and comprehensive market fluctuation have a
positive relation.

Substituting (6) into (5),

𝑅
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
𝑖
𝑅
𝑚,𝑡

+ 𝛿
𝑖

𝑅
𝑚,𝑡

𝜎
2

𝑚,𝑡

+ 𝜀
𝑖,𝑡
. (7)

This is the SS market model, and three are three param-
eters to be estimated: 𝛼

𝑖
, 𝛽
𝑖
, and 𝛿

𝑖
. 𝜎2
𝑚,𝑡

can be estimated
by GARCH model of comprehensive market return, and its
estimation can be obtained, �̂�2

𝑚,𝑡
. So the actual estimating

equation is

𝑅
𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
𝑖
𝑅
𝑚,𝑡

+ 𝛿
𝑖

𝑅
𝑚,𝑡

�̂�
2

𝑚,𝑡

+ 𝜀
𝑖,𝑡
. (8)

Equation (8) shows that Schwert and Seguin add time-
varying characteristic of beta and heteroscedasticity charac-
teristic of comprehensive market return added in traditional
market model actually.

2.4. Return Characteristics of Price Limits. Asmany countries
implement the price limits, there have been some works in
the literature that research on return characteristics of price
limits; seeWei et al. [12–19].Market trading price’s fluctuation
range is generally calculated on the basis of the previous
day’s closing price. 𝑃

𝑡−1
represents the closing price of trading

day 𝑡 − 1 that we can observe. And limited rates of price
rises and falls are 𝑙

𝑢
and 𝑙
𝑑
, respectively. So the closing price

of trading day 𝑡 that we can observe will fall into interval
[𝑃
𝑡−1
(1 − 𝑙

𝑑
), 𝑃
𝑡−1
(1 + 𝑙

𝑢
)]. That is to say, when stock price

rises to its daily limit or stock price falls to its daily limit,
the balanced closing price 𝑃∗

𝑡
will exceed this interval and 𝑃∗

𝑡

cannot be observed [20]. The relationship between observed
price 𝑃

𝑡
and balanced price 𝑃∗

𝑡
can be described as

𝑃
𝑡
=
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𝑢
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𝑢
)

𝑃
∗

𝑡
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𝑑
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∗

𝑡
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𝑑
)

𝑃
𝑡−1
(1 − 𝑙
𝑑
) , 𝑃

∗

𝑡
≤ 𝑃
𝑡−1
(1 − 𝑙
𝑑
) .

(9)

Equation (9) demonstrates that the observed price will be
equal to the balanced price only when the balanced price lies
in the predetermined range.
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Equation (9) is divided by 𝑃
𝑡−1

and we take the log of it as
follows:

𝑅
𝑡
=

{{{{{{{{{

{{{{{{{{{

{

𝐿
𝑢
, log(

𝑃
∗

𝑡

𝑃
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𝑢

log(
𝑃
∗

𝑡

𝑃
𝑡−1

) , 𝐿
𝑑
< log(

𝑃
∗

𝑡

𝑃
𝑡−1

) < 𝐿
𝑢

𝐿
𝑑
, log(

𝑃
∗

𝑡

𝐿
𝑑

) ,

(10)

where 𝑅
𝑡
= log(𝑃

𝑡
/𝑃
𝑡−1
), and it is the observed return; 𝐿

𝑢
=

log(1 + 𝑙
𝑢
); 𝐿
𝑑
= log(1 − 𝑙

𝑑
).

log(𝑃∗
𝑡
/𝑃
𝑡−1
) in (10) can be divided as follows:

log(
𝑃
∗

𝑡

𝑃
𝑡−1

) = log(
𝑃
∗

𝑡

𝑃
∗

𝑡−1

) + log(
𝑃
∗

𝑡−1

𝑃
𝑡−1

)

= 𝑅
∗

𝑡
+ 𝐿𝑂
𝑡−1
,

(11)

where 𝑅∗
𝑡
is the balanced return of trading day 𝑡; 𝐿𝑂

𝑡−1
is

called residual return, and it is equal to log(𝑃∗
𝑡−1
/𝑃
𝑡−1
). When

the closing price of trading day 𝑡 − 1 does not reach the price
limits, because of 𝑃∗

𝑡−1
= 𝑃
𝑡−1

, 𝐿𝑂
𝑡−1

will be equal to 0. When
the closing price of trading day 𝑡 − 1 reaches the price limits,
because of 𝑃∗

𝑡−1
̸= 𝑃
𝑡−1

, 𝐿𝑂
𝑡−1

will not be equal to 0, and it
demonstrates that the unrealized return of trading day 𝑡 − 1
caused by price limits transfers to the next trading day. We
substitute (11) into (10) as follows:

𝑅
𝑡
=
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{

𝐿
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, 𝑅

∗
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𝑑
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≤ 𝐿
𝑑
.

(12)

Equation (12) is the censored law of price limits. It
demonstrates thatwhen the sumof balanced return of trading
day 𝑡 and residual return of trading day 𝑡−1 is not in (𝐿

𝑑
, 𝐿
𝑢
)

the observed return will be censored.

2.5. SS Market Model Expansion: Censored-SS Market Model.
When stock price of trading day 𝑡−1 does not reach the price
limits, 𝐿𝑂

𝑡−1
= 0. And (12) becomes

𝑅
𝑡
=

{{

{{

{

𝐿
𝑢
, 𝑅
∗

𝑡
≥ 𝐿
𝑢

𝑅
∗

𝑡
, 𝐿
𝑑
< 𝑅
∗

𝑡
< 𝐿
𝑢

𝐿
𝑑
, 𝑅
∗

𝑡
≤ 𝐿
𝑑
.

(13)

Like (12), (13) is a censored law. However, when stock
price trading day 𝑡 − 1 reaches the price limits, 𝐿𝑂

𝑡−1
̸= 0, and

it will transfer to the next trading day’s observed return. It
makes the return’s censored structure of the latter trading day
complicated, as 𝐿𝑂

𝑡−1
cannot be observed.

We cannot apply traditional regression model to the
observed return in the censored structure of price limits. In
order to apply the censored law to the observed return, we
borrow the method of Chen and Jau-Lian [11, 12] that deletes
the return data of the trading day after the price reaches the
price limits.Then the remaining data are the accordance with
the censored law.

So we introduce the censored model into the SS market
model and we can get a new model. We call it Censored-SS
market model. The model is

𝑅
∗

𝑖,𝑡
= 𝛼
𝑖
+ 𝛽
𝑖
𝑅
𝑚,𝑡

+ 𝛿
𝑖

𝑅
𝑚,𝑡

�̂�
2

𝑚,𝑡

+ 𝜀
𝑖,𝑡
, (14)

where, 𝑅∗
𝑖,𝑡

is the implicit dependent variable in censored
model. It is subject to the following equations:

𝑅
𝑖,𝑡
=

{{{
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{
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∗
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𝑑
, 𝑅
∗

𝑖,𝑡
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𝑑
.

(15)

So the estimation of (14) is to estimate the SS model.
When it is assumed that the error term 𝜀

𝑖,𝑡
is subject to

a normal distribution, the method to estimate this model
is generally maximum likelihood method. Its likelihood
function is
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(16)

where𝜙(⋅) andΦ(⋅) represent the probability density function
and cumulative distribution function of standard normal
distribution, respectively. 𝜎

𝜀
2

𝑖

is the variance of disturbance
term.𝐻

𝑛
represents the collection of the trading day that does

not reach price limits and trading day before does not reach
too. 𝐻

𝑢
represents the collection of trading day that rises to

its price limit, but the trading day before does not reach. 𝐻
𝑑

represents the collection of trading day that falls to its price
limits, but the trading day before does not reach. The union
of 𝐻
𝑛
, 𝐻
𝑢
, and 𝐻

𝑑
is the collection of trading days of which

the day before does not reach its price limits.
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Figure 1: The histogram and statistics of 𝑅
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.

3. Estimation of Time-Varying Beta of
Price Limits

3.1. China Stock Market Background. Now Shanghai and
Shenzhen stock exchanges adopt automatic computer
exchange system.There are five trading days fromMonday to
Friday and holidays are excepted. Each trading day is cut off
by morning market and afternoon market. Morning market
is from 9:30 to 11:30, and afternoon market is from 13:00 to
15:00. From 9:15 to 9:26 is called auction time beforemorning
market, and traders can submit bills, but the bills cannot be
completed. Until 9:25, the host computer starts and generates
opening prices according to the principal of price and time
preference. It uses continuous auction after 9:30. The closing
price in Shanghai stock exchange is the average weighted
price of all transactions during the last minute. If there are
no trades during the day, the closing price is the former
trading day’s closing price. The closing price in Shenzhen
stock exchange is generated by call auction. If call auction
cannot generate closing price, the closing price is the average
weighted price of all trades during the last minute. If there
are no trades during the day, the closing price is the former
trading day’s closing price [20].

China stock market has daily price limits since 1996. The
fluctuation of stock price in a trading day is less than 10%
except that this trading day is the stock’s first trading day.

3.2. Data and Sample Selection. All the trading data in this
paper are fromCSMAR database.The selected period is from
the beginning of 2009 to the end of 2011. There are a total
of 730 trading days. The comprehensive market return refers
to the Shanghai composite index return. The stock objects in
this research are limited to theA-shares listed on the Shanghai
stock exchange. In order to ensure that all the stock objects
have a long enough trading data, we remove the stocks listed
after 2009. We classify stocks into large corporations and
small corporations and use time-varying beta to research on
systemic risk in China stock market. In order to research on
systemic risk of China stock market’s large corporation and
small corporations significantly, this paper sorts the stocks in
Shanghai stock exchange according to the total value of trade
and selects 30 large corporations and 30 small corporations.

Table 1: 𝑅
𝑚,𝑡
’s autocorrelation coefficients and partial correlation

coefficients.

Level Autocorrelation
coefficient

Partial
correlation
coefficient

𝑄-statistics Probability

1 0.042 0.042 1.3213 0.250
2 −0.000 −0.002 1.3213 0.517
3 0.026 0.027 1.8370 0.607
4 −0.032 −0.034 2.5841 0.630
5 −0.015 −0.012 2.7425 0.740
6 −0.007 −0.007 2.7784 0.836
7 0.045 0.048 4.2915 0.746
8 0.012 0.008 4.4049 0.819
9 0.049 0.048 6.1816 0.722
10 0.044 0.037 7.6465 0.663

Then we select 10 stocks from them, respectively, which have
the most time of reaching price limits as samples.

3.3. Simulation of Market Return’s Conditional Variance. The
histogram and statistics of the Shanghai composite index’s
return sequence𝑅

𝑚,𝑡
from 2009 to 2011 are shown in Figure 1.

The skewness is −0.484593. Its kurtosis is 4.691811. Its Jarque-
Bera value is 115.6304. It means that the distribution of
China’s stock comprehensive market return is not normal. It
is leptokurtic and left skewed.The Shanghai composite index
return sequence𝑅

𝑚,𝑡
’s autocorrelation coefficients and partial

correlation coefficients are shown in Table 1. From Table 1
we can find that 𝑅

𝑚,𝑡
does not have serial correlation. So we

can fit GARCH models whose conditional mean equation is
𝑅
𝑚,𝑡

= 𝜇 + 𝜀
𝑡
.

We choose GARCH-M as the autoregressive conditional
heteroscedasticity model of comprehensive market return
[2].

GARCH-M model’s ARCH coefficient 𝑎
1
is 0.037161.

GARCH coefficient 𝑎
2
is 0.940227. 𝑎

1
+ 𝑎
2
= 0.977338.

It means that persistence of volatility is 0.977338. Namely,
residual impact still has 0.9773385 or 89% after five trading
days.
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Table 2: The statistics of �̂�2
𝑚,𝑡
.

Mean Median Maximum Minimum Standard deviation Size
0.000273 0.000216 0.001230 0.000133 0.000157 730
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Figure 2: The conditional variance �̂�2
𝑚,𝑡

of comprehensive market
return.

Using the selected GARCH-M model we can fit the
conditional variance of comprehensive market return within
samples. The fitting result of �̂�2

𝑚,𝑡
sequence is shown in

Figure 2. The conditional variance during 2009 is greater, as
shown in Figure 2. It means that the comprehensive market
has a sharp fluctuation in this period [20]. The descriptive
statistics of �̂�2

𝑚,𝑡
is shown in Table 2.

3.4. Estimation Results. We put the Shanghai composite
index return and conditional variance’s estimates sequence
into (14). And we make use of the large corporations and
small corporations’ return data to estimate Censored-SS
market model, and the results are shown in Table 3. After
acquiring each corporation’s estimations of 𝛽

𝑖
and 𝛿

𝑖
, we

put them into (6). Thus we get the estimated sequence of
each stock’s time-varying beta of price limits. The descriptive
statistics is shown in Tables 4 and 5.

4. Research on Systemic Risk in
China Stock Market

According the results of time-varying beta estimated by
Censored-SS model, systemic risk in China stock market
is analyzed from two aspects that are corporation size and
market fluctuation.

4.1. Corporation Size. Tables 4 and 5 show the beta’s statistics
of large corporations and small corporations, respectively.
We use large corporations’ beta mean sequences and small
corporations’ beta mean sequences to do the nonparameter
wilcoxon matched pair rank test, and the 𝑧 value and
level of significance are 0.7939 and 0.4274, respectively. So
corporation size has no effects on the mean of systemic risk
significantly.

We use large corporations’ beta standard deviation
sequences and small corporations’ beta standard deviation

Table 3: Results of Censored-SS model.

Number 𝛼
𝑖

𝛽
𝑖

𝛿
𝑖

Large corporations
1 7.42𝐸 − 05 0.998446 −5.18𝐸 − 06

2 −0.001022 1.045616 −4.26𝐸 − 05

3 −0.000279 0.754530 2.21𝐸 − 05

4 −0.000620 1.010184 6.20𝐸 − 05

5 0.001757 0.964994 5.06𝐸 − 05

6 8.00𝐸 − 05 1.078617 2.87𝐸 − 05

7 6.72𝐸 − 05 0.949563 4.01𝐸 − 05

8 −0.000402 1.434350 −4.71𝐸 − 05

9 0.000412 1.071771 1.92𝐸 − 05

10 −0.000868 1.009653 −2.57𝐸 − 05

Small corporations
1 0.000853 1.764856 −0.000210

2 0.000320 1.277261 −2.71𝐸 − 05

3 0.001859 1.240980 −1.85𝐸 − 05

4 0.002455 1.241941 −7.61𝐸 − 05

5 0.000430 0.766067 4.56𝐸 − 05

6 0.001145 1.028433 6.92𝐸 − 06

7 0.000543 1.277040 −0.000105

8 0.000659 1.077382 6.54𝐸 − 06

9 0.000725 1.340762 −1.78𝐸 − 05

10 0.000209 1.191594 −2.47𝐸 − 05

sequences to do the nonparameter wilcoxon matched pair
rank test, and the 𝑧 value and level of significance are 0.1134
and 0.9097, respectively. So corporation size has no effects on
the fluctuation of systemic risk significantly.

4.2. Market Fluctuation. 𝛿
𝑖
represents the relationship

between systemic risk and market fluctuation. If 𝛿
𝑖
> 0,

systemic risk and market fluctuation have a negative relation,
and if 𝛿

𝑖
< 0, systemic risk and market fluctuation have

a positive relation. Table 6 shows the statistics of 𝛿
𝑖
. From

Table 6 we can see that there is only a slight difference
between large corporations’ |𝛿

𝑖
| and small corporations’

|𝛿
𝑖
|. We use large corporations’ |𝛿

𝑖
| sequences and small

corporations’ |𝛿
𝑖
| sequences to do the nonparameter

wilcoxon matched pair rank test, and the 𝑧 value and level
of significance are 0.1134 and 0.9097, respectively. So market
fluctuation’s effect on the absolute level of systemic risk has
no difference between different corporation sizes.

From Table 6 we can also see that the mean of large
corporations’ 𝛿

𝑖
is positive and the mean of small corpo-

rations’ 𝛿
𝑖
is negative. And six stocks of large corporations

have positive 𝛿
𝑖
and four stocks of large corporations have

negative 𝛿
𝑖
. However, three stocks of large corporations

have positive 𝛿
𝑖
and seven stocks of large corporations have



6 Journal of Applied Mathematics

Table 4: The descriptive statistics of time-varying beta of large
corporations.

Number Mean Maximum Minimum Standard deviation
1 0.975618 0.994234 0.959502 0.007778
2 0.857880 1.010975 0.725347 0.063969
3 0.851923 0.920679 0.772501 0.033186
4 1.283414 1.476304 1.060600 0.093101
5 1.187985 1.345408 1.006140 0.075982
6 1.205096 1.294385 1.101955 0.043097
7 1.126281 1.251037 0.982171 0.060215
8 1.226783 1.396050 1.080249 0.070727
9 1.156384 1.216118 1.087384 0.028831
10 0.896395 0.988755 0.816439 0.038592
Total 1.076776 1.476304 0.725347 0.166302

Table 5: The descriptive statistics of time-varying beta of small
corporations.

Number Mean Maximum Minimum Standard deviation
1 0.839398 1.594092 0.186064 0.315097
2 1.157833 1.255224 1.073522 0.040694
3 1.159452 1.225937 1.101896 0.027780
4 0.906573 1.180060 0.669817 0.114274
5 0.967024 1.108891 0.803147 0.068474
6 1.058929 1.080458 1.034060 0.010391
7 0.814311 1.191658 0.487644 0.157671
8 1.106203 1.126550 1.126550 0.009821
9 1.262318 1.326288 1.206941 0.026729
10 1.082743 1.171509 1.005898 0.037090
Total 1.035478 1.594092 0.186064 0.185705

Table 6: The statistics of 𝛿
𝑖
estimated by Censored-SS model.

Large corporations Small corporations
𝛿
𝑖

Mean 1.02𝐸 − 05 −4.20𝐸 − 05

Maximum 6.20𝐸 − 05 4.56𝐸 − 05

Minimum −4.71𝐸 − 05 −0.00021

Standard deviation 3.85𝐸 − 05 7.26𝐸 − 05

Greater than 0 6 3
Less than 0 4 7

𝛿𝑖


Mean 3.43𝐸 − 05 4.89𝐸 − 05

Maximum 6.20𝐸 − 05 0.00021
Minimum 5.18𝐸 − 06 6.54𝐸 − 06

Standard deviation 1.71𝐸 − 05 6.77𝐸 − 05

Greater than 0
Less than 0

negative 𝛿
𝑖
. Namely, when market fluctuation is increasing,

systemic risk of large corporation is decreasing and systemic
risk of small corporation is increasing. So When market
fluctuation is increasing, investment portfolio transfers to

Table 7: The statistics of RMSE within samples.

Censored-SS
market model

SS market
model

Market
model

Mean 0.026684 0.026684 0.026766
Maximum 0.030186 0.030194 0.030197
Minimum 0.024953 0.024957 0.024963
Standard deviation 0.001592 0.001598 0.001611

large corporation stock can decrease risk in China stock
market.

5. Comparison of Market Model, SS Market
Model, and Censored-SS Market Model

5.1. Prediction Errors within Samples. In order to compare the
threemodels’ prediction error within samples, this paper uses
the same samples to estimate market model and SS market
model. The three models’ descriptive statistics of RMSE are
shown in Table 7.

Censored-SS model’s RMSE is less than that of SS market
model. And SS market model’s RMSE is less than that
of market model. So when considering the time-varying
characteristics, SS market model and Censored-SS market
model acquire amore accurate return prediction thanmarket
model within samples. And when taking price limits into
account, Censored-SS market model acquires a more accu-
rate prediction than SS market model.

So for fitting error of stock return within samples, we
believe that the beta estimation ofCensored-SSmodel ismore
accurate than market model and SS market model.

5.2. Beta. We take ten large corporations and ten small
corporations as two combinations. And the combination’s
time-varying beta sequence is equal to the average sequence
of the ten corporations’ daily beta, respectively, as shown
in Figures 3 and 4. The blue line represents the constant
beta sequence estimated by market model. The green line
represents the beta sequence estimated by SS market model.
And the red line represents the beta sequence estimated by
Censored-SS market model. These two figures show that the
beta sequence estimated by SS market model is less than the
beta sequence estimated by Censored-SS market model most
of the time. In other words, ignoring the price limits will lead
to underestimate the time-varying systemic risk.

6. Conclusion

This paper proposes an estimation method of time-varying
beta of price limits and researches on the systemic risk in
China stock market. This paper introduces the three main
estimation methods of time-varying beta in the literature
firstly. And combined with price limits’ effects on stock
return, it uses a Censored-SS market model. It uses trading
data of China’s stock market to estimate time-varying beta.
Finally by comparing prediction errors of market model, SS
market model, and Censored-SS market model, it verifies
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Figure 3: Beta sequences of large corporations combination.
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Figure 4: Beta sequences of small corporations combination.

the effectiveness of Censored-SS market model. The main
conclusions are as follows.

(1) Censored-SS market model can provide more accu-
rate beta estimation than market model and SS
market model. Moreover, it will lead to an underesti-
mation of systemic risk when taking the time-varying
characteristics into account but ignoring the factor of
price limits.

(2) Corporation size has no significant effects on systemic
risk’s mean and fluctuation in China stock market.
However, market fluctuation has different effects on
large corporations and small corporation.Whenmar-
ket fluctuation increases, large corporation’s systemic
risk will decrease and small corporation’s systemic
risk will increase. So the systemic risk gap between
large corporations and small corporations will be
larger.
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The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have
both qualitative and quantitative characteristics inherently.Mostmodeling specifications and frameworks find it difficult to describe
the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information,
a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework.
The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and
the high-level model. A description logic system is defined for formal definition and verification of the newmodeling specification.
A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that
the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher
by introducing qualitative models into quantitative simulation.

1. Introduction

Stochastic simulation has become a highly effective and
essential part of all scientific fields to analyze, reconstruct,
and optimize the objective worldwithout the need to perform
experiments on a physical product or an actual system. In
theoretical and experimental research, it has become another
important way to reveal the internal and essential laws of the
real world. To study and gain insight into real phenomena, a
stochastic model should be constructed for some particular
purpose at an appropriate level of abstraction or fidelity.

In the field of stochastic simulation, whenever we men-
tion “qualitative model,” the phrase “quantitative model” will
naturally come tomind. In fact, “simulationmodel” generally
refers to a quantitative model if not particularly described,
and most research is based on the mathematical model [1].
Precise mathematical models are built to describe the system
structure and behavior, especially the logic and functionality
on the timeline. The simulation is carried out by solving the
equations in a numerically calculated fashion.The simulation
results rely on the accuracy of themodels.However, themath-
ematical perfection is not representative of the authenticity

of the system and the subtle experiential meaning of the real
world cannot be modeled by mathematical equations. On the
other hand, the objects we studied, such as aircraft, weapons,
and space systems, are increasingly complex. This is particu-
larly true of giant, complex system.We can only have or create
some of the mathematical models with certain accuracy. It
is almost impossible to construct all the quantitative models
and complete their Verification, Validation andAccreditation
(VVA). Furthermore, not all of the simulation requires a
precise mathematical model. For example, sometimes we are
only interested in the macroevolution trend of a system,
rather than time-specific values.

The symbol qualitative model can contain various forms
of information and has reasoning and learning ability. The
structure and behavior of the actual system are described in
an abstract form, focusing on the causality and not on math-
ematical equations. It is widely used in many fields associated
with physics, chemistry, ecology, biology, fault diagnosis,
mechanical manufacturing, industrial systems, and Artificial
Intelligence (AI) [2]. We can see that the combination of
qualitative and quantitative attributes shows promise for
stochastic simulation. Many scholars have made important
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progresses in this field [3–9]. Due to the direct usage of exist-
ing expertise, qualitative and quantitative integratedmethods
have many significant advantages.

(1) When it is difficult to build all the quantitativemodels
and the stochastic simulation cannot be constructed
because some models are lacking, the qualitative
model could be a necessary complement.

(2) Qualitativemodeling is effective for some fields where
most of the knowledge is expressed by symbols, lan-
guage, or graphics directly.

(3) When we are just interested in the macroevolution or
the essential qualitative phenomenon, it is not neces-
sary to occupy a large number of computing time and
resources for quantitative simulation.

(4) The static structure of the simulation can be organized
based on qualitative models and at run-time, quali-
tative models can intelligently choose the better exe-
cution branch or data based on the schedule engine.
DifferentDetail of Level (DOL) resolution can be con-
structed for a system at different abstraction levels.

(5) The traditional evaluation and optimization can be
innovated because the qualitativemode is a part of the
simulation and online assessment could be made.

We can see that the qualitative model brings an unprece-
dented opportunity to improve traditional stochastic simula-
tion. But it also faces with the following challenges.

(1) There are a large number of different types of qual-
itative models in different application fields, and the
requirements, interfaces, and forms are varied.

(2) The qualitative modeling methods and symbolic lan-
guages are also diverse in different applications fields.
These heterogeneous models are incompatible with
each other and it is difficult to simulate together.

(3) The loose and redundancy qualitative models should
be integrated with the rigorous quantitativemodels to
form the stochastic simulation with a precise logical
structure. Many effects are needed in qualitative and
quantitative hybrid simulation engines [10].

There are lots of classic researches in quantitative model-
ing, such as the specification named Discrete Event Systems
Specification (DEVS) for discrete event systems and COl-
laborative SIMulation (COSIM) for multidisciplinary virtual
prototype modeling and simulation [11–16]. In order to deal
with expert knowledge, uncertain reasoning, and other qual-
itative information, a qualitative and quantitative integrated
modeling specification and the theoretical framework for
stochastic simulation and optimization are significant. In this
paper, a hierarchical model structure is proposed, including
meta-meta model, meta-model, and the high-level model.
The qualitative and quantitative heterogeneous model and
integrated relationship were described at a higher abstraction
level. The description logic system is defined for the frame-
work based on the formal description and verification of the
modeling specification.

The rest of this paper is organized as follows. Section 2
briefly introduces the related researches of qualitative and
quantitative modeling for stochastic simulation. In Section 3,
a qualitative and quantitative integrated modeling speci-
fication is presented, including the modeling framework,
description logic system, and formal definitions. Section 4
proves the self-close feature of the models. In Section 5, a
qualitative and quantitative mixed stochastic defense system
is modeled and simulated. Section 6 draws related conclu-
sions and points out future work.

2. Related Works

2.1. Qualitative Model in Stochastic Simulation. A complex
stochastic simulation is always composed of various subsys-
tems. To analyze and optimize the performance, qualitative
models have been investigated and applied to more andmore
fields [17]. In [1], tactical decisionmaking based on fuzzy logic
was applied to an underwater vehicle in an engagement-level
simulation. A light torpedo and a submarine were modeled
based on DEVS and the submarine model calls the fuzzy
logic model to conduct a tactical decision. The fuzzy logic
was implemented as the Python script tactic description file.
By adopting the fuzzy logic, a smoother result was obtained
than fixed established tactics and the survival possibility
of the submarine was enhanced. SHAO Chen-xi believed
that qualitative modeling and simulation makes it feasible
to deal with incomplete information. He summarized classic
technologies such as fuzzy qualitative simulation, reduc-
tion reasoning, noncausal reasoning, causal-based reasoning,
diagram-based reasoning, structural data-based modeling,
and qualitative space-based reasoning. The application fields
were also introduced, including ecology, mechanical man-
ufacturing, medical research, and hybrid nonlinear systems
[18]. In [19], amodelingmethod based on the relationship and
transmission of effect between nodes was introduced. Based
on the strength of the definition of cause and effect, a flexible
modeling method was designed for graph-based qualitative
systems. Nonautonomous systems changing with time can
be analyzed using the new method. A causal relationship
chart model of the quality risk based on integrating casual
is proposed in [20]. An example is used to demonstrate
the entire risk evolution triggered by changes in one quality
factor, simulating the evolution process in accordance with
reality. The application indicates that the proposed method
can serve as a useful experimental tool for decisionmaking in
facing risks by highway construction project teams. A qual-
itative simulation model of changing processes of customer
churn is constructed based on the causality graph in [21].
The qualitative simulation and random behavior extraction
can be executed repeatedly to predict the changing process of
customer churn. After analyzing three qualitative simulation
methods, noncausality reasoning, causality reasoning, and
cellular automata, Hu and Xiao discussed the complexity
characteristics of a management system and introduced their
qualitative simulation [22].
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2.2. Qualitative and Quantitative Integrated Modeling in Sto-
chastic Simulation. Many important theories and appli-
cations show that qualitative and quantitative combined
methodologies have extremely important significance and
promote value for stochastic simulation. A considerable
amount of researches have been performed in recent years
and many meaningful outcomes have been put forward in
different domains. In [23], the proposal and recent develop-
ment of the “meta-synthetic methodology from qualitative to
quantitative” were introduced in detail. Subsequently, many
researchers concentrated on qualitative and quantitative
combined modeling for stochastic simulation.

FAN Shuai proposed a qualitative and quantitative syn-
thetic modeling method by extending the System High Level
Modeling Language formultidiscipline virtual prototype.The
qualitative knowledge is modeled based on a cause and effect
diagram [3]. Then, the qualitative and quantitative integra-
tion simulation architecture was designed, including mixed
schedule strategies, time management, and date interaction
methods [4]. Qualitative models can be built using the Fuzzy
Inductive Reasoning paradigm in Modelica. The qualitative
models make use of fuzzy inductive reasoning. The qualita-
tive and quantitative models can be combined to simulate
concurrently. A textbook example of a hydraulic position
control system and the human cardiovascular system were
adopted to demonstrate the approach. The hemodynamics
was modeled by quantitative models and the central nervous
systemwas described using qualitative FIRmodels [5]. In [6],
a qualitative and quantitative hybrid model was established
for business factors evaluation. Statistical values based on
propagation and combination of effects of business factors
were introduced in the simulation. Li et al. proposed architec-
ture of qualitative and quantitative comprehensive modeling
and studied joint simulation technology for complex systems.
In [7], a visualized fuzzy qualitative knowledge modeling
method fuzzy causal directed graph was designed, which
included the grammar, reasoning, and conversion of qualita-
tive and quantitativemodels. In [8], a new technique, Q2, was
proposed to combine qualitative and quantitativemodels and
was demonstrated in the case of a Finnish transport sector
that faces severe pressure to cut CO

2
emissions. Liu et al.

studied the integration of qualitative reasoning and quantita-
tive simulation including the acquisition, management, and
expression of qualitative and quantitative knowledge. Then,
an integrated diagnosis inference method was proposed and
validated with the test-fire data of complicated systems [9].

Some of the previous studies can be applied to continuous
systems, discrete systems, or continuous discrete hybrid sys-
temmodeling, respectively.They focus on the combination of
qualitative and quantitative models from specific application
fields. Some researchers achieve qualitative and quantitative
combined modeling and simulation based on commercial
software tools.

2.3. The COllaborative SIMulation Modeling Theory. COSIM
is actually an application of Model Driven Architecture
(MDA) for stochastic modeling and simulation. It is mainly
a framework for simulation of complex systems, especially

complex product virtual prototypes based on heterogeneous
models of different fields. In [16], the modeling specification
was proposed as the infrastructure of COSIM which is
referred to as the Meta Modeling Framework (M2F). Here,
the meta-meta-model, meta-model, and model of different
levels were defined to describe the systems. The modeling
specification is independent of the realization, which means
were that various modeling methods could be involved in the
simulation and can be unifiedwith theM2Fwithout consider-
ing implementation issues.Meanwhile,M2F serves as a shield
to the differences of the modeling methods and forms with
higher abstraction than the heterogeneous model.

2.4. Summary. We can see from the aforementioned that
there are many researches on optimization of complex sto-
chastic simulation based on qualitative models. The latest
research involves the study of a specific application in a given
a field based on a selected theory. Many theories such as
reduction reasoning, noncausal reasoning, and causal-based
reasoning are considered, respectively. Some researchers
achieve qualitative and quantitative combined modeling and
simulation based on a commercial software tools. There are
mainly two ways to integrate the qualitative and quantitative
models, microintegration and macrointegration. The former
one extended quantitative description method for qualitative
knowledge, usually in the form of qualitative and quantitative
mixed algebra equation, such as interval values expression
and fuzzy mathematical. Although some qualitative knowl-
edge is used, they are not the systematic qualitative modeling
approaches. The later one is the integration of qualitative
models and quantitative models of the different parts of the
system. For example, qualitative model and quantitative
model can be organized together to form the whole simula-
tion system. These methods are mainly integrating different
models in particular application, and few of them consider
the problem from the aspects of modeling specification. So, a
further solution is needed based on the existing theories and
techniques.

3. Qualitative and Quantitative Integrated
Modeling Specification

3.1. General View of the Qualitative and Quantitative Inte-
grated Model. Before further details, let us first briefly illus-
trate the general view of the qualitative and quantitative
integrated model to be built. We describe a system from
the perspectives of static structure and dynamic behavior,
based on three types of Interface which is the solid basis
of our modeling methodology. The static structure refers to
the internal factors, their structure, and interrelationship, for
example, the input and output interfaces and their connection
relation and the organization structure of the subsystem,
and so forth, as shown in Figure 1. The data exchange bet-
ween the models is archived through the PortItems, and the
collection of PortItems with same type is called Port. The set
of Ports is called Interface. The three Interfaces (qualitative,
quantitative, and event interface, resp.) will have complex
internal and external relations with each other, and this is one
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Figure 1: Modeling the complex system with component-oriented
qualitative and quantitative integrated model.
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Figure 2: A simulation system integrated by qualitative and quanti-
tative models.

of the focus points in this paper. To describe the temporal
logic and simulation process with the time advancing, the
state and its transfer, interaction situation, and event flow
will be modeled as dynamic behavior, and the reasoning or
evaluation functionality will also be involved if needed. We
can observe a corresponding output segment from the output
interface when some data is set from the input interface,
taking the data context into account.

A complex system as a whole is composed by many
interconnected and interacted parts, and it can be further
divided into smaller and simpler subsystems. It is modeled
by component-oriented models with a hierarchy structure.
Two types of component model with different structure and
size are defined to describe the system, named the element
model (𝐸𝑀) and composition model (𝐶𝑀). 𝐸𝑀 is the
smallest one which cannot be divided any more, while the
𝐶𝑀 is assembled by 𝐸𝑀𝑠 and/or smaller 𝐶𝑀𝑠 according
to specific simulation logic by connecting their Interfaces,
and then they can collaborate with each other based on
an accurate information flow with specific semantics, as
shown in Figure 2. In fact the entire simulation system itself
is the biggest CM, with a special reasoning component to
optimize the simulation process and policy decision based on
execution data, history data, and expertise.

Port
- Content
- Direction
- Time
- Pattern

Meta-meta model
(CAP)

Meta-model
(CIM)

Model
(HLM)

AssociationConstrain

Mapping
- Associate
- Logic relation

Interface
- Ports

Coupling
- Associate
- Constrain
- Logic relation

Component model
- EM/CM
- Interface
- Coupling

Element model
- Interface
- Mapping

Complex 
simulation system

(instance)

InstanceInstance

Figure 3: The hierarchical model structure of Q2M2F.

3.2. Qualitative and Quantitative Integrated Meta Modeling
Framework. Based on M2F, a Qualitative and Quantitative
Integrated Meta Modeling Framework (Q2M2F), consistent
with (MDA) and the rationale of a layered model structure
in Meta Object Function (MOF), is defined as a four-layer
model framework, as shown in Figure 3. The descriptions of
the layers are as follows.

(1) Meta-Meta Model Layer. The prototypes and rules of
the meta-model are defined with the highest abstrac-
tion level, including Port, Association, Constrain
(CAP). The basic factor and its semantics to describe
the data structure and knowledge are also defined, just
as the basic data type is defined in a programming
language.

(2) Meta-Model Layer. The instance of the meta-meta
model, Mapping, Interface, Coupling (CIM), defines
the basic factor to define a qualitative and quantitative
mixed model. It is similar to defining a data structure
or class.

(3) Model Layer. The instance of the meta-model, is used
to describe the models (so called High-Level Model,
HLM) of a specific application field. For example,
class “Pilot,” a model of the reasoning portion of an
expert system, and so forth.

(4) Instance. The instance of the model defines the value
of specific parameter or the reasoning part with spe-
cific rules, for example, “Pilot Obama.”

In Q2M2F, the basic factors in the meta-meta layer are
the same as COSIM, but the connotations are redefined
to support qualitative and quantitative combined modeling.
Logical Relation (𝐿𝑅) is added to the meta-model layer
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to describe the relation of qualitative knowledge. The inter-
action between qualitative knowledge and quantitative data
is added inMapping and Coupling. Accordingly, in the model
layer instance these factors are also defined.

3.3. The Description Logic System for Q2M2F. Description
logic is used to represent the domain knowledge using a
group of structural operators. Knowledge is expressed by con-
cepts and relationships based on the formal reasoning which
can be achieved [24–26]. In order to describe the basic factors
and their relationships in𝑄2𝑀2𝐹, a description logic system,
𝐴𝐿𝐶
𝐶
, is defined based on the classical description logic

language, Attributive concept Language with Complements
(ALC).The syntactic and semantic facets of ALC

𝐶
are defined

as follows:

𝐶,𝐷 ::= 𝐶|⊤| ⊥ |¬𝐶|𝐶 ⊓ 𝐷|𝐶 ⊔ 𝐷| ∀𝑅.𝐶| ∃𝑅.𝐶,
where
𝐶,𝐷: the elementary concept. In 𝑄

2
𝑀
2
𝐹, the term

“element” refers to the smallest atomic model,
𝑅: the elementary binary relation,
⊤: the universal concept,
⊥: the bottom concept,
¬𝐶: the negative concept of C,
𝐶 ⊓ 𝐷: the intersection of C and D,
𝐶 ⊔ 𝐷: the union of C and D,
∀𝑅.𝐶: restricted universal quantification,
∃𝑅.𝐶: restricted existential quantification.

The knowledge base of 𝐴𝐿𝐶
𝐶
is composed of ⟨𝑇

𝐶
, 𝐴
𝐶
⟩.

𝑇
𝐶
is a finite set of inclusion assertion (𝑇

𝑏𝑜𝑥
), and it is also

known as a set of terminology axioms. 𝐴
𝐶
is a finite set of

instance assertion (𝐴
𝑏𝑜𝑥

). It is composed of elementary con-
ception (ElemC) and elementary relationship (ElemR), as
follows:

𝐴
𝐶
= ⟨ElemC, ElemR⟩.

𝐸𝑙𝑒𝑚𝐶 = {Data, Knowledge, Event, Input, Output,
Time, Real, Pattern, Association, streig (streig, which
means “tied or bound” in ancient Latin. Here it is used
to represent a constraint.), 𝑇

0
, DataType, Knowled-

geType, EventType, STATE, statTF, ID,𝑀
𝑥
}

𝐸𝑙𝑒𝑚𝑅 = {has a, part of, domain of, range of,
isa function, isa relation on, content of, direction of,
time of, element of },

where

Data, Knowledge and Event: quantitative data, quali-
tative knowledge and event, respectively;
Input and Output: the direction of information flow;
Time: the effective time of the information flow;
Real is the real numbers;
Pattern: the overall scheme of information;

Association and streig: the Association relationship
and constraint, respectively;
𝑇
0
: the initial time;

𝑆𝑇𝐴𝑇𝐸 and statTF: the state and its transfer, respec-
tively;
𝐼𝐷: the index set of the subcomponents;
𝑀
𝑋
: the set of subcomponents;

has a and part of: two inverse elementary relation-
ships, expressing the belonging relationship between
the elements of the sets;
domain of and range of : the domain and range of the
relation;
isa function: a common function;
isa relation on: a binary relation;
content of : the information of a meta-meta model;
direction of : the direction of the information;
element of : the relationship between EM and CM.

More complex conceptions and relationships can be
derived from the basic definition mentioned earlier, and the
factors at each level in 𝑄2𝑀2𝐹 can be described and verified
formally.

3.4. Meta-Meta Model (CAP). Qualitative and quantitative
meta-meta model is the top level of abstraction of the system
model. Port is a meta-port composed by Content, Direction,
Time, and Pattern and is used to describe the information
interaction with other simulation models or the external
environment. Content is all the information interacting
between the simulation models through the Port which will
affect the simulation process or result. Content can be
quantitative data, event, or qualitative knowledge. Direction
indicates the transfer direction of the information.Time refers
to the position and effective range on the timeline. The value
range 𝑇 is a subset of the positive real numbers R+. Pattern
describes the overall pattern of information contained by
meta-ports throughout the simulation timeline. It is an
enumerable sequence of a set of numerable/innumerable
⟨content, time⟩ couples. The formal definition of Port is as
follows:

𝑃𝑜𝑟𝑡 ≡ ∃has a.Content ⊓ ∃has a.Direction ⊓

∃has a.Time ⊓∃has a.Pattern
Content ≡ Data ⊔ Knowledge ⊔ Event
Direction ≡ Input ⊔ Output
Time ⊑ Real
Pattern ⊑ Content × Time.

(Meta) Association is used to describe the numeri-
cal/symbolic relationship of information contents between
meta-ports. The association represents the direction of the
Content, andmost of the association is a one-to-onemapping.
In quantitative models, the association is reflected as a map-
ping relationship between quantitative data on the meta-
ports. In qualitative models, it is the connecting relationship
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between qualitative knowledge.Multiple associated portsmay
also exist, which represent the convergence or distribution of
the information flow. The formal definition is

Association ⊑ Port Content × Port Content
Port Content ≡ Content ⊓∃part of.Port.

Constrain describes the properties of specificPort, includ-
ing differences in Direction, Time, and Pattern, especially for
the ports where Association exists. There are two Constraints,
Quantitative Constraint andQualitative Constraint. By setting
constraints on the Direction, Time, and Pattern, the solution
logic, temporal order, and modeling mechanism of hetero-
geneous models can be unified in one simulation system.
Constraint will be implemented according to the interior
physicalmechanismor the state transfer function in the lower
layer HLM. The conception of Constrain is defined as

Port Direction ≡ Direction ⊓∀part of.Port
Port Pattern ≡ Pattern ⊓∀part of.Port
Port Time ≡ Time ⊓∀part of.Port
Constrain ≡ streig ⊓ (∃isa function.Port Direction
⊔∃isa function.Port Pattern
⊔∃isa function.Port Time).

In summary, the concept of CAP is defined formally as

CAP ≡ ∃has a.Port ⊓ ∃has a.Association ⊓

∃has a.Constrain.

3.5. Meta-Model (CIM). We define PortItem, Ports, and
Interface as instances of Port in the 𝐶𝐼𝑀 model. PortItem is
consistent with Port, Ports are defined as a collection of
PortItems of the same type, and the Interface is defined as
a group of Ports with similar properties. This is formally
defined as

PortItems ≡ ∃part of.CAP ⊓ Port
PortItem ≡ ∃part of.PortItems
Interface ≡ PortItems ⊓ ((∀part of.PortItems(𝑥) →

∃part of.𝑥 ⊓ Direction = Input) ⊔ ∀𝑝𝑎𝑟𝑡

𝑜𝑓.𝑃𝑜𝑟𝑡𝐼𝑡𝑒𝑚𝑠(𝑥) → ∃part of.𝑥 ⊓ Direction =

Output)) ⊓ (∀part of.PortItems(𝑥) ⊓ ∀𝑝𝑎𝑟𝑡

𝑜𝑓.𝑃𝑜𝑟𝑡𝐼𝑡𝑒𝑚𝑠(𝑦) → ∃part of.𝑥 ⊓ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 =

∃part of.𝑦 ⊓ Pattern).

Association and Constrain are essentially interdependent
of each other. The former characterizes the existence of
the information relationship between the Ports, while the
latter adds a limitation on the relationship. There are three
instances, Mapping, Logical Relation, and Coupling, in the
meta-model inherited from both Association and Constrain.

Mapping, a coinstance of Association and Constrain, is a
relationship between the input and output sets of an element
model (𝐸𝑀). Figure 4 shows three typicalMappings, the state
transfer functions between quantitative PortItems (map), log-
ical relationship between qualitative PortItems (connect), and
transform between quantitative and qualitativePortItems.The
definition is as follows:

Data

Knowledge

Data

Knowledge

Data

Data
Map

Connect

Transform

Figure 4: Three typicalMappings in an EM.

Mapping ≡Maps ⊔ Connects ⊔ Transforms
Maps ≡ ∃part of CAP ⊓ Association ⊓∃domain
of.(∃content of.Data ⊓∃part of(∃direction of.Input))
⊓∃range of.(∃content of.Data ⊓∃part of(∃direction
of.Output))
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑠 ≡ ∃part of.CAP ⊓𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ⊓ ∃isa
relation on.(∃content of.Knowledge)
𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 ≡ ∃part of.CAP ⊓ Association ⊓

((∃domain of.(∃𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓.𝐷𝑎𝑡𝑎) ⊓ ∃range of.(∃
content of.Knowledge)) ⊔ ((∃domain of.(∃content of.
Knowledge) ⊓∃range of.(∃content of.Data))).

The relationship between the qualitative Ports is not nec-
essarily expressed via functions; general logical relationships
may exist. Logical Relations mainly depicts the qualitative
relationship between Ports and the static logical structure of
an 𝐸𝑀. Consider

LogRelation ≡ ⟨connect | connect ∈ {𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖
.

Content} × {𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑗
. Content}, 𝑖 ̸= 𝑗, 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑗
,

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖
∈ 𝐸𝑀 ∪ 𝐶𝑀⟩.

Coupling is the interaction between the Ports containing
the Associations and Constraints. In addition, it should be
noted that the ports associated by Coupling are not just the
ports of the submodels within a composite model. Asso-
ciations could also exist between the output ports of the
submodels and the output ports of its superior composite
model. Similarly, the input ports of a composite model can
be associated with the input of its submodel. The formal
definition of Coupling is

Coupling ≡ Coupling maps ⊔ Coupling connects
𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚𝑎𝑝𝑠 ≡ ∃part of.CAP ⊓ (Association ⊓

Constraint) ⊓∃domain of.(∃content of.Data ⊓∃part
of.(∃𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓.𝐼𝑛𝑝𝑢𝑡)) ⊓ ∃range of.(∃content of.
Data ⊓∃part of.(∃direction of.Output))
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𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 ≡ ∃part of.CAP ⊓ (Association ⊓

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) ⊓ ∃𝑖𝑠𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑛.(∃content of.
Knowledge).

In summary, the concept of CIM is defined formally as

𝐶𝐼𝑀 ≡ ∃has a.Interface ⊓∃has a.Mapping ⊓∃has
a.Coupling.

3.6. The Hierarchy Model of a Simulation System (HLM).
A variety of heterogeneous simulation functionalities are
described as standard models using an interface-based mod-
eling strategy. Simulation is achieved via the combination
and collaboration of components. In the model layer, the
simulation model, named high level model (HLM), will be
instanced from three basic factors defined at the meta-model
layer. There are two types of qualitative and quantitative
mixed simulation models, the Element Model (𝐸𝑀) and the
Composite Model (𝐶𝑀).

As the smallest model which cannot be divided anymore,
𝐸𝑀, consists of Interface,Mapping, and Connecting, the defi-
nition is:

𝐸𝑀 : ⟨{Interface}, {Mappings, Connectings }⟩.

More specifically,

𝐸𝑀 ≡ ∃has a.(Init) ⊓∃has a.(𝑖𝑃
𝑑
) ⊓ ∃has a.(𝑖𝑃

𝑘
) ⊓

∃has a.(𝑖𝑃
𝑒
) ⊓ ∃has a.(𝑜𝑃

𝑑
) ⊓ ∃has a.(𝑜𝑃

𝑘
) ⊓ ∃has

a.(𝑜𝑃
𝑒
) ⊓ ∃has a.(𝑆𝑇𝐴𝑇𝐸) ⊓ ∃has a.(statTF) ⊓∃has

a.(𝑇),

where

𝐼𝑛𝑖𝑡 ≡ ∃part of.𝐶𝐼𝑀⊓ In PortItem ⊓∃has a.(∃
time of.T

0
) ⊓∃has a.DataType

𝑖𝑃
𝑑

≡ ∃part of.𝐶𝐼𝑀⊓ In PortItem ⊓∃has a.(∃
content of.Data) ⊓∃has a.DataType
𝑖𝑃
𝑘

≡ ∃part of.𝐶𝐼𝑀⊓ In PortItem ⊓∃has a.(∃
content of.Knowledge) ⊓∃has a.KnowledgeType
𝑖𝑃
𝑒

≡ ∃part of.𝐶𝐼𝑀⊓ In PortItem ⊓∃has a.(∃
content of.Event) ⊓ ∃has a.EventType
𝑜𝑃
𝑑

≡ ∃part of.𝐶𝐼𝑀⊓ Out PortItem ⊓∃has a.(∃
content of.Data) ⊓∃has a.DataType
𝑜𝑃
𝑘

≡ ∃part of.𝐶𝐼𝑀⊓ Out PortItem ⊓∃has a.(∃
content of.Knowledge) ⊓∃has a.KnowledgeType
𝑜𝑃
𝑒

≡ ∃part of.𝐶𝐼𝑀⊓ Out PortItem ⊓∃has a.(∃
content of.Event) ⊓∃has a.EventType.

𝑆𝑇𝐴𝑇𝐸 represents a specific mapping between the input
and output Ports. At any time 𝑡 on the timeline 𝑇, the
simulationmodel has only one state, csModelState (𝑡), and the
formal definition is

𝑆𝑇𝐴𝑇𝐸 ≡ ∃csModelState. 𝑇,
where
StatTF: state transfer refers to the migration process
stimulated by external action or internal factors;

CM

EM

EM

Coupling

Coupling

Coupling

Figure 5: The structure of a CM.

StatTF = ⟨𝑆𝑇𝐴𝑇𝐸 × 𝑖𝑃𝑒 → 𝑆𝑇𝐴𝑇𝐸 × 𝑇 × 𝑜𝑃𝑒 | 𝑇 ⊆

𝑅
+
⟩.

A Composite Model (𝐶𝑀) is composed of several 𝐸𝑀𝑠

and/or 𝐶𝑀𝑠 with smaller granularity as shown in Figure 5.
The formal definition is as follows:

𝐶𝑀 ≡ ∃has a.(Para) ⊓∃has a.(Init) ⊓∃has a.(𝑖𝑃
𝑑
) ⊓

∃has a.(𝑖𝑃
𝑘
) ⊓ ∃has a.(𝑖𝑃

𝑒
) ⊓ ∃has a.(𝑜𝑃

𝑑
) ⊓ ∃has

a.(𝑜𝑃
𝑘
) ⊓ ∃has a.(𝑜𝑃

𝑒
) ⊓ ∃has a.(𝑇) ⊓ ∃has a.(𝐼𝐷)

⊓∃has a.(𝑀
𝑥
) ⊓ ∃has a.(𝐶𝑃𝐿s) ⊓∃has a.(𝑆𝐼𝑇𝑈𝐴)

⊓∃has a.(EvntFL).

Similarly with 𝐸𝑀, 𝐶𝑀 also has a parametric interface,
initialization interface, data input and output interfaces, event
input and output interfaces, knowledge input and output
interfaces, the state and its transfer, and the time-base. They
are defined as earlier. 𝐶𝑀 has three other factors, 𝐼𝐷, 𝑀

𝑋
,

𝑆𝐼𝑇𝑈𝐴, EvntFL, and 𝐶𝑃𝐿
𝑆
, which do not appear in 𝐸𝑀, as

follows:

𝐼𝐷: the index set of the sub-𝐸𝑀/sub-𝐶𝑀 in a 𝐶𝑀,
𝑀
𝑋
: the set of sub-𝐸𝑀s and sub-𝐶𝑀s in a 𝐶𝑀,

𝐶𝑃𝐿s: the Coupling sets in a 𝐶𝑀,
𝑆𝐼𝑇𝑈𝐴: the sets of interaction situation,
EvntFL: event flow in a 𝐶𝑀.

We can see that 𝐶𝑀 is a self-nested composite model.
Besides the element model, 𝐸𝑀, which can no longer be
divided, it can also include other compositionmodels. In fact,
the whole simulation system itself is the largest 𝐶𝑀.

4. The Self-Closed Feature of Qualitative and
Quantitative Integrated Model

We can find that the essential difference between the 𝐸𝑀
and 𝐶𝑀 is whether or not an internal structure exists. 𝐸𝑀
describes the internal content of a model via mappings, while
𝐶𝑀 describes its interior structure and interactions among
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subcomponents. Formally, there are few differences between
the two models, but we can note that the formalism of a
𝐶𝑀 actually has a self-closed structure. Although the internal
structure of a 𝐶𝑀 might be very complicated, a 𝐶𝑀 should
be reused just like an 𝐸𝑀 in a more complex 𝐶𝑀. Therefore,
in order to ensure reusability, we need to affirm the self-closed
feature between the 𝐸𝑀 and 𝐶𝑀. That is, a complicated 𝐶𝑀
combined by sub-𝐸𝑀 and/or sub-𝐶𝑀 has the same schema
as its subcomponents. On the contrary, the subcomponents
decomposed from a 𝐶𝑀 has the same schema with the
original 𝐶𝑀.

Definition 1 (Component Communication Graph (𝐶𝐶𝐺)).
Assume 𝐶 is a simulation component (𝐶𝑀 or 𝐸𝑀). Let
directed graph 𝐺

𝐶
= ⟨𝑉
𝐶
, 𝐸
𝐶
⟩ be the 𝐶𝐶𝐺 of 𝐶. Consider

𝑉
𝐶
= input interface(𝐶)∪ output interface(𝐶),

input interface(𝐶) = {𝑥 | (𝐸𝑀(𝐶)∧ input(𝑥, 𝑒)) ∨
∃𝑒(𝐸𝑀(𝑒)∧ element of (𝑒, 𝐶))∧ input(𝑥, 𝑒))},
input interface (𝐶) is the set of all input interfaces of
𝐶. If𝐶 itself is a𝐶𝑀, all input interfaces of the internal
subcomponents are the same as well,
output interface (𝐶) = {𝑥 | (𝐸𝑀(𝐶)∧ output (𝑥, 𝑒)) ∨
∃𝑒(𝐸𝑀(𝑒)∧ element of (𝑒, 𝐶)∧ output (𝑥, 𝑒))}.

The edge set 𝐸
𝐶
is

𝐸
𝐶
= {⟨𝑥, 𝑦⟩ | (𝐸𝑀(𝐶)∧⟨𝑥, 𝑦⟩ ∈ 𝑀𝑎𝑝𝑝𝑖𝑛𝑔

𝐶
)∨(𝐶𝑀(𝐶)∧

⟨𝑥, 𝑦⟩ ∈ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔
𝐶
)∨ ∃𝑒(𝐸𝑀(𝑒)∧ element of (𝑒, 𝐶)∧⟨𝑥, 𝑦⟩ ∈

𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝑒
)}.

The previous definition shows that the vertex set (𝑉
𝐶
) of

𝐶𝐶𝐺 is composed of all input and output Interfaces of the high
levelmodel, and𝐸

𝐶
is composed of all theMappings edges and

Coupling edges. If there is aMapping orCoupling between two
Interfaces, the two vertices are adjacent.

Definition 2 (Maps
𝐶
and Couples

𝐶
of CCG). Consider the

following:

if component 𝐶 is an 𝐸𝑀, 𝑀𝑎𝑝𝑠
𝐶

= 𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝐶
,

𝐶𝑜𝑢𝑝𝑙𝑒𝑠
𝐶
= 0;

if component 𝐶 is a 𝐶𝑀, 𝑀𝑎𝑝𝑠
𝐶
= ∑
𝑒∈𝐶

𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝑒
,

𝐶𝑜𝑢𝑝𝑙𝑒𝑠
𝐶
= 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

𝐶
.

Deduction 1. The underlying graph of 𝐺
𝐶

= ⟨𝑉
𝐶
, 𝐸
𝐶
⟩ is a

bipartite graph.

Ignoring the direction of all the edges of the directed
𝐶𝐶𝐺, we can get its underlying graph. We can prove that the
underlying graph of 𝐶𝐶𝐺 is a bipartite graph.

Let𝑋 = input interface(𝐶), 𝑌 = output interface(𝐶),

=> 𝑉 = 𝑋 ∪ 𝑌 and𝑋 ∩ 𝑌 = 0,
=> 𝑋 and 𝑌 is 2-partition of 𝑉

𝐶
.

According to Definition 1,

∀𝑥∀𝑦(𝑥𝑦 ∈ 𝐸(𝐺
𝐶
) → (∃𝑒(𝐸𝑀(𝑒) ∧ ⟨𝑥, 𝑦⟩ ∈

𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝑒
) ∨ (𝐶𝑀(𝐶) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

𝐶
)).

According to Definition 2,

=> ∀𝑥∀𝑦(𝑥𝑦 ∈ 𝐸(𝐺
𝐶
) → ((𝑥 ∈ 𝑋∧𝑦 ∈ 𝑌)∨(𝑥 ∈ 𝑌∧𝑦 ∈

𝑋)),

=> 𝐺
𝐶
= ⟨𝑉
𝐶
, 𝐸
𝐶
⟩ is a bipartite graph.

Theprevious deductionmeans that theMapping connects
the input and output Interfaces of an 𝐸𝑀, and Coupling
connects the input and output Interfaces between𝐸𝑀s and/or
𝐶𝑀s. The vertices of 𝑋 are independent of each other, and
vertices of 𝑌are also independent.

Definition 3 (Information Tracking). Let 𝐺
𝐶
= ⟨𝑉
𝐶
, 𝐸
𝐶
⟩ be

the 𝐶𝐶𝐺 of 𝐶, 𝑥
0
∈ 𝑉(𝐺

𝐶
), 𝑥
𝑘
∈ 𝑉(𝐺

𝐶
), if

𝑃 = 𝑥
0
𝑚
1
𝑥
1
𝑚
2
𝑥
2
⋅ ⋅ ⋅ 𝑚
𝑘
𝑥
𝑘
∧ ∀𝑖 = 1, 2, . . . , 𝑘 (𝑚

𝑖
=

⟨𝑥
𝑖−1
, 𝑥
𝑖
⟩) ∧ ∀𝑖 ∀𝑗 (𝑖 ̸= 𝑗 → 𝑥

𝑖
̸=𝑥
𝑗
).

Then 𝑃 is Information Tracking in 𝐺
𝐶
. 𝑥
0
and 𝑥

𝑘
are the

start and end points of 𝑃, referred to as 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡
𝑃
and

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡
𝑃
respectively.

Using the terminology of graph theory, Information
Tracking can be described as follows:

Vertex 𝑖 and 𝑗 (𝑖 ̸= 𝑗) belong to𝐺
𝐶
, and𝑃 is a primary path

from 𝑖 to 𝑗 without repetitive vertices. If any adjacent vertex
of 𝑥 is from the same 𝐸𝑀 with 𝑥, then it is an Information
Tracking of 𝐺

𝐶
.

When there are only two vertices in the 𝑀𝑎𝑝𝑠
𝐶

or
𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
, we can easily get the following deduction.

Deduction 2.Mapping and Logical Relation are both a kind of
Information Tracking.

We can see from Definition 3 that Information Tracking
is a directed path, the direction of𝑀𝑎𝑝𝑠

𝐶
is always from the

input Interface to the output Interface, while the direction of
𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
is from output to input. In the Information Tracking

𝑃, the edges of𝑀𝑎𝑝𝑠
𝐶
and 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
appear alternately.

Deduction 3. Information Tracking 𝑃 ∈ InfoPath
𝐶
and 𝑃 =

𝑥
0
𝑚
1
𝑥
1
𝑚
2
𝑥
2
⋅ ⋅ ⋅ 𝑚
𝑘
𝑥
𝑘
, 𝑖 ∈ {1, 2, . . . 𝑘}; if 𝑚

1
∈ 𝑀𝑎𝑝𝑠

𝐶
then

𝑚
𝑖
∈ 𝑀𝑎𝑝𝑠

𝐶
if and only if 𝑖 ≡ 1(mod 2) and 𝑚

𝑖
∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶

if and only if 𝑖 ≡ 0(mod 2); if 𝑚
1
∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
then 𝑚

𝑖
∈

𝐶𝑜𝑢𝑝𝑙𝑒𝑠
𝐶
if and only if 𝑖 ≡ 1(mod 2) and 𝑚

𝑖
∈ 𝑀𝑎𝑝𝑠

𝐶
if and

only if 𝑖 ≡ 0(mod 2).

Deduction 1=> the underlying graph of 𝐺
𝐶

is a
bipartite graph,

Deduction 2=> in Information Tracking 𝑃, the edges
of𝑀𝑎𝑝𝑠

𝐶
and 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
appear alternately.

Assume that 𝑥𝑦 and 𝑦𝑧 are two adjacent edges of 𝑃, a
primary path. So, 𝑥 ̸= 𝑧.

If 𝑥𝑦 ∈ 𝑀𝑎𝑝𝑠
𝐶
, then 𝑥 and 𝑦 are the input and output of

an 𝐸𝑀(𝑐). The vertices 𝑥 and 𝑧 are adjacent to 𝑦.

=> In 𝑥 and 𝑧, one must belong to 𝐸𝑀(𝑐), and 𝑥 ̸= 𝑧.

=> 𝑧must not be the Interface of 𝐸𝑀(𝑐), and it must
belong to other 𝐸𝑀/𝐶𝑀.
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Figure 6: An Information Tracking composed by alternative Map-
ping and Coupling.

The underlying graph of 𝐺
𝐶
is a bipartite graph, and in

Information Tracking 𝑃, the edges of 𝑀𝑎𝑝𝑠
𝐶
and 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶

appear alternately.

=> 𝑧 is a input Interface.
=> 𝑦𝑧 ∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
.

If𝑥𝑦 ∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠
𝐶
, then𝑥 and𝑦 are the input and output of

two different components. Assume that 𝑦 belongs to 𝐸𝑀(𝑐1).

=> In 𝑥 and 𝑧, there must be one belonging to 𝐸𝑀(𝑐1),
and 𝑥 ̸= 𝑧.

=> 𝑧must not be the Interface of 𝐸𝑀(𝑐1), and it belongs
to the other 𝐸𝑀.

The underlying graph of 𝐺
𝐶
is a bipartite graph, and, in

Information Tracking 𝑃, the edges of 𝑀𝑎𝑝𝑠
𝐶
and 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶

appear alternately.

=> 𝑧 is a output Interface.
=> 𝑦𝑧 is aMapping of the other 𝐸𝑀, 𝑦𝑧 ∈ 𝑀𝑎𝑝𝑠

𝐶
.

=> 𝑃 is an uninterrupted path composed of alternative
Mapping and Coupling. It can also be expressed by
alternative input and output Interface, as shown in
Figure 6.

The vertices in 𝑃 are independent of each other and 𝑖 ̸= 𝑗,
and ∀

𝑖
∀
𝑗
(𝑖 ̸= 𝑗 → 𝑥

𝑖
̸=𝑥
𝑗
).

=> 𝑃 is a directed path without repetitive edges and there
is no closed loop in 𝑃.

=> If𝑚
1
∈ 𝑀𝑎𝑝𝑠

𝐶
,𝑚
𝑖
∈ 𝑀𝑎𝑝𝑠

𝐶
if and only if 𝑖 ≡ 1(mod

2) and 𝑚
𝑖
∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
if and only if 𝑖 ≡ 0(mod 2),

and if 𝑚
1
∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
, 𝑚
𝑖
∈ 𝐶𝑜𝑢𝑝𝑙𝑒𝑠

𝐶
if and only if

𝑖 ≡ 1(mod 2) and𝑚
𝑖
∈ 𝑀𝑎𝑝𝑠

𝐶
if and only if 𝑖 ≡ 0(mod

2).

Definition 4 (Derivable Port and Underivable Port). 𝐺
𝐶

=

⟨𝑉
𝐶
, 𝐸
𝐶
⟩ is the 𝐶𝐶𝐺 of 𝐶, 𝑥 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝐶
. If

∃𝑃(𝑃 ∈ 𝐼𝑛𝑓𝑜𝑃𝑎𝑡ℎ
𝐶
∧ 𝑃 = 𝑥

0
𝑚
1
𝑥
1
𝑚
2
𝑥
2
⋅ ⋅ ⋅ 𝑚
𝑘
𝑥 ∧ 𝑥 ∈

𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐶
)), then 𝑥 is a Derivable Port of 𝐶, or 𝑥 is

an Underivable Port (referred to as DerivablePorts (𝐶) and
UnderivablePorts (𝐶), resp.).

Both Derivable Ports and Underivable Ports are output
Ports. For output Ports, there are input Ports connected to it

Jammer
Target
Attacker

Offence weapon

Figure 7: Scenario of the stochastic defense simulation system.

through an Information Tracking, but there is no such input
for anUnderivable Port.The internalmechanism and status of
a black-box model are normally undetectable. Some outputs
might be generated without any inputs and the only reason
for this is due to the internal state transfer driven by time.
That is why an underivable Port is needed.

Deduction 4. 𝐺
𝐶

= ⟨𝑉
𝐶
, 𝐸
𝐶
⟩ is the 𝐶𝐶𝐺 of 𝐶, 𝑥 ∈

DerivablePorts(C). ∃e (e ∈ EM ∧ element of (e,C) ∧

𝑥 ∈UnderivablePorts (𝐶)) or ∃e (e ∈ EM ∧ element of(e,C) ∧
∃𝑥
0
∃P(P ∈ InfoPath(C) ∧𝑥

0
∈UnderivablePorts (𝐶) ∧ 𝑥

0
=

startPoint
𝑃
∧𝑥 = endpoint

𝑃
)).

In a white-box 𝐶𝑀(𝐶), let 𝑗 be the Underivable Port of
𝐺
𝐶
. Every output Port of 𝐶𝑀(𝐶) is connected with an output

Port of an internal 𝐸𝑀(𝐶) by Coupling. Assume that Port 𝑗 of
𝐶𝑀(𝐶) is connected with output Port 𝑖 of 𝐸𝑀(𝐶), as shown
in Figure 4. We will prove that Port 𝑖 is an Underivable Port
by reducing it to absurdity.

Assume that Port 𝑖 is a derivable Port, and then there is an
Information Tracking in 𝐺

𝐶
. Port 𝑖 is the endpoint of 𝑃.

Port 𝑖 is the output Port of 𝐸𝑀(𝐶).

=> The last edge of 𝑃 must belong to 𝑀𝑎𝑝𝑠
𝐶
(Deduc-

tion 3).

=> 𝑃

= 𝑃 ∪ {𝑖𝑗} is another Information Tracking in 𝐺

𝐶

and at least one input Port of 𝑃 comes from 𝐺
𝐶
.

=> The end point 𝑗 of 𝑃 is a derivable Port. This is con-
tradictory.

=> Port 𝑖 is an Underivable Port.

=> Underivable Port exists in an 𝐸𝑀, and a Port con-
nected to an Underivable Port by Coupling is also an
Underivable Port.

In summary, we can see that
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Figure 8: Qualitative and quantitative combined models of the stochastic defense simulation system.
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Figure 9: The reasoning 𝐸𝑀, extended Fuzzy CLIPS as the reason-
ing engine.

𝐸𝑀⊓ interface ≡ ∃has a.(Init) ⊓∃has a.(𝑖𝑃
𝑑
) ⊓ ∃has

a.(𝑖𝑃
𝑘
) ⊓ ∃has a.(𝑖𝑃

𝑒
) ⊓ ∃has a.(𝑜𝑃

𝑑
) ⊓ ∃has a.(𝑜𝑃

𝑘
) ⊓

∃has a.(𝑜𝑃
𝑒
)

𝐶𝑀⊓ interface ≡ ∃has a.(Init) ⊓∃has a.(𝑖𝑃
𝑑
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Figure 10: Survival probability of target.

=> 𝐸𝑀 ⊓ interface ≡ 𝐶𝑀 ⊓ interface.

This means that 𝐸𝑀 and 𝐶𝑀 have the same schema, and
the𝐻𝐿𝑀 is self-closed.
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5. A Stochastic Defense Simulation System

5.1. The Scenario and Integrated Models. In the simulation,
the attacker and the target patrol in the same area, and both
of them have detecting ability. As the distance between the
two sides becomes shorter, the attacker will find the target
and launch its offense weaponwhichwill seek the target using
its detector. The offense weapon will rush out with full speed
when it detects the target. After detecting the offense weapon,
the target will launch decoy or evade with different direction
and speed according to the defense strategy. The scenario is
as follows (Figure 7). Many previous researches carried out
the same scenario; however, most of them focused on using
fuzzy logic to make the decision [1] in a specific application
or evading in a fixed manner [27].

The system is modeled using the proposed specification.
We designed nine 𝐸𝑀s as shown in Figure 8. There are
three 𝐶𝑀s, Attacker, Target, and Offense Weapon, which are
composed by two 𝐸𝑀 models, respectively. The data, event,
and knowledge interactions among the 𝐶𝑀𝑠/𝐸𝑀𝑠 are also
given in the figure. Different shapes are used to describe
different types of Ports. The circle, square, triangle, and oval
Ports represent initialize port, event port, data port, and
knowledge port, respectively. What should be pointed out
is that only Ports and Couplings are given in the figure, not
the PortItems andMapping.Mappings are inside the 𝐸𝑀 and
are invisible from the outside. Due to the space, the dynamic
behavior and schedule of 𝐶𝑀/𝐸𝑀 will be treated as a black-
box and will be discussed in the future.

5.2. Optimization of the Defense Simulation. In our simula-
tion, defense strategy and simulation operation strategy are
decided by reasoning 𝐸𝑀 based on the real-time battlefield
situation and expert experience to optimize the simulation
result. We have several evasion strategies, such as launching
a decoy at specific position with a reasonable direction and
moving mutely with higher speed alone against direction,
depending on the battlefield situation, the decoy status, and
distance between the offence weapon and target. Different
simulation strategies could be adopted in different situations
to optimize the operating efficiency. When the attacker is far
away from the target and any other special task, the simula-
tion can run with super-real-time speed (in speedup status);
only some staple detectors in work and many functionalities
will not be executed or executed in less time (in light caculate
status).The simulation timewill slow downwhen the attacker
gets closer to the target andmore powerful detector will be on
duty.

The defense strategy and simulation operation strategy
are decided by a reasoning 𝐸𝑀. The detail is as follows
(Figure 9). We proposed a new fuzzy-reasoning algorithm
based on confidence fuzzy rules and embedded it into Fuzzy
CLIPS. The extended Fuzzy CLIPS is encapsulated into the
𝐸𝑀 as a reasoning engine. The rules coming from expert
knowledge are stored as a file (∗.clp) and will be loaded to the
rule base. At running time, different strategies will be made
according to the battlefield situation. Some of the confidence
fuzzy rules are as follows.

Rule 1. IF Weapon distance medium AND Decoy1 ready
THEN Change Direction with large angle AND evade
mutely AND Launch Decoy1, Confidence: 0.85.

Rule 2. IF Weapon distance short THEN Evade full speed,
Confidence: 0.9.

Rule 3. IF Distance between attacker target far THEN sim-
ulation speedup AND light caculate, Confidence: 0.9.

...

5.3. Simulation Results and Analysis. The initial speeds of
attacker and target are both 18m/s.When the offence weapon
is launched, its initial speed is 20m/s. The detection range is
1.5 km apart. The initial distance between attacker and target
is 8 Km. The simulation is executed in two situations. First,
defense strategy is fixed as evade full speed or Lauch Decoy1
or Lauch Decoy2 randomly and running speed is also fixed.
Secondly, the reasoning model will be used. The simula-
tion time and data communication can be saved signifi-
cantly at the beginning because of simulation speedup and
light caculate strategy.

In fact, the voyage of the weapon is one of the key factors
in the survival probability of the target. If the voyage is long
enough, the target will be destroyed with probability 1. If it
is short, the weapon will exhaust before catching the target.
We set different voyages for the weapon, and the simulation
is executed 20 times for each voyage in the two situations.The
average survival probability is shown in Figure 10. We can
see that when the voyage is shorter than 8140m, the target
will always survive, and if the voyage is longer than 8380m,
the target will be destroyed absolutely. Between 8380m and
8140m, the probability of survival is higher, whenwe simulate
based on qualitative and quantitative integrated models.

6. Conclusions and Future Works

In this paper, we have proposed a new specification to mod-
eling qualitative and quantitative hybrid system for stochastic
simulation and optimization.Thenew specification is defined
at three levels and its self-closed feature is proven to be
self-closed formally. The definition of factors needed to
describe the integrated models and corresponding Mapping
and Coupling is presented in detail. This provides a new way
to take advantage of qualitative models in stochastic simu-
lation. A stochastic simulation defense system was modeled
and realized using the proposed specification; a reasoning
engine is encapsulated as a qualitative 𝐸𝑀 and interacts with
quantitativemodels at running time.The result shows that the
hybrid models can optimize the stochastic simulation signif-
icantly on both the execution process and the performance.

As future works, the dynamic behavior and schedule
engine of qualitative and quantitative integrated models for
stochastic simulation in different application should be a
great work that will be promoted in detail and verified. Also,
more working on the integration relationship, interaction,
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and timemanagement of qualitative and quantitative stochas-
tic models are significant for the new specification.
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Interval-valued univex functions are introduced for differentiable programming problems. Optimality and duality results are
derived for a class of generalized convex optimization problems with interval-valued univex functions.

1. Introduction

Imposing the uncertainty upon the optimization problems is
an interesting research topic. The uncertainty may be inter-
preted as randomness, fuzziness, or interval-valued fuzziness.
The randomness occurring in the optimization problems
is categorized as the stochastic optimization problems, and
the imprecision (fuzziness) occurring in the optimization
problems is categorized as the fuzzy optimization problems.
In order to perfectly match the real situations, interval-
valued optimization problems may provide an alternative
choice for considering the uncertainty into the optimization
problems.That is to say, the coefficients in the interval-valued
optimization problems are assumed as closed intervals. Many
approaches for interval-valued optimization problems have
been explored in considerable details; see, for example, [1–
3]. Recently, Wu has extended the concept of convexity for
real-valued functions to LU-convexity for interval-valued
functions, then he has established the Karush-Tucker con-
ditions [4–6] for an optimization problem with interval-
valued objective functions under the assumption of LU-
convexity. Similar to the concept of nondominated solution
in vector optimization problems, Wu has proposed a solu-
tion concept in optimization problems with interval-valued
objective functions based on a partial ordering on the set of
all closed intervals, then the interval-valued Wolfe duality
theory [7] and Lagrangian duality theory [8] for interval-
valued optimization problems have been proposed. Recently,

Wu [9] has studied the duality theory for interval-valued
linear programming problems.

In 1981, Hanson [10] introduced the concept of invexity
and establishedKarush-Tucker type sufficient optimality con-
ditions for a nonlinear programming problem. In [11], Kaul
et al. considered a differentiable multiobjective program-
ming problem involving generalized type I functions. They
investigated Karush-Tucker type necessary and sufficient
conditions and obtained duality results under generalized
type I functions. The class of B-vex functions has been
introduced by Bector and Singh [12] as a generalization
of convex functions, and duality results are established
for vector valued B-invex programming in [13]. Bector et
al. [14] introduced the concept of univex functions as a
generalization of B-vex functions introduced by Bector et al.
[15]. Combining the concepts of type I and univex functions,
Rueda et al. [16] gave optimality conditions and duality results
for several mathematical programming problems. Aghezzaf
and Hachimi [17] introduced classes of generalized type I
functions for a differentiable multiobjective programming
problem and derived some Mond-Weir type duality results
under the above generalized type I assumptions. Gulati et al.
[18] introduced the concept of (𝐹, 𝛼, 𝜌, 𝑑)-𝑉-type I functions
and also studied sufficiency optimality conditions and duality
multiobjective programming problems.

This paper aims at extending the Karush-Tucker opti-
mality conditions to nonconvex optimization problem with
interval-valued functions. First, we extend the concept of
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univexity for a real-valued function to an interval-valued
function and present the concept of interval-valued univex
functions.Then, the Karush-Tucker optimality conditions are
proposed for an interval-valued function under the assump-
tion of interval-valued univexity.

2. Preliminaries

Let one denotes by I the class of all closed intervals in 𝑅.
𝐴 = [𝑎

𝐿
, 𝑎
𝑈
] ∈ I denotes a closed interval, where 𝑎𝐿 and

𝑎
𝑈 mean the lower and upper bounds of 𝐴, respectively. For

every 𝑎 ∈ 𝑅, we denote 𝑎 = [𝑎, 𝑎].

Definition 1. Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be in I; one
has

(i) 𝐴+𝐵 = {𝑎+𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [𝑎𝐿+𝑏𝐿, 𝑎𝑈+𝑏𝑈];
(ii) −𝐴 = {−𝑎 : 𝑎 ∈ 𝐴} = [−𝑎𝑈, −𝑎𝐿];
(iii) 𝐴 × 𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [min

𝑎𝑏
,max
𝑎𝑏
],

where min
𝑎𝑏
= min{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈} and

max
𝑎𝑏
= max{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈}.

Then, we can see that

𝐴 − 𝐵 = 𝐴 + (−𝐵) = [𝑎
𝐿
− 𝑏
𝑈
, 𝑎
𝑈
− 𝑏
𝐿
] ,

𝑘𝐴 = {𝑘𝑎 : 𝑎 ∈ 𝐴} =
{

{

{

[𝑘𝑎
𝐿
, 𝑘𝑎
𝑈
] if 𝑘 ≥ 0,

[𝑘𝑎
𝑈
, 𝑘𝑎
𝐿
] if 𝑘 < 0,

(1)

where 𝑘 is a real number.
By using Hausdorff metric, Neumaier [19] has proposed

Hausdorff metric between the two closed intervals𝐴 and 𝐵 as
follows:

𝑑
𝐻 (𝐴, 𝐵) = max {𝑎

𝐿
− 𝑏
𝐿
,

𝑎
𝑈
− 𝑏
𝑈
} . (2)

Definition 2. Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be two closed
intervals in 𝑅. One writes 𝐴 ⪯ 𝐵 if and only if 𝑎𝐿 ≤ 𝑏𝐿 and
𝑎
𝑈
≤ 𝑏
𝑈, 𝐴 ≺ 𝐵 if and only if 𝐴 ⪯ 𝐵 and 𝐴 ̸=𝐵, that is, the

following (a1), (a2), or (a3) is satisfied:
(a1) 𝑎𝐿 < 𝑏𝐿 and 𝑎𝑈 ≤ 𝑏𝑈;
(a2) 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑈 < 𝑏𝑈;
(a3) 𝑎𝐿 < 𝑏𝐿 and 𝑎𝑈 < 𝑏𝑈.

Definition 3 (see [20]). Let 𝐴 = [𝑎𝐿, 𝑎𝑈] and 𝐵 = [𝑏𝐿, 𝑏𝑈] be
two closed intervals, the gH-difference of 𝐴 and 𝐵 is defined
by

[𝑎
𝐿
, 𝑎
𝑈
] ⊖
𝑔
[𝑏
𝐿
, 𝑏
𝑈
]

= [min (𝑎𝐿 − 𝑏𝐿, 𝑎𝑈 − 𝑏𝑈) ,max (𝑎𝐿 − 𝑏𝐿, 𝑎𝑈 − 𝑏𝑈)] .
(3)

For example, [1, 3]⊖
𝑔
[0, 3] = [0, 1], [0, 3]⊖

𝑔
[1, 3] =

[−1, 0]. And 𝑎 − 𝑏 = [𝑎, 𝑎]⊖
𝑔
[𝑏, 𝑏] = [𝑎 − 𝑏, 𝑎 − 𝑏] = 𝑎 − 𝑏.

Proposition 4. (i) For every 𝐴, 𝐵 ∈ I, 𝐴⊖
𝑔
𝐵 always exists

and 𝐴⊖
𝑔
𝐵 ∈ I.

(ii) 𝐴⊖
𝑔
𝐵 ⪯ 0 if and only if 𝐴 ⪯ 𝐵.

3. Interval-Valued Univex Functions

Definition 5 (interval-valued function). The function 𝑓 :
Ω → I is called an interval-valued function, whereΩ ⊆ 𝑅𝑛.
Then, 𝑓(x) = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is a closed interval in 𝑅 for each

x ∈ 𝑅𝑛, and𝑓(x) can be also written as𝑓(x) = [𝑓𝐿(x), 𝑓𝑈(x)],
where𝑓𝐿(x) and𝑓𝑈(x) are two real-valued functions defined
on 𝑅𝑛 and satisfy 𝑓𝐿(x) ≤ 𝑓𝑈(x) for every x ∈ Ω.

Definition 6 (continuity of an interval-valued function). The
function 𝑓 : Ω ⊆ 𝑅𝑛 → I is said to be continuous at 𝑥 ∈ Ω
if both 𝑓𝐿(x) and 𝑓𝑈(x) are continuous functions of x.

The concept of gH-derivative of a function 𝑓 : (𝑎, 𝑏) →
I is defined in [19].

Definition 7. Let 𝑥
0
∈ (𝑎, 𝑏) and ℎ be such that 𝑥

0
+ℎ ∈ (𝑎, 𝑏),

then the gH-derivative of a function 𝑓 : (𝑎, 𝑏) → I at 𝑥
0
is

defined as

𝑓

(𝑥
0
) = lim
𝑥→0

[𝑓 (𝑥
0
+ ℎ) ⊖

𝑔
𝑓 (𝑥
0
)] . (4)

If 𝑓(𝑥
0
) ∈ I exists, then we say that 𝑓 is generalized

Hukuhara differentiable (gH-differentiable, for short) at 𝑥
0
.

Moreover, [21] also proved the following theorem.

Theorem 8. Let 𝑓 : (𝑎, 𝑏) → I be such that 𝑓(𝑥) =
[𝑓
𝐿
(𝑥), 𝑓

𝑈
(𝑥)]. The function 𝑓(𝑥) is gH-differentiable if and

only if 𝑓𝐿(𝑥) and 𝑓𝑈(𝑥) are differentiable real-valued func-
tions. Furthermore,

𝑓

(𝑥) = [min {(𝑓𝐿)



(𝑥) , (𝑓
𝑈
)


(𝑥)} ,

max {(𝑓𝐿)


(𝑥) , (𝑓
𝑈
)


(𝑥)}] .

(5)

Definition 9 (gradient of an interval-valued function). Let
𝑓(x) be an interval-valued function defined on Ω, where
Ω is an open subset of 𝑅𝑛. Let 𝐷

𝑥
𝑖

(𝑖 = 1, 2, . . . , 𝑛) stand
for the partial differentiation with respect to the 𝑖th variable
𝑥
𝑖
. Assume that 𝑓𝐿(x) and 𝑓𝑈(x) have continuous partial

derivatives so that 𝐷
𝑥
𝑖

𝑓
𝐿
(x) and 𝐷

𝑥
𝑖

𝑓
𝑈
(x) are continuous.

For 𝑖 = 1, 2, . . . , 𝑛, define

𝐷
𝑥
𝑖

𝑓 (x) = [min (𝐷
𝑥
𝑖

𝑓
𝐿
(x) , 𝐷𝑥

𝑖

𝑓
𝑈
(x)) ,

max (𝐷
𝑥
𝑖

𝑓
𝐿
(x) , 𝐷𝑥

𝑖

𝑓
𝑈
(x))] .

(6)

We will say that 𝑓(x) is differentiable at x, and we write

∇𝑓 (x) = (𝐷𝑥
1

𝑓 (x) , 𝐷𝑥
2

𝑓 (x) , . . . , 𝐷𝑥
𝑛

𝑓 (x))
𝑡

. (7)

We call ∇𝑓(x) the gradient of the interval-valued univex
function at x.
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Example 10. Let 𝑓 : R2 → I defined by 𝑓(x) = [𝑥2
1
+ 𝑥
2

2
,

2𝑥
2

1
+ 2𝑥
2

2
+ 3]. So 𝑓𝐿(x) = 𝑥2

1
+ 𝑥
2

2
and 𝑓𝑈(x) = 2𝑥2

1
+

2𝑥
2

2
+ 3. 𝐷

𝑥
1

𝑓
𝐿
(x) = 2𝑥

1
, 𝐷
𝑥
2

𝑓
𝐿
(x) = 2𝑥

2
, 𝐷
𝑥
1

𝑓
𝑈
(x) = 4𝑥

1
,

𝐷
𝑥
2

𝑓
𝑈
(x) = 4𝑥

2
. Thus,

𝐷
𝑥
1

𝑓 (x) =
{

{

{

[2𝑥
1
, 4𝑥
1
] if 𝑥

1
≥ 0,

[4𝑥
1
, 2𝑥
1
] if 𝑥

1
< 0,

𝐷
𝑥
2

𝑓 (x) =
{

{

{

[2𝑥
2
, 4𝑥
2
] if 𝑥

2
≥ 0,

[4𝑥
2
, 2𝑥
2
] if 𝑥

2
< 0.

(8)

Thus,

∇𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

([2𝑥
1
, 4𝑥
1
] , [2𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

([2𝑥
1
, 4𝑥
1
] , [4𝑥

2
, 2𝑥
2
])
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

([4𝑥
1
, 2𝑥
1
] , [2𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

([4𝑥
1
, 2𝑥
1
] , [4𝑥

2
, 4𝑥
2
])
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

(9)

Further,

∇
𝐿
𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

(2𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

(4𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

(4𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

∇
𝑈
𝑓 (x) =

{{{{{{{{{

{{{{{{{{{

{

(4𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
≥ 0,

(4𝑥
1
, 2𝑥
2
)
𝑡 if 𝑥

1
≥ 0, 𝑥

2
< 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
≥ 0,

(2𝑥
1
, 4𝑥
2
)
𝑡 if 𝑥

1
< 0, 𝑥

2
< 0.

(10)

Remark 11. If 𝑓𝐿 = 𝑓𝑈, then ∇𝑓(x) of interval-valued func-
tions is the extension of ∇𝑓(x), where 𝑓 : Ω → 𝑅.

The concept of convexity plays an important role in the
optimization theory. In recent years, the concept of convexity
has been generalized in several directions by using novel
and innovative techniques. An important generalization of
convex functions is the introduction of univex functions,
which was introduced by Bector et al. [15].

Let 𝐾 be a nonempty open set in 𝑅𝑛, and let 𝑓 : 𝐾 → 𝑅,
𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛, Φ : 𝑅 → 𝑅, and 𝑏 : 𝐾 × 𝐾 × [0, 1] → 𝑅+,
𝑏 = 𝑏(x, y, 𝜆). If the function 𝑓 is differentiable, then 𝑏 does
not depend on 𝜆; see [12] or [15].

Definition 12. A differentiable real-valued function 𝑓 is said
to be univex at y ∈ 𝐾 with respect to 𝜂,Φ, 𝑏 if for all x ∈ 𝐾

𝑏 (x, y)Φ [𝑓 (x) − 𝑓 (y)] ≥ 𝜂𝑡 (x, y) ∇𝑓 (y) . (11)

Let𝐾 be a nonempty open set in 𝑅𝑛, and let 𝑓 : 𝐾 → I
be an interval-valued function, 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛
, Φ : I →

I, and 𝑏 : 𝐾 × 𝐾 × [0, 1] → 𝑅+, 𝑏 = 𝑏(x, y, 𝜆).

Definition 13 (interval-valued univex function). A differen-
tiable interval-valued function 𝑓 is said to be univex at y ∈ 𝐾
with respect to 𝜂, Φ, 𝑏 if for all x ∈ 𝐾

𝑏 (x, y)Φ [𝑓 (x) ⊖𝑔𝑓 (y)] ⪰ 𝜂
𝑡
(x, y) ∇𝑓 (y) . (12)

Remark 14. (i) An interval-valued univex function is the
extension of a univex function by 𝑓𝐿 = 𝑓𝑈.

(ii) Φ : I → I could be deduced from 𝜙 : 𝑅 → 𝑅 by
Φ(𝐴) := {𝑦 : ∃𝑥 ∈ 𝐴, 𝜙(𝑥) = 𝑦, 𝑦 ∈ 𝑅}.

Example 15. Consider the real-valued function 𝜙
1
given by

𝜙
1
(𝑥) = 𝑥 + 1, 𝑥 ∈ 𝑅, then we can obtain Φ

1
([𝑎
𝐿
, 𝑎
𝑈
]) =

[𝑎
𝐿
+ 1, 𝑎
𝑈
+ 1]. If 𝜙

2
(𝑥) = |𝑥|, 𝑥 ∈ 𝑅. Then

Φ
2
([𝑎
𝐿
, 𝑎
𝑈
]) =

{{{{{

{{{{{

{

[𝑎
𝐿
, 𝑎
𝑈
] if 𝑎𝐿 ≥ 0,

[−𝑎
𝑈
, −𝑎
𝐿
] if 𝑎𝑈 ≤ 0,

[0,max (−𝑎𝐿, 𝑎𝑈)] if 𝑎𝐿 < 0, 𝑎𝑈 ≥ 0.

(13)

Example 16. Let 𝑓(𝑥) = [𝑥2, 2𝑥2 + 3], 𝑥 ∈ 𝑅, 𝑏 = 1, 𝜂(𝑥, 𝑦) =
𝑥 − 𝑦, Φ = Φ

2
, then 𝑓(𝑥) is univex with respect to 𝑏, 𝜂, and

Φ.

Example 17. Let 𝑓(𝑥) = [𝑥3, 𝑥3 + 1], 𝑥 ∈ 𝑅,

𝑏 (𝑥, 𝑦) =
{

{

{

𝑦
2

𝑥 − 𝑦
if 𝑥 ≥ 𝑦,

0 if 𝑥 ≤ 𝑦,

𝜂 (𝑥, 𝑦) = {
𝑥
2
+ 𝑦
2
+ 𝑥𝑦 if 𝑥 ≥ 𝑦,

𝑥 − 𝑦 if 𝑥 ≤ 𝑦.

(14)

Let Φ : I → I be defined by Φ([𝑎𝐿, 𝑎𝑈]) = 3[𝑎𝐿, 𝑎𝑈], then
𝑓(𝑥) is univex with respect to 𝑏, 𝜂 and Φ.

4. Optimality Criteria

Let 𝑓(x), 𝑔
1
(x), . . . , 𝑔

𝑚
(x) be differentiable interval-valued

functions defined on a nonempty open set 𝑋 ⊆ 𝑅
𝑛.

Throughout this paper we consider the following primal
problem (P):

min 𝑓 (x)

s.t. 𝑔 (x) ⪯ 0, 𝑖 = 1, 2, . . . , 𝑚.
(P)

Let 𝑃 := {x ∈ 𝑋 : 𝑔(x) ⪯ 0, 𝑖 = 1, 2, . . . , 𝑚}. We say x∗ is
an optimal solution of (P) if 𝑓(x) ⪰ 𝑓(x∗) for all P-feasible x.
In this section, we obtain sufficient optimality conditions for
a feasible solution x∗ to be efficient or properly efficient for
(P) in the form of the following theorems.
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Theorem 18. Let x∗ be P-feasible. Suppose that

(i) there exist 𝜂, Φ
0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 such that

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 𝜂

𝑡
(x, x∗) ∇𝑓 (x∗) , (15)

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪰ 𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗) (16)

for all feasible x;
(ii) there exist y∗ = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅
𝑚 such that

∇𝑓 (x∗) +
𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0, (17)

y∗ ≥ 0. (18)

Further, suppose that

Φ
0 (𝐴) ⪰ 0 ⇒ 𝐴 ⪰ 0, (19)

𝐴 ⪯ 0 ⇒ Φ
𝑖 (𝐴) ⪰ 0, (20)

𝑏
0
(x, x∗) > 0, 𝑏

𝑖
(x, x∗) > 0 (21)

for all feasible x. Then, x∗ is an optimal solution of (P).

Proof. Let x be P-feasible. Then,

𝑔
𝑖 (x) ⪯ 0. (22)

From (20), we conclude that

Φ
𝑖
[𝑔
𝑖 (x)] ⪰ 0. (23)

Thus,

Φ
𝐿

𝑖
[𝑔
𝑖 (x)] ≥ 0,

Φ
𝑈

𝑖
[𝑔
𝑖 (x)] ≥ 0.

(24)

By (15) and Definition 2, we have

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝑈

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

.

(25)

From (17),

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) + 𝜂𝑡 (x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0. (26)

It follows from Definition 2 that

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

+ {𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

= 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

+ {𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

= 0.

(27)

It is equivalent to

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

= −{𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

.

(28)

From (16), we have

{−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝐿

,

{−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝑈

.

(29)

From Definition 1, we have

−{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝐿

,

−{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿 ≥ {𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗)}
𝑈

.

(30)

Thus,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ {𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

≥

𝑚

∑

𝑖=1

{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝑈

≥

𝑚

∑

𝑖=1

{𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)]}𝐿

≥ 0,

{𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝑈

≥ {𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)]}
𝐿

≥ 0.

(31)

So,

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (32)

From (21), it follows that

Φ
0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (33)

By (19),

𝑓 (x) ⊖𝑔𝑓 (x
∗
) ⪰ 0. (34)

From Proposition 4, it follows that

𝑓 (x) ⪰ 𝑓 (x∗) . (35)

Therefore, x∗ is an optimal solution of (P).
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Theorem 19. Let x∗ be P-feasible. Suppose that

(i) there exist 𝜂, Φ
0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 such that

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) ⪰ 0 ⇒ 𝑏

0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0,

(36)

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪯ 0 ⇒ 𝜂𝑡 (x, x∗) ∇𝑔

𝑖
(x∗) ⪯ 0

(37)

for all feasible x;
(ii) there exist y∗ = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅
𝑚 such that

∇𝑓 (x∗) +
𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗) = 0, (38)

y∗ ≥ 0. (39)

Further, suppose that

Φ
0 (𝐴) ⪰ 0 ⇒ 𝐴 ⪰ 0, (40)

𝐴 ⪯ 0 ⇒ Φ
𝑖 (𝐴) ⪰ 0, (41)

𝑏
0
(x, x∗) > 0, 𝑏

𝑖
(x, x∗) > 0 (42)

for all feasible x. Then, x∗ is an optimal solution of (P).

Proof. Let x be P-feasible. Then, 𝑔
𝑖
(x∗) ⪯ 0, from (41), we

obtain that

Φ
𝑖
[𝑔
𝑖
(x∗)] ⪰ 0. (43)

So,

−𝑏
𝑖
(x, x∗)Φ

𝑖
[𝑔
𝑖
(x∗)] ⪯ 0. (44)

By (37),

𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗) ⪯ 0. (45)

Thus,

−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗) ⪰ 0. (46)

Then, we have

− {

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝑈

= {−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝐿

≥ 0,

− {

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝐿

= {−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, x∗) ∇𝑔

𝑖
(x∗)}

𝑈

≥ 0.

(47)

From (38) and Definition 2, it follows that

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

+ {𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

= 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

+ {𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

= 0.

(48)

It is equivalent to

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

= −{𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝐿

,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

= −{𝜂
𝑡
(x, x∗)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔 (x∗)}

𝑈

.

(49)

Therefore,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝐿

≥ 0,

{𝜂
𝑡
(x, x∗) ∇𝑓 (x∗)}

𝑈

≥ 0.

(50)

From Definition 2, we obtain that

𝜂
𝑡
(x, x∗) ∇𝑓 (x∗) ⪰ 0. (51)

By (36),

𝑏
0
(x, x∗)Φ

0
[𝑓 (x) ⊖𝑔𝑓 (x

∗
)] ⪰ 0. (52)

Then, from (40) and (42), we have

𝑓 (x) ⊖𝑔𝑓 (x
∗
) ⪰ 0. (53)

From Proposition 4, it follows that

𝑓 (x) ⪰ 𝑓 (x∗) . (54)

Therefore, x∗ is an optimal solution of (P).

5. Duality

Consider the following:

max 𝑓 (u)

s.t. ∇𝑓 (u) +
𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0,

𝑦
𝑖
∇𝑔
𝑖 (u) ⪰ 0

𝑦
𝑖
≥ 0.

(D)

Theorem 20 (weak duality). Let x be P-feasible, and let (u, y)
be D-feasible. Assume that there exist 𝜂, Φ

0
, 𝑏
0
, Φ
𝑖
, 𝑏
𝑖
, 𝑖 =

1, 2, . . . , 𝑚 such that

𝑏
0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 𝜂

𝑡
(x, u) ∇𝑓 (u) ,

−𝑏
𝑖 (x, u) Φ𝑖 [𝑔𝑖 (u)] ⪰ 𝜂

𝑡
(x, u) ∇𝑔𝑖 (u)

(55)
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at u;

Φ
0 (𝐴) ⪰ 0 ⇒ 𝐴 ⪰ 0,

𝑏
0 (x, u) > 0, 𝑏

𝑖 (x, u) ≥ 0
(56)

and ∑𝑚
𝑖=1
𝑏
𝑖
(x, u)𝑦

𝑖
Φ
𝑖
(𝑔
𝑖
(u)) ⪰ 0. Then, 𝑓(x) ⪰ 𝑓(u).

Proof. It is similar to the proof of Theorem 18.

Theorem 21 (weak duality). Let x be P-feasible, and let (u, y)
beD-feasible. Assume that there exist 𝜂,Φ

0
, 𝑏
0
,Φ
1
, 𝑏
1
such that

𝜂
𝑡
(x, u) ∇𝑓 (u) ⪰ 0 ⇒ 𝑏0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 0,

(57)

−𝑏
1 (x, u) Φ1 [

𝑚

∑

𝑖=1

𝑦
𝑖
𝑔
𝑖 (u)] ⪯ 0 ⇒

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪯ 0

(58)

at u;

Φ
0 (𝐴) ⪰ 0 ⇒ 𝐴 ⪰ 0, (59)

𝐴 ⪰ 0 ⇒ Φ
1 (𝐴) ⪰ 0, (60)

𝑏
0 (x, u) > 0, 𝑏

1 (x, u) ≥ 0. (61)

Then, 𝑓(x) ⪰ 𝑓(u).

Proof. Since (u, y) is D-feasible, then 𝑦𝑡
𝑖
∇𝑔
𝑖
(u) ⪰ 0, from (60)

and (61),

−𝑏
1 (x, u) Φ1 [

𝑚

∑

𝑖=1

𝑦
𝑖
𝑔
𝑖 (u)] ⪯ 0. (62)

Then, we have

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪯ 0. (63)

Thus,

−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u) ⪰ 0,

− {

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝑈

= {−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝐿

≥ 0,

− {

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝐿

= {−

𝑚

∑

𝑖=1

𝑦
𝑖
𝜂
𝑡
(x, u) ∇𝑔𝑖 (u)}

𝑈

≥ 0.

(64)

Since (u, y) is D-feasible we can obtain that,

∇𝑓 (u) +
𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0. (65)

So,

𝜂
𝑡
(x, u) ∇𝑓 (u) + 𝜂𝑡 (x, u)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u) = 0. (66)

By Definition 2, it follows that

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝐿

+ {𝜂
𝑡
(x, u)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝐿

= 0,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝑈

+ {𝜂
𝑡
(x, u)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝑈

= 0.

(67)

Therefore,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝐿

= −{𝜂
𝑡
(x, u)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝐿

≥ 0,

{𝜂
𝑡
(x, u) ∇𝑓 (u)}

𝑈

= −{𝜂
𝑡
(x, u)

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖 (u)}

𝑈

≥ 0.

(68)

Then,

𝜂
𝑡
(x, u) ∇𝑓 (u) ⪰ 0. (69)

By (57),

𝑏
0 (x, u) Φ0 [𝑓 (x) ⊖𝑔𝑓 (u)] ⪰ 0. (70)

From (59) and (61),

𝑓 (x) ⊖𝑔𝑓 (u) ⪰ 0. (71)

thus,

𝑓 (x) ⪰ 𝑓 (u) . (72)

Theorem 22 (strong duality). If x∗ is P-optimal and a con-
straint qualification is satisfied at x∗, then there exists y∗ =
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑡
∈ 𝑅
𝑚 such that (x∗, y∗) is D-feasible and the

values of the objective functions for (P) and (D) are equal at
x∗ and (x∗, y∗), respectively. Furthermore, if for all P-feasible x
andD-feasible (u, y), the hypotheses ofTheorem 19 are satisfied,
then (x∗, y∗) is D-optimal.

Proof. Since a constraint qualification is satisfied at x∗, there
exists y∗ ∈ 𝑅𝑚 such that the following Kuhn-Tucker condi-
tions are satisfied:

∇𝑓 (x∗) +
𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖
(x∗) = 0,

𝑚

∑

𝑖=1

𝑦
𝑖
∇𝑔
𝑖
(x∗) = 0,

𝑦
𝑖
≥ 0.

(73)

Therefore, (x∗, y∗) is D-feasible.
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Suppose that (x∗, y∗) is not D-optimal. Then, there exists
a D-feasible (u, y) such that 𝑓(u) ≻ 𝑓(x∗). This contradicts
Theorem 20. Therefore, (x∗, y∗) is D-optimal.

6. Numerical Example

Consider the following example:

minimize 𝑓 (x) = [𝑥1 − sin (𝑥2) + 1, 𝑥1 − sin (𝑥2) + 3]

subject to 𝑔
1 (x)

= [sin (𝑥
1
) − 4 sin (𝑥

2
) − 2,

sin (𝑥
1
) − 4 sin (𝑥

2
)] ⪯ 0,

𝑔
2 (x) = [2 sin (𝑥1) + 7 sin (𝑥2) + 𝑥1 − 7,

2 sin (𝑥
1
) + 7 sin (𝑥

2
) + 𝑥
1
− 6]

⪯ 0,

𝑔
3 (x) = [2𝑥1 + 2𝑥2 − 5, 2𝑥1 + 2𝑥2 − 3] ⪯ 0,

𝑔
4 (x) = [4𝑥

2

1
+ 4𝑥
2

2
− 12, 4𝑥

2

1
+ 4𝑥
2

2
− 9] ⪯ 0,

𝑔
5 (x) = [− sin (𝑥1) − 1, − sin (𝑥1)] ⪯ 0,

𝑔
6 (x) = [− sin (𝑥2) − 1, − sin (𝑥2)] ⪯ 0.

(74)

Note that the interval-valued objective function is univex
with respect to 𝑏 = 1, 𝜂(x, u) = x − u, Φ([𝑎𝐿, 𝑎𝑈]) = [𝑎𝐿, 𝑎𝑈],
and every 𝑔

𝑖
(𝑖 = 1, 2, . . . , 6) is univex with respect to 𝑏 = 1,

Φ([𝑎
𝐿
, 𝑎
𝑈
]) = [𝑎

𝐿
, 𝑎
𝑈
]

𝜂 (x, u) = ( sin𝑥1 − sin 𝑢1
cos 𝑢
1

,
sin𝑥
2
− sin 𝑢

2

cos 𝑢
2

)

𝑇

, (75)

where x = (𝑥
1
, 𝑥
2
)
𝑇 and u = (𝑢

1
, 𝑢
2
)
𝑇.

It is easy to see that the problem satisfies the assumptions
of Theorem 18. Then,

(1, − cos𝑥
2
)
𝑇
+ 𝜇
1
(cos𝑥

1
, −4 cos𝑥

2
)
𝑇

+ 𝜇
2
(2 cos𝑥

1
+ 1, 7 cos𝑥

2
)
𝑇
+ 𝜇
3(2, 2)

𝑇

+ 𝜇
4
(8𝑥
1
, 8𝑥
2
)
𝑇
+ 𝜇
5
(− cos𝑥

1
, 0)
𝑇

+ 𝜇
6
(0, − cos𝑥

2
)
𝑇
= (0, 0)

𝑇
.

(76)

After some algebraic calculations, we obtain that x∗ =
(0, sin−1(6/7))𝑇 and u∗ = (0, 1/7, 0, 0, 10/7, 0)𝑇.Therefore, x∗
is a solution.
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The augmented Lagrangian method can be used for solving recourse problems and obtaining their normal solution in solving
two-stage stochastic linear programming problems. The augmented Lagrangian objective function of a stochastic linear problem
is not twice differentiable which precludes the use of a Newton method. In this paper, we apply the smoothing techniques and
a fast Newton-Armijo algorithm for solving an unconstrained smooth reformulation of this problem. Computational results and
comparisons are given to show the effectiveness and speed of the algorithm.

1. Introduction

In stochastic programming, some data are random variables
with specific possibility distribution [1], which was first intro-
duced by the designer of linear programming problems,
Dantzig, in [2].

In this paper, we consider the following two-stage sto-
chastic linear program (slp) with recourse which involves the
calculation of an expectation over a discrete set of scenarios:

min
𝑥∈𝑋

𝑓 (𝑥) = 𝑐
𝑇
𝑥 + 𝜙 (𝑥) ,

𝑋 = {𝑥 ∈ R
𝑛
: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} ,

(1)

where

𝜙 (𝑥) = 𝐸 (𝑄 (𝑥, 𝜔)) =

𝑁

∑

𝑖=1

𝑄(𝑥, 𝜔
𝑖
) 𝜌 (𝜔

𝑖
) (2)

and 𝐸 shows the expectation of function 𝑄(𝑥, 𝜔) which de-
pend on the random variable 𝜔. The function 𝑄 is defined as
follows:

𝑄 (𝑥, 𝜔) = min
𝑦∈R𝑛2

{𝑞(𝜔)
𝑇
𝑦 | 𝑊(𝜔)

𝑇
𝑦 ≥ ℎ (𝜔) − 𝑇 (𝜔) 𝑥} ,

(3)

where 𝐴 ∈ R𝑚×𝑛, 𝑐 ∈ R𝑛, and 𝑏 ∈ R𝑚. Also, in the problem
(3) vector of coefficients 𝑞(⋅) ∈ R𝑛2 , matrix of coefficients

𝑊
𝑇
(⋅) ∈ R𝑚2×𝑛2 , demand vector ℎ(⋅) ∈ R𝑚2 , andmatrix𝑇(⋅) ∈

R𝑚2×𝑛 depend on the random vector 𝜔 with support space
Ω. The problems (1) and (3) are called master and recourse
problems of stochastic programming, respectively.

We assume that the problem (3) has a solution for each
𝑥 ∈ 𝑋 and 𝜔 ∈ Ω.

In general, the recourse function 𝜙(𝑥) is not differentiable
everywhere. Therefore, the traditional methods use nons-
mooth optimization techniques [3–5]. However, in the last
decade, it is proposed smoothing method for recourse func-
tion in standard form of recourse problem [6–11]. In this
paper, we apply a smooth approximation technique to smooth
recourse function that the recourse problem has inequal-
ity linear constrained. For more explanation see Section 2.
The approximated problem is based on the least two-norm
solution of recourse problem. This paper considers the
augmented Lagrangian method to obtain least two-norm
solution (Section 3). For convenience, Euclidean least two-
norm solution of linear programming problem is named
normal solution. This effective method contains solving an
unconstrained quadratic problem which its objective func-
tion is not twice differentiable. To apply a fastNewtonmethod
we use the soothing technique and replace plus function by
an accurate smooth approximation [12, 13]. In Section 4, the
smoothing algorithmand the numerical results are presented.
Also, concluding remarks are given in Section 5.
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We now describe our notation. Let 𝑎 = [𝑎
𝑖
] be a vector in

R𝑛. By 𝑎
+
wemean a vector inR𝑛 whose 𝑖th entry is 0 if 𝑎

𝑖
< 0

and equals 𝑎
𝑖
if 𝑎
𝑖
≥ 0. By𝐴𝑇 wemean the transpose ofmatrix

𝐴, and∇𝑓(𝑥
0
) is the gradient of𝑓 at 𝑥

0
. For 𝑥 ∈ R𝑛, ‖ 𝑥 ‖ and

‖ 𝑥 ‖
∞

denote 2-norm and infinity norm, respectively.

2. Approximation of Recourse Function

As mentioned the objective function of (1) is nondifferen-
tiable. This disadvantage property occurs on the recourse
function. In this section, there is an attempt to approximate
it to a differentiable function.

Using dual of the problem (3), function 𝑄(𝑥, 𝜔) can be
written as follows:

𝑄 (𝑥, 𝜔) = max
𝑧∈R𝑚2

(ℎ (𝜔) − 𝑇 (𝜔) 𝑥)
𝑇
𝑧

s.t. 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0.

(4)

Unlike the linear recourse function, the quadratic recours
function is differentiable. Thus in this paper, the approxima-
tion is based on the following quadratic problemwith helpful
properties:

𝑄
𝜖 (𝑥, 𝜔) = max

𝑧∈R𝑚2
(ℎ (𝜔) − 𝑇 (𝜔) 𝑥)

𝑇
𝑧 −

𝜖

2
‖𝑧‖
2

s.t. 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0.

(5)

The next theorem shows that, for the sufficiently small 𝜖 >

0, the solution of this problem is the normal solution of the
problem (4).

Theorem 1. For functions 𝑄(𝑥, 𝜔) and 𝑄
𝜖
(𝑥, 𝜔) introduced in

(4) and (5), the following can be presented:

(a) ∃𝜖 > 0 such that, for each 𝜖 ∈ (0, 𝜖], the solution for the
problem (5) is the normal solution for the problem (4).

(b) For each 𝜖 > 0, function 𝑄
𝜖
(𝑥, 𝜔) is differentiable with

respect to 𝑥.
(c) The gradient of function 𝑄

𝜖
(𝑥, 𝜔) at point 𝑥 is

∇𝑄
𝜖 (𝑥, 𝜔) = −𝑇

𝑇
(𝜔) 𝑧
∗

𝜖
(𝑥, 𝜔) (6)

in which 𝑧
∗

𝜖
(𝑥, 𝜔) is the solution of the problem (5).

Proof. To prove (a), refer to [14, 15].
Also, (b) and (c) can be easily proved considering that

function 𝑄
𝜖
(𝑥, 𝜔) is the conjugate of function

𝑝 (𝑧) =
{

{

{

𝜖

2
‖𝑧‖
2
, 𝑧 ∈ 𝑍,

∞, 𝑧 ∉ 𝑍,

(7)

where

𝑍 = {𝑧 ∈ R
𝑚
2 : 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0} , (8)

andTheorems (26-3) and (23-5) in [16].

Using the approximated recourse function 𝑄
𝜖
(𝑥, 𝜔), we

can define a differentiable approximation function to the
objective function of (1):

𝑓
𝜖 (𝑥) = 𝑐

𝑇
𝑥 +

𝑁

∑

𝑖=1

𝑄
𝜖
(𝑥, 𝜔
𝑖
) 𝜌 (𝜔

𝑖
) . (9)

By (6), the gradient of above function exists and is obtained
by

∇𝑓
𝜖 (𝑥) = 𝑐 +

𝑁

∑

𝑖=1

∇𝑄
𝜖
(𝑥, 𝜔
𝑖
) 𝜌 (𝜔

𝑖
)

= 𝑐 −

𝑁

∑

𝑖=1

𝑇
𝑇
(𝜔
𝑖
) 𝑧
∗

𝜖
(𝑥, 𝜔
𝑖
) 𝜌 (𝜔

𝑖
) .

(10)

This approximation has paved theway to use the optimization
algorithm for master problem (1) in which the objective
function is substituted by 𝑓

𝜖
(𝑥)

min
𝑥∈𝑋

𝑓
𝜖 (𝑥) . (11)

In [7], it is considered slp problem with inequality con-
strained in master problem and equality constrained in
recourse problem. Also, inTheorem 2.3 of [7], it is shown that
a solution of the approximated problem is a good approxi-
mation to a solution of master problem. Here we can express
a similar theorem for the problem (1) by using the similar
technique in the proof of Theorem 2.3 in [7].

Theorem 2. Consider the problem (1). Then, for any 𝑥 ∈ 𝑋,
there exists an 𝜖(𝑥) > 0 such that for any 𝜖 ∈ (0, 𝜖(𝑥)]

𝑓 (𝑥) − 𝑓
𝜖 (𝑥)

 ≤
𝜖

2
𝑀, (12)

where𝑀 is defined as follows:

𝑀 = max
𝑖=1,2,...,𝑁


𝑧
∗

𝜖
(𝑥, 𝜔
𝑖
)


2

. (13)

Let 𝑥∗ be a solution of (1) and 𝑥
∗

𝜖
a solution of (11).Then, there

exists an 𝜖 > 0 such that for any 0 < 𝜖 ≤ 𝜖

max {𝑓 (𝑥
∗

𝜖
) − 𝑓 (𝑥

∗
) , 𝑓
𝜖
(𝑥
∗
) − 𝑓
𝜖
(𝑥
∗

𝜖
)} ≤

𝜖

2
𝑀. (14)

Further, one assumes that𝑓 or𝑓
𝜖
are strongly convex on𝑋with

modulus 𝜇 > 0. Then,

𝑥
∗
− 𝑥
∗

𝜖

 ≤ 𝑀
𝜖

𝜇
. (15)

According toTheorem 1, it can be found that for obtaining
the gradient of function 𝑓

𝜖
(𝑥) in each iteration, we need the

normal solution of 𝑁 linear programming problems (4). In
this paper, the augmented Lagrangianmethod [17] is used for
this purpose.
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3. Smooth Approximation and Augmented
Lagrangian Method

In the augmented Lagrangian method, the unconstrained
maximization problem is solved which gives the project of a
point on the solution set of the problem (4).

Assume that �̂� is an arbitrary vector. Consider the prob-
lem of finding the least 2-norm projection �̂�

∗
of �̂� on the solu-

tion set 𝑍
∗
of the problem (4)

1

2

�̂�∗ − �̂�


2
= min
𝑧∈𝑍
∗

1

2
‖𝑧 − �̂�‖

2
,

𝑍
∗
= {𝑧 ∈ R

𝑚
2 : 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝜉

𝑇
𝑧 = 𝑄 (𝑥, 𝜔) , 𝑧 ≥ 0} .

(16)

In this problem, vector 𝑥 and random variable 𝜔 are con-
stants; therefore, for simplicity, this is assumed to be 𝜉 =

ℎ(𝜔) − 𝑇(𝜔)𝑥, and function 𝑄(𝜉) is defined in a way that
𝑄(𝜉) = 𝑄(𝑥, 𝜔).

Considering that the objective function of the problem
(16) is strictly convex, its solution is unique. Let us introduce
the Lagrangian function for the problem (16) as follow:

𝐿 (𝑧, 𝑝, 𝛽, �̂�, 𝜉, 𝜔) =
1

2
‖𝑧 − �̂�‖

2
+ 𝑝
𝑇
(𝑊 (𝜔) 𝑧 − 𝑞 (𝜔))

+ 𝛽 (𝜉
𝑇
𝑧 − 𝑄 (𝜉)) ,

(17)

where 𝑝 ∈ R𝑛2 and 𝛽 ∈ R are Lagrangian multipliers and 𝜉,
�̂� are constant values. Therefore, the dual problem of (16)
becomes

max
𝛽∈R

max
𝑝∈R𝑛2

min
𝑧∈R
𝑚2

+

𝐿 (𝑧, 𝑝, 𝛽, �̂�, 𝜉, 𝜔) . (18)

By solving the innerminimization of the problem (18), duality
of the problem (16) is obtained:

max
𝛽∈R

max
𝑝∈R𝑛2

�̂� (𝑝, 𝛽, �̂�, 𝜉) , (19)

where duality function is

�̂� (𝑝, 𝛽, �̂�, 𝜉) = 𝑞
𝑇
(𝜔) 𝑝 −

1

2


(�̂� + 𝑊

𝑇
(𝜔) 𝑝 + 𝛽𝜉)

+



2

+ 𝛽𝑄 (𝜉) +
1

2
‖�̂�‖
2
.

(20)

The following theorem states that if 𝛽 is sufficiently large,
solving the inner maximization of (19) gives the solution of
the problem (16).

Theorem 3 (see [17]). Consider the following maximization
problem

max
𝑝∈R𝑛2

𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) (21)

in which 𝛽, �̂�, and 𝜉 are constants, and function 𝑆(𝑝, 𝛽, �̂�, 𝜉) is
introduced as follows:

𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) = 𝑞
𝑇
(𝜔) 𝑝 −

1

2


(�̂� + 𝑊

𝑇
(𝜔) 𝑝 + 𝛽𝜉)

+



2

.

(22)

Also, assume that the set 𝑍
∗
is nonempty, and the rank of

submatrix 𝑊
𝑙
of 𝑊 corresponding to nonzero components of

�̂�
∗
is 𝑛
2
. In such a case, there is 𝛽

∗ which for all 𝛽 ≥ 𝛽
∗,

�̂�
∗
= (�̂� + 𝑊

𝑇
𝑝(𝛽) + 𝛽𝜉)

+
is the unique and exact solution for

the problem (16), where 𝑝(𝛽) is the point obtained from solving
the problem (21).

Also, in special conditions, the solution for the problem
(3) can be also obtained and the following theorem expresses
this issue.

Theorem 4 (see [17]). Assume that the solution set 𝑍
∗
is

nonempty. For each 𝛽 > 0 and �̂� ∈ 𝑍
∗
, 𝑦
∗

= 𝑝(𝛽)/𝛽 is one
exact solution for the linear programming problem (3), where
𝑝(𝛽) is the solution for the problem (21).

According to the theorems mentioned above, augmented
Lagrangian method presents the following iteration process
for solving the problem (16):

𝑝
𝑘+1

∈ arg max
𝑝∈R𝑛2

{𝑞
𝑇
(𝜔) 𝑝 −

1

2


(𝑧
𝑘
+ 𝑊(𝜔)

𝑇
𝑝 + 𝛽𝜉)

+



2

} ,

𝑧
𝑘+1

= (𝑧
𝑘
+ 𝑊
𝑇
(𝜔) 𝑝𝑘+1 + 𝛽𝜉)

+
,

(23)

where 𝑧
0
is an arbitrary vector and herewe can use zero vector

as initial vector for obtaining normal solution of the problem
(4).

We note that the problem (23) is a concave problem and
its objective function is piecewise quadratic and is not twice
differentiable. Applying the smoothing techniques [18, 19]
and replacing 𝑥

+
by a smooth approximation, we transform

this problem to a twice continuously differentiable problem.
Chen and Mangasarian [19] introduced a family of

smoothing functions, which is built as follows. Let 𝜌 : 𝑅 →

[0,∞) be a piecewise continuous density function satisfying

∫

+∞

−∞

𝜌 (𝑠) 𝑑𝑠 = 1, ∫

+∞

−∞

|𝑠| 𝜌 (𝑠) 𝑑𝑠 < ∞. (24)

It is obvious that the derivative of plus function is step func-
tion, that is, (𝑥)

+
= ∫
𝑥

−∞
𝛿(𝑡)𝑑𝑡, where the step function 𝛿(𝑥)

is defined 1 if 𝑥 > 0 and equals 0 if𝑥 ≤ 0.Therefore, a smooth-
ing approximation function of the plus function is defined by

𝜑 (𝑥, 𝛼) = ∫

𝑥

−∞

𝜓 (𝑡, 𝛼) 𝑑𝑡, (25)

where 𝜓(𝑥, 𝛼) is smoothing approximation function of step
function and is defined as

𝜓 (𝑥, 𝛼) = ∫

𝑥

−∞

𝛼𝜌 (𝛼𝑡) 𝑑𝑡. (26)

By choosing

𝜌 (𝑠) =
𝑒
−𝑠

(1 + 𝑒−𝑠)
2
, (27)
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specific cases of these approaches are obtained as follows:

𝜓 (𝑥, 𝛼) =
1

1 + 𝑒−𝛼𝑥
≈ 𝛿 (𝑥) ,

𝜑 (𝑥, 𝛼) = 𝑥 +
1

𝛼
log (1 + 𝑒

−𝛼𝑥
) ≈ (𝑥)+.

(28)

The function 𝜑 with a smoothing parameter 𝛼 is used here to
replace the plus function of (22) to obtain a smooth reformu-
lation of function (22):

𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝛽, 𝜔, 𝛼) := 𝑞
𝑇
(𝜔) 𝑝

−

𝜑(�̂� + 𝑊

𝑇
(𝜔)𝑝 + 𝛽𝜉, 𝛼)



2

.

(29)
Therefore, we have the following iterative process instead of
(23) and (28):

𝑝
𝑘+1

∈ arg max
𝑝∈R𝑛2

{𝑞
𝑇
(𝜔) 𝑝 −


𝜑(𝑧
𝑘
+ 𝑊
𝑇
(𝜔)𝑝 + 𝛽𝜉, 𝛼)



2

} ,

𝑧
𝑘+1

= 𝜑 (𝑧
𝑘
+ 𝑊
𝑇
(𝜔) 𝑝𝑘+1 + 𝛽𝜉, 𝛼) .

(30)
It can be shown that as the smoothing parameter 𝛼 approach-
es infinity any solution of smooth problem (29) approaches
the solution of the equivalent problem (22) (see [19]).

We beginwith a simple lemma that bounds the square dif-
ference between the plus function 𝑥

+
and its smooth approx-

imation 𝜑(𝑥, 𝛼).

Lemma 5 (see [13]). For 𝑥 ∈ R and |𝑥| < 𝜛

𝜑
2
(𝑥, 𝛼) − (𝑥

+
)
2
≤ (

log (2)
𝛼

)

2

+
2𝜛

𝛼
log (2) , (31)

where 𝜑(𝑥, 𝛼) is the 𝜑 function of (28) with smoothing param-
eter 𝛼 > 0.

Theorem 6. Consider the problems (21) and

max
𝑝∈R𝑛2

𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) . (32)

Then, for any 𝑝 ∈ R𝑛2 and 𝛼 > 0


𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)


≤ (

log (2)
𝛼

)

2

+ 2𝑀𝑚
2

log (2)
𝛼

,

(33)
where𝑀 is defined as follows:

𝑀 = max
1≤𝑖≤𝑚

2


�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖


. (34)

Let 𝑝∗ be a solution of (21) and 𝑝
∗

𝛼
a solution of (32). Then

max {𝑆 (𝑝
∗
, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝

∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔) ,

𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)}

≤ (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(35)

Further, one assumes that 𝑊𝑇 is a full rank matrix. Then,

𝑝
∗
− 𝑝
∗

𝛼

 ≤ 𝜇(
2 log (2)

𝛼
)

2

+ 8𝑀𝑚
2
𝜇
log (2)

𝛼
. (36)

Proof. For any 𝛼 > 0 and 𝑝 ∈ R𝑛2

𝜑 (�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼) ≥ (�̂�

𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)
+
.

(37)

Hence


𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)



= 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

=

𝜑(�̂� + 𝑊

𝑇
(𝜔)𝑝 + 𝛽𝜉, 𝛼)



2

−

(�̂� + 𝑊

𝑇
(𝜔) 𝑝 + 𝛽𝜉, 𝛼)

+



2

=

𝑚
2

∑

𝑖=1

(𝜑
2
(�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)

−(�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)
2

+
) .

(38)

By using Lemma 5, we get that


𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)



≤

𝑚
2

∑

𝑖=1

((
log (2)

𝛼
)

2

+ 2

�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼



log (2)
𝛼

)

≤ (
log (2)

𝛼
)

2

+ 2
log (2)

𝛼

×

𝑚
2

∑

𝑖=1

max
1≤𝑖≤𝑚

2


�̂�
𝑖
+ 𝑊
𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖



= (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(39)

From above inequality, we have

𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) ≤ 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔)

≤ 𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) + (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(40)
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Table 1: Comparative between smooth augmented Lagrangian Newton method (SALN) and CPLEX solver.

N. P Recourse problem
𝑛
2
× 𝑚
2
× 𝑑

Solver ‖𝑊𝑧 − 𝑞‖
∞

|𝑄(𝜉) − 𝜉
𝑇
𝑧| ‖𝑧‖ Time (second)

P1 50 × 50 × 0.68
SALN 9.9135𝑒 − 011 7.2760𝑒 − 012 41.0362 0.3292

CPLEX 1.0717𝑒 − 007 5.2589𝑒 − 007 41.0362 0.3182

P2 100 × 105 × 0.4
SALN 1.8622𝑒 − 010 4.3074𝑒 − 009 57.1793 0.1275

CPLEX 6.5591𝑒 − 008 1.6105𝑒 − 006 57.1826 0.1585

P3 150 × 150 × 0.5
SALN 3.1559𝑒 − 010 5.6361𝑒 − 009 74.9098 0.6593

CPLEX 5.9572𝑒 − 010 1.2014𝑒 − 009 74.9098 0.1605

P4 200 × 200 × 0.5
SALN 5.3819𝑒 − 010 1.0506𝑒 − 008 85.6646 0.2530

CPLEX 1.1734𝑒 − 007 1.3964𝑒 − 006 85.6646 0.1820

P5 300 × 300 × 0.5
SALN 9.4178𝑒 − 010 2.7951𝑒 − 008 102.4325 2.1356

CPLEX 4.1638𝑒 − 010 4.4456𝑒 − 009 102.4325 0.1830

P6 350 × 350 × 0.5
SALN 1.2787𝑒 − 009 2.6226𝑒 − 008 110.4189 3.2102

CPLEX 7.7398𝑒 − 010 3.4452𝑒 − 009 110.4189 0.2116

P7 450 × 500 × 0.05
SALN 1.6564𝑒 − 010 4.7094𝑒 − 009 124.1204 0.7807

CPLEX 9.0949𝑒 − 013 1.6371𝑒 − 011 124.1205 0.2606

P8 500 × 550 × 0.04
SALN 1.0425𝑒 − 010 1.0241𝑒 − 009 134.3999 0.7567

CPLEX 6.1618𝑒 − 011 1.9081𝑒 − 009 134.3999 0.2660

P9 700 × 800 × 0.6
SALN 4.6139𝑒 − 009 2.3908𝑒 − 007 153.9782 7.1364

CPLEX 9.1022𝑒 − 009 1.3768𝑒 − 007 153.9906 0.8435

P10 900 × 1100 × 0.4
SALN 5.3396𝑒 − 009 1.5207𝑒 − 007 178.1151 7.9383

CPLEX 4.5020𝑒 − 011 2.0373𝑒 − 010 178.1163 1.3643

P11 1500 × 2000 × 0.1
SALN 1.1289𝑒 − 008 2.0696𝑒 − 007 231.5284 13.2493

CPLEX 7.5886𝑒 − 011 1.1059𝑒 − 009 231.5286 2.1343

P12 1000 × 2000 × 0.01
SALN 3.6398𝑒 − 010 7.9162𝑒 − 009 198.4905 5.2620

CPLEX 6.8212𝑒 − 013 1.1642𝑒 − 010 198.4922 0.6752

P13 1000 × 5000 × 0.001
SALN 2.7853𝑒 − 010 1.9281𝑒 − 010 190.0141 0.2709

CPLEX 4.8203𝑒 − 010 1.5425𝑒 − 009 190.0142 0.2162

P14 1000×10000×0.001
SALN 1.1221𝑒 − 010 1.4988𝑒 − 009 212.2416 0.4867

CPLEX 7.9094𝑒 − 009 2.6691𝑒 − 007 212.3453 0.3353

P15 1000 × 1𝑒5 × 0.001
SALN 9.7702𝑒 − 010 2.3283𝑒 − 009 231.7930 3.7511

CPLEX 2.7285𝑒 − 012 1.8044𝑒 − 009 231.8763 1.2472

P16 1000 × 1𝑒6 × 0.0002
SALN 9.9432𝑒 − 013 2.0464𝑒 − 012 121.3937 9.0948

CPLEX 9.9098𝑒 − 006 1.1089𝑒 − 004 121.3940 3.7848

P17 100 × 1𝑒6 × 0.001
SALN 3.9563𝑒 − 010 5.6607𝑒 − 009 73.8493 6.8537

CPLEX 2.0082𝑒 − 003 1.1777𝑒 − 002 73.9412 2.5582

P18 10 × 1𝑒4 × 0.001
SALN 2.2737𝑒 − 013 7.9581𝑒 − 013 19.5735 0.0166

CPLEX 2.2737𝑒 − 013 1.1369𝑒 − 013 19.5739 0.1386

P19 10 × 1𝑒6 × 0.001
SALN 1.2478𝑒 − 009 1.0710𝑒 − 008 18.8192 5.6399

CPLEX 5.9615𝑒 − 004 6.4811𝑒 − 005 18.8863 2.5623

P20 10 × 5𝑒6 × 0.01
SALN 2.0425𝑒 − 008 1.1816𝑒 − 008 20.8470 28.7339

CPLEX 4.9966𝑒 + 004 3.3500𝑒 + 005 0.0000 1.9482

P21 100 × 1𝑒6 × 0.01
SALN 3.8654𝑒 − 012 7.7875𝑒 − 012 42.0698 7.8895

CPLEX 1.7994𝑒 − 004 6.2712𝑒 − 005 42.0931 8.8324

P22 100 × 1𝑒4 × 0.1
SALN 1.1084𝑒 − 012 2.1600𝑒 − 012 39.4563 0.1440

CPLEX 1.2518𝑒 − 005 1.3174𝑒 − 005 39.4563 0.3099

P23 100 × 1𝑒5 × 0.05
SALN 1.7053𝑒 − 012 6.3121𝑒 − 012 43.5944 1.1379

CPLEX 3.9827𝑒 − 006 2.8309𝑒 − 006 43.5944 1.5729
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Table 1: Continued.

N. P Recourse problem
𝑛
2
× 𝑚
2
× 𝑑

Solver ‖𝑊𝑧 − 𝑞‖
∞

|𝑄(𝜉) − 𝜉
𝑇
𝑧| ‖𝑧‖ Time (second)

P24 1000 × 5𝑒4 × 0.1
SALN 1.3074𝑒 − 012 2.4102𝑒 − 011 117.4693 15.1065

CPLEX 6.7455𝑒 − 007 6.7379𝑒 − 006 117.4699 20.3967

P25 1000 × 1𝑒5 × 0.08
SALN 2.5011𝑒 − 012 1.0516𝑒 − 011 116.6964 23.2540

CPLEX 9.4298𝑒 − 006 5.5861𝑒 − 004 116.6964 33.4319

Therefore
𝑆 (𝑝
∗
, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝

∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔)

≤ 𝑆 (𝑝
∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝

∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

+ (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

≤ (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

,

𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

≤ 𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔) − 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔)

+ (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

≤ (
log (2)

𝛼
)

2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(41)

Suppose that𝑊𝑇 is full rank.Then theHessian of 𝑆 is negative
definite, and 𝑆 is strongly concave on bounded sets. By the
definition of strong concavity, for any 𝛾 ∈ (0, 1),

𝑆 (𝛾𝑝
∗

𝛼
+ (1 − 𝛾) 𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝛾𝑆 (𝑝

∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

− (1 − 𝛾) 𝑆 (𝑝
∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

≥
1

2
𝜇𝛾 (1 − 𝛾)

𝑝
∗

𝛼
− 𝑝
∗

2
.

(42)

Let 𝛾 = 1/2, then
1

8
𝜇
𝑝
∗

𝛼
− 𝑝
∗

2

≤ 𝑆 (
1

2
(𝑝
∗

𝛼
+ 𝑝
∗
) , 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

−
1

2
(𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) + 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼))

≤ 𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)

−
1

2
(𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) + 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼))

≤
1

2
(𝑆 (𝑝
∗

𝛼
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝

∗
, 𝛽, �̂�, 𝜉, 𝜔, 𝛼))

≤
1

2
(
log (2)

𝛼
)

2

+ 𝑀𝑚
2

log (2)
𝛼

.

(43)

Considering the advantage of the twice differentiability of
the objective function of the problem (32) allows us to use a
quadratically convergent Newton algorithm with an Armijo
stepsize [20] that makes the algorithm globally convergent.

4. Numerical Results and Algorithm

In each iteration of the process (30), one concave, quadratic,
unconstrained maximization problem is solved. For solving
it, the fast Newton method can be used.

In the algorithm, theHessianmatrixmay be singular, thus
we use amodified Newton.The direction in each iteration for
solving (30) is obtained through the following relation:

𝑑
𝑠
= −(∇

2

𝑝
𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼) − 𝛿𝐼

𝑛
2

)
−1

(∇
𝑝
𝑆 (𝑝, 𝛽, �̂�, 𝜉, 𝜔, 𝛼)) ,

𝑝
𝑠+1

= 𝑝
𝑠
+ 𝜆
𝑠
𝑑
𝑠
,

(44)

where 𝛿 is a small positive number, 𝐼
𝑛
2

is the identity matrix
of order 𝑛

2
, and 𝜆

𝑠
is the suitable step length that Armijo

algorithm is used for determining it (see Algorithm 1).
The proposed algorithm was applied to solve some

recourse problems. Table 1 compares this algorithm with
CPLEX v. 12.1 solver for quadratic convex programming
problems (5). As is evident from Table 1, most of recourse
problems could be solved more successful by the algorithm
which is based on smooth augmented Lagrangian Newton
method (SALN) than CPLEX package (for illustration see the
problems 21–25 in Table 1).This algorithm gives us high accu-
racy and the solution with minimum norm in suitable time
(see last column of Table 1). Also, we can find that CPLEX
is better than the algorithm proposed for some recourse
problems inwhich thematrices are approximately square (Ex.
line 5–12).

The test generator generates recourse problems. These
problems are generated using the MATLAB code show in
Algorithm 2.

The algorithm considered for solving several recourse
problems was run on a computer with 2.5 dual-core CPU and
4GB memory in MATLAB 7.8 programming environment.
Also, in the generated problems, recourse matrix 𝑊 is the
Sparse matrix (𝑛

2
× 𝑚
2
) with the density 𝑑. The constants 𝛽

and 𝛿 in the above algorithm in (44) were selected 1 and 10
−8,

respectively.
In Table 1, the second column indicates the size and

density ofmatrix𝑊, the forth column indicates the feasibility
of the primal problem (4), and the next column indicates the
error norm function of this problem (the MATLAB code of
this paper is available from the authors upon request).
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Choose a 𝑧
0
∈ 𝑅
𝑚2 , 𝛼 > 1, 𝜄 > 1, 𝜖 > 0 be error tolerance and 𝛿 is a small positive

number.
𝑖 = 0;
While 𝑧𝑖 − 𝑧

𝑖−1

∞ ≥ 𝜖

Choose a 𝑝
0
∈ 𝑅
𝑛2 and set 𝑘 = 0.

While 
∇
𝑝
𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼)

∞
≥ 𝜖

Choose 𝜆
𝑘
= max{𝑠, 𝑠𝜎, 𝑠𝜎2, . . .} such that

𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼) − 𝑆(𝑝

𝑘
+ 𝜆
𝑘
𝑑
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼) ≥ −𝜆

𝑖
𝜇∇(𝑆(𝑝

𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼))

𝑇
𝑑
𝑘
,

where,
𝑑
𝑘
= −(∇

2
𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼, ) − 𝛿𝐼

𝑛2
)
−1
∇𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼), 𝑠 > 0 be a constant,

𝜎 ∈ (0, 1) and 𝜇 ∈ (0, 1).
Put 𝑝

𝑘+1
= 𝑝
𝑘
+ 𝜆
𝑘
𝑑
𝑘
, 𝑘 = 𝑘 + 1 and 𝛼 = 𝜄𝛼.

end
Set 𝑝
𝑖+1

= 𝑝
𝑘+1

, 𝑧
𝑖+1

= 𝜑(𝑧
𝑖
+ 𝑊
𝑇
(𝜔)𝑝
𝑖+1

+ 𝛽𝜉, 𝛼) and 𝑖 = 𝑖 + 1.
end

Algorithm 1: Newton method with the Armijo rule.

%Sgen: Generate random solvable recourse problems:

%Input: m,n,d(ensity); Output: W,q,𝜉;

m=input(’Enter 𝑛
2
:’)

n=input(’Enter 𝑚
2
:’)

d=input(’Enter d:’)
pl=inline(’(abs(x)+x)/2’)
W=sprand(𝑛

2
,𝑚
2
,d);W=100∗(W-0.5∗spones(W));

z=sparse(10∗pl(rand(𝑚
2
,1)));

q=W∗z;

y=spdiags((sign(pl(rand(𝑛
2
,1)-rand(𝑛

2
,1)))),0,𝑛

2
,𝑛
2
)

∗5∗((rand(𝑛
2
,1)-rand(𝑛

2
,1)));

𝜉=W’∗y-10∗spdiags((ones(𝑚
2
,1)-sign(z)),0,𝑚

2
,𝑚
2
)∗ones(𝑚

2
,1));

format short e; nnz(W)/prod(size(W))

Algorithm 2

5. Conclusion

In this paper, a smooth reformulation process, based on
augmented Lagrangian algorithm, was proposed for obtain-
ing the normal solution of recourse problem of a stochastic
linear programming. This smooth iterative process allows us
to use a quadratically convergent Newton algorithm, which
accelerates obtaining the normal solution.

Table 1 shows that the proposed algorithm has appropri-
ate speed in most of the problems. This result, specifically,
can be observed in recourse problems with the matrix of
coefficients in which the number of constraints is noticeably
more than the number of variables. The more challenging is
solving the problems which their coefficient matrix is square
(the numbers of constraints and variables get closer to each
other), and more time is needed by the algorithm for solving
the problem.
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This paper addresses the robust stability for a class of linear discrete-time stochastic systems with convex polytopic uncertainties.
The system to be considered is subject to both interval time-varying delays and convex polytopic type uncertainties. Based on
the augmented parameter-dependent Lyapunov-Krasovskii functional, new delay-dependent conditions for the robust stability are
established in terms of linear matrix inequalities. An application to robust stabilization of linear discrete-time stochastic control
systems is given. Numerical examples are included to illustrate the effectiveness of our results.

1. Introduction

In the past decades, the problem of stability for neutral
differential systems, which have delays in both its state and
the derivatives of its states, has been widely investigated by
many researchers. Such systems are often encountered in
engineering, biology, and economics. The existence of time
delay is frequently a source of instability or poor perfor-
mances in the systems. Recently, some stability criteria for
neutral system with time delay have been given in [1–8]
and the references therein. Some delay-dependent stability
criteria for discrete-time systems with time-varying delay
are investigated in [2, 6, 9–11], where the discrete Lyapunov
functional method is employed to prove stability conditions
in terms of linear matrix inequalities (LMIs). A number of
research works for dealing with asymptotic stability problem
for discrete systems with interval time-varying delays have
been presented in [12–24]. Theoretically, stability analysis of
the systems with time-varying delays is more complicated,
especially for the case where the system matrices belong to
some convex polytope. In this case, the parameter-dependent
Lyapunov-Krasovskii functionals are constructed as the con-
vex combination of a set of functions assures the robust

stability of the nominal systems, and the stability conditions
must be solved upon a grid on the parameter space, which
results in testing a finite number of linear matrix inequalities
(LMIs) [11, 25, 26]. To the best of the authors’ knowledge,
the stability for linear discrete-time systems with both time-
varying delays and polytopic uncertainties has not been fully
investigated.Thepapers [27, 28] propose sufficient conditions
for robust stability of discrete and continuous polytopic
systems without time delays. More recently, combining the
ideas in [25, 26], improved conditions for D-stability and
D-stabilization of linear polytopic delay-difference equations
with constant delays have been proposed in [29]. To the
best of our knowledge, the stability and stabilization of
linear discrete-time stochastic systems with convex polytopic
uncertainties, nondifferentiable time-varying delays has not
been fully studied yet (see, e.g., [1, 3–11, 13–36] and the
references therein), which are important in both theories and
applications. This motivates our research.

In this paper, we consider polytopic discrete-time
stochastic equations with interval time-varying delays. By
using the parameter-dependent Lyapunov-Krasovskii func-
tional combined with LMI techniques, we propose new
criteria for the robust stability of the stochastic system. The
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delay-dependent stability conditions are formulated in terms
of LMIs, being thus solvable by the numeric technology
available in the literature to date. The result is applied to
robust stabilization of linear discrete-time stochastic control
systems. Compared to other results, our result has its own
advantages. First, it deals with the delay-difference stochastic
system, where the state-space data belong to the convex
polytope of uncertainties and the rate of change of the state
depends not only on the current state of the systems, but
also its state at some times in the past. Second, the time
delay is assumed to be a time-varying function belonging to a
given interval, whichmeans that the lower and upper bounds
for the time-varying delay are available. Third, our approach
allows us to apply in robust stabilization of the linear discrete-
time stochastic system subjected to polytopic uncertainties
and external controls.Therefore, our results are more general
than the related previous results.

The paper is organized as follows. Section 2 introduces
the main notations, definitions, and some lemmas needed for
the development of the main results. In Section 3, sufficient
conditions are derived for robust stability, stabilization of
discrete-time stochastic systems with interval time-varying
delays, and polytopic uncertainties. They are followed by
some remarks. Illustrative examples are given in Section 4.

2. Preliminaries

The following notations will be used throughout this paper.
𝑅
+ denotes the set of all real nonnegative numbers;𝑅𝑛 denotes

the 𝑛-dimensional space with the scalar product ⟨⋅, ⋅⟩ and the
vector norm ‖ ⋅ ‖;𝑅𝑛×𝑟 denotes the space of all realmatrices of
(𝑛× 𝑟)-dimension.𝐴𝑇 denotes the transpose of𝐴; a matrix𝐴

is symmetric if 𝐴 = 𝐴
𝑇, and a matrix 𝐼 is the identity matrix

of appropriate dimension.
Matrix 𝐴 is semipositive definite (𝐴 ≥ 0) if ⟨𝐴𝑥, 𝑥⟩ ≥ 0, for
all 𝑥 ∈ 𝑅

𝑛
; 𝐴 is positive definite (𝐴 > 0) if ⟨𝐴𝑥, 𝑥⟩ > 0 for all

𝑥 ̸= 0; 𝐴 ≥ 𝐵means that 𝐴 − 𝐵 ≥ 0.
Consider delay-difference stochastic systems with poly-

topic uncertainties of the form

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . . ,

𝑥 (𝑘) = V
𝑘
, 𝑘 = −ℎ

2
, −ℎ
2
+ 1, . . . , 0,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state (Figures 1 and 2), and the system

matrices are subjected to uncertainties and belong to the
polytopeΩ given by

Ω = {[𝐴,𝐷] (𝜉) :=

𝑝

∑

𝑖=1

𝜉
𝑖
[𝐴
𝑖
, 𝐷
𝑖
] ,

𝑝

∑

𝑖=1

𝜉
𝑖
= 1, 𝜉
𝑖
≥ 0} , (2)

where 𝐴
𝑖
, 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are given constant matrices

with appropriate dimensions, 𝜔(𝑘) is a scalar Wiener process
(Brownian Motion) on (Ω,F,P) with

𝐸 [𝜔 (𝑘)] = 0, 𝐸 [𝜔
2
(𝑘)] = 1,

𝐸 [𝜔 (𝑖) 𝜔 (𝑗)] = 0 (𝑖 ̸= 𝑗) ,

(3)

1
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Figure 1: The simulation of the solutions 𝑥
1
(𝑘) and 𝑥

2
(𝑘) with the

initial condition 𝜙(𝑘) = [10 5]
𝑇, 𝑘 ∈ [0, 10].
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Figure 2: The simulation of the solutions 𝑥
1
(𝑘) and 𝑥

2
(𝑘) with the

initial condition 𝜙(𝑘) = [10 5]
𝑇, 𝑘 ∈ [0, 10].

and 𝜎: 𝑅𝑛 × 𝑅
𝑛
× 𝑅 → 𝑅

𝑛 is the continuous function and is
assumed to satisfy that

𝜎
𝑇
(𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘)

≤ 𝜌
1
𝑥
𝑇
(𝑘) 𝑥 (𝑘) + 𝜌

2
𝑥
𝑇
(𝑘 − ℎ (𝑘)) 𝑥 (𝑘 − ℎ (𝑘)) ,

𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) ∈ 𝑅
𝑛
,

(4)

where 𝜌
1
> 0 and 𝜌

2
> 0 are known constant scalars.

For simplicity, we denote 𝜎(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘) by 𝜎,
respectively.
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The time-varying function ℎ(𝑘) satisfies the condition:

0 < ℎ
1
≤ ℎ (𝑘) ≤ ℎ

2
, ∀𝑘 = 0, 1, 2, . . . . (5)

Remark 1. It is worth noting that the time delay is a time-
varying function belonging to a given interval, which allows
the time delay to be a fast time-varying function, and the
lower bound is not restricted to being zero as considered in
[2, 6, 9–11, 18–24, 30–33].

Definition 2. The system (1) is robustly stable in the mean
square if there exists a positive definite scalar function 𝑉(𝑘,

𝑥(𝑘)): 𝑅𝑛 × 𝑅
𝑛

→ 𝑅 such that

𝐸 [Δ𝑉 (𝑘, 𝑥 (𝑘))]

= 𝐸 [𝑉 (𝑘 + 1, 𝑥 (𝑘 + 1)) − 𝑉 (𝑘, 𝑥 (𝑘))] < 0,

(6)

along any trajectory of zero solution of the system (1) for all
uncertainties inΩ.

Proposition 3. For real numbers 𝜉
𝑖

≥ 0, 𝑖 = 1, 2, . . . , 𝑝,
∑
𝑝

𝑖=1
𝜉
𝑖
= 1, the following inequality holds:

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
≥ 0. (7)

Proof. The proof is followed from completing the square

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
=

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

(𝜉
𝑖
− 𝜉
𝑗
)
2

≥ 0. (8)

3. Main Results

3.1. Robust Stability. In this section, we present sufficient
delay-dependent conditions for the robust stability of system
(1). Let us set

𝑥𝑘
 = sup
𝑠∈[−ℎ2 ,0]

‖𝑥 (𝑘 + 𝑠)‖ ,

M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) = (

(ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼 𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑗

−𝑆
1𝑖
𝐷
𝑗
− 𝑆
2𝑖
𝐴
𝑗

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
2𝑖
− 𝑆
1𝑖
𝐷
𝑗

−𝐷
𝑇

𝑗
𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

2𝑖
𝑆
𝑇

2𝑖
− 𝐷
𝑇

𝑗
𝑆
𝑇

1𝑖
−𝑄
𝑖
− 𝑆
2𝑖
𝐷
𝑗
− 𝐷
𝑇

𝑗
𝑆
𝑇

2𝑖
+ 2𝜌
2
𝐼

) ,

S = (

𝑆 0 0

0 0 0

0 0 0

) , 𝑃 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑃
𝑖
, 𝑄 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑄
𝑖
, 𝑆

1 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑆
1𝑖
, 𝑆

2 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑆
2𝑖
.

(9)

Theorem 4. The system (1) is robustly stable in the mean
square if there exist symmetric matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, 𝑖 =

1, 2 . . . , 𝑝, and constant matrices 𝑆 ≥ 0, 𝑆
1𝑖
, 𝑆
2𝑖
, 𝑖 = 1, 2 . . . , 𝑝,

satisfying the following LMIs:

(i) M
𝑖𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +S < 0, 𝑖 = 1, 2, . . . , 𝑝;

(ii) M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)+M
𝑗𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)−(2/(𝑝−1))S < 0,

𝑖 = 1, 2, . . . , 𝑝 − 1; 𝑗 = 𝑖 + 1, . . . , 𝑝.

Proof. Consider the following parameter-dependent Lyapun-
ov-Krasovskii functional for system (1):

𝑉 (𝑘) = 𝑉
1 (𝑘) + 𝑉

2 (𝑘) + 𝑉
3 (𝑘) , (10)

where
𝑉
1 (𝑘) = 𝑥 (𝑘) 𝑃 (𝜉) 𝑥 (𝑘) ,

𝑉
2 (𝑘) =

𝑘−1

∑

𝑖=𝑘−ℎ(𝑘)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ,

𝑉
3 (𝑘) =

−ℎ
1
+1

∑

𝑗=−ℎ
2
+2

𝑘−1

∑

𝑙=𝑘+𝑗+1

𝑥
𝑇
(𝑙) 𝑄 (𝜉) 𝑥 (𝑙) .

(11)

We can verify that

𝜆
1‖𝑥 (𝑘)‖

2
≤ 𝑉 (𝑘) ≤ 𝜆

2

𝑥𝑘


2
. (12)

Let us set 𝑧(𝑘) = [𝑥
𝑇
(𝑘) 𝑥
𝑇
(𝑘 + 1) 𝑥

𝑇
(𝑘 − ℎ(𝑘)) 𝜔

𝑇
(𝑘)], and

𝐺 (𝜉) = (

0 0 0 0

0 𝑃 (𝜉) 0 0

0 0 0 0

0 0 0 0

) , 𝐹 (𝜉) = (

𝑃 (𝜉) 0 0 0

𝐼 𝐼 0 0

0 0 𝐼 0

0 0 0 𝐼

) .

(13)
Then, with the difference of 𝑉

1
(𝑘) along the solution of

the system (1) and taking the mathematical expectation, we
obtained
𝐸 [Δ𝑉

1 (𝑘)]

= 𝐸 [𝑥
𝑇
(𝑘 + 1) 𝑃 (𝜉) 𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃 (𝜉) 𝑥 (𝑘)]

= 𝐸
[
[
[

[

𝑧(𝑘)
𝑇
𝐺 (𝜉) 𝑧 (𝑘) − 2𝑧

𝑇
(𝑘) 𝐹
𝑇
(𝜉)(

0.5𝑥 (𝑘)

0

0

0

)
]
]
]

]

,

(14)
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because of
𝑧
𝑇
(𝑘) 𝐺 (𝜉) 𝑧 (𝑘) = 𝑥(𝑘 + 1)

𝑇
𝑃 (𝜉) 𝑥 (𝑘 + 1) ,

2𝑧
𝑇
(𝑘) 𝐹
𝑇
(𝜉)(

0.5𝑥 (𝑘)

0

0

0

) = 𝑥
𝑇
(𝑘) 𝑃 (𝜉) 𝑥 (𝑘) .

(15)

Using the expression of system (1)

0 = −𝑆
1 (𝜉) 𝑥 (𝑘 + 1) + 𝑆

1 (𝜉) 𝐴 (𝜉) 𝑥 (𝑘)

+ 𝑆
1 (𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

1 (𝜉) 𝜎𝜔 (𝑘) ,

0 = −𝑆
2 (𝜉) 𝑥 (𝑘 + 1) + 𝑆

2 (𝜉) 𝐴 (𝜉) 𝑥 (𝑘)

+ 𝑆
2 (𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

2 (𝜉) 𝜎𝜔 (𝑘) ,

0 = −𝜎
𝑇
𝑥 (𝑘 + 1) + 𝜎

𝑇
𝐴 (𝜉) 𝑥 (𝑘)

+ 𝜎
𝑇
𝐷(𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝜎

𝑇
𝜎𝜔 (𝑘) ,

(16)

we have

− 2𝑧
𝑇
(𝑘) 𝐹
𝑇
(𝜉)(

0.5𝑥 (𝑘)

−𝑆
1 (𝜉) 𝑥 (𝑘 + 1) + 𝑆

1 (𝜉) 𝐴 (𝜉) 𝑥 (𝑘) + 𝑆
1 (𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

1 (𝜉) 𝜎𝜔 (𝑘)

−𝑆
2 (𝜉) 𝑥 (𝑘 + 1) + 𝑆

2 (𝜉) 𝐴 (𝜉) 𝑥 (𝑘) + 𝑆
2 (𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

2 (𝜉) 𝜎𝜔 (𝑘)

−𝜎
𝑇
𝑥 (𝑘 + 1) + 𝜎

𝑇
𝐴 (𝜉) 𝑥 (𝑘) + 𝜎

𝑇
𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝜎

𝑇
𝜎𝜔 (𝑘)

)𝑧 (𝑘)

= −𝑧
𝑇
(𝑘) 𝐹
𝑇
(𝜉)(

0.5𝐼 0 0

𝑆
1 (𝜉) 𝐴 (𝜉) −𝑆

1 (𝜉) 𝑆
1 (𝜉)𝐷 (𝜉) 𝑆

1 (𝜉) 𝜎

𝑆
2 (𝜉) 𝐴 (𝜉) −𝑆

2 (𝜉) 𝑆
2 (𝜉)𝐷 (𝜉) 𝑆

2 (𝜉) 𝜎

𝜎
𝑇
𝐴 (𝜉) −𝜎

𝑇
𝜎
𝑇
𝐷(𝜉) 𝜎

𝑇
𝜎

)𝑧 (𝑘)

− 𝑧
𝑇
(𝑘)(

0.5𝐼 0 0

𝑆
1 (𝜉) 𝐴 (𝜉) −𝑆

1 (𝜉) 𝑆
1 (𝜉)𝐷 (𝜉) 𝑆

1 (𝜉) 𝜎

𝑆
2 (𝜉) 𝐴 (𝜉) −𝑆

2 (𝜉) 𝑆
2 (𝜉)𝐷 (𝜉) 𝑆

2 (𝜉) 𝜎

𝜎
𝑇
𝐴 (𝜉) −𝜎

𝑇
𝜎
𝑇
𝐷 (𝜉) 𝜎

𝑇
𝜎

)

𝑇

𝐹 (𝜉) 𝑧 (𝑘) .

(17)

Therefore, from (14), it follows that
𝐸 [Δ𝑉

1 (𝑘)]

= 𝐸 [𝑥
𝑇
(𝑘) [−𝑃 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉) − 𝐴(𝜉)
𝑇
𝑆
𝑇

1
(𝜉)] 𝑥 (𝑘)

+ 2𝑥
𝑇
(𝑘) [𝑆1 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇
(𝑘) [−𝑆1 (𝜉)𝐷 (𝜉)

−𝑆
2 (𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 − ℎ (𝑘))

+ 2𝑥
𝑇
(𝑘) [−𝑆1 (𝜉) 𝜎 − 𝜎

𝑇
𝐴 (𝜉)] 𝜔 (𝑘)

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1 (𝜉) + 𝑆

𝑇

1
(𝜉)]

× 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆2 (𝜉) − 𝑆
1 (𝜉)𝐷 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 2𝑥 (𝑘 + 1) [𝜎
𝑇
− 𝑆
1 (𝜉) 𝜎] 𝜔 (𝑘)

+ 𝑥
𝑇
(𝑘 − ℎ (𝑘)) [−𝑆2 (𝜉)𝐷 (𝜉) − 𝐷

𝑇
(𝜉) 𝑆
𝑇

2
(𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇
(𝑘 − ℎ (𝑘)) [−𝑆2 (𝜉) 𝜎 − 𝜎

𝑇
𝐷 (𝜉)] 𝜔 (𝑘)

+ 𝜔
𝑇
(𝑘) [−2𝜎

𝑇
𝜎]𝜔 (𝑘)] .

(18)

By assumption (3), we have

𝐸 [Δ𝑉
1 (𝑘)]

= 𝐸 [𝑥
𝑇
(𝑘) [−𝑃 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉) − 𝐴(𝜉)
𝑇
𝑆
𝑇

1
(𝜉)] 𝑥 (𝑘)

+ 2𝑥
𝑇
(𝑘) [𝑆1 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇
(𝑘) [−𝑆1 (𝜉)𝐷 (𝜉) − 𝑆

2 (𝜉) 𝐴 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1 (𝜉) + 𝑆

𝑇

1
(𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆2 (𝜉) − 𝑆
1 (𝜉)𝐷 (𝜉)] 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇
(𝑘 − ℎ (𝑘)) [−𝑆2 (𝜉)𝐷 (𝜉) − 𝐷

𝑇
(𝜉) 𝑆
𝑇

2
(𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜔
𝑇
(𝑘) [−2𝜎

𝑇
𝜎]𝜔 (𝑘)] .

(19)

Applying assumption (4), the following estimations holds:

− 𝜎
𝑇
(𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜎𝑖 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘)

≤ 𝜌
1
𝑥
𝑇
(𝑘) 𝑥 (𝑘) + 𝜌

2
𝑥
𝑇
(𝑘 − ℎ (𝑘)) 𝑥 (𝑘 − ℎ (𝑘)) .

(20)
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Therefore, we have

𝐸 [Δ𝑉
1 (𝑘)]

= 𝐸 [𝑥
𝑇
(𝑘) [−𝑃 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉) − 𝐴(𝜉)
𝑇
𝑆
𝑇

1
(𝜉)

+2𝜌
1
𝐼] 𝑥 (𝑘)

+ 2𝑥
𝑇
(𝑘) [𝑆1 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇
(𝑘) [−𝑆1 (𝜉)𝐷 (𝜉) − 𝑆

2 (𝜉) 𝐴 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1 (𝜉) + 𝑆

𝑇

1
(𝜉)]

× 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆2 (𝜉) − 𝑆
1 (𝜉)𝐷 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇
(𝑘 − ℎ (𝑘)) [−𝑆2 (𝜉)𝐷 (𝜉) − 𝐷

𝑇
(𝜉) 𝑆
𝑇

2
(𝜉)

+ 2𝜌
2
𝐼] 𝑥 (𝑘 − ℎ (𝑘)) ] .

(21)

The expectation of the difference of 𝑉
2
(𝑘) is given by

𝐸 [Δ𝑉
2 (𝑘)]

= 𝐸[

𝑘

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘−ℎ(𝑘)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)]

= 𝐸[

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

+ 𝑥
𝑇
(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

− 𝑥
𝑥
(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+

𝑘−1

∑

𝑖=𝑘+1−ℎ
1

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘+1−ℎ(𝑘)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)] .

(22)

Since ℎ(𝑘) ≥ ℎ
1
, we have

𝑘−1

∑

𝑖=𝑘+1−ℎ
1

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) −

𝑘−1

∑

𝑖=𝑘+1−ℎ(𝑘)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ≤ 0, (23)

and, hence, from (22), we have

𝐸 [Δ𝑉
2 (𝑘)]

≤ 𝐸[

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

+ 𝑥
𝑇
(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−𝑥
𝑇
(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) ] .

(24)

The difference of 𝑉
3
(𝑘) is given by

𝐸 [Δ𝑉
3 (𝑘)]

= 𝐸[

[

−ℎ
1
+1

∑

𝑗=−ℎ
2
+2

[𝑥
𝑇
(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 + 𝑗 − 1)𝑄 (𝜉)

× 𝑥 (𝑘 + 𝑗 − 1) ]]

]

= 𝐸[

[

(ℎ
2
− ℎ
1
) 𝑥
𝑇
(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−

𝑘−ℎ
1

∑

𝑙=𝑘+1−ℎ
2

𝑥
𝑇
(𝑙) 𝑄 (𝜉) 𝑥 (𝑙)]

]

.

(25)

Since

𝑘−ℎ
1

∑

𝑖=𝑘=1−ℎ(𝑘+1)

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) −

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ
2

𝑥
𝑇
(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ≤ 0,

(26)

we obtain from (24) and (25) that

𝐸 [Δ𝑉
2 (𝑘) + Δ𝑉

3 (𝑘)]

≤ 𝐸 [(ℎ
2
− ℎ
1
+ 1) 𝑥

𝑇
(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−𝑥
𝑇
(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))] .

(27)

Therefore, combining the inequalities (21), (27) gives

𝐸 [Δ𝑉 (𝑘)] ≤ 𝐸 [𝜓
𝑇
(𝑘) 𝑇 (𝜉) 𝜓 (𝑘)] , (28)

where
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𝜓 (𝑘) = [𝑥 (𝑘) 𝑥 (𝑘 + 1) 𝑥 (𝑘 − ℎ (𝑘))]
𝑇
,

𝑇 (𝜉) = (

𝑀(𝜉) 𝑆
1 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉) −𝑆
1 (𝜉)𝐷 (𝜉) − 𝑆

2 (𝜉) 𝐴 (𝜉)

𝑆
𝑇

1
(𝜉) − 𝐴

𝑇
(𝜉) 𝑆
𝑇

1
(𝜉) 𝑃 (𝜉) + 𝑆

1 (𝜉) + 𝑆
𝑇

1
(𝜉) 𝑆

2 (𝜉) − 𝑆
1 (𝜉)𝐷 (𝜉)

−𝐷
𝑇
(𝜉) 𝑆
𝑇

1
(𝜉) − 𝐴

𝑇
(𝜉) 𝑆
𝑇

2
(𝜉) 𝑆

𝑇

2
(𝜉) − 𝐷

𝑇
(𝜉) 𝑆
𝑇

1
(𝜉) −𝑄 (𝜉) − 𝑆

2 (𝜉)𝐷 (𝜉) − 𝐷
𝑇
(𝜉) 𝑆
𝑇

2
(𝜉) + 2𝜌

2
𝐼

) ,

𝑀 (𝜉) = (ℎ
2
− ℎ
1
+ 1)𝑄 (𝜉) − 𝑃 (𝜉) − 𝑆

1 (𝜉) 𝐴 (𝜉) − 𝐴(𝜉)
𝑇
𝑆
1(𝜉)
𝑇
+ 2𝜌
1
𝐼.

(29)

Let us denote that

𝑀
𝑖𝑗
:= (ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼,

(𝑆
1
𝐴)
𝑖𝑗
:= 𝑆
1𝑗
𝐴
𝑖
+ 𝑆
1𝑖
𝐴
𝑗
, (𝑆

2
𝐴)
𝑖𝑗
:= 𝑆
2𝑗
𝐴
𝑖
+ 𝑆
2𝑖
𝐴
𝑗
,

(𝑆
1
𝐷)
𝑖𝑗
:= 𝑆
1𝑗
𝐷
𝑖
+ 𝑆
1𝑖
𝐷
𝑗
, (𝑆

2
𝐷)
𝑖𝑗
:= 𝑆
2𝑗
𝐷
𝑖
+ 𝑆
2𝑖
𝐷
𝑗
,

𝑃
𝑖𝑗
= 𝑃
𝑖
+ 𝑃
𝑗
, 𝑄

𝑖𝑗
= 𝑄
𝑖
+ 𝑄
𝑗
,

𝑆
1𝑖𝑗

= 𝑆
1𝑖
+ 𝑆
1𝑗
, 𝑆

2𝑖𝑗
= 𝑆
2𝑖
+ 𝑆
2𝑗
.

(30)

From the convex combination of the expression of𝑃(𝜉),𝑄(𝜉),
𝑆
1
(𝜉), 𝑆
2
(𝜉), 𝐴(𝜉),𝐷(𝜉), we have

𝑇 (𝜉) =

𝑝

∑

𝑖=1

𝜉
2

𝑖
(

𝑀
𝑖𝑖

𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑖

−𝑆
1𝑖
𝐷
𝑖
− 𝑆
2𝑖
𝐴
𝑖

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑖
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
2𝑖
− 𝑆
1𝑖
𝐷
𝑖

−𝐷
𝑇

𝑖
𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑖
𝑆
𝑇

2𝑖
𝑆
𝑇

2𝑖
− 𝐷
𝑇

𝑖
𝑆
𝑇

1𝑖
−𝑄
𝑖
− 𝑆
2𝑖
𝐷
𝑖
− 𝐷
𝑇

𝑖
𝑆
𝑇

2𝑖
+ 2𝜌
2
𝐼

)

+

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
(

𝑀
𝑖𝑗
+ 𝑀
𝑗𝑖

𝑆
1𝑖𝑗

− (𝑆
1
𝐴)
𝑖𝑗

−(𝑆
1
𝐷)
𝑖𝑗
− (𝑆
2
𝐴)
𝑖𝑗

𝑆
𝑇

1𝑖𝑗
− (𝐴
𝑇
𝑆
𝑇

1
)
𝑖𝑗

𝑃
𝑖𝑗
+ 𝑆
1𝑖𝑗

+ 𝑆
𝑇

1𝑖𝑗
𝑆
2𝑖𝑗

− (𝑆
1
𝐷)
𝑖𝑗

−(𝐷
𝑇
𝑆
𝑇

1
)
𝑖𝑗
− (𝐴
𝑇
𝑆
𝑇

2
)
𝑖𝑗

𝑆
𝑇

2𝑖𝑗
− (𝐷
𝑇
𝑆
𝑇

1
)
𝑖𝑗

−𝑄
𝑖𝑗
− (𝑆
2
𝐷)
𝑖𝑗
− (𝐷
𝑇
𝑆
𝑇

2
)
𝑖𝑗
+ 2𝜌
2
𝐼

)

=

𝑝

∑

𝑖=1

𝜉
2

𝑖
M
𝑖𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
[M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +M

𝑗𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)] .

(31)

Then, the conditions (i) and (ii) give

𝑇 (𝜉) < −

𝑝

∑

𝑖=1

𝜉
2

𝑖
S +

2

𝑝 − 1

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
S ≤ 0, (32)

because of Proposition 3 as

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
=

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

(𝜉
𝑖
− 𝜉
𝑗
)
2

≥ 0,

(33)

and, hence, we finally obtain from (28) that
𝐸 [Δ𝑉 (𝑘)] ≤ 𝐸 [𝜓

𝑇
(𝑘) 𝑇 (𝜉) 𝜓 (𝑘)] < 0, ∀𝑘 = 0, 1, 2, . . . ,

(34)

which togetherwith (12) andDefinition 2 implies that the sys-
tem (1) is robustly stable in the mean square. This completes
the proof of the theorem.

Remark 5. The stability conditions of Theorem 4 are more
appropriate for most of real systems since it is usually
impossible in practice to know exactly the delay but lower and
upper bounds are always possible.

3.2. Robust Stabilization. This section deals with a stabiliza-
tion problem considered in [15] for constructing a delayed
feedback controller, which stabilizes the resulting closed-loop
system. The robust stability condition obtained in previous
sectionwill be applied to design a time-delayed state feedback
controller for the discrete-time control system described by

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐵 (𝜉) 𝑢 (𝑘)

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)), 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . . ,

(35)

where 𝑢(𝑘) ∈ 𝑅
𝑛 is the control input, and the systemmatrices

are subjected to uncertainties and belong to the polytope Ω

given by

Ω = {[𝐴, 𝐵] (𝜉) :=

𝑝

∑

𝑖=1

𝜉
𝑖
[𝐴
𝑖
, 𝐵
𝑖
] ,

𝑝

∑

𝑖=1

𝜉
𝑖
= 1, 𝜉
𝑖
≥ 0} ,

(36)

where 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are given constant matrices with

appropriate dimensions. As in [8], we consider a parameter-
dependent delayed feedback control law

𝑢 (𝑘) = 𝐹 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘 = −ℎ
2
, . . . , 0, (37)
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where ℎ(𝑘) is the time-varying delay function satisfying 0 <

ℎ
1

≤ ℎ(𝑘) ≤ ℎ
2
, and 𝐹(𝜉) is the controller gain to be

determined. Applying the feedback controller (37) to the
system (35), the closed-loop time-delay system is

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐵 (𝜉) 𝐹 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . .

(38)

Definition 6. The system (35) is robustly stabilizable in the
mean square if there is a delayed feedback control (37) such
that the closed-loop delay system (38) is robustly stable in the
mean square.

Let

M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
) = (

(ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼 𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑗

−𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
1𝑖
− 𝑃
𝑖

−𝑃
𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑆
𝑇

1𝑖
− 𝑃
𝑖

−𝑄
𝑖
− 𝑃
𝑖
− 𝑃
𝑖
+ 2𝜌
2
𝐼

) ,

S = (

𝑆 0 0

0 0 0

0 0 0

) .

(39)

The following theorem can be derived fromTheorem 4.
Theorem 7. The system (35) is robustly stabilizable in the
mean square by the delayed feedback control (37), where

𝐹 (𝜉) = 𝐵
𝑇
(𝜉) [𝐵 (𝜉) 𝐵

𝑇
(𝜉)]
−1

𝑆
𝑇

1
(𝜉) [𝑆1 (𝜉) 𝑆

𝑇

1
(𝜉)]
−1

𝑃 (𝜉) ,

(40)
if there exist symmetric matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2 . . . , 𝑝,

and constant matrices 𝑆
1𝑖
, 𝑖 = 1, 2, . . . , 𝑝, 𝑆 ≥ 0, satisfying the

following LMIs:
(i) M

𝑖𝑖
(𝑃, 𝑄, 𝑆

1
) +S < 0, 𝑖 = 1, 2, . . . , 𝑝;

(ii) M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
) + M

𝑗𝑖
(𝑃, 𝑄, 𝑆

1
) − (2/(𝑝 − 1))S < 0, 𝑖 =

1, 2, . . . , 𝑝 − 1; 𝑗 = 𝑖 + 1, . . . , 𝑝.

Proof. Taking 𝑆
1𝑖

= 𝑆
2𝑖
and using the feedback control (37),

the closed-loop system becomes system (Σ
𝜉
), where 𝐷(𝜉) =

𝐵(𝜉)𝐹(𝜉) = 𝑆
𝑇

1
(𝜉)[𝑆
1
(𝜉)𝑆
𝑇

1
(𝜉)]
−1
𝑃(𝜉). Since 𝑆

1
(𝜉)𝐷(𝜉) = 𝑃(𝜉),

the robust stability condition of the closed-loop system (38),
by Theorem 4, is immediately derived.

Remark 8. The stabilization conditions of Theorem 7 are
more appropriate for most of real systems since it is usually
impossible in practice to know exactly the delay but lower and
upper bounds are always possible.

4. Numerical Examples

To illustrate the effectiveness of the previous theoretical
results, we consider the following numerical examples.

Example 9 (robust stability). Consider system Σ
𝜉
for 𝑝 = 2,

where the delay function ℎ(𝑘) is given by

ℎ (𝑘) = 1 + 28 sin2 𝑘𝜋
2

, 𝑘 = 0, 1, 2, . . . ,

𝐴
1
= (

−30.5 1

2 −3.5
) , 𝐴

2
= (

−35.5 1

3 −4.5
) ,

𝐷
1
= (

−1.5 0.1

0.4 −2.15
) , 𝐷

2
= (

−2.5 0.2

0.3 −1.85
) .

(41)

By using the LMI Toolbox in MATLAB, the LMIs (i) and (ii)
of Theorem 4 are feasible with ℎ

1
= 1, ℎ

2
= 29, 𝜌

1
= 0.011,

𝜌
2
= 0.015, andwe use the condition in theTheorem 4 for this

example. The solutions of LMI verify as follow of the form

𝑃
1
= (

4.6120 0.2565

0.2565 3.3703
) , 𝑃

2
= (

2.9556 0.0381

0.0381 3.5256
) ,

𝑄
1
= (

0.1402 0.0109

0.0109 0.0145
) , 𝑄

2
= (

0.3550 0.0101

0.0101 0.2101
) ,

𝑆
11

= (
−0.0596 −0.0430

0.0031 0.0453
) ,

𝑆
12

= (
−0.0197 −0.0095

0.0045 0.0375
) ,

𝑆
21

= (
0.0006 0.0250

−0.0029 −0.1615
) ,

𝑆
22

= (
−0.0002 0.0133

−0.0030 −0.1228
) ,

𝑆 = (
2.0759 0.0459

0.0459 1.3271
) .

(42)

Therefore, the system is robustly stable.

Example 10 (robust stabilization). Consider system (35) for
𝑝 = 2, where the delay function ℎ(𝑘) is given by

ℎ (𝑘) = 1 + 34 sin2 𝑘𝜋
2

, 𝑘 = 0, 1, 2, . . . ,

𝐴
1
= (

−30.5 1

2 −3.5
) , 𝐴

2
= (

−35.5 1

3 −4.5
) ,

𝐵
1
= (

−1.5 0.1

0.4 −2.15
) , 𝐵

2
= (

−2.5 0.2

0.3 −1.85
) .

(43)
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By using the LMI Toolbox in MATLAB, the LMIs (i) and (ii)
of Theorem 7 are feasible with ℎ

1
= 1, ℎ

2
= 35, 𝜌

1
= 0.011,

𝜌
2
= 0.015, andwe use the condition in theTheorem 7 for this

example. The solutions of LMI verify as follow of the form

𝑃
1
= (

1.3886 −0.0760

−0.0760 1.3559
) , 𝑃

2
= (

1.6286 0.0649

0.0649 1.5243
) ,

𝑄
1
= (

0.0097 −0.0048

−0.0048 0.0057
) ,

𝑄
2
= (

0.0728 −0.0159

−0.0159 0.0621
) ,

𝑆
11

= (
−0.0274 0.0827

−0.0133 −0.2222
) ,

𝑆
12

= (
−0.0209 0.0619

−0.0226 −0.1942
) ,

𝑆 = (
0.5954 −0.0672

−0.0672 0.5469
) .

(44)

Therefore, the system is robustly stabilizable with the feed-
back control

𝑢 (𝑘) = 𝐵
𝑇
(𝜉) [𝐵 (𝜉) 𝐵

𝑇
(𝜉)]
−1

𝑆
𝑇

1
(𝜉) [𝑆1 (𝜉) 𝑆

𝑇

1
(𝜉)]
−1

𝑃 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

= (𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
)
𝑇
[(𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
) (𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
)
𝑇
]
−1

× (𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
)
𝑇
[(𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
) (𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
)
𝑇
]
−1

(𝜉
1
𝑃
1
+ 𝜉
2
𝑃
2
) (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

= (
−1.5𝜉
1
− 2.5𝜉

2
0.4𝜉
1
+ 0.3𝜉

2

0.1𝜉
1
+ 0.2𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

) × (
−1.5𝜉
1
− 2.5𝜉

2
0.4𝜉
1
+ 0.3𝜉

2

0.1𝜉
1
+ 0.2𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

)

−1

× (
−1.5𝜉
1
− 2.5𝜉

2
0.1𝜉
1
+ 0.2𝜉

2

0.4𝜉
1
+ 0.3𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

)

−1

× (
−0.0274𝜉

1
− 0.0209𝜉

2
−0.0133𝜉

1
− 0.0226𝜉

2

0.0827𝜉
1
+ 0.0619𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

× (
−0.0274𝜉

1
− 0.0209𝜉

2
−0.0133𝜉

1
− 0.0226𝜉

2

0.0827𝜉
1
+ 0.0619𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

−1

× (
−0.0274𝜉

1
− 0.0209𝜉

2
0.0827𝜉

1
+ 0.0619𝜉

2

−0.0133𝜉
1
− 0.0226𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

−1

× (
1.3886𝜉

1
+ 1.6286𝜉

2
−0.0760𝜉

1
+ 0.0649𝜉

2

−0.0760𝜉
1
+ 0.0649𝜉

2
1.3559𝜉

1
+ 1.5243𝜉

2

)

= (
−2.0829𝜉

2

1
− 5.9144𝜉

1
𝜉
2
− 4.0715𝜉

2

2
−0.0304𝜉

2

1
+ 0.0260𝜉

1
𝜉
2
+ 0.0195𝜉

2

2

−0.0076𝜉
2

1
− 0.0087𝜉

1
𝜉
2
+ 0.0128𝜉

2

2
−2.9152𝜉

2

1
− 5.7856𝜉

1
𝜉
2
− 2.8200𝜉

2

2

)𝑥 (𝑘 − ℎ (𝑘)) .

(45)

Therefore, the feedback delayed controller is

𝑢
1 (𝑘) = [−2.0829𝜉

2

1
− 5.9144𝜉

1
𝜉
2
− 4.0715𝜉

2

2
]

× 𝑥
1 (𝑘 − ℎ (𝑘))

+ [−0.0304𝜉
2

1
+ 0.0260𝜉

1
𝜉
2
+ 0.0195𝜉

2

2
]

× 𝑥
2 (𝑘 − ℎ (𝑘)) ,

𝑢
2 (𝑘) = [−0.0076𝜉

2

1
− 0.0087𝜉

1
𝜉
2
+ 0.0128𝜉

2

2
]

× 𝑥
1 (𝑘 − ℎ (𝑘))

+ [−2.9152𝜉
2

1
− 5.7856𝜉

1
𝜉
2
− 2.8200𝜉

2

2
]

× 𝑥
2 (𝑘 − ℎ (𝑘)) .

(46)

5. Conclusion

In this paper, new delay-dependent mean square robust sta-
bility conditions for linear polytopic delay-difference stochas-
tic equations with interval time-varying delays have been
presented in terms of LMIs. An application to mean square
robust stabilization of discrete stochastic control systems

with time-delayed feedback controllers has been studied.
Numerical examples have been given to demonstrate the
effectiveness of the proposed conditions.
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