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Svatoslav Staněk, Czech Republic
Stevo Stević, Serbia
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Liuwei Zhou and Zhijie Wang
Volume 2014, Article ID 538041, 9 pages

Finite-Time𝐻
∞
Control for a Class of Discrete-Time Markov Jump Systems with Actuator Saturation

via Dynamic Antiwindup Design, Junjie Zhao, Jing Wang, and Bo Li
Volume 2014, Article ID 906902, 9 pages

Delay-Dependent Robust Exponential Stability and𝐻
∞
Analysis for a Class of Uncertain Markovian

Jumping System with Multiple Delays, Jianwei Xia
Volume 2014, Article ID 738318, 10 pages

Generalized Mutual Synchronization between Two Controlled Interdependent Networks, Quan Xu,
Shengxian Zhuang, Dan Hu, Yingfeng Zeng, and Jian Xiao
Volume 2014, Article ID 453149, 11 pages

Stochastic Finite-Time𝐻
∞
Performance Analysis of Continuous-Time Systems with Random Abrupt

Changes, Bing Wang
Volume 2014, Article ID 198616, 11 pages

Robust Finite-Time𝐻
∞
Control for Nonlinear Markovian Jump Systems with Time Delay under

Partially Known Transition Probabilities, Dong Yang and Guangdeng Zong
Volume 2014, Article ID 938781, 16 pages

Nonfragile𝐻
∞
Control for Stochastic Systems with Markovian Jumping Parameters and Random

Packet Losses, Jing Wang and Ke Zhang
Volume 2014, Article ID 934134, 8 pages

Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly
Unknown Transition Probabilities, Li Liang
Volume 2014, Article ID 597298, 8 pages

Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism, Shudong Li,
Zhongtian Jia, Aiping Li, Lixiang Li, Xinran Liu, and Yixian Yang
Volume 2013, Article ID 453689, 13 pages



Editorial
Robust Control, Optimization, and Applications to Markovian
Jumping Systems

Shuping He,1 Zhengguang Wu,2 Hao Shen,3 Yanyan Yin,4 and Quanxin Zhu5

1 School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
2National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou 310058, China

3 School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan 243002, China
4Department of Mathematics and Statistics, Curtin University, Perth, WA 00301J, Australia
5 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Correspondence should be addressed to Shuping He; shuping.he@ahu.edu.cn

Received 27 May 2014; Accepted 27 May 2014; Published 24 June 2014

Copyright © 2014 Shuping He et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Markovian jumping systems have arisen naturally in the
mathematical modeling of phenomena spanning disciplines
in the social sciences, natural sciences, and engineering. This
kind of stochastic dynamical systems can be employed to
model the dynamics when parameters are subject to random
abrupt changes due to sudden environment changes, subsys-
tem switching, system noises, executor faults, and so forth.
Much attention has been given to modeling, optimization,
and real applications of such stochastic dynamical systems
in the literature in recent years. As the advanced control
and optimization will provide a basis for the design and
application of such stochastic systems, these advanced tech-
niques would result in substantial and sustainable benefits.
The accepted papers in this special issue include stochastic
stability, stabilization, stochastic control optimization, system
modeling and identification methods, predictive control,
signal processing, robust filtering, multiagent systems, net-
worked control systems, time-delayed systems, neural net-
works, the Takagi-Sugeno fuzzy systems, simulated anneal-
ing, and fault detection methods.

We have accepted thirty-six papers in this special issue.
In the published papers, eight consider the stability and
stabilization problems of stochastic systems. There are four-
teen papers which discuss the problems of the controller
design and relevant optimization algorithms. Six articles
study the system modeling and identification methods. One

paper focuses on the fault detection for wireless networked
control systems with stochastic uncertainties and multiple
time delays, and seven consider the state estimation and
filtering problems.

The problems of stochastic stability and stabilization
problems of Markovian jumping systems have been exten-
sively studied bymany researchers, andmany relevant results
have been made. The paper entitled “Sufficient conditions
on the exponential stability of neutral stochastic differential
equations with time-varying delays” by Y. Tian and B. Chen
considers the exponential stability in almost sure sense
of the neutral stochastic differential equations with time-
varying delays and the paper entitled “Delay-dependent robust
exponential stability and H

∞
analysis for a class of uncertain

Markovian jumping system with multiple delays” by J. Xia
deals with the problem of robust exponential stability and
H
∞

performance analysis for a class of uncertain Markovian
jumping systems with multiple delays. The paper entitled
“On input-to-state stability of impulsive stochastic systems with
time delays” by F. Yao et al. is concerned with pth moment
input-to-state stability and stochastic input-to-state stability
of impulsive stochastic systems with time delays. The paper
entitled “Absolute stability of a class of nonlinear singular
systems with time delay” by H.-B. Zeng et al. studies the
absolute stability for a class of nonlinear singular systems
with time delay. The paper entitled “Analysis and design of
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networked control systems with randomMarkovian delays and
uncertain transition probabilities” by L. Qiu et al. focuses on
the stability issue of discrete-time networked control systems
with random Markovian delays and uncertain transition
probabilities. For the stochastic stabilization aspects, the
paper entitled “Finite-time boundedness for a class of delayed
Markovian jumping neural networks with partly unknown
transition probabilities” by L. Liang is concerned with the
problem of finite-time boundedness for a class of delayed
Markovian jumping neural networks with partly unknown
transition probabilities, and the paper entitled “Output
feedback adaptive stabilization of uncertain nonholonomic
systems” by Y. Wu et al. investigates the problem of output
feedback adaptive stabilization control design for a class of
nonholonomic chained systems. The paper entitled “Robust
exponential stabilization of stochastic delay interval recurrent
neural networks with distributed parameters and Markovian
jumping by using periodically intermittent control” by J. Hu et
al. considers a class of stochastic delay recurrent neural net-
works with distributed parameters and Markovian jumping.

In recent years, the research on control optimization
for stochastic dynamic systems has received more and
more attention. For the H

∞
control aspects, the paper

entitled “Finite-time H
∞

control for discrete-time Markov
jump systems with actuator saturation” by B. Li and J. Zhao
presents the finite-time control problem for discrete-time
Markov jump systems subject to saturating actuators, and
the paper entitled “Finite-time H

∞
control for a class of

discrete-time Markov jump systems with actuator saturation
via dynamic antiwindup design” by J. Zhao et al. deals with
the finite-time control problem for discrete-time Markov
jump systems subject to saturating actuators. The paper
entitled “Stochastic finite-time H

∞
performance analysis of

continuous-time systems with random abrupt changes” by B.
Wang proposes the problem of H

∞
control performance

analysis of continuous-time systems with random abrupt
changes. The paper entitled “Robust finite-time H

∞
control

for nonlinear Markovian jump systems with time delay under
partially known transition probabilities” by D. Yang and
G. Zong considers the problem of robust finite-time H

∞

control for a class of nonlinearMarkovian jump systems with
time delay under partially known transition probabilities.
The paper entitled “Nonfragile H

∞
control for stochastic

systems with Markovian jumping parameters and random
packet losses” by J. Wang and K. Zhang is concerned with
the nonfragile H

∞
control problem for stochastic systems

with Markovian jumping parameters and random packet
losses. The paper entitled “Finite-time control for Markovian
jump systems with polytopic uncertain transition description
and actuator saturation” by Z. Tang addresses the finite-
time 𝐿

2
-L
∞

control problems for Markovian jump systems
with time-varying delays, actuator saturation, and polytopic
uncertain transition description; the paper entitled “Resilient
robust finite-time𝐿

2
-L
∞
controller design for uncertain neutral

system with mixed time-varying delays” by X. Chen and S.
He proposes the delay-dependent resilient robust finite-time
𝐿
2
-L
∞

control problem of uncertain neutral time-delayed
system. For the predictive control aspects, the paper entitled
“A simplified predictive control of constrained Markov jump

system with mixed uncertainties” by Y. Yin et al. designs a
simplified model predictive control algorithm for discrete-
time Markov jump systems with mixed uncertainties; the
paper entitled “Predictive function optimization control for a
class of hydraulic servo vibration systems” by X. Feng et al. is
concernedwith the problemof predictive function control for
a class of hydraulic vibration servo control systems.The paper
entitled “Global multivariable control of permanent magnet
synchronousmotor formechanical elastic energy storage system
under multiclass nonharmonic external disturbances” by Y.
Yu et al. proposes a global multivariable control algorithm
based on nonlinear internalmodel principle undermulticlass
external disturbances; the paper entitled “Feedforward and
feedback control performance assessment for nonlinear sys-
tems” by Z.Wang and J. Chen proposes a performance assess-
mentmethod for nonlinear feedforward and feedback control
systems. For themultiagent systems control aspects, the paper
entitled “Output feedback control for couple-group consensus
of multiagent systems” by H. Zhao et al. deals with the couple-
group consensus problem for multiagent systems via output
feedback control; the paper entitled “Asynchronous gossip-
based gradient-free method for multiagent optimization” by
D. Yuan considers the constrained multiagent optimization
problem; and the paper entitled “Control of multiagent
systems: a stochastic pinning viewpoint” G. Wang develops
a stochastic pinning approach for multiagent systems to
guarantee such systems being almost surely stable.

Over the past few decades, the signal processing, estima-
tion, and filtering problems have long been the mainstream
of research topics. For the filtering problems, the paper enti-
tled “Structural stiffness identification based on the extended
Kalman filter research” by F.Wang et al. develops an extended
Kalman filter to identify the structural stiffness parameters,
the paper entitled “Improved robust H

∞
filtering approach

for nonlinear systems” by J. Chen and H. Sun presents an
improved design approach of robust H

∞
filter for a class

of nonlinear systems described by the Takagi-Sugeno fuzzy
model, and the paper entitled “Delay-dependent robust 𝐿

2
-

L
∞

filtering for a class of fuzzy stochastic systems” by Z. Li
and X. Yang is concerned with the 𝐿

2
-L
∞

filtering problem
for a kind of Takagi-Sugeno’s fuzzy stochastic system with
time-varying delay and parameter uncertainties. For the state
estimation problems, the paper entitled “State estimation for
wireless network control systemwith stochastic uncertainty and
time delay based on sliding mode observer” by P. Guo et al.
considers the state estimation problems for a kind of wireless
network control system with stochastic uncertainty and time
delay, whereas the paper entitled “State estimation for time-
delay systems with Markov jump parameters and missing
measurements” by Y. Tan et al. is concerned with the state
estimation problem for a class of time-delay systems with
Markovian jump parameters andmissingmeasurements.The
paper entitled “Constants within error estimates for Legendre-
Galerkin spectral approximations of control-constrained opti-
mal control problems” by J. Zhou addresses the explicit
formulae of constants within a posteriori error estimate for
optimal control problems, and the paper entitled “Optimal
state estimation for discrete-time Markov jump systems with
missing observations” by Q. Sun et al. is concerned with the
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optimal linear estimation for a class of direct-time Markov
jump systems with missing observations. The paper entitled
“Fault detection for wireless networked control systems with
stochastic uncertainties and multiple time delays” by L. Rong
et al. investigates the fault detection problem for a class of
wireless networked control systems.

As is well known that the system modeling and identifi-
cation are very useful in engineering applications, the paper
entitled “Integration by parts andmartingale representation for
a Markov chain” by T. K. Siu derives the integration-byparts
formulas for functions of fundamental jump processes relat-
ing to a continuous-time, finite-state Markov chain using
the Bismut measure change approach. The paper entitled
“Generalized mutual synchronization between two controlled
interdependent networks” by Q. Xu et al. focuses on the gener-
alized mutual synchronization between two controlled inter-
dependent networks.The paper entitled “Cascading dynamics
of heterogenous scale-free networks with recovery mechanism”
by S. Li et al. defines five kinds of weighting strategies to
assign the external resources for recovering the edges from
cascading failures in heterogeneous scale-free networks. The
paper entitled “Portfolio strategy of financial market with
regime switching driven by geometric Lévy process” by L. Zhou
and Z. Wang studies the problem of a portfolio strategy
for financial market with regime switching driven by the
geometric Lévy process. The paper entitled “Gsanular space
reduction to a 𝛽 multigranulation fuzzy rough set” by J. Zhou
et al. further generalizes𝛽multigranulation rough set to fuzzy
environment. The paper entitled “Boundary recognition by
simulating a diffusion process in wireless sensor networks” by
D. Gu et al. proposes a distributed algorithm for boundary
recognition in wireless sensor networks.

Although the selected topics and published papers are
not a comprehensive representation of stochastic Markovian
jumping systems, the authors represent the rich and many-
faceted knowledge and we still hope the reader will find our
special issue very useful.
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Wireless sensor networks (WSN) are becoming increasingly promising in practice. As the predeployment design and optimization
are usually unpractical in random deployment scenarios, the global optimum of the WSN’s performance is achievable only if the
topology dependent self-organizing process acquires the overview of the WSN, in which the boundary is the most important. The
idea of this paper comes from the fact that contours only break on the geometrical boundary and the WSN are discrete sampling
systems of real environments. By simulating a diffusion process in discrete form, the end point of semi-contours suggests the
boundary nodes of a WSN. The simulation cases show the algorithm is well worked in WSN with average degree higher than 10.
The boundary recognition could be very valuable for other algorithms dedicated to optimize the overall performance of WSN.

1. Introduction

There are some areas where we have interests in what is
happening, but environments are hostile for a man or too
costly to sending aman for the duty.Wireless sensor networks
(WSN), which are usually at low cost and self-organized, are
appropriate for those tasks [1, 2].

Some existed algorithms assume that the sensor fields
are convex in shape [3, 4]. However, such assumption is not
always fulfilled.The situation of a particular interested area is
oftenunknown. It is quite possible that the area contains some
regions with poor accessibility, such as unforeseen obstacles
and/or holes [5]. Thus, applying those protocols may lead
to a degraded performance or suffer a failure result. Thus,
recognizing the geometry of the field should be the first step
of organizing WSN, which is deployed in an unknown field,
to try to achieve better performances. Plotting the boundary
is the most basic measure to describe a geometric shape and
probably the best one. In this paper, we study the problem of
revealing the global geometric feature of the sensor field, in
particular, recognizing the sensor nodes on the boundary.

Our viewpoint is to regard theWSNas a discrete sampling
of the geometric environment. This is inspired by the fact
that the WSN are used for providing intense monitoring

of the environment. So, the boundaries of the sensor field
usually represent the physical boundary of the underlying
environments, such as walls of buildings and changes of
topography. More importantly, newly appeared boundaries,
which means a majority of local sensors are off duty due
to destruction or power deficient, could be an indicator of
emergency. For example, a wild fire in forest damages all
sensors in fire line and also creates new boundary in the
sensor field. An inner boundary is also an important indicator
of the unhealthiness of the network, such as insufficient
connectivity and coverage, revealing the locations where
additional sensor nodes are required.

Furthermore, bottleneck recognition [6, 7], which is vital
for precise schedule over WSN, requires boundary informa-
tion. And, in coverage problem, the coverage intensity near
the network boundary attracts a lot of research interest [8, 9].
So, boundary recognition provides useful information for
other WSN applications.

2. Previous Works and Assumptions

It is always easy to find the boundary when an overview is
offered. For example, in Figure 1, thewhite area represents the
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(a) (b) (c)

Figure 1: Sensor nodes deployed in geometric areas.

field and the dots represent the sensor nodes.The task should
be easy if we canhave a glance at one of these pictures, because
the overview is provided for human brain. However, inWSN,
such centralized process of acquiring the overview needs lots
of communications to collect all connection information in
the whole networks.The cost of doing so inWSN is extremely
high in both energy and time. So, decentralized algorithm or
distributed ones are required.

There are some distributed algorithms trying to recognize
the boundary in the literature. They can be classified into
three categories by their basic ideas: geometric-based algo-
rithms, statistical algorithms, and topological-based algo-
rithms.

The geometric-based algorithms assume that a node of
WSN realizes the exact locations of itself and the nodes in
its neighborhood. Fang proposed the algorithm based on
the fact that a data packet can only get stuck in a node
at boundary in a geographical forwarding [10, 11]. So some
boundary nodes are identified. Repeating the process of
such geographical forwarding starting from different beacon
nodes eventually discovers almost the complete boundary
cycles. The idea is nice and clear. However, the information
of location depends on locating algorithm or locating device
such as GPS system. Locating algorithm certainly consumes
some energy and the locating error may lead to boundary
error. While the locating device is usually an energy hunger.
Andmore, sweeping over the whole network again and again
consumes lots of energy. So, the geometric based algorithm
recognizes the boundary at a high cost.

The information of nodes’ location definitely benefits the
boundary recognition. However, the boundary recognition
is also needed in the WSN which do not have the ability
of locating. So statistical algorithms and topological based
algorithms are developed for such WSN.

Statistical algorithm assumes that the nodes are uni-
formly randomly deployed in sensor field. Fekete proposed
an algorithm with such assumption [12]. The idea is inspired
by the law of large number. According to the law, the average
of the results obtained from a large number of trials should be

close to the expected value and will tend to become closer as
more trials are performed. In his algorithm, the deployment
of other nodes is regarded as a “trial,” and the ratio of
neighboring area and the whole sensing area is regarded as
“expected value.” So, if lots of nodes are deployed, the number
of neighbor nodes should be “total trials” × “expected value.”
Thus, a node should have a number of neighbors that is close
to the average degree (the average number of neighboring
nodes in the whole network), unless it is on a boundary.
This is because the neighboring area of a boundary node
is much smaller than an interior node. The algorithm does
not require any location information and gets good result in
WSN with high average degree. However, the requirement of
density is unrealistic: the average degree should be close or
over 100 [13]. In practice, the network is often so sparse that
the number of “trials” is not big enough to make the results
close to “expected value.”

Topological based algorithms assume that a node knows
only which other nodes are connected directly [14–18]. This
assumption is similar to that in this paper; especially we
are inspired by Funke’s approach [17]. In this method, a
group of beacons are randomly selected first. Then, after
flooding, all nodes in WSN are given a “distant,” which is
the hop count to the nearest beacon. In this way, there are
many iso-contours of “distant” in theWSN. Finally, the nodes
where the iso-contours break are marked as boundary nodes.
The simulation of the algorithm shows that some interior
nodes are faultily identified. This is because the value of
“distant” is measured in integer; randomness of deployment
may cause the “distant” of a particular node vary from 𝑥

to 𝑥 + 1 or 𝑥 − 1. Such phenomenon in WSN makes it
possible that interior node is faultily identified, especially in
sparse networks. Wang proposed another topological based
algorithm [13]. It is reported that the complete sequences of
boundary nodes are identified. However, this method can
only be used in the scenario that the WSN have topology
holes in them. The algorithm does not find any boundary
nodes in WSN which is simply connected (without holes).
Furthermore, if there are some nodes faultily recognized
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already (this is never avoided completely), the final process,
which connects distributed boundary nodes to a sequence
in order to decrease the missing identification, could be a
disaster as faulty identification increasesmassively. In a recent
paper, [18] proposes another topological algorithm, which
achieves good hole detection result. But its complexity is
higher than the algorithm proposed in this paper.

This paper proposes a distributed algorithm for recogniz-
ing the boundary ofWSN, using only direct connection infor-
mation. We do not assume that any location information,
distance information, or angular information is collected.

This paper is based on the following assumptions:

(1) the nodes in WSN are provided with limited compu-
tation ability, energy, and memory;

(2) the communication range of a node is much greater
than sensing range; so, the average degree is reason-
able if the sensing field is well covered;

(3) the nodes are uniformly randomly deployed in the
sensing field;

(4) the nodes are deployed in a closed area;
(5) the sensing data are not required; that is, the algo-

rithm does not require any positioning information
about the nodes.

The basic idea of this paper comes from an intense
observation of a gas diffusion process in a closed space. We
are motivated by the fact that some features of concentration
field suggest the boundary of a closed space and then realize
that the boundary of WSN can be recognized by simulating
similar process.

3. An Observation of Mass Diffusion

3.1. The Process of Mass Diffusion. Consider the following
scenario. Bounded space 𝐺 is filled with inactive gas. For
some reasons, another type inactive gas 𝛼 is generated at
constant rate at 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
, which are inside the space 𝐺.

As time goes, gas𝛼 gradually spreads everywhere in the space.
This process is a typical diffusion process. Let us observe that
the concentration 𝐶 of gas 𝛼 varies from time 𝑡 and position
𝑃(𝑥, 𝑦, 𝑧) intensely in this process:

𝐶 = 𝐶 (𝑃, 𝑡) . (1)

Equation (1) is continuous and two-order differentiablemath-
ematically.

Fick’s first law relates the diffusive flux to the concentra-
tion under the assumption of steady state. It postulates that
the flux goes from regions of high concentration to regions of
low concentration, with a magnitude that is proportional to
the concentration gradient (spatial derivative):

⃗𝑗 = −𝐷∇𝐶, (2)

where ⃗𝑗 is the diffusion flux [mol⋅m−2⋅s−1]. ⃗𝑗 measures the
amount of substance that flows through a small area during a
small time interval.𝐷 is the diffusion coefficient or diffusivity
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Figure 2: Inside object 𝐺, interior region 𝑔 bounded by surface 𝑆.

in dimensions [m2⋅s−1]. ∇𝐶 is the concentration gradient
[mol⋅m−4].

Equation (2) is the differential form of Fick’s first law,
which shows howdiffusive flux behaves locally. By integrating
(2) over an infinitesimal surface 𝑆, the integral form of Fick’s
fist law is derived:

𝑑𝐽

𝑑𝑡

= −𝐷∬

𝑆

∇𝐶

→

𝑑𝐴, (3)

where 𝑑𝐽/𝑑𝑡 is the amount of substance transferred per unit
time [mol⋅s−1] and

→

𝑑𝐴 is an oriented surface area element
[m2]. The direction is to the outward normal of the element.

Equation (3) describes how substance transfers through a
surface.

If the surface 𝑆 is a non-self-intersecting continuous
closed surface as shown in Figure 2, Jordan-Brouwer separa-
tion theorem asserts that the surface 𝑆 divides the object 𝐺
(a 3-dimensional bounded closed domain) into an “interior”
region 𝑔, bounded by surface 𝑆, and an “exterior” region𝐺\𝑔,
which consists of all other parts, so that any continuous path
ends in different regions intersects 𝑆 somewhere. Hence, all
substance exchange between interior region 𝑔 and exterior
𝐺 \ 𝑔 flows through 𝑆.

The net amount of substance that flows into 𝐺 in a small
time interval [𝑡

1
, 𝑡
2
] can be derived from (3) by integrating

over 𝑡:

𝐽 = ∫

𝑡
2

𝑡
1

∯

𝑆

𝐷∇𝐶

→

𝑑𝐴𝑑𝑡

= ∫

𝑡
2

𝑡
1

∭

𝑔

[

𝜕

𝜕𝑥

(𝐷

𝜕𝐶

𝜕𝑥

) +

𝜕

𝜕𝑦

(𝐷

𝜕𝐶

𝜕𝑦

)

+

𝜕

𝜕𝑧

(𝐷

𝜕𝐶

𝜕𝑧

)] 𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑡.

(4)

In the scenario we are observing, there are a group of
sources 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
}, which generate gas 𝛼 at constant

rate:

𝐹 (𝑃, 𝑡) = {

constant 𝑃 ∈ 𝑌

0 𝑃 ∉ 𝑌.

(5)
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Thus, the net gain of gas 𝛼 in 𝑔 in time interval [𝑡
1
, 𝑡
2
] is

the sum of the gas that is generated in 𝑔 and that flows into 𝑔:

∫

𝑡
2

𝑡
1

∭

𝑔

[

𝜕

𝜕𝑥

(𝐷

𝜕𝐶

𝜕𝑥

) +

𝜕

𝜕𝑦

(𝐷

𝜕𝐶

𝜕𝑦

)

+

𝜕

𝜕𝑧

(𝐷

𝜕𝐶

𝜕𝑧

) + 𝐹 (𝑥, 𝑦, 𝑧)] 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡.

(6)

Meanwhile, the net gain of gas 𝛼 should also be described
by integrating the concentration change over time and space:

∫

𝑡
2

𝑡
1

∭

𝑔

𝜕𝐶

𝜕𝑡

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡. (7)

By the law of mass conservation, (6) equals (7) for any
space 𝑔 and time interval [𝑡

1
, 𝑡
2
]:

𝜕𝐶

𝜕𝑡

= 𝐷Δ𝐶 + 𝐹, (8)

where Δ is the Laplace operator.

3.2. Analysis in Mathematics. Considering the case intro-
duced above, there is not any gas 𝛼 in𝐺 at the very beginning:

𝐶 = 0 on 𝐺 × {0} . (9)

And, as the space 𝐺 is bounded, gas 𝛼 does not spread
outside 𝐺. Thus, at the boundary of space 𝜕𝐺

𝜕𝐶 (𝑃, 𝑡)

𝜕𝑛

= 0 on 𝜕𝐺 × (0, 𝑡] , (10)

where 𝑛 is the outward normal of 𝜕𝐺.
For the differential equation (8), initial condition and

boundary condition are given as (9) and (10). So, there is a
unique solution for any time and any spot in 𝐺. Therefore,
we can simulate the diffusion process discussed above and
determine the concentration value everywhere at any time.

In previous works, the boundary of the space 𝐺 is always
known. How about if the boundary exists but we do not know
where it is? Shall we find the boundary by observing the
concentration field?

Given time 𝑡, there is a concentration distribution of 𝛼
in 𝐺. Denote 𝐼(V) = {𝑃 | 𝐶(𝑃) = V}, 𝐼less(V) = {𝑃 |

𝐶(𝑃) < V}, and 𝐼more(V) = {𝑃 | 𝐶(𝑃) > V}, where V is
nonextreme concentration value. So, 𝐼(V), 𝐼less(V), and 𝐼more(V)
are all nonempty sets. 𝐼(V) is an iso-contour of concentration
value V. 𝐼less(V) and 𝐼more(V) are two sets of points where
concentration values are less or more than V.

There is at least one point 𝑃V ∈ 𝐼(V) on any path
connecting 𝐼less(V) and 𝐼more(V).

Proof. Let 𝑃
𝑙
∈ 𝐼less(V) and 𝑃𝑚 ∈ 𝐼more(V). Let 𝜑 : [0, 1] →

R3, such that 𝜑(0) = 𝑃
𝑙
, 𝜑(1) = 𝑃

𝑚
, and the restriction of

𝜑 to [0, 1] is injective. That is, 𝜑 is a non-self-intersecting
continuous curved line segment which ends with 𝑃

𝑙
and 𝑃

𝑚
.

Assume, if possible, ∃𝜑, such that 𝐼(V) ∩ 𝜑 = 0.
If so, for all 𝑥 ∈ [0, 1],𝐶(𝜑(𝑥)) ̸= V. As 𝜑 ⊂ 𝐺 and𝐶(𝑃) is a

continuous function on 𝐺, 𝐶(𝜑(𝑥)) is a continuous function

Figure 3: A map with contour [19].

Figure 4: Iso-contours when source is at the center of a circle.

about 𝑥 on [0, 1]. 𝐶(𝜑(0)) = 𝐶(𝑃
𝑙
) < V and 𝐶(𝜑(1)) =

𝐶(𝑃
𝑚
) > V; by the intermediate value theorem, ∃𝑥 ∈ [0, 1]

such that 𝐶(𝜑(𝑥)) = V, contradicting for all 𝑥 ∈ [0, 1],
𝐶(𝜑(𝑥)) ̸= V.

Therefore, for all 𝜑, ∃𝑥 ∈ [0, 1] such that 𝜑(𝑥) ∈ 𝐼(V).

Consequently, iso-contour never breaks in 𝐺; otherwise,
there should have been paths connecting 𝐼less(V) and 𝐼more(V).
Therefore, iso-contour either is closed surface or breaks on
the boundary of space 𝐺. That is, 𝜕𝐼(V) ⊂ 𝜕𝐺. In particular, if
𝐺 is a 2D space, iso-contour either is closed curve or ends
on the boundary of 𝐺. Thus, “𝑃 is the endpoint of an iso-
contour.”⇒ “𝑃 is on the boundary of 𝐺.”

The result is encouraging. However, we should notice that
“𝑃 is on the boundary of 𝐺.”  “𝑃 is the endpoint of an iso-
contour.”

In a map with contour, it is possible that contour is a
tangent curve to the boundary of the map at somewhere, as
the arrow points to in Figure 3. In this case, the union of end
points of all contour is almost equal to the complete boundary
of 𝐺, missing very few isolated points. But in the worst case,
the contour is a tangent curve to the boundary everywhere.
Here is an example. The space 𝐺 is circle or sphere in shape,
and the source of gas 𝛼 is exactly at the center. In this case, the
outmost iso-contour meets the boundary exactly as shown in
Figure 4.
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Figure 5: Subspace 𝑔
𝑖
surrounded by 𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
.

Although the worst case happens in small probability,
we should and can avoid it by generating another type of
inactive gas 𝛼 at different position and observing the iso-
contour 𝐼(V) of 𝛼.This way, the worst case is avoided and the
difference between⋃V(𝜕𝐼(V) ∪ 𝜕𝐼


(V)) and 𝜕𝐺 is even smaller.

More generally, if there are 𝑛 types of inactive gas generating
in space𝐺 at different positions, the union of end points of all
iso-contours and all types is almost equal to the boundary of
𝐺:

𝜕𝐺 ≈ ⋃

V
⋃

𝑛

𝜕𝐼
𝑛
(V) . (11)

4. Simulation of Diffusion in WSN for
Boundary Recognition

4.1. Discrete Form of Diffusion. A space 𝐺 is uniformly
divided into 𝑀 subspaces. 𝐺 = ⋃

𝑀

𝑖=0
𝑔
𝑖
, 𝑔
𝑖
∩ 𝑔
𝑗
= 0, 𝑖 ̸= 𝑗.

As 𝐺 is uniformly divided, denote 𝐴 as joint area of adjacent
subspace, 𝑥 as distance between them, and 𝑉 as volume of
a subspace. Consider the diffusion process in subspace 𝑔

𝑖
,

which is surrounded by 𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
, (see Figure 5).

Similar to (3), the net gain from adjacent subspace by
diffusion is

𝑑𝐽
𝑖

𝑑𝑡

=

𝑛

∑

𝑗=1

𝐷𝐴(𝐶
𝑗
− 𝐶
𝑖
)

𝑥

. (12)

And the change of concentration is due to diffusion in
adjacent subspace and the source effect:

𝑑𝐶
𝑖

𝑑𝑡

= 𝐹 +

𝑛

∑

𝑗=1

𝐷𝐴(𝐶
𝑗
− 𝐶
𝑖
)

𝑉𝑥

, (13)

where

𝐹 = {

positive constant, if there is source of gas in 𝑔
𝑖

0, otherwise.
(14)

So,

lim
Δ𝑡→0

𝐶
𝑖
(𝑡 + Δ𝑡) − 𝐶

𝑖
(𝑡)

Δ𝑡

= 𝐹 +

𝐷𝐴

𝑉𝑥

𝑛

∑

𝑗=1

(𝐶
𝑗
(𝑡) − 𝐶

𝑖
(𝑡))

lim
Δ𝑡→0

𝐶
𝑖
(𝑡 + Δ𝑡)

= lim
Δ𝑡→0

[

[

𝐹Δ𝑡 +

𝐷𝐴Δ𝑡

𝑉𝑥

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡) + (1 −

𝑛𝐷𝐴Δ𝑡

𝑉𝑥

)𝐶
𝑖
(𝑡)
]

]

.

(15)

Let 𝐸
𝑖
(𝑡) = (1/𝑛)∑

𝑛

𝑗=1
𝐶
𝑗
(𝑡) as average concentration of

𝑔
𝑖
’s adjacent subspace and 𝑘 = 𝑛𝐷𝐴Δ𝑡/𝑉𝑥. If Δ𝑡 → 0, then

𝑘 ∈ (0, 1) and

𝐶
𝑖
(𝑡 + Δ𝑡) ≈ 𝑘𝐸

𝑖
(𝑡) + (1 − 𝑘) 𝐶

𝑖
(𝑡) + 𝐹Δ𝑡. (16)

The concentration of𝑔
𝑖
after time intervalΔ𝑡 is aweighted

average of current concentration of 𝑔
𝑖
and its surroundings,

plus a positive constant if there is source of gas in it.

4.2. Simulating Diffusion in WSN. In a WSN application,
a lot of sensor nodes are deployed in a sensing area. Our
viewpoint is to regard the WSN as a discrete sampling of the
environment. Every sensor node is a sample of local area. So,
we virtually start a simulation of multigas diffusion process.

Assuming that 𝑤 types of gas are spreading in the area,
the local concentration of them at sensor node 𝑁

𝑖
is 𝐶
𝑖
=

[𝐶
1

𝑖
, 𝐶
2

𝑖
, . . . , 𝐶

𝑤

𝑖
]. The nodes that can communicate directly

with𝑁
𝑖
represent the adjacent subspace. Randomly, select 𝑤

groups of nodes as diffusion source of 𝑤 types of gas.
At the very beginning, for all 𝑖, 𝐶

𝑖
(0) = 0. Then the

diffusion process starts.
At time 𝑡, sensor node 𝑁

𝑖
broadcasts its current con-

centration vector 𝐶
𝑖
(𝑡). Its 1-hop neighbors will receive this

data package. Meanwhile,𝑁
𝑖
receives the data packages from

its neighbors 𝐶
1
(𝑡), 𝐶
2
(𝑡), . . . , 𝐶

𝑛
(𝑡). Applying (16) and when

Δ𝑡 = 1,

𝐶
𝑖
(𝑡 + 1) = (1 − 𝑘) 𝐶

𝑖
(𝑡) + 𝑘𝐸

𝑖
(𝑡) + 𝐹, (17)

where

𝐸
𝑖
(𝑡) =

1

𝑛

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡) . (18)

𝐹 = [0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢−1

, 𝑐, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤−𝑢

] if 𝑁
𝑖
is selected as source of the

𝑢th type of gas. 𝐹 = 0 if𝑁
𝑖
is not source of any type.

4.3. Semi-Iso-Contours andTheir End Points. After repeating
several times, the diffusion process spreads virtual gas every-
where in the sensor field. Figure 6(a) shows the concentration
distribution of one type of gas in a sensor field. Then,
we can draw semi-iso-contours. The reason why we call it
semi-iso-contour rather than iso-contour is that there are
seldom absolute equalities in such discrete sampling system.
Therefore, approximately equality is employed instead. The
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(a) (b)

(c)

Figure 6: A concentration map and semi-iso-contours. The virtual sources are marked as star. The hotter colour represents higher
concentration value, while the cooler colour represents lower concentration value.

criteriawe used for approximately equality in 1-hopneighbors
are that𝐶𝑢

𝑖
≈ 𝐶
𝑢

𝑗
if and only if |𝐶𝑢

𝑖
−𝐶
𝑢

𝑗
| < 0.3max𝑛

𝑘=0
|𝐶
𝑢

𝑖
−𝐶
𝑢

𝑘
|.

Figure 6(b) shows semi-iso-contours in the sensor field. And
Figure 6(c) displays all end points of semi-iso-contours.

The end points of semi-iso-contours roughly show the
boundary of the sensor field in Figure 6(c). But, there are
both some faulty recognitions and miss recognitions. This
is because the WSN are a discrete sampling system rather
than a continuous physical system. To increase the quality of
boundary recognition, we shall use information from other
types of gas. In our simulation, 𝑤 = 10; that is, 10 types
of virtual gas are spreading simultaneously. Figure 7 show
semi-iso-contours and their end points of the other 9 types
of virtual gas.

4.4. Final Results of Boundary Recognition. Reading Figure 7,
we can conclude that the inner nodes are much less probable
to be the end points of semi-iso-contours than the boundary
nodes. So, if a node is an end point of semi-iso-contour
for multiple times in different types of virtual gas, it is very
possible that it is located at the boundary of the WSN. When

we pick all nodes that are end points at least 3 times out of 10,
the boundary recognition is shown in Figure 8.

4.5. Complexity Analysis. Our approach for boundary recog-
nition consists of 3 steps as follows:

(1) simulating the process of diffusion;
(2) drawing semi-iso-contours;
(3) determining whether to be an end point or not.
The 1st step repeats multiple times of communication in

neighborhood and calculation. In each repeat, every node
should communicate with all its 1-hop neighbors and update
𝑤 dimensional vector𝐶

𝑖
(𝑡) to𝐶

𝑖
(𝑡+1).This is𝑂(𝑛𝑤) in time,

where 𝑛 is the number of 1-hop neighbors.The process should
repeat 𝑂(ℎ) times in order to guarantee that all nodes are
affected by virtual diffusion, where ℎ is the maximum hop
counts between 2 nodes in the sensor field. ℎ is decided by
the range of the sensor field and the communication range of
sensor nodes, which is constant after deployment. So the time
complexity for the first step is 𝑂(𝑛𝑤)𝑂(1) = 𝑂(𝑛𝑤).

The 2nd step requires a comparison in neighborhood.
That is 𝑂(𝑛𝑤) in time.
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(a) (b)

(c) (d)

(e)

Figure 7: Semi-iso-contours and their end points of the other 9 types of virtual gas.

Figure 8: Final result of boundary recognition.

The 3rd step requires a count over 𝑤 types. That is 𝑂(𝑤)
in time.

So, the overall complexity in time is 𝑂(𝑛𝑤).
In all three steps, the nodes record current concentration

value of adjacent nodes and itself. All historical data are
discarded. So the overall complexity in memory is 𝑂(𝑛𝑤).

A recent paper proposes a topological based algorithm
[18], which achieves good hole detection result. In this
paper, Dijkstra’s shortest path algorithm is used to construct
manifold, so the total complexity is at least 𝑂(𝑁2), where 𝑁
is the number of all sensors in the field. In comparison, the
algorithm we proposed is much less complex.

5. Case Study

The algorithm discussed above is applied in different sensor
fields. The results are shown in Figure 9.

In all these cases, the nodes that are recognized as
boundary nodes generally cover the geometrical boundary of
the sensor fields. A few inner nodes, which are at least 1-hop
range away from actual geometrical boundary, are faultily
identified. Table 1 is a statistic of faulty recognition.

It is predictable that the result of boundary recognition
is better if the average degree is higher, because when 𝑛 →

∞, the discrete sampling system tends to continuous system.
In the other hand, the sparseness of WSN challenges the
algorithm proposed in this paper. The result in a same area
as case (a) in Figure 9 with lower average degree is shown in
Figure 10. And the relation between faulty rate and average
degree is shown in Figure 11 faulty rate versus average degree.

When faulty rate increases up to 5% or higher
(Figure 10(b)), the recognition result is worthless. Thus,
the algorithm proposed in this paper should be only applied
in the WSN with average degree higher than 10. Funke tests
the algorithm in sparse WSN [17]. The testing area is a circle
hole in square. The comparison shown in Figure 12 indicates
that the result of our algorithm at average degree of 10 is
comparable with Funke’s result at average of 18 and is much
better than Funke’s result at average degree of 10.

6. Conclusion

In this paper, a distributed algorithm for boundary recogni-
tion in WSN is proposed. The idea comes from the facts that
iso-contours only break on the geometrical boundary and the
WSN is a discrete sampling systemof real environment.Then,
we virtually start a diffusion process to create concentration
gradient field in WSN, and finally the nodes that are often
identified as end points of semi-iso-contours are regarded
as boundary nodes. The simulation results show that the
algorithm works well for the WSN with average degree
over 10. Further, as diffusion in 3D space is well studied,
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(a1) (a2)

(b1)

(c1) (c2)

(d1) (d2)

(b2)

Figure 9: Continued.
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(e1) (e2)

(f1) (f2)

(g1) (g2)

Figure 9: Boundary recognition in multiple cases. (a) 3023 nodes with average degree 13.1; (b) 2094 nodes with average degree 12.6; (c) 2381
nodes with average degree 13.0; (d) 2115 nodes with average degree 12.5; (e) 2024 nodes with average degree 13.4; (f) 1311 nodes with average
degree 13.2; (g) 6811 nodes with average degree 13.3.

(a) (b)

Figure 10: Boundary recognition in sparse WSN. (a) 10.9 in average degree and (b) 8.9 in average degree.

Table 1: Statistics of faulty recognition.

Figure 9(a) Figure 9(b) Figure 9(c) Figure 9(d) Figure 9(e) Figure 9(f) Figure 9(g)
Number of nodes 3023 2094 2381 2115 2024 1311 6811
Inner nodes 2468 1402 1866 1448 1738 1065 5618
Faulty recognition 9 25 2 18 13 9 2
Faulty rate (%) 0.36 1.78 0.08 1.24 0.7 0.85 0.04
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Figure 11: Faulty rate versus average degree.

(a) (b) (c) (d)

(e) (f)

Figure 12: A comparison between algorithms. (a–d) Funke’s algorithm with average degree at 5 in (a), 10 in (b), 18 in (c), and 39 in (d). The
black dots are identified as boundary nodes, while gray ones are inner nodes. (e)–(f) Our algorithm with average degree at 10.

our algorithm is potentially to be improved to recognize
boundary of a 3D WSN, which is also a hot research topic
[8, 20].
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Integration-by-parts formulas for functions of fundamental jump processes relating to a continuous-time, finite-stateMarkov chain
are derived using Bismut’s change of measures approach to Malliavin calculus. New expressions for the integrands in stochastic
integrals corresponding to representations of martingales for the fundamental jump processes are derived using the integration-
by-parts formulas. These results are then applied to hedge contingent claims in a Markov chain financial market, which provides a
practical motivation for the developments of the integration-by-parts formulas and the martingale representations.

1. Introduction

Integration by parts is at the heart of Malliavin calculus and
its applications. It is deemed to be useful in mathematical
finance, stochastic filtering and control as well as the theory
of partial differential equations. Particularly, in mathematical
finance, an integration-by-parts formula is useful in hedging
contingent claims, numerical computations of Greeks, and
portfolio optimization; see, for example, Benth et al. [1], León
et al. [2], Imkeller [3], and Fournié et al. [4, 5], amongst
others. Indeed, integration-by-parts formulas are one of the
key results in a number of works on Malliavin calculus for
stochastic differential equations driven by Wiener processes
and jump processes. Some examples are Bismut [6], Bichteler
et al. [7], Bass and Cranston [8], Norris [9], and Elliott
and Tsoi [10, 11] to name a few. These authors adopted the
approach to Malliavin calculus pioneered by Bismut [6],
where an integration-by-parts formula was established by
first considering a “small” perturbation of the original process
and then compensating the effect of the perturbation by
Girsanov’s change of measure. For an excellent account of
Malliavin calculus and its applications, one may refer to, for
example, Nualart [12], Privault [13], and di Nunno et al. [14].

Markov chain is an important mathematical tool in
probability theory and has vast applications in diverse fields.
For example, in finance and actuarial science, there has been

an interest in pricing contingent claims under Markov chain
markets; see, for example, Norberg [15] and Elliott and Kopp
[16] for bond pricing in a Markov chain market, Song et
al. [17] for pricing options in a multivariate Markov chain
market, Elliott et al. [18] and van der Hoek and Elliott [19, 20]
for pricing options in Markov chain markets, and Norberg
[21] and Koller [22] for pricing insurance products inMarkov
chain models. In statistics, particularly in nonlinear time
series analysis, Markov chain plays an important role in
studying the stochastic stability and ergodicity of stochastic
difference equations; see, for example, Tong [23]. Markov
chain also plays an important role in stochastic filtering and
control. There is a large amount of literature on the use of
Markov chain and related stochastic processes in stochastic
filtering and control. Some recent literature is Shen et al. [24],
He and Liu [25, 26], Zhang et al. [27], He [28], Siu [29], Ellliott
and Siu [30], and Wu et al. [31], amongst others. The mono-
graph by Elliott et al. [32] provided discussions on hidden
Markov models and their applications in various fields such
as signal processing and image processing. The monographs
by Yin and Zhang [33, 34] provided discussions on the the-
ories and applications of discrete-time and continuous-time
Markov chain, respectively. A recent monograph by Ching
et al. [35] presented applications of Markov chain in diverse
fields such asmanufacturing systems,marketing, and finance.
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It appears that in the finance and actuarial science
literaturemuch attention has been given to pricing contingent
claims in Markov chain markets. It seems that relatively
less attention has been paid to hedging contingent claims
in Markov chain markets. An integration-by-parts formula
is a useful tool for hedging contingent claims. It seems that
the literature mainly focuses on developing and applying
integration-by-parts formulas in the cases of Wiener pro-
cesses, Lévy processes, and single jump processes (see, e.g.,
Elliott and Tsoi [10, 11], Nualart [12], Privault [13], and di
Nunno et al. [14]). An integration-by-parts formula in the
case of aMarkov chain seems lacking.Motivated by the hedg-
ing problem in Markov chain markets, it may be of interest
to derive an integration-by-parts formula which is useful for
hedging contingent claims in Markov chain markets.

In this paper, we derive integration-by-parts formulas
for functions of a family of fundamental jump processes
relating to a continuous-time, finite-stateMarkov chain using
the Bismut measure change approach. The formulas are
derived by considering “small” perturbations to the jump
intensity parameters of the fundamental jump processes,
which are then compensated by Girsanov’s measure change.
Using the integration-by-parts formulas, new expressions
for the integrands in representations of martingales for the
fundamental jump processes are derived. Firstly, we consider
a function of the terminal values of the fundamental jump
processes. Then, the results are extended to a function of the
integrals with respect to the whole paths of the fundamental
jump processes. The function of the path integrals may be
considered a canonical form of a random variable which is
measurable with respect to filtration generated by the whole
path of theMarkov chain.No infinite-dimensional calculus of
variations is involved in the derivations. Indeed, only finite-
dimensional calculus is adopted. The martingale representa-
tion results derived heremay be useful for hedging contingent
claims in the Markov chain financial market developed by
Norberg [21], where the dynamics of share prices were driven
by the basic martingales of the fundamental jump processes
relating to a continuous-time, finite-state Markov chain.

The rest of the paper is organized as follows. Section 2
describes theMarkov chain, the fundamental jumpprocesses,
and the basic martingales relating to the chain. Section 3
derives the integration-by-parts formula for a function of
the terminal values of the fundamental jump processes. In
Section 4, the expression of the integrand in the martingale
representation is obtained. The results are then extended
to a function of the integrals of the whole paths of the
fundamental jump processes in Section 5. An application of
the martingale representation result to hedging contingent
claims in the Markov chain financial market of Norberg [21]
is given in Section 6. Section 7 summarizes the paper and
suggests some potential topics for future research.

2. Markov Chain, Fundamental Jump
Processes and Basic Martingales

The aim of this section is to present some known results
in Markov chain, its fundamental jump processes and basic
martingales which are relevant to the later developments.

Consider a complete probability space (Ω,F,P) and a
finite time horizon T := [0, 𝑇], where 𝑇 < ∞. Let X :=

{X(𝑡) | 𝑡 ∈ T} be a continuous-time, finite-state Markov
chain on (Ω,F,P). As in Elliott et al. [32], we suppose that
the state space of the chain X is a finite set of standard unit
vectorsE := {e

1
, e
2
, . . . , e

𝑁
} inR𝑁, where the 𝑗th component

of e
𝑖
is the Kronecker delta 𝛿

𝑖𝑗
, for each 𝑖, 𝑗 = 1, 2, . . . , 𝑁. The

space E is called the canonical state space of X.
To specify the probability laws of the chainX, we define a

family of rate matrices, or intensity matrices, {A(𝑡) | 𝑡 ∈ T}

under P, where, for each 𝑡 ∈ T,A(𝑡) := [𝑎
𝑖𝑗
(𝑡)]
𝑖,𝑗=1,2,...,𝑁

. For
each 𝑖, 𝑗 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑗 and each 𝑡 ∈ T, 𝑎

𝑖𝑗
(𝑡) is the

instantaneous transition intensity of the chainX from state e
𝑖

to state e
𝑗
at time 𝑡. Note that for each 𝑖, 𝑗 = 1, 2, . . . , 𝑁 and

each 𝑡 ∈ T,
(1) 𝑎
𝑖𝑗
(𝑡) ≥ 0, for 𝑖 ̸= 𝑗;

(2) ∑
𝑁

𝑗=1
𝑎
𝑖𝑗
(𝑡) = 0, so 𝑎

𝑖𝑖
(𝑡) ≤ 0.

We suppose here that, for each 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑎
𝑖𝑗
(𝑡) is a

bounded and deterministic function of time 𝑡.
Let FX

:= {FX
(𝑡) | 𝑡 ∈ T} be the P-augmentation of the

natural filtration generated by the chain X. Note that FX is
right-continuous. Then with the canonical state space of the
chainX, Elliott et al. [32] obtained the following semimartin-
gale dynamics for X:

X (𝑡) = X (0) + ∫

𝑡

0

A (𝑢−)X (𝑢) 𝑑𝑢 + M (𝑡) , 𝑡 ∈ T. (1)

Here M := {M(𝑡) | 𝑡 ∈ T} is an R𝑁-valued, square-integra-
ble, (FX

,P)-martingale.
For each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘, let 𝐽

𝑖𝑘
:= {𝐽
𝑖𝑘
(𝑡) | 𝑡 ∈

T}, where 𝐽
𝑖𝑘
(𝑡) counts the number of transitions of the chain

X from state e
𝑖
to state e

𝑘
up to and including time 𝑡. That is,

𝐽
𝑖𝑘
(𝑡) := ∑

0<𝑠≤𝑡

⟨X (𝑠−) , e
𝑖
⟩ ⟨X (𝑠) , e

𝑘
⟩ . (2)

{𝐽
𝑖𝑘

| 𝑖, 𝑘 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑘} is called a family of fundamental
jump processes relating to the chain X; ⟨⋅, ⋅⟩ is the scalar
product inR𝑁.

Define, for each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘, a process
𝑀
𝑖𝑘

:= {𝑀
𝑖𝑘
(𝑡) | 𝑡 ∈ T} by putting

𝑀
𝑖𝑘

(𝑡) := ∫

𝑡

0

⟨X (𝑠−) , e
𝑖
⟩ ⟨𝑑M (𝑠) , e

𝑘
⟩ . (3)

Then it is obvious from the definition that 𝑀
𝑖𝑘
, 𝑖, 𝑘 =

1, 2, . . . , 𝑁, are (FX
,P)-martingales and {𝑀

𝑖𝑘
| 𝑖, 𝑘 =

1, 2, . . . , 𝑁, 𝑖 ̸= 𝑘} is called a family of basic martingales.
Indeed these martingales are orthogonal, purely discontinu-
ous, and square-integrable. Furthermore, 𝑀

𝑖𝑘
(0) = 0.

The following lemma gives the semimartingale decompo-
sition for 𝐽

𝑖𝑘
. This result is standard (see, e.g., Elliott [36] and

Elliott et al. [32]).

Lemma 1. For each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘 and each 𝑡 ∈

T,

𝐽
𝑖𝑘
(𝑡) = ∫

𝑡

0

𝑎
𝑖𝑘
(𝑠) ⟨X (𝑠) , e

𝑖
⟩ 𝑑𝑠 + 𝑀

𝑖𝑘
(𝑡) . (4)
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Proof. The proof of this lemma is standard. For the sake of
completeness, we present the proof here:

𝐽
𝑖𝑘
(𝑡) := ∑

0<𝑠≤𝑡

⟨X (𝑠−) , e
𝑖
⟩ ⟨X (𝑠) , e

𝑘
⟩

= ∑

0<𝑠≤𝑡

⟨X (𝑠−) , e
𝑖
⟩ ⟨ΔX (𝑠) , e

𝑘
⟩

= ∫

𝑡

0

⟨X (𝑠−) , e
𝑖
⟩ ⟨𝑑X (𝑠) , e

𝑘
⟩

= ∫

𝑡

0

⟨X (𝑠−) , e
𝑖
⟩ ⟨A (𝑠)X (𝑠−) , e

𝑘
⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨X (𝑠−) , e
𝑖
⟩ ⟨𝑑M (𝑠) , e

𝑘
⟩

= ∫

𝑡

0

𝑎
𝑖𝑘
(𝑠) ⟨X (𝑠−) , e

𝑖
⟩ 𝑑𝑠 + 𝑀

𝑖𝑘
(𝑡)

= ∫

𝑡

0

𝑎
𝑖𝑘
(𝑠) ⟨X (𝑠) , e

𝑖
⟩ 𝑑𝑠 + 𝑀

𝑖𝑘
(𝑡) .

(5)

The last equality is due to the fact that the set of all jump times
of the chain X has zero “𝑑𝑡”-measure.

From Lemma 1 and the definition of 𝑀
𝑖𝑘
,

𝑀
𝑖𝑘

(𝑡) := 𝐽
𝑖𝑘
(𝑡) − ∫

𝑡

0

𝑎
𝑖𝑘
(𝑠) ⟨X (𝑠) , e

𝑖
⟩ 𝑑𝑠, 𝑡 ∈ T, (6)

is an (FX
,P)-martingale. Consequently, under P,

{𝑎
𝑖𝑘
(𝑡)⟨X(𝑡), e

𝑖
⟩ | 𝑡 ∈ T} is the intensity process of

𝐽
𝑖𝑘
.

3. Integration by Parts for Functions of
Fundamental Jump Processes

In this section we first present small perturbations to the
jump intensities of the fundamental jump processes and then
compensate the perturbations by a Girsanov-type measure
change. The integration-by-parts formula for a “suitable”
function of the terminal values of the fundamental jump
processes is then derived by differentiation. The techniques
used to derive the integration-by-parts formula here are
adapted to those used in Elliott and Tsoi [10] for deriving
an integration-by-parts formula for a single jump process. It
seems that the origin of these techniques may be traced back
to the work of Bismut [6].

For each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘, let 𝜂
𝑖𝑘

:= {𝜂
𝑖𝑘
(𝑡) |

𝑡 ∈ T} be a nonnegative, P-a.s. bounded, FX-predictable
process. Then for an arbitrarily small 𝜖 > 0, we define a small
“stochastic” perturbation 𝑎

𝜖

𝑖𝑘
(𝑡) to 𝑎

𝑖𝑘
(𝑡) in the direction 𝜂

𝑖𝑘
(𝑡)

by putting

𝑎
𝜖

𝑖𝑘
(𝑡) := (1 + 𝜖𝜂

𝑖𝑘
(𝑡)) 𝑎
𝑖𝑘
(𝑡) . (7)

We then take

𝑎
𝜖

𝑖𝑖
(𝑡) := −

𝑁

∑

𝑘=1,𝑖 ̸= 𝑘

𝑎
𝜖

𝑖𝑘
(𝑡) , (8)

so that
𝑁

∑

𝑘=1

𝑎
𝜖

𝑖𝑘
(𝑡) = 0. (9)

Note that, for each 𝑡 ∈ T, 𝜂
𝑖𝑘
(𝑡) > 0 and 𝜖 > 0, so 𝑎

𝜖

𝑖𝑘
(𝑡) ≥ 0,

𝑖 ̸= 𝑘, and 𝑎
𝜖

𝑖𝑖
(𝑡) ≤ 0.

Define, for each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘, the jump
process 𝐽𝜖

𝑖𝑘
:= {𝐽
𝜖

𝑖𝑘
(𝑡) | 𝑡 ∈ T} by putting

𝐽
𝜖

𝑖𝑘
(𝑡) := ∫

𝑡

0

𝑎
𝜖

𝑖𝑘
(𝑡) ⟨X (𝑢) , e

𝑖
⟩ 𝑑𝑢 + 𝑀

𝑖𝑘
(𝑡) , (10)

where 𝑀
𝑖𝑘
(𝑡) is defined in Section 2 as follows:

𝑀
𝑖𝑘

(𝑡) := ∫

𝑡

0

⟨X (𝑠−) , e
𝑖
⟩ ⟨𝑑M (𝑠) , e

𝑘
⟩ . (11)

By definition,

𝑀
𝑖𝑘
(𝑡) = 𝐽

𝜖

𝑖𝑘
(𝑡) − ∫

𝑡

0

𝑎
𝜖

𝑖𝑘
(𝑡) ⟨X (𝑢) , e

𝑖
⟩ 𝑑𝑢, 𝑡 ∈ T, (12)

is an (FX
,P)-martingale. Consequently, 𝐽𝜖

𝑖𝑘
has the intensity

process {𝑎
𝜖

𝑖𝑘
(𝑡)⟨X(𝑡), e

𝑖
⟩ | 𝑡 ∈ T} under P and it is related to

𝐽
𝑖𝑘
as follows:

𝐽
𝜖

𝑖𝑘
(𝑡) := 𝐽

𝑖𝑘
(𝑡) + 𝜖∫

𝑡

0

𝜂
𝑖𝑘
(𝑢) 𝑎
𝑖𝑘
(𝑢) ⟨X (𝑢) , e

𝑖
⟩ 𝑑𝑢. (13)

To simplify the notation, write 𝜆
𝑖𝑘
(𝑡) := 𝜂

𝑖𝑘
(𝑡)𝑎
𝑖𝑘
(𝑡)⟨X(𝑡), e

𝑖
⟩,

for each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘 and each 𝑡 ∈ T. Then

𝐽
𝜖

𝑖𝑘
(𝑡) = 𝐽

𝑖𝑘
(𝑡) + 𝜖∫

𝑡

0

𝜆
𝑖𝑘
(𝑢) 𝑑𝑢. (14)

The process 𝐽
𝜖

𝑖𝑘
is called a perturbed process of the funda-

mental jump process 𝐽
𝑖𝑘
, so we have a family of perturbed

processes {𝐽
𝜖

𝑖𝑘
| 𝑖, 𝑘 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑘} corresponding to

the family of the fundamental jump processes {𝐽
𝑖𝑘

| 𝑖, 𝑘 =

1, 2, . . . , 𝑁, 𝑖 ̸= 𝑘}.
For each 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘 and each 𝑡 ∈ T, let

𝜃
𝜖

𝑖𝑘
(𝑡) := −

𝜖𝜂
𝑖𝑘
(𝑡)

1 + 𝜖𝜂
𝑖𝑘
(𝑡)

. (15)

Define, for each 𝑡 ∈ T,

𝑍
𝜖
(𝑡) :=

𝑁

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑡

0

𝜃
𝜖

𝑖𝑘
(𝑢−) 𝑑𝑀

𝑖𝑘
(𝑢) . (16)

Consider an FX-adapted process Λ
𝜖

:= {Λ
𝜖
(𝑡) | 𝑡 ∈ T}

defined by setting

Λ
𝜖
(𝑡) = 1 + ∫

𝑡

0

Λ
𝜖
(𝑢−) 𝑑𝑍

𝜖
(𝑢) . (17)

Then by Elliott [37] (see Theorem 13.5 therein),

Λ
𝜖
(𝑡) = E (𝑍

𝜖
) (𝑡) = ∏

0<𝑢≤𝑡

(1 + Δ𝑍
𝜖
(𝑢)) , (18)
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where E(𝑍
𝜖
) := {E(𝑍

𝜖
)(𝑡) | 𝑡 ∈ T} is the stochastic

exponential of the process 𝑍𝜖; Δ𝑍
𝜖
(𝑡) := 𝑍

𝜖
(𝑡) − 𝑍

𝜖
(𝑡−).

Then, for each 𝑡 ∈ T,

Λ
𝜖
(𝑡) = exp(

𝑁

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑡

0

[ln (1 + 𝜃
𝜖

𝑖𝑘
(𝑢)) − 𝜃

𝜖

𝑖𝑘
(𝑢)]

× 𝑎
𝜖

𝑖𝑘
(𝑢) ⟨X (𝑢) , e

𝑖
⟩ 𝑑𝑢

+

𝑁

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑡

0

ln (1 + 𝜃
𝜖

𝑖𝑘
(𝑢)) 𝑑𝑀

𝑖𝑘
(𝑢)) .

(19)

Note that by definition 𝜃
𝜖

𝑖𝑘
(𝑡) > −1, for each 𝑡 ∈ T, so

the process Λ
𝜖

:= {Λ
𝜖
(𝑡) | 𝑡 ∈ T} is strictly positive.

Furthermore, Λ𝜖 is an (FX
,P)-martingale.

A new probability measure P𝜖 equivalent to P onFX
(𝑇)

is now defined by putting
𝑑P𝜖

𝑑P








FX
(𝑇)

:= Λ
𝜖
(𝑇) . (20)

The following lemma will be used to derive the integration-
by-parts formula.

Lemma 2. The P𝜖-law of 𝐽𝜖
𝑖𝑘
, 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘, is

equal to the P-law of 𝐽
𝑖𝑘
, 𝑖, 𝑘 = 1, 2, . . . , 𝑁 with 𝑖 ̸= 𝑘.

Proof. By a version of Girsanov’s theorem, the process𝑀𝜖
𝑖𝑘

:=

{𝑀
𝜖

𝑖𝑘
(𝑡) | 𝑡 ∈ T} defined by

𝑀
𝜖

𝑖𝑘
(𝑡) := 𝐽

𝜖

𝑖𝑘
(𝑡)

− ∫

𝑡

0

(1 + 𝜃
𝜖

𝑖𝑘
(𝑢)) 𝑎

𝜖

𝑖𝑘
(𝑢) ⟨X (𝑢) , e

𝑖
⟩ 𝑑𝑢, 𝑡 ∈ T,

(21)

is an (FX
,P𝜖)-martingale. Note that

(1 + 𝜃
𝜖

𝑖𝑘
(𝑡)) 𝑎
𝜖

𝑖𝑘
(𝑡) = 𝑎

𝑖𝑘
(𝑡) , (22)

so 𝐽
𝜖

𝑖𝑘
has the intensity process {𝑎

𝑖𝑘
(𝑡)⟨X(𝑡), e

𝑖
⟩ | 𝑡 ∈ T} under

P𝜖.This is the same as the intensity process of 𝐽
𝑖𝑘
underP.

Remark 3. The (FX
,P𝜖)-martingale 𝑀

𝜖

𝑖𝑘
defined in the proof

of Lemma 2 is related to the (FX
,P)-martingale 𝑀

𝑖𝑘
as

follows:

𝑀
𝜖

𝑖𝑘
(𝑡) = 𝑀

𝑖𝑘
(𝑡) − 𝜖∫

𝑡

0

𝜆
𝑖𝑘
(𝑢) 𝑑𝑢, 𝑡 ∈ T. (23)

To simplify our notation and illustrate the main idea, we
consider the situationwhere the chainX has two states. In this
case, the family of fundamental jump processes relating to the
chain is {𝐽

12
, 𝐽
21
} and its corresponding perturbed processes

are {𝐽
𝜖

12
, 𝐽
𝜖

21
}.

Let 𝐺 : R2 → R be any measurable, integrable, and
differentiable function. Note that from Lemma 2 the P𝜖-law
of (𝐽𝜖
12
(𝑇), 𝐽
𝜖

21
(𝑇)) is the same as the P-law of (𝐽

12
(𝑇), 𝐽
21
(𝑇)).

Consequently,

𝐸 [𝐺 (𝐽
12

(𝑇) , 𝐽
21

(𝑇))] = 𝐸
𝜖
[𝐺 (𝐽
𝜖

12
(𝑇) , 𝐽

𝜖

21
(𝑇))] . (24)

Here 𝐸 and 𝐸
𝜖 are expectations under P and P𝜖, respectively.

Write

J (𝑇) := (𝐽
12

(𝑇) , 𝐽
21

(𝑇))


∈ R
2
,

J𝜖 (𝑇) := (𝐽
𝜖

12
(𝑇) , 𝐽

𝜖

21
(𝑇))


∈ R
2
,

(25)

where y is the transpose of a vector, or a matrix, y.
Define the following gradient of 𝐺 with respect to x :=

(𝑥
1
, 𝑥
2
)

∈ R2:

𝐷x𝐺 (x) = (

𝜕

𝜕𝑥
1

𝐺 (x) , 𝜕

𝜕𝑥
2

𝐺 (x))


∈ R
2
. (26)

Then the following theorem gives the integration-by-parts
formula.

Theorem 4. For each 𝑡 ∈ T, let

M (𝑡) := (𝑀
12

(𝑡) ,𝑀
21

(𝑡))


∈ R
2
,

𝜂 (𝑡) := (𝜂
12

(𝑡) , 𝜂
21

(𝑡))


∈ R
2
.

(27)

Write, for each 𝑡 ∈ T,

𝜑 (𝑡) := (∫

𝑡

0

𝜆
12

(𝑢) 𝑑𝑢, ∫

𝑡

0

𝜆
21

(𝑢) 𝑑𝑢)



∈ R
2
. (28)

Then for any measurable, integrable, and differentiable func-
tion 𝐺 : R2 → R,

𝐸 [⟨𝐷x𝐺 (J (𝑇)) , 𝜑 (𝑇)⟩] = 𝐸 [𝐺 (J (𝑇)) ∫

𝑇

0

𝜂

(𝑢) 𝑑M (𝑢)] .

(29)

Proof. By a version of Bayes’ rule,

𝐸 [𝐺 (J (𝑇))] = 𝐸
𝜖
[𝐺 (J𝜖 (𝑇))] = 𝐸 [Λ

𝜖
(𝑇) 𝐺 (J𝜖 (𝑇))] .

(30)

Differentiating both sides with respect to 𝜖 and setting 𝜖 = 0

give

𝐸[

𝜕

𝜕𝜖

Λ
𝜖
(𝑇)








𝜖=0

𝐺 (J𝜖 (𝑇))



𝜖=0

]

+ 𝐸[Λ
𝜖
(𝑇)




𝜖=0

⟨𝐷x𝐺 (J𝜖 (𝑇)) ,

𝜕

𝜕𝜖

J𝜖 (𝑇)⟩








𝜖=0

] = 0.

(31)

It is obvious that Λ
𝜖
(𝑇)|
𝜖=0

= 1 and that J𝜖(𝑇)|
𝜖=0

= J(𝑇).
Consequently,

𝐸[

𝜕

𝜕𝜖

Λ
𝜖
(𝑇)








𝜖=0

𝐺 (J (𝑇))]

+ 𝐸 [⟨𝐷x𝐺 (J (𝑇)) ,

𝜕

𝜕𝜖

J𝜖(𝑇)⟩








𝜖=0

] = 0.

(32)
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Now

𝜕

𝜕𝜖

J𝜖 (𝑇)








𝜖=0

= (∫

𝑇

0

𝜆
12

(𝑢) 𝑑𝑢, ∫

𝑇

0

𝜆
21

(𝑢) 𝑑𝑢)



= 𝜑 (𝑇) ,

𝜕

𝜕𝜖

Λ
𝜖
(𝑇) = Λ

𝜖
(𝑇)

× [

2

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑇

0

ln(

1

1 + 𝜖𝜂
𝑖𝑘
(𝑢)

) 𝜂
𝑖𝑘
(𝑢) 𝑎
𝑖𝑘
(𝑢) 𝐼
{X(𝑢)=e

𝑖
}
𝑑𝑢

−

2

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑇

0

𝜂
𝑖𝑘
(𝑢)

(1 + 𝜖𝜂
𝑖𝑘
(𝑢))
2
𝑑𝑀
𝑖𝑘

(𝑢)] .

(33)

Then

𝜕

𝜕𝜖

Λ
𝜖
(𝑇)








𝜖=0

= −

2

∑

𝑖,𝑘=1,𝑖 ̸= 𝑘

∫

𝑇

0

𝜂
𝑖𝑘
(𝑢) 𝑑𝑀

𝑖𝑘
(𝑢)

= −∫

𝑇

0

𝜂

(𝑢) 𝑑M (𝑢) .

(34)

Hence the result follows.

The following two integration-by-parts formulas are
immediate consequences of Theorem 4.

Corollary 5. For any measurable, integrable, and differen-
tiable function 𝐺 : R2 → R,

𝐸[

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) ∫

𝑇

0

𝜆
12

(𝑢) 𝑑𝑢]

= 𝐸[𝐺 (J (𝑇)) ∫

𝑇

0

𝜂
12

(𝑢) 𝑑𝑀
12

(𝑢)] .

(35)

Proof. The result follows by putting 𝜂
21
(𝑡) = 0, for all 𝑡 ∈ T,

in Theorem 4.

Corollary 6. For any measurable, integrable, and differen-
tiable function 𝐺 : R2 → R,

𝐸[

𝜕

𝜕𝑥
2

𝐺 (J (𝑇)) ∫

𝑇

0

𝜆
21

(𝑢) 𝑑𝑢]

= 𝐸[𝐺 (J (𝑇)) ∫

𝑇

0

𝜂
21

(𝑢) 𝑑𝑀
21

(𝑢)] .

(36)

Proof. The result follows by putting 𝜂
12
(𝑡) = 0, for all 𝑡 ∈ T,

in Theorem 4.

Remark 7. The integration-by-parts formula in Corollary 5
(Corollary 6) may be interpreted as an integration-by-parts
formula obtained by perturbing the intensity {𝑎

12
(𝑡) | 𝑡 ∈ T}

({𝑎
21
(𝑡) | 𝑡 ∈ T}) along the direction 𝜂

12
(𝜂
21
).

Remark 8. In Elliott and Kohlmann [38], an integration-by-
parts formula for functions of jump processes was developed.
Using the concept of stochastic flows, the integration-by-
parts formulawas derived for functions of the terminal values
of jump processes. An advantage of the approach by Elliott

and Kohlmann [38] is that the integration-by-parts formula
was derived without using infinite-dimensional calculus.The
integration-by-parts formula for functions of the terminal
values of jump processes has an important application. Elliott
and Kohlmann [38] demonstrated how this integration-by-
parts formula may be applied to establish the existence and
smoothness of the density of a jump process. This is a key
area of application ofMalliavin calculus. Using themethod in
Elliott and Kohlmann [38], the integration-by-parts formula
in Theorem 4 may be used to establish the existence and
uniqueness of the densities of some stochastic processes
depending on the fundamental jump processes relating to
the chain. This may represent an interesting topic for future
research.

Remark 9. In the Markov chain financial market of Norberg
[21], the dynamics of share prices are described by the
fundamental jump processes relating to a continuous-time,
finite-state Markov chain. The integration-by-parts formula
inTheorem 4 may be used to hedge contingent claims whose
payoffs depend on the terminal values of the share prices in
the continuous-time Markov chain market of Norberg [21].
We will discuss this in some detail in Section 6.

4. Martingale Representation Using
Integration by Parts

Martingale representation is one of the fundamental results
in stochastic analysis and calculus. It has many significant
applications in diverse fields such as mathematical finance,
stochastic filtering, and control. A crucial question in a
martingale representation is to determine the integrand in
the representation. This question is of primary importance
in many applications of martingale representations. The
Clark-Haussmann-Ocone-Karatzas formula was developed
to address this question in the case of a Wiener space (see
Clark [39], Haussmann [40], Ocone [41], Ocone andKaratzas
[42], and Karatzas et al. [43]). Elliott and Kohlmann [44]
pioneered the use of stochastic flows to identify the inte-
grand in a stochastic integral in a martingale representation
under a Markov diffusion setting. Elliott and Kohlmann [38]
extended the approach in Elliott and Kohlmann [44] to the
case of a Markov jump process. Elliott and Tsoi [10, 11]
adopted integration-by-parts formulas to derive integrands
in martingale representations in a single jump process and
a Poisson process, respectively. Aase et al. [45] adopted a
white-noise approach to Malliavin calculus to establish a
white-noise generalization of the Clark-Haussmann-Ocone-
Karatzas formula in the cases of multidimensional Gaussian
white noise, multidimensional Poisson white noise, and their
combination. Di Nunno et al. [46] adopted a chaos expansion
approach to Malliavin calculus to establish a white-noise
generalization of the Clark-Haussmann-Ocone-Karatzas for-
mula for Lévy processes.

In this section, we apply the integration-by-parts formula
obtained in the last section to derive the integrand in a mar-
tingale representation for a function of the terminal values of
the fundamental jump processes. Though the techniques to
be used here are similar to those adopted in Elliott and Tsoi
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[10, 11], it seems that the formulas of the integrand derived
here appear to be new. Again to simplify our notation, we
consider here the two-regime Markov chain presented in
Section 3.

Note that the filtration FX generated by the chain X is the
same as the filtration generated by the family of fundamental
jump processes {𝐽

12
, 𝐽
21
}. Then we state the following martin-

gale representation result which was due to Brémaud [47].

Theorem 10. For any real-valued, square-integrable (FX
,P)-

martingale 𝐿 := {𝐿(𝑡) | 𝑡 ∈ T},

𝐿 (𝑇) := 𝐸 [𝐿 (𝑇)] + ∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢) , (37)

for someR2-valued, FX-predictable process {𝛾(𝑡) | 𝑡 ∈ T}.

Furthermore, we need the following expression for the
predictable quadratic variation {⟨M,M⟩(𝑡) | 𝑡 ∈ T} of M :=

{M(𝑡) | 𝑡 ∈ T}, which was derived in Elliott et al. [32].

Lemma 11. Let diag[y] be a diagonal matrix with the diagonal
elements being given by the components in a vector y. For each
𝑡 ∈ T,

⟨M,M⟩ (𝑡) = ∫

𝑡

0

(diag [A (𝑢)X (𝑢)] − diag [X (𝑢)]A (𝑢)

−A (𝑢) diag [X (𝑢)] ) 𝑑𝑢.

(38)

To simplify our notation, let {f(𝑡) | 𝑡 ∈ T} be a matrix-
valued process defined as follows:

f (𝑡) := diag [A (𝑡)X (𝑡)] − diag [X (𝑡)]A (𝑡)

− A (𝑡) diag [X (𝑡)] ∈ R
2
⊗ R
2
.

(39)

Note that {f(𝑡) | 𝑡 ∈ T} is the density process of the
measure 𝑑⟨M,M⟩(𝑡)with respect to the Lebesguemeasure 𝑑𝑡

on (T,B(T)) and 𝑑⟨M,M⟩(𝑡) is absolutely continuous with
respect to 𝑑𝑡, where B(T) is the Borel 𝜎-field generated by
open subsets ofT.

Then

⟨M,M⟩ (𝑡) = ∫

𝑡

0

f (𝑢) 𝑑𝑢. (40)

The following lemma will be used to derive the expressions
for the integrand in the martingale representation.

Lemma 12. For each 𝑖, 𝑘 = 1, 2 with 𝑖 ̸= 𝑘, the predictable
quadratic variation of 𝑀

𝑖𝑘
, namely {⟨𝑀

𝑖𝑘
,𝑀
𝑖𝑘
⟩(𝑡) | 𝑡 ∈ T},

is given by

⟨𝑀
𝑖𝑘
,𝑀
𝑖𝑘
⟩ (𝑡) = ∫

𝑡

0

⟨X (𝑢) , e
𝑖
⟩ e
𝑘
f (𝑢) e

𝑘
𝑑𝑢 ∈ R. (41)

Proof. Recall that

𝑀
𝑖𝑘
(𝑡) := ∫

𝑡

0

⟨X (𝑢−) , e
𝑖
⟩ ⟨𝑑M (𝑢) , e

𝑘
⟩

= ∫

𝑡

0

⟨X (𝑢−) , e
𝑖
⟩ e
𝑘
𝑑M (𝑢) .

(42)

Then
⟨𝑀
𝑖𝑘
,𝑀
𝑖𝑘
⟩ (𝑡)

= ∫

𝑡

0

⟨X (𝑢−) , e
𝑖
⟩ e
𝑘
𝑑 ⟨M,M⟩ (𝑢) e

𝑘
⟨X (𝑢−) , e

𝑖
⟩

= ∫

𝑡

0

⟨X (𝑢−) , e
𝑖
⟩ e
𝑘
f (𝑢) e

𝑘
𝑑𝑢

= ∫

𝑡

0

⟨X (𝑢) , e
𝑖
⟩ e
𝑘
f (𝑢) e

𝑘
𝑑𝑢.

(43)

The last equality follows from the fact that the set of all jump
times of the chain X has “𝑑𝑡”-measure zero.

By the martingale representation presented in
Theorem 10,

𝐺 (J (𝑇)) = 𝐸 [𝐺 (J (𝑇))] + ∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢) , (44)

for some FX-predictable process 𝛾 := {𝛾 (𝑡) | 𝑡 ∈ T}.
It can be supposed that 𝐸[𝐺(J(𝑇))] = 0 by subtraction.

Then

𝐺 (J (𝑇)) = ∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢) . (45)

The integrand 𝛾 is then determined in the following
theorem. Though the techniques used in the proof of the
following theorem are similar to those used in Proposition
3.5 of Elliott and Tsoi [11], the expressions for the integrand
presented below appear to be new.

Theorem 13. Suppose that 𝑎
12
(𝑡), 𝑎
21
(𝑡) > 0 for each 𝑡 ∈ T.

Then the integrand 𝛾 := {𝛾(𝑡) | 𝑡 ∈ T}, where 𝛾(𝑡) :=

(𝛾
1
(𝑡), 𝛾
2
(𝑡))

∈ R2, is determined by

𝛾
1
(𝑡) = 𝐸 [

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) | F
X
(𝑡−)]

𝑎
12

(𝑡)

𝑎
21

(𝑡)

,

𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 {X (𝑡) = e
1
} ,

𝛾
2
(𝑡) = 𝐸 [

𝜕

𝜕𝑥
2

𝐺 (J (𝑇)) | F
X
(𝑡−)]

𝑎
21

(𝑡)

𝑎
12

(𝑡)

,

𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 {X (𝑡) = e
2
} .

(46)

Proof. We only give the proof for the integrand 𝛾
1
(𝑡) since

the integrand 𝛾
2
(𝑡) can be derived similarly. Firstly, by the

martingale representation for 𝐺(J(𝑇)), Lemma 12, and the
orthogonality of 𝑀

12
and 𝑀

21
,

𝐸[𝐺 (J (𝑇)) ∫

𝑇

0

𝜂
12

(𝑢) 𝑑𝑀
12

(𝑢)]

= 𝐸 [(∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢))(∫

𝑇

0

𝜂
12

(𝑢) 𝑑𝑀
12

(𝑢))]

= 𝐸[∫

𝑇

0

𝛾
1
(𝑢) 𝜂
12

(𝑢) 𝑑 ⟨𝑀
12
,𝑀
12
⟩ (𝑢)]

= 𝐸 [∫

𝑇

0

𝛾
1
(𝑢) 𝜂
12

(𝑢) e
2
f (𝑢) e

2
𝐼
{X(𝑢−)=e

1
}
𝑑𝑢] .

(47)
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Then using the integration-by-parts formula in Corollary 5,

𝐸[∫

𝑇

0

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) 𝜆
12

(𝑢) 𝑑𝑢]

= 𝐸[∫

𝑇

0

𝛾
1
(𝑢) 𝜂
12

(𝑢) e
2
f (𝑢) e

2
𝐼
{X(𝑢−)=e

1
}
𝑑𝑢] .

(48)

For each 𝑢 ∈ T, let

𝜓 (𝑢) :=

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) 𝑎
12

(𝑢) 𝐼
{X(𝑢−)=e

1
}
. (49)

Then there exists an FX-predictable projection {𝜓
∗
(𝑢) | 𝑢 ∈

T} of {𝜓(𝑢) | 𝑢 ∈ T} such that, for each 𝑢 ∈ T,

𝜓
∗
(𝑢) = 𝐸 [𝜓 (𝑢) | F

X
(𝑢−)] , P-a.s., (50)

so that
𝜓
∗
(𝑢)

= 𝐸 [

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) | F
X
(𝑢−)] 𝑎

12
(𝑢) 𝐼
{X(𝑢−)=e

1
}
, P-a.s.

(51)

Furthermore, for any FX-predictable process {𝐾(𝑢) | 𝑢 ∈ T},

𝐸 [𝐾 (𝑢) 𝜓 (𝑢)] = 𝐸 [𝐾 (𝑢) 𝐸 [𝜓 (𝑢) | F
X
(𝑢−)]]

= 𝐸 [𝐾 (𝑢) 𝜓
∗
(𝑢)] .

(52)

WriteH for the family of subsets ofT×Ω of the forms {0}×𝐹
0

and (𝑢, 𝑡] × 𝐹
𝑢
, where 𝐹

0
∈ FX

(0) and 𝐹
𝑢

∈ FX
(𝑢) for 0 ≤

𝑢 < 𝑡 ≤ 𝑇. Note that the predictable 𝜎-field on the product
spaceT × Ω with respect to FX is generated byH.

We now take 𝜂
12

= 𝐼
{0}×𝐹

0

or 𝜂
12

= 𝐼
(𝑢,𝑡]×𝐹

𝑢

, where 𝐼
{0}×𝐹

0

and 𝐼
(𝑢,𝑡]×𝐹

𝑢

are the indicator functions of the events {0} × 𝐹
0

and (𝑢, 𝑡] × 𝐹
𝑢
, respectively. Then the integration-by-parts

formula in Corollary 5 holds for this 𝜂
12
. Consequently, the

following equality holds for all 𝜂
12
’s which are indicators of

sets inH:

𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝜓
∗
(𝑢) 𝑑𝑢]

= 𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝛾
1
(𝑢) e
2
f (𝑢) e

2
𝐼
{X(𝑢−)=e

1
}
𝑑𝑢] .

(53)

Since the set of all jump times of the chainX has “𝑑𝑡”-measure
zero,

𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝜓
∗
(𝑢) 𝑑𝑢]

= 𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝛾
1
(𝑢) e
2
f (𝑢) e

2
𝐼
{X(𝑢)=e

1
}
𝑑𝑢] .

(54)

On the set {X(𝑢) = e
1
},

e
2
f (𝑢) e

2
= e
2
(diag [A (𝑢) e

1
] − diag [e

1
]A (𝑢)

−A (𝑢) diag [e
1
] ) e
2

= 𝑎
21

(𝑢) .

(55)

Consequently, for all 𝜂
12
’s which are indicators of sets inH,

𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝜓
∗
(𝑢) 𝑑𝑢]

= 𝐸[∫

𝑇

0

𝜂
12

(𝑢) 𝛾
1
(𝑢) 𝑎
21

(𝑢) 𝐼
{X(𝑢)=e

1
}
𝑑𝑢] .

(56)

Note that

(1) H generates the FX-predictable 𝜎-field on the prod-
uct spaceT × Ω;

(2) the processes {𝛾
1
(𝑢) | 𝑢 ∈ T} and {𝜓

∗
(𝑢) | 𝑢 ∈ T}

are FX-predictable.

Then

𝜓
∗
(𝑢) = 𝛾

1
(𝑢) 𝑎
21

(𝑢) 𝐼
{X(𝑢)=e

1
}
,

for almost all (𝑢, 𝜔) ∈ T × Ω.

(57)

Consequently, for almost all (𝑢, 𝜔) ∈ T × Ω,

𝐸[

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) | F
X
(𝑢−)] 𝑎

12
(𝑢) 𝐼
{X(𝑢)=e

1
}

= 𝛾
1
(𝑢) 𝑎
21

(𝑢) 𝐼
{X(𝑢)=e

1
}
.

(58)

Then,

𝛾
1
(𝑢) = 𝐸 [

𝜕

𝜕𝑥
1

𝐺 (J (𝑇)) | F
X
(𝑢−)]

𝑎
12

(𝑢)

𝑎
21

(𝑢)

, (59)

on the set {X(𝑢) = e
1
}.

5. An Extension to a Function of Path Integrals

The integration-by-parts formulas and the martingale rep-
resentation developed in the previous sections are now
extended to a function of the integrals with respect to the
whole paths of the fundamental jumpprocesses relating to the
chainX.This functionmay be considered a canonical form of
anFX

(𝑇)-measurable random variable.
Consider an FX

(𝑇)-measurable random variable 𝐻

which is of the following canonical form:

𝐻 := ℎ(∫

𝑇

0

𝜂
12

(𝑡) 𝑑𝐽
12

(𝑡) , ∫

𝑇

0

𝜂
21

(𝑡) 𝑑𝐽
21

(𝑡)) , (60)

where ℎ : R2 → R is any measurable, integrable, and
differentiable function. Note that 𝐻 depends on the whole
paths of the fundamental jump processes relating to the
chain X; 𝜂

12
and 𝜂

21
are nonnegative, P-a.s. bounded, FX-

predictable processes as defined in Section 3.
We now define some notation. Write

𝐼
12
(𝑇) := ∫

𝑇

0

𝜂
12

(𝑡) 𝑑𝐽
12

(𝑡) , 𝐼
21
(𝑇) := ∫

𝑇

0

𝜂
21

(𝑡) 𝑑𝐽
21

(𝑡) ,

I (𝑇) := (𝐼
12

(𝑇) , 𝐼
21

(𝑇))


∈ R
2
.

(61)
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Then

𝐻 = ℎ (I (𝑇)) . (62)

The following theorem gives an extension to the
integration-by-parts formula presented in Theorem 4 for the
function ℎ.

Theorem 14. For each 𝑡 ∈ T, let
̃
𝜆
12

(𝑡) := 𝜂
12

(𝑡) 𝜆
12

(𝑡) ,
̃
𝜆
21

(𝑡) := 𝜂
21

(𝑡) 𝜆
21

(𝑡) ,

𝜑 (𝑡) := (∫

𝑡

0

̃
𝜆
12

(𝑢) 𝑑𝑢, ∫

𝑡

0

̃
𝜆
21

(𝑢) 𝑑𝑢) ∈ R
2
.

(63)

Then

𝐸 [⟨𝐷xℎ (I (𝑇)) , 𝜑 (𝑇)⟩] = 𝐸 [ℎ (I (𝑇)) ∫

𝑇

0

𝜂

(𝑢) 𝑑M (𝑢)] .

(64)

Proof. The proof of this theorem resembles that of
Theorem 4. We only give some key steps. For each 𝜖 > 0, let

𝐼
𝜖

12
(𝑇) := ∫

𝑇

0

𝜂
12

(𝑡) 𝑑𝐽
𝜖

12
(𝑡) , 𝐼

𝜖

21
(𝑇) := ∫

𝑇

0

𝜂
21

(𝑡) 𝑑𝐽
𝜖

21
(𝑡) .

(65)

Write

I𝜖 (𝑇) := (𝐼
𝜖

12
(𝑇) , 𝐼

𝜖

21
(𝑇))


∈ R
2
. (66)

By Lemma 2, the P𝜖-probability law of I𝜖(𝑇) is the same as
the P-law of I(𝑇). Then

𝐸 [ℎ (I (𝑇))] = 𝐸
𝜖
[ℎ (I𝜖 (𝑇))] = 𝐸 [Λ

𝜖
(𝑇) ℎ (I𝜖 (𝑇))] .

(67)

Differentiating with respect to 𝜖 and setting 𝜖 = 0 give

𝐸[

𝜕

𝜕𝜖

Λ
𝜖
(𝑇)








𝜖=0

ℎ (I𝜖 (𝑇))



𝜖=0

]

+ 𝐸[Λ
𝜖
(𝑇)




𝜖=0

⟨𝐷xℎ (I𝜖 (𝑇)) ,

𝜕

𝜕𝜖

I𝜖 (𝑇)⟩








𝜖=0

] = 0.

(68)

Then the result follows by noting that

𝜕

𝜕𝜖

I𝜖 (𝑇)








𝜖=0

= (∫

𝑇

0

̃
𝜆
12

(𝑡) 𝑑𝑡, ∫

𝑇

0

̃
𝜆
21

(𝑡) 𝑑𝑡)



= 𝜑 (𝑇) .

(69)

Similarly, the following corollaries are direct conse-
quences of Theorem 14.

Corollary 15. For any measurable, integrable, and differen-
tiable function ℎ : R2 → R,

𝐸[

𝜕

𝜕𝑥
1

ℎ (I (𝑇)) ∫

𝑇

0

̃
𝜆
12

(𝑢) 𝑑𝑢]

= 𝐸[ℎ (I (𝑇)) ∫

𝑇

0

𝜂
12

(𝑢) 𝑑𝑀
12

(𝑢)] .

(70)

Corollary 16. For any measurable, integrable, and differen-
tiable function ℎ : R2 → R,

𝐸[

𝜕

𝜕𝑥
2

ℎ (I (𝑇)) ∫

𝑇

0

̃
𝜆
21

(𝑢) 𝑑𝑢]

= 𝐸[ℎ (I (𝑇)) ∫

𝑇

0

𝜂
21

(𝑢) 𝑑𝑀
21

(𝑢)] .

(71)

Wenowextend themartingale representation in Section 3
to the function 𝐻 := ℎ(I(𝑇)) of the path integrals. By the
martingale representation inTheorem 10,

ℎ (I (𝑇)) = 𝐸 [ℎ (I (𝑇))] + ∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢) , (72)

for some FX-predictable process 𝛾 := {𝛾(𝑡) | 𝑡 ∈ T}.
Again by subtraction we assume that 𝐸[ℎ (I(𝑇))] = 0.

Then

ℎ (I (𝑇)) = ∫

𝑇

0

𝛾

(𝑢) 𝑑M (𝑢) . (73)

The following theorem gives an expression for the integrand
in the martingale representation for ℎ(I(𝑇)).

Theorem 17. Suppose that 𝑎
12
(𝑡), 𝑎
21
(𝑡) > 0 for each 𝑡 ∈ T.

Then the integrand 𝛾 := {𝛾(𝑡) | 𝑡 ∈ T}, where 𝛾(𝑡) :=

(𝛾
1
(𝑡), 𝛾
2
(𝑡))

∈ R2, is determined by

𝛾
1
(𝑡) = 𝐸 [

𝜕

𝜕𝑥
1

ℎ (I (𝑇)) | F
X
(𝑡−)]

𝑎
12

(𝑡)

𝑎
21

(𝑡)

,

𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 {X (𝑡) = e
1
} ,

𝛾
2
(𝑡) = 𝐸 [

𝜕

𝜕𝑥
2

ℎ (I (𝑇)) | F
X
(𝑡−)]

𝑎
21

(𝑡)

𝑎
12

(𝑡)

,

𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 {X (𝑡) = e
2
} .

(74)

Proof. The proof resembles that ofTheorem 13.We only need
to note the fact that, for all 𝜂

12
’s which are indicators of sets

inH, 𝜂2
12

= 𝜂
12
.

6. An Application to Hedging
Contingent Claims

In this sectionwewill discuss an application of themartingale
representation result derived in Section 4 to hedge contingent
claims in the Markov chain financial market of Norberg [21].
Here we consider a simplified version of the Markov chain
market of Norberg [21], where there are two risky shares,
namely, 𝑆

1
and 𝑆
2
, and the Markov chain has only two states.

We also suppose that the market interest rate is zero. In this
case, as in Norberg [21], the (discounted) price processes of
the two risky shares {𝑆

1
(𝑡) | 𝑡 ∈ T} and {𝑆

2
(𝑡) | 𝑡 ∈ T} under

a risk-neutral probability, say P, are governed by

𝑑𝑆
𝑖
(𝑡) = 𝑆

𝑖
(𝑡−) ((exp (𝛽

𝑖

12
) − 1) 𝑑𝑀

12
(𝑡)

+ (exp (𝛽
𝑖

21
) − 1) 𝑑𝑀

21
(𝑡)) ,

𝑆
𝑖
(0) = 𝑠

𝑖
> 0, 𝑖 = 1, 2,

(75)
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where 𝛽
𝑖

12
and 𝛽

𝑖

21
, for 𝑖 = 1, 2, are non-zero constants;

{𝑀
12
(𝑡) | 𝑡 ∈ T} and {𝑀

21
(𝑡) | 𝑡 ∈ T} are (FX

,P)-
martingales. Note that the two risky shares are correlated
since their price dynamics depend on 𝑀

12
and 𝑀

21
.

For each 𝑖 = 1, 2, let 𝛼
𝑖

12
= exp(𝛽𝑖

12
) − 1 and let 𝛼

𝑖

21
=

exp(𝛽𝑖
21
) − 1. Then, as in Norberg [21], under the risk-neutral

measure P, the (discounted) terminal prices 𝑆
1
(𝑇) and 𝑆

2
(𝑇)

of the shares are given by

𝑆
𝑖
(𝑇) = 𝑠

𝑖
exp(−𝛼

𝑖

12
∫

𝑇

0

𝑎
12

(𝑡) ⟨X (𝑡−) , e
1
⟩ 𝑑𝑡

− 𝛼
𝑖

21
∫

𝑇
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𝑎
21

(𝑡) ⟨X (𝑡−) , e
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⟩ 𝑑𝑡

+𝛽
𝑖

12
𝐽
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(𝑇) + 𝛽
𝑖

21
𝐽
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(𝑇) ) , 𝑖 = 1, 2.

(76)

Consequently, the vector of the (discounted) terminal prices
of the shares S(𝑇) := (𝑆

1
(𝑇), 𝑆
2
(𝑇)) is a function of J(𝑇) :=

(𝐽
12
(𝑇), 𝐽
21
(𝑇)).

We now consider a contingent claim𝐻written on the two
correlated risky shares 𝑆

1
and 𝑆
2
whose payoff at maturity 𝑇

is a function of S(𝑇), say 𝐻(S(𝑇)). Two practical examples of
contingent claims having payoffs of this form are an exchange
option, which is also called a Margrabe option, and a quanto
option.

Note that the payoffs of the Margrable option and the
quanto option may not be differentiable functions of S(𝑇).
To apply the martingale representation result in Section 4 to
derive the hedging quantities for the Margrable option and
the quanto option, we need to consider approximations of
𝐻(S(𝑇)) by some “smooth” or differentiable payoff functions
of S(𝑇). In the sequel, we suppose that, with a slight abuse of
notation, 𝐻(S(𝑇)) is such a “smooth” or differentiable payoff
function of S(𝑇).

Then, the payoff 𝐻(S(𝑇)) can be written as

𝐻(S (𝑇)) = 𝐺 (J (𝑇)) , (77)

for some “suitable” measurable, differentiable and integrable
function 𝐺 : R2 → R.

Define, for each 𝑡 ∈ T, a (2 × 2)-matrix Σ(𝑡) by

Σ (𝑡) := (

𝑆
1
(𝑡−) (exp (𝛽

1

12
) − 1) 𝑆

1
(𝑡−) (exp (𝛽

1

21
) − 1)

𝑆
2
(𝑡−) (exp (𝛽

2

12
) − 1) 𝑆

2
(𝑡−) (exp (𝛽

2

21
) − 1)

)

= (

𝑆
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12
𝑆
1
(𝑡−) 𝛼

1

21

𝑆
2
(𝑡−) 𝛼

2

12
𝑆
2
(𝑡−) 𝛼

2

21

) .

(78)

Then the price processes of the two risky shares 𝑆
1
and

𝑆
2
under the risk-neutral measure P are governed by the

following vector-valued stochastic differential equation:

𝑑S (𝑡) = Σ (𝑡) 𝑑M (𝑡) , (79)

whereM(𝑡) := (𝑀
12
(𝑡),𝑀

21
(𝑡)) as defined inTheorem 4.

Suppose 𝛼
1

12
𝛼
2

21
̸=𝛼
1

21
𝛼
2

12
. Then, the inverse Σ

−1
(𝑡) of Σ(𝑡)

exists and is given by

Σ
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(𝑡) =

1
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𝛼
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𝛼
2

12

(
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𝑆
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) . (80)

Consequently,

𝑑M (𝑡) = Σ
−1

(𝑡) 𝑑S (𝑡) . (81)

By the martingale representation inTheorem 10,

𝐻(S (𝑇)) = 𝐺 (J (𝑇))

= 𝐸 [𝐺 (J (𝑇))] + ∫
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0
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(82)

Then the claim 𝐻(S(𝑇)) can be hedged perfectly by con-
structing a dynamic portfolio which invests (𝛾

1
(𝑡)𝛼
2

21
−

𝛾
2
(𝑡)𝛼
2

12
)/𝑆
1
(𝑡−) units of the risky share 𝑆

1
and (𝛾

2
(𝑡)𝛼
1

12
−

𝛾
1
(𝑡)𝛼
1

21
)/𝑆
2
(𝑡−) units of the risky share 𝑆

2
at time 𝑡, for

each 𝑡 ∈ T. The initial investment of the portfolio is
𝐸[𝐻(S(𝑇))], which is the initial price of the claim 𝐻(S(𝑇)).
UsingTheorem 13, 𝛾

1
(𝑡) and 𝛾

2
(𝑡) are determined as

𝛾
1
(𝑡) = 𝐸 [

𝜕
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,

on the set {X (𝑡) = e
1
} ,

𝛾
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(𝑡) = 𝐸 [
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𝑎
21

(𝑡)

𝑎
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(𝑡)

,

on the set {X (𝑡) = e
2
} .

(83)

We only illustrate here the use of themartingale represen-
tation result in Section 4 to hedge contingent claims whose
payoffs depend only on the terminal prices of the risky shares
in the Markov chain market. The martingale representation
result in Section 5 may be used to hedge contingent claims
with more general payoff structures in the Markov chain
market.

7. Conclusion

An integration-by-parts formula for a function of the termi-
nal values of the fundamental jump processes relating to a
Markov chainwas first established using the Bismut approach
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to Malliavin calculus.The formula was then applied to derive
a new expression for the integrand in a stochastic integral in
a martingale representation. The results were then extended
to functions of the integrals with respect to the whole paths
of the fundamental jump processes. These functions may
be regarded as random variables of canonical forms. Only
finite-dimensional calculus was needed in the derivations.
Though some complex notations may be involved, the results
presented here may be extended to the case of a general
𝑁-state Markov chain where a set of fundamental jump
processes {𝐽

𝑖𝑘
(𝑡) | 𝑡 ∈ T}, 𝑖, 𝑘 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑘, is used.

We applied the martingale representation result derived here
to hedge a contingent claim written on two correlated risky
shares in the Markov chain financial market of Norberg [21].

There are several future research directions based on the
results developed in this paper which may be of theoretical
and practical interests. The results may be applied to study
the existence and uniqueness of densities of jump processes
relating to a Markov chain. It seems that this problem is of
fundamental importance in filtering and control theory of
hidden Markov chains. Martingale representations play an
important role in filtering and control. It may be interesting
to explore the applications of the martingale representations
developed in this paper in filtering and control for stochastic
processes relating to Markov chains. The monograph by
Elliott et al. [32] provided some discussions on the filtering
and control of hidden Markov chains. The results developed
here may be extended to develop Malliavin calculus for
stochastic differential equations driven by a continuous-
time, finite-stateMarkov chain andMarkov regime-switching
stochastic differential equations. Itmay be of practical interest
to further explore the use of the martingale representation
results developed here to hedge modern insurance products,
such as unit-linked insurance products and longevity bonds
in the Markov chain market of Norberg [21]. In Bielecki
et al. [48], the valuation of credit derivatives in a Markov
chain model was discussed. It may be of practical interest
to explore the application of the martingale representation
results developed here to hedge credit derivatives in the
Markov chain model discussed in Bielecki et al. [48].
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markets driven by Lévy processes,” Mathematical Finance, vol.
13, no. 1, pp. 55–72, 2003.

[2] J. A. León, R. Navarro, and D. Nualart, “An anticipating
calculus approach to the utility maximization of an insider,”
Mathematical Finance, vol. 13, no. 1, pp. 171–185, 2003.

[3] P. Imkeller, “Malliavin’s calculus in insider models: additional
utility and free lunches,”Mathematical Finance, vol. 13, no. 1, pp.
153–169, 2003.
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de Probabilités XXII, vol. 1322 of Lecture Notes in Mathematics,
Springer, Berlin, Germany, 1998.

[10] R. J. Elliott and A. H. Tsoi, “Integration by parts for the single
jump process,” Statistics & Probability Letters, vol. 12, no. 5, pp.
363–370, 1991.

[11] R. J. Elliott and A. H. Tsoi, “Integration by parts for Poisson
processes,” Journal of Multivariate Analysis, vol. 44, no. 2, pp.
179–190, 1993.

[12] D. Nualart,TheMalliavin Calculus and Related Topics, Springer,
Berlin, Germany, 2nd edition, 2006.

[13] N. Privault, Stochastic Analysis in Discrete and Continuous
Settings with Normal Martingales, vol. 1982 of Lecture Notes in
Mathematics, Springer, Berlin, Germany, 2009.

[14] G. di Nunno, B. Øksendal, and F. Proske, Malliavin Calculus
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For the technology of mechanical elastic energy storage utilizing spiral torsion springs as the energy storage media presented
previously, a global multivariable control algorithm based on nonlinear internal model principle under multiclass external
disturbances is proposed. The nonlinear external disturbances with nonharmonic periodic characteristics are generated by
multiclass nonlinear external systems. New equations of nonlinear internal model are designed to estimate the multiclass external
disturbances. On the basis of constructing the control law of nominal system, a state feedback controller is designed to guarantee the
closed-loop system globally uniformly bounded, and a Lyapunov function is constructed to theoretically prove the global uniform
boundedness of the multivariable closed-loop system signals. The simulation results verify the correctness and effectiveness of the
presented algorithm.

1. Introduction

Energy storage technologies have a great practical signif-
icance for the solution of new energy interconnecting to
the grid, peak regulation, frequency modulation, and sta-
bility control [1, 2]. Based on lucubration of mechanical
elastic energy storage (MEES), a new way of MEES method
applying spiral torsion springs (STS) as the energy storage
material is proposed [3]. Due to the advantages such as large
power density, high efficiency, great electromagnetic torque,
small volume, and fast response speed, permanent magnet
synchronous motor (PMSM) is selected as the actuator for
MEES system, just as in many other servo systems [4].
One of the key technologies to be solved for MEES is the
nonlinear control owing to its electromechanical coupling
properties and nonlinear characteristics of PMSM [5]. When
PMSM based MEES system runs in energy storage, the
increasing load torque with the tightening of STS is unfa-
vorable for the operation of servo system. In addition, due

to the nonlinearities, strong coupling, and time variation
of PMSM, especially the existence of the nonlinear external
disturbances, the conventional PID controller is difficult to
satisfy the requirement of high precision control [6]. Hence,
the other control methods should be introduced, just as
nonlinear control [7–10], adaptive control [11], state feedback
control [12], and so forth.

One of the core questions in control field is to guarantee
asymptotical stability of unforced close-loop system, imple-
ment the asymptotical tracking of system output for given
trajectories, and reject exogenous disturbances [13–16]. The
control problems for servo system are also called the output
regulation problems; the problems of disturbance rejection
under the framework of output regulation have earned exten-
sive attention in recent years [17, 18]. The preexisting papers
mostly assumed that the exosystem generating disturbances
is linear, neutral, and stable; that is to say, disturbance
rejection under sinusoidal perturbation is frequently studied.
For instance, literatures [16, 17, 19] deal with the problems
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of sinusoidal perturbation rejection in known and unknown
frequency, respectively. Nevertheless, the nonharmonic dis-
turbances generated by nonlinear exosystems, which will
make practical servo systems, generators, and power flexible
mechanisms produce noise and precision reduction [20], are
harmful to these practical running systems. However, how to
tackle with disturbances generated by nonlinear exosystems
is rarely involved [21]. Therefore, rejection of these harmful
oscillations is essential to guarantee that the systems operate
stably under nonlinear external disturbances.

Another central issue in control field is to extend the
established control theory to more complex and generalized
circumstances. In [22], disturbance rejection under a class
of exosystems for a single-input nonlinear system is studied,
in which the dependent external system is a single model,
and the researched system is a single-input system. In [23], a
global harmonic rejection algorithm formultivariable system
is proposed; however, the rejection of the disturbances in the
paper aims at the standard sinusoidal components. For the
nonlinearity and complexity of PMSM based MEES system,
the focus of the paper is to extend the previous works in
[22, 23] to a generalizedmultivariable input field of nonlinear
systems under multiclass nonlinear exosystems with the
application of the constructed model for PMSM basedMEES
system in [5] and design a controller to suppress multiclass
external nonharmonic disturbances in PSMS based MEES
system.

The mainly theoretical contribution of the paper is to
propose a global multivariable disturbance control method
to reject multiclass nonlinear external nonharmonic dis-
turbances generated by multiclass nonlinear exosystems for
general multivariable nonlinear system, and the presented
control algorithm is employed to regulate an actual nonlinear
system.Thevalidity and effectiveness of the proposedmethod
are testified by the simulation results.

The organization of the paper is as follows. It starts
with an introduction of the research status of disturbance
rejection and points out the significance of rejection of
nonharmonic external disturbances in Section 1. The math-
ematical model of PMSM based MEES system is constructed
and the formulation of control problem in the paper is given
in Section 2. In Section 3, the nonlinear internal models
simulating themulticlass external nonharmonic disturbances
are presented based on internal model principle. Nonlinear
multivariable state feedback controller ensuring the closed-
loop system globally bounded is demonstrated in Section 4.
The verifications of the proposed algorithm by means of
numerical simulations are shown in Section 5. Ultimately,
Section 6 sums up the conclusions of the research and puts
forward the work in the future.

2. Problem Formulation

2.1. Mathematical Model of PMSM Based MEES System.
For the convenience of understanding and reutilization, the
model of the whole system for PMSM based MEES system
proposed in [3, 5] is shown in Figure 1, where gear case is
simplified as amodel of springmass damperwithmultidegree

Grid

Converters

PM
SM

Energy 
storage boxBm Tm 𝜔m

BL TL 𝜔L

Figure 1: The model of PMSM based MEES system.

of freedom, 𝐵
𝑚
and 𝐵

𝐿
denote the damping coefficients of the

motor and elastic shaft, respectively, 𝑇
𝑚
and 𝑇

𝐿
represent the

output torque of the motor and main shaft, respectively, and
𝜔
𝑚
and 𝜔

𝐿
symbolize the angular velocity of the motor and

main shaft of energy storage box, respectively. STS is installed
in energy storage box.

In the process of energy storage, PMSM runs in the state
of electric motor. For PMSM, assume that the inductance of
d-axis 𝐿

𝑑
is equal to the inductance of q-axis 𝐿

𝑞
. Accordingly,

themathematicalmodel for PMSM in dq rotating coordinates
can be expressed as follows [24]:
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𝐿
𝑞

𝑢
𝑞
,

𝑑𝜔
𝑚

𝑑𝑡

=

𝑝𝜑
𝑓

𝐽
𝑚

𝑖
𝑞
−

𝐵
𝑚

𝐽
𝑚

𝜔
𝑚
−

1

𝐽
𝑚

𝑇
𝑚
,

(1)

where 𝑖
𝑑
and 𝑖
𝑞
denote the current components of stator in dq

axis, respectively, 𝑢
𝑑
and 𝑢

𝑞
display the voltage components

of stator in dq axis, respectively, and 𝑅
𝑠
, 𝜔
𝑚
, 𝜑
𝑓
, 𝑝, and 𝐽

𝑚

represent the resistance of stator, angular velocity, flux linkage
of rotor, numbers of pole pairs, and moment of inertia of
rotor, respectively.

The ratio of gear case is assumed to be 𝑟; without regard
to the power loss of gear case, the relationship between
torque and angular velocity on both sides of gear case can be
expressed as

𝑇
𝑚
=

𝑇
𝐿

𝑟

, 𝜔
𝑚
= 𝜔
𝐿
⋅ 𝑟. (2)

Suppose the outer end of STS to be fixed in spring box
as V type, and in terms of the national standard design and
calculation of spiral torsion spring (JB/T7366-1994) in China,
the torque of STS with rectangle cross section can be written
as

𝑇
𝐿
= 𝑘

𝐸𝑏ℎ
3

6𝑙

𝑛, (3)

where 𝑛 denotes the working turns of spring, 𝐸, 𝑙, 𝑏, and
ℎ represent the modulus of elasticity, length, width, and
thickness of STS, respectively, and 𝑘 indicatesmass coefficient
of spring.

Due to the large mass and high inertia of MEES system,
the working rotation velocities for the main shaft of energy
storage box and the rotor of PMSM are both assumed to
be invariable. Hence, the relationship between the angular
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velocity 𝜔
𝐿
and the working turns 𝑛 for the main shaft of

energy storage box can be written as follows:

𝑛 =

𝜔
𝐿
𝑡

2𝜋

, (4)

where 𝑡 represents the time.
Equation (4) is substituted into (3); the relationship

between the torque 𝑇
𝐿
of STS and angular velocity 𝜔

𝐿
of the

main shaft can be given by the following formula:

𝑇
𝐿
= 𝑘

𝐸𝑏ℎ
3
𝜔
𝐿

12𝜋𝑙

𝑡. (5)

For a given STS, (5) shows that the torque 𝑇
𝐿
of STS is

proportional to the time 𝑡 if angular velocity 𝜔
𝐿
is a constant.

The mathematical model for the whole system of PMSM
based MEES can be obtained by combining differential
equation (1) with algebraic equations (2) and (5).

2.2. Control Problem Formulation. Consider the multivari-
able nonlinear system with a standard affine form under
multiclass disturbances:

̇x = f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)) , 1 ≤ 𝑖 ≤ 𝑚, (6)

where x ∈ R𝑛 are the state vectors, u
𝑖

∈ R are the
control inputs, f(x) and g

𝑖
(x) are the known smooth vector

fields, v
𝑖
(w) are the nonlinear disturbance inputs, and w ∈

R𝑞 indicate the external signals generated by the nonlinear
exosystem shown as follows:

ẇ = s
𝑖
(w) , 1 ≤ 𝑖 ≤ 𝑚. (7)

If the nonlinear disturbance inputs are ignored, for system
(6), its nominal system can be written as

̇x = f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) u
𝑖
, 1 ≤ 𝑖 ≤ 𝑚. (8)

The essence of solving stability problems for a multi-
variable input system is to convert these problems into the
stability problems of multiple single-input systems [25].

Assumption 1. For system (8), there exists a control law of
state feedback 𝛼

𝑖
(x) making the nominal close-loop system

̇x = f(x) + ∑
𝑚

𝑖=1
g
𝑖
(x)𝛼
𝑖
(x) asymptotically stabilize at the

origin. Therefore, there exists a Lyapunov function V(x)
satisfying

𝑑 (‖x‖) ≤ V (x) ≤ 𝑑 (‖x‖) ,

𝜕V (x)
𝜕x

(f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x)) ≤ −𝑑

0
(‖x‖) ,












𝜕V(x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)












2

≤ 𝑑
0
(‖x‖) ,

(9)

where 𝑑, 𝑑, and 𝑑
0
are all of 𝐾

∞
class functions.

Assumption 2. The trajectory of the vector field for the
nonlinear exosystem (7) is bounded.

Remark 3. The functions, which meet Assumption 2, include
harmonic functions and limit cycles of nonlinear dynamic
systems. For instance, the famous Van der Pol circuit can be
written as

̇𝑤
1
= 𝑤
2
− 𝜍 (

1

3

𝑤
3

1
− 𝑤
1
) ,

̇𝑤
2
= −𝑤
1
,

(10)

where 𝜍 denotes a parameter to adjust the period of current
or voltage. The eigenvalues of Jacobian matrix for (10) at the
origin are (1/2)(𝜍 ± √𝜍

2
− 4). If 0 < 𝜍 ≤ 2, the eigenvalues

have positive real parts; if 𝜍 > 2, the eigenvalues are positive
real numbers. Consequently, as long as 𝜍 > 0, the equilibrium
points at the origin of (10) are unstable and there exists a
bounded limit cycle [20].

Assumption 4. There exists a smooth function r
𝑖
(x) : R𝑛 →

R𝑞 making

𝜕r
𝑖
(x)

𝜕x
g
𝑖
(x) = K

𝑖
, 1 ≤ 𝑖 ≤ 𝑚, (11)

where𝐾
𝑖
∈ R𝑞 is a nonzero constant vector.

The problem to be solved in the paper can be described as
in the following definition.

Definition 5. For any given compact subset Dw ∈ R𝑞, a state
feedback controller u

𝑖
can be found to make the solution

of the close-loop system (6) exist and be bounded, and
lim
𝑡→∞

x(𝑡) = 0 under arbitrary initial conditions for all
w(0) ∈ Dw and 𝑡 ≥ 0.

3. Multiclass Nonlinear Internal
Models Design

In the paper, internal model principle (IMC) is utilized
to reject the multiclass disturbances. Disturbances rejec-
tion by IMC belongs to indirect suppression algorithm.
Hence, appropriate internal model equations should be firstly
established to estimate the inputting nonlinear disturbances.
Because the exosystem discussed in the paper is nonlinear,
the internal model equations established should also be
nonlinear. Therefore, Assumption 6 is introduced as follows.

Assumption 6. For the nonlinear exosystem (7), when 1 ≤

𝑖 ≤ 𝑚, there exists an immersion system being depicted as
follows:

̇𝜂
𝑖
= F
𝑖
𝜂
𝑖
+ G
𝑖
𝛾
𝑖
(J
𝑖
𝜂
𝑖
) , v

𝑖
(w) = H

𝑖
𝜂
𝑖
, (12)

where 𝜂
𝑖

∈ R𝑟, F
𝑖
,G
𝑖
,H
𝑖
, J
𝑖
are matrices with certain

dimensions, the matrix pair (F
𝑖
, H
𝑖
) is observable, and there

exists a positive definite matrix P�̂�
𝑖

making the following
formula hold:

P�̂�
𝑖

G
𝑖
+ (J
𝑖
)
𝑇

= 0, (13)
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and the nonlinear function 𝛾
𝑖
(J
𝑖
𝜂
𝑖
) can be expressed as

𝛾
𝑖
(J
𝑖
𝜂
𝑖
) =

[
[
[
[
[
[
[
[
[

[

𝛾
1

𝑖
(

𝑟

∑

𝑗=1

J1𝑗
𝑖
𝜂
1𝑗

𝑖
)

...

𝛾
𝑚

𝑖
(

𝑟

∑

𝑗=1

J𝑚𝑗
𝑖
𝜂
𝑚𝑗

𝑖
)

]
]
]
]
]
]
]
]
]

]

(14)

and satisfies (𝑠
1
− 𝑠
2
)
𝑇
(𝛾
𝑖
(𝑠
1
) − 𝛾
𝑖
(𝑠
2
)) ≥ 0.

Consequently, the multiclass nonlinear internal model
equations can be designed as follows:

̇�̂�
𝑖
= (F
𝑖
− K
𝑖
H
𝑖
) (�̂�
𝑖
− r
𝑖
(x)) + G

𝑖
𝛾
𝑖
(J
𝑖
(�̂�
𝑖
− r
𝑖
(x)))

+ K
𝑖
u
𝑖
+

𝜕r
𝑖
(x)

𝜕x
f
𝑖
(x) ,

(15)

where K
𝑖
∈ R𝑞 satisfies Assumption 4 and makes F

𝑖0
=

F
𝑖
−K
𝑖
H
𝑖
a Hurwitz matrix; hence there exist positive definite

matrices P�̂�
𝑖

andQ�̂�
𝑖

satisfying the following equation:

P�̂�
𝑖

F
𝑖0
+ F𝑇
𝑖0
P�̂�
𝑖

= −Q�̂�
𝑖

. (16)

Define an auxiliary error e
𝑖
as follows:

e
𝑖
= 𝜂
𝑖
− �̂�
𝑖
+ r
𝑖
(x) , (17)

and derivative of (17) along with (6), (12), and (15) is given by

̇e
𝑖
= ̇𝜂
𝑖
−

̇�̂�
𝑖
+

𝜕r
𝑖
(x)

𝜕x
(f
𝑖
(x) + g

𝑖
(x) (u

𝑖
− v
𝑖
(w)))

= F
𝑖
𝜂
𝑖
+ G
𝑖
𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − (F

𝑖
− K
𝑖
H
𝑖
) (�̂�
𝑖
− r
𝑖
(x))

− G
𝑖
𝛾
𝑖
(J
𝑖
(�̂�
𝑖
− r
𝑖
(x))) − K

𝑖
u
𝑖
−

𝜕r
𝑖
(x)

𝜕x
f
𝑖
(x)

= F
𝑖0
e
𝑖
+ G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) .

(18)

4. State Feedback Controller Design

In terms of the nonlinear internal models shown in (15) and
Assumption 1, the state feedback controller can be designed
as follows:

u
𝑖
= 𝛼
𝑖
(x) +H

𝑖
(�̂�
𝑖
− r
𝑖
(x)) , (19)

where 𝛼
𝑖
(x) is a controller being able to stabilize the nominal

system (8).
Construct a Lyapunov function as follows:

𝑊 = 𝑉 (x) +
𝑚

∑

𝑖=1

e𝑇
𝑖
P�̂�
𝑖

e
𝑖
. (20)

Derivative of Lyapunov function𝑊 along with system (6)
and auxiliary error (18), we can obtain

𝑊 =

𝜕𝑉 (x)
𝜕x

(f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)))

+

𝑚

∑

𝑖=1

e𝑇
𝑖
((P�̂�

𝑖

F
𝑖0
+ F𝑇
𝑖0
P�̂�
𝑖

) e
𝑖

+ 2e𝑇
𝑖
P�̂�
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))))

=

𝜕𝑉 (x)
𝜕x

(f
𝑖
(x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x))

+

𝜕𝑉 (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)H
𝑖
(�̂�
𝑖
− r
𝑖
(x))

−

𝜕𝑉 (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)H
𝑖
(e
𝑖
+ �̂�
𝑖
− r
𝑖
(x)) −

𝑚

∑

𝑖=1

e𝑇
𝑖
Q�̂�
𝑖

e
𝑖

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P�̂�
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

≤

𝜕𝑉 (x)
𝜕x

(f
𝑖
(x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x))

−

𝑚

∑

𝑖=1

𝜕𝑉 (x)
𝜕x

g
𝑖
(x)H
𝑖
e
𝑖
−

𝑚

∑

𝑖=1

𝜆min (Q�̂�
𝑖

)




e
𝑖






2

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P�̂�
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

≤ −𝑑
0
(‖x‖) +

𝑚

∑

𝑖=1










𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)














H
𝑖
e
𝑖






−

𝑚

∑

𝑖=1

𝜆min (Q�̂�
𝑖

)




e
𝑖






2

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P�̂�
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) ,

(21)

where 𝜆min(⋅) denotes the minimum eigenvalue of a certain
matrix.

In terms of Assumption 6, we can obtain P�̂�
𝑖

G
𝑖
= −(J
𝑖
)
𝑇;

hence

𝑚

∑

𝑖=1

2e𝑇
𝑖
P�̂�
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

=

𝑚

∑

𝑖=1

(−2 (J
𝑖
𝜂
𝑖
− J
𝑖
(𝜂
𝑖
− e
𝑖
)))
𝑇

(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) ≤ 0.

(22)
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Applying permanent establishment inequality 2𝑎𝑏 ≤

𝑐𝑎
2
+ 𝑐
−1
𝑏
2 (choosing 𝑐 = 2) to the second term of (21), we

obtain
𝑚

∑

𝑖=1










𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)














H
𝑖
e
𝑖






≤

𝑚

∑

𝑖=1

(










𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)










2

+

1

4





H
𝑖






2



e
𝑖






2

) .

(23)

Substitute (22) and (23) into (21) and combine (23) with
the application of Assumption 1; we obtain

𝑊 ≤ −

𝑚

∑

𝑖=1

(𝜆min (Q�̂�
𝑖

) −

1

4





H
𝑖






2

)




e
𝑖






2

. (24)

Choose appropriateQ�̂�
𝑖

andH
𝑖
to satisfy

𝑑
𝑖
= 𝜆min (Q�̂�

𝑖

) −

1

4





H
𝑖






2

> 0; (25)

namely,

𝑊 ≤ −

𝑚

∑

𝑖=1

𝑑
𝑖





e
𝑖






2

. (26)

By above knowable, all the variables are bounded. Com-
bine with the application of the invariant set theorem, it
can be obtained that lim

𝑡→∞
x(𝑡) = 0 and lim

𝑡→∞
e
𝑖
= 0.

Therefore, we give a theorem as follows.

Theorem 7. There exist positive definite matrices P�̂�
𝑖

and Q�̂�
𝑖

satisfying (13) and (16), nonzero vector K
𝑖
∈ R𝑞 makes F

𝑖0
=

F
𝑖
− K
𝑖
H
𝑖
be Hurwitz, and (25) holds as well. Hence, for the

multivariable nonlinear system (6) and multiclass exosystem
(7) satisfying Assumption 1 to Assumption 6, the multiclass
nonlinear internal models (15) and control inputs (19) are able
to make the close-loop system globally uniformly hounded, and
lim
𝑡→∞

x(𝑡) = 0.

Remark 8. Theorem 7 redescribes Definition 5 in essence;
furthermore, it provides a feasible way to find a state feedback
controller u

𝑖
to stabilize the close-loop system (6) to reference

trajectories. In addition, the selection of positive definite
matrices P�̂�

𝑖

and Q�̂�
𝑖

and nonzero vector K
𝑖
is to design

multiclass nonlinear internalmodels (see (15)) to simulate the
external nonharmonic disturbances produced by nonlinear
exosystem shown in (7). The control inputs (19) are the state
feedback controller described in Definition 5.

5. Numerical Simulation and Analysis

5.1. Description of Simulation Parameters. The verification of
the proposed algorithm in the paper is performed by means
of numerical simulation in a 0.018 kWh/1.1 kW PMSM based
MEES system. The specific parameters of the MEES system
are shown as follows: the rating torque of PMSM 𝑇m =

5.0N.m, number of pole-pairs 𝑝 = 4, flux linkage of rotor

𝜑
𝑓
= 0.18Wb, resistance of stator 𝑅

𝑠
= 1.95Ω, inductances

of d-axis and q-axis 𝐿
𝑑
= 𝐿
𝑞
= 0.0115H, moment of inertia

of rotor 𝐽
𝑚

= 0.008 kg⋅m2, ratio of gear case = 40 : 1, the
angular velocity of main shaft 𝜔

𝐿
= 15 r/min, and damping

coefficients of the motor 𝐵
𝑚
= 0.01N/rad/s.

5.2. Analysis and Discussion of Simulation Results. Consid-
ering the multiclass nonlinear disturbances, the mathemat-
ical model for the whole system of PMSM based MEES
system is converted into the form of (6), and the ultimate
result is shown in (27). Equation (27) indicates that the
nonlinear model of MEES system is a two-variable input
system, which is unable to be dealt with by a single-input
algorithm. In addition, (27) includes multiclass nonlinear
disturbances v

𝑖
(w), and the rejection algorithm handling a

single disturbance cannot address the problem of multiclass
disturbances rejection as well:

̇x = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)) , (27)

where x = [𝑥1
𝑥
2

𝑥
3]
𝑇

= [𝑖𝑑
𝜔
𝑚

𝑖
𝑞]

𝑇,

f (x) =

[
[
[
[
[
[
[

[

−

𝑅
𝑠

𝐿
𝑑

𝑥
1
+ 𝑝𝑥
2
𝑥
3

𝑝𝜑
𝑓

𝐽
𝑚

𝑥
3
−

𝐵
𝑚

𝐽
𝑚

𝑥
2
−

1

𝐽
𝑚

𝑇
𝑚

−

𝑅
𝑠

𝐿
𝑞

𝑥
3
− 𝑝𝑥
2
𝑥
1
−

𝑝𝜑
𝑓

𝐿
𝑞

𝑥
2

]
]
]
]
]
]
]

]

,

g
1
(x) = [

1

𝐿
𝑑

0]

𝑇

, g
2
(x) = [

1

𝐿
𝑞

] ,

(28)

and the control input u = [𝑢1
𝑢
2]
𝑇

= [𝑢𝑑
𝑢
𝑞]

𝑇.
If the nonlinear disturbances v

𝑖
(w) are ignored in (27),

the remaining system in (29) is the nominal system forMEES
system:

̇x = f (x) +
2

∑

𝑖=1

g
𝑖
(x) u
𝑖
. (29)

For the sake of convenience, the inputs of nonlinear
external disturbances V

1
and V

2
are both generated by Van

der Pol circuit described in (10) with 𝜍 = 2, which produces
bounded limit cycles. Consequently, Assumption 2 holds.

Suppose that V
1
and V

2
are immersed in the current

components of d-axis and q-axis, respectively, and V
1

=

𝑤
1
, V
2

= 𝑤
1
− 𝑤
2
. Hence, the difference of the exter-

nal disturbances represents the fact that the original sys-
tem isimmersed in multiclass nonlinear disturbance signals.
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For V
1
, the matrix parameters appearing in (12) are chosen as

𝐹
1
= [

2 1

−1 0
] , 𝐺

1
= [

−2 1

0 1
] , 𝐽

1
= [

1 0

1 −1
] ,

𝐻
1
= [1 0] , 𝛾

1

1
(𝑠) =

1

3

𝑠
3
, 𝛾

2

1
(𝑠) = 0,

𝑃
𝜂
1

= [

1

2

−

3

2

0 1

] ;

(30)

for V
2
= 𝑤
1
−𝑤
2
, the matrix parameters appearing in (12) are

selected as

𝐹
2
= [

2 1

−1 0
] , 𝐺

2
= [

−2 1

0 1
] , 𝐽

2
= [

1 0

1 −1
] ,

𝐻
2
= [1 −1] , 𝛾

1

2
(𝑠) =

1

3

𝑠
3
, 𝛾

2

2
(𝑠) = 0,

𝑃
𝜂
2

= [

1

2

−

3

2

0 1

] ,

(31)

and hence Assumption 6 is satisfied.
Assume that 𝑐

1
, 𝑐
2
, and 𝑐

3
all are certain positive constants;

the control law for the nominal system (29) is designed as

𝛼 (x) = [
𝛼
1
(x)
𝛼
2
(x)]

=

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝐿
𝑑
(𝑐
1
𝑥
1
+

𝐿
𝑞

𝐿
𝑑

𝑝𝑥
2
𝑥
3
)

𝐿
𝑞
(−

𝑝𝜑
𝑓

𝐽
𝑚

𝑐
2
(𝑥
2
− 𝜔ref) +

𝑅
𝑠

𝐿
𝑞

𝑥
3
+

𝐿
𝑑

𝐿
𝑞

𝑝𝑥
2
𝑥
1

+

𝑝𝜑
𝑓

𝐿
𝑞

𝑥
2

−𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
)))

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(32)

where 𝜔ref denotes the angular velocity reference of rotor for
PMSM. It can be verified that 𝛼(x) can stabilize the nominal
system (29) without disturbances, owing to the fact that the
stabilization process of (29) is not the emphasis of the paper;
hence the detailed deductions are omitted.

Let

V (x) = 1

2

𝑥
2

1
+

1

2

𝑐
2
(𝑥
2
− 𝜔ref)

2

+

1

2

(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

;

(33)

after calculations and arrangements, we obtain

𝜕V (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
)

= −(𝑐
1
+

𝑅
𝑠

𝐿
𝑑

)𝑥
2

1
−

𝜑
𝑓

𝐽
𝑚

𝑐
2
(𝑥
2
− 𝜔ref)

2

− 𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

= − (𝑐
1
+ 169.5652) 𝑥

2

1
− 225𝑐

2
(𝑥
2
− 𝜔ref)

2

− 𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

,

(34)

𝜕V (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)

=

1

𝐿
𝑑

𝑥
1
+

1

𝐿
𝑞

(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

= 86.9565𝑥
1
+ 86.9565(𝑥

3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
)) .

(35)

Supposing that

x = [𝑥
1
(𝑥
2
− 𝜔ref) (𝑥3 −

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))]

𝑇

,

(36)

according to (33), (34), and (35), and choosing 𝑐
1
= 8000,

𝑐
2
= 40, and 𝑐

3
= 8000, we obtain

1

2






x


2

≤ V (x) ≤ 20






x


2

, (37)

𝜕V (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
) ≤ −7562






x


2

, (38)












𝜕V (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)












2

≤ 7562






x


2

. (39)

Hence, Assumption 1 holds.
Choose

𝑟
1
(x) = [9𝐿𝑑

𝑥
1

0]
𝑇

, 𝑟
2
(x) = [9𝐿𝑞

𝑥
3

0]

𝑇

. (40)

Consequently,

𝐾
1
=

𝜕𝑟
1
(x)

𝜕x
g
1
(x) = [9 0]

𝑇

,

𝐾
2
=

𝜕𝑟
2
(x)

𝜕x
g
2
(x) = [9 0]

𝑇

.

(41)
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Figure 2: Nonlinear disturbance inputs V and their estimates.
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Figure 3: System control inputs 𝑢.

Therefore, Assumption 4 is satisfied. In addition, with the
application of (41), F

𝑖0
andQ�̂�

𝑖

in (16) can be shown as follows
by means of some calculations:

𝐹
10

= [
−7 1

−1 0
] , 𝑄

𝜂
1

=
[
[

[

11

2

−10

1

2

3

2

]
]

]

,

𝐹
20

= [
−7 10

−1 0
] , 𝑄

𝜂
2

= [

11

2

−

29

2

−4 15

] .

(42)

The above analysis has verified that MEES system (27)
and system (10) of the external disturbances satisfy all the
conditions required by Theorem 7. Consequently, based on
the multivariable disturbances rejection algorithm proposed
in the paper, the multiclass nonlinear internal models and
state feedback controller are designed as follows:

̇
�̂�
1
= −7𝜂

1
+ 10𝜂
2
− 16.8255𝑥

1
+ 0.414𝑥

2
𝑥
3

−

2

3

(𝜂
1
− 0.1035𝑥

1
)
3

+ 9𝑢
1
,

̇
�̂�
2
= −𝜂
1
+ 0.1035𝑥

1
,

̇
�̂�
3
= −7𝜂

3
+ 𝜂
4
− 16.8255𝑥

3
− 6.48𝑥

2
− 0.414𝑥

2
𝑥
1

−

2

3

(𝜂
3
− 0.1035𝑥

3
)
3

+ 9𝑢
2
,

̇
�̂�
4
= −𝜂
3
+ 0.1035𝑥

3
,

𝑢
1
= −0.2185𝑥

1
− 0.046𝑥

2
𝑥
3
+ 𝜂
1
,

𝑢
2
= −90.1535𝑥

3
+ 247251.84 + 0.046𝑥

2
𝑥
1

− 413.28𝑥
2
+ 127.7788𝑇

𝑚
+ 𝜂
3
− 𝜂
4
.

(43)

The numerical simulations are conducted in Matlab
environment. The whole simulation time is set as 60 s with
the sampling interval 0.001 s; let the initial condition of the
simulation be 𝑥(0) = [0.1 0 1.0], 𝜂(0) = [0 0 0 0],
and 𝑤(0) = [1 −1]. The reference values of the d-axis
current 𝑖

𝑑
and angular velocity of the motor 𝜔

𝑚
are selected

as 0 and 600 r/min, respectively. The q-axis current 𝑖
𝑞
tracks

the change of the torque of STS in energy storage. The
simulation results are shown in Figures 2, 3, and 4. Figure 2
demonstrates the multiclass nonlinear disturbance inputs
and their estimations, from which it can be seen that the
multiclass nonlinear disturbances acting on the different state
variables in a multivariable input system are successfully
estimated relying on the internal models designed. Figure 3
displays the control inputs of the system in dq axis under
the existence of multiclass nonlinear external disturbances.
Figure 4 describes the system states, which indicates that the
system achieves the asymptotical tracking for the reference
signals rapidly and the multiclass nonlinear disturbances are
completely suppressed. Hence, the multivariable controller
designed in the paper has a good control performance.
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Figure 4: System states 𝑥.

6. Conclusion

In light of the strong coupling andnonlinear characteristics of
PMSMbasedMEES system, a globalmulticlass nonharmonic
disturbances rejectionmethod for general multivariable non-
linear system under multiclasses nonlinear exosystems is
proposed in the paper. For multiclass nonlinear external
disturbances with different periodic bounded nonharmonic
characteristics, different nonlinear internal model equations
are designed. Based on design of control law for nominal
system, a state feedback controller for original system is
presented and a Lyapunov function is established to the-
oretically testify the global boundedness of all signals in
multivariable close-loop system.The simulation results show
that the multiclass different nonlinear disturbance inputs are
all completely rejected and the close-loop system can track
the reference signals promptly. Consequently, high accuracy
servo control for PMSM based MEES system is realized.

In addition to PMSM based MEES system, many other
practical engineering systems, including turbine motor, gen-
erator, power flexible manipulator, and communication cir-
cuit, are frequently affected by the nonharmonic disturbances
generated by the external nonlinear exosystems. As the
most famous and typical nonlinear circuit, Van der Pol
circuit researched in the paper will excite nonharmonic
disturbances and make the systemmentioned above produce
nonharmonic forced oscillation. The algorithm presented in
the paper can eliminate the harmful oscillation and improve
the stability for these practical systems.

The critical points of the output regulation problem
under nonharmonic disturbances are to model the nonlinear
exosystems and propose reasonable algorithm to stabilize the
closed-loop system. In the future, the proposed algorithm
in the paper can be able to be extended to uncertainly
multivariable systems and unknown external signals; corre-
spondingly, the innovative control technologies should be
researched to cope with the more complex and generalized
circumstances.
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For the response acquisition of the structure sectionmeasuring points, themethod of identifying the structural stiffness parameters
is developed by using the extended Kalman filter. The state equation of structural system parameter is a nonlinear equation.
Dispersing the structural dynamic equation by using Newmark-𝛽 method, the state transition matrix of discrete state equation
is deduced and the solution of discrete state equation is simplified. The numerical simulation shows that the error of structural
recognition doesnot exceed 5% when the noise level is 3%. It meets the requirements of the error limit of the engineering structure,
which indicates that the derivation described in this paper has the robustness for the structural stiffness recognition. Shear structure
parameter identification examples illustrate its applicability, and themethod can also be used to identify physical parameters of large
structure.

1. Introduction

The dynamic response of structure which is developed in
recent years is used to recognize the structural damage. This
method is based on the structural dynamic parameter. The
civil engineering structure will accumulate damage because
of the collision, environment corrosion, material aging, long-
term effects of load, and the fatigue. The local damage
will lead to the destruction of the whole structure, which
will result in serious engineering accident. The diagnostic
techniques of structural damage have been studied since
the 1970s in order to guarantee the structural safety and
reduce the economic loss [1]. The aim of structural dam-
age recognition is to find the position and the degree of
structural damage, which provides foundation for the follow-
up assessment of structural safety [2]. Damage identification
is based on structural vibration, and the basic principle is
structural modal parameter (natural frequency, mode shape,
etc.) as the function of the structural physical characteristics
(mass, damping, and stiffness), and so the change of physical
characteristics will cause the change in system dynamic
response [3–5].

Another important property which the ideal damage
identification method should have is to be able to distinguish
the differences of the two deviations caused by structural
modeling error and structural damage. How to explain the
structural security status and damage degrees by virtue of
the information frommeasurements is still a scientific theory
which is to be improved.The structural damage identification
method based on the changes of vibration characteristics has
been adopted to research for decades. Because the structural
vibrationmodal parameters (such as frequency,mode shapes,
and modal damping) are the functions of structural physical
parameters (such as mass, stiffness, and damping), changes
in the structural physical parameters will inevitably lead to
change in structural vibrationmodal parameters, which is the
basic principle of structural damage identification. Damage
identification is usually divided into three levels: to judge the
occurrence of damage; to determine the location of damage;
to solve the extent of damage [6–9]. The early damage
identificationmethod generally determines the occurrence of
damage by the changes of the frequency before and after the
damage. Later, it has been gradually developed by using var-
ious modal testing information (such as displacement mode,
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strain mode, and frequency response function) for accurate
damage positioning and measurement [10]. The structural
damage identification techniques have been combined with
modernmodalmeasurement andmodern numerical analysis
method, and they are playing an important role in the field of
civil engineering [11–14].

In terms of algorithms, it usually takes optimization
[15, 16] or intelligent algorithm [17–19] and other methods
to determine the degree of structural damage. Uncertainty
widely exists in practical engineering, and the theory and
algorithm of uncertain optimization research is significant
for the system. In the optimization method of uncertainty,
many studies have been done for the uncertainty analysis
and solution strategy [20–23]. Due to the fact that there is
a lot of uncertain information during the research process
of geotechnical engineering, it is difficult for deterministic
models to conclude the complicated mechanical property
of geotechnical engineering. Data [24] develops a variety
of nondeterministic methods on the basis of determinis-
tic back analysis. As the neural network can reflect any
nonlinear systems without knowing the nonlinear physi-
cal properties of systems, nonlinear dynamical systems of
nonparametric research based on the neural network are
increasingly developing [25–28]. Data [29] introduces the
principle of SDLV and puts forward the precise SDLVdamage
localization method based on the success of rod damage
identification. As for the unreliable results of structural
damage identification caused by large and complex struc-
tures and a serious shortage of measurement information,
data [30] comes up with damage identification methods of
partial main frequency substructure.There are noises in both
structural model and measurement response which lead to
the numerical instability of structural damage identification.
Tikhonov regularization method is a common method to
improve ill-conditioned matrix. By introducing a smooth
function to Tikhonov penalty function, data [31] improves
the impact of noise on structural damage. It is an effective
way to study the effects of noise on structural damage
identification by means of probability. Data [32] presents
the information fusion techniques based on Bayesian theory,
which is used to improve the accuracy of structural damage
identification results. Structuralmonitoring can onlymonitor
partial measuring points, while the random damage locating
vector method can produce better recognition results for
truss bridges and steel frame structures [33]. For the problems
of inaccurate damage identification of symmetric structure,
data [34] proposes the theory of mobile additional mass to
change symmetry of the structure.

Physical parameters identification is one of the main
research contents of structural health monitoring. Accord-
ing to the change of physical parameters, especially the
stiffness, we are able to identify the structure damage, as
well as the damage degree and location. In this paper,
the natural excitation technique and the extended Kalman
filter algorithm are used in shear structure by adopting
time domain identification method, and a new method of
physical parameter identification based on environmental
excitation is put forward to identify the interlaminar stiffness
of the shear structure. Numerical simulation results show that

the proposedmethod can well identify structural parameters.
With the increase of noise level, convergence time of iden-
tified value to the true value elongates and error increases
gradually but within the acceptable scope of the project,
which shows algorithm has certain robustness to noise.

2. EKF Principle of Structural
Stiffness Identification

The structural equation of motion under seismic excitations
can be expressed as

M ̈x + C ̇x + K (𝜃) x = −M ̈x
𝑔
, (1)

M,C, and K(𝜃) represent mass matrix of 𝑛 × 𝑛 dimensional,
dampingmatrix, and stiffnessmatrix. DampingmatrixCuses
Rayleigh damping; ̈x, ̇x, and x are the acceleration of the
structure, speed, and displacement response; ̈x

𝑔
is ground

motion acceleration; 𝑛 is the degree of structure freedom;
𝜃 is structural stiffness parameters to be identified, which
dimension is𝑚.

At the time of 𝑘 and 𝑘 + 1,

M ̈x
𝑘
+ C ̇x
𝑘
+ K (𝜃) x

𝑘
= F
𝑘
, (2)

M ̈x
𝑘+1
+ C ̇x
𝑘+1
+ K (𝜃) x

𝑘+1
= F
𝑘+1
. (3)

According to Newmark-𝛽 method, at the time of 𝑘 + 1,
velocity and displacement can be expressed as

̇x
𝑘+1
= ̇x
𝑘
+

Δ𝑡

2

( ̈x
𝑘
+ ̈x
𝑘+1
) ,

x
𝑘+1
= x
𝑘
+ ̇x
𝑘
Δ𝑡 +

Δ𝑡
2

4

( ̈x
𝑘
+ ̈x
𝑘+1
) ,

(4)

Δ𝑡 is discrete time interval.
Substituting (4) into (3) anddeducing ̈x

𝑘+1
, we can deduce

the following:

̈x
𝑘+1
= A
1
[F
𝑘+1
− K (𝜃) x

𝑘
− A
2
̇x
𝑘
− A
3
̈x
𝑘
] , (5)

A
1
= (

Δ𝑡
2

4

K (𝜃) + Δ𝑡
2

C +M)
−1

,

A
2
= (Δ𝑡K (𝜃) + C) ,

A
3
= (

Δ𝑡
2

4

K (𝜃) + Δ𝑡
2

C) ,

(6)

̈x
𝑘
can be obtained through equation (2) as follows:

̈x
𝑘
= M−1F

𝑘
−M−1K (𝜃) x

𝑘
−M−1C ̇x

𝑘
. (7)

Combining (5) and (7), we can deduce the following:

( ̈x
𝑘+1
+ ̈x
𝑘
) = A
1
F
𝑘+1
− A
1
K (𝜃) x

𝑘
− A
1
A
2
̇x
𝑘

− (A
1
A
3
− I) ̈x
𝑘

= a𝑓
𝑘
+ a𝑑
𝑘
x
𝑘
+ aV
𝑘
̇x
𝑘
,

(8)
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a𝑓
𝑘
= A
1
F
𝑘+1
− [A
1
A
3
− I]M−1F

𝑘
,

a𝑑
𝑘
= −A
1
K (𝜃) + [A

1
A
3
− I]M−1K (𝜃) ,

aV
𝑘
= −A
1
A
2
+ [A
1
A
3
− I]M−1C.

(9)

Substituting (8) into (4), we can deduce the following for-
mula:

̇x
𝑘+1
= ̇x
𝑘
+

Δ𝑡

2

(a𝑓
𝑘
+ a𝑑
𝑘
x
𝑘
+ aV
𝑘
̇x
𝑘
)

=

Δ𝑡

2

a𝑓
𝑘
+

Δ𝑡

2

a𝑑
𝑘
x
𝑘
+ (

Δ𝑡

2

aV
𝑘
+ I) ̇x

𝑘
,

x
𝑘+1
= x
𝑘
+ ̇x
𝑘
Δ𝑡 +

Δ𝑡
2

4

(a𝑓
𝑘
+ a𝑑
𝑘
x
𝑘
+ aV
𝑘
̇x
𝑘
)

=

Δ𝑡
2

4

a𝑓
𝑘
+ (

Δ𝑡
2

4

a𝑑
𝑘
+ I) x

𝑘
+ (

Δ𝑡
2

4

aV
𝑘
+ Δ𝑡I) ̇x

𝑘
.

(10)

Write formula (10) in the matrix form

{
x
𝑘+1

̇x
𝑘+1

} =

[
[
[

[

(

Δ𝑡
2

4

a𝑑
𝑘
+ I) (

Δ𝑡
2

4

aV
𝑘
+ Δ𝑡I)

Δ𝑡

2

a𝑑
𝑘

(

Δ𝑡

2

aV
𝑘
+ I)

]
]
]

]

{
x
𝑘

̇x
𝑘

}

+

{
{
{

{
{
{

{

Δ𝑡
2

4

I

Δ𝑡

2

I

}
}
}

}
}
}

}

a𝑓
𝑘
,

(11)

I is the unit matrix of 𝑛 × 𝑛.
Using the method of Newmark-𝛽, we can transform

formula (1) into discrete equation (11).
Let

y
𝑘
= {x𝑘 ̇x

𝑘
𝜃
𝑘}
𝑇

. (12)

Then structural equation of state can be rewritten as

y
𝑘+1
=

[
[
[
[
[
[

[

(

Δ𝑡
2

4

a𝑑
𝑘
(𝜃) + I) (

Δ𝑡
2

4

aV
𝑘
(𝜃) + Δ𝑡I) 0

𝑛×𝑚

Δ𝑡

2

a𝑑
𝑘
(𝜃) (

Δ𝑡

2

aV
𝑘
(𝜃) + I) 0

𝑛×𝑚

0
𝑚×𝑛

0
𝑚×𝑛

0
𝑚×𝑚

]
]
]
]
]
]

]

y
𝑘

+

{
{
{
{
{
{

{
{
{
{
{
{

{

Δ𝑡
2

4

I

Δ𝑡

2

I

0
𝑚×𝑛

}
}
}
}
}
}

}
}
}
}
}
}

}

a𝑓
𝑘
.

(13)
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m2
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m1

k1, c1

x4

x3
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x1

̈xg

k4, c4

k3, c3

Figure 1: Structure diagram.

Table 1: Structural parameters.

𝑖 1 2 3 4
𝑚
𝑖
(kg) 900 675 675 450

𝑘
𝑖
(Nm−1) 12000 11000 10000 9000

Let

Φ
𝑘
=

[
[
[
[
[
[
[

[

(

Δ𝑡
2

4

a𝑑
𝑘
(𝜃) + I) (

Δ𝑡
2

4

aV
𝑘
(𝜃) + Δ𝑡I) 0

𝑛×𝑚

Δ𝑡

2

a𝑑
𝑘
(𝜃) (

Δ𝑡

2

aV
𝑘
(𝜃) + I) 0

𝑛×𝑚

0
𝑚×𝑛

0
𝑚×𝑛

0
𝑚×𝑚

]
]
]
]
]
]
]

]

,

Γ
𝑘
= {
Δ𝑡
2

4

I Δ𝑡
2

I 0
𝑚×𝑛
}

𝑇

.

(14)

If the process noise exists in the system, (13) can be rewritten
as

y
𝑘+1
= Φ
𝑘
y
𝑘
+ Γ
𝑘
𝛼
𝑓

𝑘
+ 𝜔
𝑘
, (15)

𝜔
𝑘
is the process noise of system.
The supplementary system observation equation is

z
𝑘+1
= H
𝑘
y
𝑘
+ 𝜐
𝑘
, (16)

H
𝑘
is the observation matrix of system and 𝜐

𝑘
is the observa-

tion noise of the system.
Assuming that process noise and observation noise are

independent of each other, the covariance matrix of process
noise and observation noise isN= 0. Given the system initial
value y

0
, the initial value of process noise covariance matrix

P
0
, and observation noise covariance matrix R, discrete

augmented state vector ŷ
𝑘+1

and covariance matrix P̂
𝑘+1

can
be estimated according to the extendedKalmanfiltermethod.
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Figure 2: Structural stiffness identification result without noise.

(1) According to formula (15), calculate and predict the
state vector ỹ

𝑘+1
.

(2) Calculation of covariance prediction equation is

P̃
𝑘+1
= Φ
𝑘
P
𝑘
Φ
𝑇

𝑘
. (17)

(3) The gain matrix is

K
𝑘+1
= P̃
𝑘+1

H𝑇
𝑘+1
(H
𝑘+1

P̃
𝑘+1

H𝑇
𝑘+1
+ R)
−1

. (18)

(4) State filtering equation is

x̂
𝑘+1
= x̃
𝑘+1
+ K
𝑘+1
(z
𝑘+1
−H
𝑘+1

x̃
𝑘+1
) . (19)
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Figure 3: Stiffness identification results when SNR is 40.

(5) Error covariance filtering equation is

P
𝑘+1
= P̃
𝑘+1
− K
𝑘+1

H
𝑘+1

P̃
𝑘+1
. (20)

3. The Numerical Simulation

To validate the effectiveness of the algorithm, a four-story
shear structure is considered, as shown in Figure 1. Struc-
ture damping is the Rayleigh damping; quality factor is

6.984 × 10
−3 and stiffness coefficient is 9.390 × 10−4; the rest

parameters of the structure are shown in Table 1.The input of
basement is elecentro wave. Use the method of time-history
analysis to calculate structural response and gather each layer
displacement response as measurements to identify stiffness
between the layers.

Three working conditions in this paper are considered,
which are measurements without noise, measurements with
1% of noise, and measurements with 3% of noise. All the
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Figure 4: Stiffness identification results when SNR is 30.

noises are zeromeanwhite noise. Figure 2 shows the structure
stiffness identification value without noise, from which we
can see that identified value of stiffness converges to the
true value quickly. Figure 3 shows the identification result

of measurements with 1% of noise. Due to the effect of the
noise, there is a certain error between identified value and
true value. Table 2 shows the error level; the maximum error
is within the 1% with the situation of 1% of noise. Figure 4
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Table 2: Structural stiffness identification results.

Stiffness Noise level
No noise Error level % SNR = 40 Error level % SNR = 30 Error level %

𝐾
1

12000 0 12118 0.98 11459 −4.51
𝐾
2

11000 0 10904 −0.87 11491 4.46
𝐾
3

10000 0 10039 0.39 9628 −3.72
𝐾
4

9000 0 8991 −0.10 9038 0.42

shows the measurements with 3% of noise. From Table 2, we
can see that the maximum error is 4.6%, and it is within the
acceptable range of the engineering.

4. Conclusion

The paper using the method of Newmark-𝛽 disperses the
equations ofmotion and deduces the state transition equation
containing the stiffness parameters to be identified. By the
extended Kalman filter algorithm to identify the stiffness
parameters, the conclusion can be drown as follows.

(i) Expanding order state equation is nonlinear state
equation of state variables, and the state transition
matrix is generally through the partial derivative
of the nonlinear equation, which solving process is
complicated. This paper directly deduces the state
transition matrix by Newmark-𝛽 method, and the
result is concise and intuitive.

(ii) Noise affects the identification precision. When there
is no noise in acquisition response, the identification
stiffness converges to the true stiffness precisely.
With the noise increases, the error of identification
precision increases too. When the SNR amounts to
forty, the error is within 1%, and, when the SAR is
thirty, the error is within 5%. The speed of error
increasing surpasses that of noise increasing.

(iii) Noise affects the speed of identification. When there
is no noise in the acquisition response, the algorithm
convergence accesses the truth value. And, when
noise increases, the speed of algorithm convergence
becomes slow. In the practical condition that noise
has affected acquisition response, the time length of
acquisition should be guaranteed so that the algo-
rithm converges to the stable value, which can ensure
reliable identification results.

(iv) From the results of numerical simulation, the pro-
posed algorithm has different identification preci-
sions to the various layers of shear structure, which
is in the increasing condition from the bottom to the
top. The incentive of structure is under the affection
of earthquake, and greater response of structural layer
can be obtained from the higher ground; the different
responses between the layers will affect algorithm
identification precision.
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The problem of finite-time 𝐿
2
-𝐿
∞
control for Markovian jump systems (MJS) is investigated.The systems considered time-varying

delays, actuator saturation, and polytopic uncertain transition description. The purpose of this paper is to design a state feedback
controller such that the system is finite-time bounded (FTB) and a prescribed𝐿

2
-𝐿
∞
disturbance attenuation level during a specified

time interval is guaranteed. Based on the Lyapunov method, a linear matrix inequality (LMI) optimization problem is formulated
to design the delayed feedback controller which satisfies the given attenuation level. Finally, illustrative examples show that the
proposed conditions are effective for the design of robust state feedback controller.

1. Introduction

In the aspect of modeling practical systems with abrupt
random changes, such as manufacturing system, telecom-
munication, and economic systems, MJS have powerful
ability. MJS have been extensively studied during the past
decades and many systematic results have been obtained
[1–3]. The peak-to-peak filtering problem was studied for a
class of Markov jump systems with uncertain parameters in
[4]. A robust 𝐻

2
state feedback controller for continuous-

time Markov jump linear systems subject to polytopic-type
parameter uncertainty was designed in [5]. In [6], the authors
address the stabilization problem for single-input Markov
jump linear systems via mode-dependent quantized state
feedback for control.

Actuator saturation which can lead to poor performance
of the closed-loop system is another active research area. In
practical situations, it may be encountered sometimes. How
to preserve the closed-loop system performance in the case
of actuator saturation would be more meaningful. In [7], the
𝐻
∞
control problem for discrete-time singular Markov jump

systems with actuator saturation was considered. In [8] the
stochastic stabilization problem for a class of Markov jump
linear systems subject to actuator saturation was considered.

In some practical applications, the behavior of the system
over a finite-time interval is mainly considered. Finite-time
stable (FTS) and Lyapunov asymptotic stability are indepen-
dent concepts. The concept of FTS was first introduced in
[9]. A system is said to be finite-time stable if, given a bound
on the initial condition, its state does not exceed a certain
threshold during a specified time interval. FTS of linear time-
varying systems was considered in [10]. Sufficient conditions
for the solvability of both the state and the output feedback
problems are stated. Amato [11] provided a necessary and
sufficient condition for the FTS of linear-varying systems
with jumps. Recently, robust finite-time𝐻

∞
control of jump

systems was dealt with in [12–14]. In [15], the problems
of finite-time stability analysis were investigated for a class
of Markovian switching stochastic systems. To the best of
authors’ knowledge, however, the problem of finite-time
𝐿
2
-𝐿
∞

performance for discrete-time MJS with imprecise
transition probabilities and time-varying delays has not been
well addressed, which motivates our work.

This paper deals with this problem. More specifically,
the actuator is saturation. By using the Lyapunov-Krasovskii
functional, a new sufficient condition for stochastic asymp-
totic stability with finite-time 𝐿

2
-𝐿
∞
performance is derived

in terms of LMI. Based on this, the existence condition of
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the desired performance which guarantees finite-time stabil-
ity and an 𝐿

2
-𝐿
∞

performance of the MJS is presented. A
numerical example is provided to show the effectiveness of
the proposed results.

Throughout the paper, if not explicitly stated,matrices are
assumed to have compatible dimensions. The notation𝑊 >

(≥, <, ≤)0 is used to denote a symmetric positive definite (pos-
itive semidefinite, negative, negative semidefinite) matrix.
𝜆min(⋅) and 𝜆max(⋅) represent the minimum and maximum
eigenvalues of the corresponding matrix, respectively. 𝐼 is
the identity matrix with compatible dimensions. ‖ ⋅ ‖ refers
to the Euclidean norm of vectors and 𝐸[⋅] stands for the
mathematical expectation. For a symmetric block matrix,
“∗” is used as an ellipsis for the terms that are obtained by
symmetry.

2. Problem Statement and Preliminaries

Consider a discrete-time MJS with actuator saturation and
delay in the state. Let the system dynamics be described by
the following:

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑)

+ 𝐵
𝜃1
(𝑟
𝑘
) 𝜎 (𝑢
𝑘
) + 𝐵
𝜃2
(𝑟
𝑘
) 𝑤
𝑘
,

𝑧 (𝑘) = 𝐶
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐶

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐷

𝜃1
(𝑟
𝑘
) 𝑤
𝑘
,

(1)

where 𝑥
𝑘

∈ 𝑅
𝑛 is the system state, 𝑧

𝑘
∈ 𝑅

𝑛 is
the system output, 𝑢

𝑘
∈ 𝑅

𝑚 is the control input,
𝑤
𝑘

∈ 𝑅
𝑞 is the disturbance input which belongs to

𝐿
2
[0,∞) and ∑∞

𝑘=0
𝑤
𝑇

𝑘
𝑤
𝑘
< 𝜅
2, and 𝜅 is a given positive

scalar.𝐴
𝜃1
(𝑟
𝑘
), 𝐴
𝜃2
(𝑟
𝑘
), 𝐵
𝜃1
(𝑟
𝑘
), 𝐵
𝜃2
(𝑟
𝑘
), 𝐶
𝜃1
(𝑟
𝑘
), 𝐷
𝜃1
(𝑟
𝑘
), and

𝐷
𝜃2
(𝑟
𝑘
) are appropriately dimensioned real-valued matrices,

which belong to the part of convex polyhedronΦ(𝑟
𝑘
):

Φ(𝑟
𝑘
)

= {

𝐿

∑

𝑙=1

𝜃
𝑙
[𝐴
𝑙1
(𝑟
𝑘
) , 𝐴
𝑙2
(𝑟
𝑘
) , 𝐵
𝑙1
(𝑟
𝑘
) ,

𝐵
𝑙2
(𝑟
𝑘
) , 𝐶
𝑙1
(𝑟
𝑘
) , 𝐶
𝑙2
(𝑟
𝑘
) ,

𝐷
𝑙1
(𝑟
𝑘
) , 𝐷
𝑙2
(𝑟
𝑘
)] ,

𝐿

∑

𝑙=1

𝜃
𝑙
= 1, 𝜃
𝑙
≥ 0} ,

(2)

where 𝐴
𝑙1
(𝑟
𝑘
), 𝐴
𝑙2
(𝑟
𝑘
), 𝐵
𝑙1
(𝑟
𝑘
), 𝐵
𝑙2
(𝑟
𝑘
), 𝐶
𝑙1
(𝑟
𝑘
), 𝐶
𝑙2
(𝑟
𝑘
), and

𝐷
𝑙1
(𝑟
𝑘
) are matrix functions of the random jumping process

{𝑟
𝑘
} (Figure 1), which is a discrete-time Markov chain

taking values in a finite set Ω = {1, 2, . . . , 𝑆} with transition
probabilities:

𝑃 {𝑟
𝑘+1
= 𝑗 | 𝑟

𝑘
= 𝑖} = 𝜋

𝑖𝑗
. (3)
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Figure 1: Jumping mode.

Here 𝜋
𝑖𝑗
≥ 0 and for any 𝑖, 𝑗 ∈ Ω, ∑𝑠

𝑗=1
𝜋
𝑖𝑗
= 1. Assuming that

the transition probability 𝜋
𝑖𝑗
is not exactly known, a certain

range can only be given

[𝜋V (𝑖, 1) , 𝜋V (𝑖, 2) , . . . , 𝜋V (𝑖, 𝑆)]

=

𝑀

∑

𝑚=1

V
𝑚
[𝜋
𝑚
(𝑖, 1) , 𝜋

𝑚
(𝑖, 2) , . . . , 𝜋

𝑚
(𝑖, 𝑆)] ,

(4)

where V = [V
1
⋅ ⋅ ⋅ V
𝑀
]
𝑇
∈ 𝑅
𝑀 and ∑𝑀

𝑚=1
V
𝑚
= 1, and

the transition probability belongs to the following convex
polyhedron:

ℵ(𝑟
𝑘
= 𝑖) = Co{ [𝜋

1
(𝑖, 1) , 𝜋

1
(𝑖, 2) , . . . , 𝜋

1
(𝑖, 𝑁)]

[𝜋
𝑀
(𝑖, 1) , 𝜋

𝑀
(𝑖, 2) , . . . , 𝜋

𝑀
(𝑖, 𝑁)]

} . (5)

When the system operates in the 𝑖th mode (𝑟
𝑘
= 𝑖), for sim-

plicity, thematrices𝐴
𝜃1
(𝑟
𝑘
),𝐴
𝜃2
(𝑟
𝑘
), 𝐵
𝜃1
(𝑟
𝑘
), 𝐵
𝜃2
(𝑟
𝑘
), 𝐶
𝜃1
(𝑟
𝑘
),

and 𝐷
𝜃1
(𝑟
𝑘
) are denoted as 𝐴

𝜃1𝑖
, 𝐴
𝜃2𝑖
, 𝐵
𝜃1𝑖
, 𝐵
𝜃2𝑖
, 𝐶
𝜃1𝑖
, and

𝐷
𝜃1𝑖
, respectively. 𝑑 is a positive integer denoting the constant

delay of the system state (Figures 2 and 3).
In system (1), 𝜎(⋅) : 𝑅𝑚 → 𝑅

𝑚 is the vector-valued
standard saturation function defined as follows:

𝜎 (𝑢) = [𝜎 (𝑢
1
) , 𝜎 (𝑢

2
) , . . . , 𝜎 (𝑢

𝑚
)]
𝑇

, (6)

where𝜎(𝑢
𝜃
) = sign(𝑢

𝜃
)min{1, |𝑢

𝜃
|}. It is assumed that system

(1) is completely controllable. A mode-dependent controller
is considered here with the following form:

𝜎 (𝑢 (𝑘)) = 𝜎 (𝐾
𝑖
𝑥 (𝑘)) , (7)

where 𝐾
𝑖
∈ 𝑅
𝑚×𝑛

(∀𝑟
𝑘
= 𝑖 ∈ Ω) is the controller gain to be

determined.
Let 𝑀 be the set of 𝑚 × 𝑚 diagonal matrices whose

diagonal elements are either 1 or 0. Suppose each element of
𝑀 is𝑀

𝑗
, 𝑗 = 1, . . . , 2𝑚, and denote𝑀−

𝑗
= 𝐼 − 𝑀

𝑗
. Note that

𝑀
−

𝑗
is also an element of 𝑀 if 𝑀

𝑗
∈ 𝑀. Let ℎ

𝑖𝑗
be the 𝑗th

row of the matrix 𝐻
𝑖
, and define the symmetric polyhedron

by 𝜑(𝐻
𝑖
) = {𝑥(𝑡) ∈ 𝑅

𝑛
: |𝑓
𝑖𝑗
𝑥(𝑡)| ≤ 1, 𝑖 = 1, 2, . . . , 𝑚}.
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Figure 2: Response of the system state 𝑥
1
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Figure 3: Response of the system state 𝑥
2
.

Lemma 1 (see [8]). Let 𝐾
𝑖
, 𝐻
𝑖
∈ 𝑅
𝑚×𝑛 be given matrix. For

𝑥(𝑡) ∈ 𝑅
𝑛, if 𝑥(𝑡) ∈ 𝜑(𝐻

𝑖
), then

𝜎 (𝐾
𝑖
𝑥 (𝑡)) =

2
𝑚

∑

𝑟=1

𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
) 𝑥 (𝑡) , (8)

where 0 ≤ 𝜁
𝑟
≤ 1, ∑2

𝑚

𝑟=1
𝜁
𝑟
= 1.

By the connection of (6), (7) and (8), the following closed-
loop MJS are obtained:

𝑥 (𝑘 + 1) = (𝐴
𝜃1
(𝑟
𝑘
) + 𝐵
𝜃1
(𝑟
𝑘
)

×

2
𝑚

∑

𝑟=1

𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
))𝑥 (𝑘)

+ 𝐴
𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐵

𝜃2
(𝑟
𝑘
) 𝑤
𝑘
.

(9)

To describe themain objective of this notemore precisely,
let us now introduce the following definition for the underly-
ing system.

Definition 2 (see [13]). Given a time constant 𝑇 > 0, the MJS

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) (10)

are said to be FTSwith respect to (ℎ1 ℎ2 𝑇 𝑅
𝑖), if there exist

positive matrix 𝑅
𝑖
> 0, scalars ℎ

1
> 0 and ℎ

2
> 0, and

𝐸 {𝑥
𝑇
(𝑘
1
) 𝑅
𝑖
𝑥 (𝑘
1
)}

≤ ℎ
1
⇒ 𝐸{𝑥

𝑇
(𝑘
2
) 𝑅
𝑖
𝑥 (𝑘
2
)}

≤ ℎ
2
, 𝑘
1
∈ {−ℎ, . . . , 0} , 𝑘

2
∈ {1, 2, . . . , 𝑇} .

(11)

Definition 3 (see [13]). Given a time constant 𝑇 > 0, the MJS

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐵

𝜃2
(𝑟
𝑘
) 𝑤
𝑘

(12)

are said to be finite-time bounded (FTB) with respect to
(ℎ1

ℎ
2
𝑇 𝑅
𝑖), if there exist positive matrix 𝑅

𝑖
> 0 and

scalars ℎ
1
> 0 and ℎ

2
> 0, and satisfied (11).

In general, FTB and FTS are different. If there is external
disturbance in systems, the concept of FTB is used. Con-
versely, FTS is addressed.

The objective of this paper is to design a delayed feedback
controller which satisfies the given attenuation level of system
(1). The design procedure is given in the next section.

Definition 4. The time-delay MJS (1) is said to be finite-
time 𝐿

2
-𝐿
∞

control with respect to (ℎ1 ℎ2 𝑇 𝑅
𝑖) and

performance 𝛾, where 𝑅
𝑖
> 0, 𝛾 > 0, ℎ

1
> 0, and ℎ

2
> 0,

if the time-delay MJS (1) is stochastically FTB and under the
zero-initial condition the output 𝑧(𝑘) satisfies

‖𝑧 (𝑘)‖∞
< 𝛾‖𝑤 (𝑘)‖2 (13)

for all nonzero 𝑤(𝑘) ∈ 𝐿
2
[0,∞) subject to the zero-initial

condition.

3. Main Results

In this section, firstly stochastic FTB analysis of nominal
time-delay MJS (1) is provided. Then, these results will be
extended to the MJS (1) with actuator saturation and uncer-
tain transition probability. LMI conditions are established.

Lemma 5. System (1) with 𝜎(𝑢
𝑘
) ≡ 0 is stochastic FTB with

respect to (ℎ1 ℎ2 𝑑 𝑅
𝑖
𝑁); if for scalars 𝜍 ≥ 1, ℎ

1
> 0,

and ℎ
2
> 0, there exist symmetric matrices 𝑅

𝑖
> 0 (𝑖 ∈ Ω)
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and𝑄
𝑖
> 0 (𝑖 ∈ Ω), such that the following matrix inequalities

hold:

Λ =

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖
− 𝐼

]
]
]
]
]

]

< 0

(14)

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) , (15)

where 𝑃
𝑖
= ∑
𝑆

𝑗=1
𝜋V𝑖𝑗𝑃𝑗.

Proof. Choose the following Lyapunov functional:

𝑉 (𝑘) = 𝑥
𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑘−1

∑

𝑛=𝑘−𝑑

𝑥
𝑇
(𝑛) 𝑄𝑥 (𝑛) . (16)

The proof of Lemma 5 is divided into two parts. In the first
part, the following inequality is obtained:

𝐸 {𝑉 (𝑘)} < 𝜍
𝑘
𝐸 {𝑉 (0)} + 𝜍

𝑘
𝑤
𝑇
(𝑘) 𝑤 (𝑘) . (17)

Then, we compute

Δ𝑉 (𝑘) = 𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘)

=

𝑆

∑

𝑗=1

𝜋V𝑖𝑗𝑥
𝑇
(𝑘 + 1) 𝑃

𝑗
𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑆

∑

𝑗=1

𝜋V𝑖𝑗𝑥
𝑇
(𝑘) 𝑄𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑑)𝑄𝑥 (𝑘 − 𝑑)

= 𝜗
𝑇
(𝑘)

[
[
[
[
[

[

𝐴
𝑇

𝜃1𝑖
𝑃
𝑖
𝐴
𝜃1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃1𝑖

−𝑄 + 𝐴
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃2𝑖

∗

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃1𝑖

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃2𝑖

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐵
𝜃2𝑖

]
]
]
]
]

]

𝜗 (𝑘)

= 𝜗
𝑇
(𝑘)

[
[
[
[
[

[

(

𝐿

∑

𝑙=1

𝜃
𝑙
)(

𝐿

∑

𝑙=1

𝜃
𝑙
)

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖

]
]
]
]
]

]

]
]
]
]
]

]

𝜗 (𝑘) ,

(18)

where 𝜗(𝑘) = [𝑥(𝑘) 𝑥(𝑘 − 𝑑) 𝑤(𝑘)].
Note condition (14); it follows that

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘) < (𝜍 − 1)𝑉 (𝑘)

+ 𝑤
𝑇
(𝑘) 𝑤 (𝑘) , 𝜍 ≥ 1.

(19)

Therefore, we obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜍𝑉 (𝑘) + 𝑤
𝑇
(𝑘) 𝑤 (𝑘) . (20)

That is,

𝐸 {𝑉 (𝑥 (1) , 𝑟 (1))} < 𝜍𝑉 (𝑥 (0) , 𝑟 (0)) + 𝑤
𝑇
(𝑘) 𝑤 (𝑘)

...
...

...
𝐸 {𝑉 (𝑥 (𝑘 + 1) , 𝑟 (𝑘 + 1))} < 𝜍𝐸 {𝑉 (𝑥 (𝑘) , 𝑟 (𝑘))} + 𝑤

𝑇
(𝑘) 𝑤 (𝑘) .

(21)

By recursive,

𝐸 {𝑉 (𝑘)} < 𝜍
𝑘
𝐸 {𝑉 (0)} + 𝐸{

𝑘−1

∑

𝜏=0

𝜍
𝑘−𝜏−1

𝑤
𝑇
(𝜏) 𝑤 (𝜏)} . (22)

Then the inequality in (17) is obtained.

In the second part, stochastic FTB is established:

𝐸 {𝑉 (𝑘)} = 𝐸{𝑥
𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑘−1

∑

𝑛=𝑘−𝑑

𝑥
𝑇
(𝑛) 𝑄𝑥 (𝑛)}

≥ 𝜆min (�̃�𝑖) 𝐸 {𝑥
𝑇
(𝑘) 𝑅𝑥 (𝑘)} .

(23)

On the other hand,

𝜍
𝑘
𝐸 {𝑉 (0)} ≤ 𝜍

𝑘
[𝜆max (�̃�𝑟(0)) 𝐸 {𝑥

𝑇
(0) 𝑅𝑥 (0)}

+𝜆max (𝑄) 𝐸{
−1

∑

𝑛=−𝑑

𝑥
𝑇
(𝑛) 𝑅𝑥 (𝑛)}] .

(24)

From Definition 2, we have

𝜍
𝑘
𝐸 {𝑉 (0)} ≤ 𝜍

𝑘
{[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑]} ℎ1 + 𝜍

𝑘
.

(25)
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By (23) and (25), we know

𝐸 {𝑥
𝑇
(𝑘) 𝑅𝑥 (𝑘)}

≤

𝜍
𝑘
{[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] + 1} ℎ1

𝜆min (�̃�𝑖)

≤ ℎ
2
.

(26)

This completes the proof.

Theorem 6. System (1) is finite-time 𝐿
2
-𝐿
∞

control and
satisfies the given lever 𝛾 with respect to (ℎ1 ℎ2 𝑑 𝑅

𝑖
𝑁); if

for scalars 𝜍 ≥ 1, ℎ
1
> 0, and ℎ

2
> 0, there exist symmetric

matrices 𝑅
𝑖
> 0 (𝑖 ∈ Ω) and 𝑄 > 0, such that the following

matrix inequalities hold:

Θ
1

=

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖
− 𝐼

]
]
]
]
]

]

< 0,

(27)

Θ
2
=

[
[
[

[

−𝑃
𝑖
∗ ∗ ∗

0 −𝑄 ∗ ∗

0 0 −𝐼 ∗

𝐶
𝑙1𝑘

𝐶
𝑙2𝑘

𝐷
𝑙2𝑘

−𝛾
2
𝐼

]
]
]

]

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) .

(28)

Proof. System (1) with 𝜎(𝑢
𝑘
) ≡ 0 is FTB according to

Lemma 5 and inequality (27).
Subsequently, to establish the energy-to-peak perfor-

mance for the system (1), assume that the initial values for
the plant are zeros and consider the following function:

ℵ := 𝐸 {𝑉 (𝑘)} −

𝑘−1

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
. (29)

For any nonzero𝑤
𝑘
∈ 𝑙
2
[0,∞) and 𝑘 > 0, it follows from (18)

that

ℵ := 𝐸{

𝑘−1

∑

𝑖=0

Δ𝑉 (𝑖) −

𝑘−1

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
}

= 𝜗
𝑇
(𝑘)Θ
1
𝜗 (𝑘) .

(30)

It follows from (27) that 𝐸{𝑉(𝑘)} < ∑𝑘−1
𝑖=0
𝑤
𝑇

𝑖
𝑤
𝑖
.

For all the time instants 𝑘 > 0, the expectation of the
output can be evaluated as

𝐸 {𝑧
𝑇

𝑘
𝑧
𝑘
} = 𝐸 {𝜗

𝑇
(𝑘) [𝐶𝜃1𝑘

𝐶
𝜃2𝑘

𝐷
𝜃1𝑘]
𝑇

× [𝐶𝜃1𝑘
𝐶
𝜃2𝑘

𝐷
𝜃1𝑘] 𝜗 (𝐾)}

< 𝐸

{

{

{

𝛾
2
𝜗
𝑇
(𝑘)
[

[

𝑃
𝑖
0 0

∗ 𝑄
𝑖
0

∗ ∗ 𝐼

]

]

𝜗 (𝑘)

}

}

}

< 𝛾
2
𝐸{

𝑘

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
} < 𝛾

2
𝐸{

∞

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
}

= 𝛾
2
‖𝑤‖
2

2
.

(31)

Applying Definition 4, the statement of Theorem 6 is true.

Theorem 7. Consider the uncertain time-delay system (1);
there exists a state feedback controller 𝜎(𝐾

𝑖
𝑥(𝑡)) such that the

uncertain time-delay system (1) is finite-time 𝐿
2
-𝐿
∞

control
with respect to (ℎ1 ℎ2 𝑑 𝑅

𝑖
𝑁), if the following LMIs hold:

Λ
1
=

[
[
[
[
[
[
[
[
[

[

−𝑋
𝑖
0 0 𝜀

14
⋅ ⋅ ⋅ 𝜀
16
𝑋
𝑖

∗ −𝑅 0 𝜀
24
⋅ ⋅ ⋅ 𝜀
26

0

∗ ∗ −𝐼 𝜀
34
⋅ ⋅ ⋅ 𝜀
36

0

∗ ∗ ∗ 𝜀
44
⋅ ⋅ ⋅ 0 0

∗ ∗ ∗ ∗ d 0 0

∗ ∗ ∗ ∗ ∗ 𝜀
66

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅

]
]
]
]
]
]
]
]
]

]

< 0, (32)

Λ
2
=

[
[
[

[

−𝑃
𝑖
∗ ∗ ∗

0 −𝑄 ∗ ∗

0 0 −𝐼 ∗

𝐶
𝑙1𝑘

𝐶
𝑙2𝑘

𝐷
𝑙2𝑘

−𝛾
2
𝐼

]
]
]

]

< 0,

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) ,

(33)

where 𝜀
14
= √𝜋𝑖1

(𝐴
𝑙1𝑖
+𝐵
𝑙1𝑖
(𝑀
𝑟
𝑌
𝑖
+𝑀
−

𝑟
𝑍
𝑖
), 𝜀
24
= √𝜋𝑖1

𝑅𝐴
𝑙2𝑖
,

𝜀
34
= √𝜋𝑖1

𝑅𝐵
𝑙2𝑖
, 𝜀
44
= −𝑋

1
, 𝜀
16
= √𝜋𝑖𝑆

(𝐴
𝑙1𝑖
+ 𝐵
𝑙1𝑖
(𝑀
𝑟
𝑌
𝑖
+

𝑀
−

𝑟
𝑍
𝑖
)
𝑖
), 𝜀
26
= √𝜋𝑖𝑆

𝑅𝐴
𝑙2𝑖
, 𝜀
36
= √𝜋𝑖𝑆

𝑅𝐵
𝑙2𝑖
, and 𝜀

66
= −𝑋
𝑆
.

The state feedback controller is designed as 𝜎(𝐾
𝑖
𝑥(𝑡)) =

∑
2
𝑚

𝑟=1
𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
)𝑥(𝑡).

Proof. Noting condition (27) and 𝑃
𝑖
= Γ
𝑖
𝜅Γ
𝑇

𝑖
, where 𝜅 =

diag{𝑃
1
, . . . , 𝑃

𝑆
}, Γ
𝑖
= [√𝑝𝑖1

𝐼, . . . , √𝑝𝑖𝑆
𝐼] thus Θ

1
can be

rewritten as

Θ
1
= [

[

−𝑃
𝑖
+ 𝑄 ∗ ∗

0 −𝑄 ∗

0 0 −𝐼

]

]

+

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖

𝐴
𝑇

𝑙2𝑖

𝐵
𝑇

𝑙2𝑖

]
]
]
]
]

]

𝜅 [𝐴 𝑙1𝑖
𝐴
𝑙2𝑖
𝐵
𝑙2𝑖] < 0.

(34)
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Using Schur complement, it can be obtained

[
[
[
[
[
[
[
[

[

−𝑃 + 𝑄 0 0 𝐴
𝑇

𝑙1𝑖
Γ
𝑖

∗ −𝑄 0 𝐴
𝑇

𝑙2𝑖
Γ
𝑖

∗ ∗ −𝐼 𝐵
𝑇

𝑙2𝑖
Γ
𝑖

∗ ∗ ∗ −𝜅
−1

]
]
]
]
]
]
]
]

]

< 0. (35)

Let 𝑋
𝑖
= 𝑃
−1

𝑖
, 𝑅 = 𝑄−1, 𝑌

𝑖
= 𝐾
𝑖
𝑋
𝑖
, and 𝑍

𝑖
= 𝐻
𝑖
𝑋
𝑖
. Pre-

and postmultiplying (35) by diag{𝑋
𝑖
, 𝑅, 𝐼, 𝐼} and then using

Schur complement, then inequality (32) is obtained. Implying
Theorem 6, we can conclude that the corresponding closed-
loop system is finite-time 𝐿

2
-𝐿
∞

control. This completes the
proof.

4. Numeral Example

To illustrate the proposed results, a numerical example is
considered for finite-time 𝐿

2
-𝐿
∞

control. The system is
described by (1) and assumed to have two modes; Ω = {1, 2}.
The mode switching is governed by a Markov chain that has
the following transition probability matrix:

𝑃 = [
0.2 0.8

0.4 0.6
] . (36)

The system matrices are as follows:

𝐴
111
= 𝐴
211
= [

0.3 0.102

−0.663 0.3
] ,

𝐴
112
= 𝐴
212
= [

0.8 0.0539

−0.8655 0.8
] ,

𝐴
121
= 𝐴
221
= [

0.5 0.06

−0.843 0.5
] ,

𝐴
122
= 𝐴
222
= [

0.9 0.0766

−0.7661 0.9
] ,

𝐵
111
= 𝐵
211
= [
0.0005

0.0539
] ,

𝐵
212
= 𝐵
112
= [

0.005

0.1078
] ,

𝐵
121
= 𝐵
221
= [
0.0045

0.0539
] ,

𝐵
122
= 𝐵
222
= [
0.0045

0.1078
] ,

𝐶
111
= 𝐶
211
= 𝐶
112
= 𝐶
212
= [0 0.2] ,

𝐶
121
= 𝐶
221
= 𝐶
122
= 𝐶
222
= [0.3 0] ,

𝐷
111
= 𝐷
211
= 𝐷
112
= 𝐷
212
= 0.3.

(37)

Assume 𝐿
2
-𝐿
∞
performance of level 𝛾 = 0.3; by applying

Theorem 7, we can explicitly compute the optimally achiev-
able closed-loop 𝐿

2
-𝐿
∞

performance 𝛾 from Theorem 7 as

𝛾 = 0.2056. Response of the system state is depicted in Figures
2 and 3.

5. Conclusion

The problem of finite-time 𝐿
2
-𝐿
∞

control for MJS has
been studied. By using the Lyapunov functional approach,
a sufficient condition is derived such that the closed-loop
MJS are stochastic FTB and satisfy the given level. The
controller can be obtained by using the exiting LMI optimiza-
tion techniques. Finally, numerical and simulation results
demonstrate the effectiveness of the results of the paper.
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The delay-dependent resilient robust finite-time 𝐿
2
-𝐿
∞
control problem of uncertain neutral time-delayed system is studied. The

disturbance input is assumed to be energy bounded and the time delays are time-varying. Based on the Lyapunov function approach
and linear matrix inequalities (LMIs) techniques, a state feedback controller is designed to guarantee that the resulted closed-loop
system is finite-time bounded for all uncertainties and to satisfy a given 𝐿

2
-𝐿
∞

constraint condition. Simulation results illustrate
the validity of the proposed approach.

1. Introduction

Dynamical systems with time delays and uncertain parame-
ters have been of considerable interest over the past decades.
In fact, time delays are always the important source of system
instability and poor performance [1–4]. As a special class
of time-delay systems, the neutral type time-delayed system
has also received some attention in recent years. This time-
delayed system contains time delays both in its state and in
the derivative of its states. Moreover, neutral time-delayed
systems are frequently encountered in many dynamics, such
as automatic control, distributed network system containing
lossless transmission line, heat exchangers, and population
ecology. Various analysis approaches have been utilized
to find stability criteria and control design conditions for
asymptotic stability of neutral time delays [5–10].

It is now worth pointing out that the control perfor-
mances mentioned above concern the desired behavior of
control dynamics over an infinite-time interval and it always
deals with the asymptotic property of system trajectories. For
controlling a dynamical system, it can meet the requirements
of asymptotic stability, but it will not reflect the transient
characteristics. Asymptotic stability is unable to satisfy the
transient requirements of industrial production if there exists
large amount of overshoot, oscillation change, and nonlinear
disturbance within a finite-time interval. To deal with this
transient performance of control dynamics, Dorato gave the

concept of finite-time stability [11] (or short-time stability)
in the early 1960s. Then, the relevant concepts of finite-time
bounded (FTB) [12], finite-time stabilization [13], finite-time
𝐻
∞

control [14], and finite-time 𝐿
2
-𝐿
∞

[15] control have
been revisited in form of linear matrix inequalities (LMIs)
techniques. And this transient performance is widely applied
to time-delay systems, uncertain systems, nonlinear systems,
stochastic systems, and so forth. However, to the best of our
knowledge, very few results in the literature consider the
related control problems of neutral time-varying delays in the
finite-time interval.

On the other hand, the 𝐿
2
-𝐿
∞
performance has attracted

considerable attention as an important performance evalua-
tion indexwhen itwas first proposed in 1989 [16]. In engineer-
ing practice, although the study of the impact of noise and
delay on the system performance is important, the extremum
problem of the controlled output cannot be ignored, because
the controlled output should be controlled within a certain
range. In control theory and engineering application, the
𝐿
2
-𝐿
∞

control has very important significance that lies in
its performance index which can control the output value
minimization. Unfortunately, up to now, the theme of 𝐿

2
-

𝐿
∞

control design of uncertain neutral systems with time-
varying delays has received little attention.

Motivated by the above discussion, this paper focuses on
the problem of finite-time 𝐿

2
-𝐿
∞
controller design for a class
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of neutral systemswithmixed time-varying delays and uncer-
tainties. By constructing a suitable Lyapunov function, the
sufficient conditions are derived that closed-loop controlled
system is FTB and satisfies the given finite-time interval
induced 𝐿

2
-𝐿
∞

norm of the operator from the unknown
disturbance to the output. We also show that the 𝐿

2
-𝐿
∞

controller designing problem can be dealt with by solving a
set of coupled LMIs. Finally, a numerical example illustrates
the effectiveness of the developed techniques.

2. Problem Statement

Consider the following neutral time-delayed system with
uncertainties:

Σ
0
:

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

̇x (𝑡) − (C + ΔC (𝑡)) ̇x (𝑡 − 𝜏 (𝑡)) = (A + ΔA (𝑡)) x (𝑡)

+ (A
𝑑
+ ΔA

𝑑
(𝑡)) x (𝑡 − ℎ (𝑡)) + Bu (𝑡)

+ (D + ΔD (𝑡))w (𝑡)

y (𝑡) = (F + ΔF (𝑡)) x (𝑡) + Gu (𝑡)

x (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−max {ℎ, 𝜏} , 0] , 𝑡

0
= 0,

(1)

where x(𝑡) ∈ R𝑛 is the state, u(𝑡) ∈ R𝑚 is the controlled
input, y(𝑡) ∈ R𝑞 is the controlled output, and w(𝑡) ∈ R𝑝 is the
disturbance input that belongs to 𝐿

2
[0, +∞) and for a given

positive number 𝛿 and constant time 𝑇, the following form is
satisfied:

∫

𝑇

0

w𝑇 (𝑡)w (𝑡) 𝑑𝑡 ≤ 𝛿, 𝛿 ≥ 0. (2)

ℎ(𝑡) and 𝜏(𝑡) are time-varying delays and satisfy

0 ≤ ℎ (𝑡) ≤ ℎ,
̇
ℎ (𝑡) ≤ ℎ

𝑑
,

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝜏
𝑑
< 1,

(3)

where ℎ, 𝜏, ℎ
𝑑
, and 𝜏

𝑑
are constant scalars. 𝜙(𝜃) ∈

𝐿
2
[−max{ℎ, 𝜏}, 0] is the continuous initial function. A, A

𝑑
,

C, D, and F ∈ R𝑛×𝑛 are known constant matrices, and
ΔA(𝑡), ΔA

𝑑
(𝑡), ΔC(𝑡), ΔD(𝑡), and ΔF(𝑡) are unknown time-

variant matrices representing the norm-bounded parameter
uncertainties and satisfy the following form:

[ΔA (𝑡) ΔA
𝑑
(𝑡) ΔC (𝑡) ΔD (𝑡)]

= M
1
𝜎 (𝑡) [H1 H

2
H
3
H
4] ,

(4)

ΔF (𝑡) = M
2
𝜎 (𝑡)H

1
, (5)

where M
1
, M
2
, H
1
, H
2
, H
3
, and H

4
are known real matrices

with suitable dimension and 𝜎(𝑡) is an unknown real and
possibly time-varying matrix with Lebesgue measurable ele-
ments satisfying

𝜎
𝑇
(𝑡)𝜎 (𝑡) ≤ I. (6)

In this paper, we consider the state feedback controller as
follows:

u (𝑡) = (K + ΔK (𝑡)) x (𝑡) , (7)

where K is the unknown controller gain and ΔK(𝑡) is the
time-varying controller gain which satisfies

ΔK (𝑡) = N𝜂 (𝑡) S, 𝜂
𝑇
(𝑡) 𝜂 (𝑡) ≤ I. (8)

Then, we can get the following closed-loop control sys-
tem:

Σ:
{
{
{
{

{
{
{
{

{

̇x (𝑡) − C ̇x (𝑡 − 𝜏 (𝑡)) = Âx (𝑡)
+A
𝑑
x (𝑡 − ℎ (𝑡)) +Dw (𝑡)

y (𝑡) = F̂x (𝑡)
x (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−max {ℎ, 𝜏} , 0] , 𝑡0 = 0,

(9)

where Â = A+ΔA(𝑡),A = A+BK, ΔA(𝑡) = ΔA(𝑡) +BΔK(𝑡),
A
𝑑
= A
𝑑
+ ΔA
𝑑
(𝑡), C = C + ΔC(𝑡), D = D + ΔD(𝑡), F̂ =

F + ΔF(𝑡), F = F + GK, and ΔF(𝑡) = ΔF(𝑡) + GΔK(𝑡).
Themain purpose of this paper is to design an appropriate

resilient state feedback controller (7), such that the closed-
loop control system Σ is finite-time bounded and satisfies the
given performance index constraints.

Before proceeding with the study, we give the relevant
definitions and lemmas first.

Definition 1. For given positive scalars 𝑐
1
, 𝛿, and 𝑇 and a

symmetrical positive determined matrix R, the closed-loop
system Σ is robust finite-time bounded (FTB) with respect to
(𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), if there exists a positive constant 𝑐

2
with 𝑐

2
>

𝑐
1
, such that, for all the external disturbances w(𝑡) satisfying

condition (2), the following formula is satisfied:

𝜙
𝑇
(𝜃)R𝜙 (𝜃) ≤ 𝑐

1
⇒ x𝑇 (𝑡)Rx (𝑡) < 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] .

(10)

Remark 2. If the disturbance input is not present in the
closed-loop system, that is, w(𝑡) = 0, the concept of
FTB will reduce into finite-time stability (FTS). It is worth
mentioning that Lyapunov stability and finite-time stability
are two different concepts.The former is largely known to the
control characteristic in infinite-time interval, but the latter
concerns the boundedness analysis of the controlled states
within a finite-time interval. Obviously, a finite-time stable
system may not be Lyapunov stochastically stable and vice
versa.

Definition 3. The state feedback controller in the form of (7)
is considered as a robust finite-time 𝐿

2
-𝐿
∞
controller for the

closed-loop system Σ, if the system Σ is FTB with respect to
(𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇) and under the zero initial condition, there exist

two positive scalars 𝛾 and 𝑇 for all disturbance which satisfy
condition (2), such that





y (𝑡)



2

∞
≤ 𝛾
2
‖w (𝑡)‖

2

2
, (11)

where ‖y(𝑡)‖2
∞

= sup
𝑡∈[0,𝑇]

|y𝑇(𝑡)y(𝑡)|, ‖w(𝑡)‖2
2
= ∫

𝑇

0
w𝑇(𝑡)

w(𝑡)𝑑𝑡.
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Lemma 4 (see [17]). For any real positive scalars 𝛼, 𝛽 (where
𝛼 > 𝛽) and a positive definite symmetric matrix S, then the
following inequality holds for a vector function 𝜔 : [𝛽, 𝛼] →

R𝑛 which can let the integrals converge:

(∫

𝛼

𝛽

𝜔 (𝜎) 𝑑𝜎)

𝑇

S(∫
𝛼

𝛽

𝜔 (𝜎) 𝑑𝜎)

≤ (𝛼 − 𝛽) (∫

𝛼

𝛽

𝜔
𝑇
(𝜎) S𝜔 (𝜎) 𝑑𝜎) .

(12)

Lemma 5 (see [17]). For any positive scalar ℎ and positive def-
inite symmetric matrix S, the following inequality is satisfied:

2

ℎ
2
(∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔 (𝜎) 𝑑𝜎 𝑑𝜃)

𝑇

S(∫
0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔 (𝜎) 𝑑𝜎 𝑑𝜃)

≤ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔
𝑇
(𝜎) S𝜔 (𝜎) 𝑑𝜎 𝑑𝜃.

(13)

Lemma 6 (see [15]). For any given appropriate dimension
matrix H and E, if there exists a matrix W(𝑡) which satisfied
W𝑇(𝑡)W(𝑡) ≤ I and a scalar 𝜀 > 0, then

HW (𝑡)E + E𝑇WT
(𝑡)H𝑇 ≤ 𝜀

−1HH𝑇 + 𝜀E𝑇E. (14)

3. Main Results

In this section, our main purpose is to solve the design
problem of a resilient robust finite-time 𝐿

2
-𝐿
∞
controller for

a class of uncertain neutral systems with mixed time-varying
delays.

Theorem 7. Given positive scalars 𝑐
1
, 𝛿, 𝑇, and 𝛼, positive

definite symmetric matrixR, and time-delay parameters ℎ > 0,
ℎ
𝑑
> 0, 𝜏 > 0, and 𝜏

𝑑
> 0, the closed-loop system Σ is

FTB with respect to (𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), if there exist positive scalars

𝜆
𝑖
, 𝑖 = 1, 2, . . . , 6, 𝑐

2
, and symmetric positive definite matrices

P
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, and W

𝑖
, 𝑖 = 1, 2, . . . , 6,

such that

Π=[

[

Π
1
Π
2
Π
3

∗ Π
4
Π
5

∗ ∗ Π
6

]

]

<0, (15)

𝑐
1
[𝜆
2
+ ℎ𝜆
3
+ ℎ𝜆
4
+ 𝜏𝜆
5
+ 𝜏𝜆
6
] + 𝛿 (1 − 𝑒

−𝛼𝑇
) < 𝜆
1
𝑐
2
𝑒
−𝛼𝑇

,

(16)

where

Π
1
= [Π
𝑖𝑗
]
7×7

,

Π
11
= Â𝑇P

1
+ P
1
Â + P

2
+ P
3
+ P
4
+ P
5

+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6

− 𝛼P
1
−

𝛼

𝜏

P
6
− 2𝛼Q

1
− 2𝛼Q

2
− 2𝛼Q

3
− 2𝛼Q

4
,

Π
12
= P
1
A
𝑑
−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
13
= P
1
C +W𝑇

1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
14
= −W

4
+W
5
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
+

𝛼

𝜏

P
6
,

Π
15
= −W

2
−W
3
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
16
= −W

5
−W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
17
= P
1
D,

Π
22
= − (1 − ℎ

𝑑
)P
2
−W
1
+W
2
−W𝑇
1
+W𝑇
2
,

Π
23
= −W𝑇

1
+W𝑇
2
,

Π
24
= −W

4
+W
5
−W𝑇
1
+W𝑇
2
,

Π
25
= −W

2
−W
3
−W𝑇
1
+W𝑇
2
,

Π
26
= −W

5
−W
6
−W𝑇
1
+W𝑇
2
,

Π
27
= 0,

Π
33
= − (1 − 𝜏

𝑑
)P
6
,

Π
34
= −W

4
+W
5
,

Π
35
= −W

2
−W
3
,

Π
36
= −W

5
−W
6
,

Π
37
= 0,

Π
44
= − (1 − 𝜏

𝑑
)P
4
−W
4
+W
5
−W𝑇
4
+W𝑇
5
−

𝛼

𝜏

P
6
,

Π
45
= −W

2
−W
3
−W𝑇
4
+W𝑇
5
,

Π
46
= −W

5
−W
6
−W𝑇
4
+W𝑇
5
,

Π
47
= 0,

Π
55
= −P
3
−W
2
−W
3
−W𝑇
2
−W𝑇
3
,

Π
56
= −W

5
−W
6
−W𝑇
2
−W𝑇
3
,

Π
57
= 0,

Π
66
= −P
5
−W
5
−W
6
−W𝑇
5
−W𝑇
6
,

Π
67
= 0,

Π
77
= −𝛼I,

Π
2
=

[
[
[
[
[
[
[
[
[

[

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

,
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Π
3
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Â𝑇P
6
ℎÂ𝑇Q

1
ℎÂ𝑇Q

2
𝜏Â𝑇Q

3
𝜏Â𝑇Q

4

A𝑇
𝑑
P
6
ℎA𝑇
𝑑
Q
1
ℎA𝑇
𝑑
Q
2
𝜏A𝑇
𝑑
Q
3
𝜏A𝑇
𝑑
Q
4

C𝑇P
6
ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇P
6
ℎD𝑇Q

1
ℎD𝑇Q

2
𝜏D𝑇Q

3
𝜏D𝑇Q

4

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
4
= diag {−ℎQ1 −ℎQ1 −ℎQ2 −𝜏Q3 −𝜏Q3 −𝜏Q4} ,

Π
5
= [0]6×5

,

Π
6
= diag {−P6 −ℎQ1 −ℎQ2 −𝜏Q3 −𝜏Q3} .

(17)

Proof. Construct a positive definite Lyapunov function as
follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (18)

where

𝑉
1
(𝑡) = x𝑇 (𝑡)P

1
x (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

x𝑇 (𝑠)P
2
x (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−ℎ

x𝑇 (𝑠)P
3
x (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

x𝑇 (𝑠)P
4
x (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏

x𝑇 (𝑠)P
5
x (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

̇x𝑇 (𝑠)P
6
̇x (𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇x𝑇 (𝑠) (Q
1
+Q
2
) ̇x (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇x𝑇 (𝑠) (Q
3
+Q
4
) ̇x (𝑠) 𝑑𝑠 𝑑𝜃.

(19)

We take the time derivative of 𝑉(𝑡) along the trajectory of
system Σ and it yields the following:

𝑉
1
(𝑡) = x𝑇 (𝑡) (P

1
Â + Â𝑇P

1
) x (𝑡)

+ x𝑇 (𝑡)P
1
A
𝑑
x (𝑡 − ℎ (𝑡))

+ x𝑇 (𝑡)P
1
C ̇x (𝑡 − 𝜏 (𝑡))

+ x𝑇 (𝑡)P
1
Dw (𝑡) + x𝑇 (𝑡 − ℎ (𝑡))A𝑇

𝑑
P
1
x (𝑡)

+ ̇x𝑇 (𝑡 − 𝜏 (𝑡))C𝑇P
1
x (𝑡) + 𝜔𝑇 (𝑡)D𝑇P

1
x (𝑡) ,

𝑉
2
(𝑡) ≤ x𝑇 (𝑡) (P

2
+ P
3
) x (𝑡)

− (1 − ℎ
𝑑
) x𝑇 (𝑡 − ℎ (𝑡))P

2
x (𝑡 − ℎ (𝑡))

− x𝑇 (𝑡 − ℎ)P
3
x (𝑡 − ℎ) ,

𝑉
3
(𝑡) ≤ x𝑇 (𝑡) (P

4
+ P
5
) x (𝑡)

− (1 − 𝜏
𝑑
) x𝑇 (𝑡 − 𝜏 (𝑡))P

4
x (𝑡 − 𝜏 (𝑡))

− x𝑇 (𝑡 − 𝜏)P
5
x (𝑡 − 𝜏) ,

𝑉
4
(𝑡) ≤ ̇x𝑇 (𝑡)P

6
̇x (𝑡)

− (1 − 𝜏
𝑑
) ̇x𝑇 (𝑡 − 𝜏 (𝑡))P

6
̇x (𝑡 − 𝜏 (𝑡)) ,

𝑉
5
(𝑡)

= ̇x𝑇 (𝑡) (ℎ (Q
1
+Q
2
) + 𝜏 (Q

3
+Q
4
)) ̇x (𝑡)

− ∫

𝑡

𝑡−ℎ(𝑡)

̇x𝑇 (𝑠)Q
1
̇x (𝑠) 𝑑𝑠 − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

̇x𝑇 (𝑠)Q
1
̇x (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

̇x𝑇 (𝑠)Q
2
̇x (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏(𝑡)

̇x𝑇 (𝑠)Q
3
̇x (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇x𝑇 (𝑠)Q
3
̇x (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏

̇x𝑇 (𝑠)Q
4
̇x (𝑠) 𝑑𝑠.

(20)

For any symmetric positive definite matrices W
𝑖
, 𝑖 =

1, 2, . . . , 6, the following equations are satisfied according to
Leibniz-Newton lemma:

2𝜁
𝑇
(𝑡)W
1
[x (𝑡) − x (𝑡 − ℎ (𝑡)) − ∫

𝑡

𝑡−ℎ(𝑡)

̇x (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
2
[x (𝑡 − ℎ (𝑡)) − x (𝑡 − ℎ) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

̇x (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
3
[x (𝑡) − x (𝑡 − ℎ) − ∫

𝑡

𝑡−ℎ

̇x (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
4
[x (𝑡) − x (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇x (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
5
[x (𝑡 − 𝜏 (𝑡)) − x (𝑡 − 𝜏) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇x (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
6
[x (𝑡) − x (𝑡 − 𝜏) − ∫

𝑡

𝑡−𝜏

̇x (𝑠) 𝑑𝑠] = 0,

(21)

where

𝜁 (𝑡) = [x𝑇 (𝑡) x𝑇 (𝑡 − ℎ (𝑡)) ̇x𝑇 (𝑡 − 𝜏 (𝑡)) x𝑇 (𝑡 − 𝜏 (𝑡)) x𝑇 (𝑡 − ℎ) x𝑇 (𝑡 − 𝜏)]
𝑇

,

𝜉 (𝑡) = [𝜁
𝑇
(𝑡) w𝑇 (𝑡)]

𝑇

.

(22)
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According to (20)-(21), we can obtain

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡)

≤ 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

̇x𝑇 (𝑠)Q
1
̇x (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

̇x𝑇 (𝑠)Q
1
̇x (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−ℎ

̇x𝑇 (𝑠)Q
2
̇x (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏(𝑡)

̇x𝑇 (𝑠)Q
3
̇x (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇x𝑇 (𝑠)Q
3
̇x (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏

̇x𝑇 (𝑠)Q
4
̇x (𝑠) 𝑑𝑠

+ 2𝜁
𝑇
(𝑡)W
1
[x (𝑡) − x (𝑡 − ℎ (𝑡)) − ∫

𝑡

𝑡−ℎ(𝑡)

̇x (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
2
[x (𝑡 − ℎ (𝑡)) − x (𝑡 − ℎ)

−∫

𝑡−ℎ(𝑡)

𝑡−ℎ

̇x (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
3
[x (𝑡) − x (𝑡 − ℎ) − ∫

𝑡

𝑡−ℎ

̇x (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
4
[x (𝑡) − x (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇x (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
5
[x (𝑡 − 𝜏 (𝑡)) − x (𝑡 − 𝜏)

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇x (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
6
[x (𝑡) − x (𝑡 − 𝜏) − ∫

𝑡

𝑡−𝜏

̇x (𝑠) 𝑑𝑠]

= 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) + 𝜁

𝑇
(𝑡)Ω
2
𝜁 (𝑡)

− ∫

𝑡

𝑡−ℎ(𝑡)

(𝜁
𝑇
(𝑡)W
1
+ ̇x𝑇 (𝑠)Q

1
)

×Q−1
1
(W𝑇
1
𝜁 (𝑡) +Q

1
̇x (𝑠)) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝜁
𝑇
(𝑡)W
2
+ ̇x𝑇 (𝑠)Q

1
)

×Q−1
1
(W𝑇
2
𝜁 (𝑡) +Q

1
̇x (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

(𝜁
𝑇
(𝑡)W
3
+ ̇x𝑇 (𝑠)Q

2
)

×Q−1
2
(W𝑇
3
𝜁 (𝑡) +Q

2
̇x (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏(𝑡)

(𝜁
𝑇
(𝑡)W
4
+ ̇x𝑇 (𝑠)Q

3
)

×Q−1
3
(W𝑇
4
𝜁 (𝑡) +Q

3
̇x (𝑠)) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

(𝜁
𝑇
(𝑡)W
5
+ ̇x𝑇 (𝑠)Q

3
)

×Q−1
3
(W𝑇
5
𝜁 (𝑡) +Q

3
̇x (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏

(𝜁
𝑇
(𝑡)W
6
+ ̇x𝑇 (𝑠)Q

4
)

×Q−1
4
(W𝑇
6
𝜁 (𝑡) +Q

4
̇x (𝑠)) 𝑑𝑠.

(23)

Since Q
1
, Q
2
, Q
3
, and Q

4
are positive definite symmetric

matrices, we have

𝑉 (𝑡) ≤ 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) + 𝜁

𝑇
(𝑡)Ω
2
𝜁 (𝑡) , (24)

where

Ω
1
= [Ω
𝑖𝑗
]
7×7

,

Ω
11
= Â𝑇P

1
+ P
1
Â + P

2
+ P
3
+ P
4
+ P
5

+ Â𝑇 (P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
)) Â

+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
12
= P
1
A
𝑑
+ Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))A
𝑑

−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
13
= P
1
C + Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C

+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
14
= −W

4
+W
5
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
15
= −W

2
−W
3
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
16
= −W

5
−W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
17
= P
1
D + Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
22
= − (1 − ℎ

𝑑
)P
2

+ A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))A
𝑑

−W
1
+W
2
−W𝑇
1
+W𝑇
2
,

Ω
23
= A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C

−W𝑇
1
+W𝑇
2
,

Ω
24
= −W

4
+W
5
−W𝑇
1
+W𝑇
2
,

Ω
25
= −W

2
−W
3
−W𝑇
1
+W𝑇
2
,

Ω
26
= −W

5
−W
6
−W𝑇
1
+W𝑇
2
,
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Ω
27
= A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
33
= − (1 − 𝜏

𝑑
)P
6

+ C𝑇 (P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C,

Ω
34
= −W

4
+W
5
,

Ω
35
= −W

2
−W
3
,

Ω
36
= −W

5
−W
6
,

Ω
37
= C𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
44
= − (1 − 𝜏

𝑑
)P
4
−W
4
+W
5
−W𝑇
4
+W𝑇
5
,

Ω
45
= −W

2
−W
3
−W𝑇
4
+W𝑇
5
,

Ω
46
= −W

5
−W
6
−W𝑇
4
+W𝑇
5
,

Ω
47
= 0,

Ω
55
= −P
3
−W
2
−W
3
−W𝑇
2
−W𝑇
3
,

Ω
56
= −W

5
−W
6
−W𝑇
2
−W𝑇
3
,

Ω
57
= 0,

Ω
66
= −P
5
−W
5
−W
6
−W𝑇
5
−W𝑇
6
,

Ω
67
= 0,

Ω
77
= D𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
2
= ℎW

1
Q−1
1
W𝑇
1
+ ℎW

2
Q−1
1
W𝑇
3
+ ℎW

3
Q−1
2
W𝑇
3

+ 𝜏W
4
Q−1
3
W𝑇
4
+ 𝜏W

5
Q−1
3
W𝑇
5
+ 𝜏W

6
Q−1
4
W𝑇
6
.

(25)

Recalling formula (24) and Lemmas 4 and 5 and using
Schur complement, we can get

𝑉 (𝑡) − 𝛼𝑉 (𝑡) − 𝛼w𝑇 (𝑡)w (𝑡) ≤ 𝜉
𝑇
(𝑡)Π𝜉 (𝑡) < 0; (26)

that is,

𝑉 (𝑡) < 𝛼𝑉 (𝑡) + 𝛼w𝑇 (𝑡)w (𝑡) . (27)

Pre- and postmultiplying (27) by 𝑒−𝛼𝑡, we have

𝑑

𝑑𝑡

(𝑒
−𝛼𝑡
𝑉 (𝑡)) < 𝛼𝑒

−𝛼𝑡w𝑇 (𝑡)w (𝑡) . (28)

Then integrating the aforementioned inequality from 0 to 𝑡,
where 𝑡 ∈ [0, 𝑇], it yields

𝑒
−𝛼𝑡
𝑉 (𝑡) − 𝑉 (0) < 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (29)

Considering condition (2), (29) can be simplified as

𝑉 (𝑡) < 𝑒
𝛼𝑡
[𝑉 (0) + 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏]

< 𝑒
𝛼𝑇
[𝑉 (0) + 𝛿 (1 − 𝑒

−𝛼𝑇
)] .

(30)

On the other hand,

𝑉 (𝑡) ≥ 𝑉
1
(𝑡) = x𝑇 (𝑡)P

1
x (𝑡) ≥ 𝜆min (P̃1) x

𝑇
(𝑡)Rx (𝑡) ,

𝑉 (0) ≤ 𝜙
𝑇
(𝜃)P
1
𝜙 (𝜃) + ℎ𝜙

𝑇
(𝜃)P
2
𝜙 (𝜃)

+ ℎ𝜙
𝑇
(𝜃)P
3
𝜙 (𝜃) + 𝜏𝜙

𝑇
(𝜃)P
4
𝜙 (𝜃)

+ 𝜏𝜙
𝑇
(𝜃)P
5
𝜙 (𝜃)

≤ 𝜆max (P̃1)𝜙
𝑇
(𝜃)R𝜙 (𝜃) + ℎ𝜆max (P̃2)𝜙

𝑇
(𝜃)R𝜙 (𝜃)

+ ℎ𝜆max (P̃3)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

+ 𝜏𝜆max (P̃4)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

+ 𝜏𝜆max (P̃5)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

≤ 𝜆max (P̃1) 𝑐1 + ℎ𝜆max (P̃2) 𝑐1 + ℎ𝜆max (P̃3) 𝑐1

+ 𝜏𝜆max (P̃4) 𝑐1 + 𝜏𝜆max (P̃5) 𝑐1.
(31)

Then, formula (27) can be written as

x𝑇 (𝑡)Rx (𝑡)

≤

𝑐
1
[𝜆
2
+ ℎ𝜆
3
+ ℎ𝜆
4
+ 𝜏𝜆
5
+ 𝜏𝜆
6
] + 𝛿 (1 − 𝑒

−𝛼𝑇
)

𝜆
1
𝑒
−𝛼𝑇

,

(32)

which can be guaranteed by condition (16). This completes
the proof.

According to Theorem 7, we will obtain the resilient
robust finite-time 𝐿

2
-𝐿
∞

controller for a class of uncertain
neutral system with mixed time-varying delays.

Theorem 8. Given positive scalars 𝑐
1
, 𝑇, 𝛿, and 𝛼, positive

definite symmetric matrix R, and time-delay parameters ℎ >

0, ℎ
𝑑

> 0, 𝜏 > 0, and 𝜏
𝑑

> 0, the closed-loop neutral
system Σ is FTB with respect to (𝑐

1
, 𝑐
2
, 𝛿,R, 𝑇) and satisfies

the cost function (11) for all admissible disturbance w(𝑡), if
there exist positive scalars 𝑐

2
and 𝛽 and symmetric positive

definite matrices P
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, W

𝑖
, 𝑖 =

1, 2, . . . , 6, such that conditions (15) and (16) and the following
LMI hold:

Ψ = [
−P
1

F̂𝑇
∗ −𝛽I] < 0. (33)

Proof. Similar to the proof of Theorem 7, (29) can be rewrit-
ten as

𝑒
−𝛼𝑡
𝑉 (𝑡) < 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (34)
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Then, we have

x𝑇 (𝑡)P
1
x (𝑡) ≤ 𝑉 (𝑡) < 𝛼𝑒

𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (35)
From (33), we can obviously get

F̂𝑇F̂ < 𝛽P
1
. (36)

Considering system Σ, we have

y𝑇 (𝑡) y (𝑡) = [F̂x (𝑡)]
𝑇

[F̂x (𝑡)] = x𝑇 (𝑡) F̂𝑇F̂x (𝑡) . (37)

Combining (35)–(37), we can obtain

x𝑇 (𝑡) F̂𝑇F̂x (𝑡) ≤ 𝛽x𝑇 (𝑡)P
1
x (𝑡) ≤ 𝛽𝛼𝑒

𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏;

(38)

that is,

y𝑇 (𝑡) y (𝑡) ≤ 𝛽𝛼𝑒
𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (39)

Letting 𝛾2 = 𝛽𝛼𝑒
𝛼𝑇, we have ‖y(𝑡)‖2

∞
< 𝛾
2
‖w(𝑡)‖2

2
. This

completes the proof.

Theorem 9. Given positive scalars 𝑐
1
, 𝑇, 𝛿, and 𝛼, positive

definite symmetric matrixR, and time-delay parameters ℎ > 0,
ℎ
𝑑
> 0, 𝜏 > 0, and 𝜏

𝑑
> 0, the closed-loop neutral system Σ is

FTB with respect to (𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), satisfies the cost function

(11) for all admissible disturbance w(𝑡), and exists as a state
feedback controller in the form of (7) with K = UP−1

1
, if

there exist positive scalars 𝑐
2
, 𝛽, 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 4, and 𝜇

𝑖
,

𝑖 = 1, 2, . . . , 5, and symmetric positive definite matrices 𝐿
𝑖
,

𝑖 = 1, 2, . . . , 10, 𝑇
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, P

𝑖
,

𝑖 = 2, 3, . . . , 5, P
6
, and U, such that the following LMIs are

feasible:

Π̃ =
[
[
[

[

Π̃
1
Π̃
2
Π̃
3
Π̃
7

∗ Π̃
4
Π̃
5
Π̃
8

∗ ∗ Π̃
6
Π̃
9

∗ ∗ ∗ Π̃
10

]
]
]

]

< 0, (40)

Ψ̃ =
[
[
[

[

−L
1
L
1
F𝑇 + U𝑇G𝑇 L

1
H𝑇
1

L
1
S𝑇

∗ Ψ̃
22

0 0

∗ ∗ −𝜀
3
I 0

∗ ∗ ∗ −𝜀
4
I

]
]
]

]

< 0, (41)

𝜇
1
R−1 < L

1
< R−1, (42)

0 < P
2
< 𝜇
2
R, (43)

0 < P
3
< 𝜇
3
R, (44)

0 < P
4
< 𝜇
4
R, (45)

0 < P
5
< 𝜇
5
R, (46)

[
𝑐
1
[ℎ (𝜇
2
+ 𝜇
3
) + 𝜏 (𝜇

4
+ 𝜇
5
)] + 𝛿 (1 − 𝑒

−𝛼𝑇
) − 𝑐
2
𝑒
−𝛼𝑇

√𝑐1

∗ −𝜇
1

] < 0,

(47)

where

Π̃
1
= [Π̃
𝑖𝑗
]
7×7

, Π̃
11
= L
1
A𝑇 + AL

1
+ U𝑇B𝑇 + BU + L

2
+ L
3
+ L
4
+ L
5
+ T
1
+ T
3
+ T
4
+ T
6

+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
− 𝛼L
1
−

𝛼

𝜏

L
6
− 2𝛼L

7
− 2𝛼L

8
− 2𝛼L

9
− 2𝛼L

10
,

Π̃
12
= A
𝑑
L
1
− T
1
+ T
2
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
, Π̃

13
= CL
1
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
,

Π̃
14
= −T
4
+ T
5
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
+

𝛼

𝜏

L
6
, Π̃

15
= −T
2
− T
3
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
,

Π̃
16
= −T
5
− T
6
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
, Π̃

17
= D, Π̃

22
= − (1 − ℎ

𝑑
) L
2
− T
1
+ T
2
− T𝑇
1
+ T𝑇
2
,

Π̃
23
= −T𝑇
1
+ T𝑇
2
, Π̃

24
= −T
4
+ T
5
− T𝑇
1
+ T𝑇
2
, Π̃

25
= −T
2
− T
3
− T𝑇
1
+ T𝑇
2
,

Π̃
26
= −T
5
− T
6
− T𝑇
1
+ T𝑇
2
, Π̃

27
= 0, Π̃

33
= − (1 − 𝜏

𝑑
) L
6
, Π̃

34
= −T
4
+ T
5
,

Π̃
35
= −T
2
− T
3
, Π̃

36
= −T
5
− T
6
, Π̃

37
= 0, Π̃

44
= − (1 − 𝜏

𝑑
) L
4
− T
4
+ T
5
− T𝑇
4
+ T𝑇
5
−

𝛼

𝜏

L
6
,

Π̃
45
= −T
2
− T
3
− T𝑇
4
+ T𝑇
5
, Π̃

46
= −T
5
− T
6
− T𝑇
4
+ T𝑇
5
, Π̃

47
= 0,

Π̃
55
= −L
3
− T
2
− T
3
− T𝑇
2
− T𝑇
3
, Π̃

56
= −T
5
− T
6
− T𝑇
2
− T𝑇
3
, Π̃

57
= 0,

Π̃
66
= −L
5
− T
5
− T
6
− T𝑇
5
− T𝑇
6
, Π̃

67
= 0, Π̃

77
= −𝛼I,
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Π̃
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

L
1
A𝑇 + U𝑇B𝑇 ℎL

1
A𝑇 + ℎU𝑇B𝑇 ℎL

1
A𝑇 + ℎU𝑇B𝑇 𝜏L

1
A𝑇 + 𝜏U𝑇B𝑇 𝜏L

1
A𝑇 + 𝜏U𝑇B𝑇

L
1
A𝑇
𝑑

ℎL
1
A𝑇
𝑑

ℎL
1
A𝑇
𝑑

𝜏L
1
A𝑇
𝑑

𝜏L
1
A𝑇
𝑑

L
1
C𝑇 ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇 ℎD𝑇 ℎD𝑇 𝜏D𝑇 𝜏D𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
4
= diag {−ℎL7 −ℎL7 −ℎL8 −𝜏L9 −𝜏L9 −𝜏L10} , Π̃

5
= [0]6×5

,

Π̃
6
= diag {−P

6
−ℎQ
1
−ℎQ
2
−𝜏Q
3
−𝜏Q
3
} , Π̃

7
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

L
1
H𝑇
1

L
1
S𝑇 𝜀
1
M
1
𝜀
2
BN

L
1
H𝑇
2

0 0 0

L
1
H𝑇
3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

L
1
H𝑇
4

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
8
= [0]6×4

, Π̃
10
= diag {−𝜀1I −𝜀

1
I −𝜀
2
I −𝜀
2
I} , Ψ̃

22
= −𝛽I + 𝜀

3
M𝑇M𝑇

2
+ 𝜀
4
GN𝑇NG𝑇.

(48)

Proof. Replacing Â,A
𝑑
,C, andD in (15) with Â = A+ΔA(𝑡),

A = A + BK, ΔA(𝑡) = ΔA(𝑡) + BΔK(𝑡), A
𝑑
= A
𝑑
+ ΔA
𝑑
(𝑡),

C = C + ΔC(𝑡), andD = D + ΔD(𝑡), respectively, we have

Π = Π + ΔΠ < 0, (49)

where

Π = [

[

Π
1
Π
2
Π
3

∗ Π
4
Π
5

∗ ∗ Π
6

]

]

< 0, Π
1
= [Π
𝑖𝑗
]
7×7

, Π
1
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11
Π
12
Π
13
Π
14
Π
15
Π
16

P
1
D

∗ Π
22
Π
23
Π
24
Π
25
Π
26
Π
27

∗ ∗ Π
33
Π
34
Π
35
Π
36
Π
37

∗ ∗ ∗ Π
44
Π
45
Π
46
Π
47

∗ ∗ ∗ ∗ Π
55
Π
56
Π
57

∗ ∗ ∗ ∗ ∗ Π
66
Π
67

∗ ∗ ∗ ∗ ∗ ∗ Π
77

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
11
= A𝑇P

1
+ P
1
A + P

2
+ P
3
+ P
4
+ P
5
+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6

− 𝛼P
1
−

𝛼

𝜏

P
6
− 2𝛼Q

1
− 2𝛼Q

2
− 2𝛼Q

3
− 2𝛼Q

4
,

Π
12
= P
1
A
𝑑
−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
, Π

13
= P
1
C +W𝑇

1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,
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Π
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

A𝑇P
6
ℎA𝑇Q

1
ℎA𝑇Q

2
𝜏A𝑇Q

3
𝜏A𝑇Q

4

A𝑇
𝑑
P
6
ℎA𝑇
𝑑
Q
1
ℎA𝑇
𝑑
Q
2
𝜏A𝑇
𝑑
Q
3
𝜏A𝑇
𝑑
Q
4

C𝑇P
6
ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇P
6
ℎD𝑇Q

1
ℎD𝑇Q

2
𝜏D𝑇Q

3
𝜏D𝑇Q

4

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, ΔΠ = [

[

ΔΠ
1
0 ΔΠ

3

∗ 0 0

∗ ∗ 0

]

]

< 0,

ΔΠ
1
=

[
[
[
[
[
[
[
[
[

[

ΔA𝑇 (𝑡)P
1
+ P
1
ΔA (𝑡) P

1
ΔA
𝑑
(𝑡) P
1
ΔC (𝑡) 0 0 0 P

1
ΔD (𝑡)

∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0

]
]
]
]
]
]
]
]
]

]

,

ΔΠ
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

ΔA𝑇 (𝑡)P
6
ℎΔA𝑇 (𝑡)Q1 ℎΔA𝑇 (𝑡)Q

2
𝜏ΔA𝑇 (𝑡)Q

3
𝜏ΔA𝑇 (𝑡)Q

4

ΔA𝑇
𝑑
(𝑡)P
6
ℎΔA𝑇
𝑑
(𝑡)Q
1
ℎΔA𝑇
𝑑
(𝑡)Q
2
𝜏ΔA𝑇
𝑑
(𝑡)Q
3
𝜏ΔA𝑇
𝑑
(𝑡)Q
4

ΔC𝑇 (𝑡)P
6
ℎΔC𝑇 (𝑡)Q

1
ℎΔC𝑇 (𝑡)Q

2
𝜏ΔC𝑇 (𝑡)Q

3
𝜏ΔC𝑇 (𝑡)Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ΔD𝑇 (𝑡)P
6
ℎΔD𝑇 (𝑡)Q

1
ℎΔD𝑇 (𝑡)Q

2
𝜏ΔD𝑇 (𝑡)Q

3
𝜏ΔD𝑇 (𝑡)Q

4

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(50)

bring formulas (4) and (8) into ΔΠ, and according to
Lemma 6, we have

Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
+ (Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
)
𝑇

≤ 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
,

Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
+ (Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
)
𝑇

≤ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
,

(51)

where

Γ
𝑑1
= [M𝑇
1
P
1
0 0 0 0 0 0 0 0 0 0 0 0 M𝑇

1
P
6
ℎM𝑇
1
Q
1
ℎM𝑇
1
Q
2
𝜏M𝑇
1
Q
3
𝜏M𝑇
1
Q
4
]

𝑇

,

Γ
𝑒1
= [H1 H

2
H
3
0 0 0 H

4
0 0 0 0 0 0 0 0 0 0 0] ,

Γ
𝑑2
= [N𝑇B𝑇P

1
0 0 0 0 0 0 0 0 0 0 0 0 N𝑇B𝑇P

6
ℎN𝑇B𝑇Q

1
ℎN𝑇B𝑇Q

2
𝜏N𝑇B𝑇Q

3
𝜏N𝑇B𝑇Q

4
]

𝑇

,

Γ
𝑒2
= [S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] .

(52)

Considering

ΔΠ = Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
+ (Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
)
𝑇

+ Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
+ (Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
)
𝑇

≤ 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
+ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
,

(53)

(49) can be guaranteed by

Π + 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
+ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
< 0. (54)

Using Schur complement, equality (54) can be rewritten as

Π̂ =

[
[
[
[
[
[

[

Π
1
Π
2
Π
3
Π̂
7

∗ Π
4
Π
5
Π̂
8

∗ ∗ Π
6
Π̂
9

∗ ∗ ∗ Π̂
10

]
]
]
]
]
]

]

< 0, (55)
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where

Π̂
7
=

[
[
[
[
[
[
[
[
[
[

[

S𝑇
1

N𝑇 𝜀
1
P
1
M
1
𝜀
2
P
1
BN

S𝑇
2

0 0 0

S𝑇
3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

S𝑇
4

0 0 0

]
]
]
]
]
]
]
]
]
]

]

,

Π̂
9
=

[
[
[
[
[

[

0 0 𝜀
1
P
6
M
1

𝜀
2
P
6
BN

0 0 ℎ𝜀
1
Q
1
M
1
ℎ𝜀
2
Q
1
BN

0 0 ℎ𝜀
1
Q
2
M
1
ℎ𝜀
2
Q
2
BN

0 0 𝜏𝜀
1
Q
3
M
1
𝜏𝜀
2
Q
3
BN

0 0 𝜏𝜀
1
Q
4
M
1
𝜏𝜀
2
Q
4
BN

]
]
]
]
]

]

,

Π̂
8
= [0]6×4

,

Π̂
10
= diag {−𝜀1I −𝜀

2
I −𝜀
1
I −𝜀
2
I} .

(56)

Letting L
1
= P−1
1
, L
2
= L
1
P
2
L
1
, L
3
= L
1
P
3
L
1
, L
4
=

L
1
P
4
L
1
, L
5
= L
1
P
5
L
1
, L
6
= L
1
P
6
L
1
, L
7
= L
1
Q
1
L
1
, L
8
=

L
1
Q
2
L
1
, L
9

= L
1
Q
3
L
1
, L
10

= L
1
Q
4
L
1
, T
1

= L
1
W
1
L
1
,

T
2
= L
1
W
2
L
1
, T
3
= L
1
W
3
L
1
, T
3
= L
1
W
3
L
1
, T
4
= L
1
W
4
L
1
,

T
5
= L
1
W
5
L
1
, T
6
= L
1
W
6
L
1
, P
6
= P−1
6
,Q
1
= Q−1
1
,Q
2
= Q−1
2
,

Q
3
= Q−1
.3
, Q
4
= Q−1
4
, and U = KL

1
, we can obtain condition

(40) by pre- and postmultiplying inequality (55) by block-
diagonal matrix

diag {P−11 P−11 P−11 P−11 P−11 P−11 I P−11 P−11 P−11 P−11 P−11 P−11 P−1
6

Q−11 Q−12 Q−1
3

Q−1
4

I I I I} . (57)

Next, we will prove that condition (33) is equivalent to (41).
Considering

Ψ=Ψ+ΔΨ<0, (58)

where

Ψ = [
−P
1

F𝑇

∗ −𝛽I
] , ΔΨ = [

0 ΔF𝑇 (𝑡)
∗ 0

] , (59)

combining with formulas (5) and (8), and using Schur
complement, we have

ΔΨ = Γ
𝑑3
𝜎 (𝑡) Γ

𝑒3
+ (Γ
𝑑3
𝜎 (𝑡) Γ

𝑒3
)
𝑇

+ Γ
𝑑4
𝜂 (𝑡) Γ

𝑒4
+ (Γ
𝑑4
𝜂 (𝑡) Γ

𝑒4
)
𝑇

≤ 𝜀
3
Γ
𝑑3
Γ
𝑇

𝑑3
+ 𝜀
−1

3
Γ
𝑇

𝑒3
Γ
𝑒3
+ 𝜀
4
Γ
𝑑4
Γ
𝑇

𝑑4
+ 𝜀
−1

4
Γ
𝑇

𝑒4
Γ
𝑒4
,

(60)

where Γ
𝑑3

= [0 M𝑇
2
]

𝑇

, Γ
𝑒3

= [H1 0], Γ𝑑4 = [0 N𝑇G𝑇]
𝑇

,
and Γ

𝑒4
= [S 0].

Then, we can get the following inequality which ensures
(58):

Ψ + 𝜀
3
Γ
𝑑3
Γ
𝑇

𝑑3
+ 𝜀
−1

3
Γ
𝑇

𝑒3
Γ
𝑒3
+ 𝜀
4
Γ
𝑑4
Γ
𝑇

𝑑4
+ 𝜀
−1

4
Γ
𝑇

𝑒4
Γ
𝑒4
< 0, (61)

Using the Schur complement, equality (61) can be rewritten
as

Ψ̂ =
[
[
[

[

−P
1
F𝑇 + K𝑇G𝑇 H𝑇

1
S𝑇

∗ Ψ̃
22

0 0

∗ ∗ −𝜀
3
I 0

∗ ∗ ∗ −𝜀
4
I

]
]
]

]

< 0. (62)

Then, we can obtain condition (40) by pre- and post-
multiplying inequality (62) by block-diagonal matrix
diag {P−1

1
I I I}.

Denoting L̃
1
= R1/2L

1
R1/2, P̃

2
= R−1/2P

2
R−1/2, P̃

3
=

R−1/2P
3
R−1/2, P̃

4
= R−1/2P

4
R−1/2, and P̃

5
= R−1/2P

5
R−1/2,

we know that condition (16) is equivalent to (47) according
to conditions (42)–(46). This completes the proof.

4. Simulation Example

In this part, we consider a class of neutral time-varying
delayed systems with parameters described as

A = [
1.5 0.2

2.1 0.9
] , A

𝑑
= [

−1.1 −0.2

−0.1 −1.1
] , B = [

1.0

0.8
] ,

C = [
−0.2 0

0.2 −0.1
] , R = [

1 0

0 1
] ,

D = [

0.1 0.2

−0.2 0.1
] , F = [

1.5 1.7

0.2 0.9
] ,

G = [
2

−1.5
] , M

1
= [

1.1

−0.7
] , M

2
= [

0.8

−0.4
] ,

H
1
= [1.4 0.8] , H

2
= [0.4 1.1] ,

H
3
= [0.7 0.2] , H

4
= [0.5 1.3] ,

N = [0.2] , S = [0.2 0.6] .

(63)

In this note, we choose the initial values for 𝑐
1
= 1, 𝑇 = 5,

𝛼 = 0.3, and 𝛿 = 1.0 and the upper bounds on the delays are
𝜏 = 0.8, ℎ = 0.5, ℎ

𝑑
= 0.9, and 𝜏

𝑑
= 0.9. By using the LMI

toolbox in MATLAB to solve LMIs (40)–(47), we can get the
finite-time 𝐿

2
-𝐿
∞

controller gain as follows:

L
1
= [

0.6515 −0.1789

−0.1789 0.3827
] , U = [−0.3115 −0.0343] ,

K = UL−1
1
= [−0.5768 −0.3593] ,

(64)

with constraint conditions 𝛽 = 14.7085, 𝛾 = 0.9923, and 𝑐
2
=

124.6975.
Selecting ℎ(𝑡) = 0.9/(1 + 𝑡

2
), 𝜏(𝑡) = 0.11/(3 + 𝑡

2
), 𝜎(𝑡) =

(0.9/(1 + 𝑡
2
))I, 𝜂(𝑡) = (1.5/(1 + 𝑡

2
))I, and ℎ(𝑡) = 0.9/(1 + 𝑡

2
),
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Figure 1: The trajectories of open-loop controlled system state x(𝑡).

t
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−6
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−1

0

1

x(
t)

x1
x2

Figure 2: The trajectories of closed-loop controlled system state
x(𝑡).

𝑡 ∈ [0, 20], and setting the initial states x
0
= [−0.5 0.8]

𝑇

and w
0
= [0.04 0.08]

𝑇, we have the open-loop controlled
system state simulation graph and the trajectories of closed-
loop controlled system state and output as shown in Figures 1,
2, and 3, respectively. Figure 4 shows the evolution of function
x𝑇(𝑡)Rx(𝑡) (𝑡 ∈ [0, 20]) of the uncertain neutral time-delayed
system Σ

0
. Based on comparison between result in Figure 1

and result in Figure 2, we noted that the design finite-time𝐿
2
-

𝐿
∞

controller can make the closed-loop controlled system
achieve FTB.

5. Conclusions

This paper studied the delay-dependent resilient robust
finite-time 𝐿

2
-𝐿
∞

control problem for a class of uncertain
neutral time-delayed systemwithmixed time-varying delays.
A state feedback controller is designed by using LMI tech-
nique and free weighting matrices, such that the closed-loop

0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

2

y(
t)

t

y1
y2

Figure 3: The trajectories of closed-loop controlled system output
y(𝑡).

−6−5−4−3−2−1010
5

10
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25
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35

−3.5−3
−2.5−2

−1.5−1
−0.5 0

0.5 1

x2(t) x1(t)

xT
(t
)R

x(
t)

Figure 4: The graph of x𝑇(𝑡)Rx(𝑡) (𝑡 ∈ [0, 𝑇]) of closed-loop
controlled system.

controlled system is FTB and satisfies the input-output 𝐿
2
-

𝐿
∞

performance matrices. The simulation results verify the
effectiveness of the design method. We will consider the
finite-time observer for neutral time-delayed system in the
future.
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This paper investigates the problem of output feedback adaptive stabilization control design for a class of nonholonomic chained
systems with uncertainties, involving virtual control coefficients, unknown nonlinear parameters, and unknown time delays. The
objective is to design a robust nonlinear output-feedback switching controller, which can guarantee the stabilization of the closed
loop systems. An observer and an estimator are employed for states and parameters estimates, respectively. A constructive controller
design procedure is proposed by applying input-state scaling transformation, parameter separation technique, and backstepping
recursive approach. Simulation results are provided to show the effectiveness of the proposed method.

1. Introduction

The control and feedback stabilization problems of nonholo-
nomic systems have beenwidely studied bymany researchers.
It is well known that control of nonholonomic systems is
extremely challenging, largely due to the impossibility of
asymptotically stabilizing nonholonomic systems via smooth
time-invariant state feedback, a well-recognized fact pointed
out in [1, 2]. In order to overcome this obstruction, a number
of approaches have been proposed for the problem, which
mainly include discontinuous feedback, time-varying feed-
back, and hybrid stabilization. The discontinuous feedback
stabilization was first proposed by [3], and then further
discussion was made in [4–7]; especially an elegant discon-
tinuous coordinate transformation approach is proposed in
[5] for the stabilization problem of nonholonomic systems.
Meanwhile, the smooth time-varying feedback control strate-
gies also have drawn much attention [8–11].

As pointed out in [9], many nonlinear mechanical sys-
tems with nonholonomic constraints can be transformed,
either locally or globally, to the nonholonomic systems in

the so-called chained form. So far, there have been a number
of controller design approaches [8–25] for such chained
nonholonomic systems. Recently, adaptive control strategies
have been proposed to stabilize the nonholonomic systems.
For instance, the problem of adaptive state-feedback control
is studied in [15–19], while output feedback controller design
in [20–24]. Considering the actual modeling perspective,
time delay should be taken into account. The problem
of state feedback stabilization is studied for the delayed
nonholonomic systems in [25, 26]. However, the virtual
control coefficients and unknown parameter vector are not
considered in its system models. Here, an iterative controller
design method will be proposed for the output feedback
adaptive stabilization of the concerned delayed nonholomic
systems.

In this paper, we study a class of chained nonholonomic
systems with strong nonlinear drifts, and the problem of
adaptive output-feedback stabilization for the concerned
nonholonomic systems is investigated. The constructive
design method proposed in this note is based on a combined
application of the input scaling technique, the backstepping
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recursive approach, and the novel Lyapunov-Krasovskii func-
tionals. The switching control strategy for the first subsystem
is employed to achieve the asymptotic stabilization.

The rest of this paper is organized as follows. In Section 2,
the problem formulation and some preliminary knowledge
are given. Section 3 presents the controller design procedure
and stability analysis. Section 4 gives the switching control
strategy. In Section 5, numerical simulations testify to the
effectiveness of the proposed method, and Section 6 summa-
rizes the paper.

2. Problem Formulation and Preliminaries

In this paper, we deal with a class of nonholonomic systems
described by

̇𝑥
0
(𝑡) = 𝑑

0
𝑢
0
(𝑡) + 𝜙

0
(𝑡, 𝑥
0
(𝑡)) ,

̇𝑥
1
(𝑡) = 𝑑

1
𝑢
0
(𝑡) 𝑥
2
(𝑡) + 𝜑

1
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝜙
1
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃) ,

...

̇𝑥
𝑛−1

(𝑡) = 𝑑
𝑛−1
𝑢
0
(𝑡) 𝑥
𝑛
(𝑡) + 𝜑

𝑛−1
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑛−1
))

+ 𝜙
𝑛−1

(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃) ,

̇𝑥
𝑛
(𝑡) = 𝑑

𝑛
𝑢
1
(𝑡) + 𝜑

𝑛
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑛
))

+ 𝜙
𝑛
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃) ,

𝑦 (𝑡) = [𝑥
0
(𝑡) , 𝑥
1
(𝑡)]
𝑇

,

(1)

where [𝑥
0
(𝑡), 𝑥(𝑡)]

𝑇
= [𝑥

0
(𝑡), 𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛+1,

𝑢(𝑡) = [𝑢
0
(𝑡), 𝑢
1
(𝑡)]
𝑇
∈ 𝑅
2, and 𝑦(𝑡) ∈ 𝑅

2 are system states,
control input, and measurable output, respectively; 𝜃 ∈ 𝑅𝑚 is
an unknown parameter vector;𝜙

0
(known) and𝜙

𝑖
(1 ≤ 𝑖 ≤ 𝑛)

(unknown) denote the possiblemodeling error and neglected
dynamics; 𝜑

𝑖
(1 ≤ 𝑖 ≤ 𝑛) are known modeled dynamics,

which contain output delays; 𝜏
𝑖
(1 ≤ 𝑖 ≤ 𝑛) are unknown

constants, and 𝑑
𝑖
(0 ≤ 𝑖 ≤ 𝑛) referred to the respective virtual

control coefficients.
In this paper, we make the following assumptions on the

virtual control directions 𝑑
𝑖
and nonlinear functions 𝜑

𝑖
, 𝜙
𝑖
in

system (1).

Assumption 1. 𝑑
0
is a known constant and the sign of 𝑑

𝑛
is

known, where 𝑑
𝑛
= 𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
𝑛
.

Assumption 2. There exist known smooth nonnegative func-
tions 𝜙

𝑜
and 𝜙

𝑖
(1 ≤ 𝑖 ≤ 𝑛) such that

𝜙
0
(𝑡, 𝑥
0
(𝑡)) = 𝑥

0
𝜙
0
(𝑥
0
(𝑡)) ,





𝜙
𝑖
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃)






≤




𝑥
1





𝜙
𝑖
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥
1
(𝑡) , 𝜃) .

(2)

for all (𝑡, 𝑢
0
(𝑡), 𝑥
0
(𝑡), 𝑥(𝑡), 𝜃) ∈ 𝑅

+
× 𝑅 × 𝑅 × 𝑅

𝑛
× 𝑅
𝑚.

Assumption 3. For every 1 ≤ 𝑖 ≤ 𝑛, the nonlinear function 𝜑
𝑖

satisfies inequality





𝜑
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑖
))




≤




𝑥
1
(𝑡)




𝜓
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡))

+




𝑥
1
(𝑡) 𝑥
1
(𝑡 − 𝜏
𝑖
)





× 𝜑
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑖
)) ,

(3)

in which 𝜑
𝑖
and 𝜓

𝑖
are known smooth nonnegative nonlinear

functions.

Remark 4. Compared with some existing literatures in recent
years, the structure of our concerned system (1) is more
general. For instance, in [15], it is assumed that not only the
virtual control directions 𝑑

𝑖
= 1 and the dynamics 𝜙

𝑖
satisfy

𝜙
𝑖
=

̃
𝜙
𝑇

𝑖
𝜃, but also the modeled dynamics 𝜑

𝑖
do not exist.

In [22], the virtual control coefficients and time delays have
not been considered, and the expression 𝜙

𝑖
=

̃
𝜙
𝑇

𝑖
𝜃 is also

required.While 𝑑
𝑖
= 1 and 𝜑

𝑖
and unknown parameters 𝜃 are

not existent, system (1) degenerates to the one studied in [21].
When 𝜑

𝑖
= 0, together with 𝜙

𝑖
=
̃
𝜙
𝑇

𝑖
𝜃, system (1) becomes the

considered system in [23].

Remark 5. Note that here we only use the sign of 𝑑
𝑛

=

𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
𝑛
without any knowledge of individual virtual con-

trol direction 𝑑
𝑖
(1 ≤ 𝑖 ≤ 𝑛). Moreover, Assumptions 2

and 3 are imposed on the nonlinear functions 𝜙
𝑖
and 𝜑

𝑖
,

respectively. In fact, if the modeled dynamics 𝜑
𝑖
do not

involve time delays, inequality (3) is reduced into




𝜑
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡))





≤




𝑥
1
(𝑡)




𝜓
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡)) . (4)

It can be seen that the above inequality condition is used in
some existing literatures, such as [20, 21], and so on.

Our object of this paper is to design adaptive output
feedback control laws under Assumptions 1–3, such that
the system states (𝑥

0
(𝑡), 𝑥(𝑡)) converge to zero, while other

signals of the closed-loop system are bounded. The designed
control laws can be expressed in the following form:

𝑢
0
= 𝜇
0
(𝑦 (𝑡)) , 𝑢

1
= 𝜇
1
(𝑦 (𝑡) , ] (𝑡)) ,

̇] (𝑡) =  (𝑦 (𝑡) , ] (𝑡)) .
(5)

Next, we list some lemmas which will be applied in the
coming controller design.

Lemma 6 (see [27]). For any real-valued continuous function
𝑓(𝑥, 𝑦), where 𝑥 ∈ 𝑅

𝑛
, 𝑦 ∈ 𝑅

𝑚, there are smooth functions
𝑎(𝑥) ≥ 0, 𝑏(𝑦) ≥ 0, 𝑐(𝑥) ≥ 1, 𝑑(𝑦) ≥ 1 such that





𝑓 (𝑥, 𝑦)





≤ 𝑎 (𝑥) + 𝑏 (𝑦) ,





𝑓 (𝑥, 𝑦)





≤ 𝑐 (𝑥) 𝑑 (𝑦) . (6)

Lemma 7 (see [19]). For any continuous function 𝜇
0
(𝑡) there

exist two strictly positive real numerates 𝑝min and 𝑝max such
that the unique solution𝑃(𝑡) of the followingmatrix differential
equation:
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̇𝑃 = 𝑃(𝐴 − 𝜇
0
(𝑡) 𝐿)
𝑇

+ (𝐴 − 𝜇
0
(𝑡) 𝐿) 𝑃 − 𝑃𝐶

𝑇
𝐶𝑃 + 𝐼,

𝑃 (0) = 𝑃
0
> 0,

(7)

satisfies 𝑝min𝐼 ≤ 𝑃(𝑡) ≤ 𝑝max𝐼, 𝑡 ≥ 0.

By Lemma 6 and Assumption 1, we know that there exist
smooth functions 𝜔

𝑖
≥ 1, and 𝜁

𝑖
≥ 1 such that





𝜙
𝑖
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃)






≤




𝑥
1





𝜔
𝑖
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥
1
(𝑡)) 𝜁
𝑖
(𝜃) .

(8)

Furthermore, we denote 𝜗 = ∑𝑛
𝑖=1
𝜁
𝑖
(𝜃); then it yields





𝜙
𝑖
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃)






≤




𝑥
1





𝜔
𝑖
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥
1
(𝑡)) 𝜗.

(9)

3. Output Feedback Adaptive Stabilization
Control Design

In this paper, we design control laws𝑢
0
(𝑡) and𝑢

1
(𝑡) separately

to globally asymptotically stabilize the system (1). According
to the structure of system (1), we can see that when 𝑥

0
(𝑡)

converges to zero, 𝑥
𝑖
(𝑡) (1 ≤ 𝑖 ≤ 𝑛) will be uncontrollable.

A widely used method to design control law 𝑢
1
(𝑡) is to

introduce a discontinuous input scaling transformation (12).
On the other hand, the control directions 𝑑

𝑖
are unknown;

then we should employ another coordinate transformation to
overcome the obstacle.

3.1. State Coordinate Transformation. Firstly, we design the
coordinate transformation as follows:

𝑥
𝑖
(𝑡) = 𝑑

𝑖−1
𝑥
𝑖
(𝑡) , 1 ≤ 𝑖 ≤ 𝑛, (10)

where 𝑑
0
= 1 and 𝑑

𝑖−1
= 𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
𝑖−1

(1 ≤ 𝑖 ≤ 𝑛 + 1). Then,
the system (1) can be transformed into

̇𝑥
0
(𝑡) = 𝑑

0
𝑢
0
(𝑡) + 𝜙

0
(𝑡, 𝑥
0
(𝑡)) ,

̇
𝑥
1
(𝑡) = 𝑢

0
(𝑡) 𝑥
2
(𝑡) + 𝜑

1
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝜙
1
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃) ,

...

̇
𝑥
𝑛
(𝑡) = 𝑑

𝑛
𝑢
1
(𝑡) + 𝑑

𝑛−1
𝜑
𝑛
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑛
))

+ 𝑑
𝑛−1
𝜙
𝑛
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃) .

(11)

Next, the following input-state scaling discontinuous
transformation is introduced:

𝑧
𝑖
(𝑡) =

𝑥
𝑖
(𝑡)

𝑢
𝑛−𝑖

0
(𝑡)

, 1 ≤ 𝑖 ≤ 𝑛. (12)

Under the new 𝑧(𝑡)-coordinates, the 𝑥(𝑡)-subsystem (10)
is changed into

̇𝑧
1
(𝑡) = 𝑧

2
(𝑡) − (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)

+

1

𝑢
𝑛−1

0
(𝑡)

(𝜑
1
+ 𝜙
1
) ,

̇𝑧
𝑖
(𝑡) = 𝑧

𝑖+1
(𝑡) − (𝑛 − 𝑖)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
𝑖
(𝑡)

+

1

𝑢
𝑛−𝑖

0
(𝑡)

(𝑑
𝑖−1
𝜑
𝑖
+ 𝑑
𝑖−1
𝜙
𝑖
) ,

̇𝑧
𝑛
(𝑡) = 𝑑

𝑛
𝑢
1
(𝑡) + 𝑑

𝑛−1
𝜑
𝑛
+ 𝑑
𝑛−1
𝜙
𝑛
.

(13)

Next, we can design the control laws 𝑢
0
(𝑡) and 𝑢

1
(𝑡) to

asymptotically stabilize the states 𝑥
0
(𝑡) and 𝑧(𝑡), respectively.

Rewrite system (13) in the compact form

̇𝑧 (𝑡) = (𝐴 − 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝑧 (𝑡) + 𝐵𝑢
1
(𝑡) + Ψ + Φ, (14)

where

𝐴 = [
0 𝐼
𝑛−1

0 0
] , 𝐿 =

[
[
[
[

[

𝑛 − 1 ⋅ ⋅ ⋅ 0 0

... d
...

...
0 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ 0 0

]
]
]
]

]

,

𝐵 =

[
[
[
[

[

0

...
0

𝑑
𝑛

]
]
]
]

]

, Ψ =

[
[
[
[

[

Ψ
1

Ψ
2

...
Ψ
𝑛

]
]
]
]

]

, Φ =

[
[
[
[

[

Φ
1

Φ
2

...
Φ
𝑛

]
]
]
]

]

(15)

with

Ψ
𝑖
= 𝑑
𝑖−1

𝜑
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑖
))

𝑢
𝑛−𝑖

0
(𝑡)

,

Φ
𝑖
= 𝑑
𝑖−1

𝜙
𝑑

𝑖
(𝑡, 𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑥 (𝑡) , 𝜃)

𝑢
𝑛−𝑖

0
(𝑡)

.

(16)

In order to obtain the estimation for the nonlinear
functions Ψ

𝑖
and Φ

𝑖
, the following lemmas are given.

Lemma 8. For every 1 ≤ 𝑖 ≤ 𝑛, there exists smooth
nonnegative function �̃�

𝑖
(𝑢
0
(𝑡), 𝑥
0
(𝑡), 𝑧
1
(𝑡)) such that





Φ
𝑖





≤






𝑑
𝑖−1






⋅




𝑧
1
(𝑡)




�̃�
𝑖
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜗. (17)

Lemma 9. For every 1 ≤ 𝑖 ≤ 𝑛, there exist smooth nonnegative
functions �̃�

𝑖
, 𝜑
𝑖
, 𝑓
𝑖1
, 𝑓
𝑖2
such that





Ψ
𝑖





≤






𝑑
𝑖−1






⋅




𝑧
1
(𝑡) 𝑧
1
(𝑡 − 𝜏
𝑖
)





× 𝜑
𝑖
(𝑢
0
(𝑡) , 𝑢
0
(𝑡 − 𝜏
𝑖
) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑖
))

+






𝑑
𝑖−1






⋅




𝑧
1
(𝑡)




�̃�
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡))

≤






𝑑
𝑖−1






⋅




𝑧
1
(𝑡) 𝑧
1
(𝑡 − 𝜏
𝑖
)




𝑓
𝑖1
(𝑢
0
(𝑡) , 𝑦 (𝑡))
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× 𝑓
𝑖2
(𝑢
0
(𝑡 − 𝜏
𝑖
) , 𝑦 (𝑡 − 𝜏

𝑖
))

+






𝑑
𝑖−1






⋅




𝑧
1
(𝑡)




�̃�
𝑖
(𝑢
0
(𝑡) , 𝑦 (𝑡)) .

(18)

Remark 10. By lemmas and assumptions before, Lemmas 8
and 9 can be derived easily, and then the proof is omitted.

3.2. Observer Design. Define the following filter/estimator:

̇
𝜉
0
(𝑡) = (𝐴

0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜉
0
(𝑡) + 𝑃𝐶

𝑇
(𝑦 (𝑡) − 𝐶𝜉

0
(𝑡)) , (19)

̇𝜐 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜐 (𝑡) + 𝑒
𝑛
𝑢
1
(𝑡) , (20)

̇𝑃 = 𝑃(𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

)

𝑇

+ (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝑃 − 𝑃𝐶
𝑇
𝐶𝑃 + 𝐼,

(21)

where 𝑦(𝑡) = 𝑧
1
(𝑡), 𝑒
𝑛
= [0, . . . , 1]

𝑇
, 𝜉
0
= [𝜉
01
, . . . , 𝜉

0𝑛
]
𝑇
, 𝜐 =

[𝜐
1
, . . . , 𝜐

𝑛
]
𝑇, 𝐴
0

= 𝐴 − 𝐾𝐶,𝐶 = [1, 0, . . . , 0], 𝐾 =

[𝑘
1
, . . . , 𝑘

𝑛
]
𝑇, and 𝑘

𝑖
(1 ≤ 𝑖 ≤ 𝑛) are design parameters to be

determined later. Let �̂�(𝑡) = 𝜉
0
(𝑡) + 𝑑

𝑛
𝜐, 𝜎(𝑡) = 𝑧(𝑡) − 𝑑

𝑛
𝜐(𝑡);

then, the estimation error 𝜀(𝑡) = 𝑧(𝑡) − �̂�(𝑡) and the newly
defined parameter 𝜎(𝑡) satisfy the dynamical equations

̇𝜀 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

− 𝑃𝐶
𝑇
𝐶) 𝜀 (𝑡)

+ (𝐾 − 𝑃𝐶
𝑇
) 𝑧
1
(𝑡) + 𝑃𝐶

𝑇
𝐶𝜎 (𝑡) + Ψ + Φ,

̇𝜎 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜎 (𝑡) + 𝐾𝑧
1
(𝑡) + Ψ + Φ.

(22)

3.3. Control Design. In this section, the intergrator back-
stepping approach will be used to design the control laws
𝑢
0
(𝑡) and 𝑢

1
(𝑡) subject to 𝑥

0
(𝑡
0
) ̸=0. The case that the initial

condition 𝑥
0
(𝑡
0
) = 0 will be treated in Section 4.

𝑆𝑡𝑒𝑝 0. At this step, control law 𝑢
0
(𝑡) will be designed, which

is essential to guarantee the effectiveness of the subsequent
steps. For the 𝑥

0
(𝑡)-subsystem, choose the control 𝑢

0
(𝑡) as

follows:

𝑢
0
(𝑡) = −𝜆

0
𝑥
0
(𝑡) − 𝜆

0
𝑥
0
(𝑡) 𝜙
0
(𝑥
0
(𝑡)) , (23)

where 𝜆
0
is a constant satisfying 𝜆

0
𝑑
0
> 1. Introduce the

Lyapunov function candidate 𝑉
0
= (1/2)𝑥

2

0
(𝑡), and the time

derivative of 𝑉
0
satisfies

𝑉
0
= −𝜆
0
𝑑
0
𝑥
2

0
(𝑡) − 𝜆

0
𝑑
0
𝑥
2

0
(𝑡) 𝜙
0
(𝑥
0
(𝑡))

+ 𝑥
0
(𝑡) 𝜙
0
(𝑡, 𝑥
0
(𝑡))

≤ −𝜆
0
𝑑
0
𝑥
2

0
(𝑡) ≜ −𝑐

0
𝑥
2

0
(𝑡) ,

(24)

where 𝑐
0
= 𝜆
0
𝑑
0
> 1. This indicates that 𝑥

0
(𝑡) converges to

zero exponentially.

Since 𝜙
0
(𝑥
0
(𝑡)) is a smooth function, then there exist a

constant𝑀
0
> 1, such that |𝜙

0
(𝑥
0
(𝑡))| ≤ 𝑀

0
for |𝑥
0
(𝑡)| ≤ 1.

Therefore, the following inequality is true with |𝑥
0
(𝑡)| ≤ 1:

𝑉
0
≥ − (𝜆

0
𝑑
0
+ 𝜆
0
𝑑
0
𝑀
0
+𝑀
0
) 𝑥
2

0
(𝑡) ≜ −𝜌𝑥

2

0
(𝑡) , (25)

which implies that when |𝑥
0
(𝑡)| ≤ 1, the state 𝑥

0
(𝑡) converges

to zero with a rate less than a certain constant 𝜌. It is 𝑥
0
(𝑡)

which does not become zero in any time instant. Therefore,
the adopted input-state scaling discontinuous transformation
in (12) is effective.

According to the design of control law 𝑢
0
(𝑡) in (23), it can

be computed that

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

= −𝜆
0
𝑑
0
− (𝜆
0
𝑑
0
− 1) 𝜙

0
(𝑥
0
(𝑡))

− 𝜆
0
𝑑
0
𝑥
0
(𝑡)

𝜕𝜙
0
(𝑥
0
(𝑡))

𝜕𝑥
0
(𝑡)

+

𝑥
0
(𝑡) 𝜙
0
(𝑥
0
(𝑡))

1 + 𝜙
0
(𝑥
0
(𝑡))

𝜕𝜙
0
(𝑥
0
(𝑡))

𝜕𝑥
0
(𝑡)

≜ 𝛽 +
̃
𝜙
0
(𝑥
0
(𝑡)) ,

(26)

where 𝛽 = −𝜆
0
𝑑
0
and ̃

𝜙
0

= −(𝜆
0
𝑑
0
− 1)𝜙

0
(𝑥
0
(𝑡)) −

𝜆
0
𝑑
0
𝑥
0
(𝑡)(𝜕𝜙

0
(𝑥
0
(𝑡))/𝜕𝑥

0
(𝑡)) + (𝑥

0
(𝑡)𝜙
0
(𝑥
0
(𝑡))/(1 +

𝜙
0
(𝑥
0
(𝑡))))(𝜕𝜙

0
(𝑥
0
(𝑡))/𝜕𝑥

0
(𝑡)).

Remark 11. From (26), we know that 𝛽 is a constant and
̃
𝜙
0
(𝑥
0
(𝑡)) is a function with respect to 𝑥

0
(𝑡). Moreover, we

can conclude that ̃𝜙
0
(𝑥
0
(𝑡)) is smooth because 𝜙

0
(𝑥
0
(𝑡)) is a

nonnegative smooth function.
Denote 𝐴

1
= 𝐴
0
− 𝐾𝐶 − 𝐿𝛽; we can choose appropriate

design parameters 𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑛) such that 𝐴

1
is Hurwitz.

Then there exists a positive definitematrix𝑄 satisfying𝑄𝐴
1
+

𝐴
𝑇

1
𝑄 = −𝜇𝐼, and 𝜇 is a positive constant.

𝑆𝑡𝑒𝑝 1. For 𝑧
1
(𝑡)-subsystem in (13),

̇𝑧
1
(𝑡) = 𝑧

2
(𝑡) − (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)

+

1

𝑢
𝑛−1

0
(𝑡)

(𝜑
1
+ 𝜙
1
)

= 𝜀
2
(𝑡) + 𝜉

02
(𝑡) + 𝑑

𝑛
𝜐
2
(𝑡)

− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡) + Ψ

1
+ Φ
1
,

(27)

let 𝜂
1
(𝑡) = 𝑧

1
(𝑡), and 𝜂

2
(𝑡) = 𝜐

2
(𝑡) − 𝛼

1
. Introduce the

following Lyapunov functional:

𝑉
1
= 𝑉
1
+ �̃�
1
, (28)
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where

𝑉
1
= 𝜀
𝑇
(𝑡) 𝑃
−1
𝜀 (𝑡) + 𝜎

𝑇
(𝑡) 𝑄𝜎 (𝑡)

+

1

2

𝜂
2

1
(𝑡) +






𝑑
𝑛







2

Θ̃
𝑇

1
Θ̃
1

�̃�
1
= (4ℓ
1
+ 𝛿
2‖
𝑄‖
2
)

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗

𝜂
4

1
(𝜎) 𝑓
4

𝑗2
(𝑢
0
(𝜎) , 𝑦 (𝜎)) 𝑑𝜎

+

𝑛

2

∫

𝑡

𝑡−𝜏
1

𝜂
2

1
(𝜎) 𝑓
2

12
(𝑢
0
(𝜎) , 𝑦 (𝜎)) 𝑑𝜎,

(29)

with ℓ
1
, 𝛿
2
being positive constants to be designed; Θ̃

1
= Θ
1
−

Θ̂
1
, whereΘ

1
is an unknown parameter vector to be specified

later, and Θ̂
1
is an estimate of Θ

1
.

Associated with (22) and (27), the time derivatives of 𝑉
1

and �̃�
1
can be calculated, respectively, that

̇
𝑉
1
= 2𝜀
𝑇
(𝑡) 𝑃
−1
(𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

− 𝑃𝐶
𝑇
𝐶) 𝜀 (𝑡)

+ 2𝜀
𝑇
(𝑡) 𝑃
−1
(𝐾 − 𝑃𝐶

𝑇
) 𝑧
1
(𝑡)

+ 2𝜀
𝑇
(𝑡) 𝐶
𝑇
𝐶𝜎 (𝑡) + 2𝜀

𝑇
(𝑡) 𝑃
−1
Ψ

+ 2𝜀
𝑇
(𝑡) 𝑃
−1
Φ + 2𝜎

𝑇
(𝑡) 𝑄(𝐴

0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜎 (𝑡)

+ 2𝜎
𝑇
(𝑡) 𝑄𝐾𝑧

1
(𝑡) + 2𝜎

𝑇
(𝑡) 𝑄Ψ

+ 2𝜎
𝑇
(𝑡) 𝑄Φ − 2𝜀

𝑇
(𝑡) (𝐴

0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

)

𝑇

𝑃
−1
𝜀 (𝑡)

+ 2𝜀
𝑇
(𝑡) 𝐶
𝑇
𝐶𝜀 (𝑡) − 𝜀

𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

+ 𝜂
1
(𝑡) [𝜀
2
(𝑡) + 𝜉

02
(𝑡) + 𝑑

𝑛
𝜐
2
(𝑡) − (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)

+ Ψ
1
+ Φ
1
] −






𝑑
𝑛






Θ̃
𝑇

1

̇
Θ̂
1

= −𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

+ 2𝜀
𝑇
(𝑡) 𝑃
−1
(𝐾 − 𝑃𝐶

𝑇
) 𝑧
1
(𝑡) + 2𝜀

𝑇
(𝑡) 𝑃
−1
Ψ

+ 2𝜀
𝑇
(𝑡) 𝑃
−1
Φ + 2𝜀

𝑇
(𝑡) 𝐶
𝑇
𝐶𝜎 (𝑡)

− 2𝜎
𝑇
(𝑡) 𝑄𝐿

̃
𝜙 (𝑥
0
(𝑡)) 𝜎 (𝑡) + 2𝜎

𝑇
(𝑡) 𝑄𝐾𝑧

1
(𝑡)

+ 2𝜎
𝑇
(𝑡) 𝑄Ψ + 2𝜎

𝑇
(𝑡) 𝑄Φ + 𝜂

1
(𝑡) Ψ
1
+ 𝜂
1
(𝑡) Φ
1

− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝜂
2

1
(𝑡) + 𝜂

1
(𝑡) 𝜀
2
(𝑡) − 𝜀

𝑇
(𝑡) 𝐶
𝑇
𝐶𝜀 (𝑡)

+ 𝜂
1
(𝑡) [𝜉
02
(𝑡) + 𝑑

𝑛
𝜐
2
(𝑡)] −






𝑑
𝑛






Θ̃
𝑇

1

̇
Θ̂
1
,

(30)

̇
�̃�
1
= (4ℓ
1
+ 𝛿
2‖
𝑄‖
2
)

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡) 𝑓
4

𝑗2
(𝑢
0
(𝑡) , 𝑦 (𝑡)) +

𝑛

2

𝜂
2

1
(𝑡)

× 𝑓
2

12
(𝑢
0
(𝑡) , 𝑦 (𝑡)) − (4ℓ

1
+ 𝛿
2‖
𝑄‖
2
)

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡 − 𝜏
𝑗
)

× 𝑓
4

𝑗2
(𝑢
0
(𝑡 − 𝜏
𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
)) −

𝑛

2

𝜂
2

1
(𝑡 − 𝜏
1
)

× 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) .

(31)

For some terms on the right-hand side of (30), the
following estimations (32)–(34) should be conducted. Firstly,
by Lemma 8 and Young’s inequality, we can obtain that
there exist positive constants ℓ

1
, 𝛿
1
to make the following

inequalities hold:

𝜂
1
(𝑡) Φ
1
≤ 𝜂
2

1
(𝑡) +

1

4

𝜂
2

1
(𝑡) �̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜗
2

≤ 𝜂
2

1
(𝑡) +

1

4

𝜂
2

1
(𝑡) �̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜗
1
,

2𝜀
𝑇
(𝑡) 𝑃
−1
Φ ≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

+ 4ℓ
1

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝑑

2

𝑗−1
𝜗
2

≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) + 4ℓ

1

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡)

× �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜗
1
,

2𝜎
𝑇
(𝑡) 𝑄Φ ≤

1

𝛿
1

𝜎
𝑇
(𝑡) 𝜎 (𝑡)

+ 𝛿
1‖
𝑄‖
2

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜗
1
,

(32)

where 𝜗
1
= 𝜗
2
+ ∑
𝑛−1

𝑗=1
𝑑

2

𝑗
𝜗
2. Next, employ Lemma 9 and

Young’s inequality, and we have

𝜂
1
(𝑡) Ψ
1

≤ 𝜂
2

1
(𝑡) �̃�
1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) +

1

2

𝜂
4

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡))

+

1

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

2𝜀
𝑇
(𝑡) 𝑃
−1
Ψ

≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) + 4ℓ

1

𝑛

∑

𝑗=1

Ψ
2

𝑗

≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)
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+ 8ℓ
1

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑

2

𝑗−1

+ 4ℓ
1

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡 − 𝜏
𝑗
) 𝑓
4

𝑗2
(𝑢
0
(𝑡 − 𝜏
𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 4ℓ
1

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡) 𝑓
4

𝑗1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑

4

𝑗−1

≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

+ 8ℓ
1

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑

+ 4ℓ
1

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡 − 𝜏
𝑗
) 𝑓
4

𝑗2
(𝑢
0
(𝑡 − 𝜏
𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 4ℓ
1

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡) 𝑓
4

𝑗1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑,

2𝜎
𝑇
(𝑡) 𝑄Ψ

≤

1

𝛿
2

𝜎
𝑇
(𝑡) 𝜎 (𝑡) + 2𝛿

2‖
𝑄‖
2

𝑛

∑

𝑗=1

𝜂
2

1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑

+ 𝛿
2‖
𝑄‖
2

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡 − 𝜏
𝑗
) 𝑓
4

𝑗2
(𝑢
0
(𝑡 − 𝜏
𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 𝛿
2‖
𝑄‖
2

𝑛

∑

𝑗=1

𝜂
4

1
(𝑡) 𝑓
4

𝑗1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝑑,

(33)

where 𝑑 = 1+∑𝑛−1
𝑗=1

𝑑

2

𝑗
+∑
𝑛−1

𝑗=1
𝑑

4

𝑗
, and 𝛿

2
is a positive constant.

By completing the square, the following estimations are
also true:

𝜂
1
(𝑡) 𝜀
2
(𝑡) ≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) + ℓ

1
𝑃
2

max𝜂
2

1
(𝑡) ,

2𝜀
𝑇
(𝑡) 𝑃
−1
𝐾𝑧
1
(𝑡) ≤

1

4ℓ
1

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) + 4ℓ

1
𝐾
𝑇
𝐾𝜂
2

1
(𝑡) ,

−2𝜀
𝑇
(𝑡) 𝐶
𝑇
𝑧
1
(𝑡) ≤

1

2

𝜀
𝑇
(𝑡) 𝐶
𝑇
𝐶𝜀 (𝑡) + 2𝜂

2

1
(𝑡) ,

2𝜀
𝑇
(𝑡) 𝐶
𝑇
𝐶𝜎 (𝑡) ≤

1

2

𝜀
𝑇
(𝑡) 𝐶
𝑇
𝐶𝜀 (𝑡) + 2𝜎

𝑇
(𝑡) 𝜎 (𝑡) ,

2𝜎
𝑇
(𝑡) 𝑄𝐾𝑧

1
(𝑡) ≤ 𝜎

𝑇
(𝑡) 𝜎 (𝑡) + 𝐾

𝑇
𝑄
𝑇
𝑄𝐾𝜂
2

1
(𝑡) .

(34)

Substitute (31)–(34) into 𝑉
1
, it yields

𝑉
1
=

̇
𝑉
1
+

̇
�̃�
1

≤ −(1 −

1

ℓ
1

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− 𝑐
1
𝜂
2

1
(𝑡) − (𝑛 − 1)

̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) −

̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−






𝑑
𝑛






Θ̃
𝑇

1

̇
Θ̂
1

−

𝑛 − 1

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝑑
𝑛
𝜂
1
(𝑡) [Θ

𝑇

1
Υ
1
+ 𝜐
2
(𝑡)] ,

(35)

where 𝜇 = 𝜇 − 1/𝛿
1
− 1/𝛿

2
− 3, 𝑐
1
= 𝑐
1
− 3 − 𝐾

𝑇
𝑄
𝑇
𝑄𝐾 −

4ℓ
1
𝐾
𝑇
𝐾 − ℓ
1
𝑃
2

max + (𝑛 − 1)𝛽, Θ
𝑇

1
= (1/𝑑

𝑛
)[1, 𝑑, 𝜗

1
], and Υ

1
=

[Υ
11
, Υ
12
, Υ
13
]
𝑇 with

Υ
11
= 𝑐
1
𝜂
1
(𝑡) + 𝜉

02
(𝑡)

+ 𝜂
1
(𝑡) �̃�
1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) +

1

2

𝜂
3

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡))

+ (4ℓ
1
+ 𝛿
2‖
𝑄‖
2
)

𝑛

∑

𝑗=1

𝜂
3

1
(𝑡) 𝑓
4

𝑗2
(𝑢
0
(𝑡) , 𝑦 (𝑡))

+

𝑛

2

𝜂
1
(𝑡) 𝑓
2

12
(𝑢
0
(𝑡) , 𝑦 (𝑡)) ,

Υ
12
= 8ℓ
1

𝑛

∑

𝑗=1

𝜂
1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑦 (𝑡))

+ (4ℓ
1
+ 𝛿
2‖
𝑄‖
2
)

𝑛

∑

𝑗=1

𝜂
3

1
(𝑡) 𝑓
4

𝑗1
(𝑢
0
(𝑡) , 𝑦 (𝑡)) ,

Υ
13
= (4ℓ
1
+ 𝛿
1‖
𝑄‖
2
)

𝑛

∑

𝑗=1

𝜂
1
(𝑡) �̃�
2

𝑗
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡))

+

1

4

𝜂
1
(𝑡) �̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) .

(36)

Choose the virtual control function 𝛼
1
and the adaptation

law of Θ̂
1
as follows:

𝛼
1
= −Θ̂
𝑇

1
Υ
1
, (37)

̇
Θ̂
1
= sign (𝑑

𝑛
) Υ
1
𝜂
1
(𝑡) . (38)
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Notice that 𝑑
𝑛
𝜂
1
(𝑡)𝜂
2
(𝑡) ≤ 𝜂

2

1
(𝑡) + (𝑑

2

𝑛
/4)𝜂
2

2
(𝑡), then it

follows from (35)–(38) that

𝑉
1
≤ −(1 −

1

ℓ
1

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

− (𝑐
1
− 1) 𝜂

2

1
(𝑡) − (𝑛 − 1)

̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

−
̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) −

𝑛 − 1

2

× 𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) +

𝑑

2

𝑛

4

𝜂
2

2
(𝑡) .

(39)

𝑆𝑡𝑒𝑝 2. Introduce the newvariable 𝜂
3
(𝑡) = 𝜐

3
(𝑡)−𝛼
2
, where𝛼

2

is regarded as the virtual control input, and take the Lyapunov
functional as

𝑉
2
= 𝑉
1
+

1

2

𝜂
2

2
(𝑡) +

1

2

Θ̃
𝑇

2
Θ̃
2
, (40)

where Θ̃
2
= Θ
2
− Θ̂
2
, Θ
2
is an unknown parameter vector to

be defined later, and Θ̂
2
is an estimate ofΘ

2
. Then, combined

with (20), (37), and (39), we have

𝑉
2
= 𝑉
1
+ 𝜂
2
(𝑡) { − 𝑘

2
𝜐
1
(𝑡) − (𝑛 − 2) 𝛽𝜐

2
(𝑡)

− (𝑛 − 2)
̃
𝜙
0
(𝑥
0
(𝑡)) 𝜐
2
(𝑡) + 𝜂

3
(𝑡) + 𝛼

2

−

𝜕𝛼
1

𝜕Θ̂
𝑇

1

̇
Θ̂
1
−

𝜕𝛼
1

𝜕𝜉
02

̇
𝜉
02
−

𝜕𝛼
1

𝜕𝑥
0

̇𝑥
0
−

𝜕𝛼
1

𝜕𝑢
0

̇𝑢
0

−

𝜕𝛼
1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

−

𝜕𝛼
1

𝜕𝑧
1

𝜀
2
(𝑡) −

𝜕𝛼
1

𝜕𝑧
1

Ψ
1
−

𝜕𝛼
1

𝜕𝑧
1

Φ
1

−

𝜕𝛼
1

𝜕𝑧
1

𝑑
𝑛
𝜐
2
(𝑡)} − Θ̃

𝑇

2

̇
Θ̂
2
.

(41)

Using Lemmas 8 and 9 and Young’s inequality, the
following inequalities hold:

−

𝜕𝛼
1

𝜕𝑧
1

𝜂
2
(𝑡) Ψ
1

≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2

2
(𝑡)

+

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

2

2
(𝑡)

+

1

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼
1

𝜕𝑧
1

𝜂
2
(𝑡) Φ
1

≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2

2
(𝑡) 𝜗
2
,

−

𝜕𝛼
1

𝜕𝑧
1

𝜂
2
(𝑡) 𝜀
2
(𝑡)

≤

1

ℓ
2

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) +

ℓ
2

4

𝑝
2

max(
𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2

2
(𝑡) .

(42)

By the above inequalities, we get

𝑉
2
≤ −(1 −

1

ℓ
1

−

1

ℓ
2

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) − (𝑐

1
− 2) 𝜂

2

1
(𝑡)

− (𝑛 − 1)
̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

−
̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−

𝑛 − 2

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) + 𝜂

2
(𝑡)

× { − 𝑘
2
𝜐
1
(𝑡) − (𝑛 − 2) 𝛽𝜐

2
(𝑡) − (𝑛 − 2)

̃
𝜙 (𝑥
0
(𝑡))

× 𝜐
2
(𝑡) −

𝜕𝛼
1

𝜕Θ̂
1

̇
Θ̂
1
−

𝜕𝛼
1

𝜕𝜉
02

̇
𝜉
02
−

𝜕𝛼
1

𝜕𝑥
0

̇𝑥
0
+ 𝜂
3
(𝑡)

−

𝜕𝛼
1

𝜕𝑢
0

̇𝑢
0
−

𝜕𝛼
1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

+

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

2
(𝑡)

+ 𝛼
2
+

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2
(𝑡)

+

ℓ
2

4

𝑝
2

max(
𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2
(𝑡) + Θ

𝑇

2
Υ
2
} − Θ̃

𝑇

2

̇
Θ̂
2
,

(43)

where Θ
𝑇

2
= [𝜗

2
, 𝑑

2

𝑛
, 𝑑
𝑛
] and Υ

2
= [(1/2)(𝜕𝛼

1
/𝜕𝑧
1
)
2

�̃�
2

1
𝜂
2
(𝑡), 𝜂
2
(𝑡)/4, −(𝜕𝛼

1
/𝜕𝑧
1
)𝜐
2
(𝑡)]
𝑇. By taking the adaptation

law ̇
Θ̂
2
= Υ
2
𝜂
2
(𝑡) and the virtual control function 𝛼

2
as

𝛼
2
= −𝑐
2
𝜂
2
(𝑡) + 𝑘

2
𝜐
1
(𝑡)

+ (𝑛 − 2) 𝛽𝜐
2
(𝑡) + (𝑛 − 2)

̃
𝜙 (𝑥
0
(𝑡)) 𝜐
2
(𝑡)

+

𝜕𝛼
1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)] +

𝜕𝛼
1

𝜕𝑥
0

̇𝑥
0

+

𝜕𝛼
1

𝜕𝑢
0

̇𝑢
0
+

𝜕𝛼
1

𝜕Θ̂
1

̇
Θ̂
1
+

𝜕𝛼
1

𝜕𝜉
02

̇
𝜉
02
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−

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

2
(𝑡)

− Θ̂
𝑇

2
Υ
2
−

ℓ
2

4

𝑝
2

max(
𝜕𝛼
1

𝜕𝑧
1

)

2

𝜂
2
(𝑡)

−

1

2

(

𝜕𝛼
1

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2
(𝑡) ,

(44)

we can obtain

𝑉
2
≤ −(1 −

1

ℓ
1

−

1

ℓ
2

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) − (𝑐

1
− 2) 𝜂

2

1
(𝑡) − 𝑐

2
𝜂
2

2
(𝑡)

− (𝑛 − 1)
̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

−
̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) + 𝜂

2
(𝑡) 𝜂
3
(𝑡)

−

𝑛 − 2

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
) .

(45)

𝑆𝑡𝑒𝑝 3. Define that 𝜂
4
(𝑡) = 𝜐

4
(𝑡) − 𝛼

3
, where 𝛼

3
is the

virtual control input, and consider the following Lyapunov
functional:

𝑉
3
= 𝑉
2
+

1

2

𝜂
2

3
(𝑡) +

1

2

Θ̃
𝑇

3
Θ̃
3
. (46)

The time derivative of 𝑉
3
along the estimator system (20)

satisfies

𝑉
3
= 𝑉
2
+ 𝜂
3
(𝑡)

× { − 𝑘
3
𝜐
1
(𝑡) − (𝑛 − 3) 𝛽𝜐

3
(𝑡)

− (𝑛 − 3)
̃
𝜙 (𝑥
0
(𝑡)) 𝜐
3
(𝑡) + 𝜂

4
(𝑡)

+ 𝛼
3
−

𝜕𝛼
2

𝜕Θ̂
1

̇
Θ̂
1
−

𝜕𝛼
2

𝜕Θ̂
2

̇
Θ̂
2
−

𝜕𝛼
2

𝜕𝜉
02

̇
𝜉
02
−

𝜕𝛼
2

𝜕𝑥
0

̇𝑥
0

−

𝜕𝛼
2

𝜕𝑢
0

̇𝑢
0
−

𝜕𝛼
1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

−

𝜕𝛼
2

𝜕𝜐
1

̇𝜐
1
−

𝜕𝛼
2

𝜕𝜐
2

̇𝜐
2
−

𝜕𝛼
1

𝜕𝑧
1

𝜀
2
(𝑡) −

𝜕𝛼
2

𝜕𝑧
1

Ψ
1
−

𝜕𝛼
2

𝜕𝑧
1

Φ
1

−

𝜕𝛼
2

𝜕𝑧
1

𝑑
𝑛
𝜐
2
(𝑡)} − Θ̃

𝑇

3

̇
Θ̂
3
.

(47)

By similar conduction method in (42), we have

−

𝜕𝛼
2

𝜕𝑧
1

𝜂
3
(𝑡) Ψ
1

≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2

3
(𝑡)

+

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

2

3
(𝑡)

+

1

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼
2

𝜕𝑧
1

𝜂
3
(𝑡) Φ
1

≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2

3
(𝑡) 𝜗
2
,

−

𝜕𝛼
2

𝜕𝑧
1

𝜂
3
(𝑡) 𝜀
2
(𝑡)

≤

1

ℓ
3

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) +

ℓ
3

4

𝑝
2

max(
𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
2

3
(𝑡) ,

(48)

where ℓ
3
> 0 is a scalar. Based on (48), it yields

𝑉
3
≤ −(1 −

1

ℓ
1

−

1

ℓ
2

−

1

ℓ
3

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

− (𝑐
1
− 3) 𝜂

2

1
(𝑡) − (𝑛 − 1)

̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

−
̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−

𝑛 − 3

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑦 (𝑡 − 𝜏

1
))

+ 𝜂
3
(𝑡) {𝜂

2
(𝑡) − 𝑘

3
𝜐
1
(𝑡) − (𝑛 − 3) 𝛽𝜐

3
(𝑡) − (𝑛 − 3)

×
̃
𝜙 (𝑥
0
(𝑡)) 𝜐
3
(𝑡) + 𝜂

4
(𝑡) + 𝛼

3
−

𝜕𝛼
2

𝜕Θ̂
1

̇
Θ̂
1

−

𝜕𝛼
2

𝜕Θ̂
2

̇
Θ̂
2
−

𝜕𝛼
1

𝜕𝜉
02

̇
𝜉
02
−

𝜕𝛼
1

𝜕𝑥
0

̇𝑥
0
−

𝜕𝛼
1

𝜕𝑢
0

̇𝑢
0

−

𝜕𝛼
1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

−

𝜕𝛼
2

𝜕𝜐
1

̇𝜐
1
−

𝜕𝛼
2

𝜕𝜐
2

̇𝜐
2
+

ℓ
3

4

𝑝
2

max(
𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
3
(𝑡)

+

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

3
(𝑡)
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+

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡))

× 𝜂
3
(𝑡) +Θ

𝑇

3
Υ
3
} − Θ̃

𝑇

3

̇
Θ̂
3
,

(49)

where Θ𝑇
3

= [𝜗
2
, 𝑑
𝑛
] and Υ

3
= [(1/2)(𝜕𝛼

2
/𝜕𝑧
1
)
2
�̃�
2

1
𝜂
3
(𝑡),

−(𝜕𝛼
2
/𝜕𝑧
1
)𝜐
2
(𝑡)]
𝑇. Choose the tuning function 𝜋

3
Υ
3
𝜂
3
(𝑡),

and the virtual control function 𝛼
3
as follows:

𝛼
3
= −𝑐
3
𝜂
3
(𝑡) − 𝜂

2
(𝑡) + 𝑘

3
𝜐
1
(𝑡)

+ (𝑛 − 3) 𝛽𝜐
3
(𝑡) + (𝑛 − 3)

̃
𝜙 (𝑥
0
(𝑡)) 𝜐
3
(𝑡) +

𝜕𝛼
2

𝜕Θ̂
1

̇
Θ̂
1

+

𝜕𝛼
2

𝜕Θ̂
2

̇
Θ̂
2
+

𝜕𝛼
2

𝜕𝜉
02

̇
𝜉
02
+

𝜕𝛼
2

𝜕𝑥
0

̇𝑥
0
+

𝜕𝛼
2

𝜕𝑢
0

̇𝑢
0

+

𝜕𝛼
2

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)] +

𝜕𝛼
2

𝜕𝜐
1

̇𝜐
1

+

𝜕𝛼
2

𝜕𝜐
2

̇𝜐
2
−

ℓ
3

4

𝑝
2

max(
𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
3
(𝑡)

−

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

3
(𝑡) − Θ̂

𝑇

3
Υ
3

−

1

2

(

𝜕𝛼
2

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
3
(𝑡) .

(50)

Under the virtual control function 𝛼
3
and the tuning

function 𝜋
3
defined above, the derivative of 𝑉

3
becomes that

𝑉
3
≤ −(1 −

1

ℓ
1

−

1

ℓ
2

−

1

ℓ
3

) 𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− (𝑐
1
− 3) 𝜂

2

1
(𝑡) − 𝑐

2
𝜂
2

2
(𝑡) − 𝑐

3
𝜂
2

3
(𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) −

̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

− (𝑛 − 1)
̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡) + 𝜂

3
(𝑡) 𝜂
4
(𝑡) − Θ̃

𝑇

3
(Θ̇
3
− 𝜋
3
)

−

𝑛 − 3

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
) .

(51)

Step i (4 ≤ 𝑖 ≤ 𝑛). Assume that, at Step i−1, a virtual
control function 𝛼

𝑖−1
, a tuning function 𝜋

𝑖−1
, and a Lyapunov

functional 𝑉
𝑖−1

have been designed in such a way that

𝑉
𝑖−1

≤ −(1 −

𝑖−1

∑

𝑗=1

1

ℓ
𝑗

)𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− (𝑐
1
− 𝑖 + 1) 𝜂

2

1
(𝑡) −

𝑖−1

∑

𝑗=2

𝑐
𝑗
𝜂
2

𝑗
(𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) + 𝜂

𝑖−1
(𝑡) 𝜂
𝑖
(𝑡) −

̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡)

× [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) −

𝑛 − 𝑖 + 1

2

× 𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
))

− Θ̃
𝑇

3
(Θ̇
3
− 𝜋
𝑖−1
) − (𝑛 − 1)

̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

−

𝑖−2

∑

𝑗=3

𝜕𝛼
𝑗

𝜕Θ̂
3

(
̇
Θ̂
3
− 𝜋
𝑖−1
) 𝜂
𝑗+1

(𝑡) .

(52)

Let 𝜂
𝑖+1
(𝑡) = 𝜐

𝑖+1
(𝑡)−𝛼

𝑖
, where𝛼

𝑖
is regarded as the virtual

control input, and choose Lyapunov functional as

𝑉
𝑖
= 𝑉
𝑖−1

+

1

2

𝜂
2

𝑖
(𝑡) . (53)

Based on (52), the time derivative of 𝑉
𝑖
satisfies

𝑉
𝑖
= 𝑉
𝑖−1

+ 𝜂
𝑖
(𝑡) { − 𝑘

𝑖
𝜐
1
(𝑡) − (𝑛 − 𝑖) 𝛽𝜐

𝑖
(𝑡)

− (𝑛 − 𝑖)
̃
𝜙 (𝑥
0
(𝑡)) 𝜐
𝑖
(𝑡) + 𝜂

𝑖+1
(𝑡)

−

𝜕𝛼
𝑖−1

𝜕Θ̂
1

̇
Θ̂
1
−

𝜕𝛼
𝑖−1

𝜕Θ̂
2

̇
Θ̂
2
−

𝜕𝛼
𝑖−1

𝜕Θ̂
3

̇
Θ̂
3

−

𝜕𝛼
𝑖−1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

+ 𝛼
𝑖
−

𝜕𝛼
𝑖−1

𝜕𝑢
0

̇𝑢
0
−

𝜕𝛼
𝑖−1

𝜕𝜉
02

̇
𝜉
02

−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜐
𝑗

̇𝜐
𝑗
−

𝜕𝛼
𝑖−1

𝜕𝑧
1

𝜀
2
(𝑡) −

𝜕𝛼
𝑖−1

𝜕𝑧
1

Ψ
1

−

𝜕𝛼
𝑖−1

𝜕𝑥
0

̇𝑥
0
−

𝜕𝛼
𝑖−1

𝜕𝑧
1

Φ
1
−

𝜕𝛼
𝑖−1

𝜕𝑧
1

𝑑
𝑛
𝜐
2
(𝑡)} .

(54)

Next, we estimate the following terms in the right-hand
side of (53) by Lemmas 8 and 9 and Young’s inequality as
follows:

−

𝜕𝛼
𝑖−1

𝜕𝑧
1

𝜂
𝑖
(𝑡) Ψ
1

≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

�̃�
2

1
(𝑢
0
(𝑡) , 𝑥
0
(𝑡) , 𝑧
1
(𝑡)) 𝜂
2

𝑖
(𝑡)

+

1

2

(

𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑢
0
(𝑡) , 𝑦 (𝑡)) 𝜂

2

𝑖
(𝑡)

+

1

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼
𝑖−1

𝜕𝑧
1

𝜂
𝑖
(𝑡) Φ
1
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≤

1

2

𝜂
2

1
(𝑡) +

1

2

(

𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

�̃�
2

1
𝜂
2

𝑖
(𝑡) 𝜗
2
,

−

𝜕𝛼
𝑖−1

𝜕𝑧
1

𝜂
𝑖
(𝑡) 𝜀
2
(𝑡)

≤

1

ℓ
𝑖

𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡) +

ℓ
𝑖

4

𝑝
2

max(
𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

𝜂
2

𝑖
(𝑡) .

(55)

Choosing the virtual control function 𝛼
𝑖
as

𝛼
𝑖
= −𝑐
𝑖
𝜂
𝑖
(𝑡) − 𝜂

𝑖−1
(𝑡) + 𝑘

𝑖
𝜐
1
(𝑡)

+ (𝑛 − 𝑖) 𝛽𝜐
𝑖
(𝑡) + (𝑛 − 𝑖)

̃
𝜙 (𝑥
0
(𝑡)) 𝜐
𝑖
(𝑡)

+

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜐
𝑗

̇𝜐
𝑗
+

𝜕𝛼
𝑖−1

𝜕Θ̂
1

̇
Θ̂
1
+

𝜕𝛼
𝑖−1

𝜕Θ̂
2

̇
Θ̂
2

+

𝜕𝛼
𝑖−1

𝜕𝑥
0

̇𝑥
0
+

𝑖−2

∑

𝑗=3

𝜕𝛼
𝑗

𝜕Θ̂
3

Υ
𝑖
𝜂
𝑗+1

(𝑡) +

𝜕𝛼
𝑖−1

𝜕𝑢
0

̇𝑢
0

+

𝜕𝛼
𝑖−1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

−

ℓ
𝑖

4

𝑝
2

max(
𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

𝜂
𝑖
(𝑡) +

𝜕𝛼
𝑖−1

𝜕Θ̂
3

𝜋
𝑖

−

1

2

(

𝜕𝛼
𝑖−1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑦 (𝑡)) 𝜂

𝑖
(𝑡) +

𝜕𝛼
𝑖−1

𝜕𝜉
02

̇
𝜉
02
− Θ̂
𝑇

3
Υ
𝑖
,

(56)

and the tuning function 𝜋
𝑖
= 𝜋
𝑖−1

+ Υ
𝑖
𝜂
𝑖
(𝑡) with Υ

𝑖
=

[(1/2)(𝜕𝛼
𝑖−1
/𝜕𝑧
1
)
2
�̃�
2

1
𝜂
𝑖
(𝑡), −(𝜕𝛼

𝑖−1
/𝜕𝑧
1
)𝜐
2
(𝑡)]
𝑇.Then,we can

show that

𝑉
𝑖
≤ −(1 −

𝑖

∑

𝑗=1

1

ℓ
𝑗

)𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− (𝑐
1
− 𝑖) 𝜂
2

1
(𝑡) −

𝑖

∑

𝑗=2

𝑐
𝑗
𝜂
2

𝑗
(𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) −

̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

− (𝑛 − 1) ×
̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡)

− Θ̃
𝑇

3
(Θ̇
3
− 𝜋
𝑖
) −

𝑖−1

∑

𝑗=3

𝜕𝛼
𝑗

𝜕Θ̂
3

𝜂
𝑗+1

(𝑡) (
̇
Θ̂
3
− 𝜋
𝑖
)

−

𝑛 − 𝑖

2

𝜂
2

1
(𝑡 − 𝜏
1
) 𝑓
2

12
(𝑢
0
(𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝜂
𝑖
(𝑡) 𝜂
𝑖+1
(𝑡) .

(57)

At the last step (𝑖 = 𝑛), the true input 𝑢
1
(𝑡) will be

designed on the basis of the virtual control 𝛼
𝑖
𝑠 and the

Lyapunov function 𝑉
𝑛−1

introduced before.

The actual control input 𝑢
1
(𝑡) can be designed as

𝑢
1
(𝑡) = −𝑐

𝑛
𝜂
𝑛
(𝑡) − 𝜂

𝑛−1
(𝑡) + 𝑘

𝑛
𝜐
1
(𝑡)

+

𝜕𝛼
𝑛−1

𝜕Θ̂
1

̇
Θ̂
1
+

𝜕𝛼
𝑛−1

𝜕Θ̂
2

̇
Θ̂
2
+

𝜕𝛼
𝑛−1

𝜕𝜉
02

̇
𝜉
02

+

𝜕𝛼
𝑛−1

𝜕𝑥
0

̇𝑥
0
+

𝜕𝛼
𝑛−1

𝜕𝑢
0

̇𝑢
0

+

𝜕𝛼
𝑛−1

𝜕𝑧
1

[𝜉
02
− (𝑛 − 1)

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)] − Θ̂

𝑇

3
Υ
𝑛

+

𝜕𝛼
𝑛−1

𝜕Θ̂
3

𝜋
𝑛
−

1

2

(

𝜕𝛼
𝑛−1

𝜕𝑧
1

)

2

𝜂
2

1
(𝑡) 𝑓
2

11
(𝑦 (𝑡)) 𝜂

𝑛
(𝑡)

−

ℓ
𝑛

4

𝑝
2

max(
𝜕𝛼
𝑛−1

𝜕𝑧
1

)

2

𝜂
𝑛
(𝑡)

+

𝑛−1

∑

𝑗=1

𝜕𝛼
𝑛−1

𝜕𝜐
𝑗

̇𝜐
𝑗
+

𝑛−2

∑

𝑗=3

𝜕𝛼
𝑗

𝜕Θ̂
3

Υ
𝑛
𝜂
𝑗+1

(𝑡) ,

(58)

and the update law Θ̂
3
= 𝜋
𝑛
with 𝜋

𝑛
= 𝜋
𝑛−1

+ Υ
𝑛
𝜂
𝑛
(𝑡)

and Υ
𝑛

= [(1/2)(𝜕𝛼
𝑛−1
/𝜕𝑧
1
)
2
�̃�
2

1
𝜂
𝑛
(𝑡), −(𝜕𝛼

𝑛−1
/𝜕𝑧
1
)𝜐
2
(𝑡)]
𝑇.

Eventually, it can be achieved that

𝑉
𝑛
≤ −(1 −

𝑛

∑

𝑗=1

1

ℓ
𝑗

)𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− 𝜇𝜎
𝑇
(𝑡) 𝜎 (𝑡) − (𝑐

1
− 𝑛) 𝜂

2

1
(𝑡) −

𝑛

∑

𝑗=2

𝑐
𝑗
𝜂
2

𝑗
(𝑡) − (𝑛 − 1)

×
̃
𝜙 (𝑥
0
(𝑡)) 𝜂
2

1
(𝑡) −

̃
𝜙 (𝑥
0
(𝑡)) 𝜎
𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) .

(59)

3.4. Stability Analysis. Notice that ̃𝜙(𝑥
0
(𝑡)) tends to zero as

𝑥
0
(𝑡) converges to origin, and 𝛿

1
, 𝛿
2
, ℓ
𝑖
, 𝑐
𝑖
(1 ≤ 𝑖 ≤ 𝑛) in (59)

are positive design parameters. Therefore, by an appropriate
parameter choice, there exist positive constants 𝜆

𝑖
> 0 (1 ≤

𝑖 ≤ 𝑛 + 2) such that

𝑉
𝑛
≤ −

𝑛

∑

𝑗=1

𝜆
𝑗
𝜂
2

𝑗
(𝑡) − 𝜆

𝑛+1
𝜀
𝑇
(𝑡) 𝑃
−2
𝜀 (𝑡)

− 𝜆
𝑛+2
𝜎
𝑇
(𝑡) 𝜎 (𝑡) .

(60)

It can be seen that 𝜂
𝑖
(𝑡), 𝜀(𝑡), 𝜎(𝑡), Θ̃

1
, Θ̃
2
, Θ̃
3
are bounded.

Since 𝜃 and 𝑑
𝑖
are unknown bounded parameters, Θ̂

1
, Θ̂
2
, Θ̂
1

are bounded. According to estimator equations (19)–(21),
it can be deduced that the boundedness of 𝑧

1
(𝑡) = 𝜂

1
(𝑡)

guarantees the boundedness of 𝜉
0
(𝑡), and then 𝜐

1
(𝑡) =

(1/𝑑
𝑛
)(𝑧
1
(𝑡) − 𝜎

1
(𝑡)) and 𝛼

1
are also bounded. By similar

analysis, we can conclude that all signals of the closed loop
system are bounded.

By LaSalle invariant Theorem, it further achieves that
𝜂
𝑖
(𝑡), 𝜀(𝑡), 𝜎(𝑡), Θ̃

1
, Θ̃
2
, Θ̃
3
→ 0 as 𝑡 → ∞. By the controller
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design procedure, we get that 𝜉
0
(𝑡), 𝜐(𝑡), 𝛼

𝑖
, 𝑢
1
(𝑡) asymptoti-

cally tend to zero. Then, the definitions �̂�(𝑡) = 𝜉
0
(𝑡) + 𝑑

𝑛
𝜐(𝑡)

and 𝑧(𝑡) = 𝜀(𝑡) + �̂�(𝑡) show the asymptotical convergence
of �̂�(𝑡) and 𝑧(𝑡). Finally, from the transformations (10) and
(12), we know 𝑥

𝑖
(𝑡) = (1/𝑑

𝑛
)𝑢
𝑛−𝑖

0
(𝑡)𝑧
𝑖
(𝑡), which indicates that

the states 𝑥
𝑖
(𝑡) asymptotically converge to zerowith the initial

condition 𝑥
0
(𝑡
0
) ̸=0.

For purposes of analysis, we can rewrite the system (14)
as follows:

̇𝑧 (𝑡) = (𝐴
1
− 𝐿𝜙
0
(𝑥
0
(𝑡))) 𝑧 (𝑡) + 𝐾𝑧

1
(𝑡) + 𝐵𝑢

1
(𝑡) + Ψ + Φ.

(61)

To solve the above differential equation, we have

𝑧 (𝑡)

= 𝑒
(𝐴
1
−𝐿𝜙
0
(𝑥
0
(𝑡)))𝑡

𝑧 (𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑒
(𝐴
1
−𝐿𝜙
0
(𝑥
0
(𝑡)))(𝑡−𝑠)

[𝐾𝑧
1
(𝑠) + 𝐵𝑢

1
(𝑠) + Ψ + Φ] 𝑑𝑠.

(62)

Notice that 𝐴
1
= 𝐴 −𝐾𝐶 − 𝐿𝛽 is𝐻𝑢𝑟𝑤𝑖𝑡𝑧, and 𝜙

0
(𝑥
0
(𝑡))

tends to zero as 𝑥
0
(𝑡) → 0, then by Lemmas 8 and 9, there

exist constants 
1
> 0, 
2
> 0 such that

|𝑧 (𝑡)| ≤ 
1
𝑒
−
2
𝑡 



𝑧 (𝑡
0
)





+ ∫

𝑡

𝑡
0


1
𝑒
−
2
(𝑡−𝑠)

[‖𝐾‖ ⋅




𝑧
1
(𝑠)




+ ‖𝐵‖

⋅




𝑢
1
(𝑠)




+ ‖Ψ‖ + ‖Φ‖] 𝑑𝑠

≤ 
1
𝑒
−
2
𝑡 



𝑧 (𝑡
0
)





+ 
1
𝑒
−
2
𝑡
∫

𝑡

𝑡
0

𝑒

2
𝑠
[ ‖𝐾‖ ⋅





𝑧
1
(𝑠)




+ ‖𝐵‖ ⋅





𝑢
1
(𝑠)





+




𝑧
1
(𝑠)




𝐺
1
+




𝑧
1
(𝑠)




𝐺
2
] 𝑑𝑠,

(63)

where𝐺
1
is a nonnegative smooth function of 𝑑

𝑖
, 𝑢
0
(𝑠), 𝑢
0
(𝑠−

𝜏
𝑖
), 𝑦(𝑠), 𝑦(𝑠 − 𝜏

𝑖
), and 𝐺

2
is a nonnegative smooth function

of 𝑑
𝑖
, 𝑢
0
(𝑠), 𝑥
0
(𝑠), 𝑧
1
(𝑠), 𝜗.

Since 𝑥
0
(𝑡), 𝑥
1
(𝑡), 𝑢
0
(𝑡) and the system parameters are all

bounded, then 𝐺
1
, 𝐺
2
in (63) are also bounded. Employing

the convergence of 𝑥
0
(𝑡), 𝑧
1
(𝑡), 𝑢
1
(𝑡), we can get that 𝑧(𝑡)-

system is globally asymptotically convergent. From the intro-
duced transformations before, it can be deduced that system
(1) is also asymptotically convergent. Now, we can express the
following theorem.

Theorem 12. For system (1), under Assumptions 1–3, if the
control strategies (23) and (58) are applied with an appropriate
choice of the design parameters, the global asymptotic stabiliza-
tion of the closed loop system is achieved for 𝑥

0
(𝑡
0
) ̸=0.

In the next section, we will deal with the stability analysis
of the closed loop as long as the initial condition𝑥

0
(𝑡
0
) is zero.

4. Switching Controller

Several switching controllers have been proposed in some
existing literatures. As well known, the choice of a constant
feedback for 𝑢

0
(𝑡) may lead to a finite escape. In this note,

the following switching category can be designed for the
stabilization of system (1) with the initial sate 𝑥

0
(𝑡
0
) = 0.

Choosing controller 𝑢
0
(𝑡) as

𝑢
0
(𝑡) = sign (𝑑

0
) 𝑢
∗

0
, when 




𝑥
0
(𝑡)




≤ 
3
< 𝑥
∗

0
, (64)

where 𝑢∗
0
> 0 and 

3
> 0 are constants.

Since 𝑥
0
(𝑡
0
) = 0, then ̇𝑥

0
(𝑡
0
) with 𝑢

0
(𝑡) can be deduced

̇𝑥
0
(𝑡
0
) =





𝑑
0





𝑢
∗

0
+ 𝜙 (𝑡, 𝑥

0
(𝑡
0
)) =





𝑑
0





𝑢
∗

0
> 0, (65)

then during the initial small time period, 𝑥
0
(𝑡) is increasing

and satisfies |𝑥
0
(𝑡)| + |𝑥

0
(𝑡)|𝜙
0
(𝑥
0
(𝑡)) < |𝑑

0
|𝑢
∗

0
.

Choose 𝑥∗
0
that satisfy





𝑥
∗

0





+




𝑥
∗

0





𝜙
0
(𝑥
∗

0
) =





𝑑
0





𝑢
∗

0
. (66)

Obviously, 𝑥
0
(𝑡) is increasing when 𝑥

0
(𝑡) ≤ 𝑥

∗

0
. When

|𝑥
0
(𝑡)| ≤  < 𝑥

∗

0
, choose the controller 𝑢

0
(𝑡) = sign(𝑑

0
)𝑢
∗

0
,

and the controller 𝑢
1
(𝑡) can be designed according to the sim-

ple nonlinear backstepping iterative approach. Since |𝑥
0
(𝑡)| >


3
, at 𝑡
𝑠
, we switch the control laws 𝑢

0
(𝑡) and 𝑢

1
(𝑡) into (23)

and (58), respectively.

Theorem 13. For system (1), under Assumptions 1–3, if above
switching control strategy is applied with an appropriate choice
of the design parameters, then the closed-loop system is globally
asymptotic regulated at the origin for 𝑥

0
(𝑡
0
) = 0.

5. Simulation Example

In this section, a numerical example will be given to illustrate
that the proposed systematic control law design method is
effective. Consider the following system:

̇𝑥
0
(𝑡) = 𝑑

0
𝑢
0
(𝑡) + 𝑥

0
(𝑡)
3
,

̇𝑥
1
(𝑡) = 𝑑

1
𝑢
0
(𝑡) 𝑥
2
(𝑡) +

1

2

ln (1 + 𝑥2
1
(𝑡)) 𝑒
𝑥
0
(𝑡)

× 𝑥
2

1
(𝑡 − 0.3) + 𝑥

1
(𝑡) 𝜃
𝑥
1
(𝑡)

1
,

̇𝑥
2
(𝑡) = 𝑑

2
𝑢
1
(𝑡) + 𝑥

1
(𝑡) 𝑒
𝑥
0
(𝑡−0.2)

× 𝑥
3

1
(𝑡 − 0.2) + ln (1 + (𝜃

2
𝑥
2
(𝑡))
2

) ,

𝑦 (𝑡) = [𝑥
0
(𝑡) , 𝑥
1
(𝑡)]
𝑇

,

(67)

where 𝑑
0
, 𝑑
1
, 𝑑
2
are virtual control directions with 𝑑

1
, 𝑑
2

unknown and 𝑑
0
known, and the sign of 𝑑

2
= 𝑑
1
𝑑
2

is also known. 𝜃
1
, 𝜃
2
are unknown bounded parameters.

Next, we consider to design the controller 𝑢
0
(𝑡) and 𝑢

1
(𝑡)

to asymptotically stabilize system (67) by the measurable
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Figure 1: States 𝑥
0
(𝑡), 𝑥
1
(𝑡), 𝑥
2
(𝑡).

output. We assume that 𝑥
0
(𝑡
0
) ̸=0 and make the following

estimation for some nonlinear terms in system (67):

𝑥
1
(𝑡) 𝜃
𝑥
1
(𝑡)

1
≤




𝑥
1
(𝑡)




𝑒
(1/2)𝑥

2

1
(𝑡)
𝜗,

ln (1 + (𝜃
2
𝑥
2
(𝑡))
2

) ≤




𝑥
1
(𝑡)




𝜗,

(68)

where 𝜗 = 𝑒(1/2)ln
2
𝜃
1
+ |𝜃
2
|.

Firstly, we introduce the following transformation:

𝑥
1
(𝑡) = 𝑥

1
(𝑡) , 𝑥

2
(𝑡) = 𝑑

1
𝑥
2
(𝑡) , (69)

and then the system (67) can be rewritten as

̇𝑥
0
(𝑡) = 𝑑

0
𝑢
0
(𝑡) + 𝑥

0
(𝑡)
3
,

̇
𝑥
1
(𝑡) = 𝑢

0
(𝑡) 𝑥
2
(𝑡) +

1

2

ln (1 + 𝑥2
1
(𝑡)) 𝑒
𝑥
0
(𝑡)

× 𝑥
2

1
(𝑡 − 0.3) + 𝑥

1
(𝑡) 𝜃
𝑥
1
(𝑡)

1
,

̇
𝑥
2
(𝑡) = 𝑑

2
𝑢
1
(𝑡) + 𝑑

1
𝑥
1
(𝑡) 𝑒
𝑥
0
(𝑡−0.2)

× 𝑥
3

1
(𝑡 − 0.2) + 𝑑

1
ln (1 + (𝜃

2
𝑥
2
(𝑡))
2

) ,

(70)

where 𝑑
2
= 𝑑
1
𝑑
2
, and assume that the sign of 𝑑

2
is known.
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Figure 2: Controllers 𝑢
0
(𝑡) and 𝑢

1
(𝑡).

Next,make the following input scaling transformation for
𝑥(𝑡)-system:

𝑧
1
(𝑡) =

𝑥
1
(𝑡)

𝑢
0
(𝑡)

, 𝑧
2
(𝑡) = 𝑥

2
(𝑡) , (71)

and then the transformed system is

̇𝑧 (𝑡) = (𝐴 − 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝑧 (𝑡) + 𝐵𝑢
1
(𝑡) + Ψ + Φ, (72)

where

𝐴 = [
0 1

0 0
] , 𝐿 = [

1 0

0 0
] ,

𝐵 = [

0

𝑑
2

] , Ψ = [
Ψ
1

Ψ
2

] , Φ = [
Φ
1

Φ
2

] ,

Ψ
1
=

ln (1 + 𝑥2
1
(𝑡)) 𝑒
𝑥
0
(𝑡)
𝑥
2

1
(𝑡 − 0.3)

2𝑢
0
(𝑡)

,

Ψ
𝑖
= 𝑑
1
𝑥
1
(𝑡) 𝑒
𝑥
0
(𝑡−0.2)

𝑥
3

1
(𝑡 − 0.2) ,

Φ
1
=

𝑥
1
(𝑡) 𝜃
𝑥
1
(𝑡)

1

𝑢
0
(𝑡)

,

Φ
2
= 𝑑
1
ln (1 + (𝜃

2
𝑥
2
(𝑡))
2

) .

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

.

(73)

Design the following controller 𝑢
0
(𝑡):

𝑢
0
(𝑡) = −𝑐

0
𝑥
0
(𝑡) − 𝑐

0
𝑥
0
(𝑡)
3
, (74)

and then ̇𝑢
0
(𝑡)/𝑢
0
(𝑡) can be calculated as follows:

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

= −𝑐
0
𝑑
0
− 3𝑐
0
𝑑
0
𝑥
0
(𝑡) +

𝑥
2

0
(𝑡) + 3𝑥

4

0
(𝑡)

1 + 𝑥
2

0
(𝑡)

. (75)

For system (72), constructing the following estimator:

̇
𝜉
0
(𝑡) = (𝐴

0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜉
0
(𝑡) + 𝑃𝐶

T
(𝑦 (𝑡) − 𝐶𝜉

0
(𝑡)) ,

̇𝜐 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜐 (𝑡) + 𝑒
𝑛
𝑢
1
(𝑡) ,

̇𝑃 = 𝑃(𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

)

𝑇

+ (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝑃 − 𝑃𝐶
𝑇
𝐶𝑃 + 𝐼,

(76)

where 𝑦(𝑡) = 𝑧
1
(𝑡), 𝑒
𝑛
= [0, 1]

𝑇
, 𝜉
0
= [𝜉
01
, 𝜉
02
]
𝑇
, 𝜐 = [𝜐

1
, 𝜐
2
]
𝑇,

𝐴
0
= 𝐴 − 𝐾𝐶, 𝐶 = [1, 0], and 𝐾 = [𝑘

1
, 𝑘
2
]
𝑇. The design of

𝑘
1
, 𝑘
2
can guarantee that 𝐴

1
= 𝐴
0
− 𝐾𝐶 − 𝐿𝛽 is𝐻𝑢𝑟𝑤𝑖𝑡𝑧. It

is further achieved that there exists plosive definite matrix 𝑄
satisfying 𝑄𝐴

1
+ 𝐴
𝑇

1
𝑄 = −𝜇𝐼, in which 𝜇 > 0 is a constant.

Denote �̂�(𝑡) = 𝜉
0
(𝑡) + 𝑑

𝑛
𝜐, 𝜎(𝑡) = 𝑧(𝑡) − 𝑑

𝑛
𝜐(𝑡) and 𝜀(𝑡) =

𝑧(𝑡)− �̂�(𝑡), and then the observation error 𝜀(𝑡) and parameter
invariable 𝜎(𝑡) satisfy

̇𝜀 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

− 𝑃𝐶
𝑇
𝐶) 𝜀 (𝑡)

+ (𝐾 − 𝑃𝐶
𝑇
) 𝑧
1
(𝑡) + 𝑃𝐶

𝑇
𝐶𝜎 (𝑡) + Ψ + Φ,

̇𝜎 (𝑡) = (𝐴
0
− 𝐿

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

) 𝜎 (𝑡) + 𝐾𝑧
1
(𝑡) + Ψ + Φ.

(77)
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Figure 3: Parameters Θ̂
11
, Θ̂
12
, Θ̂
13
.

Define the invariable that 𝜂
1
(𝑡) = 𝑧

1
(𝑡), 𝜂
2
(𝑡) = 𝜐

2
(𝑡) −

𝛼
1
. According to the iterative procedure in Section 3, we can

design the virtual control function and controller 𝑢
1
(𝑡) as

𝛼
1
= −Θ̂
𝑇
Υ
1
= − [Θ̂

11
, Θ̂
12
, Θ̂
13
] [Υ
11
, Υ
12
, Υ
13
]
𝑇

,

𝑢
1
(𝑡) = −𝑐

2
𝜂
2
(𝑡) + 𝑘

2
𝜐
1
(𝑡) +

𝜕𝛼
1

𝜕Θ̂
𝑇

1

̇
Θ̂
1
+

𝜕𝛼
1

𝜕𝜉
02

̇
𝜉
02

+

𝜕𝛼
1

𝜕𝑢
0
(𝑡)

̇𝑢
0
(𝑡) +

𝜕𝛼
1

𝜕𝑧
1
(𝑡)

[𝜉
02
−

̇𝑢
0
(𝑡)

𝑢
0
(𝑡)

𝑧
1
(𝑡)]

−

ℓ
2

4

(𝑃
2

12
+ 𝑃
2

22
) (

𝜕𝛼
1

𝜕𝑧
1
(𝑡)

)

2

𝜂
2
(𝑡)

−

1

2

(

𝜕𝛼
1

𝜕𝑧
1
(𝑡)

)

2

𝑒
2𝑥
0
(𝑡)
𝜂
2

1
(𝑡) 𝜂
2
(𝑡) − Θ̂

𝑇

2
Υ
2
,

(78)
where

Υ
11
= 𝑐
1
𝜂
1
(𝑡) + 𝜉

02
(𝑡) +

1

2

𝜂
3

1
(𝑡) 𝑒
2𝑥
0
(𝑡)

+ [

ℓ
1

8

+

𝛿
1

32

‖𝑄‖
2
] 𝜂
7

1
(𝑡) 𝑢
8

0
(𝑡)
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Figure 4: Parameters Θ̂
21
, Θ̂
22
, Θ̂
23
.

+ [2ℓ
1
+

𝛿
1

2

‖𝑄‖
2
] 𝜂
11

1
(𝑡) 𝑒
4𝑥
0
(𝑡)
𝑢
12

0
(𝑡) +

1

4

𝜂
3

1
(𝑡) 𝑢
4

0
(𝑡) ,

Υ
12
= 2ℓ
1
𝜂
3

1
(𝑡) 𝑒
4𝑥
0
(𝑡)
+ 2ℓ
1
𝜂
3

1
(𝑡) 𝑢
4

0
(𝑡)

+

𝛿
1

2

‖𝑄‖
2
𝜂
3

1
(𝑡) 𝑒
4𝑥
0
(𝑡)
+

𝛿
1

2

‖𝑄‖
2
𝜂
3

1
(𝑡) 𝑢
4

0
(𝑡) ,

Υ
13
= [

1

4

+ 4ℓ
1
+ 𝛿
2‖
𝑄‖
2
] 𝜂
1
(𝑡) 𝑒
𝑧
2

1
(𝑡)𝑢
2

0
(𝑡)

+ [4ℓ
1
+ 𝛿
2‖
𝑄‖
2
] 𝜂
1
(𝑡) 𝑢
2

0
(𝑡) ,

Θ̂
𝑇

2
= [Θ̂
21
, Θ̂
22
, Θ̂
23
] ,

Υ
2
= [

1

4

(

𝜕𝛼
1

𝜕𝑧
1
(𝑡)

)

2

𝑒
𝑧
2

1
(𝑡)𝑢
2

0
(𝑡)
𝜂
2
(𝑡) ,

1

4

𝜂
2
(𝑡) , −

𝜕𝛼
1

𝜕𝑧
1
(𝑡)

𝜐
2
(𝑡)]

𝑇

.

(79)

The adaption laws of the parameter invariable in con-
troller 𝑢

1
(𝑡) are chosen as

̇
Θ̂
1
= sign (𝑑

2
) Υ
1
𝜂
1
(𝑡) ,

̇
Θ̂
2
= Υ
2
𝜂
2
(𝑡) . (80)



16 Abstract and Applied Analysis

For simulation use, we pick the unknown parameters
𝑑
1
= 1.5, 𝑑

2
= 2.5, 𝜃

1
= 𝜃
2
= 0.5. In addition, we take

the other controller design parameters as 𝑐
0

= 1, 𝑐
1

=

130, 𝑐
2
= 2, 𝑘

1
= 4, 𝑘

2
= 1, ℓ

1
= 2, ℓ

2
= 3, 𝛿

1
=

𝛿
2
= 4.Moreover,The initial state condition is [0.2, 0, −0.1]𝑇.

Simulation results are shown in Figures 1, 2, 3, and 4. It is
obvious that the states 𝑥

0
(𝑡), 𝑥
1
(𝑡), 𝑥
2
(𝑡) and control input

𝑢
0
(𝑡), 𝑢
1
(𝑡) converge to zero, and the parameters estimation

invariable tend to constants.

6. Conclusion

The output-feedback adaptive stabilization was investigated
for a class of nonholonomic systems with unknown virtual
control coefficients, nonlinear uncertainties, and unknown
time delays. In order to overcome the difficulties, we intro-
duce suitable transformation and novel Lyapunov-Krasovskii
functionals, and then a recursive technique is given to design
the adaptive controller. To make the input-state scaling
transformation effective, the switching control strategy is
employed to achieve the asymptotic stabilization.
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The exponential stability is investigated for neutral stochastic differential equations with time-varying delays. Based on the
Lyapunov stability theory and linear matrix inequalities (LMIs) technique, some delay-dependent criteria are established to
guarantee the exponential stability in almost sure sense. Finally a numerical example is provided to illustrate the feasibility of
the result.

1. Introduction

Neutral differential equations are well-known models from
many areas of science and engineering, wherein, quite
often the future state of such systems depends not only on
the present state but also involves derivatives with delays.
Deterministic neutral differential equations were originally
introduced by Hale and Meyer [1] and discussed in Hale and
Lunel (see [2]) and Kolmanovskii et al. (for details, see also
[3, 4]), among others. Motivated by chemical engineering
systems as well as theory of aeroelasticity, stochastic neutral
delay systems have been intensively studied over recent year
[5–9]. Mao initiated the study of exponential stability of
neutral stochastic differential delay equations in [5], while [9]
incorporated Razumikhinis approach in neutral stochastic
functional differential equations to investigate the stability
problem. It is pointed out in Section 5 [10] that the conditions
imposed in [5, 9] make the theory not applicable to the delay
equation.

More recently, Luo et al. [6] proposed new criteria on
exponential stability of neutral stochastic delay differential
equations. In [11, 12], Milošević investigated the almost
sure exponential stability of a class of highly nonlinear

neutral stochastic differential equations with time-dependent
delay, and some sufficient conditions were given for the
considered systems. However, when the exponential stability
of the neutral system with time-delay is considered, one
always assumes that the derivative of the delay function
is less than 1 (e.g., [6]). Meanwhile, the delay-independent
conditions in [6, 10] are restricted when the delay is
small. On the other hand, some results are proposed on
stochastic Markovian jumping systems (e.g., [13–20]) and
finite-time problems of stochastic systems (e.g., [18–22]),
which can provide some useful methods and techniques
for the neutral stochastic systems. This paper aims to
develop the exponential stability in almost sure sense of the
neutral stochastic differential equations with time-varying
delays. Under the weaker assumptions that the derivative
of time delay is less than some constant, sufficient con-
ditions for the exponential stability are given in terms of
linear matrix inequality (LMI) based on Lyapunov stability
theory, which can be checked easily by MATLAB LMI
Toolbox.

The paper is organized as follows. In the remainder of
this section we recall some preliminaries, mainly from [5]. In
Section 3 we state the main results on exponential stability.
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Section 4 will provide numerical examples to illustrate the
feasibility and effectiveness of the results, and the conclusion
will be made in Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, let {Ω,
F, 𝑃} be a complete probability space with a filtration
{F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., right con-
tinuous and 𝐹

0
containing all 𝑃-null sets). Let 𝑤(𝑡) =

(𝑤
1
(𝑡), 𝑤
2
(𝑡), . . . , 𝑤

𝑚
(𝑡))
𝑛 be 𝑚-dimensional Wiener process

defined on the probability space. Let | ⋅ | denote the Euclidean
norm in R𝑛. 𝐴𝑇 stands for the transpose of the vector or
matrix 𝐴. If 𝐴 is a matrix, its trace norm is denoted by
|𝐴| = √𝐴

𝑇
𝐴. 𝑎 ∨ 𝑏 denotes max{𝑎, 𝑏}. 𝜆max(⋅), 𝜆min(⋅) are

maximum eigenvalue and minimum eigenvalue, respective-
ly.

Consider the following 𝑛-dimensional neutral stochastic
differential delay equations with time-varying delays:

d [𝑥 (𝑡) − 𝐺 (𝑥 (𝑡 − 𝛿 (𝑡)))]

= 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) d𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) d𝑤 (𝑡)

𝑥 (𝑡) = 𝜉 (𝑡) ∈ 𝐶
𝑏

F
0

([−𝜏, 0] ,R
𝑛
) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑓 : R𝑛 × R𝑛 × R
+

→ R𝑛, 𝑔 : R𝑛 × R𝑛 ×

R
+

→ R𝑛×𝑚, and 𝐺 ∈ 𝐶(R𝑛,R𝑛). The functions 𝛿(𝑡) :

R
+

→ [0, 𝜏] are continuously differentiable such that 0 ≤

𝛿(𝑡) ≤ 𝛿,
̇

𝛿(𝑡) ≤ 𝛿. Let 𝐶([−𝜏, 0],R𝑛) denote the family of
continuous functions 𝜙 from [−𝜏, 0] to R𝑛 with the norm
‖𝜙‖ = sup

−𝜏≤𝜃≤0
|𝜙(𝜃)|. Let 𝐶𝑏F

0

([−𝜏, 0],R𝑛) be the family
of allF

0
-measurable𝐶([−𝜏, 0],R𝑛)-valued random variables

𝜉 = {𝜉(𝜃) : 𝜏 ≤ 𝜃 ≤ 0} such that sup
−𝜏≤𝜃≤0

𝐸|𝜉(𝜃)|
2
< ∞. To

guarantee the existence and uniqueness of the solution, we
first list the following hypotheses.

(H
1
) Both the functionals 𝑓 and 𝑔 satisfy the uni-
form Lipschitz conditions. That is, there is a diago-
nal positive matrix 𝐿 = diag {𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑛
} such

that




𝑓 (𝑥, 𝑦, 𝑡) − 𝑓 (𝑥, 𝑦, 𝑡)





∨




𝑔 (𝑥, 𝑦, 𝑡) − 𝑔 (𝑥, 𝑦, 𝑡)






≤ |𝐿 (𝑥 − 𝑥)| +




𝐿 (𝑦 − 𝑦)






(2)

for all 𝑡 ≥ 0 and those 𝑥, 𝑦, 𝑥, 𝑦 ∈ R𝑛.

(H
2
) There is a constant 𝑘 ∈ (0, 1) such that for all 𝜙

1
, 𝜙
2
∈

𝐶
𝑏

F
0

([−𝜏, 0],R𝑛)





𝐺 (𝜙
1
) − 𝐺 (𝜙

2
)





2

≤ 𝑘 sup
−𝜏≤𝜃≤0





𝜙
1
(𝜃) − 𝜙

2
(𝜃)






2

. (3)

It is well known (see, e.g., [3]) that under hypotheses H
1
, H
2

(1) has a unique continuous solution on 𝑡 ≥ −𝜏.
To obtain sufficient conditions on almost sure expo-

nential stability, the following lemmas and definition are
given.

Lemma 1 (see [23]). For any positive definite constant matrix
𝑀 ∈ R𝑛×𝑛, scalar 𝑟 > 0, and vector function 𝑓(⋅) : [0, 𝑟] →

R𝑛 such that the integrations in the following are well defined,
then the following inequality holds:

(∫

𝑟

0

𝑓(𝑠)𝑑𝑠)

𝑇

𝑀(∫

𝑟

0

𝑓 (𝑠) 𝑑𝑠) ≤ 𝑟∫

𝑟

0

𝑓
𝑇
(𝑠)𝑀𝑓 (𝑠) 𝑑𝑠. (4)

The following semimartingale convergence theoremwill play an
important role in the later parts.

Lemma 2 (see [24]). Let 𝐴(𝑡) and 𝑈(𝑡) be two continuous
adapted increasing processed on 𝑡 ≥ 0 with 𝐴(0) = 𝑈(0) = 0

a.s. Let𝑀(𝑡) be a real-valued continuous local martingale with
𝑀(0) = 0 a.s. Let 𝜍 be a nonnegative F

0
-measurable random

variable. Define

𝑋(𝑡) = 𝜍 + 𝐴 (𝑡) − 𝑈 (𝑡) + 𝑀 (𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0. (5)

If𝑋(𝑡) is nonnegative, then

{ lim
𝑡→∞

𝐴 (𝑡) < ∞} ⊂ { lim
𝑡→∞

𝑋 (𝑡) < ∞}

∩ { lim
𝑡→∞

𝑈 (𝑡) < ∞} 𝑎.𝑠.,

(6)

where 𝐵 ⊂ 𝐷 a.s. means 𝑃(𝐵 ∩ 𝐷) = 0. In particular, if
lim
𝑡→∞

𝐴(𝑡) < ∞ a.s., then for almost all 𝑤 ∈ Ω,

lim
𝑡→∞

𝑋(𝑡) < ∞, lim
𝑡→∞

𝑈 (𝑡) < ∞; (7)

that is, both𝑋(𝑡) and𝑈(𝑡) converge to finite random variables.

Definition 3 (see [25]). The equilibrium of solution {𝑥(𝑡), 𝑡 ≥

0} of (1) is said to be almost sure exponentially stable if there
exists a constant 𝜀 > 0 such that

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ −𝜀 a.s. (8)

for any bounded initial condition 𝜉.

3. Main Results

Theorem 4. Let hypotheses H
1
, H
2
hold. System (1) is almost

sure exponentially stable, if there exists positive definite matrix
such that the following LMI holds
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Ω =

(
(
(
(
(
(
(
(
(
(
(

(

Ξ
11

𝑁
𝑇

2
− 𝑁
𝑇

1
𝑁
𝑇

3
+ 𝑈
𝑇

𝑁
𝑇

4
−𝑁
𝑇

1
+ 𝑁
𝑇

5
0

∗ Ξ
22

−𝑁
𝑇

3
−𝑁
𝑇

4
−𝑁
𝑇

2
− 𝑁
𝑇

5
0

∗ ∗ Ξ
33

0 −𝑁
𝑇

3
𝑈

∗ ∗ ∗ Ξ
44

−𝑁
𝑇

4
0

∗ ∗ ∗ ∗ −

1

𝛿

𝑅 − 2𝑁
𝑇

5
0

∗ ∗ ∗ ∗ ∗ −𝜀𝐼

)
)
)
)
)
)
)
)
)
)
)

)

< 0, (9)

where

Ξ
11

= 𝛽𝑃 + 𝑒
𝛽𝛿
𝑄 + 𝑃 + 2𝑁

𝑇

1
,

Ξ
22

= (− (1 − 𝛿) 𝑒
𝛽𝛿

∨ − (1 − 𝛿))𝑄 − 2𝑁
2
,

Ξ
33

= − 2𝑈 + 𝑒
𝛽𝛿
𝑆 + 2𝜆max (𝑃) 𝐿

𝑇
𝐿

+

2

𝛽

𝜆max (𝑅) (𝑒
𝛽𝛿

− 1) 𝐿
1
,

Ξ
44

= − (1 − 𝛿) 𝑆 + 2𝜆max (𝑃) 𝐿
𝑇
𝐿

+

2

𝛽

𝜆max (𝑅) (𝑒
𝛽𝛿

− 1) 𝐿
1
+ 𝜀𝑘𝐼.

(10)

Proof. To confirm that the stochastic neutral differential
equation (1) is mean-square exponentially stable with decay
rate 𝛽, we define a Lyapunov-Krasovskii functional𝑉(𝑥(𝑡), 𝑡)
as follows:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡)

+ ∫

𝑡

𝑡−𝛿(𝑡)

𝑒
𝛽(𝑠+𝛿)

𝜌
𝑇
(𝑠) 𝑄𝜌 (𝑠) d𝑠

+ ∫

0

−𝛿

∫

𝑡

𝑡+𝜃

𝑒
𝛽(𝑠−𝜃)

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠)

× 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠d𝜃

+ ∫

𝑡

𝑡−𝛿(𝑡)

𝑒
𝛽(𝑠+𝛿)

𝑥
𝑇
(𝑠) 𝑆𝑥 (𝑠) d𝑠.

(11)

For simplicity, let 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)), 𝜌(𝑡) = 𝑥(𝑡) − 𝐺(𝑦(𝑡)). By
generalizing Ito’s formula, we have that

𝐸𝑉 (𝜌 (𝑡) , 𝑡) = 𝐸𝑉 (𝜌 (0) , 0) + ∫

𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠.

(12)

Then, the derivative of𝑉(𝜌(𝑡), 𝑡) along the solution of (1) gives

𝐿𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

= 𝛽𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 2𝑒

𝛽𝑡
𝜌(𝑡)
𝑇
𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

+ 𝑒
𝛽𝑡
𝑔
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑃𝑔 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

+ 𝑒
𝛽(𝑡+𝛿)

𝜌 (𝑡) 𝑄𝜌 (𝑡)

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝜌
𝑇
(𝑡 − 𝛿 (𝑡)) 𝑄𝜌 (𝑡 − 𝛿 (𝑡)) (1 −

̇
𝛿 (𝑡))

+

1

𝛽

𝑒
𝛽𝑡
(𝑒
𝛽𝛿

− 1)𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑅𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

− 𝑒
𝛽𝑡
∫

𝑡

𝑡−𝛿

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ 𝑒
𝛽(𝑡+𝛿)

𝑥 (𝑡) 𝑆𝑥 (𝑡) − 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

× 𝑥
𝑇
(𝑡 − 𝛿 (𝑡)) 𝑆𝑥 (𝑡 − 𝛿 (𝑡)) (1 −

̇
𝛿 (𝑡)) .

(13)

Note that, from system (1) and Newton-Leibniz formula, we
have

𝑀 = (𝜌 (𝑡) − 𝜌 (𝑡 − 𝛿 (𝑡)) − ∫

𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

−∫

𝑡

𝑡−𝛿(𝑡)

𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠)) = 0.

(14)

By calculation, it is clear that

𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑅𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜆max (𝑅) 𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜆max (𝑅)




𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)






2

≤ 2𝜆max (𝑅) (𝑥
𝑇
(𝑡) 𝐿
𝑇
𝐿𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝛿 (𝑡)) 𝐿

𝑇
𝐿𝑦 (𝑡)) ,

(15)
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and then by which, we have

2𝜌
𝑇
(𝑡) 𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜌
𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜌
𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 2𝜆max (𝑃) (𝑥
𝑇
(𝑡) 𝐿
𝑇
𝐿𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
𝑇
𝐿𝑦 (𝑡)) ,

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) (1 −

̇
𝛿 (𝑡))

≤ − (1 − 𝛿) 𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) .

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) (1 −

̇
𝛿 (𝑡))

≤ − (1 − 𝛿) 𝑒
𝛽𝑡
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) .

(16)

Moreover, by Lemma 2, one can get

− ∫

𝑡

𝑡−𝛿

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

≤ −∫

𝑡

𝑡−𝛿(𝑡)

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

≤ −

1

𝛿

(∫

𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

× 𝑅(∫

𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠) .

(17)

Letting 𝐿
1
= 𝐿
𝑇
𝐿 and substituting (14)–(17) into (13) yield

𝐿𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝑒
𝛽𝑡
{𝛽𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 𝜌

𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 2𝜆max (𝑃) 𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡)

+ 2𝜆max (𝑃) 𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡)

+ (− (1 − 𝛿) 𝑒
𝛽𝛿

∨ − (1 − 𝛿)) 𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡)

+ 𝑒
𝛽𝛿
𝜌
𝑇
(𝑡) 𝑄
1
𝜌 (𝑡) + 2𝜆max

1

𝛽

(𝑒
𝛽𝛿

− 1)

× (𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
1
𝑦 (𝑡))

−

1

𝛿

(∫

𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

×𝑅(∫

𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠)} .

(18)

Furthermore, from (14), it follows that

𝐴 = 2𝜂
𝑇
(𝑁
𝑇

1
, 𝑁
𝑇

2
, 𝑁
𝑇

3
, 𝑁
𝑇

4
, 𝑁
𝑇

5
)

𝑇

𝑀 = 0,

𝐵 = 2𝑥
𝑇
(𝑡) 𝑈 [𝜌 (𝑡) − 𝑥 (𝑡) + 𝐺 (𝑦 (𝑡))] = 0,

(19)

where 𝜂 = (𝜌
𝑇, 𝜌𝑇(𝑡 − 𝛿(𝑡)), 𝑥𝑇(𝑡), 𝑦𝑇(𝑡), (∫𝑡

𝑡−𝛿(𝑡)
𝑓(𝑥, 𝑦, 𝑠)

d𝑠)𝑇)𝑇, and 𝑁
𝑖
(1 ≤ 𝑖 ≤ 5), 𝑈 are matrices with compatible

dimensions.
It can be shown that

∫

𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ 𝑒
𝛽𝑡
(𝐴 + 𝐵) + 𝑒

𝛽𝑡
𝑀
𝑇
𝑃
1
(𝑀(𝑡) + ∫

𝑡

𝑡−𝛿(𝑡)

𝑔 (𝑥, 𝑦, 𝑠) d𝑠)

≤ 𝑒
𝛽𝑡
{𝛽𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 𝜌

𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑒

𝛽𝛿
𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡)

+ 𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡) + 2𝜆max (𝑃) 𝑥

𝑇
(𝑡) 𝐿
1
𝑥 (𝑡)

+ 2𝜆max𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡)

− (1 − 𝛿) 𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) + 𝑒

𝛽𝛿
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡)

− (1 − 𝛿) 𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) + 2𝜆max

1

𝛽

(𝑒
𝛽𝛿

− 1)

× (𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
1
𝑦 (𝑡))

−

1

𝛿

(∫

𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

× 𝑅(∫

𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠)}

≤ 𝑒
𝛽𝑡
{𝜂
𝑇
Ω̃𝜂 + 𝜀

−1
𝑥
𝑇
(𝑡) 𝑈𝑈

𝑇
𝑥 (𝑡)} ,

(20)

whereΩ is defined as

Ω̃ =

(
(
(
(
(
(
(
(

(

Ξ
11

𝑁
𝑇

2
− 𝑁
𝑇

1
𝑁
𝑇

3
+ 𝑈
𝑇

𝑁
𝑇

4
−𝑁
𝑇

1
+ 𝑁
𝑇

5

∗ Ξ
22

−𝑁
𝑇

3
−𝑁
𝑇

4
−𝑁
𝑇

2
− 𝑁
𝑇

5

∗ ∗ Ξ
33

0 −𝑁
𝑇

3

∗ ∗ ∗ Ξ
44

−𝑁
𝑇

4

∗ ∗ ∗ ∗ −

1

𝛿

𝑅 − 2𝑁
𝑇

5

)
)
)
)
)
)
)
)

)

.

(21)
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By Schur complement, we know that 𝜂
𝑇
Ω̃𝜂 +

𝜀
−1
𝑥
𝑇
(𝑡)𝑈𝑈

𝑇
𝑥(𝑡) < 0. On the other hand, it follows

that

𝑉 (𝜌 (𝑡) , 𝑡) = 𝑉 (𝜌 (0) , 0) + ∫

𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ ∫

𝑡

0

2𝑒
𝛽𝑠
𝑥
𝑠
(𝑡) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠) .

(22)

Note that 𝜉 is bounded and𝑉,𝐺 are continuous; then𝑉(𝜌(0))
must be nonnegative bounded. Moreover, L𝑉(𝑥, 𝑦, 𝑡) ≤ 0

can be obtained directly:

𝑉 (𝜌 (𝑡) , 𝑡) ≤ 𝑉 (𝜌 (0) , 0)

+ ∫

𝑡

0

2𝑒
𝛽𝑡
𝑥
𝑇
(𝑠) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠) .

(23)

By applying Lemma 2 to (23), one sees that

lim
𝑡→∞

sup𝑉 (𝜌 (𝑡) , 𝑡) < ∞; (24)

hence there exists a positive random variable 𝜁 satisfying

sup
0≤𝑡<∞

𝑒
𝛽𝑡



𝑥 (𝑡) − 𝐺 (𝑦 (𝑡))






2

≤ 𝜁. (25)

Since, for any 𝜀
3
∈ (0, 1)





𝑥 (𝑡) − 𝐺 (𝑦 (𝑡))






2

≥ (1 − 𝜀
−1

3
) |𝑥 (𝑡)|

2
− (𝜀
3
− 1)





𝐺 (𝑦 (𝑡))






2

,

(26)

we must have

sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡
|𝑥 (𝑡)|

2

≤ 𝜁 +

𝑘
2

𝜀
3

sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡 



𝑦 (𝑡)






2

≤ 𝜁 + 𝑘
2
𝑒
𝛽𝜏



𝜉





2

+

𝑘
2

𝜀
3

𝑒
𝛽𝜏 sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡
|𝑥 (𝑡)|

2

.

(27)

From the above inequality (26), it yields the desired result

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ −

𝛽

2

. (28)

That completes the proof.

4. Example

In this section, a numerical example will be given to illustrate
that the proposed method is effective.

Example 1. Consider the following system:

𝑑 [𝑥
1
(𝑡) − 0.1𝑥

2
(𝑡 − 𝛿 (𝑡))] = − 𝑥

1
(𝑡) 𝑥
2
(𝑡 − 𝛿 (𝑡)) d𝑡

+ 𝑥
1
(𝑡) sin2 (𝑡 − 𝛿 (𝑡)) d𝜔 (𝑡) ,

𝑑 [𝑥
2
(𝑡) − 0.1𝑥

1
(𝑡 − 𝛿 (𝑡))] = − 𝑥

2
(𝑡) 𝑥
1
(𝑡 − 𝛿 (𝑡)) d𝑡

+ 𝑥
2
(𝑡) cos2 (𝑡 − 𝛿 (𝑡)) d𝜔 (𝑡) ,

(29)

where the delay function is defined as 𝛿(𝑡) = (1/4) sin(𝑡), 𝑡 >
0. It is obvious that (29) satisfies the assumptions H

1
and H

2
,

and here 𝐿 = 𝐼, 𝑘 = 0.1. Moreover, since ̇
𝛿 = (1/4) cos(𝑡),

then 𝛿 = 1/4.

According to Theorem 4 and employing MATLAB LMI
Toolbox, it is relatively easy to deduce that the neutral
stochastic differential equation (29) is almost sure exponen-
tially stable.

Remark 5. Comparing with some existing sufficient criteria
for neural stochastic differential equations (e.g., [6, 11, 12]),
the obtained result is given in terms of linear matrix inequal-
ity (LMI), which can be easily checked by MATLAB LMI
Toolbox.

5. Conclusion

The exponential stability is investigated for a class of neutral
stochastic differential equations with time-varying delays.
In order to overcome the difficulties, we introduce suitable
Lyapunov functionals and employ linear matrix inequalities
(LMIs) technique, and then a delay-dependent criteria are
given to check the almost sure exponential stability of the
concerned equations.
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State estimation problem is considered for a kind of wireless network control system with stochastic uncertainty and time delay. A
sliding mode observer is designed for the system under the situation that no missing measurement occurs and system uncertainty
happens in a stochastic way. The observer designed for the system can guarantee the system states will be driven onto the sliding
surface under control law, and the slidingmotion of system states on sliding surfacewill be stable. By constructing proper Lyapunov-
Krasovskii functional, sufficient conditions are acquired via linear matrix inequality. Finally, simulation result is employed to show
the effectiveness of the proposed method.

1. Introduction

During the past decades, state estimation problem is a hot
issue in academical field, and researchers made fruitful
research on both theoretical research and practical applica-
tions [1–4]. At the same time, research and applications in
wireless network control system (WiNCS) attracted much
interest from scholars [5–9]. Compared with wired network
control system, WiNCS is more convenient in integrated
wiring and could be arranged in hazardous area people
cannot easily reach. Sensor nodes are distributed in advance
to collect information and transmit signal back via signal
channel throughmultihop technology, until they reach users’
terminal applications. Because of its low cost, mobility char-
acter, and convenience for using, WiNCS is widely used in
hospital monitoring, military and urban affairs, and some
other important cases [10–13]. However, as the whole system
is becoming complicated and integrated, people want to keep
track of useful measured values, and a rich body of literature

has appeared on the topic of state estimation or observer-
based design; see [14–16] and the references therein.

As a special class of complex networks, WiNCS has its
own characteristics due mainly to large numbers of nodes
distributed over the region of interest. In this case, sensor
nodes may be in mobile motion, which is attributed to the
uncertainty in system state, and much effort has been made
on this issue [17–22]. For distributed state estimation prob-
lem, each sensor node in WiNCS estimates system state not
only from its ownmeasurement but also from its neighboring
nodes, so some unpredictable factors which happen in a
stochastic waywill enhance the complexity in state estimation
[23–25]. Reference [26] studied synchronization problem for
Markovian jump neural networks with time-varying delay
and variable samplings. Stochastic stability of the error system
was guaranteed by two criteria, and mode-independent con-
troller was designed based on the maximum sampling inter-
val. Reference [27] constructed proper Lyapunov-Krasovskii
functional and studied the adaptive fault estimation problems
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for stochastic Markovian jump systems (MJSs), combined
with time delays. Adaptive fault detection observer was
designed and the sufficient condition was proposed. Refer-
ence [28] concentrated on the proportional-integral control
problems of stochastic Markovian jump systems (MJSs) with
uncertain parameters. It transformed the controller design
problem to an output feedback control problem, and a
sufficient condition was proposed via LMI.

Nodes receive measurement information from other
nodes inWiNCSwhich is time consuming, so time delay can-
not be avoided in the research of WiNCS, and many scholars
devoted to this problem [29–33]. Reference [34] considered
the problem that both had discrete and distributed delays,
and the delay dependent passivity condition was acquired.
Reference [35] investigated the problem of sampled-data
extended dissipative control for uncertain Markov jump
systems. By proposing a new integral inequality, a novel
exponential stability criterion and an extended dissipativity
condition were established. In addition, a sufficient condition
for desired mode-independent sampled-data controller was
also obtained. Reference [36] dealt with the average consen-
sus problem in directed networks of agents with switching
topology and time delay. It proved that all the agents could
reach average consensus under a proper time delay if the
topology of agents was weakly connected and balanced.

Motivated by previous research stated above, our target
is to deal with state estimation problem in wireless network
control system, which contains stochastic uncertainty and
time delay. A sliding mode observer is designed in two steps;
by the use of Lyapunov stability theory, sufficient conditions
are proposed to make sure that system states can be driven
onto the sliding surface within finite time and make stable
sliding motion on sliding surface.

The rest of the paper is organized as follows. In Section 2,
the state estimation problem of WiNCS is formulated and
some useful lemmas are introduced. In Section 3, we make
our designing process in two steps. Besides, the gain of
observer is acquired by LMI. An illustrated example is given
in Section 4 to demonstrate the effectiveness of the proposed
method. Finally, we give our conclusions in Section 5.

2. Problem Formulation

In this paper, we consider the following discrete stochastic
and time delay model:

𝑥 (𝑘 + 1) = (𝐴 + 𝛼
𝑘
Δ𝐴) 𝑥 (𝑘) + 𝐴

𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector, 𝑦(𝑘) ∈ R𝑛

is the measured output, Δ𝐴 is internal perturbation arising
from uncertain factors, 𝑢(𝑘) is system input, 𝐴, 𝐴

𝑑
, 𝐵, and 𝐶

are constant matrices with appropriate dimensions, and 𝛼
𝑘
is

Bernoulli distributed white sequences governed by

Prob {𝛼
𝑘
= 1} = E {𝛼

𝑘
} = 𝛼,

Prob {𝛼
𝑘
= 0} = 1 − E {𝛼

𝑘
} = 1 − 𝛼,

(2)

where 𝛼 ∈ [0, 1] is a known constant.

Remark 1. Most nodes inWiNCSmay be in dynamicmotion;
they collect information from areas of interest. However,
they may be affected by external environment, such as
temperature, humidity, and topography, or linkage status
inside the system, so system uncertainty may happen in a
stochastic way, which increases the complexity of the system.

Wemake the following assumptions for systemmodel (1).

Assumption 2. The perturbation parameter of the system
satisfies

Δ𝐴 = 𝐺𝐷 (𝑘)𝐻. (3)

Respectively, 𝐺 and 𝐻 are known constant matrix, 𝐷(𝑘)

is time-delay uncertainmatrix, yet Lebesgue-measurable, and
𝐷
𝑘
(𝑡)𝐷(𝑘) ≤ 𝐼.

Assumption 3. 𝐶
𝑇
𝐶 is full rank.

Assumption 4. All the states of the system can be measured
and no missing measurement occurs.

We construct the following sliding mode observer:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝐵𝑢 (𝑘) + 𝐿 [𝑦 (𝑘) − 𝑦 (𝑘)] + 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(4)

where 𝐿 is the gain of observer to be designed and 𝑤(𝑘) is
nonlinear item in observer.

So the state error 𝑒
𝑥
(𝑘) and output error 𝑒

𝑦
(𝑘) of the

system are as follows:

𝑒
𝑥
(𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) ,

𝑒
𝑦
(𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(5)

In this case, the system error model is

𝑒
𝑥
(𝑘 + 1) = (𝐴 − 𝐾𝐶) 𝑒

𝑥
(𝑘) + (𝛼

𝑘
− 𝛼)Δ𝐴𝑥 (𝑘)

+ 𝛼Δ𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤 (𝑘) ,

𝑒
𝑦
(𝑘 + 1) = 𝐶𝑒

𝑥
(𝑘) .

(6)

We define the sliding surface 𝑠(𝑘) as

𝑠 (𝑘) = 𝑒
𝑦
(𝑘) . (7)
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Our target in this paper is to find the gain of observer 𝐿

and the nonlinear input𝑤(𝑘) that can drive system state onto
the sliding surface within finite time and, in addition, make
sure that sliding motion of system states on sliding surface
is stable. Two conditions should be satisfied when designing
sliding mode observer [37]:

(1) system error model is asymptotically stable when
𝑠(𝑘 + 1) = 𝑠(𝑘) = 0;

(2) sliding mode manifold satisfies ‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖.

Remark 5. We set system output error as sliding surface; the
benefit is, condition (1) guarantees that sliding motion on
sliding surface is stable, and condition (2) ensures that system
state can be driven onto sliding surface within finite time.
In this case, we convert state estimation problem into sliding
mode observer design problem.

Besides, some useful and important lemmas that will be
used in deriving out results are introduced below.

Lemma 6. Let𝑌 = 𝑌
𝑇,𝐷,𝐸, and 𝐹(𝑡) be real matrix of proper

dimensions, and 𝐹
𝑇
(𝑡)𝐹(𝑡) ≤ 𝐼; then inequality 𝑌 + 𝐷𝐹𝐸 +

(𝐷𝐹𝐸)
𝑇
< 0 holds if there exists a constant 𝜀, which makes the

following equation hold:

𝑌 + 𝜀𝐷𝐷
𝑇
+ 𝜀
−1
𝐸
𝑇
𝐸 < 0. (8)

Lemma 7 (Schur complement). Given a symmetric matrix
𝑆 = [
𝑆
11
𝑆
12

𝑆
21
𝑆
22

], where 𝑆
11
is 𝑟×𝑟 dimensional, the following three

conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆
11

< 0, 𝑆
22

− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;

(3) 𝑆
22

< 0, 𝑆
11

− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 8. For any 𝑥, 𝑦 ∈ 𝑅
𝑛, 𝜇 > 0, the following equation

holds:

2𝑥
𝑇
𝑦 ≤ 𝜇𝑥

𝑇
𝑥 +

1

𝜇

𝑦
𝑇
𝑦. (9)

3. Main Results

In this section, two theorems will be given. The first one
ensures that system states can reach the sliding surface within
finite time.

Theorem 9. For system error model (6) which meets Assump-
tions 2, 3, and 4, and 𝑤(𝑘) = 𝑤

1
(𝑘) + 𝑤

2
(𝑘), where 𝑤

1
(𝑘) =

𝐴
𝑑
∑
𝑁

𝑖=1
𝑒
𝑥
(𝑘−𝑖),𝑤

2
(𝑘) = 𝐺𝐻𝑥(𝑘), system states will be driven

onto the sliding surfacewithin finite time if there exists a general
matrix 𝐿 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑦 making (10) hold:

[
−𝐶
𝑇
𝐶 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇

∗ −𝐼

] < 0. (10)

Proof. Considering 𝑠(𝑘 + 1) = 𝑒
𝑦
(𝑘 + 1) = 𝐶𝑒

𝑥
(𝑘 + 1) and

‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖, we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

= E {𝑒
𝑇

𝑦
(𝑘 + 1) 𝑒

𝑦
(𝑘 + 1) − 𝑒

𝑇

𝑦
(𝑘) 𝑒
𝑦
(𝑘)}

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒
𝑥
(𝑘)

+ 2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+ 2𝑒
𝑇

𝑥
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

+ 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝑤 (𝑘)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘) + 𝛼𝑥

𝑇
(𝑘)Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + 𝑤

𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) .

(11)

According to Lemma 8, we have

2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

≤ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘) ,

(12)

2𝑒
𝑥
(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘) (𝑘 − 𝑖)

≤ 𝑒
𝑥
(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘)
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘) (𝑘 − 𝑖) ,

(13)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) ,

(14)
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2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘)

+ 𝑤
𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) ,

(15)

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝑤 (𝑘)

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + 𝑤

𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤(𝑘) ,

(16)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘) + 𝛼𝑤

𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) .

(17)

Substituting (12) to (17) into (11), we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘)[(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒
𝑥
(𝑘)

+ 𝑥
𝑇
(𝑘) [(3 + 𝛼) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴] 𝑥 (𝑘)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) [(3 + 𝛼)𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴
𝑇

𝑑
]

×

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + (3 + 𝛼)𝑤

𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒
𝑥
(𝑘)

+ [Δ𝐴𝑥 (𝑘) − 𝑤
2
(𝑘)]
𝑇

(3 + 𝛼) 𝐶
𝑇
𝐶 [Δ𝐴𝑥 (𝑘) − 𝑤

2
(𝑘)]

+ [𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

𝑇

× (3 + 𝛼)𝐶
𝑇
𝐶[𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇

× 𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒
𝑥
(𝑘)

+ [𝐺𝐻𝑥 (𝑘) − 𝑤
2
(𝑘)]
𝑇

(3 + 𝛼) 𝐶
𝑇
𝐶 [𝐺𝐻𝑥 (𝑘) − 𝑤

2
(𝑘)]

+ [𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

𝑇

× (3 + 𝛼)𝐶
𝑇
𝐶[𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)] .

(18)

We make 𝑤
1
(𝑘) = 𝐴

𝑑
∑
𝑁

𝑖=1
𝑒
𝑥
(𝑘 − 𝑖), 𝑤

2
(𝑘) = 𝐺𝐻𝑥(𝑘), so

we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒
𝑥
(𝑘)

≤ 0.

(19)

By Schur complement, inequality (19) is equivalent to

[
−𝐶
𝑇
𝐶 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇

∗ −𝐼

] < 0. (20)

The proof of Theorem 9 is complete.

Next, we will prove that sliding motion on sliding surface
is stable.

Theorem 10. For system errormodel (6)whichmeets Assump-
tions 2, 3, and 4, and 𝑤(𝑘) = 𝑤

1
(𝑘) + 𝑤

2
(𝑘), where 𝑤

1
(𝑘) =

𝐴
𝑑
∑
𝑁

𝑖=1
𝑒
𝑥
(𝑘 − 𝑖), 𝑤

2
(𝑘) = 𝐺𝐻𝑥(𝑘), sliding motion of system

states on sliding surface will be stable if there exists a general
matrix 𝐿 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑦 and 𝑃 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑥 making (21) hold:

[
−𝑃 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝑃

∗ −𝑃

] < 0. (21)

Proof. We construct the following Lyapunov-Krasovskii
functional:

𝑉 (𝑘) = 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) . (22)

Making difference of 𝑉(𝑘), we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒

𝑥
(𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘)}

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒

𝑥
(𝑘)

+ 2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+ 2𝑒
𝑇

𝑥
(𝐴 − 𝐿𝐶)

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃𝑤 (𝑘)

+ 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝑤 (𝑘) + 2𝛼𝑥

𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝑤 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + 𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) .

(23)
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According to Lemma 8, we have

2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃Δ𝐴𝑥 (𝑘)

≤ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘) ,

(24)

2𝑒
𝑥
(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘) (𝑘 − 𝑖)

≤ 𝑒
𝑥
(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) ,

(25)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) ,

(26)

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃𝑤 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘) + 𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) ,

(27)

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝑤 (𝑘)

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴
𝑑

×

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + 𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) ,

(28)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝑤 (𝑘)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘) + 𝛼𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) .

(29)

Substituting (24) to (29) into (23), we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒

𝑥
(𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒

𝑥
(𝑘)

+ 𝑥
𝑇
(𝑘) [(3 + 𝛼) Δ𝐴

𝑇
𝑃Δ𝐴] 𝑥 (𝑘)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) [(3 + 𝛼)𝐴

𝑇

𝑑
𝑃𝐴
𝑇

𝑑
]

×

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + (3 + 𝛼)𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒

𝑥
(𝑘)

+ [Δ𝐴𝑥 (𝑘) − 𝑤
2
(𝑘)]
𝑇

(3 + 𝛼) 𝑃 [Δ𝐴𝑥 (𝑘) − 𝑤
2
(𝑘)]

+ [𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

𝑇

× (3 + 𝛼) 𝑃[𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒

𝑥
(𝑘)

+ [𝐺𝐻𝑥 (𝑘) − 𝑤
2
(𝑘)]
𝑇

(3 + 𝛼) 𝑃 [𝐺𝐻𝑥 (𝑘) − 𝑤
2
(𝑘)]

+ [𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)]

𝑇

× (3 + 𝛼) 𝑃[𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝑤

1
(𝑘)] .

(30)

We make𝑤
1
(𝑘) = 𝐴

𝑑
∑
𝑁

𝑖=1
𝑒
𝑥
(𝑘 − 𝑖), 𝑤

2
(𝑘) = 𝐺𝐻𝑥(𝑘), so

we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒

𝑥
(𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒

𝑥
(𝑘)

≤ 0.

(31)

By Schur complement again, inequality (31) is equivalent
to

[
−𝑃 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝑃

∗ −𝑃

] < 0. (32)

The proof of Theorem 10 is complete.

4. Numerical Simulations

In this section, a numerical simulation is given for testing the
theorems developed in this paper. Consider the systemmodel
(1), where

𝐴 = [

[

6.18 0 −3

5.64 1.005 3.15

2.97 0 3.3

]

]

,

𝐴
𝑑
= [

[

−3.38 0.15 0

−0.285 0.93 0.48

−0.555 1.17 2.235

]

]

,

𝐶 = [

[

2.8800 1.1048 0.0150

1.3095 0.7680 0.0195

0.0930 0.0315 1.0800

]

]

, 𝐵 = [

[

1.2

0.7

1

]

]

,
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Figure 1: Trajectories of system states and observed value.

𝐺 = [

[

0.1 0.2 −0.1

0 0.23 −0.76

0.87 0.5 −0.32

]

]

,

𝐻 = [

[

0.184 0.112 0.23

0.097 −0.16 −0.156

−0.277 −0.069 −0.152

]

]

,

𝐷 (𝑘) = [

[

0.8 sin (0.7𝑘) 0 0

0 0.8 sin (0.7𝑘) 0

0 0 0.8 sin (0.7𝑘)

]

]

,

𝑢 (𝑘) = sin (0.3𝑘) , 𝛼 = 0.15.

(33)

The initial states are𝑥(𝑘) = [1.3 0.427−0.92]
𝑇; according

toTheorems 9 and 10, we have

𝐿 = [

[

6.3100 −8.9663 −2.7035

3.8252 −4.3148 2.9414

2.8593 −4.2400 3.0924

]

]

,

𝑃 = 10
5
× [

[

1.3987 0 0

0 1.3987 0

0 0 1.3987

]

]

.

(34)

Simulation results are shown in Figure 1; red line denotes
real states value and blue line denotes observed value.
From the figure, we can see that the estimated value tracks
the real value very well, which can fully demonstrate the
effectiveness of the proposed method. States error is shown
in Figure 2, which is much smaller than observer design
method proposed in [38], shown in Figure 3; this is because
slide mode control is insensitive to uncertainty and external
disturbance. However, we can see from Figure 2 that when
system states are at turning point, states error becomes larger;
this is because chattering is inevitable in slide mode control,
which is our future work.
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Figure 2: Trajectories of system states error.
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Figure 3: Trajectories of system states error by applying method
proposed in [38].

5. Conclusion

This paper considers state estimation problem in wireless
network control system with stochastic uncertainty and time
delay. System uncertainty is assumed to occur in a stochastic
way, which increases system complexity, and time delay
is also considered. A sliding mode observer is designed
in two steps; by constructing proper Lyapunov-Krasovskii
functional, sufficient condition is acquired via linear matrix
inequality. Finally, simulation result is employed to show the
effectiveness of the proposed method.
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The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is
introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account.
The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By
adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with
stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an
illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault
in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which
demonstrate the effectiveness of the theoretical results.

1. Introduction

The network technology has received compelling attention
during the past decades [1]. The networked control system,
which plays an important role inmodern industry such as the
car industry and the health care, can usually be classified into
thewired networked control system (WNCS) and thewireless
networked control system (WiNCS) [2, 3]. Compared with
WNCS, WiNCS is a comparatively new technology, which
is widely used in military, monitory, and other complex
situations. In WiNCS, large numbers of sensor nodes are
arranged in the region of interest; due to the characteristics
of the wireless communication, information flows among
nodes are dynamic. As the structure of WiNCS becomes
increasinglymodular, system faultsmay result in fatal damage
to the whole system. As a result, the fault detection problem
for WiNCS deserves to be investigated.

The fault detection problem for WiNCS has been studied
extensively in recent years [4–10]. Reference [7] considers the
fault detection problem for WiNCS with access constraints
and random packet dropouts. The residual generation is car-
ried out based on a deterministic formulation and a residual

evaluation is proposed by considering the random packet
dropouts. In addition,with the help ofChebyshev’s inequality,
the fault detection threshold value is obtained. Reference
[8] investigates the fault detection problem for a class of
linear time invariant systems with limited network quality of
services (QoS). The probabilistic switching between different
situations is required to obey a homogeneous Markovian
chain. In [9], the adaptive observer-based fault estimation
problem is studied; by exploring the augmentedmatrix, error
dynamic systems are transferred toMarkov jumping systems.
In [10], the T-S fuzzy model is adopted to describe the system
model, with the benefit that the exact value of network-
induced delay is not necessarily known; a fuzzy observer-
based approach for the fault detection is developed.

InWiNCS, the sensor nodes gather information from the
plant and pass the information to the designed controller
via the bus structure. However, as the sensor nodes may be
influenced by several unexpected factors such as temperature
and moisture, not all the sensor nodes are in the working
status. When some nodes are not working, the information
flow may be transmitted from other signal channels, which
arouses in the uncertainties of WiNCS. On the other hand,
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as the information transmission is time consuming, time
delays arise naturally in WiNCS.The fault detection problem
for wireless networked control systems with both stochastic
uncertainties and multiple time delays has not been consid-
ered in the literature, which motivates the work in this paper.
In this paper, we investigate the fault detection for a class of
wireless networked control systems. A Bernoulli distributed
parameter is introduced in modeling the system dynamics
and the detection observer for tracking the system states is
designed. By adopting the linear matrix inequality method,
a sufficient condition for the stability of wireless networked
control systems with stochastic uncertainties and multiple
time delays is proposed, and the gain of the fault detection
observer is obtained. Finally, an example is given to show the
effectiveness of proposed method.

The rest of this paper is organized as follows. In Section 2,
we provide the problem formulation. In Section 3, the suffi-
cient condition for the stability of WiNCS is obtained by the
linear matrix inequality method. An illustrative example is
given in Section 4 and Section 5 is a brief conclusion of this
paper.

2. Problem Formulation

Consider a class of WiNCS. The system model is given as
follows:

𝑥 (𝑘+ 1)=(𝐴+𝛼
𝑘
𝐴)𝑥 (𝑘)+𝐴

𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)+𝐵𝑢 (𝑘)+ 𝐸
𝑓
𝑓 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛𝑥 denotes the state without delays, 𝑥(𝑘 − 𝑖) ∈
R𝑛𝑥 denotes the delayed state of the system, 𝑢(𝑘) ∈ R𝑛𝑢
denotes the system input, 𝑓(𝑘) ∈ R𝑛𝑓 denotes the fault of
the system, 𝑦(𝑘) ∈ R𝑛𝑦 denotes the system output, 𝛼

𝑘
is the

stochastic variable, and 𝐴, 𝐴, 𝐴
𝑑
, 𝐵, 𝐸
𝑓
, and 𝐶 are constant

matrices with appropriate dimensions. The control law 𝑢(𝑘)

has the following form:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

where𝐾 is the parameter matrix.
In this paper, the stochastic variable 𝛼

𝑘
is assumed to be

a Bernoulli distributed sequence, which represents whether
the communication environment changes or not at each
nonnegative integer time 𝑘. We assume that 𝛼

𝑘
= 0 when

there is no change in communication environment, and 𝛼
𝑘
=

1 when the network environment changes. Moreover, the
following equations hold:

𝑃 {𝛼
𝑘
= 1} = 𝛼,

𝑃 {𝛼
𝑘
= 0} = 1 − 𝛼,

(3)

where 𝛼 ∈ [0, 1] is a given constant.

In order to generate a residual signal, we design the fault
detection observer for model (1) as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝐵𝐾𝑥 (𝑘) + 𝐿 [𝑦 (𝑘) − 𝑦 (𝑘)] ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(4)

where 𝑥(𝑘) and 𝑦(𝑘) are the state and the output of the
observer and 𝐿 is the parameter of the observer to be
designed.

Let

𝑒
𝑥
(𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) ,

𝑒
𝑦
(𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(5)

The error model of the system is given as

𝑒
𝑥
(𝑘 + 1) = (𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑒

𝑥
(𝑘) + (𝛼

𝑘
− 𝛼)𝐴𝑥 (𝑘)

+ 𝛼𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) ,

𝑒
𝑦
(𝑘) = 𝐶𝑒

𝑥
(𝑘) .

(6)

Next, we define the system residual as 𝑟(𝑘) = 𝑒
𝑦
(𝑘). Note

that if there is no fault in the system, the residual is close to
zero.We set up the residual evaluation function 𝐽 and the fault
threshold 𝐽th as

𝐽 (𝑘) = √

𝑁

∑

𝑘=1

𝑟
𝑇
(𝑘) 𝑟 (𝑘),

𝐽th = sup 𝐽 (𝑘) .

(7)

By comparing 𝐽 and 𝐽th, it can be decided whether the
fault happens or not:

𝐽 ≤ 𝐽th No fault happens,

𝐽 > 𝐽th Fault happens.
(8)

Lemma 1 (Schur complement). For matrices𝐴, 𝐵, and𝐶,𝐴+
𝐵
𝑇
𝐶𝐵 < 0 equals

[
𝐴 𝐵

𝑇

𝐵 −𝐶
−1] < 0 or [

−𝐶
−1

𝐵

𝐵
𝑇

𝐴

] < 0. (9)

3. Main Results

In this section, a fault detection observer will be designed
based on the Lyapunov stability theory. A sufficient condition
for the stability of the system is obtained by the linear matrix
inequalities.
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Theorem2. The error system (6) is quadratically stable if there
exist matrices 𝑃 > 0, 𝑄 > 0, and 𝑅 > 0 with appropriate
dimensions satisfying the following inequality:

𝑊

=(

𝑊


11
𝑊
12

𝑊
13

𝑊
14

𝑊
15

∗ 𝑊


22
0 𝑊

24
𝑊
25

∗ ∗ 𝑊


33
0 𝑊

35

∗ ∗ ∗ 𝑊


44
𝑊
45

∗ ∗ ∗ ∗ 𝑊
55

)< 0, (10)

where

𝑊


11
= 𝛼(𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴 + 𝛼𝐴

𝑇
𝑃 (𝐴 + 𝐵𝐾) − 𝑃 + 𝑁𝑄,

𝑊
12
= 𝛼𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) − 𝛼𝐴

𝑇
𝑅𝐶,

𝑊
13
= (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴
𝑑
+ 𝛼𝐴
𝑇
𝑃𝐴
𝑑
,

𝑊
14
= 𝛼𝐴
𝑇
𝑃𝐴
𝑑
,

𝑊
15
= [(𝐴 + 𝐵𝐾)

𝑇
𝑃 √2𝛼𝐴

𝑇
𝑃 √2𝛼𝐴

𝑇
𝑃 0 0 0] ,

𝑊


22
= 𝑁𝑄 − 𝑃,

𝑊
24
= (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴
𝑑
− (𝑅𝐶)

𝑇
𝐴
𝑑
,

𝑊
25
= [0 0 0 (𝐴 + 𝐵𝐾)

𝑇
𝑃 − (𝑅𝐶)

𝑇
0 0] ,

𝑊


33
= −

2

(1 + 𝑁)𝑁

𝑄,

𝑊
35
= [0 0 0 0 𝐴

𝑇

𝑑
𝑃 0] ,

𝑊


44
= −

2

(1 + 𝑁)𝑁

𝑄,

𝑊
45
= [0 0 0 0 0 𝐴

𝑇

𝑑
𝑃] ,

𝑊
55
= diag {−𝑃, −𝑃, −𝑃, −𝑃, −𝑃, −𝑃} ,

𝛼 = √𝛼 (1 − 𝛼),

𝑅 = 𝐿
𝑇
𝑃.

(11)

Proof. We choose the following Lyapunov function:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) . (12)

where

𝑉
1
(𝑘) = 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) + 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑁

∑

𝑖=1

𝑘−1

∑

𝑙=𝑘−𝑖

{𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒

𝑥
(𝑘) + 𝑥

𝑇
(𝑘) 𝑄𝑥 (𝑘)} .

(13)

Calculate the difference of (12) along system (6); we have

𝐸Δ𝑉
1
(𝑘) = 𝑒

𝑇

𝑥
(𝑘 + 1) 𝑃𝑒

𝑥
(𝑘 + 1) + 𝑥

𝑇
(𝑘 + 1) 𝑃𝑥 (𝑥 + 1)

− 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒

𝑥
(𝑘)

+ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+ 𝛼 (1 − 𝛼) 𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒

𝑥
(𝑘)

+ 𝛼
2
𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒

𝑥
(𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

− 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘)

+ 𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝛼 (1 − 𝛼) 𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼
2
𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑥 (𝑘)
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+

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴
𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

− 𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) .

(14)

According to Jensen’s inequality, we have

𝐸Δ𝑉
2
(𝑘) =

𝑁

∑

𝑖=1

{

𝑘

∑

𝑙=𝑘+1−𝑖

𝑒
𝑇

𝑥
(𝑙) 𝑄𝑒

𝑥
(𝑙)

−

𝑘−1

∑

𝑙=𝑘−𝑖

𝑒
𝑇

𝑥
(𝑙) 𝑄𝑒

𝑥
(𝑙)

+

𝑘

∑

𝑙=𝑘+1−𝑖

𝑥
𝑇
(𝑙) 𝑄𝑥 (𝑙) −

𝑘−1

∑

𝑙=𝑘−𝑖

𝑥
𝑇
(𝑙) 𝑄𝑥 (𝑙)}

=

𝑁

∑

𝑖=1

{𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒

𝑥
(𝑘) − 𝑒

𝑇

𝑥
(𝑘 − 𝑖) 𝑄𝑒

𝑥
(𝑘 − 𝑖)

+ 𝑥
𝑇
(𝑘) 𝑄𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑖) 𝑄𝑥 (𝑘 − 𝑖)}

≤ 𝑁𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒

𝑥
(𝑘) + 𝑁𝑥

𝑇
(𝑘) 𝑄𝑥 (𝑘)

−

2

(1 + 𝑁)𝑁

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝑄

𝑁

∑

𝑖=1

𝑒
𝑥
(𝑘 − 𝑖)

−

2

(1 + 𝑁)𝑁

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝑄

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖) .

(15)

Substituting 𝐸Δ𝑉
1
(𝑘) and 𝐸Δ𝑉

2
(𝑘) into (12), we have

𝐸Δ𝑉 (𝑘) = 𝐸Δ𝑉
1
(𝑘) + 𝐸Δ

2
𝑉 (𝑘)

= 𝑍
𝑇
(𝑘)𝑊𝑍 (𝑘) ,

(16)

where

𝑍 (𝑘) = [𝑥
𝑇
(𝑘) 𝑒
𝑇

𝑥
(𝑘)

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖)]

𝑇

,

𝑊 = (

𝑊
11

𝑊
12

𝑊
13

𝑊
14

∗ 𝑊
22

0 𝑊
24

∗ ∗ 𝑊
33

0

∗ ∗ ∗ 𝑊
44

),

𝑊
11
= (𝐴 + 𝐵𝐾)

𝑇
𝑃 (𝐴 + 𝐵𝐾)

+ 𝛼(𝐴 + 𝐵𝐾)
𝑇
𝑃𝐴 + 2𝛼 (1 − 𝛼)𝐴

𝑇
𝑃𝐴,

+ 𝛼𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) + 2𝛼

2
𝐴
𝑇
𝑃𝐴 − 𝑃 + 𝑁𝑄,

𝑊
22
= (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) − 𝑃 + 𝑁𝑄,

𝑊
33
= 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
−

2

(1 + 𝑁)𝑁

𝑄,

𝑊
44
= 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
−

2

(1 + 𝑁)𝑁

𝑄,

(17)

and𝑊
12
,𝑊
13
,𝑊
14
, and𝑊

24
are the same as in (10).

According to the Lyapunov stability theory, the error
system is stable if

𝑊 < 0. (18)

According to Lemma 1, (18) is equivalent to

𝑊

=

(
(
(
(
(
(

(

𝑊


11
𝑊
12

𝑊
13

𝑊
14

𝑊


15

∗ 𝑊


22
0 𝑊

24
𝑊


25

∗ ∗ 𝑊


33
0 𝑊



35

∗ ∗ ∗ 𝑊


44
𝑊


45

∗ ∗ ∗ ∗ 𝑊


55

)
)
)
)
)
)

)

< 0, (19)

where

𝑊


15
= [(𝐴 + 𝐵𝐾)

𝑇
√2𝛼𝐴

𝑇
√2𝛼𝐴

𝑇
0 0 0] ,

𝑊


25
= [0 0 0 (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
0 0] ,

𝑊


35
= [0 0 0 0 𝐴

𝑇

𝑑
0] ,

𝑊


45
= [0 0 0 0 0 𝐴

𝑇

𝑑
] ,

𝑊


55
= diag {−𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1} .

(20)

We set 𝑅 = 𝐿
𝑇
𝑃 and multiply diag{𝐼, 𝐼, 𝐼, 𝐼, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃}

on both sides of (19). Then we can get inequality (10). The
proof is completed.

Remark 3. As is well known, the randomly occurring phe-
nomena have been extensively investigated in recent years. In
this paper, we consider the case where the communication
environment is affected by some factors in a probabilistic way
described by Bernoulli random variable 𝛼

𝑘
.

Remark 4. In practice, many systems have stochastic Marko-
vian jumping dynamics [11–15]. Future research efforts will
be devoted to the fault detection for wireless sensor networks
with stochastic Markovian jumping dynamics.

4. An Illustrative Example

In this section, we will provide a numerical example to
illustrate the effectiveness of the theoreticalresults.
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Figure 1: System residual signal with fault.

Example 1. Consider system (1), where

𝐴 = (

0.4985 0.4849 −0.7260

0.4550 0.4441 1.1011

0.2396 0 0.2662

) ,

𝐴
𝑑
= (

−0.2807 0.0121 0

−0.0230 0.0750 0.0387

−0.0448 0.0944 0.1803

) ,

𝐵 = (

0.0883

0.0544

0.0835

) ,

𝐶 = (

2.3232 0.8912 0.0121

1.0563 0.6195 0.0157

0.0750 0.0254 0.8712

) ,

𝐴 = (

−0.0102 0.0239 0.0101

0 −0.1018 0.1201

0.2120 −0.0349 0.0002

) ,

𝐾 = (275.7123 245.9043 −350.6332) .

(21)

We set 𝛼 = 0.2, and 𝑃, 𝑄, and 𝑅 can be obtained as

𝑃 = (

131.2345 28.2728 7.8883

28.2728 110.5035 −5.9995

7.8883 −5.9995 196.6286

) ,

𝑄 = (

15.7873 −0.0697 −0.0521

−0.0697 15.2671 0.1465

−0.0521 0.1465 15.3377

) ,

𝑅 = (

−46.0191 −51.8770 71.2995

170.4173 158.7889 −128.9558

−89.4728 102.9384 27.9875

) .

(22)
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Figure 2: System fault in different states.

Moreover, we have

𝐿 = (

−0.2917 1.0973 −0.9504

−0.3751 1.1201 1.1865

0.3629 −0.6657 0.2167

) . (23)

When fault happens at sampling time 30, we can see that
residual signal rises quickly, which indicates that fault occurs,
as shown in Figure 1. In addition, we can clearly see different
fault happens in every state from Figure 2.

5. Conclusion

In this paper, we discussed the fault detection problem
for WiNCS with both stochastic uncertainties and multiple
time delays. By adopting the Lyapunov method, a sufficient
condition for the stability of the system is provided, and the
gain of observer is also acquired. Finally, simulation results
show the effectiveness of theoretical results.
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Explicit formulae of constants within the a posteriori error estimate for optimal control problems are investigated with Legendre-
Galerkin spectral methods. The constrained set is put on the control variable. For simpleness, one-dimensional bounded domain
is taken. Meanwhile, the corresponding a posteriori error indicator is established with explicit constants.

1. Introduction

Recently, spectral method has been extended to approximate
the discretization of partial differential equations for design
optimization, engineering design, and other engineering
computations. It provides higher accurate approximations
with a relatively small number of unknowns if the solution is
smooth; see [1].There have been extensive researches on finite
element methods for optimal control problems, which focus
on control-constrained problems; see [2–8]. The authors
[9] studied state-constrained optimal control problems with
finite element methods. However, there are few works on
optimal control problems with spectral methods.

In order to get a numerical solution with acceptable
accuracy, spectral methods only increase the degree of basis
where the error indicator is larger than the a posteriori error
indicator, while the finite element methods refine meshes
(see [10]). There have been lots of papers concerning on a
posteriori error estimates for ℎ-version finite element meth-
ods, but not for spectral methods. Guo [11] got a reliable and
efficient error indicator for 𝑝-version finite element method
in one dimension with a certain weight. Zhou and Yang
[12] deduced a simple error indicator for spectral Galerkin
methods. In [13], the authors investigated Legendre-Galerkin
spectral method for optimal control problems with integral
constraint for state in one-dimensional bounded domain. It is
difficult to obtain optimal a posteriori error estimates.Thus, if

one gets the constants within upper bound a posteriori error
estimates, it is easy to ensure the degree of polynomials to get
an acceptable accuracy.

In this paper, the control-constrained optimal control
problems are solved with Legendre-Galerkin spectral meth-
ods, and constants within upper bound of the a posteriori
error indicator, which can be used to decide the least
unknowns for acceptable accuracy, are proposed. By intro-
ducing auxiliary systems, explicit formulae of the constants
within the a posteriori error estimates are obtained.

The outline of this paper is as follows. In Section 2, the
model problem and its Legendre-Galerkin spectral approx-
imations are listed. In Section 3, the constants within the a
posteriori error estimates are investigated in details, and the
explicit formulae are obtained. The conclusions are given in
Section 4.

2. A Model Problem and Its Legendre-Galerkin
Spectral Approximations

Throughout this paper, we focus on 𝐼 = (−1, 1) and adopt the
standard notations 𝑊𝑚,𝑝 for Sobolev spaces with the norm
‖ ⋅ ‖
𝑊
𝑚,𝑝 and the seminorm | ⋅ |

𝑊
𝑚,𝑝 ; see [14]. Specially, we set

𝑊
𝑚,𝑝

0
= {𝑤 ∈ 𝑊

𝑚,𝑝
: 𝑤|
𝜕𝐼
= 0}. If 𝑝 = 2, we denote𝑊𝑚,2 and

𝑊
𝑚,2

0
by𝐻𝑚 and𝐻1

0
, respectively.
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The problem in which we are interest is the following
distributed convex optimal control problem with integral
constraint on the control variable:

min
𝑢∈𝐾

𝐽 (𝑢, 𝑦) =

1

2

∫

𝐼

(𝑦 − 𝑦
𝑑
)
2

+

𝛼

2

∫

𝐼

𝑢
2
, (1)

subject to − 𝑦

= 𝑓 + 𝑢 in 𝐼,

𝑦



𝜕𝐼

= 0,

(2)

where 𝐾 = {𝑤 ∈ 𝐿
2
(𝐼) : ∫

𝐼
𝑤 ≥ 0}, and the control variable

𝑢 ∈ 𝑈 = 𝐿
2
(𝐼), the state variable 𝑦 ∈ 𝑉 = 𝐻

1

0
(𝐼), and 𝑦

𝑑
∈

𝐿
2
(𝐼) is the observation.
In order to assure existence and regularity of the solution,

we assume that 𝑓 and 𝑦
𝑑
are infinitely smooth functions; 𝛼

is a given positive constant, for simplicity, we set 𝛼 = 1. It is
well-known that (1) has a unique solution (see [5, 15]).

Now, we introduce the weak formula of (1). We give some
basic notations which will be used in the sequel. Let

(V, 𝑤) = ∫
𝐼

V𝑤, ∀V, 𝑤 ∈ 𝐿
2
(𝐼) ,

𝑎 (V, 𝑤) = ∫
𝐼

V𝑤, ∀V, 𝑤 ∈ 𝐻
1

0
(𝐼) .

(3)

Hence, the state equation (2) reduces to

𝑎 (𝑦, 𝑤) = (𝑓 + 𝑢, 𝑤) , ∀𝑤 ∈ 𝐻
1

0
(𝐼) . (4)

Then, (1) can be rewritten as follows: find (𝑢, 𝑦) such that

(P)

{

{

{

min
𝑢∈𝐾

𝐽 (𝑢, 𝑦) =

1

2

∫

𝐼

(𝑦 − 𝑦
𝑑
)
2

+

1

2

∫

𝐼

𝑢
2
,

s.t. 𝑎 (𝑦 (𝑢) , 𝑤) = (𝑓 + 𝑢, 𝑤) , ∀𝑤 ∈ 𝑉.

(5)

We recall following optimality conditions of the optimal
control problem (for the details, please refer to [8, 15]): (1) has
a unique solution (𝑦, 𝑢). Meanwhile, (𝑦, 𝑢) is the solution of
(1) if and only if there is a costate 𝑝 ∈ 𝑉 such that the triplet
(𝑦, 𝑝, 𝑢) satisfies the following optimal conditions:

𝑎 (𝑦, 𝑤) = (𝑓 + 𝑢, 𝑤) , ∀𝑤 ∈ 𝑉,

𝑎 (𝑞, 𝑝) = (𝑦 − 𝑦
𝑑
, 𝑞) , ∀𝑞 ∈ 𝑉,

(𝑢 + 𝑝, V − 𝑢) ≥ 0, ∀V ∈ 𝐾 ⊂ 𝑈.

(6)

Let P
𝑁
(𝐼) = {polynomials of degree ⩽ 𝑁 on 𝐼} and let

𝑉
𝑁
= P
𝑁
∩𝐻
1

0
(𝐼). One may expand the discrete polynomial

spaces as

𝑉
𝑁
= span {𝜙

1
(𝑥) , 𝜙

2
(𝑥) , . . . , 𝜙

𝑁
(𝑥)} ⊂ 𝑉,

𝑈
𝑁
= P
𝑁
(𝐼) ∩ 𝑈, 𝐾

𝑁
= P
𝑁
(𝐼) ∩ 𝐾.

(7)

One prefers to choose appropriate bases of 𝑉
𝑁
such that the

resulting linear system is as simple as possible. Following [16],
we choose the basis functions as

𝜙
𝑖
(𝑥) = 𝑐

𝑖
(𝐿
𝑖−1

(𝑥) − 𝐿
𝑖+1

(𝑥)) , 𝑐
𝑖
=

1

√4𝑖 + 2

,

𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝐿
𝑟
(𝑥) denotes the 𝑟-th degree Legendre polynomial.

Then,Galerkin spectral approximations of (5) read as follows:
find (𝑢

𝑁
, 𝑦
𝑁
) such that

(P
𝑁
)

{

{

{

min
𝑢
𝑁
∈𝐾⊂𝑈

𝑁

𝐽 (𝑢
𝑁
, 𝑦
𝑁
) =

1

2

∫

𝐼

(𝑦
𝑁
− 𝑦
𝑑
)
2

+

1

2

∫

𝐼

𝑢
2

𝑁
,

s.t. 𝑎 (𝑦
𝑁
, 𝑤
𝑁
) = (𝑓 + 𝑢

𝑁
, 𝑤
𝑁
) , ∀𝑤

𝑁
∈ 𝑉
𝑁
.

(9)

It is obvious that (9) has a solution(𝑦
𝑁
, 𝑢
𝑁
) and (𝑦

𝑁
, 𝑢
𝑁
) is

the solution if and only if there is a costate 𝑝
𝑁
∈ 𝑉
𝑁
satisfies

the triplet (𝑦
𝑁
, 𝑝
𝑁
, 𝑢
𝑁
) such that

𝑎 (𝑦
𝑁
, 𝑤
𝑁
) = (𝑓 + 𝑢

𝑁
, 𝑤
𝑁
) , ∀𝑤

𝑁
∈ 𝑉
𝑁
,

𝑎 (𝑞
𝑁
, 𝑝
𝑁
) = (𝑦

𝑁
− 𝑦
𝑑
, 𝑞
𝑁
) , ∀𝑞

𝑁
∈ 𝑉
𝑁
,

(𝑢
𝑁
+ 𝑝
𝑁
, V
𝑁
− 𝑢
𝑁
) ≥ 0, ∀V

𝑁
∈ 𝐾
𝑁
.

(10)

Now, we are at the point to analyse the relationship between
the optimal control and costate, which reads as follows:

𝑢 = max {0, 𝑝} − 𝑝, (11)

where 𝑝 denotes the integral average on 𝐼 of the costate 𝑝 (see
[2]). Thus, for Galerkin spectral approximations, it follows
that there holds

𝑢
𝑁
= max {0, 𝑝

𝑁
} − 𝑝
𝑁
. (12)

Let

𝐽 (𝑢) =

1

2

∫

𝐼

(𝑦 − 𝑦
𝑑
)
2

+

1

2

∫

𝐼

𝑢
2
,

𝐽
𝑁
(𝑢
𝑁
) =

1

2

∫

𝐼

(𝑦
𝑁
− 𝑦
𝑑
)
2

+

1

2

∫

𝐼

𝑢
2

𝑁
.

(13)

It is clear that 𝐽(⋅) is uniformly convex. Then, there exits a
𝑐
0
> 0 independent of𝑁, such that

(𝐽

(𝑢) − 𝐽


(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
) ≥ 𝑐
0





𝑢 − 𝑢
𝑁






2

0,𝐼
. (14)

3. Constants within the a Posteriori
Error Estimates

In this section, we calculate all constants within the a
posteriori error estimates. Firstly, we analyze the constant in
Poincaré inequality.

For 𝐼 = (−1, 1), we recall the Poincaré inequality with 𝐿2-
norm as (see [17])

‖V‖0,𝐼 ≤
|𝐼|

2






V




0,𝐼

. (15)

Now, we are at the point to investigate all of constants in
details.We introduce an auxiliary state 𝑦(𝑢

𝑁
) ∈ 𝐻

1

0
(𝐼), which

satisfies

𝑎 (𝑦 (𝑢
𝑁
) , 𝑤) = (𝑓 + 𝑢

𝑁
, 𝑤) , ∀𝑤 ∈ 𝐻

1

0
(𝐼) . (16)

Subtracting (16) from (5), we get

𝑎 (𝑦 − 𝑦 (𝑢
𝑁
) , 𝑤) = (𝑢 − 𝑢

𝑁
, 𝑤) , ∀𝑤 ∈ 𝐻

1

0
(𝐼) . (17)
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Let 𝑤 = 𝑦(𝑢
𝑁
) − 𝑦 ∈ 𝐻

1

0
(Ω). It is clear that

𝑎 (𝑦 (𝑢
𝑁
) − 𝑦, 𝑦 (𝑢

𝑁
) − 𝑦) = (𝑢

𝑁
− 𝑢, 𝑦 (𝑢

𝑁
) − 𝑦) , (18)

and then there hold






(𝑦 (𝑢
𝑁
) − 𝑦)






2

0,𝐼
≤




𝑢
𝑁
− 𝑢




0,𝐼






(𝑦 (𝑢
𝑁
) − 𝑦)




0,𝐼

≤

|𝐼|

2





𝑢
𝑁
− 𝑢




0,𝐼






(𝑦 (𝑢
𝑁
) − 𝑦)




0,𝐼

,

(19)

which means that






(𝑦 (𝑢
𝑁
) − 𝑦)




0,𝐼

≤

|𝐼|

2





𝑢
𝑁
− 𝑢




0,𝐼

. (20)

Hence,





𝑦 (𝑢
𝑁
) − 𝑦




1,𝐼

≤ (






(𝑦 (𝑢
𝑁
) − 𝑦)






2

0,𝐼
+ (

|𝐼|

2

)

2





(𝑦 (𝑢
𝑁
) − 𝑦)






2

0,𝐼
)

1/2

= (1 + (

|𝐼|

2

)

2

)

1/2






(𝑦 (𝑢
𝑁
) − 𝑦)




0,𝐼

.

(21)

So, we can easily obtain that





𝑦 (𝑢
𝑁
) − 𝑦




1,𝐼

≤ (1 + (

|𝐼|

2

)

2

)

1/2

|𝐼|

2





𝑢
𝑁
− 𝑢




0,𝐼

. (22)

We denote by 𝑐
1
the constant in (22), and then

𝑐
1
= (1 + (

|𝐼|

2

)

2

)

1/2

|𝐼|

2

. (23)

Here, we recall the following orthogonal projection operator:
for any V ∈ 𝐿2(𝐼), P

𝑁
: 𝐿
2
(𝐼)→ 𝑉

𝑁
satisfies:

(P
𝑁
V − V, 𝑤

𝑁
) = 0 ∀𝑤

𝑁
∈ 𝑉
𝑁
. (24)

Lemma 1. For all V ∈ 𝐻𝜎(𝐼) (𝜎 ≥ 0), one has





P
𝑁
V − V

0,𝐼
≤ 𝑐
2
𝑁
−𝜎
‖V‖𝜎,𝐼, (25)

where 𝑐
2
= 2√2.

We denote by 𝑦(𝑢
𝑁
) and 𝑝(𝑢

𝑁
) two intermediate vari-

ables, and there hold

(𝐽

(𝑢) , V) = (𝑢 + 𝑝, V) ,

(𝐽


𝑁
(𝑢
𝑁
) , V) = (𝑢

𝑁
+ 𝑝
𝑁
, V) ,

(𝐽

(𝑢
𝑁
) , V) = (𝑢

𝑁
+ 𝑝 (𝑢

𝑁
) , V) .

(26)

Using (6), (10) and (14), for ∀V
𝑁
= P
𝑁
V, we have

𝑐
0





𝑢 − 𝑢
𝑁




0,𝐼

≤ (𝐽

(𝑢) − 𝐽


(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
)

≤ − (𝐽

(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
)

= (𝐽


𝑁
(𝑢
𝑁
) , 𝑢
𝑁
− 𝑢) + (𝐽



𝑁
(𝑢
𝑁
) − 𝐽

(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
)

≤ (𝐽


𝑁
(𝑢
𝑁
) , V
𝑁
− 𝑢) + (𝐽



𝑁
(𝑢
𝑁
) − 𝐽

(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
)

= (𝐽


𝑁
(𝑢
𝑁
) − 𝐽

(𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
) = (𝑝

𝑁
− 𝑝 (𝑢

𝑁
) , 𝑢 − 𝑢

𝑁
)

≤




𝑝
𝑁
− 𝑝(𝑢

𝑁
)



0,𝐼





𝑢 − 𝑢
𝑁




0,𝐼

,

(27)

which means that





𝑢 − 𝑢
𝑁




0,𝐼

≤

1

𝑐
0





𝑝
𝑁
− 𝑝 (𝑢

𝑁
)



0,𝐼

. (28)

Now, we are at the point to derive the constant for
‖𝑦
𝑁
− 𝑦(𝑢

𝑁
)‖
1,𝐼
. Let 𝐸𝑦 = 𝑦

𝑁
−𝑦(𝑢
𝑁
) and 𝐸𝑦

𝐼
= P
𝑁
𝐸
𝑦
∈ 𝑉
𝑁
.

Then





𝑦
𝑁
− 𝑦 (𝑢

𝑁
)





2

1,𝐼

=




𝐸
𝑦




2

1,𝐼
≤ (1 + (

|𝐼|

2

)

2

) 𝑎 (𝐸
𝑦
, 𝐸
𝑦
)

= (1 + (

|𝐼|

2

)

2

)𝑎 (𝐸
𝑦
− 𝐸
𝑦

𝐼
, 𝐸
𝑦
)

= (1 + (

|𝐼|

2

)

2

)(𝑓 + 𝑢
𝑁
+ 𝑦


𝑁
, 𝐸
𝑦
− 𝐸
𝑦

𝐼
)

≤ (1 + (

|𝐼|

2

)

2

) 𝑐
2
𝑁
−1



𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

⋅ ‖ 𝐸
𝑦
‖
1,𝐼
,

(29)

which is equivalent to





𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



1,𝐼

≤ (1 + (

|𝐼|

2

)

2

) 𝑐
2
𝑁
−1



𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

.

(30)

Hence,





𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



1,𝐼

≤ 𝑐
3
𝑁
−1



𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

, (31)

where

𝑐
3
= (1 + (

|𝐼|

2

)

2

) 𝑐
2
. (32)
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Likewise, we derive the constant for ‖𝑝
𝑁
− 𝑝(𝑢

𝑁
)‖
1,𝐼
.

Similarly, let 𝐸𝑝 = 𝑝
𝑁
− 𝑝(𝑢

𝑁
) and 𝐸𝑝

𝐼
= P
𝑁
𝐸
𝑝
∈ 𝑉
𝑁
. Then





𝑝
𝑁
− 𝑝 (𝑢

𝑁
)





2

1,𝐼
=




𝐸
𝑝




2

1,𝐼
≤ (1 + (

|𝐼|

2

)

2

)𝑎 (𝐸
𝑝
, 𝐸
𝑝
)

= (1 + (

|𝐼|

2

)

2

)(𝑎 (𝐸
𝑝
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
) + (𝑦 (𝑢

𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (

|𝐼|

2

)

2

)(𝑎 (𝑝 (𝑢
𝑁
) − 𝑝
𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑦 (𝑢
𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (

|𝐼|

2

)

2

)((−𝑝

(𝑢
𝑁
) , 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑝


𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
) + (𝑦 (𝑢

𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (

|𝐼|

2

)

2

)((𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑦 (𝑢
𝑁
) − 𝑦
𝑁
, 𝐸
𝑝
) )

≤ (1 + (

|𝐼|

2

)

2

)




𝐸
𝑝


1,𝐼

{𝑐
2
𝑁
−1



𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁





0,𝐼

+




𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



0,𝐼

} .

(33)

We deduce that




𝑝
𝑁
− 𝑝 (𝑢

𝑁
)



1,𝐼

≤ (1 + (

|𝐼|

2

)

2

){𝑐
2
𝑁
−1



𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁





0,𝐼

+




𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



0,𝐼

} .

(34)

Combining all of the above analyses, we derive that




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑦 − 𝑦
𝑁




1,𝐼

+




𝑝 − 𝑝
𝑁




1,𝐼

≤




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑦 − 𝑦 (𝑢

𝑁
)



1,𝐼

+




𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



1,𝐼

+




𝑝 − 𝑝 (𝑢

𝑁
)



1,𝐼

+




𝑝
𝑁
− 𝑝 (𝑢

𝑁
)



1,𝐼

=




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



1,𝐼

+




𝑝
𝑁
− 𝑝 (𝑢

𝑁
)



1,𝐼

+




𝑦 − 𝑦 (𝑢

𝑁
)



1,𝐼

+




𝑝 − 𝑝 (𝑢

𝑁
)



1,𝐼

≤




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑦
𝑁
− 𝑦 (𝑢

𝑁
)



1,𝐼

+




𝑝
𝑁
− 𝑝 (𝑢

𝑁
)



1,𝐼

+




𝑦 − 𝑦 (𝑢

𝑁
)



1,𝐼

+ 𝑐
1





𝑦 − 𝑦 (𝑢

𝑁
)



0,𝐼

≤ (

1 + 𝑐
1
+ 𝑐
2

1

𝑐
0

+ 1)(1 + (

|𝐼|

2

)

2

) 𝑐
2
𝑁
−1



𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁





0,𝐼

+ (1 + (

1 + 𝑐
1
+ 𝑐
2

1

𝑐
0

+ 1)(1 + (

|𝐼|

2

)

2

)) 𝑐
3
𝑁
−1

×






𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

,

(35)

which means that




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑝 − 𝑝
𝑁




1,𝐼

+




𝑦 − 𝑦
𝑁




1,𝐼

≤ (

1 + 𝑐
1
+ 𝑐
2

1

𝑐
0

+ 1)(1 + (

|𝐼|

2

)

2

) 𝑐
2
𝑁
−1



𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁





0,𝐼

+ (1 + (

1 + 𝑐
1
+ 𝑐
2

1

𝑐
0

+ 1)(1 + (

|𝐼|

2

)

2

)) 𝑐
3
𝑁
−1

×






𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

.

(36)

For |𝐼| = 2, there holds




𝑢 − 𝑢
𝑁




0,𝐼

+




𝑝 − 𝑝
𝑁




1,𝐼

+




𝑦 − 𝑦
𝑁




1,𝐼

≤ 𝜂, (37)

where the a posteriori error indicator 𝜂 is defined as

𝜂 = 4√2(1 +

3 + √2

𝑐
0

)𝑁
−1



𝑦
𝑁
− 𝑦
𝑑
+ 𝑝


𝑁





0,𝐼

+ 4√2(3 +

6 + 2√2

𝑐
0

)𝑁
−1



𝑓 + 𝑢
𝑁
+ 𝑦


𝑁





0,𝐼

.

(38)

4. Conclusion

This paper discussed the explicit formulae of constants in
the upper bound of the a posteriori error estimate for
optimal control problems with Legendre-Galerkin spectral
methods in one-dimensional bounded domain. Thus, with
those formulae, it is easy to choose a suitable degree of
polynomials to obtain acceptable accuracy. In the future, we
are going to discuss the corresponding constants in the lower
bound of the a posteriori error indicator.
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We consider a class of stochastic delay recurrent neural networks with distributed parameters and Markovian jumping. It is
assumed that the coefficients in these neural networks belong to the interval matrices. Several sufficient conditions ensuring robust
exponential stabilization are derived by using periodically intermittent control and Lyapunov functional. The obtained results are
very easy to verify and implement, and improve the existing results. Finally, an example with numerical simulations is given to
illustrate the presented criteria.

1. Introduction

In recent decades, neural network dynamics has been widely
studied by many authors due to the fact that neural network
dynamics can be applied to associate memory, signal pro-
cessing, pattern classification, and quadratic optimization.
Liao and Mao [1, 2] investigated the stability of stochastic
neural network for the first time in 1996. By Razumikhin-
type theorems, the stability of stochastic neural networkswith
variable delays was considered [3]. Considering electrons
moving in the asymptotic electromagnetic field, the diffusion
phenomena could not be ignored. Luo et al. [4] gave several
algebra criteria for stochastic Hopfield neural networks with
distributed parameters by using average Lyapunov function.
The asymptotic stability of stochastic reaction- diffusion
systems was also established in [5]. The asymptotic behavior
of several classes of neural networks with reaction-diffusion
terms has been reported in [6–9]. Hu et al. [10] discussed
the exponential stability and synchronization of delay neural
networks with reaction-diffusion terms by impulsive control.

However, the parameters in neural networks are always
some uncertainty and error. Taking these uncertainty and

error into account, Xu et al. [11] investigated stochastic
exponential robust stability of interval neural networks with
reaction-diffusion terms and mixed delays by applying the
vector Lyapunov function method and 𝑀-matrix theory.
Wang andGao [12] studied global exponential robust stability
of reaction-diffusion interval neural networks with time-
varying delays by means of the topological degree theory and
Lyapunov functional method. And, a sufficient condition was
presented for robust global exponential stability of interval
reaction-diffusion Hopfield neural networks with distributed
delays by constructing Lyapunov functional and utilizing
some inequality techniques [13].

The neural networks driven by continuous-time Markov
Chains have been also used to model many practical neural
networks because they may experience abrupt changes in
their structure and parameters caused by phenomena such
as component failures or repairs, changing subsystem inter-
connections, and abrupt environmental disturbances. The
exponential stability and stabilization of recurrent neural
networks with Markovian jumping were discussed in [14–
20]. Robust stability of stochastic delayed additive neural
networks withMarkov jumping was investigated in [21]. Mao
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[22] studied the stability of stochastic delay interval system
with Markovian jumping by linear matrix inequality.

Many control approaches have been developed to stable
and synchronized system such as impulsive control [23]
and intermittent control [24–29]. Gan [24–26] revealed
exponential synchronization of three classes of stochastic
delay neural networks via periodically intermittent control.
Hu et al. [27, 28] investigated exponential stabilization and
synchronization of delay neural networks. Huang et al. [29]
studied stabilization of delayed chaotic neural networks by
periodically intermittent control.

In this paper, we will consider a class of stochastic
delay interval recurrent neural networks with distributed
parameters and Markovian switching whose active func-
tions are more general than the Lipschitz continuous active
function [24–26] and the monotone active function [27–
29]. By the average Lyapunov functional and periodically
intermittent control, several sufficient conditions ensuring
robust exponential stabilization are given. Therefore, the
organization of this paper is as follows. Some preliminaries
and introduction are given in Section 2. In Section 3, robust
exponential stabilization of these stochastic neural networks
is proved. An example with numerical simulation is given to
illustrate the effectiveness of the obtained results in Section 4.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be a complete probability space with a

filtration {F}
𝑡≥0

satisfying the usual conditions (i.e., it is
right-continuous and F

0
contains all P-null sets). Let R𝑚

be the 𝑚-dimensional Euclidean space and let | ⋅ | be the
Euclidean norm in R𝑚, R

+
= [0, +∞) and 𝜏 > 0. Assuming

that Ω
0

⊂ R𝑚 is a bounded compact set with smooth
boundary 𝜕Ω

0
and mes Ω

0
> 0 in space R𝑚. Let 𝐶([−𝜏, 0] ×

Ω
0
;R𝑛

) denote the family of continuous function𝜙(𝑡, 𝑥) from
[−𝜏, 0] × Ω

0
toR𝑛 with ‖𝜙‖ = sup

−𝜏≤𝑡≤0, 𝑥∈Ω
0

|𝜙(𝑡, 𝑥)|. Denote
by 𝐶

𝑏

F
0

([−𝜏, 0] × Ω
0
,R𝑛

) the family of all bounded, F
0
-

measurable,𝐶([−𝜏, 0]×Ω
0
;R𝑛

)-valued random variables. Let
𝑊(𝑡), 𝑡 ≥ 0 be 𝑛-dimension Brownian motion defined on the
probability space. Let 𝑟(𝑡), 𝑡 ≥ 0 be right-continuous Markov
chain on the probability space taking values in a finite state
space S = {1, 2, . . . , 𝑁} with generator Γ = (𝑟

𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖}

= {

𝛾
𝑖𝑗
Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) if 𝑖 = 𝑗,

(1)

where Δ > 0. Here, 𝑟
𝑖𝑗
≥ 0 is the transition rate from 𝑖 to 𝑗 if

𝑖 ̸= 𝑗 while

𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗
. (2)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(𝑡) is right-continuous step function with a
finite number of simple jumps in any finite subinterval R

+
.

In this paper, we consider a class of stochastic delay inter-
val recurrent neural networks with distributed parameters
and Markovian jumping:

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡) ,

(3)

for 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 ≥ 2 denotes the number
of neurons in neural networks. 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
)
𝑇
∈ Ω

0
⊂

R𝑚 is the space variable, Ω
0
= {𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
)
𝑇
||𝑥

𝑘
| <

𝜃
𝑘
, 𝑘 = 1, 2, . . . , 𝑚} is a bounded compact set with

smooth boundary 𝜕Ω
0
, and mes Ω

0
> 0 in space R𝑚.

𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), . . . , 𝑢

𝑛
(𝑡, 𝑥))

𝑇 corresponds to the
state variable of the 𝑖th neural in space 𝑥 and at time 𝑡.
𝐷

𝑖𝑘
(𝑟(𝑡)) ≥ 0 denotes the transmission diffusion operator

along the 𝑖th neuron. 𝑎
𝑖
(𝑟(𝑡)) > 0 denotes the changing

time constant or passive decay rate of the 𝑖th neuron. 𝑏
𝑖𝑗
(𝑟(𝑡))

and 𝑐
𝑖𝑗
(𝑟(𝑡)) denote the connection weight and the delayed

connection weight of the 𝑗th neuron on the 𝑖th neuron,
respectively. 𝜏

𝑖𝑗
(𝑡) corresponds to the transmission delay

and satisfies 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
< 1 for all

𝑡 ≥ 0 (𝜏, 𝜏
0
is a constant, 𝑖, 𝑗 = 1, 2, . . . , 𝑛). ℎ

𝑖𝑗
(⋅, ⋅) denotes

stochastic perturbation function to the neuron.
The boundary condition of system (3),

𝑢 (𝑡, 𝑥)|𝜕Ω
0

= 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω
0
, 𝑖 = 1, 2, . . . , 𝑛.

(4)

The initial value of system (3),

𝑢 (𝑡, 𝑥) = 𝜙
𝑖
(𝑡, 𝑥) , (𝑡, 𝑥) ∈ [−𝜏, 0) × Ω

0
, 𝑖 = 1, 2, . . . , 𝑛.

(5)

Moreover, 𝐴(𝑟(𝑡)) = diag(𝑎
1
(𝑟(𝑡)), . . . , 𝑎

𝑛
(𝑟(𝑡))), 𝐵(𝑟(𝑡)) =

(𝑏
𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑛
, and 𝐶(𝑟(𝑡)) = (𝑐

𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑛
are the interval

connection weight matrix for each value of 𝑟(𝑡) in S with the
initial value 𝑟(0) = 𝑟

0
; 𝐷(𝑟(𝑡)) = (𝑏

𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑚
is interval

transmission diffusion operator matrix for each value of 𝑟(𝑡)
in S with the initial value 𝑟(0) = 𝑟

0
.
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For convenience, we give the following notions that for
𝑟(𝑡) = 𝑙 in S:

𝐴
∗
= {𝐴 (𝑙) = diag (𝑎

1
(𝑙) , . . . , 𝑎

𝑛
(𝑙)) : 𝐴 (𝑙) ≤ 𝐴 (𝑙) ≤ 𝐴 (𝑙) ,

i.e., 𝑎
𝑖
(𝑙) ≤ 𝑎

𝑖
(𝑙) ≤ 𝑎

𝑖
(𝑙) , 𝑖 = 1, 2, . . . , 𝑛} ;

𝐵
∗
= {𝐵 (𝑙) = (𝑏

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐵 (𝑙) ≤ 𝐵 (𝑙) ≤ 𝐵 (𝑙) ,

i.e., 𝑏
𝑖𝑗
(𝑙) ≤ 𝑏

𝑖𝑗
(𝑙) ≤ 𝑏

𝑖𝑗
(𝑙) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ;

𝐶
∗
= {𝐶 (𝑙) = (𝑐

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐶 (𝑙) ≤ 𝐶 (𝑙) ≤ 𝐶 (𝑙) ,

i.e., 𝑐
𝑖𝑗
(𝑙) ≤ 𝑐

𝑖𝑗
(𝑙) ≤ 𝑐

𝑖𝑗
(𝑙) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ;

𝐷
∗
= {𝐷 (𝑙) = (𝑑

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐷 (𝑙) ≤ 𝐷 (𝑙) ≤ 𝐷 (𝑙) ,

i.e., 𝑑
𝑖𝑗
(𝑙) ≤ 𝑑

𝑖𝑗
(𝑙) ≤ 𝑑

𝑖𝑗
(𝑙) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} .

(6)

Definition 1. The stochastic vector 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥),

. . . , 𝑢
𝑛
(𝑡, 𝑥))

𝑇 is called the solution of system (3)–(5), if it
satisfies the following conditions:

(i) 𝑢(𝑡, 𝑥) is adapted to {F
𝑡
}
𝑡≥0

;

(ii) for every 𝑇
0
∈ R

+
, 𝑢(𝑡, 𝑥) ∈ 𝐶

𝑏

F
0

([0, 𝑇
0
] ×Ω

0
;R𝑛

) and

E(max
𝑥∈Ω
0

∫

𝑇
0

0

[|𝑢 (𝑡, 𝑥)|
2
+ |∇𝑢 (𝑡, 𝑥)|

2
] 𝑑𝑡) < +∞; (7)

(iii) for every 𝑡 ∈ R
+
,

∫

Ω
0

𝑢
𝑖
(𝑡, 𝑥) 𝑑𝑥

= ∫

Ω
0

𝜙
𝑖
(0, 𝑥) 𝑑𝑥 + ∫

Ω
0

∫

𝑡

0

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

× (𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

)𝑑𝑠𝑑𝑥

+ ∫

Ω
0

∫

𝑡

0

[

[

−𝑎
𝑖
(𝑟 (𝑠)) 𝑢

𝑖
(𝑠, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑠)) 𝑓

𝑗
(𝑢

𝑗
(𝑠, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑠)) 𝑔

𝑗
(𝑢

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠) , 𝑥))

]

]

𝑑𝑠𝑑𝑥

+ ∫

Ω
0

∫

𝑡

0

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑠, 𝑥) , 𝑢

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠) , 𝑥)) 𝑑𝑊

𝑗
(𝑠) 𝑑𝑥,

(𝑡, 𝑥) ∈ [0, 𝑇
0
] × Ω

0
,

(8)

so it holds as P-a.s., 𝑖 = 1, 2, . . . , 𝑛.

Definition 2. System (3)–(5) is called robust exponential
stable in𝑝thmoment for any𝐴(𝑙) ∈ 𝐴∗,𝐵(𝑙) ∈ 𝐵∗,𝐶(𝑙) ∈ 𝐶∗,
𝐷(𝑙) ∈ 𝐷

∗, 𝑙 ∈ S if the solution 𝑢(𝑡, 𝑥) of system (3)–(5)
satisfies

lim sup
𝑡→+∞

1

𝑡

log (E ‖𝑢 (𝑡, 𝑥)‖𝑝) < 0, (9)

where ||𝑢(𝑡, 𝑥)|| = (∫
Ω
0

|𝑢(𝑡, 𝑥)|
𝑝
𝑑𝑥)

1/𝑝

, (𝑡, 𝑥) ∈ R
+
× Ω

0
.

To assure the existence and uniqueness of the solution to
system (3)–(5) (see, [30, 31]), we give the following assump-
tions:

(H1) for 𝑖 = 1, 2, . . . 𝑛, ∀𝑠
1
, 𝑠

2
∈ R, the neuron activation

functions 𝑓
𝑖
, 𝑔

𝑖
are bounded, 𝑓

𝑖
(0) = 𝑔

𝑖
(0) = 0, and

satisfy

𝐿
−

𝑖
≤

𝑓
𝑖
(𝑠

1
) − 𝑓

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝐿
+

𝑖
,

𝑁
−

𝑖
≤

𝑔
𝑖
(𝑠

1
) − 𝑔

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝑁
+

𝑖
,

(10)

where 𝑠
1

̸= 𝑠
2
, and 𝐿−

𝑖
, 𝐿+

𝑖
,𝑁−

𝑖
,𝑁+

𝑖
are constants.

(H2) For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, ∀𝑠
1
, 𝑠

2
, 𝑠

1
, 𝑠

2
∈ R, there exists

positive constant 𝜎
𝑖𝑗
, such that






ℎ
𝑖𝑗
(𝑠

1
, 𝑠

2
) − ℎ

𝑖𝑗
(𝑠

1
, 𝑠

2
)







2

≤ 𝜎
𝑖𝑗
(




𝑠
1
− 𝑠

1






2

+




𝑠
2
− 𝑠

2






2

) (11)

and ℎ
𝑖𝑗
(0, 0) = 0.

(H3) Time-varying delay function 𝜏
𝑖𝑗
(⋅) : [0, +∞) →

[0, +∞) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) satisfies

0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
≤ 1, (12)

for 𝑡 ≥ 0, where 𝜏 and 𝜏
0
are constants.

It is well known, if the parameters or time-varying delay
in neural networks is appropriately chosen, neural networks
may lead to some phenomena such as instability, divergence,
oscillation, chaos [32, 33].

In order to stabilize the origin of system (3)–(5), we
introduce the following periodically intermittent controller:

V
𝑖
(𝑡, 𝑥) =

{
{

{
{

{

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥) , 𝑀𝑇 ≤ 𝑡 < 𝑀𝑇 + 𝛿,

0, 𝑀𝑇 + 𝛿 ≤ 𝑡 < (𝑀 + 1) 𝑇,

(13)

where 𝑀 = 0, 1, 2, . . . and 𝑘
𝑖𝑗
is the control gains for 𝑖, 𝑗 =

1, 2, . . . , 𝑛, 𝑇 denotes the control period, and 0 < 𝛿 < 𝑇 is
called the control width.



4 Abstract and Applied Analysis

Then, system (3) under the periodically intermittent
controller (13) is described by the following equations:

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡)

𝑀𝑇 ≤ 𝑡 < 𝑀𝑇 + 𝛿,

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡)

𝑀𝑇 + 𝛿 ≤ 𝑡 < (𝑀 + 1) 𝑇.

(14)

Lemma 3 (see [10]). Let 𝑝 ≥ 2 be a positive integer, let 𝜃
𝑘
be a

positive constant, letΩ
0
be a cube |𝑥

𝑘
| ≤ 𝜃

𝑘
for 𝑘 = 1, 2, . . . , 𝑚,

and let 𝑢(𝑥) be a real-valued function belonging to 𝐶
1
(Ω

0
)

which vanish on the boundary 𝜕Ω
0
; that is, 𝑢(𝑥)|

𝜕Ω
0

= 0; then

∫

Ω
0

|𝑢 (𝑥)|
𝑝
𝑑𝑥 ≤

𝑝
2
𝜃
2

𝑘

4

∫

Ω
0

|𝑢 (𝑥)|
𝑝−2










𝜕𝑢

𝜕𝑥
𝑘










2

𝑑𝑥. (15)

3. Robust Exponential Stabilization

In this section, we design suitable 𝑇, 𝛿, and 𝑘
𝑖𝑗
such that

system (3)–(5) under the external controller (13) can realize

robust exponential stability in 𝑝thmoment. For convenience,
we give some denotations as follows:

𝜆
𝑖
= min

𝑙∈S
𝜇
𝑙
{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(
̃
𝑏

𝑝𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗
)

−

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎

𝑝𝜖
ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔
ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(
̃
𝑏

𝑝𝛼
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝛽
𝑝𝑗𝑖

𝑖

+ 𝑐

𝑝𝜉
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁
𝑝𝑗𝑖

𝑖

+

𝑝 − 1

2

(𝜎

𝑝𝜖
(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖
𝑝𝑗𝑖

𝑗𝑖
))} ,

(16)

𝜅
𝑖
= min

𝑙∈S
𝜇
𝑙
{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(
̃
𝑏

𝑝𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗
)

−

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎

𝑝𝜖
ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔
ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(
̃
𝑏

𝑝𝛼
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝛽
𝑝𝑗𝑖

𝑖
+ 𝑐

𝑝𝜉
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁
𝑝𝑗𝑖

𝑖

+

𝑝 − 1

2

(𝜎

𝑝𝜖
(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖
𝑝𝑗𝑖

𝑗𝑖
) )} ,

(17)

]
𝑖
= max

𝑙∈S
𝜇
𝑙

[
[
[

[

𝑝𝑘
𝑖𝑖
+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1






𝑘
𝑖𝑗







𝑝𝜂
∗

ℓ𝑖𝑗

+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖






𝑘
𝑗𝑖







𝑝𝜂
∗

𝑝𝑗𝑖
]
]
]

]

,

(18)

𝜂
𝑖
= max

𝑙∈S
𝜇
𝑙

𝑛

∑

𝑗=1

[

𝑝 − 1

2

(𝜎

𝜔
(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝜔
𝑝𝑗𝑖

𝑗𝑖
)

+𝑐

𝑝𝜉
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁
𝑝𝑗𝑖

𝑖
] ,

(19)
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where 𝑎
∗

𝑖
= min

𝑙∈S𝑎𝑖(𝑙), ̃𝑏𝑖𝑗 = max
𝑙∈S

̌
𝑏
𝑖𝑗
(𝑙), ̌

𝑏
𝑖𝑗
(𝑙) =

max {|𝑏
𝑖𝑗
(𝑙)|, |𝑏

𝑖𝑗
(𝑙)|}, 𝑐

𝑖𝑗
= max

𝑙∈S ̌𝑐
𝑖𝑗
(𝑙),

̌𝑐
𝑖𝑗
(𝑙) = max {


𝑐
𝑖𝑗
(𝑙)






,






𝑐
𝑖𝑗
(𝑙)






} ,

�̃�
𝑗
= max {


𝐿
−

𝑗






,






𝐿
+

𝑗






} , �̃�

𝑗
= max {


𝑁

−

𝑗






,






𝑁

+

𝑗






} ,

(20)

𝜇
𝑙
> 0, and 𝛼

ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
, 𝜁

ℓ𝑖𝑗
, 𝜖

ℓ𝑖𝑗
, 𝑤

ℓ𝑖𝑗
, 𝜂∗

ℓ𝑖𝑗
, 𝛼

ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
, 𝜁

ℓ𝑖𝑗
,

𝜖
ℓ𝑖𝑗
, and 𝑤

ℓ𝑖𝑗
are nonnegative constants, satisfying

𝑝

∑

ℓ=1

𝛼
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛽
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜉
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜁
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜖
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝑤
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛼
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛽
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜉
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜁
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜖
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝑤
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜂
∗

ℓ𝑖𝑗
= 1, 𝐷

𝑖𝑘
= min

𝑙∈S
𝐷

𝑖𝑘
(𝑙) .

(21)

In the following, we give an assumption:
(H4) 𝜆

𝑖
− ]

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− 𝜂

𝑖
/(1 − 𝜏

0
) > 0 and

there exists 𝜌
𝑖
> 0 such that

𝜅
𝑖
+ 𝜌

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖

1 − 𝜏
0

> 0, 𝑖 = 1, 2, . . . , 𝑛. (22)

We consider the function

𝐻
𝑖
( ̌𝜀

𝑖
) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− ̌𝜀

𝑖
max
𝑙∈S

𝜇
𝑙
−

𝜂
𝑖
𝑒

̌𝜀
𝑖
𝜏

1 − 𝜏
0

,

𝑖 = 1, 2, . . . , 𝑛.

(23)

It is easy to see that

𝐻


𝑖
( ̌𝜀

𝑖
) = −max

𝑙∈S
𝜇
𝑙
−

𝜏𝜂
𝑖
𝑒

̌𝜀
𝑖
𝜏

1 − 𝜏
0

< 0,

𝐻
𝑖
(0) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖

1 − 𝜏
0

> 0.

(24)

On the other hand, 𝐻
𝑖
( ̌𝜀

𝑖
) is continuous on [0, +∞), and

𝐹
𝑖
( ̌𝜀

𝑖
) → −∞ as ̌𝜀

𝑖
→ +∞. Then there exists a positive

constant ̌𝜀
∗

𝑖
such that 𝐻

𝑖
( ̌𝜀

∗

𝑖
) ≥ 0 and 𝐻

𝑖
( ̌𝜀

𝑖
) > 0, for ̌𝜀

𝑖
∈

(0, ̌𝜀
∗

𝑖
).

Let ̌𝜀 = min
1≤𝑖≤𝑛

{ ̌𝜀
∗

𝑖
}; then we have

𝐻
𝑖
( ̌𝜀) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− ̌𝜀max

𝑙∈S
𝜇
𝑙
−

𝜂
𝑖

1 − 𝜏
0

𝑒
̌𝜀𝜏
≥ 0.

(25)

In similar, there exists a positive constant 𝜀 > 0, such that

𝐹
𝑖
(𝜀) = 𝑘

𝑖
+ 𝜌

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− 𝜀max

𝑙∈S
𝜇
𝑙
−

𝜂
𝑖

1 − 𝜏
0

𝑒
𝜀𝜏
≥ 0.

(26)

Let 𝜀 = min{ ̌𝜀, 𝜀}; we have

𝐻
𝑖
(𝜀) > 0, 𝐹

𝑖
(𝜀) > 0, 𝑖 = 1, 2, . . . , 𝑛. (27)

We give another assumption:
(H5) 𝜀 − 𝜌(𝑇 − 𝛿)/𝜇𝑇 > 0, where 𝜌 = max

1≤𝑖≤𝑛
𝜌
𝑖
, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Theorem 4. Under assumptions (H1)–(H5), the origin of
system (3)–(5) under periodically intermittent controller (13)
is robust exponentially stable in 𝑝th moment.

Proof. Let us define the average Lyapunov-Krasovskii func-
tional (see [4]) 𝑉

1
: 𝐶([0, +∞) × Ω

0
,R𝑛

) × S × R
+
→ R

+

by

𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) = ∫

Ω
0

𝑉 (𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) 𝑑𝑥 (28)

with
𝑉 (𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

= 𝜇
𝑟(𝑡)

𝑛

∑

𝑖=1

𝑒
𝜀𝑡



𝑢
𝑖
(𝑡, 𝑥)






𝑝

+

𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

𝑡

𝑡−𝜏
𝑖𝑗(𝑡)

𝑒
𝜀𝑠



𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑠,

(29)

where 𝜇
𝑟(𝑡)

> 0.
By the generalized Itô formula (see [31]), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

= E𝑉
1
(𝜙, 𝑟 (0) , 0) + E∫

𝑡

0

∫

Ω
0

L𝑉 (𝑢 (𝑠, 𝑥) , 𝑟 (𝑠) , 𝑠) 𝑑𝑥𝑑𝑠.

(30)

By Lemma 3.1 in [22] and 𝑟(𝑡) = 𝑙, we get that for (𝑡, 𝑥) ∈

[𝑀𝑇,𝑀𝑇 + 𝛿) × Ω
0

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

= 𝜀𝜇
𝑙

𝑛

∑

𝑖=1

𝑒
𝜀𝑡



𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝑝𝜇
𝑙
𝑒
𝜀𝑡

𝑛

∑

𝑖=1





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

×

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

) − 𝑎
𝑖
(𝑙) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑙) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑙) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥)

}

}

}
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+ 𝜇
𝑙
𝑒
𝜀𝑡
𝑝 (𝑝 − 1)

2

𝑛

∑

𝑖=1





𝑢
𝑖
(𝑡, 𝑥)






𝑝−2

×

𝑛

∑

𝑗=1

ℎ
2

𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
𝑒
𝜀𝑡

𝑛

∑

𝑖=1





𝑢
𝑖
(𝑡, 𝑥)






𝑝

+

𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
𝑒
𝜀𝑡



𝑢
𝑖
(𝑡, 𝑥)






𝑝

−

𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
𝑒
𝜀(𝑡−𝜏
𝑖𝑗
(𝑡))

×






𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑥) , 𝑥)







𝑝

(1 − ̇𝜏
𝑖𝑗
(𝑡))

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞

𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

𝑡

𝑡−𝜏
𝑖𝑗(𝑡)

𝑒
𝜀𝑠



𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑠.

(31)

By the fundamental inequality |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, we have

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{𝜀𝜇

𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

+ (𝑘
𝑖𝑖
− 𝑎

𝑖
(𝑙)) 𝑝𝜇

𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

(

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝑙)












𝑓
𝑗
(𝑢

𝑗
(𝑡, 𝑥))






)

+ 𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

× (

𝑛

∑

𝑗=1






𝑐
𝑖𝑗
(𝑙)












𝑔
𝑗
(𝜇

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)






)

+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1 



𝑘
𝑖𝑗












𝜇
𝑗
(𝑡, 𝑥)







+ 𝜇
𝑙

𝑝 (𝑝 − 1)

2





𝑢
𝑖
(𝑡, 𝑥)






𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(






𝑢
𝑗
(𝑡, 𝑥)







2

+






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







2

)

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞





𝑢
𝑖
(𝑡, 𝑥)






𝑝

+

𝑒
𝜀𝜏

1 − 𝜏
0

𝜂
𝑖





𝑢
𝑖
(𝑡, 𝑥)






𝑝

−𝜂
𝑖






𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

} ,

(32)

where we use ∑𝑁

𝑞=1
𝛾
𝑙𝑞
= 0.

By using the fundamental inequality 𝑎𝑝
1
+ 𝑎

𝑝

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑝

𝑝 ≥

𝑝𝑎
1
𝑎
2
, . . . , 𝑎

𝑝
(𝑎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑝), we have

𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

(

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝑙)












𝑓
𝑗
(𝑢

𝑗
(𝑡, 𝑥))






)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝




𝑢
𝑖
(𝑡, 𝑥)






𝑝−1
̃
𝑏
𝑖𝑗
�̃�
𝑗






𝑢
𝑗
(𝑡, 𝑥)







= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝[

𝑝−1

∏

ℓ=1

̃
𝑏

𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝛽
ℓ𝑖𝑗

𝑗





𝑢
𝑖
(𝑡, 𝑥)





]

× (
̃
𝑏

𝛼
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝛽
𝑝𝑖𝑗

𝑗






𝑢
𝑗
(𝑡, 𝑥)






)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

̃
𝑏

𝑝𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
ℓ𝑖𝑗

𝑗





𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

̃
𝑏

𝑝𝛼
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
𝑝𝑖𝑗

𝑗






𝑢
𝑗
(𝑡, 𝑥)







𝑝

,

𝑝𝜇
𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

× (

𝑛

∑

𝑗=1






𝑐
𝑖𝑗
(𝑙)












𝑔
𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))






)

≤ 𝑝𝜇
𝑙

𝑛

∑

𝑗=1





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

𝑐
𝑖𝑗
�̃�

𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝[

𝑝−1

∏

ℓ=1

𝑐

𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝜁
ℓ𝑖𝑗

𝑗






𝑢
𝑗
(𝑡, 𝑥)






]

× (𝑐

𝜉
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝜁
𝑝𝑖𝑗

𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)






)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗






𝑢
𝑗
(𝑡, 𝑥)







𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑐

𝑝𝜉
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
𝑝𝑖𝑗

𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

.

(33)
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Similarly, we have

𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝




𝑢
𝑖
(𝑡, 𝑥)






𝑝−1 



𝑘
𝑖𝑗












𝑢
𝑗
(𝑡, 𝑥)







= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝[

𝑝−1

∏

ℓ=1






𝑘
𝑖𝑗







𝜂
∗

ℓ𝑖𝑗 



𝑢
𝑖
(𝑡, 𝑥)





]

× (






𝑘
𝑖𝑗







𝜂
∗

𝑝𝑖𝑗 



𝑢
𝑗
(𝑡, 𝑥)






)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1






𝑘
𝑖𝑗







𝑝𝜂
∗

ℓ𝑖𝑗 



𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖






𝑘
𝑖𝑗







𝑝𝜂
∗

𝑝𝑖𝑗 



𝑢
𝑗
(𝑡, 𝑥)







𝑝

,

𝜇
𝑙

𝑝 (𝑝 − 1)

2





𝑢
𝑖
(𝑡, 𝑥)






𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗






𝑢
𝑗
(𝑡, 𝑥)







2

= 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝[

𝑝−2

∏

ℓ=1






𝜎
𝑖𝑗







𝜖
ℓ𝑖𝑗 



𝑢
𝑖
(𝑡, 𝑥)





]

× (






𝜎
𝑖𝑗







𝜖
(𝑝−1)𝑖𝑗 




𝑢
𝑗
(𝑡, 𝑥)






) (






𝜎
𝑖𝑗







𝜖
𝑝𝑖𝑗 



𝑢
𝑗
(𝑡, 𝑥)






)

≤ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1






𝜎
𝑖𝑗







𝑝𝜖
ℓ𝑖𝑗 



𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(






𝜎
𝑖𝑗







𝑝𝜖
(𝑝−1)𝑖𝑗

+






𝜎
𝑖𝑗







𝑝𝜖
𝑝𝑖𝑗

)

×






𝑢
𝑗
(𝑡, 𝑥)







𝑝

.

(34)

Further, we also have

𝜇
𝑙

𝑝 (𝑝 − 1)

2





𝑢
𝑖
(𝑡, 𝑥)






𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







2

= 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝[

𝑝−2

∏

ℓ=1

𝜎

𝜔
ℓ𝑖𝑗

𝑖𝑗





𝑢
𝑖
(𝑡, 𝑥)





]

× (𝜎

𝜔
(𝑝−1)𝑖𝑗

𝑖𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)






)

× (𝜎

𝜔
𝑝𝑖𝑗

𝑖𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)






)

≤ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1






𝜎
𝑖𝑗







𝑝𝜔
ℓ𝑖𝑗 



𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(𝜎

𝜔
(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝜔
𝑝𝑖𝑗

𝑖𝑗
)

×






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

.

(35)

Substituting (33)–(35) into (32), we obtain

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{

{

{

[

[

𝜇
𝑙
+ 𝑝𝜇

𝑙
𝑘
𝑖𝑖
− 𝑝𝜇

𝑙
𝑎
∗

𝑖

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
+

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(
̃
𝑏

𝑝𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗
)

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1






𝑘
𝑖𝑗







𝑝𝜂
∗

ℓ𝑖𝑗

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎

𝑝𝜖
ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔
ℓ𝑖𝑗

𝑖𝑗
)]

]

×




𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

[
̃
𝑏

𝑝𝛼
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
𝑝𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
𝑝𝑖𝑗

𝑗

+

𝑝 − 1

2

(𝜎

𝑝𝜖
(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜖
𝑝𝑖𝑗

𝑖𝑗
)]

×




𝑢
𝑖
(𝑡, 𝑥)






𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖






𝑘
𝑖𝑗







𝑝𝜂
∗

𝑝𝑖𝑗 



𝑢
𝑗
(𝑡, 𝑥)







𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(𝜎

𝜔
(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝜔
𝑝𝑖𝑗

𝑖𝑗
)

×






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑐

𝑝𝜉
𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
𝑝𝑖𝑗

𝑗






𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

−𝜂
𝑖






𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)







𝑝

}

+

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
𝑝𝜇

𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1
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× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

))

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{𝜀max

𝑙∈S
𝜇
𝑙
+ ]

𝑖
− 𝜆

𝑖
+max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
+

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

}

×




𝑢
𝑖
(𝑡, 𝑥)






𝑝

+

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
𝑝𝜇

𝑙





𝑢
𝑖
(𝑡, 𝑥)






𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)) ,

(36)

where

𝜆
𝑖
= min

𝑙∈S
𝜇
𝑙

{

{

{

𝑝𝑎
∗

𝑖
−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(
̃
𝑏

𝑝𝛼
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝛽
ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗
)

−

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎

𝑝𝜖
ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔
ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(
̃
𝑏

𝑝𝛼
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝛽
𝑝𝑗𝑖

𝑖
+ 𝑐

𝑝𝜉
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁
𝑝𝑗𝑖

𝑖

+

𝑝 − 1

2

(𝜎

𝑝𝜖
(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖
𝑝𝑗𝑖

𝑗𝑖
))

}

}

}

.

(37)

Substituting (36) into (30), we obtain

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫

Ω
0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙
− ]

𝑖

−max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×




𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥𝑑𝑠

+ E∫
𝑡

0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
∫

Ω
0

𝑝𝜇
𝑟(𝑠)





𝑢
𝑖
(𝑠, 𝑥)






𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

))𝑑𝑥𝑑𝑠.

(38)

By Lemma 3 and the boundary condition (4), we have

∫

Ω
0

𝑝




𝑢
𝑖
(𝑠, 𝑥)






𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

))𝑑𝑥

≤ −

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘
(𝑟 (𝑠))

𝑝𝜃
2

𝑘

∫

Ω
0





𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥

≤ −

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

∫

Ω
0





𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥.

(39)

Substituting these into (38), we get

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫

Ω
0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
+min

𝑙∈S
𝜇
𝑙

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

− 𝜀max
𝑙∈S

𝜇
𝑙
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞

−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]




𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫

Ω
0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙
− ]

𝑖

−max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×




𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0) (𝑡, 𝑥) ∈ [𝑀𝑇,𝑀𝑇 + 𝛿) × Ω

0
.

(40)

Similarly, for (𝑡, 𝑥) ∈ [𝑀𝑇 + 𝛿, (𝑀 + 1)𝑇) × Ω
0
, we can

obtain
E𝑉

1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿)

− E∫
𝑡

0

∫

Ω
0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜅

𝑖
+ 𝜌

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙

− max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×




𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥𝑑𝑠

+ E∫
𝑡

0

∫

Ω
0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
𝜌
𝑖





𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿)

+

𝜌

𝜇

E∫
𝑡

0

𝑉
1
(𝑢 (𝑠, 𝑥) , 𝑟 (𝑠) , 𝑠) 𝑑𝑠,

(41)

where 𝜌 = max
1≤𝑖≤𝑛

𝜌
𝑖
, 𝜇 = min

𝑙∈S𝜇𝑙.
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Figure 1: Surface curves and state trajectories for system (54) in model 1.

By the Gronwall inequality, we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) ,

𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿) 𝑒
(𝜌/𝜇)(𝑡−𝑀𝑇−𝛿)

.

(42)

Combining (40) and (42), we summarize that,

(I) for (𝑡, 𝑥) ∈ [0, 𝛿) × Ω
0
, from (40), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) ≤ E𝑉

1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) . (43)

(II) For (𝑡, 𝑥) ∈ [𝛿, 𝑇) × Ω
0
, from (42), we get

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑡−𝛿)
.

(44)

(III) For (𝑡, 𝑥) ∈ [𝑇, 𝑇 + 𝛿) × Ω
0
, from (40), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑇, 𝑥) , 𝑟 (𝑇) , 𝑇)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑇−𝛿)
.

(45)

(IV) For (𝑡, 𝑥) ∈ [𝑇 + 𝛿, 2𝑇) × Ω
0
, from (42), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑇 + 𝛿, 𝑥) , 𝑟 (𝑇 + 𝛿) , 𝑇 + 𝛿) 𝑒

(𝜌/𝜇)(𝑡−𝑇−𝛿)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑡−2𝛿)
.

(46)
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Figure 2: Surface curves and state trajectories for system (54) in model 2.

Repeating the above procedure, we obtain that, for (𝑡, 𝑥) ∈
[𝑀𝑇,𝑀𝑇 + 𝛿),𝑀 ≤ (𝑡/𝑇),

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇, 𝑥) , 𝑟 (𝑀𝑇) ,𝑀𝑇)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌(𝑇−𝛿)/𝜇𝑇)𝑡.

(47)

Moreover, for (𝑡, 𝑥) ∈ [𝑀𝑇 + 𝛿, (𝑀 + 1)𝑇) × Ω
0
, (𝑡/𝑇) <

𝑀 + 1,

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜇 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿) 𝑒

(𝜌/𝜇 )(𝑡−𝑀𝑇−𝛿)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)((𝑇−𝛿)/𝑇)𝑡
.

(48)

Hence, for any (𝑡, 𝑥) ∈ [0, +∞) × Ω
0
, we always have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) ≤ E𝑉

1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇) ((𝑇−𝛿)/𝑇)𝑡
.

(49)

By (28) and (49), we have

𝑒
𝜀𝑡
𝜇E∫

Ω
0

𝑛

∑

𝑖=1





𝑢
𝑖
(𝑡, 𝑥)






𝑝

𝑑𝑥

≤ E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)((𝑇−𝛿)/𝑇)𝑡
.

(50)
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Note that

E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0)

= E∫
Ω
0

𝜇
𝑙

𝑛

∑

𝑖=1





𝑢
𝑖
(0, 𝑥)






𝑝

𝑑𝑥

+

𝑒
𝜀𝜏

1 − 𝜏
0

E∫
Ω
0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

0

−𝜏
𝑖𝑗(0)

𝑒
𝜀𝑠



𝑢
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑠𝑑𝑥

≤ max
𝑙∈S

𝜇
𝑙
E∫

Ω
0

𝑛

∑

𝑖=1





𝜙
𝑖
(0, 𝑥)






𝑝

𝑑𝑥

+ sup
−𝜏≤𝑠≤0

[(max
1≤𝑖≤𝑛

𝜂
𝑖
)

𝜏𝑒
𝜀𝜏

1 − 𝜏
0

E∫
Ω
0

𝑛

∑

𝑖=1





𝜙
𝑖
(𝑠, 𝑥)






𝑝

𝑑𝑥]

= 𝑀
0
.

(51)

Under assumption (H5), the assertion of Theorem 4 follows
from (50) and (51).

Corollary 5. Under assumptions (H1)–(H3), the origin of
system (3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) ]
𝑖
< 0, 𝜆

𝑖
− ]

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) >

0, 𝑖 = 1, 2, . . . , 𝑛,

(II) 𝜀 − (](𝑇 − 𝛿)/(𝜇𝑇)) > 0, where ] = max
1≤𝑖≤𝑛

{|]
𝑖
|},

𝜇 = min
𝑙∈S 𝜇𝑙.

Proof. In Theorem 4, let 𝛼
ℓ𝑖𝑗

= 𝛼
ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
= 𝜉

ℓ𝑖𝑗
,

𝜁
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗
, 𝜖

ℓ𝑖𝑗
= 𝜖

ℓ𝑖𝑗
, 𝜔

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
for all ℓ = 1, 2, . . . , 𝑝, 𝑖, 𝑗 =

1, 2, . . . , 𝑛; then 𝜆
𝑖
= 𝜅

𝑖
. Under condition (i), select 𝜌

𝑖
= −]

𝑖
,

and Corollary 5 holds immediately fromTheorem 4.
In Theorem 4, we choose 𝛼

ℓ𝑖𝑗
= 𝛼

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
= 𝜉

ℓ𝑖𝑗
=

𝜉
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗

= 𝜂
∗
= 𝜖

ℓ𝑖𝑗
= 𝜖

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
= 1/𝑝 for

ℓ = 1, 2, . . . , 𝑝, and 𝑖, 𝑗 = 1, 2, . . . , 𝑛; then

̃
𝜆
𝑖
= 𝜅

𝑖

= min
𝑙∈S

𝜇
𝑙

{

{

{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

− (𝑝 − 1)

𝑛

∑

𝑗=1

(
̃
𝑏
𝑖𝑗
�̃�
𝑗
+ 𝑐

𝑖𝑗
�̃�

𝑗
)

− (𝑝 − 1) (𝑝 − 2)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗

−

𝑛

∑

𝑗=1

(
̃
𝑏
𝑗𝑖
�̃�
𝑗
+ 𝑐

𝑗𝑖
�̃�

𝑗
+ (𝑝 − 1) 𝜎

𝑗𝑖
)

}

}

}

,

]̃
𝑖
= max

𝑙∈S
𝜇
𝑙

{
{
{

{
{
{

{

𝑝𝑘
𝑖𝑖
+ (𝑝 − 1)

×

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖






𝑘
𝑖𝑗






+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖






𝑘
𝑗𝑖







}
}
}

}
}
}

}

,

𝜂
𝑖
= max

𝑙∈S
𝜇
𝑙

𝑛

∑

𝑗=1

[(𝑝 − 1) 𝜎
𝑗𝑖
+ 𝑐

𝑗𝑖
�̃�

𝑗
] .

(52)

Then, as the proof of Theorem 4, we have the following.

Corollary 6. Under assumptions (H1)–(H3), the origin of
system (3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) ̃𝜆
𝑖
− ]̃

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) > 0, 𝑖 =

1, 2, . . . , 𝑛,
(II) there exists𝜌

𝑖
> 0, such that ̃𝜆

𝑖
+𝜌

𝑖
−max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖
/(1 − 𝜏

0
) > 0, 𝑖 = 1, 2, . . . , 𝑛,

(III) 𝜀 − (𝜌(𝑇 − 𝛿)/𝜇𝑇) > 0, where 𝜌 = max
1≤𝑖≤𝑛

𝜌
𝑖
, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Combining Corollary 5 and Corollary 6, we have the following.

Corollary 7. Under assumptions (H1)–(H3), the origin of
system(3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) ]̃
𝑖
< 0,

̃
𝜆
𝑖
− ]̃

𝑖
−max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) > 0,

𝑖 = 1, 2, . . . , 𝑛,
(II) 𝜀 − (]̂(𝑇 − 𝛿)/𝜇𝑇) > 0, where ]̂ = max

0≤𝑖≤𝑛
{|]̃

𝑖
|}, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Remark 8. By constructing an average Lyapunov function,
the stabilization of stochastic Hopfield neural networks with
distributed parameters was studied in [4]. The feedback
controller in [4] was designed as the compound function
of the state and activation function. Therefore, the feedback
controller may be the nonlinear functions. However, we see
in this paper that the control width is greater than the time
delay and the periodically intermittent controller is linear and
practical.

Remark 9. In [11–13, 24–26], robust exponential stability
and exponential synchronization of some classes of neural
networks with reaction-diffusion terms were discussed. The
activation function satisfies Lipschitz condition. In fact, the
activation functionmay be notmonotone. But, from assump-
tion (H1) in this paper, the activation functions include the
monotone functions. So the results of this paper are less
conservational and more general.
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Figure 3: Surface curves and state trajectories for system (54) in model 1 under periodically intermittent control (13), 𝑇 = 5 and 𝛿 = 4.7.

Remark 10. In [27, 28], the periodically intermittent con-
troller was designed to stabilization and synchronization of
two classes of neural networks, where the activation functions
satisfy

0 <

𝑓
𝑖
(𝑠

1
) − 𝑓

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝐿
+

𝑖
, 0 <

𝑔
𝑖
(𝑠

1
) − 𝑔

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝑁
+

𝑖
.

(53)

In fact, they need 𝐿+
𝑖
≥ 𝐿

−

𝑖
> 0,𝑁+

𝑖
≥ 𝑁

−

𝑖
> 0 in assumption

(H1) of this paper. Obviously, the assumption (H1) of this
paper is weaker than those of papers [27, 28].

Remark 11. In this paper, if the transmission delay 𝜏
𝑖𝑗
(𝑡) is

not continuous and differential, we can give new sufficient
conditions ensuring robust exponential stabilization and
antisynchronization for system (3)–(5) by applying linear
matrix inequality (LMI) technique and periodically intermit-
tent control. We will give the topics in future research.

4. Numerical Example

In this section, we give an example with numerical simula-
tions to illustrate our result in the preceding section.

Example 1. Consider the 2-dimensional stochastic interval
recurrent neural networks with two models as follows:

𝑑𝑢
1
(𝑡, 𝑥) =

{

{

{

𝐷
1
(𝑟 (𝑡))

𝜕
2
𝑢
1
(𝑡, 𝑥)

𝜕𝑥
2

− 𝑎
1
(𝑟 (𝑡)) 𝑢

1
(𝑡, 𝑥)

+

2

∑

𝑗=1

𝑏
1𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

2

∑

𝑗=1

𝑐
1𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

1𝑗
(𝑡) , 𝑥))

}

}

}

𝑑𝑡
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Figure 4: Surface curves and state trajectories for system (54) in model 2 under periodically intermittent control (13), 𝑇 = 5 and 𝛿 = 4.7.

+

2

∑

𝑗=1

ℎ
1𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

1𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡) ,

𝑑𝑢
2
(𝑡, 𝑥) = {𝐷

2
(𝑟 (𝑡))

𝜕
2
𝑢
2
(𝑡, 𝑥)

𝜕𝑥
2

− 𝑎
2
(𝑟 (𝑡)) 𝑢

2
(𝑡, 𝑥)

+

2

∑

𝑗=1

𝑏
2𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥)) +

2

∑

𝑗=1

𝑐
2𝑗
(𝑟 (𝑡))

×𝑔
𝑗
(𝑢

𝑗
(𝑡 − 𝜏

2𝑗
(𝑡) , 𝑥)) } 𝑑𝑡

+

2

∑

𝑗=1

ℎ
2𝑗
(𝑢

𝑗
(𝑡, 𝑥), 𝑢

𝑗
(𝑡−𝜏

2𝑗
(𝑡) , 𝑥))𝑑𝑊

𝑗
(𝑡) ,

(54)

with the boundary conditions 𝑢
1
(𝑡, 0) = 𝑢

2
(𝑡, 0) =

𝑢
1
(𝑡, 2) = 𝑢

2
(𝑡, 2) = 0, 𝑡 ≥ −1 and the initial value

𝑢
1
(𝑡, 𝑥) = 𝑒

𝑡
(cos(2𝜋𝑥) − 1), 𝑢

2
(𝑡, 𝑥) = 𝑒

2𝑡 sin(4𝜋𝑥), 𝑡 ∈

[−1, 0] × Ω
0
, where 𝜏

𝑖𝑗
(𝑡) = (𝑒

𝑡
/(1 + 𝑒

𝑡
)), Ω

0
= [−5, 5] ∈ R,

and the generator of the Markov chain

Γ = (

−1 1

1

2

−

1

2

) ,

𝑓
𝑖
(𝑢

𝑖
) =

3

4

sin (𝑢
𝑖
) +

1

4

𝑢
𝑖
,

𝑔
𝑖
(𝑢

𝑖
) =

1

2

(




𝑢
𝑖
+ 1





−




𝑢
𝑖
− 1





) ,

ℎ
11
(𝑢

1
(𝑡, 𝑥) , 𝑢

1
(𝑡 − 𝜏

11
(𝑡) , 𝑥))

= 0.1𝑢
1
(𝑡, 𝑥) + 0.2𝑢

1
(𝑡 − 𝜏

11
(𝑡) , 𝑥) ,

ℎ
12
(𝑢

2
(𝑡, 𝑥) , 𝑢

2
(𝑡 − 𝜏

12
(𝑡) , 𝑥))

= ℎ
21
(𝑢

1
(𝑡, 𝑥) , 𝑢

1
(𝑡 − 𝜏

21
(𝑡)) , 𝑥) = 0,
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ℎ
22
(𝑢

2
(𝑡, 𝑥) , 𝑢

2
(𝑡 − 𝜏

22
(𝑡) , 𝑥))

= 0.3𝑢
2
(𝑡, 𝑥) + 0.4𝑢

2
(𝑡 − 𝜏

22
(𝑡) , 𝑥) .

(55)

We assume that the interval matrices are the same in every
model; let

𝐷 (𝑟 (𝑡)) = (
𝐷

1
(𝑟 (𝑡))

𝐷
2
(𝑟 (𝑡))

) = (
[1, 2]

[2, 3]
) ,

𝐴 (𝑟 (𝑡)) = (
𝑎
1
(𝑟 (𝑡))

𝑎
2
(𝑟 (𝑡))

)

= (
[0.28, 0.42]

[0.18, 0.35]
) ,

𝐵 (𝑟 (𝑡)) = (
𝐵
11
(𝑟 (𝑡)) 𝐵

12
(𝑟 (𝑡))

𝐵
21
(𝑟 (𝑡)) 𝐵

22
(𝑟 (𝑡))

) = (
[4, 5]

[3, 4]
) ,

𝐶 (𝑟 (𝑡)) = (
𝐶
11
(𝑟 (𝑡)) 𝐶

12
(𝑟 (𝑡))

𝐶
21
(𝑟 (𝑡)) 𝐶

22
(𝑟 (𝑡))

)

= (
[0.2, 0.3]

[0.3, 0.4]
) .

(56)

The surface curves and state trajectories of system (54) in
model (1) and model (2) are given, respectively, as shown in
Figures 1 and 2. They exhibit instability behavior.

Let𝑝 = 2, 𝜇
1
= 2, 𝜇

2
= 4. By simple calculation, we obtain

𝐿
−

𝑖
= −

1

2

, 𝐿
+

𝑖
= 1, 𝑁

−

𝑖
= 0,

𝑁
+

𝑖
= 1, 𝜏 = 1, 𝜏

0
=

1

4

̃
𝜆
1
= 𝜅

1
= −40.16, 𝜂

1
= 1.52

̃
𝜆
2
= 𝜅

2
= −34.4, 𝜂

2
= 2.88.

(57)

Now, we consider the periodically intermittent control (13),
where the parameters are given as follows:
𝑘
11
= −10, 𝑘

22
= −10, 𝑘

12
= 0, 𝑘

21
= 0. (58)

Then ]̃
1
= −80 and ]̃

2
= −80,

̃
𝜆
1
− ]̃

1
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
1

1 − 𝜏
0

> 0,

̃
𝜆
2
− ]̃

2
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
2

1 − 𝜏
0

> 0.

(59)

From 𝐻
𝑖
(𝜀

𝑖
) =

̃
𝜆
𝑖
− ]̃

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− 𝜀

𝑖
max

𝑙∈S 𝜇𝑙 −

(𝜂
𝑖
/(1 − 𝜏

0
))𝑒

𝜀
𝑖
𝜏
= 0, 𝑖 = 1, 2, we have

𝜀 = min {𝜀
1
, 𝜀

2
} = min {2.605, 2.413} = 2.413. (60)

Choose 𝑇 = 5, from Corollary 7, 𝛿 = 4.7. Then the origin
of system (54) under the periodically intermittent controller
(13) is robust exponentially stable inmean square.The surface
curves and state trajectories in model (1) and model (2) are
given, respectively, as shown in Figures 3 and 4.
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An improved design approach of robustH
∞
filter for a class of nonlinear systems described by the Takagi-Sugeno (T-S) fuzzymodel

is considered. By introducing a free matrix variable, a new sufficient condition for the existence of robust H
∞
filter is derived. This

condition guarantees that the filtering error system is robustly asymptotically stable and a prescribed H
∞
performance is satisfied

for all admissible uncertainties. Particularly, the solution of filter parameters which are independent of the Lyapunov matrix can
be transformed into a feasibility problem in terms of linear matrix inequalities (LMIs). Finally, a numerical example illustrates that
the proposed filter design procedure is effective.

1. Introductions

In recent years, when the external disturbance and the
statistical properties of the measurement noise are unknown,
using H

∞
filtering approach to estimate the states of a

linear system becomes one of the focuses on the estimated
theoretical research, and some useful research results [1–4]
are obtained. However, how to design an effective filter for
nonlinear systems is still a very difficult problem. Over the
past two decades, there has been a rapidly growing interest in
fuzzy control of nonlinear systems. In particular, the fuzzy
model proposed by Takagi and Sugeno [5] receives a great
deal of attention. And it indicates that this type of fuzzymodel
has a good approximation performance for the complex
nonlinear systems, so some scholars attempt to apply this
fuzzy model to design H

∞
filter for nonlinear systems. Feng

et al. [6] were prior scholars to study the filter for nonlinear
systems by usingT-S fuzzymodel and linearmatrix inequality
(LMI) techniques. For a class of discrete nonlinear dynamic
systems, Tseng and Chen [7] and Pan et al. [8] studied a fuzzy
H
∞
filtering problem. After that, Tseng [9, 10] and Tian et al.

[11] discussed the design problemof robustH
∞
fuzzy filter for

a class of continuous nonlinear systems.Moreover, the above-
obtained results were extended to the fuzzy H

∞
filter or

robustH
∞
filter design for nonlinear systems with time delay

[12–15]. In addition, H
∞

filtering approach is also applied

to Markovian jump systems [16], nonlinear interconnected
systems [17], chaotic systems [18], and networked nonlinear
systems [19] for the discrete-time case and stochastic systems
[20] and singular systems [21] for the continuous-time case.
Nevertheless, in the above-mentioned results, the solving
process of filter parameters is related to the Lyapunovmatrix,
whichwillmore or less bring some conservative to the results.
The reason is that most of the existence conditions of filter
are sufficient conditions; if the Lyapunov matrix cannot be
found, then the filter parameters whichmaybe exist cannot be
constructed. For this reason, de Oliveira et al. [22] proposed
a novel filter design method by introducing free matrices to
the framework of the quadratic Lyapunov function. Bymeans
of decoupling the relations between the Lyapunov matrix
and the system matrix, the conservative of the results will be
reduced. But due to the restrictions of LMI characteristics,
this method can only be applied to the discrete systems
[17, 23, 24]. Lately, Apkarian et al. [25] extended this idea
to the linear continuous systems with the aid of Projection
Theorem. And this idea has been used in other fields [26–28].
Unfortunately, to the best of our knowledge, this idea has not
yet been introduced to the design of robust H

∞
filter for the

uncertain continuous nonlinear systems.
Taking into account the above-mentioned results, this

paper will discuss a new design method of robust H
∞

filter for a class of uncertain nonlinear systems. Firstly, the

Hindawi Publishing Corporation
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T-S fuzzy model is employed to represent the nonlinear
systems. Then, on the basis of the bounded real lemma of
continuous systems, a new criterion for the existence of the
improved robust H

∞
filter is obtained via introducing a free

matrix variable. Based on this criterion, the solution of the
filter parameters independent of the Lyapunov matrix can
be obtained. Combined with the linear matrix inequality
techniques, the filter design problem can be transformed into
a feasibility problem of a set of linear matrix inequalities.
Finally, a simulation example will be given to verify the
validity of the proposed method.

2. Problem Formulation

Consider a class of uncertain nonlinear systems described by
the following T-S fuzzy models.

Plant Rule 𝑖:

IF V
1
(𝑡) is 𝑀

𝑖1
and ⋅ ⋅ ⋅ and V

𝑝
(𝑡) is 𝑀

𝑖𝑝

THEN ̇𝑥 (𝑡) = (𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = (𝐶
𝑖
+ Δ𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝑖
𝑥 (𝑡) ,

𝑥
0
= 𝑥 (0) , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is the
measured output, 𝑧(𝑡) ∈ R𝑙 is the signal to be estimated, and
𝑤(𝑡) ∈ 𝐿

𝑞

2
[0,∞) is the noise signal vector (including process

and measurement noises). 𝑥
0
is the initial state condition of

the system, which is considered to be known and, without
loss of generality, assumed to be zero. V

1
(𝑡), . . . , V

𝑝
(𝑡) are the

premise variables, 𝑀
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑝) is the fuzzy set, and
𝑟 is the number of IF-THEN rules. 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐿

𝑖
are

known real constantmatrices with appropriate dimensions of
the 𝑖th subsystem, respectively. The uncertain time-varying
matrices Δ𝐴

𝑖
(𝑡) and Δ𝐶

𝑖
(𝑡) represent the parameter uncer-

tainties in the system model and are assumed to be norm-
bounded of the following forms:

Δ𝐴
𝑖
(𝑡) = 𝐸

𝑎𝑖
𝐹 (𝑡)𝐻

𝑎𝑖
,

Δ𝐶
𝑖
(𝑡) = 𝐸

𝑐𝑖
𝐹 (𝑡)𝐻

𝑐𝑖
,

𝑖 = 1, 2, . . . , 𝑟,

(2)

where 𝐸
𝑎𝑖
, 𝐸
𝑐𝑖
, 𝐻
𝑎𝑖
, and 𝐻

𝑐𝑖
are known constant matrices of

appropriate dimensions, which reflect the structural infor-
mation of uncertainty, and 𝐹(𝑡) is an uncertainty matrix
function with Lebesgue measurable elements and satisfies

𝐹
Τ
(𝑡) 𝐹 (𝑡) ≤ 𝐼. (3)

By using theweighted averagemethod for defuzzification,
the uncertain fuzzy dynamic model for the system (1) can be
inferred as follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [(𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [(𝐶

𝑖
+ Δ𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) 𝐿

𝑖
𝑥 (𝑡) ,

(4)

where V(𝑡) = [V
1
(𝑡), V
2
(𝑡), . . . , V

𝑝
(𝑡)]
Τ, and

ℎ
𝑖
(V (𝑡)) =

𝜇
𝑖
(V (𝑡))

∑
𝑟

𝑖=1
𝜇
𝑖
(V (𝑡))

,

𝜇
𝑖
(V (𝑡)) =

𝑝

∏

𝑗=1

𝑀
𝑖𝑗
(V
𝑗
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑟,

(5)

in which𝑀
𝑖𝑗
(V
𝑗
(𝑡)) is the grade ofmembership of V

𝑗
(𝑡) in the

fuzzy set 𝑀
𝑖𝑗
, while 𝜇

𝑖
(V(𝑡)) is the grade of membership of

the 𝑖th rule.
In general, it is assumed that 𝜇

𝑖
(V(𝑡)) ≥ 0, 𝑖 =

1, 2, . . . , 𝑟, and ∑
𝑟

𝑖=1
𝜇
𝑖
(V(𝑡)) > 0. Therefore, it is easy to

obtain that ℎ
𝑖
(V(𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, and ∑

𝑟

𝑖=1
ℎ
𝑖
(V(𝑡)) = 1.

Based on the T-S fuzzy models (1), the full-order filter is
constructed as follows.

Filter Rule 𝑖:

IF V
1
(𝑡) is 𝑀

𝑖1
and ⋅ ⋅ ⋅ and V

𝑝
(𝑡) is 𝑀

𝑖𝑝

THEN ̇
�̂� (𝑡) = 𝐴

𝑓𝑖
𝑥 (𝑡) + 𝐵

𝑓𝑖
𝑦 (𝑡) ,

�̂� (𝑡) = 𝐶
𝑓𝑖
𝑥 (𝑡) + 𝐷

𝑓𝑖
𝑦 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟,

(6)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of filter and �̂�(𝑡) ∈ R𝑙

is an estimate value of the filter output. The matrices 𝐴
𝑓𝑖
,

𝐵
𝑓𝑖
,𝐶
𝑓𝑖
, and𝐷

𝑓𝑖
are filter parameters to be determined. Here,

it is assumed that the initial condition of filter is 𝑥
0
= 0. Then

the whole fuzzy filter can be expressed as

̇
�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡) + 𝐵

𝑓𝑖
𝑦 (𝑡)] ,

�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [𝐶

𝑓𝑖
𝑥 (𝑡) + 𝐷

𝑓𝑖
𝑦 (𝑡)] .

(7)

Set the state variable as 𝑥(𝑡) = [𝑥
Τ
(𝑡)𝑥
Τ
(𝑡)]
Τ and

estimated error as �̃�(𝑡) = 𝑧(𝑡) − �̂�(𝑡). Then the filtering error
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dynamic equation inferred from formulas (4) and (7) can be
described as follows:

̇
�̃� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(V (𝑡)) ℎ

𝑗
(V (𝑡))

× [(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖𝑗
𝑤 (𝑡)] ,

�̃� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(V (𝑡)) ℎ

𝑗
(V (𝑡))

× [(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)] ,

(8)

where

𝐴
𝑖𝑗

= [

𝐴
𝑗

0

𝐵
𝑓𝑖
𝐶
𝑗

𝐴
𝑓𝑖

] , 𝐵
𝑖𝑗

= [

𝐵
𝑗

𝐵
𝑓𝑖

𝐷
𝑗

] ,

𝐶
𝑖𝑗

= [𝐿𝑗
− 𝐷
𝑓𝑖
𝐶
𝑗

−𝐶
𝑓𝑖] , 𝐷

𝑖𝑗
= −𝐷
𝑓𝑖
𝐷
𝑗
,

Δ𝐴
𝑖𝑗
(𝑡) = [

Δ𝐴
𝑗
(𝑡) 0

𝐵
𝑓𝑖
Δ𝐶
𝑗
(𝑡) 0

] ,

Δ𝐶
𝑖𝑗
(𝑡) = [−𝐷

𝑓𝑖
Δ𝐶
𝑗
(𝑡) 0] .

(9)

Let 𝐻
�̃�𝑤

(𝑠) be the transfer function from the disturbance
input 𝑤(𝑡) to the estimation error �̃�(𝑡). Then the robust
H
∞

filter design problem considered in this paper can be
described as follows: for a given constant 𝛾 > 0, find a H

∞

full-order filter in the form of (7) so that the filtering error
dynamic system (8) is robustly asymptotically stable and the
H
∞

norm of the transfer function 𝐻
�̃�𝑤

(𝑠) is less than the
given constant 𝛾; that is, ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾 is satisfied. Here,
constant 𝛾 is called a prescribed H

∞
performance level.

For brevity, the functions ℎ
𝑖
(V(𝑡)) will be replaced by ℎ

𝑖

in the subsequence, and Δ𝐴
𝑖
(𝑡), Δ𝐶

𝑖
(𝑡), Δ𝐴

𝑖𝑗
(𝑡), Δ𝐶

𝑖𝑗
(𝑡) will

be replaced by Δ𝐴
𝑖
, Δ𝐶
𝑖
, Δ𝐴
𝑖𝑗
, Δ𝐶
𝑖𝑗
.

3. Robust 𝐻
∞

Filter Design

According to the bounded real lemma of continuous-time
systems, this section firstly gives a sufficient condition for
the existence of robust H

∞
filter for the uncertain fuzzy

system (4). That is, for a given constant 𝛾 > 0, the
filtering error system (8) is robustly asymptotically stable and
satisfies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exists a symmetric positive
definite matrix 𝑃 ∈ R2𝑛×2𝑛, such that the following matrix
inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[
[

[

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
)

Τ

𝑃 + 𝑃 (𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) 𝑃𝐵

𝑖𝑗
(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

𝐵
Τ

𝑖𝑗
𝑃 −𝛾

2
𝐼 𝐷

Τ

𝑖𝑗

𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗

𝐷
𝑖𝑗

−𝐼

]
]

]

< 0. (10)

With the aid of the basic idea of [25], an improved robust
H
∞

filter design method is obtained by introducing a free
matrix variable, in which the Lyapunov function matrix and
the filtering error systemmatrix are separated.Then the filter
parameters to be determined can be solved independently
of the Lyapunov function matrix. This kind of processing
method can reduce the conservatism of the results.

Theorem 1. For a given constant 𝛾 > 0, the filter-
ing error system (8) is robustly asymptotically stable and
satisfies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exist a symmetric positive
definite matrix 𝑃 ∈ R2𝑛×2𝑛 and matrix 𝑉 ∈ R2𝑛×2𝑛, such that
the following matrix inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[
[
[
[
[
[

[

− (𝑉 + 𝑉
Τ
) 𝑉
Τ
(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) + 𝑃 𝑉

Τ
𝐵
𝑖𝑗

0 𝑉
Τ

∗ −𝑃 0 (𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

0

∗ ∗ −𝛾
2
𝐼 𝐷

Τ

𝑖𝑗
0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝑃

]
]
]
]
]
]

]

< 0. (11)

Proof. Rewrite the matrix inequality (11) in the following
form:,

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Φ + �̃�

Τ
𝑉
Τ
�̃� + �̃�

Τ
𝑉�̃�] < 0, (12)

where

Φ =

[
[
[
[
[
[

[

0 𝑃 0 0 0

∗ −𝑃 0 (𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

0

∗ ∗ −𝛾
2
𝐼 𝐷

Τ

𝑖𝑗
0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝑃

]
]
]
]
]
]

]

,
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�̃� = [𝐼 0 0 0 0] ,

�̃� = [−𝐼 𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗

𝐵
𝑖𝑗

0 𝐼] .

(13)

According to the ProjectionTheorem [25], inequality (12)
is equivalent to the following inequality; that is,

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[
[
[
[

[

𝑃 (𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) + (𝐴

𝑖𝑗
+ Δ𝐴
𝑖𝑗
)

Τ

𝑃 − 𝑃 𝑃𝐵
𝑖𝑗

(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

𝑃

𝐵
Τ

𝑖𝑗
𝑃 −𝛾

2
𝐼 𝐷

Τ

𝑖𝑗
0

𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗

𝐷
𝑖𝑗

−𝐼 0

𝑃 0 0 −𝑃

]
]
]
]

]

< 0. (14)

Applying the Schur complement, it is easy to know that
inequality (10) can be deduced from the above inequality.
That is to say, inequality (11) is a sufficient condition of the
establishment of inequality (10), which can guarantee the
filtering error system (8) is robustly asymptotically stable and
satisfies the prescribed H

∞
performance level.

Take into account that inequality (11) is a nonlinearmatrix
inequality on the matrix variables (𝑃, 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, 𝐶
𝑓𝑖
, 𝐷
𝑓𝑖
,

𝑖 = 1, 2, . . . , 𝑟), so it is very difficult to solve these variables
directly. In this end, the variable substitution method will be
utilized in the following derivation to transform inequality
(11) into the form of linear matrix inequalities. Then the
parameters of robust H

∞
filter can be easily achieved by

applying the MATLAB LMI toolbox.

Lemma 2 (see [29]). Given matrices 𝑌,𝐻, and 𝐸 of appropri-
ate dimensions, where 𝑌 is symmetric, then the inequality 𝑌 +

𝐻𝐹𝐸 + 𝐸
Τ
𝐹
Τ
𝐻
Τ

< 0 holds for all 𝐹 satisfying 𝐹
Τ
𝐹 ≤ 𝐼,

if and only if there exists a constant 𝜀 > 0 such that the
equality 𝑌 + 𝜀𝐻𝐻

Τ
+ 𝜀
−1

𝐸
Τ
𝐸 < 0 holds.

Let matrices 𝑉, 𝑉−1, and 𝑃 be partitioned as follows:

𝑉 = [
𝑉
11

𝑉
12

𝑉
21

𝑉
22

] , 𝑉
−1

= [
𝑊
11

𝑊
12

𝑊
21

𝑊
22

] ,

𝑃 = [

𝑃
11

𝑃
12

𝑃
Τ

12
𝑃
22

] ,

(15)

where 𝑉
11
,𝑊
11
, 𝑃
11

∈ R𝑛×𝑛.
Then introduce the following nonsingular matrices:

Π
1
= [

𝑉
11

𝐼

𝑉
21

0
] , Π

2
= [

𝐼 𝑊
11

0 𝑊
21

] . (16)

Obviously, the equation 𝑉Π
2
= Π
1
holds.

Denote 𝑇
1

= diag{Π
2
, Π
2
, 𝐼, 𝐼, Π

2
}, 𝑃 = [

𝑃
11
𝑃
12

𝑃
Τ

12
𝑃
22

] =

Π
Τ

2
𝑃Π
2
. Let inequality (11) be pre- and postmultiplied

by 𝑇
Τ

1
and 𝑇

1
, respectively, and substitute the expression of the

matrix variables 𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
, and 𝐷

𝑖𝑗
. The following matrix

inequality can be obtained:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
14

Ξ
15

0 𝑉
Τ

11
Ξ
18

∗ Ξ
22

Ξ
23

Ξ
24

𝐵
𝑗

0 𝐼 𝑊
11

∗ ∗ −𝑃
11

−𝑃
12

0 Ξ
36

0 0

∗ ∗ ∗ −𝑃
22

0 Ξ
46

0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 −𝐷

Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
11

−𝑃
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
22

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (17)

where

Ξ
11

= −𝑉
11

− 𝑉
Τ

11
, Ξ
12

= −𝐼 − 𝑉
Τ

11
𝑊
11

− 𝑉
Τ

21
𝑊
21
,

Ξ
13

= 𝑃
11

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑉
Τ

21
𝐵
𝑓𝑖

(𝐶
𝑗
+ Δ𝐶
𝑗
) ,

Ξ
14

= 𝑃
12

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
)𝑊
11

+ 𝑉
Τ

21
𝐵
𝑓𝑖

(𝐶
𝑗
+ Δ𝐶
𝑗
)𝑊
11

+ 𝑉
Τ

21
𝐴
𝑓𝑖
𝑊
21
,

Ξ
15

= 𝑉
Τ

11
𝐵
𝑗
+ 𝑉
Τ

21
𝐵
𝑓𝑖
𝐷
𝑗
,

Ξ
18

= 𝑉
Τ

11
𝑊
11

+ 𝑉
Τ

21
𝑊
21
, Ξ
22

= −𝑊
11

− 𝑊
Τ

11
,

Ξ
23

= 𝑃

Τ

12
+ 𝐴
𝑗
+ Δ𝐴
𝑗
, Ξ
24

= 𝑃
22

+ (𝐴
𝑗
+ Δ𝐴
𝑗
)𝑊
11
,

Ξ
36

= 𝐿
Τ

𝑗
− (𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
,

Ξ
46

= 𝑊
Τ

11
𝐿
Τ

𝑗
− 𝑊
Τ

11
(𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
− 𝑊
Τ

21
𝐶
Τ

𝑓𝑖
.

(18)
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Moreover, denote 𝑇
2

= diag{𝐼,𝑊−1
11

, 𝐼,𝑊
−1

11
, 𝐼, 𝐼, 𝐼,𝑊

−1

11
}.

Similarly, multiply inequality (17) by 𝑇
Τ

2
on the left and

by 𝑇
2
on the right. At the same time, let

�̃� = [
�̃�
11

�̃�
12

�̃�
Τ

12
�̃�
22

] = [

𝐼 0

0 𝑊
−1

11

]

Τ

[

𝑃
11

𝑃
12

𝑃

Τ

12
𝑃
22

] [

𝐼 0

0 𝑊
−1

11

] ,

𝑄 = 𝑊
−1

11
, 𝑅 = 𝑉

Τ

21
𝑊
21
𝑄,

𝑋
𝑖
= 𝑉
Τ

21
𝐴
𝑓𝑖
𝑊
21
𝑄,

𝑌
𝑖
= 𝑉
Τ

21
𝐵
𝑓𝑖
, 𝑍

𝑖
= 𝐶
𝑓𝑖
𝑊
21
𝑄.

(19)

Then inequality (17) can be equivalent to the following form:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ̃
12

Ξ̃
13

Ξ̃
14

Ξ̃
15

0 𝑉
Τ

11
𝑉
Τ

11
+ 𝑅

∗ Ξ̃
22

Ξ̃
23

Ξ̃
24

𝑄
Τ
𝐵
𝑗

0 𝑄
Τ

𝑄
Τ

∗ ∗ −�̃�
11

−�̃�
12

0 Ξ
36

0 0

∗ ∗ ∗ −�̃�
22

0 Ξ̃
46

0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 −𝐷

Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −�̃�
11

−�̃�
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −�̃�
22

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (20)

where

Ξ̃
12

= −𝑄 − 𝑉
Τ

11
− 𝑅,

Ξ̃
13

= �̃�
11

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑌
𝑖
(𝐶
𝑗
+ Δ𝐶
𝑗
) ,

Ξ̃
14

= �̃�
12

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑌
𝑖
(𝐶
𝑗
+ Δ𝐶
𝑗
) + 𝑋
𝑖
,

Ξ̃
15

= 𝑉
Τ

11
𝐵
𝑗
+ 𝑌
𝑖
𝐷
𝑗
, Ξ̃

22
= −𝑄 − 𝑄

Τ

Ξ̃
23

= �̃�
Τ

12
+ 𝑄
Τ
(𝐴
𝑗
+ Δ𝐴
𝑗
) ,

Ξ̃
24

= �̃�
22

+ 𝑄
Τ
(𝐴
𝑗
+ Δ𝐴
𝑗
) ,

Ξ̃
46

= 𝐿
Τ

𝑗
− (𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
− 𝑍
Τ

𝑖
.

(21)

In the following, by substituting expression (2) of
the uncertain matrices Δ𝐴

𝑖
(𝑡) and Δ𝐶

𝑖
(𝑡) into the matrix

inequality (20), it can be obtained that

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝐸
1𝑗
𝐹 (𝑡)𝐻

1𝑗
+ 𝐻
Τ

1𝑗
𝐹
Τ
(𝑡) 𝐸
Τ

1𝑗

+𝐸
2𝑖𝑗

𝐹 (𝑡)𝐻
2𝑗

+ 𝐻
Τ

2𝑗
𝐹
Τ
(𝑡) 𝐸
Τ

2𝑖𝑗
] < 0,

(22)

where

Ξ̂
𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ̃
12

Ξ̂
13

Ξ̂
14

Ξ̃
15

0 𝑉
Τ

11
𝑉
Τ

11
+ 𝑅

∗ Ξ̃
22

Ξ̂
23

Ξ̂
24

𝑄
Τ
𝐵
𝑗

0 𝑄
Τ

𝑄
Τ

∗ ∗ −�̃�
11

−�̃�
12

0 Ξ
36

0 0

∗ ∗ ∗ −�̃�
22

0 Ξ̂
46

0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 −𝐷

Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −�̃�
11

−�̃�
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −�̃�
22

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ξ̂
13

= �̃�
11

+ 𝑉
Τ

11
𝐴
𝑗
+ 𝑌
𝑖
𝐶
𝑗
,

Ξ̂
23

= �̃�
Τ

12
+ 𝑄
Τ
𝐴
𝑗
, Ξ̃

14
= �̃�
12

+ 𝑉
Τ

11
𝐴
𝑗
+ 𝑌
𝑖
𝐶
𝑗
+ 𝑋
𝑖
,

Ξ̂
24

= �̃�
22

+ 𝑄
Τ
𝐴
𝑗
, Ξ̂

46
= 𝐿
Τ

𝑗
− 𝐶
Τ

𝑗
𝐷
Τ

𝑓𝑖
− 𝑍
Τ

𝑖
,

𝐸
Τ

1𝑗
= [𝐸
Τ

𝑎𝑗
𝑉
11

𝐸
Τ

𝑎𝑗
𝑄 0 0 0 0 0 0] ,

𝐻
1𝑗

= [0 0 𝐻
𝑎𝑗

𝐻
𝑎𝑗

0 0 0 0] ,

𝐸
Τ

2𝑖𝑗
= [𝐸
Τ

𝑐𝑗
𝑌
Τ

𝑖
0 0 0 0 −𝐸

Τ

𝑐𝑗
𝐷
Τ

𝑓𝑖
0 0] ,

𝐻
2𝑗

= [0 0 𝐻
𝑐𝑗

𝐻
𝑐𝑗

0 0 0 0] .

(23)

According to Lemma 2, the matrix inequality (22) holds
for all admissible uncertainty matrices 𝐹(𝑡) satisfying con-
dition (3), if and only if there exist constants 𝜀

1𝑖𝑗
> 0 and
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𝜀
2𝑖𝑗

> 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑟, such that the following matrix
inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
−1

1𝑖𝑗
𝐸
1𝑗
𝐸
Τ

1𝑗

+ 𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
−1

2𝑖𝑗
𝐸
2𝑖𝑗

𝐸
Τ

2𝑖𝑗
]

=

𝑟

∑

𝑖=1

ℎ
2

𝑖
[Ξ̂
𝑖𝑖
+ 𝜀
1𝑖𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
−1

1𝑖𝑖
𝐸
1𝑖
𝐸
Τ

1𝑖

+ 𝜀
2𝑖𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

+ 𝜀
−1

2𝑖𝑖
𝐸
2𝑖𝑖

𝐸
Τ

2𝑖𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
−1

1𝑖𝑗
𝐸
1𝑗
𝐸
Τ

1𝑗

+ 𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
−1

2𝑖𝑗
𝐸
2𝑖𝑗

𝐸
Τ

2𝑖𝑗
+ Ξ̂
𝑗𝑖

+ 𝜀
1𝑗𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
−1

1𝑗𝑖
𝐸
1𝑖
𝐸
Τ

1𝑖

+ 𝜀
2𝑗𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

+ 𝜀
−1

2𝑗𝑖
𝐸
2𝑗𝑖

𝐸
Τ

2𝑗𝑖
] < 0.

(24)

Applying the Schur complement lemma to the above
matrix inequality, the following conclusion can be reached
from the above deduction.

Theorem 3. For a given constant 𝛾 > 0, the filtering
error system (8) is robustly asymptotically stable and satis-
fies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exist constant 𝜀
1𝑖𝑗

> 0, 𝜀
2𝑖𝑗

>

0, symmetric positive definite matrix �̃�
11
, �̃�
22
, and matrices

�̃�
12
, 𝑉
11
, 𝑄, 𝑅, 𝑋

𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, 𝐷
𝑓𝑖
, 𝑖, 𝑗 = 1, 2, . . . , 𝑟, such that

for all admissible uncertainties (3) the following linear matrix
inequalities hold:

[

[

Ξ̂
𝑖𝑖
+ 𝜀
1𝑖𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
2𝑖𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

𝐸
1𝑖

𝐸
2𝑖𝑖

𝐸
Τ

1𝑖
−𝜀
1𝑖𝑖

𝐼 0

𝐸
Τ

2𝑖𝑖
0 −𝜀

2𝑖𝑖
𝐼

]

]

< 0, 𝑖 = 1, 2, . . . , 𝑟,

[
[
[
[
[
[
[
[
[

[

(

Ξ̂
𝑖𝑗
+ Ξ̂
𝑗𝑖

+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
1𝑗𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
2𝑗𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

) 𝐸
1𝑗

𝐸
2𝑖𝑗

𝐸
1𝑖

𝐸
2𝑗𝑖

𝐸
Τ

1𝑗
−𝜀
1𝑖𝑗

𝐼 0 0 0

𝐸
Τ

2𝑖𝑗
0 −𝜀

2𝑖𝑗
𝐼 0 0

𝐸
Τ

1𝑖
0 0 −𝜀

1𝑗𝑖
𝐼 0

𝐸
Τ

2𝑗𝑖
0 0 0 −𝜀

2𝑗𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 < 𝑗.

(25)

Using the matrix relations of formula (19) and the equiv-
alence of the transfer function, filter parameter matrices are
given as follows:

𝐴
𝑓𝑖

= 𝑅
−1

𝑋
𝑖
, 𝐵

𝑓𝑖
= 𝑅
−1

𝑌
𝑖
,

𝐶
𝑓𝑖

= 𝑍
𝑖
, 𝐷

𝑓𝑖
= 𝐷
𝑓𝑖
,

𝑖 = 1, 2, . . . , 𝑟.

(26)

Set 𝜌 = 𝛾
2, and an optimization problem about robust

H
∞

filter can be described in the following:

min 𝜌

s.t. (25) .

(27)

Thus, the obtained filter can be called an optimal robust H
∞

filter of the uncertain fuzzy system (4), and the corresponding
optimal disturbance attenuation level is 𝛾

∗
= √𝜌.

4. Numerical Example

In this section, a numerical example will be given to illustrate
the effectiveness of robust H

∞
filtering approach developed

in the previous section (see Figure 1) [30].

According to the literature [30], Figure 1 can be described
by the following state equations:

̇𝑥
1
(𝑡) = −0.1𝑥

1
(𝑡) − 0.5𝑥

3

1
(𝑡) + 50𝑥

2
(𝑡) ,

̇𝑥
2
(𝑡) = −𝑥

1
(𝑡) − 10𝑥

2
(𝑡) + 𝑤 (𝑡) ,

𝑦 (𝑡) = 𝑥
1
(𝑡) + 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑥
1
(𝑡) ,

(28)

where 𝑥
1
(𝑡) = V

𝐶
(𝑡) is capacitor voltage and 𝑥

2
(𝑡) = 𝑖

𝐿
(𝑡) is

inductor current.
Assume that the state variable 𝑥

1
(𝑡) satisfies |𝑥

1
(𝑡)| ≤ 3.

In order to simplify the calculation, two fuzzy rules will be
used to approximate the nonlinear system (28).

Plant Rule 1:

IF 𝑥
1
(𝑡) is 𝑀

1
(𝑥
1
(𝑡)) ,

THEN ̇𝑥 (𝑡) = (𝐴
1
+ Δ𝐴
1
(𝑡)) 𝑥 (𝑡) + 𝐵

1
𝑤 (𝑡) .

𝑦 (𝑡) = (𝐶
1
+ Δ𝐶
1
(𝑡)) 𝑥 (𝑡) + 𝐷

1
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
1
𝑥 (𝑡) .

(29)
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Figure 1: Tunnel diode circuit system.
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Plant Rule 2:

IF 𝑥
1
(𝑡) is 𝑀

2
(𝑥
1
(𝑡)) ,

THEN ̇𝑥 (𝑡) = (𝐴
2
+ Δ𝐴
2
(𝑡)) 𝑥 (𝑡) + 𝐵

2
𝑤 (𝑡)

𝑦 (𝑡) = (𝐶
2
+ Δ𝐶
2
(𝑡)) 𝑥 (𝑡) + 𝐷

2
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
2
𝑥 (𝑡) ,

(30)

where model parameters are given below:

𝐴
1
= [

−0.1 50

−1 −10
] , 𝐴

2
= [

−4.6 50

−1 −10
]

𝐵
1
= 𝐵
2
= [

0

1
] , 𝐶

1
= 𝐶
2
= [1 0] ,

𝐷
1
= 𝐷
2
= 1, 𝐿

1
= 𝐿
2
= [1 0] ,

𝐸
𝑎1

= 𝐸
𝑎2

= [
0

0.1
] , 𝐻

𝑎1
= 𝐻
𝑎2

= [0.1 0.1] ,

𝐸
𝑐1

= 𝐸
𝑐2

= 1, 𝐻
𝑐1

= 𝐻
𝑐2

= [−0.1 0.1] .

(31)

And the fuzzy membership functions corresponding to
the above two rules are given in Figure 2.

10 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

Estimated signal z(t)

Estimated signal z(t)

Figure 3: Filtering results for 𝑤(𝑡) = 0.5 sin(5𝑡).

By giving the H
∞

performance level 𝛾 = 1 and con-
structing the fuzzy filter (7), by solving linear matrix inequal-
ities (25), the modified filter parameters can be obtained as
follows:

𝐴
𝑓1

= [
−1.6780 41.9421

−1.8564 −9.1733
] ,

𝐴
𝑓2

= [
−5.0817 43.5742

−1.8467 −9.1707
] ,

𝐵
𝑓1

= [
1.0785

0.9305
] , 𝐵

𝑓2
= [

−0.1095

0.9196
] ,

𝐶
𝑓1

= [0.6950 −0.3013] ,

𝐶
𝑓2

= [0.7422 −0.3745] ,

𝐷
𝑓1

= 0.2516, 𝐷
𝑓2

= 0.2566.

(32)

Assume that the initial state of system is 𝑥
0

= [−1 0]
Τ,

the initial state of filter is 𝑥
0

= [0 0]
Τ, and the uncertain

matrix is selected as 𝐹(𝑡) = sin(𝑡). Apply the above-obtained
filter to the system (28) for filtering simulation. When the
exogenous interference noise is set as 𝑤(𝑡) = 0.5 sin(5𝑡),
the simulation results are shown in Figure 3, in which the
blue dotted line indicates the case without introducing a free
matrix variable, while the red dotted line represents the case
with introducing a free matrix variable. Similarly, Figure 4
shows the filtering results when the noise is a random noise
with zero mean and variance of 0.01. Obviously, from the
simulation results, it can be seen that the filtering results with
introducing a free matrix variable are better than those of not
introducing, and the former makes the system have a higher
error estimation accuracy.

Moreover, by solving the optimization problem (27), the
minimum disturbance attenuation level is obtained as 𝛾

∗
=

5.1 × 10
−7. By comparison, the result without introducing
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Figure 4: Filtering results for random noise interference.

a free matrix variable is also given as 𝛾
∗

= 3.3 × 10
−6. Thus

it can be seen that the system can obtain lower disturbance
attenuation level by introducing a free matrix variable.

5. Conclusions

This paper successfully extends the ideology of literature
[25] to robust H

∞
filter design for a class of uncertain

nonlinear systems. By introducing a free matrix variable,
this paper gives a new systematic design methodology of
robust H

∞
filter. In particular, the filter parameters can be

designed independent of the Lyapunov matrix. This method
can decouple between the Lyapunov matrix and the system
matrix, so it can reduce the conservatism of the system to a
certain extent. The solution of filter can be converted into a
standard LMI problem. From the simulation results, it can
be seen that the improved filter has the lower conservatism
and the higher estimation accuracy, which is useful for
engineering application.
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This paper deals with the couple-group consensus problem for multiagent systems via output feedback control. Both continuous-
and discrete-time cases are considered.The consensus problems are converted into the stability problem of the error systems by the
system transformation. We obtain two necessary and sufficient conditions of couple-group consensus in different forms for each
case. Two different algorithms are used to design the control gains for continuous- and discrete-time case, respectively. Finally,
simulation examples are given to show the effectiveness of the proposed results.

1. Introduction

During the past decade, consensus problem of multiagent
system has attracted a lot of attentions in control area [1–
11]. It is mainly due to its wide applications in practice, such
as sensor networks, unmanned aerial vehicles, and robotics.
In [2], the authors studied the consensus seeking problem
of multiagent systems with dynamically changing interaction
topologies, where both discrete and continuous consensus
algorithms were considered. In [9], the authors studied the
containment problem of linear multiagent systems, where a
pinning control strategy was designed for a part of agents
such that all the agents can achieve a consensus with the
leader asymptotically. A second-order consensus problem for
multiagent systems with nonlinear dynamics and directed
topologies was studied in [10]. More works about consensus
problem were surveyed in [11].

Sometimes the interaction topology does not have a
spanning tree, while it contains two or more subgraphs
which include a spanning tree, respectively. In this case, some
researchers studied the group consensus problem [12–15].
In [12], the authors studied the group consensus problem
of multiagent systems with switching topologies. The group
consensus was proved to be equivalent to the asymptotical
stability of a class of switched linear systems by a double-tree-
form transformation. In [13], two different kinds of consensus

protocols were given to deal with the group consensus
problem for double-integrator dynamic multiagent systems.
In [15], the sampled-data control method was employed
to deal with the group consensus problem for multiagent
systems, where the interaction topology is undirected.

Sometimes the system states are not known completely,
while the output of the systems is measurable. The output
will be used to design the controller for this case, that is,
output feedback controller. Recently, the output feedback
control problems have been reported in a lot of literature [16–
19]. In [16], the output feedback robust stabilization problem
for a class of jump linear system was studied. In [17], the
authors studied the finite-time stabilization of continuous-
time linear systems via dynamic output feedback. In [18],
the Lyapunov-Metzler inequalities were used to study the
dynamic output feedback control problem of switched linear
systems. Very recently, the method based on output feedback
control has been used to analyze the networked systems [20–
23]. In [20], the consensusability of a class of linearmultiagent
systems was studied, where the agent updates its information
by using the neighbor’s output. In [21], the output regulation
theory was used to study the output consensus problems
for heterogeneous uncertain linear multiagent systems. In
[22], by using appropriate coordinate transformation, a new
consensus algorithm via dynamic output feedback control
for multiagent systems was studied. While in [23], the joint
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effects of agent dynamic and network topology on the
consensusability of linear discrete-time multiagent systems
via relative output feedback were studied.

Motivated by the aforementioned works, we will inves-
tigate the couple-group consensus problems for multiagent
systems via output feedback control. The systems considered
include both continuous-time case and discrete-time case.
We convert the couple-group consensus problems of multi-
agent systems into the stability problems of the error systems
by a system transformation. Based on linear system theory,
some necessary and sufficient conditions for couple-group
consensus are obtained. For continuous-time case, the algo-
rithm based on homotopy method is given to compute the
allowable control gain. For discrete-time case, the algorithm
based on cone complementary linearization method is given
to compute the allowable control gain.
Notation. LetR andN represent, respectively, the real number
set and the nonnegative integer set. Denote the spectral radius
of the matrix 𝑀 by 𝜌(𝑀). Suppose that 𝐴, 𝐵 ∈ R𝑝×𝑝. Let
𝐴 ⪰ 𝐵 (resp., 𝐴 ≻ 𝐵) denote that 𝐴 − 𝐵 is symmetric
positive semidefinite (resp., symmetric positive definite). 𝐼

𝑛

denotes the 𝑛 × 𝑛 identity matrix. Re(⋅) and Im(⋅) represent,
respectively, the real part and imaginary part of a number. Let
0 denote zero matrix with appropriate dimensions.

2. Preliminaries and Problem Formulation

GraphTheory. LetG = (V,E,A) be a directed graph of order
𝑛, where V = {V

1
, . . . , V

𝑛
} and E represent the node set and

the edge set, respectively. A = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 is the adjacency

matrix associated with G, where 𝑎
𝑖𝑗
> 0 if (V

𝑖
, V
𝑗
) ∈ E,

otherwise, 𝑎
𝑖𝑗
= 0. An edge (V

𝑖
, V
𝑗
) ∈ E if agent 𝑗 can obtain

the information from agent 𝑖. We say agent 𝑖 is a neighbor of
agent 𝑗. Let𝑁

𝑖
= {V
𝑗
∈ V : (V

𝑖
, V
𝑗
) ∈ E} denote the neighbor

set of agent 𝑖. The (nonsymmetrical) Laplacian matrix L
associated withA and henceG is defined asL = [𝑙

𝑖𝑗
] ∈ R𝑛×𝑛,

where 𝑙
𝑖𝑖
= ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗
= −𝑎
𝑖𝑗
, for all 𝑖 ̸= 𝑗. A directed

path is a sequence of edges in a directed graph in the form
of (V
𝑖
1

, V
𝑖
2

), (V
𝑖
2

, V
𝑖
3

), . . ., where V
𝑖
𝑘

∈ V. A directed tree is
a directed graph, where every node has exactly one parent
except for one node, called the root, which has no parent, and
the root has a directed path to every other node. A directed
spanning tree of G is a directed tree that contains all nodes
of G. A directed graph has or contains a directed spanning
tree if there exists a directed spanning tree as a subset of the
directed graph; that is, there exists at least one node having a
directed path to all of the other nodes.

Suppose that themultiagent systems considered consist of
𝑛+𝑚 agents. In this paper, we will consider both continuous-
time case and discrete-time case. We assume that the first
𝑛 agents achieve a consistent state while the last 𝑚 agents
achieve another consistent state. Let G = (V,E,A) denote
the topology of multiagent system considered. DenoteI

1
=

{1, 2, . . . , 𝑛},I
2
= {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚}. LetV

1
= {V
1
, V
2
,

. . . , V
𝑛
} and V

2
= {V
𝑛+1
, V
𝑛+2
, . . . , V

𝑛+𝑚
} represent the first 𝑛

agents and the last𝑚 agents, respectively.Then,V =V
1
∪V
2
,

V
1
∩V
2
= Φ. In addition, let𝑁

1𝑖
= {V
𝑗
∈ V
1
: (V
𝑖
, V
𝑗
) ∈ E}

and𝑁
2𝑖
= {V
𝑗
∈V
2
: (V
𝑖
, V
𝑗
) ∈ E}.

For continuous-time case, the 𝑖th agent’s dynamics are as
follows:

̇𝑥
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑢

𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) ,

𝑖 = 1, . . . , 𝑛 + 𝑚,

(1)

where 𝑥
𝑖
(𝑡) ∈ R is the state, 𝑢

𝑖
(𝑡) ∈ R is the control input,

and 𝑦
𝑖
(𝑡) ∈ R is the output. 𝐴, 𝐵, 𝐶 ∈ R are the system

coefficients.
For discrete-time case, the 𝑖th agent’s dynamics are as

follows:
𝑥
𝑖 [
𝑘 + 1] = 𝐴𝑥𝑖 [

𝑘] + 𝐵𝑢𝑖 [
𝑘] ,

𝑦
𝑖 [
𝑘] = 𝐶𝑥𝑖 [

𝑘] ,

𝑖 = 1, . . . , 𝑛 + 𝑚,

(2)

where 𝑥
𝑖
[𝑘] ∈ R is the state, 𝑢

𝑖
[𝑘] ∈ R is the control input,

and 𝑦
𝑖
[𝑘] ∈ R is the output. 𝐴, 𝐵, 𝐶 ∈ R are the system

coefficients.
Sometimes the agent’s state is difficult to obtain, while the

output is measurable. Our main purpose in this paper is to
design consensus algorithm based on the output such that the
multiagent systems can achieve couple-group consensus. We
consider the following consensus algorithms for continuous-
time case and discrete-time case, respectively.
Continuous-Time Case. Consider
𝑢
𝑖
(𝑡)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝛼[

[

∑

𝑗∈𝑁
1𝑖

𝑎
𝑖𝑗
(𝑦
𝑗
(𝑡) − 𝑦

𝑖
(𝑡)) + ∑

𝑗∈𝑁
2𝑖

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡)
]

]

∀𝑖 ∈ I
1
,

𝛼 [

[

∑

𝑗∈𝑁
1𝑖

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡) + ∑

𝑗∈𝑁
2𝑖

𝑎
𝑖𝑗
(𝑦
𝑗
(𝑡) − 𝑦

𝑖
(𝑡))
]

]

∀𝑖 ∈ I
2
,

(3)

where 𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 ∈ I

1
, 𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 ∈ I

2
, and

𝑎
𝑖𝑗
∈ R for all (V

𝑖
, V
𝑗
) ∈ E
𝑜
= {(𝑖, 𝑗) : 𝑖 ∈ I

1
, 𝑗 ∈ I

2
} ∪ {(𝑖, 𝑗) :

𝑗 ∈ I
1
, 𝑖 ∈ I

2
}. 𝛼 is the control gain to be designed.

Discrete-Time Case. Consider
𝑢
𝑖 [
𝑘]

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝛾[

[

∑

𝑗∈𝑁
1𝑖

𝑎
𝑖𝑗
(𝑦
𝑗 [
𝑘] − 𝑦𝑖 [

𝑘]) + ∑

𝑗∈𝑁
2𝑖

𝑎
𝑖𝑗
𝑦
𝑗 [
𝑘]
]

]

∀𝑖 ∈ I
1
,

𝛾 [

[

∑

𝑗∈𝑁
1𝑖

𝑎
𝑖𝑗
𝑦
𝑗 [
𝑘] + ∑

𝑗∈𝑁
2𝑖

𝑎
𝑖𝑗
(𝑦
𝑗 [
𝑘] − 𝑦𝑖 [

𝑘])
]

]

∀𝑖 ∈ I
2
,

(4)

where 𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 ∈ I

1
, 𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 ∈ I

2
, and

𝑎
𝑖𝑗
∈ R for all (V

𝑖
, V
𝑗
) ∈ E

𝑜
= {(𝑖, 𝑗) : 𝑖 ∈ I

1
, 𝑗 ∈ I

2
} ∪

{(𝑖, 𝑗) : 𝑗 ∈ I
1
, 𝑖 ∈ I

2
}. 𝛾 is the control gain to be designed.

In addition, we suppose the algorithms in (3) and (4) satisfy
similar assumption to that of [24].

Assumption 1. (1):∑𝑛+𝑚
𝑗=𝑛+1

𝑎
𝑖𝑗
= 0 for all 𝑖 ∈ I

1
; (2):∑𝑛

𝑗=1
𝑎
𝑖𝑗
=

0 for all 𝑖 ∈ I
2
.
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Assumption 2. The subgraphs G
1
and G

2
have a directed

spanning tree, respectively.

Denote 𝑋(𝑡) ≜ [𝑥
1
(𝑡), . . . , 𝑥

𝑛+𝑚
(𝑡)]
𝑇. Using (3) in (1)

yields

𝑋 (𝑡) = [
𝐴𝐼
𝑛
− 𝛼𝐵𝐶L

1
𝛼𝐵𝐶Ω

1

𝛼𝐵𝐶Ω
2

𝐴𝐼
𝑚
− 𝛼𝐵𝐶L

2

]𝑋 (𝑡) , (5)

whereL
1
andL

2
are the Laplacian matrices corresponding

to subgraphsG
1
andG

2
, respectively, and

Ω
1
=
[
[

[

𝑎
1(𝑛+1)

𝑎
1(𝑛+2)

⋅ ⋅ ⋅ 𝑎
1(𝑛+𝑚)

...
... ⋅ ⋅ ⋅

...
𝑎
𝑛(𝑛+1)

𝑎
𝑛(𝑛+2)

⋅ ⋅ ⋅ 𝑎
𝑛(𝑛+𝑚)

]
]

]

,

Ω
2
=
[
[

[

𝑎
(𝑛+1)1

𝑎
(𝑛+1)2

⋅ ⋅ ⋅ 𝑎
(𝑛+1)𝑛

...
... ⋅ ⋅ ⋅

...
𝑎
(𝑛+𝑚)1

𝑎
(𝑛+𝑚)2

⋅ ⋅ ⋅ 𝑎
(𝑛+𝑚)𝑛

]
]

]

.

(6)

Denote 𝑋[𝑘] ≜ [𝑥
1
[𝑘], . . . , 𝑥

𝑛+𝑚
[𝑘]]
𝑇. Using (4) in (2)

yields

𝑋 [𝑘 + 1] = [
𝐴𝐼
𝑛
− 𝛼𝐵𝐶L

1
𝛼𝐵𝐶Ω

1

𝛼𝐵𝐶Ω
2

𝐴𝐼
𝑚
− 𝛼𝐵𝐶L

2

]𝑋 [𝑘] , (7)

whereL
1
,L
2
,Ω
1
, andΩ

2
are the same as that of continuous-

time case.

Remark 3. The group consensus problem of continuous time
multiagent systems was studied in [12, 13, 15]. In [14], the
authors studied the group consensus problem for discrete-
time multiagent systems. However, the couple-group con-
sensus problem for the multiagent systems with stochastic
switching topologies has not been researched. In addition,
our method in this paper is based on the output feedback
control, which is different from the existing results.

Our main purpose is to give the conditions for couple-
group consensus. We next convert the consensus problem of
multiagent system into the stability problem of the error sys-
tems. Before giving themain results, the following definitions
and lemma are needed.

Definition 4 (see [24]). Themultiagent system in (5) is said to
achieve couple-group consensus if the states of agents satisfy
(i) lim

𝑡→∞
‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ = 0, for all 𝑖, 𝑗 ∈ I

1
and (ii)

lim
𝑡→∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ = 0, for all 𝑖, 𝑗 ∈ I

2
.

Definition 5 (see [24]). Themultiagent system in (7) is said to
achieve couple-group consensus if the states of agents satisfy
(i) lim

𝑘→∞
‖𝑥
𝑖
[𝑘] − 𝑥

𝑗
[𝑘]‖ = 0, for all 𝑖, 𝑗 ∈ I

1
and (ii)

lim
𝑘→∞

‖𝑥
𝑖
[𝑘] − 𝑥

𝑗
[𝑘]‖ = 0, for all 𝑖, 𝑗 ∈ I

2
.

Lemma 6 (see [25] Schur complements). Consider a hermi-
tian matrix𝑄 such that𝑄 = [ 𝑄11 𝑄12

𝑄
𝑇

12
𝑄
22

].Then,𝑄 ≻ 0 if and only
if

𝑄
22
≻ 0,

𝑄
11
− 𝑄
12
𝑄
−1

22
𝑄
𝑇

12
≻ 0

(8)

or
𝑄
11
≻ 0,

𝑄
22
− 𝑄
𝑇

12
𝑄
−1

11
𝑄
12
≻ 0.

(9)

3. Main Results

In this section, we will give the main results of this paper.

3.1. Continuous-Time Case. Let
𝑧
𝑖
(𝑡) ≜ 𝑥

𝑖
(𝑡) − 𝑥

𝑛
(𝑡) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑧
𝑗
(𝑡) ≜ 𝑥

𝑗
(𝑡) − 𝑥

𝑛+𝑚
(𝑡) , 𝑗 = 𝑛 + 1, . . . , 𝑛 + 𝑚 − 1,

𝑍 (𝑡) ≜ [𝑧
1
(𝑡) , . . . , 𝑧

𝑛−1
(𝑡) , 𝑧
𝑛+1
(𝑡) , . . . , 𝑧

𝑛+𝑚−1
(𝑡)]
𝑇

.

(10)

Then by some computations, we obtain the error systems as
follows:

̇
𝑍 (𝑡) = [

𝐴𝐼
𝑛−1
− 𝛼𝐵𝐶

̃L
1

𝛼𝐵𝐶Ω̃
1

𝛼𝐵𝐶Ω̃
2

𝐴𝐼
𝑚−1
− 𝛼𝐵𝐶

̃L
2

]𝑍 (𝑡)

≜ 𝐹
𝑐
𝑍 (𝑡)

= (𝐴𝐼
𝑛+𝑚−2

+ 𝛼𝐵𝐶𝐹
𝑐
)𝑍 (𝑡) ,

(11)

where

𝐹
𝑐
= [
−
̃L
1
Ω̃
1

Ω̃
2
−
̃L
2

] ,

̃L
1
=
[
[

[

𝑙
11
− 𝑙
𝑛1

⋅ ⋅ ⋅ 𝑙
1(𝑛−1)

− 𝑙
𝑛(𝑛−1)

... ⋅ ⋅ ⋅

...
𝑙
(𝑛−1)1

− 𝑙
𝑛1
⋅ ⋅ ⋅ 𝑙
(𝑛−1)(𝑛−1)

− 𝑙
𝑛(𝑛−1)

]
]

]

,

̃L
2
=
[
[

[

𝑙
(𝑛+1)1

−𝑙
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑙
(𝑛+1)(𝑛+𝑚−1)

− 𝑙
(𝑛+𝑚)(𝑛+𝑚−1)

... ⋅ ⋅ ⋅

...
𝑙
(𝑛+𝑚−1)1

−𝑙
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑙
(𝑛+𝑚−1)(𝑛+𝑚−1)

− 𝑙
(𝑛+𝑚)(𝑛+𝑚−1)

]
]

]

,

Ω̃
1
=
[
[

[

𝑎
1(𝑛+1)

− 𝑎
𝑛(𝑛+𝑚)

⋅ ⋅ ⋅ 𝑎
1(𝑛+𝑚−1)

− 𝑎
𝑛(𝑛+𝑚−1)

... ⋅ ⋅ ⋅

...
𝑎
(𝑛−1)(𝑛+1)

− 𝑎
𝑛(𝑛+𝑚)

⋅ ⋅ ⋅ 𝑎
(𝑛−1)(𝑛+𝑚−1)

− 𝑎
𝑛(𝑛+𝑚−1)

]
]

]

,

Ω̃
2
=
[
[

[

𝑎
(𝑛+1)1

− 𝑎
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑎
(𝑛+1)(𝑛−1)

− 𝑎
(𝑛+𝑚)(𝑛−1)

... ⋅ ⋅ ⋅

...
𝑎
(𝑛+𝑚−1)1

− 𝑎
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑎
(𝑛+𝑚−1)(𝑛−1)

− 𝑎
(𝑛+𝑚)(𝑛−1)

]
]

]

.

(12)

Here we have used Assumption 1 and the property of Lapla-
cian matrix.

Now the couple-group consensus problem of (5) has been
converted into the stability problem of error system (11). We
next give our main results.

Theorem 7. The multiagent system (5) can achieve couple-
group consensus asymptotically if and only if 𝛼 satisfies 𝐴 +
𝛼𝐵𝐶Re(𝜇

𝑖
) < 0, where 𝜇

𝑖
(𝑖 = 1, . . . , 𝑛 + 𝑚 − 2) is the 𝑖th

eigenvalue of 𝐹
𝑐
.
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Proof. According to the aforementioned discussion, we know
that the multiagent systems (5) can achieve couple-group
consensus asymptotically if and only if the error system
(11) is asymptotically stable. It follows from linear system
theory [26] that system (11) which is asymptotically stable is
equivalent to all eigenvalues of 𝐹

𝑐
having negative real parts.

Denote the 𝑖th eigenvalues of𝐹
𝑐
and𝐹
𝑐
, respectively, by 𝜂

𝑖
and

𝜇
𝑖
(𝑖 = 1, . . . , 𝑛 + 𝑚 − 2). Then, 𝜂

𝑖
= 𝐴 + 𝛼𝐵𝐶𝜇

𝑖
. Re(𝜂

𝑖
) < 0

is equivalent to 𝐴 + 𝛼𝐵𝐶Re(𝜇
𝑖
) < 0. This completes the

proof.

Remark 8. Theorem 7 provides a necessary and sufficient
condition of couple-group consensus for multiagent system
(5). According to linear system theory, we know that system
(11) which is asymptotically stable is equivalent to that in
which there exists a positive matrix 𝑃 such that 𝑃𝐹

𝑐
+ 𝐹
𝑇

𝑐
𝑃 ≺

0. Hence, we can get another condition of couple-group
consensus for multiagent systems (5).

Theorem 9. The multiagent system (5) can achieve couple-
group consensus asymptotically if and only if there exists a
positive definite matrix 𝑃 such that

2𝐴𝑃 + 𝛼𝐵𝐶 (𝑃𝐹
𝑐
+ 𝐹
𝑇

𝑐
𝑃) ≺ 0 (13)

holds.

Proof. The proof is straightforward; here is omitted.

Remark 10. Theorem 9 gives a necessary and sufficient condi-
tion for couple-group consensus in forms of matrix inequal-
ity. However, the matrix inequality in (13) is nonlinear with
regard to variables 𝛼 and 𝑃. Here we provide a numerical
algorithm based on homotopy method to solve this problem.
The similar method can be found in [22, 27, 28].

Algorithm 11. Consider the following

Step 1. Introduce a real number 𝜆 varying from 0 to 1, and
construct a matrix function

𝐻(𝛼, 𝑃, 𝜆) = (1 − 𝜆) 𝐹
1
(𝑃) + 𝜆𝐹

2
(𝛼, 𝑃) (14)

with 𝐹
1
(𝑃) = 2𝐴𝑃, 𝐹

2
(𝑃) = 𝛼𝐵𝐶(𝑃𝐹

𝑐
+ 𝐹
𝑇

𝑐
𝑃).

Step 2 (Set 𝜆 = 0). Compute the initial value of 𝑃
0
by solving

the LMI𝐻(𝛼, 𝑃, 0) ≺ 0.
Step 3. Increase 𝜆 by some homotopy path, such as 𝜆 = (𝑘/𝑀)
(𝑘 = 1, 2, . . . ,𝑀).𝑀 is a large positive integer, for example,
𝑀 = 1000. Compute 𝛼0 by solving LMI𝐻(𝛼, 𝑃

0
, 1/𝑀) ≺ 0.

Step 4. Increase 𝜆 by the same homotopy path as Step 3.
Compute 𝑃

1
by solving LMI𝐻(𝛼0, 𝑃, 2/𝑀) ≺ 0.

Step 5. Repeat Steps 3 and 4 until 𝜆 reaches Step 1.

3.2. Discrete-Time Case. Similar to continuous-time case, we
can get the similar results for discrete-time case.

Let

𝑧
𝑖 [
𝑘] ≜ 𝑥𝑖 [

𝑘] − 𝑥𝑛 [
𝑘] , 𝑖 = 1, . . . , 𝑛 − 1,

𝑧
𝑗 [
𝑘] ≜ 𝑥𝑗 [

𝑘] − 𝑥𝑛+𝑚 [
𝑘] , 𝑗 = 𝑛 + 1, . . . , 𝑛 + 𝑚 − 1,

𝑍 [𝑘] ≜ [𝑧1 [
𝑘] , . . . , 𝑧𝑛−1 [

𝑘] , 𝑧𝑛+1 [
𝑘] , . . . , 𝑧𝑛+𝑚−1 [

𝑘]]
𝑇

.

(15)

Then by some computations, we obtain the error systems as
follows:

𝑍 [𝑘 + 1]

= [
𝐴𝐼
𝑛−1
− 𝛼𝐵𝐶

̃L
1

𝛼𝐵𝐶Ω̃
1

𝛼𝐵𝐶Ω̃
2

𝐴𝐼
𝑚−1
− 𝛼𝐵𝐶

̃L
2

]𝑍 [𝑘]

≜ 𝐹
𝑑
𝑍 [𝑘]

= (𝐴𝐼
𝑛+𝑚−2

+ 𝛼𝐵𝐶𝐹
𝑑
)𝑍 [𝑘] ,

(16)

where

𝐹
𝑑
= [
−
̃L
1
Ω̃
1

Ω̃
2
−
̃L
2

] ,

̃L
1
=
[
[

[

𝑙
11
− 𝑙
𝑛1

⋅ ⋅ ⋅ 𝑙
1(𝑛−1)

− 𝑙
𝑛(𝑛−1)

... ⋅ ⋅ ⋅

...
𝑙
(𝑛−1)1

− 𝑙
𝑛1
⋅ ⋅ ⋅ 𝑙
(𝑛−1)(𝑛−1)

− 𝑙
𝑛(𝑛−1)

]
]

]

,

̃L
2
=
[
[

[

𝑙
(𝑛+1)1

−𝑙
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑙
(𝑛+1)(𝑛+𝑚−1)

− 𝑙
(𝑛+𝑚)(𝑛+𝑚−1)

... ⋅ ⋅ ⋅

...
𝑙
(𝑛+𝑚−1)1

−𝑙
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑙
(𝑛+𝑚−1)(𝑛+𝑚−1)

− 𝑙
(𝑛+𝑚)(𝑛+𝑚−1)

]
]

]

,

Ω̃
1
=
[
[

[

𝑎
1(𝑛+1)

− 𝑎
𝑛(𝑛+𝑚)

⋅ ⋅ ⋅ 𝑎
1(𝑛+𝑚−1)

− 𝑎
𝑛(𝑛+𝑚−1)

... ⋅ ⋅ ⋅

...
𝑎
(𝑛−1)(𝑛+1)

− 𝑎
𝑛(𝑛+𝑚)

⋅ ⋅ ⋅ 𝑎
(𝑛−1)(𝑛+𝑚−1)

− 𝑎
𝑛(𝑛+𝑚−1)

]
]

]

,

Ω̃
2
=
[
[

[

𝑎
(𝑛+1)1

− 𝑎
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑎
(𝑛+1)(𝑛−1)

− 𝑎
(𝑛+𝑚)(𝑛−1)

... ⋅ ⋅ ⋅

...
𝑎
(𝑛+𝑚−1)1

− 𝑎
(𝑛+𝑚)1

⋅ ⋅ ⋅ 𝑎
(𝑛+𝑚−1)(𝑛−1)

− 𝑎
(𝑛+𝑚)(𝑛−1)

]
]

]

.

(17)

Here we have used Assumption 1 and the property of Lapla-
cian matrix.

Now the couple-group consensus problem of (7) has been
converted into the stability problem of error system (16). We
next give our main results.

Theorem 12. The multiagent system (7) can achieve couple-
group consensus asymptotically if and only if 𝛾 and (𝐴, 𝐵, 𝐶)
satisfy

−

𝐴

𝐵𝐶

cos (𝜇
𝑖
) −

1

𝐵
2
𝐶
2


𝜇
𝑖






2

× √𝐵
2
𝐶
2
[𝐴
2 Re 2 (𝜇

𝑖
) + (1 − 𝐴

2
)




𝜇
𝑖






2

]

< 𝛼
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< −

𝐴

𝐵𝐶

cos (𝜇
𝑖
) +

1

𝐵
2
𝐶
2


𝜇
𝑖






2

× √𝐵
2
𝐶
2
[𝐴
2 Re 2 (𝜇

𝑖
) + (1 − 𝐴

2
)




𝜇
𝑖






2

],

𝐴
2
( Re 2 (𝜇

𝑖
) −




𝜇
𝑖






2

) +




𝜇
𝑖






2

> 0,

(18)

where 𝜇
𝑖
(𝑖 = 1, . . . , 𝑛 + 𝑚 − 2) is the 𝑖th eigenvalue of 𝐹

𝑐
.

Proof. According to the aforementioned discussion, we know
that the multiagent systems (7) can achieve couple-group
consensus asymptotically if and only if the error system
(16) is asymptotically stable. It follows from linear system
theory [26] that system (16) which is asymptotically stable
is equivalent to all eigenvalues of 𝐹

𝑐
being within the unit

circle. Denote the 𝑖th eigenvalues of 𝐹
𝑑
by 𝜇
𝑖
(𝑖 = 1, . . . , 𝑛 +

𝑚 − 2). Then 𝜌(𝐹
𝑑
) < 1 is equivalent to (𝐴 + 𝛼𝐵𝐶Re(𝜇

𝑖
))
2
+

(𝛼𝐵𝐶 Im(𝜇
𝑖
))
2
< 1. That is,

𝐵
2
𝐶
2



𝜇
𝑖






2

𝛼
2
+ 2𝐴𝐵𝐶Re (𝜇

𝑖
) 𝛼 + 𝐴

2
− 1 < 0. (19)

By some computations, we know that if the conditions in (18)
hold, then the inequality (19) is solvable. This completes the
proof.

Remark 13. Theorem 12 provides a necessary and sufficient
condition of couple-group consensus for multiagent system
(7). According to linear system theory, we know that system
(16) which is asymptotically stable is equivalent to that in
which there exists a positive matrix 𝑃 such that 𝑃 − 𝐹𝑇

𝑑
𝑃𝐹
𝑑
≻

0. Hence, we can get another condition of couple-group
consensus for multiagent systems (7).

Theorem 14. The multiagent system (7) can achieve couple-
group consensus asymptotically if and only if there exist positive
definite matrices 𝑃,𝑄 and scalar 𝛾 such that the following LMI

[
𝑃 𝐹
𝑇

𝑑

𝐹
𝑑
𝑄

] ≻ 0 (20)

holds with the constraint 𝑃−1 = 𝑄. Here 𝐹
𝑑
is defined in (16).

Proof. According to the discussion in Remark 13, and by
using Schur complement lemma (Lemma 6) and letting 𝑄 ≜
𝑃
−1, the proof can be obtained.This completes the proof.

Remark 15. Theorem 14 provides a necessary and sufficient
condition of couple-group consensus for multiagent systems
(7). We can get 𝛾 by solving LMI in (20) with constrain 𝑃−1 =
𝑄. The cone complementarity linearization (CCL) method
can be used to solve this problem [19, 29].We next summarize
the algorithm as follows.

Algorithm 16. Consider the following

Step 1. Find a feasible point of LMI (20) 𝛾0, 𝑃0, 𝑄0, set 𝑘 = 0.
If there are none, exit.

𝒢1 𝒢2

1 2

3 4

5

6

Figure 1: TopologyG.

Step 2. Find 𝛾𝑘+1,𝑃𝑘+1,𝑄𝑘+1 by solving the convexminimiza-
tion problem

𝑡
𝑘
= min {tr (𝑃𝑄𝑘 + 𝑄𝑃𝑘)} (21)

s.t.

[
𝑃 𝐹
𝑇

𝑑

𝐹
𝑑
𝑄

] ≻ 0, [

𝑃 𝐼
𝑛+𝑚−2

𝐼
𝑛+𝑚−2

𝑄
] ⪰ 0. (22)

Step 3. If 𝑡
𝑘
= 2(𝑛+𝑚−2), end this algorithm, and the feasible

𝛾 is given by 𝛾 = 𝛾𝑘+1. Otherwise, set 𝑘 = 𝑘+ 1 and go to Step
2.

4. Simulation Examples

In this section, two examples will be given to show the
usefulness of the theoretical results. For simplicity, we let
𝑎
𝑖𝑗
= 1 if (𝑖, 𝑗) ∈ E. On the other hand, we suppose that 𝑎

𝑖𝑗

takes values in a set {−1, 0, 1} for V
𝑖
, V
𝑗
belonging to different

node sets, respectively.

Example 1. This example is for continuous-time multiagent
systems. The interaction topology is as shown in Figure 1,
which includes six nodes. It can be seen that the graph
contains two subgraphs G

1
and G

2
. (V
1
, V
2
, V
3
) ∈ G

1
,

(V
4
, V
5
, V
6
) ∈ G

2
. Each of them has a directed spanning tree.

Let 𝐴 = 0.3, 𝐵 = 0.8, and 𝐶 = −0.9. By solving the
optimization problem in Algorithm 11, we obtain 𝛼 = 0.6304
and

𝑄 =

[
[
[

[

32.3767 −2.6303 0 0

−2.6303 16.5170 0 0

0 0 21.9891 0

0 0 0 21.9891

]
]
]

]

. (23)

The state trajectories of the agents are as shown in Figure 2. It
can be seen that the agents belonging to G

1
and G

2
achieve

two different consistent states, respectively.

Example 2. This example is for discrete-time multiagent sys-
tems. For simplicity, we suppose that the interaction topology
is the same as that of continuous-time case, that is, G. Let
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Figure 2: State trajectories for continuous-time case.
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Figure 3: State trajectories for discrete-time case.

𝐴 = 0.4, 𝐵 = 0.7, and 𝐶 = −0.8. By solving the optimization
problem in Algorithm 16, we obtain 𝛾 = −0.2531 and

𝑃 =

[
[
[

[

1.7451 −0.8085 −1.2822 0.5011

−0.8085 4.2494 6.6476 −1.5457

−1.2822 6.6476 13.4860 −3.2780

0.5011 −1.5457 −3.2780 1.9709

]
]
]

]

,

𝑄 =

[
[
[

[

0.6426 0.1246 −0.0273 −0.1111

0.1246 1.0569 −0.5293 −0.0832

−0.0273 −0.5293 0.3915 0.2430

−0.1111 −0.0832 0.2430 0.8746

]
]
]

]

.

(24)

Figure 3 shows the consensus results.

5. Conclusion

In this paper, we have studied the couple-group consensus
problems for both continuous-time and discrete-time multi-
agent systems via output feedback control. By a system trans-
formation, the consensus problems of multiagent systems
have been converted into the stability problems of the error
systems. Some necessary and sufficient conditions of couple-
group consensus for multiagent systems have been obtained.
Two algorithms have been given to compute the allowable
control gains. The effectiveness of the proposed results has
been shown by the simulation examples.
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A performance assessment method for nonlinear feedforward and feedback control systems is proposed in this paper. First, the
existence of minimum variance performance bound for two nonlinear systems with different structures is analyzed, and the closed-
loop model of nonlinear system is obtained with the help of iterative orthogonal least squares identification method. Then, the
technology of variance analysis is introduced to establish the variance contributions due to both disturbances and controller.
A nonlinear performance index for the feedforward and feedback control systems is estimated using an ANOVA-like variance
decomposition method. Finally, a meaningful example is simulated to show the effectiveness of our method.

1. Introduction

The technology of control performance assessment (CPA)
has attracted much attention in recent years, due to the
extensive application of automatic control systems in indus-
trial area. CPA is a management tool to maintain efficient
operation performance of automation systems.Themain aim
is to evaluate the performance of control loops in control
systems, diagnose the reason of poor performance, and
present effective proposals for improvement once the control
performance of a running controller cannot meet the desired
requirements.

The study of CPA began to blossom some 20 years
ago with the pioneering work by Harris [1]; he proposed
a linear performance index based on minimum variance
benchmark. Desborough and Harris [2] proposed a nor-
malized performance index for assessment of linear SISO
controller performance, which can be estimated by linear
regressionmethods. Stanfelj et al. [3] presented amethod that
utilized autocorrelation and cross correlation functions for
monitoring and diagnosing the cause of poor performance
of feedforward and feedback control systems. Desborough
and Harris [4] developed a performance assessment algo-
rithm based on variance table to investigate the variance
contributions due to disturbances and controllers for a linear

feedforward and feedback system. Harris et al. [5] developed
a method for assessing the performance of linear MIMO
control systems, and this method requires an estimate of the
process interactor matrix that characterizes the dead-time
structure. Almost at the same time,Huang et al. [6] developed
a new approach based on filtering and correlation (FCOR)
analysis of the process output and filtered data, which can
be used to estimate the controller performance of a general
class of linear MIMO processes. Subsequently, Huang et al.
[7] developed a method for the performance assessment of
linearmultivariate feedback plus feedforward control systems
using minimum variance control as the benchmark. CPA
theoretical issues have been reported by several literatures,
such as the references published by Qin [8], Huang and Shah
[9], and Jelali [10].

Although the field of CPA has received much attention
in theory and engineering in recent years [11–14], the most
previous studies are focused on linear systems. In real
applications, the industrial processes are naturally nonlinear
systems. The estimation of the minimum variance perfor-
mance lower bound (MVPLB) and the performance index
using the linear control performance assessment techniques
may be distorted by these nonlinearities. Due to the internal
complexity and lack of effective mathematical tools, far less
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has been written on the CPA methods for nonlinear systems.
For a special class of nonlinear SISO processes that can
be described by the superposition of a nonlinear dynamic
model and additive linear disturbance, Harris and Yu [15]
presented a method to estimate the MVPLB using closed-
loop data. Continuing this idea, estimates of the MVPLB for
the moderate valve stiction cases are proposed by Yu et al.
[16]. Yu et al. [17] proposed a new CPA performance index
for general nonlinear SISO models based on an ANOVA-
like variance decomposition method. This new performance
index is not based on the MVPLB, but it can be used to
estimate the MVPLB for some nonlinear systems detailed
are discussed in [15]. Considering the process nonlinearity
and valve stiction nonlinearity in control system, Zhang [18]
proposed some CPA methods for nonlinear systems based
on minimum variance benchmark. Yu et al. [19] extended
CPA to nonlinearMIMO systems. However, in order tomake
the problem tractable, they restrict the system structure to
be a model with additive linear disturbances and where the
nonlinearity is in the form of valve stiction.

In spite of the fact that multivariate control schemes are
justified from an economic and quality improvement stand-
point, the univariate controllers are the mostly used con-
trollers in practical applications. The performance of these
SISO control schemes can be enhanced by including feed-
forward elements. In this paper, we study the performance
assessment for nonlinear feedforward and feedback control
systems. The objective of our work is to estimate the MVPLB
for this nonlinear system and analyze the contribution of
each controller for the overall performance bound.This study
has an important guiding significance for the adjustment and
design of the actual control system. Two common situations
are often encountered in pragmatic feedforward and feedback
control systems. The first case is, although a feedforward
variable can bemeasured, it is not used in the control systems;
in such situation, the result of CPA for nonlinear feedforward
and feedback control systems can provide an estimation of the
variance reductions if feedforward controller is considered.
In the other case, a feedforward variable is both measured
and used in a feedforward and feedback control scheme,
and then, the performance of the individual controllers can
be assessed by the result of this paper, such that we can
determine which controller should be principally adjusted
to improve the performance of feedforward and feedback
control systems.

Based on some methods for the performance assessment
of linear feedforward and feedback control systems, this
paper is an extension to nonlinear systems. The outline of
this paper is organized as follows. As a prerequisite, the
performance assessment of linear feedforward and feedback
systems is discussed in Section 2. In Section 3, the existence
ofMVPLB for nonlinear feedforward and feedback systems is
analyzed. In Section 4, a description of the ANOVA-like vari-
ance decomposition method is given and a new performance
index of nonlinear control systems is proposed. Finally,
a simulation is made to illustrate the proposed method-
ology in Section 5, and this is followed by a conclusion
in Section 6.

Unmeasurable disturbanceMeasurable disturbance

−

D0,t

q
−1
fd

ut
q
−b
fP

yt

D1,t

G
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G
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c

u
fb
t

u
ff
t

Figure 1: Schematic of feedforward and feedback control system.

2. Analysis of Variance in Linear Feedforward
and Feedback Control System

A structural schematic of general feedforward and feedback
control system is given in Figure 1, where 𝑦

𝑡
is output variable

of the process, 𝑢
𝑡
is manipulated variable which is adjusted by

summing the outputs from the feedback controller 𝑢fb
𝑡
and

feedforward controller 𝑢ff
𝑓
. 𝐺fb

𝑐
is feedback controller transfer

function, and 𝐺ff
𝑐
is feedforward controller transfer function.

𝑞
−𝑏
𝑓
𝑃
represents the process model that may be linear or

nonlinear. 𝑏 is the number of whole periods of process delay.
𝑞
−𝑙
𝑓
𝑑
𝐷

1,𝑡
represents the effect that the measured disturbance

𝐷
1,𝑡

has on the process output, and 𝑙 is the number of periods
of delay it takes for a change in 𝐷

1,𝑡
to begin to affect

the output. In linear systems, 𝑞−𝑙
𝑓
𝑑
𝐷

1,𝑡
is often expressed

by transfer function as 𝑞−𝑙
𝑁

𝑑
𝐷

1,𝑡
. 𝐷

0,𝑡
and 𝐷

1,𝑡
represent

the unmeasured and measured disturbances, respectively. In
this paper, work is based on the assumption that there is
no cross correlation among the unmeasured and measured
disturbances, and this is reasonable for many industrial
processes.

In linear systems, the delay-free process model 𝑓
𝑃
can be

represented by the following equation:

𝑓
𝑃
=

𝜔 (𝑞
−1
)

𝛿 (𝑞
−1
)

, (1)

where 𝜔(𝑞−1
) and 𝛿(𝑞−1

) are stable polynomials in the back-
shift operator 𝑞−1. Disturbances𝐷

0,𝑡
and𝐷

1,𝑡
are represented

by autoregressive integrated moving average (ARIMA) time
series models:

𝐷
𝑖,𝑡
=

𝜃
𝑖
(𝑞

−1
)

𝜑
𝑖
(𝑞

−1
) ∇

𝑑
𝑖

𝛼
𝑖,𝑡
, 𝑖 = 0, 1. (2)

{𝛼
𝑖,𝑡
} is a sequence of independently and identically dis-

tributed random variables with mean zero and constant
variance 𝜎2

𝑖
. 𝜃

𝑖
(𝑞

−1
) and 𝜑

𝑖
(𝑞

−1
) are monic and stable poly-

nomials. The difference operator is defined as ∇ def
= (1 − 𝑞

−1
),

and 𝑑
𝑖
is the degree of differencing. The linear feedforward
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and feedback control system can be modeled as the sum of
two disturbances and a linear transfer function:

𝑦
𝑡
= 𝑞

−𝑏
𝜔 (𝑞

−1
)

𝛿 (𝑞
−1
)

𝑢
𝑡
+ 𝐷

0,𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡
. (3)

Substituting the feedforward and feedback controller repre-
sentation into above equation and multiplying both sides by
𝑞
𝑑 and collecting terms

𝑦
𝑡+𝑏
=

𝜔 (𝑞
−1
)

𝛿 (𝑞
−1
)

𝑢
fb
𝑡
+ 𝐷

0,𝑡+𝑏
+

𝜔 (𝑞
−1
)

𝛿 (𝑞
−1
)

𝑢
ff
𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡+𝑏
.

(4)

In an analogous manner to the minimum variance feedback
controller, the design of minimum variance feedforward and
feedback controller can be derived. The research result of
Desborough and Harris [4] reported that the linear closed-
loop system can be described in terms of the unmeasured
disturbance driving force and the measured feedforward
variable. We do the similar work, which yields

𝑦
𝑡+𝑏
=

𝜔 (𝑞
−1
)

𝛿 (𝑞
−1
)

(−𝐺
fb
𝑐
𝑦

𝑡
) +

𝜃
0
(𝑞

−1
)

𝜑
0
(𝑞

−1
) ∇

𝑑
0

𝛼
0,𝑡+𝑏

+

𝜔 (𝑞
−1
)

𝛿 (𝑞
−1
)

𝐺
ff
𝑐
𝐷

1,𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡+𝑏

=

𝜃
0
(𝑞

−1
) /𝜑

0
(𝑞

−1
) ∇

𝑑
0

1 + 𝑞
−𝑏
[𝜔 (𝑞

−1
) /𝛿 (𝑞

−1
)] 𝐺

fb
𝑐

𝛼
0,𝑡+𝑏

+

𝑞
−𝑏
𝐺

𝑃
(𝑞

−1
)𝐺

ff
𝑐
+ 𝑞

−𝑙
𝑁

𝑑

1 + 𝑞
−𝑏
[𝜔 (𝑞

−1
) /𝛿 (𝑞

−1
)] 𝐺

fb
𝑐

𝐷
1,𝑡+𝑏

= 𝜓
0
(𝑞

−1
) 𝛼

0,𝑡+𝑏
+ 𝜓

1
(𝑞

−1
)𝐷

1,𝑡+𝑏
,

(5)

where 𝜓
0
(𝑞

−1
) is the closed-loop transfer function between

𝑦
𝑡
and the driving force for the unmeasured disturbance.

𝜓
1
(𝑞

−1
) is the closed-loop transfer function between 𝑦

𝑡

and measured feedforward variable 𝐷
1,𝑡
. Alternatively, the

process can be described in terms of the driving forces alone:

𝑦
𝑡
= 𝜓

0
(𝑞

−1
) 𝛼

0,𝑡+𝑏
+ 𝜓

1
(𝑞

−1
) 𝛼

1,𝑡+𝑏
. (6)

Each of the closed-loop transfer functions in (6) can be
expanded in a convergent power series in 𝑞−1:

𝜓
𝑖
(𝑞

−1
) =

∞

∑

ℎ=0

𝜓
𝑖,ℎ
𝑞
−ℎ
. (7)

This expansion is obtained by writing each transfer function
as a ratio of polynomials 𝑞−1 and then dividing the numerator
into the denominator using polynomial long division. Then
the process output can be extended as

𝑦
𝑡+𝑏
= 𝑦

0,𝑡+𝑏
+ 𝑦

1,𝑡+𝑏
=

∞

∑

ℎ=0

𝜓
0,ℎ
𝑞
−ℎ
𝛼

0,𝑡+𝑏
+

∞

∑

ℎ=0

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏
.

(8)

The term 𝑦
0,𝑡+𝑏

is the contribution of unmeasured distur-
bance𝐷

0,𝑡
to the process output; it can be written as

𝑦
0,𝑡+𝑏

= (1 + 𝜓
0,1
𝑞
−1
+ ⋅ ⋅ ⋅ + 𝜓

0,𝑏−1
𝑞
−(𝑏−1)

) 𝛼
0,𝑡+𝑏

+ (𝜓
0,𝑏
𝑞
−𝑏
+ 𝜓

0,𝑏+1
𝑞
−(𝑏+1)

+ ⋅ ⋅ ⋅ ) 𝛼
1,𝑡+𝑏

= 𝑒
0,𝑡+𝑏/𝑡

+

∞

∑

ℎ=𝑏

𝜓
0,ℎ
𝑞
−ℎ
𝛼

0,𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ 𝑦

fb
0,𝑡+𝑏
.

(9)

The first term 𝑒
0,𝑡+𝑏/𝑡

in above function is recognized as
the prediction error, which is independent of the second
term. The second term is the contribution to the process
output 𝑦

0,𝑡+𝑏
which arises from the nonoptimality of the

control associated with the unmeasured disturbance, and it
is also a function of the process dynamics, the unmeasured
disturbance, and the feedback controller only.

In a similar manner, the contribution of the measured
disturbance𝐷

1,𝑡
to the process output can be written as

𝑦
1,𝑡+𝑏

= 𝑒
1,𝑡+𝑏/𝑡

+ (𝜓
1,𝑏
𝑞
−𝑏
+ ⋅ ⋅ ⋅ + 𝜓

1,𝑏+𝑙−1
𝑞
−(𝑏+𝑙−1)

) 𝛼
1,𝑡+𝑏

+ (𝜓
1,𝑏+𝑙
𝑞
−(𝑏+𝑙)

+ 𝜓
1,𝑏+𝑙+1

𝑞
−(𝑏+𝑙+1)

+ ⋅ ⋅ ⋅ ) 𝛼
1,𝑡+𝑏

= 𝑒
1,𝑡+𝑏/𝑡

+

𝑏+𝑙−1

∑

ℎ=𝑏

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏

+

∞

∑

ℎ=𝑏+𝑙

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏
= 𝑒

1,𝑡+𝑏/𝑡
+ 𝑦

ff
1,𝑡+𝑏

+ 𝑦
ff&fb
1,𝑡+𝑏
,

(10)
where
𝑒
1,𝑡+𝑏/𝑡

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

0, 𝑙 ≥ 𝑏

(𝜓
1,0
𝑞
0
+ ⋅ ⋅ ⋅ + 𝜓

1,𝑙−1
𝑞
−(𝑙−1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0

+ 𝜓
1,𝑙
𝑞
−𝑙

+ 𝜓
1,𝑙+1
𝑞
−(𝑙+1)

+ ⋅ ⋅ ⋅ + 𝜓
1,𝑏−1

𝑞
−(𝑏−1)

)𝛼
1,𝑡+𝑏

𝑙 < 𝑏.

(11)
In (10), the first term 𝑒

1,𝑡+𝑏/𝑡
is the prediction error for the

measured disturbance, and it is independent of the second
and third terms. The second term is the contribution to
the output 𝑦

1,𝑡+𝑏
which arises from the nonoptimality of

the feedforward controller only, and the third term is the
contribution which arises from the combined effect of the
nonoptimality of the feedforward controller and the feedback
controller.

Since it has been assumed that the measured and unmea-
sured disturbances are not cross correlated, the prediction
error 𝑒

0,𝑡+𝑏/𝑡
and 𝑒

1,𝑡+𝑏−𝑙/𝑡
are independent of all the con-

trollers. Then, the process output under minimum variance
control is given by the sum of the individual error in
forecasting the effect of the disturbances:

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
, (12)

and the MVPLB can be written as
𝜎

2

mv = var (𝑒
0,𝑡+𝑏/𝑡

) + var (𝑒
1,𝑡+𝑏/𝑡

) . (13)
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3. MVPLB of Nonlinear Feedforward and
Feedback Control System

Due to the effect of various factors such as complexity of
nonlinear behavior and challenges in model determination
and parameter estimation, far less has been written to
extend themethods for performance assessment to nonlinear
systems. In order to simplify the analysis and without loss of
generality, the problem of estimation for minimum variance
performance bound for nonlinear feedforward and feedback
systems is given in two aspects.

First, we only assume that the process model has a
nonlinear representation in the structural schematic Figure 1,
and this is not very restrictive inmany applications.Then, the
closed output 𝑏-steps into the future of the nonlinear system
can be expressed as

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏
+ 𝑁

𝑑
𝐷

1,𝑡+𝑏−𝑙
, (14)

where the notation 𝑓
𝑃
(⋅) denotes a nonlinear function of

process model, and the superscript ∗ is used to represent
the vector collecting the immediate historical values; that
is, 𝑢∗

𝑡

def
= (𝑢

𝑡−1
, . . . , 𝑢

𝑡−𝑛
𝑢

). Decomposing the unmeasured
disturbance𝐷

0,𝑡+𝑏
into a prediction error and a prediction

𝐷
0,𝑡+𝑏

= 𝑒
0,𝑡+𝑏/𝑡

+ 𝐷
0,𝑡+𝑏/𝑡

, (15)

the prediction 𝐷
0,𝑡+𝑏/𝑡

is the 𝑏-step ahead minimum mean
square error prediction for the value of the unmeasured dis-
turbance 𝑏 steps into the future. The effects of the measured
feedforward variables are also decomposed into a prediction
error and a prediction

𝑁
𝑑
𝐷

1,𝑡+𝑏−𝑙
= 𝑒

1,𝑡+𝑏−𝑙/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡
. (16)

The prediction 𝐷
1,𝑡+𝑏−𝑙/𝑡

is the 𝑏 − 𝑙 step ahead minimum
mean square error prediction for the value of the measured
disturbance 𝑏 − 𝑙 steps into the future. Note that if 𝑙 is greater
than or equal to 𝑏, then 𝑒

1,𝑡+𝑏−𝑙/𝑡
= 0. This implies that there

is no prediction error since we exactly know the future value
of the effect on the process of the measured disturbance.

The minimum variance control law is found by minimiz-
ing the mean square error of the output:

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏
+ 𝑁

𝑑
𝐷

1,𝑡+𝑏−𝑙

= 𝑓
𝑃
(𝑢

∗

𝑡
) + 𝑒

0,𝑡+𝑏/𝑡
+ 𝐷

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡

= 𝑒
0,𝑡+𝑏/𝑡

+ 𝑒
1,𝑡+𝑏−𝑙/𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

+ 𝑓
𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 2

.

(17)

It follows from this formula that the minimum variance
controller (MVC) set the manipulated variables to exactly
cancel the predictions; that is,

𝑓
𝑃
(𝑢

fb
𝑡
, 𝑢

ff
𝑡
) + 𝐷

0,𝑡+𝑏/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡
= 0. (18)

Then the process output under this control scheme can be
denoted by

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+

{

{

{

0, 𝑙 ≥ 𝑏

𝑒
1,𝑡+𝑏−𝑙/𝑡

, 𝑙 < 𝑏.

(19)

As we have assumed that there is no cross correlation among
the unmeasured and measured disturbances, the prediction
errors 𝑒

0,𝑡+𝑏/𝑡
and 𝑒

1,𝑡+𝑏−𝑙/𝑡
are independent and unrelated

with controller parameters.Then, the MVPLB of closed-loop
output is

𝜎
2

mv = var (𝑒
0,𝑡+𝑏/𝑡

) + var (𝑒
1,𝑡+𝑏−𝑙/𝑡

)

= (1 + 𝜓
2

0,1
+ ⋅ ⋅ ⋅ + 𝜓

2

0,𝑏−1
) 𝜎

2

0

+

{

{

{

0 𝑙 ≥ 𝑏

(𝜓
2

1,0
+ 𝜓

2

1,1
+ ⋅ ⋅ ⋅ + 𝜓

2

1,𝑏−𝑙−1
) 𝜎

2

1
𝑙 < 𝑏.

(20)

From above derivation, we can conclude that the MVPLB
of nonlinear feedforward and feedback system is identical
to that of linear system. The difference is that it is possible
to adopt different controllers for obtaining same minimum
variance.

Second, a more general form of nonlinear feedforward
and feedback control systems is considered:

𝑦
𝑡
= 𝑞

−𝑏
𝑓
𝑃
(𝑢

∗

𝑡
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonlinear

+ 𝐷
0,𝑡⏟⏟⏟⏟⏟⏟⏟

nonlinear

+ 𝐷
1,𝑡−𝑙⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonlinear

, (21)

where the terms𝐷
0,𝑡
and𝐷

1,𝑡−𝑙
are called output disturbances

which represent the effect that the unmeasured andmeasured
disturbances have on the process output, respectively. They
are also nonlinear and can be represented by nonlinear
ARMAmodel as

𝐷
0,𝑡
= 𝑓

0,𝐷
(𝐷

∗

0,𝑡−1
, 𝛼

∗

0,𝑡−1
) + 𝛼

0,𝑡
,

𝐷
1,𝑡
= 𝑓

𝑑
𝐷

1,𝑡
= 𝑓

1,𝐷
(𝐷

∗

1,𝑡−1
, 𝛼

∗

1,𝑡−1
) + 𝛼

1,𝑡
.

(22)

Further, we assume that the output disturbance admits a
representation of the form

𝛾
𝑖
(𝑞

−1
) ∇

𝑑
𝑖
𝐷

𝑖,𝑡
=

𝑚

∑

𝑘=1

𝜃
𝑖,𝑘
𝛼

𝑖,𝑡−𝑘
+

𝑚

∑

𝑘
1
=1

𝑚

∑

𝑘
2
=𝑘
1

𝜃
𝑖,𝑘
1
𝑘
2

𝛼
𝑖,𝑡−𝑘
1

𝛼
𝑡−𝑘
2

+ ⋅ ⋅ ⋅ +

𝑚

∑

𝑘
1
=1

⋅ ⋅ ⋅

𝑚

∑

𝑘
𝑘
=𝑘
𝑘−1

𝜃
𝑖,𝑘
1
⋅⋅⋅𝑘
𝑘

𝛼
𝑖,𝑡−𝑘
1

⋅ ⋅ ⋅ 𝛼
𝑖,𝑡−𝑘
𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
𝑖,𝐷

(𝛼
∗

𝑖,𝑡−1
)

+ 𝛼
𝑖,𝑡
,

(23)
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where {𝛼
𝑖,𝑡
} is a white noise sequence with mean 𝜇

𝑖,𝛼
and

variance 𝜎2

𝑖,𝛼
, and 𝛾

𝑖
(𝑞

−1
) is monic and stable polynomial,

and we also assume that the disturbance model is invertible.
Multiply both sides by 𝑞𝑏 and substitute for all values of𝑦

𝑡+𝑏−𝑖
,

𝑖 = 1, . . . , 𝑏 − 1, in (21):

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) +

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
)

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
)

+

𝑏−𝑙−1

∑

𝑗

𝜏
1,𝑗
(𝑓

1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
) + 𝛼

1,𝑡+𝑏−𝑙−𝑗
)

+ 𝐾
1,𝑏
(𝐷

1,𝑡
, 𝛼

∗

1,𝑡
) ,

(24)

where 𝜏
𝑖,𝑗
is the 𝑗th impulse coefficient of [𝛾

𝑖
(𝑞

−1
)∇

𝑑
𝑖
]
−1, 𝑖 =

0 or 1. 𝐾
𝑖,𝑏
(𝐷

𝑖,𝑡
, 𝛼

∗

𝑖,𝑡
) is a remainder term that is obtained by

successive substitutions.The unmeasured output disturbance
is represented as

𝐷
0,𝑡+𝑏

=

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
)

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
) .

(25)

According to the definition of conditional expectation, the 𝑏-
step ahead prediction is

̂
�̃�

0,𝑡+𝑏/𝑡
= 𝐸

{

{

{

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
) | 𝐼

𝑡

}

}

}

+ 𝐸 {𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
)}

= 𝐸

{

{

{

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
) | 𝐼

𝑡

}

}

}

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
) .

(26)

Now in the aforementioned equation, we know

𝐸 {𝛼
0,𝑡+𝑘

| 𝐼
𝑡
} = 𝜇

0,𝛼
, 𝑘 = 1, . . . .𝑏,

𝐸 {𝛼
0,𝑡−𝑘

| 𝐼
𝑡
} = 𝛼

0,𝑡−𝑘
= 𝐷

0,𝑡−𝑘
−
̂
�̃�

0,𝑡−𝑘/𝑡−𝑘−1
, 𝑘 ≥ 0,

𝐸 {𝑓
0,𝐷
(𝛼

∗

0,𝑡+𝑘
)




𝐼
𝑡
}

= ∫

∞

−∞

⋅ ⋅ ⋅ ∫

∞

−∞

𝑓
0,𝐷
(𝛼

∗

0,𝑡+𝑘
)

× 𝑝
0
(𝛼

0,𝑡+𝑘
, . . . , 𝛼

0,𝑡+1
) 𝑑𝛼

0,𝑡+𝑘
⋅ ⋅ ⋅ 𝑑𝛼

0,𝑡+1
,

(27)

where 𝑝
0
(𝛼

0,𝑡+𝑘
, . . . , 𝛼

0,𝑡+1
) is the joint distribution of

𝛼
0,𝑡+𝑘

⋅ ⋅ ⋅ 𝛼
0,𝑡+1

. Then the prediction error for the unmeasured
output disturbance is

𝑒
0,𝑡+𝑏/𝑡

= 𝐷
0,𝑡+𝑏

−
̂
�̃�

0,𝑡+𝑏/𝑡

=

𝑏−1

∑

𝑗=0

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) − 𝐸 {𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) | 𝐼

𝑡
}

+𝛼
0,𝑡+𝑏−𝑗

− 𝜇
0,𝛼
) .

(28)

In a same manner, the prediction error for the measured
output disturbance is

𝑒
1,𝑡+𝑏−𝑙/𝑡

= 𝐷
1,𝑡+𝑏−𝑙

−
̂
�̃�

1,𝑡+𝑏−𝑙/𝑡

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0, 𝑙 ≥ 𝑏

𝑏−𝑙−1

∑

𝑗=0

𝜏
1,𝑗
(𝑓

1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
)

−𝐸 {𝑓
1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
) | 𝐼

𝑡
}

+𝛼
1,𝑡+𝑏−𝑙−𝑗

− 𝜇
1,𝛼
) , 𝑙 < 𝑏.

(29)

The process output can be written as

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) +
̂
�̃�

0,𝑡+𝑏/𝑡
+
̂
�̃�

1,𝑡+𝑏−𝑙/𝑡
+ 𝑒

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
.

(30)

If it is possible to find the control action at time 𝑡 such that

𝑓
𝑃
(𝑢

∗

𝑡
) +
̂
�̃�

0,𝑡+𝑏/𝑡
+
̂
�̃�

1,𝑡+𝑏−𝑙/𝑡
= 0, (31)

then the resulting controller is the minimum variance con-
troller. It may not be possible to implement a minimum
variance controller due to the various reasons. For instance,
it may lead to excessive manipulated variable action and
may not be robust to modeling errors. However, the output
variance set by minimum variance provides a theoretical
lower bound on the system output and can be used as a useful
guide for controller assessment.

The process output under minimum variance control is
given by the sum of the individual error in predicting the
effect of the disturbances:

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ {

0, 𝑙 ≥ 𝑏

𝑒
1,𝑡+𝑏−𝑙/𝑡

, 𝑙 < 𝑏.

(32)

It should be pointed out that the terms 𝑒
0,𝑡+𝑏/𝑡

and 𝑒
1,𝑡+𝑏−𝑙/𝑡

are
very complicated functions, and they may not be expanded
in convergent time series as that in linear systems. Therefore,
it is difficult to estimate the MVPLB from the closed-loop
operation data of feedforward and feedback control system
by using traditional linear regression method. But we can
get a conclusion that the MVPLB does not depend on the
manipulated variable and only related with the most recent
𝑏 past unmeasured disturbance driving force and 𝑏 − 𝑙 past
measured disturbance driving force.
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4. ANOVA-Based Performance Assessment
of Nonlinear Feedforward and Feedback
Control System

Analysis of variance (ANOVA) methods are a class of statis-
tical methods that are useful in process systems engineering.
Its primary task is to decompose the variance of a response
variable into contributions arising from the inputs and assess
themagnitude and significance of each of their contributions.
Historically, the ANOVA variance decomposition techniques
were used to provide variance analysis for nonlinear systems
with the multidisturbance sources [20].

For the output of a static system such as 𝑌 =

𝑓(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑃
), the relative importance of the indepen-

dent inputs can be quantified by the fractional variance, and
this can be calculated using an ANOVA-like decomposition
formula [21]:

Var [𝑌] = ∑
𝑖

𝑉
𝑖
+∑

𝑖

∑

𝑗>𝑖

𝑉
𝑖𝑗
+ ⋅ ⋅ ⋅ + 𝑉

12⋅⋅⋅𝑝
, (33)

where 𝑉
𝑖
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]], 𝑉

𝑖
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]],

𝑉
𝑖𝑗
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
, 𝑋

𝑗
= 𝑥

𝑗
]] − Var[𝐸[𝑌 | 𝑋

𝑖
=

𝑥
𝑖
]] − Var[𝐸[𝑌 | 𝑋

𝑗
= 𝑥

𝑗
]] and so on. 𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]

denotes the expectation of 𝑌 conditional on 𝑋
𝑖
when fixing

the value 𝑥
𝑖
, and 𝑉 stands for variance over all the possible

values of 𝑥
𝑖
. In the same way, if we partition the variable set

(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑃
) into two groups: 𝑈

1
= (𝑋

1
, . . . , 𝑋

𝑘
) and

𝑈
2
= (𝑋

𝑃−𝑘+1
, . . . , 𝑋

𝑃
), then the variance of 𝑌 = 𝑓(𝑈

1
, 𝑈

2
)

can be decomposed into 𝑉[𝑌] = 𝑉
𝑈
1

+ 𝑉
𝑈
2

+ 𝑉
𝑈
1
𝑈
2

.
For the nonlinear feedforward and feedback control

systems described by Figure 1, we separate the disturbance
entering the system after time 0, say [𝛼

0,𝑡+𝑏
, 𝛼

0,𝑡+𝑏−1
, . . .,

𝛼
0,1
, 𝛼

1,𝑡+𝑏−𝑙
, 𝛼

1,𝑡+𝑏−𝑙−1
, . . . , 𝛼

1,1
], into two groups: 𝑥

1
=

[𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡+1
, 𝛼

1,𝑡+𝑏−𝑙
, . . . , 𝛼

1,𝑡+1
] and 𝑥

2
= [𝛼

0,𝑡
, . . .,

𝛼
0,1
, 𝛼

1,𝑡
, . . . , 𝛼

1,1
]. The first group includes all the

disturbances entering the system after time 𝑡 and the
second group includes all the disturbances entering the
system up to and including time 𝑡 and including time 𝑡
starting from the initial time 𝑡 = 0. Now, we are interested
in determining the sensitivity of output 𝑦

𝑡+𝑏
variations of

two vector series 𝑥
1
and 𝑥

2
. Since the future behavior of

𝑦
𝑡+𝑏

is possibly dependent on initial conditions due to the
nonlinearity, the initial condition must be considered before
using the ANOVA-like decomposition equation. Using the
well-known variance decomposition theorem, the variance
of 𝑦

𝑡+𝑏
can be decomposed into two terms:

𝑉 [𝑦
𝑡+𝑏
] = 𝐸

𝐼
0

[𝑉
𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
]] + 𝑉

𝐼
0

[𝐸
𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
]] , (34)

where 𝑥 = [𝑥
1
, 𝑥

2
] denotes all of disturbances entering

the system from time 1 to time 𝑡 + 𝑏 and 𝐼
0
denotes initial

conditions. The first term in above equation is the fractional
contribution to the variance of 𝑦

𝑡+𝑏
from the disturbance

signal and the interaction between disturbance and the initial
condition. The second term is the fractional contribution
to the output solely due to the uncertainties in the initial
condition. Given the initial condition 𝐼

0
, conditional variance

𝑉
𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
] can be decomposed as

𝑉
𝑥
| 𝐼

0
= 𝑉

𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
] = 𝑉

1
| 𝐼

0
+ 𝑉

2
| 𝐼

0
+ 𝑉

12
| 𝐼

0
, (35)

where 𝑉
1
| 𝐼

0
= 𝑉

𝑥1
[𝐸

𝑥2
[𝑦

𝑡+𝑏
| (𝑥

1
, 𝐼

0
)]], 𝑉

2
| 𝐼

0
=

𝑉
𝑥2
[𝐸

𝑥1
[𝑦

𝑡+𝑏
| (𝑥

2
, 𝐼

0
)]], and 𝑉

12
| 𝐼

0
= 𝑉

𝑥
[𝐸

𝑥
[𝑦

𝑡+𝑏
|

(𝑥, 𝐼
0
)]] − 𝑉

1
| 𝐼

0
− 𝑉

2
| 𝐼

0
. 𝐸

𝐼
0

[𝑉
1
| 𝐼

0
] denotes the main

effect of 𝑥
1
on the𝑉[𝑦

𝑡+𝑏
].𝐸

𝐼
0

[𝑉
2
| 𝐼

0
] denotes the interaction

contributing to the𝑉[𝑦
𝑡+𝑏
] that is not accounted for the main

effects of 𝑥
1
and 𝑥

2
. Consequently, a suitable performance

index can be constructed by referring to Harris index:

𝜂
𝑡
=

𝐸
𝐼
0

[𝑉
1
| 𝐼

0
]

Var [𝑦
𝑡+𝑏
]

. (36)

If the nonlinear model is stationary, then the distribution
of lim

𝑡→∞
𝑦

𝑡+𝑏
can reach an equilibrium. For linear time

series, this limiting distribution is independent of initial
condition. But for a stationary nonlinear model, the limiting
distribution may depend on the initial condition. Therefore,
the performance index 𝜂

𝑡
will depend on the initial condition.

If the distribution of lim
𝑡→∞

𝑦
𝑡+𝑏

does not depend on the
initial conditions, the process is termed ergodic. In actual
industry, the cases that processes are strongly nonergodic
are more pathological than common cases. For an ergodic
nonlinear system, 𝑉

𝐼
0

[𝐸
𝑥
[𝑌

𝑡+𝑏
|𝐼

0
]] in (34) will be zero for

𝑡 → ∞, and the variance decomposition can be expressed
when 𝑡 → ∞ as

Var [𝑦
𝑡+𝑏
] = 𝐸

𝐼
0

[𝑉
1
| 𝐼

0
+ 𝑉

2
| 𝐼

0
+ 𝑉

12
| 𝐼

0
] = 𝑉

1
+ 𝑉

2
+ 𝑉

12
,

(37)

where𝑉
1
= 𝑉

𝑥1
[𝐸

𝑥2
[𝑦

𝑡+𝑏
| 𝑥

1
]],𝑉

2
= 𝑉

𝑥2
[𝐸

𝑥1
[𝑦

𝑡+𝑏
| 𝑥

2
]], and

𝑉
12
= 𝑉[𝑦

𝑡+𝑏
]−𝑉

1
−𝑉

2
.The performance index will turn into

lim
𝑡→∞

𝜂
𝑡
= lim

𝑡→∞

𝑉
1

Var [𝑦
𝑡+𝑏
]

. (38)

Generally, we will approximate the infinite limit in above
equation by some suitably large value 𝜂

𝑀
.

In Section 3, we conclude that the MVPLB of nonlin-
ear feedforward and feedback control systems is existent
and only related with the most recent 𝑏 past unmea-
sured disturbance driving force and 𝑏 − 𝑙 past mea-
sured disturbance driving force. Moreover, we have 𝑥

1
=

[𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡+1
, 𝛼

1,𝑡+𝑏−𝑙
, . . . , 𝛼

1,𝑡+1
], so 𝜂

𝑡
just is the mini-

mum variance performance index of the nonlinear feedfor-
ward and feedback control systems.

For the computation of the performance index, the
principal task is to estimate the closed-loop model of non-
linear feedforward and feedback control system. Firstly, the
measured feedforward variable transfer function, given in (2),
must be estimated.Using the linear regression techniques and
past values of𝐷

1,𝑡
.Themodel ofmeasured disturbance can be

estimated by

𝐷
1,𝑡
=

𝐽
𝐷

∑

𝑖=1

𝜆
𝑖
𝐷

1,𝑡−𝑖
+ �̂�

1,𝑡
. (39)

�̂�
1,𝑡

is an estimate of the independent driving force for
measured disturbance. If the process is controlled by a linear
or nonlinear feedforward and feedback controller such as
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𝑢
𝑡
= 𝑔(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛
𝑦

), then the output of closed-loop system
can be written as

𝑦
𝑡+𝑏

= 𝑓
1
(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛
𝑦

, 𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡−𝑛
0

, 𝐷
1,𝑡+𝑏−𝑙

, . . . , 𝐷
1,𝑡−𝑛
𝐷

)

= 𝑓
2
(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛
𝑦

, 𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡−𝑛
0

, �̂�
1,𝑡+𝑏−𝑙

, . . . , �̂�
1,𝑡−𝑛
1

) .

(40)

According to the existing knowledge, any continuous 𝑓(⋅)
can be arbitrarily well approximated by polynomial models.
Therefore, expanding𝑓

2
(⋅) in above equation as a polynomial

of degree 𝑙 gives the representation

𝑦
𝑡+𝑏
= 𝜀

0
+

𝑛

∑

𝑖
1
=1

𝜀
𝑖
1

𝑥
𝑖
1
,𝑡
+

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=𝑖
1

𝜀
𝑖
1
𝑖
2

𝑥
𝑖
1
,𝑡
𝑥

𝑖
2
,𝑡
+ ⋅ ⋅ ⋅

+

𝑛

∑

𝑖
1
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑙
=𝑖
𝑙−1

𝜀
𝑖
1
⋅⋅⋅𝑖
𝑙

𝑥
𝑖
1
,𝑡
⋅ ⋅ ⋅ 𝑥

𝑖
𝑙
,𝑡
+ 𝜉

𝑡
,

(41)

where

𝑛 = 𝑛
𝑦
+ 𝑛

0
+ 𝑛

1
, (42)

and 𝑥
1,𝑡
= 𝑦

𝑡
, 𝑥

2,𝑡
= 𝑦

𝑡−1
, . . . , 𝑥

𝑛
𝑦
,𝑡
= 𝑦

𝑡−𝑛
𝑦

, 𝑥
𝑛
𝑦
+1,𝑡
=𝛼

0,𝑡+𝑏
, . . .,

𝑥
𝑛
𝑦
+𝑛
0
,𝑡
= 𝛼

0,𝑡−𝑛
0

, and 𝑥
𝑛
𝑦
+𝑛
0
+1,𝑡

= 𝛼
1,𝑡+𝑏−𝑙

, . . . , 𝑥
𝑛,𝑡
= 𝛼

1,𝑡−𝑛
1

.
Moreover, the output of closed-loop system can be written as
a linear regression model:

𝑦
𝑡+𝑏
=

𝑀

∑

𝑖=1

𝑝
𝑖,𝑡
𝜀
𝑖
+ 𝜉

𝑡
, 𝑡 = 1, . . . , 𝑁, (43)

where 𝑁 is the data length, the 𝑝
𝑖,𝑡

are monomials of 𝑥
1,𝑡

to 𝑥
𝑛,𝑡

up to degree 𝑙, 𝑝
1,𝑡
= 1 corresponding to a constant

term, 𝜉
𝑡
is some modeling error, and the 𝜀

𝑖
, 𝑖 = 1, . . . ,𝑀, are

unknown parameters to be estimated. Then above equation
can be written in the matrix form

Y = PΘ + Ε, (44)

where

Y = [[
[

𝑦
1

...
𝑦

𝑁

]
]

]

, P = [[
[

𝑝
1

...
𝑝

𝑀

]
]

]

𝑇

=
[
[

[

𝑝
1,1
⋅ ⋅ ⋅ 𝑝

𝑀,1

... d
...

𝑝
1,𝑁

⋅ ⋅ ⋅ 𝑝
𝑀,𝑁

]
]

]

,

Θ =
[
[

[

𝜀
1

...
𝜀
𝑀

]
]

]

, Ε =
[
[

[

𝜉
1

...
𝜉
𝑁

]
]

]

.

(45)

In reality, as parameters 𝑛
𝑦
, 𝑛

0
, and 𝑛

1
are unknown, we must

consider the combined problem of structure selection and
parameter estimation. To avoid losing significant termswhich
must be included in the final model, we are forced to consider
the full model set at the beginning of the identification
and then to select a subset from full model set and find
the corresponding parameter. The orthogonal least squares

(OLS) method [22] can be used to determine the order and
estimate the parameters of the model. Denote

�̃�
(0)
= [𝑃 : 𝑌] . (46)

After a series of Householder transformations 𝐻(𝑖), 𝑖 =
1, . . . , 𝑘 − 1 have been successively applied to �̃�(0); it is
transformed to

�̃�
(𝑘−1)

= [�̃�
𝑘−1

𝑝
(𝑘−1)

𝑘
⋅ ⋅ ⋅ 𝑝

(𝑘−1)

𝑀
: 𝑌

(𝐾−1)
] , (47)

where �̃�
𝑘−1
= (𝑅

𝑘−1
0)

𝑇, 𝑝(𝑘−1)

𝑘
= (𝑝

(𝑘−1)

1,𝑘
, . . . , 𝑝

(𝑘−1)

𝑁,𝑘
)

𝑇

, and

𝑌
(𝑘−1)

= (𝑦
(𝑘−1)

1
, . . . , 𝑦

(𝑘−1)

𝑁
)

𝑇

, and 𝑅
𝑘−1

is the (𝑘 − 1) × (𝑘 − 1)
upper triangular matrix. Further denote

𝑎
(𝑘)

𝑗
= (

𝑁

∑

𝑖=𝑘

(𝑝
(𝑘−1)

𝑖,𝑗
)

2

)

1/2

; 𝑏
(𝑘)

𝑗
=

𝑁

∑

𝑖=𝑘

𝑝
(𝑘−1)

𝑖,𝑗
𝑦

(𝑘−1)

𝑖
,

𝑗 = 𝑘, . . . ,𝑀.

(48)

Assume that the maximum of (𝑏(𝑘)
𝑗
/𝑎

(𝑘)

𝑗
)
2, 𝑗 = 𝑘, . . . ,𝑀, is

achieved at 𝑗 = 𝑗
𝑚
. Then interchange the 𝑗

𝑚
th column of

𝑝
(𝑘−1)

𝑘
with the 𝑘th column. The procedure is terminated at

𝑀
𝑠
th stage when

1 −

𝑀
𝑠

∑

𝑖=1

(𝑦
(𝑀
𝑠
)

𝑗
)

2

⟨𝑌, 𝑌⟩

≤ 𝜌, or 𝑀
𝑠
= 𝑀, (49)

where 𝜌(0 < 𝜌 ≤ 1) is a desired tolerance. Using backward
substitution, the subset model parameter estimate Θ

𝑠
is

computed from

𝑅
𝑀
𝑠

Θ
𝑠
= [𝑦

(𝑀
𝑠
)

1
⋅ ⋅ ⋅ 𝑦

(𝑀
𝑠
)

𝑀
𝑠

]

𝑇

. (50)

In addition, since the terms of unmeasured disturbance
driving force are generally unmeasured, the identificationwill
require an iterative approach. The identification procedures
can be clarified as follows.

Step 1. Set the initial sequence 𝛼
0,𝑡
by fitting a linear model or

setting the 𝛼
0,𝑡

to zero, and set iteration number 𝑖 = 1.

Step 2. Identify the nonlinear model and get the prediction
errors or residuals 𝜉[𝑖]

𝑘
, 𝑘 = 1, . . . 𝑁.

Step 3. If certain identification criteria are achieved, then the
program jumps to Step 6. Otherwise, Step 4 is run.

Step 4. Replace the initial sequence by the prediction errors
or residuals.

Step 5. Set iteration number 𝑖 = 𝑖 + 1 and return to Step 2.

Step 6. End of program.

Once the parameters of the closed-loop model are esti-
mated, Monte Carlo (MC) method may be used to compute
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Table 1: The obtained model coefficients and minimum variance by linear estimation method.

Terms 𝑏 = 3, 𝑙 = 5 𝑏 = 5, 𝑙 = 3

Real values Estimated values Variances Real values Estimated values Variances
1 1 1 0 1 1 0
𝜓

0,1
1.60 1.4977 0.0118 1.60 1.3811 0.0172

𝜓
0,2

1.76 1.4321 0.0396 1.76 1.2671 0.0466
𝜓

0,3
× × × 1.54 1.0338 0.0801

𝜓
0,4

× × × 1.05 0.6427 0.0825
𝜎

2

0
0.05 0.1208 0.0040 0.05 0.1712 0.0230

𝜓
1,0

× × × × × ×

𝜓
1,1

× × × × × ×

𝜓
1,2

× × × × × ×

𝜓
1,3

× × × 1 1.0005 0.0234
𝜓

1,4
× × × 0.3 0.2849 0.0588

𝜎
2

1
0.1 0.0997 2.1861𝑒 − 004 0.1 0.0989 2.0217𝑒 − 004

𝜎
2

mv 0.3329 0.7038 0.0919 0.6156 1.1688 0.2958

the variance decomposition. Firstly, two random vectors,
̇𝑥
(𝑘)

= [ ̇𝑥
(𝑘)

1
, ̇𝑥

(𝑘)

2
]
𝑁
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, are

generated, which are two sets of 𝑁mc simulation of multi-
dimensional inputs that have the requisite distribution. 𝑁

𝑡

denotes memory length of the model. Then, the mean and
variance of𝑦

𝑡+𝑏
given the initial condition 𝐼

0
can be calculated

by
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(51)

The partial variances can be estimated as
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(52)

To calculate the �̂�
1
| 𝐼

0
with the different initial conditions,

the average of these values can be used as the estimates
of 𝐸

𝐼
0

[𝑉
1
| 𝐼

0
], and the performance index of nonlinear

feedforward and feedback control system can be obtained.

5. Simulation Study

This section presents a simulation experiment to show the
effectiveness of the proposed strategy.Themodel of nonlinear
feedforward and feedback control system that we have chosen
is expressed as

𝑦
𝑡
= 𝑓 (𝑢

∗

𝑡−𝑏
) + 𝐷

0,𝑡
+ 𝑞

−3
(1 − 0.6𝑞

−1
)𝐷

1,𝑡
, (53)

where 𝑓(𝑢∗
𝑡−𝑏
) is process model represented by a nonlinear

polynomial:

𝑓 (𝑢
∗

𝑡−𝑏
) = 0.2𝑢

𝑡−3
+ 0.3𝑢

𝑡−4
+ 𝑢

𝑡−5
+ 0.8𝑢

2

𝑡−3

+ 0.8𝑢
𝑡−3
𝑢
𝑡−4
− 0.7𝑢

2

𝑡−4
− 0.5𝑢

2

𝑡−5
− 0.5𝑢

𝑡−3
𝑢
𝑡−5
.

(54)

Themeasured andunmeasured disturbances are, respectively,
given by

𝐷
0,𝑡
=

1

1 − 1.6𝑞
−1
+ 0.8𝑞

−2
𝛼

0.𝑡
, 𝐷

1,𝑡
=

1

1 − 0.9𝑞
−1
𝛼

1,𝑡
,

(55)

where {𝛼
0,𝑡
} and {𝛼

1,𝑡
} are sequences of independent and

identically distributed normal variables with mean zero, and
the variances are, respectively, 0.05 and 0.1.

Assume that the process is presently being controlled
about a fixed set point by a simple proportional feedforward
controller in addition to an integral feedback controller. The
manipulated variable is given by

𝑢
𝑡
= −0.1𝐷

1,𝑡
−

0.3 − 0.2𝑞
−1

1 − 𝑞
−1

𝑦
𝑡
. (56)

Two closed-loop signal curves of different time-delay condi-
tions 𝑏 = 3, 𝑙 = 5 and 𝑏 = 5, 𝑙 = 3 are shown in Figure 2.
Then, the traditional linear regression method is applied
to estimate the MVPLB for nonlinear forward feedback
control system. The estimated values of model parameters
and MVPLB are shown in Table 1, where the model orders
are 𝐽

0
= 7, 𝐽

1
= 7, and 𝐽

𝐷
= 1 by applying AIC criterion and

the values are calculated by 100 times’ statistics. It can be seen
that the estimated value of model parameters and MVPLB
by traditional linear regression method has larger deviation,
which is always larger than the real value. This implies the
excessive estimation.

It is necessary to identify themodel of closed-loop system
to estimate the minimum variance performance index of the
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Figure 2: 1000 samples for the closed-loop nonlinear feedforward and feedback system subjected tomeasured and unmeasured disturbances.
(a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.
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Figure 3: Output signals of identified model comparing with actual model. (a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.

nonlinear system. First, we collect the disturbance signals
which can be measured and then apply the linear regression
method to fit the curve to obtain the parameter of the white
noise. Furthermore, we use iterative orthogonal least square
method to identify the closed-loop model. The comparison
for the output signal of identified model and actual model
under two different time delays is shown in Figure 3. We
can see the identified model can well approximate to the real
nonlinear model.

It is noted that the output variance of nonlinear system
is also related to the initial value. Thus, to see whether the
resulting controller performance based on variance decom-
position method includes the influence of the initial value
or not, the output variation of closed-loop system during the
period 𝑡 = 1, 2, . . . , 40 is shown in Figure 4. It can be seen that
when 𝑡 > 20, the distribution of the system output tends to be
stable; thus we get the conclusion that the output has nothing
to do with the initial value.
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Figure 4: Box plots for closed-loop system output on memory length 𝑡 = 1, . . . , 40. (a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.
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Figure 5: Box plots of the estimates of the minimum variance lower bound for the nonlinear feedforward and feedback control system. (a)
𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.

Selecting an appropriate memory length of 40 and apply-
ing 100 times’ Monte Carlo experiments, the box plots of
MVPLB estimates with time delay 𝑏 = 3, 𝑙 = 5, and 𝑏 = 5,
𝑙 = 3 by applying variance decomposition method proposed
by this paper and traditional linear estimation method can
be seen in Figure 5. In Figure 5(a), the first column gives
theoretical performance index for nonlinear systemwith time

delay 𝑏 = 3, 𝑙 = 5, and the second column and third one,
respectively, show the estimates of performance index by tra-
ditional linear method and that by the method in this paper.
In Figure 5(b), the first column gives theoretical performance
index for nonlinear system with time delay 𝑏 = 5, 𝑙 = 3,
and the fourth column and seventh column, respectively,
show the estimates of performance index by traditional linear
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method and that by themethod in this paper.The second and
third column, respectively, show the contributions of perfor-
mance index of the unmeasured and measured disturbance
signal applying traditional linear method. The fifth and sixth
column show the contributions of performance index of the
unmeasured and measured disturbance signal applying the
method proposed by this paper, respectively. From the plot,
we can see that the estimates of performance index using our
new method are more close to the theoretical value than that
using traditional linear method and get the conclusion that
it is effective to estimate the MVPLB of nonlinear forward
and feedback system by applying the CPA method based on
variance decomposition method.

Remarks. (i) The MVPLB of this nonlinear feedback and for-
ward control system can be decomposed into the best possible
bounds for each of the controllers. According to the variance
contributions of the unmeasured and measured disturbance,
we can confirm the degree of controller performance by the
feedback controller and the feedforward controller.

(ii) When the feedforward delay exceeds the feedback
delay, there is no error in predicting of the future disturbance
by using given information at current time. In such case,
the overall MVPLB is only the contribution of unmeasured
disturbance. This is the reason why only three columns are
included in Figure 5.

(iii) This new nonlinear CPA method requires only
observable signals and crude estimates of the process delay
and another delay that it takes for a change in measured
feedforward variable to begin to affect the output.

(iv) The proposed method needs to estimate the closed-
loop nonlinear model, and the identification of the closed-
loop model will directly affect the estimates of the MVPLB.

6. Conclusions

The problem of control performance assessment for non-
linear feedforward and feedback system is investigated in
this paper. We provide a method based on the variance
decomposition to estimate the MVPLB for two classes of
nonlinear feedforward and feedback control system. When
the time delay of the process and measured disturbance are
known, the performance index based on minimum variance
benchmark can be estimated by the data from the closed-
loop system; the simulation shows the effectiveness of the
proposed approach. More specifically, the assumption of one
measured disturbance is also suitable for the multimeasured
disturbance cases; thus the method in this paper can be
extended from SISO to MISO.
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This paper is concerned with the problem of predictive function control (PFC) for a class of hydraulic vibration servo control
systems. Our aim is to design a new advanced control strategy such that the control system can track trajectory in a fast and
accurate way. For this end, the mathematical model of the hydraulic vibration servo control system is firstly studied. By analyzing
the nonlinear, time-varying, andmodel structure uncertainty features of the objects, the desired control strategy is presented based
on PFC. Finally, the simulation results show that our proposed method is effective and can be used to improve the tracking speed,
accuracy, and robustness.

1. Introduction

Servo system is a kind of vibration which can make the actu-
ators change rule and the action of vibration control system
according to the input signal. Hydraulic control hasmany ad-
vantages, such as quick response speed, high precision of vi-
bration, and online-adjustable vibration parameters. It is not
surprising that hydraulic control has been widely used in
many areas, for example, the engineering construction, me-
chanical processing, agriculturalmachinery, and other indus-
trial and agricultural production processes [1, 2]. By using
crushing, piling, drilling, the work of hydraulic engineering
machinery and screening, grinding, polishing, dusting, cast-
ing production technology of hydraulic vibration equipment,
and so forth. Due to the complexity of working environment,
hydraulic servo vibration systems are a kind of typical
unknown uncertainty systems, where exist the large internal
parameter changes and external load disturbance. A foun-
dational question is, how to establish accurate mathematical
model? Such a question has increased the difficulty of the con-
trol system design. In this case, the conventional linear time-
invariant combination of PID control scheme is not suitable
owing to the lack of the ability of quick disturbance rejection

and difficulty of coordinating the contradiction between
speediness and stability and achieving the robustness of the
system [3, 4].

It is well known that predictive control is suitable for the
case, when the controlled object is not easy to build accu-
rate mathematical model and also has complex industrial
production process, such as petroleum, chemical industry,
metallurgy, and other areas of the process industry [5]. With
the development of the theory and application aspects, pre-
dictive control technology has made great development [6–
9]. Predictive functional control (PFC) method [10–12] is
developed on the basis of the principle of predictive control
of a novel predictive control algorithm. In view of the advan-
tages ofmodel predictive control, it enhances the regularity of
input control by introducing basis functions to improve the
quickness and accuracy. The adaptive predictive functional
controller has been designed based on the stability of the
Laguerre model to solve the induction motor efficiency.
By solving optimization problem of the maximum torque
current ratio control [10] and employing feedforward com-
pensation decoupling design idea, the considered system is
decomposed into two with measurable disturbances of single
into a single subsystem. The simulation experimental results
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Figure 1: Block scheme of predictive function control (PFC).

show that comparedwith traditional PI current controller, the
controller has high tracking precision, fast response speed,
strong anti-interference ability, and the good control effect.

Time delays are frequently encountered in a variety of
dynamic systems [13–16]. For the large pure time-delay sys-
tem, there was a kind of inner loop PI control and outer loop
using a scale factor self-tuning fuzzy incremental predictive
functional control strategy, which was applied to the circuit
and themain formof the object in general controlled object in
[11]. A large number of simulation experiments indicated that
this method was better than the other methods; even in the
severemodelmismatch case, it still has very strong robustness
and anti-interference ability. In [12], Kautz function approx-
imation was used to get the characterization process state
space equation of object; an adaptive predictive functional
controller based on Kautz was designed. In [17], the design
method of the typical predictive functional controller of servo
control system was given by employing the basic principle
and characteristics of predictive functional control. However,
to the best of our knowledge, by using the PFCmethod, there
are few attempts that have been made to cope with the rapid
servo system. Such a question has not been fully studied.

In view of the above analysis, this paper deals with the
problem of hydraulic servo vibration control in engineering
practice. Based on the analysis of the mathematical model
of hydraulic servo vibration control system, the controlled
object of nonlinear, time-varying, and uncertainty model
structure, and characteristics of control system for quick
tracking research, an optimal control scheme is presented
in light of the predictive functional control algorithm. The
effectiveness of the given PFC method is verified by MAT-
LAB simulation which is applied to the effectiveness of the
hydraulic servo system of vibration control.

2. Predictive Functional
Control Algorithm Design

Predictive function control belongs to model predictive con-
trol. Compared to the traditional model predictive control,
it not only has three basic characteristics (forecasting model,
rolling optimization, and feedback correction) of generally
predictive control but also has its own characteristics. In
order to emphasize the control input, each moment added

control input is structured and seen as a linear combination
of a number of preselected basis functions. By using the
known processes of these basis functions, the weights of the
objective function can be obtained from the optimization
calculation of basis functions to get the corresponding control
amount. In the hydraulic vibration servo system, operating
quantity is the hydraulic servo valve opening and the output
is the displacement of hydraulic piston rod. By changing
the opening of the hydraulic servo valve to regulate the
amount of oil hydraulic cylinder, the output displacement
hydraulic piston rod is controlled. In this paper, the design
of PFC control project such as Figure 1, show that PFC major
compositions include: choice of basis functions, the reference
trajectory prediction model, error compensation, and rolling
optimization of several parts.

2.1. The Choice of Basis Functions. In the hydraulic servo
predictive functional control algorithm, the control input
mechanism is an important factor affecting system perfor-
mance [18, 19], and consequently the role of the newly added
control can be described as a linear combination of a number
of basis functions:

𝑢 (𝑘 + 𝑖) =

𝑁

∑

𝑛=1

𝜇
𝑛
𝑓
𝑛
(𝑖) , (1)

where 𝑖 = 0, 1, . . . , 𝑃 − 1 and 𝑓
𝑛
(𝑛 = 1, . . . , 𝑁) are basis

functions, 𝜇
𝑛
are the linear combination coefficients, 𝑓

𝑛
(𝑖)

mean the value of the base functions when 𝑡 = 𝑖𝑇, and 𝑃 rep-
resents the length of time domain prediction optimization.
The selection of basis function is based on the nature of the
controlled object and the requirements of desired trajectory.
For example, the base functions often take a step, ramp,
or exponential function. Depending on the selected basis
function, the output response of the object is calculated by
means of off-line.

2.2. Model Predictions. The output displacement of hydraulic
servo predictive model predictive function control 𝑦

𝑚
(𝑘)

is composed of model free output displacement 𝑦
1
(𝑘) and

model output displacement function 𝑦
𝑓
(𝑘). Model free out-

put represents the output of the model, which is determined
by the control measured amount in the past instead of
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the current time and the future. The expression is given as
follows:

𝑦
1
(𝑘) = 𝐹 (𝑥 (𝑘)) . (2)

In this expression, 𝐹means the mathematical expression
of object prediction model and 𝑥(𝑘) means the information
which is known at time 𝑘. Model function output 𝑦

𝑓
(𝑘)

stands for the new model response after adding controls at
the present time, which is another part of the output. In the
hydraulic servo predictive functional control, controlling the
structure of the input is both the key to ensure the control
performance and the difference between themodel predictive
control and other control methods. The displacement output
of future model function can be expressed as

𝑦
𝑓
(𝑘 + 𝑖) =

𝑁

∑

𝑛=1

𝜇
𝑛
𝑔
𝑛
(𝑖) , 𝑖 = 1, . . . , 𝑃, (3)

where 𝑔
𝑛
(𝑖) is the model output by 𝑓

𝑛
(𝑖); displacement model

output of hydraulic servo can be calculated by the following
formula:

𝑦
𝑚
(𝑘) = 𝑦

1
(𝑘) + 𝑦

𝑓
(𝑘) . (4)

2.3. Reference Trajectories. Predictive functional control is
the same as MAC, in the control process making the pro-
cess output tracking reference trajectories gradually prevent
dramatic changes of controlled quantity and overshoot phe-
nomenon. For the hydraulic servo control system, reference
trajectories can be as a first-order exponential form like

𝑦
𝑟
(𝑘 + 𝑖) = 𝑐 (𝑘 + 𝑖) − 𝜆

𝑖
(𝑐 (𝑘) − 𝑦

𝑝
(𝑘)) . (5)

In 𝜆 = 𝑒
(−𝑇
𝑠
/𝑇
𝑟
), 𝑇
𝑠
represents the sampling period, 𝑇

𝑟
means

the reference trajectories time constant, and 𝑐(𝑘) is the value
set.

2.4. Rolling Optimization. Optimization objective of hy-
draulic servo predictive model predictive function control
can be expressed as

𝐽 = min{
𝑃
2

∑

𝑖=𝑃
1

[𝑦
𝑟
(𝑘 + ℎ

𝑖
) − 𝑦
𝑝
(𝑘 + ℎ

𝑖
)]

2

} ,

𝑦
𝑝
(𝑘 + 𝑖) = 𝑦

𝑚
(𝑘 + 𝑖) + 𝑒 (𝑘 + 𝑖) ,

(6)

where 𝑃
1
and 𝑃

2
are, respectively, the minimum and max-

imum of the optimizing time domain, 𝑦
𝑝
(𝑘 + 𝑖) represents

the forecast process output displacement of hydraulic servo,
𝑒(𝑘 + 𝑖) is the future error of the process displacement, and
𝑦
𝑚
(𝑘+𝑖) is the displacement output of themodel at time 𝑘+𝑖.

2.5. Error Prediction and Compensation. Because of the
actual control process model mismatch affected by nonlinear
characteristics as well as other uncertainties, the displace-
ment of the predicted value will deviate from the actual
value. In the control system, the displacement error between

hydraulic servo object and model input is sent to the pre-
dictor. Therefore it will be found as the feedforward, which
is input to reference trajectory for compensation. And the
future forecast displacement error is

𝑒 (𝑘 + 𝑖) = 𝑦 (𝑘) − 𝑦
𝑚
(𝑘) , (7)

where 𝑦
𝑚
(𝑘) represents the model output displacement at

time 𝑘.
For the next 𝑛+𝑖 times prediction of displacement error in

PFC algorithm, in order to improve accuracy, the polynomial
fitting error is employedwhich is estimated based on a known
time value:

𝑒 (𝑛 + 𝑖) = 𝑒 (𝑛) +

𝑙
2

∑

𝑙=1

𝑒
𝑙
(𝑛) 𝑖
𝑙

= 𝑦
𝑝
(𝑛) − 𝑦

𝑚
(𝑛) +

𝑙
2

∑

𝑙=1

𝛽
𝑙
(𝑛) 𝑖
𝑙
, (𝑖 = 1, 2, . . . , 𝐿) .

(8)

Among them, 𝑒(𝑛+𝑖) is the displacement prediction error
between hydraulic servo system and model at time 𝑛 + 𝑖; it
is composed of a corrected error and error at time 𝑛. This
process (𝐿 ≥ 𝑙

2
≥ 1, 𝐿 ≥ 𝑙

2
≥ 1, 𝐿 ≥ 𝑙

2
) is called self-

compensation.
In PFC control algorithm, prediction horizon length 𝑃,

basis function 𝑓
𝑛
(𝑖), and time coefficient of reference trajec-

tories 𝜆 are the important parameters of controller designed.
The choice of basis functions can broadly determine control
accuracy, stability and robustness of the control mainly
determined by the range of the prediction horizon, and the
reference trajectories major impact on the dynamic response
of the control system. For the impact of the system, a different
design has different emphases. Therefore, it can quickly
adjust the parameters according to the specific performance
requirements to shorten the setting time which is a major
advantage of the PFC control.

3. The Mathematical Modeling of
Hydraulic Servo System

Hydraulic servo vibration system is the use of the variations in
the oil pressure flow to deliver hydraulic energy and directly
produce piston reciprocating cycle. Variation of pressure in
the oil flow is dependent on the hydraulic vibration equip-
ment in the process of vibration motion parameters (such
as velocity, acceleration, and amplitude) or liquid parameters
(such as pressure, flow, etc.) change as a feedback signal
to control. Due to the advantages of high control accuracy,
stiffness big, fast response speed, high speed startup, inverse
kinematics, and so forth, the hydraulic control system can
form of light weight, small volume, accelerating ability, quick
action, and high control precision of control system, to drive
the high power load. Therefore, the hydraulic servo system
has been more and more widely used in the agricultural
engineering machinery and equipment and production. The
hydraulic servo system of the vibration control block scheme
is shown in Figure 2.
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Figure 2: Block scheme of the hydraulic servo control system.

3.1. Basic Equation of Hydraulic Servo Valve. The hydraulic
servo valve is an extremely complex closed-loop control
system, which usually is as the input signal. According to
physical characteristics to establish the output flow of lin-
earized equation for [17]

𝑄
𝐿
= 𝑄svo − 𝐾𝑐𝑃𝐿, (9)

where 𝑄svo = 𝐾sv𝐼𝑐 and 𝐼𝑐 stands for the input current signal,
𝑄svo is the servo valve light flow, 𝐾sv is the servo valve static
flow of amplification coefficient, 𝐾

𝑐
stands for the pressure

of the servo valve flow amplification coefficient, and 𝑃
𝐿
is for

load pressure.
In view of the characteristic analysis of the hydraulic

system, the servo valve has often the very high response char-
acteristics; the dynamic can be ignored when compared with
the hydraulic power components, so we can approximately
regard it as a proportion of link [14]. Consider

𝑄svo
𝐼
𝑐

=

𝐾sv
1 + (𝑠/𝑤sv)

. (10)

3.2. Basic Equation of Servo Amplifier and Displacement Sen-
sor. We can approximate the servo amplifier and displace-
ment sensor link as proportion link; then

𝐼
𝑐
= 𝐾
𝑝
𝑈,

𝑦 = 𝐾
𝑠
𝑥
𝑝
.

(11)

By Laplace transformation,

𝑌 = 𝐾
𝑠
𝑋
𝑝
, (12)

where 𝑦 is the actual measured output by displacement
sensor, 𝐾

𝑠
stands for displacement sensor amplifier gain, 𝐾

𝑝

stands for power amplifier amplification gain, and 𝑈 is the
output of the controller instructions.

3.3. Determining the Transfer Function. The flow gain of ser-
vo valve is as follows:

𝐾sv =
𝑞
𝑛

𝐼
𝑛

. (13)

The transfer function of the servo valve is as follows:

𝐺sv (𝑠) =
𝑄sv
𝐼
𝑐

=

𝐾sv
(𝑠
2
/𝑤
2

sv) + (2𝜉sv/𝑤sv) 𝑠 + 1
. (14)

For transfer function of cylinder piston displacement output
𝑋
𝑝
for

𝐺
𝑉
(𝑠) =

𝑄
𝐿

𝑖

=

1/𝐴
𝑝

𝑠 ((𝑠
2
/𝑤
2

ℎ
) + (2𝜉

ℎ
𝑠/𝑤
ℎ
) + 1)

. (15)

For transfer function of external disturbance load FL input to
the transfer function of cylinder piston displacement output
𝑋
𝑝
for

𝐺
𝐿
(𝑠) =

𝑋
𝑝
(𝑠)

𝐹
𝐿
(𝑠)

=

− (𝐾
𝑐𝑒
/𝐴
2

𝑝
) (1 + (𝑉

𝑙
/4𝛽
𝑒
𝐾
𝑐𝑒
) 𝑠)

𝑠 ((𝑠
2
/𝑤
2

ℎ
) + (2𝜉

ℎ
𝑠/𝑤
ℎ
) + 1)

.

(16)

Thus, determining the system block diagram is shown in
Figure 3.

Note that 𝐾
𝑓
= 𝐴
𝑝
𝑠. So, the system open loop transfer

function is

𝐺
𝑘
(𝑠) = 𝐾

𝑝
𝐺sv (𝑠) 𝐺V (𝑠)

=

1/𝐴
𝑝

𝑠 ((𝑠
2
/𝑤
2

ℎ
) + (2𝜉

ℎ
/𝑤
ℎ
) 𝑠 + 1)

× 𝐾
𝑝
𝐾sv𝐾𝑠.

(17)

4. Simulation Result and Analysis

The hydraulic vibration, which makes use of liquid pres-
sure, realizes vibration object sinusoidal movement up and
down in the power system and servo valve for pressure
control. Because of the larger vibration and impact, hydraulic
vibration which is suitable for high temperature and high
pressure, such as underwater environment, not only can
be used for drilling, crushing, piling, and drilling, such as
hydraulic pressure road engineering machinery homework
tasks, but also can be used in farm, furrowing delisting, crop
cultivation and harvesting, and water conservancy irrigation
and agriculture engineering field [20, 21]. However, such
hydraulic vibrationmechanical equipment generally requires
the hydraulic control system to drive the controlled according
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Figure 3: Block scheme of the hydraulic servo system.
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to the given amplitude, frequency, and the sine of the up
and down reciprocating movement. This paper selects the
continuous casting mould hydraulic vibration technology as
an example for discussion [22]; calculation results of related
parameters can be obtained as follows:𝐴

𝑝
= 7.91 × 10

−3m3,
𝐾
𝑝
= 0.00 1A/V, 𝐾sv = 2.5 × 10

−2m3/(s⋅A), 𝑤
ℎ
= 38 rad/s,

𝜁
ℎ
= 0.25, and 𝐾

𝑠
= 200 v/m. Put them into formula (17),

using model conversion function tf2ss(num,den) of MAT-
LAB, we can get the state space model for

̇𝑥 = [

[

2.8349 −2.735 0.9002

1 0 0

0 1 0

]

]

𝑥 + [

[

1

0

0

]

]

𝑢,

𝑦 = [0.0005 0.0019 0.0005] 𝑥.

(18)

Through the study of the amplitude-phase frequency
stability analysis of system, we obtain the system phase
frequency bode diagram as shown in Figure 4.

As is shown in the figure, we can draw that the crossover
frequency 𝑤

𝑐
= 44.2 rad/s, phase margin 𝛾 = 79.8

∘; when
phase frequency, through −180∘, 𝑤

𝑔
= 230 rad/s, amplitude

margin Kg (dB) = 7.14 dB. We can also conclude that the
system dynamic performance is poorer and the precision of
tracking curve is not high when crossing frequency 𝑤

𝑐
is

small.
In order to study the tracking performance of hydraulic

servo vibration system, this paper selects the sine signal
𝑅(𝑡) = 7∗ sin(5𝜋𝑡) as a set point trajectory; the validity of the
method of PFC can be verified via the MATLAB simulation
to compare the control effect of PID and PFC. As shown in
Figure 6. When using traditional PID controller to control,
taking Z-N method [23], the PID gain parameters 𝑘

𝑝
= 9.7,

𝑘
𝑖
= 2.5 s, and 𝑘

𝑑
= 0.4 s. In view of the servo vibration

system state space model [23], using MATLAB simulation
tools, writing 𝑀 file simulation program, PFC simulation
prediction optimization time domain is 20, the reference
trajectory of time constant Tr = 2ms, and sampling time is
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0.6ms. Selecting index function𝑓
𝑛
(𝑖) = 𝑖

𝑘−1 as basis function,
linear combination number is 2. After the simulation under
the control of predictive function, we get the results in Figures
5 and 6.

In Figure 6 there are the nonsinusoidal velocity response
curves of the hydraulic servo system and error curve obtained
by PFC and PID control. From Figure 6, as to traditional PID
controllers, the output of the system can track the change of
the input signal, but there is a certain phase lag and short
of waveform completely tracking precision of the system
requirements. But the displacement output settings obtained
by using predictive functional control are better able to track

the trajectory and its control effect is better than conventional
PID control methods.

5. Conclusion

In this paper, hydraulic servo vibration system is the specific
research object, aiming at the existence and the uncertainty
of its larger internal external load disturbance and parameter,
based on further study of the characteristics of the hydraulic
servo control system. And the predictive functional control
method is applied to hydraulic servo vibration system.
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The simulation result indicates that the hydraulic servo
system, based on the good control quality of predictive func-
tional control such as fast dynamic response, small overshoot,
and strong stability, can effectively achieve rapid location
tracking. Its control systemdynamic and static quality and ro-
bustness in the case of time-varying parameters and antijam-
ming capability are superior to the conventional PID control
method. The parameter uncertainty has good robustness,
with high value of engineering application.
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This paper is concerned with the 𝐿
2
− 𝐿
∞
filtering problem for a kind of Takagi-Sugeno (T-S) fuzzy stochastic system with time-

varying delay and parameter uncertainties. Parameter uncertainties in the system are assumed to satisfy global Lipschitz conditions.
And the attention of this paper is focused on the stochastically mean-square stability of the filtering error system, and the 𝐿

2
− 𝐿
∞

performance level of the output error with the disturbance input. The method designed for the delay-dependent filter is developed
based on linear matrix inequalities. Finally, the effectiveness of the proposed method is substantiated with an illustrative example.

1. Introduction

It is well known that many phenomena in engineering
have unavoidable uncertain factors that are modeled by the
stochastic differential equation. And in recent years, the
stochastic system has been widely studied. A great number of
investigations on stochastic systems have been reported in the
literature. For example, the adaptive back stepping controller
has been addressed in [1, 2] for stochastic nonlinear systems
in a strict-feedback form.When the time delay appears, [3, 4]
have investigated the stability of the time-delay stochastic
neutral networks; controllers under different performance
levels have been designed for the stochastic system in [5–
7] for the delay-dependent controller, 𝐻

∞
output feedback

controller, and 𝐿
2
− 𝐿
∞

controller, respectively. And [8–
14] have studied the controlling and filtering problem for
stochastic jumping systems. However, the results mentioned
above are only suitable for the nonlinear systems which have
exact known nonlinear dynamics models. As an efficient
technique to linearize the nonlinear differential equations,
T-S fuzzy model [15] can offer a good way to represent the
nonlinear dynamics models.

By using T-S fuzzy model, nonlinear systems turn into
linear input-output relations which could be handled easily
by appropriate fuzzy sets. This method can be seen in the
stirred tank reactor system in [16] and the truck trailer

system in [17]. Nowadays, the researches of T-S fuzzy system
have grown into a great number. A lot of results have been
reported in the literature. For example, the stability and
control problem of T-S fuzzy systems have been investigated
in [18–22] and the references therein.

On the other hand, state estimation has been found
in many practical applications and it has been extensively
studied over decades. It aims at estimating the unavailable
state variables or their combination for the given system
[23, 24]. As a branch of state estimation theory, the filter-
ing problem has become an important research field. The
𝐻
∞

filtering problem for the T-S fuzzy system has been
addressed in [25–30]; [31–33] have considered the 𝐿

2
− 𝐿
∞

filtering problem for delayed T-S fuzzy systems with different
method. Moreover, robust filters are investigated in [34–36]
for stochastic nonlinear systems.

Following above discussion, T-S fuzzy model could be
used to divide the nonlinear stochastic systems into several
subsystems. And during the past decade, many problems
have been tackled. Reference [37] deals with the robust fault
detection problem for T-S fuzzy stochastic systems. And [38,
39] consider the stabilization for the fuzzy stochastic systems
with delays. References [40–43] have studied the control
problem for fuzzy stochastic systems. An adaptive fuzzy con-
troller has been designed for stochastic nonlinear systems in
[44]. Reference [45] addresses the passivity of the stochastic
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T-S fuzzy system. Solutions to fuzzy stochastic differential
equations with local martingales have been addressed in
[46]. Then recognizing the value of state estimating when
state variables are unavailable, it is important to research the
filtering problem for T-S fuzzy stochastic systems. However,
there are few results available to the best of the authors
knowledge, especially the results on 𝐿

2
−𝐿
∞
filtering problem

for the fuzzy stochastic systems.
As a consequence, this paper will focus on the robust

fuzzy delay-dependent 𝐿
2
− 𝐿
∞

filter design for a T-S
fuzzy stochastic system with time-varying delay and norm-
bounded parameter uncertainties by using the Lyapunov-
Krasovskii functional technique and some useful free-
weighting matrices. The obtained sufficient conditions are
expressed in terms of linear matrix inequality (LMI)
approach.The remainder of this paper is organized as follows.
The filter design problem is formulated in Section 2. And
Section 3 gives our main results. In Section 4, a numerical
example is shown to illustrate the effectiveness of the pro-
posed methods. Finally, we conclude the paper in Section 5.

Notation. The notation used in this paper is fairly stan-
dard. The superscript “𝑇” stands for matrix transposition.
Throughout this paper, for real symmetric matrices𝑋 and 𝑌,
the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the matrix
𝑋 − 𝑌 is positive semidefinite (resp., positive definite). R𝑛
denotes the 𝑛-dimensional Euclidean space andR𝑚×𝑛 denotes
the set of all 𝑚 × 𝑛 real matrices. 𝐼 stands for an identity
matrix of appropriate dimension, while 𝐼

𝑛
∈ R𝑛 denotes a

vector of ones. The notation ∗ is used as an ellipsis for terms
that are induced by symmetry. diag(. . .) stands for a block-
diagonal matrix. | ⋅ | denotes the Euclidean norm for vectors
and ‖ ⋅ ‖ denotes the spectral norm for matrices. L

2
[0,∞)

represents the space of square-integrable vector functions
over [0,∞). E(⋅) stands for the mathematical expectation
operator. Matrix dimensions, if not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the time-delay T-S fuzzy stochastic system with
time-varying parameter uncertainties as the following form:

(Σ) : 𝑑𝑥 (𝑡)

=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) {[(𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐴
𝑑𝑖
+Δ𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡−𝜏 (𝑡))+𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [(𝐻
𝑖
+ Δ𝐻
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐻
𝑑𝑖
+Δ𝐻
𝑑𝑖
(𝑡)) 𝑥 (𝑡−𝜏 (𝑡))] 𝑑𝜔 (𝑡)} ,

𝑑𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐶

𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐿

𝑖
𝑥 (𝑡)] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ
2
, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑚 is the system state; 𝜑(𝑡) is a given differential
initial function on [−ℎ

2
,0];𝜔(𝑡) is a scalar zeromeanGaussian

white noise process with unit covariance; 𝑦(𝑡) ∈ R𝑛 is the
measured output; 𝑧(𝑡) ∈ R𝑙 is a signal to be estimated;
V(𝑡) ∈ R𝑠 is the noise signal which belongs toL

2
[0,∞); 𝜏(𝑡)

is a continuous differentiable function representing the time-
varying delay in 𝑥(𝑡), which is assumed to satisfy for all 𝑡 ≥ 0,

0 ≤ ℎ
1
≤ 𝜏 (𝑡) < ℎ

2
. (2)

In the considered fuzzy stochastic system, 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐻
𝑖
,

𝐻
𝑑𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐷
𝑖
, and 𝐿

𝑖
are known constant matrices with

appropriate dimensions. Δ𝐴
𝑖
(𝑡), Δ𝐴

𝑑𝑖
(𝑡), Δ𝐻

𝑖
(𝑡), and

Δ𝐻
𝑑𝑖
(𝑡) represent the unknown time-varying parameter

uncertainties and are assumed to satisfy

[
Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)

Δ𝐻
𝑖
(𝑡) Δ𝐻

𝑑𝑖
(𝑡)
] = [

𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁1𝑖

𝑁
2𝑖] , (3)

where 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑁
1𝑖
, and 𝑁

2𝑖
are known real constant

matrices and the unknown time-varying matrix function
satisfying

𝐹
𝑖
(𝑡)
𝑇
𝐹
𝑖
(𝑡) ≤ 𝐼 ∀𝑡. (4)

And using the fuzzy theory, there always have for all 𝑡,

𝜌
𝑖
(𝑠 (𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟,

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) = 1. (5)

The fuzzy filters we considered are as follows:

𝑑𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑓𝑖
𝑑𝑦 (𝑡)] ,

�̂� (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐿

𝑓𝑖
𝑥 (𝑡)] ,

(6)

in which the fuzzy rules have the same representations as in
(1). 𝑥(𝑡) ∈ R𝑛 and �̂�(𝑡) ∈ R𝑙. 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐿

𝑓𝑖
are the filters

needed to be determined.

Remark 1. It is worth to mention that there are two
approaches for the filter design in fuzzy systems. The imple-
mentation of the filter could be chosen to depend on or not
depend on the fuzzy rules when the fuzzy model is available
or not. And it is obvious to see that the former filter related
to the fuzzy rules is less conserve and more complex. So we
assume that the fuzzy is known here, which means the fuzzy-
rule-dependent filter is investigated in this paper as in (6).

Let 𝜉(𝑡) = [𝑥(𝑡)𝑇 𝑥(𝑡)
𝑇
]

𝑇

and 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡).
And the filtering error dynamic system can be written as

(Σ̃) : 𝑑𝜉 (𝑡)

= [(𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡))

+𝐵V (𝑡) ] 𝑑𝑡

+ [(�̃� + Δ�̃� (𝑡)) 𝜉 (𝑡) + (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))

×𝐾𝜉 (𝑡 − 𝜏 (𝑡)) ] 𝑑𝜔 (𝑡) ,

𝑒 (𝑡) = �̃�𝜉 (𝑡) ,

(7)
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where

𝐴 = [

𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
𝑑
= [

𝐴
𝑑

𝐵
𝑓
𝐶
𝑑1

] ,

�̃� = [
𝐻 0

0 0

] , Δ𝐴 (𝑡) = [
Δ𝐴 (𝑡) 0

0 0

] ,

Δ𝐴
𝑑
(𝑡) = [

Δ𝐴
𝑑
(𝑡)

0

] , 𝐵 = [

𝐵

𝐵
𝑓
𝐷

] ,

Δ�̃� (𝑡) = [
Δ𝐻 (𝑡) 0

0 0

] , Δ�̃�
𝑑
(𝑡) = [

Δ𝐻
𝑑
(𝑡)

0

] ,

�̃�
𝑑
= [

𝐻
𝑑

0

] , 𝐴 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑖
,

𝐴
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑑𝑖
, 𝐶 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
,

𝐻 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑖
, 𝐻

𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑑𝑖
,

𝐶
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑑𝑖
, 𝐵 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑖
,

𝐷 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐷

𝑖
, �̃� = [𝐿 −𝐿

𝑓
] ,

𝐴
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑓𝑖
, 𝐵

𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑓𝑖
,

𝐿
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑓𝑖
, 𝐿 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑖
,

𝐿
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑑𝑖
, 𝐾 = [𝐼 0] ,

Δ𝐴 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑖
(𝑡) ,

Δ𝐴
𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑑𝑖
(𝑡) ,

Δ𝐻 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑖
(𝑡) ,

Δ𝐻
𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑑𝑖
(𝑡) .

(8)

We intend to design sets of fuzzy filters in the form of (6)
in this paper, such that for any scalar 0 ≤ ℎ

1
< ℎ
2
and a

prescribed level of noise attenuation 𝛾 > 0, the filtering error
system (Σ̃) could be mean square stable. Moreover, the error
system (Σ̃) satisfies 𝐿

2
− 𝐿
∞

performance.
Throughout the paper, we adopt the following definitions

and lemmas, which help to complete the proof of the main
results.

Definition 2. The system (Σ) is said to be robust stochastic
mean-square stable if there exists 𝛿(𝜀) > 0 for any 𝜀 > 0 such
that

E (‖𝑥 (𝑡)‖
2
) < 𝜀, 𝑡 > 0, (9)

when sup
−ℎ≤𝑠≤0

E(‖𝜑(𝑠)‖
2
) < 𝛿(𝜀), for any uncertain variables.

And in addition,

lim
𝑡→∞

E (‖𝑥(𝑡)‖
2
) = 0, (10)

for any initial conditions.

Definition 3. The robust stochastic mean-square stable sys-
tem (Σ̃) is said to satisfy the 𝐿

2
− 𝐿
∞

performance, for the
given scalar 𝛾 > 0 and any nonzero V(𝑡) ∈ 𝐿

2
[0,∞), and the

system (Σ̃) satisfies

‖𝑒(𝑡)‖
∞
< 𝛾‖V(𝑡)‖2, (11)

and for any uncertain variables, where

‖𝑒(𝑡)‖
2

∞
:= sup
𝑡

𝑒(𝑡)
𝑇
𝑒 (𝑡) . (12)

Lemma 4. For the given matrices𝑀,𝑁, 𝐹 with 𝐹𝑇𝐹 ≤ 𝐼 and
positive scalar 𝜀 > 0, the following inequality holds:

𝑀𝐹𝑁 + (𝑀𝐹𝑁)
𝑇
≤ 𝜀𝑀𝑀

𝑇
+ 𝜀
−1
𝑁
𝑇
𝑁. (13)

3. Robust Stochastic Stabile

First, we define the following variables for convenience:

Φ (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡))

+ 𝐵V (𝑡) ,

𝑔 (𝑡) = (�̃� + Δ�̃� (𝑡)) 𝜉 (𝑡) + (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡)) .

(14)

Theorem 5. The filtering error system (Σ̃) is robust stochastic
mean square stable and (11) is satisfied for any time-varying
delay 0 ≤ ℎ

1
≤ 𝜏(𝑡) < ℎ

2
, if there exist matrices 𝑃 = 𝑃

𝑇
> 0,

𝑅 = 𝑅
𝑇
> 0, 𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑍

𝑖
= 𝑍
𝑇

𝑖
> 0, 𝑇

1𝑖
, 𝑇
2𝑖
, 𝑖 = 1, 2, such

that the following matrix inequalities hold:

[
𝑃 �̃�
𝑇

�̃� 𝛾
2
𝐼

] > 0, Ψ = [
Ω Ψ
12

∗ Ψ
22

] < 0, (15)

where

Ω =

[
[
[
[
[
[
[

[

Ω
11

0 0 Ω
14

0 𝑃𝐵

∗ Ω
22

0 Ω
24

0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

0 0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]

]

,
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Ψ
12
= [�̃�1 �̃�2 ℎ21�̃�1 ℎ21�̃�2 ℎ21

̆𝐴
𝑇
𝐾
𝑇
𝑍1 ℎ21𝐻

𝑇
𝐾
𝑇
𝑍2 𝐻𝑃] ,

Ψ
22
= diag {−𝑍

2
, −𝑍
2
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
,

−ℎ
21
𝑍
2
, −𝑃} ,

Ω
11
= 𝑃 (𝐴 + Δ𝐴 (𝑡)) + (𝐴 + Δ𝐴 (𝑡))

𝑇

𝑃

+ 𝐾
𝑇
(𝑄
1
+ 𝑄
2
+ (ℎ
2
− ℎ
1
) 𝑅)𝐾,

Ω
14
= 𝑃 (𝐴

𝑑
+ Δ𝐴
𝑑
(𝑡)) ,

Ω
22
= −𝑄
1
+ 𝑇
1
+ 𝑇
𝑇

1
, Ω

24
= −𝑇
1
+ 𝑇
1
,

Ω
33
= −𝑄
2
− 𝑇
2
− 𝑇
𝑇

2
, Ω

34
= 𝑇
2
− 𝑇
𝑇

2
,

Ω
44
= −𝑇
1
− 𝑇
𝑇

1
+ 𝑇
2
+ 𝑇
𝑇

2
,

Ω
55
=

−𝑅

(ℎ
2
− ℎ
1
)

,

̃
𝑇
1
= [0 𝑇

𝑇

1
0 𝑇
𝑇

1
0 0]

𝑇

,

̃
𝑇
2
= [0 0 𝑇

𝑇

2
𝑇
𝑇

2
0 0]

𝑇

,

̆𝐴 = [𝐴
𝑇
+ Δ𝐴
𝑇
(𝑡) 0 0 𝐴

𝑇

𝑑
+ Δ𝐴
𝑇

𝑑
(𝑡) 0 𝐵

𝑇
]

𝑇

,

𝐻 = [�̃�
𝑇
+ Δ�̃�

𝑇
(𝑡) 0 0 �̃�

𝑇

𝑑
+ Δ�̃�

𝑇

𝑑
(𝑡) 0 0]

𝑇

,

ℎ
21
= ℎ
2
− ℎ
1
.

(16)

Proof. Define the following Lyapunov-Krasovskii candidate
for system (Σ̃):

𝑉 (𝜉 (𝑡) , 𝑡) = 𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−ℎ
1

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ
2

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑠) 𝑑𝑠

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑠) 𝑑𝑠 𝑑𝛽

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠)

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑅𝐾𝜉 (𝑠) 𝑑𝑠 𝑑𝛽.

(17)

When V(𝑡) = 0,

𝑑𝑉 (𝜉 (𝑡) , 𝑡) = L𝑉 (𝜉 (𝑡) , 𝑡) + 2𝜉𝑇 (𝑡) 𝑃𝑔 (𝑡) 𝑑𝜔 (𝑡) . (18)
By using the Newton-Leibnitz formula, the following

equations can be got for any matrices 𝑇
1
, 𝑇
2
with appropriate

dimensions:

2𝜂
𝑇
(𝑡) 𝑇
1
𝐾[𝜉 (𝑡 − ℎ

1
) − 𝜉 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

Φ (𝑠) 𝑑𝑠

−∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

2𝜂
𝑇
(𝑡) 𝑇
2
𝐾[𝜉 (𝑡 − 𝜏 (𝑡)) − 𝜉 (𝑡 − ℎ

2
) − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

Φ (𝑠) 𝑑𝑠

−∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

(𝜏 (𝑡) − ℎ
1
) 𝜂
𝑇
(𝑡) 𝑇
1
𝑍
−1

1
𝑇

𝑇

1
𝜂 (𝑡)

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝜂
𝑇
(𝑡) 𝑇
1
𝑍
−1

1
𝑇

𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

(ℎ
2
− 𝜏 (𝑡)) 𝜂

𝑇
(𝑡) 𝑇
2
𝑍
−1

1
𝑇

𝑇

2
𝜂 (𝑡)

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝜂
𝑇
(𝑡) 𝑇
2
𝑍
−1

1
𝑇

𝑇

2
𝜂 (𝑡) 𝑑𝑠 = 0,

(19)

where

𝑇
1
= [0 𝑇

𝑇

1
0 𝑇
𝑇

1
0]

𝑇

,

𝑇
2
= [0 0 𝑇

𝑇

2
𝑇
𝑇

2
0]

𝑇

.

(20)

And 𝜂(𝑡) is a new vector defined as follows:

𝜂
𝑇
(𝑡) = [𝜉

𝑇
(𝑡) 𝜉
𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝜉
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐾

𝑇
(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)
𝑇
𝑑𝑠)𝐾

𝑇
] . (21)

By the above formulas (19) and Lemma 4, we can deduce that

L𝑉 (𝜉 (𝑡) , 𝑡)
= 2𝜉
𝑇
(𝑡) 𝑃Φ (𝑡) + 𝑔

𝑇
(𝑡) 𝑃𝑔 (𝑡) + 𝜉

𝑇
(𝑡) 𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑡)

+ 𝜉
𝑇
(𝑡) 𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑡) − 𝜉

𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑡 − ℎ

1
)

− 𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑡 − ℎ

2
) + ℎ
21
Φ
𝑇
(𝑡) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑡)

+ ℎ
21
𝑔(𝑡)
𝑇
𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑡) − ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑅𝐾𝜉 (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠 + ℎ

21
Φ
𝑇
(𝑡) 𝐾
𝑇
𝑅𝐾Φ (𝑡)

≤ 𝜂
𝑇
(𝑡) [Ω+ℎ

21
𝑇
1
𝑍
−1

1
𝑇

𝑇

1
+�̂� (𝐾

𝑇
(ℎ
2
− ℎ
1
) 𝑍
2
𝐾 + 𝑃) �̂�

+ 𝐴𝐾
𝑇
ℎ
21
𝑍
1
𝐾𝐴
𝑇
+ ℎ
21
𝑇
2
𝑍
−1

1
𝑇

𝑇

2

+𝑇
1
𝑍
−1

2
𝑇

𝑇

1
+ 𝑇
2
𝑍
−1

2
𝑇

𝑇

2
] 𝜂 (𝑡)
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− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

[𝜂
𝑇
(𝑡) 𝑇
1
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

[𝜂
𝑇
(𝑡) 𝑇
2
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

2
𝜂 (𝑡)] 𝑑𝑠

+ (∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

+ (∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔
𝑇
(𝑠)𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠,

(22)

where

Ω =

[
[
[
[
[

[

Ω
11

0 0 Ω
14

0

∗ Ω
22

0 Ω
24

0

∗ ∗ Ω
33

Ω
34

0

∗ ∗ ∗ Ω
44

0

∗ ∗ ∗ ∗ Ω
55

]
]
]
]
]

]

𝐴 = [(𝐴 + Δ𝐴 (𝑡))

𝑇

0 0 (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))

𝑇

0]

𝑇

,

�̂� = [(�̃� + Δ�̃� (𝑡))

𝑇

0 0 (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))

𝑇

0]

𝑇

.

(23)

During the analysis, it can be seen that

(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

+ (∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠 = 0,

(24)

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

[𝜂
𝑇
(𝑡) 𝑇
1
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

[𝜂
𝑇
(𝑡) 𝑇
2
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

2
𝜂 (𝑡)] 𝑑𝑠 < 0.

(25)

And applying the Schur complement to (15), we can derive
the following inequality with V(𝑡) = 0:

Ω + ℎ
21
𝑇
1
𝑍
−1

1
𝑇

𝑇

1
+ �̂� (𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃) �̂� + 𝑇

1
𝑍
−1

2
𝑇

𝑇

1

+ 𝐴𝐾
𝑇
ℎ
21
𝑍
1
𝐾𝐴
𝑇
+ ℎ
21
𝑇
2
𝑍
−1

1
𝑇

𝑇

2
+ 𝑇
2
𝑍
−1

2
𝑇

𝑇

2
< 0.

(26)

From (22)–(26), we can get that

L𝑉 (𝜉 (𝑡) , 𝑡) < 0, (27)

which ensures that system (Σ̃) with V(𝑡) = 0 is robustly
stochastically stable according to Definition 2 and [47]. By
Itô’s formula, it is easy to derive

E (𝑉 (𝜉 (𝑡) , 𝑡)) = E(∫
𝑡

0

L𝑉 (𝜉 (𝑠) , 𝑠) 𝑑𝑠) . (28)

Nowwe establish the 𝐿
2
−𝐿
∞
performance of the filtering

error system (Σ̃). It is easy to obtain

L𝑉 (𝜉 (𝑡) , 𝑡) − 𝜔(𝑡)𝑇𝜔 (𝑡)

≤ 𝜂
𝑇
(𝑡) [Ω + ℎ

21
̃
𝑇
1
𝑍
−1

1
̃
𝑇
𝑇

1
+ 𝐻(𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃)𝐻

+ ̆𝐴𝐾
𝑇
ℎ
21
𝑍
1
𝐾 ̆𝐴
𝑇
+ ℎ
21
̃
𝑇
2
𝑍
−1

1
̃
𝑇
𝑇

2

+
̃
𝑇
1
𝑍
−1

2
̃
𝑇
𝑇

1
+
̃
𝑇
2
𝑍
−1

2
̃
𝑇
𝑇

2
] 𝜂 (𝑡) .

(29)

Then applying the Schur complement formula to (15), we
can get

𝜂
𝑇
(𝑡) [Ω + (ℎ

2
− ℎ
1
)
̃
𝑇
1
𝑍
−1

1
̃
𝑇
𝑇

1
+ 𝐻(𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃)𝐻

+
̃
𝑇
2
𝑍
−1

2
̃
𝑇
𝑇

2
+ ̆𝐴𝐾

𝑇
ℎ
21
𝑍
1
𝐾 ̆𝐴
𝑇
+ ℎ
21
̃
𝑇
2
𝑍
−1

1
̃
𝑇
𝑇

2

+
̃
𝑇
1
𝑍
−1

2
̃
𝑇
𝑇

1
] 𝜂 (𝑡) < 0,

(30)

for all 𝑡 > 0, where

𝜂
𝑇
(𝑡) = [𝜉

𝑇
(𝑡) 𝜉
𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝜉
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐾

𝑇
(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)
𝑇
𝑑𝑠)𝐾

𝑇 V (𝑡)] . (31)
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Therefore, for all 𝜂(𝑡) ̸=0, L𝑉(𝜉(𝑡), 𝑡) − 𝜔(𝑡)𝑇𝜔(𝑡) < 0, which
means

𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) ≤ 𝑉 (𝜉 (𝑡) , 𝑡) < ∫

𝑡

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠. (32)

Then using the Schur complement to the first formula in (15),
we have �̃�𝑇�̃� < 𝛾2𝑃, which guarantees

𝑒(𝑡)
𝑇
𝑒 (𝑡) − 𝜉

𝑇
(𝑡) �̃�
𝑇
�̃�𝜉 (𝑡)

< 𝛾
2
𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) < 𝛾

2
∫

𝑡

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠

≤ 𝛾
2
∫

∞

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠.

(33)

Therefore, ‖𝑒‖
∞
< 𝛾‖𝜔‖

2
for any zero mean Gaussian white

noise process 𝜔(𝑡) with unit covariance.

Remark 6. The system we studied is a time-varying delay
system containing the information of both the lower bound
and the upper bound of time delay. By such a consideration,
delay-dependent result is more reliable and approaches to
reality that not all the delays begin with 0 moment.

Remark 7. It is worth mentioning that Theorem 5 can be
easily extended to investigate the robust 𝐻

∞
filtering design

problem for the systems (Σ̃) with parameter uncertainties.

Now we are in a position to present a sufficient condition
for the solvability of robust 𝐿

2
− 𝐿
∞

filtering problem.

Theorem 8. Consider the uncertain T-S fuzzy stochastic time-
varying delay system (Σ) and a constant scalar 𝛾 > 0. The
robust 𝐿

2
−𝐿
∞
filtering problem is solvable if there exist scalars

𝜀
𝑖
> 0 and matrices𝑊 > 0, 𝑋 > 0, 𝑅 > 0, 𝑄

𝑖
> 0, 𝑍

𝑖
> 0, 𝑇

1𝑖
,

𝑇
2𝑖
, 𝑖 = 1, 2; Φ

1𝑖
, Φ
2𝑖
, Φ
3𝑖
, Φ
4𝑖
, 1 ≤ 𝑖 ≤ 𝑟, {Υ

𝑖
= Υ
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑟},

{Δ
𝑖𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟}, and such that the following LMIs hold:

𝑋 −𝑊 > 0, (34)

[
[
[
[

[

Υ
1
Δ
12

⋅ ⋅ ⋅ Δ
1𝑟

∗ Υ
2
⋅ ⋅ ⋅ Δ

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Υ

𝑟

]
]
]
]

]

< 0, (35)

[
Γ
𝑖𝑖
− Υ
𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
Θ
𝑖

∗ −𝜀
𝑖

] < 0, (1 ≤ 𝑖 ≤ 𝑟) , (36)

[

[

Γ
𝑖𝑗
+ Γ
𝑗𝑖
− Δ
𝑖𝑗
− Δ
𝑇

𝑖𝑗
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗
Θ
𝑖
Θ
𝑗

∗ −𝜀
𝑖
0

∗ ∗ −𝜀
𝑖

]

]

< 0,

(1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(37)

[
[
[
[

[

𝑊 𝑊 𝐿
𝑇

𝑗
− Φ
𝑇

3𝑖

∗ 𝑋 𝐿
𝑇

𝑗

∗ ∗ 𝛾
2
𝐼

]
]
]
]

]

> 0, (1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑟) , (38)

where

Θ
𝑇

𝑖
= [𝑀

𝑇

1𝑖
𝑊 𝑀

𝑇

1𝑖
𝑋 01∗9 ℎ21𝑀𝑇1𝑖𝑍1 ℎ21𝑀

𝑇

2𝑖
𝑍2 𝑀

𝑇

2𝑖
𝑋 𝑀

𝑇

2𝑖
] ,

Ξ
𝑇

𝑖
= [𝑁
𝑇

1𝑖
𝑁
𝑇

1𝑖
0 0 𝑁

𝑇

2𝑖
0
10∗1

] ,

Γ
𝑖𝑗
= [

[

Γ
11

Γ
12

Γ
13

∗ Γ
22

0
4∗4

∗ ∗ Γ
33

]

]

,

Γ
11
=

[
[
[
[
[
[
[
[
[
[

[

𝐺
11

𝐺
12

0 0 𝐺
15

0 𝐺
17

∗ 𝐺
22

0 0 𝐺
25

0 𝐺
27

∗ ∗ 𝐺
33

0 𝐺
35

0 0

∗ ∗ ∗ 𝐺
44

𝐺
45

0 0

∗ ∗ ∗ ∗ 𝐺
55

0 0

∗ ∗ ∗ ∗ ∗ −

𝑅

ℎ
21

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

,

𝐺
11
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑊+𝑄

1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
12
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝐶

𝑇

𝑗
Φ
𝑇

1𝑖
+ Φ
𝑇

2𝑖
+ 𝑄
1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
15
= 𝑊𝐴

𝑑𝑖
, 𝐺

17
= 𝑊𝐵

𝑖
,

𝐺
22
= 𝑋
𝑇
𝐴
𝑖
+ Φ
1𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
Φ
𝑇

1𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝑄

1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
25
= 𝑋
𝑇
𝐴
𝑑𝑖
+ Φ
1𝑖
𝐶
𝑑𝑗
,

𝐺
27
= 𝑋
𝑇
𝐵
𝑖
+ Φ
1𝑖
𝐷
𝑗
,

𝐺
33
= −𝑄
1
+ 𝑇
1
+ 𝑇
𝑇

1
, 𝐺

35
= −𝑇
1
+ 𝑇
𝑇

1
,

𝐺
44
= −𝑄
2
− 𝑇
2
− 𝑇
𝑇

2
, 𝐺

45
= 𝑇
2
− 𝑇
𝑇

2
,

𝐺
55
= −𝑇
1
− 𝑇
𝑇

1
+ 𝑇
2
+ 𝑇
𝑇

2
,

Γ
12
= [̃𝑇
1
̃
𝑇
2
ℎ
21
̃
𝑇
1
ℎ
21
̃
𝑇
2
] ,

Γ
22
= diag {−𝑍

2
, −𝑍
2
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
} ,

Γ
13
=

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ
21
𝐴
𝑇

𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑖
𝑍
2
𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

ℎ
21
𝐴
𝑇

𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑖
𝑍
2
𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

0 0 0 0

0 0 0 0

ℎ
21
𝐴
𝑇

𝑑𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑑𝑖
𝑍
2
𝐻
𝑇

𝑑𝑖
𝑋 𝐻
𝑇

𝑑𝑖

0 0 0 0

ℎ
21
𝐵
𝑇

𝑖
𝑍
1

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ
33
= diag{−ℎ

21
𝑍
1
, −ℎ
21
𝑍
2
, [
−𝑋 −𝐼

∗ −Φ
4𝑖

]} .

(39)

When the LMIs (34)–(38) are feasible, the time-
dependent filter we desired here can be chosen as

𝐴
𝑓𝑖
= 𝜎
−1
Φ
2𝑖
𝑊
−1
𝛽
−𝑇
, 𝐵

𝑓𝑖
= 𝜎
−1
Φ
1𝑖
,

𝐿
𝑓𝑖
= Φ
3𝑖
𝑊
−1
𝛽
−𝑇
, 𝑖 = 1, . . . , 𝑟,

(40)

where 𝜎 and 𝛽 are nonsingular matrices satisfying 𝜎𝛽𝑇 = 𝐼 −
𝑋𝑊
−1.

Proof. Similar to [33], we know that 𝐼−𝑋𝑊−1 is nonsingular.
Therefore, there always exist nonsingular matrices 𝜎 and 𝛽
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such that 𝜎𝛽𝑇 = 𝐼 − 𝑋𝑊
−1 holds. Then we define the

nonsingular matrices Λ
1
and Λ

2
as follows:

Λ
1
= [

𝑊
−1

𝐼

𝛽
𝑇

𝑜

] ; Λ
2
= [

𝐼 𝑋

0 𝜎
𝑇] . (41)

Define 𝑈 = Λ
2
Λ
−1

1
. Then there is

𝑈 = [

𝑋 𝜎

𝜎
𝑇
𝛽
−1
𝑊
−1
(𝑋
𝑊
)𝑊
−1
𝛽
−𝑇] > 0. (42)

Now using Lemma 4 and recalling (36), we can deduce
that

Λ =

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Γ

𝑖𝑖
+ Θ
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) Θ
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡))

× [Γ
𝑖𝑗
+ Θ
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) Θ
𝑇

𝑖
+ Γ
𝑗𝑖

+Θ
𝑖
𝐹
𝑗
(𝑡) Ξ
𝑇

𝑗
+ Ξ
𝑗
𝐹
𝑗
(𝑡) Θ
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Γ

𝑖𝑖
+ 𝜀
−1

𝑖
Θ
𝑖
Θ
𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡))

× [Γ𝑖𝑗 + 𝜀
−1

𝑖
ΘΘ
𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
+ Γ
𝑗𝑖
+ 𝜀
−1

𝑗
ΘΘ
𝑇

𝑗

+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) Υ

𝑖
+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡)) [Δ

𝑖𝑗
+ Δ
𝑇

𝑗𝑖
]

=

[
[
[
[

[

𝜌
1
(𝑠(𝑡))𝐼

𝜌
2
(𝑠(𝑡))𝐼

...
𝜌
𝑟
(𝑠(𝑡))𝐼

]
]
]
]

]

𝑇

[
[
[
[

[

Υ
1
Δ
12

⋅ ⋅ ⋅ Δ
1𝑟

∗ Δ
2
⋅ ⋅ ⋅ Δ

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Υ

𝑟

]
]
]
]

]

[
[
[
[

[

𝜌
1
(𝑠 (𝑡)) 𝐼

𝜌
2
(𝑠 (𝑡)) 𝐼

...
𝜌
𝑟
(𝑠 (𝑡)) 𝐼

]
]
]
]

]

< 0.

(43)

We can deduce that

{diag(Λ−𝑇
2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , [

𝜎
−𝑇

0

0 𝐼

])}Λ

{diag(Λ−𝑇
2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , [

𝜎
−1

0

0 𝐼
])}

= [
Ω Ψ
12

∗ Ψ
22

] < 0,

(44)

which is equivalent to (15). Therefore, it is easy to see that
the condition in Theorem 5 and the LMIs in (34)–(37) are
equivalent. Finally, it can be concluded that the filtering error
system (Σ̃) is stochastically stable with 𝐿

2
− 𝐿
∞
performance

level 𝛾.

Remark 9. The desired 𝐿
2
− 𝐿
∞

filters can be constructed
by solving the LMIs in (34)–(38), which can be implemented
by using standard numerical algorithms, and no tuning of
parameters will be involved.

Remark 10. In the proof of above Theorem, we adopt (25),
(26), and Newton-Leibnitz formula to reduce the conser-
vatism. Moreover, the results obtained in Theorems 5 and
8 can be further extended based on fuzzy or piecewise
Lyapunov-Krasovskii function.

4. Numerical Example

In this section, a numerical example is provided to show the
effectiveness of the results obtained in the previous section.

Example 1. Consider the T-S fuzzy stochastic system (Σ̃) with
model parameters given as follows:

𝐴
1
= [

−2.3 0

0.2 −1.1
] , 𝐴

𝑑1
= [

−0.2 0.2

−0.16 −0.18
] ,

𝐴
2
= [

−2.1 0.1

0.1 −1.4
] ,

𝐻
1
= [

−0.4 0.1

0.3 −0.5
] , 𝐻

𝑑1
= [

−0.01 0.02

0.01 −0.05
] ,

𝐻
2
= [

−0.1 0.2

0.1 −0.5
] ,

𝐶
1
= [1 −0.4] , 𝐶

𝑑1
= [−0.4 −0.1] ,

𝐶
2
= [−0.2 0.4] , 𝐶

𝑑2
= [−0.4 0.5] ,

𝐿
1
= [1.5 −0.6] , 𝐿

2
= [−0.3 0.2] ,

𝐷
1
= 0.2, 𝐷

2
= −0.2,

𝐵
1
= [

0.9

−0.2
] , 𝐵

2
= [

0.3

−0.1
] ,

𝐴
𝑑2
= [

−0.18 0

−0.22 −0.24
] , 𝐻

𝑑2
= [

−0.05 0.01

0.03 −0.04
] .

(45)

And the parameter uncertainties are shown as:

𝑀
11
= [

0.1 0.2

−0.5 0.1
] , 𝑀

12
= [

−0.2 0.1

0.3 −0.1
] ,

𝑀
21
= [

0.8 −0.1

−0.1 0.2
] ,

𝑁
11
= [

0 −0.3

0.1 − 0.2
] , 𝑁

21
= [

−0.2 0

0.2 0.1
] ,

𝑀
22
= [

−0.1 0.2

0.4 −0.2
] ,

𝑁
12
= [

−0.5 0

0.2 −0.3
] , 𝑁

22
= [

0 −0.2

0 0.1
] .

(46)

The membership functions are

ℎ
1
(𝑥
1
(𝑡)) = (1 −

3𝑥
1

1 + exp (6𝑥
1
(𝑡) + 2)

) ,

ℎ
2
(𝑥
1
(𝑡)) = 1 − ℎ

1
(𝑥
1
(𝑡)) .

(47)

By using the Matlab LMI Control Toolbox, we have
the robust 𝐿

2
− 𝐿
∞

filtering problem which is solvable to
Theorem 8. It can be calculated that for any 0 < ℎ

1
(𝑡) ≤ 3,



8 Abstract and Applied Analysis

0 1 2 3 4 5 6

0

1

0.8

0.6

0.4

0.2

St
at

e
t (s)

x1
x2

Filter x1
Filter x1

Figure 1: State responses of 𝑥(𝑡) and 𝑥(𝑡).
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Figure 2: Responses of the error signal 𝑒(𝑡).

0 < ℎ
2
(𝑡) ≤ 8, 𝛾 = 0.42 the robust 𝐿

2
− 𝐿
∞

filtering problem
can be solved. A desired fuzzy filter can be constructed as in
the form of (6) with

𝐴
𝑓1
= [

−5.4320 0.4511

1.8159 −1.5495
] ,

𝐴
𝑓2
= [

−8.1142 3.4902

2.9687 −5.9058
] ,

𝐵
𝑓1
= [

−1.0301

0.1040
] , 𝐵

𝑓2
= [

−1.0171

0.0415
] ,

𝐿
𝑓1
= [−0.3063 −0.0422] ,

𝐿
𝑓2
= [−0.2667 −0.0422] .

(48)

The simulation results of the state response of the plant
and the filter are given in Figure 1, where the initial condition
is 𝑥
0
(𝑡) = [0.4 2.5]

𝑇, 𝑥
0
(𝑡) = [0.1 0.1]

𝑇. Figure 2 shows
the simulation results of the signal 𝑒(𝑡), and the exogenous
disturbance input V(𝑡) is given by V(𝑡) = 12/(5 + 2𝑡), 𝑡 ≥ 0,
which belongs toL

2
[0,∞).

5. Conclusion

This paper considers the robust 𝐿
2
−𝐿
∞
filter design problem

for the uncertain T-S fuzzy stochastic system with time-
varying delay.AnLMI approachhas beendeveloped to design
the fuzzy filter ensuring not only the robust stochastic mean-
square stability but also a prescribed 𝐿

2
− 𝐿
∞

performance
level of the filtering error system for all admissible uncer-

tainties. A numerical example has been provided to show the
effectiveness of the proposed filter design methods.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China under Grants nos. 61203048, 61304047,
and 61203047.

References
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This paper focuses on the stability issue of discrete-time networked control systems with randomMarkovian delays and uncertain
transition probabilities, wherein the random time delays exist in the sensor-to-controller and controller-to-actuator. The resulting
closed-loop system is modeled as a discrete-time Markovian delays system governed by two Markov chains. Using Lyapunov
stability theory, a result is established on the Markovian structure and ensured that the closed-loop system is stochastically stable.
A simulation example illustrates the validity and feasibility of the results.

1. Introduction

Networked control systems (NCS) find many successful
applications in power grids, manufacturing plants, vehicles,
aircrafts, spacecrafts, remote surgery, and so on [1]. Com-
pared with the traditional control systems, the use of the
communication networks brings many advantages such as
low cost, reduced weight, and simple installation and main-
tenance, as well as high efficiency, flexibility, and reliability.
However, inserting communication networks into feedback
control loops has also resulted in several interesting and chal-
lenging issues, such as packet dropouts [2], timedelays [3–10],
quantization [11], time-varying transmission intervals [12],
distributed synchronization [13], or some of the constraints
considered simultaneously [14–17], which make the analysis
and design of NCS complex. These imperfections block the
way of harvesting reliable NCS by implementing existing
control techniques [18]. To overcome these drawbacks, sig-
nificant attention has been paid to the NCS research ranging
from system identification and stability analysis to controller

and filter designs. See the survey papers [1, 19, 20] and the
references therein.

The network-induced time delays are known to be the
major challenges in NCS, which may be potential causes
for the deteriorating performance or instability of NCS.
Consequently, numerous works have been conducted on
the time-delay issue in the past years. For example, in
[21], the mixed 𝐻

2
/𝐻
∞

control issue of NCS with random
time delays has been investigated based on Markovian jump
linear systems method. In [9], the stability problem of NCS
with uncertain time-varying delays has been investigated.
The stability and stabilization of NCS with random time
delay usually use Markovian jump linear systems (MJLS)
approach, and, recently, many significant achievements have
been obtained for MJLS in [22–26]. However, most of the
approaches for NCS based on Markovian jump systems
framework assumed that the Markovian transition probabil-
ities are known a priori, which severely limit the utility of
the Markov model. Furthermore, such assumption may not
hold true especially in the case where networked control is
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applied to the remote plants. Recently, the𝐻
∞
filter problem

for a class of uncertain Markovian jumping systems with
bounded transition probabilities has been investigated in
[27], but the well-established results cannot be directly used
to NCS. To the best of the authors’ knowledge, up to now,
very limited efforts have been devoted to studying the system
with uncertain transition probabilitymatrices forNCS,which
motivates our investigation.

In this paper, we address the analysis and design of NCS
with random time delays modeled by Markov chains in for-
ward sensor-to-controller (S-C) and feedback controller-to-
actuator (C-A) communication links and with the uncertain
transition probability matrices. The main contributions of
this paper are highlighted as follows. (i) A model is proposed
for NCS with random Markovian delays and uncertain
transition probability matrices. (ii) The system modeled will
be more generalized and avoid the ideal assumption that the
transition probabilities are known a priori. (iii) New criteria
for stability are obtained based on a Lyapunov approach.
Finally, a numerical example is provided to demonstrate
the effectiveness of the proposed control scheme for NCS
with random time delays and uncertain transition probability
matrices.

The remainder of this paper is organized as follows.
A model with Markovian delays and uncertain transition
probabilities is obtained in Section 2. The main results are
obtained based on a Lyapunov approach and the linearmatrix
inequalities technique in Section 3. Section 4 presents the
simulation results. Finally, the conclusions are provided in
Section 5.

Notations.Matrices are assumed to have appropriate dimen-
sions. R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices, respectively. The
notations 𝐴 > 0 (𝐴 < 0) indicate that 𝐴 is a real symmetric
positive (negative) definitematrix. 𝐼 and 0 denote the identity
matrix and the zero matrix with appropriate dimensions,
respectively. Superscripts “𝑇” and “−1” stand for the matrix
transposition and the matrix inverse, respectively. E[⋅] stands
for the mathematical expectation and diag{𝐴, 𝐵} stands for
a block-diagonal matrix of 𝐴 and 𝐵. 𝐼 and 0 denote the
identitymatrix and zeromatrix with appropriate dimensions,
respectively. sym{𝐴} denotes the expression 𝐴 + 𝐴𝑇, and ∗
means symmetric terms in symmetric entries.

2. NCS Model

The framework of networked control systems is depicted
in Figure 1. The plant, sensor, controller, and actuator are
spatially distributed and closed through a network. Random
time delays exist in both of S-C and C-A.

The plant is described by the following discrete-time
linear time-invariant plant model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector and 𝑢(𝑘) ∈ R𝑚 is
the control input. 𝐴 and 𝐵 are known real constant matrices
with appropriate dimensions.

𝜏(k)

u(k) x(k)

d(k)

u(k) x(k)

Network

Controller

Actuator Plant Sensor

Figure 1: Diagram of a NCS with time delays.

For this system, we will consider a state feedback con-
troller as follows:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

where𝐾 is the state feedback controller gain.
Random S-C and C-A time delays are 𝑑(𝑘) and 𝜏(𝑘),

respectively. 𝑑(𝑘) and 𝜏(𝑘) are assumed be bounded; that is,
0 ≤ 𝑑 ≤ 𝑑(𝑘) ≤ 𝑑, 0 ≤ 𝜏 ≤ 𝜏(𝑘) ≤ 𝜏, where 𝑑 = min{𝑑(𝑘)},
𝑑 = max{𝑑(𝑘)}, 𝜏 = min{𝜏(𝑘)}, and 𝜏 = max{𝜏(𝑘)}. One
way to model delays 𝑑(𝑘) and 𝜏(𝑘) is by using the finite-state
Markov chains presented in [21]. The main advantages of the
Markov model considering the dependence between delays
are that the current time delays in real networks delays are
frequently related to the previous delays. In this paper 𝑑(𝑘)
and 𝜏(𝑘) are modeled as two homogeneous Markov chains.

By substituting controller (2) to plant (1), we obtain a
closed-loop system as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝐾𝑥 (𝑘 − 𝜂
𝑘
) , (3)

where 𝜂
𝑘
= 𝜏(𝑘) + 𝑑(𝑘 − 𝜏(𝑘)).

In system (3), {𝑑(𝑘), 𝑘 ∈ Z} and {𝜏(𝑘), 𝑘 ∈ Z} are
two finite state discrete-time homogeneous Markov chains
with values in the finite sets 𝑆

1
= {0, . . . , 𝑠

1
} and 𝑆

2
=

{0, . . . , 𝑠
2
} with the uncertain transition probability matrices

�̂� and ̂𝜆. �̂� = {�̂�
𝑖𝑗
} and ̂𝜆 = {

̂
𝜆
𝑛𝑚
} denote the uncertain

transition probability matrices of Markov chain 𝑑(𝑘) and
𝜏(𝑘), respectively, with probabilities �̂�

𝑖𝑗
and ̂𝜆

𝑛𝑚
, which are

defined by

Pr {𝑑 (𝑘 + 1) = 𝑗 | 𝑑 (𝑘) = 𝑖} = �̂�
𝑖𝑗
,

Pr {𝜏 (𝑘 + 1) = 𝑛 | 𝜏 (𝑘) = 𝑚} = ̂𝜆
𝑚𝑛
,

(4)

where Pr{ ̂𝑑
0
= 𝑖} = �̂�

𝑖
≥ 0, Pr{𝜏

0
= 𝑚} =

̂
𝜆
𝑚
≥ 0 and

∑
𝑠
1

𝑗=0,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
= 1 − �̂�

𝑖𝑖
, ∑𝑠2
𝑛=0,𝑛 ̸=𝑚

̂
𝜆
𝑚𝑛
= 1 −

̂
𝜆
𝑚𝑚

for all {𝑖, 𝑗} ∈
𝑆
1
and {𝑚, 𝑛} ∈ 𝑆

2
. The transition probability matrices �̂� ≜

[�̂�
𝑖𝑗
] and �̂� ≜ [̂𝜆

𝑚𝑛
] are unknown a priori but belong to the

following bounded compact set:

�̂� = 𝜋 + Δ𝜋,
̂
𝜆 = 𝜆 + Δ𝜆, (5)

where 𝜋 ≜ [𝜋
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

1
) and 𝜆 ≜ [𝜆

𝑚𝑛
] (𝑚, 𝑛 ∈ 𝑆

2
) are

known constant matrices. Δ𝜋 ≜ [Δ𝜋
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

1
) and Δ𝜆 ≜



Abstract and Applied Analysis 3

[Δ𝜆
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

2
) denote the uncertainty in the transition

probability matrices, where Δ𝜋 and Δ𝜆 satisfy

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

Δ𝜋
𝑖𝑗
= −Δ𝜋

𝑖𝑗
(𝑖, 𝑗 ∈ 𝑆

1
) ,

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
= −Δ𝜆

𝑚𝑛
(𝑚, 𝑛 ∈ 𝑆

2
) ,

(6)

where 0 ≤ |Δ𝜋
𝑖𝑗
| ≤ 𝜀
𝑖𝑗
, 0 ≤ |Δ𝜆

𝑚𝑛
| ≤ 𝜀
𝑚𝑛
, and 𝜀

𝑖𝑗
and 𝜀
𝑚𝑛

are the known small scalar for all (𝑖, 𝑗 ∈ 𝑆
1
) and (𝑚, 𝑛 ∈ 𝑆

2
),

respectively.

Remark 1. Closed-loop system (3) is a linear system with
the Markovian delays 𝑑(𝑘) and 𝜏(𝑘), which describe the
behavior of the S-C and C-A random time delays, and with
the uncertain transition probabilities.

Remark 2. The uncertain transition probabilities �̂� and ̂𝜆
contain the certain terms 𝜋 and 𝜆, and the uncertain terms
Δ𝜋 and Δ𝜆, respectively. The uncertain terms Δ𝜋 and Δ𝜆 are
bounded, and the sums of the elements in each row are zeros.

3. Stability Analysis and Controller Design

By applying a Lyapunov approach and a linear matrix
inequality technique, this section provides sufficient condi-
tions for the stochastic stability and the synthesis of state
feedback controller design of the system (3).

Definition 3 (see [21]). The closed-loop system (3) is said to
be stochastically stable if, for every finite 𝑥

0
= 𝑥(0), initial

mode 𝑑
0
= 𝑑(0) ∈ 𝑆

1
and 𝜏
0
= 𝜏(0) ∈ 𝑆

2
, there exists a finite

W > 0 such that

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2
| 𝑥
0
, 𝑑
0
, 𝜏
0
} < 𝑥

𝑇

0
W𝑥
0
. (7)

Theorem 4. For the system (3), random but bounded scalars
𝑑(𝑘) ∈ [𝑑 𝑑] and 𝜏(𝑘) ∈ [𝜏 𝜏]. If, for each mode {𝑖, 𝑗} ∈ 𝑆

1

and {𝑚, 𝑛} ∈ 𝑆
2
andmatrices𝑃

𝑖,𝑚
> 0,𝑄

1
> 0,𝑄

2
> 0,𝑄

3
> 0,

𝑅
1
> 0, and 𝑅

2
> 0,M

𝑠
= [M1𝑠 M

2𝑠
M
3𝑠] and𝐾 exist that

satisfy the following matrix inequalities:

Γ
𝑖,𝑚
= [

[

−𝑅
−1

1
0 Ξ

1

∗ −𝑅
−1

2
Ξ
2

∗ ∗ Ξ
3

]

]

< 0, (8)

where

Ξ
1
= [𝑡 (𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0] ,

Ξ
2
= [(𝑡 − 𝑡) (𝐴 − 𝐼) 0 (𝑡 − 𝑡) 𝐵𝐾 0 0] ,

Ξ
3
= ✠ + symM

𝑇

Ω,

✠ =

[
[
[
[
[

[

✠
11
𝑃
𝑖,𝑚

𝑅
1

0 0

∗ ✠
22

0 0 0

∗ ∗ ✠
33
𝑅
1
+ 𝑅
2
𝑅
2

∗ ∗ ∗ ✠
44

0

∗ ∗ ∗ ∗ ✠
55

]
]
]
]
]

]

,

✠
11
= 𝑃
𝑖,𝑚
− 𝑃
𝑖,𝑚
− 𝑅
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

✠
22
= 𝑃
𝑖,𝑚
, ✠

33
= −𝑄
3
− 2𝑅
1
− 2𝑅
2
,

✠
44
= −𝑄
1
− 𝑅
1
− 𝑅
2
, ✠

55
= −𝑄
2
− 𝑅
2
,

M = [M1𝑠 M
2𝑠

M
3𝑠
0 0] ,

Ω = [𝐴 − 𝐼 −𝐼 𝐵𝐾 0 0] ,

𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
̂
𝜆
𝑚𝑛
𝑃
𝑗,𝑛
,

𝑡 = 𝑑 + 𝜏, 𝑡 = 𝑑 + 𝜏,

(9)

and �̂�
𝑖𝑗
and ̂𝜆

𝑚𝑛
are defined in (4) and (5).

Then the closed-loop system (3) is stochastically stable.

Proof. For the closed-loop system (3), the stochastic Lya-
punov functional candidate is constructed as follows:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (10)

with

𝑉
1
(𝑘) = 𝑥(𝑘)

𝑇
𝑃 (𝑑 (𝑘) , 𝜏 (𝑘)) 𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑙=𝑘−𝑡

𝑥(𝑙)
𝑇
𝑄
1
𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝑡

𝑥(𝑙)
𝑇
𝑄
2
𝑥 (𝑙) ,

𝑉
3
(𝑘) =

−𝑡+1

∑

𝜃=−𝑡+2

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑥(𝑙)
𝑇
𝑄
3
𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝑥(𝑙)
𝑇
𝑄
3
𝑥 (𝑙) ,

𝑉
4
(𝑘) =

0

∑

𝜃=−𝑡+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

+

−𝑡

∑

𝜃=−𝑡+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙) ,

(11)

where 𝑃(𝑑(𝑘), 𝜏(𝑘)) > 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, and

𝑅
2
> 0.
Let 𝛿(𝑙) = 𝑥(𝑙 + 1) − 𝑥(𝑙), noting that 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +

𝐵𝐾𝑥(𝑘 − 𝜂
𝑘
). Then 0 = (𝐴 − 𝐼)𝑥(𝑘) − 𝛿(𝑘) + 𝐵𝐾𝑥(𝑘 −

𝜂
𝑘
). For simplicity, we will use the following notations:
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𝜁(𝑘) = [𝑥(𝑘)
𝑇
𝛿(𝑘)
𝑇
𝑥(𝑘 − 𝜂

𝑘
)
𝑇
]

𝑇

. Then, for any weighting
matrices M

𝑠
with compatible dimensions (and let M

𝑠
=

[M1𝑠 M
2𝑠

M
3𝑠]), we have 2𝜁(𝑘)𝑇M𝑇𝑠 ((𝐴 − 𝐼)𝑥(𝑘) − 𝛿(𝑘) +

𝐵𝐾𝑥(𝑘 − 𝜂
𝑘
)) = 0. Along the trajectory of the solution of the

closed-loop system (3), we obtain

E [Δ𝑉
1
(𝑘)] = E {[𝑥 (𝑘) + 𝛿 (𝑘)]

𝑇
𝑃
𝑖,𝑚 [
𝑥 (𝑘) + 𝛿 (𝑘)]}

− 𝑥(𝑘)
𝑇
𝑃
𝑖,𝑚
𝑥 (𝑘) + 2𝜁(𝑘)

𝑇
M
𝑇

𝑠

× ((𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵𝐾 (𝑘 − 𝜂
𝑘
) − 𝛿 (𝑘)) ,

(12)

E [Δ𝑉
2
(𝑘)] = 𝑥(𝑘)

𝑇
(𝑄
1
+ 𝑄
2
) 𝑥 (𝑘)

− 𝑥(𝑘 − 𝑡)
𝑇

𝑄
1
𝑥 (𝑘 − 𝑡)

− 𝑥(𝑘 − 𝑡)
𝑇

𝑄
2
𝑥 (𝑘 − 𝑡) ,

(13)

E [Δ𝑉
3
(𝑘)] ≤ (𝑡 − 𝑡 + 1) 𝑥(𝑘)

𝑇
𝑄
3
𝑥 (𝑘)

− 𝑥(𝑘 − 𝜂
𝑘
)
𝑇

𝑄
3
𝑥 (𝑘 − 𝜂

𝑘
) ,

(14)

E [Δ𝑉
4
(𝑘)] = 𝑡

2

𝛿(𝑘)
𝑇
𝑅
1
𝛿 (𝑘) + (𝑡 − 𝑡)

2

𝛿(𝑘)
𝑇
𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑙=𝑘−𝑡

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

−

𝑘−𝑡−1

∑

𝑙=𝑘−𝑡

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙) .

(15)

By Jensen’s inequality, we can obtain

−

𝑘−1

∑

𝑙=𝑘−𝑡

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

= −(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

+

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

)(𝑡 − 𝜂
𝑘
+ 𝜂
𝑘
) 𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

≤ −((𝑡 − 𝜂
𝑘
)

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿
𝑇
(𝑙) 𝑅
1
𝛿 (𝑙) + 𝜂

𝑘

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿
𝑇
(𝑙) 𝑅
1
𝛿 (𝑙))

≤ −((

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

𝑇

𝑅
1
(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

+ (

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

𝑇

𝑅
1
(

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙)))

= −(𝑥 (𝑘 − 𝜂
𝑘
) − 𝑥 (𝑘 − 𝑡))

𝑇

𝑅
1
(𝑥 (𝑘 − 𝜂

𝑘
) − 𝑥 (𝑘 − 𝑡))

− (𝑥 (𝑘) − 𝑥 (𝑘 − 𝜂
𝑘
))
𝑇

𝑅
1
(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜂

𝑘
)) .

(16)

Similarly, we have

−

𝑘−𝑡−1

∑

𝑙=𝑘−𝑡

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙)

≤ −(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

𝑇

𝑅
2
(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

+ (

𝑘−𝑡−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

𝑇

𝑅
2
(

𝑘−𝑡−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

= −(𝑥 (𝑘 − 𝜂
𝑘
) − 𝑥 (𝑘 − 𝑡))

𝑇

𝑅
2
(𝑥 (𝑘 − 𝜂

𝑘
) − 𝑥 (𝑘 − 𝑡))

− (𝑥 (𝑘 − 𝑡) − 𝑥 (𝑘 − 𝜂
𝑘
))
𝑇

𝑅
2
(𝑥 (𝑘 − 𝑡) − 𝑥 (𝑘 − 𝜂

𝑘
)) .

(17)

By substituting (16) and (17) to (15) and then combining (12),
(13), and (14), we have

E [Δ𝑉]

≤ 𝜉(𝑘)
𝑇
{Ξ
3
+ [𝑡(𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0]

𝑇

× 𝑅
1
[𝑡 (𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0]

+ [(𝑡 − 𝑡)(𝐴 − 𝐼) 0 (𝑡 − 𝑡)𝐵𝐾 0 0]

𝑇

×𝑅
2
[ (𝑡 − 𝑡) (𝐴 − 𝐼) 0 (𝑡 − 𝑡) 𝐵𝐾 0 0 ] } 𝜉 (𝑘)

= 𝜉(𝑘)
𝑇
Γ
𝑖,𝑚
𝜉 (𝑘) ,

(18)

where 𝜉(𝑘) = [𝜁(𝑘)
𝑇
𝑥(𝑘 − 𝑡)

𝑇
𝑥(𝑘 − 𝑡)

𝑇
]

𝑇

. By using the
Schur complement, (8) guarantees that Γ

𝑖,𝑚
< 0. Therefore,

E [Δ𝑉] ≤ −𝜆min (−Γ𝑖,𝑚) 𝜉(𝑘)
𝑇
𝜉 (𝑘) ≤ −𝜂𝑥(𝑘)

𝑇
𝑥 (𝑘) , (19)

where 𝜆min(−Γ𝑖,𝑚) denotes the minimal eigenvalue of −Γ
𝑖,𝑚

and 𝜂 = inf{𝜆min(−Γ𝑖,𝑚)}. From (19), it follows that, for any
𝑡 > 0,

E [𝑉 (𝑘 + 1)] − E [𝑉 (0)] ≤ −𝜂
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] . (20)

Furthermore
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] ≤

1

𝜂
E [𝑉 (0)] . (21)

By taking 𝑡 → ∞ as the limit, we obtain
∞

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] ≤

1

𝜂
E [𝑉 (0)] =

1

𝜂
𝑥
𝑇

0
𝑃 (𝑑
0
, 𝜏
0
) 𝑥
0
< ∞.

(22)

According toDefinition 3, the closed-loop system (3) exhibits
stochastic stability for all uncertain transition probability
matrices.
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Theorem 4 gives a sufficient condition for the stochastic
stability of the system (3). However, it should be noted that
the controller gain 𝐾 cannot be obtained according to the
condition in (8) because of the nonlinear terms 𝑅−1

1
and 𝑅−1

2

and the uncertain terms Δ𝜋 and Δ𝜆. To handle this problem,
the equivalent LMI conditions are given as follows.

Before proceeding further, we provide the following
lemma thatwill play a significant role in processing the uncer-
tainty terms Δ𝜋 and Δ𝜆 of uncertain transition probability
matrices �̂� and ̂𝜆.

Lemma 5 (see [28]). For any vectors of 𝑎, 𝑏 ∈R𝑛 and positive
matrix 𝑍 ∈R𝑛𝑍,𝑛𝑍 , the following holds:

2𝑎
𝑇
𝑏 ≤ 𝑎
𝑇
𝑍𝑎 + 𝑏

𝑇
𝑍
−1
𝑏. (23)

Theorem 6. For the system (3), the random but bounded
scalars 𝑑(𝑘) ∈ [𝑑 𝑑] and 𝜏(𝑘) ∈ [𝜏 𝜏]. If, for each mode
{𝑖, 𝑗} ∈ 𝑆

1
and {𝑚, 𝑛} ∈ 𝑆

2
, the tuning parameters 𝜑

1
> 0 and

𝜑
2
> 0, the scalars 𝜀

𝑖𝑗
> 0 and 𝜀

𝑛𝑚
> 0, and matrices �̂�

𝑖,𝑚
> 0,

𝑋 > 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, �̂�

1
> 0, �̂�

2
> 0, 𝑍

𝑖
> 0,

𝑍
𝑚
> 0, and 𝑍

𝑗,𝑛
> 0, and 𝑌 exist such that

[
[
[

[

Θ
11

0 0 Θ
14

∗ Θ
22

0 Θ
24

∗ ∗ Θ
33
Θ
34

∗ ∗ ∗ Θ
44

]
]
]

]

< 0, (24)

where

Θ
11
= − sym {𝑋} + �̂�

1
, Θ

22
= − sym {𝑋} + �̂�

2
,

Θ
33
= diag {−̂𝑍

𝑚
, −
̂
𝑍
𝑖
, −
̂
𝑍
𝑗,𝑛
} ,

Θ
14
= [𝑡 (𝐴𝑋 − 𝑋) 0 𝑡𝐵𝑌 0 0] ,

Θ
24
= [(𝑡 − 𝑡) (𝐴𝑋 − 𝑋) 0 (𝑡 − 𝑡) 𝐵𝑌 0 0] ,

Θ
34
= [

[

Ψ
1
Ψ
1
0 0 0

Ψ
2
Ψ
2
0 0 0

Ψ
3
Ψ
3
0 0 0

]

]

,

̂
𝑍
𝑚
= diag {𝑍

𝑚
, . . . , 𝑍

𝑚
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠
1
(𝑠
2
−1)

,
̂
𝑍
𝑖
= diag {𝑍

𝑖
, . . . , 𝑍

𝑖
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑠
1
−1)𝑠
2

,

̂
𝑍
𝑗,𝑛
= diag {𝑍

𝑗,𝑛
, . . . , 𝑍

𝑗,𝑛
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠
1
𝑠
2

,

Ψ
1
= [

[

√𝜋𝑖1
Δ�̂�
1,𝑚

⋅ ⋅ ⋅

√𝜋𝑖𝑠
1

Δ�̂�
𝑠
1
,𝑚

]

]

, Ψ
2
=
[
[

[

√𝜆
𝑚1
Δ�̂�
𝑖,1

⋅ ⋅ ⋅

√𝜆𝑚𝑠
2

Δ�̂�
𝑖,𝑠
2

]
]

]

,

Ψ
3
= [

[

�̂�
1,1

⋅ ⋅ ⋅

�̂�
𝑠
1
,𝑠
2

]

]

,

Δ�̂�
𝑗,𝑚
=

[
[
[
[
[
[
[
[

[

�̂�
𝑗,1
− �̂�
𝑗,𝑚

⋅ ⋅ ⋅

�̂�
𝑗,𝑚−1

− �̂�
𝑗,𝑚

�̂�
𝑗,𝑚+1

− �̂�
𝑗,𝑚

⋅ ⋅ ⋅

�̂�
𝑗,𝑠
2

− �̂�
𝑗,𝑚

]
]
]
]
]
]
]
]

]

, Δ�̂�
𝑖,𝑛
=

[
[
[
[
[
[
[
[

[

�̂�
1,𝑛
− �̂�
𝑗,𝑛

⋅ ⋅ ⋅

�̂�
𝑖−1,𝑛

− �̂�
𝑗,𝑛

�̂�
𝑖+1,𝑛

− �̂�
𝑗,𝑛

⋅ ⋅ ⋅

�̂�
𝑠
1
,𝑛
− �̂�
𝑗,𝑛

]
]
]
]
]
]
]
]

]

,

Θ
44
= sym {Π𝑇Ω̂}

+

[
[
[
[
[

[

✠̂
11
𝜗
1
⊛ 𝜗
2
�̂�
1

0 0

∗ 𝜗
2

1
⊛ 0 0 0

∗ ∗ 𝜗
2

2
✠̂
33
𝜗
2
(�̂�
1
+ �̂�
2
) 𝜗
2
�̂�
2

∗ ∗ ∗ ✠̂
44

0

∗ ∗ ∗ ∗ ✠̂
55

]
]
]
]
]

]

,

✠̂
11
= ⊛ − �̂�

𝑖,𝑚
− �̂�
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

✠̂
33
= −𝑄
3
− 2�̂�
1
− 2�̂�
2
, ✠̂

44
= −𝑄
1
− �̂�
1
− �̂�
2
,

✠̂
55
= −𝑄
2
− �̂�
2
,

⊛ =

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

(𝜀
𝑖𝑗
𝜀
𝑚𝑛
)

2

4

𝑍
𝑗,𝑛
)

+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

𝜋
𝑖𝑗
𝜀
2

𝑚𝑛

4

𝑍
𝑚
+

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

𝑠
2

∑

𝑛=0

𝜆
𝑚𝑛
𝜀
2

𝑖𝑗

4

𝑍
𝑖
,

Π = [𝐼 𝐼 𝐼 0 0] ,

Ω̂ = [𝐴𝑋 − 𝑋 −𝜗
1
𝑋 𝜗
2
𝐵𝑌 0 0] .

(25)

Then the closed-loop system (3) is stochastically stable and
the controller 𝑢(𝑘) = 𝐾𝑥(𝑘) = 𝑌𝑋−1𝑥(𝑘) is a state feedback
controller of the system (3).

Proof. Let Δ
𝑖
= diag{𝐼, 𝐼, 𝑋

𝑖,𝑚
, 𝜗
1
𝑋
𝑖,𝑚
, 𝜗
2
𝑋
𝑖,𝑚
, 𝑋
𝑖,𝑚
, 𝑋
𝑖,𝑚
},

M−1
1𝑠
= 𝑋
𝑖,𝑚
,M−1
2𝑠
= 𝜗
1
𝑋
𝑖,𝑚
, andM−1

3𝑠
= 𝜗
2
𝑋
𝑖,𝑚
, where 𝜗

1
> 0

and 𝜗
2
> 0 are known tuning parameters. We restrict 𝑋

𝑖,𝑚
to

be the same for all {𝑖, 𝑚} (namely, 𝑋
𝑖,𝑚

= 𝑋) and give the
notations as

�̂�
𝑖,𝑚
= 𝑋
𝑇
𝑃
𝑖,𝑚
𝑋,

̂
𝑃
𝑖,𝑚
= 𝑋
𝑇
𝑃
𝑖,𝑚
𝑋, �̂�

1
= 𝑋
𝑇
𝑅
1
𝑋,

�̂�
2
= 𝑋
𝑇
𝑅
2
𝑋,

𝑄
1
= 𝑋
𝑇
𝑄
2
𝑋, 𝑄

2
= 𝑋
𝑇
𝑄
2
𝑋, 𝑄

3
= 𝑋
𝑇
𝑄
3
𝑋.

(26)

Pre- and postmultiplying Δ𝑇
𝑖
and Δ

𝑖
to (8), respectively, we

have

[

[

−𝑋�̂�
−1

1
𝑋
𝑇

0 Ξ̂
1

∗ −𝑋�̂�
−1

2
𝑋
𝑇
Ξ̂
2

∗ ∗ Ξ̂
3

]

]

< 0, (27)
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where

Ξ̂
1
= [𝑡 (𝐴𝑋 − 𝑋) 0 𝑡𝐵𝑌 0 0] ,

Ξ̂
2
= [(𝑡 − 𝑡) (𝐴𝑋 − 𝑋) 0 (𝑡 − 𝑡) 𝐵𝑌 0 0] ,

Ξ̂
3
= ✠̃ + symΠ𝑇Ω̂,

✠̃ =

[
[
[
[
[
[

[

✠̃
11
𝜗
1

̂
𝑃
𝑖,𝑚

𝜗
2
�̂�
1

0 0

∗ 𝜗
2

1

̂
𝑃
𝑖,𝑚

0 0 0

∗ ∗ 𝜗
2

2
✠̂
33
𝜗
2
(�̂�
1
+ �̂�
2
) 𝜗
2
�̂�
2

∗ ∗ ∗ ✠̂
44

0

∗ ∗ ∗ ∗ ✠̂
55

]
]
]
]
]
]

]

,

✠̃
11
=
̂
𝑃
𝑖,𝑚
− �̂�
𝑖,𝑚
− �̂�
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
̂
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
,

(28)

where 𝑡 and 𝑡 are defined inTheorem 4 and ✠̂
33
, ✠̂
44
, and ✠̂

55

are defined inTheorem 6.
According to the assumption on uncertain transition

probabilities �̂� and ̂𝜆 and the fact that ∑𝑠1
𝑗=0,𝑗 ̸= 𝑖

Δ𝜋
𝑖𝑗
= −Δ𝜋

𝑖𝑖

and ∑𝑠2
𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
= −Δ𝜆

𝑚𝑚
, one has

̂
𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
̂
𝜆
𝑚𝑛
�̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(𝜋
𝑖𝑗
+ Δ𝜋
𝑖𝑗
) (𝜆
𝑚𝑛
+ Δ𝜆
𝑚𝑛
) �̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛
.

(29)

Note that

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗
(

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+ Δ𝜆
𝑚𝑚
�̂�
𝑗,𝑚
)

=

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
(�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
) .

(30)

By Lemma 5 and the fact that |Δ𝜆
𝑚𝑛
| ≤ 𝜀
𝑚𝑛
, we have

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

(

1

4

𝜀
2

𝑚𝑛
𝑍
𝑚
+ (�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
)

𝑇

×𝑍
−1

𝑚
(�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
) ) .

(31)

Similarly, we have
𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

𝑠
2

∑

𝑛=0

𝜆
𝑚𝑛

× (

1

4

𝜀
2

𝑖𝑗
𝑍
𝑖
+ (�̂�
𝑗,𝑛
− �̂�
𝑖,𝑛
)

𝑇

𝑍
−1

𝑖
(�̂�
𝑗,𝑛
− �̂�
𝑖,𝑛
)) .

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(

1

4

𝜀
2

𝑖𝑗
𝜀
2

𝑚𝑛
𝑍
𝑗,𝑛
+ �̂�
𝑇

𝑗,𝑛
𝑍
−1

𝑗,𝑛
�̂�
𝑗,𝑛
) .

(32)

Note that, for any matrix 𝑋, we have 𝑋𝑊−1𝑋𝑇 ≥

sym{𝑋} − 𝑊 for𝑊 = �̂�
1
and𝑊 = �̂�

2
. Combining (29), (31),

and (32) and by the Schur complement, (24) can be yielded
easily from (27); this completes the proof of Theorem 6.

4. Numerical Example

In this section, we illustrate our results through an example.
We apply the results in Theorem 6 to a simple inverted
pendulum system [5] shown in Figure 2, which is a two-order
unstable system. The state variables are [𝜑 ̇𝜑]

𝑇, where 𝜑 is
the angular position of the pendulum. The parameters used
are 𝑚 = 0.1 kg and 𝐿 = 1m, without friction surfaces. The
sampling time is 𝑇

𝑠
= 0.05 s. The plant matrices are given by

𝐴 = [
1.0123 0.0502

0.4920 1.0123
] , 𝐵 = [

0.0125

0.5020
] . (33)

We assume that the stochastic Markovian jumping S-C
delay 𝑑(𝑘) ∈ {0, 1} and C-A delay 𝜏(𝑘) ∈ {0, 1, 2} and their
uncertain transition probability matrices are given as follows:

𝜋 = [

0.4 0.6

0.7 0.3
] , 𝜆 = [

[

0.4 0.3 0.3

0.2 0.5 0.3

0.4 0.2 0.4

]

]

,

Δ𝜋 = [
0.02 −0.02

−0.01 0.01
] , Δ𝜆 = [

[

0.03 −0.03 0

−0.02 0.01 0.01

−0.03 0.02 0.01

]

]

.

(34)
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Figure 2: A simple inverted pendulum.
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Figure 3: Values of the S-C delay 𝑑(𝑘).

The eigenvalues of 𝐴 are 1.1695 and 0.8551. Therefore, the
discrete-time model is unstable.

Figures 3 and 4 show part of the simulation of theMarkov
chains mode. The initial conditions are as follows: 𝑑(0) = 0,
𝜏(0) = 0, and 𝑥(0) = [0.1 −0.1]

𝑇. By Theorem 6, when
𝜀
𝑖𝑗
= 0.02, 𝜀

𝑚𝑛
= 0.03, 𝜗

1
= 0.09, and 𝜗

2
= 12, we can obtain

the gain matrix 𝐾 of state feedback controller (2) which is
constructed as

𝐾 = 𝑌𝑋
−1
= [−0.1046 −0.1177] [

0.1636 −0.3923

0.3923 1.4211
]

−1

= [−2.4757 −0.7662] .

(35)

The state trajectories of the system (3) are shown in Figure
5, where two curves represent state trajectories under the
controller gains𝐾. Figure 5 also indicates that the system (3)
is stochastically stable.

Remark 7. In this example, the uncertain transition probabil-
ities are given as a discrete probability distribution function.
When the uncertain transition probability is given as a
continuous probability distribution function, we can use the

𝜏
(k
)

0.5

1

0

0 10 20 30 40 50 60 70 80 90

k

2

1.5

100

Figure 4: Values of the C-A delay 𝜏(𝑘).
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Figure 5: State trajectories under 𝐾.

𝐻
2
norm of the continuous probability distribution function

as the upper bound to simulation.

5. Conclusions

The state feedback stabilization problem for a class of NCS
with the S-C and C-A random time delays is investigated
in this paper. The resulting closed-loop NCS is modeled as
a linear system with uncertain Markovian transition proba-
bilities. New sufficient conditions on stochastic stability and
stabilization are obtained by Lyapunov stability theory and
linear matrix inequalities method. An example is presented
to illustrate the effectiveness of the approach. Although only
the time-delay issue for NCS is addressed in this paper, the
method can be extended to the NCS with the random packet
dropouts, time delays, and packet dropouts and to the MJLS
with the uncertain Markovian transition probabilities.
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This paper investigates the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators.
A finite-state Markovian process is given to govern the transition of the jumping parameters. The finite-time 𝐻

∞
controller via

state feedback is designed to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable.
Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic control performance of discrete-time
Markov jump systems are derived in the form of linear matrix inequalities. Finally, a numerical example is provided to illustrate
the effectiveness of the proposed approach.

1. Introduction

During the past several decades, the issue of finite-time con-
trol has drawn increasing attention of academic researchers
in the area of control field, and various results have been
reported. To this end, a considerable amount of research has
been carried out; see Hong et al. [1]; He and Liu [2, 3]; Li
et al. [4]; Song et al. [5]; Lan et al. [6]. Among the proposed
solutions, state feedback control is an important approach
to improve finite-time control performance. For instance,
by using both state feedback and dynamic output feedback
control, finite-time control of the robot system is studied in
Hong et al. [7]. Furthermore, based on dynamic observer-
based state feedback and Lyapunov-Krasovskii functional
approach, the finite-time𝐻

∞
control problem for time-delay

nonlinear jump systems was addressed in the work of He and
Liu [2, 3, 8].

On the other hand, more and more attention has been
paid to the study of actuator saturation due to its practical and
theoretical importance. Therefore, various approaches were
investigated to handle systems with actuator saturation, such
as in the work of Cao and Lin [9]; the stability of discrete-
time systems with actuator saturation was analyzed by a
saturation-dependent Lyapunov function. By introducing a
time-varying sliding surface, the robust stabilization problem
of linear unstable plants with saturating actuators was studied

in Corradini and Orlando [10]. Furthermore, the controller
design method of Markov jumping systems subject to actu-
ator saturation was presented in Liu et al. [11]. Via dynamic
anti-windup fuzzy design, the robust stabilization problem
of state delayed T-S fuzzy systems with input saturation was
proposed in Song et al. [12]. Other results can refer to [13–17]
and references therein.

It is well known that the control problem of Markov
jump systems has also been extensively studied and a large
variety of control problems have been widely investigated,
for instance, the stabilization of Markov jump systems with
time delays [18–24], robust control [25], control of singular
Markov systems [26], control of discrete-time stochastic
Markov jump systems [27, 28], and fuzzy dissipative control
for nonlinear Markovian jump systems [29]. Furthermore,
robust stability for uncertain delayed neural networks with
Markov jumping parameters was analyzed in Li et al. [30].
Robust𝐻

∞
filter was designed for uncertain discrete Markov

jump singular systems with mode-dependent time delay in
Ma and Boukas [31]. Delay-dependent robust stabilization
problem for uncertain stochastic switching systems with
distributed delays was studied in Shen et al. [32]. Via
retarded output feedback, passivity-based control problem
for Markov jump systems was addressed in Shen et al. [33].
Observer based finite-time 𝐻

∞
control problem of discrete-

time Markov jump systems was studied in Zhang and

Hindawi Publishing Corporation
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Liu [34]. However, to the best of our knowledge, the problem
of finite-time stabilization of discrete-time stochastic systems
has not been fully investigated and it is the main purpose of
our study.

In this paper, the attention is focused on the finite-
time 𝐻

∞
control problem of discrete-time Markov jump

systems with actuator saturation. A state feedback controller
is designed to ensure the stochastic finite-time boundedness
and stochastic finite-time stabilization of the resulting closed-
loop system for all admissible disturbances. The desired
controller can be designed via solving a convex optimization
problem. Finally, a numerical example is employed to show
the effectiveness of the proposed method.

Notation. Throughout the paper, for symmetric matrices 𝑋
and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
𝐼 is the identitymatrix with appropriate dimension.Thenota-
tion 𝑁𝑇 represents the transpose of the matrix 𝑁; 𝜆max(𝑀)

(resp.,𝜆min(𝑀))means the largest (resp., smallest) eigenvalue
of the matrix 𝑀; (Ω,F,P) is a probability space; Ω is the
sample space, F is the 𝜎-algebra of subsets of the sample
space, and P is the probability measure on F;E{⋅} denotes
the expectation operator with respect to some probability
measure P. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symbol ∗ is used to denote
amatrix which can be inferred by symmetry,He{𝐴} = 𝐴𝑇

+𝐴.

2. Preliminaries and Problem Description

2.1. Preliminaries. Throughout this paper, we will use the
following definitions and lemmas.

Lemma 1 (see [12]). For the matrix 𝐾
𝑖
and the system Σ, the

appropriate matrix 𝐿
𝑖
∈ R𝑚×𝑛 is given if 𝑥(𝑘) is in the set

𝐷(𝑢
𝑜
), where𝐷(𝑢

𝑜
) is defined as follows:

𝐷(𝑢
𝑜
) = {𝑥 (𝑘) ∈ R

𝑛
; −𝑢

0(𝑘)
≤ (𝐾

𝑖(𝑘)
− 𝐿

𝑖(𝑘)
) 𝑥 (𝑡) ≤ 𝑢

0(𝑘)
,

𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚} ;

(1)

then for any diagonal positive matrix 𝑇 ∈ R𝑚×𝑚, we derive

𝜓(𝑢 (𝑘))
𝑇
𝑇 (𝜓 (𝑢 (𝑘)) − 𝐿

𝑖
𝑥 (𝑘)) ≤ 0. (2)

Lemma 2 (see [32]). For the given symmetric matrix 𝑆 ∈

R(𝑛+𝑚)×(𝑛+𝑚):

𝑆 = [

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

, (3)

where 𝑆
11
∈ R𝑛×𝑛, 𝑆

12
∈ R𝑛×𝑚, and 𝑆

22
∈ R𝑚×𝑚; the following

conditions are equivalent:

(1) 𝑆 < 0,
(2) 𝑆

11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Definition 3 (see [34]). The resulting closed-loop system
(12) is stochastic finite-time stable (SFTB) with respect to
(𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, and 𝑁 ∈ 𝑍

𝑘≥0
if

there exists state feedback controller such that

𝐸 {𝑥
𝑇
(0) 𝑅

𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
⇒ 𝐸{𝑥

𝑇
(𝑘) 𝑅

𝑖
𝑥 (𝑘)}

< 𝜖
2
, ∀𝑘 ∈ {1, 2, . . . , 𝑁} .

(4)

Definition 4 (see [34]). The resulting closed-loop system (12)
is said to be stochastic𝐻

∞
finite-time stable via state feedback

with respect to (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, 𝛾 >

0, and 𝑁 ∈ 𝑍
𝑘≥0

if the system (11)-(12) is SFTB with respect
to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) and under the zero-initial condition the

output 𝑧(𝑘) satisfies

𝐸 {Σ
𝑁

𝑗=0
𝑧
𝑇
(𝑗) 𝑧 (𝑗)} ≤ 𝛾

2
𝐸 {Σ

𝑁

𝑗=0
𝑤

𝑇
(𝑗) 𝑤 (𝑗)} , (5)

for any nonzero 𝑤(𝑘) which satisfies (10), where 𝛾 is a
prescribed positive scalar. Moreover, the state feedback con-
troller (11) is called𝐻

∞
controller of MJS (12).

2.2. Problem Description. Consider the following discrete-
time Markov jump system (Σ) in the probability space
(Ω,F,P):

𝑥 (𝑘 + 1) = 𝐴 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐺 (𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐷
1
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐷
2
(𝑟 (𝑘)) 𝑤 (𝑘) ,

(6)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑧(𝑘) ∈ R𝑙 is the controlled
output, and sat(𝑢(𝑘)) ∈ R𝑚 is the saturated control input.
𝑤(𝑘) ∈ 𝐿

𝑝

2
[0 + ∞) is the external disturbances. {𝑟(𝑘)} is a

discrete-time Markov process and takes values from a finite
set 𝑆 = {1, 2, . . . ,N} with transition probabilities given by

Pr (𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘
= 𝑖) = 𝜋

𝑖𝑗
, (7)

where 𝜋
𝑖𝑗
≥ 0, for ∀𝑗, 𝑖 ∈ 𝑆, and Σ

𝑗∈𝑆
𝜋
𝑖𝑗
= 1. Moreover, the

transition rates matrix of the system (Σ) is defined by

[
[
[
[

[

𝜋
11

𝜋
12

⋅ ⋅ ⋅ 𝜋
1N

𝜋
21

𝜋
22

⋅ ⋅ ⋅ 𝜋
2N

...
... d

...
𝜋N1

𝜋N2
⋅ ⋅ ⋅ 𝜋NN

]
]
]
]

]

. (8)

The inputs of the plant are supposed to be bounded as follows:

−𝑢
0(𝑘)

≤ 𝑢
(𝑘)
≤ 𝑢

0(𝑘)
, 𝑢

0(𝑘)
> 0, 𝑘 = 1, . . . , 𝑚. (9)

For the system (Σ), to simplify the notation, we denote
𝐴

𝑖
= 𝐴(𝑟(𝑘)) for each 𝑟(𝑘) = 𝑖 ∈ 𝑆, and the other

symbols are similarly denoted. 𝐴
𝑖
, 𝐵

𝑖
, 𝐺

𝑖
, 𝐶

𝑖
,𝐷

1𝑖
, and𝐷

2𝑖
are

known mode-dependent constant matrices with appropriate
dimensions.
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Assumption 5 (see [34]). The external disturbance 𝑤(𝑘) is
varying and satisfies the following constraint condition:

Σ
𝑇

𝑘=0
𝑤(𝑘)

𝑇
𝑤 (𝑘) ≤ 𝑑, 𝑑 ≥ 0. (10)

For the system (Σ), we construct the following state feedback
controller:

𝑢 (𝑘) = 𝐾 (𝑟 (𝑘)) 𝑥 (𝑘) . (11)

Then, the resulting closed-loop discrete-time Markov jump
system (MJS) is as follows:

𝑥 (𝑘 + 1) = (𝐴
𝑖
+ 𝐵

𝑖
𝐾

𝑖
) 𝑥 (𝑘) + 𝐵

𝑖
𝜓 (𝑢 (𝑘)) + 𝐺

𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = (𝐶
𝑖
+ 𝐷

1𝑖
𝐾

𝑖
) 𝑥 (𝑘) + 𝐷

1𝑖
𝜓 (𝑢 (𝑘)) + 𝐷

2𝑖
𝑤 (𝑘) ,

(12)

where 𝜓(𝑢(𝑘)) = sat(𝑢(𝑘)) − 𝑢(𝑘).

3. Main Results

In this section, we investigate the design of a state feedback
controllerwhich guarantees the locally finite-time stabilizable
of the resulting closed-loop system. Some sufficient condi-
tions and the method of designing state feedback controller
are given.

Theorem 6. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, there exists a feedback
controller 𝑢(𝑘) = 𝐾

𝑖
𝑥(𝑘), 𝐾

𝑖
= 𝑌

𝑖
𝑋

−1

𝑖
, such that the resulting

closed-loop system (12) is SFTB with respect to (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑)

with 0 < 𝛿
𝑥
< 𝜖, if there exist scalars 𝜇 ≥ 0, 𝜎

1
≥ 0, and 𝜎

2
≥ 0,

three sets of mode-dependent symmetric matrices 𝑋
𝑖
> 0, 𝐽

𝑖
>

0, and𝑄
𝑖
> 0, and two sets of mode-dependent matrices 𝑌

𝑖
and

̄𝐿
𝑖
= 𝐿

𝑖
𝑋

𝑖
, such that the following conditions hold:

[
[
[
[
[
[
[
[

[

−𝜇𝑋
𝑖

0 ̄𝐿
𝑇

𝑖
̄𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

0 𝐿
𝑇

2𝑖

∗ ∗ −2𝐽
𝑖
𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]

]

< 0, (13)

[
𝜎
2
𝑑
2
− 𝜇

−𝑁
𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (14)

[

𝑋
𝑖

∗

𝑌
𝑖
+ ̄𝐿

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (15)

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
, (16)

0 < 𝑄
𝑖
< 𝜎

2
𝐼, (17)

where
𝑊 = diag {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

̄𝐿
𝑇

1𝑖

= [√𝜋
𝑖1
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
) √𝜋

𝑖2
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
) ⋅ ⋅ ⋅ √𝜋

𝑖𝑛
(𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇
)] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐺
𝑇

𝑖 √𝜋
𝑖2
𝐺
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐺
𝑇

𝑖 ] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐽
𝑖
𝐵
𝑇

𝑖 √𝜋
𝑖2
𝐽
𝑖
𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐽
𝑖
𝐵
𝑇

𝑖 ] .

(18)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) . (19)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸 {Σ
𝑛

𝑗=1
𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇
𝑃
𝑗
𝑥 (𝑘 + 1)}

= 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖
𝐿

3𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿

2𝑖
𝐿

3𝑖] 𝜉 (𝑘) ,

(20)

where
𝜉 (𝑘) = [𝑥(𝑘)

𝑇
𝑤(𝑘)

𝑇
𝜓(𝑘)

𝑇
] ,

𝑊 = diag {𝑃1, 𝑃2, . . . , 𝑃ℎ} ,

𝐿
𝑇

1𝑖

= [√𝜋𝑖1(𝐴𝑖 + 𝐵𝑖𝐾𝑖)
𝑇

√𝜋𝑖2(𝐴𝑖 + 𝐵𝑖𝐾𝑖)
𝑇

⋅ ⋅ ⋅ √𝜋𝑖𝑛(𝐴𝑖 + 𝐵𝑖𝐾𝑖)
𝑇
] ,

𝐿
𝑇

2𝑖
= [√𝜋𝑖1𝐺

𝑇

𝑖 √𝜋𝑖2𝐺
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋𝑖𝑛𝐺

𝑇

𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋𝑖1𝐵

𝑇

𝑖 √𝜋𝑖2𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋𝑖𝑛𝐵

𝑇

𝑖
] .

(21)

Then by pre- and postmultiplying (13) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}

with 𝑃
𝑖
= 𝑋

−1

𝑖
, 𝑇

𝑖
= 𝐽

−1

𝑖
, we have

[
[
[
[
[
[
[
[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖
𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

0 𝐿
𝑇

2𝑖

∗ ∗ −2𝑇
𝑖
𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]

]

< 0. (22)

By using Schur complement lemma, we derive

𝜉(𝑘)
𝑇
[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝑄
𝑖

0

∗ ∗ −2𝑇
𝑖

]

]

× 𝜉 (𝑘) + 𝜉(𝑘)
𝑇
[𝐿

1𝑖
𝐿

2𝑖
𝐿

3𝑖
]
𝑇

𝑊[𝐿
1𝑖
𝐿

2𝑖
𝐿

3𝑖
] 𝜉 (𝑘) < 0.

(23)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇
𝑄

𝑖
𝑤 (𝑘)

+ 2𝜓(𝑘)
𝑇
𝑇
𝑖
𝜓 (𝑘) − 2𝜓(𝑘)

𝑇
𝑇
𝑖
𝐿

𝑖
𝑥 (𝑘) .

(24)
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Since 2𝜓(𝑘)𝑇𝑇
𝑖
𝜓(𝑘) − 2𝜓(𝑘)

𝑇
𝑇
𝑖
𝐿

𝑖
𝑥(𝑘) ≤ 0, we get

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇
𝑄

𝑖
𝑤 (𝑘) . (25)

It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝑤(𝑘)

𝑇
𝑤 (𝑘) . (26)

Then we have

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝐸 {𝑤(𝑘)

𝑇
𝑤 (𝑘)} .

(27)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝐸

×

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘
𝐸 {𝑉 (0)} + sup

(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝜇

𝑘
𝑑
2
.

(28)

Let

̄𝑃
𝑖
= 𝑅

−1/2

𝑖
𝑃
𝑖
𝑅

−1/2

𝑖
, (29)

and noting that

𝐸 {𝑥
𝑇
(0) 𝑅

𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
, (30)

it can be verified that

𝐸 {𝑉 (0)} = 𝐸 {𝑥
𝑇
(0) 𝑃

𝑖
𝑥 (0)} = 𝐸 {𝑥

𝑇
(0) 𝑅

1/2

𝑖
̄𝑃
𝑖
𝑅

𝑖
1/2𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max ( ̄𝑃
𝑖
)} 𝐸 {𝑥

𝑇
(0) 𝑅

𝑖
𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max ( ̄𝑃
𝑖
)} 𝛿

2

𝑥
.

(31)

Similarly, for all 𝑖 ∈ 𝑆, we can obtain

𝐸 {𝑉 (𝑘)} = 𝐸 {𝑥
𝑇
(𝑘) 𝑃

𝑖
𝑥 (𝑘)}

= 𝐸 {𝑥
𝑇
(𝑘) 𝑅

1/2

𝑖
̄𝑃
𝑖
𝑅

𝑖
1/2𝑥 (𝑘)}

≥ inf
𝑖∈𝑆

{𝜆min} ( ̄𝑃
𝑖
) 𝐸 {𝑥

𝑇
(𝑘) 𝑅

𝑖
𝑥 (𝑘)} .

(32)

Then it is not difficult to find that

𝐸 {𝑥
𝑇
(𝑘) 𝑅

𝑖
𝑥 (𝑘)}

<

sup
𝑖∈𝑆
{𝜆max ( ̄𝑃

𝑖
)} 𝜇

𝑘
𝛿
2

𝑥
+ sup

(𝑖∈𝑆)
{𝜆max (𝑄𝑖

)} 𝜇
𝑘
𝑑
2

inf
𝑖∈𝑆
{𝜆min} ( ̄𝑃

𝑖
)

,

(33)

which implies

sup
𝑖∈𝑆
{𝜆max ( ̄𝑃

𝑖
)} 𝜇

𝑘
𝛿
2

𝑥
+ sup

(𝑖∈𝑆)
{𝜆max (𝑄𝑖

)} 𝜇
𝑘
𝑑
2

inf
𝑖∈𝑆
{𝜆min} ( ̄𝑃

𝑖
)

< 𝜖
2
.

(34)

Then, one can obtain that

sup
𝑖∈𝑆

{𝜆max ( ̄𝑃
𝑖
)} 𝛿

2

𝑥

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖
)} 𝑑

2
< inf

𝑖∈𝑆

{𝜆min} ( ̄𝑃
𝑖
) 𝜇

−𝑁
𝜖
2
.

(35)

Set
𝑋

𝑖
= 𝑃

−1

𝑖
,

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
,

0 < 𝑄
𝑖
< 𝜎

2
𝐼;

(36)

it is easy to see that

𝜎
−1

1
𝛿
2

𝑥
+ 𝜎

2
𝑑
2
< 𝜇

−𝑁
𝜖
2
. (37)

It is obvious that (37) is equivalent to (14). Based on Lemma 1,
it is easy to obtain condition (15). This completes the proof.

Theorem 7. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, there exists a feedback
controller 𝑢(𝑘) = 𝐾

𝑖
𝑥(𝑘), 𝐾

𝑖
= 𝑌

𝑖
𝑋

−1

𝑖
, such that the resulting

closed-loop system (12) is said to be stochastic 𝐻
∞

finite-time
stable via state feedback with respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑), if

there exist three scalars 𝜇 ≥ 0, 𝜎
1
≥ 0, and 𝛾 ≥ 0, two sets

of mode-dependent symmetric matrices𝑋
𝑖
> 0 and 𝐽

𝑖
> 0, and

two sets of mode-dependent matrices 𝑌
𝑖
and ̄𝐿

𝑖
= 𝐿

𝑖
𝑋

𝑖
, such

that the following conditions hold:

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜇𝑋
𝑖

0 ̄𝐿
𝑖

̄𝐿
1𝑖

𝑌
𝑇

𝑖
𝐷

𝑇

𝑖
+ 𝑋

𝑖
𝐶

𝑇

𝑖

∗ −𝛾
2
𝜇
−𝑁
𝐼 0 𝐿

𝑇

2𝑖
𝐷

𝑇

2𝑖

∗ ∗ −2𝐽
𝑖
𝐿
𝑇

3𝑖
𝐷

𝑇

1𝑖

∗ ∗ ∗ −𝑊 0

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (38)

[
𝜇
−𝑁
(𝑑

2
𝛾
2
− 𝜖

2
) ∗

𝛿
𝑥

−𝜎
1

] < 0, (39)

[

𝑋
𝑖

∗

𝑌
𝑖
+ ̄𝐿

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (40)

𝜎
1
𝑅

−1

𝑖
< 𝑋

𝑖
< 𝑅

−1

𝑖
. (41)

Proof. Choose the similar Lyapunov function as Theorem 6
and denote

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖)

= 𝐸 {𝑉 (𝑘 + 1)} − 𝜇𝑉 (𝑘) + 𝑧(𝑘)
𝑇
𝑧 (𝑘)

− 𝛾
2
𝜇
−𝑁
𝑤(𝑘)

𝑇
𝑤 (𝑘) .

(42)
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Thus, in the light of Theorem 6, we have

Π(𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟
𝑘
= 𝑖)

≤ 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖
𝐿

3𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿

2𝑖
𝐿

3𝑖] 𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇
[𝐶

𝑖
+ 𝐷

1𝑖
𝐾

𝑖
𝐷

2𝑖
𝐷

3𝑖
]
𝑇

× [𝐶
𝑖
+ 𝐷

1𝑖
𝐾

𝑖
𝐷

2𝑖
𝐷

3𝑖
] 𝜉 (𝑘)

+ 𝜉
𝑇
(𝑘)

[

[

−𝜇𝑋
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝛾
2
𝜇
−𝑁
𝐼 0

∗ ∗ −2𝑇
𝑖

]

]

𝜉 (𝑘) .

(43)

Then by pre- and postmultiplying (38) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼} and

considering Schur complement Lemma and (43), we derive

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖) < 0, (44)

holds for all 𝑟
𝑘
= 𝑖 ∈ 𝑆. According to (44), one can obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

− 𝐸 {𝑧(𝑘)
𝑇
𝑧 (𝑘)} + 𝛾

2
𝜇
−𝑁
𝐸 {𝑤(𝑘)

𝑇
𝑤 (𝑘)} .

(45)

Then, we have

𝐸 {𝑉 (𝑘)} < 𝜇
𝑘
𝐸 {𝑉 (0)}

− Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

+ 𝛾
2
𝜇
−𝑁
𝐸 {Σ

𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)} .

(46)

Under the zero-value initial condition and noting that𝑉(𝑘) ≥
0, for all𝐾 ∈ 𝑍

𝑘≥0
, it is shown that

Σ
𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

< 𝛾
2
𝜇
−𝑁
𝐸 {Σ

𝑘−1

𝑗=0
𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)} .

(47)

Since 𝜇 ≥ 1 and from (47), we have

𝐸 {Σ
𝑁

𝑗=0
𝑧(𝑗)

𝑇

𝑧 (𝑗)} = Σ
𝑁

𝑗=0
𝐸 {𝑧(𝑗)

𝑇

𝑧 (𝑗)}

≤ Σ
𝑁

𝑗=0
𝐸 {𝜇

𝑁−𝑗
𝑧(𝑗)

𝑇

𝑧 (𝑗)}

≤ 𝛾
2
𝜇
−𝑁
𝐸 {Σ

𝑁

𝑗=0
𝜇
𝑁−𝑗

𝑤(𝑗)
𝑇

𝑤 (𝑗)}

≤ 𝛾
2
𝐸 {Σ

𝑁

𝑗=0
𝑤(𝑗)

𝑇

𝑤 (𝑗)} .

(48)

The following proof is similar to the process of Zhang and Liu
[34].

Since 𝜖(𝑃
𝑖
, 1) ⊂ 𝐷(𝑢

0
), it follows that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿

𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (49)

and then by pre- and postmultiplying (49) by diag(𝑋
𝑖
, 𝐼, )

and its transpose, respectively, we derive condition (40). This
completes the proof.

Remark 8. For the given scalars (𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑), we can

take 𝛾2 as the optimized variable to obtain an optimized
finite-time stabilized controller. The attenuation lever 𝛾2 can
be reduced to the minimum possible value such that LMIs
(38)–(41) hold. The optimization problem can be described
as follows:

min 𝜌

(𝑋𝑖
𝑌
𝑖
𝐾

𝑖
𝛿
𝑥)

s.t. LMIs (38)–(41) with 𝜌 = 𝛾2.

(50)

4. Illustrative Examples

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposedmethod. Consider the
following systems with four operation modes.

Mode 1. Consider

𝐴
1
= [

1.5 0

1.8 0.6
] , 𝐵

1
= [

1

0
] , 𝐺

1
= [

1

0
] . (51)

Mode 2. Consider

𝐴
2
= [

1.2 1

0.8 1
] , 𝐵

2
= [

1

0
] , 𝐺

2
= [

1

0
] . (52)

Mode 3. Consider

𝐴
3
= [

0.76 −2.28

0.80 −0.96
] , 𝐵

3
= [

1

0
] , 𝐺

3
= [

0.6

0
] .

(53)

Mode 4. Consider

𝐴
4
= [

1.28 −0.38

0.80 −0.88
] , 𝐵

4
= [

0.3

−0.1
] , 𝐺

4
= [

0.8

0
] .

(54)

The transition rate matrix is given as follows:

[
[
[

[

0.4 0.3 0.2 0.1

0.3 0.4 0.1 0.2

0.1 0.2 0.4 0.3

0.2 0.1 0.3 0.4

]
]
]

]

. (55)

In this case, we choose the initial values for 𝑅
𝑖
= 𝐼

2
, 𝑖 =

1, 2, 3, 4, 𝛿
𝑥
= 1, 𝑁 = 5, 𝛼 = 10

−10, 𝜇 = 2.5, and 𝑑 = 1;
Theorem 6 yields to 𝜖 = 36.2671, 𝜎

1
= 0.4906, 𝜎

2
= 13.7421,

and the bounds of the input saturation 𝑢
0
= 0.05.

Based onTheorem 7, we derive

𝐾
1
= [−0.7723 0.5862] , 𝐾

2
= [−0.1021 −0.0506] ,

𝐾
3
= [−0.8706 0.5591] , 𝐾

4
= [−0.3019 −0.3635] .

(56)

Remark 9. The figures are given on the last page. In this part
Figure 1 is 𝑟

𝑘
of the jump rates; Figure 2 shows the states of the

open-loopMarkovian jump system; Figure 3 shows the states
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Figure 1: 𝑟
𝑘
of jump rates.
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Figure 2: 𝑥(𝑘) of open-loop system.
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Figure 3: 𝑥(𝑘) of closed-loop system.

of the closed-loop Markovian jump system. By applying the
controller studied in this paper to the closed-loop plant, it is
obviously noticed that 𝑥

1
and 𝑥

2
converge to zero quickly.

Based on the figures provided, the controller we designed
guarantees that the resulting closed-loop systems are mean-
square locally asymptotically finite-time stabilizable.

5. Conclusions

This paper considers the finite-time 𝐻
∞

stabilization prob-
lem for a class of discrete-time Markov jump systems with
input saturation. The finite-time 𝐻

∞
controller via state

feedback is designed to guarantee the stochastic finite-time
boundedness and stochastic finite-time stabilization of the
considered closed-loop system for all admissible distur-
bances. Based on stochastic finite-time stability analysis,
sufficient conditions are derived in the form of linear matrix
inequalities. Finally, simulation results are given to illustrate
the effectiveness of the proposed approach. In the future, we
will study the finite-time stabilization problem for a class of
Markov jump systems with constrained input and time delay.
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A stochastic pinning approach for multiagent systems is developed, which guarantees such systems being almost surely stable. It
is seen that the pinning is closely related to being a Bernoulli variable. It has been proved for the first time that a series of systems
can be stabilized by a Brownian noise perturbation in terms of a pinning scheme. A new terminology named “stochastic pinning
control” is introduced to describe the given pinning algorithm. Additionally, two general cases that the expectation of the Bernoulli
variable with bounded uncertainty or being unknown are studied. Finally, two simulation examples are provided to demonstrate
the effectiveness of the proposed methods.

1. Introduction

Due to the broad applications in cooperative control of
unmanned air vehicles, formation control of mobile robots,
sensor networks, and cooperative surveillance, multiagent
problems have drawn a lot of attention. In particular, multi-
agent coordination with multiple leaders becomes more and
more important, which forces a group of agents into a specific
target region. Because of the spatial distribution of actuators
and sensors, it is of high cost or even impossible in practice
to implement a centralized controller. Instead, distributed
control emerged to be a promising tool for coordination of
multiagent systems, which is usually to design a controller
to every subsystem. During the past years, many important
results have been reported in [1–6]. Many natural and man-
made systems, such as ecosystems, internet,WordWideWeb,
social networks, and power grids, are described by it. In
recent years, the analysis and control of complex behaviors
in complex networks have become a hot topic across many
fields such as in [7–11]. Especially, synchronization related
to being the most important collective behavior of complex
networks, such as ER random, small-world, and scale-free
complex networks [12–14], has been extensively studied. Via
introducing a Bernoulli stochastic variable describing the
randomswitching of controllers, the distributed synchroniza-
tion of complex networks was studied in [15, 16].

Due to the complexity of complex networks, it is usually
not easy to control a complex network by adding controllers
to all nodes. Instead, pinning control only uses a small
number of controllers. In this sense, it is said that pinning
control is a promising method, which can efficiently reduce
the number of controllers. The pinning control strategy
for linear coupled networks was investigated in [17, 18], in
which two different pinning strategies, random pinning and
special pinning methods, were theoretically and numerically
compared. During the past decades, a lot of results on
synchronization of various complex networks by pinning
control have emerged, for example, [19–25]. By searching
such references on pinning control, it is concluded that all the
pinning methods are realized by a kind of regular controllers
in terms of in the drift section of a system. However, it
is possible to design a controller to stabilize a stochastic
system almost surely which is unable to be stabilized in
mean-square sense. Based on these facts, it is asked that can
we design a pinning controller referred to be a Brownian
noise perturbation to stabilize multiagent systems? To the
best of authors’ knowledge, the control problemofmultiagent
systems via a pinning controller only in the diffusion part
has not yet been investigated, which motivates the current
research.

In this paper, the control problem of multiagent systems
is firstly considered by a stochastic pinning viewpoint. In
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contrast to the existing results of pinning control methods,
the main contributions of this paper are as follows. (1) The
control of multiagent systems is firstly realized by a pinning
control method in terms of a Brownian noise perturbation.
(2) In order to achieve this goal, new pinning control in
terms of stochastic pinning control (SPC) is developed, in
which the Bernoulli variable plays an important role in SPC.
(3) More general cases such as the expectation of Bernoulli
variable with uncertainty and being unknown are considered
respectively. (4) The relationship among the expectation,
the pinning fraction, and the pinning control gain for both
randomand special pinning control is demonstrated in detail.

Notation. R𝑛 denotes the 𝑛 dimensional Euclidean space;
R𝑚×𝑛 is the set of all 𝑚 × 𝑛 real matrices. | ⋅ | denotes the
Euclidean norm.E{⋅} is the expectation operator with respect
to some probability measure. ⊗ is the Kronecker product. In
symmetric block matrices, we use “∗” as an ellipsis for the
terms induced by symmetry, diag{⋅ ⋅ ⋅ } for a block-diagonal
matrix. S ≜ {1, 2, . . . , 𝑁} = S

𝑙
⋃S
𝑙
, where S

𝑙
= {1, 2, . . . , 𝑙}

and S
𝑙
= S − S

𝑙
.

2. Problem Formulation

Consider a multiagent system consisting of𝑁 agents, such as
in [6], the model of agent, 𝑖 ∈ S, is described as

̇𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) , (1)

where 𝑥
𝑖
∈ R𝑛 is the state vector, 𝑓

𝑖
(𝑥
𝑖
, 𝑡) : R𝑛 × R → R𝑛

is the inherent nonlinear dynamic. However, it can be also
be dealt with by the fuzzy method [26, 27]. In this paper, the
nonlinear term 𝑓

𝑖
(𝑥
𝑖
, 𝑡) is treated directly, and an assumption

is needed here.

Assumption 1. Nonlinear function 𝑓
𝑖
(𝑥
𝑖
, 𝑡) is assumed to

satisfy the following condition:

𝑥
𝑇

𝑖
𝑓
𝑖
(𝑥
𝑖
, 𝑡) ≤ 𝜃

𝑖
𝑥
𝑇

𝑖
𝑥
𝑖
, ∀𝑥

𝑖
∈ R
𝑛
, ∀𝑡 ≥ 0, (2)

where 𝜃
𝑖
≥ 0 is a given constant.

In this paper, a new pinning control method for system
(1) in terms of stochastic pinning control is proposed as

𝑢
𝑖
= 𝑐

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑐𝑘
𝑖
𝑥
𝑖
, 𝑖 ∈ S

𝑙
, (3)

𝑢
𝑖
= 𝑐

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑐𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
, 𝑖 ∈ S

𝑙
, (4)

respectively, where 𝑐 is the coupling strength, 𝐺 = (𝑔
𝑖𝑗
) ∈

R𝑁×𝑁 is the coupling matrix with 𝑔
𝑖𝑗

≥ 0, 𝑖 ̸= 𝑗, 𝑔
𝑖𝑖

=

−∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑔
𝑖𝑗
, which is an irreducible matrix, and 𝑘

𝑖
∈ R𝑛×𝑛

is the control gain. Bernoulli variable 𝛼(𝑡) in (4) is described
as

𝛼 (𝑡) = 1 or 0 (5)

whose expectation is E{𝛼(𝑡)} = 𝛼.
In this paper, such controllers will be used as a pinning

controller in terms of Brownian noise perturbation. As a
result, we have the closed-loop system as

𝑑𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) 𝑑𝑡 + 𝑐(

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑘
𝑖
𝑥
𝑖
)𝑑𝜔 (𝑡) , 𝑖 ∈ S

𝑙
,

(6)

𝑑𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) 𝑑𝑡 + 𝑐(

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
)𝑑𝜔 (𝑡) ,

𝑖 ∈ S
𝑙
,

(7)

where 𝜔(𝑡) ∈ R𝑛 is a 𝑛-dimensional Brownian motion or
Wiener process. Let 𝑥 = [𝑥

𝑇

1
⋅ ⋅ ⋅ 𝑥
𝑇

𝑁
]

𝑇

, 𝑓 = [𝑓
𝑇

1
⋅ ⋅ ⋅ 𝑓

𝑇

𝑁
]

𝑇

,
and 𝐾

𝛼(𝑡)
= diag{𝑘

1
, . . . , 𝑘

𝑙
, 𝛼(𝑡)𝑘

𝑙+1
, . . . , 𝛼(𝑡)𝑘

𝑁
}; one has

𝐺
1
= 𝐺−𝐾

𝛼(𝑡)=1
and𝐺

2
= 𝐺−𝐾

𝛼(𝑡)=0
, respectively.Without of

loss generality, in this paper it is assumed that 𝑘
𝑖
= 𝑘
𝑗
= 𝑘 > 0,

for all 𝑖, 𝑗 ∈ S. Based on these notations, we have

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + 𝑐𝐺 (𝜂 (𝑡)) 𝑥𝑑𝜔 (𝑡) , (8)

where 𝐺(𝜂(𝑡)) = 𝐺(𝜂(𝑡)) ⊗ 𝐼
𝑛
. Operation mode {𝜂(𝑡), 𝑡 ≥ 0}

takes values in set B = {1, 2} and is described as

𝜂 (𝑡) = {

1, if 𝛼 (𝑡) = 1

2, if 𝛼 (𝑡) = 0,

(9)

whose probabilities are Pr{𝜂(𝑡) = 1} = 𝛼 and Pr{𝜂(𝑡) = 2} =

1 − 𝛼, respectively.

Remark 2. It is worth pointing out that the proposed pinning
control method is different from the existing pinning meth-
ods. Firstly, the pinning problem of this paper is realized by a
Brownian noise perturbation, which cannot be solved by the
usual analysis methods. Secondly, the introduced Bernoulli
variable 𝛼(𝑡) plays an important role in achieving the pinning
control in terms of Brownian noise control. Such differences
embody the property of stochastic pinning control. That is,
when 𝛼(𝑡) = 0, only controller (6) works and is a pinning
controller. On the contrary, if 𝛼(𝑡) = 1, the desired controller
becomes a distributed controller, which is not pinning control
in fact. In this sense, it is said that the developed pinning
control is a stochastic control method.

Remark 3. It should be remarked that this framework is
necessary to achieve pinning control through Brownian
noise perturbations. If there is no 𝛼(𝑡) in (7), the underlying
systems become (6) with 𝑖 ∈ S

𝑙
and (1) with 𝑖 ∈ S

𝑙
,

which can be obtained by applying the usual pinning
methods directly. Unfortunately, it is concluded that this
pinning framework is very hard to realize the desired object.
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The reason will be explained later. On the other hand, when
𝛼(𝑡) ≡ 1, we have (6) only, which is seen as a distributed
controller instead of a pinning controller. Thus, it is
claimed that the given pinning control algorithm bridges
the traditional pinning control and distributed control. In
addition,𝐾

𝛼(𝑡)
can also choose other forms, such as𝐾

𝛼(𝑡),𝛽(𝑡)
=

diag{𝛼(𝑡)𝑘
1
, . . . , 𝛼(𝑡)𝑘

𝑙
, 𝛽(𝑡)𝑘

𝑙+1
, . . . , 𝛽(𝑡)𝑘

𝑁
}, where both

𝛼(𝑡) and 𝛽(𝑡) are dependent or independent Bernoulli
variables.

Definition 4. The equilibrium of system (8) is said to be
almost surely exponentially stable if for any 𝑥

0
∈ R𝑛

lim
𝑡→∞

sup 1

𝑡

log (

𝑥 (𝑡, 𝑥

0
)




) < 0 a.s. (10)

3. Main Results

Theorem 5. For given scalars 𝜃 and 𝛼, the equilibrium of
system (8) is almost surely exponentially stable, if there exists
𝑘 > 0 such that

2𝜃 + 𝛼𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
Ω
2
< 0, (11)

whereΩ
𝑖
= 𝜆max(𝐺

𝑇

𝑖
𝐺
𝑖
) − 2𝜆

2

max(𝐺𝑖), 𝑖 ∈ B.

Proof. For any given initial condition 𝑥
0

̸=0, it is known that
𝑥(𝑡) ≜ 𝑥(𝑡; 𝑥

0
)will never reach zero with probability one, and

by Itô formula, it is obtained that

𝑑 [log (|𝑥|2)]

=

(2𝑥
𝑇
𝑓 (𝑥, 𝑡) + 𝑐

2
𝑥
𝑇
𝐺
𝑇

𝑖
𝐺
𝑖
𝑥) 𝑑𝑡 + 2𝑐𝑥

𝑇
𝐺
𝑖
𝑥𝑑𝜔 (𝑡)

|𝑥|
2

−

2𝑐
2



𝑥
𝑇
𝐺
𝑖
𝑥







2

|𝑥|
4

𝑑𝑡

=

(2𝑥
𝑇
𝑓 (𝑥, 𝑡) + 𝑐

2
𝑥
𝑇
(𝐺
𝑇

𝑖
𝐺
𝑖
) ⊗ 𝐼
𝑛
𝑥) 𝑑𝑡 + 2𝑐𝑥

𝑇
𝐺
𝑖
𝑥𝑑𝜔 (𝑡)

|𝑥|
2

−

2𝑐
2



𝑥
𝑇
𝐺
𝑖
𝑥







2

|𝑥|
4

𝑑𝑡

≤ (2𝜃 + 𝑐
2
Ω
𝑖
) 𝑑𝑡 +

2𝑐𝑥
𝑇
𝐺
𝑖
𝑥

|𝑥|
2

𝑑𝜔 (𝑡) .

(12)

Then, it is obtained that

log (|𝑥 (𝑡)|
2
) ≤ log (


𝑥
0






2

)

+ ∫

𝑡

0

(2𝜃 + 𝑐
2
Ω(𝜂 (𝑠))) 𝑑𝑠 + 𝑀 (𝑡) ,

(13)

where 𝑀(𝑡) = ∫

𝑡

0
((2𝑐𝑥
𝑇
(𝑠)𝐺(𝜂(𝑠))𝑥(𝑠))/|𝑥(𝑠)|

2
)𝑑𝜔(𝑠) is a

continuous martingale vanishing at 𝑡 = 0. Taking into
account (9), it is seen that

lim
𝑡→∞

1

𝑡

∫

𝑡

0

(2𝜃 + 𝑐
2
Ω(𝜂 (𝑠))) 𝑑𝑠

= 2𝜃 + 𝛼𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
Ω
2

a.s.
(14)

On the other hand, it is concluded that for any finite 𝑘 given in
𝐺
𝑖
, there exists a positive scalar 𝜌

𝑖
that the quadratic variation

of𝑀(𝑡) is

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩ = ∫

𝑡

0

4𝑐
2



𝑥
𝑇
(𝑠) 𝐺 (𝜂 (𝑠)) 𝑥 (𝑠)







2

|𝑥 (𝑠)|
4

𝑑𝑠

≤ 4𝑡max
𝑖∈B

𝜌
𝑖
.

(15)

Applying the strong law of the large numbers to𝑀(𝑡), one has

lim
𝑡→∞

𝑀(𝑡)

𝑡

= 0 a.s. (16)

Based on (14) and (16), we conclude that

lim
𝑡→∞

sup 1

𝑡

log (

𝑥 (𝑡, 𝑥

0
)




)

≤ 2𝜃 + 𝛼𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
Ω
2
< 0 a.s.

(17)

which is guaranteed by (11). This completes the proof.

Remark 6. By Theorem 5, it is known that if condition (11)
holds, one can stabilize system (1) by a pinning control tactic
in terms of Brownian noise perturbation. However, condition
(11) is impossible or hard to be satisfied if controller (7) is with
𝛼(𝑡) ≡ 0. If 𝛼(𝑡) ≡ 0, condition (11) becomes 2𝜃 + 𝑐

2
Ω
2
< 0,

where pinning controller is same as the traditional pinning
controller. Unfortunately, it is said that 2𝜃 + 𝑐

2
Ω
2
< 0 with

𝜃 > 0 is impossible or hard to be satisfied because of Ω
2
>

0. That is, due to the property of 𝐺 in (3) or (4), we have
𝜆max(𝐺2) < 0, and 𝜆

2

max(𝐺2) = (𝜆max(𝐺2))
2. It usually results

in 𝜆max(𝐺
𝑇

2
𝐺
2
) ≫ 2𝜆

2

max(𝐺2). In this sense, when 𝛼(𝑡) ≡ 0, it
is difficult to realize the pinning control goal of this paper.

From Theorem 5, it is seen that the expectation 𝛼 plays
an important role in SPC which should be given exactly. In
some applications, it is very hard or of high cost to obtain 𝛼

exactly. Instead, only its estimation �̃� is available. Then, it is
natural and important to study how to realize SPC when 𝛼 is
uncertain. If there exists an uncertainty in 𝛼, we will use its
estimation �̃�. It is described as

Δ𝛼 = 𝛼 − �̃�, �̃� ∈ [0, 1] , (18)

where admissible uncertainty Δ𝛼 ∈ [−𝜖, 𝜖] with 𝜖 ∈ [0, 1].
Then, we have the following theorem.
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Theorem 7. For given scalars 𝜃 and �̃�, the equilibrium of
system (8) is robust almost surely exponentially stable for any
admissible uncertainty (18), if there exist 𝑘 > 0 and 𝜇 > 0 such
that

2𝜃 + �̃�𝑐
2
Ω
1
+ (1 − �̃�) 𝑐

2
Ω
2
+ 0.25𝜖

2
𝑐
4
𝜇

+ (Ω
1
− Ω
2
)
2

𝜇
−1

< 0.

(19)

Proof. Based on the proof ofTheorem 5, it is obtained that the
change of 𝛼 only takes place in (14); that is

𝛼𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
Ω
2

= �̃�𝑐
2
Ω
1
+ (1 − �̃�) 𝑐

2
Ω
2
+ Δ𝛼𝑐

2
(Ω
1
− Ω
2
) < 0.

(20)

For Δ𝛼𝑐
2
(Ω
1
− Ω
2
) with any 𝜇 > 0, it is seen that

Δ𝛼𝑐
2
(Ω
1
− Ω
2
) ≤ 0.25(Δ𝛼)

2
𝑐
4
𝜇 + (Ω

1
− Ω
2
)
2

𝜇
−1
. (21)

Taking into account (19) and (21), one has (11).That completes
the proof.

It is seen that the conditions of Theorems 5 and 7 are
not LMIs, which are not solved directly. In the following,
another condition in terms of LMIs with equation constraints
is proposed, which could be solved easily.

Theorem 8. For given scalars 𝜃 and 𝛼, the equilibrium of
system (8) is almost surely exponentially stable, if there exist
𝑘 > 0, 𝛿

𝑖
> 0, 𝛾

𝑖
> 0, 𝛾

𝑖
> 0, 𝜎

𝑖
> 0, and 𝜎

𝑖
> 0, such that the

following LMIs hold for all 𝑖 ∈ B:

2𝜃 + 𝛼𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
Ω
2
< 0 (22)

[
−𝛿
𝑖
𝐼 𝐺
𝑇

𝑖

𝐺
𝑖

−𝐼

] ≤ 0 (23)

[
−𝜎
𝑖

𝛾
𝑖

𝛾
𝑖

−1
] ≤ 0 (24)

𝛾
𝑖
𝛾
𝑖
= 1, 𝜎

𝑖
𝜎
𝑖
= 1 (25)

either

𝐺
𝑖
+ 𝐺
𝑇

𝑖
≥ 2𝛾
𝑖
𝐼 (26)

or

𝐺
𝑖
+ 𝐺
𝑇

𝑖
≤ −2𝛾

𝑖
𝐼, (27)

whereΩ
𝑖
= 𝛿
𝑖
− 2𝜎
𝑖
.

Proof. Based on (11), it is known that if there are 𝛿
𝑖
> 0 and

𝛾
𝑖
> 0 such that

𝜆max (𝐺
𝑇

𝑖
𝐺
𝑖
) ≤ 𝛿
𝑖
,

𝜆
2

max (𝐺𝑖) ≥ 𝛾
2

𝑖
,

(28)

hold, which are guaranteed by

𝐺
𝑇

𝑖
𝐺
𝑖
≤ 𝛿
𝑖
𝐼

𝜆max (𝐺𝑖) ≥ 𝛾
𝑖
𝐼

(29)

or

𝜆max (𝐺𝑖) ≤ −𝛾
𝑖
𝐼, (30)

respectively. Based on these, it is obvious that (28) can be
obtained by (23), (26), or (27). Then, we have (11) which is
insured by

2𝜃 + 𝛼𝑐
2
(𝛿
1
− 2𝛾
2

1
) + (1 − 𝛼) 𝑐

2
(𝛿
2
− 2𝛾
2

2
) < 0, (31)

where 𝛿
𝑖
and 𝛾
𝑖
should be determined. Because of nonlinear

term 𝛾
2

𝑖
in (31), it cannot be solved by LMI tool box directly.

By introducing a variable 𝜎
𝑖
satisfying 𝛾

2

𝑖
≥ 𝜎
𝑖
, it is concluded

that it is equivalent to 𝜎
−1

𝑖
≥ 𝛾
−2

𝑖
. By Schur complement

and condition (25), one has (22)–(25) implying (11). This
completes the proof.

If the expectation 𝛼 is unknown, how to achieve a useful
SPC is another general case. For this case, we have the
following theorem.

Theorem 9. For a given scalar 𝜃, the equilibrium of system (8)
is almost surely exponentially stable, if there exists 𝑘 > 0 such
that

Ω
1
+ Ω
2
< 0. (32)

In this case, the expectation 𝛼 can be unknown, but it should be
satisfied

𝛼 >

Ω
2

Ω
2
− Ω
1

. (33)

Proof. Based on the proof of Theorem 5, one can easily have
the equilibrium of system (8) almost surely exponentially
stable, if there exists 𝑘 > 0 such that

2𝜃 + 𝑐
2
𝛼Ω
1
+ 𝑐
2
(1 − 𝛼)Ω

2
< 0, (34)

which is equivalent to

2𝜃 + 𝑐
2
[𝛼 (Ω

1
− Ω
2
) + Ω
2
] < 0. (35)

If 𝛼 is unknown but satisfies (33), one could always choose a
sufficiently large scalar 𝑐 such that (35) holds. This completes
the proof.
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Corollary 10. For a given scalar 𝜃, the equilibrium of system
(8) is almost surely exponentially stable, if there exists 𝑘 > 0

such that Ω
1
< 0 and (32) hold. In this case, the expectation 𝛼

can be unknown, but it should be satisfied 𝛼 ∈ (0.5, 1].

Proof. Similar to the proof of Theorem 9, (34) can be rewrit-
ten to be

2𝜃 + (2𝛼 − 1) 𝑐
2
Ω
1
+ (1 − 𝛼) 𝑐

2
(Ω
1
+ Ω
2
) < 0, (36)

which could be guaranteed by

2𝜃 + (2𝛼 − 1) 𝑐
2
Ω
1
< 0, (37)

(1 − 𝛼) 𝑐
2
(Ω
1
+ Ω
2
) ≤ 0. (38)

Since Ω
1

< 0 and 𝛼 ∈ (0.5, 1], it is obtained that there is
always a sufficiently large constant 𝑐 such that (37) holds. On
the other hand, under the conditions of 𝛼 and 𝑐 > 0, we have
(33) implying (38) directly. This completes the proof.

It is claimed that the key idea of SPC described by (3) and
(4) can be used to construct a pinning controller in the drift
section. That is

̇𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) + 𝑐(

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
) , 𝑖 ∈ S

𝑙
,

̇𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
, 𝑖 ∈ S

𝑙
.

(39)

Let 𝑥 = [𝑥
𝑇

1
⋅ ⋅ ⋅ 𝑥
𝑇

𝑁
]

𝑇

, 𝑓 = [𝑓
𝑇

1
⋅ ⋅ ⋅ 𝑓

𝑇

𝑁
]

𝑇

, and 𝐾 =

diag{𝑘
1
, . . . , 𝑘

𝑙
, 0, . . . , 0}; one has

̇𝑥 = 𝑓 (𝑥, 𝑡) + 𝑐 (𝐺 − 𝛼 (𝑡)𝐾) ⊗ 𝐼
𝑛
𝑥. (40)

It is rewritten to be

̇𝑥 = 𝑓 (𝑥, 𝑡) + 𝑐𝐺 ⊗ 𝐼
𝑛
𝑥 + 𝑐 (𝛼 (𝑡) − 𝛼)𝐾 ⊗ 𝐼

𝑛
𝑥, (41)

where 𝐺 = 𝐺 + 𝛼𝐾. Without of loss generality, in matrix 𝐾,
it is also assumed that 𝑘

𝑖
= 𝑘
𝑗
= 𝑘 > 0, for all 𝑖, 𝑗 ∈ S

𝑙
. Since

𝛼(𝑡) is a Bernoulli variable, it is known that E{𝛼(𝑡) − 𝛼} = 0.

Theorem 11. For given scalars 𝜃 and 𝛼, the equilibrium of
system (40) is exponentially mean-square stable, if there exists
𝑘 > 0 such that

2𝜃 + 𝑐𝜆max (𝐺) < 0. (42)

Proof. Choose the following Lyapunov function:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇
(𝑡) 𝑥 (𝑡) . (43)

Based on (42), we have

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑥
𝑇
(𝑡) (2𝜃𝐼

𝑁𝑛
+ 𝑐𝐺 ⊗ 𝐼

𝑛
) 𝑥 (𝑡)

≤ (2𝜃 + 𝑐𝜆max𝐺)𝑥
𝑇
(𝑡) 𝑥 (𝑡) < 0.

(44)

Then, there is always a sufficient small scalar 𝜇 > 0 such that

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ −𝜇𝑥
𝑇
(𝑡) 𝑥 (𝑡) < 0. (45)

By Dynkin’s formula, it is obtained that for 𝑇 > 0

E (𝑥
𝑇
(𝑇) 𝑥 (𝑇)) −E (𝑥

𝑇
(0) 𝑥 (0))

≤ −𝜇∫

𝑇

0

𝑥
𝑇
(𝑠) 𝑥 (𝑠) 𝑑𝑠 < 0.

(46)

Applying the Gronwall-Bellman lemma to (46), one gets

E (𝑥
𝑇
(𝑡) 𝑥 (𝑡)) ≤ |𝑥 (0)|

2 exp (−𝜇𝑡) . (47)

This completes the proof.

Remark 12. It should be pointed out that the pinning con-
troller in the drift section is also different from the existing
methods such as [17, 18, 20, 21, 28]. It is said that the pinning
method of this paper is a stochastic algorithm, where the
expectation plays an important role. Compared with the
traditional pinning methods, the desired pinning controller
is not necessary implemented online, which is added to some
nodes in terms of probability 𝛼. The correlation among the
expectation 𝛼, the pinning fraction 𝛿, and the control gain
𝑘 is firstly illustrated in Theorem 11, which is also shown by
numerical examples.

Similarly, when the expectation 𝛼 is uncertain and satis-
fies (18), we have the following result.

Theorem 13. For given scalars 𝜃 and �̃�, the equilibrium of
system (40) is robust exponentially mean-square stable for any
admissible uncertainty (18), if there exist 𝑘 > 0 and 𝜇 > 0 such
that

2𝜃 + 𝑐𝜆max (𝐺) + 𝑐𝜖𝑘 < 0, (48)

where 𝐺 = 𝐺 + �̃�𝐾.

Proof. Based on the proof of Theorem 11 and taking in (48),
it is obtained that (44) is rewritten as

L𝑉 (𝑥 (𝑡) , 𝑡)

≤ 𝑥
𝑇
(𝑡) (2𝜃𝐼

𝑁𝑛
+ 𝑐𝐺 ⊗ 𝐼

𝑛
) 𝑥 (𝑡)

= 𝑥
𝑇
(𝑡) (2𝜃𝐼

𝑁𝑛
+ 𝑐𝐺 ⊗ 𝐼

𝑛
+ 𝑐Δ𝛼𝐾 ⊗ 𝐼

𝑛
) 𝑥 (𝑡)

≤ 𝑥
𝑇
(𝑡) (2𝜃𝐼

𝑁𝑛
+ 𝑐𝐺 ⊗ 𝐼

𝑛
+ 𝑐𝜖𝑘𝐼

𝑁𝑛
) 𝑥 (𝑡) < 0,

(49)

where 𝐾 is defined in (41). Obviously, it is known that (48)
implies (49). This completes the proof.

When 𝛼 is unknown, we have the following theorem.
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Figure 1: Connection of the closed-loop system.

Theorem 14. For a given scalar 𝜃, the equilibrium of system
(40) is exponentially mean-square stable, if there exists 𝑘 > 0

such that

𝜆max (𝐺 + 𝐾) < 0. (50)

In this case, there is an SPC such that (40) is exponentially
mean-square stable with unknown 𝛼.

Proof. Based on Theorem 11, the equilibrium of system (40)
is exponentially mean-square stable, if there exists 𝑘 > 0 such
that

2𝜃𝐼
𝑁𝑛

+ 𝑐 (𝐺 + 𝛼𝐾) ⊗ 𝐼
𝑛
< 0, (51)

which is equivalent to

2𝜃𝐼
𝑁𝑛

+ 𝑐𝛼 (𝐺 + 𝐾) ⊗ 𝐼
𝑛
+ 𝑐 (1 − 𝛼)𝐺 ⊗ 𝐼

𝑛
< 0. (52)

By the definition of𝐺, it is known that𝜆
𝑖
(𝐺) ≤ 0, 𝑖 = 1, . . . , 𝑁.

Because of 𝑐 > 0 and 𝛼 ∈ [0, 1], it is concluded that (52) is
guaranteed by

2𝜃 + 𝑐𝛼𝜆max (𝐺 + 𝐾) < 0. (53)

If (50) satisfies, one could always choose a sufficiently large
scalar 𝑐 such that (53) holds. This completes the proof.

4. Numerical Examples

In this section, two numerical examples are used to demon-
strate the utility of the proposed method.

Example 15. Without loss of generality, consider amultiagent
system with 20 agents, whose agent is described as

̇𝑥
1
= 0.2𝑥

1
+ 𝑥
2
,

̇𝑥
2
= −𝑥
1
− 0.5𝑥

2
.

(54)

In this example, such multiagent system will be stabilized by
a stochastic pinning controller whose connection of agents in
terms of scale-free network is simulated in Figure 1.Then, the
coupling matrix can be obtained from Figure 1 directly.
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𝛼

Figure 2: Correlation between 𝑘 and 𝛼 with given different 𝛿.
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Figure 3: Correlation between 𝑘 and 𝛿 with given different 𝛼.

From system (54), it is obtained that 𝜃
𝑖
can be chosen

as 𝜃 = 1.37. The correlations among the expectation 𝛼, the
pinning fraction 𝛿, and the pinning control gain 𝑘 are given
in Theorem 5, which are demonstrated in Figures 2 and 3,
respectively. In this paper, the special pinning control means
(3) takes place in the nodeswithmore degrees. FromFigure 2,
it is seen that for given 𝛿, larger expectation 𝛼 results in
smaller control gain 𝑘. When 𝛼 is small, such as 𝛼 ≤ 0.7,
the curve of 𝑘 along with 𝛼 changes sharply, while the other
section is gentle. On the other hand, the change of 𝑘 along
with 𝛿 under given 𝛼 is shown in Figure 3. By this simulation,
one knows that larger 𝛿 results in larger 𝑘. Different from
Figure 2, it is seen that the whole curve is gentle. If 𝛿 = 0.1,
𝛼 = 0.6, by Theorem 5, we have 𝑘min = 150 with 𝑘 > 0.
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Figure 4: Simulation of the closed-loop system by SPC.
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Let initial condition of system (54) be 𝑥
0
= [0.1 −0.1]

𝑇; the
state response of the closed-loop system is given in Figure 4,
which is stable and demonstrates that the desired SPC is
effective.

When the stochastic pinning controller is realized by
random pinning control in terms of (3) taking place in any
nodes, one has the following results, which are given in
Figures 5 and 6, respectively. Considering Figures 2 and 5,
it is concluded that control gain 𝑘 in both of them becomes
larger when 𝛼 takes larger values. Especially, from Figure 5,
it is further obtained that in some cases with larger pinning
fraction 𝛿, smaller 𝛼 results in no solution to 𝑘. On the other
hand, in Figure 6, one has that for some given values of 𝛼
such as 𝛼 = 0.91, 𝛼 = 0.93 and 𝛼 = 0.95, there is no
solution to control gain 𝑘 in terms of random pinning control
when 𝛿 satisfies 𝛿 > 0.15 and 𝑁 ∗ 𝛿 should be an integer
number. On the contrary, even if 𝛿 = 0.9, we also have the
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Figure 6: Correlation between 𝑘 and 𝛿 with given different 𝛼.

control gain of special pinning controller. In this sense, it
is said that special pinning control is better. For a given 𝛼,
when pinning fraction 𝛿 becomes larger, larger control gain
𝑘 is needed no matter which pinning control algorithm is
selected. That means if one wants to pin a multiagent system
by exploiting SPC described by (3) and (4) in terms of more
agents controlled directly, he should provide a larger control
gain 𝑘. Moreover, there is an interesting phenomenon in
Figure 2 with 𝛿 = 0.05 and Figure 5 with 𝛿 = 0.05. That is, for
the same 𝛼, the gain of random pinning controller is smaller
than one of special pinning controller.This phenomenon can
be explained if the two pinningmethods are effective, because
of special pinning control pinning more nodes due to the
controlled nodes more “important”, it needs its control gain 𝑘

larger.

Example 16. Consider a dynamical node of complex network
is a Chua’s chaotic circuit described by

̇𝑥
1
(𝑡) = 𝛽 (−𝑥

1
+ 𝑥
2
− 𝜍 (𝑥

1
))

̇𝑥
2
(𝑡) = 𝑥

1
− 𝑥
2
+ 𝑥
3

̇𝑥
3
(𝑡) = − 𝛾𝑥

2
,

(55)

where 𝜍(𝑥
1
) = 𝑏𝑥

1
+ 0.5(𝑎 − 𝑏)(|𝑥

1
+ 1| − |𝑥

1
− 1|). When

the parameters are 𝛽 = 10, 𝛾 = 18, 𝑎 = −4/3, and
𝑏 = −3/4, Chua’s system has a chaotic attractor shown in
Figure 7. By computation, one has 𝜃 = 5.1623 in view of
Assumption 1. Suppose an undirected network consisting of
𝑁 = 20 nodes in terms of small word network, where the
connection is given in Figure 8. Similarly, its coupling matrix
is easily obtained from Figure 8.

ByTheorem 11 with coupling strength 𝑐 = 85, one has the
relationship among the expectation 𝛼, the pinning fraction
𝛿, and the pinning control gain 𝑘 in terms of special pinning
control, which are given Figures 9 and 10, respectively. From
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such simulations, it is seen that larger expectation 𝛼 results
in smaller control gain 𝑘 with given pinning fraction 𝛿, while
larger pinning fraction 𝛿 also results in smaller 𝑘 with given
expectation 𝛿. This property is same as that in Example 15.
Let initial condition of system (55) be 𝑥

0
= [0.1 −0.1 0.2]

𝑇
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Figure 10: Correlation between 𝑘 and 𝛿 with given different 𝛼.
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Figure 11: Simulation of the closed-loop system.

and 𝛿 = 0.1, 𝛼 = 0.7, one has 𝑘min = 2.8 with 𝑘 > 0

by Theorem 11. The state curve of the closed-loop system is
given in Figure 11. From Figure 11, it is said that the desired
pinning controller is useful. If the desired pinning controller
is realized by random pinning control, we also have the
corresponding simulations of correlation among 𝛼, 𝛿, and
𝑘. Such relationships are demonstrated in Figures 12 and 13,
respectively, which are quite different to the above cases.That
is, the array of curves 𝛿 = 0.05, 𝛿 = 0.1, and 𝛿 = 0.3 in
Figure 12 is different from those in Figures 9, 2, and 5, though
there is also a consistency that larger 𝛼 leads to smaller 𝑘.
Accordingly, a phenomenon different from Figures 3, 6, and
10 is shown in Figure 13. For a given 𝛼, it is seen that the value
change of 𝑘 is not in accordancewith 𝛿. Such differences come
from the properties of complex network and randompinning
control.
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5. Conclusions

In this paper, a newpinningmethodwith a stochastic pinning
viewpoint is proposed to investigate the control problem
of multiagent systems. It has been shown that a fraction
of controllers added to nodes in terms of Brownian noise
perturbations can stabilize the underlying systems, whose
control method is defined as “stochastic pinning control.”
It is also seen that the Bernoulli variable plays an essential
role in realizing SPC. Based on the given method, new
sufficient conditions of the expectation with uncertainty and
being unknown are also established. Finally, the utility of the
developed theory is illustrated by numerical examples. In this

paper, there is no delay in the underlying system.When there
is time delay in the controller such as [29], one may design a
similar stochastic pinning controller with time delay, which
will be our further topics.
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This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing
observations. An observer-based approach of fault detection and isolation (FDI) is investigated as a detection mechanic of fault
case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced
and isolated; then, an FDI linear minimum mean square error estimation (LMMSE) can be developed by comprehensive utilizing
of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained.
Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

1. Introduction

Discrete-time Markov jump linear systems (MJLSs) are basi-
cally linear discrete-time systems with discretional parame-
ters evolving with a finite-state Markov chain. It can be used
in modeling systems with abrupt structures, for example,
those which may be found in signal processing, fault detec-
tion [1, 2], and subsystem switching. One classical application
ismaneuvering target tracking, inwhich signals of interest are
modeled by using MJLSs [3]. In these fields, the problems of
state estimation forMJLSs play an essential role in recovering
some desired variables from given noisy observations for
output variables. However, many approaches of achieving the
state estimation of MJLSs include the generalized pseudo-
Bayesian (GPB) algorithm [4, 5], the interacting multiple
model (IMM) filtering [6], stochastic sampling based meth-
ods [7, 8], and LMMSE filter. Those methods are different
from each other in their estimation criteria and means [2, 9–
12]. Among them, LMMSE filter has been well studied for
MJLSs in many of literary works [9].

On the other hand, since applications of sensors net-
works are becoming ubiquitous in practical systems, wire-
less or wireline communication channels are essential for
data communication. Examples are offered ranging from
advanced aircraft, spacecraft to manufacturing process. As
communication channels are time varying and unreliable,

the phenomena of random time delays and random packet
dropout usually occur in these networked systems. Hence,
more and more attention has been paid to systems with
observer-based fault during the past years. For example,
studies on optimal recursive filter for systems with intermit-
tent observations can be traced back toNahi [13], whose work
assumed that uncertainty of observations is independent and
identically distributed. Afterwards, by using linear matrix
inequalities (LMIs) techniques, the 𝐿

2
-𝐿
∞
performance,𝐻

∞

performance, finite-time 𝐿
2
-𝐿
∞

performance, and finite-
time 𝐻

∞
performance have been well studied for solving

filtering and control problems occurring in stochastic systems
with uncertain elements [14–21]. In [22–25], the stability anal-
ysis of randomRiccati equation arising fromKalman filtering
with intermittent observations was investigated elaborately.
𝐻
∞

filtering algorithm [26–28] has been developed for
discrete systemswith randompacket losses in [29, 30]. In [31],
a robust filtering algorithmwas developed for state estimation
ofMJLSs with randommissing observation by applying basic
IMM approach and 𝐻

∞
technique. Reference [32] dealt with

the fault detection filtering (FDF) design within stochastic
𝐻
∞

filtering frame for a class of discrete-time nonlinear
Markov jump systems with lost measurements.

Although the aforementioned references give efficient
and practical tools to deal with the filtering problems
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for systems with package dropout, the results given by
the methods constructed based on LMIs techniques are
sometimes too conservative. What is more, IMM approach
mentioned a priori requires online calculations. Inspired by
the effectiveness of LMMSE mechanic used in solving state
estimation problem of MJLSs with random time delays in
[33], the problem of state estimation of MJLSs with random
missing observations is formulated into LMMSE filtering
frame.This frame can lead to a time-varying linear filter easy
to implement. At the same time, most calculations can be
performed off-line.

Aiming at solving the issue of uncertain observations in
MJLSs, this paper provides a heuristic method for detecting
the fault in process of transmitting observation. An approach
of fault detection and isolation (FDI) [32, 34] for a class of
MJLSs with missing observations will be investigated. The
key point of FDI is to construct the residual generator and
determine the residual evaluation function and the threshold.
Then, by comparing the value of the evaluation function with
the prescribed threshold, we will make judgment whether an
alarm of fault is generated. The situation of uncertainties of
observation can be naturally and conveniently reflected.With
knowing the information of the faulty case, a conditional
prediction of observation will be obtained, which can be
used as replacement of the faulty one. At this time, we can
utilize the optimal state estimator of pervious instant and
parameters for constructing observer of system to estimate
the observation at current time. By this way, we can skip and
avoid the fault observation.

Accordingly, by applying the basic FDI approach and
basic LMMSE algorithm, an FDI-LMMSE filtering algorithm
is developed for state estimation of MJLSs with random
missing observation. In order to solve the optimal estimation
problem, the measurements’ loss process is modeled as a
Bernoulli distributed white sequence taking values from 0 to
1 randomly. The estimation problem is then reformulated as
an optimal linear filtering of a class of MJLSs, which have
random missing observation and necessary model compen-
sation, via state augmentation [35–38]. A recursive filtering
is formulated in terms of Riccati difference equations. At
the same time, we will show that estimator is stable under
necessary assumptions in this paper.

This paper is organized as follows. Section 2 gives the
problem formulation. A recursive optimal solution is given in
Section 3. Its stability is discussed in Section 4. In Section 5,
a numerical example is shown to explain the effectiveness of
approach proposed in our paper. At last, the conclusions are
drawn in Section 6.

2. Problem Formulation

On the stochastic basis (Ω,F
𝑘
, {F
𝑘
}, 𝑃), considering the

following jump Markov linear system model:

𝑥
𝑘+1

= 𝐴 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) (𝑎 (𝑟

𝑘
) + 𝑤
𝑘
)

𝑦
𝑘
= 𝛾
𝑘
𝐶 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐷 (𝑟

𝑘
) V
𝑘
,

(1)

where {𝑥
𝑘

∈ 𝑅
𝑛
} is continuous-valued based-state sequence

with known initial distribution 𝑥
0

= N(𝑥
0
; ̄𝑥
0
, Σ
0
). 𝑎(𝑟
𝑘
) ∈

𝑅
𝑛 is assumed to be known time-varying constant to each

value of 𝑟
𝑘
. {𝑦
𝑘

∈ 𝑅
𝑠
} is the noisy observation sequence.

{𝑤
𝑘
∈ 𝑅
𝑛
} is the noisy observation sequence with distribution

𝑤
𝑘

∼ 𝑁(𝑤
𝑘
; 0, 𝑄). {V

𝑘
∈ 𝑅
𝑠
} is a white measurement noise

sequence independent of the process noise with distribution
V
𝑘
∼ 𝑁(V

𝑘
; 0, 𝑅).

Remark 1. 𝑎(𝑟
𝑘
) is a compensation between practical systems

and models applied in this paper.
{𝑟
𝑘
} is the unknown discrete-valued Markov chain with a

finite-state space𝑁 = {1, 2, . . . , 𝑁}.The transition probability
matrix isΠ = [𝜋

𝑖𝑗
]
𝑁×𝑁

, where 𝑖, 𝑗 ∈ 𝑁.We set 𝜇
𝑖
(𝑘) := 𝑃(𝑟

𝑘
=

𝑖).The basic variables𝑤
𝑘
, V
𝑘
, 𝑥
0
and themodal-state sequence

𝑟
𝑘
are assumed to be mutually independent for all 𝑘. 𝐴(𝑟

𝑘
),

𝐵(𝑟
𝑘
), 𝐶(𝑟

𝑘
), 𝐷(𝑟

𝑘
) are assumed to be known time-varying

systemmatrices to each value of 𝑟
𝑘
. For notational simplicity,

the following notations and definitions hold in the rest of the
paper:

𝑟
𝑗

𝑘
= {𝑟
𝑘
= 𝑗} , 𝐴

𝑗
= 𝐴 (𝑟

𝑗
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(2)

In this paper, consider that the observations are sent to
the estimator via a Gilbert-Elliot channel, where the packet
arrival is modeled using a binary random variable {𝛾

𝑘
}, with

probability 𝑃(𝛾
𝑘

= 1) = 𝜂, and with 𝛾
𝑘
independent of 𝛾

𝑠
if

𝑘 ̸= 𝑠. Let 𝛾
𝑘
be independent of𝑤

𝑘
, V
𝑘
, 𝑥
𝑘
; that is, according to

this model, themeasurement equation consists of noise alone
or noise plus signal, depending on whether 𝛾

𝑘
is 0 or 1.

Notation 1. Some notations which we will use throughout
the paper should be presented first. We will denote by 𝑅

𝑚×𝑛

the space of 𝑚 × 𝑛 real matrices and by 𝑅
𝑚 the space of 𝑚-

dimensional real vectors. The superscript 𝑇 indicates trans-
pose of a matrix. For a collection of 𝑁 matrices 𝐷

1
, . . . , 𝐷

𝑁
,

with 𝐷
𝑗
∈ 𝑅
𝑚×𝑛, diag{𝐷

𝑗
} ∈ 𝑅
𝑁𝑚×𝑁𝑛 represents the diagonal

matrix formed by 𝐷
𝑗
in the diagonal.

Notation 2. Define𝐻𝑛 = {𝑋 = (𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
); 𝑋
𝑖
∈ 𝑅
𝑛×𝑛

, 𝑖 ∈ 𝑁}

and 𝐻
+𝑛

= {𝑋 = (𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
); 𝑋
𝑖

≥ 0, 𝑖 ∈ 𝑁}. For 𝑋 =

(𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
) ∈ 𝐻

+𝑛, 𝑉 = (𝑉
1
⋅ ⋅ ⋅ 𝑉
𝑁
) ∈ 𝐻

+𝑛, if 𝑋 ≥ 𝑉 for each
𝑖 ∈ 𝑁, we have 𝑋

𝑖
≥ 𝑉
𝑖
.

3. Recursive Optimal Solution

In this section, a solution to the optimal estimator will be pre-
sented via the projection theory and the state augmentation
in the Hilbert space.

3.1. Preliminaries. First, we denote byL(𝑦
𝑘
) the linear space

spanned by the observation 𝑦
𝑘

= {𝑦
𝑇

𝑘
, . . . , 𝑦

𝑇

0
}. If 𝜃 =

∑
𝑘

𝑖=1
𝜉(𝑖)
𝑇
𝑦
𝑖
for some 𝜉(𝑖) ∈ 𝑅

𝑚, 𝑖 = 1, . . . , 𝑘, the random
variable 𝜃 ∈ L(𝑦

𝑘
).
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Let 1
{𝑟
𝑘
=𝑗}

represent an indicator of Markov process,
which is defined as follows:

𝑧
𝑗
(𝑘) ≜ 𝑥

𝑘
1
{𝑟
𝑘
=𝑗}

∈ 𝑅
𝑛 (3)

𝑧 (𝑘) ≜ (

𝑧
1
(𝑘)

...
𝑧
𝑁

(𝑘)

) ∈ 𝑅
𝑁𝑛

. (4)

And call �̂�(𝑘) = 𝐸(𝑧(𝑘)). Define also �̂�(𝑘 | 𝑘 − 1) as the
projection of 𝑧(𝑘) onto the linear spaceL(𝑦

𝑘
) and

�̃� (𝑘 | 𝑘 − 1) ≜ 𝑧 (𝑘) − �̂� (𝑘 | 𝑘 − 1) . (5)

Then, we first define the following second-moment matrices
associated with the aforementioned variables. They play key
roles in deriving the covariance matrices of the estimator
errors and optimal estimator:

𝑍
𝑖
(𝑘) ≜ 𝐸 {𝑧

𝑖
(𝑘) (𝑧
𝑖
(𝑘))
𝑇

} ∈ B (𝑅
𝑛
) ,

𝑍 (𝑘) ≜ 𝐸 {𝑧 (𝑘) (𝑧 (𝑘))
𝑇
} ∈ B (𝑅

𝑁𝑛
) ,

̂
𝑍 (𝑘 | 𝑙) ≜ 𝐸 {�̂� (𝑘 | 𝑙) (�̂�(𝑘 | 𝑙))

𝑇
} ∈ B (𝑅

𝑁𝑛
) ,

̃
𝑍 (𝑘 | 𝑙) ≜ 𝐸 {�̃� (𝑘 | 𝑙) (�̃�(𝑘 | 𝑙))

𝑇
} ∈ B (𝑅

𝑁𝑛
) .

(6)

Considering the following augment matrices:

𝐴 (𝑘) ≜
[
[

[

𝜋
11

(𝑘) 𝐴
1
(𝑘) ⋅ ⋅ ⋅ 𝜋

1𝑁
(𝑘) 𝐴
𝑁

(𝑘)

... d
...

𝜋
𝑁1

(𝑘) 𝐴
1
(𝑘) ⋅ ⋅ ⋅ 𝜋

𝑁𝑁
(𝑘) 𝐴
𝑁

(𝑘)

]
]

]

∈ B (𝑅
𝑁𝑛

)

𝐷 (𝑘) ≜ [𝐷
1
(𝑘) 𝜇
1
(𝑘)
1/2

⋅ ⋅ ⋅ 𝐷
𝑁

(𝑘) 𝜇
𝑁
(𝑘)
1/2

]

∈ B (𝑅
𝑁𝑠

, 𝑅
𝑠
) ,

𝐶 (𝑘) ≜ [𝐶1
⋅ ⋅ ⋅ 𝐶

𝑁] ∈ B (𝑅
𝑁𝑛

, 𝑅
𝑠
) ,

𝑎 ≜ [𝑎
1
, . . . , 𝑎

𝑁
] ,

𝐵 (𝑘) ≜ diag [[(𝜋
1𝑗

𝑘
𝜇
1

𝑘
)

1/2

𝐵
1
⋅ ⋅ ⋅ (𝜋
𝑁𝑗

𝑘
𝜇
𝑁

𝑘
)

1/2

𝐵
𝑁
]]

∈ B (𝑅
𝑁
2
𝑛
, 𝑅
𝑁𝑛

)

(7)

then system can be described as follows:

𝑧 (𝑘 + 1) = 𝐴 (𝑘) 𝑧 (𝑘) + 𝐵 (𝑘) (𝑎 + 𝑤 (𝑘))

𝑦 (𝑘) = 𝛾
𝑘
𝐶 (𝑘) 𝑧 (𝑘) + 𝐷 (𝑘) V (𝑘) .

(8)

Note that 𝑦(𝑘) = 𝑦
𝑘
.

Assumption 2. For all 𝑘, 𝐵(𝑘)𝑎 𝑎
𝑇
𝐵(𝑘)
𝑇

≫ 𝑃, where 𝑃

convergency value of ̃
𝑍(𝑘 | 𝑘 − 1), which will be given in

Section 3.

3.2. Optimal Estimator. From geometric arguments in [39],
the LMMSE filter for MJLSs with uncertain observations can
be derived in this section. The following lemmas present
necessary and sufficient conditions on derivation of FDI-
LMMSE filtering.

Lemma 3. For any given time instant 𝑘, one has

𝑍
𝑗
(𝑘 + 1) =

𝑚

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
(𝑘) 𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
(𝑘)

+

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖

𝑍 (𝑘) = diag [𝑍
𝑗
(𝑘)] ,

(9)

where 𝑍
𝑖
(0) = 𝜇

𝑖

0
𝑋
0
.

Proof. For any given instant 𝑘, we have from (8) that

𝑍
𝑗
(𝑘 + 1) = 𝐸 [𝑧

𝑗
(𝑘 + 1) 𝑧

𝑇

𝑗
(𝑘 + 1)]

=

𝑚

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
(𝑘) 𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
(𝑘)

+

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖
.

(10)

Recalling that 𝑋
0

= 𝐸[ ̄𝑥
0

̄𝑥
𝑇

0
], initial covariance matrix

𝑍
𝑖
(0) = 𝜇

𝑖

0
𝑋
0
.

To derive the optimal filter, we first define the innovation
sequence as

𝑦 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1) , (11)

where conditional prediction 𝑦(𝑘 | 𝑘 − 1) is the projection of
𝑦(𝑘) onto the linear space ofL(𝑦

𝑘−1
). Consider

𝑦 (𝑘 | 𝑘 − 1) = 𝐶 (𝑘) �̂� (𝑘 | 𝑘 − 1) . (12)

Then, according to (4) and (8), the generated residual will be
obtained as

𝑦 (𝑘 | 𝑘 − 1) = {

𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1) + 𝐷 (𝑘) V (𝑘) , 𝛾
𝑘
= 1,

𝐷 (𝑘) V (𝑘) − 𝐶 (𝑘) �̂� (𝑘 | 𝑘 − 1) , 𝛾
𝑘
= 0.

(13)

In the following, an FDI scheme will be constructed,
which can detect whether observation at instant 𝑘 is lost.
In this paper, we choose the following mean square of the
residual as the residual evaluation function to measure the
energy of the residual:

𝑆
𝑘
= 𝐸 (𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)

𝑇
) . (14)

From (12)-(13) we get that

𝐸 (𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)

= {

𝐶 (𝑘)
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
, 𝛾
𝑘
= 1,

𝐶 (𝑘)
̂
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
, 𝛾
𝑘
= 0.

(15)
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Suppose that ̃𝑍(𝑘 | 𝑘 − 1) is convergent to 𝑃 at the instant
𝑘, from Assumption 2, we have that

𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
≫

̃
𝑍 (𝑘 | 𝑘 − 1) . (16)

If 𝛾
𝑘
= 1, we have that

𝑆
𝛾
𝑘
=1

𝑘
= 𝐶 (𝑘)

̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇

≪ 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(17)

If 𝛾
𝑘
= 0,

𝑆
𝛾
𝑘
=0

𝑘
= 𝐶 (𝑘)

̂
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
. (18)

From (8),

̂
𝑍 (𝑘 | 𝑘 − 1) = 𝐴 (𝑘 − 1)

̂
𝑍 (𝑘 − 1 | 𝑘 − 1)𝐴(𝑘 − 1)

𝑇

+ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇

≥ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
;

(19)

we have that

𝑆
𝛾
𝑘
=0

𝑘
≥ 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎

𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(20)

The FDI scheme in the following lemma will play a key role
in deriving the main results of this paper.

Lemma 4. With above derivation, we can decide whether the
observations of system were lost and detect the lost information
at instant 𝑘 according to the following rule:

𝑆
𝑘
> 𝑆
𝑡ℎ

⇒ 𝛾
𝑘
= 0

𝑆
𝑘
≤ 𝑆
𝑡ℎ

⇒ 𝛾
𝑘
= 1,

(21)

where

𝑆
𝑡ℎ

= 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(22)

With the fault being detected, the missing information
𝛾
𝑘
can be taken into consideration when designing the FDI-

LMMSE filter. The fault observation can be replaced and
isolated by 𝑦(𝑘 | 𝑘 − 1). By the above approach, we can
skip the error information at the instant 𝑘 and use the correct
information of pervious instant 𝑘 − 1 to estimate the value of
𝑥(𝑘 | 𝑘) state at instant 𝑘 directly.

Theorem 5. Consider the system represented by (8). Then the
LMMSE 𝑥

𝑘|𝑘
is given by

𝑥
𝑘|𝑘

=

𝑁

∑

𝑖=1

�̂�
𝑖
(𝑘 | 𝑘) , (23)

where �̂�
𝑐
(𝑘 | 𝑘) satisfies the recursive equation

�̂�
𝛾
𝑘
(𝑘 | 𝑘) = �̂� (𝑘 | 𝑘 − 1) + 𝛾

𝑘
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)
̃
𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

× (𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1) + 𝐷 (𝑟
𝑘
) V (𝑘))

(24)

�̂� (𝑘 + 1 | 𝑘) = 𝐴 (𝑘) �̂� (𝑘 | 𝑘) + 𝐵 (𝑘) 𝑎, (25)

where �̂�(0 | −1) = [𝜇
1

0
𝑥
0
, . . . , 𝜇

𝑁

0
𝑥
0
]
𝑇.

Proof. Recall that observation estimator is given by (12).
Now, 𝑦(𝑘 | 𝑘 − 1) can be rewritten as the following

equation:

𝑦 (𝑘 | 𝑘 − 1) = 𝛾
𝑘 [

𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1) + 𝐷 (𝑘) V (𝑘)] . (26)

Considering the geometric argument as in [39], the
estimator �̂�(𝑘 | 𝑘 − 1) satisfies the following equations:

�̂� (𝑘 | 𝑘 − 1) = 𝐸(𝑧 (𝑘) (𝑦
𝑘−1

)

𝑇

) cov ((𝑦
𝑘−1

)

−1

𝑦
𝑘−1

) (27)

�̂� (𝑘 | 𝑘) = �̂� (𝑘 | 𝑘 − 1) + 𝐸 (�̂� (𝑘) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)

× 𝐸(𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)

−1

× (𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1)) .

(28)

From (26), we get that

𝐸 (�̂� (𝑘) 𝑦(𝑘 | 𝑘 − 1)
𝑇
) = 𝛾
𝑘
[
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
] . (29)

Because V
𝑘
is independent of {𝑟

𝑘
, 𝑦(𝑘 − 1)}, we have that

⟨𝛼
𝑇
𝐷(𝑟
𝑘
) V
𝑘
; 𝛽
𝑇
𝑦 (𝑘 − 1)⟩

= 𝐸 (𝛼
𝑇
𝐷(𝑟
𝑘
) V
𝑘
𝛽
𝑇
𝑦 (𝑘 − 1))

= 𝐸 (V𝑇
𝑘
) 𝐸 [𝛼

𝑇
𝐷(𝑟
𝑘
) 𝛽
𝑇
𝑦 (𝑘 − 1)]

= 0,

(30)

showing that 𝐷(𝑘)V
𝑘
is orthogonal to L(𝑦

𝑘−1
). Similar

reasoning shows the orthogonality between𝐷(𝑘)V
𝑘
and �̃�(𝑘 |

𝑘 − 1). Recalling that �̂�(𝑘 | 𝑘 − 1) ∈ L(𝑦
𝑘−1

) and �̃�(𝑘 | 𝑘 − 1)

are orthogonal toL(𝑦
𝑘−1

), we can obtain that �̃�(𝑘 | 𝑘 − 1) is
orthogonal to �̂�(𝑘 | 𝑘 − 1). Then, from (27), the result can be
obtained as follows:

�̂�
𝑗
(𝑘 | 𝑘 − 1) = 𝐸(𝑧

𝑗
(𝑘) (𝑦

𝑘−1
)

𝑇

) cov ((𝑦
𝑘−1

)

−1

𝑦
𝑘−1

)

=

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
�̂�
𝑖
(𝑘 − 1 | 𝑘 − 1) +

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
𝑎
𝑖
.

(31)
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From (11), (28) and (26), (29), we get that

�̂� (𝑘 | 𝑘)

= �̂� (𝑘 | 𝑘 − 1) + 𝛾
𝑘
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)
̃
𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

× (𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1) + 𝐷 (𝑟
𝑘
) V (𝑘)) .

(32)

The positive-semidefinite matrices ̃
𝑍(𝑘 | 𝑘 − 1) are

obtained from
̃
𝑍 (𝑘 | 𝑘 − 1) = 𝑍 (𝑘) −

̂
𝑍 (𝑘 | 𝑘 − 1) . (33)

And the recursive equation about ̂
𝑍(𝑘 | 𝑘 − 1) is given as

follows:
̂
𝑍
𝛾
𝑘
(𝑘 | 𝑘)

=
̂
𝑍
𝛾
𝑘
(𝑘 | 𝑘 − 1)

+ 𝛾
2

𝑘
̂
𝑍
𝛾
𝑘
(𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× (𝐶(𝑘)
̃
𝑍
𝛾
𝑘

(𝑘 | 𝑘 − 1)𝐶(𝑘)
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
)

−1

× 𝐶 (𝑘)
̂
𝑍
𝛾
𝑘
(𝑘 | 𝑘 − 1)

̂
𝑍
𝛾
𝑘
(𝑘 | 𝑘 − 1)

= 𝐴 (𝑘 − 1)
̂
𝑍
𝛾
𝑘−1

(𝑘 − 1 | 𝑘 − 1)𝐴(𝑘 − 1)
𝑇

+ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
,

(34)

where ̂
𝑍(0 | −1) = 𝑧(0 | −1)𝑧(0 | −1)

𝑇.
̃
𝑍(𝑘 + 1 | 𝑘) can be derived directly as a recursive Riccati

equation in the following derivation. In the following, we
denote the linear operator

Ψ (⋅, 𝑘) : 𝐻
𝑛
→ 𝐵(𝑅

𝑁𝑛
) (35)

by Γ(𝑘), in which Ψ(⋅, 𝑘) is

Ψ (Γ (𝑘)) = diag[

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
]

− 𝐴 (𝑘) (diag [𝑍
𝑖
(𝑘)]) 𝐴(𝑘)

𝑇
≥ 0.

(36)

Theorem6. ̃
𝑍(𝑘+1 | 𝑘) satisfies the following recursive Riccati

equation:
̃
𝑍 (𝑘 + 1 | 𝑘) = 𝐴 (𝑘)

̃
𝑍 (𝑘 | 𝑘 − 1)𝐴(𝑘)

𝑇

+ Ψ (Γ (𝑘) , 𝑘) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

− 𝛾
2

𝑘
𝐴 (𝑘)

̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)
̃
𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

× 𝐶 (𝑘)
̃
𝑍 (𝑘 | 𝑘 − 1)𝐴(𝑘)

𝑇
,

(37)

where Γ(𝑘) = (𝑍
1
(𝑘), 𝑍

2
(𝑘), . . . , 𝑍

𝑁
(𝑘)) is given by the

recursive equation (9) from Lemma 3.
Unlike the classical case, the sequence {

̃
𝑍(𝑘 + 1 | 𝑘)}

𝑘∈𝑍
+

is
now random, which result from its dependence on the random
sequence {𝛾

𝑘
}
𝑘∈𝑍
+

.

Proof. Rewrite state equation in (8) as follows:

𝑧 (𝑘 + 1) = 𝐴 (𝑘) 𝑧 (𝑘) + 𝑀 (𝑘 + 1) 𝑧 (𝑘) + 𝐵 (𝑘) 𝑎 + 𝜗 (𝑘) ,

(38)

where

𝑀(𝑘 + 1, 𝑗) = [𝑚
1
(𝑘 + 1, 𝑗) ⋅ ⋅ ⋅ 𝑚

𝑁
(𝑘 + 1, 𝑗)] ,

𝑚
𝑖
(𝑘 + 1, 𝑗) = (1

{𝑟
𝑘+1
=𝑗}

− 𝜋
𝑖𝑗
)𝐴
𝑖
1
{𝑟
𝑘
=𝑖}

,

𝑀 (𝑘 + 1) =
[
[

[

𝑀(𝑘 + 1, 1)

...
𝑀(𝑘 + 1,𝑁)

]
]

]

,

𝜗 (𝑘) =
[
[

[

1
{𝑟
𝑘+1
=1}

𝐵
1
𝑤 (𝑘)

...
1
{𝑟
𝑘+1
=𝑁}

𝐵
𝑁
𝑤 (𝑘)

]
]

]

.

(39)

From (32), we define

𝑇 (𝑘) = − 𝐴 (𝑘)
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)
̃
𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

.

(40)

From (25) and (32), we have that

�̂�
𝛾
𝑘
(𝑘 + 1 | 𝑘) = 𝐴 (𝑘) �̂� (𝑘 | 𝑘 − 1)

+ 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1)

+ 𝐵 (𝑘) 𝑎 + 𝛾
𝑘
𝑇 (𝑘)𝐷 (𝑘)𝑤

𝑘
.

(41)

Then from (41) and (38), we get that

�̃�
𝛾
𝑘
(𝑘 + 1 | 𝑘) = 𝐴 (𝑘) �̃� (𝑘 | 𝑘 − 1)

+ 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘) �̃� (𝑘 | 𝑘 − 1)

+ 𝑀 (𝑘) 𝑧 (𝑘) + 𝜗 (𝑘) + 𝛾
𝑘
𝑇 (𝑘)𝐷 (𝑘)𝑤

𝑘
.

(42)

Therefore, at this point, we obtain the recursive equation
for ̃

𝑍(𝑘 | 𝑘 − 1) as follows:

̃
𝑍
𝛾
𝑘
(𝑘 + 1 | 𝑘) = (𝐴 (𝑘) + 𝛾

𝑘
𝑇 (𝑘) 𝐶 (𝑘))

×
̃
𝑍 (𝑘 | 𝑘 − 1) (𝐴(𝑘) + 𝛾

𝑘
𝑇(𝑘)𝐶(𝑘))

𝑇

+ 𝐸 (𝑀 (𝑘 + 1) 𝑧 (𝑘) 𝑧(𝑘)
𝑇
𝑀(𝑘 + 1)

𝑇
)

+ 𝐸 (𝜗 (𝑘) 𝜗(𝑘)
𝑇
)

+ 𝛾
2

𝑘
𝑇 (𝑘)𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
𝑇(𝑘)
𝑇
.

(43)
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By a series of algebraic manipulations, we have

𝐸 (𝑀 (𝑘 + 1) 𝑧 (𝑘) 𝑧(𝑘)
𝑇
𝑀(𝑘 + 1)

𝑇
) = Ψ (Γ (𝑘) , 𝑘)

𝐸 (𝜗 (𝑘) 𝜗(𝑘)
𝑇
) = 𝐵 (𝑘)𝑄𝐵(𝑘)

𝑇
.

(44)

Substituting (44) into (43) yields the recursive equation
for ̃

𝑍(𝑘 | 𝑘 − 1) as
̃
𝑍
𝛾
𝑘
(𝑘 + 1 | 𝑘) = (𝐴 (𝑘) + 𝛾

𝑘
𝑇 (𝑘) 𝐶 (𝑘))

̃
𝑍 (𝑘 | 𝑘 − 1)

× (𝐴(𝑘) + 𝛾
𝑘
𝑇(𝑘)𝐶(𝑘))

𝑇

+ Ψ (Γ (𝑘) , 𝑘) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝛾
2

𝑘
𝑇 (𝑘)𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
𝑇(𝑘)
𝑇
.

(45)

4. Stability of the State Estimator

As we all see, the intermittent observations are the source
of potential instability. From Theorem 6, however, the error
covariance matrix obtained from the LMMSE can be rewrit-
ten in terms of a recursive Riccati equation of 𝛾

𝑘
. In this

section, based on that following assumptions hold, we show
that the proposed estimator is stable as provided in our paper.

Assumption 7. {𝑟
𝑘
, 𝑘 = 0, 1 ⋅ ⋅ ⋅ } is assumed to be ergodic

Markov chain.

Assumption 8. System (1) is mean square stable (MSS)
according to the definition in [35].

First, (37) describes a recursive Riccati equation for ̃
𝑍(𝑘+

1 | 𝑘). We should establish now its convergence when 𝑘 →

∞. It follows fromAssumption 2 that lim
𝑘→∞

𝑃(𝑟
𝑘
= 𝑖) exists

and it is independent of 𝑟
0
. We define

𝜇
𝑖
= lim
𝑘→∞

𝑃 (𝑟
𝑘
= 𝑖) = lim

𝑘→∞

𝜇
𝑖
(𝑘) . (46)

We redefine the matrix as follows:

𝐴 ≜ (

𝜋
11
𝐴
1

⋅ ⋅ ⋅ 𝜋
1𝑁

𝐴
𝑁

... d
...

𝜋
𝑁1

𝐴
1

⋅ ⋅ ⋅ 𝜋
𝑁𝑁

𝐴
𝑁

),

𝐵 ≜ diag [[(𝜋
1𝑗
𝜇
1
)

1/2

𝐵
1
⋅ ⋅ ⋅ (𝜋
𝑁𝑗

𝜇
𝑁

𝑁
)

1/2

𝐵
𝑁
]] ,

𝐶 ≜ [𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
] , 𝐷 ≜ [𝐷

1
𝜇
1/2

1
⋅ ⋅ ⋅ 𝐷
𝑁
𝜇
1/2

𝑁
] .

(47)

Then, we give the following facts and lemmas for system,
which will be used in the proof of stability of the covariance
matrix of estimation error.

With regard toAssumptions 2 and 7 and Proposition 3.36
in [35], Γ(𝑘) → Γ as 𝑘 → ∞, where Γ = {𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑁
} is

the unique solution that satisfies

𝑍
𝑗
=

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
(𝐴
𝑖
𝑍
𝑖
𝐴
𝑇

𝑖
+ 𝜇
𝑖
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖
) . (48)

Then we have inf
𝑙≥𝑘

𝜇
𝑖
(𝑙) > 0 holding for all 𝑖 ∈ N (since

∃𝑙, we have 𝜇
𝑖
(𝑙) → 𝜇

𝑖
> 0 as 𝑘 → ∞). Defining 𝛼

𝑖
(𝑘) =

inf
𝑙≥𝑘

𝜇
𝑖
(𝑘 + 𝑙), then we get

𝜇
𝑖
(𝑘 + 𝜅) ≥ 𝛼

𝑖
(𝑘) ≥ 𝛼

𝑖
(𝑘 − 1) , 𝑘 = 1, 2, . . . ; 𝑖 ∈ N. (49)

At the same time, 𝛼
𝑖
(𝑘) → 𝜇

𝑖
(𝑘 → ∞) exponentially fast.

From (37), as 𝑘 → ∞, we obtain the mean state
covariance as follows:

̃
𝑍 (𝑘 + 1 | 𝑘) = lim

𝑘→∞

̃
𝑍 (𝑘 + 1 | 𝑘)

= lim
𝑘→∞

𝐸 [
̃
𝑍 (𝑘 + 1 | 𝑘)]

= 𝐴
̃
𝑍 (𝑘 | 𝑘 − 1)𝐴

𝑇
+ Ψ (Γ (𝑘))

+ 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇
− 𝜂

̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶

𝑇

× [𝐶
̃
𝑍(𝑘 | 𝑘 − 1)𝐶

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

× 𝐶
̃
𝑍 (𝑘 | 𝑘 − 1)𝐴

𝑇
.

(50)

An operator is introduced for any positive-semidefinite
matrix 𝑋 as follows:

T = −𝐴𝑋𝐶
𝑇
(𝐶𝑋𝐶

𝑇
+ 𝐷𝑅𝐷

𝑇
)

−1

. (51)

Then

T (𝑘) = −𝐴
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶

𝑇
(𝐶

̃
𝑍(𝑘 | 𝑘 − 1)𝐶

𝑇
+ 𝐷𝑅𝐷

𝑇
)

−1

.

(52)

Define now ̄Γ(𝑘) = (
̄

𝑍
1
(𝑘), . . . ,

̄
𝑍
𝑁
(𝑘)) ∈ 𝐻

𝑛+ with
̄

𝑍
𝑖
(0) = 0, 𝑗 ∈ N+, and

̄
𝑍
𝑗
(𝑘 + 1) =

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
(𝐴
𝑖

̄
𝑍
𝑖
(𝑘) 𝐴
𝑇
+ 𝛼
𝑖
(𝑘) 𝐵
𝑖
𝑄𝐵
𝑇

𝑖
) . (53)

Lemma 9 (see [35]). ̄Γ(𝑘)

𝑘→∞

→ Γ and for each 𝑘 =

0, 1, 2, . . ., one can get that

Γ (𝑘 + 𝜅) ≥ ̄Γ (𝑘) ≥ ̄Γ (𝑘 − 1) . (54)

Now, one defines

Υ (𝑘 + 1) = 𝐴Υ (𝑘)𝐴
𝑇
+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
] + Ψ ( ̄Γ)

− 𝜂𝐴Υ (𝑘) 𝐶
𝑇
(𝐶Υ(𝑘)𝐶

𝑇
+ ̄𝐷(𝑘)𝑅 ̄𝐷(𝑘)

𝑇
)

−1

× 𝐶𝑃
1
(𝑘) 𝐴
𝑇
,

(55)

where Υ(0) = 0, ̄𝐷(𝑘) = [𝐷
1
𝛼
1
(𝑘)
1/2

⋅ ⋅ ⋅ 𝐷
𝑁
𝛼
𝑁
(𝑘)
1/2

].
From the definition of 𝜅 and condition of 𝐷𝑅𝐷

𝑇
> 0, one

notices that the inverse of 𝐶Υ(𝑘)𝐶
𝑇
+ 𝐷𝑅𝐷

𝑇 exists.
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Lemma 10. For each 𝑘 = 0, 1 ⋅ ⋅ ⋅ , one gets that

Υ (𝑘) ≤ Υ (𝑘 + 1) ≤
̃
𝑍 (𝑘 + 1 + 𝜅 | 𝑘 + 𝜅) . (56)

Proof. In order to deduce (56), we define

M (𝑘) = −𝐴Υ (𝑘) 𝐶
𝑇
(𝐶Υ(𝑘)𝐶

𝑇
+ ̄𝐷(𝑘)𝑅 ̄𝐷(𝑘)

𝑇
)

−1

. (57)

Then, if Υ(𝑘) ≤
̃
𝑍(𝑘 + 𝜅 | 𝑘 + 𝜅 − 1),

Υ (𝑘 + 1)

= (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)Υ (𝑘) (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)
𝑇

+ Ψ ( ̄Γ (𝑘)) + 𝜂T (𝑘 + 𝜅) ̄𝐷 (𝑘) 𝑅 ̄𝐷 (𝑘)T(𝑘 + 𝜅)
𝑇

− 𝜂 (T (𝑘 + 𝜅) − M (𝑘)) (𝐶Υ (𝑘) 𝐶
𝑇
+ ̄𝐷 (𝑘) 𝑅 ̄𝐷 (𝑘))

× (T (𝑘 + 𝜅) − M (𝑘))
𝑇
+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

≤ (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)
̃
𝑍 (𝑘 + 𝜅 | 𝑘 + 𝜅 − 1)

× (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)
𝑇

+ diag[

𝑁

∑

𝑖=1

𝜇
𝑖
(𝑘 + 𝜅) 𝜋

𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
] + Ψ ( ̄Γ (𝑘 + 𝜅))

+ 𝜂T (𝑘 + 𝜅)𝐷 (𝑘 + 𝜅) 𝑅𝐷 (𝑘 + 𝜅)T(𝑘 + 𝜅)
𝑇

=
̃
𝑍 (𝑘 + 1 + 𝜅 | 𝑘 + 𝜅) .

(58)

Obviously, when Υ(0) = 0 ≤
̃
𝑍(𝜅 | 𝜅 − 1), it yields Υ(𝑘) ≤

̃
𝑍(𝑘+𝜅 | 𝑘+𝜅−1), 𝑘 = 0, 1, 2 ⋅ ⋅ ⋅ . Similarly ifΥ(𝑘−1) ≤ Υ(𝑘),
based on (49) and (54), we have
Υ (𝑘)

= (𝐴 + √𝜂M (𝑘) 𝐶) Υ (𝑘 − 1) (𝐴 + √𝜂M (𝑘) 𝐶)
𝑇

+ Ψ ( ̄Γ (𝑘)) + 𝜂M (𝑘) ̄𝐷 (𝑘) 𝑅 ̄𝐷 (𝑘)M(𝑘)
𝑇

+ 𝜂 (M (𝑘) − M (𝑘 − 1))

× (𝐶Υ (𝑘) 𝐶
𝑇
+ ̄𝐷 (𝑘) 𝑅 ̄𝐷 (𝑘)) (M (𝑘) − M (𝑘 − 1))

𝑇

+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘 − 1) 𝜋

𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

≤ (𝐴 + √𝜂M (𝑘) 𝐶) Υ (𝑘) (𝐴 + √𝜂M (𝑘) 𝐶)
𝑇

+ Ψ ( ̄Γ (𝑘))

+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

+ 𝜂M (𝑘) ̄𝐷 (𝑘) 𝑅 ̄𝐷 (𝑘)M(𝑘)
𝑇

= Υ (𝑘 + 1) .

(59)

Since Υ(0) = 0 ≤ Υ(1), the induction argument is completed
for Υ(𝑘) ≤ Υ(𝑘 + 1).

Theorem 11. Suppose that Assumptions 7 and 8 hold. Consider
that the algebraic Riccati equation

𝑃 = 𝐴𝑃𝐴
𝑇
+ Ψ (Γ) + 𝐵𝑄𝐵

𝑇
− 𝜂𝐴𝑃𝐶[𝐶𝑃𝐶

𝑇
+ 𝐷𝑅𝐷]

−1

𝐶𝑃𝐴
𝑇

(60)

satisfies (48), where Γ = {𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑁
}. Then, there exists a

unique nonnegative definite solution 𝑃 to (60). 𝑟
𝜎
(𝐴) ≤ 1, and

for any Γ(0) = {𝑍
1
(0), . . . , 𝑍

𝑁
(0)}, 𝑍

𝑖
(0) ≥ 0, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁, and

̃
𝑍(0 | −1) =

̃
𝑍(0 | −1) ≥ 0, one has ̃

𝑍(𝑘 + 1 | 𝑘) given by (50)
satisfying ̃

𝑍(𝑘 + 1 | 𝑘) → 𝑃, 𝑘 → ∞.

Proof. Due to MSS of 5.38 [35], we have from Proposition
3.6 in chapter 3 [35] that 𝑟

𝜎
(𝐴) < 1. According to the

standard results for algebraic Riccati equation there is a
unique positive-semidefinite solution 𝑃 ∈ 𝐵(𝑅

𝑁𝑛
) to (60).

And moreover 𝑟
𝜎
(𝐴 + √𝜂T(𝑃)𝐶) < 1.

FromTheorem 11, we get that 𝑃 satisfied

𝑃 = (𝐴 + √𝜂T(𝑃)𝐶)𝑃(𝐴 + √𝜂T(𝑃)𝐶)
𝑇

+ Ψ (Γ) + 𝐵𝑄𝐵
𝑇
+ 𝜂T (𝑃)𝐷𝑅𝐷

𝑇
T(𝑃)
𝑇
.

(61)

Define 𝑃(0) =
̃
𝑍(0 | −1) =

̃
𝑍(0 | −1) and

𝑃 (𝑘 + 1) = (𝐴 + √𝜂T (𝑃) 𝐶) 𝑃 (𝑘) (𝐴 + √𝜂T(𝑃)𝐶)
𝑇

+ Ψ (Γ (𝑘)) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝜂T (𝑃)𝐷 (𝑘) 𝑅𝐷(𝑘)
𝑇
T(𝑃)
𝑇
.

(62)

Then (50) can be rewritten as

̃
𝑍 (𝑘 + 1 | 𝑘)

= (𝐴 + √𝜂T (𝑃) 𝐶)
̃
𝑍 (𝑘 | 𝑘 − 1) (𝐴 + √𝜂T (𝑃) 𝐶)

𝑇

+ Ψ (Γ (𝑘)) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝜂T (𝑃)𝐷 (𝑘) 𝑅𝐷 (𝑘)T(𝑃)
𝑇
− 𝜂 (T (𝑘) − T (𝑃))

× [𝐶
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
]

× (T (𝑘) − T (𝑃))
𝑇
.

(63)
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Suppose that 𝑃(𝑘) ≥
̃
𝑍(𝑘 | 𝑘 − 1), we have that

𝑃 (𝑘 + 1) −
̃
𝑍 (𝑘 + 1 | 𝑘)

= (𝐴 + √𝜂T (𝑃) 𝐶)

× (𝑃 (𝑘) −
̃
𝑍 (𝑘 | 𝑘 − 1)) (𝐴 + √𝜂T (𝑃) 𝐶)

𝑇

+ 𝜂 (T (𝑘) − T (𝑃))

× (𝐶
̃
𝑍 (𝑘 | 𝑘 − 1) 𝐶

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
)

× (T (𝑘) − T (𝑃))
𝑇
.

(64)

By definition, 𝑃(0) =
̃
𝑍(0 | 1). Suppose that 𝑃(𝑘) ≥

̃
𝑍(𝑘 |

𝑘 − 1). From (64), we have that 𝑃(𝑘 + 1) ≥
̃
𝑍(𝑘 + 1 | 𝑘).

Therefore we have shown by induction that 𝑃(𝑘) ≥
̃
𝑍(𝑘 |

𝑘 − 1) for all 𝑘 = 0, 1, 2 ⋅ ⋅ ⋅ . From MSS and ergodicity of the
Markov chainwe have that Γ(𝑘) 𝑘→∞→ Γ,𝐷(𝑘)

𝑘→∞

→ 𝐷, and
𝐵(𝑘)

𝑘→∞

→ 𝐵 exponentially fast. From 𝑟
𝜎
(𝐴+√𝜂T(𝑃)𝐶) < 1

and same reasoning as in the proof of proposition 3.36 in [35]
we have that 𝑃(𝑘) → 𝑃 as 𝑘 → ∞, where 𝑃 satisfies

̄𝑃 = (𝐴 + √𝜂T (𝑃) 𝐶) ̄𝑃(𝐴 + √𝜂T (𝑃) 𝐶)
𝑇

+ Ψ (Γ) + 𝐵𝑄𝐵
𝑇
+ 𝜂T (𝑃)𝐷𝑅𝐷

𝑇
T(𝑃)
𝑇
.

(65)

And 𝑃 is the unique solution to (65). Recalling that 𝑃

satisfies (62), we get that 𝑃 is also a solution to (65) and from
uniqueness, ̄𝑃 = 𝑃. Then, we obtain that

̃
𝑍 (𝑘 | 𝑘 − 1) ≤ 𝑃. (66)

And 𝑃(𝑘) → 𝑃. From (66) and (56) in Lemma 10 it
follows that 0 ≤ Υ(𝑘) ≤ Υ(𝑘 + 1) ≤ 𝑃(𝑘 + 1 + 𝜅). And
thus we can conclude that Υ(𝑘) → Υ whenever 𝑘 → ∞

for some Υ ≥ 0. Moreover, from the fact that 𝛼
𝑖
(𝑘)

𝑘→∞

→ 𝜇
𝑖

and ̄Γ(𝑘)

𝑘→∞

→ Γ, we have that Υ satisfies (60).
From uniqueness of the positive-semidefinite solution to

(60), we can conclude thatΥ = 𝑃. From (66) and (56),Υ(𝑘) ≤

̃
𝑍(𝑘 + 𝜅 | 𝑘 + 𝜅 − 1) ≤ 𝑃(𝑘 + 𝜅) and since Υ(𝑘) → 𝑃 and
𝑃(𝑘) → 𝑃 as 𝑘 → ∞, we get that ̃𝑍(𝑘 | 𝑘 − 1)

𝑘→∞

→ 𝑃.

The upper bound 𝑃 for the error covariance matrix to
a stationary value for linear minimum mean square error
(LMMSE) estimation can be easily obtained. It is described
that if the system is MSS and the missing information is
detected, then the error covariance matrix will converge
to the unique nonnegative definite solution of an algebraic
Riccati equation associated with the problem.
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Figure 2: Mean square of residual.

5. Numerical Example

In order to evaluate the performance of our method, in this
section, we are going to use a scalar MJLS described by the
following equations:

𝑥
𝑘+1

= 𝐴
𝑟
𝑘

𝑥
𝑘
+ 𝐵
𝑟
𝑘

(𝑎
𝑟
𝑘

+ 𝑤
𝑘
)

𝑦
𝑘
= 𝛾
𝑘
𝐶
𝑟
𝑘

𝑥
𝑘
+ 𝐷
𝑟
𝑘

V
𝑘

𝐴
1
= (

1 0.995

0 1
) , 𝐴

2
= (

1 0.99

0 1
) ,
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𝐵
1
= 𝐵
2
= (

0.1

0
) , 𝐶

1
= 𝐶
2
= (

1

0
) ,

𝐷
1
= 𝐷
2
= (

5

0
) , 𝑎

1
= 1, 𝑎

2
= 2,

(67)

where 𝑥
𝑘
(1, 1), 𝑥

𝑘
(2, 1), and 𝑎

𝑘
denote the target position,

velocity, and acceleration, respectively. The initial state 𝑥
0

is normally distributed with mean 10 and variance 1. 𝑟
𝑘

∈

{1, 2}, and𝑤
𝑘
, V
𝑘
are independent white noise sequences with
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Figure 5: Comparison between state estimators of 𝑥(1) under no
faulty case and faulty case, respectively, and real state value.

covariance of 0.1
2, and 𝜇

1

0
= 𝜇
2

0
= 0.5. The transition

probability matrix for the finite-state Markov chain is

Π = (

0.6 0.4

0.4 0.6
) ,

𝑃 (𝛾
𝑘
= 1) = 0.9, 𝑃 (𝛾

𝑘
= 0) = 0.1.

(68)

To assess the performance of algorithms, the average root
mean square (RMS) error based on 𝐻 times Monte-Carlo
simulation is defined as

RMS =

1

𝐻

1

𝑇

𝐻

∑

𝑖=1

𝑇

∑

𝑘=1

[(𝑥
𝑖

𝑘
− 𝑥
𝑖

𝑘
)

2

]

1/2

, (69)

where the time step 𝑇 is chosen as 500, 𝐻 = 50.
The simulation results are obtained as follows. Figure 5

presents the real states and their estimators subject to fault-
free case and faulty case, respectively, based on the given
path. Figure 1 shows the observations with lost data from
unreliable channel and observations from reliable channel. As
the proposed algorithm can be thought of as a generalization
of the well-known LMMSE filtering, we denote it by FDI-
LMMSE filtering in the simulation. The RMS in the position
of FDI-LMMSE filtering in the faulty case is compared with
that of LMMSE filtering in the fault-free case in the Figure 4.
It can be shown in Figures 2 and 3 that the residual can deliver
fault alarms soon after the fault occurs. From the simulation
results, we can see that the obtained linear estimator for
systems with random missing data are tracking well to the
real state value, which is the estimation scheme proposed in
this paper produces good performance.
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6. Conclusions

This paper has addressed the estimation problem for MJLSs
with randommissing data. Randommissing data introduced
by the network is modeled as Bernoulli distribution variable.
By usage of an observer-based FDI as a residual generator,
the design of FDI-LMMSE filter has been formulated in the
framework of LMMSE filtering. Complete analytical solution
has been obtained by solving the recursive Riccati equations.
It has been proved from theorem derivation and a numerical
example simulation that the proposed state estimator is
effective.
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This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and
missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are
governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the
convexity property of thematrix inequality, a sufficient condition for the existence of the desired state estimator forMarkovian jump
systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by
using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions.
Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method.

1. Introduction

As a class of multimodal systems, Markovian jump systems
(MJSs) have received considerable attention in the past two
decades [1–6]. The system parameters usually jump in a
finite mode set, in which the transitions among different
modes are governed by a Markov chain. Due to the fact that
many dynamical systems subject to random abrupt variations
can be modeled by MJSs, many applications of MJSs can
be showed, such as power systems, failure prone man-
ufacturing systems, communication systems, biochemical
systems with diverse changes of environmental conditions,
and economy system. Quite a number of useful results have
been extensively studied, such as stability and stabilization,
robust control, optimal control, 𝐻

∞
control, synchroniza-

tion, 𝐻
∞

filtering, and sliding mode control [7–19]. For
example, the author in [7] studied the problem of unbiased
estimation of Markov jump systems with distributed delays,
and sufficient conditions are obtained for the unbiased 𝐻

∞

filtering scheme to MJSs by stochastic Lyapunov-Krasovskii
functional framework. The author in [8] considered robust
𝐻
∞

control problems for stochastic fuzzy neutral MJSs with

parameters uncertainties and multiple time delays, and a
sufficient condition and𝐻

∞
control criteria are formulated in

the form of linearmatrix inequalities by selecting appropriate
Lyapunov functions. In term of the peak-to-peak filtering
problem for a class of MJSs with uncertain parameters,
the author in [9] investigated it. Sufficient conditions that
the solution of the peak-to-peak filter existed are given by
using the constructed Lyapunov functional and linear matrix
inequalities. More details on this topic can be found in [20]
and the references therein.

In recent years, due to the fact that, for many practical
state estimation applications, the problem of state estimation
with linear or nonlinear time-delay systems has received
much attention, it is of great significance to estimate systems
states and then utilize the estimated systems states to achieve
certain design objectives. At the same time, in the procedure
of state estimator design, time delays cannot be neglected
and their existence often results in a poor performance. Some
nice results on state estimation for time-delay systems have
been showed in the literature [21–23]. Meanwhile, some state
estimation problem for JMSs has been hot topics so that
many important results have been reported in the literature
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[16, 24, 25]. The author in [16] studied the state estimation
and sliding-mode control problems for continuous-time
Markovian jump singular systems with unmeasured states.
The author in [24] concerned the problem of𝐻

∞
estimation

for a class of Markov jump linear systems (MJLSs) with time-
varying transition probabilities in discrete-time domain. In
[25] efficient simulation-based algorithms called particle
filters were used to solve the optimal state estimates for a class
of jumpMarkov linear systems.The author in [26] considered
state estimation for Markovian jumping delayed continuous-
time recurrent neural networks, where only matrix parame-
tersweremode-dependent.Different from the studies [26, 27]
studied state estimation problem for a class of discrete-time
neural networks with Markovian jumping parameters and
mode-dependent mixed time delay, where the discrete and
distributed delays were mode-dependent.

Recently, Liu et al. [28] studied the 𝐻
∞

filter design for
Markovian jump systems with time-varying delays. However,
these papers do not consider the data missing of sensor in
the process of transmission. Motivated by the idea of above
papers, we will investigate the problem of state estimation for
Markovian jump systems with both time delays and missing
measurements. This work is not a simple extension of [28]
to MJSs. Our main difficulties come from the state estimator
design and missing measurements analysis for the MJSs.
Thus, how to design an appropriate state estimator and how to
establish a sufficient condition for the existence of the desired
state estimator derived are the key problems to be solved.
Based on the above analysis, in this paper, we studied state
estimator design for MJSs with both missing measurements
and time delays via employing a new Lyapunov function and
using the convexity property of the matrix inequality. With
the proposed method, we established a sufficient condition
for the existence of the desired state estimator. Furthermore,
the problem of state estimator design is studied; that is, an
observer is designed for theMJSswithmissingmeasurements
to estimate the states.

In this paper, the problem of state estimator design for
MJSs with interval time-varying delay is narrated. A new
Lyapunov function is established to obtain less conservative
results, in which the lower and upper delay bound of interval
time-varying delay is included. Based on above analysis, the
item ∫

𝑡

𝑡−𝜏
(𝑡)

𝑒
𝑇
(𝑠)𝑄
2
(𝜃
𝑡
)𝑒(𝑠)𝑑𝑠 can depart into two parts to deal

with, respectively, and the convexity of the matrix functions
is used to avoid the conservative caused by enlarging 𝜏(𝑡) to
𝜏
𝑀
in the deriving results.
The rest of this paper is organized as follows. Section 2

presents the problem statement and preliminaries. An LMI-
based sufficient condition for the existence of the desired
state estimator derived is proposed in Section 3. A numerical
example is provided in Section 4 and we conclude this paper
in Section 5.

R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of 𝑛 × 𝑚 real matrices; the superscript “𝑇”
represents matrix transposition; ‖ ⋅ ‖ represents the Euclidean
vector normor the inducedmatrix 2-normas appropriate; 𝐼 is
the identitymatrix of appropriate dimension.E{𝑥} represents
the expectation of 𝑥 when 𝑥 is a stochastic variable. [ 𝐴 ∗

𝐵 𝐶
]

denote a symmetric matrix, where ∗ denotes the entries
implied by symmetry, for a matrix 𝐵 and two symmetric
matrices 𝐴 and 𝐶. The notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for
𝑋 ∈ R𝑛×𝑛, means that the matrix𝑋 is real symmetric positive
definite (resp., positive semidefinite).

2. Problem Statement and Preliminaries

Fix a probability space (Ω, F, and P) and consider the
following class of uncertain linear stochastic systems with
Markovian jump parameters and time-varying delays:

̇𝑥 (𝑡) = 𝐴 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐴

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐿

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐿

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏
𝑀
, −𝜏
𝑚
] .

(1)

𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑟 is the measu-
rement vector, 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated,
𝜔(𝑡) ∈ 𝐿

2
[0,∞) is the exogenous disturbance signal, and

{𝜃
𝑡
} is a continuous-time Markovian process which has right

continuous trajectories and takes values in a finite set S =

{1, 2, . . . ,N} with stationary transition probabilities:

Prob {𝜃
𝑡+ℎ

= 𝑗 | 𝜃
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
ℎ + 𝑜 (ℎ) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
ℎ + 𝑜 (ℎ) , 𝑖 = 𝑗,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜋
𝑖𝑗
≥ 0, for 𝑗 ̸= 𝑖 is the

transition rate from mode 𝑖 at time 𝑡 to the mode 𝑗 at time
𝑡 + ℎ and

𝜋
𝑖𝑖
= −

𝑁

∑

𝑗=1, 𝑗 ̸= 𝑖

𝜋
𝑖𝑗
. (3)

In the system (1), the time delay 𝜏(𝑡) is a time-varying contin-
uous function satisfying the following assumption:

0 ≤ 𝜏
𝑚
≤ 𝜏 (𝑡) ≤ 𝜏

𝑀
< ∞, ̇𝜏 (𝑡) ≤ 𝜇, ∀𝑡 > 0, (4)

where 𝜏
𝑀

is the upper bound and 𝜏
𝑚
is the lower bound of

the communication delay, and 𝜇 is the upper bound of change
rate of communication delay.

When considering the datamissing in the sensor channel,
the actual output of sensormeasurements in system (1) can be
described as

𝑦 (𝑡) = Ξ𝑦 (𝑡)

= Ξ [𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝜔
(𝜃
𝑡
) 𝜔 (𝑡)] ,

(5)

where Ξ = diag{𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
} = ∑

𝑚

𝑖=1
𝜉
𝑖
𝐾
𝑖
, 𝐾
𝑖

=

diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑖

}, and 𝜉
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are unrelated

stochastic variables taking values in [0, 1]. The mathematical
expectation and variance of 𝜉

𝑖
are ̄

𝜉
𝑖
and 𝜎2

𝑖
, respectively.
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Remark 1. It can be seen from (5) that stochastic Ξ is
introduced to reflect the unreliable sensors, which describes
the status of the whole sensor and has been extensively
studied in the literature such as [29–33]. Generally speaking,
different sensor has different failure rate. So it is reasonable to
assume that the failure rate for each individual sensor satisfies
individual probabilistic distribution, and the elements 𝜉

𝑖
(𝑖 =

1, 2, . . . , 𝑚) of the random matrix Ξ correspond to the status
of the 𝑖th sensor. At one moment, if 𝜉

𝑖
= 1, it indicates that

the 𝑖th sensor is well working; if 𝜉
𝑖
= 0, it indicates that 𝑖th

sensor fails completely or data missing in the sensor channel;
if 𝜉
𝑖
∈ (0, 1), itmeans that the 𝑖th sensor fails partly.Therefore,

while Ξ = diag{1, 1, . . . , 1}, it means the status of the whole
sensor is in good working condition. Thus the model which
we will establish in this paper is more general.

In this paper, considering the data missing of sensor in
the process of information communication and based on the
measurement 𝑦(𝑡), we consider the following state estimator
for system (1):

̇
�̂� (𝑡) = 𝐴 (𝜃

𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐺 (𝜃
𝑡
) (𝑦
1
(𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

�̂� (𝑡) = 𝐿 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐿

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

(6)

where 𝑦
1
(𝑡) = Ξ𝑦(𝑡) = Ξ[𝐶(𝜃

𝑡
)𝑥(𝑡) + 𝐶

𝑑
(𝜃
𝑡
)𝑥(𝑡 − 𝜏(𝑡))].

Remark 2. Similar to (5), we also consider the data missing of
sensor in the process of information communication for the
system (6) of state estimation.

The setS contains the various operationmodes of system
(1) and, for each possible value of 𝜃

𝑡
= 𝑖, 𝑖 ∈ S, the matrices

connected with “𝑖th mode” will be denoted by

𝐴
𝑖
:= 𝐴 (𝜃

𝑡
= 𝑖) , 𝐴

𝑑𝑖
:= 𝐴
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐴
𝜔𝑖
:= 𝐴
𝜔
(𝜃
𝑡
= 𝑖) ,

𝐶
𝑖
:= 𝐶 (𝜃

𝑡
= 𝑖) , 𝐶

𝑑𝑖
:= 𝐶
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐶
𝜔𝑖
:= 𝐶
𝜔
(𝜃
𝑡
= 𝑖) ,

𝐿
𝑖
:= 𝐿 (𝜃

𝑡
= 𝑖) , 𝐿

𝑑𝑖
:= 𝐿
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐿
𝜔𝑖
:= 𝐿
𝜔
(𝜃
𝑡
= 𝑖) ,

(7)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐴
𝜔𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐶
𝜔𝑖
, 𝐿
𝑖
, 𝐿
𝑑𝑖
, and 𝐿

𝜔𝑖
are constant

matrices for any 𝑖 ∈ S. In this paper we assume that the
jumping process {𝜃

𝑡
} is accessible; that is, the operationmode

of system (1) is known for every 𝑡 ≥ 0.

Set the estimation error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) and �̃�(𝑡) =

�̂�(𝑡) − 𝑧(𝑡). Then the following error dynamics of the state
estimation system will be showed as follows:

̇𝑒 (𝑡) = ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)

+ 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝑖
𝑒 (𝑡) + 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝜔𝑖
𝜔 (𝑡) ,

�̃� (𝑡) = 𝐿
𝑖
𝑒 (𝑡) + 𝐿

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) − 𝐿

𝜔𝑖
𝜔 (𝑡) ,

(8)

where

̄𝐴
𝑖
= 𝐴
𝑖
+ 𝐺
𝑖
Ξ̄𝐶
𝑖
, ̄𝐴

𝑑𝑖
= 𝐴
𝑑𝑖
+ 𝐺
𝑖
Ξ̄𝐶
𝑑𝑖
,

̄𝐴
𝜔𝑖
= −𝐴

𝜔𝑖
− 𝐺
𝑖
Ξ̄𝐶
𝜔𝑖
.

(9)

The state estimation problem which is addressed in this
paper is to design a state estimator in form of (8) such that

(i) the estimation error system (8) with 𝜔(𝑡) = 0 is
exponentially stable;

(ii) the 𝐻
∞

performance ‖�̃�(𝑡)‖
2
< 𝛾‖𝜔‖

2
is sure for all

nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞) and a prescribed 𝛾 > 0

under the condition 𝑒(𝑡) = 0, for all 𝑡 ∈ [−𝜏
𝑀
, −𝜏
𝑚
].

Before giving the main results, the following lemmas and
definitions are needed in the proof of our main results.

Lemma 3 (see [34]). For any constant matrix 𝑅 ∈ R, 𝑅 =

𝑅
𝑇
> 0, vector function 𝑥 : [−𝜏

𝑀
, 0] → R𝑛, and constant

𝜏
𝑀
> 0 such that the following integration is well defined; then

the following inequality holds:

− 𝜏
𝑀
∫

𝑡

𝑡−𝜏
𝑀

̇𝑥
𝑇
(𝑠) 𝑅 ̇𝑥 (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑀
)
]

𝑇

[
−𝑅 𝑅

𝑅 −𝑅
] [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑀
)
] .

(10)

Lemma 4 (see [35]). Suppose Ξ
1
, Ξ
2
, and Ω are constant

matrices of appropriate dimensions, 0 ≤ 𝜏
𝑚
≤ 𝜏(𝑡) ≤ 𝜏

𝑀
; then

(𝜏 (𝑡) − 𝜏
𝑚
) Ξ
1
+ (𝜏
𝑀
− 𝜏 (𝑡)) Ξ

2
+ Ω < 0 (11)

if and only if the following two inequalities hold:

(𝜏
𝑀
− 𝜏
𝑚
) Ξ
1
+ Ω < 0,

(𝜏
𝑀
− 𝜏
𝑚
) Ξ
2
+ Ω < 0.

(12)

Definition 5. The system (8) is considered to be exponentially
stable in the mean-square sense (EMSS), if there exist
constants 𝜆 > 0, 𝛼 > 0, such that 𝑡 > 0:

𝐸 {‖𝑥 (𝑡)‖
2
} ≤ 𝛼𝑒

−𝜆𝑡 sup
−𝜏
𝑀
<𝑠<0

{




𝜙 (𝑠)






2

} . (13)
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Definition 6. For a given function𝑉 : 𝐶𝑏
𝐹
0

([−𝜏
𝑀
, 0], 𝑅

𝑛
)×𝑆 →

𝑅, its infinitesimal operatorL [36] is defined as

L𝑉 (𝑥
𝑡
) = lim
Δ→0

+

1

Δ

[𝐸 (𝑉 (𝑥
𝑡+Δ

| 𝑥
𝑡
) − 𝑉 (𝑥

𝑡
))] . (14)

3. Main Results

Theorem 7. For some given constants 0 ≤ 𝜏
𝑚
≤ 𝜏
𝑀
and 𝛾, the

system (8) is exponentially mean-square stable (EMSS) with a
prescribed 𝐻

∞
performance 𝛾, if there exist 𝑃

𝑖
> 0, 𝑄

0
> 0,

𝑄
1
> 0,𝑄

2𝑖
> 0, 𝑅

0
> 0, 𝑅

1
> 0,𝑍

1
> 0, 𝑍

2
> 0,𝑀

𝑖𝑘
> 0, and

𝑁
𝑖𝑘
> 0 (𝑖 ∈ S, 𝑘 = 1, 2, . . . , 5) with appropriate dimensions,

so that the following matrix inequalities hold:

Ψ =

[
[
[
[
[
[
[

[

Ψ
11

∗ ∗ ∗ ∗ ∗

Ψ
21

Ψ
22

∗ ∗ ∗ ∗

Ψ
31

Ψ
32

Ψ
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ
51

Ψ
52

0 0 Ψ
55

∗

Ψ
61

Ψ
62

0 0 0 Ψ
66

]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(15)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
≤ 𝑍
𝑘
, 𝑘 = 1, 2, (16)

where

Ψ
11
= 𝑃
𝑖
̄𝐴
𝑖
+ ̄𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
− 𝑅
0
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
,

Ψ
21
= [𝑃
𝑇

𝑖
̄𝐴
𝑑𝑖
−𝑀
𝑖1
+ 𝑁
𝑖1
, 𝑅
𝑇

0
+𝑀
𝑖1
, −𝑁
𝑖1
, 𝑃
𝑇

𝑖
̄𝐴
𝜔𝑖
]

𝑇

,

Ψ
22
=

[
[
[

[

− (1 − 𝜇)𝑄
2𝑖
−𝑀
𝑖2
−𝑀
𝑇

𝑖2
+ 𝑁
𝑖2
+ 𝑁
𝑇

𝑖2
∗ ∗ ∗

−𝑀
𝑖3
+𝑀
𝑇

𝑖2
+ 𝑁
𝑖3

−𝑄
0
− 𝑅
0
+𝑀
𝑖3
+𝑀
𝑇

𝑖3
∗ ∗

−𝑀
𝑖4
+ 𝑁
𝑖4
− 𝑁
𝑇

𝑖2
𝑀
𝑖4
− 𝑁
𝑇

𝑖3
−𝑄
1
− 𝑁
𝑖4
− 𝑁
𝑇

𝑖4
∗

−𝑀
𝑖5
+ 𝑁
𝑖5

𝑀
𝑖5

−𝑁
𝑖5

−𝛾
2
𝐼

]
]
]

]

,

Ψ
31
= [

[

𝜏
𝑚
𝑅
0
̄𝐴
𝑖

√𝛿𝑅
1
̄𝐴
𝑖

𝐿
𝑖

]

]

, Ψ
32
= [

[

𝜏
𝑚
𝑅
0
̄𝐴
𝑑𝑖

0 0 𝜏
𝑚
𝑅
0
̄𝐴
𝜔𝑖

√𝛿𝑅
1
̄𝐴
𝑑𝑖

0 0 √𝛿𝑅
1
̄𝐴
𝜔𝑖

𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖

]

]

, Ψ
33
= diag {−𝑅

0
, −𝑅
1
, −𝐼} ,

Ψ
41
(1) = √𝛿𝑀

𝑇

𝑖1
, Ψ

41
(2) = √𝛿𝑁

𝑇

𝑖1
, 𝛿 = 𝜏

𝑀
− 𝜏
𝑚
,

Ψ
42
(1) = [√𝛿𝑀

𝑇

𝑖2
√𝛿𝑀

𝑇

𝑖3
√𝛿𝑀

𝑇

𝑖4
√𝛿𝑀

𝑇

𝑖5
] , Ψ

42
(2) = [√𝛿𝑁

𝑇

𝑖2
√𝛿𝑁
𝑇

𝑖3
√𝛿𝑁
𝑇

𝑖4
√𝛿𝑁
𝑇

𝑖5
] ,

Ψ
51
= [𝜏
𝑚
𝜎
1
𝐶
𝑇

𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , 𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 0, . . . , 0]

𝑇

,

Ψ
52
= [Θ5𝑑

, 0, 0, Θ
5𝜔] , Ψ

55
= diag {−𝑅

0
, −𝑅
0
, . . . , −𝑅

0
} ,

Ψ
61
= [√𝛿𝜎

1
𝐶
𝑇

𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, √𝛿𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , √𝛿𝜎

𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
, 0, . . . , 0]

𝑇

,

Ψ
62
= [Θ6𝑑

, 0, 0, Θ
6𝜔] , Ψ

66
= diag {−𝑅

1
, −𝑅
1
, . . . , −𝑅

1
} ,

Θ
5𝑑
= [0, 𝜏

𝑚
𝜎
1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , 𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 0, . . . , 0]

𝑇

,

Θ
5𝜔
= [0, . . . , 0, −𝜏

𝑚
𝜎
1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, −𝜏
𝑚
𝜎
2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , −𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
]

𝑇

,

Θ
6𝑑
= [√𝛿𝜎

1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, √𝛿𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , √𝛿𝜎

𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
, 0, . . . , 0]

𝑇

,

Θ
6𝜔
= [0, . . . , 0, −√𝛿𝜎

1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, −√𝛿𝜎

2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , −√𝛿𝜎

𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
]

𝑇

,

(17)

Proof. Introduce a new vector

𝜁
𝑇
(𝑡)=[ 𝑒

𝑇
(𝑡) 𝑒
𝑇
(𝑡−𝜏 (𝑡)) 𝑒

𝑇
(𝑡−𝜏
𝑚
) 𝑒
𝑇
(𝑡−𝜏
𝑀
) 𝜔
𝑇
(𝑡) ]

(18)

and two matrices
Γ
1
= [ ̄𝐴
𝑖

̄𝐴
𝑑𝑖

0 0 ̄𝐴
𝜔𝑖
] ,

Γ
2
= [𝐿 𝑖

𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖] .

(19)
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The system (8) can be rewritten as

̇𝑒 (𝑘) = Γ
1
𝜁 (𝑡) + 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝑖
𝑒 (𝑡)

+ 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) − 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝜔𝑖
𝜔 (𝑡) ,

�̃� (𝑡) = Γ
2
𝜁 (𝑡) .

(20)

Let𝑥
𝑡
(𝑠) = 𝑥(𝑡+𝑠), (−𝜏(𝑡) ≤ 𝑠 ≤ 0).Then, the same as [37],

{(𝑥
𝑡
, 𝜃
𝑡
), 𝑡 ≥ 0} is a Markov process. Choose the following

Lyapunov functional candidate:

𝑉 (𝑥
𝑡
, 𝜃
𝑡
) =

4

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
, 𝜃
𝑡
) , (21)

where

𝑉
1
(𝑥
𝑡
, 𝜃
𝑡
) = 𝑒
𝑇
(𝑡) 𝑃 (𝜃

𝑡
) 𝑒 (𝑡) ,

𝑉
2
(𝑥
𝑡
, 𝜃
𝑡
) = ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠) 𝑄
0
𝑒 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏
𝑀

𝑒
𝑇
(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
(
𝑡)

𝑒
𝑇
(𝑠) 𝑄
2
(𝜃
𝑡
) 𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
, 𝜃
𝑡
) = 𝜏
𝑚
∫

𝑡

𝑡−𝜏
𝑚

∫

𝑡

𝑠

̇𝑒
𝑇
(V) 𝑅
0
̇𝑒 (V) 𝑑V 𝑑𝑠

+ ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

∫

𝑡

𝑠

̇𝑒
𝑇
(V) 𝑅
1
̇𝑒 (V) 𝑑V 𝑑𝑠,

𝑉
4
(𝑥
𝑡
, 𝜃
𝑡
) = ∫

𝑡

𝑡−𝜏
𝑚

∫

𝑡

𝑠

𝑒
𝑇
(V) 𝑍
1
𝑒 (V) 𝑑V 𝑑𝑠

+ ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

∫

𝑡

𝑠

𝑒
𝑇
(V) 𝑍
2
𝑒 (V) 𝑑V 𝑑𝑠.

(22)

LetL be the weak infinite generator of the random pro-
cess {𝑥

𝑡
, 𝜃
𝑡
}. Then, for each 𝜃

𝑡
= 𝑖, 𝑖 ∈ S, taking expectation

on it, we obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)}

≤ 𝑒
𝑇
(𝑡)(2𝑃

𝑖
̄𝐴
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
)𝑒 (𝑡)

+ 2𝑒
𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + 2𝑒

𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝜔𝑖
𝜔 (𝑡)

− 𝑒
𝑇
(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
) − ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠) 𝑍
1
𝑒 (𝑠) 𝑑𝑠

+ E {𝛿 ̇𝑒
𝑇
(𝑡) 𝑅
1
̇𝑒 (𝑡)} − 𝜏

𝑚
∫

𝑡

𝑡−𝜏
𝑚

̇𝑒
𝑇
(𝑠) 𝑅
0
̇𝑒 (𝑠) 𝑑𝑠

− (1 − 𝜇) 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏
(
𝑡)

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

+ E {𝜏
2

𝑚
̇𝑒
𝑇
(𝑡) 𝑅
0
̇𝑒 (𝑡)} − ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

̇𝑒
𝑇
(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

− 𝑒
𝑇
(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
) − ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑒
𝑇
(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠.

(23)

Note that

∫

𝑡

𝑡−𝜏
(𝑡)

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

= ∫

𝑡−𝜏
𝑚

𝑡−𝜏
(𝑡)

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠.

(24)

From (16) and (24), we can derive that

∫

𝑡

𝑡−𝜏
(
𝑡)

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠) 𝑍
1
𝑒 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑒
𝑇
(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠

= ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠)

[

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
1
]

]

𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏
𝑚

𝑡−𝜏
(𝑡)

𝑒
𝑇
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑒
𝑇
(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏
𝑚

𝑒
𝑇
(𝑠)

[

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
1
]

]

𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏
𝑚

𝑡−𝜏
(𝑡)

𝑒
𝑇
(𝑠)

[

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
2
]

]

𝑒 (𝑠) 𝑑𝑠 < 0.

(25)
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It follows from Lemma 3 that

− 𝜏
𝑚
∫

𝑡

𝑡−𝜏
𝑚

̇𝑒
𝑇
(𝑠) 𝑅
0
̇𝑒 (𝑠) 𝑑𝑠

≤ [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[

−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
] .

(26)

Combining ((23), (25), and (26)) and introducing slack
matrices𝑀

𝑖
, 𝑁
𝑖
, 𝑖 = 1, 2 . . . 5, we obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2
𝜔
𝑇
(𝑡) 𝜔 (𝑡) + �̃�

𝑇
(𝑡) �̃� (𝑡)

≤ 𝑒
𝑇
(𝑡)(2𝑃

𝑖
̄𝐴
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖

+𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
)𝑒 (𝑡)

+ 2𝑒
𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + 2𝑒

𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝜔𝑖
𝜔 (𝑡)

+ [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[
−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

− 𝑒
𝑇
(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
)

− (1 − 𝜇) 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ E {𝜏
2

𝑚
̇𝑒
𝑇
(𝑡) 𝑅
0
̇𝑒 (𝑡)} − ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

̇𝑒
𝑇
(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ E {𝛿 ̇𝑒
𝑇
(𝑡) 𝑅
1
̇𝑒 (𝑡)} − 𝛾

2
𝜔
𝑇
(𝑡) 𝜔 (𝑡) + 𝜁(𝑡)

𝑇
Γ
𝑇

2
Γ
2
𝜁 (𝑡)

+ 2𝜁
𝑇
(𝑡)𝑀
𝑖
[𝑒 (𝑡 − 𝜏

𝑚
) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−𝜏
𝑚

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠]

− 𝑒
𝑇
(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
)

+ 2𝜁
𝑇
(𝑡)𝑁
𝑖
[𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − 𝜏

𝑀
)

−∫

𝑡−𝜏(𝑡)

𝑡−𝜏
𝑀

̇𝑒 (𝑠) 𝑑𝑠] ,

(27)

where 𝑀
𝑇

𝑖
= [𝑀

𝑇

𝑖1
𝑀
𝑇

𝑖2
𝑀
𝑇

𝑖3
𝑀
𝑇

𝑖4
𝑀
𝑇

𝑖5
], 𝑁

𝑇

𝑖
=

[𝑁
𝑇

𝑖1
𝑁
𝑇

𝑖2
𝑁
𝑇

𝑖3
𝑁
𝑇

𝑖4
𝑁
𝑇

𝑖5
].

Note that

− 2𝜁
𝑇
(𝑡)𝑀
𝑖
∫

𝑡−𝜏
𝑚

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡−𝜏
𝑚

𝑡−𝜏(𝑡)

̇𝑒
𝑇
(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ (𝜏 (𝑡) − 𝜏
𝑚
) 𝜁
𝑇
(𝑡)𝑀
𝑖
𝑅
−1

1
𝑀
𝑇

𝑖
𝜁 (𝑡) ,

− 2𝜁
𝑇
(𝑡)𝑁
𝑖
∫

𝑡−𝜏(𝑡)

𝑡−𝜏
𝑀

̇𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏
𝑀

̇𝑒
𝑇
(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇
(𝑡)𝑁
𝑖
𝑅
−1

1
𝑁
𝑇

𝑖
𝜁 (𝑡) ,

E {𝛿 ̇𝑒
𝑇
(𝑡) 𝑅
1
̇𝑒 (𝑡)}

= 𝛿[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
1
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

+ 𝛿𝑒
𝑇
(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝛿𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐶

𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝛿𝜔
𝑇
(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡) ,

(28)

E {𝜏
2

𝑚
̇𝑒
𝑇
(𝑡) 𝑅
0
̇𝑒 (𝑡)}

= 𝜏
2

𝑚
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
0
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

+ 𝜏
2

𝑚
𝑒
𝑇
(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐶

𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝜏
2

𝑚
𝜔
𝑇
(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡) .

(29)

Combining (27)–(29), we can obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2
𝜔
𝑇
(𝑡) 𝜔 (𝑡) + �̃�

𝑇
(𝑡) �̃� (𝑡)

≤ 𝑒
𝑇
(𝑡)(2𝑃

𝑖
̄𝐴
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
+ 𝜏
𝑚
𝑍
1
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+𝛿𝑍
2
)𝑒 (𝑡) + 2𝑒

𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇
(𝑡) 𝑃
𝑖
̄𝐴
𝜔𝑖
𝜔 (𝑡)

+ 𝛿𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐶

𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝑒
𝑇
(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
) − 𝑒
𝑇
(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
)

− (1 − 𝜇) 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝛿𝑒
𝑇
(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝛿[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
1
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

− 𝛿𝜔
𝑇
(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇
(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐶

𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝜏
2

𝑚
𝜔
𝑇
(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡)

+ 𝜏
2

𝑚
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
0
[ ̄𝐴
𝑖
𝑒 (𝑡) + ̄𝐴

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + ̄𝐴

𝜔𝑖
𝜔 (𝑡)]

+ [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[
−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [

𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

− 𝛾
2
𝜔
𝑇
(𝑡) 𝜔 (𝑡) + 𝜁(𝑡)

𝑇
Γ
𝑇

2
Γ
2
𝜁 (𝑡)

+ 2𝜁
𝑇
(𝑡)𝑀
𝑖
[𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

+ 2𝜁
𝑇
(𝑡)𝑁
𝑖
[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
)]

+ (𝜏 (𝑡) − 𝜏
𝑚
) 𝜁
𝑇
(𝑡)𝑀
𝑖
𝑅
−1

1
𝑀
𝑇

𝑖
𝜁 (𝑡)

+ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇
(𝑡)𝑁
𝑖
𝑅
−1

1
𝑁
𝑇

𝑖
𝜁 (𝑡) .

(30)

By using Lemma 4 and Schur complement, it is easy to see
that (15) and 𝑠 = 1, 2 are sufficient conditions to guarantee

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2
𝜔
𝑇
(𝑡) 𝜔 (𝑡) + �̃�

𝑇
(𝑡) �̃� (𝑡) < 0.

(31)

Then, the following inequality can be concluded:

E {L𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} < −𝜆min (Ψ)E {𝜁

𝑇
(𝑡) 𝜁 (𝑡)} . (32)

Define a new function as

𝑊(𝑥
𝑡
, 𝑖, 𝑡) = 𝑒

𝜖𝑡
𝑉 (𝑥
𝑡
, 𝑖, 𝑡) . (33)

Its infinitesimal operatorL is given by

W (𝑥
𝑡
, 𝑖, 𝑡) = 𝜖𝑒

𝜖𝑡
𝑉 (𝑥
𝑡
, 𝑖, 𝑡) + 𝑒

𝜖𝑡
L𝑉 (𝑥

𝑡
, 𝑖, 𝑡) . (34)

By the generalized Itô formula [36], we can obtain from
(34) that

E {𝑊 (𝑥
𝑡
, 𝑖, 𝑡)} − E {𝑊 (𝑥

0
, 𝑖)}

= ∫

𝑡

0

𝜖𝑒
𝜖𝑠
E {𝑉 (𝑥

𝑠
, 𝑖)} 𝑑𝑠 + ∫

𝑡

0

𝑒
𝜖𝑠
E {L𝑉 (𝑥

𝑠
, 𝑖)} 𝑑𝑠.

(35)

Then, similar to the method of [1], we can see that there
exists a positive number 𝛼 such that for 𝑡 > 0

E {𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} ≤ 𝛼 sup

−𝜏
𝑀
≤𝑠≤0

{




𝜙 (𝑠)






2

} 𝑒
−𝜖𝑡
. (36)

Since 𝑉(𝑥
𝑡
, 𝑖, 𝑡) ≥ {𝜆min(𝑃𝑖)}𝑥

𝑇
(𝑡)𝑥(𝑡), it can be shown

from (36) that for 𝑡 ≥ 0

E {𝑥
𝑇
(𝑡) 𝑥 (𝑡)} ≤ ̄𝛼

−𝜖𝑡 sup
−𝜏
𝑀
≤𝑠≤0

{




𝜙 (𝑠)






2

} , (37)

where ̄𝛼 = 𝛼/(𝜆min𝑃𝑖). Recalling Definition 5, the proof can
be completed.

Remark 8. In the above proof, a new Lyapunov function is
constructed, and the term ∫

𝑡

𝑡−𝜏
(𝑡)

𝑥
𝑇
(𝑠)(∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑄
2𝑗
)𝑥(𝑠)𝑑𝑠 in

(25) is separated into two parts. It is easy to see that this
method is less conservative than the ones in the literature
[5, 38].

Remark 9. A delay-dependent stochastic stability condition
for MJSs with interval time-varying delays is provided in
Theorem 7. In the proof ofTheorem 7, the convexity property
of the matrix inequality is treated in terms of Lemma 4,
which need not enlarge 𝜏(𝑡) to 𝜏

𝑀
, so the common existed

conservatism caused by this kind of enlargement in [39–
42] can be avoided, and thus the conservative result will be
decreased.

Theorem 7 established some analysis results. In the fol-
lowing, the problem of state estimator design is to be
considered and the following results can be readily obtained
fromTheorem 7.

Theorem 10. For some given constants 𝛾 and 0 ≤ 𝜏
𝑚
≤ 𝜏
𝑀
, the

augmented system (8) is stochastically stable with a prescribed
𝐻
∞

performance 𝛾 if there exist 𝑃
𝑖
> 0, 𝑄

0
> 0, 𝑄

1
> 0,

𝑄
2𝑖
> 0, 𝑅

0
> 0, 𝑅

1
> 0, 𝑍

1
> 0, 𝑍

2
> 0, ̄𝐺

𝑖
, 𝑀
𝑖𝑘
, and



8 Abstract and Applied Analysis

𝑁
𝑖𝑘
(𝑖 ∈ S, 𝑘 = 1, 2 . . . , 5)with appropriate dimensions so that

the following LMIs hold for a given 𝜀 > 0:

Ψ̂ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̂
11

∗ ∗ ∗ ∗ ∗

Ψ̂
21

Ψ
22

∗ ∗ ∗ ∗

Ψ̂
31

Ψ̂
32

Ψ̂
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ̂
51

Ψ̂
52

0 0 Ψ̂
55

∗

Ψ̂
61

Ψ̂
62

0 0 0 Ψ̂
66

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(38)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
≤ 𝑍
𝑘
, 𝑘 = 1, 2, (39)

where

Ψ̂
11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ ̄𝐺
𝑖
𝐶
𝑖
+ 𝐶
𝑇

𝑖
̄𝐺
𝑇

𝑖
+ 𝑄
0
+ 𝑄
1

+ 𝑄
2𝑖
− 𝑅
0
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
,

Ψ̂
21
= [𝑃
𝑇

𝑖
𝐴
𝑑𝑖
+ ̄𝐺
𝑖
𝐶
𝑑𝑖
−𝑀
𝑖1
+ 𝑁
𝑖1
, 𝑅
𝑇

0
+𝑀
𝑖1
,

−𝑁
𝑖1
, −𝑃
𝑇

𝑖
𝐴
𝜔𝑖
− ̄𝐺
𝑖
𝐶
𝜔𝑖
]

𝑇

,

Ψ̂
31
=

[
[
[

[

𝜏
𝑚
𝑃
𝑖
𝐴
𝑖
+ 𝜏
𝑚

̄𝐺
𝑖
𝐶
𝜔𝑖

√𝛿𝑃
𝑖
𝐴
𝑖
+ √𝛿 ̄𝐺

𝑖
𝐶
𝜔𝑖

𝐿
𝑖

]
]
]

]

,

Ψ̂
32
=

[
[
[
[

[

𝜏
𝑚
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜏
𝑚

̄𝐺
𝑖
𝐶
𝑑𝑖

0 0 −𝜏
𝑚
𝑃
𝑖
𝐴
𝜔𝑖
− 𝜏
𝑚

̄𝐺
𝑖
𝐶
𝜔𝑖

√𝛿𝑃
𝑖
𝐴
𝑑𝑖
+ √𝛿 ̄𝐺

𝑖
𝐶
𝑑𝑖

0 0 −√𝛿𝑃
𝑖
𝐴
𝜔𝑖
− √𝛿 ̄𝐺

𝑖
𝐶
𝜔𝑖

𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖

]
]
]
]

]

,

Ψ̂
33
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
0
, −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
1
, −𝐼} ,

Ψ̂
51
= [𝜏
𝑚
𝜎
1
𝐶
𝑇

𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
, 0, . . . , 0]

𝑇

,

Ψ̂
52
= [Θ̂
5𝑑
, 0, 0, Θ̂

5𝜔
] ,

Ψ̂
55
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
0
, −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
0
, . . . ,

−2𝜀𝑃
𝑖
+ 𝜀
2
𝑅
0
} ,

Ψ̂
61
= [√𝛿𝜎

1
𝐶
𝑇

𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, √𝛿𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

√𝛿𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
, 0, . . . , 0 ]

𝑇

,

Ψ̂
62
= [Θ̂
6𝑑
, 0, 0, Θ̂

6𝜔
] ,

Ψ̂
66
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
1
, −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
1
, . . . , −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
1
} ,

Θ̂
5𝑑
= [0, 𝜏

𝑚
𝜎
1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
, 0, . . . , 0]

𝑇

,

Θ̂
5𝜔
= [0, . . . , 0, −𝜏

𝑚
𝜎
1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, −𝜏
𝑚
𝜎
2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

−𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
]

𝑇

,

Θ̂
6𝑑
= [0,√𝛿𝜎

1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, √𝛿𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

√𝛿𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
, 0, . . . , 0 ]

𝑇

,

Θ̂
6𝜔
= [0, . . . , 0, −√𝛿𝜎

1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
̄𝐺
𝑇

𝑖
, −√𝛿𝜎

2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
̄𝐺
𝑇

𝑖
, . . . ,

−√𝛿𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
̄𝐺
𝑇

𝑖
]

𝑇

,

(40)

and Ψ
22
, Ψ
41
(𝑠), Ψ

42
(𝑠), and 𝛿 are as defined in Theorem 7.

Moreover, the state estimator gain in the form of (6) is as
follows:

𝐺
𝑖
= 𝑃
−1

𝑖
̄𝐺
𝑖
. (41)

Proof. Defining ̄𝐺
𝑖
= 𝑃
𝑖
𝐺
𝑖
, from (15) and using Schur com-

plement, the matrix inequality (15) holds if and only if

Ψ̆ =

[
[
[
[
[
[
[
[

[

Ψ̂
11

∗ ∗ ∗ ∗ ∗

Ψ̂
21

Ψ
22

∗ ∗ ∗ ∗

Ψ̂
31

Ψ̂
32

Ψ̆
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ̂
51

Ψ̂
52

0 0 Ψ̂
55

∗

Ψ̂
61

Ψ̂
62

0 0 0 Ψ̂
66

]
]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(42)

where

Ψ̆
33
= diag {−𝑃

𝑖
𝑅
−1

0
𝑃
𝑖
, −𝑃
𝑖
𝑅
−1

1
𝑃
𝑖
, −𝐼} . (43)

Due to

(𝑅
𝑘
− 𝜀
−1
𝑃
𝑖
) 𝑅
−1

𝑘
(𝑅
𝑘
− 𝜀
−1
𝑃
𝑖
) ≥ 0, 𝑖 ∈ 𝑆, 𝑘 = 0, 1,

(44)

we can have

−𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
≤ −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
𝑘
, 𝑖 ∈ 𝑆, 𝑘 = 0, 1. (45)
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Substituting −𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
with −2𝜀𝑃

𝑖
+ 𝜀
2
𝑅
𝑘
(𝑘 = 0, 1) in (42),

we obtain (38), so if (38) holds, we have (15) holds, and from
above proof, we know that the desired state estimator gain
matrix is 𝐺

𝑖
= 𝑃
−1

𝑖
̄𝐺
𝑖
. This completes the proof.

Remark 11. Inequality (45) is used to bound the term
−𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
. This step can be improved by adopting the cone

complementary algorithm [43], which is popular in recent
control designs. The scaling parameter 𝜀 > 0 here can be
used to improve conservatism in Theorem 10. In addition,
Theorem 10 shows that for given 𝜀 we can obtain the state
estimator gain by solving a set of LMIs in (38) and (39).

4. Numerical Example

In this section, well-studied example is considered to illus-
trate the effectiveness of above approaches proposed and also
to explain the proposed method on state estimator design.

Consider linear Markovian jump systems in the form of
(1) with two modes. For modes 1 and 2, the dynamics of
system with following parameters [28] are described as

𝐴
1
= [

[

−3 1 0

0.3 −2.5 1

−0.1 0.3 −3.8

]

]

, 𝐴
𝑑1
= [

[

−0.2 0.1 0.6

0.5 −1 −0.8

0 1 −2.5

]

]

,

𝐴
𝜔1
= [

[

1

0

1

]

]

,

𝐶
1
= [0.8 0.3 0] , 𝐶

𝑑1
= [0.2 −0.3 −0.6] ,

𝐶
𝜔1
= 0.2,

𝐿
1
= [0.5 −0.1 1] , 𝐿

𝑑1
= [0 0 0] , 𝐿

𝜔1
= 0,

𝐴
2
= [

[

−2.5 0.5 −0.1

0.1 −3.5 0.3

−0.1 1 −2

]

]

, 𝐴
𝑑2
= [

[

0 −0.3 0.6

0.1 0.5 0

−0.6 1 −0.8

]

]

,

𝐴
𝜔2
= [

[

−0.6

0.5

0

]

]

,

𝐶
2
= [0.5 0.2 0.3] , 𝐶

𝑑2
= [0 −0.6 0.2] ,

𝐶
𝜔2
= 0.5,

𝐿
2
= [0 1 0.6] , 𝐿

𝑑2
= [0 0 0] .

𝐿
𝜔2
= 0,

(46)

Suppose the initial conditions are given by 𝑥(0) =

[0.8 0.2 −0.9]
𝑇, 𝑥(0) = [0 0.2 0]

𝑇, and the transition pro-
bability matrix

𝜋 = [
0.5 0.5

0.3 0.7
] . (47)

By Theorem 10, we get the maximum time delay 𝜏
𝑀

=

5.9250 for 𝜏
𝑚
= 1, 𝜇 = 0.5, 𝜀 = 10, and 𝛾 = 1.2. Meanwhile,

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

M
od

e

Time t (s)

Figure 1: Operation modes.

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time t (s)

𝜏
(t
)

Figure 2: Interval time-varying delay.

we can get the fact that the maximum time delay will become
larger with decreasing rates of 𝜏(𝑡) when other variables are
fixed. For example, the maximum time delay is 𝜏

𝑀
= 6.4072

for 𝜇 = 0.1 if other parameters did not change.
The corresponding state estimator gain matrices for 𝜇 =

0.5 are given by

𝐺
1
= [

[

0.7370

−1.3432

−3.4025

]

]

, 𝐺
2
= [

[

0.7847

0.2051

−1.1228

]

]

. (48)

To illustrate the performance of the designed state esti-
mator, choose the disturbance function as follows:

𝜔 (𝑡) =

{
{

{
{

{

−0.425, 5 < 𝑡 < 8

0.375, 13 < 𝑡 < 18

0, otherwise.
(49)

With this state estimator, the simulation results are shown in
Figures 1, 2, and 3 which show the operation modes of the
MJSs, interval time-varying delay, and estimated signal error
𝜂(𝑡) = 𝑧(𝑡) − �̃�(𝑡), respectively. From Figures 1, 2, and 3, it can
be showed that the designed state estimator performs well.



10 Abstract and Applied Analysis

0 5 10 15 20 25 30

0
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0.6

0.8

1

Time t (s)

−0.2

−0.4

−0.6

−0.8

−1

𝜂
(t
)

Figure 3: Estimated signals error 𝜂(𝑡) = 𝑧(𝑡) − �̃�(𝑡).

5. Conclusions

In this paper, we established the design method of state
estimation problem for a class of time-delay systems with
Markov jump parameters and missing measurements. By
employing a new Lyapunov function method and using the
convexity property of the matrix inequality, an LMI-based
sufficient condition for the existence of the desired state
estimator derived is proposed, which can lead to much less
conservative analysis results. Finally, a numerical example has
been carried out to show the effectiveness of our obtained
results of the proposed method.
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This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive
stochastic systemswith time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for thementioned systemswith
external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic
dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be
preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics
are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS
regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays,
impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis
techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results.

1. Introduction

In practice, the performance of a real control system is affect-
ed more or less by uncertainties such as unmodeled dynam-
ics, parameter perturbations, exogenous disturbances, and
measurement errors [1]. To describe how solutions behave
robustly to external inputs or disturbances, the concept of
input-to-state stability (ISS) has been proven useful and
effective in this regard. ISS was originally proposed by Sontag
[2] for continuous-time systems. In view of its importance in
the analysis and synthesis of nonlinear control systems [3–
5], ISS and its variants such as local ISS, integral ISS, and
exponential-weighted ISS have been investigated quite inten-
sively and extended to different types of dynamical systems,
for instance, discrete-time systems [6, 7], switched systems
[1, 8–11], network control systems [12], neural networks [13–
15], and so forth.

As it is well known, impulsive effect is likely to exist
in a wide variety of evolutionary processes in which states
are changed abruptly at certain moments of time in the
fields such as medicine and biology, economics, electronics,

and telecommunications [16]. Recently, Hespanha initiated
the study of ISS for impulsive systems [17]. It was proved
therein that impulsive systems possessing an exponential ISS-
Lyapunov function are uniformly ISS over a certain class of
impulse time sequences. Since time delay phenomena are
often encountered in real world systems and the existence
of time delay is a significant cause of instability and deteri-
orative performance, [18] investigated the ISS property for
nonlinear impulsive systems with time delays by using Razu-
mikhin techniques. And [19] was also concerned with ISS
of impulsive systems with time delays, where ISS theorems
different from those in [18] were established by adopting both
Razumikhin techniques and Lyapunov-Krosovskii functional
method.

In addition to the time delays and impulse effects,
stochastic perturbations are always unavoidable in real sys-
tems (see [20–23] and references therein). Impulsive stochas-
tic delayed systems incorporate impulses effects, stochastic
perturbations, and time delays in one system simultaneously.
During the last decade, there has been extensive interest in
the study of force-free delayed impulsive stochastic systems;
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we refer to [24–28] and references therein. However, the
corresponding theory for impulsive stochastic systems with
external inputs has been relatively less developed.

The present paper aims to generalize the ISS results
for deterministic delayed impulsive systems to stochastic
settings. The pth moment input-to-state stability (p-ISS)
and stochastic input-to-state stability (SISS) properties for
impulsive stochastic delayed systems with external input
affecting both the continuous dynamics and the impulses are
investigated and Razumikhin-type theorems guaranteeing
the p-ISS/SISS are established. The results indicate that when
the delayed continuous stochastic dynamics are p-ISS/SISS
and the discrete dynamics are destabilizing, the p-ISS/SISS
properties of the original impulsive stochastic systems can be
maintained if the length of impulsive interval is large enough.
In particular, if the impulse-free delayed stochastic dynamics
are p-ISS/SISS and the discrete dynamics are marginally
stable for the zero input, the impulsive stochastic system is p-
ISS/SISS regardless of how often or how seldom the impulses
occur. As a byproduct, the criteria on pth moment global
asymptotic stability (p-GAS) and global asymptotical stability
in probability (GASiP) are also derived. The initial idea of
this paper came from the works for deterministic impulsive
delayed systems [18] and impulse-free stochastic systems [1,
29], but its extension to impulsive stochastic delayed systems
will be much more challenging due to the simultaneous
existence of time delays, impulses, and stochastic effects.

The rest of this paper is organized as follows. In Section 2,
some basic notations and definitions used throughout the
paper are introduced. In Section 3, criteria ensuring uni-
form p-ISS/SISS/p-GAS/GASiP are established and applied
to linear impulsive stochastic delayed systems. Section 4
provides a numerical example to illustrate the effectiveness
and advantages of our results. Finally, Section 5 includes a
summary and a discussion of some extensions of the paper.

2. Preliminaries

Throughout this paper, unless otherwise specified, we will
employ the following notations. Let (Ω,F, {F

𝑡
}
𝑡⩾0
,P) be a

complete probability space with a filtration {F
𝑡
}
𝑡⩾0

satisfying
the usual conditions (i.e., it is right continuous and F

0

contains all P-null sets) and let E[⋅] be the expectation
operator with respect to the given probability measure P.
Let 𝑤(𝑡) = (𝑤

1
(𝑡), . . . , 𝑤

𝑑
(𝑡))

T be a 𝑑-dimensional Brownian
motion defined on the probability space. R = (−∞, +∞),
R
+

= [0, +∞), N = {1, 2, 3, . . .}, R𝑛 denotes the 𝑛-
dimensional real space equippedwith the Euclidean norm |⋅|,
and R𝑛×𝑚 denotes the 𝑛 × 𝑚-dimensional real matrix space.

Let 𝜏 ⩾ 0 and 𝑃𝐶([−𝜏, 0];R𝑛) = {𝜑 : [−𝜏, 0] → R𝑛 | 𝜑(𝑡)

is continuous for all but at most a finite number of points ̄𝑡,
at which 𝜑( ̄𝑡

+
), 𝜑( ̄𝑡−) exist and 𝜑( ̄𝑡

+
) = 𝜑( ̄𝑡)}, where 𝜑( ̄𝑡+)

and 𝜑( ̄𝑡−) denote the right-hand and left-hand limits of 𝜑(𝑡)
at ̄𝑡, respectively. We equip the linear space 𝑃𝐶([−𝜏, 0];R𝑛)
with the norm ‖𝜑‖ defined by ‖𝜑‖ = sup{|𝜑(𝜃)| : −𝜏 ⩽ 𝜃 ⩽

0}. Let 𝑃𝐶𝑏F
𝑡

([−𝜏, 0];R𝑛) be the family of all F
𝑡
-measurable

and bounded 𝑃𝐶([−𝜏, 0];R𝑛)-valued random variables 𝜉 =

{𝜉(𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0}.

A function 𝛼 : R
+
→ R
+
is said to be of class K if it is

continuous and strictly increasing and satisfies 𝛼(0) = 0; it is
of classK

∞
if in addition 𝛼(𝑠) → ∞ as 𝑠 → ∞. Note that if

𝛼 is of classK
∞
, then the inverse function 𝛼−1 is well defined

and is also of class K
∞
. VK
∞

and 𝑐K
∞

are the subsets of
K
∞

functions that are convex and concave, respectively. A
function 𝛽 : R

+
× R
+

→ R
+
is said to be of class KL if

𝛽(⋅, 𝑡) ∈ K for each fixed 𝑡 ⩾ 0 and 𝛽(𝑟, 𝑡) decreases to 0 as
𝑡 → ∞ for each fixed 𝑟 ⩾ 0. The composition of two func-
tions 𝜙 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐶 is denoted by 𝜓 ∘ 𝜙 : 𝐴 →

𝐶.
If 𝐴 is a vector or a matrix, its transpose is denoted by

𝐴
T. If 𝑃 is a square matrix, 𝑃 > 0 (𝑃 ⩽ 0) means that

𝑃 is a symmetric positive definite (negative semidefinite)
matrix. 𝜆(⋅) and 𝜆(⋅) represent the minimum and maximum
eigenvalues of the corresponding matrix, respectively, and
𝐼 stands for the identity matrix. The symbol ∗ is used in
symmetric matrices to denote the entries which can be
inferred by symmetry. Unless explicitly stated, allmatrices are
assumed to have real entries and compatible dimensions.

We consider the following impulsive stochastic nonlinear
system with external inputs:

d𝑥 = 𝑓 (𝑡, 𝑥
𝑡
, 𝑢
𝑐
(𝑡)) d𝑡 + 𝑔 (𝑡, 𝑥

𝑡
, 𝑢
𝑐
(𝑡)) d𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
−

𝑘
) , 𝑢
𝑑
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

(1)

with initial data 𝑥
𝑡
0

= {𝑥(𝑡
0
+ 𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0} = 𝜉 ∈

P𝐶𝑏F
𝑡0

([−𝜏, 0];R𝑛), where 𝑥 ∈ R𝑛 and 𝑥
𝑡
= {𝑥(𝑡 + 𝜃) :

−𝜏 ⩽ 𝜃 ⩽ 0} is regarded as a 𝑃𝐶([−𝜏, 0];R𝑛)-valued random
variable; 𝑢

𝑐
∈ L𝑚1
∞

is locally essentially bounded external
input and 𝑢

𝑑
∈ L𝑚2
∞

is the impulsive disturbance input;L𝑚
∞

denotes the set of all locally essentially bounded function
𝑢 : R
+
→ R𝑚 with norm ‖𝑢‖

∞
= ess sup

𝑡⩾𝑡
0

|𝑢(𝑡)|; ‖𝑢‖
[𝑎,𝑏]

=

ess sup
𝑡∈[𝑎,𝑏]

|𝑢(𝑡)|; both 𝑓 : [𝑡
0
,∞)×R𝑛 ×R𝑚1 → R𝑛 and 𝑔 :

[𝑡
0
,∞) × R𝑛 × R𝑚1 → R𝑛×𝑑 are uniformly locally Lipschitz

with respect to 𝑥 and 𝑢; 𝐼
𝑘
: [𝑡
0
,∞) × R𝑛 × R𝑚2 → R𝑛

represents the impulsive perturbation of 𝑥 at 𝑡
𝑘
and satisfies

|𝐼
𝑘
(𝑡
𝑘
, 𝑥, 𝑢)| < ∞; {𝑡

𝑘
}
𝑘∈N is a strictly increasing sequence of

impulse times. We useSmin(𝛽) andSall to denote the class of
impulsive time sequences that satisfy inf

𝑘∈N{𝑡𝑘−𝑡𝑘−1} ⩾ 𝛽 and
the set containing all impulse time sequences, respectively.

Moreover, we assume that 𝑓(𝑡, 0, 0) = 𝑔(𝑡, 0, 0) = 𝐼
𝑘
(𝑡, 0,

0) ≡ 0 for all 𝑡 ⩾ 𝑡
0
, 𝑘 ∈ N; then system (1) admits a

trivial solution 𝑥(𝑡) ≡ 0. The input pair (𝑢
𝑐
, 𝑢
𝑑
) is said to be

admissible, denoted by (𝑢
𝑐
, 𝑢
𝑑
) ∈ U, if 𝑢

𝑐
∈ L𝑚1
∞
, 𝑢
𝑑
∈ L𝑚2
∞

guarantee the the existence of a unique solution to system (1).
On the foundation of the ISS concepts for impulse-free

stochastic systems [1, 29, 30] and those for deterministic
impulsive systems [18], we proposed the following definitions
for impulsive stochastic delayed systems (1).

Definition 1. For a prescribed sequence {𝑡
𝑘
}
𝑘∈N, system (1) is

said to be 𝑝th (𝑝 > 0) moment input-to-state stable (ISS)
if there exist functions 𝛽 ∈ KL, 𝛼, 𝛾

𝑐
, 𝛾
𝑑
∈ K
∞

such that,
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for every initial condition 𝜉 ∈ 𝑃𝐶
𝑏

F
𝑡0

and every input pair
(𝑢
𝑐
, 𝑢
𝑑
) ∈ U,

𝛼 (E|𝑥 (𝑡)|
𝑝
) ⩽ 𝛽 (E





𝜉





𝑝

, 𝑡 − 𝑡
0
) + 𝛾
𝑐
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+ 𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡
0
,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}) , 𝑡 ⩾ 𝑡

0
.

(2)

Definition 2. For a given sequence {𝑡
𝑘
}
𝑘∈N, system (1) is said

to be stochastic input-to-state stable (SISS), if, for any 𝜀 > 0,
there exist functions 𝛽 ∈ KL and 𝛼, 𝛾

𝑐
, 𝛾
𝑑
∈ K
∞
, such that,

for every initial condition 𝜉 ∈ 𝑃𝐶
𝑏

F
𝑡0

and every input pair
(𝑢
𝑐
, 𝑢
𝑑
) ∈ U,

𝑃{𝛼 (|𝑥 (𝑡)|) < 𝛽 (




𝜉




, 𝑡 − 𝑡
0
) + 𝛾
𝑐
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




})} > 1 − 𝜀, 𝑡 ⩾ 𝑡

0
.

(3)

Remark 3. Redefining 𝛽 and 𝛾
𝑐
, 𝛾
𝑑
, one can assume that 𝛼 in

(2) or (3) is the identity: if 𝛼(𝑟) ⩽ 𝛽(𝑠, 𝑡) + 𝛾
𝑐
(𝜐) + 𝛾

𝑑
(]) holds,

then also 𝑟 ⩽ 𝛼
−1
(𝛽(𝑠, 𝑡) + 𝛾

𝑐
(𝜐) + 𝛾

𝑑
(])) ⩽ 𝛼

−1
(3𝛽(𝑠, 𝑡)) +

𝛼
−1
(3𝛾
𝑐
(𝜐))+𝛼

−1
(3𝛾
𝑑
(])). We know by Lemma 4.2 in [31] that

𝛼
−1
(3𝛽(⋅, ⋅)) ∈ KL and 𝛼

−1
(3𝛾
𝑐
(⋅)), 𝛼−1(3𝛾

𝑑
(⋅)) ∈ K

∞
. So

estimates of the same type as (2) and (3) but with no “𝛼” are
obtained.

In the following, we will define p-GAS and GASiP in the
form of KL function, which present very close analogy to
p-ISS and SISS, respectively.

Definition 4. For a prescribed sequence {𝑡
𝑘
}
𝑘∈N, system (1)

with input 𝑢
𝑐
≡ 0, 𝑢

𝑑
≡ 0 is said to be 𝑝th (𝑝 > 0) moment

globally asymptotically stable (GAS) if there exists a function
𝛽 ∈ KL such that, for every initial condition 𝜉 ∈ 𝑃𝐶𝑏F

𝑡0

,

E|𝑥(𝑡)|
𝑝
⩽ 𝛽 (E





𝜉





𝑝

, 𝑡 − 𝑡
0
) , 𝑡 ⩾ 𝑡

0
. (4)

Definition 5. For a given sequence {𝑡
𝑘
}
𝑘∈N, system (1) with

input 𝑢
𝑐
≡ 0, 𝑢

𝑑
≡ 0 is said to be globally asymptotically

stable in probability (GASiP), if, for any 𝜀 > 0, there exists
a function 𝛽 ∈ KL, such that, for every initial condition
𝜉 ∈ 𝑃𝐶

𝑏

F
𝑡0

,

𝑃 {|𝑥 (𝑡)| < 𝛽 (




𝜉




, 𝑡 − 𝑡
0
)} > 1 − 𝜀, 𝑡 ⩾ 𝑡

0
. (5)

Remark 6. By the vanishing of 𝛾
𝑐
(𝑠) and 𝛾

𝑑
(𝑠) at 𝑠 = 0,

(2) and (3) will degenerate to (4) and (5), respectively, when
𝑢 ≡ 0, which means that p-ISS/SISS of system (1) implies p-
GAS/GASiP of the corresponding unforced system.

System (1) is said to be uniformly p-ISS or uniformly SISS
over a given class of admissible impulsive time sequencesS if
(2) or (3) holds for every sequence in S with functions 𝛼, 𝛽,
𝛾
𝑐
, and 𝛾

𝑑
independent of the choice of the sequence. Uniform

p-GAS and uniform GASiP can be defined similarly.

Definition 7 (see [24]). A function𝑉 : R
+
×R𝑛 → R

+
is said

to be of class V
0
if the following hold true.

(i) 𝑉 is continuous on each of the sets [𝑡
𝑘−1

, 𝑡
𝑘
) × R𝑛

and for each 𝑥, 𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ N, and

lim
(𝑡,𝑦)→ (𝑡

−

𝑘
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists.

(ii) 𝑉(𝑡, 𝑥) is once continuously differentiable in 𝑡 and
twice in 𝑥 in each of the sets (𝑡

𝑘−1
, 𝑡
𝑘
) ×R𝑛, 𝑘 ∈ N.

If 𝑉 ∈ V
0
, define an operator L𝑉 [24] with respect to

system (1) by

L𝑉 (𝑡, 𝜑, 𝑢) = 𝑉
𝑡
(𝑡, 𝜑 (0)) + 𝑉

𝑥
(𝑡, 𝑥) 𝑓 (𝑡, 𝜑, 𝑢)

+

1

2

trace [𝑔T (𝑡, 𝜑, 𝑢)𝑉
𝑥𝑥
(𝑡, 𝑥) 𝑔 (𝑡, 𝜑, 𝑢)] ,

(6)

where

𝑉
𝑡
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡

,

𝑉
𝑥
(𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥
(𝑡, 𝑥) = (

𝜕
2
𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(7)

3. Main Results

In this section, we will develop Lyapunov-Razumikhinmeth-
ods and establish some criteria which provide sufficient
conditions for the p-ISS and SISS properties of impulsive
stochastic delayed systems (1).

Theorem8. Assume that there exist functions𝑉 ∈ V
0
, 𝜒
1
, 𝜒
2
∈

K
∞
, 𝛼
1
∈ 𝑐K

∞
, 𝛼
2
∈ VK

∞
and scalars 𝑞 > 1, 𝑐 > 0, 𝜇 ∈

[1, 𝑞) such that

(i) 𝛼
1
(|𝑥|
𝑝
) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|
𝑝
);

(ii) EL𝑉(𝑡, 𝜑) ⩽ −𝑐E𝑉(𝑡, 𝜑(0)) + 𝜒
1
(|𝑢
𝑐
(𝑡)|), for all 𝑡 ⩾

𝑡
0
, 𝑡 ̸= 𝑡
𝑘
and 𝜑 ∈ 𝑃𝐶F

𝑡

([−𝜏, 0];R𝑛) whenever E𝑉(𝑡 +
𝜃, 𝜑(𝜃)) ⩽ 𝑞E𝑉(𝑡, 𝜑(0));

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥, 𝑢
𝑑
)) ⩽ 𝜇E𝑉(𝑡

𝑘
, 𝑥) + 𝜒

2
(|𝑢
𝑑
|).

Then for any given 𝜌 > 0 satisfying 𝜇e−𝑐𝜌 < 1, system (1)
is uniformly p-ISS over Smin(𝜌). In particular, when 𝜇 = 1,
system (1) is uniformly p-ISS over S

𝑎𝑙𝑙
.

Proof. Since 𝜇e−𝑐𝜌 < 1, then 0 < 1 + e−𝑐𝜌 − 1/𝜇 < 1 and there
exists 𝑐 > 0 such that 𝑐max{𝜇e−𝑐𝜌, 1 + e−𝑐𝜌 − 1/𝜇} < 𝑐


< 𝑐.

We choose 𝜆 ∈ (0, 𝑐

) such that (𝑞/𝜇)e−𝜆𝜏 > 1, 𝜇e−(𝑐−𝜆)𝜌 ⩽ 1,

𝜆 ⩽ 𝑐 − 𝜇(𝑐 − 𝑐

). Let {𝑡

𝑘
}
𝑘∈N be any impulsive time sequence

belonging toSmin(𝜌). For simplicity, we write𝑉(𝑡, 𝑥) = 𝑉(𝑡).
Define

𝐽 (𝑡) = e𝜆(𝑡−𝑡0) [E𝑉 (𝑡) − 𝐽
0
(𝑡)] , 𝑡 ⩾ 𝑡

0
− 𝜏, (8)
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where 𝐽
0
(𝑡) = (1/(𝑐 − 𝑐


))𝜒
1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) +

∑
𝑡
𝑘
∈(𝑡
0
,𝑡]
e−𝜆(𝑡−𝑡𝑘)𝜒

2
(|𝑢
𝑑
(𝑡
−

𝑘
)|) for 𝑡 ⩾ 𝑡

0
and 𝐽

0
(𝑡) = 0 for

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
]. We claim that

𝐽 (𝑡) ⩽ 𝛼
2
(E




𝜉





𝑝

) , 𝑡 ⩾ 𝑡
0
. (9)

We first prove that (9) holds for 𝑡 ∈ [𝑡
0
, 𝑡
1
). By condition (i)

and Jensen’s inequality, it is easy to see that

𝐽 (𝑡) = E𝑉 (𝑡) e𝜆(𝑡−𝑡0)

⩽ 𝛼
2
(E|𝑥 (𝑡)|

𝑝
)

⩽ 𝛼
2
(E




𝜉





𝑝

) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(10)

If (9) is not true for 𝑡 ∈ [𝑡
0
, 𝑡
1
), there must exist some 𝑡 ∈

[𝑡
0
, 𝑡
1
) such that 𝐽(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
). Let 𝑡∗ = inf{𝑡 ∈ [𝑡

0
, 𝑡
1
) :

𝐽(𝑡) > 𝛼
2
(E‖𝜉‖
𝑝
)}. Then by the right continuity of 𝐽(𝑡) in 𝑡 ∈

[𝑡
0
, 𝑡
1
) and noticing (10), we have 𝑡∗ ⩾ 𝑡

0
and

𝐽 (𝑡
∗
) = 𝛼
2
(E




𝜉





𝑝

) , 𝐽 (𝑡) ⩽ 𝛼
2
(E




𝜉





𝑝

) ,

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
∗
) , 𝐷

+
𝐽 (𝑡
∗
) > 0.

(11)

Because 𝐽(𝑡∗) ⩾ 𝐽(𝑡
∗
+ 𝑠), 𝑠 ∈ [−𝜏, 0] implies

E𝑉 (𝑡
∗
) ⩾ e𝜆𝑠E𝑉 (𝑡

∗
+ 𝑠) − e𝜆𝑠𝐽

0
(𝑡
∗
+ 𝑠) + 𝐽

0
(𝑡
∗
)

⩾ e−𝜆𝜏E𝑉 (𝑡
∗
+ 𝑠) >

𝜇

𝑞

E𝑉 (𝑡
∗
+ 𝑠)

⩾

1

𝑞

E𝑉 (𝑡
∗
+ 𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(12)

it follows from condition (ii) that

EL𝑉 (𝑡
∗
) ⩽ −𝑐E𝑉 (𝑡

∗
) + 𝜒
1
(




𝑢
𝑐
(𝑡
∗
)




) . (13)

For 𝜌 > 0 sufficiently small satisfying 𝑡∗ + 𝜌 < 𝑡
1
, by the Itô

formula, we have

E𝑉 (𝑡
∗
+ 𝜌) − E𝑉 (𝑡

∗
) = ∫

𝑡
∗
+𝜌

𝑡
∗

EL𝑉 (𝑠, 𝑥
𝑠
) d𝑠 (14)

which yields

lim sup
𝜌→0

+

E𝑉 (𝑡
∗
+ 𝜌) − E𝑉 (𝑡

∗
)

𝜌

= lim sup
𝜌→0

+

1

𝜌

∫

𝑡
∗
+𝜌

𝑡
∗

EL𝑉 (𝑠) d𝑠;

(15)

that is,

𝐷
+
E𝑉 (𝑡
∗
) = EL𝑉 (𝑡

∗
) ⩽ −𝑐E𝑉 (𝑡

∗
) + 𝜒
1
(




𝑢
𝑐
(𝑡
∗
)




) ,

(16)

where𝐷+E𝑉(𝑡) ≜ lim sup
𝜌→0

+[E𝑉(𝑡+𝜌)−E𝑉(𝑡)]/𝜌. On the
other hand, 𝐽(𝑡∗) = 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 0 implies

E𝑉 (𝑡
∗
) ⩾ 𝐽
0
(𝑡
∗
) . (17)

Therefore, from (16) and (17), and noticing 𝐽
0
(𝑡) = (1/(𝑐 −

𝑐

))𝜒
1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) and𝐷+𝐽

0
(𝑡) ⩾ 0 for 𝑡 ∈ [𝑡

0
, 𝑡
1
), we have

𝐷
+
𝐽 (𝑡
∗
) = e𝜆(𝑡

∗
−𝑡
0
)
[𝐷
+
E𝑉 (𝑡
∗
) + 𝜆E𝑉 (𝑡

∗
)

− 𝜆𝐽
0
(𝑡
∗
) − 𝐷
+
𝐽
0
(𝑡
∗
)]

⩽ e𝜆(𝑡
∗
−𝑡
0
)
[− (𝑐 − 𝜆)E𝑉 (𝑡

∗
) + 𝜒
1
(




𝑢
𝑐
(𝑡
∗
)




)

−𝜆𝐽
0
(𝑡
∗
)]

⩽ e𝜆(𝑡
∗
−𝑡
0
)
[−𝑐𝐽
0
(𝑡
∗
) + 𝜒
1
(




𝑢
𝑐
(𝑡
∗
)




)]

⩽

−𝑐


𝑐 − 𝑐

e𝜆(𝑡
∗
−𝑡
0
)
𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
∗
]
) < 0,

(18)

which contradicts 𝐷+𝐽(𝑡∗) > 0. Therefore, (9) holds for 𝑡 ∈
[𝑡
0
− 𝜏, 𝑡
1
).

Suppose that (9) holds for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
𝑚
), where 𝑚 ⩾ 1,

𝑚 ∈ N. We will prove that (9) holds for 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

). To this
end, we claim that

𝐽
1
(𝑡
−

𝑚
) ⩽ 𝛼
2
(E




𝜉





𝑝

) , (19)

where 𝐽
1
(𝑡) = e𝜆(𝑡−𝑡0)[𝜇E𝑉(𝑡) − 𝐽

0
(𝑡)]. If not, then 𝐽

1
(𝑡
−

𝑚
) >

𝛼
2
(E‖𝜉‖
𝑝
). We consider the following two cases.

Case 1. 𝐽
1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) for all 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
). It is easy to

see that 𝐽
1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 𝐽(𝑡 + 𝜃) for 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
) and

𝜃 ∈ [−𝜏, 0]. It follows that

E𝑉 (𝑡 + 𝜃) < e−𝜆𝜃 [𝜇E𝑉 (𝑡) − 𝐽
0
(𝑡)] + 𝐽

0
(𝑡 + 𝜃)

⩽ e𝜆𝜏𝜇E𝑉 (𝑡) − e−𝜆𝜃𝐽
0
(𝑡) + 𝐽

0
(𝑡 + 𝜃)

< 𝑞E𝑉 (𝑡) , 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) , 𝜃 ∈ [−𝜏, 0] .

(20)

The last inequality comes from the fact that (𝑞/𝜇)e−𝜆𝜏 > 1,
and

𝐽
0
(𝑡 + 𝜃) =

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡+𝜃]

)

+ ∑

𝑡
𝑘
∈(𝑡0 ,𝑡+𝜃]

e−𝜆(𝑡+𝜃−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




)

⩽

e−𝜆𝜃

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+ ∑

𝑡
𝑘
∈(𝑡0 ,𝑡]

e−𝜆(𝑡+𝜃−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




)

= e−𝜆𝜃𝐽
0
(𝑡) .

(21)

By condition (ii), (20) indicates that

EL𝑉 (𝑡) ⩽ −𝑐E𝑉 (𝑡) + 𝜒
1
(




𝑢
𝑐
(𝑡)




) , 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
) . (22)
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By Itô’s formula, we have

e𝑐𝑡𝑚E𝑉 (𝑡
−

𝑚
) = e𝑐𝑡𝑚−1E𝑉 (𝑡

𝑚−1
)

+ ∫

𝑡
𝑚

𝑡
𝑚−1

e𝑐𝑠 [𝑐E𝑉 (𝑠) + EL𝑉 (𝑠)] d𝑠

⩽ e𝑐𝑡𝑚−1E𝑉 (𝑡
𝑚−1

)

+ ∫

𝑡
𝑚

𝑡
𝑚−1

e𝑐𝑠𝜒
1
(




𝑢
𝑐
(𝑠)




) d𝑠

⩽ e𝑐𝑡𝑚−1E𝑉 (𝑡
𝑚−1

)

+

1

𝑐

e𝑐𝑡𝑚𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
) ;

(23)

thus,

E𝑉 (𝑡
−

𝑚
) ⩽ e−𝑐(𝑡𝑚−𝑡𝑚−1)E𝑉 (𝑡

𝑚−1
) +

1

𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
) . (24)

On the other hand, 𝐽(𝑡
𝑚−1

) ⩽ 𝛼
2
(E‖𝜉‖
𝑝
) implies

E𝑉 (𝑡
𝑚−1

) ⩽ e−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E




𝜉





𝑝

) + 𝐽
0
(𝑡
𝑚−1

)

⩽ e−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E




𝜉





𝑝

)

+

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚−1
]
)

+

𝑚−1

∑

𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




) .

(25)

Substituting (25) into (24) and noticing the fact that inf{𝑡
𝑘
−

𝑡
𝑘−1

} ⩾ 𝜌, we have

E𝑉 (𝑡
−

𝑚
) ⩽ e−𝑐(𝑡𝑚−𝑡𝑚−1)−𝜆(𝑡𝑚−1−𝑡0)𝛼

2
(




𝜉





𝑝

)

+ (

1

𝑐

+

e−𝑐𝜌

𝑐 − 𝑐

)𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
)

+ e−𝑐(𝑡𝑚−𝑡𝑚−1)
𝑚−1

∑

𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




) .

(26)

Substituting (26) into 𝐽
1
(𝑡
−

𝑚
) yields

𝐽
1
(𝑡
−

𝑚
) = e𝜆(𝑡𝑚−𝑡0) [𝜇E𝑉 (𝑡

−

𝑚
) − 𝐽
0
(𝑡
−

𝑚
)]

⩽ 𝜇e𝜆(𝑡𝑚−𝑡0) [e−𝑐(𝑡𝑚−𝑡𝑚−1)−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E




𝜉





𝑝

)

+ (

e−𝑐𝜌

𝑐 − 𝑐

+

1

𝑐

)𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
)

+ e−𝑐(𝑡𝑚−𝑡𝑚−1)
𝑚−1

∑

𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)

×𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




) ]

− e𝜆(𝑡𝑚−𝑡0) [ 1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
)

+

𝑚−1

∑

𝑘=1

e−𝜆(𝑡𝑚−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




)]

⩽ 𝜇e−(𝑐−𝜆)𝜌𝛼
2
(E




𝜉





𝑝

)

+ e𝜆(𝑡𝑚−𝑡0) [𝜇( e−𝑐𝜌

𝑐 − 𝑐

+

1

𝑐

) −

1

𝑐 − 𝑐

] 𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡
𝑚
)
)

+ (𝜇e−(𝑐−𝜆)𝜌 − 1)
𝑚−1

∑

𝑘=1

e𝜆(𝑡𝑘−𝑡0)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




)

⩽ 𝛼
2
(E




𝜉





𝑝

) .

(27)

The last inequality holds because 𝜇e−(𝑐−𝜆)𝜌 ⩽ 1 and
𝜇(((e−𝑐𝜌)/(𝑐 − 𝑐


)) + (1/𝑐)) − (1/(𝑐 − 𝑐


)) ⩽ 0. This is a

contradiction.

Case 2. There exists some 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) such that 𝐽

1
(𝑡) ⩽

𝛼
2
(E‖𝜉‖
𝑝
). Set 𝑡 = sup{𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
) : 𝐽
1
(𝑡) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
)}.

Then 𝐽
1
(𝑡

) = 𝛼
2
(E‖𝜉‖
𝑝
) and 𝐽

1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) for 𝑡 ∈ (𝑡, 𝑡

𝑚
).

Thus, for 𝑡 ∈ [𝑡

, 𝑡
𝑚
), 𝐽
1
(𝑡) ⩾ 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 𝐽(𝑡 + 𝜃) for

𝜃 ∈ [−𝜏, 0]. This implies that (20) holds for 𝜃 ∈ [−𝜏, 0],
𝑡 ∈ [𝑡

, 𝑡
𝑚
). Thus, by condition (ii),

𝐷
+
E𝑉 (𝑡) = EL𝑉 (𝑡) ⩽ −𝑐E𝑉 (𝑡) + 𝜒

1
(




𝑢
𝑐
(𝑡)




) ,

𝑡 ∈ [𝑡

, 𝑡
𝑚
) .

(28)

Hence, noticing the fact that 𝐽
0
(𝑡) ⩾ 0, 𝐷+𝐽

0
(𝑡) ⩾ 0 for 𝑡 ∈

[𝑡

, 𝑡
𝑚
), we have

𝐷
+
𝐽
1
(𝑡) = e𝜆(𝑡−𝑡0) [𝜆𝜇E𝑉 (𝑡) − 𝜆𝐽

0
(𝑡) + 𝜇𝐷

+
E𝑉 (𝑡)

− 𝐷
+
𝐽
0
(𝑡)]

⩽ e𝜆(𝑡−𝑡0) [−𝜇 (𝑐 − 𝜆)E𝑉 (𝑡) − 𝜆𝐽
0
(𝑡)

+𝜇𝜒
1
(




𝑢
𝑐
(𝑡)




) − 𝐷
+
𝐽
0
(𝑡)]

⩽ 𝜇e𝜆(𝑡−𝑡0) [− (𝑐 − 𝜆)E𝑉 (𝑡) + 𝜒
1
(




𝑢
𝑐
(𝑡)




)] ,

𝑡 ∈ [𝑡

, 𝑡
𝑚
) .

(29)

Because 𝐽
1
(𝑡) ⩾ 𝛼

2
(E‖𝜉‖
𝑝
) > 0 for 𝑡 ∈ [𝑡


, 𝑡
𝑚
), there holds

E𝑉(𝑡) > (1/𝜇)𝐽
0
(𝑡) > (1/𝜇(𝑐− 𝑐


))𝜒
1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) for 𝑡 ∈ [𝑡, 𝑡

𝑚
).

Substituting this inequality with (29), and recalling the choice
of 𝜆, it follows that

𝐷
+
𝐽
1
(𝑡) ⩽ −e𝜆(𝑡−𝑡0) ( 𝑐 − 𝜆

𝑐 − 𝑐

− 𝜇)𝜒

1
(




𝑢
𝑐




∞

) ⩽ 0, (30)

which yields the following contradiction: 𝛼
2
(E‖𝜉‖
𝑝
) <

𝐽
1
(𝑡
−

𝑚
) ⩽ 𝐽
1
(𝑡

) = 𝛼
2
(E‖𝜉‖
𝑝
).

Therefore, we have 𝐽
1
(𝑡
−

𝑚
) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
). Using condition

(iii), we obtain that 𝐽(𝑡
𝑚
) ⩽ 𝐽
1
(𝑡
−

𝑚
) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
). Repeating
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the argument used in the proof of 𝐽(𝑡) ⩽ 𝛼
2
(E‖𝜉‖
𝑝
) for 𝑡 ∈

[𝑡
0
, 𝑡
1
), we can get 𝐽(𝑡) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
) for 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

). By the
mathematical induction, we know that (9) holds for all 𝑡 ⩾ 𝑡

0
.

For any given 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

), one can get

∑

𝑡
𝑘
∈(𝑡
0
,𝑡]

e−𝜆(𝑡−𝑡𝑘)𝜒
2
(




𝑢
𝑑
(𝑡
−

𝑘
)




)

⩽

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}) .

(31)

It follows from (9), (31), and the definition of 𝐽(𝑡) that

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)𝛼
2
(E




𝜉





𝑝

) +

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




∞

)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}) .

(32)

By casualty,

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)𝛼
2
(E




𝜉





𝑝

) +

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}) .

(33)

Then by condition (i) and Jensen’s inequality, the required
assertion (2) holds with 𝛽(𝑟, 𝑠) = e−𝜆𝑠𝛼

2
(𝑟), 𝛾
𝑐
(𝑟) = (1/(𝑐 −

𝑐

))𝜒
1
(𝑟) and 𝛾

𝑑
(𝑟) = (1/(1 − e−𝜆𝜌))𝜒

2
(𝑟). By Lemma 4.2 in

[31], it is easy to see that 𝛽 ∈ KL, 𝛾
𝑐
, 𝛾
𝑑
∈ K
∞
. As 𝛽, 𝛾

𝑐
, 𝛾
𝑑

are independent of the particular choice of the impulse time
sequence, system (1) is uniformly p-ISS over Smin(𝜌).

For the special case 𝜇 = 1, 𝜇e−𝑐𝜌 < 1 holds for any 𝜌 > 0,
so system (1) is uniformly p-ISS over Smin(𝜌) for any 𝜌 > 0.
In other words, system (1) is uniformly p-ISS over Sall. The
proof is complete.

Remark 9. When 𝜇 > 1, condition (iii) implies that the
impulses may be destabilizing. So, in order to maintain the
p-ISS property of system (1), the impulse interval is required
to be large enough to reduce the effect of the impulses. When
𝜇 = 1, the discrete dynamics aremarginally stable for the zero
input. In this case, the p-ISS of system (1) is not affected by the
impulses.

Withminormodification to the conditions ofTheorem 8,
a criterion on SISS can be obtained as follows.

Theorem 10. Assume that conditions (ii) and (iii) of
Theorem 8 hold, while condition (i) is replaced by

(𝑖∗) 𝛼
1
(|𝑥|) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|),

where 𝛼
1
, 𝛼
2
∈ K
∞
. Then, for any given 𝜌 > 0 satisfying

𝜇e−𝑐𝜌 < 1, system (1) is uniformly SISS over Smin(𝜌). In
particular, when 𝜇 = 1, system (1) is uniformly SISS over S

𝑎𝑙𝑙
.

Proof. By condition (i∗), (10) can be replaced by

𝐽 (𝑡) = E𝑉 (𝑡) e𝜆(𝑡−𝑡0) ⩽ E𝛼
2
(|𝑥 (𝑡)|) ⩽ E𝛼

2
(




𝜉




) ,

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(34)

Then, following the same lines of the proof ofTheorem 8, it is
easy to see that

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)E𝛼
2
(




𝜉




) +

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡
0
,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




})

(35)

holds for all 𝑡 ⩾ 𝑡
0
. Consequently, by Chebyshev’s inequality,

it follows that

𝑃{𝑉 (𝑡) − e−𝜆(𝑡−𝑡0)𝛼
2
(




𝜉




)

⩾ 𝛿(

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}))}

⩽ E𝑉 (𝑡) − E𝛼
2
(




𝜉




) e−𝜆(𝑡−𝑡0)

× (𝛿(

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




})))

−1

⩽ 𝜀,

(36)

where 𝜀 can be made arbitrarily small by an appropriate
choice of 𝛿 ∈ K

∞
. That is,

𝑃{𝑉 (𝑡) < e−𝜆(𝑡−𝑡0)𝛼
2
(




𝜉




)

+ 𝛿(

1

𝑐 − 𝑐

𝜒
1
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+

1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




}))}

> 1 − 𝜀,

(37)

which yields

𝑃{𝑉 (𝑡) < 𝛽 (




𝜉




, 𝑡 − 𝑡
0
) + 𝛾
𝑐
(




𝑢
𝑐




[𝑡
0
,𝑡]
)

+ 𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{




𝑢
𝑑
(𝑡
−

𝑘
)




})} > 1 − 𝜀,

(38)

where 𝛽(𝑟, 𝑠) = e−𝜆𝑠𝛼
2
(𝑟), 𝛾
𝑐
(𝑟) = 𝛿((2/(𝑐− 𝑐


))𝜒
1
(𝑟)), 𝛾

𝑑
(𝑟) =

𝛿((2/(1 − e−𝜆𝜌))𝜒
2
(𝑟)). By condition (i∗), we know that (3)

holds. Therefore, system (1) is uniformly SISS over Smin(𝜌)
and the proof is complete.

In view ofDefinitions 1–5, it is easy to obtain the following
criteria on p-GAS and GASiP according to Theorems 8 and
10.



Abstract and Applied Analysis 7

Corollary 11. Assume that there exist functions 𝑉 ∈ V
0
, 𝛼
1
∈

𝑐K
∞
, 𝛼
2
∈ VK

∞
and scalars 𝑞 > 1, 𝑐 > 0, 𝜇 ∈ [1, 𝑞) such

that

(i) 𝛼
1
(|𝑥|
𝑝
) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|
𝑝
);

(ii) EL𝑉(𝑡, 𝜑) ⩽ −𝑐E𝑉(𝑡, 𝜑(0)), for all 𝑡 ⩾ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
and

𝜑 ∈ 𝑃𝐶F
𝑡

([−𝜏, 0];R𝑛) whenever E𝑉(𝑡 + 𝜃, 𝜑(𝜃)) ⩽

𝑞E𝑉(𝑡, 𝜑(0));

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥, 𝑢
𝑑
)) ⩽ 𝜇E𝑉(𝑡

𝑘
, 𝑥).

Then, for any given 𝜌 > 0 satisfying 𝜇e−𝑐𝜌, system (1) is
uniformly p-GAS over Smin(𝜌). In particular, when 𝜇 = 1,
system (1) is uniformly p-GAS over S

𝑎𝑙𝑙
.

Corollary 12. Assume that conditions (ii) and (iii) of
Corollary 11 hold, while condition (i) is replaced by

(𝑖∗) 𝛼
1
(|𝑥|) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|),

where 𝛼
1
, 𝛼
2
∈ K
∞
. Then, for any given 𝜌 > 0 satisfying

𝜇e−𝑐𝜌 < 1, system (1) is uniformly GASiP over Smin(𝜌). In
particular, when 𝜇 = 1, system (1) is uniformly GASiP over
S
𝑎𝑙𝑙
.

Now let us apply the obtained results to the linear impul-
sive stochastic delayed system with the following form:

d𝑥 = (𝐴𝑥 (𝑡) + 𝐴
1
𝑥
𝜏
+ 𝐵𝑢
𝑐
(𝑡)) d𝑡

+ (𝐶𝑥 (𝑡) + 𝐶
1
𝑥
𝜏
+ 𝐷𝑢
𝑐
(𝑡)) d𝑤, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐸𝑥 (𝑡

−

𝑘
) + 𝐹𝑢

𝑑
(𝑡
−

𝑘
) , 𝑘 ∈ N,

(39)

on 𝑡 ⩾ 𝑡
0
with initial data 𝑥

𝑡
0

= 𝜉, where 𝑥 ∈ R𝑛 and 𝑢
𝑐
∈

L𝑚1
∞
, 𝑢
𝑑
∈ L𝑚2
∞

are system state and inputs, respectively; 𝑥
𝜏

is short for 𝑥(𝑡 − 𝜏); 𝐴, 𝐴
1
, 𝐵, 𝐶, 𝐶

1
, 𝐷, 𝐸, 𝐹 are constant

matrices with appropriate dimensions.

Corollary 13. Assume that there exist a matrix 𝑃 > 0 and
constants 𝜆

1
< 0, 𝜆

2
> 0, 𝜆

3
> 0, 𝜆

4
> 1, 𝜆

5
> 0 satisfying

𝜆
4
e(𝜆1+𝜆2𝑝)𝜌 < 1 such that the following matrix inequalities

hold:

[

[

𝐴
T
𝑃 + 𝑃𝐴 + 𝐶

T
𝑃𝐶 − 𝜆

1
𝑃 𝑃𝐴

1
+ 𝐶

T
𝑃𝐶
1

𝑃𝐵 + 𝐶
T
𝑃𝐷

∗ 𝐶
T
1
𝑃𝐶
1
− 𝜆
2
𝑃 𝐶

T
1
𝑃𝐷

∗ ∗ 𝐷
T
𝑃𝐷 − 𝜆

3
𝐼

]

]

⩽ 0,

[
𝐸
T
𝑃𝐸 − 𝜆

4
𝑃 𝐸

T
𝑃𝐹

∗ 𝐹
T
𝑃𝐹 − 𝜆

5
𝐼

] ⩽ 0.

(40)

Then system (39) is uniformly ISS inmean square and uniform-
ly SISS over Smin(𝜌).

Proof. We choose the candidate ISS-Lyapunov function
𝑉(𝑡, 𝑥) = 𝑥

T
𝑃𝑥. By using (40), and in view of the fact that

𝜆min(𝑃)|𝑥|
2
⩽ 𝑥

T
𝑃𝑥 ⩽ 𝜆max(𝑃)|𝑥|

2, we can obtain by simple
calculation that

L𝑉 (𝑡, 𝑥, 𝑢)

= (

𝑥

𝑥
𝜏

𝑢
𝑐

)

T

× (

𝐴
T
𝑃 + 𝑃𝐴 + 𝐶

T
𝑃𝐶 𝑃𝐴

1
+ 𝐶

T
𝑃𝐶
1
𝑃𝐵 + 𝐶

T
𝑃𝐷

∗ 𝐶
T
1
𝑃𝐶
1

𝐶
T
1
𝑃𝐷

∗ ∗ 𝐷
T
𝑃𝐷

)

× (

𝑥

𝑥
𝜏

𝑢
𝑐

)

⩽ 𝜆
1
𝑥
T
𝑃𝑥 + 𝜆

2
𝑥
T
𝜏
𝑃𝑥
𝜏
+ 𝜆
3
𝑢
T
𝑐
𝑢
𝑐
.

(41)

So, whenever E𝑉(𝑡 + 𝜃) ⩽ 𝑞E𝑉(𝑡), we have

EL𝑉 (𝑡, 𝑥, 𝑢) ⩽ (𝜆
1
+ 𝜆
2
𝑞)E𝑉 (𝑡, 𝑥) + 𝜆

3





𝑢
𝑐






2

. (42)

On the other hand,

𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (

𝑥

𝑢
𝑑

)

T
(
𝐸
T
𝑃𝐸 𝐸

T
𝑃𝐹

∗ 𝐹
T
𝑃𝐹

)(
𝑥

𝑢
𝑑

)

⩽ 𝜆
4
𝑥
T
𝑃𝑥 + 𝜆

5
𝑢
T
𝑑
𝑢
𝑑
.

(43)

So,

E𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) ⩽ 𝜆

4
E𝑉 (𝑡
−

𝑘
) + 𝜆
5





𝑢
𝑑






2

. (44)

It is obvious that all conditions of Theorem 8 are satisfied,
with 𝑐 = −(𝜆

1
+ 𝜆
2
𝑝) and 𝜇 = 𝜆

4
. Therefore, we conclude

byTheorems 8 and 10 that system (39) is uniformly p-ISS and
uniformly SISS over Smin(𝜌).

Remark 14. It is noted that (40) are not linear with the
combined variables (𝑃, 𝜆

1
, 𝜆
2
, 𝜆
4
), and, therefore, they are

not linear matrix inequalities (LMIs). This makes the com-
putation difficult but also flexible. We can first assign 𝜆

1
, 𝜆
2
,

and 𝜆
4
and then solve LMIs (40) by using the Matlab LMI

Toolbox.

4. Illustrative Example

In this section, to illustrate the validity of our results, we give
the following linear numerical example. We point out that,
due to the effect of the input 𝑢, the state 𝑥(𝑡)will not converge
to zero but will remain bounded (in the sense of mean square
or in probability), which is consistent with the definition of
p-ISS/SISS.
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0 2 4 6 8 10
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3.5

E
|x
(t
)|
2

Figure 1:Themean square of the solution with external input (2000
samples).

Example 1. Consider system (39) with the following parame-
ters:

𝐴 = diag (−3, −2.5) , 𝐴
1
= [

0.3 0.1

0.1 0.2
] , 𝐵 = [

0.1

0.1
] ,

𝐶 = [
0.2 0.4

0.3 0.1
] , 𝐶

1
= [

−0.2 0.1

0 0.3
] , 𝐷 = [

0.1

0.1
] ,

𝐸 = [
1.1 0.2

−0.3 1.2
] , 𝐹 = [

0.2

0.5
] .

(45)

Setting 𝜆
1
= −3.8, 𝜆

2
= 0.2, 𝜆

4
= 1.4, and solving LMIs

(40) by using the Matlab LMI Toolbox, then

𝑃 = [

395.5597 −72.7854

395.5597 269.6470
] , 𝜆

3
= 0.9546,

𝜆
5
= 3.5515

(46)

is a group of feasible solutions. Choosing 𝑝 = 1.41 > 𝜇 =

𝜆
4
= 1.4, 𝜌 = 0.1, it is easy to check that all the conditions

of Corollary 13 are satisfied, which means that the system is
uniform ISS in mean square and uniform SISS for arbitrary
sequence of impulse times satisfying inf{𝑡

𝑘
− 𝑡
𝑘−1

} ⩾ 0.1. The
sample path and themean square of the solution are displayed
in Figures 1 and 2, respectively, where 𝜏 = 0.5, initial data
𝜉(𝜃) = [1 −1]

T for 𝜃 ∈ [−0.5, 0], and impulse interval 𝑡
𝑘
−

𝑡
𝑘−1

= 0.1 and external inputs 𝑢
𝑐
(𝑡) = 𝑢

𝑑
(𝑡) = sin 𝑡.

As p-ISS/SISS implies p-GAS/GASiP of the correspond-
ing unforced system, we conclude that the system with 𝑢

𝑐
=

𝑢
𝑑

≡ 0 is uniform GAS in mean square and GASiP for
arbitrary sequence of impulse times satisfying inf{𝑡

𝑘
−𝑡
𝑘−1

} ⩾

0.1. The simulations of the unforced system are shown in
Figures 3 and 4.
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x
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)
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Figure 2: The state trajectory of the system with external input
(single sample).
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2
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Figure 3: The mean square of the solution without external input
(2000 samples).

5. Conclusions

This paper has investigated the p-ISS/SISS of impulsive
stochastic systems with external inputs. By combining
stochastic analysis techniques, piecewise continuous Lya-
punov functions, and Razumikhin techniques, sufficient
conditions for uniform p-ISS/SISS over a given class of
impulse times sequences have been established. As a byprod-
uct, the criteria on p-GAS/GASiP are also derived. For
future research, interesting topics may include establishing
p-ISS/SISS theorems with stabilizing impulses, as well as
p-ISS/SISS analysis by exploring new techniques such as
Lyapunov-Krosovskii functional method.
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Figure 4: The state trajectory of the system without external input
(single sample).
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This paper deals with the absolute stability for a class of nonlinear singular systems with time delay. By employing a new Lyapunov-
Krasovskii functional with the idea of partitioning delay length, improved delay-dependent stability criteria are established. The
resulting condition is formulated in terms of linear matrix inequalities (LMIs), which is easy to be verified by exiting LMI
optimization algorithms. A numerical example is given to show the effectiveness of the proposed technique and its improvements
over the existing results.

1. Introduction

Since the concept of absolute stability and the Lur’e prob-
lem were introduced, the absolute stability of Lur’e control
systems has received considerable attention and many rich
results have been proposed during the last decades [1]. Time
delays widely exist in practical systems, which is a source
of instability and deteriorated performance [2–4]. Therefore,
great efforts have been made to investigate the absolute
stability of Lur’e systems with time delay and many results
have been achieved [4–9].

Recently, an integral inequality approachwas proposed to
investigate the Lur’e system with time delay and new absolute
stability criteria were obtained [7]. In addition, as it is impos-
sible to reduce the conservatism of the derived conditions
by employing simple Lyapunov-Krasovskii functional, some
other efforts are made to improve the delay-dependent
conditions via introducing new Lyapunov-Krasovskii func-
tionals. For example, improved results for time delay systems
were obtained by introducing the augmented Lyapunov-
Krasovskii functional [10] and the delay-partitioning Lyapu-
nov-Krasovskii functional [5]. By employing a discretized
Lyapunov-Krasovskii functional, new absolute stability
condition for a class of nonlinear neutral systems is derived
in [11]. Although [11] can achieve less conservative results,

the condition was much more complicated than those based
on simple Lyapunov-Krasovskii functionals.

On the other hand, singular systems have been exten-
sively studied in the past few years due to the fact that
singular systems describe physical systems better than state-
space ones [12–15]. Depending on the area of application,
these models are also called descriptor systems, semistate
systems, differential-algebraic systems, or generalized state-
space systems. Therefore, the study of the absolute stability
problem for the Lur’e singular system with time delay is of
theoretical and practical importance [16].

In this paper, by employing the delay-partitioning
approach proposed in [17], we construct a new Lyapunov-
Krasovskii functional to investigate the absolute stability
of Lur’e singular systems with time delay. Improved delay-
dependent absolute stability criteria are presented. The cri-
teria are easy to follow, and those criteria obtained in [16] by
using simple Lyapunov-Krasovskii functional are involved in
our results. Numerical example is given to demonstrate the
advantage of the proposed method.
Notation. Throughout this paper, R𝑛 denotes the n-
dimensional Euclidean space; R𝑛×𝑚 is the set of all 𝑛 × 𝑚

real matrices; for a real matrix 𝑃, 𝑃 > 0 (resp., 𝑃 < 0) means
that 𝑃 is real symmetric and positive definite (resp., negative
definite); 𝐼 is an identity matrix of appropriate dimensions,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 927024, 6 pages
http://dx.doi.org/10.1155/2014/927024

http://dx.doi.org/10.1155/2014/927024


2 Abstract and Applied Analysis

and the symmetric terms in a symmetric matrix are denoted
by “∗.”

2. Problem Statement and Preliminaries

Consider the following system with time delay and sector-
bounded nonlinearity:

𝐸 ̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of the system; 𝑤(𝑡) ∈

R𝑚 and 𝑧(𝑡) ∈ R𝑚 are input vector and output vector,
respectively; 𝐸,𝐴, 𝐵,𝐷,𝑀,𝑁 are constant matrices, where 𝐸
may be singular and it is assumed that rank𝐸 = 𝑟 ≤ 𝑛 and that
the scalarℎ > 0 is the delay of the system; the initial condition,
𝜙(𝑡), is a continuous vector-valued function of 𝑡 ∈ [−ℎ, 0].
𝜑(𝑡, 𝑧(𝑡)) ∈ R𝑚 is a nonlinear function, which is piecewise
continuous in 𝑡, globally Lipschitz in 𝑧(𝑡), 𝜑(𝑡, 0) = 0, and
satisfies the following sector condition:

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
1
𝑧 (𝑡)]
𝑇

[𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
2
𝑧 (𝑡)] ≤ 0, (2)

where𝐾
1
and𝐾

2
are constant realmatrices and𝐾 = 𝐾

2
−𝐾
1
is

a symmetric positive definitematrix. It is customary that such
a nonlinear function 𝜑(𝑡, 𝑧(𝑡)) is said to belong to a sector
[𝐾
1
, 𝐾
2
].

In this paper, we also investigate the robust absolute
stability of the following uncertain system:

𝐸 ̇𝑥 (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + (𝐵 + Δ𝐵 (𝑡))

× 𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(3)

where the uncertainties are of the form

[Δ𝐴 (𝑡) Δ𝐵 (𝑡)] = 𝐿𝐹 (𝑡) [𝐸𝑎
𝐸
𝑏] , (4)

where 𝐿, 𝐸
𝑎
, and 𝐸

𝑏
are constant matrices, and 𝐹(𝑡) is a time-

varying matrix satisfying

𝐹
𝑇
(𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡. (5)

Next, the following definitions and lemmas are intro-
duced, which will be used in the proof of the main results.

Definition 1 (see [12]). (i) The pair (𝐸,𝐴) is said to be regular
if det(𝑠𝐸−𝐴) is not identically zero. (ii)The pair (𝐸,𝐴) is said
to be impulse-free if deg(det(𝑠𝐸 − 𝐴)) = rank E.

Definition 2 (see [12]). (i) The nonlinear singular system (1)
is said to be regular and impulse-free if the pair (𝐸,𝐴) is

regular and impulse-free. (ii) The nonlinear singular system
(1) is said to be globally uniformly asymptotically stable for
any nonlinear function 𝜑(𝑡, 𝑧(𝑡)) satisfying (2) if, for any 𝜖 >

0, there exists a scalar 𝛿(𝜖) such that, for any compatible
initial conditions 𝜙(𝑡) satisfying sup

−ℎ≤𝑡≤0
‖𝜙(𝑡)‖ ≤ 𝛿(𝜖), the

solution 𝑥(𝑡) of the system (1) satisfies ‖𝑥(𝑡)‖ ≤ 𝜖 for 𝑡 ≥ 0.
Furthermore, lim

𝑡→∞
𝑥(𝑡) = 0.

Lemma 3 (see [18]). Consider the function 𝜑 : R+ → R; if 𝜑
is uniformly continuous and ∫

∞

0
𝜑(𝑠)𝑑𝑠 < ∞, lim

𝑡→∞
𝜑(𝑡) =

0.

Lemma 4 (see [19]). For any symmetric positive-definite
matrix 𝑀 ∈ R𝑛×𝑛 and a scalar 𝛾 > 0, if there exists a vector
function𝜔(𝛼) : [−𝛾, 0] → R𝑛 such that the following integrals
are well defined, then

− 𝛾∫

0

−𝛾

̇𝜔(𝑡 + 𝛼)
𝑇
𝐸
𝑇
𝑀𝐸 ̇𝜔 (𝑡 + 𝛼) 𝑑𝛼

≤ [

𝜔 (𝑡)

𝜔 (𝑡 − 𝛾)
]

𝑇

[
−𝐸
𝑇
𝑀𝐸 𝐸

𝑇
𝑀𝐸

∗ −𝐸
T
𝑀𝐸

][

𝜔 (𝑡)

𝜔 (𝑡 − 𝛾)
] .

(6)

Lemma 5 (see [20]). Let 𝐻,𝐸, and 𝐹(𝑡) be real matrices of
appropriate dimensions with 𝐹(𝑡) satisfying 𝐹

𝑇
(𝑡)𝐹(𝑡) ≤ 𝐼.

Then, for any scalar 𝜀 > 0,

𝐻𝐹 (𝑡) 𝐸 + (𝐻𝐹 (𝑡) 𝐸)
𝑇
≤ 𝜀
−1
𝐻𝐻
𝑇
+ 𝜀𝐸
𝑇
𝐸. (7)

3. Main Results

Firstly, bymeans of the loop transformation suggested in [21],
it can be concluded that the absolute stability of system (1)
in the sector [𝐾

1
, 𝐾
2
] is equivalent to that of the following

system in the sector [0, 𝐾
2
− 𝐾
1
]:

𝐸 ̇𝑥 (𝑡) = ̄𝐴𝑥 (𝑡) + ̄𝐵𝑥 (𝑡 − ℎ) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ) ,

𝑤 (𝑡) = − 𝜑 (𝑡, 𝑧 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(8)

where ̄𝐴 = 𝐴 − 𝐷𝐾
1
𝑀, ̄𝐵 = 𝐵 − 𝐷𝐾

1
𝑁.

Thus, for the absolute stability of system (1), we have the
following result.

Theorem 6. Given integer 𝑘 and scalar 𝜏 = ℎ/𝑘 > 0, the
system (1) with nonlinear connection function satisfying (2) is
absolutely stable in the sector [𝐾

1
, 𝐾
2
] if there exist a scalar

𝜀 > 0, matrices

𝑃 = 𝑃
𝑇
> 0,

𝑄
𝑎
=

[
[
[
[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]
]
]
]

]

≥ 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, (𝑖 = 1, 2 . . . , 𝑘) ,

(9)



Abstract and Applied Analysis 3

and a matrix 𝑆 with appropriate dimensions, such that the
following LMI holds:

Φ = [

[

Φ
11

Φ
12

Φ
13

∗ Φ
22

0

∗ ∗ Φ
33

]

]

< 0, (10)

where

Φ
11

=
[
[

[

Π
1

𝑃 ̄𝐵 + 𝐸
𝑇
𝑍
1
𝐸 �̃�𝐷 − 𝜀𝑀

𝑇
(𝐾
2
− 𝐾
1
)
𝑇

∗ −𝑄
𝑘𝑘

− 𝐸
𝑇
𝑍
𝑘
𝐸 −𝜀𝑁

𝑇
(𝐾
2
− 𝐾
1
)
𝑇

∗ ∗ −2𝜀𝐼

]
]

]

,

Φ
12

= [

[

𝐸
𝑇
𝑍
1
𝐸 + 𝑄

12
𝑄
13

⋅ ⋅ ⋅ 𝑄
1𝑘

−𝑄
𝑇

1𝑘
⋅ ⋅ ⋅ −𝑄

𝑇

(𝑘−2)𝑘
𝐸
𝑇
𝑍
𝑘
𝐸 − 𝑄

𝑇

(𝑘−1)𝑘

0 ⋅ ⋅ ⋅ 0 0

]

]

,

Π
1
= 𝑃 ̄𝐴 + ̄𝐴

𝑇
�̃� + 𝑄

11
− 𝐸
𝑇
𝑍
1
𝐸, �̃� = 𝐸

𝑇
𝑃 + 𝑆𝑅

𝑇
,

Φ
22

=

[
[
[
[
[
[

[

Λ
1

Λ̄
1

̄𝑄
13

⋅ ⋅ ⋅ ̄𝑄
1(𝑘−1)

∗ Λ
2

Λ̄
2

⋅ ⋅ ⋅

...
∗ ∗ d d ̄𝑄

(𝑘−3)(𝑘−1)

∗ ∗ ∗ Λ
𝑘−2

Λ̄
𝑘−2

∗ ∗ ∗ ∗ Λ
𝑘−1

]
]
]
]
]
]

]

,

̄𝑄
𝑖𝑗
= 𝑄
(𝑖+1)(𝑗+1)

− 𝑄
𝑖𝑗
, Λ
𝑖
= −𝐸
𝑇
𝑍
𝑖
𝐸 − 𝐸

𝑇
𝑍
𝑖+1

𝐸 + ̄𝑄
𝑖𝑖
,

(𝑖, 𝑗 = 1, 2, . . . , 𝑘 − 1) ,

Λ̄
𝑖
= 𝐸
𝑇
𝑍
𝑖+1

𝐸 + ̄𝑄
𝑖(𝑖+1)

, (𝑖 = 1, 2, . . . , 𝑘 − 2) ,

Φ
13

= 𝜏Γ
𝑇

𝑘

∑

𝑖=1

𝑍
𝑖
, Φ
33

= −

𝑘

∑

𝑖=1

𝑍
𝑖
, Γ = [ ̄𝐴 ̄𝐵 𝐷]

(11)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying 𝑅𝑇𝐸 = 0.

Proof. Firstly, dividing the delay ℎ into 𝑘 equal segments, the
length of each segment is denoted as 𝜏; that is, 𝜏 = ℎ/𝑘.
Choosing a Lyapunov-Krasovskii functional is as follows:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇
(𝑡) 𝐸
𝑇
𝑃𝐸𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜁
𝑇

1
(𝑠) 𝑄
𝑎
𝜁
1
(𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

∫

−(𝑖−1)𝜏

−𝑖𝜏

∫

𝑡

𝑡+𝜃

𝜏 ̇𝑥
𝑇
(𝑠) 𝐸
𝑇
𝑍
𝑖
𝐸 ̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

(12)

where

𝑃 > 0,

𝑄
𝑎
=

[
[
[
[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]
]
]
]

]

≥ 0,

𝑍
𝑖
> 0, (𝑖 = 1, 2, . . . , 𝑘)

(13)

are to be determined and 𝜁
1
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝜏) ⋅ ⋅ ⋅

𝑥
𝑇
(𝑡 − (𝑘 − 1)𝜏)]

𝑇
.

Calculating the derivative of each 𝑉(𝑡, 𝑥
𝑡
) along the

solutions of system (8) yields

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇
(𝑡) (𝐸

𝑇
𝑃 ̄𝐴 + ̄𝐴

𝑇
𝑃𝐸) 𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝐸
𝑇
𝑃 ̄𝐵𝑥 (𝑡 − ℎ) + 2𝑥

𝑇
(𝑡) 𝐸
𝑇
𝑃𝐷𝑤 (𝑡)

+ 𝜁
𝑇

1
(𝑡) 𝑄
𝑎
𝜁
1
(𝑡) − 𝜁

𝑇

1
(𝑡 − 𝜏)𝑄

𝑎
𝜁
1
(𝑡 − 𝜏)

+ 𝜏
2

̇𝑥
𝑇
(𝑡)

𝑘

∑

𝑖=1

𝐸
𝑇
𝑍
𝑖
𝐸 ̇𝑥 (𝑡)

−

𝑘

∑

𝑖=1

∫

𝑡−(𝑖−1)𝜏

𝑡−𝑖𝜏

𝜏 ̇𝑥
𝑇
(𝑠) 𝐸
𝑇
𝑍
𝑖
𝐸 ̇𝑥 (𝑠) 𝑑𝑠.

(14)

Let 𝜃 = −∫

𝑡−(𝑖−1)𝜏

𝑡−𝑖𝜏
𝜏 ̇𝑥
𝑇
(𝑠)𝐸
𝑇
𝑍
𝑖
𝐸 ̇𝑥(𝑠)𝑑𝑠; using Lemma 4, we

have

𝜃 ≤ [

𝑥 (𝑡 − (𝑖 − 1) 𝜏)

𝑥 (𝑡 − 𝑖𝜏)
]

𝑇

[

−𝐸
𝑇
𝑍
𝑖
𝐸 𝐸
𝑇
𝑍
𝑖
𝐸

∗ −𝐸
𝑇
𝑍
𝑖
𝐸

]

× [
𝑥 (𝑡 − (𝑖 − 1)) 𝜏

𝑥 (𝑡 − 𝑖𝜏)
] .

(15)

From (1) and (2), for 𝜑(𝑡, 𝑧(𝑡)) ∈ [0, 𝐾
2
− 𝐾
1
] and a scalar

𝜀 > 0, it can be deduced that

0 ≤ −2𝜀𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 2𝜀𝑤

𝑇
(𝑡) (𝐾

2
− 𝐾
1
)

× [𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − ℎ)] .

(16)

Noting that 𝑅𝑇𝐸 = 0, we can deduce

0 = 𝑅
𝑇

̄𝐴𝑥 (𝑡) + 𝑅
𝑇

̄𝐵𝑥 (𝑡 − ℎ) + 𝑅
𝑇
𝐷𝑤 (𝑡) . (17)

From (14)–(17), we get

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝜁
𝑇
(𝑡) [Ψ + 𝜏

2
̄Γ
𝑇

𝑘

∑

𝑖=1

𝑍
𝑖
̄Γ] 𝜁 (𝑡) , (18)

where

Ψ = [
Φ
11

Φ
12

∗ Φ
22

] , ̄Γ = [ ̄𝐴 𝐵 𝐷 0]

𝜁 (𝑡) = [𝑥
𝑇
(𝑡) 𝑥
𝑇
(𝑡 − ℎ) 𝑤

𝑇
(𝑡) 𝜁
𝑇

2
(𝑡)]

𝑇

,

𝜁
𝑇

2
(𝑡) = [𝑥

𝑇
(𝑡 − 𝜏) 𝑥

𝑇
(𝑡 − 2𝜏) ⋅ ⋅ ⋅ 𝑥

𝑇
(𝑡 − (𝑘 − 1) 𝜏)]

𝑇

.

(19)

IfΨ+ 𝜏
2 ̄Γ
𝑇
∑
𝑘

𝑖=1
𝑍
𝑖
̄Γ < 0, which is equivalent to (10) by Schur

complements [22], then 𝑉(𝑡, 𝑥
𝑡
) < 0 holds.

In what follows, we show that the nonlinear singular
system (1) is regular and impulse-free. Since rank 𝐸 = 𝑟 ≤ 𝑛,
there exist two invertible matrices 𝐺 and𝐻 ∈ R𝑛×𝑛 such that

̄𝐸 = 𝐺𝐸𝐻 = [
𝐼
𝑟

0

0 0
] . (20)
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Then, 𝑅 can be parameterized as

𝑅 = 𝐺
𝑇
[

0

Φ̄
] , (21)

where Φ̄ ∈ R(𝑛−𝑟)×(𝑛−𝑟) is any nonsingular matrix.
Like in (20), we define

̄𝐴 = 𝐺𝐴𝐻 = [

̄𝐴
11

̄𝐴
12

̄𝐴
21

̄𝐴
22

] ,

̄𝑃 = 𝐺
−𝑇

𝑃𝐺
−1

= [

̄𝑃
11

̄𝑃
12

̄𝑃
21

̄𝑃
22

] ,

̄
𝑍
𝑖
= 𝐺
−𝑇

𝑍
𝑖
𝐺
−1

= [

̄
𝑍
𝑖11

̄
𝑍
𝑖12

̄
𝑍
𝑖21

̄
𝑍
𝑖22

] , (𝑖 = 1, 2, . . . , 𝑘) ,

̄𝑆 = 𝐻
𝑇
𝑆 = [

̄𝑆
11

̄𝑆
21

] , ̄𝑅 = 𝐺
−𝑇

𝑅 = [

0

Φ̄
] .

(22)

Since 𝐴𝑇(𝑃𝐸 + 𝑅𝑆
𝑇
) + (𝐸

𝑇
𝑃 + 𝑆𝑅

𝑇
)𝐴 + 𝑄

11
− 𝐸
𝑇
𝑍
1
𝐸 < 0

and𝑄
11

≥ 0, we can formulate the following inequality easily:

𝜓 = 𝐴
𝑇
(𝑃𝐸 + 𝑅𝑆

𝑇
) + (𝐸

𝑇
𝑃 + 𝑆𝑅

𝑇
)𝐴 − 𝐸

𝑇
𝑍
1
𝐸 < 0. (23)

Pre- and postmultiplying 𝜓 < 0 by 𝐻
𝑇 and 𝐻, respectively,

yield

̄𝜓 = 𝐻
𝑇
𝜓𝐻 = ̄𝐴

𝑇
̄𝑃 ̄𝐸 + ̄𝐴

𝑇
̄𝑅 ̄𝑆
𝑇
+ ̄𝐸
𝑇

̄𝑃 ̄𝐴 + ̄𝑆 ̄𝑅
𝑇

̄𝐴 − ̄𝐸
𝑇 ̄
𝑍
1

̄𝐸

= [

̄𝜓
11

̄𝜓
12

∗ ̄𝐴
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇 ̄𝐴
22

] < 0.

(24)

As ̄𝜓
11
and ̄𝜓

12
are irrelevant to the results of the following

discussion, the expressions about these two variables are
omitted here. It is easy to deduce from (24) that

̄𝐴
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇

̄𝐴
22

< 0 (25)

and thus ̄𝐴
22

is nonsingular. Otherwise, supposing 𝐴
22

is
singular, there must exist a nonzero vector 𝜍 ∈ R𝑛−𝑟 which
ensures that ̄𝐴

22
𝜍 = 0. And then it can be concluded that

𝜍
𝑇
( ̄𝐴
𝑇

22
Φ̄ ̄𝑆
𝑇

21
+ ̄𝑆
21
Φ̄
𝑇 ̄𝐴
22
)𝜍 = 0, and this contradicts (25). So

̄𝐴
22
is nonsingular. Then, it can be shown that

det (𝑠𝐸 − 𝐴) = det (𝐺−1) det (𝑠 ̄𝐸 − ̄𝐴) det (𝐻−1)

= det (𝐺−1) det (− ̄𝐴
22
)

× det (𝑠𝐼
𝑟
− ( ̄𝐴
11

− ̄𝐴
12

̄𝐴
−1

22
̄𝐴
21
)) det (𝐻−1)

(26)

which implies that det(𝑠𝐸 − 𝐴) is not identically zero and
deg(det(𝑠𝐸 − 𝐴)) = 𝑟 = rank 𝐸. Then, the pair of (𝐸, 𝐴)

is regular and impulse-free, which implies that system (1) is
regular and impulse-free.

Defining 𝜉(𝑡) = [
𝜉
1
(𝑡)

𝜉
2
(𝑡)

] = 𝐻
−1
𝑥(𝑡), then we have

̄
𝜆
1





𝜉
1
(𝑡)






2

− 𝑉 (𝑥 (0)) ≤ 𝜉
𝑇
(𝑡) ̄𝐸
𝑇

̄𝑃 ̄𝐸𝜉 (𝑡) − 𝑉 (𝑥 (0))

= 𝑥
𝑇
(𝑡) 𝐸
𝑇
𝑃𝐸𝑥 (𝑡) − 𝑉 (𝑥 (0))

≤ 𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0))

= ∫

𝑡

0

𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ −
̄

𝜆
2
∫

𝑡

0

‖𝑥 (𝑠)‖
2
𝑑𝑠

≤ −
̄

𝜆
2‖
𝐻‖
2
∫

𝑡

0





𝜉 (𝑠)






2

𝑑𝑠,

(27)

where ̄
𝜆
1
= 𝜆min( ̄𝑃

11
),

̄
𝜆
2
= −𝜆max(Φ).

Taking into account (27), we can deduce that

̄
𝜆
1





𝜉
1
(𝑡)






2

+
̄

𝜆
2‖
𝐻‖
2
∫

𝑡

0





𝜉 (𝑠)






2

𝑑𝑠 ≤ 𝑉 (𝑥 (0)) . (28)

Noting that ‖𝑥(𝑡)‖ and ∫

𝑡

0
‖𝑥(𝑠)‖

2
𝑑𝑠 are bounded, it fol-

lows that ‖𝜉(𝑡)‖ and∫

𝑡

0
‖𝜉(𝑠)‖

2
𝑑𝑠 are bounded; fromLemma 3,

one can conclude that lim
𝑡→∞

𝜉(𝑡) = 0; thus lim
𝑡→∞

𝑥(𝑡) = 0.
According to Definition 2, the singular system (8) is globally
uniformly asymptotically stable for 𝜑(𝑡, 𝑧(𝑡)) ∈ [0, 𝐾

2
−

𝐾
1
]. Thus the singular system (8) is absolutely stable in

the sector [0, 𝐾
2
− 𝐾
1
], which is equivalent to the absolute

stability of system (1) in the sector [𝐾
1
, 𝐾
2
]. This completes

the proof.

For uncertain system (3), substituting 𝐴 + 𝐿𝐹(𝑡)𝐸
𝑎
and

𝐵 + 𝐿𝐹(𝑡)𝐸
𝑏
for 𝐴 and 𝐵 in (10) and utilizing Lemma 5 and

Schur complements [22], we have the following result.

Theorem 7. Given integer 𝑘 and scalar 𝜏 = ℎ/𝑘 > 0,
the system (3) with nonlinear connection function satisfying
(2) and time-varying structured uncertainties satisfying (4) is
robustly absolutely stable in the sector [𝐾

1
, 𝐾
2
] if there exist

scalars 𝜀 > 0, 𝜆 > 0, matrices

𝑃 = 𝑃
𝑇
> 0,

𝑄
𝑎
=

[
[
[
[

[

𝑄
11

𝑄
12

⋅ ⋅ ⋅ 𝑄
1𝑘

∗ 𝑄
22

⋅ ⋅ ⋅ 𝑄
2𝑘

∗ ∗ d
...

∗ ∗ ∗ 𝑄
𝑘𝑘

]
]
]
]

]

≥ 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, (𝑖 = 1, 2 . . . , 𝑘) ,

(29)

and a matrix 𝑆 with appropriate dimensions, such that the
following LMI holds:

[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

�̂�𝐿 𝜆𝐸

∗ Φ
22

0 0 0

∗ ∗ Φ
33

𝜏

𝑘

∑

𝑖=1

𝑍
𝑖
𝐿 0

∗ ∗ ∗ −𝜆𝐼 0

∗ ∗ ∗ ∗ −𝜆𝐼

]
]
]
]
]
]
]
]

]

< 0, (30)
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Table 1: Maximum upper bounds of ℎ.

𝛼

0.15 0.5 1 1.5 2.5 3.5
[16, Theorem 3] 2.6556 2.3358 1.9489 1.6352 1.1780 0.8749
Theorem 7, 𝑘 = 2 3.7209 3.2715 2.7269 2.2848 1.6396 1.2103
Theorem 7, 𝑘 = 3 3.9351 3.4592 2.8824 2.4141 1.7303 1.2748
Theorem 7, 𝑘 = 4 4.0114 3.5262 2.9379 2.4600 1.7625 1.2976

where

�̂� = [

[

(𝐸
𝑇
𝑃 + 𝑆𝑅

𝑇
)

0

0

]

]

, 𝐸 =

[
[
[

[

𝐸
𝑇

𝑎

𝐸
𝑇

𝑏

0

]
]
]

]

(31)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying 𝑅

𝑇
𝐸 = 0; Φ

11
, Φ
12
, Φ
13
, Φ
22
, Φ
33

are defined in
Theorem 6.

Remark 8. It is worth mentioning that the conservatism is
reduced with the increase of 𝑘. At the same time, morematrix
variables are involved in the corresponding LMI, which will
increase the computing complexity.

Remark 9. In [5], some absolute stability conditions have
been obtained for Lur’e system with time delay based on a
delay-partitioning approach. However, the results proposed
in this paper achieve some improvement and are more
general than [5]. Let 𝐸 = 𝐼, 𝑆 = 0, and 𝑄

𝑖𝑗
= 0 (𝑖 ̸=𝑗) in

(30); Theorem 7 reduces to Theorem 3 in [5].

4. Numerical Example

In this section, we provide a numerical example to demon-
strate the effectiveness of the proposed method.

Example 10. Consider uncertain system (3) with the follow-
ing parameters:

𝐸 = [
1 0

0 0
] , 𝐴 = [

0.5 0

0 −1
] ,

𝐵 = [
−1.1 1

0 0.5
] , 𝐷 = [

0.2 0

0 0.1
] ,

𝑀 = [

0.4 0

0 0.5
] , 𝑁 = [

0.2 0

0 0.1
] ,

𝐾
1
= [

0.1 0

0 0.2
] , 𝐾

2
= [

0.2 0

0 0.5
] ,

𝐿 = [
𝛼 0

0 𝛼
] , 𝛼 ≥ 0, 𝐸

𝑎
= 𝐸
𝑏
= [

0.1 0

0 0.1
] .

(32)

In this example, we choose 𝑅 = [0 1]
𝑇. For various

𝛼, the maximum upper bounds of time delay obtained by
Theorem 7 are listed in Table 1 in comparison with those
obtained by [16]. It is clear that our approach provides larger

stability region than [16]. Furthermore, it is concluded from
the table that larger upper bounds of ℎ can be obtained as 𝑘
increases.

5. Conclusions

The absolute stability problem has been investigated for time
delay singular systems with sector-bounded nonlinearity.
Some improved conditions have been derived based on the
delay-partitioning approach. A numerical example has been
given to verify the effectiveness of the proposed methods.
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This paper considers the constrained multiagent optimization problem. The objective function of the problem is a sum of convex
functions, each of which is known by a specific agent only. For solving this problem, we propose an asynchronous distributed
method that is based on gradient-free oracles and gossip algorithm. In contrast to the existing work, we do not require that agents
be capable of computing the subgradients of their objective functions and coordinating their step size values as well. We prove that
with probability 1 the iterates of all agents converge to the same optimal point of the problem, for a diminishing step size.

1. Introduction

In recent years, the problem of solving convex optimization
problems over a network has attracted a lot of research atten-
tion; see [1–18]. The objective function of the problem is a
sum of convex functions, each of which is known by a specific
agent only. Such problems arise in many real applications
including distributed finite-time optimal rendezvous [2] and
distributed regression over sensor networks [5].Themethods
that are designed for solving these optimization problems
need to be fully distributed; that is, there does not exist a
central coordinator.

In this paper, we propose an asynchronous gossip-based
gradient-free method for solving the convex optimization
problem over a multiagent network. The method is based on
the gossip algorithm [19] and the gradient-free oracles [20].
The method is asynchronous in the sense that only one agent
communicates at a given time, in contrast to the synchronous
methods where all agents communicate simultaneously.
Moreover, the method does not rely on the assumption that
the information of the subgradients of the objective function
is available. As is well known that for a variety of reasons there
have been many instances where derivatives of the objective

functions are unavailable or computationally expensive to
calculate [20, 21].

Literature Review. In [3], the authors study the problem of
minimizing a sum of multiple convex functions, each of
which is known to one specific agent only.The authors use the
average consensus algorithm in the literature on multiagent
systems (see, e.g., [19, 22–26]) as a mechanism to develop a
distributed subgradient method for solving the optimization
problem; the convergence of the method is also given for a
constant step size. The authors in [7] further take the global
equality and inequality constraints into consideration. The
work in [2] proposes a variant of the distributed subgradient
method in [3], in which at each iteration several consensus
steps are executed, which simplifies the proof of the conver-
gence of the method. Inspired by the work in [2], the authors
in [6] further incorporate the global inequality constraints.
The aforementioned methods are synchronous because they
require that all agents in the network update at the same time.
To overcome this limitation, the work in [14] develops an
asynchronous distributed algorithm, based on the gossip
algorithm. The algorithm is asynchronous in the sense that
only one agent communicates at a given time. Moreover, all
agents use different step size values and they do not require
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any coordination of the agents. In [5], the author further
removes the need for bidirectional communications of the
asynchronous algorithm in [14]; the convergence of the algo-
rithm is also established. The aforementioned methods or
algorithms, however, rely on the assumption that the subgra-
dients of the objective functions are available to each agent,
respectively.

By comparison to previous work, the main contributions
of this paper are twofold: (i) different from the methods or
algorithms considered in existing papers, which rely on com-
puting the subgradients of each agent’s objective function,
we propose the derivative-free method which is based on
utilizing the random gradient-free oracles; (ii) the proposed
method is asynchronous, in the sense that all agents use dif-
ferent step size values that do not require any coordination of
the agents. We prove that with probability 1 the iterates of all
agents converge to the same optimal point of the problem, for
a diminishing step size.

Notation and Terminology. Let R𝑑 be the 𝑑-dimensional
vector space.We denote the standard inner product onR𝑑 by
⟨𝑎, 𝑏⟩ = ∑

𝑑

𝑖=1
𝑎
𝑖
𝑏
𝑖
, for 𝑎, 𝑏 ∈ R𝑑. We write ‖𝑥‖ to denote the

Euclidean norm of a vector 𝑥 and ΠX[𝑥] to denote the
Euclidean projection of a vector 𝑥 onX. We use 𝑥T to denote
the transpose of 𝑥. For amatrix P, [P]

𝑖𝑗
represents the element

in the 𝑖th row and 𝑗th columnof P, and PT represents its trans-
pose. We use E[𝑥] to denote the expected value of a random
variable 𝑥. For a function 𝑓, its gradient at a point 𝑥 is
represented by ∇𝑓(𝑥).

2. Problem Formulation

In this section, we start by describing the constrained multi-
agent optimization problem.Then, we provide some prelimi-
nary results on the gossip algorithm that we use in developing
the method.

2.1. Constrained Multiagent Optimization. We consider the
following constrained multiagent optimization problem:

min
𝑥∈X

𝑓 (𝑥) ≜

𝑁

∑

𝑖=1

𝑓
𝑖
(𝑥) , (1)

where 𝑥 ∈ R𝑑 is a decision vector;𝑓𝑖: R𝑑 → R is the convex
objective function of agent 𝑖 known only by agent 𝑖, and we
assume that 𝑓𝑖 is Lipschitz continuous overX with Lipschitz
constant 𝐿(𝑓𝑖);X ⊆ R𝑑 is a nonempty closed convex set. We
denote the optimal set of problem (1) byX∗, and we assume
that it is nonempty. Note that in problem (1), each function
𝑓
𝑖 need not be differentiable.

2.2. Gossip Algorithm. The underlying network topology of
problem (1) is denoted by𝐺 = (𝑉, 𝐸), where𝑉 = {1, . . . , 𝑁} is
the node set and𝐸 is the set of links {𝑖, 𝑗}with 𝑖 ̸= 𝑗 and {𝑖, 𝑗} ∈
𝐸 only if there is a link between agents 𝑖 and 𝑗.We assume that
the network 𝐺 is fixed, undirected, and connected.

In the paper, we utilize gossip algorithm as a mechanism
to design the method. To be specific, at each time instant,
agent 𝑖 is chosen with probability 1/𝑁, and then with some
positive probability, agent 𝑖 communicates with one of its
neighbors agent 𝑗. The iterations evolve as follows: for 𝑘 ≥ 0,

𝑥
𝑖

𝑘+1
= 𝑥
𝑗

𝑘+1
=

1

2

𝑥
𝑖

𝑘
+

1

2

𝑥
𝑗

𝑘
(2)

and for agents 𝑠 that do not belong to {𝑖, 𝑗}, update

𝑥
𝑠

𝑘+1
= 𝑥
𝑠

𝑘
. (3)

3. Gossip-Based Gradient-Free Method

In this section, motivated by the random gradient-free
method in [20] and the gossip algorithm in [19], we present an
asynchronous gossip-based gradient-free method for solving
problem (1). We use I

𝑘+1
to denote the index of the agent that

is chosen to update at time 𝑘+1 and J
𝑘+1

the index of the agent
communicating with agent I

𝑘+1
. The method is given as

follows.

Gossip-Based Gradient-Free Method with a Diminishing
Step Size

Initialize: choose random 𝑥
𝑖

0
∈ X, ∀𝑖 ∈ 𝑉.

Iteration (𝑘 ≥ 0):

(i) for 𝑖 ∈ {I
𝑘+1
, J
𝑘+1
}:

(1) compute 𝜑𝑖
𝑘+1

= (1/2)𝑥
I
𝑘+1

𝑘
+ (1/2)𝑥

J
𝑘+1

𝑘
;

(2) compute 𝑥𝑖
𝑘+1

= ΠX[𝜑
𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)], where 𝜎𝑖

𝑘
=

(Σ
𝑖

𝑘
)
−1, and Σ

𝑖

𝑘
denotes the number of updates that

agent 𝑖 has performed until time 𝑘, inclusively, and
G
𝜇
𝑖(𝑥
𝑖

𝑘
) is the random gradient-free oracle, given by

G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) =

𝑓
𝑖
(𝑥
𝑖

𝑘
+ 𝜇
𝑖

𝑘
]𝑖
𝑘
) − 𝑓
𝑖
(𝑥
𝑖

𝑘
)

𝜇
𝑖

𝑘

]𝑖
𝑘
, (4)

where 𝜇𝑖
𝑘
= 𝜇𝜎
𝑖

𝑘
, and 𝜇 is a positive constant; ]𝑖

𝑘
is a

random variable generated locally according to the
Gaussian distribution.

(ii) For 𝑖 ∉ {I
𝑘+1
, J
𝑘+1
}: 𝑥𝑖
𝑘+1

= 𝑥
𝑖

𝑘
.

We use F
𝑘
to denote the 𝜎-field generated by the entire

history of the random variables to iteration 𝑘; that is,

F
𝑘
= {𝑥
𝑖

0
, 𝑖 ∈ 𝑉} ∪ {I

𝑠+1
, J
𝑠+1
, ]I𝑠+1
𝑠
, ]J𝑠+1
𝑠
; 0 ≤ 𝑠 ≤ 𝑘 − 1} ,

(5)

whereF
0
= {𝑥
𝑖

0
, 𝑖 ∈ 𝑉}.

Themethod can be presented in amore compact form, by
defining the following weight matrix:

W
𝑘+1

= 𝐼 −

1

2

(𝑒I
𝑘+1

− 𝑒J
𝑘+1

) (𝑒I
𝑘+1

− 𝑒J
𝑘+1

)

T
, 𝑘 ≥ 0, (6)

where 𝐼 is the identity matrix and 𝑒
𝑖
∈ R𝑁 denotes the 𝑖th

standard basis vector. It is easy to see that W
𝑘+1

∈ R𝑁×𝑁 is
doubly stochastic.
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Now we can write the method as follows: for all 𝑘 ≥ 0 and
any 𝑖 ∈ 𝑉,

𝜑
𝑖

𝑘+1
=

𝑁

∑

𝑗=1

[W
𝑘+1
]
𝑖𝑗
𝑥
𝑗

𝑘
,

𝑥
𝑖

𝑘+1
= 𝜑
𝑖

𝑘+1
+ [ΠX [𝜑

𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)] − 𝜑

𝑖

𝑘+1
]

× 1
{𝑖∈{I
𝑘+1
,J
𝑘+1
}}
,

(7)

where 1
{𝑖∈{I
𝑘+1
,J
𝑘+1
}}
is the indicator function of the event {𝑖 ∈

{I
𝑘+1
, J
𝑘+1
}}. For the gradient-free oracleG

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
), we have the

following lemma, which is adopted from [20].

Lemma 1. For each 𝑖 ∈ {I
𝑘+1
, J
𝑘+1
} and all 𝑘 ≥ 0, one has the

following:

(a) E[G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) | F

𝑘
, I
𝑘+1
, J
𝑘+1
] = ∇𝑓

𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
), where

𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥) = (1/𝜅) ∫
R𝑑
𝑓
𝑖
(𝑥 + 𝜇

𝑖

𝑘
𝜉)𝑒
−(1/2)‖𝜉‖

2

𝑑𝜉 with 𝜅 =

∫
R𝑑
𝑒
−(1/2)‖𝜉‖

2

𝑑𝜉 = (2𝜋)
𝑑/2, and it satisfies:

𝑓
𝑖
(𝑥) ≤ 𝑓

𝑖

𝜇
𝑖

𝑘

(𝑥) ≤ 𝑓
𝑖
(𝑥) + 𝜇

𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
) . (8)

(b) E[‖G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)‖

2

| F
𝑘
, I
𝑘+1
, J
𝑘+1
] ≤ (𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
).

Remark 2. Note thatmethod (7) is asynchronous, in the sense
that to implement the method, each agent need not coordi-
nate its step size with the step sizes of its neighbors; the time-
varying parameters 𝜇𝑖

𝑘
(𝑘 ≥ 0, 𝑖 ∈ 𝑉) share the same

feature. In addition, to implement the method (7), the
information of subgradients of the objective functions is not
needed; however, each agent only needs tomake two function
evaluations per iteration to get the gradient-free oracle.

Let E𝑖
𝑘
= {𝑖 ∈ {I

𝑘
, J
𝑘
}} be the event that agent 𝑖 updates at

time 𝑘 and 𝜋𝑖 the probability of eventE𝑖
𝑘
. It is easy to see that

𝜋
𝑖
=

1

𝑁

+

1

𝑁

∑

𝑗∈𝑁
𝑖

𝜋
𝑗𝑖
, (9)

where𝑁𝑖 denotes the set that contains all agents that are nei-
ghboring to agent 𝑖 and 𝜋

𝑗𝑖
> 0 denotes the probability that

agent 𝑖 is chosen by its neighbor 𝑗 to communicate. In the
paper, we denote ̌𝜋 = min

𝑖∈𝑉
𝜋
𝑖 and �̂� = max

𝑖∈𝑉
𝜋
𝑖, respec-

tively. There is an interesting link between the step size 𝜎𝑖
𝑘
=

(Σ
𝑖

𝑘
)
−1 and the probability 𝜋𝑖 that agent 𝑖 updates.

Lemma 3 (see [17]). Let 𝜋min = min
{𝑖,𝑗}∈𝐸

𝜋
𝑖𝑗
. Let 𝜎𝑖

𝑘
= (Σ
𝑖

𝑘
)
−1

for all 𝑘 ≥ 1 and 𝑖 ∈ 𝑉, and also let 𝑒 be a scalar such that 0 <
𝑒 < 1/2.Then, there exists a large enough ̃𝑘 = ̃𝑘(𝑒,𝑁) such that
with probability 1 for all 𝑘 ≥ ̃𝑘 and 𝑖 ∈ 𝑉,

(a) 𝜎𝑖
𝑘
≤ 2/𝑘𝜋

𝑖;

(b) (𝜎𝑖
𝑘
)

2

≤ 4𝑁
2
/𝑘
2
(1 + 𝜋min)

2;

(c) |𝜎𝑖
𝑘
− (1/𝑘𝜋

𝑖
)| ≤ 2/𝑘

3/2−𝑒
(1 + 𝜋min)

2.

To establish the convergence of method (7), we also make
use of the following lemma.

Lemma 4 (see [5]). Let {𝑢
𝑘
}, {V
𝑘
}, {𝑎
𝑘
}, and {𝑤

𝑘
} be nonnega-

tive random sequences such that for all 𝑘 ≥ 1, E[𝑢
𝑘+1

| 𝐹
𝑘
] ≤

(1 + 𝑎
𝑘
)𝑢
𝑘
− V
𝑘
+ 𝑤
𝑘
with probability 1, where 𝐹

𝑘
= {{𝑢
𝑠
, V
𝑠
, 𝑎
𝑠
,

𝑤
𝑠
}; 1 ≤ 𝑠 ≤ 𝑘}. If ∑∞

𝑘=1
𝑎
𝑘
< ∞ and ∑∞

𝑘=1
𝑤
𝑘
< ∞ with

probability 1, then, with probability 1, the sequence {𝑢
𝑘
} con-

verges to some random variable and ∑∞
𝑘=1

V
𝑘
< ∞.

We now present the main result of the paper, which is
given in the following theorem.

Theorem 5. Let {𝑥𝑖
𝑘
}, 𝑖 ∈ 𝑉, be the sequences generated by

method (7) with 𝜎
𝑖

𝑘
= (Σ
𝑖

𝑘
)
−1 and 𝜇

𝑖

𝑘
= 𝜇𝜎

𝑖

𝑘
, where 𝜇 is

some positive constant. Assume that problem (1) has a non-
empty optimal set X∗. Also, assume that the sequence {]𝑖k; 𝑖 ∈
{I
𝑘+1
, J
𝑘+1
}} is independent and identically distributed. Then

the sequences {𝑥𝑖
𝑘
}, 𝑖 ∈ 𝑉, converge to the same random point

inX∗ with probability 1.

Proof. For 𝑘 ≥ 0 and 𝑖 ∈ {I
𝑘+1
, J
𝑘+1
}, we have for any 𝑥 ∈ X,






𝑥
𝑖

𝑘+1
− 𝑥







2

=






ΠX [𝜑

𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)] − 𝑥







2

≤






𝜑
𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) − 𝑥







2

≤






𝜑
𝑖

𝑘+1
− 𝑥







2

+ (𝜎
𝑖

𝑘
)

2




G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

− 2𝜎
𝑖

𝑘
⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

=






𝜑
𝑖

𝑘+1
− 𝑥







2

+ (𝜎
𝑖

𝑘
)

2




G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

−

2

𝑘𝜋
𝑖
⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

− 2 (𝜎
𝑖

𝑘
−

1

𝑘𝜋
𝑖
) ⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ ,

(10)

where the first inequality follows from the nonexpansive
property of the projection operation. For 𝑘 ≥ ̃

𝑘, by recalling
Lemma 3(c), with probability 1 the last term on the right-
hand side of (10) can be bounded as follows:

− 2 (𝜎
𝑖

𝑘
−

1

𝑘𝜋
𝑖
) ⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

≤

2

𝑘
3/2−𝑒

(1 + 𝜋min)
2
(






G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

+






𝜑
𝑖

𝑘+1
− 𝑥







2

) .

(11)

Substituting the preceding inequality into (10) gives






𝑥
𝑖

𝑘+1
− 𝑥







2

≤ (1 +

2

𝑘
3/2−𝑒

(1 + 𝜋min)
2
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ ((𝜎
𝑖

𝑘
)

2

+

2

𝑘
3/2−𝑒

(1 + 𝜋min)
2
)






G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

−

2

𝑘𝜋
𝑖
⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ .

(12)
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To simplify the notation, we denote 𝐴
𝑘
= 2/𝑘

3/2−𝑒
(1 + 𝜋min)

2

and 𝐵
𝑘
= 4𝑁
2
/𝑘
2
(1+𝜋min)

2
+𝐴
𝑘
; then from Lemma 3(b) and

(12) it follows that with probability 1 for all 𝑘 ≥
̃
𝑘 and 𝑖 ∈

{I
𝑘+1
, J
𝑘+1
},






𝑥
𝑖

𝑘+1
− 𝑥







2

≤ (1 + 𝐴
𝑘
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ 𝐵
𝑘






G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

−

2

𝑘𝜋
𝑖
⟨G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ .

(13)

Taking the conditional expectation on F
𝑘
, I
𝑘+1

and J
𝑘+1

jointly yields

E [





𝑥
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
, I
𝑘+1
, J
𝑘+1
]

≤ (1 + 𝐴
𝑘
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ 𝐵
𝑘
E [






G
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)







2

| F
𝑘
, I
𝑘+1
, J
𝑘+1
]

−

2

𝑘𝜋
𝑖
⟨E [G

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) | F
𝑘
, I
𝑘+1
, J
𝑘+1
] , 𝜑
𝑖

𝑘+1
− 𝑥⟩

≤ (1 + 𝐴
𝑘
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ 𝐵
𝑘
(𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
)

−

2

𝑘𝜋
𝑖
⟨∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ ,

(14)

where the last inequality follows fromusing Lemma 1. For the
last term on the right-hand side of the preceding inequality,
we can derive

−

2

𝑘𝜋
𝑖
⟨∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

= −

2

𝑘𝜋
𝑖
⟨∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝑥
𝑖

𝑘
− 𝑥⟩

−

2

𝑘𝜋
𝑖
⟨∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘
⟩

≤ −

2

𝑘𝜋
𝑖
[𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) − 𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥)]

+

2

𝑘𝜋
𝑖







∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)













𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘







≤ −

2

𝑘𝜋
𝑖
[𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) − 𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥)]

+

2

𝑘𝜋
𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)






𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






,

(15)

where in the last inequality we have use the bound
‖∇𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
)‖ ≤ (𝑑+4)𝐿(𝑓

𝑖
), according to Lemma 1. Hence, sub-

stituting (15) into (14) yields

E [





𝑥
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
, I
𝑘+1
, J
𝑘+1
]

≤ (1 + 𝐴
𝑘
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ 𝐵
𝑘
(𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
)

−

2

𝑘𝜋
𝑖
[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)] +

2

𝑘𝜋
𝑖
𝜇
𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
)

+

2

𝑘𝜋
𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)






𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






,

(16)

where we have used the inequalities 𝑓𝑖
𝜇
𝑖

𝑘

(𝑥
𝑖

𝑘
) ≥ 𝑓

𝑖
(𝑥
𝑖

𝑘
) and

𝑓
𝑖

𝜇
𝑖

𝑘

(𝑥) ≤ 𝑓
𝑖
(𝑥)+𝜇

𝑖

𝑘
√𝑑𝐿(𝑓

𝑖
), based on Lemma 1(a). Using the

fact that 𝜇𝑖
𝑘
= 𝜇𝜎
𝑖

𝑘
and Lemma 3(a), we obtain

2

𝑘𝜋
𝑖
𝜇
𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
) ≤

4𝜇

𝑘
2
(𝜋
𝑖
)
2

√𝑑𝐿 (𝑓
𝑖
) (17)

which implies

E [





𝑥
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
, I
𝑘+1
, J
𝑘+1
]

≤ (1 + 𝐴
𝑘
)






𝜑
𝑖

𝑘+1
− 𝑥







2

+ 𝐵
𝑘
(𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
)

+

4𝜇

𝑘
2
(𝜋
𝑖
)
2

√𝑑𝐿 (𝑓
𝑖
) −

2

𝑘𝜋
𝑖
[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)]

+

2

𝑘𝜋
𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)






𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






.

(18)

Taking the expectation with respect toF
𝑘
and using the fact

the preceding inequality holds with probability𝜋𝑖, and 𝑥𝑖
𝑘+1

=

𝜑
𝑖

𝑘+1
with probability 1−𝜋𝑖, we obtainwith probability 1 for all

𝑘 ≥
̃
𝑘 and 𝑖 ∈ 𝑉,

E [





𝑥
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
]

≤ (1 + 𝜋
𝑖
𝐴
𝑘
)E [






𝜑
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
]

+ 𝜋
𝑖
𝐵
𝑘
(𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
)

+

4𝜇

𝑘
2
𝜋
𝑖

√𝑑𝐿 (𝑓
𝑖
) −

2

𝑘

[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)]

+

2

𝑘

(𝑑 + 4) 𝐿 (𝑓
𝑖
)E [






𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






| F
𝑘
] .

(19)

Summing the above inequality for 𝑖 = 1, . . . , 𝑁, and noting
that ̌𝜋 = min

𝑖∈𝑉
𝜋
𝑖, �̂� = max

𝑖∈𝑉
𝜋
𝑖 and denoting �̂�(𝑓) =

max
𝑖∈𝑉
𝐿(𝑓
𝑖
), we obtain with probability 1 for all 𝑘 ≥

̃
𝑘 and

𝑖 ∈ 𝑉,

𝑁

∑

𝑖=1

E [





𝑥
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
]

≤ (1 + �̂�𝐴
𝑘
)

𝑁

∑

𝑖=1

E [





𝜑
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
]

+ 𝑁�̂�𝐵
𝑘
(𝑑 + 4)

2
�̂�
2
(𝑓) +

4𝑁𝜇

𝑘
2
̌𝜋

√𝑑�̂� (𝑓)

−

2

𝑘

[𝑓 (𝑥
𝑘
) − 𝑓 (𝑥)] +

2

𝑘

�̂� (𝑓)

𝑁

∑

𝑖=1






𝑥
𝑖

𝑘
− 𝑥
𝑘







+

2

𝑘

(𝑑 + 4) �̂� (𝑓)

𝑁

∑

𝑖=1

E [





𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






| F
𝑘
] ,

(20)
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where 𝑥
𝑘
= (1/𝑁)∑

𝑁

𝑖=1
𝑥
𝑖

𝑘
and we have used the following

inequality:

𝑁

∑

𝑖=1

[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥
𝑘
)] ≥ −

𝑁

∑

𝑖=1

𝐿 (𝑓
𝑖
)






𝑥
𝑖

𝑘
− 𝑥
𝑘







≥ −�̂� (𝑓)

𝑁

∑

𝑖=1






𝑥
𝑖

𝑘
− 𝑥
𝑘






.

(21)

Now by using the definition of the weight matrix W
𝑘+1

and
the convexity of the squared norm it follows that

𝑁

∑

𝑖=1

E [





𝜑
𝑖

𝑘+1
− 𝑥







2

| F
𝑘
] ≤

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[W
𝑘+1
]
𝑖𝑗






𝑥
𝑗

𝑘
− 𝑥







2

=

𝑁

∑

𝑗=1






𝑥
𝑗

𝑘
− 𝑥







2

(22)

which yields the final bound for all 𝑘 ≥
̃
𝑘 and 𝑖 ∈ 𝑉 with

probability 1:

𝑁

∑

𝑖=1

E [





𝑥
𝑖

𝑘+1
− 𝑥
∗




2

| F
𝑘
]

≤ (1 + �̂�𝐴
𝑘
)

𝑁

∑

𝑖=1






𝑥
𝑖

𝑘
− 𝑥
∗




2

+ 𝑁�̂�𝐵
𝑘
(𝑑 + 4)

2
�̂�
2
(𝑓)

+

4𝑁𝜇

𝑘
2
̌𝜋

√𝑑�̂� (𝑓) −

2

𝑘

[𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

∗
)]

+

2

𝑘

(2𝑑 + 9) �̂� (𝑓)𝑁max
𝑖∈𝑉






𝑥
𝑖

𝑘
− 𝑥
𝑘






,

(23)

where 𝑥∗ ∈ X∗ and we have used the following inequality:

𝑁

∑

𝑖=1

E [





𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘






| F
𝑘
]

≤

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[W
𝑘+1
]
𝑖𝑗






𝑥
𝑗

𝑘
− 𝑥
𝑖

𝑘






≤ 2𝑁max

𝑖∈𝑉






𝑥
𝑖

𝑘
− 𝑥
𝑘






.

(24)

Nowwe are ready to establish the convergence of themethod.
First, note that

∞

∑

𝑘=1

�̂�𝐴
𝑘
< ∞,

∞

∑

𝑘=1

𝑁�̂�𝐵
𝑘
(𝑑 + 4)

2
�̂�
2
(𝑓) +

∞

∑

𝑘=1

4𝑁𝜇

𝑘
2
̌𝜋

√𝑑�̂� (𝑓) < ∞

(25)

which can be easily seen from the explicit expressions for 𝐴
𝑘

and 𝐵
𝑘
. For the termmax

𝑖∈𝑉
‖𝑥
𝑖

𝑘
−𝑥
𝑘
‖, we can follow an argu-

ment similar to the proof of Lemma4 in [5] andderive that for
each 𝑖 ∈ 𝑉,∑∞

𝑘=1
(1/𝑘)‖𝑥

𝑖

𝑘
−𝑥
𝑘
‖ < ∞ and lim

𝑘→∞
‖𝑥
𝑖

𝑘
−𝑥
𝑘
‖ =

0, which gives
∞

∑

𝑘=1

2

𝑘

(2𝑑 + 9) �̂� (𝑓)𝑁max
𝑖∈𝑉






𝑥
𝑖

𝑘
− 𝑥
𝑘






< ∞. (26)

Hence, combining the preceding fact with Lemma 4,
which we can obtain with probability 1, the sequence
{E[‖𝑥𝑖

𝑘
− 𝑥
∗
‖

2

]} converges for any 𝑥∗ ∈ X∗, and ∑
∞

𝑘=1
(1/

𝑘)[𝑓(𝑥
𝑘
)−𝑓(𝑥

∗
)] < ∞ (note that 𝑥

𝑘
∈ X, and hence 𝑓(𝑥

𝑘
)−

𝑓(𝑥
∗
) ≥ 0), which implies

lim inf
𝑘→∞

𝑓 (𝑥
𝑘
) = 𝑓 (𝑥

∗
) . (27)

This, along with the fact that the sequence {E[‖𝑥𝑖
𝑘
− 𝑥
∗
‖

2

]}

converges for any 𝑥∗ ∈ X∗ and lim
𝑘→∞

‖𝑥
𝑖

𝑘
− 𝑥
𝑘
‖ = 0, gives

our final statement, that is, lim
𝑘→∞

𝑥
𝑖

𝑘
= 𝑥
∗ for all 𝑖 ∈ 𝑉 with

probability 1.

Remark 6. Note that other choices of the parameters 𝜇𝑖
𝑘
(𝑘 ≥

0, 𝑖 ∈ 𝑉) are possible. For example, we can set 𝜇𝑖
𝑘
= 𝜇√𝜎

𝑖

𝑘
, for

all 𝑘 ≥ 0 and any 𝑖 ∈ 𝑉, under which case the convergence of
the method (7) can also be established.

Remark 7. In contrast to the subgradient-based methods in
[1–3], the implementation of the proposed method does not
need the information of subgradients but only the function
values. This makes our method suitable for the cases where
explicit gradient calculations are computationally infeasible
or expensive. In contrast to the gradient-free method in [13],
the proposed method is asynchronous and the step sizes do
not require any coordination of the agents.

4. Conclusion

In this paper, we have considered the constrained multiagent
optimization problem. We present an asynchronous method
that is based on the gossip algorithm and the gradient-free
oracles for solving the problem. The proposed method
removes the need for synchronous communications and the
information of the subgradients as well. Finally, we prove that
with probability 1 the iterates of all agents converge to the
same optimal point of the problem, for a diminishing step
size. There are several interesting questions that remain to be
explored. For instance, it would be interesting to study the
case of constant step size; it would be also interesting to study
the effects of message quantization on the proposed method.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant no. 61304042, the Natural
Science Foundation of Jiangsu Province under Grant no.
BK20130856, the Jiangsu Planned Projects for Postdoctoral
Research Funds under Grant no. 1302003A, and Nanjing
University of Posts and Telecommunications under Grant no.
NY213041.



6 Abstract and Applied Analysis

References

[1] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging
for distributed optimization: convergence analysis and network
scaling,” IEEE Transactions on Automatic Control, vol. 57, no. 3,
pp. 592–606, 2012.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving
convex optimization problems,” in Proceedings of the 47th IEEE
Conference on Decision and Control (CDC ’08), pp. 4185–4190,
Cancun, Mexico, December 2008.
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[8] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,”
Journal of Optimization Theory and Applications, vol. 147, no. 3,
pp. 516–545, 2010.

[9] M. G. Rabbat and R. D. Nowak, “Distributed optimization in
sensor networks,” in Proceedings of the 3rd International Sym-
posium on Information Processing in Sensor Networks, pp. 20–27,
Berkeley, Calif, USA, 2004.

[10] J. Lu, C. Y. Tang, P. R. Regier, and T. D. Bow, “Gossip algorithms
for convex consensus optimization over networks,” IEEE Trans-
actions onAutomatic Control, vol. 56, no. 12, pp. 2917–2923, 2011.

[11] D. Yuan, S. Xu, H. Zhao, and L. Rong, “Distributed dual averag-
ing method for multi-agent optimization with quantized com-
munication,” Systems & Control Letters, vol. 61, no. 11, pp. 1053–
1061, 2012.

[12] D. Yuan, S. Xu, B. Zhang, and L. Rong, “Distributed primal-dual
stochastic subgradient algorithms for multi-agent optimization
under inequality constraints,” International Journal of Robust
and Nonlinear Control, vol. 23, no. 16, pp. 1846–1868, 2013.

[13] D. Yuan, S. Xu, and J. Lu, “Gradient-free method for distributed
multi-agent optimization via push-sum algorithms,” Interna-
tional Journal of Robust and Nonlinear Control. In press.
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Multigranulation rough set is an extension of classical rough set, and optimistic multigranulation and pessimistic multigranulation
are two special cases of it. 𝛽 multigranulation rough set is a more generalized multigranulation rough set. In this paper, we first
introduce fuzzy rough theory into 𝛽 multigranulation rough set to construct a 𝛽 multigranulation fuzzy rough set, which can be
used to deal with continuous data; then some properties are discussed. Reduction is an important issue of multigranulation rough
set, and an algorithm of granular space reduction to 𝛽multigranulation fuzzy rough set for preserving positive region is proposed.
To test the algorithm, experiments are taken on five UCI data sets with different values of 𝛽. The results show the effectiveness of
the proposed algorithm.

1. Introduction

Qian et al. [1–3] proposed a multigranulation rough set,
which is constructed on a family of granular structures and
is different from Pawlak’s rough set [4–7]. Qian’s multigran-
ulation rough set can be used to approximate an unknown
concept through a family of binary relations; each binary
relation can generate a granulation space, which may be
partition [1], covering [8, 9] or even neighborhood system
[10–12] on the universe of discourse.

Qian’s rough set includes two basic models, one is opti-
misticmultigranulation rough set and the other is pessimistic
multigranulation rough set.Theword “optimistic”means that
at least one of the granulation spaces can be used for approx-
imating while the word “pessimistic” means that all of the
granulation spaces should be used for approximating. In these
two models, all of the binary relations, or granulation spaces,
are presented simultaneously; therefore, optimistic and pes-
simistic are two special cases of multigranulation rough set.
To get amore suitablemodel for practical application, Xu et al.
[13] proposed a more generalized multigranulation rough

set, called 𝛽 multigranulation rough set that designed by a
threshold 𝛽 for controlling the number of the equivalence
classes, which are contained in the target.

In recent years, the multigranulation approach has
attracted many researchers’ attention [14–18]. Xu et al.
generalized multigranulation fuzzy rough sets to tolerance
approximation space to construct optimistic and pessimistic
multigranulation fuzzy rough sets models [14]. Qian et al.
further generalized their optimistic multigranulation rough
set into incomplete information system [15]. In [16] Yang et
al. introduced fuzzy theory into multigranulation rough set,
which employed the T-similarity relations (reflexive, sym-
metric, and T-transitive) to construct the multigranulation
fuzzy rough sets. Therefore, how to generalize multigranula-
tion rough set is an important research field, as we all know
how to introduce the fuzzy case to rough set model plays an
important role in the development of rough set theory; fuzzy
rough set [19] has attracted increasing attention from the
domains of machine learning and intelligence data analysis.
So, it is not difficult to introduce fuzzy rough set theory into
𝛽multigranulation rough set.

Hindawi Publishing Corporation
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Granular space reduction is an important issue of multi-
granulation rough set and it is recently researched by many
scholars [20–24]. In this paper, we focus on the problem
to deal with 𝛽 multigranulation rough set. Hu et al. in
[25] proposed a fuzzy-rough attribute reduction. Motivated
by this idea, we will introduce fuzzy rough set into 𝛽

multigranulation rough set to construct 𝛽 multigranulation
fuzzy rough set model and design an algorithm of granular
space reduction to 𝛽 multigranulation fuzzy rough set.
The algorithm can be used to granular space reduction in
multigranular structures for preserving positive region of 𝛽
multigranulation fuzzy rough set and will be very useful in
big continuous data.

The purpose of this paper is to further generalize 𝛽multi-
granulation rough set to fuzzy environment. To facilitate our
discussion, we first present some basic knowledge of rough
set in Section 2. In Section 3, 𝛽multigranulation fuzzy rough
set will be constructed and the properties will be discussed.
In Section 4, an algorithm of granular space reduction to
𝛽 multigranulation fuzzy rough set will be proposed and
experiments are taken on five UCI data sets. In Section 5,
conclusion is made.

2. Preliminaries

2.1. Rough Sets. Formally, a decision system is an information
system 𝐼 = ⟨𝑈, 𝐴𝑇∪𝐷⟩, in which𝑈 is a nonempty finite set of
objects called the universe of discourse and𝐴𝑇 is a nonempty
finite set of the condition attributes;𝐷 is the set of the decision
attributes and 𝐴𝑇 ∩ 𝐷 = ⌀.

For all 𝑥 ∈ 𝑈, let us denote by 𝑎(𝑥) the value that 𝑥
holds on 𝑎 (𝑎 ∈ 𝐴𝑇). For an information system 𝐼, one then
can describe the relationship between objects through their
attributes’ values. With respect to a subset of attributes such
that 𝐴 ⊆ 𝐴𝑇, an indiscernibility relation IND (𝐴𝑇) may be
defined as

IND (𝐴𝑇) = {(𝑥, 𝑦) ∈ 𝑈
2
: 𝑎 (𝑥) = 𝑎 (𝑦) , ∀𝑎 ∈ 𝐴𝑇} . (1)

The relation IND (𝐴𝑇) is reflexive, symmetric, and tran-
sitive; then IND (𝐴𝑇) is an equivalence relation.

Definition 1. Let 𝐼 = ⟨𝑈, 𝐴𝑇 ∪ 𝐷⟩ be a knowledge base
in which 𝐴 ⊆ 𝐴𝑇, for all 𝑋 ⊆ 𝑈, the lower and upper
approximations of 𝑋 in terms of the equivalence relation
IND(𝐴𝑇) are denoted by 𝐴𝑇(𝑋) and 𝐴𝑇(𝑋), respectively:

𝐴𝑇 (𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴𝑇
⊆ 𝑋} ,

𝐴𝑇 (𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴𝑇
∩ 𝑋 ̸=⌀} ,

(2)

where [𝑥]
𝐴𝑇

is the equivalence class based on indiscernibility
relation IND(𝐴𝑇) and is denoted as [𝑥]

𝐴𝑇
= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈

IND(𝐴𝑇)}.
(𝐴(𝑋), 𝐴(𝑋)) is referred to as Pawlak’s rough set.

2.2. Multigranulation Rough Set. Multigranulation rough set
is different fromPawlak’s rough set.The former is constructed
on a family of the equivalence relations, and the latter is

constructed on an equivalence relation. In Qian et al.’s multi-
granulation rough set theory, two basic models were defined.
The first one is the optimistic multigranulation rough set,
and the second one is the pessimistic multigranulation rough
set.

Definition 2. Let 𝑆 be an information system in which
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
⊆ 𝐴𝑇; for all 𝑋 ⊆ 𝑈, the optimistic multi-

granulation lower and upper approximations are denoted by
∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋) and ∑𝑚
𝑖=1

𝐴
𝑖

𝑂

(𝑋), respectively:

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴
1

⊆ 𝑋 ∨ ⋅ ⋅ ⋅ ∨ [𝑥]𝐴
𝑚

⊆ 𝑋}

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) = ∼

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(∼ 𝑋) ,

(3)

where ∼ 𝑋 is the complementary set of𝑋.

Definition 3. Let 𝑆 be an information system in which
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
⊆ 𝐴𝑇; for all 𝑋 ⊆ 𝑈, the pessimistic multi-

granulation lower and upper approximations are denoted by
∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋) and ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋), respectively:

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴
1

⊆ 𝑋 ∧ ⋅ ⋅ ⋅ ∧ [𝑥]𝐴
𝑚

⊆ 𝑋}

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) = ∼

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(∼ 𝑋) ,

(4)

where ∼ 𝑋 is the complementary set of𝑋.

2.3. 𝛽 Multigranulation Rough Set. Optimistic and pes-
simistic are two special cases of multigranulation rough
set. Optimistic case is loose since if only one equiva-
lence class of an object is contained in the target, then
such object is included into lower approximation; pes-
simistic is strict since if all the equivalence classes of an
object are contained in the target, then such object is
included into lower approximation. To solve this problem,
Xu et al. [13] proposed a more generalized multigranula-
tion rough set, called 𝛽 multigranulation rough set that
are designed by a threshold 𝛽 for controlling the num-
ber of the equivalence classes, which are contained in the
target.

Definition 4. Let 𝑆 be a multigranulation decision system; for
all 𝑥 ∈ 𝑈 and𝑋 ⊆ 𝑈, the characteristic function is defined as

𝐶
𝑖

𝑋
(𝑥) =

{

{

{

1 : [𝑥]𝐴
𝑖

⊆ 𝑋

0 : otherwise,
(5)

where 𝐴
𝑖
∈ 𝐴𝑇.
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Definition 5. Let 𝑆 be a multigranulation decision system;
for all 𝑋 ⊆ 𝑈, the 𝛽 multigranulation lower and upper
approximations of𝑋 are denoted by

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :

∑
𝑚

𝑖=1
𝐶
𝑖

𝑋
(𝑥)

𝑚

≥ 𝛽} ;

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :

∑
𝑚

𝑖=1
(1 − 𝐶

𝑖

∼𝑋
(𝑥))

𝑚

≻ 1 − 𝛽} ,

(6)

where 𝛽 ∈ (0, 1]. ∼ 𝑋 is the complementary set of𝑋.
(∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋)) is referred to as 𝛽 multi-
granulation rough set of𝑋.

2.4. Fuzzy Rough Set. Fuzzy rough set is a generalization of
rough set. It can be used for decision information system to
deal with continuous types of conditional attributes. Usually a
fuzzy similarity relation is computed by conditional attributes
and is employed to measure similarity between two objects,
which then develop upper and lower approximations of fuzzy
sets. Fuzzy rough set generalize the objects discussed in rough
set to fuzzy set and turn the equivalence relation to fuzzy
equivalence relation.

Definition 6. Let 𝑈 ̸=⌀ be a universe of discourse and R
𝐴

a fuzzy similarity relation of 𝑈; for all 𝐹 ∈ F(𝑈), the fuzzy
lower and upper approximations of 𝐹 are denoted by

R
𝐴
(𝐹) (𝑥) = ∧

𝑦∈𝑈

𝑆 (1 −R
𝐴
(𝑥, 𝑦) , 𝐹 (𝑦)) ,

R
𝐴
(𝐹) (𝑥) = ∨

𝑦∈𝑈

𝑇 (R
𝐴
(𝑥, 𝑦) , 𝐹 (𝑦)) .

(7)

In fuzzy rough set, measurement should be introduced
to construct fuzzy similarity relation, such as the max-min
method. Then fuzzy similarity matrix can be constructed by
fuzzy similarity relation; after that, fuzzy equivalent matrix
can be constructed in terms of fuzzy similarity matrix by
transitive closure method:

𝑀(𝑅) = (

𝑟
11

𝑟
12

⋅ ⋅ ⋅ 𝑟
1𝑛

𝑟
21

𝑟
2𝑛

⋅ ⋅ ⋅ 𝑟
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑟
𝑛1

𝑟
𝑛2

⋅ ⋅ ⋅ 𝑟
𝑛𝑛

), (8)

where 𝑟
𝑖𝑗
∈ [0, 1] is the relation value of 𝑥

𝑖
and 𝑥

𝑗
.

𝑅 is a fuzzy equivalence relation if 𝑅 satisfies reflectivity,
symmetry, and transitivity.

2.5. Multigranulation Fuzzy Rough Set. In [15], Qian et al.
introduced the theory of fuzzy set into multigranulation
rough set to construct the optimistic and pessimistic multi-
granulation fuzzy rough sets.

Definition 7. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are 𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the optimistic multi-granulation
fuzzy lower and upper approximations of𝑋 are denoted by

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋)

= {𝑥 ∈ 𝑈 : [𝑥]
𝐴
1

⊆ 𝑋 ∨ [𝑥]
𝐴
2

⊆ 𝑋 ∨ ⋅ ⋅ ⋅ ∨ [𝑥]
𝐴
𝑚

⊆ 𝑋} ;

(9)

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) = ∼ (

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(∼ 𝑋)) , (10)

where [𝑥]
𝐴
𝑖

= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ IND (
̃
𝐴𝑇)} is the fuzzy

equivalent class of 𝑥. ∼ 𝑋 is the complementary set of𝑋.

(∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋)) is optimistic multigranula-
tion fuzzy rough set.

Definition 8. Let 𝑆 be a fuzzy decision information
system,𝐴

1
, 𝐴
2
, . . . 𝐴

𝑚
⊆
̃
𝐴𝑇𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the pessimistic multigranulation
fuzzy lower and upper approximations of𝑋 are denoted by

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋)

= {𝑥 ∈ 𝑈 : [𝑥]
𝐴
1

⊆ 𝑋 ∧ [𝑥]
𝐴
2

⊆ 𝑋 ∧ ⋅ ⋅ ⋅ ∧ [𝑥]
𝐴
𝑚

⊆ 𝑋} ;

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) = ∼ (

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(∼ 𝑋)) ,

(11)

where (∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋)) is pessimistic multigranu-
lation fuzzy rough set. ∼ 𝑋 is the complementary set of𝑋.

3. 𝛽 Multigranulation Fuzzy Rough Sets

In 𝛽 multigranulation rough sets, by setting different values
of 𝛽, we can get different reductions from which the most
suitable reduction can be used in next research. The fuzzy
rough set is very suitable for big continuous data set. So
it is natural to introduce the theory of fuzzy set into 𝛽

multigranulation rough sets to construct 𝛽 multigranulation
fuzzy rough sets model.

In this section, we will give some definitions of 𝛽

multigranulation fuzzy rough sets model and discuss some
properties of it.

Definition 9. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇𝑚 fuzzy subsets, and 𝐷 is decision

attribute; for all 𝑥 ∈ 𝑈 and𝑋 ⊆ 𝑈, the characteristic function
is defined as

̃
𝐶
𝑖

𝑋
(𝑥) = {

1 : [𝑥]
𝐴
𝑖

⊆ 𝑋

0 : otherwise,
(12)
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where [𝑥]
𝐴
𝑖

= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ IND (
̃
𝐴𝑇)} is the fuzzy

equivalent class of 𝑥. Then 𝛽 multigranulation fuzzy rough
set is defined as follows.

Definition 10. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the 𝛽 multigranulation fuzzy lower
and upper approximations of𝑋 are denoted by

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :

∑
𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥)

𝑚

≥ 𝛽} ; (13)

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) =

{

{

{

𝑥 ∈ 𝑈 :

∑
𝑚

𝑖=1
(1 −

̃
𝐶
𝑖

∼𝑋
(𝑥))

𝑚

≻ 1 − 𝛽

}

}

}

;

(14)

where (∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋)) is 𝛽 multigranulation
fuzzy rough set. ∼𝑋 is the complementary set of𝑋.

Following Definition 10, we will employ the following
denotations:

positive region of𝑋: POS𝛽
𝐴𝑇
(𝑋) = ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋);

negative region of𝑋: NEG𝛽
𝐴𝑇
(𝑋) = 𝑈 − ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋);

boundary region of 𝑋: BND𝛽
𝐴𝑇
(𝑋) = ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋) −

∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋).

Theorem 11. Let S be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all𝑋 ⊆ 𝑈,

𝑚

∑

𝑖=1

𝐴
𝑖

1/𝑚

(𝑋) =

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (15)

𝑚

∑

𝑖=1

𝐴
𝑖

1/𝑚

(𝑋) =

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (16)

𝑚

∑

𝑖=1

𝐴
𝑖

1

(𝑋) =

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) , (17)

𝑚

∑

𝑖=1

𝐴
𝑖

1

(𝑋) =

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) . (18)

Proof. We only prove (15); others can be proven analogously.
For all 𝑥 ∈ ∑

𝑚

𝑖=1
𝐴
𝑖

1/𝑚

(𝑋), by (13), there exist

∑
𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥)/𝑚 ≥ 1/𝑚, ∑𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥) ≥ 1; there must be 𝐴

𝑖
∈

̃
𝐴𝑇 such that ̃𝐶𝑖

𝑋
(𝑥) = 1, from which we can conclude that

[𝑥]
𝐴
𝑖

⊆ 𝑋, 𝑥 ∈ ∑𝑚
𝑖=1

𝐴
𝑖

𝑂

(𝑋).

For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋), by (9), there exists 𝐴
𝑖
∈

̃
𝐴𝑇 such that [𝑥]

𝐴
𝑖

⊆ 𝑋. Therefore, by ̃
𝐶
𝑖

𝑋
(𝑥) = 1 and

∑
𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥) ≥ 1, we can get ∑𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥)/𝑚 ≥ 1/𝑚 such

that 𝑥 ∈ ∑𝑚
𝑖=1

𝐴
𝑖

1/𝑚

(𝑋).
Theorem 11 shows that if 𝛽 = 𝑚

−1, 𝛽 multigranulation
fuzzy rough set turns to optimistic multigranulation fuzzy
rough set. If 𝛽 = 1, 𝛽multigranulation fuzzy rough set turns
to pessimistic multigranulation fuzzy rough set. Obviously, 𝛽
multigranulation fuzzy rough set is an extension of optimistic
multigranulation fuzzy rough set and pessimistic multigran-
ulation fuzzy rough set.

Theorem 12. Let S be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are𝑚 fuzzy subsets, and D decision

attribute; for all 𝑋 ⊆ 𝑈, 𝛽 ∈ (0, 1], we can get
𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (19)

𝑚

∑

𝑖=1

𝐴
𝑖

𝑂

(𝑋) ⊆

𝑚

∑

𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆

𝑚

∑

𝑖=1

𝐴
𝑖

𝑃

(𝑋) . (20)

Proof. For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋), by (17), there exists 𝑥 ∈

∑
𝑚

𝑖=1
𝐴
𝑖

1

(𝑋); by (13), there must be 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), such

that ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋).

For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), by (13), there exists

∑
𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥)/𝑚 ≥ 𝛽; there must be [𝑥]

𝐴
𝑖

⊆ 𝑋 such that
̃
𝐶
𝑖

𝑋
(𝑥) = 1; then ∑𝑚

𝑖=1

̃
𝐶
𝑖

𝑋
(𝑥)/𝑚 ≥ 1/𝑚; by (15), there exists

𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋) such that ∑𝑚
𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋).

So ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋).
Formula (20) can be proven analogously.

4. Reduction of 𝛽 Multigranulation
Fuzzy Rough Sets

In single granular fuzzy rough set, reduction is a minimal
subset of the attributes, which is independent and has
the same discernibility power as all of the attributes. The
method of preserving the positive region is usually used for
attribute reduction. In this paper, we consider each attribute
as a granular space. It is natural to introduce this method
into 𝛽 multigranulation fuzzy rough set for granular space
reduction.

Definition 13. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, 𝑈/IND (𝐷) = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} is the partition

induced by a set of decision attributes𝐷, and approximation
qualities of 𝑈/IND (𝐷) in terms of 𝛽multigranulation fuzzy
rough set are defined as

𝛾 (
̃
𝐴𝑇, 𝛽,𝐷) =







⋃ {∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋
𝑗
) : 1 ≤ 𝑗 ≤ 𝑛}








|𝑈|

,
(21)

where, |𝑋| is the cardinal number of set𝑋.
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4.1. Significance of Granulation

Definition 14. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, and 𝐵 is a reduction if and only if

(1) 𝛾(𝐵, 𝛽,𝐷) = 𝛾(̃𝐴𝑇, 𝛽,𝐷);

(2) for all 𝐵 ⊆ 𝐵, 𝛾(𝐵, 𝛽, 𝐷) ̸= 𝛾(
̃
𝐴𝑇, 𝛽,𝐷).

By Definition 10, we can get a reduction of 𝑆when preserving
the approximation quality.

Definition 15. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆

̃
𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, and 𝐵 ⊆
̃
𝐴𝑇; for all 𝐴

𝑖
∈ 𝐵, the significance of

granulation of 𝐴
𝑖
in terms of𝐷 is defined as

sigin (𝐴 𝑖, 𝐵, 𝐷) = 𝛾 (𝐵, 𝛽,𝐷) − 𝛾 (𝐵 − 𝐴 𝑖, 𝛽, 𝐷) , (22)

where sigin(𝐴 𝑖, 𝐵, 𝐷) represents the changes of the approxi-
mation quality if a set of attributes 𝐴

𝑖
is eliminated from̃

𝐴𝑇.
Also, we can define

sigout (𝐴 𝑖, 𝐵, 𝐷) = 𝛾 (𝐵 ∪ 𝐴 𝑖, 𝛽, 𝐷) − 𝛾 (𝐵, 𝛽,𝐷) (23)

for all 𝐴
𝑖
∈
̃
𝐴𝑇 − 𝐵, sigout(𝐴 𝑖, 𝐵, 𝐷) represents the changes

of the approximation quality if a set of attributes 𝐴
𝑖
is

put in ̃
𝐴𝑇. These two significances can be used to forward

granular structure selection algorithm, and sigin(𝐴 𝑖, 𝐵, 𝐷)
can determine the significance of every granulation in terms
of the approximation quality.

4.2. Granular Space Reduction Algorithm. See Algorithm 1.

4.3. Experiment. To demonstrate the above approach, we use
5 data sets gotten from UCI Repository of Machine Learning
databases; the description of the selected data sets is listed in
Table 1.

In this experiment, each feature is used to construct a
granular structure. All features then correspond to multiple
granular structures. For each data set, 5 different 𝛽 are used;
then the different results of granular selection of Table 1 under
different values of𝛽 are listed in Table 2. In Table 2, “𝑢”means
the number of features, “0.001” is the smallest value of 𝛽, “1”
is the biggest value of 𝛽, and “1/𝑢” is bigger than 0.01 and
smaller than 1.

Through Table 2, we get an interesting outcome that
the result of granular selection of each data set is changed
with different values of 𝛽. The granular selection results are
increased with the increased value of 𝛽. Take for instance that
when 𝛽 = 0.001, we get the least number of features; when 𝛽
= 1, we get the most number of features. Obviously, when 𝛽
= 1/u, it actually represents the optimistic multigranulation
fuzzy rough set; when 𝛽 = 1, it actually represents pessimistic
multigranulation fuzzy rough set, which is too strict for
only when all of the granulation spaces satisfy the inclusion
condition between the equivalence classes and the target

Table 1: Data description.

ID Data set Samples Feature
1 biodeg 1055 41
2 Ionosphere 351 34
3 Parkinsons 196 22
4 sonar 208 60
5 wdbc 569 30

Table 2: Granular space selection.

ID Data set Granular selection with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 39 41 24 27 31
2 Ionosphere 28 34 26 26 28
3 Parkinsons 15 22 11 11 14
4 sonar 59 60 47 50 55
5 wdbc 25 30 14 21 24

Table 3: Accuracy with neural net.

ID Data set Accuracy with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 88.152 87.204 86.161 85.782 86.161
2 Ionosphere 83.191 88.604 85.755 85.755 83.191
3 Parkinsons 75.385 78.462 76.923 76.923 75.385
4 sonar 72.596 73.077 77.885 70.673 75.481
5 wdbc 89.279 89.279 62.742 62.742 74.165

Table 4: Accuracy with decision tree.

ID Data set Accuracy with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 94.692 94.123 94.028 94.787 95.64
2 Ionosphere 96.581 99.43 96.866 96.866 95.581
3 Parkinsons 92.308 96.41 95.897 95.897 92.308
4 sonar 98.558 98.558 96.635 96.635 98.558
5 wdbc 97.891 98.77 98.418 98.594 99.297

that the object belongs to the lower approximation. in this
experiment, there are no reductions can be gotten, which
shows that it is difficult to get a satisfied reduction result
under pessimistic condition.

In order to test the performance of the proposed algo-
rithm and to get a proper 𝛽, we employ neural network and
decision tree as the validation function. The results are listed
in Tables 3 and 4.

We can find in Tables 3 and 4 that when 𝛽 = 1, the
selected features are just the same as the original data sets,
but the accuracy is not always the biggest, such as the result
of “biodeg” in Table 4; when 𝛽 = 0.005, the accuracy is bigger
than 𝛽 = 1, which shows that when 𝛽 is set a suitable value it
cannot only reduce redundant granular space but also retain
the most useful granular space so as to get better accuracy.
The selection of granular space is crucial to the performance
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Input: a fuzzy decision information system
𝑆= ⟨𝑈, ̃𝐴𝑇 ∪ 𝐷⟩

Output: a granular space reduction RED
Step 1. ∀𝐴

𝑖
∈
̃
𝐴𝑇, compute fuzzy similarity matrix

Step 2. ∀𝐴
𝑖
∈
̃
𝐴𝑇, compute fuzzy equivalence matrix in terms of the result of Step 1,

then get fuzzy equivalence class
Step 3. 𝑅𝐸𝐷 ← ⌀

Step 4. ∀𝐴
𝑖
∈
̃
𝐴𝑇, compute sigin(𝐴 𝑖, ̃𝐴𝑇,𝐷)

Step 5. 𝑅𝐸𝐷 ← 𝐴
𝑗
, sigin(𝐴𝑗, ̃𝐴𝑇,𝐷) = max {sigin (𝐴 𝑖, ̃𝐴𝑇,𝐷) : 𝐴 𝑖 ∈ ̃𝐴𝑇}

Step 6. ∀𝐴
𝑖
∈
̃
𝐴𝑇 − 𝑅𝐸𝐷, compute sigout(𝐴 𝑖, 𝑅𝐸𝐷,𝐷)

If
sigout (𝐴𝑘, 𝑅𝐸𝐷,𝐷) = max {sigout (𝐴 𝑖, 𝑅𝐸𝐷,𝐷) : 𝐴 𝑖 ∈ ̃𝐴𝑇 − 𝑅𝐸𝐷} , 𝑅𝐸𝐷 = 𝑅𝐸𝐷 ∪ {

̃
𝐴
𝑘
}

Until 𝛾(𝑅𝐸𝐷, 𝛽,𝐷) = 𝛾(̃𝐴𝑇, 𝛽,𝐷)
End

Step 7. return RED

Algorithm 1: Find granular space reduction.

of the sequent learning, so the selection should reflex the
structure of the data and patterns. Comparing the results of
Table 3 with Table 4, we can see that the accuracy of Table 4 is
bigger than Table 3; it shows that the accuracy is also related
to the performance of classifier.

This experiment shows that the proposed algorithm is
more flexible for selecting granular space than optimistic and
pessimistic multigranulation fuzzy rough sets, which can use
fewer features to get higher accuracy.

5. Conclusions

In this paper, a 𝛽 multigranulation fuzzy rough set model
is proposed, and a corresponding algorithm is proposed;
different from other methods, the proposed algorithm is
constructed on multigranular spaces, our experiment shows
that the granular selection results are increased with the
increased value of 𝛽, and the algorithm cannot only deal with
continuous data but also when 𝛽 is set properly, the reduction
will be suitable to be classified to get a good result. The
experiment result shows the effectiveness of our algorithm.
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A simplified model predictive control algorithm is designed for discrete-time Markov jump systems with mixed uncertainties.
The mixed uncertainties include model polytope uncertainty and partly unknown transition probability. The simplified algorithm
involves finite steps. Firstly, in the previous steps, a simplified mode-dependent predictive controller is presented to drive the state
to the neighbor area around the origin. Then the trajectory of states is driven as expected to the origin by the final-step mode-
independent predictive controller. The computational burden is dramatically cut down and thus it costs less time but has the
acceptable dynamic performance. Furthermore, the polyhedron invariant set is utilized to enlarge the initial feasible area. The
numerical example is provided to illustrate the efficiency of the developed results.

1. Introduction

Hybrid systems are a class of dynamical systems denoted
by an interaction between the continuous and discrete
dynamics. In control community, the researchers tend to view
hybrid systems as continuous state and discrete switching
which focuses on the continuous state of dynamic system.
Switched systems are a natural result from this point of
view. Since switching systems can be applied to model the
systems involving abrupt sudden changes which are widely
found in the systems of economics and communications
as well as manufacturing, more attention has been paid to
them (see robust stabilization [1], finite-time analysis [2]
and asynchronous switching [3]). When the system model
is linear and the switching is driven by Markov process,
it leads to Markov jump linear system (MJS). Specifically,
MJS presents a stochastic Markov chain to describe the
random changes of system parameters or structures, where
the dynamic of MJS is switching among the models governed
by a finite Markov chain. Due to this superiority, MJS
has been widely investigated during the last twenty years.
Attractive pioneer works have been obtained (see controller
design [4], 2DMJS control [5], peak-to-peak filtering [6], and

finite-time control [7, 8]). However, the cases of completely
known transition probability (TP) considered in [4–8] are not
always achievable since theTP is not easy to be fully accessible
(see the delay or packet loss in networked control systems
[9]). Thus it is necessary to investigate the partly unknown
case [10–12].

On the other hand, the systems in practice are usually
subject to input/output constraints. Thus, model predictive
control (MPC) is then introduced to solve the problem of
MJS with constraints since MPC can explicitly solve the
constraints in control action. Successful MPC application in
discrete-timeMJS can be obtained in [13, 14]. Normally,MPC
is reformulated as online quadratic program and results have
been reported (see stability [15, 16] and enlarged terminal sets
[17]). It should be noted that the online computation in the
literature [15–17] leads to heavy computational burden.Thus,
the researchers attempted to try a new alternative method
to solve the problem. For this reason, explicit MPC [18] is
presented. However, when the size of system increases, the
time of searching explicit MPC law will also increase sharply.

Based on the above analysis, a simplified MPC design
framework is introduced to reduce the burden of online
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computation for the constrained MJS with mixed uncer-
tainties. The basic idea is that (𝑁 − 1) steps of mode-
dependent MPC are designed to steer the state to a final
neighbour area which includes the origin. Then the final
step of robust mode-independent MPC is devised to force
the state towards the origin regardless of model uncertainty
and transition probability uncertainty. This simplified MPC
dramatically reduces the burden of computation with minor
performance loss, which implies good balance between the
calculation time and dynamical performance. Furthermore,
the polyhedron invariant set is applied to further enlarge the
initial feasible area.

The construction of the paper is as follows. Section 2 gives
the basic dynamical of the system. Section 3 gives the finite-
step simplified MPC algorithm and it is formulated as LMIs.
Section 4 presents a numerical example to show the efficiency
of the results. Section 5 concludes the paper.
Notations. The notations are as follows: 𝑅𝑛 denotes a 𝑛-
dimensional Euclidean space,𝐴𝑇 stands for the transpose of a
matrix, 𝐸{⋅} denotes the expectation of the stochastic process
or vector, a positive-definite matrix is described as 𝑃 > 0,
𝐼 means the unit matrix with appropriate dimension, and ∗
means the symmetric term in a symmetric matrix.

2. Problem Statement and Preliminaries

The constrained discrete-timeMJSs withmixed uncertainties
are considered in this paper:

𝑥
𝑘+1
= 𝐴 (𝑟

𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) 𝑢
𝑘
,

𝑦
𝑘
= 𝐶 (𝑟

𝑘
) 𝑥
𝑘
,

(1)

where 𝑥
𝑘
∈ 𝑅
𝑛
𝑥 , 𝑢
𝑘
∈ 𝑅
𝑛
𝑢 , 𝑦
𝑘
∈ 𝑅
𝑛
𝑦 , respectively, denote the

state vector, the input vector, and the controlled output vector.
The discrete-time Markov stochastic process {𝑟

𝑘
, 𝑘 ≥ 0} takes

values in a finite set Γ, where Γ contains 𝜎 modes of system
(1), Γ = {1, 2, 3, . . . , 𝜎}, and 𝑟

0
represents the initial mode.The

uncertain system model 𝐴(𝑟
𝑘
) and 𝐵(𝑟

𝑘
) belong to the model

sets

Ω(𝑟
𝑘
) = {[𝐴 (𝑟

𝑘
) , 𝐵 (𝑟

𝑘
)] , 𝐴 (𝑟

𝑘
) =

𝐿

∑

𝜄=1

𝛼
𝜄
𝐴
𝜄
(𝑟
𝑘
) ,

𝐵 (𝑟
𝑘
) =

𝐿

∑

𝜄=1

𝛼
𝜄
𝐵
𝜄
(𝑟
𝑘
) ,

𝐿

∑

𝜄=1

𝛼
𝜄
= 1} .

(2)

Inputs and outputs constraints are subject to

−𝑢lim ≤ 𝑢𝑘 ≤ 𝑢lim , (3)

−𝑦lim ≤ 𝑦𝑘 ≤ 𝑦lim. (4)

The transition probability (TP) matrix is denoted by Π(𝑘) =
{𝜋
𝑖𝑗
(𝑘)}, 𝑖, 𝑗 ∈ Γ, where 𝜋

𝑖𝑗
(𝑘) = 𝑃(𝑟

𝑘+1
= 𝑗 | 𝑟

𝑘
= 𝑖) is

the transition probability from mode 𝑖 at time 𝑘 to mode 𝑗 at

time 𝑘 + 1. The elements in TP matrix satisfy 𝜋
𝑖𝑗
(𝑘) ≥ 0 and

∑
𝜎

𝑗=1
𝜋
𝑖𝑗
(𝑘) = 1:

𝜋 =

[
[
[
[

[

𝜋
11
𝜋
12
. . . 𝜋
1𝜎

𝜋
21
𝜋
22
. . . 𝜋
2𝜎

...
... d

...
𝜋
𝜎1
𝜋
𝜎2
. . . 𝜋
𝜎𝜎

]
]
]
]

]

. (5)

The uncertain transition probability (TP) implies that some
elements in 𝜋 are unknown; a four-mode transition probabil-
ity (TP) matrix 𝜋may be

𝜋 =

[
[
[

[

? 𝜋
12

? ?

𝜋
21
𝜋
22

? ?

𝜋
31

? ? ?

? ? 𝜋
43
?

]
]
]

]

, (6)

where “?” represents the inaccessible element in TP matrix.
For convenience, we denote 𝜋 = 𝜋

𝑘

𝑟
𝑘

+ 𝜋
𝑢𝑘

𝑟
𝑘

, for all mode
𝑟
𝑘
∈ Γ at sampling time 𝑘, if 𝜋𝑘

𝑟
𝑘

̸= 0, and redescribe it as
𝜋
𝑘

𝑟
𝑘

= (𝜅
1

𝑟
𝑘

, . . . , 𝜅
𝜏

𝑟
𝑘

), for all 1 ≤ 𝑙 ≤ 𝜏, where 𝜅𝑙
𝑟
𝑘

represents
the 𝑙th exact element in the 𝑖th row of 𝜋, Π𝑘

𝑟
𝑘

= ∑
𝑗∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

.
Some preliminaries are introduced before proceeding.

Definition 1 (see [6]). For any initial mode 𝑟
0
and state 𝑥

0
,

discrete-time MJS (1) is said to be stochastically stable if

lim
𝑘→∞

𝐸 {𝑥
𝑇

𝑘
𝑥
𝑘
| 𝑥
0
, 𝑟
0
} → 0. (7)

Definition 2. For MJS (1), an ellipsoid set Θ = {𝑥 ∈ 𝑅
𝑛
𝑥
|

𝑥
𝑇

𝑘
𝑃
𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 𝛾
𝑘
} associated with the state is said to be

asymptoticallymode-dependent stable, if the following holds,
whenever 𝑥

𝑘
0

∈ Θ, then 𝑥
𝑘
∈ Θ for 𝑘 ≥ 𝑘

0
and 𝑥

𝑘
→ 0 when

𝑘 → ∞.

Next, we first derive the online optimal MPC algorithm
for system (1). The aim is to minimize the function cost
related to worst-case performance and then in Section 4 the
corresponding simplified MPC algorithm will be derived.
Finally the polyhedron invariant set is applied to further
improve the initial feasible district.

3. Simplified MPC Design

3.1. Online Optimal MPC

Theorem 3. Consider MJS (1) with model uncertainties (2)
and partly unknown TPmatrix (6), at sampling time 𝑘, if there
exist a set of matrices 𝐹

𝑘
(𝑟
𝑘
), such that the following holds:

min
𝐹
𝑘(𝑟𝑘)

max
𝐴
𝜄(𝑟𝑘),𝐵𝜄(𝑟𝑘),𝜋𝑟

𝑘
𝑟
𝑘+1
,𝑟
𝑘
,𝑟
𝑘+1
∈Γ

𝐽
∞
(𝑘) (8)
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s.t.

−𝑢lim ≤ 𝑢𝑘 ≤ 𝑢lim , (9)

−𝑦lim ≤ 𝑦𝑘 ≤ 𝑦lim , (10)

𝐸 {𝑉 (𝑥
𝑘+1
, 𝑟
𝑘+1
| 𝑥
0
, 𝑟
0
)} − 𝐸 {𝑉 (𝑥

𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
)}

≤ −𝐸 {𝑥
T
𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑢

T
𝑘
𝑅 (𝑟
𝑘
) 𝑢
𝑘
| 𝑥
0
, 𝑟
0
} .

(11)

Then, it decides an upper bound on 𝐽
∞
(𝑘), where 𝑢

𝑘
=

𝐹
𝑘
(𝑟
𝑘
)𝑥
𝑘
, 𝐽
∞
(𝑘) = 𝐸{∑

∞

𝑘=0
(𝑥

T
𝑘
𝑄(𝑟
𝑘
)𝑥
𝑘
+ 𝑢

T
𝑘
𝑅(𝑟k)𝑢𝑘) | 𝑥0, 𝑟0},

𝑄(𝑟
𝑘
), 𝑅(𝑟
𝑘
) are positive definite weighting matrices.

Proof. It is assumed that at the sampling time 𝑘, a state-
feedback law 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹

𝑘
(𝑟
𝑘
)𝑥(𝑘 + 𝑖 | 𝑘), is applied to

minimize the worst cost function of 𝐽
𝑘
; it is easy to show that

𝑉(𝑥
𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
) is an upper bound on 𝐽

∞
(𝑘). Let 𝑉(𝑥

𝑘
) =

𝑥
𝑇

𝑘
𝑃
𝑘
(𝑟
𝑘
)𝑥
𝑘
,𝑃
𝑘
(𝑟
𝑘
) > 0, be a quadratic Lyapunov function. For

any [𝐴
𝜄
(𝑟
𝑘
), 𝐵
𝜄
(𝑟
𝑘
) ∈ Ω(𝑟

𝑘
)], the following constraint holds

𝐸 {𝑉 (𝑥
𝑘+1
, 𝑟
𝑘+1
| 𝑥
0
, 𝑟
0
)} − 𝐸 {𝑉 (𝑥

𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
)}

≤ −𝐸 {𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑢
𝑇

𝑘
𝑅 (𝑟
𝑘
) 𝑢
𝑘
| 𝑥
0
, 𝑟
0
} .

(12)

Summing (12) from 𝑖 = 0 to∞ on both sides and using the
fact 𝑥

𝑘→∞
= 0 or 𝑉(𝑥

𝑘→∞
) = 0, we obtain

𝐽
∞
(𝑘) ≤ 𝑉 (𝑥

𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
) = 𝑥
𝑇

𝑘
𝑃
𝑘
(𝑟
𝑘
) 𝑥
𝑘

(13)

which implies that 𝑉(𝑥
𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
) is an upper bound on

𝐽
∞
(𝑘).

Theorem 4. Consider MJS (1) with polytope model uncertain-
ties (2) and partly unknown TPmatrix (4), if there exist a set of
positive definitematrices𝑋

𝑘
(𝑟
𝑘
),𝑌
𝑘
(𝑟
𝑘
), such that the following

optimization problem (12) has an optimal solution:

min
𝐹
𝑘(𝑟𝑘)

max
𝐴
𝜄(𝑟𝑘),𝐵𝜄(𝑟𝑘),𝜋𝑟

𝑘
𝑟
𝑘+1
,𝑟
𝑘
,𝑟
𝑘+1
∈Γ

𝛾
𝑘 (14)

s.t.

[

1 ∗

𝑥
𝑘
𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0, ∀𝑟

𝑘
∈ Γ, 𝑟
𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

, (15)

[
𝑍 𝑌
𝑘
(𝑟
𝑘
)

∗ 𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0, 𝑍

𝑡𝑡
≤ (𝑢
𝑡

lim)
2

, (16)

[
𝑋
𝑘
(𝑟
𝑘
) ∗

𝐶 (𝑟
𝑘
) 𝜃
𝑙
(𝑟
𝑘
) 𝑀

] ≥ 0, 𝑀
ℎℎ
≤ (𝑦
ℎ

lim)
2

, (17)

[
𝑋
𝑘
(𝑟
𝑘
) ∗

𝜃
𝑙
(𝑟
𝑘
) 𝑋
𝑘
(𝑟
𝑘+1
)
] ≥ 0, ∀𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘

, (18)

[
[
[

[

Π
𝑘

𝑟
𝑘

𝑋
𝑘
(𝑟
𝑘
) 𝑈

T
(𝑟
𝑘
) 𝑋
𝑘
(𝑟
𝑘
) 𝑄
1/2
(𝑟
𝑘
) 𝑌

T
𝑘
(𝑟
𝑘
) 𝑄
1/2
(𝑟
𝑘
)

∗ 𝑊(𝑟
𝑘+1
) 0 0

∗ ∗ 𝛾
𝑘
𝐼 0

∗ ∗ ∗ 𝛾
𝑘
𝐼

]
]
]

]

≥ 0,

∀𝑟
𝑘+1
∈ 𝜋
𝑘

𝑟
𝑘

(19)

then, the mode-dependent state-feedback which minimizes the
upper bound 𝛾

𝑘
on 𝐽
∞
(𝑘) and simultaneously stabilizes the

closed-loop system within an ellipsoid 𝜀 = {𝑥T
𝑘
𝑋
−1

𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 1}

is calculated by 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹
𝑘
(𝑟
𝑘+𝑖
)𝑥
𝑘+𝑖|𝑘

,𝐹
𝑘
(𝑟
𝑘+𝑖
) =

𝑌
𝑘
(𝑟
𝑘+𝑖
)𝑋
−1

𝑘
(𝑟
𝑘+𝑖
), where 𝑋

𝑘
(𝑟
𝑘
) = 𝛾

𝑘
𝑃
−1

𝑘
(𝑟
𝑘
), 𝜃
𝑙
(𝑟
𝑘
) =

𝐴
𝑙
(𝑟
𝑘
)𝑋
𝑘
(𝑟
𝑘
) + 𝐵

𝑙
(𝑟
𝑘
)𝑌
𝑘
(𝑟
𝑘
),𝑈T

(𝑟
𝑘
) = [√𝜅

1

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
), . . . ,

√𝜅
𝜏

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
)], 𝑊(𝑟

𝑘+1
) = diag{𝑋

𝑘
(𝜅
1

𝑟
𝑘

), 𝑋
𝑘
(𝜅
2

𝑟
𝑘

), . . . , 𝑋
𝑘
(𝜅
𝜏

𝑟
𝑘

)},
𝑍
𝑡𝑡
, 𝑀
ℎℎ
, respectively, describe the 𝑡th, ℎth diagonal element

of 𝑍, 𝑀, 𝑢𝑡lim and 𝑦ℎlim, respectively, describe the 𝑡th and ℎth
element of input and output constraints, 𝑡 = 1, 2, . . . , 𝑛

𝑢
, ℎ =

1, 2, . . . , 𝑛
𝑦
.

Proof. Let 𝑋
𝑘
(𝑟
𝑘
) = 𝛾

𝑘
𝑃
−1

𝑘
(𝑟
𝑘
); 𝐽
∞
(𝑘) ≤ 𝛾

𝑘
in (13) can be

solved by the following LMIs:

[

1 ∗

𝑥
𝑘
𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0,

∀𝑟
𝑘
∈ Γ, 𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

.

(20)

The input/output constraints are guaranteed by (16) and (17);
the proof is similar to [19]; here we omit the proof. Equation
(11) is equivalent to

Ξ (𝑟
𝑘
) = 𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))

× 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0.

(21)

Since ∑
𝑟
𝑘+1
∈𝜋
𝜋
𝑟
𝑘
𝑟
𝑘+1

= 1, 𝜋
𝑟
𝑘
𝑟
𝑘+1

≥ 0, Π𝑟𝑘
𝑘
= ∑
𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

, it
leads to

Ξ (𝑟
𝑘
) = ( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

)𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)

× ( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
)) 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
)

− 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
)

= Π
𝑘

𝑟
𝑘

𝑃 (𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)

× ( ∑

𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))𝜃
𝑙
(𝑟
𝑘
)

+ ( ∑

𝑟
𝑘+1
∈𝜋
𝑢𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

)

× (𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
) 𝑃
𝑘
(𝑟
𝑘+1
) 𝜃
𝑙
(𝑟
𝑘
))

− 𝑄 (𝑟
𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0.

(22)
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One sufficient condition to ensure (22) is

Π
𝑘

𝑟
𝑘

𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)( ∑

𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))

× 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0,

𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
) 𝑃
𝑘
(𝑟
𝑘+1
) 𝜃
𝑙
(𝑟
𝑘
) ≥ 0.

(23)

Considering the Schur theory complement lemma, (16) and
(17) can be derived.

Actually the feedback controller can make the closed-
loop system stable in the ellipsoid 𝜀 = {𝑥𝑇

𝑘
𝑋
−1

𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 1}.

Assume that the optimal 𝑃∗
𝑘
(𝑟
𝑘
), 𝐹∗
𝑘
(𝑟
𝑘
) at the moment 𝑘 are

𝑃
∗

𝑘
(𝑟
𝑘
) = 𝛾
∗

𝑘
(𝑋
∗

𝑘
(𝑟
𝑘
))
−1

,

𝐹
∗

𝑘
(𝑟
𝑘
) = 𝑌
∗

𝑘
(𝑋
∗

𝑘
(𝑟
𝑘
))
−1

,

𝜃
∗

𝑙𝑘
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
) + 𝐵
𝑙
(𝑟
𝑘
) 𝐹
∗

𝑘
(𝑟
𝑘
) ,

𝜗
∗

𝑙𝑘
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
)𝑋
∗

𝑘
(𝑟
𝑘
) + 𝐵
𝑙
(𝑟
𝑘
) 𝑌
∗

𝑘
(𝑟
𝑘
) .

(24)

Equations (18) and (19) lead to

𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
≥ 𝑥
𝑇

𝑘
(𝜃
∗

𝑙𝑘
(𝑟
𝑘
))
𝑇

× ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃 (𝑟
𝑘+1
) 𝜃
∗

𝑙𝑘
(𝑟
𝑘
) 𝑥
𝑘

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
,

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
}

≥ 𝐸 {𝑥
𝑇

𝑘+1
𝑃
∗

𝑘
(𝑟
𝑘+1
) 𝑥
𝑘+1
}

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
.

(25)

𝑃
∗

𝑘+1
(𝑟
𝑘+1
) is the optimal value at moment 𝑘 + 1; 𝑃∗

𝑘
(𝑟
𝑘+1
) is a

feasible one at moment 𝑘 + 1. By the optimum definition,

𝑥
𝑇

𝑘+1
𝑃
∗

𝑘
(𝑟
𝑘+1
) 𝑥
𝑘+1
≥ 𝑥
𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
; (26)

then,

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
}

≥ 𝐸 {𝑥
𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
}

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
.

(27)

It is shown that 𝐸{𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
)𝑥
𝑘
} decrease strictly as

𝐸{𝑥
𝑇

𝑘
Φ
∗

𝑘
(𝑟
𝑘
)𝑥
𝑘
} → 0, 𝑘 → ∞

From Definition 1, the system is stochastically stable.
From (27), then

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
} ≥ 𝐸 {𝑥

𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
} . (28)

This implies that the ellipsoid is an asymptotically stable
invariant one, which completes the proof.

Corollary 5. Consider MJS (1) with model uncertainties (2)
and TP matrix (4) at current moment 𝑘; supposing that there
exists a set of positive definite matrices 𝑋, 𝑌, such that the
following optimization problem has an optimal solution:

min
𝛾
𝑘
,𝑋,𝑌

𝛾
𝑘 (29)

s.t.

[
1 ∗

𝑥
𝑘
𝑋
] ≥ 0,

∀𝑟
𝑘
∈ Γ, 𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

,

[
𝑍 𝑌

∗ 𝑋
] ≥ 0, 𝑍

𝑡𝑡
≤ (𝑢
𝑡

lim)
2

,

[

𝑋 ∗

𝐶 (𝑟
𝑘
) 𝜃
𝑙
(𝑟
𝑘
) 𝑀

] ≥ 0, 𝑀
ℎℎ
≤ (𝑦
ℎ

lim)
2

,

[

𝑋 ∗

𝜃
𝑙
(𝑟
𝑘
) 𝑋

] ≥ 0, ∀𝑟
𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘

,

[
[
[

[

Π
𝑘

𝑟
𝑘

𝑋 𝑈
T
(𝑟
𝑘
) 𝑋𝑄

1/2
(𝑟
𝑘
) 𝑌

T
𝑄
1/2
(𝑟
𝑘
)

∗ 𝑊 (𝑟
𝑘+1
) 0 0

∗ ∗ 𝛾
𝑘
𝐼 0

∗ ∗ ∗ 𝛾
𝑘
𝐼

]
]
]

]

≥ 0,

∀𝑟
𝑘+1
∈ 𝜋
𝑘

𝑟
𝑘

(30)

then the mode-independent state-feedback law can minimize
the upper bound 𝛾

𝑘
on the objective function 𝐽

∞
(𝑘) and

stabilize the closed-loop system in the ellipsoid 𝜀 = {𝑥T
𝑘
𝑋
−1
𝑥
𝑘
≤

1} and it is obtained by 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹𝑥
𝑘+𝑖|𝑘

, 𝐹 = 𝑌𝑋−1,
where 𝑋 = 𝛾

𝑘
𝑃
−1, 𝜃
𝑙
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
)𝑋 + 𝐵

𝑙
(𝑟
𝑘
)𝑌, 𝑈T

(𝑟
𝑘
) =

[√𝜅
1

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
), . . . , √𝜅

𝜏

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
)], 𝑊(𝑟

𝑘+1
) = diag{𝑋,𝑋, . . . , 𝑋},

𝑍
𝑡𝑡
and 𝑀

ℎℎ
, respectively, describe the 𝑡th and ℎth diagonal

element of 𝑍, 𝑀, and 𝑢𝑡lim and 𝑦ℎlim, respectively, describe the
𝑡th and ℎth element of input and output constraints, 𝑡 =

1, 2, . . . , 𝑛
𝑢
, ℎ = 1, 2, . . . , 𝑛

𝑦
.

3.2. Simplified MPC Design. In this section, a simplified
MPC for uncertain MJS (1) is developed based on the online
algorithm in Theorem 4; Figure 1 shows the simplified MPC
schematic diagram. Then the simplified mode-independent
feedback controller is designed regardless of model uncer-
tainty and TP uncertainty since much more constraints will
be nonactive in the neighboring region of origin and this
freedom of feasibility is applied to improve the procedure of
controller design.

Theorem 6. Consider uncertain MJS (1) associated with an
initial state 𝑥

0
satisfying 𝑥𝑇

0
𝑄
−1

0
(𝑟
0
)𝑥
0
≤ 1; the simplified MPC

Algorithm 7 robustly stabilizes the closed-loop system.

Proof. For the 𝑁-step implementation at 𝑥
𝑗
, 𝑗 = 1, . . . , 𝑁,

the selection for 𝑥
𝑗
in Algorithm 7 implies 𝑄−1

𝑗−1
(𝑟
𝑘
) <

𝑄
−1

𝑗
(𝑟
𝑘
), which means the constructed ellipsoid 𝜉

𝑗
= {𝑥 |
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Figure 1: Simplified MPC schematic diagram.

𝑥
𝑇
𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} is embedded in 𝜉

𝑗−1
, that is, 𝜉

𝑗
⊂ 𝜉
𝑗−1

. For a
settled 𝑥, 𝜉

𝑗
= {𝑥 | 𝑥

𝑇
𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} is decreasing monotoni-

cally associated with 𝑗, which guarantees the unique search in
the search table for the largest 𝑗 for 𝜉

𝑗
= {𝑥 | 𝑥

𝑇
𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1}.

If 𝑥
𝑘
belongs to 𝜉

𝑗
= {𝑥 | 𝑥

𝑇
𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} and 𝜉

𝑗+1
=

{𝑥 | 𝑥
𝑇
𝑄
−1

𝑗+1
(𝑟
𝑘
)𝑥 > 1}, 𝑗 = 1, . . . , 𝑁 − 1, by applying

Theorem 3, the control law 𝑢
𝑘
= 𝐹
𝑗
(𝑟
𝑘
)𝑥
𝑘
will steer the state

in 𝜉
𝑗−1

to 𝜉
𝑗
. Finally, the controller 𝑢

𝑘
= 𝐹
𝑁
𝑥
𝑘
(applying

Corollary 5) make the state to be in 𝜉
𝑁

and converge to
the origin. Furthermore, the LP programming algorithm is
utilized to remove redundant constraints [20] and construct a
sequence of polyhedral invariant set forMJS and thus enlarge
the feasible domain.

Algorithm 7 (simplified MPC applying polyhedral invariant
set). Simplified MPC design is as follows.

(1) Select 𝑥
𝑗
, 𝑗 = 1, . . . , 𝑁, which satisfy 𝜀

𝑗+1
⊂ 𝜀
𝑗
, 𝜀
𝑁
=

𝛿(0).
(2) For step 1 to𝑁−1, calculate the correspondingmode-

dependent gains 𝛾
𝑗
(𝑟
𝑘
), 𝑄
𝑗
(𝑟
𝑘
), 𝑋
𝑗
(𝑟
𝑘
), 𝑌
𝑗
(𝑟
𝑘
), 𝐹
𝑗
(𝑟
𝑘
)

by applying Theorem 4 and store them in a search
table.

(3) For each 𝐹
𝑗
(𝑟
𝑘
), construct the corresponding poly-

hedral invariant set by the following algorithm: let
𝑆
𝑗
(𝑟
𝑘
) = [𝐶

𝑇
(𝑟
𝑘
), −𝐶
𝑇
(𝑟
𝑘
), 𝐹
𝑇

𝑗
(𝑟
𝑘
), −𝐹
𝑇

𝑗
(𝑟
𝑘
)]
𝑇, 𝑑
𝑗
(𝑟
𝑘
)=

[𝑦
𝑇

max(𝑟𝑘), 𝑦
𝑇

min(𝑟𝑘), 𝑢
𝑇

max(𝑟𝑘), 𝑢
𝑇

min(𝑟𝑘)]
𝑇. Select row 𝑚

from (𝑆
𝑗
(𝑟
𝑘
), 𝑑
𝑗
(𝑟
𝑘
)) and then check ∀𝑗 if

𝑆
𝑗,𝑚
(𝑟
𝑘
(𝐴
𝑗
(𝑟
𝑘
) + 𝐵
𝑗
𝐹
𝑗
)(𝑟
𝑘
) ≤ 𝑑

𝑗,𝑚
(𝑟
𝑘
)) is redundant

through solving the Linear programming:

max 𝜌
𝑗,𝑚

s.t. 𝜌
𝑗,𝑚
= 𝑆
𝑗,𝑚
(𝑟
𝑘
) (𝐴
𝑗
(𝑟
𝑘
) + 𝐵
𝑗
𝐹
𝑗
(𝑟
𝑘
)) 𝑥 − 𝑑

𝑗,𝑚
(𝑟
𝑘
)

𝑆
𝑗
(𝑟
𝑘
) 𝑥 ≤ 𝑑

𝑗
(𝑟
𝑘
) .

(31)

If 𝜌
𝑗,𝑚

> 0, it implies that the constraint
𝑆
𝑗,𝑚
(𝑟
𝑘
(𝐴
𝑗
(𝑟
𝑘
) + 𝐵

𝑗
𝐹
𝑗
)(𝑟
𝑘
) ≤ 𝑑

𝑗,𝑚
(𝑟
𝑘
)) is

nonredundant; then renew the nonredundant

Table 1: The partly unknown TP matrix.

1 2 3 4
0.361 ? 0.092 ?
? 0.090 ? 0.248
0.162 0.489 ? ?
? ? 0.251 ?

constraints as 𝑆
𝑗
(𝑟
𝑘
) = [𝑆

𝑇

𝑗
(𝑟
𝑘
), (𝑆
𝑗,𝑚
(𝑟
𝑘
)(𝐴
𝑗
(𝑟
𝑘
) +

𝐵
𝑗
(𝑟
𝑘
)𝐹
𝑗
(𝑟
𝑘
)))
𝑇
]
𝑇, 𝑑
𝑗
(𝑟
𝑘
) = [𝑑

𝑗
(𝑟
𝑘
)
𝑇
, 𝑑
𝑗,𝑚
(𝑟
𝑘
)
𝑇
]
𝑇.

(4) Online implementation: search the state in the search
table to fix the needed index 𝑗(𝑗 < 𝑁), decide
the smallest polyhedral invariant set 𝜒

𝑗
(𝑟
𝑘
) = {𝑥 |

𝑆
𝑗
(𝑟
𝑘
)𝑥 ≤ 𝑑

𝑗
(𝑟
𝑘
)}, and finally implement 𝑢

𝑘
=

𝐹
𝑗
(𝑟
𝑘
)𝑥
𝑘
.

(5) Online implementation: continue to check if 𝑥 ∈

𝜒
𝑁
(𝑟
𝑘
) = {𝑥 | 𝑆

𝑁
(𝑟
𝑘
)𝑥 ≤ 𝑑

𝑁
(𝑟
𝑘
)} is satisfied; if it is

true, then apply 𝑢
𝑘
= 𝐹
𝑁
𝑥
𝑘
.

Remark 8. It should be noted that the more approximation
of optimality can be obtained as 𝑁 increases; here 𝑁 can be
chosen according to different prior requirements. Thus, we
can adjust the numbers of design step in terms of different
requirements.

4. Illustrative Example

Consider the discrete-time MJS with four modes (𝜎 = 4):

𝐴
11
= [

1 0.1

0.01 0.99
] , 𝐵

11
= [

0.1

0.187
] ,

𝐴
12
= [
1 0.1

0 0.05
] , 𝐵

12
= [

0.1

0.187
] ,

𝐴
21
= [

1 0.1

−0.1 0.99
] , 𝐵

21
= [

0.1

0.187
] ,

𝐴
22
= [

1 0.1

0.1 0.05
] , 𝐵

22
= [

0.1

0.187
] ,

𝐴
31
= [

1 0.1

0.2 0.99
] , 𝐵

31
= [

0.1

0.187
] ,

𝐴
32
= [

1 0.1

0.15 0.1
] , 𝐵

32
= [

0.1

0.187
] ,

𝐴
41
= [

1 0.1

0.05 0.5
] , 𝐵

41
= [

0.1

0.187
] ,

𝐴
42
= [

1 0.1

0.05 0.1
] , 𝐵

42
= [

0.1

0.187
] .

(32)

The detailed constraints are 𝑢max = 2 and 𝑦max = 1.5,
initial state 𝑥

0
is [−0.65 1]𝑇, and 𝐶(𝑟

𝑘
) = [

1 0

0 1
] . The

positive definite weighting matrices are 𝑄(𝑟
𝑘
) = [

1 0

0 1
] and

𝑅(𝑟
𝑘
) = 0.00002. The partly unknown TPmatrix is randomly

generated in Table 1.
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Figure 2: Trajectory of system states.

Table 2: 20 times’ average of 30 iterations of system state.

Algorithm 20 times’ average Variance
Online 11.6779 s 0.0069
5-step 0.0055 s 1.3173𝑒 − 006

Here we will show the 5-step example of the proposed
Algorithm 7. Firstly, a state set {𝑥

𝑗
| 𝑥
𝑗
= (0.5, −0.9), (0.4,

−0.8), (0.3, −0.7), (0.2, −0.6), (0.1, −0.5)} is designed to com-
pute the corresponding feedback gains 𝐹

𝑗
(𝑟
𝑘
). It is noted that

the sequence of states 𝑥
𝑗
guarantees that the constructed

polyhedral invariant sets are embedded, that is, 𝑆
𝑗
⊂ 𝑆
𝑗−1

.
In this example, the first four mode-dependent feedback laws
𝐹
𝑗
(𝑟
𝑘
), 𝑗 = 1, . . . , 4 are obtained. When the state goes into

the smallest polyhedral invariant set, the final-step (the fifth-
step) gain 𝐹

5
is designed to steer the state to the origin

regardless of model uncertainty and TP uncertainty.
For each chosen 𝑥

𝑗
in Figure 2, the 5-step ellipsoid

invariant sets (purple solid lines) and 5-step polyhedral
invariant sets (blue and orange alternant dot dash lines) are
illustrated using the numbers 1 to 5. The stabilizable region
of polyhedral invariant set constructed by Algorithm 7 is
dramatically larger than that of ellipsoid invariant set while
the dynamic response of simplified algorithm is comparable
with online algorithm.

The results are computed at the same platform (AMD
2.1 GHz, memory 3.0GB and MATLAB R2010a); the average
time and variances of 30 times’ running of the system are
shown in Table 2. From the table, the burden of computation
is significantly reduced by simplified algorithm.

5. Conclusions

The problem of simplified predictive controller design for
MJS with mixed uncertainties is investigated. The simpli-
fied algorithm drastically reduces the online computational

burden with only a little loss of performance. A numerical
example is provided to illustrate the validity of the results.
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The problem of a portfolio strategy for financial market with regime switching driven by geometric Lévy process is investigated
in this paper. The considered financial market includes one bond and multiple stocks which has few researches up to now. A new
and general Black-Scholes (B-S) model is set up, in which the interest rate of the bond, the rate of return, and the volatility of the
stocks vary as the market states switching and the stock prices are driven by geometric Lévy process. For the general B-S model of
the financial market, a portfolio strategy which is determined by a partial differential equation (PDE) of parabolic type is given by
using Itô formula. The PDE is an extension of existing result. The solvability of the PDE is researched by making use of variables
transformation. An application of the solvability of the PDE on the European options with the final data is given finally.

1. Introduction

To make a portfolio strategy is to search for a best allocation
of wealth among different assets in markets. Taking the Euro-
pean options, for instance, how to distribute the appropriate
proportions of each option to maximize total returns at
expire time is the core of portfolio strategy problem. There
are two points mentioned among the relevant literatures for
portfolio selection problems: setting up a market model that
approximates to the real financial market and the way of
solving it.

Portfolio strategy researches are based on portfolio
selection analysis given by Markowitz [1]. Extension of
Markowitz’s work to the multiperiod model has given by Li
and Ng [2] which derived the analytical optimal portfolio
policy. These previous researches were assuming that the
underlying market has only one state or mode. But the real
market might have more than one state and could switch
among them.Then, portfolio policies under regime switching
have been widely discussed. In a financial market model, the
key process 𝑆 that models the evolution of stock price should
be a Brownianmotion. Indeed, this can be intuitively justified

on the basis of the central limit theorem if one perceives
the movement of stocks. The analysis of Øksendal [3] was
mainly based on the generalized Black-Scholes model which
has two assets 𝐵(𝑡) and 𝑆(𝑡) as 𝑑𝐵(𝑡) = 𝜌(𝑡)𝐵(𝑡)𝑑𝑡 and
𝑑𝑆(𝑡) = 𝛼(𝑡)𝑆(𝑡)𝑑𝑡+𝛽(𝑡)𝑆(𝑡)𝑑𝑊(𝑡), where𝑊(𝑡) is a Brownian
motion. In that case, Øksendal formulated optimal selling
decisionmaking as an optimal stopping problem and derived
a closed-form solution. The underlying problem may be
treated as a free boundary value problem,whichwas extended
to incorporate possible regime switching by Guo and Zhang
[4] and Pemy et al. [5] with the switching represented by a
two-state Markov chain. The rate of return 𝛼(t) in the above
Black-Scholes models in [4, 5] is a Markov chain which is
different from the general one. As an application, Wu and Li
[6, 7] have given the strategy of multiperiod mean-variance
portfolio selection with regime switching and a stochastic
cash flow which depends on the states of a stochastic market
following a discrete-time Markov chain. Being put in the
Markov jump, Black-Scholes model with regime switching is
much closer to the real market.

In recent years, Lévy process as a more general process
than Brownianmotion has been applied in financial portfolio
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optimization. Kallsen [8] gave an optimal portfolio strat-
egy of securities market under exponential Lévy process.
More specific than exponential Lévy process, a financial
market model with stock price following the geometric Lévy
process was discussed by Applebaum [9] in which a Lévy
process 𝑋(𝑡) and geometric Lévy motion 𝑆(𝑡) = 𝑒

𝑋(𝑡) were
introduced. Taking 𝑋 to be a Lévy process could force our
stock prices clearly not moving continuously, and a more
realistic approach is that the stock price is allowed to have
small jumps in small time intervals. Some applications of
financial market driven by Lévy process are taken on life
insurance. Vandaele and Vanmaele [10] show the real risk-
minimizing hedging strategy for unit-linked life insurance in
financial market driven by a Lévy process while Weng [11]
has analyzed the constant proportion portfolio insurance by
assuming that the risky asset price follows a regime switching
exponential Lévy process and obtained the analytical forms
of the shortfall probability, expected shortfall and expected
gain. Optimizing proportional reinsurance and investment
policies in a multidimensional Lévy-driven insurance model
is discussed by Bäuerle and Blatter [12]. Moreover, under a
generally method, Yuen and Yin [13] have considered the
optimal dividend problem for the insurance risk process in
a general Lévy process which shows that if the Lévy density is
a completely monotone function, then the optimal dividend
strategy is a barrier strategy.

Among all the above literatures, those portfolios are
always based on one risk-free asset and only one risky
asset which may limit the chosen stocks. However, in a real
financialmarket, there always existsmore than one risky asset
in a portfolio. That is why we are going to extend the single-
stock financial marketmodel to amultistock financial market
model driven by geometric Lévy process which ismore closer
to the real market than proposed portfolios cited above. In
this paper, we set up a general Black-Scholes model with
geometric Lévy process. For the general Black-Scholes model
of the financial market, a portfolio strategy which is deter-
mined by a partial differential equation (PDE) of parabolic
type is given by using Itô formula. The solvability of the PDE
is researched by making use of variables transformation. An
application of the solvability of the PDE on the European
options with the final data is given finally. The contributions
of this paper are as follows. (i) The B-S market model is
extended into general form in which the interest rate of the
bond, the rate of return, and the volatility of the stock vary as
the market states switching and the stock prices are driven
by geometric Lévy process. (ii) The PDE determining the
portfolio strategy and its solvability are extensions of the
existing results.

2. Problem Formulation

Assume that (Ω,F, 𝑃) is a complete probability space and
{F
𝑡
: 𝑡 ≥ 0} is a nondecreasing family of 𝜎-algebra subfields

of F. {𝛼(𝑡) : 𝑡 ≥ 0} denotes a Markov chain in (Ω,F, 𝑃) as
the regime of financial market, for example, the bull market
or bear market of a stock market. Let 𝑀 = {1, 2, . . . , 𝑚} be

the regime space of this Markov chain, and let Γ = (𝛾
𝑖𝑗
)
𝑚×𝑚

be the transition rate matrix which is satisfying

𝑃 {𝛼 (𝑡 + Δ) = 𝑗 | 𝛼 (𝑡) = 𝑖} = {

𝛾
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(1)

where Δ > 0 is the increment of time, 𝛾
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗), 𝛾

𝑖𝑖
=

−∑
𝑚

𝑗 ̸= 𝑖,𝑗=1
𝛾
𝑖𝑗
.

In this paper, we consider a financial market model
driven by geometric Lévy process. The market consists of
one risk-free asset denoted by 𝐵 and 𝑛 risky assets denoted
by 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
. The price process of these assets obeys the

following dynamic equations in which the price process of
the risky assets follows the geometric Lévy process; that is,

𝑑𝐵 (𝑡) = 𝐵 (𝑡) 𝑟 (𝑡, 𝛼 (𝑡)) 𝑑𝑡, 𝐵 (0) = 𝐵
0
,

𝑑𝑆
𝑘
(𝑡) = 𝑆

𝑘
(𝑡) [𝜇

𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑡 + 𝜎

𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+∫

𝑅−{0}

𝑧�̃�
𝑘
(𝑑𝑡, 𝑑𝑧)] ,

𝑆
𝑘
(0) = 𝑆

0

𝑘
> 0,

(2)

where 𝐵(𝑡) is the price of 𝐵 with the interest rate 𝑟(𝑡, 𝛼(𝑡))
and 𝑆

𝑘
(𝑡) is the price of 𝑆

𝑘
with the expect rate of return

𝜇
𝑘
(𝑡, 𝛼(𝑡)) and the volatility 𝜎

𝑘
(𝑡, 𝛼(𝑡)), which follow the

regime switching of financialmarket. 𝑆
1
(𝑡), 𝑆
2
(𝑡), . . . , 𝑆

𝑛
(𝑡) are

independent from each other.𝑊
𝑘
(𝑡) is the Brownian motion

which is independent from {𝛼(𝑡) : 𝑡 ≥ 0}. �̃�
𝑘
(⋅, ⋅) is defined as

below

�̃�
𝑘
(𝑑𝑡, 𝑑𝑧) = 𝑁

𝑘
(𝑑𝑡, 𝑑𝑧) − 𝜂

𝑘
(𝑑𝑧) 𝑑𝑡, (3)

where𝑁
𝑘
(𝑑𝑡, 𝑑𝑧) and 𝜂

𝑘
(𝑑𝑧)𝑑𝑡 indicate the number of jumps

and average number of jumps within time 𝑑𝑡 and jump range
𝑑𝑧 of price process 𝑆

𝑘
(𝑡), respectively. That is

𝜂
𝑘
(𝑑𝑧) 𝑑t = E [𝑁

𝑘
(𝑑𝑡, 𝑑𝑧)] , (4)

where E is the expectation operator. Moreover, we assume
that𝑁

𝑘
(𝑑𝑡, 𝑑𝑧), 𝛼(𝑡), and𝑊

𝑘
(𝑡) (𝑘 = 1, 2, . . . , 𝑛) are indepen-

dent of each other.

Remark 1. Thefinancemarketmodel (2) is an extension of the
B-S market model in which the interest rate of the bond, the
rate of return, and the volatility of the stock vary as themarket
states switching and the stock prices are driven by geometric
Lévy process.

For finance market model (2), we introduce the concept
of self-financing portfolio as follows.

Definition 2. A self-financing portfolio (𝜑, 𝜓) = (𝜑, 𝜓
1
,

𝜓
2
, . . . , 𝜓

𝑛
) for the financial market model (2) is a series of

predictable processes

{𝜑 (𝑡)}
𝑡≥0
, {𝜓

𝑘
(𝑡)}
𝑡≥0

(𝑘 = 1, 2, . . . , 𝑛) , (5)
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that is, for each 𝑇 > 0,

∫

𝑇

0





𝜑(𝑠)






2

𝑑𝑠 +

𝑛

∑

𝑘=1

∫

𝑇

0





𝜓
𝑘
(𝑠)





2

𝑑𝑠 < ∞, (6)

and the corresponding wealth process {𝑉(𝑡)}
𝑡≥0

, defined by

𝑉 (𝑡) := 𝜑 (𝑡) 𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) , 𝑡 ≥ 0, (7)

is an Itô process satisfying

𝑑𝑉 (𝑡) = 𝜑 (𝑡) 𝑑𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑑𝑆
𝑘
(𝑡) , 𝑡 ≥ 0. (8)

Problem Formulation. In this note, we will propose a port-
folio strategy for the financial market model (2) which
is determined by a partial differential equation (PDE) of
parabolic type by using Itô formula. The solvability of the
PDE is researched bymaking use of variables transformation.
Furthermore, the relationship between the solution of the
PDE and the wealth process will be discussed.

3. Main Results and Proofs

In this section, wewill give the following fundamental results.
For the sake of simplification, wewrite 𝑟(𝑡, 𝛼(𝑡)) as 𝑟,𝑓(𝑡, 𝑆(𝑡))
as 𝑓, and so forth.

To obtain the main result, we give the solution of (2) and
the characteristic of the derivation (8) of the wealth process.

The exact solutions of 𝐵(𝑡) in (2) can be found as follows:

𝐵 (𝑡) = 𝐵 (0) exp(∫
𝑡

0

𝑟 (𝑠, 𝛼 (𝑠)) 𝑑𝑠) . (9)

To solve the second equation in (2) for 𝑆
𝑘
(𝑡), it follows

from the Itô formula that

𝑑 ln 𝑆
𝑘
(𝑡) =

1

𝑆
𝑘
(𝑡)

[𝑆
𝑘
(𝑡) 𝜇
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑡

+𝑆
𝑘
(𝑡) 𝜎
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)]

−

1

2

1

𝑆
2

𝑘
(𝑡)

𝑆
2

𝑘
(𝑡) 𝜎
2

𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑡

+ ∫

𝑅−{0}

[ln (𝑆
𝑘
(𝑡) + 𝑧𝑆

𝑘
(𝑡))

− ln (𝑆
𝑘
(𝑡))] �̃�

𝑘
(𝑑𝑡, 𝑑𝑧)

+ ∫

𝑅−{0}

[ ln (𝑆
𝑘
(𝑡) + 𝑧𝑆

𝑘
(𝑡)) − ln (𝑆

𝑘
(𝑡))

−𝑧𝑆
𝑘
(𝑡)

1

𝑆
𝑘
(𝑡)

] 𝜂
𝑘
(𝑑𝑧) 𝑑𝑡

+

𝑠

∑

𝑗=1

𝛾
𝑖𝑗
ln (𝑆
𝑘
(𝑡))

= [𝜇
𝑘
(𝑡, 𝛼 (𝑡)) −

1

2

𝜎
2

𝑘
(𝑡, 𝛼 (𝑡))] 𝑑𝑡

+ 𝜎
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+ ∫

𝑅−{0}

ln (1 + 𝑧) �̃�
𝑘
(𝑑𝑡, 𝑑𝑧)

+ ∫

𝑅−{0}

[ln (1 + 𝑧) − 𝑧] 𝜂𝑘 (𝑑𝑧) 𝑑𝑡.

(10)

Integrating both sides of the above equation from 0 to 𝑡, we
have

𝑆
𝑘
(𝑡) = 𝑆

0

𝑘
exp{∫

𝑡

0

(𝜇
𝑘
(𝑠, 𝛼 (𝑠)) −

1

2

𝜎
2

𝑘
(𝑠, 𝛼 (𝑠))] 𝑑𝑠

+ ∫

𝑡

0

𝜎
𝑘
(𝑠, 𝛼 (𝑠)) 𝑑𝑊

𝑘
(𝑠)

+ ∫

𝑡

0

∫

𝑅−{0}

ln (1 + 𝑧) �̃�
𝑘
(𝑑𝑠, 𝑑𝑧)

+ ∫

𝑡

0

∫

𝑅−{0}

[ln (1 + 𝑧) − 𝑧] 𝜂𝑘 (𝑑𝑧) 𝑑𝑠} .

(11)

Proposition 3. Consider the price model (2) of a financial
market. If a portfolio (𝜑, 𝜓) is a self-financing strategy, then the
wealth process {𝑉(𝑡)}

𝑡≥0
defined by (7) satisfies

𝑑𝑉 (𝑡) = {𝑟 (𝑡, 𝛼 (𝑡)) 𝑉 (𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) [𝜇

𝑘
(𝑡, 𝛼 (𝑡)) − 𝑟 (𝑡, 𝛼 (𝑡))

−∫

𝑅−{0}

𝑧𝜂
𝑘
(𝑑𝑧)]} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) 𝜎
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) ∫

𝑅−{0}

𝑧𝑁
𝑘
(𝑑𝑡, 𝑑𝑧) .

(12)

Conversely, consider the model (2) of a financial market. If a
pair (𝜑, 𝜓) of predictable processes following the wealth process
{𝑉(𝑡)}

𝑡≥0
defined by formula (7) satisfies (12), then (𝜑, 𝜓) is a

self-financing strategy.

Proof. Substituting (2) into (8), we have

𝑑𝑉 (𝑡) = 𝜑 (𝑡) 𝑑𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑑𝑆
𝑘
(𝑡)

= 𝜑 (𝑡) 𝐵 (𝑡) 𝑟 (𝑡, 𝛼 (𝑡)) 𝑑𝑡 +

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡)
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× [𝜇
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑡 + 𝜎

𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+ ∫

𝑅−{0}

𝑧�̃�
𝑘
(𝑑𝑡, 𝑑𝑧)]

= {[𝑉 (𝑡) −

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡)] 𝑟 (𝑡, 𝛼 (𝑡))

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) 𝜇
𝑘
(𝑡, 𝛼 (𝑡))} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) 𝜎
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) ∫

𝑅−{0}

𝑧�̃�
𝑘
(𝑑𝑡, 𝑑𝑧)

= {𝑟 (𝑡, 𝛼 (𝑡)) 𝑉 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡)

× [𝜇
𝑘
(𝑡, 𝛼 (𝑡)) − 𝑟 (𝑡, 𝛼 (𝑡))

−∫

𝑅−{0}

𝑧𝜂
𝑘
(𝑑𝑧)]} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) 𝜎
𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑊

𝑘
(𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) ∫

𝑅−{0}

𝑧𝑁
𝑘
(𝑑𝑡, 𝑑𝑧) ,

(13)

which is (12).
Conversely, from (2) and (12), we can obtain (8).
This completes the proof of the above proposition.

Now we give the following fundamental results.

Theorem 4. Consider the model (2) of a financial market.
Assume that the portfolio (𝜑, 𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) is a self-financing

strategy and {𝑉(𝑡)}
𝑡≥0

is the wealth process defined by (7) and
∑
𝑛

𝑘=1
𝜓
𝑘
𝑆
𝑘
∫
𝑅−{0}

𝑧𝜂
𝑘
(𝑑𝑧) = ∑

𝑛

𝑘=1
∫
𝑅−{0}

𝑧𝜓
𝑘
𝑆
𝑘
𝜂
𝑘
(𝑑𝑧). If there

exists a function 𝑓(𝑡, 𝑆) of 𝐶1,2 class (the set of functions which
are once differentiable in 𝑡 and continuously twice differentiable
in 𝑆) such that

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑆 (𝑡) = (𝑆
1
(𝑡) , 𝑆
2
(𝑡) , . . . , 𝑆

𝑛
(𝑡)) ,

(14)

which holds true, then the portfolio (𝜑, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
) satisfies

𝜑 (𝑡) =

𝑓 − (𝜕𝑓/𝜕𝑆) 𝑆
𝑇

B (𝑡)
, 𝑡 ≥ 0 (15)

𝜓 (𝑡) = (

𝜕𝑓

𝜕𝑆
1

,

𝜕𝑓

𝜕𝑆
2

, . . . ,

𝜕𝑓

𝜕𝑆
𝑛

) =

𝜕𝑓

𝜕𝑆

, 𝑡 ≥ 0 (16)

and the function 𝑓(𝑡, 𝑆) solves the following backward PDE of
parabolic type:

𝜕𝑓

𝜕𝑡

+ 𝑟

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
= 𝑟𝑓,

𝑡 < 𝑇, 𝑆 > 0.

(17)

Moreover, if 𝑉(𝑇) = 𝑔(𝑆(𝑇)), then the function 𝑓(𝑡, 𝑆)

satisfies the following equation:

𝑓 (𝑇, 𝑆) = 𝑔 (𝑆) , 𝑆 > 0. (18)

For the converse part, we assume that 𝑇 > 0. If there
exists a function 𝑓(𝑡, 𝑆) of 𝐶1,2 class such that (17) and (18)
are satisfied, then the process (𝜑, 𝜓) defined by (16) and (15) is
a self-financing strategy. The wealth process 𝑉 = {𝑉(𝑡)}

𝑡∈[0,𝑇]

corresponding to (𝜑, 𝜓) satisfies (14).

Proof. We proof the direct part of Theorem 4 firstly.
For

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , (19)

by applying the Itô formula, we can infer that

𝑑𝑉 (𝑡) =

𝜕𝑓

𝜕𝑡

(𝑡, 𝑆 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆 (𝑡)) (𝑆
𝑘
𝜇
𝑘
𝑑𝑡 + 𝑆

𝑘
𝜎
𝑘
𝑑𝑊
𝑘
)

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

(𝑡, 𝑆 (𝑡)) 𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
𝑑𝑡

+

𝑛

∑

𝑘=1

∫

𝑅−{0}

(𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)) �̃�
𝑘
(𝑑𝑡, 𝑑𝑧)

+

𝑛

∑

𝑘=1

∫

𝑅−{0}

[𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)

−𝑧

𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆) 𝑆
𝑘
] 𝜂
𝑘
(𝑑𝑧) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝛾
𝑖𝑗
𝑓 (𝑡, 𝑆 (𝑡))

= [

[

𝜕𝑓

𝜕𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜇
𝑘
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

−

𝑛

∑

𝑘=1

∫

𝑅−{0}

𝑧

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜂
𝑘
(𝑑𝑧)] 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜎
𝑘
𝑑𝑊
𝑘

+

𝑛

∑

𝑘=1

∫

𝑅−{0}

[𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)]𝑁 (𝑑𝑡, 𝑑𝑧) .

(20)
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On the other hand, since our strategy is self-financing, the
formula (12) is satisfied.

Thus, the rate of return and the volatility in (20) and (12)
should be coincided, and hence

𝑛

∑

𝑘=1

𝜓
𝑘
(𝑡) 𝑆
𝑘
(𝑡) 𝜎
𝑘
=

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆) 𝑆
𝑘
𝜎
𝑘
,

𝑟 (𝑡, 𝛼 (𝑡)) 𝑓 (𝑡, 𝑆) +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
(𝜇
𝑘
− 𝑟)

=

𝜕𝑓

𝜕𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜇
𝑘
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
.

(21)

We can easily get 𝑆
𝑘
≥ 0 from (11), which together with

the first equation of (21) and the independence of 𝑆
𝑘
(𝑘 =

1, 2, . . . , 𝑛) yields (16).
From the first equation of (21), (7), and (14), we have

𝑟𝜑𝐵 = 𝑓 −

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
. (22)

So that

𝜑 =

𝑓 − ∑
𝑛

𝑘=1
(𝜕𝑓/𝜕𝑆

𝑘
) 𝑆
𝑘

𝐵

=

𝑓 − 𝑓
𝑆
𝑆
𝑇

𝐵

. (23)

Substituting (16) into the second equation of (21), we have

𝑟𝑓 −

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
𝑟 =

𝜕𝑓

𝜕𝑡

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
, (24)

which is (17).
Conversely, assume that 𝑓 = 𝑓(𝑡, 𝑆) is a 𝐶

1,2-class
function which is a solution of the PDE (17), and that (𝜑, 𝜓)
is a process defined by (16) and (15).

Firstly, we will show that a process 𝑉 = 𝑉(𝑡), 𝑡 ∈ [0, 𝑇],
defined by (7) satisfies the equation:

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , 𝑡 ∈ [0, 𝑇] . (25)

In fact, substituting formulas (16) and (15) into the right hand
side of (7), we have

𝑉 (𝑡) = 𝜑𝐵 +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
=

𝑓 − ∑
𝑛

𝑘=1
(𝜕𝑓/𝜕𝑆

𝑘
) 𝑆
𝑘

𝐵

𝐵

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
= 𝑓, 𝑡 ≥ 0.

(26)

This proves (25).
Next, we will show that (𝜑, 𝜓) is a self-financing strategy;

that is, (12) holds.
By applying the Itô formula to the process𝑉 and function

𝑓, we have that (20) is satisfied.

Furthermore, by (17),

𝜕𝑓

𝜕𝑡

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
= 𝑟𝑓 − 𝑟

𝑛

∑

𝑘=1

𝑆
𝑘

𝜕𝑓

𝜕𝑆
𝑘

,

𝜕𝑓

𝜕𝑡

+

𝑛

∑

𝑘=1

𝑆
𝑘
𝜇
𝑘

𝜕𝑓

𝜕𝑆
𝑘

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

= 𝑟𝑓 +

𝑛

∑

𝑘=1

(𝜇
𝑘
− 𝑟) 𝑆

𝑘

𝜕𝑓

𝜕𝑆
𝑘

.

(27)

Then, by (25) and (16), we have

𝑟𝑉 +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
(𝜇
𝑘
− 𝑟) =

𝜕𝑓

𝜕𝑡

+

𝑛

∑

𝑘=1

𝑆
𝑘
𝜇
𝑘

𝜕𝑓

𝜕𝑆
𝑘

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
,

(28)

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
𝜎
𝑘
=

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜎
𝑘
. (29)

Those together with (16) yield that (20) implies (12). The
proof of Theorem 4 is completed.

Remark 5. In order to determine the portfolio strategy (𝜙, 𝜓)
and obtain the final value 𝑉(𝑡), from Theorem 4, we should
find the solution of the PDF (17) with the final data (18).
This is the key problem in the rest of this section. We
have the following result in terms of method of variables
transformation.

Theorem 6. Let 𝑟(𝑡, 𝛼(𝑡)) in (2) be a constant 𝑟. The function
𝑓(𝑡, 𝑆), 𝑡 ≤ 𝑇, 𝑆 > 0 given by the following formula:

𝑓 (𝑡, 𝑆) =

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

×

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2
𝑔 (0, . . . , 0, 𝑆

𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
,

(30)

is a solution of the general Black-Scholes equation (17) with the
final data (18).

Proof. We are going to do some equivalent transformations
of general B-S equation (17), in order to get an appropriate
equivalent equation with analytic solutions. The procedure
will be divided into four steps.

Step I. Let

𝑓 (𝑡, 𝑆
1
, . . . , 𝑆

𝑛
) = 𝑒
𝑟(𝑡−𝑇)

𝑞 (𝑡, ln 𝑆
1
− (𝑟 −

1

2

𝜎
2

1
) (𝑡 − 𝑇) , . . . ,

ln 𝑆
𝑛
− (𝑟 −

1

2

𝜎
2

𝑛
) (𝑡 − 𝑇)) ,

(31)
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and denote 𝑦
𝑖
= ln 𝑆

𝑖
− (𝑟 − (1/2)𝜎

2

𝑖
)(𝑡 − 𝑇) (𝑖 = 1, 2, . . . , 𝑛),

and then

𝜕𝑓

𝜕𝑡

=

𝑑 (𝑒
𝑟(𝑡−𝑇)

)

𝑑𝑡

𝑞 + 𝑒
𝑟(𝑡−𝑇)

𝑞
𝑡

= 𝑒
𝑟(𝑡−𝑇)

𝑞 (

𝑑𝑟

𝑑𝑡

(𝑡 − 𝑇) + 𝑟)

+ 𝑒
𝑟(𝑡−𝑇)

[𝑞
𝑡
−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −

1

2

𝜎
2

𝑖
)]

= 𝑟𝑒
𝑟(𝑡−𝑇)

𝑞 + 𝑒
𝑟(𝑡−𝑇)

𝑞

𝑑𝑟

𝑑𝑡

(𝑡 − 𝑇)

+ 𝑒
𝑟(𝑡−𝑇)

[

𝜕𝑞

𝜕𝑡

−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −

1

2

𝜎
2

𝑖
)] ,

𝜕𝑓

𝜕𝑆
𝑖

= 𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
𝑖

,

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

=

𝜕 (𝑒
𝑟(𝑡−𝑇)

(𝜕𝑞/𝜕𝑦
𝑖
) (1/𝑆

𝑖
))

𝜕𝑆
𝑗

=

{
{
{
{

{
{
{
{

{

𝑒
𝑟(𝑡−𝑇)

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

1

𝑆
𝑖

1

𝑆
𝑗

, 𝑖 ̸= 𝑗,

𝑒
𝑟(𝑡−𝑇)

(

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑖

1

𝑆
𝑖

1

𝑆
𝑖

−

𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
2

𝑖

) , 𝑖 = 𝑗.

(32)

Inserting the above formulas into (17), we get

𝑟𝑓 +

𝑑𝑟

𝑑𝑡

(𝑡 − 𝑇) 𝑞𝑒
𝑟(𝑡−𝑇)

+ 𝑒
𝑟(𝑡−𝑇)

[

𝜕𝑞

𝜕𝑡

−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −

1

2

𝜎
2

𝑖
)]

+ 𝑟

𝑛

∑

𝑖=1

𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
𝑖

𝑆
𝑖
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑟(𝑡−𝑇) 𝜕

2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

1

𝑆
𝑖

1

𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

−

1

2

𝑛

∑

𝑖=1

𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

𝑆
2

𝑖

1

𝑆
2

𝑖

𝑆
2

𝑖
= 𝑟𝑓,

(33)

which can be simplified as

𝑑𝑟

𝑑𝑡

(𝑡 − 𝑇) 𝑞 +

𝜕𝑞

𝜕𝑡

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗
= 0. (34)

The final data 𝑓(𝑇, 𝑆) = 𝑔(𝑆) can be rewritten as

𝑞 (𝑇, 𝑆) = 𝑔 (𝑒
𝑆
1
, 𝑒
𝑆
2
, . . . , 𝑒

𝑆
𝑛
) . (35)

Step II. We introduce another variable and a new function as
follows:

𝜏 = 𝑇 − 𝑡 > 0, 𝑡 = 𝑇 − 𝜏, 𝜏 ≥ 0, 𝑡 ≤ 𝑇,

𝑞 (𝑡, 𝑦) = 𝑢 (𝑇 − 𝑡, 𝑦) or 𝑢 (𝜏, 𝑦) = 𝑞 (𝑇 − 𝜏, 𝑦) .

(36)

It can be computed that

𝑞
𝑡
(𝑡, 𝑦) = −𝑢

𝜏
(𝑇 − 𝑡, 𝑦) ,

𝜕𝑞

𝜕𝑦
𝑖

=

𝜕𝑢

𝜕𝑦
𝑖

(𝑇 − 𝑡, 𝑦) ,

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

=

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

(𝑇 − 𝑡, 𝑦) .

(37)

Substituting the above formulas into (34), we get

𝑑𝑉

𝑑𝑡

(𝑡 − 𝑇) 𝑢 (𝑇 − 𝑡, 𝑦) − 𝑢
𝜏
(𝑇 − 𝑡, 𝑦) +

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗

= 0,

𝑢 (0, 𝑦) = 𝑔 (𝑒
𝑦
) .

(38)

Since 𝑟(𝑡, 𝛼(𝑡)) is assumed as a constant 𝑟, (38) can be changed
into

𝑢
𝜏
(𝜏, 𝑦) −

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗
= 0,

𝑢 (0, 𝑦) = 𝑔 (𝑒
𝑦
) .

(39)

Step III. We claim that the unique solution of (39) is

𝑢 (𝑡, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)

=

1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0) 𝑑𝑥

𝑖
.

(40)

In fact,

𝑢
𝜏
(𝜏, 𝑦) = −

1

2√2𝜋𝜏𝜏

×

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0) 𝑑𝑥

𝑖

+

1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0)

×

(𝑦
𝑖
− 𝑥
𝑖
)
2

2𝜎
2

𝑖
𝜏
2

𝑑𝑥
𝑖
,
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𝜕𝑢

𝜕𝑦
𝑖

=

1

√2𝜋𝜏

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0)

× (−

𝑦
𝑖
− 𝑥
𝑖

𝜎
2

𝑖
𝜏

)𝑑𝑥
𝑖
,

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0, 𝑖 ̸= 𝑗,

1

√2𝜋𝜏

∫

∞

−∞

𝑔 (𝑒
𝑥
1
, . . . , 𝑒

𝑥
𝑛
)

𝜎
2

𝑖

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

×(

(𝑦
𝑖
− 𝑥
𝑖
)
2

𝜎
4

𝑖
𝜏
2

−

1

𝜎
2

𝑖
𝜏

)𝜎
2

𝑖
𝑑𝑥i, 𝑖 = 𝑗.

(41)

So

𝑢
𝜏
(𝜏, 𝑔) −

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗

= −

1

2√2𝜋𝜏𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0) 𝑑𝑥

𝑖

+

1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖
, 0, . . . , 0)

(𝑦
𝑖
− 𝑥
𝑖
)
2

2𝜎
2

𝑖
𝜏
2

𝑑𝑥
𝑖

−

1

2

𝑛

∑

𝑖=1

1

√2𝜋𝜏

∫

∞

−∞

𝑔 (𝑒
𝑥
1
, . . . , 𝑒

𝑥
𝑛
)

𝜎
2

𝑖

× 𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏
(

(𝑦
𝑖
− 𝑥
𝑖
)
2

𝜎
4

𝑖
𝜏
2

−

1

𝜎
2

𝑖
𝜏

)𝜎
2

𝑖
𝑑𝑥
𝑖
= 0.

(42)

Step IV. By introducing a change of variables 𝑧
𝑖
= 𝑥
𝑖
− 𝑦
𝑖
,

we have 𝑥
𝑖
= 𝑧
𝑖
+ 𝑦
𝑖
and 𝑑𝑥

𝑖
= 𝑑𝑧
𝑖
, where 𝑧

𝑖
∈ (−∞,∞). It

follows that

𝑢 (𝜏, 𝑦)

=

1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑧
𝑖
+𝑦
𝑖
, 0, . . . , 0) 𝑑𝑧

𝑖
.

(43)

In order to get rid of the denominator 𝜎2
𝑖
𝜏 in the exponent in

the above formula, we make another change of variables as

𝑧
𝑖
= 𝜎
𝑖
√𝜏𝑥
𝑖
. (44)

So 𝑑𝑧
𝑖
= 𝜎
𝑖
√𝜏𝑑𝑥

𝑖
.

Recalling the relationship between 𝑞 and 𝑢 described in
(36), we therefore have

𝑞 (𝑡, 𝑦)

=

1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
+𝑦
𝑖
, 0, . . . , 0) 𝑑𝑥

𝑖
.

(45)

Hence, by formula (31), we have

𝑓 (𝑡, 𝑆)

=

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
+ln 𝑆
𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
.

(46)

Since 𝑒ln 𝑆 = 𝑆, then

𝑓 (𝑡, 𝑆)

=

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
.

(47)

In this way we provedTheorem 6.

4. A Financial Example

As an application, we consider the European call option. In
Theorem 6, we have given the solution of the general B-S
equation (17) which depends on the final data (18); that is,
𝑓(𝑇, 𝑠) = 𝑔(𝑠). More specific, we take the final data 𝑔(𝑠) for
the European call option as

𝑔 (𝑆) = 𝑔 (𝑆
−𝑘
1

1
, 𝑆
−𝑘
2

2
, . . . , 𝑆

−𝑘
𝑛

𝑛
) =

𝑛

∑

𝑖=1

(𝑆
𝑖
− 𝐾i)
+

, (48)

where 𝑆
𝑖
> 0 and 𝐾

𝑖
> 0 are the strike price of 𝑆

𝑖
. Then we

have the following corollary fromTheorem 6.

Corollary 7. For the European call option, the solution to the
general Black-Scholes value problem (17) with the final data
(48) is given by

𝑓 (𝑡, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(−𝐴

𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡)

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(−𝐴

𝑖
) ,

(49)
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where

−𝐴
𝑖
=

(𝑟 − 𝜎
2

𝑖
/2) (𝑇 − 𝑡) + ln (𝑆

𝑖
/𝐾
𝑖
)

𝜎
𝑖
√𝑇 − 𝑡

=: 𝑑
2
,

−𝐴
𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡 =

(𝑟 + 𝜎
2

𝑖
/2) (𝑇 − 𝑡) + ln (𝑆

𝑖
/𝐾
𝑖
)

𝜎
𝑖
√T − 𝑡

=: 𝑑
1
,

(50)

that is,

𝑓 (𝑡, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(𝑑
1
) − 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(𝑑
2
) ; (51)

In particular,

𝑓 (0, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(𝑑
1
) − 𝑒
−𝑟𝑇

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(𝑑
2
) . (52)

Proof. For a European call option, we infer that

𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

> 𝐾
𝑖
. (53)

Dividing (53) by 𝑆
𝑖
and taking the ln, we get

𝜎
𝑖
√𝑇 − 𝑡𝑥

𝑖
− (𝑟 −

𝜎
2

𝑖

2

) (𝑡 − 𝑇) > ln
𝐾
𝑖

𝑆
𝑖

; (54)

that is,

𝑥
𝑖
>

ln (𝐾
𝑖
/𝑆
𝑖
) − (𝑟 − 𝜎

2

𝑖
/2) (𝑇 − 𝑡)

𝜎
𝑖
√𝑇 − 𝑡

=: 𝐴
𝑖
. (55)

Hence, from (30) and (48), it follows that

𝑓 (𝑡, 𝑆) =

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

×

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

𝑑𝑥
𝑖

−

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑆
𝑖
𝑒
(𝑟−𝜎
2

𝑖
/2)(𝑇−𝑡)

𝑒
−𝑥
2

𝑖
/2+𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
𝑑𝑥
𝑖

−

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑆
𝑖
𝑒
−(𝜎
2

𝑖
/2)(𝑇−𝑡)

× 𝑒
−(1/2)(𝑥

𝑖
−𝜎
𝑖
√𝑇−𝑡)

2

+(1/2)𝜎
2

𝑖
(𝑇−𝑡)

𝑑𝑥
𝑖

−

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖
−𝜎
𝑖
√𝑇−𝑡

𝑆
𝑖
𝑒
−𝑧
2
/2
𝑑𝑧

−

𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

𝑛

∑

𝑖=1

𝑆
𝑖

1

√2𝜋

∫

−𝐴
𝑖
+𝜎
𝑖
√𝑇−𝑡

−∞

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖

1

√2𝜋

∫

−𝐴
𝑖

−∞

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(−𝐴

𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡)

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(−𝐴

𝑖
) ,

(56)

where Φ(𝑡) is the probability distribution function of a
standard Gaussion random variable𝑁(0, 1); that is,

Φ (𝑡) =

1

√2𝜋

∫

𝑡

−∞

𝑒
−𝑥
2
/2
𝑑𝑥, 𝑡 ∈ 𝑅. (57)

In this way, we have proved Corollary 7.

Remark 8. Theabove result is about the European call option.
A similar representation to those from the above corollary
in the European put option case can be obtained by taking
𝑔(𝑆) = ∑

𝑛

𝑖=1
(𝐾
𝑖
− 𝑆
𝑖
)
+, 𝑆
𝑖
> 0 for some fixed 𝐾

𝑖
> 0.

5. Conclusion

In this paper, we have considered a financial market model
with regime switching driven by geometric Lévy process.
This financial market model is based on the multiple risky
assets 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
driven by Lévy process. Itô formula and

equivalent transformation methods have been used to solve
this complicated financial market model. An example of the
portfolio strategy and the final value problem to applying our
method to the European call option has been given in the end
of this paper.
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We deal with the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-
state Markovian process is given to govern the transition of the jumping parameters. A controller designed for unconstrained
systems combined with a dynamic antiwindup compensator is given to guarantee that the resulting system is mean-square locally
asymptotically finite-time stabilizable.The proposed conditions allow us to find dynamic anti-windup compensator which stabilize
the closed-loop systems in the finite-time sense. All these conditions can be expressed in the form of linear matrix inequalities and
therefore are numerically tractable, as shown in the example included in the paper.

1. Introduction

It is well known that more and more attention has been
paid to the study of actuator saturation due to its practical
and theoretical importance. Therefore, various approaches
were investigated to handle systems with actuator saturation
and dynamic antiwindup approach which is one of the most
effective ways to deal with it. To this end, a great number of
results have been reported in the literature; see, for example,
[1, 2]. Furthermore, the stabilization problem of singular
Markovian jump systems with discontinuities and saturation
inputs was presented in [3]. Via dynamic antiwindup fuzzy
design, the robust stabilization problem of state delayed T-S
fuzzy systems with input saturation was proposed in [4].

On the other hand, Markov jump is frequently encoun-
tered in many practical systems. Therefore, the study of
Markov jump systems has been a hot research topic due to
its importance, and many results have been proposed based
on various control techniques, such as robust control [5–9],
𝐻
∞

control [10, 11], Passivity-based control [12–14], fuzzy
dissipative control [15], and neural networks control [14, 16].
Furthermore, observer based finite-time𝐻

∞
control problem

of discrete-time Markov jump systems was studied [17].

As it is well known, when dealing with the stability
of s system, a distinction should have been made between
classical Lyapunov stability and finite-time stability (FTS).
Conversely, a system is said to be finite-time stable if,
once we fix a time-interval, its state does not exceed some
bounds during this time-interval. Some results on FTS
have been carried out; see, [18, 19]. Furthermore, finite-
time 𝐻

∞
filtering problem of time-delay stochastic jump

systems with unbiased estimation was proposed in [20].
By applying dynamic observer-based state feedback and the
Lyapunov-Krasovskii functional approach, the finite-time
𝐻
∞

control problem for time-delay nonlinear jump systems
was addressed in the work of He and Liu [21]. However,
to the best of our knowledge, the problem of finite-time
stabilization of discrete-time stochastic systems subject to
actuator saturation has not been fully investigated and it is
the main purpose of our study.

In this paper, the attention is focused on the finite-
time 𝐻

∞
control problem of discrete-time Markov jump

systems with actuator saturation based on dynamic anti-
windup approach. A controller designed for unconstrained
systems combined with a dynamic antiwindup compensator

Hindawi Publishing Corporation
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Volume 2014, Article ID 906902, 9 pages
http://dx.doi.org/10.1155/2014/906902
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is given to ensure the stochastic finite-time boundedness and
stochastic finite-time stabilization of the resulting closed-
loop system for all admissible disturbances.The desired com-
pensator can be designed via solving a convex optimization
problem. Finally, a numerical example is employed to show
the effectiveness of the proposed method.

Notation 1. Throughout the paper, for symmetric matrices𝑋
and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
𝐼 is the identitymatrix with appropriate dimension.Thenota-
tion 𝑁

𝑇 represents the transpose of the matrix 𝑁; 𝜆max(𝑀)

(resp.,𝜆min(𝑀))means the largest (resp., smallest) eigenvalue
of the matrix 𝑀; (Ω, F,P) is a probability space; Ω is the
sample space; F is the 𝜎-algebra of subsets of the sample
space and P is the probability measure on F;E{⋅} denotes
the expectation operator with respect to some probability
measure P. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symbol ∗ is used to denote
amatrixwhich can be inferred by symmetry.𝐻𝑒{𝐴} = 𝐴

𝑇
+𝐴.

2. Preliminaries and Problem Description

Consider the following discrete-time Markov jump system
(Σ) in the probability space (Ω, F,P):

𝑥
𝑝
(𝑘 + 1) = 𝐴

𝑝
(𝑟 (𝑘)) 𝑥

𝑝
(𝑘) + 𝐵

𝑝,𝑢
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐵
𝑝,𝑤

(𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑝,𝑦

(𝑟 (𝑘)) 𝑥
𝑝
(𝑘) + 𝐷

𝑝,𝑦𝑤
(𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑝,𝑧

(𝑟 (𝑘)) 𝑥
𝑝
(𝑘) + 𝐷

𝑝,𝑧𝑢
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐷
𝑝,𝑧𝑤

(𝑟 (𝑘)) 𝑤 (𝑘) ,

(1)

where𝑥
𝑝
(𝑘) ∈ R𝑛𝑝 is the state vector,𝑢(𝑘) ∈ R𝑛𝑢 is the control

input, and sat(𝑢(𝑘)) ∈ R𝑛𝑢 is the saturated control input.
𝑤(𝑘) ∈ 𝐿

𝑝

2
[0 +∞) is the external disturbances, 𝑦(𝑘) ∈ R𝑛𝑦 is

the measurement output, and 𝑧(𝑘) ∈ R𝑛𝑧 is the performance
output. {𝑟(𝑘)} is a discrete-time Markov process and takes
values from a finite set 𝑆 = {1, 2, . . . ,N} with transition
probabilities given by

Pr (𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘
= 𝑖) = 𝜋

𝑖𝑗
, (2)

where 𝜋
𝑖𝑗

≥ 0, for ∀𝑗, 𝑖 ∈ 𝑆, and ∑
𝑗∈𝑆

𝜋
𝑖𝑗

= 1. Moreover, the
transition rates matrix of the system (Σ) is defined by

[
[
[
[

[

𝜋
11

𝜋
12

⋅ ⋅ ⋅ 𝜋
1N

𝜋
21

𝜋
22

⋅ ⋅ ⋅ 𝜋
2N

...
... d

...
𝜋N1 𝜋N2 ⋅ ⋅ ⋅ 𝜋NN

]
]
]
]

]

. (3)

The plant inputs are supposed to be bounded as follows:

−𝑢
0(𝑘)

≤ 𝑢
(𝑘)

≤ 𝑢
0(𝑘)

, 𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚. (4)

For the system (Σ), to simplify the notation, we denote𝐴
𝑝𝑖

=

𝐴
𝑝
(𝑟(𝑘)) for each 𝑟(𝑘) = 𝑖 ∈ 𝑆, and the other symbols are

similarly denoted. Assume that a linear controller is designed
for any 𝑟(𝑘) = 𝑖 ∈ 𝑆; then,

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐𝑖
𝑥
𝑐
(𝑘) + 𝐵

𝑐𝑦,𝑖
𝑦 (𝑘) + 𝐵

𝑐𝑤,𝑖
𝑤 (𝑘) + V

1
,

𝑦
𝑐
(𝑘) = 𝐶

𝑐𝑖
𝑥
𝑐
(𝑘) + 𝐷

𝑐𝑦,𝑖
𝑦 (𝑘) + 𝐷

𝑐𝑤,𝑖
𝑤 (𝑘) + V

2
,

(5)

where 𝑥
𝑐
(𝑘) ∈ R𝑛𝑐 is the controller state and 𝑦

𝑐
(𝑘) ∈ R𝑛𝑢 is

the controller output; V
1
and V
2
will be used for antiwindup

augmentation. In absence of actuator saturation, the uncon-
strained closed-loop is formed by setting the following:

𝑢 = 𝑦
𝑐
, V

1
= 0, V

2
= 0. (6)

Assumption 1. The unconstrained closed-loop system (1)–(5)
is well posed and internally stable.

In the presence of actuator saturation, the relation
between 𝑢 and 𝑦

𝑐
is that 𝑢 = sat(𝑦

𝑐
). To minimize

performance degradation caused by saturation, the following
antiwindup compensator is designed for the closed-loop
systems:

𝑥aw (𝑘 + 1) = 𝐴aw,𝑖𝑥aw (𝑘) + 𝐵aw,𝑖𝜓 (𝑦
𝑐
(𝑘)) ,

V (𝑘) = 𝐶aw,𝑖𝑥aw (𝑘) + 𝐷aw,𝑖𝜓 (𝑦c (𝑘)) ,
(7)

where 𝜓(𝑦
𝑐
(𝑘)) = sat(𝑦

𝑐
(𝑘)) − 𝑦

𝑐
(𝑘). The resulting nonlinear

closed-loop system (1), (5), (7) is depicted in Figure 1 and can
be represented in the following compact form:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑞𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐵

𝑤𝑖
𝑤 (𝑘) ,

𝑦
𝑐
(𝑘) = 𝐾

𝑖
𝑥 (𝑘) + 𝐾

𝜙,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐾

𝑤𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧𝑖
𝑥 (𝑘) + 𝐷

𝑧𝑞,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐷

𝑧𝑤,𝑖
𝑤 (𝑘) ,

(8)

where

𝐴
𝑖
= [

[

𝐴
𝑝𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐴
𝑐𝑖

𝐼
1
𝐶
𝑎𝑤,𝑖

0 0 𝐴
𝑎𝑤,𝑖

]

]

,

𝐵
𝑞𝑖

= [

[

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐼
1
𝐷
𝑎𝑤,𝑖

𝐵
𝑎𝑤,𝑖

]

]

,

𝐵
𝑤𝑖

= [

[

𝐵
𝑝𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑐𝑤,𝑖

0

]

]

,

𝐶
𝑧𝑖

= [𝐶𝑝𝑧,𝑖
+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐶
𝑝𝑦,𝑖

𝐷
𝑝,𝑧𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖] ,

𝐷
𝑧𝑞,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

,

𝐷
𝑧𝑤,𝑖

= 𝐷
𝑝,𝑧𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐷
𝑝,𝑦𝑤,𝑖

,

𝐾
𝑖
= [𝐷𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐶
𝑐𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖] ,

𝐾
𝜙,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

, 𝐾
𝑤,𝑖

= 𝐷
𝑐𝑤,𝑖

+ 𝐷
𝑝,𝑦𝑤,𝑖

,

𝐼
1
= [𝐼 0] , 𝐼

2
= [0 𝐼] .

(9)

For this system, we introduce the following definitions and
assumption.
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Figure 1: The closed-loop systems with input saturation.

Assumption 2 (see [17]). The external disturbance 𝑤(𝑘) is
varying and satisfies the following constraint condition:

𝑇

∑

𝑘=0

𝑤(𝑘)
𝑇
𝑤 (𝑘) ≤ 𝑑, 𝑑 ≥ 0. (10)

Definition 3 (see [17]). The resulting closed-loop system
(8) is stochastic finite-time stable (SFTB) with respect to
(𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, and 𝑁 ∈ 𝑍

𝑘≥0
,

if

𝐸 {𝑥
𝑇
(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
⇒ 𝐸{𝑥

𝑇
(𝑘) 𝑅
𝑖
𝑥 (𝑘)} < 𝜖

2
,

∀𝑘 ∈ {1, 2, . . . , 𝑁} .

(11)

Definition 4 (see [17]). The resulting closed-loop system (8)
is said to be stochastic 𝐻

∞
finite-time stable with respect to

(𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, 𝛾 > 0,

and 𝑁 ∈ 𝑍
𝑘≥0

, if the system (8) is SFTB with respect to
(𝛿
𝑥
, 𝜖, 𝑅
𝑖
, 𝑁, 𝛾, 𝑑), and under the zero-initial condition,

the output 𝑧(𝑘) satisfies

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑧
𝑇
(𝑗) 𝑧 (𝑗)

}

}

}

≤ 𝛾
2
𝐸

{

{

{

𝑁

∑

𝑗=0

𝑤
𝑇
(𝑗) 𝑤 (𝑗)

}

}

}

, (12)

for any nonzero 𝑤(𝑘) which satisfies (10), where 𝛾 is a
prescribed positive scalar.

3. Main Results

In this section, we investigate the stabilization analysis of
the unconstrained systems and the antiwindup controller
design of the resulting closed-loop system. Some sufficient
conditions in terms of LMI are given. Before presenting the
main results, we give some lemmas as follows.

Lemma 5 (see [4]). For the closed-loop systems (8) with the
matrix 𝐾

𝑖
, the appropriate matrix 𝐿

𝑖
∈ R𝑚×𝑛 is given, if 𝑥(𝑘)

is in the set𝐷(𝑢
𝑜
), where𝐷(𝑢

𝑜
) is defined as follows:

𝐷(𝑢
𝑜
) = {𝑥 (𝑘) ∈ R

𝑛
; −𝑢
0(𝑘)

≤ (𝐾
𝑖(𝑘)

+ 𝐿
𝑖(𝑘)

) 𝑥 (𝑡) ≤ 𝑢
0(𝑘)

,

𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚} ,

(13)

then for any diagonal positive matrix 𝑇 ∈ R𝑚×𝑚, one has the
following:

𝜓(𝑢 (𝑘))
𝑇
𝑇 (𝜓 (𝑢 (𝑘)) − 𝐿

𝑖
𝑥 (𝑘) + 𝐾

𝜙,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐾

𝑤𝑖
𝑤 (𝑘))

≤ 0.

(14)

Lemma 6 (see [12]). For the given symmetric matrix 𝑆 ∈

R(𝑛+𝑚)×(𝑛+𝑚),

𝑆 = [

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

, (15)

where 𝑆
11

∈ R𝑛×𝑛, 𝑆
12

∈ R𝑛×𝑚, and 𝑆
22

∈ R𝑚×𝑚, the following
conditions are equivalent:

(1) 𝑆 < 0;
(2) 𝑆
11

< 0, 𝑆
22

− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;
(3) 𝑆
22

< 0, 𝑆
11

− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

3.1. Design of Controller. In this section, we design the
controller for the unconstrained systems with V

1
= 0 and

V
2
= 0. Combining system (1) with controller (5), we have

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧𝑖
𝑥 (𝑘) + 𝐷

𝑧𝑤,𝑖
𝑤 (𝑘) ,

(16)

where

𝐴
𝑖
= [

[

𝐴
𝑝𝑖

+ 𝐵
𝑝𝑢,𝑖

D
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐴
𝑐𝑖

]

]

,

𝐵
𝑤𝑖

= [

[

𝐵
𝑝𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑐𝑤,𝑖

]

]

.

(17)

Theorem 7. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, the unconstrained system
(16) is SFTBwith respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑)with 0 < 𝛿

𝑥
< 𝜖,

if there exist scalars 𝜇 ≥ 0, 𝜎
1

≥ 0, 𝜎
2

≥ 0, and the given
𝜆 > 0, two sets of mode-dependent symmetric positive-defined
matrices {𝑋

𝑖
, 𝑖 ∈ 𝑆} and {𝑄

𝑖
, 𝑖 ∈ 𝑆}, such that the following

conditions hold:

[
[
[
[

[

−𝜇𝜆𝐼 0 𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

𝐿
𝑇

2𝑖

∗ ∗ −𝑊

]
]
]
]

]

< 0, (18)

[
𝜎
2
𝑑
2
− 𝜇
−𝑁

𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (19)

𝜆𝑋
𝑖
< 𝐼, (20)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (21)

0 < 𝑄
𝑖
< 𝜎
2
𝐼, (22)
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where

𝑊 = diag {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

𝐿

𝑇

1𝑖
= [√𝜋

𝑖1
𝐴
𝑇

𝑖 √𝜋
𝑖2
𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴
𝑇

𝑖
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖 √𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] .

(23)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) . (24)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸

{

{

{

𝑛

∑

𝑗=1

𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇
𝑃
𝑗
𝑥 (𝑘 + 1)

}

}

}

= 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿
2𝑖] 𝜉 (𝑘) ,

(25)

where

𝜉 (𝑘) = [𝑥(𝑘)
𝑇

𝑤(𝑘)
𝑇
] ,

𝑊 = diag {𝑃
1
, 𝑃
2
, . . . , 𝑃

ℎ
} .

(26)

By using of Schur complement lemma to (18), and note that
𝑃
−1

𝑖
= 𝑋
𝑖
and 𝜆𝑋

𝑖
< 𝐼, we derive 𝜆𝐼 < 𝑃

𝑖
; then, we have

𝜉(𝑘)
𝑇
[
−𝜇𝜆𝐼 0

∗ −𝑄
𝑖

] 𝜉 (𝑘) + 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿
2𝑖] 𝜉 (𝑘)

< 0.

(27)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇
𝑄
𝑖
𝑤 (𝑘) . (28)

It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑤(𝑘)
𝑇
𝑤 (𝑘) . (29)

Then we have

𝐸 {𝑉 (𝑘 + 1)}

< 𝜇𝐸 {𝑉 (𝑘)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝐸 {𝑤(𝑘)
𝑇
𝑤 (𝑘)} .

(30)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)}

× 𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘
𝐸 {𝑉 (0)} + sup

(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘
𝑑
2
.

(31)

Letting

𝑃
𝑖
= 𝑅
−1/2

𝑖
𝑃
𝑖
𝑅
−1/2

𝑖
, (32)

and noting that

𝐸 {𝑥
𝑇
(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
, (33)

it can be verified that

𝐸 {𝑉 (0)} = 𝐸 {𝑥
𝑇
(0) 𝑃
𝑖
𝑥 (0)}

= 𝐸 {𝑥
𝑇
(0) 𝑅
1/2

𝑖
𝑃
𝑖
𝑅
𝑖
1/2𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝐸 {𝑥
𝑇
(0) 𝑅
𝑖
𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝛿
2

𝑥
.

(34)

Similarly, for all 𝑖 ∈ 𝑆, we can obtain

𝐸 {𝑉 (𝑘)} = 𝐸 {𝑥
𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘)}

= 𝐸 {𝑥
𝑇
(𝑘) 𝑅
1/2

𝑖
𝑃
𝑖
𝑅
𝑖
1/2𝑥 (𝑘)}

≥ inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖) 𝐸 {𝑥
𝑇
(𝑘) 𝑅
𝑖
𝑥 (𝑘)} .

(35)

Then, it is not difficult to find that

𝐸 {𝑥
𝑇
(𝑘) 𝑅
𝑖
𝑥 (𝑘)}

<

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝜇
𝑘
𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘
𝑑
2

inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖)
,

(36)

which implies that

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝜇
𝑘
𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘
𝑑
2

inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖)
< 𝜖
2
.

(37)

Then, one can obtain that

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑑
2

< inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖) 𝜇
−𝑁

𝜖
2
.

(38)

Setting

𝑋
𝑖
= 𝑃
−1

𝑖
,

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
,

0 < 𝑄
𝑖
< 𝜎
2
𝐼,

(39)

it is easy to see that

𝜎
−1

1
𝛿
2

𝑥
+ 𝜎
2
𝑑
2
< 𝜇
−𝑁

𝜖
2
. (40)

It is obvious that (40) is equivalent to (19).
This completes the proof.
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3.2. Design of Dynamic Antiwindup Compensator

Theorem 8. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, with antiwindup
compensator (7), such that the resulting closed-loop system (10)
is 𝑆𝐹𝑇𝐵 with respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, if

there exist scalars 𝜇 ≥ 0, 𝜎
1
≥ 0, and 𝜎

2
≥ 0, three sets of mode-

dependent symmetric positive-defined matrices {𝑋
𝑖
, 𝑖 ∈ 𝑆},

{𝑄
𝑖
, 𝑖 ∈ 𝑆} and diag positive-defined matrices {𝑆

𝑖
, 𝑖 ∈ 𝑆},

and two sets of mode-dependent matrices {𝑌
𝑖
, 𝑖 ∈ 𝑆} and

{𝐿
𝑖

= 𝐿
𝑖
𝑋
𝑖
, 𝐴
𝑎𝑤,𝑖

= 𝐴
𝑎𝑤,𝑖

𝑋
𝑖
, 𝐶
𝑎𝑤,𝑖

= 𝐶
𝑎𝑤,𝑖

𝑋
𝑖
, 𝐵
𝑎𝑤,𝑖

=

𝐵
𝑎𝑤,𝑖

𝑆
𝑖
, 𝐷
𝑎𝑤,𝑖

= 𝐷
𝑎𝑤,𝑖

𝑆
𝑖

𝑖 ∈ 𝑆}, such that the following
conditions hold:

[
[
[
[
[
[
[
[
[

[

−𝜇𝑋
𝑖

0 𝐿

𝑇

𝑖
𝐿

𝑇

1𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖

∗ ∗ −2𝑆
𝑖
− 𝐻𝑒 (𝐾

𝜑,𝑖
) 𝐿

𝑇

3𝑖

∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]
]

]

< 0, (41)

[
𝜎
2
𝑑
2
− 𝜇
−𝑁

𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (42)

[

𝑋
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (43)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (44)

0 < 𝑄
𝑖
< 𝜎
2
𝐼, (45)

where

𝑊 = diag {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

𝐿

𝑇

1𝑖
= [√𝜋

𝑖1
𝐴

𝑇

𝑖 √𝜋
𝑖2
𝐴

𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴

𝑇

𝑖
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖 √𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐵

𝑇

𝑞𝑖 √𝜋
𝑖2
𝐵

𝑇

𝑞𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵

𝑇

𝑞𝑖
] ,

(46)

with

𝐴
𝑖
=

[
[
[
[
[
[

[

𝐴
𝑝𝑖
𝑋
𝑖
+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖
𝑋
𝑖
𝐵
𝑝𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖

𝐴
𝑐𝑖
𝑋
𝑖

𝐼
1
𝐶
𝑎𝑤,𝑖

0 0 𝐴
𝑎𝑤,𝑖

]
]
]
]
]
]

]

,

𝐵
𝑞𝑖

=

[
[
[
[
[

[

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝑋
𝑖

𝐼
1
𝐷
𝑎𝑤,𝑖

𝐵
𝑎𝑤,𝑖

]
]
]
]
]

]

,

𝐾
𝑖
= [𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖
C
𝑐𝑖
𝑋
𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] , 𝐾
𝜙,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

.

(47)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) . (48)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸

{

{

{

𝑛

∑

𝑗=1

𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇
𝑃
𝑗
𝑥 (𝑘 + 1)

}

}

}

= 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖

𝐿
3𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿
2𝑖

𝐿
3𝑖] 𝜉 (𝑘) ,

(49)

where

𝜉 (𝑘) = [𝑥(𝑘)
𝑇

𝑤(𝑘)
𝑇

𝜓(𝑘)
𝑇
] ,

𝑊 = diag {𝑃
1
, 𝑃
2
, . . . , 𝑃

ℎ
} ,

𝐿
𝑇

1𝑖
= [√𝜋

𝑖1
𝐴
𝑇

𝑖 √𝜋
𝑖2
𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴
𝑇

𝑖
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖 √𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑞𝑖 √𝜋
𝑖2
𝐵
𝑇

𝑞𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑞𝑖
] .

(50)

Then, by pre- and postmultiplying (41) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}

with 𝑃
𝑖
= 𝑋
−1

𝑖
, 𝑇
𝑖
= 𝑆
−1

𝑖
, we have

[
[
[
[
[
[
[
[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 (𝑇

𝑖
K
𝜙,𝑖
) 𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]

]

< 0. (51)

By using of Schur complement lemma, we derive

𝜉(𝑘)
𝑇[
[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 (𝑇

𝑖
𝐾
𝜙,𝑖
)

]
]

]

𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖

𝐿
3𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿
2𝑖

𝐿
3𝑖] 𝜉 (𝑘) < 0.

(52)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇
𝑄
𝑖
𝑤 (𝑘)

+ 𝜓(𝑘)
𝑇
(2𝑇
𝑖
+ 𝐻𝑒 {𝑇

𝑖
𝐾
𝜙,𝑖
}) 𝜓 (𝑘)

− 2𝜓(𝑘)
𝑇
𝑇
𝑖
𝐿
𝑖
𝑥 (𝑘) + 2𝜓(𝑘)

𝑇
𝑇
𝑖
𝐾
𝑤𝑖
𝑤 (𝑘) .

(53)

Since 𝜓(𝑘)
𝑇
(2𝑇
𝑖
+ 𝐻𝑒{𝑇

𝑖
𝐾
𝜙,𝑖
})𝜓(𝑘) − 2𝜓(𝑘)

𝑇
𝑇
𝑖
𝐿
𝑖
𝑥(𝑘) +

2𝜓(𝑘)
𝑇
𝑇
𝑖
𝐾
𝑤𝑖
𝑤(𝑘) ≤ 0, we get

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇
𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇
𝑄
𝑖
𝑤 (𝑘) . (54)
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It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑤(𝑘)
𝑇
𝑤 (𝑘) . (55)

Then, we have

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝐸 {𝑤(𝑘)
𝑇
𝑤 (𝑘)} .

(56)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)}

× 𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘
𝐸 {𝑉 (0)} + sup

(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘
𝑑
2
.

(57)

The following proof is similar to the process of Theorem 7.
Based on Lemma 5, it is easy to obtain that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (58)

then pre- and post-multiply (58) by diag{𝑋
𝑖
, 𝐼}which implies

(43). This completes the proof.

Theorem 9. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, with antiwindup
compensator (7), such that the resulting closed-loop system (10)
is said to be Stochastic𝐻

∞
finite-time stable via state feedback

with respect to (𝛿
𝑥
, 𝜖, 𝑅
𝑖
, 𝑁, 𝛾, 𝑑), if there exist three scalars

𝜇 ≥ 0, 𝜎
1

≥ 0, and 𝛾 ≥ 0, two sets of mode-dependent
symmetric positive-defined matrices {𝑋

𝑖
, 𝑖 ∈ 𝑆} and diag

matrices {𝑆
𝑖
, 𝑖 ∈ 𝑆}, and two sets of mode-dependent matrices

{𝑌
𝑖
, 𝑖 ∈ 𝑆} and {𝐿

𝑖
= 𝐿
𝑖
𝑋
𝑖
, 𝑖 ∈ 𝑆}, such that the following

conditions hold:

[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜇𝑋
𝑖

0 𝐿

𝑇

𝑖
𝐿

𝑇

1𝑖
𝐶

𝑇

𝑧𝑖

∗ −𝛾
2
𝜇
−𝑁

𝐼 𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖
𝐷
𝑇

𝑧𝑤,i

∗ ∗ −2𝑆
𝑖
− 𝐻𝑒 (𝐾

𝜙,𝑖
) 𝐿

𝑇

3𝑖
𝐷

𝑇

𝑧𝑞,𝑖

∗ ∗ ∗ −𝑊 0

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(59)

[
𝜇
−𝑁

(𝑑
2
𝛾
2
− 𝜖
2
) ∗

𝛿
𝑥

−𝜎
1

] < 0, (60)

[

𝑋
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (61)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (62)

with

𝐶
𝑧𝑖

= [(𝐶
𝑝𝑧,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐶
𝑝𝑦,𝑖

)𝑋
𝑖

𝐷
𝑝,𝑧𝑢,𝑖

𝑋
𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] ,

𝐷

𝑇

𝑧𝑞,𝑖
= 𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

.

(63)

Proof. Choose the similar Lyapunov function as Theorem 7
and denote

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖)

= 𝐸 {𝑉 (𝑘 + 1)} − 𝜇𝑉 (𝑘) + 𝑧(𝑘)
𝑇
𝑧 (𝑘)

− 𝛾
2
𝜇
−𝑁

𝑤(𝑘)
𝑇
𝑤 (𝑘) .

(64)

Thus, in light of Lemma 5, we have

Π(𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟
𝑘
= 𝑖)

≤ 𝜉(𝑘)
𝑇
[𝐿1𝑖

𝐿
2𝑖

𝐿
3𝑖]
𝑇

𝑊[𝐿1𝑖
𝐿
2𝑖

𝐿
3𝑖] 𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇
[𝐶𝑧𝑖

𝐷
𝑧𝑤,𝑖

𝐷
𝑧𝑞,𝑖]

𝑇

[𝐶𝑧𝑖
𝐷
𝑧𝑤,𝑖

𝐷
𝑧𝑞,𝑖] 𝜉 (𝑘)

+ 𝜉
𝑇
(𝑘)

[

[

−𝜇𝑋
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝛾
2
𝜇
−𝑁

𝐼 𝐾
𝑇

𝑤𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 {𝑇

𝑖
𝐾
𝜙,𝑖
}

]

]

𝜉 (𝑘) .

(65)

Then pre- and postmultiply (59) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}, and

considering Schur complement lemma and (65), we derive
that

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖) < 0 (66)

holds for all 𝑟
𝑘
= 𝑖 ∈ 𝑆. According to (66), one can obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)} − 𝐸 {𝑧(𝑘)
𝑇
𝑧 (𝑘)}

+ 𝛾
2
𝜇
−𝑁

𝐸 {𝑤(𝑘)
𝑇
𝑤 (𝑘)} .

(67)

Then, we have

𝐸 {𝑉 (𝑘)} < 𝜇
𝑘
𝐸 {𝑉 (0)} −

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

+ 𝛾
2
𝜇
−𝑁

𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇
𝑤 (𝑗)

}

}

}

.

(68)

Under the zero-value initial condition and noting that𝑉(𝑘) ≥

0, for all 𝐾 ∈ 𝑍
𝑘≥0

, it is shown that

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)} < 𝛾
2
𝜇
−𝑁

𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

.

(69)
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Since 𝜇 ≥ 1 and from (69), we have

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑧(𝑗)
𝑇

𝑧 (𝑗)

}

}

}

=

𝑁

∑

𝑗=0

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

≤

𝑁

∑

𝑗=0

𝐸 {𝜇
𝑁−𝑗

𝑧(𝑗)
𝑇

𝑧 (𝑗)}

≤ 𝛾
2
𝜇
−𝑁

𝐸

{

{

{

𝑁

∑

𝑗=0

𝜇
𝑁−𝑗

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝛾
2
𝐸

{

{

{

𝑁

∑

𝑗=0

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

.

(70)

The following proof is similar to the process of Zhang and Liu
[17].

Since 𝜀(𝑃
𝑖
, 1) ⊂ 𝐷(𝑢

0
), it follows that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖

𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (71)

and then pre- and post-multiply (71) by diag(𝑋
𝑖
, 𝐼) and

its transpose, respectively; we derive condition (61). This
completes the proof.

4. Illustrative Examples

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposedmethod. Consider the
following systems with four operation modes.

Mode 1 is

𝐴
𝑝1

= [
0.75 −0.75

1.5 −1.5
] , 𝐵

𝑝𝑢,1
= [

1

0
] , 𝐵

𝑝𝑤,1
= [

1

0
] ,

𝐶
𝑝𝑦,1

= [−0.1 −0.2] , 𝐶
𝑝𝑧,1

= [1 0] ,

𝐷
𝑝𝑦𝑤,1

= 1, 𝐷
𝑝𝑧𝑢,1

= 1, 𝐷
𝑝𝑧𝑤,1

= 0.8.

(72)

Mode 2 is

𝐴
𝑝2

= [
0.15 4.5

2.10 −0.4
] , 𝐵

𝑝𝑢,2
= [

1

0
] , 𝐵

𝑝𝑤,2
= [

1

0
] ,

𝐶
𝑝𝑦,2

= [−0.1 −0.1] , 𝐶
𝑝𝑧,2

= [1 0] ,

𝐷
𝑝𝑦𝑤,2

= 1, 𝐷
𝑝𝑧𝑢,2

= 0.9, 𝐷
𝑝𝑧𝑤,2

= 0.8.

(73)

Mode 3 is

𝐴
𝑝3

= [
0.24 2.50

1.2 −2.1
] , 𝐵

𝑝𝑢,3
= [

0.9

0
] , 𝐵

𝑝𝑤,3
= [

1

0
] ,

𝐶
𝑝𝑦,3

= [−0.1 0] , 𝐶
𝑝𝑧,3

= [1 0] ,

𝐷
𝑝𝑦𝑤,3

= 0.8, 𝐷
𝑝𝑧𝑢,3

= 1, 𝐷
𝑝𝑧𝑤,3

= 1.2.

(74)

Mode 4 is

𝐴
𝑝4

= [
1 −0.25

1.5 −1.5
] , 𝐵

𝑝𝑢,4
= [

1

0
] , 𝐵

𝑝𝑤,4
= [

1

0
] ,

𝐶
𝑝𝑦,4

= [1 0] , 𝐶
𝑝𝑧,4

= [1 0] ,

𝐷
𝑝𝑦𝑤,4

= 1, 𝐷
𝑝𝑧𝑢,4

= 0.5, 𝐷
𝑝𝑧𝑤,4

= 1.

(75)

With the given designed controllers,

𝐴
𝑐1

= −5.5, 𝐵
𝑐𝑦,1

= −1, 𝐵
𝑐𝑤,1

= 1,

𝐶
𝑐1

= −1, 𝐷
𝑐𝑦,1

= −0.1, 𝐷
𝑐𝑤,1

= 0.5,

𝐴
𝑐2

= −5, 𝐵
𝑐𝑦,2

= −0.9, 𝐵
𝑐𝑤,2

= 1,

𝐶
𝑐2

= −1, 𝐷
𝑐𝑦,2

= 5.9, 𝐷
𝑐𝑤,2

= 1,

𝐴
𝑐3

= −4.5, 𝐵
𝑐𝑦,3

= −1, 𝐵
𝑐𝑤,3

= 1,

𝐶
𝑐3

= −1.5, 𝐷
𝑐𝑦,3

= 5.1, 𝐷
𝑐𝑤,3

= 1,

𝐴
𝑐4

= −7, 𝐵
𝑐𝑦,4

= −1, 𝐵
𝑐𝑤,4

= 1,

𝐶
𝑐4

= −1.5, 𝐷
𝑐𝑦,4

= −2, 𝐷
𝑐𝑤,4

= 1.

(76)

The transition rate matrix is given by the following:

[
[
[

[

0.3 0.3 0.2 0.2

0.4 0.3 0.2 0.1

0.2 0.1 0.4 0.3

0.2 0.3 0.1 0.4

]
]
]

]

. (77)

In this case, we choose the initial values for 𝑅
𝑖
= 𝐼
2
, 𝑖 =

1, 2, 3, 4, 𝛿
𝑥

= 1, 𝑁 = 5, 𝛼 = 10
−10

, 𝜇 = 2.5, 𝑑 =

1, and 𝑤(𝑘) = 0.5(1 + cos𝑥(𝑘)); Theorem 7 yields to 𝜖 =

36.2671, 𝜎
1
= 0.4906, 𝜎

2
= 13.7421, and the bounds of the

input saturation 𝑢
0
= 0.08.

Based onTheorem 9, we derive

𝐴
𝑎𝑤,1

= −2.67, 𝐴
𝑎𝑤,2

= −1.86,

𝐴
𝑎𝑤,3

= −1.88, 𝐴
𝑎𝑤,4

= −2.59,

𝐵
𝑎𝑤,1

= −0.02, 𝐵
𝑎𝑤,2

= −0.01,

𝐵
𝑎𝑤,3

= −0.01, 𝐵
𝑎𝑤,4

= −0.02,

𝐶
𝑎𝑤,1

= [
17.27

0.68
] , 𝐶

𝑎𝑤,2
= [

68.44

−48.31
] ,

𝐶
𝑎𝑤,3

= [
68.74

−49.29
] , 𝐶

𝑎𝑤,4
= [

17.27

0.66
] ,
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Figure 2: 𝑟
𝑘
of jump rates.

𝐷
𝑎𝑤,1

= [
0.21

0.1
] , 𝐷

𝑎𝑤,2
= [

0.18

−0.1
] ,

𝐷
𝑎𝑤,3

= [

0.19

0
] , 𝐷

𝑎𝑤,4
= [

0.2

0.1
] .

(78)

Remark 10. Figures 2, 3, and 4 are given on the last page.
Figure 1 is 𝑟

𝑘
of the jump rates, Figure 2 and Figure 3 are

state response of open and closed-loop system. Based on
the figures provided, the controller and the compensator we
designed guarantee that the resulting closed-loop systems are
mean-square locally asymptotically finite-time stabilizable.

5. Conclusions and Future Work

In this paper, the finite-time 𝐻
∞

stabilization problem for a
class of discrete-time Markov jump systems with input satu-
ration has been investigated. Based on stochastic finite-time
stability analysis, a controller designed for the unconstrained
system with a dynamic antiwindup compensator subject to
actuator saturation is given to guarantee the stochastic finite-
time boundedness and stochastic finite-time stabilization of
the considered closed-loop system for all admissible distur-
bances. Finally, the effectiveness of the proposed approach
has been illustrated by simulation results.The finite-time sta-
bilization problem ofMarkov jump systems with constrained
input and time-delay will be considered in the future work.
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This paper deals with the problem of robust exponential stability and𝐻
∞
performance analysis for a class of uncertain Markovian

jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for
the addressed system are derived. At last, numerical examples is given presented to show the effectiveness of the proposed results.

1. Introduction

It is well known that time delay is usually the main reason for
instability and poor performance of many practical control
systems [1–5]. The stability results for delayed systems can
be generally classified into two categories: delay-independent
stability criteria and delay-dependent criteria. And the delay-
dependent results are often less conservative than the delay-
independent ones, especially when the time delays are
small. Therefore, much more attention has been focused
on study of the delay-dependent stability conditions in
recent years. For example, the system transformationmethod
in [6], the descriptor system method in [7], parameter-
dependent Lyapunov-Krasovskii functional method in [8],
Jensen inequality method in [9], Free-weighting matrix
method in [10, 11], integral inequality method in [12],
augmented Lyapunov functional method in [13], convex
domain method in [14], interval partition method in [15, 16],
reciprocally convex method in [17], and so forth. And those
approaches have been widely used in the stability analysis for
lots of delayed systems in recent years [18–20].

On the other hand, since Markovian jumping systems
can model many types of dynamic systems subject to abrupt
changes in their structures, such as failure prone manu-
facturing systems, power systems, and economics systems

[21–27], a great deal of results related to stability analysis
and synthesis for this class of systems with time delays
has been reported in recent years. For example, for the
delay-independent results, sufficient conditions for mean
squares to stochastic stability were obtained in [28], while
exponential stability conditions were proposed in [29]. The
robust 𝐻

∞
filtering problem was dealt with in [30]. For the

delay-dependent ones, the stability and 𝐻
∞

control results
were presented by resorting to some bounding techniques
for some cross terms and using model transformation to
the original delay system in [31]. The 𝐻

∞
control and

Filtering problem were taken into account in [32] using
the Free-weighting matrix method. The stability and 𝐻

∞

analysis was proposed in [33] with the idea of delay partition.
Filtering problem with a new index was considered in [34]
using the reciprocally convex method. It is worth mentioned
that inspite of the deep study for the delayed stochastic
in recent years as mentioned above, there are few papers
that consider the problem of stability analysis for uncertain
stochastic systems with multiple delays, which motivates our
study.

In this paper, the robust exponential stability and 𝐻
∞

performance analysis for a class of uncertain Markovian
system with multiple time-varying delays is investigated.
Some new delay-dependent stability conditions are derived.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 738318, 10 pages
http://dx.doi.org/10.1155/2014/738318

http://dx.doi.org/10.1155/2014/738318


2 Abstract and Applied Analysis

And numerical simulation is given to demonstrate the effec-
tiveness of the result.
Notation. Throughout this paper, for symmetric matrices 𝑋
and 𝑌, the notation 𝑋 ≥ Y (resp., 𝑋 > 𝑌) means that
the matrix 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite); 𝐼 is the identity matrix with appropriate dimension;
𝑀
𝑇 represents the transpose of the matrix 𝑀; E{⋅} denotes

the expectation operator with respect to some probability
measureP; 𝐿

2
[0,∞] is the space of square-integrable vector

functions over [0,∞]; | ⋅ | refers to the Euclidean vector
norm; ‖ ⋅ ‖

2
stands for the usual 𝐿

2
[0,∞] norm; (Ω,F,P)

is a probability space with Ω the sample space and F is
the 𝜎-algebra of subsets of the sample space. Matrices, if
not explicitly mentioned, are assumed to have compatible
dimensions.

2. System Description and Preliminaries

Consider the following uncertainMarkovian jumping system
with multiple time-varying delays:

̇𝑥 (𝑡) = 𝐴
0
(𝑟 (𝑡) , 𝑡) 𝑥 (𝑡)

+

𝑚

∑

𝑖=1

𝐴
𝑖
(𝑟 (𝑡) , 𝑡) 𝑥 (𝑡 − ℎ

𝑖
(𝑡))

+ 𝐷
1
(𝑟 (𝑡) , 𝑡) 𝑤 (𝑡) ,

(1)

𝑧 (𝑡) =

𝑚

∑

𝑖=0

𝐶
𝑖
(𝑟 (𝑡)) 𝑥 (𝑡 − ℎ

𝑖
(𝑡)) + 𝐷

2
(𝑟 (𝑡)) 𝑤 (𝑡) , (2)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] , (3)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state; 𝑤(𝑡) ∈ 𝑅

𝑝 is the noise
disturbance which is assumed to be an arbitrary signal in
𝐿
2
([0,∞]); 𝑧(𝑡) ∈ 𝑅

𝑞 is the signal to be estimated; 𝑟(𝑡) is a
homogenous stationary Markov chain defined on a complete
probability space {Ω, 𝐹, 𝑃} and taking values in a finite set
𝑆 = {1, 2, . . . , 𝑁} with generator Π = (𝜆

𝑚,𝑛
) (𝑚, 𝑛 ∈ 𝑆) given

by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑘}

= {

𝜆
𝑘,𝑗
Δ + 𝑜 (Δ) if 𝑘 ̸= 𝑗,

1 + 𝜆
𝑘,𝑘
Δ + 𝑜 (Δ) if 𝑘 = 𝑗,

(4)

whereΔ > 0 and lim
Δ→0

𝑜(Δ)/Δ = 0, 𝜆
𝑘,𝑗

≥ 0 is the transition
rate from 𝑘 to 𝑗 if 𝑘 ̸= 𝑗 and 𝜆

𝑘,𝑘
= −∑

𝑘 ̸= 𝑗
𝜆
𝑘,𝑗
. The scalar

ℎ
𝑖
(𝑡) is the time-varying delay with 0 ≤ ℎ

1𝑖
≤ ℎ
𝑖
(𝑡) ≤ ℎ

2𝑖
,

̇
ℎ
𝑖
(𝑡) ≤ 𝜇, 𝑖 = 1, 2, . . . , 𝑚, for any 𝑡 > 0, where ℎ

1𝑖
, ℎ
2𝑖
,

and 𝜇 are positive scalar constants; 𝜙(𝑡) is the initial function
defined in 𝑡 ∈ [−ℎ, 0] with ℎ = max{ℎ

21
, ℎ
22
, . . . , ℎ

2𝑚
};

𝐴
𝑖
(𝑟(𝑡)), 𝑖 = 0, 1, . . . , 𝑚, and 𝐷

1
(𝑟(𝑡)) are matrix functions

with time-varying uncertainties described as 𝐴
𝑖
(𝑟(𝑡), 𝑡) =

𝐴
𝑖
(𝑟(𝑡)) + Δ𝐴

𝑖
(𝑟(𝑡), 𝑡), 𝐷

1
(𝑟(𝑡), 𝑡) = 𝐷

1
(𝑟(𝑡)) + Δ𝐷

1
(𝑟(𝑡), 𝑡),

where 𝐴
𝑖
(𝑟(𝑡)), 𝐷

1
(𝑟(𝑡)) are known constant matrices, while

uncertainties Δ𝐴
𝑖
(𝑟(𝑡), 𝑡), Δ𝐷

1
(𝑟(𝑡), 𝑡) are assumed to be

norm bounded as
[Δ𝐴 𝑖 (

𝑟 (𝑡) , 𝑡) Δ𝐷
1
(𝑟 (𝑡) , 𝑡)]

= 𝐸 (𝑟 (𝑡)) 𝐹 (𝑟 (𝑡) , 𝑡) [𝐻𝑖 (
𝑟 (𝑡)) 𝐻

𝑑
(𝑟 (𝑡))] ,

𝑖 = 0, 1, . . . , 𝑚,

(5)

where 𝐸(𝑟(𝑡)),𝐻
𝑖
(𝑟(𝑡)),𝐻

𝑑
(𝑟(𝑡)), and 𝐶

𝑖
(𝑟(𝑡)),𝐷

2
(𝑟(𝑡)) in (2)

are known constant matrices with appropriate dimensions.
The unknown matrix functions 𝐹(𝑟(𝑡)) are having Lebesgue-
measurable elements and satisfying

𝐹 (𝑟 (𝑡)) ≤ 𝐼, ∀𝑡 > 0. (6)

Remark 1. When 𝑚 = 1, the system with multiple time-
varying delays (1)–(3) is actually deduced to the uncertain
Markovian jumping system with interval delay, which have
been deeply studied in recent years. That is, the obtained
results of multiple delayed systems can be directly deduced
to the interval delayed systems.

Throughout this paper, we will use the following Defini-
tions and Lemmas.

Definition 2. The uncertain Markovian jumping system with
multiple time-varying delays (1)–(3) is said to be robustly
exponentially stable in mean square for all admissible uncer-
tainties, if there exist scalars 𝛼

1
> 0 and 𝛼

2
> 0 such that for

all 𝑡 ≥ 0,




𝑥(𝑡, 𝑥
0
, 𝑡
0
)





2

≤ 𝛼
1
𝑒
−𝛼
2
𝑡 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

} , (7)

where 𝑥(𝑡, 𝑥
0
, 𝑡
0
) is the trivial solution of systems (1)–(3) with

𝑤(𝑡) = 0.

Definition 3. Given a scalar 𝛾 > 0, uncertain Markovian
jumping system with multiple time-varying delays (1)–(3) is
said to be robustly exponentially stable with a prescribed𝐻

∞

performance level 𝛾 if it is robustly exponentially stable, and
under the zero initial condition, satisfies

‖𝑧‖𝐸
2

< 𝛾‖𝑤‖2
, (8)

for all admissible uncertainties and nonzero𝑤(𝑡) ∈ 𝐿
2
[0,∞),

where

‖𝑧‖𝐸
2

= ({∫

∞

0






𝑧(𝑡)
2



𝑑𝑡})

1/2

. (9)

Lemma4 (see [9]). For any constant matrix𝑀 ∈ 𝑅
𝑚×𝑚, 𝑀 =

𝑀
𝑇
> 0, scalar 𝛾 > 0, vector function 𝜔 : [0, 𝛾] → 𝑅

𝑚 such
that the integrations in the following are well defined; then

𝛾∫

𝛾

0

𝜔(𝛽)
𝑇

𝑀𝜔(𝛽) 𝑑𝛽 ≥ (∫

𝛾

0

𝜔 (𝛽) 𝑑𝛽)

𝑇

𝑀∫

𝛾

0

𝜔 (𝛽) 𝑑𝛽.

(10)

Lemma5 (see [35]). Let𝐴,𝐷,𝐸 be real constantmatrices with
appropriate dimensions; matrix 𝐹(𝑡) satisfies 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.
For any 𝜀 > 0, such that 𝑃−1 − 𝜀𝐷𝐷

𝑇
> 0,

𝐷𝐹 (𝑡) 𝐸 + 𝐸
𝑇
𝐹
𝑇
(𝑡) 𝐷
𝑇
≤ 𝜀
−1
𝐷𝐷
𝑇
+ 𝜀𝐸
𝑇
𝐸. (11)



Abstract and Applied Analysis 3

Lemma 6 (see [36]). Consider system (1) with 0 ≤ ℎ
1𝑖

≤

ℎ
𝑖
(𝑡) ≤ ℎ

2𝑖
, 𝑖 = 1, 2, . . . , 𝑚, for any matrices 𝑍

𝑖
∈ 𝑅
𝑛×𝑛 and

𝑈i ∈ 𝑅
𝑛×𝑛 satisfying [ 𝑍𝑖 𝑈𝑖

∗ 𝑍
𝑖

] ≥ 0; the following inequality holds

−
̂
𝑑
𝑖
∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̇𝑥(𝑠)
𝑇
𝑍
𝑖
̇𝑥 (𝑠) 𝑑𝑠 ≤ 𝜉

𝑖
(𝑡)
𝑇
Ω
𝑖
𝜉
𝑖
(𝑡) , (12)

where ̂
𝑑
𝑖
= ℎ
2𝑖
− ℎ
1𝑖
, and

𝜉
𝑖
(𝑡) = [𝑥(𝑡 − ℎ

1𝑖
)
𝑇

𝑥(𝑡 − ℎ
𝑖
(𝑡))
𝑇

𝑥(𝑡 − ℎ
2𝑖
)
𝑇
]

𝑇

,

Ω
𝑖
= [

[

−𝑍
𝑖

𝑍
𝑖
− 𝑈
𝑖

𝑈
𝑖

∗ −2𝑍
𝑖
+ 𝑈
𝑖
+ 𝑈
𝑇

𝑖
𝑍
𝑖
− 𝑈
𝑖

∗ ∗ −𝑍
𝑖

]

]

.

(13)

3. Main Results

For simplicity, we define

𝜒 (𝑡) = [𝑥(𝑡)
𝑇

𝑥(𝑡 − ℎ
11
)
𝑇

𝑥 (𝑡 − ℎ
1
(𝑡)
𝑇
) 𝑥(𝑡 − ℎ

21
)
𝑇

⋅ ⋅ ⋅ 𝑥(𝑡 − ℎ
1𝑚

)
𝑇

𝑥 (𝑡 − ℎ
𝑚
(𝑡)
𝑇
) 𝑥(𝑡 − ℎ

2𝑚
)
𝑇

̇𝑥(𝑡)
𝑇
]

𝑇

,

𝑒
1

= [1 0 ⋅ ⋅ ⋅ 0]
𝑇

1×3𝑚+2
,

𝑒
2

= [0 1 ⋅ ⋅ ⋅ 0]
𝑇

1×3𝑚+2
,

...

𝑒
3𝑚+2

= [0 0 ⋅ ⋅ ⋅ 1]
𝑇

1×3𝑚+2
,

𝛽
1

= [1 0 ⋅ ⋅ ⋅ 0]
𝑇

1×3𝑚+3
,

𝛽
2

= [0 1 ⋅ ⋅ ⋅ 0]
𝑇

1×3𝑚+3
,

...

𝛽
3𝑚+3

= [0 0 ⋅ ⋅ ⋅ 1]
𝑇

1×3𝑚+3
,

𝜒
1
(𝑡) = [𝜒(𝑡)

𝑇
𝑤(𝑡)
𝑇
]

𝑇

.

(14)

3.1. Robust Exponential Stability Analysis. The criteria of
the robust exponential stability for the systems (1)–(3) are
proposed in the followingTheorem.

Theorem 7. Systems (1)–(3) with 𝑤(𝑡) = 0 is robustly
exponentially stable if there exist positivematrices𝑃

𝑘
= 𝑃
𝑇

𝑘
> 0,

𝑄
𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑅

1𝑖
= 𝑅
𝑇

1𝑖
> 0, 𝑅

2𝑖
= 𝑅
𝑇

2𝑖
> 0, 𝑆

𝑖
= 𝑆
𝑇

𝑖
> 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, anymatrices𝑈

𝑖
𝑀
𝑗
with appropriate dimensions

satisfying [
𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 𝑘 =

1, 2, . . . , 𝑁, and positive scalars 𝜀 > 0, such that the following
LMI holds

[
Θ
11𝑘

Θ
12𝑘

∗ −𝜀𝐼
] < 0, 𝑘 = 1, 2, . . . , 𝑁, (15)

where

Θ
11𝑘

= 𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃
𝑘
𝑒
𝑇

1

+ [

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1
]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))

+ [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
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⋅ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝑒
1
𝐴
𝑇

0
(𝑘) + 𝑒

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑒

3𝑚
𝐴
𝑇

𝑚
(𝑘) − 𝑒

3𝑚+2
]

× [𝑀
𝑇

1
𝑒
𝑇

1
+𝑀
𝑇

2
𝑒
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
] ,

Θ
12𝑘

= [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
] 𝐸 (𝑘) .

(16)

And Ω
𝑖
̂
𝑑
𝑖
are defined in (3).

Proof. On one hand, using Lemma 5 and Schur complement
lemma to (15), we have

Π = 𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃
𝑘
𝑒
𝑇

1

+ [

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1
]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝑒

1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑒

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝑒

𝑇

3
+ ⋅ ⋅ ⋅

+𝐴
𝑚
(𝑘, 𝑡) 𝑒

𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

𝑇

× [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
𝑇

≤ 𝑒
1
𝑃𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃𝑒
𝑇

1

+ [

[

𝑁

∑

𝑗=1

𝑒
1
𝑃
𝑘
𝑒
𝑇

1
]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝑒

1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

⋅ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝑒
1
𝐴
𝑇

0
(𝑘) + 𝑒

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑒

3𝑚
𝐴
𝑇

𝑚
(𝑘) − 𝑒

3𝑚+2
]

× [𝑀
𝑇

1
𝑒
𝑇

1
+𝑀
𝑇

2
𝑒
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) e𝑇
3𝑚

]

+ 𝜀
−1

[𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
] 𝐸 (𝑘) 𝐸(𝑘)

𝑇

× [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
𝑇

= Θ
11

+ 𝜀
−1
Θ
𝑇

12
Θ
12

< 0.

(17)

On the other hand, define a new process 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠),

𝑠 ∈ [−2ℎ, 0]. Choose a Lyapunov-Krasovskii functional

𝑉 (𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

5

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) , (18)

where

𝑉
1
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) = 𝑥(𝑡)

𝑇
𝑃
𝑟(𝑡)

𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

𝑥(𝑠)
𝑇
𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

𝑥(𝑠)
𝑇
𝑅
1𝑖
𝑥 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
2𝑖

𝑥(s)𝑇𝑅
2𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

0

−ℎ
1𝑖

∫

𝑡

𝑡+𝑠

ℎ
1𝑖

̇𝑥(𝛼)
𝑇
𝑆
𝑖
̇𝑥 (𝛼) 𝑑𝛼 𝑑𝑠,

𝑉
5
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

−ℎ
1𝑖

−ℎ
2𝑖

∫

𝑡

𝑡+𝑠

̂
𝑑
𝑖
̇𝑥(𝛼)
𝑇
𝑍
𝑖
̇𝑥 (𝛼) 𝑑𝛼 𝑑𝑠.

(19)
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LetL be the weak infinitesimal generator of the random
process {𝑥

𝑡
, 𝑡 ≥ 0}. Then for each 𝑟(𝑡) = 𝑘, 𝑘 ∈ 𝑆, we have

L𝑉
1
(𝑥
𝑡
, 𝑡, 𝑘)

= 2𝑥 (𝑡) 𝑃
𝑘

̇𝑥 (𝑡) +

𝑁

∑

𝑗=1

𝑥(𝑡)
𝑇
𝜆
𝑘,𝑗
𝑃
𝑗
𝑥 (𝑡)

= 2𝜒(𝑡)
𝑇
[𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
] 𝜒 (𝑡)

+ 𝜒(𝑡)
𝑇
[

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1
]

]

𝜒 (𝑡) ,

L𝑉
2
(x
𝑡
, 𝑡, 𝑘)

≤ 𝑥(𝑡)
𝑇

𝑚

∑

𝑖=1

𝑄
𝑖
𝑥 (𝑡)

− (1 − 𝜇)

𝑚

∑

𝑖=1

𝑥(𝑡 − ℎ
𝑖
(𝑡))
𝑇

𝑄
𝑖
𝑥 (𝑡 − ℎ

𝑖
(𝑡))

= 𝜒(𝑡)
𝑇
[𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇
[

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]𝜒 (𝑡) ,

L𝑉
3
(𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝑥(𝑡)
𝑇
[

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
)] 𝑥 (𝑡)

−

𝑚

∑

𝑖=1

[𝑥(𝑡 − ℎ
1𝑖
)
𝑇

𝑅
1𝑖
𝑥 (𝑡 − ℎ

1𝑖
)

−𝑥(𝑡 − ℎ
2𝑖
)
𝑇

𝑅
2𝑖
𝑥 (𝑡 − ℎ

2𝑖
)]

= 𝜒(𝑡)
𝑇
[𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇
[

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇
[

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]𝜒 (𝑡) ,

L𝑉
4
(𝑥
𝑡
, 𝑡, 𝑘)

=

𝑚

∑

𝑖=1

ℎ
2

1𝑖
̇𝑥(𝑡)
𝑇
𝑆
𝑖
̇𝑥 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖

̇𝑥(𝑠)
𝑇
𝑆
𝑖
̇𝑥 (𝑠) 𝑑𝑠

= 𝜒(𝑡)
𝑇
[

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
]𝜒 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖

̇𝑥(𝑠)
𝑇
𝑆
𝑖
̇𝑥 (𝑠) 𝑑𝑠 ,

L𝑉
5
(𝑥
𝑡
, 𝑡, 𝑘)

=

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
̇𝑥(𝑡)
𝑇
𝑍
𝑖
̇𝑥 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
̇𝑥(𝑠)
𝑇
𝑍
𝑖
̇𝑥 (𝑠) 𝑑𝑠

= 𝜒(𝑡)
𝑇
[

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]𝜒 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
̇𝑥(𝑠)
𝑇
𝑍
𝑖
̇𝑥 (𝑠) 𝑑𝑠 .

(20)

Applying Lemma 4 toL𝑉
4
(𝑥
𝑡
) results in

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖

̇𝑥(𝑠)
𝑇
𝑆
𝑖
̇𝑥 (𝑠) 𝑑𝑠

≤ −

𝑚

∑

𝑖=1

(∫

𝑡

𝑡−ℎ
1𝑖

̇𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑆
𝑖
(∫

𝑡

𝑡−ℎ
1𝑖

̇𝑥 (𝑠) 𝑑𝑠)

= −

𝑚

∑

𝑖=1

[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1𝑖
)]
𝑇

𝑆
𝑖
[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

1𝑖
)]

≤ −𝜒(𝑡)
𝑇

𝑚

∑

𝑖=1

[(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

] 𝜒 (𝑡) ,

(21)

and applying Lemma 6 to L𝑉
5
(𝑥
𝑡
, 𝑡, 𝑘), we have that there

exists 𝑈
𝑖
with [

𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, such that

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
𝑓(𝑠)
𝑇
𝑍
𝑖
𝑓 (𝑠) 𝑑𝑠

≤

𝑚

∑

𝑖=1

𝜉
𝑖
(𝑡)
𝑇
Ω
𝑖
𝜉
𝑖
(𝑡)

= 𝜒(𝑡)
𝑇
(

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))𝜒 (𝑡) ,

(22)

where 𝜉
𝑖
(𝑡) and Ω

𝑖
are defined in (13). Meanwhile, we note

that

2 [𝑥(𝑡)
𝑇
𝑀
1
+ ̇𝑥(𝑡)

𝑇
𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐴
𝑖
(𝑘, 𝑡) 𝑥 (𝑡 − ℎ

𝑖
(𝑡)) − ̇𝑥 (𝑡)] = 0,

(23)
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that is,

2𝜒(𝑡)
𝑇
[𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑒

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝑒

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘, 𝑡) 𝑒

𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

× 𝜒 (𝑡) = 0.

(24)

Then, we can deduce from (19)–(24) that

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ 𝜒(𝑡)

𝑇
Π𝜒 (𝑡) < 0, (25)

whereΠ is defined in (17). Therefore, by Definition 2 and the
results in [37], we have that the system (1) is robustly stable .
Now, we will prove the robust stochastic exponential stability
in mean square for system (1). Setting 𝜆

0
= 𝜆min{−Π} > 0, we

have

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ 𝜒(𝑡)

𝑇
Π𝜒 (𝑡) ≤ −𝜆

0‖
𝑥(𝑡)‖
2
. (26)

Choose 𝑉(𝑥
𝑡
, 𝑡, 𝑘) = 𝑒

2𝛼𝑡
𝑉(𝑥
𝑡
, 𝑡, 𝑘), where 𝛼 > 0; then

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) = 2𝑘𝑒

2𝛼𝑡
𝑉 (𝑥
𝑡
, 𝑡, 𝑘) + 𝑒

2𝛼𝑡
L (𝑥
𝑡
, 𝑡, 𝑘)

≤ 2𝑘𝑒
2𝛼𝑡

𝑉 (𝑥
𝑡
, 𝑡, 𝑘) − 𝜆

0
𝑒
2𝛼𝑡

‖𝑥 (𝑡)‖
2
.

(27)

Integrating the above inequality (27), we get

𝑉 (𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝑉 (𝑥
0
, 0, 𝑘)

+ ∫

𝑡

0

{2𝑘𝑒
2𝛼𝑠

𝑉 (𝑥
𝑠
, 𝑠, 𝑘) − 𝜆

0
𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2
} 𝑑𝑠.

(28)

From (19), it can be inferred that

𝑉 (𝑥
𝑠
, 𝑠, 𝑘)

≤ 𝜆max (𝑃𝑘) ‖𝑥 (𝑠)‖
2

+ [

𝑚

∑

𝑖=1

(𝜆max (𝑄𝑖) + 𝜆max (𝑅1𝑖) + 𝜆max (𝑅2𝑖))]

× ∫

𝑠

𝑠−ℎ

‖𝑥 (V)‖2𝑑V

+ [

𝑚

∑

𝑖=1

ℎ
1𝑖
𝜆max (S𝑖) + 𝑑

𝑖
𝜆max (𝑍𝑖)]∫

𝑠

𝑠−ℎ

̇𝑥(V)𝑇 ̇𝑥 (V) 𝑑V.

(29)

Note that

̇𝑥(V)𝑇 ̇𝑥 (V)

≤ 𝑚 [𝜆max (𝐴
𝑇

0
(𝑘, V) 𝐴

0
(𝑘, V)) ‖𝑥 (V)‖2

+ 𝜆max (𝐴
𝑇

1
(𝑘, V) 𝐴

1
(V)) 


𝑥 (V − ℎ

1
(V))



2

+ 𝜆max (𝐴
𝑇

𝑚
(𝑘, V) 𝐴

𝑚
(V)) 


𝑥 (V − ℎ

𝑚
(V))



2

] .

(30)

We denote  = 𝑚[𝜆max(𝐴
𝑇

0
(𝑘, V)𝐴

0
(𝑘, V)) + 𝜆max(𝐴

𝑇

1
(𝑘,

V)𝐴
1
(𝑘, V)) + 𝜆max(𝐴

𝑇

𝑚
(𝑘, V)𝐴

𝑚
(𝑘, V))]; then

∫

𝑠

𝑠−ℎ

̇𝑥(V)𝑇 ̇𝑥 (V) 𝑑V ≤ ∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V. (31)

From (29) to (31), we obtain

𝑉 (𝑥
𝑠
, 𝑠, 𝑘) ≤ Ξ

0‖
𝑥(𝑠)‖
2
+ Ξ
1
∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V, (32)

where

Ξ
0
= 𝜆max (𝑃𝑘) ,

Ξ
1
= [

𝑚

∑

𝑖=1

(𝜆max (𝑄𝑖) + 𝜆max (𝑅1𝑖) + 𝜆max (𝑅2𝑖))]

+ [

𝑚

∑

𝑖=1

ℎ
1𝑖
𝜆max (𝑆𝑖) + 𝑑

𝑖
𝜆max (𝑍𝑖)] .

(33)

By the similar method, we have

𝑉 (𝑥
0
, 0, 𝑘) ≤ 𝜃 sup

−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

} , (34)

where 𝜃 = 2ℎΞ
1
. Therefore, by (28)–(34), we get

𝑉 (𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝜃 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

}

+ ∫

𝑡

0

{2𝛼𝑒
2𝛼𝑠

[Ξ
0‖
𝑥(𝑠)‖
2
+ Ξ
1
∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V]

−𝜆
0
𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2
}𝑑𝑠

≤ 𝜃 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

}

+ (2𝛼Ξ
0
− 𝜆
0
) ∫

𝑡

0

𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2
𝑑𝑠

+ 𝑒
2𝛼𝑠

Ξ
1
∫

𝑡

−2ℎ

‖𝑥(V)‖2𝑑V

≤ (𝜃 + 2ℎ𝑒
2𝛼𝑡

Ξ
1
) sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

}

+ (𝑒
2𝛼𝑡

Ξ
1
+ 2𝛼Ξ

0
− 𝜆
0
)∫

𝑡

0

‖𝑥(V)‖2𝑑V.

(35)

Choose 𝛼
0
> 0 such that

𝑒
2𝛼
0
𝑡
Ξ
1
+ 2𝛼
0
Ξ
0
− 𝜆
0
≤ 0; (36)

then

𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ (𝜃 + 2ℎ𝑒

2𝛼
0
𝑡
Ξ
1
) sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

} . (37)
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Since 𝑉(𝑥
𝑡
, 𝑡, 𝑘) ≥ 𝑒

2𝛼
0
𝑡
𝜆min(𝑃𝑘)‖𝑥(𝑡)‖

2, it can be shown
from (37) that

‖𝑥(𝑡)‖
2
≤ 𝛿𝑒
−2𝛼
0
𝑡 sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

} , (38)

where

𝛿 =

𝜃 + 2ℎ𝑒
2𝛼
0
𝑡
Ξ
1

𝜆min (𝑃𝑘)
, (39)

which implies that system (10) is robustly exponentially stable
by Definition 2. This completes the proof.

3.2. Robust𝐻
∞
Exponential Stability Analysis. The criteria of

the robust exponential stability with𝐻
∞
performance for the

systems (1)–(3) are proposed in the followingTheorem.

Theorem 8. Given a scalar 𝛾 > 0, the systems (1)–(3) are
robustly exponentially stable with a prescribed 𝐻

∞
perfor-

mance level 𝛾 if there exist matrices 𝑃
𝑘
= 𝑃
𝑇

𝑘
> 0,𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0,

𝑅
1𝑖

= 𝑅
𝑇

1𝑖
> 0, 𝑅

2𝑖
= 𝑅
𝑇

2𝑖
> 0, 𝑆

𝑖
= 𝑆
𝑇

𝑖
> 0, 𝑍

𝑖
= 𝑍
𝑇

𝑖
> 0,

any matrices 𝑈
𝑖
𝑀
𝑗
with appropriate dimensions satisfying

[
𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 𝑘 = 1, 2, . . . , 𝑁, and
positive scalars 𝜀 > 0, such that the following LMI holds

[

[

Ω
11𝑘

Ω
12𝑘

Ω
13𝑘

∗ −𝜀𝐼 0

∗ ∗ −𝐼

]

]

< 0, (40)

where

Ω
11𝑘

= 𝛽
1
𝑃
𝑘
𝛽
𝑇

3𝑚+2
+ 𝛽
3𝑚+2

𝑃
𝑘
𝛽
𝑇

1

+ [

[

𝑁

∑

𝑗=1

𝛽
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝛽
𝑇

1
]

]

+ [𝛽
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝛽
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝛽
3𝑖
𝑄
𝑖
𝛽
𝑇

3𝑖
]

+ [𝛽
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝛽
𝑇

1
] − [

𝑚

∑

𝑖=1

𝛽
3𝑖−1

𝑅
1𝑖
𝛽
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝛽
3𝑖+1

𝑅
2𝑖
𝛽
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝛽
3𝑚+2

𝑆
𝑖
𝛽
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝛽
3𝑚+2

𝑍
𝑖
𝛽
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝛽
1
− 𝛽
3𝑖−1

) 𝑆
𝑖
(𝛽
1
− 𝛽
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝛽

1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]

⋅ [𝐴
0
(𝑘) 𝛽
𝑇

1
+ 𝐴
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝛽
𝑇

3𝑚

− 𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘) 𝛽
𝑇

3𝑚+3
]

+ [𝛽
1
𝐴
𝑇

0
(𝑘) + 𝛽

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝛽

3𝑚
𝐴
𝑇

𝑚
(𝑘)

−𝛽
3𝑚+2

+ 𝛽
3𝑚+3

𝐷
1
(𝑘)
𝑇
]

⋅ [𝑀
𝑇

1
𝛽
𝑇

1
+𝑀
𝑇

2
𝛽
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝛽
𝑇

1
+ 𝐻
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝛽
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝛽
𝑇

1
+ 𝐻
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝛽
𝑇

3𝑚
]

− 𝛾
2
𝛽
3𝑚+3

𝛽
𝑇

3𝑚+3
.

Ω
12𝑘

= [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
] 𝐸 (𝑘) ,

Ω
13𝑘

= [𝐶
0
(𝑘) 𝛽
𝑇

1
+𝐶
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐶

𝑚
(𝑘) 𝛽
𝑇

3𝑚
+𝐷
2
(𝑘) 𝛽
𝑇

3𝑚+3
]

𝑇

.

(41)

Proof. Implying Lemma 5 and Schur complement lemma to
(40), we obtain

Π

= 𝛽
1
𝑃
𝑘
𝛽
𝑇

3𝑚+2
+ 𝛽
3𝑚+2

𝑃
𝑘
𝛽
𝑇

1

+ [

[

𝑁

∑

𝑗=1

𝛽
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝛽
𝑇

1
]

]

+ [𝛽
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝛽
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝛽
3𝑖
𝑄
𝑖
𝛽
𝑇

3𝑖
]

+ [𝛽
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝛽
𝑇

1
] − [

𝑚

∑

𝑖=1

𝛽
3𝑖−1

𝑅
1𝑖
𝛽
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝛽
3𝑖+1

𝑅
2𝑖
𝛽
𝑇

3𝑖+1
] + [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝛽
3𝑚+2

𝑆
𝑖
𝛽
𝑇

3𝑚+2
]

+ [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝛽
3𝑚+2

𝑍
𝑖
𝛽
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝛽
1
− 𝛽
3𝑖−1

) 𝑆
𝑖
(𝛽
1
− 𝛽
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))

+ [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝛽

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝛽

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘, 𝑡) 𝛽

𝑇

3𝑚

−𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘, 𝑡) 𝛽

𝑇

3𝑚+3
]
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+ [𝐴
0
(𝑘, 𝑡) 𝛽

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝛽

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴m (𝑘, 𝑡) 𝛽

𝑇

3𝑚

− 𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘, 𝑡) 𝛽

𝑇

3𝑚+3
]

𝑇

× [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]
𝑇

− 𝛾
2
𝛽
3𝑚+3

𝛽
𝑇

3𝑚+3
.

(42)

Set

𝐽 (𝑡) = {∫

𝑡

0

[𝑧(𝑠)
𝑇
𝑧 (𝑠) − 𝛾

2
𝑤(𝑠)
𝑇
𝑤 (𝑠)]} 𝑑𝑠. (43)

Then, it is easy to have

𝐽 (𝑡) = {∫

𝑡

0

[𝑧(𝑠)
𝑇
𝑧 (𝑠) − 𝛾

2
𝑤(𝑠)
𝑇
𝑤 (𝑠)] + ℓ𝑉 (𝑥 (𝑠) , 𝑠, 𝑘)} 𝑑𝑠

− {𝑉 (𝑥 (𝑡) , 𝑡)}

≤ {∫

𝑡

0

[𝑧(𝑠)
𝑇
𝑧 (𝑠) − 𝛾

2
𝑤(𝑠)
𝑇
𝑤 (𝑠)] + ℓ𝑉 (𝑥 (𝑠) , 𝑠, 𝑘)} 𝑑𝑠,

(44)

where 𝑉(𝑥(𝑡), 𝑡, 𝑘) is defined in (18). Similar to the proof of
Theorem 7, we can obtain

𝑧(𝑡)
𝑇
𝑧 (𝑡) − 𝛾

2
𝑤(𝑡)
𝑇
𝑤 (𝑡) + ℓ𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝜒

1
(𝑡)
𝑇
Π

𝜒
1
(𝑡) ,

(45)

where Π is given in (42) and 𝜒
1
(𝑡) is defined in (14). Then, it

follows from (40) and (45) that

𝐽 (𝑡) < 0. (46)

This implies that for any nonzero V(𝑡) ∈ 𝐿
2
[0,∞],

‖𝑧‖𝐸
2

< 𝛾‖𝑤‖2
. (47)

Therefore, by Definition 3, the system is robustly exponen-
tially stable with a prescribed 𝐻

∞
performance level 𝛾. This

completes the proof.

4. Numerical Example

In this section, we provide an example to demonstrate the
effectiveness of the proposed method.

Let 𝑚 = 2 and 𝑁 = 2; consider the systems (1)–(3) with
parameters as follows.

Mode 1

𝐴
0
(1) = [

−5 0

0.5 −6
] , 𝐴

1
(1) = [

−2 0

1 −3
] ,

𝐴
2
(1) = [

0.1 0.2

0.1 0.5
] , 𝐷

1
(1) = [

0.1 0.2

0.1 0.1
] ,

𝐶
0
(1) = [

0.1 0.1

0.2 0.1
] , 𝐶

1
(1) = [

−0.1 0

0.1 0.2
] ,

𝐶
2
(1) = [

−0.1 0.1

0 0.3
] , 𝐷

2
(1) = [

−0.1 −0.3

0.1 −0.2
] ,

𝐸 (1) = [
0.1 0.1

0.2 0.3
] , 𝐻

0
(1) = [

0.1 0.2

0.1 0.1
] ,

𝐻
1
(1) = [

−0.3 0.4

0.5 −0.1
] , 𝐻

2
(1) = [

0.2 0.2

0.3 0.1
] ,

𝐻
𝑑
(1) = [

−0.1 0.4

0.3 −0.1
] , 𝜆

11
= −0.5, 𝜆

12
= 0.5.

(48)

Mode 2

𝐴
0
(2) = [

−2 0

1 −4
] , 𝐴

1
(2) = [

−1 1

1 −4
] ,

𝐴
2
(2) = [

0.2 −0.2

0 −0.3
] , 𝐷

1
(2) = [

−0.1 0.2

−0.1 0.3
] ,

𝐶
0
(2) = [

0.2 −0.1

0.1 −0.1
] , 𝐶

1
(2) = [

−0.2 0

−0.1 0.1
] ,

𝐶
2
(2) = [

0.1 0.2

0 −0.1
] , 𝐷

2
(2) = [

0.1 0.2

−0.1 −0.3
] ,

𝐸 (2) = [
0.1 −0.1

0.1 −0.3
] , 𝐻

0
(2) = [

0.2 0.1

0.2 0.3
] ,

𝐻
1
(2) = [

−0.1 0.5

0.3 −0.3
] , 𝐻

2
(2) = [

0.1 0.1

0.6 0.2
] ,

𝐻
𝑑
(2) = [

0.2 −0.3

0.2 −0.1
] , 𝜆

21
= 0.3, 𝜆

22
= −0.3.

(49)

And 𝛾 = 2, 𝜇 = 0.5, ℎ
11

= 0.1, ℎ
21

= 0.4, ℎ
12

= 0.4,
ℎ
22

= 0.5. Then, by solving the LMI (15) with the constraints
in Theorem 7, we obtain

𝑃
1
= [

59.1376 8.2356

8.2356 26.8113
] ,

𝑃
2
= [

229.5038 50.5016

50.5016 124.2305
] ,

𝑄
1
= [

37.1817 −0.5668

−0.5668 41.5837
] ,

𝑄
2
= [

28.1504 6.9399

6.9399 7.1618
] ,
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𝑅
11

= [

18.1195 0.9123

0.9123 14.7239
] ,

𝑅
21

= [
31.6879 −9.1485

−9.1485 54.6448
] ,

𝑅
12

= [
31.9976 6.7097

6.7097 10.5708
] ,

𝑅
22

= [

32.5781 6.8947

6.8947 10.6649
] ,

𝑆
1
= [

35.1285 −0.1159

−0.1159 25.3955
] ,

𝑆
2
= [

0.9787 0.2268

0.2268 0.0975
] ,

𝑍
1
= [

52.7205 −8.8649

−8.8649 70.5952
] ,

𝑍
2
= [

1.7431 0.4057

0.4057 0.1638
] ,

𝑈
1
= [

1.7807 18.4064

18.8018 −53.4269
] ,

𝑈
2
= [

−10.2878 −1.9164

−1.8946 −5.3788
] ,

𝑀
1
= [

42.4713 5.0586

8.4912 25.0911
] ,

𝑀
2
= [

11.7147 1.1250

1.9353 3.9491
] ,

𝜀 = 12.8944.

(50)

If we fix the lower bound of ℎ
1
(𝑡) and ℎ

2
(𝑡), that is, ℎ

12
=

0.3 and ℎ
22

= 0.5, for the different ℎ
11
, we can get the upper

bounds of ℎ
21
as in Table 1.

If we fix the lower bound of ℎ
1
(𝑡) and ℎ

2
(𝑡), that is, ℎ

11
=

0.2 and ℎ
21

= 0.6, for the different ℎ
12
, we can get the upper

bounds of ℎ
22
as in Table 2.

5. Conclusion

The robust exponential stability and 𝐻
∞

performance anal-
ysis for uncertain Markovian jumping system with multiple
time-varying delays has been investigated based on the
reciprocally convex approach. Some new delay-dependent
stability conditions are obtained in term of LMIs. Numerical
example has been proposed to illustrate the effectiveness of
result.
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Table 1: The upper bound of ℎ
21
for different ℎ

11
.

ℎ
11

0.2 0.5 0.7 0.9 1 1.2
The upper bound of ℎ

21
0.505 0.617 0.797 0.993 1.093 1.292

Table 2: The upper bound of ℎ
22
for different ℎ

12
.

ℎ
12

0.3 0.5 0.7 0.9 1 1.2
The upper bound of ℎ

22
0.397 0.597 0.797 0.997 1.097 1.297
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This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we
propose the general model of controlled interdependent networks 𝐴 and 𝐵 with time-varying internetwork delays coupling. Then,
by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure
that themutual synchronization errors between the state variables of networks𝐴 and 𝐵 can asymptotically converge to zero. Finally,
twonumerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future
smart grid.The simulation results also show how interdependent topologies and internetwork coupling delays influence themutual
synchronizability, which help to design interdependent networks with optimal mutual synchronizability.

1. Introduction

In recent years, extensive efforts have been devoted to
understanding the properties of complex networks [1–5].
Particularly, as one of themost interesting and significant col-
lective behaviors in real world, synchronization in complex
dynamical networks has received increasing interest owing
to its many potential applications in nature, socioeconomic
systems, or engineering [6]. In the existing literature, it
has been recognized that the network topology plays a
significant role in synchronizability of diffusively coupled
complex networks [7, 8]. Also, by using some effective
control schemes, a variety of synchronization phenomena
have been discovered in various complex networks (see [9–
18] and relevant references therein). However, the studies
mentioned above focused almost exclusively on the inner
synchronization inside a single, noninteracting network.

Li et al. [19] studied the outer synchronization (in this
paper, we call it mutual synchronization to be defined in
Section 2) referring to the synchronization between two or
more networks. However, to the best of our knowledge, it
can be realized mainly by the open-plus-closed-loop method
[19, 20] or based on the drive-response concept [21–27]

considering only the intranetwork coupling of network itself.
Zheng et al. [28] and Wu et al. [29] further studied the outer
synchronization between two complex networks considering
two kinds of internetwork coupling, but nevertheless, they
both still derived the synchronization criteria based on drive-
response concept and did not place the outer synchronization
in the context of interdependent networks.

It is well known that many real-world network systems
do interact with and depend on each other; for instance,
various infrastructures such as transportation, water supply,
fuel, and power stations are coupled together; realistic neu-
ronal networks have a clustered structure and they can be
viewed as interdependent networks; the epidemic can spread
between the coupled networks of the infection layer and
the prevention layer; dealing with secure information and
cryptography, one can couple two systems to achieve the
mutual synchronization, and so forth. Recently, Buldyrev et
al. [30] studied the interdependent networks by presenting
future smart grid as a real-life example, where the electrical
power grid depends on the information network for control
and the information network depends on the electrical power
grid for their electricity supply. Then, Mei et al. [31] empha-
sized that it was urgent to research interdependent networks
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theory for smart grid.Also, Brummitt et al. [32] demonstrated
how interdependence affected cascades of load using a
multiple branching process approximation. In a word, efforts
have been directed to the cascading failures and robust-
ness of interdependent networks [33–37]. In general, it has
been recognized that interdependent topologies, especially
interlinking strategy and internetwork coupling strength,
play a vital role in cascading behaviors and robustness of
interdependent networks. Analogously, this motivates us to
attempt to explore the effects of interdependent topologies
on the mutual synchronization between two interdependent
networks.

Quite recently, Um et al. [38] placed synchronization
behavior in the context of interdependent networks, where
the one-dimensional regular network is mutually coupled
to the WS small-world network. Based on the mean-field
analytic approach, it has been revealed that the internetwork
coupling and the intranetwork coupling play different roles
in the synchronizability of the WS network. However, it
is still limited to inner synchronization in one of the two
interdependent networks and hence it is necessary and
significant to study the mutual synchronization between two
controlled interdependent networks.

The major contributions of our work are as follows. First,
we propose the general model of two controlled interde-
pendent networks 𝐴 and 𝐵, which take into account not
only the intranetwork coupling, but also the time-varying
internetwork delays coupling. Second, we place the synchro-
nization in the context of two controlled interdependent
networks and study the generalized mutual synchronization
of the proposed model. Third, in the numerical examples, to
explore the potential application in smart grid, we couple the
NW small-world network described by chaotic power system
nodes and the scale-free network described by Lorenz chaotic
systems following two interdependent interlinking strategies,
respectively. Finally, we verify the influences of intranetwork
and internetwork coupling and internetwork delays on the
controlledmutual synchronizability, which can help to design
the optimal interdependent networks.

The remaining part of this paper is organized as follows.
Section 2 introduces some useful mathematical preliminaries
and proposes the general model of two controlled interde-
pendent networks. The generalized mutual synchronization
is investigated and the main theoretical results of this paper
are given in Section 3. In Section 4, two numerical examples
are provided to explore the potential application in smart
grid and to illustrate the correctness and effectiveness of
the theoretical results. Finally, some conclusions and further
work are given in Section 5.

2. Preliminaries and Model Presentation

2.1. Notations. The standard mathematical notations will be
utilized throughout this paper. LetR ∈ (−∞, +∞),R𝑚 be the
𝑚-dimensional Euclidean space and let R𝑚×𝑛 be the space of
𝑚 × 𝑛 real matrices; I

𝑛
∈ R𝑛×𝑛 denotes the 𝑛-dimensional

identity matrix; we use A𝑇 or x𝑇 to denote the transpose of
the matrix A or the vector x, respectively; 𝜆max is the max-
imum eigenvalue of corresponding real symmetric matrix;

‖x‖ = √x𝑇x stand for the 2-norm of the vector x; ⨂ presents
the Kronecker product of two matrices.

2.2. Model of Two Controlled Interdependent Networks. For
simplicity and without loss generality, we consider the fol-
lowing model of two controlled interdependent networks
(1) and (2) (we call networks 𝐴 and 𝐵, respectively, in this
paper) consisting of 𝑁 identical nodes with time-varying
internetwork delays coupling. The dynamical equations for
themodel of controlled interdependent networks𝐴 and𝐵 can
be given by

̇x
𝑖
(𝑡) = 𝑓 (x

𝑖
(𝑡)) + 𝑎

𝑖

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
x
𝑗

(𝑡) + 𝑐
𝑖

𝑁

∑

𝑗

𝑐
𝑖𝑗
Γ
3
y
𝑗

(𝑡 − 𝜏
1

(𝑡))

(1)

̇y
𝑖
(𝑡) = 𝑔 (y

𝑖
(𝑡)) + 𝑏

𝑖

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
y
𝑗

(𝑡)

+ 𝑑
𝑖

𝑁

∑

𝑗

𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) + u
𝑖
(𝑡) , 𝑖 = 1, 2, . . . 𝑁,

(2)

where x
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2

(𝑡), . . . 𝑥
𝑖𝑚

(𝑡))
𝑇

∈ R𝑚 (y
𝑖
(𝑡) =

(𝑦
𝑖1

(𝑡), 𝑦
𝑖2

(𝑡), . . . 𝑦
𝑖𝑛

(𝑡))
𝑇

∈ R𝑛) is the state variable of the
𝑖th node in network 𝐴(𝐵) at time 𝑡; 𝑓 : R+ × R𝑚 →

R𝑚 (𝑔 : R+ × R𝑛 → R𝑛) is a smooth vector function;
A = (𝑎

𝑖𝑗
)
𝑁×𝑁

(B = (𝑏
𝑖𝑗

)
𝑁×𝑁

) stands for the intranetwork
coupling matrix describing the topological structure of the
network 𝐴(𝐵); namely, if there is a connection from node 𝑖

to node 𝑗 in network 𝐴(𝐵), then 𝑎
𝑖𝑗

(𝑏
𝑖𝑗

) = 1; otherwise,
𝑎
𝑖𝑗

(𝑏
𝑖𝑗

) = 0; however, C = (𝑐
𝑖𝑗

)
𝑁×𝑁

(or D = (𝑑
𝑖𝑗

)
𝑁×𝑁

)

is the internetwork coupling matrix representing the direct
interaction from 𝑖 in network 𝐴 to 𝑗 in network 𝐵 (or from
𝑖 in network 𝐵 to 𝑗 in network 𝐴); that is, if there exists
a connection from 𝑖 in network 𝐴 to 𝑗 in network 𝐵 (or
from 𝑖 in network 𝐵 to 𝑗 in network 𝐴), then 𝑐

𝑖𝑗
(𝑑
𝑖𝑗

) = 1;
otherwise, 𝑐

𝑖𝑗
(𝑑
𝑖𝑗

) = 0; 𝑎
𝑖
(𝑏
𝑖
) and 𝑐

𝑖
(𝑑
𝑖
) are the intranetwork

and internetwork coupling strength for node 𝑖, respectively;
Γ
1

∈ 𝑅
𝑚×𝑚

(Γ
2

∈ R𝑛×𝑛, Γ
3

∈ R𝑚×𝑛, Γ
4

∈ R𝑛×𝑚) is an inner
coupling matrix describing the interactions between the cou-
pled variables; 𝜏

1
(𝑡), 𝜏
2
(𝑡) are the time-varying internetwork

coupling delays between networks 𝐴 and 𝐵, respectively;
u
𝑖
(𝑡) ∈ 𝑅

𝑛 are the nonlinear controllers to be designed later
for the mutual synchronization.

2.3. Mathematical Preliminaries. In order to obtain our the-
oretical results in Section 3, we introduce some necessary
definitions, assumptions, and lemmas.

Definition 1. Let 𝜑
𝑖
(⋅) : R𝑚 → R𝑛 (𝑖 = 1, 2, . . . 𝑁) be the

smooth vector functions. We define the generalized mutual
synchronization errors as

e
𝑖
(𝑡) = y

𝑖
(𝑡) − 𝜑

𝑖
(x
𝑖
(𝑡)) , 𝑖 = 1, 2, . . . 𝑁. (3)

Thus, network 𝐴 is said to achieve generalized mutual
synchronization with network 𝐵 successfully if

lim
𝑡→∞





e
𝑖
(𝑡)






= 0, 𝑖 = 1, 2, . . . 𝑁. (4)
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Assumption 2. Suppose that the vector function 𝑔(⋅) is Lip-
schitz continuous, namely, for any x ∈ R𝑛, y ∈ R𝑛 and a
constant 𝜇 > 0, the following inequality holds:





𝑔 (y) − 𝑔 (x)






≤ 𝜇




y − x





. (5)

Assumption 3. Suppose that the time-varying delays 𝜏
1
(𝑡),

𝜏
2
(𝑡) are continuous differentiable functions with 0 ≤

𝜏
1
(𝑡), 𝜏
2
(𝑡) ≤ ℎ < ∞ and 0 ≤ ̇𝜏

1
(𝑡) ≤ 𝜀

1
< 1. Clearly, this

assumption holds for constant 𝜏
1
(𝑡), 𝜏
2
(𝑡).

Remark 4. Assumptions 2 and 3 are both general assump-
tions, which hold for a broad class of real-world chaotic
systems, such as Lorenz system, Chua’s oscillator, Chen
system, and Lü system [28]. Hence, in the following sections,
we always assume that both assumptions hold.

Lemma 5 (see [26]). If there are any vectors x, y ∈ R𝑛, then
the following inequality is true:

x𝑇y ≤

1

2

x𝑇x +

1

2

y𝑇y. (6)

3. Generalized Mutual
Synchronization Criteria

In this section, by designing appropriate adaptive controllers,
we can establish some sufficient conditions to insure the
generalized mutual synchronization of the proposed general
model in Section 2. Obviously, we can deduce some similar
criteria for any simple or typical examples from this general
model.

Combining (1) and (2) and (3), we can express error
system of controlled interdependent networks 𝐴 and 𝐵 in
terms of

̇e
𝑖
(𝑡) = ̇y

𝑖
(𝑡) − J ̇x

𝑖
(𝑡)

= 𝑔 (y
𝑖
(𝑡)) − J𝑓 (x

𝑖
(𝑡)) + 𝑏

𝑖

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)

− 𝑐
𝑖J
𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 𝑏
𝑖

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝜑
𝑗

(x
𝑗

(𝑡)) − 𝑎
𝑖J
𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑥
𝑗

(𝑡)

+ 𝑑
𝑖

𝑁

∑

𝑗=1

𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡))

− 𝑐
𝑖J
𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
3
𝜑
𝑗

(x
𝑗

(𝑡 − 𝜏
1

(𝑡))) + u
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

(7)

where J = 𝐷𝜑
𝑖
(x
𝑖
) is the Jacobian matrix of the function

𝜑
𝑖
(x
𝑖
).

Remark 6. From (7), one can find that adding appropriate
controller to nodes is an alternative method to obtain mutual
synchronization between two networks. In this paper, we
thus mainly focus on the controlled mutual synchronization
between two networks in the general context of two inter-
dependent networks. Therefore, the intranetwork coupling
matrices A and B and the internetwork coupling matrices C
and D can be chosen arbitrarily, meaning that it is not nec-
essary for assuming diffusivity, symmetry, or irreducibility
of the matrices A, B, C, and D. In addition, the topology
structure, node dynamics, and dimension of state vector of
one network can be different from the other.

Remark 7. It is well known that the time delays commonly
exist in node dynamics, intranetwork coupling, and internet-
work coupling. However, we just consider the time-varying
internetwork coupling delays regardless of the others to
explore the effects of internetwork coupling behavior on the
mutual synchronization. It is noted that many networks of
interest, like the Kuramoto model, have nonlinear coupling
functions. Similarly, for simplicity, we just consider the linear
intranetwork and internetwork coupling.

Theorem 8. Suppose that Assumptions 2 and 3 hold and that
the adaptive controllers (8) and the corresponding update laws
(9) are added to the error system (7). Thus, generalized mutual
synchronization between controlled interdependent networks𝐴

and 𝐵 with time-varying internetwork delays coupling can be
asymptotically realized. Consider

u
𝑖
(𝑡) = J𝑓 (x

𝑖
(𝑡)) − 𝑔 (𝜑

𝑖
(x
𝑖
(𝑡))) + 𝑎

𝑖J
𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
x
𝑗

(𝑡)

− 𝑏
𝑖

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝜑
𝑗

(x
𝑗

(𝑡))

+ 𝑐
𝑖J
𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
3
𝜑
𝑗

(x
𝑗

(𝑡 − 𝜏
1

(𝑡)))

− 𝑑
𝑖

𝑁

∑

𝑗=1

𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

(8)

𝐾
𝑖

= 𝑙
𝑖





e
𝑖
(𝑡)






2

, 𝑖 = 1, 2, . . . 𝑁, (9)
where𝐾

𝑖
are the time-varying feedback gain and 𝑙

𝑖
are arbitrary

positive constants.

Proof. Plugging (8) and (9) into (7), the error dynamical
system can be rewritten as

̇e
𝑖
(𝑡) = 𝑔 (y

𝑖
(𝑡)) − 𝑔 (𝜑

𝑖
(x
𝑖
(𝑡))) + 𝑏

𝑖

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)

− 𝑐
𝑖J
𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) , 𝑖 = 1, 2, . . . 𝑁.

(10)
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Let e(𝑡) = (e𝑇
1

(𝑡), e𝑇
2

(𝑡), . . . , e𝑇
𝑁

(𝑡))

𝑇

∈ 𝑅
𝑛𝑁, and construct a

Lyapunov function as follows:

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡) e
𝑖
(𝑡) +

1

2

𝑁

∑

𝑗=1

1

𝑙
𝑖

(𝐾
𝑖

− 𝐾)

2

+

1

2

𝑁

∑

𝑖=1

1

1 − 𝜀
1

∫

𝑡

𝑡−𝜏
1(𝑡)

e𝑇
𝑖

(𝜃) e
𝑖
(𝜃) 𝑑𝜃,

(11)

where 𝐾 is a positive constant large enough to be selected
later. Obviously, 𝑉(𝑡) > 0 for all e(𝑡) ̸= 0, meaning that 𝑉(𝑡)

is positive definite. Calculating the derivative of (11) with
respect to time along the solution of the error system (10),
together with the updated laws (9), thus, we have

𝑉 (𝑡) =

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡) ̇e
𝑖
(𝑡) +

𝑁

∑

𝑖=1

1

𝑙
𝑖

(𝐾
𝑖

− 𝐾) 𝐾
𝑖

+

1

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡) e
𝑖
(𝑡)

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡 − 𝜏
1

(𝑡)) e
𝑖
(𝑡 − 𝜏
1

(𝑡))

=

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡) [𝑔 (y
𝑖
(𝑡)) − 𝑔 (𝜑

𝑖
(x
𝑖
(𝑡))) − 𝐾

𝑖
e
𝑖
(𝑡)]

+

𝑁

∑

𝑖=1

(

1

2 (1 − 𝜀
1
)

+ 𝐾
𝑖

− 𝐾) e𝑇
𝑖

(𝑡) e
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡)
[

[

𝑁

∑

𝑗=1

𝑏
𝑖
𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)

−

𝑁

∑

𝑗=1

𝑐
𝑖
𝑐
𝑖𝑗
JΓ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡))]

]

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡 − 𝜏
1

(𝑡)) e
𝑖
(𝑡 − 𝜏
1

(𝑡))

≤

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡) (𝜇 +

1

2 (1 − 𝜀
1
)

− 𝐾) e
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

e𝑇
𝑖

(𝑡) 𝑏
𝑖
𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)

−

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

e𝑇
𝑖

(𝑡) 𝑐
𝑖
𝑐
𝑖𝑗
JΓ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡))

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡 − 𝜏
1

(𝑡)) e
𝑖
(𝑡 − 𝜏
1

(𝑡)) .

(12)

Let E = G⨂ Γ
2
; G = (𝑏

𝑖
𝑏
𝑖𝑗

)
𝑁×𝑁

; F = H⨂(JΓ
3
); H =

(−𝑐
𝑖
𝑐
𝑖𝑗

)
𝑁×𝑁

, thus, we can get

𝑉 (𝑡) ≤ (𝜇 +

1

2 (1 − 𝜀
1
)

− 𝐾) e𝑇 (𝑡) e (𝑡)

+ e𝑇 (𝑡)

E + E𝑇

2

e (𝑡) + e𝑇 (𝑡) Fe (𝑡 − 𝜏
1

(𝑡))

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡 − 𝜏
1

(𝑡)) e
𝑖
(𝑡 − 𝜏
1

(𝑡)) .

(13)

From Assumption 3, we have

1

2

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

≤ 0. (14)

From Lemma 5, we get

e𝑇 (𝑡) Fe (𝑡 − 𝜏
1

(𝑡)) ≤

1

2

e𝑇 (𝑡) FF𝑇e (𝑡)

+

1

2

e𝑇 (𝑡 − 𝜏
1

(𝑡)) e (𝑡 − 𝜏
1

(𝑡)) .

(15)

Combining (14) and (15) and (13), we can further get

𝑉 (𝑡) ≤ (𝜇 +

1

2 (1 − 𝜀
1
)

− 𝐾) e𝑇 (𝑡) e (𝑡)

+ e𝑇 (𝑡)

E + E𝑇

2

e (𝑡) +

1

2

e𝑇 (𝑡) FF𝑇e (𝑡)

+

1

2

e𝑇 (𝑡 − 𝜏
1

(𝑡)) e (𝑡 − 𝜏
1

(𝑡))

−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

1

2

e𝑇 (𝑡 − 𝜏
1

(𝑡)) e (𝑡 − 𝜏
1

(𝑡))

≤ (𝜇 +

1

2 (1 − 𝜀
1
)

− 𝐾) e𝑇 (𝑡) e (𝑡)

+ e𝑇 (𝑡)

E + E𝑇

2

e (𝑡) +

1

2

e𝑇 (𝑡) FF𝑇e (𝑡)

≤ (𝜇 +

1

2 (1 − 𝜀
1
)

− 𝐾 + 𝜆max (

E + E𝑇

2

)

+𝜆max (FF𝑇) ) e𝑇 (𝑡) e (𝑡) .

(16)

If we take 𝐾 as

𝐾 ≥ 𝜇 +

1

2 (1 − 𝜀
1
)

+ 𝜆max (

E + E𝑇

2

) + 𝜆max (FF𝑇) + 1,

(17)
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then

𝑉 (𝑡) ≤ −e𝑇 (𝑡) e (𝑡) = −‖e (𝑡)‖
2

≤ 0. (18)

Clearly, 𝑉(𝑡) is nonincreasing and every term of 𝑉(𝑡)

is bounded. Thus, lim
𝑡→∞

𝑉(𝑡) tends to a nonnegative
value. Since 𝐾

𝑖
is bounded and increasing (see (8) and

(9)), it must also asymptotically converge to a limit. By
integrating (18) over 0 to 𝑡, we can get ∫

𝑡

0
‖e(𝜃)‖

2
𝑑𝜃 ≤

− ∫

𝑡

0
𝑉(𝜃)𝑑𝜃. Thus, lim

𝑡→∞
∫

𝑡

0
‖e(𝜃)‖

2
𝑑𝜃 exists and is a non-

negative value. According to Cauchy Criterion, we can
obtain lim

𝑡→+∞
∫

𝑡

𝑡−𝜏
1
(𝑡)
e𝑇
𝑖

(𝜃)e
𝑖
(𝜃)𝑑𝜃 = 0. Therefore, from

the definition of 𝑉(𝑡), we can conclude that lim
𝑡→∞

‖e(𝑡)‖
2

converges to a limited nonnegative constant. Next, we would
prove that lim

𝑡→∞
‖e(𝑡)‖

2
= 0. If this is not true, then

lim
𝑡→+∞

‖e(𝑡)‖
2

= 𝜖 (𝜖 > 0) holds. Obviously, ‖e(𝑡)‖
2

> 𝜖/2

holds true for 𝑡 ≥ 𝛿 > 0. From (18), we have

𝑉 (𝑡) ≤ −‖e (𝑡)‖
2

< −

𝜖

2

. (19)

Thus, by integrating (19) from 𝐻 to ∞, we can get

−𝑉 (𝛿) ≤ 𝑉 (+∞) − 𝑉 (𝛿) = ∫

+∞

𝛿

𝑉 (𝑡) 𝑑𝑡

< − ∫

+∞

𝛿

𝜖

2

𝑑𝑡 = −∞.

(20)

This is a contradiction, and hence lim
𝑡→+∞

‖e(𝑡)‖
2

= 0;
namely, lim

𝑡→∞
‖e
𝑖
(𝑡)‖ = 0, 𝑖 = 1, 2, . . . 𝑁. Consequently,

the generalized mutual synchronization between controlled
interdependent networks 𝐴 and 𝐵 is asymptotically obtained
by using the proposed adaptive controllers (8) and (9). This
completes the proof of the Theorem 8.

Remark 9. From the proof of the Theorem 8, we know
that 𝑉(𝑡) is positive definite, 𝑉(𝑡) is negative definite, and
lim
𝑡→∞

e
𝑖
(𝑡) = 0. According to Lyapunov stability theory,

we can also get that the synchronization state e
𝑖
(𝑡) = 0 is

asymptotically stable.

Remark 10. It is noted that (17) is just a sufficient condition,
but not the necessary one for the mutual synchroniza-
tion between controlled interdependent networks 𝐴 and
𝐵.

Based onTheorem 8, we can further obtain some similar
synchronization criteria in the following two corollaries.

Corollary 11. Suppose that Assumptions 2 and 3 hold. If
𝑚 = 𝑛 and 𝜑

𝑖
(x
𝑖
(𝑡)) = 𝜆x

𝑖
(𝑡), 𝜆 ̸= 0, then projective mutual

synchronization between controlled interdependent networks𝐴

and 𝐵 with time-varying internetwork delays coupling can be

asymptotically achieved under the following adaptive control
schemes:

u
𝑖
(𝑡) = 𝜆𝑓 (x

𝑖
(𝑡)) − 𝑔 (𝜆𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1

𝜆 (𝑎
𝑖
𝑎
𝑖𝑗
Γ
1

− 𝑏
𝑖
𝑏
𝑖𝑗
Γ
2
) x
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝜆
2
𝑐
𝑖
𝑐
𝑖𝑗
Γ
3
x
𝑗

(𝑡 − 𝜏
1

(𝑡))

−

𝑁

∑

𝑗=1

𝑑
𝑖
𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

𝐾
𝑖

= 𝑙
𝑖





e
𝑖
(𝑡)






2

,

(21)
where 𝐾

𝑖
, 𝑙
𝑖
have the same implications as those of Theorem 8,

respectively.

Corollary 12. Particularly, in Corollary 11, if 𝜆 = ±1, com-
plete mutual synchronization (mutual antisynchronization)
between controlled interdependent networks 𝐴 and 𝐵 with
time-varying internetwork delays coupling can be asymptoti-
cally obtained by the adaptive controllers as follows:

u
𝑖
(𝑡) = 𝑓 (x

𝑖
(𝑡)) − 𝑔 (±x

𝑖
(𝑡))

±

𝑁

∑

𝑗=1

(𝑎
𝑖
𝑎
𝑖𝑗
Γ
1

− 𝑏
𝑖
𝑏
𝑖𝑗
Γ
2
) x
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝑐
𝑖
𝑐
𝑖𝑗
Γ
3
x
𝑗

(𝑡 − 𝜏
1

(𝑡))

−

𝑁

∑

𝑗=1

𝑑
𝑖
𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

𝐾
𝑖

= 𝑙
𝑖





e
𝑖
(𝑡)






2

,

(22)

where 𝐾
𝑖
, 𝑙
𝑖
have the same implications as those of Theorem 8,

respectively.

Remark 13. It is quite natural thatTheorem 8 and Corollaries
11 and 12 still hold for some simple cases, such as 𝜏

1
(𝑡) = 0,

𝜏
2
(𝑡) = 0, A = B, C = D, Γ

1
= Γ
2
, and Γ

3
= Γ
4
; hence, our

model and synchronization methods are applicable to some
of the two controlled interdependent networks similar to our
model.

Remark 14. Plugging (3) into (10) and (1), we obtain (23) and
(24), respectively:

̇e
𝑖
(𝑡) = 𝑔 (e

𝑖
(𝑡) + 𝜑

𝑖
(x
𝑖
(𝑡))) − 𝑔 (𝜑

𝑖
(x
𝑖
(𝑡)))

+

𝑁

∑

𝑗=1

𝑏
𝑖
𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)
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− J
𝑁

∑

𝑗=1

𝑐
𝑖
𝑐
𝑖𝑗
Γ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

(23)

̇x
𝑖
(𝑡) = 𝑓 (x

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝑎
𝑖
𝑎
𝑖𝑗
Γ
1
x
𝑗

(𝑡)

+

𝑁

∑

𝑗

𝑐
𝑖
𝑐
𝑖𝑗
Γ
3

(e
𝑖
(𝑡) + 𝜑

𝑖
(x
𝑖
(𝑡))) ,

𝑖 = 1, 2, . . . 𝑁.

(24)

Combining (23) and (24), we find that the values of 𝑒
𝑖
(𝑡) are

irrelevant to 𝜏
2
(𝑡), 𝑑
𝑖𝑗
, and 𝑑

𝑖 under the action of the proposed
adaptive controllers (8) and (9). Thus, in the following
sections, it is reasonable not to consider the effects of 𝜏

2
(𝑡),

𝑑
𝑖𝑗
, and 𝑑

𝑖 on themutual synchronization between controlled
interdependent networks 𝐴 and 𝐵.

4. Numerical Simulations and Results

In this section, two numerical examples and their simulations
are given to illustrate the correctness and effectiveness of the
theoretical results obtained in the previous sections and to
identify the factors that influence the mutual synchronizabil-
ity.

To measure the speed and performance of mutual syn-
chronization process, we define

‖e (𝑡)‖ = √

𝑁

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑖𝑗

(𝑡)
2
. (25)

Actually, ‖e(𝑡)‖ is the 2-norm of the synchronization error
e(𝑡), 0 < 𝑡 < +∞. Thus, the values of ‖e(𝑡)‖ in the initial
stage and at the end of simulations imply themutual synchro-
nization speed and performance, respectively. It should be
particularly noted that, in all of the following simulations, the
main figures and insets describe the values of ‖e(𝑡)‖ during
0 ≤ 𝑡 < 5 and at the end of simulations (𝑡 = 5), respectively.

Next, to explore the potential application of mutual
synchronization in smart grid, we construct network 𝐴 as
NWsmall-world network (𝑁 = 50, 𝑘 = 3, 𝑃 = 0.3)
consisting of identical chaotic power system nodes and
network 𝐵 as scale-free network (𝑁 = 50, 𝑚 = 𝑚

0
= 3)

described by Lorenz chaotic systems.The nonlinear function
𝑓(x
𝑖
(𝑡)) corresponding to chaotic power system nodes [39] is

described by

𝑓 (x
𝑖
(𝑡)) = (

𝑥
𝑖2

(𝑡)

−𝑎
1
sin (𝑥

𝑖1
(𝑡)) − 𝑏

1
𝑥
𝑖2

(𝑡) + 𝑐
1

+ 𝐹 cos (𝑑
1
𝑡)

) .

(26)

When taking 𝑎
1

= 1, 𝑏
1

= 0.02, 𝑐
1

= 0.2, 𝑑
1

= 1, and 𝐹 =

0.296, the above power system nodes are hyperchaotic. The

nonlinear function𝑔(𝑦
𝑖
(𝑡)) involving the Lorenz systems [26]

is represented by

𝑔 (y
𝑖
(𝑡)) = (

𝑎
2

(𝑦
𝑖2

(𝑡) − 𝑦
𝑖1

(𝑡))

𝑏
2
𝑦
𝑖1

(𝑡) − 𝑦
𝑖2

(𝑡) − 𝑦
𝑖1

(𝑡) 𝑦
𝑖3

(𝑡)

−𝑐
2
𝑦
𝑖1

(𝑡) + 𝑦
𝑖1

(𝑡) 𝑦
𝑖2

(𝑡)

) . (27)

When taking 𝑎
2

= 10, 𝑏
2

= 28, and 𝑐
2

= 8/3, the Lorenz
systems are chaotic. As is known to all, the chaotic systems
are bounded, thus,𝑔(y

𝑖
(𝑡)) satisfiesAssumption 2. In the both

examples, we arbitrarily select the generalizedmapping func-
tions as 𝜑

𝑖
(x
𝑖
(𝑡)) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2

(𝑡), 𝑥
𝑖1

(𝑡) + 𝑥
𝑖2

(𝑡))
𝑇, meaning

that 𝐽 = (

1 0

0 1

1 1

); then, we set 𝑙
𝑖

= 1, Γ
1

= I
2
, Γ
2

= I
3
,

Γ
3

= (
1 0 0

0 1 0
), Γ
4

= (

1 0

0 1

0 0

); next, the initial values x
𝑖
(0) and

y
𝑖
(0) can be chosen randomly in (−1, 1) and 𝐾

𝑖
(0) in (0, 1); in

addition, the internetwork delays will be selected according
to the Assumption 3.

For simplicity and for comparing, we further assume that
the internetwork coupling links are bidirectional and the
coupling strength of each node is equal; that is, 𝑎

𝑖
= 𝑎,

𝑏
𝑖

= 𝑏, 𝑐
𝑖

= 𝑐, and 𝑑
𝑖

= 𝑑. From Remark 14, we know
that the time evolutions of e

𝑖
(𝑡) are not relevant to 𝜏

2
(𝑡), 𝑑
𝑖𝑗
,

and 𝑑
𝑖; thus, it is also reasonable to assume 𝑐 = 𝑑 = 𝑠,

𝜏
1
(𝑡) = 𝜏

2
(𝑡) = 𝜏(𝑡) to simulate the influences of internetwork

coupling strength and delays on themutual synchronizability.
Here, we employ the following two interlinking strategies to
produce the interdependency matrices C and D in the two
examples respectively.

(i) One-to-one support dependence interlinking strategy
[30] (strategy I for short): node 𝐴

𝑖
in network 𝐴 only

depends on node 𝐵
𝑖
in network 𝐵 and vice versa.

(ii) Multiple support dependence interlinking strategy
[37] (strategy II for short): node in network 𝐴 may
randomly depend on more than one node in network
𝐵 and vice versa.

Example 15. In this example, we generate the interdepen-
dency matrices C and D following the strategy I and design
the adaptive controllers according to Theorem 8. When 𝑎 =

𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5, the mutual synchronization errors e
𝑖
(𝑡)

are depicted in Figure 1, which shows that controlled interde-
pendent networks 𝐴 and 𝐵 can easily achieve the generalized
mutual synchronization using the designed controllers. Next,
we further simulate the influences of internetwork delays
and intranetwork and internetwork coupling strength on the
mutual synchronizability between the networks 𝐴 and 𝐵. We
fix 𝑎 = 𝑏 = 𝑠 = 1 and only change the internetwork coupling
delays 𝜏(𝑡); thus, the values of ‖𝑒(𝑡)‖ for the networks 𝐴 and
𝐵 with different 𝜏(𝑡) are plotted in Figure 2. Similarly, Figures
3, 4, and 5 show the curves of ‖e(𝑡)‖ for the networks 𝐴 and
𝐵 with fixed parameters 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork coupling strength 𝑎, with 𝑎 = 𝑠 = 1, 𝜏(𝑡) = 0.5

and different intranetwork coupling strength 𝑏, with 𝑎 = 𝑏 =

1, 𝜏(𝑡) = 0.5 and different internetwork coupling strength 𝑠,
respectively.
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Figure 1: The mutual synchronization errors e
𝑖
(𝑡) between the

networks𝐴 and𝐵 interlinked following strategy Iwith 𝑎 = 𝑏 = 𝑠 = 1,
𝜏(𝑡) = 0.5.
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(when t = 5)
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Figure 2: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑏 = 𝑠 = 1 and different internetwork
delays 𝜏(𝑡).

Example 16. In this example, we produce the interdepen-
dencymatricesC andD following the strategy II. Tomeasure
the effect of the number of interlinking edges on the mutual
synchronizability, we define ⟨𝑘⟩ as the average number of
interlinking edges for each node in network 𝐴 and the same
to network 𝐵. We conduct similar simulations as those in
Example 15. First, we set 𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ =

3, 𝜏(𝑡) = 𝑒
𝑡
/(1 + 𝑒

𝑡
); thus, the time evolutions of the

synchronization errors e
𝑖
(𝑡) are depicted in Figure 6, which

shows that interdependent networks 𝐴 and 𝐵 can achieve
the generalized mutual synchronization successfully. Then,
Figures 7, 8, 9, and 10, respectively, display the curves of ‖e(𝑡)‖

for the networks 𝐴 and 𝐵 with fixed parameters 𝑎 = 𝑏 =
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t
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Figure 3: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork strength 𝑎.
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Figure 4: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork strength 𝑏.

𝑠 = 1, ⟨𝑘⟩ = 3 and different internetwork delays 𝜏(𝑡), with
𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
) and different

intranetwork coupling strength 𝑎, with 𝑎 = 𝑠 = 1, ⟨𝑘⟩ = 3,
and 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
) and different intranetwork coupling

strength 𝑏, with 𝑎 = 𝑏 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒
𝑡
/(1 + 𝑒

𝑡
)

and different internetwork coupling strength 𝑠. Finally, we fix
the parameters 𝑎 = 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
); thus, the

curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 with different ⟨𝑘⟩

are shown in Figure 11.

From the numerical results, both examples yield coinci-
dent tendency as follows, which further affirms our theoreti-
cal results. It is observed that the intranetwork coupling 𝑎 has
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Figure 5: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑏 = 1, 𝜏(𝑡) = 0.5 and different
internetwork strength 𝑠.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

1

e i
1
(t
)

e i
2
(t
)

e i
3
(t
)

−1

0

1

−1

0

1

−1

Figure 6: The mutual synchronization errors e
𝑖
(𝑡) between inter-

dependent networks 𝐴 and 𝐵 interlinked following strategy II with
𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
).

little influence on mutual synchronization process (shown in
Figures 3 and 8 and their insets), and the stronger intranet-
work coupling 𝑏 enhances the mutual synchronizability
(shown in Figures 4 and 9 and their insets), while the stronger
internetwork coupling worsen the mutual synchronizability
(shown in Figures 5 and 10 and their insets). It is also found
that the values of ‖e(𝑡)‖ both in initial stage and at the end of
simulations are increased as the internetwork coupling delay
𝜏(𝑡) is increased (shown in Figures 2 and 7 and their insets,
resp.). In addition, Figure 11 implies that, to some extent,
increase of ⟨𝑘⟩ is equivalent to the increase of internetwork
coupling strength 𝑠.
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Figure 7: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3 and different
internetwork delays 𝜏(𝑡).
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Figure 8: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
)

and different intranetwork strength 𝑎.

5. Conclusions and Future Work

In this paper, we extend previous research on the outer syn-
chronization between two complex networks to our work on
generalized mutual synchronization between two controlled
interdependent networks by considering the time-varying
internetwork delays coupling. Ourmodel and relevant results
are general and can be easily extended to other interdepen-
dent networks because there are not any constraints imposed
on the intranetwork and internetwork coupling configuration
matrices. Based on Lyapunov theory and corresponding
mathematical techniques, some sufficient criteria have been
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Figure 9: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒
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and different intranetwork strength 𝑏.
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Figure 10:The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑏 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
)

and different internetwork strength 𝑠.

derived to guarantee that the proposed interdependent net-
worksmodel is asymmetrically synchronized. Two numerical
examples have been provided to illustrate the feasibility
and effectiveness of the theoretical results and to further
simulate the effects of internetwork delays, intranetwork and
internetwork coupling strength on the mutual controlled
synchronizability. In comparison, we find that, under the
proposed adaptive controllers, the intranetwork coupling
strength enhances the mutual synchronization, while the
internetwork coupling delays and coupling strength suppress
it. This indicates that the synchronization phenomenon in
interdependent networks is different from that in a single
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Figure 11: The values of ‖𝑒(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
by strategy II with 𝑎 = 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
) and different ⟨𝑘⟩.

network, which highlights the necessity and significance of
considering the mutual synchronization in the context of
interdependent networks.Thus, with the help of our findings,
one can further understand the mutual synchronization
phenomenon in two interdependent networks and design
interdependent networks with optimal mutual synchroniz-
ability for many potential practical applications.

However, the mutual synchronization between two inter-
dependent networks is extremely complex, and we cannot
consider all the factors that influence the synchronizability
altogether. Also, our theoretical and numerical results are still
conservative and the proposed control schemes are still a bit
complicated because of the generality of themodel.Therefore,
how to simplify the control laws and reduce the number
of controlled nodes is another important topic and remains
to be researched in future. Thus, utilizing the designed
controller, one can derive the synchronization conditions
based on Lyapunov function approach, which is widely used
in dynamic system analysis and design by some recent articles
[40–44].
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The problem of 𝐻
∞

control performance analysis of continuous-time systems with random abrupt changes is concerned in
this paper. By employing an augmented multiple mode-dependent Lyapunov-Krasovskii functional and using some integral
inequalities, new sufficient conditions are obtained relating to finite-time bounded and an𝐻

∞
performance index. The finite-time

𝐻
∞
control performance problem is solved and desired controller is given to ensure the system trajectory stays within a prescribed

bound during a given time interval. At last, two numerical examples are provided to show that our results are less conservative than
the existing ones.

1. Introduction

It is well known that Markovian jump systems were intro-
ducedwhen the physicalmodels are always subject to random
changes, which can be also regarded as a special class of
hybrid systems because of the structures are subject to
random abrupt changes [1]. In the recent years, there are
a lot of people towards to Markovian jump systems for its
widely applications, for example, target tracking, robotics,
manufacturing systems, aircraft control, and power systems
[2–4].Markovian jump systems are regarded as a special class
of stochastic systems which switches from one to another at
different time in the finite operation modes. Many important
topics have been studied forMarkovian jumping systems such
as stability, control synthesis, stabilization, and filter design
[5–7].

On the other hand, time delay is very common in prac-
tical dynamical systems, for example, networked control sys-
tems, chemical processes, communication systems, and so
on [8–20]. Therefore, during the past two decades, various
research topics have been considered for Markovian jump
systems with time-varying delays [8–14]. It worth pointing
out that when time delay is small enough in linearMarkovian
jump systems, the delay-dependent criteria are always less
conservative than delay-independent ones. Over the past few

years, for Markovian jump systems, many important topics
related to delay-dependent have been extensively studied [14,
15].

Generally speaking, finite-time stability is investigated to
address these transient performances of control systems in
finite-time interval. Up to now, the concept of finite-time
stability has been revisited with different systems, and many
important results are obtained for finite-time stability and
finite-time boundedness [21–26]. However, to the best of
authors’ knowledge, the stochastic finite-time𝐻

∞
control for

Markovian jump systems has not been fully studied. There is
some room for next investigation due to the fact that analysis
methods in existing references seem still conservative.

The major contribution of this paper is that we introduce
a newly Lyapunov-Krasovskii functional forMarkovian jump
system. Some sufficient conditions are obtained to ensure
the finite-time stability and bounded of the closed-loop
Markovian jump systems. Compared with traditional meth-
ods of MJSs, it is shown the less conservative results can be
obtained and the desired𝐻

∞
control performance is obtained

by employing mode-dependent Lyapunov functional instead
of mode-independent Lyapunov functional. The finite-time
bounded criterion can be dealt with in the terms of LMIs.
Finally, the effectiveness of the developed techniques is also
illustrated by two numerical examples.
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2. Preliminaries

Given the probability space (Ω, 𝐹, 𝑃), where Ω, 𝐹, and 𝑃

represent the sample space, the algebra of events, and the
probability measure defined on 𝐹, respectively, the following
Markovian jump systems over the probability space (Ω, 𝐹, 𝑃)

are considered:

̇𝑥 (𝑡) = 𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐴
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑟
𝑡
(𝑡)) + 𝐵

𝑟
𝑡

𝑢 (𝑡) + 𝐷
𝑟
𝑡

𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑟
𝑡

𝑥 (𝑡) + 𝐶
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑟
𝑡
(𝑡)) + 𝐹

𝑟
𝑡

𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 = [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 represents the state vector of Markovian
jump system, 𝑢(𝑡) ∈ R𝑚 is the control input, 𝑧(𝑡) ∈ R𝑞

denotes the controlled output and𝜑(𝑡), 𝑡 = [−ℎ, 0], where 𝑟
0
∈

N is initial condition. 𝜔(𝑘) ∈ R𝑞 denotes the disturbance
input which satisfies

∫

𝑇

0

𝜔
⊺
(𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝑑. (2)

Firstly, taking value on the finite setN = {1, 2, . . . , 𝑁}, let
the random form process {𝑟

𝑡
, 𝑡 ≥ 0} be the stochastic process

with transition rate matrix Ω = {𝜋
𝑖𝑗
}, 𝑖, 𝑗 ∈ N and let the

transition probabilities also be denoted as follows:

Pr (𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖) = 𝜌

𝑖𝑗
+ 𝜋

𝑖𝑗
Δ + 𝑜 (Δ) , (3)

where


𝑖𝑗
=

{

{

{

0, if 𝑖 ̸= 𝑗

1 if 𝑖 = 𝑗,

(4)

and Δ > 0, 𝜋
𝑖𝑗

≥ 0, for 𝑖 ̸= 𝑗, denotes the mode 𝑖 in time 𝑡 to
time 𝑡 + Δ with mode 𝑗,

−𝜋
𝑖𝑖
=

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗 (5)

for eachmode 𝑖 ∈ N, lim
Δ→0

+

(𝑜(Δ)/Δ) = 0. 𝜏
𝑖
(𝑡) denotes the

time-varying delay, which satisfies

0 < 𝜏
𝑖
(𝑡) ≤ ℎ

𝑖
< ∞,

̇𝜏
𝑖
(𝑡) ≤ 𝜇

𝑖
,

(6)

where ℎ = max{ℎ
𝑖
, 𝑖 ∈ N} is the given upper bound of time-

varying delays 𝜏
𝑖
(𝑡) and 𝜇 = max{𝜇

𝑖
, 𝑖 ∈ N} is the given upper

bound of ̇𝜏
𝑖
(𝑡). All the matrices are known matrices with the

appropriate dimension.

In this paper, the objective is to design a state feedback
controller as follows:

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , (7)

where𝐾
𝑖
is the controller gains to be designed.

Definition 1. System (1) is said to be finite-time bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅, 𝑑), if condition (2) and the following

inequality hold:

sup
−ℎ≤𝜐≤0

E {𝑥
⊺
(𝜐) 𝑅𝑥 (𝜐) , ̇𝑥

⊺
(𝜐) 𝑅 ̇𝑥 (𝜐)} ≤ 𝑐

1

⇒ E {𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡)} < 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] ,

(8)

where 𝑐
2
> 𝑐

1
≥ 0 and 𝑅 > 0.

Definition 2 (see [8]). Considering system (1) with the
stochastic Lyapunov function 𝑉(𝑥

𝑡
, 𝑟
𝑡
), we get the weak

infinitesimal operator as follows:

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) = lim

Δ𝑡→0

1

Δ𝑡

[E {𝑉 (𝑥
𝑡+Δ𝑡

, 𝑟
𝑡+Δ𝑡

, 𝑡 + Δ𝑡)}

−𝑉 (𝑥
𝑡
, 𝑖, 𝑡)]

=

𝜕

𝜕𝑡

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) +

𝜕

𝜕𝑥

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) ̇𝑥 (𝑡, 𝑖)

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑥

𝑡
, 𝑗, 𝑡) .

(9)

Definition 3. Given a constant scalar 𝑇 > 0 and for all
admissible𝜔(𝑡) given in condition (2), if theMarkovian jump
system (1) is finite-time stochastic bounded and controller
outputs satisfy condition (7) with attenuation 𝛾 > 0,

E{∫

𝑇

0

𝑧
⊺
(𝑡) 𝑧 (𝑡) 𝑑𝑡} ≤ 𝛾

2
𝑒
𝜂𝑇
E{∫

𝑇

0

𝜔
⊺
(𝑡) 𝜔 (𝑡) 𝑑𝑡} .

(10)

The Markovian jump system (1) is called the finite-time
stochastic bounded with a disturbance attenuation 𝛾.

Lemma 4 (see [27]). Let 𝑓
𝑖
: R𝑚

→ R(𝑖 = 1, 2, . . . , 𝑁)

have positive values in an open subset D of R𝑚. Then, the
reciprocally convex combination of 𝑓

𝑖
overD satisfies

min
{𝛽𝑖|𝛽𝑖>0,∑𝑖 𝛽𝑖=1}

∑

𝑖

1

𝛽
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max

𝑔
𝑖,𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑡)

subject to {𝑔
𝑖,𝑗

: R
𝑚

→ R, 𝑔
𝑗,𝑖

(𝑡) = 𝑔
𝑖,𝑗

(𝑡) ,

[

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0} .

(11)
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Lemma 5. For any constant matrix 𝑀 ∈ R𝑚×𝑚 with 𝑀 > 0,
scalars 𝑎 < 𝑏 ≤ 0, vector function 𝑥 : [𝑎, 𝑏] → R𝑚, such that
the integrals in the following are well-defined; then,

−

𝑎
2
− 𝑏

2

2

∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥
⊺
(𝑠)𝑀𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −[∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃]

⊺

𝑀[∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃] .

(12)

3. Finite-Time 𝐻
∞

Performance Analysis

The issue of stability analysis of Markovian jump system (1)
subject to 𝑢(𝑡) = 0 is given firstly. Therefore, the finite-time
stability is obtained in this section.

Theorem 6. System (1) is called the finite-time bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇), if there exist matrices

𝑃
𝑖
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝑄 > 0,

X
𝑖
= [

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

] > 0, X = [

𝑋
1

𝑋
2

𝑋
3

𝑋
4

] > 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0,

𝑍 > 0, 𝐻 > 0,

(13)

scalars 𝑐
1

< 𝑐
2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0,

and Λ > 0, such that ∀𝑖, 𝑗 ∈ N and the inequalities hold as
follows:

𝑒
𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

+ 𝑒
𝛿ℎ

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
2𝑗

< 𝑄, (14)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
X

𝑗
−X < 0, (15)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑍
𝑗
− 𝑍 < 0, (16)

[
[
[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]
]
]

]

> 0, (17)

[

𝑌
1

𝑊
1

∗ 𝑌
2

] > 0, (18)

[

𝑌
1

𝑊
2

∗ 𝑌
2

] > 0, (19)

Ξ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0

∗ ∗ ∗ Ξ
44𝑖

0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0

∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐻

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (20)

𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (21)

where

Ξ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖
+ 𝑒

𝛿ℎ
(𝑄

1𝑖
+ 𝑄

2𝑖
)

+ ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖

+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1
−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
,

Ξ
12𝑖

= 𝑃
𝑖
𝐴
𝜏𝑖
+

𝑋
4𝑖

ℎ

− 𝑆
4𝑖
,

Ξ
14𝑖

=

𝑒
𝛿ℎ

− 1

2𝛿

(𝑋
2𝑖
+ 𝑋

⊺

3𝑖
) +

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

2𝛿
2

(𝑋
2
+ 𝑋

⊺

3
) ,

Ξ
15𝑖

= −

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

+

𝑍
𝑖

ℎ
2
+

𝑍
⊺

𝑖

ℎ
2
,

Ξ
22𝑖

= − (1 − 𝜇
𝑖
) 𝑄

2𝑖
−

2𝑋
4𝑖

ℎ

+ 𝑆
4𝑖
+ 𝑆

⊺

4𝑖
− 𝑊

1
+ 𝑊

2
,
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Ξ
44𝑖

=

𝑒
𝛿ℎ

− 1

𝛿

𝑋
4𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
4𝑖
+ ℎ𝑌

2

+

𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑍
𝑖
+

ℎ𝛿
2
𝑒
𝛿ℎ

+ 𝑒
𝛿ℎ

+ 𝛿ℎ + 1

𝛿
3

𝑍,

Ξ
55𝑖

= −

𝑋
4𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2
,

Λ = 𝜆
2
+ ℎ𝑒

𝛿ℎ
(𝜆

3
+ 𝜆

4
) + ℎ

2
𝑒
𝛿ℎ
𝜆
5
+ ℎ

2
𝑒
𝛿ℎ
𝜆
6

+

1

2

ℎ
3
𝑒
𝛿ℎ
𝜆
7
+ ℎ

2
𝑒
𝛿ℎ

(𝜆
8
+ 𝜆

9
)

+

1

2

ℎ
3
𝑒
𝛿ℎ
𝜆
10

+

1

6

ℎ
4
𝑒
𝛿ℎ
𝜆
11
,

𝜆
1
= max

𝑖∈N
𝜆max (𝑃𝑖) , 𝜆

2
= max

𝑖∈N
𝜆max (�̃�𝑖) ,

𝜆
3
= max

𝑖∈N
𝜆max (𝑄1𝑖

) , 𝜆
4
= max

𝑖∈N
𝜆max (𝑄2𝑖

) ,

𝜆
5
= 𝜆max (𝑄) , 𝜆

6
= max

𝑖∈N
𝜆max (

̃X
𝑖
) ,

𝜆
7
= max

𝑖∈N
𝜆max (

̃X) , 𝜆
8
= 𝜆max (�̃�1) ,

𝜆
9
= 𝜆max (�̃�2) , 𝜆

10
= max

𝑖∈N
𝜆max (

̃
𝑍
𝑖
) ,

𝜆
11

= 𝜆max (
̃
𝑍) , 𝜆

12
= 𝜆max (𝐻) ,

�̃�
𝑖
= 𝑅

−(1/2)
𝑃
𝑖
𝑅
−(1/2)

,

𝑄
𝑙𝑖
= 𝑅

−(1/2)
𝑄
𝑙𝑖
𝑅
−(1/2)

(𝑙 = 1, 2) ,

𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2)

,

̃X
𝑖
= 𝑅

−(1/2)
X

𝑖
𝑅
−(1/2)

(𝑙 = 1, 2) ,

𝑋 = 𝑅
−(1/2)

𝑋𝑅
−(1/2)

,

�̃�
𝑠
= 𝑅

−(1/2)
𝑌
𝑠
𝑅
−(1/2)

(𝑠 = 1, 2) ,

̃
𝑍
𝑖
= 𝑅

−(1/2)
𝑍
𝑖
𝑅
−(1/2)

,

̃
𝑍 = 𝑅

−(1/2)
𝑍𝑅

−(1/2)
.

(22)

Proof. Firstly, a novel process is defined in this paper as
follows:

𝑥
𝑡
(𝑠) = 𝑥 (𝑡 + 𝑠) , 𝑠 ∈ [−ℎ, 0] . (23)

Then, the following Lyapunov-Krasovskii functional is con-
sidered:

𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) =

5

∑

𝑙=1

𝑉
𝑙
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) , (24)

where

𝑉
1
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = 𝑥(𝑡)

⊺
𝑒
𝛿𝑡
𝑃
𝑟
𝑡

𝑥 (𝑡) ,

𝑉
2
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄

1𝑟
𝑡

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄

2𝑟
𝑡

𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺
(𝑠)X

𝑟
𝑡

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺
(𝑠)X𝜂 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃,

𝑉
4
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝑥
⊺
(𝑠) 𝑌

1
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

̇𝑥
⊺
(𝑠) 𝑌

2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

̇𝑥
⊺
(𝑠) 𝑍

𝑟
𝑡

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

̇𝑥
⊺
(𝑠)

× 𝑍 ̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃 𝑑𝜍,

(25)

where 𝜂(𝑡) = [𝑥
⊺
(𝑡), ̇𝑥

⊺
(𝑡)]

⊺.
Letting 𝑖 represent the time 𝑡, that is, 𝑟

𝑡
= 𝑖 ∈ N, one has

£𝑉
1
(𝑥

𝑡
, 𝑖, 𝑡) = 𝛿𝑒

𝛿𝑡
𝑥
⊺
(𝑡) 𝑃

𝑖
𝑥 (𝑡) + 2𝑒

𝛿𝑡
𝑥
⊺
(𝑡) 𝑃

𝑖
̇𝑥 (𝑡)

+ 𝑒
𝛿𝑡
𝑥
⊺
(𝑡)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
)𝑥 (𝑡)

= 𝑒
𝛿𝑡
𝑥
⊺
(𝑡)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
)𝑥 (𝑡) + 2𝑒

𝛿𝑡
𝑥
⊺
(𝑡) 𝑃

𝑖

× (𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡)) .

(26)

Noting 𝜋
𝑖𝑗
≥ 0 for 𝑗 ̸= 𝑖 and 𝜋

𝑖𝑖
≤ 0, one has

£𝑉
2
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑒

𝛿𝑡
𝑥
⊺
(𝑡) (𝑒

𝛿ℎ
𝑄
1𝑖
+ 𝑒

𝛿ℎ
𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − ℎ)𝑄

1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿(𝑡+ℎ−𝜏
𝑖
(𝑡))

𝑥
⊺

× (𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝛿𝑠
𝑥
⊺
(𝑠)(𝑒

𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

− 𝑄)𝑥 (𝑠) 𝑑𝑠
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+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
∫

𝑡

𝑡−𝜏
𝑗(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄

2𝑗
𝑥 (𝑠) 𝑑𝑠

≤ 𝑒
𝛿𝑡
𝑥
⊺
(𝑡) (𝑒

𝛿ℎ
𝑄
1𝑖
+ 𝑒

𝛿ℎ
𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − ℎ)𝑄

1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿𝑡
𝑥
⊺
(𝑡 − 𝜏

𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝛿𝑠
𝑥
⊺
(𝑠)(𝑒

𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

+ 𝑒
𝛿ℎ

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
2𝑗

− 𝑄)

× 𝑥 (𝑠) 𝑑𝑠.

(27)

It follows from (15) and (28) that

£𝑉
2
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑒

𝛿𝑡
𝑥
⊺
(𝑡) (𝑒

𝛿ℎ
𝑄
1𝑖
+ 𝑒

𝛿ℎ
𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − ℎ)𝑄

1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿𝑡
𝑥
⊺
(𝑡 − 𝜏

𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) ,

(28)

£𝑉
3
(𝑥

𝑡
, 𝑖, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
X

𝑖𝑗
−X)

× 𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡
𝜂
⊺
X

𝑖
𝜂 (𝑡) ∫

0

−ℎ

𝑒
−𝛿𝜐

𝑑𝜐

− 𝑒
𝛿𝑡
∫

𝑡

𝑡−ℎ

𝜂
⊺
(𝑠)X

𝑖
𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿𝑡
𝜂
⊺
(𝑡)X𝜂 (𝑡) ∫

0

−ℎ

∫

0

𝜐

𝑒
−𝛿𝜐

𝑑𝜃 𝑑𝜐.

(29)

By employing Lemma 4, we can obtain that

− ∫

𝑡

𝑡−ℎ

𝜂
⊺
(𝑠)X

𝑖
𝜂 (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂
⊺
(𝑠)X

𝑖
𝜂 (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂
⊺
(𝑠)X

𝑖
𝜂 (𝑠) 𝑑𝑠

≤ −

ℎ

𝜏
𝑖
(𝑡)

[∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂 (𝑠) 𝑑𝑠]

⊺
X

𝑖

ℎ

[∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂 (𝑠) 𝑑𝑠]

−

ℎ

ℎ − 𝜏
𝑖
(𝑡)

[∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠]

⊺

X
𝑖

ℎ

[∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠]

≤ −

[
[
[
[

[

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]
]
]
]

]

⊺

[
[
[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]
]
]

]

[
[
[
[

[

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]
]
]
]

]

.

(30)

It follows from (30) and (31) that

𝑉
3
(𝑥

𝑡
, 𝑖, 𝑡) ≤ 𝑒

𝛿𝑡
𝜂
⊺
(𝑡)

× (

𝑒
𝛿ℎ

− 1

𝛿

X
𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

X)𝜂 (𝑡)

− 𝑒
𝛿𝑡

[
[
[
[

[

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]
]
]
]

]

⊺

[
[
[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]
]
]

]

×

[
[
[
[

[

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]
]
]
]

]

.

(31)

Consider

£𝑉
4
(𝑥

𝑡
, 𝑖, 𝑡) = ℎ𝑥

⊺
(𝑡) 𝑌

1
𝑥 (𝑡)

− ∫

𝑡

𝑡−ℎ

𝑥
⊺
(𝑠) 𝑌

1
𝑥 (𝑠) 𝑑𝑠 + ℎ ̇𝑥

⊺
(𝑡) 𝑌

2
̇𝑥 (𝑡)

−∫

𝑡

𝑡−ℎ

̇𝑥
⊺
(𝑠) 𝑌

2
̇𝑥 (𝑠) 𝑑𝑠.

(32)

Moreover, the following two zero equalities with any symmet-
ric matrices𝑊

1
and𝑊

2
are considered:

0 = 𝑥
⊺
(𝑡)𝑊

1
𝑥 (𝑡) − 𝑥

⊺
(𝑡 − 𝜏

𝑖
(𝑡))𝑊

1
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 2∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑥
⊺
(𝑠)𝑊

1
̇𝑥 (𝑠) 𝑑𝑠,

(33)

0 = 𝑥
⊺
(𝑡 − 𝜏

𝑖
(𝑡))𝑊

2
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺
(𝑡 − ℎ)𝑊

2
𝑥 (𝑡 − ℎ)

− 2∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥
⊺
(𝑠)𝑊

2
̇𝑥 (𝑠) 𝑑𝑠.

(34)
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With the above two zero equalities (34) and (35), an upper
bound of £𝑉

4
(𝑥

𝑡
, 𝑖, 𝑡) is

£
4
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑥

⊺
(𝑡) (ℎ𝑌

1
+ 𝑊

1
) 𝑥 (𝑡) + ℎ ̇𝑥

⊺
(𝑡) 𝑌

2
̇𝑥 (𝑡)

+ 𝑥
⊺
(𝑡 − 𝜏

𝑖
(𝑡)) (𝑊

2
− 𝑊

1
) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺
(𝑡 − ℎ)𝑊

2
𝑥 (𝑡 − ℎ)

− ∫

𝑡

𝑡−𝜏
𝑖(𝑡)

[
𝑥 (𝑠)

̇𝑥 (𝑠)
]

⊺

[
𝑌
1

𝑊
1

∗ 𝑌
2

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
]

− ∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

[
𝑥 (𝑠)

̇𝑥 (𝑠)
]

⊺

[
𝑌
1

𝑊
1

∗ 𝑌
2

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
] .

(35)

From (19), (20), and (36), one can obtain

£
4
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑥

⊺
(𝑡) (ℎ𝑌

1
+ 𝑊

1
) 𝑥 (𝑡) + ℎ ̇𝑥

⊺
(𝑡) 𝑌

2
̇𝑥 (𝑡)

+ 𝑥
⊺
(𝑡 − 𝜏

𝑖
(𝑡)) (𝑊

2
− 𝑊

1
) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺
(𝑡 − ℎ)𝑊

2
𝑥 (𝑡 − ℎ) .

(36)

Now, £𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡) is obtained as follows:

£𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡)

= ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

̇𝑥
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑍
𝑗
− 𝑍)

× ̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃

+ 𝑒
𝛿𝑡

̇𝑥
⊺
(𝑡) 𝑍

𝑖
̇𝑥 (𝑡) ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜐

𝑑𝜐 𝑑𝜃

− 𝑒
𝛿𝑡
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
⊺
(𝑠) 𝑍

𝑖
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡

̇𝑥
⊺
(𝑡) 𝑍 ̇𝑥 (𝑡) ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

𝑒
−𝛿𝜃

𝑑𝜐 𝑑𝜃 𝑑𝜍.

(37)

By using Lemma 5, one has

− ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
⊺
(𝑠) 𝑍

𝑖
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −

2

ℎ
2
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
⊺
(𝑠) 𝑑𝑠 𝑑𝜃𝑍

𝑖
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

= −2[𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

𝑍
𝑖

× [𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] .

(38)

Together with (38) and (39), it implies that

£𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡) ≤ 𝑒

𝛿𝑡
̇𝑥
⊺
(𝑡)

𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑍
𝑖
̇𝑥 (𝑡)

+ 𝑒
𝛿𝑡

̇𝑥
⊺
(𝑡)

ℎ𝛿
2
𝑒
𝛿ℎ

+ 𝑒
𝛿ℎ

+ 𝛿ℎ + 1

𝛿
3

𝑍 ̇𝑥 (𝑡)

− 2𝑒
𝛿𝑡
[𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

𝑍
𝑖

× [𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] .

(39)

From (26)–(40), we can eventually obtain

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) − 𝛿𝜔

⊺
(𝑡)𝐻𝜔 (𝑡) ≤ 𝑒

𝛿𝑡
𝜉
⊺
(𝑡) Ξ

𝑖
𝜉 (𝑡) , (40)

where

𝜉
⊺
(𝑡) = [𝑥

⊺
(𝑡) , 𝑥

⊺
(𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥

⊺
(𝑡 − ℎ) , ∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥
⊺
(𝑠) 𝑑𝑠,

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥
⊺
(𝑠) 𝑑𝑠, 𝜔

⊺
(𝑡)] .

(41)

It follows from (45) that

E {£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)} ≤ E [𝜂𝑉 (𝑥

𝑡
, 𝑟
𝑡
, 𝑡)] + 𝛿𝜔

⊺
(𝑡)𝐻𝜔 (𝑡) .

(42)

Multiplying the above inequality by 𝑒
−𝜂𝑡 yields that

E {£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)]} ≤ 𝑒

−𝜂𝑡
𝛿𝜔

⊺
(𝑡)𝐻𝜔 (𝑡) . (43)

Integrating the inequality from 0 to 𝑡, we have

𝑒
−𝜂𝑡

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] − E [𝑉 (𝑥

0
, 𝑟
0
, 0)]

≤ 𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺
(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠.

(44)

Denoting �̃�
𝑖

= 𝑅
−(1/2)

𝑃
𝑖
𝑅
−(1/2), 𝑄

𝑖
= 𝑅

−(1/2)
𝑄
𝑖
𝑅
−(1/2),

𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2), ̃X

𝑖
= 𝑅

−(1/2)X
𝑖
𝑅
−(1/2), ̃X =

𝑅
−(1/2)X𝑅

−(1/2), �̃�
𝑖
= 𝑅

−(1/2)
𝑌
𝑖
𝑅
−(1/2), �̃� = 𝑅

−(1/2)
𝑌𝑅

−(1/2),
̃
𝑍
𝑖
= 𝑅

−(1/2)
𝑍
𝑖
𝑅
−(1/2), and ̃

𝑍 = 𝑅
−(1/2)

𝑍𝑅
−(1/2) yields that

E [𝑉 (𝑥
0
, 𝑟
0
, 0)]

≤ max
𝑖∈N

𝜆max (�̃�𝑖) 𝑥
⊺
(0) 𝑅𝑥 (0)

+ (max
𝑖∈N

𝜆max (𝑄1𝑖
) +max

𝑖∈N
𝜆max (𝑄2𝑖

)) 𝑒
𝛿ℎ
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× ∫

0

−ℎ

𝑒
𝛿𝑠
𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎ
𝜆max (𝑄) ∫

0

−ℎ

∫

0

𝜃

𝑒
𝛿𝑠
𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎmax

𝑖∈N
𝜆max (X𝑖

) ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝜂
⊺
(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ
𝜆max (X) ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝜂
⊺
(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜐

+ (𝜆max (𝑌1) + 𝜆max (𝑌2)) 𝑒
𝛿ℎ

× ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎmax

𝑖∈N
𝜆max (𝑍𝑖

) ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ
𝜆max (𝑍) ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜍

≤ {max
𝑖∈N

𝜆max (�̃�𝑖) + ℎ𝑒
𝛿ℎ

× (max
𝑖∈N

𝜆max (𝑄1𝑖
+max

𝑖∈N
𝜆max (𝑄2𝑖

))

+ ℎ
2
𝑒
𝛿ℎ
𝜆max (𝑍) + ℎ

2
𝑒
𝛿ℎmax

𝑖∈N
𝜆max (

̃X
𝑖
)

+

1

2

ℎ
3
𝑒
𝛿ℎ
𝜆max (

̃X) + ℎ
2
𝑒
𝛿ℎ

(𝜆max (𝑌1) + 𝜆max (𝑌2))

+

1

2

ℎ
3
𝑒
𝛿ℎmax

𝑖∈N
𝜆max (𝑍𝑖

) +

1

6

ℎ
4
𝑒
𝛿ℎ
𝜆max (𝑍)}

× sup
−ℎ≤𝑠≤0

{𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) , ̇𝑥

⊺
(𝑠) 𝑅 ̇𝑥 (𝑠)} = 𝑐

1
Λ.

(45)

For scalars 𝜂 > 0 and 𝑇 ≥ 𝑡 ≥ 0, (46) turns out to be

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] ≤ E [𝑒

𝜂𝑡
𝑉 (𝑥

0
, 𝑟
0
, 0)]

+ 𝑒
𝜂𝑡
𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺
(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠

≤ 𝑒
𝜂𝑇

𝑐
1
Λ + 𝑑𝛿𝑒

𝜂𝑇
𝜆max (𝐻)∫

𝑇

0

𝑒
−𝜂𝑠

𝑑𝑠

≤ 𝑒
𝜂𝑇

{𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} .

(46)

To illustrate the bounded, (26) takes the following form:

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] ≥ E [𝑥

⊺
(𝑡) 𝑒

𝜆𝑡
𝑃
𝑖
𝑥 (𝑡)]

≥ max
𝑖∈N

𝜆min (𝑃𝑖)E [𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡)] = 𝜆

1
E [𝑥

⊺
(𝑡) 𝑅𝑥 (𝑡)] .

(47)

From inequalities (46)–(48), one has

E [𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡)] ≤

𝑒
𝜂𝑇

𝜆
1

{𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} .

(48)

Finally, inequalities (24) and (49) guarantee that

E [𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡)] < 𝑐

2
. (49)

Therefore, the Markovian jump system (1) is finite-time
stochastic bounded with respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇).

Remark 7. It should be noted that 𝜏
𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) may,

respectively, get the different upper bound due to the fact
that condition (6) holds. However, 𝜏

𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) always lead

to conservativeness for 𝜏
𝑖
(𝑡) ≤ ℎ = max{ℎ

𝑖
, 𝑖 ∈ N} and

̇𝜏
𝑖
(𝑡) ≤ 𝜇 = max{𝜇

𝑖
, 𝑖 ∈ N} in [14–18], and this case can be

improved with employing the different Lyapunov-Krasovskii
functional (26).

Remark 8. It should be pointed out that, in Theorem 6,
the novelty of the Lyapunov functional (26) lies in the
following: (i) triple-integral terms𝑉

3
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) and𝑉

5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡)

and four-integral term𝑉
5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) are introduced and (ii) the

distinct Lyapunov matrices (𝑃
𝑖
, 𝑄

1𝑖
, 𝑄

2𝑖
,X

𝑖
, 𝑍

𝑖
) are chosen

for different system modes 𝑖 (𝑖 = 1, 2, . . . , 𝑁).
For the condition 𝑟

𝑡
= 𝑖, the Markovian jump system

given in this paper is followed by

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑟
𝑡
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝐹

𝑖
𝜔 (𝑡) ,

(50)

where

𝐴
𝑖
= 𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
. (51)

Theorem9. System (53) is finite-time stochastic bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇) with a disturbance attenuation, if

there exist matrices

𝑃
𝑖
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝑄 > 0,

X
𝑖
= [

[

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

]

]

> 0, X = [

[

𝑋
1

𝑋
2

𝑋
3

𝑋
4

]

]

> 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0, 𝑍 > 0,

(52)

scalars 𝑐
1
< 𝑐

2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0 and

Λ > 0, such that for all 𝑖, 𝑗 ∈ N, (15)–(20) and the following
inequalities hold:
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Σ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0 𝐶
⊺

𝜏𝑖

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0 0

∗ ∗ ∗ Ξ
44𝑖

0 0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 𝐹

⊺

𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (53)

𝑐
1
Λ + 𝑑𝛾

2 1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (54)

where

Σ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖

+ 𝑒
𝛿ℎ

(𝑄
1𝑖
+ 𝑄

2𝑖
) + ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖

+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1
−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
.

(55)

Proof. Considering the Lyapunov-Krasovskii functional in
Theorem 6 and from Schur’s Lemma, it turns out to be

£𝑉 (𝑥
𝑡
, 𝑖, 𝑡) + 𝑧

⊺
(𝑡) 𝑧 (𝑡) − 𝛾

2
𝜔
⊺
(𝑡) 𝜔 (𝑡)

≤ 𝜉
⊺
(𝑡) Θ

𝑖
(𝜇

𝑝𝑖
, ℎ

𝑞𝑖
) 𝜉 (𝑡) .

(56)

Thanks to (54), we have

E {£𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} ≤ E [𝜂𝑉 (𝑥

𝑡
, 𝑖, 𝑡)]

+ 𝛾
2
𝜔
⊺
(𝑡) 𝜔 (𝑡) − E [𝑧

⊺
(𝑡) 𝑧 (𝑡)] .

(57)

Multiplying the (58) by 𝑒
−𝜂𝑡, (58) can be written as

E {£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑖, 𝑡)]}

≤ 𝑒
−𝜂𝑡

[𝛾
2
𝜔
⊺
(𝑡) 𝜔 (𝑡) − 𝑧

⊺
(𝑡) 𝑧 (𝑡)] .

(58)

Under the condition of zero initial and E[𝑉(𝑥
𝑡
, 𝑖, 𝑡)] > 0, one

has

∫

𝑇

0

𝑒
−𝜂𝑡

[𝛾
2
𝜔
⊺
(𝑡) 𝜔 (𝑡) − 𝑧

⊺
(𝑡) 𝑧 (𝑡)] 𝑑𝑡

≤ E{∫

𝑇

0

£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑖, 𝑡)] 𝑑𝑡} ≤ 𝑉 (𝑥

0
, 𝑟
0
, 0) = 0.

(59)
Using the Dynkin formula, it results that

E [∫

𝑇

0

𝑒
−𝜂𝜐

𝑧
⊺
(𝜐) 𝑧 (𝜐) 𝑑𝜐] ≤ 𝛾

2
E [∫

𝑇

0

𝑒
−𝜂𝜐

𝜔
⊺
(𝜐) 𝜔 (𝜐) 𝑑𝜐] .

(60)
Finally, it is easy to obtains that

E [∫

𝑇

0

𝑧
⊺
(𝜐) 𝑧 (𝜐) 𝑑𝜐] ≤ 𝛾

2
𝑒
𝜂𝑇
E [∫

𝑇

0

𝜔
⊺
(𝜐) 𝜔 (𝜐) 𝑑𝜐] .

(61)
Therefore, the Markovian jump system (53) is finite-time
stochastic bounded with an performance 𝛾.

4. Finite-Time 𝐻
∞

Control

Theorem 10. System (53) is finite-time stochastic bounded
with respects to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇) with an disturbance attenua-

tion, if there exists matrices

𝑃
𝑖
> 0, 𝑃

𝑖
, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝐾

𝑖
, 𝑄 > 0,

X
𝑖
= [

[

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

]

]

> 0, X = [

[

𝑋
1

𝑋
2

𝑋
3

𝑋
4

]

]

> 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0, 𝑍 > 0,

(62)

scalars 𝑐
1
< 𝑐

2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0 and

Λ > 0, such that for all 𝑖, 𝑗 ∈ N, (15)–(20) and the following
inequalities hold:
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Θ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0 𝐶
⊺

𝜏𝑖

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0 0

∗ ∗ ∗ Ξ
44𝑖

0 0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (63)

𝑃
𝑖
𝐵
𝑖
= 𝐵

𝑖
𝑃
𝑖

(64)

𝑐
1
Λ + 𝑑𝛾

2 1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (65)

where

Θ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑖

+ 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝐾

⊺

𝑖
𝐵
⊺

𝑖
+ 𝑒

𝛿ℎ
(𝑄

1𝑖
+ 𝑄

2𝑖
)

+ ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1

−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
,

(66)

and the state feedback gain matrices considered in this paper
could be designed as follows:

𝐾
𝑖
= 𝑃

−1

𝑖
𝐾
𝑖
, ∀𝑖 = 1, 2, . . . , 𝑁. (67)

Proof. Thisproof can be completed in viewofTheorem 9with
𝑃
𝑖
𝐵
𝑖
= 𝐵

𝑖
𝑃
𝑖
and 𝑃

𝑖
𝐾
𝑖
= 𝐾

𝑖
.

5. Illustrative Example

Example 1. Considering the following example with parame-
ters

𝐴
1
= [

−0.9 0.5

−0.32 −0.8
] , 𝐴

𝜏1
= [

−0.5 −0.3

0.3 −0.2
] ,

𝐵
1
= [

−1.05 0.8

−0.15 −1.3
] , 𝐶

1
= [

0.6 −0.4

0.35 −0.41
] ,

(68)

the transition probabilities matrix is given as follows:

Ω = [
−0.2 0.2

0.8 −0.8
] . (69)

Given the different upper bounds of ℎ and 𝛿, the results
of themaximumupper bound of decay rates 𝛿 andmaximum
values of ℎ for different time delays are obtained in Tables
1 and 2, respectively. This example indicates fully that the
method proposed in the paper plays an important role in
reducing conservatism. It can be also seen that our results
in this paper show significant improvement over the results
obtained in [11, 12]. This clearly shows that our results have
less conservatism in the above two cases.

Example 2. Consider the Markovian jump system (1) where

𝐴
1
= [

−0.8 1.5

2 3
] , 𝐴

𝜏1
= [

−0.45 1

−0.5 2
] ,

𝐵
1
= [

−1 0.2

0.5 −0.1
] , 𝐷

1
= [

0.2

0.1
] ,

𝐶
1
= [

0.2 0

0 0.1
] , 𝐶

𝜏1
= [

0.03 0

0.01 0.02
] ,

𝐸
1
= [

0.02 0

0.01 0.01
] , 𝐷

1
= [

0.01

0.001
] ,

𝐴
2
= [

−2 1.2

1 4
] , 𝐴

𝜏2
= [

−1 1.2

0 −0.5
] ,

𝐵
2
= [

−1 1

0.5 −2
] , 𝐷

2
= [

0.2

0.3
] ,

𝐶
2
= [

0.1 0.02

0 0.1
] , 𝐶

𝜏2
= [

0.02 0

0.1 0.02
] ,

𝐸
2
= [

0.04 0

0.1 0.01
] , 𝐹

2
= [

0.04

0.01
] ,

(70)

and corresponding transition rate matrix is

Ω = [
−1.2 1.2

1 −1
] . (71)
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Table 1: Comparison of the upper bounds of the decay rate for
different delays.

ℎ = 0.2 ℎ = 0.5 ℎ = 0.8 ℎ = 1 ℎ = 1.2

[12] 1.2683 1.0064 0.7962 0.6838 0.5900
[11] 1.3618 1.1769 0.9420 0.7694 0.6261
Theorem 6 1.3622 1.1771 0.9426 0.7696 0.6263

Table 2: Comparison of the allowable values of time delay ℎ for
different decay rates.

𝛿 = 0.6 𝛿 = 0.8 𝛿 = 1 𝛿 = 1.2 𝛿 = 1.4

[12] 1.1768 0.7938 0.5081 0.2731 0.0657
[11] 1.2435 0.9626 0.7368 0.4651 0.1302
Theorem 6 1.2441 0.9630 0.7372 0.4655 0.1304

Assuming that𝑅 = 𝐼,𝑇 = 2, 𝑐
1
= 1, and𝑑 = 0.01, by suing

LMI toolbox, Theorem 10 provides the following controller
gains:

𝐾
1
= [

−11.5351 −8.1210

13.2230 10.5612
] ,

𝐾
2
= [

−21.2123 15.5613

−23.2318 16.4518
] .

(72)

6. Conclusions

We have presented the problems of finite-time stochastic
𝐻
∞

performance analysis of continuous-time systems with
random abrupt changes in this paper. By using a different
Lyapunov-Krasovskii functional, several sufficient conditions
are provided to ensure the Markovian jump system is finite-
time stochastic bounded. The controller gains can be dealt
with by LMIs toolbox and optimization techniques. At
last, two numerical examples are proposed to illustrate the
effective and advantage of the developed theories.
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This paper is concerned with the problem of robust finite-time𝐻
∞
control for a class of nonlinear Markovian jump systems with

time delay under partially known transition probabilities. Firstly, for the nominal nonlinear Markovian jump systems, sufficient
conditions are proposed to ensure finite-time boundedness, 𝐻

∞
finite-time boundedness, and finite-time 𝐻

∞
state feedback

stabilization, respectively.Then, a robust finite-time𝐻
∞
state feedback controller is designed,which, for all admissible uncertainties,

guarantees the𝐻
∞
finite-time boundedness of the corresponding closed-loop system. All the conditions are presented in terms of

strict linear matrix inequalities. Finally a numerical example is provided to demonstrate the effectiveness of all the results.

1. Introduction

Markovian jump systems, a class of hybrid dynamical sys-
tems, which consists of an indexed family of continuous
or discrete-time subsystems and a set of Markovian chain
that orchestrates the switching between them at stochastic
time instants, have received extensive attention over the
past few decades [1, 2]. Many real world processes, such as
economic systems [3], manufacturing systems [4], electric
power systems [5], and communication systems [6], may be
modeled as Markovian jump systems when any malfunction
of sensors or actuators cause a jump behavior in process
performance. Recently, nonlinear Markovian jump systems
have been extensively applied and developed in various
disciplines of science and engineering, and a great number
of excellent works have been developed [7–9].

Generally speaking, the behavior of nonlinearMarkovian
jump systems is determined by the transition probabilities in
the jumping process. Usually, it is assumed that the infor-
mation on transition probabilities was completely known.
However, transition probabilities may be partially known for
some real systems. For example, the networked control sys-
tems can be modeled by nonlinear Markovian jump systems
with partially known transition probabilities when the packet
dropouts or channel delays occur [10]. In addition, there are

few results about the known bounds of transition probability
rates or the fixed connection weighting matrices [11, 12].
Therefore, it is reasonable to study Markovian jump systems
with partially known transition probabilities, especially, when
it is difficult to measure the bounds of transition probability
rates. It stimulates the research interests of the author.

Uncertainties and time delay frequently occur in various
engineering systems, which usually is a source of instability
and often causes undesirable performance and even makes
the system out of control [14, 15]. Therefore, time delay
systemswith robustness have received an increasing attention
among the control community [16–18]. On the other hand,
one may be interested in not only system stability but also a
bound of system trajectories over a fixed short time [19]. For
instance, for the problem of robot arm control [7], when the
robot works under different environmental conditions with
changing payloads, it requests that the angle position of the
arm should not exceed some threshold in a prescribed time
interval. Meanwhile, the scholars attach more importance to
the 𝐻

∞
control problem, which is to find a stable controller

such that the disturbance attenuation level 𝛾 is below a
prescribed level. There are a great number of useful and
interesting results about 𝐻

∞
control problem for linear

and nonlinear Markovian jump systems in the literature
[20–25]. To the best of our knowledge, the synthesis issue of

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 938781, 16 pages
http://dx.doi.org/10.1155/2014/938781

http://dx.doi.org/10.1155/2014/938781


2 Abstract and Applied Analysis

robust finite-time𝐻
∞
control for nonlinearMarkovian jump

systems with time delay under partially known transition
probabilities has not been fully investigated until now, which
motivates us to carry out the present study.

In this paper, we investigate the problem of robust finite-
time𝐻

∞
control for nonlinearMarkovian jump systems with

time delay under partially known transition probabilities.
The main contributions lie in the fact that some tractable
sufficient conditions are provided to ensure 𝐻

∞
finite-time

boundedness or finite-time 𝐻
∞

state feedback stabilization.
A robust finite-time𝐻

∞
state feedback controller is designed,

which guarantees the 𝐻
∞

finite-time boundedness of the
closed-loop system. Seeking computational convenience, all
the conditions are cast in the format of linear matrix inequal-
ities. Finally, a numerical example is provided to demonstrate
the effectiveness of the main results.
Notations. Throughout this paper, the notations used are
fairly standard. For real symmetric matrices 𝐴 and 𝐵, the
notation 𝐴 ≥ 𝐵 (resp., 𝐴 > 𝐵) means that the matrix
𝐴-𝐵 is positive semi-definite (resp., positive definite). 𝐴𝑇
represents the transpose matrix of 𝐴, and 𝐴−1 represents the
inversematrix of𝐴.𝜆max(𝐵) (𝜆min(𝐵)) is themaximum (resp.,
minimum) eigenvalue of a matrix 𝐵. diag{𝐴 𝐵} represents
the block diagonalmatrix of𝐴 and𝐵. 𝐼 is the unit matrix with
appropriate dimensions, and the term of symmetry is stated
by the asterisk ∗ in a matrix.R𝑛 stands for the 𝑛-dimensional
Euclidean space, R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices,
and M = {1, 2, . . . , 𝑁} means a set of positive numbers.
‖ ∗ ‖ denotes the Euclidean norm of vectors. E{⋅} denotes the
mathematical expectation of the stochastic process or vector.
𝐿
𝑛

2
[0, +∞) is the space of 𝑛-dimensional square integrable

function vector over [0, +∞).

2. Problem Formulation and Preliminaries

Give a probability space (Ω, F, P), where Ω is the sample
space, F is the algebra of events, and P is the probability
measure defined on F. The random process {𝑟

𝑡
, 𝑡 ≥ 0} is

a Markovian stochastic process taking values in a finite set
M = {1, 2, . . . , 𝑁} with the transition probability rate matrix
Π = {𝜋

𝑖𝑗
}, 𝑖, 𝑗 ∈M, and the transition probability frommode

𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ𝑡 is expressed as

𝑃 {𝑟
𝑡+Δ𝑡

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗,

(1)

with the transition probability rates 𝜋
𝑖𝑗
≥ 0, for 𝑖, 𝑗 ∈ M,

𝑖 ̸= 𝑗, and ∑
𝑁

𝑗=1,𝑖 ̸= 𝑗
𝜋
𝑖𝑗

= −𝜋
𝑖𝑖
, where Δ𝑡 > 0, and

lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) = 0.
Consider the following nonlinear Markovian jump sys-

tem with time delay in the probability space (Ω,F,P):

̇𝑥 (𝑡) = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + Δ𝐴

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ (𝐵 (𝑟
𝑡
) + Δ𝐵 (𝑟

𝑡
)) 𝑢 (𝑡) + 𝐺 (𝑟

𝑡
) 𝑤 (𝑡)

+ 𝑓 (𝑟
𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐷 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] ,

(2)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝑤(𝑡) ∈ 𝐿𝑛

2
[0, +∞) is an arbitrary external disturbance,

𝑧(𝑡) ∈ R𝑙 is the control output, 𝜑(𝑡) represents a vector-
valued initial function, and 𝜏 ∈ R+ is the constant delay.
𝑓(⋅, ⋅, ⋅): M × R𝑛 × R𝑛 → R𝑚 is an unknown nonlinear
function. 𝐴(𝑟

𝑡
), 𝐴

𝑑
(𝑟
𝑡
), 𝐵(𝑟

𝑡
), 𝐺(𝑟

𝑡
), 𝐶(𝑟

𝑡
), 𝐶

𝑑
(𝑟
𝑡
), 𝐷(𝑟

𝑡
), and

𝐸(𝑟
𝑡
) are known mode-dependent constant matrices with

appropriate dimensions. Δ𝐴(𝑟
𝑡
), Δ𝐴

𝑑
(𝑟
𝑡
), and Δ𝐵(𝑟

𝑡
) are

unknown matrices, denoting the uncertainties in the system,
and the uncertainties are time-varying but norm bounded
uncertainties satisfying

Δ𝐴 (𝑟
𝑡
) = 𝑀

1
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

1
(𝑟
𝑡
) ,

Δ𝐵 (𝑟
𝑡
) = 𝑀

2
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

2
(𝑟
𝑡
) ,

Δ𝐴
𝑑
(𝑟
𝑡
) = 𝑀

3
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

3
(𝑟
𝑡
) ,

(3)

where𝑀
1
(𝑟
𝑡
), 𝑁

1
(𝑟
𝑡
),𝑀

2
(𝑟
𝑡
), 𝑁

2
(𝑟
𝑡
),𝑀

3
(𝑟
𝑡
), and 𝑁

3
(𝑟
𝑡
) are

known mode-dependent matrices with appropriate dimen-
sions and 𝐹(𝑡, 𝑟

𝑡
) is the time-varying unknown matrix func-

tion with Lebesgue norm measurable elements satisfying

𝐹(𝑡, 𝑟
𝑡
)
𝑇

𝐹 (𝑡, 𝑟
𝑡
) ≤ 𝐼. (4)

Consider the following state feedback controller:

𝑢 (𝑡) = 𝐾 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐾

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) , (5)

where 𝐾(𝑟
𝑡
) and 𝐾

𝑑
(𝑟
𝑡
) are the state feedback gains to be

designed. Then the closed-loop system is as follows:

̇𝑥 (𝑡) = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
) + 𝐵 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)

+Δ𝐵 (𝑟
𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + Δ𝐴

𝑑
(𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)

+Δ𝐵 (𝑟
𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = (𝐶 (𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐶
𝑑
(𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(6)

For notational simplicity, when 𝑟(𝑡) = 𝑖, 𝑖 ∈ M, 𝐴(𝑟
𝑡
),

𝐴
𝑑
(𝑟
𝑡
), 𝐵(𝑟

𝑡
), 𝐺(𝑟

𝑡
), 𝐾(𝑟

𝑡
), 𝐾

𝑑
(𝑟
𝑡
), 𝐶(𝑟

𝑡
), 𝐶

𝑑
(𝑟
𝑡
), 𝐷(𝑟

𝑡
), 𝐸(𝑟

𝑡
),

Δ𝐴(𝑟
𝑡
),Δ𝐵(𝑟

𝑡
),𝑀

1
(𝑟
𝑡
),𝑁

1
(𝑟
𝑡
),𝑀

2
(𝑟
𝑡
),𝑁

2
(𝑟
𝑡
),𝑀

3
(𝑟
𝑡
),𝑁

3
(𝑟
𝑡
),

and 𝑓(𝑟
𝑡
, 𝑥(𝑡), 𝑥(𝑡 − 𝜏)) are, respectively, denoted as 𝐴

𝑖
, 𝐴

𝑑𝑖
,

𝐵
𝑖
, 𝐺

𝑖
, 𝐾

𝑖
, 𝐾

𝑑𝑖
, 𝐶

𝑖
, 𝐶

𝑑𝑖
, 𝐷

𝑖
, 𝐸

𝑖
, Δ𝐴

𝑖
, Δ𝐵

𝑖
,𝑀

1𝑖
, 𝑁

1𝑖
,𝑀

2𝑖
, 𝑁

2𝑖
,

𝑀
3𝑖
,𝑁

3𝑖
, and 𝑓

𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏)).
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In addition, the transition probability rates are considered
to be partially known; that is, some elements in matrix Π =

{𝜋
𝑖𝑗
} are unknown. For instance, for system (2) with four

subsystems, the transition probability rate matrix Π may be
as

Π =

[
[
[

[

𝜋
11
𝜋
12

? ?

? ? 𝜋
23
𝜋
24

𝜋
31

? 𝜋
33

?

𝜋
41

? ? ?

]
]
]

]

, (7)

where “?” represents the unknown transition probability rate.
∀𝑖 ∈M, we denoteM = 𝐿

𝑖

𝑘
∪ 𝐿

𝑖

𝑢𝑘
, and

𝐿
𝑖

𝑘
≜ {𝑗 : 𝜋

𝑖𝑗
is known, for 𝑗 ∈M} ,

𝐿
𝑖

𝑢𝑘
≜ {𝑗 : 𝜋

𝑖𝑗
is unknown, for 𝑗 ∈M} .

(8)

Moreover, if 𝐿𝑖
𝑘
̸= 0, it is further described as

𝐿
𝑖

𝑘
= {𝑘

𝑖

1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
} , 1 ≤ 𝑚 ≤M, (9)

where 𝑘𝑖
𝑚

∈ M represents the 𝑚th known transition
probability rate of the set 𝐿𝑖

𝑘
in the 𝑖th row of the transition

probability rate matrix Π.

Remark 1. When 𝐿𝑖
𝑢𝑘
= 0, 𝐿𝑖

𝑘
= M, it is reduced to the

case where the transition probability rates of the Markovian
jump process {𝑟

𝑡
, 𝑡 ≥ 0} are completely known. When 𝐿𝑖

𝑘
=

0, 𝐿𝑖
𝑢𝑘
= M, it means that the transition probability rates

of the Markovian jump process {𝑟
𝑡
, 𝑡 ≥ 0} are completely

unknown.Mixing the above two aspects, here, a general form
is considered.

In this paper, the following assumptions, definitions, and
lemmas play an important role in our later development.

Assumption 2. The external disturbance 𝑤(𝑡) is varying and
satisfies the constraint condition:

∫

𝑇

𝑡
0

𝑤
𝑇
(𝑠) 𝑤 (𝑠) 𝑑𝑠 ≤ 𝑑, 𝑑 ≥ 0. (10)

Assumption 3. ∀𝑖 ∈ M, 𝑓
𝑖
(0, 0) = 0, and 𝑓

𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏))

satisfies the following inequality




𝑓
𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))






2

≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

𝑇

[

𝐹
𝑖

11
𝐹
𝑖

12

∗ 𝐹
𝑖

22

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
] ,

(11)

where

𝐹
𝑖
:= [

𝐹
𝑖

11
𝐹
𝑖

12

∗ 𝐹
𝑖

22

] ≥ 0. (12)

Definition 4 (finite-time stability). For a given time constant
𝑇 > 0, system (2) (𝑢(𝑡) = 0, 𝑤(𝑡) = 0) is said to be finite-time
stable with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
), if

E {𝑥
𝑇

0
𝐻
𝑖
𝑥
0
} ≤ 𝑐

1
⇒ E {𝑥(𝑡)

𝑇
𝐻
𝑖
𝑥 (𝑡)} ≤ 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] ,

(13)

where 0 < 𝑐
1
< 𝑐

2
,𝐻

𝑖
> 0.

Definition 5 (finite-time boundedness). For a given time
constant 𝑇 > 0, system (2) (𝑢(𝑡) = 0) is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if the condition (13)

holds, where 0 < 𝑐
1
< 𝑐

2
,𝐻

𝑖
> 0.

Definition 6 (𝐻
∞

finite-time boundedness). For a given time
constant 𝑇 > 0, system (2) (𝑢(𝑡) = 0) is said to be𝐻

∞
finite-

time bounded with respect to (𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exists

a positive constant 𝛾, such that the following two conditions
are true:

(1) system (2) is finite-time bounded with respect to
(𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑);

(2) under zero initial condition (𝑥(𝑡
0
) = 0, 𝑡

0
= 0), for

any external disturbance𝑤(𝑡) ̸= 0 satisfying condition
(10), the control output 𝑧(𝑡) of system (2) satisfies

E{∫
𝑇

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} ≤ 𝛾

2
∫

𝑇

0

𝑤
𝑇
(𝑡) 𝑤 (𝑡) 𝑑𝑡. (14)

Definition 7 (finite-time 𝐻
∞

state feedback stabilization).
The system (2) is said to be finite-time 𝐻

∞
state feedback

stabilizable with respect to (𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist a

positive constant 𝛾 and a state feedback controller in the form
of (5), such that the closed-loop system (6) is𝐻

∞
finite-time

bounded.

Definition 8 (see [26]). In the Euclidean space {R𝑛×M×R+},
introduce the stochastic Lyapunov function for system (2) as
𝑉(𝑥(𝑡), 𝑖), and the weak infinitesimal operator satisfies

L𝑉 (𝑥 (𝑡) , 𝑖)

= lim
Δ
𝑡
→0

1

Δ
𝑡

[E {𝑉 (𝑥 (𝑡 + Δ
𝑡
) 𝑟 (𝑡 + Δ

𝑡
))} − 𝑉 (𝑥 (𝑡) , 𝑖)]

=

𝜕

𝜕𝑡

𝑉 (𝑥 (𝑡) , 𝑖) +

𝜕

𝜕𝑥

𝑉 (𝑥 (𝑡) , 𝑖) ̇𝑥 (𝑡) +

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑥 (𝑡) , 𝑗) .

(15)

Remark 9. It easily follows from (12) that 𝐹𝑖
11
≥ 0, 𝐹𝑖

22
≥ 0. So

𝐹
𝑖

11
and 𝐹𝑖

22
can be decomposed as

𝐹
𝑖

11
= (𝐹

𝑖

11
)

1/2

(𝐹
𝑖

11
)

1/2

, 𝐹
𝑖

22
= (𝐹

𝑖

22
)

1/2

(𝐹
𝑖

22
)

1/2

. (16)

Remark 10. It is noticed that finite-time stability can be
regarded as a particular case of finite-time boundedness by
setting 𝑤(𝑡) = 0. That is, finite-time boundedness implies
finite-time stability, but the converse is not true.

Lemma 11 (see [27]). Let 𝑇,𝑀, 𝐹, and 𝑁 be real matrices of
appropriate dimensions with𝐹𝑇𝐹 ≤ 𝐼; then for a positive scalar
𝜀 > 0, there holds:

𝑇 +𝑀𝐹𝑁 +𝑁
𝑇
𝐹
𝑇
𝑀
𝑇
≤ 𝑇 + 𝜀𝑀𝑀

𝑇
+ 𝜀

−1
𝑁
𝑇
𝑁. (17)

The aim in this paper is to find a tractable solution to the
problem of finite-time𝐻

∞
state feedback stabilization.
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3. Main Results

3.1. Finite-Time Boundedness Analysis. In this subsection, we
will consider the problem of finite-time boundedness for the
nominal system of nonlinear Markovian jump system (2)
with 𝐹(𝑡, 𝑟

𝑡
) = 0 for all 𝑡 ≥ 0; that is,

̇𝑥 (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐵 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐷 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(18)

Under the controller (5), the closed-loop system is

̇𝑥 (𝑡) = (𝐴 (𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = (𝐶 (𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐶
𝑑
(𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(19)

Theorem 12. Given 𝑇 > 0, if there exist positive constants 𝛼
and 𝜀

𝑓𝑖
, symmetric positive definite matrices 𝑃

𝑖
∈ R𝑛×𝑛, 𝑄 ∈

R𝑞×𝑞 and 𝑆 ∈ R𝑝×𝑝, and symmetric matrices𝑊
𝑖
∈ R𝑛×𝑛, such

that for all 𝑖 ∈M

[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛼𝑆

]

]

< 0, (20)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (21)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (22)

𝑐
1
[𝜆max (�̃�𝑖) + 𝜏𝜆max (𝑄𝑖)] + 𝑑𝜆max (𝑆) (1 − 𝑒

−𝛼𝑇
)

𝜆min (�̃�𝑖)

< 𝑒
−𝛼𝑇
𝑐
2
,

(23)

then system (18) (𝑢 = 0) under partially known transition prob-
abilities is finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑),

where

Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

�̃�
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(24)

Proof. For system (18) (𝑢 = 0), choose a Lyapunov function
candidate

𝑉 (𝑥 (𝑡) , 𝑖) = 𝑉
1
(𝑥 (𝑡) , 𝑖) + 𝑉

2
(𝑥 (𝑡) , 𝑖)

= 𝑥(𝑡)
𝑇
𝑃
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝜉) 𝑄𝑥 (𝜉) 𝑑𝜉,

(25)

where 𝑃
𝑖
> 0. Then by Definition 8, we get

L𝑉
1
(𝑥 (𝑡) , 𝑖) = 𝑥

𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑥

𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝑓
𝑖
+ 𝑥

𝑇
(𝑡 − 𝜏)𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝑥 (𝑡)

+ 𝑤
𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑓

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) .

(26)

Based on Lemma 11, there exist scalars 𝜀
𝑓𝑖
such that

𝑥
𝑇
(𝑡) 𝑃

𝑖
𝑓
𝑖
+ 𝑓

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡)

≤ 𝜀
𝑓𝑖
𝑓
𝑇

𝑖
𝑓
𝑖
+ 𝜀

−1

𝑓𝑖
𝑥
𝑇
(𝑡) 𝑃

𝑖
𝑃
𝑖
𝑥 (𝑡)

≤ 𝜀
𝑓𝑖
[𝑥
𝑇
(𝑡) 𝐹

𝑖

11
𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝐹

𝑖

12
𝑥 (𝑡 − 𝜏)

+𝑥
𝑇
(𝑡 − 𝜏) 𝐹

𝑖

21
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝜏) 𝐹

𝑖

22
𝑥 (𝑡 − 𝜏)]

+ 𝜀
−1

𝑓𝑖
𝑥
𝑇
(𝑡) 𝑃

𝑖
𝑃
𝑖
𝑥 (𝑡) .

(27)

Substituting (27) into (26) yields

L𝑉
1
(𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇
(𝑡) [𝑃

𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇
(𝑡 − 𝜏) [𝐴

𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡) + 𝑤

𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) 𝜀

𝑓𝑖
𝐹
𝑖

22
𝑥 (𝑡 − 𝜏) .

(28)

It is easy to obtain that

L𝑉
2
(𝑥 (𝑡) , 𝑖) = 𝑥

𝑇
(𝑡) 𝑄𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏) .

(29)
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From (28) and (29), the following holds:
L𝑉 (𝑥 (𝑡) , 𝑖)

=L𝑉
1
(𝑥 (𝑡) , 𝑖) +L𝑉

2
(𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇
(𝑡) [𝑃

𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝜏) [𝐴

𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) [𝜀

𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏) .

(30)

Due to the fact that ∑𝑁
𝑗=1
𝜋
𝑖𝑗
𝑊
𝑖
= 0 for arbitrary symmetric

matrices𝑊
𝑖
, (30) can be written as

L𝑉 (𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇
(𝑡) [𝑃

𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝜏) [𝐴

𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) [𝜀

𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

= 𝑥
𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇
(𝑡) [𝑃

𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝜏) [𝐴

𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) [𝜀

𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇
(𝑡) ∑

𝑗∈𝐿
𝑖

𝑢𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) 𝑥 (𝑡) .

(31)

Noticing that 𝜋
𝑖𝑗
≥ 0 for all 𝑖 ̸= 𝑗 and 𝜋

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
𝜋
𝑖𝑗
< 0

for all 𝑖 ∈ M, if 𝑖 ∈ 𝐿
𝑖

𝑘
(the elements of the diagonal

are known), by inequalities (20) and (21), the following
inequalities hold:

L𝑉 (𝑥 (𝑡) , 𝑖) < 𝛼𝑥(𝑡)
𝑇
𝑃
𝑖
𝑥 (𝑡) + 𝛼𝑤

𝑇
(𝑡) 𝑆𝑤 (𝑡)

< 𝛼𝑥(𝑡)
𝑇
𝑃
𝑖
𝑥 (𝑡) + 𝛼∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝜉) 𝑄𝑥 (𝜉) 𝑑𝜉

+ 𝛼𝑤
𝑇
(𝑡) 𝑆𝑤 (𝑡)

= 𝛼𝑉 (𝑥 (𝑡) , 𝑖) + 𝛼𝑤
𝑇
(𝑡) 𝑆𝑤 (𝑡) .

(32)

If 𝑖 ∈ 𝐿𝑖
𝑢𝑘

(the elements of the diagonal are unknown),
according to the inequalities (20)–(22), inequality (32) holds.
Multiplying (32) by 𝑒−𝛼𝑡 yields

L (𝑒
−𝛼𝑡
𝑉 (𝑥 (𝑡) , 𝑖)) < 𝛼𝑒

−𝛼𝑡
𝑤
𝑇
(𝑡) 𝑆𝑤 (𝑡) . (33)

Applying Dynkin’s formula for (33), we obtain

𝑒
−𝛼𝑡
𝑉 (𝑥 (𝑡) , 𝑖) − 𝑉 (𝑥

0
, 𝑡
0
) < 𝛼∫

𝑡

0

𝑒
−𝛼𝑠
𝑤
𝑇
(𝑠) 𝑆𝑤 (𝑠) 𝑑𝑠,

(34)

which shows

𝑉 (𝑥 (𝑡) , 𝑖) < 𝑒
𝛼𝑡
𝑉 (𝑥

0
, 𝑡
0
) + 𝛼𝑒

𝛼𝑡
∫

𝑡

0

𝑒
−𝛼𝑠
𝑤
𝑇
(𝑠) 𝑆𝑤 (𝑠) 𝑑𝑠

< 𝑒
𝛼𝑡
𝑉 (𝑥

0
, 𝑡
0
) + 𝛼𝑑𝜆max (𝑆) 𝑒

𝛼𝑡
∫

𝑡

0

𝑒
−𝛼𝑠
𝑑𝑠

= 𝑒
𝛼𝑡
[𝑉 (𝑥

0
, 𝑡
0
) + 𝛼𝑑𝜆max (𝑆)

1 − 𝑒
−𝛼𝑡

𝛼

] .

(35)

This together with �̃�
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
and 𝑄

𝑖
=

𝐻
−1/2

𝑖
𝑄𝐻

−1/2

𝑖
gives rise to

𝑉 (𝑥 (𝑡) , 𝑖) < 𝑒
𝛼𝑡
[𝑐
1
(𝜆max (�̃�𝑖) + 𝜏𝜆max (𝑄𝑖))

+𝑑𝜆max (𝑆) (1 − 𝑒
−𝛼𝑡
) ] .

(36)

Considering that

𝑉 (𝑥 (𝑡) , 𝑖) ≥ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝑥 (𝑡) ≥ 𝜆min (�̃�𝑖) 𝑥

𝑇
(𝑡)𝐻

𝑖
𝑥 (𝑡) (37)

and combining (36) and (37), it follows that

E {𝑥
𝑇
(𝑡)𝐻

𝑖
𝑥 (𝑡)}

<

𝑒
𝛼𝑡
[𝑐
1
(𝜆max (�̃�𝑖)+𝜏𝜆max (𝑄𝑖))+𝑑𝜆max (𝑆) (1−𝑒

−𝛼𝑡
)]

𝜆min (�̃�𝑖)

< 𝑐
2
.

(38)

Condition (38) implies that, for 𝑡 ∈ [0 𝑇], E{𝑥𝑇(𝑡)𝐻
𝑖
𝑥(𝑡)} <

𝑐
2
.
The proof is complete.
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Corollary 13. Given 𝑇 > 0, if there exist positive constants 𝛼,
𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite matrices 𝑃

𝑖
∈ R𝑛×𝑛, and

𝑄 ∈ R𝑞×𝑞, and symmetric matrices𝑊
𝑖
∈ R𝑛×𝑛, such that for all

𝑖 ∈M

[
[
[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛾
2
𝐼

]
]
]

]

< 0, (39)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (40)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (41)

𝑐
1
[𝜆max (�̃�𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑇
)

< 𝜆min (�̃�𝑖) 𝑒
−𝛼𝑇
𝑐
2
,

(42)

then system (18) (𝑢 = 0)under partially known transition prob-
abilities is finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑),

where
Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

�̃�
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(43)

3.2. Finite-Time 𝐻
∞

Performance Analysis. In this subsec-
tion, based on Corollary 13, some sufficient conditions will be
provided ensuring the𝐻

∞
finite-time boundedness of system

(18) and the𝐻
∞

finite-time stabilization of system (19).

Theorem 14. Given 𝑇 > 0 and 𝑤(𝑡) satisfying (10), system
(18) (𝑢 = 0) under partially known transition probabilities is
𝐻
∞
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there

exist positive constants 𝛼, 𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite

matrices 𝑃
𝑖
∈ R𝑛×𝑛 and 𝑄 ∈ R𝑞×𝑞, and symmetric matrices

𝑊
𝑖
∈ R𝑛×𝑛, such that for all 𝑖 ∈M

[
[
[

[

Λ
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2
𝐼 + 𝐸

𝑇

𝑖
𝐸
𝑖

]
]
]

]

< 0,

(44)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (45)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (46)

𝑐
1
[𝜆max (�̃�𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑇
)

< 𝜆min (�̃�𝑖) 𝑒
−𝛼𝑇
𝑐
2
,

(47)

where

Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

�̃�
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(48)

Proof. From (44), the following inequality holds:

[
[
[
[
[
[

[

Λ
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2
𝐼 + 𝐸

𝑇

𝑖
𝐸
𝑖

]
]
]
]
]
]

]

=

[
[
[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛾
2
𝐼

]
]
]

]

+

[
[
[
[
[
[

[

𝐶
𝑇

𝑖

𝐶
𝑇

𝑑𝑖

𝐸
𝑇

𝑖

]
]
]
]
]
]

]

[𝐶
𝑖
𝐶
𝑇

𝑑𝑖
𝐸
𝑖
]

< 0.

(49)

This togetherwith (49) implies (39).Then based on (39)–(42),
system (18) is finite-time bounded.

Then, let us prove that inequality (14) is satisfied for any
external disturbance𝑤(𝑡) ̸= 0under zero initial condition. For
system (18), choosing a Lyapunov function candidate (25), we
have

L𝑉 (𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇
(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄]

]

𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇
(𝑡) [𝑃

𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇
(𝑡) 𝐺

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝜏) [𝐴

𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) [𝜀

𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇
(𝑡) ∑

𝑗∈𝐿
𝑖

𝑢𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) 𝑥 (𝑡) ,

(50)

for any symmetric matrices𝑊
𝑖
.
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According to inequality (44), (45), and (46), we derive

L𝑉 (𝑥 (𝑡) , 𝑖) < 𝛼𝑉 (𝑥 (𝑡) , 𝑖) + 𝛾
2
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑧

𝑇
(𝑡) 𝑧 (𝑡) ,

L [𝑒
−𝛼𝑡
𝑉 (𝑥 (𝑡) , 𝑖)] < 𝑒

−𝛼𝑡
[𝛾
2
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑧

𝑇
(𝑡) 𝑧 (𝑡)] .

(51)

Under zero initial condition, using Dynkin’s formula yields

𝑒
−𝛼𝑡
𝑉 (𝑥 (𝑡) , 𝑖)

< ∫

𝑡

0

𝑒
−𝛼𝑠
[𝛾
2
𝑤
𝑇
(𝑠) 𝑤 (𝑠) − 𝑧

𝑇
(𝑠) 𝑧 (𝑠)] 𝑑𝑠,

E∫
𝑡

0

𝑒
−𝛼𝑠
𝑧
𝑇
(𝑠) 𝑧 (𝑠) 𝑑𝑠 < ∫

𝑡

0

𝑒
−𝛼𝑠
𝛾
2
𝑤
𝑇
(𝑠) 𝑤 (𝑠) 𝑑𝑠.

(52)

Further, it implies that

E∫
𝑇

0

𝑧
𝑇
(𝑠) 𝑧 (𝑠) 𝑑𝑠 < 𝛾

2
𝑒
𝛼𝑇
∫

𝑡

0

𝑤
𝑇
(𝑠) 𝑤 (𝑠) 𝑑𝑠. (53)

Therefore expression (14) holds with 𝛾 = √𝑒𝛼𝑇𝛾.
The proof is complete.

Corollary 15. Given 𝑇 > 0 and 𝑤(𝑡) satisfying (10), system
(19)under partially known transition probabilities is finite-time
𝐻
∞

state feedback stabilizable via a state feedback controller
(5) with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist positive

constants 𝛼, 𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite matrices

𝑃
𝑖
∈ R𝑛×𝑛 and 𝑄 ∈ R𝑞×𝑞, and symmetric matrices𝑊

𝑖
∈ R𝑛×𝑛,

such that for all 𝑖 ∈M

[
[
[

[

Λ̃
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2
𝐼 + 𝐸

𝑇

𝑖
𝐸
𝑖

]
]
]

]

< 0,

(54)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (55)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (56)

𝑐
1
[𝜆max (�̃�𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑇
)

< 𝜆min (�̃�𝑖) 𝑒
−𝛼𝑇
𝑐
2
,

(57)

where
Λ̃
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

𝐴
𝑖
= 𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
, 𝐴

𝑑𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
,

𝐶
𝑇

𝑖
= 𝐶

𝑖
+ 𝐷

𝑖
𝐾
𝑖
, 𝐶

𝑑𝑖
= 𝐶

𝑑𝑖
+ 𝐷

𝑖
𝐾
𝑑𝑖
,

�̃�
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(58)

It is clear that (54) is a nonlinear matrix inequality due to
the existence of the nonlinear terms𝐾𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
,𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
,𝐾𝑇
𝑑𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
,

and 𝑃
𝑖
𝐵
𝑖
𝐾
𝑑𝑖
. In order to solve the desired controller 𝐾

𝑖
, we

give the following result.

Theorem 16. Given 𝑇 > 0, system (18) under partially
known transition probabilities is finite-time𝐻

∞
state feedback

stabilizable via a state feedback controller with respect to
(𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist positive scalars 𝛼, 𝛾, 𝜀

𝑓𝑖
, 𝜆
1
, and

𝜆
2
, symmetric positive definite matrices𝑋

𝑖
∈ R𝑛×𝑛, symmetric

matricesW
𝑖
∈ R𝑛×𝑛, and matrices 𝑌

𝑖
∈ R𝑚×𝑛 and𝐾

𝑑𝑖
∈ R𝑛×𝑚

such that for all 𝑖 ∈M

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
1

11𝑖
Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)
1/2

𝑆
1𝑖 (𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑀
1𝑖 (𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑘
,

(59)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
2

11𝑖
Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)
1/2

𝑆
2𝑖 (𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑀
2𝑖 (𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑢𝑘
,

(60)

[

−W
𝑖

𝑋
𝑖

∗ −𝑋
𝑗

] < 0, 𝑗 ∈ 𝐿
𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (61)

𝑋
𝑗
−W

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (62)

[

[

−𝑒
−𝛼𝑇
𝑐
2
+ 𝑐

1
𝜏𝜆
2
+

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑇
) √𝑐1

√𝑐1
−𝜆

1

]

]

< 0, (63)

𝜆
1
𝐻
−1

𝑖
< 𝑋

𝑖
< 𝐻

−1

𝑖
, 0 < 𝑄 < 𝜆

2
𝐻
𝑖
, (64)

where
Π
1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
− 𝛼𝑋

𝑖
,

Π
2

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
,

Π
22𝑖
= −𝑄 + 𝜀

𝑓𝑖
𝐹
𝑖

22
,

Π
14𝑖
= 𝑋

𝑖
𝐶
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐷
𝑇

𝑖
,

Π
24𝑖
= 𝐶

𝑇

𝑑𝑖
+ 𝐾

𝑇

𝑑𝑖
𝐷
𝑇

𝑖
,
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𝑆
1𝑖
(𝑥)

= [√𝜋𝑖𝑘
𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑟−1

𝑋
𝑖
, √𝜋𝑖𝑘

𝑖

𝑟+1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
1𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑟−1

, 𝑋
𝑘
𝑖

𝑟+1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

𝑆
2𝑖
(𝑥) = [√𝜋𝑖𝑘

𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
2𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

(65)

with 𝑘𝑖
1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
described in (9) and 𝑘𝑖

𝑟
= 𝑖. Moreover, the

finite-time 𝐻
∞

state feedback controller gains in (5) are given
by 𝐾

𝑖
= 𝑌

𝑖
𝑋
−1

𝑖
.

Proof. It is clear that system (18) is finite-time 𝐻
∞

state
feedback stabilizable if the conditions (54)–(57) are satisfied.
Notice that inequality (54) is equivalent to the following
condition:

Σ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Λ̃
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖
𝐶
𝑇

𝑖
𝑃
𝑖
𝜀
𝑓𝑖
(𝐹
𝑖

11
)

1/2

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0 𝐶

𝑇

𝑑𝑖
0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(66)

Pre- and postmultiplying inequality (66) by block diagonal
matrix diag {𝑃−1

𝑖
𝐼 𝐼 𝐼 𝐼 𝐼}, letting 𝑋

𝑖
= 𝑃

−1

𝑖
, 𝑌
𝑖
= 𝐾

𝑖
𝑋
𝑖
,

andW
𝑖
= 𝑃

−1

𝑖
𝑊
𝑖
𝑃
−1

𝑖
, we have

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
1𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(67)

where

Ξ
1𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
.

(68)

Since 𝜋
𝑖𝑖
< 0, ∀𝑖 ∈ M, inequality (67) is discussed in the

following two cases.

Case 1. When 𝑖 ∈ 𝐿𝑖
𝑘
, the left side of (67) becomes

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
2𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑗∈𝐿
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(69)

where

Ξ
2𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
.

(70)

Applying Schur complement lemma to (69), then (59) easily
follows.
Case 2. When 𝑖 ∈ 𝐿𝑖

𝑢𝑘
, the inequality (69) turns into

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
3𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑗∈𝐿
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(71)

where

Ξ
3𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
. (72)

Similar to the proving process of the case one, we can prove
that (60) is true.

Pre- and postmultiplying inequalities (55) and (56) by
𝑃
−1

𝑖
, respectively, and letting 𝑋

𝑖
= 𝑃

−1

𝑖
, 𝑌

𝑖
= 𝐾

𝑖
𝑋
𝑖
,
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andW
𝑖
= 𝑃

−1

𝑖
𝑊
𝑖
𝑃
−1

𝑖
, we have

𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖
− 𝑅

𝑖
< 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (73)

𝑋
𝑗
− 𝑅

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖. (74)

Inequality (73) is equivalent to LMI (61). Denoting 𝑋
𝑖
=

�̃�
−1

𝑖
= 𝐻

1/2

𝑖
𝑋
𝑖
𝐻
1/2

𝑖
and taking 𝜆max(𝑋𝑖) = 1/𝜆min(�̃�𝑖) into

consideration, we conclude that condition (57) holds. Hence,
the following conditions

𝜆
1
< 𝜆min (𝑋𝑖) , 𝜆max (𝑋𝑖) < 1, 0 < 𝜆min (𝑄) ,

𝜆max (𝑄) < 𝜆2,

(75)

guarantee that

𝑐
1

𝜆
1

+ 𝑐
1
𝜏𝜆
2
+

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑡
) < 𝑒

−𝛼𝑡
𝑐
2
. (76)

It should be easily observed that condition (76) implies LMI
(63) and (75) is equivalent to (64). Therefore if LMIs (59)–
(64) hold, the closed-loop system (19) is 𝐻

∞
finite-time

bounded, and then system (18) can be stabilized via the state
feedback controller (5).

This completes the proof of Theorem 16.

3.3. Robust Finite-Time 𝐻
∞

Control. In this subsection, a
robust finite-time 𝐻

∞
state feedback controller is designed

to guarantee the finite-time 𝐻
∞

state feedback stabilization
of system (2).

Theorem 17. Given 𝑇 > 0, the problem of robust finite-
time𝐻

∞
state feedback stabilizable for system (2) under partly

known transition probabilities is solvable, if there exist positive
scalars 𝛼, 𝛾, 𝜀

𝑓𝑖
, 𝜀
1𝑖
, 𝜀
2𝑖
, 𝜀
3𝑖
, 𝜀
4𝑖
, 𝜆
1
, and 𝜆

2
, symmetric positive

definite matrices 𝑋
𝑖
∈ R𝑛×𝑛, symmetric matrices W

𝑖
∈ R𝑛×𝑛,

and matrices 𝑌
𝑖
∈ R𝑚×𝑛 and 𝐾

𝑑𝑖
∈ R𝑛×𝑚 such that for all

𝑖 ∈M

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π̃
1

11𝑖
Π
12𝑖

𝐺
𝑖
Π
14𝑖

𝑋
𝑖
𝑁
𝑇

1𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
0 0 𝐼 𝜀

𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
1𝑖
(𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 𝑁
𝑇

3𝑖
𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖
0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝐼 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
1𝑖
𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2𝑖
𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3𝑖
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑀
1𝑖
(𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑘
, (77)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π̃
2

11𝑖
Π
12𝑖

𝐺
𝑖
Π
14𝑖

𝑋
𝑖
𝑁
𝑇

1𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
0 0 𝐼 𝜀

𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
2𝑖
(𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 𝑁
𝑇

3𝑖
𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖
0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝐼 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
1𝑖
𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2𝑖
𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3𝑖
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑀
2𝑖
(𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑢𝑘
, (78)

[

−W
𝑖
𝑋
𝑖

∗ −𝑋
𝑗

] < 0, 𝑗 ∈ 𝐿
𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (79)

𝑋
𝑗
−W

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (80)

[
[

[

−𝑒
−𝛼𝑇
𝑐
2
+ 𝑐

1
𝜏𝜆
2
+

𝛾
2
𝑑

𝛼

(1 − 𝑒
−𝛼𝑇
) √𝑐1

√𝑐1
−𝜆

1

]
]

]

< 0, (81)
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𝜆
1
𝐻
−1

𝑖
< 𝑋

𝑖
< 𝐻

−1

𝑖
, 0 < 𝑄 < 𝜆

2
𝐻
𝑖
, (82)

where

Π̃
1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜀

1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖

+ 𝜀
3𝑖
𝑀
3𝑖
𝑀
𝑇

3𝑖
+ 𝜀

4𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
− 𝛼𝑋

𝑖
,

Π̃
2

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜀

1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖

+ 𝜀
3𝑖
𝑀
3𝑖
𝑀
𝑇

3𝑖
+ 𝜀

4𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
− 𝛼𝑋

𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
,

Π
22𝑖
= −𝑄 + 𝜀

𝑓𝑖
𝐹
𝑖

22
,

Π
14𝑖
= 𝑋

𝑖
𝐶
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐷
𝑇

𝑖
,

Π
24𝑖
= 𝐶

𝑇

𝑑𝑖
+ 𝐾

𝑇

𝑑𝑖
𝐷
𝑇

𝑖
,

𝑆
1𝑖
(𝑥)

= [√𝜋𝑖𝑘
𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑟−1

𝑋
𝑖
, √𝜋𝑖𝑘

𝑖

𝑟+1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
1𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑟−1

, 𝑋
𝑘
𝑖

𝑟+1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

𝑆
2𝑖
(𝑥) = [√𝜋𝑖𝑘

𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
2𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

(83)

with 𝑘𝑖
1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
described in (9) and 𝑘𝑖

𝑟
= 𝑖. Moreover, the

finite-time 𝐻
∞

state feedback controller gains in (5) are given
by 𝐾

𝑖
= 𝑌

𝑖
𝑋
−1

𝑖
.

Proof . In (59) and (60), replacing 𝐴
𝑖
, 𝐴

𝑑𝑖
, and 𝐵

𝑖
with (𝐴

𝑖
+

Δ𝐴
𝑖
), (𝐴

𝑑𝑖
+Δ𝐴

𝑑𝑖
), and (𝐵

𝑖
+Δ𝐵

𝑖
), respectively, the following

conditions are obtained:

Π

1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝑋

𝑖
Δ𝐴

𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝑌

𝑇

𝑖
Δ𝐵

𝑇

𝑖

+ 𝐵
𝑖
𝑌
𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑅
𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
,

Π

1

21𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝑋

𝑖
Δ𝐴

𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖

+ 𝑌
𝑇

𝑖
Δ𝐵

𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑅
𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ Δ𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
.

(84)

Based on Lemma 11, there exist scalars 𝜀
1𝑖
, 𝜀
2𝑖
, 𝜀
3𝑖
, and 𝜀

4𝑖

such that

𝑋
𝑖
Δ𝐴

𝑇

𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
= 𝑋

𝑖
𝑁
𝑇

1𝑖
𝐹
𝑇

𝑖
(𝑡)𝑀

𝑇

1𝑖
+𝑀

1𝑖
𝐹
𝑖
(𝑡)𝑁

1𝑖
𝑋
𝑖

≤ 𝜀
1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

−1

1𝑖
𝑋
𝑖
𝑁
𝑇

1𝑖
𝑁
1𝑖
𝑋
𝑖
,

𝑌
𝑇

𝑖
Δ𝐵

𝑇

𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
= 𝑌

𝑇

𝑖
𝑁
𝑇

2𝑖
𝐹
𝑇

𝑖
(𝑡)𝑀

𝑇

2𝑖
+𝑀

2𝑖
𝐹
𝑖
(𝑡)𝑁

2𝑖
𝑌
𝑖

≤ 𝜀
2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
+ 𝜀

−1

2𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
𝑁
2𝑖
𝑌
𝑖
.

[
[
[
[
[
[
[
[
[

[

0 Δ𝐴
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

0 𝑀
3𝑖
𝐹
𝑖
(𝑡)𝑁

3𝑖
0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑀
3𝑖

0

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

𝐹
𝑖
[0 𝑁3𝑖

0 0 0 0 0]

+

[
[
[
[
[
[
[
[
[
[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]
]
]
]
]
]
]
]
]
]

]

𝐹
𝑖
[𝑀

𝑇

3𝑖
0 0 0 0 0 0]

≤ 𝜀
3𝑖

[
[
[
[
[
[
[
[
[

[

𝑀
3𝑖

0

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

[𝑀
𝑇

3𝑖
0 0 0 0 0 0]

+ 𝜀
−1

3𝑖

[
[
[
[
[
[
[
[
[
[
[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]
]
]
]
]
]
]
]
]
]
]

]

[0 𝑁3𝑖
0 0 0 0 0] ,
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[
[
[
[
[
[
[
[
[

[

0 Δ𝐵
𝑖
𝐾
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

0 𝑀
2𝑖
𝐹
𝑖
(𝑡)𝑁

2𝑖
𝐾
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑀
2𝑖

0

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

𝐹
𝑖
[0 𝑁2𝑖

𝐾
𝑑𝑖
0 0 0 0 0]

+

[
[
[
[
[
[
[
[
[

[

0

𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

𝐹
𝑖
[𝑀

𝑇

2𝑖
0 0 0 0 0 0]

≤ 𝜀
4𝑖

[
[
[
[
[
[
[
[
[

[

𝑀
2𝑖

0

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

[𝑀
𝑇

2𝑖
0 0 0 0 0 0]

+ 𝜀
−1

4𝑖

[
[
[
[
[
[
[
[
[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]
]
]
]
]
]
]
]
]

]

[0 𝑁3𝑖
0 0 0 0 0] .

(85)

Applying Schur complement lemma to (85), (77) can be
obtained. Similar to the above proving process, we can prove
that (78) holds.Therefore, if LMIs (77)–(82) hold, the closed-
loop system (6) is robust 𝐻

∞
finite-time bounded, and

further system (18) can be stabilized via the state feedback
controller (5).

The proof is complete.

Remark 18. It should be pointed out that the conditions in
Theorems 16 and 17 are not strict linear matrix inequalities
such as conditions (20), (39), (44), (54), (59), (60), (77), and

(78), due to the product of unknown scalars andmatrices. An
efficientway to solve this problem is to choose the appropriate
values of the unknown scalars and then solve a set of LMIs
for the fixed values of these parameters. For example, if 𝛼, 𝜀

𝑓𝑖

are fixed, then conditions (59) and (60) ofTheorem 16 can be
converted to LMIs conditions.

4. Numerical Examples

This section considers the following four-mode uncertain
nonlinear Markovian jump systems with time delay as fol-
lows.

Mode 1

𝐴
1
= [
2 2

1 −3
] , 𝐴

𝑑1
= [
−0.2 0.3

0.1 −0.2
] , 𝐵

1
= [
1

1
] ,

𝐺
1
= [
1

0
] , 𝐶

1
= [1 2] , 𝐶

𝑑1
= [0.1 −0.1] ,

𝐷
1
= 𝐸

1
= 0.1, 𝑀

11
= [
0.1 0

0 0.1
] ,

𝑁
11
= [
0.1 0.1

0 0.1
] ,

𝑀
21
= [

0.1 0

0 0.1
] , 𝑁

21
= [

0.1

0
] ,

𝑀
31
= [
0.01 0

0 0.01
] , 𝑁

31
= [
0.01 0

0 0.01
] .

(86)

Mode 2

𝐴
2
= [

1 2

0 −1
] , 𝐴

𝑑2
= [

0.2 −0.1

−0.1 −0.3
] , 𝐵

2
= [

2

1
] ,

𝐺
2
= [
0.5

0
] , 𝐶

2
= [1 1] ,

𝐶
𝑑2
= [0.2 0.1], 𝐷

2
= 𝐸

2
= 0.2, 𝑀

12
= [
0.1 0

0 0.3
] ,

𝑁
12
= [

0.2 0.3

0 0.2
] , 𝑀

22
= [

0.1 0

0 0.3
] , 𝑁

22
= [

0.2

0
] ,

𝑀
32
= [
0.01 0

0 0.03
] , 𝑁

32
= [
0.02 0.03

0 0.02
] .

(87)

Mode 3

𝐴
3
= [
2 3

1 −1
] , 𝐴

𝑑3
= [

0.1 −0.3

−0.2 0.3
] , 𝐵

3
= [
3

1
] ,

𝐺
3
= [
0.3

0
] , 𝐶

3
= [1 3] ,
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Table 1

Case I Case II
1 2 3 4 1 2 3 4

1 −1.2 0.3 0.5 0.4 1 ? 0.3 ? 0.4
2 0.2 −1 0.3 0.5 2 ? −1 0.3 ?
3 0.8 0.1 −1.3 0.4 3 0.8 ? −1.3 ?
4 0.2 0.1 0.5 −0.8 4 0.2 ? ? ?

Case III Case VI
1 2 3 4 1 2 3 4

1 −1.2 ? 0.5 ? 1 ? ? ? ?
2 0.2 ? ? 0.5 2 ? ? ? ?
3 ? 0.1 ? 0.4 3 ? ? ? ?
4 ? 0.1 0.5 −0.8 4 ? ? ? ?

Table 2

Case I Completely known

Controller gains

𝐾
1
= [−22.2335 −19.0199] 𝐾

𝑑1
= [−0.9097 0.9098]

𝐾
2
= [−7.0199 −2.3824] 𝐾

𝑑2
= [−0.9490 −0.4701]

𝐾
3
= [−6.9528 −9.8454] 𝐾

𝑑3
= [0.6466 −0.3225]

𝐾
4
= [−7.9573 −2.4935] 𝐾

𝑑4
= [−0.4998 −0.2499]

Case II Partially known

Controller gains

𝐾
1
= [−22.5382 −18.9685] 𝐾

𝑑1
= [−0.8142 0.8142]

𝐾
2
= [−7.9189 −2.8820] 𝐾

𝑑2
= [−0.9007 −0.4391]

𝐾
3
= [−6.9801 −9.8455] 𝐾

𝑑3
= [0.6272 −0.3112]

𝐾
4
= [−8.1348 −2.4949] 𝐾

𝑑4
= [−0.4996 −0.2498]

Case III Partially known

Controller gains

𝐾
1
= [−20.2412 −18.1608] 𝐾

𝑑1
= [−0.8925 0.9362]

𝐾
2
= [−6.2413 −2.7888] 𝐾

𝑑2
= [−0.9283 −0.5364]

𝐾
3
= [−6.9091 −9.8876] 𝐾

𝑑3
= [0.7272 −0.2134]

𝐾
4
= [−8.6329 −2.4765] 𝐾

𝑑4
= [−0.4998 −0.2499]

Case VI Completely unknown

Controller gains

𝐾
1
= [−21.8153 −18.7884] 𝐾

𝑑1
= [−0.8143 0.8143]

𝐾
2
= [−3.8757 −0.3739] 𝐾

𝑑2
= [−0.9008 −0.4391]

𝐾
3
= [−6.9153 −9.8460] 𝐾

𝑑3
= [0.6272 −0.3112]

𝐾
4
= [−7.9143 −2.4877] 𝐾

𝑑4
= [−0.4996 −0.2498]

𝐶
𝑑3
= [−0.2 0.1] , 𝐷

3
= 𝐸

3
= 0.3,

𝑀
13
= [
0.1 0

0 0.2
] , 𝑁

13
= [
0.2 0.3

0 0.5
] ,

𝑀
23
= [
0.1 0

0 0.2
] , 𝑁

23
= [
0.3

0
] ,

𝑀
33
= [

0.01 0

0 0.02
] , 𝑁

33
= [

0.02 0.03

0 0.05
] .

(88)

Mode 4

𝐴
4
= [
1 1

2 −3
] , 𝐴

𝑑4
= [
−0.1 0.3

0.2 −0.1
] , 𝐵

4
= [
4

1
] ,

𝐺
4
= [
0.4

0
] , 𝐶

4
= [0 1] ,

𝐶
𝑑4
= [−0.2 0.1] , 𝐷

4
= 𝐸

4
= 0.4,

𝑀
14
= [
0.2 0

0 0.1
] , 𝑁

14
= [
0.2 0.4

0 0.3
] ,

𝑀
24
= [
0.2 0

0 0.1
] , 𝑁

24
= [
0.4

0
] ,

𝑀
34
= [
0.02 0

0 0.01
] , 𝑁

34
= [
0.02 0.04

0 0.03
] ,

𝐻
1
= 𝐻

2
= 𝐻

3
= 𝐻

4
= [
2 0

0 2
] , 𝐶

1
= 0.5,

𝐶
2
= 4, 𝑑 = 4, 𝑇 = 1.2.

(89)
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Figure 1: The trajectory of 𝑥(𝑡).

Choose 𝜏 = 1, 𝛼 = 0.5, the exogenous disturbance 𝑤(𝑡) =
[1/(5𝑡 + 1) 1/(𝑡 + 1)], and the nonlinearities

𝑓
1
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡))
0.1 sin (𝑥 (𝑡 − 𝜏))] ,

𝑓
2
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡 − 𝜏))
−0.15 sin (𝑥 (𝑡)) ] ,

𝑓
3
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡))
0.1 sin (𝑥 (𝑡 − 𝜏))] ,

𝑓
4
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡 − 𝜏))
−0.15 sin (𝑥 (𝑡)) ] ,

𝐹
1

11
= [

1.1841 0.1704

0.1562 1.1370
] , 𝐹

1

22
= [

0.0606 0.1000

0.1000 0.3355
] ,

𝐹
2

11
= [
0.3299 0

0.7999 0.5000
] , 𝐹

2

22
= [
0.4000 0

0 0.2500
] ,

𝐹
3

11
= [
1.1841 0.1704

0.1562 1.1370
] , 𝐹

3

22
= [
0.0606 0.1000

0.1000 0.3355
] ,

𝐹
4

11
= [

0.3299 0

0.7999 0.5000
] , 𝐹

4

22
= [

0.4000 0

0 0.2500
] ,

𝐹
1

12
= 𝐹

2

12
= 𝐹

3

12
= 𝐹

4

12
= 0.

(90)

The four cases for the transition probability matrix consid-
ered in Table 1.

Solving the LMIs (77)–(82) in Theorem 17, the robust
finite-time𝐻

∞
state feedback controller gains of𝐾

𝑖
are given

by Table 2.
Figures 1, 2, and 3 are presented. For every figure, the four

different transition probability matrices cases are included,
which can be better to demonstrate the effectiveness of the
design method. Figure 1 depicts the trajectories of system
state 𝑥(𝑡) and the corresponding switching signal. It can
be seen that system (6) is robust finite-time stable, which
implies that system (2) is robust finite-time𝐻

∞
state feedback

stabilizable via the designed state feedback controller (5).
Figure 2 depicts the trajectories of system state 𝑥(𝑡) with
𝑤(𝑡) ̸= 0 and the corresponding switching signal. It can be
seen that system (6) is robust finite-time bounded. The
trajectory of the output 𝑧(𝑡) is described in Figure 3, which
further shows the effectiveness of the designed controller (5).

5. Conclusions

In this paper, we have dealt with the problem of robust finite-
time 𝐻

∞
control for a class of nonlinear Markovian jump

systems with time delay under partially known transition
probabilities. Based on the free-weightingmatrices approach,
all sufficient conditions have been firstly proposed to ensure
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Figure 2: The trajectory of 𝑥(𝑡) with 𝑤(𝑡) ̸= 0.
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finite-time boundedness, 𝐻
∞

finite-time boundedness, and
finite-time 𝐻

∞
state feedback stabilization for the given

system. We have also designed a robust finite-time 𝐻
∞

state
feedback controller, which guarantees the 𝐻

∞
finite-time

boundedness of the closed-loop system. All the conditions
have been presented in terms of strict linear matrix inequal-
ities. Finally, a numerical example has been provided to
demonstrate the effectiveness of all the results.
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This paper is concerned with the nonfragile𝐻
∞
control problem for stochastic systems with Markovian jumping parameters and

random packet losses. The communication between the physical plant and controller is assumed to be imperfect, where random
packet losses phenomenon occurs in a random way. Such a phenomenon is represented by a stochastic variable satisfying the
Bernoulli distribution. The purpose is to design a nonfragile controller such that the resulting closed-loop system is stochastically
mean square stablewith a guaranteed𝐻

∞
performance level 𝛾. By using the Lyapunov function approach, some sufficient conditions

for the solvability of the previous problem are proposed in terms of linear matrix inequalities (LMIs), and a corresponding explicit
parametrization of the desired controller is given. Finally, an example illustrating the effectiveness of the proposed approach is
presented.

1. Introduction

During the past several decades, stochastic systems have been
the main focus of research receiving much attention since
realistic models of most engineering systems involve random
exogenous disturbances [1, 2]. As a simple yet significant
mathematical model, stochastic systems have come to play a
key role inmany branches of science and engineering [3]. For
this reason, many fundamental issues have been extensively
addressed for stochastic systems, and consequently fruitful
results have been presented in the literature; see, for example,
[2, 4, 5] and the references therein.

In addition to stochastic systems, there have been great
efforts in the research of the modeling of dynamic systems
subject to random abrupt changes in their parameters [6–
8]. Such random abrupt changes may be caused by various
factors, including the switching between economic scenarios,
abrupt changes in the operation point for nonlinear plant,
and actuator/sensor failure or repairs, to name just a few.
Fortunately, Markov jump systems provide a natural frame-
work for modeling these practical systems subject to random

abrupt changes. Since the pioneering work on Markov jump
systems was introduced in [9], considerable research results
related to Markov jump systems or system with Markovian
jumping parameters have been presented in terms of a variety
ofmethods. Formore details, we refer to the literature [10–17].
When Markovian jumping parameters appear in stochastic
systems, many control issues have been studied recently by
researchers. For example, robust stability and stabilization
problems were investigated in [18], passivity-based control
problem was addressed in [19], optimal control problems
were studied in [12, 20–22], and the sliding-mode control
problem was solved in [23].

It is worth noting that the controller design methods
proposed in the previous literature require two critical
assumptions. One is that the controller can be implemented
exactly, and the other is that the communication between
the physical plant and controller is always perfect. Such
two assumptions, however, may not be unreasonable in
practice. Firstly, in the implementation of a design controller,
uncertainties or inaccuracies do occur because of round-
off errors in numerical computation. Some existing control
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synthesis methods have proven to be sensitive, or fragile,
with respect to small perturbations in controller parameters.
Therefore, it is an important question to design a controller,
which guarantees that the controller is insensitive to some
amount of errors with its gain, that is, the nonfragile or
resilient control problem [24]. Secondly, a modern control
system can hardly work without the help of the networks
and the computers and their intercommunication.They bring
a lot of advantages, but the existence of network-induced
phenomena is unavoidable [25]. For instance, packet losses
may occur due to the unreliability of the network links.
These may limit the scope of the applications of the existing
results related to stochastic systems with Markovian jumping
parameters. The main purpose of this paper, therefore, is to
shorten such a gap.

In this paper, we make the first attempt to deal with the
nonfragile𝐻

∞
control for stochastic systems withMarkovian

jumping parameters and random packet losses. The packet
losses phenomena are assumed to exist in communication
links between the physical plant and controller. Attention
is focused on the design of a nonfragile controller such
that the resulting closed-loop system is stochastically mean
square stable, and meanwhile a prescribed𝐻

∞
performance

is satisfied. Sufficient conditions for the existence of such a
controller are given in terms of LMIs. By solving a convex
optimization problem, a desired nonfragile controller can
be constructed based on the use of standard numerical
algorithms [26].

Notation. Throughout this paper, for symmetric matrices 𝑃,
the notation 𝑃 ≥ 0 (resp., 𝑃 > 0) means that the matrix 𝑃

is positive semidefinite (resp., positive definite); 𝐼 and 0 rep-
resent the identity matrix and zero matrix with appropriate
dimension. The notation𝑀

𝑇 represents the transpose of the
matrix 𝑀; diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. In
symmetric block matrices or complex matrix expressions, we
employ an asterisk (∗) to represent a term that is induced by
symmetry;E{⋅} denotes the expectation operator with respect
to some probability measure P; (Ω,F,P) is a probability
space; Ω is the sample space, F is the 𝜎-algebra of subsets
of the sample space, and P is the probability measure on
F; 𝑙
2
[0,∞) is the space of square-summable infinite vector

sequences over [0,∞); | ⋅ | refers to the Euclidean vector
norm; ‖ ⋅ ‖

2
stands for the usual 𝑙

2
[0,∞) norm. Matrices,

if not explicitly stated, are assumed to have compatible
dimensions. 𝑍+ represents {0, 1, 2, . . .}.

2. Problem Formulations

Consider the following discrete-time stochasticMarkov jump
system over a probability space (Ω,F,P):

(Σ) : 𝑥 (𝑘 + 1) = 𝐴 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐵

1
(𝛿
𝑘
) 𝑢 (𝑘) + 𝐶 (𝛿

𝑘
) 𝜐 (𝑘)

+ [𝐸 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐹 (𝛿

𝑘
) 𝜐 (𝑘)] 𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐷 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐵

2
(𝛿
𝑘
) 𝑢 (𝑘) + 𝐺 (𝛿

𝑘
) 𝜐 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector; 𝑢(𝑘) ∈

R𝑚 is the controlled input; 𝑧(𝑘) ∈ R𝑝 is the controlled
output; 𝜐(𝑘) ∈ R𝑞 is the exogenous disturbance input that
belongs to 𝑙

2
[0,∞). For each 𝛿

𝑘
, 𝐴(𝜎
𝑘
), 𝐵
1
(𝜎
𝑘
), 𝐶(𝜎

𝑘
), 𝐸(𝜎

𝑘
),

𝐹(𝜎
𝑘
), 𝐷(𝜎

𝑘
), 𝐵
2
(𝜎
𝑘
), and 𝐺(𝜎

𝑘
) are real constant matrices

with appropriate dimensions. 𝜔(𝑘) is a one-dimensional zero
mean Gaussian white noise sequence on a probability space
(Ω,F,P) with

E {𝜔 (𝑘)} = 0; E {𝜔
2
(𝑘)} = 1;

E {𝜔 (𝑙) 𝜔 (𝑘)} = 0, 𝑙 ̸= 𝑘.

(2)

In system (Σ), the system mode switching is governed by a
discrete-time homogeneous Markov chain {𝛿

𝑘
} (𝑘 ∈ 𝑍

+
),

which takes values in a finite state space S = {1, 2, . . . ,N}

with transition probability matrix Π ≜ {𝜓
𝛼𝛽
} given by

𝜓
𝛼𝛽

≜ Pr {𝛿
𝑘+1

= 𝛽 | 𝛿
𝑘
= 𝛼} ≥ 0, ∀𝛼, 𝛽 ∈ S, 𝑘 ∈ 𝑍

+
, (3)

with 0 ≤ 𝜓
𝛼𝛽

≤ 1, for any 𝛼, 𝛽 ∈ S, and

N

∑

𝛽=1

𝜓
𝛼𝛽

= 1, 𝛼 ∈ S. (4)

In practice, it is usually of importance to require very
accurate controllers to achieve given engineering specifica-
tions. However, the resulting closed-loop systems are sensi-
tive to changes in controller gain. In this case, once there
are some small perturbations in the controller parameters,
the existence of these perturbations may cause a serious
deterioration of system performance. Hence, it is imperative
to consider the design of nonfragile controllers [24]. Con-
sequently, in this paper, we are interested in designing the
controller in the following form:

𝑢
𝑜𝑐
= (𝐾
𝛼
+ Δ𝐾
𝛼
(𝑘)) 𝑥

𝑖𝑐
(𝑘) , 𝛼 ∈ S, (5)

where 𝑥
𝑖𝑐
(𝑘) is the input of the controller; 𝑢

𝑜𝑐
is the output

of the controller; 𝐾
𝛼
are the gain matrices of the controller,

which will be determined; Δ𝐾
𝛼
(𝑘) are real-valued unknown

matrices denoting the additive gain variations as follows:

Δ𝐾
𝛼
(𝑘) = 𝑀

𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
, 𝛼 ∈ S, (6)

where 𝑀
𝛼
and 𝑁

𝛼
, 𝛼 ∈ S, are the known real constant

matrices of appropriate dimensions and𝐻
𝛼
(𝑘) are unknown

time-varying matrix functions, which satisfy the following
constraint:

𝐻
𝑇

𝛼
(𝑘)𝐻
𝛼
(𝑘) ≤ 𝐼, 𝛼 ∈ S. (7)

Remark 1. Normally, under the implicit assumption that
the communication between the plant and the controller is
perfect, one can readily get that the controlled input 𝑢(𝑘)
is equivalent to the the output of controller 𝑢

𝑜𝑐
and the

measurement state of the plant 𝑥(𝑘) is also equivalent to the
input of the controller𝑥

𝑖𝑐
(𝑘). As noted in the previous section,

such an assumption is sometimes unpractical especially
under networked environments because of the existence of
the packet losses.
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Therefore, in this paper, the packet losses phenomena
are considered in communication links. As a result, one has
𝑢(𝑘) ̸= 𝑢

𝑜𝑐
and 𝑥(𝑘) ̸=𝑥

𝑖𝑐
(𝑘), and the relations between them

are modeled by using a stochastic method as follows:

𝑥
𝑖𝑐
(𝑘) = 𝜌

𝑘
𝑥 (𝑘) , 𝑢 (𝑘) = 𝜎

𝑘
𝑢
𝑜𝑐
. (8)

Here, {𝜌
𝑘
} and {𝜎

𝑘
} are two independent Bernoulli processes.

As shown in (8), {𝜌
𝑘
} models the unreliable communication

link from the sensor to the controller and {𝜎
𝑘
} models the

unreliable communication link from the controller to the
actuator. Inspired by [27], a natural assumption on {𝜌

𝑘
} and

{𝜎
𝑘
} can be made as follows:

Prob {𝜌
𝑘
= 1} = E {𝜌

𝑘
} = 𝜌, Prob {𝜌

𝑘
= 0} = 1 − 𝜌,

Prob {𝜎
𝑘
= 1} = E {𝜎

𝑘
} = 𝜎, Prob {𝜎

𝑘
= 0} = 1 − 𝜎,

(9)

where either 𝜌 or 𝜎 is a known constant satisfying 𝜌 ∈ [0, 1]

and 𝜎 ∈ [0, 1]. Clearly, for {𝜌
𝑘
}, when 𝜌 = 0 (resp., 𝜌 =

1), it means that the communication link from the sensor
to the controller fails (resp., successful transmission), and
{𝜎
𝑘
} also has a similar inference. Throughout this paper, we

also assume that the sequences 𝜔(𝑘), {𝛿
𝑘
}, {𝜌
𝑘
}, and {𝜎

𝑘
} are

mutually independent. Clearly, one can get

𝑢 (𝑘) = 𝜎
𝑘
𝜌
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘) . (10)

In order to address the considered problem, before
presenting further results, let us introduce a new Bernoulli
process {

𝑘
} satisfying 

𝑘
≡ 𝜎
𝑘
𝜌
𝑘
. Then, simple computation

yields

Prob {
𝑘
= 1} = E {

𝑘
} =  = 𝜌𝜎,

Prob {
𝑘
= 0} = 1 − 𝜌𝜎,

(11)

which implies that

𝑢 (𝑘) = 𝜎
𝑘
𝜌
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

= 
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

=  (𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

+ (
𝑘
− ) (𝐾

𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘) .

(12)

Under the control law (12), the resulting closed-loop system
can be obtained as

(Σ) : 𝑥 (𝑘 + 1) = Ω
1𝛼
(𝑘) 𝑥 (𝑘) + (

𝑘
− )Ω

2𝛼
(𝑘) 𝑥 (𝑘)

+ 𝐶
𝛼
𝜐 (𝑘) + [𝐸

𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)] 𝜔 (𝑘) ,

𝑧 (𝑘) = Ω
3𝛼
(𝑘) 𝑥 (𝑘) + (

𝑘
− )Ω

4𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘) ,

(13)

where
Ω
1𝛼
(𝑘) = 𝐴

𝛼
+ 𝐵
1𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
2𝛼
(𝑘) = 𝐵

1𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
3𝛼
(𝑘) = 𝐷

𝛼
+ 𝐵
2𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
4𝛼
(𝑘) = 𝐵

2𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) .

(14)

Before formulating the problem to be investigated, we
first introduce the following definition for system (Σ).

Definition 2. The closed-loop system in (13) with 𝜐(𝑘) ≡ 0 is
said to be stochastically mean square stable (SMSS) if there
exists a 𝜅 > 0 such that

E {‖𝑥 (𝑘)‖} → 0 as 𝑘 → ∞, (15)

for any initial condition ‖𝑥(0)‖ < 𝜅.

Definition 3. System (Σ) is said to be SMSS with a guaranteed
𝐻
∞

performance level 𝛾, if system (Σ) is SMSS according to
Definition 2, and the prescribed disturbance attenuation level
𝛾 is made small in the feasibility of

‖𝑧 (𝑘)‖𝐸
≤ 𝛾‖𝜐 (𝑘)‖2

, (16)

for all nonzero 𝜔(𝑘) ∈ 𝑙
2
[0,∞) under zero initial conditions,

where

‖𝑧 (𝑘)‖𝐸
≜ E

{

{

{

√

∞

∑

𝑘=0

𝑧
𝑇
(𝑘) 𝑧 (𝑘)

}

}

}

. (17)

Now, let us state the problems concerned in this paper,
which are listed as follows.

Problem I. Consider the stochastic system (Σ), suppose that
the controller gain matrices 𝐾

𝛼
and the additive gain varia-

tions Δ𝐾
𝛼
(𝑘) are given, and determine under what condition

the system (Σ) is SMSS with a guaranteed 𝐻
∞

performance
level 𝛾.

Problem II. Consider the system (Σ), and design a nonfragile
controller in the form of (5) such that the resulting closed-
loop system (Σ) is SMSS with a guaranteed𝐻

∞
performance

level 𝛾, in spite of the presence of packet losses phenomena.

3. Main Results

In this section, we will give an LMI approach to solving the
nonfragile 𝐻

∞
control problem formulated in the previous

section. Before proceeding further, we shall introduce the
following lemmas, whichwill be used in the proof of themain
results.

Lemma 4 (see [28]). Given constant matrices 𝑋 = 𝑋
𝑇
, 𝑌 and

𝑍 = 𝑍
𝑇
> 0 of appropriate dimensions, then

𝑋 + 𝑌
𝑇
𝑍𝑌 < 0, (18)

if and only if

[
𝑋 𝑌

𝑇

𝑌 −𝑍
−1] < 0, (19)

or, equivalently,

[

−𝑍
−1

𝑌

𝑌
𝑇

𝑋

] < 0. (20)
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Lemma 5 (see [29]). Let 𝐴, 𝐿, 𝐸,𝐻, and 𝑃 be real matrices of
appropriate dimensions with𝐻𝑇𝐻 ≤ 𝐼. Then one has

(1) for any scalar 𝜖 > 0 and vectors 𝑥, 𝑦 ∈ R𝑛,

2𝑥
𝑇
𝐿𝐻𝐸𝑦 ≤ 𝜖

−1
𝑥
𝑇
𝐿𝐿
𝑇
𝑥 + 𝜖𝑦

𝑇
𝐸
𝑇
𝐸𝑦, (21)

(2) for any scalar 𝜖 > 0, such that 𝑃 − 𝜖𝐿𝐿
𝑇
> 0,

(𝐴 + 𝐿𝐻𝐸)
𝑇
𝑃
−1
(𝐴 + 𝐿𝐻𝐸) ≤ 𝐴

𝑇
(𝑃 − 𝜖𝐿𝐿

𝑇
)

−1

𝐴 + 𝜖
−1
𝐸
𝑇
𝐸.

(22)

Now, we first establish the following 𝐻
∞

performance
analysis criterion, which will play a key role in derivation of
the solution to the nonfragile𝐻

∞
control problem.

Theorem 6. Let the controller parameters in the filtering error
system (Σ), scalars 𝛾 > 0,  > 0, be given. Then, system (Σ) is
SMSS with a guaranteed𝐻

∞
performance level 𝛾, if there exist

positive matrices 𝑃
𝛼
> 0, such that, for each 𝛼 ∈ S,

[
[
[
[
[
[
[
[
[
[

[

−𝑃
𝛼

0 Ω
𝑇

1𝛼
(𝑘) √ (1 − )Ω

𝑇

2𝛼
(𝑘) 𝐸

𝑇

𝛼
Ω
𝑇

3𝛼
(𝑘) √ (1 − )Ω

𝑇

4𝛼
(𝑘)

∗ −𝛾
2
𝐼 𝐶

𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0

∗ ∗ −P−1
𝛼

0 0 0 0

∗ ∗ ∗ −P−1
𝛼

0 0 0

∗ ∗ ∗ ∗ −P−1
𝛼

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0, (23)

whereP
𝛼
≜ ∑
𝛽∈S 𝜓
𝛼𝛽
𝑃
𝛽
.

Proof. Firstly, we need to establish the stochasticmean square
stability criterion of system (Σ). For this purpose, we consider
system (Σ) with 𝜐(𝑘) ≡ 0 and choose a stochastic Lyapunov
function for system (Σ) as follows:

𝑉 (𝑥 (𝑘) , 𝑘) = 𝑥
𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘) , (24)

where 𝑃
𝛼
are the positive matrices to be determined for each

𝛼 ∈ S. Then, we have that, for each 𝛿
𝑘
= 𝛼 ∈ S and 𝛿

𝑘+1
=

𝛽 ∈ S,

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)}

= E {[𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)] |

(𝑥 (𝑘) , 𝛿
𝑘
= 𝛼)}

= ∑

𝛽∈S

Pr {𝛿
𝑘+1

= 𝛽 | 𝛿
𝑘
= 𝛼} 𝑥

𝑇
(𝑘 + 1) 𝑃

𝛽
𝑥 (𝑘 + 1)

− 𝑥
𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘)

= E {𝑥
𝑇
(𝑘 + 1)P

𝛼
𝑥 (𝑘 + 1)} − 𝑥

𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘)

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘)]

𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘)]

𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘)] − 𝑥

𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘) .

(25)

On the other hand, it can be deduced from (23) that

[
[
[
[

[

−𝑃
𝛼

Ω
𝑇

1𝛼
(𝑘) √ (1 − )Ω

𝑇

2𝛼
(𝑘) 𝐸

𝑇

𝛼

∗ −P−1
𝛼

0 0

∗ ∗ −P−1
𝛼

0

∗ ∗ ∗ −P−1
𝛼

]
]
]
]

]

< 0. (26)

By applying the Schur complement formula (i.e., Lemma 4)
to (26), for system (Σ) with 𝜐(𝑘) ≡ 0, one can readily obtain
that

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)} < 0; (27)

that is, system (Σ)with 𝜐(𝑘) ≡ 0 is SMSS according to [14, 16].
Next, we will show the 𝐻

∞
performance analysis of system

(Σ). To this end, we also obtain that each 𝛿
𝑘
= 𝛼 ∈ S and

𝛿
𝑘+1

= 𝛽 ∈ S,

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)}

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

− 𝑥
𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘) .

(28)

Note that
E {𝑧
𝑇
(𝑘) 𝑧 (𝑘) − 𝛾

2V𝑇 (𝑘) V (𝑘)}

= [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

[Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) − 𝛾

2V𝑇 (𝑘) V (𝑘) .
(29)
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It can be verified that

E {𝑧
𝑇
(𝑘) 𝑧 (𝑘) − 𝛾

2
𝜐
𝑇
(𝑘) 𝜐 (𝑘)

+𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘) }

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

− 𝑥
𝑇
(𝑘) 𝑃
𝛼
𝑥 (𝑘) + [Ω

3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

× [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) − 𝛾

2
𝜐
𝑇
(𝑘) 𝜐 (𝑘)

= [
𝑥 (𝑘)

V (𝑘)]
𝑇

[

−𝑃
𝛼

0

0 −𝛾
2
𝐼
] [

𝑥 (𝑘)

V (𝑘)]

+ [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

×P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

+ [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

[Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+  (1 − ) 𝑥
𝑇
(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) .

(30)

Similar to the derivation of (27), we apply the Schur comple-
ment to (23) and get

E {𝑧
𝑇
(𝑘) 𝑧 (𝑘) − 𝛾

2
𝜐
𝑇
(𝑘) 𝜐 (𝑘)

+𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘) } < 0.

(31)

For 𝑘 = 0, 1, 2, . . ., summing up both sides of (31) under zero
initial condition and noticing 𝑉(𝑥(∞),∞) ≥ 0, it can be
verified that

E{

∞

∑

𝑘=0

𝑧
𝑇
(𝑘) 𝑧 (𝑘)} ≤ 𝛾

2

∞

∑

𝑘=0

𝜐
𝑇
(𝑘) 𝜐 (𝑘) , (32)

or, equivalently, condition (16) is satisfied.This completes the
proof.

In the following, we will present a solution to the non-
fragile 𝐻

∞
controller design problem for system (Σ) based

on Theorem 6. The following theorem proposes a sufficient
condition for the existence of such a controller for system (Σ).

Theorem 7. Consider system (Σ), let scalars 𝛾 > 0,  > 0 be
given, and let matrices 𝐽

1𝛼
, 𝐽
2𝛼
, and 𝐽

3𝛼
be fixed. Then, there

exists an admissible controller in the form of (5) such that the
resulting closed-loop system (Σ) is SMSSwith a guaranteed𝐻

∞

performance level 𝛾, in spite of the presence of packet losses
phenomena if there exist matrices 𝑄

𝛼
> 0,𝑋 such that the

following LMIs hold for each 𝛼 ∈ S:

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑄
𝛼

0 Γ
𝑇

1𝛼
√ (1 − )𝑌

𝑇

𝛼
𝐵
𝑇

1𝛼
𝑋
𝑇
𝐸
𝑇

𝛼
Γ
𝑇

6𝛼
√ (1 − )𝑌

𝑇

𝛼
𝐵
𝑇

2𝛼
𝑋
𝑇
𝑁
𝑇

𝛼

∗ −𝛾
2
𝐼 𝐶
𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0 0

∗ ∗ Γ
2𝛼

Γ
3𝛼

0 Γ
7𝛼

Γ
10𝛼

0

∗ ∗ ∗ Γ
4𝛼

0 Γ
8𝛼

Γ
11𝛼

0

∗ ∗ ∗ ∗ Γ
5𝛼

0 0 0

∗ ∗ ∗ ∗ ∗ Γ
9𝛼

Γ
12𝛼

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
13𝛼

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝛼
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (33)

where

Γ
1𝛼

= 𝐴
𝛼
𝑋 + 𝐵

1𝛼
𝑌
𝛼
,

Γ
2𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
1𝛼
𝑄
𝛽
𝐽
𝑇

1𝛼
− 𝑋𝐽
𝑇

1𝛼
− 𝐽
1𝛼
𝑋
𝑇

+ 𝜀
𝛼

2
𝐵
1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
3𝛼

= 𝜀
𝛼
√ (1 − )𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
4𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
2𝛼
𝑄
𝛽
𝐽
𝑇

2𝛼
− 𝑋𝐽
𝑇

2𝛼
− 𝐽
2𝛼
𝑋
𝑇

+ 𝜀
𝛼
 (1 − ) 𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
5𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
3𝛼
𝑄
𝛽
𝐽
𝑇

3𝛼
− 𝑋𝐽
𝑇

3𝛼
− 𝐽
3𝛼
𝑋
𝑇
,

Γ
6𝛼

= 𝐷
𝛼
𝑋 + 𝐵

2𝛼
𝑌
𝛼
,

Γ
7𝛼

= 𝜀
𝛼

2
𝐵
1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
8𝛼

= 𝜀
𝛼
√ (1 − )𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
9𝛼

= 𝜀
𝛼

2
𝐵
2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
− 𝐼,
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Γ
10𝛼

= 𝜀
𝛼
√ (1 − )𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
11𝛼

= 𝜀
𝛼
 (1 − ) 𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
12𝛼

= 𝜀
𝛼
√ (1 − )𝐵

2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
13𝛼

= 𝜀
𝛼
 (1 − ) 𝐵

2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
− 𝐼.

(34)

In this case, a suitable nonfragile𝐻
∞

controller in the form of
(5) is given by

𝐾
𝛼
= 𝑌
𝛼
𝑋
−1
, 1 ≤ 𝛼 ≤ N. (35)

Proof. Introduce the new variables 𝑄
𝛼
= 𝑋
𝑇
𝑃
𝛼
𝑋; then one

can find that

P
𝛼
≜ ∑

𝛽∈S

𝜓
𝛼𝛽
𝑃
𝛽
= ∑

𝛽∈S

𝜓
𝛼𝛽
𝑋
−𝑇
𝑄
𝛽
𝑋
−1
, (36)

which implies that

−P
−1

𝛼
= −𝑋(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
)

−1

𝑋
𝑇
. (37)

Note that

(𝐽
𝑙𝛼
(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
) − 𝑋)(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
)

−1

× (𝐽
𝑙𝛼
(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
) − 𝑋) ≥ 0, 𝑙 = 1, 2, 3.

(38)

It follows from (37) that

−P
−1

𝛼
≤ ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
𝑙𝛼
𝑄
𝛽
𝐽
𝑇

𝑙𝛼
− 𝑋𝐽
𝑇

𝑙𝛼
− 𝐽
𝑙𝛼
𝑋
𝑇
, 𝑙 = 1, 2, 3. (39)

In view of Lemma 5, one can get that

Ξ
𝑇

1𝛼
𝐻
𝛼
(𝑘) Ξ
2𝛼

+ Ξ
𝑇

2𝛼
𝐻
𝑇

𝛼
(𝑘) Ξ
1𝛼

≤ 𝜀
𝛼
Ξ
𝑇

1𝛼
Ξ
1𝛼

+ 𝜀
−1

𝛼
Ξ
𝑇

2𝛼
Ξ
2𝛼
,

(40)

where

Ξ
1𝛼

= [0 0 𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
√ (1 − )𝑀

𝑇

𝛼
𝐵
𝑇

1𝛼
0 𝑀

𝑇

𝛼
𝐵
𝑇

2𝛼
√ (1 − )𝑀

𝑇

𝛼
𝐵
𝑇

2𝛼
] ,

Ξ
2𝛼

= [𝑁𝛼
𝑋 0 0 0 0 0 0] .

(41)

Using Lemma 4 and combining (33), (39), and (40) result in

[
[
[
[
[
[
[
[
[
[

[

−𝑄
𝛼

0 Γ̃
𝑇

1𝛼
√ (1 − )Γ̃

𝑇

2𝛼
𝑋
𝑇
𝐸
𝑇

𝛼
Γ̃
𝑇

3𝛼
√ (1 − )Γ̃

𝑇

4𝛼

∗ −𝛾
2
𝐼 𝐶

𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0

∗ ∗ −P−1
𝛼

0 0 0 0

∗ ∗ ∗ −P−1
𝛼

0 0 0

∗ ∗ ∗ ∗ −P−1
𝛼

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0, (42)

where

Γ̃
1𝛼

= 𝐴
𝛼
𝑋 + 𝐵

1𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
2𝛼

= 𝐵
1𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
3𝛼

= 𝐷
𝛼
𝑋 + 𝐵

2𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
4𝛼

= 𝐵
2𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) .

(43)

Then, by pre- and postmultiplying (42) by
diag{𝑋−𝑇, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} and its transpose, one has that
inequality (23) holds. Therefore, in light of Theorem 6, we
can conclude that the resulting closed-loop system is SMSS

with a guaranteed 𝐻
∞

performance level 𝛾. This completes
the proof.

4. An Illustrative Example

In this section, an example is used to illustrate the effective-
ness of the presented nonfragile controller design method.
Consider the discrete-time stochastic Markov jump system
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(Σ) over a probability space (Ω,F,P) with two modes (𝛼 =

1, 2) and the following parameters:

𝐴
1
= [

[

1.1 0.31 0

0 0.33 0.21

0 0 −0.52

]

]

,

𝐵
11

= [

[

1 1

0 1

0 1

]

]

, 𝐶
1
= [

[

0.1

0

0

]

]

,

𝐸
1
= [

[

0.05 0 0

0 0.05 0

0 0 0.1

]

]

, 𝐹
1
= [

[

0.2

0

0

]

]

,

𝐷
1
= [

[

0.2 0 0

0 0 0

0 0 0.1

]

]

, 𝐵
21

= [

[

0 1

0 0.1

0 0.1

]

]

,

𝐺
1
= [

[

0

0

0.1

]

]

,

𝑀
1
= [

0.1

0.2
] , 𝑁

1
= [0.1 0.2 −0.1] ,

𝐴
2
= [

[

0.8 −0.38 0

−0.2 0 0.21

0.1 0 −0.55

]

]

,

𝐵
12

= [

[

1 0

0 1

0 1

]

]

, 𝐶
2
= [

[

0

0.12

0

]

]

,

𝐸
2
= [

[

0.5 0 0

0 0.25 0

0 0 −0.5

]

]

, 𝐹
2
= [

[

0.1

0

0

]

]

,

𝐷
2
= [

[

−0.12 0 0.1

0 0 0

0 0 0.1

]

]

,

𝐵
22

= [

[

0.1 0.1

0 0.2

0 0.2

]

]

, 𝐺
2
= [

[

0.2

0

0

]

]

,

𝑀
2
= 𝑀
1
, 𝑁

2
= 𝑁
1
.

(44)

Here, our aim is to design a nonfragile controller in the form
of (5) such that the resulting closed-loop system is SMSSwith
a guaranteed𝐻

∞
performance level 𝛾, in spite of the presence

of packet losses phenomena. To this end, we suppose that  =

0.7, 𝛾 = 1, 𝐽
11

= 𝐽
12

= diag{0.25, 0.25, 0.25}, 𝐽
21

= 𝐽
22

=

diag{0.5, 0.5, 0.5}, and 𝐽
31

= 𝐽
32

= diag{0.05, 0.05, 0.05}, and
choose the transition probability matrix Π as Π = [

0.9 0.1

0.3 0.7
].

Then, by applying Theorem 7, one can get feasible solutions
as follows:

𝑌
1
= [

−14.5256 −10.2590 −1.2361

−1.9851 −0.9283 0.6443
] ,

𝑌
2
= [

−6.8634 6.1819 −0.9802

0.3373 −0.0477 2.2476
] ,

𝑋 = [

[

12.7563 2.1242 0.7457

1.8940 26.0177 −1.2706

0.6125 0.1118 13.4984

]

]

.

(45)

Thus, the desired controller gains 𝐾
𝛼
(𝛼 = 1, 2,) can be given

by

𝐾
1
= [

−1.0905 −0.3050 −0.0600

−0.1548 −0.0233 0.0541
] ,

𝐾
2
= [

−0.5797 0.2850 −0.0138

0.0191 −0.0041 0.1651
] .

(46)

5. Conclusions

In this paper, we have studied the problem of nonfragile
𝐻
∞

control for stochastic systems with Markovian jumping
parameters and random packet losses. An LMI approach
has been developed to design a nonfragile controller which
ensures both the stochastic mean square stability and a
prescribed 𝐻

∞
performance level for the resulting closed-

loop systems in the presence of random packet losses. The
proposed approach has been illustrated to be effective by
an example. It should be pointed out that the states of
the system are assumed to be precisely known, but this is
difficult to achieve in practice [30–32]. Therefore, one of
our further research topics is to develop nonfragile output
feedback controller design methods for stochastic Markov
jump systems.
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This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks
with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the
concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed
to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally,
numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.

1. Introduction

Over the past decades, delayed neural networks have been
successfully applied in the pattern recognition, signal pro-
cessing, image processing, and pattern recognition problems.
However, these successful applications mostly rely on the
dynamic behaviors of delayed neural networks and some of
these applications are dependent on stability of the equilibria
of neural networks. Up to now, there have been a large
number of results related to dynamical behaviors of delayed
neural networks [1–8].

On the one, in the past few decades, Markovian jump
systems have gained special research attention. Such class of
systems is a special class of stochastic hybrid systems, which
may switch from one to another at the different time. Such as
component failures, sudden environmental disturbance and
abrupt variations of a nonlinear system [9–11]. Moreover, it
is shown that such jumping can be decided by a Markovian
chain [12]. For the linear Markovian jumping systems, many
important issues have been devoted extensively such as
stability, stabilization, control synthesis, and filter design [13–
16]. In reality, however, it is worth mentioning that most
of the gotten results are based on the implicit assumptions
that the complete knowledge of transition probabilities is

known. It is known that in most situations, the transition
probabilities rate of Markovian jump systems and networks
is not known; it is difficult to obtain all the transition
probabilities.Therefore, it is of great importance to investigate
the partly unknown transition probabilities. Very recently,
the systems with partially unknown transition probabilities
have been fully investigated and many important results
have been obtained; for a recent survey on this topic and
related questions, one can refer to [17–23]. However, it has
been shown that the existing delay-dependent results are
conservative.

On the other hand, the practical problems which describ-
ed system stay as not exceeding a given threshold over finite-
time interval are considered. Compared with classical Lyapu-
nov stability, finite-time stability was studied to tackle the tra-
nsient behavior of systems in the finite-time interval. Recen-
tly, the concept of finite-time stability has been revisited in the
terms of linear matrix inequalities (LMIs); some results have
been obtained to guarantee that system is finite-time stable
and finite-time bounded [24–39]. To the best of our knowl-
edge, the finite-time stability analysis for Markovian jumping
neural networks with mode-dependent time-varying delays
and partially known transition rates has not been tackled, and
such a situation motivates our present study.
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The main contribution of this paper lies in proposing a
novel method for finite-time boundedness of delayedMarko-
vian jumping neural networks with partly unknown transi-
tion probabilities.The considered system ismore general than
the systems with completely known or completely unknown
transition probabilities, which can be regarded as two special
cases of the one tackled here. In contrast to study on
Markovian jumping neural networks with time delays, the
knowledge of the unknown elements is not required in our
method. By employing the appropriate Lyapunov-Krasovskii
functional, the sufficient conditions are obtained to ensure
that the system does not exceed a given threshold in a
specified time interval. The finite-time bounded criteria can
be tackled in the form of LMIs. Finally, numerical examples
are given to demonstrate that the derived results are less
conservative and more useful than some existent ones.

2. Preliminaries

Given a probability space (Ω, 𝐹, 𝑃) whereΩ, 𝐹 and 𝑃, respec-
tively, represents the sample space, the algebra of events and
the probabilitymeasure which defined onΩ. In this paper, we
consider the following 𝑛-neuron Markovian jumping neural
network over the space (Ω, 𝐹, 𝑃) described by

̇𝑥 (𝑡) = −𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐵
𝑟
𝑡

𝑓 (𝑥 (𝑡)) + 𝐶
𝑟
𝑡

𝑓 (𝑥 (𝑡 − 𝜏
𝑟
𝑡
(𝑡))) + 𝐽

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0) ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
⊺ represents the neural

state vector of the system, 𝑓(𝑥(𝑡)) = [𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . .,

𝑓
𝑛
(𝑥
𝑛
(𝑡))]
⊺ is the nonlinear activation function with the ini-

tial condition 𝑓(0) = 0, 𝐴
𝑟
𝑡

= diag{𝑎
1
(𝑟
𝑡
), 𝑎
2
(𝑟
𝑡
), . . . , 𝑎

𝑛
(𝑟
𝑡
)}

describes the rate with each neuronwhichwould reset its pot-
ential to resting state in isolation, 𝐵

𝑟
𝑡

= [𝑏
𝑖𝑗
(𝑟
𝑡
)]
𝑛×𝑛

and 𝐶
𝑟
𝑡

=

[𝑐
𝑖𝑗
(𝑟
𝑡
)] are the connection weight matrices and the delay-

ed connection weight matrices, respectively, and 𝐽 = [𝐽
1
, 𝐽
2
,

. . . , 𝐽
𝑛
]
⊺ denotes a constant external input vector. 𝜏

𝑟
𝑡

(𝑡) are the
time-varying delays which satisfy

0 ≤ 𝜏
𝑟
𝑡
(𝑡) ≤ 𝜏

𝑟
𝑡

,

0 ≤ ̇𝜏
𝑟
𝑡
(𝑡) ≤ 𝑑

𝑟
𝑡

≤ 1,

(2)

where 𝜏
𝑟
𝑡

and 𝑑
𝑟
𝑡

are constant scalars and 𝜏 = max
𝑟
𝑡

{𝜏
𝑟
𝑡

}, 𝑑 =
max
𝑟
𝑡

{𝑑
𝑟
𝑡

}.

Remark 1. This assumption is often employed to investigate
the stability of neural networks. It is worth noting that if this
assumption is not true, corresponding time-delays are not a
continuous function belonging to a given interval; neither the
lower nor upper bounds for time-varying delays are available.
Therefore, it may lead to more conservativeness.

Let the random form process {𝑟
𝑡
, 𝑡 ≥ 0} be the Markovian

stochastic process taking values on the finite set N =

{1, 2, . . . , 𝑁} with transition rate matrix Ω = {𝜇
𝑖𝑗
}, 𝑖, 𝑗 ∈ N;

namely, for 𝑟
𝑡
= 𝑖, 𝑟
𝑡+1

= 𝑗, one has

Pr (𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖) = {

𝜇
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑗 ̸= 𝑖

1 + 𝜇
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑗 = 𝑖,

(3)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜇 ≥ 0 (𝑖, 𝑗 ∈ N, 𝑗 ̸= 𝑖),
denote switching rate from mode 𝑖 at time 𝑡 to mode 𝑗 at
time 𝑡 + ℎ. For all 𝑖 ∈ N, 𝜇

𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝜇
𝑖𝑗
. Moreover, the

Markovian process transition matrixΩ is defined as follows:

Ω =

[
[
[
[

[

𝜇
11

𝜇
12

⋅ ⋅ ⋅ 𝜇
1𝑁

𝜇
21

𝜇
22

⋅ ⋅ ⋅ 𝜇
2𝑁

...
... d

...
𝜇
𝑁1

𝜇
𝑁2

⋅ ⋅ ⋅ 𝜇
𝑁𝑁

]
]
]
]

]

. (4)

Moreover, the transition rates of jumping process in this
paper are considered to be partly accessed; that is, some
elements in matrixΩ are unknown. Therefore, the transition
rates matrix Ω which is Markovian jump system (1) may be
as follows:

Ω =

[
[
[
[

[

𝜇
11

? ⋅ ⋅ ⋅ 𝜇
1𝑁

? 𝜇
22

⋅ ⋅ ⋅ ?

...
... d

...
? ? ⋅ ⋅ ⋅ 𝜇

𝑁𝑁

]
]
]
]

]

, (5)

where ? represents the inaccessible elements. For notational
clarity, for all 𝑖 ∈ N, we denote N = N𝑖K +N𝑖UK and we
denote that

N
𝑖

K ≡ {𝑗 : 𝜇
𝑖𝑗
is known} ,

N
𝑖

UK ≡ {𝑗 : 𝜇
𝑖𝑗
is unknown} .

(6)

Moreover, if N𝑖K ̸=0, N𝑖K and N𝑖UK can be further
described, respectively, as

N
𝑖

K = {K
𝑖

1
,K
𝑖

2
, . . . ,K

𝑖

𝑚
} ,

N
𝑖

UK = {UK
𝑖

1
,UK

𝑖

2
, . . . ,UK

𝑖

𝑁−𝑚
} ,

(7)

where N𝑖
𝑚
∈ Z+ represents the 𝑚th known element with

the index N𝑖
𝑚
in the 𝑖th row of matrix Ω. UN𝑖

𝑁−𝑚
∈ Z+

represents the 𝑁 − 𝑚th unknown element with the index
UN𝑖
𝑁𝑚

in the 𝑖th row of matrixΩ.
SetN contains𝑁modes of system (1) and, for 𝑟

𝑡
= 𝑖 ∈N,

the systemmatrices of the 𝑖thmode are denoted by𝐴
𝑖
,𝐵
𝑖
, and

𝐶
𝑖
, which are considered to be real known with appropriate

dimensions.

Remark 2. The Markovian jump process {𝑟
𝑡
, 𝑡 ≥ 0} in

the literature is always assumed 𝜇
𝑖𝑗
ether to be completely

known (N𝑖K) or completely unknown (N𝑖UK). Therefore,
our transition probabilities matrix considered in this paper is
more general than theMarkovian jump systems and therefore
covers the existing ones.

Assumption 3. The neuron state-based nonlinear function
𝑓(𝑥(𝑡)) considered inMarkovian jump system (1) is bounded
and satisfies

0 ≤

𝑓
𝑠
(𝜍
1
) − 𝑓
𝑠
(𝜍
2
)

𝜍
1
− 𝜍
2

≤ 𝛾
𝑠
, 𝑠 = 1, 2, . . . , 𝑛 (8)

for all 𝜍
1
, 𝜍
2
∈ R, with 𝛾

𝑠
being known real constants with

𝑠 = 1, 2, . . . , 𝑛.
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It should be noted that by using the Brouwer fixed-point
theorem, there should exist at least the one equilibrium point
for system (1). Assuming that 𝑥∗ = [𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
]
⊺ is the

equilibrium point of (1) and using the transformation 𝑧(⋅) =
𝑥(⋅)−𝑥

∗, system (1) can be converted to the following system:

̇𝑧 (𝑡) = −𝐴
𝑟
𝑡

𝑧 (𝑡) + 𝐵
𝑟
𝑡

𝑔 (𝑧 (𝑡)) + 𝐶
𝑟
𝑡

𝑔 (𝑧 (𝑡 − 𝜏
𝑟
𝑡
(𝑡))) ,

(9)

where 𝑧(𝑡) = [𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡)]
⊺, 𝑔(𝑧(⋅)) = [𝑔

1
(𝑧
1
(𝑥(𝑡))),

𝑔
2
(𝑥(𝑡)), . . . , 𝑔

𝑛
(𝑥(𝑡))]

⊺, and 𝑔
𝑖
(𝑧
𝑖
(𝑧
𝑖
(⋅))) = 𝑓

𝑖
(𝑧
𝑖
(⋅) + 𝑥

∗

𝑖
) −

𝑓
𝑖
(𝑥
∗

𝑖
), 𝑖 = 1, 2, . . . , 𝑛. According to Assumption 3, one can

obtain that

0 ≤

𝑔
𝑖
(𝑧
𝑖
(𝑡))

𝑧
𝑖
(𝑡)

≤ 𝛾
𝑖
, 𝑔
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛. (10)

Definition 4 (see [33]). The nominal time-delayedMarkovian
jumping neural networks (1) are said to be stochastically
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇), if

E




𝑥 (𝑡
1
)





2

≤ 𝑐
1
⇒ E





𝑥 (𝑡
2
)





2

≤ 𝑐
2
,

𝑡
1
∈ [−𝜏, 0] , 𝑡

2
∈ [0, 𝑇] . (11)

Definition 5 (see [34]). Let 𝑉(𝑥
𝑡
, 𝑟
𝑡
) be a stochastic positive

functional and define its weak infinitesimal operator as

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
= 𝑖)

= lim
Δ→0

1

Δ

[E {𝑉 (𝑥
𝑡+Δ
, 𝑟
𝑡+Δ
) | 𝑥
𝑡
, 𝑟
𝑡
= 𝑖} − 𝑉 (𝑥

𝑡
, 𝑟
𝑡
= 𝑖)] .

(12)

3. Finite-Time 𝐻
∞

Performance Analysis

In this section, onemethodwould be employed to analyze the
finite-time stability of Markovian jump systems with partial
information on transition probabilities.

Theorem 6. Given a time constant 𝑇 > 0, the delayed Mark-
ovian jumping neural networks (1) are stochastically finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇), if there exist a positive con-

stant 𝜂 > 0, mode-dependent symmetric positive-definite matr-
ices 𝑃
𝑖
> 0, 𝑄

1𝑖
> 0, 𝑄

2𝑖
> 0,𝑊

1
> 0,𝑊

2
> 0 (𝑖 ∈ N), a set of

symmetric matrices 𝑆
𝜐
(𝜐 = 1, 2, . . . , 𝑁), any appropriately di-

mensioned matrices𝑀
𝑖
,𝑁
𝑖
(𝑖 ∈ N), Γ

𝑠
, and scalars 𝜆

𝑙
(𝑙 = 1,

2, . . . , 6) such that the following matrix inequalities hold:

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
1
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑖
< 0,

𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 ̸= 𝑖,

𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 = 𝑖,

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
2
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑖
< 0,

𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 ̸= 𝑖,

𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 = 𝑖,

Σ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1
< 0,

𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1
+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
< 0,

𝑗 ∈N
𝑖

UK, 𝑗 ̸= 𝑖,

𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1
+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
> 0,

𝑗 ∈N
𝑖

UK, 𝑗 = 𝑖,

(13)

𝑐
1
𝑒
𝜂𝑇
(𝜆
2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏
2
𝜆
5
+ 𝜏
2
𝛾
2

𝑠
𝜆
6
) < 𝜆
1
𝑐
2
, (14)

where

𝜆
1
= max
𝑖∈N

𝜆min (𝑃𝑖) , 𝜆
2
= max
𝑖∈N

𝜆max (𝑃𝑖) ,

𝜆
3
= max
𝑖∈N

𝜆max (𝑄1𝑖) , 𝜆
4
= max
𝑖∈N

𝜆max (𝑄2𝑖) ,

𝜆
5
= 𝜆max (𝑊1) , 𝜆

6
= 𝜆max (𝑊2) , 𝛾

𝑠
= max
𝑠
(𝛾
𝑠
) .

(15)

Proof. We consider the following the stochastic Lyapunov-
Krasovskii functional:

𝑉 (𝑧
𝑡
, 𝑟
𝑡
) =

4

∑

𝑙=1

𝑉
𝑙
(𝑧
𝑡
, 𝑟
𝑡
) , (16)

where

𝑉
1
(𝑧
𝑡
, 𝑟
𝑡
) = 𝑧
⊺
(𝑡) 𝑃
𝑟
𝑡

𝑧 (𝑡) ,

𝑉
2
(𝑧
𝑡
, 𝑟
𝑡
) = ∫

𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑧
⊺
(𝑠) 𝑄
1𝑟
𝑡

𝑧 (𝑠) 𝑑𝑠,

𝑉
3
(𝑧
𝑡
, 𝑟
𝑡
) = ∫

𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑔
⊺
(𝑧 (𝑠)) 𝑄

2𝑟
𝑡

𝑔 (𝑧 (𝑠)) 𝑑𝑠,

𝑉
4
(𝑧
𝑡
, 𝑟
𝑡
) = ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑧
⊺
(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑔
⊺
(𝑧 (𝑠))𝑊

2
𝑔 (𝑧 (𝑠)) 𝑑𝑠 𝑑𝜃

(17)
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with 𝑃
𝑖
, 𝑄
1𝑖
, 𝑄
2𝑖
, (𝑖 = 1, 2, . . . , 𝑁),𝑊

1
, and𝑊

2
being positive

definite matrices and
𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
< 𝑊
1
, (18)

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
< 𝑊
2
. (19)

For notational simplicity, let

𝜉 (𝑡) = [𝑧
⊺
(𝑡) , 𝑧
⊺
(𝑡 − 𝜏
𝑖
(𝑡)) , 𝑔

⊺
(𝑧 (𝑡)) , 𝑔

⊺
(𝑧 (𝑡 − 𝜏

𝑖
(𝑡)))]

⊺

,

𝑒
𝑠
= [0, . . . , 0,⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠−1

𝐼, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4−𝑠

]

⊺

, 𝑠 = 1, . . . , 4.

(20)

Let £ be the infinitesimal generator of random process
{𝑧
𝑡
, 𝑡 ≥ 0}; then for each 𝑟

𝑡
= 𝑖, 𝑖 ∈N, we can obtain that

£𝑉
1
(𝑧
𝑡
, 𝑖) = 2𝑧

⊺
(𝑡) 𝑃
𝑖
̇𝑧 (𝑡) + 𝑧

⊺
(𝑡)

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
𝑧 (𝑡)

= 𝜉
⊺
(𝑡) 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1
𝜉 (𝑡)

+ 2𝜉
⊺
(𝑡) 𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
𝜉 (𝑡) + 2𝜉

⊺
(𝑡) 𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
𝜉 (𝑡) ,

£𝑉
2
(𝑧
𝑡
, 𝑖) = lim
Δ→0

+

1

Δ

E

× {[∫

𝑡+Δ

𝑡+Δ−𝜏
𝑟𝑡+Δ
(𝑡+Δ)

𝑧
⊺
(𝑠) 𝑄
1𝑟
𝑡+Δ

𝑧 (𝑠) 𝑑𝑠 | 𝑟
𝑡
= 𝑖]

−∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑧
⊺
(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠}

= lim
Δ→0

+

1

Δ

{

{

{

∫

𝑡+Δ

𝑡+Δ−𝜏
𝑖(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

𝑧
⊺
(𝑠)

× [

[

𝑄
1𝑖
+

𝑁

∑

𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))

]

]

𝑧 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑧
⊺
(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

}

}

}

= lim
Δ→0

+

1

Δ

{∫

𝑡+Δ

𝑡+Δ−𝜏
𝑖(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

× 𝑧
⊺
(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑧
⊺
(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠}

+ lim
Δ→0

+

1

Δ

∫

𝑡+Δ

𝑡+Δ−𝜏
𝑖(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

𝑧
⊺
(𝑠)

×

𝑁

∑

𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑄
1𝑗
𝑧 (𝑠) 𝑑𝑠

= lim
Δ→0

+

1

Δ

∫

𝑡+Δ

𝑡

𝑧
⊺
(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

+ lim
Δ→0

+

1

Δ

∫

𝑡+Δ

𝑡+Δ−𝜏
𝑖(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

× 𝑧
⊺
(𝑠)

𝑁

∑

𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑄
1𝑗
𝑧 (𝑠) 𝑑𝑠

= 𝜉
⊺
(𝑡) 𝑒
1
𝑄
1𝑖
𝑒
⊺

1
𝜉 (𝑡) − (1 − ̇𝜏

𝑖
(𝑡) −

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡))

× 𝜉
⊺
(𝑡) 𝑒
2
𝑄
1𝑖
𝑒
⊺

2
𝜉 (𝑡)

+ ∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑧
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ 𝜉
⊺
(𝑡) 𝑒
1
𝑄
1𝑖
𝑒
⊺

1
𝜉 (𝑡) − (1 − 𝑑

𝑖
−

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡))

× 𝜉
⊺
(𝑡) 𝑒
2
𝑄
1𝑖
𝑒
⊺

2
𝜉 (𝑡)

+ ∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠.

(21)

Similar to the process above, it yields

£𝑉
3
(𝑧
𝑡
, 𝑖) ≤ 𝜉

⊺
(𝑡) 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
𝜉 (𝑡) − (1 − 𝑑

𝑖
) 𝜉
⊺
(𝑡) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
𝜉 (𝑡)

+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡) 𝜉
⊺
(𝑡) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
𝜉 (𝑡)

+ ∫

𝑡

𝑡−𝜏
𝑖(𝑡)

𝑔
⊺
(𝑧 (𝑠))(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑖
)𝑔 (𝑧 (𝑠)) 𝑑𝑠,

£𝑉
4
(𝑧
𝑡
, 𝑖) = 𝜏𝜉

⊺
(𝑡) 𝑒
1
𝑊
1
𝑒
⊺

1
𝜉 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑧
⊺
(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠

+ 𝜏𝜉
⊺
(𝑡) 𝑒
3
𝑊
2
𝑒
⊺

3
𝜉 (𝑡)

− ∫

𝑡

𝑡−𝜏

𝑔
⊺
(𝑧 (𝑠))𝑊

2
𝑔 (𝑧 (𝑠)) 𝑑𝑠.

(22)

From (18) and (19), we obtain that

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏

𝑧
⊺
(𝑠)(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏

𝑧
⊺
(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠,
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∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑔
⊺
(𝑧 (𝑠))(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
)𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏

𝑔
⊺
(𝑧 (𝑠))(

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
)𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏

𝑔
⊺
(𝑧 (𝑠))𝑊

2
𝑔 (𝑧 (𝑠)) 𝑑𝑠.

(23)
Also, it results from (10) that for any appropriately

dimensioned matrices 𝑀
𝑖
, 𝑁
𝑖
, (𝑖 = 1, 2, . . . , 𝑁), one can

obtain
0 ≤ 𝜉
⊺
(𝑡) 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
𝜉 (𝑡) − 𝜉

⊺
(𝑡) 𝑒
3
𝑀
𝑖
𝑒
⊺

3
𝜉 (𝑡) ,

0 ≤ 𝜉
⊺
(𝑡) 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
𝜉 (𝑡) − 𝜉

⊺
(𝑡) 𝑒
4
𝑁
𝑖
𝑒
⊺

4
𝜉 (𝑡) .

(24)

From (16)–(24), we have
£𝑉 (𝑧
𝑡
, 𝑖) ≤ 𝜉

⊺
(𝑡) Ξ
𝑖
𝜉 (𝑡) , (25)

where

Ξ
𝑖
= 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1

+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
−

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2

+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
− (1 − 𝑑

𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1

+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
− 𝑒
3
𝑀
𝑖
𝑒
⊺

3

+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4
.

(26)

By the fact that ∑
𝑗∈N 𝜇𝑖𝑗 = 0, we can rewrite Ξ

𝑖
as

Ξ
𝑖
= 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1

+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
−

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2

+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
− (1 − 𝑑

𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1

+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
− 𝑒
3
𝑀
𝑖
𝑒
⊺

3

+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
(𝑃
𝑖
𝐴
𝑖
+ 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑆
𝜐
) 𝑒
⊺

1
.

(27)

Thus, from (6), we have

Ξ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3

+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1

+ ∑

𝑗∈N𝑖
UK

𝜇
𝑖𝑗
[𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] .

(28)

Then, for 𝑗 ∈ N𝑖UK and if 𝑖 ∈ N𝑖K, Ξ
𝑖
< 0 can be

guaranteed. On the other hand, for 𝑗 ∈N𝑖UK and if 𝑖 ∉ N𝑖K,
Ξ
𝑖
can be further expressed as

Ξ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3

+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑

𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] + 𝜇
𝑖𝑖

× [𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] .

(29)
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Similarly, (18) and (19) can be rewritten, respectively, as

{

{

{

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
1
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑖

}

}

}

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
]

+ 𝜇
𝑖𝑖
[𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
] < 0,

{

{

{

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
2
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑖

}

}

}

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
]

+ 𝜇
𝑖𝑖
[𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
] < 0.

(30)

It is well known that 𝜇
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝜇
𝑖𝑗
< 0; according to

(6), one can also obtain

£𝑉 (𝑧
𝑡
, 𝑖) < 0. (31)

On the other hand, from (32) and the needed constant 𝜂 > 0,
it yields that

E {£𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < 𝜂E {𝑉 (𝑧

𝑡
, 𝑟
𝑡
)} , (32)

from which we can easily get that

𝑒
−𝜂𝑡

E {𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < E {𝑉 (𝑧

0
, 𝑟
0
)} . (33)

Note that 0 ≤ 𝑡 ≤ 𝑇; we can obtain the following inequality:

E {𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < 𝑒

𝜂𝑡
E {𝑉 (𝑥

0
, 𝑟
0
)}

= 𝑒
𝜂𝑡
[𝑧
⊺
(0) 𝑃
𝑟
𝑡

𝑧 (0) + ∫

−𝜏
𝑟𝑡
(𝑡)

𝑧
⊺
(𝑠) 𝑄
1𝑟
𝑡

𝑧 (𝑠) 𝑑𝑠

+ ∫

−𝜏
𝑟𝑡
(𝑡)

𝑔
⊺
(𝑧 (𝑠)) 𝑄

2𝑟
𝑡

𝑔 (𝑧 (𝑠)) 𝑑𝑠

+ ∫

0

−𝜏

∫

0

𝜃

𝑧
⊺
(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠

+∫

0

−𝜏

∫

0

𝜃

𝑔
⊺
(𝑧 (𝑠))𝑊

1
𝑔 (𝑧 (𝑠)) 𝑑𝑠]

< 𝑒
𝛼𝑡
[max
𝑖∈N

𝜆max (𝑃𝑖) + 𝜏max
𝑖∈N

𝜆max (𝑄1𝑖)

+ 𝜏𝛾
2

𝑠
max
𝑖∈N

𝜆max (𝑄2𝑖)

+𝜏
2
𝜆max (𝑊1) + 𝜏

2
𝛾
2

𝑠
𝜆max (𝑊2) ]

× sup
−𝜏≤𝑠≤0

{𝑥
⊺
(𝑠) 𝑥 (𝑠)}

≤ 𝑐
1
𝑒
𝜂𝑇
(𝜆
2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏
2
𝜆
5
+ 𝜏
2
𝛾
2

𝑠
𝜆
6
) .

(34)

On the other hand, from (16), we can get

E {𝑧
⊺
(𝑡) 𝑃
𝑖
𝑧 (𝑡)} ≥ max

𝑖∈N
𝜆min (𝑃𝑖)E‖𝑧(𝑡)‖

2
. (35)

Then, we can obtain

E‖𝑧(𝑡)‖
2
<

𝑐
1
𝑒
𝜂𝑇
(𝜆
2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏
2
𝜆
5
+ 𝜏
2
𝛾
2

𝑠
𝜆
6
)

𝜆
1

.

(36)

By condition (14), we can obtain

E‖𝑧(𝑡)‖
2
< 𝑐
2
. (37)

By Definition 4, we conclude that Markovian jump sys-
tem (1) is stochastically finite-time bounded with respect to
(𝑐
1
, 𝑐
2
, 𝑇).

Remark 7. In this paper, it is in contrast with existing
results for delay-dependent Markovian jump systems with
partly unknown transition probabilities, and another differ-
ent method is presented to tackle the unknown elements
in the transition matrix. Compared with [33], some slack
matrix variables 𝑆

𝜐
are introduced in this paper based on

the probability identity ∑𝑁
𝑗=1
𝜇
𝑖𝑗
= 0, which leads to less

conservativeness than [33].

Remark 8. Theorem 6 develops a finite-time bounded
criterion of Markovian jumping neural networks with
time-varying delays and partially known transition rates.
Theorem 6 makes full use of the information of the
subsystems’ upper bounds of the time-varying delays, which
also brings us the less conservativeness.

Remark 9. In our paper, 𝜏
𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡)may indicate the differ-

ent upper bounds during various time-delay intervals which
satisfies condition (2), respectively. However, in existing
work, for example, [17], 𝜏

𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) are always extended to

𝜏
𝑖
(𝑡) ≤ 𝜏 = max{𝜏

𝑖
, 𝑖 ∈ N} and 0 ≤ ̇𝜏

𝑖
(𝑡) ≤ 𝑑 =

max{𝑑
𝑖
, 𝑖 ∈N}, respectively, whichmay inevitably lead to the

conservativeness. Therefore, in order to reduce the conser-
vatism, the cases above are taken into account by employing
the stochastic Lyapunov-Krasovskii functional (16).

4. Illustrative Example

Example 1. Consider a class of delayed Markovian jumping
neural networks (9) with two operation modes in [33]:

𝐴
1
= [

2 0

0 1
] , 𝐴

2
= [

3 0

0 2
] , 𝐵

1
= [

0.5 1

−0.2 0.5
] ,

𝐵
2
= [

1.1 1

−0.2 0.1
] , 𝐶

1
= [

0.9 0.1

−0.1 0.1
] ,

𝐶
2
= [

0.3 −0.8

0.1 0.2
] , Γ

𝑠
= 𝐼
2
.

(38)

The mode switching is governed by a Markov chain that
has the following transition rate matrix:

Ω = [
−0.5 0.5

0.3 −0.3
] . (39)
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In this paper, let the initial values for 𝑐
1
= 0.25, 𝑇 =

2, 𝜂 = 1, and time-varying delay be 𝜏
1
(𝑡) = 𝜏

2
(𝑡) =

0.2 × | cos 𝑡|, which means that 𝜏 = 0.2 and 𝑑 = 0.2.
Through Theorem 6 and optimization over value 𝑐

2
, it yields

that delayed Markovian jumping neural networks (9) are
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇) with minimal

𝑐
2
= 5.0312 while minimal 𝑐

2
in [33] is 5.4296, which shows

the less conservative result in this paper.

Example 2. Consider a class of delayed Markovian jumping
neural networks (9) with partially known transition rates and
operation modes described as follows:

𝐴
1
= [

2 0

0 2
] , 𝐴

2
= [

2.2 0

0 1.5
] , 𝐴

3
= [

2.3 0

0 2.5
] ,

𝐵
1
= [

1 1

−1 −1
] , 𝐵

2
= [

1 0.6

0.1 0.3
] ,

𝐵
3
= [

0.3 0.2

0.4 0.1
] , 𝐶

1
= [

0.88 1

1 1
] ,

𝐶
2
= [

1 −0.1

0.1 0.2
] , 𝐶

3
= [

0.5 0.7

0.7 0.4
] , Γ

𝑠
= 𝐼
2
.

(40)

The three cases of the transition rates matrices are
considered as

Case I: Ω = [

[

−0.8 0.3 0.5

0.1 −0.8 0.7

0.7 0.4 −1.1

]

]

,

Case II: Ω = [

[

−0.8 ? ?

0.1 −0.8 0.7

0.7 0.4 −1.1

]

]

,

Case III: Ω = [

[

−0.8 ? ?

? −0.8 ?

0.7 0.4 −1.1

]

]

.

(41)

With the same mode switching rates, initial values and
time-varying delays, through Theorem 6 and optimization
over value 𝑐

2
, it yields that in Case I, 𝑐

2
= 4.8124; in Case

II, 𝑐
2
= 4.6121; in Case III, 𝑐

2
= 4.5372. Therefore, the

delayed Markovian jumping neural networks (9) are finite-
time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇).

Remark 10. The accessibility of the jumping process {𝑟
𝑡
, 𝑡 ≥

0} in the existing literature is commonly assumed to be
completely accessible or completely unaccessible. Note that
the transition probabilities are still viewed as accessible
in this paper. Therefore, the transition probabilities matrix
considered in this paper is more general assumption than
Markovian jump systems.

5. Conclusions

Unlike most existing research results focusing on Lyapunov
stability property of Markovian jump system, our paper
investigated finite-time stability which concerns the bound-
edness of state during the delayed Markovian jump interval.
In this paper, we have examined the problems of finite-time

boundedness for a class of delayedMarkovian jumping neural
networkswith partly unknown transition probabilities. Based
on the analysis result, the static state feedback finite-time
boundedness is given. Although the derived result is not
in LMIs form, we can turn it into LMIs feasibility problem
by fixing some parameters. At last, numerical examples are
also given to demonstrate the effectiveness of the proposed
approach.

Conflict of Interests

The authors declare that there is no conflict of interests rega-
rding the publication of this paper.

Acknowledgment

This work was supported by the Natural Science Foundation
of Hainan province (111002).

References

[1] O. M. Kwon and J. H. Park, “Exponential stability analysis for
uncertain neural networks with interval time-varying delays,”
Applied Mathematics and Computation, vol. 212, no. 2, pp. 530–
541, 2009.

[2] J. H. Park and O. M. Kwon, “Further results on state estimation
for neural networks of neutral-type with time-varying delay,”
Applied Mathematics and Computation, vol. 208, no. 1, pp. 69–
75, 2009.

[3] D. Zhang and L. Yu, “Exponential state estimation for Marko-
vian jumping neural networks with time-varying discrete and
distributed delays,” Neural Networks, vol. 35, pp. 103–111, 2012.

[4] D. Zhang, L. Yu, Q. Wang, and C. Ong, “Estimator design for
discrete-time switched neural networks with asynchronous
switching and time-varying delay,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 5, pp. 827–834, 2012.

[5] D. Zhang and L. Yu, “Passivity analysis for discrete-time swit-
ched neural networks with various activation functions and
mixed time delays,” Nonlinear Dynamics, vol. 67, no. 1, pp. 403–
411, 2012.

[6] C.-Y. Lu, W.-J. Shyr, K.-C. Yao, and D.-F. Chen, “Delay-depend-
ent approach to robust stability for uncertain discretestochastic
recurrent neural networks with interval time-varying delays,”
ICIC Express Letters, vol. 3, no. 3, pp. 457–464, 2009.

[7] Z.-G.Wu, P. Shi, H. Su, and J. Chu, “Delay-dependent exponen-
tial stability analysis for discrete-time switched neural networks
with time-varying delay,” Neurocomputing, vol. 74, no. 10, pp.
1626–1631, 2011.

[8] P. Balasubramaniam andG. Nagamani, “Global robust passivity
analysis for stochastic fuzzy interval neural networks with time-
varying delays,” Expert Systems with Applications, vol. 39, no. 1,
pp. 732–742, 2012.

[9] X. Luan, F. Liu, andP. Shi, “Neural network based stochastic opt-
imal control for nonlinearMarkov jump systems,” International
Journal of Innovative Computing, Information and Control, vol.
6, no. 8, pp. 3715–3724, 2010.

[10] R.Mei,Q.-X.Wu, andC.-S. Jiang, “Neural network robust adap-
tive control for a class of time delay uncertain nonlinear sys-
tems,” International Journal of Innovative Computing, Informa-
tion and Control, vol. 6, no. 3, pp. 931–940, 2010.



8 Abstract and Applied Analysis

[11] Z.-G. Wu, P. Shi, H. Su, and J. Chu, “Passivity analysis for discr-
ete-time stochastic markovian jump neural networks with
mixed time delays,” IEEE Transactions on Neural Networks, vol.
22, no. 10, pp. 1566–1575, 2011.

[12] D. Zhang and L. Yu, “Passivity analysis for stochasticMarkovian
switching genetic regulatory networks with time-varying
delays,” Communications in Nonlinear Science and Numerical
Simulation, vol. 16, no. 8, pp. 2985–2992, 2011.

[13] Z. Wu, P. Shi, H. Su, and J. Chu, “Stochastic synchronization of
Markovian jump neural networks with time-varying delay
using sampled-data,” IEEE Transactions on Cybernetics, vol. 43,
no. 6, pp. 1796–1806, 2013.

[14] H. Dong, Z. Wang, and H. Gao, “Fault detection for Markovian
jump systems with sensor saturations and randomly varying
nonlinearities,” IEEE Transactions on Circuits and Systems I, vol.
59, no. 10, pp. 2354–2362, 2012.

[15] Z. Wang, Y. Liu, and X. Liu, “Exponential stabilization of a class
of stochastic system with Markovian jump parameters and
mode-dependent mixed time-delays,” IEEE Transactions on
Automatic Control, vol. 55, no. 7, pp. 1656–1662, 2010.

[16] Z. Wu, H. Su, and J. Chu, “State estimation for discrete Marko-
vian jumping neural networks with time delay,” Neurocomput-
ing, vol. 73, no. 10–12, pp. 2247–2254, 2010.

[17] Q. Zhu and J. Cao, “Robust exponential stability of markovian
jump impulsive stochastic Cohen-Grossberg neural networks
withmixed time delays,” IEEE Transactions onNeural Networks,
vol. 21, no. 8, pp. 1314–1325, 2010.

[18] H. Shen, S. Xu, J. Lu, and J. Zhou, “Passivity-based control for
uncertain stochastic jumping systems with mode-dependent
round-trip time delays,” Journal of the Franklin Institute, vol.
349, no. 5, pp. 1665–1680, 2012.

[19] L. Zhang and E.-K. Boukas, “Stability and stabilization ofMark-
ovian jump linear systems with partly unknown transition pro-
babilities,” Automatica, vol. 45, no. 2, pp. 463–468, 2009.

[20] L. Zhang and E.-K. Boukas, “Mode-dependent𝐻
∞
filtering for

discrete-time Markovian jump linear systems with partly
unknown transition probabilities,” Automatica, vol. 45, no. 6,
pp. 1462–1467, 2009.

[21] H. Dong, Z.Wang, and H. Gao, “Distributed filtering for a class
of time-varying systems over sensor networkswith quantization
errors and successive packet dropouts,” IEEE Transactions on
Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.

[22] H. Dong, Z.Wang, andH. Gao, “DistributedH-infinity filtering
for a class of Markovian jump nonlinear time-delay systems
over lossy sensor networks,” IEEE Transactions on Industrial
Elecronics, vol. 60, no. 10, pp. 4665–4672, 2013.

[23] H. Shen, S. Xu, J. Zhou, and J. Lu, “Fuzzy 𝐻
∞

filtering for
nonlinearMarkovian jump neutral systems,” International Jour-
nal of Systems Science, vol. 42, no. 5, pp. 767–780, 2011.

[24] Z. Zuo, H. Li, Y. Liu, and Y. Wang, “On finite-time stochastic
stability and stabilization ofMarkovian jump systems subject to
partial information on transition probabilities,” Circuits, Sys-
tems, and Signal Processing, vol. 31, no. 6, pp. 1973–1983, 2012.

[25] W. Xiang and J. Xiao, “𝐻
∞
finite-time control for switched non-

linear discrete-time systems with norm-bounded disturbance,”
Journal of the Franklin Institute, vol. 348, no. 2, pp. 331–352, 2011.

[26] L. Zhu, Y. Shen, and C. Li, “Finite-time control of discrete-time
systems with time-varying exogenous disturbance,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 14,
no. 2, pp. 361–370, 2009.

[27] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization
of a class of uncertain nonlinear systems,” Automatica, vol. 41,
no. 5, pp. 881–888, 2005.

[28] C. Qian and J. Li, “Global finite-time stabilization by output
feedback for planar systems without observable linearization,”
IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 885–
890, 2005.

[29] J. Cheng, H. Zhu, S. Zhong, Y. Zeng, and L. Hou, “Finite-time
H-infinity filtering for a class of discrete-time Markovian jump
systems with partly unknown transition probabilities,” Interna-
tional Journal of Adaptive Control and Signal Processing, 2013.

[30] S. He and F. Liu, “Stochastic finite-time boundedness of Mark-
ovian jumping neural network with uncertain transition prob-
abilities,” Applied Mathematical Modelling, vol. 35, no. 6, pp.
2631–2638, 2011.

[31] H. Song, L. Yu, D. Zhang, and W.-A. Zhang, “Finite-time 𝐻
∞

control for a class of discrete-time switched time-delay systems
with quantized feedback,”Communications in Nonlinear Science
and Numerical Simulation, vol. 17, no. 12, pp. 4802–4814, 2012.

[32] Y. Yang, J. Li, and G. Chen, “Finite-time stability and stabiliza-
tion of Markovian switching stochastic systems with impulsive
effects,” Journal of Systems Engineering and Electronics, vol. 21,
no. 2, pp. 254–260, 2010.

[33] S. He and F. Liu, “Finite-time boundedness of uncertain time-
delayed neural network with Markovian jumping parameters,”
Neurocomputing, vol. 103, pp. 87–92, 2013.

[34] X. Luan, F. Liu, and P. Shi, “Finite-time filtering for non-linear
stochastic systems with partially known transition jump rates,”
IET Control Theory & Applications, vol. 4, no. 5, pp. 735–745,
2010.

[35] F. Amato, M. Ariola, and C. Cosentino, “Finite-time control of
discrete-time linear systems: analysis and design conditions,”
Automatica, vol. 46, no. 5, pp. 919–924, 2010.

[36] J. Cheng, H. Zhu, S. Zhong, Y. Zhang, and Y. Li, “Finite-timeH-
infinity control for a class of discrete-timeMarkov jump systems
with partly unknown time-varying transition probabilities sub-
ject to average dwell time switching,” International Journal of
Systems Science, 2013.

[37] J. Cheng, H. Zhu, S. Zhong, F. Zheng, and K. Shi, “Finite-time
boundedness of a class of discrete-time Markovian jump sys-
tems with piecewise-constant transition probabilities subject to
average dwell time switching,” Canadian Journal of Physics, vol.
91, pp. 1–9, 2013.

[38] J. Cheng, H. Zhu, S. Zhong, Y. Zeng, and X. Dong, “Finite-time
H-infinity control for a class of Markovian jump systems
with mode-dependent time-varying delays via new Lyapunov
functionals,” ISA Transactions, vol. 52, pp. 768–774, 2013.

[39] X. Lin, H. Du, and S. Li, “Finite-time boundedness and 𝐿
2
-

gain analysis for switched delay systems with norm-bounded
disturbance,” Applied Mathematics and Computation, vol. 217,
no. 12, pp. 5982–5993, 2011.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 453689, 13 pages
http://dx.doi.org/10.1155/2013/453689

Research Article
Cascading Dynamics of Heterogenous Scale-Free Networks with
Recovery Mechanism

Shudong Li,1,2 Zhongtian Jia,3 Aiping Li,2 Lixiang Li,4 Xinran Liu,5 and Yixian Yang4

1 College of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China
2 School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, China
3 Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
4 Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China
5 National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China

Correspondence should be addressed to Shudong Li; leeshudong79@163.com

Received 11 November 2013; Accepted 6 December 2013

Academic Editor: Shuping He

Copyright © 2013 Shudong Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In network security, how to use efficient response methods against cascading failures of complex networks is very important. In
this paper, concerned with the highest-load attack (HL) and random attack (RA) on one edge, we define five kinds of weighting
strategies to assign the external resources for recovering the edges fromcascading failures in heterogeneous scale-free (SF) networks.
The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading
failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve
the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures
in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and
the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our
findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading
failures in the real-world networks.

1. Introduction

The robustness properties of complex networks subject
to either random breakdown or intentional attacks have
attracted considerable interest [1, 2], due to the blackouts
in US power grids [3, 4], the large-scale congestion in the
Internet [5], and the electrical blackout in Italy [6]. These
accidents have threatened the network safety and resulted in
enormous loss in economy.

As a result, many issues have been investigated carefully,
including the robustness of the topological structure of net-
works [7–11], the description of cascading phenomenon and
transition [12], the protection strategies against cascade [13–
18], the cost of attack and defense [19, 20], and the reliability
metrics of networks [21, 22]. In addition, the vulnerability of
the real-world networks has become an important topic in the
design of engineering safety [23, 24]. The cascading failure in
power systems [25, 26] and the attacks in computer networks

[27] have attracted more consideration. Some researches
focus on the stability analysis for the uncertain systems [28–
30] and the analysis of cyberphysical networking systems
[31]. Especially, the robustness and cascading failures in
interdependent networks [32–35] have become a hot topic for
the past few years. Also, traffic bound [36], traffic delay [37],
and the control systems of heavy inputs and delay systems
[38, 39] are considered carefully.

The cascading failures [35, 40], which originate very
locally but often result in a global collapse, have become one
of the hottest topics in network safety. On the one hand, by
characterizing the load on nodes, the considerable cascading
models under the attacks on nodes have been presented. The
conditions of the global cascade are explored [40, 41], where
every node is assumed to have the same capacity [41]. The
influence of the removal of nodes on reducing the efficiency
of networks is investigated [42]. The cascading failures of the
North American power grid under the loss of nodes [43]
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and the cascading failures induced by flux fluctuations [44]
are also probed. On the other hand, the cascading dynamics
induced by the edge-based attacks have also been probed.
These researches focus on the cascading model by assigning
the load and adopting a local load redistribution to edges
[45, 46] and the model that the overloaded edges break down
with some probability [47]. The size of cascade and the cost
of investment under the removal of targeted edges [48] and
the cascade by adopting theOhw’ andKirchhoff conservation
law [49] are also probed.

However, once the cascading failures emerged, the impor-
tant question is concerned with the efficient response to
disasters. In real-world networks, there always exists some
emergency mechanism or “recovery mechanism” that can
be regarded as the coming external resources (e.g., man-
power, number of vehicles) into networks, which recovers
the overloaded components to the normal state. For example,
police could deal with the emergent accidents or chaos in
roads and the technical experts could handle the breakdown
and repair the components damaged in technical networks,
such as the electric power system and the Internet network.
These accidents or breakdown can be caused by the natural
events (earthquakes, floods, or extreme weather) or the
intentional attacks. Such recovery mechanism can effectively
counteract the overload and relieve the stress, which could
make the edges or nodes from “overloaded” to “congestion”
(the midstate) and maybe to “normal.” Yet this recovery
mechanism has not been considered in previous works.
Therefore, it is important to investigate the influence of
the recovery mechanism on increasing the robustness of
the networks against cascading failures, especially for the
network safety. We argue that probing this question will
give us important implications in using efficient strategy
to deal with the disasters happening in real-world net-
works.

In this paper, induced by highest-load attack (HL) and
random attack (RA) on one edge, we study the cascading
dynamics of the heterogeneous scale-free (SF) network with
recovery mechanism that is represented by the external
resources 𝜏 entering into SF network. Our novel model
defines four kinds of weighing strategies to assign the external
resource to the edges for recovering the networks from
cascading failures. The influence of 𝜏, the tolerance param-
eter 𝛼, and the different weighting strategies on improving
the robustness against cascading failures in SF networks is
investigated. We find that, firstly, under intentional attack,
the fourth weighing method can more effectively decrease
the number of avalanched edges, reduce the spreading speed
of cascading failures, and control the outburst of cascading
failures in SF networks than other methods. Secondly, as the
most efficient strategy under intentional attack, the fourth
weighting method needs to compute the betweenness cen-
trality of nodes, which implies that the topological structure
of SF networks is needed. Therefore, the third weighting
method will be optimal if we only knew the local structure
of network (namely, the degree of nodes). On the other
hand, as an example in real-world networks, the simulation
of the autonomous system in the Internet with scale-free
characteristics also shows the same results of SF network

model. It means that the simulation of real-world networks
supports our findings.

The rest of this paper is organized as follows. Section 2
develops the novel model of cascading dynamics with
recovery mechanism under edge-based attack, in which the
external resource is assigned to the links according to the
weight of links in SF network. In Section 3, we describe four
kinds of weighting strategies to measure the weight of the
links in SF networks. In Section 4, we compare the influence
of four kinds of weighting strategies on the robustness of SF
network against cascading failures and analyze the results of
our simulations. Section 5 summarizes the most important
findings and offers the future research.

2. The Cascading Dynamics with
Recovery Mechanism

In this section, we focus on the development of cascading
model on the weighted scale-free network subject to random
and intentional attack on one edge.

Since many real-world networks have been observed to
have a typical power-law degree distribution 𝑃(𝑘) ∝ 𝑘

−𝛾 (𝛾
is the scale exponent), the vulnerability and the robustness
of such scale-free networks (SF) under attacks have been
an important problem in studying the cascading failures of
complex networks [10, 40, 45–47, 50].

Therefore, in this paper, we focus on the cascading
dynamics of the Barabási-Albert scale-free network model
generated according to the rule of growth and preferential
attachment [50]. On the other hand, The large-scale conges-
tion in the Internet has drawn attention to the robustness of
the autonomous system (AS) [5]. Therefore, as an example
in the real-world networks, considering that the autonomous
system (AS) formed by the graph of routers comprising the
Internet from the BGP (Border Gateway Protocol) logs has
been observed to showpower-law degree distribution [51], we
also focus on the autonomous system (AS) defined as AS1470
which has 1470 nodes and 3997 edges and the mean degree
⟨𝑘⟩ ≈ 4.26. Here, we define the adjacent matrix of network
considered as 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

, where 𝑎
𝑖𝑗
= 1 if the node 𝑖 links

to the node 𝑗; otherwise 𝑎
𝑖𝑗
= 0. We denote 𝑤

𝑖𝑗
as the weight

of the edge 𝑒
𝑖𝑗
in network.

Generally, the development of cascading model is based
on the following three factors: the definition of the original
load, the correlation between the original load and the
capacity, and the dynamical redistribution of load after the
attacks. Similarly, the cascading dynamics in this paper is
modeled as follows.

(1) The original load on the edge 𝑒
𝑖𝑗
: in many physi-

cal network structures, the physical flows (data packets or
energy) are always forwarded along the edges according to the
shortest path routing strategy. For a given pair of nodes (𝑚, 𝑛),
the flows are transmitted along the shortest paths connecting
them; maybe there exist some shortest paths through the
edge 𝑒

𝑖𝑗
. Therefore, it is natural to define the total number of

shortest paths passing through 𝑒
𝑖𝑗
between any pair of nodes

in a network as the load on 𝑒
𝑖𝑗
. Naturally, for our weighted

SF network, the load 𝐿
𝑖𝑗
(𝑡) on the edge 𝑒

𝑖𝑗
at time 𝑡 is defined
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as the number of the shortest paths through it (𝑡 = 0 means
the initial load 𝐿

𝑖𝑗
(0) before attack). Now we assume that the

original load on 𝑒
𝑖𝑗
is 𝐿
𝑖𝑗
(0).

(2) The capacity 𝐶
𝑖𝑗
of the edge 𝑒

𝑖𝑗
: we suppose that 𝐶

𝑖𝑗

is the maximum load that an edge 𝑒
𝑖𝑗
could handle and is

proportional to the initial load 𝐿
𝑖𝑗
(0); that is,

𝐶
𝑖𝑗
= (1 + 𝛼) 𝐿

𝑖𝑗
(0) , ∀𝑖𝑗, (1)

where 𝛼 ≥ 0 is the tolerance parameter. The higher 𝛼 means
that the edge has the higher capacity and the higher ability
against failures. Also, it is rational in designing the real-world
networks including power grids and the Internet, because the
capacity of the links in these networks is always limited by the
cost.

Inmost of the previousmodels, there were only two states
assigned to a node or edge: normal or overloaded; besides
the node or edge would break down (i.e., overloaded) once
the load on them exceeded their capacity. However, in real-
world networks, there exists some emergency mechanism
that will handle the congestion state, relieve the pressure on
them, and thus reduce the probability of the overload. For
example, in transportation networks, the external resources
(such as manpower or vehicles) will come to deal with the
emergent events and recover the road from the “congested or
overloaded” road to the “normal” state. Therefore, we assign
a recovery rate 𝜏

𝑖𝑗
to every edge 𝑒

𝑖𝑗
and assume that the

threshold 𝐶∗
𝑖𝑗
is the upper bound load on 𝑒

𝑖𝑗
in normal state.

Naturally, we define

𝜏
𝑖𝑗
=

1 + (𝑤
𝑖𝑗
/∑ 1≤𝑖<𝑗≤𝑁 𝑤𝑖𝑗

) ⋅ 𝜏

10

,
(2)

𝐶
∗

𝑖𝑗
= (1 + 𝛼 ⋅ 𝜏

𝑖𝑗
) 𝐿
𝑖𝑗
(0) , ∀𝑖𝑗, (3)

where 𝑤
𝑖𝑗
is the weight of the edge 𝑒

𝑖𝑗
and 𝜏 is an adjustable

parameter which represents the external resources entering
into the network. Here we assume 𝜏 ≥ 1. When developing
(2) and (3), we required the following.

(i) We hope that the external resources 𝜏 enter into
the network according to the importance of the
edge 𝑒

𝑖𝑗
that is measured by the normalized weight

𝑤
𝑖𝑗
/∑ 1≤𝑖<𝑗≤𝑁 𝑤𝑖𝑗

. The recovery rate 𝜏
𝑖𝑗

should
increase monotonically with the increasing 𝜏. For
some 𝜏, the bigger 𝑤

𝑖𝑗
, the more external resources

are assigned to the edge 𝑒
𝑖𝑗
, and then the recovery

rate 𝜏
𝑖𝑗
can be closer to the upper bound (1 + 𝜏)/10.

(ii) We can control the parameter 𝜏 to adjust the recovery
rate 𝜏
𝑖𝑗
. When 𝜏 = 0, there is no external resource and

𝜏
𝑖𝑗
= 0.1 is the initial recovery rate.

(iii) We have 𝐶∗
𝑖𝑗
∝ 𝜏
𝑖𝑗
∝ 𝜏. The bigger 𝜏 is, the higher 𝜏

𝑖𝑗

is, and then the closer𝐶∗
𝑖𝑗
is to𝐶

𝑖𝑗
. It implies that, when

themore external resources entering into the network
are assigned to the edges, the more easily the links are
recovered from the abnormal to normal state.Namely,
the external resources have only positive effect on the
edge 𝑒

𝑖𝑗
.

Cij = (1+ 𝛼)Lij(0), ∀ij

Delete one single edge at t = 1

Compute Lij(t) for all edges in the largest component

Yes

No

End

Lij(t)

L

ij(t)

= (1 − 𝛽·𝜏ij)Lij(t)

(1 − 𝜏ij)Lij(t)

if Lij(t) < C
∗
ij,

if C∗
ij ≤ L


ij(t) < Cij,

if Cij ≤ L

ij(t)

Lij(t) < Cij, ∀ij

Delete the edge ij if Lij(t) > Cij

t ← t + 1

Figure 1: The evolving procedure of cascading failures in networks
with the external resource 𝜏.

We can find that such definition is rational in the actual
situations and highlights the protection of the important
edges. Of course, we can choose other functions of (2) and
(3) satisfying these conditions.

(3) The redistribution of load: when a few edges break
down, at some time 𝑡, we assume the temporary load on the
edge 𝑒

𝑖𝑗
as 𝐿
𝑖𝑗
(𝑡) after the redistribution of load. Then, the

edge 𝑒
𝑖𝑗
will get a number of external resources according to

(2) once the load on 𝑒
𝑖𝑗
exceeds the threshold 𝐶∗

𝑖𝑗
. It means

that the recovery rate 𝜏
𝑖𝑗
will work according to the degree of

𝐿


𝑖𝑗
(𝑡) exceeding the threshold𝐶∗

𝑖𝑗
. Finally, the true load 𝐿

𝑖𝑗
(𝑡)

on 𝑒
𝑖𝑗
becomes

𝐿
𝑖𝑗
(𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝐿


𝑖𝑗
(𝑡) if 𝐿

𝑖𝑗
(𝑡) < 𝐶

∗

𝑖𝑗
,

(1 − 𝛽 ⋅ 𝜏
𝑖𝑗
) 𝐿


𝑖𝑗
(𝑡) if 𝐶∗

𝑖𝑗
≤ 𝐿


𝑖𝑗
(𝑡) < 𝐶

𝑖𝑗
,

(1 − 𝜏
𝑖𝑗
) 𝐿


𝑖𝑗
(𝑡) if 𝐶

𝑖𝑗
≤ 𝐿


𝑖𝑗
(𝑡) ,

(4)

where 𝛽 = (𝐿


𝑖𝑗
(𝑡) − 𝐶

∗

𝑖𝑗
)/(𝐶
𝑖𝑗
− 𝐶
∗

𝑖𝑗
). In fact, in (4), the final

load 𝐿
𝑖𝑗
(𝑡) indicates the three states of edge 𝑒

𝑖𝑗
: normal (if

𝐿
𝑖𝑗
(𝑡) < 𝐶

∗

𝑖𝑗
); congestion (if 𝐶∗

𝑖𝑗
≤ 𝐿
𝑖𝑗
(𝑡) < 𝐶

𝑖𝑗
); overloaded

(if 𝐿
𝑖𝑗
(𝑡) ≥ 𝐶

𝑖𝑗
). 𝐶∗
𝑖𝑗
≤ 𝐿
𝑖𝑗
(𝑡) ≤ 𝐶

𝑖𝑗
means that the edge

deals with the load busily and still works; 𝐿
𝑖𝑗
(𝑡) ≥ 𝐶

𝑖𝑗
implies

that the edge 𝑒
𝑖𝑗
cannot handle the too high a load even with

the recovery mechanism, and as a result, the edge fails. Thus,
a larger 𝜏

𝑖𝑗
leads to the stronger ability to handle the load

on the edge, and finally the network will have the stronger
robustness, which is consistent with the actual situations in
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Figure 2: For SF network, after the cascade stops, the avalanche size AS as a function of 𝛼 for different strategies with (a) 𝜏 = 20 under HL
attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c) and (d) are averaged
over 20 runs.

many real-world networks.Generally, themore important the
edges are, the higher investment and the force are on them.

In (2), the external resource 𝜏 is assigned to the edge
𝑒
𝑖𝑗
according to the weight of 𝑒

𝑖𝑗
, so that (2) highlights the

protection of the important edges in SF network. However,
the external resources are limited and the higher 𝜏 represents
the higher cost for protection. Naturally, it is needed to
measure how important the edge is in order to find the
efficient response strategy against disasters. This will be
discussed in the following sections.

3. The Weighting Strategy

In the description of network characterization, the centrality
is significant for measuring the importance of an element

(node or edge) in studying cascading failures, which can
be used to measure the topological position of an element
in network. In this part, we will introduce four kinds of
weighting methods to measure the centrality of an edge 𝑒

𝑖𝑗
,

which is regarded as the weight 𝑤
𝑖𝑗
of 𝑒
𝑖𝑗
and can reflect the

importance of 𝑒
𝑖𝑗
in network.

(1) The weighting strategy 𝑤
(1)

𝑖𝑗
: in many real-world

networks, the flows are forwarded along the edge according to
the shortest path routing strategy.Thus, the edge betweenness
centrality is always used to measure the centrality of the edge
[52, 53], which is defined as

𝐵
𝑖𝑗
= ∑

𝑎 ̸= 𝑏

𝜎
𝑎𝑏
(𝑒
𝑖𝑗
)

𝜎
𝑎𝑏

, (5)
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Figure 3: For autonomous system network, after the cascade stops, the avalanche size AS as a function of 𝛼 for different strategies with (a)
𝜏 = 20 under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c)
and (d) are averaged over 20 runs.

where 𝜎
𝑎𝑏
(𝑒
𝑖𝑗
) is the number of the shortest paths between the

nodes 𝑎 and 𝑏 passing through the edge 𝑒
𝑖𝑗
. Then, we define

the weight of the edge 𝑒
𝑖𝑗
as

𝑤
(1)

𝑖𝑗
= 𝐵
𝑖𝑗
. (6)

(2)Theweighting strategy𝑤(2)
𝑖𝑗
: however, in real networks,

the edge centrality is always related to some intrinsic quality
of the end node of the edge. For example, in traffic networks,
the design of the highway or the airlines always depends on
the population or the economic development conditions (like
GDP) among cities.These intrinsic characteristics can be seen
as the quality of the node (city). The lines or roads connected
to the nodes (city) with high quality always have high edge

betweenness centrality, which have not been considered in
the previous models yet.

Thus we define a novel edge betweenness centrality of 𝑒
𝑖𝑗

as

𝐵


𝑖𝑗
= ∑

𝑎 ̸= 𝑏

∑
𝑘∈𝑃
𝑎𝑏
(𝑒
𝑖𝑗
)
𝑤
𝑘

∑
𝑘∈𝑃
𝑎𝑏

𝑤
𝑘

, (7)

where 𝑃
𝑎𝑏
is the set of all shortest paths between the nodes 𝑎

and 𝑏, 𝑃
𝑎𝑏
(𝑒
𝑖𝑗
) is the shortest paths between 𝑎 and 𝑏 passing

through the edge 𝑒
𝑖𝑗
, and 𝑤

𝑘
is the intrinsic quality of node

𝑘. (Here we choose the degree of node 𝑘 as 𝑤
𝑘
; of course,

one can choose other rational values.) Note that the definition
of 𝐵
𝑖𝑗
incorporates the intrinsic characteristics of nodes with

the network structure, which can better reflect the weight
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Figure 4: After the cascade stops, the spreading velocity 𝑉 of failures in SF network as a function of 𝛼 for different strategies with (a) 𝜏 = 20
under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c) and (d)
are averaged over 20 runs.

importance of edges in actual situations. Specially, (7) will
degenerate into the definition in (5) if every node has a
uniform intrinsic quality (𝑤

𝑘
= 1). Now we assume the

weight of the edge 𝑒
𝑖𝑗
as

𝑤
(2)

𝑖𝑗
= 𝐵


𝑖𝑗
. (8)

(3) The weighting strategy 𝑤(3)
𝑖𝑗
: another centrality mea-

sure of the edge 𝑒
𝑖𝑗
is the product of the nodes degree of the

end node 𝑖 and 𝑗, which has been used to measure the weight
of the edge 𝑒

𝑖𝑗
[45, 46]; that is,

𝑤
(3)

𝑖𝑗
= (𝑘
𝑖
𝑘
𝑗
)

𝜃

, (9)

where 𝑘
𝑖
and 𝑘
𝑗
are the degrees of nodes 𝑖 and 𝑗, respectively.

Here we assume 𝜃 = 1.
(4) The weighting strategy 𝑤(4)

𝑖𝑗
: usually, the link is also

important when the end of a link is important;this is in
accordance with the real-world networks [45–47]. Moreover,
the importance of one end 𝑖 of a link 𝑒

𝑖𝑗
can be measured by

the node betweenness centrality [51, 53]; that is,

𝐵
𝑖
= ∑

𝑎 ̸= 𝑏

𝜎
𝑎𝑏
(𝑖)

𝜎
𝑎𝑏

, (10)

where 𝜎
𝑎𝑏
(𝑖) is the number of the shortest paths between the

nodes 𝑎 and 𝑏 passing through the node 𝑖. This motivated
the introduction of another weight measure for an edge.
Therefore, we assume that the weight of the edge 𝑒

𝑖𝑗
depends



Abstract and Applied Analysis 7

Sp
re

ad
in

g 
ve

lo
ci

ty
400

300

200

100

0
0 0.1 0.2 0.3

𝛼

(a)

Sp
re

ad
in

g 
ve

lo
ci

ty

250

150

50

0

200

100

0 0.1 0.2 0.3
𝛼

(b)

Sp
re

ad
in

g 
ve

lo
ci

ty

30

20

10

0

0 0.1 0.2 0.3
𝛼

w
(1)

ij

w
(2)

ij

w
(3)

ij

w
(4)

ij

Uniform

(c)

Sp
re

ad
in

g 
ve

lo
ci

ty
6

4

2

0

0 0.1 0.2 0.3
𝛼

w
(1)

ij

w
(2)

ij

w
(3)

ij

w
(4)

ij

Uniform

(d)

Figure 5: After the cascade stops, the spreading velocity𝑉 of failures in autonomous system network as a function of 𝛼 for different strategies
with (a) 𝜏 = 20 under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively.
Here (c) and (d) are averaged over 20 runs.

on the product of betweenness centrality of the end nodes 𝑖
and 𝑗, which is defined as

𝑤
(4)

𝑖𝑗
= (𝐵
𝑖
𝐵
𝑗
)

𝜃

. (11)

Here we assume 𝜃 = 1.
(5) The uniform strategy: finally, we should note that the

SF network considered will become an unweighted network
if every edge has the uniform weight (e.t., 𝑤

𝑖𝑗
= 1). It means

that every edge 𝑒
𝑖𝑗
will get the uniform external resource

according to (2). We defined this strategy as the uniform
assignment strategy.

Now one can see that the external resource 𝜏, the different
weighting methods𝑤

𝑖𝑗
, and the tolerance parameter 𝛼 would

have great influence on the robustness of SF network subject

to attacks on edges. This will be discussed in the following
sections.

4. The Simulation and Analysis

In this paper, we mainly consider two kinds of attacks on
one edge 𝑒

𝑖𝑗
. (1) Highest-load attack (HL): we remove one

edge with the highest initial load; (2) random attack (RA):
we randomly choose one edge 𝑒

𝑖𝑗
and then remove it. The

attack originates from the removal of one edge and leads
to the redistribution of load on other edges, and then some
of them would fail as the load exceeds the capacity. This
process is repeated until no edge fails, and at this moment,
the cascade can be considered to be completed. Thus, the
cascading process with the recovery mechanism 𝜏 under



8 Abstract and Applied Analysis

Av
al

an
ch

e s
iz

e

Time

500

400

300

200

100

0 5 10 15 20
0

(a)

Av
al

an
ch

e s
iz

e

600

400

200

0

Time
0 5 10 15 20

(b)

Time
0 5 10 15 20

Av
al

an
ch

e s
iz

e

400

300

200

100

0

w
(1)

ij

w
(2)

ij

w
(3)

ij

w
(4)

ij

(c)

Time
0 5 10 15 20

Av
al

an
ch

e s
iz

e

300

200

100

0

w
(1)

ij

w
(2)

ij

w
(3)

ij

w
(4)

ij

(d)

Figure 6: For SF network with 𝜏 = 20 under HL attack, the avalanche size 𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for (a) 𝛼 = 0.02, (b)
𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

edge-based attacks can be described in Figure 1. Now, in the
following section, we will reveal the function of the recovery
mechanism on the network robustness against cascading
failures from three aspects: improving the integral robustness,
controlling the spreading velocity of cascading failures, and
controlling the burst of cascading failures.

4.1. Improving the Integral Robustness against Cascading
Failures. Now, in the first part of this section, we focus
on the function of the recovery mechanism on improving
the robustness of the heterogeneous scale-free network (SF)
against cascading failures, which is quantified by the follow-
ing metrics: the avalanche size (AS) after cascade failures
which is defined as follows:

AS =
∑
𝑡
𝑁ae (𝑡)

𝑁
𝑒
− 1

, (12)

where𝑁ae(𝑡) and𝑁𝑒 are the number of the avalanched edges
at each time step 𝑡 under attack and the total number of edges

in initial networks, respectively. From (12), we can see that the
metric AS can be regarded as a function of 𝛼 and 𝜏, and then
AS could quantify the integral robustness of structure against
cascading failures.

From Figures 2(a) and 2(b), it is clear that, for SF network
model and the autonomous system network AS1470 subject
to HL attack, as the external resources 𝜏 are assigned to the
edges according to the weighting method 𝑤

(4)

𝑖𝑗
, it could be

better at decreasing the avalanche size (AS) thus improving
the integrity of SF networks than other strategies. Especially,
the effect is obvious for smaller tolerance parameter 𝛼 (𝛼 <

0.2) and more external resources (𝜏 = 100). For example,
as 𝛼 = 0.04 and 𝜏 = 20, the weighting method 𝑤(4)

𝑖𝑗
could

decrease the avalanche size AS from about 0.71 to 0.3 (see
the arrow in Figure 2(a)). The simulations of the real-world
networks (AS1470) have proved these findings (see Figures
3(a) and 3(b)). Moreover, as shown in Figures 2(b) and 3(b),
the weighting method 𝑤

(3)

𝑖𝑗
is suboptimal and the uniform
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Figure 7: For SF network with 𝜏 = 100 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for (a) 𝛼 = 0.02, (b)
𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

method (𝑤
𝑖𝑗

= 1) is the worst. Although the weighting
method 𝑤(4)

𝑖𝑗
is optimal, it depends on the betweenness cen-

trality of the nodes that needs to know the whole topological
structure of SF network from (11). It implies that the third
weighting strategy 𝑤(3)

𝑖𝑗
is suggested if we only knew the local

structure of networks, such as the degree of nodes.
On the other hand, as shown in Figures 2(c), 2(d), 3(c),

and 3(d), under RA attack, the difference among the four
kinds of weighting strategies is not clear if with fewer external
resource (e.g., 𝜏 = 20). But, as 𝛼 ≥ 0.1, it seems that the
second weighting strategy 𝑤(2)

𝑖𝑗
and the uniform assignment

strategy (𝑤
𝑖𝑗

= 1) are optimal if with sufficient external
resource (e.g., 𝜏 = 100).

4.2. Controlling the Spreading Velocity of Cascading Failures.
In the second part of this section, to further measure how

efficient the different weighting strategies are in response to
the cascading failures in SF network, we will explore the
spreading velocity of cascading failures, which is computed
by 𝑉:

𝑉 =

∑
𝑡
𝑁ae (𝑡)

𝑇

, (13)

where 𝑁ae(𝑡) is the number of the avalanched edges at each
time step 𝑡 under attacks and 𝑇 is the evolving time step of
cascading propagation in networks (see Figure 1).

As shown in Figures 4(a), 4(b), 5(a), and 5(b), under
HL attack, the weighing method 𝑤

(4)

𝑖𝑗
can obviously reduce

the spreading velocity of cascading failures in both the
SF network model and AS1470 network, regardless of the
quantity of external resources 𝜏. Moreover, the third weight-
ing method 𝑤

(3)

𝑖𝑗
is suboptimal if having more resources
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Figure 8: For autonomous system network with 𝜏 = 20 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for
(a) 𝛼 = 0.02, (b) 𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

(e.g., 𝜏 = 100). It reveals that, under HL attack, the external
resource assigned to edges according to the method 𝑤

(4)

𝑖𝑗

can control the spreading speed 𝑉 of cascading failures in
heterogeneous scale-free networks more efficiently.

4.3. Controlling the Process of Cascading Failures. In the
previous two parts of this section, the function of different
weighting methods on improving the robustness of networks
against cascading failures has been shown. However, another
question that whether the weighting methods could control
the outbreak of cascading failures also should be considered.
In this part of this section, we focus on controlling the process
of cascading failures in networks and plot the avalanche size
𝑁ae(𝑡) in each time step 𝑡 under HL attack to explore this
question.

As shown in Figures 6 and 7, under HL attack with
different tolerance parameters 𝛼 (𝛼 = 0.02, 0.04, 0.06,
and 0.08), we can see that the weighting method 𝑤

(4)

𝑖𝑗
can

more effectively control the outburst of cascading failures
in SF network model than other methods. Especially, with
more external resources (𝜏 = 100), the more obviously can
𝑤
(4)

𝑖𝑗
reduce the peak of cascading failures (see Figure 7).

Moreover, the simulations of the autonomous system AS1470
also show the similar findings (see Figures 8 and 9).

5. Conclusion

In this paper, we study the cascading dynamics of heteroge-
neous scale-free (SF) network with the recovery mechanism
subject to edge-based attack. The recovery mechanism is
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Figure 9: For autonomous system network with 𝜏 = 100 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for
(a) 𝛼 = 0.02, (b) 𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

represented by the external resources 𝜏 that are distributed
to the edge 𝑒

𝑖𝑗
according to five kinds of weighting strategies:

𝑤
(1)

𝑖𝑗
, 𝑤(2)
𝑖𝑗
, 𝑤(3)
𝑖𝑗
, 𝑤(4)
𝑖𝑗
, and the uniform strategy. We mainly

investigate the influence of 𝜏 and different weighting strate-
gies on the cascading dynamics of SF networks subject to
intentional attack and random breakdown. On the whole, the
main contributions of this paper are listed as follows.

(1) Under intentional attack, 𝑤(4)
𝑖𝑗

is the most efficient
response strategy against cascading failures in SF
networks, which can obviously improve the inte-
gral robustness, simultaneously reduce the spreading
speed, and control the outbreak of cascading fail-
ures in SF networks. Especially, the more external
resources are, the more efficient 𝑤(4)

𝑖𝑗
is. The uniform

assignment strategy is the worst strategy.

(2) Although the method 𝑤
(4)

𝑖𝑗
is optimal, it needs to

compute the betweenness centrality of node that
depends on the whole structure of networks. There-
fore, 𝑤(3)

𝑖𝑗
will be optimal if we only knew the local

structure of SF network (e.g., the degree of nodes).
The simulations of autonomous system network have
proved these results. However, the recent research
[54] has shown that, the node betweenness centrality
can be approximately estimated by using the local
information of nodes in order to reduce the computa-
tional complexity in large networks. This implies that
the weighting method 𝑤(4)

𝑖𝑗
defined in this paper has

great significance in the protection of actual scale-free
networks.

(3) Under random breakdown, although the difference
among the five kinds of weighting methods is not
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clear in terms of the protection result against cascad-
ing effect, the uniform assignment strategy (𝑤

𝑖𝑗
= 1)

can better decrease the spreading velocity of failures
in SF network than other strategies.

The results remind us to take different actions on han-
dling and controlling the emergent disasters in heteroge-
neous SF networks. Here we just highlight the protection of
the important links. Our approach makes contributions to
understanding the dynamics of disaster spreading and pro-
vides some possible countermeasures to control the disasters
and finally to repair the system damaged.
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of networks with and without weights and direction: the
economics of iterated attack and defense,” Computer Networks,
vol. 5, no. 1, pp. 119–130, 2011.

[21] M.Ouyang, L.Hong, Z.-J.Mao,M.-H. Yu, and F.Qi, “Amethod-
ological approach to analyze vulnerability of interdependent
infrastructures,” Simulation Modelling Practice and Theory, vol.
17, pp. 817–828, 2009.

[22] I. Mishkovski, M. Biey, and L. Kocarev, “Vulnerability of
complex networks,” Communications in Nonlinear Science and
Numerical Simulation, vol. 16, no. 1, pp. 341–349, 2011.

[23] E. Bompard, D. Wu, and F. Xue, “Structural vulnerability of
power systems: a topological approach,” Electric Power Systems
Research, vol. 81, no. 7, pp. 1334–1340, 2011.

[24] M. Babaei, H. Ghassemieh, and M. Jalili, “Cascading failure
tolerance of modular small-world networks,” IEEE Transactions
on Circuits and Systems II, vol. 58, no. 8, pp. 527–531, 2011.

[25] J.-W. Wang and L. Rong, “Robustness of the western United
States power grid under edge attack strategies due to cascading
failures,” Safety Science, vol. 49, pp. 807–812, 2011.

[26] H. Ren and I. Dobson, “Using transmission line outage data
to estimate cascading failure propagation in an electric power
system,” IEEE Transactions on Circuits and Systems Part II, vol.
55, no. 9, pp. 927–931, 2008.

[27] B. K. Mishra and A. K. Singh, “Two quarantine models on the
attack ofmalicious objects in computer network,”Mathematical
Problems in Engineering, vol. 2012, Article ID 407064, 13 pages,
2012.

[28] M.-G. Hua, P. Cheng, J.-T. Fei, J.-Y. Zhang, and J.-F. Chen,
“Network-based robust 𝐻

∞
filtering for the uncertain systems

with sensor failures and noise disturbance,”Mathematical Prob-
lems in Engineering, vol. 2012, Article ID 945271, 19 pages, 2012.



Abstract and Applied Analysis 13

[29] M. Li and W. Zhao, “On 1/𝑓 noise,” Mathematical Problems in
Engineering, vol. 2012, Article ID 673648, 23 pages, 2012.

[30] M. Li, “Fractal time series—a tutorial review,” Mathematical
Problems in Engineering, vol. 2010, Article ID 157264, 26 pages,
2010.

[31] M. Li and W. Zhao, “Visiting power laws in cyber-physical
networking systems,” Mathematical Problems in Engineering,
vol. 2012, Article ID 302786, 13 pages, 2012.

[32] R. Parshani, S. V. Buldyrev, and S. Havlin, “Critical effect of
dependency groups on the function of networks,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 108, no. 3, pp. 1007–1010, 2011.

[33] J.-X. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “Networks
formed from interdependent networks,” Nature Physics, vol. 8,
no. 1, pp. 40–48, 2012.

[34] X. Q. Huang, J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
“Robustness of interdependent networks under targeted attack,”
Physical Review E, vol. 83, no. 6, Article ID 065101, 2011.

[35] W. Li, A. Bashan, S. V. Buldyrev et al., “Cascading failures in
interdependent lattice networks: the critical role of the length
of dependency links,” Physical Review Letters, vol. 108, Article
ID 228702, 2012.

[36] M. Li and W. Zhao, “Representation of a stochastic traffic
bound,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 9, pp. 1368–1372, 2010.

[37] M. Li, W. Zhao, and C. Cattani, “Delay bound: fractal traffic
passes through servers,”Mathematical Problems in Engineering,
vol. 2013, Article ID 157636, 15 pages, 2013.

[38] S. He, Z. Ding, and F. Liu, “Output regulation of a class of
continuous-time Markovian jumping systems,” Signal Process-
ing, vol. 93, no. 2, pp. 411–419, 2013.

[39] S. He and F. Liu, “Finite-time 𝐻
∞

control of nonlinear jump
systems with time-delays via dynamic observer-based state
feedback,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 4,
pp. 605–614, 2012.

[40] A. E. Motter and Y.-C. Lai, “Cascade-based attacks on complex
networks,” Physical Review E, vol. 66, no. 6, Article ID 065102,
2002.

[41] F. Holme and B. J. Kim, “Vertex overload breakdown in evolving
networks,” Physical Review E, vol. 65, no. 6, Article ID 066109,
2002.

[42] P. Crucitti, V. Latora, and M. Marchiori, “Model for cascading
failures in complex networks,” Physical Review E, vol. 69, Article
ID 045104, 4 pages, 2004.

[43] R. Kinney, P. Crucitti, R. Albert, and V. Latora, “Modeling
cascading failures in theNorthAmerican power grid,”European
Physical Journal B, vol. 46, no. 1, pp. 101–107, 2005.

[44] D. Heide, M. Schafer, and M. Greiner, “Robustness of networks
against fluctuation-induced cascading failures,” Physical Review
E, vol. 77, no. 5, Article ID 056103, 2008.

[45] W.-X. Wang and G.-R. Chen, “Universal robustness character-
istic of weighted networks against cascading failure,” Physical
Review E, vol. 77, no. 2, Article ID 026101, 2008.

[46] B.Mirzasoleiman,M. Babaei,M. Jalili, andM. Safari, “Cascaded
failures in weighted networks,” Physical Review E, vol. 84, no. 4,
Article ID 046114, 2011.

[47] J.-W. Wang and L.-L. Rong, “A model for cascading failures in
scale-free networks with a breakdown probability,” Physica A,
vol. 388, no. 7, pp. 1289–1298, 2009.

[48] S. J. Qin, Y. Chen, and M. Yang, “A edge-based-attack robust
model of capacity for cascading failures,” in Proceedings of

the IEEE International Conference on Advanced Computer Con-
trol (ICACC ’10), pp. 136–139, March 2010.

[49] W.-X. Wang and Y.-C. Lai, “Abnormal cascading on complex
networks,” Physical Review E, vol. 80, no. 3, Article ID 036109,
2009.

[50] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,”AmericanAssociation for theAdvancement of Science,
vol. 286, no. 5439, pp. 509–512, 1999.

[51] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 177–
187, Chicago, Ill, USA, August 2005.

[52] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 99, no.
12, pp. 7821–7826, 2002.

[53] T. B. Hashimoto, M. Nagasaki, K. Kojima, and S. Miyano, “BFL:
a node and edge betweenness based fast layout algorithm for
large scale networks,” BMC Bioinformatics, vol. 10, article 19,
2009.

[54] M. Ercsey-Ravasz and Z. Toroczkai, “Centrality scaling in large
networks,” Physical Review Letters, vol. 105, no. 3, Article ID
038701, 2010.




