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The control problem of nonlinear systemswith applications is
general in the actual process and has attractedmany scholars’
attention owing to the wide applications in various fields such
as physics, mathematics, finance, and engineering.Therefore,
the analysis and synthesis of control problems play important
roles in many practical systems. The aim of this special issue
is to bring together the latest/innovative knowledge, analysis,
and synthesis of control problems of nonlinear systems. We
publish in this issue a number of state-of-the-art studies
on the topic that span the control problems in economics,
nonlinear control problems, nonlinear stability problems,
and control problems in chaotic systems.

For control problems in economics, W. Yu and Y. Huang
investigate a dependent insurance risk model with surrender
and investment under the thinning process. By the martin-
gale theory, the properties of the surplus process, adjustment
coefficient equation, the upper bound of ruin probability,
and explicit expression of ruin probability are obtained. X.
Zhou et al. provide a practical optimal reinsurance scheme
under particular conditions, with the goal of minimizing
total insurer risk, and explore the optimization of limited
stop-loss reinsurance under three risk measures: value at
risk (VaR), tail value at risk (TVaR), and conditional tail
expectation (CTE). Q. Liu et al. consider the decomposition
and decoupling analysis of energy-related carbon emissions
from China manufacturing. L. Xu et al. study the optimal
investment and consumption for an insurer with high-
watermark performance fee and the object of insurance com-
pany is to maximize the expected cumulated discount utility

up to ruin time. C. Chen et al. establish a posteriori error
estimate for finite volume element method of a second-order
hyperbolic equation. Residual-type a posteriori error esti-
mator is derived. The computable upper and lower bounds
on the error in the 𝐻

1
-norm are established. Numerical

experiments are provided to illustrate the performance of
the proposed estimator. H.-L. To et al. present a cascade
probability control scheme using margin optimal method to
address such challenges under different kinds of real-world
TCP stacks. Simulation results guarantee themeasured round
trip time tracking to a low value of delay.

On nonlinear control problems, M.-D. Tran and H.-
J. Kang present a high-performance nonsingular terminal
sliding mode control method for uncertain second-order
nonlinear systems. Y. Abe et al. propose a systematic numer-
ical method for designing robust nonlinear 𝐻

∞
controllers

without a priori low-dimensional approximationwith respect
to solutions of Hamilton-Jacobi equations. J. Yu et al. study
the global asymptotic stabilization control problem for a
class of nonlinear systems with input-to-state stable (ISS)
dynamic uncertainties and uncertain time-varying control
coefficients. Z. Wang and Z. Yan consider a three-stage
tracking control for the LED wafer transporting robot and
obtain a high order polynomial interpolation method to
plan the motion process of the LED wafer transporting
robot. D. I. R. Almeida et al. designed a strategy and
implemented a robust controller for a class of underactuated
mechanical systems, with two degrees of freedom, which
solves the problems of regulation and trajectory tracking.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 3137609, 2 pages
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L. Li et al. apply an unsupervised learning algorithm to learn
language-independent stroke feature and combine unsuper-
vised stroke feature learning together with automatically
multilayer feature extraction to improve the representational
power of text feature and develop a novel nonlinear network
based on traditional Convolutional Neural Network that
enables detecting multilingual text regions in the images.
Y.-C. Wang et al. present a unified approach to nonlinear
dynamic inversion control algorithm with the parameters for
desired dynamics determined by using an eigenvalue assign-
ment method. F. A. G. Becerra et al. investigate the optimal
controller and controller based on differential flatness in a
linear guide system: a performance comparison of indexes.
Z. Yao et al. studied the coordinated stability control of wind-
thermal hybrid AC/DC power system. A coordinated control
strategy for the wind-thermal hybrid AC/DC power system
is proposed and an experimental prototype is made. Z.-R.
Tsai and Y.-Z. Chang propose an adaptive control scheme
for nonlinear systems with significant nonminimum phase
dynamics.The scheme is composed of an inner-level adaptive
fuzzy PD control law and an outer-level supervisory control
law. C. He et al. address the development and application of
novel Prognostics andHealthManagement (PHM) technolo-
gies to a prototype machining process (a screw tightening
machine). The enabling technologies are built upon a series
of tasks starting with failure analysis, testing, and data
processing aimed at extracting useful features or condition
indicators from raw data, a symbolic regression modeling
framework, and a Bayesian estimationmethod called particle
filtering to predict the feature state estimate accurately. H.
Lou et al. propose a novel visual tracking algorithm based
on multifeature selection and sparse representation in order
to enhance the robustness of visual tracking algorithm in
complex environment. E. Kolsi-Gdoura et al. consider the
surface design as a case of virtual controller design using the
back-stepping method. P. Jiang et al. study the multivariable
fuzzy control basedmobile robot odor source localization via
semitensor product. Z. Wu et al. present an adaptive neural
control for the longitudinal dynamics of a morphing aircraft.
W. Sun et al. present 𝐻

∞
excitation control design problem

for power systems with input time delay and disturbances by
using nonlinear Hamiltonian system theory. S. ud Din et al.
present a robust control design for the class of underactuated
uncertain nonlinear systems. C. Gong et al. researched on
submarine straight-line track control underwater base on
nonlinear proportion differential.. M. C. Razali et al. studied
the singularly perturbationmethodwhich is applied tomulti-
variable PID controller design, found that the singularly per-
turbed system obtained by Naidu method can maintain the
originality of the system characteristics, and then designed
MPID controllers. It should be pointed out that the closed
loop performance andprocess interactionswere analyzed and
compared to see the effectiveness of the singularly perturbed
MPID control design.

On nonlinear stability problems, J. Chen investigates
the generalized Degasperis-Procesi equation with variable
coefficients and establishes the 𝐿

1
(R) stability of the strong

solution for the equation under certain assumptions. J. A.
Taborda and F. Angulo describe and prove a new method

to compute and control the basins of attraction in multi-
stability scenarios and guarantee monostability condition.
In particular, the basins of attraction are computed only
using a submap, and the coexistence of periodic solutions is
controlled through fixed-point inducting control technique,
which has been successfully used until now to stabilize
unstable periodic orbits. D. Xu et al. discuss the global
dynamics of a model involving an endemic equilibrium and a
disease-free equilibrium, respectively. V. Nosov et al. analyze
the stability of autonomous dynamical switched systems by
means of multiple Lyapunov functions and give the stability
theorems which have finite number of conditions to check. Y.
Tian et al. address the problem of exponential stabilization
of a class of time-varying delay systems with nonlinear
perturbations. J. Liu and Y. Yang investigated the limiting
distribution of the size of binary interval tree. M. De la Sen
and A. Ibeas investigated some boundedness and conver-
gence properties of sequences which are generated iteratively
through switched mappings defined on probabilistic metric
spaces as well as conditions of existence and uniqueness of
fixed points. Such switching mappings are built from a set of
primary self-mappings selected through switching laws. H.
Xu et al. studied the 𝐿

2
-gain analysis problem for a class of

discrete-time switched systems with time-varying delays. A
mode-dependent average dwell time (MDADT) approach is
applied to analyze the𝐿

2
-gain performance for these discrete-

time switched delay systems. H. Zhu et al. study the flow past
a pair of cylinders in tandem at Reynolds numbers of 1000
by Domain Decomposition Method by applying a parallel
computation.

Four papers on control problems in chaotic systems have
been published. T. H. Cortés et al. studied the complete syn-
chronization and the generalized synchronization problem
of the discrete-time chaotic fuzzy systems by means of fuzzy
output regulation using genetic algorithm. L. Ren and R. Guo
investigated the synchronization and antisynchronization for
a class of chaotic systems, and not only proposed a necessary
and sufficient condition to synchronize and antisynchro-
nize simultaneously the chaotic systems but also obtained
two methods to realize coexistence of synchronization and
antisynchronization in the chaotic systems, and give the
corresponding adaptive controllers. Z. Li et al. studied chao-
tification problem for a class of delay difference equations
by using the snap-back repeller theory and the feedback
control approach. L. Huang et al. investigate the design and
application in secure communication and image encryption
of a new Lorenz-like system with varying parameter. L.
Huang et al. proposed a new Lorenz-like chaotic system with
varying parameter by adding a state feedback function.

We hope these papers will be of help to readers in
furthering their exploratory research on control problem of
nonlinear systems with applications and related topics.

Rongwei Guo
H. G. Enjieu Kadji
Xinguang Zhang

Uchechukwu E. Vincent
Wenguang Yu
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A new Lorenz-like chaotic system with varying parameter is proposed by adding a state feedback function. The structure of the
new designed system is simple and has more complex dynamic behaviors. The chaos behavior of the new system is studied by
theoretical analysis and numerical simulation. And the bifurcation diagram shows a chaos-cycle-chaos evolution when the new
parameter changes. Then a new synchronization scheme by a single state variable drive is given based on the new system and a
chaotic parameter modulation digital secure communication system is also constructed.The results of simulation demonstrate that
the new proposed system could be well applied in secure communication. Otherwise, based on the new system, the encryption and
decryption of image could be achieved also.

1. Introduction

With the development of the mobile, PC, cloud computing,
the Internet of things, and wearable devices, the data-
intensive science such as big data [1] has become the main
topic of the technological reform. The most prominent
features of the big data are enormous volume of data, wide
variety of data types, lower value density, and faster process-
ing. But the big data has both advantages and disadvantages.
It brings great convenience to individuals and enterprises;
at the same time the data security is an urgent problem
to be solved. From the view of information security, the
traditional cryptography and secure communication model
can be cracked easily, so that great security risks exist in
the information system in every country. Therefore it is very
urgent to improve the information security technology for
the country and the enterprise in which the big data is main
stream.

Due to the characteristic of the long-term unpredictabil-
ity and extreme sensitivity to initial values, the chaos system
has been researched deeply in the secure communications
and the cryptography. Since Pecora and Carroll [2] first
proposed the master-slave synchronization method in 1990,

many synchronization types were presented, such as com-
plete synchronization [3], lag synchronization [4], general-
ized synchronization [5], modified projective synchroniza-
tion [6], modified function projective synchronization [7],
phase synchronization [8], and dislocation synchronization
[9]. Now more and more people paid their attention to
chaotic secure communication, and the research mainly
focuses on two aspects: one is to find a safer secure com-
munication scheme, such as chaotic masking [10, 11], chaotic
modulation [12], chaos shift keying [13], and chaos spreading
spectrum [14] and the other is to research chaotic systems
with a better encryption performance, such as fractional-
order chaotic systems [15, 16], time-delay chaotic systems [17],
complex chaotic system [18], and multiscroll chaotic systems
[19]. Kiani-B et al. [20] applied the fractional-order Kalman
filter in secure communications system. Mei [21] proposed
a new secure communication scheme based on uncertain
time-delay chaos system. Mahmoud et al. [22] researched the
projective synchronization for complex hyperchaotic system
and achieved secure communications with four-order com-
plex Lorenz system. In addition, other secure communication
schemes based on fractional-order [23], time-delay [24], and
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multiscroll [25] chaotic systems have been proposed also.
In the field of cryptography, compared with the traditional
password, the generatedmechanisms for chaos passwords are
different and have real-time, so it has a greater advantage in
terms of image encryption and video and other multimedia
data encryption, and therefore the research on chaos image
encryption has attracted more and more people [26–28].
The quality of the chaotic password is closely related to
the chaos systems. For the low-dimensional chaotic system,
because of its simple form, small key space, and low chaos
sequence complexity, its security is not high enough. Somany
scholars focus on the hyperchaotic systems and fractional-
order chaotic systems. Zhu and Sun [29] analyzed the secu-
rity of the hyperchaos image encryption (HIE) algorithm,
improved hyperchaos image encryption (IHIE) algorithm,
and proposed the enhanced hyperchaos image encryption
algorithms. Zhao et al. [30] gave an image encryption scheme
based on an improper fractional-order chaotic system.

So themore complicated structure of the chaotic systems,
the better performance of the secure communications and
cryptography. However, these complicated chaotic systems
are usually not easy to design synchronous controller, which
decreases the communication efficiency. Therefore it is nec-
essary to seek a new chaotic systemwith simple structure and
complex behaviors.

In this paper, we propose a new Lorenz-like system
with varying parameter by adding a state feedback factor in
Lorenz-like system [31]. By theoretical analysis and numerical
simulation, the structure of the new system is simple and
easy to construct. At the same time, it has more complicated
behaviors. This paper is divided into three parts as follows.
Firstly, the new Lorenz-like chaotic system with varying
parameter is designed based on the Lorenz-like system and
analyzes its chaos characteristics theoretically. Secondly, a
synchronization scheme driven by a single state variable is
achieved based on the new proposed system, and the chaotic
parameter modulation digital secure communications sys-
tem is constructed. Finally, the designed variable parameter
chaotic system is applied to image encryption and a three-
chaotic-image encryption algorithm is proposed.

2. The Lorenz-Like System with
Varying Parameter

2.1. The New Chaotic System. The Lorenz-like system is given
by [31]

�̇� = 𝑎 (𝑦 − 𝑥) ,

�̇� = 𝑏𝑥 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑐𝑧,

(1)

where 𝑎 and 𝑐 are real constants and 𝑏 is a bifurcation
parameter. Compared with the traditional Lorenz system, 𝑦
is not in the second equation. If we replace parameter 𝑏 with
a function of 𝑥, such as

𝑏 =

{

{

{

𝑑

1
+ 𝑑

2
, |𝑥| ≥ 𝜃

𝑑

1
− 𝑑

2
, |𝑥| < 𝜃

𝑑

1
, 𝑑

2
, 𝜃 ∈ 𝑅, (2)
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Figure 1: Bifurcation diagram of chaotic system (3) with the change
of 𝜃.

then a new system is generated and can be written as

�̇� = 𝑎 (𝑦 − 𝑥) ,

�̇� = 𝑏𝑥 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑐𝑧,

𝑏 = 𝑑

1
+ 𝑑

2
sgn (|𝑥| − 𝜃) ,

(3)

where 𝑎, 𝑐, 𝑑
1
, 𝑑
2
, and 𝜃 are real constants, 𝑏 is a state feedback

control function, and 𝜃 is the threshold. From (2), we can
know that 𝑏 switches between 𝑑

1
+ 𝑑

2
and 𝑑

1
− 𝑑

2
under

the control of 𝑥; then the Lorenz-like system (3) shows the
bifurcation under the control of state variable 𝑥.

When choosing 𝑎 = 20, 𝑐 = 8, 𝑑
1
= 70, and 𝑑

2
= 15, we

can get a bifurcation diagram (Figure 1) of chaotic system (3)
with the change of 𝜃. For convenience, the Lorenz-like system
when 𝑏 = 85 is denoted as𝐴 chaotic system and when 𝑏 = 55

as 𝐵 chaotic system. From Figure 1, we can get that when
𝜃 < 0, 𝑏 = 85, the new Lorenz-like system is equivalent to the
𝐴 chaotic system, while when 𝜃 > 41.2, 𝑏 = 55; it is equivalent
to the 𝐵 chaotic system. When 0 < 𝜃 < 41.2, 𝑏 switches
between 85 and 55 under the control of the state variable
𝑥; in other words, the new Lorenz-like system automatically
switches between 𝐴 and 𝐵 chaotic systems (Figure 2). And
when 16.5 < 𝜃 < 23.9, system appears periodic oscillation
obviously.

As shown in Figure 2, the blue part denotes 𝐴 chaotic
system and the red part 𝐵 chaotic system. With the change
of parameter, the nonlinear dynamical behaviors change
significantly. When 𝜃 = 10 or 𝜃 = 30, a strange attractor
appears in Figures 2(b) and 2(d). In Figure 3, the three-
dimensional phase diagramof chaotic system (3) is givenwith
𝜃 = 10, 20, 30, and 37.

2.2. Chaotic Characters

2.2.1. Symmetry and Invariance. For system (3), let
(𝑥, 𝑦, 𝑧) → (−𝑥, −𝑦, 𝑧); the system equation remains
the same. Then the system is symmetrical about the 𝑧-
axis, and the symmetry is not associated with the system
parameters. If we let 𝑥(0) = 0, 𝑦(0) = 0, and 𝑧(0) be any
value, the system equation can transform into �̇� = −𝑐𝑧; that
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Figure 2: 𝑥-𝑧 plane phase diagram of chaotic system (3) (a) 𝜃 = −1; (b) 𝜃 = 10; (c) 𝜃 = 20; (d) 𝜃 = 30; (e) 𝜃 = 37; and (f) 𝜃 = 50.

is, the system will move on 𝑧-axis and will be stable at the
origin.

2.2.2. Dissipation and the Existence of Attractor. For system
(3),

∇ ⋅ 𝑓 =

𝜕�̇�

𝜕𝑥

+

𝜕�̇�

𝜕𝑦

+

𝜕�̇�

𝜕𝑧

= −𝑎 − 𝑐 < 0. (4)

So, we can conclude that the system is dissipative and
converges by exponential 𝑑𝑉/𝑑𝑡 = 𝑒

−(𝑎+𝑐)𝑡; that is, the volume
element with the initial volume𝑉(0) converges to𝑉(0)𝑒

−(𝑎+𝑐)𝑡

at time 𝑡. When 𝑡 → ∞, each small volume that contains the

system trajectories converges to zero at an exponential rate
of −(𝑎 + 𝑐)𝑡. All the trajectories of the system will eventually
be limited to a subset of zero volume, and this limit subset is
called attractor.

2.2.3. The Existence and Stability of Equilibrium Point. For
system (3), the equilibrium points are

𝑂 (0, 0, 0) ,

𝑃

+
(

√

𝑐𝑏,

√

𝑐𝑏, 𝑏) ,

𝑃

−
(−

√

𝑐𝑏, −

√

𝑐𝑏, 𝑏) .

(5)
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Figure 3: Three-dimensional phase diagram of chaotic system (3): (a) 𝜃 = 10; (b) 𝜃 = 20; (c) 𝜃 = 30; and (d) 𝜃 = 37.

It is easy to know that 𝑂 is the shared equilibrium
point for both 𝐴 system and 𝐵 system. When choosing
𝑎 = 20, 𝑐 = 8, 𝑑

1
= 70, and 𝑑

2
= 15, the other two

equilibrium points of 𝐴 system are 𝑃

+

𝐴
(26.0768, 26.0768, 85)

and 𝑃

−

𝐴
(−26.0768, −26.0768, 85), and the other two equilib-

rium points of 𝐵 system are 𝑃

+

𝐵
(20.9762, 20.9762, 55) and

𝑃

−

𝐵
(−20.9762, −20.9762, 55). The distribution of equilibrium

points in the phase space can be seen in Table 1, in which𝐷

−1
,

𝐷

0
, and𝐷

+1
denote three areas separated by 𝜃 as follows:

𝐷

+1
= {(𝑥, 𝑦, 𝑧) | 𝑥 > 𝜃} ,

𝐷

0
= {(𝑥, 𝑦, 𝑧) | −𝜃 ≤ 𝑥 ≤ 𝜃} ,

𝐷

−1
= {(𝑥, 𝑦, 𝑧) | 𝑥 < −𝜃} .

(6)

For 𝐴 chaotic system, the corresponding eigenvalues for
each equilibrium point can be calculated as follows:

𝜆

𝑂

1
= −52.4264 𝜆

𝑃
+

𝐴

1
= 𝜆

𝑃
−

𝐴

1
= −30.1071,

𝜆

𝑂

2
= +32.4264 𝜆

𝑃
+

𝐴

2
= 𝜆

𝑃
−

𝐴

2
= 1.0536 + 𝑗30.0388,

𝜆

𝑂

3
= −8 𝜆

𝑃
+

𝐴

3
= 𝜆

𝑃
−

𝐴

3
= 1.0536 − 𝑗30.0388.

(7)

Table 1: The distribution of equilibrium points in the phase space.

The scope of 𝜃 Region
𝐷

−1

‡
𝐷

0

†
𝐷

+1

‡

𝜃 ≤ 0
𝑃

−

𝐴

‡

𝑂

‡
𝑃

+

𝐴

‡

0 < 𝜃 < 20.9762
𝑃

−

𝐴

‡

𝑃

−

𝐵

‡

𝑂

†
𝑃

+

𝐵

‡

𝑃

+

𝐴

‡

20.9762 ≤ 𝜃 ≤

26.0768

𝑃

−

𝐴

‡

𝑃

−

𝐵

†

𝑂

†
𝑃

+

𝐵

†

𝑃

+

𝐴

‡

𝜃 > 26.0768
𝑃

−

𝐴

†

𝑃

−

𝐵

†

𝑂

†
𝑃

+

𝐵

†

𝑃

+

𝐴

†

𝜃 ≫ 26.0768
𝑃

−

𝐵

†

𝑂

†
𝑃

+

𝐵

†

Note: † represents𝐷0 and ‡ represents𝐷−1 and𝐷+1.

Obviously, 𝑂 is a saddle point, and 𝑃

+

𝐴
, 𝑃−
𝐴
are saddle-

focus equilibrium points. And all these three equilibrium
points are unstable, which leads the orbits of system stretch
in phase space. Under the interactive stretching and con-
tractions, the chaotic motion is generated. In the same way,
we also can draw a similar conclusion that 𝐵 chaotic system
also has three unstable equilibrium points and the chaotic
condition is satisfied.

From Table 1, it is easy to know that the system has three
equilibrium points when 𝜃 ≤ 0 and it is equal to 𝐴 chaotic
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Figure 4:The spectrum of Lorenz-like system with varying param-
eter when 𝜃 = 4.

Table 2: Lyapunov exponents and Lyapunov dimension.

𝜃

Lyapunov exponents Lyapunov
dimension (𝐷

𝐿
)

𝜆

𝐿1
𝜆

𝐿2
𝜆

𝐿3

𝜃 ≤ 0 (𝐴 system) 2.5110 −0.0029 −30.4572 2.0824
𝜃 = 4 2.2269 −1.6438 −28.5472 2.0204
𝜃 ≫ 26.0678 (𝐵
system) 2.0533 0.0242 −30.0060 2.0684

system. The system also can be treated approximately such
that it has three equilibrium points when 𝜃 ≫ 26.0768 and
the system is equal to 𝐵 chaotic system. But in addition to
these two cases, the system has five equilibrium points. Of
all the five points, 𝑂 influences the trajectory in the whole
region, while 𝑃

+

𝐵
and 𝑃

−

𝐵
influence the trajectory in 𝐷

0
, and

𝑃

+

𝐴
and 𝑃

−

𝐴
influence the trajectory in 𝐷

−1
and 𝐷

+1
. With the

increase of 𝜃, 𝐷
0
gradually extends and 𝐷

±1
is reduced; that

is, the influence of 𝑃+
𝐵
and 𝑃

−

𝐵
gradually increases while 𝑃

+

𝐴

and 𝑃

−

𝐴
are reduced until they nearly disappear. So the system

shows a complex dynamic chaos-cycle-chaos when the new
parameter 𝜃 changes.

2.2.4. Spectrum. In Figure 4, we can see that spectrum of the
system is continuous, which shows that the new designed
system has the chaotic characteristics.

2.2.5. Lyapunov Exponents and Lyapunov Dimension. Lya-
punov exponentmeasures the exponential rates of divergence
or convergence of nearby trajectories in phase space. A
three-order nonlinear system has three Lyapunov exponents
(𝜆

𝐿1
, 𝜆

𝐿2
, 𝜆

𝐿3
). All the Lyapunov exponents are listed in

Table 2, and the curves with the change of 𝜃 are also given
as in Figure 5. Obviously 𝜆

𝐿2
of 𝐴 and 𝐵 systems is close to

zero, while 𝜆

𝐿2
(when 𝜃 = 4) is a negative number for the

reason of 𝜃; this implies that a new chaotic attractor occurred
in the new system.

For a 𝑛-order system, the Lyapunov dimension can be
calculated as follows:

𝐷

𝐿
= 𝑗 +

𝜆

𝐿1
+ 𝜆

𝐿2
+ ⋅ ⋅ ⋅ + 𝜆

𝐿𝑗











𝜆

𝐿(𝑗+1)











, (8)
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Figure 5: Lyapunov exponents curves of chaotic system (3) with the
change of 𝜃.

where 𝜆

𝐿1
> 𝜆

𝐿2
> ⋅ ⋅ ⋅ > 𝜆

𝐿𝑛
and 𝜆

𝐿1
+ 𝜆

𝐿2
+ ⋅ ⋅ ⋅ + 𝜆

𝐿𝑗
> 0

while 𝜆
𝐿1

+ 𝜆

𝐿2
+ ⋅ ⋅ ⋅ + 𝜆

𝐿(𝑗+1)
< 0.

From the results in Table 2, we can get that all the
Lyapunov dimensions are fractions and 2 < 𝐷

𝐿
< 3. Thus,

it is another evidence of chaos. In addition, both Lyapunov
exponents’ curves and bifurcation diagram can show the
effect of parameter, so the same conclusion can be obtained
from Figure 5 as Figure 1.

2.2.6. A Brief Summary. This section shows a new Lorenz-
like system (3) with varying parameter; several conclusions
can be gotten as follows: (i) 𝑏 is a constant in Lorenz-like
system (1) while it switches between 𝑑

1
+ 𝑑

2
and 𝑑

1
− 𝑑

2
in

system (3), so the new system’s structure has a slight difference
with the Lorenz-like system (1) and it equals system (1) when
𝜃 ≤ 0 or 𝜃 ≫ 26.0678; (ii) new chaotic behaviors occur
when 𝜃 change (see Figures 1, 2, and 3); (iii) the equilibrium
points are not fixed for the reason of 𝜃 as Table 1 shows;
and (iv) the Lyapunov exponent 𝜆

𝐿2
is apparently different

(see Table 2 and Figure 5). All the conclusions imply that the
new proposed system has more complicated behaviors with
respect to the Lorenz-like system (1).

3. The Application in Secure Communication
for the New Lorenz-Like System

3.1. Synchronization Design for Single Variable Drive. For a
better description of the synchronization scheme, here we use
notation (𝑥

1
, 𝑥

2
, 𝑥

3
) in place of (𝑥, 𝑦, 𝑧) in (3); then themaster

system is

�̇�

1
= 𝑎 (𝑥

2
− 𝑥

1
) ,

�̇�

2
= 𝑏

𝑥
𝑥

1
− 𝑥

1
𝑥

3
,

�̇�

3
= −𝑐𝑥

3
+ 𝑥

1
𝑥

2
,

𝑏

𝑥
= 𝑑

1
+ 𝑑

2
sgn (









𝑥

1









− 𝜃) , 𝜃 ∈ 𝑅.

(9)
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And the slave system is

�̇�

1
= 𝑎 (𝑦

2
− 𝑦

1
) ,

�̇�

2
= 𝑏

𝑦
𝑦

1
− 𝑦

1
𝑦

3
+ 𝑢

1
,

�̇�

3
= −𝑐𝑦

3
+ 𝑦

1
𝑦

2
+ 𝑢

2
,

𝑏

𝑦
= 𝑑

1
+ 𝑑

2
sgn (









𝑦

1









− 𝜃) , 𝜃 ∈ 𝑅.

(10)

So the controller is designed as follows:

𝑢

1
= −𝑏

𝑦
𝑦

1
+ 𝑏

𝑥
𝑥

1
+ 𝑎𝑥

1
+ 𝑦

1
𝑦

3
− 𝑥

1
𝑦

3
− 𝑎𝑦

1
,

𝑢

2
= −𝑦

1
𝑦

2
+ 𝑥

1
𝑦

2
.

(11)

The designed controller only contains one state variable
𝑥

1
of the master system; thus it has simple structure and is

driven by single variable. So it is easy to be achieved.
Let the error system be
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Then, the error dynamics equation is
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Select the Lyapunov function as (𝑒) = (1/2)𝑒
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; then take the derivative of 𝑉(𝑒), so
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When 𝑒 = (𝑒

1
, 𝑒

2
, 𝑒

3
)

Τ
= (0, 0, 0)

Τ,𝑉(𝑒) = 0, andwhen 𝑒 ̸=

(0, 0, 0)

Τ, 𝑉(𝑒) > 0 and ̇

𝑉(𝑒) < 0. According to the Lyapunov
stability theorem, 𝑒

1
→ 0, 𝑒

2
→ 0, and 𝑒

3
→ 0 when 𝑡 → ∞;

that is, the synchronization between master and slave system
has been achieved.

Figure 6 gives the synchronization error curves between
the master system and slave system with 𝑎 = 20, 𝑐 =

8, 𝑑

1
= 70, 𝑑

2
= 15, and 𝜃 = 4; the initial value

(𝑥(0), 𝑦(0), 𝑧(0)) = (−10.5, −7, 8), (𝑥

1
(0), 𝑦

1
(0), 𝑧

1
(0)) =

(0, 10, 6). From Figure 6, the master system traces the slave
system to achieve synchronization quickly. The advantage of
this chaotic synchronization system is that the controller is
simple and only one signal is to be transmitted to complete
the synchronization between the drive system and response
system, which improves communication efficiency and con-
serves resources.
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Figure 6: Synchronization error curve between master and slave
systems when 𝜃 = 4.
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3.2. Chaos Parameter Modulation Digital Secure Communica-
tions System. Based on the synchronization scheme designed
in the previous section, a chaotic parameter modulation
digital secure communication system is given in Figure 7.
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The receiver system is
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Figure 8: Chaotic parameter modulation digital secure communi-
cation.

where 𝑠(𝑡) is a digital signal to be transmitted. In order to
encrypt 𝑠(𝑡), we select 𝜃 = 4 to represent “0” and 𝜃 = 6 to
represent “1”; that is,

𝜃 = 4 + 2 (𝑠 (𝑡)) =

{

{

{

4, 𝑠 (𝑡) = 0

6, 𝑠 (𝑡) = 1.

(17)

In this case, the topology of the phase diagram is similar,
so it is difficult to crack encrypted signal and extract useful
information by phase space reconstruction.

Based on the theory above, we simulate the digital
secure communication system as in Figure 8. The digital
signal 𝑠(𝑡) “0101110111001011101” will be transmitted and sent
per symbol interval, that is, 10 seconds, where 𝑥

1
is not

only the encrypted signal but also the driven signal. The
synchronization between the master system and slave system
only can be reached when 𝜃 = 4, and there is a large error
between the response systemand the drive systemwhen 𝜃 = 6

just as 𝑒
1
in Figure 8. Finally the decrypted signal𝑚(𝑡) can be

gotten from 𝑒

1
after detection, and compared with 𝑠(𝑡), there

is a nearly 10-second delay.

4. Image Encryption Algorithm Based on
Lorenz-Like System with Varying Parameter

4.1. A Three-Order Image Encryption Algorithm. Based on
system (3), a three-order image encryption algorithm is given
and the diagram of the image encryption and decryption is
shown in Figure 9.

The chaotic image encryption is to disrupt the original
image (plaintext) by chaotic sequence. The process of the
algorithm is as follows: first, set the initial value of the system
as the key; then iterate system (3) for 5000 times to make it
fully chaotic. Later, continue to iterate system (3) to obtain

𝑥(𝑛), 𝑦(𝑛), and 𝑧(𝑛). Then the chaotic sequences key𝑥(𝑛),
key𝑦(𝑛), and key𝑧(𝑛) can be gotten as below:

key𝑥 (𝑛)

= mod ((|𝑥 (𝑛)| − floor (|𝑥 (𝑛)|)) × 10

14
, 256) ,

key𝑦 (𝑛)

= mod ((









𝑦 (𝑛)









− floor (


𝑦 (𝑛)









)) × 10

14
, 256) ,

key𝑧 (𝑛)

= mod ((|𝑧 (𝑛)| − floor (|𝑧 (𝑛)|)) × 10

14
, 256) ,

(18)

where “floor” is the MATLAB function and floor(𝐴) rounds
the element 𝐴 to the nearest integers less than or equal to 𝐴.

Through the above process in (18), we get the chaotic
sequences key𝑥(𝑛), key𝑦(𝑛), and key𝑧(𝑛) which range
between 0 and 255. Original image matrix (plaintext) is 𝑃

and the ciphertext matrices are 𝐶

1
, 𝐶
2
, and 𝐶

3
, which are

obtained after three-order encryption, respectively, where 𝐶
3

is the final ciphertext image matrix. The encryption formula
is as follows:

𝐶

1
(𝑛) = 𝑃 (𝑛) ⊕ key𝑥 (𝑛) ,

𝐶

2
(𝑛) = 𝐶

1
(𝑛) ⊕ key𝑦 (𝑛) ,

𝐶

3
(𝑛) = 𝐶

2
(𝑛) ⊕ key𝑧 (𝑛) .

(19)

“⊕” in (19) means “XOR”, and the same is in (20). Just
as Figure 9, the decryption process is the opposite of the
encryption process. First, we should set the correct key; then
for system (3), the decryption process is the same with the
encryption to obtain the same chaotic sequences to decrypt
correctly. Decryption formula is as follows:

𝐶

2
(𝑛) = 𝐶

3
(𝑛) ⊕ key𝑧 (𝑛) ,

𝐶

1
(𝑛) = 𝐶

2
(𝑛) ⊕ key𝑦 (𝑛) ,

𝑃 (𝑛) = 𝐶

1
(𝑛) ⊕ key𝑥 (𝑛) .

(20)

4.2. Simulation and Analysis. In this section, an image
encryption experiment was given and a 512 × 512 color
image “Lena” is chosen as the plaintext. In simulation, the
step is selected as 0.01, and 𝑎 = 20, 𝑐 = 8, 𝑑

1
= 70,

𝑑

2
= 15, and 𝜃 = 4. The encryption key is initial value

(𝑥(0), 𝑦(0), 𝑧(0)) = (0.2, 0.7, 1.6). Based on the above algo-
rithm, the image encryption system is designed to achieve the
Lena encryption. The simulation results shown in Figure 10,
and several tests have been carried out to demonstrate
the effectiveness and efficiency of the proposed encryption
algorithm.

4.2.1. Key Space Analysis. Key space size is the total number
of different keys which can be used in an encryption process;
it should be large enough to preclude the eavesdropping by
brute-force attack. A single precision floating point format
number has 232 kinds of possibilities; then the key space
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Figure 9: The diagram of image encryption and decryption.

(a) (b) (c) (d)

Figure 10: The simulation results of image encryption and decryption. (a) Original image (plaintext); (b) encrypted image (ciphertext); (c)
decrypted image (plaintext); and (d) illegal decrypted image.

in this paper will be up to 2

96. Otherwise, if the system
parameters are chosen as keys, it will get much larger key
space, which greatly increases the security of the system.

4.2.2. Histogram Analysis. From the histogram of a digital
image, the distribution of the pixel values can be gotten; if
the encrypted image is well encrypted, the histogram will be
uniform, so the histogram attack can be prevented effectively.
Figure 11 gives the histograms of both original image and
encrypted image; it is obvious that the histograms of red,
green, and blue for original image are steep and not flat
enough; the histograms for encrypted image are all uniform
and quite different from that of the original imagewhen using
the proposed algorithm.

4.2.3. Key Sensitivity Analysis. A good cryptosystem must be
highly sensitive at small changes in secret key in encryption
and decryption process, so a full test contains two aspects: (i)
slightly different keys to encrypt the same image are used and
the difference between the corresponding encrypted images

is computed; (ii) for an encrypted image only one correct key
can decrypt it, so decrypt the encrypted image by an incorrect
key which is similar to the correct one and observe whether
it can be correctly decrypted.

Table 3 gives some special cases to evaluate the sensitivity
in encryption process, and the encrypted images were also
shown in Figure 12; the difference ratio is really high, which
means a good key sensitivity in encryption process. The test
result in decryption process also can be seen in Figure 12;
Figure 12(f) is the correct decrypted image; Figure 12(g) is the
incorrect one with only a slight change 10−14 for the key’s first
value.

4.2.4. Correlation Coefficients and Efficiency Analysis. Agood
image encryption algorithm should have two characteristics:
(i) high security, which is partly analyzed in key space and
key sensitivity, will be analyzed by correlation coefficients
complementally in this section; (ii) high efficiency, which
means low time consumption in encryption and decryption
process, will be analyzed in this section also.
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Figure 11: Histogram of original image and encrypted image.

Table 3: Differences between encrypted images produced by slightly different keys.

Encryption keys (I)
Figure 12(b) Encryption keys (II) Difference ratio between (I) and (II) (%)

𝑥(0) 𝑦(0) 𝑧(0)
𝑥(0) 𝑦(0) 𝑧(0)

2.5 + 1 × 10

−14
−3.7 9.3 Figure 12(c) 99.61

2.5 −3.7 9.3 2.5 −3.7 + 1 × 10

−14 9.3 Figure 12(d) 99.60
2.5 −3.7 9.3 + 1 × 10

−14 Figure 12(e) 99.60

(a) (b) (c) (d)

(e) (f) (g)

Figure 12: Key sensitivity test. (a) Original image (plaintext); (b), (c), (d), (e) the encrypted images with different keys as Table 3; (f) decrypt
(b) with key (2.5, −3.7, 9.3); and (g) decrypt (b) with key (2.5–1 × 10

−14, −3.7, 9.3).
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Table 4: Correlation coefficients and cost comparisons.

Chaotic systems used
Correlation coefficients

Cost (s)Original image (plaintext) Encrypted image (ciphertext)
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed system 0.9788 0.9677 0.9752 0.0086 0.0307 −0.0326 10.9689
Reference [29] 0.9788 0.9677 0.9752 0.0167 −0.0004 0.0371 13.9933
Reference [30] 0.9788 0.9677 0.9752 −0.0750 −0.1078 0.0036 14.0401

The correlation coefficient of an image can be measured
as follows:

𝐶

𝑟

=
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,

(21)

where 𝑁 is the number of pair of pixels and 𝑥 and 𝑦 are
values of two adjacent pixels in grey scale. The correlation
coefficients are calculated out based on 3000 random pixels,
and all correlation coefficients of plaintext are greater than
0.96 while those of ciphertext are all near “zero,” which
implies a good information hiding for plaintext.

Recently many chaotic systems with complex structure
were found or applied to image encryption, such as systems
in [29, 30]. Here we realize image encryption with different
chaotic systems under the same simulation environment;
then comparisons with the proposed algorithm were done
and the results of correlation coefficients and cost are listed
in Table 4. Compared with algorithms based on other chaotic
systems in [29, 30], we can know that the correlation coeffi-
cients of ciphertext are nearly, but the time consumption is
less for the proposed system. This comparison demonstrates
that the proposed image encryption algorithm based on the
new Lorenz-like system shows a good performance as well as
algorithms based on other systems, and the efficiency is high
for the reason of its simple structure.

5. Conclusion

A new Lorenz-like system with varying parameter is pro-
posed by adding a state feedback function in this paper.
Firstly, we analyze the influence of the threshold 𝜃 to the
chaotic behavior of the new system and found that the system
shows a chaos-cycle-chaos evolution when 𝜃 changes. Then
we analyze the new system’s chaotic characteristics. After that
a new synchronization scheme using a single state variable
drive based on the new system is designed. Finally, a chaotic
parameter modulation digital secure communication system
and image encryption based on the new system proposed is
designed. The simulation results show that the new system
has a good performance in application. Otherwise, according
to the new system designed, we can modify many other
systems to get more chaotic systems which have simple
structure and complex dynamics.This will enrich the amount
of chaotic signal sources, simplify designing, and improve the
security of communication and image encryption.
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With the development of deep submergence technology, submarine is widely used inmany aspects asmarine analysis and detection
of marine resources. For the reason of strong nonlinearity and coupling in submarine exercise, it is difficult to get satisfactory
control effect by conventional control method. In order to control objective of stable straight-line suspension underwater, how to
control the change of rudder angle to stabilize attitude and improve the control performance is researched from feature analysis to
submarine. Aiming at improving the global stability, kinetic character of straight-line suspensionmovement underwater is analyzed
and modeled firstly, and model of nonlinear relationship about change of rudder angle and attitude is built then. Based on the
conditions of global stability asymptotically of submarine tracking control underwater and the physical significance of tracking
control by nonlinear proportion differential, a controller is designed for controlling horizontal rudder angle and vertical rudder
angle by dynamic feedback, which achieve the balance of tracking controlling both in local and global and guarantee global stable
convergence asymptotically. At last, the stability, effectiveness, and global convergence of controller are proved by the simulation
experiment.

1. Introduction

During the stable operation under the water, the submarine
would move horizontally between two points on purpose
for some time. In order to improve the stability and to
reduce the energy consumption and cost, the submarine
maintains horizontal and straight navigation through oper-
ation facilities’ control. The autopilot is the indispensable
crucial equipment in the system operated by submarine. The
traditional course control cannot meet the requirement of
straight navigation, so it is quite meaningful to research on
the horizontal and straight navigation via autocontrolling.
For the feature of inertance, time-lag, andnonlinearity during
the process of motion under the water, as well as the impact
of environment interference includingmodel parameters and

storm disturbing, it is very difficult to control the submarine
tracing.Therefore, the research on submarine tracing control
has attracted extensive concern from both academia and
industries.

The straight track control of the surface ships is a common
manner of wake control, which has been widely researched
on [1]. At present, the study focuses on the stability of track
control via nonlinear feedback control [2], back-stepping
technology [3], and feedback linearization [4] to ensure the
control effect of global stability of the track. Aiming at straight
unstable characteristics of large surface warships, [5] has
researched the global asymptotic stability of direction PD
control and presented the condition for stability.

Due to the vertical sideway and pitching, as well as
inability to correct through GPS under the water, it is more
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difficult to control the track of the submarine.The controlling
equipment of submarine is more complex, and the system
variables such as motion and power are nonlinear of each
other. So only the nonlinear system control can accurately
solve the aforementioned issues. For now, on account of
nonlinear controlling system we usually utilize phase-plane
technique, Lyapunov method, input/output stable method,
approximation linearized method, and describing function
method [6]. The research on differential geometry control
method overcomes the limits from local linearization and
small range of motion and achieves large range of analysis
and integration for dynamic system control [7]. Based on the
differential geometry theory, the nonlinear control systems
theory implements the linearization of the nonlinear system
via static state feedback and transformation of coordinates
under certain conditions. The nonlinear system is decoupled
and linear in the new state space through suitable diffeomor-
phism, as well as corresponding static or dynamic feedback
[8]. The limitation of the research on submarine provides the
development ideas of this paper.

Aiming at assurance for the global stability of the con-
trol system on submarine, we study the issues of how to
stabilize the track control performance via rudder angles
transformation during the project practice based on the
features of the submarine. This paper primarily analyzes the
dynamics features about the linear suspension motion of
the submarine, models the nonlinear relationship between
the rudder angle and the posture change, and designs the
controller to dynamic feedback for the plane angle and the
vertical rudder angle according to the conditions of global
asymptotic stability controlled by the submarine track and
the physical significance controlled by the differential on the
nonlinear proportion of the track. Our methods effectively
achieve the balance control both locally and globally to ensure
the global asymptotic stable convergence.

2. Modeling the Submarine Motion

Since digital computers and devices are used to control
ships, it is natural to model ships and their controllers as
nonlinear sampled-data systems. In this brief, we extend
straight-line trajectory tracking control of continuous-time
underactuated ships with state feedback controllers [9] to
that of sampled-data underactuated ships with both state and
output feedback controllers. We introduce a straight line as
a reference trajectory and a reference nonzero forward speed
for the ship. On the basis of the Euler approximate models,
we design both state and output feedback controllers.

The suspendingmotion of the submarine under the water
is effected by gravity, impetus, and current force, which is
complicated and capricious. If the motion of the submarine
is to be controlled, it has to analyze the dynamical model of
the submarine under the water. For the relative motion of
submarine and the fluid, the water power changes constantly
as the interaction between its motion state and the marine
environment. The main gesture parameters are direction,
heading, depth, rolling, and pitching. In the case of low
speed and diminutive longitudinal trim, the submarine is

disintegrated into the motions of four degrees of freedom in
2 planes.

(1) The motion above the water: we utilize the projec-
tion above the water of the submarine to analyze
the direction, heading, and the remaining and the
change of the horizontal speed without considering
the change of floating, diving, or rolling.

(2) The motion of verticality: we study the depth, longi-
tudinal section, and the remaining and change of the
snorkeling speed from the view of longitudinal axis.

In the three-dimensional coordinate system under the
water, we regard the submarine as a rigid body. The sub-
marine motion with six degrees of freedom (the lateral
displacement 𝑦, the longitudinal displacement 𝑥, the vertical
displacement 𝑧, the heading angle 𝛼, the roll angle 𝛽, and the
pitching angle 𝛾) is modeled as

�̂� = 𝑢 cos𝛼 cos 𝛾 − V sin𝛼 cos 𝛾,

�̂� = 𝑢 sin𝛼 cos 𝛾 + V cos𝛼 cos 𝛾,

�̂� = 𝑢 sin 𝛾 + V sin 𝛾,

�̂� = 𝜀,

�̂� = 𝜉,

�̂� = 𝛿,

(1)

where 𝑢 denotes the forward speed along the axle wire of
rigid body, V denotes the sideway speed perpendicular to
the axle wire of rigid body, 𝜀 denotes the degree of heading
angle, 𝜉 denotes the speed of roll rotation angle, and 𝛿

denotes the angular velocity of pitching angle. Considering
that transverse speed approaches 0 in general case and the
rolling of the submarine does not affect the track, we simplify
formula (1) as

�̂� = 𝑢 cos𝛼 cos 𝛾,

�̂� = 𝑢 sin𝛼 cos 𝛾,

�̂� = 𝑢 sin 𝛾,

�̂� = 𝜀,

�̂� = 𝛿.

(2)

Considering the effect of nonlinear items in the sub-
marine model, we utilize second-order nonlinear equation
of motion to describe the submarine motion and the effect
of rudder. The motion equation in the horizontal plane is
denoted as

𝑇
1
�̂� + 𝐻

𝐴
(�̂�) = 𝐾

1
𝜃
1
, (3)

where 𝜃
1
denotes the level control rudder angle, 𝑇

1
denotes

the operation performance parameter of navigation, 𝐾
1

denotes the coefficient of hydroplane steering in submarine,
and both 𝑇

1
and 𝐾

1
are greater than 0. 𝐻

𝐴
reflects the
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mechanical control and hysteresis feature of the state, which
is indicated as

𝐻
𝐴
(�̂�) = 𝑚

1
�̂�
3
+ 𝑛
1
�̂�, (4)

where 𝑚
1
is the coefficient. When 𝑛

1
= 1, the submarine

performs the stability in straight line; when 𝑛
1

= −1,
the submarine performs instability in straight line, and the
motion under the water presents instable state in straight line.
Therefore we choose 𝑛

1
= −1.

The motion equation in the vertical plane is denoted as

𝑇
2
�̂� + 𝐻

𝐵
(�̂�) = 𝐾

2
𝜃
2
, (5)

where 𝜃
2
denotes the vertical control rudder angle,𝑇

2
denotes

the operation performance parameter of snorkeling and
diving,𝐾

2
denotes the coefficient of steering effect in vertical

rudder, and both 𝑇
2
and𝐾

2
are greater than 0.𝐻

𝐵
reflects the

mechanical control and hysteresis feature of the state, which
is indicated as

𝐻
𝐵
(�̂�) = 𝑚

2
�̂�
3
+ 𝑛
2
�̂�. (6)

We choose 𝑛
2
= −1 as well.

Since the longitudinal displacement along the forward
direction does not affect the straight navigation, we ignore
the analysis of longitudinal displacement 𝑥. Integrating (2)
into (6), we nonlinearlymodel the straight instable submarine
under the water as follows:

�̂� = 𝑢 sin𝛼 cos 𝛾,

�̂� = 𝑢 sin 𝛾,

�̂� = 𝜀,

�̂� = 𝛿,

�̂� = −
𝑛
1

𝑇
1

𝜀 −
𝑚
1

𝑇
1

𝜀
3
+
𝐾
1

𝑇
1

𝜃
1
,

�̂� = −
𝑛
2

𝑇
2

𝛿 −
𝑚
2

𝑇
2

𝛿
3
+
𝐾
2

𝑇
2

𝜃
2
,

(7)

where the target of the controller in the automatic pilot in
regard to straight navigation under the water is to assure that
the offset displacement𝑦, the vertical displacement 𝑧, the bow
declination 𝛼, and the pitching angle 𝛾 are all approaching
zero. Then we achieve controlling the straight navigation.

On account of the nonlinear model of (7), we design the
nonlinear state feedback control rate as follows:

𝜃
1
= −𝑘


𝐷
(𝛼 + 𝑓 (𝑦)) − 𝑘



𝐷
⋅ 𝜀,

𝜃
2
= −𝑘


𝑃
(𝛾 + 𝑔 (𝑧)) − 𝑘



𝐷
⋅ 𝛿.

(8)

On account of the closed-loop system consisted by (7)
and (8), the necessary and sufficient conditions of global
asymptotic stability for the submarine under the water are as
follows:

(1) when |𝑦| → ∞, ∫𝑦
0
sin(𝑓(𝑦))𝑑𝑦 → ∞;

(2) when 𝑦 ̸= 0, sin(𝑓(𝑦)) cos(𝑔(𝑧))𝑦 > 0;

(3) 𝑓(𝑦) > 0, 𝑔(𝑧) > 0;

(4) 𝑘
𝑃
> 0, 𝑘



𝐷
> −𝑛
1
/𝐾
1
, 𝑚
1
≥ 0;

(5) as to arbitrary 𝑦 ∈ 𝑅, we have (𝐾𝑘
𝐷
/𝑇
1
+ 𝑛/𝑇

1
) >

sup(𝑢𝑓(𝑦)).

3. Local Optimal Control Analytical
Solution in Zero Equilibrium Point of
Submarine Track

Formula (7) decomposes to a linear expansion in zero equi-
libriumpoint and retains one equation term; new formula can
be deduced as follows:

�̂� = 𝑢 cos (𝛼) 𝛼 cos (𝛾) ,

�̂� = 𝑢 cos (𝛾) 𝛾,

�̂� = 𝜀,

�̂� = 𝛿,

�̂� = −
𝑛
1

𝑇
1

𝜀 − 3
𝑚
1

𝑇
1

(0)
2
𝜀 +

𝐾
1

𝑇
1

𝜃
1
,

�̂� = −
𝑛
2

𝑇
2

𝛿 − 3
𝑚
2

𝑇
2

(0)
2
𝛿 +

𝐾
2

𝑇
2

𝜃
2
.

(9)

Various deviation angles are very small when submarine
is sailing in straight line, and we can consider 𝛼 ≈ 0, 𝛾 ≈ 0,
𝜀 ≈ 0, and 𝛿 ≈ 0, so formula (9) can be simplified as follows:

�̂� = 𝑢𝛼,

�̂� = 𝑢𝛾,

�̂� = 𝜀,

�̂� = 𝛿,

�̂� = −
𝑛
1

𝑇
1

𝜀 +
𝐾
1

𝑇
1

𝜃
1
,

�̂� = −
𝑛
2

𝑇
2

𝛿 +
𝐾
2

𝑇
2

𝜃
2
.

(10)

Let 𝑦
1
= 𝑦/𝑢 and 𝑧

1
= 𝑧/𝑢; assume 𝑥 = [𝑦

1
, 𝑦
2
, 𝛼, 𝛾, 𝜀, 𝛿]

𝑇

and 𝜃 = [𝜃
1
, 𝜃
2
]
𝑇. It can be gotten from formula (10) as

follows:

�̂� = 𝐴𝑥 + 𝐵𝜃, (11)
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where

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 −
𝑛

𝑇
1

0

0 0 0 0 0 −
𝑛

𝑇
2

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0

0 0

0 0

0 0

𝐾
1

𝑇
1

0

0
𝐾
2

𝑇
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(12)

According to mechanical property and unit of different
rudder angle, in order to guarantee value invariability of
weight coefficient 𝜑 in performance criterion function, it
can describe relation between state variables 𝑦

1
and 𝑦

2
and

control angles 𝜃
1
and 𝜃

2
by quadratic performance criterion

function as follows:

𝐽 = ∫

∞

0

(𝑦
2

1
+ 𝑧
2

1
+
𝜑
1
180
2

𝜋2
𝜃
2

1
+
𝜑
2
180
2

𝜋2
𝜃
2

2
)𝑑𝑡, (13)

where the unit of rudder angles 𝜃
1
and 𝜃

2
is rad, 𝜑

1
is the

coefficient of horizontal rudder, and 𝜑
2
is the coefficient of

vertical rudder, which is set by experimenter.The smaller𝜑 is,
the higher the precision of tracking is, and the range of control
angle is larger by this time. The larger 𝜑 is, the lower the
precision of tracking is, the range of control angle is smaller
by this time, and loss of steering engine reduces less. Value
range of 𝜑 is in the convergence of [0.1, 10] usually.

Algebraic Riccati equation of formula (11) can be trans-
lated as follows:

𝐴
𝑇
𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅

−1
𝐵
𝑇
𝑃 + 𝑄 = 0. (14)

So the feedback control rate of optimal state in zero
equilibrium point of submarine track can be calculated as
follows:

𝜃
1
= −𝑘


𝑦
𝑦
1
− 𝑘


𝛼
𝛼 − 𝑘


𝜀
𝜀,

𝜃
2
= −𝑘


𝑧
𝑧
1
− 𝑘


𝛾
𝛾 − 𝑘


𝛿
𝛿.

(15)

4. Controller Design

According to eventually uniform boundedness principle,
we have the following conclusion: only Ψ(𝑦

1
, 𝑧
1
) =

(𝑢(√𝑦2
1
+ 𝑧2
1
)/√1 + 𝑦2

1
+ 𝑧2
1
) − 1/4(𝜑

2

1
+ 𝜑
2

2
) > 0 is satisfied;

the system is uniform and stable boundedness ultimately.

Define 𝑥
1
= 𝑦
1
, 𝑥
2
= √𝑦2
1
+ 𝑧2
1
; make

𝑉
1
=
1

2
𝑥
2

1
+
1

2
𝜃
𝑇
𝛼𝜃 +

1

2
𝛼
−1
𝜑
2
,

𝑉
2
= 𝑉
1
+
1

2
𝑥
2

2
+
1

2
𝜃
𝑇
𝛾𝜃 +

1

2
𝛾
−1
𝜑
2
.

(16)

According to approximation of Mamdani fuzzy system
structured by multiple fuzzy inference engine, singleton
fuzzifier, centre average defuzzifier, and specific membership
functions, define

𝐹 (𝑥
1
) = 𝑓

,

𝑥
2
= [𝑦,

𝜕𝛼

𝜕𝑦
,
𝜕𝛾

𝜕𝑧
, 𝜃]

𝑇

.

(17)

Control parameters of straight-line track underwater can
be as follows:

𝜃
1
= −𝑘


𝑦
(𝛼 + arctan(𝑥1

𝑘
𝛼

)) − 𝑘


𝜀
𝜀,

𝜃
2
= −𝑘


𝑧
𝑧
1
(𝛾 + arctan(𝑥2

𝑘
𝛾

)) − 𝑘


𝛿
𝛿.

(18)

5. Simulative Experiment

In this section we present an experimental study of our
straight-line track control algorithms for detecting effective-
ness and correctness of submarine underwater in simulation
cabin. The experiment simulates the process of snorkeling
and sailing through a virtual submarine system developed
by Dalian JXD Soft Ltd., which can realistically simulate 6-
DOF motion and influence of ocean current environment of
submarine underwater and water surface. In this experiment,
the initial conditions of submarine are as follows: length is
149.5 meters, wide is 12.8 meters, draught is 12 meters, max
rudder angle is 45∘, the inertia link of motion model is used
by a time constant as 5 s, the whole structure appears capsule
shape, and the initial position is as follows: depth is 30meters,
heading angle is due north, pitching angle is 0.03, and speed
is 12 knot. The operation interface of simulator is shown in
Figure 1.

In this experiment, the horizontal plane and vertical rud-
der are controlled real-timely and dynamically by straight-
line track automatic rudder controller designed in Section 4.
The all track information as transverse offset, vertical offset,
heading angle, heading angular velocity, pitching angle, and
pitching angular velocity is recorded anytime real-timely.The
sailing time lasts 90 minutes, and the result of records is
shown in Figure 2.

The consult is shown in Figure 2, in the process of under-
water sailing; the track offset of submarine is convergence in
a small neighborhood by straight-line track automatic rudder
controller as in Section 4. During the 90 minutes, the mean
and variance of transverse offset are −0.02 and 0.45; themean
and variance of vertical offset are 0.07 and 0.72; the mean and
variance of heading angle are 0.17 and 0.50; the mean and
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(b) Horizontal operation interface of surface

Figure 1: Operation interface of simulator.

variance of heading angle velocity are 0.13 and 0.46, themean
and variance of pitch angle are −0.16 and 0.64; the mean and
variance of pitch angle velocity are −0.15 and 1.14. The result
shows that all the parameters are fluctuated in less offset and
error precision requirement is satisfied.

In the result of simulation experiment, even if the offset
to planned sea route in initial state is large, the submarine can
be global asymptotic stability to planned sea route and sailing
scheduled by straight-line track automatic rudder controller
in this paper.

6. Conclusions

Affected by multiple factors such as gravity, power, ocean
current, and external environment, the underwater trajectory

of submarine shows such complicated characteristics of
movement path and controlled feedback. Hence, the control
problems of submarine are nonlinear in delayed and gradual
conditions. As an essential ingredient of the submarine
underwater operating system, the submarine control system
achieved linear-suspended automatic navigation control in
complicated surroundings, which enables the efficient and
stable motion of submarine.

Against the calculating problem of rudder angle variation
per instantaneous time interval under the global convergence
of control varying, this paper demonstrates a nonlinear pro-
portional differential based underwater controller to control
the movement of submarine. By the dynamic analysis of the
internal relations between controlling parameters, movement
characteristics, and trajectory performance according to the
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Figure 2: Track parameters during voyage period.
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historical and real-time attitude data, the controller can solve
the rudder angle control instruction per instantaneous time
interval and adjust the instruction in real time, which enables
the self-adaption control of the straight-line navigation of
submarine.

Our experiment shows that the nonlinear proportional
differential method achieved the equilibrium and stability
of vertical and horizontal surfaces and enables fast global
stabilization in some time, which reached the aim of under-
water straight-line navigation. Our research provides the the-
oretical base for underwater automatic driving of submarine,
which has certain theory value and practical significance.
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A parallel computation is applied to study the flow past a pair of cylinders in tandem at Reynolds numbers of 1000 by Domain
Decomposition Method. The computations were carried out for different sets of arrangements at large scale. The modeling by
domain decomposition was validated by comparing available well-recognized results. Two cylinders with different diameters were
further investigated; for different diameter ratios, the wake width ratio and some properties of the critical space ratio that dominates
the flow regime were discovered.This result has important implications on future industrial application efforts as well as codes and
standards related to the two-cylinder structure.

1. Introduction

Cylinder is one of the most common structures in engi-
neering, such as piers and chimney, the struts of offshore
platform, the pipe of condenser, and more. When fluid
flows through the cylinders, the shedding vortex may cause
interference effect. This effect may lead to the vibration of
the cylinder structures or fatigue of the materials and as a
result, the structure may be destroyed. Due to its importance
in engineering applications, flow past two cylinders has been
studied by experimental and numerical investigations for sev-
eral decades [1]. As early as 1977, Zdravkovich classified the
characteristic of flow past two cylinders in tandem into three
regimes at low Reynolds number (Re). For more complicated
applications, Wu et al. [2] studied two cylinders in tandem
with wind tunnel and water tunnel at the Re of 1000. The
flow visualization in the water tunnel showed the existence of
streamwise vortices in spanwise direction. To make out the
relationship between different arrangements of two cylinders
and Re, Mittal et al. [3] studied incompressible flows past two
cylinders in tandem and staggered arrangements (Re = 100
and Re = 1000) by a stabilized finite element method (FEM).
Jester and Kallinderis [4] investigated the incompressible
flow about fixed cylinder pairs numerically and cylinder
arrangements include tandem, side-by-side, and staggered

at Reynolds numbers of 80 and 1000. Hysteresis effects
and bistable biased gap flow in tandem arrangements were
reproduced. Different combinations of Re and arrangements
of cylinders have been reported by many [5–7], as is reported
in [8–17] and summarized by Sumner [1]; most of the early
researches on this problem contribute to the flow structures
induced by different spacing ratios (𝐿/𝐷), Re and variant
cylinder shapes.

Recently, there has been a lot of interest on the diameter
ratio (𝑑/𝐷) of two cylinders in tandem. Zhao et al. studied
turbulent flow past two cylinders with different diameters
numerically. The hydrodynamic force and vortex shedding
characteristics were proved to depend on the relative position
of small cylinders around the main cylinder [18]. Mahbub
Alam and Zhou investigated the Strouhal number, hydro-
dynamic forces and flow structures, and vortex shedding
frequency of flow past two cylinders in tandemwith different
diameters in wind tunnel [19]. The diameter of upstream
cylinder varied from 0.24 to 1 of the downstream cylinder
diameter and the distance between two cylinders remains
5.5 times of the diameter of the upstream cylinder. Ding-
Yong et al. conducted the simulation of different spacing
ratios and different diameter ratios at Re = 200 using
Fluent [20]. Besides two cylinders, Zhang et al. determined
the influence of the diameter ratio on the flow past three
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cylinders in two dimensions by applied finite elementmethod
[21].

As far as we know, the flow structure of two cylinders
in tandem affected by the changing of diameter ratio and
spacing ratio is still uncertain, and the computation scale of
numerical experiments published research is very limited. To
investigate the flow regime more concretely and more subtly,
large-scale simulations by Domain Decomposition Method
(DDM), which is considered to have better accuracy and less
time cost when comparing with conventional methods, are
implemented [22, 23].The large-scalemodelingwas validated
by comparing with others’ reports for two cylinders of the
same diameter with different spacing ratios. Moreover, to
study its influence to the flow past two cylinders in tandem
more comprehensively, the flow structures at specified diam-
eter ratios (𝑑/𝐷 = 0.5 and 𝑑/𝐷 = 1) with different spacing
ratios (𝐿/𝐷: 3–6) are investigated. The critical spacing ratio
that affects the flow regime is expected to be determined for
different diameter ratios.

This paper is organized as follows: Section 2 introduces
the governing equations to be solved as well as the domain
decompositionmethod (DDM). In Section 3, the models and
the boundary conditions are described in detail. Numerical
results for different spacing ratio and different diameter ratios
(𝑑/𝐷 = 1 and 𝑑/𝐷 = 0.5) are present and compared
with others’ work in Section 4. At last, Section 5 draws the
conclusions of this work.

2. Formulations

2.1. Governing Equations. Let 𝜕Ω be the boundary of a three-
dimensional polyhedral domain Ω. 𝐻1(Ω) is the first order
Sobolev space and 𝐿2(Ω) is the space of 2nd power summable
functions on Ω. Under the assumption that the flow field is
incompressible, viscous, and laminar, the solving of themodel
can be summarized as finding (𝑢, 𝑝) ∈ 𝐻1(Ω)3 × 𝐿2(Ω) such
that for any 𝑡 ∈ (0, 𝑇), the following set of equations hold [24]:

𝜕
𝑡
𝑢 + (𝑢 ⋅ ∇) 𝑢 −

1

𝜌
∇ ⋅ 𝜎 (𝑢, 𝑝) =

1

𝜌
𝑓,

∇ ⋅ 𝑢 = 0,

in Ω × (0, 𝑇) ,

(1)

where 𝑢 is the velocity [m/s]; 𝑝 is the pressure [Pa]; 𝜌 is the
density (const.) [kg/m3]; 𝑓 is the body force [N/m3]; 𝜎(𝑢, 𝑝)
is the stress tensor [N/m2] defined by

𝜎
𝑖𝑗
(𝑢, 𝑝) ≡ −𝑝𝛿

𝑖𝑗
+ 2𝜇𝐷

𝑖𝑗
(𝑢) ,

𝐷
𝑖𝑗
(𝑢) ≡

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
𝑗

𝜕𝑥
𝑖

) ,

𝑖, 𝑗 = 1, 2, 3,

(2)

with the Kronecker delta 𝛿
𝑖𝑗
and the viscosity 𝜇 [kg/(m⋅s)].

An initial velocity 𝑢
0
is applied in Ω at 𝑡 = 0. Dirichlet

boundary conditions

𝑢 = �̂� on Γ × (0, 𝑇) (3)

R3

u(X, t)

X(tn−1) ≈ X1(un−1, Δt) X(tn) = x

Figure 1: A characteristic finite element scheme.

and Neumann boundary conditions

3

∑

𝑗=0

𝜎
𝑖𝑗
𝑛
𝑗
= 0 on 𝜕Ω \ Γ × (0, 𝑇) (4)

are also applied, where Γ ⊂ 𝜕Ω and 𝑛 is the outward normal
direction to 𝜕Ω.

2.2. Characteristic Finite Element Scheme. Using the defini-
tion

𝑡
𝑛
≡ 𝑛Δ𝑡,

𝑁
𝑇
≡ [

𝑇

Δ𝑡
] ,

(5)

a characteristic finite element scheme approximates the
material derivative in (1) at 𝑡𝑛 as follows: [23]

𝜕
𝑡
𝑢 + (𝑢 ⋅ ∇) 𝑢 ≈

𝑢
𝑛
− 𝑢
𝑛−1

(𝑋
1
(𝑢
𝑛−1

, Δ𝑡))

Δ𝑡
, (6)

where𝑋
1
(⋅, ⋅) is a position function; see Figure 1.

Let I
ℎ
≡ {𝐾} denote a triangulation of Ω consisting

of tetrahedral elements and the subscript ℎ denotes the
representative length of the triangulation. The finite element
spaces are defined as follows:

𝑋
ℎ
≡ {V
ℎ
∈ 𝐶
0
(Ω)
3
; V
ℎ

𝐾
∈ 𝑃
1
(𝐾)
3
, ∀𝐾 ∈ I

ℎ
} ,

𝑀
ℎ
≡ {𝑞
ℎ
∈ 𝐶
0
(Ω) ; 𝑞

ℎ

𝐾
∈ 𝑃
1
(𝐾) , ∀𝐾 ∈ I

ℎ
} ,

𝑉
ℎ
(�̂�) ≡ {V

ℎ
∈ 𝑋
ℎ
; V
ℎ
(𝑃) = �̂� (𝑃) , ∀𝑃 ∈ Γ} ,

𝑉
ℎ
≡ 𝑉
ℎ
(0) ,

𝑄
ℎ
= 𝑀
ℎ
,

(7)

where the 𝐶0(Ω)3 in (7) denotes the continuous function
on Ω in three dimensions. 𝑃

1
(𝐾)
3 denotes the first order

polynomial defined by 𝐾 in three dimensions.
Note that piecewise linear interpolations are employed

for velocity and pressure (see (7) and Figure 2), which does
not provide a sufficient condition to link the velocity and
pressure space; therefore, the so-called inf-sup condition [25]
should be satisfied. In previous work [26], a penalty Galerkin
least-squares (GLS) stabilization method for pressure [27]
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was employed and it was found difficult to be applied for the
simulation of complex flows; especially when the flow is very
turbulent, the schemebecomes easy to diverge.A stabilization
technique for the saddle point problem is employed and the
finite element scheme for (1) read as follows [22].

Find {(𝑢𝑛
ℎ
, 𝑝
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ℎ
(𝑔) × 𝑄

ℎ
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𝑛=1
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ℎ
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𝐾∈Iℎ
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(𝑓, −∇𝑞

ℎ
)
𝐾
.

(8)

Let (⋅, ⋅) defines the 𝐿
2
inner product; the continuous

bilinear forms 𝑎 and 𝑏 in (8) are introduced by

𝑎 (𝑢, V) ≡
2𝜇

𝜌
(𝐷 (𝑢) , 𝐷 (V)) , (9)

𝑏 (V, 𝑞) ≡ −
1

𝜌2
(∇ ⋅ V, 𝑞) , (10)

respectively. The following stabilization parameter is em-
ployed:

𝜏
𝐾
= min{Δ𝑡

2
,

ℎ
𝐾

2
𝑢
𝑛−1

ℎ

∞

,
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2

𝑘

24𝜇
} , (11)

where ℎ
𝐾
denotes the maximum diameter of an element 𝐾

and ‖ ⋅ ‖
∞

is the maximum norm.

U∞ = 0.6m/s
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Figure 3: Two cylinders in tandem.

A weak coupling of finite element scheme in (8) is
applied and the element searching algorithm for Lagrange-
Galerkin method only needs to be implemented once in each
nonsteady loop [23].

2.3. Domain DecompositionMethod. The calculating area is a
cuboid.The left side of themodel is the entrance and the right
side is the free outlet. The inlet is placed 5𝐷 to the upstream
cylinder and total length is 26𝐷. The nonslip boundaries are
placed 5.5𝐷 above and below the cylinders. The height is 4𝐷;
see Figure 3 for a two-dimensional projection of the three-
dimensional model.

In order to investigate the relationship between them
by large-scale simulation, a parallel computation by DDM
[22, 23, 28, 29], which is considered to have better accuracy
and less time cost, is implemented in this work. In the domain
decomposition system, the whole computation domain is
split into𝑁 nonoverlapping parts, where𝑁 is the number of
threads; in each smaller part, an FEM process is preceded.
For the comparison of efficiency of DDM and FEM, please
see [23].

A Linux cluster (Intel Xeon E5606@2.13GHz × 44, LV
RDIMM 12GB@1333MHz × 44) in Sun Yat-sen University
was used for this computation. For each computation model,
176 threads were created, as can be seen in Figure 4.

For each computational model, nonsteady time step is set
to 0.01 s and the number of total simulation time is 10 s. The
maximum number of Degrees Of Freedom (DOF) is up to
16.6 million and it takes the cluster about 5.8 hours. Details of
the computations for each model can be found in Table 1.

3. Modeling and Boundary Conditions

Air is assumed to be the fluid in this work. 𝐿 is the distance
between the two centers of the cylinders. The diameter of
upstream cylinder is d and the diameter of downstream
cylinder is 𝐷 (𝐷 = 0.025m). The time step is 0.01 s and total
computation time for each model is 10 s.

The kinematic viscosity of the fluid is 0.000015m2/s at
constant temperature and Re = 1000. The velocity of the
coming flow is 0.6m/s. The air flows into the model with a
constant horizontal velocity from the left to the right. The
vertical velocity is prescribed to zero.
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Table 1: Computation information.

Name Spacing ratio
(𝐿/𝐷)

Diameter ratio
(𝑑/𝐷) Number of elements Number of DOF Nonsteady loops Computation time (h)

Model 1–1 2 1 9,420,393 14,130,590 1000 5.15
Model 1–2 2.15 1 9,466,412 14,211,123 1000 5.00
Model 1–3 2.5 1 9,566,559 14,390,891 1000 4.35
Model 1–4 3 1 9,710,157 14,649,874 1000 4.85
Model 2–1 3 0.5 6,908,469 9,309,739 1000 3.10
Model 2–2 3 1 9,710,157 14,855,135 1000 4.68
Model 2–3 4 0.5 10,146,357 15,654,964 1000 5.32
Model 2–4 4 1 9,997,736 15,312,582 1000 4.74
Model 2–5 5 0.5 10,428,101 16,114,294 1000 4.97
Model 2–6 5 1 10,283,886 15,785,861 1000 5.45
Model 2–7 6 0.5 10,715,636 16,597,006 1000 5.75
Model 2–8 6 1 10,565,696 16,259,744 1000 5.53

x3

x1

x2

Figure 4: The domain decomposition of a model: the 176 parts and local details.

The model of two cylinders in tandem with different
diameter is shown in Figure 5. The diameter of the upstream
cylinder decreases to 0.5𝐷. The diameter of the downstream
cylinder remains the same; 𝑑/𝐷 is 0.5.

4. Result and Discussion

This section presents the results of numerical simulations
for two cylinders in tandem with different spacing ratios
(𝐿/𝐷) and diameter ratios (𝑑/𝐷). To confirm the results, the
visualization of computational results was conducted and it
showed the details of flow field. Micro AVS by CYBERNET
SYSTEMS was used to plot Figures 5–14.

4.1. Validation. In order to validate the current modeling,
numerical results of two cylinders of the same diameter
with different spacing ratios (𝐿/𝐷) were compared to well-
recognized results. Figures 6 and 7 show the comparison of
current results with the numerical results reported by Jester
and Kallinderis [4].

As is shown in Figure 6, there is a recirculation between
the two cylinders at 𝐿/𝐷= 2.The vortex shedding occurs only
behind the downstream cylinder.

At 𝐿/𝐷 = 2.15, both reattachment and two vortex streets
occur between two cylinder, which presents a bistable

state [4]. When reattachment occurs, the vortices shed from
the upstream cylinder fluctuate and reattach to the down-
stream cylinder; see Figure 7. Recirculation is observed
between the two cylinders and vortex shedding is observed
behind the downstream cylinder all the time at steady state.

At 𝐿/𝐷 = 2.5, the vortex shedding occurs behind both
upstream and downstream cylinders, as is shown in Figure 8.
The vortex sheds from the upstream cylinder sharply and
impinges to the downstream cylinder.

The computational results are also validated by compar-
ing with the experiment conducted by Wu et al. [2], and the
comparison of the vortex contour is shown in Figure 9.

As can be seen from Figure 9, the numerical and
experimental results agree with each other very well: the
vortices separate from the upstream cylinder reattach to the
downstream cylinder. The vortex shedding occurs only after
the downstream cylinder. There is no independent vortex
street between two cylinders.

The computational results present the same characteristic
and tendency with recognized results of other researchers.
The characteristics of the flow and the vortex shedding are
both performed as expected.The numerical experiments also
convinced us that the parallel computation with Domain
Decomposition Method has good accuracy and efficiency in
large-scale simulation, which encouraged us tomove forward
to investigate the effect of the diameter ratio.
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Figure 5: Two cylinders in tandem with different diameter ratios. ((a) 𝑑/𝐷 = 1; (b) 𝑑/𝐷 = 0.5).

(a) (b)

Figure 6: Streamlines of Model 1–1 at 𝑡 = 8.00 s. ((a) Current results; (b) Jester and Kallinderis).

(a) (b)

Figure 7: Streamlines of Model 1–2 at 𝑡 = 6.40 s. ((a) Current results; (b) Jester and Kallinderis).

(a) (b)

Figure 8: Streamlines of Model 1–3 at 𝑡 = 8.00 s. ((a) Current results; (b) Jester and Kallinderis).

4.40 s

(a) (b)

Figure 9: Contour of Model 1–1 at 𝑡 = 4.40 s. ((a) Current results; (b) Wu et al.).
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10.00 s

(a)

10.00 s

(b)

Figure 10: Contour at 𝐿/𝐷 = 3, 𝑡 = 10.00 s. ((a)Model 2–1; (b)Model
2–2).

4.2. The Effect of Diameter Ratio. According to the research
conducted by Ding-Yong et al. [20], the diameter ratio has
strong effects on the characteristic of flow field around
two cylinders in tandem. In the research, the downstream
cylinder had smaller diameter than the upstream one. With
the increasing of the diameter ratio (𝑑/𝐷), the critical spacing
ratio increases. Mahbub Alam and Zhou also investigated
flow past two cylinders in tandem with different diameters
experimentally in wind tunnel [19].The diameter of upstream
cylinder varied from 0.24 to 1 of the downstream cylinder
diameter. However, the spacing ratio kept 5.5 times of
upstream cylinder diameter.

To determine the influence of the diameter ratio (𝑑/𝐷)
to the flow field more comprehensively, this paper conducted
the study by decreasing the diameter of the upstream cylinder
to half of the downstream cylinder. The space between two
cylinders remains the same as the corresponding simula-
tion at 𝑑/𝐷 = 1. The visualization of the flow field shows
the characteristic between the gap and vortices street. In
all arrangements, the vortex shedding occurs behind both
upstream and downstream cylinders. However, the volume
of the vortices and the complexity of wake flow are different.

As can be seen from Figure 10, at 𝐿/𝐷 = 3, the vortices
are smaller and but the wake behind downstream cylinder
is wider at 𝑑/𝐷 = 0.5 compared with 𝑑/𝐷 = 1. With 𝑑/𝐷 =
1, the vortices shed from the upstream cylinder sharply and
impinged to the downstream cylinder. At 𝑑/𝐷 = 0.5, the
interference on the upstream cylinder is less than that at
𝑑/𝐷 = 1.

In Figure 11, at 𝐿/𝐷 = 4, the vortices are smaller at 𝑑/𝐷 =
0.5 comparedwith 𝑑/𝐷= 1.Thewake behind the downstream
cylinder shares about the same area for𝑑/𝐷=0.5 and𝑑/𝐷= 1.
The interference on the upstream cylinder is smaller at 𝑑/𝐷 =
0.5 than that at 𝑑/𝐷 = 1.

At 𝐿/𝐷= 5, the vortices andwake behind the downstream
cylinder appears smaller and narrower at𝑑/𝐷=0.5 compared
with 𝑑/𝐷 = 1. The interference on the upstream cylinder is
much smaller at 𝑑/𝐷 = 0.5 than that at 𝑑/𝐷 = 1; see Figure 12.

At𝐿/𝐷= 6, the vortices andwake behind the downstream
cylinder are much smaller and narrower at 𝑑/𝐷 = 0.5
compared with 𝑑/𝐷 = 1. The interference on the upstream
cylinder is negligible at 𝑑/𝐷 = 0.5 than that at 𝑑/𝐷 = 1; see
Figure 13.

10.00 s

(a)

10.00 s

(b)

Figure 11: Contour at 𝐿/𝐷 = 4, 𝑡 = 10.00 s. ((a)Model 2–3; (b)Model
2–4).

10.00 s

(a)

10.00 s

(b)

Figure 12: Contour at 𝐿/𝐷= 5, 𝑡= 10.00 s. ((a)Model 2–5; (b)Model
2–6).

Overall, the wake after the downstream cylinder at 𝑑/𝐷 =
0.5 is clearer than that at 𝑑/𝐷 = 1.The vortices that shed from
the smaller upstream cylinder impinge to the downstream
cylinder and lead to a simpler behavior of wake. It is supposed
that there exists a critical spacing ratio dominating the flow
regime. Additionally, the different diameter ratio also gave
rise to the change of critical spacing ratio. FromFigures 10–13,
it is known that

(1) When the spacing ratio is less than the critical
value, there are only few vortices shedding after the
downstream cylinder but no vortex shedding occurs
after the upstream cylinder; see Figure 10(b).

(2) When the spacing ratio reaches the critical value,
the vortex shedding occurs after both cylinders; see
Figure 11(b).

(3) When the spacing ratio keeps increasing, the vortices
shed from the upstream cylinder will not attach
to the downstream cylinder, and there will be two
independent vortex streets; see Figure 13(a).

It can be seen that the critical spacing ratio increases
with the increasing of diameter ratio. Moreover, the critical
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Figure 13: Contour at 𝐿/𝐷= 6, 𝑡= 10.00 s. ((a)Model 2–7; (b)Model
2–8).
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Figure 14: Wake width ratio versus spacing ratio.

spacing ratio at 𝑑/𝐷 = 1 is between 3 and 4, and the
critical spacing ratio at 𝑑/𝐷 = 0.5 is smaller than 3. This
phenomenon coincides with what we know: decreasing 𝑑/𝐷
leads to the narrower wake and smaller vortices after the
upstream cylinder [19]; before 𝐿/𝐷 reaches the critical value,
the vortex street is suppressed between the two cylinders [30].
To explain the mechanism behind this, wake width (𝑊) is
measured for Figures 10–13 and wake width ratio is defined
by𝑊/𝐷; see Figure 14.

At 𝑑/𝐷 = 0.5, the wake and vortices behind upstream
cylinder are narrower and smaller, which reduces the interfer-
ence between the two cylinders, leading to the narrower wake
behind downstream cylinder as well. At 𝑑/𝐷 = 1 and 𝐿/𝐷 = 3,
the vortex street is suppressed behind the upstream cylinder.
Consequently, the wake width is narrower compared to the
case at 𝑑/𝐷 = 0.5, 𝐿/𝐷 = 3. However, the wake behind
the upstream cylinder is no longer suppressed when keep
increasing the spacing ratio. Thus, the interference increases.
At 𝑑/𝐷 = 1, the wake behind the upstream cylinder is wider
than at 𝑑/𝐷 = 0.5. The increasing of spacing ratio will even
cause wider wake behind the downstream cylinder due to
stronger interference, until two independent vortex streets
occur.

5. Conclusions

This paper tested the parallel computation with Domain
Decomposition Method in large-scale computation by sim-
ulating flow past two cylinders in tandem.The arrangements
of spacing ratio 𝐿/𝐷 between 2 and 6with diameter ratio 𝑑/𝐷
equal to 1 and 0.5 were studied.

(a) By applying this method to simulate flow past two
cylinders in tandem and comparing the results with
others’ work, it showed that the results have better
accuracy and the computation costs less time. The
credibility and the viability were verified.Themethod
will have broad application in large-scale computa-
tion in the future.

(b) The diameter ratio plays an important role in flow
past two cylinders in tandem. The upstream cylinder
with smaller diameter will decrease the vortex volume
and the interference between two cylinders. With a
decreasing of 𝑑/𝐷, the vortices behind the upstream
cylinder appear more but smaller. Meanwhile, with
an increasing spacing ratio 𝐿/𝐷, the wake becomes
narrower at 𝑑/𝐷 = 0.5 but becomes wider at 𝑑/𝐷 = 1.

(c) The critical spacing ratio increases with the diameter
ratio increasing.Moreover, the critical spacing ratio at
𝑑/𝐷 = 1 is between 3 and 4, and it is smaller than 3 at
𝑑/𝐷 = 0.5.

In real word engineering, the structure of cylinders is
more complicated, which should be considered in future
study.
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We study the 𝐿
2
-gain analysis problem for a class of discrete-time switched systems with time-varying delays. A mode-dependent

average dwell time (MDADT) approach is applied to analyze the 𝐿
2
-gain performance for these discrete-time switched delay

systems. Combining a multiple Lyapunov functional method with the MDADT approach, sufficient conditions expressed in form
of a set of feasible linear matrix inequalities (LMIs) are established to guarantee the 𝐿

2
-gain performance. Finally, a numerical

example will be provided to demonstrate the validity and usefulness of the obtained results.

1. Introduction

Switched systems consist of a finite number of subsystems
and a logical law which orchestrates the switching behaviors
between these subsystems. These dynamical systems can
mathematically model many practical engineering applica-
tions with switching characteristics in a variety of disciplines;
see, for example, [1–7].

A constrained switching signal can be regarded as a
powerful tool to stabilize and control these switched systems
[8–10]. Among them, the average dwell time (ADT) switching
is the most common and typical one. It guarantees that the
number of types of switching in a finite interval be bounded
and the average time between any two types of consecutive
switching not be less than a positive constant [11, 12]. In recent
years, it has been recognised that ADT is flexible and efficient
for dynamics analysis of many switched systems [8, 13–16].
However, the ADT switching’s property that the average time
interval between any two types of consecutive switching
should be greater than a positive number 𝜏

𝑎
makes the

dwell time independent of the systemmodes. Hence whether

the dwelling at some classes of subsystems will deteriorate the
disturbance attenuation cannot be predicted.

As shown in [17], the minimum of admissible ADT
is computed by two mode-independent parameters: the
increase coefficient of the Lyapunov-like function and the
decay rate of the Lyapunov function, which will cause certain
conservativeness. To solve the problem, more recently, a new
mode-dependent ADT concept has been introduced in [18].
Two mode-independent parameters can be set in a mode-
dependent manner, which will reduce the conservativeness.

Even though stability analysis for the switched systems
with MDADT has been investigated extensively (see, e.g.,
[17, 18]), how to solve the 𝐿

2
-gain problem of the switched

systems withMDADT is interesting and worthwhile to study.
This has motivated our study in this paper.

The rest of the paper is as follows. In Section 2, we intro-
duce the class of discrete-time switched system, some nec-
essary definitions, and lemmas. In Section 3, sufficient con-
ditions for ensuring 𝐿

2
-gain for the discrete-time switched

delay system are constructed. In Section 4, a numerical exam-
ple is presented to illustrate the obtained results. Conclusion
remarks are given in Section 5.
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2. Preliminaries and Problem Statement

Consider a discrete-time switched system with a time-
varying delay:

𝐿
𝑖
:
{{{{

{{{{

{

𝑥 (𝑡 + 1) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐶

𝑖
𝑤 (𝑡) ,

𝑥
𝑡0
(𝑙) = 𝑥 (𝑡

0
+ 𝑙) = 𝜙 (𝑙) , 𝑙 = −𝑑

𝑀
, −𝑑
𝑀
+ 1, −𝑑

𝑀
+ 2, . . . , 0,

𝑧 (𝑡) = 𝐷
𝑖
𝑥 (𝑡) + 𝐸

𝑖
𝑤 (𝑡) ,

(1)

where𝑥(𝑡) ∈ 𝑅𝑛 is the system state, 𝑧(𝑡) ∈ 𝑅𝑚 is the controlled
output, 𝜙(𝑙) is a vector-valued initial function, 𝑡

0
is the initial

time, and 𝑤(𝑡) is the disturbance input which belongs to
𝐿
2
[0, +∞). 𝑑(𝑡) is the time-varying delay and satisfies 0 <

𝑑
𝑚
< 𝑑(𝑡) ≤ 𝑑

𝑀
, where 𝑑

𝑚
and 𝑑

𝑀
denote the upper and the

lower bounds of the delays. 𝑖 is the switching signal, which
takes its values in the finite set 𝑆 = {1, . . . ,𝑀}, where 𝑀
is the number of subsystems. When 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
), 𝑖 ∈ N,

we call the 𝑖th subsystem active. 𝐴
𝑝
, 𝐵
𝑝
, 𝐶
𝑝
, 𝐷
𝑝
, and 𝐸

𝑝
are

constantmatrices with appropriate dimension.When 𝑖 = 𝑝 =
1, . . . , 𝑚, it represents the𝑝th subsystem or 𝑝th mode of (1).

To proceed, we need the following definitions and lem-
mas.

Definition 1 (see [11]). For any 𝑇
2
> 𝑇
1
≥ 0 and any switching

signal 𝑖,𝑇
1
≤ 𝑡 < 𝑇

2
, let𝑁

𝑖
(𝑇
1
, 𝑇
2
) denote the number of types

of switching of 𝑖 over (𝑇
1
, 𝑇
2
). If𝑁

𝑖
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+𝑇
2
−𝑇
1
/𝑇
𝑎

holds for 𝑁
0
≥ 0 and 𝑇

𝑎
> 0, then 𝑇

𝑎
is the average dwell

time and𝑁
0
is the chatter bound. Without loss of generality,

we choose𝑁
0
= 0.

Definition 2 (see [18]). For a switching signal 𝑖 and any 𝑇 ≥

𝑡 ≥ 0, let 𝑁
𝑖𝑝
(𝑇, 𝑡) be the switching numbers in which the

𝑝th subsystem is activated over the interval [𝑡, 𝑇] and let
𝑇
𝑝
(𝑇, 𝑡) denote the total running time of the 𝑝th subsystem

over the interval [𝑡, 𝑇], 𝑝 ∈ 𝑆. We say that 𝑖 has a mode-
dependent average dwell time (MDADT) 𝜏

𝑎𝑝
if there exist

positive numbers𝑁
𝑜𝑝
and 𝜏
𝑎𝑝

such that

𝑁
𝑖𝑝
(𝑇, 𝑡) ≤ 𝑁

𝑜𝑝
+

𝑇
𝑝
(𝑇, 𝑡)

𝜏
𝑎𝑝

, ∀𝑇 ≥ 𝑡 ≥ 0 (2)

and we call 𝑁
𝑜𝑝

the mode-dependent chatter bounds. Here,
we choose𝑁

𝑜𝑝
= 0 as well.

Definition 3. For 𝛾 > 0, the switched delay system (1) is said to
have 𝐿

2
-gain property, if, under zero initial condition 𝜙(𝑙) =

0, 𝑙 ∈ [𝑡
0
− 𝑑
𝑀
, 𝑡
0
], it holds that

∫

∞

0

𝑧
𝑇
(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ 𝛾

2
∫

∞

0

𝑤
𝑇
(𝑠) 𝑤 (𝑠) 𝑑𝑠. (3)

Lemma 4. For any given matrices𝑋,𝑌 ∈ 𝑅
𝑛×𝑛, it holds that

𝑋
𝑇
𝑌 + 𝑌

𝑇
𝑋 ≤ 𝛿𝑋

𝑇
𝑋 + 𝛿

−1
𝑌
𝑇
𝑌, (4)

where 𝛿 is any given positive constant.

Lemma 5 (see [6]). Let 𝐴, 𝐷, 𝐸, 𝐹, and 𝑃 be real matrices of
appropriate dimensions with 𝑃 > 0 and 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼.
Then for any scalar 𝜀 > 0 satisfying 𝑃−1 −𝜀−1𝐷𝐷𝑇 > 0, one has

(𝐴 + 𝐷𝐹𝐸)
𝑇
𝑃 (𝐴 + 𝐷𝐹𝐸)

≤ 𝐴
𝑇
(𝑃
−1
− 𝜀
−1
𝐷𝐷
𝑇
)
−1

𝐴 + 𝜀𝐸
𝑇
𝐸.

(5)

Lemma 6 (Schur complement). Let 𝑀, 𝑃, and 𝑄 be given
matrices such that 𝑄 > 0. Then

[

𝑃 𝑀

∗ −𝑄

] < 0 ⇐⇒

𝑃 +𝑀𝑄
−1
𝑀
𝑇
< 0.

(6)

Lemma 7 (see [13]). Let 𝜙(𝑘) ∈ 𝑅
𝑛 be a vector-valued

function. If there exist any matrices 𝑅 > 0,𝐺
1
,𝐺
2
, and a scalar

𝑑 ≥ 0, then the following inequality

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑁
𝑇
(𝑠) 𝑅𝑁 (𝑠)

≤ 𝜂
𝑇
(𝑘) [

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

] 𝜂 (𝑘)

+ 𝜂
𝑇
(𝑘) [

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑𝑅
−1
[𝐺1 𝐺2] 𝜂 (𝑘)

(7)

holds, where𝑁(𝑠) = 𝜙(𝑠 + 1) − 𝜙(𝑠) and 𝜂(𝑡) = [ 𝜙(𝑡)
𝜙(𝑡−𝑑)

].

3. 𝐿
2
-Gain Analysis

Firstly, we will introduce two important lemmas for the 𝐿
2
-

gain analysis of the switched delay system (1).The first lemma
will provide the decay estimation of the Lyapunov functional
𝑉
𝑖
(𝑡) along the trajectory of the switched delay systemwithout

disturbances.

Lemma 8. Consider the switched delay system (1) with𝑤(𝑡) =
0. For given positive integers 𝑑

𝑀
, 𝑑
𝑚
, and 𝜆

𝑖
, suppose that there

exist matrices 𝐺
1
, 𝐺
2
, Ω
1
, Ω
2
, and Ω

3
such that

(i)

Ω
3
≤ 0. (8)
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(ii)

Ω
1
− Ω
2
Ω
−1

3
Ω
𝑇

2
≤ 0, (9)

where

Ω
1
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝜆
−2

𝑖
𝑄
𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖

+ 𝜆
−2

𝑖
𝑑
𝑀
[𝜆
2

𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
+ 𝑅
𝑖
]

+ 𝜆
−2

𝑖
(𝐺
1
+ 𝐺
𝑇

1
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
1
) ,

Ω
2
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐵
𝑖
)

+ 𝜆
−2

𝑖
(−𝐺
𝑇

1
+ 𝐺
2
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
2
) ,

Ω
3
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝜆
−2(1+𝑑𝑀)

𝑖
𝑄
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

+ 𝜆
−2

𝑖
(−𝐺
2
− 𝐺
𝑇

2
+ 𝑑
𝑀
𝐺
𝑇

2
𝑅
−1

𝑖
𝐺
2
)

(10)

with 𝑃
𝑖
, 𝑄
𝑖
, and 𝑅

𝑖
being symmetric positive definite matrices;

then the Lyapunov functional 𝑉
𝑖
(𝑡) along the trajectory of the

switched delay system (1) will satisfy

𝑉
𝑖
(𝑡) ≤ 𝜆

−2(𝑡−𝑡0)

𝑖
𝑉
𝑖
(𝑡
0
) . (11)

Proof. Choose the following Lyapunov functional candidate:

𝑉
𝑖
(𝑡) = 𝑉

𝑖1
(𝑡) + 𝑉

𝑖2
(𝑡) + 𝑉

𝑖3
(𝑡) + 𝑉

𝑖4
(𝑡) . (12)

Here,

𝑉
𝑖1
(𝑡) = 𝑥

𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡) ,

𝑉
𝑖2
(𝑡) =

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

𝑉
𝑖3
(𝑡) =

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

𝑉
𝑖4
(𝑡) =

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ,

(13)

where 𝑃
𝑖
,𝑄
𝑖
, and 𝑅

𝑖
are symmetric positive definite matrices,

𝜆
𝑖
> 1 is a given constant, and 𝑦(𝑠) = 𝜆

𝑖
𝑥(𝑠 + 1) − 𝑥(𝑠). Next,

we will estimate the difference of 𝑉
𝑖
(𝑡) along the trajectory of

the switched delay system (1):

Δ𝑉
𝑖1
(𝑡) = 𝑉

𝑖1
(𝑡 + 1) − 𝑉

𝑖1
(𝑡)

= 𝑥
𝑇
(𝑡 + 1) 𝑃

𝑖
𝑥 (𝑡 + 1) − 𝑥

𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡)

= 𝑥
𝑇
(𝑡) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝐵

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝐵

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

− 𝑥
𝑇
(𝑡) 𝑃
𝑖
𝑥 (𝑡) .

(14)

Then, we have

Δ𝑉
𝑖1
(𝑡) = [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

] ,

(15)

Δ𝑉
𝑖2
(𝑡) = 𝑉

𝑖2
(𝑡 + 1) − 𝑉

𝑖2
(𝑡) ≤ 𝑉

𝑖2
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖2
(𝑡)

=

𝑡

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) = 𝜆

−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

+

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(16)

Since the delay 𝑑(𝑡) satisfies 0 < 𝑑
𝑚
< 𝑑(𝑡) ≤ 𝑑

𝑀
, we can

consider the following two cases.
When 𝑑

𝑚
> 1, it holds that

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑𝑚

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(17)
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When 𝑑
𝑚
= 1,

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡+1)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

(18)

is satisfied as well.
So from (16) and (17) we can obtain

Δ𝑉
𝑖2
(𝑡) ≤ 𝜆

−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

+

𝑡−1

∑

𝑠=𝑡+1−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

−

𝑡−1

∑

𝑠=𝑡−𝑑(𝑡)

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

= 𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

− 𝜆
2(−1−𝑑(𝑡))

𝑖
𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝑑 (𝑡))

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(19)

Since −𝜆2(−1−𝑑(𝑡))
𝑖

≤ −𝜆
2(−1−𝑑𝑀)

𝑖
, we get

Δ𝑉
𝑖2
(𝑡) ≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝜆
−2

𝑖
𝑄
𝑖

0

0 −𝜆
2(−1−𝑑𝑀)

𝑖
𝑄
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) .

(20)

The derivation process of Δ𝑉
𝑖3
(𝑡) is similar to Δ𝑉

𝑖2
(𝑡), and

then we have

Δ𝑉
𝑖3
(𝑡) = 𝑉

𝑖3
(𝑡 + 1) − 𝑉

𝑖3
(𝑡) ≤ 𝑉

𝑖3
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖3
(𝑡)

=

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

−

−𝑑𝑚+1

∑

𝜃=−𝑑𝑀+2

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

≤ −

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠)

+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑥
𝑇
(𝑡) 𝑄
𝑖
𝑥 (𝑡)

(21)

which is equal to

Δ𝑉
𝑖3
≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

(𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖
0

0 0

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

−

𝑡−𝑑𝑚

∑

𝑠=𝑡+1−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑥
𝑇
(𝑠) 𝑄
𝑖
𝑥 (𝑠) ,

(22)

Δ𝑉
𝑖4
(𝑡) = 𝑉

𝑖4
(𝑡 + 1) − 𝑉

𝑖4
(𝑡) ≤ 𝑉

𝑖4
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖4
(𝑡)

≤

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) + 𝑑

𝑀

⋅ 𝜆
−2

𝑖
𝑦
𝑇
(𝑡) 𝑅
𝑖
𝑦 (𝑡)

−

0

∑

𝜃=−𝑑𝑀+1

𝑡−1

∑

𝑠=𝑡−1+𝜃

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ≤ 𝑑

𝑀

⋅ 𝜆
−2

𝑖
𝑦
𝑇
(𝑡) 𝑅
𝑖
𝑦 (𝑡) −

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) .

(23)

Since 𝑦(𝑠) = 𝜆
𝑖
𝑥(𝑠 + 1) − 𝑥(𝑠), we substitute it into (23) and

obtain

Δ𝑉
𝑖4
(𝑡) ≤ 𝜆

−2

𝑖
𝑑
𝑀
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑅
𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
𝜆
2

𝑖
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

−

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ,

(24)
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where we apply the transformation 𝜙(𝑠) = 𝜆
(𝑠−𝑡−1)

𝑖
𝑥(𝑠). Then

we have 𝜆𝑠−𝑡−1
𝑖

𝑦(𝑠) = 𝜙(𝑠+1)−𝜙(𝑠); by Lemma 7 we continue
to have

−

𝑡−1

∑

𝑠=𝑡−𝑑𝑀

𝜆
2(𝑠−𝑡−1)

𝑖
𝑦
𝑇
(𝑠) 𝑅
𝑖
𝑦 (𝑠) ≤ [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

][

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

+ [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

]

𝑇

⋅ [

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑
𝑀
𝑅
−1

𝑖
[𝐺1 𝐺2] [

𝜙 (𝑡)

𝜙 (𝑡 − 𝑑 (𝑡))

] .

(25)

Due to the fact that𝜙(𝑡) = 𝜆−1
𝑖
𝑥(𝑡),𝜙(𝑡−𝑑(𝑡)) = 𝜆−(𝑑(𝑡)+1)

𝑖
𝑥(𝑡−

𝑑(𝑡)) ≤ 𝜆
−1

𝑖
𝑥(𝑡 − 𝑑(𝑡)), it holds that

Δ𝑉
𝑖4
(𝑡) ≤ 𝜆

−2

𝑖
𝑑
𝑀
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
(𝜆
𝑖
𝐴
𝑇

𝑖
− 𝐼) 𝑅

𝑖
𝐵
𝑖

𝐵
𝑇

𝑖
𝑅
𝑖
(𝜆
𝑖
𝐴
𝑖
− 𝐼) 𝜆

𝑖
𝜆
2

𝑖
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+ 𝜆
−2

𝑖
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

𝐺
1
+ 𝐺
𝑇

1
−𝐺
𝑇

1
+ 𝐺
2

∗ −𝐺
2
− 𝐺
𝑇

2

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

+ 𝜆
−2

𝑖
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

𝐺
𝑇

1

𝐺
𝑇

2

]𝑑
𝑀
𝑅
−1

𝑖
[𝐺1 𝐺2] [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

] .

(26)

Let 𝜉(𝑡) = [
𝑥(𝑡)

𝑥(𝑡−𝑑(𝑡))
]; then we add (15), (20), (22), and (26)

together to yield

Δ𝑉
𝑖
≤ 𝜉
𝑇
(𝑡) Ω𝜉 (𝑡) , (27)

whereΩ = [
Ω1 Ω2

∗ Ω3
],

Ω
1
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝜆
−2

𝑖
𝑄
𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
) 𝜆
−2

𝑖
𝑄
𝑖

+ 𝜆
−2

𝑖
𝑑
𝑀
[𝜆
2

𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
𝑖
𝐴
𝑇

𝑖
𝑅
𝑖
+ 𝑅
𝑖
]

+ 𝜆
−2

𝑖
(𝐺
1
+ 𝐺
𝑇

1
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
1
) ,

Ω
2
= 𝐴
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐵
𝑖
)

+ 𝜆
−2

𝑖
(−𝐺
𝑇

1
+ 𝐺
2
+ 𝑑
𝑀
𝐺
𝑇

1
𝑅
−1

𝑖
𝐺
2
) ,

Ω
3
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
− 𝜆
−2(1+𝑑𝑀)

𝑖
𝑄
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖

+ 𝜆
−2

𝑖
(−𝐺
2
− 𝐺
𝑇

2
+ 𝑑
𝑀
𝐺
𝑇

2
𝑅
−1

𝑖
𝐺
2
) .

(28)

By (8) and (9) and Lemma 6, we can obtain

Ω = [

Ω
1
Ω
2

∗ Ω
3

] ≤ 0. (29)

It follows from (27) and (29) that

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) . (30)

Therefore,

𝑉
𝑖
(𝑡) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡 − 1) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

−2(𝑡−𝑡0)

𝑖
𝑉
𝑖
(𝑡
0
) . (31)

This completes the proof.

Lemma 9. For given constants 𝜆
𝑖
and 𝛾

0
, suppose that there

exist matrices Ξ
1
, Ξ
2
, and Ξ

3
such that

(i)

Ξ
3
≤ 0 (32)

(ii)

Ξ
1
− Ξ
2
Ξ
−1

3
Ξ
𝑇

2
≤ 0 (33)

and 𝛾
0
> 0, 𝜀
1
> 0, and 𝜀

2
> 0 satisfying

𝛾
2

0
𝐼 ≥ 𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
; (34)

then along the trajectory of system (1), one has

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) , (35)

where

Ξ
1
= Ω
1
+ 𝜀
1
𝜑
𝑇

1𝑖
𝜑
1𝑖
+ 𝐷
𝑇

𝑖
𝐷
𝑖
,

Ξ
2
= Ω
2
,

Ξ
3
= Ω
3
+ 𝜀
2
𝜑
𝑇

2𝑖
𝜑
2𝑖
,

𝜑
1𝑖
= 𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖

𝜑
2𝑖
= 𝐶
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
.

(36)
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Proof. Using Lemma 8 and (1), we have

𝑉
𝑖
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝑍

𝑇
(𝑡) 𝑍 (𝑡) − 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡)

≤ 𝜉
𝑇
(𝑡) Ω𝜉 (𝑡) + 𝑥

𝑇
(𝑡)

⋅ [𝐴
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐶
𝑖
) + 𝐷

𝑇

𝑖
𝐸
𝑖
]

⋅ 𝑤 (𝑡) + 𝑤
𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖
]

⋅ 𝑥 (𝑡) + 𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) [𝐵

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
]𝑤 (𝑡)

+ 𝑤
𝑇
(𝑡) [𝐶

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
] 𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑥
𝑇
(𝑡) 𝐷
𝑇

𝑖
𝐷
𝑖
𝑥 (𝑡) + 𝑤

𝑇
(𝑡)

⋅ (𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
− 𝛾
2

0
𝐼)𝑤 (𝑡) .

(37)

Based on Lemmas 4 and 5, it holds that

𝑥
𝑇
(𝑡) [𝐴

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
(𝐴
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
− 𝜆
−1

𝑖
𝑅
𝑖
𝐶
𝑖
) + 𝐷

𝑇

𝑖
𝐸
𝑖
]

⋅ 𝑤 (𝑡) + 𝑤
𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝑑
𝑀
(𝐶
𝑇

𝑖
𝑅
𝑖
𝐴
𝑖
− 𝜆
−1

𝑖
𝐶
𝑇

𝑖
𝑅
𝑖
) + 𝐸
𝑇

𝑖
𝐷
𝑖
]

⋅ 𝑥 (𝑡) ≤ 𝜀
1
𝑥
𝑇
(𝑡) 𝜑
𝑇

1𝑖
𝜑
1𝑖
𝑥 (𝑡) + 𝜀

−1

1
𝑤
𝑇
(𝑡) 𝑤 (𝑡) .

𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) [𝐵

𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐵
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
]𝑤 (𝑡) + 𝑤

𝑇
(𝑡)

⋅ [𝐶
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐵
𝑖
] 𝑥 (𝑡 − 𝑑 (𝑡))

≤ 𝜀
2
𝑥
𝑇
(𝑡 − 𝑑 (𝑡)) 𝜑

𝑇

2𝑖
𝜑
2𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝜀

−1

2
𝑤
𝑇
(𝑡)

⋅ 𝑤 (𝑡) .

(38)

Then, it follows from (35) and (38) that

𝑉
𝑖
(𝑡 + 1) − 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝑍

𝑇
(𝑡) 𝑍 (𝑡) − 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡)

≤ 𝜉
𝑇
(𝑡)

⋅ [

Ω
1
+ 𝜀
1
𝜑
𝑇

1𝑖
𝜑
1𝑖
+ 𝐷
𝑇

𝑖
𝐷
𝑖

Ω
2

∗ Ω
3
+ 𝜀
2
𝜑
𝑇

2𝑖
𝜑
2𝑖

] 𝜉 (𝑡)

+ 𝑤
𝑇
(𝑡) [𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖

+ 𝐸
𝑇

𝑖
𝐸
𝑖
− 𝛾
2

0
𝐼]𝑤 (𝑡) .

(39)

Combining (32), (33) with (34) will lead to

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) . (40)

This completes the proof.

Now, our 𝐿
2
-gain analysis results can be presented as

follows.

Theorem 10. For given constants 𝜆
𝑖
and 𝛾
0
, suppose that there

exist matrices Ξ
1
, Ξ
2
, and Ξ

3
such that

(i)

Ξ
3
≤ 0 (41)

(ii)

Ξ
1
− Ξ
2
Ξ
−1

3
Ξ
𝑇

2
≤ 0 (42)

and 𝛾
0
> 0, 𝜀
1
> 0, and 𝜀

2
> 0 satisfying

𝛾
2

0
𝐼 ≥ 𝜀
−1

1
𝐼 + 𝜀
−1

2
𝐼 + 𝐶
𝑇

𝑖
𝑃
𝑖
𝐶
𝑖
+ 𝑑
𝑀
𝐶
𝑇

𝑖
𝑅
𝑖
𝐶
𝑖
+ 𝐸
𝑇

𝑖
𝐸
𝑖
. (43)

Then the switched delay system (1) has a 𝐿
2
-gain withMDADT

𝜏
𝑎𝑝
> 𝜏
∗

𝑎𝑝
= ln 𝜇

𝑝
/2 ln 𝜆

𝑝
, where 𝜇

𝑝
≥ 1 satisfying (35) and𝜑

1𝑖
,

𝜑
2𝑖
, Ξ
1
, Ξ
2
, and Ξ

3
are defined in Lemma 9.

Proof. Choose the Lyapunov functional candidate (12). From
(41) and (42) and Lemma 9, we have

𝑉
𝑖
(𝑡 + 1) ≤ 𝜆

−2

𝑖
𝑉
𝑖
(𝑡) + 𝛾

2

0
𝑤
𝑇
(𝑡) 𝑤 (𝑡) − 𝑍

𝑇
(𝑡) 𝑍 (𝑡) . (44)

Let Γ(𝑡) = 𝛾
2

0
𝑤
𝑇
(𝑡)𝑤(𝑡) − 𝑍

𝑇
(𝑡)𝑍(𝑡). From (35), since 𝑡

𝑖−1
=

𝑡
𝑖
− 1, we have

𝑉
𝜎(𝑡)

(𝑡) ≤ 𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
𝑉
𝜎(𝑡𝑖)

(𝑡
𝑖
) +

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗)

≤ 𝜇
𝜎(𝑡𝑖)

𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
𝑉
𝜎(𝑡𝑖−1)

(𝑡
𝑖
) +

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗)

≤ 𝜇
𝜎(𝑡𝑖)

𝜆
𝜎(𝑡𝑖)

−2(𝑡−𝑡𝑖)
{

{

{

𝜆
−2(𝑡𝑖−𝑡𝑖−1)

𝜎(𝑡𝑖−1)
𝑉
𝜎(𝑡𝑖−1)

(𝑡
𝑖−1
)

+

𝑡𝑖−1

∑

𝑗=𝑡𝑖−1

𝜆
−2(𝑡𝑖−𝑗−1)

𝜎(𝑡𝑖−1)
Γ (𝑗)

}

}

}

+

𝑡−1

∑

𝑗=𝑡𝑖

𝜆
−2(𝑡−𝑗−1)

𝜎(𝑡𝑖)
Γ (𝑗) ≤ ⋅ ⋅ ⋅

≤ (

𝑖

∏

𝑠=1

𝜇
𝜎(𝑡𝑠)

) ⋅ exp(−2
𝑖

∑

𝑠=1

ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
) +

𝑖

∑

𝑘=1

[(

𝑖

∏

𝑠=𝑘

𝜇
𝜎(𝑡𝑠)

)

⋅ exp(−2
𝑖

∑

𝑠=𝑘

ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))] Γ (𝑡

𝑘−1
)

= exp[
𝑖

∑

𝑠=1

(ln 𝜇
𝜎(𝑡𝑠)

− 2 ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))]

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
)

+

𝑖

∑

𝑘=1

{exp[
𝑖

∑

𝑠=𝑘

(ln 𝜇
𝜎(𝑡𝑠)

− 2 ln 𝜆
𝜎(𝑡𝑠−1)

(𝑡
𝑠
− 𝑡
𝑠−1
))]}

⋅ Γ (𝑡
𝑘−1

)

(45)
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which combined with Definition 2 and the MDADT scheme
𝑁
𝜎𝑝
(𝑇, 𝑡) ≤ 𝑇

𝑝
(𝑇, 𝑡)/𝜏

𝑎𝑝
yields

𝑉
𝜎(𝑡)

(𝑡) ≤ exp[
𝑚

∑

𝑝=1

(ln 𝜇𝑁𝜎𝑝(𝑡,𝑡0)𝑝 − 2 ln 𝜆
𝑝
𝑇
𝑝
(𝑡, 𝑡
0
))]

⋅ 𝑉
𝜎(𝑡0)

(𝑡
0
)

+

𝑖

∑

𝑘=1

{exp[
𝑚

∑

𝑝=1

(ln 𝜇𝑁𝜎𝑝(𝑡,𝑡𝑘−1)𝑝 − 2 ln 𝜆
𝑝
𝑇
𝑝
(𝑡, 𝑡
𝑘−1

))]}

⋅ Γ (𝑡
𝑘−1

) ≤ 𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝑉
𝜎(𝑡0)

(𝑡
0
) +

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

Γ (𝑡
𝑘−1

) ,

(46)

where 𝛽 = ∑𝑚
𝑝=1

(2 ln 𝜆
𝑝
− ln 𝜇

𝑝
/𝜏
𝜎𝑝
) > 0.

Under zero initial condition, from (46), one obtains

0 ≤ 𝑉
𝜎(𝑡)

(𝑡) ≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

Γ (𝑡
𝑘−1

) (47)

which implies that

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

𝑍
𝑇
(𝑡
𝑘−1

) 𝑍 (𝑡
𝑘−1

)

≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡𝑘−1)

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘−1

) 𝑤 (𝑡
𝑘−1

) .

(48)

Then, we multiply both sides by 𝑒−𝛽𝑇𝑝(𝑡𝑘−1 ,𝑡0) to get

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝑍
𝑇
(𝑡
𝑘−1

) 𝑍 (𝑡
𝑘−1

)

≤

𝑖

∑

𝑘=1

𝑒
−𝛽𝑇𝑝(𝑡,𝑡0)

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘−1

) 𝑤 (𝑡
𝑘−1

) .

(49)

Thus,

𝑖

∑

𝑘=0

𝑍
𝑇
(𝑡
𝑘
) 𝑍 (𝑡
𝑘
) ≤

𝑖

∑

𝑘=0

𝛾
2

0
𝑤
𝑇
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) . (50)

This completes the proof.

4. A Numerical Example

Consider the switched delay system (1) with the following
specifications:

𝐴
1
= [

−0.2 0.3

0.1 −0.5

] ,

𝐵
1
= [

0.4 0

0.1 −0.5

] ,

𝐴
2
= [

−0.1 1

0 −0.6
] ,

𝐵
2
= [

−0.7 0.1

1 0.2
] ,

𝐶
1
= [

1 0

0 0

] ,

𝐶
2
= [

0 1

1 0

] ,

𝐷
1
= [1, 1] ,

𝐷
2
= [0, 1] ,

𝐸
1
= 𝐸
2
= [0.2, 0.8] ,

(51)

and 𝑑(𝑡) = sin(𝑡𝜋/2) + 1, so that 𝑑
𝑀

= 2, 𝑑
𝑚

= 0. The
disturbance input is defined as

𝑤 (𝑡) =

{

{

{

1, 0 < 𝑡 ≤ 20,

0, 𝑡 > 20.

(52)

Let 𝜇
1

= 𝜇
2

= 12; by the LMI Control Toolbox and
Theorem 10, we obtain

𝑃
1
= [

12.5739 5.0613

5.0613 4.8703
] ,

𝑄
1
= [

2.6676 1.2445

1.2445 0.9452
] ,

𝑅
1
= [

4.4703 −0.6996

−0.6996 9.3862

] ,

𝑃
2
= [

12.3445 18.3565

18.3565 30.2222

] ,

𝑄
2
= [

2.3941 3.7907

3.7907 6.1097

] ,

𝑅
2
= [

16.1813 18.8134

18.8134 22.4268
] ,

(53)

and 𝜆
1
= 27.2485, 𝜆

2
= 38.7807, where 𝜏∗

𝑎1
= ln 𝜇

1
/2 ln 𝜆

1
=

0.3759 and 𝜏
∗

𝑎2
= ln 𝜇

2
/2 ln 𝜆

2
= 0.3397. Now, we choose
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Figure 1: State trajectories of the switched delay system (1) under
MDADT switching.

the switching periods 𝜏
𝑎1

= 2, 𝜏
𝑎2

= 1 and take the initial
state condition 𝜓(𝑙) = [1; 2] for all 𝑙 = −2, −1, 0. Then the
numerical simulations can be shown in Figure 1.

It can be seen from Figure 1 that under the designed
MDADT switching signals the switched delay system can
achieve better dynamics performance and disturbance toler-
ance capability, which shows the potentiality of our results in
practice.

5. Conclusions

In this paper, the problem of 𝐿
2
-gain analysis for discrete-

time switched systems with MDADT switching has been
investigated. By combining with the multiple Lyapunov
function method, sufficient conditions are established to
ensure 𝐿

2
-gain performance for discrete-time switched delay

system, and the admissible MDADT switching signals are
also designed accordingly. Finally, a numerical example is
given to demonstrate the usefulness of the obtained results.
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This paper presents a robust control design for the class of underactuated uncertain nonlinear systems. Either the nonlinearmodel of
the underactuated systems is transformed into an input output form and then an integral manifold is devised for the control design
purpose or an integral manifold is defined directly for the concerned class. Having defined the integral manifolds discontinuous
control laws are designed which are capable of maintaining slidingmode from the very beginning.The closed loop stability of these
systems is presented in an impressive way.The effectiveness and demand of the designed control laws are verified via the simulation
and experimental results of ball and beam system.

1. Introduction

The control design of underactuated systems was the main
focus of the researchers in the current and last decade.
These systems, by definition, contain less number of control
inputs/actuators as compared to the degree of freedom [1].
This feature makes them quite different from the other non-
linear plantswhere the systems operatewith the samenumber
of inputs and outputs, the so-called fully actuated systems.
The control design of these systems is quite demanding
because of their vital theoretical and practical applications in
the areas of aerospace systems, marine systems, humanoids,
locomotive systems, manipulators of different kinds, and so
forth [2]. This family also includes ball and beam system [3],
TORA (translational oscillator with rotational actuator) [4],
and inverted pendulum system [5].These systems are used in
order to have minimum weight, cost, and energy usage while
still retaining the key features of the processes. In addition,
another significant feature of underactuated systems is less
damage in case of collision with other objects which in
turn provides more safety to actuators [6]. Underactuation

can be raised due to the hardware failure; this hardware
solution to actuator failures can be achieved by equipping
the vehicle with redundant actuators [2]. Note that, in case
of fully actuated systems, there exists a broad range of design
techniques in order to improve performance and robustness.
These include adaptive control, optimal control, feedback
linearization, and passivity. However, it may be difficult to
apply such techniques in large class of underactuated systems
because sometimes these systems are not linearizable using
smooth feedback [7] also due to the existence of unstable
hidden modes in some systems. Brockett [8] also provided a
necessary condition for the hold of stable smooth feedback
law, but this condition is not satisfied in the majority of
underactuated systems. Nevertheless, control design experts
have employed approximate feedback linearization [9–11] and
backstepping control [12]. Passivity-based methodology is
also used to control such systems but the main drawback in
this technique is its narrow range of applications [13]. Sliding
mode control is also proposed for the class of underactuated
systems [6] but the problem with sliding mode control is
presence of chattering.
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The aforementioned design strategies were quite suitable
and resulted in satisfactory results but it is worthy to note
that the system often becomes too sensitive to disturbance in
the reaching phase of sliding mode strategy that the system
may even become unstable. Therefore, in order to get rid of
this issue the integral sliding mode strategy was proposed
[14–16]. In this paper a robust integral sliding mode control
(RISMC) approach for underactuated systems is proposed.
The benefit of this strategy is enhancement of robustness
from initial time instant. It also suppresses the well-known
chattering phenomenon across the manifold. Before the
design presentation, the system is suitably transformed into
special formats. An integral slidingmode strategy is proposed
for both the cases along with their comprehensive stability
analysis. The proposed technique is practically implemented
on the ball and beam system to authenticate the affectivity
and efficiency of the designed algorithm. Note that in this
paper our contributions are twofold. The first one is the
development of theRISMCand the secondone is the practical
results of the system on the said system. The rest of the
paper is organized as follows. In Section 2, the problem is
formulated into two special formats which further simplify
the design methodology. In Section 3, the integral sliding
mode strategy for both the cases is discussed in detail
accompanied by their respective stability analysis in terms of
Lyapunov theory. Section 4 presents the development of the
control laws, simulation, and practical results of the ball and
beam system. Section 5 concludes the overall efforts being
made in this study. In the end more relevant recent articles
are enlisted.

2. Problem Formulation

The dynamic equations which govern the motion of the class
of underactuated system can be presented as

𝐽 (𝑞) �̈� + 𝐶 (𝑞, �̇�) �̇� + 𝐺 (𝑞) + 𝐹 (�̇�)

= 𝐵 (𝜏 + 𝛿 (𝑞, �̇�, 𝑡)) ,

(1)

where 𝑞, �̇�, and �̈� are 𝑛-dimensional position, velocity,
and acceleration vectors and 𝐽(𝑞), 𝐶(𝑞, �̇�), 𝐺(𝑞), and 𝐹(�̇�)

represent the inertia, Coriolis, gravitational, and fractional
torques matrices, respectively. 𝜏 is the measured control
input, and 𝛿(𝑞, �̇�, 𝑡) represents the uncertainties in the control
input channel whereas 𝐵 is the control input channel.

It is assumed that rank(𝐽−1(𝑞)𝐵) = 𝑚 and the origin
is considered to be the equilibrium point for the aforemen-
tioned system. Now, the system in (1) can be rewritten in
alternate form as follows:

𝑚
11

(𝑞) ̈𝑞
1

+ 𝑚
12

(𝑞) ̈𝑞
2

+ ℎ
1

(𝑞, �̇�) = 0,

𝑚
21

(𝑞) ̈𝑞
1

+ 𝑚
12

(𝑞) ̈𝑞
2

+ ℎ
2

(𝑞, �̇�) = 𝜏,

(2)

where 𝑞 = [𝑞
1

, 𝑞
2

]
𝑇 represents the states of the system and 𝑞

and �̇� point to the states. In order to design a control law, the
system in (2) can be transformed into two formats which are
described in the subsequent study.

2.1. System in Cascaded Form. Following some algebraic
manipulations, the system in (2) may be written in cascaded
form as follows [17]:

̇𝑥
1

= 𝑥
2

+ 𝑑
1

,

̇𝑥
2

= 𝑓
1

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) + 𝑑
2

,

(3)

̇𝑥
3

= 𝑥
4

,

̇𝑥
4

= 𝑓
2

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) + 𝑏 (𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) 𝜏 + 𝑑
3

,

(4)

where 𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

are measurable states of the systems such
that 𝑥

1

and 𝑥
2

are pointing to the position and velocity of
the indirect actuated system (3) while 𝑥

3

and 𝑥
4

represent
the position and velocity of the directly actuated system
(4). 𝜏 represents the controlled signal, as already discussed,
to the system (4) input. Owing to the assumption stated
immediately after (1), the inverse of 𝑏 exists. The nonlinear
functions 𝑓

1

, 𝑓
2

: 𝑅
4𝑛

→ 𝑅
𝑛, 𝑏 : 𝑅

4𝑛

→ 𝑅
𝑛×𝑛 are smooth in

nature. Now, following the procedure of [6], the disturbances
𝑑
1

𝑑
2

𝑑
3

are deliberately introduced to get an approximate
controllable canonical form. Note that practical systems like
inverted pendulum [18], TORA [4], VTOL (vertical take-off
and landing) aircraft [17], and quad rotor [19] can be put
in the form presented in (3) and (4). Before proceeding to
the control design of the above cascaded form, the following
assumptions are made.

Assumption 1. Assume that

𝑓
1

(0, 0, 0, 0) = 0. (5)

This condition is necessary for the system origin to be in
equilibrium point when the system is operated in closed loop.

Assumption 2. 𝜕𝑓
1

/𝜕𝑥
3

is invertible or 𝜕𝑓
1

/𝜕𝑥
4

is invertible.

Assumption 3. 𝑓
1

(0, 0, 𝑥
3

, 𝑥
4

) = 0 is an asymptotically stable
manifold, that is, 𝑥

3

, and 𝑥
4

approaches zero.

Note that Assumptions 2 and 3 lie in the category of
nonnecessary conditions. These are only used when one
needs to furnish the closed loop system with a sliding mode
controller (see for details [6]).

2.2. Input Output Form. The system in (3) and (4) can
be transformed into the following input output form while
following the procedure reported in [16]. Let us assume that
the system has a nonlinear output 𝑦 = ℎ(𝑥). To this end we
denote

𝐿
𝑓

ℎ (𝑥) =
𝜕ℎ (𝑥)

𝜕𝑥
𝑓 (𝑥) = ∇ℎ (𝑥) 𝑓 (𝑥) ,

𝐿
𝑓

𝜏

ℎ (𝑥) =
𝜕ℎ (𝑥)

𝜕𝑥
𝑓
𝜏

= ∇ℎ (𝑥) 𝑓
𝜏

.

(6)

Recursively, it can be written as

𝐿
0

𝑓

ℎ (𝑥) = ℎ (𝑥) ,

𝐿
𝑗

𝑓

ℎ (𝑥) = 𝐿
𝑓

(𝐿
𝑗−1

𝑓

ℎ (𝑥)) = ∇ (𝐿
𝑗−1

𝑓

ℎ (𝑥)) 𝑓 (𝑥) .

(7)
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Assume that the system reported in (3)-(4) has a relative
degree “𝑟” with respect to the defined nonlinear output.
Therefore, owing to [20], one has

𝑦
(𝑟)

= 𝐿
𝑟

𝑓

ℎ (𝑥) + 𝐿
𝑔

(𝐿
𝑟−1

𝑓

ℎ (𝑥)) 𝜏 + 𝜁 (𝑥, 𝑡) (8)

subject to the following conditions:

(1) 𝐿
𝑔

(𝐿
𝑖

𝑓

ℎ(𝑥)) = 0 ∀𝑥 ∈ 𝐵, where 𝐵 indicates the
neighborhood of 𝑥

0

for 𝑖 < 𝑟 − 1;
(2) 𝐿
𝑔

(𝐿
𝑟−1

𝑓

ℎ(𝑥)) ̸= 0, where 𝜁(𝑥, 𝑡) represents the
matched unmodeled uncertainties. System (8), by
defining the transformation 𝑦

(𝑖−1)

= 𝜉
𝑖

[21], can be
put in the following form:

̇𝜉
1

= 𝜉
2

,

̇𝜉
2

= 𝜉
3

,

.

.

.

̇𝜉
𝑛

= 𝜑 (�̂�, �̂�) + 𝛾 (�̂�) {𝜏 + Δ𝐺
𝑚

(�̂�, �̂�, 𝑡)} ,

(9)

where the transformed states �̂� = (𝜉
1

, 𝜉
2

, . . . , 𝜉
𝑛

) are
phase variables, 𝜏 is the control input, andΔ𝐺

𝑚

(�̂�, �̂�, 𝑡)

represents matched uncertainties. It is worthy to
notice that the inverted pendulum and the ball and
beam systems can be replaced in the aforementioned
form.

Note that both the formats are ready to design the control
law for these systems. In the next section, we outline the
design procedure for both the forms.

3. Control Law Design

The control design for the forms presented in (3)-(4) and
(9) is carried out in this section which we claim as our
main contribution in this paper. The main objective in
this work is to enhance the robustness of the system from
the very beginning of the process which is the beauty of
integral sliding mode control. In general, the integral sliding
mode control law appears as follows [14]. In the subsequent
subsections, the authors aim to present the design procedure.

3.1. Integral Sliding Mode. This variant of sliding mode pos-
sesses the main features of the sliding mode like robustness
and the existence chattering across the switching manifold.
On the other hand, the sliding mode occurs from the very
start which, consequently, provides insensitivity of distur-
bance from the beginning. The control law can be expressed
as follows:

𝜏 = 𝜏
0

+ 𝜏
1

, (10)

where the first component on the right hand side of (10)
governs the systems dynamics in sliding modes whereas the
second component compensates the matched disturbances.
Now, the aim is to present the design of the aforesaid control
components.

3.1.1. Control Design for Case-1. This control design for case-
1 is the main obstacle in this subsection. To define both the
components, the following terms are defined:

𝑒
1

= 𝑥
1

,

𝑒
2

= 𝑥
2

,

𝑒
3

= 𝑓
1

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) ,

𝑒
4

=
𝜕𝑓
1

𝜕𝑥
1

𝑥
2

+
𝜕𝑓
1

𝜕𝑥
2

𝑓
1

+
𝜕𝑓
1

𝜕𝑥
3

𝑥
4

.

(11)

Using these new variables, the components of the controller
are designed in the following subsection. For the sake of
completeness the design of this component is worked out via
simple pole placement. Following the design procedure of
pole placement method, one gets

𝜏
0

= −𝑘
1

𝑒
1

− 𝑘
2

𝑒
2

− 𝑘
3

𝑒
3

− 𝑘
4

𝑒
4

, (12)

where 𝑘
𝑖

𝑖 = 1, 2, 3, 4 are the gains of this control component.
This control component steers the states of the nominal
system to their defined equilibrium. Now, in the subsequent
study the design of the uncertainties compensating term is
presented. An integral manifold is defined as follows:

𝜎 = 𝑐
1

𝑒
1

+ 𝑐
2

𝑒
2

+ 𝑐
3

𝑒
3

+ 𝑒
4

+ 𝑧 = 𝜎
0

+ 𝑧, (13)

where 𝜎
0

= 𝑐
1

𝑒
1

+ 𝑐
2

𝑒
2

+ 𝑐
3

𝑒
3

+ 𝑒
4

represents the conventional
sliding manifold which is Hurwitz by definition.

Now, computing �̇� along (3)-(4), one has
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(14)

Now, choose the dynamics of the integral term as follows:
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The expression of the termwhich compensates the uncertain-
ties may be written as follows:

𝜏
1

= −(
𝜕𝑓
1
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(16)

The overall controller will look like

𝜏 = −𝑘
1

𝑒
1

− 𝑘
2

𝑒
2

− 𝑘
3

𝑒
3

− 𝑘
4

𝑒
4

− (
𝜕𝑓
1

𝜕𝑥
3

𝑏 (𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

))

−1

⋅ (
𝜕𝑓
1

𝜕𝑥
3

𝑓
2

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) + 𝐾sign (𝜎)) .

(17)

The constants 𝑐
𝑖

’s are control gains which are selected intel-
ligently according to bounds. In the forthcoming paragraph,
the stability of the presented integral sliding mode is carried
out in the presence of the disturbances and uncertainties.
Consider the following Lyapunov candidate function:

𝑉 =
1

2
𝜎
2

. (18)

The time derivative of this function along dynamics (11)
becomes

�̇� = 𝜎�̇� = 𝜎(𝑐
1

(𝑥
2

+ 𝑑
1

)

+ 𝑐
2

(𝑓
1

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) + 𝑑
2

)

+ 𝑐
3

(
𝑑𝑓
1

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

)

𝑑𝑡
) +

𝑑

𝑑𝑡
(
𝜕𝑓
1

𝜕𝑥
1

𝑥
2

)

+
𝜕𝑓
1

𝜕𝑥
1

̇𝑥
2

+
𝑑

𝑑𝑡
(
𝜕𝑓
1

𝜕𝑥
2

𝑓
1

) +
𝜕𝑓
1

𝜕𝑥
2

̇𝑓
1

+
𝑑

𝑑𝑡
(
𝜕𝑓
1

𝜕𝑥
3

𝑥
4

)

+
𝜕𝑓
1

𝜕𝑥
3

𝑓
2

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) +
𝜕𝑓
1

𝜕𝑥
3

(𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) 𝜏
0

+
𝜕𝑓
1

𝜕𝑥
3

𝑏 (𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

) 𝜏
1

+
𝜕𝑓
1

𝜕𝑥
3

𝑑
3

) .

(19)

The substitution of (15)-(16) results in the following form:

�̇� ≤ − |𝜎| 𝜂
1

< 0

or �̇� + √2𝜂
1

√𝑉 < 0

(20)

subject to 𝐾 ≥ [‖(𝜕𝑓
1

/𝜕𝑥
3

)𝑑
3

+ 𝑐
1

𝑑
1

+ 𝑐
2

𝑑
2

‖ + 𝜂].
This expression confirms the enforcement of the sliding

mode from the very beginning of the process, that is, 𝜎 → 0

in finite time. Now, we proceed to the actual system’s stability.
If one considers 𝑒

1

as the output of the system, then 𝑒
2

, 𝑒
3

,
and 𝑒

4

become the successive derivatives of 𝑒
1

. Whenever
𝜎 = 0 is achieved, the dynamics of the transformed system

(11) will converge asymptotically to zero under the action of
the control component (12) [22]. That is, in closed loop, the
transformed system dynamics will be operated under (12) as
follows:

[
[
[
[
[

[

̇𝑒
1

̇𝑒
2

̇𝑒
3

̇𝑒
4

]
]
]
]
]

]

=

[
[
[
[
[

[

0 1 0 0

0 0 1 0

0 0 0 1

−𝑘
1

−𝑘
2

−𝑘
3

−𝑘
4

]
]
]
]
]

]

[
[
[
[
[

[

𝑒
1

𝑒
2

𝑒
3

𝑒
4

]
]
]
]
]

]

(21)

and the disturbances will be compensated via (16).
The asymptotic convergence of 𝑒

1

, 𝑒
2

, 𝑒
3

, and 𝑒
4

to zero
means the convergence of the indirectly actuated system (3)
to zero. On the other hand, the states of the directly actuated
system (4) will remain bounded; that is, state of (4) will have
some nonzero value in order to keep 𝑒

1

at zero. Thus, the
overall system is stabilized and the desired control objective
is achieved.

3.2. Control Design for Case-2. Thenominal system related to
(9) can be replaced in the subsequent alternative form

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
𝑟

= 𝜒 (�̂�, 𝜏) + 𝜏,

(22)

where 𝜒(�̂�, 𝜏) = 𝜑(𝜉, 𝜏) + (𝛾(�̂�) − 1)𝜏. It is assumed that
𝜒(�̂�, �̂�, 𝜏

(𝑘)

) = 0 at 𝑡 = 0 in addition to the next supposition
that (22) is governed by 𝜏

0

:

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
𝑟

= 𝜏
0

(23)

or

�̇� = 𝐴𝜉 + 𝐵𝜏
0

, (24)

where

𝐴 = [
0
(𝑟−1)×1

𝐼
(𝑟−1)×(𝑟−1)

0
1×1

0
1×(𝑟−1)

] ,

𝐵 = [
0
(𝑟−1)×1

1
] .

(25)



Mathematical Problems in Engineering 5

Once again, following the pole placement procedure, onemay
have, for the sake of simplicity, the input 𝜏

0

which is designed
via pole placement, that is,

𝜏
0

= −𝐾
𝑇

0

𝜉. (26)

Now to get the desired robust performance, the following
sliding manifold of integral type [14] is defined:

𝜎 (𝜉) = 𝜎
0

(𝜉) + 𝑧, (27)

where 𝜎
0

(𝜉) is the usual sliding surface and 𝑧 is the integral
term. The time derivative of (27) along (9) yields

�̇� = −(

𝑟−1

∑

𝑖=1

𝑐
𝑖

𝜉
𝑖+1

+ 𝜏
0

) ,

𝑧 (0) = −𝜎
0

(𝜉 (0)) ,

(28)

𝜏
1

=
1

𝛾 (�̂�)
(−𝜑 (�̂�, 𝜏) − (𝛾 (�̂�) − 1) 𝜏

0

− 𝐾 sign𝜎) . (29)

This control law enforces sliding mode along the sliding
manifold defined in (27). The constant 𝐾 can be selected
according to the subsequent stability analysis.

Thus, the final control law becomes

𝜏
1

= −𝐾
𝑇

0

𝜉

+
1

𝛾 (�̂�)
(−𝜑 (�̂�, 𝑢) − (𝛾 (�̂�) − 1) 𝜏

0

− 𝐾 sign𝜎) .

(30)

Theorem 4. Consider that |Δ𝐺
𝑚

(�̂�, �̂�, 𝑡)| ≤ 𝛽
1

are satisfied;
then the sliding mode against the switching manifold 𝜎 = 0 can
be ensured and one has

𝐾 ≥ [𝐾
𝑀

𝛽
1

+ 𝜂
1

] , (31)

where 𝜂
1

is a positive constant.

Proof. Toprove that the slidingmode can be enforced in finite
time, differentiating (22) along the dynamics of (3)-(4), and
then substituting (30), one has

�̇� (𝜉) =

𝑟−1

∑

𝑖=1

𝑐
𝑖

𝜉
𝑖+1

+ 𝜏
0

− 𝐾 sign𝜎 + 𝛾 (�̂�) Δ𝐺
𝑚

(�̂�, �̂�, 𝑡)

+ �̇�.

(32)

Substituting (28) in (32), and then rearranging, one obtains

�̇� (𝜉) = −𝐾 sign𝜎 + 𝛾 (�̂�) Δ𝐺
𝑚

(�̂�, �̂�, 𝑡) . (33)

Now, the time derivative of the Lyapunov candidate function
𝑉 = (1/2)𝜎

2, with the use of the bounds of the uncertainties,
becomes

�̇� ≤ − |𝜎| [−𝐾 +

𝛾 (�̂�) Δ𝐺

𝑚

(�̂�, �̂�, 𝑡)

] . (34)

This expression may also be written as

�̇� ≤ − |𝜎| 𝜂
1

< 0

or �̇� + √2𝜂
1

√𝑉 < 0,

(35)

provided that
𝐾 ≥ [𝐾

𝑀

𝛽
1

+ 𝜂
1

] . (36)
The inequality in (35) presents that 𝜎(𝜉) approaches zero in a
finite time 𝑡

𝑠

[23], such that

𝑡
𝑠

≤ √2𝜂
−1

1

√𝑉 (𝜎 (0)) (37)
which completes the proof.

4. Illustrative Example

The control algorithms presented in Section 3 are applied to
the control design of a ball and beam system.The assessment
of the proposed controller, for the ball and beam system,
is carried out on the basis of output tracking, robustness
enhancement via the elimination of reaching phase, and
chattering-free control input in the presence of uncertainties.

4.1. Description of the Ball and Beam System. The ball and
beam system is a very sound candidate of the class of
underactuated nonlinear system. It is famous because of its
nonlinear nature and due to its wide range of applications
in the existing era like passenger cabin balancing in luxury
cars, balancing of liquid fuel in vertical take-off objects.
In terms of control scenarios, it is an ill-defined relative
degree system which, to some extent, does not support input
output linearization. A schematic diagram with their typical
parameters of the ball and beam system is displayed in the
adjacent Figure 1 and Table 1, respectively. In this study the
authors use the equipment manufacture by GoogolTech. In
general this system is equipped with a metallic ball, which
is let free to roll on a rod having a specified length, having
one end fixed and the other end moved up and down via an
electric servomotor.The position of the ball can be measured
via different techniques. The measured position is used as
feedback to the system and accordingly the motor moves the
beam to balance the ball at user defined location.

The motion governing equations of this system are given
below which are adopted from [24]:

(𝑚𝑟
2

+ 𝐶
1

) �̈� + (2𝑚𝑟 ̇𝑟 + 𝐶
2

) �̇�

+ (𝑚𝑔𝑟 +
𝐿

2
𝑀𝑔) cos𝛽 = 𝜏,

𝐶
4

̈𝑟 − 𝑟
̇

𝛽
2

+ 𝑔 sin𝛽 = 0,

(38)
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Figure 1: Schematic diagram of the ball and beam system.

where 𝜃(𝑡) angle is subtended to make the ball stable, the
lever angle is represented by 𝛽(𝑡), 𝑟(𝑡) is the position of the
ball on the beam, and Vin(𝑡) is the input voltage of the motor
whereas the controlled input appears mathematically via the
expression 𝜏(𝑡) = 𝐶

3

Vin(𝑡) in the dynamic model.
The derived parameters used in the dynamic model of

this system are represented by 𝐶
1

, 𝐶
2

, 𝐶
3

, and 𝐶
4

with the
following mathematical relations [25]:

𝐶
1

=
𝑅
𝑚

× 𝐽
𝑚

× 𝐿

𝐶
𝑚

× 𝐶
𝑏

× 𝑑
+ 𝐽
1

, (39)

𝐶
2

=
𝐿

𝑑
(
𝐶
𝑚

× 𝐶
𝑏

𝑅
𝑚

+ 𝐶
𝑏

+
𝑅
𝑚

× 𝐽
𝑚

𝐶
𝑚

× 𝐶
𝑔

) , (40)

𝐶
3

= 1 +
𝐶
𝑚

𝑅
𝑚

, (41)

𝐶
4

=
7

5
. (42)

The equivalent state spacemodel of this is described as follows
by assuming 𝑥

1

= 𝑟 (position of ball), 𝑥
2

= ̇𝑟 (rate of change
of position), 𝑥

3

= 𝛽 (beam angle), and 𝑥
4

= �̇� (the rate of
change of angle of the motor):

̇𝑥
1

= 𝑥
2

,

̇𝑥
2

=
1

𝐶
4

(−𝑔 sin (𝑥
3

)) ,

̇𝑥
3

= 𝑥
4

,

̇𝑥
4

=
1

𝑚𝑥2
1

+ 𝐶
1

(𝜏 − (2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

− (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos𝑥

3

) .

(43)

Now, the output of interest is 𝑦 = 𝑥
1

, which represents
the position of the ball. This representation is similar to
that reported in (3)-(4). In the next discussion the controller
design is outlined.

4.2. Controller Design. Following the procedure outlined in
Section 3, the authors proceed as follows:

𝑦 = 𝑥
1

,

�̇� = 𝑥
2

,

�̈� = −
𝑔

𝐶
4

sin (𝑥
3

) ,

𝑦
(3)

= −
𝑔

𝐶
4

𝑥
4

cos (𝑥
3

) ,

𝑦
(4)

=
1

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
[−𝜏 cos𝑥

3

+ (2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

cos𝑥
3

+ (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos2𝑥

3

+ 𝑥
2

4

(𝑚𝑥
2

1

+ 𝐶
1

) sin𝑥
3

] ,

𝑦
(4)

= 𝑓
𝑠

+ ℎ
𝑠

𝜏,

𝑓
𝑠

=
𝑔

𝐶
4

[
(2𝑚𝑥
1

𝑥
2

+ 𝐶
2

) 𝑥
4

+ (𝑚𝑔𝑥
1

+ (𝐿/2)𝑀𝑔) cos2𝑥
3

+ 𝑥
2

4

sin𝑥
3

𝑚𝑥2
1

+ 𝐶
1

] ,

ℎ
𝑠

=
−𝑔 cos𝑥

3

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
.

(44)
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Table 1: Parameters and values used in equations.

Parameter Description Nominal values Units

𝑔
Gravitational
acceleration 9.81 m/s2

𝑚 Mass of ball 0.07 kg
𝑀 Mass of beam 0.15 kg
𝐿 Length of beam 0.4 m

𝑅
𝑚

Resistance of
armature of the motor 9 Ω

𝐽
𝑚

Moment of inertia of
motor 7.35 × 10

−4 Nm/rad/s2

𝐶
𝑚

Torque constant of
motor 0.0075 Nm/A

𝐶
𝑔

Gear ratio 4.28 —

𝑑

Radius of arm
connected to
servomotor

0.04 m

𝐽
1

Moment of inertia of
beam 0.001 kgm2

𝐶
𝑏

Back emf constant
value 0.5625 V/rad/s

Now, writing this in the controllable canonical form (phase
variable form), one may have

̇𝜉
1

= 𝜉
2

̇𝜉
2

= 𝜉
3

.

.

.

̇𝜉
4

= 𝜑 (�̂�) + 𝛾 (�̂�) 𝜏 + 𝛾 (�̂�) Δ𝐺
𝑚

(�̂�, �̂�, 𝑡) ,

(45)

where 𝑦(𝑖−1) = 𝜉
𝑖

,

𝜑 (�̂�) =
1

𝐶
4

(𝑚𝑥2
1

+ 𝐶
1

)
[(2𝑚𝑥

1

𝑥
2

+ 𝐶
2

) 𝑥
4

cos𝑥
3

+ (𝑚𝑔𝑥
1

+
𝐿

2
𝑀𝑔) cos2𝑥

3

+ 𝑥
2

4

(𝑚𝑥
2

1

+ 𝐶
1

) cos𝑥
3

] ,

(46)

𝛾(�̂�)𝜏 = −𝜏 cos𝑥
3

, and 𝛾(�̂�)Δ𝐺
𝑚

(�̂�, �̂�, 𝑡) represents the model
uncertainties. Herewe discuss ISMCon ball and beam system
with fixed step tracking as well as variable step tracking. The
integral manifold is defined as follows:

𝜎 = 𝑐
1

𝜉
1

+ 𝑐
2

𝜉
2

+ 𝑐
3

𝜉
3

+ 𝜉
4

+ 𝑧. (47)

The expression of the overall controller which becomes �̇�will
be as follows:

𝜏
1

= −𝑘
1

𝜉
1

− 𝑘
2

𝜉
2

− 𝑘
3

𝜉
3

− 𝑘
4

𝜉
4

+
1

𝛾 (�̂�)
(−𝜑 (�̂�) − (𝛾 (�̂�) − 1) 𝜏

0

− 𝐾sign𝜎) ,

�̇� = 𝑐
1

̇𝜉
1

+ 𝑐
2

̇𝜉
2

+ 𝑐
3

̇𝜉
3

+ 𝑓
𝑠

+ ℎ
𝑠

𝜏
0

+ ℎ
𝑠

𝜏
1

+ �̇�,

�̇� = −𝑐
1

𝑥
2

+
𝑐
2

𝑔

𝐶
4

sin𝑥
3

+
𝑐
3

𝑔

𝐶
4

𝑥
4

cos𝑥
3

− 𝛾 (�̂�) 𝜏
0

− 𝜑 (�̂�) .

(48)

As the authors are performing the reference tracking here,
therefore, the integral manifold and the controller will appear
as follows:

𝜎 = 𝑐
1

(𝜉
1

− 𝑟
𝑑

) + 𝑐
2

𝜉
2

+ 𝑐
3

𝜉
3

+ 𝜉
4

+ 𝑧, (49)

𝜏
1

= −𝑘
1

(𝜉
1

− 𝑟
𝑑

) − 𝑘
2

𝜉
2

− 𝑘
3

𝜉
3

− 𝑘
4

𝜉
4

+
1

𝛾 (�̂�)
(−𝜑 (�̂�, 𝜏) − (𝛾 (�̂�) − 1) 𝜏

0

− 𝐾sign (𝜎)) ,

(50)

where 𝑟
𝑑

is the desired reference with ̇𝑟
𝑑

, ̈𝑟
𝑑

,
...
𝑟
𝑑

being
bounded.

4.3. Simulation Results. The simulation study of the system is
carried out by considering the reference tracking of a square
wave signal and sinusoidal wave signal. In the subsequent
paragraph their respective results will be demonstrated in
detail.

In case the efforts are directed to track a fixed square wave
signal in the presence of disturbances, the initial conditions of
the system were set to 𝑥

1

(0) = 0.4, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0.
Furthermore, the square wave was defined in the simulation
code as follows:

𝑟
𝑑

(𝑡) =

{{{{

{{{{

{

20 cm 0 ≤ 𝑡 ≤ 19

14 cm 20 ≤ 𝑡 ≤ 39

20 cm 40 ≤ 𝑡 ≤ 60.

(51)

The gains of the proposed controller presented from (39) to
(41) are chosen according to Table 2.

The output tracking performance of the proposed control
input, when a square wave is used as desired reference output,
is shown in Figure 2. It can be clearly examined that the
performance is very appealing in this case.The corresponding
sliding manifold profile is displayed in Figure 3 which clearly
indicates that the sliding mode is established from the very
beginning of the processes which in turn results in enhanced
robustness.The controlled input signal’s profile is depicted in
Figure 4 with its zoomed profile as shown in Figure 5. It is
obvious from both the figures that the control input derives
the system with suppressed chattering phenomenon which is
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Table 2: Parametric values used in the square wave tracking.

Constants 𝐶
1

𝐶
2

𝐶
3

𝐾
1

𝐾
2

𝐾
3

𝐾
4

𝐾

Values 1.2 1.2 0.11 402.98 250.18 60 4.1 5
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Figure 2: Output tracking performance when a square wave is used
as reference/desired output.
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Figure 3: Sliding manifold convergence profile in case of square
wave tracking.

tolerable for the system actuators health. Now, from this case
study, it is concluded that integral sliding mode approach is
an interesting candidate for this class.

In this case study, once again, efforts are focused on the
tracking of a sinusoidal signal, which is defined as 𝑟

𝑑

(𝑡) =

sin(𝑡), in the presence of disturbances. Like the previous case
study, the initial conditions of the system were set to 𝑥

1

(0) =

0.4, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0. In addition, the gains of the
proposed controller presented in (50) are chosen according
to Table 3.

The output tracking performance of the proposed control
input, when a sinusoidal signal is considered as desired
reference output, is shown in Figure 6. It can be clearly
seen that the performance is excellent in this scenario.
The corresponding sliding manifold profile is displayed in
Figure 7 which confirms the establishment of sliding modes
from the starting instant and, consequently, enhancement of
robustness.The controlled input signal’s profile is depicted in
Figure 8. It is obvious from the figure that the control input

Table 3: Parametric values used in the sinusoid wave tracking.

Constants 𝐶
1

𝐶
2

𝐶
3

𝐾
1

𝐾
2

𝐾
3

𝐾
4

𝐾

Values 1.2 1.2 0.11 402.98 250.18 230 4.9 5
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Figure 4: Control input in square wave reference tracking.
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Figure 5: Zoom profile of the control input depicted in Figure 4.
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Figure 6: Output tracking performance when a sinusoidal wave is
used as reference/desired output.

evolves with suppressed chattering phenomenonwhich, once
again, makes this design strategy a good candidate for the
class of these underactuated systems.

4.4. Implementation Results. The control technique proposed
in this paper is implemented on the actual apparatus using
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Figure 7: Sliding manifold convergence profile in case of sinusoidal
wave tracking.
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the MATLAB environment. The detailed discussions are
presented below.

4.4.1. Experimental Setup Description. The experiment setup
is equipped by GoogolTech GBB1004 with an electronic
control box.The beam length is 40 cm alongwithmass of ball,
that is, 28 g, and an intelligent IPM100 servo driver which is
used formoving the ball on the beam.The experimental setup
is shown in Figure 9.

The input given to apparatus is the voltage Vin(𝑡) and the
output is the position of themotor 𝜃(𝑡), which, in otherwords,
is an input for the positioning of the ball on the beam. This
apparatus uses potentiometer mounted within a slot inside
the beam to sense the position of the ball on the beam. The
measured position along the beam is fed to the A/D converter
of IPM100 motion drive.

The power module used in GoogolTech requires 220V
and 10A input. Note that the control accuracy of this manu-
factured apparatus lies within the range of ±1mm.The typical
parameters values are listed in Table 1. The environment
used here includes Windows XP as an operating system and
MATLAB 7.12/Simulink 7.7. Furthermore, the sampling time
used in forthcoming practical results was 2ms. In the exper-
imental processes, the proposed controllers need velocity
measurements which are, in general, not available. One may

Figure 9: Experimental setup of the ball and beam equipped via
GoogolTech GBB1004.

use different kind of velocity observers/differentiator for the
velocity estimation [16]. In order to make the implemen-
tation easy and simple, a derivative block of the Simulink
environment is used to provide the corresponding velocities
measurements. Now, we are ready to discuss the results of the
system.

In this experiment, the initial conditions were set to
𝑥
1

(0) = 0.28, 𝑥
2

(0) = 𝑥
3

(0) = 𝑥
4

(0) = 0. The reference
signal which is needed to be tracked is being defined in (51).
In Figures 10 and 11, the tracking performance is shown. The
results reveal that the actual signal 𝑥

1

(𝑡) is pretty close to
the desired signal 𝑟

𝑑

(𝑡) with a steady state error which is
approximately±0.001m.The existence of this error is because
of the apparatus.

The observations of these tracking results make it clear
that the practically implemented results have very close
resemblance with the simulation result presented in Figure 2.
The error convergence depends on the initial conditions of
the ball on the beam. If the ball is placed very close to the
desired reference value then it will take little time to reach
the desired position. On the other hand, the convergence to
the desired position will take considerable time if the initial
condition is chosen far away from the desired values. This
phenomenon of convergence is according to the equipment
design and structure.

The sliding manifold convergence and the control input
are shown in Figures 12 and 13, respectively. The control
input and the sliding manifolds show some deviations in
the first second. This deviation occurs because the ball on
the beam, being placed anywhere on the beam, is first
moved to one side of the beam and then ball moved to the
desired position. The zoomed profile of the control input,
being displayed in Figure 14, shows high frequency vibration
(chattering) of magnitude ±0.07. This makes the proposed
control design algorithm an appealing candidate for this class
of nonlinear systems. The gains of the controller being used
in this experiment are displayed in Table 4.

5. Conclusion

The control of underactuated systems, because of their less
number of actuators than the degree of freedom, is an
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Table 4: Parametric values used in implementation.
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Figure 10: Output tracking performance when 𝑟
𝑑

= 22 cm is set as
reference/desired output.
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Figure 11: Output tracking performance when a square wave is used
as reference/desired output.
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Figure 12: Sliding surface of practical system.

interesting objective among the researchers. In this work, an
integral sliding mode control approach, due to its robustness
from the very beginning of the process, is employed for
the control design of this class. The design of the integral
manifold relied upon a transformed form. The benefit of the
transformed form is that itmakes the design strategy easy and

0 5 10 15 20 25

0

2

4

6

Time (s)

In
pu

t p
er

fo
rm

an
ce

Control input

−2

−4

−6

Figure 13: Control input for reference tracking.
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Figure 14: Zoom profile of the control input depicted in Figure 13.

simple. The stability analysis and experimental results of the
proposed control laws are presented, which convey the good
features and demand the proposed approachwhen the system
operates under uncertainties.
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Epidemic spreading on networks becomes a hot issue of nonlinear systems, which has attracted many researchers’ attention in
recent years. A novel epidemic spreading model with variant factors in complex networks is proposed and investigated in this
paper. One main feature of this model is that virus variation is investigated in the process of epidemic dynamical spreading. The
global dynamics of this model involving an endemic equilibrium and a disease-free equilibrium are, respectively, discussed. Some
sufficient conditions are given for the existence of the endemic equilibrium. In addition, the global asymptotic stability problems
of the disease-free equilibrium and the endemic equilibrium are also investigated by the Routh-Hurwitz stability criterion and
Lyapunov stability criterion. And the uniform persistence condition of the new system is studied. Finally, numerical simulations
are provided to illustrate obtained theoretical results.

1. Introduction

The research of infectious disease has always been a hot
issue of nonlinear systems with applications. The popular
dynamics on complex network is the epidemic spreading,
which describes how infections spread throughout a network
[1]. In recent years, much research work has been done about
the viral dynamics of epidemic spreading [2, 3]. These results
are helpful for preventing and controlling most emerging
infectious diseases like SARS, HIV/AIDS, H5N1, and H1N1.
They are also meaningful to provide important information
for the research in the field of rumor spreading [4–7],
traffic dynamics [8–10], computer viruses [11, 12], biology
mechanism [13], and medicine developing [14–16].

In real world, the population size is large enough such
that the mixing of individuals can be considered to be
homogeneous. Social and biological systems can be properly
described as complex networks with nodes representing indi-
viduals and links mimicking the interactions [17, 18]. Suitable
mathematical models of the infectious disease spreading in
complex homogeneous networks are of great practical value
to analyze the detailed spreading process. Because epidemic
spreading usually brings great harm to society, it is very

urgent to establish accurate propagation models considering
the infection contagion spreading problems. In past decades,
complicated 𝑆𝐼𝑅 models were formulated from different
perspectives of epidemiology [19, 20]. In these models, 𝑆,
𝐼, and 𝑅 denote, respectively, the number of individuals
susceptible to the disease, the number of infectious indi-
viduals, and the number of individuals who are recovered
from being infectious.The process of epidemic spreading can
be further modeled with differential equations, such as 𝑆𝐼𝑆,
𝑆𝐼𝑅, and 𝑆𝐼𝑅𝑆 model [21–26]. In these research works the
network topological structure is simplified presumptively to
regular network or sufficient mixing homogeneous network,
where the relationship between the network structure and
the epidemic spreading is discussed. Kephart et al. [27]
established a virus spreadingmodel based on a homogeneous
network by characterizing the average degree as the network
metrics and obtained a virus spreading threshold 𝜏

𝑐
= 1/⟨𝑘⟩,

while Pastor-Satorras [28–31] studied the epidemic outbreaks
in complex heterogeneous network, which chose the degree
and average degree as the network metrics and obtained the
epidemic spreading threshold 𝜏

𝑐
= ⟨𝑘⟩/⟨𝑘

2

⟩. Moore and
Newman [32] applied the percolation theory to analyze the
epidemic spreading behaviors in small-world network and
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showed the differences of spreading action between small-
world network and regular network. These research results
illustrate that the different network topological structure can
affect the epidemic spreading.

Apart from the network topological structure, one of the
most important characteristics of epidemic spreadingmodels
is the dynamical stability which can reflect the development
of the spreading behaviors of infectious disease. Hence, the
stability problems of these epidemic models need to be
investigated. Kuniya [21] applied a discretization method
to prove the global asymptotic stability of the 𝑆𝐼𝑅 model
with the age structure. Zhang and Feng [22] deal with the
global analysis of a dynamical model describing the spread
of tuberculosis with isolation and incomplete treatment.
Lahrouz et al. [23] studied a nonlinear 𝑆𝐼𝑅𝑆 model with
saturated birth and death rates, and the global asymptotic
stability of the model is also discussed. Xu et al. [24] analyzed
a time-delayed 𝑆𝐼𝑅𝑆 model with temporary immunity, and
some conditions for the globally asymptotically stability of
the disease-free equilibrium and the endemic equilibrium
are given. Besides, for the epidemic model with time-delay
Kang and Fu [25] presented a new 𝑆𝐼𝑆 model with an
infective vector on scale-free networks and the global stability
of equilibrium is proved. The influences of treatment and
vaccination efforts on a dynamic disease model in presence
of incubation delays and relapse are studied and sufficient
conditions for the local stability of the equilibriumare derived
[26].

However, few papers are available in the literature to
consider variant factors in the epidemic spreading from a
systematic framework. In real world, certain variants exist
in the infectious disease transmitting, resulting from some
factors including gene mutation and cell division environ-
ment. Viruses evolve rapidly because they have strong ability
of propensity for genetic variation and short generation time,
which leads to evading human immunization response and
obtaining drug resistance. For example, influenza viruses can
be classified into three major types (A, B, and C). There
are many different virus forms because of mutation; type
A infects many animal species including humans, while
type B and type C viruses are mainly human pathogens. If
individuals are affected by viruses, not all infected individuals
can be recovered. Some of them may suffer from other
diseases because virus variation or the infectious individuals
contacted with variants. In fact, some infectious persons,
who may be infected by some diseases, would have certain
probability to become variantmembers of another group. It is
necessary to propose a newmodel considering this condition.
How to build models with variant factors in the epidemics
spreading becomes a challenge.Therefore, the paper presents
a novel 𝑆𝐼𝑉𝑅𝑆 epidemic spreadingmodel considering variant
factors, where 𝑆 stands for the susceptible and 𝐼, 𝑉, and
𝑅 stand for the infectious, the variant, and the recovered,
respectively.

Given the mechanism of the 𝑆𝐼𝑉𝑅𝑆 model in a homo-
geneous network, which is only composed by blank nodes
initially, the entire population can be divided into four groups
described by the symbols of 𝑆, 𝐼, 𝑉, and 𝑅, respectively. They
denote four epidemiological statuses: susceptible, infectious,

variant, and recovered. All new individuals are supposed to
be blank nodes in complex networks. When a susceptible
individual contacts the other infected individual, this indi-
vidual may be infectious with certain probability. Then an
infectious individual would have only three states including
infectious, variant, and recovered. The infectious individuals
would become the variants with certain probability affected
by some factors such as genemutation and the indeterminacy
of cell division. Similarly, an infectious person may become
a variant with certain probability after contacting with a
variant. Usually, human body can be protected by one’s
immune system. Some infectious individuals with recovery
probability may become the recovered, while others will keep
the infectious status.We assume that the four groups have the
same mortality rate.

In this paper, a novel 𝑆𝐼𝑉𝑅𝑆 epidemic spreading model
with virus variation in complex homogeneous network is
proposed and investigated.The rest of this paper is organized
as follows. In Section 2, the propagation mechanism of
the 𝑆𝐼𝑉𝑅𝑆 model in complex networks is presented, and
mean-field equations are used to describe the dynamics of
epidemic spreadingmodel with virus variation.The existence
of endemic equilibrium is considered. Section 3 is devoted
to discuss the global stability of the disease-free equilibrium,
which is followed by the discussion of the system uniform
persistence in Section 4. Then the proofs of global stability
of an endemic equilibrium are presented in Section 5. In
Section 6, numerical simulations are performed to illustrate
obtained theoretical results. Finally, conclusions are given in
Section 7.

2. Epidemic Spreading Model and Its Property

2.1.The SIVRSModel. As described above, in the paper a new
𝑆𝐼𝑉𝑅𝑆model is established.Themodel involves a new variant
groupwhich is caused by the infectious variation. Assume the
number of nodes is 𝑁 in a closed complex network, which
includes four statuses susceptible 𝑆, infectious 𝐼, variant 𝑉,
and recovered 𝑉 as well as some initial blank nodes. All new
nodes produced from blank nodes are susceptible.

The flow chart of epidemic spreading is shown in Figure 1.
Assume in a homogeneous network only composed by

blank nodes initially the susceptible individuals are produced
by the blank nodes; the probability is characterized as 𝛿.
Others come from the recovered group with the probability
𝜙. A susceptible individual will become infectious with
probability 𝛼 if he/she contacts the infected individual. Then
an infectious individual may perhaps become one variant
when he/she has tight relation with variants or is affected
by other factors. We assume that the variant probability is 𝛾
when contacting with a variant. In the process of epidemic
spreading, an infectious individual may become the variant
with internal probability 𝜂. Some infectious individuals with
recovery probability 𝛽 may recover and others will keep the
infectious status. In this paper, the four groups are supposed
to have the same mortality rate 𝜇. Then the 𝑆𝐼𝑉𝑅𝑆 epidemic
spreading rules can be summarized as follows.
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Figure 1: A schematic representation of 𝑆𝐼𝑉𝑅𝑆 epidemic spreading
model.

(1) Apart from the four groups in a closed network,
there are blank nodes which exist in initial network.
The blank nodes may become susceptible ones with
probability 𝛿, namely, crude birth rate.

(2) The susceptible individual becomes infectious with
probability 𝛼when contacting with an infectious one,
namely, infection rate.

(3) An infectious individual can be recovered with prob-
ability 𝛽, namely, recovery rate.

(4) The variants coming from some of the infectious
nodes at a variation rate 𝜂 (internal variation rate)
can reflect the variation factors. When an infectious
individual contacts with a variant, the individual may
become a variant with probability 𝛾 ( contact variant
rate).

(5) The recovered node turns into susceptible with prob-
ability 𝜙 after a period of time due to the loss of
immunity. For the four groups in the network, all
individuals will become blank with probability 𝜇,
namely, natural mortality rate.

A closed and homogeneous network consisting of 𝑁
individuals is investigated in this paper. Individuals in the
network can be represented with nodes and the contact
between different individuals can be denoted by edges.
Then the network can be described by an undirected graph
𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 denote the set of nodes and
edges, respectively. Therefore, a differential equation model
is derived based on the aforementioned rules and the basic
assumptions:

𝑑𝑆

𝑑𝑡
= 𝛿 (1 − 𝑁) − 𝛼 ⟨𝑘⟩ 𝑆𝐼 + 𝜙𝑅 − 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝛼 ⟨𝑘⟩ 𝑆𝐼 − 𝛾 ⟨𝑘⟩ 𝐼𝑉 − (𝜂 + 𝛽 + 𝜇) 𝐼,

𝑑𝑉

𝑑𝑡
= 𝛾 ⟨𝑘⟩ 𝐼𝑉 + 𝜂𝐼 − 𝜇𝑉,

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 − 𝜙𝑅 − 𝜇𝑅,

(1)

where ⟨𝑘⟩ denotes the average degree of the network.

The total population satisfies𝑁 = 𝑆 + 𝐼 + 𝑉 + 𝑅, and the
following equation is obtained:

𝑑𝑁

𝑑𝑡
= 𝛿 − (𝛿 + 𝜇)𝑁 (2)

which is derived by adding the four equations in (1).
In (2) 𝑁 will eventually tend to 𝑁

0
= 𝛿/(𝛿 + 𝜇) with the

exponential decay. Therefore, assume that 𝑁(0) = 𝑁
0
. The

closed and positively invariant set for (1) is Σ = {(𝑆, 𝐼, 𝑉, 𝑅) ∈
R4
+
: 0 ≤ 𝑆 + 𝐼 + 𝑉 + 𝑅 = 𝑁

0
≤ 1}, where R4

+
denotes the

nonnegative cone ofR4 with its lower dimensional faces. Use
𝜕Σ and Σ∘ to denote the boundary and interior of Σ in R4

+
,

respectively.

2.2. Existence of Equilibrium. The system (1) has a disease-
free equilibrium (DFE) 𝐸

0
, where

𝐸
0
= (𝑆
0
, 𝐼
0
, 𝑉
0
, 𝑅
0
) = (

𝛿

𝛿 + 𝜇
, 0, 0, 0) . (3)

Denote the basic reproduction number parameter as

𝑅
0
=
𝛼 ⟨𝑘⟩ 𝑆

0
− 𝛾 ⟨𝑘⟩𝑉

0

𝜂 + 𝛽 + 𝜇
=

𝛼 ⟨𝑘⟩ 𝛿

(𝛿 + 𝜇) (𝜂 + 𝛽 + 𝜇)
. (4)

The following theorem summarizes the parameter restric-
tions on the existence of equilibrium.

Theorem 1. If 𝑅
0
> 1 and the inequality

1 > 𝜂 >
𝛼 (1 − 𝛾 ⟨𝑘⟩)

𝛼 + 𝛾
(5)

is satisfied, there are two endemic equilibria for system (1).

Proof. Assume that 𝐸∗ = (𝑆
∗

, 𝐼
∗

, 𝑉
∗

, 𝑅
∗

) is an endemic
equilibrium (EE) of system (1). According to system (1), we
have

𝛿 (1 − 𝑁
∗

) − 𝛼 ⟨𝑘⟩ 𝑆
∗

𝐼
∗

+ 𝜙𝑅
∗

− 𝜇𝑆
∗

= 0,

𝛼 ⟨𝑘⟩ 𝑆
∗

𝐼
∗

− 𝛾 ⟨𝑘⟩ 𝐼
∗

𝑉
∗

− (𝜂 + 𝛽 + 𝜇) 𝐼
∗

= 0,

𝛾 ⟨𝑘⟩ 𝐼
∗

𝑉
∗

+ 𝜂𝐼
∗

− 𝜇𝑉
∗

= 0,

𝛽𝐼
∗

− 𝜙𝑅
∗

− 𝜇𝑅
∗

= 0.

(6)

For (6) a straightforward calculation leads to

𝑆
∗

=
𝜂 + 𝛽 + 𝜇

𝛼 ⟨𝑘⟩
+

𝛾𝜂𝐼
∗

𝛼 (𝜇 − 𝛾 ⟨𝑘⟩ 𝐼∗)
,

𝑉
∗

=
𝜂𝐼
∗

𝜇 − 𝛾 ⟨𝑘⟩ 𝐼∗
,

𝑅
∗

=
𝛽

𝜇 + 𝜙
𝐼
∗

.

(7)

From (7) 𝜇 − 𝛾⟨𝑘⟩𝐼∗ > 0, which implies that

0 < 𝐼
∗

< min{1,
𝜇

(𝛾 ⟨𝑘⟩)
} , (8)
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the component 𝐼∗ is a positive solution of

𝑝 (𝐼
∗

) = 𝐴𝐼
∗2

+ 𝐵𝐼
∗

+ 𝐶 = 0, (9)

where

𝐴 = 𝛼𝛾 ⟨𝑘⟩
2

(𝜇 + 𝜙 + 𝛽) ,

𝐵 = −𝜂 ⟨𝑘⟩ (𝜇 + 𝜙) (𝛼 + 𝛾) − 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ (𝜇 + 𝜙) (𝜂 + 𝛽 + 𝜇) (1 − 𝛾 ⟨𝑘⟩ 𝑅
0
) ,

𝐶 = 𝜇 (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1) .

(10)

Therefore, consider the following:

(1) If 𝑅
0
< 1, we have 𝐶 < 0; (9) has only one positive

solution.

(2) If 𝑅
0
= 1, we have 𝐶 = 0; (9) has only one positive

solution −𝐵/𝐴.

(3) If 𝑅
0
> 1, we have 𝐶 > 0:

(i) if 𝐵 > 0, the positive solution of (9) does not
exist;

(ii) if 𝐵 < 0 and 𝐵 > −2√𝐴𝐶, the solution of (9)
does not exist;

(iii) if 𝐵 < 0 and 𝐵 = −2√𝐴𝐶, (9) has only one
positive solution;

(iv) if 𝐵 < 0 and 𝐵 < −2√𝐴𝐶, (9) has two positive
solutions.

Therefore, if 𝑅
0
> 1, the solution of (9) exists only when

𝐵 ≤ −2√𝐴𝐶.
According to the inequality 𝑎 + 𝑏 ≥ 2√𝑎𝑏, ∀𝑎, 𝑏 ∈ 𝑍

+,
assume 𝑅

0
> 1, choose 𝑎 = 𝛼⟨𝑘⟩𝜇(𝜇 + 𝜙 + 𝛽), 𝑏 = 𝛾⟨𝑘⟩(𝜂 +

𝛽 + 𝜇)(𝜇 + 𝜙)(𝑅
0
− 1), and then

2√𝐴𝐶

= 2√𝛼𝛾 ⟨𝑘⟩
2

𝜇 (𝜇 + 𝜙 + 𝛽) (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1)

= 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽) + 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) .

(11)

If the inequality 𝛾⟨𝑘⟩(𝜂 + 𝛽 + 𝜇)(𝜇 + 𝜙) > (𝜇 + 𝜙)[𝜂 + 𝛽 + 𝜇 −
𝜂⟨𝑘⟩(𝛼 + 𝛾)] is satisfied, we have

𝜂 + 𝛽 + 𝜇 <
𝜂 ⟨𝑘⟩ (𝛼 + 𝛾)

1 − 𝛾 ⟨𝑘⟩
. (12)

Then the following equation is obtained:

2√𝐴𝐶 < 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− [𝜂 + 𝛽 + 𝜇 − 𝜂 ⟨𝑘⟩ (𝛼 + 𝛾)] (𝜇 + 𝜙)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝛾 ⟨𝑘⟩ 𝑅
0
− 1)

+ 𝜂 ⟨𝑘⟩ (𝜇 + 𝜙) (𝛼 + 𝛾) < −𝐵

(13)

which implies system (1) has two endemic equilibria.
When 𝑅

0
> 1,

𝛼 ⟨𝑘⟩

𝜂 + 𝛽 + 𝜇
> 𝑅
0
=

𝛼 ⟨𝑘⟩ 𝛿

(𝛿 + 𝜇) (𝜂 + 𝛽 + 𝜇)
> 1 (14)

which can transfer to inequality 𝛼⟨𝑘⟩ > 𝜂 + 𝛽 + 𝜇.
If𝛼 < 𝜂(𝛼+𝛾)/(1−𝛾⟨𝑘⟩), we have 1 > 𝜂 > 𝛼(1−𝛾⟨𝑘⟩)/(𝛼+

𝛾). Then inequality (12) is satisfied.

Remark 2. According to this theorem, if the reproduction
number parameter is above the threshold, then the endemic
equilibrium is globally asymptotically stable, which will be
discussed further in Section 5.

3. Global Stability of the Disease-Free
Equilibrium

Definition 3. If the equilibrium is stable under the meaning
of Lyapunov, for 𝛿(𝜀, 𝑡

0
) and ∀𝜇 > 0, there is real number

𝑇(𝜇, 𝛿, 𝑡
0
) > 0 which makes any initial value 𝑥

0
of inequality

‖𝑥
0
− 𝑥
𝑒
‖ ≤ 𝛿(𝜀, 𝑡

0
), 𝑡 ≥ 𝑡

0
, satisfy the following inequality:

𝜙 (𝑡; 𝑥0, 𝑡0 − 𝑥𝑒)
 ≤ 𝜇, ∀𝑡 ≥ 𝑡

0
+ 𝑇 (𝜇, 𝛿, 𝑡

0
) ; (15)

then the equilibrium is asymptotically stable.

The Jacobian matrix at the disease-free equilibrium 𝐸
0
of

system (1) is

𝐽 (𝐸
0
)

= (

−𝛿 − 𝜇 −𝛿 − 𝛼 ⟨𝑘⟩ 𝑆
0

−𝛿 −𝛿 + 𝜙

0 𝛼 ⟨𝑘⟩ 𝑆
0
− (𝜂 + 𝛽 + 𝜇) 0 0

0 𝜂 −𝜇 0

0 𝛽 0 −𝜇 − 𝜙

).

(16)

Obviously, if 𝑅
0

< 1, all eigenvalues of matrix (16)
are negative. Then the disease-free equilibrium 𝐸

0
is locally

asymptotically stable in Σ. Moreover, if 𝑅
0
> 1, there is one

positive eigenvalue and 𝐸
0
is unstable.
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Theorem 4. If 𝑅
0
< 1, the disease-free equilibrium (DFE) 𝐸

0

is globally asymptotically stable in Σ and if 𝑅
0
> 1, the disease-

free equilibrium (DFE) 𝐸
0
is unstable in Σ.

Proof. Let 𝐿(𝑆, 𝐼, 𝑉, 𝑅) = 𝐼 > 0 as a Lyapunov function; then
𝐿(𝐸
0
) = 0. When 𝑅

0
< 1

𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉, 𝑅) = 𝛼 ⟨𝑘⟩ 𝑆𝐼 − 𝛾 ⟨𝑘⟩ 𝐼𝑉 − (𝜂 + 𝛽 + 𝜇) 𝐼

< 𝛼 ⟨𝑘⟩ 𝑆𝐼 − (𝜂 + 𝛽 + 𝜇) 𝐼

< 𝐼 (𝛼 ⟨𝑘⟩𝑁
0
− (𝜂 + 𝛽 + 𝜇))

< 𝐼 (𝜂 + 𝛽 + 𝜇) (𝑅
0
− 1) < 0.

(17)

𝐿 is positive definite and �̇� is negative definite. Therefore, the
disease-free equilibrium (DFE) 𝐸

0
is globally asymptotically

stable in Σ; the following result can be given.

4. Uniform Persistence

In this section, the uniform persistence of system (1) will be
discussed when the basic reproduction number 𝑅

0
> 1.

Definition 5 (see [33]). System (1) is said to be uniformly per-
sistent if there exists a constant 0 < 𝑐 < 1, which makes any
solution (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡), 𝑅(𝑡)) with (𝑆(0), 𝐼(0), 𝑉(0), 𝑅(0)) ∈
Σ
∘ satisfy

min {lim lim
𝑡→∞

𝑆 (𝑡) , lim
𝑡→∞

𝐼 (𝑡) , lim
𝑡→∞

𝑉 (𝑡) , lim
𝑡→∞

𝑅 (𝑡)}

≥ 𝑐.

(18)

Let𝑋 be a locally compactmetric space withmetric 𝜕 and
let Γ be a closed nonempty subset of𝑋with boundary 𝜕Γ and
interior Γ∘. Obviously, 𝜕Γ is a closed subset of Γ. Let Φ

𝑡
be

a dynamical system defined on Γ. A set 𝐵 in 𝑋 is said to be
invariant if Φ

𝑡
(𝐵, 𝑡) = 𝐵. Define 𝑀

𝜕
fl {𝑥 ∈ 𝜕Γ : Φ

𝑡
𝑥 ∈

𝜕Γ, ∀𝑡 ≥ 0}.

Lemma 6 (see [34]). Assume the following:

(H1) Φ
𝑡
has a global attractor.

(H2) There exists an 𝑀 = {𝑀
1
, . . . ,𝑀

𝑘
} of pair-wise

disjoint, compact, and isolated invariant set on 𝜕Γ such
that

(a) ⋃
𝑥∈𝑀𝜕

𝜔(𝑥) ⊂ ⋃
𝑘

𝑗=1
𝑀
𝑗
;

(b) no subsets of𝑀 form a cycle on 𝜕Γ;
(c) each𝑀

𝑗
is also isolated in Γ;

(d) 𝑊𝑠(𝑀
𝑗
) ∩ Γ
∘

= 𝜙 for each 1 ≤ 𝑗 ≤ 𝑘, where
𝑊
𝑠

(𝑀
𝑗
) is the stable manifold of𝑀

𝑗
. Then Φ

𝑡
is

uniformly persistent with respect to Γ∘.

According to Lemma 6, the following result is obtained.

Theorem 7. When 𝑅
0
> 1, system (1) is uniformly persistent.

Proof. Let

Γ = Σ = {(𝑆, 𝐼, 𝑉, 𝑅) ∈ R
+

4
| 0 ≤ 𝑆 + 𝐼 + 𝑉 + 𝑅 ≤ 1} ,

Γ
∘

= {(𝑆, 𝐼, 𝑉, 𝑅) ∈ 𝐸 : 𝐼, 𝑉 > 0} ,

𝜕Γ =
Γ

Γ∘
.

(19)

Obviously,𝑀
𝜕
= 𝜕Γ.

Choose 𝑀 = {𝐸
0
}, 𝜔(𝑥) = {𝐸

0
} for all 𝑥 ∈ 𝑀

𝜕
. On 𝜕Γ,

system (1) reduces to 𝑆 = 𝛿−(𝛿+𝜇)𝑆, in which 𝑆(𝑡) → 𝛿/(𝛿+

𝜇) as 𝑡 → ∞. It is concluded that𝑀 = {𝐸
0
}, 𝜔(𝑥) = {𝐸

0
} for

all 𝑥 ∈ 𝑀
𝜕
, which indicates that hypotheses (a) and (b) hold.

When 𝑅
0
> 1, the disease-free equilibrium 𝐸

0
is unstable

according to Theorem 4 𝑊𝑠(𝑀) = 𝜕Γ. Hypotheses (c) and
(d) are then satisfied. Due to the ultimate boundedness of all
solutions of system (1), there is a global attractor,making (H1)
true.

5. Global Dynamics of Endemic Equilibrium

From the previous analysis, the disease dies out when 𝑅
0
> 1;

then the disease becomes endemic. In this section, Lyapunov
asymptotic stability theorem is used to investigate the globally
asymptotic stability of the endemic equilibrium 𝐸

∗ when
𝑅
0
> 1.

Theorem8. The endemic equilibrium𝐸
∗ is globally asymptot-

ically stable in Σ, whenever 𝑅
0
> 1.

Proof. Consider the following function:

𝑉
1
= ln [(𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝑉 − 𝑉

∗

) + (𝑅 − 𝑅
∗

)

+ 1] .

(20)

Then the derivative of 𝑉
1
along the solution of (1) is given by

�̇�
1
=
𝜕𝑉
1

𝜕𝑆

𝑑𝑆

𝑑𝑡
+
𝜕𝑉
1

𝜕𝐼

𝑑𝐼

𝑑𝑡
+
𝜕𝑉
1

𝜕𝑉

𝑑𝑉

𝑑𝑡
+
𝜕𝑉
1

𝜕𝑅

𝑑𝑅

𝑑𝑡

=
(𝑑𝑆 + 𝑑𝐼 + 𝑑𝑉 + 𝑑𝑅) (1/𝑑𝑡)

(𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝑉 − 𝑉∗) + (𝑅 − 𝑅∗) + 1
.

(21)

From (2), all solutions of (6) satisfy the equality

𝑁
∗

= 𝑆
∗

+ 𝐼
∗

+ 𝑉
∗

+ 𝑅
∗

=
𝛿

𝛿 + 𝜇
(22)

and 𝑁 = 𝑒
−(𝛿+𝜇)𝑡+𝐶

+ 𝛿/(𝛿 + 𝜇) ≤ 𝛿/(𝛿 + 𝜇), where 𝐶 is the
value that makes𝑁

0
= 𝛿/(𝛿 + 𝜇) satisfied.

Hence 𝑉
1
= ln(𝑁 − 𝑁

∗

+ 1) ≥ 0; then

�̇�
1
=

1

𝑁 − 𝛿/ (𝛿 + 𝜇) + 1

𝑑𝑁

𝑑𝑡

=
𝛿 + 𝜇

𝑁 − 𝛿/ (𝛿 + 𝜇) + 1
(

𝛿

𝛿 + 𝜇
− 𝑁) ≤ 0.

(23)

If and only if𝑁 = 𝛿/(𝛿 + 𝜇), 𝑉
1
= 0 and �̇�

1
= 0 are satisfied.
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Figure 2: (a) and (b) showed that the disease-free equilibrium 𝐸
0
of the system (1) is globally asymptotically stable with different initial

conditions (0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05) and the parameters ⟨𝑘⟩ = 10, 𝛼 = 0.8, 𝛽 = 0.5, 𝜂 = 0.2, 𝛿 = 0.5, 𝛾 = 0.2,
𝜙 = 0.01, and 𝜇 = 0.3; 𝑅

0
= 0.5 < 1. The value of DFE is 𝐸

0
= (0.625, 0, 0, 0).

𝑉
1
is positive definite and �̇�

1
is negative definite. There-

fore, the function𝑉
1
is a Lyapunov function for system (1) and

the endemic equilibrium 𝐸
∗ is globally asymptotically stable

by Lyapunov asymptotic stability theorem [35]. The proof is
completed.

6. Numerical Simulation

To demonstrate the theoretical results obtained in this paper,
some numerical simulations will be discussed. In this paper,
the hypothetical set of initial values (IV) and parameter
values will be given as follows.

Consider the initial values of (𝑆(0), 𝐼(0), 𝑉(0), 𝑅(0)) are
set as (0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05),
respectively.

(1) The disease-free equilibrium: Set ⟨𝑘⟩ = 10, 𝛼 = 0.08,
𝛽 = 0.5, 𝜂 = 0.2, 𝛿 = 0.5, 𝛾 = 0.02, 𝜙 = 0.01, and
𝜇 = 0.3.𝑅

0
= 0.5 < 1 and the disease-free equilibrium

𝐸
0
= (0.625, 0, 0, 0) from the parameter values above

through the calculation. According toTheorem 4, the
disease-free equilibrium 𝐸

0
of system (1) is globally

asymptotically stable in Σ in this case. The simulation
results are shown in Figures 2(a) and 2(b).

(2) The endemic equilibrium: Set ⟨𝑘⟩ = 10, 𝛼 = 0.08,
𝛽 = 0.08, 𝜂 = 0.3, 𝛿 = 0.2, 𝛾 = 0.01, 𝜙 = 0.25, and
𝜇 = 0.02. By direct computation, 𝑅

0
= 1.818 > 1

and the endemic equilibrium 𝐸
∗

= (0.5435, 0.0201,

0.3395, 0.00596) can be obtained from the parameter
values above. According to Theorem 4, the positive
endemic equilibrium 𝐸

∗of system (1) is globally
asymptotically stable in Σ∘. The simulation results are
shown in Figures 3(a) and 3(b).

Figure 2 shows that if 𝑅
0
< 1, all solutions in Σ would

be attracted to the disease-free equilibrium 𝐸
0
regardless of

the initial values of system (1), which illustrates the validity
of Theorem 4. Similarly, it can be seen from Figure 3 that all
solutions inΣ∘ would be attracted to the endemic equilibrium
𝐸
∗ regardless of the initial values of system (1) if 𝑅

0
> 1 and

the conditions of Theorem 8 are satisfied, which is obviously
the content ofTheorem 4.Moreover, the relationship between
the values of equilibrium can be verified as shown in (24),
which is coincident with the theoretical results:

𝑆
0
+ 𝐼
0
+ 𝑉
0
+ 𝑅
0
= 𝑆
∗

+ 𝐼
∗

+ 𝑉
∗

+ 𝑅
∗

= −
𝛿

𝛿 + 𝜇
. (24)

7. Conclusion

The stability of the 𝑆𝐼𝑉𝑅𝑆 epidemic spreading model with
virus variation in complex networks has been discussed in
this paper. The model involves a new variant group which is
caused by the infectious variation. By analyzing the model,
the disease-free equilibrium 𝐸

0
is proved to exist when the

basic reproduction number 𝑅
0
is less than 1. The analysis

result reveals that the infectious disease dies out when 𝑅
0
is

more than 1 and it becomes endemic.The existing conditions
of endemic equilibrium related with the variation rate and
the network nodes degree are obtained. Besides, the global
asymptotically stability condition of the disease-free equilib-
rium is obtained by the Routh-Hurwitz stability criterion and
the Lyapunov stability criterion. And the condition of the
system uniform persistence is also given. The proof of the
stability of endemic equilibrium is also illustrated. Finally,
a numerical simulation is given to illustrate the correctness
of the disease-free equilibrium and the endemic equilibrium
results.
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Figure 3: (a) and (b) showed that the disease-free equilibrium𝐸
∗ of system (1) is globally asymptotically stable with different initial conditions

(0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05) and the parameter values 𝛼 = 0.08, 𝛽 = 0.08, 𝜂 = 0.3, 𝛿 = 0.2, 𝛾 = 0.1, 𝜙 = 0.25,
𝜇 = 0.02, and ⟨𝑘⟩ = 10; 𝑅

0
= 1.818 > 1. The value of EE is 𝐸∗ = (0.5435, 0.0201, 0.3395, 0.00596).
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The use of linear slide system has been augmented in recent times due to features granted to supplement electromechanical systems;
new technologies have allowed the manufacture of these systems with low coefficients of friction and offer a variety of types of
sliding. In this paper, we present a comparison between the performance indexes of two techniques of control applying optimal
control LQR (Linear Quadratic Regulator) acronym for STIs in English and the technique of differential flatness controller. The
use of linear slide bolt of potency takes into account the dynamics of the DC motor; the Euler-Lagrange formalism was used
to establish the mathematical model of the slide. Cosimulation via the MATLAB/Simulink-ADAMS virtual prototype package,
including realistic measurement disturbances, is used to compare the performance indexes between the LQR controller versus
differential flatness controller for the position tracking of linear guide system.

1. Introduction

The linear slides have been used in different electromechan-
ical systems as actuators; these have great advantages, espe-
cially those consisting of screws-and-nuts; some advantages
are as follows: the effect of gravity at the beginning of the
movement introduces no disturbance of change of position
by not overcoming the power screw, the degree of accuracy in
positioning is very high, it is possible to track both soft paths
laws of classic and modern control, and the force developed
by using this type of device is very high usually requiring
actuators (DC motor) of lower power than those requiring
other types of systems. Blanco Ortega et al. [1] proposed a
rehabilitation ankle device based on an 𝑋𝑌 table which uses
two linear slidings, one on each axis, through a Generalized
Proportional Integral (GPI) controller. Valdivia et al. [2]
proposed a rehabilitation ankle TobiBot, which covers only

the movements of dorsiflexion/plantarflexion, and a degree
of freedom; it is controlled by an outline of PID control, to
perform the movements, and uses a linear slide based on a
power screw. Blanco Ortega et al. [3, 4] in turn presented a
rehabilitation of the design and construction of an ankle reha-
bilitation based on a parallel robot of 3 degrees of freedom,
which provides themovements of dorsiflexion/plantarflexion
and inversion/eversion made by the ankle and uses a PID
control technique to perform rehabilitation anklemovements
by using three linear power sliding screws. Blanco Ortega
et al. [3, 4] have presented an ankle rehabilitation machine,
using a linear slide to effect movements dorsiflexion/ankle
plantarflexion; the control technique using a PIDwas smooth
trajectory tracking.

As can be seen, linear slides have been widely used
as actuators in various robotic devices from a simple 𝑋𝑌
table. Various control techniques have been implemented for
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accurate position with smooth tracking paths. The present
work proposes control technique for differential flatness,
compared with optimal control, showing both its advantages
and disadvantages over the other, considering the control
technique for differential flatness as an option with highly
acceptable results in tracking soft paths, and highlighting
also the lack of optimization for optimum control trajectories
mechanical tracking systems of this type; the randomness
of the matrix appears when weighing matrixes 𝑅 and 𝑄.
Control technique by feedback employed in this work is
based on the concept of differential flatness, which come
from differential plan systems (Fliess et al. [5]). This was
made known fifteen years ago in France by professor Fliess
and his collaborators. Differential flatness has had important
uses within the areas of robotics, control processes, aerospace
systems, optimization systems, trajectory planning in linear
and nonlinear aspects, and systems of infinite dimensions
described in partially controlled differential equations with
border conditions (Fliess et al. [5, 6]; Linares-Flores and Sira-
Ramı́rez [7]; and Sira-Ramı́rez and Agrawal [8]). Thoun-
thong et al. [9] suggest the use of a differential based on
flatness of a fuel cell system and a hybrid supercapacitors
source achieving robustness, stability, and efficiency of the
controlled system controller. Jörgl and Gattringer [10] pro-
posed the control of a conveyor belt using a control law based
on differential flatness reducing the trajectory tracking error
compared with traditional drivers, flatness theory has been
used in a variety of nonlinear systems in various engineering
disciplines, Thounthong and Pierfederici [11], such as the
inverted pendulum control and aircraft vertical rise and fall,
Fliess et al. [12]. Danzer et al. [13] proposed driver in such a
control system of the pressure of a cathode and oxygen excess
of a chemical system. Gensior et al. [14] used a control of
tracking of a DC voltage boost converter. Song et al. [15] have
shown that based on flatness control is robust and provides
improved performance monitoring transience compared to a
traditional method of linear control (PI). A nonlinear system
is flat if there is a set of independent variables (differentially
equal in number to the number of entries) so that all the state
variables 𝑥 and input variables 𝑢 can be expressed in terms
of those output by Syed et al. [16], Rabbani et al. [17], and
Agrawal et al. [18].

In order to make a comparison between the performance
index of different controllers, this paper also presents an
optimal control law applied to the same linear slide (Figure 1);
optimal control theory focuses on the design of controllers
to perform their objective and concurrently satisfy physical
constraints to optimize predetermined performance criteria
(Hassani and Lee [19]). With the new trend of seeking a high-
performance, sustainable manufacturing, pollution aware-
ness and finding ways for greater energy efficiency, greater
emphasis on the optimal design of control systems is made.
The optimality design criteria may include minimum fuel,
low energy, minimum time (Lewis [20]). Because of this the
focus in recent years has been directed to the use of various
techniques of optimal control; Yu and Hwang [21] have
presented an LQR (Linear Quadratic Regulator) approach for
determining a control law PID optimal in order to control the
speed of a DCmotor; this contribution proposes a systematic

Left bracket

Mass

Right bracket

DC motorPower screw

Linear guides

Figure 1: Linear slide system.

approach to design a speed control of a DC motor based on
an identification model and LQR design with a nonlinear
increase with feedforward compensator. Ruderman et al. [22]
propose a methodical approach LQR state feedback control
of a DC motor. Likewise LQR optimal control has been used
in conjunction with other control techniques such as that of
Prasad et al. [23] who proposed a control system high non-
linearity such as the inverted pendulum. It is presented with a
linearized dynamics using a PID controller LQR bringing out
results in a robust control scheme for optimal system control.

The contributions of this paper are as follows: (1) the
design of an LQR position tracking controller; (2) the design
of a differential flatness position tracking controller; these
tracking controllers are compared on the performance index
of position tracking error. Thus, we conclude that the two
controllers have a high capacity for the position tracking of
the linear guide system. This paper is organized as follows.
Section 2 presents the mathematical model of linear slide
system. In this section, we obtained the mathematical model
via Euler-Lagrange formalism and incorporate the dynamic
of DC motor to model. The position control based on linear
quadratic regulator is presented in Section 3. In Section 4, we
present the design of tracking controller based on differential
flatness. In Section 5, the simulations results are obtained
through the MATLAB/Simulink-ADAMS virtual prototype
package, and we compare the performance indexes of the
position tracking error of both controllers. In Section 6, the
results are shown in the experiment using a physical slider
and data acquisition card, using the LabView software with a
graphical interface. Finally, in Section 7, we give the conclu-
sions of all of the work.

2. Mathematical Model of Linear Slide

The linear slide control in this work is formed with a motor
coupled CD to a power screw through a gearbox speed, screw,
and rotating, linearly moving mass 𝑚, as shown in Figures 1
and 2.

Motor mathematical model of linear guide system was
obtained by applying the Euler-Lagrange formalism. It con-
siders the dynamics of the DC motor. The generalized
coordinates are 𝑞 and 𝜃.

Consider Figure 2 and the notation shown in Notation.
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Figure 2: Schematic diagram of a linear slide system-DC motor.

2.1. Electric Motor. Considering Figure 2, the coenergy by
storage of effort is given by (1), the coenergy storage of effort
by (2), and the energy dissipation by (3).

Coenergy by Storage of Effort. Consider

𝑇
∗

=
1

2
𝐿 ̇𝑞
2

. (1)

The Storage of Energy Flow. Consider

𝑈 = 0. (2)

Energy Dissipation. Consider

𝐺 =
1

2
𝑅 ̇𝑞
2

. (3)

2.2. Linear Slide. The kinetic energy of the system of linear
slide is given by (4) and the dissipated energy is represented
by (7).

Kinetic Energy. Consider

𝐾 =
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚�̇�
2

. (4)

Knowing that 𝑥 = 𝑝𝜃
2
, �̇� = 𝑝 ̇𝜃

2
, and �̈� = 𝑝 ̈𝜃

2
and substituting

in (4), the following equation is obtained, with kinetic energy
remaining in function of the angular velocity of the power
screw (see Figure 2):

𝐾 =
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

. (5)

Dissipated Energy. Consider

𝐷 =
1

2
𝑏
2

̇𝜃
2

2
. (6)

From (1) until (5) is represented total system in the kinetic
energy and the following equation is obtained:

𝐾
𝑇
=
1

2
𝐿 ̇𝑞
2

+
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

, (7)

where 𝐿 is the Lagrangian and is given by

𝐿 =
1

2
𝐿 ̇𝑞
2

+
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

. (8)

For the generalized coordinate 𝑞,

𝜕𝐿

𝜕 ̇𝑞
= 𝐿 ̇𝑞,

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝑞
= 𝐿 ̈𝑞,

𝜕𝐿

𝜕𝑞
= 0,

𝜕𝐷

𝜕 ̇𝑞
= 𝑅 ̇𝑞,

(9)

where

𝐿 ̈𝑞 + 𝑅 ̇𝑞 = 𝑉 (𝑡) − 𝑒. (10)

Considering that 𝑒 = 𝑘
𝑏

̇𝜃
1
and ̇𝜃

1
= 𝑛 ̇𝜃

2
as well as

̇𝜃
2
= �̇�/𝑝 and replacing them in (10), the following equation

is obtained:

𝐿 ̈𝑞 + 𝑅 ̇𝑞 = 𝑉 (𝑡) − 𝑘
𝑏
(
𝑛

𝑝
) �̇�. (11)

Knowing that

𝑞 = ∫

𝑡

0

𝑖 𝑑𝑡, (12)

the following equation is obtained:

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 (𝑡) − 𝑘

𝑏
(
𝑛

𝑝
) �̇�. (13)

For the generalized coordinate 𝜃
2
,

𝜕𝐿

𝜕 ̇𝜃
2

= 𝐼 ̇𝜃
2
+ 𝑚𝑝 ̇𝜃

2
,

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝜃
2

= 𝐼 ̈𝜃
2
+ 𝑚𝑝 ̈𝜃

2
,

𝜕𝐿

𝜕𝜃
2

= 0,

𝜕𝐷

𝜕 ̇𝜃
2

= 𝑏
2

̇𝜃
2
.

(14)
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Equation of Euler-Lagrange formalism is

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝑞
𝑖

−
𝜕𝐿

𝜕𝑞
𝑖

+
𝜕𝐷

𝜕 ̇𝑞
𝑖

= 𝜏, to 𝑖 = 1, 2, . . . , 𝑛. (15)

The mathematical model of the linear slide taking into
account the dynamics of the DC motor is defined by

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 (𝑡) − 𝑘

𝑏
(
𝑛

𝑝
) �̇�, (16)

(
𝐼

𝑝
+ 𝑚𝑝) �̈� +

𝑏
2

𝑝
�̇� = 𝑛𝑘

𝑓
𝑖 − 𝑃. (17)

3. Optimal Control

3.1. Considering Acceleration State Variable. Based on the
mathematical model (16) and (17), 𝑖 is derived and from (17)
it is clear that

𝑖 = (
𝛼

𝑛𝑘
𝑓

) �̈� + (
𝑏
2

𝑝𝑛𝑘
𝑓

) �̇�,

𝑑𝑖

𝑑𝑡
= (

𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

) �̈�.

(18)

Substituting in (16), one has

𝐿(
𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

) �̈� + 𝑅(
𝛼

𝑛𝑘
𝑓

) �̈� + (
𝑏
2

𝑝𝑛𝑘
𝑓

) �̇�

= 𝑉 (𝑡) − 𝐾
𝑏
(
𝑛

𝑝
) �̇�.

(19)

Fixing the equation, one gets

𝐿(
𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

) �̈� + (
𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) �̇�

= 𝑢.

(20)

The state variables are

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑥
3
,

�̇�
3
= −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) �̇�

− (

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

) �̈� +

𝑛𝑘
𝑓

𝐿𝛼
𝑢.

(21)

Placing the state variables in the matrix form, one gets

�̇� = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,



�̇�
1

�̇�
2

�̇�
3



=



0 1 0

0 0 1

0 −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

)





𝑥
1

𝑥
2

𝑥
3



+



0

0

𝑛𝑘
𝑓

𝐿𝛼



𝑢,

𝑦 = (1 0 0)(

𝑥
1

𝑥
2

𝑥
3

).

(22)

In control systems, often we want to select the control vector
𝑢(𝑡) such that a given performance index is minimized. A
quadratic performance index, where the integration limits are
0 to∞, so that

𝐽 = ∫

∞

0

𝐿 (𝑥, 𝑢) 𝑑𝑡, (23)

where 𝐿(𝑥, 𝑢) is a quadratic function or a Hermitian function
of 𝑥 and 𝑢, produces linear control laws; that is to say,

𝑢 = −𝐾𝑥 (𝑡) . (24)

For weight matrixes for semipositive definite 𝑄 and 𝑅, the
optimal control system is based on minimizing the perfor-
mance index. This requires numerically solving the Riccati
algebraic equation:

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃 + 𝑄 = 0 (25)

for a symmetric positive definite matrix 𝑃.
Finally, gains are calculated as

𝐾 = 𝑅
−1

𝐵
𝑇

𝑃. (26)
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In the present case, 𝑢 is given by

𝑢 = −𝑘
1
𝑥
1
− 𝑘
2
𝑥
2
− 𝑘
3
𝑥
3
. (27)

The state weighting matrix is proposed as

𝑄 = 𝐶
𝑇

𝐶,

𝑄 = (

1

0

0

)(1 0 0) = (

1 0 0

0 0 0

0 0 0

)

(28)

whichmeets nonnegative definite. As for the scalar weighting
for the control input, it is chosen as

𝑅 = 0.01,

𝑅 = 1𝑒 − 10.

(29)

3.2. Considering State Variable Motor Current CD. By repre-
senting mathematical model equations (16) and (17) in state
space, one gets

�̇�
1
= 𝑥
2
,

𝛼�̇�
2
= −

𝑏
2

𝑝
𝑥
2
+ 𝑛𝑘
𝑓
𝑥
3
,

𝐿�̇�
3
= −𝑅𝑥

3
− (

𝑛𝑘
𝑏

𝑝
)𝑥
2
+ 𝑢 (𝑡) ,



�̇�
1

�̇�
2

�̇�
3



=



0 1 0

0 −
𝑏
2

𝛼𝑝

𝑛𝑘
𝑓

𝛼

0 −
𝑛𝑘
𝑏

𝐿𝑝
−
𝑅

𝐿





𝑥
1

𝑥
2

𝑥
3



+



0

0

1

𝐿



𝑢,

𝐶 =

1 0 0

 ,

𝐷 = |0| ,

𝑄 = (

1

0

0

)(1 0 0) = (

1 0 0

0 0 0

0 0 0

)

(30)

with

𝑅 = 0.01 (31)

for the first case and

𝑅 = 1𝑒 − 10 (32)

for the second case.

3.3. LQR Optimal Control in Virtual Prototype. A test was
performed using a virtual prototype of the linear slide,
Figure 3, in room ADAMS MSC together with Matlab-
Simulink in order to test the effectiveness of optimal control
LQR; the results of this experiment can be seen in Section 5.

Left bracket

Mass Right bracket

Power screw

Linear guides

Figure 3: Virtual prototype of the linear slide.

4. Control Based on Differential Flatness

This third-order linear system (30), where its Kalman con-
trollability matrix is calculated by the following expression:
𝐶 = [𝐵, 𝐴𝐵, 𝐴

2

𝐵], is given as

𝐶 =



0 0

𝑛𝑘
𝑓

𝛼

0

𝑛𝑘
𝑓

𝛼
−

𝑅𝑛𝑘
𝑓

𝐿𝛼
−

𝑛𝑏
2
𝑘
𝑓

𝑝𝛼2

1 −
𝑅

𝐿

𝑅
2

𝐿2
−

𝑛
2

𝑘
𝑏
𝑘
𝑓

𝐿𝑝𝛼



det𝐶 = −

𝑛
2

𝑘
2

𝑓

𝛼2
̸= 0. (33)

Since the determinant is nonzero, then the system is control-
lable and, therefore, is differentially flat (Sira-Ramı́rez and
Agrawal [8]). The flat output of a linear system input output
(I/O) is obtained bymultiplying the inversematrix of control-
lability by the state vector 𝑥, associated with the system. Col-
umn vector obtained by multiplying the last line is chosen to
obtain the flat output (Linares-Flores and Sira-Ramı́rez [7]).
In particular for reducingmotor-drive CD, flat output system
𝐹 is calculated as

𝐹 =

0 0 1

 𝐶
−1



𝑥
1

𝑥
2

𝑥
3



,

𝐹 =

0 0 1





(𝑘
𝑏
𝑘
𝑓
𝑛
2

+ 𝑅𝑏
2
)

𝐿𝑛𝑝𝑘
𝑓

𝑅𝛼

𝐿𝑛𝑘
𝑓

1

(𝐿𝑏
2
+ 𝑅𝑝𝛼)

𝐿𝑛𝑝𝑘
𝑓

𝛼

𝑛𝑘
𝑓

0

𝛼

𝑛𝑘
𝑓

0 0





𝑥
1

𝑥
2

𝑥
3



=
𝛼

𝑛𝑘
𝑓

𝑥
1
.

(34)
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Table 1: Parameter values for simulation.

Parameter Value
𝑛 = speed ratio 0.19
𝑃 = force opposite to the movement of𝑚 0.01N
𝑏
2
= coefficient of viscous friction 2

𝑝 = pitch of the screw thread power 0.00196m
𝑚 = mass to be displaced 10 kg
𝐽 = moment of inertia 0.0000014 kgm2

𝑉 = voltage 12 volts
𝑘
𝑏
= constant emf 0.022 (Vs)/rad

𝑅 = resistance of DC motor 5.3 ohm
𝐿 = motor inductance 0.00058 henries
𝐾
𝑓
= constant torque 90 (N-m)/A

Hence, we have chosen 𝑥
1
as the flat output. This flat output

provides the following differential parametrization of the
system variables:

𝑥
1
= 𝐹,

𝑥
2
= �̇�,

𝑥
3
= (

𝛼

𝑛𝑘
𝑓

) �̈� + (
𝑏
2

𝑛𝑘
𝑓
𝑝
) �̇� +

𝑃

𝑛𝑘
𝑓
𝑝
,

(35)

and the control input:

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

]

...
𝐹 + [

𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] �̈�

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] �̇� +

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(36)

Considering (36) and in order to verify the stability of the
system, applying the Laplace transform, the following holds:

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

] 𝑠
3

+ [
𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] 𝑠
2

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] 𝑠 +

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(37)

Taking into account the values of Table 1, the system
transfer function is

𝐹 (𝑠)

𝑢 (𝑠)

=
1

6.8854 ∗ 10−7𝑠3 + 4.0902 ∗ 10−2𝑠2 + 318.40𝑠
.

(38)

Plotting the locus of roots verifies that the system is stable
when these are in the left half of the complex plane (Figure 4).

Hence, we have the fact that all state variables and the
control input are in terms of 𝐹 and its successive derivatives,
where it denotes the position of themass as 𝑥.The differential
parametrization above allows obtaining the equilibrium for

−2 −1.5 −1 −0.5 0 0.5 1
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0
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1

1.5

Real axis (s−1)

Im
ag
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ar

y 
ax

is 
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−
1
)
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5

×10
5

Figure 4: Roots locus.

the system in terms of the equilibriumvalues of the flat output
and the disturbance inputs. Thus,

𝑥
1
= 𝐹
𝑑
,

𝑥
2
= 0,

𝑥
3
=

𝑃

𝑛𝑘
𝑓
𝑝
,

𝑢 =
𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(39)

From (36), we design the average controller based on dif-
ferential flatness property. Thus, we replace the higher-order
derivative of the flat output by a virtual controller (see Slotine
and Li [24]) resulting in the following:

...
𝐹 = Vaux = −𝑘2�̈� − 𝑘1�̇� − 𝑘0 (𝐹 − 𝐹𝑑) . (40)

For the tracking controller design, we use a nominal desired
linear displacement profile 𝐹

𝑑
that exhibits a rather smooth

start for the motor linear slide system. This is specified using
an interpolating Bézier polynomial of 10th order where the
initial linear displacement is set to be 𝐹ini = 0m valid until
𝑡ini = 15 sec and the final desired value of the angular velocity
is specified as𝐹fin = 0.5mto be reached at 𝑡fin = 45 sec; that is,
we used

𝐹
𝑑
=

{{{{

{{{{

{

𝐹ini, 𝑡 < 𝑡ini,

𝐹ini + (𝐹fin − 𝐹ini) 𝑏𝑥, 𝑡ini ≤ 𝑡 ≤ 𝑡fin,

𝐹fin, 𝑡 > 𝑡fin,

(41)

where 𝑏
𝑥
(𝑡, 𝑡ini, 𝑡fin) is a polynomial function of time, exhibit-

ing a sufficient number of zero derivatives at times 𝑡ini and 𝑡fin,
while also satisfying 𝑏

𝑥
(𝑡ini, 𝑡ini, 𝑡fin) = 0 and 𝑏𝑥(𝑡fin, 𝑡ini, 𝑡fin) =

1. For instance, one such polynomial may be given by

𝑏
𝑥
(𝑡, 𝑡ini, 𝑡fin)

= 𝛽
5

[𝑟
1
− 𝑟
2
𝛽 + 𝑟
3
𝛽
2

− 𝑟
4
𝛽
3

+ 𝑟
5
𝛽
4

− 𝑟
6
𝛽
5

] ,

𝛽 = (
𝑡 − 𝑡ini
𝑡fin − 𝑡ini

) .

(42)
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The differential parametrization of the control input, 𝑢, in
terms of 𝐹

𝑑
shows that the proposed flat output trajectory

tracking task is that of controlling the third derivative of 𝐹
𝑑

by means of Vaux:

Vaux =
...
𝐹
𝑑
− 𝑘
2
(�̈� − �̈�

𝑑
) − 𝑘
1
(�̇� − �̇�

𝑑
) − 𝑘
0
(𝐹 − 𝐹

𝑑
) . (43)

Therefore, the linear displacement-tracking controller is

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

] Vaux + [
𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] �̈�
𝑑

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] �̇�
𝑑
+

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(44)

Under these circumstances, the closed loop system tracking
error, 𝑒 = 𝐹 − 𝐹

𝑑
, satisfies the linear differential equation

𝑒
(3)

+ 𝑘
2
̈𝑒 + 𝑘
1
̇𝑒 + 𝑘
0
𝑒 = 0. (45)

The appropriate choice of the constant coefficients {𝑘
2
, 𝑘
1
, 𝑘
0
},

as coefficients of the third-order Hurwitz polynomial, guar-
antees the asymptotic exponential stability to zero of the
tracking error, 𝑒. One such choice, yielding a characteristic
polynomial of the form (𝑠 + 𝛾)(𝑠

2

+ 2𝜉𝜔
𝑛
𝑠 + 𝜔
2

𝑛
) with 𝛾 > 0,

0 < 𝜉 < 1, and 𝜔
𝑛
> 0, is given by

𝑘
0
= 𝜔
2

𝑛
𝛾,

𝑘
1
= 2𝜉𝜔

𝑛
𝛾 + 𝜔
2

𝑛
,

𝑘
2
= 2𝜉𝜔

𝑛
+ 𝛾.

(46)

The virtual controller, Vaux, achieves a smooth start for the
linear displacement of the system. If we apply an unknown
constant load torque on the system, we have to include a
term of integral action into the virtual control (43). Thus, we
minimize the tracking error near to zero.

5. Simulation Results

These results were obtained using the parameter values of
Table 1.

In Figure 5, one can see the movement of the mass 0.5
meters in 60 seconds following a path originated by a tenth-
order Bézier polynomial; the tracking error can be seen as
zero in the whole path; in this case, the acceleration is taken
as a state variable.

Figure 6 shows the graphs of results taking into account
the current as state variable; considering the matrix 𝑅 = 0.01
and considering the matrix 𝑅 = 1𝑒 − 10, Figure 7, in both
cases the tracking error can be seen as zero in the whole path.

Figure 8 shows the results of simulation based on dif-
ferential flatness controller observed; it also shows that it is
capable of moving the mass to a position 0.5 meters along a
desired path of a Bézier polynomial of tenth order.

The results of the performance index are as follows: the
two controllers are shown in Figures 9, 10, and 11; the indexes
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Figure 5: Graphics optimal controller response with 𝑅 = 1𝑒 − 10.
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Figure 6: Graphics optimal controller response with 𝑅 = 0.01.
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Figure 7: Graphics optimal controller response with 𝑅 = 1𝑒 − 10.

of performance of the optimal controller for two values of the
matrix 𝑅 are shown.

Figure 12 shows the results using a virtual prototype envi-
ronment ADAMS MSC and MATLAB-Simulink; we can see
that the offset for this test was set at 0.7 meters corresponding
to the desired position; a tenth-order Bézier polynomial
was used as desired path.
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Figure 8: Graphics controller response flatness based on difference.
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Figure 9: Performance Index LQRoptimal controller with𝑅 = 0.01.
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Figure 10: Performance Index LQRoptimal controller with𝑅 = 1𝑒−
10.

6. Results with Linear Slide

Experimentation was held using a physical linear slide
(Figure 13); the laws of LQR control are implemented based
on differential flatness with the same parameter values and
gains controllers; the results of the experiment can be seen
in Figures 14, 15, and 16, where it can be seen that in all three
cases the controller is able to zero the position error; it is clear
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Figure 11: Controller performance index based on differential
flatness.
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Figure 12: Graphic of LQR optimal controller results in the virtual
prototype.

that the experiment was carried out with an acquisition card
myRIO data of National Instruments; the measurement units
were centimeters so that they should be taken into account in
the interpretation of Figures 14, 15, and 16.

It is verified by the results the correct operation for
achieving desired trajectories and references.

On the 𝑥-axis is the number of samples; to determine the
time it must be multiplied by the sampling period, that is,
0.1 s.

7. Conclusions

By applying control techniques and optimal LQR and based
on differential flatness it can be seen that the results for
the trajectory tracking are highly achievable in both cases,
with regard to the performance indices of each controller for
the optimal controller; a great disadvantage exists since it is
necessary that the values of the weighting matrix 𝑅 be too
low to achieve a speed of response adapted to the needs of
the plant to controlling; this means that the gains are higher
further input values, such as the voltage that must be adjusted
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Figure 13: Experiment with physical linear slide.
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Figure 14: Controller based on differential flatness.
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Figure 15: Performance Index LQR optimal controller with 𝑅 =

0.01.

by trial and error of saidmatrixwith the purpose of respecting
the voltages of the actuators.

Figures 12 and 13 show that the values of the performance
index are minimizing in the measure that the value of
the weighting matrix, 𝑅, is minor compared to the index
controller performance differential flatness, if it is minor, but
this is not guaranteed to be optimal because the values of
the control force are lower than those required for the good
functioning of DC motors.
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Figure 16: Performance Index LQRoptimal controller with𝑅 = 1𝑒−
10.

In conclusion it follows that the use of control laws differ-
ential flatness is by far better than the use of laws of optimal
control; the concept of optimality, in this particular case, is
lost due to the randomness representing search for the value
of the 𝑅matrix to obtain appropriate response speed without
sacrificing system actuators.

Notation

𝑛: Speed ratio
𝑃: Force opposite to the movement of𝑚
𝑏
2
: Coefficient of viscous friction

𝑝: Pitch of the screw thread power
𝑚: Mass to be displaced
𝐽: Moment of inertia
𝑉: Voltage
𝑘
𝑏
: Constant emf

𝑅: Resistance of DC motor
𝐿: Motor inductance
𝑘tao: Constant torque
𝜃
1
: Angular position of DC motor
̇𝜃
1
: Angular velocity of DC motor

𝜃
2
: Angular position of power screw
̇𝜃
2
: Angular velocity of power screw

𝜏
1
: Torque delivered by the DC motor

𝜏
2
: Torque delivered by the speed reducer

𝑥: Displacement of the mass
�̇�: Velocity of the mass
𝐹: Force of displacement of the mass.
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[5] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness
and defect of non-linear systems: introductory theory and
examples,” International Journal of Control, vol. 61, no. 6, pp.
1327–1361, 1995.

[6] M. Fliess and R. Marquez, “Continuous-time linear predictive
control and flatness: a module-theoretic setting with examples,”
International Journal of Control, vol. 73, no. 7, pp. 606–623, 2000.

[7] J. Linares-Flores and H. Sira-Ramı́rez, “DC motor velocity
control through a DC-to-DC power converter,” in Proceedings
of the 43rd IEEE Conference on Decision & Control, vol. 5, pp.
5297–5302, Nassau, Bahamas, December 2004.

[8] H. Sira-Ramı́rez and S. K. Agrawal, Diěerentially Flat Systems,
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We establish a posteriori error estimate for finite volume element method of a second-order hyperbolic equation. Residual-type
a posteriori error estimator is derived. The computable upper and lower bounds on the error in the 𝐻

1-norm are established.
Numerical experiments are provided to illustrate the performance of the proposed estimator.

1. Introduction

The finite volume element method is a class of important
numerical tools for solving partial differential equations. Due
to the local conservation property and some other attractive
properties, it is wildly used in many engineering fields, such
as heat and mass transfer, fluid mechanics, and petroleum
engineering, especially for those arising from conservation
laws includingmass,momentum, and energy. For the second-
order hyperbolic equations, Li et al. [1] have proved the
optimal order of convergence in 𝐻

1-norm. In [2], Kumar
et al. have proved optimal order of convergence in 𝐿

2 and𝐻
1-

norm for the semidiscrete scheme and quasi-optimal order of
convergence in maximum norm.

Since the pioneering work of Babuvška and Rheinboldt
[3], the adaptive finite element methods based on a posteriori
error estimates have become a central theme in scientific and
engineering computations. Adaptive algorithm is among the
most important means to boost accuracy and efficiency of
the finite element discretization. The main idea of adaptive
algorithm is to use the error indicator as a guide which
shows whether further refinement of meshes is necessary.
A computable a posteriori error estimator plays a crucial
role in an adaptive procedure. A posteriori error analysis
for the finite volume element method has been studied in
[4–6] for the second-order elliptic problem, in [7–9] for
the convection-diffusion equations, in [10] for the parabolic

problems, in [11] for a model distributed optimal problem
governed by linear parabolic equations, in [12] for the Stokes
problem in two dimensions, and in [13] for the second-order
hyperbolic equations.

However, to the best of our knowledge, there are few
works related to the a posteriori error estimates of the finite
volume element method for the second-order hyperbolic
problems. The aim of this paper is to establish residual-type
a posteriori error estimator of the finite volume element
method for the second-order hyperbolic equation. We first
construct a computable a posteriori error estimator of the
finite volume element method.Then we analyze the residual-
type a posteriori error estimates and obtain the computable
upper and lower bounds on the error in the𝐻1-norm.

The organization of this paper is stated as follows. In
Section 2, we present the framework of the finite volume
element method for the second-order hyperbolic equation.
In Section 3, we establish the residual-type a posteriori error
estimator of the finite volume element method and derive
the upper and lower bounds on the error in the 𝐻

1-norm.
We provide some numerical experiments to illustrate the
performance of the error estimator in Section 4.

2. Finite Volume Element Formulation

We use standard notation for Sobolev spaces 𝑊
𝑠,𝑝

(Ω) with
the norm ‖𝑢‖

𝑠,𝑝,Ω
[14]. In order to simplify the notation, we
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Figure 1: (a) The dotted line shows the boundary of the corresponding control volume 𝑉
𝑧
with 𝑧, a common vertex. (b) A triangle 𝐾 is

partitioned into three subregions𝐾
𝑧
.

denote 𝑊
𝑠,2
(Ω) by 𝐻

𝑠
(Ω) and omit the index 𝑝 = 2 and Ω

whenever possible.
In this paper, we consider the following second-order

hyperbolic problem:

𝑢
𝑡𝑡
− ∇ ⋅ (𝑎 (𝑥) ∇𝑢) = 𝑓 (𝑥, 𝑡) , in Ω × (0, 𝑇] ,

𝑢 (𝑥, 𝑡) = 0, on 𝜕Ω × (0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = V

0
(𝑥) ,

in Ω,

(1)

where Ω ⊂ R2 is a polygonal bounded cross section,
possessed with a Lipschitz boundary 𝜕Ω. For simplicity, the
right-hand side 𝑓 is assumed to be measurable and square-
integrable on Ω × (0, 𝑇] and to be continuous with respect
to time. The initial datum 𝑢

0
and V

0
are assumed to be mea-

surable and square-integrable onΩ. 𝑎(𝑥, 𝑡) = (𝑎
𝑖𝑗
(𝑥, 𝑡))

2

𝑖,𝑗=1
is

a real-valued smooth matrix function, uniformly symmetric,
and positive definite inΩ.

The corresponding variational problem is to find 𝑢 ∈

𝐻
1

0
(Ω), for 𝑡 > 0, satisfying

(𝑢
𝑡𝑡
, V) + 𝑎 (𝑢, V) = (𝑓, V) , ∀V ∈ 𝐻

1

0
(Ω) , (2)

where the bilinear form 𝑎(⋅, ⋅) is defined by

𝑎 (𝑢, V) = ∫
Ω

𝑎 (𝑥) ∇𝑢 ⋅ ∇V 𝑑𝑥, ∀𝑢, V ∈ 𝐻
1

0
(Ω) . (3)

Denote by𝑇
ℎ
the primal quasi-uniform triangulation ofΩ

with ℎ = max ℎ
𝐾
, where ℎ

𝐾
is the diameter of the triangle𝐾 ∈

𝑇
ℎ
. Let U

ℎ
be the standard conforming finite element space

of piecewise linear functions, defined on the triangulation𝑇
ℎ
:

U
ℎ
= {𝑢 ∈ 𝐶 (Ω) : 𝑢|𝐾 is linear and 𝑢|𝜕Ω = 0, ∀𝐾

∈ 𝑇
ℎ
} .

(4)

Denote by 𝑇
∗

ℎ
the dual partition which is constructed in

the same way as in [1, 15]. Let 𝑧
𝐾
be the barycenter of 𝐾.

We connect 𝑧
𝐾

with the midpoints of the edges of 𝐾 by

straight line, thus partitioning𝐾 into three quadrilaterals𝐾
𝑧
,

𝑧 ∈ 𝑍
ℎ
(𝐾), where 𝑍

ℎ
(𝐾) are the vertices of 𝐾. Then with

each vertex 𝑧 ∈ 𝑍
ℎ

= ∪
𝐾∈𝑇ℎ

𝑍
ℎ
(𝐾), we associate a control

volume 𝑉
𝑧
, which consists of the union of the subregions𝐾

𝑧
,

sharing the vertex 𝑧 (see Figure 1). Finally, we obtain a group
of control volumes covering the domain Ω, which is called
the dual partition 𝑇

∗

ℎ
of the triangulation 𝑇

ℎ
. Denote by 𝑍

0

ℎ

the set of interior vertices of 𝑍
ℎ
and denote by E

ℎ
the set of

all interior edges of 𝑇
ℎ
, respectively.

The partition 𝑇
∗

ℎ
is regular or quasi-uniform, if there

exists a positive constant 𝐶 > 0 such that

𝐶
−1
ℎ
2
≤ meas (𝑉

𝑧
) ≤ 𝐶ℎ

2
, ∀𝑉

𝑧
∈ 𝑇

∗

ℎ
. (5)

The dual partition 𝑇
∗

ℎ
will also be quasi-uniform [5] if

the finite element triangulation 𝑇
ℎ
is quasi-uniform. The test

function spaceV
ℎ
is defined by

V
ℎ
= {V ∈ 𝐿

2
(Ω) : V|𝑉𝑧 is constant and V|𝜕Ω

= 0 ∀𝑉
𝑧
∈ 𝑇

∗

ℎ
} .

(6)

For any 𝑢
ℎ

∈ U
ℎ
, we define an interpolation operator Π

ℎ
:

U
ℎ
→ V

ℎ
, such that

Π
ℎ
𝑢
ℎ
= ∑

𝑧∈𝑍
0

ℎ

𝑢
ℎ
(𝑧) Ψ

𝑧
, (7)

where Ψ
𝑧
is the characteristic function of the control volume

𝑉
𝑧
.
According to [16], for each 𝑢

ℎ
∈ U

ℎ
, there exists a pos-

itive constant 𝐶 independent of ℎ, such that Π
ℎ
satisfies the

following inequality:
𝑢ℎ − Π

ℎ
𝑢
ℎ

0,𝐾
≤ 𝐶ℎ

𝐾

𝑢ℎ
1,𝐾

, ∀𝐾 ∈ 𝑇
ℎ
. (8)

Introduce the following adjoint elliptic problem:

−∇ ⋅ (𝑎 (𝑥) ∇𝑢) = 𝑓 in Ω, with 𝑢 = 0 on 𝜕Ω. (9)

Denote by T : 𝐿
2
(Ω) → 𝐻

2
(Ω)⋂𝐻

1

0
(Ω) the solution

operator of this problem, so that

𝑎 (T𝑓, 𝜑) = (𝑓, 𝜑) , ∀𝜑 ∈ 𝐻
1

0
(Ω) . (10)
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Define negative norms by

‖V‖−𝑠 = sup{
(V, 𝜑)
𝜑

𝑠

; 𝜑 ∈ 𝐻
𝑠
(Ω)} ,

for 𝑠 ≥ 0 integer.

(11)

In fact, by Cauchy-Schwarz inequality, we obtain

(V, 𝜑)
𝜑

1

≤
‖V‖ 𝜑


𝜑

1

≤
‖V‖ 𝜑

1
𝜑

1

= ‖V‖ . (12)

For our error analysis in the next section, it will be convenient
to introduce such a norm defined by

|V|−𝑠 = (T
𝑠V, V)1/2 , for 𝑠 ≥ 0 integer. (13)

According toThomée [17], we have the following lemma.

Lemma 1. The norm |V|
−𝑠
is equivalent to ‖V‖

−𝑠
and (T𝑓, 𝑔) =

(𝑓,T𝑔), where 𝑠 is a nonnegative integer. Particularly, ‖TV‖
1

is equivalent to ‖V‖
−1

when 𝑠 = 1.
In order to get the fully discrete finite volume element

method of (1), we give a partition of the time interval [0, 𝑇]:
0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑁−1
< 𝑡

𝑁
= 𝑇. Let 𝜏

𝑛
= 𝑡

𝑛
− 𝑡

𝑛−1
,

𝜏 = max
1≤𝑛≤𝑁

𝜏
𝑛
, 𝑈𝑛

ℎ
= 𝑈

ℎ
(𝑡
𝑛
), and 𝑈

𝑛,1/2

ℎ
= (𝑈

𝑛+1

ℎ
+ 𝑈

𝑛−1

ℎ
)/2.

With the help of Π
ℎ
, we obtain the fully discrete finite volume

element method of (1): to find 𝑈
𝑛

ℎ
∈ U

ℎ
, for 1 ≤ 𝑛 ≤ 𝑁, such

that

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
, Π

ℎ
𝜒) + 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
𝜒) = (𝑓

𝑛
, Π

ℎ
𝜒) ,

∀𝜒 ∈ U
ℎ
,

𝑈
0

ℎ
= 𝑢

0
,

𝜕𝑈
1

ℎ
= V

0
,

(14)

where

𝜕
𝑡
𝜕𝑈

𝑛

ℎ
=

𝜕
𝑡
𝑈
𝑛

ℎ
− 𝜕

𝑡
𝑈
𝑛−1

ℎ

𝜏
𝑛

=

(𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ
) /𝜏

𝑛+1
− (𝑈

𝑛

ℎ
− 𝑈

𝑛−1

ℎ
) /𝜏

𝑛

𝜏
𝑛

.

(15)

By setting V = 𝜕𝑢/𝜕𝑡 = 𝑢
𝑡
and Y = (

𝑢

V ), the notation ∇ ⋅

(𝑎(𝑥)∇)𝜙 = ∇ ⋅ (𝑎(𝑥)∇𝜙), (1) can equivalently be written as

Y
𝑡
− (

0 1

∇ ⋅ (𝑎 (𝑥) ∇) 0
)Y = 𝐹, (16)

where 𝐹 = (
0

𝑓 ).
Let 𝑉𝑛

ℎ
= 𝜕𝑈

𝑛+1

ℎ
; we define

𝑈
𝜏
=

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑈
𝑛

ℎ
+ (1 −

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

)𝑈
𝑛−1

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑉
𝜏
=

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑉
𝑛

ℎ
+ (1 −

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

)𝑉
𝑛−1

ℎ
, 1 ≤ 𝑛 ≤ 𝑁.

(17)

The residual system, with 𝑌
𝜏
= (

𝑈𝜏

𝑉𝜏
), is defined as follows:

(Y − 𝑌
𝜏
)
𝑡
− (

0 1

∇ ⋅ (𝑎 (𝑥) ∇) 0
) (Y − 𝑌

𝜏
) = (

𝑃
𝑢

𝑃V
)

𝑖𝑛 Ω × [0, 𝑇] ,

𝑢 − 𝑈
𝜏
= 0

𝑜𝑛 𝜕Ω × [0, 𝑇] ,

(Y − 𝑌
𝜏
) (⋅, 0) = 0 𝑖𝑛 Ω,

(18)

where the quantities 𝑃
𝑢

in 𝐿
1
(0, 𝑇; 𝐿

2
(Ω)) and 𝑃V in

𝐿
1
(0, 𝑇;𝐻

−1
(Ω)) are affine functions on each interval

[𝑡
𝑛−1

, 𝑡
𝑛
], 1 ≤ 𝑛 ≤ 𝑁, that

𝑃
𝑢
(⋅, 𝑡) =

{

{

{

𝑉
𝜏
− 𝑉

𝑛−1

ℎ
, 2 ≤ 𝑛 ≤ 𝑁,

0, 𝑛 = 1.

(19)

And the quantities 𝑃V are defined as follows.
From the fully discrete algorithm (14), for any 𝜑 ∈

𝐻
1

0
(Ω), V ∈ U

ℎ
, we have

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
, 𝜑)

= − (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓

𝑛
, 𝜑)

+ 𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V) .

(20)

Since (𝑉
𝜏
)
𝑡
= 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, by (2) and (20), for 𝑡 ∈ (𝑡

𝑛−1
, 𝑡
𝑛
], we get

((V − 𝑉
𝜏
)
𝑡
, 𝜑) + 𝑎 (𝑢 − 𝑈

𝑛,1/2

ℎ
, 𝜑)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓 − 𝑓

𝑛
, 𝜑)

− 𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V) .

(21)

Adding the term 𝑎(𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) into the two hand sides of

(21), we get

((V − 𝑉
𝜏
)
𝑡
, 𝜑) + 𝑎 (𝑢 − 𝑈

𝜏
, 𝜑)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓 − 𝑓

𝑛
, 𝜑)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

+ 𝑎 (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) .

(22)

So on each interval [𝑡
𝑛−1

, 𝑡
𝑛
] (2 ≤ 𝑛 ≤ 𝑁), we have

(𝑃V, 𝜑) = (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

+ 𝑎 (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) + (𝑓 − 𝑓

𝑛
, 𝜑) ,

∀𝜑 ∈ 𝐻
1

0
(Ω) , V ∈ U

ℎ
.

(23)
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We define

(𝐿
𝑛
, 𝜑) = (𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)] .

(24)

Then the term 𝑃V on the interval [𝑡
𝑛−1

, 𝑡
𝑛
] (2 ≤ 𝑛 ≤ 𝑁) can be

written as

(𝑃V, 𝜑) = (𝐿
𝑛
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) + (𝑓 − 𝑓

𝑛
, 𝜑) ,

∀𝜑 ∈ 𝐻
1

0
(Ω) , V ∈ U

ℎ
.

(25)

When 𝑡 ∈ [0, 𝑡
1
],

𝑃V (⋅, 𝑡) = 𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
)) . (26)

3. Residual-Type A Posteriori Error Estimates

In this section, wewill construct the residual-type a posteriori
error estimates of the finite volume element method for (1).
We introduce the jump of a vector-valued function across
the edge 𝐸 ∈ E

ℎ
which will be used in the residual-type a

posteriori error estimates. Let 𝐸 be an interior edge shared
by elements 𝐾

+
and 𝐾

−
. Define the unit normal vectors n

𝐾+

and n
𝐾−

on 𝐸 pointing exterior to 𝐾
+
and 𝐾

−
, respectively.

Let k be a vector-valued function that is smooth inside each
of the elements𝐾

+
and𝐾

−
. k+ and k− denote the traces of k on

𝐸 taken from within the interior of 𝐾
+
and 𝐾

−
, respectively.

Then the jump of k on the edge 𝐸 is defined by [k]
𝐸

= k+ ⋅

n
𝐾+

+ k− ⋅ n
𝐾−
. We denote space refinement indicator by 𝜂

𝑛

𝑠

defined by

R
𝑛

𝐾
= 𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) ,

R
𝑛

𝐸
= − [𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
]
𝐸
,

𝜂
𝑛

𝑠
= ( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
+ ∑

𝐸∈Eℎ

ℎ
𝐸

R
𝑛

𝐸



2

0,𝐸
)

1/2

.

(27)

We define time refinement indicator 𝜂𝑛
𝑡
as

𝜂
𝑛

𝑡
= 𝜏

𝑛


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
+ 𝜏

𝑛


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


. (28)

3.1. Upper Bound. The Scott-Zhang interpolation function
I

ℎ
: 𝐻

1

0
(Ω) → U

ℎ
is introduced in the following lemma

[18].

Lemma 2. For each 𝜑 ∈ 𝐻
1

0
(Ω), a positive constant 𝐶 is

independent of ℎ
𝐾
and ℎ

𝐸
such that, for any 𝐾 ∈ 𝑇

ℎ
, 𝐸 ∈ E

ℎ

Iℎ
𝜑
1,Ω

≤ 𝐶
𝜑

1,Ω
,

𝜑 −I
ℎ
𝜑
0,𝐾

≤ 𝐶ℎ
𝐾

𝜑
1,𝜔𝐾

,

𝜑 −I
ℎ
𝜑
0,𝐸

≤ 𝐶ℎ
1/2

𝐸

𝜑
1,𝜔𝐸

,

(29)

where 𝜔
𝐾
= ⋃

𝐾

⋂𝐾 ̸=0

𝐾
 and 𝜔

𝐸
= ⋃

𝐾⋂𝐸 ̸=0
𝐾.

We also introduce the trace theorem [14].

Lemma 3 (trace theorem). There exists a positive constant 𝐶
independent of ℎ

𝐸
such that

‖𝜔‖
2

0,𝐸
≤ 𝐶 (ℎ

−1

𝐸
‖𝜔‖

2

0,𝐾
+ ℎ

𝐸 ‖∇𝜔‖
2

0,𝐾
) ,

∀𝜔 ∈ 𝐻
1
(𝐾) , 𝐸 ∈ 𝜕𝐾, ∀𝐾 ∈ 𝑇

ℎ
.

(30)

Then we can get the following theorem for the upper bound of
the error.

Theorem 4. The following a posteriori error estimate holds
between the solution 𝑢 of (1) and the solution (𝑈

𝑛

ℎ
)
1≤𝑛≤𝑁

of (14),
for 2 ≤ 𝑚 ≤ 𝑁:

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(31)

Proof. Taking the inner product of (18) with (
𝑢−𝑈𝜏

T(V−𝑉𝜏)
) and

setting

𝑍 (𝑡) = (
𝑢 − 𝑈

𝜏



2

+
V − 𝑉

𝜏



2

−1
)
1/2

, (32)

we obtain, for 𝑡 ∈ [𝑡
𝑛−1

, 𝑡
𝑛
],

1

2

𝑑𝑍
2

𝑑𝑡
= (𝑃

𝑢
, 𝑢 − 𝑈

𝜏
) + (𝑃V,T (V − 𝑉

𝜏
)) ≤

𝑃𝑢


𝑢

− 𝑈
𝜏

 +

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1

⋅
T (V − 𝑉

𝜏
)
1

+
𝐿

𝑛−1

T (V − 𝑉
𝜏
)
1

+
𝑓 (⋅, 𝑡)

− 𝑓
𝑛

T (V − 𝑉
𝜏
)
 ≤

𝑃𝑢


𝑢 − 𝑈
𝜏

 + 𝐶

∇

⋅ (𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1

V − 𝑉
𝜏

−1
+ 𝐶

𝐿
𝑛−1

⋅
V − 𝑉

𝜏

−1
+ 𝐶

𝑓 (⋅, 𝑡) − 𝑓
𝑛

V − 𝑉
𝜏

−1

≤ 𝐶(
𝑃𝑢



2

+
𝐿

𝑛

2

−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

2

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))



2

−1
)

1/2

𝑍;

(33)

hence,

𝑑𝑍

𝑑𝑡
≤ 𝐶 (

𝑃𝑢


2

+
𝐿

𝑛

2

−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

2

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))



2

−1
)

1/2

≤ 𝐶 (
𝑃𝑢



+
𝐿

𝑛−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
) .

(34)
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Integrating the inequality from 𝑡
𝑛−1

to 𝑡
𝑛
(2 ≤ 𝑛 ≤ 𝑁), we

have

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
) ≤ 𝐶∫

𝑡𝑛

𝑡𝑛−1

(
𝑃𝑢

 +
𝐿

𝑛−1

+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
) 𝑑𝑡.

(35)

Using Lemma 1, we obtain

∫

𝑡𝑛

𝑡𝑛−1


∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
𝑑𝑡

= ∫

𝑡𝑛

𝑡𝑛−1


∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝑛

ℎ
+ 𝑈

𝑛

ℎ
− 𝑈

𝜏
))

−1
𝑑𝑡

≤ 𝐶

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
∫

𝑡𝑛

𝑡𝑛−1

(1 −
𝑡 − 𝑡

𝑛−1

𝜏
𝑛

)𝑑𝑡

+ 𝐶
𝜏
𝑛

2


𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1
+ 𝐶

𝜏
𝑛

2


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1

≤ 𝐶𝜏
𝑛


𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1
+ 𝐶𝜏

𝑛


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
,

∫

𝑡𝑛

𝑡𝑛−1

𝑃𝑢 (⋅, 𝑡)
 𝑑𝑡 =


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


∫

𝑡𝑛

𝑡𝑛−1

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑑𝑡

=
𝜏
𝑛

2


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


.

(36)

By the definition of 𝜂𝑛
𝑡
, we get

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
)

≤ 𝐶(𝜏
𝑛
𝜂
𝑛

𝑡
+ 𝜏

𝑛

𝐿
𝑛−1

+ ∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡) .

(37)

In order to estimate ‖𝐿𝑛‖
−1
, we choose V = I

ℎ
𝜑 in (24); then

(𝐿
𝑛
, 𝜑) = (𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − V)

+ (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, V − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, V)]

− [𝑎 (𝑈
𝑛,1/2

ℎ
, V) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

≜ I
1
+I

2
+I

3
+I

4
.

(38)

Using Green’s formula, we have

I
3
= − (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
, ∇ (𝜑 − V))

= − ∑

𝐾∈𝑇ℎ

(𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
, ∇ (𝜑 − V))

= ∑

𝐾∈𝑇ℎ

(∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜑 − V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, 𝜑 − V)

0,𝐸
.

(39)

By the definition ofR𝑛

𝐾
,R𝑛

𝐸
, we get

I
1
+I

3

= ∑

𝐾∈𝑇ℎ

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , 𝜑 − V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, 𝜑 − V)

0,𝐸

= ∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, 𝜑 − V)

0,𝐾
+ ∑

𝐸∈Eℎ

(R
𝑛

𝐸
, 𝜑 − V)

0,𝐸
.

(40)

From Cauchy-Schwarz inequality and Lemma 2, we can get

I1
+I

3

 ≤ 𝐶 ∑

𝐾∈𝑇ℎ

{ℎ
𝐾

R
𝑛

𝐾

0,𝐾

𝜑
1,𝜔𝐾

}

+ 𝐶 ∑

𝐸∈Eℎ

{ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸

𝜑
1,𝜔𝐸

} .

(41)

ForI
4
, sinceΠ

ℎ
V is a constant in𝐾⋂𝐾

∗

𝑧
, 𝑧 ∈ 𝑍

ℎ
(𝐾), 𝐾

∗

𝑧
∈

𝑇
∗

ℎ
, we have

∫
𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇V 𝑑𝑥

= ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (V − Π

ℎ
V) 𝑑𝑥

= − ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝐾

∗
𝑧

∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) ⋅ (V − Π

ℎ
V) 𝑑𝑥

+ ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝜕(𝐾⋂𝐾

∗
𝑧
)

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠

= −∫
𝐾

∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) ⋅ (V − Π

ℎ
V) 𝑑𝑥

+ ∫
𝜕𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠

+ ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠.

(42)
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Since 𝑎(𝑥)∇𝑈𝑛

ℎ
and V are continuous inside each element𝐾 ∈

𝑇
ℎ
, we have

∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛

ℎ
⋅ nV 𝑑𝑠 = 0,

∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ nV 𝑑𝑠 = 0.

(43)

Thus,

I
4
= ∑

𝐾∈𝑇ℎ

(∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , V − Π

ℎ
V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, V − Π

ℎ
V)

0,𝐸
.

(44)

Then we get

I
2
+I

4
= ∑

𝐾∈𝑇ℎ

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , V

− Π
ℎ
V)

0,𝐾
− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, V − Π

ℎ
V)

0,𝐸

= ∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, V − Π

ℎ
V)

0,𝐾
+ ∑

𝐸∈Eℎ

(R
𝑛

𝐸
, V − Π

ℎ
V)

0,𝐸
.

(45)

By (8) and Cauchy-Schwarz inequality, we obtain



∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, V − Π

ℎ
V)

0,𝐾



≤ 𝐶 ∑

𝐾∈𝑇ℎ

{ℎ
𝐾

R
𝑛

𝐾

0,𝐾 ‖V‖1,𝐾}

≤ 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

( ∑

𝐾∈𝑇ℎ

‖V‖2
1,𝐾

)

1/2

= 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

Iℎ
𝜑
1,Ω

≤ 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

𝜑
1

.



∑

𝐸∈Eℎ

(R
𝑛

𝐸
, V − Π

ℎ
V)

0,𝐸



≤ ∑

𝐸∈Eℎ

R
𝑛

𝐸

0,𝐸

V − Π
ℎ
V0,𝐸

≤ ( ∑

𝐸∈Eℎ

ℎ
𝐸

R
𝑛

𝐸



2

0,𝐸
)

1/2

⋅ ( ∑

𝐸∈Eℎ

ℎ
−1

𝐸

V − Π
ℎ
V

2

0,𝐸
)

1/2

.

(46)

Since Π
ℎ
V is a piecewise constant function, by Lemma 3 and

(8), we get

∑

𝐸∈Eℎ

ℎ
−1

𝐸

V − Π
ℎ
V

2

0,𝐸

≤ 𝐶 ∑

𝐸∈Eℎ

(ℎ
−2

𝐸

V − Π
ℎ
V

2

0,𝐾
+ |V|2

1,𝐾
) ≤ 𝐶 ‖V‖2

1

≤ 𝐶
𝜑



2

1
.

(47)

Substituting the estimate of I
1
–I

4
into (38) and by the

definition of 𝜂𝑛
𝑠
, we have

(𝐿
𝑛
, 𝜑) ≤ 𝐶𝜂

𝑛

𝑠

𝜑
1

; (48)

hence
(𝐿

𝑛
, 𝜑)

𝜑
1

≤ 𝐶𝜂
𝑛

𝑠
,

𝐿
𝑛−1

≤ 𝐶𝜂
𝑛

𝑠
.

(49)

Substituting the estimation of ‖𝐿𝑛‖
−1

into (37), we get

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
)

≤ 𝐶(𝜏
𝑛
𝜂
𝑛

𝑡
+ 𝜏

𝑛
𝜂
𝑛

𝑠
+ ∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡) .

(50)

Summing (50) from 𝑛 = 2 to 𝑛 = 𝑚, we obtain

𝑍 (𝑡
𝑚
) − 𝑍 (𝑡

1
) ≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
))

+ 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡.

(51)

For 𝑛 = 1, we have

𝑍 (𝑡
1
) − 𝑍 (𝑡

0
)

≤ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(52)

Noting that 𝑍(𝑡
0
) = 𝑍(0) = 0, then

𝑍 (𝑡
𝑚
)

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(53)

By the fact that (1/√2)(𝑎 + 𝑏) ≤ √𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 (𝑎, 𝑏 > 0),
we have

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +
V
𝑚
− 𝑉

𝑚

ℎ

−1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(54)
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In view of the definition of the operatorT, we have

T
𝜕V
𝜕𝑡

+ 𝑢 = T𝑓 (⋅, 𝑡) , (55)

T
𝜕𝑉

𝜏

𝜕𝑡
+ 𝑈

𝑚,1/2

ℎ
= T𝑓 (⋅, 𝑡

𝑚
) , 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
] . (56)

Subtracting (56) from (55), we get

T
𝜕 (V − 𝑉

𝜏
)

𝜕𝑡

+ (𝑢 − 𝑈
𝑚,1/2

ℎ
) = T (𝑓 (⋅, 𝑡) − 𝑓 (⋅, 𝑡

𝑚
)) ,

(57)

T
𝜕 (V − 𝑉

𝜏
)

𝜕𝑡
+T (𝑓 (⋅, 𝑡

𝑚
) − 𝑓 (⋅, 𝑡))

+ (𝑈
𝜏
− 𝑈

𝑚,1/2

ℎ
) = (𝑈

𝜏
− 𝑢) .

(58)

Integrating (58) from 𝑡
𝑚−1

to 𝑡
𝑚
, we obtain

T (V𝑚 − 𝑉
𝑚

ℎ
) −T (V𝑚−1 − 𝑉

𝑚−1

ℎ
)

+ ∫

𝑡𝑚

𝑡𝑚−1

T (𝑓 (⋅, 𝑡
𝑚
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

+ ∫

𝑡𝑚

𝑡𝑚−1

(𝑈
𝜏
− 𝑈

𝑚,1/2

ℎ
) 𝑑𝑡 = ∫

𝑡𝑚

𝑡𝑚−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡.

(59)

Summing (59) from 𝑘 = 1 to 𝑘 = 𝑚, we obtain

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

= T (V𝑚 − 𝑉
𝑚

ℎ
)

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

T (𝑓 (⋅, 𝑡
𝑘
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑈

𝑘,1/2

ℎ
) 𝑑𝑡.

(60)

Thus, we have



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤
T (V𝑚 − 𝑉

𝑚

ℎ
)
1

+



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

T (𝑓 (⋅, 𝑡
𝑘
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

1

+



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑈

𝑘,1/2

ℎ
) 𝑑𝑡

1

≤ 𝐶
V

𝑚
− 𝑉

𝑚

ℎ

−1

+ 𝐶

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1


𝑓 (⋅, 𝑡

𝑘
) − 𝑓 (⋅, 𝑡)

−1
𝑑𝑡

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(

𝑈
𝜏
− 𝑈

𝑘

ℎ

1
+

𝑈
𝑘

ℎ
− 𝑈

𝑘,1/2

ℎ

1
) 𝑑𝑡.

(61)

Then,


𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶
V

𝑚
− 𝑉

𝑚

ℎ

−1

+ 𝐶

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1


𝑓 (⋅, 𝑡

𝑘
) − 𝑓 (⋅, 𝑡)


𝑑𝑡

+ 𝐶

𝑘=𝑚

∑

𝑘=1

𝜏
𝑘


𝑈
𝑘

ℎ
− 𝑈

𝑘−1

ℎ

1
.

(62)

By (62) and (54), we have

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(63)

3.2. Lower Bound. In order to derive the local lower bounds
on the error, we will introduce some properties of the bubble
functions. For each triangle𝐾 ∈ 𝑇

ℎ
, denote by 𝜆

𝐾,1
, 𝜆

𝐾,2
, 𝜆

𝐾,3

the barycentric coordinates. Define the element-bubble func-
tion 𝜓

𝐾
by

𝜓
𝐾
= 27𝜆

𝐾,1
𝜆
𝐾,2

𝜆
𝐾,3

, in 𝐾;

𝜓
𝐾
= 0, in Ω \ 𝐾.

(64)

Assume that 𝐾 and 𝐾
 share the edge 𝐸 ∈ E

ℎ
. Let the

barycentric coordinates with respect to the end points of 𝐸
be 𝜆

𝐸,1
and 𝜆

𝐸,2
. Define the edge-bubble function 𝜓

𝐸
by

𝜓
𝐸
= 4𝜆

𝐸,1
𝜆
𝐸,2

, in 𝜔
𝐸
= 𝐾 ∪ 𝐾


;

𝜓
𝐸
= 0, in Ω \ 𝜔

𝐸
.

(65)

For properties of the bubble functions, we have the following
lemma [19].
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Lemma 5. For each of the elements 𝐾 ∈ 𝑇
ℎ
and 𝐸 ∈ E

ℎ
,

functions 𝜓
𝐾
and 𝜓

𝐸
have the following properties:

supp𝜓
𝐾
⊂ 𝐾,

max
𝑥∈𝐾

𝜓
𝐾
= 1,

∫
𝐾

𝜓
𝐾
𝑑𝑥 =

9

20
|𝐾| ∼ ℎ

2

𝐾
,

∇𝜓𝐾

0,𝐾
≤ 𝐶ℎ

−1

𝐾

𝜓𝐾

0,𝐾
.

𝜓
𝐾
∈ [0, 1] ,

supp𝜓
𝐸
⊂ 𝜔

𝐸
,

max
𝑥∈𝜔𝐸

𝜓
𝐸
= 1,

∫
𝐸

𝜓
𝐸
𝑑𝑠 =

2

3
ℎ
𝐸
,

∫
𝜔𝐸

𝜓
𝐸
𝑑𝑥 =

1

3

𝜔𝐸

 ∼ ℎ
2

𝐸
,

∇𝜓𝐸

0,𝜔𝐸
≤ 𝐶ℎ

−1

𝐸

𝜓𝐸

0,𝜔𝐸
,

𝜓
𝐸
∈ [0, 1] .

(66)

We define the average ofR𝑛

𝐾
on𝐾 (R𝑛

𝐾
) and the average ofR𝑛

𝐸

on 𝐸 (R𝑛

𝐸
) by

R𝑛

𝐾
=

1

|𝐾|
∫
𝐾

R
𝑛

𝐾
𝑑𝑥,

R𝑛

𝐸
=

1

ℎ
𝐸

∫
𝐸

R
𝑛

𝐸
𝑑𝑠.

(67)

Then we have the following local lower bounds.

Theorem 6. For any 𝐾 ∈ 𝑇
ℎ
, 𝐸 ∈ E

ℎ
, the following local

posteriori lower bounds on the error 𝑢𝑛 −𝑈
𝑛

ℎ
hold for a positive

constant 𝐶 independent of ℎ
𝐾
and ℎ

𝐸
:

ℎ
𝐾

R
𝑛

𝐾

0,𝐾
≤ 𝐶(

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝐾
+ ℎ

𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾

+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝐾
+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝐾

+ 2ℎ
𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
) ,

(68)

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ 𝐶(

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) .

(69)

Proof. By triangle inequality, we have
R

𝑛

𝐾

0,𝐾
≤

R𝑛

𝐾

0,𝐾
+

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
. (70)

By the properties of 𝜓
𝐾
, the definition of R𝑛

𝐾
, and Green’s

formulation, we have


R𝑛

𝐾



2

0,𝐾
∼ (R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (R
𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , 𝜓

𝐾
R𝑛

𝐾
)

− (R
𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (𝑓
𝑛
− 𝑢

𝑛

𝑡𝑡
, 𝜓

𝐾
R𝑛

𝐾
) + (𝑢

𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
)

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐾
R𝑛

𝐾
)

− (R
𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= 𝑎 (𝑢
𝑛
, 𝜓

𝐾
R𝑛

𝐾
)

− ∫
𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (𝜓

𝐾
R𝑛

𝐾
) 𝑑𝑥

+ (𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= ∫
𝐾

𝑎 (𝑥) ∇ (𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ
) ⋅ ∇ (𝜓

𝐾
R𝑛

𝐾
) 𝑑𝑥

+ (𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

≡ P
1
+P

2
+P

3
.

(71)

For P
1
, with Cauchy-Schwarz inequality and Lemma 5, we

get

P1

 ≤ 𝐶

𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


∇ (𝜓

𝐾
R𝑛

𝐾
)
0,𝐾

= 𝐶

𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

∇𝜓𝐾

0,𝐾


R𝑛

𝐾



≤ 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

𝜓𝐾

0,𝐾


R𝑛

𝐾



= 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤ 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


R𝑛

𝐾

0,𝐾
.

(72)

By Cauchy-Schwarz inequality and Lemma 5, we obtain

P2

 ≤

𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤ 𝐶

𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾


R𝑛

𝐾

0,𝐾
,

P3

 ≤

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾


R𝑛

𝐾

0,𝐾
.

(73)
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Combining (71)–(73), we obtain

ℎ
𝐾

R
𝑛

𝐾

0,𝐾
≤ 𝐶(


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

+ ℎ
𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾
+ 2ℎ

𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
)

≤ 𝐶 (
𝑢

𝑛
− 𝑈

𝑛

ℎ

1,𝐾
+ ℎ

𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾

+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝐾
+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝐾

+ 2ℎ
𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
) .

(74)

For (69), by triangle inequality, similarly we have

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ ℎ

1/2

𝐸


R𝑛

𝐸

0,𝐸
+ ℎ

1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
. (75)

By Lemma 5 and Green’s formulation, we get


R𝑛

𝐸



2

0,𝐸
∼ (R𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= (R
𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
, ∇ (𝜓

𝐸
R𝑛

𝐸
))

0,𝜔𝐸

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

− ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑢
𝑛
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑢
𝑛
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛
) ⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ ∫
𝜔𝐸

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
) (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ ∫
𝜔𝐸

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡
) (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛
) ⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (R
𝑛

𝐾
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡
, 𝜓

𝐸
R𝑛

𝐸
)

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

≡ O
1
+ O

2
+ O

3
+ O

4
.

(76)

Now we will estimate the right-hand terms of (76). By
Lemma 5 and the Cauchy-Schwarz inequality, we obtain

O1

 ≤ 𝐶

𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸


∇ (𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

= 𝐶

𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸

∇𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
−1

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸

𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
−1/2

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O2

 ≤
R

𝑛

𝐾

0,𝜔𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝜔𝐸

=
R

𝑛

𝐾

0,𝜔𝐸

𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸


≤ 𝐶ℎ

𝐸

R
𝑛

𝐾

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
1/2

𝐸

R
𝑛

𝐾

0,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O3

 ≤

𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡

0,𝜔𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝜔𝐸

≤ 𝐶ℎ
1/2

𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O4

 ≤

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝐸

≤

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸


R𝑛

𝐸

0,𝐸
.

(77)

Combining (77) with (76), we get


R𝑛

𝐸

0,𝐸
≤ 𝐶ℎ

−1/2

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸
+ 𝐶ℎ

1/2

𝐸

R
𝑛

𝐾

0,𝜔𝐸

+ 𝐶ℎ
1/2

𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸

+

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸
.

(78)

With (74), we obtain

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ 𝐶


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝜔𝐸
+ 𝐶ℎ

𝐸


𝑢
𝑛

𝑡𝑡

− 𝜕
𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+ 𝐶ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸
+ ℎ

1/2

𝐸


R

𝑛

𝐸

−R𝑛

𝐸

0,𝐸
≤ 𝐶(


𝑢
𝑛
− 𝑈

𝑛

ℎ
+ 𝑈

𝑛

ℎ
− 𝑈

𝑛,1/2

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸
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Table 1: Error estimates for Case 1.

ℎ

𝑢
𝑁
− 𝑈

𝑁

ℎ

0
Rate 

𝑢
𝑁
− 𝑈

𝑁

ℎ

1
Rate O𝑁 N𝑁 R

1/2
2

1.3839𝑒 − 02 — 1.6047𝑒 − 01 — 0.4589 21.3382 46.4952
1/2

3
4.0831𝑒 − 03 1.7610 8.2097𝑒 − 02 0.9669 0.4417 21.1967 47.9920

1/2
4

9.3149𝑒 − 04 2.1321 4.1279𝑒 − 02 0.9919 0.4307 21.0618 48.9005
1/2

5
2.0574𝑒 − 04 2.1787 2.0670𝑒 − 02 0.9979 0.4247 20.9680 49.3734

1/2
6

4.6977𝑒 − 05 2.1308 1.0338𝑒 − 02 0.9996 0.4215 20.9138 49.6128

Table 2: Error estimates for Case 2.

ℎ

𝑢
𝑁
− 𝑈

𝑁

ℎ

0
Rate 

𝑢
𝑁
− 𝑈

𝑁

ℎ

1
Rate O𝑁 N𝑁 R

1/2
2

1.2513𝑒 − 01 — 2.3532 — 6.6633 66.7292 10.0144
1/2

3
3.2994𝑒 − 02 1.9232 1.1822 0.9931 6.3537 64.6603 10.1768

1/2
4

8.1195𝑒 − 03 2.0227 5.9245𝑒 − 01 0.9967 6.1806 63.5799 10.2870
1/2

5
1.8443𝑒 − 03 2.1383 2.9641𝑒 − 01 0.9991 6.0904 63.0179 10.3471

1/2
6

4.0436𝑒 − 04 2.1894 1.4822𝑒 − 01 0.9999 6.0444 62.7297 10.3782

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) ≤ 𝐶 (

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) .

(79)

4. Numerical Examples

Now we present some numerical examples to show the
performance of the proposed error estimator. We consider
problem (1) in Ω × [0, 𝑇] = [0, 1; 0, 1] × [0, 1]. We discretize
Ω into 𝑁 number of rectangles in each direction and then
each rectangle is divided into two triangles, resulting in a
mesh with size ℎ = √2/𝑁. Discretize time by taking time
step 𝜏

𝑛
= Δ𝑡 = ℎ. We consider the following two cases.

Case 1. Consider

𝑎 (𝑥, 𝑦) = 1 + sin(
𝜋

4
𝑥) + sin(

𝜋

4
𝑦) + 𝑒

2𝑥
+ 𝑒

2𝑦
,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥 (1 − 𝑥) 𝑦 (1 − 𝑦) 𝑒
𝑡
.

(80)

Case 2. Consider

𝑎 (𝑥, 𝑦) = 𝑒
(𝑥+𝑦)/2

,

𝑢 (𝑥, 𝑦, 𝑡) = sin (𝜋𝑥) sin (𝜋𝑦) 𝑒
𝑡
.

(81)

Define

O
𝑚

=

𝑚

∑

𝑛=2

𝑢
𝑛
− 𝑈

𝑛

ℎ

1
,

N
𝑚

=

𝑚

∑

𝑛=2

(𝜂
𝑛

𝑡
+ 𝜂

𝑛

𝑠
) ,

R =
N𝑚

O𝑚
.

(82)

We present the results of the above cases when 𝑚 = 𝑁 at
Tables 1 and 2.

FromTables 1 and 2 we can see that the global a posteriori
error estimator can predict the exact global error. The error
estimator is reliable as evidenced by the ratio R listed on
the tables. This list shows that the ratio R is converging to a
constant when the mesh size is decreased by half. This shows
that the proposed global a posteriori error estimator is robust
for predicting the error in the finite volume element method.
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The synchronization of chaotic systems, described by discrete-time T-S fuzzymodels, is treated bymeans of fuzzy output regulation
theory. The conditions for designing a discrete-time output regulator are given in this paper. Besides, when the system does not
fulfill the conditions for exact tracking, a new regulator based on genetic algorithms is considered. The genetic algorithms are
used to approximate the adequate membership functions, which allow the adequate combination of local regulators. As a result,
the tracking error is significantly reduced. Both the Complete Synchronization and the Generalized Synchronization problem are
studied. Some numerical examples are used to illustrate the effectiveness of the proposed approach.

1. Introduction

A special nonlinear dynamical phenomenon, known as
chaos, emerged in mid-1960s and reached applicable tech-
nology in the late 1990s and was considered as one of
the three monumental discoveries of the twentieth century.
On the other hand, fuzzy logic, a set theory and then
an infinite-valued logic, gets a wide applicability in many
industrial, commercial, and technical fields, ranging from
control, automation, and artificial intelligence, just to name
a few. Fuzzy logic and chaos had been considered by many
researches and engineers as fundamental concepts and the-
ories and their broad applicability in technology as well. The
interaction between fuzzy logic and chaos has been developed
for the last 20 years leading to research topics as fuzzy
modeling of chaotic systems using Takagi-Sugeno models,
linguistic descriptions of chaotic systems, fuzzy control of
chaos, synchronization, and a combination of fuzzy chaos for
engineering applications [1, 2].

In the 1960s, Rechenberg [3] introduced “evolution
strategies,” a method to optimize real-valued parameters for

devices such as airfoils. This idea was further developed
by Schwefel in [4]. Genetic algorithms (GAs) were initially
developed by Bremermann [5] in 1958 but popularized and
developed byHolland in the 1960s. In contrast with evolution
strategies and evolutionary programming, Holland’s idea
was not to design algorithms to solve specific problems but
rather to formally study the phenomenon of adaptation, as it
occurs in nature, and develop ways in which the mechanisms
of natural adaptation might be transferred into computer
systems [6].The genetic algorithm is presented as abstraction
of biological evolution and theoretical framework for adapta-
tion formoving from one population of “chromosomes” (e.g.,
strings of ones and zeros, or “bits”) to a new population by
using a kind of “natural selection” together with the genetics-
inspired operators of crossover, mutation, and inversion.
Each chromosome consists of “genes” (e.g., bits); each gene
is being an instance of a particular “allele” (e.g., 0 or 1).
The operator selection chooses those chromosomes in the
population that will be allowed to reproduce and those
adjusted chromosomes produce more offspring than the less
ones [7].
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According to Fogel and Aderson [8], Bremermann was
the first to implement real-coded genetic algorithms as well
as providing a mathematic model of GA known as the one-
max function. In contrast to genetic algorithms, Evolutionary
Strategies were initially developed for the purpose of param-
eter optimization. The idea was to imitate the principles of
organic evolution in experimental parameter optimization
for applications such as pipe bending or PID control for a
nonlinear system [9].

Synchronization of chaotic systems is one of the more
exiting problems in control science and can be referred at
least to Huygen’s observations [10]; it is understood as one of
the trajectories of two autonomous chaotic systems, starting
from nearly initial conditions and converging to the other,
and remains as 𝑡 → ∞; in [11] it was reported that some kind
of chaotic systems possesses a self-synchronization property.
However, not all chaotic systems can be decomposed in
two separate responses subsystems and be able to synchro-
nize the drive system. The ideas of these works have led
to improvement in many fields, such as communications
[12], encrypted systems, the complex information processing
within the human brain, coupled biochemical reactors, and
earthquake engineering [13].

Synchronization can be classified as follows: Complete
Synchronization: it is when two identical chaos oscillators are
mutually coupled and one drives to the other; Generalized
Synchronization: it differs from the previous case by the fact
that there are different chaos oscillators and the states of one
are completely defined by the other; Phase Synchronization: it
occurswhen the coupled oscillators are not identical and have
different amplitude that is still unsynchronized, while the
phases of oscillators evolve to be synchronized [14]. It is worth
mentioning that studies in synchronization of nonlinear
systems have been reformulated based on the previous results
from classical control theory such as [15–18].

In this paper, the fuzzy output regulation theory and
Takagi-Sugeno (T-S) fuzzy models are used to solve the
Complete and Generalized Synchronization by using linear
local regulators. Isidori and Byrnes [19] showed that the
output regulation established by Francis could be extended
for a nonlinear sector as a general case, resulting in a set of
nonlinear partial differential equations called Francis-Isidori-
Byrnes (FIB). Unfortunately these equations in many cases
are too difficult to solve in a practical manner. For this reason
in [20] the approach based on the weighted summation
of local linear regulators is presented and in [21] the new
membership functions in the regulator are approximated by
soft computing techniques.

So, the main contribution of the present work is to find
a control law for synchronizing of chaotic systems described
by discrete-time Takagi-Sugeno fuzzy models, first when the
system fulfills the following: (1) the input matrix for all
subsystems is the same and (2) the local regulators share
the same zero error manifold 𝜋(𝑤𝑘). In this way, the results
given in [20] are extended to the discrete-time domain. On
the other hand, when the systemmaster-slave does not fulfill
the aforementioned conditions, new membership functions
are computed in order to enhance the performance of the
fuzzy regulator. Such proposed membership functions are

different from those given in the plant or exosystem and are
tuned by using the GA. The tuning of the new membership
functions, which is as generalized bell-shaped function, is
given by optimization of the form parameter.

The rest of the paper is organized as follows. In Section 2
the discrete-time output regulation problem formulation
is given with a brief review of the Takagi-Sugeno models
and the discrete-time fuzzy regulation problem. In Section 3
the tuning of membership functions by means of GAs is
thoroughly discussed. In Section 4 Complete and General-
ized Synchronization with some examples are presented and
finally, in Section 5, some conclusions are drawn.

2. The Discrete-Time Fuzzy Output
Regulation Problem

Consider a nonlinear discrete-time system defined by

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝜔𝑘, 𝑢𝑘) , (1)

𝑦𝑘 = 𝑐 (𝑥𝑘) , (2)

𝜔𝑘+1 = 𝑠 (𝜔𝑘) , (3)

𝑦ref,𝑘 = 𝑞 (𝜔𝑘) , (4)

𝑒𝑘 = ℎ (𝑥𝑘, 𝜔𝑘) , (5)

where 𝑥𝑘 ∈ R𝑛 is the state vector of the plant, 𝑤𝑘 ∈ 𝑊 ⊂

R𝑠 is the state vector of the exosystem, which generates the
reference and/or the perturbation signals, and 𝑢𝑘 ∈ R𝑚 is
the input signal. Equation (5) refers to difference between
output system of the plant (𝑦𝑘 ∈ R𝑚) and the reference signal
(𝑦ref ,𝑘 ∈ R𝑚); that is, ℎ(𝑥𝑘, 𝜔𝑘) = 𝑦𝑘 − 𝑦ref ,𝑘 = 𝑐(𝑥𝑘) − 𝑞(𝑤𝑘)

and take into account that 𝑚 ≤ 𝑛. Besides, it is assumed that
𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘), ℎ(𝑥𝑘, 𝑤𝑘), and 𝑠(𝑤𝑘) are analytical functions
and also that 𝑓(0, 0, 0) = 0, 𝑠(0) = 0, and ℎ(0, 0) = 0 [22].

Clearly, by linearizing (1)–(5) around 𝑥𝑘 = 0, one gets

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑃𝑤𝑘,

𝑦𝑘 = 𝐶𝑥𝑘,

𝑤𝑘+1 = 𝑆𝑤𝑘,

𝑦ref,𝑘 = 𝑄𝑤𝑘,

𝑒𝑘 = 𝐶𝑥𝑘 − 𝑄𝑤𝑘.

(6)

Thus, the Nonlinear Regulator Problem [19, 23] consists of
finding a controller 𝑢𝑘 = 𝛼(𝑥𝑘, 𝑤𝑘), such that the closed-loop
system 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝛼(𝑥𝑘, 0) has an asymptotically stable
equilibrium point, and the solution of system (6) satisfies
lim𝑘→∞𝑒𝑘 = 0.

So, by defining 𝜋(𝑤𝑘) as the steady-state zero error
manifold and 𝛾(𝑤𝑘) as the steady-state input, the following
theorem gives the conditions for the solution of nonlinear
regulation problem.

Theorem 1. Suppose that 𝑤𝑘+1 = 𝑠(𝑤𝑘) is Poisson stable and
there exists a gain𝐾 such that the matrix 𝐴+𝐵𝐾 is stable and
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there exist mappings 𝑥𝑠𝑠(𝑡) = 𝜋(𝑤𝑘) and 𝑢𝑠𝑠 = 𝛾(𝑤𝑘) with
𝜋(0) = 0 and 𝛾(0) = 0 satisfying

𝜋 (𝑠 (𝑤𝑘)) = 𝑓 (𝜋 (𝑤𝑘) , 𝑤𝑘, 𝛾 (𝑤𝑘)) ,

0 = ℎ (𝜋 (𝑤𝑘) , 𝑤𝑘) .

(7)

Then the control signal for the nonlinear regulation is given by

𝑢𝑘 = 𝐾 (𝑥𝑘 − 𝜋 (𝑤𝑘)) + 𝛾 (𝑤𝑘) . (8)

Proof. See [22–24].

The equation set (7) is known as Discrete-Time Francis-
Isidori-Byrnes (DTFIB) equations and linear counterpart is
obtained when the mappings 𝑥𝑠𝑠,𝑘 = 𝜋(𝑤𝑘) and 𝑢𝑠𝑠,𝑘 = 𝛾(𝑤𝑘)

transform into 𝑥𝑠𝑠,𝑘 = Π𝑤𝑘 and 𝑢𝑠𝑠,𝑘 = Γ𝑤𝑘, respectively.
Thus, the problem is reduced to solve linear matrix equations
[25] given by

Π𝑆 = 𝐴Π + 𝐵Γ + 𝑃,

0 = 𝐶Π − 𝑄.

(9)

2.1. The Discrete-Time Output Fuzzy Regulation Problem.
Takagi and Sugeno proposed a fuzzy model composed of
a set of linear subsystems with IF-THEN rules capable of
relating physical knowledge, linguistic characteristics, and
properties of the system. Such amodel successfully represents
a nonlinear system at least in a predefined region of phase
space [15]. The T-S model for the plant and exosystem can be
described as follows [26]:

Plant Model

Rule 𝑖:
IF 𝑧1,1,𝑘 is𝑀

𝑖

1,1
and . . . and 𝑧1,𝑝

1
,𝑘 is𝑀

𝑖

1,𝑝
1

,

THEN
{

{

{

𝑥𝑘+1 = 𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘,

𝑦𝑘 = 𝐶𝑖𝑥𝑘,

𝑖 = 1, 2, . . . , 𝑟1,

(10)

where 𝑟1 is the number of rules in the model of the
plant and the sets𝑀𝑖

1,𝑗
are the fuzzy sets defined based

on the previous dynamic knowledge of the system.

Exosystem Model

Rule 𝑖:
IF 𝑧2,1,𝑘 is𝑀

𝑖

2,1
and . . . and 𝑧2,𝑝

2
,𝑘 is𝑀

𝑖

2,𝑝
2

,

THEN
{

{

{

𝑤𝑘+1 = 𝑆𝑖𝑤𝑘,

𝑦ref ,𝑘 = Q𝑖𝑤𝑘,
𝑖 = 1, 2, . . . , 𝑟2, (11)

where 𝑟2 is the number of rules in the model of the
exosystem and𝑀

𝑖

2,𝑗
are the fuzzy sets.

Then, the regulation problem defined by (1)–(5) can be
represented through the T-S discrete-time fuzzy model; that
is, [20]

𝑥𝑘+1 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) 𝐶𝑖𝑥𝑘 −

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑄𝑖𝑤𝑘,

(12)

where 𝑥𝑘 ∈ R𝑛 is the state vector of the plant, 𝑤𝑘 ∈ R𝑠 is
the state vector of the exosystem, 𝑢𝑘 ∈ R𝑚 is the input signal,
𝑒𝑘 ∈ R𝑚, and ℎ∗,𝑖(𝑧) is the normalized weight of each rule, 1
for the plant and 2 for the exosystem, which depends on the
membership function for the premise variable 𝑧∗,𝑘 in 𝑀

𝑖

∗,𝑗
;

that is,

𝜔∗,𝑖 (𝑧∗,𝑘) =

𝑝
∗

∏

𝑗=1

𝑀
𝑖

∗,𝑗
(𝑧∗,𝑗,𝑘) ,

ℎ∗,𝑖 (𝑧∗,𝑘) =

𝜔∗,𝑖 (𝑧∗,𝑘)

∑
𝑟
∗

𝑖=1
𝜔∗,𝑖 (𝑧∗,𝑘)

,

𝑟
∗

∑

𝑖=1

ℎ∗,𝑖 (𝑧∗,𝑘) = 1,

ℎ∗,𝑖 (𝑧∗,𝑘) ≥ 0

(13)

with 𝑧∗,𝑘 = [𝑧∗,1,𝑘 𝑧∗,2,𝑘 ⋅ ⋅ ⋅ 𝑧∗,𝑝
∗
,𝑘] as a function of 𝑥𝑘

and/or 𝑤𝑘, 𝑖 = 1, . . . , 𝑟∗ and 𝑗 = 1, . . . , 𝑝.
The discrete-time fuzzy output regulation problem consists

of finding a controller 𝑢𝑘 = 𝛼(𝑥𝑘, 𝑤𝑘), such that the closed-
loop system with no external signal

𝑥𝑘+1 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝛼 (𝑥𝑘, 0)} (14)

has an asymptotically stable equilibrium point.
The solution of system (12) satisfies

lim
𝑘→∞

𝑒𝑘 = 0. (15)

In order to achieve the synchronization of chaotic systems
described by a T-S discrete-time fuzzy model it is necessary
to fulfill (7) [27, 28]. Then

𝜋 (𝑠 (𝑤𝑘))

=

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝜋 (𝑤𝑘) + 𝐵𝑖𝛾 (𝑤𝑘) + 𝑃𝑖𝑤𝑘} ,

(16)

0 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) 𝐶𝑖𝜋 (𝑤𝑘) −

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑄𝑖𝑤𝑘, (17)
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where 𝜋(𝑤𝑘) is the zero error steady-state manifold which
becomes invariant by the effect of the steady-state input
𝛾(𝑤𝑘).

Assuming the mappings 𝜋(𝑤𝑘) and 𝛾(𝑤𝑘) as

�̃� (𝑤𝑘) =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑖 (𝑧2,𝑘)Π𝑖,𝑗𝑤𝑘, (18)

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑖 (𝑧2,𝑘) Γ𝑖,𝑗𝑤𝑘, (19)

respectively, withΠ𝑖,𝑗 and Γ𝑖,𝑗 as a solution of 𝑟1 ⋅ 𝑟2 lineal local
problems,

Π𝑖𝑗𝑆𝑗 = 𝐴 𝑖Π𝑖𝑗 + 𝐵𝑖Γ𝑖𝑗 + 𝑃𝑖, (20)

0 = 𝐶𝑖Π𝑖,𝑗 − 𝑄𝑖, (21)

for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2, the following control law
can be obtained [20, 22, 23]:

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)

⋅ 𝐾𝑖
[

[

𝑥𝑘 −

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘)Π𝑖𝑗𝑤𝑘
]

]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(22)

However, by substitution of 𝜋(𝑤𝑘) and 𝛾(𝑤𝑘) in (16) and (17)
and considering

(1) the steady-state zero error manifold 𝜋(𝑤𝑘) = Π𝑤𝑘,
that is, Π𝑖𝑗 = Π,

(2) the input matrices 𝐵𝑖 = 𝐵 and/or Γ𝑖𝑗 = Γ,

for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2, the following control
signal 𝑢𝑘 emerges:

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)𝐾𝑖 [𝑥𝑘 − Π𝑤𝑘]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(23)

On the other hand, the existence of a fuzzy stabilizer of the
form 𝑢 = ∑

𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘)𝐾𝑖𝑥𝑘, ensuring that the tracking error

converges asymptotically to zero, can be obtained from the
Parallel Distributed Compensator (PDC) [29, 30] or another
stability analysis for T-S fuzzy models such as [31].

Remark 2. The control signal in (22) is given by the substitu-
tion of (18) and (19) in (16) and (17); the proposed controller
provides the following advantages:

(1) All parameters included in the controller are known;
this includes the membership functions of the plant
and exosystem,which arewell defined in theT-S fuzzy
model.

On the other hand, Π𝑖𝑗 and Γ𝑖𝑗 come directly from
solving of 𝑟1 ∗ 𝑟2 local linear problems equivalent
to solving the Francis equations; such problems can
be easily solved by using programs like Matlab or
Mathematica.

(2) In the case when the 𝑟1 ∗ 𝑟2 local linear problems lead
to Π𝑖𝑗 ̸= Π, then at least a bounded error is ensured.

(3) It is clear that when Π𝑖𝑗 = Π, the term
∑
𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘) ∑

𝑟
2

𝑗=1
ℎ2,𝑗(𝑧2,𝑘)Π𝑖𝑗𝑤𝑘 changes to Π𝑤𝑘

leading to controller defined in (23).
(4) The following condition: the input matrices 𝐵𝑖 =

𝐵 and/or Γ𝑖𝑗 = Γ avoids the crossed terms in the
solutions of (16) and (17), allowing the exact fuzzy
output regulation.

(5) The proposed controller can be seen as a simple
substitution of the aforementioned elements.

On the other hand, the following disadvantages can
appear:

(1) If the condition is that the steady-state zero error
manifold 𝜋(𝑤𝑘) ̸= Π𝑤𝑘, that is, Π𝑖𝑗 ̸= Π, then, it will
be necessary to adjust the local regulator by means of
new membership functions. Please refer to Section 3.

(2) As expected, the complexity of the controller
increases according to the number of local
subsystems.

The following theorem provides the conditions for the
existence of the exact fuzzy output regulator for a discrete-
time T-S fuzzy models.

Theorem 3. The exact fuzzy output regulation with full
information of systems defined as (12) is solvable if (a) there
exists the same zero error steady-state manifold 𝜋(𝑤𝑘) = Π;
(b) there exist 𝑢𝑘 = ∑

𝑟
1

𝑖=1
ℎ𝑖,𝑘(𝑧1,𝑘)𝐾𝑖𝑥𝑘 for the fuzzy system;

(c) the exosystem 𝜔𝑘+1 = 𝑠(𝜔𝑘) is Poisson stable, and the input
matrices for all subsystems 𝐵𝑖 are equal. Moreover, the Exact
Output Fuzzy Regulation Problem is solvable by the controller

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)𝐾𝑖 [𝑥𝑘 − Π𝑤𝑘]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(24)

Proof. From the previous analysis, the existence of mappings
𝜋(𝑤𝑘) = Π𝑤𝑘 and 𝛾(𝑤𝑘) = ∑

𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘) ∑

𝑟
2

𝑗=1
ℎ2,𝑗(𝑧2,𝑘)Γ𝑖𝑗𝑤𝑘

is guaranteed when the input matrices for all subsystems 𝐵𝑖
are equal, and the solution of 𝑟1 ⋅ 𝑟2 lineal local problems is

Π𝑖𝑗𝑆𝑗 = 𝐴 𝑖Π𝑖𝑗 + 𝐵𝑖Γ𝑖𝑗 + 𝑃𝑖,

0 = 𝐶𝑖Π𝑖,𝑗 − 𝑄𝑖,

(25)

leading to Π𝑖𝑗 = Π for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2.
On the other hand, the inclusion of condition (b) has been

thoroughly discussed in [22, 23, 27, 28, 31–33], and it implies
the existence of a fuzzy stabilizer.
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Condition (c) ensures the nonexistence of crossed terms
in the local Francis equations. Finally, condition (d) is intro-
duced to avoid the fact that the reference signal converges to
zero, which would turn the regulation problem into a simple
stability problem. The rest of the proof follows directly from
the previous analysis.

3. The Output Regulator by means of
Local Regulators and Tuning of New
Membership Functions

In this section, a discrete-time T-S fuzzy model is considered
to solve the exact output regulation on the basis of linear
local controllers. So, the main goal is to find a complete
regulator based on the fuzzy summation of local regulators
using adequate membership functions, such that the result
given in Theorem 3 can be relaxed [34]. These membership
functions are not necessarily the same included in the fuzzy
plant, as is described in (19). Thus, the steady-state input
𝛾(𝑤𝑘) can be defined as

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

𝜇2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘, (26)

where 𝜇1,𝑖(𝑧1,𝑘) and 𝜇2,𝑗(𝑧2,𝑘) are new membership func-
tions, such that the fuzzy output regulator obtained from
local regulators provides the exact fuzzy output regulation.
This approach requires the computation of the linear local
controllers and the computation of the new membership
functions. In this work, such functions are represented by the
following expression:

𝜇1,𝑖 (𝑥𝑘) =
1

1 +

(𝑥𝑘 − 𝑐𝑖) /𝑎𝑖



2𝑏
𝑖

, ∀𝑖 = 1, . . . , 𝑟1, (27)

𝜇2,𝑗 (𝑤𝑘) =
1

1 +

(𝑤𝑘 − 𝑐𝑗) /𝑎𝑗



2𝑏
𝑗

, ∀𝑗 = 1, . . . , 𝑟2. (28)

𝜇1,𝑖 and 𝜇2,𝑗 are well known as generalized bell-shaped mem-
bership functions and the parameters 𝑎𝑖, 𝑎𝑗, 𝑏𝑖, 𝑏𝑗, 𝑐𝑖, and
𝑐𝑗 determine the form, center, and amplitude, respectively.
Therefore, from (22), the input can be defined by

𝑢𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑥𝑘) 𝑘𝑖 {𝑥𝑘 − 𝜋 (𝑤𝑘)}

+

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑤𝑘)

𝑟
2

∑

𝑗=1

𝜇2,𝑗 (𝑤𝑘) Γ𝑖𝑗𝑤𝑘,

(29)

because 𝑧∗,𝑘 is a function of𝑥𝑘 and in steady-state𝑥𝑘 = 𝜋(𝑤𝑘).
Then, for tuning themembership functions (27) and (28),

the parameters 𝑎𝑖 and 𝑎𝑗will be optimized bymeans of genetic
algorithms, ensuring the correct interpolation between the
local linear regulators. The foregoing can be summarized in
the control scheme depicted in Figure 1.

To this end, the following algorithm should be carried out.

Algorithm 4. Main steps to take into account to solve the
tuning membership functions problem are as follows [35]:

(1) Start with a randomly generated population of nl-bit
chromosomes (candidate solutions to a problem).The
traditional representation is binary as in Figure 2.
A binary string is called “chromosome.” Each position
therein is called “gene” and the value in this position
is named “allele.”

(2) Calculate the fitness 𝑓(𝑥) of each chromosome 𝑥 in
the population.

(3) Repeat the following steps until n offspring have been
created:

(i) Select a pair of parent chromosomes from the
current population, the probability of selection
being an increasing function of fitness. Selection
is done “with replacement,” meaning that the
same chromosome can be selected more than
once to become a parent.

(ii) With probability 𝑝𝑐 (the “crossover probabil-
ity” or “crossover rate”), crossover the pair at
a randomly chosen point (chosen with uni-
form probability) to form two offspring. If no
crossover takes place, form two offspring that
are exact copies of their respective parents.
(Note that here the crossover rate is defined to be
the probability that two parents will cross over
in a single point.)

(iii) Mutate the two offspring at each locus with
probability 𝑝𝑚 (the mutation probability or
mutation rate), and place the resulting chromo-
somes in the new population.

(4) Replace the current population with the new popula-
tion.

(5) Go to step (2).

This process ends when the fitness function reaches a
value less than or equal to a predefined bound, or when the
maximum number of iterations is reached. Each iteration of
this process is called a generation.

In order to apply a genetic algorithm it requires the
following five basic components:

(i) A representation of the potential solutions to the
problem.

(ii) One way to create an initial population of possible
solutions (typically a random process).

(iii) An evaluation function to play the role of the environ-
ment, classifying the solutions in terms of its “fitness.”

(iv) Genetic operators that alter the composition of the
chromosomes that will be produced for generations.

(v) Values for the various parameters used by the genetic
algorithm (population size, crossover probability,
mutation probability, maximum number of genera-
tions, etc.).



6 Mathematical Problems in Engineering

Fuzzy 
exosystemFuzzy plant

Fuzzy controller 

Regulator

Stabilizer 

Bell-shaped mf ’s

e
Genetic algorithm

uk yk wk

xk

+

+

+

−

ai bi ci

aj bj cj

(ai, aj)

yref,k

r1

∑
i=1

h1,i(xk)ki{ {xk − 𝜋(wk)

r1

∑
i=1

𝜇1,i(wk)
r2

∑
j=1

𝜇2,j(wk)Γijwk

𝜇1,i(wk) =
1

1 + (xk − ci) ai i2b| |

𝜇2,j(wk) =
1

1 + (wk − cj) aj 2bj| |

/

/

Figure 1: Control scheme for fuzzy output regulation and genetic algorithms.
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Figure 2: Binary string commonly used in genetic algorithms.

The aforementioned can be summarized by the flowchart
depicted in Figure 3.

4. Synchronization of T-S Discrete-Time
Fuzzy Systems

The stabilization and synchronization of chaotic systems are
two of the most challenging and stimulating problems due
to their capabilities of describing a great variety of very
interesting phenomena in physics, biology, chemistry, and
engineering, to name a few. In this section, the regulation
theory is used to synchronize chaotic systems described by T-
S discrete-time fuzzy models. Both the drive system and the
response system are modeled by the same attractor (Rössler’s
equation) with the difference that response system can be
influenced by an input signal. This type of synchronization
is known as Complete Synchronization (CS) [36].

Considering two Rössler chaotic oscillators as �̇� = 𝑓(𝑤)

(drive system) and �̇� = 𝑓(𝑥, 𝑤, 𝑢) (response system), the
ordinary differential equations of these systems are

�̇�1 = − (𝑤2 + 𝑤3) ,

�̇�2 = 𝑤1 + 𝑎𝑤2,

�̇�3 = 𝑏𝑤1 − (𝑐 − 𝑤1) 𝑤3,

Rössler attractor

Drive system,

�̇�1 = − (𝑥2 + 𝑥3) ,

�̇�2 = 𝑥1 + 𝑎𝑥2,

�̇�3 = 𝑏𝑥1 − (𝑐 − 𝑥1) 𝑥3 + 𝑢,

Rössler attractor

Response system.

(30)

According to [15], these systems can be exactly repre-
sented by means of the following two-rule T-S fuzzy models
when 𝑎, 𝑏 and 𝑐 are constants and 𝑥1 ∈ [𝑐 − 𝑑, 𝑐 + 𝑑] with
𝑑 > 0. Thus

�̇� (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) {𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡)} ,

�̇� (𝑡) =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑆𝑖𝑤 (𝑡) ,

𝑒 (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) 𝐶𝑖𝑥 (𝑡)

−

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑄𝑖𝑤 (𝑡) ,

(31)
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Figure 3: Flowchart of genetic algorithms.

where

𝐴1 =
[
[

[

0 −1 −1

1 𝑎 0

𝑏 0 −𝑑

]
]

]

,

𝑆1 =
[
[

[

0 −1 −1

1 𝑎𝑤 0

𝑏𝑤 0 −𝑑𝑤

]
]

]

,

𝐴2 =
[
[

[

0 −1 −1

1 𝑎 0

𝑏 0 𝑑

]
]

]

,

𝑆2 =
[
[

[

0 −1 −1

1 𝑎𝑤 0

𝑏𝑤 0 𝑑𝑤

]
]

]

,

𝐵1 = 𝐵2 = [0 0 1]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(32)

Besides, the membership functions for such systems are

ℎ1,1 (𝑥1) =
1

2
(1 +

𝑐 − 𝑥1

𝑑
) ,

ℎ1,2 (𝑥1) =
1

2
(1 −

𝑐 − 𝑥1

𝑑
) ,

ℎ2,1 (𝑤1) =
1

2
(1 +

𝑐 − 𝑤1

𝑑
) ,

ℎ2,2 (𝑤1) =
1

2
(1 −

𝑐 − 𝑤1

𝑑
) .

(33)

Now, the continuous-time T-S fuzzy model can be converted
to the following discrete counterpart by using [1]

𝐺𝑖 = exp (𝐴 𝑖𝑇𝑠) = 𝐼 + 𝐴 𝑖𝑇𝑠 + 𝐴
2

𝑖

𝑇
2

𝑠

2!
+ ⋅ ⋅ ⋅ ,

𝐻𝑖 = ∫

𝑇
𝑠

0

exp (𝐴 𝑖𝜏) 𝐵i𝑑𝜏 = (𝐺𝑖 − 𝐼)𝐴
−1

𝑖
𝐵𝑖.

(34)

Therefore, the discrete-time T-S fuzzy model is given by

𝑥𝑘+1 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) 𝐶𝑖𝑥𝑘 −

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑄𝑖𝑤𝑘,

(35)

where

𝐴1 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑇𝑠 + 1 0

𝑏𝑇𝑠 0 1 − 𝑑𝑇𝑠

]
]

]

,

𝑆1 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑤𝑇𝑠 + 1 0

𝑏𝑤𝑇𝑠 0 1 − 𝑑𝑤𝑇𝑠

]
]

]

,

𝐴2 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑇𝑠 + 1 0

𝑏𝑇𝑠 0 𝑇𝑠𝑑 + 1

]
]

]

,

𝑆2 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑤𝑇𝑠 + 1 0

𝑏𝑤𝑇𝑠 0 𝑑𝑤𝑇𝑠 + 1

]
]

]

,

𝐵1 = 𝐵2 = [0 0 𝑇𝑠]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(36)
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Figure 4: (a) Continuous T-S fuzzy model for a Rössler attractor and (b) discrete T-S fuzzy model for a Rössler attractor.

Besides, the membership functions for the T-S discrete-time
fuzzy model are

ℎ1,1 (𝑥1,𝑘) =
1

2
(1 +

𝑐 − 𝑥1,𝑘

𝑑
) ,

ℎ1,2 (𝑥1,𝑘) =
1

2
(1 +

𝑐 − 𝑥1,𝑘

𝑑
) ,

ℎ1,2 (𝑤1,𝑘) =
1

2
(1 +

𝑐𝑤 − 𝑤1,𝑘

𝑑𝑤

) ,

ℎ2,2 (𝑤1,𝑘) =
1

2
(1 +

𝑐𝑤 − 𝑤1,𝑘

𝑑𝑤

) ,

(37)

with 𝑎 = 0.34, 𝑏 = 0.4, 𝑐 = 4.5, 𝑑 = 10, 𝑎𝑤 = 0.34, 𝑏𝑤 = 0.4,
𝑐𝑤 = 4.5, 𝑑𝑤 = 10, and 𝑇𝑠 as the sampling time.

Figure 4(b) shows the trajectory of the discrete-time
version of the continuous-time T-S fuzzy Rössler model, with
𝑇𝑠 = 0.00357. It can be seen that the overall shape of the
trajectory is similar to that in Figure 4(a).

Then, by using the approach derived in this work and
from (20) and (17), the zero error steady-state manifold
𝜋(𝑤𝑘) = Π is

Π =
[
[

[

1 0 0

0 1 0

0 0 1

]
]

]

. (38)

Γ𝑖𝑗 are

Γ1,1 = [0 0 0] ,

Γ1,2 = [0 0 20] ,

Γ2,1 = [0 0 −20] ,

Γ2,2 = [0 0 0] .

(39)

On the other hand, the fuzzy stabilizer for this system is
computed by means of Ackermann’s formula, and by locating
the eigenvalues at

(1) subsystem [0.9980+0.0062𝑖 0.9980−0.0062𝑖 0.9982],

(2) subsystem [0.9980+0.0062𝑖 0.9980−0.0062𝑖 0.9982],

the following gains are obtained:

𝐾1 = [3.1629 0.9257 8.0354] ,

𝐾2 = [3.1629 0.9257 −11.9646] .

(40)

Remark 5. It is important to verify that the fuzzy feedback
stabilizer is valid for the overall T-S fuzzy model, by checking
that the eigenvalues of the interpolation regions are inside the
unit circle also [31].

Then, by setting the initial conditions as 𝑥1,𝑘 = 5, 𝑥2,𝑘 = 0,
𝑥3,𝑘 = 6, 𝑤1,𝑘 = 1, 𝑤2,𝑘 = 0, and 𝑤1,𝑘 = 0 and by applying
the controller (23), the results depicted in Figures 5 and 6 are
obtained.

The tracking for the drive states and response states is
drawn in Figure 7.

4.1. Generalized Synchronization. The discrete-time fuzzy
synchronization problem is solvable when the conditions of
Theorem 3 are fulfilled. However, when two chaotic systems
are different, fulfilling these conditions is not so common.
This is because the local regulators have different zero error
steady-state manifolds, in general [20]. From the regulation
point of view, the problem can be seen as finding, if it is
possible, a transformation 𝜋 : 𝑤𝑘 → 𝑥𝑘 regarding mapping
the trajectories of the drive system into the ones of the
response systems; that is, 𝑥𝑘 = 𝜋(𝑤𝑘); this is known as
Generalized Synchronization [37, 38] and satisfies

lim
𝑘→∞


𝑥𝑘 (𝑥 (0)) − 𝑤𝑘 (𝑤 (0))


= 0, (41)

with 𝑥(0) and 𝑤(0) as initial conditions.
Now, consider the chaotic drive system as �̇� = 𝑓(𝑤) and

�̇� = 𝑓(𝑥, 𝑤, 𝑢) as the response system.
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The equations for the aforementioned systems are
described as follows:

�̇�1 = 𝛼 (𝑤2 − 𝑤1) ,

�̇�2 = 𝑟𝑤1 − 𝑤2 − 𝑤1𝑤3,

�̇�3 = 𝑤1𝑤2 − 𝛽𝑤3,

Lorenz Attractor

Drive system
�̇�1 = 𝑎 (𝑥2 − 𝑥1) ,

�̇�2 = (𝑐 − 𝑎) 𝑥1 − 𝑥1𝑥3 + 𝑐𝑥2 + 𝑢,

�̇�3 = 𝑥1𝑥2 − 𝑏𝑥3,

Chen’s attractor

Response system

(42)

As before these systems can be exactly represented by
means of the following two-rule continuous-time T-S fuzzy
models when 𝑥1 ∈ [𝑋min , 𝑋max ] and 𝑤1 ∈ [𝑀1,𝑀2].
Therefore,

�̇� (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) {𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡)} ,

�̇� (𝑡) =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑆𝑖𝑤 (𝑡) ,

𝑒 (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) 𝐶𝑖𝑥 (𝑡)

−

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑄𝑖𝑤 (𝑡) ,

(43)

where

𝐴1 =
[
[

[

−𝑎 𝑎 0

𝑐 − 𝑎 𝑐 −𝑋min

0 𝑋min −𝑏

]
]

]

,

𝑆1 =
[
[

[

−𝛼 𝛼 0

𝑟 −1 −𝑀1

0 𝑀1 −𝛽

]
]

]

,

𝐴2 =
[
[

[

−𝑎 𝑎 0

𝑐 − 𝑎 𝑐 −𝑋max

0 𝑋max −𝑏

]
]

]

,

𝑆2 =
[
[

[

−𝛼 𝛼 0

𝑟 −1 −𝑀2

0 𝑀2 −𝛽

]
]

]

,

𝐵1 = 𝐵2 = [0 1 0]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(44)

Then, by using (34), the discrete counterpart is obtained:

𝑥𝑘+1 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) 𝐶𝑖𝑥𝑘 −

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑄𝑖𝑤𝑘,

(45)

where

𝐴1 =
[
[

[

1 − 𝑎𝑇𝑠 𝑎𝑇𝑠 0

− (𝑎 − 𝑐) 𝑇𝑠 𝑐𝑇𝑠 + 1 −𝑋min𝑇𝑠

0 𝑇𝑠𝑋min 1 − 𝑏𝑇𝑠

]
]

]

,

𝑆1 =
[
[

[

1 − 𝑎𝑤𝑇𝑠 𝑎𝑤𝑇𝑠 0

𝑐𝑤𝑇𝑠 1 − 𝑇𝑠 −𝑀1𝑇𝑠

0 𝑀1𝑇𝑠 1 − 𝑏𝑤𝑇𝑠

]
]

]

,

𝐴2 =
[
[

[

1 − 𝑎𝑇𝑠 𝑎𝑇𝑠 0

− (𝑎 − 𝑐) 𝑇𝑠 𝑐𝑇𝑠 + 1 −𝑋max𝑇𝑠

0 𝑇𝑠𝑋max 1 + 𝑏𝑇𝑠

]
]

]

,

𝑆2 =
[
[

[

1 − 𝑎𝑤𝑇𝑠 𝑎𝑤𝑇𝑠 0

𝑐𝑤𝑇𝑠 1 − 𝑇𝑠 −𝑀2𝑇𝑠

0 𝑀2𝑇𝑠 1 − 𝑏𝑤𝑇𝑠

]
]

]

,
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Figure 7: States of drive and response tracking for a Complete Synchronization.

𝐵1 = 𝐵2 = [0 𝑇𝑠 0]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] ,

(46)

with 𝑎 = 35, 𝑏 = 3, 𝑐 = 28, 𝑎𝑤 = 10, 𝑏𝑤 = 8/3, and
𝑐𝑤 = 28 and 𝑇𝑠 as the sampling time. Notice that, in this
case, the Generalized Synchronization problem consists of
the tracking of 𝑤1 by 𝑥1. This can be inferred by the form
of 𝐶𝑖 and 𝑄𝑖. The membership functions for this system are
defined as follows:

Plant Membership Functions

ℎ1,1 (𝑥1,𝑘) =

−𝑥1,𝑘 + 𝑋max

𝑋max − 𝑋min
,

ℎ1,2 (𝑥1,𝑘) =

𝑥1,𝑘 − 𝑋min

𝑋max − 𝑋min
.

(47)

Exosystem Membership Functions

ℎ2,1 (𝑤1,𝑘) =

−𝑤1,𝑘 +𝑀1

𝑀2 −𝑀1

,

ℎ2,2 (𝑤1,𝑘) =

𝑤1,𝑘 −𝑀2

𝑀2 −𝑀1

.

(48)

They are depicted in Figure 8.
Figures 9(a) and 9(b) show the behavior of the two

discrete-time T-S fuzzy models, with 𝑥(0) = [1 1 1]
𝑇 and

𝑤(0) = [1 0 0]
𝑇. Then, by using the approach derived in

this work and from (20) and (17), the zero error steady-state
manifold for each subsystem is

Π1,1 =
[
[

[

1 0 0

0.7143 0.2857 0

3.0041 −0.0143 1.2861

]
]

]

,

Π1,2 =
[
[

[

1 0 0

0.7143 0.2857 0

3.0041 −0.0143 −1.2861

]
]

]

,

Π2,1 =
[
[

[

1 0 0

0.7143 0.2857 0

−3.0041 0.0143 −1.2861

]
]

]

,

Π2,2 =
[
[

[

1 0 0

0.7143 0.2857 0

−3.0041 0.0143 1.2861

]
]

]

.

(49)

Γ𝑖𝑗 are

Γ1,1 = [−102.2648 −0.7142 −30.0121] ,

Γ1,2 = [−102.2648 −0.7142 30.0121] ,

Γ2,1 = [−102.2648 −0.7142 −30.0121] ,

Γ2,2 = [−102.2648 −0.7142 30.0121] .

(50)
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Figure 8: Membership functions for Generalized Synchronization.
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Figure 9: (a) Discrete-time T-S fuzzy model for a Chen attractor and (b) discrete T-S fuzzy model for a Lorenz attractor.
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Figure 10: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

On the other hand, the fuzzy stabilizer for this system is
computed by means of Ackermann’s formula, and by locating
the eigenvalues at

(1) subsystem [0.9596 0.9955 0.82],
(2) subsystem [0.9596 0.9955 0.82],

the following gains are obtained:

𝐾1 = [−14.3228 −214.9000 −19.6566] ,

𝐾2 = [−14.3228 −214.9000 19.6566] .

(51)

Notice that the stability is ensured in the fuzzy interpolation
region by these gains, for all 𝑡 ≥ 0.
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Figure 11: Tracking error 𝑒1,𝑘 signal for the Generalized Synchro-
nization of Chen-Lorenz discrete-time T-S fuzzy systems.

As can be readily observed, conditions of Theorem 3 are
not fulfilled because the zero error steady-state manifold is
not the same for the local regulators. However, the tracking
error can be bounded by using the controller defined in (22).
Figures 10–12 depicted the behavior of the controller (22)
with 𝑥(0) = [1 1 1]

𝑇 and 𝑤(0) = [1 0 0]
𝑇 as the initial

conditions.

4.2. Generalized Synchronization by Using Genetic Algorithms.
The main objective of integrating genetic algorithms is to
obtain values of the parameters (𝑎, 𝑏, and 𝑐) of the new
membership functions of the regulator and reducing, in this
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Figure 12: States of drive and response system for a Generalized Synchronization.

way, the tracking error. To this end, it is important to consider
the following:

(i) Consider the representation of the potential solutions
of the problem; the common representation is binary.

(ii) An initial population of possible solutions, in a
random process, is selected (population size affects
the efficiency and performance of GA). For this case,
a population size equal to 20 chromosomes is chosen.

(iii) A fitness function, which indicates how good or bad
a certain solution is, is defined. In this case the fitness
function is the mean square tracking error, given by
the following expression:

𝑒𝑠 =
1

2
(𝑥1,𝑘 − 𝑤1,𝑘)

2
. (52)

For the representation of possible solutions it is necessary
to know the variables to optimize; for this case it has 𝑎𝑖 and 𝑎𝑗
parameters for 𝑖 = 1, 2 and 𝑗 = 1, 2 defined in (27) and (28);
besides, 𝑏𝑖, 𝑏𝑗, 𝑐𝑖, and 𝑐𝑗 will be fixed with a constant value;
that is, 𝑏1 = 3, 𝑐1 = 30 for (27) considering 𝜇1,2 = 1 − 𝜇1,1;
𝑏1 = 3, 𝑐1 = 20 for (28) also considering 𝜇2,2 = 1 − 𝜇2,1. The
abovementioned are represented in Figure 13.

It is also important to know the interval value in which
the variable 𝑎 will be operating; for this case, such interval
is 𝑥1,𝑘 ∈ [−30 30]. Thus, the size of each variable, in bits,

and the chromosome length can be computed by using the
following expression [39]:

𝑆var = (int ↑) log
2
(limupper − limlower) 10

accurate
, (53)

where 𝑆var is the size of each variable in bits, the term (int ↑)
is the decimal integer value, and limupper = 30 and limlower =
−30with an accuracy in 3.Therefore, the variable size is equal
to 16 bits, but there are two variables, 𝑎1 and 𝑎2; thus the
chromosomes length is 32 bits. Therefore, the chromosomes
are represented in Figure 14.

The initial population is random binary. To assess each
individual in the objective function is needed to decode, in
this case, a real number. To this end, the following expression
is used:

Var = [Decval (
limupper − limlower

2
length(bit)

− 1
) + limlower] . (54)

Var is a decimal value (phenotype) for each binary chromo-
some (genotype), Decval is the decimal value for each binary
string, and length(bit) is equal to 16 bits.

In order to compute the individual aptitude is necessary
to introduce the value of each parameter in the bell-shaped
membership functions 𝜇1 and 𝜇2.The tracking error function
(52) disregards the nonoptimal solution and allows the
optimal performance by considering that 𝑥1,𝑘 tracks 𝑤1,𝑘. In
Table 1 the individual aptitude is depicted.
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Table 1: Individual aptitude.

Chromosome Binary string Decoded integer Fitness function
1 01011010001000100010111010101101 𝑓(−7.691493, −16.518837) 0.971109
2 11001011101111111110101000000111 𝑓(15.386557, 21.537530) 6.840302
3 10100011000010001110111101010111 𝑓(7.116228, 22.616648) 9.404465
4 01101110111100100011110001011000 𝑓(−3.463890, −13.742489) 0.096779
5 01111110110010001000111010000000 𝑓(−0.247166, 2.945754) 0.017387
6 01111110110010001000111010000000 𝑓(−2.282414, −24.456703) 12.438373
7 01110100110000110000011110011001 𝑓(−13.451286, 16.387121) 0.761323
8 00111101110001111101000010101100 𝑓(4.320043, −25.338247) 13.686271
9 10010101010001000000001101000010 𝑓(19.709377, 4.057404) 0.209690
10 10000010001011110001000101110111 𝑓(0.443946, −22.452399) 9.159322
11 00111100101000111011110011100001 𝑓(−13.682979, 12.366613) 0.000746
12 00001100011111011100101000101100 𝑓(−23.463279, 15.066789) 0.000895
13 10010110000010001001010001111101 𝑓(4.475563, 4.162142) 0.017576
14 10110011010110110100100101111010 𝑓(10.432136, −11.074846) 0.001021
15 01010011101010101111101011001101 𝑓(−9.005478, 24.944686) 13.030471
16 00100011011001100011000000001011 𝑓(−18.809583, −16.241123) 0.399280
17 10010001100100001111110100111101 𝑓(3.567834, 25.439811) 13.825474
18 10001011001010110100111011110001 𝑓(2.268925, −9.964782) 0.003840
19 01100000011011101100000001001011 𝑓(−6.412421, 13.060105) 0.039420
20 00001011110001010001010011000101 𝑓(−23.609277, −21.781125) 5.130460
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Figure 13: Initial membership functions for the proposed fuzzy regulator tuned by GAs.
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Figure 14: Individual binary representation.
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Each fitness function value is converted into a set point or
fitness value. To this end, the following expression is used:

fitnessval = 𝐹 (⋆) − 𝐹min, (55)

where 𝐹(⋆) is the fitness function value and 𝐹min is the
minimum fitness function value.

The two chromosomes with better fitness (elite chromo-
somes) can live and produce offspring in the next generation.
There are manymethods to select a pair of chromosomes; the
most popular one is named proportional selection method:

(a) Calculate the total fitness value

fitness𝑇 =
20

∑

𝑖=1

fitness (𝑖) . (56)

(b) Compute the probability 𝑃𝑖 for each chromosome

𝑃𝑖 =
fitness (𝑖)
fitness𝑇

. (57)

(c) Calculate the cumulative probability for each chro-
mosome

𝑄𝑘 =

𝑖

∑

𝑘=0

𝑃𝑘. (58)

The total fitness value fitness𝑇 is equal to 86.03420.
The probabilities 𝑃𝑖 and 𝑄𝑘 are shown in Table 2.

(d) Generate a random number 𝑟 in the range [0, 1].
(e) If 𝑄𝑖 − 1 < 𝑟 ≤ 𝑄𝑖, then select the chromosome to be

the one of the parents.
(f) Repeat (d) and (e) to obtain the other parent.

Apply crossover operation on the selected pair, if they
have been chosen for crossover (based on probability of
crossover 𝑝𝑐 = 1.0). The most applied crossover operation
is single point crossover. Based on the probability of bit
mutation 𝑝𝑚 = 0.01, flip the correspondent bit if selected
for mutation. At this point, the process of producing a pair
of offspring from two selected parents is finished.

The elite chromosomes of the previous population are not
subject to mutation.

In the following simulations the states 𝑥1,𝑘, control
signal 𝑢𝑘, and tracking error 𝑒1,𝑘 depicted in Figures 16–18,
respectively, are obtained after applying (29) and by replacing
the new membership functions adjusted by GAs. The final
membership functions after tuning the form parameter by
means of GA are depicted in Figure 15. It can be readily
observed that these new membership functions are different
from the original ones (see Figure 13). Notice that, in this
example, the tracking error (Figure 18) is less than the error
obtained by using the approach discussed in Section 4.
This is due to the new membership functions which allow
reducing considerably the tracking error. This suggests that
the approach presented in this work may be improved by
tuning the parameters of center and amplitude in the new
membership functions; however this study is not completed
yet.

Table 2: Individual aptitude.

Chromosome 𝑃𝑖 𝑄𝑘

1 0.011 0.011
2 0.080 0.091
3 0.109 0.200
4 0.001 0.201
5 0.000 0.201
6 0.145 0.346
7 0.009 0.355
8 0.159 0.514
9 0.002 0.516
10 0.106 0.623
11 0.000 0.623
12 0.000 0.623
13 0.000 0.623
14 0.000 0.623
15 0.151 0.775
16 0.005 0.779
17 0.161 0.940
18 0.000 0.940
19 0.000 0.940
20 0.060 1.000

4.3. Pseudofuzzy Generalized Synchronization by Using GAs.
In this section theGeneralized Synchronization by usingGAs
and linear local regulator design will be addressed. However,
the crossed terms within the local regulators are arbitrarily
removed from the design process.Thus, the steady-state input
𝛾(𝑤𝑘) can be defined as

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑧1,𝑘) Γ𝑖𝑖𝑤𝑘, (59)

where 𝜇1,𝑖(𝑧1,𝑘) are new membership functions, such that
the fuzzy output regulator obtained from local regulators
provides the exact fuzzy output regulation. This approach
requires the computation of the linear local controllers and
the computation of the new membership functions; such
functions are represented by (27) and (28).Therefore the final
control system is defined by

𝑢𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑥𝑘) 𝑘𝑖 {𝑥𝑘 − 𝜋 (𝑤𝑘)} +

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑤𝑘) Γ𝑖𝑖𝑤𝑘, (60)

because 𝑧∗,𝑘 is a function of𝑥𝑘 and in steady-state𝑥𝑘 = 𝜋(𝑤𝑘).
For this case the initial membership functions proposed

are shown in Figure 19. As it can be seen, these membership
functions are not properly fuzzy because they do not fulfill the
convex sum; that is,∑𝑟1

𝑖=1
𝜇𝑖(𝑤𝑘) ̸= 0. Even so, these functions

will be adjusted by GAs in order to ensure the output
regulation by using input (60). The following simulation
provides a better behavior in the Lorenz-Chen discrete-time
fuzzy system by using different membership function and
tuning by GAs. Such results are depicted in Figures 20–22.
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Figure 15: Final membership functions for the proposed fuzzy regulator tuned by GAs.
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Figure 16: States 𝑥1,𝑘 and 𝑤1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.
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Figure 17: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

Notice that the final membership function depicted in
Figure 23 is different from the initial proposed in Figure 19
and also notice that the sum of these new interpolation
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Figure 18: Tracking error 𝑒1,𝑘 signal for the Generalized Synchro-
nization of Chen-Lorenz discrete-time T-S fuzzy systems.

functions is not equal to one. For that reason this approach
is called Pseudofuzzy Generalized Synchronization.

5. Conclusions

A fuzzy output regulator for discrete-time systems, based on
the combination of linear regulators combined by different
membership functions, has been presented. Synchronization
of discrete-time chaos attractors can be possible; by means
of fuzzy output regulation, sufficient conditions for the
controller are given. However, when the conditions can not
be fulfilled, new membership functions in the regulator are
included; these ones are optimized by genetic algorithms.
The main advantage is that membership functions, which
allow the proper combination of the local regulators, can
be easily obtained by means of GAs. As a consequence, the
presented result allows a very precise synchronization of
chaotic systems described by T-S discrete-time fuzzy models
on the basis of local regulators.
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Figure 19: Initial membership functions for the pseudofuzzy regu-
lator tuned by GAs.
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Figure 20: States 𝑥1,𝑘 and 𝑤1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.
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Figure 21: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

Complete and Generalized Synchronization are used to
illustrate the applicability of the proposed approach. Besides,
the method proposed in this work avoids the disadvantage
of constructing an exact fuzzy regulator based on overall T-S
fuzzy system which may result to be very large. Instead, the
given approach offers a simple way to design the complete
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Figure 22: Tracking error 𝑒1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.
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Figure 23: Final interpolation functions for the pseudofuzzy regu-
lator tuned by GAs.

regulator based on local regulators but with membership
functions optimized by soft computing.
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and by Instituto Politécnico Nacional (IPN) through research
Projects 20150487 and 20150794 and Scholarships COFAA,
EDI, and BEIFI.

References

[1] Z. Li and G. Chen, Eds., Integration of Fuzzy Logic and Chaos
Theory, vol. 187, Springer, Berlin, Germany, 2006.



Mathematical Problems in Engineering 17

[2] B. Wang, H. Cao, Y. Wang, and D. Zhu, “Linear matrix
inequality based fuzzy synchronization for fractional order
chaos,”Mathematical Problems in Engineering, vol. 2015, Article
ID 128580, 14 pages, 2015.

[3] I. Rechenberg,Optimization of technical systems after the princi-
ples of biological evolution [Ph.D. thesis], Fromman-Holzboog,
Stuttgart, Germany, 1971.

[4] H.-P. Schwefel, Numerical Optimization of Computer Models,
John Wiley & Sons, New York, NY, USA, 1981.

[5] H. Bremermann, The Evolution of Intelligence: The Nervous
System as aModel of Its Environment, University ofWashington,
Department of Mathematics, 1958.

[6] J. H. Holland, “Outline for a logical theory of adaptive systems,”
Journal of the ACM, vol. 9, no. 3, pp. 297–314, 1962.

[7] J. H. Holland,Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, Mass, USA, 1992.

[8] D. Fogel and R. Anderson, “Revisiting Bremermann’s genetic
algorithm. I. Simultaneous mutation of all parameters,” in
Proceedings of the Congress on Evolutionary Computation, vol.
2, pp. 1204–1209, La Jolla, Calif, USA, 2000.

[9] I. Rechenberg, “Cybernetic solution path of an experimental
problem,” in Royal Aircraft Establishment Translation No. 1122,
B. F. Toms, Ed., Ministry of Aviation, Royal Aircraft Establish-
ment, Farnborough Hants, UK, 1965.

[10] C. Hugenii, “Horologium oscillatorium (parisiis, France, 1973),”
Tech. Rep., Iowa State University Press, Ames, Iowa, 1986,
(English translation: The pendulum clock).

[11] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[12] K. M. Cuomo and A. V. Oppenheim, “Circuit implementation
of synchronized chaos with applications to communications,”
Physical Review Letters, vol. 71, no. 1, pp. 65–68, 1993.

[13] M.-L. Hung and H.-T. Yau, “Circuit implementation and syn-
chronization control of chaotic horizontal platform systems by
wireless sensors,” Mathematical Problems in Engineering, vol.
2013, Article ID 903584, 6 pages, 2013.
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Machine failure modes are presenting a major burden to the operator, the plant, and the enterprise causing significant downtime,
labor cost, and reduced revenue. New technologies are emerging over the past years to monitor the machine’s performance, detect
and isolate incipient failures or faults, and take appropriate actions to mitigate such detrimental events. This paper addresses the
development and application of novel Prognostics and Health Management (PHM) technologies to a prototype machining process
(a screw-tightening machine). The enabling technologies are built upon a series of tasks starting with failure analysis, testing, and
data processing aimed to extract useful features or condition indicators from raw data, a symbolic regression modeling framework,
and a Bayesian estimation method called particle filtering to predict the feature state estimate accurately. The detection scheme
declares the fault of a machine critical component with user specified accuracy or confidence and given false alarm rate while the
prediction algorithm estimates accurately the remaining useful life of the failing component. Simulation results support the efficacy
of the approach and match well the experimental data.

1. Introduction

Prognosis and Health Management (PHM) has emerged
over recent years as significant technologies that are making
an impact on both military and commercial maintenance
practices. Automated machining processes are employed
extensively inmanufacturing. Screw-tighteningmachines are
critical assets of an automated machining process. This study
focuses on such a machining process with novel features
for automatic screw tightening in crucial manufacturing,
assembly, and other operations. Figure 1 shows a picture
of the equipment. Screw tightening is usually carried out
manually resulting in wasted time, operator mistakes, and
inconsistent applied torques. The automatic assembly line
requires, therefore, for improved performance an automatic
screw-tightening machine.

Themachine consists mainly of seven parts: feeder, screw
falling device, screw separating device, screwdriver, guiding
device, 3-axis motion platform, and a clamping device. The
function of the feeder is to arrange the screws in a line.

The operator places thousands of screws in the center of the
feeder. The screws are arranged in a row along the track of
the feeder via a vibration mechanism and arranged in a line
at the end of the track. The screws move along the track of
the feeder and, via gravity, they drop into the pipe one by
one and arranged in a line in the pipe. A screw separating
device picks one screw at a time and sent it to the head of
the screwdriver.The 3-axis motion platformmoves the screw
hole of the parts behind the head of the screwdriver.Then, the
screwdriver moves and tightens the screw.

2. Failure Analysis

Machine critical failure modes include the following: the
screws may pile up on the trail of the feeder, thus preventing
the screw separating device from separating the screws and
arranging them one at a time. The 3-axis motion platform
does not move to the precise location. The screwdriver is
unable to tighten the screw. Among several other failure
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Figure 1: Automated screw-tightening machine.

modes, the 3-axis motive platform not moving to its precise
location is the most serious one. In this case, the screw
cannot be tightened in the screw hole and the parts cannot be
connected correctly. The major reason for the 3-axis motive
platform not being able to move precisely is the presence of a
fault condition in bearings. Bearing fault/failure is deemed to
be critical, severe, and frequent and must be addressed if the
automated process will perform properly and expeditiously.

The overall architecture for the bearing health manage-
ment system is shown in Figure 2.Wewill describe in the next
section the function of each module of the architecture.

3. The Test Platform

In order to obtain test data, under normal and faulty
conditions, for the targeted bearings a test platform was
designed and built. Accelerated life testing is performed on
two rolling element bearings. The experimental data was
processed and appropriate features or condition indicators
(Cis) were extracted. The processed data combined with a
suitable model of the fault growth and a novel estimation
algorithm, called particle filtering, are used to implement the
diagnostic and prognostic routines.

3.1. Test Platform Design. The test platform consists of a
single-axis servomotor-driven module and a data acquisition
and analysis system. Figure 3 is the single-axis servomotor-
driven module. Figure 4 is the data acquisition system.

3.1.1. Single-Axis Servomotor-Driven Module. The single-axis
servomotor-driven module includes a 400w servo motor,
a coupling device, two bearings, two bearing-bases, a ball
screw, and a suitable electrical control system. The servomo-
tor is connected to the ball screw via the coupling. Both ends
of the ball screw are installed in the bearings. The bearings
are fixed in the bearing-housing.

3.1.2. Data Acquisition System. The data acquisition system
is composed of a 16-channel dynamic signal data acquisition
instrument (model: DH5902), a charge adapter, and two
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Figure 2: Prognosis and health management architecture for bear-
ing fault modes.

Figure 3: Single-axis servomotor-driven module.

vibration sensors (model: PCB356A32).The vibration sensors
are installed in a rack with a magnetic base. They acquire
the vibration signal and send it to the 16-channel dynamic
signal data acquisition instrument via the charge adapter.The
Industrial Control Computer (IPC) receives the data from the
16-channel dynamic signal data acquisition instrument via
wireless transmission.

3.1.3. Experimental Parameters. The servomotor has three
speeds: 500 r/min, 1000 r/min, and 1500 r/min. The sampling
frequency is 2.5 Kz, and the sampling period is 10 seconds.
Two bearings were tested. Each bearing is tested along the
𝑍 direction resulting in two test points for each speed and
each test point providing three entries; that is, there are 6 data
entries for each speed setting.

3.2. Fault Analysis. Rolling bearings are typically damaged
due to various causes, such as improper assembly, poor lubri-
cation, and moisture. Corrosion and overload may also lead
to premature bearing damage. If lubrication andmaintenance
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Figure 4: Data acquisition system.

procedures are not performed regularly over time, fatigue
spall and bearingwearmay occur.Themain failuremodes are
fatigue spall, wear, plastic deformation, corrosion, fracture,
gluing, cage damage, and so forth.

3.2.1. Fault Conditions. Among all the bearing faults, abra-
sion is one of the most common. Abrasion implies that
material is removed from themetal surface.The characteristic
feature for abrasion is a shallow trench, with a bright surface.
It is produced in rolling contact surface or guide surface.With
abrasion present, the bearing clearance increases.

3.2.2. Root-Cause Analysis. Bearing abrasion is due primarily
to two causes: insufficient bearing lubrication and small
particle penetration into the bearing resulting in material
removal from themetallic surface via sliding friction. Surface
wear is the result of the relative motion between rolling
track and rolling body when dust and other objects enter
the bearing surface resulting in increased bearing surface
roughness and reduced motion accuracy. The motion accu-
racy of the machine is also reduced increasing the machine’s
vibration and noise. For precision bearings, the amount of
wear determines the life of the bearing. On the other side,
there is also a kind of wear with slight vibration.

3.3. Fault Injection. In testing, faults are injected periodically
until the bearing reaches a failure condition and fault data
are recorded. The fault injection consists of the following
arrangement: a hole is drilled on the side of the bearing base
and a screw is tightened in the hole step by step. The screw
generates friction with the bearing surface resulting in an
abrasion fault mode.

4. Feature Extraction and Selection

As a bearing defect evolves, due to poor lubrication for exam-
ple, the faultmode excites a specific frequency associatedwith
the particular type of defect.The amplitude and time duration
of the defect frequency are generally good indicators of defect
severity.The increase of defect size usually increases the ratio
of impulse force to operational noise. The increase of defect
length also increases the impulse force duration. If the defect
area is large along the raceway turning direction, harmonics
of the frequencywill also imply an indication of the severity of
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Figure 5: Section signals in time domain.

Table 1: Four special features in frequency domain. (66.25 Hz has
the maximum energy.) [1].

50Hz 100Hz 150Hz 66.25Hz
Amplitude 𝑓

1
𝑓
3

𝑓
5

𝑓
7

Spectrum density 𝑓
2

𝑓
4

𝑓
6

𝑓
8

the defect present. Acquired vibration data are used to extract
appropriate features.

4.1. Feature Extraction. The vibration signal is converted
from the time to the frequency domain. Analysis shows
that the signal changes rapidly between 1700Hz and 1900Hz
with features extracted in this area. Several vibration signals
from bearings with different fault conditions are illustrated
in Figure 5. For each data set we cut the period with signal as
shown in Figure 5, the section between these two lines.

Frequency domain studies indicate when a bearing defect
exists with the defect exhibiting a signature in the frequency
spectra of the vibration signals. The signal is digitized in
a frequency region around the resonances of the structure
and such features as the energy, amplitude, and so forth are
extracted. The frequency spectra are shown in Figure 6.

We choose four frequency domain features, as is shown
in Table 1.

Time domain features include mean value (𝑓
9
) and stan-

dard deviation (𝑓
10
). We calculate the correlation coefficient

for each feature. Table 2 shows the results.

4.2. Feature Fusion. Within an automated health manage-
ment system, there are many areas where fusion technologies
play a contributing role. At the lowest level, data fusion can
be used to combine information from a multisensory data
array to validate signals and create features. At a higher level,
fusion may be used to combine features in intelligent ways so
as to obtain the best possible diagnosis information. Finally,
knowledge fusion is used to incorporate experience-based
information such as legacy failure rates or physical model
predictions with signal-based information.
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Table 2: Correlation coefficient.

𝑓
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𝑓
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𝑓
7

𝑓
8

𝑓
9

𝑓
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CC 0.7972 0.3797 0.7867 0.5902 0.2729 0.0327 0.0097 0.2957 0.2368 0.9347
Three features with the highest correlation coefficient are picked up: 𝑓1, 𝑓3, 𝑓10.

Table 3: Correlation coefficient.

Feature 𝑓
1

𝑓
3

𝑓
10

𝑓combined

CC 0.79 0.78 0.93 0.95
The combined feature has the best highest coefficient and performs better
than any individual feature.

Thus, we combine the features and get the combined
feature:

𝐹combined = 𝑓
0.29

1
⋅ 𝑓
0.18

3
⋅ 𝑓
2.01

10
. (1)

The combined correlation coefficient is 0.95. The combined
feature performance is shown in Figure 7.

4.3. Performance Comparison. We apply correlation coeffi-
cient as the performance metric and come up with Table 3.

5. Modeling

Reliable, high-fidelity fault growth models form the founda-
tion for accurate and robust detection and failure prediction.
A suitable modeling framework assists in the development,
testing, and evaluation of detection and prediction algo-
rithms. It may be employed to generate data for data-driven
methods to diagnostics/prognostics and test and validate
routines for data processing tool development, among others.
The flexibility provided by a simulation platform, housing
appropriate detection and progression models, is a unique
attribute in the study of how fault processes are initiated and
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Figure 7: Combined feature performance.

propagating so that corrective action can be taken before
a catastrophic event occurs. The objective of the modeling
effort is to develop, test, and evaluate novel fault initiation
and progression models that will assist in the design and
implementation of “smart” sensors and sensing modalities
for critical machine systems.

5.1. Modeling-Symbolic Regression. Fault detection and pre-
diction algorithms rely on data, a model of the degradation
process and an estimation method that, given the current
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Figure 8: Structure model of the platform.

state of the system, predicts its evolution over the next time
step. Such models are typically based on first principles while
others are built on the basis of data. We exploit in this effort
a modeling framework called symbolic regression. It is a type
of regression analysis that searches the space of mathematical
expressions to find the model that best fits a given dataset, in
terms of both accuracy and simplicity. No particular model is
provided as a starting point to the algorithm. Instead, initial
expressions are formed by randomly combining mathemati-
cal building blocks such as mathematical operators, analytic
functions, constants, and state variables. (Usually, a subset
of these primitives will be specified by the operator, but
that is not a requirement of the technique.) New equations
are then formed by combining previous ones, using genetic
programming. In linear regression, the dependent variable is
a linear combination of the parameters (but need not be linear
in the independent variables). Nonlinear symbolic regression
and other regression techniques incorporating uncertainty
are based on similar principles. The structure model of the
platform is shown in Figure 8.

The functionalmodel of the platform is shown in Figure 9.
During real time operation, model parameters are tuned

as new data is streaming in and an error between the
estimated state and the detected state is exploited in an
optimization scheme to arrive at the “best” model for further
prediction purposes. Eureqa is a useful tool to implement the
symbolic regression routine. Exploiting the test data, Eureqa
searches to find the model (both model structure and model
parameters) that best fit a given data set. We arrive at the
following parametric model:

Feature = 8.11 × 103 + 0.262𝑥3. (2)

𝑥 implies cycle times; here we use 𝑥 as time, 𝑡.
Figure 10(a) shows the result from the application of

Eureqa. Figure 10(b) shows a plot of (8.11 × 103 + 0.262𝑥3)
and the error as the process proceeds. Figure 10(c) shows the
accuracy versus complexity plot. By trading off accuracy for
complexity, the best model from the list generated by Eureqa
is (8.11 × 103 + 0.262𝑥3).

A sufficient data set is obtained by using the following
formula to enrich the data:

Feature = 𝑔 (𝑥 [𝑘]) + 𝑛 (0, 𝑆) , (3)

where 𝛿(𝑥) is the model fitted by regression, 𝑆 is the standard
deviation,𝑁 is the number of samples, and 𝑥 is a variable:

𝑆 =
√
∑
𝑁

𝑖=1
[1/𝑖 − 𝛿 (𝑥

𝑖
)]
2

𝑁 − 1
.

(4)

6. The Particle Filtering Framework for Fault
Diagnosis and Failure Prognosis

Particle filtering is an emerging and powerful methodology
for sequential signal processing based on the concepts of
Bayesian theory and Sequential Importance Sampling (SIS).
Particle filtering is very suitable for nonlinear systems or in
the presence of non-Gaussian process/observation noise. For
this approach, both diagnosis and prognosis rely upon esti-
mating the current value of a fault/degradation dimension, as
well as other important parameters, and use a set of observa-
tions (or measurements) for this purpose.This research team
has pioneered the introduction of particle filtering techniques
into fault diagnosis and failure prognosis [1, 2]. The team has
also demonstrated how these techniques can be combined
with traditional artificial intelligencemethods in a synergistic
way [3]. The success of this novel model-based approach
has been demonstrated in a number of diverse application
domains from rotorcraft critical components to electrical
systems, environmental control systems, and high power
amplifiers [4]. Figure 11 depicts the flow of the component
modules comprising the health management architecture.

The underlying principle of the methodology is the
approximation of the conditional state probability distribu-
tion 𝑝(𝑧

𝑘
/𝑥
𝑘
) using a swarm of points called particles and a

set of weights associated with them representing the discrete
probabilitymasses. Particles can be generated and recursively
updated easily given a nonlinear process model (which
describes the evolution in time of the system under analysis),
a measurement model, a set of available measurements 𝑧

1,𝑘
=

(𝑧
1
, . . . , 𝑧

𝑘
), and an initial estimation for the state PDF 𝑝(𝑥

0
),

as shown in the following equations:

𝑥
𝑘
= 𝑓
𝑘
(𝑥
𝑘−1
, 𝜔
𝑘
) ←→ 𝑝 (𝑥

𝑘
| 𝑥
𝑘−1
) ,

𝑧
𝑘
= ℎ
𝑘
(𝑥
𝑘
, V
𝑘
) ←→ 𝑝 (𝑧

𝑘
| 𝑥
𝑘
) .

(5)

As in every Bayesian estimation problem, the estimation pro-
cess can be achieved into two steps, namely, prediction and
filtering. On the one hand, prediction uses both knowledge
of the previous state estimation and the process model to
generate the a priori state PDF estimation for the next time
instant, as is shown in the following expression:

𝑝 (𝑥
𝑘
| 𝑧
1:𝑘−1
)

= ∫𝑝 (𝑥
𝑘
| 𝑥
𝑘−1
) 𝑝 (𝑥

𝑘−1
| 𝑧
1:𝑘−1
) 𝑑𝑥
𝑘−1
.

(6)



6 Mathematical Problems in Engineering

Test 
Place

Place Support

Provide ChangeTransfer
the motion motion motion type

Place

Test

Motor
box

CouplingsSevromotor Ball 
screw 

Platform 

Bearing 

Bearing 

Bearing 
box 

Bearing 
box 

Accelerometer 

Accelerometer 

Figure 9: Functional model of the platform.

On the other hand, the filtering step considers the current
observation 𝑧

𝑘
and the a priori state PDF to generate the a

posteriori state PDF by using Bayes’ formula:

𝑝 (𝑥
𝑘
| 𝑧
1:𝑘
) =
𝑝 (𝑧
𝑘
| 𝑥
𝑘
) 𝑝 (𝑥

𝑘
| 𝑧
1:𝑘−1
)

𝑝 (𝑧
𝑘
| 𝑧
1:𝑘−1
)

. (7)

The actual distributions then would be approximated by a
set of samples and the corresponding normalized importance
weights 𝑤𝑖

𝑘
= 𝑤
𝑘
(𝑥
𝑖

0:𝑘
) for the 𝑖th sample:

𝑝 (𝑥
𝑘
| 𝑧
1:𝑘
) ≈

𝑁

∑

𝑖=1

𝑤
𝑘
(𝑥
𝑖

0:𝑘
) 𝛿 (𝑥

0:𝑘
− 𝑥
𝑖

0:𝑘
) , (8)

where the update for the importance weights is given by

𝑤
𝑘
= 𝑤
𝑘−1

𝑝 (𝑧
𝑘
| 𝑥
𝑘
) 𝑃 (𝑥

𝑘
| 𝑥
𝑘−1
)

𝑃 (𝑥
𝑘
| 𝑥
0:𝑘−1
, 𝑧
1:𝑘
)
. (9)

Fault Diagnosis. The proposed particle-filter-based diagnosis
framework aims to accomplish the tasks of fault detection and
identification, under general assumptions of non-Gaussian
noise structures and nonlinearities in process dynamic mod-
els, using a reduced particle population to represent the
state pdf [5]. A compromise between model-based and data-
driven techniques is accomplished by the use of a particle
filter-based module built upon the nonlinear dynamic state
model:

𝑥
𝑑
(𝑡 + 1) = 𝑓

𝑏
(𝑥
𝑑
(𝑡) , 𝑛 (𝑡)) ,

𝑥
𝑐
(𝑡 + 1) = 𝑓

𝑡
(𝑥
𝑑
(𝑡) , 𝑥
𝑐
(𝑡) , 𝑤 (𝑡)) ,

Features (𝑡) = ℎ
𝑡
(𝑥
𝑑
(𝑡) , 𝑥
𝑐
(𝑡) , V (𝑡)) ,

(10)

where 𝑓
𝑏
, 𝑓
𝑡
and ℎ

𝑡
are nonlinear mappings, 𝑥

𝑑
(𝑡) is a

collection of Boolean states associated with the presence
of a particular operating condition in the system (normal
operation, fault type #1, #2, etc.), 𝑥

𝑐
(𝑡) is a set of continuous-

valued states that describe the evolution of the system given

those operating conditions, and 𝑤(𝑡) and V(𝑡) are non-
Gaussian distributions that characterize the process and
feature noise signals, respectively. At any given instant of
time, this framework provides an estimate of the probability
masses associated with each fault mode, as well as a pdf
estimate for meaningful physical variables in the system.
Once this information is available within the diagnostic
module, it is conveniently processed to generate proper fault
alarms and to inform about the statistical confidence of the
detection routine. Customer specifications are translated into
acceptable margins for types I and II errors in the detection
routine. The algorithm itself will indicate when type II error
(false negatives) has decreased to the desired level. Typical
results of the diagnostic algorithm are shown in Figure 12.

Failure Prognosis.The evolution in time of the fault dimension
may be described through the state equation:

𝑥
1
(𝑡 + 1) = 𝑥

1
(𝑡) + 𝑥

2
(𝑡) ⋅ 𝐹 (𝑥 (𝑡) , 𝑡, 𝑈) , 𝑤

1
(𝑡) ,

𝑥
2
(𝑡 + 1) = 𝑥

2
(𝑡) + 𝑤

2
(𝑡) ,

(11)

where 𝑥
1
(𝑡) is a state representing the fault dimension under

analysis, 𝑥
2
(𝑡) is a state associated with an unknown model

parameter, 𝑈 are external inputs to the system (load profile,
etc.), 𝐹(𝑥(𝑡), 𝑡, 𝑈) is a general time-varying nonlinear func-
tion, and 𝑤

1
(𝑡) and 𝑤

2
(𝑡) are white noises (not necessarily

Gaussian) [5].The nonlinear functionmay represent a model
based on first principles, a neural network, or even a fuzzy
system. Long term predictions are generated on the basis of
the current state pdf estimate, and using kernel functions to
reconstruct the state pdf estimate for future time instants,

𝑝 (𝑥
𝑡+𝑘
| 𝑥
𝑡+𝑘−1
)

≈

𝑁

∑

𝑖=1

𝑤
(𝑖)

𝑡+𝑘−1
𝐾(𝑥
𝑡+𝑘
− 𝐸 [𝑥

(𝑖)

𝑡+𝑘
| 𝑥
(𝑖)

𝑡+𝑘−1
]) ,

(12)

where 𝐾(⋅) is a kernel density function, which may cor-
respond to the process noise pdf, a Gaussian kernel, or a
rescaled version of the Epanechnikov kernel.
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Figure 10: Symbolic regression using Eureka.

Data

Extract
feature Feature.mat cftool ffmapping.

mat

Data 
synthesis

Synthfault.
mat

Diagnostics

Diagnosticre
sult.mat

Prognostics

Data file

Code

Figure 11: The health management architecture.



8 Mathematical Problems in Engineering

Particle
filter

4.5

4

3.5

3
50 100 150 200 250

50 100 150 200 250

1

0.5

0

4

2

0
2.5 3 3.5 4 4.5

×10−3

xd(t + 1) = fb[xd(t) + n(t)]

xc(t) = ft[xd(t), xc(t), 𝜔(t)]

Features(t) = ht[xd(t), xc(t), v(t)]

Figure 12: Typical results of the diagnostic algorithm.
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Figure 13: An integrated approach for fault diagnosis and failure prognosis.

7. Results

Using the machinery data, we determine its health status and
hence its current fault/failure condition. The main modules
of an integrated approach to fault diagnosis and failure
prognosis are shown in Figure 13. It includes experiment
design, fault classification, data collection, signal process,
feature extraction, algorithm development, and schedules
required maintenance.

The resulting predicted state pdf contains critical infor-
mation about the evolution of the fault dimension over time.
This information is condensed through the computation of
statistics (expectations, 90% confidence intervals), the Time-
of-Failure (ToF), or the Remaining Useful Life (RUL) of
the faulty system. Figure 16 depicts a typical prognostic
configuration.

Data from simulation as well as the experiments were
used to implement and evaluate the fault diagnosis and failure
prognosis routines. Performance metrics were applied at all
levels of the architecture (data analysis/feature extraction,
diagnosis, and prognosis).

7.1. Fault Predict. Using Eureka software and the model, we
fitted a curve shown in Figure 14. The points represent 27
features extracted in 27 cycles.The red line is the model fitted
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Figure 14: Feature extraction curve fitting.

by the feature. According to the deviation of the data itself,
the model was enriched and data were generated with noise
injected into the model. The data is shown in Figure 15. The
red line is the model and the blue curve is the generated data.

Figures 16 and 17 show the results obtained when the
proposed approach is applied to the problem of fault detec-
tion/prediction due to degradation of the bearing lubrication.
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In Figure 19, the feature value is depicted as a function of time.
It exhibits the fault growth (green line) and the set threshold,
that is, the fault value at a predetermined level (red line).
One hundred points in each time window are selected. The
blue histogram represents the normal pdf. The blue line is
selected as the threshold. 5% of the normal pdf is on the right
of the threshold implying that type I error is 5%. The red
histogram represents the current pdf. 6% of the current pdf
is on the left of the threshold. So, type II error is 6%. Thus,
the corresponding confidence in the declaration of the fault
condition is 90% meaning that after 998 cycles, there is 94%
possibility that the test platform is experiencing a fault.

7.2. Failure Prognosis. For prediction purposes the model is
tuned first, as shown in Figure 18.The distance of the bearing
run in miles corresponds to time in this case. 5000 particles
are used for resampling purposes. The red line corresponds
to the measurement data. The blue dot line represents the
estimated data.

In Figure 19, the red “line” is the threshold value. The
threshold or hazard zone is actually a probability density
function (pdf) set by the user and representing the latter’s
conception from past experiences of the fault dimension a
failure event is imminent and must be corrected. Multiple
hazard zones may be specified. The histogram along the
time/mileage axis (approximate pdf) represents the time
or miles traveled to failure. Statistics, such as the mean
and standard deviation, are computed to provide the user
with useful information, that is, when action should be
taken to repair the failing component (earlier or later than
the mean time depending on the risk the user is willing
to take under the prevailing circumstances). Appropriate
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Figure 18: Model tuning.
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Figure 19: Failure prognosis.

performancemetrics are defined and employed relating to the
prediction accuracy [1].

8. Conclusions

Prognosis and health management is an important subject
worthy of study for automated machining processes. This
paper introduces a framework for the process, fault type,
and assessment and testing of a critical component from
an automated machining process based on novel particle
filtering algorithms. Fault diagnosis has been shown to result
in detection and isolation of a faulty machine component
with user specified accuracy (confidence) and given false
alarm rate. The prognostic approach, based on streaming
data, an appropriate feature vector, a data-driven symbolic
regression model, and a Bayesian estimation process-particle
filtering, has been demonstrate to provide accurate results for
the test case under consideration. As a result, the maintainer
is provided with useful information as to when corrective
action is required considering risk issues. The application
example employs real fault/failure data derived from a seeded
fault test in a bearing of the automated machining pro-
cess. It provides excellent insight about the effect of model
inaccuracies and customer specifications in the algorithm
performance.
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This paper presents a unified approach to nonlinear dynamic inversion control algorithmwith the parameters for desired dynamics
determined by using an eigenvalue assignment method, which may be applied in a very straightforward and convenient way. By
using this method, it is not necessary to transform the nonlinear equations into linear equations by feedback linearization before
beginning control designs.The applications of thismethod are not limited to affinenonlinear control systems or limited tominimum
phase problems if the eigenvalues of error dynamics are carefully assigned so that the desired dynamics is stable.The control design
by using this method is shown to be robust to modeling uncertainties. To validate the theory, the design of a UAV control system
is presented as an example. Numerical simulations show the performance of the design to be quite remarkable.

1. Introduction

In the development of high-performance aircraft, control
difficulties may be encountered over some parts of flight
envelope. These difficulties arise from highly nonlinear aero-
dynamic properties [1] in some flight conditions. In order
to solve these control difficulties, nonlinear controllers are
required for high-performance aircraft.

Amongmany controlmethods, nonlinear dynamic inver-
sion (NDI) is very popular and has been widely studied
for flight control designs (e.g., [2, 3]). NDI-based control
systems are usually divided into fast- and slow-loop control
subsystems according to the multiple time-scale method [4].
In each subsystem, Lie derivatives [5] are used to transform
the nonlinear equations into linear equations. Then, linear
control design methods can be employed and the control
inputs are obtained by converting the linear system control
variables into the original coordinates. However, the control
systems obtained by feedback linearization [6]may have non-
minimum phase problems for affine or nonaffine nonlinear
system [7] and robust issues in case of model mismatch.
A typical nonminimum phase problem may be found in
flight dynamics where the altitude-elevator transfer function
usually has a right-half zero. The internal state control [8] is

often used to overcome these nonminimum phase problems.
In addition, the fuzzy logic control [9] was also applied for
solving these kinds of problems. Furthermore, to overcome
the robust problems, 𝜇-analysis [10] and 𝐻

∞
method [11]

were applied. Specially, incremental NDI (INDI) [12] was
used to increase the robustness to aerodynamic uncertainties
by calculating the control surface deflection changes instead
of giving inputs directly.

To circumvent some aforementioned robust problems,
an adaptive nonlinear model inversion control [13] was
introduced, in which the design concept is similar to the
conventional NDI yet without linearizing the nonlinear
system. The model inversion method replaces the motion
rates with a P-formor PI-formdesired dynamics to negate the
original dynamics. The choice of parameters in the desired
dynamics is based on the bandwidth of response and time
scales. The effects of different types of desired dynamics on
the resulted control system were discussed [14].

Although the aforementioned NDI approaches are suc-
cessful in many flight control system designs [14–16] over
a large part of the flight envelope, the systems of dynamics
in general have to be separated into several subsystems
according to the rates of response. There are many cases
in which the fast rate and the slow rate might not be
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distinguished so clearly however. Also, although the pole
assignment method had been introduced to determine the
parameters in the desired dynamics, very often the control
system must first be transformed into a standard feedback
control form fromwhich the standard eigenvalue assignment
method can be applied.

In consideration of the aforementioned problems exist-
ing in the current literature on control designs, a unified
approach to nonlinear dynamic inversion control is proposed
in this paper. The equations of motion will not be necessary
to be separated into fast rate and slow rate groups, nor will
they be limited to an affine system. Feedback linearizations
will not be required to transform the nonlinear equations into
linear equations. Nonminimum phase problems are solved
by eigenvalue assignments for error dynamics. An itera-
tive method for determining the parameters of the desired
dynamics from the assigned eigenvalues of error dynamics
is proposed. Analysis of robustness to model uncertainties
or disturbances is conducted. This method will be ready for
design without simplifying the system of equations based on
physical insights once the governing dynamic equations are
established and the state variables to be tracked are selected.
The theory is to be developed in detail in the following
sections. A UAV is introduced and its control system is
designed with the developed method. Numerical simulations
are conducted to validate this method.

2. A Unified Approach to Nonlinear Dynamic
Inversion Control

2.1. Nonlinear Dynamic Inversion Control. In general, dy-
namic equations of motion with control inputs can be
expressed by

ẋ = f (x, u) , (1)

where x ∈ 𝑅𝑛 is the state vector, u ∈ 𝑅𝑚 (𝑚 < 𝑛) the control
vector, and f the nonlinear function representing themodel of
dynamics with controls. By extending the concept of dynamic
inversion (DI) [4], the control vector u can be assumed to be
computed from

ẋ
𝑑
= f (x

𝑑
, u) , (2)

where x
𝑑
∈ 𝑅

𝑛 is a desired state vector with its rate of change
being designated.

In this paper, the desired dynamics is designated as a set
of stable first-order differential equations:

ẋ
𝑑
= Ω (x

𝑑
− x) , (3)

where Ω ∈ 𝑅
𝑛×𝑛 represents a constant matrix with 𝑛 inde-

pendent parameters which can be chosen. Substituting (3)
into (2) yields

Ω (x
𝑑
− x) = f (x

𝑑
, u) (4)

which constitutes a set of 𝑛 algebraic equations. Since𝑚 < 𝑛,
obviously, u cannot satisfy (4) if all elements of x

𝑑
are to be

designated. It means that only part of x
𝑑
can be designated.

So let x
𝑑
be divided into two groups, say x

𝑐
∈ 𝑅

𝑚 and x
𝑟
∈

𝑅
𝑛−𝑚, where x

𝑐
contains the state variables which are to be

controlled or designated and x
𝑟
the residual ones. Both u and

x
𝑟
constitute 𝑛unknown variableswhich are to be determined

from (4). To solve a set of nonlinear algebraic equations,
the Newton-Raphson iteration method can be employed as
follows:

[
u
x
𝑟

]

𝑘+1

= [
u
x
𝑟

]

𝑘

− [
𝜕ferr
𝜕u

𝜕ferr
𝜕x

𝑟

]

−1

ferr, (5)

where ferr ≜ f(x
𝑑
, u) −Ω(x

𝑑
− x) and 𝑘 = 0, 1, 2, . . . represents

the iteration number.

2.2. Parameter Determination. Now, a question arises
whether the state vector x will asymptotically follow the
desired vector x

𝑑
if u is determined from (4) and substituted

in (1). In order to answer it, let (1) and (4) be examined more
carefully as follows.

Subtracting (4) from (1) yields

ẋ −Ω (x
𝑑
− x) = f (x, u) − f (x

𝑑
, u) . (6)

If x is very close to x
𝑑
, then the above equation can be

linearized as follows:

ẋ −Ω (x
𝑑
− x) ≈ fx (x𝑑, u) (x − x

𝑑
) . (7)

With the concept that the desired variables x
𝑑
are near

constant, say ẋ
𝑑
≈ 0, (7) can be rewritten as

ẋ − ẋ
𝑑
≈ [−Ω + fx (x𝑑, u)] (x − x

𝑑
) . (8)

Defining an error vector e = x − x
𝑑
and replacing the

approximate sign with the equal sign lead (8) to

ė = [−Ω + fx (x𝑑, u)] e. (9)

Equation (9) is a set of error dynamics in which the error
vector e will vanish eventually if all the real parts of the
eigenvalues of [−Ω+ f

𝑥
(x

𝑑
, u)] are negative.This is possible if

Ω is chosen appropriately. It means that the state vector x can
approach the desired vector x

𝑑
once e approaches 0. Recall

that x
𝑑
contains x

𝑐
, a state vector to be tracked.

Notice that the eigenvalue 𝜆 in (9) can be determined by
𝜆I +Ω − fx (x𝑑, u)

 = 0, (10)

where I is an identity matrix. For simplicity, if Ω is diagonal
and all elements are the same, say, Ω = 𝜎I, then (10) can be
rewritten as

(𝜆 + 𝜎) I − fx (x𝑑, u)
 = 0. (11)

In order to make e bounded, 𝜎 can be so chosen that

real (𝜆
𝑖
+ 𝜎) < 0 (12)

for all 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛). Although this method is simple, the

resulting 𝜎may be unnecessarily large.
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For more general cases, Ω contains a set of parameters,
𝜎
𝑘
, (𝑘 = 1, 2, 3, . . . , 𝑛), which may be chosen to determine

the eigenvalues and eigenvectors of −Ω+ fx(x𝑑, u). Recall that
(3) must be a stable model and, therefore, the simplest way of
constructingΩ is to let all its elements vanish except those at
the diagonal, which are assumed to be Ω

𝑘𝑘
= 𝜎

𝑘
> 0. In fact,

some off-diagonal elements can also be allowed to exist. For
example, let Ω

𝑘𝑘
= Ω

𝑙𝑙
= 𝜎

𝑘
> 0, and Ω2

𝑘𝑙
= Ω

2

𝑙𝑘
= 𝜎

2

𝑙
< 𝜎

2

𝑘
. It

is trivial to prove that the latter case is also a stable model.
Now, assume that the 𝑖th (𝑖 = 1, 2, 3, . . . , 𝑛) eigenvalue and

eigenvector are 𝜆
𝑖
and e

𝑖
, respectively. Accordingly,

[−Ω + fx (x𝑑, u)] e𝑖 = 𝜆𝑖e𝑖. (13)

In general, the eigenvector e
𝑖
can be normalized so that

e𝑇
𝑖
e
𝑖
= 1. (14)

However, if the eigenvalue 𝜆
𝑖
is desired rather than 𝜆

𝑖
, then

it is necessary to adjust the parameters in Ω. Assume that an
increment (𝜕Ω/𝜕𝜎

𝑘
)Δ𝜎

𝑘
toΩ is required. Then

[−Ω −
𝜕Ω

𝜕𝜎
𝑘

Δ𝜎
𝑘
+ fx (x𝑑, u)] e𝑖 = 𝜆𝑖

e
𝑖
, (15)

where 𝜆
𝑖
and e

𝑖
are assumed to be approximated to 𝜆

𝑖
+

(𝜕𝜆
𝑖
/𝜕𝜎

𝑘
)Δ𝜎

𝑘
and e

𝑖
+(𝜕e

𝑖
/𝜕𝜎

𝑘
)Δ𝜎

𝑘
, respectively, and e

𝑖
is also

normalized so that

(e
𝑖
+
𝜕e

𝑖

𝜕𝜎
𝑘

Δ𝜎
𝑘
)

𝑇

(e
𝑖
+
𝜕e

𝑖

𝜕𝜎
𝑘

Δ𝜎
𝑘
) = 1. (16)

Accordingly, the derivative of (13) with respect to 𝜎
𝑘
results

in

[−
𝜕Ω

𝜕𝜎
𝑘

] e
𝑖
+ [−Ω + fx (x𝑑, u)]

𝜕e
𝑖

𝜕𝜎
𝑘

=
𝜕𝜆

𝑖

𝜕𝜎
𝑘

e
𝑖
+ 𝜆

𝑖

𝜕e
𝑖

𝜕𝜎
𝑘

(17)

and the derivative of (14) becomes

e𝑇
𝑖

𝜕e
𝑖

𝜕𝜎
𝑘

= 0. (18)

Equations (17) and (18) can be rearranged to

[
e
𝑖
𝜆
𝑖
I +Ω−fx (x𝑑, u)

0 e𝑇
𝑖

]

{{{

{{{

{

𝜕𝜆
𝑖

𝜕𝜎
𝑘

𝜕e
𝑖

𝜕𝜎
𝑘

}}}

}}}

}

=
{

{

{

−
𝜕Ω

𝜕𝜎
𝑘

e
𝑖

0

}

}

}

(19)

from which 𝜕𝜆
𝑖
/𝜕𝜎

𝑘
can be determined. Note that 𝜕𝜆

𝑖
/𝜕𝜎

𝑘

represents the variation of 𝜆
𝑖
with respect to 𝜎

𝑘
. With all

𝜕𝜆
𝑖
/𝜕𝜎

𝑘
, (𝑘 = 1, 2, 3, . . . , 𝑛), the 𝑖th revised eigenvalue should

be

𝜆
𝑖
= 𝜆

𝑖
+∑

𝜕𝜆
𝑖

𝜕𝜎
𝑘

Δ𝜎
𝑘
, (𝑖 = 1, 2, 3, . . . , 𝑛) . (20)

Recall that, in this equation, 𝜆
𝑖
represents the 𝑖th eigenvalue

of [−Ω + fx(x𝑑, u)], where Ω contains the parameters 𝜎
𝑘
,

(𝑘 = 1, 2, 3, . . . , 𝑛). Now since 𝜆
𝑖
is the 𝑖th desired eigenvalue,

(20) in fact becomes a set of 𝑛 simultaneous equations from
which Δ𝜎

𝑘
can be solved. With 𝜎

𝑘
being the initial guess,

revisions for parameters can be made by

𝜎
𝑘
= 𝜎

𝑘
+ Δ𝜎

𝑘
. (21)

Since 𝜆
𝑖
, (𝑖 = 1, 2, 3, . . . , 𝑛) are nonlinear function of 𝜎

𝑘
,

(𝑘 = 1, 2, 3, . . . , 𝑛), iterative computations of (9) and (19)–
(21) are required in order to obtain a set of convergent 𝜎

𝑘
. To

make it clear, the iteration procedures are summarized as fol-
lows.

(1) Let the desired eigenvalues be 𝜆
𝑖
(𝑖 = 1, 2, 3, . . . , 𝑛)

which are all distinct.

(2) Guess a set of parameters 𝜎
𝑘
(𝑘 = 1, 2, 3, . . . , 𝑛).

(3) Determine the eigenvalues and eigenvectors of (9).
Denote the 𝑖th eigenvalue and eigenvector as 𝜆

𝑖
and

e
𝑖
, respectively.

(4) With each 𝜎
𝑘
(𝑘 = 1, 2, 3, . . . , 𝑛), determine 𝜕𝜆

𝑖
/𝜕𝜎

𝑘

(𝑖 = 1, 2, 3, . . . , 𝑛) from (19).

(5) Determine Δ𝜎
𝑘
(𝑘 = 1, 2, 3, . . . , 𝑛) from (20). If

|Δ𝜎
𝑘
| is less than a preset small value, then stop; else

continue with the next step.

(6) Determine 𝜎
𝑘
from (21).

(7) Replace 𝜎
𝑘
with 𝜎

𝑘
and go to step 3.

At this point, it must be mentioned that the iterations will
converge only if the initial guesses are very close to the true
answers. It is also emphasized that the desired eigenvalues 𝜆

𝑖

must be chosen to lie on the left-half 𝑠-plane and the resulting
parameters in Ω must satisfy the stable model requirements
in (3).

2.3. Robust Analysis. The nonlinear dynamic inversion con-
trol design developed so far is based on a nominal dynamical
model. In the real world, however, there always exist some
modeling uncertainties which cannot be determined in
advance. In order to check if the control design is robust, let
the actual dynamical model be represented by

ẋ = f (x, u) . (22)

With this assumption, now (6) can be modified to

ẋ −Ω (x
𝑑
− x) = f (x, u) − f (x

𝑑
, u) (23)

which can be rewritten as follows:

ẋ +Ωx = Ωx
𝑑
+ [fx (x𝑑, u) (x − x

𝑑
) + Δf

𝑛
(x, x

𝑑
, u)

+ f (x, u) − f (x, u)] ,
(24)
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where Δf
𝑛
(x, x

𝑑
, u) denotes the nonlinear part of f(x, u) −

f(x
𝑑
, u). The solution of the above equation can be repre-

sented as follows:

x (𝑡) = 𝑒−Ω𝑡x
0
+ (I − 𝑒−Ω𝑡) x

𝑑

+ ∫

𝑡

0

𝑒
−Ω(𝑡−𝜏)

{fx (x𝑑, u (𝜏)) (x (𝜏) − x
𝑑
)

+ Δf
𝑛
(x (𝜏) , x

𝑑
, u (𝜏)) + f (x (𝜏) , u (𝜏))

− f (x (𝜏) , u (𝜏))} 𝑑𝜏.

(25)

Note that from (9), the eigenvalues of −Ω + f
𝑥
(x

𝑑
, u) are all

in the left-half 𝑠-plane since Ω has been determined with
that assumption. Also, at this point, it is not unreasonable
to assume that both Δf

𝑛
(x(𝜏), x

𝑑
, u(𝜏)) and the modeling

differences |f(x, u) − f(x, u)| are bounded. Therefore, if the
model in (3) is stable enough, the integral part in (25) will
vanish along with 𝑒−Ω𝑡. Accordingly, as the time 𝑡 gets large
enough, the state variables x will approach the desired values
x
𝑑
as can be found from (25) even if there are somemodeling

uncertainties or disturbances.

3. Nonlinear Dynamic Inversion
Flight Control System Design for
a UAV: An Example

3.1. Flight Dynamics Equations of Motion. To illustrate the
theory, a design of flight control system with the method
developed is presented. Before the flight control design
proceeds, a set of flight dynamics equations of motion must
be formulated.Note that all aerodynamic forces andmoments
result from the relative motions between aircraft and the air.
The aircraft is assumed to have a ground velocity:

V = 𝑢i + Vj + 𝑤k = �̇�
𝐸
I + �̇�

𝐸
J − ℎ̇K, (26)

where (i, j, k) are unit vectors in the aircraft body moving
frame and (I, J,K) the unit vectors in a fixed flat earth frame.
The air is assumed to have a velocity:

V
𝑤
= 𝑢

𝑔
i + V

𝑔
j + 𝑤

𝑔
k = 𝑉

𝑤
𝑥

I + 𝑉
𝑤
𝑦

J − 𝑉
ℎ
K (27)

which is also known as the wind velocity. Then, the velocity
of the aircraft relative to the air can be represented by

V
𝑎
= V − V

𝑤
= (𝑢 − 𝑢

𝑔
) i + (V − V

𝑔
) j + (𝑤 − 𝑤

𝑔
) k (28)

from which, the aircraft total speed relative to the air, the
angle of attack, and the sideslip angle can be determined,
respectively, by the following equations:

𝑉
𝑎
= √(𝑢 − 𝑢

𝑔
)
2

+ (V − V
𝑔
)
2

+ (𝑤 − 𝑤
𝑔
)
2

𝛼 = tan−1
𝑤 − 𝑤

𝑔

𝑢 − 𝑢
𝑔

𝛽 = tan−1
V − V

𝑔

√(𝑢 − 𝑢
𝑔
)
2

+ (𝑤 − 𝑤
𝑔
)
2

.

(29)

With the assumptions of fixed flat earth and winds being
present, the motions of aircraft with six degrees of freedom
can be represented by a set of nonlinear first-order differential
equations as follows:

�̇�
𝐸
≜ 𝑓

𝑋

= 𝑉
𝑎
(𝐶

11
cos𝛼 cos𝛽 + 𝐶

21
sin𝛽 + 𝐶

31
sin𝛼 cos𝛽)

+ 𝑉
𝑤
𝑥

(30)

�̇�
𝐸
≜ 𝑓

𝑌

= 𝑉
𝑎
(𝐶

12
cos𝛼 cos𝛽 + 𝐶

22
sin𝛽 + 𝐶

32
sin𝛼 cos𝛽)

+ 𝑉
𝑤
𝑦

(31)

ℎ̇ ≜ 𝑓
ℎ

= −𝑉
𝑎
(𝐶

13
cos𝛼 cos𝛽 + 𝐶

23
sin𝛽 + 𝐶

33
sin𝛼 cos𝛽)

+ 𝑉
ℎ

(32)

�̇� ≜ 𝑓
𝜓
= 𝑞 sec 𝜃 sin𝜙 + 𝑟 sec 𝜃 cos𝜙 (33)

̇𝜃 ≜ 𝑓
𝜃
= 𝑞 cos𝜙 − 𝑟 sin𝜙 (34)

̇𝜙 ≜ 𝑓
𝜙
= 𝑝 + 𝑞 tan 𝜃 sin𝜙 + 𝑟 tan 𝜃 cos𝜙 (35)

�̇�
𝑎
≜ 𝑓

𝑉

=
𝐹
𝑥

𝑚
cos𝛼 cos𝛽 +

𝐹
𝑦

𝑚
sin𝛽 +

𝐹
𝑧

𝑚
sin𝛼 cos𝛽 + 𝑓

𝑉
𝑤

(36)

�̇� ≜ 𝑓
𝛼

= −𝑝 cos𝛼 tan𝛽 + 𝑞 − 𝑟 sin𝛼 tan𝛽

−
𝐹
𝑥

𝑚𝑉
𝑎

sin𝛼 sec𝛽 +
𝐹
𝑧

𝑚𝑉
𝑎

cos𝛼 sec𝛽 + 𝑓
𝛼
𝑤

(37)

̇𝛽 ≜ 𝑓
𝛽

= 𝑝 sin𝛼 − 𝑟 cos𝛼 −
𝐹
𝑥

𝑚𝑉
𝑎

cos𝛼 sin𝛽 +
𝐹
𝑦

𝑚𝑉
𝑎

cos𝛽

−
𝐹
𝑧

𝑚𝑉
𝑎

sin𝛼 sin𝛽 + 𝑓
𝛽
𝑤

(38)

�̇� ≜ 𝑓
𝑝

=
𝐼
𝑥𝑧
(−𝐼

𝑥𝑥
+ 𝐼

𝑦𝑦
− 𝐼

𝑧𝑧
)

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑝𝑞

+
𝐼
𝑦𝑦
𝐼
𝑧𝑧
− 𝐼

𝑧𝑧
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑞𝑟 +
𝐼
𝑧𝑧

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑀
𝑥

−
𝐼
𝑥𝑧

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑀
𝑧

(39)

̇𝑞 ≜ 𝑓
𝑞
=
𝐼
𝑥𝑧

𝐼
𝑦𝑦

(𝑝
2

− 𝑟
2

) +
𝐼
𝑧𝑧
− 𝐼

𝑥𝑥

𝐼
𝑦𝑦

𝑝𝑟 +
1

𝐼
𝑦𝑦

𝑀
𝑦 (40)
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̇𝑟 ≜ 𝑓
𝑟

=
𝐼
𝑥𝑥
𝐼
𝑥𝑥
− 𝐼

𝑥𝑥
𝐼
𝑦𝑦
+ 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑝𝑞

+
𝐼
𝑥𝑧
(𝐼

𝑥𝑥
− 𝐼

𝑦𝑦
+ 𝐼

𝑧𝑧
)

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑞𝑟 −
𝐼
𝑥𝑧

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑀
𝑥

+
𝐼
𝑥𝑥

𝐼
𝑥𝑥
𝐼
𝑧𝑧
− 𝐼

𝑥𝑧
𝐼
𝑥𝑧

𝑀
𝑧
,

(41)

where (𝑋
𝐸
, 𝑌

𝐸
) represents the position in a fixed flat earth

frame, ℎ the altitude, 𝐶
𝑖𝑗
the elements of direction cosine

matrix for transferring a fixed flat earth frame to the aircraft
bodymoving frame, 𝛼 the angle of attack, 𝛽 the sideslip angle,
𝜓 the heading angle, 𝜃 the pitch angle, 𝜙 the bank angle, 𝑝
the roll rate, 𝑞 the pitch rate, and 𝑟 the yaw rate. Also, 𝐹

𝑥
,

𝐹
𝑦
, and 𝐹

𝑧
represent, respectively, three components of the

total force in an aircraft body moving frame. The three force
components are composed of the thrust 𝑇, the lift 𝐿, the drag
𝐷, the side force 𝑌, and the weight𝑚𝑔 (𝑚 is the aircraft mass
and 𝑔 the gravity acceleration) by the following equations:

𝐹
𝑥
= 𝑇 cos 𝜃

𝑇
+ 𝐿 sin𝛼 − 𝐷 cos𝛼 − 𝑚𝑔 sin 𝜃

𝐹
𝑦
= 𝑌 + 𝑚𝑔 sin𝜙 cos 𝜃

𝐹
𝑧
= −𝑇 sin 𝜃

𝑇
− 𝐿 cos𝛼 − 𝐷 sin𝛼 + 𝑚𝑔 cos𝜙 cos 𝜃,

(42)

where 𝜃
𝑇
is the angle between the thrust and the longitudinal

axis. Moreover,𝑀
𝑥
,𝑀

𝑦
, and𝑀

𝑧
represent the roll moment,

the pitch moment, and the yaw moment, respectively, about
the center of gravity, and 𝐼

𝑥𝑥
, 𝐼

𝑦𝑦
, 𝐼

𝑧𝑧
, and 𝐼

𝑥𝑧
are the

components of the moment-of-inertia tensor. Furthermore,
the wind disturbances on �̇�

𝑎
, �̇�, and ̇𝛽 are, respectively,

represented by 𝑓
𝑉
𝑤

, 𝑓
𝛼
𝑤

, and 𝑓
𝛽
𝑤

which are expressed as
follows:

𝑓
𝑉
𝑤

=
𝐹
𝑥
𝑤

𝑚
cos𝛼 cos𝛽 +

𝐹
𝑦
𝑤

𝑚
sin𝛽 +

𝐹
𝑧
𝑤

𝑚
sin𝛼 cos𝛽

𝑓
𝛼
𝑤

= −
𝐹
𝑥
𝑤

𝑚𝑉
𝑎

sin𝛼 sec𝛽 +
𝐹
𝑧
𝑤

𝑚𝑉
𝑎

cos𝛼 sec𝛽

𝑓
𝛽
𝑤

= −
𝐹
𝑥
𝑤

𝑚𝑉
𝑎

cos𝛼 sin𝛽 +
𝐹
𝑦
𝑤

𝑚𝑉
𝑎

cos𝛽

−
𝐹
𝑧
𝑤

𝑚𝑉
𝑎

sin𝛼 sin𝛽,

(43)

where

𝐹
𝑥
𝑤

= 𝑚(𝑟V
𝑔
− 𝑞𝑤

𝑔
− �̇�

𝑔
)

𝐹
𝑦
𝑤

= 𝑚(−𝑟𝑢
𝑔
+ 𝑝𝑤

𝑔
− V̇

𝑔
)

𝐹
𝑧
𝑤

= 𝑚(𝑞𝑢
𝑔
− 𝑝V

𝑔
− �̇�

𝑔
) .

(44)

In (44), 𝐹
𝑥
𝑤

, 𝐹
𝑦
𝑤

, and 𝐹
𝑧
𝑤

are the three components of
the force exerted by winds. At this point, it is worthy to
mention that although there is no explicit term relating wind

Table 1: The geometric data, weight, and moment of inertia of the
UAV.

Parameter Value Units
Reference wing area 𝑆 75 ft2

Wing span 𝑏 15 ft
Mean aerodynamic chord 𝑐 5.66 ft
Weight 𝑊 2562.5 lb
𝑥-axis inertia 𝐼

𝑥𝑥
296.75 slug/ft2

𝑦-axis inertia 𝐼
𝑦𝑦

1744.1875 slug/ft2

𝑧-axis inertia 𝐼
𝑧𝑧

1971.875 slug/ft2

𝑥-𝑧 product of inertia 𝐼
𝑥𝑧

30.6875 slug/ft2

disturbances to �̇�, ̇𝑞, and ̇𝑟 in (39)–(41), winds do have effects
on 𝑉

𝑎
, 𝛼, and 𝛽 through which𝑀

𝑥
,𝑀

𝑦
, and𝑀

𝑧
are affected.

Also, winds not only have explicit effects on �̇�
𝑎
, �̇�, and ̇𝛽 in

(36)–(38), but also have implicit effects on them through 𝐿,
𝑌, and𝐷 which obviously depend on 𝑉

𝑎
, 𝛼, and 𝛽.

To validate the method developed in this paper, a UAV
as shown in Figure 1 is introduced. The parameters used for
analysis are listed in Table 1.

The aerodynamic forces and moments of the UAV are
computed by the following equations:

𝐿 = 𝑞𝑆 [𝐶
𝐿
(𝑀, 𝛼, 𝛿

𝑒
) + 𝐶

𝐿
𝑞

(𝑀, 𝛼)
𝑐𝑞

2𝑉
𝑎

]

𝐷 = 𝑞𝑆𝐶
𝐷
(𝑀, 𝛼, 𝛿

𝑒
)

𝑌 = 𝑞𝑆 [𝐶
𝑌
𝛽

(𝑀, 𝛼) 𝛽 + 𝐶
𝑌
𝑝

(𝑀, 𝛼)
𝑏𝑝

2𝑉
𝑎

+ 𝐶
𝑌
𝑟

(𝑀, 𝛼)
𝑏𝑟

2𝑉
𝑎

+ Δ𝐶
𝑌
(𝑀, 𝛼, 𝛿

𝑎
)

+ Δ𝐶
𝑌
(𝑀, 𝛼, 𝛿

𝑟
)]

𝑀
𝑥
= 𝑞𝑆𝑏 [𝐶

ℓ
𝛽

(𝑀, 𝛼) 𝛽 + 𝐶
ℓ
𝑝

(𝑀, 𝛼)
𝑏𝑝

2𝑉
𝑎

+ 𝐶
ℓ
𝑟

(𝑀, 𝛼)
𝑏𝑟

2𝑉
𝑎

+ Δ𝐶
ℓ
(𝑀, 𝛼, 𝛿

𝑎
)

+ Δ𝐶
ℓ
(𝑀, 𝛼, 𝛿

𝑟
)]

𝑀
𝑦
= 𝑞𝑆𝑐 [𝐶

𝑚
(𝑀, 𝛼, 𝛿

𝑒
) + 𝐶

𝑚
𝑞

(𝑀, 𝛼)
𝑐𝑞

2𝑉
𝑎

]

𝑀
𝑧
= 𝑞𝑆𝑏 [𝐶

𝑛
𝛽

(𝑀, 𝛼) 𝛽 + 𝐶
𝑛
𝑝

(𝑀, 𝛼)
𝑏𝑝

2𝑉
𝑎

+ 𝐶
𝑛
𝑟

(𝑀, 𝛼)
𝑏𝑟

2𝑉
𝑎

+ Δ𝐶
𝑛
(𝑀, 𝛼, 𝛿

𝑎
)

+ Δ𝐶
𝑛
(𝑀, 𝛼, 𝛿

𝑟
)] ,

(45)



6 Mathematical Problems in Engineering

25.59ft

8.
3
5

ft

15ft

Figure 1: The configuration of the UAV.

where 𝑞 is the dynamic pressure and 𝑀 the Mach number.
The aerodynamic coefficients and stability derivatives are
determined by a computer code dubbed “VORSTAB” [17].
The computation results are in the form of discrete data
which are then interpolated as continuous functions in
the computer program. These functions are represented by
𝐶
𝐿
(𝑀, 𝛼, 𝛿

𝑒
), 𝐶

𝐿
𝑞

(𝑀, 𝛼), and so forth, in (45). The nonlinear
database includes 𝛼 ranging from −20

∘ to 40∘, 𝛿
𝑒
from −24

∘

to 24∘, 𝛿
𝑎
from −25

∘ to 25∘, and 𝛿
𝑟
from −30

∘ to 30∘. Also, the
flight conditions include altitude ℎ ranging from sea level to
40, 000ft and Mach number𝑀 from 0.1 to 0.9 and from 1.1

to 1.9. The thrust model of the UAV is assumed as

�̇� = 0.1 (𝑇
𝑐
− 𝑇) , (46)

where 𝑇
𝑐
is the thrust command. The thrust is assumed to

have a limitation, say 0 ≤ 𝑇 ≤ 1.1𝑊.

3.2. Flight Control Design. In flight control design, only nom-
inal flight dynamics models are considered since modeling
uncertainties or wind disturbances, and so forth, cannot
be determined in advance. Hence, all terms related to the
wind disturbances in the flight dynamics equations ofmotion
are neglected in this stage. For this flight dynamics model,
the parameters involved in the control analysis are further
elaborated as follows.

(1) In the flight dynamics equations of motion, only ℎ,
𝜃, 𝜙, 𝑉, 𝛼, 𝛽, 𝑝, 𝑞, and 𝑟 are coupled. Therefore
x ≜ {ℎ, 𝜃, 𝜙, 𝑉, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟}

𝑇, f = {𝑓
ℎ
, 𝑓

𝜃
, 𝑓

𝜙
, 𝑓

𝑉
, 𝑓

𝛼
,

𝑓
𝛽
, 𝑓

𝑝
, 𝑓

𝑞
, 𝑓

𝑟
}
𝑇, and 𝑛 = 9.

(2) The control input vector u ≜ {𝛿
𝑒
, 𝛿

𝑎
, 𝛿

𝑟
, 𝑇

𝑐
}
𝑇 and

𝑚 = 4. According to the theory derived in the
above, only 4 state variables can be controlled or des-
ignated. In this paper, the state vector to be controlled

x
𝑐
≜ {ℎ

𝑐
, 𝑉

𝑐
, 𝜙

𝑐
, 𝛽

𝑐
}
𝑇 is chosen and the residual vector

is x
𝑟
≜ {𝜃

𝑟
, 𝛼

𝑟
, 𝑝

𝑟
, 𝑞

𝑟
, 𝑟

𝑟
}
𝑇.

(3) Determine the state variables and control variables for
some trim conditions, on which the control design is
based.

(4) The model matrix in (3) is constructed as

Ω =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜎
1
0 0 0 0 0 0 0 0

0 𝜎
2
0 𝜎

4
0 0 0 0 0

0 0 𝜎
3
0 0 0 0 0 0

0 𝜎
4
0 𝜎

2
0 0 0 0 0

0 0 0 0 𝜎
5
0 0 𝜎

8
0

0 0 0 0 0 𝜎
6
0 0 𝜎

9

0 0 0 0 0 0 𝜎
7
0 0

0 0 0 0 𝜎
8
0 0 𝜎

5
0

0 0 0 0 0 𝜎
9
0 0 𝜎

6

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (47)

where the arrangement for the pair (𝜎
2
, 𝜎

4
) is enlight-

ened from the phugoid mode in which 𝜃 and 𝑉

are coupled. Similar arrangements are for the pairs
(𝜎

5
, 𝜎

8
) and (𝜎

6
, 𝜎

9
). In order to make the desired

dynamics stable, the elements on the diagonal, 𝜎
1
, 𝜎

2
,

𝜎
3
, 𝜎

5
, 𝜎

6
, and 𝜎

7
, must be positive. Also, those off-

diagonal elements must satisfy the conditions, 𝜎2
4
<

𝜎
2

2
, 𝜎2

8
< 𝜎

2

5
, and 𝜎2

9
< 𝜎

2

6
. For convenience of later

usage, these necessary conditions are dubbed “the
stable model requirements.”

In the design, the initial cruise flight conditions are ℎ =

600ft and𝑀 = 0.25. The trim conditions are 𝛼trim = 𝜃trim =

6.045
∘, 𝑇trim = 341.6 lb, and 𝛿

𝑒trim
= −0.872

∘. Based on
these data, the open-loop eigenvalues of fx(xtrim, utrim) are
determined and listed in Table 2.
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Table 2: The open-loop eigenvalues of fx(xtrim,utrim).

𝜆
1,2

−1.124786 ± 1.566875𝑖 𝜆
6

−3.129774

𝜆
3,4

−0.008857 ± 0.158058𝑖 𝜆
7,8

−0.297956 ± 0.410071𝑖
𝜆
5

−0.000133 𝜆
9

−0.023006

Longitudinal dynamics analysis reveals that 𝜆
1,2

and 𝜆
3,4

are closely associated with the short period mode and the
phugoid mode, respectively, and lateral dynamics analysis
shows that 𝜆

6
, 𝜆

7,8
, and 𝜆

9
are closely associated with the

pure roll mode, the Dutch roll mode, and the spiral mode,
respectively. Finally, the rest one, 𝜆

5
, can be inferred to be

associated with the altitude dynamics.
Intuitively, 𝜎

𝑖
(𝑖 = 1, 2, 3, . . . , 9) ∈ 𝜎 may just be arbi-

trarily assigned as long as they satisfy the stable model
requirements. However, the resulted error dynamics in (9)
may not just be stable. As will be shown in simulations, the
desired eigenvalues must not only be able to make the system
follow the desired dynamics, but also be able to generate a
good set of 𝜎 which makes 𝑒−Ω𝑡 decrease so quickly that the
system is also robust if modeling uncertainties exist or wind
disturbances are encountered.The choice of these eigenvalues
is not only just based on the control analysis alone but must
also be simultaneously based on simulations.

Note that, in this case, longitudinal dynamics analysis also
reveals a right-half zero 𝑧 = 10.85 in the ℎ-𝛿

𝑒
transfer func-

tion. It can therefore be identified as a nonminimum phase
problem. For this kind of problem, the desired eigenvalues
must be very carefully assigned lest the resulting 𝜎 does not
satisfy the stable model requirements. To determine 𝜎, a two-
way approach (𝜎  𝜆) is proposed as follows.

(1) If the desired eigenvalues are equal to the open-loop
eigenvalues as listed in Table 2, obviously, 𝜎 = 0.
Choose small 𝜎( ̸= 0) which satisfies the stable model
requirements.

(2) Determine the eigenvalues 𝜆
𝑖
(𝑖 = 1, 2, 3, . . . , 9) ∈ 𝜆

of the error dynamics in (9).

(3) If the error dynamics is not stable, modify 𝜆 so that
it makes the error dynamics stable. Use the modified
values as the desired eigenvalues.

(4) Determine 𝜎 by following the 7 steps of iteration
procedure described in Section 2.2.

(5) If 𝜎 does not satisfy the stable model requirements,
modify 𝜎 to make it satisfy. Go to step 2.

(6) In each step of simulations, determine x
𝑟
and u from

(4) by using the iteration method described in (5). In
this step, only the nominal dynamics model is used.

(7) Use u in (1) for simulations. The equations of motion
may include modeling uncertainties or wind distur-
bances.

(8) If the simulation results are not satisfactory, modify 𝜎
and then go to step 2, or modify 𝜆 and then go to step
4.

Table 3: The designated eigenvalues.

𝜆
1,2

−4.22180 ± 1.57684𝑖 𝜆
7

−1.75509

𝜆
3,4

−0.112728 ± 0.0902199𝑖 𝜆
8

−0.920091

𝜆
5

−0.0204641 𝜆
9

−0.146833

𝜆
6

−4.73168

Table 4: The resulting parameters for desired dynamics.

𝜎
1

0.0201234 𝜎
6

1.04305

𝜎
2

0.101328 𝜎
7

1.60654

𝜎
3

0.112353 𝜎
8

0.00193758

𝜎
4

−0.0000325585 𝜎
9

0.295443

𝜎
5

3.09966

By using these 8 steps of procedure, the designated eigen-
values and the resulting parameters for desired dynamics are
obtained and listed in Tables 3 and 4, respectively.

These parameters indeed satisfy the stable model require-
ments. Note that initially 𝜎

5
is small and 𝜆

1,2
and 𝜆

3,4

are not so deviated from their counterparts of open-loop
eigenvalues. However, the simulation results show that the
performance in tracking ℎ

𝑐
is not good enough. Enlarging

𝜎
5
does improve the performance but makes 𝜆

1,2
and 𝜆

3,4

deviate their counterparts of open-loop eigenvalues a lot.
Also note that the large deviations of 𝜆

6
, 𝜆

7,8
, and 𝜆

9
from

their counterparts of open-loop eigenvalues are due to the
iteration procedure in determining a set of 𝜎

6
, 𝜎

7
, 𝜎

8
, and 𝜎

9

for satisfying the stable model requirements.

3.3. Flight Simulations. In simulations, the initial conditions
are (𝑋

𝐸
, 𝑌

𝐸
) = (0, 0), ℎ = 600ft, 𝜓 = 0

∘, 𝜃 = 𝜃trim = 6.04
∘,

𝜙 = 0
∘,𝑀 = 0.25, 𝛼 = 𝛼trim = 6.04

∘, 𝛽 = 0
∘, 𝑝 = 0, 𝑞 = 0,

and 𝑟 = 0. The states to be tracked are ℎ
𝑐
= 2, 000ft, 𝜓

𝑐
= 90

∘,
𝑀

𝑐
= 0.40, and 𝛽

𝑐
= 0

∘. Although the heading angle is to be
tracked, for pilots, it would make more sense to regulate the
bank angle rather than the heading angle by assuming

𝜙
𝑐
= 𝑘

𝜙
(𝜓

𝑐
− 𝜓) , (48)

where 𝑘
𝜙
is a constant parameter. In this study, 𝑘

𝜙
= 0.12.

At each instant, ℎ
𝑐
,𝑉

𝑐
,𝜙

𝑐
, and𝛽

𝑐
are given, the controls 𝛿

𝑒
,

𝛿
𝑎
, 𝛿

𝑟
, and 𝑇

𝑐
along with the residual state variables 𝛼

𝑟
, 𝜃

𝑟
, 𝑝

𝑟
,

𝑞
𝑟
, and 𝑟

𝑟
can be determined from (4) by using the iteration

method described in (5). Note that, in the computation of the
control, only nominal flight dynamics equations of motion
are used since modeling uncertainties or wind disturbances
are not known. Also note that, in using the Newton-Raphson
method, the convergence can be guaranteed if the initial guess
is sufficiently close to the solution. Since the solution changes
only very little in each step of integration, numerical practices
show that it takes only 4 iterations to converge to within
0.0001% of the correct value if the solution in the previous
step of integration is taken as an initial guess. In the first
step of integration, it may be necessary to take a few more
iterations, say, 10 iterations, since the solution is different
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from that in the trim conditions, which is usually taken as
an initial guess.

For illustration, simulation block diagrams including x,
x
𝑑
, x

𝑐
, x

𝑟
, and u are shown in Figure 2.

After the controls 𝛿
𝑒
, 𝛿

𝑎
, 𝛿

𝑟
, and 𝑇

𝑐
are determined, (30)–

(41) are used for simulations. In order to ascertain if the
control system is robust or not, a fictitious wind model is put
enroute as follows:

𝑉
𝑤
𝑥

=

{{

{{

{

−
30 × 6080

3600
sin(

2𝜋 (𝑋
𝐸
− (𝑋wo − 𝑋scale))

2𝑋scale
) if 𝑋𝐸

− 𝑋wo
 < 𝑋scale,

0 else.
(49)

𝑉
𝑤
𝑦

=

{{

{{

{

30 × 6080

3600
sin(

2𝜋 (𝑌
𝐸
− (𝑌wo − 𝑌scale))

2𝑌scale
) if 𝑌𝐸 − 𝑌wo

 < 𝑌scale,

0 else.
(50)

𝑉
ℎ
=

{{

{{

{

10 × 6080

3600
sin(

2𝜋 (ℎ − (𝐻wo − 𝐻scale))

2𝐻scale
) if ℎ − 𝐻wo

 < 𝐻scale,

0 else.
(51)

�̇�
𝑤
𝑥

=

{{

{{

{

−
30 × 6080

3600
×
2𝜋�̇�

𝐸

2𝑋scale
cos(

2𝜋 (𝑋
𝐸
− (𝑋wo − 𝑋scale))

2𝑋scale
) if 𝑋𝐸

− 𝑋wo
 < 𝑋scale,

0 else.
(52)

�̇�
𝑤
𝑦

=

{{

{{

{

30 × 6080

3600
×
2𝜋�̇�

𝐸

2𝑌scale
cos(

2𝜋 (𝑌
𝐸
− (𝑌wo − 𝑌scale))

2𝑌scale
) if 𝑌𝐸 − 𝑌wo

 < 𝑌scale,

0 else.
(53)

�̇�
ℎ
=

{{

{{

{

10 × 6080

3600
×

2𝜋ℎ̇

2𝐻scale
cos(

2𝜋 (ℎ − (𝐻wo − 𝐻scale))

2𝐻scale
) if ℎ − 𝐻wo

 < 𝐻scale,

0 else,
(54)

where 𝑋wo = 29,727ft, 𝑌wo = 10,180ft, and 𝐻wo = 1,000ft
represent the center position of wind zone, and 𝑋scale =

5,000ft, 𝑌scale = 5,000ft, and 𝐻scale = 1,000ft represent the
maximum range of wind zone from its center. From (49)–
(51), it is also known that the three maximum wind velocity
components in the earth fixed frame are 30 knots, 30 knots,
and 10 knots, respectively.

In this study, two cases of simulations are conducted;
one is without wind disturbances and another with wind
disturbances. The results are presented in Figures 3–6.

As shown in Figure 3(a), there is no much difference in
ground trajectories whether wind disturbances are present
or not. While flying, the UAV first suffers vertical wind
disturbances in between 𝑡 = 15.10 sec and 32.04 sec and then
horizontal wind disturbances in between 𝑡 = 50.60 sec and
90.00 sec as shown in Figures 3(b) and 3(c).

The state variables to be tracked are all plotted in Figures
4(a)–4(e). From Figure 4(a), it is found that ℎ decreases
initially when ℎ

𝑐
= 2,000ft is commanded. A careful study

reveals that the elevator angle computed is 𝛿
𝑒
= −0.733

∘,
which is not enough to hold the UAV level as 𝛿

𝑒trim
= −0.872

∘

is required. The lowest altitude reached is 578ft with 𝜎
5
=

3.09966 in Table 4 being used. Increasing 𝜎
5
will increase the

lowest altitude reached but at the expense of increasing over-
shoot. Fortunately, after descending to 578ft, the UAV begins
to climb. During its climb, the UAV encounters an ascend-
ing wind and then a descending wind. But the influences on
the altitude are almost negligible. In contrary, the horizontal
wind seems to have more influences as it makes the altitude
fluctuate. Whether wind disturbances are present or not, the
UAV can always approach the commanded altitude asympto-
tically.

As shown in Figure 4(b), theMach number does not seem
to be so affected by the vertical wind as does by the horizontal
wind. In this case, the horizontal wind causes the Mach
number to fluctuate up to ±10%. The sharp angles shown in
the figure are due to the discontinuity of wind acceleration at
the edges of wind zone as shown in Figure 3(c).

When the UAV is commanded to make a 90
∘ turn,

its heading angle gradually increases and asymptotically
approaches the command as shown in Figure 4(c) whether
winds are present or not. Figure 4(d) shows that the bank
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Figure 2: Simulation block diagrams for the NDI flight control system.
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Figure 3: (a) Trajectory in𝑋-𝑌 plane, (b) wind speed, and (c) wind acceleration.
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Figure 4: The responses of (a) altitude, (b) Mach number, (c) heading angle, (d) bank angle, and (e) sideslip angle.
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Figure 5: The responses of (a) control surface deflections and (b) thrust.

angle is closely associated with the heading angle as the bank
angle is computed based on (48). Although the wind disturb-
ances do not explicitly affect ̇𝜙 in (35), they do implicitly affect
it through 𝛼 and 𝛽 which in turn affect the aerodynamic
moments. Fluctuations in the bank angle and the heading
angle are remarkable when the UAV passes through the wind
zone but are still tolerable.

Sideslip angle seems to be affected by winds more heavily
as shown in Figure 4(e). Fortunately, the control system is
robust enough as being able to keep it small.

As shown in Figure 5(a), all control surface deflection
angles remain small. The elevator needs only to deflect
slightly to rotate the UAV to climb. As mentioned early, 𝛿

𝑒
=

−0.733
∘ at the instant when ℎ

𝑐
and 𝑀

𝑐
are given. When the

UAV reaches the commanded state conditions, the elevator
trim angle approaches −0.510∘. Small deflection in aileron
angle is enough to make the UAV bank turn and the rudder
just keeps very small as does the sideslip angle. All control
surface deflection angles are not remarkably affected as the
UAV passes through the wind zone.

As shown in Figure 5(b), the thrust command increases
very sharply as a demand to increase both the altitude and
the Mach number simultaneously is given. Also, when the
UAV passes the wind zone, the thrust command fluctuates
very violently. Obviously, the thrust is very closely interacted
with the Mach number. A low pass filter with time constant
10 sec alleviates the sharp and violent responses a lot for the
actual thrust at the expense of delaying its reaction time.

In Figures 6(a)–6(e), responses of all residual state vari-
ables along with the computed commands for them are
presented. In fact, these commands are generated in the inner
system, not input from outer designations. It is interesting

to observe how the actual state variables track the com-
mands.

In Figure 6(a), it is observed that, in comparison to
𝛼trim = 6.04

∘, the computed command 𝛼
𝑟
= 4.85

∘ at the
instant when ℎ

𝑐
and𝑀

𝑐
are given. Then the angle of attack 𝛼

follows 𝛼
𝑟
closely without apparent short-period mode oscil-

lations when the designated short-period mode eigenvalues
are as high as 𝜆

1,2
= −4.22180 ± 1.57684𝑖. Winds do have

remark effect on both 𝛼
𝑟
and 𝛼. Finally, both approach a new

value, 𝛼trim = 2.88
∘, for flight conditions at higher altitude

and faster speed.
In Figures 6(b) and 6(c), it is observed that although

both 𝜃
𝑟
and 𝑞

𝑟
increase in response to the requirement for

increasing the cruise altitude, 𝜃 and 𝑞 decrease remarkably.
As revealed in explaining ℎ response, the elevator angle
computed is not enough to hold ̇𝑞 = 0 and therefore ̇𝑞 < 0

which in turn makes ̇𝜃 < 0. The minimum pitch rate is
𝑞 = −0.717 deg./s at 𝑡 = 0.78 sec. In this case, the vertical wind
does have more remarkable effects on 𝜃 and 𝑞 than the hori-
zontal wind. Finally, both approach 𝜃trim = 𝛼trim = 2.88

∘ and
𝑞trim = 0, respectively, for the new flight conditions.

It is very interesting to find that, in Figures 6(d) and 6(e),
the shapes of 𝑝 and 𝑟 responses resemble, respectively, those
of 𝜙 and 𝛽 responses as shown in Figures 4(d) and 4(e).
The effects of horizontal wind on both responses are more
remarkable than those of vertical wind in this case.The decay
of 𝑟 seems to be very slow.

4. Conclusions

In this paper, a unified nonlinear dynamic inversion control
system is successfully developed. With this method, the
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Figure 6: The responses of (a) angle of attack, (b) pitch angle, (c) pitch rate, (d) roll rate, and (e) yaw rate.
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parameters for desired dynamics can be determinedwith a set
of assigned eigenvalues for error dynamics. The control sys-
tem has been proved to be robust to modeling uncertainties
or wind disturbances. A nonaffine nonlinear flight dynamics
system with right-half zero has been used as an example for
the control design. In the design process, it is not necessary
to use the feedback linearization to transform the nonlinear
equations into linear equations. Numerical simulations of the
control system show that the desired state variables can be
successfully tracked whether winds are present or not.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to express their gratitude to Chuan-
Tau Edward Lan for his helps in computing the aerodynamic
data of the UAV used as an example for the control design
demonstrated in this paper.

References

[1] M. R. Mendenhall, S. C. Perkins, M. Tomac, A. Rizzi, and R. K.
Nangia, “Comparing and benchmarking engineering methods
for the prediction of X-31 aerodynamics,”Aerospace Science and
Technology, vol. 20, no. 1, pp. 12–20, 2012.

[2] M. L. Ireland, A. Vargas, and D. Anderson, “A comparison
of closed-loop performance of multirotor configurations using
non-linear dynamic inversion control,” Aerospace, vol. 2, no. 2,
pp. 325–352, 2015.

[3] J. O. Pedro, A. Panday, and L. Dala, “A nonlinear dynamic inver-
sion-based neurocontroller for unmanned combat aerial vehi-
cles during aerial refuelling,” International Journal of Applied
Mathematics and Computer Science, vol. 23, no. 1, pp. 75–90,
2013.

[4] N. Hovakimyan, E. Lavretsky, and A. Sasane, “Dynamic inver-
sion for nonaffine-in-control systems via time-scale separation.
Part I,” Journal of Dynamical and Control Systems, vol. 13, no. 4,
pp. 451–465, 2007.

[5] Z. Xie, Y. Xia, and M. Fu, “Robust trajectory-tracking method
for UAV using nonlinear dynamic inversion,” in Proceedings of
the IEEE 5th International Conference on Cybernetics and Intel-
ligent Systems (CIS ’11), pp. 93–98, Qingdao, China, September
2011.

[6] G. Gao, J. Wang, and X. Wang, “Adaptive fault-tolerant control
for feedback linearizable systems with an aircraft application,”
International Journal of Robust and Nonlinear Control, vol. 25,
no. 9, pp. 1301–1326, 2015.

[7] H. N. Foghahaayee, M. B. Menhaj, and H. A. Talebi, “Weakly
and strongly non-minimum phase systems: properties and
limitations,” International Journal of Control, pp. 1–16, 2015.

[8] L. Fiorentini and A. Serrani, “Adaptive restricted trajectory
tracking for a non-minimum phase hypersonic vehicle model,”
Automatica, vol. 48, no. 7, pp. 1248–1261, 2012.

[9] A. R. Babaei, M. Mortazavi, and M. H. Moradi, “Fuzzy sliding
mode autopilot design for nonminimum phase and nonlinear
UAV,” Journal of Intelligent and Fuzzy Systems, vol. 24, no. 3, pp.
499–509, 2013.

[10] N. Dadkhah and B. Mettler, “Control system design and eva-
luation for robust autonomous rotorcraft guidance,” Control
Engineering Practice, vol. 21, no. 11, pp. 1488–1506, 2013.

[11] Z. Lang and A.Wu, “Study on dual-loop controller of helicopter
based on the robust hinfinite loop shaping method,” Applied
Mechanics and Materials, vol. 130–134, pp. 1182–1185, 2012.

[12] S. Sieberling, Q. P. Chu, and J. A. Mulder, “Robust flight
control using incremental nonlinear dynamic inversion and
angular acceleration prediction,” Journal of Guidance, Control,
and Dynamics, vol. 33, no. 6, pp. 1732–1742, 2010.

[13] A. Rahideh, A. H. Bajodah, and M. H. Shaheed, “Real time
adaptive nonlinear model inversion control of a twin rotor
MIMO systemusing neural networks,” Engineering Applications
of Artificial Intelligence, vol. 25, no. 6, pp. 1289–1297, 2012.

[14] J. Georgie and J. Valasek, “Evaluation of longitudinal desired
dynamics for dynamic-inversion controlled generic reentry
vehicles,” Journal of Guidance, Control, and Dynamics, vol. 26,
no. 5, pp. 811–819, 2003.

[15] G. A. Smith andG.Meyer, “Aircraft automatic flight control sys-
tem with model inversion,” Journal of Guidance, Control, and
Dynamics, vol. 10, no. 3, pp. 269–275, 1987.

[16] I. Yang, D. Lee, and D. S. Han, “Designing a robust nonlinear
dynamic inversion controller for spacecraft formation flying,”
Mathematical Problems in Engineering, vol. 2014, Article ID
471352, 12 pages, 2014.

[17] C. T. E. Lan, “VORSTAB, a computer program for calculating
lateral directional stability derivatives with vortex flow effect,”
NASA CR-172501, NASA, 1985.



Research Article
Computing and Controlling Basins of Attraction in
Multistability Scenarios

John Alexander Taborda1 and Fabiola Angulo2
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The aim of this paper is to describe and prove a new method to compute and control the basins of attraction in multistability
scenarios and guarantee monostability condition. In particular, the basins of attraction are computed only using a submap, and the
coexistence of periodic solutions is controlled through fixed-point inducting control technique, which has been successfully used
until now to stabilize unstable periodic orbits. In this paper, however, fixed-point inducting control is used to modify the domains
of attraction when there is coexistence of attractors. In order to apply the technique, the periodic orbit whose basin of attraction
will be controlled must be computed. Therefore, the fixed-point inducting control is used to stabilize one of the periodic orbits
and enhance its basin of attraction. Then, using information provided by the unstable periodic orbits and basins of attractions, the
minimum control effort to stabilize the target periodic orbit in all desired ranges is computed. The applicability of the proposed
tools is illustrated through two different coupled logistic maps.

1. Introduction

Complex bifurcation scenarios have been observed in non-
linear dynamic systems from virtually all areas of science,
including a broad range of natural sciences, mechanical and
electrical engineering, and economics and other areas of the
social sciences [1–3]. Theoretical and applied researches have
explained various bifurcation scenarios [4–6], and analytical,
numerical, and experimental works have contributed to
unraveling the complexity inherent to chaotic motion [3].

Coupled chaotic maps are a set of special discrete-time
dynamical systems that can describe chemical, epidemio-
logical, physiological, biological, or engineering systems [7].
Interesting nonlinear phenomena have been reported in
them. For example, in [8, 9], coupled logistic maps were
analyzed and new scenarios for transition to chaos were
found via the creation and destruction of multilayered tori.
In those papers, novel routes to chaos were described, and

authors found that, depending on the coupling constant
value, the system approaches different periodic attractors.

Control methods of coexisting attractors in multistability
scenarios have been widely studied in the last decades. In
[10], periodic signals were replaced by chaotic ones in order
to eliminate multiple domains of attraction. In [11, 12], the
influence of noise on preference and dominance of attractors
in multistable systems was studied. In [13, 14], multistability
was controlled using small periodic modulation of a system
parameter. In [15], the basins of attraction (BA) were con-
trolled using harmonic and stochastic modulation. In [16], an
impulsive force was used in order to perturb one attractor of
the system and to change its response such that the system
response evolved to another attractor. In [17], control of
multistability scenarios based on the selection of a particular
attractor by periodic external modulation was presented. A
complete report of control of multistability can be found in
[18].
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In this paper, we prove a different technique to control
domains of attraction in multistability scenarios which is
called Fixed-Point Inducting Controller (FPIC). The FPIC
is a feed-forward controller that forces the system solution
to evolve to an existing desired attractor which cannot be
always reached for the uncontrolled case because of initial
conditions. This technique was initially proposed in [19]
and successfully applied in [20, 21]. In particular, in [21],
experiments showed the good performance of the controlled
system, where the FPIC was used as a second control loop.
However, in all previous works published until now, FPIC has
been only used to stabilize unstable periodic orbits.

The main contributions of this paper lie in numerical
analysis and control design areas.The development of a novel
methodology to compute and analyze the basins of attraction
reinforced the numerical analysis. The methodology consists
in decomposing themap of the system in𝑝 submaps, where𝑝
corresponds to the order of the periodic orbit to be controlled.
To have the BA, the long-time response terms of this submap
are depicted according to key colours. Apart from help to the
control design, this way to compute the basin of attraction
can be seen as the basins of attraction of period-1 orbits
which are computed every sixth or fifth iteration for linear
and nonlinear coupling, respectively, and the control goal
can be thought of as the control of period-1 orbit. On the
other hand, the methodology to design the controller based
on FPIC technique belongs to control theory. When the
proposed controller is used, the system is forced to evolve
to a known periodic orbit that exists in the uncontrolled
map. Moreover, by using the information obtained from
bifurcation diagrams and basins of attraction, it is possible
to compute the minimum control effort required to stabilize
the target orbit in the defined region. In particular, the
coexistence of periodic solutions in coupled logistic maps
[8, 9, 22] is controlled by widening the basin of attraction
of a period-𝑝 orbit that coexists with another one, and the
minimum control effort is computed aided by the unstable
period-2 orbit for the linear coupling and by unstable period-
1 orbits for the nonlinear coupling case.

The paper is organized as follows. In Section 2, the
coupled logistic maps are presented. The coexistence of
period-6 and period-5 orbits is identified. In Section 3, the
methodology to compute the basins of attraction is explained,
and the procedure is applied to the linear and nonlinear
coupling maps. In Section 4, the methodology to compute
the controller is presented and applied to the considered
systems and the minimum control effort required to guaran-
tee monostabilization of the periodic orbit is computed. In
Section 5, a brief discussion of the results is presented, and
finally, in Section 6, the conclusions are given.

2. Coupled Logistic Maps

Coupled chaoticmaps provide a source of bifurcation scenar-
ios with nonlocal phenomena and coexistence of attractors.
To design the proposed controller, two maps with different
coupling mechanisms are chosen. For linear coupling map,
there are two period-6 orbits that coexist in a range of

the parameter set. Similarly, for nonlinear coupling case, two
period-5 orbits coexist.

2.1. Coupled Logistic Maps: Linear Coupling. This system is
described by

𝑥 (𝑘 + 1) = 𝑓
𝑥
(𝑘) + 𝜖 (𝑦 (𝑘) − 𝑥 (𝑘)) ,

𝑦 (𝑘 + 1) = 𝑓
𝑦
(𝑘) + 𝜖 (𝑥 (𝑘) − 𝑦 (𝑘)) ,

(1)

where 𝜖 ∈ (−2, 2) is the coupling constant and 𝑓
𝑧
(𝑘) =

𝑟𝑧(1 − 𝑧), 𝑟 ∈ (1, 4), is the parameter associated with the
nonlinear part of (1). Since the system is symmetrical, there
is an invariant line Δ and the restriction of the 2D map to Δ
reduces it to a 1D map (the logistic map). The dynamics on
this invariant set help us to study the dynamics and bifurca-
tions of the 2D system. Moreover, symmetrical trajectories
are generated by symmetrical initial conditions leading to
symmetrical basins of attraction [22]. Novel routes to chaos
through torus-breakdown mechanism of this system were
reported in [9] and different dynamics were characterized in
the parameter region given by (𝜖, 𝑟).

Figure 1 shows the dynamic behavior of (1) when 𝑟 is
varied and two symmetrical initial conditions are considered.
Note that a pair of coexisting period-6 orbits are identified
in these diagrams for 𝑟 ∈ [3.045, 3.065], which makes the
main difference between Figures 1(a) and 1(b).The dynamical
behavior in the rest of the interval is very similar and
other differences cannot be easily seen. Table 1 shows the
specific values of the two coexisting period-6 orbits. It can be
observed that the solutions are mutually symmetrical in the
sense that (𝑥, 𝑦) = (𝑦, 𝑥).

2.2. Coupled Logistic Maps: Nonlinear Coupling. This system
is defined by

(
𝑥 (𝑘 + 1)

𝑦 (𝑘 + 1)
) = (

𝑓
𝑥
(𝑘) + 𝜖 (𝑓

𝑦
(𝑘) − 𝑓

𝑥
(𝑘))

𝑓
𝑦
(𝑘) + 𝜖 (𝑓

𝑥
(𝑘) − 𝑓

𝑦
(𝑘))

) , (2)

where 𝑓
𝑥
(𝑘) and 𝑓

𝑦
(𝑘) were defined before, 𝜖 ∈ (−2, 2), and

𝑟 ∈ (1, 4). Figure 2 shows an interesting coexistence scenario
for this system. Two mutually symmetrical period-5 cycles
coexist in it when 𝜖 = 1.5 and 𝑟 ∈ [2.775, 2.815].

3. Methodology to Compute the Basins of
Attraction

In this section, a methodology to compute the basins of
attraction (BA) is developed. By using this methodology, it
is possible to find the minimum control effort required to
stabilize a desired periodic orbit.

3.1. Computation of the Basins of Attractions in Linear
Coupling Maps. The BA corresponds to the set of initial
conditions whose long-time response (LTR) approaches the
attractor. The first and second period-6 orbits were defined
in Table 1. All numerical results associated with the second
period-6 orbit are differentiated from the first one with an
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Table 1: Two coexisting period-6 orbits for the linear coupling maps when 𝜖 = 0.2725 and 𝑟 = 3.065. For the sake of simplicity, the periodic
orbit values are presented with 8 decimal digits.

First period-6 orbit Second period-6 orbit
(𝑥
∗

, 𝑦
∗

)
1
= (0.79744636, 0.20236605) (𝑥

∗

, 𝑦
∗

)
1
= (0.20236605, 0.79744636)

(𝑥
∗

, 𝑦
∗

)
2
= (0.33291675, 0.65689339) (𝑥

∗

, 𝑦
∗

)
1
= (0.65689339, 0.33291675)

(𝑥
∗

, 𝑦
∗

)
3
= (0.76896860, 0.60251974) (𝑥

∗

, 𝑦
∗

)
1
= (0.60251974, 0.76896860)

(𝑥
∗

, 𝑦
∗

)
4
= (0.49915797, 0.77939325) (𝑥

∗

, 𝑦
∗

)
1
= (0.77939325, 0.49915797)

(𝑥
∗

, 𝑦
∗

)
5
= (0.84261193, 0.45063017) (𝑥

∗

, 𝑦
∗

)
1
= (0.45063017, 0.84261193)

(𝑥
∗

, 𝑦
∗

)
6
= (0.29965625, 0.86559446) (𝑥

∗

, 𝑦
∗

)
1
= (0.86559446, 0.29965625)

2.8 2.85 2.9 2.95 3 3.05
r

x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

12 4 8 16 32

(a) (𝑥
0
, 𝑦
0
) = (0.1, 0.5)

2.8 2.85 2.9 2.95 3 3.05
r

x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

12 4 8 16 32

(b) (𝑥
0
, 𝑦
0
) = (0.5, 0.1)

Figure 1: Bifurcation diagrams of (1) with 𝜖 = 0.2725 and two symmetrical initial conditions.
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Figure 2: Bifurcation diagrams of (2) with 𝜖 = 1.5 and two symmetrical initial conditions.
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Figure 3: Colour key to compute the BA.

upper bar. In order to compute the BA and after applying
FPIC control, we associate with each point 𝑘 of the first
period-6 orbit a section 𝐵

𝑘
that is given by |𝑥LTR − 𝑥

∗

| < 𝛿,
such as what is illustrated in Figure 3. A similar procedure is
developed to compute the BA of the second period-6 orbit,
whose sections are defined as 𝐵

𝑘
.

To compute the LTR terms, we start from any initial
condition inside the considered region (0 < 𝑥

1
< 1 and

0 < 𝑥
2
< 1) and compute its successive iterations until

the solution approaches the attractor. The general map to
describe the evolution of the system is 𝑃, and it is given by

𝑃 fl x (0) → x (1) → x (2) → x (3) → x (4)

→ x (5) → x (6) → x (7) → x (8) → x (9)

→ ⋅ ⋅ ⋅ x (𝑚) ,

(3)

where 𝑚 is high enough. The map 𝑃 is decomposed in six
submaps 𝑃

𝑖
. Each 𝑃

𝑖
is formed by the set of points given by

x(𝑖−1+6𝑗), where 𝑖 = 1 ⋅ ⋅ ⋅ 6 and 𝑗 ∈ Z++{0}. If the LTR terms
of 𝑃
𝑖
lie inside some 𝐵

𝑘
(or 𝐵
𝑘
when the BA for the second

period-6 orbit is computed), it is coloured according to the
colour key displayed in Figure 3. If the LTR terms of 𝑃

𝑖
lie

outside these regions, then it is gray coloured.This procedure
is repeated for a lot of initial conditions.

The BA of the first period-6 orbit (second period-6
orbit) can be computed and depicted only using 𝑃

𝑖
(𝑃
𝑖
)

submaps for a fixed 𝑖, and its diagram may have up to seven
colors. The gray coloured points correspond to the set of
initial conditions whose LTR terms diverge from the first

period-6 orbit (second period-6 orbit), and the other points
(depicted with six different colors according to Figure 3)
correspond to the initial conditions whose LTR terms lie
inside some 𝐵

𝑘
(𝐵
𝑘
) region. The BA computed for the first

period-6 orbit (second period-6 orbit) in this way is noted
as BA(𝑃

𝑖
) (BA(𝑃

𝑖
)). Figure 4(a) shows the diagram associated

with BA(𝑃
1
). All BA(𝑃

𝑖
) have the same information but are

coloured in different way. Figure 4(b) shows BA(𝑃
1
). These

BA let us compute the minimum control effort required to
stabilize the periodic orbits.

3.2. Computation of the Basins of Attraction for Nonlinear
Coupling Maps. The procedure explained before is applied
to the nonlinear coupling maps. BA(𝑃

𝑖
) and BA(𝑃

𝑖
) of the

two period-5 orbits are also symmetrical. Figures 5(a) and
5(b) show BA(𝑃

1
) and BA(𝑃

1
), respectively. The remaining

diagrams BA(𝑃
𝑖
) and BA(𝑃

𝑖
) for 𝑖 = 2 ⋅ ⋅ ⋅ 5 have similar

behavior. As we said before, all BA(𝑃
𝑖
) carry the same

information but are coloured in different way.

4. Methodology to Control the
Basins of Attraction

In this section, domains of attraction in coexistence scenarios
are controlled using FPIC technique.This technique has been
proven to stabilize unstable and chaotic systems [19–21]. In
those papers, analytical or numerical values of the steady-
state control inputs were needed to guarantee the stabilization
of the equilibrium point because FPIC was used as a second
control loop. On the contrary, in this work, FPIC technique is
used to control the BA in coupled logistic maps to guarantee
stabilization of period-6 (for linear coupling) and period-
5 (for nonlinear coupling) orbits, using the values of the
periodic orbit to be controlled.

4.1. Fixed-Point Inducting Control

Theorem 1. Consider a discrete-time system

z (𝑘 + 1) = g (z (𝑘)) . (4)

It is assumed that period-𝑝 solutions coexist in the system and
two or more of them are stable. A stable period-𝑝 solution is
noted in a compact form as z∗, and it is composed of 𝑝 points
such that it can be expressed as

z∗ = {𝑧∗
1
, 𝑧
∗

2
, . . . , 𝑧

∗

𝑝
} = {(𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
1
,

(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
2
, . . . , (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑝
} .

(5)

The objective of the controller is to expand the domain of
attraction of a given period-𝑝 orbit, by forcing the system to
evolve to this specific solution. Equation (6) shows the control
law based on FPIC, with 𝐸 as the control parameter. This
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Figure 4: (a) BA(𝑃
1
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Figure 5: (a) BA(𝑃
1
). (b) BA(𝑃

1
). 𝑟 = 2.8 and 𝜖 = 1.5.

controller stabilizes the target periodic orbit and expands its
attraction domain as 𝐸 increases. Hence,
z (𝑘 + 1)

=
{

{

{

1

𝐸 + 1
g (z (𝑘)) + 𝐸

𝐸 + 1
z
𝑗

∗

𝑖𝑓 (𝑘 mod 𝑝) = 0

g (z (𝑘)) 𝑖𝑓 (𝑘 mod 𝑝) ̸= 0,

(6)

where 𝑗 is defined depending on the analysis of the controlled
system.

Proof. The periodic orbits of the controlled system are the
same as the uncontrolled one.This is because after𝑝 iterations
g(𝑧∗
𝑗
) = 𝑧
∗

𝑗
(by definition of periodic orbit) and thus consider-

ing only the upper part of (6), it can be seen that the periodic
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orbits remain unchanged. Hence, when 𝐸 is high enough,
the controller transfers the state instantly to some 𝐵

𝑘
when

𝑘 mod 𝑝 = 0, irrespective of the state value. In this way, the
new state (that is near to the periodic solution) is the initial
condition for the next iteration obtaining convergence to the
periodic solution because the periodic orbit is stable.

Remarks. (i) From a practical point of view, the idea is not to
fix 𝐸 to a high value because the control effort increases as
𝐸 does. To control systems whose initial conditions are away
from the periodic orbit can lead to oversizing of the control
effort. For example, for the systems analyzed in this work,
the solution quickly diverges when the initial conditions are

outside the considered region and the controller cannot be
used.

(ii) The minimum value of 𝐸 that should be put in (6)
can be found based on numerical analysis, where the unstable
period orbits that coexist in the dynamical system play an
important role.

4.2. Control of Period-6 Orbits in Linear Coupling Maps. Let
us consider the map defined by (1) with 𝑟 = 3.065 and 𝜖 =
0.2725.Wewill stabilize the second period-6 orbit using FPIC
control. In order to achieve the goal, we use the second point
(𝑥
∗

, 𝑦
∗

)
2
as the target control; that is, x∗

2
fl (0.6569, 0.3329).

Taking into account (6), the linear coupling map is perturbed
every sixth iteration according to the control law defined by

(
𝑥 (𝑘 + 1)

𝑦 (𝑘 + 1)
) =

{{{{{{{

{{{{{{{

{

1

𝐸 + 1
(
𝑓
𝑥
(𝑘) + 𝜀 (𝑦 (𝑘) − 𝑥 (𝑘))

𝑓
𝑦
(𝑘) + 𝜀 (𝑥 (𝑘) − 𝑦 (𝑘))

) +
𝐸

𝐸 + 1
(
𝑥
∗

𝑦
∗

) if (𝑘 mod 6) = 0

(
𝑓
𝑥
(𝑘) + 𝜀 (𝑦 (𝑘) − 𝑥 (𝑘))

𝑓
𝑦
(𝑘) + 𝜀 (𝑥 (𝑘) − 𝑦 (𝑘))

) if (𝑘 mod 6) ̸= 0.

(7)

Figure 6 shows BA(𝑃
1
) diagram for different 𝐸 values.

Colors were assigned as defined above. The elements of
BA(𝑃
1
) that tends to 𝐵

2
increase as parameter 𝐸 increases.

Comparing Figures 4(b) and 6, it can be seen that the green
coloured region enhances forming clear narrow contours.
Now, the BA is only formed by two sets of points. The first
one includes all points whose LTR terms end in 𝐵

2
which

are green coloured.The second one includes all points whose
LTR terms are not inside any 𝐵

𝑖
section for 𝑖 = 1, 2, 3, 4, 5, 6,

which are gray coloured.This implies that no long-time term
of the submap 𝑃

1
lies in 𝐵

𝑖
section, for 𝑖 = 1, 3, 4, 5, 6. The

green contours expand as 𝐸 increases, widening the BA and
diminishing the gray coloured parts.

Figure 7 shows BA(𝑃
1
) when x∗

2
fl (0.3329, 0.6569) is

used as the reference in the FPIC controller. The same values
of 𝐸 have been used.

4.2.1. Selection of Minimum Control Effort. The minimum
control effort 𝐸cr is defined as the minimum value of 𝐸
that forces the system to evolve to the controlled orbit. The
selection of 𝐸cr can be computed by studying the behavior of
unstable periodic orbits (UPOs) around the periodic orbits.

The metamorphosis of controlled BA(𝑃
1
) or BA(𝑃

1
) is

influenced by two unstable period-2 solutions of the system
that are schematized in Figure 8. The fixed points of these
period-2 orbits are named 𝑉

1
, 𝑉
2
, 𝑉
3
, and 𝑉

4
.

For the controlled system, the points 𝑉
𝑖
are hard to cover

by the expansion of BA(𝑃
1
). These points are always on the

frontiers between the green and gray regions as it is shown
in Figure 9. To find 𝐸cr, we consider Δ 𝑖 region around each
point 𝑉

𝑖
. 𝐸cr is the minimum value such that all points in Δ0

𝑖

regions converge to 𝑉
𝑖
points. Figure 9 shows examples of Δ

𝑖

regions when 𝐸 = 1.5. The neighborhood near 𝑉
𝑖
requires

more control effort to converge to 𝐵
2
.

Δ
𝑖
can be expressed as (Δ

𝑥
, Δ
𝑦
) fl (𝜐

𝑥
+ 𝛿 sin(𝜃), 𝜐

𝑦
+

𝛿 cos(𝜃)), where 𝛿 is fixed to a small value and 𝜃 is varied in
the range [0, 2𝜋]. Figure 10 illustrates the behavior of BA(𝑃

1
)

around Δ
𝑖
when 𝐸 is varied. The convergence of all points to

Δ
𝑖
is reached when 𝐸cr ≈ 1.78.

4.2.2. Selection of the Reference. Similar results can be
obtained if we choose other equilibrium points to perturb the
map 𝑃

𝑖
. Table 3 summarizes the control effort requirements.

Note that the critical control effort 𝐸cr varies depending
on the used reference. Coexistence phenomenon can be
controlled with less effort if (𝑥∗, 𝑦∗) = (0.8426, 0.4506) or
(𝑥
∗

, 𝑦
∗

) = (0.4506, 0.8426) are used to control the map.

4.3. Control of Period-5 Orbits in Nonlinear Coupling Maps.
Now, we control two coexisting period-5 cycles of (2) when
𝑟 = 2.8 and 𝜖 = 1.5. The reference is introduced every fifth
iteration as is presented in

(
𝑥 (𝑘 + 1)

𝑦 (𝑘 + 1)
) =

{{{{{{{

{{{{{{{

{

1

𝐸 + 1
(
𝑓
𝑥
(𝑘) + 𝜀 (𝑓

𝑦
(𝑘) − 𝑓

𝑥
(𝑘))

𝑓
𝑦
(𝑘) + 𝜀 (𝑓

𝑥
(𝑘) − 𝑓

𝑦
(𝑘))

) +
𝐸

𝐸 + 1
(
𝑥
∗

𝑦
∗

) if (𝑘 mod 5) = 0

(
𝑓
𝑥
(𝑘) + 𝜀 (𝑓

𝑦
(𝑘) − 𝑓

𝑥
(𝑘))

𝑓
𝑦
(𝑘) + 𝜀 (𝑓

𝑥
(𝑘) − 𝑓

𝑦
(𝑘))

) if (𝑘 mod 5) ̸= 0.

(8)
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Table 2: Two coexisting period-5 orbits for nonlinear coupling maps when 𝜖 = 1.5 and 𝑟 = 2.8. For the sake of simplicity, the periodic orbit
values are presented with 8 decimal digits.

First period-5 orbit Second period-5 orbit
(𝑥
∗

, 𝑦
∗

)
1
= (0.79175845, 0.35258819) (𝑥

∗

, 𝑦
∗

)
1
= (0.35258819, 0.79175845)

(𝑥
∗

, 𝑦
∗

)
2
= (0.72790518, 0.37290574) (𝑥

∗

, 𝑦
∗

)
2
= (0.37290574, 0.72790518)

(𝑥
∗

, 𝑦
∗

)
3
= (0.70487469, 0.50446287) (𝑥

∗

, 𝑦
∗

)
3
= (0.50446287, 0.70487469)

(𝑥
∗

, 𝑦
∗

)
4
= (0.75867944, 0.52373859) (𝑥

∗

, 𝑦
∗

)
4
= (0.52373859, 0.75867944)

(𝑥
∗

, 𝑦
∗

)
5
= (0.79131428, 0.41974570) (𝑥

∗

, 𝑦
∗

)
5
= (0.41974570, 0.79131428)
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Figure 6: (a) BA(𝑃
1
) for 𝐸 = 0.85. (b) BA(𝑃

1
) for 𝐸 = 1.5. (c) BA(𝑃

1
) for 𝐸 = 1.7. 𝑟 = 3.065 and 𝜖 = 0.2725 in all cases.

According to Table 2, we use (𝑥∗, 𝑦∗)
1
fl (0.3526, 0.7918)

to control the system. Figure 11 presents BA(𝑃
1
) of the con-

trolled systemwhen three different values of𝐸 are considered.

Selection of Minimum Control Effort. As in the previous case,
the minimum control effort 𝐸cr can be computed by studying

the behavior of UPOs around the periodic orbits. Figure 12
shows an illustrative sketch of bifurcation scenario of the
uncontrolled system. The unstable period-1 orbits are noted
as 𝑁
1
and 𝑁

2
. The metamorphosis of the controlled maps

BA(𝑃
𝑖
) is influenced by unstable period-1 solutions of the

system.We use points𝑁
1
and𝑁

2
to compute𝐸cr in each case.
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Figure 7: (a) BA(𝑃
1
) for 𝐸 = 0.85. (b) BA(𝑃

1
) for 𝐸 = 1.5. (c) BA(𝑃

1
) for 𝐸 = 1.7. 𝑟 = 3.065 and 𝜖 = 0.2725 for all cases.

Zone with
two

period-6period-2
cyclescycle

Band-2 torus

NSB

NSB

Unstableperiod-2
cycle

Stable

Figure 8: Sketch of unstable period-2 solutions 𝑉
𝑖
in coexistence

zone.

Table 4 presents theminimumvalue of parameter𝐸 to control
coexistence phenomenon. All initial conditions belonging to
the considered region converge to x∗ when 𝐸 > 𝐸cr. The
lowest control effort that avoids coexistence phenomenon is
reached when the map is controlled with the first point of
the periodic orbit. If we induce the control using other points
of the periodic orbit, then we need a greater control effort.
Figure 13 shows the symmetrical behavior between BA(𝑃

1
)

and BA(𝑃
1
) (compare with Figure 11). Critical control effort

required in both cases has the same value.

5. Discussion

The results presented above give rise to a new approach
for coexistence control in multistable systems. The proposed
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Figure 9: 𝑉
𝑖
points and Δ

𝑖
sections in controlled linear map with 𝐸 = 1.5. (a) 𝑉

1
= (0.81326798, 0.33518226). (b) 𝑉

2
= (0.33518226,

0.81326798). (c) 𝑉
3
= (−0.07696298, 0.57288468).

Table 3: Summary of FPIC requirements in coexistence control of
two period-6 cycles.

Maps x∗ x∗ 𝐸cr

𝑃
1
, 𝑃
1

(0.7974, 0.2023) (0.2023, 0.7974) 3.371

𝑃
2
, 𝑃
2

(0.3329, 0.6568) (0.6568, 0.3329) 1.774

𝑃
3
, 𝑃
3

(0.7689, 0.6025) (0.6025, 0.7689) 2.507

𝑃
4
, 𝑃
4

(0.4991, 0.7793) (0.7793, 0.4991) 1.492

𝑃
5
, 𝑃
5

(0.8426, 0.4506) (0.4506, 0.8426) 1.258

𝑃
6
, 𝑃
6

(0.2996, 0.8655) (0.8655, 0.2996) 4.112

methodology has significant differences with other methods
reported in the literature, some of which are commented on
below.

Table 4: Summary of FPIC requirements in coexistence control of
two period-5 cycles.

Maps x∗ x∗ 𝐸cr

𝑃
1
, 𝑃
1

(0.7918, 0.3526) (0.3526, 0.7918) 0.6099

𝑃
2
, 𝑃
2

(0.7279, 0.3729) (0.3729, 0.7279) 0.6873

𝑃
3
, 𝑃
3

(0.7049, 0.5045) (0.5045, 0.7048) 1.2312

𝑃
4
, 𝑃
4

(0.7588, 0.5237) (0.5237, 0.7588 ) 1.1892

𝑃
5
, 𝑃
5

(0.7913, 0.4197) (0.4197, 0.7913) 0.7504

(i) The Applicability of the Method. Our process is sequential,
systematic, and applicable to any multistable system, even
though we use low-dimensional discrete maps as illustrative
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Figure 10: Selection of critical value 𝐸cr. Diagram 𝐸 versus 𝜃 to select minimum value of 𝐸 that guarantees total convergence of 𝑃
1
to 𝑥∗ =

0.3329 and 𝑦∗ = 0.6568.

examples. One of the most common methods to control
multistability, which is based on slow harmonic modulation,
has restrictions on its application because the attractor to be
destroyed should be a focus type [23].

(ii) The Requirement of Dynamic Behavior Knowledge. Fixed-
point inducting control needs to know an approximate value
of the periodic orbit to be stabilized, while all nonfeedback
methods do not require a priori information of the system
to be controlled [18]. However, this is not a major problem
due to the simplicity of the required information and the
multiple ways to obtain it, by either theoretical, empirical, or
experimental sources.

(iii) The Control Scheme, the Choice of the Attractor, and the
Number of Parameters to Be Tuned. The most representative
methods for multistability control can be classified into three
categories: nonfeedback, feedback, and stochastic schemes
[18]. We propose a feed-forward control configuration which
has not been widely exploited. Particularly, the control law
based on FPIC criterion has advantages with respect to
the selection of the target orbit and the parameters setting.
For example, when the coexistence control is realized by
parameter modulation, the general form given by 𝑝 = 𝑝

0
+

𝑝
𝑐
sin(2𝜋𝑓

𝑐
𝑡 +𝜓
0
) has four parameters to be tuned [24]; then,

the selection of a particular attractor depends on the right
choice of these parameters. In contrast, to successfully apply
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Figure 11: BA(𝑃
1
) for 𝐸 = 0.25. (b) BA(𝑃

1
) for 𝐸 = 0.45. (c) BA(𝑃

1
) for 𝐸 = 0.65. 𝑟 = 2.8 and 𝜖 = 1.5 for all cases.
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zone.

FPIC control only it is needed to tune one parameter and to
know the target orbit.

6. Conclusions

The coexistence of periodic solutions has been controlled
using FPIC technique and the required control effort to
obtain stabilization of the periodic orbits was computed.

It has been proven that FPIC controller can be used to
control BA. FPIC requires virtually no information about
the system; just approximated knowledge of a periodic orbit
is needed. Thus, this is a good control technique if the
system is only known approximately, which is a fundamental
requirement for other control methods.
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Figure 13: BA(𝑃
1
) for 𝐸 = 0.25. (b) BA(𝑃

1
) for 𝐸 = 0.45. (c) BA(𝑃

1
) for 𝐸 = 0.65. 𝑟 = 2.8 and 𝜖 = 1.5 for all cases.

The applicability of the proposed tools has been illustrated
in linear and nonlinear coupling logistic maps. However, the
developed tools are generic and can be applied to any system
with complex scenarios.
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This paper proposes a systematic numerical method for designing robust nonlinear 𝐻
∞ controllers without a priori lower-

dimensional approximation with respect to solutions of the Hamilton-Jacobi equations. The method ensures the solutions are
globally calculated with arbitrary accuracy in terms of the stable manifold method that is a solver of Hamilton-Jacobi equations
in nonlinear optimal control problems. In this realization, the existence of stabilizing solutions of the Hamilton-Jacobi equations
can be derived from some properties of the linearized system and the equivalent Hamiltonian system that is obtained from a
transformation of the Hamilton-Jacobi equation. A numerical example is shown to validate the design method.

1. Introduction

Robust controls have been extensively studied to suppress
the effects of disturbances or noises on performances of
controllers. In particular, the appearance of robust 𝐻

∞

control [1] caused the paradigm shift in control theory. The
linear 𝐻

∞ control has been extended to deal with nonlinear
systems [2–4]. The nonlinear 𝐻

∞ control design can be
described as a problem of solving Hamilton-Jacobi-Isaac
equations. However, it is difficult to directly solve Hamilton-
Jacobi-Isaac equations as against Riccati equations in the
linear case that many practical solving methods have been
elaborated. According to the latest reference book [4], there is
no systematic numerical approach for solving the Hamilton-
Jacobi-Isaac equations at present. Although a lot of efforts
have been made [5–13], all the contributions are still valid
in a local region around the equilibrium on which low-
dimensional approximations of the solutions are valid. Some
possible approaches that may yield exact and global solutions
are also reviewed in [4].

On the other hand, an effective numerical solver for
Hamilton-Jacobi equations in nonlinear optimal control

problems that is called the stable manifold method was
recently presented [14]. The method has been applied to
various control problems [15]. However, their results are
basically on pure optimal controls, and robust control designs
have not been sufficiently studied in the framework. Optimal
controllers without careful thought on robustness might
cause instability in systems with disturbances. Thus, the
development of robust controls is quite important in nonlin-
ear control design using the stable manifold method.

This paper clarifies the way of implementing robust non-
linear𝐻∞ control design to the stable manifold method [14].
We believe that our result is the premier report of realizing
the nonlinear𝐻∞ control without a priori lower-dimensional
approximation with respect to solutions of the Hamilton-
Jacobi equations. The conventional approximate methods
based on the Taylor expansion for solving the equations have
the critical problem that the valid range of the approximation
is unextendable [15]. In our approach, the solutions of the
equation can be systematically calculated in a global domain
with arbitrary accuracy in terms of the stable manifold
method. In our method, we transform the Hamilton-Jacobi-
Isaac equation to an equivalent Hamiltonian system under
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the assumption that there are no cross-product terms in cost
functions, and there is no need to restrict the weight on
the control to an identity matrix, which is relaxed from the
typical simplification on weights. The existence of stabilizing
solutions of the Hamilton-Jacobi(-Isaac) equations can be
checked by the stabilizability of the linearized system. The
numerical scheme of the stable manifold method is based on
the separation of the linear part of the Hamiltonian system
that is equivalent to the Hamilton-Jacobi(-Isaac) equation
from the nonlinear part. The separation can be achieved if
a given system is stabilizable, and the transformation for the
separation can be systematically given. Hence, we can apply
this method to a wide range of nonlinear control systems.
The robust performance of the controller can be designed by
choosing the design parameter 𝛾 that means the upper bound
of the worst response, that is, the 𝐻

∞ norm of the system
defined byL2-gain.

This paper is organized as follows: Section 2makes a brief
summary of basic definitions of robust nonlinear𝐻∞ control.
Section 3 shows that the nonlinear 𝐻

∞ control design can
be converted with the stable manifold method. In Section 4,
we show the validity of the nonlinear 𝐻

∞ controller derived
from the stable manifold method by showing a robustness
improvement of a controlled vehicle model [16] under dis-
turbances modeled as an artificial effect of side winds and a
rough road surface. In this numerical experimentation, we
can see that the nonlinear 𝐻

∞ controller achieved a higher
robust performance than a linear 𝐻

∞ controller in the case
that a nonlinear optimal regulator fails stabilization under the
disturbances.

2. Summary of Robust Nonlinear 𝐻
∞ Control

This section makes a brief summary of basic definitions of
robust nonlinear 𝐻∞ control.

2.1. Nonlinear𝐻∞ Control Design. In this paper, we consider
the following standard form of control systems as an objec-
tive.

Definition 1. Let one consider the following control system
defined on a smooth 𝑛-dimensional manifoldX ⊆ R𝑛:

Σ :

{
{
{
{

{
{
{
{

{

�̇� = 𝑓 (𝑥) + 𝑔
1
(𝑥)𝑤 + 𝑔

2
(𝑥) 𝑢,

𝑦 = 𝑥,

𝑧 = ℎ (𝑥) + 𝑘 (𝑥) 𝑢,

(1)

where the vectors 𝑥(𝑡) ∈ X, 𝑢(𝑡) ∈ U ⊆ R𝑝, 𝑤(𝑡) ∈

W, 𝑦(𝑡) ∈ R𝑛, and 𝑧(𝑡) ∈ R𝑞 denote state variables,
control inputs, disturbances, outputs that can be directly
measured, and outputs that are controlled, respectively. In
(1), one has defined U and W, respectively, as the set of
admissible controls and the set of admissible disturbances,
where a function is called admissible if the function is
defined on some time interval and it is piecewise continuous.
Furthermore, one denotes the initial state at the time 𝑡

0
by

𝑥(𝑡
0
) = 0, and the functions 𝑓: X → V(X), 𝑔

1
: X →

M𝑛×𝑟(X), 𝑔
2
: X → M𝑛×𝑝(X), ℎ

1
: X → R𝑠, and 𝑘: X →

M𝑝×𝑚(X) are assumed to be real 𝐶∞-functions of 𝑥, where
V is the vector space of all smooth vector fields over X and
M𝑖×𝑗(X) is the ring of (𝑖 × 𝑗) matrices overX.

To the system Σ, we consider the following conditions for
simplification.

Assumption 2. (1) 𝑥 = 0 is a unique equilibrium point of the
system Σ in (1) when 𝑢 = 0 and 𝑤 = 0.

(2) 𝑓(0) = 0, ℎ(0) = 0, and 𝑘
⊤

(𝑥)𝑘(𝑥) > 0 hold.
(3)There exists a unique solution𝑥(𝑡, 𝑡

0
, 𝑥
0
, 𝑢)on the time

interval [𝑡
0
,∞] ∈ R that continuously depends on the initial

condition 𝑥
0
.

In robust nonlinear 𝐻
∞ control, the effect of the signal

𝑤 to the reference output 𝑧 is evaluated by the following
inequality that will be related with an L2-gain in the next
definition.

Definition 3. System (1) is said to have an L2-gain less than
or equal to 𝛾 from 𝑤 to 𝑧 inX if

‖𝑧 (𝑡)‖
2

2
≤ 𝛾
2

‖𝑤 (𝑡)‖
2

2
+ 𝛽 (𝑥

0
) , ∀𝑇 > 𝑡

0
(2)

for any 𝑥
0

∈ X, a fixed 𝑢, and some bounded 𝐶
0-function

𝛽: X → R such that 𝛽(0) = 0, where one has defined the
L2-norm

‖]‖
2
= (∫

𝑇

𝑡0

‖] (𝑡)‖
2

𝑑𝑡)

1/2

(3)

for any ]: [𝑡
0
, 𝑇] ⊂ R → R𝑛, where ‖ ⋅ ‖means the Euclidean

norm on R𝑛; that is, ‖](𝑡)‖2 = ]⊤(𝑡)](𝑡).

According to Definition 3, the usual 𝐻
∞ norm in a

frequency domain can be interpreted as the following L2-
gain that is the induced norm from L2 to L2 in the time
domain.

Definition 4. One defines the following 𝐻
∞ norm of the

system Σ:

‖Σ‖H∞ = sup
𝑤∈L2∩L∞

𝑐
\{0}

‖𝑧‖
2

‖𝑤‖
2

, 𝑥 (𝑡
0
) = 0, (4)

where 𝑤 ∈ L2 ∩ L∞
𝑐

\ {0} means that 𝑤 ∈ L2 satisfies
sup
𝑡
|𝑤(𝑡)| ≤ 𝑐 for some constant 𝑐 and 𝑤 ̸= 0.

Remark 5. In the linear 𝐻
∞ control design, the disturbance

is defined as a function in L2. On the other hand, in the
nonlinear 𝐻

∞ control design, the class of disturbances is
limited as 𝑤 ∈ L2 ∩ L∞

𝑐
\ {0}, because an asymptotical

stability does not always hold in a global domain.

By using the above definitions, we state themain problem
that is treated in this paper.

Definition 6 (nonlinear 𝐻
∞ control problem). Let 𝛾 > 0

be a constant that is a design parameter with respect to
disturbances.Then, find a control input 𝑢 satisfying ‖Σ‖H∞ ≤

𝛾 for the system Σ in (1).
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We will rephrase the above problem as the following
minimax optimization problem.

Definition 7 (𝐻∞ differential game). Consider the cost func-
tion

𝐽 (𝑢, 𝑤) = inf
𝑢

sup
𝑤

∫

𝑇

𝑡0

{‖𝑧 (𝑡)‖
2

2
− 𝛾
2

‖𝑤 (𝑡)‖
2

2
} 𝑑𝑡,

𝑇 > 𝑡
0
.

(5)

Then, find the input 𝑢 that minimizes 𝐽(𝑢, 𝑤) while the dis-
turbance𝑤maximizes 𝐽(𝑢, 𝑤) under the constraint described
by the system Σ in (1). Furthermore, such solutions (𝑢

∗

, 𝑤
∗

)

must shape a saddle-point equilibrium such that

𝐽 (𝑢
∗

, 𝑤) ≤ 𝐽 (𝑢
∗

, 𝑤
∗

) ≤ 𝐽 (𝑢, 𝑤
∗

) (6)

for any disturbance 𝑤 and any input 𝑢 that can stabilize the
system Σ with the disturbance 𝑤

∗.

Remark 8. The problem in Definition 7 is not the same
problem in Definition 6 in a precise sense; that is, the
set of solutions of the problem in Definition 7 is included
in that of Definition 6. If the system Σ has a L2-gain,
then the evaluation function 𝐽 in (5) takes a nonpositive
value in the first problem. However, solutions of the second
problem are not always nonpositive.Thus, we must check the
nonpositiveness separately from solving the second problem.

Remark 9. Finding the worst disturbance 𝑤
∗ is not included

in the first problem in Definition 6.

2.2. Hamilton-Jacobi-Isaac Equation. Such a two-person
zero-sum game as in Definition 7 has a solution if the value
function

𝑉 (𝑥, 𝑡) = inf
𝑢

sup
𝑤

∫

𝑇

𝑡

{‖𝑧 (𝜏)‖
2

2
− 𝛾
2

‖𝑤 (𝜏)‖
2

2
} 𝑑𝜏 (7)

is 𝐶1, and 𝑉 satisfies the dynamic-programming equation

−

𝜕𝑉

𝜕𝑡

= inf
𝑢

sup
𝑤

{

𝜕𝑉

𝜕𝑥

�̇� + ‖𝑧 (𝑡)‖
2

2
− 𝛾
2

‖𝑤 (𝑡)‖
2

2
} ,

𝑉 (𝑇, 𝑥) = 0.

(8)

Now, we consider the infinite-time horizon problem
under the conditions lim

𝑇→∞
𝐽(𝑢, 𝑤) remains bounded and

the L2-gain of the system remains finite; that is, we find a
time-independent positive-semidefinite function 𝑉: X →

R satisfying the relation

𝐻(𝑥, 𝑝, 𝑢, 𝑤)

= 𝑝
⊤

{𝑓 (𝑥) + 𝑔
1
(𝑥) 𝑤 + 𝑔

2
(𝑥) 𝑢} + 𝑧

⊤

(𝑡) 𝑧 (𝑡)

− 𝛾
2

𝑤
⊤

(𝑡) 𝑤 (𝑡) ,

inf
𝑢

sup
𝑤

𝐻(𝑥, 𝑝, 𝑢, 𝑤) = 0, 𝑉 (0) = 0

(9)

that is called the Hamilton-Jacobi-Isaac equation, where we
have defined 𝑝 = (𝜕𝑉/𝜕𝑥)

⊤. From the stationary conditions
𝜕𝐻/𝜕𝑢 = 0 and 𝜕𝐻/𝜕𝑤 = 0, we obtain the following explicit
forms of optimal solutions:

𝑢
∗

= −

1

2

𝐾
−1

(𝑥) Ξ (𝑥, 𝑝) ,

𝑤
∗

=

1

2𝛾
2
𝑔
⊤

1
(𝑥) 𝑝,

(10)

where we have defined 𝐾(𝑥) = 𝑘
⊤

(𝑥)𝑘(𝑥) > 0 and
Ξ(𝑥, 𝑝) = 𝑔

⊤

2
(𝑥)𝑝 + 2𝑘

⊤

(𝑥)ℎ(𝑥). Then, the Hamilton-Jacobi-
Isaac equation can be written as

𝐻(𝑥, 𝑝, 𝑢, 𝑤) = 𝑝
⊤

𝑓 (𝑥) +

1

4𝛾
2
𝑝
⊤

𝑔
1
(𝑥) 𝑔
⊤

1
(𝑥) 𝑝

−

1

4

Ξ
⊤

(𝑥, 𝑝)𝐾
−1

(𝑥) Ξ (𝑥, 𝑝)

+ ℎ
⊤

(𝑥) ℎ (𝑥) = 0.

(11)

Indeed, the Hamiltonian 𝐻 in (11) can be transformed into

𝐻(𝑥, 𝑝, 𝑢, 𝑤) = 𝐻 (𝑥, 𝑝, 𝑢
∗

, 𝑤
∗

)

− 𝛾
2

(𝑤 − 𝑤
∗

)
⊤

(𝑤 − 𝑤
∗

)

+ (𝑢 − 𝑢
∗

)
⊤

𝐾 (𝑥) (𝑢 − 𝑢
∗

)

(12)

that means the solutions 𝑢
∗ and 𝑤

∗ determine the saddle
point of the Hamiltonian.

From the above preliminaries, we can obtain the follow-
ing fact.

Theorem 10 (see [17]). If there exists a function 𝑉(𝑥) ∈ 𝐶
1

such that𝐻(𝑥, 𝑝) = 0, 𝑝 = (𝜕𝑉/𝜕𝑥)
⊤,𝑉(𝑥) ≥ 0, and𝑉(0) = 0

for the Hamiltonian 𝐻(𝑥, 𝑝) in (11), then 𝑢
∗ and 𝑤

∗ in (10)
are the solution of the system Σ in (1), and the L2-gain of the
system Σ is less than or equal to 𝛾.

3. Nonlinear 𝐻
∞ Control Design Using Stable

Manifold Method

This section derives the way of converting the nonlinear 𝐻∞
control design with the stable manifold method from the
viewpoint of the Hamiltonian representation of Hamilton-
Jacobi-Isaac equations.

3.1. Stabilizing Solution of Hamilton-Jacobi Equations. Before
explaining the implementation of the linear and nonlinear
𝐻
∞ control designs to the stablemanifoldmethod, wemake a

brief summary of basic results on the solvability of Hamilton-
Jacobi equations.

Assumption 11. We assume that ℎ(𝑥)⊤𝑘(𝑥) = 0 for all 𝑥 ∈ X.
For example, in this case, we can write 𝑧 = ℎ(𝑥) + 𝑘(𝑥)𝑢 with
ℎ(𝑥) = [ℎ

1
(𝑥), 0]

⊤, and 𝑘(𝑥) = [0, 𝑘
2
(𝑥)]
⊤.
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Remark 12. In the typical settings [4, 17], the condition
𝐾(𝑥) = 𝑘

⊤

(𝑥)𝑘(𝑥) = 𝐼 that means the unity weighting on the
control is introduced to reduce (11) to be a simple quadratic
formwith respect to 𝑔

2
without the weight𝐾−1 in addition to

the condition in Assumption 11. However, in control designs
using the stable manifoldmethod, such a simplification is not
necessary.

Proposition 13 (see [17]). Let one consider the following
approximations:

𝑓 (𝑥) = 𝐴𝑥 + O (|𝑥|
2

) ,

𝑅 (𝑥) = 𝑅 + O (|𝑥|) ,

𝑄 (𝑥) =

1

2

𝑥
⊤

𝑄𝑥 + O (|𝑥|
3

)

(13)

in (11), where 𝑅(𝑥) := 𝑅
2
(𝑥) − (1/𝛾

2

)𝑔
1
(𝑥)𝑔
⊤

1
(𝑥), 𝑄(𝑥) :=

ℎ
⊤

(𝑥)ℎ(𝑥), and 𝐴, 𝑅, and 𝑄 are constant matrixes. If 𝑉(𝑥)

is assumed to be a quadratic form of symmetric matrix 𝑃, the
Hamilton-Jacobi-Isaac equation can be reduced to the Riccati
equation:

𝑃𝐴 + 𝐴
⊤

𝑃 − 𝑃𝑅𝑃 + 𝑄 = 0. (14)

Definition 14. A solution of the Riccati equation (14) is called
a stabilizing solution if 𝐴 − 𝑅𝑃 is a stable matrix.

Theorem 15 (see [17]). Consider the Hamilton-Jacobi equa-
tion 𝐻(𝑥, 𝑝) = 𝑝

⊤

𝑓(𝑥) − (1/2)𝑝
⊤

𝑅
2
(𝑥)𝑝 + 𝑞(𝑥) = 0 in

nonlinear optimal control problems, where 𝑝 = (𝜕𝑉/𝜕𝑥)
⊤ and

𝑅
2
(𝑥) = 𝑔

2
(𝑥)𝐾
−1

(𝑥)𝑔
⊤

2
(𝑥). If the Riccati equation derived

from the Hamilton-Jacobi equation has a stabilizing solution,
then there exists a stabilizing solution 𝑉(𝑥) of the Hamilton-
Jacobi equation such that 𝑓(𝑥) − 𝑅

2
(𝑥)𝑝(𝑥) is asymptotically

stable.

3.2. Calculation of Stabilizing Solutions via Stable Manifold
Method. In this section, we clarify𝐻

∞ control design proce-
dures in stable manifold method. The objective of the stable
manifold method [14] is to calculate a stable manifold of
stabilizing solutions of theHamilton-Jacobi equation by using
the following iterative numerical scheme:

(1) Transform the equivalent Hamiltonian system of the
Hamilton-Jacobi equation as

[

�̇�


�̇�


] = [

𝐹 0

0 −𝐹
𝑇

][

𝑥


𝑝


] +
[

[

𝑛
𝑠
(𝑡, 𝑥


, 𝑝


)

𝑛
𝑢
(𝑡, 𝑥


, 𝑝


)

]

]

(15)

by the coordinate transformation

[

𝑥


𝑝


] = [

𝐼 𝑆

𝑃 𝑃𝑆 + 𝐼

]

−1

[

𝑥

𝑝

] , (16)

where 𝑆 is the matrix that is a solution of Lyapunov
equation 𝐹𝑆 + 𝑆𝐹

𝑇

= 𝐹 and 𝐹 = 𝐴 − 𝑅𝑃.

(2) Calculate sequences {𝑥


𝑘
(𝑡, 𝜉)} and {𝑝



𝑘
(𝑡, 𝜉)} deter-

mined by

𝑥


𝑘+1
(𝑡, 𝜉) = 𝑒

𝐹𝑡

𝜉

+ ∫

𝑡

0

𝑒
𝐹(𝑡−𝑠)

𝑛
𝑠
(𝑠, 𝑥


𝑘
(𝑠, 𝜉) , 𝑝



𝑘
(𝑠, 𝜉)) 𝑑𝑠,

𝑝


𝑘+1
(𝑡, 𝜉) = −∫

∞

𝑡

𝑒
−𝐹
𝑇
(𝑡−𝑠)

𝑛
𝑢
(𝑠, 𝑥


𝑘
(𝑠, 𝜉) , 𝑝



𝑘
(𝑠, 𝜉)) 𝑑𝑠

(17)

for a certain parameter 𝜉 ∈ R𝑛, where 𝑥


0
(𝑡, 𝜉) = 𝑒

𝐹𝑡

𝜉

and 𝑝


0
(𝑡, 𝜉) = 0.

(3) By iteratively applying (17), extend a solution along an
initial vector 𝜉 in a plain surface spanned by 𝑃 under
the condition that the Hamiltonian of the right side of
(11) is sufficiently close to zero.

(4) If a solution passes through a desired initial state of
control systems, then the iteration is finished. If not,
back to procedure (2) and try with other 𝜉.

We can actually transform the Hamilton-Jacobi-Isaac
equation (11) into the following Hamiltonian system.

Lemma 16. Under Assumption 11, (11) can be transformed into
the equivalent Hamiltonian system:

�̇� =

𝜕𝐻
⊤

𝜕𝑝

= 𝑓 (𝑥) −

1

2

(𝑅
2
(𝑥) −

1

𝛾
2
𝑔
1
(𝑥) 𝑔
⊤

1
(𝑥)) 𝑝,

�̇� = −

𝜕𝐻
⊤

𝜕𝑥

= −

𝜕𝑓

𝜕𝑥

⊤

(𝑥) 𝑝 −

1

2𝛾
2
𝑝
⊤
𝜕𝑔
1

𝜕𝑥

(𝑥) 𝑔
⊤

1
(𝑥) 𝑝

+

1

4

(

𝜕

𝜕𝑥

𝑝
⊤

𝑅
2
(𝑥) 𝑝)

⊤

− 2

𝜕ℎ
⊤

𝜕𝑥

(𝑥) ℎ (𝑥) ,

(18)

where we have defined 𝑅
2
(𝑥) = 𝑔

2
(𝑥)𝐾
−1

(𝑥)𝑔
⊤

2
(𝑥).

From the facts discussed in the previous section, we
can obtain the condition for the applicability of the stable
manifold method.

Theorem 17. Let us consider a nonlinear𝐻∞ control problem
for system (1). For the Riccati equation (14) corresponding to the
Hamilton-Jacobi-Isaac equation (11) of the problem under the
approximation (13), if the Hamiltonian matrix

𝐻 = [

𝐴 −𝑅

−𝑄 −𝐴
⊤
] (19)

does not have eigenvalues on the imaginary axis and (𝐴, 𝑅) is
stabilizable, then we can calculate the stabilizing solution of the
Hamilton-Jacobi-Isaac equation by using the stable manifold
method.

Proof. A stable manifold can be described by 𝑝 = (𝜕𝑉/𝜕𝑥)
⊤,

and such a function 𝑉(𝑥) exists if the Hamiltonian matrix of
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the Riccati equation corresponding to the Hamilton-Jacobi-
Isaac equation does not have eigenvalues on the imaginary
axis [17]. Indeed, this fact is used in the proof ofTheorem 15. If
the linearized system (𝐴, 𝑅) is stabilizable and𝑅 ≥ 0 or𝑅 ≤ 0,
there exists the stabilizing solution of the Riccati equation
[17]. Now, we assumed that 𝐾 > 0; then 𝐾

−1

> 0; that is,
𝑅 ≥ 0 or 𝑅 ≤ 0, because 𝑅 is the linear part of 𝑅(𝑥) :=

𝑅
2
(𝑥)−(1/𝛾

2

)𝑔
1
(𝑥)𝑔
⊤

1
(𝑥), where𝑅

2
(𝑥) = 𝑔

2
(𝑥)𝐾
−1

(𝑥)𝑔
⊤

2
(𝑥).

Hence, there also exists a stabilizing solution 𝑉(𝑥) of the
Hamilton-Jacobi-Isaac equation according to Theorem 15.
Consequently, in such a case, we can directly find 𝑝 derived
from the stabilizing solution 𝑉(𝑥) by the stable manifold
method. The Hamiltonian system representation in (15) can

be given by the system in Lemma 16 and the linearization in
(13).

4. Numerical Example

Wewill check the validity of the nonlinear𝐻∞ control design
via the stable manifold method by showing a robustness
improvement of a controlled vehicle model [16].

4.1. ControlModel. We assume that the left side and right side
wheels of a vehicle have the same property, and the vehicle
should be stabilized to somedirection under a constant speed.
Then, the equivalent 2-wheel model with respect to yawing
without rolling and pitching motions is given as follows:

𝑥 = [𝛽 𝑟 𝜃 𝛿 𝑌]

⊤

,

𝑤 = [𝑤
1

𝑤
2
]

⊤

,

(20)

𝑓 (𝑥) = [−

sin𝛽

𝑚𝑉
0

𝐹
𝑥
+

cos𝛽
𝑚𝑉
0

𝐹
𝑦
− 𝑟

2𝑙
𝑓

𝐼

𝐶
𝑓
cos 𝛿 −

2𝑙
𝑟

𝐼

𝐶
𝑟

𝑟 0 𝑉
0
sin (𝛽 + 𝜃)]

⊤

, (21)

𝑔
1
(𝑥) =

[

[

cos (𝛽 + 𝜃)

(𝑚𝑉
0
)

0 0 0 0

0 0 0 1 0

]

]

⊤

,

𝑔
2
(𝑥) = [0 0 0 1 0]

⊤

,

(22)

where the control input 𝑢 is the steering angle speed, the state
vector𝑥 consists of the slip angle𝛽 at center of gravity (COG),
the yaw rate 𝑟, the direction 𝜃, the steering angle 𝛿, and the
lateral position 𝑌 of the vehicle, and note that the vertical
position is ignored under the assumption of motions around
a constant speed. Furthermore, the translational forces𝐹

𝑥
and

𝐹
𝑦
and the cornering force of each wheel 𝑌

𝑖
are written as

follows:

𝐹
𝑥
= 2𝑌
𝑓
sin (𝛽

𝑓
+ 𝛿) + 2𝑌

𝑟
sin𝛽
𝑟
,

𝐹
𝑦
= 2𝑌
𝑓
cos (𝛽

𝑓
+ 𝛿) + 2𝑌

𝑟
cos𝛽
𝑟
,

𝑌
𝑖
= 𝐶
𝑖
cos𝛽
𝑖

(23)

for 𝑖 = {𝑓, 𝑟} that means the front and the rear wheels,
respectively, where 𝛽

𝑖
is the slip angle of wheels, 𝐶

𝑖
is the

lateral force of wheels, and 𝐶
𝑖
and 𝛽 are related by

𝐶
𝑖
= 𝜇𝑁
𝑖
sin [𝑎 tan−1 {𝑏𝛽

𝑖
− 𝑐 (𝑏𝛽

𝑖
− tan−1 (𝑏𝛽

𝑖
))}] , (24)

where 𝑎 = 1.23, 𝑏 = 3.25, and 𝑐 = −6.00 are experimental
parameters, 𝜇 = 0.2 is a friction constant between road
surface and tire, and 𝑁

𝑓
= 5.48 and 𝑁

𝑟
= 4.21 are vertical

loads of eachwheel. In (22), the following physical parameters
are used: the constant speed 𝑉

0
= 17.7, the mass 𝑚 = 990,

the moment of inertia 𝐼 = 683, the distance from front axle
to COG 𝑙

𝑓
= 1.0, and the distance from rear axle to COG

𝑙
𝑟
= 1.3.

4.2. Disturbance Models. We applied the following distur-
bance to the model during simulations:

𝑤
1
=

{

{

{

0.47 (0 ≤ 𝑡 ≤ 0.5)

0 (otherwise) ,

𝑤
2
=

{
{

{
{

{

1

40

100

∑

𝑘=60

sin (𝑘𝑡) (2 ≤ 𝑡 ≤ 5)

0 (otherwise)

(25)

that mean artificial effects of side winds and rough road
surfaces (see Figure 1). However, the particular information
of these disturbances defined by the above relations is not
used in the design of 𝐻∞ controllers, but we only determine
the upper bound of the disturbance, that is, 𝛾 as a design
parameter.

4.3. Additional Calculation. According to Theorem 15, we
must check an obtained function 𝑉(𝑥) is nonnegative.
Because the stable manifold method gives the pair of the
variables (𝑥, 𝑝) as a solution, we must calculate 𝑉 from 𝑝

obtained from the simulation by

𝑉 (𝑥 (𝑡)) = ∫

∞

0

𝑝
⊤

�̇� 𝑑𝑡. (26)
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4.4. Numerical Results. We carried out the simulation using
the stable manifold method for the model with 𝛾 = 1.01.
Figures 2–4 show the three projections of the stabilizing
solution𝑉(𝑥) calculated by (26), where please note that𝑉(𝑥)

is defined on the fifth-dimensional space of 𝑥.We can see that
𝑉(𝑥) is nonnegative.

Figures 5–10 show the time plots of the state variables
controlled by the linear and nonlinear 𝐻

∞ controllers.
The convergence performance of the time responses was
improved by the nonlinear 𝐻

∞ controller. Then, the values
of the objective functions of the linear and nonlinear controls
were 𝐽 = −0.0809 and 𝐽 = −0.0818, respectively. Indeed, from
these figures, we can see that the amplitude of the control
input generated by the nonlinear 𝐻

∞ controller is smaller
than that of the linear 𝐻∞ controller.

On the other hand, we did the simulation for the same
model controlled by a nonlinear optimal regulator that does
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not have any guarantee with respect to robustness. Figure 12
shows the time plot of the state variables by the nonlinear
optimal regulator with the unit weight 1 to control inputs.
However, the trajectory diverged; that is, the system became
unstable. Note that Figure 11 is the plot in which the time

𝛿
 (r

ad
)

−0.02

−0.01

0

0.01

0.02

0.03

Time (s) 

Linear
Nonlinear

0 1 2 3 4 5 6

Figure 9: Time response of steering angles.

−0.05

0

0.05

0.1

0.15

0.2

Time (s) 

Linear
Nonlinear

0 1 2 3 4 5 6

Y
(m

)

Figure 10: Time response of lateral positions.

Time (s)

−0.1

0

0.1

0.2

0.3

0 1 2 3 4 5 6

Input u
Y (m)
𝛿 (rad)

𝜃 (rad)
r (rad/s)
𝛽 (rad)

Time response for x (𝛾 = 1.01)

Figure 11: Time responses of nonlinear 𝐻∞ control.



8 Mathematical Problems in Engineering

Time (s)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Time response for x

0 0.5 1 1.5

Y (m)
𝛿 (rad)

𝜃 (rad)
r (rad/s)
𝛽 (rad)

Figure 12: Time responses of nonlinear optimal regulator.

responses of the nonlinear𝐻∞ controller in Figures 5–10 are
collected.

Consequently, we can confirm that the nonlinear 𝐻
∞

controller achieved a higher robust performance in this case.

5. Conclusion

We proposed the way of integrating robust nonlinear 𝐻
∞

control design to the stable manifold method. Furthermore,
the numerical experimentation was shown for checking the
validity of the robust control for the vehicle model with
disturbances. The stable manifold method does not require
the information of analytical solutions, and we only have
to prepare the description of nonlinear systems. Hence, we
expect thismethod to be applied to a lot of control objects that
could not be considered due to theoretical difficulties before.

At present, we realized only the full-state feedback case.
The output feedback case can be considered as a challenging
future work.
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This paper proposes an adaptive control scheme for nonlinear systems with significant nonminimum phase dynamics.The scheme
is composed of an inner-level adaptive fuzzy PD control law and an outer-level supervisory control law. Importantly, the inner-level
controller of the two-level scheme is designed based on a fuzzymodel, which takes nonminimumphase phenomenon andmodeling
error explicitly into account. The scheme is both much simpler in design and more applicable to general nonlinear systems when
compared with most existing nonlinear controllers. Effectiveness of the proposed control strategy is demonstrated by numerical
simulation of the control of a five-degree-of-freedom aircraft system in the face of bursting disturbances.

1. Introduction

Many critical dynamic systems, such as aircraft, are nonmin-
imum phase, MIMO, and highly nonlinear, which undergo
significant disturbances and parameter variation during
operation. To control these systems, robust control [1], opti-
mal tuning of fuzzy controllers with output sensitivity func-
tion [2], adaptive control [3–5], and feedback linearization
with discrete sliding-mode control [6] have attracted much
attention from both academic and industrial communities
due to their robustness to uncertainties. Recently, many
interests have been focused on applying these techniques to
flight control systems, such as [7, 8]. However, for systems
with significant nonminimum phase phenomenon, direct
application of these approaches tends to introduce unstable
zero dynamics.

For instance, in [9], the nonminimum phase plants are
approximated by minimum phase models. The research [10]
applied the output regulation theory to solve the output track-
ing problem, but a set of partial differential equationsmust be
solved. The control scheme of [11] is based on decomposing
the aircraft dynamics into a minimum phase part and a

nonminimum phase part. Inversion is used on the minimum
phase part to obtain asymptotic tracking,while a robust linear
control approach is used to stabilize the nonminimum phase
part, which is linearized at equilibrium. As this strategy is
based on local linearization of the nonminimum phase part,
the result can only apply to simplified models.

By estimating parameters online, adaptive control can
adapt to a controlled system with varying or unknown
parameters. Nevertheless, in spite of the prosperous literature
of adaptive control, practical application of these control
strategies onMIMO systems has been restricted by the lack of
assurance in closed-loop stability. Among them, the adaptive
neural controller of [3] is too complex to implement, while
the adaptive fuzzy terminal sliding-mode controller of [4, 5]
is applicable only to robotic manipulators.

The proposed adaptive control scheme is inspired by [12],
which was developed for SISO nonlinear systems based on
the feedback linearization technique, with the distinction
that the scheme is extended to nonminimum phase MIMO
control systems.

The scheme is composed of an inner-level tracking
control law and an outer-level supervisory control law.
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Thedesign procedure is hence divided into two parts. First, an
adaptive fuzzy-model-based PD control scheme is designed
at the inner level to achieve robust output tracking. Special
care is taken for the nonminimum phase fuzzy subsets in
the control law by restricting parameter magnitudes in the
singular-value decomposition operation. Next, a supervisory
controller is employed at the outer level to minimize both
the approximation error between the fuzzy model and the
plant and the effects of external disturbance. Effectiveness of
the adaptive control scheme is demonstrated by simulation
results of the fight control of a complete 5-DOF aircraft
model.

2. Problem Formulation

System dynamics of the plant are firstly represented in a
general MIMO state-space representation as

�̇� = 𝐹 (𝑥) + 𝐺 (𝑥) ⋅ 𝑢 + 𝑤

0
,

𝑦 = 𝐻 ⋅ 𝑥,

(1)

where 𝑥 ∈ R𝑛×1 is the state vector, 𝑢 ∈ R𝑚×1 is the control
vector, 𝑤

0
∈ R𝑛×1 is the disturbance vector, 𝑦 ∈ R𝑁×1

is the output vector, and 𝐹, 𝐺 are corresponding nonlinear
matrices in state vectors with 𝐻 being a constant matrix, all
of compatible dimensions.

Equation (1) can be further represented in output vector
𝑦 as

̇𝑦 = 𝐻 ⋅ 𝐹 (𝑥) + 𝐻 ⋅ 𝐺 (𝑥) ⋅ 𝑢 + 𝐻 ⋅ 𝑤

0

= 𝑓 (𝑥) + 𝑔 (𝑥) ⋅ 𝑢 + 𝑤

= ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + [𝑓 (𝑥) − ℎ

𝑓
⋅ 𝐴

𝑓
]

+ [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
] ⋅ 𝑢 + 𝑤

= ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + 𝑒mod

≜ ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢 + 𝑒mod,

(2)

where

𝐵

𝑐
≜

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
,

ℎ

𝑓
=

[

[

[

[

[

[

ℎ

𝑓1
0 0 0

0 ℎ

𝑓2
0 0

0 0 d 0

0 0 0 ℎ

𝑓𝑛

]

]

]

]

]

]

,

𝐴

𝑓
= [

𝐴

𝑓1
𝐴

𝑓2
⋅ ⋅ ⋅ 𝐴

𝑓𝑛]

𝑇

,

𝑓

1
=

𝑝

∑

𝑖=1

ℎ

1𝑖
⋅ 𝐴

1𝑖
= ℎ

𝑓1
⋅ 𝐴

𝑓1
,

𝑓

2
=

𝑝

∑

𝑖=1

ℎ

2𝑖
⋅ 𝐴

2𝑖
= ℎ

𝑓2
⋅ 𝐴

𝑓2
, . . . ,

𝑓

𝑛
=

𝑝

∑

𝑖=1

ℎ

𝑛𝑖
⋅ 𝐴

𝑛𝑖
= ℎ

𝑓𝑛
⋅ 𝐴

𝑓𝑛
,

𝑒mod = [𝑓 (𝑥) − ℎ

𝑓
⋅ 𝐴

𝑓
] + [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
] ⋅ 𝑢

+ 𝑤,

(3)

and the external disturbance 𝑤 = 𝐻 ⋅ 𝑤

0
.

In the last representation, it is assumed that 𝑔(𝑥) is
bounded and is away from singularity in a compact set.
Furthermore, 𝑓(𝑥) and 𝑔(𝑥) are identified in fuzzy form as
ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) and ∑

𝐿

𝑗=1
ℎ

𝑗
(𝑦) ⋅ 𝐵

𝑗
, respectively, where the

fuzzy logic systems are universal approximations which can
uniformly approximate nonlinear continuous functions to
arbitrary accuracy [13–15].

3. Controller Design for the Nonminimum
Phase Dynamics

Firstly, the tracking error is defined as

𝑒 (𝑡) = −𝑒, (4)

where 𝑒 = (𝑦

𝑟
− 𝑦) (𝑦

𝑟
is reference input); we have that

̇𝑒 (𝑡) = ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + 𝑒mod − ̇𝑦

𝑟

= ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢 + 𝑒mod − ̇𝑦

𝑟
,

(5)

where 𝑢 is a combination of two signals [16]:

𝑢 = 𝑢

𝐹
+ 𝑢

𝑆
, (6)

with

𝑢

𝐹
= (1 − 𝐼

∗
) ⋅ 𝐵

−1

𝑐

⋅ {−ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) + ̇𝑦

𝑟
+ 𝐾

𝑃
⋅ 𝑒 (𝑡) + 𝐾

𝐷
⋅ ̇𝑒 (𝑡)} ,

(7)

𝑢

𝑆
= −𝐼

∗
⋅ sgn (𝐵

𝑐
⋅ 𝑃 ⋅ 𝑒 (𝑡))

⋅ {











𝐵

−1

𝑐
⋅ [ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) − ̇𝑦

𝑟
]











+ 𝑒

𝑈
} .

(8)
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Figure 1: The proposed two-level switching control scheme.

In (7), the proportional gain of the inner fuzzy control law is
designed as

𝐾

𝑃
= 𝛼 − 𝑅

−1
⋅ 𝑃. (9)

The switching variable in both (7) and (8) is defined as

𝐼

∗
= 0, if 







𝑒mod








≤ 𝑒

𝑈
,

𝐼

∗
= 1, otherwise,

(10)

with










𝐵

−1

𝑐
⋅ 𝑒mod











≤ 𝑒

𝑈
,

𝛼 =

[

[

[

[

[

[

−𝛼

1
0 0 0

0 −𝛼

2
0 0

0 0 d 0

0 0 0 −𝛼

𝑛

]

]

]

]

]

]

,

𝑃 > 0,

𝑅 > 0.

(11)

A complete control scheme of the two-level architecture
is shown in Figure 1.

To avoid encountering singularity of the control law, the
singular-value decomposition of the matrix 𝐵

𝑐
is introduced

as follows:

𝐵

𝑐
= 𝑈 ⋅ 𝑆 ⋅ 𝑉

𝑇
, (12)

where

𝑆 =

[

[

[

[

[

[

𝜎

1
0 0 0

0 𝜎

2
0 0

0 0 d 0

0 0 0 𝜎

𝑛

]

]

]

]

]

]

(13)

and 𝜎

𝑖
is replaced by 𝜀 if 𝜎

𝑖
≤ 𝜀, where 𝜀 is a small value.

Substituting the adaptive fuzzy PD controller 𝑢

𝐹
(7) into

(5), we have

̇𝑒 (𝑡) = 𝐾

𝑃
⋅ 𝑒 (𝑡) + ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) + 𝑒mod, (14)

after algebra manipulations, where

̃

𝐴

𝑓
(𝑡) = 𝐴

∗

𝑓
− 𝐴

𝑓
(𝑡) , (15)

and the modeling error

𝑒mod = [𝑓 (𝑥) − ℎ

𝑓
(𝑦) ⋅ 𝐴

∗

𝑓
]

+ [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
(𝑦) ⋅ 𝐵

𝑖
] ⋅ 𝑢 + 𝑤 + 𝐾

𝐷

⋅ ̇𝑒 (𝑡) .

(16)
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In the following derivation, we need the following condi-
tion to be satisfied [17–20]:

𝐽 ≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) , (17)

where

𝐽 = ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod] ⋅ 𝑑𝑡,

(18)

the weighting factor 𝛾

𝑓
> 0, 𝜌

2
⋅ 𝐼 ≥ 𝑅, the matrix 𝑄 >

0, and ‖𝑋‖

𝐹
=

√trace(𝑋𝑇 ⋅ 𝑋) is the Frobenius norm of

matrix 𝑋. Derivation of this condition, (17), is given in the
Appendix.

Hence, we have that

̇

̃

𝐴

𝑓
(𝑡) = −

̇

𝐴

𝑓
= −𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) ,

[𝛼

𝑇
⋅ 𝑃 + 𝑃 ⋅ 𝛼 + 𝑄 − 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃] = −𝜌

−2
⋅ 𝑃

𝑇
⋅ 𝑃.

(19)

Furthermore, to guarantee boundedness of 𝐴

𝑓
, the

parameter update laws must be modified as follows:

̇

𝐴

𝑓
=

{

{

{

{

{

𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) , if 









𝐴

𝑓











< 𝑀

𝑓
or (











𝐴

𝑓











= 𝑀

𝑓
,

̇

𝐴

𝑇

𝑓
⋅ 𝐴

𝑓
≤ 0) ,

𝐹 (𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡)) , otherwise,

(20)

where 𝑀

𝑓
is a positive design parameter and the projection

function 𝐹(⋅) is defined as

𝐹 (𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡))

= 𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) − 𝛾

𝑓

⋅

𝐴

𝑓
⋅ 𝐴

𝑇

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡)











𝐴

𝑓











2
.

(21)

Next, the supervisor control law of (8) is designed by the
following Lyapunov candidate:

𝑉 = 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) . (22)

Its time derivative, ̇

𝑉, can be obtained as

̇

𝑉 = [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 𝑒mod − ̇𝑦

𝑟
]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡)

+ 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 𝑒mod − ̇𝑦

𝑟
]

= 2𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 2𝑒 (𝑡)

𝑇
⋅ 𝑃

⋅ [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝑒mod − ̇𝑦

𝑟
] .

(23)

Substituting (8) into (23) yields

̇

𝑉 ≤ 2𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 2











𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐











⋅











𝐵

−1

𝑐
⋅ (ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝑒mod − ̇𝑦

𝑟
)











≤ 0.

(24)

Hence, we can infer that if the supervisory control signal
(8) is injected into fuzzy system (2), time derivative of the
Lyapunov candidate ̇

𝑉 ≤ 0 and system (2) is UUB stable.

4. Numerical Simulation

In this section, the proposed control strategy is applied on
a five-degree-of-freedom aircraft system described in [21]
for performance evaluation. We consider the angle of attack
𝛼 and the roll angle 𝜙 as outputs to be tracked. Tracking
of angle of attack is directly related to tracking of normal
acceleration [21], which plays an important role in many
practical maneuvers.

Let 𝑏 = 3 be the reference length (m), 𝑐 = 2 the mean
aerodynamic chord (m), 𝑔 = 9.8 the gravitational accel-
eration (m/s2), 𝐼 = 50 the moment of inertia (kg-m2), 𝑝

the roll angle rate, 𝑞 the pitch angle rate, 𝑟 the yaw angle
rate, 𝑄 = 80 the dynamic pressure (kg/m2), 𝑆 = 5 the
reference wing area (m2), 𝑉 = 100 the aircraft velocity
(m/s), 𝜃 the pitch angle, 𝛿

𝑎
= 0 the aileron deflection, 𝛿

𝑒
the

elevator deflection, 𝛿
𝑟
the rudder deflection, and𝑚 = 100 the

mass of aircraft (kg); the aircraft dynamics can be written as
[21]

[

[

[

[

̇
𝑝

̇𝑞

̇𝑟

]

]

]

]

=

[

[

[

[

𝑓

𝑝

𝑓

𝑞

𝑓

𝑟

]

]

]

]

+

[

[

[

[

𝐿

𝛿𝑎
0 𝐿

𝛿𝑟

0 𝑀

𝛿𝑒
0

𝑁

𝛿𝑎
0 𝑁

𝛿𝑟

]

]

]

]

⋅

[

[

[

[

𝛿

𝑎

𝛿

𝑒

𝛿

𝑟

]

]

]

]

,

[

[

[

[

[

[

[

[

�̇�

̇

𝛽

�̇�

̇

𝜃

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

𝑓

𝛼

𝑓

𝛽

0

0

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

−𝑡

𝛽
⋅ 𝑐

𝛼
1 −𝑡

𝛽
⋅ 𝑠

𝛼

𝑠

𝛼
0 −𝑐

𝛼

1 𝑡

𝜃
⋅ 𝑠

𝜑
𝑡

𝜃
⋅ 𝑐

𝜑

0 𝑐

𝜑
−𝑠

𝜑

]

]

]

]

]

]

]

]

⋅

[

[

[

[

𝑝

𝑞

𝑟

]

]

]

]

+ 𝑤,

(25)
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where

𝜙 = 𝑦

1
,

𝛼 = 𝑦

2
,

𝐿

𝛿𝑎
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑙𝛿𝑎
,

𝐿

𝛿𝑟
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑙𝛿𝑟
,

𝑀

𝛿𝑒
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑐 ⋅ 𝐶

𝑚𝛿𝑒
,

𝑁

𝛿𝑎
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑛𝛿𝑎
,

𝑁

𝛿𝑟
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑛𝛿𝑟
,

𝑓

𝑝
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑏

2
⋅ 𝐶

𝑙𝑝
⋅ 𝑝

2𝑉

,

𝑓

𝑞
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑐

2
⋅ 𝐶

𝑚𝑞
⋅ 𝑞

2𝑉

,

𝑓

𝑟
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑏

2
⋅ 𝐶

𝑛𝑟
⋅ 𝑟

2𝑉

,

𝑓

𝛼
=

−𝑄 ⋅ 𝑆 ⋅ 𝐶

𝐿𝛼
⋅ 𝛼 + 𝑚 ⋅ 𝑔 ⋅ (𝑐

𝜃
⋅ 𝑐

𝜙
⋅ 𝑐

𝛼
+ 𝑠

𝜃
⋅ 𝑠

𝛼
)

𝑚 ⋅ 𝑉 ⋅ 𝑐

𝛽

,

𝑓

𝛽
=

𝑄 ⋅ 𝑆 ⋅ 𝐶

𝑌𝛽
⋅ 𝛽 + 𝑚 ⋅ 𝑔 ⋅ [𝑠

𝜃
⋅ 𝑐

𝛼
⋅ 𝑠

𝛽
+ 𝑐

𝜃
⋅ 𝑠

𝜙
⋅ 𝑐

𝛽
− 𝑐

𝜃
⋅ 𝑐

𝜙
⋅ 𝑠

𝛼
⋅ 𝑠

𝛽
]

𝑚 ⋅ 𝑉

,

𝑡

𝛽
= tan (𝛽) ,

𝑠

𝛽
= sin (𝛽) ,

𝑐

𝛽
= cos (𝛽) ,

𝑠

𝜃
= sin (𝜃) ,

𝑐

𝜃
= cos (𝜃) ,

𝑡

𝜃
= tan (𝜃) ,

𝑐

𝛼
= cos (𝛼) ,

𝑠

𝛼
= sin (𝛼) ,

𝑠

𝜙
= sin (𝜙) ,

𝑐

𝜙
= cos (𝜙) .

(26)

In the following simulation, we assume

𝐶

𝑙𝛿𝑎
= −10

−4
,

𝐶

𝑙𝛿𝑟
= 10

−2
,

𝐶

𝑚𝛿𝑒
= −1.6 × 10

−4
,

𝐶

𝑛𝛿𝑎
= 10

−2
,

𝐶

𝑛𝛿𝑟
= −10

−4
,

𝐶

𝑙𝑝
= −3.8 × 10

−2
,

𝐶

𝑚𝑞
= −0.9 × 10

−2
,



6 Mathematical Problems in Engineering

𝐶

𝑛𝑟
= −4.5 × 10

−3
,

𝐶

𝐿𝛼
= 2.8 × 10

−1
,

𝐶

𝑌𝛽
= −2.8.

(27)

For the inner fuzzy control law, we select the following
membership functions:

𝜇

𝐹
1
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

11

𝑑

11

)

2

] ,

𝜇

𝐹
2
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

12

𝑑

12

)

2

] ,

𝜇

𝐹
3
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

13

𝑑

13

)

2

] ,

𝜇

𝐹
4
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

14

𝑑

14

)

2

] ,

𝜇

𝐹
1
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

21

𝑑

21

)

2

] ,

𝜇

𝐹
2
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

22

𝑑

22

)

2

] ,

𝜇

𝐹
3
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

23

𝑑

23

)

2

] ,

𝜇

𝐹
4
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

24

𝑑

24

)

2

] ,

(28)

where

𝑐

11
= 𝑐

21
= 0,

𝑐

12
= 𝑐

22
= 0.4,

𝑐

13
= 𝑐

23
= 0.8,

𝑐

14
= 𝑐

24
= 1.2,

𝑑

11
= 𝑑

21
= 𝑑

12
= 𝑑

22
= 𝑑

13
= 𝑑

23
= 𝑑

14
= 𝑑

24
= 0.4.

(29)

Furthermore, 8 fuzzy rules of the following form comprise the
fuzzy rule base:

𝑅

(1): if 𝑦

1
is 𝐹

𝑗

1
, then 𝑓

1
= 𝐴

1𝑗
for 𝑗 = 1, 2, 3, 4 and

𝑙 = 1, 2, 3, 4.

𝑅

(2): if 𝑦

2
is 𝐹

𝑗

2
, then 𝑓

2
= 𝐴

2𝑗
for 𝑗 = 1, 2, 3, 4 and

𝑙 = 5, 6, 7, 8.
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Figure 2: Time history of system output 𝑦
1
(the angle of attack, 𝛼),

reference 𝑦

𝑟1
, and control input 𝑢

1
.

Then, we obtain the following initial system parameters:

𝐴

11
= −0.1338,

𝐴

12
= 0.5183,

𝐴

13
= −1.0891,

𝐴

14
= 1.546,

𝐴

21
= −1.0328,

𝐴

22
= 1.669,

𝐴

23
= −0.0957,

𝐴

24
= −0.3342,

𝐵

𝑐
= [

16.5381 −0.4429

1.1439 0.4489

] .

(30)

Finally, we design the following control gains:

𝐾

𝑃
= [

−0.52 0

0 −51

] ,

𝐾

𝐷
= [

−0.05 0

0 −4.9

] .

(31)

The tracking performances of 𝛼 and 𝜙, together with the
reference (or command), are presented in Figures 2 and 3.
These figures show the responses with several step reference
inputs.The disturbance is𝑤 = [1, 1, 1, 1]

𝑇
⋅ 𝛿(𝑡 − 2), a burst at

𝑡 = 2 s.
From the simulation results, it is clear that the output

tracks the desired command asymptotically with small tran-
sient errors, and the zero dynamics remain stable for all the
simulated interval.
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Figure 3: Time history of system output 𝑦

2
(the roll angle, 𝜙), ref-

erence 𝑦

𝑟2
, and control input 𝑢

2
.

5. Conclusion

Wepropose a two-level adaptive control scheme for nonlinear
systems, such as the aircraft, which are MIMO and suffer
from nonminimumphase phenomena.The control scheme is
composed of an inner-level adaptive fuzzy PD control law and
an outer-level supervisory control law. Importantly, the outer-
level controller of the two-level scheme is designed based on
a fuzzy model taking nonminimum phase phenomena and
modeling error explicitly into account. Special care is taken
of the nonminimum phase fuzzy subsets by restricting the
magnitude of parameters in the singular-value decomposi-
tion operation.

The control strategy is much simpler and applicable to
general MIMO, nonlinear, and nonminimum phase systems
when compared with [3–5]. Simulation results of the appli-
cation of the proposed control scheme on a five-degree-of-
freedom nonlinear aircraft model verify its effectiveness.

Appendix

Derivation of the Condition of (17)

Consider

𝐽 = ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod] ⋅ 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) − 𝑒 (𝑡

𝑓
)

𝑇

⋅ 𝑃

⋅ 𝑒 (𝑡

𝑓
) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓 (
0)

𝑇
⋅

̃

𝐴

𝑓 (
0)) − 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(𝑡

𝑓
)

𝑇

⋅

̃

𝐴

𝑓
(𝑡

𝑓
)) + ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄

+ 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod ⋅ 𝑒mod + ̇𝑒 (𝑡)

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ ̇𝑒 (𝑡) + 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇

⋅

̃

𝐴

𝑓
(𝑡)) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))] 𝑑𝑡

≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0))

+ ∫

𝑡𝑓

0

{𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2

⋅ 𝑒

𝑇

mod ⋅ 𝑒mod + [𝛼 ⋅ 𝑒 (𝑡) + ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod]
𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [𝛼 ⋅ 𝑒 (𝑡)

+ ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod] + 𝛾

−1

𝑓

⋅ trace (

̇

̃

𝐴

𝑓 (
𝑡)

𝑇
⋅

̃

𝐴

𝑓 (
𝑡)) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓 (
𝑡)

𝑇

⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) + ∫

𝑡𝑓

0

{𝑒 (𝑡)

𝑇
⋅ [𝛼

𝑇
⋅ 𝑃

+ 𝑃 ⋅ 𝛼 + 𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃] ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod + [ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃

⋅ 𝑒 (𝑡) + 𝑒mod] + 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̃

𝐴

𝑓
(𝑡))

+ 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 < 𝑒 (0)

𝑇

⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0))

+ ∫

𝑡𝑓

0

{−𝜌

−2
𝑒 (𝑡)

𝑇
⋅ 𝑃

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod ⋅ 𝑒mod

+ 𝑒

𝑇

mod ⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝑒mod + [ℎ

𝑓
(𝑦)

⋅

̃

𝐴

𝑓
(𝑡)]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡)

+ 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̃

𝐴

𝑓
(𝑡)) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃

⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) − ∫

𝑡𝑓

0

[𝜌

⋅ 𝑒mod − 𝜌

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡)]

𝑇

⋅ [𝜌 ⋅ 𝑒mod − 𝜌

−1
⋅ 𝑃

⋅ 𝑒 (𝑡)] 𝑑𝑡 ≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) .

(A.1)

This completes the proof.
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July 2013.

[8] V.Dobrokhodov, E. Xargay,N.Hovakimyan, I. Kaminer, C.Cao,
and I.M.Gregory, “Multicriteria analysis of an L1 adaptive flight
control system,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering,
vol. 227, no. 4, pp. 413–427, 2013.

[9] L. Benvenuti, M. D. Di Benedetto, and J. W. Grizzle, “Approx-
imate output tracking for nonlinear non-minimum phase sys-
tems with an application to flight control,” International Journal
of Robust and Nonlinear Control, vol. 4, no. 3, pp. 397–414, 1994.

[10] A. Isidori and C. I. Byrnes, “Output regulation of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 35, no.
2, pp. 131–140, 1990.

[11] S. A. Al-Hiddabi, “Design of a flight control system for a non-
minimumphase 5DOFaircraftmodel,” inProceedings of the 11th
Mediterranean Conference on Control and Automation (MED
’03), pp. 18–20, Rhodes Island, Greece, June 2003.

[12] Y.-Z. Chang and Z.-R. Tsai, “Supervised adaptive control of
unknownnonlinear systems using fuzzily blended time-varying

canonical model,” in New Trends in Applied Artificial Intelli-
gence, vol. 4570 of Lecture Notes in Computer Science, pp. 464–
472, Springer, Berlin, Germany, 2007.

[13] Q. Gao, G. Feng, Y. Wang, and J. Qiu, “Universal fuzzy control-
lers based on generalized T-S fuzzy models,” Fuzzy Sets and
Systems, vol. 201, pp. 55–70, 2012.

[14] E. P. Klement and R. Mesiar, “A concept of universal fuzzy inte-
grals,” in Proceedings of the Annual Meeting of the North Amer-
ican Fuzzy Information Processing Society (NAFIPS ’12), pp. 1–4,
Berkeley, Calif, USA, August 2012.

[15] Q. Gao, X.-J. Zeng, G. Feng, and Y. Wang, “Universal fuzzy
models anduniversal fuzzy controllers based on generalizedT-S
fuzzy models,” in Proceedings of the IEEE International Confer-
ence on Fuzzy Systems (FUZZ ’12), pp. 1–6, Brisbane, Australia,
June 2012.

[16] S. S. Sastry and A. Isidori, “Adaptive control of linearizable sys-
tems,” IEEE Transactions on Automatic Control, vol. 34, no. 11,
pp. 1123–1131, 1989.

[17] H.-J. Uang and B.-S. Chen, “Robust adaptive optimal tracking
design for uncertain missile systems: a fuzzy approach,” Fuzzy
Sets and Systems, vol. 126, no. 1, pp. 63–87, 2002.

[18] A. Stoorvogel,TheH
∞
Control Problem:A StateApproach, Pren-

tice-Hall, Englewood Cliffs, NJ, USA, 1992.
[19] T. Basar and G. J. Olsder, Dynamic Noncooperative Game

Theory, Academic Press, London, UK, 1982.
[20] I. Rhee and J. L. Speyer, “A game theoretic approach to a finite-

time disturbance attenuation problem,” IEEE Transactions on
Automatic Control, vol. 36, no. 9, pp. 1021–1032, 1991.
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This paper investigates the synchronization and antisynchronization for a class of chaotic system. Firstly, a necessary and sufficient
condition is proposed to synchronize and antisynchronization simultaneously for the chaotic systems. Secondly, two methods are
obtained to realize coexistence of synchronization and antisynchronization in the chaotic systems, and the corresponding adaptive
controllers are also given. Finally, two numerical examples with simulation verify the correctness and effectiveness of the obtained
results.

1. Introduction

Since Lorenz firstly found the classical chaotic attractor in
1963 [1], as a most fascinating phenomenon in nonlinear
dynamical system, chaos has been intensively studied over
the past few decades; see [2, 3] and the references therein.
It is well known that Pecora and Carroll firstly investigated
the synchronization problem of chaotic systems in 1990 [4],
and Ott et al. firstly presented a method to control chaotic
systems successfully in 1990 in [5]. From then on, chaos
control and chaos synchronization have received a great
deal of attention in the area of nonlinear control as the
significance of these two problems in both academic research
and practical applications, and many important results were
obtained; please refer to [6–11].

Up to date, several types of typical synchronization have
been identified such as complete synchronization (CS), phase
synchronization (PS), lag synchronization (LS), generalized
synchronization (GS), anti-phase synchronization (AS), and
projective synchronization (PS), and a variety of works have
been done about the above problems; see [6, 7, 12–16] and
the references therein. It is well known that the master
system synchronizes the slave system which is equivalent
to the error system that is asymptotically stable. That is to
say, chaos synchronization is equivalent to the error system
which is asymptotically stable. Similarly, the master system
antisynchronizes the slave system which is equivalent to

the sum system that is also asymptotically stable. From the
view of control theory [17], in order to design a simple and
physical controller, the following condition is necessary; that
is, 𝑒 = 0 is an equilibriumpoint of the unforced nominal error
system ̇𝑒 = 𝑓(𝑦) − 𝑓(𝑥), �̇� = 𝑓(𝑥), where 𝑒 = 𝑦 − 𝑥, and
𝐸 = 0 is also an equilibrium point of the unforced nominal
sum system �̇� = 𝑓(𝑦) + 𝑓(𝑥), �̇� = 𝑓(𝑥), where 𝐸 = 𝑦 + 𝑥.
Obviously, 𝑒 = 0, that is, 𝑦 = 𝑥, is an equilibrium point
of the error system ̇𝑒 = 𝑓(𝑦) − 𝑓(𝑥). Whereas, 𝐸 = 0,
that is, 𝑦 = −𝑥, is an equilibrium point of the error system
�̇� = 𝑓(𝑦) + 𝑓(𝑥) if and only if 𝑓(−𝑥) = −𝑓(𝑥). Thus,
the antisynchronization problem is more complex than the
synchronization problem. However, this necessary condition
is not considered in the most of the existing works on
antisynchronization of chaotic systems [14, 15]. Although
the authors have solved the antisynchronization of chaotic
systems successfully, the controllers that have been obtained
are complex; that is, some terms in those controllers are
needed to counteract the redundant terms which make 𝐸 = 0
not the equilibrium point of the sum system �̇� = 𝑓(𝑦) +

𝑓(𝑥). For example, 𝑥
2
𝑧
2
+ 𝑥
1
𝑧
1
in 𝑢
2
of (14) counteracts

the redundant term −𝑥
2
𝑧
2
− 𝑥
1
𝑧
1
in error system (13), and

−𝑥
1
𝑦
1
−𝑥
2
𝑦
2
in 𝑢
3
of (14) also does; for details please see [15].

It should be pointed out that most of the existing works
focus on investigating the same kind synchronization in a
given chaotic system; that is, all the states of the slave system
have the same kind synchronization to the corresponding
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states of the master system. For example, when we say
that two systems are synchronized (or antisynchronized,
or lagsynchronized, or something else) with each other, it
means that each pair of the states between the interactive
systems is complete synchronous (or antisynchronous, or
something else). In [18], the authors firstly pointed out the
coexistence and switching of anticipating synchronization
and lag synchronization in an optical system. From then
on, some important results have been obtained; see [19,
20]. However, there are no results which can give some
conditions or algorithms to select what variables in themaster
chaotic system which can synchronize or antisynchronize
the corresponding variables in the slave chaotic systems
have been published so far. Therefore, the coexistence of
synchronization and antisynchronization of a class of chaotic
or hyperchaotic systems needs further research.

Motivated by the above two reasons, we investigate
the synchronization and antisynchronization for a class of
chaotic systems in this paper. Firstly, for a class of chaotic
systems, we obtain a necessary and sufficient condition
with which the master system can synchronize and antisyn-
chronize the slave system simultaneously. Secondly, we give
two methods to realize coexistence of synchronization and
antisynchronization in the chaotic systems and design the
corresponding adaptive controllers. Finally, two numerical
exampleswith simulation verify the correctness and effective-
ness of the obtained results.

2. Preliminary Knowledge

This paper studies the synchronization and antisynchro-
nization for a class of chaotic systems by adaptive control
method. In order to develop this paper, some assumption and
definitions are introduced firstly.

Assumption 1 (see [17]). 𝑥
𝑒
= 0 is an equilibrium of the

nonlinear system �̇� = 𝑓(𝑥); that is, 𝑓(𝑥
𝑒
) = 0.

Remark 2. Assumption 1 is a basic assumption of the system
control theory. Without loss of generality, if 𝑥

𝑒
̸= 0, we can

obtain a new system ̇𝑦 = 𝑓(𝑦+𝑥
𝑒
)whose equilibrium is 𝑦

𝑒
=

0 by making a coordinate transform 𝑦 = 𝑥 − 𝑥
𝑒
.

Definition 3 (see [12]). Consider the following chaotic sys-
tem:

�̇� = 𝑓 (𝑥) , (1)

where 𝑥 ∈ R𝑛 is the state and 𝑓(𝑥) is a smooth nonlinear
vector function.

Let system (1) be the master system; then the correspond-
ing slave system with controller 𝑢 is given as

̇𝑦 = 𝑓 (𝑦) + 𝑢, (2)

where 𝑦 ∈ R𝑛 is the state and 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇 is the

controller to be designed.
Let 𝑒 = 𝑦 − 𝑥, and the error system is described as

̇𝑒 = 𝑓 (𝑦) − 𝑓 (𝑥) + 𝑢 = 𝐹 (𝑥, 𝑒) + 𝑢. (3)

We call master chaotic system (1) and slave system (2) reach
complete synchronization if lim

𝑡→∞
‖𝑒(𝑡)‖ = 0.

Definition 4 (see [14]). Consider master system (1) and slave
system (2), let 𝐸 = 𝑦 + 𝑥, and the sum system is described as

�̇� = 𝑓 (𝑦) + 𝑓 (𝑥) + 𝑢 = 𝐺 (𝑥, 𝐸) + 𝑢. (4)

We say master system (1) and slave (2) get antisynchroniza-
tion if lim

𝑡→∞
‖𝐸(𝑡)‖ = 0.

Definition 5 (see [21]). Consider master system (1) and slave
system (2). If error system (3) and sum system (4) can realize
stabilization under the controllers 𝑢 = 𝐾(𝑒) and 𝑢 = 𝐾(𝐸),
respectively, where 𝐾(, ) is a smooth function, we say master
system (1) synchronizes and antisynchronizes slave system (2)
simultaneously; that is, slave system (1) can synchronize and
antisynchronize slave system (2) using a controller with the
same form.

Definition 6 (see [18]). Consider master system (1) and slave
system (2). If there exists a controller 𝑢 satisfying lim

𝑡→∞
𝑒
𝑖
=

lim
𝑡→∞

𝑥
𝑖
− 𝑦
𝑖
= 0 and lim

𝑡→∞
𝐸
𝑗
= lim

𝑡→∞
𝑥
𝑗
+ 𝑦
𝑗
= 0,

where 𝑖 ̸= 𝑗, and 𝑖, 𝑗 ∈ Λ = {1, 2, . . . , 𝑛}, we say master
system (1) and slave system (2) can realize the coexistence of
synchronization and antisynchronization.That is to say, some
variables (𝑒

𝑖
) get synchronization, while some variables (𝐸

𝑗
)

realize antisynchronization.

With the development of this paper, we introduce our
previous result which can make the error system or the sum
system reach stabilization.

Lemma 7 (see [13]). Consider error system (3). If 𝑒
𝑖
= 0 and

the remainder error system ̇𝑒
𝑘
= 𝐹
𝑘
(𝑥, 0, 𝑒

𝑘
) is asymptotically

stable, then the controlled error system is given as ̇𝑒
𝑖
= 𝐹
𝑖
(𝑥, 𝑒)+

𝑘
1
𝑒
𝑖
, and ̇𝑒

𝑘
= 𝐹
𝑘
(𝑥, 𝑒), where 𝑖 ̸= 𝑘, 𝑖, 𝑘 ∈ Λ, and the feedback

𝑘
1
is updated according to the following update law:

̇
𝑘
1
= −𝛾∑

𝑖∈Λ

𝑒
2

𝑖
. (5)

Similarly, for sum system (4), if 𝐸
𝑗
= 0 and the remainder

sum system �̇�
𝑙
= 𝐺
𝑙
(𝑥, 0, 𝐸

𝑙
) is asymptotically stable, where

𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ Λ, then the controlled sum system is given as
�̇�
𝑗
= 𝐺
𝑗
(𝑥, 𝐸) + 𝑘

1
𝐸
𝑗
, and �̇�

𝑙
= 𝐺
𝑙
(𝑥, 𝐸), and the feedback 𝑘

1

is updated according to the following update law:

̇
𝑘
1
= −𝛾∑

𝑗∈Λ

𝐸
2

𝑗
, (6)

where 𝛾 is a positive constant.

3. Main Results

In this section, we firstly give a necessary and sufficient
condition for a class of chaotic systems, by which we can
determine whether master system (1) and slave system (2)
realize synchronization and antisynchronization simultane-
ously or not.
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Theorem 8. Master system (1) and slave system (2) realize
synchronization and antisynchronization simultaneously if
and only if 𝑓(−𝑥) = −𝑓(𝑥); that is, 𝑓(𝑥) is the odd function.

(⇒) Since 𝑓(−𝑥) = −𝑓(𝑥), obviously, 𝑒 = 0 and 𝐸 = 0
are the equilibria of unforced nominal error system (3)
and sum system (4), that is, 𝑢 = 0, respectively. Then,
if the controller 𝑢 = 𝐾(𝑒) can stabilize error system (3),
sum system (4) can be stabilized by the controller 𝑢 =
𝐾(𝐸).

(⇐) If there exist the controllers 𝑢 = 𝐾(𝑒) and 𝑢 =

𝐾(𝐸) stabilizing error systems (3) and (4), respectively,
we can obtain that 𝑒 = 0 and 𝐸 = 0 are the equilibria of
unforced nominal error system (3) and sum system (4),
respectively. Then, 𝑓(−𝑥) = −𝑓(𝑥).

Remark 9. Although, the problem of synchronization and
antisynchronization simultaneously of 4-dimension hyper-
chaotic system has been investigated in [22], no sufficient
or necessary and sufficient condition for the general chaotic
systems was proposed. Theorem 8 gives a necessary and
sufficient condition for a class of chaotic systems.

If 𝑓(𝑥) is not an odd function, master system (1)
and slave system (2) cannot realize synchronization and
antisynchronization simultaneously according toTheorem 8.
Under this condition, they can reach the coexistence of
synchronization and antisynchronization. Then, we give two
methods to realize the coexistence of synchronization and
antisynchronization for a class of chaotic systems.

Firstly, consider master system (1) and slave system (2),
and let

𝑒 = 𝑦 − 𝛼𝑥, (7)

where 𝑥,𝑦, and 𝑒 ∈ R𝑛 and𝛼 = Diag(𝛼
1
, 𝛼
2
, 𝛼
3
, . . . , 𝛼

𝑛
), |𝛼
𝑖
| =

1, 𝑖 ∈ Λ. The error system is given as

̇𝑒 = 𝑓 (𝑒 + 𝛼𝑥) − 𝑓 (𝑥) + 𝑢. (8)

Remark 10. Obviously, if 𝛼
𝑖
= 1, 𝑖 ∈ Λ, then master system

(1) and slave system (2) reach complete synchronization. If
some 𝛼

𝑖
= −1, while some 𝛼

𝑗
= 1, 𝑖 ̸= 𝑗 ∈ Λ, we say

master system (1) and slave system (2) realize the coexistence
of synchronization and antisynchronization.

According to Assumption 1, we give the following conclu-
sion.

Theorem 11. Consider unforced nominal error system (8); that
is, 𝑢 = 0. If 𝛼 satisfies the condition 𝑓(𝛼𝑥) − 𝑓(𝑥) = 0

and at least one 𝛼
𝑖
= −1 and one 𝛼

𝑗
= 1, where 𝑖, 𝑗 ∈ Λ,

master system (1) and slave system (2) can reach coexistence of
synchronization and antisynchronization.

Proof. According to Assumption 1, 𝑒 = 0 should be the
equilibrium of unforced nominal error system (8), and thus
𝑓(𝛼𝑥) − 𝑓(𝑥) = 0. And there exist at least one 𝛼

𝑖
= −1

and one 𝛼
𝑗
= 1, where 𝑖, 𝑗 ∈ Λ, and master system (1) and

slave system (2) can reach coexistence of synchronization and
antisynchronization according to Definition 6.

Remark 12. Theorem 11 gives a condition which can deter-
mine what variables in master system (1) can synchronize
the corresponding variables in slave system (2), while other
variables in master system (1) can antisynchronize the corre-
sponding variables in slave system (2).

Inspired by the results in [16], we give another method to
realize coexistence of synchronization and antisynchroniza-
tion for a class of chaotic systems. First of all, master system
(1) is rewritten as

�̇� = (

�̇�

�̇�

) = 𝑓 (𝑥) = (

𝑀(𝑧)𝑤

𝑁 (𝑤, 𝑧)

) , (9)

where 𝑤 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟
)
𝑇, 𝑧 = (𝑥

𝑟+1
, 𝑥
𝑟+2
, . . . , 𝑥

𝑛
), if

𝑁(−𝑤, 𝑧) = 𝑁(𝑤, 𝑧); that is,𝑁(𝑤, 𝑧) is an even function, and
we can get the following conclusion.

Theorem 13. Consider master system (1) and slave system (2),
let 𝑥 = (𝑤

𝑚
, 𝑧
𝑚
)
𝑇
∈ R𝑛, 𝑤

𝑚
∈ R𝑟, 𝑧

𝑚
∈ R𝑛−𝑟, and master

system (1) can be written as

(

�̇�
𝑚

�̇�
𝑚

) = (

𝑀(𝑧
𝑚
) 𝑤
𝑚

𝑁(𝑤
𝑚
, 𝑧
𝑚
)

) . (10)

The slave system is described as

(

�̇�
𝑠

�̇�
𝑠

) = (

𝑀(𝑧
𝑠
) 𝑤
𝑠

𝑁(𝑤
𝑠
, 𝑧
𝑠
)

) + 𝑢, (11)

where 𝑦 = (𝑤
𝑠
, 𝑧
𝑠
)
𝑇
∈ R𝑛, 𝑤

𝑠
∈ R𝑟, 𝑧

𝑠
∈ R𝑛−𝑟, 𝑢 = (𝑢

𝑤
, 𝑢
𝑧
)
𝑇

is the controller to be designed. If 𝑁(−𝑤, 𝑧) = 𝑁(𝑤, 𝑧),
master system (1) and slave system (2) realize the coexistence
of synchronization and antisynchronization.

Proof. Let 𝐸 = 𝑤
𝑚
+ 𝑤
𝑠
, 𝑒 = 𝑧

𝑠
− 𝑧
𝑚
, and then

�̇� = �̇�
𝑚
+ �̇�
𝑠
= 𝑀(𝑧

𝑚
) 𝑤
𝑚
+𝑀(𝑧

𝑠
) 𝑤
𝑠
+ 𝑢
𝑤
, (12)

̇𝑒 = �̇�
𝑠
− �̇�
𝑚
= 𝑁 (𝑤

𝑠
, 𝑧
𝑠
) − 𝑁 (𝑤

𝑚
, 𝑧
𝑚
) + 𝑢
𝑧
. (13)

Obviously, if 𝑁(−𝑤, 𝑧) = 𝑁(𝑤, 𝑧), then 𝐸 = 0, 𝑒 = 0, are
the equilibria of unforced nominal sum system (12) and error
system (13), respectively. According to the nonlinear control
theory, the controller designed can reach the coexistence of
synchronization and antisynchronization of system (1) and
(2).

4. Illustrative Example

In this section, we give two numerical examples to illustrate
how to use the results we obtained in this paper to realize the
synchronization and antisynchronization simultaneously and
the coexistence of synchronization and antisynchronization,
respectively.
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Example 14. Consider the following chaotic system [23]:

�̇�
1
= 𝑝𝑥
2
−

2𝑝

7

𝑥
3

1
+

𝑝

7

𝑥
1
,

�̇�
2
= 𝑥
1
− 𝑥
2
+ 𝑥
3
,

�̇�
3
= −𝑞𝑥

2
,

(14)

where 𝑝 = 10 and 𝑞 = 100/7, and system (14) is chaotic.

Obviously, system (14) satisfies Theorem 8; thus this sys-
tem can realize the synchronization and antisynchronization
simultaneously.

Let system (14) be the master system, and then the slave
system is as follows:

̇𝑦
1
= 𝑝𝑦
2
−

2𝑝

7

𝑦
3

1
+

𝑝

7

𝑦
1
+ 𝑢
1
,

̇𝑦
2
= 𝑦
1
− 𝑦
2
+ 𝑦
3
+ 𝑢
2
,

̇𝑦
3
= −𝑞𝑦

2
+ 𝑢
3
,

(15)

where 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
)
𝑇 is the controller to be designed.

Let 𝑒 = 𝑦−𝑥, and if 𝑒
1
= 0, the following remainder error

system

̇𝑒
2
= −𝑒
2
+ 𝑒
3
,

̇𝑒
3
= −𝑞𝑒

2

(16)

is asymptotically stable. According to Lemma 7, the con-
troller is designed as 𝑢 = (𝑘

1
𝑒
1
, 0, 0)
𝑇, and ̇

𝑘
1
= −𝑒
2

1
.

By the similar procedure, the controller 𝑢 = (𝑘
1
𝐸
1
, 0, 0)
𝑇

can make master system (14) antisynchronizes slave system
(15), where ̇

𝑘
1
= −𝐸
2

1
.

Next, we give numerical simulations. The initial values
of master system (14) and slave system (15) are 𝑥(0) =

(1, −5, −4)
𝑇, 𝑦(0) = (−2, 3, 1)

𝑇, and 𝑘
1
(0) = −1. The

simulation results are given in Figures 1 and 2, respectively.

Remark 15. From the results of numerical simulation,
Figure 1 shows that system (14) and (15) reach synchro-
nization, while Figure 2 shows that system (14) and (15)
realize antisynchronization. Thus, the Chua chaotic system
can realize the synchronization and antisynchronization
simultaneously.

Example 16. Consider the following chaotic system [24]:

�̇�
1
= (25𝛽 + 10) (𝑥

2
− 𝑥
1
) ,

�̇�
2
= (28 − 35𝛽) 𝑥

1
+ (29𝛼 − 1) 𝑥

2
− 𝑥
1
𝑥
3
,

�̇�
3
= −

1

3

(8 + 𝛽) 𝑥
3
+ 𝑥
1
𝑥
2
.

(17)

The above system is called unified chaotic system, where 𝛽 ∈
[0, 1]. If 𝛽 ∈ [0, 0.8), the system is generalized Lorenz system;
if 𝛽 ∈ (0.8, 1], the system is generalized Chen system.
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Figure 1: The response of the error system.
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Figure 2: The response of the sum system.

Let system (17) be the master system, and then the slave
system is described as

̇𝑦
1
= (25𝛽 + 10) (𝑦

2
− 𝑦
1
) + 𝑢
1
,

̇𝑦
2
= (28 − 35𝛽) 𝑦

1
+ (29𝛽 − 1) 𝑦

2
− 𝑦
1
𝑦
3
+ 𝑢
2
,

̇𝑦
3
= −

1

3

(8 + 𝛽) 𝑦
3
+ 𝑦
1
𝑦
2
+ 𝑢
3
.

(18)
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Let 𝑒
𝑖
= 𝑦
𝑖
− 𝛼
𝑖
𝑥
𝑖
, where |𝛼

𝑖
| = 1, 𝑖 = 1, 2, 3. Then the

unforced nominal error system is described as follows:

̇𝑒
1
= (25𝛽 + 10) ((𝑦

2
− 𝛼
1
𝑥
2
) − 𝑒
1
) ,

̇𝑒
2
= (28 − 35𝛽) 𝑒

1
+ (29𝛽 − 1) 𝑒

2
− 𝑒
1
𝑒
3
− 𝛼
3
𝑥
3
𝑒
1

+ 𝛼
1
𝑥
1
𝑒
3
+ (𝛼
1
𝛼
3
− 𝛼
2
) 𝑥
1
𝑥
3
,

̇𝑒
3
= 𝑒
1
𝑒
2
+ 𝛼
1
𝑥
2
𝑒
1
− 𝛼
2
𝑥
1
𝑒
2
+ (𝛼
1
𝛼
2
− 𝛼
3
) 𝑥
1
𝑥
2

−

8 + 𝛽

3

𝑒
3
.

(19)

According toAssumption 1, 𝑒 = 0 is the equilibriumof the
above unforced nominal error system (19), and the following
algebraical equations

𝛼
2
= 𝛼
1
,

𝛼
1
𝛼
3
= 𝛼
2
,

𝛼
1
𝛼
2
= 𝛼
3

(20)

should be satisfied.
By solving (20), we obtain two solutions: 𝛼

𝑖
= 1, 𝑖 =

1, 2, 3, or 𝛼
1
= 𝛼
2
= −1 and 𝛼

3
= 1. If 𝛼

𝑖
= 1, 𝑖 =

1, 2, 3, which implies master system (17) and slave system
(18) realize complete synchronization. If 𝛼

1
= 𝛼
2
= −1,

𝛼
3
= 1, which implies that the first two variables of master

system (17) antisynchronize the corresponding variables of
slave system (18), while the third variable of master system
(17) synchronizes the corresponding variables of slave system
(18); that is, master system (17) and slave system (18) realize
the coexistence of synchronization and antisynchronization.

Select 𝛼
1
= 𝛼
2
= −1, 𝛼

3
= 1, and unforced nominal sum

and error system (19) is given as

�̇�
1
= (25𝛽 + 10) (𝐸

2
− 𝐸
1
) ,

�̇�
2
= (28 − 35𝛽) 𝐸

1
+ (29𝛽 − 1) 𝐸

2
− 𝐸
1
𝑒
3
− 𝑥
3
𝐸
1

− 𝑥
1
𝑒
3
,

̇𝑒
3
= 𝐸
1
𝐸
2
− 𝑥
2
𝐸
1
+ 𝑥
1
𝐸
2
−

8 + 𝛽

3

𝑒
3
.

(21)

It is easy to obtain that if 𝐸
2
= 0, then remainder sum and

error system (21)

�̇�
1
= − (25𝛽 + 10) 𝐸

1
,

̇𝑒
3
= −𝑥
2
𝐸
1
−

8 + 𝛽

3

𝑒
3

(22)

is asymptotically stable.

According to Lemma 7, forced sum and error system (21)
is given as

�̇�
1
= (25𝛽 + 10) (𝐸

2
− 𝐸
1
) ,

�̇�
2
= (28 − 35𝛽) 𝐸

1
+ (29𝛽 − 1) 𝐸

2
− 𝐸
1
𝑒
3
− 𝑥
3
𝐸
1

− 𝑥
1
𝑒
3
+ 𝑘
1
𝐸
2
,

̇𝑒
3
= 𝐸
1
𝐸
2
− 𝑥
2
𝐸
1
+ 𝑥
1
𝐸
2
−

8 + 𝛽

3

𝑒
3
;

(23)

that is, the controller is 𝑢 = (0, 𝑘
1
𝐸
2
, 0)
𝑇 and ̇

𝑘
1
= −𝐸
2

2
.

Next, for Example 16, we can obtain the same conclusion
by usingTheorem 13.

Let 𝑤
𝑚
= (𝑥
1
, 𝑥
2
)
𝑇, 𝑧
𝑚
= 𝑥
3
, and master chaotic system

(17) is rewritten as

�̇�
𝑚
= 𝑀(𝑧

𝑚
) 𝑢
𝑚
= (

− (25𝛼 + 10) 0

0 25𝛼 + 10

)𝑤
𝑚
,

�̇�
𝑚
= 𝑁 (𝑤

𝑚
, 𝑧
𝑚
) = −

1

3

(8 + 𝛼) 𝑧
𝑚
+ ℎ (𝑤

𝑚
) ,

(24)

where ℎ(𝑤
𝑚
) = 𝑥

1
𝑥
2
. Slave chaotic system (18) is also

rewritten as

�̇�
𝑠
= 𝑀(𝑧

𝑠
) 𝑢
𝑠

= (

− (25𝛼 + 10) 0

0 25𝛼 + 10

)𝑤
𝑠
+ 𝑢
𝑤
,

�̇�
𝑠
= 𝑁 (𝑤

𝑠
, 𝑧
𝑠
) = −

1

3

(8 + 𝛼) 𝑧
𝑠
+ ℎ (𝑤

𝑠
) + 𝑢
𝑠
,

(25)

where ℎ(𝑤
𝑠
) = 𝑦
1
𝑦
2
.

It is easy to see that master system (24) and slave system
(25) satisfy the conditions of Theorem 13. Therefore, master
system (24) and slave system (25) realize the coexistence of
synchronization and antisynchronization.

Next, we give numerical simulations. The initial values
of master system (17) and slave system (18) are 𝑥(0) =

(−2, 3, 4)
𝑇,𝑦(0) = (4, −1, −2)𝑇, 𝛽 = 0.75, and 𝑘

1
(0) = −1.The

simulation results are given in Figures 3 and 4, respectively.

Remark 17. From the results of numerical simulation,
Figure 3 shows that sum and error system (23) is asymptot-
ically stable, while Figure 4 shows that master system (17)
and slave (18) realize coexistence of synchronization and
antisynchronization.

5. Conclusions

In this paper, we have investigated the synchronization and
antisynchronization for a class of chaotic systems. Firstly, a
necessary and sufficient condition has been proposed, with
which the master system can synchronize and antisynchro-
nize the slave system simultaneously. Secondly, two methods
have been obtained to realize coexistence of synchronization
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Figure 3: The response of sum and error system.
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Figure 4: The response of master and slave system.

and antisynchronization for a class of chaotic systems, and the
corresponding adaptive controllers have been also given. Two
numerical examples with simulation have been used to verify
the correctness and effectiveness of the obtained results.
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[2] O. E. Rössler, “An equation for continuous chaos,”Physics Letters
A, vol. 57, no. 5, pp. 397–398, 1976.

[3] J.-M. Grandmont, “On endogenous competitive business
cycles,” Econometrica, vol. 53, no. 5, pp. 995–1045, 1985.

[4] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[5] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical
Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.

[6] D. Auerbach, C. Grebogi, E. Ott, and J. A. Yorke, “Controlling
chaos in high-dimensional systems,” Physical Review Letters,
vol. 69, no. 24, pp. 3479–3482, 1992.

[7] J. Sieber, O. E. Omel’Chenko, and M. Wolfrum, “Controlling
unstable chaos: stabilizing chimera states by feedback,” Physical
Review Letters, vol. 112, no. 5, Article ID 054102, 2014.

[8] Z. Q. Zhang, S. Y. Xu, and B. Y. Zhang, “Asymptotic tracking
control of uncertain nonlinear systems with unknown actuator
nonlinearity,” IEEE Transactions on Automatic Control, vol. 59,
no. 5, pp. 1336–1341, 2014.

[9] Z. Q. Zhang, S. Y. Xu, and B. Y. Zhang, “Exact tracking control
of nonlinear systems with time delays and dead-zone input,”
Automatica, vol. 52, pp. 272–276, 2015.

[10] Z. Q. Zhang and S. Y. Xu, “Observer design for uncertain
nonlinear systems with unmodeled dynamics,”Automatica, vol.
51, pp. 80–84, 2015.

[11] Z. Zhang and X.-J. Xie, “Asymptotic tracking control of uncer-
tain nonlinear systemswith unknown actuator nonlinearity and
unknown gain signs,” International Journal of Control, vol. 87,
no. 11, pp. 2294–2311, 2014.

[12] D. Huang, “Simple adaptive-feedback controller for identical
chaos synchronization,” Physical Review E, vol. 71, no. 3, Article
ID 037203, 2005.

[13] R. Guo, “A simple adaptive controller for chaos and hyperchaos
synchronization,” Physics Letters A, vol. 372, no. 34, pp. 5593–
5597, 2008.

[14] S. Hammami, M. Benrejeb, M. Feki, and P. Borne, “Feedback
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This paper presents an adaptive neural control for the longitudinal dynamics of a morphing aircraft. Based on the functional
decomposition, it is reasonable to decompose the longitudinal dynamics into velocity and altitude subsystems. As for the velocity
subsystem, the adaptive control is proposed via dynamic inversion method using neural network. To deal with input constraints,
the additional compensation system is employed to help engine recover from input saturation rapidly. The highlight is that high
order integral chained differentiator is used to estimate the newly defined variables and an adaptive neural controller is designed for
the altitude subsystem where only one neural network is employed to approximate the lumped uncertain nonlinearity.The altitude
subsystem controller is considerably simpler than the ones based on backstepping. It is proved using Lyapunov stability theory
that the proposed control law can ensure that all the tracking error converges to an arbitrarily small neighborhood around zero.
Numerical simulation study demonstrates the effectiveness of the proposed strategy, during the morphing process, in spite of some
uncertain system nonlinearity.

1. Introduction

With the development of morphing wing technology, the
flight performance of an aircraft can be improved according
to the current flight conditions [1–3]. The morphing aircraft
are the flight vehicles that change their shape to either
effectuate a change in mission or provide control authority
for maneuvering [4, 5], without the use of discrete control
surfaces or seams. Aircraft with morphing capability exhibit
the distinct advantages of being able to fulfill multiple types
of missions and to perform extreme maneuvers not possible
with conventional aircraft [6, 7].

The field of morphing aircraft research is composed of
a large array of interdisciplinary studies, including wing
structure, actuation systems, aerodynamic modeling, non-
rigid dynamics, and flight control [8]. A number of studies
have focused on optimization of the actuator locations in the
morphing structure units [9–11]. Other relative researchwork
that involves the aeroelastics analysis is presented in [12].
The importance of the inertial forces and moments is studied
in [13], with the goal of reducing the dynamics that must

be dealt with in the flight control design. A methodology
which is suitable for numerical calculation of the dynamic
loads for a morphing aircraft is presented in [14]. In [15],
linear parameter varying modeling is proposed for a folding
wing morphing aircraft during the wing morphing process,
whereas the longitudinal dynamic responses are numerically
simulated based on the quasi-steady aerodynamic assump-
tion.

Despite significant advances in the development of wing
structure, actuation systems, and dynamicmodel,muchwork
remains to be done to effectively control the morphing
aircraft. The control system of a morphing aircraft must
be capable of achieving consistent and robust performance
meanwhile maintaining stability during large variations in
the aircraft geometry, whichmay severely affect aerodynamic
forces, moments of inertia, and center of mass.

For the disturbance rejection, a pair of linear controllers
is synthesized for a linear input-varying morphing aircraft in
[16]. A simple proportional state feedback control integrated
with the eigenstructure assignment is proposed for the
span-morphing aircraft in [17]. Based on a linear parameter
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varyingmodel, self-gain scheduled𝐻
∞
controller is designed

for the wing transition process in [18]. On the basis of varying
linear parameter and classical methodology, a synthesized
multiloop controller of a morphing unmanned aerial vehicle
is formulated to guarantee a good performance subjected to
large-scale geometrical shape changes in [19].

To cope with system uncertainties, adaptive control
and neural network control techniques have been used for
decades. For a linear morphing aircraft dynamic model, an
indirect adaptive control method is designed in [6], which
comprises the receding horizon optimal control law coupled
with the modified sequential least squares parameter iden-
tification. In [20], a single network adaptive critic tracking
controller design for a morphing aircraft is studied, wherein
the set of initial weights of the neural network is determined
by using a linear system model, which requires offline
pretraining. Based on the concepts of feedback linearization,
in [21], a combination of dynamic inversion and structured
model reference adaptive control is used for the control of a
morphing air vehicle. Typically a morphing aircraft exhibits
highly nonlinear dynamics characteristics. Because of the
morphing aircraft’s design and flight condition, it is extremely
sensitive to change in physics as well as aerodynamic param-
eters. Almost all controller designs discussed above are based
on linear models. Moreover the input saturation (physical
limitation in engine) has not been considered in any work,
which usually appears inmany practical systems and severely
degrades the closed-loop performance [22].

As a powerful nonlinear technique, backstepping control
has been used for control system designs with strict-feedback
form, extensively.With conventional backstepping, a possible
issue is the explosion of complexity. This is caused by the
repeating differentiations of certain nonlinear functions. To
efficiently handle the system uncertainty in each subsys-
tem, RBFNN with the universal approximation capability
is employed in [23, 24]. Since RBFNN is used, we need
to take derivatives of those radial basis functions, which
will further lead to heavier calculation burden in each step
design. Recently, the dynamic surface control was employed
to solve this problem and many research results were pre-
sented [25, 26]. However, the determination of virtual control
terms during the backstepping design requires tedious and
complex analysis. More than one neural network is taken for
approximation whose complexity increases like the order of
the controlled backstepping design.

The motivation of this paper is to present a nonlinear
robust adaptive neural controller for the morphing aircraft
based on high order integral chained differentiator to achieve
stability in the sweeping process where both system uncer-
tainty and input restrictions are considered.The contribution
of this paper can be summarized as follows.

Firstly, a nonlinear longitudinal model is derived from a
curved-fitted model, with the center of mass position, aero-
dynamic forces, and themoments of inertia being varied with
respect to the morphing parameters. The longitudinal model
is then decomposed into altitude and velocity subsystems.

Secondly, the highlight is that the altitude subsystem
dynamics is transformed into normal-feedback formulation
and a robust adaptive neural controller using HICD is

designed where only one neural network is employed to
approximate the lumped uncertain system nonlinearity. The
controller is considerably simpler than the ones based on
backstepping which requires tedious and complex analy-
sis for their virtual control terms. This feature guarantees
that the computational burden of the algorithm can be
reduced. Moreover the algorithm is convenient for real-
time implementation on flight computers. Meanwhile, the
adaptive control is proposed for velocity subsystem and an
additional compensation system is employed to deal with
input constraints, which will help engine recover from input
saturation rapidly.

Finally, the Lyapunov synthesis based on stability analysis
is used to prove that all the signals in the closed systems
are semiglobally uniformly ultimately bounded with tracking
error converging to a close neighborhood of origin.

The rest of the paper is organized as follows: Section 2
introduces the model of the morphing aircraft and for-
mulates the normal output-feedback form of the altitude
and velocity subsystems of longitudinal dynamics of the
morphing aircraft. Section 3 briefly describes the background
theory of RBFNN. Section 4 presents the adaptive neural
controller design and the stability analysis for altitude and
velocity subsystems.The simulation results are presented and
discussed in Section 5. Section 6 gives the concluding remarks
and future works.

2. Problem Formulation

2.1. Morphing Aircraft Model. The control-oriented model of
the longitudinal dynamics of a morphing aircraft considered
in this study is based on Seigler [4, 5]. This model comprises
five state variables (𝑉, ℎ, 𝛼, 𝛾, and 𝑞) and two control inputs
(𝛿

𝑒
, 𝑇), where 𝑉 is the velocity, ℎ is the altitude, 𝛼 is angle

of attack, 𝛾 is the flight path angle (FPA), and 𝑞 is the pitch
rate; 𝛿

𝑒
and 𝑇 represent elevator deflection and thrust force,

respectively. Consider

�̇� =
(−𝐷 + 𝑇 cos𝛼 − 𝑚𝑔 sin 𝛾 + 𝐹

𝐼𝑥
)

𝑚
, (1)

ℎ̇ = 𝑉 sin 𝛾, (2)

̇𝛾 =
[𝐿 + 𝑇 sin𝛼 − 𝑚𝑔 cos 𝛾 − 𝐹

𝐼𝑘𝑧
]

(𝑚𝑉)
, (3)

�̇� =
[−𝐿 − 𝑇 sin𝛼 + 𝑚𝑔 cos 𝛾 + 𝐹

𝐼𝑧
]

(𝑚𝑉)
+ 𝑞, (4)

̇𝑞 = −

̇𝐼
𝑦
𝑞

𝐼
𝑦

+

(−𝑆
𝑥
𝑔 cos 𝜃 +𝑀

𝐴
+ 𝑇𝑍

𝑇
+𝑀

𝐼𝑦
)

𝐼
𝑦

, (5)

𝐹
𝐼𝑥
= 𝑆

𝑥
( ̇𝑞 sin𝛼 + 𝑞2 cos𝛼) + 2 ̇𝑆

𝑥
𝑞 sin𝛼 − ̈𝑆

𝑥
cos𝛼,

𝐹
𝐼𝑧
= 𝐹

𝐼𝑘𝑧

= 𝑆
𝑥
( ̇𝑞 cos𝛼 − 𝑞2 sin𝛼) + 2 ̇𝑆

𝑥
𝑞 cos𝛼 + ̈𝑆

𝑥
sin𝛼,

𝑀
𝐼𝑦
= 𝑆

𝑥
(�̇� sin𝛼 + 𝑉�̇� cos𝛼 − 𝑉𝑞 cos𝛼) ,

(6)
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where𝐷, 𝐿, and𝑀
𝐴
represent drag force, lift force, and pitch

moment, respectively;𝑚, 𝐼
𝑦
, and𝑔denote themass of aircraft,

moment of inertia about pitch axis, and gravity constant; 𝐹
𝐼𝑥
,

𝐹
𝐼𝑧
,𝐹

𝐼𝑘𝑧
, and𝑀

𝐼𝑦
represent inertial force andmoment caused

bymorphing process;𝑍
𝑇
is the position of engine in the body

axis; 𝑆
𝑥
denotes the staticmoment distributed in the body axis

of 𝑥; the related definitions are given as follows:

𝑆
𝑥
(𝜁) ≈ [2𝑚

1
𝑟
1𝑥
+ 𝑚

3
𝑟
3𝑥
] ,

𝑄 =
1

2𝜌
ℎ
𝑉2
,

𝐿 = 𝐶
𝐿
(𝜁) 𝑄𝑆

𝑤
(𝜁) ,

𝐷 = 𝐶
𝐷
(𝜁) 𝑄𝑆

𝑤
(𝜁) ,

𝑀
𝐴
= 𝐶

𝑚
(𝜁) 𝑄𝑆

𝑤
(𝜁) 𝑐

𝐴
(𝜁) ,

𝐶
𝐿
(𝜁) = 𝐶

𝐿0
(𝜁) + 𝐶

𝐿𝛼
(𝜁) 𝛼 + 𝐶

𝐿𝛿𝑒
(𝜁) 𝛿

𝑒

≈ 𝐶
𝐿0
(𝜁) + 𝐶

𝐿𝛼
(𝜁) 𝛼,

𝐶
𝐷
(𝜁) = 𝐶

𝐷0
(𝜁) + 𝐶

𝐷𝛼
(𝜁) 𝛼 + 𝐶

𝐷𝛼2
(𝜁) 𝛼

2

,

𝐶
𝑚
(𝜁) = 𝐶

𝑚0
(𝜁) + 𝐶

𝑚𝛼
(𝜁) 𝛼 + 𝐶

𝑚𝛿𝑒
(𝜁) 𝛿

𝑒

+

𝐶
𝑚𝑞
(𝜁) 𝑞𝑐

𝐴
(𝜁)

(2𝑉)
,

(7)

where 𝜁 represents the sweep angle, 𝜌
ℎ
denotes the air density,

𝑆
𝑤
is the wing surface, 𝑐

𝐴
represents the mean aerodynamic

chord, and 𝑏 is the wingspan. 𝑄 and𝑀
𝐴
denote the dynamic

pressure and pitch moment. 𝐶
𝐿
, 𝐶

𝐷
, and 𝐶

𝑚
are the total

aerodynamic lift force coefficient, drag force coefficient,
and pitching moment coefficient, respectively. 𝑚

1
and 𝑚

3

represent the mass of aircraft’s wing and body. 𝑟
1𝑥

and 𝑟
3𝑥

denote the position of aircraft’s wing and body in the aircraft-
body coordinate frame.

We assume that the engine model can be expressed as
follows [27].

(A) Engine Rate. The dynamics for the engine speed 𝑛 is
modeled by a first-order linear system with the time constant
𝜏
𝑛
and the engine speed reference signal 𝑛

𝑐
as follows:

̇𝑛 = −
𝑛

𝜏
𝑛

+
𝑛
𝑐

𝜏
𝑛

. (8)

(B)Thrust Force.The thrust force is generated by the propeller
and can be expressed with dimensionless coefficients. The
dimensionless thrust coefficient is

𝐶
𝐹𝑇
(𝐽) = 𝐶

𝐹𝑇1
+ 𝐶

𝐹𝑇2
𝐽 + 𝐶

𝐹𝑇3
𝐽
2 (9)

with the ratio 𝐽 = 𝑉
𝑇
/𝐷

𝑇
𝜋𝑛, where the diameter of the

propeller is 𝐷
𝑇
, the engine speed is 𝑛, and the airspeed is

𝑉
𝑇
. Here we assume that 𝑉

𝑇
is equal to 𝑉. The thrust force

is computed as shown below:

𝑇 = 𝜌
ℎ
𝑛
2

𝐷
2

𝑇
𝐶
𝐹𝑇
(𝐽) . (10)

Remark 1. It is important to point out that 𝑟
1𝑥
, 𝑟

3𝑥
, 𝐼

𝑦
, 𝑐

𝐴
,

𝑆
𝑤
, 𝑏, 𝐶

𝐿
, 𝐶

𝐷
, and 𝐶

𝑚
are associated with sweep angle 𝜁 in

the morphing process. Their functional relationships will be
shown later in Section 5.

2.2. System Transformation

(A) Altitude Subsystem. The tracking error of the altitude is
defined as ℎ̃ = ℎ − ℎ

𝑑
. Furthermore, the altitude command

is transformed into the desired flight path angle (FPA). The
demand of flight path angle is generated as [22]

𝛾
𝑑
= arcsin[

(−𝑘
ℎ
ℎ̃ − 𝑘

𝐼
ℎ̃ + ℎ̇

𝑑
)

𝑉
] . (11)

If 𝑘
ℎ
> 0 and 𝑘

𝐼
> 0 are chosen appropriately and the FPA is

controlled to follow 𝛾
𝑑
, then the altitude error is regulated to

zero exponentially.

Remark 2. Since the control problem considered in this paper
only takes into account cruise trajectories and does not
consider the aggressive maneuvering, the thrust 𝑇 sin𝛼 can
be neglected since it is generally much smaller than the lift. In
order to transform the altitude subsystem into strict-feedback
form, 𝐹

𝐼𝑘𝑧
in (3) is regarded as an unmodeled term.

Define 𝑋 = [𝑥
1
, 𝑥

2
, 𝑥

3
]
𝑇, 𝑥

1
= 𝛾, 𝑥

2
= 𝜃, 𝑥

3
= 𝑞, 𝜃 =

𝛼 + 𝛾, 𝑢 = 𝛿
𝑒
; the strict-feedback forms of equations of the

altitude (3)–(5) are rewritten as

�̇�
1
= 𝑓

1
(𝑥

1
) + 𝑔

1
(𝑥

1
) 𝑥

2
,

�̇�
2
= 𝑓

2
(𝑥

1
, 𝑥

2
) + 𝑔

2
(𝑥

1
, 𝑥

2
) 𝑥

3
,

�̇�
3
= 𝑓

3
(𝑥

1
, 𝑥

2
, 𝑥

3
) + 𝑔

3
(𝑥

1
, 𝑥

2
, 𝑥

3
) 𝑢,

(12)

where

𝑓
1
(𝑥

1
) = (

1

𝑚𝑉
) (𝑄𝑆

𝑤
𝐶
𝐿0
− 𝑚𝑔 cos 𝛾) ,

𝑓
2
(𝑥

1
, 𝑥

2
) = 0,

𝑔
1
(𝑥

1
) =

𝑄𝑆
𝑤
𝐶
𝐿𝛼

𝑚𝑉
,
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𝑓
3
(𝑥

1
, 𝑥

2
, 𝑥

3
) =

[𝑄𝑆
𝑤
𝑐
𝐴
(𝐶

𝑚0
+ 𝐶

𝑚𝛼
𝛼 + 𝐶

𝑚𝑞
𝑞𝑐

𝐴
/ (2𝑉)) − 𝑆

𝑥
𝑔 cos 𝜃 − ̇𝐼

𝑦
𝑞 + 𝑇𝑍

𝑇
+𝑀

𝐼𝑦
]

𝐼
𝑦

,

𝑔
2
(𝑥

1
, 𝑥

2
) = 1,

𝑔
3
(𝑥

1
, 𝑥

2
, 𝑥

3
) =

𝑄𝑆
𝑤
𝑐
𝐴
𝐶
𝑚𝛿𝑒

𝐼
𝑦

.

(13)

Assumption 3. 𝑓
1
,𝑓

3
,𝑓

𝑉
, 𝑔

1
, 𝑔

3
, and𝑔

𝑉
are unknown smooth

functions; we assume that there exist positive constants 𝑔
𝑖1
,

𝑔
𝑖2
, 𝑔

𝑉1
, and 𝑔

𝑉2
such that 𝑔

𝑖1
≥ 𝑔

𝑖
(⋅) ≥ 𝑔

𝑖2
, 𝑖 = 1, 3,

𝑔
𝑉1

≥ 𝑔
𝑉
≥ 𝑔

𝑉2
. There also exist constants 𝑔

1𝑑
and 𝑔

3𝑑

such that 𝑔
1𝑑
≥ | ̇𝑔

1
|, 𝑔

3𝑑
≥ | ̇𝑔

3
|. Meanwhile, in this paper, we

assume that all the system states can be measured and there
is no time-delay in the signal transmission.

Lemma 4 (high order integral chained differentiator [28]).
Suppose the function 𝜍(𝑡) and its first 𝑛 − 1 derivatives are
bounded. Consider the following linear system:

̇𝜍
1
= 𝜍

2

̇𝜍
2
= 𝜍

3

.

.

.

̇𝜍
𝑛
= −

𝑎
𝑓1

𝜒𝑛
(𝜍

1
− 𝜍 (𝑡)) −

𝑎
𝑓2

𝜒𝑛−1
𝜍
2
⋅ ⋅ ⋅

𝑎
𝑓𝑛

𝜒
𝜍
𝑛
,

(14)

where 𝜒 is a small positive constant and parameters 𝑎
𝑓1

to 𝑎
𝑓𝑛

are chosen such that the polynomial 𝑠𝑛 + 𝑎
𝑓𝑛
𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑓2
𝑠 +

𝑎
𝑓1
= 0 is Hurwitz. Then

lim
𝜒→0

𝜍
𝑖
= 𝜍

(𝑖−1)

(𝑡) . (15)

In the following, we show that original system (12) can be
transformed into the normal form with respect to the newly
defined state variables. Let 𝑧

1
= 𝑥

1
and 𝑧

2
= �̇�

1
= 𝑓

1
+ 𝑔

1
𝑥
2
.

The derivative of 𝑧
2
with respect to time is formulated as

�̇�
2
=
𝜕𝑓

1

𝜕𝑥
1

�̇�
1
+
𝜕𝑔

1

𝜕𝑥
1

�̇�
1
𝑥
2
+ 𝑔

1
�̇�
2

= (
𝜕𝑓

1

𝜕𝑥
1

+
𝜕𝑔

1

𝜕𝑥
1

𝑥
2
) (𝑓

1
+ 𝑔

1
𝑥
2
) + 𝑔

1
𝑓
2
+ 𝑔

1
𝑔
2
𝑥
3

= 𝑎
2
(𝑥

1
, 𝑥

2
) + 𝑏

2
(𝑥

1
, 𝑥

2
) 𝑥

3
,

(16)

where 𝑎
2
(𝑥

1
, 𝑥

2
) = (𝜕𝑓

1
/𝜕𝑥

1
+(𝜕𝑔

1
/𝜕𝑥

1
)𝑥

2
)(𝑓

1
+𝑔

1
𝑥
2
)+𝑔

1
𝑓
2
,

𝑏
2
(𝑥

1
, 𝑥

2
) = 𝑔

1
𝑔
2
.

Similarly, let 𝑧
3
= �̇�

2
= 𝑎

2
+ 𝑏

2
𝑥
3
and its time derivative is

induced by

�̇�
3
=

2

∑

𝑖=1

𝜕𝑎
2

𝜕𝑥
𝑖

�̇�
𝑖
+

2

∑

𝑖=1

𝜕𝑏
2

𝜕𝑥
𝑖

�̇�
𝑖
𝑥
3
+ 𝑏

2
�̇�
3

=

2

∑

𝑖=1

(
𝜕𝑎

2

𝜕𝑥
𝑖

+
𝜕𝑏

2

𝜕𝑥
𝑖

𝑥
3
) (𝑓

𝑖
+ 𝑔

𝑖
𝑥
𝑖+1
) + 𝑏

2
(𝑓

3
+ 𝑔

3
𝑢)

= 𝑎
3
(𝑥

1
, 𝑥

2
, 𝑥

3
) + 𝑏

3
(𝑥

1
, 𝑥

2
, 𝑥

3
) 𝑢,

(17)

where 𝑎
3
= ∑

2

𝑖=1
(𝜕𝑎

2
/𝜕𝑥

𝑖
+ (𝜕𝑏

2
/𝜕𝑥

𝑖
)𝑥

3
)(𝑓

𝑖
+ 𝑔

𝑖
𝑥
𝑖+1
) + 𝑏

2
𝑓
3

and 𝑏
3
= 𝑔

1
𝑔
2
𝑔
3
.

As a result, strict-feedback system (12) can be described as
the following normal output form with respect to the newly
defined state variables 𝑧

1
, 𝑧

2
, and 𝑧

3
:

�̇�
1
= 𝑧

2
,

�̇�
2
= 𝑧

3
,

�̇�
3
= 𝑎

3
+ 𝑏

3
𝑢,

𝑦 = 𝑧
1
= 𝑥

1
.

(18)

(B) Velocity Subsystem. With the modeling uncertainties and
external disturbance existing, the uncertain nonlinear model
can be formulated as

�̇� = [𝑓
𝑉0
(𝑋

𝑉
) + Δ𝑓

𝑉
] + 𝑔

𝑉
(𝑋

𝑉
) 𝑇 + 𝑑

𝑉

= 𝑓
𝑉0
(𝑋

𝑉
) + 𝑔

𝑉
(𝑋

𝑉
) 𝑇 + Δ

𝑉
,

(19)

where𝑓
𝑉
(𝑋

𝑉
) = 𝑓

𝑉0
(𝑋

𝑉
)+Δ𝑓(𝑋

𝑉
), 𝑔

𝑉
= (1/𝑚) cos𝛼,𝑋

𝑉
=

[𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑉]. 𝑓

𝑉0
(𝑋

𝑉
) is the nominal parts of 𝑓

𝑉
(𝑋

𝑉
); Δ𝑓

𝑉

is the unknown system uncertainties of 𝑓
𝑉
(𝑋

𝑉
); 𝑑

𝑉
(𝑋

𝑉
) is

the external disturbance and Δ
𝑉
= Δ𝑓

𝑉
(𝑋

𝑉
)+𝑑

𝑉
is the lump

of system uncertainty.

Remark 5. It should be noted that 𝑎
3
, 𝑏

3
are totally unknown

and need to be approached by NN in the subsequent devel-
opments. For the newly defined states 𝑧

1
, 𝑧

2
, and 𝑧

3
, anHICD

will be introduced to estimate them. FromAssumption 3, it is
also noted that there exist constants 𝑏

3
> 0 and 𝑏

3𝑑
> 0 such

that 𝑏
3
≥ 𝑏

3
and 𝑏

3𝑑
> |�̇�

3
|.
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3. Neural Networks

In many references of robust adaptive control of uncertain
nonlinear systems, the RBFNNs are usually employed as
approximate model terms for the unknown nonlinear and
continuous function terms using their inherent approxima-
tion capabilities [25]. As a class of linearly parameterized
NNs, RBFNNs are adopted to approximate the unknown and
continuous function𝐻(𝑋in) : 𝑅

𝑞

→ 𝑅 which can be written
as follows:

𝐻(𝑋in) = 𝑤
𝑇

Φ(𝑋in) + 𝜀, (20)

where 𝑋in ∈ 𝑅
𝑞 is an input vector of NN, 𝑤 ∈ 𝑅𝑝 is a weight

vector of the NN,Φ(𝑋in) = [𝜙1(𝑋in), 𝜙1 ⋅ ⋅ ⋅ 𝜙𝑝(𝑋in)]
𝑇

∈ 𝑅
𝑝 is

a basis function, 𝜀 is the approximation error which satisfies
|𝜀| ≤ 𝜀re, and 𝜀re is a bounded unknown parameter.

In general, an RBFNN can smoothly approximate any
continuous function 𝐻(𝑋in) over the compact Ω

𝑋in
∈ 𝑅

𝑞 to
any arbitrary accuracy as

𝐻(𝑋in) = 𝑤
∗𝑇

Φ(𝑋in) + 𝜀
∗

, (21)

where 𝑤∗ is the optimal weight value and 𝜀∗ is the smallest
approximation error. The Gaussian basis function is written
in the form of

𝜙
𝑖
(𝑋in) = exp[−

(𝑋in − 𝑐𝑖)
𝑇

(𝑋in − 𝑐𝑖)

𝑚
2

𝑖

] ,

𝑖 = 1, 2, . . . , 𝑝,

(22)

where 𝑐
𝑖
and𝑚

𝑖
are the center and width of the neural cell of

the 𝑖th hidden layer.

Remark 6. There exists an RBFNN in the form of (21)
and an optimal parameter vector 𝑤∗ such that |𝐻(𝑋in) −

𝑤
∗𝑇

Φ(𝑋in)| = |𝜀
∗

| < 𝜀re. 𝜀re denotes the supremum of
the reconstruction error that is inevitably generated. In what
follows, the estimation of 𝑤∗ is denoted as 𝑤.

4. Control Design and Stability Analysis

It is easy to note that ℎ is mainly related to 𝛿
𝑒
and 𝑉

is mainly affected by 𝑇. Therefore, the dynamics can be
decoupled into altitude and velocity subsystem andwe design
the altitude and velocity controller separately.The structure of
the proposed control scheme is presented in Figure 1.

4.1. Adaptive Neural Controller for Altitude Subsystem. The
control objective of system (12) is to design an adaptive neural
controller, which makes 𝛾 → 𝛾

𝑑
, and therefore ℎ → ℎ

𝑑
,

while keeping all the signals involved bounded.

The following controller design is mainly based on the
scheme in [29–31]. Vectors 𝑌

𝑑
, 𝐸 and a filtered tracking error

𝑠
𝛾
are then defined as follows:

𝑌
𝑑
= [𝑦

𝑑
, ̇𝑦

𝑑
, ̈𝑦

𝑑
]
𝑇

, (23)

𝐸 = 𝑍 − 𝑌
𝑑
, (24)

𝑠
𝛾
= (

𝑑

𝑑𝑡
+ 𝜆)

2

𝐸 = [Λ
𝑇

1] 𝐸, (25)

𝑒 = 𝑦 − 𝑦
𝑑
= 𝑧

1
− 𝑦

𝑑
, (26)

where 𝑍 = [𝑧
1
𝑧
2
𝑧
3
]
𝑇, Λ = [𝜆2 2𝜆]𝑇 with 𝜆 > 0.

By employing a high order integral chained differentiator,
the estimation of 𝑍 = [𝑧

1
𝑧
2
𝑧
3
]
𝑇 is acquired as 𝑍 =

[𝜍
1
𝜍
2
𝜍
3
]
𝑇. According to the discussion in [28], there exist

positive constant 𝜀
ℎ
and 𝑡∗ such that ∀𝑡 > 𝑡∗


𝑍 − 𝑍


≤ 𝜀

ℎ
. (27)

The estimations of 𝐸 and 𝑠
𝛾
using (14) are denoted as given

below:

𝐸 = 𝑍 − 𝑌
𝑑
,

𝑠
𝛾
= [Λ

𝑇

1] 𝐸.

(28)

Based on (25), the derivative of 𝑠
𝛾
with respect to time can be

expressed as

̇𝑠
𝛾
= [0 Λ

𝑇

] 𝐸 + (𝑦
(3)

− 𝑦
(3)

𝑑
)

= 𝑎
3
+ 𝑏

3
𝑢 − 𝑦

(3)

𝑑
+ [0 Λ

𝑇

] 𝐸

= 𝑎
3
+ 𝑏

3
𝑢 + V̂ − [0 Λ𝑇

] 𝐸,

(29)

where V̂ = −𝑦(3)
𝑑
+ [0 Λ

𝑇

] 𝐸, 𝐸 = 𝐸 − 𝐸 = 𝑍 − 𝑍.
Define

𝑢
∗

𝑎𝑑
(𝑋

𝐴
, V̂) =

(𝑎
3
+ V̂)
𝑏
3

. (30)

𝑢
∗

𝑎𝑑
is approximated by RBFNN as

𝑢RBF = 𝑤
𝑇

𝐴
Φ(𝑋

𝐴
) ,

𝑋
𝐴
= [𝑋

𝑇

, V̂] ,
(31)

where 𝑤
𝐴
is the estimation of the optimal parameter vector

𝑤
∗

𝐴
, 𝑤

𝐴
= 𝑤

𝐴
− 𝑤

∗

𝐴
.

Substituting the unknown 𝑠
𝛾
with 𝑠

𝛾
, we determine the

control input as follows:

𝑢 = −𝑘𝑠
𝛾
− 𝑤

𝑇

𝐴
Φ(𝑋

𝐴
) . (32)

The update law for 𝑤 is determined as

̇̂𝑤
𝐴
= 𝛾

𝐴
(𝑠

𝛾
Φ(𝑋

𝐴
) − 𝜎

𝑠
(𝑤

𝐴
) 𝑤

𝐴
) , (33)

𝜎
𝑠
(𝑤

𝐴
) =

{

{

{

𝑐
Φ

𝜀
𝑤

, if 𝑤𝐴

 > 𝜀𝑤

0, otherwise,
(34)
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model
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RBFNN
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ż2 = z3
ż3 = a3 + b3u

Figure 1: Control scheme.

where 𝜀
𝑊
, 𝑐

Φ
are positive design constants, ‖Φ(𝑋

𝐴
)‖ < 𝑐

Φ
,

and 𝛾
𝐴
denotes the positive learning rate.

Theorem 7. Consider the adaptive system consisting of (12)
under Assumption 3, controller (32) with HICD (14), and
adaptive law (33).The filtered error 𝑠

𝛾
and𝑤

𝐴
are semiglobally

uniformly ultimately bounded.

Proof. Consider the Lyapunov function candidate 𝐿 =

1/(2𝑏
3
)𝑠

2

𝛾
+ 1/(2𝛾

𝐴
)𝑤

𝑇

𝐴
𝑤
𝐴
. Taking the time derivation of 𝐿,

we get

�̇� =

𝑠
𝛾
̇𝑠
𝛾

𝑏
3

−

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+
𝑤
𝑇

𝐴

̇̂𝑤
𝐴

𝛾
𝐴

=
1

𝑏
3

𝑠
𝛾
(𝑎

3
+ 𝑏

3
𝑢 + V̂

− [0 Λ
𝑇

] 𝐸) −

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+ 𝑤
𝑇

𝐴
(𝑠

𝛾
Φ − 𝜎

𝑠
(𝑤

𝐴
) 𝑤

𝐴
)

=
1

𝑏
3

𝑠
𝛾
(𝑎

3
+ 𝑏

3
𝑢 − 𝑏

3
𝑢
∗

𝑎𝑑
+ 𝑏

3
𝑢
∗

𝑎𝑑
+ V̂ − [0 Λ𝑇

] 𝐸)

−

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+ 𝑠
𝛾
𝑤
𝑇

𝐴
Φ − 𝜎

𝑠
(𝑤

𝐴
) 𝑤

𝑇

𝐴
𝑤
𝐴
=
1

𝑏
3

𝑠
𝛾
(−𝑘𝑏

3
𝑠
𝛾

+ 𝑏
3
(𝑢

∗

𝑎𝑑
− 𝑤

𝑇

𝐴
Φ) − [0 Λ

𝑇

] 𝐸) −

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+ 𝑠
𝛾
𝑤
𝑇

𝐴
Φ

− (𝑠
𝛾
− 𝑠

𝛾
)𝑤

𝑇

𝐴
Φ − 𝜎

𝑠
(𝑤

𝐴
) 𝑤

𝑇

𝐴
𝑤
𝐴
= 𝑠

𝛾
(−𝑘𝑠

𝛾

+ 𝑘 (𝑠
𝛾
− 𝑠

𝛾
) + (𝑢

∗

𝑎𝑑
− 𝑤

∗𝑇

𝐴
Φ + 𝑤

∗𝑇

𝐴
Φ − 𝑤

𝑇

𝐴
Φ)

−

[0 Λ
𝑇

] 𝐸

𝑏
3

) −

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+ 𝑠
𝛾
𝑤
𝑇

𝐴
Φ − (𝑠

𝛾
− 𝑠

𝛾
)𝑤

𝑇

𝐴
Φ

− 𝜎
𝑠
(𝑤

𝐴
) 𝑤

𝑇

𝐴
𝑤
𝐴
= −𝑘𝑠

2

𝛾
+ 𝑠

𝛾
× (−𝑘 [Λ

𝑇

1] 𝐸

+ (𝑢
∗

𝑎𝑑
− 𝑤

∗𝑇

𝐴
Φ) − 𝑤

𝑇

𝐴
Φ −

[0 Λ
𝑇

] 𝐸

𝑏
3

) −

�̇�
3
𝑠
2

𝛾

2𝑏
2

3

+ 𝑠
𝛾
𝑤
𝑇

𝐴
Φ + 𝑤

𝑇

𝐴
[Λ

𝑇

1] 𝐸Φ − 𝜎
𝑠
(𝑤

𝐴
) 𝑤

𝑇

𝐴
𝑤
𝐴

≤ −(𝑘 −
𝑏
3𝑑

2𝑏
2

3

)𝑠
2

𝛾
+

𝑠
𝛾


(𝑘𝑐

𝜆1
𝜀
ℎ
+ 𝜀re +

𝑐
𝜆2
𝜀
ℎ

𝑏
3

)

+ 𝑤
𝑇

𝐴
[Λ

𝑇

1] 𝐸Φ − 𝜎
𝑠
(𝑤

𝐴
) 𝑤

𝑇

𝐴
𝑤
𝐴
.

(35)

Considering the following facts,

𝑤
𝑇

𝐴
[Λ

𝑇

1] 𝐸Φ ≤
1

8
𝑐
Φ
𝑘
𝑠

𝑤𝐴



2

+
2

𝑘
𝑠

𝑐
Φ


[Λ

𝑇

1] 𝐸


2

=
1

8
𝑐
Φ
𝑘
𝑠

𝑤𝐴



2

+
2

𝑘
𝑠

𝑐
Φ
𝜇
2

1

2𝑤
𝑇

𝐴
𝑤
𝐴
=
𝑤𝐴



2

+
𝑤𝐴



2

−
𝑤

∗

𝐴



2

≥
𝑤𝐴



2

−
𝑤

∗

𝐴



2

,

(36)

we have

�̇� ≤ −(𝑘 −
𝑏
3𝑑

2𝑏
2

3

−
1

2
𝐶
1
)𝑠

2

𝛾

− (
1

2

𝑐
Φ

𝜀
𝑤

−
1

8
𝑐
Φ
𝑘
𝑠
)
𝑤𝐴



2

+
2

𝑘
𝑠

𝑐
Φ
𝜇
2

1

+
1

2

𝑐
Φ

𝜀
𝑤

𝑤
∗

𝐴



2

+
1

2
≤ −𝜌𝐿 + 𝐶,

(37)
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where 𝑐
𝜆1
= ‖ [Λ

𝑇

1] ‖, 𝑐
𝜆2
= ‖ [0 Λ

𝑇

] ‖, 𝜇
1
= [Λ

𝑇

1] 𝐸,
|𝜎

𝑠
(𝑤)| ≤ 𝑐

Φ
/𝜀

𝑤
, 𝑘

𝑠
> 0, ‖Φ‖ ≤ 𝑐

Φ
, |𝑘𝑐

𝜆1
𝜀
ℎ
+ 𝜀re + 𝑐𝜆2𝜀ℎ/𝑏3| =

𝐶
1
. 𝜌 and 𝐶 are given by

𝜌 := min
{

{

{

(𝑘 −
𝑏
3𝑑

2𝑏
2

3

−
1

2
𝐶
1
) ,(

1

2

𝑐
Φ

𝜀
𝑤

−
1

8
𝑐
Φ
𝑘
𝑠
)

}

}

}

,

𝐶 :=
2

𝑘
𝑠

𝑐
Φ
𝜇
2

1
+
1

2

𝑐
Φ

𝜀
𝑤

𝑤
∗

𝐴



2

+
1

2
.

(38)

To ensure the closed-loop stability, the corresponding
design parameters should be chosen such that 𝑘− 𝑏

3𝑑
/(2𝑏

2

3
) −

(1/2)𝐶
1
> 0 and (1/2)(𝑐

Φ
/𝜀

𝑤
) − (1/8)𝑐

Φ
𝑘
𝑠
> 0.

According to (37), we have 0 ≤ 𝐿 ≤ 𝐶/𝜌 + [𝐿(0) −

𝐶/𝜌]𝑒
−𝜌𝑡. From (37), we can know that 𝐿 is convergent; that

is, lim
𝑥→∞

𝐿 = 𝐶/𝜌. It can be shown that the filtered signal
𝑠
𝛾
and 𝑤

𝐴
are semiglobally uniformly bounded.

Remark 8. (1) The switching function 𝜎
𝑠
(𝑤

𝐴
) is adopted so

that the RBFNN can retain the learned information, which is
based on a novel 𝜎 switching scheme. The adopted switching
scheme prevents the loss of information, if 𝜀

𝑤
is chosen

sufficiently large value such that 𝜀
𝑤
> |𝑤

𝐴
|while guaranteeing

the boundness of |𝑤
𝐴
|.

(2) It should be noted that, in this paper, only one
RBFNN is employed to approximate the lumped uncertain
nonlinear function in the altitude subsystemwhich highlights
the simplicity of our proposed controller. However, at least
two RBFNNs need to be used in the backstepping scheme,
in [25], which require large computational burden. It is
also demonstrated that control law and stability analysis is
considerably simpler than the previous backstepping-based
algorithms.

4.2. Adaptive Controller for Velocity Subsystem. Define

�̃� = 𝑉 − 𝑉
𝑑
. (39)

Its time derivative is
̇̃
𝑉 = �̇� − �̇�

𝑑
= 𝑓

𝑉0
+ 𝑔

𝑉
𝑇 + Δ

𝑉
− �̇�

𝑑
. (40)

By employing an RBFNN 𝑤
𝑇

𝑉
Φ

𝑉
(𝑋

𝑉1
) to approximate

unknown uncertainty Δ
𝑉
, we have

𝑇
𝑑

=

[−𝑘
𝑝𝑉
�̃� − 𝑘

𝐼𝑉
∫
𝑡

0

(�̃� − 𝑉
𝑒
) 𝑑𝜏 − 𝑓

𝑉0
− 𝑤

𝑇

𝑉
Φ

𝑉
(𝑋

𝑉1
) + �̇�

𝑑
]

𝑔
𝑉

,

(41)

where 𝑋
𝑉1
= [𝑉,𝑉

𝑑
, �̃�] and 𝑘

𝑝V, 𝑘𝐼V are the positive design
parameters; 𝑉

𝑒
is the compensatory term which will be

defined as follows. 𝑇
𝑑
represents the desired thrust force.

Equations (9) and (10) are rearranged so as to solve 𝑛
𝑑
in

the following equation:

𝑛
2

𝑑
(𝐶

𝐹𝑇1
𝜌
ℎ
𝐷

4

𝑇
) + 𝑛

𝑑
(
𝐶
𝐹𝑇2
𝜌
ℎ
𝐷

3

𝑇
𝑉

𝜋
)

+
𝐶
𝐹𝑇3
𝜌
ℎ
𝐷

2

𝑇
𝑉
2

𝜋2
− 𝑇

𝑑
= 0.

(42)

In order to solve (42) at each sampling time, 𝑉 is assumed to
be constant during the sampling period. Then

𝑛
𝑑
=

(𝑐
𝑛1
𝑉 + √𝑐

𝑛2
𝑉2 + 𝑐

𝑛3
𝑇
𝑑
)

𝑐
𝑛4

,
(43)

𝑛
𝑐
=

{

{

{

𝑛max, 𝑛
𝑑
≥ 𝑛max

𝑛
𝑑
, 𝑛

𝑑
≤ 𝑛max,

(44)

where 𝑐
𝑛1

= −𝐶
𝐹𝑇2
𝜌
ℎ
𝐷

3

𝑇
/𝜋, 𝑐

𝑛2
= (𝐶

2

𝐹𝑇2
−

4𝐶
𝐹𝑇1
𝐶
𝐹𝑇3
)𝜌

2

ℎ
𝐷

6

𝑇
/𝜋

2, 𝑐
𝑛3

= 4𝐶
𝐹𝑇1
𝜌
ℎ
𝐷

4

𝑇
, and 𝑐

𝑛4
=

2𝐶
𝐹𝑇1
𝜌
ℎ
𝐷

4

𝑇
are the intermediate variables. 𝑛

𝑐
is the actual

engine speed; 𝑛max is the upper limit of 𝑛
𝑑
.

Define

�̃�
𝑒
= �̃� − 𝑉

𝑒
, (45)

�̇�
𝑒
= −𝑘

𝑝𝑉
𝑉
𝑒
+ 𝑔

𝑉
(𝑇 − 𝑇

𝑑
) ,

𝑉
𝑒
(0) = 0.

(46)

The update law of 𝑤
𝑉
is determined as

̇̂𝑤
𝑉
= 𝜂

𝑉
(�̃�

𝑒
Φ

𝑉
(𝑋

𝑉1
) − 𝜎

𝑉
𝑤
𝑉
) , (47)

where𝜎
𝑉
is a positive design constant and𝑤

𝑉
= 𝑤

𝑉
−𝑤

∗

𝑉
; (46)

indicates the auxiliary system used to compensate the engine
speed saturation.

The derivatives of �̃� and �̃�
𝑒
with respect to time, ̇̃

𝑉 and
̇̃
𝑉
𝑒
, can be expressed as

̇̃
𝑉 = �̇� − �̇�

𝑑
= 𝑓

𝑉0
+ 𝑔

𝑉
𝑇 + 𝑤

∗𝑇

𝑉
Φ

𝑉
+ 𝜀

𝑉
− �̇�

𝑑

= 𝑓
𝑉0
+ 𝑔

𝑉
𝑇
𝑑
+ 𝑔

𝑉
(𝑇 − 𝑇

𝑑
) + 𝑤

𝑇

𝑉
Φ

𝑉
− 𝑤

𝑇

𝑉
Φ

𝑉

+ 𝜀
𝑉
− �̇�

𝑑

= −𝑘
𝑝𝑉
�̃� − 𝑘

𝐼𝑉
∫

𝑡

0

�̃�
𝑒
𝑑𝜏 + 𝑔

𝑉
(𝑇 − 𝑇

𝑑
)

− 𝑤
𝑇

𝑉
Φ

𝑉
+ 𝜀

𝑉
,

̇̃
𝑉
𝑒
= −𝑘

𝑝𝑉
�̃�
𝑒
− 𝑘

𝐼𝑉
∫

𝑡

0

(�̃�
𝑒
) 𝑑𝜏 − 𝑤

𝑇

𝑉
Φ

𝑉
+ 𝜀

𝑉
.

(48)

Theorem 9. Consider the adaptive system comprising (19),
velocity subsystem controller (41) with adaptive law (47), and
auxiliary system (46). �̃�

𝑒
and 𝑤

𝑉
are semiglobally uniformly

bounded.

Proof. Consider the Lyapunov candidate function

𝐿
𝑉
(𝑡) =

1

2
�̃�
2

𝑒
+
𝑘
𝐼𝑉

2
∫

𝑡

0

�̃�
2

𝑒
𝑑𝜏 +

1

2𝜂
𝑉

𝑤
𝑇

𝑉
𝑤
𝑉
. (49)
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Its time derivative is

�̇�
𝑉
= �̃�

𝑒

̇̃
𝑉
𝑒
+ 𝑘

𝐼𝑉
�̃�
𝑒
∫

𝑡

0

�̃�
𝑒
𝑑𝜏 +

𝑤
𝑇

𝑉

̇̂𝑤
𝑉

𝜂
𝑉

= �̃�
𝑒
[−𝑘

𝑝𝑉
�̃�
𝑒
− 𝑘

𝐼𝑉
∫

𝑡

0

(�̃�
𝑒
) 𝑑𝜏 − 𝑤

𝑇

𝑉
Φ

𝑉
+ 𝜀

𝑉
]

+ 𝑘
𝐼𝑉
�̃�
𝑒
∫

𝑡

0

�̃�
𝑒
𝑑𝜏 + 𝑤

𝑇

𝑉
(�̃�

𝑒
Φ

𝑉
− 𝜎

𝑉
𝑤
𝑉
)

= −𝑘
𝑝𝑉
�̃�
2

𝑒
+ �̃�

𝑒
𝜀
𝑉
− 𝜎

𝑉
𝑤
𝑇

𝑉
𝑤
𝑉
.

(50)

Considering the following fact,

2𝑤
𝑇

𝑉
𝑤
𝑉
=
𝑤𝑉



2

+
𝑤𝑉



2

−
𝑤

∗

𝑉



2

≥
𝑤𝑉



2

−
𝑤

∗

𝑉



2

�̃�
𝑒
𝜀
𝑉
≤
1

2
(�̃�

2

𝑒
+ 𝜀

2

𝑉
) ,

(51)

we have the following inequality:

�̇�
𝑉
≤ −(𝑘

𝑝𝑉
−
1

2
) �̃�

2

𝑒
−
1

2
𝜎
𝑉

𝑤𝑉



2

+
1

2
(𝜀

2

𝑉
+ 𝜎

𝑉

𝑤
∗

𝑉



2

) ≤ −𝜌
𝑉
𝐿
𝑉
+ 𝐶

𝑉
,

(52)

where 𝜌
𝑉
and 𝐶

𝑉
are given by 𝜌

𝑉
:= min {(𝑘

𝑝𝑉
− 1/2), 𝜎

𝑉
/2}

and 𝐶
𝑉
:= {1/2𝜀

2

𝑉
+ 𝜎

𝑉
/2‖𝑤

∗

𝑉
‖
2

}.
To ensure the closed-loop stability, the corresponding

design parameters 𝑘
𝑝𝑉
, 𝜎

𝑉
should be chosen such that 𝑘

𝑝𝑉
−

1/2 > 0, 𝜎
𝑉
> 0. According to (52), it can be shown that the

signals �̃�
𝑒
and 𝑤

𝑉
are semiglobally uniformly bounded.

Remark 10. In this section, the dynamic inversion control
based on RBFNN is proposed for velocity subsystem with
input saturation constraints. To handle the input saturation,
auxiliary design system (46) is introduced to analyze the
effect of saturation constraint and the auxiliary variable 𝑉

𝑒

is used to design the adaptive law. It is apparent that the
constrained control 𝑇 produced by the designed control
command𝑇

𝑑
can guarantee the closed-loop system’s stability.

5. Numerical Simulation

In this section, the performance of the developed control
strategy applied to the longitudinal model of the morphing
aircraft is verified bymeans of simulations.The aircraftmodel
parameters are shown in Table 1. Neural network 𝑤𝑇

𝐴
Φ(𝑋

𝐴
)

with input vector 𝑋
𝐴
= [𝑥

1
, 𝑥

2
, 𝑥

3
, V̂]𝑇 contains 50 nodes

with centers 𝑐
1𝑖
(𝑖 = 1 ⋅ ⋅ ⋅ 50) evenly spaced in [−15∘, 15∘] ×

[−15
∘

, 15
∘

] × [−15
∘

, 15
∘

] × [−15
∘

, 15
∘

] and widths 𝑚
1𝑖
(𝑖 =

1 ⋅ ⋅ ⋅ 50) = 1; neural network 𝑤𝑇

𝑉
Φ(𝑋

𝑉1
) with input vector

𝑋
𝑉1
= [𝑉,𝑉

𝑑
, �̃�

𝑒
]
𝑇 contains 10 nodes with centers 𝑐

2𝑖
(𝑖 =

1 ⋅ ⋅ ⋅ 10) evenly spaced in [10, 50] × [10, 50] × [−50, 50] and
widths 𝑚

2𝑖
(𝑖 = 1 ⋅ ⋅ ⋅ 10) = 5. The initial condition is set

as 𝑋
0
= [𝛾

0
, 𝜃

0
, 𝑞

0
, ℎ

0
, 𝑉

0
] = [0, 0.99512

∘

, 0, 1000m, 30m/s],
𝑤
𝐴
(0) = 0, and 𝑤

𝑉
(0) = 0. Control and HICD parameters

are set as 𝑘
ℎ
= 0.5, 𝑘

𝐼
= 0.01, 𝑘 = 0.025, 𝛾

𝐴
= 0.02, 𝜀

𝑤
= 10,

Table 1: Morphing aircraft parameters for different configurations.

Parameters 𝜁 = 0
∘

𝜁 = 30
∘

𝜁 = 45
∘

𝑆/(m2)V 1.6040 1.168 0.958

𝑐
𝐴
/(m) 0.4874 0.411 0.416

𝑏/(m) 3.3494 2.981 2.503

𝐼
𝑦
/(kg⋅m) 6.4929 7.882 8.606

𝑐
Φ
= 20, and 𝜆 = 5; 𝑘

𝑝V = 5, 𝑘𝐼V = 10, 𝜂𝑉 = 10, and 𝜎𝑉 = 0.01;
𝑎
𝑓1
= 10, 𝑎

𝑓2
= 10, 𝑎

𝑓3
= 10, and 𝜒 = 0.04. Reference

commands are smoothened via several second-order filters
shown in (53) below.The engine speed saturation 𝑛max which
is set at 4900 RPM is deliberately tightened to explore the
capability of the designed controller in adhering to the limits.
Consider

ℎ
𝑑

ℎ
𝑑0

=
0.64

𝑠2 + 1.6𝑠 + 0.64
,

𝑉
𝑑

𝑉
𝑑0

=
1

𝑠2 + 2𝑠 + 1
,

𝜁
𝑑

𝜁
𝑑0

=
1

𝑠2 + 4𝑠 + 4
.

(53)

Choosing 𝜁 = 0∘, 5∘, . . . , 45∘ as the 10 reference points, the
longitudinal aerodynamic parameters for different variation
configurations can be computed through computational fluid
dynamics (CFD). Then the aerodynamic parameters of the
morphing aircraft during wing-transforming process can be
linearly interpolated by those of static configurations with the
help of MATLAB:

𝐶
𝐿0
= 0.0042𝜁

3

− 0.1374𝜁
2

− 0.0516𝜁 + 0.2291,

𝑐
𝐴
= 0.2054𝜁

2

− 0.2520𝜁 + 0.4874,

𝐶
𝐿𝛼
= −1.1264𝜁

3

− 0.4351𝜁
2

+ 0.3816 + 4.592,

𝑏 = −1.4599𝜁
2

+ 0.0644𝜁 + 3.3494,

𝐶
𝐷0
= −0.0024𝜁

3

+ 0.0045𝜁
2

+ 0.0022𝜁 + 0.021,

𝐶
𝐷𝛼
= −0.0310𝜁

2

− 0.0458𝜁 + 0.109,

𝐶
𝐷𝛼2

= −1.2990𝜁
4

+ 1.8282𝜁
3

− 0.7039𝜁
2

− 0.0258𝜁

+ 1.097,

𝑆 = −0.8271𝜁 + 1.6040,

𝐶
𝑚𝛼
= 9.6542𝜁

3

− 6.5395𝜁
2

− 6.1887𝜁 − 1.5909,

𝐶
𝑚0
= 0.4239𝜁

2

− 0.4462𝜁
2

− 0.0365,

𝐶
𝑚𝛿𝑒

= −0.1624𝜁
2

− 0.9376𝜁 − 0.7889,

𝐼
𝑦
= −4.9021𝜁

3

+ 6.5774𝜁
2

+ 0.5500𝜁 + 6.4929,

𝐶
𝑚𝑞
= 41.4537𝜁

3

− 50.4868𝜁
2

− 9.7741𝜁 − 10.673.

(54)
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Figure 2: Altitude tracking.

Due to the complex nonlinear aerodynamic of the mor-
phing aircraft, the aerodynamics is not modeled precisely,
the same as it appears in the actual flight conditions. Thus
it is significant for the controller to have the ability to
provide stability in spite ofmodeling errors due to unmodeled
dynamics and plant parameter variations. To demonstrate
the robustness of the proposed control scheme, 20% aerody-
namic uncertainties are taken into account.The following two
scenario simulations are employed to test the performance
of the proposed controller in handling with aerodynamic
uncertainty and input constraints compared with backstep-
ping controller designed in the altitude subsystem.

Scenario 1. (A) The altitude ℎ
𝑑
and velocity 𝑉

𝑑
reference

commands are generated to make the aircraft climb from
1000m to 1050m and accelerate from 30m/s to 40m/s in
20 s, where the engine speed saturation is not considered.
The simulation results of the tracking output are shown in
Figures 2 and 3 (“NN” denotes the simulation results based
on adaptive NN controller in this paper and “backstepping”
represents the backstepping method in [25]). It can be
observed that the system outputs ℎ and 𝑉 on the basis of NN
and backstepping follow the desired trajectory of ℎ

𝑑
and 𝑉

𝑑

well. The altitude tracking error of NN is smaller than the
one based on backstepping. These simulation results show
that good tracking performance can be obtained under the
proposed adaptive NN control.

(B) To illustrate the effectiveness of the proposed adaptive
NN control further, the sweep reference signal taking place
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Figure 3: Velocity tracking.
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Figure 4: Sweep signal and angle of attack.

at 30 s is generated to make the aircraft sweep from 0
∘ to

45
∘ at the rate of 9∘/s. The simulation results are shown in

Figures 4–7. It is clear that the velocity is almost constant,
during the sweeping process, and the altitudewhich decreases
about 0.32m based on adaptive NN which is better than
backstepping method decreases about 1.75m. They can both
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Figure 7: Elevator deflection and thrust.

converge within 20 s after the wing finishes sweeping. Since
the wing area decreases after it sweeps, the angle of attack
will increase to achieve a new trim point. In addition, the
changes in elevator deflection and thrust are both within
acceptable ranges. It can be concluded that the adaptive neu-
ral controller, in this paper, can accommodate different wing
shapes that result in drastically changing plant dynamic and
guarantee the flightmore steady comparedwith backstepping
method.

Scenario 2 (engine speed saturation). To illustrate the effec-
tiveness of the auxiliary system, the reference commands are
similar to Scenario 1(A), and the engine speed saturation
𝑛max is set at 4900 RPM. The simulation results are shown
in Figures 8 and 9. Due to engine speed saturation, it is
obvious to observe that the velocity tracking errors are
different between the used (𝑉

1
with 0.5m/s to the maximum)

and unused (𝑉
2
with 0.8m/s to the maximum) additional

system. As shown in Figure 9, the engine speed recovers from
saturation in 9 s for𝑉

1
which is better than𝑉

2
which recovers

in 15 s. These simulation results show that good tracking
performance can be obtained under the proposed additional
system.

6. Conclusions and Future Works

A robust adaptive neural controller based on high order
integral chained differentiator is developed for the nonlinear
longitudinal model of a morphing aircraft, where aerody-
namic uncertainty and engine input constraint are taken into
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consideration.The altitude controller is viewed as the output-
feedback control problem with one NN to approximate the
lumped uncertain nonlinearity while another adaptive NN
controller is designed for the velocity subsystem.Theproblem
posed by engine input constraints is overcome by additional
systems.The filtered tracking error is proved to be guaranteed
zero semiglobally and all the signals are uniformly bounded.

Theperformance of the presentedmethod is verified by simu-
lations, fromwhichwe can deduce that the good performance
has been ensured.

For future work, we will analyze how minimal parameter
learning technique can be implemented onmorphing aircraft
in order to reduce the computation burden further. Also it is
important to do research on theoretical analysis deeply for the
systemwith input nonlinearity and time-delay where it is still
an open problem for this scheme.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to express their sincere thanks
to anonymous reviewers for their helpful suggestions for
improving the technique note. This work is partially sup-
ported by the Natural Science Foundation of China (Grant
no. 61374032) and Aeronautical Science Foundation of China
(Grant no. 20140753012).

References

[1] J. Bowman, B. Sanders, B. Cannon, J. Kudva, and S. Joshi,
“Development of next generationmorphing aircraft structures,”
in Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, StructuralDynamics, andMaterials Conference, Honolulu,
Hawaii, USA, April 2007.

[2] A. R. Rodriguez, “Morphing aircraft technology survey,” in
Proceedings of the 5th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nev, USA, January 2007.

[3] L. Yuping and H. Zhen, “A survey of morphing aircraft control
systems,”Acta Aeronautica et Astronautica Sinica, vol. 30, no. 10,
pp. 1906–1911, 2009.

[4] T. M. Seigler, Dynamics and control of morphing aircraft [Ph.D.
thesis], 2005.

[5] T. M. Seigler, D. A. Neal, J.-S. Bae, and D. J. Inman, “Modeling
and flight control of large-scale morphing aircraft,” Journal of
Aircraft, vol. 44, no. 4, pp. 1077–1087, 2007.

[6] N. Gandhi, A. Jha, J.Monaco, T. Seigler, D.Ward, andD. Inman,
“Intelligent control of a morphing aircraft,” in Proceedings
of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Honolulu, Hawaii, USA,
April 2007.

[7] S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J.
Inman, “A review of morphing aircraft,” Journal of Intelligent
Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011.

[8] R. Shi and W. Wan, “Analysis of flight dynamics for large-
scale morphing aircraft,” Aircraft Engineering and Aerospace
Technology, vol. 87, no. 1, pp. 38–44, 2015.

[9] B. O’Grady,Multi-objective optimization of a three cell morphing
wing substructure [Ph.D. thesis], University of Dayton, Dayton,
Ohio, USA, 2010.

[10] T. Johnson, M. Frecker, M. Abdalla, Z. Gurdal, and D. Lindner,
“Nonlinear analysis and optimization of diamond cell morph-
ingwings,” Journal of IntelligentMaterial Systems and Structures,
vol. 20, no. 7, pp. 815–824, 2009.



12 Mathematical Problems in Engineering

[11] J. J. Joo and B. Sanders, “Optimal location of distributed
actuators within an in-plane multi-cell morphing mechanism,”
Journal of IntelligentMaterial Systems and Structures, vol. 20, no.
4, pp. 481–492, 2009.

[12] G. R. Andersen, D. L. Cowan, and D. J. Piatak, “Aeroelastic
modeling, analysis and testing of amorphingwing structure,” in
Proceedings of the 48thAIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, pp. 359–373,
Honolulu, Hawaii, USA, April 2007.

[13] T. M. Seigler, D. A. Neal, and D. J. Inman, “Dynamic modeling
of large-scale morphing aircraft,” in Proceedings of the 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, pp. 3668–3678, Newport, RI, USA,
May 2006.

[14] B. Obradovic and K. Subbarao, “Modeling of flight dynamics of
morphing-wing aircraft,” Journal of Aircraft, vol. 48, no. 2, pp.
391–402, 2011.

[15] T. Yue, L. Wang, and J. Ai, “Longitudinal linear parameter
varyingmodeling and simulation of morphing aircraft,” Journal
of Aircraft, vol. 50, no. 6, pp. 1673–1681, 2013.

[16] K. Boothe, K. Fitzpatrick, and R. Lind, “Controllers for distur-
bance rejection for a linear input-varying class of morphing air-
craft,” in Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics&Materials Conference, Austin,
Tex, USA, April 2005.

[17] S. Beaverstock, R. A.M. Friswell,W.Dettmer, R. de Breuker, and
N. Werter, “Effect of span-morphing on the longitudinal flight
stability and control,” in Proceedings of the AIAA Guidance,
Navigation, andControl Conference, Boston,Mass, USA,August
2013.

[18] T. Yue, L. Wang, and J. Ai, “Gain self-scheduled𝐻
∞
control for

morphing aircraft in the wing transition process based on an
LPV model,” Chinese Journal of Aeronautics, vol. 26, no. 4, pp.
909–917, 2013.

[19] D. H. Baldelli, D.-H. Lee, R. S. Sánchez Peñal, and B. Cannon,
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The optimal investment and consumption problem is investigated for an insurance company, which is subject to the payment of
high-watermark fee from profit. The objective of insurance company is to maximize the expected cumulated discount utility up to
ruin time. The consumption behavior considered in this paper can be viewed as dividend payment of the insurance company. It
turns out that the value function of the proposed problem is the viscosity solution to the associated HJB equation.The regularity of
the viscosity is discussed and some asymptotic results are provided. With the help of the smooth properties of viscosity solutions,
we complete the verification theorem of the optimal control policies and the potential applications of the main result are discussed.

1. Introduction

Investment and consumption are of great importance in the
study of finance and financial engineering. This is due to the
fact that investment and consumption not only are the key
topic of financial agents but also provide idea and method of
deriving equilibrium price of financial derivatives (cf. Shreve
and Soner [1]). Applications of stochastic optimal control to
management and financial problems were developed from
the 1970s, especially after the papers byMerton [2, 3] on port-
folio selection. The model and results of Merton were then
extended by many authors; for example, see Zariphopoulou
[4],Øksendal and Sulem [5], andFleming andPang [6].These
problems are also studied in the monograph by Karatzas
and Shreve [7]. The decision makers associated with optimal
investment and consumption problems that appeared in
aforementioned papers stand on the perspective of financial
firms or investment bank, and the business income of
decisionmakers comes from proper construction of portfolio
positions. Usually, it assumes that the financial market is fric-
tionless: no transaction cost and no tax payment, money that
can be infinitely divided, no restrictions on short or long posi-
tions, and so forth. More recently, there is also a large, more
recent literature related to the investment in markets with

frictions. A transaction cost is a typical example. For example,
Davis and Norman [8] studied portfolio selection problem
with transaction cost, which uses the variance of the portfolio
positrons as the risk measure; Janeček and Sı̂rbu [9] studied
the future trading problem with transaction cost. Shreve and
Soner [1] investigated optimal consumption and investment
with transaction cost; the optimization goal therein is to
maximize expected cumulated discounted utility in an infi-
nite time horizon.Whalley andWilmott [10] studied optimal
hedging model with transaction costs. Previously mentioned
papers are just a few examples of the growing literature on
the topic; for more progress on this topic, readers are also
referred to the works of Cvitanić and Karatzas [11], Liu and
Loewenstein [12], Korn [13], and Obizhaeva and Wang [14].

Among all kinds of transaction cost, the high gain tax
payment or high-watermark fee has attractedmany attentions
recently. The high-watermark fee is taken as the following
rule: whenever the maximum up to today, the so-called
high-watermark, exceeds the previously attained historic
maximum, the fixed proportion of the profit (relative to the
previous maximum) is charged by the fund manager. In the
early 1980s, Stiglitz [15] discussed the possibility and necessity
of charging high gain tax from investment income. The past
two decades have witnessed an increasing attention to the
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research of optimal control problem with high-watermark
fee. For example, Dammon et al. [16] investigated optimal
investment and consumption problemwith capital gain taxes,
Goetzmann et al. [17] studied the hedge fund management
when charging high gain tax, and Guasoni and Wang [18]
studied high-watermark and separation of private problems.
As it was shown previously, investment and consumption
problem is an important topic for insurer and also a key topic
of insurance mathematics or financial mathematics. Thus,
it is natural to consider optimal investment and consump-
tion problem for an insurer when high-watermark fees are
charged. Up to now, seldom insurance company considers
consumption problems. Thus, to discuss optimal consump-
tion for an insurer seems weird. However, an analogue prob-
lem in insurance company is the dividend payment or pen-
sion payment problem. For example, Højgaard and Taksar
[19] studied reinsurance and dividend with transaction costs,
Cairns [20] studied optimal pension fund schedule problem,
Zhu [21] took both investment and dividend into account in
searching for optimal policies, and He and Liang [22] inves-
tigated pension schedule and asset allocation problem. For
other works on investment and consumption problem related
to insurance affair or partially related to insurance affairs, see
Bielecki and Pliska [23], Dai and Yi [24], and Young [25].

In the paper of Janeček and Sı̂rbu [9], the optimal
investment and consumption problems for a fund manager
on infinite time horizon are considered when the fund man-
ager is subject to the high-watermark fee from investment.
However, the model considered there is not suitable for
an insurance company because the latter one has premium
income and claims with addition to the investment profit
(or underlying risk). This paper contributes to bridging this
gap. The surplus process of the insurer is specified by a
classical risk model and the insurer has the chance to invest
into risky asset and risk-free bond market. Whenever the
profit of the insurer attains a new maximum, the high-
watermark fee is taken as a kind of gain tax. The goal of the
insurer is to choose optimal investment and consumption
policies before ruin occurs. We will point out that although
it seems weird to allow the insurance company to make
consumption policies, dividend payment is a very common
decision policy for the managers of insurance company.
Thus, the consumption framework considered in this paper
can be regarded as a kind of dividend payment of insurer.
The progress achieved in this paper can be summarized as
follows. The optimization problem considered in this paper
is relevant to a jump diffusion process. Thus, the associated
HJB equation contains an integration part, which brings us
some difficulties in proving the smooth properties of the
solution to HJB equation. Similarly, it brings us difficulties in
proving that the value function is the viscosity solution toHJB
equation with integration part. Following the idea presented
in Janeček and Sı̂rbu [9], we prove that the value function is
smooth on its domain. We obtain the value function of an
insurer without high-watermark fee, which is not considered
in other literature. We obtain a verification theorem, which
means that the viscosity solution to HJB equation is indeed
the value function. Due to the natural connections between
the viscosity solution to HJB equation and the numerical

algorithm to the stochastic control problem, the main result
obtained in this paper is useful in the design of the numerical
approximating method of the related HJB equation.

The rest of this paper is organized as follows. In Section 2,
the model and problem are presented and efforts are made to
transform themodel such that dynamic programming princi-
ple andHJB equationmethod are applicable. In Section 3, the
definition of viscosity solution to a kind of second-order par-
tial integrodifferential equation is given, and the value func-
tion is proved to be the viscosity solution of the associated
HJB equation. In Section 4, by employing the same method
of Janeček and Sı̂rbu [9], the viscosity solution is proved to
be smooth on certain domain. The properties of viscosity on
some singular point are also discussed. Section 5 presents a
verification theorem, which asserts that the solution to HJB
equation is indeed the value function and the corresponding
feedback control replicates the optimal realization of the
insurer. Section 6 concludes the main contributions of this
paper and potential applications of our results.

2. Model and Problem

2.1. Classical Risk Model and Its Diffusion Approximation. In
this subsection, we briefly introduce the classical risk model
of an insurance company and its diffusion approximation.
The content presented here will be helpful for our later
investigation. Classical risk model for an insurer is (cf.
Grandell [26])

𝑑𝑈
𝑡
= 𝑎𝑑𝑡 − 𝑑(

𝑁
𝑡

∑

𝑖=1

𝑌
𝑖
) , (1)

where 𝑎 is the constant premium income rate and {𝑁
𝑡
; 𝑡 ≥ 0}

denotes the number of claims that arrived up to time 𝑡, which
is assumed to be a homogeneous Poisson process with inten-
sity 𝜆

0
> 0.The individual claims𝑌

1
, 𝑌

2
, . . . are assumed to be

a sequence of independent and identically distributed (i.i.d.)
positive random variables (r.v.s.) with common distribution
function 𝐺(𝑦) and finite expectation and satisfy 𝐺(0) = 0. In
addition, it assumes that {𝑁

𝑡
; 𝑡 ≥ 0} and {𝑌

𝑖
; 𝑖 = 1, 2, . . .} are

mutually independent. For notation convenience, we denote
by {𝑆

𝑡
; 𝑡 ≥ 0} the aggregate claim process; that is, 𝑆

𝑡
= ∑

𝑁
𝑡

𝑖=1
𝑌
𝑖
.

We denote that E𝑌
𝑖

= 𝜇 and Var(𝑌
𝑖
) = 𝜎

2. Main topic
associated with classical risk model is the ruin probability; in
mathematics, it is P(𝜏 < ∞), where 𝜏 = inf{𝑡 ≥ 0, 𝑈

𝑡
<

0} is known as “ruin time” in risk theory. There are many
methods to study the ruin time and ruin probability, such as
renewalmethod prompted by Feller andmartingale approach
introduced by Gerber (cf. Grandell [26]). Another idea is
to approximate the classical risk model by some stochastic
process with good statistical properties, such as Gaussian
process. This is so-called diffusion approximation of classical
risk model; see Chapter 1 of Grandell [26].

2.2. A General Model of Profits from Dynamic Investment in
a Hedge Fund. Now, suppose that the insurance company
invests in a risky fund with a share or unit price 𝐹

𝑡
at time

𝑡. If the insurance company chooses to hold 𝜃
𝑡
capital in the
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fund at time 𝑡 and no fees of any kind are imposed, then the
accumulated profit at time 𝑡, denoted by 𝑃

𝑡
, evolves as

𝑑𝑃
𝑡
= 𝜃

𝑡

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑑𝑡 − 𝑑(

𝑁(𝑡)

∑

𝑖=1

𝑌
𝑖
) = 𝜃

𝑡

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑑𝑡 − 𝑑𝑆
𝑡
, 0 ≤ 𝑡 < ∞,

𝑃
0
= 0.

(2)

Remark 1. The assumption 𝑃
0
= 0 seems unreasonable from

practice; however, we want to compare our model with the
model studied in Janeček and Sı̂rbu [9], so we made such
an assumption. In later discussion, the initial surplus of the
insurer is assumed to be 𝑥 > 0.

Denote by {𝑀
𝑡
, 𝑡 ≥ 0} the maximum profit process; that

is,

𝑀
𝑡
≜ sup
0≤𝑠≤𝑡

𝑃
𝑠
. (3)

Assume now that the manager tracks the high-watermark
fee once the insurance company achieves new maximum of
profit; the rule is as follows: anytime the high-watermark
increases, 𝜆 > 0 percentage of this increase is paid to the
fund manager. More precisely, the insurance company pays
𝜆Δ𝑀

𝑡
= 𝜆(𝑀

𝑡+Δ𝑡
− 𝑀

𝑡
) to the manager in the interval

[𝑡, 𝑡 + Δ𝑡]. Under such a high-watermark fee taking rule, the
evolution equation for the profit 𝑃

𝑡
is revised as

𝑑𝑃
𝑡
= 𝜃

𝑡−

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑑𝑡 − 𝑑𝑆
𝑡
− 𝜆𝑑𝑀

𝑡
, 𝑃

0
= 0,

𝑀
𝑡
= sup
0≤𝑠≤𝑡

𝑃
𝑠
.

(4)

Suppose that the insurance company has an initial maximum
profit 𝑖 (𝑖 ≥ 0); the profits of the insurance company will be
taxed when 𝑃 reaches value 𝑖 and will not be taxed before 𝑃

reaches at least value 𝑖. Then, for any given 𝑖 ≥ 0, the dynamic
of 𝑃 is given by

𝑑𝑃
𝑡
= 𝜃

𝑡−

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑑𝑡 − 𝑑𝑆
𝑡
− 𝜆𝑑𝑀

𝑡
, 𝑃

0
= 0,

𝑀
𝑡
= sup
0≤𝑠≤𝑡

(𝑃
𝑠
∨ 𝑖) .

(5)

A similar representation appears in the appendix of Guasoni
and Wang [18], where an optimization problem related to
maximizing utility of the fund manager is studied, which is
opposed to the utility of the investor in our case. However,
their state equation is similar to (5), so we resort to the same
pathwise representation.

Proposition 2. Assume that the share/unit prices process 𝐹

is a continuous and strictly positive semimartingale, and the
predictable processes {𝜃

𝑡
; 𝑡 ≥ 0} are such that the accumulated

profit process corresponding to the trading strategy 𝜃, in case no
profit fees are imposed, namely,

𝐼
𝑡
= 𝑎𝑡 − 𝑆

𝑡
+ ∫

𝑡

0

𝜃
𝑢−

𝑑𝐹
𝑢

𝐹
𝑢

, 0 ≤ 𝑡 < ∞, (6)

is well defined. Then (5) has a unique solution, which can be
represented pathwise by

𝑃
𝑡
= 𝐼

𝑡
−

𝜆

1 + 𝜆
sup
0≤𝑠≤𝑡

[𝐼
𝑠
− 𝑖]

+

, 0 ≤ 𝑡 < ∞, (7)

𝑀
𝑡
= 𝑖 +

1

1 + 𝜆
max
0≤𝑠≤𝑡

[𝐼
𝑠
− 𝑖]

+

, 0 ≤ 𝑡 < ∞. (8)

Proof. Note that 𝑃
0
= 𝐼

0
= 0, 𝑀

0
= 𝑖; (5) can be rewritten as

(𝑃
𝑡
− 𝑖) + 𝜆 sup

0≤𝑠≤𝑡

[𝑃
𝑠
− 𝑖]

+

= (𝐼
𝑡
− 𝑖) , 0 ≤ 𝑡 < ∞. (9)

Taking the positive part and the supremum on both sides, it
follows that

(1 + 𝜆) (𝑀
𝑡
− 𝑖) = (1 + 𝜆) sup

0≤𝑠≤𝑡

[𝑃
𝑠
− 𝑖]

+

= sup
0≤𝑠≤𝑡

[𝐼
𝑠
− 𝑖]

+

, 0 ≤ 𝑡 < ∞.

(10)

Replacing (10) into (5), we finish the proof of uniqueness.
By checking that the process in (7) is a solution of (5),

more precisely,

𝑑𝑃
𝑡
= 𝑑(𝐼

𝑡
−

𝜆

1 + 𝜆
sup
0≤𝑠≤𝑡

[𝐼
𝑠
− 𝑖]

+

)

= 𝑑𝐼
𝑡
−

𝜆

1 + 𝜆
𝑑( sup

0≤𝑠≤𝑡

[𝐼
𝑠
− 𝑖]

+

)

= 𝜃
𝑡−

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑡 − 𝑆
𝑡
− 𝜆𝑑𝑀

𝑡
.

(11)

This completes the proof.

2.3. Optimal Investment and Consumption in a Special Model.
Assume that the insurance company starts with initial capital
𝑥 > 0 and only additional investment opportunity is
the money market paying zero interest rate. The insurance
company is given the intimal high-watermark 𝑖 ≥ 0 for its
profits. We assume that the insurance company consumes at
a rate 𝛾

𝑡
> 0 per unit of time. Consumption can be made

either from the money market account or from accumulated
profit. Denote by

𝐶
𝑡
≜ ∫

𝑡

0

𝛾
𝑠
𝑑𝑠, 0 ≤ 𝑡 < ∞, (12)

the accumulated consumption process and by𝑋
𝜃,𝛾

𝑡
the wealth

process of an insurer associated with decision policy (𝜃, 𝛾).
Since the money market pays zero interest rate, the wealth
𝑋
𝜃,𝛾

𝑡
is formulated as

𝑋
𝜃,𝛾

𝑡
= 𝑥 + 𝑃

𝑡
− 𝐶

𝑡
, 0 ≤ 𝑡 ≤ 𝜏

𝜃,𝛾
, (13)

where 𝜏
𝜃,𝛾

≜ inf{𝑠 ≥ 0 : 𝑋
𝜃,𝛾

𝑠
≤ 0} is the first time that the

wealth goes below zero. In actuarial theory, 𝜏 is referred to as
the “ruin time.” In later discussion, for notation ease, we drop
the symbol 𝜃, 𝛾 in 𝜏

𝜃,𝛾.
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If consumption is taken into account, the high-watermark
of the insurance company’s profit can be represented as

𝑀
𝜃,𝛾

𝑡
= sup
0≤𝑠≤𝑡

[(𝑋
𝜃,𝛾

𝑠
+ 𝐶

𝑠
− 𝑥) ∨ 𝑖]

+

= 𝑖 + sup
0≤𝑠≤𝑡

[(𝑋
𝜃,𝛾

𝑠
+ 𝐶

𝑠
) − 𝑘]

+

,

(14)

where 𝑘 ≜ 𝑥 + 𝑖 ≥ 𝑥 > 0. In this situation, wealth evolves as

𝑑𝑋
𝜃,𝛾

𝑡
= 𝜃

𝑡−

𝑑𝐹
𝑡

𝐹
𝑡

+ 𝑎𝑑𝑡 − 𝛾
𝑡
𝑑𝑡 − 𝑑𝑆

𝑡
− 𝜆𝑑𝑀

𝜃,𝛾

𝑡
,

𝑋
𝜃,𝛾

0
= 𝑥,

𝑀
𝜃,𝛾

𝑡
= 𝑖 + sup

0≤𝑠≤𝑡

[(𝑋
𝜃,𝛾

𝑠
+ ∫

𝑠

0

𝛾
𝑢
𝑑𝑢) − 𝑘]

+

,

0 ≤ 𝑡 ≤ 𝜏.

(15)

So far, this is a general model of investment/consumption
in a hedge fund, which is also a good model of taxation. In
what follows, we focus on a simple but important case, where
the fund share/unit price {𝐹

𝑡
, 𝑡 ≥ 0} evolves as a geometric

Brownian motion; that is,

𝑑𝐹
𝑡

𝐹
𝑡

= 𝛼𝑑𝑡 + 𝜎𝑑𝑊
𝑡
, 0 ≤ 𝑡 < ∞, (16)

where (𝑊
𝑡
)
0≤𝑡<∞

is a standard Brownian motion defined on
the filtered probability space (Ω,F, (F

𝑡
)
0≤𝑡<∞

,P). With this
notation, (15) becomes

𝑑𝑋
𝜃,𝛾

𝑡
= (𝜃

𝑡
𝛼 − 𝛾

𝑡
+ 𝑎) 𝑑𝑡 + 𝜃

𝑡
𝜎𝑑𝑊

𝑡
− 𝑑𝑆

𝑡
− 𝜆𝑑𝑀

𝜃,𝛾

𝑡
,

𝑋
𝜃,𝛾

0
= 𝑥,

𝑀
𝜃,𝛾

𝑡
= 𝑖 + sup

0≤𝑠≤𝑡

[(𝑋
𝜃,𝛾

𝑠
+ ∫

𝑠

0

𝛾
𝑢
𝑑𝑢) − 𝑘]

+

,

0 ≤ 𝑡 ≤ 𝜏.

(17)

In order to use dynamic programming, we want to rep-
resent the control problem using a state process of minimal
dimension. What is more, since we want to apply the HJB
equation method, it is necessary to embed our state process
into a Markovian system. As usual, the wealth 𝑋 has to
be a part of the state. But using (𝑋,𝑀) as state is not a
possibility, since𝑀 does not contain the information on past
consumption, just that on past profits. Copying themethod of
Janeček and Sı̂rbu [9], we observed that the fee is being paid
as soon as the current profit 𝑃

𝜃,𝛾

𝑡
= 𝑋

𝜃,𝛾

𝑡
+ 𝐶

𝑡
− 𝑥 (current

wealth plus accumulated consumption plus aggregate claim
minus income minus initial wealth) hits the high-watermark
𝑀

𝜃,𝛾

𝑡
= 𝑖+sup

0≤𝑠≤𝑡
[𝑋

𝑠
+𝐶

𝑠
−𝑘]

+. In other words, fees are paid
whenever

𝑋
𝜃,𝛾

𝑡
+ 𝐶

𝑡
− 𝑘 = sup

0≤𝑠≤𝑡

[(𝑋
𝑠
+ 𝐶

𝑠
) − 𝑘]

+

, (18)

which is the same as 𝑋𝜃,𝛾
= 𝐾

𝜃,𝛾 for

𝐾
𝜃,𝛾

𝑡
≜ 𝑘 + sup

0≤𝑠≤𝑡

[(𝑋
𝜃,𝛾

𝑠
+ 𝐶

𝑠
) − 𝑘]

+

− 𝐶
𝑡

= sup
0≤𝑠≤𝑡

[{𝑋
𝜃,𝛾

𝑠
+ 𝐶

𝑠
} ∨ 𝑘] − 𝐶

𝑡
≥ 𝑋

𝜃,𝛾

𝑡
.

(19)

We now choose as state process the two-dimensional process
(𝑋,𝐾) which satisfies 𝑋 ≤ 𝐾 and is reflected whenever 𝑋 =

𝐾. The controlled state process (𝑋,𝐾) follows the evolution

𝑑𝑋
𝜃,𝛾

𝑡
= (𝜃

𝑡
𝛼 − 𝛾

𝑡
+ 𝑎) 𝑑𝑡 + 𝜃

𝑡
𝜎𝑑𝑊

𝑡
− 𝑑𝑆

𝑡

− 𝜆 (𝑑𝐾
𝜃,𝛾

𝑡
+ 𝛾

𝑡
𝑑𝑡) , 𝑋

0
= 𝑥,

𝐾
𝜃,𝛾

𝑡
= sup
0≤𝑠≤𝑡

[{𝑋
𝜃,𝛾

𝑠
+ ∫

𝑠

0

𝛾
𝑢
𝑑𝑢} ∨ 𝑘] − ∫

𝑡

0

𝛾
𝑢
𝑑𝑢,

0 ≤ 𝑡 ≤ 𝜏.

(20)

Equation (20) is implicit, as is (5). The pathwise representa-
tion in Proposition 2 can be easily translated into a pathwise
solution (20). More precisely, we have Proposition 3, and the
proof of Proposition 3 is similar to Proposition 2; we omit it
here.

Proposition 3. Assume that the predictable process (𝜃, 𝛾)

satisfies

P(∫

𝑡

0

(
𝜃𝑢


2

+ 𝛾
𝑢
) 𝑑𝑢 < ∞, ∀0 ≤ 𝑡 ≤ 𝜏) = 1. (21)

Denote

𝑍
𝑡
= ∫

𝑡

0

𝜃
𝑢
(𝛼𝑑𝑢 + 𝜎𝑑𝑊

𝑢
) + 𝑎𝑡 − 𝑆

𝑡
,

𝐶
𝑡
= ∫

𝑡

0

𝛾
𝑢
𝑑𝑢, 0 ≤ 𝑡 ≤ 𝜏.

(22)

Suppose that the accumulated profit process corresponding to
the trading strategy 𝜃 is well defined. Then

𝑋
𝜃,𝛾

𝑡
= 𝑥 + 𝑍

𝑡
− 𝐶

𝑡
−

𝜆

1 + 𝜆
sup
0≤𝑠≤𝑡

[𝑍
𝑠
− 𝑖]

+

,

0 ≤ 𝑡 ≤ 𝜏,

𝐾
𝜃,𝛾

𝑡
= 𝑘 +

1

1 + 𝜆
sup
0≤𝑠≤𝑡

[𝑍
𝑠
− 𝑖]

+

− 𝐶
𝑡
, 0 ≤ 𝑡 ≤ 𝜏.

(23)

The high-watermark is computed as

𝑀
𝜃,𝛾

𝑡
= 𝑖 +

1

1 + 𝜆
sup
0≤𝑠≤𝑡

[𝑍
𝑠
− 𝑖]

+

, 0 ≤ 𝑡 ≤ 𝜏. (24)

Fix an initial capital 𝑥 > 0 and an initial high-watermark
of profits 𝑖 ≥ 0. Recall that 𝑘 ≜ 𝑥 + 𝑖 ≥ 𝑥. An investment/
consumption strategy (𝜃, 𝛾) is called admissible with respect
to the initial date (𝑥, 𝑘) if it satisfies integrability conditions
(21); the consumption stream is positive (𝛾

𝑡
≥ 0). We denote

byA(𝑥, 𝑘) the set of all admissible strategies at (𝑥, 𝑘).
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We consider a concave utility function 𝑈 : (0,∞) →

R. So we can define the expected utility from consumption
E[∫

𝜏

0
𝑒
−𝛽𝑡

𝑈(𝛾
𝑡
)𝑑𝑡]. The object of this paper is to research the

optimal investment/consumption amounts (𝜃, 𝛾) related to
following optimization problem (for each fixed (𝑥, 𝑘)):

V (𝑥, 𝑘) ≜ sup
(𝜃,𝛾)∈A(𝑥,𝑘)

E [∫

𝜏

0

𝑒
−𝛽𝑡

𝑈(𝛾
𝑡
) 𝑑𝑡] ,

0 ≤ 𝑥 ≤ 𝑘.

(25)

One should note that once the initial surplus is negative, that
is, 𝑥 < 0, it immediately followed by

V (𝑥, 𝑘) = 0, ∀𝑥 < 0. (26)

Function V defined above is called the value function. We
further assume that the utility function 𝑈 has the particular
form

𝑈 (𝛾) =
𝛾
1−𝑝

1 − 𝑝
, 𝛾 > 0, (27)

for some 𝑝 > 0, 𝑝 ̸= 1, where 𝑝 is called the relative risk
aversion coefficient.

Using the controls (𝜃, 𝛾) the insurance company controls
the process (𝑋,𝐾) in (21) which is restricted to the domain
0 < 𝑥 ≤ 𝑘 and is reflected on the diagonal 𝑥 = 𝑘 in the
direction given by the vector

𝑟 ≜ (
−𝜆

1
) . (28)

So, state (20) can be rewritten as

𝑑(
𝑋
𝜃,𝛾

𝑡

𝐾
𝜃,𝛾

𝑡

) = (
(𝜃
𝑡
𝛼 − 𝛾

𝑡
+ 𝑎) 𝑑𝑡 + 𝜃

𝑡
𝜎𝑑𝑊

𝑡
− 𝑑𝑆

𝑡

−𝛾
𝑡
𝑑𝑡

)

+ 𝛾𝑑𝑀
𝜃,𝛾

𝑡
, 0 ≤ 𝑡 ≤ 𝜏,

(29)

where

∫

𝑡

0

1
{𝑋
𝜃,𝛾

𝑠 ̸=𝐾
𝜃,𝛾

𝑠 }
𝑑𝑀

𝑠
= 0. (30)

Denote the continuous part of process (𝑋
𝜃,𝛾

𝑡
, 𝐾

𝜃,𝛾

𝑡
) by

(𝑋
𝑐,𝜃,𝛾

𝑡
, 𝐾

𝑐,𝜃,𝛾

𝑡
); that is,

𝑑(
𝑋
𝑐,𝜃,𝛾

𝑡

𝐾
𝑐,𝜃,𝛾

𝑡

) = (
(𝜃
𝑡
𝛼 − 𝛾

𝑡
+ 𝑎) 𝑑𝑡 + 𝜃

𝑡
𝜎𝑑𝑊

𝑡

−𝛾
𝑡
𝑑𝑡

)

+ 𝛾𝑑𝑀
𝑡
, 𝜃, 𝛾, 0 ≤ 𝑡 ≤ 𝜏.

(31)

Themain goal of the present paper is to analyze the impact of
fees on the investment/consumption strategies and the main
method in this paper relies on HJB equation. One should
note that, with the introduction of process 𝐾

𝜃,𝛾

𝑡
, we embed

our model into a Markov system, which enables further
discussion.

3. Dynamic Programming and HJB Equation

Now, in order to obtain the HJB equation as follows, we will
use the dynamic programming principle; see Proposition 4.
The proof of Proposition 4 is similar to the one in Azcue and
Muler [27] and we omit the proof here.

Proposition 4. Suppose that (𝜃, 𝛾) is an optimal control. Then
one has

V (𝑥, 𝑘)

= E[∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

𝑈(𝛾
𝑠
) 𝑑𝑠 + 𝑒

−𝛽(ℎ∧𝜏)V (𝑋
𝜃,𝛾

ℎ∧𝜏
, 𝐾

𝜃,𝛾

ℎ∧𝜏
)] ,

V (𝑋
𝜃,𝛾

𝜏
, 𝐾

𝜃,𝛾

𝜏
) = 0.

(32)

If V(𝑥, 𝑛) is smooth enough, by Itô’s Lemma, we have

𝑒
−𝛽(ℎ∧𝜏)V (𝑋

𝜃,𝛾

ℎ∧𝜏
, 𝐾

𝜃,𝛾

ℎ∧𝜏
) = V (𝑥, 𝑘)

+ ∫

ℎ∧𝜏

0

(−𝛽𝑒
−𝛽𝑠V) 𝑑𝑠 + ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠 𝜕V

𝜕𝑥
𝑑𝑋

𝑐

𝑠

+ ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠 𝜕V

𝜕𝑘
𝑑𝐾

𝑐

𝑠
+

1

2
∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠 𝜕

2V
𝜕𝑥2

𝑑𝑋
𝑐

𝑠
𝑑𝑋

𝑐

𝑠
+

1

2

⋅ ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠 𝜕

2V
𝜕𝑘2

𝑑𝐾
𝑐

𝑠
𝑑𝐾

𝑐

𝑠
+

1

2

⋅ ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠 𝜕

2V
𝜕𝑥𝜕𝑘

𝑑𝑋
𝑐

𝑠
𝑑𝐾

𝑐

𝑠
+ ∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

⋅ [V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
) − V (𝑋

𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)]𝐾 (𝑑𝑌, 𝑑𝑠) ,

(33)

where 𝑁 is the Poisson random measure on [0, 𝜏] × [0,∞)

defined by

𝐾 = ∑

𝑛≥1

𝛿 (𝑇
𝑘
, 𝑌

𝑘
) . (34)

Denote byL𝜃,𝛾V(⋅, ⋅) (associatedwith (𝜃, 𝛾)) the second-order
partial differential operator with the form of

L
𝜃,𝛾V = (𝜃

𝑡
𝛼 − 𝛾

𝑡
+ 𝑎) V

𝑥
+

1

2
𝜃
2

𝑡
𝜎
2V
𝑥𝑥

− 𝛾
𝑡
V
𝑘
, (35)

where V
𝑥
, V
𝑥𝑥

, V
𝑘
are the first, the second, and the first partial

derivatives with respect to 𝑥 and 𝑘, respectively. Then, by
compensating (33) with

𝜆
0
∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

[V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
)

− V (𝑋
𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)] 𝑑𝐺 (𝑌) 𝑑𝑠,

(36)



6 Mathematical Problems in Engineering

(33) can be rewritten as

𝑒
−𝛽(ℎ∧𝜏)V (𝑋

𝜃,𝛾

ℎ∧𝜏
, 𝐾

𝜃,𝛾

ℎ∧𝜏
) = V (𝑥, 𝑘) + ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

(−𝛽V

+ L
𝜃,𝛾V) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑠

+ ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

𝜃
𝑠
𝜎V

𝑥
(𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑊

𝑠

+ ∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

(−𝜆V
𝑥
+ V

𝑘
) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑀

𝑠

+ ∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

[V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
)

− V (𝑋
𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)] [𝐾 (𝑑𝑌𝑑𝑠) − 𝜆

0
𝑑𝐺 (𝑌) 𝑑𝑠]

+ 𝜆
0
∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

[V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
)

− V (𝑋
𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)] 𝑑𝐺 (𝑌) 𝑑𝑠.

(37)

Since

∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

[V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
) − V (𝑋

𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)]

⋅ [𝐾 (𝑑𝑌, 𝑑𝑠) − 𝜆
0
𝑑𝐺 (𝑌) 𝑑𝑠]

(38)

is a martingale (see [28, page 63]), it follows that

0 = E[∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

[−𝛽V (𝑋
𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) + L

𝜃,𝛾V (𝑋
𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) + 𝑈 (𝛾

𝑠
)] 𝑑𝑠] + E[∫

ℎ∧𝜏

0

𝑒
−𝛽𝑠

(−𝜆V
𝑥
+ V

𝑘
) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑀

𝑠
]

+ 𝜆
0
E[∫

ℎ∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑠

[V (𝑋
𝜃,𝛾

𝑠−
− 𝑌,𝐾

𝜃,𝛾

𝑠−
) − V (𝑋

𝜃,𝛾

𝑠−
, 𝐾

𝜃,𝛾

𝑠−
)] 𝑑𝐺 (𝑌) 𝑑𝑠] .

(39)

With boundary condition (26), dividing proceeding equation
by ℎ and sending ℎ to 0, we can formally write the HJB
function:

(𝜆
0
+ 𝛽) V (𝑥, 𝑘) − sup

(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾V (𝑥, 𝑘)

+ 𝜆
0
∫

𝑥

0

V (𝑥 − 𝑌, 𝑘) 𝑑𝐺 (𝑌)} = 0,

for 𝑥 ≥ 0, 𝑘 > 𝑥,

(40)

𝜆V
𝑥
(𝑥, 𝑥) − V

𝑘
(𝑥, 𝑥) = 0, for 𝑥 > 0. (41)

Boundary condition (41) comes from the fact that the wealth
process will reflect whenever𝑋 = 𝐾 with direction 𝛾 and the
gradient of V(𝑥, 𝑘) is perpendicular to 𝛾 at 𝑥 = 𝑘.

If we can find a smooth solution for the HJB, then the
optimal consumption will actually be given in feedback form
by

𝛾 (𝑥, 𝑘) = 𝐼 (V
𝑥
(𝑥, 𝑘) + V

𝑛
(𝑥, 𝑘)) , (42)

where 𝐼 ≜ (𝑈

)
−1 is the inverse ofmarginal utility. In addition,

we expect the optimal amount invested in the fund to be given
by

𝜃 (𝑥, 𝑘) = −
𝛼

𝜎2
⋅
V
𝑥
(𝑥, 𝑘)

V
𝑥𝑥

(𝑥, 𝑘)
. (43)

Usually, it is difficult to justify the smoothness of value
function or the existence of classical solution to the HJB
equation that appeared in a control problem. The theory of
viscosity principally provides us with a way to analyze our
problem (cf. Crandall et al. [29]). To proceed our discussion,
we need the following alternative expressions of dynamic

programming principle; the readers are referred to Pham
[30]. In the sequel, we denote byT

0,𝜏
the set of stopping times

valued in [0, 𝜏]; then one has the following.

Proposition 5. (1) For all (𝜃, 𝛾) ∈ A(𝑥, 𝑘) and 𝜗 ∈ T
0,𝜏
,

V (𝑥, 𝑘) ≥ E[∫

𝜗

0

𝑒
−𝛽𝑠

𝑈 (𝛾
𝑠
) 𝑑𝑠 + 𝑒

−𝛽𝜗V (𝑋
𝜃,𝛾

𝜗
, 𝐾

𝜃,𝛾

𝜗
)] . (44)

(2) For all 𝜀 > 0, there exists (𝜃, 𝛾) ∈ A(𝑥, 𝑘) such that, for
all 𝜗 ∈ T

0,𝜏
,

V (𝑥, 𝑘) − 𝜀

≤ E[∫

𝜗

0

𝑒
−𝛽𝑠

𝑈 (𝛾
𝑠
) 𝑑𝑠 + 𝑒

−𝛽𝜗V (𝑋
𝜃,𝛾

𝜗
, 𝐾

𝜃,𝛾

𝜗
)] .

(45)

4. Value Function, Viscosity Solution, and
Its Regularity

4.1. Value Function and Viscosity Solution. In order to intro-
duce the concept of viscosity solutions, we first introduce
some additional notations. Given a locally bounded function
𝜔 (i.e., for all (𝑥, 𝑘) ∈ (0, +∞) × (0, +∞), there exists a
compact neighborhood 𝑉 of (𝑥, 𝑘) such that 𝜔 is bounded
on 𝑉); we define its upper-semicontinuous envelope 𝜔

∗ and
lower-semicontinuous envelope 𝜔

∗
on [0, +∞) × (0, +∞)

by

𝜔
∗
(𝑥, 𝑘) = lim sup

(𝑥

,𝑘

)→ (𝑥,𝑘)

𝜔 (𝑥

, 𝑘

) ,

𝜔
∗
(𝑥, 𝑘) = lim inf

(𝑥

,𝑘

)→ (𝑥,𝑘)

𝜔 (𝑥

, 𝑘

) .

(46)
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Recall that 𝜔
∗ (resp., 𝜔

∗
) is the smallest (resp., largest)

upper-semicontinuous function (u.s.c.) above (resp., lower-
semicontinuous function (l.s.c.) below) 𝜔 on (0, +∞) ×

(0, +∞). Note that a locally bounded function 𝜔 on
(0, +∞) × (0, +∞) is lower-semicontinuous (resp., upper-
semicontinuous) if and only if 𝜔 = 𝜔

∗
on (0, +∞) × (0, +∞),

and it is continuous if (and only if) 𝜔 = 𝜔
∗

= 𝜔
∗
on

(0, +∞) × (0, +∞).

Remark 6. Here, the first and second partial derivatives with
respect to 𝑥 at 𝑥 = 0 mean the right partial derivatives.

Definition 7 (viscosity subsolution and supersolution). An
u.s.c. function 𝜔 ∈ 𝐶 is a viscosity subsolution of (40) iff
for any test function 𝜓 ∈ 𝐶

2,1
(0, +∞) × (0, +∞); if (𝑥, 𝑘) is

a global maximum point of 𝜔∗ − 𝜓, then

𝛽𝜓 (𝑥, 𝑘) − sup
(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜓 (𝑥, 𝑘)

+ 𝜆
0
E [𝜓 (𝑥 − 𝑌, 𝑘) − 𝜓 (𝑥, 𝑘)]} ≤ 0,

𝜆𝜓
𝑥
(𝑥, 𝑘) − 𝜓

𝑘
(𝑥, 𝑘) ≤ 0.

(47)

A l.s.c. function 𝜔 ∈ 𝐶 is a viscosity supersolution of (40) iff
for any test function 𝜑 ∈ 𝐶

2,1
((0, +∞) × (0, +∞)); if (𝑥, 𝑘) is

a global minimum point of 𝜔
∗
− 𝜓, then

𝛽𝜑 (𝑥, 𝑘) − sup
(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜑 (𝑥, 𝑘)

+ 𝜆
0
E [𝜑 (𝑥 − 𝑌, 𝑘) − 𝜑 (𝑥, 𝑘)]} ≥ 0,

𝜆𝜑
𝑥
(𝑥, 𝑘) − 𝜑

𝑘
(𝑥, 𝑘) ≥ 0.

(48)

Finally, 𝜔 is a viscosity solution of (40) if it is simultaneously
a viscosity subsolution and supersolution.

In addition to Definition 7, there are three equivalent
definitions on second-ordered Integro-differential partial
differential equations; the readers who are interested in the
proof of the equivalence of these definitions are referred to
Benth et al. [31] or Barles and Imbert [32].

Theorem8. V(𝑥, 𝑘) is a viscosity solution of (40), where V(𝑥, 𝑘)
was defined in (25).

Proof. Let us prove firstly that V is a viscosity supersolution.
Let (𝑥, 𝑘) ∈ (0, +∞) × (0, +∞) and let 𝜑 ∈ 𝐶

2,1
((0, +∞) ×

(0, +∞)) be a test function such that

0 = (V
∗
− 𝜑) (𝑥, 𝑘)

= min
(𝑥,𝑘)∈(0,+∞)×(0,+∞)

(V
∗
− 𝜑) (𝑥, 𝑘) .

(49)

We further extend the domain of 𝜑(𝑥, 𝑘) toR × (0, +∞) with
the convention that 𝜑(𝑥, 𝑘) = 0 for all 𝑥 < 0. One will see
later that such extension does not prevent us from discussing

our problem. By definition of V
∗
(𝑥, 𝑘), there exists a sequence

(𝑥
𝑚
, 𝑘
𝑚
) in (0, +∞) × (0, +∞), such that

(𝑥
𝑚
, 𝑘
𝑚
) → (𝑥, 𝑘) ,

V (𝑥
𝑚
, 𝑘
𝑚
) → V

∗
(𝑥, 𝑘) ,

(50)

when𝑚 goes to infinity. By the continuity of 𝜑 and by (49) we
also have that

𝜁
𝑚

:= V (𝑥
𝑚
, 𝑘
𝑚
) − 𝜑 (𝑥

𝑚
, 𝑘
𝑚
) → 0, (51)

when 𝑚 goes to infinity.
Let (𝜃, 𝛾) ∈ A(𝑥, 𝑘); we denote by (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) the

associated controlled process. Let 𝜏1
𝑚
and 𝜏

2

𝑚
be the stopping

times given by 𝜏
1

𝑚
= inf{0 ≤ 𝑠 ≤ 𝜏 : |𝑋

𝜃,𝛾

𝑠
(𝑥
𝑚
, 𝑘
𝑚
) − 𝑥

𝑚
| ≥ 𝜂}

and 𝜏
2

𝑚
= inf{0 ≤ 𝑠 ≤ 𝜏 : |𝐾

𝜃,𝛾

𝑠
(𝑥
𝑚
, 𝑘
𝑚
) − 𝑘

𝑚
| ≥ 𝜂} in which

𝜂 > 0 is a fixed constant, and 𝜏
𝑚

:= 𝜏
1

𝑚
∧ 𝜏

2

𝑚
. Let (ℎ

𝑚
) be a

strictly positive sequence such that

ℎ
𝑚

→ 0,

𝜁
𝑚

ℎ
𝑚

→ 0,

(52)

when𝑚 goes to infinity.We apply the first part of the dynamic
programming principle (44) for V(𝑥

𝑚
, 𝑘
𝑚
) to 𝜗

𝑚
:= 𝜏

𝑚
∧ ℎ

𝑚

and get

V (𝑥
𝑚
, 𝑘
𝑚
)

≥ E[∫

𝜗
𝑚

0

𝑒
−𝛽𝑠

𝑈 (𝛾
𝑠
) 𝑑𝑠 + 𝑒

−𝛽𝜗
𝑚V (𝑋

𝜃,𝛾

𝜗
𝑚

, 𝐾
𝜃,𝛾

𝜗
𝑚

)] .

(53)

Equation (49) implies that V ≥ V
∗
≥ 𝜑. Thus

𝜑 (𝑥
𝑚
, 𝑘
𝑚
) + 𝜁

𝑚

≥ E[∫

𝜗
𝑚

0

𝑒
−𝛽𝑠

𝑈(𝛾
𝑠
) 𝑑𝑠 + 𝑒

−𝛽𝜗
𝑚𝜑 (𝑋

𝜃,𝛾

𝜗
𝑚

, 𝐾
𝜃,𝛾

𝜗
𝑚

)] .

(54)

Applying Itô’s formula to 𝑒
−𝛽𝜗
𝑠𝜑(𝑋

𝜃,𝛾

𝜗
𝑠

, 𝐾
𝜃,𝛾

𝜗
𝑠

) between 0 and𝜗
𝑚
,

we obtain
𝜁
𝑚

ℎ
𝑚

+ E[
1

ℎ
𝑚

∫

𝜗
𝑚

0

(𝛽𝜑 − 𝑈 (𝛾
𝑠
) − L

𝜃,𝛾
𝜑

− 𝜆
0
E [𝜑 (𝑋 − 𝑌,𝐾) − 𝜑 (𝑋,𝐾)]) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑠]

+ E[
1

ℎ
𝑚

∫

𝜗
𝑚

0

(𝜆𝜑
𝑥
− 𝜑

𝑘
) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑀

𝑠
] ≥ 0,

(55)

after noting that the stochastic integral term cancels out by
taking expectations since the integrand is bounded. Since the
random variable inside the expectation in (55) is bounded by
a constant independent of 𝑚, we then obtain

(𝜆
0
+ 𝛽) 𝜑 (𝑥, 𝑘) − 𝑈 (𝛾) − L

𝜃,𝛾
𝜑 (𝑥, 𝑘)

− 𝜆
0
∫

𝑥

0

𝜑 (𝑥 − 𝑌, 𝑘) 𝑑𝐺 (𝑌) ≥ 0,

𝜆𝜑
𝑥
(𝑥, 𝑘) − 𝜑

𝑘
(𝑥, 𝑘) ≥ 0,

(56)
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when 𝑚 goes to infinity by the dominated convergence
theorem. We conclude from the arbitrariness of (𝜃, 𝛾) ∈

A(𝑥, 𝑘). Thus we get (48).
It remains to prove that V is a viscosity subsolution. Let

(𝑥, 𝑘) ∈ (0, +∞)×(0, +∞) and let𝜓 ∈ 𝐶
2,1

((0, +∞)×(0, +∞))

be a test function such that

0 = (V∗ − 𝜓) (𝑥, 𝑘) = max
(𝑥,𝑘)∈𝑅

2

(V∗ − 𝜓) (𝑥, 𝑘) . (57)

We will show the result by contradiction. Assume on the
contrary that

𝛽𝜓 (𝑥, 𝑘) − sup
(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜓 (𝑥, 𝑘)

+ 𝜆
0
E [𝜓 (𝑥 − 𝑌, 𝑘) − 𝜓 (𝑥, 𝑘)]} > 0,

𝜆𝜓
𝑥
(𝑥, 𝑘) − 𝜓

𝑘
(𝑥, 𝑘) > 0.

(58)

There exist 𝜂 > 0 and 𝜀 > 0 such that

𝛽𝜓 (𝑥

, 𝑘

) − sup

(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜓 (𝑥

, 𝑘

)

+ 𝜆
0
E [𝜓 (𝑥


− 𝑌, 𝑘


) − 𝜓 (𝑥


, 𝑘

)]} ≥ 𝜀,

𝜆𝜓
𝑥
(𝑥


, 𝑘

) − 𝜓

𝑛
(𝑥


, 𝑘

) ≥ 𝜀,

(59)

for all (𝑥, 𝑘) ∈ 𝐵(𝑥, 𝑘, 𝜂) = {(𝑥

, 𝑘

) ∈ (0, +∞) × (0, +∞) :

|𝑥 − 𝑥

|
2
+ |𝑘 − 𝑘


|
2

< 𝜂}. By the definition of V(𝑥, 𝑘), there
exists a sequence (𝑥

𝑚
, 𝑘
𝑚
) taking values in 𝐵(𝑘, 𝜂) such that

(𝑥
𝑚
, 𝑘
𝑚
) → (𝑥, 𝑘) ,

V (𝑥
𝑚
, 𝑘
𝑚
) → V (𝑥, 𝑘) ,

(60)

when𝑚 goes to infinity. By continuity of𝜓 and using (57), we
also find that

𝜁
𝑚

:= V (𝑥
𝑚
, 𝑘
𝑚
) − 𝜓 (𝑥

𝑚
, 𝑘
𝑚
) → 0, (61)

when 𝑚 goes to infinity. Let (ℎ
𝑚
) be a strictly positive

sequence such that

ℎ
𝑚

→ 0,

𝜁
𝑚

ℎ
𝑚

→ 0.

(62)

Then, according to the second part of dynamic programming
principle (45) and using (57), there is a sequence (𝜃

𝑚
, 𝛾
𝑚
) ∈

A(𝑥
𝑚
, 𝑘
𝑚
) such that

𝜓 (𝑥
𝑚
, 𝑘
𝑚
) + 𝜁

𝑚
−

𝜀ℎ
𝑚

2

≤ E[∫

𝜗
𝑠

0

𝑒
−𝛽𝑠

𝑈(𝛾
𝑚
) 𝑑𝑠 + 𝑒

−𝛽𝜗
𝑚𝜓 (𝑋

𝜃
𝑚
,𝛾
𝑚

𝜗
𝑚

, 𝐾
𝜃
𝑚
,𝛾
𝑚

𝜗
𝑚

)] ,

(63)

in which we take 𝜗
𝑚

= 𝜏


𝑚
∧ ℎ

𝑚
, 𝜏
𝑚

= 𝜏
3

𝑚
∧ 𝜏

4

𝑚
, 𝜏3
𝑚

= inf{0 ≤

𝑠 ≤ 𝜏 : |𝑋
𝜃,𝛾

𝑠
(𝑥
𝑚
, 𝑘
𝑚
) − 𝑥

𝑚
| ≥ 𝜂


}, 𝜏4

𝑚
= inf{0 ≤ 𝑠 ≤ 𝜏 :

|𝐾
𝜃,𝛾

𝑠
(𝑥
𝑚
, 𝑘
𝑚
) − 𝑘

𝑚
| ≥ 𝜂


}, and 0 < 𝜂


< 𝜂. Since (𝑥

𝑚
, 𝑘
𝑚
)

converges to (𝑥, 𝑘), we can always assume that𝐵(𝑥
𝑚
, 𝑘
𝑚
, 𝜂

) ⊂

𝐵(𝑥, 𝑘, 𝜂). For 0 ≤ 𝑠 ≤ 𝜗
𝑚

≤ 𝜏, by applaying Itô’s formula to
𝑒
−𝛽𝑠

𝜓(𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
, 𝐾

𝜃
𝑚
,𝛾
𝑚

𝑠
), we get

0 ≥
𝜁
𝑚

ℎ
𝑚

−
𝜀

2
+ E[

1

ℎ
𝑚

∫

𝜗
𝑚

0

𝐿 (𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
, 𝐾

𝜃
𝑚
,𝛾
𝑚

𝑠
) 𝑑𝑠]

+ E[
1

ℎ
𝑚

∫

𝜗
𝑚

0

(𝜆𝜓
𝑥
− 𝜓

𝑘
) (𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
) 𝑑𝑀

𝑠
]

(64)

with

𝐿 (𝑥, 𝑘) = 𝛽V (𝑥, 𝑘) − 𝑈 (𝛾) − L
𝜃,𝛾

𝜓 (𝑥, 𝑘)

− 𝜆
0
E [𝜓 (𝑥 − 𝑌, 𝑘) − 𝜓 (𝑥, 𝑘)] ,

(65)

after noting that the stochastic integral term cancels out by
taking expectations since the integrand is bounded.

Moreover, noting that for 0 ≤ 𝑠 < 𝜗
𝑚

≤ 𝜏

𝐿 (𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
, 𝐾

𝜃
𝑚
,𝛾
𝑚

𝑠
) ≥ 𝛽V (𝑥, 𝑘) − sup

(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾)

+ L
𝜃,𝛾

𝜓 (𝑥, 𝑘) + 𝜆
0
E [𝜓 (𝑥 − 𝑌, 𝑘) − 𝜓 (𝑥, 𝑘)]}

≥ 𝜀,

(66)

we find using (59) and (64) that

0 ≥
𝜁
𝑚

ℎ
𝑚

− 𝜀(
1

2
−

1

ℎ
𝑚

E [𝜗
𝑚
]) (67)

since (see Pham [30, Page 38])

lim
ℎ
𝑚↓0
+

E[ sup
𝑠∈(0,𝜗

𝑚
]


𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑥

𝑚



2

] = 0,

lim
ℎ
𝑚↓0
+

E[ sup
𝑠∈(0,𝜗

𝑚
]


𝐾
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑘

𝑚



2

] = 0.

(68)

By Chebyshev’s inequality, we deduce that

P [𝜏


𝑚
≤ ℎ

𝑚
] ≤ P[ sup

𝑠∈(0,ℎ
𝑚
]


𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑥

𝑚


≥ 𝜂]

⋅ P[ sup
𝑠∈(0,ℎ

𝑚
]


𝐾
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑘

𝑚


≥ 𝜂]

≤

E

sup

𝑠∈(0,ℎ
𝑚
]


𝑋
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑥

𝑚



2

𝜂2

⋅

E

sup

𝑠∈(0,ℎ
𝑚
]


𝐾
𝜃
𝑚
,𝛾
𝑚

𝑠
− 𝑘

𝑚



2

𝜂2
→ 0,

(69)
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when ℎ
𝑚
goes to zero, that is, when 𝑚 goes to infinity. More-

over, since

E [𝜗
𝑡
] = ∫

{𝜏


𝑚
>ℎ
𝑚
}

ℎ
𝑚
𝑑P + ∫

{𝜏


𝑚
≤ℎ
𝑚
}

(𝜏


𝑚
) 𝑑P (70)

we deduce that

ℎ
𝑚
P (𝜏



𝑚
> ℎ

𝑚
) = ℎ

𝑚
P (𝜏



𝑚
> ℎ

𝑚
) = ∫

{𝜏


𝑚
>ℎ
𝑚
}

ℎ
𝑚
𝑑P

≤ E [𝜗
𝑡
]

≤ ∫
{𝜏


𝑚
>ℎ
𝑚
}

ℎ
𝑚
𝑑P + ∫

{𝜏


𝑚
≤ℎ
𝑚
}

ℎ
𝑚
𝑑P

= ℎ
𝑚
.

(71)

So we obtain

P [𝜏


𝑚
> ℎ

𝑚
] ≤

1

ℎ
𝑚

E [𝜗
𝑚
] ≤ 1. (72)

This implies that (1/ℎ
𝑚
)E[𝜗

𝑚
] converges to 1 when ℎ

𝑚
goes

to zero. We thus get the desired contradiction by letting𝑚 go
to infinity in (67).

So (47) holds and we complete the proof.

4.2. Dimension Reduction and Regularity of Viscosity Solution.
A key insight noted by Magill and Constantinides [33] and
exploited in Davis and Norman [8] is that because of the
homotheticity of power utility function (Proposition 3.3) the
dimension of our control problem is ready to be reduced
from two to one. In Janeček and Sı̂rbu [9], where the
decision maker is assumed to be a hedge fund manager,
such reduction is successful and with such reduction, the
authors proved the regularity of the viscosity solution to the
HJB equation associated with their control problem. In our
problem we guess that the value function, also the viscosity
solution to the HJB equation, resembles similar property.The
following intuitive interpretation will help us to understand
this point. In Section 2.1, it has been shown that the ruin
probability of classical risk model can be approximated to
a drifted Brownian motion with proper drift and diffusion
coefficients. What is more, one can even try to approximate
the distribution of the functional of the maximum process
of classical risk model by diffusion process. So, if we replace
the classical risk model by a proper drifted Brownianmotion,
then after some easy calculations, one can find that the
corresponding HJB equation shares the same formulation
with the one presented in Janeček and Sı̂rbu [9]. In this
situation, it is natural to guess that the value function can
be reduced from two to one. The main difference of the HJB
equation of this paper is that there is an integral term in the
HJB equation, however, after noting that the control process
is stopped after stopping time 𝜏

𝜃,𝛾, so we still hope that there
is a possibility to reduce the viscosity solution from two to
one. More precisely, we expect that

V (𝑥, 𝑘) = 𝑥
1−𝑝V(1,

𝑘

𝑥
) ≜ 𝑥

1−𝑝
𝑢 (𝑧) for 𝑧 ≜

𝑘

𝑥
. (73)

In addition, instead of looking for the optimal amounts
𝜃(𝑥, 𝑘) and 𝛾(𝑥, 𝑘) in (43) and (42) we look for the propor-
tions

𝑐 (𝑥, 𝑘) =
𝛾

𝑥
=

𝐼 (V
𝑥
(𝑥, 𝑘) + V

𝑘
(𝑥, 𝑘))

𝑥
, (74)

�̂� (𝑥, 𝑘) =
𝜃

𝑥
= −

𝛼

𝜎2
⋅

𝑥V
𝑥
(𝑥, 𝑘)

𝑥2V
𝑥𝑥

(𝑥, 𝑘)
. (75)

Since

V
𝑘
(𝑥, 𝑘) = 𝑢


(𝑧) ⋅ 𝑥

−𝑝
,

V
𝑥
(𝑥, 𝑘) = ((1 − 𝑝) 𝑢 (𝑧) − 𝑧𝑢


(𝑧)) ⋅ 𝑥

−𝑝
,

V
𝑥𝑥

(𝑥, 𝑘)

= (−𝑝 (1 − 𝑝) 𝑢 (𝑧) + 2𝑝𝑧𝑢

(𝑧) + 𝑧

2
𝑢

(𝑧))

⋅ 𝑥
−1−𝑝

,

(76)

it is followed that (40) and (41) can be reformulated as

sup
𝛾>0,𝜃

{−𝛽𝑢 +
𝑐
1−𝑝

1 − 𝑝
+ (𝜋𝛼 − 𝑐) [(1 − 𝑝) 𝑢 − 𝑧𝑢


] − 𝑐𝑢



+
1

2
𝜋
2
𝜎
2
(−𝑝 (1 − 𝑝) 𝑢 + 2𝑝𝑧𝑢


+ 𝑧

2
𝑢

)

+ 𝜆
0
𝜒 (𝑢 (𝑧))} = 0,

(77)

− 𝜆 (1 − 𝑝) 𝑢 (1) + (1 + 𝜆) 𝑢

(1) = 0, (78)

where, for notation simplicity, we adopt 𝜒(𝑢(𝑧)) for ∫
𝑥

0
(𝑥 −

𝑌, 𝑘)𝑑𝐺(𝑦). We also expect that

lim
𝑧→∞

𝑢 (𝑧) =
1

1 − 𝑝
𝑐
−𝑝

0 (79)

with 𝑐
0
given by (96) below; see (98).

The optimal investment proportion in (75) could there-
fore be expressed (if we can find a smooth solution for
reduced HJB (77)) as

�̂� (𝑧) =
𝛼

𝑝𝜎2
⋅

(1 − 𝑝) 𝑢 − 𝑧𝑢


(1 − 𝑝) 𝑢 + 2𝑧𝑢 − (1/𝑝) 𝑧2𝑢
, (80)

and the optimal consumption proportion 𝑐 in (74) would be
given by

𝑐 (𝑧) =
(V
𝑥
+ V

𝑘
)
−1/𝑝

𝑥
= ((1 − 𝑝) 𝑢 − (𝑧 − 1) 𝑢


)
−1/𝑝

. (81)

The following theorem asserts the regularity of the viscos-
ity solution to (77) with boundary condition (78).
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Theorem 9. The function 𝑢 is 𝐶2 on [1,∞) and satisfies

−𝑝 (1 − 𝑝) 𝑢 + 2𝑝𝑧𝑢

+ 𝑧

2
𝑢


< 0,

(1 − 𝑝) 𝑢 − (𝑧 − 1) 𝑢

> 0,

(1 − 𝑝) 𝑢 − 𝑧𝑢

> 0.

𝑧 > 1.

(82)

Moreover, it is a solution of the equation

sup
𝑐≥0,𝜋

L
𝑐,𝜋

𝑢

= −𝛽𝑢 + �̃� ((1 − 𝑝) 𝑢 − (𝑧 − 1) 𝑢

) + 𝜆

0
𝜒 (𝑢)

−
1

2

𝛼
2

𝜎2

((1 − 𝑝) 𝑢 − 𝑧𝑢

)
2

−𝑝 (1 − 𝑝) 𝑢 + 2𝑝𝑧𝑢 + 𝑧2𝑢
, 𝑧 > 1,

(83)

− 𝜆 (1 − 𝑝) 𝑢 (1) + (1 + 𝜆) 𝑢

(1) = 0, (84)

where

�̃� (𝑦) =
{

{

{

𝑝

1 − 𝑝
𝑦
(𝑝−1)/𝑝

, 𝑦 > 0,

+∞, 𝑦 ≤ 0,

𝑓𝑜𝑟 𝑝 < 1,

�̃� (𝑦) =
{

{

{

𝑝

1 − 𝑝
𝑦
(𝑝−1)/𝑝

, 𝑦 ≥ 0,

+∞, 𝑦 < 0,

𝑓𝑜𝑟 𝑝 > 1.

(85)

Proof. The proof is very similar to the one for Theorem 5.2

of Janeček and Sı̂rbu [9] more or less; we do not copy the
steps here. One just needs to note that the HJB equation in
this paper differs from the one in Janeček and Sı̂rbu [9] lies in
𝜒(𝑢); however, this term is not involved in the discussion of
the regularity of viscosity.

Remark 10. Although the jump termof insurer does not affect
the smoothness of the value function of our control problem,
due to the existence of such jump term, the value function and
consequently the optimal policies will be highly influenced.
This will be illustrated in the next section by partial analysis
on the properties to the viscosity solution.

Theorem 9 claims the regularity of value function V(𝑥, 𝑘)
when 𝑥 > 0. When 𝑥 = 0, the value function V(0, 𝑘) is
specified by the following theorem.

Theorem 11. V(0, 𝑘) satisfies

𝛽V (0, 𝑘)

− sup
0≤𝛾≤𝑎

{𝑈 (𝛾) + (𝑎 − 𝛾) V
0
(0, 𝑘) − 𝛾V

𝑘
(0, 𝑘)}

= 0.

(86)

Proof. If initial surplus of insurer 𝑥 = 0, then to invest any
amount on risky market can be optimal since the diffusion
property of the risky market will cause ruin to happen imme-
diately (cf. Dufresne andGerber [34]). So optimal investment

for insurer is to invest 0 amount on risky market in a very
small interval, and of course, the optimal consumption rate
𝛾
𝑡
, which is to be determined, should not exceed the premium

income rate, say 𝑎. Based on this analysis, the HJB function
for value function at 𝑥 = 0 is reduced to

𝛽V (0, 𝑘)

− sup
0≤𝛾≤𝑎

{𝑈 (𝛾) + (𝑎 − 𝛾) V
0
(0, 𝑘) − 𝛾V

𝑘
(0, 𝑘)}

= 0.

(87)

4.3. Asymptotic Properties of Value Function. In this section,
we will have some asymptotic properties of value function.

Lemma 12. V(𝑥, 𝑘) is bounded on [0,∞) × (0,∞).

Proof. Revisit the definition of V(𝑥, 𝑘), suppose that at time
𝑡 the wealth process of insurer is 𝑋

𝜃,𝛾

𝑡
, and then obviously

𝛾
𝑡
≤ 𝑋

𝜃,𝛾

𝑡
, or else the ruin will take place, which cannot be

the optimal policy for insurer. Thus, one can see that

V (𝑥, 𝑘) ≤ E [∫

𝜏

0

𝑒
−𝛽𝑡

𝑈(𝑋
𝜃,0

𝑡
)] , (88)

where the wealth process 𝑋
𝑡
, 0 ≤ 𝑡 ≤ 𝜏, is the one under

policy 𝜃 and 𝛾
𝑡
≡ 0. So, the policy that maximizes the ruin

time 𝜏 will maximize E[∫
𝜏

0
𝑒
−𝛽𝑡

𝑈(𝑋
𝜃,0

𝑡
)]. Yang and Zhang

[35] prove that a constant investment policy maximizes this
amount. If the insurer adopts the constant investment policy,
then the wealth process of insurer is

𝑋
𝑡
= 𝑥 + 𝑎𝑡 − 𝑍

𝑡
+ 𝐶

∗
∗ (𝛼𝑡 + 𝜎𝑊

𝑡
) , 𝑡 ≥ 0, (89)

where 𝐶
∗ is the constant investment policy. Then, if 𝑝 ≤ 1,

it is easy to see that E[∫
𝜏

0
𝑒
−𝛽𝑡

𝑈(𝑋
𝐶
∗
,0

𝑡
)] is bounded. If 𝑝 > 1,

Protter [36] shows that

E[ sup
0≤𝑠≤𝑡


𝑋
𝐶
∗
,0

𝑠



𝑝

] ≤ Γ𝑒
𝜌𝑡

(1 + 𝑥
𝑝
) , (90)

where Γ and 𝜌 are constants depending on coefficients
involved in the wealth process. Thus, by choosing a large
enough 𝛽, it follows that

E [∫

𝜏

0

𝑒
−𝛽𝑡

𝑈(𝑋
𝐶
∗
,0

𝑡
)] < Γ∫

∞

0

𝑒
−(𝛽−𝜌)𝑡

𝑥
1−𝑝

𝑑𝑡. (91)

This indicates that V(𝑥, 𝑘) is bounded.

Theorem 13. For �̂� and 𝑐 that are defined by (74) and (75), one
has

lim
𝑧→∞

�̂� (𝑧) =
𝛼

𝑝𝜎2
,

lim
𝑧→∞

𝑐 (𝑧) = ((1 − 𝑝) 𝑢 (∞))
−1/𝑝

,

(92)
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and 𝑢(∞) ≜ lim
𝑧→∞

𝑢(𝑧) is determined by

𝛽𝑢 (∞) − 𝜒 (𝑢 (∞)) = �̃� ((1 − 𝑝) 𝑢 (∞)) , (93)

where 𝜒(𝑢(∞)) = lim
𝑧→∞

∫
1

0
V(𝑥 − 𝑌, 𝑘) 𝑑𝐺(𝑦) =

𝑢(∞) ∫
1

0
(𝑥 − 𝑌)

1−𝑝
𝑑𝐺(𝑦).

Proof. Note that 𝑢(𝑧) ∈ 𝐶
2
[1,∞) and 𝑢(𝑧) = V(1, 𝑧), by

Theorem 9 one can prove that

𝑧𝑢

(𝑧) → 0,

𝑧
2
𝑢

(𝑧) → 0,

𝑧 → ∞.

(94)

Here we assume that the above limits exist; in fact, by
repeating a similar discussion to the proof for Proposition 4.1

of Janeček and Sı̂rbu [9], such assumptions are guaranteed. By
(80) and (81) and (94), we have (92) immediately. Let 𝑧 → ∞

in (83), and by (94) we have (93).

Remark 14. (1) (the case when paying no fee 𝜆 = 0 and
𝜆
0

= 0) This is the classical problem in Merton [2, 3] and
can be solved in closed form. More precisely, for 𝜆 = 0,
the optimal investment and consumption proportions are
constant, which are given by

𝜋
0
≜

𝛼

𝑝𝜎2
, (95)

𝑐
0
≜

𝛽

𝑝
−

1

2

1 − 𝑝

𝑝2
⋅
𝛼
2

𝜎2
. (96)

The Merton value function (and solution of the HJB) equals

V
0
(𝑥, 𝑘) =

1

1 − 𝑝
𝑐
−𝑝

0
𝑥
1−𝑝

, 0 < 𝑥 ≤ 𝑛. (97)

It follows that for 𝜆 = 0

𝑢
0
(𝑧) =

1

1 − 𝑝
0

𝑐
−𝑝

0
, 𝑧 ≥ 1. (98)

Since 𝑢
0
in (98) is constant, (95) and (96) are compatible with

the feedback formulas (80) and (81).
As can be easily seen from above, for the case 0 < 𝑝 <

1, in order to obtain a finite value function, an additional
constraint needs to be imposed on the parameters. This is
equivalent to 𝑐

0
in (96) being strictly positive, which translates

to the standing assumption

𝛽 >
1

2

1 − 𝑝

𝑝
⋅
𝛼
2

𝜎2
, if 0 < 𝑝 < 1. (99)

(2) When 𝜆 = 0, our model reduces to the case that
an insurer would like to maximize his expected cumulative
discount utility form consumption. To the best of our knowl-
edge, this problem has not been addressed before. One may
find that when 𝜆 = 0, it means that the insurer does not need
to pay any high-watermark fee for the gain profit, which is

equal to the case that the initial high-watermark of the insurer
is infinity in the model studied in this paper. Denote by
𝑚(𝑥) ≜ sup

𝜃,𝛾>0
E𝑥[∫

𝜏

0
𝑈(𝛾

𝑡
)] the value function of the insurer

who does not need to be subject to high-watermark fee; then

𝑚(𝑥) = V (𝑥,∞) = 𝑥
1−𝑝V (1,∞) = 𝑥

1−𝑝
𝑢 (∞) , (100)

where 𝑢(∞) is specified by (93). This is also the value
function for the insurer without high-watermark fee.

Comparing V
0
𝑥 and 𝑚(𝑥), it is obvious that two

functions share the same power formulation and differ
on the constant term. These results indicate that there
is no significant difference between the investment and
consumption behavior between an insurance company and
a hedge fund manager. This is not the first time that we
observe such phenomenon; in fact, when we consider the
optimal investment for maximizing the survival probability
of an insurer (cf. Yang and Zhang [35]) or the one of a fund
manager (cf. Browne [37]), the value function shares the same
exponential form, which just differs on the constant term.

5. The Verification Theorem

Theorem 15 (the verification theorem). Let 𝜔(𝑥, 𝑘) be a
function in 𝐶

2,1
((0, +∞) × (0,∞)) and satisfy a quadratic

growth condition; that is, there exists a constant 𝐷 such that

|𝜔 (𝑥, 𝑘)| ≤ 𝐷 (1 + |𝑥|
2
+ |𝑘|

2
) . (101)

(1) Suppose that

𝛽𝜔 (𝑥, 𝑘) − sup
(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜔 (𝑥, 𝑘)

+ 𝜆
0
∫

𝑥

0

𝜔 (𝑥 − 𝑌, 𝑘) 𝑑𝐺 (𝑌)} ≥ 0,

∀ (𝑥, 𝑘) ∈ (0, +∞] × (0,∞) ,

(102)

𝜆𝜔
𝑥
(𝑥, 𝑘) − 𝜔

𝑛
(𝑥, 𝑛) ≥ 0, (103)

lim sup
𝑡→𝜏

𝑒
−𝛽𝑡

E [𝜔 (𝑋
𝜃,𝛾

𝑡
, 𝐾

𝜃,𝛾

𝑡
)] ≥ 0,

(𝑥, 𝑘) ∈ (0, +∞) × (0,∞) .

(104)

Then 𝜔 ≥ V on 𝑅
2.

(2) Suppose further that, for all (𝑥, 𝑘) ∈ (0, +∞) × (0,∞),
there exists a measurable function (𝜃(𝑥, 𝑘), 𝛾(𝑥, 𝑘)), (𝑥, 𝑘) ∈

(0, +∞) × (0,∞), value inA such that

𝛽𝜔 (𝑥, 𝑛) − sup
(𝜃,𝛾)∈A(𝑥,𝑘)

{𝑈 (𝛾) + L
𝜃,𝛾

𝜔 (𝑥, 𝑘)

+ 𝜆
0
∫

𝑥

0

𝜔 (𝑥 − 𝑌, 𝑘) 𝑑𝐺 (𝑌)} = −𝜔
𝑡
(𝑥, 𝑘)

− 𝑈 (𝛾) − L
𝜃,𝛾

𝜔 (𝑥, 𝑘) − 𝜆
0
∫

𝑥

0

𝜔 (𝑥

− 𝑌, 𝑘) 𝑑𝐺 (𝑌) = 0,

𝜆𝜔
𝑥
(𝑥, 𝑘) − 𝜔

𝑛
(𝑥, 𝑘) = 0,

(105)
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and SDE (20) admits a unique solution, denoted by (𝑋
𝜃,𝛾

𝑠
,

𝐾
𝜃,𝛾

𝑠
), given an initial condition 𝑋

0
= 𝑥, which satisfies

lim inf
𝑡→𝜏

𝑒
−𝛽𝑡

E [𝜔 (𝑋
𝜃,𝛾

𝑡
, 𝐾

𝜃,𝛾

𝑡
)] ≤ 0, (106)

and the process {(𝜃(𝑋
𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
), 𝜃(𝑋

𝜃,𝛾

𝑠
, 𝐾

𝜃,𝛾

𝑠
))} that stops at

𝜏
𝜃,𝛾 lies inA(𝑥, 𝑛).

Then

𝜔 = V, 𝑜𝑛 (0,∞) × (0,∞) , (107)

and (𝜃, 𝛾) is an optimal Markovian control.

Proof. (1) Since 𝜔 ∈ 𝐶
2,1

((0,∞) × (0,∞)), we have for all
(𝑥, 𝑘) ∈ (0,∞)× (0,∞), (𝜃, 𝛾) ∈ A(𝑥, 𝑘), 𝑠 ∈ (0, 𝜏], similar to
(37); by Itô formula and taking the expectation, we have

E [𝑒
−𝛽(𝑡∧𝜏)

𝜔 (𝑋
𝜃,𝛾

𝑡∧𝜏
, 𝐾

𝜃,𝛾

𝑡∧𝜏
)] = 𝜔 (𝑥, 𝑘) + E [∫

𝑡∧𝜏

0

𝑒
−𝛽𝑢

(−𝛽𝜔 (𝑋
𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) + L

𝜃,𝛾
𝜔 (𝑋

𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
)) 𝑑𝑢]

+ E [𝜆
0
∫

𝑡∧𝜏

0

∫

∞

0

𝑒
−𝛽𝑢

[𝜔 (𝑋
𝜃,𝛾

𝑢−
− 𝑌,𝐾

𝜃,𝛾

𝑢−
) − 𝜔 (𝑋

𝜃,𝛾

𝑢−
, 𝐾

𝜃,𝛾

𝑢−
)] 𝑑𝐺 (𝑌) 𝑑𝑢]

+ E∫

𝑡∧𝜏

0

𝑒
−𝛽𝑢

(−𝜆𝜔
𝑥
+ 𝜔

𝑘
) (𝑋

𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) 𝑑𝑀

𝑢
.

(108)

Since 𝜔 satisfies (102), we have

− 𝛽𝜔 (𝑋
𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) + 𝑈 (𝛾) + L

𝜃,𝛾
𝜔 (𝑋

𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
)

+ 𝜆
0
E [𝜔 (𝑋 − 𝑌,𝐾) − 𝜔 (𝑋,𝐾)] ≤ 0,

∀ (𝜃, 𝛾) ∈ A (𝑥, 𝑘) ,

𝜆𝜔
𝑥
(𝑥, 𝑘) − 𝜔

𝑘
(𝑥, 𝑘) ≥ 0,

(109)

and so

E [𝑒
−𝛽(𝑇∧𝜏)

𝜔 (𝑋
𝜃,𝛾

𝑇∧𝜏
, 𝐾

𝜃,𝛾

𝑇∧𝜏
)]

≤ 𝜔 (𝑥, 𝑘) − E [∫

𝑇∧𝜏

0

𝑒
−𝛽𝑢

𝑈(𝛾
𝑢
) 𝑑𝑢] ,

∀ (𝜃, 𝛾) ∈ A (𝑥, 𝑘) .

(110)

We have


E [∫

𝑇∧𝜏

0

𝑒
−𝛽𝑢

𝑈 (𝛾
𝑢
) 𝑑𝑢]



≤ ∫

𝑇∧𝜏

0


𝑒
−𝛽𝑢

𝑈 (𝛾
𝑢
)

𝑑𝑢. (111)

The right hand side of (111) is integrable by the integrability
condition on A(𝑥, 𝑘). According to (110), by sending 𝑡 to 𝜏,
since 𝜔 satisfies a quadratic grown condition, we obtain by
the dominated convergence theorem and by (104)

0 ≤ 𝜔 (𝑥, 𝑘) − E [∫

𝑇∧𝜏

0

𝑒
−𝛽𝑢

𝑈 (𝛾
𝑢
) 𝑑𝑢] ,

∀ (𝜃, 𝛾) ∈ A (𝑥, 𝑘) .

(112)

Since (𝜃, 𝛾) ∈ A(𝑥, 𝑘) is arbitrary, we conclude that 𝜔(𝑥, 𝑘) ≥

V(𝑥, 𝑘), for all (𝑥, 𝑘) ∈ 𝑅
2.

(2) We apply Itô’s formula to 𝑒
−𝛽𝑢

𝜔(𝑋
𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) between

0 and 𝑡 (after an eventual localization for removing the
stochastic integral term in the expectation):

E [𝑒
−𝛽𝑡

𝜔(𝑋
𝜃,𝛾

𝑡
, 𝐾

𝜃,𝛾

𝑡
)] = 𝜔 (𝑥, 𝑘) + E [∫

𝑇

0

(−𝛽𝜔 (𝑋
𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) + L

𝜃,𝛾
𝜔(𝑋

𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
)) 𝑑𝑢]

+ E [𝜆
0
∫

𝑇

0

∫

∞

0

𝑒
−𝛽𝑢

[𝜔 (𝑋
𝜃,𝛾

𝑢−
− 𝑌,𝐾

𝜃,𝛾

𝑢−
) − 𝜔 (𝑋

𝜃,𝛾

𝑢−
, 𝐾

𝜃,𝛾

𝑢−
)] 𝑑𝐺 (𝑌) 𝑑𝑢]

+ E∫

𝑡

0

𝑒
−𝛽𝑢

(−𝜆𝜔
𝑥
+ 𝜔

𝑘
) (𝑢,𝑋

𝜃,𝛾

𝑢
, 𝐾

𝜃,𝛾

𝑢
) 𝑑𝑀

𝑢
.

(113)

Now, by definition of (𝜃, 𝛾), we have

𝛽𝜔 (𝑥, 𝑘) − 𝑈 (𝛾) − L
𝜃,𝛾

𝜔 (𝑥, 𝑘)

− 𝜆
0
E [𝜔 (𝑥 − 𝑌,𝐾) − 𝜔 (𝑥, 𝑘)] = 0,

𝜆𝜔
𝑥
(𝑥, 𝑘) − 𝜔

𝑘
(𝑥, 𝑘) = 0,

(114)

and so

E [𝑒
−𝛽𝑡

𝜔(𝑋
𝜃,𝛾

𝑡
, 𝐾

𝜃,𝛾

𝑡
)]

= 𝜔 (𝑥, 𝑘) − E [∫

𝑡

0

𝑒
−𝛽𝑢

𝑈(𝛾
𝑢
) 𝑑𝑢] .

(115)
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By sending 𝑇 to 𝜏 and from (106), we obtain

𝜔 (𝑥, 𝑘) = E [∫

𝜏

0

𝑒
−𝛽𝑢

𝑈 (𝛾
𝑢
) 𝑑𝑢] ≤ V (𝑥, 𝑘) , (116)

and finally we obtain that 𝜔 = V with (𝜃, 𝛾) as an optimal
Markovian control. So we complete the proof.

6. Conclusions

In this paper, we study the optimal investment and con-
sumption problem of an insurer, where the consumption
of insurer can be regarded as a kind of dividend payment.
Thus, the problem considered in this paper is of practical
relevance and reasonable. By dynamic programmingmethod,
the associatedHJB equation is derived and the value function
is proved to be the viscosity solutions. This result enables us
to apply the numerical scheme for PDE, especially for HJB
equation in viscosity sense (cf. Soner [38]) to find the optimal
investment and consumption policies and the value function.
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Proportional integral derivative (PID) controllers are commonly used in process industries due to their simple structure and high
reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging
matter especially for multivariable system and to obtain the best control tuning for different time scales system.This motivates the
use of singularly perturbation method into the multivariable PID (MPID) controller designs. In this work, wastewater treatment
plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-
Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu
and JianNiu algorithmswas applied intoMPID control design. It was found that the singularly perturbed system obtained byNaidu
method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop
performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed
MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses,
low steady state error, and less process interaction when using singularly perturbed MPID controller.

1. Introduction

Multivariable PID Control. Among the controller variety, PID
becomes the controller that is most applied in a physical
system [1]. The reason is that it has a characteristic that offers
simplicity, clear functionality, and ease of use [2]. However,
Ho et al. [3] reported that only one-fifth of PID control loops
are in good condition. The others are not, where 30% of
PID controllers are not able to perform well due to lack of
tuning parameters, 30% due to the installation of a controller
system operating manual, and 20% due to the use of default
controller parameters.

In recent years, many researchers have paid attention
to the MPID controller design for various systems such
as in Industrial Scale-Polymerization Reactor [4], Coupled

Pilot Plant Distillation Column [5], Narmada Main Canal
[6], Quadruple-Tank Process [7], Boiler-Turbine Unit [8],
and Wood-Berry Distillation Column [9]. A research by
Kumar et al. [4] had proposed a synthesis method of PI
controllers based on approximation of relative gain array
(RGA) concept to multivariable process. The method was
further improved by relative normalize gain array concept
(RNGA). Controller based on RNGA concept provides a
better performance than RGA concept. Both concepts use the
nonstandard PID controller which requires Maclaurin series
expansion [10]. In the work by Sarma and Chidambaram [5],
PI/PID controllers based on Davison and Tanttu-Lieslehto
method extended to nonsquare systems with right-half
plane zero were applied. Results show that the Davison
method gives better performance with less settling time than
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Tanttu-Lieslehto method. However, both methods are not
applicable for square system.

Essentially, there are many integral controllers that are
designed for nonlinear system [11, 12]. However, most of the
existing techniques do not guarantee the desired transient
performances in the presence of nonlinear parameter vari-
ations and unknown external disturbances [13]. In a previ-
ous study, Martin and Katebi [14] had proposed Davison,
Penttinen-Koivo, Maciejowski, and Combined method as a
control tuning design for ship positioning. These controls
strategies are based on PID controller which is used to
control multivariable system. Due to the effectiveness and
simplicity of those proposed controllers, Wahab et al. [15]
had used those methods as tuning strategies for wastewater
treatment plant (WWTP). The controllers were designed
based on steady state of a linear system and static model
inverse. The reliability of the proposed method was tested
to a nonlinear WWTP. The response shows that good result
was obtained from Davison until the Combined method.
In the work by Balaguer et al. [16], a comparison between
MPID controller with figure of merit controller was done for
WWTP based on open-loop, closed-loop, and open-closed
loop controller structure analysis. The MPID control tuning
based on Davison and Penttinen-Koivo method was carried
out by minimizing the residuals of both controllers obtained
from the data. However, the dynamic nature of WWTP
which involves ill condition characteristic causes difficulties
in finding the optimumMPID tuning parameter.The system’s
behavior that involves slow and fast variables causes the
control tuning strategies to not easily meet specification for
multiple control variables at the same time.

A lot of approaches have been proposed to control
multivariable system. Some of the approaches are able to deal
with a high order multivariable system. However, a simple
controller design has always become a desired controller
where it is certainly can be accepted by the industry. By that,
the required cost to run the system will be minimized as well.
Realizing the simple controller design by other researchers
[14–16], those methods were applied in this project and
improved by adopting singularly perturbationmethod (SPM)
to the controller designs by considering the dynamic matrix
inverse.

Singularly Perturbed Multivariable Controller. Analysis and
synthesis of singularly perturbed control have received much
thoughtfulness over the past decades by many people from
numerous arenas of studies [17–21]. Singularly perturbation
method is able to decompose and simplify the higher order
of the full order system into slow and fast subsystems [17,
22, 23], which are known as singularly perturbation system.
Definitely,most of the control systems are dynamic, where the
decomposition into stages is dictated by multitime scale. In
this situation, the slow subsystem corresponds to the slowest
phenomena and the fast subsystem corresponds to the fastest
phenomena. It basically has two different parts of eigenvalue
represented for slow and fast dynamic subsystems [24], where
slow subsystem corresponds to small eigenvalue and fast
subsystem corresponds to large eigenvalue [25].

This work is focused on the analysis of singularly pertur-
bation system on two different case studies given. Singularly
perturbed control of multivariable system is comprised of
two steps. First, the multivariable system is decomposed
into slow and fast subsystems. Then, the optimal composite
singularly perturbed controller is designed [25–28]. There
are many approaches that have been developed concerning
the control of singularly perturbation system.The approaches
use different conditions on the properties of the used func-
tions, different assumptions, different theorems, and different
lemma [13, 21, 29] which are specifically based on the systems
behaviour.

In a study by Rabah and Aldhaheri [24], singularly
perturbation system has been modelled by using a real
Schur form method. It shows that any two-time scale system
can be altered into the singularly perturbed form via a
transformation into an order real Schur form (ORSF). It is
based on two steps, transformation of matrix A into an ORSF
using an orthogonalmatrix and then application of balancing
algorithm to an ORSF. Li and Lin [17] had addressed the
composite fuzzy multivariable controller to nonlinear sin-
gularly perturbation system. The composite controller was
obtained from the combination of slow and fast subsystems. It
was tested to a DC motor driven inverted pendulum system
and it provides realistic and satisfactory simulation results.
Multivariable control by Kim et al. [30] used successive
Galerkin approximation (SGA) method. This method causes
the complexity in computations to increase with respect to
the order of the system. Therefore, singularly perturbation
method was adopted to decompose the original system into
slow and fast subsystems. Result shows that the use of the
method greatly reduces the computation complexity and it is
more effective than the original SGA method.

To the best of author knowledge, there are two methods
to obtain the singularly perturbation system, which are by
analytical [21, 29–31] and linear analysis [32–35]. Singularly
perturbation system obtained based on linear analysis is dis-
cussed and has been applied in this research. By exploiting the
properties of singularly perturbation system to the dynamic
matrix inverse of MPID control tuning methodology, an
easy multivariable tuning method should be established. In
Section 2, the time scale analysis is presented to determine
the behavior of the system. Section 3 described the methods
to obtain singularly perturbation system based on Naidu and
Jian Niu method. The sequences of MPID controller based
on Davison, Penttinen-Koivo, Maciejowski, and Combined
methods are discussed in Section 4. Section 5 presented the
optimization method which is based on particle swarm opti-
mization (PSO). The case studies and the performance of the
proposed methods for two case studies are investigated and
discussed thoroughly in Sections 6 and 7. Finally, conclusions
are given in Section 8.

2. Time Scale Analysis

To apply singularly perturbation method to the controller
designs, the considered system must consist of a two-time
scale characteristic. The two-time scale characteristic can be
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determine by rearranging the eigenvalue of the system in
increasing order which will give

𝑒 (𝐴) = {𝑝
𝑠1, . . . , 𝑝𝑠𝑚, 𝑝𝑓1, . . . , 𝑝𝑓𝑛} , (1a)

𝑒 (𝐴
𝑠
) = {𝑝

𝑠1, . . . , 𝑝𝑠𝑚} , (1b)

𝑒 (𝐴
𝑓
) = {𝑝

𝑓1, . . . , 𝑝𝑓𝑛} , (1c)

where 𝑒(𝐴), 𝑒(𝐴
𝑠
), and 𝑒(𝐴

𝑓
) are a total, slow, and fast

eigenspectrum of the system, respectively. 𝑝
𝑠1

is a smallest
eigenvalue of the slow eigenspectrum, 𝑝

𝑠𝑚
is a largest eigen-

value of the slow eigenspectrum, 𝑝
𝑓1

is a smallest eigenvalue
of the fast eigenspectrum, and 𝑝

𝑓𝑛
is a largest eigenvalue of

the fast eigenspectrum:

0 <




𝑝
𝑠1




< ⋅ ⋅ ⋅ <





𝑝
𝑠𝑚





<






𝑝
𝑓1






< ⋅ ⋅ ⋅ <






𝑝
𝑓𝑛






. (2)

The system is said to possess a two-time scale characteristic,
if the largest absolute eigenvalue of the slow eigenspectrum
is much smaller than the smallest absolute eigenvalue of the
fast eigenspectrum. This is proven by

𝜀 =





𝑝
𝑠𝑚











𝑝
𝑓1







≪ 1, (3)

where 𝜀 is a measure of separation of time scales that
represents an intrinsic property.

3. Singularly Perturbation Method (SPM) for
MIMO System

Industrial processes possess “𝑛” number of inputs and out-
puts variables, where interaction phenomena exist. Interac-
tion phenomena that occur among the inputs and outputs
variables of multivariable process cause great difficulties in
MPID controller design. Usually, it is solved by tuning the
most important loop whereas other loops are detuned by
keeping the interactions of that loop adequate. To compensate
the interaction phenomena, one of the loops is forced to
performpoorly.This detuningmethod is far from the optimal
[4]. In this work, to account for the interaction phenomena,
instead of using the original process transfer function to the
MPID controller design, that transfer function is rearranged
by separating the slow and fast eigenvalues using SPM.

3.1. Naidu Method. In this section we propose a procedure
for a separation of slow and fast subsystem. The considered
linear equations for two-time scale continuous system with
the output vector possessing two widely separated groups of
eigenvalues are

�̇� = 𝐴11𝑥+𝐴12𝑧 +𝐵1𝑢, (4a)

𝜀�̇� = 𝐴21𝑥+𝐴22𝑧 +𝐵2𝑢, (4b)

𝑦 = 𝐶1𝑥+𝐶2𝑧, (4c)

where𝑥 and 𝑧 are slow and fast variables in𝑝 and 𝑞dimension
and 𝑦 is a measured output. Matrices 𝐴

𝑖𝑗
, 𝐵
𝑖
, and 𝐶

𝑖
are

constant matrices of appropriate dimensions. Consider the
problem as in (4a) to (4c). The system possesses a two-
time scale property. Preliminary to separation of slow and
fast subsystem, the system consists of 𝑚 number of small
eigenvalue (close to the origin) for slow subsystem and 𝑛

number of fast eigenvalue (far from the origin) for the fast
subsystem. The number of slow and fast eigenvalues needs
to be identified based on eigenvalue location. Fast eigenvalue
of the system is only essential during a short period of time.
Then, it is insignificant and the characteristic of the system
can be described by degenerating system known as a slow
subsystem.

By letting 𝜀 = 0, slow subsystem is obtained as

�̇�slow = 𝐴11𝑥slow +𝐴12𝑧slow +𝐵1𝑢slow, (5a)

0 = 𝐴21𝑥slow +𝐴22𝑧slow +𝐵2𝑢slow, (5b)

𝑦slow = 𝐶1𝑥slow +𝐶2𝑧slow. (5c)

By assuming 𝐴
22
as a nonsingular matrix, (5b) becomes

𝑧slow = −𝐴22
−1

(𝐴21𝑥slow +𝐵2𝑢slow) . (6)

Using equation (6) in (5a), �̇�slow is represented as

�̇�slow = 𝐴 slow𝑥slow +𝐵slow𝑢slow, (7)

where

𝐴 slow = 𝐴11 −𝐴12𝐴22
−1

𝐴21,

𝐵slow = 𝐵1 −𝐴12𝐴22
−1

𝐵2.
(8)

Using (6) in (5c), 𝑦slow is represented as

𝑦slow = 𝐶slow𝑥slow +𝐷slow𝑢slow, (9)

where

𝐶slow = 𝐶1 −𝐶2𝐴22
−1

𝐴21,

𝐷slow = −𝐶2𝐴22
−1

𝐵2.
(10)

To obtain fast subsystem, it can be assumed that the slow
variables are constant at fast transients, where

𝑥slow = 𝑥 = constant,

�̇�slow = 0.
(11)

From (4b) and (6),

𝜀 (�̇� − �̇�slow) = 𝐴22 (𝑧 − 𝑧slow) + 𝐵2 (𝑢 − 𝑢slow) . (12)

Let
𝑧fast = (𝑧 − 𝑧slow) ,

𝑢fast = (𝑢 − 𝑢slow) ,

𝑦fast = (𝑦−𝑦slow) ,

𝐴 fast = 𝐴22,

𝐵fast = 𝐵2,

𝐶fast = 𝐶2.

(13)
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The fast subsystem is obtained as

𝜀�̇�fast = 𝐴 fast𝑧fast +𝐵fast𝑢fast, (14a)

𝑦fast = 𝐶fast (𝑧 − 𝑧slow) , (14b)

𝑦fast = 𝐶fast𝑧fast. (14c)

The composite system which consists of slow and fast subsys-
tem is achieved using two-stage linear transformation which
can be referred in an article written by Chang [36]:

𝐴 spm = [

𝐴 slow 𝑍12

𝑍21 𝐴 fast
] , (15a)

𝐵spm = [

𝐵slow

𝐵fast
] , (15b)

𝐶spm = [𝐶slow 𝐶fast] , (15c)

𝐷spm = 𝐷, (15d)

where

𝑍12 = zeros (𝑚, 1) , (15e)

𝑍21 = zeros (1, 𝑚) . (15f)

The state space form of composite system is represented in
(15a) to (15f).

3.2. Jian Niu Method. The two-time scale system can also be
solved using other method. This section presents singularly
perturbationmethod based on JianNiu. In order to apply Jian
Niu method, transfer function matrix should be transform
into a state space model:

𝐺 (𝑠) = [

𝐺11 (𝑠) 𝐺12 (𝑠)

𝐺21 (𝑠) 𝐺22 (𝑠)

] . (16)

To illustrate the two-time scale decomposition, (16) is consid-
ered. Equation (16) can have this form

�̇� = 𝐴𝑥+𝐵𝑢, (17a)

𝑦 = 𝐶𝑥, (17b)

where

𝐴 = diag [𝐴11, 𝐴12, 𝐴21, 𝐴22] , (17c)

𝐵 =

[

[

[

[

[

[

𝐵11 0
0 𝐵12

𝐵21 0
0 𝐵22

]

]

]

]

]

]

, (17d)

𝐶 = [

𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

] (17e)

(𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
) is a state space form of 𝐺

𝑖𝑗
(𝑠). Equations (17a)

and (17b) can be represented as

[

[

[

[

[

𝜀�̇�1

𝜀�̇�2
�̇�3

�̇�4

]

]

]

]

]

=

[

[

[

[

[

[

𝜀𝐴11 0 0 0
0 𝜀𝐴12 0 0
0 0 𝐴21 0
0 0 0 𝐴22

]

]

]

]

]

]

[

[

[

[

[

𝑥1

𝑥2
𝑥3

𝑥4

]

]

]

]

]

+

[

[

[

[

[

[

𝜀𝐵11 0
0 𝜀𝐵12

𝐵21 0
0 𝐵22

]

]

]

]

]

]

[

𝑢1

𝑢2
] ,

[

𝑦1

𝑦2
] = [

𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

]

[

[

[

[

[

𝑥1

𝑥2
𝑥3

𝑥4

]

]

]

]

]

,

(18)

where 𝜀 is a very small positive constant. Equations (18) can
be considered as

�̇� = 𝐴11𝑥+𝐴12𝑧 +𝐵1𝑢, (19a)

𝜀�̇� = 𝐴21𝑥+𝐴22𝑧 +𝐵2𝑢, (19b)

𝑦 = 𝐶1𝑥+𝐶2𝑧 +𝐷𝑢. (19c)

Equations (19a) to (19c) are the linear equations for two-time
scale continuous system, similar just like (1a) to (1c) where

𝐴11 = [

𝐴21 0
0 𝐴22

] , (19d)

𝐴12 = [

0 0
0 0

] , (19e)

𝐴21 = [

0 0
0 0

] , (19f)

𝐴22 = [

𝜀𝐴11 0
0 𝜀𝐴12

] , (19g)

𝐵1 = [

𝐵21 0
0 𝐵22

] , (19h)

𝐵2 = [

𝜀𝐵11 0
0 𝜀𝐵12

] , (19i)

𝐶1 = [

0 0
𝐶21 𝐶22

] , (19j)

𝐶2 = [

𝐶11 𝐶12

0 0
] , (19k)

𝐷 = [

0 0
0 0

] . (19l)
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This method is discussed in several literatures [33, 35]. The
slow subsystem is denoted as

�̇�slow = 𝐴 slow𝑥slow +𝐵slow𝑢slow, (20a)

𝑦 = 𝐶slow𝑥slow +𝐷slow𝑢slow. (20b)

And the fast subsystem is

�̇�fast = 𝐴 fast𝑧fast +𝐵fast𝑢fast, (21a)

𝑦 = 𝐶fast𝑧fast +𝐷fast𝑢fast, (21b)

where

𝐴 slow = 𝐴11 −𝐴12𝐴22
−1

𝐴21, (22)

𝐵slow = 𝐵1 −𝐴12𝐴22
−1

𝐵2, (23)

𝐶slow = 𝐶1 −𝐶2𝐴22
−1

𝐴21, (24)

𝐷slow = 𝐷−𝐶2𝐴22
−1

𝐵2, (25)

𝐴 fast = 𝐴22, (26)

𝐵fast = 𝐵2, (27)

𝐶fast = 𝐶2, (28)

𝐷fast = 𝐷, (29)

𝐺slow (𝑠)=𝐶slow (𝑠𝐼 −𝐴 slow)
−1

𝐵slow +𝐷slow, (30)

𝐺fast (𝑠)=𝐶fast (𝑠𝐼 −𝐴 fast)
−1

𝐵fast +𝐷fast. (31)

The transfer functions for slow and fast subsystem are
denoted by (30) and (31), respectively. The composite model
is signified as a sum of slow and fast subsystem and a very
little item 𝑂(𝜀) [37]

𝐺composite (𝑠) = 𝐺slow (𝑠) +𝐺fast (𝑠) −𝐷slow +𝑂 (𝜀) , (32)

where

𝑂 (𝜀) = [

0 0
𝑂21 (𝜀) 𝑂22 (𝜀)

] . (33)

4. Multivariable PID Controller Design

Owing to the industrial process control involved with
multivariable system, MPID controller design technique is
necessary. It is a powerful control technique for solving
coupling nonlinear system [38]. The conventional MPID
controller designs technique is based on static inverse model
[15]. This technique is difficult to obtain the desired control
performance. Therefore, an enhancement is presented based
on the dynamic inverse matrix and singularly perturbation
method to the designs of MPID controller. Essentially, this
enhancement has been considered in the previous work
reported in [39] and it shows that the enhancement is able
to control dynamic system where the output is able to track

the set point change and produced less proses interaction.
Nevertheless, it only considered that three controller designs
instead of four and the selection of parameter tuning are
done without optimization technique. In this paper, there are
four enhanced MPID controller designs which are Davison,
Penttinen-Koivo,Maciejowski, andCombinedmethodwhere
it is applied to the both original and singularly perturbed
system with all of the parameter tuning being obtained based
on particle swarm optimization. All of these four designs
technique are applied to wastewater treatment plant and
Newell and Lee evaporator.

4.1. Davison Method. Multivariable control design based on
Davison method simply applies the integral term, which
causes decoupling rise at low frequencies

𝐾 = 𝐾
𝑖

1
𝑠

𝑒 (𝑠) . (34)

The controller expression is represented by (34) [16], where
𝐾
𝑖
and 𝑒(𝑠) are integral feedback gain and controller error,

respectively,

𝐾
𝑖
= 𝜇𝐺 (𝑠)

−1
. (35)

Since this research is focused on dynamic control, 𝐾
𝑖
is

defined as in (35), where 𝜇 is the only controller tuning
parameter, which undoubtedly needs to be tuned progres-
sively until the finest solution is discovered. Due to the
involvement of the inverse system, the control design is only
applicable for squarematrix. If the system involves time delay,
the time delay needs to be eliminated.

4.2. Penttinen-Koivo Method. This method is somewhat
advanced and then the method proposed by Davison. In
Penttinen-Koivo method, a proportional term is introduced.
It comprises both integral and proportional term. Indirectly,
this causes decoupling to take place at low and high frequen-
cies. Davison and Penttinen-Koivo method are only similar
in terms of an integral term which is linearly related to the
inverse of plant dynamics

𝐾 = (𝐾
𝑝
+𝐾
𝑖

1
𝑠

) 𝑒 (𝑠) . (36)

The controller expression is represented in (36) [16], where
𝐾
𝑝
,𝐾
𝑖
, and 𝑒(𝑠) are proportional gain, integral feedback gain,

and controller error correspondingly

𝐾
𝑝

= (𝐶𝐵)
−1

𝜌,

𝐾
𝑖
= 𝜇𝐺 (𝑠)

−1
.

(37)

Dynamic terms of 𝐾
𝑝
and 𝐾

𝑖
are expressed in (37), where 𝜌

and 𝜇 are the tuning parameters for both proportional and
integral feedback gain.

4.3. Maciejowski Method. Maciejowski method applies all
proportional, integral, and derivative gains in its controller
design. Formaciejowskimethod, the tuningwas done around
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the bandwidth frequency, 𝜔
𝐵
. Consequently, the interaction

is reduced and good decoupling characteristic is provided
around the frequency [15]. However, due to the needs of plant
frequency analysis experiment, this method is quite difficult
to be used throughout the industry [15]

𝐾 = (𝐾
𝑝
+𝐾
𝑖

1
𝑠

+𝐾
𝑑
𝑠) 𝑒 (𝑠) . (38)

The controller expression is represented by (38), where 𝐾
𝑝
,

𝐾
𝑖
,𝐾
𝑑
, and 𝑒(𝑠) are proportional, integral feedback, derivative

gains, and controller error

𝐾
𝑝

= 𝜌𝐺 (𝑗𝑤
𝑏
)
−1

,

𝐾
𝑖
= 𝜇𝐺 (𝑗𝑤

𝑏
)
−1

,

𝐾
𝑑
= 𝛿𝐺 (𝑗𝑤

𝑏
)
−1

.

(39)

Dynamic terms of𝐾
𝑝
,𝐾
𝑖
, and𝐾

𝑑
are expressed in (39), where

𝜌, 𝜇, and 𝛿 are Maciejowski tuning parameters. Due to a
complex gain obtained from the calculation of 𝐺(𝑗𝑤

𝑏
)
−1, a

real approximation of 𝐺(𝑗𝑤
𝑏
)
−1 is necessary which can be

done by solving the following optimization problem:

𝑀(𝑁,Θ) = [𝐺 (𝑗𝑤
𝑏
)𝑁− 𝑒

𝑗Θ

]

𝑇

[𝐺 (𝑗𝑤
𝑏
)𝑁− 𝑒

𝑗Θ

] ,

Θ = diag (𝜃1, . . . , 𝜃𝑛) ,

(40)

where 𝑁 is a constant that is used to minimize 𝑀.

4.4. CombinedMethod. In order to overcome theweakness of
the Maciejowski method which requires rigorous frequency
analysis, a new method was proposed by Wahab et al. [15].
It is the result of the previous controllers where methods
by Davison, Penttinen-Koivo, andMaciejowski are combined
together:

𝐾 = (𝜌𝑄+𝜇𝑄

1
𝑠

) 𝑒 (𝑠) . (41)

Equation (41) represents the proposed control design, where
𝜌, 𝜇, and 𝑒(𝑠) are the tuning parameters and controller error:

𝑄 = [𝛼𝐺 (𝑠) + (1−𝛼)𝐶𝐵]
−1 (42)

𝑄 is defined in (42). 𝛼 is also a tuning parameter.Thismethod
keeps some properties in Maciejowski method but excludes
the needs of frequency analysis [15].

5. Optimized Singularly Perturbed MPID
Parameter Tuning

To ensure a fair comparison, the optimum parameter tuning
for each of controller designs is measured by using particle
swarm optimization (PSO). PSO optimizes a problem by
having a population (swarm) of candidate solutions (birds)
which is known as particles that are updated from iteration to
iteration [40].These particles aremoved into the search space
seeking for a food according to its own flying experience and

its companion flying experience. It can be expended tomulti-
dimensional search. Each particle (solution) is characterized
by its position and velocity, and every one of them searches
for better positions within the search space by changing its
velocity [41]. Each particle preserves the track of its current
position within the search space. This value is identified as
the particle’s local best known position (pbest) and leads to
the best known position (gbest), which is defined as enhanced
positions that are found by the other particles. By that, the
finest solution is attained

V (𝑡 + 1) = (𝑤 ∗ V (𝑡)) + (𝑐1 ∗ 𝑟1 ∗ (𝑝 (𝑡) − 𝑥 (𝑡)))

+ (𝑐2 ∗ 𝑟2 ∗ (𝑔 (𝑡) − 𝑥 (𝑡))) ,

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + V (𝑡 + 1) .

(43)

Equation (43) represents the update equations of new veloc-
ity and new position, where V(𝑡 + 1), 𝑥(𝑡 + 1), 𝑤, V(𝑡),
𝑐
1
, 𝑐
2
, 𝑟
1
, 𝑟
2
, 𝑝(𝑡), 𝑥(𝑡), and 𝑔(𝑡) correspond to the velocity at

time 𝑡 + 1, new particle position, inertia weight, current
velocity at time 𝑡, cognitive weight, global weight, random
variable within the range of 0 ≥ 𝑟

1
< 1, random variable

within the range of 0 ≥ 𝑟
2
< 1, pbest, and gbest.

The overall performance of PSO can be increased by
proper selection of inertia weight, 𝑤. Lower value of 𝑤

provides a good ability for local search and higher value of
𝑤 provides a good ability for global search [41]:

𝑤 = 𝑤max − iter ⋅
𝑤max − 𝑤min

itermax
. (44)

To achieve a respectable performance, 𝑤 is determined
according to (44), where 𝑤max is the maximum value of
inertia weight, 𝑤min is the minimum value of inertia weight,
iter is the current number of iteration, and itermax is the max-
imum number of iteration. Most of the previous researchers
have used 𝑤max = 0.9 and 𝑤min = 0.4, where significant
enhancement of PSO is achieved [42, 43]:

ITSE = ∫

𝑇

0
𝑡𝑒

2
(𝑡) 𝑑𝑡. (45)

Fitness function which is also known as cost function is rep-
resented by (45), where 𝑒(𝑡) is a system error. The procedure
of PID parameter optimization by using PSO is summarized
as follows:

(1) Initialization: initialize a population of particles with
arbitrary positions and velocities on X dimensions
in the problem space. Then, randomly initialize pbest
and gbest.

(2) Fitness: calculate the desired optimization fitness
function in X dimensions for every particle.

(3) pbest: compare calculated fitness function value for
every particle in the population. If current value is
smaller than pbest, and then update pbest as current
particle position.

(4) gbest: determine the best success particle position
among all of the individual best positions and desig-
nate as a gbest.
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(5) New velocity and position: update the velocity and
position of the particle based on (43).

(6) Repeat step (2) all over again until a criterion is
encountered.

6. Case Studies

In the next subsections, an introduction to the case studies
is presented. First, an overview of the wastewater treatment
plant (WWTP) is provided and the Newell and Lee evapora-
tor model is explained.These two case studies are considered
to demonstrate the performance of the proposed methods.

6.1. Case Study I: Wastewater Treatment Plant (WWTP).
Wastewater treatment plant is designed either for carbon
removal or for carbon and nitrogen removal. In this project,
the carbon removal scenario is considered. The control
plant outputs are substrate and dissolved oxygen. Scanty
provision of substrate affects the growth of microorganisms
that are responsible for treating the wastewater and too many
provisions lead to a drop in the microorganisms growth
rate. The standard amount of substrate is around 51mg/L
[44]. Meanwhile, insufficient dissolved oxygen will cause the
degradation of the pollutants and the plant to become less
efficient. Too much dissolved oxygen can cause excessive
consumption of energy where it will increase the cost for the
treatment. Other than that, it also can cause too much sludge
production. The amount of dissolved oxygen concentration
needs to be controlled so that it is in the range of 1.5mg/L–
4.0mg/L [45]. The aim of this case study is to control
the concentration of substrate and dissolved oxygen at the
desired value by manipulating the manipulate variables of
dilution rate and air flow rate, respectively. The state space
formof the nonlinearwastewater treatment plant is linearized
from [39] as follows:

[

[

[

[

[

[

�̇�

̇𝑆

̇DO

�̇�
𝑟

]

]

]

]

]

]

= 𝐴

[

[

[

[

[

𝑋

𝑆

DO
𝑋
𝑟

]

]

]

]

]

+𝐵[

𝐷

𝑊

] (46a)

[

𝑌
𝑆

𝑌DO
] = 𝐶

[

[

[

[

[

𝑋

𝑆

DO
𝑋
𝑟

]

]

]

]

]

+𝐷[

𝐷

𝑊

] , (46b)

where the state is composed by 𝑋, the biomass, 𝑆, the
substrate, DO, the dissolved oxygen, and 𝑋

𝑟
, the recycled

biomass. The input variables are 𝐷, the dilution rate, and 𝑊,
an air flow rate. Matrices 𝐴, 𝐵, 𝐶, and 𝐷 are given by

𝐴 =

[

[

[

[

[

[

−0.0990 0.1234 0.2897 0.0495
−0.0508 −0.3219 −0.4457 0
−0.0254 −0.0949 −1.9748 0
0.1320 0 0 −0.0660

]

]

]

]

]

]

, (47a)

𝐵 =

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

, (47b)

𝐶 = [

0 1 0 0
0 0 1 0

] , (47c)

𝐷 = [

0 0
0 0

] . (47d)

These 𝐴, 𝐵, 𝐶, and 𝐷 matrices are used in the design
of singularly perturbed MPID control and tested into the
nonlinear wastewater treatment plant.

6.2. Case Study II: Newell and Lee Evaporator. This subsection
presents the Newell and Lee evaporator system which is
considered as a second case study.The objective is to evaluate
the effectiveness and the performance of the proposed singu-
larly perturbed MPID controllers for different system. Here,
unstable system is considered. Similar to the first case study,
the four different methods of MPID are implemented, which
is Davison, Penttinen-Koivo, Maciejowski, and Combined
methods. The plant to be controlled is given by the following
state space model [46]:

[

[

[

[

�̇�2

�̇�2

�̇�2

]

]

]

]

= 𝐴
[

[

[

𝐿2

𝑋2

𝑃2

]

]

]

+𝐵
[

[

[

𝐹2

𝑃100

𝐹200

]

]

]

, (48a)

[

𝑌
𝐿2

𝑌
𝑃2

] = 𝐶
[

[

[

𝐿2

𝑋2

𝑃2

]

]

]

+𝐷
[

[

[

𝐹2

𝑃100

𝐹200

]

]

]

, (48b)

where the state is composed by 𝐿
2
, the separator level, 𝑋

2
,

the product composition, and 𝑃
2
, an operating pressure. The

input variables are 𝐹
2
, the product flow rate, 𝑃

100
, the steam

pressure, and 𝐹
200

, the cooling water flow rate. The outputs
to be controlled are 𝑌

𝐿
2

, separator level, and 𝑌
𝑃
2

, operating
pressure. Matrices 𝐴, 𝐵, 𝐶, and 𝐷 are given by

𝐴 =
[

[

[

0 0.00418 0.007512
0 −0.10000 0
0 −0.02091 −0.05580

]

]

]

, (49a)

𝐵 =
[

[

[

−0.05000 −0.00192 0
−1.25000 0 0

0 0.00959 −0.00183

]

]

]

, (49b)

𝐶 = [

1 0 0
0 0 1

] , (49c)

𝐷 =

[

[

[

[

0 0
0 0
0 0

]

]

]

]

. (49d)
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7. Results and Discussion

This section presents the results and discussion for both case
studies. It will include the results of singularly perturbed
MPID control based on four proposed methods, which
are Davison, Penttinen-Koivo, Maciejowski, and Combined
method for both full order and singularly perturbed system.
The first section shows the MPID control based on particle
swarm optimization. The obtained optimum tuning parame-
ters are presented. The second section shows the simulation
results for control of the closed loop system during substrate
and dissolved oxygen set point change, while the last section
provides the resultwhich shows the stability of the closed loop
system.

7.1. Results for the Case Study 1: Wastewater Treatment
Plant (WWTP). The eigenvalue of the open loop wastewater
treatment plant is as follows:

𝑒 (𝐴) = {−0.0076, − 0.2009, − 0.2579, − 1.9953} ,
𝑒 (𝐴
𝑠
) = {−0.0076, − 0.2009, − 0.2579} ,

𝑒 (𝐴
𝑓
) = {−1.9953} .

(50)

As a result

𝜀 =

|−0.2579|
|−1.9953|

= 0.1293 ≪ 1.
(51)

Since 𝜀 is less than 1, the system is said to possess a two-time
scale characteristic. The eigenvalue at −1.9953 is considered
as a fast response

𝐴SPS/Naidu

=

𝐴11 = 𝐴slow 𝐴12 = 𝑍12
↙ ↙

[

[

[

[

[

0 0.1234 0.2897 0
−0.0508 −0.3219 −0.4457 0
−0.0254 −0.0949 −1.975 0

0 0 0 −0.0660

]

]

]

]

]

↖ ↖

𝐴21 = 𝑍21 𝐴22 = 𝐴fast

(52a)

𝐵SPS/Naidu =

𝐵1 = 𝐵slow

↙

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

↖

𝐵2 = 𝐵fast

(52b)

𝐶SPS/Naidu =

𝐶1 = 𝐶slow
↙

[

0 1 0 0
0 0 1 0

]

↖

𝐶2 = 𝐶fast

(52c)

𝐷SPS/Naidu = [

0 0
0 0

] ← 𝐷. (52d)

By using algorithm discussed in Section 3.1, the original
system which refers to (47a) to (47d) is represented in state
space form of singularly perturbed system as indicated in
(52a) to (52d). This state space form is used to design the
controller tuning, while the simulation and performance of
the system are based on the original system. From the state
space form in (52a) to (52d), it is clearly shown that the
eigenvalues of the system are grouped into two distinct and
separate sets, which causes the time consumed to obtain
the MPID tuning parameters reduce. All eigenvalues of the
singularly perturbed system are remained at the left-half
plane, which is −1.9955, −0.2798, −0.0214, and −0.0660. It is
indicated that the system is boundary input boundary output
(BIBO) stable

𝐺Jian Niu−𝑆/𝐷 = 𝐺Jian Niu−11 (𝑠) =

𝑠 + 134.1
𝑠 + 0.0508

, (53a)

𝐺Jian Niu−𝐶/𝐷 = 𝐺Jian Niu−21 (𝑠) =

𝑠 + 134.1
𝑠 + 0.0508

, (53b)

𝐺Jian Niu−𝑆/𝑊 = 𝐺Jian Niu−12 (𝑠) = − 0.0, (53c)

𝐺Jian Niu−𝐶/𝑊 = 𝐺Jian Niu−22 (𝑠) = − 0.05. (53d)

Based on the algorithms explained in Section 3.2, the JianNiu
method is successfully able to represent the original system
into composite of singularly perturbed system as in (53a)
to (53d), where the only existing eigenvalue is located at
−0.0508. Since it is in the left-half plane, the system is BIBO
stable. To validate the models from both methods, singularly
perturbation method obtained by Naidu and Jian Niu, the
magnitude and phase plot between the original system and
singularly perturbed system are plotted as shown in Figure 1.

Based on Figure 1, singularly perturbed system based
on Naidu algorithm provides better dynamic response com-
pared to the singularly perturbed system based on Jian Niu
algorithm, where the dynamic response is much identical to
the original system. The close approximation between the
original system and singularly perturbed system by Naidu
in the frequency responses analysis exhibits the authority of
model and essentially leads to adequate control performance
of the controller design. Hence, a singularly perturbed system
by Naidu is used in dynamic matrix inverse of MPID
controller designs.

In the considered WWTP, there are two controlled vari-
ables and twomanipulated variables. Interaction phenomena
may occur between these two controls and manipulate vari-
ables. Each manipulated variable can affect both the control
variables. The process interaction among the variables may
cause the closed loop system to become destabilized and the
controller tuning is more challenging. In order to minimize
the process interaction, the selection of suitable control and
manipulated variables pairing is importance. In this case,
there are two possible controller pairings.

The relative gain array (RGA) analysis has been used in
quantifying the level of interactions in amultivariable system.
It is also used to determine the best input output pairing and
that pairing should be avoided. Tomeasure the ability of RGA
in providing a realistic pairing recommendation, the RGA for
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Figure 1: Bode analysis for different methods.

linearizedmodels was calculated. RGA of a nonsquarematrix
is defined in (54). The results are displayed in a matrix form,
where columns are for each input variable and rows for each
output variable.This matrix form can be used in determining
which relative gains are associated to which input output
variables

RGA = Λ = 𝐺RGA × (𝐺RGA
†

)

𝑇

, (54)

where

𝐺RGA = Gain matrix =

[

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

]

,

𝐺RGA
†

= Pseudo inverse of gain matrix

= [

−0.0034 0.0052 0.0000 0.0000
−0.4528 0.6966 14.3062 0.0000

] .

(55)

Therefore

RGA = Λ =

[

[

[

[

[

[

0.2970 0
0.7030 0
−0.0000 1.0000
0.0000 0

]

]

]

]

]

]

. (56)

From the RGA obtained, it can be concluded that dissolved
oxygen cannot be pairedwith dilution rate due to the negative

relative gain. It corresponds to the worst case, and this is
highly undesirable. Biomass, substrate, and recycle biomass
on the other hand cannot be paired with air flow rate due to
the zero relative gain, which means that air flow rate does not
have any effect on biomass, substrate, and recycle biomass.
In RGA analysis, the closer the value of RGA element to
one is, the configuration is more likely to work, where less
interaction exists. Hence, it is concluded that a good pair of
dissolved oxygen and air flow rate and substrate and dilution
rate are recommended.

Since MPID controller designs are involved with sev-
eral tuning parameter, PSO was adopted. Due to the PSO
characteristic which cannot give a unique solution at every
attempt [47], 10 trials of simulation for original and sin-
gularly perturbed system of each MPID controller design
were conducted. A result with minimum error was selected.
Table 1 shows the obtained optimum PID tuning parameter
using ITSE fitness function for both systems: original and
singularly perturbed system. The results are corresponding
to Davison, Penttinen-Koivo, Maciejowski, and Combined
method, respectively. Based on the results presented, it clearly
shows that singularly perturbed system is able to provide
easiness in tuning strategy in terms of computation time
where it required less computation time compared to the
original system. Table 1 shows that singularly perturbed
MPID based on eachmethod is able to reduce more than half
of computation time required by original system.

Figures 2 to 5 show the comparison between output
response and interaction based on Penttinen-Koivo method
for original and singularly perturbed system. Based on
the Figures 2 and 4, Penttinen-Koivo based on singularly
perturbed system is able to produce better output responses
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Table 1: Optimum PID parameter for WWTP based on PSO.

Method Original system Singularly perturbed system
𝛼 𝜇 𝜌 Time (s) 𝛼 𝜇 𝜌 Time (s)

Davison — 0.9723 1173.7 — 0.7949 355.5019
Penttinen-Koivo — 1.7730 0.5741 49.7979 — 1.2010 0.7925 10.4767
Maciejowski — 9.8842 5.3998 247.4416 — 1.6729 9.4042 69.9072
Combined 0.8843 7.8907 9.5949 370.6488 0.7927 9.4458 7.5924 132.5115
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Figure 2: Substrate responses between original and singularly
perturbed system during set point change.

with less overshoot and fast settling time. Meanwhile, more
oscillation is produced by output responses based on original
system. The interaction among the output variables for
Penttinen-Koivo based on singularly perturbed system is also
reduced as shown in Figures 3 and 5.

Due to the better closed loop performance, reduced
process interaction, and less time consuming obtained by
the Penttinen-Koivo method based on singularly perturbed
system compared to the original system, singularly perturbed
system was implemented thoroughly in the case of the con-
troller performance evaluations among others three methods
accordingly. To measure the performance quality of four sin-
gularly perturbed MPID controller designs, pseudorandom
binary sequence (PRBS) was injected as the input signal to
the system. PRBS was injected to determine and to test the
tracking ability of the proposed singularly perturbed MPID
controller designs for each step change. From the responses
obtained, all four designs are able to track each step change
where the Combined method provides the best response.
Figures 6 and 7 show the output responses for both substrate
and dissolved oxygen concentration.

To provide a clear view of the set point tracking ability
and process interaction, the system was also injected with
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Figure 3: Process interaction between original and singularly
perturbed system during substrate change.
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Figure 4: Dissolved oxygen responses between original and singu-
larly perturbed system during set point change.
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Figure 5: Process interaction between original and singularly
perturbed system during dissolved oxygen change.
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Figure 6: Concentration of substrate based on PRBS input.

step input. The simulation was carried out during substrate
and dissolved oxygen set point change. For each change, the
step input was injected at 𝑡 = 10 h and 𝑡 = 50 h, respectively.
Figures 8 and 9 show the simulation results for substrate
and dissolved oxygen for each proposed singularly perturbed
MPID controller design.The responses are set with respect to
the step change in the substrate input from 41.2348mg/L to
51.2348mg/L.

Figure 8 shows that all singularly perturbed MPID
controller designs are able to keep the concentration of
the substrate close to the desired value. It shows that the
control based on Combined method is able to provide the
finest control effect among the others’ method in terms of
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Figure 7: Concentration of dissolved oxygen based on PRBS input.
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Figure 8: Closed loop responses of substrate during substrate set
point change.

settling time and maximum amplitude, where it is able to
achieve settling point during 11 h compared to the others
which settle during 44 h, 21 h, and 14 h, respectively. Due to
the control characteristic which only applies integral gain,
control action based on Davison method provides a response
with the highest percentage of overshoot (%OS). By using
Penttinen-Koivo method, the output response shows better
improvement.The presence of both integral and proportional
gain is able to minimize the percentage of overshoot (%OS)
and offer a better settling time (𝑇

𝑠
). However, proportional

gain needs to be tunedwisely. High value of proportional gain
can cause the system to become unstable, while small value of
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Figure 9: Process interactions during substrate set point change.

proportional gainmay reduce the sensitivity of the controller.
Compared to the Davison and Penttinen-Koivo method,
Maciejowski method gives the best performance with small
percentage of overshoot (%OS) and faster settling time (𝑇

𝑠
). It

is proven that control performance at the selected frequency
was able to improve the closed loop response. An important
feature in Maciejowski method is the selection of frequency.
Frequency must be selected properly to avoid instability.
Among all methods, the Combined method exhibited the
best tracking to the substrate changes. This method exhibits
a faster response than other control designs, but it requires a
long time to obtain the tuning parameters.

Since the considered case study involves multivariable
system, process interaction may occur. Interactions between
the system variables occur because each manipulated vari-
able in the multivariable system certainly will affect the
controlled variables. Here, dilution rate and air flow rate
will affect the response of both substrate and dissolved
oxygen concentration. Evidently, when changing one of the
inputs for dilution rate or air flow rate, both outputs will
be affected, and this means that there is significant coupling
in the system. Figure 9 shows the interaction responses for
each proposed singularly perturbed MPID controller design
that occurs during substrate change. The response obtained
has proven that substrate and dissolved oxygen are coupled
since the step changes in the substrate disturb the dissolved
oxygen correspondingly. If there is no process interaction,
dissolved oxygen should not be affected when the substrate
is changed. Fortunately, process interaction was reduced for
each controller design where the Combine method provides
less interaction, which indicates by the lowest maximum
amplitude and less oscillation.

Figures 10 and 11 show the closed loop responses of
manipulate variable, which are dilution rate and air flow
rate during the substrate set point change, respectively.
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Figure 10:Dilution rate responses during substrate set point change.
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Figure 11: Air flow rate responses during substrate set point change.

Large variation exhibits in the response of dilution rate and
air flow rate based on Davison method. Penttinen-Koivo
and Combined method exhibit moderate variations, while
Combined method exhibits smallest variations but with high
peak value at one of the points.

Figures 12 and 13 show the simulation results for dissolved
oxygen and substrate to the step change in the dissolved
oxygen input. From Figure 12, it is clearly shown that the
trajectory of the output is improved by each method that has
been applied. It is proportionate with the responses during
substrate set point change. All the systems step response
settles at a final value of 4.1146mg/L, which is the final value
of the unit step input. Figure 12 shows that the responses
produced by the Davison and Penttinen-Koivo methods do
not asymptotically approach the final value, where overshoot
appears in the final value.Themaximumvalues of the outputs
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Figure 12: Closed loop responses of dissolved oxygen during
dissolved oxygen set point change.

are 4.8649mg/L and 4.2830mg/L, respectively, for each of
Davison and Penttinen-Koivo methods. The output response
yield by Davison method consists of 37.52% of overshoots.
However, Penttinen-Koivo method has improved the output
response by reducing the overshoot to 8.42%. Meanwhile,
the responses acquired from Maciejowski and Combined
methods asymptotically approach the final value. These
methods provide slightly similar effect in terms of maximum
amplitude and settling time. There is no overshoot of the
final value and there are no oscillations in the response. The
outputs reach the final value at around 𝑡 = 0.2 h and 𝑡 = 0.4 h
for both Maciejowski and Combined methods, respectively.
Figure 13 shows that interactions also occur during dissolved
oxygen set point change. Similar to the responses during
substrate set point change, process interaction exists and it
is improved by each method proposed by Davison up to the
Combined method, respectively.

Figures 14 and 15 show the closed loop responses of
manipulate variable, which are dilution rate and air flow rate
during the dissolved oxygen set point change, respectively.
The characteristic of the closed loop responses for each of
singularly perturbed MPID controller design is summarized
in Table 2.

The stability of a system can be determined directly from
its transfer function or fromCLCP. Figure 16 shows the closed
loop poles and zeros plot for each singularly perturbedMPID
control design. It is mark a pole location by a cross (x) and
a zero location by a circle (o). Based on the plot figure, all
poles are located on the left-half plane that guarantees a
stable system.However, to ensure the reliability of the stability
analysis, Routh-Hurwitz analysis was performed. The results
show that all methods are able to produce a stable sys-
tem.
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Figure 13: Process interactions during dissolved oxygen set point
change.
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Figure 14: Dilution rate responses during dissolved oxygen set point
change.

7.2. Results for the Case Study II: Newell and Lee Evaporator.
The eigenvalue of the open loop Newell and Lee evaporator is
as follows:

𝑒 (𝐴) = {0, − 0.0558, − 0.1000} ,

𝑒 (𝐴
𝑠
) = {0} ,

𝑒 (𝐴
𝑓
) = {−0.0558, − 0.1000} .

(57)
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Table 2: Characteristic of closed loop response for WWTP.

Output Method Rise time, 𝑇
𝑟
(h) Settling time, 𝑇

𝑠
(h) Percentage overshoot (%OS) Steady state error (%)

Substrate, 𝑆

Davison 2.0 44 45.65 0.152
Penttinen-Koivo 1.8 21 8.65 0.092
Maciejowski 0.9 14 5.65 0.032
Combined 0.1 11 0 0.012

Dissolved oxygen, DO

Davison 1.0 14 62.49 0.03
Penttinen-Koivo 1.2 5.5 21.58 0.03
Maciejowski 0.1 0.2 0 0.17
Combined 0.1 0.4 0 0.02
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Figure 15: Air flow rate responses during dissolved oxygen set point
change.
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Figure 16: Closed loop pole-zero plot.

As a result

𝜀 =

|0|
|−1.9953|

= 0 ≪ 1.
(58)

Since 𝜀 is less than 1, the system behaved as a two-time scale
characteristic. There is one slow variable which is indicated
by eigenvalue of 0 and two fast variables which are indicated
by the eigenvalue at −0.0558 and −0.1000. Based on the
algorithm discussed in Section 3.1, the original system of
Newell and Lee evaporator can be represented in singularly
perturbed system. The eigenvalues for singularly perturbed
system are 0, −0.0558, and −0.1000, which is similar to the
original system

𝐴SPS/Naidu =

𝐴11 = 𝐴slow 𝐴12 = 𝑍12

↙ ↙

[

[

[

0 0 0
0 −0.1 0
0 −0.02091 −0.0558

]

]

]

↖ ↖

𝐴21 = 𝑍21 𝐴22 = 𝐴fast

(59a)

𝐵SPS/Naidu =

𝐵1 = 𝐵slow

↙

[

[

[

−0.06706 −0.0002464
−1.25000 0

0 −0.00183

]

]

]

↖

𝐵2 = 𝐵fast

(59b)

𝐶SPS/Naidu =

𝐶1 = 𝐶slow

↙

[

1 0 0
0 0 1

]

↖

𝐶2 = 𝐶fast

(59c)

𝐷SPS/Naidu = [

0 0
0 0

] ← 𝐷. (59d)
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Figure 17: Bode analysis for original and singularly perturbed system.

Equations (59a) to (59d) represent the singularly perturbed
system of Newell and Lee evaporator in state space form.
To verify the singularly perturbed system with the original
system, the Bode diagram is plotted as shown in Figure 17.
As seen from Figure 17, singularly perturbed system shows
a fairly good tracking with the original system over the
low, middle, and high frequencies ranges. The response
of the singularly perturbed system is almost identical to
the original system. The close approximation between both
systems demonstrates the validity of the obtained singularly
perturbed system and principally leads to satisfactory control
performance.

In this case, there also exists two possible control and
manipulate variables paring. By using (54), the RGA for
Newell and Lee evaporator was obtained as

RGA = Λ =
[

[

[

0.0028 0.0178
0.9972 0

0 0.9822

]

]

]

. (60)

Based on the analysis of RGA, it can be concluded that
separator level cannot be paired with cooling water flow rate,
and operating pressure cannot be paired with product flow
rate, respectively. This is due to the zero relative gain. A
change of coolingwater flow ratewill not give any significance
to the separator level, and change of product flow rate will not
give any significance to the operating pressure. From theRGA
analysis, it is highly recommended to pair product flow rate
with separator level and cooling water flow rate is paired with
operating pressure. Since the value is nonzero and positive,
the pairing is possible.

Similar as in case study I, 10 trials of PSO simulation
for original and singularly perturbed system of each MPID

controller design were conducted. However, due to the
unstable open loop response, Maciejowski method cannot
be implemented to this multivariable system as it requires
information from stable open loop response. Table 3 shows
the obtained optimum PID parameter based on PSO for
evaporator system. By applied Davisonmethod, both systems
are able to provide similar tuning parameter with similar
error for 10 number of run. However, it can be seen the
advantage of singularly perturbed system which required
less computation time compared to the original system. For
Penttinen-Koivo and Combined method, the computation
time is reduced more than triple times with the adaptation
of singularly perturbed system in MPID control.

Figures 18 to 21 show the comparison between output
responses based on Penttinen-Koivo method for each Newell
and Lee evaporator, original and singularly perturbed system.
Figure 18 shows the separator level responses between orig-
inal and singularly perturbed system during separator level
change. The response belonging to the original system has a
poor performance as compared to the singularly perturbed
system with high oscillation during step up and step down
response. The output response achieved by the singularly
perturbed system is with less overshoot and fast settling time.
Figure 19 shows the interaction response during separator
level change. It can be seen that the interaction was reduced
by the adaptation of singularly perturbed system in MPID
control. Figure 20 shows the operating pressure response
between original and singularly perturbed system during
operating pressure change. It can be observed that the singu-
larly perturbed system has better performance as compared
to the original system with fast settling time, while Figure 21
shows the interaction response during operating pressure
change. Due to the good responses exhibited from the
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Table 3: Optimum PID parameter for evaporator system based on PSO.

Method Original system Singularly perturbed system
𝛼 𝜇 𝜌 Time (s) 𝛼 𝜇 𝜌 Time (s)

Davison — 0.0300 — 746.1308 — 0.0300 — 134.7652
Penttinen-Koivo — 0.0500 0.0726 147.8473 — 0.0500 2.2488 22.0722
Combined 0.0223 0.1000 1.8896 568.1792 0.0363 0.7703 0.7609 167.2869

Table 4: Step point change.

Separator level change Operating pressure change
Step time 120 250 270 400
Initial value 0 0 0 0
Final value 1.5 −1.5 0.2 −0.2
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Figure 18: Separator level responses between original and singularly
perturbed system.

control based on singularly perturbed system, this systemwas
implemented thoroughly into the Davison, Penttinen-Koivo,
and Combined method. The simulation was performed by
setting the set point input values as follows:

value of separator level: 1m,
value of operating pressure: 50.5 kPa.

The simulation was executed in two-variable change,
which is during separator level and operating pressure step
point change.The step point change of the separator level and
operating pressure is listed in Table 4.

Figures 22 and 23 show the closed loop performance for
the separator level and operating pressure to the sequential
step point changes in separator level set point. The step
point changes were sequentially introduced into the system
at 𝑡 = 120 s and 𝑡 = 250 s, respectively. In the simulation
study, the comparisons of the closed loop performances
were done between Davison, Penttinen-Koivo, Combined,
and multivariable controller designed proposed by Fauzi,
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Figure 19: Process interaction between original and singularly
perturbed system during separator level change.

which is based on multiobjective optimization approach
using surrogate modelling. Fauzi’s method was compared as
they also have been involved with the similar Newell and
Lee evaporator system. However, the details concerning to
the controller designed are not presented and can be referred
in [46]. Figure 22 shows that the output performance based
on Davison method provides a response with 11.67% and
8.02% overshoot during the step up and step down input,
respectively. These values are higher compared to other con-
troller methods. However, it is still able to track the set point
input given. The output performances based on Penttinen-
Koivo and Combined methods are quiet similar. Combined
method provides faster rise and settling time during the step
up input, whereas the Penttinen-Koivo provides faster rise
and settling time during the step down input. However, the
Combined method provides the best performance with low
percentage of overshoot, which specify by the lowest value
of maximum amplitude and steady state error. Among the
four methods, the method proposed by Fauzi is the poorest.
At the early stage, the response is relatively good. Once the
step down input is injected, the response shows unstable
characteristic where it fails to settle at the given set point
input. The response is considered as unstable since the gain
error increases as time increases. Figure 23 compares the
interactions that occur during the separator level set point
change. It is clearly shown that Davison method produces
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Figure 20: Operating pressure responses between original and
singularly perturbed system.
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Figure 21: Process interaction between original and singularly
perturbed system during operating pressure change.

large interactions with high maximum amplitude and more
oscillation.The sluggishness in the performance is due to the
controller algorithm which only involves integral gain. It can
be observed that the Combined method is able to reduce the
interaction effects well compared to the other methods. The
interaction produced by the Combined method is the lowest.
Penttinen-Koivomethod produces interaction slightly higher
than the Combined method, while Fauzi method offers quiet
high interaction.

Figures 24 and 25 show the closed loop responses of
manipulate variable, which are product flow rate and cooling
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Figure 22: Responses of separator level during separator level set
point change.

0 100 200 300 400 500 600 700 800
49

49.5

50

50.5

51

51.5

52

Time (s)

O
pe

ra
tin

g 
pr

es
su

re
 (k

Pa
)

Reference
Davison
Penttinen-Koivo

Combined
Fauzi

Figure 23: Process interactions during separator level set point
change.

water flow rate during the separator level set point change
respectively. For Davisonmethod, large variations of product
flow rate and cooling water flow rate are obtained, while
Penttinen-Koivo and Combined method consist of small
variations but high peak value. Among the four methods,
Mohd Fauzi method exhibits the largest variations.

Figures 26 and 27 show the simulation responses for
the operating pressure and separator level to the sequential
step point changes in operating pressure set point. Based on
Figure 26, Penttinen-Koivo and Combined methods provide
a response which is mostly identical to the given set point.
During step up input, Penttinen-Koivo method consists of
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Figure 24: Product flow rate responses during separator level set
point change.
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Figure 25: Cooling water flow rate responses during separator level
set point change.

slightly high steady state errors than the Combined method.
The difference is only about 1.40%. Meanwhile, the difference
is approximately 0.1% during step down input. Even though
the response by Davison method required long computation
time for the rise and settling, the response is accomplished to
settle at the set point value. But the response is relatively slow
and consists of high percentage overshoot and steady state
error. Figure 26 also shows that the output performance based
on Davison method provides a response with 10% overshoot
during the step up and step down input. These values are
higher compared to other controller methods. However, it is
still able to track the set point.Theoutput performances based
on Penttinen-Koivo and Combined methods are almost
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Figure 26: Responses of operating pressure during operating
pressure set point change.

similar. Penttinen-Koivo provides faster rise and settling
time during the step up and step down input. However, the
Combined method provides the best performance with the
lowest steady state error. Meanwhile, the resulting response
by Fauzi obviously shows unstable characteristic. At the
beginning, the response already shows that the system is
in a state of uncontrollable. After the step down input was
injected, the response gradually decreased. At time 𝑡 =
800 s, the response of operating pressure is at −366.7 kPa.
An increase in simulation time will lead the response to
be infinity. Figure 27 shows the response of interactions
during operating pressure set point change. Among the four
methods, Penttinen-Koivo and Combined methods offer the
least interaction. It can be seen that the interaction is reduced
with the Penttinen-Koivo and Combined methods compared
to the Davison and Fauzi methods which consist of high
maximum amplitude.

Figures 28 and 29 show the closed loop responses of
corresponding manipulated variable, which are product flow
rate and cooling water flow rate during operating pressure set
point change, respectively. The variation of both manipulate
variables is similar during separator level set point change,
where control based on Mohd Fauzi method exhibits a
response with the largest variations.

The characteristic of closed loop response for evapora-
tor system of all the comparative methods for singularly
perturbed MPID control during the separator level and
operating pressure set point change is tabulated in Table 5.
The good performance of the Combined method is read-
ily apparent. The best performance is given by Combined
method, followed by Penttinen-Koivo, Davison, and Fauzi
method.

Figure 30 shows the closed loop pole-zero plots for
the proposed singularly perturbed MPID controller designs
applied to the Newell and Lee evaporator. It can be seen that
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Table 5: Characteristic of closed loop response for evaporator system.

Output Method
Rise time, 𝑇

𝑟
(s) Settling time, 𝑇

𝑠
(s) Percentage overshoot (%OS) Steady state error, 𝑒ss (%)

Step Step Step Step
Up Down Up Down Up Down Up Down

Separator level, 𝐿
2

Davison 34.5 43.3 — 117 11.67 8.02 0.2 —
Penttinen-Koivo 1.1 1.2 5.9 2.19 5.20 0.23 0.03 0.01

Combined 0.9 1.6 5.4 7.5 3.67 — 0.01 0
Fauzi 8.1 0.8 ∗ ∗ 7.40 3.71 ∗ ∗

Operating pressure, 𝑃
2

Davison 30.3 34.4 — 139.6 10 10 — 0.5
Penttinen-Koivo 0.7 1.3 1 1.8 — — 1.45 0.15

Combined 1 1.9 2 3.1 — — 0.05 0.05
Fauzi 2.5 2.4 ∗ ∗ 15 ∗ ∗ ∗

∗Unstable.
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Figure 27: Process interactions during operating pressure set point
change.

all eigenvalues are located at the left-half plane of the s-plane.
This indicates that the closed loop system is generally stable.
A real pole in the left-half plane defines an exponentially
decaying component in the homogenous response. The rate
of the decay is determined by the eigenvalue location. Eigen-
values far from the origin in the left-half plane correspond
to the components that decay rapidly, while eigenvalues
near the origin correspond to slowly decaying components.
Referring to Table 5, the rise and settling time of the response
based on Penttinen-Koivo method are the most faster. It is
proportional to the poles location indicated in Figure 30.

8. Conclusion

DesigningMPID control tuning based on original and singu-
larly perturbed system for multiinput multioutput (MIMO)
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Figure 28: Product flow rate responses during operating pressure
set point change.

processes is presented. Simulation results lead to the infer-
ence that, with the appropriate parameter tuning, a satis-
factory singularly perturbed MPID control performance can
be accomplished to control a nonlinear model of wastewater
treatment plant. Ill-defined system like wastewater treatment
plant which usually faces difficulties in control system, due to
the natural behavior of two-time scale characteristic, can be
efficaciously controlled by the implementation of singularly
perturbed system into the MPID controller designs. Among
the four methods, the Combined method yields somewhat
better results with respect to decoupling capabilities, closed
loop performances, and process inteaction.

For the second case study, Davison, Penttinen-Koivo, and
Combined method were successfully applied to the nonlin-
ear model of Newell and Lee evaporator. The well-tuned
parameters of the controller designs were obtained using PSO
approach. Simulation results show that the implementation
of singularly perturbed system to the dynamic matrix inverse
of Davison, Penttinen-Koivo, and Combined method has
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Figure 29: Cooling water flow rate responses during operating
pressure set point change.
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Figure 30: Closed loop pole-zero plot of Newell and Lee evaporator.

consistently provided a good performance. Among these
three methods, Combined method provides the best control
performance. Penttinen-Koivo method offers just a slightly
poor control performance than the Combined method.
Nevertheless, Maciejowski method is unable to be applied to
Newell and Lee evaporator system as the open loop system
is unstable which causes the information required by the
controller design cannot be retrieved. It is observed that the
proposed controller by [46] has weak performance for both
separator level and operating pressure output control with
high interaction.

Based on the system case studies, we can conclude that
the control strategies proposed in these systems are capable
of attaining the desired control performance and practically

realizable where it is relevant to two-time scale system with
a stable open loop system. The attained output responses
consist of less percentage overshoot, fast settling time, and
low steady state error, and the process interaction between
the variables of the system is also reduced.
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multivariable PI andPID controllers using differential evolution
combined with chaotic Zaslavskii map,” Expert Systems with
Applications, vol. 38, no. 11, pp. 13694–13701, 2011.

[2] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis,
design, and technology,” IEEE Transactions on Control Systems
Technology, vol. 13, no. 4, pp. 559–576, 2005.

[3] W. K. Ho, T. H. Lee, and O. P. Gan, “Tuning of multiloop
proportional-integral-derivative controllers based on gain and
phase margin specifications,” Industrial and Engineering Chem-
istry Research, vol. 36, no. 6, pp. 2231–2238, 1997.

[4] V.V. Kumar, V. S. R. Rao, andM.Chidambaram, “Centralized PI
controllers for interacting multivariable processes by synthesis
method,” ISA Transactions, vol. 51, no. 3, pp. 400–409, 2012.

[5] K. L. N. Sarma and M. Chidambaram, “Centralized PI/PID
controllers for nonsquare systems with RHP zeros,” Indian
Institute of Science, vol. 85, no. 4, pp. 201–214, 2005.

[6] A. Montazar, P. J. Van Overloop, and R. Brouwer, “Central-
ized controller for the Narmada main canal,” Irrigation and
Drainage, vol. 54, no. 1, pp. 79–89, 2005.

[7] F. Morilla, F. Vázquez, and J. Garrido, “Centralized PID control
by decoupling for TITO processes,” in Proceedings of the
13th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA ’08), pp. 1318–1325, Hamburg,
Germany, September 2008.

[8] J. Garrido, F. Morilla, and F. Vázquez, “Centralized PID control
by decoupling of a boiler-turbine unit,” in Proceedings of
the European Control Conference, pp. 4007–4012, Budapest,
Hungary, August 2009.

[9] M. Willjuice Iruthayarajan and S. Baskar, “Covariance matrix
adaptation evolution strategy based design of centralized PID
controller,” Expert Systems with Applications, vol. 37, no. 8, pp.
5775–5781, 2010.

[10] Y. Lee, S. Park, and M. Lee, “PID controller tuning to obtain
desired closed loop responses for cascade control systems,”
Industrial and Engineering Chemistry Research, vol. 37, no. 5, pp.
1859–1865, 1998.

[11] H. K. Khalil, “Universal integral controllers for minimum-
phase nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 45, no. 3, pp. 490–494, 2000.



Mathematical Problems in Engineering 21

[12] N. A. Mahmoud and H. K. Khalil, “Asymptotic regulation of
minimum phase nonlinear systems using output feedback,”
IEEE Transactions on Automatic Control, vol. 41, no. 10, pp.
1402–1412, 1996.

[13] V. D. Yurkevich, “PI and PID controller design for nonlinear
systems in the presence of a time delay via singular perturbation
technique,” in Proceedings of the 9th International Conference
on Actual Problems of Electronic Instrument Engineering (APEIE
’08), pp. 168–174, IEEE, Novosibirsk, Russia, September 2008.

[14] P. Martin and R. Katebi, “Multivariable PID tuning of dynamic
ship positioning control systems,” Journal ofMarine Engineering
and Technology, vol. 4, no. 2, pp. 11–24, 2005.

[15] N. A. Wahab, M. R. Katebi, and J. Balderud, “Multivariable PID
control design for wastewater systems,” in Proceedings of the
Mediterranean Conference on Control and Automation, pp. 1–6,
Athens, Greece, July 2007.

[16] P. Balaguer, N. A. Wahab, M. R. Katebi, and R. Vilanova, “Mul-
tivariable PID control tuning: a controller validation approach,”
in Proceedings of the 13th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA ’08), pp.
289–294, Hamburg, Germany, September 2008.

[17] T.-H. S. Li and K.-J. Lin, “Composite fuzzy control of nonlinear
singularly perturbed systems,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 2, pp. 176–187, 2007.

[18] P. V. Kokotovic, R. E. O’Mallley Jr., and P. Sannuti, “Singular per-
turbations andorder reduction in control theory—anoverview,”
Automatica, vol. 12, no. 2, pp. 123–132, 1976.

[19] A. K. Packard and S. M. Shahruz, “Estimates of the singu-
lar perturbation parameter for stability, controllability, and
observability of linear systems,” in Proceedings of the 31st IEEE
Conference on Decision and Control, vol. 4, pp. 3062–3063,
Tucson, Ariz, USA, December 1992.

[20] S. Paper, “Singular perturbations and time-scale methods in
control theory: survey 1976–1983,”Automatica, vol. 20, no. 3, pp.
273–293, 1984.

[21] H. Yu, X. Zhang, G. Lu, and Y. Zheng, “On the model-based
networked control for singularly perturbed systems with non-
linear uncertainties,” in Proceedings of the IEEE Conference on
Decision and Control, pp. 684–689, Shanghai, China, December
2009.

[22] R. G. Phillips, “A two-stage design of linear feedback controls,”
IEEETransactions onAutomatic Control, vol. 25, no. 6, pp. 1220–
1223, 1980.

[23] K.-I. Kang, K.-S. Park, and J.-T. Lim, “Exponential stability of
singularly perturbed systemswith timedelay anduncertainties,”
International Journal of Systems Science, vol. 46, no. 1, pp. 170–
178, 2015.

[24] H. K. K. Rabah and W. Aldhaheri, “A real Schur form method
for modeling singularly perturbed systems,” in Proceedings of
the American Control Conference, pp. 1719–1721, Atlanta, Ga,
USA, June 1988.

[25] D. S. Naidu, Singular Perturbation Methodology in Control
Systems, vol. 34, Peter Peregrinus, London, UK, 1988.

[26] L. Li and F. Sun, “Stable fuzzy adaptive controller design
for nonlinear singularly perturbed systems,” in Proceedings
of the IMACS Multiconference on Computational Engineering
in Systems Applications, pp. 1388–1394, IEEE, Beijing, China,
October 2006.

[27] A. Saberi and H. Khalil, “Stabilization and regulation of non-
linear singularly perturbed systems—composite control,” IEEE
Transactions on Automatic Control, vol. 30, no. 8, pp. 739–747,
1985.

[28] J.-S. Chiou, “Design of controllers and observer-based con-
trollers for time-delay singularly perturbed systems via com-
posite control,” Journal of Applied Mathematics, vol. 2013,
Article ID 813598, 9 pages, 2013.

[29] H. Bouzaouache and N. B. Braiek, “On guaranteed global
exponential stability of polynomial singularly perturbed control
systems,” in Proceedings of the IMACS Multiconference on
Computational Engineering in System Applications, vol. 1, pp.
299–305, Beijing, China, October 2006.

[30] Y. J. Kim, B. S. Kim, and M. T. Lim, “Finite-time composite
control for a class of singularly perturbed nonlinear systems via
successiveGalerkin approximation,” IEEEProceedings—Control
Theory and Applications, vol. 152, no. 5, pp. 507–512, 2005.

[31] Z. Retchkiman andG. Silva, “Stability analysis of singularly per-
turbed systems via vector Lyapunov methods,” in Proceedings
of the 35th IEEE Conference on Decision and Control, vol. 1, pp.
580–585, Kobe, Japan, December 1996.

[32] S. I. Samsudin, M. F. Rahmat, N. A. Wahab, Zulfatman,
S. N. S. Mirin, and M. C. Razali, “Two-time scales matrix
decomposition for wastewater treatment plant,” in Proceedings
of the IEEE 8th International Colloquium on Signal Processing
and Its Applications (CSPA ’12), pp. 347–351, Melaka, Malaysia,
March 2012.

[33] M.-N. Contou-Carrere and P. Daoutidis, “Dynamic precom-
pensation and output feedback control of integrated process
networks,” in Proceedings of the 2004 American Control Confer-
ence (AAC ’04), pp. 2909–2914, IEEE, Boston, Mass, USA, June-
July 2004.

[34] N. Vora and P. Daoutidis, “Nonlinear model reduction of
chemical reaction systems,” in Proceedings of the American
Control Conference, vol. 3, pp. 1583–1587, San Diego, Calif, USA,
June 1999.

[35] H. K. Khalil, “Output feedback control of linear two-time-scale
systems,” IEEE Transactions on Automatic Control, vol. 32, no.
9, pp. 784–792, 1987.

[36] K. W. Chang, “Diagonalization method for a vector boundary
problem of singular perturbation type,” Journal ofMathematical
Analysis and Applications, vol. 48, no. 3, pp. 652–665, 1974.

[37] J. Niu, J. Zhao, Z. Xu, and J. Qian, “A two-time scale decen-
tralized model predictive controller based on input and output
model,” Journal of Automated Methods and Management in
Chemistry, vol. 2009, Article ID 164568, 11 pages, 2009.

[38] K. Zhang and X. An, “Design of multivariable self-tuning
PID controllers via quasi-diagonal recurrent wavelet neural
network,” in Proceedings of the 2nd International Conference on
Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp.
95–99, Nanjing, China, August 2010.

[39] M. C. Razali, N. A. Wahab, and S. I. Samsudin, “Multivariable
PID using singularly perturbed system,” Jurnal Teknologi, vol.
67, no. 5, pp. 63–69, 2014.

[40] I. C. Trelea, “The particle swarm optimization algorithm:
convergence analysis and parameter selection,” Information
Processing Letters, vol. 85, no. 6, pp. 317–325, 2003.

[41] X. Li, F. Yu, and Y. Wang, “PSO algorithm based online self-
tuning of PID controller,” in Proceedings of the International
Conference on Computational Intelligence and Security, pp. 128–
132, Harbin, China, December 2007.

[42] M. I. Solihin, M. A. S. Kamal, and A. Legowo, “Optimal
PID controller tuning of automatic gantry crane using PSO
algorithm,” in Proceedings of the 5th International Symposium on
Mechatronics and its Applications (ISMA ’08), pp. 1–5, Amman,
Jordan, May 2008.



22 Mathematical Problems in Engineering

[43] W. U. Dongsheng, Y. Qing, and W. Dazhi, “A novel PSO-PID
controller application to bar rolling process,” in Proceedings of
the 30th Chinese Control Conference (CCC ’11), pp. 2036–2039,
Yantai, China, July 2011.

[44] F. Nejjari, B. Dahhou, A. Benhammou, and G. Roux, “Non-
linear multivariable adaptive control of an activated sludge
wastewater treatment process,” International Journal of Adaptive
Control and Signal Processing, vol. 13, no. 5, pp. 347–365, 1999.

[45] D.-S. Joo and H. Park, “Control of the dissolved oxygen
concentration in the activated sludge process,” Environmental
Engineering Research, vol. 3, no. 2, pp. 115–121, 1998.

[46] M. F. B. N. Shah, Multi-objective optimization of MIMO con-
trol system using surrogate modeling [M.S. thesis], Universiti
Teknologi Malaysia, 2012.

[47] M. Tajjudin, R. Adnan, N. Ishak, M. H. F. Rahiman, and H.
Ismail, “Model reference input for an optimal PID tuning using
PSO,” in Proceedings of the IEEE International Conference on
Control System, Computing and Engineering (ICCSCE ’11), pp.
162–167, IEEE, Penang, Malaysia, November 2011.



Research Article
Feature Selection Tracking Algorithm Based on
Sparse Representation

Hui-dong Lou,1 Wei-guang Li,1 Yue-en Hou,2 Qing-he Yao,3 Guo-qiang Ye,1 and Hao Wan1

1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, China
2School of Computer Science, Jiaying University, Meizhou, Guangdong, China
3School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China

Correspondence should be addressed to Hui-dong Lou; loudong@mail.gdufs.edu.cn

Received 11 September 2015; Accepted 28 September 2015

Academic Editor: Xinguang Zhang

Copyright © 2015 Hui-dong Lou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to enhance the robustness of visual tracking algorithm in complex environment, a novel visual tracking algorithm based on
multifeature selection and sparse representation is proposed. In the framework of particles filter, particles with low target similarity
are first filtered out by a fast algorithm; then, based on the principle of sparsely reconstructing the sample label, the features with
high differentiation against the background are involved in the computation so as to reduce the disturbance of occlusions and
noises. Finally, candidate targets are linearly reconstructed via sparse representation and the sparse equation is solved by using
APG method to obtain the state of the target. Four comparative experiments demonstrate that the proposed algorithm in this
paper has effectively improved the robustness of the target tracking algorithm.

1. Introduction

Visual target tracking algorithm, due to its wide application in
fields such as robotics visual control, human-machine inter-
action, intelligent assistance driving, and video surveillance,
has attracted increasing attention from the researchers. How-
ever, in complex environment, due to changes in illumination
and expression of the target object, object occlusion, and
noises disturbance, design of an accurate and real-time visual
tracker remains a challenging problem [1].

In recent years, a kind of appearance modeling technol-
ogy called sparse representation has been widely used for
information compression and pattern recognition. Agarwal
and Roth [2] have achieved good results in object recognition
via sparse representation. Researches [3–5] demonstrate that
high recognition rate has been obtained in face recognition
via sparse representation. Mei and Ling [6, 7] first introduced
sparse representation theory into visual tracking and devel-
oped a sparse representation tracking algorithm based on
particles filter. The algorithm uses the template dictionary
to linearly reconstruct the candidate targets and imposes

sparsity constraints on the reconstruction coefficients. Apart
from the target template, the algorithm uses the trivial
template to construct the template dictionary, showing good
robustness to occlusion; however, it requires a large amount of
calculation because the algorithm adopts the LESSO method
to solve the sparse equation. Bai and Li [8] developed a
structural sparse representation model, which divides the
sample into blocks and uses the Block Orthogonal Matching
Pursuit (BOMP) algorithm to solve the sparse equation. It
effectively improves the calculation speed, but the algorithm
is not robust to illumination change. Hou et al. [9] provided
a tracking algorithm of block sparse representation, in which
each block is given the corresponding weights to improve the
robustness to occlusion, but there may be drift due to large
noises. A target tracking algorithm based on the structural
sparse representation is proposed in [10], which constructs a
vector pool of sparse representation coefficients by blocking
the target sample and identifies the target state through the
similarity information in the vector pool. But this algorithm
fails to effectively use the residual error information; its
robustness needs to be further improved. Based on this,
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Hou et al. [11] developed a target tracking algorithm with
sparse representation based on ranking. The algorithm gives
full consideration to the sparse representation coefficients
and residual error information while locating the target,
which improves the robustness of the tracking algorithm.
In the framework of structural sparse representation, the
sparse coefficients of the candidate targets is classified in
[12] by training the Naive Bayes Classifier, strengthening
the algorithm’s ability to differentiate between the target and
its background. But the algorithm fails to extract the fea-
tures with differentiation; its robustness needs to be further
improved. Wang et al. [13] propose a least soft-threshold
squares tracking algorithm based on sparse representation,
which models the reconstructed residual error terms with
the Gaussian-Laplacian distribution and finds the optimal
solution of the objective equation by using iterative and soft-
threshold methods. Bao et al. [14] impose constraints on
the target template coefficients and the trivial template with
𝐿
1
-norm and 𝐿

2
-norm, respectively. Additionally, it adopts

the Accelerated Proximal Gradient (APG) method to solve
the objective equation with sparsity constraints. As a result,
the accuracy of the tracker and the speed of calculation are
significantly improved. Zhuang et al. [15] propose a multitask
concept that is similar to [14]; the algorithm also uses the
Accelerated Proximal Gradient (APG) method to solve the
objective equation by iteration, but it requires a fair amount
of calculation. In the framework of sparse representation,
Lan et al. [16] propose an objective equation based on
adaptive multifeature selection and solve the equation by
using the Accelerated Proximal Gradient (APG)method.The
multifeature selection method has effectively improved the
robustness of the tracking algorithm, but it requires a large
amount of calculation.

In order to improve the robustness of visual tracking
algorithm, this paper proposes a novel tracking algorithm
based on multifeature fusion and sparse representation.
According to the image intensity, the proposed algorithm
uses the simple algorithm to filter out the candidate targets
largely dissimilar to the target. Then, the discriminative
features, which come frommultifeature, are selected by using
a method of sparsely reconstructing sample label. Finally, it
uses 𝐿

2
-norm to linearly reconstruct the candidate targets

and obtains the state of the target.

2. Overview of the Tracking Algorithm

The theorem of proposed tracking algorithm based on mul-
tifeature fusion and sparse representation in this paper is
shown in Figure 1. Compared with other tracking algorithms,
it has the following contributions:

(1) This paper proposes a fast algorithm that can quickly
filter out the particles with low similarity to the
target template, improving the calculation speed of
the algorithm.

(2) Based on the sample feature constructed from mul-
tifeature, the proposed algorithm uses the method of
sparsely reconstructing positive and negative sample

label to extract sample features, which can help these
extracted features more discriminatively.

(3) The conventional tracking algorithms based on sparse
representation always use 𝐿

1
-norm to impose the

constraints on the linear reconstruction function, but
they require a large amount of calculation, whereas
the proposed algorithm in this paper uses APG
method to solve the sparse function with nonnegative
constraints, greatly improving the calculation speed
of the algorithm.

3. Fast Particle Filter Algorithm

In the framework of particle filtering, most particles bear
little resemblance to the target. So they can be filtered out
through simple algorithm. Based on this idea, a fast algorithm
is proposed to filter out the particles with low similarity to the
target.

Let 𝑍 = [𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
] denote the sample set of the

candidate targets, and 𝑍 ∈ 𝑅𝑚 denote the target template,
where 𝑍

𝑖
∈ 𝑅
𝑚 is one of the candidate target samples, 𝑚 is

the dimension of the sample, and 𝑛 represents the number
of particles. In order to reduce the amount of calculation,
only the gray image information of the sample is involved
in the calculation. By normalizing the candidate target 𝑍

𝑖

and target template 𝑍, we can get 𝑧
𝑖
= 𝑧
𝑖
/(∑
𝑚

𝑗=1
𝑧
𝑖,𝑗
) and

𝑧

= 𝑧/(∑

𝑚

𝑗=1
𝑧
𝑗
), where 𝑧

𝑖,𝑗
is the 𝑗th feature of 𝑧

𝑖
, 𝑧
𝑗
is the

𝑗th feature of 𝑧, and 𝑢
𝑖
is the similarity measure of 𝑧

𝑖
and

𝑧. If 𝑧
𝑖
bears much resemblance to 𝑧, then there will be no

remarkable difference between the values of 𝑢
𝑖
. So we can

filter out the particles according to the fluctuation of values
of 𝑢
𝑖
:

𝑢
𝑖
= 𝑢
𝑖,𝑗
−mean (𝑢

𝑖
) , (1)

where 𝑢
𝑖,𝑗
is the 𝑗th element of 𝑢

𝑖
and mean (𝑢

𝑖
) is the mean

of all elements of 𝑢
𝑖
. The value of 𝑢

𝑖
reflects the fluctuation of

values of 𝑢
𝑖
. If the target is disturbed by occlusions or noises,

the real target can possibly be filtered out when the value
of 𝑢
𝑖
is too small. In order to solve this problem, only the

elements with 50% variance value in 𝑢
𝑖
will be involved in the

calculation. Sort the elements in𝑢
𝑖
in descent order according

to their values and eliminate the elements with values in the
top half; then we can get the vector 𝑢

𝑖
. Suppose 𝑦

𝑖
= ∑
𝑚/2

𝑗=1
𝑢
𝑖,𝑗
,

where 𝑢
𝑖,𝑗
is the 𝑗th element of 𝑢

𝑖
; then we can filter out the

particles according to the value of 𝑦
𝑖
. Through experiment,

we select the 𝑦
𝑖
with smaller value (𝑛

0
= 𝑛/3) from all the

particles to participate in the later operation. Through the
algorithm, we can quickly eliminate two-thirds of particles
with low similarity to the object, which effectively improves
the calculation speed of the tracking algorithm.

4. Feature Selection

In order to improve the robustness of the tracking algorithm,
we use the image intensity and LBP feature 𝑠

𝐿
∈ 𝑅
𝑚
2 to

construct the sample features. Denote the gray features of
the sample by 𝑠

𝐺
∈ 𝑅
𝑚
1 and the LBP feature of the sample
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Figure 1: Proposed tracking algorithm.

by 𝑠
𝐿
∈ 𝑅
𝑚
2 . When 𝑠

𝐺
and 𝑠

𝐿
are combined, we can get

𝑠 = [𝑠
𝐺
, 𝑠
𝐿
]
𝑇, where 𝑠 ∈ 𝑅𝑘 represents the sample feature,

𝑘 = 𝑚
1
+ 𝑚
2
. Because the dimension of 𝑠 is high, it contains

a fair amount of redundant information. In order that the
algorithm can differentiate between target and background
better, we need to select the discriminative features from 𝑠.

During the tracking process, according to the target
sample in the first frame and the tracking result, we can get
the positive and negative sample set of the target 𝑇 = [𝑡

𝑝
, 𝑡
𝑛
],

where the positive sample of the target is 𝑇
𝑝
∈ 𝑅
𝑘×𝑝 and the

negative sample is 𝑇
𝑛
∈ 𝑅
𝑘×𝑞, where 𝑝 represents the number

of the positive samples and 𝑞 indicates the number of negative
samples. Use the sparse reconstruction theory to select the
sample features; then we can get

min
𝐴

(
1

2


𝑇
𝑇
𝐴 − 𝑙



2

2
+ 𝜆 ‖𝐴‖2) , (2)

where ‖ ⋅ ‖ is the norm operator and 𝑙 represents the label
vectors of the positive and negative samples. The positive
and negative samples are set to 1 and −1, respectively. 𝜆 is
the sparse adjustment coefficient and 𝐴 ∈ 𝑅𝑘 represents the
reconstruction vectors, 𝐴 = [𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑘
]. It should be

noted that, in (2), we use the 2-norm to impose constraints on
the sparsity of 𝐴. The benefit is that it can effectively reduce
the amount of calculation in solving the sparse function. Set
threshold as 𝜏, and when 𝐴

𝑖
> 𝜏, the corresponding feature

has a strong ability to differentiate between the target and its
background.

Construct the mapped vector of feature selection 𝑀 =

[𝑀
1
,𝑀
2
, . . . ,𝑀

𝑘
]
𝑇,𝑀 ∈ 𝑅𝑘. Consider

𝑀
𝑖
= 0, 𝐴𝑖 ≤ 𝜏,

𝑀
𝑖
= 1, 𝐴𝑖 > 𝜏.

(3)

Here, 𝑠 is the feature vector before the feature selection.
After the feature selection, the feature vector 𝑠 is defined as

𝑠 = 𝑠 ⊗𝑀, (4)

where ⊗ denotes the multiplication of the corresponding
elements within the vector.

5. Solution to the Sparse Equation with
APG Approach

After feature selection, we get the feature vector set of the
candidate targets 𝑆 = [𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
0

], 𝑠 ∈ 𝑅𝑘0 , and 𝑘
0
denotes

the dimension of each sample after feature selection. Let𝐷 =
[𝐷
0
, 𝐼, −𝐼] denote the template dictionary, where 𝐷

0
is the

target sample set, 𝐷
0
∈ 𝑅
𝑘
0
×𝑓, and 𝐼 ∈ 𝑅𝑘0×𝑘0 represents

the unit diagonal matrix used to reduce the disturbance of
occlusions and noises.

Using template dictionary𝐷 to make sparse linear recon-
struction for the candidate targets, we can get

argmin
𝐶

1

2
‖𝑠 − 𝐷𝐶‖

2

2
+ 𝜆 ‖𝐶‖1

s.t. 𝐶
𝑇
≥ 0,

(5)

where 𝐶 = [𝐶
𝑇
, 𝐶
𝐼
]
𝑇 represents the sparse coefficients, 𝐶

𝑇
is

the sparse coefficients corresponding to the target template,
and 𝐶

𝐼
is the sparse coefficients corresponding to 𝐼 and −𝐼.

Impose the nonnegative constraints on the elements in 𝐶
𝑇
to

improve the robustness of the tracker [7].
After adding a penalty term, (5) with nonnegative con-

straints can be updated by

argmin
𝐶

1

2
‖𝑠 − 𝐷𝐶‖

2

2
+ 𝜆 ‖𝐶‖1 + 𝐽 (𝐶𝑇) , (6)
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where 𝐽(⋅) is the penalty term defined by

𝐽 (𝑎) = 1, 𝑎 ≥ 0;

𝐽 (𝑎) = +∞, 𝑎 < 0.

(7)

The solution to (6) is equivalent to optimizing the convex
function. This paper uses the Accelerated Proximal Gradient
(APG) approach to find the optimal solution to (6). Set

𝐹 (𝐶) =
1

2
‖𝑠 − 𝐷𝐶‖

2

2
+ 𝜆 ‖𝐶‖1 ,

𝐺 (𝐶) = 𝐽 (𝐶
𝑇
) ,

(8)

where 𝐹(𝐶) is a differentiable convex function and 𝐺(𝐶) is
a discontinuous convex function. The specific algorithm is
shown in Algorithm 1.

Algorithm 1. Minimization algorithm for (6) by using APG
method is as follows:

(1) Initialize, 𝛼
0
= 𝛼
−1
= 0, 𝑡
0
= 𝑡
−1
= 1

(2) For 𝑖 = 1 : 4

(3) 𝛽
𝑖+1
= 𝛼
𝑖
+ ((𝑡
𝑖−1
− 1)/𝑡

𝑖
)(𝛼
𝑖
− 𝛼
𝑖−1
);

(4) 𝛼
𝑖+1
= argmin

𝐶
(𝛾/2)‖𝐶−𝛽

𝑖+1
+∇𝐹(𝛽

𝑖+1
)/𝛾‖
2

2
+𝐺(𝐶);

(5) 𝑡
𝑖+1
= (1 + √1 + 4𝑡

2

𝑖
)/2;

(6) end for

In Algorithm 1, step (4) needs to find the minimum value
of the function, so it can be updated by

argmin
𝐶

𝛾

2

𝐶 − ℎ𝑖+1


2

2
+ 𝐽 (𝐶

𝑇
) , (9)

where ℎ
𝑖+1
= 𝛽
𝑖+1
− ∇𝐹(𝛽

𝑖+1
)/𝛾. Equation (9) can be seen as

to solve the minimum values of the two functions as follow:

argmin
𝐶
𝑇

𝛾

2


𝐶
𝑇
− ℎ
𝑇

𝑖+1



2

2
+ 𝐽 (𝐶

𝑇
) , (10)

argmin
𝐶
𝐼

𝛾

2


𝐶
𝐼
− ℎ
𝐼

𝑖+1



2

2
, (11)

where ℎ𝑇
𝑖+1

and ℎ𝐼
𝑖+1

are the elements corresponding to 𝑇 and
[𝐼, −𝐼] in ℎ

𝑖+1
. It can be seen that the optimal solution to (10)

is 𝐶
𝑇
= max(0, ℎ𝑇

𝑖+1
) and the optimal solution to (11) is 𝐶

𝐼
=

ℎ
𝐼

𝑖+1
.

6. Object Tracking

The proposed algorithm in this paper is implemented in the
framework of particles filter. In the first frame of the video,
the initial state of the target is picked by mouse or captured
through target recognition. Let {𝑜

1
, 𝑜
2
, . . . , 𝑜

𝑡
} denote the

observation values from the first frame to the 𝑡th frame of

the video. 𝑥𝑖
𝑡
is the state of the 𝑖th particle in the 𝑡th frame.

The target state in 𝑡th frame is

𝑥
𝑡
= argmax
𝑥
𝑖

𝑡

(𝑝 (𝑥
𝑖

𝑡
| 𝑜
1:𝑡
)) . (12)

Here, 𝑝(𝑥𝑖
𝑡
| 𝑜
1:𝑡
) can be obtained by solving the following

equations:

𝑝 (𝑥
𝑡
| 𝑜
1:𝑡−1
) = ∫𝑝 (𝑥

𝑡
| 𝑥
𝑡−1
) 𝑝 (𝑥

𝑡−1
| 𝑜
1:𝑡−1
) 𝑑𝑥
𝑡−1
, (13)

𝑝 (𝑥
𝑡
| 𝑜
1:𝑡
) =
𝑝 (𝑜
𝑡
| 𝑥
𝑡
) 𝑝 (𝑥

𝑡
| 𝑜
1:𝑡−1
)

𝑝 (𝑜
𝑡
| 𝑜
1:𝑡−1
)

. (14)

In (13), 𝑝(𝑥
𝑡
| 𝑥
𝑡−1
) is the state transfer function. The

state of the sample is defined by six-dimensional affine vector
[𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
, 𝜏
5
, 𝜏
6
], which represents the 𝑥 coordinate, 𝑦

coordinate, length-width ratio, rotation angle, torsion angle,
and scale, respectively. Suppose that the six parameters are
mutually independent; then the state transfer function 𝑝(𝑥

𝑡
|

𝑥
𝑡−1
) can be represented as

𝑝 (𝑥
𝑡
| 𝑥
𝑡−1
) = 𝑁 (𝑥

𝑡
| 𝑥
𝑡−1
, Σ) , (15)

where Σ is the diagonal matrix constituted by [𝜏
1
, 𝜏
2
, 𝜏
3
,

𝜏
4
, 𝜏
5
, 𝜏
6
].

The relation between the similarity measure 𝑝(𝑜
𝑡
| 𝑥
𝑡
) in

(14) and the residual error 𝑒 based on sparse representation
can be represented as

𝑝 (𝑜
𝑡
| 𝑥
𝑡
) ∝
1

𝑒
. (16)

The proposed algorithm is shown in Algorithm 2.

Algorithm 2. The proposed algorithm in this paper is as
follows.

Input. Video, the target state in the first frame

(1) Obtain the target dictionary of the initial target and
positive and negative samples

(2) for 𝑖= 1 :𝑓 (𝑓 is the number of the frames of the video)
(3) Update particles with normal distribution
(4) Extract the intensity of the particles 𝑠

𝐺
and filter out

particles
(5) Extract LBP feature of the sample 𝑠

𝐿
and get 𝑠

(6) Use sparse reconstruction theory to select the sample
features, and then get the feature vector 𝑠

(7) Construct a sparse equation and solve it with APG
method

(8) if 𝑓 can be divided by 5
(9) Update the feature vector 𝑠, update template dictio-

nary, and update the positive and negative samples
(10) end if
(11) end for

Ouput. The state of target in each frame.
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Figure 2: Tracking results on sequence “Panda.”

7. Experiments and Discussion

The proposed algorithm in this paper is implemented in
Matlab 2009b. In order to make the tracking results of the
proposed algorithmmore convincing, the experiment selects
other three representative tracking algorithms for compar-
ison, including 𝐿

1
tracking algorithm [7], IVT tracking

algorithm [17], and ASLSAM tracking algorithm. The four
algorithmswill be tested by four internationally used tracking
test videos including “Panda,” “Woman Square,” “Trellis,”
and “ThreePassShop2cor”. It is a challenging task to track
these targets because all the videos pose challenging factors
such as partial occlusion and variations in illumination, pose,
and scale.

The first test video is Panda with a cartoon panda as the
tracked target. For this video, the difficulty in tracking the
target lies in the partial occlusion and the target rotation.
Figure 2 shows the test results of the four algorithms in
the 4th, 55th, 108th, 176th, 201th, and 241th frame. The test
results of the proposed algorithm, ASLSAM algorithm, 𝐿

1

algorithm, and IVT algorithm are marked by the blue, red,
gray, and purple boxes, respectively. As shown in Figure 2, our
proposed algorithm can handle the target very well before the
201th frame but drift from the target in the 201th and 241th
frame due to the occlusion. However, it has never missed
the target throughout the tracking process. While the other
three algorithmsmiss the target when there are occlusion and
target rotation.

The second test video is Trellis with the face as the target.
There is a great difficulty in tracking the target because of
the drastic illumination and variation in pose in the video.
As shown in Figure 3, our proposed algorithm can track
the target faithfully throughout the tracking process without

being affected by the pose and illumination change. But 𝐿
1

algorithm and IVT algorithm miss the target in the 276th
frame and ASLSAM algorithm misses the target in the 532th
frame.

The third test video is Woman Square with a pedestrian
as the target. The main challenge of tracking the target
comes from the partial occlusion. As shown in Figure 4, only
our proposed algorithm has successfully tracked the target
without being affected by the partial occlusion while all the
other three algorithms miss the target in the 143th frame as a
result of the partial occlusion.

The fourth test video isThreePassShop2Cor.Thedifficulty
of tracking the target lies in the occlusion, the disturbance
of the similar object, and scale variation. The tracking results
of the four algorithms are shown in Figure 5. Because of the
disturbance of occlusion and similar objects, our proposed
tracker drifts from the target in the 125th frame but relocates
the target later. While the ASLSAM and IVT algorithms
locate the similar object instead of the tracked target in the
125th frame and the 𝐿

1
algorithm misses the target in the

303th frame.
In order to compare the tracking results better, Table 1

lists the maximum, mean, and standard variance values of
the tracking error of the four algorithms in four image
sequences.The tracking error refers to the Euclidean distance
between the center point of the target derived from the
tracking algorithm and the center point of the actual target.
It can be seen that the tracking results on all the four videos
demonstrate that our proposed algorithm achieves more
favorable performance than the other three.

Apart from handling the tracking error, in order to reflect
the relation between the tracking results and the actual
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Table 1: Maximum, mean, and standard variance values of the tracking error.

Video Proposed algorithm ASL algorithm 𝐿
1
algorithm IVT algorithm

Max Mean STD Max Mean STD Max Mean STD Max Mean STD
TPS 24.2 3.9 4.6 115.3 65.6 38.0 40.9 18.2 14.1 114.9 65.8 38.4
WS 12.6 3.4 2.2 259.8 15.2 90.3 225.3 129.4 75.2 343.8 156.8 98.8
Panda 23.4 8.6 5.1 385.8 136.3 158.9 410.1 129.9 112.2 190.4 68.3 68.8
Trellis 13.6 3.6 2.9 191.2 21.6 45.4 222.1 59.2 54.4 151.6 72.3 51.0
Average 18.5 4.9 3.7 238.0 59.7 83.2 224.6 84.2 64.0 200.2 90.8 64.25

Figure 3: Tracking results on sequence “Trellis.”

appearance of the target, Table 2 lists the success rate of
the four tracking algorithms based on the PASCAL VOC
standard [18]. It can be seen that the success rate of our
proposed algorithm is remarkably higher than that of the
other three.

8. Conclusion

A new sparse representation-based tracking algorithm in
the framework of particles filter is proposed in this paper.
The new method first uses a fast algorithm to filter out
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Figure 4: Tracking results on sequence “Woman Square.”

Table 2: Success rate of tracking algorithms.

Video Proposed
algorithm

ASLSAM
algorithm

𝐿
1

algorithm
IVT

algorithm
TPS 0.99 0.21 0.49 0.24
WS 0.76 0.21 0.21 0.20
Panda 0.85 0.52 0.15 0.42
Trellis 0.94 0.74 0.24 0.26
Average 0.86 0.42 0.27 0.28

the particles largely dissimilar to the tracked target, which
reduces the amount of calculation. Then, with the intensity
feature and LBP feature combined, the algorithm extracts
the features with discriminative ability via 𝐿

2
sparse rep-

resentation, improving its robustness to the occlusion and
disturbance. Furthermore, it adopts the APGmethod to solve

the sparse equation with nonnegative coefficient constraints,
improving the computational speed and robustness of the
proposed algorithm. Finally, the experiments demonstrate
that the proposed tracker achieves more favorable tracking
results.
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Figure 5: Tracking results on sequence “ThreePassShop2Cor.”
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This paper addresses the problem of exponential stabilization of a class of time-varying delay systems with nonlinear perturbations.
These perturbations are related not only with current state 𝑥(𝑡) and the delayed state 𝑥(𝑡 − ℎ(𝑡)) but also with 𝛽(𝑡), where 𝛽(𝑡) is
a continuous function defined on [0, +∞). With the delay interval divided into two equidistant subintervals, a novel Lyapunov
functional is introduced, and several new exponential stabilization criteria are derived in terms of linear matrix inequalities (LMIs)
by employing reciprocally convex approach. Two examples are given to illustrate the effectiveness of the main results.

1. Introduction

Time delay is commonly encountered in various physical and
engineering systems such as aircraft, biological systems, and
networked control systems. Since the existence of time delays
causes poor performance, oscillation, or even instability, it
is very important to investigate stability analysis for systems
with time delays before designing control systems. On the
other hand, the systems almost present some uncertainties
because it is not easy to obtain an exact mathematical model
due to environmental noise, uncertain or slowly varying
parameters, and so forth. Therefore, considerable amounts
of efforts have been done to the stability and stabilization of
time-delay systems and time-delay systems with nonlinear
perturbations; see, for example, [1–25] and the references
cited therein.

Recently, Zhang et al. [12] considered interval time-var-
ying delay systems and obtained some delay-dependent con-
ditions by employing Finsler’s lemma. Combining the de-
scriptor model transformation and the integral inequality
method, Han [3] investigated the robust stability of linear
systems with time-varying delay and nonlinear perturba-
tions and obtained several improved stability conditions. On

the basis of free weighting matrices technique, robust sta-
bilization criteria for neutral systems with nonlinear per-
turbations were reported in [9]. Wang et al. [6] introduced
a new parameter in the Lyapunov functional for the time-
varying delay systems with nonlinear perturbations and
obtained less conservative results, whereas the range of the
time delays considered in the paper was assumed from
zero to an upper bound. Note that the stability investigated
in the above-mentioned papers was primarily focused on
asymptotic stability. Using delay decomposition method and
Finsler’s lemma, Liu et al. [24] studied the exponential
stability of neutral systems with interval time-varying delays
and nonlinear perturbations. So far, there are few articles
concerning the problem of exponential stabilization of time-
varying delay systems with nonlinear perturbations. Thuan
et al. [16] provided a detailed analysis for the problem of
designing state feedback controllers to exponential stabi-
lization of time-delay systems with nonlinear perturbations
by using the integral inequality method and constructing
a Lyapunov functional containing the triple integral terms.
However, there still exists a gap for reducing both the
conservatism and the number of decision variables.
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In this paper, we study the exponential stabilization of
a class of time-delay systems with nonlinear perturbations.
The main contributions of this paper can be summarized as
follows: (i) a novel Lyapunov functional containing the center
point of time-delay interval is constructed; (ii) comparedwith
the systems studied in [3, 8, 16], the nonlinear perturbations
of (1) are related not only with the current state 𝑥(𝑡) and the
delayed state 𝑥(𝑡 − ℎ(𝑡)) but also with 𝛽(𝑡), where 𝛽(𝑡) is a
continuous function satisfying ∫

+∞

0 𝛽
2
(𝑠)𝑒

2𝛼𝑠
𝑑𝑠 < +∞ and 𝛼

is a positive constant; new sufficient conditions are obtained
that ensure the stability of a closed-loop system, which
extend and improve the main results of [16]. Furthermore,
the stabilization conditions are shown to be less conservative
than those reported in Zhang et al. [12] when there are no
nonlinear perturbations in the system. Finally, two numerical
examples are presented to demonstrate the effectiveness and
advantages of the main results.

Notation. Throughout the paper, 𝑅
𝑛 denotes the 𝑛-dimen-

sional Euclidean space with vector norm ‖ ⋅ ‖, and 𝑅
𝑛×𝑚 is

the set of all 𝑛 × 𝑚-dimensional real matrices. 𝐼 denotes the
identity matrix of appropriate dimensions, and the super-
script “𝑇” stands for matrix transposition. The notation 𝑃 >

0 (≥ 0)means that𝑃 is symmetric and positive (semipositive)
definite. 𝜆min(𝐴) and 𝜆max(𝐴) denote the minimum and
maximum eigenvalues of 𝐴, respectively. In addition, in
symmetric block matrices or long matrix expressions, we
use an asterisk (∗) to represent a term that is induced by
symmetry.

2. Problem Description and Preliminaries

Consider the following systemwith a nonlinear perturbation:

�̇� (𝑡) = 𝐴𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡))

+𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) + 𝐵𝑢 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ2, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑢(𝑡) ∈ 𝑅

𝑚 is the
control input vector, 𝐴,𝐷 ∈ 𝑅

𝑛×𝑛, and 𝐵 ∈ 𝑅
𝑛×𝑚, 𝜙(𝑡) ∈

𝐶([−ℎ2, 0], 𝑅
𝑛
) with ‖𝜙‖ = sup

𝑡∈[−ℎ2 ,0]{‖𝜙(𝑡)‖, ‖
̇

𝜙(𝑡)‖}, where
𝐶([−ℎ2, 0], 𝑅

𝑛
) is the Banach space of continuous functions.

The delay ℎ(𝑡) is time-varying and satisfies

0 ≤ ℎ1 ≤ ℎ (𝑡) ≤ ℎ2,
̇

ℎ (𝑡) ≤ 𝜇, (2)

where 𝜇 is a positive constant and ℎ1 and ℎ2 are constants
representing the lower and upper bounds of the delay,
respectively. 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ(𝑡))) is a nonlinear perturbation
satisfying





𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))






≤ 𝑎 ‖𝑥 (𝑡)‖ + 𝑏 ‖𝑥 (𝑡 − ℎ (𝑡))‖ + 𝛽 (𝑡) ,

(3)

where 𝑎 and 𝑏 are positive scalars and 𝛽(𝑡) satisfies
∫

+∞

0 𝛽
2
(𝑠)𝑒

2𝛼𝑠
𝑑𝑠 < +∞.

Remark 1. In [3, 8, 16], the authors assumed that the nonlinear
terms satisfy

𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)) ≤ 𝑎
2
𝑥
𝑇

(𝑡) 𝐹
𝑇

𝐹𝑥 (𝑡) ,

𝑔
𝑇

(𝑡, 𝑥 (𝑡 − ℎ (𝑡))) 𝑔 (𝑡, 𝑥 (𝑡 − ℎ (𝑡)))

≤ 𝑏
2
𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝐺
𝑇

𝐺𝑥 (𝑡 − ℎ (𝑡)) ,

(4)

where 𝐹 and 𝐺 are constant matrices and 𝑎 and 𝑏 are positive
scalars. It is obvious that the assumptions on the nonlinear
terms given in (2) and (3) are more general.

The following definitions and lemmas will be used for
providing the main results in the sequel.

Definition 2. Given a scalar 𝛼 > 0: system (1) with 𝑢(𝑡) = 0
is 𝛼-stable if there exists a positive number 𝛾 > 0 such that
every solution 𝑥(𝑡, 𝜙) of the system satisfies





𝑥 (𝑡, 𝜙)





≤ 𝛾𝑒
−𝛼𝑡

, 𝑡 ≥ 0. (5)

Definition 3. Given a scalar 𝛼 > 0: system (1) is 𝛼-stabilizable
if there exists a state feedback control 𝑢(𝑡) = 𝐾𝑥(𝑡) such that
the closed-loop system

�̇� (𝑡) = (𝐴+𝐵𝐾) 𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡))

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ2, 0]

(6)

is 𝛼-stable.

Lemma 4 (see [25]). For any 𝑥, 𝑦 ∈ 𝑅
𝑛 and a positive

symmetric definite matrix 𝑁 ∈ 𝑅
𝑛×𝑛,

± 2𝑦𝑇𝑥 ≤ 𝑥
𝑇

𝑁
−1

𝑥+𝑦
𝑇

𝑁𝑦. (7)

Lemma 5 (lower bound lemma for reciprocal convexity; see
[20]). Let 𝑓1, 𝑓2, . . . , 𝑓𝑁 : 𝑅

𝑚
→ 𝑅 have positive values in an

open subset𝐷 of𝑅𝑚.Then, the reciprocally convex combination
of 𝑓
𝑖
over 𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝑖 𝛼𝑖=1}

∑

𝑖

1
𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸=𝑗

𝑔
𝑖,𝑗

(𝑡) (8)

subject to

{𝑔
𝑖,𝑗

: 𝑅
𝑚

→𝑅, 𝑔
𝑗,𝑖

(𝑡) ≜ 𝑔
𝑖,𝑗

(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑗
(𝑡)

]

≥ 0} .

(9)
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3. Main Results

We use the following notation for the convenience:

ℎ =

ℎ1 + ℎ2
2

,

𝛿 =

ℎ2 − ℎ1
2

,

𝜆 = 𝜆min (𝑃
−1

) ,

Γ = 𝜆max (𝑃
−1

) + ℎ1𝜆max (𝑃
−1

𝑄1𝑃
−1

) + (ℎ2 − ℎ1) 𝜆max (𝑃
−1

𝑄2𝑃
−1

) + (ℎ2 − ℎ1) 𝜆max [

𝑃
−1

𝑅11𝑃
−1

𝑃
−1

𝑅12𝑃
−1

∗ 𝑃
−1

𝑅22𝑃
−1]

+

(3ℎ1 + ℎ2) (ℎ2 − ℎ1)
2

16
𝜆max (𝑃

−1
𝑆1𝑃
−1

) +

(ℎ1 + 3ℎ2) (ℎ2 − ℎ1)
2

16
𝜆max (𝑃

−1
𝑆2𝑃
−1

) +

ℎ
3
1
2

𝜆max (𝑃
−1

𝑆3𝑃
−1

) ,

Λ = Γ




𝜙





2

+ 6∫

+∞

0
𝛽
2
(𝑠) 𝑒

2𝛼𝑠
𝑑𝑠,

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥
𝑇
(𝑡 − ℎ1) 𝑥

𝑇
(𝑡 − ℎ) 𝑥

𝑇
(𝑡 − ℎ2) �̇�

𝑇

(𝑡)] .

(10)

The following theorem presents an exponential stabiliza-
tion condition for (1).

Theorem 6. Let 𝛼 > 0 and assume that conditions (2) and (3)
are satisfied. If there exist matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0,
𝑆
𝑖
> 0 (𝑖 = 1, 2, 3), [ 𝑅11 𝑅12

∗ 𝑅22
] > 0, 𝑀1, 𝑀2, and 𝑌 such that the

following LMIs hold

Σ1

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ11 𝐷𝑃 Σ13 0 0 𝑃𝐴
𝑇
+ 𝑌
𝑇
𝐵
𝑇

𝑎
2
𝑃 0

∗ Σ22 Σ23 Σ24 0 𝑃𝐷
𝑇 0 𝑏

2
𝑃

∗ ∗ Σ33 Σ34 0 0 0 0
∗ ∗ ∗ Σ44 Σ45 0 0 0
∗ ∗ ∗ ∗ Σ55 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ −

1
6
𝑎
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ 0 −

1
6
𝑏
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(11)

Σ2

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ11 𝐷𝑃 Σ13 0 0 𝑃𝐴
𝑇
+ 𝑌
𝑇
𝐵
𝑇

𝑎
2
𝑃 0

∗ Σ22 0 Σ24 Σ25 𝑃𝐷
𝑇 0 𝑏

2
𝑃

∗ ∗ Σ33 Σ34 0 0 0 0

∗ ∗ ∗ Σ44 Σ45 0 0 0
∗ ∗ ∗ ∗ Σ55 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ −

1
6
𝑎
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ 0 −

1
6
𝑏
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(12)

[

𝑆
𝑖

𝑀
𝑖

∗ 𝑆
𝑖

] ≥ 0 (𝑖 = 1, 2) , (13)

where

Σ11 = 𝐴𝑃+𝑃𝐴
𝑇

+𝐵𝑌+𝑌
𝑇

𝐵
𝑇

+ 2𝛼𝑃+ 𝐼 +𝑄1

− 𝑒
−2𝛼ℎ1

𝑆3,

Σ22 = − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ

𝑀1 + 𝑒
−2𝛼ℎ

𝑀
𝑇

1

− 2𝑒−2𝛼ℎ𝑆1,

Σ33 = 𝑒
−2𝛼ℎ1

𝑄2 + 𝑒
−2𝛼ℎ1

𝑅11 − 𝑒
−2𝛼ℎ1

𝑄1 − 𝑒
−2𝛼ℎ

𝑆1

− 𝑒
−2𝛼ℎ1

𝑆3,

Σ44 = 𝑒
−2𝛼ℎ1

𝑅22 − 𝑒
−2𝛼ℎ

𝑅11 − 𝑒
−2𝛼ℎ

𝑆1 − 𝑒
−2𝛼ℎ2

𝑆2,

Σ55 = − 𝑒
−2𝛼ℎ

𝑅22 − 𝑒
−2𝛼ℎ2

𝑆2,

Σ66 = ℎ
2
1𝑆3 + 𝛿

2
𝑆2 + 𝛿

2
𝑆1 + 𝐼 − 2𝑃,

Σ13 = 𝑒
−2𝛼ℎ1

𝑆3,

Σ23 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀1) ,

Σ24 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀
𝑇

1 ) ,

Σ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑀
𝑇

1 ,

Σ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑆2,

Σ22 = − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ2

𝑀2 + 𝑒
−2𝛼ℎ2

𝑀
𝑇

2

− 2𝑒−2𝛼ℎ2𝑆2,
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Σ24 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀2) ,

Σ25 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀
𝑇

2 ) ,

Σ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑆1,

Σ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑀
𝑇

2 ,

(14)

then system (1) is robustly 𝛼-stabilizable, the state feedback
control 𝑢(𝑡) = 𝑌𝑃

−1
𝑥(𝑡), and the solution 𝑥(𝑡, 𝜙) of the closed-

loop system satisfies





𝑥 (𝑡, 𝜙)





≤ √

Λ

𝜆

𝑒
−𝛼𝑡

, 𝑡 ≥ 0. (15)

Proof. Let us denote

𝑄
𝑖
= 𝑃
−1

𝑄
𝑖
𝑃
−1

,

𝑀
𝑖
= 𝑃
−1

𝑀
𝑖
𝑃
−1

, 𝑖 = 1, 2;

𝑆
𝑖
= 𝑃
−1

𝑆
𝑖
𝑃
−1

, 𝑖 = 1, 2, 3;

𝑅11 = 𝑃
−1

𝑅11𝑃
−1

,

𝑅12 = 𝑃
−1

𝑅12𝑃
−1

,

𝑅22 = 𝑃
−1

𝑅22𝑃
−1

.

(16)

Define a Lyapunov functional by

𝑉 (𝑥
𝑡
) = 𝑉1 (𝑥

𝑡
) +𝑉2 (𝑥

𝑡
) +𝑉3 (𝑥

𝑡
) , (17)

where

𝑉1 (𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃
−1

𝑥 (𝑡) ,

𝑉2 (𝑥
𝑡
) = ∫

𝑡

𝑡−ℎ1

𝑒
2𝛼(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑒
2𝛼(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−ℎ1

𝑡−ℎ

𝑒
2𝛼(𝑠−𝑡)

[

𝑥 (𝑠)

𝑥 (𝑠 − 𝛿)

]

𝑇

⋅ [

𝑅11 𝑅12

∗ 𝑅22
][

𝑥 (𝑠)

𝑥 (𝑠 − 𝛿)

] 𝑑𝑠,

𝑉3 (𝑥
𝑡
) = 𝛿∫

−ℎ1

−ℎ

∫

𝑡

𝑡+𝑠

𝑒
2𝛼(𝜏−𝑡)

�̇�
𝑇

(𝜏) 𝑆1�̇� (𝜏) 𝑑𝜏 𝑑𝑠

+ 𝛿∫

−ℎ

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒
2𝛼(𝜏−𝑡)

�̇�
𝑇

(𝜏) 𝑆2�̇� (𝜏) 𝑑𝜏 𝑑𝑠

+ ℎ1 ∫

0

−ℎ1

∫

𝑡

𝑡+𝑠

𝑒
2𝛼(𝜏−𝑡)

�̇�
𝑇

(𝜏) 𝑆3�̇� (𝜏) 𝑑𝜏 𝑑𝑠.

(18)

Calculating the time derivative of𝑉(𝑥
𝑡
) along the trajectories

of (6), we conclude that

�̇�1 (𝑥
𝑡
)

= 𝑥
𝑇

(𝑡) [𝑃
−1

(𝐴 +𝐵𝐾) + (𝐴+𝐵𝐾)
𝑇

𝑃
−1

] 𝑥 (𝑡)

+ 2𝑥𝑇 (𝑡) 𝑃−1𝐷𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥𝑇 (𝑡) 𝑃−1𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) ,

(19)

�̇�2 (𝑥
𝑡
)

≤ − 2𝛼𝑉2 (𝑥
𝑡
) + 𝑥
𝑇

(𝑡) 𝑄1𝑥 (𝑡)

− (1−𝜇) 𝑒
−2𝛼ℎ2

𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑄2𝑥 (𝑡 − ℎ (𝑡))

+ 𝑒
−2𝛼ℎ1

𝑥
𝑇

(𝑡 − ℎ1) [𝑄2 −𝑄1] 𝑥 (𝑡 − ℎ1)

+ 𝑒
−2𝛼ℎ1

[

𝑥 (𝑡 − ℎ1)

𝑥 (𝑡 − ℎ)

]

𝑇

[

𝑅11 𝑅12

∗ 𝑅22
][

𝑥 (𝑡 − ℎ1)

𝑥 (𝑡 − ℎ)

]

− 𝑒
−2𝛼ℎ

[

𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ2)
]

𝑇

[

𝑅11 𝑅12

∗ 𝑅22
][

𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ2)
] ,

(20)

�̇�3 (𝑥
𝑡
)

≤ − 2𝛼𝑉3 (𝑥
𝑡
) + �̇�
𝑇

(𝑡) (ℎ
2
1𝑆3 + 𝛿

2
𝑆2 + 𝛿

2
𝑆1) �̇� (𝑡)

− 𝛿𝑒
−2𝛼ℎ2

∫

𝑡−ℎ

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠

− 𝛿𝑒
−2𝛼ℎ

∫

𝑡−ℎ1

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

− ℎ1𝑒
−2𝛼ℎ1

∫

𝑡

𝑡−ℎ1

�̇�
𝑇

(𝑠) 𝑆3�̇� (𝑠) 𝑑𝑠.

(21)

By virtue of Lemma 4, we have

2𝑥𝑇 (𝑡) 𝑃−1𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))

≤ 𝑥
𝑇

(𝑡) 𝑃
−1

𝑃
−1

𝑥 (𝑡)

+𝑓
𝑇

(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))

= 𝑥
𝑇

(𝑡) 𝑃
−1

𝑃
−1

𝑥 (𝑡) +




𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))






2
.

(22)

Using (3) and the inequality (𝐻 + 𝐽 + 𝐿)
2
≤ 3𝐻2

+ 3𝐽2 + 3𝐿2,
where 𝐻, 𝐽, and 𝐿 are constants, we obtain





𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))






2

≤ (𝑎 ‖𝑥 (𝑡)‖ + 𝑏 ‖𝑥 (𝑡 − ℎ (𝑡))‖ + 𝛽 (𝑡))
2

≤ 3𝑎2 ‖𝑥 (𝑡)‖
2
+ 3𝑏2 ‖𝑥 (𝑡 − ℎ (𝑡))‖

2
+ 3𝛽2

(𝑡) .

(23)
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It follows from (22) and (23) that

2𝑥𝑇 (𝑡) 𝑃−1𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))

≤ 𝑥
𝑇

(𝑡) (𝑃
−1

𝑃
−1

+ 3𝑎2𝐼) 𝑥 (𝑡)

+ 3𝑏2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) + 3𝛽2
(𝑡) .

(24)

Combining (19) and (24), we get

�̇�1 (𝑥
𝑡
) ≤ − 2𝛼𝑉1 (𝑥

𝑡
) + 𝑥
𝑇

(𝑡) [𝑃
−1

(𝐴 +𝐵𝐾)

+ (𝐴+𝐵𝐾)
𝑇

𝑃
−1

+ 2𝛼𝑃
−1

+𝑃
−1

𝑃
−1

+ 3𝑎2𝐼] 𝑥 (𝑡)

+ 2𝑥𝑇 (𝑡) 𝑃−1𝐷𝑥 (𝑡 − ℎ (𝑡)) + 3𝑏2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥 (𝑡

− ℎ (𝑡)) + 3𝛽2
(𝑡) .

(25)

Now, we estimate the upper bounds of the last three integral
terms in inequality (21) as follows.

(i) Assume first that ℎ1 ≤ ℎ(𝑡) ≤ ℎ. From Jensen’s
inequality [19] and Lemma 5,

− 𝛿∫

𝑡−ℎ1

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

= − 𝛿∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

− 𝛿∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

≤ −

𝛿

ℎ − ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑆1 (∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠)

−

𝛿

ℎ (𝑡) − ℎ1
(∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑆1 (∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠)

≤ −[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ (𝑡))

]

𝑇

⋅ [

𝑆1 𝑀1

∗ 𝑆1
][

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ (𝑡))

] ,

(26)

and so

− 𝛿𝑒
−2𝛼ℎ

∫

𝑡−ℎ1

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

≤ −[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ (𝑡))

]

𝑇

⋅
[

[

𝑒
−2𝛼ℎ

𝑆1 𝑒
−2𝛼ℎ

𝑀1

∗ 𝑒
−2𝛼ℎ

𝑆1

]

]

[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ (𝑡))

] .

(27)

On the other hand, if ℎ(𝑡) = ℎ or ℎ(𝑡) = ℎ1, then
∫

𝑡−ℎ(𝑡)

𝑡−ℎ
�̇�(𝑠)𝑑𝑠 = 0 or ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)
�̇�(𝑠)𝑑𝑠 = 0, respectively. Hence,

inequality (27) holds.
Using Jensen’s inequality [19], it is not difficult to arrive at

the inequalities

− ℎ1𝑒
−2𝛼ℎ1

∫

𝑡

𝑡−ℎ1

�̇�
𝑇

(𝑠) 𝑆3�̇� (𝑠) 𝑑𝑠

≤ − [𝑥 (𝑡) − 𝑥 (𝑡 − ℎ1)]
𝑇

⋅ 𝑒
−2𝛼ℎ1

𝑆3 [𝑥 (𝑡) − 𝑥 (𝑡 − ℎ1)] ,

(28)

− 𝛿𝑒
−2𝛼ℎ2

∫

𝑡−ℎ

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠

≤ − [𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ2)]
𝑇

⋅ 𝑒
−2𝛼ℎ2

𝑆2 [𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ2)] .

(29)

It follows now from (6) that

2�̇�𝑇 (𝑡) 𝑃−1 [(𝐴+𝐵𝐾) 𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡))

+𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) − �̇� (𝑡)] = 0.
(30)

On the other hand,

2�̇�𝑇 (𝑡) 𝑃−1𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))

≤ �̇�
𝑇

(𝑡) 𝑃
−1

𝑃
−1

�̇� (𝑡)

+ 𝑓
𝑇

(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))

= �̇�
𝑇

(𝑡) 𝑃
−1

𝑃
−1

�̇� (𝑡) +




𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))






2

≤ �̇�
𝑇

(𝑡) 𝑃
−1

𝑃
−1

�̇� (𝑡) + 3𝑎2𝑥𝑇 (𝑡) 𝑥 (𝑡)

+ 3𝑏2𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) + 3𝛽2
(𝑡) .

(31)

Therefore, formulas (19)–(31) imply that

�̇� (𝑥
𝑡
) + 2𝛼𝑉 (𝑥

𝑡
) ≤ 𝜉
𝑇

(𝑡) Φ1𝜉 (𝑡) + 6𝛽2
(𝑡) , (32)

where

Φ1

=

[

[

[

[

[

[

[

[

[

[

[

[

Φ11 𝑃
−1

𝐷 Φ13 0 0 (𝐴 + 𝐵𝐾)
𝑇

𝑃
−1

∗ Φ22 Φ23 Φ24 0 𝐷
𝑇
𝑃
−1

∗ ∗ Φ33 Φ34 0 0
∗ ∗ ∗ Φ44 Φ45 0
∗ ∗ ∗ ∗ Φ55 0
∗ ∗ ∗ ∗ ∗ Φ66

]

]

]

]

]

]

]

]

]

]

]

]

,
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Φ11

= 𝑃
−1

(𝐴+𝐵𝐾) + (𝐴+𝐵𝐾)
𝑇

𝑃
−1

+ 2𝛼𝑃
−1

+𝑃
−1

𝑃
−1

+𝑄1 − 𝑒
−2𝛼ℎ1

𝑆3 + 6𝑎2𝐼,

Φ22

= − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ

𝑀1 + 𝑒
−2𝛼ℎ

𝑀

𝑇

1

− 2𝑒−2𝛼ℎ𝑆1 + 6𝑏2𝐼,

Φ33

= 𝑒
−2𝛼ℎ1

𝑄2 + 𝑒
−2𝛼ℎ1

𝑅11 − 𝑒
−2𝛼ℎ1

𝑄1 − 𝑒
−2𝛼ℎ

𝑆1

− 𝑒
−2𝛼ℎ1

𝑆3,

Φ44 = 𝑒
−2𝛼ℎ1

𝑅22 − 𝑒
−2𝛼ℎ

𝑅11 − 𝑒
−2𝛼ℎ

𝑆1 − 𝑒
−2𝛼ℎ2

𝑆2,

Φ55 = − 𝑒
−2𝛼ℎ

𝑅22 − 𝑒
−2𝛼ℎ2

𝑆2,

Φ66 = ℎ
2
1𝑆3 + 𝛿

2
𝑆2 + 𝛿

2
𝑆1 +𝑃

−1
𝑃
−1

− 2𝑃−1,

Φ13 = 𝑒
−2𝛼ℎ1

𝑆3,

Φ23 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀1) ,

Φ24 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀

𝑇

1 ) ,

Φ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑀

𝑇

1 ,

Φ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑆2.

(33)

If we pre- and postmultiplyΦ1 by diag{𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃} and let

𝐾 = 𝑌𝑃
−1

, (34)

then the condition Φ1 < 0 is equivalent to condition (11) by
using Schur Complement Lemma.

(ii) Assume now that ℎ ≤ ℎ(𝑡) ≤ ℎ2. Applications of
Jensen’s inequality [19] and Lemma 5 yield

− 𝛿∫

𝑡−ℎ

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠

= − 𝛿[∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠

+∫

𝑡−ℎ

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠]

≤ −

𝛿

ℎ2 − ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

�̇� (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑆2 (∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

�̇� (𝑠) 𝑑𝑠)

−

𝛿

ℎ (𝑡) − ℎ

(∫

𝑡−ℎ

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑆2 (∫

𝑡−ℎ

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠)

≤ −[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ (𝑡))

]

𝑇

⋅ [

𝑆2 𝑀2

∗ 𝑆2
][

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ (𝑡))

] ,

(35)

and hence

− 𝛿𝑒
−2𝛼ℎ2

∫

𝑡−ℎ

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑆2�̇� (𝑠) 𝑑𝑠

≤ −[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ (𝑡))

]

𝑇

⋅ [

𝑒
−2𝛼ℎ2

𝑆2 𝑒
−2𝛼ℎ2

𝑀2

∗ 𝑒
−2𝛼ℎ2

𝑆2
][

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ (𝑡))

] .

(36)

Note that when ℎ(𝑡) = ℎ or ℎ(𝑡) = ℎ2, one can obtain
∫

𝑡−ℎ(𝑡)

𝑡−ℎ
�̇�(𝑠)𝑑𝑠 = 0 or ∫𝑡−ℎ2

𝑡−ℎ(𝑡)
�̇�(𝑠)𝑑𝑠 = 0, respectively.Therefore,

inequality (36) is satisfied.
Using Jensen’s inequality [19], we deduce that

− 𝛿𝑒
−2𝛼ℎ

∫

𝑡−ℎ1

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑆1�̇� (𝑠) 𝑑𝑠

≤ − [𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ)]

𝑇

⋅ 𝑒
−2𝛼ℎ

𝑆1 [𝑥 (𝑡 − ℎ1) − 𝑥 (𝑡 − ℎ)] .

(37)

Combining (19)–(25), (28), and (30)–(37), we obtain

�̇� (𝑥
𝑡
) + 2𝛼𝑉 (𝑥

𝑡
) ≤ 𝜉
𝑇

(𝑡) Φ2𝜉 (𝑡) + 6𝛽2
(𝑡) , (38)

where

Φ2

=

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ11 𝑃
−1

𝐷 Φ13 0 0 (𝐴 + 𝐵𝐾)
𝑇

𝑃
−1

∗ Φ22 0 Φ24 Φ25 𝐷
𝑇
𝑃
−1

∗ ∗ Φ33 Φ34 0 0

∗ ∗ ∗ Φ44 Φ45 0
∗ ∗ ∗ ∗ Φ55 0
∗ ∗ ∗ ∗ ∗ Φ66

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Φ22

= − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ2

𝑀2 + 𝑒
−2𝛼ℎ2

𝑀

𝑇

2

− 2𝑒−2𝛼ℎ2𝑆2 + 6𝑏2𝐼,
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Φ24 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀2) ,

Φ25 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀

𝑇

2 ) ,

Φ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑆1,

Φ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑀

𝑇

2 .

(39)

Pre- and postmultiplying Φ2 by diag{𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃} and
letting 𝐾 = 𝑌𝑃

−1, the condition Φ2 < 0 is equivalent to
condition (12) by using Schur Complement Lemma.

From the above discussion, if conditions (11)–(13) are
satisfied, then

�̇� (𝑥
𝑡
) + 2𝛼𝑉 (𝑥

𝑡
) ≤ 6𝛽2

(𝑡) , 𝑡 ≥ 0. (40)

By virtue of (40) and the definition of 𝑉(𝑥(𝑡)),

𝜆




𝑥 (𝑡, 𝜙)






2

≤ 𝑉 (𝑥 (𝑡))

≤ 𝑒
−2𝛼𝑡

(𝑉 (𝑥 (0)) + 6∫

𝑡

0
𝛽
2
(𝑠) 𝑒
∫

𝑠

0 2𝛼𝑑𝜏𝑑𝑠)

≤ 𝑒
−2𝛼𝑡

(Γ




𝜙





2

+ 6∫

+∞

0
𝛽
2
(𝑠) 𝑒

2𝛼𝑠
𝑑𝑠) = Λ𝑒

−2𝛼𝑡
.

(41)

Hence, we have





𝑥 (𝑡, 𝜙)





≤ √

Λ

𝜆

𝑒
−𝛼𝑡

, 𝑡 ≥ 0, (42)

which implies that the closed-loop system is 𝛼-stable. The
proof is completed.

If there is no perturbation in system (1), that is,
𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ(𝑡))) = 0, then system (1) reduces to

�̇� (𝑡) = 𝐴𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑢 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ2, 0] .
(43)

Application of Theorem 6 yields the following result.

Corollary 7. Assume that 𝛼 > 0 and condition (2) is satisfied.
If there exist matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑆

𝑖
> 0 (𝑖 =

1, 2, 3), [ 𝑅11 𝑅12
∗ 𝑅22

] > 0, 𝑀1, 𝑀2, and 𝑌 such that

Ξ1 =

[

[

[

[

[

[

[

[

[

[

[

[

Ξ11 𝐷𝑃 Ξ13 0 0 𝑃𝐴
𝑇
+ 𝑌
𝑇
𝐵
𝑇

∗ Ξ22 Ξ23 Ξ24 0 𝑃𝐷
𝑇

∗ ∗ Ξ33 Ξ34 0 0
∗ ∗ ∗ Ξ44 Ξ45 0
∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

Ξ2 =

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ11 𝐷𝑃 Ξ13 0 0 𝑃𝐴
𝑇
+ 𝑌
𝑇
𝐵
𝑇

∗ Ξ22 0 Ξ24 Ξ25 𝑃𝐷
𝑇

∗ ∗ Ξ33 Ξ34 0 0

∗ ∗ ∗ Ξ44 Ξ45 0
∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

[

𝑆
𝑖

𝑀
𝑖

∗ 𝑆
𝑖

] ≥ 0 (𝑖 = 1, 2) ,

(44)

where

Ξ11 = 𝐴𝑃+𝑃𝐴
𝑇

+𝐵𝑌+𝑌
𝑇

𝐵
𝑇

+ 2𝛼𝑃+𝑄1

− 𝑒
−2𝛼ℎ1

𝑆3,

Ξ22 = − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ

𝑀1 + 𝑒
−2𝛼ℎ

𝑀
𝑇

1

− 2𝑒−2𝛼ℎ𝑆1,

Ξ33 = 𝑒
−2𝛼ℎ1

𝑄2 + 𝑒
−2𝛼ℎ1

𝑅11 − 𝑒
−2𝛼ℎ1

𝑄1 − 𝑒
−2𝛼ℎ

𝑆1

− 𝑒
−2𝛼ℎ1

𝑆3,

Ξ44 = 𝑒
−2𝛼ℎ1

𝑅22 − 𝑒
−2𝛼ℎ

𝑅11 − 𝑒
−2𝛼ℎ

𝑆1 − 𝑒
−2𝛼ℎ2

𝑆2,

Ξ55 = − 𝑒
−2𝛼ℎ

𝑅22 − 𝑒
−2𝛼ℎ2

𝑆2,

Ξ66 = ℎ
2
1𝑆3 + 𝛿

2
𝑆2 + 𝛿

2
𝑆1 − 2𝑃,

Ξ13 = 𝑒
−2𝛼ℎ1

𝑆3,

Ξ23 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀1) ,

Ξ24 = 𝑒
−2𝛼ℎ

(𝑆1 −𝑀
𝑇

1 ) ,

Ξ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑀
𝑇

1 ,

Ξ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑆2,

Ξ22 = − (1−𝜇) 𝑒
−2𝛼ℎ2

𝑄2 + 𝑒
−2𝛼ℎ2

𝑀2 + 𝑒
−2𝛼ℎ2

𝑀
𝑇

2

− 2𝑒−2𝛼ℎ2𝑆2,

Ξ24 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀2) ,

Ξ25 = 𝑒
−2𝛼ℎ2

(𝑆2 −𝑀
𝑇

2 ) ,

Ξ34 = 𝑒
−2𝛼ℎ1

𝑅12 + 𝑒
−2𝛼ℎ

𝑆1,

Ξ45 = − 𝑒
−2𝛼ℎ

𝑅12 + 𝑒
−2𝛼ℎ2

𝑀
𝑇

2 ,

(45)

then system (43) is robustly 𝛼-stabilizable, the state feedback
control 𝑢(𝑡) = 𝑌𝑃

−1
𝑥(𝑡), and the solution 𝑥(𝑡, 𝜙) of the closed-

loop system satisfies





𝑥 (𝑡, 𝜙)





≤ √

Λ

𝜆

𝑒
−𝛼𝑡

= √
Γ

𝜆

𝑒
−𝛼𝑡 




𝜙




, 𝑡 ≥ 0. (46)
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4. Numerical Examples

In this section, two numerical examples are given to illustrate
the effectiveness of the results obtained in this paper.

Example 1. Consider the system with a nonlinear perturba-
tion

�̇� (𝑡) = 𝐴𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡))

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡))) + 𝐵𝑢 (𝑡) ,

𝑡 ≥ 0,

𝑥 (𝑡) = [1 1]

𝑇

, 𝑡 ∈ [−0.4, 0] ,

(47)

where

𝐴 = [

1 0
0 −1

] ,

𝐵 = [

0
1
] ,

𝐷 = [

−2 −0.1
0 1.1

] ,

(48)

ℎ(𝑡) = 0.1 + 0.3sin2(5𝑡/3), and the nonlinear perturbation
satisfies





𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)))






≤ 0.1 ‖𝑥 (𝑡)‖ + 0.1 ‖𝑥 (𝑡 − ℎ (𝑡))‖ + 𝑒
−0.66𝑡

.

(49)

Note that ℎ1 = 0.1, ℎ2 = 0.4, 𝜇 = 0.5, and 𝛽(𝑡) = 𝑒
−0.66𝑡. It is

not difficult to check that 𝐴 and 𝐴 + 𝐷 are Hurwitz unstable.
Let 𝛼 = 0.16. Then ∫

+∞

0 𝛽
2
(𝑠)𝑒

2𝛼𝑠
𝑑𝑠 = ∫

+∞

0 𝑒
−𝑠

𝑑𝑠 = 1 <

+∞. Using the LMI Toolbox in MATLAB, LMIs (11)–(13) in
Theorem 6 are satisfied with

𝑃 = [

4.4365 −0.1306
−0.1306 4.9389

] ,

𝑄1 = [

0.1510 0.4068
0.4068 3.4481

] ,

𝑄2 = [

0.0115 0.0066
0.0066 0.2019

] ,

𝑆1 = [

62.2011 −5.1166
−5.1166 52.7981

] ,

𝑆2 = [

36.2972 −1.8408
−1.8408 31.9872

] ,

𝑆3 = [

71.6879 −4.4063
−4.4063 40.8855

] ,

𝑅11 = [

12.6433 −1.6878
−1.6878 21.3645

] ,

𝑅12 = [

−12.6769 2.2144
2.2144 −18.8952

] ,

𝑅22 = [

13.2723 −1.3613
−1.3613 21.8765

] ,

𝑀1 = [

11.3018 −6.7305
−6.7305 20.9430

] ,

𝑀2 = [

−14.5051 −2.3510
−2.3510 0.3503

] ,

𝑌 = [0.2410 −6.8850] .
(50)

Furthermore, the solution 𝑥(𝑡, 𝜙) of the system satisfies





𝑥 (𝑡, 𝜙)





≤ 6.1258𝑒−0.16𝑡, 𝑡 ≥ 0, (51)

and the stabilizing feedback control

𝑢 (𝑡) = [0.0133 −1.3937] 𝑥 (𝑡) , 𝑡 ≥ 0. (52)

Observe that the results reported in [3, 8, 16] cannot be
applied to (47) since the nonlinear perturbation is related
with the term 𝛽(𝑡) = 𝑒

−0.66𝑡.

Example 2. Consider a linear system with an interval time-
varying delay

�̇� (𝑡) = 𝐴𝑥 (𝑡) +𝐷𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑢 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−ℎ2, 0] ,
(53)

where

𝐴 = [

0 0
0 1

] ,

𝐵 = [

0
1
] ,

𝐷 = [

−1 −1
0 −0.9

] ,

(54)

and ℎ(𝑡) = 0.5 + 1.28sin2(25𝑡/64). Note that ℎ1 = 0.5, ℎ2 =

1.78, and 𝜇 = 0.5. It is easy to check that 𝐴 and 𝐴 + 𝐷 are
Hurwitz unstable. Given 𝛼 = 0.01, using the LMI Toolbox in
MATLAB, LMIs (44) in Corollary 7 are satisfied with

𝑃 = [

84.8721 −32.8554
−32.8554 18.7095

] ,

𝑄1 = [

0.0864 −0.0424
−0.0424 11.7837

] ,

𝑄2 = [

0.2099 0.2035
0.2035 11.4665

] ,
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𝑆1 = [

109.3732 −42.3701
−42.3701 16.5117

] ,

𝑆2 = [

102.7380 −39.7555
−39.7555 15.5155

] ,

𝑆3 = [

124.7698 −48.3825
−48.3825 18.8240

] ,

𝑅11 = [

32.4350 −12.8325
−12.8325 5.1838

] ,

𝑅12 = [

−2.3196 0.9331
0.9331 −0.3969

] ,

𝑅22 = [

54.1560 −21.0105
−21.0105 8.2532

] ,

𝑀1 = [

−22.9733 9.4881
9.4881 −3.9352

] ,

𝑀2 = [

−53.6877 20.8764
20.8764 −8.2092

] ,

𝑌 = [23.8997 −27.0789] .
(55)

Moreover, the solution 𝑥(𝑡, 𝜙) of the system satisfies





𝑥 (𝑡, 𝜙)





≤ 9.3399𝑒−0.01𝑡 


𝜙




, 𝑡 ≥ 0, (56)

and the stabilizing feedback control

𝑢 (𝑡) = [−0.8704 −2.9758] 𝑥 (𝑡) , 𝑡 ≥ 0. (57)

Figure 1 shows the trajectories of 𝑥1(𝑡) and 𝑥2(𝑡) of the
open-loop system with the initial condition 𝜙(𝑡) = [30 10]

𝑇,
𝑡 ∈ [−1.78, 0]. Figure 2 shows the trajectories of 𝑥1(𝑡) and
𝑥2(𝑡) of the closed-loop system with the state feedback 𝑢(𝑡) =

[−0.8704 −2.9758]𝑥(𝑡) and the initial condition 𝜙(𝑡) =

[30 10]
𝑇, 𝑡 ∈ [−1.78, 0].

Letting the lower and upper bounds of the time delay
be the same as in Zhang et al. [12], our results also ensure
exponential stability with an 𝛼-convergence rate as given
in Table 1. Note that Zhang et al. [12] discussed asymptotic
stability, whereas the controller derived in this paper provides
exponential stability for the closed-loop system. Further-
more, the maximum bound for 𝛼 is better than Thuan et al.
[16] by letting ℎ1 and ℎ2 be the same as in [16]. For selected
ℎ1 and 𝜇 = 0.5, using Corollary 7, one can easily observe that
the maximum allowable delay bounds for ℎ2 are better than
those reported in the papers by Zhang et al. [12] and Thuan
et al. [16].
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Figure 1: Open-loop trajectories of 𝑥1(𝑡) and 𝑥2(𝑡).
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Figure 2: Closed-loop trajectories of 𝑥1(𝑡) and 𝑥2(𝑡).

5. Conclusions

In this paper, exponential stabilization of a class of time-
varying delay systems with nonlinear perturbations has been
investigated. By using the delay decomposition approach
and constructing a novel Lyapunov functional, some new
delay-dependent stabilization criteria are obtained in order
to ensure closed-loop stability of the system with any pre-
scribed 𝛼-convergence rate. Numerical examples are given to
illustrate that the results obtained are much less conservative
than some existing results in the literature. Exponential sta-
bilization of impulsive switched delay systems with nonlinear
perturbations will be further investigated in the future.
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Table 1: Admissible upper bound ℎ2 and𝐾 for given ℎ1 with𝜇 = 0.5.

Method ℎ1 ℎ2 𝐾

Zhang et al. [12] 0.5 0.967 [−0.5290 −2.7166]
Thuan et al. [16] (𝛼 = 0.314) 0.5 0.967 [−0.0967 −1.8338]
Corollary 7 (𝛼 = 0.353) 0.5 0.967 [−0.1662 −2.0605]
Thuan et al. [16] (𝛼 = 0.01) 0.5 1.66 [−0.8765 −2.9873]
Corollary 7 (𝛼 = 0.01) 0.5 1.78 [−0.8704 −2.9758]
Zhang et al. [12] 1.0 1.114 [−0.3096 −2.1894]
Thuan et al. [16] (𝛼 = 0.225) 1.0 1.114 [−0.6344 −2.9059]
Corollary 7 (𝛼 = 0.236) 1.0 1.114 [−0.6714 −2.9317]
Thuan et al. [16] (𝛼 = 0.01) 1.0 1.672 [−0.9023 −2.9983]
Corollary 7 (𝛼 = 0.01) 1.0 1.765 [−0.8701 −2.9712]
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In order to take full advantage of the multisensor information, a MIMO fuzzy control system based on semitensor product (STP)
is set up for mobile robot odor source localization (OSL). Multisensor information, such as vision, olfaction, laser, wind speed,
and direction, is the input of the fuzzy control system and the relative searching strategies, such as random searching (RS), nearest
distance-based vision searching (NDVS), and odor source declaration (OSD), are the outputs. Fuzzy control rules with algebraic
equations are given according to the multisensor information via STP. Any output can be updated in the proposed fuzzy control
system and has no influence on the other searching strategies. The proposed MIMO fuzzy control scheme based on STP can reach
the theoretical system of the mobile robot OSL. Experimental results show the efficiency of the proposed method.

1. Introduction

In natural world, many organisms such as drosophila, moth,
and lobster use olfaction or/and vision cues to find the same
species, avoid predators, exchange information, and search
for food [1–3]. Inspired by those biological activities, in the
early 1990s researchers started to build single or multiple
mobile robots with onboard odor sensors or/and winds
sensor to accomplish the odor source localization (OSL)
task. Existing methods can be categorized along two lines.
One is olfaction-based method, which mainly uses olfaction
or/and wind information to search for gas sources without
visual information. The other is vision-based method, which
takes the visual information as an assistant of olfaction to
accomplish the OSL task. Most work has been focused on
the first field and it has become a mature and popular filed.
However, the vision-based method is immature and needs to
do deep study due to the late beginning. Russell [4], Meng
and Li [5], Lilienthal et al. [6], Naeem et al. [7], Kowadlo and
Russell [8], and Ishida et al. [9] have given relative reviews
aboutmobile robot OSL from a different angle or application.
The interested reader is referred to [4–9] for a comprehensive
review of olfaction-based mobile robot OSL. Compared with
organisms, robots can be deployed quickly, maintained at low

cost, and work for a long time without fatigue. Moreover,
they can enter the dangerous or harmful areas. Mobile robot
OSL is a multidisciplinary research field with wide potential
applications, such as judging toxic/harmful gas leakage loca-
tion, checking contraband (e.g., heroin), locating unexploded
mines and bombs, and fighting against terrorist attacks.

It is well known that human beings normally first look
around to search for the most potential region or object and
then identify whether the region or object is an odor source
by olfaction. Vision contains abundant information, so visual
sensor could be a good assistant of olfaction for mobile
robot OSL. Meanwhile, large amount of leakage accidents
indicate that some devices are more likely to leak, such as
valves, bottles, and pipelines. In this paper, such devices are
called potential gas sources and the areas which contain
such devices are called plausible areas. It would improve
the searching efficiency if these potential gas sources are
recognized accurately and the plausible areas are determined
rapidly in the searching process.

In recent years, a few researchers attempted to integrate
vision and olfaction to localize the odor source. Kowadlo et
al. [10] took crackles as the vision feature assisting olfaction
to search for the odor source. Ishida et al. [11] proposed a
color-based algorithm to deal with the vision information in
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the searching process. These methods were verified in the
experiments, which indicate that vision as an assistant of
olfaction for mobile robot OSL is efficient. Inspired by these
researches, Jiang et al. [12] proposed a support vectormachine
based algorithm to localize an odor source and the author
also presented a top-down visual attentionmechanism-based
algorithm [13] for mobile robot OSL. And then least square
estimation was used to fuse the vision and olfaction informa-
tion to accomplish theOSL task in stable airflow environment
[14]. Meanwhile, Jiang and Zhang [15] attempted to integrate
the vision and olfaction using subsumption architecture to
accomplish the OSL task. However, how to fuse the uncer-
tainty, ambiguity, vagueness, incompleteness, and granularity
of the multisensor information from the mobile robot, espe-
cially vision and olfaction information, needs further study
from the deep analysis to those few reports. It is noteworthy
that multisensor data fusion is developed in recent years and
new fusion algorithms and models are constantly emerging
such as Dempster-Shafer evidence theory, probability theory,
fuzzy theory, possibility theory, rough set theory, and the
improved algorithms of these methods [16, 17]. Meanwhile,
these methods have been successfully used in many fields,
such as image processing, fault diagnosis, and target tracking.
Inspired by these successful cases, we attempt to set up amul-
tivariable fuzzy control system based on semitensor product
for mobile robot OSL by fusing multisensor information and
obtain some interesting results.

Fuzzy control as an intelligent control strategy needs
no precise mathematical model for the objective system.
They have found a great variety of applications ranging from
control engineering, qualitative modeling, pattern recogni-
tion, signal processing, machine intelligence, and so on [18,
19]. In particular, fuzzy logic control (FLC), as one of the
earliest applications of fuzzy sets and systems, has become
one of the most successful applications. In fact, FLC has
been proved to be a successful control approach to many
complex nonlinear systems or even nonanalytic ones. The
fuzzy control algorithm consists of a set of heuristic control
rules, and fuzzy sets and fuzzy logic are used, respectively,
to represent linguistic terms and to evaluate the rules. Since
then, fuzzy logic control has attracted great attention from
both academic and industrial communities and a lot of
excellent books and tutorial articles on the topic have been
published. However, it is difficult to infer the proper control
input for a multivariable system since the dimension of its
relation matrix is very large. The high dimensionality of
the relation matrix might lead to not only computational
difficulties but also memory overload. To solve this problem,
a fuzzy control algorithm by which the multivariable fuzzy
system is decomposed into a set of one-dimensional systems
[18, 19].The decomposition of control rules is preferable since
it alleviates the complexity of the problem.

Recently, the semitensor product (STP) of matrices was
proposed in [20]. And up to now, it has been widely
applied in many fields, such as boolean network [21, 22]
and coloring problems [23]. The logic expression can be
expressed into an algebraic form by constructing its structure
matrix. In [22], the observed data was expressed into a two-
valued algebraic form. For the mobile robot odor source

localization different sizes of the multisensor information
play the different roles in the searching process. Therefore,
themultisensor information for themobile robot odor source
localization cannot be divided into two-valued true and false
cases simply. This multisensor information is expressed as
multivalued algebraic form according to the actual demand.
It is noted that the fuzzy logic also can be considered as an
extended mix-valued logic in which the truth-values are the
ones ofmemberships of all the elements in a fuzzy set, and the
complex reasoning process can be converted into a problem
of solving a set of algebraic equations via STP, which greatly
simplifies the process of logical reasoning.

In this paper, we attempt to set up a multi-input multi-
output (MIMO) fuzzy control framework based on STP for
the mobile robot OSL.Themultisensor information obtained
by the mobile robot is the inputs and the relative searching
strategies are the outputs. Several interesting results are
obtained.Themain contributions of this paper are as follows:

(1) AMIMO fuzzy control system is set up for themobile
robot OSL.

(2) Fuzzy control rules with algebraic equations are given
according to the multisensor information.

(3) Any output can be updated in this framework and has
no influence to the others.

(4) The proposed method based on MIMO fuzzy control
scheme via STP for mobile robot OSL can reach the
theory of this field.

The rest of this paper is organized as follows. Section 2
provides some necessary preliminaries on the semitensor
product ofmatrices and the expression of logical function and
logical variables. Section 3 presents the proposed algorithms
for mobile robot OSL. Section 4 shows experimental results
and analysis and the conclusion is given in Section 5.

2. Matrices with Logical Variables

First, some notations are introduced, which will be used in
this paper:

(i) 𝛿𝑖
𝑘
: the 𝑖th column of the identity matrix 𝐼

𝑘
.

(ii) Δ
𝑘
:= {𝛿
𝑖

𝑘
| 𝑖 = 1, 2, . . . , 𝑘}; especially, Δ := Δ 2.

(iii) D := {1, 0}; to use matrix expression, “1” and “0” can
be expressed with the following vectors, respectively:
1 ∼ 𝛿12 , 0 ∼ 𝛿

2
2 .

(iv) D
𝑘
:= {1, (𝑘 − 2)/(𝑘 − 1), (𝑘 − 3)/(𝑘 − 1), . . . , 0}, 𝑘 ≥ 2.

(v) A matrix 𝐿 ∈ R𝑚×𝑛 is called a logical matrix if the
columns of 𝐿, denoted by Col(𝐿), are of the form 𝛿𝑘

𝑛
;

that is, Col(𝐿) ⊂ Δ
𝑛
.

(vi) Let L
𝑛×𝑟

denote the set of 𝑛 × 𝑟 logical matrices;
if 𝐿 ∈ L

𝑛×𝑟
, by definition, it can be expressed as

𝐿 = [𝛿
𝑖1
𝑛
𝛿
𝑖2
𝑛
⋅ ⋅ ⋅ 𝛿
𝑖
𝑟

𝑛
]; for the sake of compactness, it

is briefly denoted as 𝐿 = 𝛿
𝑛
[𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑟].

(vii) Each 𝑘-valued logical value with a vector can be
denoted as (𝑘 − 𝑖)/(𝑘 − 1) ∼ 𝛿𝑖

𝑘
, 𝑖 = 1, 2, . . . , 𝑘; then,

D
𝑘
∼ Δ
𝑘
.
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Figure 1: The fuzzy control scheme.

In the following, we recall some definitions and basic
properties about the STP [20].

Definition 1. Let 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑝×𝑞. Let 𝑠 = lcm(𝑛, 𝑝)
denote the least common multiple of 𝑛 and 𝑝. Then, the
semitensor product of 𝐴 and 𝐵 is defined as

𝐴⋉𝐵 = (𝐴⊗ 𝐼
𝑠/𝑛
) (𝐵 ⊗ 𝐼

𝑠/𝑝
) , (1)

where “⊗” is the Kronecker product.

Remark 2. It is noted that when 𝑛 = 𝑝, the STP of 𝐴 and 𝐵
becomes the conventional matrix product. Hence, the STP is
a generalization of the conventional matrix product. Because
of this, we can omit the sign “⋉” without confusion.

Definition 3. A swap matrix 𝑊
[𝑚,𝑛]

is an 𝑚𝑛 × 𝑚𝑛 matrix.
Its rows and columns are labeled by double index (𝑖, 𝑗),
the columns are arranged by the ordered multi-index
Id(𝑖, 𝑗; 𝑚, 𝑛), and the rows are arranged by the ordered
multi-index Id(𝐽, 𝐼; 𝑛, 𝑚). Then the elements at position
[(𝐼, 𝐽), (𝑖, 𝑗)] are

𝑤
(𝐼,𝐽)(𝑖,𝑗)

= 𝛿
𝐼,𝐽

𝑖,𝑗
=
{

{

{

1, 𝐼 = 𝑖, 𝐽 = 𝑗,

0, others.
(2)

Remark 4. Let 𝑋 ∈ R𝑛 and 𝑌 ∈ R𝑚 be column vectors; then
𝑊
[𝑛,𝑚]
𝑋𝑌 = 𝑌𝑋. Let 𝑋

𝑖
∈ R𝑛𝑖 , 𝑖 = 1, 2, . . . , 𝑘, be column

vectors; then [𝐼
𝑛1𝑛2 ⋅⋅⋅𝑛𝑡−1

⊗𝑊
[𝑛
𝑡
,𝑛
𝑡+1]
]𝑋1 ⋅ ⋅ ⋅ 𝑋𝑡−1𝑋𝑡𝑋𝑡+1 ⋅ ⋅ ⋅ 𝑋𝑘 =

𝑋1 ⋅ ⋅ ⋅ 𝑋𝑡−1𝑋𝑡+1𝑋𝑡 ⋅ ⋅ ⋅ 𝑋𝑘.

Let 𝑥
𝑖
∈ D
𝑘
𝑖

, 𝑖 = 1, . . . , 𝑛 and 𝑦
𝑗
∈ D
𝑠
𝑗

, 𝑗 = 1, . . . , 𝑚.
Assume that a logic mapping,

𝐹 : D
𝑘1
× ⋅ ⋅ ⋅ ×D

𝑘
𝑛

→ D
𝑠1
× ⋅ ⋅ ⋅ ×D

𝑠
𝑚

, (3)

can be expressed as

𝑦1 = 𝑓1 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,

𝑦2 = 𝑓2 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,

.

.

.

𝑦
𝑚
= 𝑓
𝑚
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ,

(4)

where 𝑓
𝑗
: D
𝑘1
× ⋅ ⋅ ⋅ ×D

𝑘
𝑛

→ D
𝑠
𝑗

, 𝑗 = 1, . . . , 𝑚.

Lemma 5. Any logical function 𝑦 = 𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑛) can be
uniquely expressed into the multilinear form of

𝑦 = 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑀𝑓⋉
𝑛

𝑖
𝑥
𝑖
, (5)

where𝑀
𝑓
∈ L
𝑠×𝑘

is called the structural matrix of 𝐹, 𝑦 ∈ Δ
𝑠
,

𝑠 = 𝑠1𝑠2 ⋅ ⋅ ⋅ 𝑠𝑚, and 𝑘 = 𝑘1𝑘2 ⋅ ⋅ ⋅ 𝑘𝑛.

Lemma 6. Consider (5). For the sake of compactness, we
denote 𝑀

𝑓
𝑊
[𝑘
𝑖
,∏
𝑖−1
𝑝=1𝑘𝑝]

= 𝑀. For any 1 ≤ 𝑖 ≤ 𝑛, we split 𝑀
into 𝑘

𝑖
equal-size blocks as [𝐵𝑙𝑘

1
(𝑀), . . . , 𝐵𝑙𝑘

𝑘
𝑖

(𝑀)]. If all the
blocks are the same, then 𝑥

𝑖
is a redundant variable. Thus, 𝑦

can be replaced by

𝑦 = 𝑀


𝑓
𝑥1 ⋅ ⋅ ⋅ 𝑥𝑖−1𝑥𝑖+1 ⋅ ⋅ ⋅ 𝑥𝑛, (6)

where𝑀
𝑓
= 𝐵𝑙𝑘

1
(𝑀) = 𝑀

𝑓
𝑊
[𝑘
𝑖
,∏
𝑖−1
𝑝=1𝑘𝑝]

𝛿
1
𝑘
𝑖

.

3. Multivariable FLC Based on STP for
Mobile Robot OSL

Consider the linguistic control rules of the multivariable
fuzzy system:

𝑅
𝑙: IF 𝑥1 is 𝐴𝑙1, . . . , and 𝑥𝑛 is 𝐴

𝑙

𝑛
,

THEN 𝑦1 is 𝐵𝑙1, . . . , and 𝑦𝑚 is 𝐵𝑙
𝑚
,

(7)

where 𝑥
𝑖
and 𝑦

𝑗
are linguistic variables representing the

process state and the control variable, respectively.𝑅𝑙 denotes
the 𝑙th fuzzy inference rule, where 𝑙 ∈ {1, . . . , 𝐿}, and 𝐿 is the
number of fuzzy rules. 𝐴

𝑖
, 𝑖 = 1, . . . , 𝑛, and 𝐵

𝑗
, 𝑗 = 1, . . . , 𝑚,

are the normalized fuzzy set of linguistic values on universes
of discourses 𝑋

𝑖
and 𝑌

𝑗
, respectively. The control system is

shown in Figure 1.

3.1. Controller Design of MFS with Complete Fuzzy Control
Rules. The fuzzy control rules are in accordance with consis-
tency and correctness. For the 𝑛 inputs and 𝑚 outputs fuzzy
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controller (7), let the number of the linguistic values of 𝑥
𝑖
and

𝑦
𝑗
be 𝑘
𝑖
and 𝑠
𝑗
, respectively; that is,

𝑥
𝑖
∈ D
𝑘
𝑖

,

𝐴
𝑖
= {𝐴

1
𝑖
, . . . , 𝐴

𝑘
𝑖

𝑖
} ,

𝑖 = 1, . . . , 𝑛,

𝑦
𝑗
∈ D
𝑠
𝑗

,

𝐵
𝑗
= {𝐵

1
𝑗
, . . . , 𝐵

𝑠
𝑗

𝑗
} ,

𝑗 = 1, . . . , 𝑚.

(8)

We identify 𝐴𝑖11 ∼ 𝛿
𝑖1
𝑘1
; . . .; 𝐴𝑖𝑛

𝑛
∼ 𝛿
𝑖
𝑛

𝑘
𝑛

, 𝐵𝑗11 ∼ 𝛿
𝑗1
𝑠1
; . . .; 𝐵𝑗𝑚

𝑚
∼

𝛿
𝑗
𝑚

𝑠
𝑚

, 𝑖1 = 1, . . . , 𝑘1; . . .; 𝑖𝑛 = 1, . . . , 𝑘
𝑛
; 𝑗1 = 1, . . . , 𝑠1; . . . ; 𝑗𝑚 =

1, . . . , 𝑠
𝑚
.

Then, (7) can be written as

𝑅
𝑙: IF 𝑥1 = 𝛿

𝑖1
𝑘1
, . . . , and 𝑥

𝑛
= 𝛿
𝑖
𝑛

𝑘
𝑛

,

THEN 𝑦1 = 𝛿
𝑗1
𝑠1
, . . . , and 𝑦

𝑚
= 𝛿
𝑗
𝑚

𝑠
𝑚

.

(9)

Using the vector form of logical variables, we express the
fuzzy controller as

𝑦1 = 𝑀1𝑥,

𝑦2 = 𝑀2𝑥,

.

.

.

𝑦
𝑚
= 𝑀
𝑚
𝑥,

(10)

𝑦 = 𝑀
𝑓
𝑥, (11)

where 𝑦 := ⋉𝑚
𝑗=1𝑦𝑗, 𝑥 := ⋉

𝑛

𝑖=1𝑥𝑖,𝑀𝑗 ∈ L
𝑠
𝑗
×𝑘
, 𝑗 = 1, . . . , 𝑚,

and Col
𝑖
(𝑀
𝑓
) = Col

𝑖
(𝑀1) ⋉ ⋅ ⋅ ⋅ ⋉Col𝑖(𝑀𝑚), where Col𝑖(𝑀𝑓)

denotes the 𝑖th column of matrix 𝑀
𝑓
. For rules 𝑙 and 𝑦

𝑗
=

𝑀
𝑗
𝑥, since 𝑥 = ⋉𝑛

𝑖=1𝑥𝑖 = 𝛿
𝑖1
𝑘1
⋉ ⋅ ⋅ ⋅ ⋉ 𝛿

𝑖
𝑛

𝑘
𝑛

= 𝛿
𝑖

𝑘
, 𝑦
𝑗
= 𝛿
𝑗
𝑗

𝑠
𝑗

, we

have Col
𝑖
(𝑀
𝑗
) = 𝛿

𝑗
𝑗

𝑠
𝑗

. If the fuzzy rules are complete, all the
columns of𝑀

𝑗
, 𝑗 = 1, . . . , 𝑚 can be obtained. Then, we have

the following result.

Theorem 7. The structural matrices𝑀
𝑗
, 𝑗 = 1, . . . , 𝑚 and𝑀

𝑓

of the fuzzy controller can be uniquely determined, if and only
if the fuzzy rules of the fuzzy controller are complete.

Proof. Consider the following.

Sufficiency. For the fuzzy rules (9), let𝑥 = 𝑥1⋉⋅ ⋅ ⋅⋉𝑥𝑛. Assume
the fuzzy rules of the fuzzy controller are complete; that is,
there are 𝑘 fuzzy rules. For the 𝑙th, 𝑙 = 1, . . . , 𝑘, fuzzy rule, we
have 𝑥 = 𝛿𝑖

𝑘
and 𝑦1 = 𝛿

𝑗1
𝑠1
. Then the 𝑖th column of𝑀1 can be

obtained as

Col
𝑖
(𝑀1) = 𝛿

𝑗1
𝑠1
. (12)

Repeating this procedure, one can obtain all the columns of
𝑀1 if the fuzzy rules are complete. Similarly, all𝑀2, . . . ,𝑀𝑚
and𝑀

𝑓
can be determined.

Necessity. If the structural matrices𝑀
𝑗
and𝑀

𝑓
of the fuzzy

controller are uniquely determined, then all the columns of
𝑀
𝑗
and 𝑀

𝑓
are uniquely determined. Because one column

of 𝑀
𝑓
can generate one fuzzy rule, one can obtain 𝑘 fuzzy

rules from 𝑘 columns of𝑀
𝑗
or𝑀
𝑓
; that is, the fuzzy rules are

complete.

Remark 8. If the rules are not complete, some columns of𝑀
𝑗

and 𝑀
𝑓
can be determined. In this case, the model is not

unique. In addition, uncertain columns of 𝑀
𝑗
and 𝑀

𝑓
can

be chosen arbitrarily.

3.2. Controller Design of MFS with Incomplete Fuzzy Control
Rules. The fuzzy control rules are also in accordance with
consistency and correctness. We first define a kind of inci-
dencematrix to express the dynamic connection of the inputs
and the outputs for a fuzzy controller.

Definition 9. Consider a fuzzy controller with𝑚 controls and
𝑛 input variables. An𝑚×𝑛matrix,J = (𝑟

𝑗,𝑖
) ∈R𝑚×𝑛, is called

its incidence matrix, if

𝑟
𝑗,𝑖
=
{

{

{

1, 𝑦
𝑗
depends on 𝑥

𝑖
,

0, otherwise.
(13)

Consider fuzzy controllers (9) and (10); the indegree𝑑(𝑦
𝑗
)

is the number of the inputs and it influences 𝑦
𝑗
directly. From

the incidence matrix of the fuzzy controller, we have

𝑑 (𝑦
𝑗
) =

𝑛

∑

𝑘=1
𝑟
𝑗𝑘
, 𝑗 = 1, . . . , 𝑚. (14)

A set of controls (10) is said to be a feasible one to (9), if (9)
satisfies (10). A feasible set of controls (10) with the indegree
𝑑
∗
(𝑦
𝑗
), 𝑗 = 1, . . . , 𝑚, is called a least indegree feasible set, if

for any other realization with indegree 𝑑(𝑦
𝑗
), 𝑗 = 1, . . . , 𝑚,

we have

𝑑
∗
(𝑦
𝑗
) ≤ 𝑑 (𝑦

𝑗
) , 𝑗 = 1, . . . , 𝑚. (15)

We can use Lemma 6 to remove redundant variables and
obtain a least indegree feasible set when the fuzzy rules are
complete.

Assume a set of incomplete rules as

𝑅
𝑙: IF 𝑥1 is 𝐴𝑙1, . . . , and 𝑥𝑛 is 𝐴

𝑙

𝑛
,

THEN 𝑦1 is 𝐵𝑙1, . . . , and 𝑦𝑚 is 𝐵𝑙
𝑚
,

𝑙 ∈ {1, . . . , 𝑡} ,

(16)
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where 𝑅𝑙 denotes the 𝑙th fuzzy control rule, 𝑡 is the number of
the control rules, and 𝑡 < 𝑘.

Consider the controls 𝑦
𝑗
= 𝑀
𝑗
𝑥. Using this set of fuzzy

rules, some columns of the structural matrix 𝑀
𝑗
can be

determined. For instance

𝑀
𝑗

= 𝛿
𝑠
𝑗

[⋆ ⋅ ⋅ ⋅ ⋆ 𝑐𝑗1
⋆ ⋅ ⋅ ⋅ ⋆ ⋅ ⋅ ⋅ ⋆ 𝑐

𝑗
𝑘

⋆ ⋅ ⋅ ⋅ ⋆] ,

(17)

where “⋆” stands for the uncertain columns. Equation (17) is
called the uncertain structural matrix. Let

𝑀
𝑗,𝑖
:= 𝑀
𝑗
𝑊
[𝑘
𝑖
,∏
𝑖−1
𝑝=1𝑘𝑝]

, 𝑖 = 1, . . . , 𝑛. (18)

Then split it into 𝑘
𝑖
equal blocks as

𝑀
𝑗,𝑖
:= [𝑀

1
𝑗,𝑖
𝑀

2
𝑗,𝑖
⋅ ⋅ ⋅ 𝑀

𝑘
𝑖

𝑗,𝑖
] . (19)

According to Lemma 6, we have the following result.

Proposition 10. The fuzzy control 𝑦
𝑗
has an algebraic form

which is independent of 𝑥
𝑖
, if and only if

𝑀
1
𝑗,𝑖
= 𝑀

2
𝑗,𝑖
= ⋅ ⋅ ⋅ = 𝑀

𝑘
𝑖

𝑗,𝑖
(20)

has a solution for uncertain elements.

Proof. Consider the following.

Sufficiency. Assume that (20) holds. By Lemma 5, the fuzzy
control 𝑦

𝑗
has an algebraic form which is independent of 𝑥

𝑖
.

Necessity. Assume the fuzzy control 𝑦
𝑗
is independent of 𝑥

𝑖
;

then 𝑦
𝑗
remains invariant whenever 𝑥

𝑖
= 𝛿
𝑞

𝑘
𝑖

, 𝑞 = 1, . . . , 𝑘
𝑖
.

Thus

𝑀
𝑗
𝑊
[𝑘
𝑖
,∏
𝑖−1
𝑝=1𝑘𝑝]

𝛿
1
𝑘
𝑖

= ⋅ ⋅ ⋅ = 𝑀
𝑗
𝑊
[𝑘
𝑖
,∏
𝑖−1
𝑝=1𝑘𝑝]

𝛿
𝑘
𝑖

𝑘
𝑖

, (21)

which implies that (20) holds. The proof is completed.

Example 11. Consider a fuzzy controller, which has 4 inputs,
𝑥1, 𝑥3 ∈ D2, 𝑥2, 𝑥4 ∈ D3, and 2 outputs (controls), 𝑦1 ∈ D3
and 𝑦2 ∈ D4.

In the vector form, we assume that there are a set of
control rules as follows:

IF 𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
3 and 𝑥4 = 𝛿

1
2 , THEN

𝑦1 = 𝛿
2
3 and 𝑦2 = 𝛿

2
4 .

IF 𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

2
2 and 𝑥4 = 𝛿

1
3 , THEN

𝑦1 = 𝛿
2
3 and 𝑦2 = 𝛿

4
4 .

IF 𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 and 𝑥4 = 𝛿

3
3 , THEN

𝑦1 = 𝛿
1
3 and 𝑦2 = 𝛿

1
4 .

IF 𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
2 and 𝑥4 = 𝛿

1
3 , THEN

𝑦1 = 𝛿
1
3 and 𝑦2 = 𝛿

3
4 .

IF 𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

1
2 and 𝑥4 = 𝛿

3
3 , THEN

𝑦1 = 𝛿
3
3 and 𝑦2 = 𝛿

2
4 .

IF 𝑥1 = 𝛿
2
3 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 and 𝑥4 = 𝛿

2
3 , THEN

𝑦1 = 𝛿
3
3 and 𝑦2 = 𝛿

4
4 .

Now, we would like to get a least indegree feasible set of
controls. Some columns of𝑀1 and𝑀2 can be identified as

𝑀1 = 𝛿3 [2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1 ⋆ 1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 ⋆] ,

𝑀2 = 𝛿4 [2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1 ⋆ 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 4 ⋆] ,
(22)

where “⋆” denotes the unknown element. Now, we check
whether 𝑥1 can be a redundant variable of 𝑦1. Split𝑀1 into
two equal blocks as𝑀1 = [𝑀

1
1 𝑀

2
1], and let𝑀

1
1 = 𝑀

2
1 which

yields the solution as

𝑀
1
1 = 𝑀

2
1

= 𝛿3 [2 1 ⋆ ⋆ ⋆ ⋆
.
.
. ⋆ ⋆ 3 2 ⋆ ⋆

.

.

. ⋆ ⋆ ⋆ ⋆ 3 1] .

(23)

Thus, the control can be simplified as 𝑦1 = 𝑀
1
1𝑥2𝑥3𝑥4.

Now, we check 𝑥2. Splitting 𝑀
1
1 into three equal blocks as

[𝑀
11
1 𝑀

12
1 𝑀

13
1 ] and letting 𝑀11

1 = 𝑀
12
1 = 𝑀

13
1 , it can

be updated as

𝑀
11
1 = 𝑀

12
1 = 𝑀

13
1 = 𝛿3 [2 1 3 2 3 1] , (24)

which satisfies 𝑦1 = 𝑀
11
1 𝑥3𝑥4. Next, check 𝑥3 and 𝑥4.

Since 𝑀11
1 𝑊[2,3] = 𝛿3[2 2 1 3 3 1], 𝑥3 and 𝑥4

are not fabricated variables. Finally, we obtain 𝑦1 =

𝛿3[2 2 1 3 3 1]𝑥3𝑥4. Similarly, we have 𝑦2 =

𝛿4[2 4 3 4 2 1]𝑥3𝑥4.
And then, the least indegree realization can finally be

obtained as

𝑦1 = 𝛿3 [2 2 1 3 3 1] 𝑥3𝑥4,

𝑦2 = 𝛿4 [2 4 3 4 2 1] 𝑥3𝑥4.
(25)

3.3. Controller Design of MFS for Mobile Robot OSL. A great
deal of sensor information needs to be processed rapidly
for a mobile robot during the real-time searching process,
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Figure 2: Fuzzy control based system for mobile robot OSL.

such as gas sensor (olfaction), camera (vision), wind sensor
(wind speed and direction), laser sensor (distance), and
electronic compass (position of robot). The mobile robot
needs to make correct determination when different sensor
information is required. In this paper, a MIMO fuzzy control
based localization framework (shown in Figure 2) is set up in
order to make full use of the diversity and complementary
of multisensor information and obtain more detailed and
accurate decision.The inputs are themultisensor information
or the computed results of the sensor information. Here, the
laser sensor information (LSI) is represented by the linguistic
terms “near” and “far,” vision information (VI) is “true” and
“false,” olfaction information (OI) is “too low,” “normal,”
and “too high,” and wind information (WI) is “true” and
“false.” And the outputs are several behaviors. In this paper,
six behaviors are set up, including obstacle avoiding (OA),
odor source declaration (OSD), nearest distance-based visual
searching (NDVS), up-wind searching (UWS), path planning
(PP), chemotaxis searching (CS), and random searching (RS).

We identify the following:

Inputs: LSI ∼ 𝑥1,OI ∼ 𝑥2,VI ∼ 𝑥3,WI ∼ 𝑥4.
Outputs: OA ∼ 𝛿17 , GSD ∼ 𝛿

2
7 , NDVS ∼ 𝛿

3
7 , UWS ∼

𝛿
4
7 , PP ∼ 𝛿

5
7 , CS ∼ 𝛿

6
7 , RS ∼ 𝛿

7
7 :

near ∼ 𝛿12 ,

far ∼ 𝛿22 ,

true ∼ 𝛿12 ,

false ∼ 𝛿22 ,

too low ∼ 𝛿13 ,

normal ∼ 𝛿23 ,

too high ∼ 𝛿33 .
(26)

Then, the fuzzy rules can be expressed into the following
form.

IF 𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿17 ;

IF 𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿27 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿27 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
1
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿17 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿37 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿37 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿77 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

1
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿77 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿57 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿57 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿47 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

2
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿67 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿57 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

1
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿57 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

1
2 , THEN 𝑦 = 𝛿47 ; IF

𝑥1 = 𝛿
2
2 , 𝑥2 = 𝛿

3
3 , 𝑥3 = 𝛿

2
2 , and 𝑥4 = 𝛿

2
2 , THEN 𝑦 = 𝛿67 ; from

the above form of the fuzzy rules, we can obtain the structure
matrix:

𝑀
𝑓
= 𝛿7 [1 1 1 1 1 1 1 1 2 2 1 1 3 3 7 7 5 5 4 6 5 5 4 6] ; (27)

then 𝑦 = 𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4. Now using Lemma 5, we check whether 𝑥1, 𝑥2, 𝑥3, or 𝑥4

is a redundant variable of 𝑦. It is easy to verify that

𝑀
𝑓
= 𝛿7 [1 1 1 1 1 1 1 1 2 2 1 1

.

.

. 3 3 7 7 5 5 4 6 5 5 4 6] ,

𝑀
𝑓
𝑊
[3,2] = 𝛿7 [1 1 1 1 3 3 7 7 1 1 1 1 5 5 4 6 2 2 1 1 5 5 4 6] ,

𝑀
𝑓
𝑊
[2,6] = 𝛿7 [1 1 1 1 2 2 3 3 5 5 5 5 1 1 1 1 1 1 7 7 4 6 4 6] ,

𝑀
𝑓
𝑊
[2,12] = 𝛿7 [1 1 1 1 2 1 3 7 5 4 5 4 1 1 1 1 2 1 3 7 5 6 5 6] .

(28)
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Figure 3: Experimental platform of mobile robot OSL.

Obviously, we know 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are not redundant
variables of 𝑦.

Assume that LSI is “near,” OI is “too high,” VI is “true,”
and WI is “true” or “false”; we have 𝑦 = 𝑀

𝑓
𝑥1𝑥2𝑥3𝑥4 =

𝑀
𝑓
𝛿
1
2𝛿

3
3𝛿

1
2𝛿

1
2 = 𝛿

2
7 or 𝑦 = 𝑀𝑓𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

1
2𝛿

3
3𝛿

1
2𝛿

2
2 = 𝛿

2
7 ,

which means GSD.

4. Experimental Results and Analysis

The proposed method is verified using real robot exper-
iments. The mobile robot platform and the odor source
are shown in Figure 3. A PTZ camera (EVI-D100P, Sony),
a gas sensor (MiCS-5135, e2v Technologies (UK) Ltd.), an
anemometer (WindSonic, Gill), a laser rangefinder (LMS200,
Sick AG), and an electronic compass were mounded on the
robot. The PTZ is 1.3 meters high from the ground. The size
of each sampled image is 320240 pixels. The computer (CPU:
3.0GHz, RAM: 1.0GBytes) is used in this paper.

4.1. The Experimental Result with No Vision and Olfaction.
The mobile robot searches the whole scene to find the odor
plume using random searching (RS) methods when there is
no vision and olfaction information.

LSI is “far,” OI is “too low,” VI is “false,” andWI is “true”
or “false”; we have

𝑦 = 𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

2

2
𝛿
1
3𝛿

2
2𝛿

1
2 = 𝛿

7
7 ,

or 𝑦 = 𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

2
2𝛿

1
3𝛿

2
2𝛿

2
2 = 𝛿

7
7 ,

(29)

whichmeans RS. Figure 4 shows the searching trajectory.The
robot starts spiral surge with a certain radius (the radius is
377mm in this paper) from the initial position (the black
solid dot in Figure 4). The blue dots is the moving trajectory.

4.2. The Experimental Result with Vision. Traditionally, ran-
dom searching methods are used for plume finding when

Figure 4: Random searching trajectory of mobile robot OSL.

Y (m)
(10,0)

(10,0)X (m)

A

(2.7, 3.8)

O

(6.5, 2.5)

C

(8.8, 5.0)

B

(5.7, 7.6)

Figure 5: NDVS strategy of mobile robot OSL.

there is no olfaction. However, these methods have the same
hypothesis that the probabilities of the gas leakage source
appearing in the scene are equal, which is obviously incon-
sistent with the actual situation. Because the probabilities of
gas leakage source in some areas is big and others may be
small, thus, these random searching methods have certain
blindness. If some potential gas sources are determined
using vision in advance and then drives the robot to check
the relative plausible areas firstly, it would overcome the
blindness of random searching efficiently in a certain degree.

LSI is “far,” OI is “too low,” VI is “true,” and WI is “true”
or “false”; we have

𝑦 = 𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

2
2𝛿

1
3𝛿

1
2𝛿

1
2 = 𝛿

3
7 ,

or 𝑦 = 𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

2
2𝛿

1
3𝛿

1
2𝛿

2
2 = 𝛿

3
7 ,

(30)

which means NDVS. The optimal strategy is shown in
Figure 5. If only one plausible area is existent in the scene,
the robot moves to the area directly to check. If more
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(a) (b)

Figure 6: Scene images and the relative saliency maps.

plausible areas are existent it needs to plan the searching
path to improve the searching efficiency. A recursive optimal
searching strategy (NDVS: nearest distance based visual
searching) is proposed in this paper because it cannot
be determined in advance which one will find the gas
source.

In Figure 4, 𝑂 is the initial position (6.5, 2.5) and 𝐴
(2.7, 3.8), 𝐵 (5.7, 7.6), and 𝐶 (8.8, 5.0) are the plausible areas
obtained using top-down visual attention mechanism and
shape analysis [13] to the vision information. The distances
between the initial position and the plausible areas are 4.02m,
5.16m, and 3.40m, respectively. Thus, the robot moves to the
nearest area (point𝐶). If there is no gas source, the next target
from 𝐴 and 𝐵 is selected according to the distance to 𝐶. 𝐿

𝐶𝐵

(2.52m) is less than 𝐿
𝐶𝐴

(6.22m). Thus, 𝐵 is the next.
Figure 6(a) is the scene images in which the three white

to gray circles represent the visual computing results (the
most three saliency regions) and the red circle represents
the potential gas source determined by using shape analysis.
Figure 6(b) is the relative saliency map.

In Figure 7, point 𝑂 (red solid dot) is the initial position
of the robot, 𝐴, 𝐵, and 𝐶 are the plausible areas, the big blue
dot represents the robot, and the blue dots are the searching
trajectory.

4.3. The Experimental Result with Vision and Olfaction.
When vision, olfaction, and wind information are efficient
the robot starts to make decision where to go, that is, path
planning (PP). LSI is “far,” OI is “normal,” VI is “true,”
and WI is “true” or “false”; we have 𝑦 = 𝑀

𝑓
𝑥1𝑥2𝑥3𝑥4 =

𝑀
𝑓
𝛿
2
2𝛿

2
3𝛿

1
2𝛿

1
2 = 𝛿

5
7 or 𝑦 = 𝑀𝑓𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

2
2𝛿

2
3𝛿

1
2𝛿

2
2 = 𝛿

5
7

which means PP. The searching result is shown in Figure 8.
The red dot line is the trajectory of the mobile robot

and the big red round is the start position. At the beginning
there is no gas concentration, the robot moves toward point
𝐴 (points 𝐴, 𝐵, and 𝐶 are the plausible areas) by using
NDVSmethod. And in themoving process gas concentration
is detected; then the robot adjusts the moving direction
constantly according to the gas concentration and wind
information. When both laser information and vision are
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Figure 7: Real-time NDVS searching result.
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Figure 8: OSD trajectory of mobile robot OSL.

efficient and the gas concentration is detected constantly, the
obstacle is declared as the gas source. LSI is “near,” OI is “too
high,” VI is “true,” and WI is “true” or “false”; we have 𝑦 =
𝑀
𝑓
𝑥1𝑥2𝑥3𝑥4 = 𝑀𝑓𝛿

1
2𝛿

3
3𝛿

1
2𝛿

1
2 = 𝛿

2
7 or 𝑦 = 𝑀

𝑓
𝑥1𝑥2𝑥3𝑥4 =

𝑀
𝑓
𝛿
1
2𝛿

3
3𝛿

1
2𝛿

2
2 = 𝛿

2
7 , which means OSD.

In Figure 8, the point 𝐵 is real source. Once the avoiding
behavior actives, that is, the laser information is efficient, it
will drive the mobile robot move away from the obstacle.
But the computing results with olfaction and vision drive the
robot toward the area of the obstacle. Thus, the robot will
keep wandering near the area and the potential gas source is
declared as the real source (𝐵 is real source).

5. Conclusion

In this paper, themultivariable fuzzy logic controller based on
semitensor product (STP) for mobile robot OSL is designed.
Using the basic properties of STP, the complex fuzzy con-
trol rules, and fuzzy logic inference are converted into an
algebraic form. The multisensor information is the inputs of
the fuzzy control system and the relative searching strategies
are the outputs. The proposed multivariable fuzzy control
system can activate relative searching strategies according to
the timely multisensor information detected by the mobile
robot, which makes the robot generate an optimization
strategy to deal with the dynamic, complex, and unstructured
environments. Compared with the classic olfaction-based

odor source localization methods, the presented method can
overcome the blindness of plume finding to a certain degree;
that is, the traditional algorithms for plume finding are
random searching without odor information and the mobile
robot will check the scenewith equal probability. Actually, the
probability of suspected odor source in the scene is different.
Thus, it will help to find the plume with the aid of more
sensors, such as cameral. Therefore, the proposed method
can make up the blindness of the olfaction-based ones to
a certain degree. Equally important, any searching strategy
can be updated in this framework and has no influence on
the others whether based on a single sensor information or
multisensor information. The proposed localization frame-
work can degenerate into the traditional olfaction-based
localization system. Most importantly, we gave an in-depth
study onmobile robot odor source localization from the angle
of mathematics which can reach the theory of the mobile
robot odor source localization.The reliability and robustness
of the proposed method are validated with the real robot
experiments.
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The limiting distribution of the size of binary interval tree is investigated. Our illustration is based on the contraction method,
and it is quite different from the case in one-sided binary interval tree. First, we build a distributional recursive equation of the
size. Then, we draw the expectation, the variance, and some high order moments. Finally, it is shown that the size (with suitable
standardization) approaches the standard normal random variable in the Zolotarev metric space.

1. Introduction

Random trees are usually generated based on combinatorics
and occur also in the context of algorithms from com-
puter science. There are many kinds of random trees with
different structures, such as recursive trees, search trees,
binary trees, and interval trees. The asymptotic probability
behavior of random variables in random trees has attracted
more scholars’ attention and has become a popular research
area. Drmota [1] introduced some labelled and unlabelled
random trees in his book. Devroye and Janson [2] studied
the protected nodes in several random trees. Feng and Hu
[3] researched the phase changes of scale-free trees. The
limiting law for the height, size, and subtree of binary search
trees was also considered (see [4–6]). There were also some
researchers investigating the Zagreb index and nodes of
random recursive trees (see [7–9]).

Binary interval tree is a random structure that underlies
the process of random division of a line interval and parking
problems. It has recently been a popular subject. Sibuya
and Itoh [10] showed that the number of internal and
external nodes in different levels of binary internal tree is
asymptotically normal, fromwhich the asymptotic normality
of the size of the tree could not be achieved directly. Prodinger
[11] looked into various parameters of the incomplete trie,

a one-sided version of a random tree with a digital flavor.
Fill et al. [12] followed with a study of the nonexistence of
limit distribution for the height of the incomplete trie. Itoh
and Mahmoud [13] considered five incomplete one-sided
variants of binary interval trees and proved that their sizes all
approach some normal random variables. Janson [14] drew
the same result for a larger scale of one-sided interval trees by
the renewal theory, and one kind of fragmentation trees was
discussed by Janson and Neininger [15]. Javanian et al. [16]
investigated the paths in m-ary interval trees. Su et al. [17]
studied the complete binary interval trees and got the Law
of Large Numbers. In addition, Pan et al. [18] considered the
construction algorithm about binary interval trees.

The binary interval tree is a tree associated with repeated
divisions of a line interval of length𝑥.The process of divisions
is as follows. If 𝑥 < 1, there is no division in effect; the
associated interval tree consists only of one terminal node.
Supposing that𝑥 ≥ 1, we beginwith the interval (0, 𝑥). Divide
the interval (0, 𝑥) into two subintervals by choosing 𝑈

𝑥
, a

point uniformly distributed over the interval (0, 𝑥). Then,
we get two intervals, (0, 𝑈

𝑥
) and (𝑈

𝑥
, 𝑥). Each of the two

subintervals is further divided at a uniformpoint of its length,
and two smaller subintervals are got as before. If the length of
the subinterval is less than 1, we stop the division. Repeat this
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Figure 1: (a) The division process. (b) The binary interval tree.

process until the length of every interval (or subinterval) is
less than 1.

We take 𝑥 = 4, for instance. Figures 1(a) and 1(b) show
how the above random division process of interval generates
a binary interval tree.

If some different conditions are added and those intervals
satisfying the conditions are not allowed to be divided (see
[13, 14]), thenwe can get different incomplete interval trees. In
particular, if we only divide one subinterval of every interval,
then the interval treewe get is the so-called one-sided interval
tree (see [13]).

It is obvious that interval tree could embody many
properties of random division, so it can elicit lots of valuable
subjects related to probability. For example, for 𝑥 > 0,
the height of the interval tree is the greatest level of all
subintervals after the divisions, denoted by 𝐻

𝑥
; the total

number of nodes of an interval tree is the total number of
intervals that were got from the randomdivision process, and
so on. Let 𝑆

𝑥
be the size of the interval trees, that is, the total

number of nodes of the binary interval trees. Our intention
is to investigate the random variable 𝑆

𝑥
, the size of binary

interval trees.
In this paper, the central limit theorem of the size of

binary interval trees is investigated. In view of the difficulty
to calculate the moment generating function of 𝑆

𝑥
, the

method we used is completely different from that in the
case of one-sided interval trees. In Section 2, we build a
distributional recursive equation of 𝑆

𝑥
and give the expec-

tation, the variance, and some high order moments of 𝑆
𝑥
.

In Section 3, via the contraction method, the limit law of
𝑆
𝑥
is shown to approach the unique solution of a fixed-

point distributional equation in the Zolotarev metric space.
Finally, we demonstrate that 𝑆

𝑥
, with suitable standardization,

converges to a normal limiting random variable, as 𝑥 → ∞.

2. The Moments of 𝑆
𝑥

Compared with the one-sided interval trees, the properties
of binary interval trees are much more complex. There are
a lot of difficulties when it comes to obtaining the moment
generating function of 𝑆

𝑥
. Therefore, the method used in

the case of one-sided interval trees (see [13]) is no longer
applicable. Here, we build a distributional recursive equation
of 𝑆
𝑥
. We can calculate the expectation and the variance of

𝑆
𝑥
. Furthermore, we find that the order of the fourth central

moment of 𝑆
𝑥
is 𝑂(𝑥2) as 𝑥 goes to infinity.

From the definition of binary interval tree, it is easy to
see that 𝑆

1
= 3 and 𝑆

𝑥
= 1, for 𝑥 < 1. For our purpose to

investigate the case of 𝑥 ≥ 1, let 𝑈
𝑥
denote the point chosen

uniformly from interval (0, 𝑥); hence, 𝑈
𝑥
∼ 𝑈(0, 𝑥). For any

fixed real number 0 < 𝑢 < 𝑥, if 𝑈
𝑥
= 𝑢, we denote 𝑆(1)

𝑢

to be the size of the left subtree associated with the interval
(0, 𝑢). Correspondingly, 𝑆(2)

𝑥−𝑢
denotes the size of the right

subtree associated with the interval (𝑢, 𝑥). According to the
rule of division, we can see that 𝑆(1)

𝑢
and 𝑆

(2)

𝑥−𝑢
are mutually

independent. Thus, we have

𝑆
𝑥




𝑈=𝑢

𝑑

= 1 + 𝑆
(1)

𝑢
+ 𝑆
(2)

𝑥−𝑢
, ∀0 < 𝑢 < 𝑥. (1)

This formula implies that if 𝑈
𝑥
= 𝑢 is given, 𝑆

𝑥
has the same

distribution as 1 + 𝑆
(1)

𝑢
+ 𝑆
(2)

𝑥−𝑢
. Obviously, we can rewrite the

above formula as

𝑆
𝑥

𝑑

= 1 + 𝑆
(1)

𝑈
𝑥

+ 𝑆
(2)

𝑥−𝑈
𝑥

. (2)

Define
𝑚
1
(𝑥) := E𝑆

𝑥
;

𝑚
2
(𝑥) := E (𝑆

𝑥
)
2

.

(3)

It is easy to see that

𝑚
1
(1) = E𝑆

1
= 3;

𝑚
2
(1) = 9;

𝑚
1
(𝑥) = 𝑚

2
(𝑥) = 1, 0 < 𝑥 < 1.

(4)

From the distributional recursive equation (2) and the
above boundary conditions, Su et al. [17] calculated the
expectation E𝑆

𝑥
and the variance Var 𝑆

𝑥
, for any 𝑥 ≥ 0.

Lemma 1. Let 𝑆
𝑥
be the size of a binary interval tree. Then

E𝑆
𝑥
= 𝑚
1
(𝑥) = 4𝑥 − 1, 𝑥 ≥ 1. (5)

Lemma 2. Let 𝑆
𝑥
be the size of a binary interval tree. Then

Var 𝑆
𝑥
=

{

{

{

32𝑥 ln𝑥 − 16𝑥2 + 8𝑥 + 8, 1 ≤ 𝑥 ≤ 2,

(32 ln 2 − 20) 𝑥, 𝑥 ≥ 2.

(6)

In order to prove that the asymptotic distribution of 𝑆
𝑥
is

normal, we also need the order of E(𝑆
𝑥
− E𝑆
𝑥
)
4 as 𝑥 → ∞.

The following proposition shows the fourth central moment
of 𝑆
𝑥
.
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Proposition 3. Let 𝑆
𝑥
be the size of a binary interval tree.Then

E (𝑆
𝑥
− E [𝑆

𝑥
])
4

= 𝑂 (𝑥
2

) , 𝑥 → ∞. (7)

Proof. See the appendix.

3. The CLT for 𝑆
𝑥

In this section, we will prove the asymptotic normality of 𝑆
𝑥

as 𝑥 → ∞. Themain method is the contraction method and
somemetrics are needed especially the Zolotarevmetrics (see
[19]).

First we introduce the Zolotarev metrics. Denote the
distribution of the random variable𝑋 byL(𝑋). LetD be the
set of the distributions of all real random variables, and define

D
∗

= {𝐹 : 𝐹 ∈D, ∫

R

𝑥𝑑𝐹 (𝑥) = 0, ∫

R

𝑥
2

𝑑𝐹 (𝑥)

= 1, ∫

R
|𝑥|
3

𝑑𝐹 (𝑥) <∞} .

(8)

It can be verified that random variable 𝑍 with L(𝑍) =

N(0, 𝜎
2

) satisfies the following formula. For any 𝑢 ∈ [0, 1],

𝑍

𝑑

= 𝑍√𝑢 + 𝑍√1 − 𝑢, (9)

and more generally, we have the following lemma.

Lemma 4. If 𝑍 and 𝑍 are standard normal random variables,
𝑈 is uniformly distributed over interval [0, 1], and (𝑈, 𝑍, 𝑍) are
mutually independent and then one has

𝑍

𝑑

= 𝑍√𝑈 + 𝑍√1 − 𝑈. (10)

Proof. In fact, for any 𝑢 ∈ [0, 1], we have

E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)}

= E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)}

= E𝑒i(𝑡√𝑢)𝑍E𝑒i(𝑡√1−𝑢)𝑍

= exp{−𝑢𝑡
2

2

} exp{−(1 − 𝑢) 𝑡
2

2

} = exp{−𝑡
2

2

} .

(11)

Therefore,

E exp {i𝑡 (√𝑈𝑍 + √1 − 𝑈𝑍)}

= ∫

1

0

E exp {i𝑡 (√𝑢𝑍 + √1 − 𝑢𝑍)} 𝑑𝑢

= ∫

1

0

exp{−𝑡
2

2

}𝑑𝑢 = exp{−𝑡
2

2

} .

(12)

But, we can find that, in the set D∗, there is only one distri-
bution, the standard normalN(0, 1), satisfying (10).

Suppose that 𝑚 is a nonnegative integer. Denote F(𝑚) by
the set of all real functions that are 𝑚 times continuous and
differentiable, defined on the real line. Let

F
(𝑚)

𝛼

:= {𝑓 : 𝑓 ∈F
(𝑚)

,






𝑓
(𝑚)

(𝑥) − 𝑓
(𝑚)

(𝑦)






≤




𝑥 − 𝑦






𝛼

} ,

(13)

where 0 < 𝛼 ≤ 1 is a fixed real number. Let 𝑠 = 𝑚 + 𝛼 and

𝜁
𝑠
(𝑋, 𝑌) := 𝜁

𝑠
(L (𝑋) ,L (𝑌))

= sup {

E𝑓 (𝑋) − E𝑓 (𝑌)


: 𝑓 ∈F

(𝑚)

𝛼
} ,

(14)

and then 𝜁
𝑠
is the Zolotarevmetrics with order 𝑠 on the setD.

According to the properties of the Zolotarevmetric, we know

𝜁
𝑠
(𝑋, 𝑌) < ∞

⇐⇒ E |𝑋|𝑠 + E |𝑌|𝑠 < ∞,

E𝑋𝑘 = E𝑌𝑘, 𝑘 = 1, . . . , 𝑚.

(15)

Therefore, we can choose 𝜁
3
as the metric we need on the

subset D∗ (see [20, 21]); that is, 𝑚 = 2, 𝛼 = 1. This is due
to the fact that, for anyL(𝑋) ∈ D∗ andL(𝑌) ∉ D∗, we have
𝜁
3
(𝑋, 𝑌) = ∞, but ifL(𝑋),L(𝑌) ∈ D∗, then 𝜁

3
(𝑋, 𝑌) < ∞.

The metric 𝜁
𝑠
(𝑋, 𝑌) has several properties as follows (see

[20]):

(1) For any constant 𝑐 > 0,

𝜁
𝑠
(𝑐𝑋, 𝑐𝑌) = 𝑐

𝑠

𝜁
𝑠
(𝑋, 𝑌) ; (16)

(2) if random variables 𝑌 and (𝑋
1
, 𝑋
2
) are mutually

independent, then

𝜁
𝑠
(𝑋
1
+ 𝑌,X

2
+ 𝑌) ≤ 𝜁

𝑠
(𝑋
1
, 𝑋
2
) ; (17)

(3) for random variables𝑋 and {𝑋
𝑛
, 𝑛 = 1, 2, 3, . . .},

𝜁
𝑠
(𝑋
𝑛
, 𝑋) → 0 ⇒ 𝑋

𝑛

𝑑

→ 𝑋. (18)

Now, we begin to prove the main result in this paper.

Theorem 5. Let 𝑆
𝑥
be the size of a binary interval tree. Then,

as 𝑥 → ∞,

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

𝑑

→ N (0, 1) . (19)
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Proof. Denote

𝑆
∗

𝑥
:=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥
, 𝑥 > 0,

ℎ (𝑥) := √
32𝑥 ln𝑥 − 16𝑥2 + 8𝑥 + 8

(32 ln 2 − 20) 𝑥
, 𝑥 > 0.

(20)

Then from Lemmas 1 and 2, we know that

𝑆
∗

𝑥
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

, 𝑥 ≥ 2,

𝑆
𝑥
− E𝑆
𝑥

√Var 𝑆
𝑥

⋅ ℎ (𝑥) , 1 ≤ 𝑥 < 2,

2 − 4𝑥

√(32 ln 2 − 20) 𝑥
, 0 < 𝑥 < 1.

(21)

So, we have L(𝑆
∗

𝑥
) ∈ D∗ for 𝑥 ≥ 2 and L(𝑆

∗

𝑥
) ∉ D∗ for

0 < 𝑥 < 2.
According to the correlative inequality in [21], for any

L(𝑋) ∈ D∗,L(𝑌) ∈ D∗,

𝜁
3
(𝑋, 𝑌) ≤

Γ (2)

Γ (4)

∫

R
|𝑡|
3

𝑑 |𝑃 (𝑋 < 𝑡) − 𝑃 (𝑌 < 𝑡)| , (22)

where Γ is the gamma function. Assume that the distribution
of random variable𝑍 isN(0, 1). It follows from Proposition 3
that

sup
𝑥≥4

E (𝑆∗
𝑥
)
4

< ∞. (23)

Therefore, there exists a constant 𝐶 > 0 such that

sup
𝑥≥4

𝜁
3
(𝑆
∗

𝑥
, 𝑍) ≤ 𝐶(sup

𝑥≥4

E 

𝑆
∗

𝑥






3

+ E |𝑍|3) < ∞. (24)

Denote

𝑎
𝑥
:= 𝜁
3
(L (𝑆

∗

𝑥
) , Φ) = 𝜁

3
(𝑆
∗

𝑥
, 𝑍) , (25)

where Φ is standard normal distribution and 𝑍 is standard
normal random variable; then we can see that

0 ≤ 𝑏 := lim sup
𝑥→∞

𝑎
𝑥
< ∞. (26)

Now, we just need to prove that 𝑏 = 0; then the theorem
follows.

Suppose that 𝑥 ≥ 4; by (A.1) and (21), we have

𝑆
∗

𝑥




𝑈
𝑥
=𝑡
=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥









𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 2 ≤ 𝑡 ≤ 𝑥 − 2,

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 1 ≤ 𝑡 < 2,

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]

√(32 ln 2 − 20) 𝑥
+

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]

√(32 ln 2 − 20) 𝑥
, 𝑥 − 2 < 𝑡 ≤ 𝑥 − 1,

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
] − (4𝑡 − 2)

√(32 ln 2 − 20) 𝑥
, 0 < 𝑡 < 1

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
] − [4 (𝑥 − 𝑡) − 2]

√(32 ln 2 − 20) 𝑥
, 𝑥 − 1 < 𝑡 < 𝑥

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
∗

𝑡
√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

, 2 ≤ 𝑡 ≤ 𝑥 − 2;

𝑆
∗

𝑡
ℎ (𝑡)√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

, 1 ≤ 𝑡 < 2,

𝑆
∗

𝑡
√

𝑡

𝑥

+ 𝑆
∗

𝑥−𝑡
ℎ (𝑥 − 𝑡)√

𝑥 − 𝑡

𝑥

, 𝑥 − 2 < 𝑡 ≤ 𝑥 − 1,

𝑆
∗

𝑥−𝑡
√

𝑥 − 𝑡

𝑥

−

4𝑡 − 2

√(32 ln 2 − 20) 𝑥
, 0 < 𝑡 < 1;

𝑆
∗

𝑡
√

𝑡

𝑥

−

4 (𝑥 − 𝑡) − 2

√(32 ln 2 − 20) 𝑥
, 𝑥 − 1 < 𝑡 < 𝑥,

(27)

where𝑈
𝑥
= 𝑡 is the first point chosen from interval (0, 𝑥) and

{𝑆
∗

𝑥
, 𝑥 > 0} is an independent copy of {𝑆∗

𝑥
, 𝑥 > 0}.

If we denote 𝑈 := 𝑈
𝑥
/𝑥, then 𝑈 ∼ 𝑈(0, 1) and we can

rewrite the above formula as

𝑆
∗

𝑥




𝑈=𝑢

=

𝑆
𝑥
− (4𝑥 − 1)

√(32 ln 2 − 20) 𝑥









𝑈=𝑢

(28)

𝑑

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑆
∗

𝑢𝑥
√𝑢 + 𝑆

∗

(1−𝑢)𝑥
√1 − 𝑢,

2

𝑥

≤ 𝑢 ≤ 1 −

2

𝑥

;

𝑆
∗

𝑢𝑥
ℎ (𝑢𝑥)√𝑢 + 𝑆

∗

(1−𝑢)𝑥
√1 − 𝑢,

1

𝑥

≤ 𝑢 <

2

𝑥

,

𝑆
∗

𝑢𝑥
√𝑢 + 𝑆

∗

(1−𝑢)𝑥
ℎ ((1 − 𝑢) 𝑥)√1 − 𝑢, 1 −

2

𝑥

< 𝑢 ≤ 1 −

1

𝑥

,

𝑆
∗

(1−𝑢)𝑥
√1 − 𝑢 −

4𝑢𝑥 − 2

√(32 ln 2 − 20) 𝑥
, 0 < 𝑢 <

1

𝑥

;

𝑆
∗

𝑢𝑥
√𝑢 −

4 (1 − 𝑢) 𝑥 − 2

√(32 ln 2 − 20) 𝑥
, 1 −

1

𝑥

< 𝑢 < 1.

(29)

According to the definition of D∗ and 𝜁
3
, it could be

found that (𝑆∗
𝑥
| 𝑈
𝑥
= 𝑡) ∈ D∗ for 2 < 𝑡 < 𝑥 − 2 and 𝑆∗

𝑥
∈ D∗.
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If we define 𝑆
𝑥
:= (𝑆
∗

𝑥
| 𝑈
𝑥
< 2 or 𝑈

𝑥
> 𝑥 − 2), then we

can also see that 𝑆
𝑥
∈ D∗. Furthermore, E((𝑆

𝑥
)
4

) ≤ 𝐶
1
for

some positive constant 𝐶
1
by conditioning on 𝑈

𝑥
and using

the similar calculation in the appendix. Hence,

𝜁
3
(𝑆


𝑥
, 𝑍) ≤ 𝛽, (30)

for some positive constant 𝛽.
As we had pointed out before, the standard normal

distribution is the only distribution satisfying (10) in the set
D∗. From (25), (14), and Lemma 4, for 𝑥 > 4, we have

𝑎
𝑥
= 𝜁
3
(𝑆
∗

𝑥
, 𝑍) ≤ 𝜁

3
(𝑆


𝑥
, 𝑍) ⋅

4

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
((𝑆
∗

𝑥
| 𝑈 = 𝑢) , 𝑍) 𝑑𝑢 ≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢 + 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢

+ 𝑍√1 − 𝑢) 𝑑𝑢 (By (15) and (29))

≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢 + 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢

+ 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢) 𝑑𝑢 + ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑍√𝑢

+ 𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√𝑢 + 𝑍√1 − 𝑢) 𝑑𝑢

≤

4𝛽

𝑥

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢,𝑍√𝑢) 𝑑𝑢

+ ∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆

∗

𝑥(1−𝑢)

√1 − 𝑢, 𝑍√1 − 𝑢) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝜁
3
(𝑆
∗

𝑥𝑢
√𝑢,𝑍√𝑢) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝑢
3/2

𝜁
3
(𝑆
∗

𝑥𝑢
, 𝑍) 𝑑𝑢

=

4𝛽

𝑥

+ 2∫

1−2/𝑥

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢.

(31)

Given 𝜀 > 0, let 𝛿 > 0 be small enough such that 𝛽𝛿5/2 < 𝜀/8.
For any fixed 𝛿 > 0, when 𝑥 is sufficiently large, then

4𝛽

𝑥

<

𝜀

10

,

2

𝑥

< 𝛿,

sup
𝛿≤𝑢≤1

𝑎
𝑥𝑢

< 𝑏 + 𝜀.

(32)

Thus,

2∫

𝛿

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 ≤ 2𝛽∫

𝛿

2/𝑥

𝑢
3/2

𝑑𝑢 ≤ 2𝛽∫

𝛿

0

𝑢
3/2

𝑑𝑢

=

4𝛽𝛿
5/2

5

<

𝜀

10

;

2 ∫

1−2/𝑥

𝛿

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 ≤ 2 (𝑏 + 𝜀) ∫

1−2/𝑥

𝛿

𝑢
3/2

𝑑𝑢

≤ 2 (𝑏 + 𝜀) ∫

1

0

𝑢
3/2

𝑑𝑢 <

4 (𝑏 + 𝜀)

5

,

(33)

where 𝛽 is the constant as before and 𝑥 is sufficiently large. It
implies that

𝑎
𝑥
≤

4𝛽

𝑥

+ 2∫

𝛿

2/𝑥

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢 + 2∫

1−2/𝑥

𝛿

𝑢
3/2

𝑎
𝑥𝑢
𝑑𝑢

<

𝜀

10

+

𝜀

10

+

4 (𝑏 + 𝜀)

5

<

4𝑏

5

+ 𝜀,

(34)

when 𝑥 is sufficiently large. Therefore,

𝑏 := lim sup
𝑥→∞

𝑎
𝑥
≤

4𝑏

5

+ 𝜀. (35)

From this equation and the arbitrariness of 𝜀 > 0, we can
conclude 𝑏 = 0 and

lim
𝑥→∞

𝜁
3
(𝑆
∗

𝑥
, 𝑍) = lim

𝑥→∞

𝑎
𝑥
= 0 (36)

immediately. By (18), the theorem holds.

Appendix

Proof of Proposition 3

From the process of generating the binary interval trees, it is
obvious that, for given 𝑈

𝑥
= 𝑡, 𝑡 ∈ (0, 𝑥),

(𝑆
𝑥
− E [𝑆

𝑥
])



𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{

{
{
{
{
{

{

(𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
]) + (𝑆

(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
]) , 1 ≤ 𝑡 ≤ 𝑥 − 1;

𝑆
(2)

𝑥−𝑡
− E [𝑆(2)

𝑥−𝑡
] − (4𝑡 − 2) , 0 < 𝑡 < 1;

𝑆
(1)

𝑡
− E [𝑆(1)

𝑡
] − [4 (𝑥 − 𝑡) − 2] , 𝑥 − 1 < 𝑡 < 𝑥,

(A.1)

where𝑈
𝑥
= 𝑡 is the first point chosen from interval (0, 𝑥). For

𝑥 ≥ 1, if we denote

𝑇
𝑥
:= 𝑆
(1)

𝑥
− E [𝑆(1)

𝑥
] ,

𝑇
∗

𝑥
:= 𝑆
(2)

𝑥
− E [𝑆(2)

𝑥
] ,

(A.2)

then we have

𝑇
𝑥




𝑈
𝑥
=𝑡

𝑑

=

{
{
{
{
{

{
{
{
{
{

{

𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
, 1 ≤ 𝑡 ≤ 𝑥 − 1;

𝑇
∗

𝑥−𝑡
− (4𝑡 − 2) , 0 < 𝑡 < 1;

𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2] , 𝑥 − 1 < 𝑡 < 𝑥.

(A.3)
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We need to calculate E𝑇3
𝑥
first before we get E𝑇4

𝑥
. For 𝑥 > 3,

we have

E [𝑇
𝑥
]
3

= E [E (𝑇3
𝑥
| 𝑈
𝑥
)] =

1

𝑥

∫

1

0

E [𝑇
𝑥−𝑡

− (4𝑡 − 2)]
3

𝑑𝑡 +

1

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡

− [4 (𝑥 − 𝑡) − 2]}
3

𝑑𝑡 +

1

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
3

𝑑𝑡

=

2

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2]}

3

𝑑𝑡 +

1

𝑥

⋅ ∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
3

𝑑𝑡 = (−

2

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡 +

6

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
2 E [𝑇
𝑡
] 𝑑𝑡 −

6

𝑥

⋅ ∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡 +

2

𝑥

⋅ ∫

𝑥

𝑥−1

E [𝑇3
𝑡
] 𝑑𝑡) +

1

𝑥

∫

𝑥−1

1

(E [𝑇
𝑡
]
3

+ 3E [(𝑇
𝑡
)
2

𝑇
∗

𝑥−𝑡
] + 3E [𝑇

𝑡
(𝑇
∗

𝑥−𝑡
)
2

]

+ E [𝑇∗
𝑥−𝑡

]
3

) 𝑑𝑡.

(A.4)

In view of the independence between 𝑇
𝑡
and 𝑇

∗

𝑥−𝑡
and that

E[𝑇
𝑡
] = E[𝑇∗

𝑡
] = 0 holds for any 1 ≤ 𝑡 ≤ 𝑥 − 1, we have

E [𝑇
𝑥
]
3

= −

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡

−

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡

+

2

𝑥

∫

𝑥

𝑥−1

E [𝑇3
𝑡
] 𝑑𝑡 +

2

𝑥

∫

𝑥−1

1

E [𝑇3
𝑡
] 𝑑𝑡

= −

2

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]
3

𝑑𝑡

−

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]E [𝑇2
𝑡
] 𝑑𝑡

+

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡

:= 𝑀
1
+𝑀
2
+

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡.

(A.5)

It is easy to see that

𝑀
1
= −

1

2𝑥

∫

2

−2

𝑢
3

𝑑𝑢 = 0, (A.6)

and when 𝑥 > 3, for the part𝑀
2
, we have

𝑀
2
= −

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2]Var [𝑆
𝑡
] 𝑑𝑡

= −

6

𝑥

∫

𝑥

𝑥−1

[4 (𝑥 − 𝑡) − 2] [(32 ln 2 − 20) 𝑡] 𝑑𝑡

= −

6 (32 ln 2 − 20)
𝑥

∫

1

0

(4𝑡 − 2) (𝑥 − 𝑡) 𝑑𝑡

=

2 (32 ln 2 − 20)
𝑥

.

(A.7)

Therefore,

E [𝑇3
𝑥
] =

2

𝑥

∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡 +

2 (32 ln 2 − 20)
𝑥

, 𝑥 > 3. (A.8)

That is,

𝑥E [𝑇3
𝑥
] = 2∫

𝑥

1

E [𝑇3
𝑡
] 𝑑𝑡 + 2 (32 ln 2 − 20) ,

𝑥 > 3.

(A.9)

Via differentiation with respect to 𝑥, we get the differential
equation:

(E [𝑇3
𝑥
])



−

1

𝑥

E [𝑇3
𝑥
] = 0, 𝑥 > 3. (A.10)

The solution to this differential equation is

E [𝑇3
𝑥
] = 𝑘
0
𝑥, 𝑥 > 3, (A.11)

where 𝑘
0
is a constant real number.

Similarly, for E[𝑇
𝑥
]
4, when 𝑥 > 4, we have

E [𝑇
𝑥
]
4

=

2

𝑥

∫

𝑥

𝑥−1

E {𝑇
𝑡
− [4 (𝑥 − 𝑡) − 2]}

4

𝑑𝑡

+

1

𝑥

∫

𝑥−1

1

E [𝑇
𝑡
+ 𝑇
∗

𝑥−𝑡
]
4

𝑑𝑡.

(A.12)

Because 𝑇
𝑡
is independent of 𝑇∗

𝑥−𝑡
, and E𝑇

𝑡
= 0 holds for any
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In particular, for the part 𝐼
1
, we have

𝐼
1
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. (A.14)

When 𝑥 > 3, for the part 𝐼
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, we have
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where 𝑘
1
:= 4(32 ln 2 − 20)/3 is a constant.

When 𝑥 > 4, for the part 𝐼
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, we have
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where 𝑘
0
is the same as that in (A.11).
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Noting that E[𝑇2
𝑡
] = Var[𝑆

𝑡
] and (6), we can see that
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where
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Therefore,
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That is,
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Via differentiation with respect to 𝑥, we get the differential
equation:
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The solution to this differential equation is

E𝑇4
𝑥
= 18𝑎

3
𝑥
2

+ 12𝑎
2
𝑥 ln𝑥 + 𝑐𝑥 − 6𝑎
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,
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where 𝑐 is a constant and the constants 𝑘
1
, 𝑎
1
, 𝑎
2
, 𝑎
3
are real

numbers as defined before. From this equation, Proposition 3
follows.
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The energy-related carbon emissions of China’s manufacturing increased rapidly, from 36988.97 × 104 tC in 1996 to 74923.45 ×
104 tC in 2012. To explore the factors to the change of the energy-related carbon emissions from manufacturing sector and the
decoupling relationship between energy-related carbon emissions and economic growth, the empirical research was carried out
based on the LMDI method and Tapio decoupling model. We found that the production scale contributed the most to the increase
of the total carbon emissions, while the energy intensity was themost inhibiting factor. And the effects of the intrastructure and fuel
mix on the change of carbon emissions were relatively weak. At a disaggregative level within manufacturing sector, EI subsector
had a greater impact on the change of the total carbon emissions, withmuchmore potentiality of energy conservation and emission
reduction. Weak decoupling of manufacturing sector carbon emissions from GDP could be observed in the manufacturing sector
and EI subsector, while strong decoupling state appeared in NEI subsector. Several advices were put forward, such as adjusting
the fuel structure and optimizing the intrastructure and continuing to improve the energy intensity to realize the manufacturing
sustainable development in low carbon pattern.

1. Introduction

Carbon emissions amount from China has already surpassed
the United States since 2007 and has been the number one
in the world [1]. Increasing trend of carbon emissions from
China has received the great attention with the global warm-
ing. Both energy saving and emission reduction are becoming
more and more important for Chinese government, who
was committed to reducing carbon dioxide emissions per
unit of GDP by 40–45% in 2020 to be less than 2005
levels on the Copenhagen Climate Change Conference in
2009. Manufacturing sector’s, as the core of China economy,
product value surpassed the United States for the first time
in 2011 and became the number one in the world. But
the development of China manufacturing sector has been
depending on the high energy consumption for a long time,
and it was responsible for approximately 82.54% of China’s
final energy demand in 1995–2006 [2]. Therefore, how to
realize the manufacturing sustainable development in low
carbon pattern is the biggest challenge for China in future.
However, China’s manufacturing sector has great energy

saving potentiality and space due to excessive dependence on
resources and energy consumption [3]. Thus, it is necessary
to study the changes of energy-related carbon emissions over
time and to explore the main driving factors to increase
carbon emissions from China manufacturing sector, as well
as the relationship between carbon emissions and economic
growth in order to help meet the government target.

2. Literature Review

2.1. Decomposition Carbon Emissions. Decomposition analy-
sis can divide the changes in carbon emissions over time into a
number of different factors, which help us better understand
the reasons for the changes observed. The broad technique
of decomposition analysis undertaken here is often known
as IDA, due to the advantage of its simplicity, the availability
of statistical data, and the ease of historical comparison.
There are a number of different methods available within
IDA, and the Log Mean Divisia Index method I (LMDI I)
is perfect in decomposition, having no residual term, which
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is used here in decomposition carbon emissions due to the
adaptability and ease of use [4, 5]. Using LMDI I method,
many studies were carried out on carbon emissions from
China in the last decade. Dong and Zhang [6] applied LMDI
to decompose the energy-related carbon emissions from
China industry into the production scale, carbon emissions
intensity, energy structure, and energy intensity, and the
findings showed that industrial production scale plays direct
role in increasing carbon emissions. Wei and Xia [7] studied
per-capita carbon emissions from the world and found that
reducing the energy intensity and developing renewable clear
energy were the only two major ways to realize low carbon
economy under the background of increasing income and
high energy dependence on coal. Song [8] also studied
energy-related carbon emissions of Shandong Province in
China and decomposed the carbon emissions into popula-
tion, average wealth, intrastructure, and energy intensity, and
pointed out that only the energy intensity had the negative
effect on carbon emissions. Hammond and Norman [9]
used the LMDI method to make decomposition analysis of
energy-related carbon emissions from UK manufacturing
sector and separated the contributions of changes in output,
intrastructure, energy intensity, fuel mix, and electricity
emission factor to the reduction in carbon emissions.

2.2. Decoupling Analysis between Carbon Emissions and Eco-
nomic Growth. Many studies show the carbon emissions are
strongly connected to the economic growth [10–13], and the
target of low carbon economy is to sustain the decoupling
state between the carbon emissions and economic growth.
The concept of decoupling is first proposed by Organization
for Economic Cooperation and Development (OECD), who
divided it into absolute decoupling and relative decoupling
[14]. Tapio [15] further expanded the decoupling theory,
distinguished eight logical possibilities of decoupling, and
studied the decoupling situations relationships betweenGDP,
traffic volumes, and CO

2
emissions from transport in the

EU15 countries in 1970–2001; Zhuang [16] applied Tapio
model and studied the decoupling relationship between CO

2

emission and economic growth in Taiwan. Wang et al. [1]
explored the decoupling relationship between energy-related
carbon emissions and economic growth in Guangdong and
found that its decoupling state turns fromweak decoupling in
1996 to strong decoupling state in 2011. Li et al. [17] employed
Tapio decoupling index to analyze the relationship between
rural and urban construction land. Compared with OECD
decoupling index, Tapio decoupling model has been widely
used in empirical verification owing to the advantage of ease
of adaptability, ease of use, and ease of understanding.

In summary, previous studies mainly focused on the
carbon emissions from industry or the total carbon emis-
sions amount in a certain nation or region, while few of
them focused on the carbon emissions from manufacturing
sector and the relationship between energy-related carbon
emissions and economic growth in China [18]. Moreover,
the changes of carbon emissions at disaggregative level lack
analysis, but it is necessary for government to consider
the differences of subsectors when making energy saving
policies and measures. Therefore, the paper studies the

changes of energy-related carbon emissions from China
manufacturing over the years from 1996 to 2012, decomposes
it in production scale, intrastructure, energy intensity and
fuel mix, and carbon emissions coefficient by the means
of LMDI, makes the decoupling analysis between energy-
related carbon emissions and economic growth, and decom-
poses the total decoupling elasticity into energy conservation,
carbon emissions reduction, output value, and industrial
development. In addition, the manufacturing sector is split
into two subsectors, energy-intensive (EI) subsector and non-
energy-intensive (NEI) subsector; the carbon emissions of
each subsector is decomposed, as well as the decoupling
analysis.

3. Methods and Data Resource

3.1. Defining Energy-Intensive and Energy-Intensive Subsec-
tor. The manufacturing sector here is defined by Standard
Industrial Classification (SIC) codes 1–30 according to China
Statistical Yearbook, excluding the artwork and other sub-
sectors (SIC code 29) and recycling subsector (SIC code 30)
omitted for the limited data. The details of remaining 28
subsectors are shown in Table 1. Manufacturing sectors can
be divided into EI and NEI subsectors, based on the extent
of energy dependence and the potential strength of drivers to
energy intensity improvement [9], and there are three criteria
including the aggregate energy intensity of a subsector, the
proportion of total financial costs represented by energy and
water for a subsector, and the mean energy use per enterprise
in a subsector. Given the limited data, the paper chooses the
aggregate energy intensity value of 64.6 TJ/108 Yuan as the
division criteria [9]. And five subsectors whose values are
over the threshold are classified as the EI sector; they areman-
ufacture of pulp, paper, and paper products (SCI code 10),
manufacture of petroleum processing, coking, and nuclear
fuel (SCI code 13), manufacture of chemicals and chemical
products (SCI code 14), manufacture of other nonmetallic
mineral products (SCI code 19), and manufacture of ferrous
metal smelting and rolling (SCI code 20), and the remaining
23 subsectors are classified as the NEI sectors; all of them
are labeled in Table 1. The average energy intensity in the EI
subsector is 365.25 TJ/108 Yuan, which is 9.19 times of that in
the NEI subsector.

3.2. Calculation of Energy-Related Carbon Emissions from
Manufacturing Sector. Energy consumption includes the
end-use energy consumption by manufacturing sector and
energy consumption by production of thermal power and
heat power. The paper just calculated the end-use energy
consumption for the limited data.There are 16 types of energy
mainly consumed in the manufacturing sector, including
coal, crude oil, natural gas, and other fossil fuels from Energy
Balance Sheet of China Energy Statistical Yearbook. Carbon
emissions coefficient of each fuel could be calculated refer-
enced by 2006 IPCCGuidelines forNational GreenhouseGas
Inventories [19]. Based on these, the carbon emissions of 28
manufacturing subsectors could be calculated, as well as the
total manufacturing sector.
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Table 1: Subsector split of the manufacturing sector.

SCI code Manufacturing subsector EI/NEI

1 Manufacture of agricultural and
sideline products NEI

2 Manufacture of food products NEI
3 Manufacture of beverages NEI
4 Manufacture of tobacco products NEI
5 Manufacture of textiles NEI

6 Manufacture of garment, shoes, and
hat NEI

7 Manufacture of leather, fur, and feather NEI

8 Manufacture of wood and wood
products NEI

9 Manufacture of furniture NEI

10 Manufacture of pulp, paper, and paper
products EI

11 Publishing, printing, and reproduction
of recorded media NEI

12 Manufacture of stationery and
sporting goods NEI

13 Manufacture of petroleum processing,
coking, and nuclear fuel EI

14 Manufacture of chemicals, chemical
products EI

15 Manufacture of pharmaceutical NEI
16 Manufacture of chemicals fibers NEI
17 Manufacture of rubber NEI
18 Manufacture of plastic products NEI

19 Manufacture of other nonmetallic
mineral products EI

20 Manufacture of ferrous metal smelting
and rolling EI

21 Manufacture of nonferrous metal
smelting and rolling NEI

22 Manufacture of mineral product NEI
23 Manufacture of general equipment NEI
24 Manufacture of special equipment NEI
25 Manufacture of transport equipment NEI
26 Manufacture of electrical machinery NEI

27
Manufacture of communication
equipment computer and other

electronic equipment
NEI

28 Manufacture of instrument and office
machinery NEI

3.3. Data Source and Processing. The energy data used in this
paper are derived from Energy Balance Sheet of China Energy
Statistical Yearbook (1996–2013). Other data come from the
Statistical Yearbook of China (1996–2013). To eliminate the
effect of price changes, we converted the GDP at current price
to the GDP at constant price in 1995 with index reduction
method, and the price indexes come from China Statistical
Yearbook.

3.4. Decomposition Carbon Emissions Based on LMDI Model.
According to LMDI model, the total change in carbon emis-
sions over the period (0 to𝑇) (Δ𝐶

𝑇
) is the sumof the changes,

including the changes in production scale (Δ𝐶
𝑝
), the changes

in intrastructure (Δ𝐶
𝑠
), the changes in energy intensity (Δ𝐶

𝑖
),

the changes in fuel mix (Δ𝐶
𝑚
), and the changes in carbon

emissions coefficient (Δ𝐶
𝑒
). Carbon emissions coefficients of

different basic fuels are approximately constant in China in
the actual application; therefore Δ𝐶

𝑒
= 0.

The total change in carbon emissions can be expressed as

Δ𝐶
𝑇
= Δ𝐶
𝑝
+ Δ𝐶
𝑠
+ Δ𝐶
𝑖
+ Δ𝐶
𝑚
. (1)

For 𝑖 manufacturing subsector consuming 𝑗 fuels, the
total carbon emissions are given by

𝐶 = ∑

𝑖𝑗

𝐶
𝑖𝑗
= ∑

𝑖𝑗

𝑃

𝑃
𝑖

𝑃

𝐸
𝑖

𝑃
𝑖

𝐸
𝑖𝑗

𝐸
𝑖

𝐶
𝑖𝑗

𝐸
𝑖𝑗

= ∑

𝑖𝑗

𝑃𝑆
𝑖
𝐼
𝑖
𝑀
𝑖𝑗
𝑈
𝑖𝑗
, (2)

where𝑃 is the output ofmanufacturing sector,𝑃
𝑖
is the output

of subsector 𝑖, 𝐸
𝑖
is the energy consumption of subsector 𝑖, 𝐸

𝑖𝑗

is the consumption of fuel 𝑗 in subsector 𝑖, 𝐶
𝑖𝑗
is the carbon

emissions of fuel 𝑗 in subsector 𝑖, 𝑆
𝑖
= (𝑃
𝑖
/𝑃) is the output

share occupied by subsector 𝑖, and 𝐼
𝑖
= (𝐸
𝑖
/𝑃
𝑖
) is the energy

intensity of subsector 𝑖. And 𝑀
𝑖𝑗
= (𝐸
𝑖𝑗
/𝐸
𝑖
) represents the

proportion of energy in subsector 𝑖 supplied by fuel 𝑗 and
𝑈
𝑖𝑗
= (𝐶
𝑖𝑗
/𝐸
𝑖𝑗
) is carbon emissions coefficient factor of fuel

𝑗 in subsector 𝑖.
The components of change in (1) are the following:

Δ𝐶
𝑝
= ∑

𝑖𝑗

𝐿 (𝐶
𝑡−1

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
) ln [ 𝑃 (𝑡)
𝑃 (𝑡 − 1)

]

Δ𝐶
𝑠
= ∑

𝑖𝑗

𝐿 (𝐶
𝑡−1

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
) ln [
𝑆
𝑖
(𝑡)

𝑆
𝑖
(𝑡 − 1)

]

Δ𝐶
𝑖
= ∑

𝑖𝑗

𝐿 (𝐶
𝑡−1

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
) ln[
𝐼
𝑖𝑗
(𝑡)

𝐼
𝑖𝑗
(𝑡 − 1)

]

Δ𝐶
𝑚
= ∑

𝑖𝑗

𝐿 (𝐶
𝑡−1

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
) ln[
𝑀
𝑖𝑗
(𝑡)

𝑀
𝑖𝑗
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] ,

(3)

where

𝐿 (𝐶
𝑡−1

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
) =

{
{
{
{

{
{
{
{

{
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𝑡

𝑖𝑗
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𝑡−1

𝑖𝑗

ln (𝐶𝑡
𝑖𝑗
/𝐶
𝑡−1

𝑖𝑗
)

(𝐶
𝑡−1

𝑖𝑗
̸= 𝐶
𝑡

𝑖𝑗
)

𝐶
𝑡−1

𝑖𝑗
or 𝐶𝑡
𝑖𝑗
(𝐶
𝑡−1

𝑖𝑗
= 𝐶
𝑡

𝑖𝑗
) .

(4)

Equation (3) denotes the production effect, intrastructure
effect, energy intensity effect, and fuel mix effect, respectively.
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Table 2: Eight decoupling states divided by Tapio [15].

Decoupling states Δ𝐶/𝐶 ΔGDP/GDP Decoupling elasticity values (𝐷)
Negative decoupling

Expansive negative decoupling >0 >0 𝐷 > 1.2

Strong negative decoupling >0 <0 𝐷 < 0

Weak negative decoupling <0 <0 0 < 𝐷 < 0.8

Decoupling
Weak decoupling >0 >0 0 < 𝐷 < 0.8

Strong decoupling <0 >0 𝐷 < 0

Recessive decoupling <0 <0 𝐷 > 1.2

Coupling
Expansive coupling >0 >0 0.8 < 𝐷 < 1.2

Recessive coupling <0 <0 0.8 < 𝐷 < 1.2

To measure the effect contribution of each factor, we
define them as follows:

𝑔
𝑝
=

Δ𝐶
𝑝

Δ𝐶

,

𝑔
𝑠
=

Δ𝐶
𝑠

Δ𝐶

,

𝑔
𝑖
=

Δ𝐶
𝑖

Δ𝐶

,

𝑔
𝑚
=

Δ𝐶
𝑚

Δ𝐶

,

(5)

where𝑔
𝑝
,𝑔
𝑠
,𝑔
𝑖
, and𝑔

𝑚
indicate the effect contribution values

of production scale, intrastructure, energy intensity, and fuel
mix, respectively.

3.5. Decoupling Model between Carbon Emissions and Eco-
nomic Growth. In order to study the decoupling relation
between energy relationship between carbon emissions and
economic growth further, the decoupling model could be
decomposed into five elasticity values, and the model is given
as follows:

𝐷
𝑖
=

Δ𝐶
𝑖
/𝐶
𝑖

ΔGDP/GDP

=

Δ𝐶
𝑖
/𝐶
𝑖

Δ𝐸
𝑖
/𝐸
𝑖

⋅

Δ𝐸
𝑖
/𝐸
𝑖

Δ𝑃
𝑖
/𝑃
𝑖

⋅

Δ𝑃
𝑖
/𝑃
𝑖

ΔIGDP/IGDP

⋅

IGDP/IGDP
ΔGDP/GDP

,

(6)

where 𝐷
𝑖
denotes the decoupling elasticity between carbon

emissions from subsector 𝑖 and economic growth, 𝐶 is the
carbon emissions from subsector 𝑖 at base year, GDP and
IGDP are the gross domestic product and the secondary
industry product value at base year, and 𝐸

𝑖
and 𝑃

𝑖
denote

energy consumption and output value of subsector 𝑖, respec-
tively.Δ𝐶

𝑖
,𝐸
𝑖
, andΔ𝑃

𝑖
denote increment of carbon emissions,

energy consumption, output value of subsector 𝑖, respectively,
and ΔIGDP and ΔGDP denote the increment of secondary
industry product value and the gross domestic product.

(Δ𝐶
𝑖
/𝐶
𝑖
)/(Δ𝐸

𝑖
/𝐸
𝑖
) is the carbon reduction decoupling

elasticity, reflecting the elasticity between carbon emissions
of subsector 𝑖 and energy consumption, (Δ𝐸

𝑖
/𝐸
𝑖
)/(Δ𝑃

𝑖
/𝑃
𝑖
)

is the energy conservation decoupling elasticity, describing
the elasticity between energy consumption of subsector 𝑖
and manufacturing output value, (Δ𝑃

𝑖
/𝑃
𝑖
)/(ΔIGDP/IGDP)

is the output value decoupling elasticity, describing the
elasticity between product value of subsector 𝑖 and that of the
secondary industry, and (ΔIGDP/IGDP)/(ΔGDP/GDP) is
the industrial development decoupling elasticity, describing
the elasticity between the secondary industry product value
and the GDP. Additionally, the decoupling states defined by
Tapio are presented in Table 2 according to the decoupling
elasticity value.

4. Results and Discussion

4.1. Changes of Energy-Related Carbon Emissions. As is
shown in Figure 1 and Table 3, the energy-related carbon
emissions of China manufacturing increased rapidly from
36988.97 × 104 tons of carbon in 1996 to 74923.45 × 104 tons
of carbon in 2012 by 6.41% per annum and present obvious
change during the different period.The average carbon emis-
sions of EI subsector from 1996 to 2012 account for 83% of the
total amount of carbon emissions frommanufacturing sector,
but its output value only takes up 28% of total manufacturing
sector. The carbon emissions of NEI subsector change little
during the period, while both the carbon emissions from EI
subsector and the total manufacturing sector fluctuate from
1996 to 2012.
(1) Low carbon emissions and falling trend period (1996–

2001): the energy consumption from manufacturing sector
and EI subsector in this period decreased gradually, showing
falling trend with the year changing. Mainly because of the
financial crisis from Asia in 1997, China economy, especially
the manufacturing, was affected, and the slow growth rate of
manufacturing led to the stable low level of carbon emissions
in the whole country.
(2) Rapid growth period (2002–2012): the feature of car-

bon emissions from manufacturing sector and EI subsector
in this period was much higher increasing speed and much
bigger amount of carbon emissions. Except the fall in 2010,
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Table 3: The proportion of output value and carbon emissions of
EI subsector, NEI subsector to the total amount of manufacturing
sector in 1996–2012.

Year Output value proportion Carbon emissions proportion
EI NEI EI NEI

1996 28% 72% 78% 22%
1997 28% 72% 79% 21%
1998 26% 74% 79% 21%
1999 26% 74% 78% 22%
2000 27% 73% 80% 20%
2001 27% 73% 80% 20%
2002 26% 74% 80% 20%
2003 27% 73% 82% 18%
2004 29% 71% 84% 16%
2005 29% 71% 85% 15%
2006 29% 71% 86% 14%
2007 29% 71% 86% 14%
2008 30% 70% 86% 14%
2009 28% 72% 87% 13%
2010 29% 71% 87% 13%
2011 30% 70% 88% 12%
2012 29% 71% 89% 11%
Average 28% 72% 83% 17%
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Figure 1: Change trend of carbon emissions from China’s manufac-
turing sector and subsector in 1996–2012.

the total emission amount showed significant upward trend.
Because manufacturing sector developed rapidly, the depen-
dence on high energy consumption brought about the rapid
growth of carbon emissions, after China joinedWTO in 2001.
AlthoughChina has been advocating transforming economic
growth pattern, adjusting and optimizing the intrastructure
since 2006, the carbon emissions amount has not changed
correspondingly. The policy of energy conservation and
reduction still faces great pressure in future to achieve the
government targets in 2020.

1997 2002 2007 2012

Production scale Intrastructure
Energy intensity Fuel mix
Total change

−25000

−20000

−15000

−10000

−5000

0
5000

10000
15000
20000

Ca
rb

on
 em

iss
io

n 
(1
0
4

tC
)

Figure 2: Annual effect of each factor on carbon emissions in the
China manufacturing sector, 1997–2012.

Table 4: Cumulative effect contribution value of each factor on
carbon emissions in the China manufacturing sector, EI, and NEI
in 2012.

Factor Manufacturing sector EI NEI
Production scale 2.672 2.46 3.205
Intrastructure 0.087 0.005 −0.194
Energy intensity −1.994 −1.608 −2.158
Fuel mix 0.145 0.142 0.147

4.2. Decomposition Analysis of Carbon Emissions. The annual
effect of the production scale, intrastructure, energy intensity,
and fuel mix on carbon emissions frommanufacturing sector
is shown in Figure 2. Taking 1996 as the base year, the energy
intensity effect was always negative and the production scale
effect was positive; both intrastructure and fuelmix had slight
changes over the study period. In terms of cumulative effect
contribution value of each factor in 2012, as shown in Table 4,
the value of production scale was 276.2% andmade the largest
contribution to the changes of carbon emissions among all
factors, indicating the production scale had positive effect
on the increase of carbon emissions, energy intensity was an
important inhibition factor of increasing carbon emissions,
and its cumulative effect contribution value reached −199.3%.
The results showed that although energy intensity decreases,
the expansion of production from manufacturing sector
could result in the increase of carbon emissions.

While the value of intrastructure and fuel mix was 8.6%
and 14.4%, respectively, both the change of intrastructure
and fuel mix had no significant impact on curbing carbon
emissions of manufacturing sector. Manufacturing sector
consumed the coal for approximately over 50% of the total
energy consumption during the period, and the coal was still
the main fuel source of the energy consumption. Besides,
within manufacturing sector, the share of each subsector did
not change significantly; the output proportion of EI is still
too high with few changes. Thus, both fuel structure and
intrastructure of manufacturing sector need to be further
optimized in order to curb the increase of carbon emissions
in future.
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Figure 3: Annual effect of each factor on carbon emissions in EI
subsector, 1997–2012.
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Figure 4: Annual effect of each factor on carbon emissions in NEI
subsectors, 1997–2012.

Figures 3 and 4 represent the annual effect of each
factor on the changes of carbon emissions from EI and
NEI subsectors, respectively. The results showed that the
effect value of EI subsector was higher than that of NEI
subsector. For each subsector, both production scale and
energy intensity had relatively great impact on the changes
of carbon emissions during the study period. The effect of
production scale on the changes of carbon emissions was
positive in most of years during the study period, while
energy intensity effect was negative. In comparison, both
intrastructure and fuelmix had relative smaller impacts; their
cumulative effect contribution values were small, showing
relatively weak pushing effects on carbon emissions.

For EI subsector, in terms of cumulative effect contribu-
tion values in 2012, production scalemade the largest positive
contribution to the changes of carbon emissions and the
value reached 246%, energy intensity is the second factor, and
its contribution value reached −160.8%, while the value of
intrastructure and fuel mix was 0.5% and 14.2%, respectively.
As to NEI subsector, all the absolute cumulative effects of
contribution value of factors except fuel mix were relatively
higher than EI subsector, whose contribution value of the

1997 2002 2007 2012

Energy conservation Carbon emission
Output value

Industrial developmentDecoupling elasticity
reduction

value

−1

−0.5

0

0.5

1

1.5

2

2.5

3

D
ec

ou
pl

in
g 

el
as

tic
ity

 v
al

ue

Figure 5: Change trends of decoupling elasticity values between
energy-related carbon emissions and economic growth frommanu-
facturing sector, 1997–2012.

production scale, intrastructure, energy intensity, and fuel
mix was 320.5%, −19.4%, −215.8%, and 14.7%, respectively.

4.3. Analysis of Decoupling Elasticity. In order to analyze
the relationship between carbon emissions of manufac-
turing sector and economic growth, the paper calculated
the decoupling elasticity value according to (6). And five
decoupling elasticity values of manufacturing sector and two
subsectors from 1996 to 2012 could be obtained. As to the
manufacturing sector, the total decoupling elasticity value
was 0.163, expressing the weak decoupling state. Comparing
the four decoupling elasticity values, the output value had
the biggest value, which was 1.819 presenting the expansive
negative decoupling state between the output value of manu-
facturing sector and that of the secondary industry, while the
energy conservation had the smallest value, which was 0.091
expressing the weak decoupling state between the energy
consumption and the output value of manufacturing sector.
For two subsectors, the weak decoupling state occurred in EI
subsector, its total decoupling elasticity value was 0.208, and
the strong decoupling state appeared in NEI subsector, and
its total decoupling elasticity value was −0.0003.

The annual changes of all decoupling elasticity values
from manufacturing sector, EI subsector, and NEI subsector
were shown in Figures 5, 6, and 7, respectively. From the
change trends of all the decoupling elasticity values during
the study period, the total decoupling elasticity of carbon
emissions from economic growth had the same trend as
the energy conservation decoupling elasticity, it increased
between 1997 and 2003 but showed a clear decline after
2003, and the decoupling state transformed from the weak
decoupling state to strong decoupling state in 2012.

Decoupling elasticity of energy conservation describes
the elasticity of manufacturing output value from energy
consumption. For manufacturing sector, it had the same
trend as the total decoupling elasticity and presented the
weak or the strong decoupling state during the study period,
indicating the effective policy of energy conservation in
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Figure 6: Change trends of each of the decoupling elasticity values
between energy-related carbon emissions and economic growth
from EI subsectors in 1997–2012.
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Figure 7: Change trends of each of the decoupling elasticity values
between energy-related carbon emissions and economic growth
from NEI subsectors in 1997–2012.

China owing to falling energy consumption per unit of
output. Analyzing EI and NEI subsector, respectively, both
two subsectors had slight change, and the state of weak
decoupling often appeared in EI subsector almost every year,
but the strong decoupling often occurred in NEI subsector.
Either weak decoupling or strong decoupling state occurred
in manufacturing sector during the study period except in
2003 and 2004, showing significant decoupling effects.

Decoupling elasticity of carbon emission reduction
reflects the energy consumption elasticity of carbon emis-
sions. For China manufacturing, it increased between 1997
and 2000 but began to decline after 2000, and the expansive
coupling state appeared many times during the study period,
which indicated that the policy of carbon emissions reduction
in China manufacturing had little effect. Analyzing two
subsectors, respectively, the expansive coupling state mainly
appeared in EI subsector, while recessive coupling state
mainly occurred in NEI subsector during the study period.

Decoupling elasticity of output value describes the sec-
ondary industry value of elasticity of the manufacturing sec-
tor output value. For the manufacturing sector, it expressed

the state of expansive coupling or expansive negative decou-
pling from 1997 to 2012, indicating the production value of
manufacturing sector increased more than the secondary
industry. Like the total manufacturing sector, both EI and
NEI subsectors were also in the state of expansive coupling
state or expansive negative decoupling during the study
period, but the growth rate of EI sector was lower than that
of NEI subsector.

Decoupling elasticity of industrial development describes
the GDP elasticity of the secondary industry output value.
Either the state of expansive coupling or expansive negative
decoupling mainly appeared in 1997–2012, indicating the
growth rate of the secondary industry increased more than
GDP. Although our government has been encouraging the
development of the third industry, the secondary industry
took up higher proportion of GDP, and it was 45.3% in 2012.

5. Conclusions and Implications

Energy-related carbon emissions from 1996 to 2012 were
calculated from 28 subsectors of China manufacturing con-
suming 16 types of fuels, and the results indicated that
carbon emissions from China manufacturing sector have
been increasing rapidly since 2002. The paper makes the
analysis of the reasons of the increase of carbon emissions,
and the relationship between carbon emissions and economic
growth. The conclusions are as follows:

(i) Production scale was the major positive contribu-
tion factor affecting energy-related carbon emissions,
which had closely relationships with the expansion
of manufacturing output in recent years. However,
curbing the product of manufacturing is not the
feasible approach to decrease the carbon emissions for
the economic growth. The way to solve the issue in
the long run is to develop low carbon economy and
decrease energy intensity to improve energy efficiency
to coordinate the carbon emissions and economic
development.

(ii) Energy intensity always had strong inhibiting effects
on the increase of carbon emissions, showing down-
ward trend during the study periods. This is con-
nected with the energy conservation and emission
reduction advocated in recent years, and particularly
since the 11th Five-Year Plan period, China has been
developing environment-friendly industries and the
new low carbon industries, strengthening the assess-
ment of energy conservation and the elimination of
backward production capacity. Sowe should continue
strengthening the policies of energy conservation and
emission reduction, and technological innovations, in
order to promote the industry upgrading and improve
the energy use efficiency.

(iii) Intrastructure hadweak positive influences on carbon
emissions, which showed irrational structure existing
within manufacturing sector, too many extensive
subsectors with high energy consumption but low
output.Thepolicies of industrial structure adjustment
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advocated in China in recent years have little effects
on reducing carbon emissions. So keeping optimizing
intrastructure and converting extensive subsectors
into intensive ones should be taken as main strategies
to drive intrastructure adjustments.

(iv) Compared with the other factors, the effect of fuel
mix on carbon emissions was relatively weak, which
was related with the long-term dependence on coal
and petrol consumption. So the government should
promote energy structure adjustment and develop
reproducible energy such as nuclear energy, water
energy, wind energy, solar energy, and bioenergy, to
optimize fuel structure and decrease the dependence
of energy consumption on fossil energy in future.

(v) Only 5 subsectors in the 28 subsectors of manufactur-
ing were classified as EI subsector, which accounted
for 28% of total manufacturing output value but
contributed 83% to the total carbon emissions of
manufacturing sector. Both EI and NEI subsectors
had two same factors of affecting emission change,
production scale, and energy intensity, while the effect
values of the two factors in EI subsector were much
higher than that in NEI subsector, but the cumulative
effect contribution valueswere relatively lower.There-
fore, the EI subsector still has muchmore potentiality
of energy conservation and emission reduction than
NEI subsector.

(vi) Weak decoupling of manufacturing sector carbon
emissions from GDP could be observed during the
study period. Weak decoupling state in EI subsector
and strong decoupling state in NEI subsector were
observed in most years of the study period. In order
to sustain the decoupling relationship between carbon
emissions of manufacturing sector and GDP, our
government need to strengthen the decoupling elas-
ticity of energy conservation and carbon emissions
reduction.

There are some limitations in the paper. Carbon emissions
are only involved in the final energy consumptions without
considering the production process which also generates
carbon emissions. In addition, carbon emissions from man-
ufacturing sector at the provincial level should be studied so
as to establish appropriate and specific low carbon policies
and measures for the large difference of province, which is
the direction of the research in future.
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We study the chaotification problem for a class of delay difference equations by using the snap-back repeller theory and the feedback
control approach. We first study the stability and expansion of fixed points and establish a criterion of chaos. Then, based on this
criterion of chaos and the feedback control approach, we establish a chaotification scheme such that the controlled system is chaotic
in the sense of both Devaney and Li-Yorke when the parameters of this system satisfy some mild conditions. For illustrating the
theoretical result, we give some computer simulations.

1. Introduction

Research on chaos control has attracted a lot of interest from
many scientists andmathematicians.There are two directions
in chaos control, that is, control of chaos and anticontrol of
chaos (or called chaotification). The former regarded chaos
as harmful. So many earlier works focused on stabilizing a
chaotic system, which was regarded as the traditional control.
The reader is referred to the monographs [1–3] for more
details. However, in recent years, it has been found that chaos
can actually be very useful in some applications; a typical
example is chaos-based cryptography [4]. Hence, sometimes
it is useful and even important to make a nonchaotic system
chaotic, or to make a chaotic system produce a stronger or
different type of chaos. This progress is called chaotification
or anticontrol of chaos.

In research on chaotification for discrete dynamical sys-
tems, a mathematically rigorous and effective chaotification
method was first proposed by Chen and Lai [5–7], where
they first used the feedback control technique. This method
plays an important role in studying chaotification problems
of discrete dynamical systems. For a survey on chaotification
of discrete dynamical systems, one can see [8] and some
references therein.

To the best of our knowledge, although there already exist
many works on chaotification of discrete dynamical systems,
there are few results on chaotification of delay difference
equations. Motivated by the feedback control approach, we
have succeeded in studying the chaotification problems on
linear delay difference equations [9] and a class of delay
difference equations [10]. In the two papers, we use the
sine functions as controllers to establish some chaotification
schemes. The reason of using this type of controllers is that
the sine function has some favorable properties and this
designed controller is also simple, cheap, and implementable
in real engineering applications (see [8–10] and the references
therein). In the chaotification theorem of [10], the delay
difference equations need to have at least two fixed points.
However, there are also many delay difference equations
with only one fixed point, which cannot satisfy the above
condition. This motivates us to study this case. In this paper,
we will apply the feedback control approach and the snap-
back repeller theory to study chaotification for a class of delay
difference equations with at least one fixed point.

This paper is organized as follows. In Section 2, we give
some basic concepts and one lemma. In Section 3, we study
the stability and expansion of fixed points and establish
a criterion of chaos. Based on this criterion of chaos, we
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establish a chaotification scheme for a class of delay difference
equations with at least one fixed point. Then, we give some
computer simulations to illustrate the theoretical result.
Finally, we conclude this paper in Section 4.

2. Preliminaries

Up to now, there is no unified definition of chaos in mathe-
matics. For convenience, we present two definitions of chaos,
which will be used in this paper.

Definition 1 (see [11]). Let (𝑋, 𝑑) be a metric space, let 𝐹 :

𝑋 → 𝑋 be a map, and let 𝑆 be a set of 𝑋 with at least two
distinct points.Then 𝑆 is called a scrambled set of 𝐹 if, for any
two different points 𝑥, 𝑦 ∈ 𝑆,

lim inf
𝑛→∞

𝑑 (𝐹
𝑛

(𝑥) , 𝐹
𝑛

(𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝐹
𝑛

(𝑥) , 𝐹
𝑛

(𝑦)) > 0.
(1)

Themap𝐹 is said to be chaotic in the sense of Li-Yorke if there
exists an uncountable scrambled set 𝑆 of 𝐹.

Remark 2. The term “chaos” was first used by Li and Yorke
[12] for a map on a compact interval. Following the work of
Li and Yorke, Zhou [11] gave the above definition of chaos for
a topological dynamical system on a general metric space.

Definition 3 (see [13]). Let (𝑋, 𝑑) be a metric space. A map
𝐹 : 𝑉 ⊂ 𝑋 → 𝑉 is said to be chaotic on 𝑉 in the sense of
Devaney if

(i) 𝐹 is topologically transitive in 𝑉;
(ii) the periodic points of 𝐹 are dense in 𝑉;
(iii) 𝐹 has sensitive dependence on initial conditions in𝑉.

Remark 4. In [14], Huang and Ye showed that chaos in the
sense of Devaney is stronger than that in the sense of Li-Yorke
under some conditions.

The following criterion of chaos is established by Shi et al.,
which plays an important role in the present paper.

Lemma 5 (see [15, Theorem 2.1]; [16, Theorem 4.4]). Let 𝐹 :

R𝑛 → R𝑛 be a map with a fixed point 𝑧 ∈ R𝑛. Assume that

(i) 𝐹 is continuously differentiable in a neighborhood of 𝑧
and all the eigenvalues of 𝐷𝐹(𝑧) have absolute values
larger than 1, which implies that there exist a positive
constant 𝑟 and a norm ‖ ⋅ ‖ in R𝑛 such that 𝐹 is
expanding in 𝐵

𝑟
(𝑧) in ‖ ⋅ ‖, where 𝐵

𝑟
(𝑧) is the closed

ball of radius 𝑟 centered at 𝑧 in (R𝑛, ‖ ⋅ ‖);
(ii) 𝑧 is a snap-back repeller of 𝐹 with 𝐹𝑚(𝑥0) = 𝑧, 𝑥0 ̸=

𝑧, for some 𝑥0 ∈ 𝐵
𝑟
(𝑧) and some positive integer 𝑚,

where 𝐵
𝑟
(𝑧) is the open ball of radius 𝑟 centered at 𝑧 in

(R𝑛, ‖ ⋅ ‖). Furthermore, 𝐹 is continuously differentiable
in some neighborhoods of 𝑥0, 𝑥1, . . . , 𝑥𝑚−1, respectively,
and det𝐷𝐹(𝑥

𝑗
) ̸= 0 for 0 ≤ 𝑗 ≤ 𝑚 − 1, where 𝑥

𝑗
=

𝐹(𝑥
𝑗−1) for 1 ≤ 𝑗 ≤ 𝑚 − 1.

Then for each neighborhood𝑈 of 𝑧, there exist a positive integer
𝑘 > 𝑚 and a Cantor set Λ ⊂ 𝑈 such that 𝐹𝑘 : Λ → Λ is
topologically conjugate to the symbolic dynamical system 𝜎 :

∑
+

2 → ∑
+

2 . Consequently, there exists a compact and perfect
invariant set 𝑉 ⊂ R𝑛, containing the Cantor set Λ, such that 𝐹
is chaotic on 𝑉 in the sense of Devaney as well as in the sense
of Li-Yorke and has a dense orbit in 𝑉.

Remark 6. In 1978,Marotto [17] first gave the concept of snap-
back repeller formaps inR𝑛. Later, in 2004, Shi andChen [18]
extended this concept to general metric spaces. According to
the classifications of snap-back repellers for maps in metric
spaces in [18], the snap-back repeller given by Marotto [17]
is regular and nondegenerate. For more details on snap-back
repeller, we refer to [16–19] and the references therein. We
can easily conclude that the point 𝑧 in Lemma 5 is a regular
and nondegenerate snap-back repeller. Hence, Lemma 5 can
be summed as a single word: “a regular and nondegenerate
snap-back repeller in R𝑛 implies chaos in the sense of both
Devaney and Li-Yorke.” Formore details, one can see [15, 16].

3. Chaotification Based on
Snap-Back Repellers

In this paper, we will study the chaotification problem of a
delay difference equation, chaotic or not, in the form of

𝑥 (𝑛 + 1) = 𝑓 (𝑥 (𝑛 − 𝑘) , 𝑥 (𝑛)) , 𝑛 ≥ 0, (2)

where 𝑘 ≥ 1 is a fixed integer and 𝑓 : 𝐷 ⊂ R2 → R is a map.
Equation (2) is a discrete analogue of many one-dimensional
delay differential equations, such as the well known Mackey-
Glass equation.

The objective here is to design a control input sequence
{V(𝑛)} such that the output of the controlled system

𝑥 (𝑛 + 1) = 𝑓 (𝑥 (𝑛 − 𝑘) , 𝑥 (𝑛)) + V (𝑛) , 𝑛 ≥ 0, (3)

is chaotic in the sense of both Devaney and Li-Yorke. In our
earlier paper [10], by using the result that heteroclinic cycles
connecting repellers imply chaos established in [20], we have
studied the chaotification problem of (2) for the case where
(2) has at least two fixed points. However, there are also many
delay discrete dynamical systems which only have one fixed
point. Then, the chaotification scheme established in [10]
cannot be used. In this paper, we will study the chaotification
problem for the case where (2) has at least one fixed point.We
design the controller as follows:

V (𝑛) = 𝛼saw
𝜀
(𝛽𝑥 (𝑛 − 𝑘)) , (4)

where 𝜀 > 0 is any given constant, 𝛼 and 𝛽 are two unde-
termined parameters, and saw

𝜀
(⋅) is the classical sawtooth

function; that is,

saw
𝜀
(𝑥) = (−1)𝑚 (𝑥 − 2𝑚𝜀) ,

(2𝑚 − 1) 𝜀 ≤ 𝑥 < (2𝑚 + 1) 𝜀, 𝑚 ∈ Z,
(5)

while Z denotes the integer set. Many researchers have
succeeded in using the sawtooth function as a controller
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to chaotify discrete dynamical systems (see [15, 21] and the
references therein).

Set

𝑢
𝑗
(𝑛) := 𝑥 (𝑛 + 𝑗 − 𝑘 − 1) , 1 ≤ 𝑗 ≤ 𝑘 + 1, 𝑛 ≥ 0. (6)

Then (2) and the controlled system (3) with controller (4) can
be transformed into the following 𝑘 + 1-dimensional discrete
systems on R𝑘+1:

𝑢 (𝑛 + 1) = 𝐹 (𝑢 (𝑛)) , (7)

𝑢 (𝑛 + 1) = 𝐺 (𝑢 (𝑛)) , (8)

respectively, where 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑘+1)
𝑇

∈ R𝑘+1 and the
maps 𝐹, 𝐺 : R𝑘+1 → R𝑘+1.

As defined in [10], the maps 𝐹 and 𝐺 are called the maps
induced by 𝑓 and 𝑔, respectively, where 𝑔(𝑥, 𝑦) := 𝑓(𝑥, 𝑦) +

𝛼saw
𝜀
(𝛽𝑥). Systems (7) and (8) are called the systems induced

by (2) and (3) in the Euclidean space R𝑘+1, respectively.
System (3) is said to be chaotic in the sense of Devaney (or
Li-Yorke) on 𝑉 ⊂ R𝑘+1 if its induced system (8) is chaotic in
the sense of Devaney (or Li-Yorke) on 𝑉 ⊂ R𝑘+1.

In the following, without loss of generality and for sim-
plicity, we can suppose that the origin𝑂 := (0, . . . , 0)𝑇 ∈ R𝑘+1
is always a fixed point of the induced system (7). Otherwise,
if none of the fixed points is the origin𝑂, then we can choose
a transformation of coordinates such that one of the fixed
points becomes the origin 𝑂 in a new coordinate system.
Then the map 𝑓 in (2) satisfies 𝑓(0, 0) = 0, throughout the
rest of the paper.

It is well known that the stability and expansion of
a map at a fixed point has a close relationship with the
modulus of the eigenvalues of its derivative operator when
the map is differentiable at the fixed point. Suppose that
𝑓 is differentiable at (0, 0); then the induced map 𝐹 is
differentiable at 𝑂. Let 𝑓

𝑥
(𝑥, 𝑦) and 𝑓

𝑦
(𝑥, 𝑦) denote the first

partial derivatives of𝑓with respect to the first and the second
variables at the point (𝑥, 𝑦), respectively. Then we can get the
following results on stability and expansion of the fixed point
𝑂 of the induced system (7).

Theorem 7. Assume that 𝑘 < ∞. Denote 𝑎 := 𝑓
𝑦
(0, 0), 𝑏 :=

𝑓
𝑥
(0, 0).
(i) If 𝑓 is differentiable at (0, 0), then, for 𝑎 = 0, the fixed

point𝑂 of system (7) is asymptotically stable if and only
if |𝑏| < 1; and for 𝑎 ̸= 0, the fixed point 𝑂 of system (7)
is asymptotically stable if and only if |𝑎| < (𝑘 + 1)/𝑘,
and

|𝑎| − 1 < − 𝑏 < (𝑎
2
+ 1− 2 |𝑎| cos𝜙)

1/2
, 𝑓𝑜𝑟 𝑘 𝑜𝑑𝑑,

|𝑎 + 𝑏| < 1,

|𝑏| < (𝑎
2
+ 1− 2 |𝑎| cos𝜙)

1/2
,

𝑓𝑜𝑟 𝑘 𝑒V𝑒𝑛,

(9)

where 𝜙 is the solution in (0, 𝜋/(𝑘 + 1)) of equation
sin(𝑘𝜃)/sin[(𝑘 + 1)𝜃] = 1/|𝑎|.

(ii) If 𝑓 is continuously differentiable in a neighborhood of
(0, 0) and |𝑏| − |𝑎| > 1, then the fixed point𝑂 of system
(7) is a regular expanding fixed point in some norm in
R𝑘+1.

Proof. When 𝑎 = 0, it is easy to obtain that all the eigenvalues
of 𝐷𝐹(𝑂) have absolute values less than 1 if and only if |𝑏| <
1. So, the result in (i) holds. When 𝑎 ̸= 0, the result in (i)
can be directly derived by usingTheorem 3 in [22]. Result (ii)
can be derived from Lemma 2.1 of [10]. This completes the
proof.

Now, we establish a criterion of chaos for the induced
system (7).

Theorem 8. Let 𝑓 : 𝐷 ⊂ R2 → R be a map and let it
be continuously differentiable in a neighborhood of (0, 0) with
𝑓(0, 0) = 0. Assume that

(i) |𝑓
𝑥
(0, 0)|− |𝑓

𝑦
(0, 0)| > 1, which implies that there exist

a positive constant 𝑟∗ and a norm ‖ ⋅ ‖∗ in R𝑘+1 such
that 𝐹 is continuously differentiable in 𝐵

𝑟
∗(𝑂) and𝑂 is

a regular expanding fixed point of 𝐹 in 𝐵
𝑟
∗(𝑂) in the

norm ‖ ⋅ ‖∗, where 𝐵
𝑟
∗(𝑂) is the closed ball of radius 𝑟∗

centered at 𝑂 in (R𝑘+1, ‖ ⋅ ‖∗);
(ii) there exists a point 𝑢∗ ∈ 𝐷 with 𝑢∗ ̸= 0, such that 𝑓 is

continuously differentiable in a neighborhood of (𝑢∗, 0)
with 𝑓(𝑢∗, 0) = 0, 𝑓

𝑥
(𝑢∗, 0) ̸= 0,

(iia) when 𝑘 = 1, there exist 𝑥1, 𝑥2 ∈ (−𝑟∗, 𝑟∗) such
that 𝑥21 + 𝑥22 ̸= 0, (𝑥1, 𝑥2)

𝑇

∈ 𝐵
𝑟
∗(𝑂), 𝑓 is

continuously differentiable in a neighborhood of
(𝑥2, 𝑢
∗), and

𝑓 (𝑥2, 𝑢
∗

) = 0,

𝑓 (𝑥1, 𝑥2) = 𝑢
∗

,

𝑓
𝑥
(𝑥2, 𝑢

∗

) ̸= 0,

𝑓
𝑥
(𝑥1, 𝑥2) ̸= 0;

(10)

(iib) when 𝑘 > 1, there exist 𝑥1, 𝑥2 ∈ (−𝑟∗, 𝑟∗) such
that 𝑥21 + 𝑥

2
2 ̸= 0, (𝑥1, 𝑥2, 0, . . . , 0)

𝑇

∈ 𝐵
𝑟
∗(𝑂), 𝑓

is continuously differentiable in a neighborhood
of (𝑥2, 𝑢∗), and

𝑓 (𝑥2, 𝑢
∗

) = 0,

𝑓 (𝑥1, 0) = 𝑢
∗

,

𝑓
𝑥
(𝑥2, 𝑢

∗

) ̸= 0,

𝑓
𝑥
(𝑥1, 0) ̸= 0.

(11)

Then the induced system (7), and consequently system (2), is
chaotic in the sense of both Devaney and Li-Yorke.

Proof. We will apply Lemma 5 to prove this theorem. So, we
only need to show that all the assumptions in Lemma 5 are
satisfied.
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It follows from assumption (i) and the second conclusion
of Theorem 7 that 𝐹 is continuously differentiable in 𝐵

𝑟
∗(𝑂),

all the eigenvalues of𝐷𝐹(𝑂) have absolute values larger than
1, and 𝑂 is a regular expanding fixed point of 𝐹 in 𝐵

𝑟
∗(𝑂) in

some norm ‖ ⋅ ‖∗ ofR𝑘+1.Therefore, condition (i) in Lemma 5
is satisfied.

Next, we will show that 𝑂 is a snap-back repeller of 𝐹 in
the norm ‖ ⋅‖

∗. In the following, we will show that there exists
a point 𝑂0 ∈ 𝑊 with 𝑂0 ̸= 𝑂 satisfying

𝐹
𝑘+2

(𝑂0) = 𝑂, (12)

which implies that 𝑂 is a snap-back repeller of 𝐹.
For the case where 𝑘 = 1, it follows from condition (iia)

that there exists a point 𝑂0 = (𝑥1, 𝑥2)
𝑇

∈ 𝐵
𝑟
∗(𝑂), 𝑂0 ̸= 𝑂,

such that 𝑂1 = 𝐹(𝑂0) = (𝑥2, 𝑢
∗)
𝑇, 𝑂2 = 𝐹2(𝑂0) = (𝑢∗, 0)𝑇,

and 𝐹3(𝑂0) = 𝑂.
For the case where 𝑘 > 1, it follows from condition (iib)

that there exists a point 𝑂0 = (𝑥1, 𝑥2, 0, . . . , 0)
𝑇

∈ 𝐵
𝑟
∗(𝑂),

𝑂0 ̸= 𝑂, such that 𝑂1 = 𝐹(𝑂0) = (𝑥2, 0, . . . , 0, 𝑢
∗)
𝑇, 𝑂
𝑗
=

𝐹𝑗(𝑂0) = (0, . . . , 0, 𝑢∗, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

)
𝑇 for 2 ≤ 𝑗 ≤ 𝑘 + 1, and

𝐹𝑘+2(𝑂0) = 𝑂.

It is obvious that 𝐹 is continuously differentiable in some
neighborhoods of 𝑂

𝑗
:= 𝐹(𝑂

𝑗−1) for 1 ≤ 𝑗 ≤ 𝑘 + 1. So, we
need to show that the following holds:

det𝐷𝐹(𝑂
𝑗
) ̸= 0, 0 ≤ 𝑗 ≤ 𝑘 + 1. (13)

If 𝐹 is differentiable at 𝑢 = (𝑢1, . . . , 𝑢𝑘+1)
𝑇

∈ R𝑘+1, then a
direct calculation shows that

det𝐷𝐹 (𝑢) = (−1)𝑘 𝑓
𝑥
(𝑢1, 𝑢𝑘+1) . (14)

From condition (i), we get that |𝑓
𝑥
(0, 0)| > 1 + |𝑓

𝑦
(0, 0)| >

0, which together with condition (ii) and (14) implies that
conclusion (13) holds for 𝑘 = 1 and 𝑘 > 1.

Therefore, all the assumptions in Lemma 5 are satisfied.
Then the induced system (7), and consequently system (2),
is chaotic in the sense of both Devaney and Li-Yorke. This
completes the proof.

Remark 9. Since 𝑓 is a function of two variables, the condi-
tions in (ii) of Theorem 8 are not very strict conditions.

Based on Theorem 8, a chaotification scheme for the
controlled system (3) with controller (4) is established in the
following.

Theorem 10. Consider the controlled system (3) with con-
troller (4). Assume that

(i) 𝑓 is continuously differentiable in [−𝑟, 𝑟]
2 for some

𝑟 > 0 with 𝑓(0, 0) = 0, which implies that there exist
positive constants𝑀 and 𝑁 such that for any (𝑥, 𝑦) ∈
[−𝑟, 𝑟]

2

𝑓 (𝑥, 𝑦)
 ≤ 𝑀,

𝑓𝑥 (𝑥, 𝑦)
 ≤ 𝑁,


𝑓
𝑦
(𝑥, 𝑦)


≤ 𝑁;

(15)

(ii) there exists a point 𝑢∗ ∈ (−𝑟, 𝑟) with 𝑢∗ ̸= 0 such that
𝑓(𝑢∗, 0) = 0.

Then there exist two positive constants 𝛼0 and 𝛽0 satisfying

𝛼0 >
𝑀 +

𝑢
∗

𝜀
,

𝛽0 :=
2𝑚0𝜀

𝑢∗
> max{1 + 2𝑁

𝛼0
,
3𝜀
𝑟
} ,

(16)

where 𝜀 > 0 is any given constant and𝑚0 is some integer, such
that, for any 𝛼 > 𝛼0 and 𝛽 = 𝛽0, the controlled system (3)
with controller (4) is chaotic in the sense of both Devaney and
Li-Yorke.

Proof. We will use Theorem 8 to prove this theorem. So, it
suffices to show that the map 𝑔(𝑥, 𝑦) := 𝑓(𝑥, 𝑦) + 𝛼saw

𝜀
(𝛽𝑥)

satisfies all the assumptions inTheorem 8.
For convenience, let 𝛼 > 𝛼0, 𝛽 = 2𝑚𝜀/𝑢∗ >

max{(1 + 2𝑁)/𝛼0, 3𝜀/𝑟} throughout the proof, where𝑚 is an
undetermined integer. Let 𝐺 denote the induced map of 𝑔.

It is obvious that the function saw
𝜀
(𝛽𝑥) is continuously

differentiable in (−𝜀/𝛽, 𝜀/𝛽). Then, from assumption (i), we
obtain that 𝑔 is continuously differentiable in (−𝜀/𝛽, 𝜀/𝛽)

2

with 𝑔(0, 0) = 0, 𝑂 is a fixed point of the map 𝐺, and 𝐺 is
continuously differentiable in (−𝜀/𝛽, 𝜀/𝛽)𝑘+1. It follows from
the last two relations of (15) that

𝑔𝑥 (0, 0)
 =

𝑓𝑥 (0, 0) + 𝛼𝛽
 ≥ 𝛼𝛽−

𝑓𝑥 (0, 0)


≥ 𝛼𝛽−𝑁 > 1+𝑁 ≥ 1+ 𝑓𝑦 (0, 0)


= 1+ 𝑔𝑦 (0, 0)

.

(17)

So condition (i) in Theorem 8 holds. Consequently, there
exist a positive constant 𝑟∗ and a norm ‖ ⋅ ‖∗ inR𝑘+1 such that
𝐺 is continuously differentiable in 𝐵

𝑟
∗(𝑂) and 𝑂 is a regular

expanding fixed point of 𝐺 in 𝐵
𝑟
∗(𝑂) in the norm ‖ ⋅ ‖∗,

where 𝐵
𝑟
∗(𝑂) ⊂ (−𝜀/𝛽, 𝜀/𝛽)

𝑘+1 is the closed ball of radius
𝑟∗ centered at 𝑂 in (R𝑘+1, ‖ ⋅ ‖∗). Further, suppose that𝑊 ⊂

𝐵
𝑟
∗(𝑂) is an arbitrary neighborhood of𝑂 in R𝑘+1. Then there

exists a neighborhood𝑈 of 0 such that 𝑈 ×𝑈 × ⋅ ⋅ ⋅ × 𝑈 ⊂ 𝑊.
Next, we need to show that 𝑔 satisfies assumption (ii) in

Theorem 8. It is obvious that saw
𝜀
(𝛽𝑢∗) = 0 and saw

𝜀
(𝛽𝑥)

is continuously differentiable in a neighborhood of 𝑢∗. So,
𝑔(𝑥, 𝑦) is continuously differentiable in a neighborhood of
(𝑢
∗, 0). From assumption (ii) and condition (15), it follows

that

𝑔 (𝑢
∗

, 0) = 𝑓 (𝑢
∗

, 0) + 𝛼saw
𝜀
(𝛽𝑢
∗

) = 0,
𝑔𝑥 (𝑢

∗

, 0) =
𝑓𝑥 (𝑢

∗

, 0) + (−1)𝑚 𝛼𝛽

≥ 𝛼𝛽−
𝑓𝑥 (𝑢

∗

, 0) > 1+𝑁 > 0.

(18)

For 𝑘 = 1, let

ℎ1 (𝑥) := 𝑓 (𝑥, 𝑢
∗

) + 𝛼saw
𝜀
(𝛽𝑥) . (19)
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It follows from assumption (i) and the definition of sawtooth
function that ℎ1 is continuous in [−𝜀/𝛽, 3𝜀/𝛽]. From the first
relation of (15), we get that

ℎ1 (
𝜀

𝛽
) = 𝑓(

𝜀

𝛽
, 𝑢
∗

)+𝛼𝜀 ≥ 𝛼𝜀 −𝑀 > 0,

ℎ1 (
3𝜀
𝛽
) = 𝑓(

3𝜀
𝛽
, 𝑢
∗

)−𝛼𝜀 ≤ 𝑀−𝛼𝜀 < 0.
(20)

Therefore, by the intermediate value theorem, there exists a
point 𝑥

2
with 𝜀/𝛽 < 𝑥2 < 3𝜀/𝛽, such that ℎ1(𝑥2) = 0; that is,

𝑔(𝑥2, 𝑢
∗) = 0. Similarly, let

ℎ2 (𝑥) := 𝑓 (𝑥, 𝑥2) + 𝛼saw𝜀 (𝛽𝑥) − 𝑢
∗

. (21)

It is also clear that ℎ2 is continuous in [−𝜀/𝛽, 3𝜀/𝛽]. It also
follows from the first relation of (15) that

ℎ2 (
𝜀

𝛽
) = 𝑓(

𝜀

𝛽
, 𝑥2)+𝛼𝜀 − 𝑢

∗

≥ 𝛼𝜀 −𝑀−
𝑢
∗

> 0,

ℎ2 (
3𝜀
𝛽
) = 𝑓(

3𝜀
𝛽
, 𝑥2)−𝛼𝜀 − 𝑢

∗

≤ 𝑀+
𝑢
∗ − 𝛼𝜀

< 0.

(22)

By the intermediate value theorem again, there exists a point
𝑥1 with 𝜀/𝛽 < 𝑥1 < 3𝜀/𝛽, such that ℎ2(𝑥1) = 0; that
is, 𝑔(𝑥1, 𝑥2) = 𝑢∗. It is clear that 𝑥1 and 𝑥2 are both
in (𝜀/𝛽, 3𝜀/𝛽) = (𝑢∗𝜀/2𝑚𝑟, 𝑢∗𝜀/2𝑚𝑟). So we can take a
sufficiently large integer 𝑚1 > 0, such that 𝑥1, 𝑥2 ∈ 𝑈

with 𝑥21 + 𝑥22 ̸= 0, and (𝑥1, 𝑥2)
𝑇

∈ 𝑊 for any |𝑚| ≥ 𝑚1.
It can easily be proved that 𝑔 is continuously differentiable
in some neighborhoods of (𝑥2, 𝑢

∗) and (𝑥1, 𝑥2). Now, we
show 𝑔

𝑥
(𝑥2, 𝑢
∗) ̸= 0. Otherwise, if 𝑔

𝑥
(𝑥2, 𝑢
∗) = 0, then the

following equality holds:

𝑓
𝑥
(𝑥2, 𝑢

∗

) + (−1)𝑚 𝛼𝛽 = 0. (23)

Hence, 𝛼𝛽 = |𝑓
𝑥
(𝑥2, 𝑢
∗)| ≤ 𝑁, which is a contradiction.

Similarly, we can prove that 𝑔
𝑥
(𝑥1, 𝑥2) ̸= 0. Hence, condition

(iia) in Theorem 8 holds.
For 𝑘 > 1, the determination of 𝑥2 can be derived from

the proof of the above paragraph as 𝑘 = 1. That is, there
exists a point 𝑥2 in (𝜀/𝛽, 3𝜀/𝛽), such that ℎ1(𝑥2) = 0; that is,
𝑔(𝑥2, 𝑢

∗) = 0. Set

ℎ3 (𝑥) := 𝑓 (𝑥, 0) + 𝛼saw
𝜀
(𝛽𝑥) − 𝑢

∗

. (24)

With a similarmethod to the above paragraph, we can also get
that there exists a point 𝑥1 in (𝜀/𝛽, 3𝜀/𝛽) such that ℎ3(𝑥1) =
0, which implies that 𝑔(𝑥1, 0) = 𝑢∗. So we can also take a
sufficiently large integer 𝑚2 > 0, such that 𝑥1, 𝑥2 ∈ 𝑈 with
𝑥21 + 𝑥

2
2 ̸= 0, and (𝑥1, 𝑥2, 0, . . . , 0)

𝑇

∈ 𝑊 for any |𝑚| ≥ 𝑚2. It
can also easily be proved that 𝑔 is continuously differentiable
in some neighborhoods of (𝑥2, 𝑢

∗) and (𝑥1, 𝑥2). The proofs
of 𝑔
𝑥
(𝑥2, 𝑢
∗) ̸= 0 and 𝑔

𝑥
(𝑥1, 0) ̸= 0 are similar to the above

paragraph. So, the details are omitted.

Finally, let |𝑚0| = max{𝑚1, 𝑚2}. Then condition (ii) in
Theorem 8 is satisfied for 𝑚 = 𝑚0. Therefore, for any 𝛼 > 𝛼0
and 𝛽 = 𝛽0, the controlled system (3) with controller (4) is
chaotic in the sense of both Devaney and Li-Yorke.The proof
is complete.

Remark 11. It is clear that the classical sinusoidal function
sin𝑥 has similar geometric properties to the sawtooth func-
tion. So the following function

V (𝑛) = 𝛼 sin (𝛽𝑥 (𝑛 − 𝑘)) (25)

can also be used as a controller to chaotify system (2), where𝛽
is some constant to be determined and 𝛼 > 0 is the controlled
parameter. In fact, with a similar argument to the proof of
Theorem 10, one can show that there also exist two positive
constants 𝛽0 and 𝛼0 such that for any constant 𝛼 > 𝛼0 and
𝛽 = 𝛽0 the result in Theorem 10 holds.

Remark 12. In [10], a similar result is given for a class
of maps with at least two fixed points. In such a case,
the two chaotification schemes obtained in [10] and this
paper can be used. However, there will be many chaotic
invariant sets as pointed out in Lemma 2.2 of [10] when
using the chaotification scheme in [10]. It seems that the
chaotic behaviors induced by a heteroclinic cycle connecting
repellers are more complex than that induced by a single
snap-back repeller. The difference between them will be our
further research. But when the original system only has one
fixed point, the chaotification scheme obtained in [10] cannot
be used.Then, we can use the chaotification scheme obtained
in this paper to chaotify this system.

Remark 13. Since the point 𝑢
∗ in assumption (ii) of

Theorem 10 can be negative, the value of 𝑚0 determined in
this paper can be a negative integer. In addition, it is very
difficult to determine the concrete value𝑚0 since the concrete
expanding area of a fixed point is not easy to obtain. To the
best of our knowledge, there are few methods to determine
the concrete expanding area of a fixed point in the existing
literatures. So, in practical problems, we can take |𝑚0| large
enough such that the chaotification scheme can be effective.

In the last part of this section, we give an example to
illustrate the theoretical result of Theorem 10.

Example 14. We take the map 𝑓 in (2) as the following:

𝑓 (𝑥, 𝑦) = 0.01𝑥 (𝑥 − 1) − 0.01𝑦2. (26)

It is clear that 𝑓 is continuously differentiable in R2 and
satisfies 𝑓(0, 0) = 0. Without loss of generality, we take 𝑟 = 3
inTheorem 10. Then, for any (𝑥, 𝑦) ∈ [−3, 3]2, we get that

𝑓 (𝑥, 𝑦)
 ≤ 0.21,

𝑓𝑥 (𝑥, 𝑦)
 ≤ 0.07,


𝑓
𝑦
(𝑥, 𝑦)


≤ 0.06.

(27)

Hence, we take𝑀 = 0.21,𝑁 = 0.07, and 𝑟 = 3 in assumption
(i) ofTheorem 10. It is also clear that the equation 𝑓(𝑥, 0) = 0
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Figure 1: Simple dynamical behaviors of uncontrolled system (7) for
𝑘 = 1, where the initial value is taken as 𝑢(0) = (0.1, 0.1)𝑇.

has a nonzero solution𝑢∗ = 1,which lies in (−3, 3).Therefore,
all the assumptions inTheorem 10 are satisfied. Here, we take
the constant 𝜀 = 1 in controller (4). Then, it follows from
Theorem 10 that there exist two positive constants

𝛼0 >
𝑀 +

𝑢
∗

𝜀
= 1.21,

𝛽0 =
2𝑚0𝜀

𝑢∗
= 2𝑚0 > max{1 + 2𝑁

𝛼0
,
3𝜀
𝑟
}

= max{1.14
𝛼0

, 1} = 1,

(28)

where 𝑚0 is some positive integer, such that, for any 𝛼 > 𝛼0
and 𝛽 = 𝛽0, the controlled system (3) with controller (4) is
chaotic in the sense of both Devaney and Li-Yorke.

In fact, there is only one fixed point 𝑂 := (0, . . . , 0)𝑇 ∈
R𝑘+1 in the uncontrolled system (7). It is obvious that
𝑓
𝑦
(0, 0) = 0 and 𝑓

𝑥
(0, 0) = −0.01, which imply that 𝑂 is

asymptotically stable from result (i) in Theorem 7. It is also
clear that all the solutions of the uncontrolled system (7) are
bounded if the initial values are taken from [−3, 3]𝑘+1. There-
fore, if we take an initial condition 𝑢(0) = (0.1, . . . , 0.1)𝑇 ∈
R𝑘+1, then the solution 𝑢(𝑛) of the uncontrolled system (7)
should tend to the asymptotically stable fixed point 𝑂 when
𝑛 tends to infinity. This is confirmed in Figures 1 and 3.

Here, we take 𝜀 = 1, 𝑚0 = 10, 𝛼 = 30, 𝛽 = 20,
𝑘 = 1, 2, and 𝑛 from 0 to 20000 for computer simulations.
The simulated results show that the original system (7) has
simple dynamical behaviors, and the controlled system (8)
has complex dynamical behaviors; see Figures 1–4.

It should be pointed out that the relative existing chaotifi-
cation scheme in [10] is not available for this map since there
is only one fixed point.

4. Conclusion

In this paper, we study the chaotification problem for a
class of delay difference equations with at least one fixed
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Figure 2: Complex dynamical behaviors of controlled system (8) for
𝛼 = 30, 𝛽 = 20, 𝜀 = 1, and 𝑘 = 1, where the initial value is taken as
𝑢(0) = (0.1, 0.1)𝑇.
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Figure 3: Simple dynamical behaviors of uncontrolled system (7)
for 𝑘 = 2, where the initial value is taken as 𝑢(0) = (0.1, 0.1, 0.1)𝑇.
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Figure 4: Complex dynamical behaviors of controlled system (8) for
𝛼 = 30, 𝛽 = 20, 𝜀 = 1, and 𝑘 = 2, where the initial value is taken as
𝑢(0) = (0.1, 0.1, 0.1)𝑇.
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point. We first establish a criterion of chaos by using the
snap-back repeller theory. Then, based on this criterion of
chaos and the feedback control approach, we establish a
chaotification scheme. We have proved that the controlled
system is chaotic in the sense of both Devaney and Li-
Yorke when the parameters of the system satisfy some mild
conditions. Numerical simulations confirm the theoretical
analysis. The chaotification problem for more general maps
in the original system will be our further research.
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A generalized Degasperis-Procesi equation with variable coefficients is investigated. The 𝐿1(𝑅) stability of the strong solution for
the equation is established under certain assumptions.

1. Introduction

The Degasperis-Procesi (DP) equation

V
𝑡
− V
𝑡𝑥𝑥

+ 4VV
𝑥
= 3V
𝑥
V
𝑥𝑥
+ VV
𝑥𝑥𝑥

, 𝑡 > 0, 𝑥 ∈ 𝑅, (1)

was discovered by Degasperis and Procesi [1] in a search for
integrable equations similar to the Camassa-Holm equation.
Degasperis and Procesi [1] studied a family of third order dis-
persive nonlinear equations

V
𝑡
+ V
𝑥
+ 𝛾V
𝑥𝑥𝑥

−𝛼
2V
𝑡𝑥𝑥

= (𝑐1V
2
+ 𝑐2V

2
𝑥
+ 𝑐3VV𝑥𝑥)

𝑥
, (2)

where 𝛼, 𝛾, 𝑐0, 𝑐1, 𝑐2, 𝑐3 ∈ 𝑅. It is found in [1] that there
are only three equations that satisfy asymptotic integrability
conditions within this family. By rescaling and applying a
Galilean transformation, the three equations are Korteweg-
de Vries equation

V
𝑡
+ V
𝑥𝑥𝑥

+ VV
𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅, (3)

the Camassa-Holm equation

V
𝑡
− V
𝑡𝑥𝑥

+ 3VV
𝑥
= 2V
𝑥
V
𝑥𝑥
+ VV
𝑥𝑥𝑥

, 𝑡 > 0, 𝑥 ∈ 𝑅, (4)

and the Degasperis-Procesi equation (1). Degasperis et al. [2]
proved the formal integrability of (1) and the existence of the
nonsmooth solutions by constructing a Lax pair.

In recent years, (1) which plays a similar role in water
wave theory as the Camassa-Holm equation has caused
extensive concern of many scholars (see [1–11]). For example,

Coclite and Karlsen [3] established the well-posedness of
𝐿
1
∩𝐵𝑉weak solutions for (1).They proved uniquenesswithin

a class of discontinuous solutions to (1) in [4]. Escher et
al. [5] established the precise blow-up rate and proved the
existence and uniqueness of global weak solutions to (1) in
which the initial data satisfied appropriate conditions. Lai
andWu [7] investigated the local well-posedness of solutions
to a generalization of both (1) and (4) in the Sobolev space
𝐻
𝑠
(𝑅) with 𝑠 > 3/2. Lenells [8] classified all weak traveling

wave solutions of the Degasperis-Procesi equation (1). Ai and
Gui [9] proved global existence of solutions for the viscous
Degasperis-Procesi equation and showed that the blow-up
phenomena occurs in finite time. Fu et al. [11] studied the
orbital stability of the peakons for the Degasperis-Procesi
equation with a strong dispersive term on the line and proved
that the shapes of these peakons were stable under small
perturbations.

As we know, their coefficients play an important role to
study the fundamental dynamical properties of the Degas-
peris-Procesi models. It prompts us to study the following
generalized Degasperis-Procesi equation:

V
𝑡
− V
𝑡𝑥𝑥

+𝑚 (𝑡, 𝑥) 𝑓

(V) V
𝑥

= 𝑏 (𝑡, 𝑥) (𝑓

(V) V
𝑥𝑥𝑥

+ 3𝑓 (V) V
𝑥
V
𝑥𝑥
+𝑓

(V) V3
𝑥
)

+ 2𝑏
𝑥
(𝑡, 𝑥) (𝑓


(V) V
𝑥𝑥
+𝑓

(V) V2
𝑥
)

+ 𝑏
𝑥𝑥
(𝑡, 𝑥) 𝑓


(V) V
𝑥
,

(5)
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where𝑚(𝑡, 𝑥) ∈ 𝐶0(𝑅), 𝑏(𝑡, 𝑥) ∈ 𝐶
3
0(𝑅), and function 𝑓(⋅) is a

polynomial of order 𝑛 (𝑛 ≥ 2). Letting 𝑚 = 4, 𝑏 = 1, 𝑓(V) =
V2/2, (5) reduces to the Degasperis-Procesi equation (1). We
consider the Cauchy problem of (5) with an initial condition
V0(𝑥). Namely,

V (0, 𝑥) = V0 (𝑥) , 𝑥 ∈ 𝑅. (6)

Assume that (5) possesses a bounded strong solution in its
maximum existence time interval [0, 𝑇) and V0 lies in 𝐿

1
(𝑅)∩

𝐻
𝑠
(𝑅) (𝑠 > 3/2). We use the approaches of Kružkov doubling

the variables presented in [12] to prove the 𝐿1 stability of the
solution for the variable coefficients equation (5). From our
knowledge, it has not been acquired in the literature.

This paper is organized as follows. Section 2 gives several
lemmas. The proof of local solution stability is presented in
Section 3.

2. Preliminaries

Applying the operator Λ−2 = (1 − 𝜕2
𝑥
)
−1 to (5), we obtain its

equivalent form

V
𝑡
+ 𝑏 (𝑡, 𝑥) 𝑓


(V) V
𝑥
+Λ
−2
(𝑚 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑥)) 𝜕

𝑥
𝑓 (V)

= 0,
(7)

where Λ−2𝑝(𝑡, 𝑥) = (1 − 𝜕2
𝑥
)
−1
𝑝(𝑡, 𝑥) = (1/2) ∫

𝑅
𝑒
−|𝑥−𝑦|

𝑝(𝑡,

𝑦)𝑑𝑦.
Equations (5) and (6) are equivalent to the problem

V
𝑡
+ 𝜕
𝑥
𝑃 (𝑡, 𝑥, V) +Ψ (𝑡, 𝑥, V) = 0,

V (0, 𝑥) = V0 (𝑥) ,
(8)

where 𝑃(𝑡, 𝑥, V) = 𝑏(𝑡, 𝑥)𝑓(V) and Ψ(𝑡, 𝑥, V) = Λ
−2
(𝑚(𝑡, 𝑥) −

𝑏(𝑡, 𝑥))𝜕
𝑥
𝑓(V) − 𝑏

𝑥
(𝑡, 𝑥)𝑓(V). Notice that 𝜕

𝑥
𝑃 = 𝑃

𝑥
+ 𝑃VV𝑥.

Remark. According to the statements presented in [7] or [12],
we know that problem (8) has a unique local solution in the
space 𝐶([0, 𝑇),𝐻𝑠(𝑅)) if we assume V0(𝑥) ∈ 𝐻

𝑠
(𝑅) (𝑠 > 3/2).

Assume that V1(𝑡, 𝑥) and V2(𝑡, 𝑥) are solutions of problem
(8) in the domain [0, 𝑇) × 𝑅 with initial functions V10(𝑥) and
V20(𝑥) ∈ 𝐿

1
(𝑅) ∩ 𝐻

𝑠
(𝑅) (𝑠 > 3/2), where 𝑇 is the maximum

existence time of solutions. For simplicity, we denote by 𝑐 any
positive constants. Now we give several lemmas.

Lemma 1. Let V(𝑡, 𝑥) be the solution of problem (8) and
‖V‖
𝐿
∞
(𝑅)

≤ 𝑀. Then

‖Ψ (𝑡, 𝑥, V)‖𝐿∞(𝑅) ≤ 𝑐𝑀
𝑛
, (9)

where positive constant 𝑐 depends on ‖V0‖𝐿∞ and 𝑇.

Proof. We have

|Ψ (𝑡, 𝑥, V)|

=

Λ
−2
(𝑚 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑥)) 𝜕

𝑥
𝑓 (V) − 𝑏

𝑥
(𝑡, 𝑥) 𝑓 (V)



≤



1
2
∫
𝑅

𝑒
−|𝑥−𝑦|

𝑚(𝑡, 𝑦) 𝜕
𝑦
𝑓 (V) 𝑑𝑦



+



1
2
∫
𝑅

𝑒
−|𝑥−𝑦|

𝑏 (𝑡, 𝑦) 𝜕
𝑦
𝑓 (V) 𝑑𝑦



+
𝑏𝑥𝑓 (V)



≤ 𝑐



∫

𝑅

𝑒
−|𝑥−𝑦| sign (𝑦 − 𝑥) 𝑓 (V) 𝑑𝑦



+ 𝑐
𝑓 (V)



≤ 𝑐𝑀
𝑛
,

(10)

in which we have used ∫
𝑅
𝑒
−|𝑥−𝑦|

𝑑𝑥 = 2 to complete the proof.

Lemma 2. Assume that V1(𝑡, 𝑥) and V2(𝑡, 𝑥) are solutions of
problem (8) in the domain [0, 𝑇) × 𝑅, ‖V1‖𝐿∞(𝑅) ≤ 𝑀, and
‖V2‖𝐿∞(𝑅) ≤ 𝑀. Then

∫

+∞

−∞

Ψ (𝑡, 𝑥, V1) −Ψ (𝑡, 𝑥, V2)
 𝑑𝑥

≤ 𝑐∫

+∞

−∞

V1 − V2
 𝑑𝑥,

(11)

where 𝑐 > 0 depends on ‖V10‖𝐿∞(𝑅), ‖V20‖𝐿∞(𝑅) and 𝑇.

Proof. Using the property of the operator Λ−2, we get

∫

+∞

−∞

Ψ (𝑡, 𝑥, V1) −Ψ (𝑡, 𝑥, V2)
 𝑑𝑥

≤ ∫

+∞

−∞


Λ
−2
(𝑚− 𝑏) 𝜕

𝑥
(𝑓 (V1) −𝑓 (V2))


𝑑𝑥

+∫

+∞

−∞

(𝑓 (V1) −𝑓 (V2))
 𝑑𝑥 ≤ 𝑐∫

+∞

−∞

𝑑𝑥

⋅ ∫

+∞

−∞


𝑒
−|𝑥−𝑦| sign (𝑦 − 𝑥) (𝑓 (V1) −𝑓 (V2))


𝑑𝑦

+ 𝑐∫

+∞

−∞

V1 − V2
 𝑑𝑥 ≤ 𝑐∫

+∞

−∞

𝑓 (V1) −𝑓 (V2)
 𝑑𝑦

⋅ ∫

+∞

−∞

𝑒
−|𝑥−𝑦|

𝑑𝑥+ 𝑐∫

+∞

−∞

V1 − V2
 𝑑𝑥

≤ 𝑐∫

+∞

−∞

V1 − V2
 𝑑𝑥,

(12)

in which we apply the TonelliTheorem to complete the proof.

Let 𝛿(𝜎) ≥ 0, 𝛿(𝜎) ≡ 0, for |𝜎| ≥ 1; ∫+∞
−∞

𝛿(𝜎)𝑑𝜎 =

1 and 𝛿(𝜎) is infinitely differential on (−∞, +∞). Set
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𝛿
𝜀
(𝜎) = 𝛿(𝜀

−1
𝜎)/𝜀, where 𝜀 is an arbitrary positive constant.

It is found that 𝛿
𝜀
(𝜎) ∈ 𝐶

∞

0 (−∞, +∞) and

𝛿
𝜀
(𝜎) ≥ 0,

𝛿
𝜀
(𝜎) = 0

for |𝜎| ≥ 𝜀,

𝛿𝜀 (𝜎)
 ≤

𝑐

𝜀
,

∫

+∞

−∞

𝛿
𝜀
(𝜎) 𝑑𝜎 = 1.

(13)

Let the function 𝜙(𝑥) be defined and locally integrable on
(−∞, +∞). Set 𝜙𝜀(𝑥); denote the approximation function of
𝜙(𝑥) as

𝜙
𝜀
(𝑥) =

1
𝜀
∫

+∞

−∞

𝛿 (
𝑥 − 𝑦

𝜀
) 𝜙 (𝑦) 𝑑𝑦. (14)

We call 𝑥0 a Lebesgue point of the function 𝜙(𝑥) if

lim
𝜀→ 0

1
𝜀
∫

𝑥0+𝜀

𝑥0−𝜀

𝜙 (𝑥) − 𝜙 (𝑥0)
 𝑑𝑥 = 0. (15)

At any Lebesgue point 𝑥0, we get

lim
𝜀→ 0

𝜙
𝜀
(𝑥0) = 𝜙 (𝑥0) . (16)

Since the set of points which are not Lebesgue points of 𝜙(𝑥)
has measure zero, we have 𝜙𝜀(𝑥) → 𝜙(𝑥) as 𝜀 → 0 almost
everywhere.

For any 𝑇 > 0, we denote the band {(𝑡, 𝑥) : [0, 𝑇] × 𝑅} by
𝜛
𝑇
. Let 𝐾

𝑟
= {𝑥 : |𝑥| ≤ 𝑟} and

Π = {(𝑡, 𝑥, 𝜏, 𝑦) :



𝑡 − 𝜏

2

≤ 𝜀, 𝜌 ≤

𝑡 + 𝜏

2
≤𝑇

−𝜌,



𝑥 − 𝑦

2

≤ 𝜀,



𝑥 + 𝑦

2

≤ 𝑟 − 𝜌} ,

(17)

where 𝑟 > 0, 𝜌 > 0.
We state the concept of a characteristic cone. Let

‖V‖
𝐿
∞
(𝑅)

≤ 𝑀, for any 𝑅1 > 0; we define

𝑁 > max
(𝑡,𝑥)∈[0,𝑇]×𝐾

𝑅1


𝑓

(V)

. (18)

Let Ω represent the cone {(𝑡, 𝑥) : |𝑥| ≤ 𝑅1 − 𝑁𝑡, 0 ≤ 𝑡 ≤ 𝑇1 =
min(𝑇, 𝑅1𝑁

−1
)} and let 𝑆

𝜏
designate the cross section of the

coneΩ by the plane 𝑡 = 𝜏, 𝜏 ∈ [0, 𝑇1].

Lemma 3 (see [12]). Let the function 𝜙(𝑡, 𝑥) be bounded and
measurable in cylinder [0, 𝑇1]×𝐾𝑟. For any 𝜌 ∈ (0,min[𝑟, 𝑇1])
and any 𝜀 ∈ (0, 𝜌), the function

𝑉
𝜀
=

1
𝜀2
∫∫∫∫
Π

𝜙 (𝑡, 𝑥) − 𝜙 (𝜏, 𝑦)
 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 (19)

satisfies

lim
𝜀→ 0

𝑉
𝜀
= 0. (20)

Lemma 4 (see [12]). If 𝜕𝐹(𝜙)/𝜕𝜙 is bounded, the function
𝐻(𝜙, 𝜓) = sign(𝜙 − 𝜓)(𝐹(𝜙) − 𝐹(𝜓)) satisfies the Lipschitz
condition in 𝜙 and 𝜓.

Lemma 5. If V(𝑡, 𝑥) is the solution of problem (11) on 𝜛
𝑇
,

𝜂(𝑡, 𝑥) ∈ 𝐶
∞

0 (𝜛𝑇), it holds that

∬
𝜛
𝑇

{|V− 𝑘| 𝜂𝑡

+ sign (V− 𝑘) [𝑃 (𝑡, 𝑥, V) − 𝑃 (𝑡, 𝑥, 𝑘)] 𝜂
𝑥

− sign (V− 𝑘) (𝑃
𝑥
(𝑡, 𝑥, 𝑘) +Ψ (𝑡, 𝑥, V)) 𝜂} 𝑑𝑡 𝑑𝑥

= 0,

(21)

where 𝑘 is an arbitrary constant.

Proof. Suppose that Φ(V) is a twice differential function.
Multiplying the first equation of problem (8) by Φ(V)𝜂(𝑡, 𝑥)
and integrating over 𝜛

𝑇
, we get

∬
𝜛
𝑇

{Φ

(V) 𝜂V

𝑡
+Φ

(V) 𝜂𝑃

𝑥
+Φ

(V) 𝜂𝑃VV𝑥

+Φ

(V) 𝜂Ψ (𝑡, 𝑥, V)} 𝑑𝑡 𝑑𝑥 = 0.

(22)

Using the method of integration by parts, we get

∬
𝜛
𝑇

Φ

(V) 𝜂V

𝑡
𝑑𝑡 𝑑𝑥 = −∬

𝜛
𝑇

Φ (V) 𝜂
𝑡
𝑑𝑡 𝑑𝑥. (23)

Notice that

(∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧
(𝑡, 𝑥, 𝑧) 𝑑𝑧)



𝑥

= Φ

(V) 𝑃V (V) V𝑥

+∫

V

𝑘

(Φ

(𝑧) 𝑃
𝑧
𝑧
𝑥
+Φ

(𝑧) 𝑃
𝑧𝑥
) 𝑑𝑧.

(24)

So

∫

+∞

−∞

(∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧
𝑑𝑧) 𝜂

𝑥
𝑑𝑥

= −∫

+∞

−∞

Φ

(V) 𝑃VV𝑥𝜂 𝑑𝑥

−∫

+∞

−∞

[∫

V

𝑘

(Φ

(𝑧) 𝑃
𝑧
𝑧
𝑥
+Φ

(𝑧) 𝑃
𝑧𝑥
) 𝑑𝑧] 𝜂 𝑑𝑥.

(25)

Then we have

∬
𝜛
𝑇

Φ

(V) 𝑃VV𝑥𝜂 𝑑𝑡 𝑑𝑥 = −∬

𝜛
𝑇

(∫

V

𝑘

V (𝑧) 𝑃
𝑧
𝑑𝑧)

⋅ 𝜂
𝑥
𝑑𝑡 𝑑𝑥

+∬
𝜛
𝑇

[∫

V

𝑘

(Φ

(𝑧) 𝑃
𝑧
𝑧
𝑥
+Φ

(𝑧) 𝑃
𝑧𝑥
) 𝑑𝑧] 𝜂 𝑑𝑡 𝑑𝑥.

(26)
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Substituting (23) and (26) into (22), we get

∬
𝜛
𝑇

{Φ

(V) 𝜂
𝑡
+(∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧
𝑑𝑧) 𝜂

𝑥

+(∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧
𝑧
𝑥
𝑑𝑧) 𝜂 +(∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧𝑥
𝑑𝑧) 𝜂

−Φ

(V) 𝜂𝑃

𝑥
−Φ

(V) 𝜂Ψ}𝑑𝑡 𝑑𝑥 = 0.

(27)

Let Φ𝜀(V) be an approximation of the function |V − 𝑘|. When
𝜀 → 0, Φ𝜀(V) → Φ(V). Setting Φ(V) = |V − 𝑘|, then Φ(V) =
sign(V − 𝑘), Φ(V) = 0. Hence,

∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧
𝑑𝑧

= sign (V− 𝑘) (𝑃 (𝑡, 𝑥, V) − 𝑃 (𝑡, 𝑥, 𝑘)) ,
(28)

∫

V

𝑘

Φ

(𝑧) 𝑃
𝑧𝑥
𝑑𝑧

= sign (V− 𝑘) (𝑃
𝑥
(𝑡, 𝑥, V) − 𝑃

𝑥
(𝑡, 𝑥, 𝑘)) ,

(29)

combining with (27), we complete the proof.

3. Main Result

Set function 𝜂(𝑡, 𝑥) ∈ 𝐶
∞

0 (𝜛𝑇), 𝜂(𝑡, 𝑥) ≡ 0, outside the
cylinder {(𝑡, 𝑥)} = [𝜌, 𝑇 − 2𝜌] × 𝐾

𝑟−2𝜌, where 𝐾𝑟−2𝜌 = {|𝑥| :

|𝑥| ≤ 𝑟 − 2𝜌}, 𝑟 > 0, 0 < 2𝜌 < min(𝑇, 𝑟). Now we give the
main result of this work.

Theorem 6. Assume that V1(𝑡, 𝑥) and V2(𝑡, 𝑥) are two strong
solutions of problem (8) with initial data V10(𝑥), V20(𝑥) ∈

𝐿
1
(𝑅) ∩ 𝐻

𝑠
(𝑅) (𝑠 > 3/2). Let 𝑇 > 0 be the maximum

existence time of V1(𝑡, 𝑥) and V2(𝑡, 𝑥). If ‖V1(𝑡, 𝑥)‖𝐿∞ ≤ 𝑀 and
‖V2(𝑡, 𝑥)‖𝐿∞ ≤ 𝑀, for any 𝑡 ∈ [0, 𝑇], it holds that

V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥)
𝐿1

≤ 𝑒
𝑐𝑡
∫

+∞

−∞

V10 (𝑥) − V20 (𝑥)
 𝑑𝑥,

(30)

where 𝑐 is a positive constant depending on ‖V10‖𝐿∞(𝑅) and
‖V20‖𝐿∞(𝑅).

Proof. Set 𝑘 = 𝜓(𝜏, 𝑦), 𝜂(𝑡, 𝑥) = ℎ(𝑡, 𝑥, 𝜏, 𝑦). Using the
Kružkov device of doubling the variables in [12] and
Lemma 5, we get

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{
V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)

 ℎ𝑡

+ sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ [𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥)) − 𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦))] ℎ𝑥

− sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ [𝑃
𝑥
(𝑡, 𝑥, V2 (𝜏, 𝑦)) +Ψ (𝑡, 𝑥, V1 (𝑡, 𝑥))] ℎ} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= 0.

(31)

Similarly, we have

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{
V2 (𝜏, 𝑦) − V1 (𝑡, 𝑥)

 ℎ𝜏

+ sign (V2 (𝜏, 𝑦) − V1 (𝑡, 𝑥))

⋅ [𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦)) − 𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥))] ℎ𝑦

− sign (V2 (𝜏, 𝑦) − V1 (𝑡, 𝑥))

⋅ [𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) +Ψ (𝜏, 𝑦, V2 (𝜏, 𝑦))] ℎ} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= 0.

(32)

Adding (31) and (32), we obtain

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{
V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)

 (ℎ𝑡 + ℎ𝜏)

+ sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)) [𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥))

− 𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] (ℎ𝑥 + ℎ𝑦)

+ sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ ([𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦)) − 𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] ℎ𝑥

+ [𝑃 (𝜏, 𝑦, V1 (𝑡, 𝑥)) − 𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥))] ℎ𝑦

+ [𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) − 𝑃𝑥 (𝑡, 𝑥, V2 (𝜏, 𝑦))] ℎ)

− sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)) [Ψ (𝑡, 𝑥, V1 (𝑡, 𝑥))

−Ψ (𝜏, 𝑦, V2 (𝜏, 𝑦))] ℎ} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= ∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

(𝐴1 +𝐴2 +𝐴3 +𝐴4) 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= 0.

(33)

Set function

ℎ (𝑡, 𝑥, 𝜏, 𝑦)

= 𝜂 (
𝑡 + 𝜏

2
,
𝑥 + 𝑦

2
) 𝛿
𝜀
(
𝑡 − 𝜏

2
) 𝛿
𝜀
(
𝑥 − 𝑦

2
)

= 𝜂 (⋅ ⋅ ⋅) 𝜆
𝜀
(
.
.
.) ,

(34)

in which (⋅ ⋅ ⋅ ) = ((𝑡+𝜏)/2, (𝑥+𝑦)/2) and (..
.
) = ((𝑡−𝜏)/2, (𝑥−

𝑦)/2). Thus, we obtain

ℎ
𝑡
+ ℎ
𝜏
= 𝜂
𝑡
(⋅ ⋅ ⋅) 𝜆

𝜀
(
.
.
.) ,

ℎ
𝑥
+ ℎ
𝑦
= 𝜂
𝑥
(⋅ ⋅ ⋅) 𝜆

𝜀
(
.
.
.) .

(35)

We will prove that the form𝐴3 in (33) approaches zero as
𝜀 → 0. In fact, the coefficients of 𝜂

𝑥
and 𝜂
𝑦
in 𝐴3 vanish for
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|𝑡 − 𝜏| + |𝑥 − 𝑦| = 0. Thus the integrals of 𝐴3 can be rewritten
as the following concrete form:

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ {[𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦)) −𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] (𝜆𝜀)𝑥

−𝑃
𝑥
(𝑡, 𝑥, V2 (𝜏, 𝑦)) 𝜆𝜀

+ [𝑃 (𝜏, 𝑦, V1 (𝑡, 𝑥)) − 𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥))] (𝜆𝜀)𝑦

+𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) 𝜆𝜀} 𝜂 (⋅ ⋅ ⋅) 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 = 𝐴𝜀.

(36)

In the following computations, we omit the index 𝜀 of func-
tion 𝜆. Applying the Taylor formula, we have the relations

[𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦)) − 𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] 𝜆𝑥

−𝑃
𝑥
(𝑡, 𝑥, V2 (𝜏, 𝑦)) 𝜆

= ([𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦)) − 𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] 𝜆)𝑥

= 𝑃
𝜏
(𝜏, 𝑦, V2 (𝜏, 𝑦)) (𝜏 − 𝑡) 𝜆𝑥

+𝑃
𝑦
(𝜏, 𝑦, V2 (𝜏, 𝑦)) (𝑦 − 𝑥) 𝜆𝑥

−𝑃
𝑦
(𝜏, 𝑦, V2 (𝜏, 𝑦)) 𝜆 + 𝛼1𝜆𝑥 +𝛼0𝜆

= 𝑃
𝜏
(𝜏, 𝑦, V2 (𝜏, 𝑦)) ((𝜏 − 𝑡) 𝜆)𝑥

+𝑃
𝑦
(𝜏, 𝑦, V2 (𝜏, 𝑦)) ((𝑦 − 𝑥) 𝜆)𝑥 +𝛼1𝜆𝑥 +𝛼0𝜆.

(37)

It is seen that the identity 𝜆
𝑦
= −𝜆

𝑥
. In a similar way, we

obtain

[𝑃 (𝜏, 𝑦, V1 (𝑡, 𝑥)) − 𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥))] 𝜆𝑦

+𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) 𝜆

= 𝑃
𝜏
(𝜏, 𝑦, V1 (𝑡, 𝑥)) (𝜏 − 𝑡) 𝜆𝑦

+𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) (𝑦 − 𝑥) 𝜆𝑦

+𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) 𝜆 + 𝛽1𝜆𝑦

= 𝑃
𝜏
(𝜏, 𝑦, V1 (𝑡, 𝑥)) ((𝑡 − 𝜏) 𝜆)𝑥

+𝑃
𝑦
(𝜏, 𝑦, V1 (𝑡, 𝑥)) ((𝑥 − 𝑦) 𝜆)𝑥 +𝛽1𝜆𝑦.

(38)

The functions 𝛼0, 𝛼1, and 𝛽1 in (37) and (38) satisfy

𝛼0
 +
𝛼1
 +
𝛽1
 ≤ 𝑑𝜀 (𝑑) , (39)

where 𝑑 = |𝑡 − 𝜏| + |𝑥 − 𝑦| and 𝜀(𝑑) → 0 as 𝑑 → 0. There
are 𝜆 = 𝜆

𝜀
≡ 0 for |𝑡 − 𝜏| ≥ 2𝜀 or |𝑥 − 𝑦| ≥ 2𝜀 and

𝜆𝑥
 +

𝜆
𝑦


≤
𝑐

𝜀3
,

𝜂 (⋅ ⋅ ⋅) − 𝜂 (𝜏, 𝑦)
 ≤ 𝑐 (|𝑡 − 𝜏| +

𝑥 − 𝑦
) .

(40)

Hence, we get

𝐴
𝜀
= ∫∫∫∫

𝜛
𝑇
×𝜛
𝑇

sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ {[𝑃
𝜏
(𝜏, 𝑦, V2 (𝜏, 𝑦)) − 𝑃𝜏 (𝑡, 𝑥, V2 (𝜏, 𝑦))]

⋅ ((𝜏 − 𝑡) 𝜆)
𝑥

+ [𝑃
𝑦
(𝜏, 𝑦, V2 (𝑡, 𝑥)) − 𝑃𝑦 (𝜏, 𝑦, V1 (𝑡, 𝑥))]

⋅ ((𝑦 − 𝑥) 𝜆)
𝑥
} 𝜂 (𝜏, 𝑦) 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦+ 𝐼 (𝜀) ,

(41)

where 𝐼(𝜀) → 0 as 𝜀 → 0.
We denote the integrand in (41) as

𝐵
𝜀
= 𝐾1 (𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦)) ((𝜏 − 𝑡) 𝜂 (𝜏, 𝑦) 𝜆)𝑥

+𝐾2 (𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦)) ((𝑦 − 𝑥) 𝜂 (𝜏, 𝑦) 𝜆)𝑥

= {𝐾1 (𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦))

−𝐾1 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦))} ((𝜏 − 𝑡) 𝜂 (𝜏, 𝑦) 𝜆)𝑥

+ {𝐾2 (𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦))

−𝐾2 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦))}

⋅ ((𝑦 − 𝑥) 𝜂 (𝜏, 𝑦) 𝜆)
𝑥

+𝐾1 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦)) ((𝜏 − 𝑡) 𝜂 (𝜏, 𝑦) 𝜆)𝑥

+𝐾2 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦)) ((𝑦 − 𝑥) 𝜂 (𝜏, 𝑦) 𝜆)𝑥 ,

(42)

where𝐾1 and𝐾2 satisfy the Lipschitz condition in V. Applying
the property of the function 𝜂(𝜏, 𝑦)𝜆

𝜀
and the method of

integration by parts, we have

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{𝐾1 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦))

⋅ ((𝜏 − 𝑡) 𝜂 (𝜏, 𝑦) 𝜆)
𝑥

+𝐾2 (𝜏, 𝑦, V1 (𝜏, 𝑦) , V2 (𝜏, 𝑦))

⋅ ((𝑦 − 𝑥) 𝜂 (𝜏, 𝑦) 𝜆)
𝑥
} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 = 0.

(43)

Hence

𝐴𝜀 − 𝐼 (𝜀)
 =



∫∫∫∫

𝜛
𝑇
×𝜛
𝑇

𝐵
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦



≤ 𝑐

⋅ ∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)


⋅ {(|𝜏 − 𝑡| +
𝑦 − 𝑥

) 𝜂 (𝜏, 𝑦)
𝜆𝑥

 + 𝜆𝜀} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

≤
𝑐

𝜀2
∫∫∫∫
Π

V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)
 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦.

(44)

Using Lemma 3,𝐴
𝜀
−𝐼(𝜀) → 0 as 𝜀 → 0.Therefore, we have

lim
𝜀→ 0

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐴3𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 = 0. (45)
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It follows from (33) to (45) that

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{
V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)

 𝜂𝑡

+ sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ [𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥)) − 𝑃 (𝑡, 𝑥, V2 (𝜏, 𝑦))] 𝜂𝑥}

⋅ 𝜆
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

+



∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ [Ψ (𝑡, 𝑥, V1 (𝑡, 𝑥)) −Ψ (𝜏, 𝑦, V2 (𝜏, 𝑦))]

⋅ 𝜂𝜆
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦



≥ 0.

(46)

We note that the first two terms of the integrand of (46)
have the form

𝐹
𝜀
= 𝐹 (𝑡, 𝑥, 𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦)) 𝜆𝜀 (

.

.

.) , (47)

where 𝐹 satisfies the Lipschitz condition in all its variables.
Then

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= ∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦))

⋅ 𝜆
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= ∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{𝐹 (𝑡, 𝑥, 𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦))

− 𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥))} 𝜆𝜀𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

+∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥))

⋅ 𝜆
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 = 𝐽11 (𝜀) + 𝐽12.

(48)

Note that 𝐹
𝜀
= 0 outside the region Π. Applying the esti-

mate

𝜆
𝜀
(
.
.
.
)


≤ 𝑐/𝜀

2 and Lemma 4, we get

𝐽11 (𝜀)


≤ 𝑐 [𝜀 +
1
𝜀2
∫∫∫∫
Π

V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)
 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦] ,

(49)

where 𝑐 is a positive constant independent of 𝜀. Using
Lemma 3, we know 𝐽11(𝜀) → 0 as 𝜀 → 0.

For the term 𝐽12, we substitute 𝑡 = 𝛼, (𝑡 − 𝜏)/2 = 𝛽, 𝑥 = 𝜁,
(𝑥 − 𝑦)/2 = 𝛾. Combining with the identity

∫

𝜀

−𝜀

∫

+∞

−∞

𝜆
𝜀
(𝛽, 𝛾) 𝑑𝛽 𝑑𝛾 = 1, (50)

we obtain

𝐽12 = 22∬
𝜛
𝑇
×𝜛
𝑇

𝐹 (𝛼, 𝜁, 𝛼, 𝜁, 𝜙 (𝛼, 𝜁) , 𝜓 (𝛼, 𝜁))

⋅ (∫

𝜀

−𝜀

∫

+∞

−∞

𝜆
𝜀
(𝛽, 𝛾) 𝑑𝛽 𝑑𝛾)𝑑𝛼𝑑𝜁 = 4

⋅∬
𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥)) 𝑑𝑡 𝑑𝑥.

(51)

Thus, we have

lim
𝜀→ 0

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹
𝜀

= 4∬
𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥)) 𝑑𝑡 𝑑𝑥.
(52)

Similarly, the integrand of the third term in (46) can be
represented as

𝐹
𝜀
= sign (V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦))

⋅ [Ψ (𝑡, 𝑥, V1 (𝑡, 𝑥)) −Ψ (𝜏, 𝑦, V2 (𝜏, 𝑦))] 𝑔𝜆𝜀

= 𝐹 (𝑡, 𝑥, 𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦)) 𝜆𝜀 (
.
.
.) .

(53)

Then

∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

= ∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

{𝐹 (𝑡, 𝑥, 𝜏, 𝑦, V1 (𝑡, 𝑥) , V2 (𝜏, 𝑦))

− 𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥)) 𝜆𝜀} 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦

+∫∫∫∫
𝜛
𝑇
×𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥))

⋅ 𝜆
𝜀
𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦 = 𝐽21 (𝜀) + 𝐽22.

(54)

It holds that

𝐽21 (𝜀)


≤ 𝑐 [𝜀 +
1
𝜀2
∫∫∫∫
Π

V1 (𝑡, 𝑥) − V2 (𝜏, 𝑦)
 𝑑𝑡 𝑑𝑥 𝑑𝜏 𝑑𝑦] .

(55)

Using Lemma 3, it yields 𝐽21(𝜀) → 0 as 𝜀 → 0. Repeating
the steps as before, we have

𝐽22 = 4∬
𝜛
𝑇

𝐹 (𝑡, 𝑥, 𝑡, 𝑥, V1 (𝑡, 𝑥) , V2 (𝑡, 𝑥)) 𝑑𝑡 𝑑𝑥. (56)
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From (46) to (56), we get

∬
𝜛
𝑇

{
V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥)

 𝜂𝑡

+ sign (V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥))

⋅ [𝑃 (𝑡, 𝑥, V1 (𝑡, 𝑥)) − 𝑃 (𝜏, 𝑦, V2 (𝜏, 𝑦))] 𝜂𝑥} 𝑑𝑡 𝑑𝑥

+



∬
𝜛
𝑇

sign (V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥))

⋅ [Ψ (𝑡, 𝑥, V1) −Ψ (𝑡, 𝑥, V2)] 𝜂 𝑑𝑡 𝑑𝑥


≥ 0.

(57)

We set

𝑔 (𝑡) = ∫

+∞

−∞

V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥)
 𝑑𝑥,

𝜇
𝜀
(𝜎) = ∫

𝜎

−∞

𝛿
𝜀
(𝜎) 𝑑𝜎.

(58)

Take two numbers 𝜌, 𝜏 ∈ (0, 𝑇1) and 𝜌 < 𝜏. In (57), we set

𝜂 (𝑡, 𝑥) = [𝜇
𝜀
(𝑡 − 𝜌) − 𝜇

𝜀
(𝑡 − 𝜏)] 𝜒 (𝑡, 𝑥) ,

𝜀 < min (𝜌, 𝑇1 − 𝜏) ,
(59)

in which

𝜒 (𝑡, 𝑥) = 𝜒
𝜃
(𝑡, 𝑥) = 1−𝜇

𝜃
(|𝑥| +𝑁𝑡 −𝑅1 + 𝜃) , (60)

where 𝜃 is a small positive constant and𝜒(𝑡, 𝑥) = 0 outside the
coneΩ. When 𝜃 → 0, 𝑅1 → +∞, we observe that 𝜒

𝜃
→ 1.

By the definition of the number𝑁, we have

0 = 𝜒
𝑡
+𝑁

𝜒𝑥
 ≥ 𝜒𝑡 +𝑁𝜒𝑥, (𝑡, 𝑥) ∈ Ω. (61)

Applying (57)–(60), we get

∬
𝜛
𝑇1

{
V1 (𝑡, 𝑥) − V2 (𝑡, 𝑥)

 [𝛿𝜀 (𝑡 − 𝜌) − 𝛿𝜀 (𝑡 − 𝜏)]

⋅ 𝜒
𝜃
(𝑡, 𝑥)} 𝑑𝑡 𝑑𝑥 +∫
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0
𝑑𝑡

⋅ ∫

+∞

−∞

{
Ψ (𝑡, 𝑥, V1) −Ψ (𝑡, 𝑥, V2)



⋅ [𝜇
𝜀
(𝑡 − 𝜌) − 𝜇

𝜀
(𝑡 − 𝜏)] 𝜒

𝜃
(𝑡, 𝑥)} 𝑑𝑥 ≥ 0.

(62)

In (62), sending 𝜃 → 0, 𝑅1 → +∞ and using Lemma 2, we
obtain

∫

𝑇1

0
[𝛿
𝜀
(𝑡 − 𝜌) − 𝛿

𝜀
(𝑡 − 𝜏)] ℎ (𝑡) 𝑑𝑡

+ 𝑐∫

𝑇1

0
[𝜇
𝜀
(𝑡 − 𝜌) − 𝜇

𝜀
(𝑡 − 𝜏)] 𝑔 (𝑡) 𝑑𝑡 ≥ 0,

(63)

where 𝑐 is independent of 𝜀.

Applying the properties of the function 𝛿
𝜀
for 𝜀 ≤ min(𝜌,

𝑇1 − 𝜌), we get


∫

𝑇1

0
𝛿
𝜀
(𝑡 − 𝜌) 𝑔 (𝑡) − 𝑔 (𝜌) 𝑑𝑡



=



∫

𝑇1

0
𝛿
𝜀
(𝑡 − 𝜌) [𝑔 (𝑡) − 𝑔 (𝜌)] 𝑑𝑡



≤
𝑐

𝜀
∫

𝜌+𝜀

𝜌−𝜀

𝑔 (𝑡) − 𝑔 (𝜌)
 𝑑𝑡.

(64)

Then

∫

𝑇0

0
𝛿
𝜀
(𝑡 − 𝜌) 𝑔 (𝑡) 𝑑𝑡 → 𝑔 (𝜌) as 𝜀 → 0. (65)

Let

𝑊(𝜌) = ∫

𝑇1

0
𝜇
𝜀
(𝑡 − 𝜌) 𝑔 (𝑡) 𝑑𝑡

= ∫

𝑇1

0
𝑑𝑡∫

𝑡−𝜌

−∞

𝛿
𝜀
(𝜎) 𝑔 (𝑡) 𝑑𝜎.

(66)

We observe that

𝑊

(𝜌) = −∫

𝑇1

0
𝛿
𝜀
(𝑡 − 𝜌) 𝑔 (𝑡) 𝑑𝑡. (67)

Letting 𝜀 → 0, it derives that

𝑊

(𝜌) → −𝑔 (𝜌) ,

𝑊 (𝜌) → 𝑊(0) −∫
𝜌

0
𝑔 (𝑡) 𝑑𝑡,

𝑊 (𝜏) → 𝑊(0) −∫
𝜏

0
𝑔 (𝑡) 𝑑𝑡.

(68)

Therefore, we have

𝑊(𝜌) −𝑊 (𝜏) → ∫

𝜏

𝜌

𝑔 (𝑡) 𝑑𝑡 as 𝜀 → 0. (69)

From (63)–(69), we obtain inequality

𝑔 (𝜌) + 𝑐∫

𝜏

𝜌

𝑔 (𝑡) 𝑑𝑡 ≥ 𝑔 (𝜏) . (70)

Choosing 𝜌 → 0, 𝜏 → 𝑡, we get

∫

+∞

−∞

𝜙 (0, 𝑥) −𝜓 (0, 𝑥)
 𝑑𝑥

+ 𝑐∫

𝑡

0
𝑑𝑡∫

+∞

−∞

𝜙 (𝑡, 𝑥) −𝜓 (𝑡, 𝑥)
 𝑑𝑥

≥ ∫

+∞

−∞

𝜙 (𝑡, 𝑥) −𝜓 (𝑡, 𝑥)
 𝑑𝑥.

(71)

Applying the Gronwall inequality, we complete the proof of
Theorem 6.
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A strategy to design and implement a robust controller for a class of underactuated mechanical systems, with two degrees of
freedom, which solves the problems of regulation and trajectory tracking, is proposed. This control strategy considers the partial
measurement of the state vector and the presence of parametric uncertainties in the plant; these conditions are common in the
implementation of a control system. The strategy is based on the use of robust finite time convergence observers to estimate
the unmeasured state variables, unknown disturbances, and other signals needed for the control system implementation. The
performance of the control strategy is illustrated numerically and experimentally.

1. Introduction

Antecedents and Motivation. Control of underactuated me-
chanical systems, systems with fewer number of control
inputs than their degrees of freedom, has received much
attention in the last decades.This is because of the theoretical
challenges as well as practical applicability; robots, aerospace
vehicles, underwater vehicles, and surface vessels are some
examples of underactuatedmechanical systems. Some impor-
tant papers which address this control problem for different
situations are [1–9]. While many interesting techniques and
results have been presented for this class of systems, the
control of them still remains an open problem. Important
issues are as follows: how control models can be formulated
for such systems and how closed-loop control problems can
be solved and implemented. These issues are addressed in
this paper for a particular class of uncertain underactuated
mechanical systems. These problems have been addressed by
many authors and important solutions have been proposed,
some of which are as follows.

In [10] a sliding mode control method for a class
of second-order underactuated mechanical systems is pro-
posed; the controller has the double-layer structure. Firstly,
the system states are divided into several different subsystems.
For each of these subsystems, a first-layer sliding plane

is constructed; from that, a second-layer sliding plane is
constructed. By analyzing the features of the model of the
plant, they derive the sliding control law. Here, the proposed
controller only solves the regulation problem; furthermore,
the implementation of the controller requires the measure-
ment of full state vector; this condition is not satisfied in
practice. For a similar class of systems, in [11], the Olfati
transformation is applied first to represent the system into
a special cascade form. Since, in general cases, some of
the terms in the new space might become too complex to
drive, they are regarded as uncertainties. A backstepping-like
adaptive control based on function approximation technique
is designed so that the system in the new space can be
stabilized with uniformly ultimately bounded performance.
This paper assumes knowledge of all system parameters and
the measurement of all state variables and the perturbation
terms that appear in the approach are well known, but
experimental results are not presented.

Other works deal with particular systems, for example,
[1, 3, 12, 13], but many of them only deal with the regulation
problem and present performance results through numerical
simulations. Reference [14] addresses the observer-based
multivariable control of a class of nonlinear, underactuated
Lagrangian systems with application to trajectory tracking
and sway control of a 3D overhead gantry crane subject to
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Coulomb friction. A second-order sliding mode observer is
used for the estimation of velocities. Based on these estimates,
the sliding function of a second-order slidingmode controller
for trajectory tracking and antiswing control is proposed.
This is a very important paper because it considers a very
common situation in practice, the lack ofmeasurement of the
velocities, but it only show numerical results.

An important work is presented in [15] where, for a class
of second-order underactuated mechanical systems, a robust
finite time control strategy is proposed. The robust finite
time controller drives the tracking error to be zero at the
fixed final time. By utilizing a Lyapunov stability theorem, the
controller can achieve finite time tracking of desired reference
signals for underactuated systems, which are subject to both
external disturbances and system uncertainties. However, the
complete measurement of the state vector is assumed and
only stabilization problem is solved. Moreover, illustration
controller performance is through numerical simulations.

Main Contribution. We propose a strategy to design and
implement a robust controller for a class of underactuated
mechanical systems, with two degrees of freedom, which
solves the problems of regulation and trajectory tracking.
This control strategy considers the partialmeasurement of the
state vector and the presence of parametric uncertainties in
the plant; these conditions are common in the implementa-
tion of a control system.

The strategy is based on the use of robust finite time
convergence observers to estimate the unmeasured state vari-
ables, unknown disturbances, and other signals needed for
the control system implementation. The performance of the
control strategy is illustrated numerically and experimentally.

Paper Structure. This paper is organized as follows: Section 2
provides the control problem, the model of the plant, and
the control objective. In Section 3, we propose the solution
to the problem; to implement such solution is necessary
to know the velocities, the exact value of the disturbances,
and the availability of auxiliary signals and their derivatives,
which are unknown. One way to implement this control
signal is presented in Section 4, where with the help of
robust observers with finite time convergence we estimate all
the terms needed for implementation. Section 5 shows the
performance of the controller through numerical simulations
and experimental results. Finally, in Section 6, we present
some general conclusions.

2. Problem Statement

Consider a 2DOF underactuated mechanical system whose
dynamics are given by
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= 𝑓

1
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1
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(⋅) ,

𝑦
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= 𝑞

1
,

𝑦

2
= 𝑞

2
,

(1)

where 𝑞

1
, 𝑞
2
, �̇�
1
, and �̇�

2
are the generalized positions and

velocities, respectively. 𝑓

1
(⋅), 𝑓

2
(⋅), and 𝑔

1
(⋅) are smooth

functions; 𝑔
1
(⋅) ̸= 0 for all 𝑞

1
and 𝑞

2
. 𝑔
2

̸= 0 is a constant,
V(𝑞
1
) is an invertible function for all 𝑞

1
in the domain of

operation of the system, and 𝑢 is the control input. 𝛾
1
(⋅) and

𝛾

2
(⋅) are smooth terms due to parameter variations; based on

Lagrangian model (1), these terms may depend on 𝑞

1
, 𝑞
2
, �̇�
1
,

�̇�

2
, �̈�
1
, and �̈�

2
, but if these variables are bounded, 𝛾

1
(⋅) and

𝛾

2
(⋅) also are bounded [16]. Additionally, we considered that

there is no measurement of the velocities �̇�
1
and �̇�

2
.

Some well known mechanisms that belong to this class
of underactuated systems are the mass-spring-damper, mag-
netic suspension, and the ball and beam systems.

A state space representation of system (1) is
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= 𝑥

3
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(2)

The control problem, for system (2), is to design a control
input 𝑢 such that the underactuated position 𝑥

3
tracks a

reference signal 𝑦
𝑟
(𝑡) in asymptotic form; in other words

lim
𝑡→∞









𝑦

2
− 𝑦

𝑟
(𝑡)









= 0, (3)

where 𝑦

𝑟
(𝑡) is aC𝑘 function, for a sufficiently large 𝑘.

To solve the control problemwe define the error variables
𝑒
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3
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𝑟
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2
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4
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(𝑡), whose dynamics are given

by
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𝑒
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1
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𝑦

1
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1
. (9)

Nowwe can say that the control problem is to design a control
input 𝑢 such that the origin of the error variables of sub-
systems (4) and (5) will be an asymptotic stable equilibrium
point, while the variables 𝑥

1
and 𝑥

2
stay bounded.

3. Control Strategy

In this section we present a strategy to solve the control prob-
lem considering that every disturbance terms and velocities
are known; the next section will show its implementation.



Mathematical Problems in Engineering 3

System ((4)–(9)) is formed by two subsystems; the unac-
tuated part is
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and the actuated part is
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The function V(𝑥
1
) in (10) can be seen as a control input

for this subsystem; therefore we rename V(𝑥
1
) as 𝑢
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An ideal control 𝑢
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that stabilizes the origin of system (12) is

𝑢

𝑒
=

1

𝑔

2

(−𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) − 𝛾

2
(⋅) + �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1

− 𝑘

2
𝑒

2
) ;

(13)

substituting it in (12) results in
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If 𝑘
1
and 𝑘

2
are positive constants the origin of system (14) is

an exponentially stable equilibrium point.
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A control 𝑢 that stabilizes the origin of system (15) is
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substituting it in (15) we have
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If the constants 𝛼
1
, 𝛼
2
, and 𝛼

3
are positive the origin of system

(17) is an exponentially stable equilibrium point.
It is important to note that, because this section con-

sidered that we have the measurement of all terms, it is
not necessary to incorporate the term discontinuous in the
control (16); however this term is very useful when the
implementation is done because it will give robustness to
closed-loop system.

3.1. StabilityAnalysis. Toprove the stability of the closed-loop
system consider the error system
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The last two equations of (18) form a subsystem uncoupled
of the 𝑒
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2
, regardless of the value of 𝑢

𝑒
. Then, if 𝛼

1
, 𝛼
2
,

and 𝛼

3
are positive constants, the origin of this subsystem is

exponentially stable [17].
Because 𝑥

1
converges exponentially to 𝑢

𝑒
, 𝑥

1
can be

expressed in the form

𝑥

1
= V−1 (

1

𝑔

2

(−𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) − 𝛾

2
(⋅) + �̈�

𝑟
(𝑡)

− 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
)) + Δ (⋅) ,

(19)

where Δ(⋅) is the difference between 𝑥

1
and 𝑥re and satisfies

|Δ (⋅)| ≤ 𝜌

0
𝑒

−𝜎0𝑡
, (20)

for some positive constants 𝜌
0
and 𝜎

0
. Substituting (19) in (18)

we have

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − �̈�

𝑟
(𝑡)

+ 𝑔

2
V(V−1 (

1

𝑔

2

(−𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) − 𝛾

2
(⋅)

+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
)) + Δ (⋅)) ,

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= −𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
) .

(21)
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This system can be rewritten in the form

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= −𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
+ 𝜇 (⋅) ,

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= −𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
) ,

(22)

where 𝜇(⋅) is a term produced by Δ(⋅) that satisfies








𝜇 (⋅)









≤ 𝜌

1
𝑒

−𝜎1𝑡
, (23)

for some positive constants 𝜌
1
and 𝜎

1
. System (22) is a piece-

wise linear system with a vanishing disturbance; therefore,
there exist a set of constants 𝑘

1
, 𝑘
2
, 𝛼
1
, 𝛼
2
, and 𝛼

3
such that

the origin will be an asymptotically stable equilibrium point
in a sufficient large regionΩ ⊂ R4 [17, 18].

4. Controller Implementation

The control given in (13) and (16) cannot be implemented
directly because 𝑒

2
, 𝜀
2
, 𝛾
1
(⋅), 𝛾
2
(⋅), and �̈�re are not available. In

this section we present a method to implement this control
input. It is based on discontinuous observers with finite time
convergence.

4.1. Estimation of 𝑒
2
and 𝛾

2
(⋅). To estimate 𝑒

2
and 𝛾

2
(⋅) we

propose a finite time observer for the underactuated part:

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝑔

2
V (𝑥
1
) + 𝛾

2
(⋅) − �̈�

𝑟
(𝑡) ,

𝑦

𝑒
= 𝑒

1
.

(24)

The following observer is based on Levant’s exact deriver [19]:

̇

𝑒

1
= 𝑧

1
+ 𝑐

1,1









𝑒

1
− 𝑒

1









1/2 sign (𝑒

1
− 𝑒

1
) ,

�̇�

1
= 𝑐

2,1
sign (𝑒

1
− 𝑒

1
) ,

𝑦

1
= 𝑒

1
,

̇

𝑒

2
= 𝑔

2
V (𝑥
1
) − �̈�

𝑟
(𝑡) + 𝑧

2

+ 𝑐

1,2









𝑧

1
− 𝑒

2









1/2 sign (𝑧

1
− 𝑒

2
) ,

�̇�

2
= 𝑐

2,2
sign (𝑧

1
− 𝑒

2
) ,

𝑦

2
= 𝑒

2
.

(25)

To show the stability of the observer define the errors 𝜖

1
=

𝑒

1
− 𝑒

1
and 𝜖

2
= 𝑒

2
− 𝑒

2
, whose dynamics are given by

̇𝜖

1
= 𝑒

2
− 𝑧

1
− 𝑐

1,1









𝜖

1









1/2 sign (𝜖

1
) ,

�̇�

1
= 𝑐

2,1
sign (𝜖

1
) ,

̇𝜖

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2

− 𝑐

1,2









𝑧

1
− 𝑒

2









1/2 sign (𝑧

1
− 𝑒

2
) ,

�̇�

2
= 𝑐

2,2
sign (𝑧

1
− 𝑒

2
) .

(26)

Making a change of variables in the first two equations

V
1
= 𝜖

1
,

V
2
= 𝑒

2
− 𝑧

1
,

(27)

we obtain the subsystem

V̇
1
= V
2
− 𝑐

1,1









V
1









1/2 sign (V
1
) ,

V̇
2
= ̇𝑒

2
− 𝑐

2,1
sign (V

1
) .

(28)

If | ̇𝑒

2
| ≤ 𝛿

1
, where 𝛿

1
is a known constant, there exist con-

stants 𝑐
1,1

and 𝑐

2,1
such that the trajectories converge in finite

time to (V
1
= 0, V

2
= 0), [20]; therefore

𝑧

1
= 𝑒

2 (29)

in finite time.
The criteria to choosing the constants 𝑐

1,1
and 𝑐

2,1
are

𝑐

1,1
> √

2

𝑐

2,1
+ 𝛿

1

(𝑐

2,1
+ 𝛿

1
) (1 + 𝑝)

(1 − 𝑝)

,

𝑐

2,1
> 𝛿

1
,

(30)

where 0 < 𝑝 < 1.

For the last two equations in (26),

�̇�

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2

− 𝑐

1,2









𝜖

2
− V
2









1/2 sign (𝜖

2
− V
2
) ,

�̇�

2
= 𝑐

2,2
sign (𝜖

2
− V
2
) .

(31)

Making a change of variables

V
3
= 𝜖

2
− V
2
,

V
4
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2
− V̇
2
,

(32)

the dynamics of these variables are given by

V̇
3
= V
4
− 𝑐

1,2









V
3









1/2 sign (V
3
) ,

V̇
4
=

̇

𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + �̇�

2
(⋅) − V̈

2
− 𝑐

2,2
sign (V

3
) .

(33)

If | ̇

𝑓

2
(𝑥

3
, 𝑥

4
) + �̇�

2
(⋅) − V̈

2
| ≤ 𝛿

2
there exist constants 𝑐

1,2
and

𝑐

2,2
such that the trajectories converge in finite time to (V

3
=

0, V
4
= 0); therefore

0 = 𝜖

2
− V
2
,

0 = 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2
− V̇
2
.

(34)

Considering that for (28) V
2
= 0 in finite time, after this time,

we estimate the velocity error 𝑒
2
anddisturbance terms𝑓

2
(𝑒

1
+

𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅):

𝑒

2
= 𝑒

2
,

𝑧

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) .

(35)

As we can see 𝛾

2
(⋅) is estimated through 𝑧

2
.
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4.2. Estimation of 𝜀
2
, 𝛾
1
(⋅), and �̈�re. Nowwe design an observ-

er for system (15):

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝑔

1
(𝑥

1
, 𝑥

3
) 𝑢

+ 𝛾

1
(⋅) − �̈�re,

𝑦

𝜀
= 𝜀

1
.

(36)

The observer is
̇

𝜀

1
= 𝑤

1
+ 𝑎

1,1









𝜀

1
− 𝜀

1









1/2 sign (𝜀

1
− 𝜀

1
) ,

�̇�

1
= 𝑎

2,1
sign (𝜀

1
− 𝜀

1
) ,

𝑦

1
= 𝜀

1
,

̇

𝜀

2
= 𝑔

1
(𝑥

1
, 𝑥

3
) 𝑢 + 𝑤

2

+ 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) ,

𝑦

2
= 𝜀

2
.

(37)

To show the stability of the observer define the errors 𝜖

3
=

𝜀

1
− 𝜀

1
and 𝜖

4
= 𝜀

2
− 𝜀

2
, whose dynamics are given by

�̇�

3
= 𝜀

2
− 𝑤

1
− 𝑎

1,1









𝜖

3









1/2 sign (𝜖

3
) ,

(38)

�̇�

1
= 𝑎

2,1
sign (𝜖

3
) , (39)

�̇�

4
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�

𝑒
− 𝑤

2

− 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

(40)

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) . (41)

Making a change of variables for the first two equations ((38)-
(39)),

V
5
= 𝜖

3
,

V
6
= 𝜀

2
− 𝑤

1
,

(42)

we obtain the subsystem

V̇
5
= V
6
− 𝑎

1,1









V
5









1/2 sign (V
5
) ,

V̇
6
= ̇𝜀

2
− 𝑎

2,1
sign (V

5
) .

(43)

According to (30), if | ̇𝜀

2
| ≤ 𝛿

3
there exist constants 𝑎

1,1
and

𝑎

2,1
such that the trajectories converge in finite time to (V

5
=

0, V
6
= 0) [20]; therefore

𝑤

1
= 𝜀

2
, (44)

in finite time.
For the last two equations in ((40)-(41)),

�̇�

4
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − 𝑤

2

− 𝑎

1,2









𝜖

4
− V
6









1/2 sign (𝜖

4
− V
6
) ,

�̇�

2
= 𝑎

2,2
sign (𝜖

4
− V
6
) .

(45)

Making a change of variables

V
7
= 𝜖

4
− V
6
,

V
8
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − V̇

6

− 𝑤

2
,

(46)

the dynamics of these variables are given by

V̇
7
= V
8
− 𝑎

1,2









V
7









1/2 sign (V
7
) ,

V̇
8
=

̇

𝑓

1
(𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) + �̇�

1
(⋅) −

...

𝑥re − V̈
6

− 𝑎

2,2
sign (V

7
) .

(47)

If | ̇

𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + �̇�

1
(⋅) −

...

𝑥re − V̈
6
| ≤ 𝛿

4
there exist

constants 𝑎

1,2
and 𝑎

2,2
such that the trajectories converge in

finite time to (V
7
= 0, V

8
= 0) [20]; therefore

0 = 𝜖

4
− V
6
,

0 = 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − V̇

6

− 𝑤

2
.

(48)

Considering that for (43) V
6
= 0 in finite time, after a finite

time, we have

𝜀

2
= 𝜀

2
,

𝑤

2
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re.

(49)

Now, the control inputs (13) and (16)may be implemented
in the following form:

𝑥re ≈

1

𝑔

2

(−𝑧

2
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) ,

𝑢 ≈

1

𝑔

1
(𝑥

1
, 𝑥

3
)

(−𝑤

2
− 𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
)) .

(50)

The implementation of the controller must be in several
stages. First we have to apply a signal 𝑢, in open loop, such
that the behavior of the system will be bounded; in this
way the observers can estimate the state and disturbances in
finite time. After this time, the control signals (50) can be
implemented and then close the control loop.

5. Control System Performance

This section shows the performance of the control system
through numerical simulations and experimental results; the
control systems are a ball and beam system and a spring-
mass-damper mechanism.

5.1. Control of a Ball and Beam System. Consider the ball and
beam system shown in Figure 1; its model is given by

(𝐽 + 𝑚𝑥

2
) �̈� + 2𝑚𝑥�̇��̇� − (𝑚𝑔𝑥) cos (𝛼) + 𝛿

1
�̇� = 𝑢,

7

5

�̈� − 𝑥�̇�

2
− 𝑔 sin (𝛼) + 𝛿

2
�̇� = 0,

(51)
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Lever arm

Ball

Beam

x

u

𝛼

Figure 1: Ball and beam mechanical system.

where 𝑥 is the position of the ball, 𝛼 is the angle of the frame,
𝐽 = 0.032 kg⋅m2 is the moment of inertia of the beam, 𝑚 =

0.06 kg is the mass of the ball, 𝛿
1
and 𝛿

2
are viscous friction

coefficients, and 𝑔 = 9.8m/seg2 is the gravitational force.
Defining the state variables as 𝑥

1
= 𝛼, 𝑥

2
= �̇�, 𝑥

3
= 𝑥, and

𝑥

4
= �̇� and substituting the values of the constants we have

the model

�̈� =

𝑚𝑥�̇��̇�

(𝐽 + 𝑚𝑥

2
)

+

(𝑚𝑔𝑥) cos (𝛼)
(𝐽 + 𝑚𝑥

2
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

�̇�

+

𝑢

(𝐽 + 𝑚𝑥

2
)

,

�̈� =

5

7

𝑥�̇�

2
−

5

7

𝛿

2
�̇� +

5

7

𝑔 sin (𝛼) .

(52)

A state variable representation is as follows:

�̇�

1
= 𝑥

2
,

�̇�

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

+

𝑢

(𝐽 + 𝑚𝑥

2

3
)

,

�̇�

3
= 𝑥

4
,

�̇�

4
=

5

7

𝑥

3
𝑥

2

2
−

5

7

𝛿

2
𝑥

4
+

5

7

𝑔 sin (𝑥

1
) ,

𝑦

1
= 𝑥

1
,

𝑦

2
= 𝑥

3
.

(53)

In this example, without loss of generality, the model is free
from uncertainties and external disturbances. It is important
to note that the variable 𝑥

1
is the argument of the sine

function, so the control will have a bounded amplitude.
The control objective is that the ball position 𝑥

3
tracks the

reference signal𝑦
𝑟
(𝑡). Define the error variables 𝑒

1
= 𝑥

3
−𝑦

𝑟
(𝑡)

and 𝑒

2
= 𝑥

4
− �̇�

𝑟
(𝑡) and the auxiliary control 𝑢

𝑒
= sin(𝑥

1
) to

obtain the following system:

�̇�

1
= 𝑥

2
,

�̇�

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

+

𝑢

(𝐽 + 𝑚𝑥

2

3
)

,

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
=

5

7

𝑥

3
𝑥

2

2
−

5

7

𝛿

2
𝑥

4
− �̈�

𝑟
(𝑡) +

5

7

𝑔𝑢

𝑒
,

𝑦

1
= 𝑥

1
,

𝑦

𝑒
= 𝑒

1
,

(54)

where 𝑢

𝑒
only may take values in the [−1, 1] interval.

The ideal controller 𝑢

𝑒
to stabilize the origin of system

(54) is

𝑢

𝑒
=

7

5𝑔

(−

5

7

𝑥

3
𝑥

2

2
+

5

7

𝛿

2
𝑥

4
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) , (55)

where 𝑘

1
= 30 and 𝑘

2
= 10. Thus, the reference signal for 𝑥

1

is

𝑥re = arcsin(

7

5𝑔

(−

5

7

𝑥

3
𝑥

2

2
+

5

7

𝛿

2
𝑥

4
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1

− 𝑘

2
𝑒

2
)) .

(56)

Define new error variables 𝜀

1
= 𝑥

1
− 𝑥re and 𝜀

2
= 𝑥

2
− �̇�re

whose dynamics are given by

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

− �̈�re +
𝑢

(𝐽 + 𝑚𝑥

2

3
)

.

(57)

Then, an ideal control to stabilize the origin of system (57) is

𝑢 = (𝐽 + 𝑚𝑥

2

3
)(−

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

−

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

+

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2
+ �̈�re + 𝑢

𝑜
) ,

𝑢

𝑜
= −𝜎

1
𝜀

1
− 𝜎

2
𝜀

2
− 𝜎

3
sign (𝜀

1
) ,

(58)

where 𝜎

1
= 40, 𝜎

2
= 10, and 𝜎

3
= 0.7. Figure 2 shows the

results when the reference 𝑦

𝑟
takes different constant values;

this is the case of regulation. Steady state error is practically
zero and the control signal takes values suitable for a possible
implementation.
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Figure 2: Simulation results with the ball and beam system; per-
formance for the regulation problem.

The same situation occurs when the reference is a time-
varying signal. Figure 3 shows that the output signal 𝑥

3
of

the nonactuated link converges to a time-varying signal with
an almost zero steady-state error and a control signal with
adequate performance for experimental implementation.

5.2. Control of a Mass-Spring-Damper System. Consider the
2DOF underactuated mass-spring-damper mechanical sys-
tem shown in Figure 4, with the model

𝑚

1
�̈� = −𝑘

1
𝑥 − 𝛿

1
�̇� + (𝑧 − 𝑥) 𝑘

2
+ (�̇� − �̇�) 𝛿

2
+ 𝑘

𝑚
𝑢

+ 𝛾

1
(⋅) ,

𝑚

2
�̈� = − (𝑧 − 𝑥) 𝑘

2
− (�̇� − �̇�) 𝛿

2
+ 𝛾

2
(⋅) ,

(59)

where 𝑥, �̇�, and �̈� are the position, velocity, and acceleration
of the first mass, 𝑧, �̇�, and �̈� are the position, velocity, and
acceleration of the second mass, 𝑢 is the control input, and
𝛾

1
(⋅) and 𝛾

2
(⋅) are disturbances that include terms produced

by parameter uncertainties.
The nominal parameters are 𝑘

1
= 𝑘

2
= 189.65N/m,

𝛿

1
= 10.54 kg/sec, 𝛿

2
= 1.19 kg/sec, 𝑚

1
= 0.77 kg, 𝑚

2
=

0.60 kg, and 𝑘

𝑚
= 2.85N/V; these are the nominal parameter

values for the mass-spring-damper system manufactured by
Educational Control Products Inc. A state representation of
system (59) is

�̇�

1
= 𝑥

2
,

�̇�

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝑢 + 𝛾

1
(⋅) ,
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Figure 3: Simulation results with the ball and beam system; per-
formance for the tracking problem.
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Figure 4: Underactuated mass-spring-damper mechanical systems.

�̇�

3
= 𝑥

4
,

�̇�

4
= 312.72𝑥

1
+ 1.97𝑥

2
− 312.72𝑥

3
− 1.97𝑥

4
+ 𝛾

2
(⋅) ,

𝑦

1
= 𝑥

1
,

𝑦

2
= 𝑥

3
.

(60)

The control objective is

lim
𝑡→∞









𝑥

3
− 𝑦

𝑟
(𝑡)









= 0, (61)

with a bounded behavior in 𝑥

1
, 𝑥
2
, and 𝑥

4
.

Define the error 𝑒
1
= 𝑥

3
−𝑦

𝑟
(𝑡)whose dynamics are given

by

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= −312.72𝑒

1
− 1.97𝑒

2
− 312.72𝑦

𝑟
(𝑡) − 1.97�̇�

𝑟
(𝑡)

− �̈�

𝑟
(𝑡) + 1.97𝑥

2
+ 𝛾

2
(⋅) + 312.72𝑥

1
,

𝑦

𝑒
= 𝑒

1
,

�̇�

1
= 𝑥

2
,
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�̇�

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝜏 + 𝛾

1
(⋅) ,

𝑦

1
= 𝑥

1
.

(62)

In this case the signal 𝑢
𝑒
= 𝑥re and is given by

𝑥re = 3.19

× 10

−3
(−𝑐

1
𝑒

1
− 𝑐

2
𝑒

2
− 1.97𝑥

2
− 𝛾

2
(⋅) + Θ) ,

(63)

where 𝑐

1
= 𝑐

2
= 10 and Θ = 312.72𝑦

𝑟
(𝑡) + 1.97�̇�

𝑟
(𝑡) + �̈�

𝑟
(𝑡).

To design the control 𝑢 define the errors

𝜀

1
= 𝑥

1
− 𝑥re,

𝜀

2
= 𝑥

2
− �̇�re,

(64)

with dynamics given by

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝑢 + 𝛾

1
(⋅) − �̈�re,

(65)

and the control input for this subsystem is

𝑢 = 0.270 (491.74𝑥

1
+ 15.23𝑥

2
− 10245.87𝑥

3

− 1.55𝑥

4
− 𝛾

1
(⋅) + �̈�re + 𝑢

𝑜
) ,

𝑢

𝑜
= −𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
) .

(66)

The observer used to estimate the unknown signals 𝑒
2
and

𝛾

2
(⋅) is

̇

𝑒

1
= 𝑧

1
+ 𝑐

1,1









𝑒

1
− 𝑒

1









1/2 sign (𝑒

1
− 𝑒

1
) ,

�̇�

1
= 𝑐

2,1
sign (𝑒

1
− 𝑒

1
) ,

𝑦

1
= 𝑒

1
,

̇

𝑒

2
= −312.72𝑒

1
− 1.97𝑒

2
− 312.72𝑦

𝑟
(𝑡) − 1.97�̇�

𝑟
(𝑡)

− �̈�

𝑟
(𝑡) + 312.72𝑥

1
+ 𝑧

2

+ 𝑐

1,2









𝑧

1
− 𝑒

2









1/2 sign (𝑧

1
− 𝑒

2
) ,

�̇�

2
= 𝑐

2,2
sign (𝑧

1
− 𝑒

2
) ,

𝑦

2
= 𝑒

2
,

(67)

where 𝑧

1
≈ 𝑒

2
and 𝑧

2
≈ 𝛾

2
(⋅).
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Figure 5: Simulation results with the mass-spring-damper system;
performance for the regulation problem.

The observer to estimate 𝜀

2
, 𝛾
1
(⋅), and �̈�re is

̇

𝜀

1
= 𝑤

1
+ 𝑎

1,1









𝜀

1
− 𝜀

1









1/2 sign (𝜀

1
− 𝜀

1
) ,

�̇�

1
= 𝑎

2,1
sign (𝜀

1
− 𝜀

1
) ,

𝑦

1
= 𝜀

1
,

̇

𝜀

2
= −491.74𝑥

1
+ 10245.87𝑥

3
+ 3.69𝑢 + 𝑤

2

+ 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) ,

𝑦

2
= 𝜀

2
,

(68)

where𝑤
1
≈ 𝜀

2
and𝑤

2
≈ −491.74𝑥

1
−15.23𝑥

2
+10245.87𝑥

3
+

1.55𝑥

4
+ 𝛾

1
(⋅) − �̈�re.

The control inputs (13) and (16) may be implemented in
the following form:

𝑥re ≈

1

𝑔

2

(−𝑧

2
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) ,

𝑢 ≈

1

𝑔

1
(𝑥

1
, 𝑥

3
)

(−𝑤

2
− 𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
)) ,

(69)

where 𝑘

1
= 10, 𝑘

2
= 1, 𝛼

1
= 20, 𝛼

2
= 20, and 𝛼

3
= 0.4.

5.2.1. Numerical Results. Figure 5 shows the results when the
reference 𝑦

𝑟
, red line, takes different constant values; this is

the case of regulation. As can be seen, the output signal 𝑥
3

(black line) reaches asymptotically the reference after a short
transient. The steady state error 𝑥

3
− 𝑦

𝑟
(𝑡) is practically zero

and the control signal 𝑢 takes values suitable for a possible
implementation.

The same situation occurs when the reference is a time-
varying signal. Figure 6 shows that the output signal 𝑥

3
(black

line) of the unactuated link converges to a time-varying signal
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Figure 6: Simulation results with the mass-spring-damper system;
performance for the tracking problem.
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2
and 𝛾

2
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𝑦

𝑟
(𝑡) (red line) with an almost zero steady-state error, 𝑥

3
−

𝑦

𝑟
(𝑡), and a control signal 𝑢 with good characteristics for

experimental implementation.
For this last case, we analyze the behavior of the state

observers. Figure 7 shows the behavior of the errors 𝑒

2
− 𝑒

2

and 𝛾

2
(⋅) − 𝛾

2
(⋅); these errors converge to zero in few seconds.

For the observer that estimates 𝜀

2
and the term that

includes 𝛾

1
(⋅) and �̈�re, it is not possible to compare the

actual values with the estimate values.Therefore we check the
behavior of the errors 𝜀

1
− 𝜀

1
and 𝜀

2
− 𝜀

2
; as these errors go

to zero, as we can see in Figure 8, the estimation of 𝜀
2
and the

term that includes 𝛾
1
(⋅) and �̈�re is correct.

5.2.2. Experimental Results. The proposed controller is
applied to a spring mass damping system manufactured by
Educational Control Products Inc., shown in Figure 9. In this
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Figure 8: Behavior of the internal errors of the observer that esti-
mates 𝜀

2
, 𝛾
1
(⋅), and �̈�re.

Figure 9: Mass damper spring system used in the experiments.

experiment it is assumed that the plant has the same param-
eters as those considered in the numerical simulation of the
previous section and did not conduct a rigorous procedure to
estimate the parameters of the real plant, creating a significant
challenge to the controller. This situation was resolved by
tuning the parameters of each observer, the internal control
signal 𝑢

𝑒
, and the total control 𝑢; where 𝑘

1
= 20, 𝑘

2
= 2,

𝛼

1
= 20, 𝛼

2
= 5, and 𝛼

3
= 0.4.

Experimental results are shown with a reference signal
𝑦

𝑟
with constant values at different times; that is, the control

objective is regulation. The results are shown in Figure 10,
where we can see that the transient takes about one second;
the amplitude of the steady-state error, 𝑥

3
− 𝑦

𝑟
, has a

maximum of 8 × 10

−6 meters and the control signal 𝑢 takes
values which are in the permissible range of the control
system, ±3 volts.

In the second experiment we apply a time varying signal;
a sine function, that is, the control target, is tracking. The
results are shown in Figure 11, where we can see that the
transient takes about 5.8 secondswith an initial error of about
0.01 meters, the steady-state error amplitude, 𝑥

3
− 𝑦

𝑟
(𝑡), has

a maximum of ±3 × 10

−4 meters, and the control signal takes
values which are in the permissible range control system, as
in the previous case, between ±3 volts.

6. Conclusions

The control strategy proposed formally guarantees the con-
trol objective, either regulation or trajectory tracking, and at
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Figure 10: Experimental results and the regulation case.
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Figure 11: Experimental results and tracking case.

the same time establishes a strategy for its implementation
considering partial measurement of the state variables and
parametric uncertainties. Although stability is not global, the
subspace that can ensure stability can be made as large as
needed in practice. Some of its limitations are the number
of parameters to adjust, both in the observers and in the
controller, and the need to use a real-time platform to
implement the controller to ensure a sample time less than or
equal to one millisecond, and thus the actual sliding mode,
produced by discontinuous terms, enough approaches the
ideal sliding mode.
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In order to ensure the steady ability of the LEDwafer transporting robot, a high order polynomial interpolationmethod is proposed
to plan the motion process of the LED wafer transporting robot. According to the LED wafer transporting robot which is fast and
has no vibration, fifth-order polynomial is applied to complete the robot’s motion planning. A new subsection search method
is proposed to optimize the transporting robot’s acceleration. Optimal planning curve is achieved by the subsection searching.
Extended Kalman filter algorithm and PID algorithm are employed to follow the tracks of planned path. MATLAB simulation and
experiment confirm the validity and efficiency of the proposed method.

1. Introduction

The robot motion planning is one of the most important
problems for the robot control. Motion planning includes
path planning and motion control. Path planning is to
search an optimal trajectory of the path from the beginning
point to the finishing point in the robot motion space.
Reference [1] uses an ant colony optimization algorithm to
realize path planning. Reference [2] proposes coordinated
trajectory planning methods of two typical applications,
which can assure the applications’ stabilization. Reference
[3] proposes autonomous motion control approaches to
control dual-arm space robot for target capturing. Reference
[4] proposes quantum-behaved particle swarm optimization
(QPSO) algorithm to plan the robot path, and author uses
the probability theory to study the relationship with the
parameters and convergence of mobile robot path planning,
and at last author proposed an improved trajectory planning
method. Reference [5] points out that the basic problem of
the path planning is the commonmodel expression and path
optimization strategy. Common model expression methods
include visibility graph, free space method, and grid method.

Optimal path search problem is then converted to search the
shortest route from a beginning point to the target point via
the visible lines. By far, most robots employ trapezoidal speed
curves for their motion planning.

Some problems were discovered by research.The classical
planning methods have some distinguishing feature. First,
when the acceleration or the velocity is fixed, the acceleration
and the velocity must be set to a low value to ensure that they
do not exceed the constraints during the whole process which
is impossible to optimize acceleration and velocity at some
points in whole moving process. Second, sudden change of
acceleration can cause system oscillation. System oscillation
can be reduced by planning the motion acceleration. When
the robot moves according to a control method based on
its motion model, sudden change of the acceleration will
certainly cause the system oscillation. The principal purpose
of motion planning is to discover a reasonable polynomial
function or other functions to conduct the interpolation, so
that the robotmotion can be smooth and stablewith vibration
within the acceptable range. And the consumed time from the
beginning point of the motion to the finishing point is as few
as possible.
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In order to solve the problems on how to realize large
range, high speed, and high accuracy trajectory tracking,
robot dynamic real-time control method is raised which has
two problems. The first is how to keep the system stable.
Advanced control method should be studied and applied to
robot real-time control, so that the tracking error can dimin-
ish to possible range as quickly as possible.The second is how
to diminish disturbance and how to reduce the influence of
the disturbance to the accuracy of the tracking. If the precise
motion model of the robot can be achieved and the dis-
turbance signal can be eliminated, then controller designed
with linear control theory can solve the two problems. But
the precise and complete motion model of the robot almost
cannot be constructed, because of the error in measurement
andmodeling, the changing of the load, and disturbance from
the environment [5–7]. So when the robot motion model is
constructed, some reasonable approximations had to bemade
and some unimportant uncertainties might be ignored. In
the field of industrial control, the PID control algorithm is
one of the most important control algorithms. It plays a vital
role in the industrial production process. As far as control
field is concerned, PID control method has the dominated
position in the field for many years. Although much progress
has been made in model based mathematical control science,
PID control method has the significant impact on industry.
In recent years, some scholars begin to attempt some new
controlmethod to replace the PIDmethod [8–10]. Aftermany
years’ unremitting efforts, using the Kalman filter tracking
control is a trend in the aviation field. But Kalman filter’s
application is less in any other areas [11–14].

In the process of transporting the LED wafer, we need to
transport it as fast as possible. Moreover, the vibration of the
fast transporting process of the robot must be as small as pos-
sible. In this paper, two fifth-order polynomial interpolation
functions and a first-order polynomial interpolation function
are used to plan the motion trajectory of the fast transporting
robot. In addition, a new method is proposed to minimize
themaximum acceleration value in the acceleration stage and
deceleration stage to reduce the oscillation. PID algorithm
and extended Kalman filter algorithm are proposed to track
control the movement of the fast transporting robot.

2. Motion Planning Theory

The fundamental task of the robotmotion trajectory planning
is to select reasonable polynomial function or other linear
functions to accomplish interpolation operation task [15–18].
It canmake robot movement smooth, steady ability, and keep
robot movement error within certain range. In the process of
the robot movement, the robot position 𝑦

0
at the beginning

point is known, and the robot position 𝑦
𝑒
at the finishing

point can be achieved by using the inverse kinematics. Thus,
the description of the motion trajectory can be represented
by a smooth interpolation function, which can describe robot
position 𝑦(𝑥) from the beginning point to the finishing point.
At the time 𝑥

0
, 𝑦
0
is the beginning point of robot position

𝑦(𝑥). At the time 𝑥
𝑒
, 𝑦
𝑒
is the finishing point of robot position

𝑦(𝑥). In order to realize the smooth and steady movement of

transporting robot, trajectory 𝑦(𝑥) at least needs tomeet four
limit conditions:

𝑦 (0) = 𝑦0,

𝑦 (𝑥
𝑒
) = 𝑦
𝑒
,

𝑦

(0) = 0,

𝑦

(𝑥
𝑒
) = 0.

(1)

The above four conditions can define a unique third-order
polynomial equation:

𝑦 (𝑥) = 𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2
+ 𝑐3𝑥

3
. (2)

Equation (2) is position of the robot. The first derivative
of (2) is the speed of the robot:

𝑦

(𝑡) = 𝑐1 + 2𝑐2𝑥+ 3𝑐3𝑥

2
. (3)

Equation (1)was substituted into (2) and (3); the following
equations can be obtained:

𝑦 (0) = 𝑐0 = 𝑦0

𝑦 (𝑥
𝑒
) = 𝑐0 + 𝑐1𝑥𝑒 + 𝑐2𝑥

2
𝑒
+ 𝑐3𝑥

3
𝑒
= 𝑦
𝑒

𝑦

(0) = 𝑐1 = 0

𝑦

(𝑥
𝑒
) = 𝑐1 + 2𝑐2𝑥𝑒 + 3𝑐3𝑥

2
𝑒
= 0.

(4)

Equation (4) can be written into matrix form:

(

1 0 0 0

1 𝑥
𝑒

𝑥
2
𝑒

𝑥
3
𝑒

0 1 0 0

0 1 2𝑥
𝑒
3𝑥2
𝑒

)(

𝑐0

𝑐1

𝑐2

𝑐3

) = (

𝑦0

𝑦
𝑒

0
0

). (5)

The following result can be achieved by calculating (5):

(

𝑐0

𝑐1

𝑐2

𝑐3

) =

(
(
(
(

(

𝑦0

0
3
𝑥2
𝑒

(𝑦
𝑒
− 𝑦0)

−
2
𝑥3
𝑒

(𝑦
𝑒
− 𝑦0)

)
)
)
)

)

. (6)

A unique third-order polynomial equation can be deter-
mined by (6).Therefore, if the beginning position, beginning
speed, finishing position, and finishing speed are known,
using third-order polynomial interpolation method can
acquire a complete motion trajectory equation. When the
robot system’s acceleration has to be limited, a fifth-order
polynomial interpolation method will be needed to plan the
motion trajectory of the robot movement process. Equation
of the robot’s position is expressed in the following form:

𝑦 (𝑥) = 𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2
+ 𝑐3𝑥

3
+ 𝑐4𝑥

4
+ 𝑐5𝑥

5
. (7)
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First-order derivative of (7) is the robot’s speed of the
motion:

𝑦

(𝑥) = 𝑐1 + 2𝑐2𝑥+ 3𝑐3𝑥

2
+ 4𝑐4𝑥

3
+ 5𝑐5𝑥

4
. (8)

Second-order derivative of (7) is the robot’s acceleration
of the motion:

𝑦

(𝑥) = 2𝑐2 + 6𝑐3𝑥+ 12𝑐4𝑥

2
+ 20𝑐5𝑥

3
. (9)

The moving process of the fast transporting robot
requires small vibration. According to those characteristics,
the whole motion trajectory is divided into three stages:
accelerating stage, uniform stage, and decelerating stage. The
acceleration and time are all important in the accelerat-
ing stage and decelerating stage, so fifth-order polynomial
interpolation is employed to plan accelerating stage and
decelerating stage. One order polynomial interpolation is
used to plan uniform stage. The accelerating stage uses the
following equation to plan:

𝑦 (𝑥) = 𝑐00 + 𝑐01𝑥+ 𝑐02𝑥
2
+ 𝑐03𝑥

3
+ 𝑐04𝑥

4
+ 𝑐05𝑥

5
. (10)

The uniform stage uses the following equation to plan:

𝑦 (𝑥) = 𝑐10 + 𝑐11𝑥. (11)

Thedecelerating stage uses the following equation to plan:

𝑦 (𝑥) = 𝑐20 + 𝑐21𝑥+ 𝑐22𝑥
2
+ 𝑐23𝑥

3
+ 𝑐24𝑥

4
+ 𝑐25𝑥

5
. (12)

Four moments are critical for the whole trajectory of
motion planning, which are the beginning time of the
accelerating stage 𝑥

0
, the finishing time of the accelerating

stage 𝑥
1
, the beginning time of the decelerating stage 𝑥

2
,

and the finishing time of the decelerating stage 𝑥
3
, and the

corresponding positions of the robot are 𝑦
0
, 𝑦
1
, 𝑦
2
, and 𝑦

3
.

In order to optimize the maximum acceleration value both
in the accelerating stage and in the decelerating stage, 𝑥

1
, 𝑦
1
,

𝑥
2
, and 𝑦

2
must be optimized. Hence, subsection searching

method is used to find the optimum 𝑥
1
, 𝑦
1
, 𝑥
2
, and 𝑦

2
.

Remark 1. For the motion equation, 𝑥 is variable of equation
and 𝑐 is coefficient of equation. The beginning point and end
point of 𝑥 are selected to acquire the value of coefficient 𝑐.

3. Acceleration Optimization

The movement trajectory can be planned by interpolation
through some point in the path. The whole trajectory can be
divided into a number of segments by those special points.
If robot stayed at some point of the path for a while, in
which beginning velocity and the finishing velocity are zero,
therefore polynomial interpolation method can be directly
used. If it does not stop at a point in the process of move-
ment, inverse kinematics solution can be used to determine
polynomial interpolation function and connect every point of
path smoothly. Fifth-order polynomial interpolation method
is used to plan the trajectory of the movement process of
the fast transporting robot during the accelerating stage.

Its beginning position 𝑦(0), beginning velocity 𝑦

(0), and

beginning acceleration 𝑦

(0) are as follows:

𝑦 (0) = 𝑦0 = 0,

𝑦

(0) = 𝑦



0 = 0,

𝑦

(0) = 𝑦



0
= 0.

(13)

At the end of the acceleration stage 𝑥
1
, the position 𝑦(𝑥

1
),

velocity 𝑦

(𝑥
1
), and acceleration 𝑦


(𝑥
1
) are as follows:

𝑦 (𝑥1) = 𝑦1,

𝑦

(𝑥1) = 𝑦



1 = 𝑎11,

𝑦

(𝑥1) = 𝑦



1 = 0.

(14)

Equations (13) and (14) were substituted into (10); the
following equation can be obtained:

𝑦 (0) = 𝑐00 = 0

𝑦

(0) = 𝑐01 = 0

𝑦

(0) = 2𝑐02 = 0

𝑦 (𝑥1) = 𝑐00 + 𝑐01𝑥1 + 𝑐02𝑥
2
1 + 𝑐03𝑥

3
1 + 𝑐04𝑥

4
1 + 𝑐05𝑥

5
1

= 𝑦1

𝑦

(𝑥1) = 𝑐01 + 2𝑐02𝑥1 + 3𝑐03𝑥

2
1 + 4𝑐04𝑥

3
1 + 5𝑐05𝑥

4
1

= 𝑐11

𝑦

(𝑥1) = 2𝑐02 + 6𝑐03𝑥1 + 12𝑐04𝑥

2
1 + 20𝑐05𝑥

3
1 = 0.

(15)

Remark 2. In (15), 𝑥
1
is known; 𝑐

02
, 𝑐
03
, 𝑐
04
, and 𝑐

05
are

unknown. 𝑐
02
, 𝑐
03
, 𝑐
04
, and 𝑐

05
can be obtained by 𝑥

1
and 𝑦

1
.

Equation (15) can be rewritten as

(
(
(
(
(

(

1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1 𝑥1 𝑥
2
1 𝑥

3
1 𝑥

4
1 𝑥

5
1

0 1 2𝑥1 3𝑥2
1 4𝑥3

1 5𝑥4
1

0 0 2 6𝑥1 12𝑥2
1 20𝑥3

1

)
)
)
)
)

)

(
(
(
(
(

(

𝑐00

𝑐01

𝑐02

𝑐03

𝑐04

𝑐05

)
)
)
)
)

)

=

(
(
(
(
(

(

0
0
0
𝑦1

𝑐11

0

)
)
)
)
)

)

.

(16)
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computing acceleration a0
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w = w − 0.1, x1 = x3 ∗ w, x2 = x3 ∗ (1 − w)

Figure 1: Subsection searching optimizing acceleration.

In (16) 𝑐
11
is the robot velocity of the uniform stage, which

can be achieved by substituting 𝑥
1
, 𝑦
1
, 𝑥
2
, and 𝑦

2
into (11):

𝑦 (𝑥1) = 𝑐10 + 𝑐11𝑥1 = 𝑦1

𝑦 (𝑥2) = 𝑐10 + 𝑐11𝑥2 = 𝑦2.
(17)

The acceleration equation of the accelerating stage is

𝑦

(𝑥) = 2𝑐02 + 6𝑐03𝑥+ 12𝑐04𝑥

2
+ 20𝑐05𝑥

3
. (18)

Subsection searching method is used to find the optimal
𝑐
02
, 𝑐
03
, 𝑐
04
, and 𝑐

05
, which can minimize the maximum accel-

eration value of the nonlinear high order polynomial of the
accelerating stage. Subsection searching method is proposed
based on branch and bound method of optimization theory.
Branch and bound method needs two stages of operations:
The first is branch, which divides the solutions into several
nonintersect solution sets, according to certain rules. The
second is bound, which selects an appropriate algorithm to
compute the boundof the subsectionwhichwill be conducted
again and again; thus the solution set will become smaller and
smaller, and at last, an accurate solution will be achieved.

Figure 1 is the process of searching 𝑥
1
using subsec-

tion searching method. The proposed subsection searching
method in this paper searching process includes the following

stages. The first is to choose a random point in the solution
set as the starting searching point. The second is to begin
subsection. In the figure, 𝑎

0
is last computing maximum

acceleration value based on given subset and target function
and 𝑎
1
is this time computing maximum acceleration value.

Subsection direction depends on the results of comparison
𝑎
0
and 𝑎

1
value. Search speed depends on 𝑤. In order to

improve the computing speed,𝑤 can be chosen to increase or
decrease. The step length can choose 0.1, 0.01, or 0.001. After
repeated computing and comparison many times, optimal 𝑥

1

can be obtained. For obtaining optimal 𝑦
1
, the same method

can be applied and then optimal 𝑥
2
and 𝑦

2
can be obtained.

Substituting 𝑥
1
, 𝑦
1
, 𝑥
2
, and 𝑦

2
into (16) and (17), 𝑐

00
, 𝑐
01
, 𝑐
02
,

𝑐
03
, 𝑐
04
, and 𝑐

05
can be obtained.

Remark 3. By searching the proportion of the time of accel-
erating stage, decelerating stage and uniform stage motion
curve can be optimized.

4. System Modeling and Control

4.1. Modeling. Servomotor is used to control the motion
of the fast wafer transporting robot. Servomotor’s job is
to transfer the input electric power into the robot system’s
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Figure 2: The mechanical structure of the transporting robot.

Figure 3: The picture of the transporting robot.

mechanical energy [19, 20]. The mechanical structure of the
transporting robot is shown in Figure 2.

In Figure 2, 1 is installer. 2 is bearing A. 3 is lead screw
A. 4 is servomotor B. 5 is encoder B. 6 is encoder A. 7
is servomotor A. 8 is lead screw B. 9 is workbench. 10 is
transporting arm. 11 is bearing B.

In Figure 3, 1 is transporting arm. 2 is vacuum pad. 3 is
wafer. Vacuum pads grab the wafer and transport them from
source position to target position. In the transporting process,
movement is smooth and has no vibration.

In servomotor, the rotor voltage 𝑒(𝑥) and the rotor current
𝐼(𝑥) are induced in the rotor circuit. Then the rotor current
and stator magnetic flux interact to produce electromagnetic
torque 𝐹(𝑥). Its equation is as follows:

𝑒 (𝑥) = 𝐿
𝑑𝐼 (𝑥)

𝑑𝑥
+𝑅𝐼 (𝑥) +𝐸, (19)

where 𝐸 is counter electromotive force (EMF), 𝐸 = 𝐴
𝑒
𝜔(𝑥),

𝐴
𝑒
is EMF constant, 𝐿 is the inductance parameter, and 𝑅 is

the rotor circuit resistance value.
Electromagnetic torque equation is

𝐹 (𝑥) = 𝐴
𝑚
𝐼 (𝑥) , (20)

where 𝐴
𝑚
is servomotor torque coefficient and 𝐹(𝑥) is the

electromagnetic torque produced by servomotor.
Servomotor torque balance equation is

𝐵
𝑚

𝑑𝜔 (𝑥)

𝑑𝑥
+𝑓
𝑚
𝜔 (𝑥) = 𝐹 (𝑥) −𝐹

𝑐 (𝑥) , (21)

where𝑓
𝑚
ismotor shaft sticky friction coefficient,𝐵

𝑚
ismotor

shaft rotary inertia, and𝐹
𝑐
(𝑥) is total load torque. Remove the

middle variable of (19), (20), and (21); the following motor
differential equation (22) can be obtained

𝐿𝐵
𝑚

𝑑
2
𝜔 (𝑥)

𝑑𝑥2 + (𝐿𝑓
𝑚

+𝑅𝐵
𝑚
)
𝑑𝜔 (𝑥)

𝑑𝑥

+ (𝑅𝑓
𝑚

+𝐴
𝑚
𝐴
𝑒
) 𝜔 (𝑥)

= 𝐴
𝑚
𝑒 (𝑥) − 𝐿

𝑑𝐹
𝑐
(𝑥)

𝑑𝑥
−𝑅𝐹
𝑐
(𝑥) .

(22)

In (22), the inductance 𝐿 is very small, which can be ignored,
so (22) is simplified as follows:

𝐻
𝑚

𝑑𝜔 (𝑥)

𝑑𝑥
+𝜔 (𝑥) = 𝑁1𝑒 (𝑥) −𝑁2𝐹𝑐 (𝑥) , (23)

where

𝐻
𝑚

=
𝑅𝐵
𝑚

𝑅𝑓
𝑚

+ 𝐴
𝑚
𝐴
𝑒

,

𝑁1 =
𝐴
𝑚

𝑅𝑓
𝑚

+ 𝐴
𝑚
𝐴
𝑒

,

𝑁2 =
𝑅

𝑅𝑓
𝑚

+ 𝐴
𝑚
𝐴
𝑒

.

(24)

If 𝐹
𝑐
(𝑥) = 0, (23) becomes

𝐻
𝑚

𝑑𝜔 (𝑥)

𝑑𝑥
+𝜔 (𝑥) = 𝑁1𝑒 (𝑥) . (25)



6 Mathematical Problems in Engineering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

100

200

300

x/s

Acceleration

−300

−200

−100a
(m

m
/s
2
)

(a) Acceleration curve

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
10
20
30
40
50
60
70
80

x/s

Velocity

−10

�
(m

m
/s

)

(b) Velocity curve

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

x/s

Position

y
(m

m
)

(c) Position curve

Figure 4: The curve of before optimization (𝑤 = 0.21).

Applying Laplace transform for (25), the following equation
can be obtained:

𝐺 (𝑠) =
Ω (𝑠)

𝐸 (𝑠)
=

𝑁1
𝐻
𝑚
𝑠 + 1

. (26)

Furthermore, transfer function can be obtained from voltage
𝑢(𝑥) and angular displacement 𝑝:

𝐺 (𝑠) =
𝑃 (𝑠)

𝐸 (𝑠)
=

𝑁1
𝑠 (𝐻
𝑚
𝑠 + 1)

. (27)

4.2. Kalman Filter Tracking Control and PID Control. The
extended Kalman filter is used to track the position and
velocity of system. Transporting robot moved according to
the given direction and speed. Sensors are used to measure
the distance and azimuth. Considering the noise of the system
motion process, at time 𝑛, the system speed component is as
follows:

V [𝑛] = V [𝑛 − 1] + 𝑢 [𝑛] . (28)

In the equation, 𝑢[𝑛] is noise disturbance. According to the
motion equations, the following location equations in𝑁 time
are as follows:

𝑟 [𝑛] = 𝑟 [𝑛 − 1] + V [𝑛 − 1] Δ. (29)

In the equation, Δ is the interval between samples. In
the discrete model of the equations of motion, the system
will move according to the speed of a moment ago and
then suddenly change at the next moment. Now, the signal
vector by the choice is made of the position and velocity
components. The equation is as follows:

𝑠 [𝑛] = [
𝑟 [𝑛]

V [𝑛]
] . (30)

Equations (28), (29), and (30) are replaced by

[
𝑟 [𝑛]

V [𝑛]
] = [

1 Δ

0 1
] [

𝑟 [𝑛 − 1]
V [𝑛 − 1]

] + [
0

𝑢 [𝑛]
] . (31)

The observation equation of the system is

𝑥 [𝑛] = 𝐻 (𝑠 [𝑛]) +𝑤 [𝑛] . (32)

In the equation,𝐻 is a function. In order to estimate the signal
vector, the extended Kalman filter is applied; we now need to
determine 𝐻:

𝐻[𝑛] =
𝜕𝐻

𝜕𝑠 [𝑛]

𝑠[𝑛]=𝑠[𝑛𝑛−1]
. (33)

The Jacobian matrix can be obtained through seeking for
the derivative of the observation equation.
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Figure 5: The curve after optimization (𝑤 = 0.305).

Remark 4. Through Jacobian matrix, Kalman filter can esti-
mate 𝐻; therefore, it can track the motion trajectory, and it
can obtain the better tracking effect.

PID controller is as follows:

𝑢 (𝑥) = 𝐾
𝑃
[𝐸 (𝑥) +

1
𝑇
𝐼

∫

𝑥

0
𝐸 (𝑧) 𝑑𝑧 +𝑇

𝐷

𝑑𝐸 (𝑥)

𝑑𝑥
] , (34)

where 𝐸(𝑥) = 𝑅(𝑥) − 𝑂(𝑥), 𝑅(𝑡) is the input, and 𝑂(𝑥) is the
output. 𝐾

𝑃
, 𝑇
𝐼
, and 𝑇

𝐷
are PID parameters. 𝑢(𝑥) is control

variable. Furthermore, (34) can be written as follows:

𝑢 (𝑥) = 𝐾
𝑃
𝐸 (𝑥) +𝐾

𝐼
∫

𝑥

0
𝐸 (𝑧) 𝑑𝑧 +𝐾

𝐷

𝑑𝐸 (𝑥)

𝑑𝑡
, (35)

where 𝐾
𝐼
= 𝐾
𝑃
/𝑇
𝐼
and 𝐾

𝐷
= 𝐾
𝑃
𝑇
𝐷
.

The discrete equation is as follows:

𝑢 (𝑛) = 𝐾
𝑃 [𝐸 (𝑛) − 𝐸 (𝑛 − 1)] +𝐾

𝐼
𝐸 (𝑛)

+𝐾
𝐷 [𝐸 (𝑛) − 2𝐸 (𝑛 − 1) + 𝐸 (𝑛 − 2)] .

(36)

5. Simulation and Experiment

The fast transporting process of the LED wafer transporting
robot was simulated by applying the proposed method.

Firstly, the motion trajectory is divided into three segments,
which are acceleration stage, uniform stage, and deceleration
stage. The parameters are set as follows: 𝑥

3
= 2 s, 𝑦

3
=

120mm, and𝑤 = 0.21. Then, we begin to search the extreme
value point using the multisegments searchingmethod. After
this point is found, two fifth-order polynomials and a first-
order polynomial are used to plan system’s trajectory. At
last, we obtain the motion trajectory with the minimum
acceleration when 𝑤 = 0.305.

Figures 4 and 5 show the simulation results of the motion
planning using MATLAB. As shown in these figures, all
the curves of position, velocity, and acceleration have no
singular point. The changes of the acceleration can be seen
from Figures 4 and 5. Maximum acceleration is 270mm/s2
before optimization, and then it becomes 200mm/s2 after
optimization.Maximum acceleration reduces 26%.Thus, this
planning trajectory is more reasonable.

The mechanical parameters of the transporting robot are
shown in Table 1. According to these parameters, we can
obtain 𝑁

1
= 1.95 and 𝐻

𝑚
= 0.0236. The transfer function

is

𝐺 (𝑠) =
1.95

0.0236𝑠 + 1
=

82.63
𝑠 + 42.37

. (37)
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Figure 6: Tracking control experiment curve of the LED wafer transporting robot.

Table 1: The mechanical parameters of the motor.

Rated torque Torque constant Rotation inertia Rated acceleration Damping coefficient
2.03N⋅m 0.926N⋅m/A 53.321 × 10−4 kgm2 36700 rad/s2 9.361 × 10−5 Nms/rad

The movement curves of the LED wafer transporting
robot are shown in Figure 6, where the Kalman filter and
PID controller are used to track the movement curve. In
Figure 6(a), 𝑦

𝑑
is planned position curve, 𝑦 is used PID

controller to track output position curve, and 𝑦
2
is used

Kalman filter to track position curve. In Figure 6(b), V
𝑑
is

planned velocity curve, V is used PID controller to track
output velocity curve, and V

2
is used Kalman filter to

track output velocity curve. In Figure 6(c), 𝑎
𝑑
is planned

acceleration curve, 𝑎 is PID used controller to track output
acceleration curve, and 𝑎

2
is used Kalman filter to track

output acceleration curve. From the above curves, we can
see that the motion of the transporting robot agrees more

similarly with the planned trajectory. Position curve, velocity
curve, and acceleration curve are all very smooth, and
acceleration is very small. The tracking result of the Kalman
filter is better than the PID controller.

6. Conclusion

The LED wafer transporting robot should open as fast as
possible with small vibration. This paper proposes the fifth-
order polynomial to plan the motion trajectory for the fast
transporting process of the transporting robot. In order
to minimize the maximum acceleration value during the
motion, subsection searchingmethod is designed to select the
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fifth-order polynomial coefficient. The optimized fifth-order
polynomial is simulated in MATLAB. At last, PID method
and extended Kalman filter are used to track the planned
curve. The simulation and experiment result show that the
motion trajectory, velocity, and acceleration are smooth in
the whole process. And acceleration is small, which satisfies
the design requirements. Simulation and experiment show
that the proposed subsection searching method for planning
motion trajectory for the LED wafer transporting robot is
very effective. The extended Kalman filter is applied to track
motion trajectory of planning. Simulation and experiment
show that the track effect of the extended Kalman filter is
better than PID.
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The stability of autonomous dynamical switched systems is analyzed by means of multiple Lyapunov functions. The stability
theorems given in this paper have finite number of conditions to check. It is shown that linear functions can be used as Lyapunov
functions. An example of an exponentially asymptotically stable switched system formed by four unstable systems is also given.

1. Introduction

Switched systems are present in different areas of science and
technology as aeronautical and automotive control, telecom-
munications, traffic control, chemical process, and so forth
[1–5].

The switched system is a special class of hybrid or variable
structure systems [1, 3, 6–10]. Similar to variable structure
systems, the dynamics of switched systems is described by
different differential equations in different space regions and
the change of dynamics occurs when the trajectories pass
through the boundaries between two regions. Variable struc-
ture systems may have special type of solutions, the so-called
sliding mode solutions.The theory and different applications
of sliding mode solutions in control are investigated in many
books and papers (see, e.g., [9]). In contrast to sliding mode
theory, the case when the variable structure system has no
sliding mode solution is not sufficiently studied. To separate
these two cases, we call variable structure systems without
sliding mode solutions as switched systems. In the theory of
hybrid systems the change of systems dynamics may occur
by action of automata or by other reasons. In this paper,
the stability of switched systems is studied. The problem of
stability of switched systems is not simple. First of all, we give
some examples illustrating different aspects of this problem
and showing that stability of all subsystems is not sufficient

to ensure the stability of the whole switched system. Namely,
in one example the whole switched system formed by stable
subsystems is unstable or asymptotically stable depending on
the structure of the switched systems, that is, depending on
the regions where these subsystems are acting. If some of
subsystems are unstable and others are asymptotically stable,
the switched systemmay be unstable or asymptotically stable
or it may have periodic solutions. Also, in some cases the
stability of the whole switched system depends neither on
the structure of the switched system nor on the order of the
switching.

The papers [11, 12] were dedicated essentially to the case
of linear systems. In paper [13] the stability of switched and
hybrid systems is investigated. However, for each trajectory,
the theorem on stability from [13] imposes certain conditions
on Lyapunov functions at the moment of passing through the
switching lines. These conditions are possible to check only
if the trajectory is known. Furthermore, typical trajectory of
switched systems has an infinite number of switchings and it
would be necessary to check an infinite number of conditions.
Our previous works [14, 15] investigate some stability prob-
lems in switched systems and also investigate possibilities of
appearance of chaotic solutions in such systems.

In present paper, some stability theorems using multiple
Lyapunov functions are established. In contrast to [13] our
conditions are imposed on values of Lyapunov functions

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 502475, 12 pages
http://dx.doi.org/10.1155/2015/502475

http://dx.doi.org/10.1155/2015/502475


2 Mathematical Problems in Engineering

in corresponding space regions and on switching lines,
allowing in this way obtaining different stability conditions
without knowing trajectories, while only a finite number of
conditions depending only on Lyapunov functions are veri-
fied. The Lyapunov functions used in these theorems may be
different from usual Lyapunov functions defined in the whole
space, which allows extending the class of functions used
as Lyapunov functions. For example, it is possible to use linear
Lyapunov functions to investigate the stability of switched
systems. The sum of quadratic and linear functions may be
used also as Lyapunov functions. Some examples of such
functions are also given. The using of unusual Lyapunov
functions simplifies the search for convenient Lyapunov func-
tion. We present also one example (Example 15) where all
subsystems are unstable by considering the whole space, but
the switched system formed by these subsystems is exponen-
tially asymptotically stable.

Our theorems which give conditions of asymptotic sta-
bility or instability of whole switched system in case when
all subsystems are only stable are especially interesting.These
results may be considered as a special type of parametric
excitation or parametric stabilization of stable systems.

2. Description of Autonomous
Two-Dimensional Switched Systems

Suppose the phase space R2, 𝑋 = (𝑥, 𝑦)
𝑇
∈ R2, with norm

‖𝑋‖, is divided into a finite number 𝑝 of open 1-connected
regions 𝑄

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, with smooth boundaries such that

the origin {0} of rectangular coordinate systems pertains to
closure of any region 𝑄

𝑖
. The boundary between two regions

𝑄
𝑖
and 𝑄

𝑖+1
is noted by 𝐿

𝑖,𝑖+1
and is called switching line.

These switching lines are supposed to be smooth and let the
normal𝑁

𝑖,𝑖+1
(𝑋) to the switching lines existing in each point

𝑋 ∈ 𝐿
𝑖,𝑖+1

have direction from 𝑄
𝑖
to 𝑄
𝑖+1

. Suppose each
region𝑄

𝑖
has points𝑋with norms such that ‖𝑋‖ > 𝐻, where

𝐻 is any number.The topological properties of plane conduce
to the conclusion that each region𝑄

𝑖
has only two boundaries

which go from origin {0} to infinity without intersections.
In each region 𝑄

𝑖
the dynamics of switched systems is

described by a proper autonomous equation𝐸
𝑖
with Lipschitz

continuous function 𝑓
𝑖
(𝑋) = 𝑓

𝑖
(𝑥, 𝑦):

𝐸
𝑖
: �̇� = 𝑓

𝑖
(𝑋) , 𝑋 ∈ 𝑄

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, (1)

with initial condition
𝑋(𝑡
0
) = 𝑋

0
. (2)

The trajectory of switched system (1)-(2) may pass from
region𝑄

𝑖
to region𝑄

𝑖+1
only crossing the switching line𝐿

𝑖,𝑖+1
.

Suppose also the nonexistence of sliding modes in switched
system (1)-(2). The sufficient condition for absence of sliding
modes is the following transversality condition: the normal
𝑁
𝑖,𝑖+1

(𝑋) which goes from 𝑄
𝑖
to 𝑄
𝑖+1

and the trajectory
velocities 𝑓

𝑖
(𝑋) and 𝑓

𝑖+1
(𝑋) from one to another side of

switching line form acute angles; that is,
sign (⟨𝑁

𝑖,𝑖+1
(𝑋) , 𝑓

𝑖
(𝑋)⟩)

= sign (⟨𝑁
𝑖,𝑖+1

(𝑋) , 𝑓
𝑖+1

(𝑋)⟩) = 1, 𝑋 ∈ 𝐿
𝑖,𝑖+1

,

(3)
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Figure 1: Autonomous two-dimensional switched system.

for every point on switching line 𝐿
𝑖,𝑖+1

and all lines 𝐿
𝑖,𝑖+1

, 𝑖 =
1, 2, 3, . . . , 𝑝 (Figure 1). Transversality condition (3) guaran-
tees the passage only from region 𝑄

𝑖
to 𝑄
𝑖+1

and not in
opposite direction.

If at instant 𝑡
𝑖,fin the trajectory of switched system arrives

from region 𝑄
𝑖
on the switching line 𝐿

𝑖,𝑖+1
, the trajectory

passes across the switching line 𝐿
𝑖,𝑖+1

and at the following
instants 𝑡 > 𝑡

𝑖,fin the system dynamic is described by equation
𝐸
𝑖+1

acting in region𝑄
𝑖+1

with initial condition𝑋
𝑡𝑖+1,init

for the
new equation𝐸

𝑖+1
coinciding with the final condition𝑋

𝑡𝑖,fin
of

the previous equation 𝐸
𝑖
on the switching line 𝐿

𝑖,𝑖+1
, for 𝑖 =

1, 2, 3, . . .; that is,𝑋
𝑡𝑖+1,init

= 𝑋
𝑡𝑖,fin

. Under this condition, all tra-
jectories of switched system will be continuous for all 𝑡 >

𝑡
0
. The regions 𝑄

𝑖
together with equations 𝐸

𝑖
completely

define the switched system. The set of regions 𝑄
𝑖
defines the

geometrical structure while the set of equations𝐸
𝑖
defines the

dynamical structure of switched system.
Any switched system for a chosen initial condition

𝑋(𝑡
0
) = 𝑋

0
generates a sequence of continuous dynamical

subsystems 𝑆
1(𝑋0)

, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . . acting in regions
𝑄
1(𝑋0)

= 𝑄
𝑘
, 1 ≤ 𝑘 ≤ 𝑝, 𝑄

2(𝑋0)
= 𝑄
𝑘+1

, . . . , 𝑄
𝑖(𝑋0)

, . . . and
switching on lines 𝐿

1(𝑋0),2(𝑋0)
= 𝐿

𝑘,𝑘+1
, 𝐿
2(𝑋0),3(𝑋0)

, . . . ,

𝐿
𝑖(𝑋0),(𝑖+1)(𝑋0)

, . . .; that is,

SW (𝑋
0
) = {𝑆

1(𝑋0)
, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . .} . (4)

The initial condition 𝑋
0
defines the first element in (4).

Depending on 𝑋
0
, the first subsystem 𝑆

1(𝑋0)
is acting from

initial time 𝑡
0
= 𝑡
1(𝑋0),init = 𝑡𝑘,init to the first switching instant

𝑡
1(𝑋0),fin = 𝑡𝑘,fin in region𝑄𝑘 such that𝑋(𝑡0) ∈ 𝑄𝑘.The second
subsystem 𝑆

2(𝑋0)
is acting in 𝑄

𝑘+1
from time 𝑡

2,init = 𝑡
1,fin to

the second switching instant 𝑡
2,fin = 𝑡3,init and so on. In other

words, each subsystem 𝑆
𝑖
is defined by three elements 𝑆

𝑖
=

(𝑄
𝑖
, 𝐸
𝑖
, 𝑋(𝑡
𝑖,init)):

(a) region 𝑄
𝑖
where this subsystem is acting,

(b) differential equation 𝐸
𝑖
acting in 𝑄

𝑖
,

(c) initial values 𝑡
𝑖,init and𝑋(𝑡𝑖,init).
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This definition is slightly different from definition given
in [1, 3, 13]. The sequence (4) may contain finite or infinite
number of dynamical subsystems 𝑆

𝑖
although the total num-

ber of different regions 𝑄
𝑖
is finite because trajectory can

return to region 𝑄
𝑖
after the whole rotation around origin,

and therefore 𝑄
𝑝+𝑖

= 𝑄
𝑖
for all 𝑖. If condition (3) holds for all

switching lines, then the sequence (4) may contain an infinite
number of subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
, . . .. In case of infinite

number of subsystems 𝑆
𝑖
, in sequence (4) each region 𝑄

𝑖
has

two boundary switching lines: by one of them the trajectories
enter from the precedent region 𝑄

𝑖−1
, and by the other, after

a finite time, the trajectories go out from region 𝑄
𝑖
to region

𝑄
𝑖+1

. After the whole rotation around origin the switched
system returns to initial region 𝑄

𝑖
and 𝐿

𝑝,𝑝+1
= 𝐿
𝑝,1
.

This property has, as a consequence, the following fun-
damental property of autonomous two-dimensional switched
systems: the order of terms in sequence (4) does not depend
on initial conditions.

In multidimensional phase space R𝑛, 𝑛 > 2, each region
may have more than two switching surfaces. For that reason,
there does not exist an analogy of announced fundamental
property in multidimensional space. So, in R𝑛 the order of
terms in (4) may depend on initial conditions. This com-
plicates the stability investigation of switched systems in
multidimensional space R𝑛, 𝑛 > 2.

The number of dynamical subsystems 𝑆
𝑖(𝑋0)

is finite, 1 ≤
𝑖 ≤ 𝑚, if the switched system stays in the final region 𝑄

𝑁
for

all time after last switching 𝑡
𝑚−1,fin, 𝑡 > 𝑡

𝑚−1,fin. The switched
system may have more than one final region and the final
region may depend on initial conditions 𝑋

0
. The sufficient

condition for finiteness of sequence (4) is the existence of at
least one line𝐿

𝑚,𝑚+1
such that fromone side of the line𝐿

𝑚,𝑚+1

the normal 𝑁
𝑚,𝑚+1

(𝑋) and the trajectory velocities 𝑓
𝑚
(𝑋)

and 𝑓
𝑚+1

(𝑋) form an obtuse and acute angle, respectively:

sign (⟨𝑁
𝑚,𝑚+1

(𝑋) , 𝑓
𝑚
(𝑋)⟩) = −1,

sign (⟨𝑁
𝑚,𝑚+1

(𝑋) , 𝑓
𝑚+1

(𝑋)⟩) = 1,

(5)

for𝑋 ∈ 𝐿
𝑚,𝑚+1

.
In this case, the subsystem 𝑆

𝑚
will be the last subsystem in

the sequence (4). If there exist more than one switching line
satisfying condition (5) then the switched system may have
more than one final region and the final region may depend
on initial conditions𝑋

0
. Let us consider two examples.

Example 1. Suppose the switched system is described by
two pendulum equations 𝐸

1
and 𝐸

2
with different natural

frequencies acting in regions 𝑄
1
and 𝑄

2
of phase plane R2:

𝐸
1
: �̇� = 𝑦,
̇𝑦 = −𝑥,

∀𝑋 ∈ 𝑄
1
= R
2
− 𝑄
2
,

(6)

while equation 𝐸
2
is

𝐸
2
: �̇� = 𝑦,

̇𝑦 = −𝜔
2
𝑥,

∀𝑋 ∈ 𝑄
2
= {𝑥 < 0, 𝑦 > 0} ,

(7)
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Figure 2: Switched system with infinite sequence (4) of subsystems
𝑆
𝑖
.

Every trajectory of switched system has an infinite num-
ber of switchings and it is represented by an infinite number
of continuous dynamical subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . ..

The subsystems 𝑆
1
, 𝑆
3
, . . . , 𝑆

2𝑗+1
, . . . are described by the

same equation 𝐸
1
in the form of (6) acting in region 𝑄

1
and

the subsystems 𝑆
2
, 𝑆
4
, . . . , 𝑆

2𝑗
, . . . are described by equation

𝐸
2
in the form of (7) acting in region 𝑄

2
. But the initial

conditions for 𝑆
1
, 𝑆
3
, . . . , 𝑆

2𝑗+1
, . . . and 𝑆

2
, 𝑆
4
, . . . , 𝑆

2𝑗
, . . . are

different: 𝑋
1
for 𝑆
1
, 𝑋
3
for 𝑆
3
, and so on. Therefore all

subsystems 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . . are different (see Figure 2).

Example 2. Consider now the switched systemwith𝐸
1
acting

in the region 𝑄
1
= {𝑥 < 0} ∩ {𝑦 > 0} ∩ {𝑦 < (−2 + √3)𝑥}, 𝐸

2

acting in the lower half-space 𝑄
2
= {𝑦 < 0}, and 𝐸

3
acting in

𝑄
3
= R2 − 𝑄

1
− 𝑄
2
with

𝐸
1
: �̈� + 4𝑥 + 𝑥 = 0, ∀𝑋 ∈ 𝑄

1
, (8)

𝐸
2
: �̈� + 𝜔2𝑥 = 0, ∀𝑋 ∈ 𝑄

2
, (9)

𝐸
3
: �̈� + 𝑥 = 0, ∀𝑋 ∈ 𝑄

3
. (10)

The equation 𝐸
1
is overdamped and its general solution is

𝑥 (𝑡) = 𝐴 ⋅ exp ((−2 + √3) 𝑡) + 𝐵

⋅ exp ((−2 − √3) 𝑡) , 𝐴, 𝐵 = const.
(11)

The trajectories of the whole switched system are pre-
sented in Figure 3 with 𝜔 = 3. The region denoted as 𝑄

1
in

Figure 3 is a final region of the switched system (8)–(10).
Depending on initial conditions, the trajectory may has two,
one, or zero commutations. If 𝑋

0
belongs to region 𝑄

3
then

the trajectory has two commutations, if𝑋
0
belongs to region

𝑄
2
then the trajectory has one commutation, and if 𝑋

0

belongs to region 𝑄
1
then the trajectory has no commuta-

tions.
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Figure 3: Switched system with finite sequence of subsystems (8)-
(9).

3. Stability of Switched Systems

Suppose

𝑓
𝑖
(0) = 0, 1 ≤ 𝑖 ≤ 𝑝. (12)

Under condition (12) switched system (1)-(2) or (4) has
the trivial solution𝑋(𝑡) ≡ 0.

In the following, the stability analysis of trivial solution
(or origin) of switched system (1)-(2) will be carried out.

Let us introduce some definitions of Lyapunov stability.

Definition 3. The trivial solution 𝑋(𝑡) ≡ 0 (or origin) of
switched system (1)-(2) is said to be stable if for any 𝜖 > 0 there
exists a 𝛿 = 𝛿(𝜖) such that the inequality ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ < 𝜖 is

satisfied for any time 𝑡 > 𝑡
0
whenever ‖𝑋

0
‖ < 𝛿(𝜖).

Definition 4. The trivial solution 𝑋(𝑡) ≡ 0 (or origin) of sys-
tem (1)-(2) is said to be asymptotically stable if

(a) it is stable;

(b) there exists Δ > 0 such that ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ → 0, 𝑡 →

∞ for ‖𝑋
0
‖ < Δ.

Clearly, the stability (asymptotic stability) is uniformwith
respect to 𝑡

0
because the switched system is a stationary

system with all elements independent of 𝑡.
Obviously, in case of finite sequence (4) the stability or

instability of the whole switched system origin depends only
on stability of instability of origin for final subsystem 𝑆

𝑚
.

In case of infinite sequence (4) the instability of one
equation 𝐸

𝑖
does not conduce automatically to the instability

of the whole switched system. Also, the stability of all
equations 𝐸

𝑖
is not sufficient to conclude that the whole

switched system is stable [15].
Let us give other corresponding examples.

Example 5. Consider the switched systemwith two equations
𝐸
1
and 𝐸

2
acting in two half-planes 𝑄

1
= {�̇� = 𝑦 > 0} and

𝑄
2
= {�̇� = 𝑦 < 0}, respectively, with

𝐸
1
: �̈� − 0.2�̇� + 1.01𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

1
, (13)

𝐸
2
: �̈� + 0.4�̇� + 1.04𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
. (14)

Switching lines 𝐿
1,2

and 𝐿
2,1

in this case are 𝐿
1,2

= {𝑥 >

0, 𝑦 = 0} and 𝐿
2,1

= {𝑥 < 0, 𝑦 = 0}. Equation 𝐸
1
is unstable

and 𝐸
2
is asymptotically stable. The asymptotic stability of

equation 𝐸
2
can be called stronger than the instability of 𝐸

1
.

It is easy to verify that for any 𝑋
1
= {𝑥
1
> 0, 𝑦

1
= 0} the

subsequent points,𝑋
2
= {𝑥
2
< 0, 𝑦

2
= 0}, 𝑋

3
= {𝑥
3
> 0, 𝑦

3
=

0}, . . ., of intersection with the axis 𝑥 are equal to

𝑥
2
= −𝑥
1
exp (−0.2𝜋) ,

𝑥
3
= −𝑥
2
exp (0.1𝜋) = 𝑥

1
exp (−0.1𝜋) < 𝑥

1
.

(15)

Therefore, the trivial solution of switched system (13)-(14)
is asymptotically stable.

Replace (14) in region 𝑄
2
by

𝐸
3
: �̈� + 0.2�̇� + 1.01𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
. (16)

Now, the same calculations show that 𝑥
3
= 𝑥
1
for all 𝑥

1
.

Therefore all solutions of switched system formed by unstable
equation (13) and by asymptotically stable equation (16) are
periodic.

Example 6. Consider switched system of Example 1:

𝐸
1
: �̈� + 𝜔2𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

1
= {𝑥 < 0, �̇� > 0} , (17)

𝐸
2
: �̈� + 𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
= R
2
− 𝑄
1
. (18)

Both equations 𝐸
1
and 𝐸

2
are stable. Also, it is easy to

calculate for any 𝑋
1
= {𝑥
1
= 0, 𝑦

1
> 0} the values of 𝑋

2
=

{𝑥
2
= −𝑦
1
< 0, 𝑦

2
= 0},𝑋

3
= {𝑥
3
= 0, 𝑦

3
> 0} and that

𝑦
3
= 𝜔𝑦
1
. (19)

Therefore, if 𝜔 < 1 then the switched system origin is
asymptotically stable, but if 𝜔 > 1 the switched system origin
is unstable. Suppose now𝑄

1
coincides with the first quadrant;

that is,𝑄
1
= {𝑥 > 0, 𝑦 > 0}; then analogous calculations show

that the switched system origin is asymptotically stable if
𝜔 > 1, but if 𝜔 < 1 the switched system origin is unstable.

Remark 7. These two examples show that stability of switched
systems depends not only on the stability of equations 𝐸

𝑖

but also on all other elements which define the switched
system; that is, it depends also on the regions where different
equations 𝐸

𝑖
are acting and on the order of the switching.

Thus, the following definitions are justified.

Definition 8. The origin of switched system (4) formed by an
infinite sequence of subsystems 𝑆

1(𝑋0)
, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . . is
stable (asymptotically stable) independently of geometrical
structure of switched system if the origin is stable (asymp-
totically stable) for any choice of equations 𝐸

1
, . . . , 𝐸

𝑝
acting

in arbitrary chosen regions 𝑄
1
, . . . , 𝑄

𝑝
.
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Definition 9. The origin of switched system (4) formed by a
sequence of subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . . is stable (asymptot-

ically stable) for given geometrical and dynamical structure
of switched system if the origin is stable (asymptotically
stable) for a given choice of equations 𝐸

1
, . . . , 𝐸

𝑝
acting in

corresponding regions 𝑄
1
, . . . , 𝑄

𝑝
.

4. General Theorems

The previous examples show that the stability properties of
switched system origin need special investigation and they do
not follow directly from simple stability conditions imposed
on subsystems, but also they depend on how the switching
occurs within the whole system.

The only interesting case when sequence (4) which deter-
mines the switched system is infinite is considered below.

Suppose equations 𝐸
𝑖
are stable (asymptotically stable)

and also suppose the existence of some smooth positive
definite functions 𝑉

𝑖
(𝑋) defined for 𝑋 ∈ 𝑄

𝑖
. Each function

𝑉
𝑖
(𝑋) is called Lyapunov function in region 𝑄

𝑖
, if it is

continuously differentiable in 𝑄
𝑖
and fulfilling 𝑉

𝑖
(𝑋) > 0,

𝑋 ∈ 𝑄
𝑖
,𝑋 ̸= 0, and 𝑉

𝑖
(0) = 0 [16, 17].

Denote by 𝜔
𝑘
(𝑢) scalar continuous nondecreasing func-

tions (also called wedges) defined and positive for 𝑢 > 0 such
that 𝜔

𝑘
(0) = 0.

The symbols �̇�
𝑖
(𝑋(𝑡)) denote the derivatives of the func-

tions 𝑉
𝑖
(𝑋(𝑡)) along the trajectory of equation 𝐸

𝑖
:

�̇�
𝑖
(𝑋 (𝑡)) = ⟨∇ (𝑉 (𝑋)) , 𝑓

𝑖
(𝑋)⟩ , 𝑋 ∈ 𝑄

𝑖
. (20)

The existence of a common Lyapunov function for all
equations 𝐸

𝑖
simplifies the stability analysis of switched sys-

tem origin. For this reason, Theorem 10 has been explicitly
formulated but not proven, because this theorem is a direct
consequence of the more general Theorem 12.

Theorem 10. Suppose there exists a common Lyapunov func-
tion 𝑉(𝑋) defined in the whole space R2 satisfying the fol-
lowing:

(a) 𝜔
1
(‖𝑋‖) ≤ 𝑉(𝑋) ≤ 𝜔

2
(‖𝑋‖),𝑋 ∈ R2,

(b) for any equation𝐸
𝑖
the following conditions are fulfilled

�̇� (𝑋 (𝑡)) = ⟨∇ (𝑉 (𝑋)) , 𝑓
𝑖
(𝑋)⟩ ≤ 0,

(�̇�
𝑖
(𝑋) ≤ −𝜔

3
(‖𝑋‖) < 0) ,

(21)

for𝑋 ∈ 𝑄
𝑖
, 1 ≤ 𝑖 ≤ 𝑝.

Then, the trivial solution 𝑋(𝑡) ≡ 0 of switched system (1)-(2)
is stable (asymptotically stable) independently of geometrical
structure of switched system.

Example 11. Consider three equations:

𝐸
1
: �̈� + 𝑥 = 0,

𝐸
2
: �̈� + 𝑥 + 𝑥2�̇�3 = 0,

𝐸
3
: �̈� + sin (�̇�) + 𝑥 = 0.

(22)

As a common Lyapunov function 𝑉(𝑋) we can take the
function

𝑉 (𝑥, �̇�) = 𝑥
2
+ �̇�
2
. (23)

The derivatives of these functions along the trajectories of
equations 𝐸

1
, 𝐸
2
, and 𝐸

3
are not positive:

�̇�
(ec21) (𝑥, �̇�) = 2𝑥�̇� − 2𝑥�̇� = 0,

�̇�
(ec22) (𝑥, �̇�) = 2𝑥�̇� − 2�̇� (−𝑥 − 𝑥

2
�̇�
3
) = −2𝑥

2
�̇�
4
≤ 0,

𝑉
(ec23) (𝑥, �̇�) = 2𝑥�̇� − 2�̇� (−𝑥 − sin (�̇�)) = −2�̇� sin (�̇�)

≤ 0,

|�̇�| < 1.

(24)

Therefore, the trivial solution of the switched system
formed by equations 𝐸

1
, 𝐸
2
, and 𝐸

3
is stable independently

of geometrical structure of switched system determined by a
choice of arbitrary regions𝑄

1
,𝑄
2
, and𝑄

3
such that𝑄

1
∪𝑄
2
∪

𝑄
3
= R2.

Theorem 12. Suppose conditions (3) hold for all switching lines
𝐿
𝑖,𝑖+1

and suppose that for each equation 𝐸
𝑖
acting in 𝑄

𝑖
∈ R2

there exists a Lyapunov function𝑉
𝑖
(𝑋) defined in𝑄

𝑖
such that

(a) 𝜔
1,𝑖
(‖𝑋‖) ≤ 𝑉

𝑖
(𝑋) ≤ 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
(𝑋)), 𝑓

𝑖
(𝑋)⟩ ≤ 0, (�̇�

𝑖
(𝑋(𝑡)) ≤

−𝜔
3,𝑖
(‖𝑋(𝑡)‖) < 0),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switching lines 𝐿
𝑖,𝑖+1

where trajectories pass
from region 𝑄

𝑖
to 𝑄
𝑖+1

, the following inequalities hold:
𝑉
𝑖
(𝑋) ≥ 𝑉

𝑖+1
(𝑋),𝑋 ∈ 𝐿

𝑖,𝑖+1
.

Then the trivial solution 𝑋(𝑡) ≡ 0 of switched system (4) is
stable (asymptotically stable) for given switched system.

Proof. Let us proof stability of trivial solution 𝑋(𝑡) ≡ 0.
Denote

𝜔
1
(𝑢) = min

𝑖

(𝜔
1,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
2
(𝑢) = max

𝑖

(𝜔
2,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
3
(𝑢) = min

𝑖

(𝜔
3,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
1
(0) = 𝜔

2
(0) = 𝜔

3
(0) = 0.

(25)

The wedge functions 𝜔
𝑖
(𝑢), 𝑖 = 1, 2, 3, are scalar contin-

uous nondecreasing functions positive for 𝑢 > 0 and satisfy
(25). For a given 𝜖 > 0 we define a number 𝛿 = 𝛿(𝜖) such that
𝜔
2
(𝛿) ≤ 𝜔

1
(𝜖). Evidently, such 𝛿 does exist. Using conditions

(b) and (c) we obtain that the sequence of Lyapunov functions
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𝑉
𝑘
(𝑋(𝑡, 𝑡

0
, 𝑋
0
)) for arbitrary 𝑘 and 𝑡

𝑘,init < 𝑡 < 𝑡
𝑘,fin is nonin-

creasing on the trajectories of switched system:

𝜔
1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) ≤ 𝜔1,𝑘 (

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
)

≤ 𝑉
𝑘
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
))

≤ 𝑉
𝑘
(𝑋 (𝑡
𝑘,init, 𝑡0, 𝑋0))

≤ 𝑉
𝑘−1

(𝑋 (𝑡
𝑘−1,fin, 𝑡0, 𝑋0))

≤ 𝑉
𝑘−1

(𝑋 (𝑡
𝑘−1,init, 𝑡0, 𝑋0)) ≤ ⋅ ⋅ ⋅

≤ 𝑉
1(𝑋0)

(𝑋
0
) .

(26)

Using now condition (a) of the theorem, we obtain for
arbitrary 𝑘 and 𝑡, 𝑡

𝑘,init < 𝑡 < 𝑡𝑘,fin the following inequalities:

𝜔
1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) ≤ 𝑉1(𝑋0)

(𝑋
0
) ≤ 𝜔
2,1
(
𝑋0

)

≤ 𝜔
2
(
𝑋0

) ≤ 𝜔2 (𝛿) ≤ 𝜔1 (𝜖) ,

(27)

Therefore,

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≤ 𝜖, 𝑡 ≥ 𝑡

0
,
𝑋0

 ≤ 𝛿. (28)

Inequality (28) is equivalent to stability of trivial solution
of switched system (1)-(2).

To proof asymptotic stability it is necessary to demon-
strate that for any 𝛾 > 0 there exist numbers Δ > 0 and 𝑇(𝛾)
such that ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ ≤ 𝛾 for 𝑡 ≥ 𝑡

0
+ 𝑇(𝛾) and ‖𝑋

0
‖ ≤ Δ.

Take any 𝛾 > 0 and determine 𝛿 > 0 which corresponds to 𝛾
in demonstration of stability; that is, 𝜔

2
(𝛿) ≤ 𝜔

1
(𝛾). Take also

𝑇(𝛾) = 2𝑤
2
(Δ)/𝜔

3
(𝛿) > 0.

Let us demonstrate that on the interval [𝑡
0
, 𝑡
0
+𝑇(𝛾)] there

exists an instant 𝑡
1
such that ‖𝑋(𝑡

1
, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛿.

If this is not so, that is, ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ > 𝛿 for all 𝑡 ∈ [𝑡

0
, 𝑡
0
+

𝑇(𝛾)], then using continuity of𝑋(𝑡, 𝑡
0
, 𝑋
0
) and conditions (b)

and (c) of Theorem 12 we have

𝑉
𝑘
(𝑋 (𝑡
0
+ 𝑇 (𝛾) , 𝑡

0
, 𝑋
0
))

≤ 𝑉
1(𝑋0)

(𝑋
0
) + ∫

𝑡1,fin

𝑡0

�̇�
1(𝑋0)

(𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) 𝑑𝑡

+ ∫

𝑡2,fin

𝑡1,fin

�̇�
2(𝑋0)

(𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) 𝑑𝑡 + ⋅ ⋅ ⋅

+ ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

�̇�
𝑘
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
)) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − ∫

𝑡1,fin

𝑡0

𝜔
3,1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

− ∫

𝑡2,fin

𝑡1,fin

𝜔
3,2
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡 − ⋅ ⋅ ⋅

− ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

𝜔
3,𝑘
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

𝜔
3
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − 𝑇 (𝛾) 𝜔

3
(𝛿)

≤ 𝜔
2
(Δ) − 𝑇 (𝛾) 𝜔

3
(𝛿) = −𝜔

2
(Δ) < 0.

(29)

Inequality (29) contradicts the positiveness of Lyapunov
function𝑉

𝑘
.Therefore, there exists an instant𝑇(𝛾) and 𝑡

1
, 𝑡
0
≤

𝑡
1
≤ 𝑡
0
+ 𝑇(𝛾) such that ‖𝑋(𝑡

1
, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛿 for ‖𝑋

0
‖ ≤ Δ.

From condition 𝑤
2
(𝛿) ≤ 𝜔

1
(𝛾) and the stability of the trivial

solution it follows that ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛾 for all 𝑡 ≥ 𝑡

1
, 𝑡
1
≤

𝑡
0
+ 𝑇(𝛾). Therefore ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ ≤ 𝛾 for all ‖𝑋

0
‖ ≤ Δ and

for all 𝑡 ≥ 𝑡
0
+ 𝑇(𝛾). The asymptotic stability of the origin is

proven.

Example 13. Consider once again first switched system of
Example 6 where 𝑄

1
coincides with second quadrant, 𝑄

1
=

{𝑥 < 0, 𝑦 > 0}. Lyapunov functions for equations 𝐸
1
, 𝐸
2
are

𝑉
1
(𝑥, 𝑦) = 𝜔

2
𝑥
2
+ 𝑦
2
,

𝑉
2
(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
,

(30)

respectively.
On switching line 𝐿

1,2
where 𝑥 = 0 and 𝑦 > 0, we have

𝑉
1
(𝑥, 𝑦) = 𝑦

2
= 𝑉
2
(𝑥, 𝑦). On switching line 𝐿

2,1
where 𝑦 = 0

we have𝑉
1
(𝑥, 𝑦) = 𝜔

2
𝑥
2 and𝑉

2
(𝑥, 𝑦) = 𝑥

2. Therefore, condi-
tion (c) ofTheorem 12 holds on both lines𝐿

1,2
and𝐿

2,1
if𝜔2 <

1. Under this condition, the origin of the switched system
described by (17)-(18) of Example 6 is stable.

Consider now the second switched system of Example 6,
where 𝑄

1
coincides with the first quadrant 𝑄

1
= {𝑥 ≥ 0, 𝑦 ≥

0}. In this case, on line 𝐿
2,1
, where 𝑥 = 0 we have 𝑉

1
(𝑥, 𝑦) =

𝑦
2
= 𝑉
2
(𝑥, 𝑦) and on line 𝐿

1,2
where 𝑦 = 0we have𝑉

1
(𝑥, 𝑦) =

𝜔
2
𝑥
2 and 𝑉

2
(𝑥, 𝑦) = 𝑥

2. Therefore condition (c) of
Theorem 12 holds if 𝜔2 > 1. In this case, the origin of the
second switched system of Example 6 is stable under this
situation.This conclusion coincides with results of Example 6
obtained by direct analytical computations. Analytical calcu-
lations show asymptotic stability of switched system origin
(17)-(18), while by using Theorem 12 we can only establish
stability but no asymptotic stability.

Replacing (18) in region 𝑄
2
by new equation

𝐸
2
: �̈� + 𝑥 + 𝑥2�̇�3 = 0, 𝑋 ∈ 𝑄

2
, (31)

and considering the same Lyapunov function 𝑉
2
(𝑥, 𝑦), we

can also establish stability of the trivial solution of this new
switched system (17), (31), but analytical calculations cannot
be used in this case.

Example 14. Consider the switched system with two equa-
tions 𝐸

1
and 𝐸

2
acting in two half-planes 𝑄

1
= {𝑦 > 0} and

𝑄
2
= {𝑦 < 0}:

𝐸
1
: �̇� = 𝑦 + 𝑥2,

̇𝑦 = −2𝑥𝑦 − 2𝑥
3
,

{𝑥, 𝑦} ∈ 𝑄
1
,
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𝐸
2
: �̇� = 𝑦,

̇𝑦 = −𝑥,

{𝑥, 𝑦} ∈ 𝑄
2
.

(32)

The switching lines are 𝐿
1,2

= {𝑥 > 0, 𝑦 = 0} and 𝐿
2,1

=

{𝑥 < 0, 𝑦 = 0}. Normal 𝑁
1,2

going from 𝑄
1
to 𝑄
2
is 𝑁
1,2

=

{
0

−1
}, and condition (3) on line 𝐿

1,2
has the form

⟨𝑁
1,2
, 𝑓
1
⟩ = 2𝑥

3
> 0,

⟨𝑁
1,2
, 𝑓
2
⟩ = 𝑥 > 0.

(33)

On the other hand, normal 𝑁
2,1

going from 𝑄
2
to 𝑄
1
is

𝑁
2,1

= {
0

1
}, and condition (3) on line 𝐿

2,1
has the form

⟨𝑁
2,1
, 𝑓
1
⟩ = −2𝑥

3
> 0,

⟨𝑁
2,1
, 𝑓
2
⟩ = −𝑥 > 0.

(34)

As Lyapunov functions for equations𝐸
1
and𝐸

2
in regions

𝑦 > 0 and 𝑦 < 0 take

𝑉
1
(𝑥, 𝑦) = 𝑥

2
+ 𝑦 > 0, 𝑦 > 0, (35)

𝑉
2
(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
, 𝑦 < 0. (36)

The strange function (35) satisfies condition (a) of
Theorem 12 for unusual norm in R2 of the form ‖𝑋‖ = 𝑥

2
+

|𝑦|. The switching lines are 𝐿
1,2

= {𝑦 = 0, 𝑥 > 0} and 𝐿
2,1

=

{𝑦 = 0, 𝑥 < 0} and on these switching lines 𝑉
1
(𝑥, 𝑦) = 𝑥

2
=

𝑉
2
(𝑥, 𝑦). The derivatives of functions (35) and (36) in regions

𝑦 > 0 and 𝑦 < 0 are equal to

�̇�
1
(𝑥, 𝑦) = 2𝑥�̇� + ̇𝑦 = 2𝑥 (𝑦 + 𝑥

2
) + (−2𝑥𝑦 − 2𝑥

3
)

= 0, 𝑦 > 0;

�̇�
2
(𝑥, 𝑦) = 2𝑥�̇� + 2𝑦 ̇𝑦 = 2𝑥𝑦 − 2𝑥𝑦 = 0, 𝑦 < 0.

(37)

All conditions of Theorem 12 hold and therefore, the
trivial solution of switched system (32) is stable.

Example 15. Consider a switched system with four equations
acting in four quadrants of the plane as shown in Figure 4:

𝐸
1
: �̇� = 3𝑥 + 2𝑦,

̇𝑦 = −4𝑥 − 3𝑦,

(𝑥, 𝑦) ∈ 𝑄
1
= {𝑥 > 0, 𝑦 > 0} ,

𝐸
2
: �̇� = −3𝑥 + 5𝑦,

̇𝑦 = −2𝑥 + 4𝑦,

(𝑥, 𝑦) ∈ 𝑄
2
= {𝑥 > 0, 𝑦 < 0} ,
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Figure 4: Trajectory of switched system (38).

𝐸
3
: �̇� = 3𝑥 + 𝑦,

̇𝑦 = −4𝑥 − 2𝑦,

(𝑥, 𝑦) ∈ 𝑄
3
= {𝑥 < 0, 𝑦 < 0} ,

𝐸
4
: �̇� = −4𝑥 + 3𝑦,

̇𝑦 = −2𝑥 + 2𝑦,

(𝑥, 𝑦) ∈ 𝑄
4
= {𝑥 < 0, 𝑦 > 0} ,

(38)

where 𝑄
1
∪ 𝑄
2
∪ 𝑄
3
∪ 𝑄
4
= R2.

It is easy to observe that equations 𝐸
1
, 𝐸
2
, 𝐸
3
, and 𝐸

4
are

unstable in the whole plane R2. To analyze the stability of
the switched system origin consider the following four linear
Lyapunov functions defined in corresponding regions:

𝑉
1
(𝑥, 𝑦) = 𝑥 + 𝑦,

𝑉
1
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

1
= {𝑥 > 0, 𝑦 > 0} ,

𝑉
2
(𝑥, 𝑦) = 𝑥 − 𝑦,

𝑉
2
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

2
= {𝑥 > 0, 𝑦 < 0} ,

𝑉
3
(𝑥, 𝑦) = −𝑥 − 𝑦,

𝑉
3
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

3
= {𝑥 < 0, 𝑦 < 0} ,

𝑉
4
(𝑥, 𝑦) = −𝑥 + 𝑦,

𝑉
4
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

4
= {𝑥 < 0, 𝑦 > 0} .

(39)

Clearly, functions (39) satisfy conditions (a) of
Theorem 12 if the norm in R2 is equal to ‖𝑋‖

1
= |𝑥| + |𝑦|.

The derivatives of functions (39) are

�̇�
1
(𝑥, 𝑦) = �̇� + ̇𝑦 = 3𝑥 + 2𝑦 − 4𝑥 − 3𝑦 = −𝑥 − 𝑦

= −𝑉
1
, (𝑥, 𝑦) ∈ 𝑄

1
,
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�̇�
2
(𝑥, 𝑦) = �̇� − ̇𝑦 = −3𝑥 + 5𝑦 + 2𝑥 − 4𝑦 = −𝑥 + 𝑦

= −𝑉
2
, (𝑥, 𝑦) ∈ 𝑄

2
,

�̇�
3
(𝑥, 𝑦) = −�̇� − ̇𝑦 = −3𝑥 − 𝑦 + 4𝑥 + 2𝑦 = 𝑥 + 𝑦

= −𝑉
3
, (𝑥, 𝑦) ∈ 𝑄

3
,

�̇�
4
(𝑥, 𝑦) = −�̇� + ̇𝑦 = 4𝑥 − 3𝑦 − 2𝑥 + 2𝑦 = 2𝑥 − 𝑦

< −𝑉
4
, (𝑥, 𝑦) ∈ 𝑄

4
.

(40)

The derivatives of Lyapunov functions 𝑉
1
, 𝑉
2
, 𝑉
3
, and 𝑉

4

are negative definite with respect to norm ‖𝑋‖
1
in the cor-

responding regions 𝑄
𝑖
.

On switching lines 𝐿
1,2
, . . . , 𝐿

4,1
, where 𝑥 = 0 or 𝑦 = 0,

the corresponding Lyapunov functions are

𝐿
1,2
: 𝑉
1
(𝑥, 𝑦) = 𝑉

2
(𝑥, 𝑦) = 𝑥,

𝑁
1,2

= [

0

−1
] ,

⟨𝑁
1,2
, 𝑓
1
⟩ = 4𝑥 > 0,

⟨𝑁
1,2
, 𝑓
2
⟩ = 2𝑥 > 0,

𝑦 = 0,

𝐿
2,3
: 𝑉
2
(𝑥, 𝑦) = 𝑉

3
(𝑥, 𝑦) = −𝑦,

𝑁
2,3

= [

−1

0
] ,

⟨𝑁
2,3
, 𝑓
2
⟩ = −5𝑦 > 0,

⟨𝑁
2,3
, 𝑓
3
⟩ = −𝑦 > 0,

𝑥 = 0,

𝐿
3,4
: 𝑉
3
(𝑥, 𝑦) = 𝑉

4
(𝑥, 𝑦) = −𝑥,

𝑁
3,4

= [

0

1
] ,

⟨𝑁
3,4
, 𝑓
3
⟩ = −4𝑥 > 0,

⟨𝑁
3,4
, 𝑓
4
⟩ = −2𝑥 > 0,

𝑦 = 0,

𝐿
4,1
: 𝑉
4
(𝑥, 𝑦) = 𝑉

1
(𝑥, 𝑦) = 𝑦,

𝑁
4,1

= [

1

0
] ,

⟨𝑁
4,1
, 𝑓
1
⟩ = 3𝑦 > 0,

⟨𝑁
4,1
, 𝑓
1
⟩ = 2𝑦 > 0,

𝑥 = 0.

(41)

Furthermore, all conditions of Theorem 12 are fulfilled;
therefore, the trivial solution of the switched system is
asymptotically stable (Figure 4). Moreover, as �̇�

𝑖
≤ −𝑉
𝑖
the

trivial solution is exponentially asymptotically stable.

Example 16. Consider now the switched systems formed by
the following nonlinear subsystems:

𝐸
1
: �̇� = 3𝑥 + 2𝑦 − 𝑥𝑦,

̇𝑦 = −4𝑥 − 3𝑦 − 𝑥
2
𝑦
2
,

(𝑥, 𝑦) ∈ 𝑄
1
,

𝐸
2
: �̇� = −3𝑥 + 5𝑦 + 𝑥𝑦,

̇𝑦 = −2𝑥 + 4𝑦 + 𝑥
2
𝑦,

(𝑥, 𝑦) ∈ 𝑄
2
,

𝐸
3
: �̇� = 3𝑥 + 𝑦,

̇𝑦 = −4𝑥 − 2𝑦 + 𝑥𝑦,

(𝑥, 𝑦) ∈ 𝑄
3
,

𝐸
4
: �̇� = −4𝑥 + 3𝑦 − 𝑥𝑦,

̇𝑦 = −2𝑥 + 2𝑦 + 𝑥
3
𝑦,

(𝑥, 𝑦) ∈ 𝑄
4
,

(42)

with𝑄
1
,𝑄
2
,𝑄
3
, and𝑄

4
as in Example 15. As before, functions

(39) fulfill conditions ofTheorem 12 if the norm inR2 is equal
to ‖𝑋‖

1
= |𝑥| + |𝑦|. The derivatives of functions (39) are

�̇�
1
(𝑥, 𝑦) = �̇� + ̇𝑦 = −𝑥 − 𝑦 − 𝑥𝑦 − 𝑥

2
𝑦 ≤ −𝑉

1
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
1
,

�̇�
2
(𝑥, 𝑦) = �̇� − ̇𝑦 = −𝑥 + 𝑦 + 𝑥𝑦 − 𝑥

2
𝑦 ≤ −𝑉

2
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
2
,

�̇�
3
(𝑥, 𝑦) = −�̇� − ̇𝑦 = 𝑥 + 𝑦 − 𝑥𝑦 ≤ −𝑉

3
(𝑥, 𝑦) < 0,

(𝑥, 𝑦) ∈ 𝑄
3
,

�̇�
4
(𝑥, 𝑦) = −�̇� + ̇𝑦 = 2𝑥 − 𝑦 + 𝑥𝑦 + 𝑥

3
𝑦 ≤ −𝑉

4
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
4
.

(43)

The derivatives of Lyapunov functions 𝑉
1
, 𝑉
2
, 𝑉
3
, and 𝑉

4

are negative definite with respect to norm ‖𝑋‖
1
in the cor-

responding regions 𝑄
𝑖
, and on switching lines 𝐿

1,2
, . . . , 𝐿

4,1
,

where 𝑥 = 0 or 𝑦 = 0, the corresponding Lyapunov
functions coincide with (41). Therefore, the trivial solution
of the switched system (42) is exponentially asymptotically
stable. The simulation results are shown in Figure 5.

Theorem 17. Suppose that sequence (4) is infinite and that for
each equation 𝐸

𝑖
, 𝑖 = 1, . . . , 𝑝, there exists a Lyapunov function

𝑉
𝑖
(𝑋) such that
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Figure 5: Trajectory of switched system (42).

(a) 𝜔
1,𝑖
(‖𝑋‖) < 𝑉

𝑖
(𝑋) < 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
), 𝑓
𝑖
(𝑋)⟩ ≤ 0,𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switched lines 𝐿
𝑖,𝑖+1

, 1 < 𝑖 < 𝑝, where the traject-
ories pass from region𝑄

𝑖
to𝑄
𝑖+1

, the following inequal-
ities hold:

𝑉
𝑖
(𝑋) ≥ 𝑉

𝑖+1
(𝑋) , 𝑋 ∈ 𝐿

𝑖,𝑖+1
, 1 < 𝑖 < 𝑝. (44)

Furthermore, there exists at least one line 𝐿
𝑘,𝑘+1

, 1 <

𝑘 < 𝑝 such that

𝑉
𝑘
(𝑋) ≥ 𝑉

𝑘+1
(𝑋) + 𝜔

3,𝑘
(‖𝑋‖) , 𝑋 ∈ 𝐿

𝑘,𝑘+1
. (45)

Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system (1)-(2)
or (4) is asymptotically stable for a given switched system.

Proof. The trivial solution is stable because conditions of
Theorem 12 are satisfied. Itmeans that any Lyapunov function
𝑉
𝑘
(𝑋(𝑡)) in region 𝑄

𝑘
as function of 𝑡 does not increase.

Moreover, the sequence of successive Lyapunov functions
as function of 𝑡 does not increase either. More exactly, for
any numbers 𝑗, 𝑘 and any instants 𝑡

𝑗
, 𝑡
𝑘
such that 𝑋(𝑡

𝑗
) ∈

𝑄
𝑗
, 𝑋(𝑡
𝑘
) ∈ 𝑄

𝑘
, 𝑡
𝑗
< 𝑡
𝑘
, the following inequality holds:

𝑉
𝑘
(𝑋(𝑡
𝑘
)) ≤ 𝑉

𝑗
(𝑋(𝑡
𝑗
)).

Suppose the trivial solution 𝑋(𝑡) ≡ 0 of switched system
(4) is not asymptotically stable. It means that there exists the
solution 𝑋(𝑡, 𝑡

0
, 𝑋
0
) with sufficiently small 𝑋

0
, ‖𝑋
0
‖ < 𝛿,

such that it is bounded ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ < 𝐻 and does not tend

to zero as 𝑡 → ∞. In this case there exists 𝛾 > 0 and a
sequence 𝑡

𝑗
→ ∞ such that ‖𝑋(𝑡

𝑗
, 𝑡
0
, 𝑋
0
)‖ > 𝛾, 𝛾 < 𝐻.

The solution𝑋(𝑡, 𝑡
0
, 𝑋
0
)must satisfy condition

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≥ 𝜇, 𝑡 ≥ 𝑡

1
, (46)

where 𝜇 is a number corresponding to 𝛾 in definition of
stability for solution 𝑋(𝑡) ≡ 0; that is, 𝜔

2
(𝜇) ≤ 𝜔

1
(𝛾). If (46)

does not hold then there exists an instant 𝑇 > 𝑡
1
such that

𝑋 (𝑇, 𝑡
0
, 𝑋
0
)
 < 𝜇. (47)

Taking now 𝑇 as a new initial moment and using stability
of 𝑋(𝑡, 𝑡

0
, 𝑋
0
) = 𝑋(𝑡, 𝑇,𝑋(𝑇, 𝑡

0
, 𝑋
0
)) this solution must sat-

isfy condition

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 < 𝛾, 𝑡 > 𝑇. (48)

Condition (48) contradicts condition (46) and thismeans
that condition (46) holds. It follows from (46) that for an
infinite number of moments 𝑡

𝑖(𝑘)
> 𝑇, 𝑖(𝑘) → ∞, when solu-

tion 𝑋(𝑡, 𝑡
0
, 𝑋
0
) crosses line 𝐿

𝑘,𝑘+1
we have 𝐻 > ‖𝑋(𝑡

𝑖(𝑘)
, 𝑡
0
,

𝑋
0
)‖ ≥ 𝜇 > 0, 𝜔

3,𝑘
(‖𝑋(𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)‖) ≥ 𝜔

3,𝑘
(𝜇) > 0, and

𝜔
2
(𝐻) ≥ 𝑉

𝑘
(𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
))

≥ 𝑉
𝑘+1

(𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
)

≥ 𝑉
𝑘
(𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
)

≥ 𝑉
𝑘+1

(𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
) ≥ ⋅ ⋅ ⋅

≥ 𝑉
𝑘+1

(𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
)
) + ⋅ ⋅ ⋅

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
) ≥ 𝑖 (𝑘) 𝜔3,𝑘 (𝜇)

→ ∞, 𝑖 (𝑘) → ∞.

(49)

Inequality (49) contradicts condition𝜔
2
(𝐻) < ∞ and our

supposition that 𝑋(𝑡, 𝑡
0
, 𝑋
0
) does not tend to zero conducts

to a contradiction. Furthermore, the asymptotic stability of
trivial solution𝑋(𝑡) ≡ 0 of switched system (4) is proven.

Theorem 18. Suppose that sequence (4) is infinite and that for
all switching lines 𝐿

𝑖,𝑖+1
and that for each 𝐸

𝑖
, 𝑖 = 1, . . . , 𝑝, there

exists a Lyapunov function 𝑉
𝑖
(𝑋) such that

(a) 𝜔
1,𝑖
(‖𝑋‖) < 𝑉

𝑖
(𝑋) < 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
), 𝑓
𝑖
(𝑋)⟩ ≥ 0,𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switched lines 𝐿
𝑖,𝑖+1

, 1 ≤ 𝑖 < 𝑝, where the
trajectories pass from region 𝑄

𝑖
to 𝑄
𝑖+1

, the following
inequalities hold:

𝑉
𝑖
(𝑋) ≤ 𝑉

𝑖+1
(𝑋) , 𝑋 ∈ 𝐿

𝑖,𝑖+1
, 1 ≤ 𝑖 < 𝑝, (50)

furthermore, there exists at least one line 𝐿
𝑘,𝑘+1

, 1 ≤

𝑘 < 𝑝, such that

𝑉
𝑘
(𝑋) ≤ 𝑉

𝑘+1
(𝑋) + 𝜔

3,𝑘
(‖𝑋‖) , 𝑋 ∈ 𝐿

𝑘,𝑘+1
. (51)
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Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system (4) is
unstable for a given switched system.

Proof. Theorem 18 is a clear modification of Theorem 17.
Therefore its proof is omitted.

Example 19. Consider the switched system formed by two
nonlinear pendulums:

𝐸
1
: �̈� + sin𝑥 = 0,

(𝑥, �̇� = 𝑦) ∈ 𝑄
1
= {𝑥 < 0, 𝑦 > 0} ,

𝐸
2
: �̈� + 𝜔2 sin𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ R

2
− 𝑄
1
.

(52)

Take as Lyapunov functions for (52) the following func-
tions:

𝑉
1
(𝑥, 𝑦) = (1 − cos𝑥) + 1

2
𝑦
2
,

(𝑥, �̇� = 𝑦) ∈ 𝑄
1
= {𝑥 < 0, 𝑦 > 0} ,

𝑉
2
(𝑥, 𝑦) = 𝜔

2
(1 − cos𝑥) + 1

2
𝑦
2
,

(𝑥, �̇� = 𝑦) ∈ R
2
− 𝑄
1
.

(53)

The derivatives of functions (53) along the trajectories of
(52) are equal to zero: �̇�

1
= �̇�
2
= 0. On switching line 𝐿

1,2

where𝑥 = 0,𝑦 > 0wehave𝑉
1
(𝑥, 𝑦) = (1/2)𝑦

2
= 𝑉
2
(𝑥, 𝑦). On

switching line 𝐿
2,1

where 𝑥 < 0 and 𝑦 = 0 we have 𝑉
1
(𝑥, 𝑦) =

(1 − cos𝑥) and𝑉
2
(𝑥, 𝑦) = 𝜔

2
(1 − cos𝑥). Therefore, condition

(c) of Theorem 18 holds on both lines 𝐿
1,2

and 𝐿
2,1

if

𝜔
2
< 1. (54)

Condition (54) is a condition of instability of the trivial
solution of switched system (52). Also, this condition may
be considered as a condition of parametric discontinuous
excitations for the nonlinear pendulum.

5. Autonomous Multidimensional
Switched Systems

Consider multidimensional switched system acting in R𝑛

which is divided into a finite number 𝑝 of open 1-connected
regions 𝑄

𝑘
, 1 ≤ 𝑘 ≤ 𝑝, 𝑄

1
+ 𝑄
2
+ ⋅ ⋅ ⋅ + 𝑄

𝑝
= R𝑛, such that

the origin {0} of rectangular coordinates systems pertains to
closure of any region 𝑄

𝑘
. The boundaries of all regions 𝑄

𝑘

are supposed to be smooth. Suppose, also, that each region
𝑄
𝑙
has points 𝑋 fulfilling condition ‖𝑋‖ > 𝐻, where 𝐻

is any number. An equation 𝐸
𝑘
is defined in each region

𝑄
𝑘
satisfying conditions of existence and uniqueness of

solutions. Inmultidimensional case, the switched systemmay
have much more complicated behavior because region 𝑄

𝑘

may have more than two boundaries separating it from other
regions. To eliminate topological complications, consider
only the case when all boundaries (switching surfaces) 𝐵

𝑘,𝑘+𝑙

separating regions𝑄
𝑘
and𝑄

𝑘+𝑙
are planes inR𝑛. Suppose the

trajectories of switched system pass through the boundary
𝐵
𝑘,𝑘+𝑙

in all points only in direction from 𝑄
𝑘
to 𝑄
𝑘+𝑙

and on
all lines 𝐿

𝑘,𝑘+𝑙
where 𝑄

𝑘
touches other regions all trajectories

pass from 𝑄
𝑘
only to one determined region 𝑄

𝑘+𝑗
. Suppose

also the existence of some Lyapunov functions 𝑉
𝑘
(𝑋) for all

equation 𝐸
𝑘
, 1 ≤ 𝑘 ≤ 𝑝. In this case theorems similar to

Theorems 10, 12, 17, and 18may be established.The definitions
of stability for switched systems inR𝑛 are the same as for the
two-dimensional case. Now, consider the case of a switched
system with infinite number of switchings. Let us formulate
one of the theorems on stability.

Theorem20. Suppose that for each equation𝐸
𝑘
acting in𝑄

𝑘
∈

R𝑛 there exists a Lyapunov function 𝑉
𝑘
(𝑋) defined in 𝑄

𝑘
such

that

(a) 𝜔
1,𝑘
(‖𝑋‖) < 𝑉

𝑘
(𝑋) < 𝜔

2,𝑘
(‖𝑋‖),𝑋 ∈ 𝑄

𝑘
, 𝑘 = 1, . . . , 𝑝,

(b) �̇�
𝑘
(𝑋(𝑡)) = ⟨∇(𝑉

𝑘
), 𝑓
𝑘
(𝑋)⟩ < 0,𝑋 ∈ 𝑄

𝑘
, 𝑘 = 1, . . . , 𝑝,

(c) on all switched surfaces𝐵
𝑘,𝑘+𝑗

and lines𝐿
𝑘,𝑘+𝑗

where the
trajectories pass from region 𝑄

𝑘
to 𝑄
𝑘+𝑗

, the following
inequalities hold:

𝑉
𝑘
(𝑋) > 𝑉

𝑘+𝑗
(𝑋) , 𝑋 ∈ 𝐵

𝑘,𝑘+𝑗
,

𝑉
𝑘
(𝑋) > 𝑉

𝑘+𝑙
(𝑋) , 𝑋 ∈ 𝐿

𝑘,𝑘+𝑙
.

(55)

Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system acting
in R𝑛 is stable (asymptotically stable) for a given switched
structure.

Proof. The demonstration of this theorem is similar to proof
of Theorem 12. Therefore it is omitted.

Example 21. In space R3 consider two regions 𝑄
1
= {𝑧 > 0}

and 𝑄
2
= {𝑧 < 0}. Suppose equations 𝐸

1
and 𝐸

2
are defined

in 𝑄
1
and 𝑄

2
:

𝐸
1
: �̇� = −𝑥 + 𝑦 + 𝑦2,

̇𝑦 = −𝑥 − 𝑦,

�̇� = −2𝑧 − 𝑧𝑥
2
− 2𝑦
2
𝑥,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
1
,

𝐸
2
: �̇� = −𝑥 + 𝑦 − 𝑦2,

̇𝑦 = −𝑥 − 𝑦 − 𝑥𝑦,

�̇� = −2𝑧 − 4𝑦
2
𝑥,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
2
.

(56)
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Normals𝑁
1,2

and𝑁
2,1

to the surface𝐵 = 𝑧 = 0 separating
𝑄
1
and 𝑄

2
are𝑁𝑇
1,2

= [0, 0, −1]
𝑇 and𝑁𝑇

2,1
= [0, 0, 1]

𝑇. There-
fore, condition (3) holds on surface 𝐵 = 𝑧 = 0:

⟨𝑁
1,2
, 𝑓
𝐸1
⟩ = 2𝑦

2
𝑥 > 0,

⟨𝑁
1,2
, 𝑓
𝐸2
⟩ = 4𝑦

2
𝑥 > 0,

𝑥 > 0,

⟨𝑁
2,1
, 𝑓
𝐸1
⟩ = −2𝑦

2
𝑥 > 0,

⟨𝑁
2,1
, 𝑓
𝐸2
⟩ = −4𝑦

2
𝑥 > 0,

𝑥 < 0.

(57)

Therefore, surfaces 𝐵
1,2

and 𝐵
2,1

where the trajectories
pass from 𝐸

1
to 𝐸
2
or vice versa are 𝐵

1,2
= {𝑧 = 0, 𝑥 > 0, 𝑦 =

arbitrary} and 𝐵
2,1

= {𝑧 = 0, 𝑥 < 0, 𝑦 = arbitrary}. On line
{𝑧 = 0, 𝑥 = 0, 𝑦 = arbitrary} the derivatives �̇� from one and
another side of this line are positive: �̇� = 𝑦

2
> 0. Therefore,

the trajectory which arrives on this line passes throughout it
and then enters into the region 𝑄

2
. Consider two Lyapunov

functions 𝑉
1
and 𝑉

2
defined in 𝑄

1
and 𝑄

2
, respectively:

𝑉
1
(𝑥, 𝑦, 𝑧) = 𝑥

2
+ 𝑦
2
+ 𝑧, (𝑥, 𝑦, 𝑧) ∈ 𝑄

1
,

𝑉
2
(𝑥, 𝑦, 𝑧) = 𝑥

2
+ 𝑦
2
− 𝑧, (𝑥, 𝑦, 𝑧) ∈ 𝑄

2
.

(58)

Derivatives �̇�
1,𝐸1

and �̇�
2,𝐸2

computed on the trajectories
of equations 𝐸

1
and 𝐸

2
, respectively, are

�̇�
1,𝐸1

= 2𝑥�̇� + 2𝑦 ̇𝑦 + �̇�

= 2𝑥 (−𝑥 + 𝑦 + 𝑦
2
) + 2𝑦 (−𝑥 − 𝑦)

+ (−2𝑧 − 𝑧𝑥
2
− 2𝑦
2
𝑥)

= −2𝑥
2
− 2𝑦
2
− 2𝑧 − 𝑧𝑥

2
< −2𝑉

1
,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
1
,

�̇�
2,𝐸2

= 2𝑥�̇� + 2𝑦 ̇𝑦 − �̇�

= 2𝑥 (−𝑥 + 𝑦 − 𝑦
2
) + 2𝑦 (−𝑥 − 𝑦 − 𝑥𝑦)

+ (−2𝑧 − 4𝑦
2
𝑥) = −2𝑥

2
− 2𝑦
2
+ 2𝑧 = −2𝑉

2
,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
2
.

(59)

All conditions of Theorem 20 are fulfilled and therefore
the considered switching system (56) is asymptotically sta-
ble and, moreover, exponentially asymptotically stable (see
Figure 6).

6. Conclusions

The stability of autonomous switched systems is investi-
gated. Some theorems giving sufficient conditions of stability,
asymptotic stability, or instability of switched systems are
established. Some results are similar to conditions of para-
metric stabilization or excitation of stable systems.
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Figure 6: Trajectory of switched system (56).
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This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear
systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in
conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors
reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and
the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator)
in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order
nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the
Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

1. Introduction

As the development of control schemes has progressed, a
variety of control systems have been developed for robotic
manipulators, including proportional-integral-derivative
(PID) control [1], adaptive control [2], computed torque
control [3, 4], fuzzy control [5], and neural network control
[6]. Sliding mode control (SMC) is an efficient control
method that has been widely applied to control for both
linear and nonlinear systems. In order to design slidingmode
control systems, establishment of suitable sliding surfaces
to ensure the desired dynamics is considered first, and then
a sliding mode controller is designed to drive the system
states to the sliding surface. The main characteristic of SMC
is to use discontinuous control effort to keep the system
states on the sliding surfaces, whereby SMC has strong
robustness with respect to system uncertainties and external
disturbances, fast response, and good transient performance.
However, the conventional SMC method cannot guarantee
the invariance properties during the reaching phase and even
against disturbances can degrade the performance of system
[7–9]. Moreover, this method adopts a linear sliding surface,

which can only provide asymptotic stability of the system in
the sliding phase.

Terminal sliding mode control (TSMC) methods, which
use nonlinear sliding surfaces instead of a linear surface,
were first introduced by Venkataraman and Gulati [10] and
further developed by Man et al. [11, 12] and Wu et al. [13].
Compared with linear SMC, TSMC schemes not only ensure
that the system states arrive at the equilibriumpoint in a finite
time but also offer some attractive properties, such as their
fast response and higher precision. However, the traditional
TSMC methods may have slower convergence performance
when the system states are not near the equilibrium point,
and they also suffer from the singularity problem and have
restrictions on the range of the power function. In order
to avoid these drawbacks, some new TSMC methods have
been proposed [14–16]. Yu and Zhihong [14] have developed
fast terminal sliding mode (FTSM), which can improve the
convergence speed when the system states are far from
the equilibrium point. This method, however, still has the
singularity problem. To overcome this, Feng et al. [16] intro-
duced nonsingular terminal sliding mode (NTSM) control.
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However, this surface has a limitation on the power function;
that is, 𝑝 and 𝑞must be positive odd integers.

Discontinuous terminal sliding mode control (TSMC)
has been widely applied to nonlinear systems. Nevertheless,
the main drawback of discontinuous TSMC is the chattering
phenomenon, which comes from high frequency switching
of the control signal. It shows undesirable oscillation on the
system, leads to low control accuracy, causes high wear of
the movingmechanical parts, andmay damage the actuators.
To deal with this problem, the most common methods
replace the sign function in the switching control with a
saturating approximation [17] or boundary layer technique
[18]. The boundary layer method was proposed to eliminate
the chattering by defining a boundary layer around the sliding
surface and then approximate the discontinuous control
by continuous function within this boundary layer. As a
result, the chattering elimination is achieved; however, there
is a trade-off between chattering elimination and tracking
performance; a thicker boundary layer can eliminate the chat-
tering phenomenon but the tracking error will be increased.
Recently, intelligent control schemes (neural network and
fuzzy logic) have been applied to attenuate the chattering
phenomenon [19–21]. However, some controller designs
based on intelligence techniques were quite complicated and
fell into difficulties in stability analysis. Therefore, in this
study, high-order sliding mode (HOSM) techniques have
been studied and applied. The main characteristic of HOSM
is that they are working with the discontinuous control in the
higher-order time derivative [22–27], so the chattering can
be reduced because the control signal is continuous. Further-
more, HOSM can bring better accuracy than conventional
SMC while the robustness of the control system is similar to
SMC. It has been presented in [23–25] for the control of rigid
robot manipulators.

In this paper, the above-mentioned problems are ad-
dressed based on a proposed NTSM surface for second-order
nonlinear systems. A control law is designed to drive the
system states to reach the sliding surface and converge to zero
in a finite time. It does not suffer from the singularity problem
or the restriction on the power function. Furthermore, a
super-twisting second-order sliding mode is also used to
reduce the chattering of the controller. The global finite time
stability of the closed-loop system is proven.The convergence
times of the reaching phase and sliding phase are also
given. The simulation results are presented to illustrate the
effectiveness of the proposed method on the two-link robot
manipulator.

The remainder of this paper is arranged as follows. Pre-
liminaries and problem formulation are given in Section 2.
In Section 3, the structure of super-twisting nonsingular
terminal sliding mode controller is presented and a stability
analysis is performed. In Section 4, simulation results for
a two-link robot manipulator are provided to demonstrate
the performance of the proposed controller. Finally, some
concluding remarks are presented in Section 5.

2. Preliminaries and Problem Formulation

Consider the following nonlinear second-order mechanical
systems:

�̇�1 = 𝑥2,

�̇�2 = 𝑓 (𝑥, 𝑡) + 𝑑 (𝑥, 𝑡) + 𝑏 (𝑥, 𝑡) 𝑢 (𝑡) ,
(1)

where 𝑥 = [𝑥1, 𝑥2]
𝑇 denotes the system state vector, 𝑓(𝑥, 𝑡)

and 𝑏(𝑥, 𝑡) are smooth nonlinear functions of 𝑥, 𝑢(𝑡) is
the control input, and 𝑑(𝑥, 𝑡) presents the uncertainties and
disturbances.

Assumption 1. Thematrices 𝑏(𝑥, 𝑡) are invertible ∀𝑥.

Assumption 2. The uncertain term is bounded by

|𝑑 (𝑥, 𝑡)| ≤ 𝐷, (2)

where𝐷 is a known positive constant.

Assumption 3. The desired state vector 𝑥
𝑑
(𝑡) ∈ 𝑅 is a twice

continuously differentiable function in terms of 𝑡.
The control objective of this paper is to design a controller

for system (1) to ensure that the error between the real state
vector 𝑥 and the desired state vector 𝑥

𝑑
(𝑡) converges to zero

in finite time.

3. Main Results

In this section, the design of super-twisting nonsingular
terminal sliding mode controller is presented. First, a new
nonsingular terminal sliding mode surface is proposed to
eliminate the singularity problem. Then, the conventional
SMC and super-twisting nonsingular terminal sliding mode
controller are designed to ensure that the tracking error
converges to zero in a finite amount time.

3.1. New Form of NTSM Surface. Wedefine the tracking error
as 𝜀(𝑡) = 𝑥1(𝑡)−𝑥1𝑑(𝑡).Thus, a newNTSMsurface is proposed
as follows:

𝑠 = ̇𝜀 + 𝛽1𝜀 + 𝛽2𝑒
−𝜆𝑡

(𝜀
𝑇
𝜀)
−𝛼

𝜀, (3)

where 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑛]
𝑇, 𝜀 = [𝜀1, 𝜀2, . . . , 𝜀𝑛]

𝑇, ̇𝜀 = [ ̇𝜀1,

̇𝜀2, . . . , ̇𝜀
𝑛
]
𝑇, 𝛽1 = diag(𝛽11, 𝛽12, . . . , 𝛽1𝑛), 𝛽2 = diag(𝛽21,

𝛽22, . . . , 𝛽2𝑛) with 𝛽1𝑖, 𝛽2𝑖 > 0 for every 𝑖 = 1, 2, . . . , 𝑛, 0 <

𝛼 < 1, and 𝜆 > 0.
When the system operates in sliding mode, the following

is true:

𝑠 = ̇𝜀 + 𝛽1𝜀 + 𝛽2𝑒
−𝜆𝑡

(𝜀
𝑇
𝜀)
−𝛼

𝜀 = 0 (4)

̇𝜀 = − 𝛽1𝜀 − 𝛽2𝑒
−𝜆𝑡

(𝜀
𝑇
𝜀)
−𝛼

𝜀. (5)

Theorem 4. Considering the sliding mode dynamic equation
(5), the system is finite time stable at the equilibrium point 𝜀 =

0, and the tracking error 𝜀 will converge to zero in finite time if
2𝛼𝜆min(𝛽1) − 𝜆 > 0.
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The finite convergence time is

𝑇
𝑠
≤
ln (1 + (𝑒

2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉
𝛼
(0)) /𝑎2)

2𝛼𝜆min (𝛽1) − 𝜆
, (6)

where 𝑎2 is expressed by (15).

Proof. Consider the Lyapunov function:

𝑉 =
1
2
𝜀
𝑇
𝜀. (7)

Taking the derivative of 𝑉 in (7) and substituting (5) into
it yield

�̇� = 𝜀
𝑇

̇𝜀 = 𝜀
𝑇
[−𝛽1𝜀 − 𝛽2𝑒

−𝜆𝑡
(𝜀
𝑇
𝜀)
−𝛼

𝜀] , (8)

�̇� = − 𝜀
𝑇
𝛽1𝜀 − 𝛽2𝑒

−𝜆𝑡
(𝜀
𝑇
𝜀)
−𝛼

𝜀
𝑇
𝜀

≤ − 𝜆min (𝛽1) 𝜀
𝑇
𝜀 − 𝜆min (𝛽2) 𝑒

−𝜆𝑡
(𝜀
𝑇
𝜀)

1−𝛼

≤ − 2𝜆min (𝛽1) 𝑉− 21−𝛼𝜆min (𝛽2) 𝑒
−𝜆𝑡

𝑉
1−𝛼

≤ 0.

(9)

Therefore, according to the Lyapunov stability, it is obvi-
ous that the origin is at globally stable equilibrium. Next, we
will show that the system states converge to zero in finite time.

Multiplying both sides of (9) by 𝛼𝑉𝛼−1, we have

𝛼𝑉
𝛼−1 𝑑𝑉

𝑑𝑡
≤ − 2𝛼𝜆min (𝛽1) 𝑉

𝛼
− 21−𝛼𝛼𝜆min (𝛽2) 𝑒

−𝜆𝑡
,

𝑑𝑉
𝛼

𝑑𝑡
+ 2𝛼𝜆min (𝛽1) 𝑉

𝛼
≤ − 21−𝛼𝛼𝜆min (𝛽2) 𝑒

−𝜆𝑡
.

(10)

Multiplying both sides of (10) by 𝑒2𝛼𝜆min(𝛽1)𝑡 yields

𝑒
2𝛼𝜆min(𝛽1)𝑡 (

𝑑𝑉
𝛼

𝑑𝑡
+ 2𝛼𝜆min (𝛽1) 𝑉

𝛼
)

≤ − 21−𝛼𝛼𝜆min (𝛽2) 𝑒
[2𝛼𝜆min(𝛽1)−𝜆]𝑡,

(11)

𝑑 (𝑒
2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉

𝛼
)

𝑑𝑡
≤ − 21−𝛼𝛼𝜆min (𝛽2) 𝑒

[2𝛼𝜆min(𝛽1)−𝜆]𝑡. (12)

Taking the integral on both sides of (12) from 0 to 𝑇
𝑠
and

knowing 𝑉(𝑇
𝑠
) = 0 yield

− 𝑒
2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉

𝛼
(0) ≤ − 𝑎2 [𝑒

[2𝛼𝜆min(𝛽1)−𝜆]𝑇𝑠 − 1] , (13)

𝑒
[2𝛼𝜆min(𝛽1)−𝜆]𝑇𝑠 ≤ 1+ 𝑒

2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉
𝛼
(0)

𝑎2
, (14)

where

𝑎2 =
21−𝛼𝛼𝜆min (𝛽2)

2𝛼𝜆min (𝛽1) − 𝜆
> 0. (15)

Taking the natural logarithm of both sides of (14) yields

[2𝛼𝜆min (𝛽1) − 𝜆] 𝑇
𝑠
≤ ln(1+ 𝑒

2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉
𝛼
(0)

𝑎2
) .

𝑇
𝑠
≤
ln (1 + (𝑒

2𝛼𝜆min(𝛽1)𝑡 ⋅ 𝑉
𝛼
(0)) /𝑎2)

2𝛼𝜆min (𝛽1) − 𝜆

(16)

This completes the proof.

Remark 5. The expression in (3) is different from the pre-
viously reported TSM and fast TSM in [14], which are
expressed, respectively, as

𝑠 = �̇� + 𝛽𝑥
𝑞/𝑝

,

𝑠 = �̇� + 𝛼𝑥+𝛽𝑥
𝑞/𝑝

,

(17)

where 𝛼 and 𝛽 are positive constants and 𝑝 and 𝑞 are positive
odd integers that satisfy the following condition: 1 < 𝑝/𝑞 < 2.
We can easily see that, for𝑥 < 0, the fractional power 𝑞/𝑝may
lead to the term 𝑥

𝑞/𝑝
∉ 𝑅, which means �̇� ∉ 𝑅. In addition,

the TSM control signals in [14] contain 𝑥1
𝑞/𝑝−1

𝑥2, which may
cause a singularity to occur if 𝑥2 ̸= 0 when 𝑥1 = 0.

To solve the complex-value problem in (17), Yu et al. [28]
proposed the TSM surface as

𝑠 = �̇� + 𝛽 |𝑥|
𝛾 sign (𝑥) ,

𝑠 = �̇� + 𝛼𝑥+𝛽 |𝑥|
𝛾 sign (𝑥) .

(18)

The sliding surface in (18) could solve the complex-value
number, but the control input can suffer from the singularity
problem if 𝑥2 ̸= 0 when 𝑥1 = 0.

Recently, a nonsingular terminal sliding surface was
proposed to overcome the singularity problem [16]:

𝑠 = 𝑥 +
1
𝛽
�̇�
𝑝/𝑞

. (19)

However, this surface still has the limitation for the
exponent of the power function; that is, 𝑝 and 𝑞 should
be positive odd integers. Thus, our proposed TSM surface
does not contain any of the mentioned singularities, and the
exponent can be any real number in the interval 0 < 𝛼 < 1.

Remark 6. Comparing with linear sliding mode, NTSM
has higher convergence rate when the system state is far
away from the equilibrium point, while NTSM has lower
convergence speed when the system state is close to the
equilibrium point [29, 30].

It is obvious that the term 𝑒
−𝜆𝑡 in the proposed surface

will go backward to zero after a certain time. Thus, the
nonsingular terminal slidingmode surfacewill become linear
sliding mode after a period of time. By choosing a suitable 𝜆,
the proposed surface will have the advantage of both NTMS
and linear sliding surface.

3.2. NTSM Control (NTSMC) Design. One suitable sliding
manifold is established. The next step is to design the control
to drive the nonlinear system (1) to the expected sliding
surface (3) in a finite amount time. The proposed control
method is summarized as follows.

Theorem 7. For the system (1), if the control signal is designed
as (20) and the gain 𝜂 of the controller is larger than the upper
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bounds of the uncertainties, the tracking error 𝜀(𝑡)will converge
to zero in finite time:

𝑢 (𝑡) = − 𝑏 (𝑥, 𝑡)
−1

⋅ [𝑓 (𝑥, 𝑡) − �̈�
𝑑
+𝛽1 ̇𝜀 + 𝛽2𝐴+𝜂 sign (𝑠)] ,

(20)

where 𝜂 = diag(𝜂1, 𝜂2, . . . , 𝜂𝑛), 𝜂𝑖 > 0. Therefore,

𝐴 = [(−𝜆) 𝑒
−𝜆𝑡

(𝜀
𝑇
𝜀)
−𝛼

𝜀

+ 𝑒
−𝜆𝑡

(−2𝛼) 𝑥 (𝜀
𝑇
𝜀)
−𝛼−1

(𝜀
𝑇

̇𝜀) 𝜀 + 𝑒
−𝜆𝑡

(𝜀
𝑇
𝜀)
−𝛼

̇𝜀] .

(21)

Proof. Consider the following Lyapunov candidate function:

𝑉 =
1
2
𝑠
𝑇
𝑠. (22)

The time derivative of the sliding surface (3) with respect
to time can be expressed as

̇𝑠 = ̈𝜀 + 𝛽1 ̇𝜀 + 𝛽2𝐴

= 𝑓 (𝑥, 𝑡) + 𝑑 (𝑥, 𝑡) + 𝑏 (𝑥, 𝑡) 𝑢 (𝑡) − �̈�
𝑑 (𝑡) + 𝛽1 ̇𝜀

+ 𝛽2𝐴.

(23)

Differentiating 𝑉 with respect to time and substituting
(20) and (23) into it yield

�̇� = 𝑠
𝑇
(−𝜂 sign (𝑠) + 𝑑 (𝑡)) ≤ − (𝜂 −𝐷) |𝑠| ≤ 0. (24)

Therefore, the condition for Lyapunov stability is satisfied;
in the following, we will show that the error converges to zero
in finite time.

From (24), we have

�̇� ≤ −√2 (𝜂 −𝐷)𝑉
1/2

,

𝑑𝑡 ≤ −
𝑑𝑉

√2 (𝜂 − 𝐷)𝑉1/2
= −

√2𝑑𝑉1/2

(𝜂 − 𝐷)
.

(25)

Taking the integral of both sides of (25) from 𝑇
𝑟
to 𝑇
𝑠
, we

have

𝑇
𝑠
−𝑇
𝑟
≤ −∫

𝑉(𝑇
𝑠
)

𝑉(𝑇
𝑟
)

√2𝑑𝑉1/2

(𝜂 − 𝐷)
=

√2
(𝜂 − 𝐷)

𝑉
1/2

(𝑇
𝑟
) . (26)

Note that 𝑉(𝑇
𝑠
) = 0; therefore, the TSM will reach zero

in the finite time:

𝑇
𝑠
≤

√2
(𝜂 − 𝐷)

𝑉
1/2

(𝑇
𝑟
) +𝑇
𝑟
. (27)

This completes the proof.

Remark 8. In order to eliminate the chattering, a saturation
function sat or 𝑠/(‖𝑠‖ + 𝜀) (𝜀 is a small positive constant) can
be used to replace the sign function.

3.3. Super-Twisting NTSM Control (ST-NTSMC) Design. The
main drawback of the conventional sliding mode is the
chattering phenomenon which is caused by discontinu-
ous control action when the system state operates near
the sliding surface. Even though the chattering reduction
can be achieved by using Remark 8, there is a trade-off
between chattering elimination and tracking performance;
increasing the thickness of the boundary layer can eliminate
the chattering phenomenon but will increase the tracking
error. Therefore, in this subsection, super-twisting control is
applied to attenuate chattering and to increase the tracking
performance.

The ST-NSTSMC is designed as

𝑢 = 𝑢eq +𝑢STW, (28)

where

𝑢eq = − 𝑏 (𝑥, 𝑡)
−1

[𝑓 (𝑥, 𝑡) − �̈�
𝑑
+𝛽1 ̇𝜀 + 𝛽2𝐴] . (29)

Based on [27], the super-twisting controller is designed as

𝑢STW = − 𝑏 (𝑥, 𝑡)
−1

(𝑘1 |𝑠|
1/2 sign (𝑠) + 𝑧) ,

�̇� = − 𝑘2 sign (𝑠) .

(30)

The differentiation of the sliding surface is now obtained
as

̇𝑠 = 𝑓 (𝑥, 𝑡) + 𝑑 (𝑥, 𝑡) + 𝑏 (𝑥, 𝑡) (𝑢eq +𝑢SMW) − �̈�
𝑑 (𝑡)

+ 𝛽1 ̇𝜀 + 𝛽2𝐴.

(31)

Substituting (29) and (30) into (31) yields

̇𝑠 = − 𝑘1 |𝑠|
1/2 sign (𝑠) + 𝑧 + 𝑑 (𝑥, 𝑡) ,

�̇� = − 𝑘2 sign (𝑠) .

(32)

The stability and convergence of the closed-loop system
in (32) are given inTheorem 9.

Theorem 9. Suppose that Assumption 1 is guaranteed and the
uncertain terms are bounded by

𝑑 (𝑥, 𝑡) ≤ 𝛿 |𝑠|
1/2

,

𝛿 = diag (𝛿1, 𝛿2, . . . , 𝛿𝑛) , 𝛿
𝑖
> 0.

(33)

For system (1), with the terminal sliding mode surface
chosen as in (3) and the proposed control signal designed
as in (28), if the sliding gains of 𝑢STW given in (30) satisfy
condition (34), then the sliding surface 𝑠will converge to zero
in a finite time:

𝑘1 > 2𝛿,

𝑘2 > 𝑘1
5𝑘1 + 4𝛿
2 (𝑘1 − 2𝛿)

𝛿.
(34)

Proof. Now, referring to Moreno’s work [27], let us consider
the Lyapunov candidate function:

𝑉 = 𝜉
𝑇
𝑃𝜉, (35)
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where

𝜉 = [|𝑠|
1/2 sign (𝑠) , 𝑧]

𝑇

,

𝑃 =
1
2
[
𝑘1

2
+ 4𝑘2 −𝑘1

−𝑘1 2
] .

(36)

As we know, 𝑉 is positive definite and radially un-
bounded:

𝜆min (𝑃)
𝜁

2
≤ 𝑉 ≤ 𝜆max (𝑃)

𝜁

2
, (37)

where ‖𝜁‖2 = |𝑠| + 𝑧
2. The time derivative of 𝑉 becomes

�̇� = −
1

|𝑠|
1/2 (𝜉
𝑇
𝑄1𝜉 − 𝑑 (𝑥, 𝑡) 𝑄2

𝑇
𝜉) , (38)

where

𝑄1 =
𝑘1
2

[
𝑘1

2
+ 2𝑘2 −𝑘1

−𝑘1 1
] ,

𝑄2
𝑇
= [

𝑘1
2

2
+ 2𝑘2 −

𝑘1
2
] .

(39)

Using condition (33), it can be shown that

�̇� ≤ −
1

|𝑠|
1/2 𝜉
𝑇
𝑄𝜉 ≤ −

1
|𝑠|

1/2 𝜆min (𝑄)
𝜉

2
, (40)

where

𝑄 =
𝑘1
2

[
[

[

𝑘1
2
+ 2𝑘2 − (

4𝑘2
𝑘1

+ 𝑘1)𝛿 − (𝑘1 + 2𝛿)

− (𝑘1 + 2𝛿) 1

]
]

]

. (41)

In the case in which the condition in (34) is satisfied,𝑄 >

0, so �̇� is negative definite.
We can use (37) and the fact that

|𝑠|
1/2

≤
𝜁
 ≤

𝑉
1/2

𝜆min
1/2

(𝑃)

𝜁
 ≥

𝑉
1/2

𝜆max
1/2

(𝑃)
.

(42)

Then, substituting (42) into (40) yields

�̇� ≤ − 𝜅𝑉
1/2

, (43)

where

𝜅 =
𝜆min

1/2
(𝑃) 𝜆min (𝑄)

𝜆max (𝑃)
. (44)

Since the solution of the differential equation

V̇ ≤ − 𝜅V1/2,

V (0) = V0 > 0
(45)

l1

l2

m2

m1

q2

q1

Figure 1: Configuration of the two-link robotic system [3].

is given as

V (𝑡) = (V0
1/2

−
𝜅

2
𝑡)

2
, (46)

here, V(𝑡) converges to zero in a finite time and reaches
zero after 𝑇 = 2𝑉1/2

(𝑥0)/𝜅. It follows from the comparison
principle [18] that 𝑉(𝑡) ≤ V(𝑡) when 𝑉(𝑥0) ≤ V0. From
(46), we can determine that 𝑉(𝑡) and therefore 𝑠 converge
to zero in a finite time and reach that value at most after
𝑇 = 2𝑉1/2

(𝑥0)/𝜅.

4. Simulation Results

In this section, to verify the validity and effectiveness of the
proposed method, the two-link planar robot manipulator
shown in Figure 1 is considered.

The dynamic equation of the two-link robot is described
as follows [3]:

𝑀(𝑞) ̈𝑞 +𝐶 (𝑞, ̇𝑞) +𝐺 (𝑞) = 𝜏 (𝑡) + 𝜏
𝑑
+𝐹 ( ̇𝑞) , (47)

where

𝑀(𝑞)

= [
𝑙
2
2𝑚2 + 2𝑙1𝑙2𝑚2𝑐2 + 𝑙

2
1 (𝑚1 + 𝑚2) 𝑙

2
2𝑚2 + 𝑙1𝑙2𝑚2𝑐2

𝑙
2
2𝑚2 + 𝑙1𝑙2𝑚2𝑐2 𝑙

2
2𝑚2

] ,

𝐶 (𝑞, ̇𝑞) = [
−𝑚2𝑙1𝑙2𝑠2 ̇𝑞

2
2 − 2𝑚2𝑙1𝑙2𝑠2 ̇𝑞1 ̇𝑞2

𝑚2𝑙1𝑙2𝑠2 ̇𝑞
2
1

] ,

𝐺 (𝑞) = [
𝑚2𝑙2𝑔𝑐12 + (𝑚1 + 𝑚2) 𝑙1𝑔𝑐1

𝑚2𝑙2𝑔𝑐12
] ,

(48)

and 𝑞 = (𝑞1, 𝑞2)
𝑇 is the joint variable vector, 𝑀(𝑞) is the

inertial matrix,𝐶(𝑞, ̇𝑞) represents the centripetal and Coriolis
torque matrix, 𝐺(𝑞) represents the gravity torque vector, 𝜏

𝑑
is

the vector of the bounded external disturbance, 𝐹( ̇𝑞) is the
friction, and 𝜏 is the control torque. 𝑚1 and 𝑚2 are the link
masses, 𝑙1 and 𝑙2 are the link lengths, gravity 𝑔 = 9.81(𝑚/𝑠

2
),

and the symbols 𝑠1, 𝑠2, 𝑠12 and 𝑐1, 𝑐2, 𝑐12 are, respectively,
defined as 𝑠1 = sin(𝑞1), 𝑠2 = sin(𝑞2), 𝑠12 = sin(𝑞12), 𝑐1 =

cos(𝑞1), 𝑐2 = cos(𝑞2), and 𝑐12 = cos(𝑞12).
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Figure 2: Tracking performance of two-link robot manipulator, (a) at joint 1, (b) at joint 2.
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Figure 3: Tracking errors of two-link robot manipulator, (a) at joint 1, (b) at joint 2.

The friction and external disturbance are chosen as

𝐹 ( ̇𝑞) = [
̇𝑞1 + 2 sin (𝑞1)

0.5 sin (𝑞2)
] ,

𝜏
𝑑
= [

0.2 sin (𝑡)

0.2 cos (2𝑡)
] .

(49)

The parameter values employed to simulate the robot are
given as𝑚1 = 𝑚2 = 1 (m) and 𝑙1 = 𝑙2 = 1 (kg), and the design
reference signals are given by

𝑞1𝑑 = 1+ 0.2 sin (0.5𝜋𝑡) ,

𝑞2𝑑 = 1− 0.2 cos (0.5𝜋𝑡) .
(50)

The initial states of the system are chosen as

𝑞1 (0) = 1.3,

𝑞2 (0) = 0.3,

̇𝑞1 (0) = 0,

̇𝑞2 (0) = 0.

(51)

To this end, Matlab/Simulink is used to perform all of
the simulations, and with the sampling time set to 10−4 s,
the simulation compares the proposed ST-NTSMC control

Table 1: Control parameters.

Control schemes Parameters
C-TSMC [28] 𝛽 = 10𝐼2, 𝜂1 = 25𝐼2, 𝜂2 = 45𝐼2, 𝛾 = 1.5, 𝜑 = 0.3.

ST-NTSMC 𝛽1 = 12𝐼2, 𝛽2 = 10𝐼2, 𝑘1 = 9, 𝑘2 = 5, 𝜆 = 3,
𝛼 = 0.3.

scheme with the previously proposed control method in [28].
Yu et al. [28] suggested the continuous terminal sliding mode
control (C-TSMC), which was designed for a two-link robot
manipulator as follows:

𝜏 = 𝐶0 (𝑞, ̇𝑞) +𝐺0 (𝑞) +𝑀0 (𝑞) ̈𝑞
𝑑

−𝑀0𝛽
−1
𝛾
−1sig ( ̇𝑒)

(2−𝛾)
−𝑀0 (𝜂1𝑠 + 𝜂2sig (𝑠)

𝜑
) ,

(52)

where 𝑠 = 𝑒 + 𝛽 sig ( ̇𝑒)
𝛾, sig (𝑥)𝛾 = [|𝑥1|

𝛾 sign (𝑥1),
|𝑥2|
𝛾 sign (𝑥2), . . . , |𝑥𝑛|

𝛾 sign (𝑥
𝑛
)], 𝛽 = diag(𝛽1, 𝛽2, . . . , 𝛽𝑛),

𝜂1 = diag(𝜂11, 𝜂12, . . . , 𝜂1𝑛), 𝜂2 = diag(𝜂21, 𝜂22, . . . , 𝜂2𝑛), 𝛽𝑖,
𝜂1𝑖, 𝜂2𝑖 > 0, 0 < 𝜑 < 1, and 1 < 𝛾 < 2.

The control parameters are selected as shown in Table 1.
The simulation results are shown in Figures 2–5. In

Figure 2, the tracking results of the robot manipulator using
the two control laws above are compared. It shows that the
state trajectories can reach the design reference signals in
the presence of model parameter uncertainties and external
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Figure 4: Control inputs, (a) at joint 1, (b) at joint 2.

0 1 2 3 4 5 6 7 8 9 10

2 4 6 8 10

0

2

−1

0

1

2

3

4

S
1

−2

S
2

Time (s)

C-TSMC
ST-NTSMC

×10
−4

(a)

0 1 2 3 4 5 6 7 8 9 10

2 4 6 8 10

0

2

S
1

−10

−8

−6

−4

−2

−2

0

2

S
2

Time (s)

C-TSMC
ST-NTSMC

×10
−3

(b)

Figure 5: Time responses of the terminal sliding mode surface, (a) at joint 1, (b) at joint 2.

disturbances. The tracking errors via two controllers are
compared in Figure 3. One can easily see that the ST-NTSMC
produces tracking performance with faster convergence and
higher precision. Figure 4 shows the time histories of the
applied control inputs and shows that the proposed ST-
NTSMC method achieves superior control input perfor-
mance with smaller control efforts, higher precision tracking,
and smoother than the C-TSMCmethod.The time responses
of the sliding manifolds are shown in Figure 5. Clearly,
the sliding surface of the proposed method was also much
smaller than C-TSMC.

5. Conclusions

In this paper, we presented the ST-NTSMC method for
second-order nonlinear systems. This method has been
successfully applied in a two-link robot manipulator. The
designed nonsingular terminal sliding surface not only avoids
the singularity problem, but also can overcome the complex-
value and the restriction on the exponent of a power function
in conventional TSMC. The performance of the proposed
method was evaluated in comparison with recently pro-
posed approaches [28]. The simulation results show that the
proposed method achieves highly precise tracking, fast and
finite time convergence, and robustness against parameter
uncertainties and external disturbances. Furthermore, ST-
NTSMC is used to smooth the discontinuous control term
in order to attenuate the chattering phenomenon.
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This paper presents 𝐻
∞

excitation control design problem for power systems with input time delay and disturbances by using
nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in
wide-area measurement system (WAMS) is well considered. Meanwhile, the systems under investigation are disturbed by random
fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the
𝐻
∞

excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based
on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed
control law.The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay.
And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.

1. Introduction

Time delay always exists in power systems control area. It
is often ignored when controller is mainly applied in local
systems where the communication time delay is very small
compared to the system time constants (see, e.g., [1, 2] and
the references therein). Due to the further study of phase
measurement unit (PMU) and WAMS, coordinated stability
control has got a lot of attention. It uses remote measuring
information given by WAMS/PMU. Unlike the small delay
in local control, the time delay in wide-area power systems
can vary from tens to several hundred milliseconds or more.
Since that the large time delay will go against the stability of
the system and reduce the performance of the system, so it
is very necessary to consider the influence of it on the power
system stability analysis and controller design. Besides, the
generators are interfered with speed regulation, fluctuation of
load, mechanical torsional vibration, the changes of damp-
ing coefficients, and so on in the transient process. These
random fluctuations can be regarded as a kind of random

process [3]. However, the application of the Itô differential
formula will lead to the appearance of gravitation and the
Hessian term. What is more, the stochastic disturbance
(Wiener process) will cause no definition of the system
states’ derivative [4]. Therefore, stochastic and delay factors
increase the difficulties of the analysis and synthesis [5].
Some results, which took signal transmission time delays
or stochasticity in power systems into account, have been
obtained. Reference [6] presented a free-weighting matrix
method based on linear control design approach for the
wide-area robust damping controller associated with flexible
alternating current transmission system device to improve
the dynamical performance of the large-scale power systems.
Reference [7] proposed a delay-independent decentralized
coordinated robust approach to design excitation controller
in terms of 𝐻

∞
optimization method incorporating linear

matrix inequality (LMI) technique. Considering the nonlin-
ear effects of randomized torsional oscillation on the exci-
tation regulation dynamic process of a generator rotor and
exploiting Monte-Carlo principle and numerical methods,
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the algorithms and workflow of the proposed excitation
control system’s transient stability analysis approach were
presented in [3]. Reference [8] presented a stochastic cost
model and a solution technique for optimal scheduling of the
generators in a wind integrated power system considering the
demand and wind generation uncertainties.

Based on the linearization at steady state operating point,
lots of the techniques are by far achieved and applied to
controller design in power systems. These techniques have
some disadvantages, such as ignoring some nonlinearities
of the system and just expressing the partial structures
of the system. What is more, the designed controllers are
generally relatively complicated and not very easy to realize
online operation.Therefore, some nonlinear methods should
be worked out to achieve good control performance for
the power systems in consideration of time-delay, stochas-
tics, and disturbances. In recent years, energy-based Lya-
punov function method has obtained numerous attention,
and remarkable achievements have been reached with this
method in the analysis and synthesis of nonlinear systems,
as well as in the power systems (see, e.g., [9–13] and the
references therein). The method can thoroughly take advan-
tage of the internal structural properties of the systems and
make the control design relatively simple. An important step
in using energy-based control strategy is to transform the
system into a dissipative Hamiltonian system formulation.
This kind of system, proposed by [14], has great benefits
for that its Hamilton function can be used as the sum of
potential energy (excluding gravitational potential energy)
and kinetic energy in physical systems and also can be taken
as a Lyapunov function (see, e.g., [11, 15–18]). Using the
energy-based Hamilton function method, [11] investigated
the adaptive 𝐻

∞
excitation control of multimachine power

systems with disturbances. Simulations show that the control
strategy proposed in [11] was more effective than some other
control schemes. Considering the impact of time delays in
acquisition and transmission of key signals in power systems,
[19] deals with the 𝐻

∞
excitation control problem of 𝑛-

machine power system with time-delay and disturbances.
The purpose of this paper is to present a suitable con-

troller structure for the stochastic power systems with input
delay and disturbances using the nonlinear Hamiltonian
system theory in order to weaken the impact of stochas-
ticity and delay on the control performance of the power
systems. Firstly, the prefeedback with delay method is to
be used to describe the system as a dissipative Hamiltonian
system formulation. Next, based on the obtained new system
formulation, we will deal with the 𝐻

∞
control problem by

using Newton-Leibniz formula, a few properties of norm
and matrices. The main results will be proposed for the
Hamiltonian system and the power system as well. Finally,
we will test and verify the obtained results in this paper
by an example of a two-machine power system with delay,
stochasticity, and disturbances.

The rest of the paper is organized as follows. Section 2
provides the problem formulation, nonlinear Hamilton real-
ization and some preliminaries. Section 3 gives the main
results. Analysis of the achieved results by a two-machine

power system example and the conclusion are given in
Sections 4 and 5, respectively.

Notations. Throughout the paper the superscript “𝑇” stands
for matrix transposition. R denotes the set of real numbers,
R
+
the set of all nonnegative real numbers, R𝑛 the 𝑛-

dimensional Euclidean space, and R𝑛×𝑚 the real matrices
with dimension 𝑛 × 𝑚. Diag{⋅ ⋅ ⋅ } stands for diagonal matrix
in which the diagonal elements are the elements in {⋅ ⋅ ⋅ }; ‖ ⋅ ‖
stands for either the Euclidean vector norm or the induced
matrix 2-norm. For any symmetric matrices 𝑋 and 𝑌, 𝑋 ≥

𝑌 (resp., 𝑋 > 𝑌) means that the matrix 𝑋-𝑌 is positive
semidefinite (resp., positive definite). tr[𝑋] denotes the trace
for square matrix 𝑋. 𝜆max(𝑃) (𝜆min(𝑃)) denotes the maxi-
mum (minimum) of eigenvalue of a real symmetric matrix 𝑃.
C
𝑛,𝜏

= C([−𝜏, 0],R𝑛)means the Banach space of continuous
functions from [−𝜏, 0] to R𝑛. C𝑏F0([−𝜏, 0];R

𝑛

) denotes the
family of all F

0
-measurable bounded C([−𝜏, 0];R𝑛)-valued

random variables 𝜙 = {𝜙(𝑡) : 𝑡 ∈ [−𝜏, 0]}. C𝑖 denotes the set
of all functions with continuous 𝑖th partial derivatives; C2,1 is
the family of all functions which are C2 in the first argument
and C1 in the second argument; C2,1(R𝑛 × [−𝜏,∞);R

+
)

stands for the family of all nonnegative functions 𝑉(𝑥, 𝑡) on
R𝑛 × [−𝜏,∞) which are C2 in 𝑥 and C1 in 𝑡. What is more,
for the sake of simplicity, throughout the paper, we denote
𝜕𝐻/𝜕𝑥 by ∇𝐻.

2. Problem Formulation and Nonlinear
Hamilton Realization

Consider the following 𝑛-machine power systems, each
generator of which is described by a third-order dynamic
model (see [1, 20]):

̇
𝛿
𝑖
= 𝜔
𝑖
− 𝜔
0
,

�̇�
𝑖
=

𝜔
0

𝑀
𝑖

𝑃
𝑚𝑖
−

𝐷
𝑖

𝑀
𝑖

(𝜔
𝑖
− 𝜔
0
) −

𝜔
0

𝑀
𝑖

𝑃
𝑒𝑖
+ 𝜖
𝑖1
,

�̇�


𝑞𝑖
= −

1

𝑇
𝑑0𝑖

𝐸
𝑞𝑖
+

1

𝑇
𝑑0𝑖

𝑢
𝑓𝑖
(𝑡) + 𝜖

𝑖2
,

(1)

where

𝐸
𝑞𝑖
= 𝐸


𝑞𝑖
+ 𝐼
𝑑𝑖
(𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) ,

𝐼
𝑑𝑖
= 𝐵
𝑖𝑖
𝐸


𝑞𝑖
−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑗
cos (𝛿

𝑖
− 𝛿
𝑗
) ,

𝑃
𝑒𝑖
= 𝐺
𝑖𝑖
𝐸
2

𝑞𝑖
+ 𝐸


𝑞𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑗
sin (𝛿

𝑖
− 𝛿
𝑗
) ,

𝑖 = 1, 2, . . . , 𝑛,

(2)

𝛿
𝑖
is the power angle of the 𝑖th generator (radians), 𝜔

𝑖
is the

rotor speed of the 𝑖th generator (rad/s), 𝜔
0
= 2𝜋𝑓

0
, 𝐸
𝑞𝑖
is

the 𝑞-axis internal transient voltage of the 𝑖th generator (per
unit), 𝑥

𝑑𝑖
is the 𝑑-axis transient reactance (per unit), 𝑥

𝑑𝑖
is

the 𝑑-axis transient reactance of the 𝑖th generator (per unit),
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𝑢
𝑓𝑖
is the voltage of the field circuit of the 𝑖th generator, the

control input (per unit),𝑀
𝑖
is the inertia coefficient of the 𝑖th

generator (s),𝐷
𝑖
is the damping constant (per unit),𝑇

𝑑0𝑖
is the

field circuit time constant (s), 𝑃
𝑚𝑖

is the mechanical power,
assumed to be constant (per unit), 𝑃

𝑒𝑖
is the active electrical

power (per unit), 𝜖
𝑖1
and 𝜖
𝑖2
are bounded disturbances, 𝐼

𝑑𝑖
is

the 𝑑-axis current (per unit), 𝐸
𝑞𝑖
is the internal voltage (per

unit), 𝑌
𝑖𝑗
= 𝐺
𝑖𝑗
+ 𝑗𝐵
𝑖𝑗
is the admittance of line 𝑖-𝑗 (per unit),

and 𝑌
𝑖𝑖
= 𝐺
𝑖𝑖
+ 𝑗𝐵
𝑖𝑖
is the self-admittance of bus 𝑖 (per unit).

There are signal transmission delays and random process
in the modern power systems. The delays in the measuring
data exist in such case that the exciter inputs are taken
from remote buses. And assume that all the feedback wide-
area signals have the time delay 𝜏. Meanwhile, the gener-
ator torque can be regarded as a kind of random process
because of random fluctuation in transient process, such as
speed regulation, fluctuation of load, mechanical torsional
vibration, and the changes of damping coefficients.Moreover,
considering the imaginary control input is 𝑢

𝑓𝑖
which feeds

back both the local measurement information and the wide-
area measurement signals, so the power system (1) should be
modeled into differential-algebraic equations with time delay
and stochasticity as follows:

𝑑𝛿
𝑖
= (𝜔
𝑖
− 𝜔
0
) 𝑑𝑡,

𝑑𝜔
𝑖
= [

𝜔
0

𝑀
𝑖

𝑃
𝑚𝑖
−

𝐷
𝑖

𝑀
𝑖

(𝜔
𝑖
− 𝜔
0
) −

𝜔
0

𝑀
𝑖

𝑃
𝑒𝑖
+ 𝜖
𝑖1
] 𝑑𝑡

+

𝜉

𝑀
𝑖

(𝜔
𝑖
− 𝜔
0
) 𝑑𝑤 (𝑡) ,

𝑑𝐸


𝑞𝑖
= [−

1

𝑇
𝑑0𝑖

𝐸
𝑞𝑖
+

1

𝑇
𝑑0𝑖

𝑢
𝑓𝑖
(𝑡 − 𝜏) + 𝜖

𝑖2
] 𝑑𝑡,

(3)

where 𝜉 is random disturbance intensity and 𝑤(𝑡) is a
zero-mean Wiener process on a probability space (Ω,F,P)

relative to an increasing family (F
𝑡
)
𝑡>0

of𝜎 algebras (F
𝑡
)
𝑡>0

⊂

F; here Ω is the samples space, F is 𝜎 algebra of subsets
of the sample space, and 𝑃 is the probability measure on F.
Moreover, we assume 𝐸{𝑑𝑤(𝑡)} = 0, 𝐸{[𝑑𝑤(𝑡)]2} = 𝑑𝑡, where
𝐸 is the expectation operator.

Assume that (𝛿
(0)

𝑖
, 𝜔
0
, 𝐸
(0)

𝑞𝑖
), 𝑖 = 1, 2, . . . , 𝑛, are the

preassigned operating points of system (3).
Setting 𝑥

𝑖1
= 𝛿
𝑖
, 𝑥
𝑖2
= 𝜔
𝑖
−𝜔
0
, 𝑥
𝑖3
= 𝐸


𝑞𝑖
, (𝜔
0
/𝑀
𝑖
)𝑃
𝑚𝑖

= 𝑎
𝑖
,

𝐷
𝑖
/𝑀
𝑖
= 𝑏
𝑖
, (𝜔
0
/𝑀
𝑖
)𝐺
𝑖𝑖
= 𝑐
𝑖
, 𝜔
0
/𝑀
𝑖
= 𝑑
𝑖
, 1/𝑇
𝑑0𝑖

= 𝑒
𝑖
, (𝑥
𝑑𝑖
−

𝑥


𝑑𝑖
)/𝑇
𝑑0𝑖

= ℎ
𝑖
, and (1/𝑇

𝑑0𝑖
)𝑢
𝑓𝑖
(𝑡−𝜏) = V

𝑖
(𝑡−𝜏), 𝑖 = 1, 2, . . . , 𝑛,

then system (3) can be rewritten as follows:

𝑑𝑥
𝑖1
= 𝑥
𝑖2
𝑑𝑡,

𝑑𝑥
𝑖2
=
[

[

𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖2
− 𝑐
𝑖
𝑥
2

𝑖3
+ 𝜖
𝑖1

− 𝑑
𝑖
𝑥
𝑖3

𝑛

∑

𝑗=1,𝑗 ̸=i
𝐵
𝑖𝑗
𝑥
𝑗3
sin (𝑥

𝑖1
− 𝑥
𝑗1
)
]

]

𝑑𝑡 +

𝜉

𝑀
𝑖

⋅ 𝑥
𝑖2
𝑑𝑤 (𝑡) ,

𝑑𝑥
𝑖3
=
[

[

− (𝑒
𝑖
+ ℎ
𝑖
𝐵
𝑖𝑖
) 𝑥
𝑖3
+ V
𝑖
(𝑡 − 𝜏) + 𝜖

𝑖2

+ ℎ
𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝑥
𝑗3
cos (𝑥

𝑖1
− 𝑥
𝑗1
)
]

]

𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(4)

Inspired by [11], we introduce a prefeedback control law:

V
𝑖
(𝑡 − 𝜏) = −

2𝑐
𝑖
ℎ
𝑖

𝑑
𝑖

𝑥
𝑖1
(𝑡 − 𝜏) 𝑥

𝑖3
(𝑡 − 𝜏) − 𝑘

𝑖
𝑥
𝑖3
(𝑡 − 𝜏)

+ 𝑢
𝑖
+ 𝑢
𝑖
(𝑡 − 𝜏) , 𝑖 = 1, 2, . . . , 𝑛,

(5)

where the first term is to make system (4) have a Hamilton
structure, the second and third terms are to guarantee the
operating point of the system unchanged, 𝑢

𝑖
(𝑡 − 𝜏) is the new

reference input, and 𝑢
𝑖
and 𝑘

𝑖
are undetermined constants.

To make the operating point of the system invariant, 𝑢
𝑖
and

𝑘
𝑖
have to satisfy

− (𝑒
𝑖
+ ℎ
𝑖
𝐵
𝑖𝑖
) 𝐸
(0)

𝑞𝑖
−

2𝑐
𝑖
ℎ
𝑖

𝑑
𝑖

𝛿
(0)

𝑖
𝐸
(0)

𝑞𝑖
− 𝑘
𝑖
𝐸
(0)

𝑞𝑖
+ 𝑢
𝑖

+ ℎ
𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸
(0)

𝑞𝑗
cos (𝛿(0)

𝑖
− 𝛿
(0)

𝑗
) = 0,

𝑖 = 1, 2, . . . , 𝑛,

(6)

and 𝑘
𝑖
= 𝑘
𝑖0
which is spelled out in [11]; what is more, this

reference provides a kind of choice of 𝑢
𝑖
and 𝑘
𝑖
.

Furthermore, (5) can be rewritten as

V
𝑖
(𝑡 − 𝜏)

= −

2𝑐
𝑖
ℎ
𝑖

𝑑
𝑖

𝑥
𝑖1
(𝑡) 𝑥
𝑖3
(𝑡) − 𝑘

𝑖
𝑥
𝑖3
(𝑡) + 𝑢

𝑖

−

2𝑐
𝑖
ℎ
𝑖

𝑑
𝑖

[𝑥
𝑖1
(𝑡 − 𝜏) 𝑥

𝑖3
(𝑡 − 𝜏) − 𝑥

𝑖1
(𝑡) 𝑥
𝑖3
(𝑡)]

− 𝑘
𝑖
[𝑥
𝑖3
(𝑡 − 𝜏) − 𝑥

𝑖3
(𝑡)] + 𝑢

𝑖
(𝑡 − 𝜏) ,

𝑖 = 1, 2, . . . , 𝑛.

(7)

Let 𝑥
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
]
T, 𝜖
𝑖
= [𝜖
𝑖1
, 𝜖
𝑖2
]
T, then system (4) can

be expressed as a dissipative Hamiltonian system as follows:

𝑑𝑥
𝑖
= {(𝐽
𝑖
− 𝑅
𝑖
) ∇𝐻
𝑖
(𝑥
𝑖
) + 𝑔
1
𝑢
𝑖
(𝑡 − 𝜏) +

2𝑐
𝑖
ℎ
𝑖

𝑑
𝑖

⋅𝑔
1
[𝑔

T
3
𝑥
𝑖1
(𝑡) 𝑔

T
1
𝑥
𝑖3
(𝑡)

− 𝑔
T
3
𝑥
𝑖1
(𝑡 − 𝜏) 𝑔

T
1
𝑥
𝑖3
(𝑡 − 𝜏)] + 𝑘

𝑖
𝑔
1
[𝑔

T
1
𝑥
𝑖3
(𝑡)

− 𝑔
T
1
𝑥
𝑖3
(𝑡 − 𝜏)] + 𝑔

2
𝜖
𝑖
}𝑑𝑡 + 𝑔

(𝑖)

4
(𝑥
𝑖
) 𝑑𝑤 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑛,

(8)
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where

𝐻
𝑖
(𝑥
𝑖
) = −

𝑎
𝑖

𝑑
𝑖

𝑥
𝑖1
+

𝑐
𝑖

𝑑
𝑖

𝑥
𝑖1
𝑥
2

𝑖3
+

𝑒
𝑖
+ ℎ
𝑖
𝐵
𝑖𝑖
+ 𝑘
𝑖

2ℎ
𝑖

𝑥
2

𝑖3

+

1

2𝑑
𝑖

𝑥
2

𝑖2
−

𝑢
𝑖

ℎ
𝑖

𝑥
𝑖3

− 𝑥
𝑖3

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝑥
𝑗3
cos (𝑥

𝑖1
− 𝑥
𝑗1
) ,

𝐽
𝑖
= (

0 𝑑
𝑖
0

−𝑑
𝑖
0 0

0 0 0

) ,

𝑅
𝑖
= (

0 0 0

0 𝑏
𝑖
𝑑
𝑖
0

0 0 ℎ
𝑖

),

𝑔
1
= (

0

0

1

) ,

𝑔
2
= (

0 0

1 0

0 1

) ,

𝑔
3
= (

1

0

0

) ,

𝑔
(𝑖)

4
(𝑥
𝑖
) = (

0 0 0

0

𝜉

𝑀
𝑖

0

0 0 0

)𝑥
𝑖
.

(9)

∇𝐻
𝑖
(𝑥
𝑖
) is the gradient of the Hamilton function 𝐻

𝑖
(𝑥
𝑖
),

which satisfies𝐻
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛.

Owing to each individual subsystem having the cross-
variables, this structure does not provide the overall system
a Hamilton structure. Thus, we need to find out a common
Hamilton function for the 𝑛 generators, which is regarded as
the total energy of the whole system.

Let

𝐻(𝑥) =

𝑛

∑

𝑖=1

𝐻
𝑖
+

1

2

𝑛

∑

𝑖=1

𝑥
𝑖3

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝑥
𝑗3
cos (𝑥

𝑖1
− 𝑥
𝑗1
)

=

𝑛

∑

𝑖=1

[

[

−

𝑎
𝑖

𝑑
𝑖

𝑥
𝑖1
+

𝑐
𝑖

𝑑
𝑖

𝑥
𝑖1
𝑥
2

𝑖3
+

1

2𝑑
𝑖

𝑥
2

𝑖2

+

𝑒
𝑖
+ ℎ
𝑖
𝐵
𝑖𝑖
+ 𝑘
𝑖

2ℎ
𝑖

𝑥
2

𝑖3
−

𝑢
𝑖

ℎ
𝑖

𝑥
𝑖3

−

1

2

𝑥
𝑖3

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝑥
𝑗3
cos (𝑥

𝑖1
− 𝑥
𝑗1
)
]

]

,

(10)

where 𝑥 = [𝑥
T
1
, . . . , 𝑥

T
𝑛
]
T. By using relation 𝐵

𝑖𝑗
= 𝐵
𝑗𝑖
, we can

verify that

𝜕𝐻 (𝑥)

𝜕𝑥
𝑖𝑗

=

𝜕𝐻
𝑖
(𝑥
𝑖
)

𝜕𝑥
𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, 3, (11)

which imply that𝐻(𝑥) is the commonHamilton function for
the 𝑛 generators. Furthermore,𝐻(𝑥) ∈ C2 holds obviously.

Setting

𝑢 = [𝑢
1
, . . . , 𝑢

𝑛
]
T
,

𝜖 = [𝜖
T
1
, . . . , 𝜖

T
𝑛
]

T
,

𝑦 = [𝑦
T
1
, . . . , 𝑦

T
𝑛
]

T
,

(12)

then system (8) can be rewritten as follows:

𝑑𝑥 (𝑡) = {(𝐽 − 𝑅) ∇𝐻 (𝑥) + 𝐺
1
𝑢 (𝑡 − 𝜏)

+ 2𝐺
1
𝐶 [𝐺

T
3
𝑥 (𝑡) 𝐺

T
1
𝑥 (𝑡) − 𝐺

T
3
𝑥 (𝑡 − 𝜏) 𝐺

T
1
(𝑡 − 𝜏)]

+ 𝐺
1
𝐾𝐺

T
1
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)] + 𝐺

2
𝜖} 𝑑𝑡 + 𝐺

4
(𝑥) 𝑑𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(13)

where 𝐽 = Diag{𝐽
1
, . . . , 𝐽

𝑛
}, 𝑅 = Diag{𝑅

1
, . . . , 𝑅

𝑛
}, 𝐶 =

Diag{𝑐
1
ℎ
1
/𝑑
1
, . . . , 𝑐

𝑛
ℎ
𝑛
/𝑑
𝑛
}, 𝐾 = Diag{𝑘

1
, . . . , 𝑘

𝑛
},

𝐺
1
= (

𝑔
1

0 0

0 d 0

0 0 𝑔
1

)

3𝑛×𝑛

,

𝐺
2
= (

𝑔
2

0 0

0 d 0

0 0 𝑔
2

)

3𝑛×2𝑛

,

𝐺
3
= (

𝑔
3

0 0

0 d 0

0 0 𝑔
3

)

3𝑛×𝑛

,

𝐺
4
(𝑥) = (

𝑔
(1)

4
(𝑥
1
) 0 0

0 d 0

0 0 𝑔
(𝑛)

4
(𝑥
𝑛
)

)

3𝑛×𝑛

.

(14)

Obviously, 𝐽 is a skew-symmetric matrix, and 𝑅 is a
positive semidefinite matrix. In addition, we can choose 𝑦 =

𝐺
T
2
∇𝐻(𝑥) and 𝑧 = 𝑃𝐺

T
1
∇𝐻(𝑥) as the output and the penalty

signal, respectively, where 𝑃 is a full column rank weighting
matrix.

Definition 1. The stochastic time delay Hamiltonian system
(13) is said to be robustly asymptotically stable in mean
square, if there exists a controller 𝑢(𝑡 − 𝜏) such that

lim
𝑡→∞

𝐸 {




𝑥 (𝑡) − 𝑥

0






2

} = 0, (15)

where 𝑥
0
is the preassigned equilibrium and 𝑥(𝑡) is the

solution of system (13) at time 𝑡 under initial condition.
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Consider the following cost function:

𝐶 (𝑇
0
) = 𝐸{∫

𝑇0

0

𝑧
T
(𝑡) 𝑧 (𝑡) 𝑑𝑡}

− 𝛾
2

𝐸{∫

𝑇0

0

𝜖
T
(𝑡) 𝜖 (𝑡) 𝑑𝑡} , ∀𝑇

0
> 0.

(16)

Then𝐻
∞
control objective of system (13) is to find a feedback

controller:

𝑢 (𝑡 − 𝜏) = 𝛼 (𝑡 − 𝜏) (17)

such that

𝐶 (∞) < 0 (𝑇
0
→ ∞) , (18)

for given 𝛾 > 0 and at the same time the closed-loop system
is asymptotically stable when 𝜖 = 0.

We conclude this section by recalling some auxiliary
results to be used in this paper.

Lemma 2 (see [21]). For system

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑤 (𝑡) , ∀𝑡 ≥ 0,

(19)

assume that 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are locally Lipschitz in (𝑥, 𝑦).
If there exists a function 𝑉(𝑥, 𝑡) ∈ C2,1(R𝑛 × [−𝜏,∞);R

+
)

such that for some constant 𝐾 > 0 and any 𝑡 ≥ 0,

L𝑉 ≤ 𝐾 (1 + 𝑉 (𝑥 (𝑡) , 𝑡) + 𝑉 (𝑥 (𝑡 − 𝜏) , 𝑡 − 𝜏)) ,

lim
|𝑥|→∞

inf
𝑡≥0

𝑉 (𝑥, 𝑡) = ∞,

(20)

where the differential operatorL is defined as

L𝑉 =

𝜕𝑉

𝜕𝑡

+

𝜕𝑉

𝜕𝑥

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) +

1

2

⋅ 𝑡𝑟 {𝑔
T
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))

𝜕
2

𝑉

𝜕𝑥
2
𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))} ,

(21)

then there exists a unique solution on [−𝜏,∞) for any initial
data {𝑥(𝑡) = 𝜙(𝑡) : 𝑡 ∈ [−𝜏, 0]} ∈ C𝑏F0([−𝜏, 0];R

𝑛

).

Lemma 3. For any given matrices 𝐴 ∈ R𝑛×𝑟 and 𝐵 ∈ R𝑛×𝑟,
there holds

𝑡𝑟 (𝐴
T
𝐵) ≤

1

2

[𝑡𝑟 (𝐴
T
𝐴) + 𝑡𝑟 (𝐵

T
𝐵)] . (22)

Proof. This proof can be achieved by using the properties of
matrix’s trace.

3. Main Results

3.1. Hamiltonian System. The 𝐻
∞

controller is given below
for the stochastic Hamiltonian system (13) with input delay.

Theorem 4. Consider system (13) and the following assump-
tions are satisfied:

(A1) ∇𝐻(𝑥
0
) = 0;

(A2) 𝐻𝑒𝑠𝑠(𝐻(𝑥
0
)) > 0;

(A3) 𝐻(𝑥) − 𝐻(𝑥
0
) ≥ (𝛼

1
/2)‖𝑥 − 𝑥

0
‖
2;

(A4) ∇T
𝐻(𝑥) ⋅ ∇𝐻(𝑥) ≥ 𝛽

1
‖𝑥 − 𝑥

0
‖
2.

If

2𝑅 +

1

𝛾
2
𝐺
1
𝐺
T
1
−

1

𝛾
2
𝐺
2
𝐺
T
2
≥ 0 (23)

holds, then the𝐻
∞
control problem of system (13) can be solved

by the feedback control law:

𝑢 (𝑡 − 𝜏) = −

1

2

(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)∇𝐻 (𝑥 (𝑡 − 𝜏))

−

1

4

(𝐺
T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
∇𝐻 (𝑥 (𝑡 − 𝜏))

+ 2𝐶𝑋 (𝑡 − 𝜏) + 𝐾𝐺
T
1
𝑥 (𝑡 − 𝜏) −𝑀 − 2𝑁

−

1

2

𝜏𝜆
1
𝜆
2
𝑇 −

1

4

𝜏𝜆
1
𝜆
2
(𝐺

T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
,

(24)

where 𝑥
0
is the preassigned equilibrium of system (13), 𝐺

5
=

Diag{𝑔(1)
5
, . . . , 𝑔

(𝑛)

5
},

𝑔
5
= (

0 0 0

0

(𝑑
2

𝑖
+ 1) 𝜖

2

𝑀
2

𝑖

0

0 0 0

)

3×3

,

𝑋 (𝑡) = (

𝑥
11
(𝑡) 𝑥
13
(𝑡)

𝑥
21
(𝑡) 𝑥
23
(𝑡)

d

𝑥
𝑛1
(𝑡) 𝑥
𝑛3
(𝑡)

)

𝑛×1

,

(25)

𝑀,𝑁,𝑇 are all positive constant matrices which satisfy
‖𝑀‖ ≥ ‖𝐾𝐺

T
1
𝑥(𝑡)‖, ‖𝑁‖ ≥ ‖𝐶𝑋(𝑡)‖, ‖𝑇‖ ≥ ‖(1/𝛾

2

)𝐺
T
1
+

𝑃
T
𝑃𝐺

T
1
‖, and 𝜆

1
and 𝜆

2
are constants which satisfy 𝜆

1
≥

sup
𝑡≥−𝜏

‖𝐻𝑒𝑠𝑠(𝐻(𝑥(𝑡)))‖, 𝜆
2
≥ sup

𝑡≥−𝜏
‖�̇�(𝑡)‖.

Proof. Take a Lyapunov candidate function as follows:

𝑉 (𝑥) = 2𝐻 (𝑥) − 2𝐻 (𝑥
0
) . (26)

According to Itô differential formula, it follows that

𝑑𝑉 (𝑥) = L𝑉 (𝑥) 𝑑𝑡 + ∇𝑉 (𝑥)𝐺
4
(𝑥) 𝑑𝑤 (𝑡) . (27)
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According to (21) in Lemma 2, one has

L𝑉 (𝑥)

=

1

2

tr{𝑔T (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))

𝜕
2

𝑉

𝜕𝑥
2
𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))}

+

𝜕𝑉

𝜕𝑡

+

𝜕𝑉

𝜕𝑥

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))

= tr [𝐺T
4
(𝑥)Hess (𝐻 (𝑥)) 𝐺

4
(𝑥)]

+ 2∇
T
𝐻(𝑥) (𝐽 − 𝑅) ∇𝐻 (𝑥)

+ 2∇
T
𝐻(𝑥)𝐺

1
𝐾𝐺

T
1
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)]

+ 4∇
T
𝐻(𝑥)𝐺

1
𝐶 [𝑋 (𝑡) − 𝑋 (𝑡 − 𝜏)]

+ 2∇
T
𝐻(𝑥)𝐺

2
𝜖

− ∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)∇𝐻 (𝑡 − 𝜏)

−

1

2

∇
T
𝐻(𝑥)𝐺

1
(GT
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
∇𝐻 (𝑡 − 𝜏)

+ 4∇
T
𝐻(𝑥)𝐺

1
𝐶𝑋 (𝑡 − 𝜏)

+ 2∇
T
𝐻(𝑥)𝐺

1
𝐾𝐺

T
1
𝑥 (𝑡 − 𝜏)

− 2∇
T
𝐻(𝑥)𝐺

1
(𝑀 + 2𝑁) − 𝜏𝜆

1
𝜆
2
∇
T
𝐻(𝑥)𝐺

1
𝑇

−

1

2

𝜏𝜆
1
𝜆
2
∇
T
𝐻(𝑥)𝐺

1
(𝐺

T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
.

(28)

Based on the facts of Lemma 3 and Condition (22), we can
achieve

tr [𝐺T
4
(𝑥)Hess (𝐻 (𝑥)) 𝐺

4
(𝑥)]

≤

1

2

tr [𝐺T
4
(𝑥)Hess (𝐻 (𝑥))HessT (𝐻 (𝑥)) 𝐺

4
(𝑥)]

+

1

2

tr [𝐺T
4
(𝑥) 𝐺
4
(𝑥)] = ∇

T
𝐻(𝑥)𝐺

5
∇𝐻 (𝑥) .

(29)

According to Newton-Leibniz formula, it follows that

∇𝐻(𝑥
𝜏
) = ∇𝐻 (𝑥) − ∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠. (30)

Therefore, the following equalities hold:

− ∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)∇𝐻 (𝑥 (𝑡 − 𝜏))

= −∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)

⋅ [∇𝐻 (𝑥) − ∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠] ,

− ∇
T
𝐻(𝑥)𝐺

1
(𝐺

T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
∇𝐻 (𝑥 (𝑡 − 𝜏))

= −∇
T
𝐻(𝑥)𝐺

1
[𝐺

T
1
𝐺
1
]

−1

⋅ 𝐺
T
1
𝐺
5
[∇𝐻 (𝑥) − ∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠] .

(31)

According to the Mean ValueTheorem of Integrals, there
exists 𝜃 ∈ [𝑡 − 𝜏, 𝑡] that satisfies

∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠

= 𝜏Hess (𝐻 (𝑥 (𝜃))) �̇� (𝜃) .

(32)

Consequently, we have

∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)

⋅ ∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠 = 𝜏∇
T
𝐻(𝑥)

⋅ 𝐺
1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)Hess (𝐻 (𝑥 (𝜃))) �̇� (𝜃)

≤ 𝜏𝜆
1
𝜆
2
∇
T
𝐻(𝑥)𝐺

1
𝑇.

(33)

Similarly, we further obtain
1

2

∇
T
𝐻(𝑥)𝐺

1
(𝐺

T
1
𝐺
1
)

−1

⋅ 𝐺
T
1
𝐺
5
∫

𝑡

𝑡−𝜏

Hess (𝐻 (𝑥 (𝑠))) �̇� (𝑠) 𝑑𝑠 =

1

2

𝜏∇
T
𝐻(𝑥)

⋅ 𝐺
1
(𝐺

T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
Hess (𝐻 (𝑥 (𝜃))) �̇� (𝜃) ≤

1

2

⋅ 𝜏𝜆
1
𝜆
2
∇
T
𝐻(𝑥)𝐺

1
(𝐺

T
1
𝐺
1
)

−1

𝐺
T
1
𝐺
5
.

(34)

Combining the above inequalities, we can conclude that

L𝑉 (𝑥)

≤ −2∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) + 2∇

T
𝐻(𝑥)𝐺

2
𝜖

− ∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)∇𝐻 (𝑥)

= −2∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) −










𝛾𝜖 −

1

𝛾

𝐺
T
2
∇𝐻 (𝑥)










2

−

1

𝛾
2
∇
T
𝐻(𝑥)𝐺

1
𝐺
T
1
∇𝐻 (𝑥) + (𝛾

2

𝜖
T
𝜖 − 𝑧

T
𝑧)

+

1

𝛾
2
∇
T
𝐻(𝑥)𝐺

2
𝐺
T
2
∇𝐻 (𝑥)

≤ −∇
T
𝐻(𝑥) (2𝑅 +

1

𝛾
2
𝐺
1
𝐺
T
1
−

1

𝛾
2
𝐺
2
𝐺
T
2
)∇𝐻 (𝑥)

+ (𝛾
2

𝜖
T
𝜖 − 𝑧

T
𝑧) .

(35)
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Taking (23) into account, it yields

L𝑉 (𝑥) ≤ 𝛾
2

𝜖
T
𝜖 − 𝑧

T
𝑧. (36)

Integrating (36) from 0 to 𝑇
0
leads to (18) which holds as

𝑇
0
→ ∞.
Next step we prove the closed-loop system where system

(13) under the control law (24) is asymptotically stable in
mean square when 𝜖 = 0.

When 𝜖 = 0, from (35), we can easily get that

L𝑉 (𝑥)

≤ −2∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥)𝐺

1
(

1

𝛾
2
𝐺
T
1
+ 𝑃

T
𝑃𝐺

T
1
)∇𝐻 (𝑥)

= −∇
T
𝐻(𝑥) [2𝑅 +

1

𝛾
2
𝐺
1
𝐺
T
1
−

1

𝛾
2
𝐺
2
𝐺
T
2
]∇𝐻 (𝑥)

−

1

𝛾
2
∇
T
𝐻(𝑥)𝐺

2
𝐺
T
2
∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥)𝐺

1
𝑃
T
𝑃𝐺

T
1
∇𝐻 (𝑥)

≤ −∇
T
𝐻(𝑥) (

1

𝛾
2
𝐺
2
𝐺
T
2
+ 𝐺
1
𝑃
T
𝑃𝐺

T
1
)∇𝐻 (𝑥) .

(37)

Set

𝑐
0
= 𝜆min {

1

𝛾
2
𝐺
2
𝐺
T
2
+ 𝐺
1
𝑃
T
𝑃𝐺

T
1
} > 0; (38)

then we have

L𝑉 (𝑥) ≤ −𝑐
0
∇
T
𝐻(𝑥) ∇𝐻 (𝑥) . (39)

Furthermore, owing to (A4) holding, there is

L𝑉 (𝑥) ≤ −𝑐
0
𝛽
1





𝑥 − 𝑥
0






2 (40)

which implies

𝐸 {L𝑉 (𝑥)} ≤ −𝑐
0
𝛽
1
𝐸 {





𝑥 − 𝑥
0






2

} . (41)

In addition, because of 𝐸{𝑑𝑤(𝑡)} = 0, we further get

𝐸 {𝑑𝑉 (𝑥)} = 𝐸 {L𝑉 (𝑥)} . (42)

It is true that, for all 𝑇 > 𝑡
0
, 𝑡
0
∈ [−𝜏, 0],

𝐸 {𝑉 (𝑇)} − 𝐸 {𝑉 (𝑡
0
)} = ∫

𝑇

𝑡0

𝐸 {L𝑉 (𝑠)} 𝑑𝑠

≤ ∫

𝑇

𝑡0

𝐸 {−𝑐
0
𝛽
1





𝑥 (𝑠) − 𝑥

0






2

} 𝑑𝑠.

(43)

Hence, one has

𝑑

𝑑𝑡

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} ≤ −𝑐
0
𝛽
1
𝐸 {





𝑥 (𝑇) − 𝑥

0






2

} . (44)

From condition (A3), one has

𝛼
1





𝑥 − 𝑥
0






2

≤ 𝑉 (𝑥) = 2 (𝐻 (𝑋) − 𝐻 (𝑋
0
)) ,

𝐸 {𝛼
1





𝑥 (𝑇) − 𝑥

0






2

} ≤ 𝐸 {𝑉 (𝑇)} ,

𝑑

𝑑𝑡

𝐸 {𝛼
1





𝑥 (𝑇) − 𝑥

0






2

} ≤

𝑑

𝑑𝑡

𝐸 {𝑉 (𝑇)}

≤ 𝑐
0
𝛽
1
𝐸 {





𝑥 (𝑇) − 𝑥

0






2

} .

(45)

Set 𝑐
1
= −𝑐
0
𝛽
1
/𝛼
1
; it follows that

𝑑

𝑑𝑡

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} ≤ 𝑐
1
𝐸 {





𝑥 (𝑇) − 𝑥

0






2

} . (46)

Multiplying 𝑒−𝑐1𝑇 to the two sides of inequality (44) yields

𝑒
−𝑐1𝑇

𝑑

𝑑𝑡

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} − 𝑒
−𝑐1𝑇

𝑐
1
𝐸 {





𝑥 (𝑇) − 𝑥

0






2

}

≤ 0

(47)

which implies that

𝑑

𝑑𝑡

(𝑒
−𝑐1𝑇

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

}) ≤ 0. (48)

Integrating inequality (48) from 𝑡
0
to 𝑇, we have

𝑒
−𝑐1𝑇

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} − 𝑒
−𝑐1𝑡0

𝐸 {




𝑥 (𝑡
0
) − 𝑥
0






2

} ≤ 0; (49)

that is,

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} ≤ 𝑒
𝑐1(𝑇−𝑡0)

𝐸 {




𝑥 (𝑡
0
) − 𝑥
0






2

} ,

∀𝑇 > 𝑡
0
.

(50)

Due to 𝑐
1
< 0, there is

lim
𝑇→∞

𝐸 {




𝑥 (𝑇) − 𝑥

0






2

} = 0. (51)

According to Definition 1, we can conclude that system
(13) under the control law (24) is robustly asymptotically
stable in mean square with respect to 𝑥

0
. This completes the

proof.

Remark 5. ∇𝐻(𝑥
0
) = 0 and Hess(𝐻(𝑥

0
)) > 0 guarantee that

the equilibrium 𝑥
0
is the minimal point of 𝐻(𝑥). Moreover,

in view of conditions (A1)–(A4), there hold ∇𝑉(𝑥
0
) = 0

and Hess(𝑉(𝑥
0
)) > 0, which together with 𝑉(𝑥

0
) = 0 lead

to the fact that 𝑉(𝑥) is a positive definite function in some
neighborhood of equilibrium 𝑥

0
.

Remark 6. Owing to the fact of𝐻(𝑥) ∈ C2, the solution of the
closed-loop system (13) under the control law (24) is existent
and unique on [−𝜏,∞) for any initial data {𝑥(𝑡) = 𝜙(𝑡) :

𝑡 ∈ [−𝜏, 0]} ∈ C𝑏F0([−𝜏, 0];R
𝑛

) in some neighborhood of
equilibrium 𝑥

0
.
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3.2. 𝑁-Machine Power System. In this subsection, we con-
sider the 𝑛-machine power system (3).

First, we can verify that

𝐻(𝑥) =

𝑛

∑

𝑖=1

{

{

{

−𝑃
𝑚𝑖
𝛿
𝑖
+ 𝐺
𝑖𝑖
𝛿
𝑖
𝐸
2

𝑞𝑖
+

𝑀
𝑖

2𝜔
0

(𝜔
𝑖
− 𝜔
0
)
2

+

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖
+ 𝑘
𝑖
𝑇
𝑑0𝑖

2 (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
)

𝐸
2

𝑞𝑖
−

𝑢
𝑖
𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖

−

1

2

𝐸


𝑞𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑖
cos (𝛿

𝑖
− 𝛿
𝑗
)

}

}

}

∈ C2.

(52)

Choose the preassigned equilibrium

𝑥
0
= (𝛿
(0)

𝑖
, 𝜔
0
, 𝐸
(0)

𝑞𝑖
) , 𝑖 = 1, 2, . . . , 𝑛 (53)

satisfying

Hess (𝐻 (𝑥
0
)) = Hess

{

{

{

𝑛

∑

𝑖=1

{

{

{

−𝑃
𝑚𝑖
𝛿
(0)

𝑖

+ 𝐺
𝑖𝑖
𝛿
(0)

𝑖
(𝐸
(0)

𝑞𝑖
)

2

+

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖
+ 𝑘
𝑖
𝑇
𝑑0𝑖

2 (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
)

(𝐸
(0)

𝑞𝑖
)

2

−

1

2

𝐸
(0)

𝑞𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸
(0)

𝑞𝑖
cos (𝛿(0)

𝑖
− 𝛿
(0)

𝑗
)

−

𝑢
𝑖
𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸
(0)

𝑞𝑖

}

}

}

}

}

}

> 0

(54)

and ∇T
𝐻(𝑥) = 0; that is

𝑃
𝑚𝑖
+ 𝐺
𝑖𝑖
𝐸
(0)

𝑞𝑖

+ 𝐸
(0)

𝑞𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸
(0)

𝑞𝑖
sin (𝛿(0)

𝑖
− 𝛿
(0)

𝑗
) = 0,

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖
+ 𝑘
𝑖
𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖
(0) −

𝑢
𝑖
𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑖
(0) cos (𝛿

𝑖
(0) − 𝛿

𝑗
(0))

+ 2𝐺
𝑖𝑖
𝛿
𝑖
(0) 𝐸


𝑞𝑖
(0) = 0.

(55)

Meanwhile, we assume that there exist positive constants
𝛼
1
, 𝛽
1
such that𝐻(𝑥)−𝐻(𝑥

0
) ≥ (𝛼

1
/2)‖𝑥−𝑥

0
‖
2 and∇T

𝐻(𝑥)⋅

∇𝐻(𝑥) ≥ 𝛽
1
‖𝑥 − 𝑥

0
‖
2 hold.

An𝐻
∞
controller for system (3) is given in the following

theorem.

Theorem 7. Consider power system (3). If

(

(

0 0 0

0

2𝐷
𝑖
𝜔
0

𝑀
2

𝑖

−

1

𝛾
2

0

0 0

2 (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
)

𝑇


𝑑0𝑖

+

1

𝛾
2

)

)

≥ 0,

𝑖 = 1, 2, . . . , 𝑛

(56)

hold, then the𝐻
∞

control problem of system (3) can be solved
by the feedback control law

𝑢
𝑓𝑖
(𝑡 − 𝜏) = −2𝐺

𝑖𝑖
(𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝛿
𝑖
(𝑡 − 𝜏) 𝐸



𝑞𝑖
(𝑡 − 𝜏)

− 𝑘
𝑖
𝑇
𝑑0𝑖
𝐸


𝑞𝑖
(𝑡 − 𝜏) + 𝑇

𝑑0𝑖
𝑢
𝑖
−

1

2

𝑇
𝑑0𝑖

[

1

𝛾
2
+ 𝑝
2

𝑖

+

(𝜔
2

0
+𝑀
2

𝑖
) 𝜀
2

𝑀
4

𝑖

]
[

[

2𝐺
𝑖𝑖
𝛿
𝑖
(𝑡 − 𝜏) 𝐸



𝑞𝑖
(𝑡 − 𝜏)

+

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖
(𝑡 − 𝜏)

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑖
(𝑡 − 𝜏) cos (𝛿

𝑖
(𝑡 − 𝜏) − 𝛿

𝑗
(𝑡 − 𝜏))

+

(𝑘
𝑖
𝐸


𝑞𝑖
(𝑡 − 𝜏) − 𝑢

𝑖
) 𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

]

]

+ 2𝐺
𝑖𝑖
(𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝛿
𝑖
(𝑡

− 𝜏) 𝐸


𝑞𝑗
(𝑡 − 𝜏) + 𝑇

𝑑0𝑖
𝑘
𝑖
𝐸


𝑞𝑗
(𝑡 − 𝜏) − (𝑚

𝑖
+ 2𝑛
𝑖
)

−

1

2

𝜏𝜆
1
𝜆
2
𝑡
𝑖
−

1

4

𝜏𝜆
1
𝜆
2

(𝜔
2

0
+𝑀
2

𝑖
) 𝜀
2

𝑀
4

𝑖

,

𝑖 = 1, 2, . . . , 𝑛,

(57)

where 𝜆
1
, 𝜆
2
, 𝑚
𝑖
, 𝑛
𝑖
, and 𝑡

𝑖
, are constants, which satisfy

𝜆
1
≥ sup
𝑡≥−𝜏














Hess[
[

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖
+ 𝑘
𝑖
𝑇
𝑑0𝑖

2 (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
)

𝐸
2

𝑞𝑖

+ 𝐺
𝑖𝑖
𝛿
𝑖
𝐸
2

𝑞𝑖
−

𝑢
𝑖
𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖
− 𝑃
𝑚𝑖
𝛿
𝑖

− 𝐸


𝑞𝑖

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑗
cos (𝛿

𝑖
− 𝛿
𝑗
)
]

]














,

𝜆
2
≥ sup
𝑡≥−𝜏






(
̇
𝛿
𝑖
(𝑡) �̇�

𝑖
(𝑡) �̇�



𝑞𝑖
(𝑡))






,

𝑚
𝑖
≥






𝑘
𝑖
𝐸


𝑞𝑖






,
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𝑛
𝑖
≥













2𝐺
𝑖𝑖
(𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝛿
𝑖
(𝑡 − 𝜏) 𝐸



𝑞𝑖
(𝑡 − 𝜏)

𝑇
𝑑0𝑖













,

𝑡
𝑖
≥










1

𝛾
2
+ 𝑝
2

𝑖










, 𝑖 = 1, 2, . . . , 𝑛.

(58)

(𝛿
𝑖
(𝑡), 𝜔
𝑖
(𝑡), 𝐸


𝑞𝑖
(𝑡)), 𝑖 = 1, 2, . . . , 𝑛, is the solution of the closed-

loop system at time 𝑡 under initial condition.

Proof. Taking

𝑦
𝑖
= (

𝑀
𝑖

𝜔
0

(𝜔
𝑖
(𝑡) − 𝜔

0
)

2𝐺
𝑖𝑖
𝛿
𝑖
(𝑡) 𝐸


𝑞𝑖
(𝑡) +

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖
(𝑡)

)

−(

0

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑗
(𝑡) cos (𝛿

𝑖
(𝑡) − 𝛿

𝑗
(𝑡))

)

+(

0

(𝑘
𝑖
𝐸


𝑞𝑖
(𝑡) − 𝑢

𝑖
) 𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

),

𝑧
𝑖
= 𝑝
𝑖

[

[

2𝐺
𝑖𝑖
𝛿
𝑖
(𝑡) 𝐸


𝑞𝑖
(𝑡)

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝐵
𝑖𝑗
𝐸


𝑞𝑗
(𝑡) cos (𝛿

𝑖
(𝑡) − 𝛿

𝑗
(𝑡))

+

1 + (𝑥
𝑑𝑖
− 𝑥


𝑑𝑖
) 𝐵
𝑖𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

𝐸


𝑞𝑖
(𝑡) +

(𝑘
𝑖
𝐸


𝑞𝑖
(𝑡) − 𝑢

𝑖
) 𝑇
𝑑0𝑖

𝑥
𝑑𝑖
− 𝑥


𝑑𝑖

]

]

(59)

into consideration, then we can prove the result using the
similar method in the proof of Theorem 4, where 𝑝

𝑖
≥ 0,

𝑖 = 1, 2, . . . , 𝑛 are the weighting constants.

4. Illustrative Examples

To show the effectiveness of the proposed control strategy,
we give a two-machine power system as shown in Figure 1.
The generators𝐺

1
, 𝐺
2
are assumed to be connected to distant

power systems and disturbed by random fluctuation. In
simulating, a temporary short-circuit fault occurs at point
𝐾 (see Figure 1) during the time 0.5 sec∼1 sec. The system
parameters used in this simulation are given in Table 1.
Choose 𝜔

0
= 1, 𝜉 = 1.

Taking the above parameters, system (3) can be expressed
as

𝑑𝛿
1
= (𝜔
1
− 1) 𝑑𝑡,

𝑑𝜔
1
= (

6

8

−

5

8

𝜔
1
−

1

8

𝑃
𝑒1
+ 𝜖
11
)𝑑𝑡

+ 0.125 (𝜔
1
− 1) 𝑑𝑤 (𝑡) ,

Table 1: Generators’ data (all per unit except𝑀
𝑖
, 𝑇
𝑑0𝑖
, 𝑖 = 1, 2, . . . , 𝑛

in seconds).

𝑀
1

𝑃
𝑚1

𝐷
1

𝑥
𝑑1

𝑥


𝑑1
𝑇
𝑑01

8 1 5 1 0.5 5
𝑀
2

𝑃
𝑚2

𝐷
2

𝑥
𝑑2

𝑥


𝑑2
𝑇
𝑑02

9 1 6 1 0.4 6
𝐵
11

𝐵
12

𝐵
21

𝐵
22

𝐺
11

𝐺
22

4 1 1 10 1 1

G1 G2

1 3 4

5

2
K

Figure 1: Two-machine power system.

𝑑𝐸


𝑞1
= [−

1

5

𝐸
𝑞1
+

1

5

𝑢
𝑓1
(𝑡 − 𝜏) + 𝜖

12
] 𝑑𝑡,

𝑑𝛿
2
= (𝜔
2
− 1) 𝑑𝑡,

𝑑𝜔
2
= (

7

9

−

6

9

𝜔
2
−

1

9

𝑃
𝑒2
+ 𝜖
21
)𝑑𝑡

+

1

9

(𝜔
2
− 1) 𝑑𝑤 (𝑡) ,

𝑑𝐸


𝑞2
= [−

1

6

𝐸
𝑞2
+

1

6

𝑢
𝑓2
(𝑡 − 𝜏) + 𝜖

22
] 𝑑𝑡,

(60)

𝐸
𝑞1
= 𝐸


𝑞1
+ 0.5𝐼

𝑑1
,

𝑃
𝑒1
= 𝐸
2

𝑞1
+ 𝐸


𝑞1

2

∑

𝑗=1,𝑗 ̸=𝑖

𝐸


𝑞𝑗
sin (𝛿

𝑖
− 𝛿
𝑗
) ,

𝐼
𝑑1
= 4𝐸


𝑞1
−

2

∑

𝑗=1,𝑗 ̸=𝑖

𝐸


𝑞𝑗
cos (𝛿

𝑖
− 𝛿
𝑗
) ,

𝐸
𝑞2
= 𝐸


𝑞2
+ 0.6𝐼

𝑑2
,

𝑃
𝑒2
= 𝐸
2

𝑞2
+ 𝐸


𝑞2

2

∑

𝑗=1,𝑗 ̸=𝑖

𝐸


𝑞𝑗
sin (𝛿

𝑖
− 𝛿
𝑗
) ,

𝐼
𝑑2
= 10𝐸



𝑞2
−

2

∑

𝑗=1,𝑗 ̸=𝑖

𝐸


𝑞𝑗
cos (𝛿

𝑖
− 𝛿
𝑗
) .

(61)

Choosing the following preassigned operating point

(𝛿
(0)

1
, 𝜔
0
, 𝐸
(0)

𝑞1
, 𝛿
(0)

2
, 𝜔
0
, 𝐸
(0)

𝑞2
) = [0.5 1 1 0.5 1 1] , (62)

then 𝑢
1
= 0.5, 𝑢

2
= 16/15, and 𝑘

1
= 𝑘
2
= −0.1.

It is easy to verify that system (60) with the above values
satisfies conditions (A1)–(A4) of Theorem 4.
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0 1 2 3 4 5 6 7 8 9 10
0.5

0.5

1

1.5

1.5

Time (s)

Time (s)

Po
w

er
 an

gl
e (

p.
u.

)

0 1 2 3 4 5 6 7 8 9 10

1

Po
w

er
 an

gl
e (

p.
u.

)

𝛿1 of generator 1

𝛿2 of generator 2

Figure 2: Power angle dynamic behavior while 𝜏 = 0.05 s.

The fault indicates a unit step function; that is, 𝜖
11
= 𝜖
12
=

𝜖
21

= 𝜖
22

= −1(𝑡 − 0.5) + 1(𝑡 − 1). For given 𝛾


= 4, we can
find 𝑝

1
= 𝑝
2
= 1 such that inequality (56) is satisfied.

We will test the effectiveness of the proposed
control configuration at two different time delays
𝜏 = 0.5 s and 𝜏 = 0.05 s. The initial condition
is (𝛿

1
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1
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12
= 100, 𝑚

21
= 𝑚


22
=

100, and 𝑚
3
= 40. According to Theorem 7 proposed in this

paper, system (60) is asymptotically stable in mean square for
all 𝜏 ≥ 0 and 𝜖 = 0 under the feedback control law
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Simulations with the above initial condition and the
delay 𝜏 = 0.5 s and 𝜏 = 0.05 s are given in
Figures 2–4 and Figures 5–7, separately. Through Figures
2–7, we can see that the states of the system converge to
the equilibrium (𝛿
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Figure 3: Rotor speed dynamic behavior while 𝜏 = 0.05 s.
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Figure 4: Transient voltage dynamic behavior while 𝜏 = 0.05 s.
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Figure 5: Power angle dynamic behavior while 𝜏 = 0.5 s.

[1.2 1 2 1.2 1 2] eventually. Obviously, under the delayed
feedback controller by using the proposed method, the
robustness of the closed-loop system is guaranteed. It is also
seen that the controller possesses insensitivity in regard to the
types of time delay and stochastic disturbances.

5. Conclusion

This paper studied the𝐻
∞
excitation controller design prob-

lem of a class of stochastic power systemswith time-delay and
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Figure 7: Transient voltage dynamic behavior while 𝜏 = 0.5 s.

disturbances. In the design process, we used the prefeedback
technique, Newton-Leibniz formula, and a few properties of
norm. Besides, we obtain these results by nonlinearHamilton
function approach due to the special structural properties of
the Hamiltonian systems. We also give a two-machine power
system simulation and it shows that the results achieved in
this paper are practicable in analyzing the 𝐻

∞
excitation

control problem of stochastic power system in consideration
of time-delay and disturbances.
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Persistently full buffer problem, commonly known as bufferbloat, causes unnecessary additional latency and throughput
degradation whenever congestion happens in Internet. Several proposed queue management schemes, with the debloat mission,
are almost based on the modification of one-loop feedback control where the instability and bad transient behavior are still big
challenges. In this paper, we present a cascade probability control scheme using margin optimal method to address such challenges
under different kinds of real-world TCP stacks. Simulation results guarantee themeasured round trip time tracking to a low value of
delay (e.g., ≈180ms under TCPReno, and ≈130ms under TCPCubic) and ≈50% delay reduction in comparison to current deployed
queue management schemes in network devices.

1. Introduction

Nowadays, interactive and delay-sensitive applications such
as VoIP, teleconference, and gaming often perform more
poorly than before. From the economic perspective, as the
cost of memory has decreased over the past few years,
memory with large capacity has been put into network
devices such as routers. From the engineering perspective,
as traditional analysis, a larger buffer results in less loss rate
under congestion. However, recent studies about bufferbloat
reveal some bad effects of a large buffer. It might destroy
interactivity of transport control protocols (TCP) under load
and often results in higher latency and lower throughput.
Nagle [1] firstly drew attention to effects of infinite buffers
in packet-switching networks. Then bufferbloat termed by
Gettys [2] firstly opens a research field to seriously reconsider
the problem of large buffers and hidden “dark” buffers which
can appear everywhere in Internet devices.

Conceptually, bufferbloat is a phenomenonfirstly realized
in packet-switched networks, where excess buffering of pack-
ets might cause high latency and jitters, as well as reducing
the overall network throughput. When a router device is
equipped with a large buffer, it can become practically

unusable for many delay-sensitive applications like voice
calls, chat, or even web surfing. Traditional rule-of-thumb for
setting buffer size in an Internet route is based on bandwidth-
delay product (BDP), the product of a data link’s capacity and
its round-trip time (RTT). The basic premise is that modern
networking kit contains too much buffer memory. In [2], it is
necessary to restrict bandwidth to improve latency and ping
times. Despite this fundamental of sacrificing bandwidth for
latency, most users keep asking how to fill their bandwidth
quota and get good VoIP/games satisfaction. Long time ago
and until now, researchers nonexhaustively attempt to reduce
dropping packets by adding more and more buffering in
routers. However, each dropped packet is essential for well-
behaved functioning of TCP in congestion.

Let us examine an interaction situation between TCP and
bufferbloat [3]. TCP relies on timely congestion notification
to adjust its transmission rate to the available bandwidth. And
bufferbloat means that new arriving packets are continued
to be buffered, instead of dropped due to large buffer size.
It causes the queue to build up longer at the bottlenecks.
Entering the dropping state, more packets are dropped than
necessary which would shrink the transmission rates of the
TCP sender. In particular, if several TCP applications are
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transmitting over the same congestion point, all flows will
see drops at the same time. Therefore, all transmission rates
would be reduced simultaneously, calledTCP global synchro-
nization. Certainly, suitable amount of buffering is helpful
to improve the efficiency of data transmissions to smoothen
bursts transmissions. Not dropping packets early enough,
however, leads to increasing delays for interactive real-time
communication since widely deployed congestion control
algorithms only rely on packet loss as a signal for congestion.
Not dropping packets in a timely fashion also prevents TCP
applications from reacting properly to overload.

Solutions to bufferbloat problemor debloat include queue
management algorithms, which attempt to manage queue
occupancy in passive or active ways. Passive queue manage-
ment (PQM) such asDrop Tail is themost currently deployed
queue management algorithm in Internet router devices. It
drops packets when buffer queue is overflow, so because
of this simplicity, it is widely used now. The weaknesses
of PQM such as lock-out [4] and global synchronization
[5] motivate to urgent needs of active queue management
schemes (AQMs) deployment. Several AQMs have been
deeply studied in the recent decade. The most popular one
is random early detection (RED) [5] and its variants [6,
7] with the main idea of using a probabilistic approach
to randomly dropping packets for congestion resolution.
However, most of them require careful tuning for varying
network conditions; otherwise they only work well under
a few specific scenarios with default parameters [8]. Game
theory approach, which is mainly dedicated to users (user-
aware), has also been investigated to tackle this issue [9, 10].
Recently, a new AQM named controlled delay management
(CoDel) [11] has been proposed to overcome weakness.
Parameterless and easy deployment are two among strong
points of CoDel. Even though, for larger RTTs and smaller
bandwidths, CoDel has poor link utilization than RED and
its variants, the next drop time of CoDel algorithm is derived
by using the multiplicative decrease of square root of total
number dropped packet counting, which needs more in-
depth investigation for improvement.

In this paper, we revisit AQM design problem from
control theoretical perspective but consider cascade control
to further optimize performance in user application level
while considering bufferbloat phenomenon. Control theory
is one of the most efficient tools for AQM to bring a
better system stability due to well-developed control theory
background. Several efforts have been recently put into this
direction for RED [12], PID-AQM [13, 14], and controller
design in state space [15, 16] or queuing modelling with
the impatient customer feature [17] and so forth. Based on
the fluid-flow approximation model for additive increase-
multiplicative decrease (AIMD) phase of TCP, they converted
dynamic equations of window size and queue length into
system transfer function or state space by linearizationmeth-
ods. Then they designed the specific controller according to
a closed-loop transfer function of the whole TCP system. We
realize that these models almost design one-loop control for
queue length only which creates some problem of difficult
adjusting controller parameters and stability guarantee. One
more loop with cascade design in control theory would

improve their performance, especially the bad transient
behaviour of current debloat schemes. So we consider a two-
loop control scheme for AQM, which is mainly dedicated
to bufferbloat issue. Dividing into an inner and an outer
loop, the inner one adjusts window size based on changing
of traffic and feedback window size at time 𝑡. The outer one’s
mission is to adjust queue length based on feedback queue
length value at time 𝑡. Each inner loop and outer loop are
designed using two transfer functions which decomposed
from the fluid-flow model and, therefore, have different
controllers. One difficulty when considering this cascade
design is the interaction in time-scale between two loops. We
see that the inner loop operates in the transport layer while
the outer one operates in link layer (faster than transport
layer). The main motivation is that solving bufferbloat (large
buffer) problem cannot be donewithout considering different
network layers simultaneously. Therefore, one-loop control
methods like Drop Tail, RED, or classical PID should not
be adequate for bufferbloat mitigation. Our proposed CPC,
with an inner and an outer loop, acts in both the transport
layer (adjusting window size) and the link layer (adjusting
queue length). To the best of our knowledge, our work is the
first attempt to adapt cascade control method to bufferbloat
research field. The weakness of this method is that more
complexity is added because of two additional controllers.
However, better performance results (shorter queuing delay
and larger goodput) are achieved andwe are going to seemore
details in Section 5. The performance metrics we evaluate
consist of measured round-trip time, queue length at each
instantaneous time, and goodput at TCP application layer
which represents the users’ (clients) satisfaction level. The
primary contributions are summarized as follows:

(i) We propose a cascade probability control (CPC)
which has two control loops. The inner loop gets
information from current window size and capacity
of link while the outer loop is based on difference
between average measured queue length and queue
length reference value.

(ii) Section 4 presents our proposed CPC controllers
which are designed using the optimal marginmethod
in frequency domain. The fast transient and stability
in a wide frequency range can be achieved using this
method.

(iii) We develop our own model to simulate CPC per-
formance using the popular open-source software,
OMNeT++.We also compare our proposal withDrop
Tail and RED under three popular TCP stacks (e.g.,
Reno, Cubic, and FreeBSD.) using the real-world
stack module network simulation cradle (NSC). Sim-
ulation results demonstrate that bufferbloat delay can
be reduced significantly (≈50% compared to Drop
Tail andRED) andwell controlled byCPC (Section 5).

2. Related Works

Several approaches to AQM, using control theory with the
core linearizedTCPmodel byHollot et al. [12], were proposed
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and contributed a large portion to debloat field [18]. The
original goal was to propose more concrete design guidelines
for the RED parameters to improve stability and responsive-
ness; however, they also discover clearer understanding of
RED’s behaviour with changing of network conditions such
as round-trip times, offer load as number of TCP flows,
and link capacities. Focusing on control theory viewpoint,
we categorize them into three types: classical control, robust
control, and fuzzy logic control.

Classical PID controller based algorithms were designed
as alternative AQM solutions to meet various specifications
of the Internet using feedback control. Hollot et al. [12]
analysed RED as I-controller and proposed two types, the
proportional (P) controller and the proportional integral
(PI) controller, for improving RED. The stable region of
the control gain is determined for dynamic-RED (DRED)
using the Routh stability test. In [19], dynamic-RED (DRED)
was proposed, using a load-dependent probability to ran-
domly discard packets when a buffer becomes congested. It
maintains the average queue size close to a predetermined
threshold but allows transient traffic bursts to be queued
without unnecessary packet drops. Its main advantage is that
we do not have to collect state information of individual
flows. In [15], a feedback control model with PI controller has
been recently proposed to improve link performance inwired
communication networks.

Robust control approach was also studied to improve
classical control. The issue of large delay with large buffer
in bufferbloat was addressed by DC-AQM algorithm based
on internal mode compensation (IMC) principle, which is
an example of robust control approach [20]. Using IMC
controller derived, they tried to tune parameters 𝐾𝑝, 𝐾𝑖, and
𝐾𝑑 of classical PID controller to reduce delay. To also contend
with large delay, gain adaptive Smith predictor with PI
controller (GAS-PI) in [21] was built to improve robustness.
Then, in [13], a predictive PID controller is proposed for
TCP/AQM. They used the generalized predictive control
method to determine suitable values for 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 so
that they made the system more robust to changes in model
parameters such as offered load and round-trip time.

Fuzzy control RED (FCRED) was proposed in [6]. It con-
sists of a fuzzy controller adjusting the 𝑃max parameter of the
RED algorithm.The fuzzy controller includes three parts: the
fuzzification unit followed by the fuzzy-interference engine
with fuzzy-rule base and finally a defuzzification unit. The
fuzzificationmodulemaps the input values to be controlled to
a fuzzy set (i.e., membership functions). The fuzzy rule base
provides the connection between the input signals and the
appropriate output variable. Fuzzy logic rules are constructed
based on trial-and-error, which needs the knowledge and
experience of domain-expert in TCP congestion control.
Moreover, fuzzy logic-based AQM schemes are sometimes
not distributed and hard to implement.

Briefly, it can be seen that, as the years progress, the main
direction has been to more and more sophisticated robust
control techniques, combined with some classical techniques
in control theory as well. In many cases, the linear TCP
model in [12] continues to be at the core of control theoretic
AQM algorithms. Cascade control, however, has not been

considered yet in development of AQM. In this paper, we
contribute to the AQM debloat research trends by using
cascade control to address large delay bufferbloat issue. Our
approach uses two controllerswhich are connected in cascade
style. Our CPC results obtained from theoretical Matlab or
simulation using OMNeT++ and the integrated NSC tool are
so promising in fast transient behavior and stability.

3. System Model

The TCP/AQM fluid-flow model described by nonlinear
differential equations has been extensively studied in par-
ticular AQM routers interacting with TCP sources (e.g.,
[12, 13, 16, 20]). Until now, they can capture the additive
increase-multiplicative decrease (AIMD) feature from TCP
[22], without slow start and time-out mechanisms. However,
this lacking only affects initial start-up of the system. Once
the system reaches the stable point, the differential equations
solver is able to track changes in the network well [23]:
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1

𝑅 (𝑡)

−

𝑤 (𝑡)

2
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− 𝐶𝑙,

(1)

where
(i) 𝐶𝑙 is the transmission capacity of link 𝑙 (packets/sec);
(ii) 𝑅 is the round-trip time (sec);𝑅(𝑡) = 𝑇𝑝+𝑞(𝑡)/𝐶𝑙 with

𝑇𝑝 being the fixed propagation delay;
(iii) 𝑁 is the number of TCP flows;
(iv) 𝜏 is feedback delay (sec).
The operating point (𝑤0, 𝑞0, 𝑝0) of TCP model (1) can be

derived at �̇� = 0 and ̇𝑞 = 0 as follows:
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(2)

Doing linearization of the above TCP queue model
around operating point (𝑤0, 𝑞0, 𝑝0) (details in [12]), with
𝛿�̇� = 𝑤 − 𝑤0, we have a linearized small signal model of
TCP/AQM:
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𝑁

𝑅0

− 𝛿𝑞 (𝑡)

1

𝑅0

.

(3)

Convert (3) using Laplace transformation as follows:

𝑠 × 𝑤 (𝑠) = −𝑤 (𝑠)

2𝑁

𝑅
2
0
𝐶𝑙

− 𝑝 (𝑠) 𝑒

−𝑠𝑅0
⋅

𝑅0𝐶
2

𝑙

2𝑁
2

,

𝑠 × 𝑞 (𝑠) = 𝑤 (𝑠)

𝑁

𝑅0

− 𝑞 (𝑠)

1

𝑅0

.

(4)
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Figure 1: Block diagram: proposed cascade probability control scheme.

So the TCP/AQM system transfer functions in Laplace
domain are

𝑃 (𝑠) = 𝑃tcpwin (𝑠) ⋅ 𝑃queue (𝑠) ⋅ 𝑒

−𝑠𝑅0

= [

𝑤 (𝑠)

𝑝 (𝑠)

] ⋅ [

𝑞 (𝑠)

𝑤 (𝑠)

] = [

𝐴

𝑠 + 𝐵

] ⋅ [

𝐶

𝑠 + 𝐷

] 𝑒

−𝑠𝑅0
,

(5)

where 𝐴 = 𝑅0𝐶
2

𝑙
/(2𝑁

2
); 𝐵 = 2𝑁/(𝑅

2

0
𝐶𝑙); 𝐶 = 𝑁/𝑅0; and

𝐷 = 1/𝑅0.

4. Cascade Probability Control (CPC)

In literature, single loop control for AQM was often studied
due to less complexity and low oscillation but did not behave
well in case of disturbances (e.g., bandwidth fluctuation and
bursty traffic) or bad transient. Cascade control comes to
rescue and achieves fast rejection of disturbance before it
affects the main system model. In this section, we propose
a cascade probability control (CPC) to improve dynamic of
the open-loop system transfer function (5) which consists of
two subsystems, window size and queue length control. The
inner loop adjusts the window size by an inner controller
𝐶win, while the outer loop receives queue length information
at time 𝑡 and uses an outer controller 𝐶queue to maintain 𝑞(𝑡)

(Figure 1). The final goal is to reach a stable value of queue
length, so that bufferbloat phenomenon can be mitigated.
Moreover, the margin optimal method for controller design
also brings a fast transient behavior to our system.

4.1. CPC Controllers. We design two PI controllers for sim-
plicity and for reducing number of parameters: the inner
controls dropping probability 𝑝2 based on traffic informa-
tion and the outer controls dropping probability 𝑝1 based
on difference between measured average queue length and
reference queue length. We outline our proposed design
framework in Figure 1 and would compete with the adaptive
weight PID approach in [24].

4.1.1. Inner Loop. An important design requirement is that
the inner loop controller should behave quickly. From (5), the
inner control objective is a linear first-order type: 𝑃tcpwin(𝑠) =

𝑘𝐼/(1 + 𝑇𝑠), where 𝑘𝐼 = 𝐴/𝐵 and 𝑇 = 1/𝐵. Hence, we design
an integral I-controller for inner loop:

𝐶win(𝑠) =
1

𝑇𝐶win
𝑠

. (6)

(i) The close-loop transfer function of the inner loop is

𝐼 (𝑠) =

𝑤 (𝑠)

𝑝1 (𝑠)

=

𝑃tcpwin (𝑠) 𝐶win(𝑠)

1 + 𝑃tcpwin (𝑠) 𝐶win(𝑠)

=

𝑘𝐼

𝑇𝐶win
𝑠 (1 + 𝑇𝑠) + 𝑘𝐼

.

(7)

(ii) The 𝐼(𝑠) transfer function is converted into frequency
domain, with 𝜔 being frequency:





𝐼 (𝑗𝜔)






=

𝑘𝐼

√(𝑘𝐼 − 𝑇𝐶win
𝑇 ⋅ 𝜔
2
)

2

+ (𝜔 ⋅ 𝑇𝐶win
)

2

,

⇐⇒ 𝐼 (𝑗𝜔)

2

=

𝑘

2

𝐼

𝑘
2
𝐼

+ (𝑇
2
𝐶win

− 2𝑘𝐼 ⋅ 𝑇𝐶win
𝑇) 𝜔
2

+ 𝑇
2
𝐶win

⋅ 𝑇
2
𝜔
4
.

(8)

One of quality requirements to closed-loop control sys-
tem, which is represented by 𝐼(𝑠), is that the output is the
same as the input signal or the controller 𝐶win should bring
|𝐼(𝑗𝜔)| = 1, ∀𝜔, which can be called margin optimal
method. However, due to several reasons of real system,
that requirement is rarely satisfied for all frequencies 𝜔. An
acceptable design is that |𝐼(𝑗𝜔)| ≈ 1, in a wide band of low
frequencies 𝜔. Hence, we propose choosing 𝑇𝐶win

such that
𝑇

2

𝐶win
− 2𝑘𝐼 ⋅ 𝑇𝐶win

𝑇 = 0 or 𝑇𝐶win
= 2𝑘𝐼𝑇. This close-form

expression of 𝑇𝐶win
is used to make decision for controller

𝐶win.

4.1.2. Outer Loop

(i) The close-loop transfer function of the outer loop is

𝑂 (𝑠) =

𝑞 (𝑠)

𝑞ref
=

𝐼 (𝑠) 𝑃queue(𝑠)𝐶queue (𝑠)

1 + 𝐼 (𝑠) 𝑃queue(𝑠)𝐶queue (𝑠)

. (9)

(ii) The outer control objective into zero-pole form is

𝐼 (𝑠) 𝑃queue(𝑠) =
𝑘𝐼

𝑇𝐶win
𝑠 (1 + 𝑇𝑠) + 𝑘𝐼

⋅

𝐶

𝑠 + 𝐷

=

𝑘𝑂

(1 + 𝑇1𝑂
𝑠) (1 + 𝑇2𝑂

𝑠) (1 + 𝑇3𝑂
𝑠)

,

(10)
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where 𝑘𝑂 = 𝐶/𝐷; 𝑇1𝑂
𝑇2𝑂

= 𝑇𝑇𝐶win
/𝑘𝐼; 𝑇1𝑂

+ 𝑇2𝑂
=

𝑇𝐶win
/𝑘𝐼; 𝑇3𝑂

= 1/𝐷.

For the outer loop, the objective function is linear third-
order type, due to inclusion of 𝐼(𝑠). Hence, we choose
proportional-integral-derivative PID controller by using the
same method at the inner loop design, or |𝑂(𝑗𝜔)| ≈ 1:

𝐶queue(𝑠) = 𝑘𝑝𝑂
(1 +

1

𝑇𝑖𝑂
𝑠

+ 𝑇𝑑𝑂
𝑠) , (11)

with 𝑘𝑝𝑂
= (𝑇1𝑂

+ 𝑇2𝑂
)/2𝑘𝑂𝑇3𝑂

, 𝑇𝑖𝑂
= 𝑇1𝑂

+ 𝑇2𝑂
, 𝑇𝑑𝑂

= (𝑇1𝑂
⋅

𝑇2𝑂
)/(𝑇1𝑂

+ 𝑇2𝑂
).

4.2. CPC Numerical Analysis. The proposed CPC controllers
can be easily verified by using example parameters from [12]
which consist of 𝑁 = 60, 𝐶𝑙 = 3750 (packets/sec), and
𝑅0 = 0.246 (sec). According to the above analysis, the inner
controller 𝐶win = 0.000291/s, while the outer controller
𝐶queue = 0.1281(1 + 1/(3.78 s) + 1.89 s).

Figure 2(a) presents the queue length output in case of
20 packets queue reference. The CPC manual tune mode
uses our above designed controllers, while the CPC autotune
mode uses pidtune function of Matlab. Firstly, in comparison
to RED which can be modeled as a single-loop I-type con-
troller, one advantage of CPC is that fast transient behavior
can be achieved. Transient behavior is amajor issue of current
solutions to bufferbloat. Fast transient means that we can
reach the queue length reference quickly in response to the
input change of dynamic systems.

Secondly, crossover frequency is a criterion to assess a
control system’s operation ability in awide range of frequency.
The higher the crossover frequency is, the better stability at
which the system can operate is. Let us denote crossover
frequency as 𝜔𝑐. If we choose a frequency higher than 𝜔𝑐,
system would be not stable anymore. The left-hand side of
Figure 2(b) is Bode diagram phase-margin of the system. It
informs about 𝜔𝑐 information of our proposed CPC scheme.
Specifically, CPC manual tune has 𝜔𝑐 = 2.37 (rad/s) which is
the highest value, while 𝜔𝑐 = 0.627 (rad/s) for CPC autotune
and 𝜔𝑐 = 0.261 (rad/s) for RED. Therefore, CPC can operate
better in a wider range of frequency.

Finally, using Nyquist stability criterion, the closed-loop
transfer function of the outer loop 𝑂(𝑠) is determined by the
values of its poles. It states that, for stability, the real part of all
poles must be negative or the poles are in the left half-plane
of pole-zero map. The right-hand side of Figure 2(b) shows
us the distribution of zeros and poles for three schemes.
Clearly, all the poles have the real part negativewhich strongly
demonstrates CPC’s stability.

In summary, CPC scheme can achieve fast transient,
high crossover frequency and still stable. Those motivate us
to conduct simulations about CPC behavior to bufferbloat
under multiple real-world TCP stacks.

5. Simulation Results

In this section, we implement the proposed scheme in simu-
lator to show bufferbloat phenomenon and the advantages of

Table 1: Simulation parameters.

Name Value Unit
Maximum buffer size 500 Packets
Desired queue length 20 Packets
Target RTT delay 200 ms

CPC scheme in comparison to traditional AQMs. We choose
the dumbbell topology according to AQM guidelines [25].

5.1. Simulation Setup. Wedevelop our own simulationmodel
to verify the proposed CPC scheme using the popular
OMNeT++ framework [26].The chosen topology in Figure 3
represents a dumbbell network which is suitable for eval-
uating a queue management scheme. Three clients simul-
taneously send 200 × 3 (MByte) data to servers through
intermediate routers. The advertised window’s server is set
up to infinity so that it does not limit the sender’s speed. To
create an artificial bottleneck, we set up the “high-to-slow”
link bandwidth where the bandwidth of links from clients to
router 1 are high at 1000 (Mbps) and the bandwidth of the
link from router 1 to others is slow at 2 (Mbps). RTT can
be measured at each server, while queue size is monitored
at the congestion point. Bursty traffic is generated using a
generator trafficmodel inside each client fromOMNeT++.At
the first glance, we vary the buffer size parameter to show the
simulation model working toward bufferbloat phenomenon
existence. Then we compare the CPC scheme with two types
of traditional queue discipline which are operating inside the
current Internet, Drop Tail, and RED, in terms of queue size
and round-trip time or latency. Some main parameters are
summarized in Table 1.

5.2. Bufferbloat Existence

5.2.1. Experiment. To demonstrate clearly bufferbloat exis-
tence, we exploit the real-time response under load (RRUL)
test specification in [27].This test puts a network under worst
case conditions and then measures latency responsiveness
and other relative performances of TCP and UDP streams
of varying rates, while under that load. Then, Toke Hoiland-
Jorgensen produces a wrapper for netperf tool to implement
test cases such as HTTP, VoIP, and FTP under RRUL. In this
paper, we conduct the experiment test from our computer-
client located in South Korea to two servers which are
mainly dedicated for bufferbloat testing, demo.tohojo.dk,
and snapon.lab.bufferbloat.net, respectively. Figures 4(a) and
4(b) present our ping results when we run experiment in
300 seconds and sampling period of 0.2 second. Ping delay
for both cases are approximately 300 (ms), while 100 →

150 (ms) is an acceptable range for toll-quality voice and
delay-sensitive applications. Once again, we see that debloat
solutions were not deployed in our current experiment
routers.

5.2.2. Simulation. As mentioned before, the main reason
for bufferbloat is the unmanaged large buffer at bottleneck



6 Mathematical Problems in Engineering

0 5 10 15 20 25
0

5

10

15

20

25

Time (s)

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

CPC: manual tune
CPC: autotune

RED I-controller

CPC: fast transient

(a) Step response performance

Bode diagram

Bode diagram

Frequency (rad/s)

Frequency (rad/s)

−4 −2 0
−3

−2

−1

0

1

2

3
Pole-zero map

−150

−100

−50

0

50

M
ag

ni
tu

de
 (d

B)

−270

−180

−90

0

Ph
as

e (
de

g)

CPC: manual tune
CPC: auto tune

RED: I-controller

CPC: manual tune
CPC: auto tune
RED: I-controller

RED’s pole

CPC’s pole

CPC auto’s pole

10−2 100 102

10−2 100 102

Real axis (s−1)

Im
ag

in
ar

y 
ax

is 
(s
−
1
)

(b) Bode diagram and pole-zero map

Figure 2: Stability analysis of CPC.



Mathematical Problems in Engineering 7

Bufferbloat

Ping application
TCP application

Server 3 

Server 2 

Server 1 

Router 1 Router 2 Router 3 

Client 1 

Client 2 

Client 3 

1000Mbps

...

2Mbps 2Mbps 1000Mbps

Figure 3: Simulation topology.

300250200150100500

320

315

310

305

300

295

290

Time (s)

La
te

nc
y 

(m
s)

Ping (ms)
ICMP
Avg

(a) Server: demo.tohojo.dk

Ping (ms)
ICMP
Avg

300250200150100500

Time (s)

320

315

310

305

300

295

290

La
te

nc
y 

(m
s)

(b) Server: snapon.lab.bufferbloat.dk

Figure 4: Bufferbloat existence: an experiment from Korea to two servers.

links that could damage TCP’s congestion control/avoidance
mechanisms. Hence, a big buffer is necessary to repro-
duce this phenomenon. In the current Internet, buffers are
measured using bytes. OMNeT++ simulation framework,
however, uses packets to sizing buffers. The choice of the
largest buffer size is approximately 8x BDP product (pack-
ets) [11]. Let us denote buffer size as bu. With bottleneck

bandwidth 2Mbps and propagation delay 300ms, we have
the results when following the traditional rule-of-thumb for
buffer-size:

bu (byte) = BDP = BW × Delay = 2.10

6
× 300.10

−3

= 600 (kbit) = 75 (kbyte) .

(12)
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Figure 5: Bufferbloat existence and varied buffer sizes.

According to [28], one TCP packet size or maximum
transmission unit (MTU) is 1500 (bytes):

bu (packets) =

bu (byte)
MTU

=

75.10

3

1500

= 50 (packets) . (13)

Therefore, in this simulation, we vary the buffer sizes such
as 50, 100, 300, and 500 being the largest one (packets) under
different TCP congestion-avoidance algorithms with Drop
Tail queuing discipline. Firstly, Figure 5(a) shows the effects
on queue evolution and round-trip time, under TCP Reno,
themost used inWindows and some Linux operating systems
(OS). We obtain the saw-tooth result at both queue size
and RTT graph because of TCP Reno’s characteristics while
others do not have saw-tooth type graphs. From Figure 5(a),
bufferbloat issue can also be clearly recognized. If buffer
size is very large (500 packets), RTT will become pretty
large (≈2.5 sec) while queue size grows until it reaches the
threshold of buffer, which is the main drawback of Drop Tail.
Several AQMs come to rescue at this point.The phenomenon
once again appears in TCPFreeBSD, the popular algorithm in
Unix OS that does not own a saw-tooth graph. Figure 5(b),
which is simulated under TCP FreeBSD, also presents a
long delay (≈2.8 sec) when buffer is too large. Those results
confirm bufferbloat happening at different OS whenever a
long buffer queue is built up.

5.3. CPC Performance under TCP Real-World Stacks. Next,
we conduct more necessary simulations to compare our
CPC scheme performance with traditional popular queuing
disciplines Drop Tail and RED. We monitor the queue size
at the bottleneck point (router 1), the round-trip time of

packets, and goodput at each destination server. Goodput
is the application level throughput, that is, the number of
user information bits delivered by the network to a certain
destination per unit of time. For example, if a file is trans-
ferred, the goodput that the user experiences corresponds
to the file size in bits divided by the file transfer time. The
goodput is always lower than the throughput (the gross bit
rate that is transferred physically), which generally is lower
than the channel capacity or bandwidth. Goodput moni-
toring is necessary to evaluate the actual good throughput
performance inside networks. We also do these comparisons
under several different TCP versions which include Reno,
Cubic, and FreeBSD. The first one is mainly implemented
in Windows and some Linux Kernels. The second one is
improved and deployed in newer versions of Linux Kernel
until now.The last one is popularly implemented under Unix
Kernel. All the following results are derived when we set
the largest buffer size at congestion point, 500 (packets). In
the following, we summarize the background knowledge of
those three TCP versions before going into detailed results of
bufferbloat delay reduction and goodput stability.

5.3.1. Under Reno Real-World Stack. For each connection,
TCPmaintains a congestion window 𝑐𝑤𝑛𝑑, limiting the total
number of packets that may be transmitted at a time. TCP
Reno algorithm uniqueness is the fast recovery phase. That
means when a packet loss is detected by receiving three
duplicate ACKs, Reno will halve 𝑐𝑤𝑛𝑑 and set slow start
threshold 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ equal to the new 𝑐𝑤𝑛𝑑 value, perform a
fast retransmit, and enter a phase called fast recovery. It also
reduces congestion window to one maximum segment size
(MSS) on a timeout event. Congestion-avoidance phase, as
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Figure 6: TCP Reno + Drop Tail/RED/CPC.

usual, exploits AIMD to control 𝑐𝑤𝑛𝑑 based on packet loss
notification. In fact, compound TCP stack for Windows and
Linux also increases AIMD window as TCP Reno does [29].

In Figure 6(a), queue size and RTT according to three
queue management schemes are presented. With 500 packets
of buffer, Reno and Drop Tail show a saw-tooth graph where
the highest RTT is high up to 2.8 (sec). With the target RTT

being 200ms, RED under Reno presents better performance
than Drop Tail, RTT (RED) ≈ 400ms, by early dropping
some packets to keep the queue size small. CPC under Reno,
however, achieves a much better performance while keeping
the lowest queue size and lowest RTT (CPC) ≈ 180ms, which
is acceptable for delay-sensitive applications. The reason is
that CPC continuously controls the next queue size value
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according to traffic changes and adjusts the current queue
size at the outer loop so that it indirectly affects RTT value
of packets.

Next, Figure 6(b) shows us goodput (bit per second)
statistic results under TCP Reno according to four different
buffer sizes. These graphs use box-and-whisker plot that can
effectively depict groups of numerical data through their
quartiles. For instance, the center red line of box represents
the median goodput value; the width of box shows the spread
degree of goodput statistic data; for example, bigger box and

longer whisker mean that statistic data oscillate so much or
are unstable. Regardless of different buffer size, under TCP
Reno, the median of goodput is nearly the same, around
8 × 10

4 (bps). The CPC scheme, however, achieves the best
stability performance compared to the others because the
width of CPC boxes is smallest.

5.3.2. Under Cubic Real-World Stack. Cubic is a congestion
control protocol for TCP and the current default TCP
algorithm in the Linux kernel [30]. It replaces the default
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Figure 8: TCP FreeBSD + Drop Tail/RED/CPC.

TCP congestion control algorithm described above with a
different algorithm based on a cubic function of the time
since the last congestion event. Instead of adjusting the
congestion window as a function of previous values as each
packet is acknowledged, the Cubic algorithm recomputes
the congestion window size at each step using the cubic
function calibrated. This results in the congestion window
responding quickly to changes in available bandwidth. The
TCP Cubic is a less aggressive andmore systematic derivative

of binary increase congestion (BIC). We exploit NSCmodule
to incorporate real-world TCP/IP network stacks into our
simulation model. NSC owns TCP Cubic (version 2.6.26)
stack which allows us to test our CPC queuing scheme
performance.

In Figure 7(a), we can see again that CPC scheme seems
to achieve the best performance, keeping lower queue size
and RTT only 130ms, which is acceptable for delay-sensitive
traffic. However, the RTT gaps between three schemes are not
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so much because of the aggression property of TCP Cubic.
While RED shows large variability of RTT, the others keep
RTT much more stable.

Goodput performance in Cubic also reveals TCP Cubic’s
aggression. When buffers are at small values (50 and 100

packets), three boxes’ widths are nearly similar. That means
that CPC can achieve the same goodput as the others if
we use small buffers. Moreover, increasing the buffer size
to 300 and 500 packets makes CPC’s goodput more stable,
with the smaller box width. These figures demonstrate that
CPC canmitigate the bufferbloat—big buffers problem pretty
well.

5.3.3. Under FreeBSD Real-World Stack. Finally, we investi-
gate one more popular TCP stack. FreeBSD is a free Unix-
like operating system, historically standing for “Berkeley
Unix.” It was chosen as a BSD-derived TCP/IP stack that
is widely used and has had much development. There are
several applications that are directly based on FreeBSD, an
example being the famous instant messenger WhatsApp.
Much of FreeBSD became an integral part of other operating
systems such as Apple’s OS X. The integrated NSC module
for OMNeT++ also incorporates TCP FreeBSD real-world
stack so that we can turn it on for demonstrating CPC’s
performance under FreeBSD. Figure 8(a) presents queue size
and RTT results for three disciplines. We can see that our
proposal CPC achieves a better performance, keeping lower
queue size and RTT (FreeBSD) around 150ms.

So far, the proposed CPC scheme achieved good goodput
performance under TCP Reno and Cubic stacks. We, how-
ever, find another interesting fact of CPC when performing
under TCP FreeBSD stack. In Figure 8(b), we can conclude
two things. Firstly, the width of CPC goodput’s boxes in
four buffer cases is almost bigger than the other schemes.
It means the CPC stability under FreeBSD stack’s environ-
ment is not good. Secondly, our CPC scheme, however,
still achieves more goodput than others. Specifically, in four
cases, the system’s goodput can reach 10 (kbps) using CPC
while it can reach only 4 (kbps) and 2 (kbps) under either
small or large buffer using Drop Tail or RED schemes,
respectively.

6. Conclusions

Bufferbloat problem, with overfilling a queue at the low-
speed side, leads to long end-to-end latency because of the
persistent long queuing delay. In this paper, we proposed
a control scheme called cascade probability control (CPC)
as an alternative way to tackle this issue and reduce queu-
ing delay. Our scheme introduces two-loop control model
which consists of queue length and window size control
to keep round-trip time value around an expected value.
In comparison to current deployed schemes, our scheme’s
advantages are to maintain stability and noise reduction
while the queuing delay can still be ensured under several
different TCP versions. Further works would extend CPC
on bufferbloat and queuing delay control in the cellular
communications.
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This paper is concerned with the global asymptotic stabilization control problem for a class of nonlinear systems with input-to-state
stable (ISS) dynamic uncertainties and uncertain time-varying control coefficients. Unlike the existing works, the ISS dynamic
uncertainty is characterized by the uncertain supply rates. By using the backstepping control approach, a systematic controller
design procedure is developed. The designed control law can guarantee that the system states are asymptotically regulated to the
origin from any initial conditions and the other signals are bounded in closed-loop systems. Moreover, it is shown that, under some
additional conditions, a linear control law can be designed by the proposed methodology. The simulation example demonstrates
its effectiveness.

1. Introduction

The nonlinear control theory is an active research direction
in the control field because of its widespread applications
in the real world. During the past two decades, various
novel methodologies have been generated for the nonlinear
feedback control; see the recent survey [1] and references
therein for an interesting introduction to this area. One of
the influential notions is the input-to-state stability (ISS) and
its several variants. Since they are introduced by Sontag in
[2, 3], the notion of ISS as well as its integral variant—integral
ISS (iISS)—has become a foundational concept upon which
much of modern nonlinear feedback analysis and design rest.
As noted in [4], ISS provides a nonlinear generalization of
finite gains with respect to supremum norms and also of
finite 𝐿2 gains, and it plays a central role in recursive design,
coprime factorizations, controllers for nonminimum phase
systems, and many other areas. Based on the series of works
on ISS, the nonlinear small-gain theoremwas proposed in the
state-space setting and is widely used in the stability analysis
and control design for complex interconnected systems in [5].
The stochastic results can be found in [6, 7] and the references
therein.

It is noted that a unifying framework is presented in [8]
for the global output feedback regulation control problem

from ISS to iISS. The framework established in [8] extends
many known classes of output feedback form systems. How-
ever, the system uncertainties investigated there depend only
on the system output and the inverse system state. With
unmeasured states dependent growth, in [9, 10], the problem
of global stabilization by output/state feedback is investigated
for a class of nonlinear systems with uncertain control
coefficients. However, there is no dynamic uncertainty for
the system under consideration. In [11], this work is further
studied for a larger class of nonlinear uncertain systems, in
which the observer gain is governed by a Riccati differential
equation. Moreover, the output regulation problem is also
considered in [12] for this class of nonlinear systems with
iISS inverse dynamics. Later, in [13, 14], this work is fur-
ther investigated for the nonlinear systems with uncertain
nonlinearities dependent on all unmeasured states. However,
the control coefficients in above results are required to be
known a priori or unknown nonzero constants. In [15],
the global set-point tracking control is investigated for a
class of cascaded nonlinear systems with unknown control
coefficients. However, a restrictive condition is that the
control coefficients are required to have the same signs.

In this paper, we will further investigate this problem
for a class of nonlinear systems with more general nonlinear
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uncertainties. Unlike the existing works such as in [9, 12, 15–
17], the studied system is with the uncertain control coef-
ficients, which could be unknown time-varying functions.
Another feature of this work is that the dynamic uncertainties
are characterized by the uncertain ISS supply rates. This
is different from the existing results reported in literatures
where the ISS dynamic uncertainty is investigated under the
hypothesis that supply rates are known a priori such as in [8,
11, 13, 15].With the help of the backstepping approach [18], we
design a robust adaptive controller which could achieve the
system states convergent to the origin while the other signals
are bounded. Moreover, it is of interest to note that a linear
control law can be designed using the developed scheme
if some stronger conditions are imposed on the nonlinear
system.

The rest of the paper is organized as follows. In Section 2,
we provide some mathematical preliminaries and state the
problem. The controller design procedure is developed in
Section 3, and the main result is presented in Section 4.
Section 5 illustrates the obtained results by a numerical
example. Section 6 concludes this paper.

Notation. Let R(R
+
) denote the set of all (positive) real

numbers and let 𝑅n denote the real 𝑛-dimensional space. For
a given vector or matrix 𝑋, 𝑋𝑇 denotes its transpose. For
any column vector 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇
∈ Rn, 𝑥

𝑖
denotes the

column vector consisting of the first 𝑖 elements of 𝑥 in the
original order; that is, 𝑥

𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇. Specifically, for

𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝑥
1
= 𝑥
1
, 𝑥 = 𝑥

𝑛
. A continuous function

𝛼 : [0, 𝑎) → [0,∞) is said to belong to class-𝐾 if it is
strictly increasing and 𝛼(0) = 0. It is said to belong to class-
𝐾
∞

if 𝑎 = ∞ and 𝛼(𝑟) → ∞ as 𝑟 → ∞. The notation
𝛽(𝑠) = 𝑂(𝛽(𝑠)) means that there exist two positive constants
𝑘 and 𝑐 such that 𝛽(𝑠) ≤ 𝑘𝛽(𝑠), ∀|𝑠| < 𝑐.

2. Problem Formulation

In this paper, we consider the following class of cascaded
nonlinear systems with dynamic uncertainties:

̇𝜂 = 𝑞 (𝑡, 𝜂, 𝑦) ,

�̇�
1
= 𝑑
1
(𝑡) 𝑥
2
+ 𝑔
1
(𝑡, 𝜂, 𝑥) ,

.

.

.

�̇�
𝑛
= 𝑑
𝑛
(𝑡) 𝑢 + 𝑔

𝑛
(𝑡, 𝜂, 𝑥) ,

𝑦 = 𝑥
1
,

(1)

where 𝑢 ∈ R is the control input, 𝑦 ∈ R is the system
output, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ Rn are the system states, and

𝜂 ∈ Rr is referred to as dynamic uncertainties, which is
unmeasured and hence is not available for feedback design.
The continuous functions 𝑑

𝑖
(𝑡) (𝑖 = 1, . . . , 𝑛) called the

control coefficients are assumed to be unknown; particularly,
𝑑
𝑖
(𝑡) ̸= 0; the unmodeled (or uncertain) dynamics 𝑞(⋅) and

𝑔
𝑖
(⋅) (𝑖 = 1, . . . , 𝑛) are locally Lipschitz.

The control objective in this paper is to find a smooth,
dynamic, partial-state feedback law of the form

̇𝜉 = 𝜒
𝜉
(𝜉, 𝑥) ,

𝑢 = 𝜒
𝑢
(𝜉, 𝑥) ,

(2)

where 𝜒
𝜉
and 𝜒

𝑢
are smooth functions such that all solutions

(𝜂(𝑡), 𝑥(𝑡), 𝜉(𝑡)) in closed-loop system are bounded on [0,∞)

and specially the system states (𝜂(𝑡), 𝑥(𝑡)) asymptotically
converge to the origin. Toward this end, throughout the
paper, we make the following assumptions on system (1).

Assumption 1. The 𝜂-subsystem is input-to-state stable (ISS)
with state 𝜂 and input 𝑦; that is, there exists a positive-definite
and proper ISS-Lyapunov function 𝑉

0
, such that

𝛼 (
𝜂
) ≤ 𝑉

0
(𝜂) ≤ 𝛼 (

𝜂
) ,

𝜕𝑉
0

𝜕𝜂
(𝜂) 𝑞 (𝑡, 𝜂, 𝑦) ≤ −𝛼

0
(
𝜂
) + 𝛿
0
𝛾
0
(
𝑦
) ,

(3)

where 𝛼(⋅), 𝛼(⋅), 𝛼
0
(⋅), 𝛾
0
(⋅) ∈ 𝐾

∞
and 𝛿

0
> 0 is an unknown

constant.

Remark 2. According to [19], one knows that 𝜂-subsystem
satisfying (3) is ISS, and the function pair (𝛼

0
, 𝛿
0
𝛾
0
) is viewed

as the supply rates. Since 𝛿
0
in (3) is unknown, the dynamic

uncertainty has uncertain ISS supply rates. This is different
from the existing results reported in literatures, where the
ISS dynamic uncertainty is investigated with the supply rates
assumed to be known a priori, such as [8, 11, 13, 15].

Assumption 3. For the uncertain nonlinearities𝑔
𝑖
(𝑡, 𝜂, 𝑥) (𝑖 =

1, . . . , 𝑛), there exist unknown positive constants 𝑝
𝑖𝑗
(𝑖 =

1, . . . , 𝑛; 𝑗 = 1, 2) such that
𝑔𝑖 (𝑡, 𝜂, 𝑥)

 ≤ 𝑝
𝑖1
𝜙
𝑖1
(
𝜂
) + 𝑝

𝑖2
𝜙
𝑖2
(
𝑥1, . . . , 𝑥𝑖

) ,

𝑖 = 1, . . . , 𝑛,

(4)

where 𝜙
𝑖𝑗
(⋅) are known smooth functions and 𝜙

𝑖𝑗
(0) = 0 (𝑖 =

1, . . . , 𝑛; 𝑗 = 1, 2).

Assumption 4. There exist known positive constants 𝑑
𝑖
and

𝑑
𝑖
(𝑖 = 1, . . . , 𝑛), such that

0 < 𝑑
𝑖
≤ 𝑑
𝑖
(𝑡) ≤ 𝑑

𝑖
, 𝑖 = 1, . . . , 𝑛. (5)

To deal with the unmeasured state 𝜂, we have the fol-
lowing lemma, which plays an important role in the coming
feedback design and stability analysis.

Lemma 5. Consider the 𝜂-subsystem satisfying Assumption 1.
Suppose

𝛾
0
(𝑠) = 𝑂 (𝑠

2
) , (6)

and then we can choose a positive continuous function 𝜌(⋅),
such that the function

𝑉
0
(𝜂) = ∫

𝑉0(𝜂)

0

𝜌 (𝑠) 𝑑𝑠 (7)
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is another candidate ISS-Lyapunov function satisfying

𝜕𝑉
0

𝜕𝜂
(𝜂) 𝑞 (𝑡, 𝜂, 𝑦) ≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
)

+ 𝛿𝛾 (
𝑦
) ,

(8)

where 𝜖 (0 < 𝜖 < 1) is a small design constant, 𝛿 > 0 is an
unknown constant, and 𝛾 is a𝐾

∞
-function with 𝛾(𝑠) = 𝑂(𝑠

2
).

Remark 6. If 𝛾(𝑠) = 𝑂(𝑠
2
), according to Lemma 2 in [19],

there exists a smooth nondecreasing function 𝛾(⋅) satisfying

𝛾 (𝑠) ≤ 𝛾 (𝑠) 𝑠
2
. (9)

Lemma 7. For any 𝐶
1 function 𝑓(𝑥

1
, . . . , 𝑥

𝑛
), there exist

continuous functions 𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) (1 ≤ 𝑖 ≤ 𝑛), such that

𝑓 (𝑥
1
, . . . , 𝑥

𝑛
) = 𝑓 (0, . . . , 0) +

𝑛

∑

𝑖=1

𝑥
𝑖
𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) . (10)

Remark 8. According to Lemma 7, from 𝜙
𝑖2
(0) = 0 (𝑖 =

1, . . . , 𝑛) in Assumption 3, it is known that, for each 𝜙
𝑖2
(⋅),

there exist smooth functions 𝜙
𝑖2𝑗
(⋅) (1 ≤ 𝑗 ≤ 𝑖) satisfying

𝜙
𝑖2
(𝑥
1
, . . . , 𝑥

𝑖
) =

𝑖

∑

𝑗=1

𝑥
𝑗
𝜙
𝑖2𝑗
(𝑥
1
, . . . , 𝑥

𝑖
) , 𝑖 = 1, . . . , 𝑛. (11)

3. Controller Design

In this section, we give the controller design procedure using
the backstepping design method.

Step 1. Starting with the 𝑥
1
-subsystem �̇�

1
= 𝑑
1
(𝑡)𝑥
2
+ 𝑔
1
(𝑡, 𝜂,

𝑥).We consider the variable𝑥
2
as the virtual control input. Let

𝑧
1
= 𝑥
1
and 𝑧
2
= 𝑥
2
− 𝜗
1
where 𝜗

1
is the intermediate control

input. Considering Lemma 5 and Remark 6, along solutions
of (1), the time derivative of the function

𝑉
1
=
1

2
𝑧
2

1
+ 𝑉
0
(𝜂) (12)

satisfies

�̇�
1
≤ 𝑧
1
(𝑑
1
(𝑡) 𝜗
1
+ 𝑔
1
(𝑡, 𝜂, 𝑥)) + 𝑑

1
(𝑡) 𝑧
1
𝑧
2

− (1 − 𝜖) 𝜌 ∘ 𝛼 (
𝜂
) 𝛼0 (

𝜂
) + 𝛿𝛾 (

𝑥1
) 𝑥
2

1
.

(13)

According to Assumption 3 and the completion of squares,
we have

𝑧
1
𝑔
1
(𝑡, 𝜂, 𝑥) ≤

𝑧1
 (𝑝11𝜙11 (

𝜂
) + 𝑝

12

𝑧1
 𝜙121 (𝑥1))

≤ 𝜙
2

11
(
𝜂
) +

1

4
𝑧
2

1
𝑝
11

2

+ 𝑧
2

1
𝑝
12

𝜙121 (𝑥1)
 .

(14)

Define 𝑝∗ = max{𝛿, 𝑝
𝑖1
, 𝑝
𝑖2
, 𝑝
2

𝑖1
, 𝑝
2

𝑖2
| 𝑖 = 1, . . . , 𝑛}, and we

get

𝑧
1
𝑔
1
(𝑡, 𝜂, 𝑥) + 𝛿𝛾 (

𝑥1
) 𝑥
2

1

≤ 𝜙
2

11
(
𝜂
) +

1

4
𝑧
2

1
𝑝
11

2
+ 𝑧
2

1
𝑝
12

𝜙121 (𝑥1)


+ 𝛿𝛾 (
𝑥1

) 𝑥
2

1

≤ 𝜙
2

11
(
𝜂
) + 𝑝

∗
𝑧
2

1
(
1

4
+
𝜙121 (𝑥1)

 + 𝛾 (
𝑥1

))

≤ 𝜙
2

11
(
𝜂
) + 𝑧
2

1
𝜙
1
(𝑥
1
) 𝑝
∗

(15)

with a new smooth function 𝜙
1
(𝑥
1
) ≥ 1/4 + |𝜙

121
(𝑥
1
)| +

𝛾(|𝑥
1
|) > 0. As a result, there holds

�̇�
1
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) + 𝑑
1
(𝑡) 𝑧
1
𝜗
1

+ 𝑑
1
(𝑡) 𝑧
1
𝑧
2
+ 𝜙
2

11
(
𝜂
) + 𝑧
2

1
𝜙
1
(𝑥
1
) 𝑝
∗
.

(16)

Considering the unknown constant 𝑝∗ in (16), we use an
adaptive signal 𝑝 to estimate 𝑝∗. Consequently, we augment
𝑉
1
with the parameter estimation error 𝑝 = 𝑝

∗
− 𝑝, such as

𝑉
1
= 𝑉
1
+

1

2Υ
𝑝
2
, (17)

whereΥ > 0 is the design parameter. In view of (16) and 𝑝∗ =
𝑝 + 𝑝, a direct substitution leads to

̇
𝑉
1
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) + 𝑑
1
(𝑡) 𝑧
1
𝜗
1

+ 𝑧
2

1
𝜙
1
(𝑥
1
) 𝑝 + 𝑑

1
(𝑡) 𝑧
1
𝑧
2
+ 𝜙
2

11
(
𝜂
)

+
1

Υ
𝑝 (Υ𝜙

1
(𝑥
1
) 𝑧
2

1
−

̇̂
𝑝) .

(18)

Considering Assumption 4, we take the virtual control

𝜗
1
= −

1

𝑑
1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝) 𝑧
1
, (19)

where ]
1
> 0 is a design constant to be determined later. Let

𝜏
1
= Υ𝜙
1
(𝑥
1
) 𝑧
2

1
, (20)

and then we get

̇
𝑉
1
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − ]
1
𝑧
2

1
+ 𝜙
2

11
(
𝜂
)

+ 𝑑
1
(𝑡) 𝑧
1
𝑧
2
+
1

Υ
𝑝 (𝜏
1
−

̇̂
𝑝) .

(21)

Remark 9. It is noted that, in (19), we assume that 𝑝(𝑡) ≥ 0.
In fact, from the updating law of ̇̂

𝑝 given later, this property
can be guaranteed by choosing the initial condition 𝑝(0) ≥ 0.
Alternatively, using the idea in [20], we also can apply the 𝑝 ≤

√1 + 𝑝2 or 𝑝 ≤ (1 + 𝑝
2
)/2 instead of 𝑝.



4 Mathematical Problems in Engineering

Step 2. Let 𝑧
3
= 𝑥
3
− 𝜗
2
, where 𝜗

2
is the virtual control law.

We consider the Lyapunov function

𝑉
2
= 𝑉
1
+
1

2
𝑧
2

2
. (22)

In view of (21), we have

�̇�
2
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − ]
1
𝑧
2

1
+ 𝜙
2

11
(
𝜂
)

+ 𝑑
2
(𝑡) 𝑧
2
𝑧
3
+
1

Υ
𝑝 (𝜏
1
−

̇̂
𝑝) + 𝑧

2
(𝑑
2
(𝑡) 𝜗
2

+ 𝑔
2
(𝑡, 𝜂, 𝑥) −

𝜕𝜗
1

𝜕𝑥
1

𝑔
1
(𝑡, 𝜂, 𝑥) + 𝑑

1
(𝑡) 𝑧
1

−
𝜕𝜗
1

𝜕𝑥
1

𝑑
1
(𝑡) 𝑥
2
−
𝜕𝜗
1

𝜕𝑝

̇̂
𝑝) .

(23)

From (4) and (11), the following calculations hold:

𝑧
2
𝑔
2
(𝑡, 𝜂, 𝑥) ≤

𝑧2
 𝑝21𝜙21 (

𝜂
)

+
𝑧2

 𝑝22
𝑥1

 𝜙121 (𝑥2)

+
𝑧2

 𝑝22 (
𝑧2 + 𝜗

1

) 𝜙122 (𝑥2) .

(24)

Like the calculations in (14), by completing the squares, we
have

− 𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝑔
1
(𝑡, 𝜂, 𝑥)

≤ 𝜙
2

11
(
𝜂
) + 𝑧
2

1

+ 𝑝
∗
𝑧
2

2
(
1

4
(
𝜕𝜗
1

𝜕𝑥
1

)

2

+
1

4
(
𝜕𝜗
1

𝜕𝑥
1

)

2

𝜙
2

121
(𝑥
1
)) .

(25)

Define 𝜙
21
(𝑥
1
, 𝑝) = (1/4)(𝜕𝜗

1
/𝜕𝑥
1
)
2
(1 + 𝜙

2

121
(𝑥
1
)), and then

we have

−𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝑔
1
(𝑡, 𝜂, 𝑥) ≤ 𝜙

2

11
(
𝜂
) + 𝑧
2

1

+ 𝑧
2

2
𝜙
21
(𝑥
1
, 𝑝) 𝑝
∗
.

(26)

In the same manner, using the completion of squares again,
it can be verified that

𝑧2
 𝑝21𝜙21 (

𝜂
) ≤ 𝜙

2

21
(
𝜂
) +

1

4
𝑝
2

21
𝑧
2

2
,

𝑧2
 𝑝22

𝑧1
 𝜙121 (𝑥2) ≤ 𝑧

2

1
+
1

4
𝑝
2

22
𝑧
2

2
𝜙
2

121
(𝑥
2
) ,

𝑧2
 𝑝22 (

𝑧2 + 𝜗
1

) 𝜙122 (𝑥2)

≤ 𝑧
2

2
𝑝
22
𝜙
122

(𝑥
2
) +

𝑧2
 𝑝22

𝜗1
 𝜙122 (𝑥2)

≤ 𝑧
2

2
𝑝
22
𝜙
122

(𝑥
2
)

+
𝑧2

 𝑝22



−
1

𝑑
1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝) 𝑧
1



𝜙
122

(𝑥
2
)

≤ 𝑧
2

2
𝑝
22
𝜙
122

(𝑥
2
) + 𝑧
2

1

+
1

4
𝑝
2

22
𝑧
2

2

1

𝑑
2

1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝)
2

𝜙
2

122
(𝑥
2
) .

(27)

As a result,

𝑧
2
𝑔
2
(𝑡, 𝜂, 𝑥) ≤ 𝜙

2

21
(
𝜂
) + 2𝑧

2

1
+ 𝑧
2

2
𝑝
∗
(
1

4

+
1

4
𝜙
2

121
(𝑥
2
) + 𝜙
122

(𝑥
2
)

+
1

4

1

𝑑
2

1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝)
2

𝜙
2

122
(𝑥
2
)) .

(28)

Define 𝜙
22
(𝑥
2
, 𝑝) = 1/4 + (1/4)𝜙

2

121
(𝑥
2
) + 𝜙
122
(𝑥
2
) + (1/4)(1/

𝑑
2

1
)(]
1
+ 𝜙
1
(𝑥
1
)𝑝)
2
𝜙
2

122
(𝑥
2
), and then

𝑧
2
𝑔
2
(𝑡, 𝜂, 𝑥) ≤ 𝜙

2

21
(
𝜂
) + 2𝑧

2

1
+ 𝑧
2

2
𝑝
∗
𝜙
22
(𝑥
2
, 𝑝) . (29)

Let 𝜙
2
(𝑥
2
, 𝑝) = 𝜙

21
(𝑥
1
, 𝑝) + 𝜙

22
(𝑥
2
, 𝑝) > 0, and then we get

𝑧
2
(𝑔
2
(𝑡, 𝜂, 𝑥) −

𝜕𝜗
1

𝜕𝑥
1

𝑔
1
(𝑡, 𝜂, 𝑥))

≤

2

∑

𝑗=1

𝜙
2

𝑗1
(
𝜂
) + 3𝑧

2

1
+ 𝑧
2

2
𝜙
2
(𝑥
2
, 𝑝) 𝑝
∗
.

(30)

From Assumption 4, it is deduced that

𝑧
2
(𝑑
1
(𝑡) 𝑧
1
−
𝜕𝜗
1

𝜕𝑥
1

𝑑
1
(𝑡) 𝑥
2
)

≤
𝑧2



𝑑1 (𝑡)


𝑧1
 +

𝑧2




𝜕𝜗
1

𝜕𝑥
1



𝑑1 (𝑡)
 (
𝑧2

 +
𝜗1

)

≤ 𝑧
2

1
+
𝑑
2

1

4
𝑧
2

2
+ 𝑧
2

2

𝑑
1

2
(1 + (

𝜕𝜗
1

𝜕𝑥
1

)

2

) + 𝑧
2

1

+
1

4
𝑧
2

2
(
𝜕𝜗
1

𝜕𝑥
1

)

2
𝑑
2

1

𝑑
2

1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝)
2

.

(31)

Define 𝜙
21
(𝑥
2
, 𝑝) = 𝑑

2

1
/4 + (1/4)(𝑑

2

1
/𝑑
2

1
)(𝜕𝜗
1
/𝜕𝑥
1
)
2
(]
1
+

𝜙
1
(𝑥
1
)𝑝)
2
+ (𝑑
1
/2)(1 + (𝜕𝜗

1
/𝜕𝑥
1
)
2
), and there holds

𝑧
2
(𝑑
1
(𝑡) 𝑧
1
−
𝜕𝜗
1

𝜕𝑥
1

𝑑
1
(𝑡) 𝑥
2
) ≤ 2𝑧

2

1
+ 𝑧
2

2
𝜙
21
(𝑥
2
, 𝑝) . (32)

Take the following notation:

𝜏
2
= 𝜏
1
+ Υ𝑧
2

2
𝜙
2
(𝑥
2
, 𝑝) , (33)
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and furthermore, in view of (30) and (32), we obtain

�̇�
2
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − (]

1
− 5) 𝑧

2

1

+ 2𝜙
2

11
(
𝜂
) + 𝜙

2

21
(
𝜂
) + 𝑑
2
(𝑡) 𝑧
2
𝑧
3
+ 𝑧
2
(𝑑
2
(𝑡) 𝜗
2

+ 𝑧
2
𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝑧

2
𝜙
21
(𝑥
2
, 𝑝) −

𝜕𝜗
1

𝜕𝑝

̇̂
𝑝) +

1

Υ

⋅ 𝑝 (𝜏
2
−

̇̂
𝑝) .

(34)

Considering 𝑑
2
(𝑡) is unknown, the term of −(𝜕𝜗

1
/𝜕𝑝)

̇̂
𝑝 can

not be canceled. In fact, we express (34) as

�̇�
2
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − (]

1
− 5) 𝑧

2

1

+ 2𝜙
2

11
(
𝜂
) + 𝜙

2

21
(
𝜂
) + 𝑑
2
(𝑡) 𝑧
2
𝑧
3
+ 𝑧
2
(𝑑
2
(𝑡) 𝜗
2

+ 𝑧
2
𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝑧

2
𝜙
21
(𝑥
2
, 𝑝) −

𝜕𝜗
1

𝜕𝑝
𝜏
2
) + (

1

Υ
𝑝

+ 𝑧
2

𝜕𝜗
1

𝜕𝑝
) (𝜏
2
−

̇̂
𝑝) .

(35)

For the term of −𝑧
2
(𝜕𝜗
1
/𝜕𝑝)𝜏

2
, according to (33), it can be

dealt with as follows:

− 𝑧
2

𝜕𝜗
1

𝜕𝑝
𝜏
2
= −𝑧
2

𝜕𝜗
1

𝜕𝑝
Υ (𝑧
2

1
𝜙
1
(𝑥
1
) + 𝑧
2

2
𝜙
2
(𝑥
2
, 𝑝))

≤ 𝑧
2

1
+
1

4
Υ
2
𝑧
2

2
(
𝜕𝜗
1

𝜕𝑝
)

2

𝑧
2

1
𝜙
2

1
(𝑥
1
) + 𝑧
2

2

1

4
Υ (1 + 𝑧

2

2
)

⋅ 𝜙
2
(𝑥
2
, 𝑝) (1 + (

𝜕𝜗
1

𝜕𝑝
)

2

) = 𝑧
2

1

+ 𝑧
2

2
(
1

4
Υ
2
(
𝜕𝜗
1

𝜕𝑝
)

2

𝑧
2

1
𝜙
2

1
(𝑥
1
)

+
1

4
Υ (1 + 𝑧

2

2
) 𝜙
2
(𝑥
2
, 𝑝) (1 + (

𝜕𝜗
1

𝜕𝑝
)

2

)) .

(36)

Define the following smooth function: 𝜙
22
(𝑥
2
, 𝑝) = (1/

4)Υ
2
𝑧
2

1
(𝜕𝜗
1
/𝜕𝑝)
2
𝜙
2

1
(𝑥
1
) + (1/4)Υ(1 + 𝑧

2

2
)𝜙
2
(𝑥
2
, 𝑝)(1 + (𝜕𝜗

1
/

𝜕𝑝)
2
), and we get

−𝑧
2

𝜕𝜗
1

𝜕𝑝
𝜏
2
≤ 𝑧
2

1
+ 𝑧
2

2
𝜙
22
(𝑥
2
, 𝑝) . (37)

Denote 𝜙
2
(𝑥
2
, 𝑝) = 𝜙

21
(𝑥
2
, 𝑝) + 𝜙

22
(𝑥
2
, 𝑝) > 0, and a direct

substitution leads to

�̇�
2
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − (]

1
− 6) 𝑧

2

1

+ 2𝜙
2

11
(
𝜂
) + 𝜙

2

21
(
𝜂
) + 𝑑
2
(𝑡) 𝑧
2
𝑧
3

+ 𝑧
2
(𝑑
2
(𝑡) 𝜗
2
+ 𝑧
2
𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝑧

2
𝜙
2
(𝑥
2
, 𝑝))

+ (
1

Υ
𝑝 + 𝑧
2

𝜕𝜗
1

𝜕𝑝
) (𝜏
2
−

̇̂
𝑝) .

(38)

Take the virtual control

𝜗
2
= −

1

𝑑
2

(]
2
+ 𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝜙

2
(𝑥
2
, 𝑝)) 𝑧

2
, (39)

which is such that

�̇�
2
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − (]

1
− 6) 𝑧

2

1
− ]
2
𝑧
2

2

+ 2𝜙
2

11
(
𝜂
) + 𝜙

2

21
(
𝜂
) + 𝑑
2
(𝑡) 𝑧
2
𝑧
3

+ (
1

Υ
𝑝 + 𝑧
2

𝜕𝜗
1

𝜕𝑝
) (𝜏
2
−

̇̂
𝑝) .

(40)

Step 𝑖 (3 ≤ 𝑖 ≤ 𝑛).Assume that, in Step 𝑖−1, we have designed
the virtual control 𝜗

𝑗
(𝑗 = 1, . . . , 𝑖−1) and the tuning function

𝜏
𝑗
(𝑗 = 1, . . . , 𝑖 − 1), such that the Lyapunov function

𝑉
𝑖−1

=

𝑖−1

∑

𝑗=1

1

2
𝑧
2

𝑗
+

1

2Υ
𝑝
2 (41)

satisfies

�̇�
𝑖−1

≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (
𝜂
) 𝛼0 (

𝜂
)

− (]
1
− 6 −

𝑖−1

∑

𝑗=3

(2𝑗 + 1)) 𝑧
2

1

− (]
2
− 7 −

𝑖−1

∑

𝑗=4

(2𝑗)) 𝑧
2

2
− ⋅ ⋅ ⋅

− (]
𝑖−2

− 7) 𝑧
2

𝑖−2
− ]
𝑖−1
𝑧
2

𝑖−1

+ (
1

Υ
𝑝 +

𝑖−1

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
) (𝜏
𝑖−1

−
̇̂
𝑝)

+ 𝑑
𝑖−1

(𝑡) 𝑧
𝑖−1
𝑧
𝑖
+

𝑖−1

∑

𝑗=1

(𝑖 − 𝑗) 𝜙
2

𝑗1
(
𝜂
) .

(42)

In what follows, it will be shown that the property (42) also
holds in Step 𝑖.

Let 𝜗
𝑖
be the virtual control and 𝑧

𝑖+1
= 𝑥
𝑖+1

−𝜗
𝑖
. Consider

the Lyapunov function

𝑉
𝑖
= 𝑉
𝑖−1

+
1

2
𝑧
2

𝑖
. (43)

To begin with, the dynamics of 𝑧
𝑖
can be expressed as

�̇�
𝑖
= 𝑑
𝑖
(𝑡) 𝜗
𝑖
+ 𝑔
𝑖
(𝑡, 𝜂, 𝑥) −

𝑖−1

∑

𝑗=1

𝜕𝜗
𝑖−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑡, 𝜂, 𝑥)

−

𝑖−1

∑

𝑗=1

𝜕𝜗
𝑖−1

𝜕𝑥
𝑗

𝑑
𝑗
(𝑡) 𝑥
𝑗+1

−
𝜕𝜗
𝑖−1

𝜕𝑝

̇̂
𝑝 + 𝑑
𝑖
(𝑡) 𝑧
𝑖+1
.

(44)

For notational convenience, denote 𝜗
0

= 0. From 𝑥
𝑘

=

𝑧
𝑘
+ 𝜗
𝑘−1

= 𝑧
𝑘
− (1/𝑑

𝑘−1
)(]
𝑘−1

+ 𝜙
𝑘−1

(𝑥
[𝑘−1]

, 𝑝)𝑝 +
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𝜙
𝑖
(𝑥
[𝑘−1]

, 𝑝))𝑧
𝑘−1

(𝑘 = 1, . . . , 𝑖 − 1), like the calculations
in (26), it can be verified that there exist smooth functions
𝜙
𝑖𝑗
(⋅) (𝑗 = 1, . . . , 𝑖) > 0, such that, for 𝑗 = 1, . . . , 𝑖 − 1,

−𝑧
𝑖

𝜕𝜗
𝑖−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑡, 𝜂, 𝑥) ≤ 𝜙

2

𝑗1
(
𝜂
) +

𝑗−1

∑

𝑘=1

(2𝑧
2

𝑘
) + 𝑧
2

𝑗

+ 𝑧
2

𝑖
𝜙
𝑖𝑗
(𝑥
𝑗
, 𝑝) 𝑝
∗
,

𝑧
𝑖
𝑔
𝑖
(𝑡, 𝜂, 𝑥) ≤ 𝜙

2

𝑖1
(
𝜂
)

+

𝑖−1

∑

𝑘=1

(2𝑧
2

𝑘
) + 𝑧
2

𝑖
𝜙
𝑖𝑖
(𝑥
𝑖
, 𝑝) 𝑝
∗
.

(45)

Define 𝜙
𝑖
(𝑥
𝑖
, 𝑝) = ∑

𝑖

𝑗=1
𝜙
𝑖𝑗
(𝑥
𝑗
, 𝑝); from (45), it follows that

𝑧
𝑖
(𝑔
𝑖
(𝑡, 𝜂, 𝑥) −

𝑖−1

∑

𝑗=1

𝜕𝜗
𝑖−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑡, 𝜂, 𝑥))

≤

𝑖

∑

𝑗=1

𝜙
2

𝑗1
(
𝜂
)

+

𝑖−1

∑

𝑗=1

(1 + 2 (𝑖 − 𝑗)) 𝑧
2

𝑗
+ 𝑧
2

𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) 𝑝
∗
.

(46)

Similar to (31) and (32), there exists a smooth function
𝜙
𝑖1
(𝑥
𝑖
, 𝑝) such that

𝑧
𝑖
(𝑑
𝑖−1

(𝑡) 𝑧
𝑖−1

−

𝑖−1

∑

𝑗=1

𝜕𝜗
𝑖−1

𝜕𝑥
𝑗

𝑑
𝑗
(𝑡) 𝑥
𝑗+1

)

≤ 𝑧
2

1
+

𝑖−2

∑

𝑘=2

(2𝑧
2

𝑘
) + 3𝑧

2

𝑖−1
+ 𝑧
2

𝑖
𝜙
𝑖1
(𝑥
𝑖
, 𝑝) .

(47)

Let

𝜏
𝑖
= 𝜏
𝑖−1

+ Υ𝑧
2

𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) , (48)

and then, from (47) and (48), there holds

�̇�
𝑖
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) − (]

1
− 6

−

𝑖−1

∑

𝑗=3

(2𝑗 + 1) − 2𝑖) 𝑧
2

1
− (]
2
− 7

−

𝑖−1

∑

𝑗=4

(2𝑗) − 1 − 2 (𝑖 − 1)) 𝑧
2

2
− ⋅ ⋅ ⋅ − (]

𝑖−2
− 7 − 7)

⋅ 𝑧
2

𝑖−2
− (]
𝑖−1

− 6) 𝑧
2

𝑖−1
+

𝑖

∑

𝑗=1

(𝑖 − 𝑗 + 1) 𝜙
2

𝑗1
(
𝜂
)

+ 𝑑
𝑖
(𝑡) 𝑧
𝑖
𝑧
𝑖+1

+ 𝑧
𝑖
(𝑑
𝑖
(𝑡) 𝜗
𝑖
+ 𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) 𝑝

+ 𝑧
𝑖
𝜙
𝑖1
(𝑥
𝑖
, 𝑝)

−

𝑖−1

∑

j=2
𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
⋅ Υ𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) −

𝜕𝜗
𝑖−1

𝜕𝑝
𝜏
𝑖
) + (

1

Υ
𝑝

+

𝑖

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
) (𝜏
𝑖
−

̇̂
𝑝) .

(49)

Remark 10. In (49), we subtract two terms −∑𝑖−1
𝑗=2

𝑧
𝑗
(𝜕𝜗
𝑗−1

/

𝜕𝑝)⋅Υ𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) and−(𝜕𝜗

𝑖−1
/𝜕𝑝)𝜏

𝑖
in the brackets to generate

the term ((1/Υ)𝑝 + ∑
𝑖

𝑗=2
𝑧
𝑗
(𝜕𝜗
𝑗−1

/𝜕𝑝))(𝜏
𝑖
−

̇̂
𝑝).

However, from (49), it can be seen that, due to the
unknown control coefficient 𝑑

𝑖
(𝑡), the terms −∑𝑖−1

𝑗=2
𝑧
𝑗
(𝜕𝜗
𝑗−1

/

𝜕𝑝) ⋅ 𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) and −(𝜕𝜗

𝑖−1
/𝜕𝑝)𝜏

𝑖
could not be directly

canceled by the coming virtual control 𝜗
𝑖
. We get around this

burden by the following estimates:

− 𝑧
𝑖

𝑖−1

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
⋅ Υ𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝)

≤ 𝑧
2

𝑖

1

2
(1 + Υ

2
(

𝑖−1

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
)

2

𝜙
2

𝑖
(𝑥
𝑖
, 𝑝)) ,

− 𝑧
𝑖

𝜕𝜗
𝑖−1

𝜕𝑝
𝜏
𝑖
= −𝑧
𝑖

𝜕𝜗
𝑖−1

𝜕𝑝
Υ (𝑧
2

1
𝜙
1
+ ⋅ ⋅ ⋅ + 𝑧

2

𝑖
𝜙
𝑖
)

≤

𝑖−1

∑

𝑗=1

𝑧
2

𝑗
+ 𝑧
2

𝑖

1

4
Υ
2
(
𝜕𝜗
𝑖−1

𝜕𝑝
)

2 𝑖

∑

𝑗=1

𝑧
2

𝑗
𝜙
2

𝑗
(𝑥
𝑗
, 𝑝) .

(50)

Let 𝜙
𝑖
(𝑥
𝑖
, 𝑝) = (1/4)Υ

2
(𝜕𝜗
𝑖−1
/𝜕𝑝)
2
∑
𝑖

𝑗=1
𝑧
2

𝑗
𝜙
2

𝑗
(𝑥
𝑗
, 𝑝) + (1/

2)(1 + Υ
2
(∑
𝑖−1

𝑗=2
𝑧
𝑗
(𝜕𝜗
𝑗−1

/𝜕𝑝))
2
𝜙
2

𝑖
(𝑥
𝑖
, 𝑝)) + 𝜙

𝑖1
(𝑥
𝑖
, 𝑝) > 0, and

then we get

𝑧
𝑖
(𝑧
𝑖
𝜙
𝑖1
(𝑥
𝑖
, 𝑝) −

𝑖−1

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
⋅ 𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝)

−
𝜕𝜗
𝑖−1

𝜕𝑝
𝜏
𝑖
) ≤

𝑖−1

∑

𝑗=1

𝑧
2

𝑗
+ 𝑧
2

𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) .

(51)

By substituting (51) into (49), it follows that

�̇�
𝑖
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
)

− (]
1
− 6 −

𝑖

∑

𝑗=3

(2𝑗 + 1)) 𝑧
2

1

− (]
2
− 7 −

𝑖

∑

𝑗=4

(2𝑗)) 𝑧
2

2
− ⋅ ⋅ ⋅

− (]
𝑖−2

− 7 − 8) 𝑧
2

𝑖−2
− (]
𝑖−1

− 7) 𝑧
2

𝑖−1

+ 𝑧
𝑖
(𝑑
𝑖
(𝑡) 𝜗
𝑖
+ 𝑧
𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝) 𝑝 + 𝑧

𝑖
𝜙
𝑖
(𝑥
𝑖
, 𝑝))
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+ (
1

Υ
𝑝 +

𝑖

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
) (𝜏
𝑖
−

̇̂
𝑝)

+

𝑖

∑

𝑗=1

(𝑖 − 𝑗 + 1) 𝜙
2

𝑗1
(
𝜂
) + 𝑑
𝑖
(𝑡) 𝑧
𝑖
𝑧
𝑖+1
.

(52)

Take the virtual control

𝜗
𝑖
= −

1

𝑑
𝑖

(]
𝑖
+ 𝜙
𝑖
(𝑥
𝑖
, 𝑝) 𝑝 + 𝜙

𝑖
(𝑥
𝑖
, 𝑝)) 𝑧

𝑖
, (53)

and then the following holds:

�̇�
𝑖
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
)

− (]
1
− 6 −

𝑖

∑

𝑗=3

(2𝑗 + 1)) 𝑧
2

1

− (]
2
− 7 −

𝑖

∑

𝑗=4

(2𝑗)) 𝑧
2

2
− ⋅ ⋅ ⋅ − (]

𝑖−1
− 7) 𝑧

2

𝑖−1

− ]
𝑖
𝑧
2

𝑖
+

𝑖

∑

𝑗=1

(𝑖 − 𝑗 + 1) 𝜙
2

𝑗1
(
𝜂
)

+ (
1

Υ
𝑝 +

𝑖

∑

𝑗=2

𝑧
𝑗

𝜕𝜗
𝑗−1

𝜕𝑝
) (𝜏
𝑖
−

̇̂
𝑝) + 𝑑

𝑖
(𝑡) 𝑧
𝑖
𝑧
𝑖+1
.

(54)

In particular, when 𝑖 = 𝑛, the actual control 𝑢 appears,
and we choose the controller 𝑢 and updating law 𝜏

𝑛
for 𝑝(𝑡)

as follows:

𝑢 = −
1

𝑑
𝑛

(]
𝑛
+ 𝜙
𝑛
(𝑥, 𝑝) 𝑝 + 𝜙

𝑛
(𝑥, 𝑝)) 𝑧

𝑛
, (55)

̇̂
𝑝 = 𝜏
𝑛
=

𝑛

∑

𝑗=1

Υ𝑧
2

𝑗
𝜙
𝑗
(𝑥
𝑗
, 𝑝) , (56)

such that the Lyapunov function

𝑉
𝑛
=

𝑛

∑

𝑗=1

1

2
𝑧
2

𝑗
+

1

2Υ
𝑝
2 (57)

satisfies

�̇�
𝑛
≤ − (1 − 𝜖) 𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
)

− (]
1
− 6 −

𝑛

∑

𝑗=3

(2𝑗 + 1))𝑧
2

1

− (]
2
− 7 −

𝑛

∑

𝑗=4

(2𝑗)) 𝑧
2

2
− ⋅ ⋅ ⋅ − (]

𝑛−1
− 7) 𝑧

2

𝑛−1

− ]
𝑛
𝑧
2

𝑛
+

𝑛

∑

𝑗=1

(𝑛 − 𝑗 + 1) 𝜙
2

𝑗1
(
𝜂
) .

(58)

This completes the controller design procedure.

4. Main Results

After the above controller design procedure, we are now ready
to state the main results.

Theorem 11. Suppose the investigated system (1) satisfies
Assumptions 1, 3, and 4 together with the local conditions

𝜙
2

𝑖1
(𝑠) = 𝑂 (𝛼

0
(𝑠)) , 𝑖 = 1, . . . , 𝑛. (59)

Then all the signals of the closed-loop system (1) with the
controller (55) and updating law (56) are bounded on [0, +∞).
Specifically, the following convergent property holds:

lim
𝑡→∞

(
𝜂 (𝑡)

 + |𝑥 (𝑡)| + |𝑢 (𝑡)|) = 0. (60)

Proof. From the local conditions (59), one can choose the
smooth function 𝜌(⋅) such that

𝑛

∑

𝑗=1

(𝑛 − 𝑗 + 1) 𝜙
2

𝑗1
(
𝜂
) ≤

1 − 𝜖

2
𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) . (61)

One can choose positive constants ]
𝑗
(𝑗 = 1, . . . , 𝑛) satisfying

]
1
− 6 −

𝑛

∑

𝑗=3

(2𝑗 + 1) ≥ 1,

]
2
− 7 −

𝑛

∑

𝑗=4

(2𝑗) ≥ 1,

.

.

.

]
𝑛−1

− 7 ≥ 1,

]
𝑛
≥ 1.

(62)

Then, from (58), (61), and (62), it follows that

�̇�
𝑛
≤ −

1 − 𝜖

2
𝜌 ∘ 𝛼 (

𝜂
) 𝛼0 (

𝜂
) −

𝑛

∑

𝑖=1

𝑧
2

𝑖
. (63)

Now, assume that the maximal interval of existence of the
solution of the closed-loop system starting from any given
initial conditions is [0, 𝑡

𝑓
) for some 𝑡

𝑓
> 0. In view of 0 <

𝜖 < 1, from (63), it can be concluded that 𝑉
𝑛
and hence the

variables (𝜂(𝑡), 𝑧
1
(𝑡), . . . , 𝑧

𝑛
(𝑡), 𝑝(𝑡)) are bounded on [0, 𝑡

𝑓
).

In terms of 𝑝(𝑡) = 𝑝
∗
− 𝑝(𝑡), we obtain the boundedness of

𝑝(𝑡). Considering (53), it can be derived that 𝜗
𝑖
(𝑖 = 1, . . . , 𝑛)

are bounded. In view of 𝑧
𝑖
= 𝑥
𝑖
− 𝜗
𝑖−1
(𝜗
0
= 0), we further

obtain that the states 𝑥
𝑖
(𝑖 = 1, . . . , 𝑛) are bounded on [0, 𝑡

𝑓
).

So far all the closed-loop system signals are bounded on
[0, 𝑡
𝑓
). This guarantees that the finite time escape will not

happen. Therefore, it is natural that 𝑡
𝑓
can be maximized to

+∞ by means of Theorem 3.3 in [21]. Next we will prove the
convergence property of (60).

Again, according to (63), considering 𝛼 and 𝛼
0
are

𝐾
∞
-functions, a direct application of LaSalle’s invariance
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principle in [21] guarantees the convergence property of
(𝜂(𝑡), 𝑧

1
(𝑡), . . . , 𝑧

𝑛
(𝑡)); that is,

lim
𝑡→∞

𝜂 (𝑡) = 0,

lim
𝑡→∞

𝑧
𝑖
(𝑡) = 0 (𝑖 = 1, . . . , 𝑛) .

(64)

As a consequence, from (53) and (55), the following holds:

lim
𝑡→∞

𝜗
𝑖
(𝑡) = 0 (𝑖 = 1, . . . , 𝑛) . (65)

Particularly,

lim
𝑡→∞

𝑢 (𝑡) = 0. (66)

In terms of (64), (65), and 𝑥
𝑖
= 𝑧
𝑖
+𝜗
𝑖−1

(𝑖 = 1, . . . , 𝑛), we can
obtain

lim
𝑡→∞

𝑥
𝑖
(𝑡) = 0 (𝑖 = 1, . . . , 𝑛) . (67)

This completes the proof.

It is noted that, under some stronger conditions, the
designed control law can be a linear controller. In fact, we
have the following statement.

Theorem 12. Suppose that the conditions for Theorem 11 are
satisfied with 𝛿

0
known a priori and the following additional

assumptions hold:

(i) The uncertain functions 𝜙
𝑖1
(⋅) (𝑖 = 1, . . . , 𝑛) satisfy

lim sup
𝑠→+∞

𝜙
2

𝑖1
(𝑠)

𝛼
0
(𝑠)

< +∞. (68)

(ii) There exist known constants 𝑝
𝑖𝑗
> 0 (𝑖 = 1, . . . , 𝑛; 𝑗 =

1, 2), such that
𝑔𝑖 (𝑡, 𝜂, 𝑥)

 ≤ 𝑝
𝑖1
𝜙
𝑖1
(
𝜂
) + 𝑝

𝑖2
(
𝑥1

 + ⋅ ⋅ ⋅ +
𝑥𝑖
) ,

𝑖 = 1, . . . , 𝑛.

(69)

(iii) 𝛾
0
(|𝑠|) = 𝑘𝑠

2 where 𝑘 is a positive constant.

Then, the proposed design method can result in a linear
control law

𝑢 = −
1

𝑑
𝑛

]
𝑛
𝑧
𝑛

= −
1

𝑑
𝑛

]
𝑛
(𝑥
𝑛
+ ]
𝑛−1

(𝑥
𝑛−1

+ ⋅ ⋅ ⋅ + ]
1
𝑥
1
)) ,

(70)

where ]
𝑖
(𝑖 = 1, . . . , 𝑛) are some sufficiently large positive

constants.

Proof. Under the above hypotheses (i)–(iii), it is known that
the constant 𝑝∗ is known, and hence the estimation 𝑝 for
𝑝
∗ is no longer needed. Moreover, since conditions (59) and

(68) are satisfied, the function 𝜌(⋅) in (7) can be chosen as

a constant 𝜌 > 0. For 𝑖 = 1, . . . , 𝑛, we consider the following
function:

𝑉
0𝑖
(𝜂) = ∫

𝑉0(𝜂)

0

𝜌
𝑖
𝑑𝑠, (71)

where 𝜌
𝑖
(𝑖 = 1, . . . , 𝑛) are design constants. In view of (3), we

can get

̇
𝑉
0𝑖
(𝜂) ≤ −𝜌

𝑖
𝛼
0
(
𝜂
) + 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
)

= −𝜙
2

𝑖1
(
𝜂
) + 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
) + 𝜙

2

𝑖1
(
𝜂
)

− 𝜌
𝑖
𝛼
0
(
𝜂
) − 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
) + 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
)

(72)

with some positive constants 𝜌
𝑖
(𝑖 = 1, . . . , 𝑛). We will prove

that if the constants𝜌
𝑖
and𝜌
𝑖
are chosen suitably, the following

inequality holds:

𝜙
2

𝑖1
(
𝜂
) − 𝜌
𝑖
𝛼
0
(
𝜂
) − 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
) + 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
) ≤ 0,

𝑖 = 1, . . . , 𝑛.

(73)

In fact, because of 𝜙2
𝑖1
(𝑠) = 𝑂(𝛼

0
(𝑠)), there exist positive

constants 𝑠
𝑖
> 0, 𝑐

𝑖
> 0 satisfying 𝜙

2

𝑖1
(𝑠) ≤ 𝑐

𝑖
𝛼
0
(𝑠), for

𝑠 ∈ [0, 𝑠
𝑖
]. Take 𝜌

𝑖
≥ 𝑐
𝑖
+ 1, 𝜌

𝑖
= 𝜌
𝑖
+ 1, and then

𝜙
2

𝑖1
(𝑠) − 𝜌

𝑖
𝛼
0
(𝑠) ≤ 0 and (𝜌

𝑖
− 𝜌
𝑖
)𝛿
0
𝛾
0
(|𝑦|) ≤ 0. In view of

lim sup
𝑠→∞

(𝜙
2

𝑖1
(𝑠)/𝛼
0
(𝑠)) < ∞, there exist positive constants

𝑠


𝑖
> 0, 𝑐

𝑖
> 0 satisfying 𝜙

2

𝑖1
(𝑠) ≤ 𝑐



𝑖
𝛼
0
(𝑠) if 𝑠 ∈ [𝑠



𝑖
,∞].

Similarly, if we take 𝜌
𝑖

≥ 𝑐


𝑖
+ 1 and 𝜌

𝑖
= 𝜌
𝑖
+ 1, then

𝜙
2

𝑖1
(𝑠) − 𝜌

𝑖
𝛼
0
(𝑠) ≤ 0, (𝜌

𝑖
− 𝜌
𝑖
)𝛿
0
𝛾
0
(|𝑦|) ≤ 0. In the finite closed

interval [𝑠
𝑖
, 𝑠


𝑖
], let 𝛼

0
(𝑠) be the minimum value of 𝛼

0
(𝑠) and

let 𝜙2
𝑖1
(𝑠) be the maximum value of 𝜙2

𝑖1
(𝑠), respectively, and if

we take 𝜌
𝑖
≥ 𝜙
2

𝑖1
(𝑠)/𝛼
0
(𝑠), 𝜌
𝑖
= 𝜌
𝑖
+1, then 𝜙2

𝑖1
(𝑠) −𝜌

𝑖
𝛼
0
(𝑠) ≤ 0,

(𝜌
𝑖
− 𝜌
𝑖
)𝛿
0
𝛾
0
(|𝑦|) ≤ 0. According to the previous analysis, we

choose 𝜌
𝑖
= 𝑐
𝑖
+ 1 + 𝑐



𝑖
+ 1 + 𝜙

2

𝑖1
(𝑠)/𝛼
0
(𝑠) and 𝜌

𝑖
= 𝜌
𝑖
+ 1, and

then (72) holds. Therefore we get

̇
𝑉
0𝑖
(𝜂) ≤ −𝜙

2

𝑖1
(
𝜂
) + 𝜌
𝑖
𝛿
0
𝛾
0
(
𝑦
) , 𝑖 = 1, . . . , 𝑛. (74)

In view of 𝛾
0
(𝑠) = 𝑘𝑠

2, a direct substitution in (74) results in

̇
𝑉
0𝑖
(𝜂) ≤ −𝜙

2

𝑖1
(
𝜂
) + 𝜌
𝑖
𝛿
0
𝑘𝑦
2
, 𝑖 = 1, . . . , 𝑛. (75)

To deal with the unmeasured dynamics 𝜂 in this case, we can
choose the candidate Lyapunov function as follows:

𝑉
𝑛
=

𝑛

∑

𝑖=1

1

2
𝑧
2

𝑖
+

𝑛

∑

𝑖=1

(𝑛 − 𝑖 + 2)𝑉
0𝑖
(𝜂) . (76)

Consequently, a modified version of the design procedure in
Section 3 leads to the linear control law

𝑢 = −
1

𝑑
𝑛

]
𝑛
𝑧
𝑛

= −
1

𝑑
𝑛

]
𝑛
(𝑥
𝑛
+ ]
𝑛−1

(𝑥
𝑛−1

+ ⋅ ⋅ ⋅ + ]
1
𝑥
1
))

(77)

with some sufficiently large positive constants ]
𝑖
(𝑖 =

1, . . . , 𝑛).
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5. Simulation Example

In this section, we provide a simulation example to illustrate
the proposed method in the paper. Consider the following
nonlinear systems:

̇𝜂 = −𝜂 + 𝛿 (𝑡) 𝑦
2
,

�̇�
1
= 𝑑
1
(𝑡) 𝑥
2
+ 𝜃
1
𝑥
1
+ 𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

,

�̇�
2
= 𝑑
2
(𝑡) 𝑢 + 𝜃

3
sin (𝑡𝑥

1
𝑥
2
) 𝜂,

𝑦 = 𝑥
1

(78)

with 𝑞(𝑡, 𝜂, 𝑦) = −𝜂 + 𝛿(𝑡)𝑦
2, 𝛿(𝑡) = 1 + 𝑒

−𝑡, 𝑔
1
(𝑡, 𝜂, 𝑥) =

𝜃
1
𝑥
1
+𝜃
2
(𝑥
1
𝑥
2
/(1+𝑥

2

2
)), and 𝑔

2
(𝑡, 𝜂, 𝑥) = 𝜃

3
sin(𝑡𝑥

1
𝑥
2
)𝜂. The

inverse system ̇𝜂 = −𝜂 + 𝛿(𝑡)𝑦
2 is ISS, and 𝑉

0
(𝜂) = (1/2)𝜂

2

is a candidate ISS-Lyapunov function with the supply pair
𝛼
0
(|𝜂|) = (1/2)𝜂

2, 𝛿(𝑡)𝛾
0
(|𝑥
1
|) = (1 + 𝑒

−𝑡
)(1/4)𝑥

4

1
.

Next, we use the proposed algorithm in Section 3 to
design the partial-state feedback controller.

Step 1. We consider the function 𝑉
1
= (1/2)𝑧

2

1
+ (1/2)𝜂

2,
whose time derivative satisfies

�̇�
1
= 𝑧
1
(𝑑
1
(𝑡) 𝑥
2
+ 𝜃
1
𝑥
1
+ 𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

)

+ 𝜂 (−𝜂 + 𝛿 (𝑡) 𝑦
2
) .

(79)

Like the calculations in (14), we have

𝑧
1
𝜃
1
𝑥
1
≤
𝜃1

 𝑧
2

1
,

𝑧
1
𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

≤
1

2

𝜃2
 𝑧
2

1
,

𝜂𝛿 (𝑡) 𝑦
2
≤
1

4
𝜂
2
+ 𝛿
2
(𝑡) 𝑧
4

1
≤
1

4
𝜂
2
+ 𝛿
0
𝑧
4

1
,

(80)

where 𝛿
0
> 0 satisfying 𝛿2(𝑡) ≤ 𝛿

0
.

Define 𝑝∗ = max{𝛿
0
, |𝜃
𝑖
|, 𝜃
2

𝑖
| 𝑖 = 1, 2, 3}, and we get

𝑧
1
𝜃
1
𝑥
1
+ 𝑧
1
𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

+ 𝜂𝛿 (𝑡) 𝑦
2

≤
1

4
𝜂
2
+ 𝑝
∗
𝑧
2

1
(1 +

1

2
+ 𝑧
2

1
) ≤

1

4
𝜂
2
+ 𝑧
2

1
𝜙
1
(𝑥
1
) 𝑝
∗

(81)

with a new smooth function 𝜙
1
(𝑥
1
) ≥ 1 + 1/2 + 𝑧

2

1
> 0.

Similar to (17), we augment 𝑉
1
as follows:

𝑉
1
= 𝑉
1
+

1

2Υ
𝑝
2
, (82)

where Υ > 0 is the design parameter. In view of (79) and
𝑝
∗
= 𝑝 + 𝑝, a direct substitution leads to

̇
𝑉
1
≤ −(1 −

1

4
) 𝜂
2
+ 𝑑
1
(𝑡) 𝑧
1
𝜗
1
+ 𝑑
1
(𝑡) 𝑧
1
𝑧
2

+ 𝑧
2

1
𝜙
1
(𝑥
1
) 𝑝 +

1

Υ
𝑝 (Υ𝜙

1
(𝑥
1
) 𝑧
2

1
−

̇̂
𝑝) .

(83)

We take the virtual control and the tuning function

𝜗
1
= −

1

𝑑
1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝) 𝑧
1
, ]
1
> 0,

𝜏
1
= Υ𝜙
1
(𝑥
1
) 𝑧
2

1
,

(84)

and then we get

̇
𝑉
1
≤ −(1 −

1

4
) 𝜂
2
− ]
1
𝑧
2

1
+ 𝑑
1
(𝑡) 𝑧
1
𝑧
2

+
1

Υ
𝑝 (𝜏
1
−

̇̂
𝑝) .

(85)

Step 2. To find the actual control law 𝑢, we consider the
Lyapunov function

𝑉
2
= 𝑉
1
+
1

2
𝑧
2

2
. (86)

In view of (78) and (85), we have

�̇�
2
≤ −(1 −

1

4
) 𝜂
2
− ]
1
𝑧
2

1
+ 𝑑
1
(𝑡) 𝑧
1
𝑧
2
+
1

Υ
𝑝 (𝜏
1

−
̇̂
𝑝) + 𝑧

2
(𝑑
2
(𝑡) 𝑢 + 𝜃

3
sin (𝑡𝑥

1
𝑥
2
) 𝜂

−
𝜕𝜗
1

𝜕𝑥
1

(𝑑
1
(𝑡) 𝑥
2
+ 𝜃
1
𝑥
1
+ 𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

) −
𝜕𝜗
1

𝜕𝑝

̇̂
𝑝) .

(87)

As in (80), we have

𝑑
1
(𝑡) 𝑧
1
𝑧
2
≤ 𝑧
2

1
+
𝑑
2

1

4
𝑧
2

2
,

𝑧
2
𝜃
3
sin (𝑡𝑥

1
𝑥
2
) 𝜂 ≤

𝑧2𝜃3 sin (𝑡𝑥1𝑥2) 𝜂


≤
1

4
𝜂
2
+ 𝜃
2

3
𝑧
2

2
,

− 𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝜃
1
𝑥
1
≤ 𝑧
2

1
+
1

4
𝜃
2

1
𝑧
2

2
(
𝜕𝜗
1

𝜕𝑥
1

)

2

,

− 𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

≤ 𝑧
2

1
+
1

4
𝜃
2

2
𝑧
2

2
(
𝜕𝜗
1

𝜕𝑥
1

)

2
1

4
,

− 𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝑑
1
(𝑡) 𝑥
2

≤ 𝑧
2

2

𝑑
1

2
(1 + (

𝜕𝜗
1

𝜕𝑥
1

)

2

) + 𝑧
2

1

+
1

4
𝑧
2

2
(
𝜕𝜗
1

𝜕𝑥
1

)

2
𝑑
2

1

𝑑
2

1

(]
1
+ 𝜙
1
(𝑥
1
) 𝑝)
2

.

(88)

Consequently, in view of the definition of 𝑝∗, the following
holds:

𝑧
2
𝜃
3
sin (𝑡𝑥

1
𝑥
2
) 𝜂 − 𝑧

2

𝜕𝜗
1

𝜕𝑥
1

𝜃
1
𝑥
1
− 𝑧
2

𝜕𝜗
1

𝜕𝑥
1

𝜃
2

𝑥
1
𝑥
2

1 + 𝑥
2

2

≤
1

4
𝜂
2
+ 2𝑧
2

1
+ 𝑧
2

2
𝜙
2
(𝑥
1
, 𝑝) 𝑝
∗
,

(89)
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Figure 1: The response of the closed-loop system.

with 𝜙
2
(𝑥
1
, 𝑝) = 1 + (1/4)(𝜕𝜗

1
/𝜕𝑥
1
)
2
+ (1/4)(𝜕𝜗

1
/𝜕𝑥
1
)
2
(1/4).

Define 𝜙
21
(𝑥
1
, 𝑝) = 𝑑

2

1
/4+ (𝑑

1
/2)(1+ (𝜕𝜗

1
/𝜕𝑥
1
)
2
)+ (1/4)(𝑑

2

1
/

𝑑
2

1
)(𝜕𝜗
1
/𝜕𝑥
1
)
2
(]
1
+ 𝜙
1
(𝑥
1
)𝑝)
2, and one gets

𝑧
2
(𝑑
1
(𝑡) 𝑧
1
−
𝜕𝜗
1

𝜕𝑥
1

𝑑
1
(𝑡) 𝑥
2
) ≤ 2𝑧

2

1
+ 𝑧
2

2
𝜙
21
(𝑥
1
, 𝑝) . (90)

As a result, with 𝜏
2
= 𝜏
1
+ Υ𝑧
2

2
𝜙
2
(𝑥
1
, 𝑝), we have

�̇�
2
≤ −(1 −

2

4
) 𝜂
2
− (]
1
− 4) 𝑧

2

1
+ 𝑧
2

2
𝜙
2
(𝑥
1
, 𝑝) 𝑝

+ 𝑧
2

2
𝜙
21
(𝑥
1
, 𝑝) + (

1

Υ
𝑝 + 𝑧
2

𝜕𝜗
1

𝜕𝑝
) (𝜏
2
−

̇̂
𝑝)

+ 𝑧
2
𝑑
2
(𝑡) 𝑢 − 𝑧

2

𝜕𝜗
1

𝜕𝑝
𝜏
2
.

(91)

For the term of −𝑧
2
(𝜕𝜗
1
/𝜕𝑝)𝜏

2
, according to (36), it can be

verified that

− 𝑧
2

𝜕𝜗
1

𝜕𝑝
𝜏
2
≤ 𝑧
2

1
+ 𝑧
2

2
(
1

4
Υ
2
(
𝜕𝜗
1

𝜕𝑝
)

2

𝑧
2

1
𝜙
2

1
(𝑥
1
)

+
1

4
Υ (1 + 𝑧

2

2
) 𝜙
2
(𝑥
1
, 𝑝) (1 + (

𝜕𝜗
1

𝜕𝑝
)

2

)) .

(92)

Define 𝜙
22
(𝑥
2
, 𝑝) = (1/4)Υ

2
𝑧
2

1
(𝜕𝜗
1
/𝜕𝑝)
2
𝜙
2

1
(𝑥
1
) + (1/4)Υ(1 +

𝑧
2

2
)𝜙
2
(𝑥
1
, 𝑝)(1 + (𝜕𝜗

1
/𝜕𝑝)
2
), and we get

−𝑧
2

𝜕𝜗
1

𝜕𝑝
𝜏
2
≤ 𝑧
2

1
+ 𝑧
2

2
𝜙
22
(𝑥
2
, 𝑝) . (93)

Denote 𝜙
2
(𝑥
2
, 𝑝) = 𝜙

21
(𝑥
1
, 𝑝) + 𝜙

22
(𝑥
2
, 𝑝) > 0, and a direct

substitution leads to
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�̇�
2
≤ −(1 −

2

4
) 𝜂
2
− (]
1
− 5) 𝑧

2

1

+ 𝑧
2
(𝑑
2
(𝑡) 𝑢 + 𝑧

2
𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝑧

2
𝜙
2
(𝑥
2
, 𝑝))

+ (
1

Υ
𝑝 + 𝑧
2

𝜕𝜗
1

𝜕𝑝
) (𝜏
2
−

̇̂
𝑝) .

(94)

As in Step 1, we design the following partial-state feed-
back controller:

𝑢 = −
1

𝑑
2

(]
2
+ 𝜙
2
(𝑥
2
, 𝑝) 𝑝 + 𝜙

2
(𝑥
2
, 𝑝)) 𝑧

2 (95)

with the updating law for unknown parameter 𝑝∗

̇̂
𝑝 = Υ𝜙

1
(𝑥
1
) 𝑧
2

1
+ Υ𝜙
2
(𝑥
1
, 𝑥
2
, 𝑝) 𝑧
2

2
, (96)

which is such that

�̇�
2
≤ −

1

2
𝜂
2
− (]
1
− 5) 𝑧

2

1
− ]
2
𝑧
2

2
. (97)

The Lyapunov function 𝑉
2
can be made �̇�

2
≤ 0 by

choosing ]
1
> 5, ]

2
> 0, and the stability analysis can be

done in the similar way to Theorem 11. The simulation plots
shown in Figures 1 and 2 are performed byMATLABwith the
following parameters: 𝑑

1
(𝑡) = 2 − sin(𝑡), 𝑑

2
(𝑡) = 2 + sin(𝑡),

𝑑
1
= 1, 𝑑

1
= 3, 𝑑

2
= 1, 𝑑

2
= 3, ]

1
= 6, ]

2
= 1, Υ = 1,

the derived functions: 𝜙
11
(|𝜂|) = 0, 𝜙

21
(|𝜂|) = |𝜂|, 𝜙

12
(𝑥
1
) =

|𝑥
1
| + (1/2)|𝑥

1
|, 𝜙
22
(𝑥
1
, 𝑥
2
) = 0, 𝜙

1
(𝑥
1
) = 1 + 1/2 + 𝑥

2

1
,

𝜙
2
(𝑥
1
, 𝑥
2
, 𝑝) = 2 + (3/2)(𝜕𝜗

1
/𝜕𝑥
1
)
2
(]
1
+ 𝑝)
2, and the initial

conditions: 𝜂(0) = 0.5, 𝑥
1
(0) = 1, 𝑧

2
(0) = 0.1, 𝑝(0) = 1.

According to our results reported in Theorem 11, the
states (𝜂, 𝑥

1
, 𝑥
2
) must asymptotically converge to the origin

and the parameter estimate 𝑝 is bounded on [0,∞). This fact
can be verified from Figure 1, which plots the trajectories of
these dynamic signals (𝜂(𝑡), 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑝(𝑡)). It can be seen

that, at about 𝑡 = 4.17 s, 𝑡 = 0.68 s, and 𝑡 = 0.59 s, the states
approach the origin, and at 𝑡 = 0.36 s, the parameter estimate
𝑝(𝑡) is bounded near 𝑝∗ = 1.1. In addition, according to
Theorem 11, the control input 𝑢 is convergent to the origin.
Figure 2 demonstrates this result, and it can be shown that, at
about 𝑡 = 0.51 s, the input signal 𝑢 approaches the origin. As
can be seen fromFigures 1 and 2, our control scheme provides
a fairly good asymptotic stabilization performance.

6. Conclusion

The state feedback stabilization problem is investigated for a
class of nonlinear systems with dynamic uncertainties and
uncertain control coefficients in this paper. The dynamic
uncertainty is characterized by the uncertain ISS supply rates.
A global asymptotic stabilization control scheme is proposed
using the backstepping design scheme. The tuning function
technique is applied in this procedure, which avoids the
disadvantage of overparameterization. It is shown that, under
some more restrictive conditions, a linear state feedback
controller can be designed by the presented algorithm. The
simulation example demonstrates the effectiveness of the
proposed method.
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Figure 2: The control input of the closed-loop system.
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This paper deals with the position control of a hydraulic servo system rod. Our approach considers the surface design as a case of
virtual controller design using the backsteppingmethod.We first prove that a linear surface does not yield to a robust controller with
respect to the unmatched uncertainty and perturbation. Next, to remedy this deficiency, a sliding controller based on the second-
order slidingmode is proposedwhich outperforms the first controller in terms of chattering attenuation and robustness with respect
to parameter uncertainty only. Next, based on backstepping a nested variable structure design method is proposed which ensures
the robustness with respect to both unmatched uncertainty and perturbation. Finally, a robust sliding mode observer is appended
to the closed loop control system to achieve output feedback control. The stability and convergence to reference position with zero
steady state error are provenwhen the controller is constructed using the estimated states. To illustrate the efficiency of the proposed
methods, numerical simulation results are shown.

1. Introduction

Actually, the hydraulic servo systems are very popular in
several industrial applications such as robotics, aerospace
flight-control actuators, heavy machinery, aircrafts, automo-
tive industry, and a variety of automated manufacturing
systems. This is mainly due to their ability to produce
high power and accurate and fast responses. However, these
systems have a high nonlinear behavior due to the pressure
flow characteristics [1] and the leakage model inside the
servovalves [2].This fact makes the control design for precise
output tracking a very challenging task.

Owing to their simplicity, linear controllers of PID type
[3, 4], input/output linearization controllers [5–9], and also
sliding mode controllers (SMC) [10–13] have been used to
control the hydraulic servo systems. However, such con-
trollers were designed based on the plant physical model
and, therefore, the plant parameters knowledge is required.
Consequently, they were shown to be highly sensitive to
mismatched perturbation and uncertainties, thus resulting in
performance degradation.

To improve the controller performances, several strate-
gies have been adopted such as using the self-tuned PID

controller [14, 15] and nonlinear adaptive controllers [16–
18]. SMC appended with some improvements have also been
used. In [19, 20] SMC method has been combined with an
adaptive controller, which can compensate for the system
uncertain nonlinearities, for linear uncertain parameters,
and especially for the nonlinear uncertain parameters to
construct an asymptotically stable tracking. In [21], SMC
has been used with the PID controller to achieve con-
trol of asymmetrical hydraulic cylinder trajectory tracking.
To drive electrohydraulic actuators, various robust control
techniques, such as H2 and H

∞
controls, were applied

[22–24]. This approach enabled the compensation for the
inherent nonlinearities of the actuator and rejects matched
external disturbances and attenuates mismatched external
disturbances. To cope with mismatched disturbances authors
used the integral SMC and to remedy the slow response due
to windup phenomenon a realizable reference compensation
has been used to achieve fast position tracking [25, 26].
Since it has been proposed by Levant [27, 28], higher-order
SMC (HOSMC) has been widely used to control electrical
drives [29, 30], electropneumatic actuators [31], and electro-
hydraulic actuators [32, 33].
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In the present paper, we are interested in controlling the
position of the rod in a hydraulic servo system that consists
of a four-way spool valve supplying a double effect linear
cylinder with a double-rodded piston. The piston is driving
a load modeled by a mass, a spring, and a sliding viscous
friction. Our work aims to design a controller that may
achieve the reference position in presence of mismatched
parameter uncertainty and perturbation in addition to actua-
tor saturation. To realize this objective, we start in the second
section by formulating the problem and presenting the effects
of using first- and second-order SMCwith a linear surface. In
Section 3, we present the design of a sliding surface obtained
using backstepping method and variable structure controller,
leading hence to a nonlinear surface that allows achieving
the reference output despite the presence of uncertainties and
perturbations. Numerical simulation results are presented
to illustrate the efficiency of the proposed control design.
In Section 4, we present a sliding observer and prove the
convergence of the observer as well as the exact position
tracking using the nonlinear surface SMC issued from the
observer states. Finally, the conclusion and some remarks are
presented in Section 5.

2. Problem Statement

The electrohydraulic system that we will deal with in this
paper is depicted in Figure 1 and modeled by the dynamical
system (1). It has been shown in [34] that, for the symmetrical
piston with equal surfaces 𝑆1 and 𝑆2 and assuming equal
volume flow passing through (geometrically) identical ports,
we can describe the system by three variable states where
a differential pressure state substitutes the pressure of each
chamber. This decrease in the system dimension ensures the
observability when the system output is the piston position.
Consider

�̇�1 =
4𝐵
𝑉
𝑡

(𝑘𝑢√𝑃
𝑑
− sign (𝑢) 𝑥1 −

𝛼𝑥1
1 + 𝛾 |𝑢|

− 𝑆𝑥2) , (1)

�̇�2 =
1
𝑚
𝑡

(𝑆𝑥1 − 𝑏𝑥2 − (𝑘𝑙 +Δ𝑘𝑙) 𝑥3) , (2)

�̇�3 = 𝑥2 +𝑑 (𝑡) , (3)

where 𝑥1 = 𝑃1 − 𝑃2 denotes the difference in pressure
inside the two chambers of the cylinder, 𝑥2 and 𝑥3, respec-
tively, denote the velocity and the position of the rod, and
|𝑑(𝑡)| < 𝑑max is a bounded constant or slowly varying
external perturbation. In fact, from Newton’s law, a constant
force perturbation leads to a constant acceleration. Thus, the
velocity perturbation may be interpreted as the result of an
impulsive force that acts abruptly on the system.𝑚

𝑡
= 𝑚+𝑚0

is the total mass of the rod and the load, 𝑉
𝑡
= 𝑉1 + 𝑉2 is the

total volume of the cylinder, and 𝑃
𝑑
= 𝑃
𝑠
− 𝑃
𝑟
is the pressure

difference between the supply pressure 𝑃
𝑠
(pressure of the

pump) and the return pressure 𝑃
𝑟
(atmospheric pressure). 𝑘

𝑙

is the spring stiffness constant with an uncertainty Δ𝑘
𝑙
and

𝑏 is the friction coefficient. The system parameters used for
simulations are as follows: 𝐵 = 2.2×109 Pa, 𝑃

𝑠
= 300×105 Pa,

𝑃
𝑟
= 105 Pa,𝑚0 = 50 kg, 𝑆 = 1.5 × 10−3 m2, 𝑉

𝑡
= 9 × 10−4 m3,

𝑚 = 20 kg, 𝑏 = 590 kg/s, 𝑘
𝑙
= 125000N/m, 𝑘 = 3.62 ×

10−5 m3 s−1 A−1 Pa−1/2, 𝛼 = 4.1816 × 10−12 m3 s −1 Pa−1, and
𝛾 = 8571 with 𝛼 and 𝛾 being intrinsic constants modeling the
leakage within the servovalve [2].

Themost difficult aspect in thismodel is the existence of a
mismatched perturbation as well as a mismatched parameter
uncertainty. In addition, the leakage model includes non-
linearity with respect to the control signal 𝑢. To deal with
this problem, we neglect the leakage term in the design but
we consider it in simulation and consider the system as a
switching system between two models. The switching aspect
makes the use of the slidingmode approach a good candidate
to design a controller 𝑢 that can drive the rod position to a
constant reference position 𝑥3ref .

2.1. First-Order SMC. TheSMCdesign consists of two phases.
In the first phase the sliding surface is designed such that the
system is asymptotically stable when it is confined to it and in
the second phase a switching controller is designed to ensure
the existence of the slidingmode.Our idea consists in viewing
the sliding surface design as a special case of backstepping
design.Therefore, at slidingmode, 𝜎(𝑥) = 0means 𝑥1 = 𝑝(𝑥)
and 𝑥1 can be viewed as a virtual controller to subsystem
((2)-(3)) which describes the system behavior on the sliding
surface.

Thus, should we choose a linear virtual controller,

𝑝 (𝑥) =
1
𝑆
(𝑘
𝑙
𝑥3ref −𝐶2𝑥2 −𝐶3 (𝑥3 −𝑥3ref)) , (4)

we get the sliding surface

𝜎 (𝑥) = 𝑆𝑥1 +𝐶2𝑥2 +𝐶3 (𝑥3 −𝑥3ref) − 𝑘𝑙𝑥3ref . (5)

In sliding mode and if uncertainty and perturbations are
neglected, the system is a second dimensional linear system
with the characteristic equation

𝑠
2
+
𝐶2 + 𝑏

𝑚
𝑡

𝑠 +
𝐶3 + 𝑘𝑙
𝑚
𝑡

= 0. (6)

Using the pole placement method and imposing a stable
multiple pole at 𝑠 = −𝜆, we can determine the control
parameters 𝐶2 and 𝐶3:

𝐶2 = 2𝜆𝑚
𝑡
− 𝑏,

𝐶3 = 𝜆
2
𝑚
𝑡
− 𝑘
𝑙
.

(7)

Eventually, we obtain an exponentially stable system if we
can guarantee the attractivity of the sliding surface 𝜎(𝑥) =
0. Indeed, the attractivity condition 𝜎(𝑥)�̇�(𝑥) < 0 will be
satisfied if we choose �̇�(𝑥) = −𝑊sign(𝜎(𝑥)), where 𝑊 > 0
is the sliding gain that should be chosen large enough in
order to ensure the attractivity of the surface in presence of
perturbation and uncertainty. Using the system model and
(5), we can show that 𝜎(𝑥)�̇�(𝑥) < 0 is attained if the sliding
gain satisfies

𝑊 >
𝐶3𝑑max

 +
4𝐵𝑆
𝑉
𝑡

𝛼𝑃
𝑑
+



𝑉
𝑡
𝐶2
𝑆𝑚
𝑡

Δ𝑘
𝑙



, (8)
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Figure 1: Hydraulic servo system controlled using a servovalve.

where 𝑑max = max
𝑡≥0𝑑(𝑡). Consequently, by solving �̇�(𝑥) =

−𝑊sign(𝜎(𝑥)), the control law is expressed as follows:

𝑢 (𝑥) =

{{{{

{{{{

{

𝑁(𝑥)

(4𝐵𝑆𝑘/𝑉
𝑡
)√𝑃
𝑑
− 𝑥1

, if 𝑁(𝑥) ≤ 0

𝑁(𝑥)

(4𝐵𝑆𝑘/𝑉
𝑡
)√𝑃
𝑑
+ 𝑥1

, if 𝑁(𝑥) < 0,
(9)

where

𝑁(𝑥) = −𝑊 sign (𝜎 (𝑥)) −
𝐶2
𝑚
𝑡

(𝑆𝑥1 − 𝑏𝑥2 − 𝑘𝑙𝑥3)

−𝐶3𝑥2 +
4𝐵𝑆2

𝑉
𝑡

𝑥2.

(10)

Despite the perturbation 𝑑(𝑡) and the uncertaintyΔ𝑘
𝑙
, the

variable structure controller defined by (9) with the sliding
gain𝑊 in (8) ensures the existence of sliding mode; however,
we can easily deduce that we do not achieve the reference
output because when the system behavior is confined to
the sliding surface (5) the linear virtual controller does not
guarantee any robustnesswith respect to the perturbation and
the uncertainty. Indeed, it can be easily shown that as far as
the sliding motion is preserved the system is asymptotically
stable if the closed loop eigenvalue is chosen such as

𝜆 > √



Δ𝑘
𝑙

𝑚
𝑡



(11)

and in that case the steady state error due to the uncertainty
is given by

𝑒
𝑘𝑙
=
Δ𝑘
𝑙

𝑚
𝑡

1
𝜆2 + Δ𝑘

𝑙
/𝑚
𝑡

𝑥3ref . (12)

We similarly can show that the steady state error due to the
constant perturbation is given by

𝑒
𝑑
= −

2
𝜆
𝑑. (13)

Figure 2 shows the system behavior with 𝜆 = 50, 𝑑(𝑡) =
0.1, Δ𝑘

𝑙
= 25000, and 𝑥3ref = 20 cm. We clearly notice that

there is a steady state error of more than 2 cm at the position
output. So the first-order sliding mode is not robust to the
mismatched uncertainty and perturbation.

2.2. Second-Order SMC. Since the system is third-order
single input, thenwemay think of designing the higher-order
SMC up to second order. Let 𝜎

ℎ
denote the sliding variable

defined as

𝜎
ℎ
= ℎ (𝑥3 −𝑥3ref) + 𝑥2, (14)

where ℎ > 0 is a strictly positive scalar. We may verify that
the relative degree of system ((1)–(3)) together with (14) with
respect to the sliding variable 𝜎

ℎ
is constant and equal to two.

Thus we have

�̈�
ℎ
= 𝑎1 (𝑥, 𝑡) + Δ𝑎1 (𝑥, 𝑡) + 𝑎2 (𝑥) 𝑢, (15)

where 𝑎1(𝑥, 𝑡) and 𝑎2(𝑥) are known functions and Δ𝑎1(𝑥, 𝑡) is
an unknown bounded function in terms of 𝑑(𝑡) and Δ𝑘

𝑙
:

𝑎1 (𝑥, 𝑡) = −
4𝐵𝑆
𝑚
𝑡
𝑉
𝑡

(𝛼𝑥1 + 𝑆𝑥2)

+ (
ℎ

𝑚
𝑡

−
𝑏

𝑚
2
𝑡

) (𝑆𝑥1 − 𝑏𝑥2 − 𝑘𝑙𝑥3)

−
𝑘
𝑙

𝑚
𝑡

𝑥2,

Δ𝑎1 (𝑥, 𝑡) = −(
ℎ

𝑚
𝑡

−
𝑏

𝑚
2
𝑡

)Δ𝑘
𝑙
𝑥3 −

Δ𝑘
𝑙

𝑚
𝑡

𝑥2

−𝑑 (𝑡)
𝑘
𝑙
+ Δ𝑘
𝑙

𝑚
𝑡

,

𝑎2 (𝑥) =

{{{{

{{{{

{

4𝐵𝑆
𝑚
𝑡
𝑉
𝑡

𝑘√𝑃
𝑑
− 𝑥1 if 𝑢 ≥ 0

4𝐵𝑆
𝑚
𝑡
𝑉
𝑡

𝑘√𝑃
𝑑
+ 𝑥1 if 𝑢 < 0.

(16)

The solution should be understood in the Filippov sense
[35], and the trajectories of the system are supposed to be
extendible infinitely in time for any bounded measurable
input.
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Figure 2: The behavior of the system under sliding mode controller defined by (9); 𝜆 = 50.

By defining 𝑧1 = 𝜎ℎ and 𝑧2 = �̇�ℎ, achieving sliding mode
𝜎
ℎ
= 0 is equivalent to the finite stabilization of the system:

�̇�1 = 𝑧2,

�̇�2 = 𝑎1 (𝑥, 𝑡) + Δ𝑎1 (𝑥, 𝑡) + 𝑎2 (𝑥) 𝑢,
(17)

which hence ideally yields to the sliding set𝜎
ℎ
= 0 and �̇�

ℎ
= 0.

Taking into account the practical considerations, the sliding
set is defined as follows [27].

Definition 1. Given the sliding variable 𝜎
ℎ
(𝑥, 𝑡), the “real

second-order sliding set” associated with ((1)–(3)) is defined
as

𝑠
𝑇𝑒
= {𝑥∈

𝜒

𝜎ℎ


≤ 𝑘1𝑇
2
𝑒
,
�̇�ℎ
 ≤ 𝑘2𝑇𝑒} , (18)

where 𝑇
𝑒
is the finite sampling time (fixed at 𝑇

𝑒
= 20 𝜇s in the

sequel) and 𝑘1 and 𝑘2 are positive constants.

Definition 2. Consider the nonempty real second-order slid-
ing set 𝑠

𝑇𝑒
given in (18), and assume that it is locally an

integral set in the Filippov sense.The corresponding behavior
of system ((1)–(3)) satisfying (18) is called “real second-order
sliding mode” with respect to 𝜎

ℎ
(𝑥, 𝑡) [27].

The variable structure control law 𝑢 can be chosen as
follows:

𝑢 =
1

𝑎2 (𝑥)
(−𝑎1 (𝑥, 𝑡) −𝐾1𝑧1 −𝐾2𝑧2 −𝑊1 sign (𝑧1)

−𝑊2sign (𝑧2)) ,
(19)

where all the controller gains 𝐾1, 𝐾2,𝑊1, and𝑊2 are strictly
positive. Applying controller (19) yields to

[
�̇�1

�̇�2
] = [

0 1
−𝐾1 −𝐾2

][
𝑧1

𝑧2
]

+[
0 0
−𝑊1 −𝑊2

][
sign (𝑧1)
sign (𝑧2)

] − [
0
1
]Δ𝑎1 (𝑥, 𝑡)

(20)
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which can be written in the following compact form:

�̇� = 𝐴
𝐾
𝑍+𝐴

𝑊
sign (𝑧) − 𝐵Δ𝑎 (𝑥, 𝑡) , (21)

where 𝐴
𝐾
= [

0 1
−𝐾1 −𝐾2

], 𝐴
𝑊
= [

0 0
−𝑊1 −𝑊2

], and 𝐵 = [ 01 ].
We can determine the control parameters 𝐾1 and 𝐾2

such that the characteristic equation of 𝐴
𝐾
has two equal

eigenvalues at 𝑠 = −𝜆:

𝐾1 = 𝜆
2
,

𝐾2 = 2𝜆,

𝜆 > 0.

(22)

Since 𝐴
𝐾
is a Hurwitz matrix, then it satisfies the Lyapunov

function𝐴𝑇
𝐾
𝑃+𝑃𝐴

𝐾
= −𝑄, where 𝑃 and𝑄 are some positive

definite matrices. To determine the gains 𝑊1 and 𝑊2 we
define the following Lyapunov function candidate for system
(20):

𝑉 (𝑍) = 𝑍
𝑇

𝑃𝑍. (23)

Its time derivative in the direction of system (20) trajectories
is given by

�̇� = �̇�
𝑇

𝑃𝑍+𝑍
𝑇

𝑃�̇�

= −𝑍
𝑇

𝑄𝑍+ 2𝑍𝑇𝑃𝐴
𝑊
sign (𝑍) − 2𝑍𝑇𝑃𝐵Δ𝑎 (𝑥, 𝑡) .

(24)

If we choose 𝑃
22
𝑊
1
= 𝑃
12
𝑊
2
then 𝑃𝐴

𝑊
is a negative definite

matrix and we have

�̇� < −𝑍
𝑇

𝑄𝑍+ 2𝜆max (𝑃𝐴𝑊) ‖𝑍‖1

+ 2 ‖𝑍‖1 𝜆min (𝑃) ‖𝐵‖1 |Δ𝑎 (𝑥, 𝑡)| < 0
(25)

provided that𝑊1 and𝑊2 are also chosen such that

−𝜆max (𝑃𝐴𝑊) > 𝜆min (𝑃)
Δ𝑎1 (𝑥, 𝑡)

 , (26)

where 𝜆max(⋅) and 𝜆min(⋅) are, respectively, the largest and
least eigenvalues of the matrix.

From Figure 3, we can notice that the second-order
SMC achieves a better performance than the first-order
SMC. However, the robustness with respect to the constant
perturbation is not guaranteed. Indeed, in sliding mode, we
have 𝜎

ℎ
= 0; thus 𝑥2 = −ℎ(𝑥3 − 𝑥3ref ) = −ℎ𝑒3 and hence on

the sliding set 𝜎
ℎ
= 0 we get

̇𝑒3 = − ℎ𝑒3 +𝑑 (𝑡) (27)

which is a first-order nonautonomous system with a steady
state value equal to 𝑑(𝑡)/ℎ. Therefore, for the constant
perturbation 𝑑(𝑡) = 0.1, the steady state error is as expected
and delineated in Figure 3; 𝑥3 − 𝑥3ref = 0.1 cm. When
increasing the value of ℎ, the variable structure gains 𝑊1
and𝑊2 should be increased, thus accentuating the chattering
phenomenon which was attenuated by the use of the second-
order sliding mode.

The boundedness of 𝑥1 and 𝑥2 is ensured since �̇� < 0 and
𝑉(𝑍) depends on 𝑧1 and 𝑧2 which in turn depend on 𝑥1, 𝑥2,
and 𝑥3.

3. Sliding Mode Controller with
Nonlinear Surface

To overcome the problem of mismatched perturbation and
uncertainty, we suggest in this section designing a sliding
surface 𝜎(𝑥) based on the backstepping method and using
robust variable structure virtual controller.

In Section 2.1, the sliding surface 𝜎(𝑥) = 0 was obtained
from the design of the linear controller 𝑥1 = 𝑝(𝑥) for
subsystem ((2)-(3)). To ensure robustness with respect to the
parametric uncertainty, a variable structure virtual controller
𝑥1 = 𝑝(𝑥) is designed by choosing a sliding surface 𝜎1(𝑥2, 𝑥3)
and requiring its attractivity by imposing

�̇�1 (𝑥2, 𝑥3) = −𝑊1 sign (𝜎1 (𝑥2, 𝑥3)) . (28)

Therefore, the virtual controller 𝑥1 = 𝑝(𝑥) is obtained by
solving (28) and the sliding surface 𝜎(𝑥) = 𝑥1 − 𝑝(𝑥).
However, when sliding on 𝜎1(𝑥2, 𝑥3) is achieved, we get
𝜎1(𝑥2, 𝑥3) = 0 which means 𝑥2 = V(𝑥3) and thus in sliding
mode we have

�̇�3 = V (𝑥3) + 𝑑 (𝑡) . (29)

Again to ensure asymptotic convergence of 𝑥3(𝑡) to 𝑥3ref a
simple linear proportional term V(𝑥3) = −𝐶(𝑥3 − 𝑥3ref ) is not
satisfactory, but a variable structure term can guarantee the
required convergence. Indeed, with

V (𝑥3) = −𝑊3 (𝑥3 −𝑥3ref) −𝑊2 sign (𝑥3 −𝑥3ref) , (30)

where the gains are chosen such that𝑊2 > 𝑑max and𝑊3 > 0,
we may easily show the convergence of 𝑥3(𝑡) to 𝑥3ref as far as
the sliding surface

𝜎1 (𝑥2, 𝑥3) = 𝑥2 +𝑊3 (𝑥3 −𝑥3ref)

+𝑊2 sign (𝑥3 −𝑥3ref)
(31)

is attractive.
When attempting to achieve the attractivity of 𝜎1(𝑥2, 𝑥3)

by imposing (28), we face the attempt to differentiate a dis-
continuous function. Although this is mathematically impos-
sible, we can overcome the problem from an engineering
point of view by either replacing the discontinuous signum
function with a smoother saturation function or directly
considering that the derivative of the signum function is the
Dirac impulse (𝛿(𝑥)) which is zero everywhere except at
an isolated single point. Indeed, in engineering realization
using a processor and discretization process, the isolated
discontinuities, especially when they are few, can easily be
avoided and would not cause any problems. Therefore, from
(28), we have

1
𝑚
𝑡

(𝑆𝑥1 − 𝑏𝑥2 − 𝑘𝑙𝑥3) +𝑊3𝑥2 +𝑊2𝑥2𝛿 (𝑥3 −𝑥3ref)

= −𝑊1 sign (𝜎1 (𝑥2, 𝑥3))
(32)

and the sliding surface 𝜎(𝑥) becomes

𝜎 (𝑥) = 𝑆𝑥1 + (𝑚𝑡𝑊3 +𝑚𝑡𝑊2𝛿 (𝑥3 −𝑥3ref) − 𝑏) 𝑥2

− 𝑘
𝑙
𝑥3 +𝑚𝑡𝑊1 sign (𝜎1 (𝑥2, 𝑥3)) .

(33)
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Figure 3: Behavior of system under second-order sliding mode controller (19); 𝜆 = 50 and ℎ = 100.

Finally, by imposing �̇�(𝑥) = −𝑊sign(𝜎(𝑥)), the attractivity
condition 𝜎(𝑥)�̇�(𝑥) < 0 is satisfied. The choice of the
surface 𝜎(𝑥) and its imposed derivative lead to the following
controller:

𝑢 (𝑥) =

{{{{{

{{{{{

{

𝑁
𝑑
(𝑥)

(4𝐵𝑆𝑘/𝑉
𝑡
)√𝑃
𝑑
− 𝑥1

, if 𝑁
𝑑
(𝑥) ≥ 0

𝑁
𝑑
(𝑥)

(4𝐵𝑆𝑘/𝑉
𝑡
)√𝑃
𝑑
+ 𝑥1

, if 𝑁
𝑑
(𝑥) < 0

(34)

with

𝑁
𝑑
(𝑥) = −𝑊 sign (𝜎 (𝑥)) −𝑚

𝑡
𝑊1𝛿 (𝜎1 (𝑥))

+ (
4𝐵𝑆𝛼
𝑉𝑡

+
𝑏𝑆

𝑚
𝑡

− 𝑆𝑊4)𝑥1

+(
4𝐵𝑆2

𝑉𝑡
−
𝑏
2

𝑚
𝑡

+ 𝑘
𝑙
+ 𝑏𝑊4)𝑥2

+(𝑘
𝑙
𝑊4 −

𝑏𝑘
𝑙

𝑚
𝑡

)𝑥3,

(35)

where the derivative of the Dirac impulse is considered
as zero and the sliding gain 𝑊 should be chosen such
that the attractivity occurs in presence of uncertainty and
perturbation:

𝑊 >



𝑏𝑉
𝑡

𝑆𝑚
𝑡

Δ𝑘
𝑙



+



𝑉
𝑡

𝑆
𝑊3Δ𝑘𝑙



+
𝑘𝑙𝑑max

 . (36)

From Figure 4, we can notice clearly that we have
attained our aim to drive the hydraulic servo system to
the reference position. Nevertheless, due to the nested slid-
ing modes, the chattering phenomenon was emphasized.
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Figure 4: Behavior of system under sliding mode controller using nonlinear surface defined by (33).

In order to attenuate it and to avoid the mathematical
problem of taking the derivative of the signum function we
have used a smooth saturation function sign(𝑥) ≃ tanh(𝜇𝑥)
for a sufficiently high positive value 𝜇 > 0. The results
depicted in Figure 5 show that the use of the smooth
function helped to achieve the reference value in presence
of mismatched uncertainty and perturbation with attenuated
chattering.

4. Sliding Mode Observer Design

As we can notice, the controller conceived in the foregoing
section uses all three state variables. However, measuring the
differential pressureΔ𝑃 = 𝑥1 is a costly task and requires high
technology procedure to avoid additional leakage. To remedy
this situation, we propose in this section designing a sliding
mode observer that may estimate the required states that are
then used to construct the controller.

Let us consider the observer model given in (37) and
inferred from the step-by-step observer presented in [36, 37]:

�̇�1 =
4𝐵
𝑉
𝑡

(𝑘𝑢√𝑃
𝑑
− sign (𝑢) �̃�1 −

𝛼�̃�1
1 + 𝛾 |𝑢|

− 𝑆�̃�2)

+𝐿1 sign (�̃�1 − 𝑧1) ,
(37)

�̇�2 =
1
𝑚
𝑡

(𝑆𝑧1 − 𝑏�̃�2 − 𝑘𝑙𝑧3) + 𝐿2 sign (�̃�2 − 𝑧2) , (38)

�̇�3 = 𝑧2 +𝐿3 sign (𝑥3 − z3) , (39)

where 𝐿1, 𝐿2, and 𝐿3 are the observer gain and �̃�1 and �̃�2 are
defined as

�̃�1 = 𝑧1 +
𝑘
𝑙

𝑆
(𝑥3 − 𝑧3) +

𝑚
𝑡

𝑆
𝐿2 sign (�̃�2 − 𝑧2) ,

�̃�2 = 𝑧2 +𝐿3 sign (𝑥3 − 𝑧3) .
(40)



8 Mathematical Problems in Engineering

0

50

100

150

200

250

−0.5

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

−5

0

5

10

15

20

0.3 0.4 0.5
19.995

20

0 0.1 0.2 0.3

0.3

0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Ve
lo

ci
ty

 (m
/s

)

0 0.1 0.2 0.4 0.5
Time (s)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

Time (s) Time (s)

Po
sit

io
n 

(c
m

)

u
(t
)

(m
A

)

Δ
 p

re
ss

ur
e (

ba
r)

Figure 5: Behavior of system under slidingmode controller using nonlinear surface defined by (33) and a smooth saturation function tanh(⋅).

To prove the efficiency of the observer and the fact that
the estimated states based controller can also achieve accurate
positioning in presence of perturbation and uncertainty, we
will proceed by a step-by-step proof.

Step 1. Let 𝑒3 = 𝑥3 − 𝑧3 and let 𝑒2 = 𝑥2 − 𝑧2; from (3) and (39)
the error dynamics are expressed as

̇𝑒3 = 𝑒2 +𝑑 (𝑡) − 𝐿3 sign (𝑒3) . (41)
Thus, if 𝐿3 is chosen such that

𝐿3 > sup
𝑡>0
{𝑒2 (𝑡) + 𝑑 (𝑡)} (42)

then a sliding mode is established at the observer sliding
surface 𝑒3 = 0 within a finite time.Moreover, at slidingmode,
we obtain ̇𝑒3 = 0 and thus from (41) we have

0 = 𝑥2 − 𝑧2 +𝑑 (𝑡) − 𝐿3 sign (𝑒3) ; (43)
that is,

𝑥2 +𝑑 (𝑡) = 𝑧2 +𝐿3 sign (𝑒3) = �̃�2. (44)

Now, if the sliding surface 𝜎1 of the nonlinear surface based
SMC is expressed in terms of the estimated state �̃�2,

𝜎1 (�̃�2, 𝑥3) = �̃�2 +𝑊3 (𝑥3 −𝑥3ref)

+𝑊2 sign (𝑥3 −𝑥3ref) ,
(45)

then, by using (3), (44), and (45), the position dynamics are
given by

�̇�3 = −𝑊3 (𝑥3 −𝑥3ref) −𝑊2 sign (𝑥3 −𝑥3ref) . (46)

Therefore, within a finite time we obtain 𝑥3 = 𝑥3ref .

Step 2. Let 𝑒1 = 𝑥1 −𝑧1; from (2) and (38) the error dynamics
are expressed as

̇𝑒2 =
1
𝑚
𝑡

(𝑆𝑒1 − 𝑏𝑒2 − 𝑏𝐿3 sign (𝑒3) − 𝑘𝑙𝑒3) −
Δ𝑘
𝑙

𝑚
𝑡

𝑥3

−𝐿2 sign (�̃�2 − 𝑧2) .
(47)
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Thus, if 𝐿2 is chosen such that

𝐿2 >
1
𝑚
𝑡

Δ𝑘𝑙𝑥3 + 𝑆𝑒1 + 𝑏𝑑max
 (48)

then we can deduce that 𝑒2 + 𝑑 tend to zero and hence 𝑧2
tend to 𝑥2 + 𝑑. That is, the observer will estimate the velocity
with the constant perturbation. Moreover, when the error
dynamics are sliding on 𝑒3 = 0 and 𝑒2 + 𝑑 = 0, then ̇𝑒2 = 0
and we get

�̃�1 = 𝑥1 +
𝑏

𝑆
𝑒2 −

Δ𝑘
𝑙

𝑆
𝑥3. (49)

That is, the observer will estimate the differential pressure
with a constant difference proportional to the perturbation
and the uncertainty. Now, if the controller sliding surface 𝜎 is
expressed using the observer state variables,

𝜎 (𝑧) = 𝑆�̃�1 + (𝑚𝑡𝑊3 +𝑚𝑡𝑊2𝛿 (𝑥3 −𝑥3ref) − 𝑏) �̃�2

− 𝑘
𝑙
𝑧3 +𝑚𝑡𝑊1 sign (𝜎1 (�̃�2, 𝑥3)) ,

(50)

then, at sliding mode of the controller �̇�(𝑧) = 0, the velocity
dynamics are given by

�̇�2 = −𝑊3 (𝑥2 +𝑑) −𝑊1 sign (𝜎1 (�̃�2, 𝑥3)) . (51)

Hence the velocity of the system rod will tend to −𝑑.

Step 3. Finally, the differential pressure error dynamics can
be roughly expressed as

̇𝑒1 = 𝑓1 (𝑥) −𝑓1 (𝑧) − 𝐿1 sign(𝑒1 +
𝑏

𝑆
𝑒2 −

Δ𝑘
𝑙

𝑆
𝑥3) ; (52)

if the system is already sliding on the surfaces 𝑥3 = 𝑥3ref and
𝑒2 = −𝑑 then by choosing 𝐿1 > |𝑓1(𝑥)−𝑓1(𝑧)| the differential
pressure is estimated with the constant difference −(𝑏/𝑆)𝑑 +
Δ𝑉
𝑡
.
Figure 6 shows the convergence of the observer state 𝑧

3
to

𝑥
3
although they are starting fromdifferent initial conditions;

indeed, the observer is starting at rod position 10 cm whereas
the system is starting at the origin. As expected from the
above analysis, 𝑧2 tends to 𝑥2 + 𝑑 and 𝑧1 tends to 𝑥1 with a
constant difference of 33 bar. The observer gains are chosen
as 𝐿1 = 1000, 𝐿2 = 100, and 𝐿3 = 1. In Figure 7, the observer
and system behaviors are shown with the controller being
calculated using the estimated states. The observer initial
position is −10 cm.

5. Simulation Results Analysis

The controllers designed in this paper used the sliding mode
theory which is the most used approach to deal with systems
running under uncertainty conditions. However, we have
seen in the second section that the first-order sliding mode
controller with a linear sliding surface is not robust with
respect to perturbation and mismatched uncertainty. In fact,
by using the fact that on the sliding surface the systembehaves
in a similar way to a linear second-order system, it can be
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Figure 6: Behavior of the observer and the hydraulic servo system
controlled with sliding mode controller with states feedback.
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Figure 7: Behavior of the observer and the hydraulic servo system
controlled with sliding mode controller with estimated states feed-
back.

easily shown that as far as the slidingmotion is preserved, the
system is asymptotically stable if the closed loop eigenvalues
are chosen as in (11) and thus the steady state error due to the
uncertainty is expressed by (12). Also, the steady state error
due to the constant perturbation is given by (13).

Therefore, the steady state error gets smaller as the closed
loop eigenvalues have a larger amplitude. This is illustrated
by the simulation results delineated in Figure 2 where 𝜆 = 50
and the total error is 2.46 cm.

To circumvent the problem, we have suggested a second-
order sliding mode controller. Applying this controller, we
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can notice that it achieves a better performance than the first
SMC. In fact, the second-order SMC outperforms the first-
order SMC in sense of robustness with respect tomismatched
perturbation but it cannot guarantee the robustness with
respect to the constant perturbation. The steady state error
due to the perturbation is equal to 𝑑(𝑡)/ℎ as demonstrated
previously. When the perturbation 𝑑(𝑡) = 0.1 the error
is equal to 0.1 cm as delineated in Figure 3. If we increase
the value of ℎ, we should also increase the value of the
variable structure gains𝑊1 and𝑊2. So we obtain a chattering
phenomenon.

To overcome the problem of mismatched perturbation
and uncertainty, we have suggested a sliding mode controller
with nonlinear surface.The idea is based on the backstepping
method and using a robust variable structure virtual con-
troller. The obtained results achieved robustness with respect
to parameter uncertainty and perturbation. The zoomed
curve on Figure 4 shows that we have attained our aim to
drive the hydraulic servo system to a reference position but
with a chattering phenomenon. So to attenuate this problem
we suggest substituting the discontinuous function sign(𝑥)
with a smooth saturation function tanh(𝜇𝑥) for sufficiently
high positive value 𝜇 > 0. Owing to this smooth function, we
can achieve the reference value in presence of mismatched
uncertainty and perturbation with attenuated chattering.

Finally, in Section 4, we designed a slidingmode observer
in order to estimate the required states. The efficiency of this
observer is proved mathematically and also by simulations
presented in Figures 6 and 7.

Compared to other methods such as that presented in
[17], which is based on adaptive approach to achieve position
control, we notice that our method provides faster response
since the adaptive controller proposed therein attempts to
estimate the mismatched nonlinear uncertainty. Indeed, the
rod makes a displacement of 30 cm within more than 0.8 s,
whereas with our method a maximum of 0.2 s will be
needed to make the same displacement. In [21], the authors
presented a controller based on variable structure PID to
drive the hydraulic system position. Although fast response
has been achieved, which is comparable to our results, the
good robustness was obtained since the uncertainties and
the perturbation were matched with the controller. In our
case, the robustness against the mismatched character of the
perturbation and uncertainty presented the main challenge
to take. In [26], authors obtained comparable results to
those presented in this paper using integral sliding mode
controller with realizable reference compensation applied to
an asymmetric piston.

6. Conclusion

In this paper, we developed several controllers based on
the sliding mode theory. Our aim was to control the
position of a hydraulic servo system piston in presence of
mismatched uncertainty and perturbation. We have shown
that a first-order sliding mode controller did not achieve
any robustness. Next we have developed a second-order
sliding mode controller that has shown robustness with
respect to parametric uncertainty but was not robust to

the perturbation. Finally, we have suggested a sliding mode
controller based on a nonlinear sliding surface. The design
is based on the backstepping method where on each step
a variable structure virtual controller design leads to the
design of the sliding surface. This controller emphasized the
chattering phenomenon due to the nested sliding modes.
As a remedy, we suggested substituting the discontinuous
function with a smooth saturation function. Eventually, we
have designed a robust sliding observer in order to substitute
the unmeasured states with their estimates. A step-by-step
proof has shown that the controller issued from the estimated
states achieved the position tracking.
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This paper aims to provide a practical optimal reinsurance scheme under particular conditions, with the goal of minimizing total
insurer risk. Excess of loss reinsurance is an essential part of the reinsurance market, but the concept of stop-loss reinsurance tends
to be unpopular.We study the purchase arrangement of optimal reinsurance, under which the liability of reinsurers is limited by the
excess of loss ratio, in order to generate a reinsurance scheme that is closer to reality. We explore the optimization of limited stop-
loss reinsurance under three risk measures: value at risk (VaR), tail value at risk (TVaR), and conditional tail expectation (CTE).
We analyze the topic from the following aspects: (1) finding the optimal franchise point with limited stop-loss coverage, (2) finding
the optimal limited stop-loss coverage within a certain franchise point, and (3) finding the optimal franchise point with limited
stop-loss coverage. We provide several numerical examples. Our results show the existence of optimal values and locations under
the various constraint conditions.

1. Introduction

Reinsurance, an agreement between insurers and reinsurers
that allows insurers to transfer and diversify away a certain
amount of risk, is the primary risk management tool used
by insurance companies. The amount that an insurer pays
to transfer risk to the reinsurer is known as the reinsurance
premium. The losses caused by accidents that meet the
requirements in the reinsurance contract (and that are borne
by the reinsurer) are known as reinsurance recoverable. The
insurer aims to reduce its compensation expenses to the
greatest extent possible.

However, the situation is ever-changing, and optimal
reinsurance has become a popular topic for both researchers
and practitioners.This has resulted in a plethora of important
insights.The earliest study on optimal reinsurance focused on
safety loading, Borch [1]. A later article by Gerber [2] showed
that excess of loss reinsurance is optimal at the expected
value of the reinsurance principle. Gajek and Zagrodny [3]
found that the optimal reinsurance form is the minimum
variance under the standard deviation reinsurance principle,

and Kaluszka [4] also showed that change loss reinsurance is
optimal through mean-variance analysis of optimal reinsur-
ance. Other researchers, such as Bu [5], have suggested that
insurers wishing to determine the optimal trade-off between
retained risk and expected profits should purchase middle
layer reinsurance, because the purchase of reinsurance for
high loss layers is not usually economically feasible. Cai and
Tan [6] determined the optimal retention rate by minimizing
VaR and CTE for insurers, while Cai et al. [7] found that
the optimal reinsurance form is based on the principle of
minimum VaR or CTE and that results differ under the two
methods. Under CTE, excess of loss reinsurance is always the
best product; under VaR, the answer is more complicated.
Cai et al. [7] discussed this condition further for stop-loss
reinsurance, but several issues remain, such as moral risk,
overly high expenses, and a lack of stop-loss reinsurance
products due to the extremely high risk for some types
of insurance (e.g., crop insurance). The premium rates are
relatively high because of the large reinsurance coverage,
which in turn affects the insurance company’s profits. Weng
[8] attempts to fit an optimal reinsurance model in which
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reinsurance budget constraints are given, using the principles
of minimum CTE and standard deviation reinsurance. He
notes that, when the reinsurance premium is subject to a
small budget, the best form is likely to be limited stop-
loss reinsurance, not standard stop-loss reinsurance. This
is because, if the purchase reinsurance is insufficient, the
primary insurer may become insolvent or even go bankrupt
in the aftermath of several back-to-back catastrophes, Fu and
Khury [9]. Chi and Tan [10] study the class of increasing
convex ceded loss functions based on VaR and CVaR without
specific forms of reinsurance. Their conclusions confirm the
tenets of stop-loss reinsurance, except forTheorem 3.2 in [10].
To avoid the problem of moral hazards, Chi and Weng [11]
conduct research under the Vajda condition, which stipulates
that both the insurer’s retained loss and the proportion paid
by a reinsurer are increasing in indemnity. Other researchers,
such as Gajek and Zagrodny [12] and Guerra and Centeno
[13], prefer the theory of stop-loss reinsurance. More recent
findings have been consistent with the notion that stop-loss
reinsurance is the optimal product. Weng [8] and Porth et
al. [14] add the reinsurance premium budget constraint to
their model. The reinsurance premium equation must be
solvedwhen subject to the budget constraint, so the condition
leads to a more complex problem. Therefore, we do not
consider the reinsurance premium budget constraint here.
Li et al. [15] study the optimal reinsurance and investment
problem by capturing both the insurer’s and the reinsurer’s
utility. Brandtner and Kürsten [16] investigate the problem
of optimal reinsurance of risk management within the reg-
ulatory framework of Solvency II, under conditional VaR
and spectral risk measures as its natural extension. Li et
al. [15] modeled the risk process by Brownian motion with
drift and studied the optimization problem of maximizing
the exponential utility of terminal wealth under the controls
of reinsurance and investment. Their results showed that
optimal excess of loss reinsurance is generally a better product
than optimal proportional reinsurance.

Thus, limited stop-loss reinsurance, which is the focus of
this study, is the most practical real-world solution. In this
study, we regard stop-loss reinsurance as a special case. We
aim to solve the problem and provide optimal reinsurance
advice to achieve optimal risk transfer under different risk
measurementmodels and limiting conditions.The remainder
of this paper is organized as follows. Section 2 presents the
concepts and formulas related to reinsurance, as well as the
formula of a reinsurance risk measurement model. Sections 3
and 4 explore optimal reinsurance arrangements and possible
problems under VaR, TVaR, and CTE. Section 5 provides
numerical examples and analyzes reinsurance premium con-
straints. Section 6 concludes.

2. Basic Theory of Reinsurance
and Risk Measures

2.1. Limited Stop-Loss Reinsurance Theory. To illustrate the
concept behind limited stop-loss reinsurance, consider an
example involving coverage for the total amount of claim 𝑋

over one year. The reinsurer will pay the percentage of 𝑋
that exceeds a certain amount, for example, franchise point 𝑑.
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The reinsurer’s liability is limited to that amount (e.g., limited
stop-loss coverage 𝛽). In general, 𝑑 ∈ (0,∞) and 𝛽 ∈ (0,∞).
We let 𝑋

𝐼
be the loss random variable of the cedent in the

presence of limited stop-loss reinsurance, and we then have

𝑋
𝐼
=

{{{{

{{{{

{

𝑋, 𝑋 < 𝑑,

𝑑, 𝑑 ≤ 𝑋 ≤ 𝑑 + 𝛽,

𝑋 − 𝛽, 𝑋 > 𝑑 + 𝛽.

(1)

For stop-loss reinsurance, 𝛽 = ∞. In other words, the
reinsurer pays the excess of loss over 𝑑.

In this paper, subscripts 𝑋, 𝐼, and 𝑇 stand for the
underlying loss, the retained loss, and the total loss of
the cedent in the presence of limited stop-loss reinsurance.
Survival function 𝑆

𝑋
(𝑥) = Pr{𝑋 > 𝑥} = 1 − 𝐹

𝑋
(𝑥), which

is commonly used in actuarial science (for more details, see
Cai and Tan [6]). Given that cumulative distribution function
𝐹
𝑋
(𝑥) is discontinuous, we use a strict inequality in survival

function 𝑆
𝑋
and in the risk measure. According to (1), we

therefore have

𝑆
𝐼
=

{

{

{

𝑆
𝑋 (𝑥) , 0 ≤ 𝑥 < 𝑑,

𝑆
𝑋
(𝑥 + 𝛽) , 𝑥 ≥ 𝑑.

(2)

Figure 1 shows the relationship between 𝑆
𝑋
and 𝑆
𝐼
, where

𝑆
𝐼
is discontinuous. According to the jump of 𝑆

𝐼
, the entire

plane is divided into three districts, as Figure 1 shows.
Let Π(𝑑, 𝛽) be the pure risk premium for the reinsurer as

follows:

Π(𝑑, 𝛽) = ∫

𝑑+𝛽

𝑑

(𝑥 − 𝑑) 𝑓𝑋 (𝑥) 𝑑𝑥 +𝛽 [1−𝐹 (𝑑 +𝛽)]

= ∫

𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥,

(3)
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where 𝑓
𝑋
(𝑥) is the probability density function of 𝑋. Then,

according to the expected value premium principle, the
reinsurance premium 𝛿(𝑑, 𝛽) is

𝛿 (𝑑, 𝛽) = (1+𝜌)Π (𝑑, 𝛽) , (4)

where 𝜌 > 0 is the safety loading. Hence, total risk 𝑇 is

𝑋
𝑇
= 𝑋
𝐼
+ 𝛿 (𝑑, 𝛽) . (5)

2.2. Risk Measure after Reinsurance. In reinsurance studies,
the risk measure is used to ensure optimal decision making
(see, e.g., Cai et al. [7] and Bernard and Tian [17]). In
risk management, several models, such as VaR, CTE, TVaR,
CVaR, and ES, are commonly used. Within a certain time
period and at a confidence level of 1 − 𝛼, 0 < 𝛼 < 1, the
highest risk value of 𝑋 does not exceed VaR; CTE is the
expected value of events that occur outside the probability
alpha. According to the consistency axiom of risk measure
defined by Artzner et al. [18], several of these risk measures
do not satisfy the consistency axiom. For example, VaR does
not meet the additivity condition.

According to Hang [19] and the combined characteristic
of𝑋
𝐼
, we have

VaR
𝐼
(𝑑, 𝛼, 𝛽) = inf {𝑥 | Pr (𝑋

𝐼
>𝑥) ≤ 𝛼}

= inf {𝑥 | 𝑆
𝐼 (𝑥) ≤ 𝛼}

=

{{{{

{{{{

{

𝑆
−1
𝑋
(𝛼) − 𝛽, 0 < 𝑑 + 𝛽 < 𝑆−1

𝑋
(𝛼) , i,

𝑑, 𝑑 ≤ 𝑆
−1
𝑋
(𝛼) ≤ 𝑑 + 𝛽, ii,

𝑆
−1
𝑋
(𝛼) , 𝑆

−1
𝑋
(𝛼) < 𝑑, iii.

(6)

For conciseness, we denote VaRi
𝑇

as VaR
𝑇

in district i
throughout the remainder of paper; the variables with no
subscript stand for those in the entire district. The rest of
the variables are similar. 𝑆

𝐼
is divided into three districts.

Similarly, we divide plane (𝑑, 𝛽) into three districts: i, ii, and
iii (Figure 2). The boundaries of i and ii and of ii and iii are
classified in ii.

From (5) and (6), we therefore have

VaR
𝑇
(𝑑, 𝛼, 𝛽) = VaR

𝐼
(𝑑, 𝛼, 𝛽) + 𝛿 (𝑑, 𝛽) , (7)

where VaR
𝐼
is continuous on the plane and 𝛿(𝑑, 𝛽) is

continuous. Hence, VaR
𝑇
is also continuous on the plane.

From (5) and (7), we can easily prove 𝑆
𝑇
(VaR
𝑇
(𝑑, 𝛼, 𝛽)) =

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽)). In district i, we have 0 < 𝑑 + 𝛽 < 𝑆

−1
𝑋
(𝛼),

and VaR
𝐼
(𝑑, 𝛼, 𝛽) = 𝑆

−1
𝑋
(𝛼) − 𝛽 > 𝑑. With (2), we have

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽)) = 𝑆

𝐼
(𝑆
−1
𝑋
(𝛼) − 𝛽) = 𝛼,

𝐸 [(𝑋
𝐼
−VaR

𝐼
(𝑑, 𝛼, 𝛽))

+
]

= ∫

∞

VaR𝐼(𝑑,𝛼,𝛽)
(𝑥 − 𝛽−VaR

𝐼
(𝑑, 𝛼, 𝛽)) 𝑓

𝑋 (𝑥) 𝑑𝑥

= ∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥.

(8)

In district ii, we have 𝑑 ≤ 𝑆−1
𝑋
(𝛼) ≤ 𝑑 + 𝛽 and VaR

𝐼
(𝑑, 𝛼, 𝛽) =

𝑑. With (2), we therefore have

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽)) = 𝑆

𝐼 (𝑑) = 𝑆𝑋 (𝑑 +𝛽) ,

𝐸 [(𝑋
𝐼
−VaR

𝐼
(𝑑, 𝛼, 𝛽))

+
]

= ∫

∞

𝑑+𝛽

(𝑥 − 𝛽−𝑑)𝑓
𝑋 (𝑥) 𝑑𝑥 = ∫

∞

𝑑+𝛽

𝑆
𝑋 (𝑥) 𝑑𝑥.

(9)

In district iii, we have 𝑆−1
𝑋
(𝛼) < 𝑑 and VaR

𝐼
(𝑑, 𝛼, 𝛽) =

𝑆
−1
𝑋
(𝛼) < 𝑑. With (2), we have

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽)) = 𝑆

𝐼
(𝑆
−1
𝑋
(𝛼)) = 𝛼,

𝐸 [(𝑋
𝐼
−VaR

𝐼
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+
]

= ∫

𝑑

𝑆
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𝑋
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(𝑥 − 𝑆
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𝑋
(𝛼)) 𝑓𝑋 (𝑥) 𝑑𝑥

+ [𝑑 − 𝑆
−1
𝑋
(𝛼)] [𝐹𝑋 (𝑑 +𝛽) −𝐹𝑋 (𝑑)]

+∫

∞
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∞
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(10)

We obtain the expression of ES as follows:

ES
𝐼
(𝑑, 𝛼, 𝛽) = 𝐸 [(𝑋

𝐼
−VaR

𝐼
(𝑑, 𝛼, 𝛽))

+
]

=

{{{{{{{{{{

{{{{{{{{{{

{

∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥, i,

∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥 − ∫

𝑑+𝛽

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥, ii,

∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥 − ∫

𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥, iii.

(11)
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And, with (5) and (6), we obtain

ES
𝑇
(𝑑, 𝛼, 𝛽) = 𝐸 [(𝑋

𝑇
−VaR

𝑇
(𝑑, 𝛼, 𝛽))

+
]

= 𝐸 [(𝑋
𝐼
−VaR

𝐼
(𝑑, 𝛼, 𝛽))

+
]

= ES
𝐼
(𝑑, 𝛼, 𝛽) .

(12)

According to the transformation among risk measure
models (Hang [19] and Charpentier [20]), we have

TVaR
𝐼
(𝑑, 𝛼, 𝛽) = inf

𝑎>0
{𝑎+

1
𝛼
𝐸 [(𝑋

𝐼
− 𝑎)
+
]}

= VaR
𝐼
(𝑑, 𝛼, 𝛽) +

1
𝛼
ES
𝐼
(𝑑, 𝛼, 𝛽) ,

CVaR
𝐼
(𝑑, 𝛼, 𝛽)

= 𝐸 [𝑋
𝐼
−VaR

𝐼
(𝑑, 𝛼, 𝛽) | 𝑋

𝐼
>VaR

𝐼
(𝑑, 𝛼, 𝛽)]

=
1

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽))

ES
𝐼
(𝑑, 𝛼, 𝛽) ,

CTE
𝐼
(𝑑, 𝛼, 𝛽) = 𝐸 [𝑋

𝐼
| 𝑋
𝐼
>VaR

𝐼
(𝑑, 𝛼, 𝛽)]

= VaR
𝐼
(𝑑, 𝛼, 𝛽)

+
1

𝑆
𝐼
(VaR
𝐼
(𝑑, 𝛼, 𝛽))

ES
𝐼
(𝑑, 𝛼, 𝛽) .

(13)

Obviously, TVaR, CTE, and CVaR can all be obtained by
combining VaR, ES, 𝑆, and 𝛼. Equations (7) and (12) denote
the transforming relationships between 𝑋

𝐼
and 𝑋

𝑇
of VaR

and ES, respectively. Hence, no expressions of TVaR, CTE,
or CVaR exist in 𝑋

𝑇
. For information risk measures, see

Charpentier [20].
We define risk measures in this paper as per Hang [19],

whose definitions are slightly different from those proposed
by Wirch and Hardy [21]. According to 𝑆

𝑇
= 𝑆
𝐼
and (12),

ES and CVaR models do not include the information of
reinsurance premium 𝛿(𝑑, 𝛽). Thus, they are not suitable for
making reinsurance decisions, and no further analysis of
them is needed in this context.

Under riskmeasureΛ and conditionΘ, the aim is to solve
the optimization problem

min
𝜃∈Θ

Λ
𝑇 (𝜃) . (14)

Note that, in this study, 𝜃 = (𝑑, 𝛼, 𝛽) and Λ ∈ {VaR,TVaR,
CTE}, but Θ has different expressions.

3. Optimal Reinsurance under
the VaR Risk Measure

We let Λ = VaR, the most commonly used and concise risk
measure in risk management. From (3), (4), (6), and (7), we
therefore have

𝜕VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑

=

{{{{

{{{{

{

(1 + 𝜌) (𝑆
𝑋
(𝑑 + 𝛽) − 𝑆

𝑋 (𝑑)) < 0, i,

1 + (1 + 𝜌) (𝑆
𝑋
(𝑑 + 𝛽) − 𝑆

𝑋 (𝑑)) , ii,

(1 + 𝜌) (𝑆
𝑋
(𝑑 + 𝛽) − 𝑆

𝑋 (𝑑)) < 0, iii,

𝜕
2VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑2
= (1+𝜌) (𝑓

𝑋 (𝑑) −𝑓𝑋 (𝑑 + 𝛽)) ,

(𝑑, 𝛽) ∈ i, ii, iii,

𝜕VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝛽
=

{{{{

{{{{

{

−1 + (1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) , i,

(1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) > 0, ii,

(1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) > 0, iii,

𝜕
2VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝛽2
= − (1+𝜌)𝑓

𝑋
(𝑑 + 𝛽) < 0,

(𝑑, 𝛽) ∈ i, ii, iii,

𝜕
2VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑𝜕𝛽
= − (1+𝜌)𝑓

𝑋
(𝑑 + 𝛽) < 0,

(𝑑, 𝛽) ∈ i, ii, iii.

(15)

In any district, VaR
𝑇
is monotonous for either 𝑑 or 𝛽. In

other words, it cannot form a stagnation point.Therefore, the
optimal solution can only exist on the border.

3.1. Optimal 𝑑 for Given 𝛽. At any given point in time on the
reinsurance market, some reinsurance policies are not active.
For example, the coverage of reinsurance in the market is
generally given as 𝛽 = 0.2, 0.3. For management purposes,
company executives typically provide a definite coverage
amount in advance, with the goal of finding the optimal
franchise point for given reinsurance coverage 𝛽 that will
minimize total insurer risk.We letΘ = {𝑑 | 𝑑 > 0}.Therefore,
the optimization problem must be addressed as follows:

min
𝑑>0

VaR
𝑇
(𝑑, 𝛼, 𝛽) . (16)

As we noted previously, VaR
𝑇
is continuous on the entire

plane. From (15), we know that VaR
𝑇
is decreasing in i and iii,

and

VaR
𝑇
(∞, 𝛼, 𝛽) = lim

𝑑→∞

VaR
𝑇
(𝑑, 𝛼, 𝛽) = 𝑆

−1
𝑋
(𝛼) , (17)
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where VaR
𝑇
(∞, 𝛼, 𝛽) represents the case where 𝑑 approaches

infinity and VaRii
𝑇
(0, 𝛼, 𝛽) represents 0. For the sake of space,

we donot provide any detailed demonstrations here, however.
Next, we establish that

ℎ (𝛽) = (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

𝑆
−1
𝑋
(𝛼)−𝛽

𝑆
𝑋 (𝑥) 𝑑𝑥 −𝛽,

0 ≤ 𝛽 ≤ 𝑆−1
𝑋
(𝛼) ,

ℎ

(𝛽) = (1+𝜌) 𝑆

𝑋
(𝑆
−1
𝑋
(𝛼) − 𝛽) − 1,

ℎ

(𝛽) = (1+𝜌)𝑓

𝑋
(𝑆
−1
𝑋
(𝛼) − 𝛽) > 0.

(18)

Note thatℎ is a strictly convex function in𝛽. By lettingℎ(𝛽) =
0, we can solve

�̃� = 𝑆
−1
𝑋
(𝛼) − 𝑆

−1
𝑋
(

1
1 + 𝜌

) . (19)

We let �̃� > 0; that is,

𝛼 ∗ (1+𝜌) < 1, (20)

while, at the same time, ℎ(0) = 0. By letting ℎ(𝛽∗) = 0, we can
obtain the numerical solution of 𝛽∗. Thus, 𝛽∗ > �̃� under the
condition of (20), and we have ∀𝛽 ∈ [0, 𝛽∗], ℎ(𝛽) ≤ 0.

Note that (20) is very important, because, in general,
safety loading 𝜌 cannot be too large, or the risk distribution
will be unsuitable. If 𝜌 = 1, then 𝛼 < 0.5; if 𝜌 = 0.5, then
𝛼 < 2/3. When the general consideration of 𝛼 is relatively
small and if the insurance company’s risk tolerance level 𝛼 =
0.5, then it will be unsuitable for the excess of loss ratio
reinsurance.

Let 𝑑∗ be the solution of

𝑆
𝑋 (𝑑) − 𝑆𝑋 (𝑑 +𝛽) =

1
1 + 𝜌

. (21)

In this manner, if (𝑑∗, 𝛽) ∈ ii, then

𝜕VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑

(𝑑∗ ,𝛽)∈ii
= 0. (22)

The existence and uniqueness of 𝑑∗ depends on the distri-
bution of 𝑓

𝑋
and 𝜌. We define

∘

𝑑 = inf{𝑑 : ∀𝛽 > 0, 𝑓
𝑋
(𝑑) >

𝑓
𝑋
(𝑑+𝛽)}. In fact,

∘

𝑑 is the rightmost peak of risk distribution
𝑓
𝑋
.

Lemma 1. If (20) is satisfied, then ∀𝛽 ∈ (0, 𝛽∗), 𝑉𝑎𝑅
𝑇
can

achieve the optimum, and franchise 𝑑 should be in district ii.
Furthermore, (1) if𝛽 ≤ 𝑆−1

𝑋
(𝛼)−

∘

𝑑 and𝑑∗ > 𝑆−1
𝑋
(𝛼)−𝛽, then one

can find the optimal 𝑉𝑎𝑅
𝑇
in 𝑑 = 𝑑∗ and (2) if 𝛽 ≤ 𝑆−1

𝑋
(𝛼) −

∘

𝑑

and 𝑑∗ ≤ 𝑆
−1
𝑋
(𝛼) − 𝛽, one can find the optimal 𝑉𝑎𝑅

𝑇
in 𝑑 =

𝑆
−1
𝑋
(𝛼) − 𝛽.

Proof. As mentioned in the previous sections, districts i and
iii are open sets. However, VaR

𝑇
is monotonically decreasing

d0 S−1X (𝛼)

S−1X (𝛼)

S−1X (𝛼) − 𝛽

S−1X (𝛼) + ∫∞
S−1𝑋 (𝛼)

SX(x)dx /𝛼

VaRT

TVaRT

[ [

Figure 3: When 𝛽 is given, VaR
𝑇
and TVaR

𝑇
satisfy (20).

in 𝑑. Therefore, if an optimal VaR
𝑇
exists, it must be the

optimal VaRii
𝑇
. In boundary district ii, 𝑑 = 𝑆

−1
𝑋
(𝛼) − 𝛽, so,

from (6), (7), and (20), we have

VaR
𝑇
(𝑆
−1
𝑋
(𝛼) − 𝛽, 𝛼, 𝛽) −VaR𝑇 (∞, 𝛼, 𝛽) = ℎ (𝛽) . (23)

Moreover, as we can deduce from (20), ℎ(𝛽) ≤ 0. Thus,
we know that VaR

𝑇
(𝑆
−1
𝑋
(𝛼) − 𝛽, 𝛼, 𝛽) is not larger than

VaR
𝑇
(∞, 𝛼, 𝛽). In a given situation 𝛽, district ii about 𝑑 is a

closed set, soVaR
𝑇
in district ii will attain an optimal solution.

When 𝛽 ≤ 𝑆
−1
𝑋
(𝛼) −

∘

𝑑, 𝑑 ≥

∘

𝑑. With (15), we know that
VaRii
𝑇
about𝑑 is convex, whichmeans that the optima ofVaRii

𝑇

are found at extreme points where the first derivative of VaRii
𝑇

is 0. If 𝑑∗ ≥ 𝑆
−1
𝑋
(𝛼), then VaRii

𝑇
is monotonically decreasing

in [𝑆
−1
𝑋
(𝛼) − 𝛽, 𝑆

−1
𝑋
(𝛼)]. However, VaR

𝑇
on 𝑑 = 𝑆

−1
𝑋
(𝛼) is

continuous, and it will begin to decrease from this point to
VaR
𝑇
(∞, 𝛼, 𝛽).This condition is contrary to that foundunder

ℎ(𝛽) ≤ 0. Hence, under the condition of (20), 𝑑∗ < 𝑆−1
𝑋
(𝛼).

If 𝑑∗ > 𝑆
−1
𝑋
(𝛼) − 𝛽 and 𝑑

∗
∈ (𝑆
−1
𝑋
(𝛼) − 𝛽, 𝑆

−1
𝑋
(𝛼)),

VaR
𝑇
on 𝑑 = 𝑑

∗ will exist as an optimal solution. When
𝑑
∗
≤ 𝑆
−1
𝑋
(𝛼) − 𝛽, VaRii

𝑇
on 𝑑 is increasing; therefore, when

𝑑 = 𝑆
−1
𝑋
(𝛼)−𝛽, we can find the optimal solution, which is also

the optimal VaR
𝑇
. Figure 3 gives a graphical representation of

min
𝑑>0VaR𝑇(𝑑, 𝛼, 𝛽).

The proof indicates the existence of 𝑑∗ and implies that
the relationship between 𝑑∗ and

∘

𝑑 only affects the position of
the optimal solution, not its existence.

3.2. Optimal 𝛽 for Given 𝑑. Note that insurance companies
may consider a reinsurance position where the franchise
point is the profit equilibrium point, because they can obtain
a certain profit before the threshold. Beyond this threshold,
profits will be reduced or even reach a deficit. Thus, the
best option is appropriate reinsurance coverage 𝛽 to achieve
optimality. 𝑑 is constant, and 𝛽 is a variable.The optimization
problem is Λ = VaR, Θ = {𝛽 | 𝛽 > 0}.
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Next, we let

𝑔 (𝑑) = 𝑑+ (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥 − 𝑆

−1
𝑋
(𝛼) ,

0 ≤ 𝑑 ≤ 𝑆−1
𝑋
(𝛼) ,

𝑔

(𝑑) = 1− (1+𝜌) 𝑆

𝑋 (𝑑) ,

𝑔

(𝑑) = (1+𝜌)𝑓𝑋 (𝑑) > 0,

(24)

where 𝑔 is a strictly convex function in 𝑑. The solution of
𝑔

(𝑑) = 0 is �̃�:

�̃� = 𝑆
−1
𝑋
(

1
1 + 𝜌

) ,

�̃� < 𝑆
−1
𝑋
(𝛼) ←→ (20) .

(25)

Furthermore, 𝑔(𝑆−1
𝑋
(𝛼)) = 0. Hence, under (20), another

solution is ̃𝑑∗ < 𝑆
−1
𝑋
(1/(1 + 𝜌)), which can be obtained by

using a numerical method. For ∀𝑑 ∈ [
̃
𝑑
∗
, 𝑆
−1
𝑋
(𝛼)], we have

𝑔(𝑑) ≤ 0.

Lemma 2. If (20) is satisfied, ∀𝑑 ∈ [
̃
𝑑
∗
, 𝑆
−1
𝑋
(𝛼)]. 𝑉𝑎𝑅

𝑇
can

then obtain the optimal value when 𝛽 = 𝑆−1
𝑋
(𝛼) − 𝑑:

𝑉𝑎𝑅
𝑇
(𝑑, 𝛼, 𝑆

−1
𝑋
(𝛼) − 𝑑)

= 𝑑+ (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥.

(26)

∀𝑑 ∉ [
̃
𝑑
∗
, 𝑆
−1
𝑋
(𝛼)], and no optimal solutions of 𝛽 exist in𝑉𝑎𝑅

𝑇
.

Proof. According to (15), when 𝑑 > 𝑆
−1
𝑋
(𝛼) (district iii, open

set), then VaR
𝑇
will be increasing with regard to 𝛽; hence, no

optimal value exists. However, when 𝛽 ≥ 𝑆−1
𝑋
(𝛼) − 𝑑 (district

ii, half closed), VaR
𝑇
will be increasing with regard to 𝛽, and

the minimumwill be reached at the lower boundary. VaR
𝑇
in

district i is convexwith regard to𝛽.Thus, if the value obtained
on the boundary of districts i and ii is not greater than the
lower limit value, then we can obtain the optimal value, or the
combination of properties of the convex functionwill indicate
no optimal value.

∀𝑑 ∈ [
̃
𝑑
∗
, 𝑆
−1
𝑋
(𝛼)], and let 𝛽 = 𝑆−1

𝑋
(𝛼) − 𝑑:

VaR
𝑇
(𝑑, 𝛼, 𝑆

−1
𝑋
(𝛼) − 𝑑) −VaR𝑇 (𝑑, 𝛼,∞) = 𝑔 (𝑑)

< 0.
(27)

The boundary of districts i and ii 𝑑 + 𝛽 = 𝑆
−1
𝑋
(𝛼). Given

that the value of VaR
𝑇
is less than the limit value of 𝑆−1

𝑋
(𝛼),

this is optimal. However, ∀𝑑 <
̃
𝑑
∗, 𝑔(𝑑) > 0, so no optimal

solution exists. Figure 4 gives a graphical representation of
min
𝛽>0VaR𝑇(𝑑, 𝛼, 𝛽).

𝛽0

VaRT

TVaRT

S−1X (𝛼) − d

d + (1 + 𝜌)∫∞
d
SX(x)dx

Figure 4: When 𝑑 is given, VaR
𝑇
and TVaR

𝑇
satisfy (20).

3.3. Comprehensive Effect. After analyzing the optimal deci-
sion under given franchise point 𝑑 or given reinsurance
coverage 𝛽, we consider comprehensive effects with two
variables.The optimization problem isΛ = VaR,Θ = {(𝑑, 𝛽) |

𝑑 > 0, 𝛽 > 0}. The following analysis is under a function
of 𝑑, and we obtain similar results if we perform it under a
function of 𝛽.

Lemma 3. Under the condition of (20), 𝑉𝑎𝑅
𝑇
can obtain the

global optimal value on (�̃�, 𝑆−1
𝑋
(𝛼) − �̃�).

Proof. The optimal value of VaR
𝑇
only occurs on the border

of districts i and ii. Lemma 2 ensures that VaR
𝑇
(𝑑, 𝛼, 𝛽) ≤

𝑆
−1
𝑋
(𝛼) under the condition of (20) is not empty. We let

∀(𝑑, 𝛽) : 𝑑 + 𝛽 = 𝑆
−1
𝑋
(𝛼), and

VaR
𝑇
(𝑑, 𝛼, 𝛽) = 𝑑+ (1+𝜌)∫

𝑆
−1
𝑋
(𝛼)

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥,

𝜕VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑
= 1− (1+𝜌) 𝑆

𝑋 (𝑑) ,

𝜕
2VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑2
= (1+𝜌)𝑓

𝑋 (𝑑) > 0.

(28)

VaR
𝑇
is convex in the border district, and we obtain the

minimum value when the first derivative is 0. We do not
consider 𝑑 = 0 or∞:

𝜕VaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑
= 0←→ 𝑑 = 𝑆

−1
𝑋
(

1
1 + 𝜌

) . (29)

The value of �̃� falls within the district, as required by
Lemma 2.Thus, under the condition of (20), VaR

𝑇
attains the

global optimal value on (�̃�, 𝑆−1
𝑋
(𝛼) − �̃�).

Given a company’s risk preference 𝛼 and safety loading
𝜌, we can obtain the optimal solution on �̃� = 𝑆−1

𝑋
(1/(1 + 𝜌)),

�̃� = 𝑆
−1
𝑋
(𝛼)−𝑆

−1
𝑋
(1/(1+𝜌)). An undesirable phenomenon thus

exists: risk preference 𝛼 cannot affect the optimal franchise
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point. It can only affect the reinsurance coverage. Chi and Tan
[10] set no constraint on 𝛽 = 0 or 𝛽 = ∞. Theorem 3.2 in [10]
provides the same conclusion as Lemma 3.

4. Optimal Reinsurance under TVaR
and CTE Risk Measures

4.1. Under TVaR Risk Measures. In this subsection, Λ =
TVaR. Equation (13) provides the TVaR formula, and VaR

𝑇

and ES
𝑇
are both continuous on the entire plane. Thus,

TVaR
𝑇
is also continuous. According to (13) and (15), we have

𝜕TVaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑

=
𝜕TVaR

𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑
+
1
𝛼

𝜕ES
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝑑

=

{{{{{

{{{{{

{

(1 + 𝜌) (𝑆
𝑋
(𝑑 + 𝛽) − 𝑆

𝑋 (𝑑)) < 0, i,

1 − [ 1
𝛼
− (1 + 𝜌)] 𝑆

𝑋
(𝑑 + 𝛽) − (1 + 𝜌) 𝑆

𝑋 (𝑑) , ii,

[
1
𝛼
− (1 + 𝜌)] (𝑆

𝑋 (𝑑) − 𝑆𝑋 (𝑑 + 𝛽)) , iii,

(30)

𝜕TVaR
𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝛽
=

{{{{{

{{{{{

{

−1 + (1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) , i,

− [
1
𝛼
− (1 + 𝜌)] 𝑆

𝑋
(𝑑 + 𝛽) , ii,

− [
1
𝛼
− (1 + 𝜌)] 𝑆

𝑋
(𝑑 + 𝛽) , iii.

(31)

For a given 𝛽, TVaR is monotonically decreasing in district
i, and, under the condition of (20), it is monotonically
increasing in district iii. Hence, an optimal solution exists in
district ii.

Lemma 4. Under the condition of (20) and (1) ∀𝛽 > 0 (Θ =

{𝑑 | 𝑑 > 0}), the optimal solution of TVaR appears in district
ii; (2) in the case of 𝑑 (Θ = {𝛽 | 𝛽 > 0}), no optimal value
of TVaR exists; and (3) no global optimal value of TVaR (Θ =

{(𝑑, 𝛽) | 𝑑 > 0, 𝛽 > 0}) exists.

Proof. Figure 3 gives a graphical representation of
min
𝑑>0TVaR𝑇(𝑑, 𝛼, 𝛽). At a given 𝑑,

𝜕
2TVaRi

𝑇
(𝑑, 𝛼, 𝛽)

𝜕𝛽2
= − (1+𝜌)𝑓

𝑋
(𝑑 +𝛽) < 0. (32)

Therefore, in district i, the TVaR
𝑇
of 𝛽 is convex. However,

under (20), TVaR
𝑇
in districts ii and iii of 𝛽 is decreasing,

so no optimal solution exists (Figure 3). In this case, we
cannot obtain an optimal solution by only changing 𝛽. And,
moreover, no optimal solution exists when we change 𝑑 and
𝛽.

4.2. Under CTE Risk Measures. In this subsection, Λ = CTE.
According to (13) and so on, we have

CTE
𝑇
(𝑑, 𝛼, 𝛽) = VaR

𝑇
(𝑑, 𝛼, 𝛽) +CVaR

𝑇
(𝑑, 𝛼, 𝛽)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑆
−1
𝑋
(𝛼) − 𝛽 + (1 + 𝜌)∫

𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥 +

1
𝛼
∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥, i,

𝑑 + (1 + 𝜌)∫
𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥 +

1
𝑆
𝑋
(𝑑 + 𝛽)

∫

∞

𝑑+𝛽

𝑆
𝑋 (𝑥) 𝑑𝑥, ii,

𝑆
−1
𝑋
(𝛼) +

1
𝛼
∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥 − [

1
𝛼
− (1 + 𝜌)]∫

𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥, iii.

(33)

Lemma 5. 𝐶𝑇𝐸
𝑇
is continuous between districts i and ii and

discontinuous between districts ii and iii. One therefore has:

𝐶𝑇𝐸
𝑖𝑖

𝑇
(𝑆
−1
𝑋
(𝛼) , 𝛼, 𝛽) > 𝐶𝑇𝐸

𝑖𝑖𝑖

𝑇
(𝑆
−1
𝑋
(𝛼) , 𝛼, 𝛽) . (34)

Proof. VaR
𝑇
and ES

𝑇
are continuous on the plane, so we only

need to prove the numerator of CTE
𝑇
. If ∀(𝑑0, 𝛽0): 𝑑0 + 𝛽0 =

𝑆
−1
𝑋
(𝛼), then (𝑑0, 𝛽0) ∈ ii; it is in the boundary of districts i

and ii. We have 𝑆
𝑋
(𝑑0 + 𝛽0) = 𝛼. Hence, CTE𝑇 is continuous

between districts i and ii.
If ∀𝛽0 > 0, 𝑑0 = 𝑆

−1
𝑋
(𝛼), then (𝑑0, 𝛽0) ∈ ii; it is on the

boundary of districts ii and iii. We have 1/𝑆
𝑋
(𝑑0 + 𝛽0) >

1/𝛼. Thus, CTE
𝑇
is discontinuous between districts ii and iii.

Furthermore, CTEii
𝑇
(𝑆
−1
𝑋
(𝛼), 𝛼, 𝛽) > CTEiii

𝑇
(𝑆
−1
𝑋
(𝛼), 𝛼, 𝛽).

From (15) and (33), we have

𝜕CTE
𝑇

𝜕𝑑

=

{{{{{{

{{{{{{

{

− (1 + 𝜌) (𝑆
𝑋 (𝑑) − 𝑆𝑋 (𝑑 + 𝛽)) < 0, i,

− (1 + 𝜌) (𝑆
𝑋 (𝑑) − 𝑆𝑋 (𝑑 + 𝛽)) +

𝑓
𝑋
(𝑑 + 𝛽)

𝑆
𝑋
(𝑑 + 𝛽)

CVaRii
𝑇
, ii,

[
1
𝛼
− (1 + 𝜌)] (𝑆

𝑋 (𝑑) − 𝑆𝑋 (𝑑 + 𝛽)) , iii,

(35)

𝜕CTE
𝑇

𝜕𝛽
=

{{{{{{

{{{{{{

{

−1 + (1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) , i,

(1 + 𝜌) 𝑆
𝑋
(𝑑 + 𝛽) +

𝑓
𝑋
(𝑑 + 𝛽)

𝑆
𝑋
(𝑑 + 𝛽)

CVaRii
𝑇
− 1, ii,

− [
1
𝛼
− (1 + 𝜌)] 𝑆

𝑋
(𝑑 + 𝛽) , iii.

(36)
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In district ii, the partial derivatives in 𝑑 and 𝛽 depend on
risk distribution𝑓

𝑋
, whichmakes it difficult to determine the

existence or location of the optimal solution.We therefore let

𝐻(𝛽) = CTEii
𝑇

𝑑+𝛽=𝑆−1
𝑋
(𝛼)
− CTEiii

𝑇

𝑑→𝑆−1
𝑋
(𝛼)

= [
1
𝛼
− (1+𝜌)]∫

𝑆
−1
𝑋
(𝛼)+𝛽

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥

+ (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

𝑆
−1
𝑋
(𝛼)−𝛽

𝑆
𝑋 (𝑥) 𝑑𝑥 −𝛽.

(37)

We can obtain the solution 𝑑CTE of 𝜕CTEii
𝑇
/𝜕𝑑 = 0 with a

numerical method (but it may not be in district ii). With (35),
determining the position and uniqueness of 𝑑CTE is difficult.

Lemma 6. For a given 𝛽 (Θ = {𝑑 | 𝑑 > 0}) under the
condition of (20), CTE can obtain the optimal value in district
ii if one of the following conditions is reached:

(1) 𝐻(𝛽) ≤ 0;
(2) 𝑑𝐶𝑇𝐸 ∈ 𝑖𝑖 and 𝐶𝑇𝐸(𝑑𝐶𝑇𝐸, 𝛼, 𝛽) ≤ 𝐶𝑇𝐸𝑖𝑖𝑖

𝑇
(𝑆
−1
𝑋
(𝛼), 𝛼, 𝛽).

Proof. 𝜕CTEi
𝑇
/𝜕𝑑 < 0, so no optimal solution exists in

district i. From (35), we know no optimal solution exists
under the condition of (20) because CTEiii

𝑇
is monotonically

increasing in 𝑑. Thus, the optimal solution can only appear
in district ii. For𝐻(𝛽) ≤ 0, the left border of district ii is not
greater than the left boundary of district iii; hence, no optimal
value exists in district ii. As (35) shows, 𝜕CTEii

𝑇
/𝜕𝑑 is contin-

uous. Under the condition of statement (2) in Lemma 6, we
can ensure the existence of the optimal solution.

Lemma 7. Under the condition of (20), 𝐶𝑇𝐸
𝑇
cannot attain

the optimal value on given 𝑑 (Θ = {𝛽 | 𝛽 > 0}).

Proof. According to (20), 𝜕CTEiii
𝑇
/𝜕𝛽 < 0; no optimal value

exists in the open set district iii. According to (36), we have

𝜕
2CTEi

𝑇

𝜕𝛽2
= − (1+𝜌)𝑓

𝑋
(𝑑 +𝛽) < 0, (38)

where CTEi
𝑇
is strictly convex and the minimum value can

only be obtained at the border. However, district i is an open
set, so no optimal value exists. When 𝛽 = ∞ and 0 < 𝑑 <

𝑆
−1
𝑋
(𝛼), this is as described by Cai et al. [7]. Therefore,

CTEii
𝑇
(𝑑, 𝛼,∞) = 𝑑+ (1+𝜌)∫

∞

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥. (39)

Moreover, according to (33), we have

CTEii
𝑇
(𝑑, 𝛼, 𝛽)

= CTEii
𝑇
(𝑑, 𝛼,∞)

+[
1

𝑆
𝑋
(𝑑 + 𝛽)

− (1+𝜌)]∫
∞

𝑑+𝛽

𝑆
𝑋 (𝑥) 𝑑𝑥.

(40)

Under (20), CTEii
𝑇
(𝑑, 𝛼, 𝛽) > CTEii

𝑇
(𝑑, 𝛼,∞), and no optimal

solution exists.

𝑑 is increasing within district iii, and the minimum can
only appear when 𝑑 → 𝑆

−1
𝑋
(𝛼). Thus, no optimal solution

exists in the open set district iii. When 𝛽 = ∞, Cai et al. [7]
note that CTE

𝑇
is continuous. Under the conditions of (20),

the minimum is obtained at �̃�:

CTEii
𝑇
(�̃�, 𝛼,∞) = �̃� + (1+𝜌)∫

∞

�̃�

𝑆
𝑋 (𝑥) 𝑑𝑥. (41)

CTEi
𝑇
(0, 𝛼, 𝛽) is convex on 𝛽 ∈ (0, 𝑆−1

𝑋
(𝛼)), so the

minimum appears at both ends:

CTEi
𝑇
(0, 𝛼, 𝑆−1

𝑋
(𝛼))

= (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

0
𝑆
𝑋 (𝑥) 𝑑𝑥 +

1
𝛼
∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥

= CTEii
𝑇
(0, 𝛼,∞)

+ [
1
𝛼
− (1+𝜌)]∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥.

(42)

Therefore, under the condition of (20), CTEi
𝑇
(0, 𝛼, 𝑆−1

𝑋
(𝛼)) <

CTEii
𝑇
(0, 𝛼,∞). We let

𝐺 (𝑑) = CTEii
𝑇
(𝑑, 𝛼,∞) −CTEi

𝑇
(𝑑, 𝛼, 0) ,

𝐺

(𝑑) = 1− (1+𝜌) 𝑆

𝑋 (𝑑) ,

𝐺

(𝑑) = (1+𝜌)𝑓𝑥 (𝑑) > 0,

(43)

where 𝐺 is convex and 𝐺

(�̃�) = 0. 𝐺(𝑆−1

𝑋
(𝛼)) = 0, so

𝐺(�̃�) < 0. CTE
𝑇
(𝑑, 𝛼, 0) is a constant, so CTEii

𝑇
(�̃�, 𝛼,∞) <

CTEi
𝑇
(𝑑, 𝛼, 0). CTEii

𝑇
(�̃�, 𝛼,∞) is the minimum boundary

value; if a smaller internal value exists in the flat areas, we
can obtain the global optimal solution.

Lemma 8. No global optimum 𝐶𝑇𝐸
𝑇
exists under the condi-

tion of (20), Θ = {(𝑑, 𝛽) | 𝑑 > 0, 𝛽 > 0}.

Proof. Assume that the optimal solution of CTE
𝑇
exists.

According to our previous analysis, the global optimal solu-
tion can only appear in district ii, and it cannot be the right
boundary. We must therefore prove that it is impossible to
obtain the optimal value in the lower boundary of district ii:

CTEii
𝑇
(𝑑, 𝛼, 𝑆

−1
𝑋
(𝛼) − 𝑑)

= 𝑑+ (1+𝜌)∫
𝑆
−1
𝑋
(𝛼)

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥

+
1
𝛼
∫

∞

𝑆
−1
𝑋
(𝛼)

𝑆
𝑋 (𝑥) 𝑑𝑥,

CTEii
𝑇
(𝑑, 𝛼, 𝑆

−1
𝑋
(𝛼) − 𝑑) = 1− (1+𝜌) 𝑆

𝑋 (𝑑) ,

CTEii
𝑇
(𝑑, 𝛼, 𝑆

−1
𝑋
(𝛼) − 𝑑) = (1+𝜌)𝑓𝑋 (𝑑) > 0.

(44)

In the lower boundary, we obtain the optimum at �̃�. This
is equivalent to having 𝑑 given; according to Lemma 7, the
above conclusions are reached.
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Assuming that the optimal solution is in the interior of
district ii, it must be a saddle point according to the extreme
value theory of multivariate functions. Moreover,

𝜕CTEii
𝑇

𝜕𝛽
= 0,

𝜕CTEii
𝑇

𝜕𝑑
=
𝜕CTEii

𝑇

𝜕𝛽
+ 1− (1+𝜌) 𝑆

𝑋 (𝑑) = 0.

(45)

The solution to the equations is 𝑑 = �̃�, assuming that 𝛽 = 𝛽.
This is in the interior of district ii, so 𝛽 > 𝑆−1

𝑋
(𝛼) − �̃�. CTE

𝑇

can only obtain the optimal value in (�̃�, 𝛽). However,

CTEii
𝑇
(�̃�, 𝛼, 𝛽


)

= CTEii
𝑇
(�̃�, 𝛼,∞)

+[
1

𝑆
𝑋
(�̃� + 𝛽)

− (1+𝜌)]∫
∞

�̃�+𝛽


𝑆
𝑋 (𝑥) 𝑑𝑥.

(46)

In addition, �̃� + 𝛽 > 𝑆
−1
𝑋
(𝛼), so 1/𝑆

𝑋
(�̃� + 𝛽


) > (1 + 𝜌);

that is, CTEii
𝑇
(�̃�, 𝛼, 𝛽


) > CTEii

𝑇
(�̃�, 𝛼,∞). No global optimum

exists.

5. Numerical Examples

5.1. VaR, TVaR, and CTE. We assume that the claim ratio of
some insurance is gamma (4.1405, 0.1796) and 𝛼 = 0.1 and
𝜌 = 0.3. Figures 5, 6, and 7 show the calculation results of
VaR, TVaR, and CTE, respectively.

Note in Figure 5 that the contour shows a circumstance
where the optimal trajectories of a given 𝑑 and a given 𝛽 cross
inside the plane; the crossing point is the global optimal point.
In this case, ̃𝑑∗ < 0; this appears when 𝑑 is fixed on a line of
𝑑 + 𝛽 = 𝑆

−1
𝑋
(𝛼).

Then, as shown in the contour map in Figure 6 and
consistent with the theoretical analysis for a given 𝑑, TVaR
decreases with an increase in 𝛽; in other words, no global
optimal value exists. For a given 𝛽, a local optimum exists in
district ii.

Figure 7 shows that a jump occurs when 𝑑 = 𝑆
−1
𝑋
(𝛼),

forming a cross section. However, based on Lemma 6, the
graphs do not show the optimal trajectories to a given 𝛽.

5.2. Difference between CTE and TVaR. Equations (8)–(13)
show several differences in the denominators in district ii in
the function of CTE and TVaR. Even small differences can
lead to issues. However, no differences exist between CTE
and TVaR when the variable of risk 𝑋 is continuous; hence,
many other studies use them interchangeably. Cai et al. [7]
prove that CTE

𝑇
is continuous of total loss after reinsurance

under stop-loss reinsurance. Thus, they can also be used
similarly as substitutes for each other. We prove that CTE

𝑇

is discontinuous of total loss after reinsurance under limited
stop-loss reinsurance. Obviously, therefore, they cannot be
used interchangeably.

We assume that the claim ratio of some insurance is
gamma (4, 0.125). We have 𝜌 = 0.2, 𝛼 = 0.01, given
reinsurance coverage 𝛽 = 1. The results imply that TVaR is
optimal when 𝑑 = 0.4317 (𝑑 < 𝑆

−1
𝑋
(𝛼) − 𝛽, in i), and CTE is

optimal when 𝑑 = 𝑆
−1
𝑋
(𝛼), as shown in Figure 8. 𝛽 = 1 and

the franchise point are large under CTE and can almost be
approximated by stop-loss reinsurance.

For the risk distribution discussed above, note that (20)
remains valid when 𝜌 = 0.5, 𝛼 = 0.2, and 𝛽 = 0.6. However,
𝐻(𝛽) > 0, CTE(𝑑, 𝛼, 𝛽) > CTEiii

𝑇
(𝑆
−1
𝑋
(𝛼), 𝛼, 𝛽), and ∀𝑑 ∈ ii.

Hence, we cannot obtain the optimal solution under CTE.
From Lemma 4, we can obtain it under TVaR, 𝑑 = 0.4152

(∈ ii), which is shown in Figure 8.
The model definition indicates that the CTE risk mea-

sures are more accurate than those of TVaR. However, the
analysis and examples above show that discontinuous CTE
can hinder optimal decision making to some extent.

5.3. Reinsurance Premium Budget Constraints. We men-
tioned the optimization problem regarding reinsurance pre-
mium budget constraints briefly during the introduction.
Porth et al. [14] avoid solving the reinsurance premium
equation (4), but they used the stochastic simulation method
to solve the optimization problem.The previous proof shows
that, in some cases, no possible optimal solution exists.
Therefore, we first need to determine whether that is the case
before applying stochastic simulation.

The CTE in Porth et al. [14] is consistent with TVaR used
in this paper. Under financial constraints, whether a local
optimum exists depends on the existence of solutions to the
equations of 𝑑 and 𝛽:

1− [ 1
𝛼
− (1+𝜌)] 𝑆

𝑋
(𝑑 + 𝛽) − (1+𝜌) 𝑆

𝑋 (𝑑) = 0,

(1+𝜌)∫
𝑑+𝛽

𝑑

𝑆
𝑋 (𝑥) 𝑑𝑥 = 𝜋.

(47)

The first equation derives from (31); as per Lemma 4, we
know that this is the local optimal trajectory. The second
equation is the financial constraint equation (strict expression
is 𝛿(𝑑, 𝛽) ≤ 𝜋),

𝑑𝑑

𝑑𝛽
= −

[1/𝛼 − (1 + 𝜌)] 𝑓
𝑋
(𝑑 + 𝛽)

(1 + 𝜌)𝑓
𝑋 (𝑑) + [1/𝛼 − (1 + 𝜌)] 𝑓𝑋 (𝑑 + 𝛽)

< 0,

𝑑𝑑

𝑑𝛽
=

𝑆
𝑋
(𝑑 + 𝛽)

𝑆
𝑋 (𝑑) − 𝑆𝑋 (𝑑 + 𝛽)

> 0.

(48)

For the first equation, we have

𝛽 → ∞ ⇒ 𝑆
𝑋
(𝑑 + 𝛽) = 0 ⇒ 𝑑1 = 𝑆

−1
𝑋
(

1
1 + 𝜌

) . (49)
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Under financial constraints, the existence of a local optimal
solution depends on whether the following inequality is true:

𝛿(𝑆
−1
𝑋
(

1
1 + 𝜌

) ,∞) = (1+𝜌)∫
∞

𝑆
−1
𝑋
(1/(1+𝜌))

𝑆
𝑋 (𝑥) 𝑑𝑑

≤ 𝜋.

(50)

Similarly, we assume that the claim ratio of some insur-
ance is gamma (4.1405, 0.1796) and 𝛼 = 0.1 and 𝜌 = 0.3.
However, financial budget 𝜋 = 0.1 and 0.3, respectively.
The results are shown in Figure 9. “𝜋 = 0.1” is the
corresponding financial constraint line. When 𝜋 = 0.1, the
financial constraint line and the local optimal trajectories will
effectively intersect (namely, the efficient solution of (47)).
When 𝜋 = 0.3, no intersection point will exist with local
optimal trajectories.Therefore, using a numerical solution or
stochastic simulation when 𝜋 = 0.3will lead to unpredictable
results. Although 𝜋 = 0.3 is therefore not feasible in general
in businesses, we cannot rule out its existence in special
businesses.

6. Conclusion

We have mentioned the numerical solution of the equation
several times throughout this paper. But it is ultimately
unnecessary. For example, for a given 𝛽, 𝛽∗ is the numerical
solution of ℎ(𝛽) = 0 under VaR. To calculate it, we need
only to determine whether (18) is positive or negative with
𝛽 rather than with 𝛽∗. If we apply the optimization method
directly to obtain an optimal solution, then the algorithm
discussed heremay create some confusion as follows. (1) Is the
solution optimal? (2) If not, is that because of the algorithm
or is it because no optimal solution exists? On the basis of
the numerical method, we posit that the existence of the
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Figure 9: Under different financial constraints of TVaR
𝑇
.

solution and considerable useful location information are
theoretically provided.

Compared with stop-loss reinsurance (𝛽 = ∞), limited
stop-loss coverage is more suitable for, for example, agricul-
tural insurance. The latter’s limited coverage 𝛽 results in the
discontinuity of risk probability functions and risk measures,
such as the jump point between 𝑆

𝐼
and the CTE section. This

discontinuous district determines the existence and location
of an optimal solution.

Table 1 illustrates these results. All discussions are based
on (20). Other conditions are also listed in Table 1: “No”
means the solution only needs to satisfy (20); “—” means
no optimal solution exists (no rigorous solution occurs; e.g.,
𝛽 = ∞). Note that VaR does not meet the consistency
requirement. However, when we make an optimal reinsur-
ance decision under VaR, it provides clear advice (i.e., global
optimal reinsurance arrangements). VaR is limited in that
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Table 1: Existence condition of optimal solution.

Risk
measure Certain 𝛽 Certain 𝑑 Comprehensive

effect
VaR ∀𝛽 ∈ (0, 𝛽∗) ∀𝑑 ∈ [�̃�

∗

, 𝑆
−1
𝑋
(𝛼)] No

TVaR ∀𝛽 ∈ (0, 𝛽∗) — —
CTE Lemma 6 — —

the appetite for risk 𝛼 cannot affect the optimal franchise
point, which is determined solely by risk distribution and
safety loading. Compared with VaR and TVaR, CTE is more
reasonable. However, optimal reinsurance decisions can be
difficult to be designed under CTE, and they can only be
provided within a limited range. When 𝛽 is given, optimal
reinsurance purchase advice can be provided under TVaR
and CTE. If risk preference 𝛼 is known or if the maximum
acceptable loss is 𝑑, then VaR should be the first choice. If
the goal of reinsurance coverage is known, CTE would be
recommended. In contrast, ES and CVaR are inappropriate
choices for making reinsurance decisions.

In this study, note that safety loading 𝜌 is a constant.
An increase in the reinsurance compensation point will
concurrently increase model uncertainty.Thus, we should set
𝜌 as an increasing function of compensation point 𝑑. More-
over, we considered no financial constraints in this study.
However, if we can effectively solve the reinsurance premium
equation, then we can also effectively solve the problem of
financial constraints and obtain the corresponding analytical
solution. Restricted to research methods, we used several
numerical methods to determine the existence of an optimal
value. Fixed point theory has a strong advantage in dealing
with optimization problems. Thus, introducing a fixed point
method would avoid the numerical solutions used here.
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Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsu-
pervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and
automatically multilayer feature extraction to improve the representational power of text feature.We also develop a novel nonlinear
network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The
proposedmethod is evaluated on standard benchmarks andmultilingual dataset and demonstrates improvement over the previous
work.

1. Introduction

Texts within images contain rich semantic information,
which can be very beneficial for visual information retrieval
and image understanding. Driven by a variety of real-
world applications, scene text detection and recognition have
become active research topics in computer vision. To effi-
ciently read text from photography, the majority of methods
follow the intuitive two-step process: text detection followed
by text recognition [1]. To a large extent, the performance
of text detection affects the accuracy of text recognition.
Extracting textual information from natural scenes is a
critical prerequisite for further text recognition and other
image analysis tasks.

Text detection has been considered in many studies and
considerable progress has been achieved in recent years
[2–14]. However, most of the text detection methods have
focused on English; few investigations have been done on the
problem of the multilingual text detection. In our daily lives,
multilingual texts coexist everywhere; many environments
contain two or more scripts text in a single image and, for
example, product tags, street signs, license plates, billboards,
and guide information. More and more applications need to
achieve text detection regardless of language type.

For different languages, the characters takemanydifferent
forms and have inconsistent heights, strokes, and writing

format. There are thousands of languages in the world, and
the representative and universal features of multilingual text
are still unknown. In addition, text embedded in images can
be in variation of font style and size, different alignment and
orientation, unknown colors, and varying lighting condition.
Due to these factors, multilingual text detection in natural
scenes is a challenging and important problem.

Our study is focused on learning the general stroke fea-
ture representations and detecting text from image even in a
multiscript environment. Unlike traditional methods, which
mainly relied on the combination of a number of hand-
engineered features, we aim to test the feasibility of proposing
a common text detector only using automatically learning
text feature, by improving discriminative clustering algo-
rithm, to obtain language-independent stroke features. The
learned stroke features incorporating with nonlinear neural
network provide an alternative way to effectively increase the
character representational power. To use deep learning text
feature, we are able to use simple nonmaximal suppression to
locate text.

In the following, we first reviewed the recent published
literature followed by the proposed multilingual text detec-
tion method from Section 3 to Section 4. In Section 5, the
experimental evaluation is presented.The paper is concluded
in Section 6.
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2. Related Work

Existing methods proposed for text detection in natural
scenes can be broadly categorized into two groups: connected
component methods and sliding window methods.

Connected component methods separate text and non-
text information at pixel-level, group text pixels to construct
character candidates from images by connected component
analysis. Epshtein et al. [2] leveraged the idea of the recovery
of stroke width and proposed using the CCs in a stroke
width transformed image. Yao et al. [3] extract regions
in the Stroke Width Transform (SWT) domain. Neumann
and Matas [4] posed the character detection problem as an
efficient sequential selection from the set of Extremal Regions
(ERs). Chen et al. [5] determined the stroke width using
the distance transform of edge-enhanced Maximally Stable
Extremal Regions (MSER).UsingMSERs asCCs representing
characters has become the focus of several recent works [6–
9].

Sliding window-based methods, also known as region-
based methods, scan a sliding subwindow through the image
to search for possible texts and then use machine learning
techniques to locate text. Wang et al. [10], extending their
previous work [11], have built an end-to-end scene text
recognition system based on a sliding window character
classifier using Random Ferns. Wang et al. [12] use multi-
layer neural networks for text detection. Jaderberg et al.
[13] achieve state-of-the-art performance by implementing
slidingwindowdetection as a byproduct of theConvolutional
Neural Network (CNN).

In the task of multilingual text detection, previous studies
are mostly sliding window-based method. In [14, 16], authors
have proposed similar methods using hand-engineered fea-
tures to describe the text. Subwindow scanned on different
scales and positions on the image pyramid in order to classify
texts in images. Therefore, to achieve text detection which is
invariance to language type, the feature representation is very
important. However, little research attempted to apply deep
learning to learn multilingual text feature. CNN is a special
kind of neural network, and its deep nonlinear network
structure shows the strong ability of learning discriminative
features of datasets from observation samples. Therefore,
we alternatively investigate the problem of multilingual text
detection based on the framework of CNN.

3. Stroke Feature Learning

According to the study of linguistics, the basic feature of
text is stroke, such as the Latin alphabet and Chinese basic
stokes. And different languages share the same characteristics
in appearance. Inspired by these ideas, it is possible that
language-independent stroke features can be designed.

In order to copewithmultilingual scenes, we seek to learn
a bank of universal low-level stroke features directly from
raw images. The learning stroke features should be able to
capture the essential substructures of strokes. At the same
time, they are of the most representative and discriminative
stroke features. Many unsupervised learning algorithms can
be used for learning the hidden data prototypes from dataset,

Figure 1: Training samples for stroke feature learning.

such as 𝐾-means clustering and sparse coding. The goal of
sparse coding is to construct a dictionary 𝐷 and minimize
the error in reconstruction min

𝐷,𝑠
∑
𝑖
‖𝐷𝑠
(𝑖)

−𝑥
(𝑖)
‖
2

2
+𝜆‖𝑠
(𝑖)
‖
1
,

so that a data vector 𝑥
(𝑖)

∈ R𝑛 (𝑖 = 1, . . . , 𝑚) can be
mapped to a code vector 𝑠

(𝑖). For every 𝑠
(𝑖), sparse coding

algorithm is required to repeatedly solve a convex optimiza-
tion problem. When applied to large scale image data, the
optimization problem during the sparse coding procedure is
very expensive. Relatively speaking, the optimal 𝑠(𝑖) in classic
K-means algorithm is simply as follows:

𝑠
(𝑖)

𝑗
=

{

{

{

𝐷
(𝑗)⊤

𝑥
(𝑖) if 𝑗 = argmax

𝑗


𝐷
(𝑗)⊤

𝑥
(𝑖)

0 otherwise.
(1)

In addition, 𝐾-means has been identified as a fast and
effective method to learn feature from images by computer
vision researchers. Therefore, we improve the variant 𝐾-
means clustering method proposed by Coates et al. [18] and
use it to learn stroke feature representations, since it learns
representative stroke features from large collections while
much faster.

In particular, we first collect a set of training images,
which are 32 × 32 gray scale images extracted from ICDAR
2003, ICDAR 2011, and ICDAR 2013 dataset, multilingual
dataset, and Google. It contains a character in the middle
of each image. Characters in training images include 26
uppercase letters, 26 lowercase letters, 10 digits, 20 Chinese
basic strokes, and 28 Arabic alphabets. Some training images
used for stroke feature learning are illustrated in Figure 1. We
randomly extract 𝑚 8 × 8 pixel patches from images. Before
training the cropped patches, we apply contrast normalized
preprocessing for each patch. In order to avoid generating
many highly correlated stroke features, ZAC whitening is
used for the patches to yield vectors 𝑥(𝑖) ∈ R64, 𝑖 ∈ {1, . . . , 𝑚}.

Because 𝐾-means algorithm is highly dependent on the
initialization process, the different initial guess of centroids
affects the clustering result seriously. In order to lead to
desirous clustering result, we propose a novel initialization
method to choose suitable initial stroke features. We intro-
duce the dispersion metric in the local information of data,
guaranteeing the selection of initial centroids from the local
spatial data-intensive region and the centroids apart from
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Input: the patches 𝑥 (𝑥
(𝑖)

∈ R64, 𝑖 = 1, . . . , 𝑚)

Output: initial features 𝐹
0
∈ R64×𝑛1

(1) 𝐶 ← 0

(2) construct 𝑤
𝑖𝑗
based on (2)

(3) computer dispersion metric 𝑑
(𝑖)

= ∑
𝑚

𝑗=1
𝑤
𝑖𝑗
and threshold 𝑞 = median(𝑑)

(4) for all data in 𝑥

(5) if data 𝑥
(𝑗) with dispersion metric 𝑑

(𝑗)
> 𝑞

(6) 𝐶 ← 𝐶 ∪ 𝑥
(𝑗)

(7) end if
(8) end for
(9) 𝐹(1)
0

= 𝑥
(𝑖), 𝑥(𝑖) is random selected from 𝐶

(10) 𝐹(2)
0

= argmax
𝑥
(𝑗)


𝑥
(𝑗)

− 𝐹
(1)

0


, ∀𝑥

(𝑗)
∈ 𝐶

(11) set 𝑘 = 2

(12) repeat
(13) 𝑘 = 𝑘 + 1

(14) 𝐹
(𝑘)

0
= argmax
𝑥
(𝑗)

{min 
𝑥
(𝑗)

− 𝐹
(𝑡)

0


, ∀𝑥
(𝑗)

∈ 𝐶, 𝑡 = 1, . . . , 𝑘 − 1}

(15) until 𝑘 = 𝑛
1

Algorithm 1: Stroke feature initialization method.

each other with a certain distance. Our initialization frame-
work includes three steps: (1) estimating local dispersion
metric for each set of data, (2) selecting the data which
have higher metric than a threshold as candidates for initial
features, and (3) determining initial stroke features from
candidates. The implements of the proposed initialization
method are as follows. We firstly construct an adjacency
graph and Grammatrix; Grammatrix is computed according
to the following:

𝑤
𝑖𝑗
=

{

{

{

1 if 
𝑥
(𝑖)

− 𝑥
(𝑗)

< 𝜀

0 otherwise

𝜀 =

∑
𝑚

𝑖=1
∑
𝑚

𝑗=1
dis (𝑥(𝑖), 𝑥(𝑗))

𝑚 × (𝑚 − 1)
× 0.5,

(2)

where dis(𝑥(𝑖), 𝑥(𝑗)) is the distance of the patches 𝑥(𝑖) and 𝑥
(𝑗).

Secondly, we introduce the dispersion metric 𝑑 with 𝑚

components whose entries are given by 𝑑
(𝑖)

= ∑
𝑚

𝑗=1
𝑤
𝑖𝑗
(𝑖 =

1, . . . , 𝑚). Set a threshold 𝑞 = median(𝑑); if the value of
𝑑
(𝑖) associated with the data 𝑥

(𝑖) is larger than threshold; 𝑥(𝑖)
is marked as a candidate of initial features. Then, we use an
algorithm similar to [19] to select initial stroke features from
candidates. Becausewe use the stroke features as the first layer
convolution kernels of our proposed CNN, 𝑛

1
is the number

of first layer convolutional filters. The detailed steps of the
proposed initialization method are presented in Algorithm 1.

After initializing 𝐹
0
, we learn stroke features 𝐹 ∈ R64×𝑛1

according to the following:

min
𝐹,𝑠
(𝑖)

∑

𝑖


𝐹𝑠
(𝑖)

− 𝑥
(𝑖)

2

. (3)

For all 𝑗 ∈ {1, . . . , 𝑛
1
}, compute inner products 𝐹(𝑗)⊤𝑥(𝑖). Set

the value of 𝑘 which equals the value of 𝑗 which maximizes

the inner products. If 𝑗 = 𝑘, then 𝑠
(𝑖)

𝑗
= 𝐹
(𝑗)⊤

𝑥
(𝑖); or else

𝑠
(𝑖)

𝑗
= 0.Then, fix 𝑠

(𝑖), minimizing (3) to obtain 𝐹.The optimi-
zation is done by alternating minimization over 𝐹 and 𝑠

(𝑖).
The full stroke feature learning algorithm with 𝐾-means is
summarized in Algorithm 2.

For general clustering algorithm, the number of clusters is
known in advance or set by prior knowledge. In our method,
the learned stroke features incorporate with Convolutional
Neural Network classifier for text detection. Therefore, we
further study how to choose the appropriate number of
features to achieve the highest text/no text classification accu-
racy. In order to analyze the impact of learned stroke feature
number, we learned four stroke feature sets with different
number. Given that the first layer convolution kernels of our
CNNs have 𝑛

1
= 96, 128, 256 and 320, we train detector with

different stroke feature sets. Evaluate the performance of the
detection model at the subset of ICDAR 2003 test images. As
shown in Figure 2, the 𝐹-measure increases as 𝑛

1
gets larger.

Once 𝑛
1
equals 256, the recall is at maximum value, and

about 80% of detected text matches ground truth.While 𝑛
1
is

greater than 256,𝐹-measure is not increased and even slightly
reduced. Based on our detailed analysis, in our method, we
select 𝑛

1
= 256.

4. Multilingual Text Detection

The idea of our text detection is to design “feature learning”
pipeline that can lead to representative text features and
use these features for detecting multilingual text. Two main
components in this pipeline are as follows: (1) use the
unsupervised clustering algorithm to generate a set of stroke
features 𝐹; (2) build a hierarchy network and combine it with
stroke features 𝐹 to learn a high-level text feature. The first
component has been described in detail in Section 3. How to
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Input:𝑚 8 × 8 input patches 𝑥(𝑖) ∈ R64

Output: learning stroke features 𝐹 ∈ R64×𝑛1

Procedure:
(1) Normalize input

𝑥
(𝑖)

=

𝑥
(𝑖)

−mean (𝑥
(𝑖)
)

√10 + 𝑣𝑎𝑟 (𝑥(𝑖))

(2) ZAC whiten input
𝑉𝐷𝑉
⊤
= cov(𝑥)

𝑥
(𝑖)

= 𝑉(𝐷 + 0.1 × 𝐼)
−1/2

𝑉
⊤

𝑥
(𝑖)

(3) Initialize 𝐹, follow the steps in Algorithm 1
(4) Repeat

Set 𝑠(𝑖)
𝑘

= 𝐹
(𝑗)⊤

𝑥
(𝑖) for 𝑘 = argmax

𝑗
|𝐹
(𝑗)⊤

𝑥
(𝑖)
|

Set 𝑠(𝑖)
𝑗

= 0 for all other 𝑗 ̸= 𝑘

Fix 𝑠
(𝑖), min

𝐹,𝑠
(𝑖) ∑
𝑖
‖𝐹𝑠
(𝑖)

− 𝑥
(𝑖)
‖
2 s.t. ‖𝑠(𝑖)‖

1
= ‖𝑠
(𝑖)
‖
∞
and ‖𝐹

(𝑗)
‖
2
= 1

Until convergence or reach iteration limitation

Algorithm 2: Stroke feature learning algorithm.
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Figure 2: The accuracy analysis on different stroke feature number.

build and train the multilayer neural network is presented in
Section 4.

By making several technical changes over traditional
Convolutional Neural Network architectures [20], we
develop a novel classifier for multilingual text detection.
We have two major improvements: (1) different from
traditional method that convolution kernel of CNN is
randomly generated, we select the unsupervised learning
stroke features 𝐹 as the first layer convolution kernels of
our network; (2) the intermediate features obtained from
the learning process, which function in the second layers
convolution kernels, can be used to more efficiently extract
text features.

Our network has two convolutional layers with 𝑛
1
and 𝑛
2

filters, respectively. We fix the filters in the first convolution
layer which are stroke features learned in Section 3; so low-
level filters are 𝐹 ∈ R64×𝑛1 and 𝑛

1
= 256. We build a set

of labeled training datasets; all training images are 32 × 32

fixed-sized images (8877 positive, 9000 negative). Starting

from the first layer, given an input image, the input is a
grayscale cropped training image; that is, 𝑧

0
= 𝑥. The

input convolves with 256 filters of size 8 × 8, resulting in
a map of size 25 × 25 (to avoid boundary effects) and 256
channels. The first convolutional layer output 𝑧

1
is a new

feature map computed by a nonlinear response function 𝑧
1
=

max{0, |𝐹⊤𝑥| − 𝛼}, where 𝛼 = 0.5. Convolutional layers
can be intertwined with pooling layers that simplify system
parameters by statistical aggregation of features. We average
pool over the first convolutional layer responsemap to reduce
the size down to 5 × 5. The sequence continues by another
convolutional and pooling layers, resulting in feature maps
with 256 channels and size of 2 × 2; this size is the same as
the dimension of the second layer convolutional filters. The
second layer outputs are fully connected to the classification
layer. The SVM classifier is used as a binary classifier that
aims to estimate whether a 32 × 32 image contains text. We
train the network using stochastic gradient descent and back-
propagation. Classification error function includes loss term
and regularization term. Loss term is a squared hinge loss and
the norm used in the penalization is L2. We also use dropout
in the second convolutional layer to help prevent over fitting.
The structure of the proposed neural network is presented in
Figure 3.

After our network has been trained, the detection process
starts from a large, raw pixel input image and leverages the
convolutional structure of the CNN to process the entire
image. We slide a 32 × 32 pixels’ window across an input
image and put these sliding windows to the learned classifier.
Use the intermediate hidden layers as features to classify
text/no text and generate text bounding boxes. We set 12
different scales in our detection method. At a certain scale
𝑠, the input image’s scale changes; the sliding window scans
through the scaled image. At each point (𝑥, 𝑦), if windows
contain single centered characters, produce positive detector
response 𝑅

𝑠
[𝑥, 𝑦]. In each row 𝑟 of the scaled image, check

whether there are𝑅
𝑠
[𝑥, 𝑦] > 0. If there exists positive detector

response, then form a line-level bounding box 𝐿
𝑟

𝑠
with
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z0

32 × 32 × 1

z1

25 × 25 × 256

5 × 5 × 256 4 × 4 × 256

2 × 2 × 256

Average pooling
The second layer

SVM classifierThe first layer

F: first layer convolution kernels

256Input image

Figure 3: The proposed network for multilingual text detection.

the same height as the sliding window at scale 𝑠. And max(𝑥)
and min(𝑥) are defined as the left and right boundaries of 𝐿𝑟

𝑠
.

At each scale, the input image is resizing and a set of candidate
text bounding boxes are generated independently. The above
procedure was repeated 12 times and yields groups of possibly
overlapping bounding boxes. We then apply nonmaximal
suppression (NMS) to score each box and remove all boxes
that overlaps by more than 50% with lower score and obtain
the final text bounding boxes 𝐿.

5. Experiments

5.1. Dataset. To evaluate the effectiveness and robustness of
the proposed text detection algorithm, we have conducted
experiments on standard benchmarks, including the chal-
lenging datasets ICDAR 2003 [21], MSRA-TD500 [3], and
KAIST [17].

The ICDAR 2003 Robust Reading and Text Locating
database is a widely used public dataset for scene text detec-
tion algorithm. The database contains 258 training images
and 251 testing images. It contains the path to each image and
text bounding box annotations for each image.

MSRA-TD500 dataset contains images with text in
English andChinese.Thedataset contains 500 images in total,
with varying resolutions from 1296 × 864 to 1920 × 1280.
These images are taken from indoor (office and mall) and
outdoor (street) scenes using a packet camera.

KAIST provides a scene text dataset consisting of 3000
images of indoor and outdoor scenes. Word and character
bounding boxes are provided as well as segmentationmaps of
characters. Texts in KAIST images are English, Korean, and a
mixture of English and Korean.

We also created a new multilingual dataset that is com-
posed of three representative languages: English, Chinese,
and Arabic. These three languages stand for three types
of writing systems: English standing for alphabet, Chinese
standing for ideograph, and Arabic standing for abjad. Each
group corresponding to the one language contains 80 images.

To learn the stroke feature, train samples include 5980
English text samples, 800 Chinese text samples, and 1100 Ara-
bic text samples. Then, 3000 nontext samples are extracted
from 200 negative images using bootstrap method. All these
samples are normalized to 32 × 32, which is consistent with
the detected window.

Table 1: Performance of the proposed method.

Language Total image Precision Recall 𝐹-measure
English 800 0.76 0.88 0.8
Korean 500 0.73 0.84 0.78
Chinese 200 0.68 0.96 0.79
Arabic 200 0.70 0.72 0.66

Figure 4: Text detection samples on different language images.

5.2. Results. The proposed algorithm is implemented using
Intel Core i5 processor at 2.9GHz 8GB RAM and MATLAB
R2014b.

To validate the performance of our proposed algorithm,
we use the definitions in ICDAR 2003 competition [21] for
text detection precision, recall, and 𝐹-measure calculation.
Therefore, 𝑃 = ∑

𝑟
𝑒
∈𝐸

𝑚(𝑟
𝑒
, 𝑇)/|𝐸| and 𝑅 = ∑

𝑟
𝑡
∈𝑇

𝑚(𝑟
𝑡
, 𝐸)/|𝑇|,

where 𝑚(𝑟, 𝑅) is the best match for a rectangle 𝑟 in a set of
rectangles 𝑅, 𝐸, and T which are our estimated rectangles
and the ground truth rectangles, respectively. We adopt the
𝐹-measure to combine the precision and recall figures into a
single measure of quality, 𝐹 = 1/(𝛼/𝑃 + 𝛼/𝑅), where 𝛼 = 0.5.

Experiments are carried out on a set of images containing
text in four different languages, namely, English, Chinese,
Arabic, and Korean. English text images are selected from
ICDAR 2003, ICDAR 2011, and ICDAR 2013, Korean images
from KAIST, some Chinese images from MSRA-TD500 and
the other from multilingual dataset, and Arabic images
from multilingual dataset and Google. The results of these
evaluations are summarized in Table 1. As can be seen from
Table 1, 𝐹-measures on different language are close to each
other, except Arabic, because the Arabic special nature of
continuous writing style makes the recall of this script lower.
The experiment result indicates that our method is not
tuned to any particular language and performs approximately
equally good on all the scripts.

Figure 4 shows some texts successful detection by our sys-
tem on images containing different language text. Although
the texts contained in training samples are only in English,
Chinese, and Arabic, our method can detect the text not
only in three representative languages, but also in a number
of other languages, such as French, German, Korean, and
Japanese. This shows that our method has some robustness.
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Table 2: Performance comparison on different benchmarks.

Method Dataset Precision Recall 𝐹-measure
Pan [15] ICDAR 2003 0.645 0.659 0.652
Zhou [16] ICDAR 2003 0.37 0.79 0.53
Our method ICDAR 2003 0.45 0.80 0.57
Lee [17] KAIST 0.69 0.60 0.64
Our method KAIST 0.59 0.79 0.67

Figure 5: Text detection samples on images containing two different
languages text.

We also pickedmethods proposed by Zhou et al. [16], Pan
et al. [15], and Lee et al. [17] for further consideration. These
algorithms have good results on the standard benchmarks
and use different approaches to detect text. The performance
comparison analysis can be seen in Table 2. Our method has
achieved high recall at different benchmarks. It also reflects
the representative of our learned feature is strong, which can
successfully detect all the information associatedwith the text
in images.

But our test results are not good, with 𝑃/𝑅/𝐹-means of
0.30/0.32/0.31 on theMSRA-TD500 dataset. Shi et al. [6] have
achieved the state-of-the-art text detection performance with
0.52/0.53/0.5 on the same dataset. The main reason is that
the MSRA-TD500 dataset is created for the purpose of study
of multiorientation text detection, which has a lot of images
containing no horizontal text lines. But our method gives the
text bounding boxes based on the horizontal direction.

Figure 5 shows some other test samples. The results
reflect our method is efficient on the circumstance that a
single image contains two or more different languages texts
and numbers. The bottom row in Figure 5 shows some fail
samples; some of these problems are miss detection for part
of Arabic text, because Arabic words mostly are linked by
continuous line. In this case, use of the stroke feature to detect
text is not sufficient. Stroke width of the implementation
is essential for such languages as Arabic. There are other
problems caused by the interference terms which have the
appearance similar to the text.

6. Conclusion

The aim of the study is to propose a multilingual text
detection method. Traditional methods in this area mainly

rely on large amounts of hand-engineered features or prior
knowledge. Our work is distinct in two ways: (1) we use
primitive stroke feature learned by unsupervised learning
algorithm as network convolutional kernels; (2) we leverage
the trained multilayer neural network to learn high-level
abstract text features used for detector. Experiments on
the public benchmark and multilingual dataset show our
method is able to localize text regions of different scripts in
natural scene images.The experiment results demonstrate the
robustness of the proposed method.

From the failed samples in the experiments, we analyze
the limitations of our technology for further improvement.
On the one hand, some languages have continuous writing
style, like Arabic; automatically learning features are not
enough for detection; the connected components analysiswill
be added into our method to improve the precision of final
results. On the other hand,multiorientation text problemwill
be considered.
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A dependent insurance risk model with surrender and investment under the thinning process is discussed, where the arrival of
the policies follows a compound Poisson-Geometric process, and the occurrences of the claim and surrender happen as the p-
thinning process and the q-thinning process of the arrival process, respectively. By the martingale theory, the properties of the
surplus process, adjustment coefficient equation, the upper bound of ruin probability, and explicit expression of ruin probability
are obtained. Moreover, we also get the Laplace transformation, the expectation, and the variance of the time when the surplus
reaches a given level for the first time. Finally, various trends of the upper bound of ruin probability and the expectation and the
variance of the time when the surplus reaches a given level for the first time are simulated analytically along with changing the
investment size, investment interest rates, claim rate, and surrender rate.

1. Introduction

In the classical ruin theory, compound Poisson risk model,

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖

for 𝑡 ≥ 0, (1)

is the main research object [1, 2], where 𝑢 ≥ 0 is the
initial reserve, 𝑐 is the premium rate, and {𝑁(𝑡), 𝑡 ≥ 0} is
a Poisson process with intensity 𝜆 > 0, representing the
number of claims up to time 𝑡. The individual claim sizes
𝑋
1
, 𝑋
2
, . . ., independent of {𝑁(𝑡), 𝑡 ≥ 0}, are i.i.d. positive

randomvariables with distribution function𝐹(𝑥) and density
function 𝑓(𝑥) with mean 𝜇. In the model, the premium
income process is a linear function of time; it does not matter
to claim. But in actual life, the arrival of policy of insurance
company is usually associated with occurrence of claim; for
example, the more the number of policies sold, the more
the number of claims happened. Therefore, many studies in
literature discuss the dependent relationship among the pre-
mium income, interclaim arrivals, and the claim size. See, for
example, Liu et al. [3] considering a Markov-dependent risk
model with a constant dividend barrier. Shi et al. [4] explore

methods that allow for the correlation among frequency and
severity components formicrolevel insurance data. Jiang et al.
[5] investigate some uniform asymptotic estimates for finite-
time ruin probabilities when the claim size vector and its
interarrival time are subject to certain general dependence
structure. Zhang and Yang [6], Shi et al. [7], and Zou et al. [8]
consider a compound Poisson risk model and a dependence
structure of the claim size and interclaim time modeled by a
Farlie-Gumbel-Morgenstern copula.

The above papers always assume the claim number fol-
lows a Poisson distribution, but in fact the claim number does
not fully comply with the rule of Poisson distribution and its
variance is often greater than the mean. Except the natural
environment, an important reason for this phenomenon
is that insurance companies have adopted risk aversion
mechanism, such as franchise system and no-claim discount
system [9]. This makes the policy holder weighs the interests
which may not claim for compensation in the event of an
accident; it will cause the claim number to be less than
the number of accidents. In addition, on the one hand, the
insurance company will have huge funds and various kinds
of reserves in the operation process, which formed the huge
amount of available funds. On the other hand, in order to
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protect the interests of the insured, the insurance company
must use the fund rationally and effectively. In fact, the
insurance industry is very active in the financial markets.
In the financial markets of western developed countries, the
total amount of funds provided by the insurance industry is
close to commercial banks. So considering the risk model
with investment income has greater practical value and
realistic significance [10–12].

In view of the above problems, this paperwill promote the
premium income process of insurance companies to follow
the compound Poisson-Geometric process [13–15], while the
counting processes of claim and surrender are the 𝑝-thinning
process and the 𝑞-thinning process of premium income
process and further consideration of the investment interest
rate. For the new improved model, we study the properties
of surplus process, adjustment coefficient equation, ruin
probability, and the expectation and variance of the first time
to reach a given level. Finally, numerical analysis is also given.

The contents of this paper are organized as follows:
Section 2 introduces the risk model. In Section 3, we give the
main results of the paper. Finally, we provide the numerical
examples in Section 4.

2. The Risk Model

Definition 1. Let𝑢 ≥ 0 and (Ω, 𝐹, 𝑃) be a probability space; 𝑡 ≥
0; then, the surplus process with initial surplus 𝑢 is defined as
follows:

𝑈 (𝑡) = 𝑢 + 𝐴𝛼𝑡 +

𝑁(𝑡)

∑

𝑘=1

𝑋
𝑘
−

𝑁(𝑡,𝑝)

∑

𝑘=1

𝑌
𝑘
−

𝑁(𝑡,𝑞)

∑

𝑘=1

𝑍
𝑘

+ 𝛽𝑊(𝑡) ,

(2)

where 𝑢 represents the initial capital and 𝐴 (𝐴 < 𝑢)

represents the investment capital, which is based on the size
of initial capital, premium income per unit of time, and the
predicted claim sizes. 𝛼 represents the investment income per
unit of time. {𝑁(𝑡); 𝑡 ≥ 0} is a Poisson-Geometric process
with parameters 𝜆 (𝜆 > 0) and 𝜌 (0 < 𝜌 < 1) denoting the
number of premiums up to time 𝑡; namely,𝑁(𝑡) ∼ 𝑃𝐺(𝜆𝑡, 𝜌).
{𝑋
𝑘
≥ 0; 𝑘 ≥ 1} is a sequence of i.i.d. random variables

representing the amount of the 𝑘th premium and 𝐸[𝑋
𝑘
] =

𝜇
𝑋
Var[𝑋

𝑘
] = 𝜎
2

𝑋
. {𝑁(𝑡, 𝑝); 𝑡 ≥ 0} is the 𝑝-thinning process

of {𝑁(𝑡); 𝑡 ≥ 0} denoting the number of claims up to time 𝑡;
namely, {𝑁(𝑡, 𝑝); 𝑡 ≥ 0} ∼ 𝑃𝐺(𝜆𝑝𝑡, 𝜌). The individual claims
sizes {𝑌

𝑘
≥ 0; 𝑘 ≥ 1} are a sequence of i.i.d. random variables

and 𝐸[𝑌
𝑘
] = 𝜇

𝑌
Var[𝑌

𝑘
] = 𝜎

2

𝑌
. {𝑁(𝑡, 𝑞); 𝑡 ≥ 0} is the 𝑞-

thinning process of {𝑁(𝑡); 𝑡 ≥ 0} denoting the number of
surrenders up to time 𝑡; namely, {𝑁(𝑡, 𝑞); 𝑡 ≥ 0} ∼ 𝑃𝐺(𝜆𝑞𝑡, 𝜌)
and 0 < 𝑞 < 1 and 0 < 𝑝+𝑞 < 1.The sequence of i.i.d. random
variables {𝑍

𝑘
≥ 0; 𝑘 ≥ 1} represents the amount of the 𝑘th

payment of insurance policy and 𝐸[𝑍
𝑘
] = 𝜇
𝑍
, Var[𝑍

𝑘
] = 𝜎
2

𝑍
,

and 𝜇
𝑍
< 𝜇
𝑋
. {𝑊(𝑡); 𝑡 ≥ 0} is a standard Brownian motion

denoting the uncertain benefits and payments of insurance
companies. 𝛽 > 0 is a constant, representing the diffusion
volatility parameter. In addition, we suppose that {𝑋

𝑘
, 𝑘 ≥

1}, {𝑌
𝑘
, 𝑘 ≥ 1}, {𝑍

𝑘
, 𝑘 ≥ 1}, {𝑊(𝑡), 𝑡 ≥ 0}, and {𝑁(𝑡); 𝑡 ≥ 0}

are mutually independent. From the theory of point process,

{𝑁(𝑡, 𝑝); 𝑡 ≥ 0} and {𝑁(𝑡, 𝑞); 𝑡 ≥ 0} are also mutually
independent.

Let 𝑆(𝑡) = 𝐴𝛼𝑡+∑𝑁(𝑡)
𝑘=1

𝑋
𝑘
−∑
𝑁(𝑡,𝑝)

𝑘=1
𝑌
𝑘
−∑
𝑁(𝑡,𝑞)

𝑘=1
𝑍
𝑘
+𝛽𝑊(𝑡)

be profits process. In order to ensure the insurance company’s
steady business, we assume 𝐸[𝑆(𝑡)] > 0, and the relative
security loading factor 𝜃 is defined as follows:

𝜃 =
𝜆𝜇
𝑋
+ 𝐴𝛼 (1 − 𝜌)

𝜆𝑝𝜇
𝑌
+ 𝜆𝑞𝜇

𝑍

− 1 > 0. (3)

3. Main Results

Lemma 2. The profits process {𝑆(𝑡), 𝑡 ≥ 0} has the following
properties:

(i) {𝑆(𝑡), 𝑡 ≥ 0} has stationary and independent incre-
ments.

(ii) 𝐸[𝑆(𝑡)] = (𝐴𝛼+𝜆𝜇
𝑋
/(1−𝜌)−𝜆𝑝𝜇

𝑌
/(1−𝜌)−𝜆𝑞𝜇

𝑍
/(1−

𝜌))𝑡.

Lemma 3. For the profits process {𝑆(𝑡), 𝑡 ≥ 0}, when 𝐸[𝑆(𝑡)] ≥
0, one has the following:

lim
𝑡→∞

𝑈 (𝑡) = ∞, 𝑎.𝑠. (4)

Lemma 4. For the profits process {𝑆(𝑡), 𝑡 ≥ 0}, suppose
𝐸[𝑒
−𝑟𝑆(𝑡)

] < 0 for some 𝑟 > 0; then, there is a function 𝑔(𝑟)
such that

𝐸 [𝑒
−𝑟𝑆(𝑡)

] = 𝑒
𝑡𝑔(𝑟)
. (5)

Proof. Consider

𝐸 [exp (−𝑟𝑆 (𝑡))] = 𝐸 [exp (−𝑟𝐴𝛼𝑡)]

⋅ 𝐸 [exp(−𝑟
𝑁(𝑡)

∑

𝐾=1

𝑋
𝑘
)] ⋅ 𝐸[exp(𝑟

𝑁(𝑡,𝑝)

∑

𝐾=1

𝑌
𝑘
)]

⋅ 𝐸[exp(𝑟
𝑁(𝑡,𝑞)

∑

𝐾=1

𝑍
𝑘
)] ⋅ 𝐸 [exp (−𝑟𝛽𝑊 (𝑡))]

= exp{𝑡 [−𝑟𝐴𝛼 +
𝜆 (𝑀
𝑋 (−𝑟) − 1)

1 − 𝜌𝑀
𝑋 (−𝑟)

+
𝜆𝑝 (𝑀

𝑌 (𝑟) − 1)

1 − 𝜌𝑀
𝑌 (𝑟)

+
𝜆𝑞 (𝑀

𝑍 (𝑟) − 1)

1 − 𝜌𝑀
𝑍 (𝑟)

+
1

2
𝛽
2
𝑟
2
]} .

(6)

Let

𝑔 (𝑟) = −𝑟𝐴𝛼 +
𝜆 (𝑀
𝑋 (−𝑟) − 1)

1 − 𝜌𝑀
𝑋 (−𝑟)

+
𝜆𝑝 (𝑀

𝑌 (𝑟) − 1)

1 − 𝜌𝑀
𝑌 (𝑟)

+
𝜆𝑞 (𝑀

𝑍 (𝑟) − 1)

1 − 𝜌𝑀
𝑍 (𝑟)

+
1

2
𝛽
2
𝑟
2
,

(7)

where𝑀
𝑋
(𝑟) = 𝐸[𝑒

𝑟𝑋
] is the moment generating function of

𝑋. Similarly, we can define𝑀
𝑌
(𝑟) and𝑀

𝑍
(𝑟).
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r

g(r)

r0

R

0

Figure 1: Adjustment coefficient 𝑅.

The following discussions are adjustment coefficient and
the adjustment coefficient equation. Since the ruin probabil-
ity as a number of indicators can evaluate insurance company
solvency, it attracts attention. The research goal is to obtain
specific expression of ruin probability. However, it is very
difficult to directly obtain the expression of this function, but
Lundberg found an indirect expression way by introducing
a parameter which can play the intermediary role, namely,
Lundberg coefficient or adjustment coefficient. Its principle
is that the ruin probability is expressed as a function of
adjustment coefficient and then seeks the calculation for
adjustment coefficient.Thus, the adjustment coefficient plays
a very important role in the study of ruin probability.

Lemma 5. Equation 𝑔(𝑟) = 0 is said to be an adjustment
coefficient equation of the risk model (2), and it has a unique
positive solution 𝑟 = 𝑅, which is called an adjustment
coefficient (see Figure 1).

Proof. We only need to prove that it has the following four
properties:

(1) 𝑔(0) = 0.
(2) 𝑔(0) < 0.
(3) 𝑔(𝑟) → +∞ (𝑟 → +∞).
(4) 𝑔(𝑟) > 0, ∀𝑟 ∈ (0, +∞).

Obviously, 𝑔(0) = 0.
Since

𝑔

(𝑟) = −𝐴𝛼 +

𝜆 (1 − 𝜌) 𝐸 [−𝑋 exp (−𝑟𝑋)]
(1 − 𝜌𝑀

𝑋 (−𝑟))
2

+
𝜆𝑝 (1 − 𝜌) 𝐸 [𝑌 exp (𝑟𝑌)]

(1 − 𝜌𝑀
𝑌 (𝑟))
2

+
𝜆𝑞 (1 − 𝜌) 𝐸 [𝑍 exp (𝑟𝑍)]

(1 − 𝜌𝑀
𝑍 (𝑟))
2

+ 𝛽
2
𝑟

(8)

and𝑀
𝑋
(0) = 𝑀

𝑌
(0) = 𝑀

𝑍
(0) = 1, then we have

𝑔

(0) = −𝐴𝛼 −

𝜆𝜇
𝑋

1 − 𝜌
+
𝜆𝑝𝜇
𝑌

1 − 𝜌
+
𝜆𝑞𝜇
𝑍

1 − 𝜌

= −𝜃(
𝜆𝑝𝜇
𝑌

1 − 𝜌
+
𝜆𝑞𝜇
𝑍

1 − 𝜌
) < 0.

(9)

Further,

𝑔

(𝑟) =

𝜆 (1 − 𝜌) (1 − 𝜌𝑀
𝑋 (−𝑟))

(1 − 𝜌𝑀
𝑋 (−𝑟))

4

⋅ {(1 − 𝜌𝑀
𝑋 (−𝑟)) 𝐸 [𝑋

2
𝑒
−𝑟𝑋
]

+ 2𝜌 (𝐸 [−𝑋𝑒
−𝑟𝑋
])
2

} +
𝜆𝑝 (1 − 𝜌) (1 − 𝜌𝑀

𝑌 (𝑟))

(1 − 𝜌𝑀
𝑌 (𝑟))
4

⋅ {(1 − 𝜌𝑀
𝑌 (𝑟)) 𝐸 [𝑌

2
𝑒
−𝑟𝑌
] + 2𝜌 (𝐸 [𝑌𝑒

−𝑟𝑌
])
2

}

+
𝜆𝑞 (1 − 𝜌) (1 − 𝜌𝑀

𝑍 (𝑟))

(1 − 𝜌𝑀
𝑍 (𝑟))
4

⋅ {(1 − 𝜌𝑀
𝑍 (𝑟)) 𝐸 [𝑍

2
𝑒
−𝑟𝑍
] + 2𝜌 (𝐸 [𝑍𝑒

−𝑟𝑍
])
2

}

+ 𝛽
2
.

(10)

It is easy to see the moment generating functions𝑀
𝑌
(𝑟),

𝑀
𝑍
(𝑟) are increasing function, so there exists an 𝑟

1
> 0 such

that𝑀
𝑌
(𝑟
1
) = 1/𝜌 due to 0 < 𝜌 < 1. Similarly, there exists

an 𝑟
2
> 0 such that𝑀

𝑌
(𝑟
2
) = 1/𝜌. Let 𝑟

0
= min{𝑟

1
, 𝑟
2
}; then,

when 0 < 𝑟 < 𝑟
0
, we have 1 < 𝑀

𝑌
(𝑟),𝑀

𝑍
(𝑟), < 1/𝜌; that is,

1 − 𝜌𝑀
𝑌
(𝑟) > 0 and 1 − 𝜌𝑀

𝑍
(𝑟) > 0. When 𝑟 > 0, we have

𝑀
𝑋
(−𝑟) < 1; that is, 1 − 𝜌𝑀

𝑋
(−𝑟) > 0. So 𝑔(𝑟) > 0 (0 <

𝑟 < 𝑟
0
) and 𝑔(𝑟) is a lower convex function. And because

lim
𝑟→+∞

𝑔(𝑟) = +∞, then 𝑔(𝑟) = 0 has a unique positive
solution 𝑅.

Theorem 6. The adjustment coefficient 𝑅 satisfies the follow-
ing inequality:

2 [𝐴𝛼 + 𝜆𝜇
𝑋
]

𝜆 (𝜇
2

𝑋
+ 𝜎
2

𝑋
) + 𝛽2

≤ 𝑅

≤
2 [(1 − 𝜌)𝐴𝛼 + 𝜆𝜇

𝑋
− 𝜆𝑝𝜇

𝑌
− 𝜆𝑞𝜇

𝑍
]

𝜆 [(𝜇
2

𝑋
+ 𝜎
2

𝑋
) + 𝑝 (𝜇

2

𝑌
+ 𝜎
2

𝑌
) + 𝑞 (𝜇

2

𝑍
+ 𝜎
2

𝑍
) + 𝛽2 (1 − 𝜌)]

.

(11)

Proof. By Taylor’s expansion, we have

𝑀
𝑋 (−𝑅) = 𝐸 [𝑒

−𝑅𝑋
] = 𝐸[1 − 𝑅𝑋 +

𝑅
2
𝑋
2

2
]

= 1 − 𝑅𝜇
𝑋
+
𝑅
2

2
(𝜇
2

𝑋
+ 𝜎
2

𝑋
)

𝑀
𝑌 (𝑅) = 𝐸 [𝑒

𝑅𝑌
] = 𝐸[1 + 𝑅𝑌 +

𝑅
2
𝑌
2

2
]

= 1 + 𝑅𝜇
𝑌
+
𝑅
2

2
(𝜇
2

𝑌
+ 𝜎
2

𝑌
) .

(12)
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Then,

0 = 𝑔 (𝑅)

= −𝑅𝐴𝛼 +
𝜆 (𝑀
𝑋 (−𝑅) − 1)

1 − 𝜌𝑀
𝑋 (−𝑅)

+
𝜆𝑝 (𝑀

𝑌 (𝑅) − 1)

1 − 𝜌𝑀
𝑌 (𝑅)

+
𝜆𝑞 (𝑀

𝑍 (𝑅) − 1)

1 − 𝜌𝑀
𝑍 (𝑅)

+
1

2
𝛽
2
𝑅
2

≥ −𝑅𝐴𝛼 +

𝜆 [−𝑅𝜇
𝑋
+ (𝑅
2
/2) (𝜇

2

𝑋
+ 𝜎
2

𝑋
)]

1 − 𝜌

+

𝜆𝑝 [𝑅𝜇
𝑌
+ (𝑅
2
/2) (𝜇

2

𝑌
+ 𝜎
2

𝑌
)]

1 − 𝜌

+

𝜆𝑞 [𝑅𝜇
𝑍
+ (𝑅
2
/2) (𝜇

2

𝑍
+ 𝜎
2

𝑍
)]

1 − 𝜌
+
1

2
𝛽
2
𝑅
2
.

(13)

Dividing both sides of the above inequality by 𝑅, we obtain

𝑅

≤
2 [(1 − 𝜌)𝐴𝛼 + 𝜆𝜇

𝑋
− 𝜆𝑝𝜇

𝑌
− 𝜆𝑞𝜇

𝑍
]

𝜆 [(𝜇
2

𝑋
+ 𝜎
2

𝑋
) + 𝑝 (𝜇

2

𝑌
+ 𝜎
2

𝑌
) + 𝑞 (𝜇

2

𝑍
+ 𝜎
2

𝑍
) + 𝛽2 (1 − 𝜌)]

.

(14)

Similarly,

0 = 𝑔 (𝑅)

≤ −𝑅𝐴𝛼 + [𝜆 (𝑀
𝑋 (−𝑅) − 1)] +

𝜆𝑝 (𝑀
𝑌 (𝑅) − 1)

1 −𝑀
𝑌 (𝑅)

+
𝜆𝑞 (𝑀

𝑍 (𝑅) − 1)

1 −𝑀
𝑍 (𝑅)

+
1

2
𝛽
2
𝑅
2

≤ −𝑅𝐴𝛼 + 𝜆[−𝑅𝜇
𝑋
+
𝑅
2

2
(𝜇
2

𝑋
+ 𝜎
2

𝑋
)] − 𝜆𝑝 − 𝜆𝑞

+
1

2
𝛽
2
𝑅
2

≤ −𝑅𝐴𝛼 + 𝜆[−𝑅𝜇
𝑋
+
𝑅
2

2
(𝜇
2

𝑋
+ 𝜎
2

𝑋
)] +

1

2
𝛽
2
𝑅
2
.

(15)

Dividing both sides of the above inequality by 𝑅, we have

𝑅 ≥
2 [𝐴𝛼 + 𝜆𝜇

𝑋
]

𝜆 (𝜇
2

𝑋
+ 𝜎
2

𝑋
) + 𝛽2

. (16)

For the profits process {𝑆(𝑡), 𝑡 ≥ 0}, let 𝐹𝑆
𝑡
= 𝜎(𝑆(V), V ≤

𝑡) be a filtration. Let 𝑇 = inf{𝑡 : 𝑡 ≥ 0, 𝑈(𝑡) < 0} and 𝜓(𝑢) =
Pr{𝑇 < ∞ | 𝑈(0) = 𝑢} be ruin time and ruin probability.

Lemma 7. 𝑇 is 𝐹𝑆
𝑡
-stopping time.

Theorem 8. {𝐻
𝑢
(𝑡), 𝐹
𝑡
, 𝑡 ≥ 0} is a martingale, where𝐻

𝑢
(𝑡) =

exp[−𝑟𝑈(𝑡) − 𝑡𝑔(𝑟)].

Proof. In fact, {𝑈(𝑡), 𝑡 ≥ 0} has stationary and independent
increments, and from [2] we know that𝐻

𝑢
(𝑡) is a martingale

if and only if 𝐸(exp[−𝑅𝑈(𝑡)]) = exp[−𝑅𝑢]. By Lemmas 3
and 4, there is a function 𝑔(𝑟) such that 𝐸(exp[−𝑅𝑆(𝑡)]) =
exp[𝑡𝑔(𝑅)] = 1; then,

𝐸 (exp [−𝑅𝑈 (𝑡)]) = 𝐸 [exp [−𝑅𝑢]] 𝐸 (exp [−𝑅𝑆 (𝑡)])

= exp [−𝑅𝑢] ,
(17)

so {𝐻
𝑢
(𝑡), 𝐹
𝑡
, 𝑡 ≥ 0} is a martingale.

Theorem 9. For any real number 𝑟, the ruin probability 𝜓(𝑢)
satisfies

𝜓 (𝑢) ≤ exp (−𝑟𝑢) 𝐸 [sup
𝑡≥0

exp (𝑡𝑔 (𝑟))] . (18)

Proof. For a fixed time 𝑡
0
, 𝑡
0
∧ 𝑇 is a bounded stopping time.

Using the theorem of martingale and stopping time, we have

exp (−𝑟𝑢) = 𝐸 [𝐻𝑢 (0)] = 𝐸 [𝐻𝑢 (𝑡0 ∧ 𝑇)] . (19)

By the full expectations formula, we have

exp (−𝑟𝑢) = 𝐸 [𝐻𝑢 (𝑇) | 𝑇 ≤ 𝑡0]Pr (𝑇 ≤ 𝑡0)

+ 𝐸 [𝐻
𝑢
(𝑡
0
) | 𝑇 > 𝑡

0
]Pr (𝑇 > 𝑡

0
)

≥ 𝐸 [𝐻
𝑢 (𝑇) | 𝑇 ≤ 𝑡0]Pr (𝑇 ≤ 𝑡0) ,

(20)

which implies

Pr (𝑇 ≤ 𝑡
0
) =

exp (−𝑟𝑢)
𝐸 [𝐻
𝑢 (𝑇) | 𝑇 ≤ 𝑡0]

≤
exp (−𝑟𝑢)

inf
0≤𝑡≤𝑡0

[exp (−𝑡𝑔 (𝑟))]

= exp (−𝑟𝑢) ⋅ sup
0≤𝑡≤𝑡0

[exp (𝑡𝑔 (𝑟))] .

(21)

By expectation on both sides of the above inequality and
letting 𝑡

0
→ ∞, we can get the desired results.

Theorem10. Theruin probability of surplus process {𝑈(𝑡); 𝑡 ≥
0} satisfies

𝜓 (𝑢) =
exp (−𝑅𝑢)

𝐸 [exp (−𝑅𝑈 (𝑇)) | 𝑇 < ∞]
. (22)

Proof. For a fixed time 𝑡
0
, 𝑡
0
∧ 𝑇 is a bounded stopping time.

Using the theorem of martingale and stopping time, we have

exp (−𝑟𝑢) = 𝐸 [𝐻𝑢 (𝑡0 ∧ 𝑇)]

= 𝐸 [𝐻
𝑢 (𝑇) | 𝑇 ≤ 𝑡0]Pr (𝑇 ≤ 𝑡0)

+ 𝐸 [𝐻
𝑢
(𝑡
0
) | 𝑇 > 𝑡

0
]Pr (𝑇 > 𝑡

0
) .

(23)

Let 𝑟 = 𝑅, we have

exp (−𝑅𝑢)

= 𝐸 [exp (−𝑅𝑈 (𝑇)) | 𝑇 ≤ 𝑡0]Pr (𝑇 ≤ 𝑡0)

+ 𝐸 [exp (−𝑅𝑈 (𝑇)) | 𝑇 > 𝑡0]Pr (𝑇 > 𝑡0) ,

(24)
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which implies

0 ≤ 𝐸 [exp (−𝑅𝑈 (𝑇)) | 𝑇 > 𝑡0]Pr (𝑇 > 𝑡0)

≤ 𝐸 [exp (−𝑅𝑈 (𝑡
0
)) 𝐼 (𝑈 (𝑡

0
) ≥ 0)] .

(25)

Since 0 ≤ exp(−𝑅𝑈(𝑡
0
))𝐼(𝑈(𝑡

0
) ≥ 0) ≤ 1, by the law of large

numbers, when 𝑡
0
→ ∞, 𝑈(𝑡

0
) → ∞ (a.s.). By dominated

convergence theorem, we have

lim
𝑡0→∞

𝐸 [exp (−𝑅𝑈 (𝑇)) | 𝑇 > 𝑡0]Pr (𝑇 > 𝑡0) = 0,

(a.s.) .
(26)

Then, when 𝑡
0
→ ∞ in (26), we can obtain (22).

Corollary 11. For the surplus process {𝑈(𝑡); 𝑡 ≥ 0}, the ruin
probability 𝜓(𝑢) satisfies Lundberg inequality:

𝜓 (𝑢) ≤ exp (−𝑅𝑢) , 𝑢 ≥ 0, (27)

where 𝑅 is adjustment coefficient.
In order to get this inequality as good as possible, we

shall choose 𝑟 as large as possible under the restriction
sup
𝑡≥0

exp(𝑡𝑔(𝑟)) < ∞. Combined with Figure 1, we have
𝑅 = sup{𝑟 | 𝑔(𝑟) ≤ 0}.

Theorem12. Theruin probability of insurance company before
time 𝑡 satisfies

𝜓
𝑡 (𝑢) ≤

{{

{{

{

𝑒
−𝑅𝑦𝑢, 𝑡 <

𝑢

𝑔 (𝑅)

𝑒
−𝑅𝑢
, 𝑡 ≥

𝑢

𝑔 (𝑅)
,

(28)

where 𝑅
𝑦
= 𝑓(𝑟
𝑦
) and 𝑟

𝑦
is the solution of 𝑔(𝑟) = 𝑢/𝑡.

Proof. By Lemma 4, we have

𝜓
𝑡 (𝑢) ≤ 𝑒

−𝑟𝑢
⋅ sup
0≤𝑡≤∞

[𝑒
𝑡𝑔(𝑟)
] = 𝑒
−𝑟𝑢
⋅max {1, 𝑒𝑡𝑔(𝑟)}

≤ 𝑒
−𝑢min{𝑟,𝑟−(𝑡/𝑢)𝑔(𝑟)}

= 𝑒
−𝑢min{𝑟,𝑓(𝑟)}

,

(29)

where 𝑓(𝑟) = 𝑟−𝑦𝑔(𝑟), 𝑦 = 𝑡/𝑢. Obviously, the supremum of
𝜓
𝑡
(𝑢) is 𝑒−𝑢sup𝑟≥0{min{𝑟,𝑓(𝑟)}}.
Since 𝑓(𝑟) is the convex function and 𝑓(𝑅) = 𝑅, when

𝑟 > 𝑅, we have 𝑓(𝑟) < 𝑟; when 0 < 𝑟 < 𝑅, we have 𝑓(𝑟) > 𝑟.
Let 𝑟
𝑦
be the solution of 𝑓(𝑟) = 0 and 𝑅

𝑦
= 𝑓(𝑟

𝑦
); then, 𝑅

𝑦

is the maximum value of 𝑓(𝑟).
And because

𝑟
𝑦
≤ 𝑅, 𝑡 >

𝑢

𝑔 (𝑅)

𝑟
𝑦
> 𝑅, 𝑡 ≤

𝑢

𝑔 (𝑅)
,

(30)

then, we have

sup
𝑟≥0

{min [𝑟, 𝑓 (𝑟)]} =
{{

{{

{

𝑅
𝑦
, 𝑡 <

𝑢

𝑔 (𝑅)

𝑅, 𝑡 ≥
𝑢

𝑔 (𝑅)
.

(31)

Thus, Theorem 12 is obtained.

Theorem 13. Let 𝜏 = inf{𝑡 ≥ 0, 𝑈(𝑡) = 𝑥 > 𝑢} be the time
when the surplus reaches a given level firstly; then, the Laplace
transform of 𝜏 is as follows:

𝐸 [𝑒
−𝑠𝜏
] = 𝑒
𝑟𝑥
, (32)

where 𝑠 and 𝑟 satisfy 𝑠 = 𝑔(𝑟).

Proof. For the surplus process {𝑈(𝑡); 𝑡 ≥ 0}, using the
theorem of martingale and stopping time, we see that 𝜏 is a
stopping rime of 𝐹𝑆

𝑡
. Let𝐻(𝑡) = 𝑒−𝑟𝑈(𝜏)−𝑠𝜏. ByTheorem 8, the

surplus process {𝐻(𝑡); 𝑡 ≥ 0} is a martingale. Hence, we have
𝐸[𝐻(𝜏)] = 𝐸[𝐻(0)]; that is, 𝐸[𝑒−𝑟𝑈(𝜏)−𝑠𝜏] = 1. Since𝑈(𝜏) = 𝑥,
then we get 𝐸[𝑒−𝑟𝑥−𝑠𝜏] = 1; that is, 𝐸[𝑒−𝑠𝜏] = 𝑒𝑟𝑥.

Theorem 14. The expectation and variance of 𝜏 satisfy

𝐸 [𝜏] =
𝑥

𝜂

Var [𝜏] = 𝑥𝜔
𝜂3
,

(33)

where

𝜂 = 𝐴𝛼 +
𝜆𝜇
𝑋

1 − 𝜌
−
𝜆𝑝𝜇
𝑌

1 − 𝜌
−
𝜆𝑞𝜇
𝑍

1 − 𝜌
,

𝜔 =
𝜆

(1 − 𝜌)
2
{(1 − 𝜌) (𝜎

2

𝑋
+ 𝜇
2

𝑋
) + 2𝜌𝜇

2

𝑋
}

+
𝜆𝑝

(1 − 𝜌)
2
{(1 − 𝜌) (𝜎

2

𝑌
+ 𝜇
2

𝑌
) + 2𝜌𝜇

2

𝑌
}

+
𝜆𝑞

(1 − 𝜌)
2
{(1 − 𝜌) (𝜎

2

𝑍
+ 𝜇
2

𝑍
) + 2𝜌𝜇

2

𝑍
} + 𝛽
2
.

(34)

Proof. By Theorem 13, we have 𝐸[𝑒−𝑠𝜏] = 𝑒
𝑟𝑥; let 𝜑(𝑠) =

ln𝐸[𝑒−𝑠𝜏]; that is, 𝜑(𝑠) = 𝑟𝑥; then, we have the following:

𝜑

(𝑠) =

𝑑𝜑 (𝑠)

𝑑𝑟
⋅
1

𝑑𝑠/𝑑𝑟
=

𝑥

𝑠 (𝑟)
=

𝑥

𝑔 (𝑟)

𝜑

(𝑠) =

𝑑𝜑

(𝑠)

𝑑𝑠
=
𝑑𝜑

(𝑠)

𝑑𝑟
⋅
1

𝑠 (𝑟)
= −

𝑥𝑔

(𝑟)

[𝑔 (𝑟)]
3
.

(35)

By Lemma 5, we have

𝐸 [𝜏] = −
𝑑𝜑 (𝑠)

𝑑𝑠

𝑠=𝑟=0

= −
𝑥

𝑔 (0)

= −
𝑥

−𝐴𝛼 − 𝜆𝜇
𝑋
/ (1 − 𝜌) + 𝜆𝑝𝜇

𝑌
/ (1 − 𝜌) + 𝜆𝑞𝜇

𝑍
/ (1 − 𝜌)

=
𝑥

𝜂

Var [𝜏] = 𝜑 (𝑠)𝑠=𝑟=0 =
𝑥𝜔

𝜂3
.

(36)
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Table 1: The upper bound of the ruin probability.

1/𝑏 𝑅
exp(−𝑅𝑢)

𝑢 = 1000 𝑢 = 1100 𝑢 = 1200 𝑢 = 1300 𝑢 = 1400 𝑢 = 1500 𝑢 = 1600 𝑢 = 1700 𝑢 = 1800 𝑢 = 2000 𝑢 = 10000

1/1000 0.0010 0.3677 0.3326 0.3010 0.2723 0.2464 0.2229 0.2017 0.1825 0.1651 0.1325 0.00004
1/1100 9.0960𝑒 − 004 0.4027 0.3677 0.3357 0.3065 0.2799 0.2555 0.2333 0.2130 0.1945 0.1622 0.00011
1/1200 8.3376𝑒 − 004 0.4344 0.3997 0.3677 0.3383 0.3112 0.2863 0.2634 0.2423 0.2230 0.1887 0.00024
1/1300 7.6959𝑒 − 004 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2503 0.2146 0.00045
1/1400 7.1460𝑒 − 004 0.4894 0.4556 0.4242 0.3950 0.3677 0.3424 0.3187 0.2968 0.2763 0.2395 0.00079
1/1500 6.6694𝑒 − 004 0.5133 0.4802 0.4492 0.4202 0.3931 0.3667 0.3440 0.3218 0.3010 0.2635 0.0013
1/1600 6.2524𝑒 − 004 0.5351 0.5027 0.4722 0.4436 0.4167 0.3915 0.3677 0.3455 0.3245 0.2864 0.0019
1/1700 5.8845𝑒 − 004 0.5552 0.5235 0.4935 0.4653 0.4387 0.4137 0.3900 0.3667 0.3467 0.3082 0.0028
1/1800 5.5574𝑒 − 004 0.5736 0.5426 0.5133 0.4856 0.4953 0.4345 0.4110 0.3888 0.3678 0.3291 0.0039
1/1900 5.2649𝑒 − 004 0.5907 0.5604 0.5316 0.5044 0.4785 0.4540 0.4307 0.4086 0.3876 0.3489 0.0052
1/2000 5.0015𝑒 − 004 0.6064 0.5769 0.5487 0.5219 0.4965 0.4723 0.4492 04273 0.4065 0.3678 0.0067

4. Numerical Simulation and Analysis

4.1. Simulation of the Upper Bound of Ruin Probability. Since
the adjustment coefficient 𝑅 can be used to measure the risk,
by formula 𝜓(𝑢) ≤ exp(−𝑅𝑢), we know that the higher
adjustment coefficient 𝑅 results in the less ruin probability.
The following will be used to simulate the size of ruin
probability by adjustment coefficient 𝑅.

Suppose 𝜆 = 40, 𝜌 = 0.1, 𝐴 = 400, 𝛼 = 0.1, 𝛽 = 1,
𝑝 = 0.005, and 𝑞 = 0.0005. Random variables𝑋

𝑘
, 𝑌
𝑘
, and 𝑍

𝑘

obey the exponential distributionwithmean𝜇
𝑋
= 𝑏,𝜇

𝑌
= 20,

and 𝜇
𝑍
= 10, respectively. Taking different values about 𝑏 and

𝑢, by MATLAB and Theorem 6, we can get the upper bound
of the ruin probability. See Table 1.

Table 1 shows that ruin probability of insurance company
varies tremendously in size with different value of 𝑢; the
higher initial surplus 𝑢 results in the less ruin probability.
Magnitude of initial capital increase is far below the level of
reduced number of ruin probability of insurance company.
For example, in the first seven behaviors of Table 1, the initial
capital𝑢 is only increased by 10 times, and the ruin probability
decreases from 0.4894 to 0.00079. This is another example
in the course of business; the availability of sufficient initial
capital is crucial to the insurance company.

In addition, determining the value of distribution param-
eter 1/𝑏 of the premium 𝑋 has a great impact on the
ruin probability of insurance company. For the exponential
distribution, the value of 1/𝑏 is smaller; the smaller the
amount of premium charged by insurance company, the
greater the probability of ruin.This suggests that a reasonable
determination of the premium on the normal operation of
insurance companies is very important, which leads to higher
requirement for determination of the premium in the design
of insurance products in the insurance company.

4.2. Simulation of the First Arrival Time. Suppose 𝜆 = 40,
𝜌 = 0.1, 𝐴 = 5000, 𝛼 = 0.1, 𝑥 = 2000, 𝛽 = 1, 𝑝 = 0.005, and
𝑞 = 0.0005 (in order to clear the trend of curve, in Figure 4,
let 𝑞 = 0.0125; in Figure 8, let 𝑞 = 0.005). Random variables
𝑋
𝑘
, 𝑌
𝑘
, and 𝑍

𝑘
obey the exponential distribution with mean

𝜇
𝑋
= 100, 𝜇

𝑌
= 80, and 𝜇

𝑍
= 60, respectively. We obtained

the trend chart of average time and the variance of time.
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Figure 2

(1) The Trend Figure of Average Time. From Figures 2–5, we
can clearly know that the first arrival time to reach a given
level is a decreasing function of investment capital 𝐴 and
investment interest rate 𝛼 and is an increasing function of
claim rate 𝜆𝑝 and surrender rate 𝜆𝑞.

In comparison, the change in the average time is more
sensitive to the change of investment capital and investment
rates and is not sensitive to the change of claim rate and
surrender rate.

(2) The Trend Figure of Variance of the First Arrival Time.
Figures 6–9 point out that the first arrival time to reach
a given level is a decreasing function of investment capital
𝐴 and investment interest rate 𝛼 and is an increasing
function of claim rate 𝜆𝑝 and surrender rate 𝜆𝑞. In com-
parison, the change in variance is more sensitive to the
change of investment capital and investment rates and is
not sensitive to the change of claim rate and surrender
rate.
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The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such
transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the
system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The
rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature.
Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of
a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system
is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital
Simulator (RTDS), including wind power system and synchronous generator system and DC power transmission system. The
experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated
control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from
occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

1. Introduction

As one of the most efficient new energy sources that have the
potential of large-scale development, wind power generation
has developed speedily in China. Due to the limited ability
of electricity consumption, wind power in northwest China,
northeast China, and north China should be transmitted
to the load center by long-distance transmission line [1, 2].
Given that wind power is not constant and it is not econom-
ical to transmit wind power alone, there arises the necessity
to “bond” large-scale wind farms with thermal power plant
so as to realize transregional transmission. However, hybrid
transmission system easily triggers low frequency oscillation
or angle instability [3, 4].

Damping features and controllable strategy of flywheel
energy storage device [5], flexible power conditioner [6], and
static series compensator [7] were studied to improve damp-
ing of the power system in previous research. But the cost of

large-scale power electronic equipment is so high that it limits
the application. In comparison, doubly fed wind generator
can realize decoupling control of active and reactive power
[8]. Excitation converter in the wind turbine system can be
adjusted to control the active power in the transient process.
As a result, for large-scale wind farms, active power in the
whole wind farms can be adjusted randomly and quickly
through the communication network,making thewind farms
controllable. So long as the active power is able to be adjusted,
it is possible to enhance the stability of the power system.
Controllable power in the wind farms can not only help
increase the damping and prevent low frequency oscillation,
but also enhance transient angle stability of the power system,
which is meaningful for ensuring grid safety.

In this paper, firstly, structural features of hybrid power
system of wind farms and thermal power plant are analyzed
and problems about stability of the power transmission
system are pointed out. Secondly, the mathematical model of
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Figure 1: AC/DC power system with wind farms incorporated.

doubly fed wind farms and DC power transmission system is
established. And it is proved that active power in the large-
scale wind farms is controllable. Thirdly, for the purpose of
increasing damping of the system and enhancing angel sta-
bility, a coordinated control strategy for wind farms and DC
power transmission system is proposed. Finally, the experi-
mental prototype is made and the control effect of the experi-
mental prototype is also introduced in detail.

2. AC/DC Power Transmission System
Incorporating Wind Farms

Chinese large-scale wind farms are usually located at remote
areas. Due to small load capacity, power generated by the
large-scale wind farms cannot be consumed. So long-distance
transmission is an inevitable solution. But as the wind power
is not constant, long-distance transmission is costly if wind
power is the only thing to transmit. And irregular fluctuation
of the wind power would make the grid unstable. So, at the
present time, a hybrid transmission mode of wind farms and
thermal power plant (also named as wind-thermal hybrid
power system) [9] is the main form of transmission, as is
shown in Figure 1. To be more specific, wind farms are con-
nected with the thermal power plant nearby and the power is
transmitted to other areas by extra high voltage (EHV) line.

Wind-thermal hybrid power transmission mode is for
long-distance transmission. But as the utilization hours of
wind power are lesser than the conventional thermal power
plant, the transmission channel capacity of wind power is
designed lower than the maximum power. When large-scale
wind power is generated, the transmission line will be heavily
loaded, and the thermal power plant also functions in a
heavy-load state, resulting in low frequency oscillation. In
addition, vector control of the turbine may pose influence on
damping [10]. It is also worth noticing that the thermal power
unit bonded with the wind farms is responsible for curbing
wind power fluctuation. So the adjustment for the unit is
frequent, which would damage the power system stabilizer
(PSS) [11] and hamper damping characteristic. Therefore,
effective measures on damping should be taken to ensure safe
operation of the wind-thermal power transmission system.

In addition, the wind-thermal hybrid power system does
not work in a conventional way. The dynamic behaviors of
wind farms may weaken the angle stability of the thermal
power plant, even the whole power system. Thus, the wind
farms and the AC/DC power transmission system should be

subjected to coordinated control in order to erase negative
effect caused by the wind farms.

3. Mathematical Model for Wind-Thermal
Hybrid Power Transmission

3.1. Wind Turbine System. The mechanical part of the wind
turbine system includes wind turbine, transmission shaft,
and gearbox. Wind turbine is used to capture wind energy
through the turbines and transform it to the mechanical
torque on the wheel hub. The shaft and gearbox is used to
pass the driven force of the wind turbine to the generator and
increase the revolving speed.The gear ratio can reach 100. To
simplify calculation, themechanical part is regarded as a con-
centrated mass expressed by first-order inertial element [8]:

d𝑃
𝑚

d𝑡
=

1

𝑇
𝑑

(𝑃
𝑇
− 𝑃
𝑚
) , (1)

where 𝑃
𝑚
and 𝑃
𝑇
refer to mechanical power and electromag-

netic power, respectively, on the rotor of the generator. 𝑇
𝑑

refers to inertia time constant.

3.2. MathematicalModel for DFIG. DFIG is actually the rotor
asynchronous motor. There are symmetrical three-phase
windings on the stator and the rotor. The modeling process
is similar to that of asynchronous motor and synchronous
generator, in which the primitive equation is confirmed in the
three-phase static coordinate system and then coordinates are
transformed. Unlike the modeling of synchronous generator,
𝑑𝑞 coordinates of DFIG can be oriented in different modes,
such as stator flux mode, rotor flux mode, and stator voltage
mode. And orientation of 𝑑𝑞 coordinates of synchronous
generator is only to take physical location of the rotor. In this
paper, the stator vector voltage of DFIG is taken as axis 𝑞.
In the 𝑑𝑞 coordinates system, the stator flux (𝜓

𝑑𝑠
, 𝜓
𝑞𝑠
) and

rotor current (𝑖
𝑑𝑟
, 𝑖
𝑞𝑟
) are taken as the state variables.The state

equation is expressed as follows [11]:
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where 𝑙


= (𝑙
𝑟
− 𝑙
𝑚
𝑙
𝑚
/𝑙
𝑠
) and 𝑙



= 𝑙
𝑚
/𝑙
𝑠
, 𝑙
𝑠
, 𝑙
𝑟
, and

𝑙
𝑚

being stator self-inductance, rotor self-inductance, and
mutual inductance, respectively; 𝑟

𝑠
and 𝑟
𝑟
are stator and rotor

resistance, respectively; 𝜔
1
and 𝜔

𝑠
are synchronous speed

and slip, respectively; 𝑢
𝑑𝑟

and 𝑢
𝑞𝑟
are vertical and horizontal

vector of excitation, respectively; 𝑢
𝑞𝑠
is stator voltage; and 𝑝

is differential operator.

3.3. UHVDC Power Transmission System Model. UHVDC
power transmission refers to DC transmission based on
thyristor inverter. It consists of the inverter, DC line, and
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the auxiliary equipment [12, 13]. Quasi steady state model
is used to simulate the UHVDC primary system. DC com-
mutation is described by algebraic equation. DC line and
smoothing reactor are described in the T-equivalent-circuit
model [14–16]. Substitute the algebraic equation for the
differential equation and get the mathematical model for
UHVDC power transmission system expressed by [17, 18]
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− 𝐼
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(3)

where 𝐼
𝑑𝑟
, 𝐼
𝑑𝑖
, and 𝑈

𝑐
are state variable. 𝐼

𝑑𝑟
and 𝐼
𝑑𝑖
are DC

current of rectifier and inverter; 𝑈
𝑐
refers to the voltage

in the middle of DC line; 𝑅
𝑑
is direct current resistance;

𝐶 is earth capacitance equivalent to DC line; 𝑈
𝑑𝑟

and 𝑈
𝑑𝑖

are DC voltage of rectifier and inverter; 𝐿
𝑑𝑟Σ

and 𝐿
𝑑𝑖Σ

are
equivalent inductance of rectifier and inverter;𝑋

𝑟
and𝑋

𝑖
are

commutation reactance of rectifier and inverter; and 𝛼 and 𝛽

are trigger delay angle of rectifier and trigger angle of inverter.

4. Conditions for Quick Adjustment of
the Wind Farms

4.1. Quick Adjustment of the Active Power of Single Turbine
in Transient Process. Before the wind farms realize the
effectively quick adjustment, it ismade sure that every turbine
is highly controllable. From (2), the rotor current can be
controlled by rotor voltage. But 𝑖

𝑑𝑟
and 𝑖
𝑞𝑟
are cross-coupled,

so feedforward compensation scheme is usually adopted to
realize decoupling control. The feedforward compensation is
calculated from rotor current and internal flux variables:
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variable. For the state equation of rotor current in (2),
substituted feedforward compensation item, the relationship
between rotor current and control command (𝑢∗

𝑑𝑟
, 𝑢∗
𝑞𝑟
) is
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(5)

Equation (5) shows that the response of active current
and reactive current to the control command is the first-order
inertial link. Time constant of inertial element is 𝜏. Typical
parameters of DFIG are substituted into 𝜏 and we can get it is
about 10ms. This means that the single turbine can respond
at the level of ms under external control command.

4.2. Quick Adjustment of the Active Power of Wind Farms in
Transient Process. In the previous research, the wind farms
were usually equaled to a single wind turbine [8, 11]. Obvi-
ously, they are different. Section 4.1 has already proved that
the single turbine can respond at the level of ms, but whether
this holds true to the wind farms still needs to be proved.

A large-scale wind farm has hundreds of wind turbines.
Controlling them depends on wide-field communication
technology. The control system of the wind farms has a
master-slave structure. There are two methods of commu-
nication: (1) one-to-multiple answering transmission and
(2) one-to-multiple global broadcast. For method (1), as all
turbines (200 sets) are slave turbines, it means 200 messages
are sent in a controlling cycle. For method (2), as every
turbine receives the same message, only 1 message is sent in a
controlling cycle.

Message transmission presents the following features:
suppose the length of the message is 200 bits and the serial
communication baud rate is 1Mbps. It is calculated that it
costs 0.2ms to send the message. If fiber communication
is adopted for long-distance transmission, 1.5ms should be
used in photovoltaic conversion. So the total time which is
the delay time of the fiber communication for long-distance
transmission is 1.7ms. Therefore, time delay in a controlling
cycle in method (1) is 200ms and that in method (2) is
1.7ms.Obviously,method (2) is suggested as 1.7ms timedelay
will not pose significant influence on the closed-loop control
system.

According to the analysis in Sections 4.1 and 4.2, based on
global broadcast fiber communication technology, the wind
farms can be an active power source which is able to be
adjusted quickly.

5. Coordinated Control Strategy of Wind
Farms and DC Power Transmission System

5.1. Basic Ideas and Purposes of Coordinated Control. Even
though it may weaken the damping of conventional power
plant and angle stability when the wind farms are con-
nected with the thermal power plant, the ability of power
adjustment of the wind farms would increase the damping
of synchronous generator and enhance angle stability. Basic
ideas of coordinated control of wind farms and DC power
transmission system are mainly described as follows: the
revolving speed or the frequency of synchronous generator
of the conventional power plant is fed back to the controller;
then the controlled quantity that can activate small-scale
dynamic active power in the wind farms is produced through
gain calculation and phase correction; and the dynamic active
power of the wind farms propels the synchronous generator
to produce electromagnetic torque with damping character-
istic. So the damping can be increased and oscillation can
be restrained. The key to supply the synchronous generators
with the positive damping is that the wind farms must be
controllable and can be controlled quickly.

5.2. Technical Framework of Coordinated Control. Based on
the controllability of the wind farms and DC transmission
system, the damping control principle of the thermal power
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Figure 2: Coordinated control strategy framework.

plant is described in Figure 2. Firstly, the frequency of
common DC-bus of the wind farms (Δ𝑓

𝑝𝑐𝑐
) or speed or

angle of the synchronous generator is collected. Secondly,
the collected signal passes smooth block and scaling block
and integral link. Then the controlled signal of the 𝑖th wind
turbine (Δ𝑢

𝑞𝑟𝑖
) is confirmed according to its working state

and the allocation algorithm. This controlled signal is sent
to the active circuit of each wind turbine through wide-field
fiber communication network (excitation voltage reference
point at axis 𝑞 of 𝑑𝑞 decoupling control of the excitation
converter) so that the wind turbines can adjust the active
power synchronically. As a result, the active power in the
transient process can increase the damping of the syn-
chronous generator and prevent low frequency oscillation.

Parameter design of damping controller is expressed as
follows: the value of 𝑇

1
is set up under the condition that the

low frequency signals are able to pass through; and the angle
for compensation is figured out by calculating the dynamic
frequency before adjustment and the values of 𝑇

2
and 𝑇

3
are

calculated; based on these values, the value of𝐾 is confirmed
according to the expected dynamic frequency.

When the power transmission system is disturbed, the
most important thing is to extract fault characteristic quantity
and analyze the type and the place of the fault, in other words,
to judgewhether it occurs in theDC systemor theAC system.
If the fault occurs in the DC system, DC block results in the
great reduction of power. At this moment, the active output

of the wind farm should be lowered within controllable time
to protect the synchronous generator from instability. And
the reactive output is captured to prevent abrupt rise of the
voltage and the instability of the wind turbine.

When the fault occurs in the AC system, the power
reduces substantially. The output power of the DC system
should be increased within set time. But the sudden supply
of DC power may increase the demand of reactive power and
decrease AC bus voltage at the converter station. Thus, the
reactive output of the wind farms should be adjusted quickly
to prevent voltage fall. At the same time, the reactive power
demand in the transient process is calculated according to the
output power of DC system and the reactive power is sent
from the wind farms.

6. Modeling and Prototype Test
Based on RTDS

An experimental prototype is designed according to the coor-
dinated control strategy frameworkmentioned in Section 5.2.
To test the coordinated control strategy and verify the effec-
tiveness of the experimental prototype, “hardware in-the-
loop simulation” is conducted. The experimental prototype
is the real object and the wind-thermal power transmission
system is the visual object based on Real Time Digital System
(RTDS).
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6.1. Simulation of the Wind-Thermal Power Transmission Sys-
tem. The wind-thermal power transmission system is simu-
lated and tested, as shown in Figure 3. Compared to the con-
ventional power plant, each wind turbine has small capacity
and the wind farms have a large number of wind power units
[19]. It is impossible to simulate every turbine set [14]. There-
fore, “equivalent similitude ratio” method is adopted in the
simulation. In other words, the large-scale wind turbine sys-
tem is replaced by a relatively small DFIG in which there are
many wind turbine sets closely related to each other. Parame-
ters are scaled down to a proper proportion. Thus, a large-
scale wind farm is divided into sections and each section
is simulated by DFIG. As a result, electromagnetism and
transient process can be better reflected and the process is
simplified to make the simulation close to the real situation.

The proposed wind-thermal power transmission system
model based on RTDS consists of six wind turbines and one
synchronous generator set. Wind-thermal capacity is in ratio
of 1 : 1.5. According to the principle of “equivalent per-unit
value of parameter,” the capacity of the synchronous gener-
ator is scaled down to the level of MW. The rated capacity of
a DFIG is 2.2MVA and the rated frequency is 60Hz.

In Figure 3, parameters of the DFIG are as follows: stator
winding resistance is 0.00462 p.u., stator leakage inductance
is 0.102 p.u., rotor winding resistance is 0.00736, rotor leakage
inductance is 0.11 p.u., and stator and rotormutual inductance
is 2.62 p.u.; parameters of synchronous generator are (refer to
literature [16] for name and physical definition)

𝑥
𝑑
= 0.51 p.u.,

𝑥


𝑑
= 0.042 p.u.,

𝑥


𝑑
= 0.032 p.u.,

𝑥
𝑞
= 0.375 p.u.,

𝑥


𝑞
= 0.011 p.u.,

𝑇


𝑑
= 0.33 s,

𝑇


𝑑
= 0.03 s,

𝑇


𝑞
= 0.03 s,

𝐻 = 6.98 s;
(6)

and parameters of the additional damping controller are

𝑇
1
= 5.32 s,

𝑇
2
= 0.06 s,

𝑇
3
= 0.38 s,

𝐾 = 12.9.

(7)

6.2. RTDS Hardware Requirement and Calculation Assign-
ment. RTDS hardware has the following requirement: 10
processors (GPC-PB5) of 2 RACKs and 1 12-channel analog
input card (GTAO) are used in the whole model. RTDS is
the real time simulation equipment, and the processors must
be properly allocated whenmodeling. To enhance simulation
accuracy, small-step (<2 us) RTDS/RSCAD system is used as
the carrier ofDFIG systemmodel. Eachmodel includesDFIG
andPWMfrequency converter and transformer. Small-step is
set up in the VSCmodule in the small-step model base. Each
VSC module has a corresponding processor (GPC-PB5). So
among 10 processors, 6 of them correspond to 6 DFIGs’
models, respectively, and the remaining 4 are for controlling
calculation and the synchronous generator simulation and
the grid simulation.

6.3. Experimental Prototype and Interface of RTDS. Thewind
farms, the thermal power system, and the AC/DC power
transmission system shown in Figure 3 are simulated by
RTDS.As the analog state variables, the frequency of the com-
mon bus of wind farms, the speed of synchronous generator,
and the power-angle are the output from GTAO of RTDS,
and they are put into the data collection module of the
experimental prototype by the signal cable. To simulate actual
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Figure 4: Joint debugging of the experimental prototype and RTDS.

fiber channel, the photoelectric conversion module and the
3 km single-mode fiber are set up in the experimental device.
The additional damping control signals are produced after the
signals collected from RTDS are processed through the data
management module and the algorithm producing module.
Then, the additional damping control signals are connected
to GTAI of RTDS through profibus and photoelectricmodule
to control the stability of the system.

In Figure 3, the first-order part of DC power transmission
system is simulated by RTDS and the controller of DC
power transmission system is a special controlling system
developed on DPS3000 platform. It is connected with RTDS
through signal cable. After the connection, RTDS and the
experimental device construct a closed controlling system in
which the experimental device is the controller and RTDS is
being controlled, as is shown in Figure 4.

7. Joint Debugging of Experimental
Device and RTDS

7.1. Experiment Analysis of Damping Characteristic. The
experiment is described as follows: rectify excitation param-
eters and active power of the synchronous generator to pro-
duce weak damping; set up three-phase transient circuit fault
at the common DC-bus to activate low frequency oscillation;
and record the speed of the synchronous generator, active
power of the wind turbine, stator current, and rotor current.

(1) Record the speed of the synchronous generator and
observe the additional damping control. The speed is shown
in Figure 5(a) under the condition that the experimental
prototype is not put into operation. Compare Figures 5(a)
and 5(b) and it is clear that the amplitude of the curve under
additional damping control is smaller and smaller, which
presents good damping characteristic. This indicates that,
under additional damping control, the damping characteris-
tic of the system gets improved.

(2) Record the active power of DFIG and analyze the
active power regulation ability of the wind turbine in the
transient process. Figure 6(a) shows the real time active
power of DFIG without damping control strategy when short
circuit occurs; Figure 5(b) shows the active power of DFIG
under damping control. Compare two figures and it is seen
that when low frequency oscillation occurs in the system,
DFIG rectifies its active power according to additional con-
trolling signals sent by the experimental device to activate

additional damping control. When the experimental device
is not connected, DFIG outputs constant active power only
according to the given value and does not provide any
damping for the synchronous generator.

(3) Record the stator current and rotor current of the
DFIG and observe the variation of current under additional
damping control. Figures 6(a) and 6(b) show rotor current
of DFIG when the experimental prototype is not put into
operation and when it is. Figures 7(a) and 7(b) show the
stator current of the DFIG when the experimental prototype
is not put into operation and when it is. Compare these four
situations and it is found that the rotor current does not show
significant change when there is experimental prototype and
when there is not. Although the stator current increases
substantially when the experimental prototype is available,
the current changes within safe range because it is not directly
connected with other power electric devices. It indicates that
additional damping control would not bring negative effect
to the wind turbine and the system.

From the results it is seen that the active power of each
wind turbine in the wind farms can be concentrated to be
adjusted based on the integrated control platform of the
wind farms and the technology of wide-field communication.
When the system is working under weak damping, the
action of additional damping control is excited to increase
the damping of the system and prevents low frequency
oscillation. At the same time, there is no negative influence
on the wind turbine and the system, which proves that
the method is available. In addition, wind-thermal ratio is
an important factor influencing the damping effect. If the
ratio is too small, the damping effect is limited. Compulsory
damping may lead to overload of the rotor.

7.2. Experimental Analysis of Angle Stability

7.2.1. Fault Analysis of the Wind Farms. After the large-scale
wind farms are connected to the power system, the overall
stability of the power system declines greatly. An experiment
is carried out to find out reasons. The wind farms in Figure 3
are replaced by a thermal power plant (SG1) of the same level.
SG and SG1 constitute a large-scale thermal power plant.
Fault simulation is compared between the single thermal
power plant and the wind-thermal hybrid power system to
see how the wind farms affect the stability of the power
system. Assume that short circuit fault occurs on AC (B3-
B4) for 0.3 s. Simulation results under two power modes are
shown in Figures 8(a) and 8(b).

From Figure 8(a), it is seen that, after short circuit fault
occurs, two thermal power plants have experienced an abrupt
decline of power. The active power of SG and SG1 is reduced
to 0.11 p.u., respectively. It suggests that the power decline is
shared between two thermal power plants. From Figure 8(b),
it is found that, after short circuit fault happens, the power
of SG is decreased to 0.22 p.u. but that of the wind farms
remains unchanged. It suggests that the power decline occurs
only in the thermal power plant rather than both. This is not
conductive to the thermal power plant and may result in its
power-angle instability. Thus, a coordinated control strategy
is proposed to address the power imbalance during the fault.
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Figure 5: The speed of the synchronous generator.
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Figure 6: Rotor current of the doubly fed generator.
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Figure 7: Stator current of DFIG.
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Figure 8: Power comparisons under fault.

7.2.2. Angle Stability under Coordinated Control. In order to
test the effectiveness of coordinated control strategy, a short
circuit default simulation is carried out based on the experi-
ment in Figure 4. Fault occurs on the AC circuit. Results are
shown in Figure 9. Figure 9(a) shows the variation of power-
angle of SG due to 0.3 s fault without the coordinated strategy.
It shows that the stability of the synchronous generator is
violated. Under the same fault condition, Figure 9(a) shows

the variation of power-angle of SG due to 0.3 s fault with
the coordinated strategy.Themaximum oscillation of power-
angle is 69∘, which indicates that the synchronous generator
is within its stability.

The duration of fault can reflect how bad the fault is.
Thus, the duration is increased to 0.41 s. And the variation
of power-angle is shown in Figure 9(c). It shows that the
maximum oscillation of angle is 79∘, which indicates that
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Figure 9: Analysis of the influence of coordinated control strategy.

the synchronous generator maintains its stability. Conse-
quently, the coordinated control strategy proposed in this
paper is proved to enhance the transient stability of the wind
farms thermal hybrid power system.

8. Conclusion

Conclusions can be drawn as follows:

(1) The active power and the reactive power of DFIG
have quick responses. Under the support of wide-field
optical fiber network, doubly fed wind farms can be
adjusted quickly.

(2) Quick adjustment of the active power of doubly fed
wind farms is accomplished, which can restrain the
low frequency oscillation of the thermal power unit
and can supply the positive damping to the unit.

(3) Through coordinated control for wind farms and DC
power transmission system, the transient stability of
the hybrid power system can be enhanced.

(4) The experimental prototype and RTDS are connected
for joint debugging. Results show that the experi-
mental prototype can pose significant damping effect
on thermal power plant and lower the risk of low
frequency oscillation of the grid. The experimental
prototype can also enhance the transient stability of
hybrid AC/DC power transmission system.
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This paper investigates some boundedness and convergence properties of sequences which are generated iteratively through
switched mappings defined on probabilistic metric spaces as well as conditions of existence and uniqueness of fixed points. Such
switching mappings are built from a set of primary self-mappings selected through switching laws. The switching laws govern the
switching process in between primary self-mappings when constructing the switching map. The primary self-mappings are not
necessarily contractive but if at least one of them is contractive then there always exist switching maps which exhibit convergence
properties and have a unique fixed point. If at least one of the self-mappings is nonexpansive or an appropriate combination given
by the switching law is nonexpansive, then sequences are bounded although not convergent, in general. Some illustrative examples
are also given.

1. Introduction

The background literature on fixed point theory and applica-
tions and associated convergence properties inmetric spaces,
Banach spaces, probabilistic metric spaces, Menger spaces,
and some fuzzy-type versions is very abundant. See, for
instance, [1–19] and the references therein. In particular, the
theory focused on probabilistic metric spaces, including their
specialization to Menger spaces, is also abundant. See, for
instance, [1–4, 15, 16, 20] and the references therein. There
are also studies in the graph framework for fixed point
theory and problems of stability. See, for instance, [21, 22]
and the references therein. On the other hand, fixed point
theory has a wide range of applications, for instance, in the
study of convergence of iterative schemes [17], in particular,
of Mann and Jungck types or their many variants [18, 19],
and in that of stability of dynamic systems and that of
differential and difference equations. A particular class of
real world applications refer to the stability of the so-called

switched dynamic systems where a switching law assigns
active parameterization for the dynamic system through time
(or through an iterative discrete process) [23–27].

This paper investigates some boundedness and conver-
gence properties of sequences which are generated through
a class of switched mappings defined on probabilistic metric
spaces, as well as conditions of existence and uniqueness of
fixed points. The above switching mappings are defined via
the selection as active of a set of primary self-mappings with
the activation process governed by a “so-called” switching
law. In this way, such switching laws govern the switch-
ing process in between primary self-mappings when con-
structing the switching map. The primary self-mappings are
not necessarily contractive but if at least one of them is
contractive then there always exist switching maps which
exhibit convergence properties and have a unique fixed point.
On the other hand, if at least one of the primary self-
mappings is nonexpansive or an appropriate combination
given by the switching law is nonexpansive, then sequences

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 836283, 14 pages
http://dx.doi.org/10.1155/2015/836283

http://dx.doi.org/10.1155/2015/836283


2 Mathematical Problems in Engineering

are bounded although not convergent, in general. Some
illustrative examples are also discussed. Section 2 introduces
𝐶𝜌𝑘 and 𝐶𝑘 classes of primary self-mappings in probabilis-
tic metric spaces as well as associated upper- and lower-
bounding constraints of the probability density of the built
sequences. The above class allows the characterization of
strict contractions as well as nonexpansive or expansive
self-mappings in the probabilistic metric spaces. In parallel,
some needed definitions are revisitedwhile some preliminary
results of convergence of sequences, Cauchy sequences, and
boundedness of sequences in probabilistic metric spaces and
in Menger spaces are obtained. Section 3 gives formalism
in probabilistic metric spaces related to the switched maps
defined via the activation of the primary self-mappings
through switching laws. The obtained results for switched
maps rely on boundedness and convergence of sequences in
a probabilistic context.

2. On 𝐶
𝜌𝑘

and 𝐶
𝑘

Classes of Self-Mappings in
Probabilistic Metric Spaces

Let us define a probabilistic distance F : 𝑋×𝑋 → Δ F, where
𝑋 is a nonempty abstract set represented by 𝐹𝑥,𝑦 for each
(𝑥, 𝑦) ∈ 𝑋 × 𝑋, where Δ F is a set of distribution functions.
A distribution function 𝐹 ∈ Δ F is a mapping 𝐹 : R → R0+

which is nondecreasing and left-continuouswith inf 𝑡∈R𝐹(𝑡) =
0 and sup

𝑡∈R𝐹(𝑡) = 1.
The ordered pair (𝑋, F) is a probabilistic metric (PM)

space if for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 and all 𝑡, 𝑠 ∈ R+ the following
conditions hold [1]:

(1) 𝐹𝑥,𝑦 (𝑡) = 𝐻 (𝑡) ⇐⇒ 𝑥 = 𝑦,

where 𝐻 ∈ Δ F is defined by 𝐻(𝑡) =
{

{

{

0, if 𝑡 ≤ 0,

1, if 𝑡 > 0;

(2) 𝐹𝑥,𝑦 (𝑡) = 𝐹𝑦,𝑥 (𝑡) ;

(3) if 𝐹𝑥,𝑦 (𝑡) = 1,

𝐹𝑦,𝑧 (𝑠) = 1

then 𝐹𝑥,𝑧 (𝑡 + 𝑠) = 1.

(1)

The triplet (𝑋, F, Δ) is a Menger space where (𝑋, F) is a PM-
space andΔ is a triangular normwhich satisfies the inequality
𝐹𝑥,𝑧(𝑡 + 𝑠) ≥ Δ(𝐹𝑥,𝑦(𝑡), 𝐹𝑦,𝑧(𝑠)), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, ∀𝑡, 𝑠 ∈ R+.

Note that 𝐹𝑥,𝑦(0) = 𝐹𝑥,𝑦(𝑡) = 0 for 𝑡 ≤ 0 and 𝐹𝑥,𝑦(𝑡) =

𝐹𝑥,𝑦(0
+
) = 1 for 𝑡 > 0 if 𝑥 = 𝑦 since𝐻 ∈ Δ F is nondecreasing

and left-continuous. Note also that every metric space (𝑋, 𝑑)

can be realized as a PM-space by taking F : 𝑋 × 𝑋 → Δ F
being defined by 𝐹𝑥,𝑦(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋

[1–4]. In the following, 𝐷+ is the space of all mappings 𝐹 :

R → [0, 1] which are left-continuous and nondecreasing
with 𝐹(0) = 0 and ℓ

−
𝐹(+∞) = 1. The space 𝐷+ is partially

ordered by the usual pointwise ordering of functions; namely,
𝐹 ≤ 𝐺 if and only if 𝐹(𝑡) ≤ 𝐺(𝑡), ∀𝑡 ∈ R, and its maximal
element is the distribution𝐻(𝑡) [4].

Definition 1. Let (𝑋, F) be a PM-space. A mapping 𝑇 : 𝑋 →

𝑋 is said to be of𝐶𝑘-class for some function 𝑘 : 𝑋×𝑋 → R+

if

𝐹𝑇𝑥,𝑇𝑦 (𝑡) ≥ 𝐹𝑥,𝑦 (𝑘
−1

(𝑥, 𝑦) 𝑡) ; ∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ R+. (2)

Definition 2. Let (𝑋, F) be PM-space. Amapping𝑇 : 𝑋 → 𝑋

is said to be of 𝐶𝜌𝑘-class for some functions 𝜌, 𝑘 : 𝑋 × 𝑋 →

R+ if

𝐹𝑥,𝑦 (𝜌
−1

(𝑥, 𝑦) 𝑡) ≥ 𝐹𝑇𝑥,𝑇𝑦 (𝑡) ≥ 𝐹𝑥,𝑦 (𝑘
−1

(𝑥, 𝑦) 𝑡) ;

∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ R+,

(3)

where the functions 𝜌, 𝑘 : 𝑋 × 𝑋 → R+ satisfy 𝜌(𝑥, 𝑦) ≤

𝑘(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋.

Note that if 𝑇 : 𝑋 → 𝑋 is of 𝐶𝜌𝑘-class, then it is also
of 𝐶𝑘-class. Note also that 𝑇 : 𝑋 → 𝑋 is nonexpansive if
it is of 𝐶𝑘-class with sup

𝑥,𝑦∈𝑋
𝑘(𝑥, 𝑦) ≤ 1 and, in particular,

a probabilistic strict contraction if it is of 𝐶𝑘-class with
sup

𝑥,𝑦∈𝑋
𝑘(𝑥, 𝑦) < 1. Also, if 𝑇 : 𝑋 → 𝑋 is of 𝐶𝜌𝑘-class with

sup
𝑥,𝑦∈𝑋

𝑘(𝑥, 𝑦) ≤ 1 (sup
𝑥,𝑦∈𝑋

𝑘(𝑥, 𝑦) < 1), then it is non-
expansive (probabilistic strictly contractive) [1–4]. If 𝑇 :

𝑋 → 𝑋 is of 𝐶𝜌𝑘-class with 1 < inf𝑥,𝑦∈𝑋𝜌(𝑥, 𝑦) ≤

inf𝑥,𝑦∈𝑋𝑘(𝑥, 𝑦), then it is expansive [1–4]. If there is some
𝜌 : 𝑋 × 𝑋 → R+ with inf𝑥,𝑦∈𝑋𝜌(𝑥, 𝑦) > 1 such that

𝐹𝑥,𝑦 (𝜌
−1

(𝑥, 𝑦) 𝑡) ≥ 𝐹𝑇𝑥,𝑇𝑦 (𝑡) ; ∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ R+, (4)

then 𝑇 : 𝑋 → 𝑋 is expansive (even if 𝑇 : 𝑋 → 𝑋 is not
of 𝐶𝜌𝑘-class for some 𝑘 : 𝑋 × 𝑋 → R+ subject to 1 <

inf𝑥,𝑦∈𝑋𝜌(𝑥, 𝑦) ≤ inf𝑥,𝑦∈𝑋𝑘(𝑥, 𝑦)).
The following technical result follows.

Lemma 3. The following properties hold:

(i) Let (𝑋, F) be a PM-space and let 𝑇 : 𝑋 → 𝑋 be a
mapping of 𝐶𝜌𝑘-class. Consider the sequences {𝑥𝑛} ⊆

𝑋 and {𝑦𝑛} ⊆ 𝑋 built by 𝑥𝑛+1 = 𝑇𝑥𝑛, 𝑦𝑛+1 = 𝑇𝑦𝑛,
∀𝑛 ∈ Z0+ with 𝑥0 = 𝑥, 𝑦0 = 𝑦 for some given 𝑥, 𝑦 ∈ 𝑋.
Then,

𝐹𝑥,𝑦 (

𝑛−1

∏

𝑖=0

[𝜌
−1

𝑖
(𝑥, 𝑦)] 𝑡) ≥ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≥ 𝐹𝑥,𝑦 (

𝑛−1

∏

𝑖=0

[𝑘
−1

𝑖
(𝑥, 𝑦)] 𝑡) ,

(5)

where 𝑘𝑛(𝑥, 𝑦) = 𝑘(𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦), 𝜌𝑛(𝑥, 𝑦) =

𝜌(𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦), ∀𝑛 ∈ Z0+.

(ii) If 𝑇 : 𝑋 → 𝑋 is of 𝐶𝑘-class, then 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) ≥

𝐹𝑥,𝑦(∏
𝑛−1

𝑖=0
[𝑘

−1

𝑖
(𝑥, 𝑦)]𝑡), ∀𝑛 ∈ Z0+.

(iii) If 𝑇 : 𝑋 → 𝑋 is a mapping of either 𝐶𝑘-class or 𝐶𝜌𝑘-
class with lim𝑛→∞∏

𝑛

𝑖=0
[𝑘𝑖(𝑥, 𝑦)] = 0 for the given

𝑥, 𝑦 ∈ 𝑋, then lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1, ∀𝑡 ∈ R+.
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(iv) If 𝑇 : 𝑋 → 𝑋 is a mapping of 𝐶𝜌𝑘-class with 𝛽𝑛 =

∏
𝑛−1

𝑖=0
[𝜌

−1

𝑖
(𝑥, 𝑦)], 𝛼𝑛 = ∏

𝑛−1

𝑖=0
[𝑘

−1

𝑖
(𝑥, 𝑦)], ∀𝑛 ∈ Z0+, and

𝛼 = 𝛼 (𝑥, 𝑦) = lim inf
𝑛→∞

𝛼𝑛,

𝛽 = 𝛽 (𝑥, 𝑦) = lim sup
𝑛→∞

𝛽𝑛

(6)

are in 𝑐𝑙R0+ = R0+ ∪ {+∞} (i.e., 𝑐𝑙R0+ is the closure
of R0+, i.e., the extended nonnegative real semiline) for
the given 𝑥, 𝑦 ∈ 𝑋, then

𝐹𝑥,𝑦 (𝛽𝑛𝑡) ≥ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) ≥ 𝐹𝑥,𝑦 (𝛼𝑛𝑡) ;

∀𝑛 ∈ Z0+ ∀𝑡 ∈ R+,

(7a)

𝐹𝑥,𝑦 (𝛽𝑡) ≥ lim sup
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) ≥ lim inf
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≥ 𝐹𝑥,𝑦 (𝛼𝑡) ; ∀𝑡 ∈ R+.

(7b)

If 𝑇 : 𝑋 → 𝑋 is a mapping of 𝐶𝑘-class, then
lim inf𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) ≥ 𝐹𝑥,𝑦(𝛼𝑡), ∀𝑡 ∈ R+.

Proof. It follows recursively from (3) with 𝑥𝑛+1 = 𝑇𝑥𝑛, 𝑦𝑛+1 =

𝑇𝑦𝑛, ∀𝑛 ∈ Z0+, with 𝑥0 = 𝑥, 𝑦0 = 𝑦 for the given 𝑥, 𝑦 ∈ 𝑋 that

𝐹𝑥,𝑦 (𝜌
−1

0
(𝑥, 𝑦) 𝑡) ≥ 𝐹𝑇𝑥,𝑇𝑦 (𝑡) ≥ 𝐹𝑥,𝑦 (𝑘

−1

0
(𝑥, 𝑦) 𝑡) ,

𝐹𝑥,𝑦 (𝜌
−1

0
(𝑥, 𝑦) 𝜌

−1

1
(𝑥, 𝑦) 𝑡) ≥ 𝐹𝑇𝑥,𝑇𝑦 (𝜌

−1

1
(𝑥, 𝑦) 𝑡)

≥ 𝐹𝑇2𝑥,𝑇2𝑦 (𝑡) ≥ 𝐹𝑇𝑥,𝑇𝑦 (𝑘
−1

1
(𝑥, 𝑦) 𝑡)

≥ 𝐹𝑥,𝑦 (𝑘
−1

0
(𝑥, 𝑦) 𝑘

−1

1
(𝑥, 𝑦) 𝑡) ,

.

.

.

𝐹𝑥,𝑦 (

𝑛−1

∏

𝑖=0

[𝜌
−1

𝑖
(𝑥, 𝑦)] 𝑡) ≥ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≥ 𝐹𝑥,𝑦 (

𝑛−1

∏

𝑖=0

[𝑘
−1

𝑖
(𝑥, 𝑦)] 𝑡) ;

∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ R+, ∀𝑛 ∈ Z0+.

(8)

Property (i) has been proved and the proof of Property (ii)
follows directly by just using the lower-bounding part of the
recursion. Property (iii) follows since lim𝑛→∞∏

𝑛−1

𝑖=0
[𝑘

−1

𝑖
(𝑥,

𝑦)] = +∞; then, lim𝑛→∞(∏
𝑛−1

𝑖=0
[𝑘

−1

𝑖
(𝑥, 𝑦)])𝑡 = +∞, ∀𝑡 ∈

R+, and the conditions that 𝐹𝑥,𝑦(𝑡) is nondecreasing in the
argument 𝑡 and sup

𝑡∈R
+

𝐹𝑥,𝑦(𝑡) = lim sup
𝑡→∞

𝐹𝑥,𝑦(𝑡) = 1 lead
from (8) to the existence of the limit lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1,
∀𝑡 ∈ R+. Property (iv) is proved closely to Property (iii) by
first getting (7a) and (7b) directly from the definitions of 𝛽𝑛,
𝛼𝑛, 𝛽, and 𝛼, ∀𝑛 ∈ Z0+.

The subsequent example illustrates that Lemma 3 is useful
for the characterization of probabilities which can be less than
one (i.e., the probabilistic certainty) through lower-bounds
and upper-bounds in probabilistic metric spaces.

Example 4. Let us consider the metric space (𝑋, 𝑑) with 𝐹 :

𝑋×𝑋 → Δ𝐹 being defined by 𝐹𝑥,𝑦(𝑡) = 𝐻(𝑡−𝑑(𝑥, 𝑦)) for all
𝑥, 𝑦 ∈ 𝑋 for the distribution function𝐻𝑎𝑏 ∈ Δ𝐹 defined by:

𝐻𝑎𝑏 (𝑡) =
{

{

{

𝑎 (𝑡) , if 𝑡 ≤ 0,

𝑏 (𝑡) , if 𝑡 > 0

(9)

for some left-continuous nondecreasing functions 𝑎, 𝑏 :

R0+ → [0, 1] with

𝑏 (𝑥, 𝑦, 𝑡) ≥ 𝑎 (𝑥, 𝑦, 𝑡) = 𝑎 (𝑥, 𝑦, −𝑡) ; ∀𝑡 ∈ R,

lim
𝑡→−∞

𝑎 (𝑥, 𝑦, 𝑡) = 0,

lim
𝑡→−∞

𝑏 (𝑥, 𝑦, 𝑡) = 1.

(10)

Assume also that 𝑎 : R0+ → [0, 1] is everywhere lower-
semicontinuous and 𝑏 : R0+ → [0, 1] is everywhere upper-
semicontinuous. Then,

𝐻𝑎𝑏 (𝛼𝑡 − 𝑑 (𝑥, 𝑦))

=

{{{

{{{

{

𝑎 (𝛼𝑡 − 𝑑 (𝑥, 𝑦)) , if 𝑡 ≤
𝑑 (𝑥, 𝑦)

𝛼
,

𝑏 (𝛼𝑡 − 𝑑 (𝑥, 𝑦)) , if 𝑡 >
𝑑 (𝑥, 𝑦)

𝛼
,

∀𝑥, 𝑦 ∈ 𝑋

(11)

with 𝑎(𝑥, 𝑦, 0
−
) = 𝑎(𝑥, 𝑦, 0

+
) = 𝑏(𝑥, 𝑦, 0

−
) = 0,

lim𝑡→ −∞𝑎(𝑥, 𝑦, 𝑡) = 0, and lim𝑡→+∞𝑏(𝑥, 𝑦, 𝑡) = 1, ∀𝑥, 𝑦 ∈

𝑋. Assume following Lemma 3(iv) that 𝛽 = 𝛽(𝑥, 𝑦) =

lim sup
𝑛→∞

𝛽𝑛 and 𝛼 = 𝛼(𝑥, 𝑦) = lim inf𝑛→∞𝛼𝑛 with 𝛽𝑛 =

𝛽𝑛(𝑥, 𝑦) = ∏
𝑛−1

𝑖=0
[𝜌

−1

𝑖
(𝑥, 𝑦)], 𝛼𝑛 = 𝛼𝑛 (𝑥, 𝑦) = ∏

𝑛−1

𝑖=0
[𝑘

−1

𝑖
(𝑥,

𝑦)], ∀𝑛 ∈ Z0+. Note that 𝛼, 𝛽, 𝛼𝑛, and 𝛽𝑛 are allowed to be
dependent on 𝑥, 𝑦. Then, if 𝑇 : 𝑋 → 𝑋 is a mapping of 𝐶𝜌𝑘-
class so that (7a) and (7b) of Lemma 3 hold, one gets for any
given 𝑥, 𝑦 ∈ 𝑋

𝑏 (𝛽𝑛𝑡 − 𝑑 (𝑥, 𝑦)) = 𝐹𝑥,𝑦 (𝛽𝑛𝑡)

= 𝐻𝑎𝑏 (𝛽𝑛𝑡 − 𝑑 (𝑥, 𝑦))

≥ lim sup
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

= lim sup
𝑛→∞

𝐻𝑎𝑏 (𝑡 − 𝑑 (𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦))

≥ lim inf
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

= lim inf
𝑛→∞

𝐻𝑎𝑏 (𝑡 − 𝑑 (𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦))

≥ 𝐹𝑥,𝑦 (𝛼𝑛𝑡) = 𝑏 (𝛼𝑛𝑡 − 𝑑 (𝑥, 𝑦))

= 𝐻𝑎𝑏 (𝛼𝑛𝑡 − 𝑑 (𝑥, 𝑦)) ;

∀𝑛 ∈ Z0+,

(12a)



4 Mathematical Problems in Engineering

𝑏 (𝛽𝑡 − 𝑑 (𝑥, 𝑦)) = 𝐹𝑥,𝑦 (𝛽𝑡) = 𝐻𝑎𝑏 (𝛽𝑡 − 𝑑 (𝑥, 𝑦))

≥ lim sup
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

= lim sup
𝑛→∞

𝐻𝑎𝑏 (𝑡 − 𝑑 (𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦))

≥ lim inf
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

= lim inf
𝑛→∞

𝐻𝑎𝑏 (𝑡 − 𝑑 (𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦))

≥ 𝐹𝑥,𝑦 (𝛼𝑡) = 𝑏 (𝛼𝑡 − 𝑑 (𝑥, 𝑦))

= 𝐻𝑎𝑏 (𝛼𝑡 − 𝑑 (𝑥, 𝑦))

(12b)

from (7a) and (7b). Thus, one gets for any given 𝑥, 𝑦 ∈ 𝑋 the
following:

(a) If 𝑡𝑛 > 𝑑(𝑥, 𝑦)/𝛼𝑛 for some given 𝑛 ∈ Z0+, then, since
𝑡𝑛 > 𝑑(𝑥, 𝑦)/𝛽𝑛 as well, one gets

𝑏 (𝛽𝑛𝑡𝑛 − 𝑑 (𝑥, 𝑦)) ≥ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡𝑛)

≥ 𝑏 (𝛼𝑛𝑡𝑛 − 𝑑 (𝑥, 𝑦))

(13a)

and if 𝑡 > 𝑑(𝑥, 𝑦)/𝛼 since 𝑡 > 𝑑(𝑥, 𝑦)/𝛽, then

𝑏 (𝛽𝑡 − 𝑑 (𝑥, 𝑦)) ≥ lim sup
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≥ lim inf
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≥ 𝑏 (𝛼𝑡 − 𝑑 (𝑥, 𝑦))

(13b)

and ∃lim𝑡→+∞lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1 if 𝛼 > 0 since
the above superior and inferior limits equalize unity.

(b) If 𝑑(𝑥, 𝑦)/𝛽𝑛 < 𝑡 ≤ 𝑑(𝑥, 𝑦)/𝛼𝑛, then

𝐻𝑎𝑏 (𝛼𝑛𝑡 − 𝑑 (𝑥, 𝑦)) = 𝑎 (𝛼𝑛𝑡 − 𝑑 (𝑥, 𝑦))

≤ lim inf
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≤ lim sup
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡)

≤ 𝐻𝑎𝑏 (𝛽𝑛𝑡 − 𝑑 (𝑥, 𝑦))

= 𝑏 (𝛽𝑛𝑡 − 𝑑 (𝑥, 𝑦)) .

(14)

If, furthermore, 𝛽 = 𝛼 > 0, then
∃lim𝑡→+∞lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1. If, in addition,
𝛼 = +∞, then 𝛽 = +∞, 𝑎(𝑡) = 0, and 𝑏(𝑡) = 1,
∀𝑡 ∈ R+; then ∃lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1, ∀𝑡 ∈ R+,
which is the basic convergence suitable property in
probabilistic metric spaces for probabilistic strictly
contractive mappings in the existing literature. Note
that this case includes the case under Lemma 3(iii)
when lim𝑛→∞∏

𝑛

𝑖=0
[𝑘𝑖(𝑥, 𝑦)] = 0 leading to

lim
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) = lim
𝑛→∞

𝐻𝑎𝑏 (𝑡 − 𝑑 (𝑇
𝑛
𝑥, 𝑇

𝑛
𝑦))

≥ 𝐹𝑥,𝑦 (+∞) = 𝐻 (+∞) = 1;

(15)

that is, lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1, ∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ R+,
or, in other words, for any distance 𝑑(𝑥, 𝑦) from a
given 𝑥 ∈ 𝑋 to a given 𝑦 ∈ 𝑋, lim𝑛→∞𝑑(𝑇

𝑛
𝑥, 𝑇

𝑛
𝑦) =

0.

(c) If 𝑡 ≤ 𝑑(𝑥, 𝑦)/𝛽𝑛, then lim inf𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) ≥

𝑎(𝛽𝑛𝑡 − 𝑑(𝑥, 𝑦)).

(d) Now, assume that 𝑇 : 𝑋 → 𝑋 is a mapping of 𝐶𝜌𝑘-
class with 1 < inf𝑥,𝑦∈𝑋𝜌(𝑥, 𝑦) ≤ inf𝑥,𝑦∈𝑋𝑘(𝑥, 𝑦) and
then 𝛽 = 𝛼 = 0; that is, the mapping is expansive.
Then, if 𝑡 → +∞ implying that 𝑡 > 𝑑(𝑥, 𝑦)/𝛽 (and
also 𝑡 > 𝑑(𝑥, 𝑦)/𝛽 since 𝛼 = 𝛽 = 0), one concludes
from (13b) that

inf
𝑡>𝑑(𝑥,𝑦)/𝛽

𝑛

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) = 1,

sup
𝑡≤𝑑(𝑥,𝑦)/𝛽

𝑛

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) < 1;

∀𝑥, 𝑦 ( ̸= 𝑥) ∈ 𝑋,

lim
𝑛→+∞

inf
𝑡>𝑑(𝑥,𝑦)/𝛽

𝑛

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) = 1,

lim
𝑛→+∞

sup
𝑡≤𝑑(𝑥,𝑦)/𝛽

𝑛

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) < 1;

∀𝑥, 𝑦 ( ̸= 𝑥) ∈ 𝑋

(16)

since {𝛼𝑛} → 0 and {𝛽𝑛} → 0. The constraints (13a)
still hold for each 𝑛 ∈ Z0+ such that 𝑡𝑛 > 𝑑(𝑥, 𝑦)/𝛼𝑛

but the sequence {𝑡𝑛} diverges to +∞while {𝛼𝑛} → 0

and {𝛽𝑛} → 0.

Example 5. Assume that 𝛼 = 𝛽 = 𝛼𝑛 = 𝛽𝑛 = 1, ∀𝑛 ∈ Z0+,
independent of 𝑥, 𝑦 ∈ 𝑋. Then, 𝑇 : 𝑋 → 𝑋 is of 𝐶11-class
and nonexpansive but also probabilistic noncontractive. If 𝑡 >
𝑑(𝑥, 𝑦), then one gets from (13a) and (13b)

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) = 𝐹𝑥,𝑦 (𝑡) = 𝑏 (𝑡 − 𝑑 (𝑥, 𝑦)) ,

lim
𝑡→+∞

lim
𝑛→∞

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) = lim
𝑡→+∞

𝑏 (𝑡 − 𝑑 (𝑥, 𝑦))

= lim
𝑡→+∞

𝐻𝑎𝑏 (𝑡) = 1;

∀𝑥, 𝑦 ∈ 𝑋.

(17)

Assume instead that 𝛼𝑛
𝑘

= 𝛽𝑛
𝑘

= 1 for some sequence {𝑛𝑘} ⊆
Z0+, ∀𝑘 ∈ Z0+. Then, if 𝑡𝑛

𝑘

> 𝑑(𝑥, 𝑦), one has for any 𝑥, 𝑦 ∈ 𝑋

that

𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡𝑛
𝑘

) = 𝑏 (𝑡𝑛
𝑘

− 𝑑 (𝑥, 𝑦))

if 𝑡𝑛
𝑘

> 𝑑 (𝑥, 𝑦) ;

𝑏 (𝛼𝑛𝑡 − 𝑑 (𝑥, 𝑦)) ≤ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦 (𝑡) ≤ 𝑏 (𝛽𝑛𝑡 − 𝑑 (𝑥, 𝑦)) ,

∀𝑡 ∈ (𝑡𝑛
𝑘

, 𝑡𝑛
𝑘+1

] , ∀𝑛 ∈ (𝑛𝑘, 𝑛𝑘+1] if 𝑡 >
𝑑 (𝑥, 𝑦)

𝛽𝑛

,

(18)
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which simplifies as 𝑏(𝛼𝑛𝑡 − 𝑑(𝑥, 𝑦)) ≤ 𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) ≤ 𝑏(𝛽𝑛𝑡 −

𝑑(𝑥, 𝑦)), ∀𝑛 ∈ Z0+, if 𝑡 > 𝑑(𝑥, 𝑦)/𝛽𝑛:

lim
𝑡→+∞

lim
𝑘→∞

𝐹𝑇𝑛𝑘𝑥,𝑇𝑛𝑘𝑦 (𝑡) = lim
𝑘→∞

𝑏 (𝑡𝑛
𝑘

− 𝑑 (𝑥, 𝑦))

= lim
𝑡→+∞

𝑏 (𝑡 − 𝑑 (𝑥, 𝑦)) = lim
𝑘→∞

𝐻𝑎𝑏 (𝑡𝑛
𝑘

) = 1.

(19)

From Lemma 3(iii), one gets directly the subsequent
result.

Proposition 6. Let (𝑋, F) be a PM-space and let 𝑇 : 𝑋 →

𝑋 be a mapping of either 𝐶𝑘-class or 𝐶𝜌𝑘-class and there
is a strictly increasing sequence of nonnegative integers {𝑛𝑘}

fulfilling lim𝑘→∞sup(𝑛𝑘+1 − 𝑛𝑘) < +∞ such that, for some
given 𝑥, 𝑦 ∈ 𝑋, ∏𝑛

𝑘
+𝑛
𝑘+1

𝑖=𝑛
𝑘

[𝑘𝑖(𝑥, 𝑦)] < 1, ∀𝑘 ∈ Z0+; then
lim𝑛→∞𝐹𝑇𝑛𝑥,𝑇𝑛𝑦(𝑡) = 1, ∀𝑡 ∈ R+.

Proof. It follows from Lemma 3 that if ∏
𝑛
𝑘
+𝑛
𝑘+1

𝑖=𝑛
𝑘

[𝑘𝑖(𝑥,

𝑦)] < 1, ∀𝑘 ∈ Z0+, then lim𝑘→∞∏
∑
𝑘

𝑖=0
𝑛
𝑖

𝑖=0
[𝑘𝑖(𝑥, 𝑦)] = 0,

lim𝑘→∞∏
∑
𝑘

𝑖=0
𝑛
𝑖
+𝑛

𝑖=0
[𝑘𝑖(𝑥, 𝑦)] = 0, lim𝑘→∞∏

∑
𝑘

𝑖=0
𝑛
𝑖
+𝑛

𝑖=0
[𝑘

−1

𝑖
(𝑥,

𝑦)] = ∞, ∀𝑛 ∈ (𝑛𝑘, 𝑛𝑘+1], ∀𝑘 ∈ Z0+, and then
lim𝑛→∞∏

𝑛

𝑖=0
[𝑘

−1

𝑖
(𝑥, 𝑦)] = ∞.

Note that Proposition 6 includes as a particular case that
of probabilistic strict contractions𝑇 : 𝑋 → 𝑋which are then
mappings of 𝐶𝑘-class with 0 < 𝛼

−1
= sup

𝑥,𝑦∈𝑋
𝑘(𝑥, 𝑦) < 1.

Definition 7 (see [2]). Let (𝑋, F) be a PM-space and 𝐴 a
nonempty subset of 𝑋. The probabilistic diameter of 𝐴 is
a mapping 𝐷𝐴 : R0+ → [0, 1] defined by 𝐷𝐴(𝑧) =

sup
𝑡<𝑧

inf𝑥,𝑦∈𝐴𝐹𝑥,𝑦(𝑡).

Definition 8 (see [2, 4]). Let (𝑋, F) be a PM-space and 𝐴 a
nonempty subset of 𝑋. The nonempty set 𝐴 is said to be
probabilistically bounded if sup

𝑧∈R
0+

𝐷𝐴(𝑧) = 1, that is, if the
supremum of its probabilistic diameter𝐷𝐴 ∈ 𝐷+.

We can define the set unboundedness as the concept
opposite to Definition 8 as follows.

Definition 9 (see [2, 4]). Let (𝑋, F) be a PM-space and 𝐴 a
nonempty subset of 𝑋. The nonempty set 𝐴 is said to be
probabilistically unbounded if sup

𝑧∈R
0+

𝐷𝐴(𝑧) < 1, that is, if
𝐷𝐴 ∉ 𝐷+.

The boundedness and unboundedness of sequences
{𝑥𝑛} ⊆ 𝑋 can be easily defined as supported by Definitions
8 and 9 as follows.

Definition 10 (see [2, 4]). Let (𝑋, F) be a PM-space. The
sequence {𝑥𝑛} ⊆ 𝑋 is probabilistically bounded if sup

𝑧∈R
0+

sup
𝑡<𝑧

inf𝑛,𝑚∈Z
0+

inf𝑥
𝑛
,𝑥
𝑚
∈𝑋𝐹𝑥

𝑛
,𝑥
𝑚

(𝑡) = 1.

Definition 11 (see [1]). Let (𝑋, F) be a PM-space. Then, the
sequence {𝑥𝑛} ⊆ 𝑋 is

(1) probabilistically convergent to a point 𝑥 ∈ 𝑋, denoted
by {𝑥𝑛} → 𝑥, if for every 𝜀 ∈ R+ and 𝜆 ∈ (0, 1) there
exists some𝑁 = 𝑁(𝜀, 𝜆) ∈ Z0+ such that

𝐹𝑥
𝑛
,𝑥 (𝜀) > 1 − 𝜆; ∀𝑛 (∈ Z0+) ≥ 𝑁; (20)

(2) Cauchy if for every 𝜀 ∈ R+ and 𝜆 ∈ (0, 1) there exists
some𝑁 = 𝑁(𝜀, 𝜆) ∈ Z0+ such that

𝐹𝑥
𝑛
,𝑥
𝑚

(𝜀) > 1 − 𝜆; ∀𝑛,𝑚 (∈ Z0+) ≥ 𝑁. (21)

A PM-space (𝑋, F) is complete if every Cauchy sequence is
probabilistically convergent.

Proposition 12. Let (𝑋, F) be a PM-space. Then,

(1) {𝑥𝑛}(→ 𝑥) ⊆ 𝑋 for some 𝑥 ∈ 𝑋 if and only if the
following limit exists: lim𝜀→0+ lim𝑛→∞𝐹𝑥

𝑛
,𝑥(𝜀) = 1;

(2) {𝑥𝑛} ⊆ 𝑋 is a Cauchy sequence if and only if
lim𝜀→0+ lim𝑛→∞𝐹𝑥

𝑛
,𝑥
𝑛+𝑚

(𝜀) = 1, ∀𝑚 ∈ Z0+.

Proof. If {𝑥𝑛} → 𝑥, then there exists some 𝑁 = 𝑁(𝜀, 𝜆) ∈

Z0+ such that 𝐹𝑥
𝑛
,𝑥(𝜀) > 1 − 𝜆, ∀𝑛(∈ Z0+) ≥ 𝑁, for every

𝜀 ∈ R+ and 𝜆 ∈ (0, 1). Thus, since 0 ≤ 𝐹𝑥
𝑛
,𝑥(𝜀) ≤ 1, ∀𝑛 ∈

Z0+, then, by taking 𝜆 → 0
+, one gets lim𝑛→∞𝐹𝑥

𝑛
,𝑥(0

+
) =

lim𝜀→0+ lim𝑛→∞𝐹𝑥
𝑛
,𝑥(𝜀) = 1.

Conversely, if lim𝑛→∞𝐹𝑥
𝑛
,𝑥(0

+
) = 1, then for every 𝜀 ∈ R+

and 𝜆 ∈ (0, 1) there exists some𝑁 = 𝑁(𝜀, 𝜆) ∈ Z0+ such that
𝐹𝑥
𝑛
,𝑥(𝜀) > 1−𝜆, ∀𝑛(∈ Z0+) ≥ 𝑁; thus {𝑥𝑛} → 𝑥. Assume that

this is not true. Thus, there is some subsequence {𝑥𝑛
𝑘

} ⊆ {𝑥𝑛}

such that𝐹𝑥
𝑛
𝑘

,𝑥(𝜀) ≤ 1−𝜆 for some 𝜀 ∈ R+ and 𝜆 ∈ (0, 1)while
lim𝑛→∞𝐹𝑥

𝑛
,𝑥(𝜀) = lim𝑛→∞𝐹𝑥

𝑛
,𝑥(0

+
) = 1 for any 𝜀 ∈ R+ since

𝐹𝑥
𝑛
,𝑥(𝜀) is nondecreasing in the argument 𝜀 and one gets the

following contradiction for some 𝜆 ∈ (0, 1):

1 − 𝜆 ≥ lim
𝑘→∞

𝐹𝑥
𝑛
𝑘

,𝑥 (𝜀) = lim
𝑛→∞

𝐹𝑥
𝑛
,𝑥 (𝜀)

= lim
𝑛→∞

𝐹𝑥
𝑛
,𝑥 (0

+
) = 1.

(22)

Proposition 12(1) has been proved. The proof of
Proposition 12(2) is very close and it is omitted.

Proposition 13. Let (𝑋, F) be a PM-space. Then, the sequence
{𝑥𝑛} ⊆ 𝑋 is probabilistically bounded if and only if 𝐷𝑎𝑀{𝑥

𝑛
} =

1, where 𝐷𝑎𝑀{𝑥
𝑛
} = sup

𝑧∈R
0+

𝐷𝑎 {𝑥
𝑛
}(𝑧) with 𝐷𝑎{𝑥

𝑛
}(𝑧) =

sup
𝑡<𝑧

inf𝑥
𝑛
∈𝑋𝐹𝑎,𝑥

𝑛

(𝑡) for some 𝑎 ∈ 𝑋, that is, if and only if
𝐷𝑎𝑀{𝑥

𝑛
} ∈ 𝐷+ for some 𝑎 ∈ 𝑋.

Proof. If 𝑋 is bounded, then the result is direct for any
sequence 𝑆 = {𝑥𝑛} ⊆ 𝑋. Assume that 𝑋 is not bounded
and proceed by contradiction by assuming that 𝑆 ⊆ 𝑋 is
probabilistically bounded and 𝐷𝑎𝑀𝑆 ∉ 𝐷+ for some 𝑎 ∈ 𝑋.
On the other hand, since 𝑆 ⊆ 𝑋 is probabilistically bounded,
then, for all 𝑥𝑘, 𝑥𝑚 ∈ 𝑆, there is 𝑡0 = 𝑡0(𝑥𝑘, 𝑥𝑚) ∈ R0+ such
that 𝐹𝑥

𝑘
,𝑥
𝑚

(𝑡) = 1, ∀𝑡(∈ R0+) > 𝑡0. Since 𝐷𝑎𝑀𝑆 ∉ 𝐷+, there
is 𝑥𝑘 ∈ 𝑆 such that 𝐹𝑎,𝑥

𝑘

(𝑡) < 1, ∀𝑡(∈ R0+) > 𝑡01, and some
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𝑡01 = 𝑡01(𝑥𝑘, 𝑎) ∈ R0+. This implies from the contrapositive
equivalent logic proposition to the third property of (1) of
(𝑋, F) being a PM-space that either 𝐹𝑥

𝑘
,𝑥
𝑚

(𝑡/2) < 1, and then
the sequence 𝑆 ⊆ 𝑋 is not probabilistically bounded, ∀𝑡(∈
R0+) > 𝑡01 (a contradiction), or 𝐹𝑎,𝑥

𝑚

(𝑡/2) < 1, ∀𝑡(∈ R0+) >

𝑡01, for any given 𝑥𝑚 ∈ 𝑆, and then lim sup
𝑡→+∞

𝐹𝑎,𝑥
𝑚

(𝑡/2) <

1 for some fixed 𝑎, 𝑥𝑚 ∈ 𝑋. Now, assume that, for all 𝑎 ∈ 𝑋

such that 𝑎 ∉ 𝑆, lim sup
𝑡→+∞

𝐹𝑎,𝑥
𝑚

(𝑡/2) < 1. Thus, the
subset 𝐴𝑎 = {𝑎, 𝑥𝑚} of 𝑋, ∀𝑎 ∈ 𝑋, is unbounded since its
probabilistic diameter is less than one; that is,𝐷𝐴

𝑎

∉ 𝐷+,∀𝑎 ∈

𝑋, and then the sequence 𝑆 is probabilistically unbounded,
again a contradiction. It has been proved that if 𝑆 ⊂ 𝑋 is
bounded, then 𝐷𝑎𝑀𝑆 ∈ 𝐷+ for some 𝑎 ∈ 𝑋 ∩ 𝑆, where 𝑆

is the complementary to 𝑆 in 𝑋. It remains to prove that if
𝐷𝑎𝑀𝑆 ∈ 𝐷+ for some 𝑎 ∈ 𝑋∩𝑆, then 𝑆 ⊂ 𝑋 is probabilistically
bounded. Since𝐷𝑎𝑀𝑆 ∈ 𝐷+, then 𝐹𝑎,𝑥

𝑘

(𝑡) = 1, ∀𝑡(∈ R0+) > 𝑡0,
for some 𝑡0 = 𝑡0(𝑎, 𝑥𝑘) ∈ R0+ and all 𝑥𝑘 ∈ 𝑆. It follows from
the third property of (1) that 𝐹𝑥

𝑛
,𝑥
𝑚

(𝑡) = 1, ∀𝑡(∈ R0+) > 2𝑡0,
∀𝑥𝑛, 𝑥𝑚 ∈ 𝑆. Thus, 𝑆 ⊂ 𝑋 is probabilistically bounded.

3. Switched Maps Defined by 𝐶
𝜌𝑘

and 𝐶
𝑘

Classes of Primary Self-Mappings and
a Class of Dynamic Systems

Switching processes are a very important tool in some
applications of discrete-time and continuous-time dynamic
systems. The basic idea is how to switch in-between alterna-
tive parameterizations of a system by using either “ad hoc”
or even arbitrary switching laws while keeping or improving
essential suitable properties like global or asymptotic stability
or convergence to the equilibrium points. See [23–26] and
some references therein. The formalism can also rely on the
definitions of iteration-dependent maps in iterative schemes
of Mann or Jungck type or its generalizations so as to get
appropriate convergence properties [18, 19, 23]. Note that a
switching process in an iterative scheme can be interpreted
as the choice under a switching rule of certain primary self-
maps from an available collection of them at certain iteration
points; that is, the iterative scheme or the solution equation
of a dynamic system is being governed by a switching rule
[28]. Based on the above elementary idea, this section relies
on switching maps built with a prefixed number of either
𝐶𝜌𝑘-class or 𝐶𝑘-class, self-mappings on PM-spaces subject
to switching rules which select the new selected mapping
and the points at which such new switching occurs. For
exposition simplicity, it is assumed that 𝐶𝜌𝑘-class, or 𝐶𝑘-
class, self-mappings are characterized by constants instead of
functions in Definitions 1 and 2.

Let (𝑋, F) be PM-space and let 𝑇𝑖 : 𝑋 → 𝑋 be a set
of (primary) self-mappings of 𝐶𝜌𝑘-class for some constants
𝜌𝑖(≤ 𝑘𝑖), 𝑘𝑖 ∈ R+ for 𝑖 ∈ 𝑞 = {1, 2, . . . , 𝑞}. A switching map
𝑇 = 𝑇𝜎

𝑛

(𝑥) from Z0+ × 𝑋 to 𝑋 with respect to the switching
law 𝜎 : Z0+ × 𝑋 → 𝑞 generates a sequence

𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝜎
𝑛

(𝑥𝑛) 𝑥𝑛 = 𝑇𝑖𝑥𝑛, ∀𝑛 ∈ Z0+, (23)

for each given 𝑥0 ∈ 𝑋 for some 𝑖 = 𝑖(𝑛) ∈ 𝑞 and we informally
can say that the 𝑖th primary self-mapping 𝑇𝑖 : 𝑋 → 𝑋 is
“active” at the 𝑛th value (or sample) of the sequence {𝑥𝑛} [28].

See also [23–27]. In other words, the switching map 𝑇 = 𝑇𝜎
𝑛

on 𝑋 is defined by one of the self-mappings 𝑇𝑖 : 𝑋 → 𝑋

(𝑖 ∈ 𝑞) for each 𝑛 ∈ Z0+ and it has associated piecewise
constant functions 𝜌𝜎

𝑛

, 𝑘𝜎
𝑛

: Z0+×𝑋×𝑋 → R+ such that 𝜌 =

𝜌𝜎
𝑛

(𝑥, 𝑦) ∈ {𝜌1, 𝜌2, . . . , 𝜌𝑞}, 𝑘 = 𝑘𝜎
𝑛

(𝑥, 𝑦) ∈ {𝑘1, 𝑘2, . . . , 𝑘𝑞} for
each 𝑛 ∈ Z0+ and each 𝑥, 𝑦 ∈ 𝑋. The set of switching samples
of a sequence {𝑥𝑛} ⊂ 𝑋 is a (proper or improper) subset
𝑍𝑆 = 𝑍𝑆({𝑥𝑛}, 𝜎) of Z0+, so-called the switching set, defined
by 𝑍𝑆 = {𝑛 ∈ Z+ : 𝑇𝜎

𝑛

𝑥𝑛 ̸= 𝑇𝜎
𝑛−1

𝑥𝑛} = {𝑛0, 𝑛1, . . . , 𝑛𝑘, . . .}.
Note that a switching set is a strictly ordered set for the
standard strict ordering relation “<”. Since 𝑇𝑖 : 𝑋 → 𝑋,
∀𝑖 ∈ 𝑞, are self-mappings of 𝐶𝜌𝑘 with constants 𝜌𝑖(≤ 𝑘𝑖),
𝑘𝑖 ∈ R+, then

𝐹𝑇
𝑖
𝑥,𝑥 (𝜌

−1

𝑖
𝑡) ≥ 𝐹𝑇2

𝑖
𝑥,𝑇
𝑖
𝑥 (𝑡) ≥ 𝐹𝑇

𝑖
𝑥,𝑥 (𝑘

−1

𝑖
𝑡) ; ∀𝑡 ∈ R+, (24)

for any 𝑥 ∈ 𝑋 so that one has recursively from (3) for a
sequence {𝑥𝑛} ⊂ 𝑋 generated by 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, ∀𝑛 ∈ Z0+,
for any given 𝑥0 ∈ 𝑋

𝐹𝑥
1
,𝑥
0

((

𝑛

∏

𝑖=0

[𝜌
−1

𝜎
𝑖

]) 𝑡)

= 𝐹𝑥
1
,𝑥
0

((

𝑞

∏

𝑖=1

[𝜌
−∑
𝑘−1

𝑗=0
𝛾
𝑖
(𝑛
𝑗
,𝑛
𝑗+1

)−𝛾
𝑖
(𝑛
𝑘
,𝑛
𝑘
+ℓ)

𝑖
]) 𝑡)

≥ 𝐹𝑥
𝑛
𝑘
+ℓ+1

,𝑥
𝑛
𝑘
+ℓ

(𝑡) ≥ 𝐹𝑥
1
,𝑥
0

((

𝑛
𝑘
+ℓ

∏

𝑖=0

[𝑘
−1

𝜎
𝑖

]) 𝑡)

= 𝐹𝑥
1
,𝑥
0

((

𝑞

∏

𝑖=1

[𝑘
−∑
𝑘−1

𝑗=0
𝛾
𝑖
(𝑛
𝑗
,𝑛
𝑗+1

)−𝛾
𝑖
(𝑛
𝑘
,𝑛
𝑘
+ℓ)

𝑖
]) 𝑡) ;

∀𝑘 ∈ Z0+, ∀𝑡 ∈ R+,

(25)

where ℓ(∈ Z0+) ≤ 𝑛𝑗+1 − 𝑛𝑗, 𝑛𝑘 ∈ 𝑍𝑆, ∀𝑘 ∈ Z0+, is

𝑛𝑘 = 𝑛𝑘−1 +

𝑞

∑

𝑖=1

𝛾𝑖 (𝑛𝑘−1, 𝑛𝑘) =

𝑘−1

∑

𝑗=0

𝑞

∑

𝑖=1

𝛾𝑖 (𝑛𝑗, 𝑛𝑗+1) (26)

and 𝛾𝑖(𝑛𝑗, 𝑛𝑗 + ℓ) ∈ Z0+ is the number of times that the 𝑖th
self-mapping 𝑇𝑖 : 𝑋 → 𝑋 for some 𝑖 ∈ 𝑞 is “active” in the
interval [𝑛𝑗, 𝑛𝑗 + ℓ) for each 𝑖 ∈ 𝑞. If 𝑇𝑖 : 𝑋 → 𝑋, ∀𝑖 ∈ 𝑞, are
self-mappings of 𝐶𝑘-class, then one has instead of (25)

𝐹𝑥
𝑛
𝑘
+ℓ+1

,𝑥
𝑛
𝑘
+ℓ

(𝑡)

≥ 𝐹𝑥
1
,𝑥
0

((

𝑞

∏

𝑖=1

[𝑘
−∑
𝑘−1

𝑗=0
𝛾
𝑖
(𝑛
𝑗
,𝑛
𝑗+1

)−𝛾
𝑖
(𝑛
𝑘
,𝑛
𝑘
+ℓ)

𝑖
]) 𝑡) ;

∀𝑘 ∈ Z0+, ∀𝑡 ∈ R+.

(27)

Theorem 14. Let (𝑋, F) be a PM-space and let 𝑇𝑖 : 𝑋 → 𝑋

be self-mappings of 𝐶𝑘-class for some constants 𝑘𝑖 ∈ R+ for
𝑖 ∈ 𝑞 = {1, 2, . . . , 𝑞}. Then, the following properties hold:

(i) Assume that there is (at least) a self-mapping 𝑇𝑖 :

𝑋 → 𝑋 for some 𝑖 ∈ 𝑞 which is a probabilistic strict
contraction. Then, there are infinitely many switching
laws 𝜎 : Z0+ × 𝑋 → 𝑞 such that their associate
switching maps 𝑇 : Z0+ × 𝑋 → 𝑋 are probabilistic
strict contractions.
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(ii) Under the conditions of the above proposition, there are
infinitely many switching laws 𝜎 : Z0+ × 𝑋 → 𝑞 such
that their associate switching maps 𝑇 : Z0+ × 𝑋 → 𝑋

are probabilistic strict contractions and, furthermore,
they consist of infinitelymany alternate active switching
maps of the form (𝑖, 𝑗) or (𝑗, 𝑖) with 𝑗 ∈ 𝑞 \ {𝑖}.

(iii) If, in addition, (𝑋, F) is complete, then any sequence
𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, 𝑛 ∈ Z0+ under any switching law 𝜎 :

Z0+ × 𝑋 → 𝑞 fulfilling either Property (i) or Property
(ii) for any given initial point 𝑥0 ∈ 𝑋 is Cauchy and
probabilistically convergent.

Proof. It follows from (27) that Property (i) is fulfilled for
sequences {𝑥𝑛} ⊂ 𝑋 generated as 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛 for any 𝑥0 ∈ 𝑋

by any of the infinitely many switching maps 𝑇 : Z0+ × 𝑋 →

𝑋 built under switching laws 𝜎 : Z0+ × 𝑋 → 𝑞 which fulfil

lim
𝑘→∞

𝑘−1

∑

𝑗=0

𝛾𝑖 (𝑛𝑗, 𝑛𝑗+1) = +∞,

𝑞

∑

ℓ( ̸=𝑖)=1

∞

∑

𝑘=0

𝛾ℓ (𝑛𝑘, 𝑛𝑘+1) < +∞

(28)

since there is a finite nonnegative integer 𝑛
∗

= 𝑛
∗
(𝜎)

depending on the subsequence {𝑥𝑛 : 𝑛 < 𝑛
∗
} which is a

terminal switching point such that 𝜎𝑛 = 𝑖 for 𝑖 ≥ 𝑛
∗ for any

such a sequence {𝑥𝑛}. Thus, one gets from (27) that

lim
𝑛→∞

𝐹𝑥
𝑛+𝑚

,𝑥
𝑛

(𝑡) = 𝐹𝑇
𝜎
0

𝑥
0
,𝑥
0

(+∞) = 1,

∀𝑡 ∈ R+, ∀𝑚 ∈ Z+,

(29)

since 𝐹 : R → R0+ is nondecreasing and left-continuous
with sup

𝑡∈R𝐹 (𝑡) = 1 and then the sequence {𝑥𝑛} built as
𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝜎

𝑛

𝑥𝑛, 𝑥0 ∈ 𝑋 is a Cauchy sequence and
𝑇 : Z0+ × 𝑋 → 𝑋 is a probabilistic strict contraction.
Property (i) has been proved.

Property (ii) follows with alternate (probabilistic strict
contraction versus remaining self-mapping) switching laws
𝜎 : Z0+ × 𝑋 → 𝑞 defined by a switching set 𝑍𝑆 fulfilling the
fact that if, for any 𝑘 ∈ Z0+, 𝑛𝑘+𝑗 ∈ 𝑍𝑆 for 𝑗 = 0, 1, . . . , ℓ𝑘 − 2

has active (perhaps nonprobabilistic strict contractions) self-
mappings 𝑇𝑗 : 𝑋 → 𝑋 for 𝑗( ̸= 𝑖) ∈ 𝑞, then 𝑛𝑘+ℓ

𝑘

∈ 𝑍𝑆 is
defined such that 𝑇𝑖 : 𝑋 → 𝑋 is active on [𝑛𝑘+ℓ

𝑘
−1, 𝑛𝑘+ℓ

𝑘

];
that is, 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛 = 𝑇𝑖𝑥𝑛 for 𝑛 ∈ {𝑛𝑘+ℓ
𝑘
−1, 𝑛𝑘+ℓ

𝑘

} with 𝑛𝑘+ℓ
𝑘

being defined with ℓ𝑘 large enough such that

𝑘
𝑛
𝑘+ℓ
𝑘

−𝑛
𝑘+ℓ
𝑘
−1

𝑖
<

𝑞

∏

𝑗( ̸=𝑖)=1

[𝑘
∑
𝑘+ℓ
𝑘
−1

ℓ=𝑘
𝛾
𝑗
(𝑛
ℓ
,𝑛
ℓ+1

)

𝑗
] (30)

which lead to

lim
𝑘→∞

𝑘−1

∑

𝑗=0

𝛾𝑖 (𝑛𝑗, 𝑛𝑗+1) = lim
𝑘→∞

𝑞

∑

ℓ( ̸=𝑖)=1

∞

∑

𝑘=0

𝛾ℓ (𝑛𝑘, 𝑛𝑘+1)

= +∞

(31)

so that we get again (29) and a similar conclusion. Property
(iii) is obvious from the fact that (𝑋, F) is complete and {𝑥𝑛}

is Cauchy under switching laws fulfilling either Property (i)
or Property (ii).

The following result is a direct consequence of
Theorem 14 since mappings of 𝐶𝜌𝑘-class are also of 𝐶𝑘-
class.

Corollary 15. Let (𝑋, F) be a PM-space and let 𝑇𝑖 : 𝑋 → 𝑋

be self-mappings of 𝐶𝜌𝑘-class for some constants 𝜌𝑖(≤ 𝑘𝑖), 𝑘𝑖 ∈
R+, for 𝑖 ∈ 𝑞 = {1, 2, . . . , 𝑞}. Then, Theorem 14 still holds.

Theorem 16. Let (𝑋, F, Δ) be a complete Menger space with
Δ(𝑎, 𝑏) = min(𝑎, 𝑏) and let 𝑇𝑗 : 𝑋 → 𝑋 be self-mappings
of 𝐶𝑘-class for some constants 𝑘𝑗 ∈ R+ for all 𝑗 ∈ 𝑞 =

{1, 2, . . . , 𝑞} with at least 𝑇𝑖 : 𝑋 → 𝑋 being a probabilistic
strict contraction for some 𝑖 ∈ 𝑞. Let 𝜎 : Z0+ × 𝑋 → 𝑞

be a switching law and let {𝑥𝑛} ⊂ 𝑋 be a sequence generated
as 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, 𝑛 ∈ Z0+, for any given 𝑥0 ∈ 𝑋 such that
their associate switching map 𝑇 : Z0+ × 𝑋 → 𝑋 is defined by
𝑇𝑥𝑛 = 𝑇𝜎

𝑛

𝑥𝑛 = 𝑇𝑖𝑥𝑛 for 𝑗 ∈ 𝑞 and all 𝑛 ≥ 𝑛
∗ and some finite

𝑛
∗

∈ Z0+. Then, {𝑥𝑛} → 𝑧𝑖 which is the unique fixed point of
the strict contraction 𝑇𝑖 : 𝑋 → 𝑋.

Proof. Since 𝑇𝑖 : 𝑋 → 𝑋 is a strict probabilistic contraction,
lim𝑛→∞𝐹𝑥

𝑛+𝑚
,𝑥
𝑛

(𝑡) = 𝐹𝑇
𝑖
𝑥
𝑛
∗ ,𝑥
𝑛
∗
(+∞) = 1, ∀𝑡 ∈ R+, ∀𝑚 ∈ Z+,

from (29) since 𝑇𝑥𝑛 = 𝑇𝜎
𝑛

𝑥𝑛 = 𝑇𝑖𝑥𝑛 for 𝑛 ≥ 𝑛
∗. Then {𝑥𝑛} is

probabilistically convergent to 𝑧𝑖 ∈ 𝑋which is a fixed point of
the probabilistic strict contraction 𝑇𝑖 : 𝑋 → 𝑋 as proved by
contradiction. Assume that this is false so that 𝑧𝑖 ̸= 𝑇𝑖𝑧𝑖 and
then since {𝑥𝑛} is Cauchy, {𝑥𝑛} → 𝑧𝑖, 𝐹 : R → R0+ which
is nondecreasing and left-continuous, and 𝑇𝑖 : 𝑋 → 𝑋 is a
probabilistic strict contraction, one gets, for any given 𝑡 ∈ R+

and 𝜆 ∈ (0, 1) and all 𝑛 (∈ Z0+) ≥ 𝑁 and some𝑁 = 𝑁(𝑡, 𝜆) ∈

Z0+,
1 − 𝜆0 (𝑡) ≥ 𝐹𝑧

𝑖
,𝑇
𝑖
𝑧
𝑖

(𝑡)

≥ Δ(Δ(𝐹𝑧
𝑖
,𝑥
𝑛

(
𝑡

4
) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑥
𝑛

(
𝑡

4
)) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑇
𝑖
𝑧
𝑖

(
𝑡

2
))

≥ Δ(Δ(𝐹𝑧
𝑖
,𝑥
𝑛

(
𝑡

4
) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑥
𝑛

(
𝑡

4
)) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑇𝑧
𝑖

(
𝑡

4
))

≥ Δ(Δ(𝐹𝑧
𝑖
,𝑥
𝑛

(
𝑡

4
) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑥
𝑛

(
𝑡

4
)) , 𝐹𝑥

𝑛
,𝑧
𝑖

(𝑘
−1

𝑖

𝑡

4
))

≥ Δ(Δ(𝐹𝑧
𝑖
,𝑥
𝑛

(
𝑡

4
) , 𝐹𝑇

𝑖
𝑥
𝑛
,𝑥
𝑛

(
𝑡

4
)) , 𝐹𝑥

𝑛
,𝑧
𝑖

(
𝑡

4
))

> 1 − 𝜆

(32)

for some 𝜆0 = 𝜆0(𝑡) > 0, ∀𝑡 ∈ R+, which implies that 𝜆 ∈

(𝜆0, 1) but since 𝜆 ∈ (0, 1) can be chosen arbitrarily, it suffices
to take 𝜆 ∈ (0, 𝜆0] to get a contradiction. Then, 𝑧𝑖 = 𝑇𝑧𝑖

which is proved to be unique again by contradiction. Assume
that this is not the case so that there exist 𝑧𝑖1 = 𝑇

𝑛
𝑧𝑖1 and

𝑧𝑖2 = 𝑇
𝑛
𝑧𝑖2 ̸= 𝑧𝑖1, ∀𝑛 ∈ Z0+, which are fixed points of the

probabilistic strict contraction 𝑇𝑖 : 𝑋 → 𝑋. Thus, one gets
the contradiction
1 > 𝐹𝑧

𝑖1
,𝑧
𝑖2

(0
+
) = 𝐹𝑧

𝑖1
,𝑧
𝑖2

(𝑡) = 𝐹𝑇𝑛𝑧
𝑖1
,𝑇𝑛𝑧
𝑖2

(𝑡)

≥ 𝐹𝑧
𝑖1
,𝑧
𝑖2

(𝑘
−𝑛

𝑖
𝑡) = 𝐹𝑧

𝑖1
,𝑧
𝑖2

(+∞) = 1,

∀𝑡 ∈ R+, ∀𝑛 ∈ Z0+,

(33)
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so that 𝑧𝑖2 = 𝑧𝑖1 = 𝑧𝑖 = 𝑇𝑖𝑧𝑖. Since 𝑇𝑥𝑛 = 𝑇𝜎
𝑛

𝑥𝑛 = 𝑇𝑖𝑥𝑛 for
𝑛 ≥ 𝑛

∗ for some finite 𝑛∗ ∈ Z0+, we can write 𝑥𝑛∗ = 𝑇𝜎
𝑛
∗
−1

⋅ ⋅ ⋅ ⋅ ⋅

𝑇𝜎
0

𝑥0 and 𝑥𝑛 = 𝑇
𝑛−𝑛
∗

𝑖
𝑥𝑛∗ for 𝑛(∈ Z0+) ≥ 𝑛

∗ to get that {𝑥𝑛}

generated by 𝑥𝑛+1 = 𝑇𝜎
𝑛

𝑥𝑛, ∀𝑛 ∈ Z0+, for any given arbitrary
𝑥0 ∈ 𝑋 is probabilistically convergent to 𝑧𝑖 = 𝑇𝑖𝑧𝑖.

The above result is a direct consequence of Theorem 14
which is also valid if 𝑇𝑖 : 𝑋 → 𝑋 is of 𝐶𝜌𝑘-class.
However, note that, under the alternate switching laws
in Theorem 14(ii), the limit points of sequences generated
through the switchingmaps𝑇 : Z0+×𝑋 → 𝑋 are, in general,
dependent on the initial points of the sequences and on the
switching law.

The following result generalizes Theorem 16 without
assuming any special contractive condition on at least one of
𝑇𝑖 : 𝑋 → 𝑋, ∀𝑖 ∈ 𝑞, with the only condition on the operators
being that all of them are either of 𝐶𝜌𝑘-class or 𝐶𝑘-class.

Theorem 17. Let (𝑋, F) be a PM-space, let 𝑇𝑖 : 𝑋 → 𝑋 be
self-mappings of𝐶𝜌𝑘-class for some constants 𝜌𝑖(≤ 𝑘𝑖), 𝑘𝑖 ∈ R+,
∀𝑖 ∈ 𝑞, and let 𝑇 : Z0+ × 𝑋 → 𝑋 be a switching mapping
associated with a switching law 𝜎 : Z0+ × 𝑋 → 𝑞 which
generates a sequence {𝑥𝑛} ⊂ 𝑋 as 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, ∀𝑛 ∈ Z0+,
for some given 𝑥0 ∈ 𝑋. Let 𝑍𝑆 ⊆ Z0+ be the set of switching
points, that is, for any given 𝑛𝑘 ∈ 𝑍𝑆, ∀𝑘 ∈ Z+, provided that
𝑛𝑘−1 ∈ 𝑍𝑆, if and only if𝜎𝑛

𝑘

̸= 𝜎𝑛
𝑘
−1 = 𝜎𝑛

𝑘−1

.Then, the following
properties hold:

(i)

𝐹𝑇𝑥
0
,𝑥
0

(𝜌
𝑛
𝑡) ≥ 𝐹𝑥

𝑛+1
,𝑥
𝑛

(𝑡) ≥ 𝐹𝑇𝑥
0
,𝑥
0

(𝛾
𝑛
𝑡) ; ∀𝑡 ∈ R+, (34)

for all 𝑛 ∈ [𝑛𝑘, 𝑛𝑘 + ℓ) ∩ Z0+, ℓ(∈ Z0+) ≤ 𝑛𝑘+1 − 𝑛𝑘,
𝑛𝑘 ∈ 𝑍𝑆, ∀𝑘 ∈ Z0+, where

𝛾
𝑛
=

𝑞

∏

𝑖=1

[𝑘
−∑
𝑘−1

𝑗=0
𝛾
𝑖
(𝑛
𝑗
,𝑛
𝑗+1

)−𝛾
𝑖
(𝑛
𝑘
,𝑛
𝑘
+ℓ)

𝑖
] , (35)

𝜌
𝑛
=

𝑞

∏

𝑖=1

[𝜌
−∑
𝑘−1

𝑗=0
𝛾
𝑖
(𝑛
𝑗
,𝑛
𝑗+1

)−𝛾
𝑖
(𝑛
𝑘
,𝑛
𝑘
+ℓ)

𝑖
] , (36)

where 𝛾𝑖(𝑛𝑗, 𝑛𝑗 + ℓ) ∈ Z0+ is the number of times that
the 𝑖th self-mapping 𝑇𝑖 : 𝑋 → 𝑋 for each 𝑖 ∈ 𝑞 is
“active” in the interval [𝑛𝑗, 𝑛𝑗 + ℓ) for some 𝑖 ∈ 𝑞.

(ii) If 𝐹 : R → [0, 1] is upper-semicontinuous at 𝜌𝑡 for
some given 𝑡 ∈ R+, where 𝜌 = lim sup

𝑛→∞
𝜌
𝑛
, then

{𝑥𝑛} has the following property:

lim sup
𝑛→∞

𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) ≤ 𝐹𝑇𝑥
0
,𝑥
0

(𝜌𝑡) . (37)

If 𝐹 : R → [0, 1] is lower-semicontinuous at 𝜌𝑡 for
some given 𝑡 ∈ R+, where 𝛾 = lim inf𝑛→∞𝛾

𝑛
, then

{𝑥𝑛} has the following property:

lim inf
𝑛→∞

𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) ≥ 𝐹𝑇𝑥
0
,𝑥
0

(𝛾𝑡) . (38)

(iii) If 𝑇𝑖 : 𝑋 → 𝑋 are of 𝐶𝑘-class for some constants 𝑘𝑖 ∈
R+, ∀𝑖 ∈ 𝑞, then {𝑥𝑛} has the following property:

𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) ≥ 𝐹𝑇𝑥
0
,𝑥
0

(𝛾
𝑛
𝑡) ; ∀𝑡 ∈ R+. (39)

And all 𝑛 ∈ [𝑛𝑘, 𝑛𝑘 + ℓ) ∩ Z0+, ℓ(∈ Z0+) ≤ 𝑛𝑘+1 −

𝑛𝑘, 𝑛𝑘 ∈ 𝑍𝑆, ∀𝑘 ∈ Z0+. If 𝐹 : R → [0, 1] is lower-
semicontinuous at 𝜌𝑡 for a given 𝑡 ∈ R+, where 𝛾 =

lim inf𝑛→∞𝛾
𝑛
, then (38) holds.

Proof. Property (i) follows since (34), subject to (35)-(36), is
obtained directly from (25)-(26). If 𝐹 : R → [0, 1] is upper-
semicontinuous at 𝜌𝑡, then

lim sup
𝑛→∞

𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) ≤ lim sup
𝜌
𝑛
→𝜌

𝐹𝑇𝑥
0
,𝑥
0

(𝜌
𝑛
𝑡)

≤ 𝐹𝑇𝑥
0
,𝑥
0

((lim sup
𝜌
𝑛
→𝜌

𝜌
𝑛
) 𝑡)

= 𝐹𝑇𝑥
0
,𝑥
0

(𝜌𝑡) .

(40)

In the same way, if 𝐹 : R → [0, 1] is lower-semicontinuous
at 𝛾𝑡, we get lim inf𝑛→∞𝐹𝑥

𝑛+1
,𝑥
𝑛

(𝑡) ≥ 𝐹𝑇𝑥
0
,𝑥
0

(𝛾𝑡) =

𝐹𝑇𝑥
0
,𝑥
0

((lim inf𝛾
𝑛
→𝛾𝛾𝑛)𝑡). This proves Property (ii). Property

(iii) is a restriction of Properties (i)-(ii) for the case when
𝑇𝑖 : 𝑋 → 𝑋 are of 𝐶𝑘-class for some constants 𝑘𝑖 ∈ R+,
∀𝑖 ∈ 𝑞.

Note that although𝐹 : R → [0, 1] is assumed to be every-
where left-continuous in the probabilistic metric framework,
this does not mean that it is everywhere lower- and/or upper-
semicontinuous. Therefore, some extra related conditions
are imposed in Theorem 17(ii)-(iii) allowing obtaining limit
upper- and lower-bounds of 𝐹𝑥

𝑛+1
,𝑥
𝑛

(𝑡) as 𝑛 → ∞ via the
limit superior and the limit inferior.

The following two results related to bounded and
unbounded sequences follow fromTheorem 17.

Corollary 18. Let (𝑋, F) be a PM-space, let 𝑇𝑖 : 𝑋 → 𝑋 be
self-mappings of 𝐶𝑘-class for some constants 𝑘𝑖 ∈ R+, ∀𝑖 ∈ 𝑞,
and let 𝑇 : Z0+ × 𝑋 → 𝑋 be a switching mapping associated
with a switching law 𝜎 : Z0+ × 𝑋 → 𝑞 which generates a
sequence {𝑥𝑛} ⊂ 𝑋 as 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, ∀𝑛 ∈ Z0+, ∀𝑛 ∈ Z0+, for
some given 𝑥0 ∈ 𝑋 with switching points in the switching set
𝑍𝑆. Assume also that 𝐹 : R → [0, 1] is everywhere lower-
semicontinuous with 𝛾 = lim inf𝑛→∞𝛾

𝑛
> 0 for such a

sequence {𝑥𝑛}. Then, the following properties hold:

(i) {𝑥𝑛} is probabilistically bounded.

(ii) If 𝐹𝑥
0
,𝑇𝑥0

(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑇𝑥)), ∀𝑥0 ∈ 𝑋, ∀𝑡 ∈ R,
then ∃lim𝑛→∞𝐻(𝑡 − 𝑑(𝑇

𝑛+1
𝑥0, 𝑇

𝑛
𝑥0)) = 1 if 𝑡 ∈

(𝑑(𝑥0, 𝑇𝑥0)/𝛾, +∞).

Proof. From (39), one concludes (38); that is,
lim inf𝑛→∞𝐹𝑥

𝑛+1
,𝑥
𝑛

(𝑡) ≥ 𝐹𝑇𝑥
0
,𝑥
0

(𝛾𝑡), ∀𝑡 ∈ R+. Since 𝛾 > 0,
then sup

𝑡∈R
0+

𝐹𝑇𝑥
0
,𝑥
0

(𝛾𝑡) = 1 and {𝑥𝑛} is probabilistically
bounded since a nonempty set 𝐴 = 𝐴({𝑥𝑛

𝑘

}) ⊂ 𝑋 which
contains all the points of some subsequence {𝑥𝑛

𝑘

} ⊆ {𝑥𝑛} has
the property that 𝐷𝐴 ∈ 𝐷+. Property (i) has been proved.
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On the other hand, it follows from (25) and Property (i) that
if 𝐹𝑥

0
,𝑇𝑥
0

(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑇𝑥)), ∀𝑥0 ∈ 𝑋, ∀𝑡 ∈ R, then

lim
𝑛→∞

𝐻(𝑡 − 𝑑 (𝑇
𝑛+1

𝑥0, 𝑇
𝑛
𝑥0))

≥ 𝐻(𝛾𝑡 − 𝑑 (𝑥0, 𝑇𝑥0)) = 1;

𝑡 ∈ (
𝑑 (𝑥0, 𝑇𝑥0)

𝛾
, +∞)

(41)

and Property (ii) is proved.

Since mappings of 𝐶𝑘-class are also of 𝐶𝜌𝑘-class, then
Corollary 18 also holds if some of 𝑇𝑖 : 𝑋 → 𝑋 are self-
mappings of 𝐶𝜌𝑘-class for some constants 𝜌𝑖(≤ 𝑘𝑖), 𝑘𝑖 ∈ R+,
∀𝑖 ∈ 𝑞.

Corollary 19. Let (𝑋, F) be a PM-space, let 𝑇𝑖 : 𝑋 → 𝑋 be
self-mappings of 𝐶𝑘-class for some constants 𝑘𝑖 ∈ R+, ∀𝑖 ∈ 𝑞,
and let 𝑇 : Z0+ × 𝑋 → 𝑋 be a switching mapping associated
with a switching law 𝜎 : Z0+ × 𝑋 → 𝑞 which generates a
sequence {𝑥𝑛} ⊂ 𝑋 as 𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛, ∀𝑛 ∈ Z0+, ∀𝑛 ∈ Z0+, for
some given 𝑥0 ∈ 𝑋 with switching points in the switching set
𝑍𝑆. Assume also that 𝐹 : R → [0, 1] is everywhere upper-
semicontinuous with 𝜌 = lim sup

𝑛→∞
𝜌
𝑛

= 0 for such a
sequence {𝑥𝑛}. Then, the following properties hold:

(i) {𝑥𝑛} is probabilistically unbounded.

(ii) If 𝐹𝑥
0
,𝑇𝑥
0

(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑇𝑥)), ∀𝑥0 ∈ 𝑋, ∀𝑡 ∈ R, then
∃lim𝑡→+∞lim𝑛→∞𝐻(𝑡 − 𝑑(𝑇

𝑛+1
𝑥0, 𝑇

𝑛
𝑥0)) = 1.

Proof. From (39), one concludes (38); that is,
lim sup

𝑛→∞
𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) ≤ 𝐹𝑇𝑥
0
,𝑥
0

(𝜌𝑡) = 𝐹𝑇𝑥
0
,𝑥
0

(0) = 0,
∀𝑡 ∈ R+. Consider a nonempty set 𝐴 = 𝐴({𝑥𝑛

𝑘

}) ⊂ 𝑋 which
contains all the points of some subsequence {𝑥𝑛

𝑘

} ⊆ {𝑥𝑛}.
It is obvious that 𝐷𝐴 ∉ 𝐷+. Then {𝑥𝑛} is probabilistically
unbounded since it has a probabilistically unbounded
subsequence. Property (i) has been proved. On the
other hand, it follows from (25) and Property (i) that if
𝐹𝑥
0
,𝑇𝑥
0

(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑇𝑥)), ∀𝑥0 ∈ 𝑋, ∀𝑡 ∈ R, then

lim
𝑡→+∞

lim
𝑛→∞

𝐻(𝑡 − 𝑑 (𝑇
𝑛+1

𝑥0, 𝑇
𝑛
𝑥0))

≤ lim
𝑡→+∞

𝐻(𝜌𝑡 − 𝑑 (𝑥0, 𝑇𝑥0)) = 𝐻 (−𝑑 (𝑥0, 𝑇𝑥0))

= 𝐻 (0) = 0

(42)

and Property (ii) is proved.

Remarks. (1) Note that Corollary 18 is fulfilled, in particular,
by switched sequences with switching set of finite cardinal
with a terminal point of switching to some nonexpansive 𝐶𝜌𝑘

(or𝐶𝑘) self-mapping𝑇𝑖 : 𝑋 → 𝑋; that is, 𝑘𝑖 ∈ (0, 1] for some
𝑖 ∈ 𝑞. Note also that Corollary 18 is not fulfilled for terminal
switching to an expansive self-mapping.

(2) Note that Corollary 19 for 𝐶𝜌𝑘 self-mappings can also
be applied to self-mappings 𝑇𝑖 : 𝑋 → 𝑋, 𝑖 ∈ 𝑞, which are

only subject to the upper-bounding rule of the probability
density function (say self-mappings “of 𝐶𝜌-class”); that is,

𝐹𝑇
𝑖
𝑥
0
,𝑥
0

(𝜌
−1

𝑖
𝑡) ≥ 𝐹𝑇

𝑖
𝑥
0
,𝑇2
𝑖
𝑥
0

(𝑡) ; ∀𝑡 ∈ R+, (43)

while leading to a similar conclusion about probabilistic
unboundedness. Note that the result applies, in particular, to
switched sequences with switching set of finite cardinal with
a terminal point of switching to some expansive 𝐶𝜌𝑘 (or 𝐶𝜌)
self-mapping 𝑇𝑖 : 𝑋 → 𝑋 for some 𝑖 ∈ 𝑞; that is, 𝜌𝑖 > 1 for
some 𝑖 ∈ 𝑞.

(3) Note that Corollary 18 is also fulfilled by switched
sequences with switching set of infinite cardinal if 𝛾 > 0.
Corollary 18 excludes switching laws 𝜎 : Z0+ × 𝑋 → 𝑞 being
built under some expansive self-mapping 𝑇𝑖 : 𝑋 → 𝑋 for
some 𝑖 ∈ 𝑞 being used so infinitely often such that 𝛾 = 0 with
either finite terminal switching point or not. This includes,
in particular, the case when the switched map is built with a
finite terminal switching point to an expansive self-mapping.
Then, the probabilistic unboundedness result of Corollary 19
applies.

Note that an expansive mapping can give a fixed point
which unbounded sequences do not converge to as the next
example visualizes.

Example 20. Assume that (𝑋, F) is a PM-space with 0 ∈ 𝑋

and consider a self-map 𝑇 : 𝑋 → 𝑋 such that 𝑇0 = 0. Thus,
𝑧 = 0 is trivially a fixed point of 𝑇 : 𝑋 → 𝑋. Assume the
following cases:

(a) 𝐹0,𝑥(𝑡) ≥ 𝐹0,𝑇𝑥(𝜌𝑡), ∀𝑡 ∈ R+, and all 𝑥( ̸= 0) ∈ 𝑋

for some real constant 𝜌 > 1 so that 𝑇 : 𝑋 → 𝑋

is expansive. Then, 𝐹0,𝑇𝑛𝑥(𝑡) ≤ 𝐹0,𝑥(𝜌
−𝑛
𝑡), ∀𝑡 ∈ R+,

∀𝑛 ∈ Z0+, so that lim𝑛→∞𝐹0,𝑇𝑛𝑥(𝑡) = 0, ∀𝑡 ∈ R+, ∀𝑛 ∈

Z0+, and the sequence {𝑇
𝑛
𝑥} is unbounded and does

not converge in probability to the fixed point 𝑧 = 0.
There is an analogy with the expansive deterministic
counterpart examples. For instance, consider a scalar
difference equation 𝑥𝑛+1 = 𝜌𝑥𝑛, ∀𝑛 ∈ Z0+, with
|𝜌| > 1 and 𝑥0 ̸= 0. Then, 𝑧 = 0 is a fixed point of the
self-mapping on R defining the sequence trajectory
solution which is clearly expansive for the metric
space (R, 𝑑) with 𝑑 being any metric, for instance, the
Euclideannorm.However, |𝑥𝑛| → +∞ as 𝑛 → ∞ so
that the unique fixed point is an unstable equilibrium
point.

(b) 𝐹0,𝑇𝑥(𝑡) ≥ 𝐹0,𝑥(𝑘
−1
𝑡), ∀𝑡 ∈ R+, and all 𝑥( ̸= 0) ∈ 𝑋 for

some real constant 𝑘 ∈ (0, 1] so that 𝑇 : 𝑋 → 𝑋 is
nonexpansive. Then, if furthermore 𝑘 ∈ (0, 1), then
𝑇 : 𝑋 → 𝑋 is strictly contractive and 𝐹0,𝑇𝑛𝑥(𝑡) ≥

𝐹0,𝑥(𝑘
−𝑛
𝑡), ∀𝑛 ∈ Z0+, so that lim𝑛→∞𝐹0,𝑇𝑛𝑥(𝑡) = 1

and {𝑇
𝑛
𝑥} → 𝑧 = 0, which is a fixed point, with

probability one, is also Cauchy and probabilistically
bounded. The deterministic counterpart can be the
example 𝑥𝑛+1 = 𝑘𝑥𝑛 with 𝑥0 ̸= 0, ∀𝑛 ∈ Z0+,
with |𝑘| < 1 in a metric space (R, 𝑑), where
𝑧 = 0 is the unique fixed point (and a globally
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asymptotically stable equilibrium point) of the self-
mapping defining the sequence trajectory solution for
any initial condition.

(c) In the above case, assuming 𝑘 = 1, then, for any𝑥 ∈ 𝑋,
𝐹𝑇𝑛+1𝑥,𝑇𝑛𝑥(𝑡) ≥ 𝐹𝑥,𝑇𝑥(𝑡), ∀𝑡 ∈ R+, ∀𝑛 ∈ Z0+. If 𝑇𝑥 =

𝑥, then 𝐹𝑇𝑛+1𝑥,𝑇𝑛𝑥(𝑡) = 1, 𝑇𝑛
𝑥 = 𝑥, ∀𝑛 ∈ Z0+; the

mapping 𝑇 : 𝑋 → 𝑋 defining the solution is not
expansive but not contractive and any point is a fixed
point. A deterministic counterpart can be visualized
with the example 𝑥𝑛+1 = 𝑥𝑛, ∀𝑛 ∈ Z0+, for any 𝑥0 ∈ 𝑋

which has infinitely many fixed points which are also
(nonasymptotically) stable equilibrium points.

(d) The above discussion can be directly extended to the
case of switching maps built under switching laws
with finite terminal switching point to an expansive
primary self-mapping or for appropriate switching
laws with no terminal switching point in the presence
of at least one expansive primary self-mapping.

A worked numerical example follows.

Example 21. This example aims at numerically illustrating
the main results stated and proved in Section 3 through
Theorem 17 (as a generalization of Theorem 16). For this
purpose, consider

𝐹𝑥,𝑦 (𝑡) = 𝐻 (𝑡 − 𝑑 (𝑥, 𝑦)) =
{

{

{

0, 𝑡 ≤ 𝑑 (𝑥, 𝑦) ,

1, 𝑡 > 𝑑 (𝑥, 𝑦) ,

(44)

where 𝑑(𝑥, 𝑦) is the distance induced by the 2-norm,
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2. Consider also the switched self-mapping
described by the discrete dynamical system𝑥𝑛+1 = 𝑇𝜎

𝑛

𝑥𝑛 with
𝑇𝜎
𝑛

= 𝐴𝜎
𝑛

+ 𝐹𝜎
𝑛

, 𝐴𝜎
𝑛

∈ {𝐴1, 𝐴2, 𝐴3}, and 𝐹𝜎
𝑛

∈ {𝐹1, 𝐹2, 𝐹3}.
This way, 𝐴 matrices can be regarded as dynamics matrices
while 𝐹 matrices can be understood as perturbation ones.
The dynamics matrices are selected in such a way that in
conjunction with the perturbation ones the switched map
exhibits different characters (contractive, nonexpansive, and
expansive) for each 𝑖 = 1, 2, 3 so that the effect of switching
can be positively noticed. Thus, the dynamics matrices are
given by

𝐴1 = (

0.1 0.3 0.2

0.1 0.2 0.2

0.1 0.2 0.1

) ,

𝐴2 = (

0.2 0.3 0.4

0.425 0.2 0.3

0.1 0.3 0.1

) ,

𝐴3 = (

1.2 0.3 1.4

0.5 0.2 1.3

0.1 0.3 1.1

) ,

(45)
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Figure 1: Periodic switching map for the first experiment.

whose eigenvalues are, respectively, given by

spec (𝐴1) = {0.741, −0.17 + 0.153𝑗, −0.17 − 0.153𝑗} ,

spec (𝐴2)

= {0.7722, −0.1361 + 0.1191𝑗, −0.1361 − 0.1191𝑗} ,

spec (𝐴3) = {1.8691, 0.7381, −0.1073} .

(46)

The constants characterizing each one of these matrices,
interpreted as operators, are calculated from (2) 𝐹𝑇𝑥,𝑇𝑦(𝑡) ≥

𝐹𝑥,𝑦(𝑘
−1
𝑡), which in this particular case takes the form

𝐻(𝑡 − 𝑑 (𝐴 𝑖𝑥, 𝐴 𝑖𝑦)) ≥ 𝐻(𝑘
−1
𝑡 − 𝑑 (𝑥, 𝑦))

= 𝐻(
𝑡 − 𝑘𝑑 (𝑥, 𝑦)

𝑘
)

(47)

for each one of the matrices, 𝑖 = 1, 2, 3. The latter condition
is satisfied if 𝑑(𝐴 𝑖𝑥, 𝐴 𝑖𝑦) ≤ 𝑘𝑖𝑑(𝑥, 𝑦) which results in the
considered metric in ‖𝐴 𝑖𝑥 − 𝐴 𝑖𝑦‖2 ≤ 𝑘𝑖‖𝑥 − 𝑦‖2. Therefore,
for the first matrix, we have

𝐴1𝑥 − 𝐴1𝑦
2 ≤

𝐴1

2
𝑥 − 𝑦

2 = 0.534
𝑥 − 𝑦

2

< 0.54
𝑥 − 𝑦

2

(48)

so that 𝑘1 = 0.54. The 2-norms of the remaining matrices are
‖𝐴2‖2 = 0.8 and ‖𝐴3‖2 = 2.528. As it can be seen, 𝐴1 and
𝐴2 are contractive operators while𝐴3 is expansive. However,
the perturbation matrices 𝐹 will shape the behavior of the
operator 𝑇𝜎

𝑛

= 𝐴𝜎
𝑛

+ 𝐹𝜎
𝑛

in a different way. To this end, fix
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Figure 2: Evolution of the state variables for the first experiment.
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Figure 3: Evolution of the norm of the state for the first experiment.
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Figure 4: Evolution of 𝐹
𝑥
𝑛+1

,𝑥
𝑛

(𝑡) as 𝑛 increases for the first
experiment.
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Figure 5: Switching map for the second experiment.
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Figure 6: Evolution of the state variables in the second experiment.

𝜀 = 0.2 and set the perturbation matrices in such way that
‖𝐹𝑖‖2 = √𝜆max(𝐹

𝑇𝐹) ≤ 𝜀 for 𝑖 = 1, 2, 3. Thus, let them be

𝐹1 = (

0.01 0.02 −0.01

0.02 −0.08 −0.01

−0.01 0.18 −0.01

) ,

𝐹2 = (

−0.01 0.18 −0.01

0.01 0.01 0.02

0.02 −0.08 −0.01

) ,

𝐹3 = (

0.02 −0.08 −0.01

−0.01 0.18 −0.01

0.01 0.02 −0.01

) .

(49)
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Figure 7: Evolution of the norm of the state in the second
experiment.
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Figure 8: Evolution of 𝐹
𝑥
𝑛+1

,𝑥
𝑛

(𝑡) as 𝑛 increases for the second
experiment.

The perturbationmatrices are generated by swapping a file for
each subsystem. Therefore, ‖𝐹1‖2 = ‖𝐹2‖2 = ‖𝐹3‖2 = 0.1987

near the upper bounding value of 𝜀 = 0.2. Under these
circumstances, the worst-case operator 𝐴1 + 𝜀𝐼 is still con-
tractive, 𝐴2 + 𝜀𝐼 is nearly nonexpansive and noncontractive,
and𝐴3 − 𝜀𝐼 is always expansive providing different dynamics
to each of the subsystems. With this setup, we will perform
three simulation experiments to illustrate the diversity of
dynamical behaviours that can be achieved by modifying the
switching law.The initial condition in all experiments is 𝑥0 =

[1 −1 2]
𝑇.

Experiment 1. The switching law never stops and the first
subsystem prevails over the other two. The switching law is
selected to be periodic, with a period of 8 samples according
to the pattern displayed in Figure 1. This means that in one

0 5 10 15 20 25 30 35 40 45 50

1

2

3

Samples

Sw
itc

hi
ng

 p
at

te
rn

Figure 9: Switching patterns for the third experiment.
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Figure 10: Evolution of the state variables for the third experiment.

period we have 5 = 𝛾1 > 𝛾2 + 𝛾3 = 2 + 1; that is, the time
interval within which the first subsystem is active is larger
than the sum of the intervals corresponding to the other
subsystems. Thus, Theorem 17 ensures that the sequence of
iterates is probabilistically bounded and converges to the
fixed point𝑥 = 0 as Figure 2 displays for the state components
and Figure 3 for the norm of the state. Moreover, Figure 4
shows how𝐹𝑥

𝑛+1
,𝑥
𝑛
(𝑡) converges to theHeaviside function𝐻(𝑡)

as the iteration variable 𝑛 increases.

Experiment 2. The switching map converges in finite time to
the second subsystem, which is nearly to be nonexpansive
and noncontractive. Thus, the switching map is depicted in
Figure 5. Figures 6 and 7 show, respectively, the evolution
of the state variables and their norm as 𝑛 increases. As
Theorem 17 states, the sequence of iterates is bounded and
converges to the fixed point because, due to numerical round-
off errors, the operator 𝑇2 is slightly contractive. However,
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Figure 11: Norm of the state for the third experiment.
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Figure 12: Evolution of 𝐹
𝑥
𝑛+1

,𝑥
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(𝑡) as 𝑛 increases for the third
experiment.

it converges at a lower rate than in Experiment 1 since
the operator 𝑇2 is very nearly to be noncontractive and
nonexpansive. In this case, 𝐹𝑥

𝑛+1
,𝑥
𝑛

(𝑡) also converges to the
Heaviside function𝐻(𝑡) as the iteration variable 𝑛 increases,
as it can be noticed in Figure 8.

Experiment 3. The switching law never stops and the third
subsystem prevails over the other two. A periodic switching
signal is considered again with 𝛾3 > 𝛾1 + 𝛾2 in a period.
Figure 9 gives the switching law. In addition, Figures 10 and
11, respectively, display the evolution of the state variables and
their norm as 𝑛 increases. As we could have expected from
Theorem 17, they are not bounded and diverge asymptotically
since the expansive operator dominates the period of the
switching pattern. Contrarily to the previous experiments,
𝐹𝑥
𝑛+1

,𝑥
𝑛

(𝑡) converges now to the identically null function,

since, as 𝑛 increases, the Heaviside function𝐻(𝑡) is displaced
to the right, as it is represented in Figure 12.
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