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Conventional methods for fault diagnosis typically require a substantial amount of training data. However, for equipment with
high reliability, it is arduous to form a large-scale well-annotated dataset due to the expense of data acquisition and costly
annotation. Besides, the generated data have a large number of redundant features which degraded the performance of models. To
overcome this, we proposed a feature transfer scenario that transfers knowledge from similar fields to enhance the accuracy of fault
diagnosis with small sample. To reduces the redundant information, data were filtered according to manifold consistency. ,en,
features were extracted based on CNN and feature transfer was conducted. For adequate fitness, the joint adaptation of conditional
distribution andmarginal distribution was used between the two domains. Minimum structural risk andMMDof adaptation were
two indicators weighted for training the model. To test the efficiency of the model, we built an airborne fuel pump testbed, and
contributed a new dataset that contained 15 categories of fault data, which serves as the small sample dataset in this research.,en
the proposed model was applied in our experimental data. As a result, the fault diagnosis rate increases by 28.6% through our
proposed model, which is more precise than other classical methods. ,e results of feature visualization further demonstrate that
the features are more distinguished through the proposed method. All code and data are accessible on my GitHub.

1. Introduction

In recent years, data-driven methods have been widely
applied in the fields of prognostics and health management,
which have become a hot method in building complex di-
agnosis models [1–3]. Most data-driven methods are based
on a large number of samples, fromwhich the corresponding
relationship between input and output is extracted to es-
tablish a model. However, for some equipment with high
reliability and long lifespan, it is arduous to obtain sufficient
fault data. Along with that, the generated data have a large
number of redundant features which degraded the perfor-
mance of models. A model trained by small samples has
limited generalization ability, which will lead to low accuracy
when applied to other fields [4].

Some popular methods have been proposed to solve the
problem of small sample. To our best knowledge, these
methods are of three categories. ,e first is based on
resample, which resampling small samples to generate more
data, such as Random Under-sampling [5] and Synthetic

Minority Over-sampling [6]. ,e second is based on Gen-
erative Adversarial Net [7, 8], whose principle is to make the
generated network sample as realistic as possible by an-
tagonizing generative network and discriminant network, so
as to enlarge small samples. ,e third is based on few-shot
learning [9, 10], which decompose the small samples into
different meta tasks to learn the generalization ability of the
model. ,erefore, few-shot learning has adaptive capacity to
an unseen dataset. Although these methods achieved success
to some extent, their sources of knowledge are only from the
small samples. From the perspective of information theory,
these methods do not change the nature of a small sample
with little knowledge.

Transfer learning is a new machine learning method that
uses existing knowledge to solve problems in different but
related fields [11]. Transfer learning has been applied to
some tasks such as hand gesture recognition [12], sentiment
analysis [13], fraud detection [14], and hyperspectral image
analysis [15]. Besides, many advanced transfer learning
theories have been proposed. For example, Liu [16]
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proposed a one-step approach towards classifiers have to be
trained with noisy data. Chen [17] proposed a boundary
based Out-of-Distribution (OOD) classifier which classifies
the unseen and seen domains by only using seen samples for
training. Teshima [18] proposed a meta-distributional sce-
nario in which a data generating mechanism is invariant
among domains.

Due to the advantages of transfer learning in domain
generalization, it is also widely applied in fault diagnosis.
Wang [19] proposed an LDA-based deep transfer learning
framework for fault diagnosis in industrial chemical pro-
cesses, Singh [20] utilized minimum redundancy maximum
relevance (mRMR) for intelligent fault diagnosis of rotating
machines. Deng [21] proposed a double-layer attention
based adversarial network (DA-GAN) for partial transfer
learning in machinery fault diagnosis. To draw a conclusion
from the existing literatures, there are two aspects that few
researchers had considered. Firstly, most proposed transfer
learning methods focus on the adaptation of the diagnosis
algorithm in different fields but pay less attention to the
condition of small samples. Secondly, most literatures use
the raw signal in the source domain, which is feasible for
many fields. However, some high-reliability equipment has a
long lifespan, which results in redundant features of mon-
itoring data. If the raw signal is used directly, negative
migration may occur.

Given that high-reliability equipment has characteristics of
small sample size and redundant features, we proposed a
feature transfer framework. To reduces the redundant infor-
mation, data were filtered according to manifold consistency.
,en, features were extracted based on CNN and feature
transfer was conducted. For adequate fitness, the joint ad-
aptation of conditional distribution and marginal distribution
was used between the two domains. Minimum structural risk
and MMD of adaptation were two indicators weighted for
training the model to enhance the generalization ability of the
model. To test the efficiency of the model, we built an airborne
fuel pump testbed, and contributed a new dataset that con-
tained 15 categories of fault data, which serves as the small
sample dataset in this research. ,en the proposed model was
applied in our experimental data. As a result, the fault diag-
nosis rate increases by 28.6% through our proposed model,
which is more precise than other classical methods.,e results
of feature visualization further demonstrate that the features
are more distinguished through the proposed method.

2. Problem Setup

2.1.Definitionof transfer learning. In most cases, a domain D
consists of two components: a feature space χ and a marginal
probability distribution P(X), where X � x1, ..., xn􏼈 􏼉 ∈ χ.
For example, given a concrete domain D � X, P(X){ }, a task
can be expressed as two components: a label space Υ and an
objective predictive function f(·) (denoted byT � Y, f(·)􏼈

}), which is not observed but can be trained from the data,
which consist of pairs xi, yi􏼈 􏼉, where xi ∈ χ andyi ∈ Υ. ,e
function f(·) can be used to predict from the data to the
corresponding labelf(x). From a probabilistic viewpoint,
f(x) can be written asP(y | x).

Definition of transfer learning: Given a source domain
Ds and learning taskTs, a target domain Dt and learning
taskTt, transfer learning aims to help improve the learning of
the target predictive function ft(·) inDt using the knowl-
edge in Ds andTs, where Ds ≠Dt, or Ts ≠Tt[22].

2.2. Fault diagnosis with small sample. For some highly re-
liable products, the small sample data set can be represented
as xt

i , yt
i􏼈 􏼉

nt

i�1, which contains nt samples. In the form of
transfer learning, the data set is described as target domain
Dt � xt, P(xt)􏼈 􏼉 and the target task Tt � yt, ft(·)􏼈 􏼉, where
P(xt) is the Marginal Distribution of xt, yt is the label space
of the target domain, ft(·) is a function that maps the sample
xt to the tag space yt in the target domain.

Another dataset with rich samples is represented as
xs

i , ys
i􏼈 􏼉

ns

i�1, which contains ns samples (ns≫ nt). In the form
of transfer learning, the data set is described as the source
domain Ds � xs, P(xs){ } and the source task Ts � ys, fs(·)􏼈 􏼉

in transfer learning, where P(xs) is the marginal distribution
of xs, ys is the label space of the source domain, fs(.) is a
function that maps the sample xs to the tag space ys in the
source domain.

,e goal of transfer learning is to acquire and apply the
knowledge from the source domain [23]. More specifically, it
is to establish the nonlinear mapping relationship from the
equipment monitoring data to the health label space in the
source domain, then transfer it to the target domain. In the
given situation, the labels of the source domain and target
domain are accessible. Such problem is concluded as mul-
titask learning. Aiming at this problem, feature transfer is
often used to transfer knowledge from source domain to
target domain [22].

2.3. Feature transfer. ,e idea of feature transfer is to learn a
pair of mapping functions φs(·), φt(·)􏼈 􏼉 to extract diagnostic
features respectively from the source domain and the target
domain. ,en adapt features extracted by mapping func-
tions, and the target domain could extract features according
to the paradigm of the source domain.,e fault classification
is carried out in the target domain based on the features, and
the diagnosis knowledge of the source domain is transferred
to the target domain through the feature adaptation [24].

Aiming for learning transferable features between a
given target domain and source domain, a common ap-
proach of feature adaptation is to minimize inter-domain
differences between source feature and target feature.
During the adaptation, the extracted features from the target
domain act as a template, that the source domain could learn
from the template. ,e schematic diagram of domain ad-
aptation is shown in Figure 1.

3. General Framework

,e main issues of transfer learning can be concluded as the
following three: when to transfer, what to transfer and how
to transfer. Aiming at these three issues, this paper designed
a framework of LLE-CNN-JDA. Aiming at when to transfer,
we designed a data filtering method based on manifold
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consistency.Wemapped the high-dimensional data into low
dimensional space, to analyze the similarity between the
source domain and target domain. To ensure the availability
of transfer data, we filtered data in the source domain based
on the Euclidean distance between the source domain and
the target domain in manifold space. Aiming at what to
transfer, the method of feature transfer is adopted, the
convolutional neural network is used to extract the deep
feature of the data in the source domain and target domain.
By adapting the feature in the source domain and target
domain, the knowledge may be transferred in the feature
layer. Aiming at how to transfer, we designed a term that
jointly adapt conditional distribution and marginal distri-
bution of feature layer, and the network is trained based on
structural risk minimization. ,e framework diagram of the
proposed model is shown in Figure 2.

3.1.Datafilteredbasedonmanifold consistency. ,e so-called
manifold is a general term for geometric objects, such as
curves and surfaces of various dimensions. Manifold
learning maps data from higher-dimensional space into
lower-dimensional space. Unlike other dimensionality re-
duction methods, manifold learning assumes that data is
sampled from a potential manifold. If we can find the laws of
the data in the manifold space, we may find the potential
laws of the data in high dimensions to mine the essential
characteristics of data [25, 26].

For the given situation, the sample size of the source
domain is large, so the prognostics model in the source
domain can be trained well. However, the data in the target
domain is not abundant, we may not excavate enough in-
formation from the target domain. ,e source domain has
sufficient data, but it is necessary to explore whether the
source data can be effectively applied to the target domain.
Based on the idea of manifold learning, we consider that if
we can explore the relationship between the source domain
and the target domain in the low-dimensional manifold
space, and filter the data transferable to the target domain,
source data may be applicable to the target domain.

Locally linear embedding (LLE) is a method of manifold
learning, which enables the data to maintain the original
manifold structure well after dimension-reduction. ,e
manifold of LLE is an unclosed surface, which has features of
relatively uniform and dense distribution. Every data point
can be constructed by the linear weighted combination of its

nearest points. LLE transfers manifolds from higher di-
mensions to lower dimensions and preserves some features
of manifolds in higher dimensions as much as possible
[27, 28]. ,e steps of the LLE algorithm are as follows:

Step1. :Calculate K adjacent points for each sample point.
Adopting the KNN strategy, K points with the smallest
Euclidean distance to the sample point are taken as the K
adjacent points of the sample.

Step2. :Calculate the local reconstruction weight matrix W
of the sample. ,e reconstruction error is defined as ε(W) �

􏽐i|Xi

�→
− 􏽐jWijXj

�→
|2 , and the local covariance matrix C is

defined as Cjk � ( x
→

− η→j) · ( x
→

− η→k), where X represents a
specific point, and its K adjacent points are denoted by η.
,en Minimize ε(W), then get Wj � 􏽐kC−1

jk /􏽐lmC−1
lm.

Step3. :Map all sample points to a low-dimensional space,
where the mapping function satisfies min

Y
Φ(Y) � 􏽐iYi

→

􏽐j| − 􏽐jWij Yj

�→
|2. ,e formula can also be represented as

Φ(Y) � 􏽐ijMij(Yi

→
· Yj

�→
), where M � (I − W)T(I − W).

Combining with the restrictive conditions 􏽐iY � 0
→

and1/N􏽐iYiYi

→T
�����→

� I, the problem is transformed into
MY � λY, take M eigenvectors of matrix M to form column
vectors, that matrix Y � N∗M, where N is the size of data.

In this paper, we adopted the LLE algorithm to evaluate
the similarity of the data from the source domain and target
domain. We adopted the bearing failure data from Case
Western Reserve University as the source domain, the failure
data from our airborne fuel pump test-bed as the target
domain. Two kinds of data were mapping to manifold space
respectively. As the neighbouring points number K change,
the mapping results in manifold space are shown in Figure 3.
,rough analysis, we found that when K � 100, the mapping
manifold of the two types of data is most close. ,erefore,
the K � 100 was chosen to filter data in the low dimension.
,e failure data from the airborne fuel pump testbed worked
as the target domain, which was in a small sample size. ,e
bearing failure data from Case Western Reserve University
worked as the source domain. ,e bearing failure data is in
big sample size, but it is difficult to ensure the validity of the
data. ,erefore, we proposed to filter data of the source
domain in the manifold space by calculating the Euclidean
distance to the target domain. We adopted the tactics of
KNN, computed the distance of each sample point from the
source domain to all sample points from the target domain,
then chose the minimum distance di � min|Xs

i − Xt
j|(j �

1 · · · nt) as an indicator of the sample point. We got an
indicator set di􏼈 􏼉(i � 1 · · · ns), then sorted the indicator set,
and chose the n sample points with the smallest distance as
the target domain.

3.2. Deep feature extraction. ,e source domain and target
domain data both contain prognostics information related
to the equipment. ,erefore, we adopt a convolutional

Source

Target

Source Target

Domain
Adaption

Figure 1: Schematic diagram of domain adaptation.
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neural network to extract fault features. ,e source domain
data and target domain data were extracted separately by the
neural network, which contains convolution layer, pooling
layer, flatten layer and full connection layer. ,e network
parameters are trained based on structural riskminimization
and feature adaptation between the source domain and
target domain.

Convolution layer operation: Assume that xs,l−1
i and

xt, l−1
i represent vectors in the L-1 layer of the network.

,rough a convolution kernel function k ∈ R16×3, the feature
vector of layer L is xs, l

i � F(xs, l−1
i ; θl) � σl(xs, l−1

i ∗ kl + bl),
where σl is the activation function of layer L, θ l � kl, bl􏼈 􏼉 is
the parameters to be trained of the convolution layer.

Pooling layer operation: ,e processing logic of the
pooling layer is to compress the input matrix.,e formula of
the pooling layer is vs,l

m,n � max xs,l
i |m≤ i≤ n􏽮 􏽯, where vs,l

m,n

represents the result of pooling the features from sequence
M to N in the convolution layer L, xs,l

i represents the vector

whose sequence is i in the convolution layer L, s represents
that the operation is for the source domain.

After multiple convolution and pooling processes, the
feature extraction layer output, namely the flatten layer input
vector xs,C

i , is obtained. ,e vector fed into flatten function,
and the flatten layer output xs,F

i � flatten(xs,C
i ) was obtained.

,e output of the flattening layer is then used as the input
vector of the full connection layer, where the vector is
mapped to the label space through the neural network of the
full connection layer. ,e function is ys,o

i � g(xs,F
i ; θF) � σ

(wF · xs,F
i + bF), where σ is the activation function,

θF � wF, bF􏼈 􏼉 is the parameter set to be trained.

3.3. Structural riskminimization. For the target domain data
with a small size, overfitting is easy to occur in the training
process. To prevent overfitting, it is necessary to avoid the
excessive complexity of network structure in the process of

Target domain

Pragnostics

Pragnostics

Source domain
CNN

CNN

Data

Data

Filter

Criterion

Feature

Feature

Adaption

Figure 2: ,e framework of the proposed model.

k = 1 k = 2 k = 3

k = 4 k = 5 k =15

k = 30 k = 100 k = 399

(a)

k = 1 k = 2 k = 3

k = 4 k = 5 k =15

k = 30 k = 100 k = 399

(b)

Figure 3: Results of LLE under the different value of K; (a) LLE of bearing fault data; (b) LLE of airborne fuel pump fault data.
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training. ,erefore, complexity and accuracy are important
indicators impacting the efficiency of the network. In this
paper, the Convolutional Neural Network was trained based
on structural risk minimization. A penalty term (regulari-
zation term) for the complexity of the model is added to the
empirical risk to reduce the risk of data overfitting [29]. ,e
formula of structural risk minimization is expressed as
follows:

min
f∈F

1
N

􏽘

N

i�1
L yi, f xi( 􏼁( 􏼁 + λJ(f). (1)

In the formula, the more complex the model f is, the
greater the value of J(f) will be. λ indicates the importance
of model complexity. As the empirical risk convergence to a
certain degree, when the empirical risk decreases, model
complexity will increase sharply. Model complexity may
make the model fit the data in the source domain over
exactly, and the model would be difficult to generalize to the
target domain. ,us, we added the penalty term for model
complexity to inhibits the excessive increase of model
complexity.

For a conditional probability distribution, the loss
function is logarithmic, and the model complexity is de-
termined by the prior probability of the model. ,erefore,
the structural risk minimization is equal to the maximum
posterior probability estimate. Given a sample set
T � (x1, y1), (x2, y2), · · · , (xN, yN)􏼈 􏼉, it is assumed that the
prior distribution of parameter θ isg(θ), and the probability
of T is􏽑N

i�1 P(yi | xi; θ)g(θ). Maximize the probability as
max
θ

􏽑
N
i�1 P(yi | xi; θ)g(θ), then take the log of the result,

max
θ

􏽐
N
i�1 log P(yi | xi; θ) + log g(θ)􏽮 􏽯 will be obtained. Take

the complex number of the above equation, it is transformed
into the minimization problem min

θ
􏽐

N
i�1 −log P(yi | xi;􏽮

θ) + log1/g(θ)}. Define the loss function as L(xi, P(yi | xi;

θ)) � −log P(yi | xi; θ), the coefficient as λ � 1/N, the
penalty term as J(f) � log1/g(θ), the equation is equal to
form (2), which is structural risk minimization [30].

min
θ

1
N

􏽘

N

i�1
L yi, P yi | xi; θ( 􏼁( 􏼁 + λJ(f)

⎧⎨

⎩

⎫⎬

⎭. (2)

3.4. Joint adaption of conditional distribution and marginal
distribution. Feature extraction and network training are
conducted separately in the source domain and target do-
main. To transfer knowledge, the adaptation between the
source domain and the target domain is to be conducted at
the feature layer.

As for the source domain, the size of data is large, so the
extracted feature contains a lot of information related to the
equipment. ,us, the pattern how deep features be extracted
in source domain is an empirical model for fault identifying,
which may be appliable to other related fields. For the target
domain, the sample size is small, which may lead to poor
generalization ability of the network in feature extraction.
,erefore, the feature extraction of the source domain is a

reference to the target domain, and feature transfer will be
available in this way.

Marginal distribution and conditional distribution re-
flect domain distribution [31]. ,erefore, feature adaptation
is to adapt marginal distribution and conditional distribu-
tion. According to probability theory J � P · Q, we seek to
minimize the distribution distance (1). between the marginal
distributions Ps andPt, and (2). between the conditional
distributions Qs andQt simultaneously. For source domain
Ds � Xs, P(Xs){ } and target domain Dt � Xt, P(Xt)􏼈 􏼉, as-
sume that the features extracted through CNN network are
xs,C

i and xt,C
i . If the features of the two domains are to be

adapted, the marginal distribution and conditional distri-
bution of feature vectors must be adapted.

3.4.1. Adaption of the marginal distribution. We try to
minimize the distance between marginal distributions Ps

andPt. Since directly estimating probability densities is
nontrivial, we resort to explore nonparametric statistics. We
adopt empirical Maximum Mean Discrepancy (MMD) to
measure the distance, which compares different distribu-
tions based on the distance between the sample means of two
domains in a reproducing kernel Hilbert space (RKHS) [32].

Specifically, the statistical approach of MMD is con-
ducted in the following manner. Based on the samples of the
two distributions, look for a continuous function f(·) in the
sample space, get the function values corresponding to the
two distributions, and calculate the mean of the function
values of each distribution. By making difference between
the two mean values, the mean discrepancy of the two
distributions will be obtained corresponding tof(·). Look
for an f(·) that causes the mean discrepancy to have a
maximum value, the value isMMD.,us,MMD is taken as a
test statistic to determine whether the two distributions were
close. If this value is small enough, the two distributions are
considered the same; otherwise, they are not. ,is value is
also used to determine the degree of similarity between two
distributions [33]. If F is used to represent a continuous set
of functions in the sample space, then MMD can be
expressed as follows:

MMD[F, p, q] � sup
f∈F

Ex∼p[f(x)] − Ey∼p[f(y)]􏼐 􏼑. (3)

Assume that X and Y are two data sets obtained by
independent identical distribution sampling from distri-
bution p and q respectively, and the sizes of the data sets are
M and N.,e empirical estimate of MMD based on X and Y
is as follows:

MMD[F, p, q] � sup
f∈F

1
m

􏽘

m

i�1
f xi( 􏼁 −

1
n

􏽘

n

i�1
f yi( 􏼁⎛⎝ ⎞⎠. (4)

Given two distributions of observation sets X, Y, this
result will depend heavily on a given set of functions F. To
express the properties of MMD, if and only if P and Q are of
the same distribution, MMD is 0. ,us, F is required to be
rich enough. On the other hand, the empirical estimation of
MMD should rapidly converge to its expectation as the size
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of the observation set increases. ,us, F must be sufficiently
restrictive. To satisfy the two requirements, we adopt the
reproducing kernel Hilbert Spaces.

In reproducing kernel Hilbert Spaces, F space is a
complete inner product space, and each F corresponds to a
feature map. Based on the feature map, we defined a mean
embedding of p for a distribution p that satisfies the fol-
lowing properties: μp ∈ Η such that Ex(f) � 〈f, μp〉H for all
f ∈ Η. Mean embedding exists with constraints. Under the
existence of the mean embedding of P and Q, the MMD
squared can be expressed as follows:

MMD2
[F, p, q] � sup

‖f‖H ≤ 1
Ex[f(x)] − Ey[f(y)]􏼐 􏼑⎡⎣ ⎤⎦

2

� μp − μq

�����

�����
2

H
.

(5)

If F is a unit ball in a universal RKHS, such as Gaussian
and Laplace RKHSs, the square of this MMD can be
expressed as:

MMD2
[F, p, q] � Ex,x′ k x, x′( 􏼁􏼂 􏼃 − 2Ex,y[k(x, y)]

+ Ey,y′ k y, y′( 􏼁􏼂 􏼃.
(6)

X and X ’are two random variables that obey p, and y and
y’ are two random variables that obey q. One of the above
statistical estimates can be expressed as:

MMD[F, X, Y] �
1

m2 􏽘

m

i,j�1
k xi, xj􏼐 􏼑 −

2
mn

􏽘

m,n

i,j�1
k xi, yj􏼐 􏼑 +

1
n2 􏽘

n

i,j�1
k yi, yj􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

. (7)

Marginal distribution adaptation is to maximize mean
discrepancies that for minimizing the marginal distributions
of the features from the source domain and target domain
[31], which is:

minMMD x
s,C
i , x

t,C
i􏼐 􏼑. (8)

3.4.2. Adaption of the conditional distribution. We try to
minimize the distance between conditional distributions Qs

andQt. Since calculating the nonparametric statistics of
Qs(ys|xs) andQt(yt|xt) are difficult, we resort to explore the
quasi-conditional distributions as Qs(xs|ys) and Qt(xt|yt)

instead, which can well approximate Qs(ys|xs) andQt(yt|xt)

when sample sizes are large [34, 35].
Conditional distribution adaptation is to maximize

mean discrepancies. Simultaneously, the quasi-conditional
distributions of the features from the source domain and
target domain will reach a minimum, namely:

minMMD x
s,C
i |yk, x

t,C
i |yk􏼐 􏼑. (9)

4. Training of the network

Overall, manifold consistency was used to filter data from
the source domain. ,e deep features of the source domain
and the target domain were extracted by CNN, then the
features were adapted, and the classifier was constructed
through the full connection layer. After network con-
struction, network parameters need to be trained in the
following aspects: (1). structural risk minimization; (2).
marginal distribution adaptation; (3). conditional distribu-
tion adaptation. ,e network structure of the proposed

model is shown in Figure 4. ,e joint optimization formula
is as follows:

min
θ

1
N

􏽘

N

i�1
L y

t
i , f x

t
i􏼐 􏼑􏼐 􏼑 + λtJ f

t
􏼐 􏼑 + α

1
N

􏽘

N

i�1
L y

s
i , f x

s
i( 􏼁( 􏼁

+ λsJ f
s

( 􏼁,

+ β · 􏽘
N

i�1
MMD x

s,C
i , x

t,C
i􏼐 􏼑 + δ · 􏽘

N,K

i�1,k�1
MMD

· x
s,C
i |yk, x

t,C
i |yk􏼐 􏼑.

(10)

Due to the addition of the adaptive function in the
feature layer, the parameter training and backpropagation of
the entire convolutional neural network will be affected. For
a single fault diagnosis with convolutional neural network,
the error is from the difference between the expected label
and the real label. However, when the joint distribution
adaptation function is added to the feature layer, the ad-
aptation error of the feature layer will also affect the pa-
rameter training of the whole network. ,erefore, to search
how the network is trained, the error backpropagation
formula of the network is derived in this paper.

4.1. Error backpropagation in the full connection layer.
,e error of the output layer comes from the difference
between the expected label and the real label, which is
usually expressed by the two-norm of the difference between
the two labels. ,e formula is as follows:

6 Complexity



J(W, b, x, y) �
1
2

a
L

− y
����

����
2
2, (11)

Where aL is output of the network, y is the label of the data
set. According to the functional relationship, aL can be
expressed as: aL � σ(zL) � σ(WLaL− 1 + bL), so we can get:

zJ(W, b, x, y)

zW
L

� a
L

− y􏼐 􏼑⊙ σ′ z
L

􏼐 􏼑􏽨 􏽩 a
L− 1

􏼐 􏼑
T

,

zJ(W, b, x, y)

zb
L

� a
L

− y􏼐 􏼑⊙ σ′ z
L

􏼐 􏼑􏽨 􏽩,

(12)

Where ⊙ is Hadamard product, σ is activation function, WL

and bL are the weights and bias of the output layer.
In this paper, a single-layer full connection layer is used

as a feature classifier. To enhance the extensibility of the
algorithm, a more general case of multi-layer full connection
is considered in the derivation of the backpropagation
formula. Suppose an error propagation variable is:

δl
�

zJ(W, b, x, y)

zz
l

�
zzL

zzL−1
zzL− 1

zzL−2 · · ·
zzl+1

zzl
􏼠 􏼡

T
zJ(W, b, x, y)

zz
L

.

(13)

If we can figure out δl，according to the formula of layer
l: zl � Wlal− 1 + bl, the gradient formula of layer l can be
obtained as follows:

zJ(W, b, x, y)

zW
l

� δl
a

l− 1
􏼐 􏼑

T
,

zJ(W, b, x, y)

zb
l

� δl
.

(14)

So, the whole point of the problem is to figure out δl. In
this paper, δl was deduced bymathematical induction. As for
the output layer, δL � zJ(W, b, x, y)/zzL � (aL − y)⊙ σ′
(zL). For layer l, δl can be figured out throughδl+1 from
layerl + 1, the formula is as follows:

δl
�

zzl+1

zzl
􏼠 􏼡

T
zJ(W, b, x, y)

zz
l+1 ,

� diag σ′ z
l

􏼐 􏼑􏼐 􏼑 W
l+1

􏼐 􏼑
T
δl+1

,

� W
l+1

􏼐 􏼑
T
δl+1 ⊙ σ′ z

l
􏼐 􏼑.

(15)

,erefore, δl of each layer can be obtained by continuous
backward recursion from the output layer, and then the
updated formula of weight and bias of each layer can be
calculated as:

W
l

� W
l
− α􏽘

m

i�1
δi,l

a
i,l− 1

􏼐 􏼑
T
,

b
l

� b
l
− α􏽘

m

i�1
δi,l

.

(16)

4.2. Error backpropagation in pooling layer. ,ere is no need
to optimize and update W and B in the pooling process.
However, in the process of backpropagation, the error will
change in the pooling layer. Similar to the full connection
layer, we still use δl as the bridge to calculate the back-
propagation formula for the pooled layer.

For the pooling layer, during the backpropagation, we
firstly restore all of the submatrix matrix sizes of δl to their
pre-pooling sizes. If the pooling operation is Max, the values
of each pooled locality of all submatrices of δl are placed at
the position where the previous forward propagation al-
gorithm obtained the maximum value. If the pooling op-
eration is Average, then the values of each pooling locality of
all the submatrices of δl are averaged and placed at the
reduced submatrix position.,is process is usually called the
Upsample, and the formula is as follows:

δl
�

zal

zzl
􏼠 􏼡

T
zJ(W, b)

za
l

� upsample δl+1
􏼐 􏼑⊙ σ′ z

l
􏼐 􏼑, (17)

Where the Upsample function completes the logic of en-
larging the pool error matrix and redistributing the error.

Source
Feature

Source
Train Error

Task
Feature

Task
Train Error 

...

...

Feature
Adaptation

Error

Source Data

Task Data

Convolution
layer

Pooling
layer

Convolution
layer

Pooling
layer

fully
connected

layer

Figure 4: ,e network structure of the proposed model.
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4.3. Error backpropagation in the convolution layer. Based on
the analysis of the full connection layer, we can get that the
recursion relation of δl in the convolution layer is:

δl
�

zJ(W, b, x, y)

zz
l

�
zzl+1

zzl
􏼠 􏼡

T
zJ(W, b, x, y)

zz
l+1

�
zzl+1

zzl
􏼠 􏼡

T

δl+1
.

(18)

,e key to the problem is to solve for zzl+1/zzl.
According to the matrix relation: zl+1 � al · Wl+1+

bl+1 � σ(zl) · Wl+1 + bl+1, it can be obtained that: δl � (zzl+1

/zzl)Tδl+1 � δl+1 · rot180(Wl+1)⊙ σ′(zl). According to the
matrix relation: zl � al− 1 · Wl + bl, the gradient of W and b
can be obtained as follows:

zJ(W, b, x, y)

zW
l

� a
l− 1

· δl
,

zJ(W, b, x, y)

zb
l

� 􏽘
u,v

δl
􏼐 􏼑

u,v
.

(19)

,us, the updated formula of weight and bias of each
layer can be calculated as follows:

W
l

� W
l
− α􏽘

m

i�1
a

i,l− 1
· δi,l

,

b
l

� b
l
− α􏽘

m

i�1
􏽘
u,v

δi,l
􏼐 􏼑

u,v
.

(20)

4.4. Error backpropagation in feature adaption layer. For the
model, the error of the feature adaption layer will affect both
the source domain and the target domain. Taking the target
domain as an example, we calculated the gradient update
error of the feature adaption layer.

In the feature adaption layer, the output is set as al
t. In the

process of backpropagation, the error of this layer has two
sources. One is the error gradient δl+1 returned by the next
layer over the network, and the other is the maximize mean
discrepancies between the featureal

t and al
s. As for the feature

adaption layer, the error can be expressed as:

J
l
t(W, b, x, y,MMD) �

1
2

a
l
t − y

�����

�����
2

2
+ cMMD a

l
t, a

l
s􏼐 􏼑

+ η 􏽘
K

k�1
MMD a

l
t|yk, a

l
s|yk􏼐 􏼑.

(21)

,e gradient of W and b can be obtained as follows:

J
l
t(W, b, x, y,MMD)

zW
l

� δl
a

l− 1
􏼐 􏼑

T
+ c

zMMD a
l
t, a

l
s􏼐 􏼑

zW
l

+ η 􏽘

K

k�1

MMD a
l
t|yk, a

l
s|yk􏼐 􏼑

zW
l

,

J
l
t(W, b, x, y,MMD)

zb
l

� δl
+ c

zMMD a
l
t, a

l
s􏼐 􏼑

zb
l

+ η 􏽘
K

k�1

MMD a
l
t|yk, a

l
s|yk􏼐 􏼑

zb
l

,

(22)

,us, the updated formula of weight and bias of each
layer can be calculated as follows:

W
l

� W
l
− α􏽘

m

i�1
a

i,l− 1
· δi,l

+ c
zMMD a

i,l
t , a

i,l
s􏼐 􏼑

zW
i,l

⎡⎢⎣

+ η 􏽘
K

k�1

MMD a
i,l
t |yk, a

i,l
s |yk􏼐 􏼑

zW
i,l

⎤⎥⎦,

b
l

� b
l
− α􏽘

m

i�1
􏽘
u,v

δi,l
􏼐 􏼑

u,v
+ c

zMMD a
i,l
t , a

i,l
s􏼐 􏼑

zb
i,l

⎡⎢⎣

+ η 􏽘
K

k�1

MMD a
i,l
t |yk, a

i,l
s |yk􏼐 􏼑

zb
i,l

⎤⎥⎦.

(23)

After updatingW and b of the feature adaption layer, it is
also necessary to deduce the transfer of the errors of this
layer to the previous layer. Referring to the backpropagation
methods of the convolution layer, the error propagation
variable of the feature adaption layer is defined as:

δl
�

zJ(W, b, x, y,MMD)

zz
l

�
zzl+1

zzl
􏼠 􏼡

T
zJ(W, b, x, y,MMD)

zz
l+1 .

(24)

According to the matrix relation between two layers, we
can figure out:

zz
l+1

zz
l

� W
l+1

􏼐 􏼑diag σ′ z
l

􏼐 􏼑􏼐 􏼑,

zJ(W, b, x, y,MMD)

zz
l+1 � δl+1

+ c
zMMD a

l
t, a

l
s􏼐 􏼑

zz
l+1

+ η 􏽘
K

k�1

MMD a
l
t|yk, a

l
s|yk􏼐 􏼑

zz
l+1 .

(25)

,us, the recursive relation of the feature adaption layer
can be obtained as follows:
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δl
� diag σ′ z

l
􏼐 􏼑􏼐 􏼑 W

l+1
􏼐 􏼑

T
· δl+1

+ c
zMMD a

l
t, a

l
s􏼐 􏼑

zz
l+1

⎡⎢⎣

+η 􏽘
K

k�1

MMD a
l
t|yk, a

l
s|yk􏼐 􏼑

zz
l+1

⎤⎥⎦.

(26)

5. Construction of testbed and application of
the model

To verify the effectiveness of the method, an airborne fuel
pump test platform was built to obtain the fault test data of
the airborne fuel pump. Firstly, based on the FMECA
analysis of the statistics data of the airborne fuel pump over
recent years, the common fault modes of the airborne fuel
pump were obtained to guide the test. Secondly, based on the
analysis of the physical model of the airborne fuel pump, the
fault injection test was carried out in the testbed to collect the
fault data of the relevant fault modes of the airborne fuel
pump. After obtaining the data, the bearing fault data of
Western Reserve University combined with our experi-
mental data was used to carry out transfer learning research.

5.1. FMECA of the airborne fuel pump. ,e airborne fuel
pump is a core component of the fuel system, and the pump
is responsible for the fuel supply and fuel transfer of the
aircraft. ,e structure of the airborne fuel pump is shown in
Figure 5. Searching the degradation law of the airborne fuel
pump is the basis for the life prediction of the airborne fuel
pump. ,e time sequence of the degradation data of the
airborne fuel pump is the key to predict the trend of breaking
down, then estimate the life span of the airborne fuel pump
[36, 37].

,rough Failure Mode, Effects, and Criticality Analysis
(FMECA) of the airborne fuel pump, six typical faults as
blade damage, diffusion pipe damage, leakage, diffusion pipe
and impeller rub, pump port and impeller rub, and bearing
wear were selected, which is shown in Figure 6. Further
analysis of the working principle and failure mechanism
showed that when the fuel pump failure or performance
declines, it will cause an abnormal vibration signal of the
shell. However, in the military airfield, it is usually dis-
mantled or returned to the factory for maintenance, without
effective data monitoring and recording measures. ,us, it is
difficult to quickly locate the fault, resulting in a reduction of
the maintenance support level and waste of airborne
equipment. ,erefore, we considered selecting the vibration
signal of the airborne fuel pump as the monitoring signal
and carried out the time-frequency analysis and statistical
characteristics analysis to extract the fault feature [38]. Our
goal is to realize the intelligent and effective diagnosis of the
airborne fuel pump.

5.2. Construction of airborne fuel pump testbed. A centrifugal
AC electric pump provided byNanjing Engineering Institute
Centre is selected as the experiment object, as shown in
Figure 7. ,is type of fuel pump is mainly used for the

thermal subsystem and oil tanks. ,e fuel pump uses avi-
ation fuel RP-3 as the working medium, whose temperature
range from minus 60°C to 85°C. ,e other working pa-
rameters are shown in Table 1.

,e experimental platform of the airborne fuel pump is
shown in Figure 8. ,e platform mainly includes an oil
storage tank, oil feeding tank, centrifugal test fuel pump,
electric diaphragm pump, air-cooled radiator, pressure
transducer, flow transducer, temperature transducer, liquid
level transducer, data acquisition equipment, etc. In the
main loop, the fuel pump pumps the oil from the oil feeding
tank to the oil storage tank. For cycling, the oil in the
storage tank returns to the feeding tank by gravity through
the valve [39]. ,rough cycling, the working environment
of the test pump is stable. In the second loop, an electric
diaphragm pump is used to ensure the uniform distribution
of particles in the impurity experiment. An air-cooled
radiator is used to cool the oil and keep the oil temperature
near room temperature. As shown in Figure 9, in the oil
feeding tank, three vibration sensors are adopted to
monitor the vibration of the airborne fuel pump, among
which the vibration sensors are installed at three mutually
perpendicular positions on the motor housing in the form
of magnetic suction seats.

When testing, open the valve, fill the oil storage tank with
fuel and connect the pump power supply, and make sure the
pump continues to work. When the pump runs stably,
collect the pump vibration signal, the outlet pressure signal,
and the outlet flow signal. After the signal collection, close
the power supply and the valve. ,en, similar to the normal
fuel pump, the other six typical fault signals are obtained by
replacing different fault parts. ,e typical fault parts are
shown in Figure 6. As shown in Table 2, vibration and
pressure signals under normal state and 14 kinds of fault
state were measured respectively in the experiment. Each
group of data contained 4 channels, with a sampling fre-
quency of 6000Hz and a sampling time of 5s for each
channel.

5.3. Model application in the airborne fuel pump. In this
paper, bearing fault data from Case Western Reserve Uni-
versity is selected as the source domain of transfer learning.
Bearing faults in Case Western Reserve University are
mainly caused by bearing wear, and the degree of bearing
wear are 0.1778mm, 0.3556mm, 0.5334mm, and 0.7112mm.
As for the target domain of airborne fuel pump, 1 impeller
blade damage, diffusion tube damage, leakage, and bearing
wear of 0.02mm were selected as the target domain for
transfer learning.,ere are 4 types of ∗3496 (vector number)
∗246 (vector length) fault data available for the airborne fuel
pump, and only 2∗246 data are selected for each type of fault.
,e remaining large amount of airborne fuel pump fault data
are used as verification data for the transfer learning effect.
In other words, the network trained by 2 sets of data was
verified by 3494 sets of validation data to judge the diag-
nostic accuracy of the network. After the pre-processing, the
small target samples combined with their labels are available
for training.
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Figure 5: ,e structure of airborne fuel pump.
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Figure 6: Typical faults of airborne fuel pump. (a) Blade damage; (b) Diffusion pipe damage; (c) Pump port and impeller rub; (d) Diffusion
pipe and impeller rub; (e) Sealing ring aging; (f ) Bearing wear.
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For the proposed model, there are hyper-parameters like
learning rate, regularization parameter, cost function to be
determined. In this research, we adopted randomized search
to seek the optimized hyper-parameters. Nevertheless, the

proposed model was complex that the process of hyper-
parameters optimization cost too much time. ,erefore, we
sampled a smaller dataset to fed into the model. Although
the accuracy of hyper-parameters decreased, the time cost
reduced greatly. ,rough this way, the hyper-parameters of
the model were determined [40].

To test the efficiency of the proposed model, firstly, fault
diagnosis without transfer learning was carried out for small
sample fault data of airborne fuel pump, and the confusion
matrix of diagnosis results was shown in Figure 10.,en, the
feature transfer model was used, bearing fault data from
Case Western Reserve University was taken as the source
domain, and the small sample fault data of airborne fuel
pump was taken as the target domain. ,e results of the
confusion matrix of the transfer diagnosis were shown in
Figure 10. According to the results, the fault diagnosis
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Motor

Pump case

Filter

Pump inlet
cover

Bearing Motor case

Rotor

Stator

Sealing
ring

Pump case
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Pump inlet
cover

Figure 7: Structure diagram of a certain type centrifugal airborne fuel pump.

Table 1: Main working parameters of the airborne fuel pump.

Pump flow (L/h) Output pressure (Kpa) Voltage (V) Current (A) Oil leakage (ml/min
12000 ≥73 115 ≤5.5 0

Oil Storage Tank

Oil Feeding
Tank

Flow
Transducer

Pressure
Transducer

Temperature
Transducer

Float Level
Transducer

Air-cooled
Radiator

Electric
Diaphragm Pump

Figure 8: Testbed of the airborne fuel pump.

Figure 9: ,e installation of the airborne fuel pump in the testbed.
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accuracy of each type of airborne fuel pump is improved by
28.25% on average through feature transfer learning.

Some other classical transfer learning algorithms such as
ResNet-50, DANN, ADDA, JAN, MADA, CBST, CAN,
CDAN+E, DM-ADA, 3CATN, ALDA are chosen as com-
parisons. ,e accuracy of diagnosis is given in Table 3. ,e
results show that the diagnostic accuracy of the proposed
model is remarkably higher than other algorithms. To
further explore the capacity of the proposed model to filter
the transferable data, some data filtering methods such as
PCA, K-Means, DBSCAN, GMM, BIRCH are selected as
comparisons. ,e accuracy of diagnosis is given in Table 4,
the proposed model gets a higher score than models with
other data filtering methods. ,e results show that the

proposed model is more capable to filter available data in the
source domain, which further proves that the proposed
algorithm may prevent negative transfer to some extent.

5.4. Validation of feature transfer. To further verify the ef-
fectiveness of the model, this paper uses the method of
feature visualization to show the learning effect of feature
transfer. Since the features extracted from the network are in
high-dimensional that cannot be directly visualized, the
T-Distribution Stochastic Neighbour Embedding method is
adopted to visualize the high-dimensional data.

T-distribution Stochastic Neighbour Embedding is often
used to visualize high-dimensional data.,emain advantage
of T-SNE is the ability to preserve local structures. ,e

Table 2: Scheme of fault injection test.

NO. Statement Sample size
(group)

Channel
number Time(second) Frequency

(Hz)
1 Normal 30 4 5 6000
2

foreign object
damage

1 impeller blade 30 4 5 6000
3 2 impeller blades 30 4 5 6000
4 all impeller blades 30 4 5 6000
5 Diffusion tube 30 4 5 6000
6 all impeller blades & Diffusion tube 30 4 5 6000
7

scratch
back of impeller scrapes with diffusion tube 2 4 60 6000

8 edge of impeller inlet scrapes with oil pump
mouth ring 2 4 60 6000

9 leakage 30 4 5 6000
10

bearing wear

Wear 0mm 15 4 5 6000
11 Wear 0.02mm 15 4 5 6000
12 Wear 0.05mm 15 4 5 6000
13 Wear 0.08mm 15 4 5 6000
14 Wear 0.10mm 15 4 5 6000
15 Wear 0.12mm 15 4 5 6000
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Figure 10: Confusion matrix of transfer learning results. (a) Confusionmatrix without transfer learning; (b) Confusionmatrix after transfer
learning.
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T-SNE algorithm models the distribution of the nearest
neighbours of each data point. We model the high-di-
mensional space as a Gaussian distribution, while model the
two-dimensional output space as a T-distribution. ,e goal
of this process is to find the transformation that maps a
higher-dimensional space to a two-dimensional space and to
minimize the gap between these two distributions of all
points [41].

For the network without transfer learning, the con-
volutional neural network for feature extraction was trained
by 2 sets of data, and 3,494 sets of data were used as vali-
dation data. Feature extraction was carried out in the
Convolutional Neural Network from validation data, and
the extracted features were visualized using T-Distribution
Stochastic Neighbour Embedding. ,e obtained results are
shown in Figure 11(a). Similarly, for the model with transfer
learning, the features extracted from the verification data

were visualized using T-Distribution Stocking Neighbour
Embedding, as shown in Figure 11(b). As can be seen from
the figure, for networks without feature transfer, the
boundaries of feature categories 1, 2, and 4 extracted from
verification data are not clear, which is not conducive to the
next step of feature classification and diagnosis. In the
network with feature migration, the four categories of
features extracted from the verification data have clear
boundaries, which is easy to carry out classification and
diagnosis. ,e effectiveness of the model for feature transfer
is further proved from the feature visualization.

6. Conclusions

In this research, we proposed a feature transfer scenario that
transfers knowledge from similar fields to enhance the ac-
curacy of fault diagnosis with small sample. To reduces the

Table 3: Accuracy of diagnosis under different transfer learning approaches.

Model Accuracy
Proposed model 87.3±0.5%
ResNet-50 (He et al., 2016) 63.2±0.8%
DANN (Ganin et al., 2016) 80.1±0.2%
ADDA (Tzeng et al., 2017) 53.8±1.5%
JAN (Long et al., 2017) 82.3±0.6%
MADA (Pei et al., 2018) 76.3±1.2%
CBST (Zou et al., 2018) 56.7±0.9%
CAN (Zhang et al., 2018) 75.1±0.5%
CDAN+E (Long et al., 2018b) 79.5±0.7%
DM-ADA (Xu et al., 2020) 58.7±1.1%
3CATN (Li et al., 2019) 83.2±0.6%
ALDA (Chen et al., 2020) 73.6±0.5%

Table 4: Accuracy of diagnosis with different data filtering methods.

Model Accuracy
Proposed model (LLE+CNN+JDA) 87.3±0.5%
PCA+CNN+JDA 65.7±0.7%
K-Means+CNN+JDA 68.6±0.4%
DBSCAN+CNN+JDA 77.6±0.4%
GMM+CNN+JDA 85.2±0.6%
BIRCH+CNN+JDA 71.4±0.7%

T-SNE

(a)

T-SNE

(b)

Figure 11: Feature visualization by T-SNE. Red, blue, green, and purple represent sort 1-4 separately. (a) Feature visualization without
transfer learning; (b) Feature visualization after transfer learning.
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redundant information, data were filtered according to
manifold consistency. ,en, features were extracted based
on CNN and feature transfer was conducted. For adequate
fitness, the joint adaptation of conditional distribution and
marginal distribution was used between the two domains.
Minimum structural risk and MMD of adaptation were two
indicators weighted for training the model. To test the ef-
ficiency of the model, we built an airborne fuel pump
testbed, and contributed a new dataset that contained 15
categories of fault data, which serves as the small sample
dataset in this research. ,en the proposed model was ap-
plied in our experimental data. As a result, the fault diagnosis
rate increases by 28.6% through our proposed model, which
is more precise than other classical methods. ,e results of
feature visualization further demonstrate that the features
are more distinguished through the proposed method. All
code and data are accessible on my GitHub.

Data Availability

Data and code of this research are accessible, please visit:
https://github.com/ppqweasd/Diagnosis-for-High-
reliability-Equipment-with-Small-Sample-Based-on-
Transfer-Learning-A-General-Fra.
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Data-driven quality monitoring is highly demanded in practice since it enables relieving manual quality inspection of the product
quality. Conventional data-driven quality monitoring is constrained by its offline characteristic thus being unable to handle
streaming nature of sensory data and nonstationary environments of machine operations. Recently, there have been pioneering
works of online quality monitoring taking advantage of online learning concepts in the literature, but it is still far from realization
of minimum operator intervention in the quality monitoring because it calls for full supervision in labelling data samples. (is
paper proposes Parsimonious Network++ (ParsNet++) as an online semisupervised learning approach being able to handle
extreme label scarcity in the quality monitoring task. (at is, it is capable of coping with varieties of semisupervised learning
conditions including random access of ground truth and infinitely delayed access of ground truth. ParsNet++ features the one-
pass learning approach to deal with streaming data while characterizing elastic structure to overcome rapidly changing data
distributions. (at is, it is capable of initiating its learning structure from scratch with the absence of a predefined network
structure where its hidden nodes can be added and discarded on the fly in respect to drifting data distributions. Furthermore, it is
equipped by a feature extraction layer in terms of 1D convolutional layer extracting natural features of multivariate time-series
data samples of sensors and coping well with the many-to-one label relationship, a common problem of practical quality
monitoring. Rigorous numerical evaluation has been carried out using the injection molding machine and the industrial transfer
molding machine from our own projects. ParsNet++ delivers highly competitive performance even compared to fully
supervised competitors.

1. Introduction

1.1. Background. Predictive maintenance has attracted in-
creasing interest from both academia and industry because it
offers optimization of machine’s life cycle, accurate planning
of machine’s maintenance, and prevention of unnecessary
downtime and product’s wastage [1]. In realm of tool
condition monitoring, replacing a tool too frequently not
only leads to expensive maintenance cost but also interrupts
the production cycle. On the other hand, blunt tools incur
high energy consumption due to the application of high
cutting force or undermines the surface finishing.

Accurate quality monitoring plays a vital role in re-
ducing rejection’s rate by customers leading to high cus-
tomer satisfaction and in meeting particular standards set
by relevant authorities. Common practice for quality
monitoring is still done via multi-staged visual inspection
deemed overly labour-intensive, error-prone, and slow.
Another drawback of manual quality monitoring is found
in the issue of consistency. (at is, human operators are
often biased and are affected by uncertain factors such as
experiences, fatigues, boredom, etc. (is rationale triggers
increasing demand of data-driven quality monitoring
utilizing artificial intelligence (AI) techniques feeding real-

Hindawi
Complexity
Volume 2021, Article ID 3005276, 16 pages
https://doi.org/10.1155/2021/3005276

mailto:pratama@ieee.org
https://orcid.org/0000-0001-6531-5087
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3005276


time information of product’s quality [2]. Compared to the
traditional first principle approach, the data-driven quality
monitoring cuts down the development time significantly.
It relies on a dataset collected from sensors or cameras
installed at the end of production line to build a predictive
model after being preprocessed via the signal processing
and feature extraction techniques to produce meaningful
features.

1.2. Related Works. In-depth study has been devoted to
developing reliable quality monitoring approaches. In [3],
the tool condition of the metal-turning process is predicted
using neural networks. A fuzzy neural network is utilized to
predict the tool wear of the ball-nose end-milling process
using vibration data [4]. In [5, 6], a fault detection approach
in the rolling mills process is proposed using all-coverage
data-driven approach making possible to integrate many
sensors. (e rise of deep learning with its automatic feature
engineering step to extract natural features allows simpli-
fication of the data-driven quality monitoring enabling to
bypass complex feature extraction step. In [7], convolutional
neural networks based on ResNet50 are put forward to
perform quality monitoring in the laser-based
manufacturing processes. A stacked sparse autoencoder
(SSAE) combined with the genetic algorithm to tune its
parameters is proposed to determine the laser welding
quality [8]. Despite their success in various manufacturing
applications, such approaches are offline in nature and fixed
once deployed thus being unable to adapt to rapidly
changing conditions of process parameters. (eir iterative
training process is not memory-wise and does not keep pace
with the high-speed manufacturing process. A complete
retraining process from scratch is solicited in handling the
process change.

(e online quality classification approach has been
advanced in [9] where the GEN-SMART-EFS is combined
with the incremental partial least square (iPLS) method for
the feature selection method to monitor the quality of
microfluidic chip. An extension of this work is presented in
[10] where the forgetting strategy is implemented to handle
the concept drift and the multiobjective evolutionary
computation approach for process optimization. Another
approach for prediction of tool wear in the metal-turning
process is proposed in [11]. It is based on Parsimonious
Ensemble+ (pENsemble+) algorithm making use of the
online active learning approach to handle the issue of label’s
scarcity.

1.3. Our Approach. (e area of online quality classification
still deserves investigation because existing methods are still
far from being truly autonomous approaches. (ey are
mostly developed from the fully supervised learning prin-
ciple necessitating considerable labelling efforts in streaming
environments. It suffers from substantial operator depen-
dencies to fully annotate data samples for model’s updates
notably in the high-speed production processes. In [12], a
semisupervised deep learning approach is proposed for
quality monitoring tasks using the stacked autoencoder

approach. However, this approach is not designed for
streaming environments. Another approach is proposed in
[13] for online semisupervised quality monitoring using the
notion of weighted principal component regression. (is
approach is, however, a non-deep learning approach. An-
other open issue lies in the feature extraction step often
being application-specific [14] and calling for intensive
offline phases. Notwithstanding the fact that deep learning
solution starts to pick up research interest where the concept
of deep features is utilized to bypass complex feature en-
gineering step, they are built upon an offline training process
thus becoming outdated quickly under nonstationary traits
of manufacturing processes. Furthermore, they are devel-
oped under a fully supervised working principle incurring
considerable labelling cost. Another issue lies in the exis-
tence of many-to-one label relationship [15] where a batch of
data are associated with a single and constant class label.(is
problemmight lead to the overfitting problem of a particular
class or the loss of granularity if a batch of data is combined
into a single instance. (is problem is frequently found in
the condition monitoring problem, in which a quality check
is only performed after the whole lot is produced. In
summary, there exists a strong demand for an online
semisupervised deep learning algorithm for quality moni-
toring. Such algorithm is capable of learning from streaming
data without retraining from scratch while bypassing a
complex feature engineering phase. (at is, a new concept
arising due to changing environments can be quickly
handled without compromising complexity while natural
features are extracted on the fly.

An online semisupervised deep neural network, namely,
Parsimonious Network++ (ParsNet++), is proposed to
undertake real-time learning under scarcity of labelled
samples for online quality monitoring in the injection
molding process [16] and in the industrial transfer molding
process. ParsNet++ forms a significant extension of a re-
cently developed algorithm for semisupervised learning of
high-pace data streams, Parsimonious Network (ParsNet)
[17]. ParsNet++ is capable of starting its learning process
from scratch with no predefined structure while its hidden
node is automatically grown and pruned from data streams
to overcome the concept drift. It handles the partially la-
belled data streams under two settings: random access of
ground truth and infinitely delayed access of ground truth.
(e key feature exists in the autoregularization method
dealing with the accumulation of mistakes due to noisy
pseudolabel.

(e underlying innovation of ParsNet++ lies in the
existence of feature extraction layer coping with raw samples
where the 1D convolutional layer is integrated to deal with
multivariate time-series data collected from sensors and the
many-to-one label relationship. (is property enables
skipping a complex feature engineering step because of its
aptitude in extracting natural features.(e feature extraction
layer is structured as a stacked convolutional layer gener-
ating deep features to be fed to the fully connected layer.
Furthermore, the fully connected layer is structured as a self-
evolving single-hidden-layer neural network to handle
process change.

2 Complexity



(e structural learning mechanism of ParsNet++ is
driven by the network significance (NS) method derived
from the bias-variance decomposition method. It differs
from the original NS method in [18] with the presence of
autonomous clustering mechanism (ACM) estimating the
probability density function. ACM addresses the obsolete
probability density function if the concept drift occurs while
also relaxing a strict normal distribution assumption which
does not fit for real-world cases. Unlike conventional
clustering technique, ACM features a self-evolving property
making possible for automatic generation and pruning
mechanism of clusters. ACM distinguishes itself from
AGMM of the original ParsNet often being unstable in the
high input dimension cases.

(e parameter learning phase is carried out under a joint
optimization problem minimizing both reconstruction loss
and discriminative loss coupled with autoregularization
mechanism. (at is, the regularization process is derived
from the concept of synaptic intelligence (SI) proposed to
prevent the issue of catastrophic forgetting problem [19]. It
calculates the parameter importance using the accumulated
gradient of network synapses. (is technique is generalized
here where it is used to memorize optimal network pa-
rameters induced by the clean labels. (e label enrichment
method is carried via the label augmentation mechanism
where originally labelled samples are perturbed by injecting
controlled noise while leaving their labels unchanged. By
extension, the self-labelling mechanism is carried out to
generate pseudolabel of unlabelled samples. It is inferred by
the predictive output of ACM and network itself if both of
them are confident with their own predictions.

Autonomous quality monitoring with weak supervision
is formalised under two settings: random access of ground
truth and infinitely delayed access of ground truth. (e
former case portrays partially labelled data streams where
only a fraction of data samples possess true class label. (e
latter case goes one step ahead where labelled samples are
served only during the warm-up phase leaving the rest
unlabelled. Furthermore, the quality monitoring problem
consists of two scenarios, current batch prediction and one-
step ahead prediction.(e current batch prediction is meant
to predict the current product quality whereas the second
one aims to forecast the product quality for the next data
stream, all of which are carried out in the prequential test-
then-train protocol, the standard simulation protocol of data
streams and simulated using real-world use cases of injection
molding machine, and industrial transfer molding machine
from our own project. Our rigorous numerical study
demonstrates the success of ParsNet++ for the online quality
classification under weak supervision where it delivers the
most encouraging results even compared to fully supervised
competitors.

In summary, this paper delivers four major contribu-
tions discussed in the sequel:

(1) (is paper presents ParsNet++ to handle online
quality classification of injection molding process
and industrial transfer molding process under
semisupervised environments. (at is, the

semisupervised environments are induced by both
random access of ground truth and infinitely delayed
access of ground truth.

(2) (is paper offers an extension of ParsNet [17] where
1D convolutional layer is introduced to address the
issue of feature extraction and the many-to-one label
relationship problem.

(3) Autonomous clustering mechanism (ACM) is de-
veloped for a flexible density estimation approach
navigating the structural learning phase. ACM re-
places the role of AGMM in the original ParsNet [17]
suffering from the execution issue of the high-di-
mensional problem. Furthermore, ACM incurs
fewer parameters than those of AGMM.

(4) (e codes of ParsNet++, raw numerical results, and
injection molding dataset are made publicly available
in https://github.com/ContinualAL/ParsNetPlus to
enable further study of the proposed research topic.

(e remainder of this paper is structured as follows:
Section 2 discusses the problem formulation; Section 3
outlines the learning policy of ParsNet++; Section 4 elab-
orates the injectionmoldingmachine; our numerical study is
explained in Section 5; and some concluding remarks are
drawn in Section 6.

2. Problem Definition

Learning from data streams is defined as a learning problem
of never-ending data batches B1, B2, B3, . . . , BK where K is
the number of data streams and unknown in practice. (is
property demands the one-scan learning scheme where a
data stream is discarded once learned to suppress the
computational and memory complexities to a low level. A
data stream comprises data samples Bk � Xk􏼈 􏼉 � xt􏼈 􏼉

T
t�1

having no label where Xk denotes input data batch while
xt ∈ R

u denotes an input vector. T, u are, respectively, the
batch size and the input dimension. In the realm of the fully
supervised learning setting, the ground truth access
yt ∈ l1, l2, . . . , lm􏼈 􏼉 where m is the output dimension can be
instantly elicited. (is assumption is unrealistic notably in
the context of quality classification. Some delay is expected
because the product quality is examined through visual
inspection. Semisupervised data stream is formalised here
under two settings: sporadic access to ground truth and
infinitely delayed access to ground truth.

Random access to ground truth: this case delineates a
fact where the operator labels data samples sporadically
leading to partially labelled data streams. (at is, a true
class label yt arrives in the random fashion. In other
words, Bk is only partially labelled with the target label.
Infinitely delayed access to ground truth: the second case
is more stringent than the first case where the access of
true class label is only given for prerecorded samples
being fed in the warm-up period before process runs
leaving the rest unlabelled. In other words, only initial
labels are provided. Specifically, only the first data batch
B1 is labelled without changing the data order.
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As with conventional data streams, semisupervised data
streams do not follow static and predictable data distribu-
tions where they contain the concept drifts. (at is, there is
changing data distributions resulting in the change of joint
probability distribution P(X, Y)t ≠P(X, Y)t+1. It requires a
model which can adapt to the concept drifts with/without
the presence of true class labels. (at is, a model should be
capable of adapting to the concept drift even if the true class
label is absent. (e concept drift is induced in our experi-
ment with the injection molding machine by varying the
holding pressure and the injection speed of the injection
molding machine to be 900, 700, 500, 300, 100 psi and
60, 70, 80, 90, 100 rpm, respectively. (e online quality
classification problem is presented as a multiclass classifi-
cation problem with three classes, namely, good, weaving,
and short-forming. (e number of data samples in three
classes is, respectively, 1008, 1074, and 870, respectively.(is
problem is guided by 48 input attributes recording different
machine parameters.

3. Learning Policy of ParsNet++

Overview of ParsNet++’s learning policy is depicted in
Algorithm 1. It starts from the learning process of ACM
estimating the complex probability density function p(x)

and determining the addition factor of hidden nodes M.
Note that ParsNet++ directly injects M hidden nodes if the
hidden node growing condition is satisfied. Furthermore,
ACM itself is flexible to changing learning environments
p(x)t ≠p(x)t+1 since it features an elastic structure making
possible for clusters to be added or pruned on the fly. (e
probability density function p(x) produced by ACM is fed
to the structural learning phase of ParsNet++ where the
generative learning phase is carried out first to condition the
network structure with the absence of true class label. (e

structural learning phase involves the hidden node growing
and pruning processes adapting to the virtual drift problem.
(at is, the structural evolution is navigated by the recon-
struction error. (e parameter learning phase is devised to
minimize the reconstruction loss and to create an ideal
discriminative representation of unlabelled samples. (e
network parameters are further evolved in the discriminative
phase with the access of true class labels once completing the
generative phase. In other words, the generative and dis-
criminative training phases occur in a fully coupled fashion.
(e label enrichment mechanism is carried out afterward by
executing the augmentation of labelled samples module and
the generation of pseudolabel mechanism. Both pseudolabel
and augmented label are learned in the discriminative
learning fashion minimizing the predictive loss and carried
out along with the dynamic regularization method. Network
parameters are shared during the generative and discrimi-
native learning phases having a closed-loop configuration.
(at is, the network parameters of the generative learning
phase are passed to the discriminative learning phase while
the network parameters of the discriminative learning phase
are fed back to the generative learning phase to cope with
upcoming data stream, in other words, the discriminative
phase function to refine the generative learning phase using
the ground truth information. In addition to the generative
phase, the structural learning phase takes place in the dis-
criminative phase to overcome the real concept drift and
utilizes the same probability density function p(x) as per the
generative training phase. Table 1 provides a list of notations
used in the paper.

3.1. Parameter Learning of ParsNet++. (e parameter
learning method of ParsNet++ is governed by the following
loss function:

L � L(X, 􏽢X)􏽼√√√􏽻􏽺√√√􏽽
L1

+ L Yori,
􏽢Yori􏼐 􏼑

􏽼√√√√√􏽻􏽺√√√√√􏽽
L2

+ L Yaug,
􏽢Yaug􏼐 􏼑

􏽼√√√√√􏽻􏽺√√√√√􏽽
L3

+ L Yps,
􏽢Yps􏼐 􏼑

􏽼√√√√􏽻􏽺√√√√􏽽
L4

+
1
2
α1ρ θ − θ∗( 􏼁

2

􏽼√√√√√√􏽻􏽺√√√√√√􏽽
R

,
(1)

where L1 stands for the reconstruction loss solved in the
generative phase via convolutional denoising autoencoder
(CDAE), L2 denotes the predictive loss of originally labelled
samples having a much lower quantity than that of the batch
size, and L3 and L4 label the predictive loss of augmented
label and pseudolabel, respectively. (e last term is the
autoregularization term. (e pseudolabel is induced by the
self-labelling mechanism to unlabelled samples while the
augmented label is produced by injecting small perturbation
to originally labelled samples without changing its label.
Nonetheless, the self-labelling mechanism does not reflect
the ground truth and possibly delivers noisy label com-
promising the model’s generalization. (e autoregulariza-
tion here plays a role in avoiding this situation by preventing
the important parameters to move away from its optimal
parameters as a result of the originally labelled samples. (at
is, θ and θ∗, respectively, denote the current network

parameters and the optimal parameters induced by the
ground truth while ρ is the indicator of parameter impor-
tance. (e original label, augmented label, and pseudolabel
are mixed here to enable the autoregularization to be exe-
cuted seamlessly [17]. Furthermore, the structural learning
phase takes place in L1 and L2 here because the augmented
label does not reflect the true data distribution undermining
the drift adaptation mechanism and the pseudolabel risks on
noisy label misleading the estimation of bias and variance.
Equation (1) is formed as an unconstrained optimization
problem allowing alternate optimization strategy via the
stochastic gradient descent (SGD) method. Notwithstanding
the fact that pseudolabels might be noisy, the pseudolabel
generation mechanism still plays an important role to en-
hance model’s generalization because it enriches the label
representation; i.e., one might consider extreme label
scarcity here. Moreover, the autoregularization is
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implemented to address the issue of noisy pseudolabels. (e
generative and discriminative phases are carried out alter-
nately here. Note that the infinite delay case only relies on
the augmented label and the pseudolabel.

3.1.1. Generation of Augmented Label. (e issue of label
scarcity is addressed by the label enrichment strategy in-
cluding the generation of augmented label. It results from
the injection of small Gaussian noise to the originally la-
belled samples without changing their labels also known as
the consistency regularization technique. (at is, small
random Gaussian noise with zero mean is utilized to pro-
duce the corrupted version of originally labelled samples,
i.e., N(0, 0.001) [17]. Since the augmented label is drawn
from the true class label, it is not subject to the autor-
egularization method. Furthermore, only augmented label

and pseudolabel are exploited in the infinite delay problem
whereas original label is not retained during the process
runs. In other words, original label is accessed in the warm-
up phase without being carried to the next data streams.

3.1.2. Generation of Pseudolabel. (e label enrichment
mechanism involves the generation of pseudolabel produced
by the self-labelling phase of unlabelled samples. (e self-la-
belling mechanism relies on the network prediction as well as
the ACM prediction if they return high confidence as follows:

P(Y|X)net ≥ α2,

P(Y|X)ACM ≥ α3,
(2)

where α2, α3 are two predefined thresholds set to be higher
than 0.55. (e ACM’s output is calculated as per the output

Input: partially labelled data batches: B1, B2, B3, . . . , BK

for data batch Bk � B1: BK do
Testing and update performance metrics
if k< S then {S: initialization batch number}

for epochs� 1:E do
Update ACM
(Xaug, Yaug)←(Xori, Yori)

Xgen←[Xori, Xaug] {gen:generative phase}
for all Xgen do
Structural evolution
􏽤Xgen←net(Xgen)

Calculate L(Xgen, 􏽤Xgen) {L1 in (1)}
end for
Xdis←[Xori, Xaug]

for all Xdis do {dis:discriminative phase}
Structural evolution
􏽣Ydis←net(Xdis)

Calculate L(Ydis,
􏽣Ydis) {L2 and L3 in (1)}

end for
end for

else
Update ACM
if Bk exists unlabelled data then
Generate pseudolabel (Xps, Yps) via (2)

end if
(Xaug, Yaug)←(Xori, Yori)

Xgen←[Xori, Xaug, (Xps)]

Calculate L(Xgen, 􏽤Xgen) {L1 in (1)}
for all Xgen do
Structural evolution
􏽤Xgen←net(Xgen)

end for
Xdis←[Xori, Xaug, (Xps)]

for all Xdis do
Structural evolution
􏽣Ydis←net(Xdis)

Calculate L(Ydis,
􏽣Ydis) {L2, L3 and (L4) in (1)}

Update net with R in (1) {autoregularization}
end for

end if
end for

ALGORITHM 1: ParsNet++ algorithm.
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posterior probability [20] P(Y|X)ACM � (􏽐
M
m�1

P(yo|Nm)P(Nm)P(X|Nm)/
􏽐

C
o�1 􏽐

M
m�1 P(yo|Nm)P(Nm)P(X|Nm)) where P(Nm) de-

notes the prior probability (Carm/􏽐
M
m�1 Carm), P(yo|Nm)

stands for the class posterior probability
P(yo|Nm) � (Caro,m/􏽐

C
o�1 Caro,m), and P(X|Nm) labels the

likelihood function P(X|Nm) � exp(− (ZL − Cm)2). Carm

stands for the cardinality of the m − th cluster while Caro,m

denotes the cardinality of the o − th class of the m − th
cluster. Furthermore, the network and ACM predictions are
normalized as P(Y|X)net/ACM � y1/(y1 + y2) where y1, y2
denote the highest and second highest outputs. (is trait
underpins the class-invariant trait being similar to the binary
classification problem. As a result, P(Y|X)net/ACM ≈ 0.5
indicates low confidence level and confused prediction. (is
condition implies the predicted output falls adjacent to the
decision boundary. (e pseudolabel is propagated to
model’s update only if the predictive outputs of ACM and
network are agreeable. Despite the pseudolabel generation
mechanism risks on the noisy pseudolabel, it is still inte-
grated in the ParsNet++ learning mechanism because of the
existence of autoregularization making sure only clean
pseudolabels to be learned. On the other hand, α2, α3 control
the self-labelling mechanism where the higher values lead to
the decrease of the pseudolabels whereas the lower values
lead to the increase of the pseudolabels.

3.1.3. Autoregularization Method. (e autoregularization is
developed to cope with noisy pseudolabel leading to accu-
mulation of mistakes. It prevents a model to forget its op-
timal condition resulting from learning original label.
Specifically, it prevents important parameters θ from
moving too far from their previous locations θ∗ resulting in
the performance degradation. (is approach is originally
proposed in the so-called synaptic intelligence (SI) technique

addressing the catastrophic forgetting problem of continual
learning [19]. Our main contribution here is to contextualize
this approach for the semisupervised learning environment
to prevent the catastrophic forgetting problem as a result of
noisy pseudolabel.

(1/2)α1ρ(θ − θ∗)2 still accepts the pseudolabel by setting
α1, regularization factor, as (erecons − emin

recons)/(emax
recons − emin

recons)

where erecons stands for the reconstruction error of the
generative phase only if clean pseudolabel is fed. (at is,
wrong pseudolabel distracts the direction of network’s
gradient resulting in the increase of reconstruction error.
(e Z-score is applied to scale the reconstruction error in the
range of [0, 1]. ρ determines the importance of network
parameters derived from the accumulated network gradient
as follows:

ρ �
􏽐

step
t�1 Δθt zL/zθt( 􏼁

θT( 􏼁
2

+ ε
, (3)

where θT stands for the total parameter movement during
the training process and Δθ denotes the parameter’s
movement during two consecutive time steps θt − θt− 1. ε is a
predefined constant to avoid division with zero. ρ is updated
only when observing the original label and the augmented
label because the autoregularization functions to compen-
sate the noisy pseudolabel. Hence, step denotes the number
of original label and augmented label. It is worth mentioning
that the higher the network gradient is, the more important
the network parameter is. (e parameter importance in-
dicator (3) is calculated in respect to the accumulation of
network loss and network gradients.

3.2. Network Structure of ParsNet++. ParsNet++ is built
upon the convolutional denoising autoencoder structure
where the feature extraction layer utilizes the stacked

Table 1: List of notations.

Notation Meaning
Bk k − th data batch in data streams
x, y Single input data vector and single ground truth output vector separately
X, Y Input data batch and batch label
θ, θ∗ (e current network parameters and optimal network parameters
ρ Network parameter importance, calculated by (3)
α1 Regularization factor: α1 � (erecons − emin

recons)/(emax
recons − emin

recons)

α2, α3 Predefined thresholds in (2)
Carm (e cardinality of the m − th cluster
Caro,m (e cardinality of the o − th class of the m − th cluster
F Convolution layer
Z Feature map
C Cluster center
􏽥ZL Partially destroyed input vector with the masking noise
D(X, Y) (e L − 2 distance between two data samples
Actm (e contribution of m − th cluster
ωm (e mixing coefficient for hidden node pruning criterion
∧ Reconstructed symbol
ACM Autonomous clustering mechanism
ori Original data
aug Augmented data (generation of augmented label of Section 3)
ps Pseudodata (generation of pseudolabel of Section 3)
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convolutional layers while the fully connected layer is
formed as a single-hidden-layer network having a self-or-
ganizing property. It receives raw input features collected
from sensors Xsen

t ∈ R
u which in turn maps them to the

output space Yk ∈ R
m. Specifically, the 1D convolutional

layer is deployed to process the sensor data. Raw samples are
executed by the convolutional layer F(·) as follows:

Z
i
l � F X, Wconvl,i( 􏼁, (4)

where the convolutional layer F(·) is parameterized by a
filter Wl,i

conv denoting the i − th filter of the l − th convolu-
tional layer while Zi

l stands for the feature map of the l − th
layer produced by the i − th filter. (e 1D filter Wl,i

conv ∈ R
g

is used here.
After stacking L convolutional layers, the output of the

last 1D convolutional layer is flattened to produce an input
vector ZL ∈ R

r where r denotes the number of natural
features extracted by the feature extraction part of ParsNet++.
It is passed to a single hidden-layer neural network func-
tioning to classify data samples into m target classes. Par-
sNet++ is underpinned by a closed-loop configuration
between the generative and discriminative learning phases
where the denoising autoencoder (DAE) [21] is implemented
to extract robust input features. (e DAE makes use of noise
injecting mechanism avoiding the identity mapping issue
while functioning as the regularization mechanism. (e DAE
takes the natural features ZL and maps it into the latent space:

fenc � Relu 􏽥ZLWenc + b􏼐 􏼑,

􏽢ZL � fdec � Relu fencWdec + c( 􏼁,
(5)

where Wenc ∈ R
r×j and b ∈ Rj are the connective weights

and bias of the encoder while Wdec ∈ R
j×r and c ∈ Rr are

the connective weights and bias of the decoder. j denotes the
number of hidden nodes. Note that Wdec is the inverse
mapping of Wenc and is known as the tied-weight constraint.
􏽥ZL is a partially destroyed input vector where the masking
noise is used here. (at is, a subset of input vector is set
blank. (e Relu activation function max(0, x) is used here
instead of the sigmoid activation function. (e discrimi-
native phase utilizes a softmax function
softmax(x) � (exp x/􏽐

m
i�1 exp x) to produce the output

class posterior probability:

􏽢y � P(Y|X) � softmax Relu ZlWin + bin( 􏼁Wout + d( 􏼁,

(6)

where Wout ∈ R
j×m, d ∈ Rm are the connective weights and

bias of the softmax layer. ParsNet++ utilizes shared network
parameters between the generative and discriminative
phases where Wenc � Win, bin � b. Both phases are carried
out in the closed-loop fashion where a model is firstly
trained during the generative phase with the absence of
ground truth. (e discriminative phase further refines it
with the presence of class labels.

3.3. Growing and Pruning of Hidden Nodes. ParsNet++’s
structural evolution is governed by the network significance

(NS) method estimating the network bias and variance in the
one-pass learning fashion. M new hidden nodes are added if
the network experiences high bias condition whereas the
hidden node pruning mechanism is triggered in the case of
high variance. M stands for the number of clusters generated
using the autonomous clustering mechanism. It is worth
mentioning that both mechanisms are carried in the gen-
erative and discriminative fashions where the bias and
variance are enumerated in respect to the predictive error
while the reconstruction error is referred to during the
generative phase. We only present the structural learning
mechanism in the discriminative phase here for the sake of
simplicity but the same step can be followed for the gen-
erative phase. (e NS method can be expressed as follows:

NS � E 􏽢y
2

􏽨 􏽩 − E[􏽢y]
2

􏼐 􏼑 +(E[􏽢y] − y)
2

� Var + Bias2. (7)

(e key for solving (7) lies in the expected output E[􏽢y].
ACM is applied here to estimate the complex probability
function p(x) and results in the following expression:

E[􏽢y] � Wout 􏽘

M

m�1
􏽚

+∞

− ∞
relu ZlWin + bin( 􏼁N X;ωm, cm( 􏼁dx,

(8)

where ωm, cm, respectively, denote the m − th mixing co-
efficient and center of clusters, respectively. Equation (8) can
be derived independently for each cluster while the overall
expected output is enumerated by applying the mixing
coefficient ωm taking into account the contribution of each
cluster to the overall estimation. (is step leads to the
following expression:

E[􏽢y] � Wout 􏽘

M

m�1
ωm cmWin + bin( 􏼁, (9)

where 􏽐
M
m�1 ωm � 1 meets the partition of unity property.

On the other hand, the term E[􏽢y2] is derived under the i.i.d
condition leading to E[􏽢y2] � E[􏽢y]E[􏽢y].

(e hidden unit growing condition is formulated using
the statistical process control (SPC) method [22] as follows:

μt
bias + σt

bias ≥ μ
min
bias + σmin

bias ,

k1 � 1.2 exp − Bias2􏼐 􏼑 + 0.8,
(10)

where μt
bias, σ

t
bias are the empirical mean and standard de-

viation of the network bias while μmin
bias , σ

min
bias are the minimum

network bias up to the t − th time instant. μmin
bias , σ

min
bias are reset

once (10) is satisfied while μt
bias, σ

t
bias are calculated across all

samples because of the nature of bias estimation being ac-
curate when considering all samples. Formula (10) is meant
to detect the high bias condition leading to the hidden unit
growing condition. Note that the SPC method in essence
functions to detect anomalous points or a drifting concept.
(e original SPC method is, however, modified here to
induce the flexible confidence level with the use of k1 ∈ [1, 2]

being equivalent to the confidence degree between 68.2%
and 95.2%. It implies the hidden unit growing process to be
carried out in the case of high bias whereas it is hindered in
the case of low bias.
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As with the hidden unit growing mechanism, the hidden
unit pruning strategy is undertaken using the SPCmethod as
follows:

μt
var + σt

var ≥ μ
min
var + 2∗ k2 ∗ σ

min
var ,

k2 � 1.2 exp − var2􏼐 􏼑 + 0.8.
(11)

(e key difference lies in the term 2 directed to avoid a
direct-pruning-after-adding situation. (is leads to the
confidence level between 68.2% and 99.9%. (at is, the
hidden unit pruning condition is carried out frequently in
the case of high variance while the hidden unit pruning
situation is prevented in the case of low variance. Once (11)
is met, the hidden unit pruning condition is executed as
follows:

E[s]≤ μE[s] − 0.5σE[s], (12)

where E[s] � 􏽐
M
m�1 ωm(cmWin + bin) denotes the statistical

approximation of hidden nodes. Equation (12) enables
multiple hidden nodes to be discarded at once and results in
rapid complexity reduction.

3.4. Autonomous Clustering Mechanism. ParsNet++ is
guided by autonomous clustering mechanism (ACM) to
generate a complex probability density function p(x) during
the hidden node growing and pruning processes. It differs
from the original ParsNet [17] where autonomous Gaussian
mixture model (AGMM) is applied. (e bottleneck of
AGMM exists in the high input dimension often being
unstable. ACM features an open structure where clusters are
added or discarded on the fly to cope with the concept drifts
p(x)t ≠p(x)t+1 and is capable of initiating its learning
process from scratch. (e component’s growing process is
governed by the compatibility measure examining the spatial
proximity of a data point to existing clusters whether it is
within the cluster’s coverage. (e cluster pruning technique
makes use of the cluster’s utility checking the cluster’s ac-
tivity during its lifespan.

Suppose that D(X, Y) is the L − 2 distance between two
data samples; the compatibility test is formulated:

D ZL, Cwin( 􏼁> μD + k3σD, (13)

where k3 � 2 exp(− D(ZL, Cwin)2) + 1. μD, σD stand for the
mean and standard deviation of distance calculation
D(ZL, Cwin). As with (10) and (11), (13) is formalised by the
statistical process control (SPC) method. (e use of k3
controls the cluster’s growing process in such a way that the
growing process is performed frequently if a sample is re-
mote to the existing cluster k3 ≈ 2. (is situation portrays a
fact where a data sample is uncovered by existing clusters.
On the other hand, this condition is difficult to be fulfilled if
a data sample is adjacent to existing clusters, i.e., low
clustering loss k3 ≈ 3. A new cluster is constructed if (13) is
satisfied. (at is, the cluster center is set as the sample of
interest CM+1 � ZL with CarM+1 � 1 where M is the number
of clusters. If (13) is violated, the winning cluster is fine-
tuned:

cj,m � cj,m +
X − cj,m􏼐 􏼑

Carm + 1
,

Carm � Carm + 1,

(14)

where Carm denotes the cluster’s cardinality. Note that the
adaptation process is localized only to the winning cluster
to avoid the cluster’s overlapping case and associates the
data sample of interest to the winning cluster. (at is, the
cluster’s cardinality is incremented here. Equation (14)
ensures the cluster’s convergence as the factor of the
cluster’s cardinality.

(e cluster pruning procedure is implemented to pre-
vent the issue of cluster’s explosion due to the problem of
outliers. (at is, outliers are wrongly inserted as clusters by
(13). It checks the cluster’s significance whether it plays a
major role during its lifespan. A cluster can be pruned
without loss of generalization if it plays little during their
lifespan. (e cluster’s contribution is examined from the
average of cluster activity as follows:

Actm �
􏽐

Life
n�1Φm

Life
, (15)

where Φm � exp(− (ZL − Cm)2) measures the spatial prox-
imity of a data sample to the cluster of interest in the latent
space while Life denotes the time period of a cluster since it is
added. Furthermore, the unity variance is assumed in cal-
culatingΦm where σ2 � 1.(e cluster pruning mechanism is
executed as follows:

Actm ≤ μActm − 0.5∗ σActm
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (16)

(e cluster pruning mechanism enables more than one
cluster to be discarded at once leading to rapid complexity
reduction and follows the half-sigma rule. Furthermore, the
number of clusters M is also used as an addition factor in the
network growing phase (10) because the clustering mech-
anism explores the true data distribution. As an imple-
mentation note, the monitoring period is applied here. (at
is, a cluster is not removed during the monitoring period to
evolve its shape. On the other hand, the mixing coefficient,
ωm, is formed as the relative cardinality as follows:

ωm �
Φ∗mCarm

􏽐
M
m�1Φ

∗
mCarm

, (17)

where it features the partition of unity property and takes
into account both the distance information and the cluster
support. A cluster should possess high influence in the
network bias and variance estimation if it is adjacent to the
data sample of interest and has high population.

4. Injection Molding Process

eScentz, as shown in Figure 1, is a scent-emitting USB device
made by SIMTech. It is used as the testbed product at the
model factory@SIMTech. (e injection moulding process is
used to manufacture the black cartridge, white cartridge
holder, and a transparent part which is used to contain the
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scent in the cartridge. (e injection molding machine
(Arburg Allrounder 470 A) is shown in Figure 2.

Focus is on the transparent part as it is critical to the
functionality of the device; i.e., defects in the part can lead to
leaking of the liquid scent. (ere are a number of different
types of possible defects but the most common ones are flow
lines which is a mark or line formed when two melt flow
fronts meet during the filling of the injection mold and short
shot where the mold is partially filled with plastic melt [23].
Examples of a good part and the different types of defects are
shown in Figure 3.

5. Numerical Study

(is section demonstrates the advantage of ParsNet++ in
assessing the quality of transparent mold manufactured by
the injection molding machine. ParsNet++ is simulated in
two simulation environments: random access of ground
truth and infinitely delayed access of ground truth. (e
former one describes a case where each data batch contains
partially labelled data points with unknown class distribu-
tion while the latter one portrays a semisupervised problem
where ground truth is accessed only in the initial phase
leaving the rest unlabelled. 50% of labelled samples are set as
the default setting for the random access of ground truth.
(e infinitely delayed access of ground truth only utilizes the
first data batch. Furthermore, both scenarios are simulated
in the prediction of current batch as well as future batch.(e
prediction of current batch monitors the current quality of
transparent molds Yk based on the sensor data Xk. (e
prediction of future batch relies on the current data batch to
forecast the future product quality Yk+1. (e contribution of
each learning module is studied in the ablation study section
while the effect of label proportions is elaborated. Our
numerical study follows the prequential test-then-train
procedure, the standard evaluation protocol of data stream
mining. Moreover, the t-test is put forward to statistically
validate the numerical results.

5.1. Baselines. (e numerical results of ParsNet++ are
benchmarked against recently published algorithms in the
literature:

(i) Online deep learning (ODL) [24] is an online
learning algorithm constructed under the vanilla
neural network structure. It makes use of the
hedging idea where there exists a direct connection
of the hidden layer to the output layer.

(ii) Neural networks with dynamically evolved capacity
(NADINE) [18] adopts a flexible network structure
under the multilayer perceptron (MLP) architec-
ture. (at is, both of hidden layers and nodes are
dynamically grown and reduced in respect to var-
iations of data streams.

(iii) Parsimonious network (ParsNet) [17] is perceived as
a predecessor of ParsNet++. ParsNet++ distin-
guishes itself of ParsNet with the presence of feature
extraction layer crafted under the convolutional
framework; 1D CNN is integrated to handle raw
input features. In addition, ParsNet++ is under-
pinned by the ACM rather than AGMM to perform
density estimation on the fly.

(iv) SCARGC [25] is devised for the infinite delay
problem and considered as a state-of-the art algo-
rithm in this domain. It utilizes the pool-based
principle.

Since these algorithms are not designed to handle visual
data of high dimension, their predictions are only guided by
sensory data Xsen ∈ R48. (e use of image data significantly
reduces its performance due to the absence of the feature
extraction layer. In addition, comparison is also made
against two popular deep learning algorithms, ResNet18 [26]
and VGG11 [27], only using the image data happening to be
an RGB image with a size of Ximg ∈ R150×150×3. (ey do not
exploit the sensor data due to the absence of 1-D CNN. All of
the algorithms except ParsNet and SCARGC are a fully
supervised algorithm. (e simplest structure of ResNet and
VGG is adopted here because of the low data size leading to
the issue of overfitting. All algorithms are executed under the
same computational platform by using their published codes
and run under the same simulation protocol as ParsNet++ to
ensure fair comparison. (e numerical results are taken
from the average of five consecutive runs.

5.2. Network Structure and Hyperparameters. ParsNet++
utilizes 1D CNN as a feature extractor to predict the mold
quality Yk where 1D CNN looks after the raw sensory data.
Extracted features from the CNN are concatenated into a
long vector and fed to the fully connected layer, a single-
hidden-layer neural network with the self-evolving property.

Figure 1: eScentz, scent-emitting USB device made by SIMTech.

Figure 2: Injection molding machine used to collect experimental
data at the model factory@SIMTech.
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1D CNN is developed from 3 convolutional layers under-
pinned by the 1D filter. (e number of input and output
channels across the three layers is, respectively, set as
[48, 60], [60, 40], and [40, 20] for injection molding dataset.
For transfer molding dataset, two-layer 1D CNN has been
applied as feature extractor, in which the input and output
channels are [608, 8] and [8, 4], respectively.

(e hyperparameters of ParsNet++ are fixed throughout
our simulation scenario as α2 � 0.6 and α3 � 0.8 while the
learning rates and momentum coefficient are selected as 0.01
and 0.95 of stochastic gradient descent optimizer (SGD).
Hyperparameters of other algorithms are chosen as those
reported in their original papers. We chose 100 as the batch
size for all algorithms. Table 2 reports the hyperparameters
of consolidated algorithms. For injection molding dataset,
initialization batch S and epochs E, shown in Algorithm 1,
are 5 and 10 in sporadic access experiment and 1 and 15 in
infinite delay experiment. For transfer molding dataset, S
and epochs are 1 for both sporadic access and infinite delay
experiment which also signify that ParsNet++ runs in the
single pass way.

5.3. Numerical Results. Table 3 reports our numerical re-
sults for the current batch prediction under the setting of
sporadic access of ground truth. It is evident that Par-
sNet++ outperforms ParsNet with significant gap. (is
finding clearly encourages the 1D CNN of ParsNet++
automatically extracting deep natural features and the
ACM technique for estimation of probability density
function. Moreover, ParsNet++ beats NADINE, ODL
happening to be a fully supervised algorithm with signif-
icant margin. Note that ParsNet, ODL, and NADINE are
guided by sensor data as with ParsNet++. ParsNet++ is
compared with ResNet18 and VGG11 making use of image
data and being popular deep learning approaches. Al-
though the two approaches are an offline algorithm trained
in the offline fashion and are fully supervised, ParsNet++
exhibits superior performances. (at is, ParsNet++ exceeds
VGG11 and ResNet18 with noticeable difference. (is
result is confirmed with the statistical test in Table 4 where
the performance gap between ParsNet++ against all al-
gorithms is statistically significant.

Table 5 exhibits our consolidated numerical results for
the next batch prediction. (e same finding as the current

batch prediction is found here where ParsNet++ beats
ParsNet with significant performance gap. (is facet sub-
stantiates the advantage of feature extraction module of
ParsNet++ generating deep natural features while ACM
approximates the true probability distribution better than
the AGMM of ParsNet. By extension, ParsNet++ outper-
forms fully supervised algorithms, NADINE and ODL,
working with more favourable condition than ParsNet++.
NADINE, ODL, and ParsNet are akin to ParsNet++ where
raw sensor data are exploited as input features but suffer
from the absence of feature extraction layer. Our numerical
results are statistically validated with the statistical test in
Table 6 where ParsNet++’s performance is statistically better
than its competitors.

In realm of infinitely delayed access of ground truth,
ParsNet++ delivers superior performance with almost 40%
improvement from ParsNet and SCARGC. ParsNet++’s
accuracy is 85.60% for the current batch prediction and
83.25% for the next batch prediction whereas its counter-
parts deliver the accuracy below 50%. (is mechanism
confirms the generalization power of ParsNet++ in dealing
with various semisupervised learning situations. (ese nu-
merical results are presented in Tables 6 and 7. Note that the
true class labels are only supplied in the initial batch for the
infinite delay case beingmore challenging condition than the
sporadic access case. (is facet is confirmed by the fact
where numerical results of all algorithms worsen. Figure 4
visualizes the predictive quality of ParsNet++ where pre-
cision, recall, and F1 metrics show similar trend. (is ob-
servation signifies the fact that ParsNeT++ handles all target
classes equally well. (e detailed numerical results are
presented in Table 8. In addition, this figure also depicts the
dynamic nature of ParsNet++ in which its hidden nodes are
dynamically added and pruned on the fly. It is also observed
that ParsNet++ timely responds on performance decrease as
a result of concept drifts. (at is, new nodes are injected if
network’s performance is compromised in the case of
concept drift.

5.4. Ablation Study. (e ablation study is carried out to
validate the influence of each learning module of ParsNet++.
ParsNet++ is configured into three variations: (A) ParsNet++ is
set with only the parameter learning scenario using the sto-
chastic gradient descent method with the absence of other

(a) (b) (c)

Figure 3: Different types of defects in the transparent part used to seal the liquid scent in the cartridge. (a) Normal. (b) Flow lines. (c) Short
shot.
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learning modules. (at is, the label augmentation mechanism,
the dynamic regularization mechanism, and the structural
learning mechanism are deactivated; (B) ParsNet++ is

equipped by the label enrichment mechanism and the dynamic
regularization mechanism but with the absence of structural
learning method; (C) the structural learning mechanism of
ParsNet++ is switched on but without the pseudolabel gen-
eration step and the dynamic regularization mechanism. Our

Table 2: Hyperparameters of the model.

Model Learning rate Others
ParsNet++ 0.01 Momentum: 0.95, α2 � 0.6, α3 � 0.8, ε � 0.001

ParsNet 0.01 Momentum: 0.95, confidence level of network: 0.6, confidence level of AGMM:
0.55

ODL 0.01 β � 0.99
SCARGC — Number of clusters: 100, pool size: 300

NADINE Dynamic between [0.001,
0.02] Momentum: 0.95

ResNet18 and
VGG11 0.01 Momentum: 0.95

Table 3: Classification performance on injection molding dataset of sporadic access current batch prediction scenario.

Model Accuracy
ParsNet++ 0.9136 ± 0.0061
ParsNet 0.8214 ± 0.0116
NADINE∗ 0.7690 ± 0.0228
ODL∗ 0.8040 ± 0.0001
ResNet18# 0.8650 ± 0.0085
VGG11# 0.8410 ± 0.0099
Note: ∗ indicates that the numerical results of the corresponding baseline used fully supervised sensor data; # indicates that the numerical results of the
corresponding baseline exploit fully supervised image data.

Table 4: t-test result on injection molding dataset.

Scenario Model 1 Model 2 T value P value

Sporadic access (current batch prediction)

ParsNet++ ParsNet 15.7305 2.66e− 07
ParsNet++ NADINE 13.6995 7.77e− 07
ParsNet++ ODL 40.1705 1.62e− 10
ParsNet++ ResNet18 10.3871 6.39e− 06
ParsNet++ VGG11 13.9605 6.72e− 07

Sporadic access (next batch prediction)
ParsNet++ ParsNet 16.7425 1.64e− 07
ParsNet++ NADINE 26.3042 4.69e− 09
ParsNet++ ODL 11.328168 3.32E− 06

Infinity delay (current batch prediction)
ParsNet++ ParsNet 33.8308 6.37e− 10
ParsNet++ SCARGC-SVM 44.5193 7.15e− 11
ParsNet++ SCARGC-1NN 32.4618 8.84e− 10

Infinity delay (next batch prediction)
ParsNet++ ParsNet 18.9618 6.19e− 08
ParsNet++ SCARGC-SVM 23.5353 1.13e− 08
ParsNet++ SCARGC-1NN 28.3756 2.57e− 09

Table 5: Classification performance on injection molding dataset
of sporadic access next batch prediction scenario.

Model Accuracy
ParsNet++ 0.9204 ± 0.0129
ParsNet 0.7968 ± 0.0103
NADINE∗ 0.7646 ± 0.0003
ODL∗ 0.7949 ± 0.0002
Note: ∗ indicates that the numerical results of the corresponding baseline
are fully supervised.

Table 6: Classification performance on injection molding dataset
of infinity delay current batch prediction scenario.

Model Accuracy
ParsNet++ 0.8560 ± 0.0182
ParsNet 0.4740 ± 0.0175
SCARGC-SVM 0.3877 ± 0.0149
SCARGC-1NN 0.3466 ± 0.0300
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numerical results are produced under future batch prediction,
all of which are executed under the sporadic access of ground
truth with 50% labelled samples. Table 9 exhibits our numerical
results.

It is observed that the worst-performing result comes
from the model (A) where all mechanisms are turned off.
(e label enrichment mechanism and the dynamic regu-
larization mechanism enhance the performance by almost

Table 7: Classification performance on injection molding dataset of infinity delay next batch prediction scenario.

Model Accuracy
ParsNet++ 0.8325 ± 0.0348
ParsNet 0.3943 ± 0.0382
SCARGC-SVM 0.4014 ± 0.0216
SCARGC-1NN 0.3536 ± 0.0146

Table 8: Classification metrics injection molding dataset of ParsNet++.

Experiment F1 Precision Recall
Sporadic access-current 0.9122 ± 0.0065 0.9254 ± 0.0054 0.9170 ± 0.0062
Sporadic access-next 0.9201 ± 0.0132 0.9323 ± 0.0075 0.9252 ± 0.0126
Infinity delay-current 0.8517 ± 0.0194 0.8749 ± 0.0144 0.8607 ± 0.0185
Infinity delay-next 0.8251 ± 0.0411 0.8559 ± 0.0443 0.8410 ± 0.0322
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Figure 4: Comparison of classification metrics on injection molding dataset. (a) Sporadic access on current batch prediction and
(b) sporadic access on next batch prediction.
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10% as reported byModel (B).(is fact clearly demonstrates
the advantage of these learning strategies in coping with the
issue of label’s scarcity. Noticeable performance improve-
ment is attained using the structural learning mechanism
clearly confirming the advantage of a dynamic structure
from that of a static structure as shown in Model (C). (is
case portrays the importance of drift handling mechanism
when handling the problem of data streams. Note that
Model (C) excludes the pseudolabel generation mechanism
and the dynamic regularization approach. (e numerical
result increases further when combining the self-evolving
structure, the label enrichment mechanism, and the dynamic
regularization mechanism as exemplified by ParsNet++
configuration. (is configuration enables the issue of label
scarcity and concept drift to be simultaneously overcome.

5.5. Effect of Label Proportions. (is section examines the
learning performance of ParsNet++ under different label
proportions. (at is, ParsNet++’s performance is evaluated
under seven label proportions: 10%, 20%, 30%, 40%, 50%,

60%, 70%. (e simulation protocol follows the sporadic
access of ground truth in which two evaluation metrics,
accuracy and F1, are applied. Table 10 reports the average
numerical results across five independent runs.

Our numerical results show that ParsNet++’s perfor-
mance is compromised with only 5% of labelled samples.
(e increase of label proportions improves its learning
performance and this trend does not continue after 50%
label proportion.(e best-performing result is achieved with
50% labelled samples whereas performance’s deterioration is
observed with 60% and 70% labelled samples compared to
that of 50% labelled samples. (is finding demonstrates that
the increase of labelled samples does not ensure the per-
formance’s improvement. (e performance deterioration
with 60% and 70% labels results from the issue of sample
redundancy due to the consistency regularization step in
which small perturbations are injected to original samples
without changing their labels.(e consistency regularization
method might lead to the issue of overfitting if the pro-
portion of labelled samples is high. (at is, it produces
indistinguishable samples which slightly affect model’s
generalization. Note that the 50%, 60% cases are better than
the 40% case.

5.6. Industrial Transfer Molding Process. (e industrial
transfer molding process portrays a process from a semi-
conductor industry occurring in the encapsulation stage
where a batch of integrated circuits (ICs) are packaged in a
case to avoid corrosion and physical damage [15]. (e

quality monitoring step in this phase plays a key role because
it might result in heavy penalties if defective products are
sent to the customer.(e encapsulation process makes use of
an industrial transfer molding machine, very similar to the
injection molding machine where it is used to form the
support of electronic components. (at is, the transfer
molding is a process whereby the casting material is entered
into the mold [15].

Each production is undertaken in lot sizes having 1 to
424 strips where each strip comprises a number of products.
(e product quality is examined only after the complete lot
has been finished. (e goal of this problem is to feed real-
time prediction of the product quality while being still in
production. (e use of artificial intelligence (AI) is urgently
required because it enables redundancy in checking such
that the product’s integrity is ensured. We collected pro-
duction data over the period of six months. (is problem is
formulated as a binary classification problem and suffers
from the class imbalanced problem where only 4% of data
contains defects while the remainder is of the normal class.
(e unique property of this problem lies in the many-to-one
label relationship where multiple instances are assigned with
a single label. (at is, the quality of product is not deter-
mined from a single product quality rather the whole lot. If a
lot happens to have over 48 defects, the whole lot is thrown
away or this case portrays the defect case.

Our numerical study follows the prequential test-then-
train protocol as the injection molding problem where one
step ahead prediction is simulated. (at is, a model is used
to predict the quality of next lot based on the current
machine parameters and process variables. Both the spo-
radic access of ground truth and the infinitely delayed
access of ground truth are simulated here. Important pa-
rameters of the moulding process include cavity pressure,
ram velocity, ram position, and mould temperatures. (is
problem is a high-dimensional problem with 608 input
features. Tables 11 and 12 report our numerical results for
both the sporadic access and the infinite delay scenarios.
ParsNet++ is compared with ParsNet and SCARGC. Since
this problem suffers from the many-to-one label rela-
tionship where many data samples are associated with a
single class label, a simple mean operation is executed for
the feature extraction strategy in ParsNet and SCARGC.
Note that this case is not applicable for ParsNet++ because
the use of 1DCNN enables automatic feature engineering
where data points of each lot/strip are scanned using 1D
filter.

Table 9: Classification performance on ablation study of sporadic
access on next batch prediction of injection molding dataset.

Accuracy F1 score Nodes
A 0.7951 ± 0.0906 0.7608 ± 0.1376 —
B 0.8875 ± 0.0112 0.8815 ± 0.0141 —
C 0.9172 ± 0.0182 0.9156 ± 0.0190 128.4 ± 46.7
ParsNet++ 0.9204 ± 0.0129 0.9201 ± 0.0132 96.4 ± 26.3

Table 10: Classification performance of ParsNet++ in the injection
molding problem with different label proportions.

Labeled percentage (%) Accuracy F1 score
10 0.8047 ± 0.0291 0.7834 ± 0.0422
20 0.8509 ± 0.0354 0.8444 ± 0.0420
30 0.8805 ± 0.0161 0.8773 ± 0.0194
40 0.8847 ± 0.0189 0.8830 ± 0.0213
50 0.9204 ± 0.0129 0.9201 ± 0.0132
60 0.8969 ± 0.0232 0.8939 ± 0.0246
70 0.9035 ± 0.0133 0.9032 ± 0.0152
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It is obvious from Table 11 that ParsNet++ and ParsNet
exhibit comparable performance in the context of sporadic
access protocol. (is finding is supported by the fact of class
imbalance where only 4% of data samples belong to the
positive class. On the contrary, ParsNet++ outperforms both
SCARGC and ParsNet in the case of infinite delay as shown
in Table 12. (is observation substantiates ParsNet++
generalization power in coping with different scenarios of
semisupervised learning. Note that the infinite delay
problem is more challenging than the sporadic access
problem because true class labels are supplied only in the
warm-up phase.(is issue leads to performance degradation
of ParsNet and SCARGC where the automatic feature en-
gineering step is absent; i.e., features are extracted by ap-
plying the mean operation. Nonetheless, we acknowledge
that the class imbalance problem still deserves in-depth
future study. It is seen from the low F1 scores of consolidated
algorithms.

5.7. Sensitivity Analysis. (is subsection aims to study the
effect of hyperparameters to the performance of ParsNet++.
Specifically, the effect of α2, α3 is analyzed while excluding
other parameters. Other hyperparameters such as mo-
mentum coefficient and learning rate are set to the same
values for all consolidated algorithms. In addition, they are
default parameters of SGD method where their effects have
been well-understood from the literature. ε is merely a small
constant to avoid division with zero. (e sensitivity analysis
is carried out by varying α2 � [0.2, 0.4, 0.6, 0.8] and
α3 � [0.2, 0.4, 0.6, 0.8]. Table 13 reports the numerical results
of all combinations. α2, α3 are required to be set higher than
0.55; therefore, 0.6 and 0.8 are selected for α2, α3, respec-
tively. Note that we do not apply specific hyper-parameter
selection in our main experiments. (at is, only simple
hand-tuning is applied to set the parameters. Our sensitivity
analysis is undertaken in the case of sporadic access of
ground truth under the next batch prediction with 50% label
proportion.

From Table 13, variation of α2, α3 does not lead to
significant performance deterioration. (at is, the difference

between the worst and best results is around 2%. It is worth
stressing that α2, α3 should be set higher than 0.55 since it
reflects the confused prediction. (is aspect should narrow
down the choice of hyperparameters, i.e., α2, α3 ∈ [0.2, 0.4]

to be unreasonable values. Such a case leads to performance
variation to be less than 1%. On the other hand, α2, α3 govern
the pseudolabel generation where predictions of the network
and the ACM are used to generate the pseudolabel. (e case
of α2 � α3 � 0.2 produces the worst result because it pro-
duces too many noisy pseudolabels. (e increase of α3
improves the prediction because it reduces the prediction’s
uncertainty of ACM. Note that the ACM’s prediction relies
on the class posterior probability P(yo|Nm) where it no
longer represents the class distribution in the case of extreme
label scarcity.

6. Conclusion

A semisupervised quality classification in data stream en-
vironments including its deep learning solution termed
Parsimonious Networks++ (ParsNet++) is presented in this
paper. ParsNet++ features an open structure automatically
generating and pruning its hidden nodes on the fly thereby
addressing concept drifts of partially labelled data streams.
(e parameter learning strategy is formulated as a joint
optimization problem of the reconstruction loss, the pre-
dictive loss of the original label, the predictive loss of the
augmented label, and the predictive loss of pseudolabel. In
addition, the regularization strategy is put forward to
combat the noisy pseudolabel problem preventing the im-
portant parameters to be perturbed by the noisy pseudo-
labels. ParsNet++ extends ParsNet with the integration of
feature extraction layer enabling automatic feature engi-
neering mechanism. 1D CNN is integrated to perform the
automatic feature engineering step and to handle the many-
to-one label relationship while incorporating the ACM for
flexible density estimation approach. Comprehensive ex-
periments with the injection molding machine and the
industrial transfer moldingmachine have been carried out to
experimentally validate the advantage of ParsNet++. Par-
sNet++ is tested in two semisupervised learning scenarios:
infinite delay access of ground truth and random access of
ground truth with comparisons against prominent algo-
rithms for both current batch quality monitoring and future
batch quality monitoring. ParsNet++ outperforms its

Table 12: Classification performance on transfer molding dataset
for infinite delay next batch prediction.

Model Accuracy F1 Nodes
ParsNet++ 0.9582 ± 0.0000 0.4892 ± 0.0000 7.00 ± 2.19
ParsNet 0.8844 ± 0.0310 0.5052 ± 0.0098 22.03 ± 2.91
SCARGC-SVM 0.9227 0.5023 —
SCARGC-NN 0.8959 0.4974 —

Table 11: Classification performance on transfer molding dataset
for next batch prediction.

Model Accuracy F1 Nodes
ParsNet++ 0.9566 ± 0.0004 0.4888 ± 0.0001 33.0 ± 24.36
ParsNet 0.9577 ± 0.0001 0.4892 ± 0.0001 20.94 ± 2.64

Table 13: Classification performance for sensitivity analysis of
ParsNet++ in the next batch prediction.

α2 � 0.2 α2 � 0.4 α2 � 0.6 α2 � 0.8

α3 � 0.2 0.9019 +/−
0.0218

0.9019 +/−
0.0218

0.9019 +/−
0.0218

0.9204 +/−
0.0116

α3 � 0.4 0.9055 +/−
0.0204

0.9055 +/−
0.0204

0.9055 +/−
0.0204

0.9182 +/−
0.0139

α3 � 0.6 0.9123 +/−
0.0146

0.9123 +/−
0.0146

0.9123 +/−
0.0146

0.9135 +/−
0.0149

α3 � 0.8 0.9204 +/−
0.0129

0.9204 +/−
0.0129

0.9204 +/−
0.0129

0.9183 +/−
0.0124

Bold value shows the parameters that we used in the experiment.
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counterparts with noticeable margin and delivers compa-
rable accuracy to those of fully supervised learning algo-
rithms. (ere are few important issues unexplored in
ParsNet++. (e issue of class imbalance still deserves an in-
depth study where this issue requires a specific strategy in
order to reduce false positive rates of ParsNet++’s predic-
tion. (is aspect is seen in ParsNet++’s results of the in-
dustrial transfer molding problem where the F1 score is
rather low. Another uncharted area lies in the issue of
transferability to different machines. Its solution makes
possible to utilize a single model to be transferred across
different machines of the same types or different types with
little capital expenditure.
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