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Recent advances in computing and network technologies
have contributed much to the successful handling of certain
problems in biology, physics, economics, and so forth that
until recently were thought too difficult to be analyzed.
These complex systems problems tend to share a number
of interesting properties from a mathematical viewpoint. A
key feature of such systems is that the nonlinear interactions
among its components can lead to interesting emergent
behavior.

The overall aim of this special issue is to bring together
the latest/innovative knowledge and advances in mathe-
matics for handling complex systems, which may depend
largely on methods from artificial intelligence, statistics,
operational research, and engineering, including nonlinear
dynamics, time series analysis, dynamic systems, cellular
automata, artificial life, evolutionary computation, game
theory, neural networks, multi-agents, and heuristic search
methods. The solicited papers in this special issue should
provide solutions, or early promises, to modeling, analysis,
and control problems of real-world complex systems, such
as communication systems, process control, environmental
systems, intelligent manufacturing systems, transportation
systems, and structural systems. Topics include, but are not
limited to: (1) control systems theory (behavioural systems,
networked control systems, delay systems, distributed sys-
tems, infinite-dimensional systems and positive systems), (2)
networked control (channel capacity constraints, control over
communication networks, distributed filtering and control,
information theory and control, and sensor networks), and
(3) stochastic systems (nonlinear filtering, nonparametric

methods, particle filtering, partial identification, stochastic
control, stochastic realization, and system identification).

We have solicited submissions to this special issue from
electrical engineers, control engineers, mathematicians, and
computer scientists. After a rigorous peer review process, 29
papers have been selected that provide overviews, solutions,
or early promises, to manage, analyze, and interpret dynami-
cal behaviours of complex systems.These papers have covered
both the theoretical and practical aspects of complex systems
in the broad areas of dynamical systems, mathematics,
statistics, operational research, and engineering.

Recently, there have been significant advances on analysis
and synthesis of complex systems with randomly occurring
incomplete information. In the paper entitled “A review on
analysis and synthesis of nonlinear stochastic systems with
randomly occurring incomplete information” by Z.Wang et al,
the focus is to provide a timely review on the recent advances
of the analysis and synthesis issues for nonlinear stochastic
systemswith randomly occurring incomplete information. In
the context of systems and control, incomplete information
refers to a dynamical system in which knowledge about the
system states is limited due to the difficulties in modeling
complexity in a quantitative way. The well-known types of
incomplete information include parameter uncertainties and
norm-bounded nonlinearities. Recently, in response to the
development of network technologies, the phenomenon of
randomly occurring incomplete information has become
more and more prevalent. Most commonly used methods
for modeling randomly occurring incomplete information
are summarized. Based on the models established, various
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filtering, control and fault detection problems with ran-
domly occurring incomplete information are discussed in
great detail. Such kind of randomly occurring incomplete
information typically appears in a networked environment,
which includes randomly occurring uncertainties, randomly
occurring nonlinearities, randomly occurring saturation,
randomly missing measurements, and randomly occurring
quantization. Subsequently, latest results on analysis and
synthesis of nonlinear stochastic systems with randomly
occurring incomplete information are reviewed. Finally,
some concluding remarks are drawn and somepossible future
research directions are pointed out.

During the past decades, the problems of stability analysis
and stabilization synthesis of complex systems have received
significant attentions. In the paper entitled “Almost sure
stability and stabilization for hybrid stochastic systems with
time-varying delays” by H. Shu et al., the almost sure stability
analysis and stabilization synthesis problems are investigated
for hybrid stochastic delay systems. The stability conditions
are presented such that the underlying systems are almost
sure stable. Following the same idea as in dealing with the
stability problem, the linear state feedback controllers are
designed such that the special nonlinear or linear closed-
loop systems are almost sure stable. The explicit expressions
for the desired state feedback controllers are given in terms
of the solutions to a set of linear matrix inequalities. Two
simulation examples are given to illustrate the effectiveness of
the theoretical results. The stability analysis and semistability
theorems are given in “Semistability of nonlinear impulsive
systems with delays” by Y. Gao and X. Mu for delay impulsive
systems. A set of Lyapunov-based sufficient conditions is
proposed to guarantee the desired stability properties. In
the paper entitled “Stabilization of time-varying system by
controllers with internal loop” by C. Shi and Y. Lu, the
concept of stabilizationwith internal loop is given for infinite-
dimensional discrete time-varying systems in the framework
of nest algebra. A parameterization of all stabilizing con-
trollers with internal loop is proposed. It is shown that the
strong stabilization problem can be completely solved in
the closed-loop system with internal loop. Moreover, the
problem of controller design is studied in “𝐿

∞
control with

finite-time stability for switched systems under asynchronous
switching” by R. Wang et al. for switched systems under
asynchronous switching with exogenous disturbances. It is
shown that the switched system is finite-time stabilizable
under asynchronous switching satisfying the average dwell-
time condition. Furthermore, the problem of 𝐿

∞
control

for switched systems under asynchronous switching is also
investigated. Finally, a numerical example is given to illustrate
the effectiveness of the proposed method.

The design of controller has long been the main stream of
research topics and much effort has been made for complex
systems. In the paper entitled “MPC schemes guaranteeing
ISDS and ISS for nonlinear (time-delay) systems” by L. Naujok
and S. Dashkovskiy, new directions in model predictive
control (MPC) are introduced. The input-to-state dynam-
ical stability and MPC are combined for the single and
interconnected systems. The MPC schemes are employed
to ensure the input-to-state stability of single systems and

networks with time delays. Subsequently, the robust finite-
time𝐻

∞
control is studied in “Robust finite-time𝐻

∞
control

for impulsive switched nonlinear systems with state delay” by
Z. Xiang et al. for a class of impulsive switched nonlinear sys-
tems with time-delay. By employing the piecewise Lyapunov
function, sufficient conditions are developed to ensure the
finite-time boundedness of the impulsive switched system.
In the work entitled “Robust anti-windup control considering
multiple design objectives” by G. Sun et al., a unified synthesis
method of the construction of multi-objective and robust
antiwindup controller is proposed for linear systems with
actuator saturations, time-varying parametric, and dynamic
uncertainties. The analysis and synthesis conditions are
developed in terms of the scaled linear matrix inequalities.
The impulsive neutral second-order stochastic functional
evolution equations are investigated in “Controllability of
second-order semilinear impulsive stochastic neutral functional
evolution equations” by Y. Ding et al. By using the Sadovskii
fixed point theorem and the theory of strongly continuous
cosine families of operators, the sufficient conditions for the
controllability of the system are given. Based on the mean
and the standard deviation of lead time demand, in the paper
entitled “Distribution-free continuous review inventory model
with controllable lead time and setup cost in the presence of a
service level constraint” by B.-B. Qiu and W.-MMA, the joint
decision problem of continuous review inventory is studied.

Networked control systems (NCSs) have attracted much
attention owing to their successful applications in a wide
range of areas. Accordingly, the design of controller for
NCSs has attracted considerable attention. In the paper
entitled “Linear matrix inequalities in multirate control over
networks” by A. Cuenca et al., the networked induced phe-
nomena of bandwidth constraints and time varying delays
are considered. Some stability conditions and a state feedback
controller design are proposed. Two practical examples are
given to illustrate the usefulness of the theoretical results.
By utilizing probability-dependent Lyapunov method, the
problem of gain-scheduled control is studied in “Probability-
dependent static output feedback control for discrete-time
nonlinear stochastic systems with missing measurements” by
G. Wei et al. for a class of discrete time stochastic systems
with infinite-distributed delays andmissingmeasurements. A
time-varying Lyapunov functional dependent on the missing
probability is constructed with hope to improve the per-
formance of the gain-scheduled controller. A static output
feedback controller with scheduled gains is designed. In
the work entitled “Observer-based stabilization of stochastic
systems with limited communication” by J. Wu et al., the
problem of observer-based stabilization is investigated in
stochastic nonlinear systems with limited communication.
The phenomena of network-induced delays, data packet
dropouts, and measurement quantization are considered. A
new stability condition is derived for the stochastic nonlinear
system and the design procedure of observer-based controller
is given. In the paper entitled “Finite-time boundedness and
stabilization of networked control systems with time delay” by
Y. Sun et al., the finite-time control problem is studied for a
class of networked control systems with time delay. Sufficient
conditions are given to ensure the finite-time boundedness
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and stabilization of the underlying systems. By using the
Lyapunov stability theory and discrete Halanay inequality,
the exponential synchronization is addressed in “Exponential
synchronization analysis and control for discrete-time uncer-
tain delay complex networks with stochastic effects” by T.Wang
et al.for a class of discrete-time uncertain complex networks
with stochastic effects and time delay. Some synchronization
criteria and two control methods are obtained.

In the past decades, the issue of parameter estimation has
received considerable research interests and has found suc-
cessful applications in a variety of areas. In the paper entitled
“MIMO LPV state-space identification of open-flow irrigation
canal systems” by A. Grau et al., by identification in a local
way using amultimodel approach, a linear parameter-varying
(LPV) state-space canal control model is obtained. This LPV
identification procedure is based on subspace methods for
different operating points of an irrigation canal covering
the full operation range. Different subspace algorithms are
compared. Subsequently, the parameter estimation problem
is studied in “Asymptotic parameter estimation for a class of
linear stochastic systems using Kalman-Bucy filtering” by H.
Shu et al. for a general class of linear stochastic systems. The
Kalman-Bucy linear filtering is used to solve the parameter
estimation problem. The asymptotic convergence of the esti-
mator is investigated by analyzing Riccati equation and the
strong consistent property is studied by comparison theorem.
In the work entitled “Uniform approximate estimation for
nonlinear nonhomogenous stochastic system with unknown
parameter” by X. Kan and H. Shu, the error bound in
probability between the approximate maximum likelihood
estimator (AMLE) and the continuous maximum likelihood
estimator (MLE) is investigated for nonlinear nonhomoge-
nous stochastic system with unknown parameter. The rates
of convergence of the approximations for Ito and ordinary
integral are introduced. Based on these results, the proba-
bilistic rate of convergence of the approximate log likelihood
function to the true continuous log-likelihood function is
studied for the nonlinear nonhomogenous stochastic system
involving unknown parameter. Finally, the error bound in
probability between the ALME and the continuous MLE is
given. In the paper entitled “D-Optimal design for parameter
estimation in discrete-time nonlinear dynamic systems” by Y.
Liu et al., an optimal input design method is presented for
parameter estimation of a discrete nonlinear system. In the
paper entitled “Estimation for stochastic nonlinear systems
with randomly distributed time-varying delays and missing
measurements” by H. Shu et al., an estimator is designed such
that, for measurements missing and distributed time-varying
delays, the estimation error system is mean-square stable.

Over the past decades, the observer/filter problems of
complex systems have been investigated extensively since
they are very useful in signal processing and engineering
applications. In the paper entitled “Robust 𝐻

2
/𝐻
∞

filter
design for a class of nonlinear stochastic systems with state-
dependent noise” by W. Zhang et al., the problem of robust
filter design is studied for a class of nonlinear stochastic sys-
tems with state-dependent noise.The state and measurement
are corrupted by stochastic uncertain exogenous disturbance
and the dynamic system is modeled by Ito-type stochastic

differential equations. The robust 𝐻
∞

filter can be designed
in terms of the solution to the linear matrix inequalities.
Moreover, a mixed 𝐻

2
/𝐻
∞

filtering problem is also solved
by minimizing the total estimation error energy when the
worst-case disturbance is considered in the design procedure.
Subsequently, a cascaded sliding mode observer method is
given in “Fault-reconstruction-based cascaded sliding mode
observers for descriptor linear systems” by J. Yu et al. to
reconstruct the actuator faults for a class of descriptor linear
systems. Based on a new canonical form, a novel design
method is presented to discuss the existence conditions of
the sliding mode observer.The proposed method is extended
to general descriptor linear systems with actuator faults. In
the work entitled “Data-driven adaptive observer for fault
diagnosis” by S. Yin et al., an approach is given for the data-
driven design of fault diagnosis system. The proposed fault
diagnosis scheme consists of an adaptive residual generator
and a bank of isolation observers, whose parameters are
directly identified from the process data without identifi-
cation of complete process model. To deal with normal
variations in the process, the parameters of residual generator
are online updated by a standard adaptive technique to
achieve reliable fault detection performance. After a fault is
successfully detected, the isolation scheme will be activated,
in which each isolation observer serves as an indicator
corresponding to occurrence of a particular type of fault in
the process.The thresholds can be determined analytically or
through estimating the probability density function of related
variables. A laboratory-scale three-tank system is given to
illustrate the usefulness of the proposed method.

The applications of various control schemes have received
considerable research interests in the past decades. In
the work entitled “Discrete-time multioverlapping controller
design for structural vibration control of tall buildings under
seismic excitation” by F. Palacios-Quinonero et al., a com-
putationally effective strategy to obtain multioverlapping
controllers via the inclusion principle is applied to design
discrete-time state-feedback multioverlapping LQR con-
trollers for seismic protection of tall buildings. The per-
formance of the proposed multioverlapping controllers has
been assessed through numerical simulations. In another
paper “Structural vibration control for a class of connected
multistructure mechanical systems” by F. Palacios-Quinonero
et al., the aim is to design the control configurations that
combine passive interbuilding dampers with local feedback
control systems implemented in the buildings. Moreover,
the active-passive control configurations can be properly
designed for multibuilding systems requiring different levels
of seismic protection. The monocular vision is employed
in “Robot navigation control based on monocular images: an
image processing algorithm for obstacle avoidance decisions” by
S. Lauria andW. Benn to control autonomous navigation for a
robot in a dynamically changing environment. Subsequently,
the optimality condition-based sensitivity analysis of optimal
control for hybrid systems with mode invariants and control
constraints is addressed in “Optimality condition-based sen-
sitivity analysis of optimal control for hybrid systems and its
application” by C. Song.The derivatives of the objective func-
tional with respect to control variables are established and
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a control vector parameterization method is implemented
to obtain the numerical solution to the optimal control
problems for hybrid system. In the paper entitled “Robust𝐻

∞

dynamic output feedback control synthesis with pole placement
constraints for offshore wind turbine systems” by H. R. Karimi
and I. Bakka, the problem of robust 𝐻

∞
dynamic output

feedback control design with pole placement constraints is
addressed for a linear parameter-varying model of a floating
wind turbine. Finally, a novel multiloop is proposed and
the multiobjective cooperative intelligent control system is
used in “Neuroendocrine-based cooperative intelligent con-
trol system for multiobjective integrated control of a parallel
manipulator” by K. Hao et al. to improve the performance
of position, velocity, and acceleration-integrated control on
a complex multichannel plant.
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In the context of systems and control, incomplete information refers to a dynamical system in
which knowledge about the system states is limited due to the difficulties in modeling complexity
in a quantitative way. The well-known types of incomplete information include parameter
uncertainties and norm-bounded nonlinearities. Recently, in response to the development of
network technologies, the phenomenon of randomly occurring incomplete information has
become more and more prevalent. Such a phenomenon typically appears in a networked envi-
ronment. Examples include, but are not limited to, randomly occurring uncertainties, randomly
occurring nonlinearities, randomly occurring saturation, randomly missing measurements and
randomly occurring quantization. Randomly occurring incomplete information, if not properly
handled, would seriously deteriorate the performance of a control system. In this paper, we aim
to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic
systems with randomly occurring incomplete information. The developments of the filtering,
control and fault detection problems are systematically reviewed. Latest results on analysis
and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various
distributed filtering technologies over sensor networks are highlighted. Finally, some concluding
remarks are given and some possible future research directions are pointed out.
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1. Introduction

In the past decade, networked control systems (NCSs) have attracted much attention owing
to their successful applications in a wide range of areas for the advantage of decreasing the
hardwiring, the installation cost, and implementation difficulties. Nevertheless, the NCS-
related challenging problems arise inevitably due to the physical equipment constraints and
the complexity and uncertainty of the external environment in the process of modeling
or information transmission, which would drastically degrade the system performances.
Such network-induced problems include, but are not limited to, missing measurements,
communication delays, sensor and actuator saturations, signal quantization, and randomly
varying nonlinearities. These phenomena may occur in a probabilistic way that are
customarily referred to as the randomly occurring incomplete information. Note that,
in the literature concerning systems and control, incomplete information usually refers
to a dynamical system in which knowledge about the system states is limited due to
the difficulties in modeling complexity in a quantitative way. The well-known types of
incomplete information include parameter uncertainties and norm-bounded nonlinearities.

For several decades, nonlinear analysis and stochastic analysis are arguably two of the
most active research areas in systems and control. This is simply because (1) nonlinear control
problems are of interest to engineers, physicists, and mathematicians because most physical
systems are inherently nonlinear in nature and (2) stochastic modelling has come to play an
important role in many branches of science and industry as many real world systems and
natural processes may be subject to stochastic disturbances. There has been rich literature
on the general nonlinear stochastic control problems. A great number of techniques have
been developed on filtering, control, and fault detection problems for nonlinear stochastic
systems in order to meet the needs of practical engineering. Recently, with the development
of networked control systems, the analysis and synthesis problems for nonlinear stochastic
systems with randomly occurring incomplete information have become interesting and
imperative yet challenging topics that have gained a great deal of research attention.

The focus of this paper is to provide a timely review on the recent advances
of the analysis and synthesis issues for nonlinear stochastic systems with randomly
occurring incomplete information. Most commonly used methods for modeling randomly
occurring incomplete information are summarized. Based on the models established,
various filtering, control, and fault detection problems with randomly occurring incomplete
information are discussed in great detail. Such kind of randomly occurring incomplete
information typically appears in a networked environment, which includes randomly
occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation,
randomlymissingmeasurements, and randomly occurring quantization. Subsequently, latest
results on analysis and synthesis of nonlinear stochastic systems with randomly occurring
incomplete information are reviewed. Finally, some concluding remarks are drawn and some
possible future research directions are pointed out.

The rest of this paper is outlined as follows. In Section 2, the phenomenon of
randomly occurring incomplete information is addressed and the corresponding models
are summarized. In Section 3, the analysis and synthesis problems for nonlinear stochastic
systems are reviewed. Section 4 discusses the distributed filtering problems over sensor
networks. The latest results on filtering, control, and fault detection problems for nonlinear
stochastic systems with randomly occurring incomplete information are reviewed in
Section 5. In Section 6, we give some concluding remarks and also point out some future
directions.
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2. Randomly Occurring Incomplete Information

Accompanied by the rapid development of communication and computer technology, NCSs
have becomemore andmore popular for their successful applications in modern complicated
industry processes, for example, aircraft and space shuttle, nuclear power stations and
high-performance automobiles. However, the insertion of network makes the analysis
and synthesis problems much more complex due to the randomly occurring incomplete
information that is mainly caused by the limited bandwidth of the digital communication
channel. The randomly occurring incomplete information under consideration mainly
includes missing measurements, communication delays, sensor and actuator saturations,
signal quantization, and randomly varying nonlinearities.

2.1. Missing Measurements

In practical systems within a networked environment, the measurement signals are usually
subject to probabilistic information missing (data dropouts or packet losses), which may
be caused for a variety of reasons, such as the high manoeuvrability of the tracked target,
a fault in the measurement, intermittent sensor failures, network congestion, accidental
loss of some collected data, or some of the data may be jammed or coming from a very
noisy environment, and so forth. Such a missing measurement phenomenon that typically
occurs in networked control systems has attracted considerable attention during the past few
years, see [1–11] and the references therein. Various approaches have been presented in the
literature tomodel the packet-dropout phenomenon. For example, in [12, 13], the data packet-
dropout phenomenon has been described as a binary switching sequence that is specified by a
conditional probability distribution taking on values of 0 and 1. In [14], a discrete-time linear
system with Markovian jumping parameters has been employed to construct the random
packet-dropout model. In [15], a model that comprises former measurement information
of the process output has been introduced to account for the successive packet dropout
phenomenon. A model of multiple missing measurements has been proposed in [11, 16] by
using a diagonal matrix to describe the different missing probabilities for individual sensors.

2.2. Communication Delays

Owing to the fact that time delays commonly reside in practical systems and constitute
a main source for system performance degradation or even instability, the past decade
has witnessed a significant progress on analysis and synthesis for systems with various
types of delays, and a large amount of literature has appeared on the general topic of
time-delay systems. For example, in [17], the stability of NCSs under the network-induced
delay has been studied by using a hybrid system technique. The optimal stochastic control
method has been proposed in [18] to control the communication delays in NCSs. A
networked controller has been designed in the frequency domain using the robust control
theory in [19], in which the network delays are considered as an uncertainty. However,
most of the relevant literature mentioned above has focused on the constant time delays.
Delays resulting from network transmissions are inherently random and time varying [20–
22]. This is particularly true when signals are transmitted over the internet and therefore
existing control methods for constant time delay cannot be directly utilized [23]. Recently,
some researchers have started to model the network-induced time delays in multiform
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probabilistic ways and, accordingly, some initial results have been reported. For example,
in [24, 25], the random communication delays have been modeled as Markov’s chains
and the resulting closed-loop systems have been represented as Markovian jump linear
systems with two jumping parameters. In [26], two kinds of random delays, which happen
in the channels from the controller to the plant and from the sensor to the controller,
have been simultaneously considered. The random delays have been modeled in [26] as
a linear function of the stochastic variable satisfying Bernoulli random binary distribution.
Different from [26], the problem of stability analysis and stabilization control design
has been studied in [27] for the Takagi-Sugeno (T-S) fuzzy systems with a probabilistic
interval delay, and the Bernoulli distributed sequence has been utilized to describe the
probability distribution of the time-varying delay taking values in an interval. It should
be mentioned that, among others, the binary representation of the random delays has
been fairly popular because of its practicality and simplicity in describing communication
delays.

However, most research attention has been centered on the single random delay having
a fixed value if it occurs. This would lead to conservative results or even degradation of the
system performance since, at a certain time, the NCSs could give rise tomultiple time-varying
delays but with different occurrence probabilities. Therefore, a more advanced methodology
is needed to handle time varying network-induced time-delays in a closed-loop control
system.

2.3. Signal Quantization

As is well-known, quantization always exists in computer-based control systems employing
finite-precision arithmetic. Moreover, the performance of NCSs will be inevitably subject to
the effect of quantization error owing to the limited network bandwidth caused possibly
by strong signal attenuation and perturbation in the operational environment. Hence, the
quantization problem of NCSs has long been studied and many important results have
been reported in [28–35] and the references therein. For example, in [36], the time-varying
quantization strategy has been firstly proposed where the number of quantization levels
is fixed and finite while at the same time the quantization resolution can be manipulated
over time. In [37], the problem of input-to-state stable with respect to the quantization error
for nonlinear continuous-time systems has been studied. In this framework, the effect of
quantization is treated as an additional disturbance whose effect is overcome by a Lyapunov
redesign of the control law. In [38], a switching control strategy with dwell time has been
proposed to use a quantizer for single-input systems. The quantizer employed in this
framework is in fact an extension of the static logarithmic quantizer in [39] to continuous
case. So far, there have been mainly two different types of quantized communication models
adopted in the literature: uniform quantization [28, 33, 34] and logarithmic quantization
[30–32, 35]. It has been proved that, as compared to the uniform quantizer, the logarithmic
quantization is more preferable since fewer bits need to be communicated. In [40], a sector
bound scheme has been proposed to handle the logarithmic quantization effects in feedback
control systems, and such an elegant scheme has then been extensively employed later on,
see, for example [7, 35, 41, 42], and the references therein. However, we note that the methods
that most of the references cited above could not be directly applied to NCSs, because in NCSs
the effects of network-included delay and packet dropout should be also considered.
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2.4. Sensor and Actuator Saturations

In practical control systems, sensors and actuators cannot provide unlimited amplitude signal
due primarily to the physical, safety, or technological constraints. In fact, the actuator/sensor
saturation is probably the most common nonlinearity encountered in practical control
systems, which can degrade the system performance or even cause instability if such a
nonlinearity is ignored in the controller/filter design. Because of their theoretical significance
and practical importance, considerable attention has been focused on the filtering and
control problems for systems with actuator saturation [43–46]. As for sensor saturation, the
associated results have been relatively few due probably to the technical difficulty [47–49].
Nevertheless, in the scattered literature regarding sensor saturation, it has been implicitly
assumed that the occurrence of sensor saturations is deterministic, that is, the sensor always
undergoes saturation. Such an assumption, however, does have its limitation especially in a
sensor network. The sensor saturations may occur in a probabilistic way and are randomly
changeable in terms of their types and/or levels due to the random occurrence of network-
induced phenomena such as random sensor failures, sensor aging, or sudden environment
changes. To reflect the reality in networked sensors, in [8], a new phenomenon of sensor
saturation, namely, randomly occurring sensor saturation (ROSS), has been put forward in
order to better reflect the reality in a networked environment. A novel sensor model has
then been established to account for both the ROSS and missing measurement in a unified
representation by using two sets of the Bernoulli distributed white sequences with known
conditional probabilities. It should be mentioned that very few results have dealt with the
systems with simultaneous presence of actuator and sensor saturations [50] although such a
presence is quite typical in engineering practice.

2.5. Randomly Varying Nonlinearities

It is well known that nonlinearities exist universally in practice and it is quite common
to describe them as additive nonlinear disturbances that are caused by environmental
circumstances. In a networked system such as the internet-based three-tank system for
leakage fault diagnosis, such nonlinear disturbances may occur in a probabilistic way
due to the random occurrence of network-induced phenomenon. For example, in a
particular moment, the transmission channel for a large amount of packets may encounters
severe network-induced congestions due to the bandwidth limitations, and the resulting
phenomenon could be reflected by certain randomly occurring nonlinearities where the
occurrence probability can be estimated via statistical tests. As discussed in [51, 52],
in nowadays prevalent networked control system, the nonlinear disturbances themselves
may experience random abrupt changes due to random changes and failures arising
from network-induced phenomenon, which give rise to the so-called randomly varying
nonlinearities. In other words, the type and intensity of the so-called randomly varying
nonlinearities could be changeable in a probabilistic way.

3. The Analysis and Synthesis of Nonlinear Stochastic Systems

For several decades, stochastic systems have received considerable research attention in
which stochastic differential equations are the most useful stochastic models with broad
applications in aircraft, chemical or process control system, and distributed networks.
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Generally speaking, stochastic systems can be categorized into two types, namely, internal
stochastic systems and external stochastic systems [53].

As a class of internal stochastic systems with finite operation modes, the Markovian
jump systems (MJSs) have gained particular research interests in the past two decades
because of their practical applications in a variety of areas such as power systems, control
systems of a solar thermal central receiver, networked control systems, manufacturing
systems, and financial markets. So far, existing results about MJSs have covered a wide range
of research problems including those for stability analysis [54–56], filter design [57–64], and
controller design [65, 66]. Nevertheless, compared to the fruitful results for filtering and
control problems of MJSs, the corresponding fault detection problem of MJSs has received
much less attention [67, 68] due primarily to the difficulty in accommodating the multiple
fault detection performances. In the literature concerning the MJSs, most results have been
reported by supposing that the transition probabilities (TPs) in the jumping process are com-
pletely accessible. However, this is not always true for many practical systems. For example,
in networked control systems, it would be extremely difficult to obtain precisely all the TPs
via time-consuming yet expensive statistical tests. In other words, some of TPs are very likely
to be incomplete (i.e., uncertain or even unknown). So far, some initial efforts have beenmade
to address the incomplete probability issue for MJSs. For example, the problems of uncertain
TPs and partially unknown TPs have been addressed in [56, 62] and [63, 69], respectively.
Furthermore, the concept of deficient statistics for modes transitions has been put forward
in [70] to reflect different levels of the limitations in acquiring accurate TPs. Unfortunately,
up to now, the filtering/control/fault detection problem for discrete-time Markovian jump
systems with randomly varying nonlinearities has not been fully investigated yet.

For external stochastic systems, stochasticity is always caused by external stochastic
noise signal and can be modelled by stochastic differential equations with stochastic
processes [53]. Furthermore, recognizing that nonlinearities exist universally in practice
and both nonlinearity and stochasticity are commonly encountered in engineering practice,
the robust H∞ filtering, H∞ control, and fault detection problems for nonlinear stochastic
systems have stirred a great deal of research interests. For the fault detection problems, we
refer the readers to [46, 71–73] and the references therein. With respect to the H∞ control
and filtering problems, we mention some representative work as follows. The stochastic
H∞ filtering problem for time-delay systems subject to sensor nonlinearities have been
dealt with in [74, 75]. The robust stability and controller design problems for networked
control systems with uncertain parameters have been studied in [25, 76], respectively. The
stability issue has been addressed in [77] for a class of T-S fuzzy dynamical systems with
time delays and uncertain parameters. In [78], the robust H∞ filtering problem for affine
nonlinear stochastic systems with state and external disturbance-dependent noise has been
studied, where the filter can be designed by solving second-order nonlinear Hamilton-Jacobi
inequalities. So far, in comparison with the fruitful literature available for continuous-time
systems, the correspondingH∞ filtering results for discrete-time systems have been relatively
few. Also, to the best of our knowledge, the analysis and design problems for nonlinear
discrete-time stochastic systems with randomly occurring incomplete information have not been
properly investigated yet, which still remain as challenging research topics.

4. Distributed Filtering over Sensor Networks

In the past decade, sensor networks have been attracting increasing attention from many
researchers in different disciplines owing to the extensive applications of sensor networks
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in many areas including surveillance, environment monitoring, information collection,
industrial automation, and wireless networks [79–88]. A sensor network typically consists
of a large number of sensor nodes and also a few control nodes, all of which are distributed
over a spatial region. The distributed filtering or estimation, as an important issue for sensor
networks, has been an area of active research for many years. Different from the traditional
filtering for a single sensor [58, 61, 89], the information available for the filter algorithm on an
individual node of the sensor network is not only from its ownmeasurement but also from its
neighboring sensors’ measurements according to the given topology. As such, the objective
of filtering based on a sensor network can be achieved in a distributed yet collaborative way.
It is noticed that one of the main challenges for distributed filtering lies in how to handle the
complicated coupling issues between one sensor and its neighboring sensors.

In recent years, the distributed filtering problem for sensor networks has received
considerable research interest and a lot of research results have been available in the
literature, see, for example, [79, 82, 83, 87, 90–93]. The distributed diffusion filtering strategy
has been established in [79, 90] for the design of distributed Kalman filters and smoothers,
where the information is diffused across the network through a sequence of Kalman
iterations and data-aggregation. A distributed Kalman Filtering (DKF) algorithm has been
introduced in [93] through which a crucial part of the solution is used to estimate the average
of n signals in a distributed way. Furthermore, three novel distributed Kalman filtering
algorithms have been introduced in [92] with the first one being a modification of the
previous DKF algorithm [93]. Also, a continuous-time DKF algorithm has been rigorously
derived and analyzed in [92], and the corresponding extension to the discrete-time setting
has been conducted in [83]which includes the optimality and stability analysis.

It should be pointed out that, so far, most reported distributed filter algorithms for
sensor networks have been mainly based on the traditional Kalman filtering theory that
requires exact information about the plant model. In the presence of unavoidable parameter
drifts and external disturbances, a desired distributed filtering scheme should be made as
robust as possible. However, the robust performance of the available distributed filters has
not yet been thoroughly studied, and this would inevitably restrict the application potential
in practical engineering. Therefore, it is of great significance to introduce theH∞ performance
requirement with the hope to enhance the disturbance rejection attenuation level of designed
distributed filters. Note that some initial efforts have been made to address the robustness
issue. Very recently, a new distributedH∞-consensus performance has been proposed in [86]
to quantify the consensus degree over a finite horizon and the distributed filtering problem
has been addressed for a class of linear time-varying systems in the sensor network, and the
filter parameters have been designed recursively by resorting to the difference linear matrix
inequalities. In [94], an H∞-type performance measure of disagreement between adjacent
nodes of the network has been included and a robust filtering approach has been proposed to
design the distributed filters for uncertain plants. On the other hand, since nonlinearities are
ubiquitous in practice, it is necessary to consider the distributed filtering problem for target
plants described by nonlinear systems.

Unfortunately, up to now, the distributed nonlinear H∞ filtering problem for sensor
networks has gained very little research attention despite its practical importance.

5. Latest Progress

In [95, 96], the H∞ filtering and control problems have been investigated for systems with
repeated scalar nonlinearities and missing measurements. The nonlinear system is described
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by a discrete-time state equation involving a repeated scalar nonlinearity which typically
appears in recurrent neural networks. The H∞ filtering problem has been first considered
in [95] for the systems with missing measurements. The missing measurements have been
modeled by a stochastic variable satisfying the Bernoulli random binary distribution. The
quadratic Lyapunov function has been used to design both full- and reduced-order H∞
filters such that, for the admissible random measurement missing and repeated scalar
nonlinearities, the filtering error system is stochastically stable and preserves a guaranteed
H∞ performance. In addition, in [96], the notion of missing measurements has been extended
to the multiple missing measurements, where the missing probability for each sensor is
governed by an individual random variable satisfying a certain probabilistic distribution in
the interval [0, 1]. An observer-based feedback controller has been designed to stochastically
stabilize the networked system. Both the stability analysis and controller synthesis problems
have been investigated in detail.

In [97], the robust H∞ filtering problem has been studied for a class of uncertain
nonlinear networked systems with both multiple stochastic time-varying communication
delays and multiple packet dropouts. The missing measurements have been modeled via
a diagonal matrix consisting of a series of mutually independent random variables satisfying
certain probabilistic distributions on the interval [0, 1]. Such a modeling approach can
describe the following packet dropouts situations for the measurement signals: completely
missing, completely available, partially missing, and the case when the individual sensor has
different missing probability is also included. A newmodel has been proposed to account for
the randomly occurring communication delays. Furthermore, the discrete-time system under
consideration has been also subject to parameter uncertainties, state-dependent stochastic
disturbances, and sector-bounded nonlinearities. By constructing new Lyapunov functionals,
intensive stochastic analysis has been carried out to obtain the desired robust H∞ filter
parameters. Furthermore, in [98], by using similar analysis techniques, some parallel results
have been extended to the robust H∞ fuzzy output feedback control problem for a class of
uncertain discrete-time fuzzy systems with both multiple probabilistic delays and multiple
missing measurements.

Considering the case that the transfer function method cannot effectively deal with
the nonlinear time-varying systems, a recursive matrix inequalities technique has been
proposed in [16] in time domain to deal with the robust finite-horizon filtering problem for
a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing
measurements and error variance constraints. All the system parameters are time varying and
the uncertainty enters into the state matrix. By developing a new filter design algorithm for
finite-horizon case, sufficient conditions have been derived for a finite-horizon filter to satisfy
the estimation error variance constraints, robustness, and the prescribed H∞ performance
requirement. A simulation example about the target tracking problem has demonstrated the
effectiveness and practicality of the developed filter design scheme. This paper has addressed
the open finite-horizon filtering problem satisfying multiple performance indices for a class
of uncertain nonlinear discrete time-varying stochastic systems with limited communication.
Moreover, by using similar analysis techniques, some parallel results have also been derived
in [99] for the corresponding robustH∞ finite-horizon output feedback control problem with
both sensor and actuator saturations. The obtained results have practical meaning for the
tracking problem of highly maneuvering targets.

In [57, 100], the filtering and fault detection problems have been investigated for
discrete-time Markovian jump systems with randomly varying nonlinearities (RVNs) and
sensor saturation. The issue of RVNs has been first addressed and the considered transition
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probability matrix includes the case with polytopic uncertainties and the case with partially
unknown transition probabilities, respectively. The H∞ filtering problem has been first
considered in [57], where the randomly occurring nonlinearities have been modeled by
the Bernoulli distributed white sequences with known conditional probabilities. Sufficient
conditions have been derived for the filtering augmented system under consideration
to satisfy the H∞ performance constraint. The corresponding robust H∞ filters have
been designed by solving sets of recursive linear matrix inequalities. Based on this, the
corresponding fault detection filter design problem has been studied in [100]. Two energy
norm indices have been utilized for the fault detection problem in order to account for,
respectively, the restraint of disturbance and the sensitivity of faults. A locally optimized
fault detection filter has been designed by developing a novel algorithm such that the effect
from the exogenous disturbance on the residual is attenuated with respect to a minimized
H∞ norm, and the sensitivity of the residual to the fault is enhanced in terms of a maximized
H∞ norm.

By noticing that the aforementioned scheme cannot be applied to complex dynamic
systems with transmission delay or state delay, in [41, 101], the fault detection problems
have been dealt with for two classes of discrete-time nonlinear mixed stochastic time delay
systems with limited communication. The mixed time delays involve both the multiple time-
varying discrete delays and the infinite distributed delays. The fault detection problem has
been first addressed in [41] for a class of discrete-time systems with randomly occurring
nonlinearities and mixed stochastic time delays as well as measurement quantizations.
Sufficient conditions have been established via intensive stochastic analysis for the existence
of the desired fault detection filters, and then the explicit expression of the desired filter gains
has been derived by means of the feasibility of certain matrix inequalities. Moreover, in [101],
the developed scheme has been extended to the robust fault detection problem for a class of
uncertain discrete-time T-S fuzzy systems with stochastic mixed time delays and successive
packet dropouts. Two practical examples have been provided to show the usefulness and
effectiveness of the proposed design methods.

Considering the case that the occurrence of incomplete information in sensor network
is more complex and severer, the studies in [102–104] have investigated the distributed
filtering problem for several classes of nonlinear stochastic systems over lossy sensor
networks. The issues of average H∞ performance constraints have been brought up in
[102], and then the distributed H∞ filtering problem has been investigated for system with
repeated scalar nonlinearities and multiple probabilistic packet losses. Moreover, in [103],
the distributed filtering problem has been further extended to the nonlinear time-varying
systems with limited communication. The time-varying system (target plant) is subject
to randomly vary nonlinearities caused by environmental circumstances. The lossy sensor
network suffers from quantization errors and successive packet dropouts that are described
in a unified framework. A new distributed finite-horizon filtering technique by means of
a set of recursive linear matrix inequalities has been proposed to satisfy the prescribed
average filtering performance constraint. In addition, the distributed H∞ filtering problem
has been investigated in [104] for a class of discrete-time Markovian jump nonlinear time-
delay systems with deficient statistics of mode transitions. A novel model that describes
the deficient statistics of modes transitions has been proposed to account for known,
bounded uncertain, and unknown transition probabilities. The system measurements have
been collected through a lossy sensor network subject to randomly occurring quantizations
errors (ROQEs) and randomly occurring packet dropouts (ROPDs). Two sets of the Bernoulli
distributed white sequences have been introduced to govern the phenomena of ROQEs and
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ROPDs in the lossy sensor network. The systemmodel (dynamical plant) includes the mode-
dependent Lipschitz-like nonlinearities. The distributed filters have been designed to obtain
sufficient conditions for ensuring stochastic stability as well as the prescribed average H∞
performance constraint.

In [105], a new approach has been proposed in virtue of the solvability of certain
coupled recursive Riccati difference equations (RDEs) to deal with the distributed H∞ state
estimation problem for a class of discrete time-varying nonlinear systemswith both stochastic
parameters and stochastic nonlinearities. By employing the completing squares method and
the stochastic analysis technique, a necessary and sufficient condition has been established
to ensure the dynamics of the estimation error to satisfy the H∞ performance constraint.
Furthermore, the estimator gains have been explicitly characterized bymeans of the solutions
to two coupled backward recursive RDEs. Finally, an illustrative example has been provided
that highlights the usefulness of the developed state estimation approach.

6. Conclusions and Future Work

In this paper, we have reviewed some recent advances on the analysis and synthesis problems
for nonlinear stochastic systems with randomly occurring incomplete information. Most
commonly used randomly occurring incomplete informationmodels have been summarized.
Based on this, various filtering, control, and fault detection problems have been discussed.
In addition, the various distributed filtering technologies over sensor networks have been
given. Latest results on analysis and synthesis problems for nonlinear stochastic systems
with randomly occurring incomplete information have been surveyed. Based on the literature
review, some related topics for the future research work are listed as follows.

(1) The nonlinearities considered in the existing results have been assumed to satisfy
certain constraints for the purpose of simplifying the analysis, thereby bringing
a great deal of conservatism. It would be a promising research topic to analyze
and synthesize the general nonlinear systems with randomly occurring incomplete
information.

(2) Another future research direction is to further investigate multiobjective H2/H∞
control and filtering problems for nonlinear systems with randomly occurring
incomplete information.

(3) It would be interesting to investigate the problems of fault detection and fault
tolerant control for time-varying systems with randomly occurring incomplete
information over a finite time horizon.

(4) A trend for future research is to generalize the methods obtained in the existing
results to the control, synchronization, and filtering problems for nonlinear stochas-
tic complex networks systems with randomly occurring incomplete information.

(5) A practical engineering application of the existing theories and methodologies
would be fault detection for petroleum well systems.
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Canal systems are complex nonlinear, distributed parameter systems with changing parameters
according to the operating point. In this paper, a linear parameter-varying (LPV) state-space canal
control model is obtained by identification in a local way using a multimodel approach. This
LPV identification procedure is based on subspace methods for different operating points of an
irrigation canal covering the full operation range. Different subspace algorithms have been used
and compared. The model that best represents the canal behavior in a precise manner has been
chosen, and it has been validated by error functions and analysis correlation of residuals in a
laboratory multireach pilot canal providing satisfactory results.

1. Introduction

Water is one of the most used resources by industrial and agricultural sectors, and obviously
by population. One fundamental use of water is the irrigation activity, and one the main
challenges in this area is to prevent water losses and to permit an efficient use of this scarce
and vital resource. These aspects have led to the usage of automatic control systems and
the implementation of different advanced control algorithms for the regulation of open-
flow irrigation canals. Hence, those control techniques will allow fulfilling the desired
performance and the ecological flow in irrigation as well as saving water at the same time. To
design an effective controller, a good control model is needed. Therefore, advanced process
modeling techniques are required to make an accurate control model.

Modeling and control of nonlinear complex systems is a challenging task. Nonlinear
effects can no longer be neglected to meet the specifications imposed on today’s complex
control systems. Unfortunately, the higher the complexity, the lower our ability to deal with it
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and to understand it. Open-flow canals are complex systems, that is, they are large distributed
parameter systems that have the following main characteristics: nonlinear behavior and
dependence of the parameters with the operating point and coupling among pools [1]. This
type of systems can be fully described by Saint-Venant’s equations [2]. This representation is
the most used model to describe the physical dynamics of a real irrigation canal. However,
this complex model is based on a nonlinear hyperbolic partial differential equations system
that has analytical solution only in very special cases, requiring the use of numerical methods
to solve it properly [3]. This complex representation of the system is suitable for simulation
models, but it is not suitable to design controllers that fulfill the control design needs. Then,
linearization and simplification of Saint-Venant’s equations are currently studied by the
irrigation researchers’ community of control [4] to develop simpler control models.

Distributed parameter systems with a very large number of states, that is, systems
with coupling, have been approximated by decoupled low-order linear time invariant
(LTI) models in order to use classical linear control design tools, as a usual practice in
control engineering. In fact, control researchers’ community has usually used linear control
techniques (such as fuzzy control [5], robust control [6], etc.), and even nonlinear control
approaches (such as, sliding control [7–9], etc.) for this kind of systems. LTI control models
widely used are Hayami model [10], Muskingum model [3], IDZ model [4, 11], or black-box
models identified using parameter estimation by classical identification methods [1, 12, 13].
However, these systems are not completely amenable using conventional linear modeling
approaches due to the lack of precise, formal knowledge about the system; strongly nonlinear
behavior; high degree of uncertainty; time varying characteristics; dynamic parameters
changing over the operating point and coupling between pools. Then, simplified control
model structures are needed preserving their information. Taking into account these previous
properties, a linear parameter varying (LPV) model is required, which consists in a model
that regards both the parameter and delay variations with respect to the operating points.
In this way, the system information is preserved while it would be lost with a linear control
model. These LPV control models permit the design and computation of LPV controllers
that rigorously guarantee the system stability and performance [14] for smooth variations
of system parameters as well as abrupt ones [15]; this is the case of irrigation canals. The
preferred representation scheme for complex plants (multivariable systems involving large
system orders) is a state-space model. Then, subspace-based system identification methods
are a branch that has been recently developed in system identification attracting much
attention thanks to their computational simplicity and effectiveness in identifying dynamic
state-space linear multivariable systems. These algorithms are numerically robust and do not
involve nonlinear optimization techniques, being fast and accurate.

Due to applications of large dimensions commonly found in industrial processes,
subspace identification methods are very promising in this field. In the basis of the aspects
explained above, in our case (amultireach canal system) a state-spacemodel representation is
suitable instead of a transfer function system description. For this reason, an LPV state-space
control model has been developed through LPV identification techniques.

Besides, since system canals are nonlinear, a common engineering approach to deal
with this complexity is the divide-and-conquer strategy: decompose the complex problem
into several subproblems easier to solve. According to this previous strategy, a method to
model complex nonlinear systems has arisen. It is based on partitioning the whole operating
range of the nonlinear system into multiple, smaller operating regimes and modeling the
system for each and every of these regimes. The task of finding a complete global model for
the system is thus replaced by determining linear local models and subsequently combining
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these local models into a global description for the system obtaining the LPV model (local
LPV identification). This multiple model approach is often referred to as operating regime
decomposition [16] or multimodel identification. Interactions between the relevant system
phenomena are less complex locally than globally. From the divide-and-conquer point of
view, it is desirable to choose the local models such that they are less complex than the global
nonlinear model. It is expected that the simpler the local models are, the more models and
thus the more operating regimes are needed to describe the global system accurately enough.
A trade-off has to be made, because too simple local models lead to an explosion of the
number of operating regimes needed. Another manner to identify the nonlinear systems is by
the use of specific identification methods in a global way in one-shot through optimization
[17] (global LPV identification). Although it is possible to use nonlinear local models (see,
e.g., [18]) a common choice is to use local linear models. The main reasons for this choice are
a solid theory for linear systems has been developed over the years, linear models are easy to
understand, and they are widely used by engineers.

Specifically, the main contribution of the paper is the design of a low-order LPV
state-space multivariable control model describing the water flow dynamics in a multireach
irrigation canal. The model is estimated over the full operation point range using local LPV
identification. Several subspace identification methods are applied and their performances
are compared in order to select the subspace algorithm that yields the best control model.
This model will be suitable to design LPV controllers that will warranty the stability and
the desired performance around all operating points of the system with rigorous formality
[14, 15].

The structure of this paper is as follows: in the next section, the main issues related
to LPV identification and subspace identification methods used in this study are presented.
Section 3 briefly presents the two reach irrigation canal used in this research. Section 4
discusses the important steps (generation and pretreatment of the data set, order estimation,
performance quality criteria, and global model obtained by interpolation) in developing a
suitable LPV subspace model for the system and compares the performance of the used
subspace identification algorithms (N4SID, MOESP, and CVA) carrying out the model
validation. Finally, Section 5 provides conclusions.

2. LPV Subspace Identification Methods

Linear time-invariant (LTI) models are not suitable to control systems such as open-
flow canals with coupled pools and distributed parameters with nonlinear behaviour that
depend on the operating points. However, by an LPV model (with varying parameters
depending on the operating points), to preserve the aforementioned information of the
system (nonlinearity, coupling, etc.) is also possible, obtaining a more accurate and faithful
behaviour with the reality. As it has been emphasized in Section 1, there are two procedures
to carry out LPV identification: (i) multimodel identification (local LPV identification) and
(ii) one-shot LPV identification (global LPV identification). The former approach consists
in a two-step procedure where (1) LTI models at several different equilibrium (operating
condition) are identified by classical methods [13, 19]; (2) a global multi-model is obtained by
interpolation among the local LTI models, and different interpolation techniques can be used
such as membership fuzzy functions [20], polynomial interpolation [21], among others. The
latter approach consists in carrying out a one-shot identification in a global way as proposed
in [17]. The local approach has the important practical advantage that many engineers are
well experienced in LTI identification experiments and that the local LTI models can be
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estimated using a wide variety of well-established and widely spread LTI identification
algorithms. To properly interpolate these local models, all local LPV identification techniques
require that the local models are represented in a consistent state-space form.

The discrete-time subspace identification methods refer to a kind of algorithms which
allow identifying a robust and reliable state-space model of MIMO linear systems estimating
state sequences directly from the input-output measurements. Based on orthogonal or
oblique projected subspaces generated by the rows or columns of Hankel matrices of the
input-output data, the process is followed by a singular value decomposition so as to
determine the order of the model and the observability matrices. Finally, the state-space
model is obtained through the solution of a least squares problem. Subspace-based methods
for state-space modeling have their origin in state-space realization, as developed by [22].
The term “subspace identification method” was introduced in the early 90s. The subspace
identification can use many different versions of subspace methods such as Canonical Variate
Analysis (CVA), Multivariable Output-Error State-Space model identification (MOESP),
State-Space System Identification (N4SID), Canonical Correlation Analysis (CCA), and
Deterministic and Stochastic Subspace System Identification and Realization (DSR) [10].
These algorithms attract much attention because they present many advantages: their
computational simplicity and effectiveness to determinate dynamic linear multivariable
systems. Nevertheless, a drawback which can be noticed is that these algorithms require a
large amount of data to build accurate models. So the experiments to collect data can be large
and time consuming. For this reason in control problems usually an off-line identification is
used.

LPV models obtained using subspace identification methods are mathematically
described by the following form:

xk+1 = A(θk)xk + B(θk)uk,

yk = C(θk)xk +D(θk)uk,
(2.1)

where the vectors uk ∈ Rm and yk ∈ Rl are the observations at the discrete time k ofm inputs
and l outputs of the process, respectively. The vector xk ∈ Rn represents the state vector of the
process at discrete time instant k and contains the numerical values of n states, and θk is the
parameter vector.

LPV system can be viewed as a nonlinear system that is linearized along a time-
varying trajectory determined by the time-varying parameter vector pk. Hence, the time-
varying parameter vector of an LPV system corresponds to the operating point of the
nonlinear system. In the LPV framework, it is assumed that this parameter is measurable
for control. In many industrial applications, such as process control, the operating point can
indeed be determined from measurements, making the LPV approach viable. Control design
for LPV systems is an active research area. Within the LPV framework, systematic techniques
for designing gain-scheduled controllers can be developed. Such techniques allow tighter
performance bounds and can deal with fast variations of the operating point. Furthermore,
control design for LPV systems has a close connection with modern robust control techniques
based on linear fractional transformations [23]. The important role of LPV systems in control
system design motivates the development of identification techniques that can determine
such systems from measured data, the LPV identification [23, 24].

Local linear modeling is one of the many possibilities to approximate a nonlinear
dynamic system. It is based on partitioning the full operating range of the nonlinear system
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into multiple, smaller operating regimes and modeling the system for each of these regimes
by a linear model. By making a weighted combination of these linear models, it is expected to
describe the complete nonlinear behaviour accurate enough. The local lineal model structure
is

xk+1 =
s∑

i=1

pi(θk)(Aixk + Biuk),

yk =
s∑

i=1

pi(θk)(Cixk +Diuk),

(2.2)

where s is the number of local models and pi(θk) and the other variables have the same
meaning that in (2.1). The weighting vectors pi are unknown functions of the scheduling
vector θk. This scheduling vector corresponds to the operating point of the system. This
system is closely related to the LPV system in (2.1). The weighting functions can be
interpreted as model validity functions: they indicate which model or combination of models
is active for a certain operating regime of the system. A weighted combination of local linear
models can be used to approximate a smooth nonlinear system up to an arbitrary accuracy
by increasing the number of local models. As it is stated, the local linear state-space system
is closely related to the LPV system: consider that time-varying parameters are known, while
for the local linear model structure the weighting functions have to be determined from input
and output data [24].

In this work, the plant is identified by several local LPV subspace identification
methods (cited above) to estimate the space-state representation that describes the system
dynamics suitably. The LPV identification method used for the experimental modeling of
our pilot two-pool canal (presented in the next section) is a two-step procedure where (1)
linear state-space models are identified at several different operating points by subspace
identification methods over the full range of operation; (2) a global state-space multi-model
is obtained at the end interpolating the local state-space models using polynomials [21].
In this paper, the following identification methods have been used: N4SID, the standard
method (i.e., N4SID1 from now on) and the robust method (i.e., N4SID2 from now on), CVA
algorithm, and MOESP procedure [10]. These methods are used to estimate the model in
each operating point. The local identification method forces the local models to fit the system
separately and locally. The steps of the identification procedure are explained in Section 4.

3. Description of the Process

An experimental canal prototype is used in this research. This canal consists in two tanks TT
and TD with cross section A. The full structure of the canal prototype is presented in Figure 1
(up) and Figure 2. The two tanks are serially connected with pipes, and they are slightly tilted
to allow the flow of the water. There is a reservoir at the bottom of the plant to supply water
to the tanks. A first pump (with a flow of 3,800 liters/h), named u1 in Figure 1 (up), permits
to collect water from the reservoir to fill the upper tank TT. An ultrasound sensor attached
to the metallic structure at the end of the first tank, named y1, measures the water level. A
second pump, named u2, (with a flow of 1,300 liters/h) allows to drain the upper tank and to
fill the lower tank TD.

A second ultrasound sensor positioned also at the end of the tank, named y2, enables
to measure the water level. Finally, a third pump, called u3, gives the possibility to drain
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Figure 1: (Up) Full structure of the canal and (down) details of the zenital internal structure of the canal.

away the last tank to the reservoir. The sensors and the pumps are directly connected to
an electronic board, which allows to power them and to exchange data between a Matlab
program (executed on a PC shown in Figure 2) and the canal. The program uses the Real Time
Windows Target (Matlab toolbox) to communicate with the electronic board and the canal.
Finally, it is important to emphasize that the prototype canal constitutes a closed system.
The water leaves from the bottom reservoir to the tank TT and arrives to the tank TD via the
pump u2. Then, the water returns to the reservoir via the pump u3. That constitutes a coupled
system where the first tank has a big influence on the second one.

There are many methacrylate plates along the two tanks TT and TD shown in Figure 1
(down). These plates are 2 centimeters apart creating a zigzag path in each tank. That
provides a delay in the water to reach the other extremity of the tank where the sensor is
located. This delay has to be taken into account for the identification. The delay changes
depending on the water level in the canal. The more the water in the canal, the smaller
the delay. This fact justifies the use of LPV identification to deal with this problem. Each
sensor measures the canal level at the end of its path with a precision of 1mm. The maximum
allowed level is 15 cm to avoid the overflow.

4. Identification of an LPV Subspace Model for Two-Reach Pilot Canal

In this section, the different subspace estimation methods in an LPV local way (see Section 2)
are applied to the multivariable pilot canal plant. The identification process is carried out
following the steps: (1) design of the experiment, collection of input-output data in each
operating point (taking into account a suitable selection of the excitation input of the system),
and pretreatment of these data; due to the system delays, those delays are estimated and
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Figure 2: Laboratory pilot canal.

removed from the identification data; (2) selection of the model order via different criteria,
singular value decomposition (SVD), and Akaike information criterion (AIC); (3) estimation
of the local space-state models for each operating point by the aforementioned subspace
identificationmethods and their interpolation to obtain a global model by Nearest Neighbour
interpolation [10, 25]; (4) validation of the model in all the operation range by error functions
(MRSE and MVAF) and correlation analysis of residuals. The identification results of each
estimation algorithm (N4SID1, N4SID2, CVA, andMOESP) are compared and studied. When
canal models are identified, two problems have to be considered: the problem of large and
variable delays and the nonlinearity of the dynamics and its variability with the operating
points [26, 27]. These problems are separately treated. The parameters models are estimated
using the state-space algorithms in each operating point without the delay effect, previously
calibrated by correlation method [13].

4.1. Generation and Pretreatment of the Data Set

It is not an easy task to select either the input or the output variables of a process. In
this experiment, two inputs (u1, u2) and two outputs (y1, y2) are considered. The input u1

corresponds to the voltage of the first canal pump; u2 corresponds to the voltage of the second
pump; the output y1 is the downstream level of pool 1, and y2 the downstream level of the
pool 2. Pseudorandom Binary Sequences (PBRS) are widely used in the identification process
[13]. These signals are persistent input signals that contain a large number of frequencies
representative of the dynamics of the plant. In order to choose the number of operation points
(OPs) of the canal plant in a rigorous manner, the optimized OP multipoint technique is
used [28]. In this paper, four equidistant operating points have been used. The local model
identification will be performed in every operating point because the system is not linear.

In our experiment, a pulse generator creates a train of PBRS as pump input voltage
signals which adequately excite the system at different operating points. For the first pump,
the PBRS signal, u1, changes the pump opening at intervals of 800 s and for a period of 10 s.
The identification procedure was carried out off-line using 3200 samples of the data set. In
Figure 3, the train of PBRS signals of each pump is shown.
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Figure 3: (a) Input signal for pump u1 and (b) input signal for pump u2 with (c) focus on the PBRS signal.

4.2. Calibration of the Delay and Order Model Selection

In this subsection, the delay in both pools will be estimated. It is known that open-flow canals
present large delays that change with the operating point (in this case, the pump operation,
i.e., the upstream level of each canal pool) [26]. In this work, the delay estimation has been
derived using correlation method [1, 13]. The delay estimation error is equal or less than 1%
in all cases. Next, the identification will be performed having removed the delays.

In subspace-based algorithms, the determination of the model order (n) can be
complex. This order can be determined calculating the number of singular values (SVD)
different from zero of the orthogonal (or oblique) projections of row spaces of data block-
Hankel matrices. However, it is difficult to calculate it when the system data are corrupted
by noise. It is also not straightforward to calculate this number, so that the decision is taken
by detecting a gap in the spectrum of the singular values. As it can be seen in Figure 4 for
N4SID2, the gap is difficult to determinate and hence the application of this strategy becomes
really subjective. Therefore, the decision of the model order will be taken with the following
criterion.
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Figure 4: Log of singular values in each operating point.

A reliable technique is Akaike’s final prediction error (FPE) criterion and his related
Akaike Information Criterion (AIC). AIC procedure allows determining the order n of a
system, and it is defined as

AIC = log
(
V

(
1 + 2

d

N

))
, (4.1)

where V is the loss function (quadratic fit) for the structure, N is the length of the data, and
d is the total number of estimated parameters. Using the AIC criterion, the best order model
is given by the minimum AIC(n) value. In Figure 4, the results of this criterion using N4SID2
algorithm on each operating point can be seen. A second-order model has been selected by
the AIC’s criterion for all the above subspace identification methods in the full operation
range of the canal. Note that in Figure 5 a substantial difference between first and second
order models can be seen, but choosing higher order models is irrelevant for the results using
N4SID2. Therefore, a second-order model is enough to achieve a suitable control model.

The above fact demonstrates why engineers widely accept a first-order model with
delay (IDZ model) or a second-order model with delay (Hayami model) for an irrigation
canal approximation. As it is stated in [11, 29], the chosen model structure depends on the
celerity coefficients, diffusion, and length of the canal. In our case, the canal is large enough
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Figure 5: AIC results for N4SID2 in each operating point.

to consider a second-order model, corroborating the model order selection by the chosen
statistical method.

4.3. Results and Performance Quality Criteria

After having chosen the best order n, the goal is to determine the best algorithm to obtain the
final model. In this study, various subspace algorithms have been tested in the full operation
range along the identification process. In order to select the best algorithm for identification,
these methodologies have been compared among them to see which one fits best with data.
The degree of adaptation of each one has been quantified by means of a cross-validation
method, using the following typical performance indicators: MRSE (mean relative square
error) and MVAF (mean variance-accounted for).

MRSE:

%MRSE =
1
l

l∑

i=1

√√√√√
∑N

j=1
(
yi

(
j
) − ŷi

(
j
))2

∑N
j=1 yi

(
j
)2 × 100 (in %). (4.2)
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Figure 6: (a) Comparison between measured and estimated downstream level for pool 1, (b) a detail, and
(c) a closer detail.

MVAF:

%MVAF =
1
l

l∑

i=1

(
1 − variance

(
yi − ŷi

)

variance
(
yi

)
)

× 100 (in %). (4.3)

With yi being the ith real output, ŷi the ith simulated output produced by the model, and
l is the number of repetitions of the experiment. The MRSE index given by (4.2) is used to
measure the mean relative square error between the real process outputs and the outputs
predicted by the model. As stated by (4.2), an MRSE index of 0 indicates a perfect model.
MVAF in (4.3) is a measure for evaluating the dynamic properties of the produced models.
If the ratio of variance (yi − ŷi)/variance (yi) is small, the MVAF is close to 1. This index
constitutes a quantitative measure of the model quality.

An experiment around the full the operating point range has been carried out and
the best method has been selected. In Table 1, the goodness of the each algorithm (N4SID1,
N4SID2, MOESP, and CVA) is shown. We can observe that all the methods provide a suitable
prediction to obtain a control model.
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Figure 7: (a) Comparison between measured and estimated downstream level for pool 2, (b) a detail, and
(c) a closer detail.

In average, N4SID2 is the most precise method in the full system operating range.
However, in the central operating points, MOESP and CVA have a 4% more of precision, and
in the highest operating point N4SID1 is 1% more precise. In Figures 6 and 7, the comparison
between the measured and predicted downstream level of both pools is shown for a specific
set-up around the full system operation range demonstrating the goodness and precision of
the selected subspace identification method.

Those results were already expected because MOESP algorithm has the inherent
drawback that it estimates the state sequence using a certain past window, possibly leading
to biased results. Similar approximations are made in the subspace LTI algorithm N4SID;
however, by making the past window larger, and larger this bias will tend to zero.

Apart from this error function used to validate the identified model, a correlation
analysis of residuals is required. One of the most basic tests [2] is to compute the correlation
between the regressors, the past inputs in this case, and the residuals:

r̂N(τ) =
1
N

∑
u(t − τ)ε(t). (4.4)
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Figure 8: Traditional residual analysis: (a) auto- and (b) cross-correlation functions with uncertainty
regions for both pools.

Table 1: Selection of the best subspace-based algorithm in the full operation point range.

Algorithm
Percentage of accuracy with MRSE Percentage of accuracy with MVAF

in the full operation range in the full operation range

Output y1 Output y2 Output y1 Output y2

N4SID1 89.45 74.85 79.71 83.73
N4SID2 90.98 73.12 88.19 81.57
MOESP 85.00 72.31 87.67 78.74
CVA 81.16 71.09 88.09 79.25

It is usual to plot these estimates as a function of τ and compare with their standard
deviations to check if they are significantly different from zero. If not, there is no significant
influence of input in ε, so it is not possible to say the estimated model has not picked up all
the influence of u on y (the input on the output). It is supposed the assumption that ε is a
white noise with variance λ and zero mean. The result is typically presented as a plot of the
autocorrelation of the residuals and a plot of the cross-correlation between the inputs and
the residuals. In Figure 8, auto- and cross-correlation functions with uncertainty regions for
both pools are presented. It can be observed that the auto- and cross-correlation are within
the regressors standard deviations providing a model that reproduces pretty well the main
characteristics of dynamics of the pilot canal complex process.

Finally, the LPV canal global model is obtained by the use of N4SID2 method. The
local models obtained with this algorithm are combined by interpolation to create the global
model. Therefore, the parameters of the estimated model, that is, the matricesAi, Bi, Ci, and
Di are interpolated by Nearest Neighbor Interpolation algorithm obtaining the (2.2). This
algorithm is a numerical method widely extended by the scientific community [10, 25]. This
method sets the value of an interpolated point to the value of the nearest data point. The
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Figure 9: Interpolation of the parameters of the model: A(u1, u2), B(u1, u2), C(u1, u2), and D(u1, u2).

results of this interpolation can be seen in Figure 9. It can be observed that each parameter of
the system depends on the operating point, the gate openings (u1, u2).

5. Conclusions

This paper introduces an approach for approximate modeling of distributed parameter
processes using LPV identification. The use of LPV models allows the system to be
approximated by multiple local low-order models combined by interpolation. Here,
specifically an LPV MIMO state-space model for an irrigation canal is identified. The LPV
identification is carried out with several subspace-based algorithms (N4SID, robust N4SID,
MOESP, and CVA) in a local way. These methods have been compared and the most accurate
in the full operation range has been selected. The model has been validated in a laboratory
pilot multi-reach canal obtaining very good results.
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[17] B. Bamieh and L. Giarré, “Identification of linear parameter varying models,” International Journal of

Robust and Nonlinear Control, vol. 12, no. 9, pp. 841–853, 2002.
[18] M. Pottmann, H. Unbehauen, and D. E. Seborg, “Application of a general multi-model approach for

identification of highly nonlinear processes—a case study,” International Journal of Control, vol. 57, no.
1, pp. 97–120, 1993.

[19] J. D. Caigny, J. F. Camino, and J. Swevers, “Identification of MIMO LPV models based on
interpolation,” in Proceedings of the International Conference on Noise and Vibration Engineering (ISMA
’08), 2008.

[20] J. Abonyi and R. Babuska, “Local and global identification and interpretation of parameters in Takagi-
Sugeno fuzzy models,” in Proceedings of the 9th IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE ’00), pp. 835–840, May 2000.

[21] T. A. Johansen and R. Murray-Smith, The Operating Regime To Nonlinear Modelling and Control, Multiple
Model Approaches Modelling and Control, Taylor & Francis, 1996.

[22] B. L. Ho and R. E. Kalman, “Efficient construction of linear state variable models from input/output
functions,” Regelungstechnik, vol. 14, pp. 545–548, 1966.

[23] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, 1996.
[24] V. Verdult, Nonlinear system identification: a state-space approach [Ph.D. thesis], University of Twente,

2002.
[25] J. Stoer and R. Bulirsch, Introduction To Numerical Analysis, Springer Science + Business Media, New

York, USA, 2002.



16 Mathematical Problems in Engineering

[26] E. F. Camacho,Model Predictive Control, Springer, New York, NY, USA, 1999.
[27] J. Schuurmans, O. H. Bosgra, and R. Brouwer, “Open-channel flow model approximation for

controller design,” Applied Mathematical Modelling, vol. 19, no. 9, pp. 525–530, 1995.
[28] M. Pinelli, P. R. Spina, and M. Venturini, “Optimized operating point selection for gas turbine health

state analysis by using a multi-point technique,” in Proceedings of the ASME Turbo Expo, pp. 43–51,
Atlanta, Ga, USA, June 2003.

[29] X. Litrico and D. Georges, “Robust continuous-time and discrete-time flow control of a dam-river
system. (I) Modelling,” Applied Mathematical Modelling, vol. 23, no. 11, pp. 809–827, 1999.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 240476, 14 pages
doi:10.1155/2012/240476

Research Article
Robot Navigation Control Based on Monocular
Images: An Image Processing
Algorithm for Obstacle Avoidance Decisions

William Benn and Stanislao Lauria

Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK

Correspondence should be addressed to Stanislao Lauria, stasha.lauria@brunel.ac.uk

Received 21 June 2012; Accepted 10 August 2012

Academic Editor: Zidong Wang

Copyright q 2012 W. Benn and S. Lauria. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper covers the use of monocular vision to control autonomous navigation for a robot
in a dynamically changing environment. The solution focused on using colour segmentation
against a selected floor plane to distinctly separate obstacles from traversable space: this is then
supplemented with canny edge detection to separate similarly coloured boundaries to the floor
plane. The resulting binary map (where white identifies an obstacle-free area and black identifies
an obstacle) could then be processed by fuzzy logic or neural networks to control the robot’s
next movements. Findings show that the algorithm performed strongly on solid coloured carpets,
wooden, and concrete floors but had difficulty in separating colours in multicoloured floor types
such as patterned carpets.

1. Introduction

Autonomous mobile robots need the capability to navigate along the hallway avoiding
walls in indoor environments. A number of methods have been proposed to solve the
navigation problems, based on different sensor technologies such as odometry, laser scanners,
inertial sensors, sonar, and vision. Missing information due to sensor temporal failure or
communication delay is one of the critical aspects when dealing with sensory data for robot
navigation. In [1, 2] some solutions to tackle the missing information and filtering problems
have been proposed. Also a multisensor architecture could be used to design robots. While
combining different sensor types, such as ultrasound, vision, and infrared, may collectively
result in a more accurate decision, it could also pose increasing costs and complexity [3].

This paper will be focusing on how effective vision alone can be used as a tool
for navigation and collision avoidance. One notable challenge is providing autonomous
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navigation in a dynamic environment, which Saffiotti [4] describes as real world environments
that have not been specifically engineered for the robot.

Vision is one of the most important senses to a human being and in the past decade
there has been an increased interest to use images in robotics. Machines may lack the
vast knowledge of object recognition that a human brain can provide but the amount of
computational power available in modern times make such machine vision a viable choice
of input, and unlike a human eye, machine vision does not degrade over time providing
consistent image capture. Images from a coloured web camera are used here as the source
of information for this task. Visual sensors can provide plenty of information, however the
environment they capture is often very dynamic and elements and features to be detected
can change with the environment (i.e., the floor, door colour). Still to navigate successfully,
a robot needs to distinguish between what is and is not navigable. By analysing each image
frame, the system should be able to identify (if any) the available navigable areas.

Broadly speaking, there are two navigation strategies: map-based navigation and map-
less navigation. In this paper, we focus on the latter. In indoor environments, the robot has
often to navigate along the hallway while avoiding obstacles. Then, the navigation strategies
are determined by capturing and extracting relevant information about the elements in the
environment. These elements can be the walls, edges, doorways, and so forth and it is not
necessary to calculate the absolute positions of these elements of the environment. The
navigation problem is well studied (see, e.g., [5]). Whereas, [6, 7] are some examples of
strategies developed for the detection of obstacles or edge detection using vision systems.
However, often these methods are dependent on the environment around a robot. For
example, in [7] it is not clear how the system would react to changes in the floor patterns,
whereas in [6] Neural Networks strategies are considered during the camera calibration
phase to tackle this issue. References [8, 9] have investigated the use of optical flow to identify
a dominant ground plane. However, their assumption is that the floor is the dominant plane.

In our paper, we extend these ideas on using the floor to calculate the correct values
for the parameters necessary to extract the required information from each image. Then, to
identify the obstacles, the sequential use of colour iImage segmentation and then edge detection
strategies has been investigated. That is, a two steps strategy has been used.

Step 1: Image Segmentation

Step 2: Edge Detection

Each of the steps above is based on one of two basic properties of intensity values:
discontinuity and similarity. Once the image has been processed in this way, fuzzy logic,
neural networks, and so forth could then be considered to optimise decisions and control the
robot navigation strategies.

Colour segmentation will determine obstacles from the floor while canny edge
detection supplements the colour segmentation by finding sharp changes in colour gradients.
Colour image Segmentation is based on partitioning an image into regions that are similar
according to a predefined criteria. Whereas the aim of the edge detection stage is to partition
an image based on abrupt changes in intensity. In similar research, these two steps are not
always applied independently or only one of the two is applied (see, e.g., [10, 11]). In our
paper both steps are applied as a consecutive sequence to the image. A measure on the effect
on the success rate of each step is also investigated. Each of the steps mentioned above is
discussed in detail below. Then, results are presented and discussed.
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1.1. Image Colour Segmentation

For robot navigation, image segmentation is the process of decomposing an image into parts
which should be meaningful to identify obstacle-free areas.

A more formal definition of segmentation can be given in the following way [12]. Let
I denote an image and let H define a certain homogeneity predicate. Then the segmentation
of I is a partition P of I into a set ofN regions Rn, n = 1, . . . ,N, such that

(1)
⋃N

n=1 Rn = I with Rn
⋃
Rm /= 0;n/=m,

(2) H(Rn) = true for all n,

(3) H(Rn ∪ Rm) = false if Rn and Rm adjacent.

Condition (1) states that the partition has to cover the whole image, condition (2)
states that each region has to be homogeneous with respect to the predicateH, and condition
(3) states that the two adjacent region cannot be merged into a single regions that satisfies
the predicateH. The desirable characteristics that a good image segmentation should exhibit
have been defined in [13].

Several colour representations are currently in use in colour image processing. The
most common is the RGB space where colors are represented by their red, green, and blue
components in an orthogonal Cartesian space. Most cameras will capture an image using the
RGB colour space.

However, colour is better represented in terms of hue, saturation, and intensity. An
example of such a kind of representation is the HSV space. HSV rearranges the geometry of
RGB in an attempt to be more intuitive and perceptually relevant (see e.g., [14]).

Themain approaches in image colour segmentation are based on partitioning an image
into regions that are similar according to a set of predefined criteria. These segmentation
methods are based on sets of features that can be extracted from the images such as pixel
intensities. Thresholding, clustering, and region growing are examples of such approaches.
Extensive work has been done in this area (see e.g., [10]).

Thresholding is one of the simplest and most popular techniques for image
segmentation. The threshold can be specified using a heuristic technique based on visual
inspection of the histogram but this approach is operator-dependent. If the image is noisy,
the selection of the threshold is not trivial. Thus, more sophisticated methods have been
proposed. The BalancedHistogram Thresholding (BHT), see for example [15], is a histogram-
based thresholding method. The BHT approach assumes that the image is divided in two
main classes: the background and the foreground. The BHTmethod tries to find the optimum
threshold level that divides the histogram in two classes. In general, thresholding creates
binary images from grey-level ones by turning all pixels below some threshold to 0 and all
pixels about that threshold to 1.

In this paper, a pre-defined area of the image (red area in Figure 5) has been used to
calculate the threshold values. The selected rectangular area used is located at the bottom of
the image because this area is likely to contain the floor. Within this area of selection colour
thresholds are calculated to define the criteria to process in a meaningful way each pixel of
the image during the successive phases of the segmentation process discussed below. Further
details of the thresholding step are discussed in Section 3.

There is extensive work investigating different algorithms to segment regions by
identifying common properties in order to separate an image into regions corresponding to
objects. (see e.g., [16]).
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In [17] a multiphase image segmentation model for color images is discussed. It
mainly focuses on homogeneous multiphase images. It only considers the global information
of the given image, thus it cannot deal with images with inhomogeneity.

Refernce [18] applies relative values for R, G, and B components on each pixel for
image segmentation. He observed traffic signs in an open environment and segmented the
red color in such a way that if green and blue colors in a pixel are summed up and compared
with red color, it gives relatively 1.5 times higher values for the red component in pixel. If
the pixel has relatively higher red component, it determines as the featured pixel. A binary
segmented image is then created using the known coordinates of the featured pixels.

Refernce [19] proposed a detection and recognition algorithm for certain road signs.
Signs have the red border for warning signs and a blue background for information signs.
A car has a mounted camera that gets images. Colour information can be changed due
to poor lighting and weather conditions such as dark illumination and rainy and foggy
weather. To overcome these problems they proposed two algorithms by using RGB color
image segmentation.

Refernce [20] focused on identifying similar colour domains from human skin and
vegetables. The advantage of this solution is that it does not require converting from the RGB
colour space (allowing the source of the captured image to be worked on directly) and was
robust against various illumination. To avoid converting RGB to other colour spaces such as
HSV, [20] devised a method which uses 5 constant threshold variables (α, β1, β2, γ1, and γ2)
to determine whether an RGB pixel is within a specific colour zone. Assuming the following
variable values:

r = Red value of the pixel
g = Green value of the pixel
b = Blue value of the pixel
α =Minimum red threshold value (0–255)
β1 =Minimum red-green component value (0–255)
β2 =Maximum red-green component value (0–255)
γ1 =Minimum red-blue component value (0–255)
γ2 =Maximum red-blue component value (0–255).
The algorithm considers a pixel to be within a certain colour range if

(1) r > α,

(2) β1 < r − g < β2,

(3) γ1 < r − b < γ2.

Some initial evaluations of the [20] technique applied to indoor navigation domains
have shown that it captured a too broader amount of the threshold from the target floor
surface. Therefore, in the present paper a modification of the above algorithm has been
investigated. In particular, an additional constant (αmax) has been added to hold the
maximum red thresholdwhile the existing red constant (αmin)was used to hold theminimum
red threshold. The first rule was then modified as follows:

(1) αmin < r < αmax.

After a few tests, the optimal settings found for the α parameters were the following.
In higher illuminated conditions and pastel coloured environments αmax is most efficient
at being set to higher values such as a range between 170 and 200. αmin is best set to a
midrange value between the 75 to 90 range. In low illumination conditions αmax is most
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Figure 1: Comparison of original colour segmentation technique against modified rule set. Left image
modified rule set, middle image original rule set, and right image raw capture.

efficient between low midrange values such as 60 to 80. αmin should be set to a low range
between 20 to 40. A higher broader range is needed under high illumination as it is most
likely that obstacles will reside in the lower colour ranges. This broad range can be a downfall
when obstacles are of a similar colour to the surrounding environment, which is where the
edge supplementation is expected be of a great aid.

Figure 1 shows that the modified rule set investigated in the present paper picks up
less noise from the image. It is also better at picking up colours that are similar to the floor
plane, although the effect of this varies depending on the difference of change. From some
initial tests, there is evidence that the modified algorithm keeps the floor threshold values
correct when there are some small illumination changes caused by the robot’s movement.

1.2. Edge Detection

Colour segmentation alone is not enough to fully segment an image, gaps were left by noise
and areas of a similar colour to the floor plane were misinterpreted as traversable space. To
eliminate this issue a separate edge map was produced from the captured image which was
then processed by a probabilistic Hough algorithm to identify strong lines in an image.

It was decided that the best edge detection method for the project was the canny
edge implementation. It excels in identifying strong edges with a lower number of line
disconnections, it also picks out major details from an object [21, 22], while it is weaker at
identifying minor details, we are only interested in the silhouette of an obstacle.

Once the canny edge map has been generated the probabilistic Hough transform can
be applied to the image. The principle of this procedure is to scan through each pixel in a
binary image finding all lines that could fit through this point. If a line fits through enough
points then it is considered significant enough to keep [23]. Each point is picked randomly
and once enough points have been passed through by a line, then they are removed from
any subsequent scanning. This is then repeated until all points are eliminated or there are not
enough points left to identify a significant line. The implementations used for this solution are



6 Mathematical Problems in Engineering

Figure 2:Comparison of Hough line parameters. Left image largemaximumpixel gap value, middle image
low line votes, and segment length value, right image optimal found settings.

from the OpenCv library, there are various parameters that can be passed to the probabilistic
Hough transform.

Line votes number: of points a line must pass through to be considered significant
Minimum segment: length Minimum length a line must be to be selected
Maximum pixel gap: The biggest gap between points on a line that there can be.
After a few tests, the optimal settings found for the above parameters were the

following:

Line votes = 80 lines

Minimum segment length = 20 pixels

Maximum pixel gap: Minimum pixel gap value.

In Figure 2 it is possible to note that when a large pixel gap is allowed lines will often
extend across multiple disjointed edges from the canny map. This is not desirable for our
purposes as it could fill legitimate gaps that a robot would be able to pass through. However,
when a small segment length value and a low line vote count is set we end up with many
short lines that could easily be combined into a single long line, this again is not desirable
as the more lines there are, the larger the processing time that is required to apply the line
information to the colour segmentation map. See Figure 3 for a list of images with the optimal
found probabilistic Hough line parameters (with blue lines indicating the Hough lines).

Output of the probabilistic Hough transform was an array of lines. To apply this
information to the colour segmentation map, a polygon was drawn from the start and end
points of each line to the top of the image. Figure 4 shows a comparison between edge
supplemented and nonedge supplemented segmentation maps.

2. Implementation

The algorithms have been implemented in C++ because of the high-performance libraries
available for this language. Additional processing was completed using the OpenCV library.

To calculate thresholds for the rules defined in Section 1.1, a rectangular area is selected
from the image (Figure 5). Within this mask, thresholds are calculated as shown in Listing 1.
In particular, each pixel is iterated, updating a colour threshold only when it is less than or
bigger than the current threshold (depending on if it is a minimum or maximum threshold).
Once the minimum and maximum thresholds have been calculated they can be compared
against all the pixels in the captured image. If a pixel’s RGB value is between the desired
threshold, then the pixel can be marked as white otherwise as black as shown in Listing 2. To
apply the Hough line information from the line array is simply a matter of drawing a black
area onto the existing binary map, this is achieved by plotting a 4 sided polygon. Care must
be taken to determine the correct winding order to avoid a twisted hourglass like shape; this
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Figure 3: Optimal Hough line parameters applied to canny edge map.

is easily rectified by checking whether the first point of the line is to left or right of the end
point and changing the point drawing order as shown in Listing 3.

3. Results

The algorithm discussed above has been tested using images from an indoor environment.
The same set of images has been used to test different settings. For each setting, every image
has been processed by a different combination of algorithms. The following four different
settings have been tested:

Original. The image segmentation algorithm [20].

Original and edge. The original and the edge detection algrithms.

Modified. The modified image segmentation algorithm presented in this paper.

Modified and edge. The modified and the edge detection algorithms.

Once the image has been processed following one of the settings listed above, a
decision algorithm has been applied to the produced binary map (produced result). The same
decision algorithm (based on a fuzzy logic algorithm) has been applied irrespective of the
setting used to obtain the binary image. Then, the produced result has been compared with the
decision that humans would produce in those situations (expected result).

Amatch between the produced result and the expected result has been considered correct,
whereas a discrepancy between the produced result and the expected result has been counted
as an error. Six different possible outputs have been defined as the range of the possible
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(1) for (int i = start Y; i < height; ++i)
(2) {
(3) for (int j = start X; j <width; ++j)
(4) {
(5) unsigned char blue = pixel Data [i ∗ step + j ∗ channels];
(6) unsigned char green = pixel Data [i ∗ step + j ∗ channels + 1];
(7) unsigned char red = pixel Data [i ∗ step + j ∗ channels + 2];
(8)
(9) if (red == 0 && green == 0 && blue == 0)
(10) {
(11) continue;
(12) }
(13)
(14) //Find thersholds
(15) if (red <mMinimumRed)
(16) {
(17) mMinimumRed = Red;
(18) }
(19)
(20) if (red >mMaximumRed)
(21) {
(22) mMaximumRed = Red;
(23) }
(24)
(25) int redGreenRange = red – green;
(26) int redBlueRange = red – blue;
(27)
(28) if (redGreenRange <mRedGreenRangeMin)
(29) {
(30) mRedGreenRangeMin = redGreenRange;
(31) }
(32)
(33) if (redGreenRange >mRedGreenRangeMax)
(34) {
(35) mRedGreenRangeMax = redGreenRange;
(36) }
(37)
(38) if (redBlueRange <mRedBlueRangeMin)
(39) {
(40) mRedBlueRangeMin = redBlueRange;
(41) }
(42)
(43) if (redBlueRange >mRedBlueRangeMax)
(44) {
(45) mRedBlueRangeMax = redBlueRange;
(46) }
(47) }
(48) }

LISTING 1: Threshold. The code calculating the thresholds for the Image Segmentatation step.
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(1) for (int i = 0; i < inImage − > height; ++i)
(2) {
(3) for (int j = 0; j < inImage − >width; ++j)
(4) {
(5) int bluePos = i ∗ step + j ∗ channels;
(6) int greenPos = i ∗ step + j ∗ channels + 1;
(7) int redPos = i ∗ step + j ∗ channels + 2;
(8)
(9) unsigned char red = inPixel Data [redPos];
(10) unsigned char green = inPixel Data [greenPos];
(11) unsigned char blue = inPixel Data [bluePos];
(12) int redGreen = red – green;
(13) int redBlue = red – blue;
(14)
(15) if ((red >mMinimumRed && red <mMaximumRed)
(16) && (redGreen >=mRedGreenRangeMin
(17) && redGreen <=mRedGreenRangeMax)
(18) &&(redBlue >=mRedBlueRangeMin
(19) && redBlue <=mRedBlueRangeMax))
(20) {
(21) //pixel is within floor range set to white
(22) outPixelData [redPos] = 255;
(23) outPixelData [greenPos] = 255;
(24) outPixelData [bluePos] = 255;
(25) ++total Pixels;
(26) }
(27) else
(28) {
(29) outPixelData [redPos] = 0;
(30) outPixelData [greenPos] = 0;
(31) outPixelData [bluePos] = 0;
(32) }
(33) }
(34)}

LISTING 2: Image Segmentation. The code applying the thresholds.

decisions. move forward or turn left are examples of some of the six produced, expected
results output.

Results in Table 1 show that both the use of the modified algorithm and the two steps
strategy are very significant (χ2(3, N = 21) = 12.4, p = 0.006). That is, when the performance
of the modified red threshold rule is compared with the original rule in both settings (original
versus modified and original and edge versus modified and edge) a higher correct success rate is
obtained for the modified algorithm. Moreover, the discrepancy between produced result and
expected result is reduced with the introduction of the edge stepwhen the image is processed.

Different floor patterns have also been tested to investigate the modified algorithm
under different conditions. Figure 6 shows the outcome of using, respectively, the modified
in (a) and the original in (b) for a given floor pattern raw image in (c). From Figure 6 it is
possible to conclude that the modified rule set seems to perform specifically strongly with
white colours compared to the original rule set. Moreover, the modified rule set handles the
nonuniform floor patterns better. That is, with the introduction of the αmax value it is possible
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(1) for (auto it = Filtered Lines. Begin (); it != Filtered Lines. end (); ++it)
(2) {
(3) CvPoint poly Points [4];
(4)
(5) //First point is to the left of the right point
(6) if ((∗ it) [0] <= (∗ it) [2])
(7) {
(8) polyPoints [0] = cvPoint ((∗ it) [0], 0);
(9) polyPoints [1] = cvPoint ((∗ it) [2], 0);
(10) polyPoints [2] = cvPoint ((∗ it) [2], (∗ it) [3]);
(11) polyPoints [3] = cvPoint ((∗ it) [0], (∗ it) [1]);
(12) }
(13) else //First point is to the right of the right point
(14) {
(15) polyPoints [0] = cvPoint ((∗ it) [2], 0);
(16) polyPoints [1] = cvPoint ((∗ it) [0], 0);
(17) polyPoints [2] = cvPoint ((∗ it) [0], (∗ it) [1]);
(18) polyPoints [3] = cvPoint ((∗ it) [2], (∗ it) [3]);
(19) }
(20)
(21) cv Fill ConvexPoly (inImage, &polyPoints [0], 4, cvScalar (0, 0, 0));
(22) }

LISTING 3: Edge Segmentation. The code implementing the Edge Segmentation algorithm.

(a) (b)

Figure 4: Comparison of applied edge supplementation to colour segmentation map. In both (a) and (b),
left image applied edge supplementation, right image nonapplied.
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Figure 5: Selecting area for colour thresholds.
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Table 1: Algorithm testing. Correct matching results between the produced result and the expected result for
the different settings.

Setting Success rate (%)
Original 42
Original and Edge 76
Modified 57
Modified and Edge 90

Table 2: Algorithm processing time. Processing time values (in ms) for the image segmentation and edge
detection settings.

Setting Processing time (ms)
Modified 25.6
Modified and Edge 27.6

to notice that the algorithm performs particularly strongly against white colours compared to
the original algorithm (see, e.g., Figure 6). The original algorithm would have a much larger
threshold, based on our tests the original algorithm has a threshold range 38.75% greater than
that of the modified algorithm under highly illuminated environments.

Table 2 shows the processing time for the different settings described at the beginning
of the section. The time difference between the image segmentation algorithm [20] (i.e.,
original) and the modified version presented in this paper (modified) is too negligible to show
in the results, therefore only results for the Modified configuration have been shown.

The CPU used for all tests was a Phenom II X4 955 and CPU clock was set to
3.6GHz. The time without edge detection step and the time with the edge detection step
has been measured, respectively, in row 1 and 2. The values in the table indicate the time in
milliseconds it took to apply the algorithms indicated in the Setting column to the image and
then to generate the binary collision map. In all cases the mean was taken from a sample of
10 measurements.

Results in Table 2 show that the modified algorithm does not increase the processing
time (since as stated above modified and original settings produce similar processing time).
Further, it shows a percentage increase of 7.8% over the no edge configuration. That is,
as expected, the time to extract the required information increases by including the edge
detection step in the algorithm. However, from Table 2 it is possible to observe that a
percentage increase of 7.8% in processing time has produced a percentage increase of 57.9%
in the success rate for the algorithm.

4. Discussions and Conclusions

The sequential use of colour image segmentation and then edge detection strategies has been
investigated. A novel color image segmentation algorithm and a probabilistic Hough
algorithm have been implemented and tested. The novelty introduced here has been
demonstrated to improve an existing algorithm for image processing.

In particular, the modified red threshold rule considered for the image segmentation
algorithm helped in keeping the learnt thresholds stable. Moreover, the use of both
colour segmentation and edge detection techniques complemented each other by removing
the weaknesses that each method separately presented. In particular, with the colour
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(a ) (b) (c)

Figure 6: Comparisons between the 2 different image segmentation algorithms under different floor
patterns. Columns (a) and (b) show the outcome of the processing for the raw image in (c).

segmentation technique identifying the main obstacle-free area and the edge detection filling
any remaining gaps in the detected segments in the output binary map.

Although the approach discussed in this paper has been demonstrated to be
independent of floor changes, further development is needed to cope with patterned floor
surfaces. This is because the edges detected from the patterns and the wider colour thresholds
that are learnt from such floorsmake it difficult to produce an accurate binarymap. A possible
solution could be to make use of the canny edge map to identify the patterned areas in the
floor surface and combine that with the information from the threshold learning algorithm so
that it would ignore colours within that area of the image. As a consequence the learnt colour
thresholds would be narrower and would not erroneously detect obstacles as obstacle free
areas.

The scalability of this algorithm for a distributed architecture (with several robots
involved) is another aspect that could be investigate further. Each robot will produce a
(slight) different image of the same environment to extract the required features. Therefore
each robot can receive not only its own information but also the information from its
neighboring robot according to the topology of the given robot network. Then to deal with
the complicated coupling between one sensor and its neighbors, a filtering approach such as
the ones in [24, 25] could be considered. However, some further investigation is required to
analyse how these paradigms would perform with these types of data.
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New directions in model predictive control (MPC) are introduced. On the one hand, we combine
the input-to-state dynamical stability (ISDS) with MPC for single and interconnected systems. On
the other hand, we introduceMPC schemes guaranteeing input-to-state stability (ISS) of single sys-
tems and networks with time delays. In both directions, recent results of the stability analysis from
thementioned areas are applied using Lyapunov function(al)s to show that the corresponding cost
function(al) of the MPC scheme is a Lyapunov function(al). For networks, we show that under a
small-gain condition and with an optimal control obtained by an MPC scheme for networks, it has
the ISDS property or ISS property, respectively.

1. Introduction

The approach of MPC started in the late 1970s and spread out in the 1990s by an increasing
usage of automation processes in the industry. It has a wide range of applications, see the sur-
vey papers [1, 2].

The aim of MPC is to control a system to follow a certain trajectory or to steer the
solution of a system into an equilibrium point under constraints and unknown disturbances.
Additionally, the control should be optimal in view of defined goals, for example, optimal
regarding effort. An overview about MPC can be found in the books [3–5] and the Ph.D.
theses [6–8], for example.

We consider systems with disturbances of the form,

ẋ(t) = f(x(t), w(t), u(t)), (1.1)
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where w ∈ W ⊆ L∞(R+,R
P ) is the unknown disturbance and W is a compact and convex set

containing the origin. The input u is a measurable and essentially bounded control subject to
input constraints u ∈ U, where U ⊆ R

m is a compact and convex set containing the origin in
its interior. The function f is assumed to be locally Lipschitz in x uniformly in w and u to
guarantee that a unique solution of (1.1) exists, which is denoted by x(t;x0, w, u) or x(t) in
short.

The control input is obtained by an MPC scheme and applied to the system. We are
interested in stability of MPC. It was shown in [9] that the application of the control obtained
by an MPC scheme to a system does not guarantee that a system without disturbances is
asymptotically stable. For stability of a system in applications, it is desired to analyze under
which conditions stability of a system can be achieved using an MPC scheme. An overview
about existing results regarding stability and MPC for systems without disturbances can be
found in [10] and recent results are included in [5–8]. To design stabilizing MPC controllers
for nonlinear systems, a general framework can be found in [11].

Taking the unknown disturbancew ∈ W into account, MPC schemes which guarantee
input-to-state stability (ISS) were developed. First results can be found in [12] regarding ISS
for MPC of nonlinear discrete-time systems. Furthermore, results using the ISS property with
initial states from a compact set, namely, regional-ISS, are given in [6, 13]. In [14, 15], an MPC
scheme that guarantees ISS using the so-called min-max approach was given. The approach
uses a closed-loop formulation of the optimization problem to compensate the effect of the
unknown disturbance.

Stable MPC schemes for interconnected systems were investigated in [6, 16, 17], where
in [6, 16] conditions to assure ISS of thewhole systemwere derived and in [17] asymptotically
stable MPC schemes without terminal constraints were provided. Note that in [17], the
subsystems are not directly connected, but they exchange information over the network to
control themselves according to state constraints.

One research topic of this paper provides a new direction in MPC: we combine the
input-to-state dynamical stability (ISDS) property, introduced in [18], with MPC for single
and interconnected systems. The provided MPC scheme uses the min-max approach (see
[14, 15]). Conditions are derived such that single closed-loop systems and whole closed-loop
networks with an optimal control obtained by an MPC scheme have the ISDS property. The
results of [18] for single systems and the ISDS small-gain theorem for networks (see [19]) are
applied to prove the main results of the corresponding section.

The advantage of the usage of ISDS over ISS for MPC is that the ISDS estimation takes
only recent values of the disturbance into account due to the memory fading effect, see [18,
19]. In particular, if the disturbance tends to zero, then the ISDS estimation tends to zero,
for example. Moreover, the decay rate can be derived using ISDS-Lyapunov functions. This
information can be useful for applications of MPC.

In practice, there are problems, where the advantages of ISDS over ISS, in particular the
memory fading effect of the ISDS estimation, lead to more efficient controllers with respect to
costs. Examples are the control of air planes, robots, or automatic transportation vehicles.

A second research topic of this paper is the stability analysis of MPC schemes for
systems with time-delays. In many applications, there occur time-delays, for example, in
communication networks, logistic networks, or biological systems. The presence of time-
delays can lead to instability of a network, see [9], where it was shown that the application of
the control obtained by anMPC scheme to a system does not guarantee that a systemwithout
disturbances is asymptotically stable.

Therefore, we are interested in the analysis of networks with time-delays in view
of input-to-state stability (ISS). In [2, 20], tools based on the Lyapunov-Razumikhin and
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Lyapunov-Krasovskii approaches were developed to check, whether a single system with
time-delays has the ISS property. Considering networks with time-delays recent results
regarding ISS were given in [21] using a small-gain condition.

Considering time-delay systems (TDSs) and MPC, recent results for asymptotically
stable MPC schemes of single systems can be found in [22, 23]. In these works, continuous-
time TDSs were investigated and conditions were derived, which guarantee asymptotic sta-
bility of a TDS using a Lyapunov-Krasovskii approach. Moreover, by the help of Lyapunov-
Razumikhin arguments it was shown, how to determine the terminal cost and terminal re-
gion, and to compute a locally stabilizing controller.

As a second part of this paper, we investigate the ISS property for MPC of single
systems and networks with time-delays. Conditions are derived such that single closed-
loop TDSs and whole closed-loop time-delay networks with an optimal control obtained by
an MPC scheme have the ISS property. The results of the Lyapunov-Krasovskii approach,
introduced in [20] for single systems and the corresponding small-gain theorem proved in
[21] for networkswith time-delays, are applied to prove themain results of the corresponding
section.

Since time-delays and disturbances appear in many problems, the results of the
second part of this paper regarding ISS for MPC of time-delay systems can be applied to a
huge range of practical problems. Classical examples are not only communication networks,
transportation, or production systems, but also biological networks or chemical networks.

In comparison to existing results in the literature, where only ISS for MPC for single
systems (see [6, 13–15]) and networks (see [6, 16]) without time-delays was investigated,
we use, on the one hand, the advantages of ISDS for MPC, in particular the memory fading
effect. On the other hand, we use the stability notion ISS for MPC of systems with time-delays
and disturbances, where in the literature only MPC schemes for single time-delay systems
without disturbances were investigated in view of asymptotic stability (see [22, 23]). Both
approaches presented in this paper were never done before, and this paper is a first theoretical
step in the mentioned directions.

This paper is organized as follows: the preliminaries are given in Section 2. In
Section 3.1, an MPC scheme of single systems guaranteeing ISDS is provided. ISDS for MPC
of networks is investigated in Section 3.2, where we prove that each subsystem has the ISDS
property and the whole network has the ISDS property using the control obtained by anMPC
scheme. In Section 4.1, the ISS property for MPC of single systems is investigated. Networks
with time-delays are considered in Section 4.2. Finally, the conclusions and an outlook for
future research possibilities can be found in Section 5.

2. Preliminaries

By xT we denote the transposition of a vector x ∈ R
n, n ∈ N; furthermore, R+ := [0,∞) and

R
n
+ denotes the positive orthant {x ∈ R

n : x ≥ 0}, where we use the standard partial order for
x, y ∈ R

n given by

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , n,

x/≥y ⇐⇒ ∃i : xi < yi,

x > y ⇐⇒ xi > yi, i = 1, . . . , n.
(2.1)
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| · | denotes the Euclidean norm in R
n. The essential supremum norm of a (Lebesgue-)

measurable function f : R → R
n is denoted by ‖f‖. We denote the set of essentially bounded

(Lebesgue-) measurable functions u from R to R
m by

L∞(R,Rm) := {u : R −→ R
m measurable | ∃K > 0 : |u(t)| ≤ K, for almost all (f.a.a.) t}.

(2.2)

∇V is the gradient of a function V : R
n → R+.

For t1, t2 ∈ R, t1 < t2, let C([t1, t2];RN) denotes the Banach space of continuous
functions defined on [t1, t2] equipped with the norm ‖φ‖[t1,t2] := supt1≤s≤t2 |φ(s)| and values
in R

N . Let θ ∈ R+. The function xt ∈ C([−θ, 0];RN) is given by xt(τ) := x(t + τ), τ ∈ [−θ, 0].
For a function v : R+ → R

m, we define its restriction to the interval [s1, s2] by

v[s1,s2](t) :=

{
v(t) if t ∈ [s1, s2],
0 otherwise,

t, s1, s2 ∈ R+. (2.3)

Definition 2.1. We define the following classes of functions:

P :=
{
f : R

n −→ R+ | f(0) = 0, f(x) > 0, x /= 0
}
,

K :=
{
γ : R+ → R+ | γ is continuous, γ(0) = 0 and strictly increasing

}
,

K∞ :=
{
γ ∈ K | γ is unbounded

}
,

L :=
{
γ : R+ → R+ | γ is continuous and decreasing with lim

t→∞
γ(t) = 0

}
,

KL :=
{
β : R+ × R+ → R+ | β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0

}
,

KLD :=
{
μ ∈ KL | μ(r, t + s) = μ

(
μ(r, t), s

)
, ∀r, t, s ≥ 0

}
.

(2.4)

We will call functions of class P positive definite.

Now, we recall some results related to ISDS. Therefore, we consider systems of the
form

ẋ(t) = f(x(t), u(t)), (2.5)

where t ∈ R+ is the (continuous) time, ẋ denotes the derivative of the state x ∈ R
N , and

u ∈ L∞(R+,R
m) is the input. The function f : R

N+m → R
N , N,m ∈ N, is assumed to be

locally Lipschitz continuous in x uniformly in u to have existence and uniqueness of the
solution, denoted by x(t;x0, u) or x(t) for short, for the given initial value x(0) = x0.

The notion of ISDS was introduced in [18].

Definition 2.2 (Input-to-state dynamical stability (ISDS)). The system (2.5) is called input-to-
state dynamically stable (ISDS) if there exist μ ∈ KLD, η, γ ∈ K∞ such that for all initial
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values x0 and all inputs u, it holds that

|x(t)| ≤ max

{
μ
(
η(|x0|), t

)
, ess sup

τ∈[0,t]
μ
(
γ(|u(τ)|), t − τ

)
}
, (2.6)

for all t ∈ R+. μ is called decay rate, η is called overshoot gain, and γ is called robustness gain.

A useful tool to check whether a system has the ISDS property is the following.

Definition 2.3 (ISDS-Lyapunov function). Given ε > 0, a function V : R
N → R+, which is

locally Lipschitz on R
N \ {0}, is called an ISDS-Lyapunov function of the system (2.5) if there

exist η, γ ∈ K∞, μ ∈ KLD such that

|x|
1 + ε

≤ V (x) ≤ η(|x|), ∀x ∈ R
N, (2.7)

V (x) > γ(|u|) =⇒ ∇V (x)f(x, u) ≤ −(1 − ε)g(V (x)) (2.8)

holds, for almost all x ∈ R
N \ {0} and all u, where μ solves

d

dt
μ(r, t) = −g(μ(r, t)), r, t > 0, (2.9)

for a locally Lipschitz continuous function g : R+ → R+.

The equivalence of ISDS and the existence of an ISDS-Lyapunov function were proved
in [18].

Theorem 2.4. The system (2.5) is ISDS with μ ∈ KLD and η, γ ∈ K∞ if and only if for each ε > 0
there exists an ISDS-Lyapunov function V .

Remark 2.5. Note that for a system, which possesses the ISDS property, it holds that the decay
rate μ and gains η, γ in Definition 2.2 are exactly the same as in Definition 2.3.

Now, consider networks of the form

ẋi(t) = fi(x1(t), . . . , xn(t), ui(t)), i = 1, . . . , n, (2.10)

where n ∈ N, xi ∈ R
Ni , Ni ∈ N, ui ∈ L∞(R+,R

Mi), and fi : R

∑n
j=1 Nj+Mi → R

Ni are locally
Lipschitz in x = (xT

1 , . . . , x
T
n)

T uniformly in ui, i = 1, . . . , n. If we defineN :=
∑

Ni, m =
∑

Mi,
and f := (fT

1 , . . . , f
T
n )

T , then (2.10) can be written as a system of the form (2.5), which we call
the whole system.
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The ith subsystem of (2.10) is called ISDS if there exists aKLD-function μi and functions
ηi, γi, and γij ∈ K∞ ∪ {0} such that the solution xi(t;x0

i , ui) = xi(t) for all initial values x0
i , all

inputs xj , j /= i, ui, and for all t ∈ R+ satisfies

|xi(t)| ≤ max
{
μi

(
ηi
(∣∣∣x0

i

∣∣∣
)
, t
)
,max

j /= i
νij
(
xj , t
)
, νi(ui, t)

}
,

νi(ui, t) := ess sup
τ∈[0,t]

μi

(
γi(|ui(τ)|), t − τ

)
,

νij
(
xj , t
)
:= sup

τ∈[0,t]
μi

(
γij
(∣∣xj(τ)

∣∣), t − τ
)

(2.11)

i, j = 1, . . . , n, i /= j. γij are called gains.
We collect all the gains in a matrix Γ, defined by Γ := (γij)n×n with γii ≡ 0, i, j = 1, . . . , n.

This defines a map Γ : R
n
+ → R

n
+ for s ∈ R

n
+ by

Γ(s) :=
(
max

j
γ1j
(
sj
)
, . . . ,max

j
γnj
(
sj
))T

. (2.12)

In view of ISDS of the whole network, we say that Γ satisfies the small-gain condition
(SGC) (see [24]) if

Γ(s)/≥s, ∀s ∈ R
n
+ \ {0}. (2.13)

To recall the Lyapunov version of the small-gain theorem for ISDS, we need the
following.

Definition 2.6. A continuous path σ ∈ Kn
∞ is called an Ω-path with respect to Γ if

(i) for each i, the function σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set P ⊂ (0,∞), there are constants 0 < K1 < K2 such that for all
points of differentiability of σ−1

i and i = 1, . . . , nwe have

0 < K1 ≤
(
σ−1
i

)′
(r) ≤ K2, ∀r ∈ P ; (2.14)

(iii) it holds that Γ(σ(r)) < σ(r), for all r > 0.

More details about an Ω-path can be found in [24–26].
The following proposition is useful for the construction of an ISDS-Lyapunov function

for the whole system.

Proposition 2.7. Let Γ ∈ (K∞ ∪ {0})n×n be a gain-matrix. If Γ satisfies the small-gain condition
(2.13), then there exists an Ω-path σ with respect to Γ.

The proof can be found in [24], for example.
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We assume that for each subsystem of (2.10) there exists a function Vi : R
Ni → R+,

which is locally Lipschitz continuous and positive definite. Given εi > 0, a function Vi : R
Ni →

R+, which is locally Lipschitz continuous on R
Ni \ {0}, is an ISDS-Lyapunov function of the ith

subsystem in (2.10) if it satisfies the following:

(i) there exists a function ηi ∈ K∞ such that for all xi ∈ R
Ni it holds

|xi|
1 + εi

≤ Vi(xi) ≤ ηi(|xi|); (2.15)

(ii) there exist functions μi ∈ KLD, γi ∈ K∞ ∪ {0}, γij ∈ K∞ ∪ {0}, j = 1, . . . , n, i /= j
such that for almost all xi ∈ R

Ni \ {0}, all inputs xj , j /= i, and ui it holds that

Vi(xi) > max
{
max
j /= i

γij
(
Vj

(
xj

))
, γi(|ui|)

}
=⇒ ∇Vi(xi)fi(x, u) ≤ −(1 − εi)gi(Vi(xi)), (2.16)

where μi ∈ KLD solves (d/dt)μi(r, t) = −gi(μi(r, t)), r, t > 0 for some locally Lipschitz
function gi : R+ → R+.

Now, we recall the main result of [19], which establishes ISDS for networks using
Lyapunov functions.

Theorem 2.8. Assume that each subsystem of (2.10) has the ISDS property. This means that for each
subsystem and for each εi > 0 there exists an ISDS-Lyapunov function Vi, which satisfies (2.15) and
(2.16). Let Γ be given by (2.12), satisfying the small-gain condition (2.13), and let σ ∈ Kn

∞ be an
Ω-path from Proposition 2.7 with respect to Γ. Then, the whole system (2.5) has the ISDS property
and its ISDS-Lyapunov function is given by

V (x) = ψ−1
(
max

i

{
σ−1
i (Vi(xi))

})
, (2.17)

where ψ(|x|) = mini σ
−1
i (|x|/√n).

As a second topic of this paper, we are going to establish ISS with the help of MPC for
TDSs of the form

ẋ(t) = f
(
xt, u(t)

)
, t ∈ R+,

x0(τ) = ξ(τ), τ ∈ [−θ, 0],
(2.18)

where x ∈ R
N , u ∈ L∞(R+,R

m), and “·” represents the right-hand side derivative. θ is the
maximum involved delay, and f : C([−θ, 0];RN) × R

m → R
N is locally Lipschitz continuous

on any bounded set. This guarantees that the system (2.18) admits a unique solution on a
maximal interval [−θ, Tmax), 0 < Tmax ≤ +∞, which is locally absolutely continuous, see
[27, Section 2.6]. We denote the solution by x(t; ξ, u) or x(t) for short, satisfying the initial
condition x0 ≡ ξ for any ξ ∈ C([−θ, 0],RN).

The notion of ISS for TDSs reads as follows.
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Definition 2.9 (ISS for TDSs). The system (2.18) is called ISS if there exist β ∈ KL and γ ∈ K
such that for all ξ, all u, and all t ∈ R+ it holds that

|x(t)| ≤ max
{
β
(
‖ξ‖[−θ,0], t

)
, γ(‖u‖)

}
. (2.19)

In [20], ISS-Lyapunov-Krasovskii functionals are introduced to check whether a TDS
has the ISS property. Given a locally Lipschitz continuous functional V : C([−θ, 0];RN) →
R+, the upper right-hand side derivateD+V of the functional V along the solution x(t; ξ, u) is
defined according to [27, Chapter 5.2]

D+V
(
φ, u
)
:= lim sup

h→ 0+

1
h

(
V
(
xt+h
)
− V
(
φ
))

, (2.20)

where xt+h ∈ C([−θ, 0];RN) is generated by the solution x(t;φ, u) of ẋ(t) = f(xt, u(t)), and t ∈
(t0, t0 + h) with xt0 := φ ∈ C([−θ, 0];RN).

Remark 2.10. Note that in contrast to (2.20), the definition of D+V in [20] is slightly different,
since there the functional is assumed to be only continuous and in that case, D+V can take
infinite values. Nevertheless, the results in [20] also hold true if the functional is chosen to be
locally Lipschitz, according to the results in [28] and using (2.20).

By ‖ · ‖a, we indicate any norm in C([−θ, 0];RN) such that for some c1, c2 ∈ R+ \ {0}
the following inequalities hold:

c1
∣∣φ(0)

∣∣ ≤ ∥∥φ∥∥a ≤ c2
∥∥φ
∥∥
[−θ,0], ∀φ ∈ C

(
[−θ, 0];RN

)
. (2.21)

Definition 2.11 (ISS-Lyapunov-Krasovskii functional). A locally Lipschitz continuous func-
tional V : C ([−θ, 0];RN) → R+ is called an ISS-Lyapunov-Krasovskii functional for the
system (2.18) if there exist functions ψ1, ψ2 ∈ K∞ and functions χ, α ∈ K such that

ψ1
(∣∣φ(0)

∣∣) ≤ V
(
φ
) ≤ ψ2

(∥∥φ
∥∥
a

)
, (2.22)

V
(
φ
) ≥ χ(|u|) =⇒ D+V

(
φ, u
) ≤ −α(V (φ)), (2.23)

for all φ ∈ C([−θ, 0];RN), u ∈ L∞(R+,R
m).

The next theorem was proved in [20].

Theorem 2.12. If there exists an ISS-Lyapunov-Krasovskii functional V for the system (2.18), then
the system (2.18) has the ISS property.

Now, we investigate networks with time-delays: we consider n ∈ N interconnected
TDSs of the form

ẋi(t) = fi
(
xt
1, . . . , x

t
n, ui(t)

)
, i = 1, . . . , n, (2.24)

where xt
i ∈ C ([−θ, 0];RNi), xt

i(τ) := xi(t + τ), τ ∈ [−θ, 0], xi ∈ R
Ni , and ui ∈ L∞(R+,R

Mi).
θ denotes the maximal involved delay and xt

j , j /= i can be interpreted as internal inputs of
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the ith subsystem. The functionals fi : C([−θ, 0];RN1)× · · · ×C([−θ, 0];RNn)×R
Mi → R

Ni are
locally Lipschitz continuous on any bounded set. We denote the solution of a subsystem by
xi(t; ξi, u) or xi(t) for short, satisfying the initial condition x0

i ≡ ξi for any ξi ∈ C([−θ, 0],RNi).
The ISS property for a subsystem of (2.24) reads as follows: the i subsystem of (2.24) is

ISS if there exist βi ∈ KL, γij , γi ∈ K∞ ∪ {0}, j = 1, . . . , n, j /= i such that for all t ∈ R+ it holds

|xi(t)| ≤ max
{
βi
(
‖ξi‖[−θ,0], t

)
,max
j, j /= i

γij
(∥∥xj

∥∥
[−θ,t]

)
, γi(‖ui‖)

}
. (2.25)

If we define N :=
∑

Ni, m :=
∑

Mi, x := (xT
1 , . . . , x

T
n)

T , u = (uT
1 , . . . , u

T
n)

T , and f := (fT
1 ,

. . . , fT
n )

T , then (2.24) can be written as a system of the form (2.18), which we call the whole
system. The Krasovskii functionals for subsystems are as follows.

A locally Lipschitz continuous functional Vi : C([−θ, 0];RNi) → R+ is an ISS-Lyapu-
nov-Krasovskii functional of the ith subsystem of (2.24) if there exist functionals Vj, j = 1, . . . , n,
which are positive definite and locally Lipschitz continuous on C([−θ, 0];RNj ), functions
ψ1i, ψ2i ∈ K∞, χ̃ij , χ̃i ∈ K ∪ {0}, and α̃i ∈ K, j = 1, . . . , n, i /= j such that for all φi ∈
C([−θ, 0],RNi)

ψ1i
(∣∣φi(0)

∣∣) ≤ Vi

(
φi

) ≤ ψ2i
(∥∥φi

∥∥
a

)
,

Vi

(
φi

) ≥ max
{
max
j,j /= i

χ̃ij

(
Vj

(
φj

))
, χ̃i(|ui|)

}
=⇒ D+Vi

(
φi, u

) ≤ −α̃i

(
Vi

(
φi

))
,

(2.26)

for all φi ∈ C([−θ, 0],RNi), u ∈ L∞(R+,R
m).

The gain-matrix is defined by Γ := (χij)n×n, χii ≡ 0, i = 1, . . . , n, which defines a map
Γ : R

n
+ → R

n
+ as in (2.12).

The next theorem is one of the main results of [21] and provides a construction for an
ISS-Lyapunov-Krasovskii functional of the whole system.

Theorem 2.13 (ISS-Lyapunov-Krasovskii theorem for general networks with time-delays).
Consider an interconnected system of the form (2.24). Assume that each subsystem has an ISS-
Lyapunov-Krasovskii functional Vi, which satisfies the conditions (2.26), i = 1, . . . , n. If the corres-
ponding gain-matrix Γ satisfies the small-gain condition (2.13), then

V
(
φ
)
:= max

i

{
σ−1
i

(
Vi

(
φi

))}
(2.27)

is the ISS-Lyapunov-Krasovskii functional for the whole system of the form (2.18), which is ISS,
where σ = (σ1, . . . , σn)

T is an Ω-path as in Definition 2.6 and φ = (φi, . . . , φn)
T ∈ C([−θ, 0];RN).

The Lyapunov gain is given by χ(r) := maxiσ−1
i (χi(r)), r > 0.

Now, we present the new directions in MPC: ISDS and ISS for single and intercon-
nected systems with and without time-delays. We start with MPC schemes guaranteeing
ISDS.
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3. MPC and ISDS

In this section, we combine ISDS and MPC for nonlinear single and interconnected systems.
Conditions are derived, which assure ISDS of a system is obtained by application of the
control to the system (1.1), and calculated by an MPC scheme.

3.1. Single Systems

We consider systems of the form (1.1) and we use the min-max approach to calculate an
optimal control: to compensate the effect of the disturbance w, we apply a feedback control
law π(t, x(t)) to the system. An optimal control law is obtained by solving the finite horizon
optimal control problem (FHOCP), which consists of minimization of the cost function J with
respect to π(t, x(t)) and maximization of the cost function J with respect to the disturbance
w. The following definition is taken from [14, 15] with a slightly adjustment using ε here to
apply the ISDS property to the FHOCP.

Definition 3.1 (Finite horizon optimal control problem (FHOCP)). Let 1 > ε > 0 be given. Let
T > 0 be the prediction horizon and u(t) = π(t, x(t)) a feedback control law. The finite horizon
optimal control problem for a system of the form (1.1) is formulated as

min
π

max
w

J(x0, π,w; t, T)

:= min
π

max
w

(1 − ε)
∫ t+T

t

(
l
(
x
(
t′
)
, π
(
t′, x
(
t′
))) − lw

(
w
(
t′
)))

dt′ + Vf(x(t + T))

subject to

ẋ
(
t′
)
= f
(
x
(
t′
)
, w
(
t′
)
, u
(
t′
))
, x(t) = x0, t′ ∈ [t, t + T],

x ∈ X,

w ∈ W,

π ∈ Π,

x(t + T) ∈ Ω ⊆ R
N,

(3.1)

where x0 ∈ R
N is the initial value of the system at time t, the terminal region Ω is a compact

and convex set with the origin in its interior, and π(t, x(t)) is essentially bounded, locally
Lipschitz in x and measurable in t. l − lw is the stage cost, where l : R

N × R
m → R+ penalizes

the distance of the state from the equilibrium point 0 of the system and it penalizes the control
effort. lw : R

P → R+ penalizes the disturbance, which influences the systems behavior. l and
lw are locally Lipschitz continuous with l(0, 0) = 0, lw(0) = 0, and Vf : Ω → R+ is the terminal
penalty.

The FHOCPwill be solved at the sampling instants t = kΔ, k ∈ N,Δ ∈ R+. The optimal
solution is denoted by π∗(t′, x(t′); t, T) and w∗(t′), t′ ∈ [t, t + T]. The optimal cost function is



Mathematical Problems in Engineering 11

denoted by J∗(x0, π
∗, w∗; t, T). The control input to the system (1.1) is defined in the usual

receding horizon fashion as

u
(
t′
)
= π∗(t′, x

(
t′
)
; t, T

)
, t′ ∈ [t, t + Δ]. (3.2)

In the following, we need some definitions, which can be found, for example, in [5].

Definition 3.2. (i) A feedback control π is called a feasible solution of the FHOCP at time t, if
for a given initial value x0 at time t the feedback π(t′, x(t′)), t′ ∈ [t, t + T] controls the state of
the system (1.1) into Ω at time t + T , that is, x(t + T) ∈ Ω, for all w ∈ W.

(ii) A set Ω ⊆ R
N is called positively invariant if for all x0 ∈ Ω a feedback control π

keeps the trajectory of the system (1.1) in Ω, that is,

x(t;x0, w, π) ∈ Ω, ∀t ∈ (0,∞), (3.3)

for all w ∈ W.

To prove that the system (1.1)with the control obtained by solving the FHOCP has the
ISDS property, we need the following assumption.

Assumption 3.3. (1) There exist functions αl, αw ∈ K∞, where αl is locally Lipschitz continu-
ous such that

l(x, π) ≥ αl(|x|), x ∈ X, π ∈ Π,

lw(w) ≤ αw(|w|), w ∈ W.
(3.4)

(2) The FHOCP in Definition 3.1 admits a feasible solution at the initial time t = 0.
(3) There exists a controller u(t) = π(t, x(t)) such that the system (1.1) has the ISDS

property.
(4) For each 1 > ε > 0, there exists a locally Lipschitz continuous function Vf(x) such

that the terminal region Ω is a positively invariant set and we have

Vf(x) ≤ η(|x|), ∀x ∈ Ω, (3.5)

V̇f(x) ≤ −(1 − ε)l(x, π) + (1 − ε)lw(w), f.a.a. x ∈ Ω, (3.6)

where η ∈ K∞,w ∈ W, and V̇f denotes the derivative of Vf along the solution of system (1.1)
with the control u ≡ π from point 3 of this assumption.

(5) For each sufficiently small ε > 0, it holds that

(1 − ε)
∫ t+T

t

l
(
x
(
t′
)
, π
(
t′, x
(
t′
)))

dt′ ≥ |x(t)|
1 + ε

. (3.7)

(6) The optimal cost function J∗(x0, π
∗, w∗; t, T) is locally Lipschitz continuous.
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Remark 3.4. In [6], it is discussed that a different stage cost, for example, by the definition of
ls := l − lw, can be used for the FHOCP. In view of stability, the stage cost ls has to fulfill some
additional assumptions, see [6, Chapter 3.4].

Remark 3.5. The assumption (3.7) is needed to assure that the cost function satisfies the lower
estimation in (2.7). However, we did not investigated whether this condition is restrictive or
not. In case of discrete-time systems and the according cost function, the assumption (3.7) is
not necessary, see the proofs in [6, 12–15].

The following theorem establishes ISDS of the system (1.1), using the optimal control
input u ≡ π∗ obtained from solving the FHOCP.

Theorem 3.6. Consider a system of the form (1.1). Under Assumption 3.3, the system resulting
from the application of the predictive control strategy to the system, namely, ẋ(t) = f(x(t), w(t),
π∗(t, x(t))), t ∈ R+, x(0) = x0, possesses the ISDS property.

Remark 3.7. Note that the gains and the decay rate of the definition of the ISDS property,
Definition 2.2, can be calculated using Assumption 3.3, as it is partially displayed in the
following proof.

Proof. We show that the optimal cost function J∗(x0, π
∗, w∗; t, T) =: V (x0) is an ISDS-

Lyapunov function, following the steps:

(i) the control problem admits a feasible solution π for all times t > 0;

(ii) J∗(x0, π
∗, w∗; t, T) satisfies the conditions (2.7) and (2.8).

Then, by application of Theorem 2.4, the ISDS property follows.
Let us prove the following feasibility: we suppose that a feasible solution π̃(t′, x(t′)),

t′ ∈ [t, t + T] at time t exists. For Δ > 0, we construct a control by

π̂
(
t′, x
(
t′
))

=

{
π̃(t′, x(t′)), t′ ∈ [t + Δ, t + T],
π(t′, x(t′)), t′ ∈ (t + T, t + T + Δ],

(3.8)

where π is the controller from Assumption 3.3, point 3. Since π̃ controls x(t + Δ) into x(t +
T) ∈ Ω and Ω is a positively invariant set, π(t′, x(t′)) keeps the systems trajectory in Ω for
t + T < t′ ≤ t + T + Δ under the constraints of the FHOCP. This means that from the existence
of a feasible solution for the time t, we have a feasible solution for the time t + Δ. Since we
assume that a feasible solution for the FHOCP at the time t = 0 exists (Assumption 3.3, point
2), it follows that a feasible solution exists for every t > 0.

We replace π̃ in (3.8) by π∗. Then, it follows from (3.6) that

J∗(x0, π
∗, w∗; t, T + Δ)

≤ J(x0, π̂, w
∗; t, T + Δ)

= (1 − ε)
∫ t+T

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′

+ (1 − ε)
∫ t+T+Δ

t+T

(
l
(
x
(
t′
)
, π
(
t′, x
(
t′
))) − lw

(
w∗(t′

)))
dt′

+ Vf(x(t + T + Δ))
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= J∗(x0, π
∗, w∗; t, T) − Vf(x(t + T)) + Vf(x(t + T + Δ))

+ (1 − ε)
∫ t+T+Δ

t+T

(
l
(
x
(
t′
)
, π
(
t′, x
(
t′
))) − lw

(
w∗(t′

)))
dt′

≤ J∗(x0, π
∗, w∗; t, T)

(3.9)

holds. From this and with (3.5), it holds that

J∗(x0, π
∗, w∗; t, T) ≤ J∗(x0, π

∗, w∗; t, 0) = Vf(x0) ≤ η(|x0|). (3.10)

Now, with Assumption 3.3, point 5, we have

V (x0) ≥ J(x0, π
∗, 0; t, T) ≥ (1 − ε)

∫ t+T

t

l
(
x
(
t′
)
, π∗(t′, x

(
t′
)))

dt′ ≥ |x0|
1 + ε

. (3.11)

This shows that J∗ satisfies (2.7). Now, denote x̃0 := x(t + h). From J∗(x0, π
∗, w∗; t, T +

Δ) ≤ J∗(x0, π
∗, w∗; t, T), we get

(1 − ε)
∫ t+h

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′ + J∗(x̃0, π

∗, w∗; t + h, T + Δ − h)

≤ (1 − ε)
∫ t+h

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′

+ J∗(x̃0, π
∗, w∗; t + h, T − h),

(3.12)

and therefore

J∗(x̃0, π
∗, w∗; t + h, T + Δ − h) ≤ J∗(x̃0, π

∗, w∗; t + h, T − h). (3.13)

Now, we show that J∗ satisfies the condition (2.8). Note that by Assumption 3.3, point
6, J∗ is locally Lipschitz continuous. With (3.13), it holds that

J∗(x0, π
∗, w∗; t, T)

= (1 − ε)
∫ t+h

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′

+ J∗(x̃0, π
∗, w∗; t + h, T − h)

≥ (1 − ε)
∫ t+h

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′

+ J∗(x̃0, π
∗, w∗; t + h, T).

(3.14)
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This leads to

J∗(x̃0, π
∗, w∗; t + h, T) − J∗(x0, π

∗, w∗; t, T)
h

≤ − 1
h
(1 − ε)

∫ t+h

t

(
l
(
x
(
t′
)
, π∗(t′, x

(
t′
)
; t, T

)) − lw
(
w∗(t′

)))
dt′.

(3.15)

For h → 0 and using the first point of Assumption 3.3, we obtain

V̇ (x0) ≤ −(1 − ε)αl(|x0|) + (1 − ε)αw(|w∗|), f.a.a. x0 ∈ X, ∀w ∈ W. (3.16)

By definition of γ(r) := η(α−1
l (2αw(r))) and g(r) := (1/2)αl(η−1(r)), r ≥ 0, this implies

V (x0) > γ(|w∗|) =⇒ V̇ (x0) ≤ −(1 − ε)g(V (x0)), (3.17)

where the function g is locally Lipschitz continuous. We conclude that J∗ is an ISDS-Lyapu-
nov function for the system

ẋ(t) = f(x(t), w(t), π∗(t, x(t))), (3.18)

and by application of Theorem 2.4 the system has the ISDS property.

In the next subsection, we transform the analysis of ISDS for MPC of single systems to
interconnected systems.

3.2. Interconnected Systems

We consider interconnected systems with disturbances of the form

ẋi(t) = fi(x1(t), . . . , xn(t), wi(t), ui(t)), i = 1, . . . , n, (3.19)

where ui ∈ R
Mi , measurable and essentially bounded, are the control inputs and wi ∈ R

Pi are
the unknown disturbances.We assume that the states, disturbances, and inputs fulfill the con-
straints

xi ∈ Xi, wi ∈ Wi, ui ∈ Ui, i = 1, . . . , n, (3.20)

whereXi ⊆ R
Ni , Wi ⊆ L∞(R+,R

Pi), and Ui ⊆ R
Mi are compact and convex sets containing the

origin in their interior.
Now, we are going to determine an MPC scheme for interconnected systems. An over-

view of existing distributed and hierarchical MPC schemes can be found in [29]. The
used scheme in this work is inspired by the min-max approach for single systems as in
Definition 3.1, see [14, 15].
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At first, we determine the cost function of the ith subsystem by

Ji
(
x0
i ,
(
xj

)
j /= i

, πi,wi; t, T
)

:= (1 − εi)
∫ t+T

t

⎛

⎝li
(
xi

(
t′
)
, πi

(
t′, x
(
t′
))) − (lw)i

(
wi

(
t′
)) −

∑

j /= i

lij
(
xj

(
t′
))
⎞

⎠dt′

+
(
Vf

)
i
(xi(t + T)),

(3.21)

where 1 > εi > 0, x0
i ∈ Xi is the initial value of the ith subsystem at time t and πi ∈ Πi is

a feedback, essentially bounded, locally Lipschitz in x and measurable in t, where Πi ⊆ R
Mi

is a compact and convex set containing the origin in its interior. li − (lw)i −
∑

lij is the stage
cost, where li : R

Ni × R
Mi → R+. (lw)i : R

Pi → R+ penalizes the disturbance and lij : R
Nj →

R+ penalizes the internal input for all j = 1, . . . , n, j /= i. li, (lw)i and lij are locally Lipschitz
continuous functions with li(0, 0) = 0, (lw)i(0) = 0, lij(0) = 0, and (Vf)i : Ωi → R+ is the
terminal penalty of the ith subsystem, Ωi ⊆ R

Ni .
In contrast to single systems, we add the terms lij(xj), j /= i, to the cost function due

to the interconnected structure of the subsystems. Here, two problems arise: the formulation
of an optimal control problem for each subsystem and the calculation/determination of the
internal inputs xj , j /= i.

We conserve the minimization of Ji with respect to πi and the maximization of Ji with
respect to wi as in Definition 3.1 for single systems. In the spirit of ISS/ISDS, which treat the
internal inputs as “disturbances,” we maximize the cost function with respect to xj , j /= i
(worst-case approach). Since we assume that xj ∈ Xj , we get an optimal solution π∗

i , w
∗
i ,

x∗
j , j /= i, of the control problem.

The drawbacks of this approach are that, on the one hand, we do not use the systems
equations (3.19) to predict xj , j /= i and, on the other hand, the computation of the optimal
solution could be numerically inefficient, especially if the number of subsystems n is “huge”
or/and the sets Xi are “large.” Moreover, taking into account the worst-case approach, the
maximization over xj , the obtained optimal control π∗

i for each subsystem could be extremely
conservative, which leads to extremely conservative ISS or ISDS estimations.

To avoid these drawbacks of the maximization of Ji with respect to xj , j /= i, one could
use the system equation (3.19) to predict xj , j /= i instead.

A numerically efficient way to calculate the optimal solutions π∗
i , w

∗
i of the subsystems

is a parallel calculation. Due to interconnected structure of the system, the information about
systems states of the subsystems should be exchanged. But this exchange of information
causes that an optimal solution π∗

i , w
∗
i could not be calculated. To the best of our knowledge,

no theorem is proved that provides the existence of an optimal solution of the optimal control
problem using such a parallel strategy. We conclude that a parallel calculation cannot help in
our case.

Another approach of anMPC scheme for networks is inspired by the hierarchical MPC
scheme in [30]. One could use the predictions of the internal inputs xj , j /= i, as follows: at
sampling time t = kΔ, k ∈ N, Δ > 0 all subsystems calculate the optimal solution iteratively.
This means that for the calculation of the optimal solution for the ith subsystem,the currently
“optimized” trajectories of the subsystems 1, . . . , i − 1 will be used, denoted by x

opt,kΔ
p , p =

1, . . . , i − 1, and the “optimal” trajectories of the subsystems i + 1, . . . , n of the optimization at
sampling time t = (k − 1)Δ will be used, denoted by x

opt,(k−1)Δ
p , p = i + 1, . . . , n.
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The advantage of this approach would be that the optimal solution is not that much
conservative as the min-max approach and the calculation of the optimal solution could be
performed in a numerically efficient way, due to the usage of the model to predict the “opti-
mal” trajectories and that the maximization over xj , j /= i will be avoided. The drawback is
that the optimal cost function of each subsystem depends on the trajectories xopt,·

j , j /= i using
this hierarchical approach. Then, to the best of our knowledge, it is not possible to show that
the optimal cost functions are ISDS-Lyapunov functions of the subsystems, which is a crucial
step for proving ISDS of a subsystem or the whole network, because no helpful estimations
for the Lyapunov function properties can be performed due to the dependence of the optimal
cost functions of the trajectories xopt,·

j , j /= i.
The FHOCP for the ith subsystem reads as follows:

min
πi

max
wi

max
(xj)j /= i

Ji
(
x0
i ,
(
xj

)
j /= i

, πi,wi; t, T
)

subject to

ẋi

(
t′
)
= fi
(
x1
(
t′
)
, . . . , xn

(
t′
)
, wi

(
t′
)
, ui

(
t′
))
, t′ ∈ [t, t + T],

xi(t) = x0
i ,

xj ∈ Xj , j = 1, . . . , n,

wi ∈ Wi,

πi ∈ Πi,

xi(t + T) ∈ Ωi ⊆ R
Ni ,

(3.22)

where the terminal region Ωi is a compact and convex set with the origin in its interior.
The resulting optimal control of each subsystem is a feedback control law, that is,

u∗
i (t) = π∗

i (t, x(t)), where x = (xT
1 , . . . , x

T
n)

T ∈ R
N , N =

∑
i Ni, and π∗

i (t, x
∗i(t)) is essentially

bounded, locally Lipschitz in x, and measurable in t, for all i = 1, . . . , n.
To show that each subsystem and the whole system have the ISDS property using

the mentioned distributed MPC scheme, we suppose the following assumption for the ith
subsystem of (3.19).

Assumption 3.8. (1) There exist functions αl
i, α

w
i , αij ∈ K∞, j = 1, . . . , n, j /= i such that

li(xi, πi) ≥ αl
i(|xi|), xi ∈ Xi, πi ∈ Πi,

(lw)i(wi) ≤ αw
i (|wi|), wi ∈ Wi,

lij
(
xj

) ≤ αij

(
Vj

(
xj

))
, xj ∈ Xj , j = 1, . . . , n, j /= i.

(3.23)

(2) The FHOCP admits a feasible solution at the initial time t = 0.
(3) There exists a controller ui(t) = πi(t, x(t)) such that the ith subsystem of (3.19) has

the ISDS property.
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(4) For each 1 > εi > 0, there exists a locally Lipschitz continuous function (Vf)i(xi)
such that the terminal region Ωi is a positively invariant set and we have

(
Vf

)
i
(xi) ≤ ηi(|xi|), ∀xi ∈ Ωi,

(
V̇f

)
i
(xi) ≤ −(1 − εi)li(xi, πi) + (1 − εi)(lw)i(wi) + (1 − εi)

∑

j /= i

lij
(
xj

)
,

(3.24)

for almost all xi ∈ Ωi, where ηi ∈ K∞, wi ∈ Wi, and (V̇f)i denotes the derivative of (Vf)i
along the solution of the ith subsystem of (3.19) with the control ui ≡ πi from point 3 of this
assumption.

(5) For each sufficiently small εi > 0 it holds that

(1 − εi)
∫ t+T

t

li
(
xi

(
t′
)
, π∗

i

(
t′, x
(
t′
))) −

∑

j /= i

lij
(
xj

(
t′
))
dt′ ≥ |x(t)|

1 + εi
. (3.25)

(6) The optimal cost function J∗i (x
0
i , (xj)

∗
j /= i, π

∗
i , w

∗
i ; t, T) is locally Lipschitz continuous.

Now, we can state that each subsystem possesses the ISDS property using the men-
tioned MPC scheme.

Theorem 3.9. Consider an interconnected system of the form (3.19). Let Assumption 3.8 be satisfied
for each subsystem. Then, each subsystem resulting from the application of the control obtained by the
FHOCP for each subsystem to the system, namely,

ẋi(t) = fi
(
x1(t), . . . , xn(t), wi(t), π∗

i (t, x(t))
)
, t ∈ R+, x0

i = xi(0), (3.26)

possesses the ISDS property.

Proof. Consider the ith subsystem. We show that the optimal cost function Vi(x
0
i ) := J∗i (x

0
i ,

(xj)
∗
j /= i, π

∗
i , w

∗
i ; t, T) is an ISDS-Lyapunov function for the ith subsystem. We abbreviate xj =

(xj)
∗
j /= i.

By following the steps of the proof of Theorem 3.6, we conclude that there exists a feasi-
ble solution for all times t > 0 and that by (3.25) the functional Vi(x

0
i ) satisfies the condition

∣∣∣x0
i

∣∣∣

(1 + εi)
≤ Vi

(
x0
i

)
≤ ηi
(∣∣∣x0

i

∣∣∣
)
, (3.27)

using |x0| ≥ |x0
i |. Note that by Assumption 3.8, point 6, J∗i is locally Lipschitz continuous. We

have that it holds

V̇i

(
x0
i

)
≤ −(1 − εi)αl

i

(
η−1
i

(
Vi

(
x0
i

)))
+ (1 − εi)αw

i

(∣∣w∗
i

∣∣) + (1 − εi)
∑

j /= i

αij

(
Vj

((
x0
j

)))
,

(3.28)
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and equivalently

V̇i

(
x0
i

)
≤ −(1 − εi)αl

i

(
η−1
i

(
Vi

(
x0
i

)))
+ (1 − εi)max

{
nαw

i

(∣∣w∗
i

∣∣),max
j /= i

nαij

(
Vj

((
x0
j

)))}
,

(3.29)

which implies

Vi

(
x0
i

)
> max

{
γi
(∣∣w∗

i

∣∣),max
j /= i

γij
(
Vj

((
x0
i

)))}
=⇒ V̇i

(
x0
i

)
≤ −(1 − εi)gi

(
Vi

(
x0
i

))
, (3.30)

for almost all x0
i ∈ Xi and all w∗

i ∈ Wi, where γi(r) := ηi((αl
i)
−1(2nαw

i (r))), γij(r) := ηi((αl
i)
−1

(2nαij(r))) and gi(r) := (1/2)αl
i(η

−1
i (r)), where gi is locally Lipschitz continuous.

Since i can be chosen arbitrarily, we conclude that each subsystem has an ISDS-Lyapu-
nov function. It follows that each subsystem has the ISDS property.

To investigate whether the whole system has the ISDS property, we collect all functions
γij in a matrix Γ := (γij)n×n, γii ≡ 0, which defines a map as in (2.12).

Using the small-gain condition for Γ, the ISDS property for the whole system can be
guaranteed.

Corollary 3.10. Consider an interconnected system of the form (3.19). Let Assumption 3.8 be
satisfied for each subsystem. If Γ satisfies the small-gain condition (2.13), then the whole system
possesses the ISDS property.

Proof. Each subsystem has an ISDS-Lyapunov function with gains γij . This follows from
Theorem 3.9. The matrix Γ satisfies the SGC, and all assumptions of Theorem 2.8 are satisfied.
It follows that with x = (xT

1 , . . . , x
T
n)

T , w = (wT
1 , . . . , w

T
n)

T , and π∗(·, x(·)) = ((π∗
1(·, x(·)))T , . . . ,

(π∗
n(·, x(·)))T )T , the whole system of the form

ẋ(t) = f(x(t), w(t), π∗(t, x(t))) (3.31)

has the ISDS property.

In the next section, we investigate the ISS property for MPC of TDS.

4. MPC and ISS for Time-Delay Systems

Now,we introduce the ISS property forMPC of TDS.We derive conditions to assure that a sin-
gle system, a subsystem of a network, and the whole system possess the ISS property apply-
ing the control obtained by an MPC scheme for TDS.
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4.1. Single Systems

We consider systems of the form (2.18) with disturbances,

ẋ(t) = f
(
xt,w(t), u(t)

)
, t ∈ R+,

x0(τ) = ξ(τ), τ ∈ [−θ, 0],
(4.1)

where w ∈ W ⊆ L∞(R+,R
P ) is the unknown disturbance and W is a compact and convex set

containing the origin. The input u is an essentially bounded and measurable control subject
to input constraints u ∈ U, where U ⊆ R

� is a compact and convex set containing the origin
in its interior. The functional f has to satisfy the same conditions as in the previous section to
assure that a unique solution exists, which is denoted by x(t; ξ,w, u) or x(t) in short.

The aim is to find an (optimal) control u such that the system (4.1) has the ISS property.
Due to the presence of disturbances, we apply a feedback control structure, which

compensates the effect of the disturbance. This means that we apply a feedback control law
π(t, xt) to the system. In the rest of this section, we assume that π(t, xt) ∈ Π is essentially
bounded, locally Lipschitz in xt, and measurable in t. The set Π ⊆ R

m is assumed to be
compact and convex containing the origin in its interior. We obtain an MPC control law by
solving the control problem.

Definition 4.1 (Finite horizon optimal control problem with time-delays (FHOCPTD)). Let
T be the prediction horizon and π(t, xt) a feedback control law. The finite horizon optimal
control problem with time-delays for a system of the form (4.1) is formulated as

min
π

max
w

(
ξ, π,w; t, T

)

:= min
π

max
w

∫ t+T

t

(
l
(
x
(
t′
)
, π
(
t′, xt′

))
− lw
(
w
(
t′
)))

dt′ + Vf

(
xt+T
)

subject to

ẋ
(
t′
)
= f
(
xt′ , w

(
t′
)
, u
(
t′
))

, t′ ∈ [t, t + T],

x(t + τ) = ξ(τ), τ ∈ [−θ, 0],
xt′ ∈ X,

w ∈ W,

π ∈ Π,

xt+T ∈ Ω ⊆ C
(
[−θ, 0],RN

)
,

(4.2)

where ξ ∈ C([−θ, 0], R
N) is the initial function of the system at time t, and the terminal region

Ω and the state constraint setX ⊆ C([−θ, 0],RN) are compact and convex sets with the origin
in their interior. l − lw is the stage cost, where l : R

N ×R
m → R+ and lw : R

P → R+ are locally
Lipschitz continuous with l(0, 0) = 0, lw(0) = 0, and Vf : Ω → R+ is the terminal penalty.
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The control problem will be solved at the sampling instants t = kΔ, k ∈ N, and Δ ∈
R+. The optimal solution is denoted by π∗(t′, xt′ ; t, T) andw∗(t′), t′ ∈ [t, t + T] and the optimal
cost functional is denoted by J∗(ξ, π∗, w∗; t, T). The control input to the system (4.1) is defined
in the usual receding horizon fashion as

u
(
t′
)
= π∗

(
t′, xt′ ; t, T

)
, t′ ∈ [t, t + Δ]. (4.3)

Definition 4.2. (i) A feedback control π is called a feasible solution of the FHOCPTD at time t
if for a given initial function ξ at time t the feedback π(t′, xt′), t′ ∈ [t, t + T] controls the state
of the system (4.1) into Ω at time t + T , that is, xt+T ∈ Ω, for all w ∈ W.

(ii) A set Ω ⊆ C ([−θ, 0],RN) is called positively invariant if for all initial functions
ξ ∈ Ω a feedback control π keeps the trajectory of the system (4.1) in Ω, that is,

xt ∈ Ω, ∀t ∈ (0,∞), (4.4)

for all w ∈ W.

For the goal of this section, establishing ISS of TDS with the help of MPC, we need the
following.

Assumption 4.3. (1) There exist functions αl, αw ∈ K∞ such that

l
(
φ(0), π

) ≥ αl

(∣∣φ
∣∣
a

)
, φ ∈ X, π ∈ Π,

lw(w) ≤ αw(|w|), w ∈ W.
(4.5)

(2) The FHOCPTD in Definition 4.1 admits a feasible solution at the initial time t = 0.
(3) There exists a controller u(t) = π(t, xt) such that the system (4.1) has the ISS

property.
(4) There exists a locally Lipschitz continuous functional Vf(φ) such that the terminal

region Ω is a positively invariant set and for all φ ∈ Ω we have

Vf

(
φ
) ≤ ψ2

(∣∣φ
∣∣
a

)
, (4.6)

D+Vf

(
φ,w

) ≤ −l(φ(0), π) + lw(w), (4.7)

where ψ2 ∈ K∞, w ∈ W, and D+Vf denotes the upper right-hand side derivate of the func-
tional V along the solution of (4.1) with the control u ≡ π from point 3 of this assumption.

(5) There exists a K∞ function ψ1 such that for all t > 0 it holds

∫ t+T

t

l
(
x
(
t′
)
, π
(
t′, xt′

))
dt′ ≥ ψ1

(∣∣∣ξ(0)
∣∣∣
)
, ξ(0) = x(t). (4.8)

(6) The optimal cost functional J∗(ξ, π∗, w∗; t, T) is locally Lipschitz continuous.
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Now, we can state a theorem that assures ISS of MPC for a single time-delay system
with disturbances.

Theorem 4.4. Let Assumption 4.3 be satisfied. Then, the system resulting from the application of the
predictive control strategy to the system, namely, ẋ(t) = f(xt,w(t), π∗(t, xt)), t ∈ R+, x0(τ) = ξ(τ),
τ ∈ [−θ, 0], possesses the ISS property.

Proof. The proof goes along the lines of the proof of Theorem 3.6 with changes according to
time-delays and functionals, that is, we show that the optimal cost functional V (ξ) := J∗(ξ, π∗,
w∗; t, T) is an ISS-Lyapunov-Krasovskii functional.

For a feasible solution for all times t > 0, we suppose that a feasible solution π(t′, xt′),
t′ ∈ [t, t + T] at time t exists. We construct a control by

π̂
(
t′, xt′

)
=

⎧
⎪⎨

⎪⎩

π̃
(
t′, xt′

)
, t′ ∈ [t + Δ, t + T],

π
(
t′, xt′

)
, t′ ∈ (t + T, t + T + Δ],

(4.9)

where π is the controller from Assumption 4.3, point 3, and Δ > 0. π̃ steers xt+Δ into xt+T ∈ Ω
and Ω is a positively invariant set. This means that π(t′, xt′) keeps the system trajectory in Ω
for t + T < t′ ≤ t + T + Δ under the constraints of the FHOCPTD. This implies that from the
existence of a feasible solution for the time t, we have a feasible solution for the time t + Δ.
From Assumption 4.3, point 2, there exists a feasible solution for the FHOCPTD at the time
t = 0 and it follows that a feasible solution exists for every t > 0.

Replacing π̃ in (4.9) by π∗, it follows from (4.7) that

J∗
(
ξ, π∗, w∗; t, T + Δ

)

≤ J
(
ξ, π̂,w∗; t, T + Δ

)

=
∫ t+T

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′

+
∫ t+T+Δ

t+T

(
l
(
x
(
t′
)
, π
(
t′, xt′

))
− lw
(
w∗(t′

)))
dt′ + Vf

(
xt+T+Δ

)

= J∗
(
ξ, π∗, w∗; t, T

)
− Vf

(
xt+T
)
+ Vf

(
xt+T+Δ

)

+
∫ t+T+Δ

t+T

(
l
(
x
(
t′
)
, π
(
t′, xt′

))
− lw
(
w∗(t′

)))
dt′

≤ J∗
(
ξ, π∗, w∗; t, T

)

(4.10)

hold, and with (4.6) this implies

J∗
(
ξ, π∗, w∗; t, T

)
≤ J∗
(
ξ, π∗, w∗; t, 0

)
= Vf

(
ξ
)
≤ ψ2

(∣∣∣ξ
∣∣∣
a

)
. (4.11)
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For the lower bound, it holds that

V
(
ξ
)
≥ J
(
ξ, π∗, 0; t, T

)
≥
∫ t+T

t

l
(
x
(
t′
)
, π∗
(
t′, xt′

))
dt′, (4.12)

and by (4.8) we have V (ξ) ≥ ψ1(|ξ(0)|). This shows that J∗ satisfies (2.22). Now, we use the
notation xt(τ) := ξ(τ), τ ∈ [−θ+ t, t]. With J∗(xt, π∗, w∗; t, T +Δ) ≤ J∗(xt, π∗, w∗; t, T), we have

∫ t+h

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′

+ J∗
(
xt+h, π∗, w∗; t + h, T + Δ − h

)

≤
∫ t+h

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′

+ J∗
(
xt+h, π∗, w∗; t + h, T − h

)
.

(4.13)

This implies

J∗
(
xt+h, π∗, w∗; t + h, T + Δ − h

)
≤ J∗
(
xt+h, π∗, w∗; t + h, T − h

)
. (4.14)

Note that by Assumption 4.3, point 6, J∗ is locally Lipschitz continuous. With (4.14) it
holds

J∗
(
xt, π∗, w∗; t, T

)

=
∫ t+h

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′ + J∗

(
xt+h, π∗, w∗; t + h, T − h

)

≥
∫ t+h

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′ + J∗

(
xt+h, π∗, w∗; t + h, T

)
,

(4.15)

which leads to

J∗
(
xt+h, π∗, w∗; t + h, T

) − J∗
(
xt, π∗, w∗; t, T

)

h

≤ − 1
h

∫ t+h

t

(
l
(
x
(
t′
)
, π∗
(
t′, xt′ ; t, T

))
− lw
(
w∗(t′

)))
dt′.

(4.16)

Let h → 0+, and using the first point of Assumption 4.3 we get

D+V
(
xt,w∗) ≤ −αl

(∣∣xt
∣∣
a

)
+ αw(|w∗|). (4.17)
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By definition of χ(r) := ψ2(α−1
l (2αw(r))) and α(r) := (1/2)αl(ψ−1

2 (r)), r ≥ 0, this implies

V
(
xt) ≥ χ(|w∗|) =⇒ D+V

(
xt,w∗) ≤ −α(V (xt)), (4.18)

that is, J∗ satisfies the condition (2.23).
We conclude that J∗ is an ISS-Lyapunov-Krasovskii functional for the system

ẋ(t) = f
(
xt,w(t), π∗(t, xt)), (4.19)

and by application of Theorem 2.12 the system has the ISS property.

Now, we consider that interconnections of TDS and provide conditions such that the
whole network with an optimal control obtained from an MPC scheme has the ISS property.

4.2. Interconnected Systems

We consider interconnected systems with time-delays and disturbances of the form

ẋi(t) = f̃i
(
xt
1, . . . , x

t
n,wi(t), ui(t)

)
, i = 1, . . . , n, (4.20)

where ui ∈ R
Mi are the essentially bounded and measurable control inputs and wi ∈ R

Pi are
the unknown disturbances.We assume that the states, disturbances, and inputs fulfill the con-
straints

xi ∈ Xi, wi ∈ Wi, ui ∈ Ui, i = 1, . . . , n, (4.21)

where Xi ⊆ C([−θ, 0],RNi), Wi ⊆ L∞(R+,R
Pi), and Ui ⊆ R

Mi are compact and convex sets
containing the origin in their interior.

We assume the same MPC strategy for interconnected TDS as in Section 3.2. The
FHOCPTD for the ith subsystem of (4.20) reads as

min
πi

max
wi

max
(xj)j /= i

Ji
(
ξi,
(
xj

)
j /= i

, πi,wi; t, T
)

:= min
πi

max
wi

max
(xj )j /= i

∫ t+T

t

⎛

⎝li
(
xi

(
t′
)
, πi

(
t′, xt′

i

))
− (lw)i

(
wi

(
t′
)) −

∑

j /= i

lij
(
xj

(
t′
))
⎞

⎠dt′

+
(
Vf

)
i

(
xt+T
i

)

subject to

ẋi

(
t′
)
= fi
(
xt′
1 , . . . , x

t′
n,wi

(
t′
)
, ui

(
t′
))

, t′ ∈ [t, t + T],
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xi(t + τ) = ξi(τ), τ ∈ [−θ, 0],

xj ∈ Xj , j = 1, . . . , n,

wi ∈ Wi,

πi ∈ Πi,

xt+T
i ∈ Ωi ⊆ C

(
[−θ, 0],RNi

)
,

(4.22)

where ξi ∈ Xi is the initial function of the ith subsystem at time t and the terminal regionΩ is
a compact and convex set with the origin in its interior. πi(t, xt) is essentially bounded, locally
Lipschitz in x, and measurable in t and Πi ⊆ R

Mi is a compact and convex sets containing
the origin in its interior. li − (lw)i −

∑
lij is the stage cost, where li : R

Ni × R
Mi → R+. (lw)i :

R
Pi → R+ penalizes the disturbance and lij : R

Nj → R+ penalizes the internal input for
all j = 1, . . . , n, j /= i. li, (lw)i, and lij are locally Lipschitz continuous functions with li(0, 0) =
0, (lw)i(0) = 0, lij(0) = 0, and (Vf)i : Ωi → R+ is the terminal penalty of the ith subsystem.

We obtain an optimal solution π∗
i , (xj)

∗
j /= i, w

∗
i , where the control of each subsystem is

a feedback control law, which depends on the current states of the whole system, that is,
ui(t) = π∗

i (t, x
t), where xt = ((xt

1)
T , . . . , (xt

n)
T )T ∈ C([−θ, 0],RN),N =

∑
i Ni.

For the ith subsystem of (4.20), we suppose the following assumption.

Assumption 4.5. (1) There exist functions αl
i, α

w
i , αij ∈ K∞, j = 1, . . . , n, j /= i such that

li
(
φi(0), πi

) ≥ αl
i

(∣∣φi

∣∣
a

)
, φi ∈ C

(
[−θ, 0],RNi

)
, πi ∈ Πi,

(lw)i(wi) ≤ αw
i (|wi|), wi ∈ Wi,

lij
(
φj(0)

) ≤ αij

(
Vj

(
φj

))
, φj ∈ C

(
[−θ, 0],RNj

)
, j = 1, . . . , n, j /= i.

(4.23)

(2) The FHOCPTD admits a feasible solution at the initial time t = 0.
(3) There exists a controller ui(t) = πi(t, xt) such that the ith subsystem of (4.20) has

the ISS property.
(4) There exists a locally Lipschitz continuous functional (Vf)i(φi) such that the ter-

minal region Ωi is a positively invariant set and for all φi ∈ Ωi we have

(
Vf

)
i

(
φi

) ≤ ψ2i
(∣∣φi

∣∣
a

)
,

D+(Vf

)
i

(
φi,wi

) ≤ −li
(
φi(0), πi

)
+ (lw)i(wi) +

∑

j /= i

lij
(
φj(0)

)
,

(4.24)

where ψ2i ∈ K∞, φj ∈ C([−θ, 0],RNj ), j = 1, . . . , n and wi ∈ Wi. D+(Vf)i denotes the upper
right-hand side derivate of the functional (Vf)i along the solution of the ith subsystem of
(4.20)with the control ui ≡ πi from point 3. of this assumption.
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(5) For each i, there exists aK∞ function ψ1i such that for all t > 0 it holds

∫ t+T

t

li
(
xi

(
t′
)
, πi

(
t′, xt′

))
dt′ ≥ ψ1i

(∣∣∣ξ(0)
∣∣∣
)
, ξ(0) = x(t). (4.25)

(6) The optimal cost functional J∗i (ξi, (xj)
∗
j /= i, π

∗
i , w

∗
i ; t, T) is locally Lipschitz continu-

ous.

Now, we state that each subsystem of (4.20) has the ISS property by application of the
optimal control obtained by the FHOCPTD.

Theorem 4.6. Consider an interconnected system of the form (4.20). Let Assumption 4.5 be satisfied
for each subsystem. Then, each subsystem resulting from the application of the predictive control strat-
egy to the system, namely, ẋi(t) = fi(xt

1, . . . , x
t
n,wi(t), π∗

i (t, x
t)), t ∈ R+, x

0
i (τ) = ξi(τ), τ ∈ [−θ, 0],

possesses the ISS property.

Proof. Consider the ith subsystem. We show that the optimal cost functional Vi(ξi) := J∗i (ξi,
(xj)

∗
j /= i, π

∗
i , w

∗
i ; t, T) is an ISS-Lyapunov-Krasovskii functional for the ith subsystem. We

abbreviate xt
j = ((xj)

t
j /= i)

∗.
Following the lines of the proof of Theorem 4.4, we have that there exists a feasible

solution of the ith subsystem for all times t > 0 and that the functional Vi(ξi) satisfies the con-
dition

ψ1i

(∣∣∣ξi(0)
∣∣∣
)
≤ Vi

(
ξi

)
≤ ψ2i

(∣∣∣ξi
∣∣∣
a

)
, (4.26)

using (4.25) and |ξ(0)| ≥ |ξi(0)|. Note that by Assumption 4.5, point 6, J∗i is locally Lipschitz
continuous. We arrive that the following equation holds:

D+Vi

(
xt
i , w

∗
i

) ≤ −αl
i

(
ψ−1
2i

(
Vi

(
xt
i

)))
+ αw

i

(∣∣w∗
i

∣∣) +
∑

j /= i

αij

(
Vj

(
xt
j

))
. (4.27)

This is equivalent to

D+Vi

(
xt
i , w

∗
i

) ≤ −αl
i

(
ψ−1
2i

(
Vi

(
xt
i

)))
+max

{
nαw

i

(∣∣w∗
i

∣∣),max
j /= i

nαij

(
Vj

(
xt
j

))}
, (4.28)

which implies

Vi

(
xt
i

) ≥ max
{
χ̃i

(∣∣w∗
i

∣∣),max
j /= i

χ̃ij

(
Vj

(
xt
j

))}
=⇒ D+Vi

(
xt
i , w

∗
i

) ≤ −αl
i

(
Vi

(
xt
i

))
, (4.29)
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where

χ̃i(r) := ψ2i

((
αl
i

)−1(
2nαw

i (r)
))

,

χ̃ij(r) := ψ2i

((
αl
i

)−1(
2nαij(r)

))
,

αl
i(r) :=

1
2
αl
i

(
ψ−1
2i (r)

)
.

(4.30)

This can be shown for each subsystem and we conclude that each subsystem has an
ISS-Lyapunov-Krasovskii functional. It follows that the ith subsystem is ISS in maximum for-
mulation.

We collect all functions χ̃ij in a matrix Γ := (χ̃ij)n×n, χ̃ii ≡ 0, which defines a map as in
(2.12).

Using the small-gain condition for Γ, the following corollary from Theorem 4.6.

Corollary 4.7. Consider an interconnected system of the form (4.20). Let Assumption 4.5 be satisfied
for each subsystem. If Γ satisfies the small-gain condition (2.13), then the whole system possesses the
ISS property.

Proof. We know from Theorem 4.6 that each subsystem of (4.20) has an ISS-Lyapunov-
Krasovskii functional with gains χ̃ij . Since the matrix Γ satisfies the SGC, all assumptions of
Theorem 2.13 are satisfied and it follows that the whole system of the form

ẋ(t) = f
(
xt,w(t), π∗(t, xt)) (4.31)

is ISS in maximum formulation, where xt = ((xt
1)

T , . . . , (xt
n)

T )T , w = (wT
1 , . . . , w

T
n)

T , and
π∗(t, xt) = ((π∗

1(t, x
t))T , . . . , (π∗

n(t, x
t))T )T .

5. Conclusions

We have combined the ISDS property with MPC for nonlinear continuous-time systems with
disturbances. For single systems, we have derived conditions such that by application of the
control obtained by an MPC scheme to the system, it has the ISDS property, see Theorem 3.6.
Considering interconnected systems, we have proved that each subsystem possesses the ISDS
property using the control of the proposedMPC scheme, which is Theorem 3.9. Using a small-
gain condition, we have shown in Corollary 3.10 that the whole network has the ISDS pro-
perty.

Considering single systems with time-delays, we have proved in Theorem 4.4 that a
TDS has the ISS property using the control obtained by anMPC scheme, where we have used
ISS-Lyapunov-Krasovskii functionals. For interconnected TDSs, we have established a theo-
rem, that guarantees that each closed-loop subsystem obtained by application of the control
obtained by a decentralized MPC scheme has the ISS property, see Theorem 4.6. From this
result and using Theorem 2.13, we have shown that the whole network with time-delays has
the ISS property under a small-gain condition, see Corollary 4.7.
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In future research, we are going to derive conditions for open-loop MPC schemes to
assure ISDS and ISS of TDSs, respectively. The differences of both schemes, closed-loop, and
open-loop, will be analyzed and applied in practice.

Note that the results presented here are first steps of the approaches of ISDS for MPC
and ISS for MPC with time-delays. More detailed studies should be done in these direc-
tions, especially in applications of these approaches. Therefore, numerical algorithms for the
implementation of the proposed schemes, as in [5, 7], for example, should be developed. It
could be analyzed if and how other existing algorithms could be used or how they should
be adapted for implementation for the results presented in this work. The advantages of
the usage of ISDS for MPC in contrast to ISS for MPC could be investigated and applied in
practice.

Furthermore, one can investigate ISDS and ISS for unconstrained nonlinear MPC, as it
was done in [17, 31], for example.
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This paper investigates robust finite-time H∞ control for a class of impulsive switched nonlinear
systems with time-delay. Firstly, using piecewise Lyapunov function, sufficient conditions
ensuring finite-time boundedness of the impulsive switched system are derived. Then, finite-time
H∞ performance analysis for impulsive switched systems is developed, and a robust finite-time
H∞ state feedback controller is proposed to guarantee that the resulting closed-loop system is
finite-time bounded with H∞ disturbance attenuation. All the results are given in terms of linear
matrix inequalities (LMIs). Finally, two numerical examples are provided to show the effectiveness
of the proposed method.

1. Introduction

A switched system is a hybrid dynamical system consisting of a family of continuous-time or
discrete-time subsystems and a switching law that orchestrates the switching between them
[1]. In the last decades, in the stability analysis and stabilization for switched systems, lots of
valuable results are established (see [2–5]). Most recently, on the basis of Lyapunov functions
and other analysis tools, the stability problem of linear and nonlinear switched systems
with time-delay has been further investigated (see [6–15]), and lots of valuable results are
established for H∞ control problems (see [16–22]).

It is well known that impulsive dynamical behaviors inevitably exist in some practical
systems like physical, biological, engineering, and information science systems due to abrupt
changes at certain instants during the dynamical process. Although hybrid system and
switched system are important models for dealing with complex real systems, there is little
work concerned with the above impulsive phenomena. Such a phenomenon can be modeled
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as an impulsive switched system, it is characteristic that their states change during the
switching because of the occurrence of impulses [23].

In recent years, the impulsive switched systems have drawn more and more attention
and many useful conclusions have been obtained. Multiple Krasovskii-Lyapunov function
approach is employed to study the problem of ISS stability of a class of impulsive
switched systems with time-delay in [24]. By the Lyapunov-Razumikhin technique, a delay-
independent criterion of the exponential stability is established on the minimum dwell time
in [25]. The problem of robustH∞ stabilization of nonlinear impulsive switched system with
time-delays is studied in [23].

Usually, the stability of a system is defined over an infinite-time interval. But in many
practical systems, we focus on the dynamical behavior of a system over a fixed finite-time
interval. Based on this, finite-time stability is first proposed by Dorato in 1961 [26]. Compared
with the classical Lyapunov stability, finite-time stability is proposed for the study of the
transient performance of the system, which is a totally different concept. The so-called finite-
time stability means the boundedness of the state of a system over a fixed finite-time interval.
Finite-time stability problems can be found in [27–32]. The finite-time stability of linear
impulsive systems is analyzed in [33], the finite-time stability and stabilization of impulsive
dynamic systems are carried out in [34–36]. The finite-time stability and stabilization of
switched systems are investigated in [37].

Recently, robust finite-time control of switched systems is studied in [38, 39]. However,
to the best of our knowledge, there are very few results on finite-time boundedness and
robust H∞ control of the impulsive switched systems, which motivates the present study.
The paper is organized as follows. In Section 2, problem formulation and some necessary
lemmas are given. In Section 3, based on the dwell time approach, finite-time boundedness
and finite-timeH∞ performance for switched impulsive systems are addressed, and sufficient
conditions for the existence of a robust finite-timeH∞ state feedback controller are proposed
in terms of a set of matrix inequalities. Numerical examples are provided to show the
effectiveness of the proposed approach in Section 4. Concluding remarks are given in
Section 5.
Notations. The notations used in this paper are standard. The notation P > 0 means that P
is a real positive definite matrix; diag{· · · } stands for a block-diagonal matrix; λmax(P) and
λmin(P) denote the maximum and minimum eigenvalues of matrix P , respectively; ‖x(t)‖ =√
xT (t)x(t) and ‖x(t)‖2 = (

∫∞
0 ‖x(t)‖2dt)1/2.

2. Problem Formulation and Preliminaries

Consider the following impulsive switched system:

ẋ(t) = Âσ(t)x(t) + Âdσ(t)x(t − h) + B̂1σ(t)u1(t) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (2.1a)

Δx = Eσ(t)x(t) + u2(t), t = tk, k = 1, 2, 3, . . . (2.1b)

z(t) = Cσ(t)x(t) +Dσ(t)u1(t), (2.1c)

x(t) = ϕ(t), t ∈ [t0 − h, t0], (2.1d)
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where x(t) ∈ Rn is the state vector, z(t) ∈ Rr is the controlled output, w(t) ∈ Rp is the
disturbance input which belongs to L2[0,∞), u1(t) ∈ Rm, t /= tk is the switched control input,
u2(tk) ∈ Rn is the impulsive control input at tk, on the other hand, u2(t) = 0, t /= tk, k =
1, 2, 3, . . .. σ(t) : [t0,+∞) → N = {1, 2, . . . ,N} is a switching signal. t ∈ (tk, tk+1], σ(t) = ik,
ik ∈ N, k = 0, 1, 2, 3, . . .. Δx(t) = x(t+) − x(t−), x(t+) = limh→ 0+x(t + h), x(t) = x(t−) =
limh→ 0+x(t − h). tk, k = 0, 1, 2, 3, . . . are the impulsive jumping points or switching points.
t0 is the initial time, t0 < t1 < · · · < tk < · · · , and limk→∞tk = +∞. h > 0 is the time-delay
which is a positive constant. fi(·) : Rn → Rn, i ∈ N is nonlinear vector-valued function.
ϕ(t), t ∈ [t0 − h, t0] is a continuous vector-valued initial function. Âi, Âdi, B̂1i, i ∈ N are
uncertain real-valued matrices with appropriate dimensions, B2i, Ei, Ci, Di, i ∈ N are known
real constant matrices with appropriate dimensions.

Assumption 2.1. For each i ∈ N, Âi, Âdi, B̂1i are uncertain real-valued matrices with
appropriate dimensions. We assume that the uncertainties are of the form

Âi = Ai + ΔAi, Âdi = Adi + ΔAdi, B̂1i = B1i + ΔB1i, (2.2a)
[
ΔAi ΔAdi ΔB1i

]
= HiFi(t)

[
EAi EAdi EBi

]
, (2.2b)

where Ai, Adi, B1i, Hi, EAi, EAdi, and EBi are known real-valued constant matrices with
appropriate dimensions, Fi(t) is the uncertain matrix satisfying

FT
i (t)Fi(t) ≤ I. (2.3)

Assumption 2.2. For each i ∈ N, nonlinear vector-valued function fi satisfies Lipschitz
condition

∥∥fi(x(t))
∥∥ ≤ ‖Uix(t)‖, (2.4)

where Ui is the Lipschitz constant matrix.

Assumption 2.3. For a given time constant Tf > t0, the external disturbance w(t) satisfies

∫Tf

0
wT (t)w(t)dt ≤ d2. (2.5)

Assumption 2.4. For system (2.1a)–(2.1d), the impulsive jump matrices Ei satisfy that (I + Ei)
are invertible.

Definition 2.5 (see [32]). For a given time constant Tf > t0, impulsive switched system (2.1a),
(2.1b), (2.1c) and (2.1d) with u1(t) ≡ 0, u2(t) ≡ 0, and w(t) ≡ 0, is said to be finite-time stable
with respect to (c21, c

2
2, Tf , R, σ(t)) if the following inequality holds:

sup
t0−h≤τ≤t0

xT (τ)Rx(τ) ≤ c21 =⇒ xT (t)Rx(t) < c22, t ∈ (t0, Tf
]
, (2.6)

where c2 > c1 > 0, R is a positive definite matrix, and σ(t) is a switching signal.
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Remark 2.6. Equation (2.6) stands for the boundedness of the state of a system over a fixed
finite-time interval (t0, Tf], when the initial state is bounded.

Definition 2.7 (see [40]). For a given time constant Tf , impulsive switched system (2.1a)–
(2.1d) with u1(t) ≡ 0, u2(t) ≡ 0, and w(t) satisfying (2.5), is said to be finite-time bounded
with respect to (c21, c

2
2, Tf , d

2, R, σ(t)) if the condition (2.6) holds, where c2 > c1 > 0, R is a
positive definite matrix and σ(t) is a switching signal.

Definition 2.8. For any T2 > T1 > 0, letNσ(t)(T1, T2) denote the switching number of σ(t) on an
interval (T1, T2). If Nσ(t)(T1, T2) ≤ N0 + (T2 − T1)/τa holds for given N0 ≥ 0, τa > 0, then the
constant τa is called the average dwell time. In this paper we letN0 = 0.

Definition 2.9. For a given time constant Tf , impulsive switched system (2.1a)–(2.1d)
with u1(t) ≡ 0, u2(t) ≡ 0 is said to have finite-time H∞ performance with respect to
(0, c22, Tf , d

2, γ, R, σ(t)) if the system is finite-time bounded and the following inequality holds:

‖z(t)‖2 ≤ γ‖w(t)‖2, ∀w(t) ∈ L2[0,∞), (2.7)

where c2 > 0, γ > 0, R is a positive definite matrix and σ(t)is a switching signal.

Definition 2.10. For a given time constant Tf , impulsive switched system (2.1a)–(2.1d) is
said to be robust finite-time stabilization with H∞ disturbance attenuation level γ , if there
exists a switched controller u1(t) = Kσ(t)x(t), t /= tk and an impulsive controller u2(tk) =
Kσ(t)x(tk), t = tk, where t ∈ (t0, Tf] such that

(i) the corresponding closed-loop system is finite-time bounded with respect to
(0, c22, Tf , d

2, R, σ(t));

(ii) under zero initial condition, inequality (2.7) holds for any w(t) satisfying (2.5).

Lemma 2.11. Let U, V , W , and X be real matrices of appropriate dimensions with X satisfying
X = XT , then for all V TV ≤ I,

X +UVW +WTV TUT < 0, (2.8)

if and only if there exists a scalar ε > 0 such that

X + εUUT + ε−1WTW < 0. (2.9)
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3. Main Results

3.1. Finite-Time Boundedness Analysis

In this subsection, we focus on the finite-time boundedness of the following impulsive
switched system:

ẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.1a)

Δx = Eσ(t)x(t), t = tk, k = 1, 2, 3, . . . (3.1b)

x(t) = ϕ(t), t ∈ [t0 − h, t0]. (3.1c)

Before proceeding to Lemma 3.2, we first introduce a function v(t). For given positive
definite matrices Qik , ik ∈ N, by Assumption 2.4, there exists a real number ρik ≥ 1, ρ∗ =
max{ρik , ik ∈ N} such that

Qik−1 ≤ ρik(I + Eik−1)
TQik(I + Eik−1). (3.2)

Furthermore, we define the following function

vk(t) = ρik −
(t − tk)2

(tk+1 − tk)2
(
ρik − 1

)
, t ∈ (tk, tk+1]. (3.3)

Finally, a piecewise continuous function v(t) is as follows:

v(t) = vk(t), t ∈ (tk, tk+1]. (3.4)

Consider the function v(t), for each interval (tk, tk+1], v(t+k) = ρik , v(tk+1) = 1, and v(t) is
monotonically nonincreasing and bounded function, v(tk+1) ≤ v(t) ≤ v(t+

k
).

Remark 3.1. Note that the previous works require the conditionQik−1 ≤ (I +Eik−1)
TQik(I +Eik−1)

(see [23, 41]), which can be obtained by setting ρik = 1 in (3.2). Thus, the proposed approach
may provide more relaxed conditions.

Lemma 3.2. Consider the following Lyapunov functional candidate:

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds (3.5)

for system (3.1a), (3.1b), and (3.1c), where Pi andQi, i ∈ N are symmetric positive definite matrices
with appropriate dimensions.
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The following inequality is derived:

V̇ (t) ≤ 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(t)xT (t)Qikx(t) − v(t − h)xT (t − h)Qik−mx(t − h)eαh

t ∈ (tk, tk+1], t − h ∈ (tk−m, tk−m+1], m ∈ {0, 1, 2, 3, . . .}.

(3.6)

Proof. (i)When tk + h ≥ tk+1,

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

= xT (t)Pikx(t) +
∫ tk−m+1

t−h
v(s)xT (s)eα(t−s)Qik−mx(s)ds

+
∫ tk−m+2

tk−m+1

v(s)xT (s)eα(t−s)Qik−m+1x(s)ds · · · +
∫ t

tk

v(s)xT (s)eα(t−s)Qikx(s)ds,

V̇ (t) = 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(tk−m+1)xT (tk−m+1)eα(t−tk−m+1)Qik−mx(tk−m+1)

− v(t − h)xT (t − h)eαhQik−mx(t − h)

+ v(tk−m+2)xT (tk−m+2)eα(t−tk−m+2)Qik−m+1x(tk−m+2)

− v
(
t+k−m+1

)
xT(t+k−m+1

)
eα(t−tk−m+1)Qik−m+1x

(
t+k−m+1

) · · · + v(tk)xT (tk)eα(t−tk)Qik−1x(tk)

− v
(
t+k−1

)
xT(t+k−1

)
eα(t−tk)Qik−1x

(
t+k−1

)
+ v(t)xT (t)Qikx(t)

− v
(
t+k
)
xT(t+k

)
eα(t−tk)Qikx

(
t+k
)
,

V̇ (t) = 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(t)xT (t)Qikx(t) − v(t − h)xT (t − h)eαhQik−mx(t − h)

+ xT (tk−m+1)eα(t−tk−m+1)
[
Qik−m − ρik−m+1(I + Eik−m)

TQik−m+1(I + Eik−m)
]
x(tk−m+1) . . .

+ xT (tk)eα(t−tk)
[
Qik−1 − ρik(I + Eik−1)

TQik(I + Eik−1)
]
x(tk).

(3.7)
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From (3.2), we can obtain that

Qik−m − ρik−m+1(I + Eik−m)
TQik−m+1(I + Eik−m) ≤ 0

...

Qik−1 − ρik(I + Eik−1)
TQik(I + Eik−1) ≤ 0.

(3.8)

Combining (3.7) and (3.8), (3.6) is obtained.

(ii) When tk + h < tk+1,

(1) t ∈ (tk, tk + h], the proof is similar to the proof line in the situation (i).

(2) t ∈ (tk + h, tk+1],

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

= xT (t)Pikx(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qikx(s)ds.

(3.9)

The proof for this situation is omitted.
The proof is completed.

Lemma 3.3. Consider the following Lyapunov function:

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds (3.10)

for system (3.1a), (3.1b), and (3.1c), where Pi and Qi, i ∈ {1, 2, . . . ,N} are symmetric positive
definite matrices with appropriate dimensions. Under the condition

⎡
⎢⎣
−eαhρ∗Pj I + ET

j ET
i

∗ −P−1
i 0

∗ ∗ −e−αh(ρ∗)−1Q−1
i

⎤
⎥⎦ < 0, ∀i, j ∈ N, (3.11)

we have

V
(
t+k
)
< eαhρ∗V (tk), (3.12)

where ρ∗ = max{ρik , ik ∈ N}.
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Proof. Without loss of generality, let σ(t+k) = i, σ(tk) = j. Then, we have

V
(
t+k
)
= xT(t+k

)
Pσ(t+

k
)x
(
t+k
)
+
∫ t+

k

t+
k
−h

v(s)xT (s)eα(t
+
k
−s)Qσ(s)x(s)ds

≤ xT(t+k
)
Pσ(t+

k
)x
(
t+k
)
+ eαhρ∗

∫ t+
k

t+
k
−h

xT (s)Qσ(s)x(s)ds

≤ xT (tk)
(
I + Ej

)T
Pi

(
I + Ej

)
x(tk) + eαhρ∗xT (tk)ET

j QiEjx(tk)

+ eαhρ∗
∫ tk

tk−h
v(s)xT (s)eα(tk−s)Qσ(s)x(s)ds,

(3.13)

V (tk) = xT (tk)Pjx(tk) +
∫ tk

tk−h
v(s)xT (s)eα(tk−s)Qσ(s)x(s)ds. (3.14)

Combining (3.13) with (3.14), we have

V
(
t+k
) − eαhρ∗V (tk) ≤ xT (tk)

(
I + Ej

)T
Pi

(
I + Ej

)
x(tk)

+ eαhρ∗xT (tk)ET
j QiEjx(tk) − eαhρ∗xT (tk)Pjx(tk)

= xT (tk)Σijx(tk),

(3.15)

where

∑

ij

=
(
I + Ej

)T
Pi

(
I + Ej

)
+ eαhρ∗ET

j QiEj − eαhρ∗Pj. (3.16)

Using Schur complement, (3.11) is equivalent to

Σij < 0 or V
(
t+k
) − eαhρ∗V (tk) < 0. (3.17)

The proof is completed.
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Theorem 3.4. R is a positive definite matrix. Let P̃i = R−1/2PiR
−1/2, Q̃i = R−1/2QiR

−1/2, For all i ∈
N, if there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N}, α, λ1, λ2, λ3 and symmetric
positive matrices Pi, Pj , Qi, Ti, i, j ∈ N such that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.18)

⎡
⎢⎢⎢⎢⎣

P̃iA
T
i +AiP̃i − αP̃i + I AdiQ̃i B2i P̃i

∗ −eαhQ̃j 0 0
∗ ∗ −Ti 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)

⎤
⎥⎥⎥⎥⎦

< 0, ∀i, j ∈ N (3.19)

⎡
⎢⎢⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤
⎥⎥⎦ < 0, ∀i, j ∈ N (3.20)

λ1R
−1 < P̃i < R−1, λ2R

−1 < Q̃i, Ti < λ3I, ∀i ∈ N (3.21)

⎡
⎢⎢⎣

−c22e−αTf + d2λ3 c1 c1
∗ −λ1 0

∗ ∗ − 1
ρ∗h

e−αhλ2

⎤
⎥⎥⎦ < 0 (3.22)

hold, under the average dwell time scheme

τa > τ∗a =
Tf
(
αh + ln ρ∗

)

ln
(
c22e

−αTf ) − ln
[(
1/λ1 + hρ∗eαh/λ2

)
c21 + d2λ3

] , (3.23)

system (3.1a)–(3.1c) is finite-time bounded with respect to (c21, c
2
2, Tf , d

2, R, σ(t)).

Proof. Assuming that when t ∈ (tk, tk+1], σ(t) = ik, ik ∈ N, k = 0, 1, 2, 3, . . ..
Choose the following Lyapunov functional candidate:

V (t) = xT (t)P̃−1
σ(t)x(t) +

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds. (3.24)
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When t ∈ (tk, tk+1], according to (3.18) and Lemma 3.2, we have

V̇ (t) ≤ 2xT (t)P̃−1
ik
ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

+ v(t)xT (t)Q̃−1
ik
x(t) − v(t − h)xT (t − h)Q̃−1

ik−mx(t − h)eαh,

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) ≤ 2xT (t)P̃−1
ik
ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

+ v(t)xT (t)Q̃−1
ik
x(t) − v(t − h)xT (t − h)Q̃−1

ik−mx(t − h)eαh

− αxT (t)P̃−1
ik
x(t) − α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

−wT(t)Tikw(t)

≤ 2xT (t)P̃−1
ik
ẋ(t) + ρ∗xT (t)Q̃−1

ik
x(t)

− xT (t − h)Q̃−1
ik−mx(t − h)eαh − αxT (t)P̃−1

ik
x(t)

−wT(t)Tikw(t).
(3.25)

According to (3.1a)–(3.1c), and (3.25), Assumption 2.2, and the fallowing inequality:

2xT (t)P̃−1
ik
f(x(t)) ≤ fT

ik
(x(t))fik(x(t)) + xT (t)P̃−1

ik
P̃−1
ik
x(t)

≤ xT (t)UT
ik
Uikx(t) + xT (t)P̃−1

ik
P̃−1
ik
x(t),

(3.26)

we have

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) ≤ XT (t)ΞkX(t), (3.27)

where XT (t) = (xT (t)xT (t − h)wT (t)),

Ξk =

⎡
⎢⎣
Δk P̃−1

ik
Adik P̃−1

ik
B2ik

∗ −eαhQ̃−1
ik−m

0
∗ ∗ −Tik

⎤
⎥⎦,

Δk = AT
ik
P̃−1
ik

+ P̃−1
ik
Aik + ρ∗Q̃−1

ik
− αP̃−1

ik
+UT

ik
Uik + P̃−1

ik
P̃−1
ik
.

(3.28)

Using Schur complement, we obtain from (3.19) that

⎡
⎢⎣
Oi P̃−1

i Adi P̃−1
i B2i

∗ −eαhQ̃−1
j 0

∗ ∗ −Ti

⎤
⎥⎦ < 0, (3.29)
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where

Oi = AT
i P̃

−1
i + P̃−1

i Ai + ρ∗Q̃−1
i − αP̃−1

i +UT
i Ui + P̃−1

i P̃−1
i . (3.30)

Noticing that the above inequality holds for all i, j ∈ N, then we have Ξk < 0 for ik, ik−1 ∈ N.
Thus,

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) < 0. (3.31)

When t ∈ (tk, tk+1], according to Lemma 3.3, we can obtain (3.12) from condition (3.20).
Combining (3.31) and (3.12), we can obtain that

V (t) < eα(t−tk)V
(
t+k
)
+
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< eα(t−tk)eαhρ∗V (tk) +
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< eα(t−tk)eαhρ∗
[
eα(tk−tk−1)V

(
t+k−1

)
+
∫ tk

tk−1
eα(tk−s)wT (s)Tik−1w(s)ds

]

+
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< · · ·

< eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

(
eαhρ∗

)Nσ(t0,t)
∫ t1

t0

eα(t−s)wT (s)Ti0w(s)ds

+
(
eαhρ∗

)Nσ(t1,t)
∫ t2

t1

eα(t−s)wT (s)Ti1w(s)ds

+ · · · + eαhρ∗
∫ tk

tk−1
eα(t−s)wT (s)Tik−1w(s)ds +

∫ t

tk

eα(t−s)wT (s)Tikw(s)ds

= eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
wT (s)Tikw(s)ds

< eαt
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

(
eαhρ∗

)Nσ(t0,t)
eαt
∫ t

t0

wT (s)Tikw(s)ds

< eαTf
(
eαhρ∗

)Nσ(t0,t)
[
V (t0) +

∫Tf

t0

wT (s)Tikw(s)ds

]

< eαTf
(
eαhρ∗

)Nσ(t0,t)[
V (t0) + λmax(Tik)d

2
]
.

(3.32)
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Noticing that Nσ(t0, Tf) < Tf/τa and according to (3.21), we have

V (t) < e(α+αh/τa)Tf
(
ρ∗
)Tf/τα[V (t0) + λ3d

2
]
,

V (t) ≥ xT (t)P̃−1
ik
x(t) = xT (t)R1/2P−1

ik
R1/2x(t)

≥ λmin

(
P−1
ik

)
xT (t)Rx(t) =

1
λmax(Pik)

xT (t)Rx(t).

(3.33)

Because λ1R−1 < P̃i < R−1, we have

V (t) > xT (t)Rx(t). (3.34)

According to the Lyapunov function that we have chosen, we have

V (t0) = xT (t0)P̃−1
i x(t0) +

∫ t0

t0−h
v(s)xT (s)e−α(t0−s)Q̃−1

i x(s)ds

≤ max
i∈N

λmax

(
P−1
i

)
xT (t0)Rx(t0)

+ heαhρ∗max
i∈N

λmax

(
Q−1

i

)
sup

t0−h≤θ≤t0
xT (θ)Rx(θ)

≤
⎛

⎝ 1
min
i∈N

λmin(Pi)
+

ρ∗heαh

min
i∈N

λmin(Qi)

⎞

⎠ sup
t0−h≤θ≤t0

xT (θ)Rx(θ).

(3.35)

According to (3.21), the following inequality is derived:

V (t0) <

(
1
λ1

+
ρ∗heαh

λ2

)
c21. (3.36)

Combining (3.33), (3.34), and (3.36), we can obtain that

xT (t)Rx(t) < V (t) < e(α+αh/τa)Tf
(
ρ∗
)Tf/τα

[(
1
λ1

+
ρ∗heαh

λ2

)
c21 + λ3d

2

]
. (3.37)

Using Schur complement, (3.22) is equivalent to

(
1
λ1

+
ρ∗heαh

λ2

)
c21 + λ3d

2 < c22e
−αTf . (3.38)

From (3.38), we can obtain that τa > 0.
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Substituting (3.23) into (3.37) leads to

xT (t)Rx(t) < c22. (3.39)

Thus, system (3.1a)–(3.1c) is finite-time bounded with respect to (c21, c
2
2, Tf , d

2, R, σ(t)).
The proof is completed.

Corollary 3.5. R is a positive definite matrix, let w(t) ≡ 0, P̃i = R−1/2PiR
−1/2, Q̃i =

R−1/2QiR
−1/2 for all i ∈ N. If there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N},

α, λ1, λ2 and symmetric positive matrices Pi, Pj ,Qi for all i, j ∈ N with appropriate dimensions such
that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N

⎡
⎢⎣
P̃iA

T
i +AiP̃i − αP̃i + I AdiQ̃i P̃i

∗ −eαhQ̃j 0
∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)

⎤
⎥⎦ < 0, ∀i, j ∈ N

⎡
⎢⎢⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤
⎥⎥⎦ < 0, ∀i, j ∈ N

λ1R
−1 < P̃i < R−1, λ2R

−1 < Q̃i, ∀i ∈ N

⎡
⎢⎢⎣

−c22e−αTf c1 c1
∗ −λ1 0

∗ ∗ − 1
ρ∗h

e−αhλ2

⎤
⎥⎥⎦ < 0

(3.40)

hold with average dwell time

τa > τ∗a =
Tf
(
αh + ln ρ∗

)

ln
(
c22e

−αTf ) − ln
[(
1/λ1 + ρ∗heαh/λ2

)
c21
] . (3.41)

System (3.1a)–(3.1c) with w(t) ≡ 0 is finite-time stable with respect to (c21, c
2
2, Tf , R, σ(t)).
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3.2. H∞ Performance Analysis

In this subsection, H∞ performance of the following system is investigated:

ẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.42a)

Δx = Eσ(t)x(t), t = tk, k = 1, 2, 3, . . . (3.42b)

z(t) = Cσ(t)x(t), (3.42c)

x(t) = ϕ(t), t ∈ [t0 − h, t0] (3.42d)

Theorem 3.6. R is a positive definite matrix. Let P̃i = R−1/2PiR
−1/2, Q̃i = R−1/2QiR

−1/2 for all i ∈
N. Suppose that there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N}, α, γ, ε and symmetric
positive matrices Pi, Pj , Qi for all i, j ∈ N such that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.43)

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃iA
T
i +AiP̃i − αP̃i + I AdiQ̃i B2i P̃i P̃iC

T
i

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, ∀i, j ∈ N (3.44)

⎡
⎢⎢⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤
⎥⎥⎦ < 0, ∀i, j ∈ N (3.45)

P̃i < R−1, ∀i ∈ N (3.46)

−c22 + eαTf γ2d2 < 0 (3.47)

hold with average dwell time

τa > τ∗a = max

{
Tf
(
αh + ln ρ∗

)

ln
(
c22
) − ln

(
eαTf γ2d2

) ,
h

ε

}
. (3.48)

Then, system (3.42a)–(3.42d) is finite-time bounded and has H∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)), where γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

Proof. When t ∈ (tk, tk+1], σ(t) = ik, ik ∈ N, k = 0, 1, 2, 3, . . .. Choose the following Lyapunov
functional candidate for system (3.42a)–(3.42d)

V (t) = xT (t)P̃−1
σ(t)x(t) +

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds. (3.49)
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When t ∈ (tk, tk+1],

V̇ (x(t)) − αV (x(t)) + zT (t)z(t) − γ2wT (t)w(t) ≤ XT (t)ΨkX(t), (3.50)

where XT (t) = (xT (t) xT (t − h) wT(t)),

Ψk =

⎡
⎢⎣
Δk P̃−1

ik
Adik P̃−1

ik
B2ik

∗ −eαhQ̃−1
ik−m

0
∗ ∗ −γ2I

⎤
⎥⎦,

Δk = AT
ik
P̃−1
ik

+ P̃−1
ik
Aik + ρ∗Q̃−1

ik
− αP̃−1

ik
+UT

ik
Uik + P̃−1

ik
P̃−1
ik

+ CT
ik
Cik .

(3.51)

Using Schur complement, we obtain from (3.44) that

⎡
⎢⎣
Ei P̃−1

i Adi P̃−1
i B2i

∗ −eαhQ̃−1
j 0

∗ ∗ −γ2I

⎤
⎥⎦ < 0, (3.52)

where Ei = AT
i P̃

−1
i + P̃−1

i Ai + ρ∗Q̃−1
i − αP̃−1

i +UT
i Ui + P̃−1

i P̃−1
i + CT

i Ci.
Noticing that the above inequality holds for all i, j ∈ N, then we have Ψk < 0, for

ik, ik−m ∈ N.
Thus,

V̇ (x(t)) − αV (x(t)) + zT (t)z(t) − γ2wT (t)w(t) < 0, (3.53)

Let γ2wT (s)w(s) − zT (s)z(s) = Δ(s), from (3.32), we have

V (t) < eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
Δ(s)ds. (3.54)

Under zero initial condition, we have

0 <

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
Δ(s)ds, (3.55)

that is,

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
zT (s)z(s)ds <

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
γ2wT (s)w(s)ds. (3.56)

Noticing that

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
zT (s)z(s)ds >

∫ t

t0

zT (s)z(s)ds. (3.57)
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Then, we have

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
γ2wT (s)w(s)ds < eαt

(
eαhρ∗

)Nσ(t0,t)
∫ t

t0

γ2wT (s)w(s)ds. (3.58)

Let t = Tf , because τa > h/ε, we have

∫Tf

t0

zT (s)z(s)ds < e(1+ε)αTf
(
ρ∗)εTf/hγ2

∫Tf

t0

wT (s)w(s)ds, (3.59)

then

∫Tf

t0

zT (s)z(s)ds < γ2
∫Tf

t0

wT (s)w(s)ds. (3.60)

Thus, system (3.42a)–(3.42d) is finite-time bounded and hasH∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)), where γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.
The proof is completed.

Remark 3.7. When ρ∗ = 1, Theorem 3.6 degenerates to the result of [41], which cannot
guarantee the finite-time boundedness of the addressed system if ρ∗ > 1.

3.3. Robust Finite-Time H∞ Control

Consider system (2.1a)–(2.1d), under the switching controller u1(t) = Kσ(t)x(t), t /= tk and
impulsive controller u2(tk) = Kσ(t)x(tk), t = tk, the corresponding closed-loop system is
given by

ẋ(t) =
(
Âσ(t) + B̂1σ(t)Kσ(t)

)
x(t) + Âdσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.61a)

Δx =
(
Eσ(t) +Kσ(t)

)
x(t), t = tk, k = 1, 2, 3, . . . (3.61b)

z(t) =
(
Cσ(t) +Dσ(t)Kσ(t)

)
x(t), (3.61c)

x(t) = ϕ(t), t ∈ [t0 − h, t0]. (3.61d)

Theorem 3.8. Consider impulsive switched system (2.1a)–(2.1d), let P̃i = R−1/2PiR
−1/2, Q̃i =

R−1/2QiR
−1/2for all i ∈ N. If there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈

N} α, γ, ε, δi and positive definite symmetric matrices Pi,Qi, and matrices Yi, i ∈ N, with
appropriate dimensions, such that the following inequalities hold
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1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.62)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi AdiQ̃i B2i P̃i P̃iC
T
i + YT

i D
T
i YT

i E
T
Bi + P̃iE

T
Ai

∗ −eαhQ̃j 0 0 0 Q̃iE
T
Adi

∗ ∗ −γ2 0 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −δi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ∀i, j ∈ N,

(3.63)

where

Γi = P̃iA
T
i + YT

i B
T
1i +AiP̃i + B1iYi − αP̃i + I + δiHiH

T
i ,

⎡

⎣
−eαhρ∗P̃j P̃j

∗ −P̃i

⎤

⎦ < 0, ∀i, j ∈ N
(3.64)

P̃i < R−1, i ∈ N, (3.65)

−c22 + eαTf γ2d2 < 0. (3.66)

Then, under the controller Ki = YiP̃
−1
i , Ki = −Ei, and the following average dwell time scheme

τa > τ∗a = max

{
Tf
(
αh + ln ρ∗

)

ln
(
c22
) − ln

(
eαTf γ2d2

) ,
h

ε

}
, (3.67)

the corresponding closed-loop system is finite-time bounded with H∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)) and γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

Proof. According to Assumption 2.1, we have

Âi + B̂1iKi = (Ai + B1iKi) +HiFi(EAi + EBiKi), Âdi = Adi +HiFiEAdi. (3.68)

Now replacingAi,Adi, Ci in the left side of (3.44)with Âi+B̂1iKi, Âdi, Ci+DiKi, we can obtain
that

Θij =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ωi (Adi +HiFiEAdi)Q̃i B2i P̃i P̃i(Ci +DiKi)T

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.69)
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where

Ωi = [(Ai + B1iKi) +HiFi(EAi + EBiKi)]P̃i + P̃i[(Ai + B1iKi) +HiFi(EAi + EBiKi)]T − αP̃i + I.

(3.70)

From (3.69), we know that

Θij = Π1ij + Π2ij , (3.71)

where

Π1ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

Υ1i AdiQ̃i B2i P̃i P̃i(Ci +DiKi)T

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Π2ij =

⎡
⎢⎢⎢⎢⎢⎣

Υ2i HiFiEAdiQ̃i 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎦
,

(3.72)

with

Υ1i = P̃i(Ai + B1iKi)T + (Ai + B1iK)P̃i − αP̃i + I,

Υ2i = P̃i(EAi + EBiKi)TFT
i H

T
i +HiFi(EAi + EBiKi)P̃i,

(3.73)

let Yi = KiP̃i, then

Υ1i = P̃iA
T
i + YT

i B
T
1i +AiP̃i + B1iYi − αP̃i + I,

Υ2i =
(
YT
i E

T
Bi + P̃iE

T
Ai

)
FT
i H

T
i +HiFi

(
EAiP̃i + EBiYi

)
.

(3.74)
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From Lemma 2.11, we can obtain that

Θij = Π1ij +

⎡
⎢⎢⎢⎢⎢⎣

Hi

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦
Fi

[
EAiP̃i + EBiYi EAdiQ̃i 0 0 0

]

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

YT
i E

T
Bi + P̃iE

T
Ai

Q̃iE
T
Adi

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fi

[
HT

i 0 0 0 0
]

≤ Π1ij + δi

⎡
⎢⎢⎢⎢⎢⎣

Hi

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

[
HT

i 0 0 0 0
]

+
1
δi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

YT
i E

T
Bi + P̃iE

T
Ai

Q̃iE
T
Adi
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
EAiP̃i + EBiYi EAdiQ̃i 0 0 0

]
.

(3.75)

Using Schur complement lemma, we get from (3.63) that

Θij < 0. (3.76)

Now we choose Ki = −Ei, and replacing Ei in (3.45) with Ei +Ki, we know that

⎡
⎢⎣
−eαhρ∗P̃j P̃j 0

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤
⎥⎦ < 0, (3.77)

by (3.64), we know that the condition(3.45) hold.
Then, system (2.1a)–(2.1d) is robust finite-time bounded with H∞ performance with

respect to (0, c22, Tf , d
2, γ , R, σ(t)), and γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

The proof is completed.

Remark 3.9. In order to eliminate the impulsive jump, we design an impulsive feedback
controller Ki = −Ei, t = tk. Then the system becomes a switched system with continuous
states.
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4. Numerical Examples

In this section, we present two examples to illustrate the effectiveness of the proposed
approach.

Example 4.1. Consider system (2.1a)–(2.1d) with the following parameters.

Subsystem 1

A1 =
[−8 1
2 −7

]
, Ad1 =

[−1.3 0.1
0.2 −1

]
, H1 =

[−0.1 0.3
0.2 0.4

]
, EAd1 =

[
0.2 0.1
0.3 −0.2

]
,

E1 =
[
0.43 0
0 0.15

]
, U1 =

[
0.1 0
0 0.1

]
, B11 =

[
3 −3
0 4

]
,

EB1 =
[
0.2 0.1
0 −0.3

]
, B21 =

[
1 −1
2 1

]
,

C1 =
[
1 1
0 2

]
, D1 =

[
0.8 0
0 0.2

]
, EA1 =

[−0.3 −0.1
0.2 −0.1

]
,

(4.1)

f1(x(t)) = 0.1 sinx(t), where ‖f1(x(t))‖ < ‖U1x(t)‖.

Subsystem 2

A2 =
[−7 2
1 −6

]
, Ad2 =

[−1.2 0.1
0.3 −1.1

]
, H2 =

[−0.1 0.2
−0.2 −0.1

]
, EAd2 =

[−0.3 0.1
0.2 −0.3

]
,

E2 =
[
0.15 0
0 0.4

]
, U2 =

[
0.2 0
0 0.18

]
, B12 =

[
4 −1
1 6

]
, EB2 =

[−0.3 0.1
0 0.2

]
,

B22 =
[−1 0
2 0.8

]
, C2 =

[
2 1
0 3

]
, D2 =

[
0.8 0
1 −1

]
, EA2 =

[
0.1 0.3
0.2 −0.2

]
,

(4.2)

f2(x(t)) = 0.18 cosx(t), where ‖f2(x(t))‖ < ‖U2x(t)‖.
Choosing Tf = 12, h = 0.2, d2 = 10, R = I, α = 0.1, C2

2 = 2, ε = 0.1, γ2 = 0.5441, ρ∗ = 1,
solving the LMIs in (3.62)–(3.66) leads to
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Q̃1 =
[
1.3506 −0.1265
−0.1265 0.7891

]
, Q̃2 =

[
0.5042 0.0525
0.0525 0.3221

]
, Y1 =

[
0.0234 −0.3577
0.1631 0.2680

]
,

Y2 =
[−0.0001 −0.5221
0.1109 0.0371

]
, P̃1 =

[
0.9887 0.0011
0.0011 0.9921

]
, P̃2 =

[
0.9995 −0.0001
−0.0001 1.0006

]
,

K1 =
[
0.0241 −0.3605
0.1647 0.2699

]
, K2 =

[−0.0001 −0.5218
0.1109 0.0371

]
,

Q̃−1
1 − (I + E1)T Q̃−1

1 (I + E1) ≤ 0,

Q̃−1
2 − (I + E2)T Q̃−1

1 (I + E2) ≤ 0,

Q̃−1
2 − (I + E2)T Q̃−1

2 (I + E2) ≤ 0,

Q̃−1
1 − (I + E1)T Q̃−1

2 (I + E1) ≤ 0,

(4.3)

τa > τ∗a = 1.2049, we choose τa = 2, γ2 = e(1+ε)αTf (ρ∗)εαTf γ2 = 2.0368, then the system is
finite-time bounded according to [41, Theorem 3].

Example 4.2. Consider system (2.1a)–(2.1d) with the following parameters.

Subsystem 1

A1 =
[−8 1
2 −7

]
, Ad1 =

[−1.3 0.1
0.2 −1

]
, H1 =

[−0.1 0.3
0.2 0.4

]
, EAd1 =

[
0.2 0.1
0.3 −0.2

]
,

E1 =
[−0.1 0

0 −0.1
]
, U1 =

[
0.01 0
0 0.01

]
, B11 =

[
3 −3
0 4

]
, EB1 =

[
0.2 0.1
0 −0.3

]
,

B21 =
[
1 −1
2 1

]
, C1 =

[−3 1
0 −2

]
, D1 =

[
8 0
0 2

]
, EA1 =

[−3 −0.1
0.2 −1

]
,

(4.4)

f1(x(t)) = 0.01 sinx(t).

Subsystem 2

A2 =
[−7 2
1 −6

]
, Ad2 =

[−1.2 0.1
0.3 −1.1

]
, H2 =

[−0.1 0.2
−0.2 −0.1

]
, EAd2 =

[−0.3 0.1
0.2 −0.3

]
,

E2 =
[−0.1 0

0 −0.1
]
, U2 =

[
0.02 0
0 0.08

]
, B12 =

[
4 −1
1 6

]
, EB2 =

[−0.3 0.1
0 0.2

]
,

B22 =
[−1 0
2 0.8

]
, C2 =

[−2 1
0 −3

]
, D2 =

[
8 0
1 8

]
, EA2 =

[−1 0.3
0.2 −2

]
,

(4.5)

f2(x(t)) = 0.02 cosx(t).
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(1) Let h = 0.2, Tf = 12, d2 = 10, R = I, α = 0.001, C2
2 = 21, ρ∗ = 1.3, γ2 = 0.9344. By

solving the LMIs in (3.62)–(3.66), we can get

Q̃1 =
[
0.4252 0.0387
0.0387 1.2272

]
, Q̃2 =

[
0.4352 0.0470
0.0470 1.2369

]
, Y1 =

[
0.0866 −0.4834
−0.0863 0.5554

]
,

Y2 =
[
0.1064 −0.2575
−0.1260 0.2934

]
, P̃1 =

[
0.4606 0.0418
0.0418 0.9965

]
, P̃2 =

[
0.5364 −0.0611
−0.0611 0.9884

]
,

K1 =
[
0.2329 −0.4949
−0.2389 0.5673

]
, K2 =

[
0.1699 −0.2500
−0.2024 0.2844

]
,

(4.6)

and τa > τ∗a = 3.8340. We choose τa = 4, ε = 0.05, γ2 = 0.9464, the initial condition
x(t) = 0, t ∈ [−h, 0], the switching signal is shown in Figure 1, and state trajectories
of the closed-loop system are shown in Figure 2.

We can see from Figure 2 that the states of the system are continuous due to the
feedback Ki in impulsive instants.

(2) Let h = 0.2, Tf = 12, d2 = 10, R = I, and α = 0.001. By solving the LMIs of [41,
Theorem 3], we can get

Q̃1 =
[
0.4015 0.0359
0.0359 1.0563

]
, Q̃2 =

[
0.5224 0.1104
0.1104 1.0717

]
, Y1 =

[
0.1245 −0.6523
−0.0998 0.5952

]
,

Y2 =
[
0.1279 −0.2380
−0.1006 0.2699

]
, P̃1 =

[
0.5577 0.0099
0.0099 0.9992

]
, P̃2 =

[
0.5577 0.0099
0.0099 0.9992

]
,

K1 =
[
0.2349 −0.6552
−0.1896 0.5976

]
, K2 =

[
0.2336 −0.2405
−0.1852 0.2720

]
,

Q̃−1
1 − (I + E1)T Q̃−1

1 (I + E1) > 0,

Q̃−1
2 − (I + E2)T Q̃−1

1 (I + E2) > 0,

Q̃−1
2 − (I + E2)T Q̃−1

2 (I + E2) > 0,

Q̃−1
1 − (I + E1)T Q̃−1

2 (I + E1) > 0.

(4.7)

Obviously, the above inequalities do not satisfy the conditions of [41, Theorem 3]. Thus, we
cannot draw the conclusion that the closed-loop system is finite-time bounded from Theorem
3 in [41].

5. Conclusions

This paper has investigated robust finite-time H∞ control for a class of impulsive switched
nonlinear systems with time-delay. Based on piecewise Lyapunov function, sufficient
conditions which guarantee finite-time boundedness of the impulsive switched system are
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Figure 1: Switching signal.
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Figure 2: State trajectories of the closed-loop system.

derived. Then, a feedback control scheme consisting of an impulsive feedback controller and
a switching controller is proposed, and the proposed control strategy can guarantee that the
closed-loop system is finite-time bounded withH∞ disturbance attenuation level. Finally, the
results are illustrated by means of two numerical examples.
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[14] C. Gökçek, “Stability analysis of periodically switched linear systems using Floquet theory,”
Mathematical Problems in Engineering, vol. 2044, no. 1, pp. 1–10, 2004.

[15] M. de la Sen, “Sufficiency-type stability and stabilization criteria for linear time-invariant systems
with constant point delays,” Lithuanian Mathmatical Journal, vol. 43, no. 3, pp. 235–256, 2003.

[16] H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “RobustH∞ filtering for Markovian jump systems with
randomly occurring nonlinearities and sensor saturation: the finite-horizon case,” IEEE Transactions
on Signal Processing, vol. 59, no. 7, pp. 3048–3057, 2011.

[17] H. Dong, Z. Wang, and H. Gao, “Observer-based H∞ control for systems with repeated scalar
nonlinearities and multiple packet losses,” International Journal of Robust and Nonlinear Control, vol.
20, no. 12, pp. 1363–1378, 2010.

[18] H. Dong, Z. Wang, and H. Gao, “Robust H∞ filtering for a class of nonlinear networked systems
with multiple stochastic communication delays and packet dropouts,” IEEE Transactions on Signal
Processing, vol. 58, no. 4, pp. 1957–1966, 2010.

[19] B. Shen, Z. Wang, and X. Liu, “Bounded H∞ synchronization and state estimation for discrete time-
varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol.
22, no. 1, pp. 145–157, 2011.

[20] B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H∞ filtering for polynomial nonlinear
stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp.
1971–1979, 2011.

[21] B. Shen, Z. Wang, and Y. S. Hung, “Distributed H∞-consensus filtering in sensor networks with
multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688,
2010.

[22] Z. Xiang, Y.-N. Sun, and M. S. Mahmoud, “Robust finite-time H∞ control for a class of uncertain
switched neutral systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no.
4, pp. 1766–1778, 2012.

[23] G. Zong, S. Xu, and Y.Wu, “RobustH∞ stabilization for uncertain switched impulsive control systems
with state delay: an LMI approach,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 4, pp. 1287–1300,
2008.



Mathematical Problems in Engineering 25

[24] J. Liu, X. Liu, and W.-C. Xie, “Input-to-state stability of impulsive and switching hybrid systems with
time-delay,” Automatica, vol. 47, no. 5, pp. 899–908, 2011.

[25] X. Liu, S. Zhong, and X. Ding, “Robust exponential stability of impulsive switched systems with
switching delays: a Razumikhin approach,” Communications in Nonlinear Science and Numerical
Simulation, vol. 17, no. 4, pp. 1805–1812, 2012.

[26] P. Dorato, “Short time stability in linear time-varying systems,” in Proceedings of the IRE International
Convention Record Part 4, pp. 83–87, 1961.

[27] F. Amato, M. Ariola, and P. Dorato, “Finite-time control of linear systems subject to parametric
uncertainties and disturbances,” Automatica, vol. 37, no. 9, pp. 1459–1463, 2001.

[28] S. Zhao, J. Sun, and L. Liu, “Finite-time stability of linear time-varying singular systems with
impulsive effects,” International Journal of Control, vol. 81, no. 11, pp. 1824–1829, 2008.

[29] E. Moulay and W. Perruquetti, “Finite time stability conditions for non-autonomous continuous
systems,” International Journal of Control, vol. 81, no. 5, pp. 797–803, 2008.

[30] F. Amato, M. Ariola, and C. Cosentino, “Finite-time control of discrete-time linear systems: analysis
and design conditions,” Automatica, vol. 46, no. 5, pp. 919–924, 2010.

[31] F. Amato, M. Ariola, and C. Cosentino, “Finite-time stability of linear time-varying systems: analysis
and controller design,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 1003–1008, 2010.

[32] L. Weiss and E. F. Infante, “Finite time stability under perturbing forces and on product spaces,” IEEE
Transactions on Automatic Control, vol. 12, pp. 54–59, 1967.

[33] L. Liu and J. Sun, “Finite-time stabilization of linear systems via impulsive control,” International
Journal of Control, vol. 81, no. 6, pp. 905–909, 2008.

[34] F. Amato, R. Ambrosino, M. Ariola, and C. Cosentino, “Finite-time stability of linear time-varying
systems with jumps,” Automatica, vol. 45, no. 5, pp. 1354–1358, 2009.

[35] R. Ambrosino, F. Calabrese, C. Cosentino, and G. De Tommasi, “Sufficient conditions for finite-time
stability of impulsive dynamical systems,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp.
861–865, 2009.

[36] F. Amato, R. Ambrosino, C. Cosentino, and G. De Tommasi, “Finite-time stabilization of impulsive
dynamical linear systems,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 1, pp. 89–101, 2011.

[37] H. Du, X. Lin, and S. Li, “Finite-time stability and stabilization of switched linear systems,” in
Proceedings of the 28th Chinese Control Conference (CCC ’09), pp. 1938–1943, December 2009.

[38] W.Xiang and J. Xiao, “H∞ finite-time control for switched nonlinear discrete-time systemswith norm-
bounded disturbance,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 331–352, 2011.

[39] Z. Hualin and S. Hongfei, “The design of switching law of linear switched systems of finite-time
stability,” in Proceedings of the International Conference on Electrical and Control Engineering (ICECE ’10),
pp. 2318–2320, June 2010.

[40] F. Amato, M. Ariola, C. T. Abdallah, and P. Dorato, “Finite-time control for uncertain linear systems
with disturbance inputs,” in Proceedings of the American Control Conference (ACC ’99), pp. 1776–1780,
June 1999.

[41] C. Liu and Z. R. Xiang, “Robust H∞ finite-time stabilization of nonlinear impulsive switched system
with time-delays,” in Proceedings of the 24th Chinese Control and Decision Conference, pp. 264–269, 2012.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 616507, 18 pages
doi:10.1155/2012/616507

Research Article
Robust H∞ Dynamic Output Feedback Control
Synthesis with Pole Placement Constraints for
Offshore Wind Turbine Systems

Tore Bakka and Hamid Reza Karimi

Department of Engineering, Faculty of Engineering and Science, University of Agder,
4879 Grimstad, Norway

Correspondence should be addressed to Hamid Reza Karimi, hamid.r.karimi@uia.no

Received 7 June 2012; Accepted 21 September 2012

Academic Editor: Zidong Wang

Copyright q 2012 T. Bakka and H. R. Karimi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The problem of robust H∞ dynamic output feedback control design with pole placement con-
straints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear
model is obtained and linearized using the FAST software developed for wind turbines. The main
contributions of this paper are threefold. Firstly, a family of linear models are represented based
on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded
parameter-varying parameters are removed using upper bounded inequalities in the control
design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities
(LMIs). The simulation results show a comparison between controller design based on a constant
linear model and a controller design for the linear parameter-varying model. The results show the
effectiveness of our proposed design technique.

1. Introduction

Wind energy is nowadays one of the fastest growing renewable industries. As a consequence
of the oil crises in the early 1970s and a general interest of renewable energy, the wind energy
sector has had a tremendous growth over the last decades. With Europe leading the global
market, the turbine capacity has had an annual growth rate of up to 30% [1].

Wind turbines are complex mechanical systems, and they are highly nonlinear due to
the conversion of wind energy to mechanical torque. This makes the wind turbine a chal-
lenging task both to model and control. In literature, linear and nonlinear controllers have
been extensively used for power regulation through the control of blade pitch angle (see, for
instance, [2–14] and the references therein). More recently, the problem of gain scheduling
and output feedback H∞ control design for an offshore floating wind turbine was studied in
[15, 16]. Furthermore, a mixed H2/H∞ control design was proposed for an offshore floating
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Figure 1: Operating region of a typical wind turbine.

wind turbine system investigated in [17]. However, the performance of these controllers
is limited by the highly nonlinear characteristics of the wind turbine. These controllers
are designed on the basis of one operating condition and therefor can only guarantee
performance and stability at this point. By designing the controller on the basis of a linear-
parameter-varying (LPV) model, it is possible to overcome these limitations. So, in order to
sustain the growth in the wind industry sector, design of advanced control methodologies
is one research area where such improvements can be achieved. In recent years, several
advanced wind turbine simulation softwares have emerged, such as HAWC2 [18], FAST
[19], and Cp-Lambda [20]. In this paper we will use FAST interfaced with MATLAB for all
the simulations. The operation region of a wind turbine is often divided into four regions
(Figure 1).

In region I (v < vcut-in) the wind speed is lower than the cut-in wind speed and no
power can be produced. In region II (vcut-in ≤ v < vrated) the pitch is usually kept constant
while the generator torque is the controlling variable. In region III (vrated ≤ v < vcut-out) the
main concern is to keep the rated power and to limit loads on critical parts of the structure by
pitching the blades. In region IV (v ≤ vcut-out) the wind speed is too high, and the turbine is
shut down. In this paper we will focus on the above rated wind speed scenario, that is, region
III.

This paper makes three specific contributions. First, it suggests a family of linear
models for a wind turbine system based on an affine parameter-varying model structure.
Second, robust stabilization and disturbance attenuation of such parameter-varying models
are investigated using H∞ method such that the bounded parameter-varying parameters
are removed using upper bounded inequalities in the control design procedure. Third, the
control problem is formulated in terms of linear matrix inequalities (LMIs) and a dynamic
output feedback controller is computed. Finally, the simulation results show that the obtained
controller can achieve the robust stability and disturbance attenuation, simultaneously.

This paper is organized as follows. Section 2 describes the model under consideration
and how to include the parameter-varying terms in the closed loop system. Section 3 is
devoted to the control design technique. Simulation results are presented in Section 4. Finally,
concluding remarks and suggestions to future works are discussed in Section 5.

The notations used throughout the paper are fairly standard. I and 0 represent identity
matrix and zero matrix; the superscript T stands for matrix transposition; �n denotes the
n-dimensional Euclidean space; �n×m is the set of all real m by n matrices. ‖ · ‖ refers
to the Euclidean vector norm or the induced matrix 2-norm. diag{· · · } represents a block
diagonal matrix. The operator sym(A) denotesA+AT , and ⊗ denotes the Kronecker product.
The notation P > 0 means that P is real symmetric and positive definite; the symbol ∗ denotes
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the elements below the main diagonal of a symmetric block matrix. Finally given a signal
x(z), ‖x(z)‖2 denotes the L2 norm of x(z), that is, ‖x(z)‖22 =

∫∞
0 xT (z)x(z)dt.

2. Wind Turbine Model

The wind turbine model is obtained from the wind turbine simulation software FAST [19].
The simulation model is an upscaled version of Statoil’s Hywind 2.3 (MW) turbine, which is
located off the Norwegian west coast. This upscaled version is also a floating turbine and has
the capacity 5 (MW). For specifications, see [21].

FAST provides a fully nonlinear wind turbine model with up to 24 degrees of freedom
(DOF). For the controller design, we need a linear model and we want the linear model to be
as simple as possible. All the DOFs available cannot be included, so we choose the ones we
think will represent the most important dynamics. Linearization routines are available in the
FAST package. The model is now linearized at each desired azimuth angle. We find this angle
in the plane of rotor rotation. One linear model at each 10th angle is obtained, that is, the total
amount of 36 models are obtained. The models is of the following standard state space form:

ẋ = Aix + Biu,

y = Cix, i = 1, 2, . . . , 36,
(2.1)

where x is the state vector with dimensions Rn×1, u is the control signal with dimensions
Rp×1, y is the model outputs with dimensions Rm×1, andA, B, C are the system matrices with
dimensions Rn×n, Rn×p, Rm×n, and Rm×p, respectively. The states in this linear model are tower
fore-aft displacement (x1), generator position (x2), rotor position (x3), and the last three states
are the first derivative of x1−3. The model input u, which will eventually be calculated by the
controller, is the blade pitch angle. The model outputs in y are tower fore-aft displacement,
generator speed, and rotor speed.

A commonway to simplify these models is to take the average of all the 36 models and
use this as basis for the controller design. By doing this simplification, important information
is easily lost. This is why in this paper we will try to do the controller design based on a
model representation which tries to include as much as possible of the information in the 36
models. The matrices A and B are behaving in a periodic way, and the matrix values depend
on the rotor azimuth angle. Several things are the cause of this periodic behavior, that is,
aerodynamic loads, tower shadow, gravitational loads, and deflections of the tower due to
thrust loading. The matrix associated with the output y is not varying, since this C-matrix
only handles the measurements. In (2.2)we define the varying matrices in an affine way, and
A(z) and B(z) vary in a continuous manner:

A(z) = An + ΔA(z),

B(z) = B2n + ΔB(z),
(2.2)

where An and B2n are the nominal plant matrices, ΔA(z) and ΔB(z) contributes with the
varying terms, and z represents the rotor azimuth angle. We are looking to represent the
parameter-varying terms in this way: ΔA(z) = FΔ(z)E, and a similar expression for ΔB(z).
After analyzing the 36 models we find appropriate matrices F and E, but we also find out
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that more than one scheduling parameter is needed. The periodic matrices A(z) and B(z)
can now be represented in a continuous way with the use of sine and cosine functions. The
parameter-varying terms in (2.2) are defined in the following way:

ΔA(z) =
2∑

i=1

2∑

j=1

FiΔj(z)Ejia,

ΔB(z) =
2∑

i=1

2∑

j=1

FiΔj(z)Ejib,

(2.3)

where the vectors F and E have appropriate dimensions, and the scheduling variables
Δ1(z) and Δ2(z) are found to be sin(ωt), and cos(ωt) respectively. A plot which shows
what the different parameters are in the original matrices A1,...,36 and B1,...,36 and in the new
representation An + ΔA(z) and B2n + ΔB(z) is found in the appendix.

3. Control Design

The purpose ofH∞ control is to minimize the effect of disturbances on the controlled output.
The control design is formulated in terms of LMIs. After manipulating the linear model
obtained from FAST, we end up with a state space system with parameter-varying A and
B matrices. This model is more accurate than if we just took the average of all the 36 models.
By using a LPV model of the system we are able to catch some of the dynamics that are lost
under the linearization. The challenge is now to incorporate these additional terms into the
control design.

These robust control designs mostly deal with frequency domain aspects of the closed
loop system, but it is well known that the location of the closed loop poles play a large role
in the transient behavior of the controlled system. By adding pole placement to the list of
constraints we can prevent large poles and end up with a system which can respond in a
realistic way. The controller we are searching for will try to keep the generator speed at its
rated value while mitigating oscillations in the drive train and in the tower.

The LMIs for the control design are solved using YALMIP [22] interfaced with
MATLAB, and we are using the solver SeDuMi. This solver is searching for two positive
definite matricesX and Y which stabilizes the system. If these matrices exist, we can calculate
the controller. The next sections present how to obtain the LMIs for the controller design and
also how to incorporate the parameter-varying part of the state space system.

3.1. System Representation

Figure 2 shows the output feedback control scheme, where P(s) is the generalized plant and
K(s) is the controller. The two blocks represent in the equations (3.1) and (3.2). P(s) includes
the wind turbine model and the signals of interest:

ẋ = Ax + B1w + B2u,

z∞ = C1ix +D1iw +D2iu,

y = C2x +D21w,

(3.1)
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Figure 2: Output feedback block diagram.

where A, B2, and C2 represent the matrices from the standard state space form in (2.1). To
include the parameter-varying matrices, A is substituted with A(z) and B2 with B(z). The
other matrices are considered with appropriate dimensions. u is the control input, w is the
disturbance signal, and y is the measured output. The signal z∞ is the controlled output for
H∞ performance measure. For system (3.1), the dynamic output feedback, u(s) = K(s)y(s),
is of the following form:

K(s)

{
ζ̇ = Akζ + Bky,

u = Ckζ +Dky.
(3.2)

The closed loop system is given in (3.3)with the states xcl = [ x ζ ]T :

ẋcl = Aclx + Bclw,

z∞ = Cclx +Dclw.
(3.3)

The closed loop system is divided into two parts, one with constant state space matrices and
one where the parameter-varying matrices are

(
Acl Bcl

Ccl Dcl

)
=

(
Acl 1 Bcl 1

Ccl 1 Dcl 1

)
+

(
Acl 2(z) Bcl 2(z)

0 0

)

=

⎛
⎜⎝

An + B2nDkC2 B2nCk B1 + B2nDkD21

BkC2 Ak BkD21

C1i +D2iDkC2 D2iCk D1i +D2iDkD21

⎞
⎟⎠

+

⎛
⎜⎝

ΔA(z) + ΔB(z)DkC2 ΔB(z)Ck ΔB(z)DkD21

0 0 0

0 0 0

⎞
⎟⎠.

(3.4)
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3.2. H∞ Control

Because of the parameter-varying state space system we now get an additional term to
the standard Bounded Real Lemma (BRL). This additional term is the second part of the
summation in constraint (3.5). We want to make sure that the closed loop H∞ norm of the
closed loop transfer function does not exceed γ . This is true if and only if there exists a sym-
metric matrix X such that

⎛
⎜⎜⎜⎜⎝

AT
cl 1X +XAcl 1 XBcl 1 CT

cl 1

∗ −γI DT
cl 1

∗ ∗ −γI

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

AT
cl 2(z)X +XAcl 2(z) XBcl 2(z) 0

∗ 0 0

∗ ∗ 0

⎞
⎟⎟⎟⎟⎠

< 0

X > 0.

(3.5)

3.3. Change of Variables

Obviously, theH∞ constraint (3.5) is not an LMI because of the nonlinear terms which occur
whenwe close the loop. In order to transform these nonlinear terms into proper LMIswe need
to do two things. First, we need to linearize them with the use of change of variables. Second,
we need to remove the parameter-varying terms. The linearization part is not as straight
forward as for the state feedback case, additional information about this can be found in [23].

The new Lyapunov matrix is partitioned in the following form:

X =
[
Y N
NT #

]
, X−1 =

[
X M
MT #

]
, (3.6)

where X and Y are symmetric matrices of dimension n × n. It is not necessary to know the
matrices noted as #.

In addition, we define the following two matrices:

Π1 =
[
X I
MT 0

]
, Π2 =

[
I Y
0 NT

]
, (3.7)

that, as can be inferred from the identity XX−1 = I, satisfy

XΠ1 = Π2. (3.8)
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Then, the following change of controller variables are defined:

Â = NAkM
T +NBkC2X + YB2nCkM

T + Y (An + B2nDkC2)X,

B̂ = NBk + YB2nDk,

Ĉ = CkM
T +DkC2X,

D̂ = Dk.

(3.9)

Now we are ready to convert our nonlinear matrix inequalities into LMIs. By performing
congruence transformation with diag(Π1, I, I) on the obtained inequality (3.5), we end up
with following matrix inequality:

Σ1 + sym(G1Δ1(z)H1) + sym(G2Δ1(z)H1)

+ sym(G1Δ1(z)H2) + sym(G2Δ1(z)H2)

+ sym(G3Δ2(z)H3) + sym(G4Δ2(z)H3)

+ sym(G3Δ2(z)H4) + sym(G4Δ2(z)H4) < 0,

(3.10)

where the matrix Σ1 and the vectors Gi and Hi are defined in the appendix.

Lemma 3.1 (see [24]). Given Σ = ΣT , G, Δ, and H of appropriate dimensions with ΔTΔ ≤ I, then
the matrix inequality

Σ + (GΔH) < 0 (3.11)

holds for all Σ if and only if there exists a scalar ε > 0 such that

Σ + εGGT + ε−1HTH < 0. (3.12)

By using Lemma 3.1 we are able to remove the parameter-varying parts Δi(z) in the
matrix inequality (3.10). We end up with a new LMI which contains the constants ε1 and ε2:

Σ1 + 2ε1G1G
T
1 + 2ε−11 HT

1 H1 + 2ε1G2G
T
2 + 2ε−11 HT

2 H2

+ 2ε2G3G
T
3 + 2ε−12 HT

3 H3 + 2ε2G2G
T
4 + 2ε−12 HT

4 H4 < 0.
(3.13)

By using the Schur complement we can convert (3.13) into the following LMIs:

(
Σ1 Σ2

∗ Σ3

)
< 0, (3.14)

(
X I
I Y

)
> 0, (3.15)
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where

Σ2 =
[
G1 HT

1 G2 HT
2 G3 HT

3 G4 HT
4

]

Σ3 = diag
{
−1
2
ε−11 ,−1

2
ε1,−12ε

−1
1 ,−1

2
ε1,

−1
2
ε−12 ,−1

2
ε2,−12ε

−1
2 ,−1

2
ε2

}
.

(3.16)

3.4. LMI Region

An LMI region is any convex subset D of the complex plane that can be characterized as an
LMI in z and z [25] as follows:

D =
{
z ∈ C : L +Mz +M

T
z < 0

}
, (3.17)

for some fixed real matrices M and L = L
T
, where z is a complex number. This class of

regions encompasses half planes, strips, conic sectors, disks, ellipses, and any intersection
of the above. From [25], we find that all eigenvalues of the matrix A are in the LMI region
{z ∈ C : [lij +mijz +mjiz]i,j < 0} if and only if there exists a symmetric matrix X such that

[
lijX +mijA

TX +mjiXA
]

i,j
< 0, X > 0. (3.18)

Also, here we need to include the change of variables and remove the parameter-varying
terms, this is done in (3.19). The LMI is obtained in a manner similar to the one that was used
for the H∞ constraint:

(
Σ4 Σ5

∗ Σ3

)
< 0, (3.19)

where

Σ5 =
[
ε1P1 NT

1 ε1P2 NT
2 ε2P3 NT

3 ε2P4 NT
4

]
(3.20)

and Σ4 and the other terms in Σ5 are defined in the appendix.

Remark 3.2. It is observed that the inequalities (3.14), (3.15), and (3.19) are linear in
(X,Y, Â, B̂, Ĉ, D̂) and thus the standard LMI techniques can be exploited to find the LMI solu-
tions. It is also seen from the above results that there exists much freedom contained in the
design of control law, such as the choices of appropriate ε1 and ε2. This design freedom can
be exploited to achieve other desired closed loop properties.
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The desired regionD is a disk (Figure 3), with center located along the x-axis (distance
q from the origin) and radius r. This determines the region

D =
( −r q + z
q + z −r

)
. (3.21)

From this we can find the matrices L and M, which are the two matrices that determine the
LMI region.

All constraints in (3.14), (3.15), and (3.19) are now subjected to the minimization
of the objective function, which is the H∞ norm. They need to be solved in terms of
(X,Y, Â, B̂, Ĉ, D̂).

Once all these matrices are obtained, the controller matrices are computed in the
following way. First we obtain M and N from the factorization problem

MNT = I −XY. (3.22)

Second, the controller matrices are computed from the following relationship:

Dk = D̂,

Ck =
(
Ĉ −DkC2X

)(
MT
)−1

,

Bk = N−1
(
B̂ − YB2nDk

)
,

Ak = N−1
(
Â −NBkC2X − YB2nCkM

T − Y (An + B2nDkC2)X
)(

MT
)−1

.

(3.23)
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4. Simulation Results

The simulations are carried out with FAST software interfaced with MATLAB/Simulink. The
controllers are tested on the fully nonlinear system with 22 out of 24 DOFs enabled. Yaw and
platform surge-motion are left out. The wind turbine system is subjected to extreme wind
conditions. The wind profile is a 50-year extreme case with an average speed of 18 [m/s]
(Figure 4) and a turbulence intensity of 17%. Significant wave hight is 6 [m] with a peak
wave period of 10 [s]. The wind profile is obtained from the software Turbsim [26].

Suitable results are found with the following H∞ performance measure:

z∞ = x1 + x2 + x6 + u. (4.1)

The blue line in the plots is the result where the parameter-varying terms are taken into
consideration in the controller design. The red line shows the result where the parameter-
varying terms are left out. We also show NREL’s PI gain scheduled controller (cyan colored
line) as a reference plot. Our two controllers are designed and tested on exactly the same
operating conditions, that is, same performance measure, same pole placement constraint,
and same wind condition. From Figures 5 and 6 we see that the blue line is operating more
steady around the rated values for the rotor and generator, which are 12.1 [rpm] and 1173.7
[rpm], respectively. This will in turn result in a smoother torque output, as seen in Figure 7.

Our two controller designs show a large increment in pitching activity, see Figure 8. If
we inspect the pitching rate, we see that it is not more than 5–10 [deg/s] and hence should
be within the wind turbine’s limit. The blue line in Figure 9 shows that the amplitude of the
oscillations is lower in the fore-aft direction than in the other two plots. From these plots we
see that the results are according to the controller objectives.
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5. Conclusions

In this paper we have obtained and linearized a wind turbine model using the commercial
software FAST. The output from the linearization is a family of models describing the turbine
system at each 10th azimuth angle. This family of models is converted into one parameter-
varying model. The new model is dependent on the azimuth angle. In this way we can make
the control design based on amodel consisting of more information than if we had done it the
conventional way, which is to use the average of the family of models. The controller is tested
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on the fully nonlinear system subjected to 50-year extreme wind conditions. The simulation
results show a comparison between controller design done with the new method and done
the conventional way. The plots show that the simulation results meet our control objectives.

Based on the results in this paper, interesting future research may be prospective as
follows.
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(1) It is worth noting that in this paper a constant controller is designed for a para-
meter-varying model. A next step could be to design a parameter-varying con-
troller, where the scheduling parameter is the azimuth angle.

(2) The methods presented in [27, 28] can be used for a stochastic model of a wind
turbine system with constrained information exchange and a partial knowledge of
the state variables.

(3) Fault detection and control design for wind turbine systems over a network (see,
for instance, [29, 30]) can be studied in the framework of this paper.

(4) Though the addressed issue is the control problem, the methods proposed in the
paper can be extended to filtering problems (see, for instance, [31]).

Appendix

The size of the A matrix is 6 × 6, and the B matrix has size 6 × 1. Only the last three rows
are shown in Figures 10 and 11, respectively. The first three rows contain either constant
or zero values. The blue line shows how the 36 linear models are distributed along the 360
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Figure 10: Continued.
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azimuth angles. The red line shows our attempt to emulate these periodic matrix values with
a function on the form An + ΔA(z) for the A matrix and B2n + ΔB(z) for the B matrix

Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

sym
(
AX + B2Ĉ

)
ÂT +A + B2D̂C2 B1 + B2D̂D21 XCT

1i + ĈTDT
21

∗ sym
(
YA + B̂C2

)
YB1 + B̂D21 CT

1i + CT
2 D̂

T +DT
2i

∗ ∗ −γI DT
1i +DT

21D̂DT
2i

∗ ∗ ∗ −γI

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A.1)
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G1 =
[
F1 01 × 8

]T
, G2 =

[
01 × 6 YF1 01 × 2

]T
,

G3 =
[
F2 01 × 8

]T
, G4 =

[
01 × 6 YF2 01 × 2

]T
,

H1 =
[
E11aX + E11bĈ E11a + E11bD̂C2 E11bD̂D210

]
,

H2 =
[
E12aX + E12bĈ E12a + E12bD̂C2 E12bD̂D210

]
,

H3 =
[
E21aX + E21bĈ E21a + E21bD̂C2 E21bD̂D210

]
,

H4 =
[
E22aX + E22bĈ E22a + E22bD̂C2 E22bD̂D210

]
,

(A.2)

Σ4 =

(
L ⊗
(
X I
I Y

)
+M ⊗

(
AX + BĈ A + BD̂C

Â YA + B̂C

)

+M
T ⊗
(
AX + BĈ A + BD̂C

Â YA + B̂C

)T
⎞

⎠,

(A.3)

G1 =
[
F1 01 × 6

]T
, G2 =

[
01 × 6 YF1

]T
, G3 =

[
F2 01 × 6

]T
, G4 =

[
01 × 6 YF2

]T
,

H1−2 =
[
E11aX + E11bĈ E11a + E11bD̂C2

]
, H2−2 =

[
E12aX + E12bĈ E12a + E12bD̂C2

]
,

H3−2 =
[
E21aX + E21bĈ E21a + E21bD̂C2

]
, H4−2 =

[
E22aX + E22bĈ E22a + E22bD̂C2

]
,

N1 = I2 × 2 ⊗H1−2, N2 = I2 × 2 ⊗H2−2, N3 = I2 × 2 ⊗H3−2, N4 = I2 × 2 ⊗H4−2,

H1 = M ⊗G1−2, H2 = M ⊗G2−2, H3 = M ⊗G3−2, H4 = M ⊗G4−2.
(A.4)
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This paper presents an approach for data-driven design of fault diagnosis system. The proposed
fault diagnosis scheme consists of an adaptive residual generator and a bank of isolation observers,
whose parameters are directly identified from the process data without identification of complete
process model. To deal with normal variations in the process, the parameters of residual generator
are online updated by standard adaptive technique to achieve reliable fault detection performance.
After a fault is successfully detected, the isolation scheme will be activated, in which each isolation
observer serves as an indicator corresponding to occurrence of a particular type of fault in the
process. The thresholds can be determined analytically or through estimating the probability
density function of related variables. To illustrate the performance of proposed fault diagnosis
approach, a laboratory-scale three-tank system is finally utilized. It shows that the proposed
data-driven scheme is efficient to deal with applications, whose analytical process models are
unavailable. Especially, for the large-scale plants, whose physical models are generally difficult
to be established, the proposed approach may offer an effective alternative solution for process
monitoring.

1. Introduction

During the last two decades, diagnostic observers and parity space-based fault detection and
isolation (FDI) schemes for linear time invariant (LTI) systems are intensively studied [1–
6]. The core of the parity space FDI technique is, based on state space representation of the
system, construction of residual generator by means of the so-called parity vector, which
is the null space of the observability matrix. As pointed out in Ding [6], the design of an
observer-based residual generator can be equivalently formulated as a similar problem.

Since the majority of observer and parity space-based FDI schemes involve rigorous
development of process models based on the first principles, later identification techniques
that extracts transfer function [7] or state space model become a necessary step prior to
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the design. For this purpose, subspace identification methods (SIM) that identify the
complete state space matrices have been successfully implemented see Overschee and Moor
[8], Favoreel et al. [9], and Qin [10]. Provided the process model is known a priori, observer
and parity space-based FDI systems can be designed with a large number of applications
[11–13]. The approaches of filtering and control for such complex systems have been well
studied in the literature; see Shen et al. [14], Shen et al. [15], and Dong et al. [16], Dong
et al. [17]. Recently, an alternative data-driven approach has been proposed that does not
require the identification of complete set of process model but only the so-called primary
form of the residual generator from the process data; see Ding et al. [18]. Based on it, the
advanced observer-based FDI system can be designed in an efficient way [19–23]. Thanks
to its simple forms and less requirements on the design and engineering efforts, the data-
driven FDI approach becomes more efficient in many industry sectors, especially for large-
scale industry applications [24]. Recent survey given by Ding et al. [22, 23] provided the
reader with a comprehensive overview on the basic and advanced data-driven FDI schemes.

Our study is motivated by the aforementioned data-driven FDI approach, in that we
also recognize the wide existence of systems with uncertain or normal variation parameters
in practice, which have not been paid enough attention in research study. Extension of the
data-driven FDI scheme to such processes will improve the safety and reliability of these
applications and further reduce the complexity to perform FDI especially on the large-scale
systems. For this purpose, a data-driven fault diagnosis approach was proposed in this paper,
inwhich the issues of fault isolation and threshold settingwere studied to complete the earlier
work given by Ding et al. [19, 20]. The structure of the fault diagnosis scheme consists of an
adaptive residual generator and a bank of isolation observers, whose parameters are directly
updated from the plant data with standard adaptive technique to copewith normal variations
in the process. The threshold for fault detection can be determined either analytically or by
probability density function estimation technique. When a fault is detected, the fault isolation
scheme is activated, in which each isolation observer indicates the occurrence of a particular
type of fault in the process. Fault isolation is successfully achieved when all the isolation
indices, except the one responsible for the fault, exceed the thresholds. For the realization of
the isolation scheme, the standard projection algorithm is implemented [25, 26]. The sufficient
condition of fault isolability is also analyzed in this work.

The rest of the paper is organized as follows. In Section 2, the mathematical
preliminaries and problem formulation are presented. Section 3 addresses the theoretical core
of the proposed fault diagnosis scheme, in which both fault detection and isolation issues
will be analyzed in detail. In Section 4, the simulation of laboratory-scale three-tank system is
used to illustrate the performance of the proposed scheme. The paper ends with concluding
remarks in the last section.

2. Preliminaries and Problem Formulation

2.1. Preliminaries of Model-Based Residual Generator

Consider a discrete-time LTI system which is described by

xk+1 = Axk + Buk, (2.1)

yk = Cxk, (2.2)
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where xk ∈ Rn, uk ∈ Rl, and yk ∈ Rm represent the vector of state variables and process
input and output, respectively.A, B, and C are systemmatrices with appropriate dimensions.
Reformulate (2.1)-(2.2) into

Z =
[
Y
U

]
=
[
Γs Hs,u

0 I

][
Xi

U

]
∈ R(s+1)(m+l)×N, (2.3)

where Xi = [xi xi+1 · · · xi+N−1] ∈ Rn×N , U = [us,k · · · us,k+N−1 ] ∈ R(s+1)l×N , Y =
[ys,k · · · ys,k+N−1] ∈ R(s+1)m×N , and

ys,k =

⎡
⎢⎣

yk−s
...
yk

⎤
⎥⎦, us,k =

⎡
⎢⎣

uk−s
...
uk

⎤
⎥⎦, Γs =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦
, Hs,u =

⎡
⎢⎢⎢⎣

0 0 · · · 0
CB 0 · · · 0
...

. . . . . .
...

CAs−2B · · · CB 0

⎤
⎥⎥⎥⎦
,

(2.4)

and s(≥ n) and N(� s) are integers. On the assumption of known A, B, and C, the design of
a parity space-based residual generator consists in solving

αsΓs = 0, (2.5)

for the so-called parity vector αs[αs,0 αs,1 · · · αs,s ] ∈ R1×(s+1)m. The design of an observer-
based residual generator is achieved by solving the so-called Luenberger equations

TA −AzT = LC, czT = gC, Bz = TB, (2.6)

Az ∈ Rs×s, T ∈ Rs×n, cz ∈ R1×s, g ∈ R1×m (2.7)

forAz (should be stable), Bz, cz, g, L together with a transformation matrix T . It follows then
the construction of the parity space-based residual generator

rk = αs

(
ys,k −Hs,uus,k

)
, (2.8)

and the observer-based residual generation

zk+1 = Azzk + Bzuk + Lyk ∈ Rs, (2.9)

rk = gyk − czzk ∈ R. (2.10)

In the above equations, rk is called residual signal and s the order of the parity space or
the observer-based residual generator. The following lemma given by Ding [6] describes the
one-to-one mapping between the parity vector and the solutions of Luenberger equations.
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Lemma 2.1 (see Ding [6]). Given any parity vector αs = [αs,0 αs,1 · · · αs,s], with αs,i ∈ R1×m,
i = 0, 1, . . . , s and process model (2.1)-(2.2), then

Az =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

⎤
⎥⎥⎥⎦

∈ Rs×s, L = −

⎡
⎢⎢⎢⎣

αs,0

αs,1
...

αs,s−1

⎤
⎥⎥⎥⎦
, T =

⎡
⎢⎢⎢⎣

αs,1 αs,2 · · · αs,s

αs,2 . . . αs,s 0
...

. . .
. . .

...
αs,s 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦
,

(2.11)

cz =
[
0 · · · 0 1

] ∈ R1×s, g = αs,s ∈ R1×m, (2.12)

solve the Luenberger equations (2.6).

2.2. Preliminaries of Data-Driven Residual Generator Design

It is assumed that system matrices A, B, and C and system order n are unknown a priori;
Ding et al. [19, 20] proposed an approach for data-driven design of observer-based residual
generator, which briefly consists of two algorithms, that is,

(i) Algorithm D2PS (from data to parity subspace),

(ii) Algorithm PS2DO (from parity vector to diagnostic observer (DO)).

Algorithm 2.2. D2PS (from data to parity subspace).

Step 1. Generate data sets Z and construct (1/N)ZZT .
Step 2. Compute the SVD of (1/N)ZZT

1
N

ZZT = Uz

[
Σz,1 0
0 Σz,2

]
UT

z ,

Uz =
[
Uz,11 Uz,12

Uz,21 Uz,22

]
, Σz,2 = 0 ∈ R((s−1)m−n)×((s−1)m−n),

Uz,11 ∈ R(s+1)m×((s+1)l+n), UT
z,12 ∈ R((s+1)m−n)×(s+1)m.

(2.13)

Step 3. Set Γ⊥s = UT
z,12, Γ

⊥
sHs,u = −UT

z,22.
Note that any row of matrix Γ⊥s is a parity vector. For a system with multiple output

(m > 1), (s+1)mmay be significantly larger than n. In order to reduce the online computation,
an order reduction algorithm is given by Ding et al. [19, 20] to achieve a reduced order s ≤ n.
For multiple output systems, smay be significantly smaller than n.

Algorithm 2.3. PS2DO (from parity vector to DO).

Step 1. Select αs ∈ Γ⊥s and corresponding row βs ∈ Γ⊥sHs,u and form them as

αs =
[
αs,0 αs,1 · · · αs,s

]
, αs,i ∈ R1×m,

βs =
[
βs,0 βs,1 · · · βs,s

]
, βs,i ∈ R1×l.

(2.14)
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Step 2. Set Az, cz, L, g according to (2.11)-(2.12) and BT
z = [βTs,0 · · · βTs,s−1].

Step 3. Construct the DO according to (2.9)-(2.10).

2.3. Problem Formulation

So far in our study, the data-driven fault detection scheme has been developed for LTI
systems. However, The wide existence of systems with uncertain or normal variation
parameters has not been considered enough in the literatures. In order to develop an efficient
data-driven fault diagnosis scheme for such systems, it is necessary to

(i) propose an efficient residual generator to deal with normal parameter variations in
the process,

(ii) determine proper threshold for fault detection purpose,

(iii) develop related fault isolation strategy to complete the diagnosis task.

Without loss of generality, in the remaining part of this paper, the parameter variation
rate is assumed bound in term of l2-norm. In addition, the persistent excitation condition for
identification methods is assumed to be satisfied.

3. Data-Driven Design of Fault Diagnosis Scheme

3.1. Adaptive Residual Generator-Based Fault Detection Scheme

According to Lemma 2.1, the system (2.1)-(2.2) can be represented in following form:

zk+1 = Azzk +Q
(
uk, yk

)
θ, (3.1)

where zk = Txk,Az = Az−L0cz, L0 is a design parameter vector to ensure that the eigenvalues
of Az lie in the unit circle and

Q
(
uk, yk

)
=
[
Q
(
uk, yk

)
L0y

T
k

]
∈ Rs×[s(m+l)+m],

Q
(
uk, yk

)
=
[Uk Yk

] ∈ Rs×s(m+l),

Uk =
[
u1,k × Is×s · · · ul,k × Is×s

]
, Yk =

[
y1,k × Is×s · · · ym,k × Is×s

]
,

θ =

[
θ
gT

]
∈ Rs(m+l)+m, θ =

[
col(Bz)
col(L)

]
∈ Rs(m+l),

(3.2)

with col(•) denotes a column-wise reordering of a matrix; that is,

P =
[
p1 · · · pα

] ∈ Rβ×α, col(P) =

⎡
⎢⎣

p1
...
pα

⎤
⎥⎦ ∈ Rβα×1. (3.3)

In the following study, set L0 = 0 for the purpose of simplicity.
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Note that in (3.1) the system matricesA, B, and C are integrated into vector θ, and the
input and output signals are included in Q(uk, yk). Any parameter variation in the original
system can be reflected through the parameter variation rate defined asΔk = θk+1 −θk, which
is bounded by

‖Δk‖ ≤ v, (3.4)

where ‖•‖ denotes l2-norm. Let us firstly consider the basic case, that is, a constant parameter
θ; the adaptive residual generator is stated in the following theorem.

Theorem 3.1. Given the following adaptive residual generator which consists of three subsystems.
(i) Residual generator:

ẑk+1 = Azẑk +Q
(
uk, yk

)
θ̂k + Vk+1

(
θ̂k+1 − θ̂k

)
, (3.5)

rk = ĝkyk − czẑk. (3.6)

(ii) Auxiliary filter

Vk+1 = AzVk +Q
(
uk, yk

) ∈ Rs×[s(m+l)+m], (3.7)

ϕk = czVk −
[
0 · · · 0 yT

k

] ∈ Rs(m+l)+m. (3.8)

(iii) Parameter estimator

θ̂k+1 = γkϕ
T
krk + θ̂k ∈ Rs(m+l)+m, (3.9)

γk =
μ

δ + ϕkϕ
T
k

, δ > 0, 0 < μ < 2, (3.10)

θ̂k =

[
θ̂k(
ĝk
)T

]
, θ̂k ∈ Rs(m+l), ĝk ∈ R1×m. (3.11)

it follows that the adaptive residual generator is stable and in the fault-free case the residual signal
satisfies

lim
k→∞

rk = 0. (3.12)

Moreover, if the persistent excitation condition is satisfied; that is, there exist positive constants β1, β2
and integer Π such that for all k

0 < β1I ≤
k+Π−1∑

i=k

ϕT
i ϕi ≤ β2I < ∞, (3.13)
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the adaptive residual generator is exponentially stable, and the parameter estimation θ̂k converges to
the true value θ with an exponential convergence rate:

lim
k→∞

θ̂k = θ. (3.14)

Proof. The proof can be found in the earlier study by Ding et al. [19, 20].

Until now, the unknown parameter θ has been assumed constant. We would like to
further consider the behavior of the adaptive residual generator (3.5)–(3.10) in case θ is a
time-varying parameter and bounds by (3.4). To simplify the notations, define

ηk = z̃k − Vkθ̃k, z̃k = zk − ẑk, θ̃k = θk − θ̂k. (3.15)

After a straightforward calculation, it follows that

ηk+1 = Azηk + εk, (3.16)

θ̃k+1 =
(
I − γkϕ

T
kϕk

)
θ̃k + εk, (3.17)

rk = czηk + ϕkθ̃k, (3.18)

with Θk = −γkϕT
k
cz, Δk = θk+1 − θk, εk = Θkηk + Δk, and εk = −Vk+1Δk. According to (3.18),

the residual rk has a nonzero value since Δk /= 0. Assume that persistent excitation condition
(3.13) is satisfied, the properties of adaptive residual generator (3.5)–(3.10) can be generalized
in the following theorem.

Theorem 3.2. In case of Δk /= 0 and bounded by (3.4), the adaptive residual generator (3.5)–(3.10)
ensures the following:

(i) the estimation error θ̃k converges exponentially to the set

B =

{
θ̃k |
∥∥∥θ̃k
∥∥∥ ≤ αk−k0

1

∥∥∥θ̃k0
∥∥∥ +

1 − αk−k0
1

1 − α1
ε

}
, 0 < α1 < 1, (3.19)

where ε is a positive scalar such that ‖εk‖ < ε and k0 denotes the initial time sample;
(ii) the residual signal rk converges exponentially to the set

R =

{
rk | |rk| ≤ ε +

∥∥ϕk

∥∥αk−k0
1

∥∥∥θ̃k0
∥∥∥ +
∥∥ϕk

∥∥1 − αk−k0
1

1 − α1
ε

}
, (3.20)

where ε is a positive scalar such that ‖εk‖ < ε;
(iii) based on the assumption of the zero initial condition, that is, θ̃k0 = 0, the normalized

residual signal rk satisfies

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v, (3.21)
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where rk = rk/
√
δ + ϕkϕ

T
k . Furthermore, if the process corrupted by noise/disturbance, the residual

signal can be formulated as

rk = czηk + ϕkθ̃k + pk, (3.22)

where pk represents the influence of noise/disturbance on the residual signal. It follows that

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v + p, (3.23)

with p = sup∀k (pk/
√
δ + ϕkϕ

T
k ).

Proof. According to (3.17), for all k > k0, we have

θ̃k = Sk,k0 θ̃k0 +
k−1∑

i=k0

Sk,i+1εk, (3.24)

where Sk,k0 is the transition matrix of the linear time-varying system (3.17). Since (3.13)
is satisfied, the system (3.17) is exponentially stable; and Astrom and Wittenmark [27].
Therefore, there exists a positive constant 0 < α1 < 1 such that ‖Sk,k0‖ ≤ αk−k0

1 . Consequently,
from (3.17), we have

∥∥∥θ̃k
∥∥∥ ≤ αk−k0

1

∥∥∥θ̃k0
∥∥∥ +

∥∥∥∥∥

k−1∑

i=k0

Sk·i+1εk

∥∥∥∥∥ ≤ αk−k0
1

∥∥∥θ̃k0
∥∥∥ +

1 − αk−k0
1

1 − α1
ε. (3.25)

Since L0 = 0, Az = Az, and all the eigenvalues of Az are zero, it follows from (3.16) that

∥∥ηk
∥∥ ≤ ε. (3.26)

The bound of residual signal can be straightforwardly obtained

|rk| ≤
∥∥czηk

∥∥ +
∥∥∥ϕkθ̃k

∥∥∥ ≤ ε +
∥∥ϕk

∥∥αk−k0
1

∥∥∥θ̃k0
∥∥∥ +
∥∥ϕk

∥∥1 − αk−k0
1

1 − α1
ε. (3.27)

It is easier to prove that

‖εk‖√
δ + ϕkϕ

T
k

≤ √
s‖Δk‖ ≤ √

sv,

‖εk‖ ≤ (1 +√
s
)‖Δk‖ ≤ (1 +√

s
)
v.

(3.28)
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Thus, set

ε
√
δ + ϕkϕ

T
k

=
√
sv, ε =

(
1 +

√
s
)
v, (3.29)

the normalized residual becomes

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v. (3.30)

Equations (3.22)-(3.23) can be easily proved, and thus they are omitted here.

According to Theorem 3.2, in case θ is a time-varying parameter and bounds by (3.4)
the residual rk is bounded and the threshold Jth can be set as the right-hand side presented
by (3.23); that is,

Jth =
√
sv +

1 +
√
s

1 − α1
v + p. (3.31)

The fault detection logic is given by

|rk| ≤ Jth, fault free,

|rk| > Jth, alarm for fault.
(3.32)

Remark 3.3. It is of great interest to detect the faults that cause abnormal changes on physical
parameters of the process. Although the identified parameter θ is physicallymeaningless, any
abnormal physical parameters variations can influence θ and should be finally discovered by
the residual signal. In practice, the bound of normal variation rate of θ given by (3.4) can be
determined through the offline test data. The related threshold of residual signal is designed
for the detection of abnormal parameter change, which is supposed to be faster than the
normal parameter variation.

Remark 3.4. The order of residual generator s could be significantly smaller than system order
n in multiple output systems (m > 1): s = (n + 1)/m − 1. An algorithm is proposed in Ding et
al. [19, 20] for constructing the reduced order residual generator. Thus, if persistent excitation
condition is satisfied, the estimation error θ̃k converges exponentially to a set determined by
Δk. For industrial process, the excitation mainly comes from the variation of process variables
and measurement noise.

Remark 3.5. Another efficient way to determine the threshold for residual signal is based on
statistical methods. Without special assumption on process data, the so-called kernel density
estimation (KDE) is widely used in practice for estimating the probability density function of
residual signals. Based on a large number of offline test data, a proper threshold can be chosen
under given confidence level. More detailed description on KDE can be found in Silverman
[28] and Martin and Morris [29].
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3.2. Fault Isolation Scheme Design

In this subsection, the fault isolation scheme will be further introduced in the framework of
adaptive residual generator.

Suppose that there exist S classes of faults in the process including all potential
abnormalities in sensors and actuators. Under the influence of ith class of fault, i = 1, . . . , S,
the unknown parameter becomes θi

f
, which is assumed to belong to a known compact and

convex set Θi
f
∈ Rs(m+l)+m. Note that, the set Θi

f
could be offline identified by using the faulty

data within the framework of adaptive scheme (3.5)–(3.10).
The proposed fault isolation strategy can be developed by integrating the fault

information, that is, Θi
f
. Based on it, S fault isolation observers are constructed, in which the

ith observer is only responsible for the ith set of fault. According to the fault detection scheme
discussed in the last subsection, after a fault is detected at time td, the fault isolation scheme is
activated, such that the ith isolator is insensitive to the ith type of fault, but sensitive to other
faults; see Zhang et al. [30]. In order to realize these requirements, the parameter projection
method is utilized and the ith fault isolation observer has the following form:

ẑik+1 = Azẑ
i
k +Q

(
uk, yk

)
θ̂i
k + V i

k+1

(
θ̂i
k+1 − θ̂i

k

)
, (3.33)

rik = ĝi
kyk − czẑ

i
k,

V i
k+1 = AzV

i
k +Q

(
uk, yk

) ∈ Rs×[s(m+l)+m],

ϕi
k = czV

i
k −
[
0 · · · 0 yT

k

] ∈ Rs(m+l)+m,

(3.34)

θ̂i∗
k+1 = θ̂i

k +

(
ϕi
k

)T
ri
k

δ + ϕi
k

(
ϕi
k

)T ∈ Rs(m+l)+m, (3.35)

θ̂i
k+1 = PΘi

f

[
θ̂i∗
k+1

]
, (3.36)

where

θ̂i
k =

[
θ
i

k(
ĝi
k

)T

]
, θ

i

k ∈ Rs(m+l), ĝi
k ∈ Rm, (3.37)

the δ > 0,PΘi
f
denotes a projection operator that ensures θ̂i

k+1 lies in a known bounded convex

subset Θi
f
∈ Rs(m+l)+m. Details on the projection operator can be founded in Tao [26]. The

following theorem states the properties of the ith isolation observer in case of the ith type of
fault occurred.

Theorem 3.6. Given the ith fault isolation observer in the form (3.33)–(3.36), suppose that there is a
positive constant di, such that for all θ1, θ2 ∈ Θi

f
, it follows that

di = sup
θ1,θ2∈Θi

f

‖θ1 − θ2‖. (3.38)



Mathematical Problems in Engineering 11

In case of the ith type of fault occurs, one has the following:
(i) the ith fault isolation observer is stable and

∥∥∥θ̃i
k+1

∥∥∥ ≤ di,
∥∥∥θ̂i

k+1 − θ̂i
k

∥∥∥ ≤
∣∣∣rik
∣∣∣, (3.39)

where rik = ri
k
/
√
δ + ϕi

k
(ϕi

k
)T , θ̃i

k+1 = θi
k+1 − θ̂i

k+1,
(ii) based on the assumption of the zero initial condition, the normalized residual signal satisfies

(
rik

)2 ≤ d2
i +
(
2s + 2

√
s + 1

)
v2
i +
(
2 + 2

√
s
)
vidi, (3.40)

where vi is a positive scalar such that ‖Δi
k
‖ ≤ vi with Δi

k
= θi

k+1 − θi
k
.

Proof. According to the property of the projection operator, it follows that θ̂i
k+1 ∈ Θi

f
. From

(3.38), we have

∥∥∥θ̃i
k+1

∥∥∥ =
∥∥∥θi

k+1 − θ̂i
k+1

∥∥∥ ≤ di. (3.41)

It is evident that for all k,

∥∥∥θ̂i
k+1 − θi

k+1

∥∥∥ ≤
∥∥∥θ̂i∗

k+1 − θi
k+1

∥∥∥, (3.42)

and consequently,

∥∥∥θ̂i
k+1 − θ̂i

k

∥∥∥ ≤
∥∥∥θ̂i∗

k+1 − θ̂i
k

∥∥∥ ≤

∥∥∥
(
ϕi
k

)T∥∥∥
∣∣∣rik
∣∣∣

δ + ϕi
k

(
ϕi
k

)T ≤
∣∣∣rik
∣∣∣. (3.43)

Now, define a new parameter

θ̃i∗
k+1 = θ̂i∗

k+1 − θi
k+1. (3.44)

Using (3.42), we get

∥∥∥θ̃i
k+1

∥∥∥
2 −
∥∥∥θ̃i

k

∥∥∥
2 ≤
∥∥∥θ̃i∗

k+1

∥∥∥
2 −
∥∥∥θ̃i

k

∥∥∥
2
. (3.45)

The right-hand side of (3.45) becomes

∥∥∥θ̃i∗
k+1

∥∥∥
2 −
∥∥∥θ̃i

k

∥∥∥
2
=
(
θi
k+1 − θ̂i∗

k+1 − θi
k + θ̂i

k

)T(
θi
k+1 − θ̂i∗

k+1 + θi
k − θ̂i

k

)
. (3.46)
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Note that, (3.35) can be reformulated as

θ̂i∗
k+1 = θ̂i

k +
(
ϕi
k

)T
rik, (3.47)

where

(
ϕi
k

)T
=

(
ϕi
k

)T
√
δ + ϕi

k

(
ϕi
k

)T . (3.48)

For the normalized residual signal rik, it is known that

rik = ϕi
kθ̃

i
k + ηi

k, (3.49)

with

ηi
k =

czη
i
k√

δ + ϕi
k

(
ϕi
k

)T ,

ηi
k = Azη

i
k−1 − V i

kΔ
i
k−1,

Δi
k−1 = θi

k − θi
k−1, 0 ≤ ϕkϕ

T
k ≤ 1.

(3.50)

Combining (3.46), (3.47), and (3.49), we have

∥∥∥θ̃i
k+1

∥∥∥
2 −
∥∥∥θ̃i

k

∥∥∥
2 ≤ −

(
rik

)2
+ 2rikη

i
k +
(
−2ϕi

kr
i
k + 2

(
θ̃i
k

)T
+
(
θi
k+1

)T −
(
θi
k

)T)
Δi

k. (3.51)

Equation (3.51) can be reformulated as

(
rik

)2 ≤ −
∥∥∥θ̃i

k+1

∥∥∥
2
+
∥∥∥θ̃i

k

∥∥∥
2
+ 2
(
ηi
k

)2
+ 2
∣∣∣ηi

k

∣∣∣
∥∥∥θ̃i

k

∥∥∥ (3.52)

+
∥∥∥θi

k+1 − θi
k

∥∥∥
(
2
∥∥∥θ̃i

k

∥∥∥ + 2
∣∣∣ηi

k

∣∣∣ +
∥∥∥θi

k+1 − θi
k

∥∥∥
)
. (3.53)

Since

∣∣∣ηi
k

∣∣∣ ≤
∥∥ηi

k

∥∥
√
δ + ϕi

k

(
ϕi
k

)T ≤ √
svi, (3.54)

according to (3.52), the result represented by (3.40) can be easily proved.

For the ith isolation observer, define the fault isolation index

Jik = rik, (3.55)

and the related threshold Ji,isoth . Based on Theorem 3.6, we have the following corollary.
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Figure 1: Structure of TTS.

Corollary 3.7. For the ith isolation observer, the fault isolation threshold Ji,isoth can be determined by

Ji,iso
th

=
√
d2
i +
(
2s + 2

√
s + 1

)
v2
i +
(
2 + 2

√
s
)
vidi. (3.56)

Moreover, if the process corrupted by disturbance and/or noise, the normalized residual is

rik = ϕi
kθ̃

i
k + ηi

k + pik, (3.57)

where pik represents the influence of noise/disturbance on the normalized residual signal. In this case,
the threshold for fault isolation purpose is given by

Ji,isoth =
√
d2
i +
(
2s + 2

√
s + 1

)
v2
i + cvidi + cpivi, (3.58)

with

pi = sup
∀k

(
pik

)
, c = 2 + 2

√
s. (3.59)

Proof. The proof is straightforward based on Theorem 3.6 and omitted here.

The fault isolation logic can be described as the following:

(i) for the ith isolation observer, if ∃ta > td such that |Jita | > Ji,isoth , then the occurrence of
the ith type of fault is excluded;

(ii) otherwise, if |Jita | < Ji,isoth for ∀ta > td, the ith type of fault is occurred.

The sufficient condition of fault isolability is given by the following theorem.
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Figure 2: Residual signal.

Theorem 3.8. Based on the fault isolation observer (3.33)–(3.36), the ith type of fault, which detected
at time td, is isolable, if for the other S − 1 fault isolation observers, ∃ta > td such that the following
inequality is satisfied

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ >
√
svr +

√
sv2

r +
(
Jr,iso
th

)2
, (3.60)

where

Jr,isoth =
√
d2
r +
(
2s + 2

√
s + 1

)
v2
r +
(
2 + 2

√
s
)
vrdr, r = 1, . . . , S, r /= i. (3.61)

Furthermore, if s = 1, L0 = 0, it follows that

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ > vr +
√
d2
r + 6v2

r + 4vrdr. (3.62)

Proof. For the rth fault isolation observer, we have

(
Jrta

)2
=
(
ϕr
ta
θ̃r
ta

)2
+
(
ηr
ta

)2
+ 2ϕr

ta
θ̃r
ta
ηr
ta

≥
(
ϕr
ta
θ̃r
ta

)2 − 2
√
svr

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣.
(3.63)

Straightforwardly, if for all r = 1, . . . , S, r /= i, ∃ta > td such that

(
ϕr
ta
θ̃r
ta

)2 − 2
√
svr

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ >
(
Jr,isoth

)2
, (3.64)

the ith type of fault is isolable and directly (3.60) is proofed. In the case of s = 1 and L0 = 0,
(3.62) is straightforward.
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Figure 3: Continued.
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Figure 3: Fault diagnosis for fault 1.

4. Application to Three-Tank System

The three-tank system (TTS) considered in our study is a laboratory setup located in the
laboratory of Institute for Automatic Control and Complex Systems, University of Duisburg-
Essen. The sketch is shown in Figure 1, which has typical characteristics of tanks, pipelines,
and pumps used in the chemical industry and thus often serves as benchmark process for
many control and monitoring relevant studies.

The plant consists of three cylindrical tanks which are serially interconnected with
each other by cylindrical pipes with the cross-section of Sn. The outflowing water is collected
in a reservoir, which supplies pumps 1 and 2.Hmax denotes the maximal height of tanks. The
flow rates and water levels of tanks, represented by hi, i = 1, 2, 3, are measured throughout
the process. By integrating a nonlinear controller, water levels h1 and h2 can be controlled.
The detailed description of TTS can be found in Ding [6].

It is well known that the systemmatrices of TTS, which are achieved from linearization
at different operation points, are different. In our experiment, the operation point of water
level h1 is periodically changed in order to simulate the normal parameter variations in the
process. An experiment including the following steps has been performed.

(i) Place TTS at the operating point h1 = 35 + sin(0.002t) cm, h2 = 25 cm, in which sin
signal added to h1 leads to normal parameter variations.

(ii) Use the adaptive scheme (3.5)–(3.10) to identify θ through the data collected at the
operating point h1 = 35 cm, h2 = 25 cm with reduced order s = 1 and L0 = 0. Note
that the system order n = 3 can be determined by Algorithm D2PS, and based on
it the reduced order s is calculated according to the relationship s = (n + 1)/m − 1
with two system outputs; that is, m = 2.

(iii) Construct two residual generators: (a) an adaptive residual generator (3.5)–(3.10)
(b) a standard one without adaptive scheme.

(iv) Both the residual generators run for 2000 s (seconds). The threshold Jth = 0.78 is
determined according to (3.23) with the parameters μ = 0.01, α1 = 0.9997, v =
7.3668 × 10−5, and p = 0.55, which are chosen according to the offline test data.

Figure 2 shows the residual signals with and without the adaptive scheme. It is clear
that the standard process monitoring method is unsuitable to monitor TTS with normal
parameters variations that is apparent by the numerous false alarms.
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Figure 4: Fault diagnosis for fault 4.

Table 1: The faults existed in TTS.

Fault number Description Type
Faults 1–3 Leaking in tank 1, 2, 3 Process fault
Faults 4-5 Offset of actuator Q1, Q2 Actuator fault
Faults 6–8 Plugging in tank 1, 2, 3 Process fault
Fault 9 Offset of sensor h1 Sensor fault

The faults occurred in TTS can be classified as process fault, sensor fault, and actuator
fault, which are shown in Table 1. To verify the performance of the proposed fault diagnosis
scheme, the following experiment is carried out.

(i) Offline: apply adaptive scheme (3.5)–(3.10) to identify Θi
f
through the ith type of

faulty data with s = 1 and L0 = 0.

(ii) Online: use adaptive residual generator (3.5)–(3.10) for fault detection purpose. If
there exists time td such that |rk| > Jth, the alarm is released. Simultaneously, the S−1
fault isolation observers (3.33)–(3.36) are activated, and the threshold Jiiso = 0.8822
is determined according to (3.58) with the parameters vi = 1 × 10−2, di = 0.85, and
pi = 0.55.

The fault diagnosis results of faults 1, 4, and 9, which represent the process, actuator,
and sensor fault, are mainly presented in the following study. All these faults occur at the
500th second. The sensor fault 9 has 30% offset compared to the normal value and the actuator
fault 4 represents 100% offset to the desired value. Figures 3(a), 4(a), and 5(a) show the
residual signal from adaptive residual generator for fault detection purpose. It can be seen
that the faults are successfully detected at the 505 s, the 507 s, and the 501 s, respectively.

In the meanwhile, the fault isolation observers are activated, and the related fault
isolation indices are shown in Figures 3(b)–3(j), 4(b)–4(j), and 5(b)–5(j) for faults 1,
4, 9, respectively. It is evident that the fault isolation indices from the 1st isolation
observer (Figure 3(b)), the 4th isolation observer (Figure 4(e)), and the 9th isolation
observer (Figure 5(j)) are consistently maintained under respective thresholds which indicate
occurrence of these faults. On the other hand, the other subfigures show the isolation indices
associated to other isolation observers. It is obvious that all of them exceed the related
thresholds, which indicate the absence of these faults in the process.
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Figure 5: Continued.
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Figure 5: Fault diagnosis for fault 9.

5. Conclusion

In this paper, we have proposed an approach for data-driven design of fault diagnosis
system, which consists of an adaptive residual generator and a bank of observers for
fault detection and isolation purposes. Analytical results regarding the issues of adaptive
observers, threshold calculation, and fault isolation strategy are discussed. The proposed
design scheme is demonstrated on the simulation of laboratory-scale three-tank system,
which shows satisfactory fault diagnosis performance.
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In this paper, a computationally effective strategy to obtain multioverlapping controllers via the
Inclusion Principle is applied to design discrete-time state-feedback multioverlapping LQR con-
trollers for seismic protection of tall buildings. To compute the corresponding control actions, the
proposed semidecentralized controllers only require state information from neighboring stories.
This particular configuration of information exchange allows introducing a dramatic reduction
in the transmission range required for a wireless implementation of the communication system.
To investigate the behavior of the proposed semidecentralized multioverlapping controllers, a
proper simulation model has been designed. This model includes semiactive actuation devices
with limited force capacity, control sampling times consistent with the communication latency,
time-delayed state information, and communication failures. The performance of the proposed
multioverlapping controllers has been assessed through numerical simulations of the seismic
response of a 20-story building with positive results.

1. Introduction

Over the last decades, problems of ever increasing complexity have been considered in the
field of Structural Vibration Control (SVC). Current SVC systems for seismic protection of
tall buildings can involve a large number of sensors and actuation devices and a wide and
sophisticated communication network [1–3]. Semidecentralized control strategies, which can
operate using only state information from neighboring stories, are especially relevant for
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wireless implementations of the communication system. Semidecentralized state-feedback
LQR controllers were proposed by Wang and Lynch in [4], and the study was extended
to state-feedback H∞ controllers by Wang et al. in [5]. The numerical and experimental
results obtained in these works clearly indicate that the proposed semidecentralized control
strategies are specially suitable for SVC of tall buildings with wireless communications. It
should be highlighted, however, that important computational difficulties can arise when
applying these control design strategies to large buildings. The LQR controller design pre-
sented in [4] uses a variant of the heuristic iterative procedure proposed by Lunze in [6],
and the H∞ controller design in [5] is based on a Linear Matrix Inequality formulation
(LMI). For large-dimensional problems, a great computational effort is required by the
iterative procedure used in the LQR design. Analogously, solving large-dimensional convex
optimization problems with LMI constraints is also a costly computational task.

In this context, the design of semidecentralized controllers using multioverlapping
decompositions based on the Inclusion Principle (IP) is a very interesting option [7–12].
Broadly speaking, the IP allows decomposing the original large-dimensional problem into
a set of low-dimensional decoupled problems. This decomposition takes advantage of the
particular structure of the original system and can help to significantly reduce the com-
putational effort. Examples of successful applications of the IP to SVC can be found
in [13–15]. Recently, an effective computational strategy to design semidecentralized
multioverlapping controllers based on a sequential application of the IP was presented by
Palacios-Quiñonero et al. in [16]. In that work, semidecentralized multioverlapping LQR
controllers are designed for seismic protection of a four-story building with positive results.
However, it has to be noted that all these applications of the IP to SVC have been conducted
using small buildings, continuous-time models, and assuming highly idealized conditions,
such as active force actuators with unrestricted force capacity and communication systems
with no failures nor delays.

The main contribution of the present paper is to present a large-scale application of
the IP to the design of semidecentralized controllers for SVC, paying special attention to
some aspects of practical relevance. More specifically, the computational strategy proposed
in [16] is applied to design discrete-time state-feedback multioverlapping LQR controllers
to mitigate the seismic response of a 20-story building. Moreover, to gain a meaningful
insight into the behavior of the proposedmultioverlapping controllers, themodels used in the
numerical simulations include some factors of practical relevance such as control sampling
rates, realistic implementation of the control actions, time-delayed state information, and
communication latency and failures. One of the main difficulties encountered when
applying the IP to discrete-time controller design is that the natural structure of the con-
tinuous-time model is lost in the discretization process. To overcome this difficulty, the
discretization process has been carried out on the expanded decoupled subsystems. The
results obtained in the numerical simulations confirm the excellent characteristics of the
proposed semidecentralized multioverlapping controllers for SVC of large buildings.

The organization of the paper is as follows: In Section 2, a detailed derivation of the
continuous-time state-space model for an n-story building is presented. Section 3 begins
with a summary discussion on the design of discrete-time state-feedback centralized LQR
controllers. Next, the main ideas involved in the design of discrete-time state-feedback
multioverlapping LQR controllers are briefly presented. In Section 4, three mathematical
models used to conduct the numerical simulations of the building seismic response are
presented: (i) Basic building model, which consists in a discrete-time approximation of the
continuous-time state-space model with a small sampling time and no control action.
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Figure 1: Building lumped-mass model.

(ii) Centralized control model, which implements the discrete-time centralized LQR controller
with perfect state knowledge, small sampling time, and ideal semiactive force actuators with
limited force capacity. (iii) Multioverlapping control model. This case implements a discrete-
time multioverlapping controller considering semiactive actuation devices with limited force
capacity, a control sampling time consistent with the communication latency, time-delayed
state information, and communication failures. Finally, in Section 5, the control design
methodology presented in Section 3 and the simulation models introduced in Section 4
are applied to a particular 20-story building to assess the performance of the proposed
multioverlapping controllers.

2. Continuous-Time Building Model

Let us consider the n-story building schematically displayed in Figure 1, which is modeled
as a lumped-mass planar system with displacements in the direction of the ground motion.
The building motion can be described by the second-order differential equation:

Mq̈(t) + Cq̇(t) +Kq(t) = Tuu(t) + Tωω(t), (2.1)

where

q(t) =
[
q1(t), . . . , qn(t)

]T (2.2)

is the vector of story displacements with respect to the ground, and qi(t) represents
the displacement of the ith story. M, C, K are the mass, damping, and stiffness matrices,
respectively. The vector of control actions is

u(t) = [u1(t), . . . , un(t)]T , (2.3)
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where ui(t) represents the control force exerted by the actuation device ai (see Figure 2), and
Tu is the control location matrix. The seismic ground acceleration is ω(t), and Tω denotes the
disturbance input matrix. The mass and stiffness matrices have the following structures:

M =

⎡
⎢⎢⎣

m1

· · ·
· · ·

mn

⎤
⎥⎥⎦, (2.4)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2
−k2 k2 + k3 −k3

· · · · · · · · ·
· · · · · · · · ·

−kn−1 kn−1 + kn −kn
−kn kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.5)

where mi and ki represent, respectively, the mass and stiffness of the ith story. When the
values of the story damping coefficients ci, 1 ≤ i ≤ n, are known, a damping matrix C with



Mathematical Problems in Engineering 5

the same structure as K can be obtained by replacing ki by ci in (2.5). Alternatively, a
tridiagonal damping matrix in the form

C = α0M + α1K (2.6)

can be computed following the Rayleigh damping approach by setting the damping ratio
values for two selected natural frequencies [17]. For the actuation system schematically
depicted in Figure 2, the control location matrix has dimensions n × n and the following
structure:

Tu =

⎧
⎪⎪⎨

⎪⎪⎩

[Tu]i,i = 1, for 1 ≤ i ≤ n,

[Tu]i,i+1 = −1, for 1 ≤ i < n,

[Tu]i,j = 0, otherwise,

(2.7)

where [Tu]i,j denotes the element in the ith row and jth column of Tu. Finally, the disturbance
input matrix is

Tw = −M[1]n×1, (2.8)

where [1]n×1 is a column vector of dimension n with all its entries equal to 1.
Now, we take the state vector

xI(t) =
[
q(t)
q̇(t)

]
(2.9)

and derive a first-order state-space model

SI : ẋI(t) = AIxI(t) + BIu(t) + EIω(t). (2.10)

The state, control, and disturbance input matrices are, respectively,

AI =

⎡

⎣
[0]n×n In

−M−1K −M−1C

⎤

⎦, BI =

⎡

⎣
[0]n×n
M−1Tu

⎤

⎦, EI =

⎡

⎣
[0]n×1
−[1]n×1

⎤

⎦, (2.11)

where [0]r×s represents a zero matrix of dimensions r × s, and In is the identity matrix of
dimension n. Next, we consider a new state vector

x(t) = [x1(t), . . . , x2n(t)]T , (2.12)
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which groups together the interstory drifts and interstory velocities in increasing order

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t) = q1(t),
x2(t) = q̇1(t),
x2i−1(t) = qi(t) − qi−1(t), for 1 < i ≤ n,

x2i(t) = q̇i(t) − q̇i−1(t), for 1 < i ≤ n.

(2.13)

Using the change of basis

x(t) = PxI(t), (2.14)

defined by the 2n × 2n matrix

P =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1,1 = 1, p2,n+1 = 1,
p2i−1,i−1 = −1, p2i−1,i = 1, for 1 < i ≤ n,

p2i,n+i−1 = −1, p2i,n+i = 1, for 1 < i ≤ n,

pi,j = 0, otherwise,

(2.15)

we obtain the new state space model:

S : ẋ(t) = Ax(t) + Bu(t) + Eω(t), (2.16)

where

A = PAIP
−1, B = PBI, E = PEI. (2.17)

In this work, we restrict our attention to the interstory drifts as output variables. The output
vector can then be obtained as

y(t) =
[
y1(t), . . . , yn(t)

]T = Cyx(t), (2.18)

where Cy is a matrix of dimensions n × 2n with the following structure:

Cy =

⎧
⎪⎨

⎪⎩

[
Cy

]
i,2i−1 = 1, for 1 ≤ i ≤ n,

[
Cy

]
i,j

= 0, otherwise.
(2.19)
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3. Control Design

To design a discrete-time centralized state-feedback LQR controller for the n-story building
model presented in the previous section, we begin by considering the continuous-time
system:

Sc : ẋ(t) = Ax(t) + Bu(t), (3.1)

obtained from (2.16) by removing the disturbance term Eω(t). The discrete-time system
corresponding to the zero-hold approximation of (3.1) with sampling time τ is

{Sc}τ : x[k + 1] = Aτx[k] + Bτu[k], (3.2)

where

Aτ = eAτ , Bτ =
∫ τ

0
eAtB dt. (3.3)

Next, we consider the discrete-time state-feedback controller:

u[k] = −Gτx[k] (3.4)

and the quadratic index:

J(x, u) =
k=∞∑

k=0

x[k]TQx[k] + u[k]TRu[k], (3.5)

where Q is a symmetric positive semidefinite matrix, and R is a symmetric positive definite
matrix. The control gain matrix Gτ that minimizes (3.5) under constraints (3.2) and (3.4) can
be computed as

Gτ =
(
R + BT

τ PBτ

)−1
BT
τ PAτ , (3.6)

where P is the solution of the discrete-time Riccati equation:

AT
τ PAτ − P +Q −AT

τ PBτ

(
R + BT

τ PBτ

)−1
BT
τ PAτ = 0. (3.7)

To design a multioverlapping controller that is able to compute the control actions
ui[k] using only state information corresponding to neighboring stories, we consider the n-
story building decomposed into a sequence of n − 1 two-story overlapped subsystems

S(i) = [si, si+1], 1 ≤ i ≤ n − 1, (3.8)
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S(2)S(1) S(n−1)

s1 s2 s3 sn−1 sn

. . .

. . .

. . .

Figure 3: Decomposition in two-story overlapping subsystems.

where si represents the ith story. This overlapping decomposition is schematically depicted
in Figure 3. Following the sequential multioverlapping decomposition strategy proposed in
[16], the initial continuous-time system (3.1) can be conveniently expanded to form a new
continuous-time system:

S̃ : ˙̃x(t) = Ãx̃(t) + B̃ũ(t), (3.9)

where the state matrix Ã and the control input matrix B̃ are block diagonal. The expanded
system S̃ can then be decomposed into a sequence of decoupled continuous-time subsystems:

S̃(i) : ˙̃x
(i)
(t) = Ã(i)x̃(i)(t) + B̃(i)ũ(i)(t), 1 ≤ i ≤ n − 1. (3.10)

For the continuous-time subsystems S̃(i), we compute discrete-time zero-hold approxima-
tions with sampling time τ̂ :

{
S̃(i)
}

τ̂
: x̃(i)[k + 1] = Ã

(i)
τ̂
x̃(i)[k] + B̃

(i)
τ̂
ũ(i)[k], 1 ≤ i ≤ n − 1, (3.11)

where

Ã
(i)
τ̂

= eÃ
(i) τ̂ , B̃

(i)
τ̂

=
∫ τ̂

0
eÃ

(i)t B̃(i) dt (3.12)

and consider the local quadratic indexes:

J̃(i)
(
x̃(i), ũ(i)

)
=

k=∞∑

k=0

{
x̃(i)[k]

}T
Q(i)x̃(i)[k] +

{
ũ(i)[k]

}T
R(i)ũ(i)[k], 1 ≤ i ≤ n − 1, (3.13)

to compute local discrete-time LQR controllers

ũ(i)[k] = −G̃(i)
τ̂
x̃(i)[k], 1 ≤ i ≤ n − 1, (3.14)
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which minimize the indexes (3.13) under constraints (3.11) and (3.14). Finally, the sequence
of expanded local control matrices G̃(i)

τ̂
is contracted back to a control gain matrix Ĝτ̂ in order

to define a discrete-time multioverlapping controller:

û[k] = −Ĝτ̂x[k] (3.15)

for the original discrete-time system (3.2).

Remark 3.1. The expansion-contraction procedure associated to the design of multioverlap-
ping controllers for large buildings is only outlined in this section. For clarity and simplicity,
a detailed account of this procedure has not been included in the paper. However, a complete
presentation of this background material together with some practical applications to SVC of
small buildings can be found in [15, 16].

Remark 3.2. The expanded block-diagonal system (3.9) can only be computed when the
matrices of the initial state-space system have a suitable zero-nonzero block structure. For
the building model (2.1), the initial state-space system (3.1) has a proper structure. However,
this structure is lost in the discretization process and the expansion-decoupling process can
no longer be applied to the discrete-time state-space system (3.2). To overcome this difficulty,
the expansion-decoupling process is first completed for the continuous-time system and, after
that, the discretization process is carried out on the continuous-time expanded decoupled
subsystems (3.10) to obtain the discrete-time expanded decoupled subsystems (3.11).

Remark 3.3. It should be noted that the control gain matrix Gτ = [(gτ)i,j] given in (3.6) is a
full matrix of size n × 2n, and the full state is required to compute the control action for the
actuation device ai:

ui[k] =
j=2n∑

j=1

(
gτ
)
i,jxj[k], 1 ≤ i ≤ n. (3.16)

In contrast, the multioverlapping control matrix Ĝτ̂ = [(ĝτ̂)i,j] has a block-tridiagonal
structure and only requires a reduced number of 4–6 states to compute the control action
for each actuation device. More specifically, we have

û[k] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û1[k] =
j=4∑

j=1

(
ĝτ̂
)
1,jxj[k],

ûi[k] =
j=2i+2∑

j=2i−3

(
ĝτ̂
)
i,jxj[k], for 1 < i < n,

ûn[k] =
j=2n∑

j=2n−3

(
ĝτ̂
)
n,jxj[k].

(3.17)

Remark 3.4. For clarity and simplicity, the controllers presented in this section have been
computed following an LQR approach. However, it has to be highlighted that other control
strategies are also possible. For example, an application of the IP to the design of semi-
decentralized static output-feedback controllers for SVC can be found in [14].
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4. Simulation Models

One of the main objectives of the present work is to gain a meaningful insight into the
behavior of semidecentralized multioverlapping controllers through numerical simulations.
To this end, the simulation models have to include some relevant factors such as sampling
rates, realistic implementation of the control actions, time-delayed state information, and
communication latency and failures. Trying to achieve a proper balance between simplicity
and accuracy, we have considered a simulation framework formed by three different models:
(i) Basic building model, which consists in a discrete-time approximation of the continuous-
time state-space model (3.1) with a small basic sampling time τ and no control action.
(ii) Centralized control model, which implements the discrete-time LQR controller given in
(3.4) with perfect state knowledge and the basic sampling time τ . The actuation devices,
however, are assumed to be ideal semiactive force actuators with limited force capacity.
(iii) Multioverlapping control model. This case implements the discrete-time multioverlapping
controller given in (3.15) considering semiactive actuation devices with limited force capacity,
a control sampling time τ̂ > τ consistent with the communication latency, time-delayed state
information, and communication failures. In all the cases, the interstory drifts are taken as
output variables.

The basic building model is:

Mτ :

{
x[k + 1] = Aτx[k] + Eτωτ[k],
y[k] = Cyx[k],

(4.1)

where Aτ is the discrete-time state matrix in (3.3); Eτ is the discrete-time disturbance input
matrix, which can be computed as

Eτ =
∫ τ

0
eAtE dt, (4.2)

with A and E representing, respectively, the state and disturbance input continuous-time
matrices; and ωτ[k] = ω(kτ) is the sampled disturbance. The vector of interstory drifts is
computed with the output matrix Cy given in (2.19). A good approximation of the uncon-
trolled seismic response of the building can be obtained using the basic building model Mτ

with a small sampling time τ .
The centralized control model is:

Mτ :

⎧
⎪⎪⎨

⎪⎪⎩

u[k] = −Gτx[k],
x[k + 1] = Aτx[k] + Bτσ(u[k]) + Eτωτ[k],
y[k] = Cyx[k],

(4.3)

where the sampling time τ , the matrices Aτ , Eτ , and Cy, and the sampled disturbance ωτ[k]
are the same as those used in (4.1); and Bτ is the discrete-time input-control matrix defined
in (3.3). The vector of control actions

u[k] = [u1[k], . . . , un[k]]
T , (4.4)
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Figure 4: Actuation-communication system for the multioverlapping control model.

is computed using the discrete-time centralized control gain matrix Gτ given in (3.6), and the
vector of control forces is

σ(u[k]) = [σ(u1[k]), . . . , σ(un[k])]
T . (4.5)

In this section, the actuation devices ai are modeled as ideal semiactive force actuators with
maximum actuation force [fmax]i. For a given control action ui[k], the actual control force
exerted by the actuation device ai is

σ(ui[k]) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui[k] if ui[k] · vi[k] < 0, and |ui[k]| ≤
[
fmax

]
i

sgn(ui[k]) ·
[
fmax

]
i if ui[k] · vi[k] < 0, and |ui[k]| >

[
fmax

]
i

0 if ui[k] · vi[k] ≥ 0,

(4.6)

where vi[k] is the corresponding interstory velocity, and sgn(x) = x/|x| is the signum function.
In the centralized control model, we assume an ideal communication system, which can
provide a perfect knowledge of the full state vector x[k]. This model is used as a reference in
the performance assessment of the multioverlapping controller.

In the multioverlapping control model, we consider the actuation-communication
system schematically depicted in Figure 4, consisting in an actuation device ai, a sensor unit
ŝi, a local control unit ĉi, and a wireless communication unit ŵi. The actuation device ai

produces the semiactive implementation of the control actions defined in (4.6). The sensor
unit ŝi is an ideal sensor that provides an exact measurement of the local state

x̂i[k] =
[
yi[k]
vi[k]

]
, (4.7)

where yi[k] and vi[k] denote the local interstory drift and velocity, respectively. To model the
operation of the local control unit, we introduce the controller sampling tim

τ̂ = r̂τ, r̂ > 1, (4.8)

where τ is the basic sampling time used in (4.1) and (4.3), and r̂ can be understood as the
maximum number of sampling steps that can be spent by ĉi to collect state information from
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. . .. . .. . .

Figure 5: Time intervals for state information gathering and control action holding.

neighboring stories through the communication unit ŵi. We also consider the update-control
times

k̂j = jr̂, j ≥ 1, (4.9)

and define the interval of state-information gathering

Δg

[
k̂j
]
=
[
k̂j−1 + 1, . . . , k̂j

]
, (4.10)

and the interval of control-action holding

Δh

[
k̂j
]
=
[
k̂j , . . . , k̂j+1 − 1

]
, (4.11)

which are schematically represented in Figure 5. The operation of the local control unit ĉi has
been modeled in accordance with the following set of basic principles:

(P.1) The local control action ûi[k] is updated at the sampling times k = k̂j , j ≥ 1.

(P.2) The local controller unit ĉi has direct access to the sensing unit ŝi; consequently the
local state x̂i[k̂j] is assumed to be always available.

(P.3) The state information of neighboring stories obtained through the wireless com-
munication unit ŵi has the form x̂i′[k − δi′[k̂j]], where i′ = i ± 1 and the time delay
satisfies 0 ≤ δi′[k̂j] < r̂.

(P.4) For a given time interval I with length τ̂ , the events Ei,i′(I, τ̂) = [ĉi obtains the
neighboring state x̂i′ in the time interval I of length τ̂] are independent random
events with common probability

Prob[Ei,i′(I, τ̂)] = pτ̂ . (4.12)

(P.5) If I, I ′ are non-overlapping time intervals with respective lengths τ̂ and τ̂ ′, then
Ei,i′(I, τ̂) and Ei,i′(I ′, τ̂ ′) are independent random events.

(P.6) Through the time interval Δg[k̂j], the local control unit ĉi tries to collect the state
information required to compute the control action. If this state information is
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successfully acquired, the flag variable φi[k̂j] is set to 1 and the new control action
ûi[k̂j] is computed; otherwise, the flag variable φi[k̂j] and the control action ûi[k̂j]
are both set to 0.

(P.7) The control action computed at the sampling time k = k̂j is held through the time
interval Δh[k̂j].

According to the previous principles, the vector of control actions

û[k] = [û1[k], . . . , ûn[k]]
T (4.13)

can be computed by setting the initial value

û[0] = [0]n×1, (4.14)

and, for k > 0, using the expression

û[k] =

⎧
⎨

⎩
−Fφ[k]

(
DĜτ̂

x[k] + LĜτ̂
x[k − δ[k]]

)
if mod (k, r̂) = 0,

û[k − 1], otherwise,
(4.15)

where mod(k, r̂) represents the integer remainder after division, Fφ[k] is the diagonal ma-
trix

Fφ[k] =

⎡
⎢⎣

φ1[k]
. . .

φn[k]

⎤
⎥⎦, (4.16)

DĜτ̂
is the block-diagonal matrix

DĜτ̂
=

⎡
⎢⎢⎢⎣

[
Ĝτ̂

]

1,1
. . . [

Ĝτ̂

]

n,n

⎤
⎥⎥⎥⎦

(4.17)

formed by the diagonal blocks of Ĝτ̂

[
Ĝτ̂

]

i,i
=
[{
ĝτ̂
}
i,2i−1,

{
ĝτ̂
}
i,2i

]
, 1 ≤ i ≤ n, (4.18)

and the matrix

LĜτ̂
= Ĝτ̂ −DĜτ̂

(4.19)
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contains the out-of-diagonal blocks of the block-tridiagonal multioverlapping control matrix
Ĝτ̂ . The notation x[k − δ[k]] represents the delayed state

x[k − δ[k]] =

⎡
⎢⎣

x̂1[k − δ1[k]]
...

x̂n[k − δn[k]]

⎤
⎥⎦, (4.20)

where δi[k] is the delay in the local state x̂i.
The multioverlapping control model can now be obtained by completing (4.14) and

(4.15)with the state and output equations

x[k + 1] = Aτx[k] + Bτσ(û[k]) + Eτωτ[k],

y[k] = Cyx[k].
(4.21)

It should be noted that expressions (4.16) and (4.20) are only evaluated at the update-control
times k̂j = jr̂. Moreover, according to (P.1), (P.4) and (P.6), the information-state flag variables
φi[k̂j] are independent random variables with Bernoulli distributions B(p). In particular
φ1[k̂j] and φn[k̂j] have a Bernoulli distribution B(pτ̂), and φi[k̂j] has distribution B(p2

τ̂
) for

1 < i < n. Finally, it should also be noted that the probability of gathering the neighboring
state information x̂i′ by the controller unit ĉi in a time interval I ′ of length 2τ̂ is

Prob
[
Ei,i′
(
I ′, 2τ̂

)]
= 2pτ̂ − p2τ̂ . (4.22)

This formula can be easily obtained by writing the time interval I ′ as union of two non-
overlapping intervals I ′ = I ′1 ∪ I ′2 of length τ̂ . According to (P.5), Ei,i′(I ′1, τ̂) and Ei,i′(I ′2, τ̂) are
independent random events, and the probability of failing to acquire the state x̂i′ in the whole
interval I ′ is (1 − pτ̂)

2. Analogously, it can be shown that the corresponding probability for a
time interval I ′′ of length (1/2)τ̂ is

Prob
[
Ei,i′

(
I ′′,

1
2
τ̂

)]
= 1 −

√
1 − pτ̂ . (4.23)

5. Numerical Simulations

In this section, the behavior of discrete-timemultioverlapping LQR controllers is investigated
through numerical simulations of the seismic response of a 20-story building. The parameter
values for this particular building are collected in Table 1 and are similar to those used in [5].
The damping matrix has been computed as a Rayleigh damping matrix by setting a 5% of
damping ratio for the 1st and 18th natural frequencies. The actuation system ai implemented
between the (i − 1)th and ith stories (see Figure 2) is assumed to be formed by a number
of identical actuation devices that work coordinately as a single device. The force saturation
level of a single actuation device has been taken as 1.2 × 106 N. The total number of actuation
devices and the maximum actuation force for the actuation systems ai, 1 ≤ i ≤ n, is also
presented in Table 1.
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Table 1: Particular parameter values for the 20-story building.

Story
1–5 6–11 12–14 15–17 18-19 20

Mass (×106 Kg) 1.10 1.10 1.10 1.10 1.10 1.10
Stiffness (×106 N/m) 8.62 5.54 4.54 2.91 2.56 1.72
Number of actuation devices 4 2 2 1 1 1
Max. actuation force (×106 N) 4.8 2.4 2.4 1.2 1.2 1.2
Natural damping 5%
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Figure 6: Full scale Kobe 1995 North-South seismic record.

For this 20-story building, three different discrete-time LQR controllers are designed:
a centralized controllerGτ , which has been obtained using the basic sampling time τ = 10−3 s;
and two multioverlapping controllers Ĝτ̂ and Ĝτ̂ ′ , computed with sampling times τ̂ = 40 τ ,
and τ̂ ′ = 20 τ , respectively. The particular values of the weighting matrices in (3.5) used
to design the centralized controller are Q = I40 and R = 10−17.5 × I20. For the multi-
overlapping controllers, the weighting matrices in (3.13) used to compute the local expanded
LQR controllers G̃(i)

τ̂
and G̃

(i)
τ̂ ′ , 1 ≤ i < 20, have been taken as Q(i) = I4 and R(i) = 10−17.5 × I2,

for 1 ≤ i < 20.
In the numerical simulations, the maximum absolute interstory drifts have been

computed for different control configurations. The basic building model given in (4.1) with
sampling time τ = 10−3 s has been used to compute the uncontrolled seismic response. The
controlled response corresponding to the centralized controller Gτ has been obtained with
the centralized control model presented in (4.3). Finally, the multioverlapping control model
defined in (4.14), (4.15), and (4.21) has been used to compute the controlled response for the
multioverlapping controllers Ĝτ̂ and Ĝτ̂ ′ . In all the cases, the full scale 1995 Kobe North-South
seismic record has been taken as ground acceleration (see Figure 6). This seismic record,
obtained at the Kobe Japanese Meteorological Agency station during the Hyogoken-Nanbu
earthquake of January 17, 1995, is a near-field record that presents large acceleration peaks
which are extremely destructive to tall structures [18, 19]. In the multioverlapping control
model, the reference value of pτ̂ = 0.95 has been set for the probability of obtaining state
information from neighboring stories in a time interval of length τ̂ = 40ms. According to
(4.23), for the multioverlapping controller Ĝτ̂ ′ with control sampling time τ̂ ′ = 20ms, the
probability of successfully gathering state information from neighboring stories can be taken
as pτ̂ ′ = 0.78.
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Figure 7: Maximum absolute interstory drifts for the 1995 Kobe North-South seismic record. Simulations
with maximum state delay.

In Figure 7(a), the red line with asterisks (Overlap. fail in the legend) presents the
maximum absolute interstory drifts corresponding to the multioverlapping controller Ĝτ̂

with controller sampling time τ̂ = 40ms, probability of successful communication pτ̂ = 0.95,
and state delay δ = 39ms. The blue line with circles (Overlap. in the legend), displays the
values obtained with no communication failures, that is, with pτ̂ = 1. The interstory drifts
peak values corresponding to the multioverlapping controller Ĝτ̂ ′ with controller sampling
time τ̂ ′ = 20ms, and state delay δ = 19ms are presented in Figure 7(b). Here, the red line with
asterisks corresponds to the probability pτ̂ ′ = 0.78, and the blue line with circles presents again
the results for pτ̂ ′ = 1. In both cases, the graphics corresponding to the uncontrolled response
(black line with triangles), and the controlled response for the centralized controller Gτ , with
controller sampling time τ = 1ms, with no communication failures nor delays (black line
with squares) have been included as reference. In Figure 8, the red line with asterisks (Over.
delay in the legend) displays the maximum absolute interstory drifts corresponding to the
multioverlapping controller Ĝτ̂ with τ̂ = 40ms, pτ̂ = 0.95, and state delay δ = 39ms, while
the green line with circles (Over. no delay in the legend) presents the response obtained with
null state delay.

The graphics in Figure 7(a) show the excellent performance of the proposed multi-
overlapping controller for controller sampling times τ̂ compatible with moderate values of
communication latency and also compatible with moderate rates of communication failures.
Moreover, the graphics in Figure 7(b) clearly illustrate the trade-off between the controller
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Figure 8: Maximum absolute interstory drifts for maximum and minimum state delays (controller sam-
pling time 40ms).

sampling time τ̂ and the probability of successful communication pτ̂ . Certainly, taking a
smaller sampling time τ̂ allows a more accurate implementation of the control actions;
however, this also implies a reduction of the probability pτ̂ which, in the end, may result
in an overall loss of performance.

Finally, the graphics in Figure 8 show the moderate influence of the state delay δ in
the multioverlapping controller performance for reasonable values of the controller sampling
time τ̂ .

Remark 5.1. It is worth to bementioned that the behavior of the ideal discrete-time centralized
controllerGτ is very similar to the behavior exhibited by an ideal continuous-time centralized
LQR controller. As mentioned in Remark 3.3, full state information is required by centralized
controllers and this fact makes them unsuitable for SVC of large buildings with wireless
communication systems. A detailed discussion of this point can be found in [5].

Remark 5.2. The proposed semidecentralized controllers can operate using only state infor-
mation from neighboring stories. This fact makes it possible for them to successfully collect
the required state information in a relatively small time interval. As a side effect, state delays
are also small and have no significant impact on the controller performance.

Remark 5.3. Force saturation is an important issue in SVC. For large seismic excitations,
the required control actions frequently exceed the force capacity of the actuation devices.
Consequently, force actuation constraints should be consideredwhen studying the controllers
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behavior. All the numerical simulations of the controlled responses presented in this paper
have been conducted using the force saturation values displayed in Table 1.

6. Conclusions and Future Directions

In this paper, a computationally effective strategy has been used to design discrete-time
state-feedback multioverlapping LQR controllers for seismic protection of tall buildings. This
strategy, based on a sequential application of the Inclusion Principle, produces a block-
tridiagonal control gain matrix that allows computing the corresponding control actions
using only state information from neighboring stories. Due to this particular information
exchange configuration of the multioverlapping controllers, the transmission range and the
control sampling frequency in wireless implementations of the communication system can
be dramatically improved. To investigate the behavior of the proposed semidecentralized
multioverlapping controllers, a proper simulation model has been designed, which allows
including semiactive actuation devices with limited force capacity, control sampling times
consistent with the communication latency, time-delayed state information, and commu-
nication failures. To assess the performance of the proposed multioverlapping controllers,
numerical simulations of the seismic response for a 20-story building model have been
conducted with positive results.

For clarity and simplicity, the controllers presented in this paper have been designed
following an LQR approach. In future works, further research effort should be addressed at
exploring the effectiveness of the proposed control design strategy in more complex scenar-
ios, which can involve issues of practical interest such as structural information constraints
[20], actuator saturation [21], actuation and sensor failures [22], and limited frequency
domain [23]. Other natural extensions of the present work should include a deeper treatment
of some important practical aspects related to the communication system such as missing
measurements [24–28], stochastic uncertainties [29], and stochastic nonlinearities [30–33].
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A mathematical model to compute the overall vibrational response of connected multistructure
mechanical systems is presented. Using the proposed model, structural vibration control strategies
for seismic protection of multibuilding systems can be efficiently designed. Particular attention
is paid to the design of control configurations that combine passive interbuilding dampers with
local feedback control systems implemented in the buildings. These hybrid active-passive con-
trol strategies possess the good properties of passive control systems and also have the high-
performance characteristics of active control systems. Moreover, active-passive control configu-
rations can be properly designed for multibuilding systems requiring different levels of seismic
protection and are also remarkably robust against failures in the local feedback control systems.
The application of the main ideas is illustrated bymeans of a three-building system, and numerical
simulations are conducted to assess the performance of the proposed structural vibration control
strategies.

1. Introduction
Over the last years, seismic protection of adjacent buildings has been attracting an increasing
interest. For this kind of systems, the action of seismic excitations can produce interbuilding
collisions (pounding), which can cause severe damage to the buildings structure and contents
[1–5]. Consequently, structural vibration control (SVC) strategies for multibuilding systems
must aim at mitigating not only the vibrational response of individual buildings, but also the
negative interbuilding interactions.
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The connected control method (CCM) is a SVC strategy for multibuilding systems that
consists in linking adjacent buildings by coupling devices to provide appropriate reaction
control forces. The application of the CCM using different types of passive [6–16], active [17–
19], and semiactive [20–23] linking devices has been extensively investigated with positive
results. Recently, more complex control configurations combining passive interbuilding
dampers with local feedback control systems implemented in the buildings have been
proposed [24, 25]. These active-passive SVC strategies combine the good properties of
passive control systems and the high-performance characteristics of active control systems
[26–28]. It should be highlighted, however, that most of the research effort undertaken to date
has been directed at the two-building case, while more complex multibuilding problems still
remain virtually unexplored. Obtaining a suitable formulation for the dynamical response of
certain classes of connected multistructure mechanical systems is one of the major obstacles
that has to be overcome in order to design SVC strategies for multibuilding systems. A
preliminary work in this line presenting an active-passive SVC strategy for seismic protection
of a three-building system can be found in [29].

The main contribution of the present paper is twofold: (i) a mathematical model to
compute the overall vibrational response of connected multistructure mechanical systems is
provided. (ii) Active-passive SVC strategies for seismic protection of multibuilding systems
are designed using the proposed model and the CCM approach.

The paper is organized as follows: in Section 2, a general second-order model for the
unforced response of connected multistructure mechanical systems is provided. The forced
response is also studied for some particular cases of special relevance in SVC. In Section
3, passive, active, and active-passive SVC strategies for seismic protection of multibuilding
systems are discussed. The main ideas are presented by means of a three-building system.
Finally, in Section 4, a set of numerical simulations is conducted to assess the effectiveness of
the proposed control strategies.

2. Multistructure Connected System

In this section, we present a mathematical model to compute the dynamical response of the
multistructure system S schematically depicted in Figure 1. The overall system S consists of
p parallel substructures S(1), . . . ,S(p). Each substructure S(j) is a mass-spring-damper system
with nj degrees of freedom, and between adjacent substructures S(j) and S(j+1), there is a
linking system L(j) formed by a maximum number of rj = min(nj, nj+1) spring-damper
elements. The aim of this section is to obtain a proper formulation of the second-order
equation that describes the overall motion of system S in the form

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (2.1)

where M is the global mass matrix; C and K are the total damping and stiffness matrices,
respectively, including the internal stiffness and damping coefficients of the substructures
S(j) as well as the stiffness and damping coefficients of the linking systems L(j); f(t) is the
vector of external forces.
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Figure 1: Multistructure system S formed by interconnected multiple-degree-of-freedom mass-spring-
damper systems S(j).

2.1. Unforced Response

Let us consider the jth substructure displayed in Figure 2. The vector of relative displace-
ments is

q(j)(t) =
[

q
j

1(t), . . . , q
j
nj
(t)

]T
, (2.2)

where q
j

i (t) represents the relative displacement of the mass m
j

i with respect to the fixed
reference O, which in this subsection is assumed to be an inertial frame.
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Figure 2: Multi-degree-of-freedom mass-spring-damper subsystem S(j).

A second-order model for the substructure S(j) can be written in the form

M(j) q̈(j)(t) + C(j) q̇(j)(t) +K(j) q(j)(t) = f
(j)
� (t), (2.3)

where f (j)
�
(t) denotes the vector of interstructure forces resulting from the interaction between

adjacent substructures through the linking elements. The mass matrix is a diagonal matrix

M(j) = diag
[

m
j

1, . . . , m
j
nj

]

, (2.4)

and the damping matrix has the following tridiagonal structure:

C(j) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c
j

1 + c
j

2 −cj2
−cj2 c

j

2 + c
j

3 −cj3
. . . . . . . . .

−cjnj−1 c
j

nj−1 + c
j
nj

−cjnj

−cjnj
c
j
nj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.5)

The stiffness matrixK(j) has an analogous structure and can be obtained by replacing entries
c
j

i by k
j

i in (2.5). We also define the damping and stiffness matrices of the linking system L(j)

as follows:

̂C(j) = diag
[

ĉ
j

1, . . . , ĉ
j
rj

]

, ̂K(j) = diag
[

̂k
j

1, . . . ,
̂k
j
rj

]

, rj = min
(

nj , nj+1
)

. (2.6)

The main difficulty in obtaining a simple formulation for the overall second-order
model (2.1) arises from the fact that adjacent substructures have, in general, different number
of masses. This problem can be conveniently solved by extending the damping and stiffness
matrices of the linking systems with a proper number of zero rows and columns. The benefits
of this simple resource are twofold: (i) a plain and elegant matrix formulation of equation
(2.1), and (ii) an extremely easy computational implementation. Next, we introduce the zero-
extension of matrices and provide a simple Matlab function to compute it.
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S(1)

[ ꉱK(1)]n1×n2 q
(2) − [ ꉱK(1)]n1×n1 q

(1)

[ ꉱC(1)]n1×n2 q̇
(2) − [ ꉱC(1)]n1×n1 q̇

(1)

Figure 3: Force diagram for the initial substructure S(1).

Definition 2.1. Given an m × n matrix A and two integers m′ ≥ m and n′ ≥ n, we define the
m′ × n′ zero-extension of A as the matrix

[A]m′×n′ =

[

A [0]m×(n′−n)

[0](m′−m)×n [0](m′−m)×(n′−n)

]

, (2.7)

obtained from A by adding m′ −m final zero-rows and n′ − n final zero-columns.
The following Matlab function computes the matrix zero-extension:
Function M=zex(A,m1,n1)
[m,n]=size(A);
M=[A zeros(m,n1−n)
zeros(m1−m,n1)].

For the matrix

A =
[

1 2
3 4

]

, (2.8)

the 3 × 5 zero-extension can be computed with the command zex(A,3,5), resulting

[A]3×5 =

⎡

⎣

1 2 0 0 0
3 4 0 0 0
0 0 0 0 0

⎤

⎦. (2.9)

To obtain the expression for the vector of linking interstructure forces f
(j)
�
(t), we

consider three different cases corresponding to the relative position of the substructure S(j):
(a) initial substructure S(1), (b) interior substructure S(j), 1 < j < p, and (c) final substructure
S(p). For the initial substructure S(1), from the force diagram in Figure 3, we have

f
(1)
�

=
[

̂C(1)
]

n1×n2
q̇(2) −

[

̂C(1)
]

n1×n1
q̇(1) +

[

̂K(1)
]

n1×n2
q(2) −

[

̂K(1)
]

n1×n1
q(1). (2.10)
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[ ꉱC(j−1)]nj×nj
q̇(j) − [ ꉱC(j−1)]nj×nj−1 q̇

(j−1) [ ꉱC(j)]nj×nj+1 q̇
(j+1) − [ ꉱC(j)]nj×nj

q̇(j)

[ ꉱK(j)]nj×nj+1 q
(j+1) − [ ꉱK(j)]nj×nj

q(j)[ ꉱK(j−1)]nj×nj
q(j) − [ ꉱK(j−1)]nj×nj−1 q

(j−1)

S(j)

Figure 4: Force diagram for interior substructures S(j), 1 < j < p.

Equation (2.3) for S(1) takes now the form

M(1) q̈(1) +
{

C(1) +
[

̂C(1)
]

n1×n1

}

q̇(1) −
[

̂C(1)
]

n1×n2
q̇(2)

+
{

K(1) +
[

̂K(1)
]

n1×n1

}

q(1) −
[

̂K(1)
]

n1×n2
q(2) = 0.

(2.11)

Note that, for simplicity, the explicit dependence on time has been omitted in (2.10), (2.11),
and Figure 3, and notations like f (1)

� and q(1) have been used instead of f (1)
� (t) and q(1)(t). The

same will be done in the sequel when convenient.
Analogously, from the force diagram in Figure 4, it results

f
(j)
�

=
[

̂C(j−1)
]

nj×nj−1
q̇(j−1) −

{

[

̂C(j−1)
]

nj×nj

+
[

̂C(j)
]

nj×nj

}

q̇(j) +
[

̂C(j)
]

nj×nj+1
q̇(j+1)

+
[

̂K(j−1)
]

nj×nj−1
q(j−1) −

{

[

̂K(j−1)
]

nj×nj

+
[

̂K(j)
]

nj×nj

}

q(j) +
[

̂K(j)
]

nj×nj+1
q(j+1),

(2.12)

and the second-order model for S(j) can be written as

M(j) q̈(j) −
[

̂C(j−1)
]

nj×nj−1
q̇(j−1) +

{

C(j) +
[

̂C(j−1)
]

nj×nj

+
[

̂C(j)
]

nj×nj

}

q̇(j)

−
[

̂C(j)
]

nj×nj+1
q̇(j+1) −

[

̂K(j−1)
]

nj×nj−1
q(j−1)+

+
{

K(j) +
[

̂K(j−1)
]

nj×nj

+
[

̂K(j)
]

nj×nj

}

q(j) −
[

̂K(j)
]

nj×nj+1
q(j+1) = 0.

(2.13)

Finally, from Figure 5, we get

f
(p)
�

= −
[

̂C(p−1)
]

np×np

q̇(p) +
[

̂C(p−1)
]

np×np−1
q̇(p−1)

−
[

̂K(p−1)
]

np×np

q(p) +
[

̂K(p−1)
]

np×np−1
q(p−1),

(2.14)
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[ ꉱC(p−1)]np×np
q̇(p) − [ ꉱC(p−1)]np×np−1 q̇

(p−1)

[ ꉱK(p−1)]np×np q
(p) − [ ꉱK(p−1)]np×np−1 q

(p−1)

S(p)

Figure 5: Force diagram for the final substructure S(p).

and the corresponding second-order model is

M(p) q̈(p) −
[

̂C(p−1)
]

np×np−1
q̇(p−1) +

{

C(p) +
[

̂C(p−1)
]

np×np

}

q̇(p)

−
[

̂K(p−1)
]

np×np−1
q(p−1) +

{

K(p) +
[

̂K(p−1)
]

np×np

}

q(p) = 0.

(2.15)

From (2.11), (2.13), and (2.15), we can now obtain an overall second-order model for
the unforced response of the multibuilding coupled system in the form

M q̈(t) + C q̇(t) +K q(t) = 0, (2.16)

where

q(t) =
[

{q(1)(t)}T , . . . , {q(p)(t)}T
]T
, (2.17)

is the overall vector of displacements. To this end, we express the global damping and
stiffness matrices in the form

C = C + ̂C, K = K + ̂K, (2.18)

where matrices C and K correspond to the internal damping and stiffness of the substruc-
tures, respectively, and have the following block diagonal form:

C = diag
[

C(1), . . . , C(p)
]

, K = diag
[

K(1), . . . , K(p)
]

, (2.19)

and matrices C(j), K(j) have the form given in (2.5). The damping matrix ̂C corresponds to
the linking systems and has the tridiagonal block structure shown in Figure 6, the stiffness
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[ ꉱC(1)]n1×n1
−[ ꉱC(1)]n1×n2

−[ ꉱC(1)]n2×n1 [ ꉱC(1)]n2×n2 + [ ꉱC(2)]n2×n2 −[ ꉱC(2)]n2×n3
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Figure 6: Damping matrix ̂C for the overall linking system.
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j
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j

2 m
j
nj

m
j

nj−1

−uj

1(t) −uj

2(t)u
j

1(t) u
j

2(t) −uj
nj
(t) u

j
nj
(t)

ω(t)

O

· · ·

Figure 7: External excitations acting upon substructure S(j).

matrix ̂K has the same structure as ̂C and can be obtained by replacing the entries [ ̂C(j)]n×n′

by [ ̂K(j)]n×n′ . Finally, the global mass matrixM is the block diagonal matrix

M = diag
[

M(1), . . . ,M(p)
]

, (2.20)

where M(j), 1 ≤ j ≤ p are the substructure mass matrices given in (2.4).

2.2. Forced Response

Now, we assume that some external excitations are acting upon the substructures S(j).
Specifically, we will turn out our attention to the particular case schematically depicted in
Figure 7, where ω(t) represents the acceleration of the reference frame O, and the element
a
j

i is a force actuation device implemented between the adjacent masses m
j

i−1 and m
j

i that
produces a pair of opposite forces of magnitude |uj

i (t)| as indicated in the figure. This case is
particularly relevant for structural vibration control of seismically excited buildings, where
the external acceleration corresponds to the seismic ground acceleration, and the actuation
devices aj

i are interstory force actuators that implement suitable control forces to mitigate the
vibrational response of the building.

A second-order model for the vibrational response of the substructure S(j) can now be
written in the form

M(j) q̈(j) + C(j) q̇(j) +K(j) q(j) − f
(j)
� (t) = f

(j)
u (t) + f

(j)
ω (t), (2.21)
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where the term f
(j)
u (t) is the vector of control forces acting on S(j), and f

(j)
ω (t) contains the

inertial forces resulting from the fact that O is now an accelerated reference frame. Denoting
by [1]nj×1 the column vector with nj entries equal to 1, the vector of inertial forces can be
written as

f
(j)
ω (t) = −M(j)[1]nj×1 ω(t). (2.22)

For the vector of control actions, we consider the control location matrix of size nj × nj

T
(j)
u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1
1 −1

. . . . . .
1 −1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.23)

and the vector of control actions

u(j)(t) =
[

u
j

1(t), . . . , u
j
nj
(t)

]T
, (2.24)

to obtain

f
(j)
u (t) = T

(j)
u u(j)(t). (2.25)

Finally, considering (2.21), (2.22), (2.25), and the results presented in the previous subsection,
we can derive a second-order model for the overall vibrational response of the multistructure
system S in the following form:

M q̈(t) + C q̇(t) +K q(t) = Tuu(t) + Tω ω(t), (2.26)

where q(t) is the overall displacement vector defined in (2.17); matricesM, C,K are given in
(2.18), (2.19), (2.20), and Figure 6; ω(t) is the external acceleration, and Tω = −M[1]n×1 is the
external disturbance matrix; u(t) represents the overall vector of actuation forces

u(t) =
[

{

u(1)(t)
}T

, . . . ,
{

u(p)(t)
}T

]T

, (2.27)
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Figure 8: Connected three-building system.

and Tu is the overall location control matrix defined as

Tu = diag
[

T
(1)
u , . . . , T

(p)
u

]

, (2.28)

n = n1 + · · · + np is the total number of degrees of freedom, and p is the number of
substructures. If no active control system has been implemented in the subsystem S(j), u(j)(t)
can be taken as a zero vector and T

(j)
u as a zero matrix of appropriate dimensions. The

proposed model includes the action of external acceleration disturbance and active control
systems implemented in the substructures and, moreover, is formally analogous to the usual
formulation used in single-structure SVC problems.

3. Structural Vibration Control Strategies for Multibuilding Systems

In this section, we are interested in designing SVC strategies for seismic protection of
multibuilding systems. For clarity and simplicity, the main ideas are presented through
the three-story building system schematically depicted in SubFigure 8(a), where the central
five-story building is assumed to require a special level of seismic protection. For this
particular multibuilding system, four control configurations are considered: (a) active-
passive, (b) passive, (c) uncoupled-active, and (d) uncontrolled. In the active-passive control
configuration (see SubFigure 9(a)), an active local state-feedback control system with the



Mathematical Problems in Engineering 11

(a) Active-passive (b) Passive (c) Active (d) Uncontrolled

Figure 9: Control configurations for the three-building system.

actuation scheme presented in SubFigure 8(b) has been implemented in the central building.
Moreover, two passive dampers have been placed as interbuilding linking elements: one at
the third-floor level between buildings 1 and 2 and the other at the second-floor level between
building 2 and building 3. The passive control configuration (SubFigure 9(b)) only comprises
the interbuilding passive dampers. In the uncoupled-active control configuration (SubFigure
9(c)), an active local feedback system has been implemented in the central building, but no
passive interbuilding elements have been installed. Finally, no seismic protection is provided
in the uncontrolled control configuration (SubFigure 9(d)), which will be used as a reference
in the performance assessments.

The section has been structured in three parts. First, the results presented in Section
2 are applied to obtain a second-order model for the three-building system. Next, suitable
state-space models are derived. Finally, a state-feedback LQR controller is designed to drive
the active local feedback control system implemented in building 2.

To compute the LQR local controller, the following particular values of the building
parameters have been used: mj

i = 1.3 × 106 kg, cji = 105 Ns/m, k1
i = 2.0 × 109 N/m, k2

i =
4 × 109 N/m, k3

i = 2.0 × 109 N/m, for 1 ≤ j ≤ 3, 1 ≤ i ≤ nj , n1 = 3, n2 = 5, n3 = 2. The linking
elements are considered as pure dampers with a damping constant ĉji=3.0 × 106 Ns/m and
null stiffness; the value ĉ

j

i=0 indicates that no linking element exists at the ith level between
buildings B(j) and B(j+1). The actuation elements a2

i , 1 ≤ i ≤ 5 are assumed to be ideal force
actuation devices, which are able to implement exactly the control actions u2

i (t) producing
the opposite pairs of control forces represented in Figure 8(b). These values will also be used
in the numerical simulations conducted in Section 4.

3.1. Second-Order Model

Let us consider the three-story building system displayed in Figure 8(a) as a lumped-mass
planar system with displacements in the direction of the ground motion. In this case, the
multibuilding system can be represented by the connected multistructure system shown in
Figure 10. Using the results presented in the previous section, a second-order model in the
form

M q̈(t) + C q̇(t) +K q(t) = Tu u(t) + Tω ω(t), (3.1)
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Figure 10: Connected three-building system.

to describe the buildings motion can be easily obtained. The overall vector of story displace-
ments with respect to the ground is

q(t) =
[

q11(t), q
1
2(t), q

1
3(t), q

2
1(t), q

2
2(t), q

2
3(t), q

2
4(t), q

2
5(t), q

3
1(t), q

3
2(t)

]T
, (3.2)

where qji (t) represents the displacement of the ith story in the jth building. The mass matrix
is

M =

⎡

⎢

⎢

⎢

⎢

⎣

M(1) [0]3×5 [0]3×2
[0]5×3 M(2) [0]5 × 2

[0]2×3 [0]2×5 M(3)

⎤

⎥

⎥

⎥

⎥

⎦

, (3.3)

with

M(1) =

⎡

⎣

m1
1 0 0
0 m1

2 0
0 0 m1

3

⎤

⎦, M(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

m2
1 0 0 0 0
0 m2

2 0 0 0
0 0 m2

3 0 0
0 0 0 m2

4 0
0 0 0 0 m2

5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, M(3) =
[

m3
1 0
0 m3

2

]

. (3.4)

The total damping matrix can be written in the form

C = C + ̂C, (3.5)
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where

C =

⎡

⎢

⎢

⎢

⎣

C(1) [0]3×5 [0]3×2
[0]5×3 C(2) [0]5×2

[0]2×3 [0]2×5 C(3)

⎤

⎥

⎥

⎥

⎦

, (3.6)

C(1) =

⎡

⎢

⎢

⎢

⎣

c11 + c12 −c12 0

−c12 c12 + c13 −c13
0 −c13 c13

⎤

⎥

⎥

⎥

⎦

, C(3) =

⎡

⎣

c31 + c32 −c32
−c32 c32

⎤

⎦, (3.7)

C(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c21 + c22 −c22 0 0 0

−c22 c22 + c23 −c23 0 0

0 −c23 c23 + c24 −c24 0

0 0 −c24 c24 + c25 −c25
0 0 0 −c25 c25

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.8)

and the matrix corresponding to the linking elements ̂C has the following block tridiagonal
structure:

̂C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

̂C(1)
]

3×3
−
[

̂C(1)
]

3×5
[0]3×2

−
[

̂C(1)
]

5×3

[

̂C(1)
]

5×5
+
[

̂C(2)
]

5×5
−
[

̂C(2)
]

5×2

[0]2×3 −
[

̂C(2)
]

2×5

[

̂C(2)
]

2×2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3.9)

̂C(1) =

⎡

⎣

ĉ11 0 0
0 ĉ12 0
0 0 ĉ13

⎤

⎦, ̂C(2) =
[

ĉ21 0
0 ĉ22

]

, (3.10)

where [ ̂C(j)]r×s denotes the r × s zero-extension of ̂C(j), for example

[

̂C(1)
]

5×5
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ĉ11 0 0 0 0
0 ĉ12 0 0 0
0 0 ĉ13 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
[

̂C(2)
]

5×2
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ĉ21 0
0 ĉ22
0 0
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (3.11)

To obtain the total stiffness matrix

K = K + ̂K, (3.12)
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matricesK, ̂K can be computed replacing the damping coefficients cji , ĉ
j

i by the corresponding
stiffness coefficients kj

i , ̂k
j

i in (3.7), (3.8), (3.10), and matrices C(j), ̂C(j) by K(j), ̂K(j) in (3.6),
(3.9). For the active-passive control configuration depicted in Figure 9(a), the vector of control
actions is

u(t) =
[

0, 0, 0, u2
1(t), u

2
2(t), u

2
3(t), u

2
4(t), u

2
5(t), 0, 0

]T
, (3.13)

and the control location matrix Tu to produce the corresponding control forces can be written
as follows:

Tu =

⎡

⎢

⎢

⎢

⎢

⎣

[0]3×3 [0]3×5 [0]3×2

[0]5×3 T
(2)
u [0]5×2

[0]2×3 [0]2×5 [0]2×2

⎤

⎥

⎥

⎥

⎥

⎦

, T
(2)
u =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (3.14)

Finally, the disturbance input matrix is

Tw = −M [1]10×1 . (3.15)

3.2. First-Order State-Space Model

Now, we take the state vector

x(t) =
[

q(t)
q̇(t)

]

, (3.16)

and derive the first-order state-space model

ẋ(t) = Ax(t) + Bu(t) + Eω(t),

y(t) = Cyx(t),
(3.17)

where the state, control, and disturbance input matrices are, respectively,

A =
[

[0]10×10 I10
−M−1K −M−1C

]

, B =
[

[0]10×10
M−1Tu

]

, E =
[

[0]10×1
−[1]10×1

]

. (3.18)

Regarding the output, we consider two different cases: interstory drifts and interbuilding
approaches. The interstory drifts represent the relative displacements between consecutive
stories in the jth building and are defined by

{

ys

}j

1(t) = q
j

1(t),

{

ys

}j

i (t) = q
j

i (t) − q
j

i−1(t), 1 < i ≤ nj,
(3.19)
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where nj is the number of stories in building B(j). The vector of interstory drifts

ys(t) =
[

{

ys

}1
1,
{

ys

}1
2,
{

ys

}1
3,
{

ys

}2
1,
{

ys

}2
2,
{

ys

}2
3,
{

ys

}2
4,
{

ys

}2
5,
{

ys

}3
1,
{

ys

}3
2

]T
(3.20)

can be obtained with the output matrix

Cys =

⎡

⎢

⎢

⎢

⎢

⎣

C
(1)
ys

[0]3×5 [0]3×2 [0]3×10

[0]5×3 C
(2)
ys

[0]5×2 [0]5×10

[0]2×3 [0]2×5 C
(3)
ys

[0]2×10

⎤

⎥

⎥

⎥

⎥

⎦

, (3.21)

where

C
(1)
ys

=

⎡

⎣

1 0 0
−1 1 0
0 −1 1

⎤

⎦, C
(2)
ys

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

C
(3)
ys

=
[

1 0
−1 1

]

.

(3.22)

The interbuilding approaches describe the approaching between the stories placed at the ith
level in the adjacent buildings B(j), B(j+1) and are defined by

{

ya

}j

i (t) = −
(

q
j+1
i (t) − q

j

i (t)
)

, 1 ≤ i ≤ rj , 1 ≤ j ≤ 2, (3.23)

where rj = min(nj, nj+1). The vector of interbuilding approaches

ya(t) =
[

{

ya

}1
1(t),

{

ya

}1
2(t),

{

ya

}1
3(t),

{

ya

}2
1(t),

{

ya

}2
2(t)

]T
, (3.24)

can be computed with the output matrix

Cya =
[

I3 −[I3]3×5 [0]3×2 [0]3×10
[0]2×3 [I2]2×5 −I2 [0]2×10

]

. (3.25)

Finally, let us suppose that the state-feedback controller

u(j)(t) = G(j)x(j)(t) (3.26)
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has been computed to drive a local active control system in B(j). We write the local vector of
control actions as

u(j)(t) = G(j)x(j)(t) =
[

G
(j)
1 G

(j)
2

]

[

q(j)(t)
q̇(j)(t)

]

, (3.27)

where matrices G
(j)
1 , G(j)

2 are obtained by splitting the control matrix G(j) after the nj-th
column. The seismic response of the overall three-building system for different active-passive
control configurations can be computed using the closed-loop state-space model as follows:

ẋ(t) = Ax(t) + Ew(t),

y(t) = Cyx(t),
(3.28)

where the state matrixA = A+BG can be obtained using the matricesA, B, E given in (3.18),
and the overall control matrix

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

G
(1)
1 [0]3×5 [0]3×2 G

(1)
2 [0]3×5 [0]3×2

[0]5×3 G
(2)
1 [0]5×2 [0]5×3 G

(2)
2 [0]5×2

[0]2×3 [0]2×5 G
(3)
1 [0]2×3 [0]2×5 G

(3)
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3.29)

with

G
(j)
i =

{

G
(j)
i , if B(j) is actively controlled,

[0]nj×nj
, otherwise.

(3.30)

In particular, for the active-passive control configuration depicted in Figure 9(a), the overall
control matrix has the form

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[0]3×3 [0]3×5 [0]3×2 [0]3×3 [0]3×5 [0]3×2

[0]5×3 G
(2)
1 [0]5×2 [0]5×3 G

(2)
2 [0]5×2

[0]2×3 [0]2×5 [0]2×2 [0]2×3 [0]2×5 [0]2×2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (3.31)

3.3. Local State-Feedback Controller Design

To compute a local state-feedback LQR controller [30] for the actuation system in building
B(2), we consider the local second-order model

M(2) q̈(2)(t) + C(2) q̇(2)(t) +K(2) q(2)(t) = T
(2)
u u(2)(t), (3.32)
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where

q(2)(t) =
[

q21(t), q
2
2(t), q

2
3(t), q

2
4(t), q

2
5(t)

]T
(3.33)

is the vector of story displacements relative to the ground,

u(2)(t) =
[

u2
1(t), u

2
2(t), u

2
3(t), u

2
4(t), u

2
5(t)

]T
(3.34)

is the vector of control actions, and matrices M(2), C(2), K(2), T (2)
u have been given in the

previous subsection. From (3.32), we obtain the first-order state-space model

ẋ(2)(t) = A(2)x(2)(t) + B(2)u(2)(t),

{

ys

}(2)(t) = C
(2)
ys

x(2)(t),
(3.35)

with local state vector

x(2)(t) =
[

q(2)(t)
q̇(2)(t)

]

, (3.36)

state matrix

A(2) =

[

[0]5×5 I5

−{M(2)}−1K(2) −{M(2)}−1C(2)

]

, (3.37)

and control input matrix

B(2) =

[

[0]5×5
{

M(2)}−1T (2)
u

]

. (3.38)

To obtain the local vector of interstory drifts

{

ys

}(2)(t) =
[

{

ys

}2
1(t),

{

ys

}2
2(t),

{

ys

}2
3(t),

{

ys

}2
4(t),

{

ys

}2
5(t)

]T
, (3.39)

we take the matrix C
(2)
ys

given in (3.22) and define the local output matrix

C
(2)
ys

=
[

C
(2)
ys

[0]5×5
]

. (3.40)

Next, we consider the weighting matrices

Q(2) =
{

C
(2)
ys

}T

C
(2)
ys
, R(2) = 10−17.5 × I5, (3.41)



18 Mathematical Problems in Engineering

2

0

−2

0 10 20 30 40 50

Time (s)

G
ro

un
d

 a
cc

el
er

at
io

n
(m

/
s2 )

Figure 11: North-South El Centro 1940 seismic record.

and define the quadratic cost function

J(2)
(

x(2), u(2)
)

=
∫∞

0

[

{

x(2)(t)
}T

Q(2)x(2)(t) +
{

u(2)(t)
}T

R(2)u(2)(t)
]

dt

=
∫∞

0

[

{

y
(2)
s (t)

}T
y
(2)
s (t) +

{

u(2)(t)
}T

R(2)u(2)(t)
]

dt,

(3.42)

to compute a local state-feedback LQR controller

u(2)(t) = G(2) x(2)(t) (3.43)

with the following control gain matrix:

G(2)

=107×

⎡

⎢

⎢

⎣

−3.9335 0.0000 0.0000 0.0000 0.0000 −0.8574 −0.3617 −0.2497 −0.2051 −0.1878
3.9335 −3.9335 0.0000 0.0000 0.0000 0.4957 −0.7454 −0.3171 −0.2323 −0.2051
0.0000 3.9335 −3.9335 0.0000 0.0000 0.1120 0.5403 −0.7280 −0.3171 −0.2497
0.0000 0.0000 3.9335 −3.9335 0.0000 0.0446 0.1294 0.5403 −0.7454 −0.3617
0.0000 0.0000 0.0000 3.9335 −3.9335 0.0173 0.0446 0.1120 0.4957 −0.8574

⎤

⎥

⎥

⎦

.

(3.44)

4. Numerical Simulations

In this section, the vibrational response of the three-building system presented in Section 3
is computed for several control configurations. Specifically, the maximum absolute interstory
drifts andmaximum interbuilding approaches are computed for three control configurations:
(a) active-passive, (b) passive, and (c) uncoupled-active, which are schematically depicted in
Figures 9(a), 9(b), and 9(c). The vibrational response of the uncontrolled system (SubFigure
9(d)) is also computed, and it is used as a natural reference in the performance assessment. In
all the cases, the full-scale North-South El Centro 1940 seismic record obtained at the Imperial
Valley Irrigation District substation in El Centro, CA, during the Imperial Valley earthquake
of May 18, 1940, has been used as a ground acceleration input (see Figure 11).

The maximum absolute interstory drifts are displayed in Figure 12. Looking at
the central graphic, the excellent behavior of the active-passive (black asterisks) and the
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Figure 12: Maximum absolute interstory drifts for the North-South El Centro 1940 seismic excitation.

Table 1: Percentages of reduction in maximum absolute interstory drifts with respect to the uncontrolled
response.

Building 1 Building 2 Building 3
{ys}11 {ys}12 {ys}13 {ys}21 {ys}22 {ys}23 {ys}24 {ys}25 {ys}31 {ys}32

(a) Active-passive 24.7 26.7 37.4 72.4 71.7 71.3 71.1 71.5 43.3 43.7
(b) Passive 17.3 19.3 27.9 40.1 45.5 45.8 47.3 43.2 46.4 44.0
(c) Uncoupled-active 0 0 0 70.1 70.3 71.0 70.3 69.9 0 0

uncoupled-active (blue circles) control configurations can be clearly appreciated. In fact, the
data in Table 1 indicate that these active control configurations attain reductions of about 70%
in the peak interstory drift values with respect to the uncontrolled response. For the lateral
buildings, however, the situation is totally different. In this case, the active-passive control
configuration produces a lower but still significant reduction of the interstory drifts, while no
seismic protection is provided by the uncoupled-active configuration.

Regarding the interbuilding approaches, we can see in Figure 13 that interbuilding
separations of about 7.5 cm would have resulted in interbuilding collisions for the uncon-
trolled configuration. In contrast, interbuilding separations of about 2.5 cm can be considered
safe for the active-passive control configuration. An important reduction in the interbuilding
approaches is also achieved by the uncoupled-active configuration, but the data in Table 2
indicate that the percentages of reduction obtained by this configuration are about 25 points
inferior to those obtained by the active-passive control configuration.

To complete the comparison between the active-passive and the uncoupled-active
configurations, the corresponding maximum absolute control efforts are presented in Table 3.
The values in the table indicate that the active-passive configuration requires a slightly
higher level of control effort. However, considering the superior performance exhibited by
the active-passive configuration, the extra cost is certainly small.

The behavior of the passive control configuration is also remarkable. Despite its
simplicity and null power consumption, percentages of reduction in the interstory drifts
peak values of about 45% are achieved in buildings 2 and 3 and around 20% in building
1. Reductions of about 60% are also produced for the interbuilding approaches.
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Table 2: Percentages of reduction in maximum interbuilding approaches with respect to the uncontrolled
response.

Buildings 1-2 Buildings 2-3
{ya}11 {ya}12 {ya}13 {ya}21 {ya}22

(a) Active-passive 68.3 73.1 74.2 68.7 68.3
(b) Passive 55.4 57.8 58.6 63.8 63.7
(c) Uncoupled-active 43.3 48.6 48.5 45.5 49.9

Table 3: Maximum absolute control forces exerted by actuation devices in building 2.

Control actions in B(2) (×106 N)
a2
1 a2

2 a2
3 a2

4 a2
5

(a) Active-passive 4.64 4.22 3.48 2.49 1.30
(c) Uncoupled-active 4.33 3.88 3.14 2.27 1.26

Finally, it should be highlighted the robustness of the active-passive control configura-
tion against failures in the local active control system. Actually, in case of a full failure of the
active control system, the passive level of seismic protection can still be guaranteed by the
passive-active control configuration. In contrast, the same kind of failure in the uncoupled-
active configuration would produce a total loss of seismic protection.

5. Final Remarks and Conclusions

In this work, a mathematical model to compute the overall vibrational response of connected
multistructure mechanical systems has been presented. Using the proposed model and
following the connected control method approach, structural vibration control strategies
for seismic protection of multibuilding systems can be efficiently designed. As a practical
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application of the new ideas, different control configurations for seismic protection of a par-
ticular three-building system have been designed. For these control configurations, numerical
simulations of the three-building system vibrational response have been conducted using
the full-scale North-South 1940 seismic record as a seismic excitation. The simulation results
come to confirm the excellent properties of control configurations that combine passive
interbuilding dampers with local feedback control systems implemented in the buildings.
These hybrid active-passive control strategies possess the good properties of passive control
systems and also have the high-performance characteristics of active control systems.
Moreover, active-passive control configurations can be properly designed for multibuilding
systems that require different levels of seismic protection and are also remarkably robust
against failures in the local feedback control systems. Finally, it is worth highlighting that
the proposed active-passive control strategy is compatible with practically any control design
methodology of the local feedback control systems and also with semiactive implementations
of the actuation systems. Consequently, further research effort needs to be aimed at exploring
more complex scenarios involving issues of practical interest such as wireless implementation
of the communications systems [31], actuator saturation [32], actuation and sensor failures
[33], structural information constraints [34, 35], uncertain stochastic networked systems [36–
38], or limited frequency domain [39].
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This paper is concerned with the problem of controller design for switched systems under
asynchronous switching with exogenous disturbances. The attention is focused on designing the
feedback controller that guarantees the finite-time bounded and L∞ finite-time stability of the
dynamic system. Firstly, when there exists asynchronous switching between the controller and
the system, a sufficient condition for the existence of stabilizing switching law for the addressed
switched system is derived. It is proved that the switched system is finite-time stabilizable under
asynchronous switching satisfying the average dwell-time condition. Furthermore, the problem
of L∞ control for switched systems under asynchronous switching is also investigated. Finally, a
numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Switched systems are a class of hybrid systems consisting of subsystems and a switching law,
which defines a specific subsystem being activated during a certain interval of time. Many
real-world processes and systems can be modeled as switched systems such as chemical
processes and computer controlled systems. Besides, switched systems are widely applied
in many domains, including mechanical systems, automotive industry, aircraft and air traffic
control, and many other fields [1–3].

At early time, the issue of stability of switched systems which has attracted most
of the attention is one basic research topic. Lyapunov stability theory and its variations
or generalizations had played an important role in this research field. Common Lyapunov
function method and multiple Lyapunov functions method for switched system are
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presented by researchers [4–8]. For most switched systems, it is hard to find a common
Lyapunov function; however, we can guarantee the switched system is still stable under some
properly chosen switching signals which are found by using themultiple Lyapunov functions
technique. In addition, more researchers pay attention to average dwell-time control of
switched systems [9, 10]. In particular, the average dwell-time approach is employed to deal
with the control, observe, and filtering problem of switched delay systems or network control
systems [11–14].

As we know, a large number of literatures related to stability of switched systems focus
on Lyapunov asymptotic stability, which is defined over an infinite time interval. In many
practical applications, however, the main concern is the behavior of the system over a fixed
finite-time interval, for instance to avoid saturations or the excitation of nonlinear dynamics.
It should be clear that a finite-time stable system may not be Lyapunov asymptotical stable,
and a Lyapunov asymptotical stable system may not be finite-time stable since the transient
of a system response may exceed the bound. Recently, there have been some literatures
discussing the finite-time stability analysis of switched systems [15–17]. In [18], finite-time
bounded and finite-time weighted L2-gain for a class of switched delay systems with time-
varying external disturbances is addressed. Reference [19] investigated finite-time control
for switched discrete-time system. Considering the potential faults in a system, [20] studied
fault-tolerant control with finite-time stability for switched linear systems. Delay-dependent
observer-based H∞ finite-time control for switched systems with time-varying delay was
studied in [21]. In [22], the problems of finite-time stability analysis and stabilization for
switched nonlinear discrete-time systems are investigated, and then the results are extended
to H∞ finite-time bounded. However, in many applications, external disturbance is always
persistent bounded with infinite energy. H∞ control cannot be employed to deal with a
systemwith persistent bounded disturbance. In this situation, it is more appealing to develop
L∞ control for switched systems with disturbances of this type. So far, however, compared
with research results on H∞ finite-time stability, few results on L∞ finite-time stability of
switched systems have been given in the literature.

Additionally, in actual operation, there inevitably exists asynchronous switching
between the controllers and the practical subsystems, that is, the real switching time of
controllers exceeds or lags behind that of the practical subsystems, which will deteriorate
performance of systems, even makes system out of control. Up to now, there have been
a number of literatures on asynchronous switching control research of switched system
[23–28]. But it is worth to point that all of these studies focus on designing the controller
to guarantee the Lyapunov asymptotical stable or exponential stable of the system. To
the best of our knowledge, the finite-time stabilization issue of switched system under
asynchronous switching has not been fully investigated, which is quite an important issue
for the switched system. This motivates us to carry out present work. In this paper, we deal
with the problem of L∞ finite-time stabilization for switched systems under asynchronous
switching.

The main contributions of this paper are that several sufficient conditions ensuring the
finite-time bounded and L∞ finite-time stability are proposed with asynchronous switching
between the controllers and the practical subsystems. The result shows that it is unnecessary
to guarantee each subsystem can be finite-time stabilizable with L∞ performance by the
designed asynchronous switching controller. During the finite-time interval, the switching
frequency only needs to be limited in some value, then the switched system is finite-time
stable with L∞ performance by the designed controller despite of the asynchronous switching
between the controllers and the practical subsystems.
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This paper is organized as follows. In Section 2, some preliminary definitions are
provided, and the problem we deal with is precisely stated. Section 3 provides, the main
results of this paper: a sufficient condition for the existence of a state feedback controller
guaranteeing the finite-time stability under asynchronous switching between the controllers
and the practical subsystems. Moreover, L∞ control with finite-time stability for switched
systems under asynchronous switching is provided in Section 4. Finally, a numerical example
is presented by using LMI toolbox to illustrate the efficiency of the proposed method in
Section 5. Our conclusions are drawn in Section 6.

Notation. Throughout this paper, AT denotes transpose of matrix A, L∞ denotes space of
functions with bounded amplitude, ‖x(t)‖ denotes the usually 2-norm. λmax(P), and λmin(P)
denote the maximum and minimum eigenvalues of matrix P , respectively, I is an identity
matrix with appropriate dimension. S > 0 denotes S is a positive definite symmetric matrix.
Z denotes the integer set and Z+ denotes the positive integer set.

2. Problem Formulation and Preliminary

A switched system is considered as follows:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) +Gσ(t)w(t), (2.1)

where x(t) ∈ Rn is the system state. u(t) ∈ Rp is the control input, x(t0) = x0 is the initial
state of the system. w(t) ∈ Rq is the measurement noise over the interval [t0, Tf], which
satisfies supt∈[t0,Tf ]‖w(t)‖ < ∞, σ(t) : Z+ → N = {1, 2, . . . ,N} is a switching signal which is
a piecewise constant function depending on time t or state x(t), and N denotes the number
of subsystems. Moreover, σ(t) = i means that the ith subsystem is activated. Ai ∈ Rn×n, Bi ∈
Rn×p, Gi ∈ Rn×q for i ∈ N are real-valued matrices with appropriate dimensions.

Assume that the state of the switched system (2.1) does not jump at the switching
instants, that is, the trajectory x(t) is everywhere continuous. The switching law σ(t) :
Z+ → N = {1, 2, . . . ,N} discussed in this paper is time dependent, that is, σ(t) :
{(t0, σ(t0)), (t1, σ(t1)), . . . , (tk, σ(tk))}, k ∈ Z, where t0 is the initial switching instant, and tk
denotes the kth switching instant.

Owing to asynchronous switching, the practical switching instant of controller is
different from that of systems. For convenience, σ ′(t) is used to denote the practical switching
signal of controller, σ ′(t) can be written as σ ′(t) : {(t0 + Δ0, σ(t0)), (t1 + Δ1, σ(t1)), . . . , (tk +
Δk, σ(tk))}, k ∈ Z, where |Δk| < infk≥0(tk+1 − tk), Δk > 0 (or |Δk| < infk≥0(tk − tk−1),Δk < 0);
Δk represents the delayed period of the controller switching (or the exceeded period of
the controller switching). In both cases, the period Δk is said to be the mismatched period
between the controller and the system.

Remark 2.1. Mismatched period Δk guarantees that there always exists a period that the
controller and the system operate synchronously, which makes it possible to design the
stabilizable controller for the system.

Under the asynchronous switching, the switched controller can be written as

u(t) = Kσ ′(t)x(t). (2.2)
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If we substitute the u(t) = Kσ ′(t)x(t) into system (2.1), we can obtain that

ẋ(t) =
(
Aσ(t) + Bσ(t)Kσ ′(t)

)
x(t) +Gσ(t)w(t). (2.3)

The following lemma will be useful for the design of controller.

Lemma 2.2 (see [29]). If a real scalar function ϕ(t), v(t) satisfies the following differential
inequality:

ϕ̇(t) ≤ ςϕ(t) + κv(t), (2.4)

then we have

ϕ(t) ≤ eς(t−t0)ϕ(t0) + κ

∫ t−t0

0
eςτv(t − τ)dτ, (2.5)

where ς ∈ R, κ ∈ R, t ≥ t0.

Let us review the definition of average dwell-time, which will be useful in designing
the stabilization controller to guarantee the system finite-time stable.

Definition 2.3 (see [30]). For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the switching number of
σ(t) on an interval (T1, T2), if

Nσ(T1, T2) ≤ N0 +
T2 − T1

τa
(2.6)

holds for given N0 ≥ 0, τa > 0. Then the constant τa is called the average dwell time, and N0

is the chatter bound.
For switched system, the general conception of finite-time stability concerns the

boundness of continuous state x(t) over finite-time interval [t0, Tf] with respect to given
initial condition x0. This conception can be formulized through following definition.

Definition 2.4. The switched linear system (2.1) with Gσ(t) ≡ 0 is said to be finite-time stabi-
lizable under the asynchronous switching control mode with respect to (c1, c2, Tf , σ(t), σ ′(t))
with c1 < c2 and a given switching signal σ(t), if ‖x(t)‖ ≤ c2, for all t ∈ [t0, Tf], whenever
‖x0‖ ≤ c1.

Definition 2.5. Switched system (2.1) is said to be L∞ finite-time stabilizable with respect to
(c1, c2, Tf , σ(t), σ ′(t)) where c1 < c2, σ(t) is a switching signal of the system, and σ ′(t) is a
switching signal of the controller, the following conditions should be satisfied.

(i) Switched linear system (2.1) with Gσ(t) ≡ 0 is finite-time stabilizable.
(ii) Under zero-initial condition x(t0) = 0, the following inequality holds:

sup
t∈[t0,Tf]

‖x(t)‖ ≤ γ sup
t∈[t0,Tf]

‖w(t)‖, ∀w(t) : sup
t∈[t0,Tf]

‖w(t)‖ < ∞. (2.7)

The main issue in this paper is given as follows.



Mathematical Problems in Engineering 5

Switching mode of
system

Switching mode of
controller

Subsystem i Subsystem j

tk−1 + ∆k−1 tk

Controller Ki

tk + ∆k

Controller Ki

tk+1

Controller Kj

Figure 1: Asynchronous switching mode.

Given switched system (2.1), find a sufficient condition ensuring the finite-time
stability with respect to (c1, c2, Tf , σ(t), σ ′(t)) under the asynchronous switching control
mode, then the result will be extended to the L∞ controller design for system (2.1).

3. Finite-Time Stabilization under the Asynchronous Switching

It is assumed that the ith subsystem switched to the jth subsystem at the switching instant
tk. Owing to asynchronous switching, the switching instant of ith controller is tk + Δk, then
there exists mismatched period at time interval [tk, tk +Δk), Δk > 0 (or (tk +Δk, tk), Δk < 0).
In this period, the controller Ki affected the jth subsystem (or the controller Kj affected the
ith subsystem).

Remark 3.1. We consider the case ofΔk > 0, that is to say, the switching time of the controller is
lag of the switching time of the system. Figure 1, illustrates the asynchronous switchingmode
between the controller and the subsystems. From Figure 1, we can see that the controllerKi of
the ith subsystem affects the ith subsystem in the matched period [tk−1 + Δk−1, tk) and affects
the jth subsystem in the mismatched period [tk, tk + Δk).

The following theorem presents the finite-time stabilization design method of the
system (2.1) under asynchronous switching.

Theorem 3.2. If there exist matrices Pi > 0, Pij > 0, Ki and scalars μ1 > 1, μ2 > 1, λ+ > 0, λ− > 0
such that

Pi < μ1Pij , Pij < μ2Pi, (3.1)

(Ai + BiKi)TPi + Pi(Ai + BiKi) < λ−Pi, (3.2)

(
Aj + BjKi

)T
Pij + Pij

(
Aj + BjKi

)
< λ+Pij , (3.3)

τa >

(
Tf − t0

)
ln
(
μ1μ2

)

ln
(
(ε2/δ2) · B ·

(
μ2/
(
μ1μ2

)N0
))

− λ+T+
(
t0, Tf

) − λ−T−(t0, Tf
) , (3.4)

where B denotes infi,j∈N{λmin(Pi), λmin(Pij)}/supi,j∈N{λmax(Pi), λmax(Pij)}, then switched system
(2.1) is finite-time stabilizable with respect to (δ, ε, Tf , σ(t), σ ′(t)) under the feedback controller u(t) =
Kσ ′(t)x(t), where T−(t0, Tf) and T+(t0, Tf) denote the matched period and the mismatched period in
finite-time interval [t0, Tf], respectively.
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Proof. Here, we only discuss the situation of Δk > 0. For Δk < 0, the proof method is similar,
and we can reach the same conclusion.

When t ∈ [tk−1 + Δk−1, tk), for the ith subsystem, the state feedback controller u(t) =
Kix(t). So the state equation of closed-loop system can be written as

ẋ(t) = (Ai + BiKi)x(t). (3.5)

Choose a switching Lyapunov function as follows:

Vi(t) = xT (t)Pix(t). (3.6)

By (3.2), it implies that

V̇i(t) < λ−Vi(t). (3.7)

When t ∈ [tk, tk +Δk), for the jth subsystem, the state feedback controller is still u(t) = Kix(t).
So the closed-loop system can be described as

ẋ(t) =
(
Aj + BjKi

)
x(t). (3.8)

Consider the Lyapunov function candidate as follows:

Vij(t) = xT (t)Pijx(t). (3.9)

By (3.3), we can obtain that

V̇ij(t) < λ+Vij(t). (3.10)

Notice that the Lyapunov function (3.6) and (3.9) can be rewritten as

Vi(t) = xT (t)Pix(t), t ∈ [tk−1 + Δk−1, tk), k = 1, 2, . . . ,

Vi(t) = xT (t)Pijx(t), t ∈ [tk, tk + Δk), k = 0, 1, . . . .
(3.11)

Let t0 < t1 < t2 < · · · < tk = Tf is the switching time in the period [t0, Tf], we define the
following piecewise Lyapunov function:

V (t) =
{

xT (t)Pix(t), t ∈ [tr + Δr , tr+1), r = 0, 1, . . . , k − 1,
xT (t)Pijx(t), t ∈ [tr , tr + Δr), r = 0, 1, . . . , k − 1.

(3.12)
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By (3.7) and (3.10), we can obtain that

V (t) < eλ
−(t−tk−1−Δk−1)V (tk−1 + Δk−1)

< μ1e
λ−(t−tk−1−Δk−1)V

(
(tk−1 + Δk−1)−

)

< μ1e
λ+Δk−1eλ

−(t−tk−1−Δk−1)V (tk−1)

< μ1μ2e
λ+Δk−1eλ

−(t−tk−1−Δk−1)V
(
t−k−1
)

< μ1μ2e
λ+Δk−1eλ

−(t−tk−1−Δk−1)eλ
−(tk−1−tk−2−Δk−2)V (tk−2 + Δk−2)

< μ2
1μ2e

λ+Δk−1eλ
−(t−tk−1−Δk−1)eλ

−(tk−1−tk−2−Δk−2)V
(
(tk−2 + Δk−2)−

)

< μ2
1μ2e

λ+Δk−1eλ
+Δk−2eλ

−(t−tk−1−Δk−1)eλ
−(tk−1−tk−2−Δk−2)V (tk−2)

= μ2
1μ2e

λ+(Δk−1+Δk−2)+λ−[(t−tk−1−Δk−1)+(tk−1−tk−2−Δk−2)]V (tk−2)

· · ·

< μk
1μ

k−1
2 eλ

+(Δk−1+···+Δ0)+λ−[(t−tk−1−Δk−1)+(tk−1−tk−2−Δk−2)+···+(t1−t0−Δ0)]V (t0)

< μ−1
2

(
μ1μ2

)k[t0 ,Tf ]eλ
+T+(t0,Tf )+λ−T−(t0,Tf )V (t0),

(3.13)

where T+(t0, Tf) denotes the sum of the mismatched period between the controllers and
subsystem in (t0, Tf). T−(t0, Tf) denotes the sum of the matched period between the
controllers and subsystem in [t0, Tf].

And from (3.12)we have

V (t) ≥ inf
i,j∈N
{
λmin(Pi), λmin

(
Pij

)}‖x(t)‖2. (3.14)

On the other hand, for i ∈ N, we have

V (t0) ≤ sup
i,j∈N

{
λmax(Pi), λmax

(
Pij

)}‖x(t0)‖2. (3.15)

Using the fact

‖x(t0)‖ ≤ δ, (3.16)

we get

V (t0) ≤ sup
i,j∈N

{
λmax(Pi), λmax

(
Pij

)}
δ2. (3.17)
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Altogether (3.13)–(3.17), the following inequality can be derived

‖x(t)‖2 ≤ μ−1
2

(
μ1μ2

)k[t0 ,Tf ]eλ
+T+(t0,Tf )+λ−T−(t0,Tf )

supi,j∈N
{
λmax(Pi), λmax

(
Pij

)}

infi,j∈N
{
λmin(Pi), λmin

(
Pij

)} δ2. (3.18)

From the Definition 2.3, we know that k[t0,Tf ] = Nσ , then we have the relation

k[t0,Tf ] ≤ N0 +
Tf − t0

τa
. (3.19)

From (3.4) and (3.19), we get

μ−1
2

(
μ1μ2

)k[t0 ,Tf ]eλ
+T+(t0,Tf )+λ−T−(t0,Tf )

supi,j∈N
{
λmax(Pi), λmax

(
Pij

)}

infi,j∈N
{
λmin(Pi), λmin

(
Pij

)} δ2 < ε2. (3.20)

According to (3.18) and (3.20), we have

‖x(t)‖ < ε. (3.21)

The proof is completed.

Remark 3.3. From (3.2) and (3.3), we know that for finite-time stabilization issue, the
subsystem needs not to be stabilized in finite-time interval, that is to say, the designed
asynchronous switching controller needs not to stabilize the subsystem in thematched period
and the mismatched period in finite-time interval [t0, Tf], but the whole system is finite-time
stabilizable. Reference [31] gives the exponential stabilization condition under asynchronous
switching, which requests that the subsystem can be exponentially stabilized in the matched
period. But as to the problem of finite-time stabilization, it is unnecessary to request that the
subsystem can be stabilized in the matched period or mismatched period. In particular, when
λ+ = λ− = λ in (3.2) and (3.3), (3.4) becomes

τa >

(
Tf − t0

)
ln
(
μ1μ2

)

ln
(
(ε2/δ2) · B ·

(
μ2/
(
μ1μ2

)N0
))

− λ
(
Tf − t0

) (3.22)

which is independent of T+(t0, Tf) and T−(t0, Tf).

Remark 3.4. In fact, (3.4) in Theorem 3.2 implies that if switching sequence σ(t) : {(t0, σ(t0)),
(t1, σ(t1)), . . . , (tk, σ(tk))} of the system can be prespecified, that is, τa is a known constant,
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the matched period T−(t0, Tf) and the mismatched period T+(t0, Tf) should satisfy the
following relation:

λ+T+(t0, Tf
)
+ λ−T−(t0, Tf

)
< ln

(
ε2

δ2
· infi,j∈N

{
λmin(Pi), λmin

(
Pij

)}

supi,j∈N
{
λmax(Pi), λmax

(
Pij

)} · μ2
(
μ1μ2

)N0

)

−
(
Tf − t0

)
ln
(
μ1μ2

)

τa
.

(3.23)

Remark 3.5. Reference [31] gives the design method of exponential stabilization controller
under asynchronous switching. The condition implies that the ratio of the mismatched
period and the matched period should be less than some value which means that the
matched period should be large enough to stabilize the subsystem. However, from the
condition of Theorem 3.2, we know that when the switching sequence is unknown, the ratio
of the mismatched period and the matched period can be designed freely to guarantee the
finite-time stability of the system by the asynchronous switched controller. But if switching
sequence of the system is prespecified, the ratio of the mismatched period and the matched
period may need to be limited. On the other hand, the average dwell-time scheme with
Lyapunov stability limits the dwell-time τa and the ratio of T+(t0, Tf) and T−(t0, Tf) to satisfy
the proposed condition in [31] at the same time. But for the average dwell-time scheme with
finite-time stability, we can predetermine one value among two parameters of the dwell-time
τa and the ratio of T+(t0, Tf) and T−(t0, Tf), then the other value can be determined by the
condition (3.4).

Remark 3.6. In order to get the solution of the asynchronous switched controllerKi, we denote
Xi = P−1

i , Xij = P−1
ij , Wi = KiP

−1
i , then (3.1) to (3.3) can be written as

μ1Xi > Xij , μ2Xij > Xi, (3.24)

(AiXi + BiWi)T + (AiXi + BiWi) < λ−Xi, (3.25)

Xij

(
Aj + BjWiX

−1
i

)T
+
(
Aj + BjWiX

−1
i

)
Xij < λ+Xij . (3.26)

It is noticed that the matrix inequalities (3.24), (3.25), and(3.26) are coupled. Therefore, we
can firstly solve the linear matrix inequality (3.25) to obtain the solution to matrices Xi

and Wi. Then we solve the matrix inequality (3.24), (3.26) by substituting Xi and Wi into
(3.24), (3.26). By adjusting the parameter μ1, μ2, and λ+ appropriately, we seek the feasible
solutions Xi,Wi and Xij such that the matrix inequalities (3.24) and (3.26) hold. If the chosen
parameters μ1, μ2, and λ+ have no feasible solution, we can adjust μ1, μ2, or λ+ to be larger.
Following this guideline, the solution to the matrix inequalities (3.24)to (3.26) will be found.

4. L∞ Finite-Time Stabilization under the Asynchronous Switching

Now, we are in a position to investigate L∞ finite-time stabilization design method of the
system (2.1) under asynchronous switching.
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Theorem 4.1. If there exist matrices Pi > 0, Pij > 0, Ki and scalars μ1 > 1, μ2 > 1, λ+ > 0, λ− > 0
such that

Pi < μ1Pij , Pij < μ2Pi, (4.1)
[
(Ai + BiKi)TPi + Pi(Ai + BiKi) − λ−Pi PiGi

GT
i Pi −εiI

]
< 0, (4.2)

[(
Aj + BjKi

)T
Pij + Pij

(
Aj + BjKi

) − λ+Pij PijGj

GT
j Pij −εijI

]
< 0, (4.3)

τa >

(
Tf − t0

)
ln
(
μ1μ2

)

ln
(
(ε2/δ2) · B ·

(
μ2/
(
μ1μ2

)N0
))

− λ+T+
(
t0, Tf

) − λ−T−(t0, Tf
) . (4.4)

L∞ disturbance attenuation performance γ− ≤
√
εi(eλ

−T−(t0,Tf ) − 1)/λ−λmin(Pi) during the matched

period and γ+ ≤
√
εij(eλ

+T+(t0,Tf ) − 1)/λ+λmin(Pij) during the mismatched period, then switched
system (2.1) is finite-time stabilizable of L∞ disturbance attenuation performance with respect to
(δ, ε, Tf , σ(t), σ ′(t)) under the feedback controller u(t) = Kσ ′(t)x(t), where T−(t0, Tf) and T+(t0, Tf)
denote the matched period and the mismatched period in finite-time interval [t0, Tf], respectively.

Proof. It can be concluded from Theorem 4.1 that system (2.1) is finite-time stable under the
feedback controller u(t) = Kσ ′(t)x(t).

When t ∈ [tk−1 + Δk−1, tk), for the ith subsystem, the state feedback controller u(t) =
Kix(t). So the state equation of closed-loop system can be written as

ẋ(t) = (Ai + BiKi)x(t) +Giw(t). (4.5)

Choose a switching Lyapunov function as follows:

Vi(t) = xT (t)Pix(t), t ∈ [tk−1 + Δk−1, tk), k = 1, 2, . . . . (4.6)

By (4.2), it implies that

V̇i(t) ≤ λ−Vi(t) + εiw
T(t)w(t). (4.7)

With zero initial conditions, by Lemma 2.2, we have

Vi(t) ≤ εi

∫ t−tk−1−Δk−1

0
eλ

−τwT (t − τ)w(t − τ)dτ. (4.8)

Note that

Vi(t) ≥ λmin(Pi)‖x(t)‖2. (4.9)
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From (4.8) and (4.9), we can obtain

λmin(Pi) sup
t∈[tk−1+Δk−1,tk)

‖x(t)‖2 ≤
εi
(
eλ

−T−(t0,Tf ) − 1
)

λ−
sup

t∈[tk−1+Δk−1,tk)
‖w(t)‖2. (4.10)

From (4.10), we have

supt∈[tk−1+Δk−1,tk)‖x(t)‖
supt∈[tk−1+Δk−1,tk)‖w(t)‖ ≤

√√√√εi
(
eλ

−T−(t0,Tf ) − 1
)

λ−λmin(Pi)
. (4.11)

When t ∈ [tk, tk +Δk), for the jth subsystem, the state feedback controller is still u(t) = Kix(t).
So the closed-loop system can be described as

ẋ(t) =
(
Aj + BjKi

)
x(t) +Gjw(t). (4.12)

Consider the Lyapunov function candidate as follows:

Vij(t) = xT (t)Pijx(t), t ∈ [tk, tk + Δk), k = 0, 1, . . . . (4.13)

By (4.3), it implies that

V̇ij(t) ≤ λ+Vij(t) + εijw
T(t)w(t). (4.14)

With zero initial conditions, by Lemma 2.2, we have

Vij(t) ≤ εij

∫ t−tk

0
eλ

+τwT (t − τ)w(t − τ)dτ. (4.15)

Notice that

Vij(t) ≥ λmin
(
Pij

)‖x(t)‖2 . (4.16)

From (4.15) and (4.16), we can obtain

λmin
(
Pij

)
sup

t∈[tk ,tk+Δk)
‖x(t)‖2 ≤ εij

(
eλ

+T+(t0,Tf ) − 1
)

λ+
sup

t∈[tk ,tk+Δk)
‖w(t)‖2. (4.17)

From (4.17), we have

supt∈[tk ,tk+Δk)‖x(t)‖
supt∈[tk ,tk+Δk)‖w(t)‖ ≤

√√√√εij
(
eλ

+T+(t0,Tf ) − 1
)

λ+λmin
(
Pij

) . (4.18)
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By (4.11) and (4.18), during the finite-time [t0, Tf] =
⋃k−1

r=0[tr , tr + Δr) ∪ [tr + Δr , tr+1), we can
obtain

supt∈[t0,Tf )‖x(t)‖
supt∈[t0,Tf )‖w(t)‖≤max

⎛

⎝
√
eλ

−T−(t0,Tf ) − 1
λ−

max
i∈N

(
εi

λmin(Pi)

)
,

√√√√eλ
+T+(t0,Tf ) − 1

λ+
max
i,j∈N

(
εij

λmin
(
Pij

)
)⎞

⎠

(4.19)

By the definition of L∞ finite-time stabilization, we can obtain that the designed controller
u(t) = Kσ ′(t)x(t) can guarantee the finite-time stability of L∞ disturbance attenuation
performance. This completes the proof.

Remark 4.2. Theorem 4.1 represents that if each subsystem satisfies L∞ disturbance atten-
uation performance during the mismatched period and the matched period, the designed
asynchronous switched controller u(t) = Kσ ′(t)x(t) can guarantee the whole system has L∞
disturbance attenuation performance. However, the condition of each subsystem satisfying
L∞ disturbance attenuation performance during the mismatched period and the matched
period seems to be more conservative, and in fact through the following theorem, this
condition is not essential.

Remark 4.3. Although Theorem 4.1 gives the method of finite-time stabilization with L∞
disturbance attenuation performance, the matched period T−(t0, Tf) and the mismatched
period T+(t0, Tf) need to be prespecified in order to obtain L∞ disturbance attenuation
performance of the system. However, in practical engineering it is difficult to obtain
the matched period T−(t0, Tf) and the mismatched period T+(t0, Tf) before designing the
controller. Based on these, the following result can be derived.

Theorem 4.4. If there exist matrices Pi > 0, Pij > 0, Ki and scalars μ1 > 1, μ2 > 1, λ+ > 0, λ− > 0
such that

Pi < μ1Pij , Pij < μ2Pi, (4.20)
[
(Ai + BiKi)TPi + Pi(Ai + BiKi) − λ−Pi PiGi

GT
i Pi −εiI

]
< 0, (4.21)

[(
Aj + BjKi

)T
Pij + Pij

(
Aj + BjKi

) − λ+Pij PijGj

GT
j Pij −εijI

]
< 0 , (4.22)

τa >

(
Tf − t0

)
ln
(
μ1μ2

)

ln
(
(ε2/δ2) · B ·

(
μ2/
(
μ1μ2

)N0
))

− λ+T+
(
t0, Tf

) − λ−T−(t0, Tf
) (4.23)

and in finite-time interval [t0, Tf] the measurement noise w(t) satisfies supt∈[t0,Tf ]‖w(t)‖ < ∞,
then switched system (2.1) is finite-time stabilizable of L∞ disturbance attenuation performance γ =√
maxi,j∈N(εi, εij)(emax(λ+,λ−)(Tf−t0) − 1)/max(λ+, λ−)mini,j∈N(λmin(Pi), λmin(Pij)) with respect to

(δ, ε, Tf , σ(t), σ ′(t)) under the feedback controller u(t) = Kσ ′(t)x(t), where T−(t0, Tf) and T+(t0, Tf)
denote the matched period and the mismatched period in finite-time interval [t0, Tf], respectively.
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Proof. At first, from Theorem 4.4, system (2.1) is finite-time stable under the feedback
controller u(t) = Kσ ′(t)x(t).

Then following the proof line of Theorem 4.1 and considering (4.6) and (4.13), we can
define piecewise Lyapunov function

V (t) =
{

xT (t)Pix(t), t ∈ [tr + Δr , tr+1), r = 0, 1, . . . , k − 1,
xT (t)Pijx(t), t ∈ [tr , tr + Δr), r = 0, 1, . . . , k − 1.

(4.24)

By (4.21) and (4.22), it implies that

V̇ (t) ≤ max
(
λ+, λ−

)
V (t) +max

i,j∈N
(
εi, εij

)
wT (t)w(t). (4.25)

With zero initial conditions, by Lemma 2.2, we have

V (t) ≤ max
i,j∈N

(
εi, εij

) ∫Tf−t0

0
emax(λ+,λ−)τwT (t − τ)w(t − τ)dτ. (4.26)

Notice that

V (t) ≥ min
i,j∈N
(
λmin(Pi), λmin

(
Pij

))‖x(t)‖2 . (4.27)

From (4.26) and (4.27), we can obtain

min
i,j∈N
(
λmin(Pi), λmin

(
Pij

))
sup

t∈[t0,Tf ]
‖x(t)‖2 ≤

maxi,j∈N
(
εi, εij

)(
emax(λ+,λ−)(Tf−t0) − 1

)

max(λ+, λ−)
sup

t∈[t0,Tf]
‖w(t)‖2.

(4.28)

From (4.28), we have

supt∈[t0,Tf ]‖x(t)‖
supt∈[t0,Tf ]‖w(t)‖ ≤

√√√√√
maxi,j∈N

(
εi, εij

)(
emax(λ+,λ−)(Tf−t0) − 1

)

max(λ+, λ−)mini,j∈N
(
λmin(Pi), λmin

(
Pij

)) . (4.29)

By the definition of L∞ finite-time stabilization, we can obtain that the designed controller
u(t) = Kσ ′(t)x(t) can guarantee the finite-time stability of L∞ disturbance attenuation
performance. This completes the proof.

Remark 4.5. It should be pointed out that the conditions in Theorems 4.4 are not standard
LMIs conditions. However, through the variable substitution, (4.20) to (4.22) can be solved
following the method proposed in Remark 3.6.

Remark 4.6. Theorem 4.4 presents that if the measurement noise w(t) is magnitude bounded
during finite-time interval [t0, Tf], then we can design the asynchronous switching controller
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such that the system has L∞ disturbance attenuation performance. However, it is unnecessary
to guarantee L∞ disturbance attenuation performance during the mismatched period and the
matched period by the designed controller which is less conservative than Theorem 4.1.

5. Numerical Example

We consider an example to illustrate the main result. Consider the switched linear system
given by the system (2.1) with u(t) = Kσ ′(t)x(t),

ẋ(t) =
(
Aσ(t) + Bσ(t)Kσ ′(t)

)
x(t) +Gσ(t)w(t), (5.1)

where A1 =
[ −1 0

0 0.1

]
, A2 =

[
2.1 1
0 0.3

]
, B1 =

[
0.2 0.14
0 2

]
, B2 =

[
1 0
0.3 0.1

]
, G1 =

[ 0.2 0
0.3 0.1

]
, G2 =

[
0.1 0.2
0.4 0

]
.

Applying Theorem 4.4 and solving corresponding matrix inequalities lead to feasible
solutions, when δ = 0.1, ε = 10, ε1 = ε2 = 100, ε12 = ε21 = 10, μ1 = μ2 = 20, λ+ = 100, λ− =
10, Tf = 0.005, t0 = 0,N0 = 0, τa = 0.00375.

K1 =
[

9.6364 1.4424
−10.3539 0.4207

]
, K2 =

[
2.1337 0.4083
−0.6623 3.5807

]
,

X1 =
[

8.2146 −14.6028
−14.6028 86.9322

]
, X2 =

[
92.6569 14.6028
14.6028 13.9393

]
,

X12 =
[
7.9844 −0.3851
−0.3851 9.9854

]
, X21 =

[
10.1766 0.1461
0.1461 8.7611

]
.

(5.2)

Then from (3.23), we know that the matched period T−(t0, Tf) and the mismatched period
T+(t0, Tf) satisfy the following relation:

100T+(t0, Tf
)
+ 10T−(t0, Tf

)
< 0.36. (5.3)

Notice that T+(t0, Tf) + T−(t0, Tf) = 0.005, then we have

T+(t0, Tf
)
< 0.003,

0.003 < T−(t0, Tf
)
< 0.005.

(5.4)

the L∞ state feedback controller K1, K2 can guarantee that system (5.1) is finite-time
stabilizable with respect to (0.1, 10, 0.005, σ(t), σ ′(t)) under the asynchronous switchingwhere
L∞ disturbance attenuation performance γ = 7.8.

6. Conclusions

The L∞ finite-time stabilization problems for switched linear system are addressed in this
paper. When there exists asynchronous switching between the controller and the system,
a sufficient condition for the existence of stabilizing switching law for the addressed
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switched system is derived. It is proved that the switched system is finite-time stabilizable
under asynchronous switching satisfying the average dwell-time condition. Furthermore,
the problem of L∞ control for switched systems under asynchronous switching is also
investigated. At last, a numerical example is given to illustrate the effectiveness of the
proposed method.
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This paper is concerned with the stability analysis and semistability theorems for delay impulsive
systems having a continuum of equilibria. We relate stability and semistability to the classical
concepts of system storage functions to impulsive systems providing a generalized hybrid system
energy interpretation in terms of storage energy. We show a set of Lyapunov-based sufficient
conditions for establishing these stability properties. These make it possible to deduce properties
of the Lyapunov functional and thus lead to sufficient conditions for stability and semistability.
Our proposed results are evaluated using an illustrative example to show their effectiveness.

1. Introduction

Due to their numerous applications in various fields of sciences and engineering, impulsive
differential systems have become a large and growing interdisciplinary area of research.
In recent years, the issues of stability in impulsive differential equations with time delays
have attracted increasing interest in both theoretical research and practical applications [1–
9], while difficulties and challenges remain in the area of impulsive differential equations
[10], especially those involving time delays [11]. Various mathematical models in the study
of biology, population dynamics, ecology and epidemic, and so forth can be expressed
by impulsive delay differential equations. These processes and phenomena, for which the
adequate mathematical models are impulsive delay differential equations, are characterized
by the fact that there is sudden change of their state and that the processes under
consideration depend on their prehistory at each moment of time. In the transmission of
the impulse information, input delays are often encountered. Control and synchronization
of chaotic systems are considered in [12, 13]. By utilizing impulsive feedback control, all the
solutions of the Lorenz chaotic system will converge to an equilibrium point. The application
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of networked control systems is considered in [14–17], while in [14], when analyzing
the asymptotic stability for discrete-time neural networks, the activation functions are not
required to be differentiable or strictly monotonic. The existence of the equilibrium point is
first proved under mild conditions. By constructing a new Lyapnuov-Krasovskii functional,
a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for
the discrete-time neural networks to be globally asymptotically stable. In [18], Razumikhin-
type theorems are established which guarantee ISS/iISS for delayed impulsive systems
with external input affecting both the continuous dynamics and the discrete dynamics. It
is shown that when the delayed continuous dynamics are ISS/iISS but the discrete dynamics
governing the impulses are not, the ISS/iISS property of the impulsive system can be
retained if the length of the impulsive interval is large enough. Conversely, when the delayed
continuous dynamics are not ISS/iISS but the discrete dynamics governing the impulses
are, the impulsive system can achieve ISS/iISS. In [19, 20], the authors consider linear time
invariant uncertain sampled-data systems in which there are two sources of uncertainty: the
values of the process parameters can be unknown while satisfying a polytopic condition
and the sampling intervals can be uncertain and variable. They model such systems as
linear impulsive systems and they apply their theorem to the analysis and state-feedback
stabilization. They find a positive constant which determines an upper bound on the
sampling intervals for which the stability of the closed loop is guaranteed. Population growth
and biological systems are considered in [21, 22]. Stochastic systems are considered in [23–
25], and so forth. However, the corresponding theory for impulsive systems with time delays
having a continuum of equilibria has been relatively less developed.

The purpose of this paper is to study the stability and semistability properties
for nonlinear delayed impulsive systems with continuum of equilibria. Examples of such
systems include mechanical systems having rigid-body modes and isospectral matrix
dynamical systems [26]. Such systems also arise in chemical kinetics, compartmental
modeling, and adaptive control. Since every neighborhood of a nonisolated equilibrium
contains another equilibrium, a nonisolated equilibrium cannot be asymptotically stable.
Thus asymptotic stability is not the appropriate notion of stability for systems having
a continuum of equilibria. Two notions that are of particular relevance to such systems
are convergence and semistability. Convergence is the property whereby every solution
converges to a limit point that may depend on the initial condition. Semistability is the
additional requirement that all solutions converge to limit points that are Lyapunov stable.
More precisely, an equilibrium is semistable if it is Lyapunov stable, and every trajectory
starting in a neighborhood of the equilibrium converges to a (possibly different) Lyapunov
stable equilibrium. It can be seen that, for an equilibrium, asymptotic stability implies
semistability, while semistability implies Lyapunov stability. We will employ the method of
Lyapunov function for the study of stability and semistability of impulsive systems with time
delays. Several stability criteria are established. A set of Lyapunov-based sufficient conditions
is provided for stability criteria, then we extend the notion of stability to develop the concept
of semistability for delay impulsive systems. Finally, an example illustrates the effectiveness
of our approach.

2. Preliminaries

Let N denote the set of positive integer numbers. Let PCt denote the set of piecewise right
continuous functions φ : [t − r, t] → R

n with the norm defined by ‖φ‖tr = sup−r≤s≤0‖φ(t + s)‖.
For simplicity, define ‖φ‖r = ‖φ‖0r , for φ ∈ PC0. For given r > 0, if x ∈ PC([t0 − r,+∞),Rn),
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then for each t ≥ t0, we define xt, xt− ∈ PC0 by xt(s) = x(t + s) (−r ≤ s ≤ 0) and xt−(s) =
x(t + s) (−r ≤ s < 0), respectively. A function α : R

+ → R
+ is of class K, if α is continuous,

strictly increasing, and α(0) = 0. For a given scalar ρ ≥ 0, let B(ρ) = {x ∈ R
n; ‖x‖ ≤ ρ}.

Let Ω ∈ R
n be an open set and B(ρ) ⊂ Ω for some ρ > 0. Given functionals f :

R
+ × PC([−r, 0],Ω) → R

n, g : R
+ ×Ω → R

n, satisfying f(t, 0) = 0, g(0, 0) = 0. Considering
the following nonlinear time-delay impulsive system Σt described by the state equation

ẋ(t) = f(t, xt), t > t0, t /= tk, k ∈ N, (2.1)

x(t+) = g(t, x(t)), t = tk, k ∈ N, (2.2)

x(t0 + θ) = φ(θ), θ ∈ [−r, 0], (2.3)

where x(t) ∈ R
n is the system state, ẋ(t) denotes the right-hand derivative of x(t), x(t+) and

x(t−) denote the limit from the right and the limit from the left at point t, respectively. t0 is
the initial time. Here we assume that the solutions of system Σt are right continuous, that is,
x(t+) = x(t). {tk}, k ∈ N is a strictly increasing sequence of impulse times in (t0,∞) where
limk→∞tk = ∞.

Definition 2.1. The function f : R × PC → R
n is said to be composite-PC, if for each t0 ∈ R

and α > 0, x ∈ PC([t0 − r, t0 + α],Rn) and x is continuous at each t /= tk in [t0, t0 + α], then the
composite function h(x) = f(t, xt) ∈ PC([t0 − r, t0 + α],Rn).

Definition 2.2. The function f : R × PC → R
n is said to be quasi-bounded, if for each t0 ∈ R

+,
α > 0, and for each compact set F ∈ R

n, there exists some M > 0, such that ‖f(t, ψ)‖ ≤ M for
all (t, ψ) ∈ [t0, t0 + α] × PC([−r, 0], F).

Definition 2.3. The function x : [t0 − r, t0 + α] → R
n with α > 0 is said to be a solution of Σt if

(i) x is continuous at each t /= tk in (t0, t0 + α];

(ii) the derivative of x exists and is continuous at all but at most a finite number of
points t in t ∈ [t0, t0 + α);

(iii) the right-hand derivative of x exists and satisfies (2.1) in t ∈ [t0, t0 + α], while for
each tk ∈ [t0, t0 + α], (2.2) holds;

(iv) Equation (2.3) holds, that is, x(t0 + θ) = φ(θ), θ ∈ [−r, 0].
We denote by x(t, t0, φ) (or x(t), if in not confusing) the solution of Σt. x(t) is said to

be a solution defined on [t0 − r,∞) if all above conditions hold for any α > 0.
We make the following assumptions on system Σt.

(A1) f(t, ψ) is composite-PC, quasi-bounded and locally Lipschitzian in ψ.

(A2) For each fixed t ∈ R
+, f(t, ψ) is a continuous function of ψ on PC([−τ, 0],Rn).

Under the assumptions above, it was shown in [11] that for any φ ∈ PC([−r, 0],Rn),
system Σt admits a solution x(t, t0, φ) that exists in a maximal interval [t0 − r, t0 + b) (0 < b ≤
+∞) and the zero solution of the system exists.

Definition 2.4. An equilibrium point of Σt is a point xe ∈ PC([t0 − r, t0 + α],Rn) satisfying
x(t, t0, φ) = xe for all t ≥ 0 where x(t, t0, φ) is the solution of Σt. Let E denote the set of
equilibrium points of Σt.



4 Mathematical Problems in Engineering

Definition 2.5. Consider the delay impulsive system Σt.

(i) An equilibrium point x(t) ≡ xe of Σt is Lyapunov stable if for any ε > 0 there exists
δ(ε, t0), such that ‖φ − φe‖r < δ implies ‖x(t) − xe‖ < ε for all t ≥ t0, where φe is the
initial function for xe. An equilibrium point x is uniformly Lyapunov stable, if, in
addition, the number δ is independent of t0.

(ii) An equilibrium point x of Σt is semistable if it is Lyapunov stable and there exists an
open subset of Ω containing x such that for all initial conditions in Ω the trajectory
of Σt converges to a Lyapunov stable equilibrium point, that is, limt→∞x(t, t0, φ) =
y, φ ∈ Ω, where y is a Lyapunov stable equilibrium point.

(iii) System Σt is said to be uniformly asymptotically stable in the sense of Lyapunov
with respect to the zero solution, if it is uniformly stable and limt→∞‖x(t)‖ = 0.

Definition 2.6. The function V : [t0,+∞)×PC([−τ, 0],B(ρ)) → R
+ is said to belong to the class

V0 if

(i) V is continuous in each of the sets [tk−1, tk) × PC([−τ, 0],B(ρ)) and for each k ∈
N, lim(t,y)→ (t−

k
,x)V (t, y) = V (t−

k
, x) exists;

(ii) V (t, x) is locally Lipschitzian in x ∈ PC([−τ, 0],B(ρ)), and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.7. Let V ∈ V0. For any (t, ψ) ∈ [t0,+∞) × PC([−τ, 0],B(ρ)), the upper right-hand
derivative of V with respect to system Σt is defined by

D+V
(
t, ψ(0)

)
:= lim sup

h→ 0+

1
h

{
V
(
t + h, ψ(0) + hf

(
t, ψ

)) − V
(
t, ψ(0)

)}
. (2.4)

3. Main Results

In the following, we will establish several sufficient conditions for Lyapunov stability and
semistability for impulsive differential system Σt with time delays.

Theorem 3.1. System Σt is uniformly stable, and the zero solution of Σt is asymptotically stable if
there exists a Lyapunov function V ∈ V0 which satisfies the following.

(i) ∃a, b ∈ K such that

a(‖x‖) ≤ V (t, x) ≤ b(‖x‖). (3.1)

(ii) For any t ∈ [t0,+∞), t /= tk and ψ ∈ PC([−r, 0],Rn), there exists c > 0, such that

D+V
(
t, ψ(0)

) ≤ −cV (
t, ψ(0)

)
. (3.2)

(iii) There exist a μ (0 < μ < 1) and a subsequence {tkj} of the impulsive moments {tk} such
that

∥∥∥V
(
tkj+1 , x

)∥∥∥
r
≤ μ

∥∥∥V
(
tkj , x

)∥∥∥
r
. (3.3)
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(iv) For any m, 0 ≤ m ≤ k0, for all xe ∈ E there exists a function α ∈ K, such that

‖V (tm, x − xe)‖r ≤ α
(∥∥φ − φe

∥∥
r

)
. (3.4)

(v) For any m ∈ N, kj ≤ m < kj+1, j = 0, 1, 2, . . ., there exists a function β ∈ K such that

‖V (tm, x − xe)‖r ≤ β
∥∥∥V

(
tkj , x − xe

)∥∥∥
r
. (3.5)

Proof. Let xe be an equilibrium point of the system Σt. We first prove that xe is uniformly
stable, that is, for for all ε > 0, there exists δ = δ(ε) > 0 such that ‖φ − φe‖r < δ implies
‖x(t) − xe‖ < ε for all t ≥ t0.

For all ε > 0, let 0 < δ < ε such that

a(ε) > max
{
α(δ), β(α(δ))

}
. (3.6)

For any ‖φ − φe‖r < δ, by condition (3.4), we get

‖V (tm, x − xe)‖r ≤ α
(∥∥φ − φe

∥∥
r

) ≤ α(δ), 0 ≤ m ≤ k0. (3.7)

By (3.3), it is clear that ‖V (t, x)‖r is nonincreasing along the subsequence {tkj}, so we
have

∥∥∥V
(
tkj , x − xe

)∥∥∥
r
≤ ‖V (tk0 , x − xe)‖r ≤ α(δ), j = 0, 1, 2, . . . . (3.8)

For any m, kj ≤ m < kj+1, j = 0, 1, 2, . . ., by (3.5), we get

‖V (tm, x − xe)‖r ≤ β(α(δ)). (3.9)

Combining (3.7), (3.8), and (3.9), we conclude that

‖V (tk, x − xe)‖r < a(ε), k = 1, 2, . . . . (3.10)

By condition (3.2), for any t ∈ [tk, tk+1), k = 0, 1, 2 . . ., we have

V (t, x − xe) ≤ V (tk, x − xe) < a(ε), (3.11)

and then, by (3.10), for any t ≥ t0 we derive that V (t, x−xe) < a(ε). Hence, by (3.1)we obtain
that a(‖x − xe‖) ≤ V (t, x − xe) < a(ε). Since a ∈ K, we get

‖x(t) − xe‖ < ε, t ≥ t0, (3.12)

which implies that system Σt is uniformly Lyapunov stable.
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Next, we will prove that the zero solution of Σt is asymptotically stable.
Since system Σt is uniformly stable, from (3.1), there must exist a real number M > 0

such that ‖V (t, x)‖r ≤ M, t ≥ t0. Hence, there exists a v ≥ 0 such that

lim sup
t→∞

‖V (t, x)‖r = v ≤ M. (3.13)

In the following, we will show that v = 0. Without loss of generality, we can suppose
that there exists a sequence {tn} ⊂ [t0,∞), n = 1, 2, . . ., such that

lim
n→∞

‖V (tn, x)‖r = lim sup
n→∞

‖V (t, x)‖r = v. (3.14)

From (3.3)we get

∥∥∥V
(
tkj , x

)∥∥∥
r
< μj‖v(tk0 , x)‖r . (3.15)

Since 0 < μ < 1, we obtain

lim
j→∞

∥∥∥V
(
tkj , x

)∥∥∥
r
= 0. (3.16)

If the sequence {tn} ⊂ [t0,∞), n = 1, 2, . . . is the same as the sequence {tkj}, j = 0, 1, 2, . . .,
then it is obvious that v = 0. If 0 ≤ n < k0, it follows from the assumptions above that (3.16)
holds. Otherwise, we assume that n ≥ k0; there exists a j ∈ N such that kj ≤ n < kj+1. Then
from condition (3.5)we get

‖V (tn, x)‖r ≤ β
(∥∥∥V

(
tkj , x

)∥∥∥
r

)
. (3.17)

So

lim
n→∞

‖V (tn, x)‖r ≤ lim
j→∞

β
(∥∥∥V

(
tkj , x

)∥∥∥
r

)
= 0, (3.18)

which implies v = 0.
Hence, we derive that limt→∞‖V (t, x)‖ = 0. Finally, by (3.1), we have limt→∞‖x(t)‖ = 0

which implies that the zero solution of the system Σt is asymptotically stable. The proof is
completed.

Next, we present a sufficient condition for semistability for system Σt.
Let L1 := {f : [0,∞) → R; f is measurable and

∫∞
0 |f(t)|dt < ∞}.

Theorem 3.2. Consider the system Σt; assume that there exists nonnegative-definite continuous
function W : R × R

n → R such that

D+V
(
t, ψ(0)

) ≤ −W(
t, ψ(0)

)
. (3.19)

Let W−1(0) := {x | W(t, x) ≡ 0, for all t ≥ t0}. If every equilibrium point of system Σt is Lyapunov
stable, then every point inW−1(0) is semistable.
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Proof. Define

ϕ(t) :=

{
W

(
t, ψ(0)

)
, t /= tk, k ∈ N,

0, t = tk, k ∈ N.
(3.20)

It follows from (3.19) and (3.3) that

∫ t

0
ϕ(s)ds ≤ V (x(t1)) − V (x(t)) ≤ V (x(t1)) . (3.21)

Since ϕ(·) is nonnegative, it follows that ϕ(·) ∈ L1. Next, we show that ϕ(t) → 0 as
t → ∞.

If it is not true, then there exists ε > 0 and an infinite sequence of times τ1, τ2, . . . such
that |ϕ(τi)| ≥ ε. By definition of ϕ(·) we have τi, i = 1, 2 . . . that does not belong to the set of
impulsive times {tk}.

Note that from (3.19), it follows from Proposition 3.1 of [26] that x(t) is bounded for
all t ≥ 0. Hence, it follows from the Lipschitz continuity of f(·) that ẋ(t) is bounded for all
t ≥ 0; thus, ϕ(·) is uniformly continuous on [t0,+∞) \ {tn}. So, there exists δ > 0 such that
every τi is contained in some interval of Ii, τi ∈ Ii of length δ on which ϕ(t) ≥ ε/2, t ∈ Ii. This
contradicts ϕ(·) ∈ L1. Hence ϕ(t) → 0 as t → ∞. It follows that W(t, ψ(0)) → 0 as t → ∞.
Since x(t) is bounded, we get x(t) → W−1(0) (as t → ∞).

Next, let xe ∈ W−1(0). For every open neighborhood U and x0 ∈ U, x(t) →
W−1(0) (as t → ∞), it follows from Proposition 5.1 of [26] that there exists y ∈ W−1(0) such
that limt→∞x(t) = y. Since every point in E is Lyapunov stable, and hence y is a Lyapunov
stable equilibrium of Σt, it follows that xe is semistable. Finally, since xe ∈ W−1(0) is arbitrary,
this implies every point in W−1(0) is semistable. The proof is completed.

4. Numerical Example

In this section, we give an example about compartmental systems to illustrate the
effectiveness of the proposed method. Compartmental systems involve dynamical models
that are characterized by conservation laws (e.g., mass and energy) capturing the exchange
of material between coupled macroscopic subsystems known as compartments. Each
compartment is assumed to be kinetically homogeneous, that is, any material entering the
compartment is instantaneously mixed with the material of the compartment.
Example 4.1. Consider the nonlinear two-compartment time-delay impulsive systems given
by

ẋ1(t) = −x1(t) + x2(t){1 − sin(x1(t − r))} + x3
2(t) − x3

1(t), t /= tk, k ∈ N,

ẋ2(t) = −x2(t) + x1(t){1 + sin(x1(t − r))} + x3
1(t) − x3

2(t), t /= tk, k ∈ N,

x1(t+) = 0.8x1(t), t = tk, k ∈ N,

x2(t+) = 0.9x2(t), t = tk, k ∈ N,

x(t0 + θ) = φ(θ) =
(
cos θ
sin θ

)
, θ ∈ [−0.2, 0],

(4.1)
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Figure 1: State trajectory: semistable.

where r ≥ 0. Let Lyapunov function V (ψ(0)) = (1/2)ψ2
1(0) + (1/2)ψ2

2(0), then for any ψ ∈
PC([−r, 0],B(ρ)) we have

D+V
(
ψ(0)

)
= − 1

2

(
x2
1 + x2

2

)
− 1
2
(x1 − x2)2

(
x2
1 + x1x2 + x2

2

)

≤ − 1
2

(
x2
1 + x2

2

)
= −V (

ψ(0)
)
.

(4.2)

Let c = 1, a(‖x‖) = b(‖x‖) = (1/2)‖x‖, μ = 0.9, and β(‖x‖) = ‖x‖, then the conditions of
Theorem 3.1 are satisfied, which means the equilibrium points of the system are Lyapunov
stable, and

D+V
(
ψ(0)

)
= − 1

2
(x1 − x2)2

[
1 +

3
4
x2
1 +

(
1
2
x1 + x2

)2
]

≤ − 1
2
(x1 − x2)2.

(4.3)

Let W(x1, x2) = (1/2)(x1 − x2)
2 then we derive that D+V (ψ(0)) ≤ −W(ψ(0)); it follows from

Theorem 3.2 that every point inW−1(0) is semistable.
The simulation result is depicted in Figure 1, where the length of the impulsive

intervals is T = 0.3 second and the time delay r = 0.1 second.
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The estimation problem is investigated for a class of stochastic nonlinear systems with distributed
time-varying delays and missing measurements. The considered distributed time-varying delays,
stochastic nonlinearities, and missing measurements are modeled in random ways governed by
Bernoulli stochastic variables. The discussed nonlinearities are expressed by the statistical means.
By using the linear matrix inequality method, a sufficient condition is established to guarantee the
mean-square stability of the estimation error, and then the estimator parameters are characterized
by the solution to a set of LMIs. Finally, a simulation example is exploited to show the effectiveness
of the proposed design procedures.

1. Introduction

In the past decades, estimation techniques have been extensively investigated in many
complex dynamical processes of networks such as target tracking [1], advanced aircrafts,
and manufacturing processes. A number of estimation methods have been proposed in the
literature, most of them are under the assumption that the measurements always contain
true signals with the disturbances and the noises, see for example, [2–9]. But, in practical
applications, the measurements may contain missing measurements due to many reasons
such as the sensor temporal failures, network congestion, multipath fading, and high
maneuverability of the tracked targets. Because of the clear engineering signification, the
estimation problems with missing measurements have received attention, see for example
[10–22].
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Recently, with the rapid development of networks, novel methods and flexible
models have been devoted, but the research of missing measurements is still a challenge,
and the Bernoulli-based distributed model has still been a hot approach to modeling
the missing observation cases. For example, in [10], the missing probability for each
sensor is governed by an individual random variable satisfying a certain probabilistic
distribution over the interval [0 1]. Packet dropouts and communication delays are
considered simultaneously in [12]. The variance-constrained dissipative control problem
for a class of stochastic nonlinear systems with multiple degraded measurements in [13],
where the degraded probability for each sensor is governed by an individual random
variable satisfying a certain probabilistic distribution over a given interval. The H∞ filtering
problem has been addressed in [20] for a class of nonlinear systems with randomly
occurring incomplete information, where the considered incomplete information includes
both the sensor saturations and the missing measurements, a regional sensor model has
been designed to account for both the randomly occurring sensor saturation and missing
measurement in a unified representation, based on this sensor model, a newfangled H∞
filter with a certain ellipsoid constraint has been researched such that the filtering error
dynamics is locally mean-square asymptotically stable and the H∞-norm requirement is
satisfied.

On the other hand, time delays are frequently encountered in real-world application
such as communications, engineering, and biological systems. The occurrence of time delays
may induce instability, oscillation, and poor performance. Consequently, research on time-
delay systems has been a topic of recurring interest over the past decades. Current efforts
can be classified into several categories, for example, simple delay and multiple delays [12],
delay-independence [23, 24] and delay-dependence [5, 8, 25–30], time-varying delays [31, 32]
and constant delays, retarded-type delay and neutral-type delay [30, 33], and mixed delays
[34, 35]. However, in some applications, such as these systems connected over a wireless
networks/or neural networks, as pointed out in [36], networks usually have a spatial extent
due of the presence of a multitude of parallel pathways with a variety of axon sizes and
lengths, and therefore the propagation delays can be distributed over a period of time, so it is
essential to describe the distributed time delay under the probability framework as possible
as. In this paper, the probability distribution of the time-vary delays are described for Itô type
discrete-time stochastic distribution by a binary switching sequence satisfying the Bernoulli-
distributed model.

Motivated by the aforementioned discussions, in this paper, we model the stochastic
nonlinearities, the missing measurements, and the distributed time-vary delays by Bernoulli
distributed white sequence with known conditional probability distribution. We aim at
designing a estimator such that, for all possible measurements missing and distributed time-
vary delays to obtain the estimation error system mean-square stable. The solvability of the
addressed estimation problem can be expressed as the feasibility of a set of LMIs. Finally, a
numerical simulation example is exploited to show the effectiveness of the results derived.
The main contributions of this paper are summarized as the following: (1) a new estimation
problem is studied for the stochastic nonlinear systems with both distributed time-vary
delays and measurements missing phenomenon; (2) a mean-square stable performance is
taken into consideration for the addressed stochastic nonlinear systemswith distributed time-
vary delays and missing measurements.

The rest of this paper is organized as follows. Section 2 briefly introduces the problem
under consideration. In Section 3, a sufficient condition is established such that, for the
missing measurements, the randomly distributed time-varying delays and nonlinearities,
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the estimation error system is the mean-square stability. A numerical example is given in
Section 4. This paper is concluded in Section 5.

Notations. The notation used here is fairly standard except where otherwise stated. R
n, R

n×m,
and I

+ denote, respectively, the n-dimension Euclidean space, the set of all n×m real matrices,
and the set of nonnegative integers. (Ω,F, {Fk}k∈I+ ,P) is complete filtered probability space,
Ω is the sample space, F is the σ-algebra of subsets of the sample space, and P is the
probability measure on F. E{x} stands for the expectation of the stochastic variable x.
Prob{·} is used for the occurrence probability of the event “·”. The superscript “T” stands
for matrix transposition. P > 0 (P ≥ 0) means that matrix P is real symmetric and positive
definite (positive semi-definite). λmin(·) denotes the minimum eigenvalue of a matrix. I and 0
represent the identity matrix and the zero matrix with appropriate dimensions, respectively.
diag{X1, X2, . . . , Xn} stands for a block-diagonal matrix with matrices X1, X2, . . . , Xn on the
diagonal. In symmetric block matrices or long matrix expressions, we use “∗” to represent a
term, that is, induced by symmetry. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the following class of stochastic nonlinear system with distributed time-varying
delays:

x(k + 1) = Ax(k) + κ1(k)B
−1∑

m=−τ(k)
x(k +m) + κ2(k)f(x(k)) + E1x(k)w(k),

y(k) = κ3(k)Cx(k) + E2x(k)w(k),

z(k) = H1x(k),

(2.1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

m is the measured output vector, z(k) ∈ R
q

is the signal to be estimated, w(k) is a one-dimensional, zero-mean, Gaussian white noise
sequence on a probability space (Ω,F, {Fk}k∈I+ ,P)with E{ω2(k)} = 1,A, B, C, E1, E2, andH1

are known real constant matrices with appropriate dimensions, τ(k) denoting time-varying
delays are positive integers and bounded, namely, 0 < τl ≤ τ(k) ≤ τu, the stochastic variables
κ1(k) ∈ R, κ2(k) ∈ R, and κ3(k) ∈ R are Bernoulli distributed white sequence taking the
values of 0 and 1 with

Prob{κ1(k) = 1} = E{κ1(k)} := α1, (2.2)

Prob{κ1(k) = 0} := 1 − α1, (2.3)

Prob{κ2(k) = 1} = E{κ2(k)} := α2, (2.4)

Prob{κ2(k) = 0} := 1 − α2, (2.5)

Prob{κ3(k) = 1} = E{κ3(k)} := α3, (2.6)

Prob{κ3(k) = 0} := 1 − α3, (2.7)

where α1 ∈ [0 1], α2 ∈ [0 1], and α3 ∈ [0 1] are known positive scalars.
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Remark 2.1. The nonlinear stochastic f(x(k)) is assumed to have the following for all x(k):

E
{
f(x(k)) | x(k)} = 0,

E
{
f(x(k)) fT (x(k)) | x(k)} = 0, k /= j,

E
{
f(x(k)) fT (x(k)) | x(k)} ≤

q∑

i=1

Πix
T (k)Φix(k),

(2.8)

where q is a known nonnegative integer, Πi = ΠiΠ
T

i , Πi, Πi, and Φi (i = 1, . . . , q) are
known matrices with appropriate dimensions. For convenience, one assumes that f(x(k))
is unrelated with κ1(k), κ2(k), κ3(k), and ω(k).

In this paper, we aim at designing a linear estimator of the following structure:

xf(k + 1) = Afxf(k) +Aky(k), ẑ(k) = H2xf(k), ẑ(0) = 0, (2.9)

where xf ∈ R
n is the state estimate, ẑ(k) is the estimate output, H2 is a known real constant

matrix with appropriate dimension, and Af and Ak are estimator parameters to be deter-
mined.

By defining x̂(k) = [xT (k) xT
f
(k)]T , we have the following augmented system:

x̂(k + 1) = Ax̂(k) +Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m) + B

−1∑

m=−τ(k)
x̂(k +m)

+Nh(k) +Nh(k) + Ex̂(k)w(k),

(2.10)

where

A =
[

A 0
α3AkC Af

]
, A =

[
0 0

(κ3(k) − α3)AkC 0

]
, B =

[
α1B 0
0 0

]
,

B =
[
(κ1(k) − α1)B 0

0 0

]
, x̂(k + i) =

[
x(k + i)
xf(k + i)

]
, h(k) =

[
f(x(k))

0

]
,

E =
[

E1 0
AkE2 0

]
, N̂ =

[
I 0
0 0

]
, N = α2N̂, N = (κ2(k) − α2)N̂.

(2.11)

Observe the system (2.10) and let x̂(k;ϕ) denote the state trajectory from the initial
data x̂(s) = ϕ(s) on −ξM ≤ s ≤ −ξm. Obviously, x̂(k; 0) ≡ 0 is the trivial solution of system
(2.10) corresponding to the initial data ϕ = 0.

In what follows, we aim to design a linear estimator of the form (2.9) for system (2.1)
such that, for all admissible randomly occurring distributed time-varying delays, missing
measurements, stochastic nonlinearities, and estimation error system (2.10) is mean-square
stable.
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3. Main Results

The following lemmas are essential in establishing our main results.

Lemma 3.1 (Schur Complement). There are constant matrices Υ1, Υ2, and Υ3 where Υ1 = ΥT
1 and

Υ2 = ΥT
2 > 0, then Υ1 + ΥT

3 Υ−1
2 Υ3 < 0 if and only if

[
Υ1 ΥT

3
Υ3 −Υ2

]
< 0.

Lemma 3.2. Let W ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n be a vector, and ai ≥ 0 (i =
1, 2, . . .) be scalars. If the series concerned are convergent, then the following inequality holds [35]

(
+∞∑

i=1

aixi

)T

W
(

+∞∑

i=1

aixi

)
≤
(

+∞∑

i=1

ai

)
+∞∑

i=1

aix
T
i Wxi. (3.1)

In the following theorem, Lyapunov stability theorem and a LMI-based method are
combined together to deal with the stability analysis issue for the estimator design of the
discrete-time stochastic nonlinear system with distributed time-varying delays and missing
measurements. A sufficient condition is derived that ensures the solvability of the estimation
problem.

Theorem 3.3. Given the estimator parameters Af and Ak consider the estimation error system
(2.10). If there exist positive definite matrices P = PT > 0, Q = QT > 0, and positive scalars

i > 0 (i = 1, 2, . . . , q) such that the following matrix inequalities,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗ ∗ ∗ ∗
PE 0 −P ∗ ∗ ∗ ∗ ∗
β1Q 0 0 −Q ∗ ∗ ∗ ∗
PA PB 0 0 −P ∗ ∗ ∗
β3P 0 0 0 0 −P ∗ ∗
β4Φ̂ 0 0 0 0 0 −Ξ ∗
0 β2PF 0 0 0 0 0 −P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

Δ =

[
−
iI ∗
PN̂Πi −P

]
< 0, i = 1, 2, . . . , q, (3.3)

hold, where

β1 =
(
τu +

1
2
(τu − τl)(τu + τl − 1)

)1/2

, β2 = (α1(1 − α1))1/2,

β3 = (α3(1 − α3))1/2, β4 = (α2)1/2, Φ̂ =
[

1Φ

1/2
1 , . . . , 
qΦ

1/2
q

]T
,

Φi =
[
Φi 0
0 0

]
, Πi =

[
π̂i

π̂i

]
, Ξ = diag

{

1I, . . . , 
qI

}
, F =

[
B 0
0 0

]
,

(3.4)

then the estimation error system (2.10) is mean-square stable.
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Proof. Define the following Lyapunov functional candidate for system (2.10):

V (x̂(k), k) = x̂T (k)Px̂(k) +
−1∑

i=−τ(k)

k−1∑

j=k+i

x̂T(j
)
Qx̂

(
j
)

+
−τl−1∑

i=−τu

−1∑

j=i+1

k−1∑

n=k+j

x̂T (n)Qx̂(n).

(3.5)

By calculating the difference of the Lyapunov functional (3.5), based on Lemma 3.2,
one has,

E{�V (x̂(k), k)}
= E{V (x̂(k + 1), k + 1) | x̂(k)} − V {(x̂(k), k)}

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−1∑

i=−τ(k+1)

k∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
) −

−1∑

i=−τ(k)

k−1∑

j=k+i

x̂T(j
)
Qx̂

(
j
)

+
−τl−1∑

i=−τu

−1∑

j=i+1

⎡

⎣
k∑

n=k+j+1

−
k−1∑

n=k+j

⎤

⎦x̂T (n)Qx̂(n)

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−1∑

i=−τ(k+1)

⎡

⎣
k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+ x̂T (k)Qx̂(k)

⎤

⎦

−
−1∑

i=−τ(k)

⎡

⎣
k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+ x̂T (k + i)Qx̂(k + i)

⎤

⎦

+
−τl−1∑

i=−τu

−1∑

j=i+1

[
x̂T (k)Qx̂(k) − x̂T(k + j

)
Qx̂

(
k + j

)]
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≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−τl−1∑

i=−τu

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+

−1∑

i=−τl

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)

+ τux̂
T (k)Qx̂(k) −

−1∑

i=−τl

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
) −

−1∑

i=−τ(k)
x̂T (k + i)Qx̂

(
k + j

)

+
1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k) −

−τl−1∑

i=−τu

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) −

−1∑

i=−τ(k)
x̂T (k + i)Qx̂(k + i)

+
1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) +

1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

−
−1∑

i=−τ(k)
x̂T (k + i)Qx̂(k + i)
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≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) +

1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

− τ−1u

⎛

⎝
−1∑

i=−τ(k)
x̂T (k + i)

⎞

⎠Q

⎛

⎝
−1∑

i=−τ(k)
x̂(k + i)

⎞

⎠.

(3.6)

From (2.8), it can be seen that

E

{
hT (k)N̂TPN̂h(k)

}
≤

q∑

i=1

[
x̂T (k)Φix̂(k)

]
tr
(
N̂ΠiN̂TP

)
, (3.7)

where Πi := ΠiΠ
T

i with Φi and Πi defined in (3.4).
Furthermore,

E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭

≤ β22

−1∑

m=−τ(k)
x̂T (k +m)FTPF

−1∑

m=−τ(k)
x̂(k +m),

(3.8)

where β2 is defined in (3.4).
From (3.6)–(3.8), one has

E{�V (x̂(k), k)} ≤ E

{
ηT (k)Θη(k)

}
, (3.9)

where η(k) = [x̂T (k),
∑−1

i=−τ(k) x̂
T (k + i)]T and

Θ =
[
Θ1 APB
∗ Θ2

]
, (3.10)
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whereΘ1 = −P + ETPE + (τu+(1/2)(τu−τl)(τu+τl−1))Q +ATPA + β24
∑q

i=1 Φi tr(N̂ΠiN̂TP) +
β23P,Θ2 = −(1/τu)Q + BTPB + β22FTPF, β3, β4, F are defined in (3.4).

From Lemma 3.1, (3.10) holds if and only if tr(N̂ΠiN̂TP). Furthermore, by Lemma 3.1,
one can obtain from (3.2), (3.3) that Θ < 0 and, subsequently,

E{�V (x̂(k), k)} < −λmin(Θ)|x̂(k)|2. (3.11)

Thus, the augmented estimation system (2.10) is mean-square stable.

The following theorem is focused on the design of the desired estimation parameters
Af and Ak by using the results in Theorem 3.3.

Theorem 3.4. Consider the augmented estimation system (2.10) with given estimator parameters. If
there exist positive-definite matrices S = ST > 0, R = RT > 0, Q = QT > 0, matrices Ãf , Ãk, and
positive scalars
i > 0, (i = 1, 2, . . . , q) such that the following linear matrix inequalities holds

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−S −R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

SE1 E1 0 −S ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
φ1 φ2 0 −S −R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
β1Q β1Q 0 0 0 −Q ∗ ∗ ∗ ∗ ∗ ∗ ∗
SA SA α1SB 0 0 0 −S ∗ ∗ ∗ ∗ ∗ ∗
φ3 φ4 α1RB 0 0 0 −S −R ∗ ∗ ∗ ∗ ∗
β3S β3S 0 0 0 0 0 0 −S ∗ ∗ ∗ ∗
β3S β3R 0 0 0 0 0 0 −S −R ∗ ∗ ∗
Φ̃ Φ̃ 0 0 0 0 0 0 0 0 −Ξ ∗ ∗
0 0 β2SB 0 0 0 0 0 0 0 0 −R ∗
0 0 β2RB 0 0 0 0 0 0 0 0 −S −R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.12)

⎡
⎢⎣

−
iI ∗ ∗
Sπ̂i −S ∗

Rπ̂i + Ãf π̂i −S −R

⎤
⎥⎦ < 0, i = 1, 2, . . . , q, (3.13)

S − R < 0 (3.14)

hold, where α1 is defined in (2.2), β1, β2, β3, and β4 are defined in (3.4),

Φ̃T =
[
β4
[

1Φ

1/2
1

]T
, . . . , β4

[

qΦ1/2

q

]T]
,

φ1 = RE1 + ÃfE2, φ2 = RE1 + ÃfE2,

φ3 = RA + α2ÃfC + Ãk, φ4 = RA + α2ÃfC,

(3.15)
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then the estimator parameters are designed as

Ak = X−1
12 Ãf , Af = X−1

12 ÃkS
−1
(
YT
12

)−1
, (3.16)

where X12, Y12 are any square and nonsingular matrices satisfying X12Y
T
12 = I − RS−1 < 0, then the

estimation error system (2.10) is mean-square stable.

Proof. Recall that our goal is to derive the expression of the estimator parameters from (2.9).
To do this, we partition P and P−1 as

P =
[
R X12

XT
12 X22

]
, P−1 =

[
S−1 Y12

YT
12 Y22

]
, (3.17)

where the partitioning of P and P−1 is compatible with that of A defined in (2.11), that is,
R ∈ Rn×n, X12 ∈ Rn×n, X22 ∈ Rn×n, S ∈ Rn×n, Y12 ∈ Rn×n, and Y22 ∈ Rn×n. Define

T1 =
[
S−1 I
YT
12 0

]
, T2 =

[
I R
0 XT

12

]
(3.18)

which imply that PT1 = T2 and TT
1 PT1 = TT

1 T2.
By applying the congruence transformations diag{T1, I, T1, I, T1, T1, I, . . . , I, T1} and the

congruence transformations diag{S, I, I, S, I, I, S, I, S, I, I, . . . , I, S, I} to (3.2), we have (3.12).
Again, performing the congruence transformation diag{I, T1} to (3.3) lead to (3.19)

⎡

⎣
−
iI ∗ ∗
π̂i −S−1 ∗

Rπ̂i +X12Akπ̂i −I −R

⎤

⎦ < 0, i = 1, 2, . . . , q. (3.19)

Then, one uses congruence transformation diag{I, S, I} to (3.19) and we have

⎡

⎣
−
iI ∗ ∗
Sπ̂i −S ∗

Rπ̂i +X12Akπ̂i −S −R

⎤

⎦ < 0, i = 1, 2, . . . , q. (3.20)

Furthermore, if (3.12) is feasible, we have
[ −S −S
−S −R

]
< 0 or

[ −S−1 I
I R

]
> 0.

It follows directly from XX−1 = I that I − RS−1 = X12Y
T
12 < 0. Hence, one can always

find square and nonsingular X12 and Y12 [37]. Therefore, this completes the proof.
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4. Numerical Example

In this section, an example is presented to illustrate the usefulness and flexibility of the
estimator design method developed in this paper. The system data of (2.1)–(2.9) are the
following:

A =
[
0.15 0
0.2 0.1

]
, B =

[
0.09 0
0 0.09

]
, C =

[
1.2 0
0 1.2

]
,

E1 =
[
0.12 0
0 0.12

]
, E2 =

[
0.12 0
0 0.12

]
, H1 = H2 =

[
0.6 0
0 0.6

]
,

(4.1)

where n = q = 2, τ(k) = 1 + (1 + (−1)k), τl = 1, τu = 3.
f(x(k)) describes the stochastic nonlinear function of the states in (2.1), which is

bounded as follows:

E

{
f(x(k))f(x(k))T | x(k)

}
=
[
0.22
0.22

][
0.22
0.22

]T
xT (k)

[
0.11 0
0 0.11

]
x(k). (4.2)

Let α1 = 0.2, α2 = 0.3, and α3 = 0.9. Using Matlab LMI Toolbox to solve the LMIs in (3.12)–
(3.14), one has

S =
[
0.6726 −0.0035
−0.0035 0.6563

]
, R =

[
1.8796 −0.0041
−0.0041 1.8411

]
,

Q =
[
0.0668 −0.0013
−0.0013 0.0693

]
, 
1 = 1.0776, 
2 = 1.3335.

(4.3)

Thus, we can calculate the estimator parameters as follows:

Af =
[
0.1325 0.0486
0.0462 −0.1465

]
, Ak =

[−0.9144 −0.1677
−0.1684 −0.8160

]
. (4.4)

Remark 4.1. Seldom of the estimation literature explicitly introduce the effects of the
estimators by the digits in the graphs, for example [18]. In this paper, some digits are marked
in Figures 1–4. Figures 1–2 show the actual measurements and ideal measurements. Figures
3–4 plot the estimation errors. From these digits in the graphs, it can be seen that the designed
estimator performs well.

5. Conclusions

In this paper, we research the estimation problem for a class of stochastic nonlinear systems
with both the probabilistic distributed time-varying delays and missing measurements. The
distributed time-varying delays and missing measurements are assumed to occur in random
ways, and the occurring probabilities are governed by Bernoulli stochastic variables. A
linear estimator is designed such that, for the admissible random distributed delays, the
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Figure 1: Actual Measurements y1(1, k) and ideal Measurements y2(1, k).

0

0.05

0.15

−0.2

−0.15

−0.1

−0.05

0.2

0.1

y(k) = [yT (1, k)yT (2, k)]T

0 2 4 6 8 10 12 14 16 18

Time (k)

y2(2, 4) = −0.0273

y1(2, 4) = −0.0357

y2(2, 17) = 3.4478e − 004

y1(2, 17) = 4.0632e − 004

Actual measurements y1(2, k)
Ideal measurements y2(2, k)

Figure 2: Actual Measurements y1(2, k) and ideal Measurements y2(2, k).



Mathematical Problems in Engineering 13

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14 16 18

Time (k)

∼z(1, k)

∼z(1, 4) = 0.0868

∼z(1, 17) = 8.6829e − 004

Estimation error ∼z(k)
∼z(k) = [∼zT (1, k)∼zT (2, k)]T

Figure 3: Estimation Errors z̃(1, k).
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Figure 4: Estimation Errors z̃(2, k).



14 Mathematical Problems in Engineering

stochastic disturbances, and the stochastic nonlinearities, the error dynamics of the estimation
process is mean-square stable. At last, an illustrative example has been exploited to show the
effectiveness of the proposed approach. In the future, we plan to consider the estimation
problem with Markovian switching is in the finite-horizon case, and the nonlinearities are in
more general forms.
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This paper investigates the problem of robust filter design for a class of nonlinear stochastic
systems with state-dependent noise. The state and measurement are corrupted by stochastic
uncertain exogenous disturbance and the dynamic system is modeled by Itô-type stochastic
differential equations. For this class of nonlinear stochastic systems, the robust H∞ filter can
be designed by solving linear matrix inequalities (LMIs). Moreover, a mixed H2/H∞ filtering
problem is also solved by minimizing the total estimation error energy when the worst-case
disturbance is considered in the design procedure. A numerical example is provided to illustrate
the effectiveness of the proposed method.

1. Introduction

Over the past decades, the robust H∞ filtering problem has been investigated extensively
since it is very useful in signal processing and engineering applications [1–5]. The so-called
H∞ filtering problem is to design an estimator to estimate the unknown state combination
via measurement output, which guarantees the L2 gain (from the external disturbance to the
estimation error) to be less than a prescribed level γ > 0. In contrast to classical Kalman filter,
it is not necessary to know the exact statistic information about the external disturbance in
theH∞ filter design. Obviously, there may be more than one solution toH∞ filtering problem
with a desired robustness. Since theH2 performance is appealing for engineering, it naturally
leads to the mixed H2/H∞ filtering problem [6–8]. Compared with the sole H∞ filter, the
mixedH2/H∞ filter is more attractive in engineering practice, since the former is a worst-case
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design which tends to be conservative whereas the latter minimizes the average performance
with a guaranteed worst-case performance. The robust H2/H∞ filtering problem for linear
perturbed systems with steady-state error variance constraints was investigated in [6], and
the mixed H2/H∞ filter for polytopic discrete-time systems was discussed in [7].

On the other hand, stochasticH∞ control and filtering problems for systems expressed
by stochastic Itô-type differential equations have attracted a great deal of attention [9–13, 23].
A bounded real lemma was proposed for linear continuous-time stochastic systems [11],
according to which full- and reduced-order robustH∞ problems for linear stochastic systems
were investigated by [12, 13], respectively. Most of the aforementioned works were limited to
linear stochastic systems. Recently, theH∞ filtering problem for nonlinear stochastic systems
has become another popular research topic [14–20]. Wang et al. [14] studied the robust
H∞ filtering problem for a class of uncertain time-delay stochastic systems with sector-
bounded nonlinearities. For general nonlinear stochastic systems, Zhang et al. [15] found
that theH∞ filter can be obtained by solving a second-order Hamilton-Jacobi inequality (HJI).
Considering that it is difficult to solve the HJI, Tseng [17] designed the H∞ fuzzy filter for
nonlinear stochastic systems via solving LMIs instead of an HJI. However, there is little work
dealing with the H2/H∞ filtering problem for nonlinear stochastic systems.

In this paper, we will deal with the robust filtering problem for a class of nonlinear
stochastic systems. The state is corrupted not only by white noise but also by exogenous
disturbance signal, and themeasurement equation also includes noises. Our goal in this paper
is to construct an asymptotically stable observer that leads to a mean square stable estimation
error process whose L2 gain with respect to disturbance signal is less than a prescribed level.
Moreover, a stochastic H2/H∞ filtering is designed for the nonlinear stochastic systems.
Our main results are expressed in linear matrix inequalities (LMIs), which are more easily
computed in practical application.

This paper is organized as follows: in Section 2, some definitions and notations are
introduced; Section 3 treats with the H∞ and mixed H2/H∞ filtering problems, and the
main outcomes of this section are Theorems 3.2 and 3.6; a numerical example is presented to
illustrate the effectiveness of the proposed filtering method in Section 4; Section 5 concludes
this paper.

Notations. For convenience, we adopt the following notations.Sn: the set of all n×n symmetric
matrices; its components may be complex. A′: the transpose of the corresponding matrix
A. A ≥ 0 (A > 0): A is positive semidefinite (positive definite) symmetric matrix. |x| :=
(
∑n

i=1 x
2
i )

1/2, that is, |x| denotes the Euclidean 2-norm of x, where x = (x1, x2, . . . , xn)
′ ∈ Rn.

L2(R+,Rl): the space of nonanticipative stochastic processes y(t) with respect to filter Ft

satisfying ‖y(t)‖2L2
:= E

∫∞
0 |y(t)|2dt < ∞. C0

2({t > 0} × U): class of functions V (t, x) twice
continuously differential with respect to x ∈ U and once continuously differential with
respect to t > 0 except possibly at the point x = 0.

2. Problem Setting

Consider the following nonlinear stochastic system governed by Itô differential equation:

dx(t) =
(
f(x(t)) + B0w(t)

)
dt + σ(x(t))dw0(t), (2.1)

with the following measurement equation:

dy(t) = (A1x(t) + B1w(t))dt + C1x(t)dw1(t), (2.2)
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and the controlled output

z(t) = Dx(t). (2.3)

In the above, x(t) ∈ Rn is called the system state, y(t) ∈ Rr is the measurement output, z(t) is
the state combination to be estimated.w0(t), w1(t) are the standard Wiener processes defined
on the probability space (Ω,F,P) related to an increasing family (Ft)t∈R+

of σ-algebras
Ft ⊂ F. Without loss of generality, we can supposew0(t), w1(t) are one-dimensional, mutually
uncorrelated. B0, A1, B1, C1, D are constant matrices of suitable dimensions, w ∈ L2(R+,Rq)
represents the exogenous disturbance signal. Under very general conditions on f and σ,
stochastic systems (2.1)-(2.2) have, respectively, a unique strong solution xs,ξ(t) for any
t ≥ s ≥ 0 and initial state x(s) = ξ ∈ Rn; see [21].

Now, we first introduce the following definitions.

Definition 2.1 (see [9]). We say that the equilibrium point x ≡ 0 of system

dx(t) = f(x(t))dt + σ(x(t))dw0(t) (2.4)

is exponentially mean square stable, if for some positive constants ρ, �,

E|x(t)|2 ≤ ρ|x(0)|2 exp(−�t), t ≥ 0. (2.5)

Remark 2.2. It is well known that for stochastic linear time-invariant systems, the exponential
mean square stability is equivalent to asymptotical mean square stability [9].

Definition 2.3. Nonlinear stochastic uncertain system (2.1) is said to be internally stable at the
origin, if (2.1)with w = 0 is exponentially mean square stable.

Lemma 2.4 (see [9]). The trivial solution of (2.4) is exponentially mean square stable for t ≥ 0 if
there exists V (t, x) ∈ C0

2({t > 0} × Rn) such that

k1|x|2 ≤ V (t, x) ≤ k2|x|2, LV (t, x) ≤ −k3|x|2 (2.6)

for some positive constants k1, k2, k3, where L is the so-called an infinitesimal generator of (2.4).
Now, suppose f(x) and σ(x) can be linearized, respectively, as

f(x) = Ax + F0(x), F0(0) = 0,

σ(x) = Cx + F1(x), F1(0) = 0,
(2.7)

then the linearized stochastic system of (2.1) becomes

dx = (Ax + B0w + F0(x))dt + (Cx + F1(x))dw0, (2.8)

where A and C are constant matrices.
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Consider the following filter for the estimation of z(t):

dx̂ = Afx̂dt + Bfdy, x̂(0) = x̂0, ẑ = Dx̂, (2.9)

where x̂ ∈ Rn. Let ξ′ = [x′ x′ − x̂′], z̃ = z − ẑ, then

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0 + F̃3wdt, (2.10)

where

Ã =
[

A 0
A − BfA1 −Af −Af

]
, D̃1 =

[
C 0
C 0

]
, D̃2 =

[
0 0

−BfC1 0

]
,

F̃1 =
[
F0(x)
F0(x)

]
, F̃2 =

[
F1(x)
F1(x)

]
, F̃3 =

[
B0

B0 − BfB1

]
.

(2.11)

For any given disturbance attenuation level γ > 0, one wants to find Af, Bf , such that

‖z̃(t)‖2L2
< γ2‖w(t)‖2L2

(2.12)

holds for any w ∈ L2(R+,Rq). Define the H∞ performance index as

Js = ‖z̃(t)‖2L2
− γ2‖w(t)‖2L2

. (2.13)

Obviously, (2.12) holds iff Js < 0. As in [12], H∞ and mixed H2/H∞-based robust state estimation
problems are formulated as follows.

(i) Stochastic H∞ filtering problem: given γ > 0, find an estimator x̂ of the form (2.9) leading
(2.10) to being internally stable; Moreover, Js < 0 for all nonzero w ∈ L2(R+,Rn) with
ξ(0) = 0.

(ii) Stochastic H2/H∞ filtering problem: of all the H∞ filter of (i), one finds the one that
minimizes the steady error variance

lim
t→∞

E
[
z̃′(t)z̃(t)

]
, (2.14)

where in this case,w(t) = η̇, η is taken as a standard Wiener process, independent ofw0(t) andw1(t),
so w(t) is a white noise. (2.2) and (2.8) can be written as (see, e.g., [22])

dy(t) = A1x(t)dt + B1dη(t) + C1x(t)dw1(t),

dx(t) = (Ax(t) + F0(x(t)))dt + (Cx(t) + F1(x(t)))dw0(t) + B0dη(t),
(2.15)

respectively.
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3. Stochastic H∞ and Mixed H2/H∞ Filter Design

In this section, we will discuss, respectively, stochasticH∞ and mixedH2/H∞ filtering prob-
lems.

3.1. Stochastic H∞ Filter Design

In this section, some sufficient conditions are given for H∞ filter design; our main results are
as follows.

Theorem 3.1. Suppose there exists a scalar λ > 0, such that

|Fi(x)| ≤ λ|x|, i = 0, 1, ∀x ∈ Rn. (3.1)

If the following matrix inequalities

PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃2 + P + 6λ2αI +Q +
1
γ2

PF̃3F̃
′
3P < 0, (3.2)

0 < P ≤ αI (3.3)

have a solution P > 0, α > 0, then (2.10) is internally stable and H∞ filtering performance Js < 0,
where Q = (0 D)′(0 D).

Proof. We first show (2.10) to be internally stable, that is, the following system

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0(t) (3.4)

is asymptotically mean square stable. LetLξ be the infinitesimal operator of (3.4), V (ξ) = ξ′Pξ
with αI ≥ P > 0 to be determined. According to Lemma 2.4, in order to show (3.4) to be
internally stable, we only need to show

LξV (ξ) ≤ −k3|ξ|2 (3.5)

for some k3 > 0. Note that

LξV (ξ) =
∂V ′(ξ)
∂ξ

(
Ãξ + F̃1

)
+
1
2

(
D̃1ξ + F̃2

)′ ∂2V (ξ)
∂ξ2

(
D̃1ξ + F̃2

)
+
1
2

(
D̃2ξ
)′ ∂2V (ξ)

∂ξ2

(
D̃2ξ
)

= ξ′
(
PÃ + Ã′P + D̃′

1PD̃1 + D̃′
2PD̃2

)
ξ + 2F̃ ′

1Pξ + F̃ ′
2PF̃2 + 2ξ′D̃′

1PF̃2.

(3.6)
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By condition (3.1), we have

2F̃ ′
1Pξ ≤ ξ′Pξ + F̃ ′

1PF̃1 ≤ ξ′Pξ + αF̃ ′
1F̃1 = ξ′Pξ + 2αF ′

0F0

≤ ξ′Pξ + 2α|F0|2 ≤ ξ′Pξ + 2αλ2|ξ|2.
(3.7)

Similarly,

2ξ′D̃′
1PF̃2 ≤ ξ′D̃′

1PD̃1ξ + 2αλ2|ξ|2,

F̃ ′
2PF̃2 ≤ 2αλ2|ξ|2.

(3.8)

Substituting (3.7), (3.8) into (3.6) and considering (3.2), it follows

LξV (ξ) ≤ ξ′
(
PÃ + Ã′P + 2D̃′

1PD̃1 + D̃′
2PD̃2 + P + 6αλ2I

)
ξ

< − ξ′
(
Q +

1
γ2

PF̃3F̃
′
3P

)
ξ ≤ 0.

(3.9)

By Lemma 2.4, the internal stability of (2.10) is proved.
Secondly, we further show the H∞ filtering performance Js < 0. Let Lξ,w be the

infinitesimal generator of (2.10). For V (ξ) = ξ′Pξ, it is easy to show that

Lξ,wV (ξ) = LξV (ξ) + 2ξ′PF̃3w. (3.10)

For any T > 0 and ξ(0) = 0, we have

Js(T) := E

∫T

0

[
|z̃(t)|2 − γ2|w(t)|2

]
dt

= E

∫T

0

{[
|z̃(t)|2 − γ2|w(t)|2

]
dt + d

(
ξ′Pξ
)} − E[ξ(T)Pξ(T)]

≤ E

∫T

0

[
|z̃(t)|2 − γ2|w(t)|2 +Lξ,wV (ξ)

]
dt.

(3.11)

Note that

Lξ,wV (ξ) ≤ ξ′
(
PÃ + Ã′P + 2D̃′

1PD̃1 + D̃′
2PD̃2 + P + 6λ2αI

)
ξ + 2ξ′PF̃3w,

|z̃(t)|2 = ξ′Qξ.

(3.12)

So

|z̃(t)|2 − γ2|w(t)|2 +Lξ,wV (ξ) ≤
[
ξ
w

]′[Λ11 PF̃3

F̃ ′
3P −γ2I

][
ξ
w

]
< 0, (3.13)
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where

Λ11 := PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃2 + P + 6λ2αI +Q. (3.14)

By the well-known Schur’s complement and (3.2), there exists ε > 0, such that

[
Λ11 PF̃3

F̃ ′
3P −γ2I

]
< −εI. (3.15)

Summarizing the above analysis, (3.11) yields

Js(T) ≤ −εE
∫T

0

(
|ξ(t)|2 +w(t)|2

)
dt ≤ −εE

∫T

0
|w(t)|2dt. (3.16)

So for any T > 0, E
∫T
0 |z̃(t)|2dt ≤ (γ2 − ε)E

∫T
0 |w(t)|2dt.

Let T → ∞, then

‖z̃(t)‖2L2
≤ (γ2 − ε

)‖w(t)‖2L2
(3.17)

which yields Js < 0. This theorem is proved.

Theorem 3.1 only has theoretical sense, because it is difficult to be used in designing
H∞ filter. The following result is of more important in practice.

Theorem 3.2. Under the condition of Theorem 3.1, if the following LMIs

[
P11 − αI 0

0 P22 − αI

]
< 0, (3.18)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 A
′P22 −A′

1Z
′
1 − Z′ √

2C
′P11

√
2C

′P22 −C′
1Z

′
1 P11B0

P22A − Z1A1 − Z a22 0 0 0 P22B0 − Z1B1√
2P11C 0 −P11 0 0 0√
2P22C 0 0 −P22 0 0

−Z1C1 0 0 0 −P22 0
B′
0P11 B′

0P22 − B′
1Z

′
1 0 0 0 −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.19)

have solutions P11 > 0, P22 > 0, α > 0, Z1 ∈ Rn×r , Z ∈ Rn×n, then (2.10) is internally stable and
Js < 0.

Moreover,

dx̂ = P−1
22 Zx̂dt + P−1

22 Z1dy (3.20)

is the correspondingH∞ filter. In (3.19), a11 = P11A+A′P11 + 6λ2αI +P11, a22 = −Z −Z′ + 6λ2αI +
D′D + P22.
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Proof. By Schur’s complement, (3.2) is equivalent to

⎡
⎢⎢⎢⎣

PÃ + Ã′P + P + 6λ2αI +Q
√
2D̃′

1P D̃′
2P PF̃3√

2PD̃1 −P 0 0
PD̃2 0 −P 0
F̃ ′
3P 0 0 −γ2I

⎤
⎥⎥⎥⎦

< 0. (3.21)

Taking P = diag(P11, P22) and substituting (2.11) into (3.21), we have

⎡
⎢⎢⎣

Ψ11 Ψ′
12 Ψ′

13 φ′
14

Ψ12 Ψ22 0 0
Ψ13 0 Ψ33 0
Ψ14 0 0 Ψ44

⎤
⎥⎥⎦ < 0, (3.22)

where

Ψ11 =

[
P11A +A′P11 + 6λ2αI + P11

(
A − BfA1 −Af

)′
P22

P22
(
A − BfA1 −Af

) −P22Af −A′
f
P22 + 6λ2αI + P22 +D′D

]
,

Ψ22 = Ψ33 = −P =
[−P11 0

0 −P22

]
, Ψ44 = −γ2I,

Ψ′
12 =

[√
2C′P11

√
2C′P22

0 0

]
, Ψ′

13 =

[
0 −C′

1B
′
f
P22

0 0

]
, Ψ′

14 =
[

P11B0

P22
(
B0 − BfB1

)
]
.

(3.23)

(3.22) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
(
A − BfA1 −Af

)′P22
√
2C′P11

√
2C′P22 −C′

1B
′
fP22 P11B0

P22
(
A − BfA1 −Af

)
a22 0 0 0 P22

(
B0 − BfB1

)
√
2P11C 0 −P11 0 0 0√
2P22C 0 0 −P22 0 0

−P22BfC1 0 0 0 −P22 0
B′
0P11

(
B0 − BfB1

)′P22 0 0 0 −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(3.24)

where a11 = P11A + A′P11 + 6λ2αI + P11, a22 = −P22Af − A′
fP22 + 6λ2αI + P11. Let P22Af =

Z, P22Bf = Z1, then (3.22) becomes (3.19). From our assumption, Af = P−1
22 Z,Bf = P−1

22 Z1, so
anH∞ filtering equation is constructed as in the form of (3.20). Theorem 3.2 is proved.
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3.2. Mixed H2/H∞ Filtering

To design the mixed stochasticH2/H∞ filter, we need to choose the one from the set of allH∞
filters, which also minimizes the estimation error variance, or concretely speaking, minimizes
the H2 performance

J2 := lim
t→∞

E
{
z̃′(t)z̃(t)

}
= lim

t→∞
E
{
ξ′(t)(0 I)′D′D(0 I)ξ(t)

}

= lim
t→∞

Tr
{
D(0 I)Eξ(t)ξ′(t)(0 I)′D′}.

(3.25)

Two performances Js in (2.13) and J2 in (3.25) associated with H∞ robustness and H2

optimization have constructed, respectively. Now, we need to design the mixedH2/H∞ filter
to maximize Js and minimize J2. Consider the following linear stochastic constant system

dξ = A11ξdt +
l∑

i=1

Biiξdwi, (3.26)

where {wi, i = 1, . . . , l} are independent, standard Wiener processes. The following lemma
will be used in this section.

Lemma 3.3 (see [23]). System (3.26) is exponentially mean square stable iff for any R > 0, the
following Lyapunov-type equation

PA11 +A′
11P +

l∑

i=1

B′
iiPBii = −R (3.27)

has a unique positive definite solution P > 0.
In the next, for simplicity, when (3.26) is exponentially stable, one also says (A11, B11,

. . . , Bll) is stable.
As we have pointed out before, at this stage, we assume w(t) = η̇(t); (2.10) accordingly

becomes

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0 + F̃3dη. (3.28)

Let X(t) = E[ξ(t)ξ′(t)] in (3.28), then by Itô’s formula, we have

Ẋ(t) = ÃX(t) +X(t)Ã′ + E
[
F̃1ξ

′ + ξF̃ ′
1

]
+ D̃1XD̃′

1

+ E
[
D̃1ξF̃

′
2 + F̃2ξ

′D̃′
1

]
+ E
[
F̃2F̃

′
2

]
+ D̃2X(t)D̃′

2 + F̃3F̃
′
3.

(3.29)

By means of

E
[
F̃1ξ

′ + ξF̃ ′
1

]
≤ E
[
F̃1F̃

′
1

]
+X(t),

E
[
D̃1ξF̃

′
2 + F̃2ξ

′D̃′
1

]
≤ D̃1XD̃′

1 + E
[
F̃2F̃

′
2

]
,

(3.30)
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we have

Ẋ(t) ≤ ÃX(t) +X(t)Ã′ + 2D̃1X(t)D̃′
1 + D̃2X(t)D̃′

2

+X(t) + 2E
[
F̃2F̃

′
2

]
+ E
[
F̃1F̃

′
1

]
+ F̃3F̃

′
3.

(3.31)

Now, we suppose Fi(x) (i = 0, 1) satisfy

Fi(x)F ′
i(x) ≤ Gixx

′G′
i, i = 0, 1, ∀x ∈ Rn, (3.32)

where G1, G2 are constant matrices of suitable dimensions. At this stage,

F̃iF̃
′
i =
[
I 0
I I

][
FiF

′
i 0

0 0

][
I I
0 I

]

≤
[
I 0
I I

][
Gixx

′G′
i 0

0 0

][
I I
0 I

]

=
[
I 0
I I

][
Gi 0
0 0

]
ξξ′
[
G′

i 0
0 0

][
I I
0 I

]

=
[
Gi 0
Gi 0

]
ξξ′
[
G′

i G′
i

0 0

]

:= G̃iξξ
′G̃′

i, i = 0, 1,

(3.33)

where

G̃i =
[
Gi 0
Gi 0

]
. (3.34)

So (3.31) becomes

Ẋ(t) ≤ ÃX(t) +X(t)Ã′ + 2D̃1X(t)D̃′
1 + D̃2X(t)D̃′

2 +X(t) + 2G̃2X(t)G̃′
2 + G̃1X(t)G̃′

1 + F̃3F̃
′
3.

(3.35)

In addition, if X1(t) solves

Ẋ1(t) = ÃX1(t) +X1(t)Ã′ + 2D̃1X1(t)D̃′
1 + D̃2X1(t)D̃′

2 +X1(t)

+ 2G̃2X1(t)G̃′
2 + G̃1X1(t)G̃′

1 + F̃3F̃
′
3

X1(0) = X(0)

(3.36)

then it is easy to prove that X(t) ≤ X1(t). Denoting X1 := limt→∞X1(t), where X1 satisfies

ÃX1 +X1Ã
′ + 2D̃1X1D̃

′
1 + D̃2X1D̃

′
2 + 2G̃2X1G̃

′
2 + G̃1X1G̃

′
1 +X1 + F̃3F̃

′
3 = 0. (3.37)
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Obviously, limt→∞X(t) ≤ X1, accordingly,

J2 ≤ Tr
{
D(0 I)X1(0 I)′D′

}
= Tr
{
X1Q

}
. (3.38)

As in [12, 24], it is easily seen the following fact.

Lemma 3.4. If P̂ is a solution of

Ã′P̂ + P̂ Ã + 2D̃′
1P̂ D̃1 + D̃′

2P̂ D̃2 + 2G̃′
2P̂ G̃2 + G̃′

1P̂ G̃1 +Q + P̂ = 0 (3.39)

then Tr(X1Q) = Tr(P̂(F̃3F̃
′
3)).

Secondly, suppose P > 0 satisfies

Ã′P + PÃ + 2D̃′
1PD̃1 + D̃′

2PD̃2 +Q + P + 2G̃′
2PG̃2 + G̃′

1PG̃1 < 0. (3.40)

By means of Lemma 3.3, one can show P > P̂ . So we have the following lemma.

Lemma 3.5. P > P̂ , where P and P̂ stand for the positive definite solutions of (3.40) and (3.39),
respectively.

From Lemmas 3.4–3.5, it gives

J2 = lim
t→∞

Tr
{
D(0 I)X(t)(0 I)′D′}

≤ lim
t→∞

Tr
{
D(0 I)X1(t)(0 I)′D′}

= Tr
{
D(0 I)X1(0 I)′D′

}

= Tr
{
X1Q

}
= Tr
(
P̂ F̃3F̃

′
3

)

= Tr
(
F̃ ′
3P̂ F̃3

)

≤ Tr
(
F̃ ′
3PF̃3

)
:= Ĵ2.

(3.41)

Hence, to solve the mixed stochastic H2/H∞ filtering problem, we seek to minimize an upper-bound
on Ĵ2 subject to (3.2), (3.3), and

PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃
′
2 + P + 2G̃′

2PG̃2 + G̃′
1PG̃1 +Q < 0. (3.42)
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(3.42) having a positive definite solution P > 0 is equivalent to

⎡
⎢⎢⎢⎢⎢⎣

PÃ + Ã′P + P +Q
√
2D̃′

1P D̃′
2P G̃′1P

√
2G̃′

2P√
2PD̃1 −P 0 0 0
PD̃2 0 −P 0 0
PG̃1 0 0 −P 0√
2PG̃2 0 0 0 −P

⎤
⎥⎥⎥⎥⎥⎦

< 0. (3.43)

A suboptimal H2/H∞ filtering can be obtained by minimizing Tr(H) subject to (3.2), (3.3), (3.43),
and

H − F̃ ′
3PF̃3 > 0. (3.44)

(3.44) is equivalent to

[
H F̃ ′

3P

PF̃3 P

]
> 0. (3.45)

We still take P = diag(P11, P22) > 0, P22Bf = Z1, P22Af = Z, then (3.3), (3.2), (3.43), and (3.45)
become, respectively, as (3.18), (3.19),

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ11 γ12
√
2C′P11

√
2C′P22 −C′

1Z
′
1 G′

1P11 G′
1P22 G′

2P11 G′
2P22

γ21 γ22 0 0 0 0 0 0 0√
2P11C 0 −P11 0 0 0 0 0 0√
2P22C 0 0 −P22 0 0 0 0 0

−Z1C1 0 0 0 −P22 0 0 0 0
P11G1 0 0 0 0 −P11 0 0 0
P22G1 0 0 0 0 0 −P22 0 0
P11G2 0 0 0 0 0 0 −P11 0
P22G2 0 0 0 0 0 0 0 −P22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

⎡

⎣
H B′

0P11 B′
0P22 − B′

1Z
′
1

P11B0 P11 0
P22B0 − Z1B1 0 P22

⎤

⎦ > 0,

(3.46)

where γ11 = P11A +A′P11 + P11, γ12 = A′P22 −A′
1Z

′
1 − Z′, γ21 = P22A − Z1A1 − Z, γ22 = −Z − Z′ +

D′D + P22. Therefore, we have the following theorem.

Theorem 3.6. Under the conditions of Theorem 3.2 and assumption (3.32), if there exists a solution
(P11 > 0, P22 > 0, Z, Z1, α > 0) to (3.18), (3.19), (3.46), then a suboptimal mixed stochastic
H2/H∞ filtering is obtained by solving P11 and P22 from the following convex optimization problem:
minP11,P22,Z,Z1,α Tr(H) subject to (3.18),(3.19), (3.46), and the corresponding filter is given by (3.20).

Remark 3.7. In the proof of Theorems 3.2 and 3.6, the matrix P is chosen as diag(P11, P22) for
simplicity. In order to reduce the conservatism of the conditions, the matrix P can also be
chosen as

[
P11 P12
P ′
12 P22

]
. However, this case will increase the complexity of computation.
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4. Numerical Example

Example 4.1. Consider the following nonlinear stochastic system governed by Itô differential
equation

dx = (Ax + B0w + F0(x))dt + (Cx + F1(x))dw0,

dy = (A1 + B1w)dt + C1xdw1, z = Dx,
(4.1)

where

A =
[−3 1/2
−1 −3

]
, B0 =

[
1
0

]
, C =

[
1 0
0 0

]
,

F0(x) = 0.3 tanh(x), F1(x) = 0.3 sin(x),

A1 =
[−1 1
1 −1

]
, B1 =

[
0
1

]
, C1 =

[
1 0
0 1

]
,

D =
[
0
1

]
, w =

1
1 + 2t

, t ≥ 0.

(4.2)

Consider the following filter for the estimation of z(t):

dx̂ = Afx̂dt + Bfdy, ẑ = Dx̂. (4.3)

Setting γ = 0.9, and using the LMI control toolbox of Matlab, the estimation gains ofH∞ filter
are derived from Theorem 3.2:

Af =
[
5.6231 3.7259
−0.1617 8.2289

]
, Bf =

[
0.1812 −1.8190
−0.2525 0.4635

]
. (4.4)

From Theorem 3.6, the estimation gains of H2/H∞ filter are obtained as follows:

Af =
[
4.1449 3.4665
−0.2469 6.3382

]
, Bf =

[
0.5270 −1.2388
−0.3693 0.3445

]
. (4.5)

The initial condition in the simulation is assumed to be ξ0 = [0.3 0.2 − 0.02 − 0.05]′. Figures 1
and 2 show the trajectories of x1(t), x̂1(t), x2(t), x̂2(t) by using the proposedH∞ andH2/H∞
filters, respectively. The trajectories of the estimation error z̃(t) for H∞ and H2/H∞ filters
are shown in Figures 3 and 4, respectively. From Figures 3 and 4, it is obvious that the
performance of the proposed H2/H∞ filter is better than that of theH∞ filter.

In [15], the H∞ and H2/H∞ filters for general nonlinear stochastic systems were
obtained by solving a second-order nonlinear HJI. Generally, it is difficult to solve the HJI. In
fact, for the special nonlinear stochastic system (4.1), the H∞ and H2/H∞ filtering problems
can be solved via the LMI technique instead of the HJI according to Theorems 3.2 and 3.6 in
this paper. Simulation results show the effectiveness of the proposed method.
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Figure 1: Trajectories of x1(t), x̂1(t) and x2(t), x̂2(t) for the proposedH∞ filter.
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Figure 2: Trajectories of x1(t), x̂1(t) and x2(t), x̂2(t) for the proposedH2/H∞ filter.

5. Conclusions

In this paper, we have discussed the robust H∞ filtering problem for a class of nonlinear
stochastic systems. Meanwhile, the mixed H2/H∞ filtering analysis is also considered. Since
the results can be solved by LMIs, the proposed method has much advantage in practical
computation. Although we only demand the state equation to be nonlinear, one can tackle
the case that when both the state and measurement equations are nonlinear.
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Figure 3: Trajectory of the estimation error z̃(t) for the proposedH∞ filter.
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A new saturation control technique is proposed to design multiobjective and robust anti-windup
controllers for linear systems with input saturations. Based on the characterization of saturation
nonlinearities and modeling uncertainties via integral quadratic constraints (IQCs), this method
considers a mixed H2/H∞ performance indexes while maintaining dynamic constraints on the
controller. The analysis and synthesis conditions are presented in terms of scaled linear matrix
inequalities (LMIs). The proposed control algorithm can improve the performance of the input-
constrained systemwhile also guaranteeing robustness with respect to the modeling uncertainties.
Finally, a numerical example is given to illustrate the effectiveness of the developed techniques.

1. Introduction

Nonlinear control was one of the most active areas of control research. A number of different
approaches have recently emerged to discuss this challenging problems, such as the fuzzy
control [1–5] and robust sliding mode control [6–8]. Saturation nonlinearities are very
common in feedback control systems [9], nearly all physical systems are subjected to some
type of control input saturation. If input constraints are not taken into account, harmful effects
on system performance and stability may appear. Numerous methods have been proposed to
handle such nonlinearities, among which the anti-windup strategy is related to pratical use
closely. The basic idea underlining anti-windup designs is to introduce control modifications
in order to recover, as much as possible, the performance induced by a previous design
carried out on the basis of the unsaturated system. First results on anti-windup consisted on
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ad hoc methods intended to work with standard PID controllers, which are commonly used
in present commercial controllers. Nonetheless, major improvements have been achieved in
the last decade as it can be researched rigorousy in theory.

A general framework that unifies a large class of existing anti-windup control schemes
in terms of two matrix parameters was proposed in [10]. In [11], a rigorous definition of anti-
windup compensation was provided in terms of L2 stability and performance. The rigorous
stability analysis based on passivity concept was developed in [12]. The synthesis condition
of static anti-windup controllers was formulated as an LMI problem in [13]. References
[14, 15] further derived the dynamic anti-windup controller synthesis condition with linear
matrix inequality (LMI) constraints. In addition, based on the linear fractional transformation
(LFT)/linear parameter-varying (LPV) framework, extended anti-windup schemes were
introduced in [16, 17]. In these contributions, the saturations are modeled as sector-bounded
nonlinearities and the anti-windup control design is recast as a convex optimization problem
by absolute stability theory provided that no uncertainty affects the plant.

The problems associated with robustness to plant uncertainty and the problems
associated with actuator saturation have often been considered in isolation. There has been
little literature which attempts to handle them simultaneously in the anti-windup framework.
As noted in [18], nominal linear robustness is only a necessary, but not sufficient condition for
the robustness of the overall anti-windup compensated system. Furthermore, [18] introduced
an approach to synthesizing anti-windup compensators for input constrained systems subject
to additive dynamic uncertainty. Reference [19] considered anti-windup design problem
for a closed-loop LFT model whose structured perturbation block contains parametric
uncertainties.

In this paper, we propose a unified synthesis method for the construction of
multiobjective and robust anti-windup controller for linear systemswith actuator saturations,
time-varying parametric and dynamic uncertainties. Through an equivalent representation,
actuator saturations are treated as sector-bounded nonlinear uncertainty and are included in
a block-diagonal operator Δ together with the other uncertainties. Inspired by the research
work in [20], the problems associated with robustness are handled within the integral
quadratic constraints (IQCs) framework characterizing the properties and structure ofΔ. The
performance objectives are specified in terms ofH∞ norm,H2 norm, and additional regional
constraints on the closed-loop poles. Interestingly, the regional closed-loop poles placement
also ensures the pole-placement constraints on the anti-windup controller in that the closed-
loop poles exactly consist of the poles of nominal system and those of anti-windup controller.
As observed in [21], this helps to prohibit the slow dynamics which remain visible on the
plant outputs even when the saturations are no longer active. The overall analysis conditions
are cast as an optimization over LMIs using S-procedure technique and a common quadratic
Lyapunov function. The controller synthesis procedure requires solving scaled LMIs with a
D/K-like iteration and provides a full-order dynamic anti-windup controller.

Notation. Let Λn×n denote n-dimensional diagonal matrix. For compact presentation, given
a square matrix X we denote HeX := X + XT . A block-diagonal structure with sub-
blocks X1, X2, . . . , Xp in its diagonal will be denoted by diag (X1, X2, . . . , Xp). Ln

2e denotes
n-dimensional functional space whose members only need to be square integrable on finite
intervals. ε is a sufficiently small value. Other notations are standard.
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Table 1: IQC characterization for specified Δi.

Type Φ ∈ [0, KΦ] diag(δ1, . . . , δni
) δi(t)Ini

‖Δi(s)‖∞ < 1
Q = −2V ∈ Λni×ni Q ∈ Λni×ni Q ∈ �ni×ni Q = qIni

, q ∈ �
Scalings S = VKΦ S = 0 S + ST = 0 S = 0

R = εI R = −Q R = −Q R = −Q

2. Problem Statement

The anti-windup control problem is sketched in Figure 1(a). The block P(s) denotes the stable
nominal system and typically includes a model of the plant with uncertainties, nominal
controller together with weighing functions specified by the user. Note that Φ = z − Ψ(z),
where Ψ denotes the standard saturation operator. For clearness, the anti-windup control
diagram in Figure 1(a) is equivalently reformulated as LFT structure in Figure 1(b)with P̃(s)
described by

ẋp = Apxp + Brwr + Bpwp + Buu,

zr = Crxp +Drrwr +Drpwp +Druu,

z∞ = C∞xp +D∞rwr +D∞pwp +D∞uu,

z2 = C2xp +D2rwr +D2pwp +D2uu,

w = Dwrwr,

wr = Δzr.

(2.1)

Here, xp ∈ �n are the states. The input/output channels associated with the robustness are
wr, zr ∈ �nr . The input/output channels associated with the performance criterion are wp ∈
�np , z∞ ∈ �n∞ , and z2 ∈ �n2 . u ∈ �nu are the compensated controls, and w ∈ �nw are the
saturation error feedback. For well posedness, we will assume that D2p = 0.

Δ is a causal operator from Lr
2e[0,∞] to Lr

2e[0,∞]with its inputs and outputs satisfying
the following time-domain integral quadratic constraint

∫ t

0

[
wr(t)
zr(t)

]T[
Q ST

S R

][
wr(t)
zr(t)

]
dt ≥ 0, ∀t ≥ 0. (2.2)

Let Q, S, R be constant scaling matrices such that Q < 0, R > 0. We assume that Δ is block
diagonal: Δ = diag(Δ1, . . . ,Δr), where Δi denotes a “troublemaking” component. The IQC
characterizations for the typical cases considered here are listed in Table 1. Reference [20]
provides a fairly complete overview of IQCs. For application, all of the individual IQC are
collected in block-diagonal matrices Q = diag (Q1, . . . , Qr), R = diag (R1, . . . , Rr), and S =
diag (S1, . . . , Sr) to characterize the associated composition of Δ.
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Figure 1: (a) Anti-windup control structure; (b) equivalent LFT formulation.

Considering system (2.1), we assume that a full-order dynamic anti-windup
compensator is of the form

ẋk = Akxk + Bkw,

u = Ckxk +Dkw,
(2.3)

where xk ∈ �n is the controller state, and Ak, Bk, Ck, Dk are constant matrices of appropriate
dimensions. Then, the final closed-loop system admits the realization

ẋc = Acxc + Brwr + Bpwp,

zr = Crxc +Drrwr +Drpwp,

z∞ = C∞xc +D∞rwr +D∞pwp,

z2 = C2xc +D2rwr,

(2.4)

where xc = [xT
p xT

k ]
T and

[Ac Bi

Cj Dji

]
=

⎡
⎢⎣

Ap BuCk Bi + BuDkDωi

0 Ak BkDωi

Cj DjuCk Dji +DjuDkDwi

⎤
⎥⎦ (2.5)

with i = r, p and j = r,∞, 2.
Denoting by T∞(s) and T2(s) the closed-loop transfer functions from wp to z∞ and z2

respectively, we consider the following multiobjective synthesis problem: design an dynamic
anti-windup controller (2.3) such that as follows.

(1) The closed-loop system (2.4) is robustly stable with respect to the perturbation
block Δ.

(2) Minimize ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ .
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(3) The closed-loop poles can be placed in the prescribed complex plane which is
described by LMI region.

3. LMI Formulation of System Analysis

In this section, we will provide robust stability and performance analysis conditions for
the closed-loop system (2.4) in the LMI framework. The specifications and objectives under
consideration include H∞ performance, H2 performance. Additional regional constraints on
the closed-loop poles can also be imposed.

Theorem 3.1 (robust H∞ performance). Given the closed-loop system (2.4) with perturbation
blockΔ satisfying the integral quadratic constraint (2.2) and a scalar γ , if there exist a positive-definite
matrix P∞ and scaling matrices Q,S,R such that

He

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P∞Ac P∞Br + CT
r S P∞Bp 0 0

0
1
2
Q + STDrr STDrp 0 0

0 0 −1
2
γI 0 0

RCr RDrr RDrp −1
2
R 0

C∞ D∞r D∞p 0 −1
2
γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.1)

then the closed-loop system is robustly stable against the perturbation block Δ, and one has
‖T∞(s)‖∞ < γ with zero-state initial conditions.

Proof. Consider a Lyapunov function V (xc) = xT
c P∞xc for the closed-loop system (2.4). A

sufficient condition for the robust H∞ performance specification can be established from the
inequality

V̇ +
[
wr

zr

]T[
Q ST

S R

][
wr

zr

]
+
1
γ
zT∞z∞ − γwT

pwp < 0. (3.2)

First, consider the robust stability with the performance channel removed, the
inequality (3.2) is rewritten as

d

dt

(
V +

∫ t

0

[
wr

zr

]T[
Q ST

S R

][
wr

zr

]
dt

)
< 0. (3.3)

Note that the second term is always nonnegative. According to standard arguments from
Lyapunov theory, the closed-loop system is stable. Here, the function V decreases to zero,
but not necessarily monotonically. Next, consider robust performance, integrating (3.2) from
0 to ∞ with initial condition xc(0) = 0 yields ‖z∞‖2 < γ‖wp‖2. As a result, robust H∞
performance can be guaranteed. Inequality (3.2) is equivalent to the LMI condition (3.1) by
Schur complement.
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Theorem 3.2 (robustH2 performance). Given the closed-loop system (2.4)with perturbation block
Δ satisfying the integral quadratic constraint (2.2) and a scalar ν, if there exist a positive-definite
matrix P2 and scaling matrices Q,S,R such that

He

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P2Ac P2Br + CT
r S 0 0

0
1
2
Q + STDrr 0 0

RCr RDrr −1
2
R 0

C2 D2r 0 −1
2
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

[
P2 P2Bp

BT
pP2 W

]
> 0,

Tr(W) < ν2

(3.4)

then the closed-loop system is robustly stable against the perturbation blockΔ, and one has ‖T2(S)‖2 <
ν.

Proof. Let {e1, . . . , enp} be a basis of the input space �np . Let xc0·i = Bpei, i = 1, . . . , np be the
initial conditions of the closed-loop system (2.4). Let z2·i denote the output response subject
to initial condition xc0·i and wp = 0. Then the H2 norm ‖T2(s)‖2 can be equivalently defined
as [22]

‖T2(s)‖22 :=
np∑

i=1

‖z2·i‖22. (3.5)

With these results, a Lyapunov function V (xc) = xT
c P2xc can be constructed to satisfy the

following inequality

V̇ +
[
wr

zr

]T[
Q ST

S R

][
wr

zr

]
+ zT2z2 < 0. (3.6)

The robust stability proof is the same as the one in Theorem 3.1. As for robust
performance, integrating (3.6) from 0 to ∞ with xc(∞) = 0 guaranteed by stability, we can
obtain ‖z2‖22 < V (xc(0)). As a result, the output energy is bounded by

np∑

i=1

‖z2·i‖22 <
np∑

i=1

eTi BT
pP2Bpei = Tr

(
BT
pP2Bp

)
. (3.7)

With an auxiliary parameter W such that BT
pP2Bp < W , the LMI conditions (9∼11) can be

obtained by Schur complement.
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Pole assignment in convex regions of the left-half plane can be expressed as LMI
constraints on the Lyapunov matrix. An LMI region is any region D of the complex plane
that can be defined as

D =
{
z ∈ C : L +Mz +MTz < 0

}
(3.8)

with L = LT = {λij}1≤i, j≤m and M = {μij}1≤i, j≤m being constant real matrices. Reference [23]
gives a thorough discussion for various types of the convex region.

Theorem 3.3 (see [23] (pole placement)). The closed-loop state matrix Ac has all its eigenvalues
in the LMI region D (3.8) if and only if there exists a positive definite matrix Ppol such that

[
λijPpol + μijAT

c Ppol + μjiPpolAc

]

1≤i, j≤m
< 0. (3.9)

Note that the closed-loop poles of system (2.4) exactly consist of the poles of system
(2.1) and those of controller (2.3); LMI region D should include the poles of system (2.1) to
ensure the feasibility of the problem. Furthermore, the dynamics of the controller (2.3) can be
constrained by the LMI region D.

4. LMI Approach to Multiobjective Synthesis

Based on the analysis results stated in the above section, in this section we aim to present a
constructive procedure to design an anti-windup controller of the form (2.3), satisfying the
multiobjective synthesis purposes proposed in Section 2. This procedure relies on a simple
change of controller variables to map all LMIs of Section 3 into a set of affine constraints on
the new controller variables and the closed-loop Lyapunov matrix.

For tractability in the LMI framework, we must seek a common Lyapunov matrix

P := P∞ = P2 = Ppol (4.1)

that satisfies Theorems 3.1, 3.2, and 3.3. This restriction has been extensively used in
multiobjective control problem such as [23, 24]. Partition P and P−1 as

P =
[
Y N
NT ∗

]
, P−1 =

[
X M
MT ∗

]
, (4.2)

where X,Y ∈ �n×n are symmetric. Factorizing P as

PX1 = X2, X1 =
[
X I
MT 0

]
, X2 =

[
I Y
0 NT

]
(4.3)
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we define the change of controller variables as follows:

Ak := YApX + YBuCkM
T +NAkM

T,

Bk := YBuDk +NBk,

Ck := CkM
T,

Dk := Dk.

(4.4)

For full-order design, one can always assume thatM,N are n×n square and invertible matri-
ces. Hence the controller variables Ak, Bk, Ck,Dk can be determined by Ak,Bk,Ck,Dk, X, Y
uniquely. Then through suitable congruence transformation, the analysis results of Section 3
are readily turned into inequality constraints on the variables X,Y,Ak,Bk,Ck,Dk as well as
auxiliary variable W and scaling matrices Q,S,R, and we arrive at Theorem 4.1.

Theorem 4.1 (multiobjective synthesis for robust anti-windup controller). Given the general-
ized plant (2.1)with perturbation blockΔ satisfies the integral quadratic constraint (2.2) and the LMI
regionD (3.7). There exists a controller (2.3) which robustly stabilizes plant (2.1) and enforces a tight
upper bound

√
Tr(W) on ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ and closed-loop poles constraints specified

byD, if there exist matrices X,Y,Ak,Bk,Ck,Dk as well as auxiliary variableW and scaling matrices
Q,S,R such that the inequalities hold as shown in (20∼22) at the top of the next page, together with

He

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ApX + BuCk Ap +AT
k

Br + BuDkDwr +XCT
r S + CT

k
DT

ruS Bp 0 0
0 YAp YBr + BkDwr + CT

r S YBp 0 0

0 0
1
2
Q + STDrr + STDruDkDwr STDrp 0 0

0 0 0 −1
2
γI 0 0

RCrX + RDruCk RCr RDrr + RDruDkDwr RDrp −1
2
R 0

C∞X +D∞uCk C∞ D∞r +D∞uDkDwr D∞p 0 −1
2
γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

He

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ApX + BuCk Ap +AT
k

Br + BuDkDwr +XCT
r S + CT

k
DT

ruS 0 0
0 YAp YBr + BkDwr + CT

r S 0 0

0 0
1
2
Q + STDrr + STDruDkDwr 0 0

RCrX + RDruCk RCr RDrr + RDruDkDwr −1
2
R 0

C2X +D2uCk C2 D2r +D2uDkDwr 0 −1
2
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

[
λij

(
X I
I Y

)
+ μij

(
ApX + BuCk Ap

Ak YAp

)T

+ μji

(
ApX + BuCk Ap

Ak YAp

)]

1≤i, j≤m
< 0,
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⎡

⎣
X I Bp

I Y YBp

BT
p BT

p Y W

⎤

⎦ > 0,

Minimizing Tr(W).

(4.5)

Due to the fact that thematrix variablesX,Y,Ak,Bk,Ck,Dk and scalingmatricesQ,S,R
enter the inequalities (21∼22) in nonlinear fashion, synthesis conditions are no longer convex
optimization problem. In order to overcome this difficulty, one will resort to the following
iterative scheme based on LMI.

Step 1. Initialize scaling matrices Q,S,R.

Step 2. With fixed Q,S,R, perform control synthesis according to Theorem 4.1. Compute two
invertible matrices M,N ∈ �n×n such that

MNT = I −XY. (4.6)

Equation (4.4) can be solved for Dk,Ck, Bk,Ak in this order.

Step 3. Apply Theorems 3.1, 3.2, 3.3, and (4.1) to the closed-loop system (2.4) to solve scaling
matrices Q,S,Rminimizing Tr(W).

Step 4. Iterate over Step 2 to Step 3 until Tr(W) cannot be decreased significantly.

It is important to mention that the previously described iterative scheme, although not
guaranteeing a global solution theoretically, has proven very efficient in practice.

5. Application Example

As an application, a missile benchmark problem [25] will be used to demonstrate the
effectiveness of the results discussed. The model is linearized at α = 10deg (angle of attack)
and Ma = 3 (Mach number), and admits the realization

⎡

⎣
α̇
q̇
ϑ̇

⎤

⎦ =

⎡

⎣
Zα 1 0
Mα 0 0
0 1 0

⎤

⎦

⎡

⎣
α
q
ϑ

⎤

⎦ +

⎡

⎣
Zδ

Mδ

0

⎤

⎦δ, (5.1)

where q, ϑ, and δ denote pitch rate, pitch angle, and elevator deflection, respectively. The
measurement outputs are the flight path angle r = ϑ − α and the pitch rate q. The parametric
uncertainties originate from the aerodynamic force Z and moment M with uncertainty level
of ±20%. The actuator dynamics are given byGact(s) = 1502/(s2+210s+1502)with saturation
limit δ ∈ [−15, 15]deg.

Ignoring the saturation, a PID controller can be designed as δc = [1.5
∫
(r − rc)dt +

2r + 0.3q]. δc and rc denote the commanded signal to the actuator and the commanded flight
path angle, respectively. According to the analysis results in Section 3, the PID controller can
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Figure 2: Interconnection structure for anti-windup design.
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Figure 3: LMI region with poles [−1346,−61,−1,−9.8 ± 10.2i].

guarantee global stability for the saturated plant with KΦ = 1. Although the PID controller
provides adequate stability and nominal performance, the tracking trajectory of the nominal
system under saturation deteriorates and exhibits great overshoot (see Figure 4). This clearly
necessitates the anti-windup compensation scheme.

In the anti-windup design, firstly parametric uncertainties in Z and M are extracted
from the plant in a linear fractional way and rescaled to [−1, 1]. Secondly, to avoid excitation
of unmodeled high-frequency dynamics, a multiplicative input uncertainty Δd(s) weighted
by Wd(s) = 1.5[(s + 2)/(s + 80)] is placed at the actuator. Finally, we end up with the control
interconnection as shown in Figure 2. Constant weights We = 1 and Wn = 0.001 are used to
reflect the tracking performance and measurements with noise.

We combine the sector-bounded nonlinearity Φ = I − Ψ with the modeling
uncertainties as a block-diagonal uncertainty structure given by Δ = diag (Φ, δzI, δmI,Δd).
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Figure 4: Time-domain responses to a double pulse reference.
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Figure 5: Time-domain responses for all combinations of perturbed aerodynamics.

Then, the anti-windup control diagram in Figure 2 is equivalently reformulated as LFT
structure in Figure 1(b) for design. For low-order compensator, the actuator dynamics are
ignored in design. This is justified by the fact that the bandwidth of the system is far below
that of the actuator. The LMI regionD specified in Figure 3 is used to constrain the dynamics
of the compensator. We choose to minimize ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ . KΦ = 0.8 is
used to allocate the partial design freedom for coping with robustness and performance at
the cost of global stability. As a result, we achieve γ = 38.6 and ‖T2(s)‖2 = 4.2. The control
deflection should satisfy the condition |δ| ≤ (1/(1 −KΦ))15 deg. The distribution of the poles
of the compensator is shown in Figure 3.
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For numerical simulations, the measurement noise is chosen as band-limited white
noise of power 10−6 passed through a zero order holder with sampling time 10−3 s. The
resulting anti-windup response almost coincides with the linear response (see Figure 4).
We can see that the designed anti-windup controlled guarantees the stability and recovers
the nominal performance when the actuator is saturated deeply. For comparison, the anti-
windup response of the nondynamically constrained compensator become worse because of
the existence of a slow compensator mode −0.002. Figure 5 shows the time-domain robust
performance behaves. As expected from previous results, Figure 5 illustrated that the anti-
windup performance of the obtained controller is robust with respect to the error in model
parameters.

6. Conclusion

This paper presents a unified synthesis method for the construction of multiobjective and
robust anti-windup compensator for linear systems with actuator saturations, time-varying
parametric and dynamic uncertainties. Motivated by the capability of integral quadratic
constraints in characterizing saturation nonlinearities and modeling uncertainties, the
concerned anti-windup and robustness problems are addressed in the framework of IQCs.
The performance objectives are specified in terms of a mixed H2/H∞ norm and additional
constraints on the poles of the controller. The controller synthesis procedure requires solving
scaled LMIs with a D/K-like iteration and provides dynamically constrained anti-windup
compensators. Finally, simulation example demonstrates the effectiveness of the results.
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Based on the mean and the standard deviation of lead time demand, and also taking the difficulty
in measuring shortage cost into consideration, we investigate the joint decision problem of
continuous review inventory in which a service level constraint should be satisfied. Under the
assumption of controllable lead time and setup cost, a mathematical programming model is
established. The objective function of the proposed model is the total expected annual cost and
the constraint guarantees that the service level requirement can be satisfied at the worst case.
Subsequently, an equivalent nonlinear programming model is derived. By constructing Lagrange
function, the analysis regarding the solution procedure is conducted, and a solution algorithm is
then provided. Moreover, a numerical example is introduced to illustrate the proposed model and
solution algorithm. Through sensitivity analysis, some observations and managerial implications
are provided.

1. Introduction

In inventory management, the length of lead time has direct influence on customer
service level and total inventory cost. With the increasing competition in today’s business
environment, plenty of enterprises have devoted their efforts to pursuing a short lead time
to enhance market competition ability. It is no doubt that the achievement of a shortened
lead time requires a number of capital investments. Thus, some researchers have paid their
attentions to balancing benefits and costs resulting from the reduction of lead time, and
developed some theoretical models for possible decision aid. For example, Liao and Shyu
[1] regarded the lead time as a decision variable. By assuming that the lead time composes
of several components and the crashing cost is a linear function in the length of lead time
concerning each component, a mathematical programmingmodel with controllable lead time
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was constructed. Later, with the lead time crashing cost function proposed by Liao and Shyu
[1], a lot of work has been done to develope some optimization models and algorithms in
various decision environments for continuous inventory problems with variable lead time,
such as Hariga and Ben-Daya [2], Ouyang and Chang [3], Wu andOuyang [4], Yang et al. [5],
Lee [6], Hoque and Goyal [7], and Annadurai and Uthayakumar [8]. However, the piecewise
linear expression of lead time crashing cost has some deficiencies in application. Thus, Ben-
Daya and Raouf [9] adopted negative exponential function to describe the lead time crashing
cost and proposed a corresponding continuous review inventory model. Subsequently, Wu et
al. [10] employed the negative exponential lead time crashing cost to develop a continuous
review inventory model in which the lead time demandwith the mixture of distributions was
taken into account. Besides, Yang [11] proposed a supply chain integrated inventory model
in the present of time value. In the proposed model, the lead time crashing cost was also
assumed to be nonlinear in the length of lead time.

Likewise, in many real inventory problems, the setup cost could be reduced through
increasing labor, improving facilities or adopting other relevant measures. In view of
this point, Ouyang et al. [12] considered the partial backorder and proposed a modified
continuous review inventory model with controllable lead time and setup cost. Taking
the imperfect production process into account, Ouyang and Chang [13] constructed an
inventory optimization model with controllable lead time and setup cost. In their research,
both logarithmic and power investment functions were considered. With the assumption of
controllable lead time and setup cost, Ouyang et al. [14] considered quality improvement in
imperfect production process and investigated the associated inventory decision problem.
Chuang et al. [15] assumed that the lead time demand is distribution-free in protection
level and presented an inventory optimization model with variable lead time and setup
cost. Taking the inconsistency between the receiving quantity and the ordering quantity into
account,Wu and Lin [16] proposed an extended continuous review inventorymodel inwhich
both lead time and ordering cost were variable. Subsequently, in supply chain setting, Chang
et al. [17] proposed two integrated inventory models with the reductions of lead time and
ordering cost. Considering the backorder discount, Lee et al. [18] developed a joint inventory
decision model with variable lead time and ordering cost. In the research conducted by
Uthayakumar and Parvathi [19], not only lead time and setup cost, but also yield variability
was assumed to be variable. Besides, the backorder rate was assumed to be controllable
through the amount of expected shortage. In their models, all the capital investments were
assumed to be subject to logarithmic function. Annadurai and Uthayakumar [20] took
the imperfect quality into account and developed a continuous review inventory model
involving variable lead time and setup cost.

It is inevitable that shortage takes place with the assumption of stochastic lead
time demand in continuous review inventory. However, in some practical situations, the
shortage cost is difficult to estimate and therefore a service level constraint is announced
by manager instead. Thus, based on different service level metrics, Aardal et al. [21] studied
the optimal replenishment problem of continuous review inventory system. Moreover, some
convex programming formulations were developed, and the associated solution algorithms
were also given. With the normally distributed lead time demand, Ouyang and Wu [22]
established a continuous review inventory model involving controllable lead time. In
their research, a service level constraint was taken into account. Then, the assumption of
normal distribution on lead time demand was relaxed and a distribution-free computational
procedure was developed. By using the mixture of distributions to describe lead time
demand, Lee et al. [23] proposed a continuous review inventory model with variable
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backorder rate and service level constraint. Jha and Shanker [24] proposed a model to solve
ordering quantity, length of lead time and number of shipments in supply chain environment.
In the concerned problem, controllable lead time and service level constraint were taken
into consideration. Tajbakhsh [25] studied a distribution-free inventory model with a fill
rate constraint. By solving the proposed model, the closed-form expressions of ordering
quantity and reorder point were derived. Hsu and Huang [26] developed a distribution-
free continuous review inventory model with multi-retailer. Moreover, both controllable lead
time and service level constraint were considered. In Annadurai and Uthayakumar [27], and
Jaggi andArneja [28], with a service level constraint, the continuous review inventorymodels
involving controllable lead time and setup cost were investigated. The former focused on
the demand with the mixture of distributions, while the latter focused on the demand with
normal distribution. More recently, Lin [29] presented a continuous review inventory model
with a service level constraint. In the proposed model, setup cost, backorder rate, and lead
time were assumed to be controllable. One of the same features in the models proposed by
Annadurai and Uthayakumar [27], Jaggi and Arneja [28], and Lin [29] is that the piecewise
linear lead time crashing cost was adopted. Besides, they derived safety coefficient from
the allowable stock-out probability during lead time and thus the safety coefficient is not
a decision variable. In fact, safety coefficient could be optimized, such as in Hariga and Ben-
Daya [2], Wu and Ouyang [4], Hoque and Go [7], Annadurai and Uthayakumar [8, 20],
Ouyang et al. [12, 14], Ouyang and Chang [3, 13], Chang et al. [17], Aardal et al. [21] and
Tajbakhsh [25].

In this paper, we develop a continuous review inventory model with controllable lead
time and setup cost. The lead-time-dependent cost is assumed to be a power function in the
length of lead time, and the capital investment in setup cost reduction is assumed to follow
a logarithmic expression. Moreover, the safety coefficient is treated as a decision variable.
This disposition definitely leads to a more complex procedure of analyzing and deriving the
optimal solution. In consideration of the difficulty in providing a precise estimation on the
probability density function (p.d.f.) due to the insufficiency of historical data, we propose
a distribution-free model according to the mean and the standard deviation of lead time
demand. By constructing Lagrange function, we develop a solution procedure to determine
ordering quantity, reorder point, length of lead time, and setup cost. Furthermore, we resolve
a numerical example by using the proposed solution procedure and analyze the effects of the
lower bound of service level.

The rest of this paper is organized as follows. In Section 2, we list the basic notations
and assumptions used throughout this paper. In Section 3, the expression of total expected
annual cost is firstly provided, and then a mathematical model of the concerned problem
is proposed. In Section 4, an equivalent nonlinear programming formulation is derived.
Moreover, a Lagrange function is constructed to obtain the optimal solution of the proposed
model, and a solution algorithm is given. In Section 5, we resolve a numerical example by
using the proposed solution algorithm. Through sensitivity analysis, some observations and
managerial implications are presented. Finally, in Section 6, we summarize the whole paper
and point out the next research work.

2. Notations and Assumptions

Before further development, we list the following notations which will be used throughout
the paper.
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q: ordering quantity, a decision variable.

k: safety coefficient, k ≥ 0, a decision variable.

L: length of lead time, a decision variable.

A: setup cost, a decision variable.

X: lead time demand, a random variable.

d: demand rate per year.

fX : probability density function of lead time demand.

σ
√
L: standard derivation of lead time demand.

r: reorder point.

A0: original setup cost.

SL: service level.

β: lower bound of service level.

R(L): lead-time-dependent cost.

I(A): capital investment in setup cost reduction.

γ : fractional opportunity cost per unit capital per year.

h: holding cost per unit item per year.

EAC: total expected annual cost.

Moreover, the present problem is based on the following assumptions.

(1) Inventory is continuously monitored. Whenever the inventory level drops to a
target value, an order is placed.

(2) The probability density function with regard to lead time demand is unknown.

(3) The service level is scaled by the fill rate which is defined as the fraction of demand
satisfied from stock. Mathematically,

SL = 1 − E(X − r)+

q
. (2.1)

in which E(·) is the mathematical expectation and x+ = max(x, 0).

(4) The reorder point is determined by r = dL + kσ
√
L, in which kσ

√
L denotes safety

inventory.

(5) The lead-time-dependent cost follows a power function. Mathematically,

R(L) = aL−b, (2.2)

in which a > 0 and b > 0 are constants.



Mathematical Problems in Engineering 5

(6) The capital investment in setup cost reduction follows a logarithmic function.
Mathematically,

I(A) =
1
δ
ln
(
A0

A

)
, 0 < A ≤ A0, (2.3)

in which δ > 0 is a constant.

(7) As in Tajbakhsh [25], we assume that the lower bound of service level satisfies
1/2 < β < 1. This value range is quite reasonable in application.

3. The Mathematical Model

Herein, we intend to provide a feasible solution scheme for the joint decision problem in
continuous review inventory with a service level constraint. For the present problem, it is
assumed that both lead time and setup cost can be reduced through capital expenditures.
Hence, the decision variables contain not only ordering quantity and safety coefficient, but
also length of lead time and setup cost.

Based on the previous description, the length of cycle is q/d, and the setup cost per
cycle is A. In continuous review inventory system, an order with size q is placed when the
inventory level drops to the reorder point r, and the order is received at the end of lead time.
Thus, the inventory holding cost per year is (h)/(2) [q + 2(r − dL)], in which dL denotes the
mean of lead time demand.

Taking the capital expenditures related to the reductions of lead time and setup cost
into account, we can formulate the expression of total expected annual cost as follows:

EAC
(
q, r,A, L

)
=

d

q

(
A + aL−b

)
+
h

2
[
q + 2(r − dL)

]
+
γ

δ
ln
(
A0

A

)
. (3.1)

Generally speaking, the precise estimation of probability density function on lead
time demand requires enough adequate data, which is difficult to realize in application.
Therefore, in the development of the proposed model, we do not make any assumptions
on the distribution function of lead time demand. Namely, we focused on the case when the
specific distribution of lead time demand is unavailable.

Denote the collection of probability density function fX with the mean dL and the
standard derivation σ

√
L by F. Assuming the manager is conservative and expects that the

service level constraint holds for all possible probability distributions, we get

minimize
fX∈F

{
1 − E(X − r)+

q

}
≥ β. (3.2)

The above disposition to service level constraint is in line with Tajbakhsh [25] and
reflects robustness. Similar philosophy was widely adopted in the control of complex
systems, such as Bausoa et al. [30], Dong et al. [31], Jaśkiewicz and Nowak [32] and
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Hu et al. [33]. Furthermore, taking the total expected annual cost as objective function, we
can establish the following programming model for the present problem:

minimize
q,r,A,L

EAC
(
q, r,A, L

)

subject to maximize
fX∈F

E(X − r)+ ≤ (1 − β
)
q

q ≥ 0, r ≥ dL, 0 < A ≤ A0, L > 0.

(3.3)

4. Solution Procedure

To facilitate further exploration, we introduce the following proposition to eliminate the max
operator in the service level constraint of model (3.3).

Proposition 4.1. Given the mean dL and the standard derivation σ
√
L of lead time demand X, then

E(X − r)+ ≤
σ
√
L
(√

k2 + 1 − k
)

2
. (4.1)

Moreover, there is at least a p.d.f. which makes the equal sign in (4.1) holds.

Proposition 4.1 is similar to Lemma 1 in Gallego andMoon [34]. Therefore, we omit the
proof procedure. In light of Proposition 4.1, and substituting the relation r = dL + kσ

√
L into

the objective function of model (3.3), we get an equivalent nonlinear programming model:

minimize
q,k,A,L

EAC
(
q, k,A, L

)
=

d

q

(
A + aL−b

)
+
h

2

(
q + 2kσ

√
L
)
+
γ

δ
ln
(
A0

A

)

subject to σ
√
L
(√

k2 + 1 − k
)
− 2
(
1 − β

)
q ≤ 0

q ≥ 0, k ≥ 0, 0 < A ≤ A0, L > 0.

(4.2)

To solve model (4.2), a Lagrange function is constructed as follows:

F
(
q, k,A, L, λ

)
=

d

q

(
A + aL−b

)
+
h

2

(
q + 2kσ

√
L
)
+
γ

δ
ln
(
A0

A

)

+ λ
[
σ
√
L
(√

k2 + 1 − k
)
− 2
(
1 − β

)
q
]
,

(4.3)

in which λ ≥ 0 is a Lagrange multiplier.
Then, with the first order optimality condition ∂F(q, k,A, L, λ)/∂k = 0, we get

λ =
h
√
k2 + 1√

k2 + 1 − k
. (4.4)
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From (4.4), we conclude that the Lagrange multiplier should satisfy λ ≥ h. This
relationship manifests that the service level constraint is never inactive. Thus, the optimal
solution should satisfy the following equation:

σ
√
L
(√

k2 + 1 − k
)
− 2
(
1 − β

)
q = 0. (4.5)

Equivalently,

q =
σ
√
L
(√

k2 + 1 − k
)

2
(
1 − β

) . (4.6)

Let ∂F(q, k,A, L, λ)/∂L = 0 and yield:

2abd − σqLb+1/2
[
hk + λ

(√
k2 + 1 − k

)]
= 0. (4.7)

Substituting (4.4) and (4.6) into (4.7), after some algebraic manipulation, we get

L1∗ =

[
4abd

(
1 − β

)

hσ2

]1/(b+1)
. (4.8)

Furthermore, by letting ∂F(q, k,A, L, λ)/(∂A) = 0, we obtain

q =
δdA

γ
. (4.9)

Combining (4.4), (4.6), and (4.9), we have

λ =
hLσ2γ2

8δ2d2A2
(
1 − β

)2 +
h

2
. (4.10)

Then, let ∂F(q, k,A, L, λ)/∂q = 0 and get

2d
(
A + aL−b

)
+ q2
[
4
(
1 − β

)
λ − h

]
= 0. (4.11)

Then, with the length of lead time from (4.8), and substituting (4.9) and (4.10) into
(4.11), we get the following quadratic equation with respect to setup cost A:

A2 − 2γ2A
dhδ2

(
2β − 1

) −
γ2
[
hσ2Lb+1

1∗ + 4ad
(
1 − β

)]

2hδ2d2Lb
1∗
(
1 − β

)(
2β − 1

) = 0. (4.12)
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Again, with the assumption 1/2 < β < 1, it is obvious that the above equation has a
unique positive root. Due to the complex formulation of (4.12), we do not write the analytical
expression of its solution. However, with the given parameters, it is easy to resolve (4.12) and
get the value of setup cost. For the convenience of description in the sequel, we denote the
unique positive solution of (4.12) by A1∗.

With the resultant setup costA1∗ and the length of lead time L1∗, we can determine the
corresponding ordering quantity q1∗ and the Lagrange multiplier λ1∗,respectively, by using
(4.9) and (4.10). Namely, q1∗ = δdA1∗/γ and λ1∗ = hLσ2γ2 /8δ2d2 A2

1∗ (1 − β)2 + h/2.
Subsequently, the safety coefficient can be obtained by the following formula:

k1∗ =
λ1∗ − h

√
h(2λ1∗ − h)

. (4.13)

Then, we need to examine whether the solution (q1∗, k1∗, A1∗, L1∗) is a minimum.
Although it is difficult to verify that the nonlinear programming model (4.2) is convex,
we can demonstrate that the Hessian of Lagrangian is positive definition at point
(q1∗, k1∗, A1∗, L1∗, λ1∗). To this end, the Hessian matrix is written as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2F
(
q, k,A, L, λ

)

∂q2
∂2F
(
q, k,A, L, λ

)

∂q∂k

∂2F
(
q, k,A, L, λ

)

∂q∂A

∂2F
(
q, k,A, L, λ

)

∂q∂L
∂2F
(
q, k,A, L, λ

)

∂k∂q

∂2F
(
q, k,A, L, λ

)

∂k2

∂2F
(
q, k,A, L, λ

)

∂k∂A

∂2F
(
q, k,A, L, λ

)

∂k∂L
∂2F
(
q, k,A, L, λ

)

∂A∂q

∂2F
(
q, k,A, L, λ

)

∂A∂k

∂2F
(
q, k,A, L, λ

)

∂A2

∂2F
(
q, k,A, L, λ

)

∂A∂L
∂2F
(
q, k,A, L, λ

)

∂L∂q

∂2F
(
q, k,A, L, λ

)

∂L∂k

∂2F
(
q, k,A, L, λ

)

∂L∂A

∂2F
(
q, k,A, L, λ

)

∂L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.14)

Moreover,

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂q2
=

2d
(
a +A1∗Lb

1∗
)

q31∗L
b
1∗

, (4.15)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂k2
=

λσ
√
L1∗

(
k2
1∗ + 1

)3/2 , (4.16)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂A2
=

γ

δA2
1∗

=
d

q1∗A1∗
,

(4.17)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂L2
=

abd(b + 1)
q1∗Lb+2

1∗
+
σ

[
hk1∗ + λ

(√
k2
1∗ + 1 − k1∗

)]

4L3/2
1∗

=
abd(2b + 3)
2q1∗Lb+2

1∗
,

(4.18)
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∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂q∂k
=

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂k∂q

=
∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂k∂A

=
∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂A∂k

=
∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂A∂L

=
∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂L∂A

= 0,

(4.19)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂q∂A
=

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂A∂q

= − d

q21∗
,

(4.20)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂q∂L
=

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂L∂q

=
abd

q21∗L
b+1
1∗

,

(4.21)

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂k∂L
=

∂2F
(
q1∗, k1∗, A1∗, L1∗, λ1∗

)

∂L∂k

=
σ

[
(h − λ1∗)

√
k2
1∗ + 1 + λ1∗k1∗

]

2
√
L1∗
(
k2
1∗ + 1

)

= 0.

(4.22)

It is worth mentioning that the second equal sign in (4.17) is based on (4.9), the second
equal sign in (4.18) is based on (4.4), (4.6) and (4.8), and the third equal sign in (4.22) is based
on (4.4).

In light of (4.15)–(4.22), the first and second principal minor determinants of matrix
H at point (q1∗, k1∗, A1∗, L1∗, λ1∗) are obviously positive, which are shown as follows:

|H11| =
2d
(
a +A1∗Lb

1∗
)

q31∗L
b
1∗

≥ 0,

(4.23)
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|H22| =
2λσd

(
a +A1∗Lb

1∗
)

q31∗L
b−1/2
1∗

(
k2
1∗ + 1

)3/2

≥ 0.

(4.24)

And the third principal minor determinant of H at point (q1∗, k1∗, A1∗, L1∗, λ1∗) is
computed as follows:

|H33| =
2λσd2

(
a +A1∗Lb

1∗
)

A1∗q41∗L
b−1/2
1∗

(
k2
1∗ + 1

)3/2 − λσd2
√
L1∗

q41∗
(
k2
1∗ + 1

)3/2

=
λσd2

(
2a +A1∗Lb

1∗
)

A1∗q41∗L
b−1/2
1∗

(
k2
1∗ + 1

)3/2

≥ 0.

(4.25)

In addition, the fourth principal minor determinant of Hessian matrix H at point
(q1∗, k1∗, A1∗, L1∗, λ1∗) is computed as follows:

|H44| =
λσabd3(2b + 3)

(
a +A1∗Lb

1∗
)

A1∗q51∗L
2b+3/2
1∗

(
k2
1∗ + 1

)3/2 − λσabd3(2b + 3)

2q51∗L
b+3/2
1∗

(
k2
1∗ + 1

)3/2

=
λσabd3(2b + 3)

(
2a +A1∗Lb

1∗
)

2A1∗q51∗L
2b+3/2
1∗

(
k2
1∗ + 1

)3/2

≥ 0.

(4.26)

Therefore, according to the second order sufficient conditions (SOSCs) [35],
(q1∗, k1∗, A1∗, L1∗) is a minimum.

Notice that the interval and nonnegative constraints of model (4.2) are ignored while
constructing Lagrange function (4.3). Thus, if the setup cost derived using (4.12) does not
make the inequality A1∗ ≤ A0 hold, we need to take the following special case into account,
that is, A2∗ = A0.

For the case of A2∗ = A0, it means that, to minimize the total expected annual cost, the
manager need not adopt any actions to reduce the setup cost. Thus, similar to the above
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deduction procedure, we can achieve the length of lead time and the ordering quantity
through the following equations:

L2∗ =

[
4abd

(
1 − β

)

hσ2

]1/(b+1)
,

q2∗ =

√√√√√
4d
(
1 − β

)(
a +A2∗Lb

2∗
)
+ hσ2Lb+1

2∗

2
(
1 − β

)(
2β − 1

)
hLb

2∗
.

(4.27)

Then, the Lagrange multiplier is

λ2∗ =
h

4
(
1 − β

) −
d
(
a +A2∗Lb

2∗
)

2
(
1 − β

)
q22∗L

b
2∗
. (4.28)

Accordingly, the safety coefficient is

k2∗ =
λ2∗ − h

√
h(2λ2∗ − h)

. (4.29)

In accordance with Aardal et al. [21], we confine the present discussion to the service
level which yields k > 0. Actually, with a similar computational procedure, it is easy to
determine the optimal values of ordering quantity, length of lead time, and setup cost for
the case of k = 0. To keep compact, we do not provide the details.

According to the above analysis procedure, the solution algorithm for the proposed
model is summarized as follows.

Step 1. Determine the values of L1∗ and A1∗, respectively, by using (4.8) and (4.12).

Step 2. If A1∗ > A0, go to Step 3. Otherwise, determine the values of q1∗, λ1∗, and k1∗,
respectively, by using (4.9), (4.10), and (4.13). Let q∗ = q1∗, k∗ = k1∗, A∗ = A1∗, L∗ = L1∗.
Go to Step 4.

Step 3. SetA2∗ = A0 and determine the values of L2∗ and q2∗ by using (4.27) and (4.28). Then,
determine the values of λ2∗ and k2∗, respectively, by using (4.28) and (4.29). Let q∗ = q2∗,
k∗ = k2∗, A∗ = A2∗, L∗ = L2∗.

Step 4. End.

5. Numerical Example

In this section, a numerical example is utilized to demonstrate the feasibility of the proposed
solution procedure. Moreover, we will vary the lower bound of service level to perform
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Figure 1: The lead-time-dependent cost.

sensitivity analysis and give some observations and managerial implications. The basic
parameters are as follows:

β = 0.975,

γ = 0.1/dollar/year,

d = 700 units/year,

σ = 15 units/week,

h = $25/year/unit,

A0 = $300/order.

The function expression of lead-time-dependent cost is R(L) = 1000L−3 with a = 1000
and b = 3. Moreover, the function expression of capital investment in setup cost reduction is
I(A) = 10000 ln(300/A) with δ = 0.0001. The curves of two capital investment functions are,
respectively, depicted in Figures 1 and 2.

With the aforementioned data and function expressions, and using the proposed
method, we can calculate the ordering quantity q∗ = 115.59 units, the safety coefficient
k∗ = 0.7293, the length of lead time L∗ = 28.14 days and the setup cost A∗ = 165.13 dollars.
Thus, the reorder point r∗ = 62.27 units, the lead-time-dependent cost R∗(L) = 15.39 dollars,
the capital investment in setup cost reduction I∗(A) = 5970.3 dollars, and the total expected
annual cost EAC∗ = 3342.4 dollars.

Next, we vary the value of β from 0.96 to 0.99 with equal interval 0.1 to perform
sensitivity analysis. The computational results are shown in Table 1.

From the data in Table 1, several observations and managerial implications are made
as follows:

(1) When the value of β is varied from 0.96 to 0.99, the ordering quantity and the safety
coefficient increase while the reorder point decreases. Moreover, compared with
the ordering quantity and the reorder point, the change in the safety coefficient is
great. This phenomenon implies that the change in lower bound of service level has
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Figure 2: The capital investment function in setup cost reduction.

Table 1: Effect of change in parameter β.

β 0.96 0.97 0.98 0.99
q∗ 110.74 113.32 119.00 133.86
k∗ 0.3131 0.5629 0.9460 1.7613
r∗ 64.48 63.04 61.51 60.78
L∗ 31.65 29.46 26.62 22.38
A∗ 158.19 161.89 170.00 191.23
R∗(L) 10.81 13.42 18.19 30.59
I∗(A) 6399.7 6168.6 5680.1 4502.9
EAC∗ 3186.9 3280.0 3423.9 3729.9

a greater impact on the safety coefficient and the reorder point than the ordering
quantity.

(2) We observe that a larger value of β yields a shorter lead time, a higher lead-time-
dependent cost. This phenomenon indicates that the short lead time is favorable to
the service level. Moreover, we also observe that a larger value of β leads to a higher
setup cost and a smaller value of capital investment in setup cost reduction.

(3) As the value of β increases, the total expected annual cost also increases. It seems
that a lower service level benefits manager in profit. However, the lower service
will produce negative influences on brand and customer loyalty which are crucial
to building competitive advantage in market. From this perspective, the manager
should determine a proper lower bound of service level which can balance short-
term income and long-term development.

6. Conclusions and Future Work

Considering the difficulty in measuring shortage cost, we proposed a distribution-free
continuous review inventorymodel in the presence of a service level constraint. In ourmodel,
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the lead-time-dependent cost is assumed to be a power function in the length of lead time,
and the capital investment in setup cost reduction is assumed to be a logarithmic function in
setup cost. The proposed model guarantees that the service level constraint can be satisfied
at the worst case and takes ordering quantity, safety coefficient, length of lead time and setup
cost as decision variables. In the present research, we also discuss the optimal solution of the
proposedmodel and develop an effective solution procedure. Moreover, the results contained
in this research are illustrated and verified by a numerical example.

In the future research, we may take other forms of investment function into
consideration. Besides, we will conduct some relevant research to extend the present model
frommany perspectives, such as imperfect quality, uncertain yield and so on, to develop some
novel models and design the corresponding solution algorithms. Another feasible extension
of the present research is to develop the inventory model and the associated solution
algorithm by considering the interacted effect of capital investment in the reductions of lead
time and setup cost. Additionally, in the research regarding continuous review inventory
problems, the safety coefficient is usually assumed to be nonnegative. However, for some
replenishment problems with short lead time and large ordering batch caused by high setup
cost and low inventory holding cost, it may be economic to set a negative safety coefficient.
For the negative safety coefficient, a different expression of inventory holding cost should
be adopted, such as in Klouja and Antonis [36]. Therefore, it is also meaningful to relax
the nonnegative assumption in safety coefficient and perform some extension on the results
contained in this research.
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An optimal input design method for parameter estimation in a discrete-time nonlinear system
is presented in the paper to improve the observability and identification precision of model
parameters. Determinant of the information matrix is used as the criterion function which is
generally a nonconvex function about the input signals to be designed. To avoid the locally
optimizing problem, a randomized design method is proposed by which a globally optimizing test
plan other than input signals may be obtained. Then the randomized design can be approximated
by a nonrandomized design about optimal inputs. An iterative algorithm integrated with dynamic
programming is given and verified by a numerical example on experimental design for self-
calibration tests of ISP system.

1. Introduction

Model parameters applied to computation or compensation in science and engineering, such
as error model coefficients in INS (inertial navigation system), generally require much higher
identification precision than in other applications. However, haphazard experiments not
only lead to poor accuracy in parameter estimating, but also would make some parameters
unobservable. A good experimental design can increase both the precision and the efficiency
of a test [1] and then improve the precision of system identification or state estimation [2–5].

The field of system identification and filtering are relatively mature [6–10]; relevant
experimental design methods have not made substantial advance yet. D-optimal design
which allocates the experimental input variables by maximizing the determinant of
information matrix of the system is recognized as the most effective method for an
experimental design [11, 12]. For model parameter identification of a dynamic system, the
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D-optimal design problem has a similar mathematical expression as the optimal control
problem, but cannot be solved by the Pontryagin’s maximum principle and dynamic
programming method, due to particularity in the form of performance index [13].

On the other hand, even for a dynamic system with linear or low-order nonlinear
model, the D-optimal design problems may involve global optimizing of nonconvex function
and cannot achieve analytical solutions by traditional nonlinear programming methods.
Although many numerical searching algorithms have been proposed to solve the nonconvex
problem in global optimizing, such as genetic algorithm, simulated annealing algorithm, and
so forth, most of them are either time-consuming or no guarantee of global optimization of
searching results [14–16].

D-optimal design for randomized inputs is a convex optimization technique, in which
the experimental variables are transformed to test plans. A test plan specifies different
probability measures to each input variable in admissible set and one selects inputs for
a particular trial of the experiment via randomization. The randomized design method is
mainly used in regression design problems. Mehra introduces the method to optimal input
design for parameter identification in a discrete-time MIMO linear system with process noise
[11].

Morelli and Klein consider input design problem for LTI systems in aircraft flight
tests, and the specific goals with test time optimization are achieved using principles of
dynamic programming [17]. Neto et al. generalize the results to nonlinear dynamic systems
and consider additive colored noises in measurement [18]. The cost function selected by
Neto et al. is the trace of a dispersion matrix in which the autocorrelation matrix of the
colored measurement noises is introduced. They solve the optimization problem by genetic
algorithm.

Lintereur studies optimal trajectories for a 2-axis gimbaled test table by which errors in
inertial systems caused by angular motion are calibrated [19]. The trace of covariance matrix
computed by Kalman filtering is minimized using a conjugate gradient algorithm, but local
minimum may be obtained.

In this paper, we propose a randomized design method for parameter estimation in
discrete-time nonlinear dynamic systems with constraints on inputs. By this design method,
the original nonconvex optimization problem can be solved by the convex optimization
technique, and the global optimal maximum is guaranteed. An iterative algorithm is given
and verified by a numerical example on experimental design for continuous tumbling self-
calibration tests of ISP system.

2. Problem Statement

In this section we give amathematical formulation of the D-optimal design problem, in which
a time-varying MIMO nonlinear system with unknown model parameters is considered. For
simplification in notation and deduction, the process noise is assumed to be zero here.

Consider the following nonlinear dynamic system:

xk+1 = f(xk, uk, k, θ), x0 = x0,

yk = h(xk, tk, θ) + vk, k = 0, 1, . . . ,N,
(2.1)
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where xk = x(tk) is a n×1 state vector, x0 is a constant vector, uk = u(tk) is a q×1 input vector,
yk = y(tk) is a p×1 sampling output vector at moment k, and vk = v(tk) is a p×1 measurement
noise vector. vk is the Gaussian white noise sequences with E(vk) = 0 and E(vkv

T
τ ) = Rkδk,τ ,

N is the number of output samples observed and is fixed. θ = [θ1 θ2 · · · θm]T denotes them×1
vector of constant identifiable parameters, we estimate θ from the knowledge of {yk, uk−1, k =
1, . . . ,N} and give an unbiased efficient estimator θ̂ with covariance M−1, where M is the
Fisher informationmatrix. Therefore, the design problem is to select a series of inputs uk ∈ Ωu

such that a suitable criterion function corresponding to the objectives of the identification
experiment is optimized.

The Fisher information matrix is defined as follows:

M = E
θ,Y

[(
∂ log p(Y, θ)

∂θ

)(
∂ log p(Y, θ)

∂θ

)T
]
, (2.2)

where Y denotes the set of observations {yk, k = 1, . . . ,N} and the expectation in (2.2) is
taken over the sample space ΩY of observations and the parameter space Ωθ of θ.

Using conditional expectations, M may be evaluated in two steps, first by computing
M′(θ) = EY |θ{•} and then M = EθM

′(θ). The second step is generally more tedious and an a
priori distribution p(θ) should be known exactly. Here a Taylor-series approximation is used
to simplify the computation:

M′
i,j(θ) = M′

i,j(θ0) +
∂M′

i,j

∂θ

∣∣∣∣∣
θ0

(θ − θ0)

+
1
2
(θ − θ0)

T
∂2M′

i,j

∂θ2

∣∣∣∣∣
θ0

(θ − θ0) + · · · ,
(2.3)

where θ0 is the a priorimean of θ, i, j = 1, . . . , m.
Retaining terms up to second order,

Mi,j = M′
i,j(θ0) +

1
2
tr

[
∂2M′

i,j

∂θ2

∣∣∣∣∣
θ0

P0

]
, (2.4)

where P0 is the a priori covariance of θ.
The second term is typically small compared to the first term either because P0 is small

or M′(θ) is insensitive to θ.
The conditional likelihood function L(θ) = log p(Y | θ) for system (2.1) is given as

follows:

L(θ) = −Np

2
log(2π) − 1

2

N∑

k=1

{
(vk)TR−1

k vk + log|Rk|
}
. (2.5)
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The matrix M′(θ) has elements

M′
i,j(θ) = EY

(
∂L(θ)
∂θi

∂L(θ)
∂θj

)

=
N∑

K=1

{(
∂h(xk, tk, θ)

∂θi

)T

R−1
k

∂h(xk, tk, θ)
∂θj

}
.

(2.6)

The sensitivity function is

∂h(xk, tk, θ)
∂θi

=
∂h

∂xT
k

xθi,k +
∂h

∂θi
, (2.7)

where xθi,k is the partial derivative of x(t) about θi at moment k, that is, xθi,k = xθi(tk) which
meets the following equation:

xθi,k+1 =
∂f

∂xT
k

xθi,k +
∂f

∂θi
, xθi,0 = 0, i = 1, . . . , m. (2.8)

Since xθi,k and xk all depend on the elements of U, where UT = [uT
0 · · ·uT

N−1] ∈ ΩU is
the Nq-dimensional vector to be designed, we denote M′(θ) asM′(θ,U).

From (2.6), it is easy to get

M′(θ,U) =
N∑

k=1

{(
∂h(xk, tk, θ)

∂θ

)T

R−1
k

∂h(xk, tk, θ)
∂θ

}
. (2.9)

Also from (2.4), the Fisher information matrix is generally

M(U) = EθM
′(θ,U) ≈ M′(θ0, U). (2.10)

There are many formulations of criterion function that measures the degree of
observability about parameter θ, such as tr(M−1(U)) or |M−1(U)|. A design which minimizes
the scalar measure |M−1(U)| or maximizes |M(U)| is called D-optimal, and it is equivalent
to minimizing the volume of the uncertainty ellipsoid about parameter estimators. An
important advantage of D-optimality is that it is invariant under scale changes in the
parameters and linear transformations of the output.

Now,we choose |M−1(U)| as the criterion function and formulate the D-optimal design
problem as follows:

min
U∈ΩU

∣∣∣M−1(U)
∣∣∣

s.t. xk+1 = f(xk, uk, k, θ), x0 = x0

xθi,k+1 =
∂f

∂xT
k

xθi,k +
∂f

∂θi
, xθi,0 = 0, i = 1, . . . , m.

(2.11)
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It should be pointed out that the problem in (2.11) cannot be solved by typical
methods such as the Pontryagin’s maximum principle and dynamic programming method
since |M−1(U)| or tr(M−1(U)) cannot be transformed to the index form in multistage decision
process. In fact, there also exists great difficulty in getting a numerical solution with global
optimization since |M−1(U)| is not a convex function of U.

In the next section, we will present a randomized design method based on test plan
theories.

3. D-Optimal Design Method

For a randomized inputU ∈ ΩU with probability measure ξ(dU)defined for all Borel sets and
points of ΩU, the definition of the information matrix is

M(ξ) =
∫

ΩU

M(U) · ξ(dU), (3.1)

where
∫
ΩU

ξ(dU) = 1.
If the probability measure is purely discrete, the information matrix is defined as

follows:

M(ξ) =
l∑

i=1

ξiM(Ui), (3.2)

where l is the number of spectrums,
∑l

i=1 ξi = 1, 0 ≤ ξi ≤ 1.
M(ξ) is linear in ξ, so the criteria |M−1(ξ)| or tr(M−1(ξ)) are convex functions of ξ,

and optimization with respect to ξ gives globally optimizing design. However, we cannot
find directly the optimal design ξ∗ which minimizes |M−1(ξ)|. Here, an iterative algorithm is
proposed for searching ξ∗ based on the following theorem [11].

Theorem 3.1. Let ξ∗ be the optimal design then the following are equivalent:

(i) ξ∗ maximizes |M(ξ)|,
(ii) ξ∗ minimizes maxU∈ΩU tr(M−1(ξ)M(U)),

(iii) maxU∈ΩU tr(M−1(ξ∗)M(U)) = tr(M−1(ξ∗)M(ξ∗)) = m.

The D-optimal design ξ∗ may be computed with the following algorithm.

Algorithm 3.2. Step 1. Start with any design ξ0 such that M(ξ0) is nonsingular and let k=0.
Step 2. Compute M(ξk) and tr(M−1(ξk)M(U)) using (2.1), (2.6)–(2.10).
Step 3. Maximize tr(M−1(ξk)M(U)) over U ∈ ΩU and get Uk.
Step 4. If tr(M−1(ξk)M(Uk)) = m, stop. Otherwise, let ξk+1 = (1 − αk)ξk + αkξ(Uk), 0 <

αk ≤ 1 where ξ(Uk) is the design at the single point Uk.
Choose αk such that

∑∞
k=0 αk = ∞, limk→∞αk = 0, |M(ξk+1)| ≥ |M(ξk)|.

Step 5. Set k = k + 1 and go to step 2.
The convergence of the above algorithm to the global maximum is proved in the

appendix.
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Remarks. (1) The optimal design can be depicted by the following set:

{ξ1, U1; ξ2, U2; . . . ; ξl,Ul}, l ≤ m
(m + 1)

2
. (3.3)

This can be used in a manner of randomized strategies when the experiment can be repeated.
If the experiment is to be conducted only once, a nonrandomized design involving only one
input U should be preferable, that is, it assigns probability one to a particular U. Since the
randomized design (3.3) has been derived, we can seek nonrandomized design U∗ so that
|M(U∗)| approximates |∑l

i=1 ξiM(Ui)|.
(2) Step 3 is most time-consuming computationally, and the criterion function

tr(M−1(ξ)M(U)) is generally not a convex function of U. Only if model (2.1) can be reduced
to a linear discrete-time system, it would be a quadratic functional of U. Using (2.9) and
(2.10), we get

tr
(
M−1(ξ)M(U)

)
≈ tr

(
M−1(ξ)M′(θ0, U)

)

=
N∑

k=1

tr

⎧
⎨

⎩M−1(ξ)

(
∂h(xk, tk, θ)

∂θ

∣∣∣∣
θ0

)T

R−1
k

∂h(xk, tk, θ)
∂θ

∣∣∣∣
θ0

⎫
⎬

⎭.

(3.4)

Unlike the computing of determinant, the operations with trace and sum of matrix
can exchange order. By (3.4), the optimization problem can be solved by using maximum
principle or dynamic programming methods since the above equation possesses the form of
criterion function in multistage decision process.

Therefore, by using randomization and Theorem 3.1 the solution to a highly nonlinear
and nonconvex optimization problem, that is, minimization of |M−1(U)| is reduced to solving
a relatively simpler optimization problem. This is mainly due to the fact that randomization
produces convexity.

4. Simulation

In this section, we present a numerical example to verify the effectiveness of the proposed
design method. The experiment to be designed is the continuous tumbling self-calibration
test of an ISP system. Choose the determinant of information matrix as observability index
and select the currents of gyro torquers or the command angular speed to the ISP as the
experimental input variables, then the idea of D-optimal design can be applied to program the
rotational trajectories of platform which represent the attitude and angular speed of platform
at each moment.

First, we give the model equations of accelerometers and gyroscopes in the ISP system.
The output equations of accelerometers that are also the observation equations are:

y =

⎡

⎣
0 Az −Ay

−Az 0 Ax

Ay −Ax 0

⎤

⎦

⎡

⎣
ψx

ψy

ψz

⎤

⎦ +

⎡

⎣
k0x + k1xAx

k0y + k1yAy − αzAx

k0z + k1zAz + αyAx − αxAy

⎤

⎦ + ε, (4.1)
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where αx, αy, αz represent the misalignment angles of accelerometers’ input axes with respect
to platform frame.

k0x, k0y, k0z and k1x, k1y, k1z represent the bias and scale factors of accelerometers.
y represents outputs of accelerometers; ε denotes the observation noises in outputs

with zero mean and covariance matrix δ2
yI3 × 3 at each moment.

Ax, Ay, Az are projections of gravitational acceleration on the ideal platform frame
which is defined based on x accelerometer’s input axis and initially aligned to north, west,
vertical direction, unit g0, where g0 is the local gravitational acceleration value:

⎡

⎣
Ax

Ay

Az

⎤

⎦ =

⎡

⎣
sin(a) sin(c) − cos(a) sin(b) cos(c)
sin(a) cos(c) + cos(a) sin(b) sin(c)

cos(a) cos(b)

⎤

⎦, (4.2)

where a, b, c represent three ideal angular positions of platform gimbals from outer to inner,
respectively, and meet the following differential equations:

⎡

⎣
ȧ
ḃ
ċ

⎤

⎦ =

⎡

⎣
− cos(a) tan(b) cos(b) sin(a) tan(b)

sin(a) 0 cos(a)
cos(a)sec(b) 0 − sin(a)sec(b)

⎤

⎦

⎡

⎣
ωec

0
ωes

⎤

⎦

−
⎡

⎣
cos(c)sec(b) − sin(c)sec(b) 0

sin(c) cos(c) 0
− cos(c) tan(b) sin(c) tan(b) −1

⎤

⎦

⎡

⎣
tgx
tgy
tgz

⎤

⎦,

(4.3)

where ωec, ωes represent north and vertical components of rotational speed of the earth ωe,
respectively.

ψx, ψy, ψz in (4.1) represent the attitude errors between the practical platform frame
and ideal one:

⎡

⎣
ψ̇x

ψ̇y

ψ̇z

⎤

⎦ =

⎡

⎣
0 tgz −tgy

−tgz 0 tgx
tgy −tgx 0

⎤

⎦

⎡

⎣
ψx

ψy

ψz

⎤

⎦ +

⎡

⎣
d0x + d1xtgx − γxztgy + γxytgz
d0y + d1ytgy + γyztgx − γyxtgz
d0z + d1ztgz − γzytgx + γzxtgy

⎤

⎦, (4.4)

where γxy, γzy, γzx, γyx, γyz, γxz represent the misalignment angles of gyroscopes’ input axes
with respect to platform frame.

d0x, d0y, d0z and d1x, d1y, d1z represent the fixed drifts and scale factor errors of gyro
torquers.

u(t) = [ tgx tgy tgz ]T represent equivalent command angular speed to the ISP in an ideal
platform frame and are the input variables to be designed.

Choose ψx, ψy, ψz and a, b, c as the state vector x(t); note that only the state of (4.4) is
related to partial elements of unknown parameter vector θ, where

θT =
[
θT
a θT

g

]
, θa =

[
αx, αy, αz, k0x, k0y, k0z, k1x, k1y, k1z

]T
,

θg =
[
γxy, γzy, γzx, γyx, γyz, γxz, d0x, d0y, d0z, d1x, d1y, d1z

]T
.

(4.5)
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Therefore, the equations for xθi(t) can be derived by making partial derivative of (4.4)
about θg .

Rewrite (4.1), (4.3), and (4.4) for abbreviation as follows:

ẋ1(t) = A1(u)x1(t) + B1(u)θg, x1(t0) = x10,

ẋ2(t) = f(x2, u), x2(t0) = 0,

yk = H1(x2,k)x1,k +H2(x2,k)θa + εk, k = 0, 1, . . . ,N,

(4.6)

where x1(t) = [ψx, ψy, ψz]
T , x2(t) = [a, b, c]T .

Then the equations for xθi(t) are as follows:

ẋθi(t) = A1(u)xθi(t) + B1,i(u), xθi(t0) = 0, i = 1, . . . , s, (4.7)

where B1,i(u) denotes the ith column of matrix B1(u), and s is the dimension of θg .

M′(θ,U) = δ−2
y

N∑

k=1

[
HT

2 (x2,k)H2(x2,k) HT
2 (x2,k)H1(x2,k)Xθ

XT
θH

T
1 (x2,k)H2(x2,k) XT

θH
T
1 (x2,k)H1(x2,k)Xθ

]
(4.8)

Where Xθ = [xθ1,k, . . . , xθs,k].
It shows that M′(θ,U) is insensitive to θ since in (4.6) and (4.7), x2,k as well as xθi,k is

independent of the unknown parameter θ.
Thus, in this problem

M(U) = M′(θ,U), M(ξ) =
l∑

i=1

ξiM(Ui) (4.9)

for any θ and state equation for x1(t) can be deleted from the constraint conditions in (2.11).
Now we reformulate the design problem for self-calibration tests of ISP system as

follows:

max
U∈ΩU

|M(ξ)|

s.t. ẋ2(t) = f(x2, u), x2(t0) = 0,

ẋθi(t) = A1(u)xθi(t) + B1,i(u), xθi(t0) = 0, i = 1, . . . , s,

(4.10)

where ΩU = {U : u− ≤ uk ≤ u+, k = 0, . . . ,N − 1} is the amplitude constraint on the precise
command angular speed.

Since three state equations should be added to the constraint equations in (4.10) if one
parameter in θg is to be estimated, the dynamic programming algorithm in Step 3 will be very
time-consuming. Therefore, only 9 parameters in θa are considered in this example.

The initial design ξ0 is chosen from a single-point design which maximizes |M(U)|
via a rough search by confining each element of the input signals u(t) to a four-segment
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Table 1: Design results by the propose algorithm.

i 1 2 3 4
log |M(Ui)| 4.7 4.5 4.7 5.2
ξi 0.1 0.2 0.2 0.5

Table 2: Standard errors of parameter estimators (δy = 1).

αx αy αz k0x k0y k0z k1x k1y k1z

U1 0.67 0.77 0.76 0.4 0.43 0.43 0.7 0.67 0.63
U4 0.65 0.57 0.53 0.36 0.36 0.38 0.53 0.56 0.66

square wave varying between −10ωe, 0, and 10ωe. Figure 1 shows the convergence of
tr(M−1(ξk)M(Uk)) after eleven times of iterations, and |M(ξk+1)|/|M(ξk)| tends to one which
means |M(ξk)| converges to a local maximum |M(ξ∗)|. Since |M(ξ)| is a concave function
about ξ, ξ∗ is global optimizing as well.

The values of log |M(Ui)| at each supporting point Ui and measure ξi are listed in
Table 1 with δ2

y = 1. In addition, log |M(ξ∗)| = log |∑i M(Ui)ξi| = 5.5 and log |M(ξ(U′))| =
log |M(

∑
i Uiξi)| = 1.7. It shows that the randomized design ξ∗ has better performance than

any single-point design ξ(Ui), whereas the linear combination U′ =
∑

i Uiξi, although it is
also an admissible control input in ΩU, shows poor performance and cannot be used as a
nonrandomized approximation to the optimal test plan ξ∗ here.

In Table 1 the 4th supporting point U4 has the maximum log |M(Ui)| which approx-
imates mostly to log |M(ξ∗)|. So single-point design ξ(U4) is chosen as the nonrandomized
approximation to ξ∗. Comparison of estimation errors between tests with U4 and U1 (the
initial rough design) is in Table 2, which shows some improvement in budgets of estimation
precision. The control input curves of U4 are plotted in Figure 2 with unit ωe. The whole test
time is three hours, and the sampling time is 22.5 minutes. None of tgx, tgy, and tgz in U4 is
the bang-bang type mainly because a constraint on angle b(−π/6 ≤ b ≤ π/6) is also assumed.
The projection of gravitational acceleration in the ideal platform frame is plotted in Figure 3.

The profiles of Ax, Ay, and Az show that input axis of each accelerometer completes
nearly a whole tumble in gravitational field which can provide sufficient stimulations to the
error terms of accelerometers in practical testing.

5. Conclusion

A D-optimal design method for parameter estimation in nonlinear dynamic systems is
presented based on test plan design theories. The corresponding iterative algorithm is
proposed with a dynamic programming algorithm imbedded. The proof for the convergence
of the algorithm is given as well. Simulation results on an optimal trajectory design problem
in self-calibration test of ISP system demonstrate the effectiveness of the proposed algorithm.
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Figure 1: Convergence of the proposed algorithm.
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Figure 2: Curves of the supporting point U4.

Appendix

Proof of the Convergence of Algorithm 3.2

Proof. In the algorithm, αk is chosen such that

|M(ξ0)| ≤ |M(ξ1)| ≤ · · · ≤ |M(ξ∗)|. (A.1)

Since any bounded monotone nondecreasing sequence converges, the sequence
|M(ξ0)|, |M(ξ1)|, . . . , |M(ξk)| converges to some limit |M(ξ̂)|.
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Figure 3: Acceleration projection in the ideal platform frame.

To prove |M(ξ̂)| = |M(ξ∗)|, we assume the contrary |M(ξ̂)| < |M(ξ∗)|. Then, by
Theorem 3.1, for any k there is a constant η such that

tr
(
M−1(ξk)M(Uk)

)
−m > η > 0. (A.2)

It follows that

∂

∂αk
log|M(ξk+1)|

∣∣∣∣
αk=0

= tr
[
M−1(ξk)(−M(ξk) +M(Uk))

]
> η. (A.3)

For the smoothness of the function log |M(ξk+1)| about αk and by the assumption
limk→∞αk = 0, there is a positive integer s such that for any k ≥ s, (∂/∂αk) log |M(ξk+1)| ≥ η.

Now integrating both sides of the above inequality over αk from 0 to αk, one obtains

|M(ξk+1)|
|M(ξk)| ≥ exp

(
ηαk

)
. (A.4)

On the other hand, in view of the convergence of the sequence |M(ξ0)|, . . ., for any
small positive number γ , there is a positive integer n such that for any integer p ≥ q ≥ n, the
following inequality holds:

∣∣M
(
ξp

)∣∣ − ∣∣M
(
ξq
)∣∣ ≤ γ. (A.5)
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Let t = max(n, s), then for any integer p ≥ q ≥ t,

γ ≥ ∣∣M
(
ξp

)∣∣ − ∣∣M
(
ξq
)∣∣ ≥

⎡

⎣exp

⎛

⎝η
p−1∑

k=q

αk

⎞

⎠ − 1

⎤

⎦ · ∣∣M(
ξq
)∣∣. (A.6)

This means

p−1∑

k=q

αk ≤ 1
η

[
log

(
γ +

∣∣M
(
ξq
)∣∣) − log

∣∣M
(
ξq
)∣∣], (A.7)

which contradicts the assumption
∑∞

k=0 αk = ∞.
Therefore, |M(ξ̂)| = |M(ξ∗)|, the global maximum is obtained by the algorithm.
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This paper develops a cascaded sliding mode observer method to reconstruct actuator faults
for a class of descriptor linear systems. Based on a new canonical form, a novel design method
is presented to discuss the existence conditions of the sliding mode observer. Furthermore, the
proposed method is extended to general descriptor linear systems with actuator faults. Finally, the
effectiveness of the proposed technique is illustrated by a simulation example.

1. Introduction

With the development and applications of modern control techniques, the safety and
reliability of control systems are becoming increasingly important. Therefore, the fault
diagnosis has become one of the most important techniques to ensure the safety and
reliability of control systems [1, 2]. During the last two decades, many significant results have
been obtained for the analysis and observer design of fault diagnosis of the regular systems,
such as unknown input observers [3, 4], eigenstructure assignment method [5], H∞ filtering
[6–9], parity space approach [10], and parameter identification approach [11].

Just like regular systems, the fault diagnosis for descriptor systems has recently
attracted increasing attention due to their importance in real-world systems. In [12], a
parametric approach is proposed to design unknown input observers to realize fault
detection of descriptor linear multivariable systems with unknown disturbances. By directly
identifying parity space, a model-free approach for fault detection is developed, which can
be applied if the model of descriptor systems is unknown [13]. In [14], the factorization
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approach for robust residual generation is extended to descriptor systems, and then a post-
filter is added to ensure the robustness of fault diagnosis. In [15], H∞ filter is utilized
for providing disturbance rejection and robustness properties of the fault detection and
isolation schemes of linear time-invariant descriptor systems. In [16], several sufficient
conditions of existence of unknown input observers are obtained for Takagi-Sugeno
descriptor systems, which are affected by unknown inputs. Unfortunately, although these
methods can successfully generate residuals, they fail to reconstruct fault signals.

Recently, fault reconstruction is a promising alternative for fault detection. Instead of
generating residuals, a number of methods, such as sliding mode observers (SMOs) [17–
23], descriptor observer method [24–26], and PI observer [27–29], can be used to reconstruct
fault signals. The sliding mode control is employed in the situations including state
estimation and fault detection, since it is insensitive to matched uncertainties, nonlinearity,
or disturbances [30]. Edwards et al. [17] firstly used the concept of the equivalent output
error injection signals to reconstruct faults. Tan and Edwards [19] extended this work for
robust reconstruction of sensor and actuator faults by minimizing the effect of uncertainty on
the reconstruction in an L2 sense. Some well-studied works, aiming at reducing the system
constraints associated with the results in [17, 19], have recently appeared in the literature
[18, 20–23]. In order to relax the matching conditions, the cascaded sliding mode observer
method was proposed to deal with a class of systems with relative degree higher than one
[20, 21]. In [22], the auxiliary outputs are defined such that the conventional sliding mode
observer in [17] can be used for systems without the observer matching condition. In order
to obtain those auxiliary outputs, high-order sliding-mode observers are constructed to act as
exact differentiators using a super-twisting algorithm. Inspired by Floquet et al. [22], high-
gain approximate differentiators and high-order sliding-mode robust differentiators were
proposed to generate auxiliary outputs for the design of sliding mode observers [18, 23].

Although there are many achievements in regular systems, few results have been
reported to the descriptor case despite its importance in real-world systems. In [31, 32], the
sliding mode observer method was employed to detect and isolate faults and to reconstruct
the faults for descriptor systems. However, the uncertainty was not considered in these
results. In [33], the sliding mode observer was proposed to minimize the effect of uncertainly
on the reconstruction of faults for descriptor systems. Unfortunately, the fault detection filter
based sliding mode observer has to satisfy the strict condition in [31–33], which severely
limits the applicability of these approaches for a wide range of practical systems.

Motivated by the above discussion, in this paper, we develop a cascaded sliding
mode observer method to reconstruct actuator faults for a class of descriptor linear systems.
The main contribution of this paper can be summarized as follows: (1) we present a novel
cascaded sliding mode observer method to reconstruct actuator faults for a class of descriptor
linear systems; (2) in the design process, we remove this restrictive assumption and extend
the cascaded sliding mode observer approach of Tan et al. [20, 21] to descriptor systems; (3)
a novel cascaded sliding mode observer is designed for reconstructing actuator faults for a
class of descriptor linear systems.

The paper is organized as follows. In Section 2, the problem is formulated, and
appropriate coordinate transformations are introduced to exploit the system structure. In
Section 3 the design algorithm of cascaded sliding mode observer for linear descriptor
systems is given. In Section 4, a design method of cascaded sliding mode observer and fault
reconstruction for general descriptor systems are presented. In Section 5, an example is given
to support the effectiveness of the proposed approach. Finally, the conclusions are drawn.
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2. Problem Statement and System Analysis

Consider a descriptor linear system described by

Eẋ = Ax + Bu +Df

y = Cx,
(2.1)

where x ∈ Rn is the state variable, u ∈ Rk is the input vector, y ∈ Rp is the output variable,
and f ∈ Rq is unknown but bounded so that

∥∥f
∥∥ ≤ β, (2.2)

where the positive scalar β is known. The signal f models the actuator fault within the system.
A ∈ Rm×n, B ∈ Rm×k, C ∈ Rp×n, and D ∈ Rm×q are known constant real matrices. Without loss
of generality, it is assumed that rank(D) = q, rank(C) = p, and E is full row rank.

In [32], a sliding mode observer is given in the following form:

ż = Fz + T1Bu +K1y +K2y +Gnυ

x̂ = z + T2y

ŷ = Cx̂,

(2.3)

where z ∈ Rñ is the state vector of the SMO, x̂ is the estimation of the state vector x, and υ is
the discontinuous output error injection vector defined by

υ =

⎧
⎪⎨

⎪⎩

−η P0ey∥∥P0ey
∥∥ ey /= 0

0 other,
(2.4)

where ey = ŷ − y, η > 0, F, T1, T2, K1, K2, Gn, and P0 are parameters to be designed.
For the descriptor system (2.1), the sufficient conditions for the existence of the sliding

mode observer (2.3) are as follows:

rank
[
E D
C 0

]
= n + q (2.5)

rank
[
sE −A D

C 0

]
= n + q, Re(s) ≥ 0. (2.6)



4 Mathematical Problems in Engineering

It is well known that condition (2.5) is quite restrictive and may not apply to a wide
range of systems. In the following, we give two more relaxed conditions:

rank
[
E
C

]
= n, (2.7)

rank
[
E D
C 0

]
= n + l, (2.8)

where l ≤ q.
Before presenting the main results, some lemmas are given as follows.

Lemma 2.1. If the conditions (2.7) and (2.8) hold, there exists a nonsingular matrix U such that

rank
[
E D1

C 0

]
= n + l, (2.9)

rank
[
E D2

C 0

]
= n, (2.10)

where [D1 D2] = DU, and D1 ∈ Rm×l, D2 ∈ Rm×(q−l).

Proof. if l is equal to q, the conclusion is obviously true. So the following is to prove the case
that l is less than q.

Obviously, there exists a nonsingular matrixU1 so thatDU1 = [D1 D2] and (2.9) hold.
Then,

rank
[
E D
C 0

]
= rank

[
E D1 D2

C 0 0

]
= n + l. (2.11)

So there exists a matrix Y =
[
Y1
Y2

]
so that

[
D2

0

]
=
[
E D1

C 0

][
Y1

Y2

]
. (2.12)

Thus, we have D2 = EY1 +D1Y2 and CY1 = 0.
Setting

U2 =
[
I −Y2

0 I

]
(2.13)

and U = U1U2, we have

rank
[
E D2

C 0

]
= rank

[
E EY1

C CY1

]
= rank

[
E
C

]
= n. (2.14)
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Lemma 2.2. If the following conditions

rank
[
E D1

C 0

]
= n + l,

rank
[
sE −A D1

C 0

]
= n + l, Re(s) ≥ 0

(2.15)

hold, there exist two nonsingular matrices P and Q such that

PEQ =
[

0 E12

Iñ−p̃ E22

]
, PAQ =

[
A11 A12

A21 A22

]

PD1 =
[
DI

0

]
, CQ =

[
0 Ip

]
,

(2.16)

where E12 ∈ R(m−n+p)×p, E22 ∈ R(n−p)×p, A11 ∈ R(m−n+p)×(n−p), A12 ∈ R(m−n+p)×p, A21 ∈ R(n−p)×(n−p),
A22 ∈ R(n−p)×p, DI = [0 Il]

T ∈ R(m−n+p)×l, and the subblock A11 has the structure

A11 =
[
A111

A112

]
, (2.17)

in which A111 ∈ R(m−n+p−l)×(n−p), A112 ∈ Rl×(n−p), and the pair (A21, A111) is detectable.
It can be established easily by Lemma 2 in [33], and hence the proof is omitted.

Lemma 2.3. If the conditions (2.6), (2.7), and (2.8) hold, there exist nonsingular matrices P ,Q, and
U such that

PEQ =
[

0 E12

In−p E22

]
, PAQ =

[
A11 A12

A21 A22

]
(2.18)

PB =
[
B1

B2

]
, CQ =

[
0 Ip

]
(2.19)

PDU =
[
D11 0
0 D22

]
, (2.20)

where E12 ∈ R(m−n+p)×p, E22 ∈ R(n−p)×p, A11 ∈ R(m−n+p)×(n−p), A12 ∈ R(m−n+p)×p, A21 ∈ R(n−p)×(n−p),
A22 ∈ R(n−p)×p, B1 ∈ R(m−n+p)×k, B2 ∈ R(n−p)×k, D11 = [0 Il]

T ∈ R(m−n+p)×l, D22 ∈ R(n−p)×(q−l), and
the subblock A11 has the structure

A11 =
[
A111

A112

]
, (2.21)

where A111 ∈ R(m−n+p−l)×(n−p), A112 ∈ Rl×(n−p), and (A21, A111) is detectable.



6 Mathematical Problems in Engineering

Proof . By Lemma 2.1, there exists a nonsingular matrix U such that (2.9) and (2.10) hold,
where DU = [D1 D2].

Obviously,

rank
[
sE −A D1

C 0

]
= n + l, Re(s) ≥ 0. (2.22)

By Lemma 2.2, there exist two nonsingular matrices P and Q such that (2.18) and
(2.19) hold and

PD1 =
[
D11

0

]
. (2.23)

Setting PD2 =
[
D21
D22

]
, we have

rank
[
E D2

C 0

]
= rank

[
P 0
0 I

][
E D2

C 0

][
Q 0
0 I

]

= rank

⎡

⎣
0 E12 D21

In−p E22 D22

0 Ip 0

⎤

⎦

= rank(D21) + n.

(2.24)

Combining (2.10) and (2.24), we have rank(D21) = 0. Obviously, D21 = 0.

By Lemma 2.3, it can be assumed without loss of generality that system (2.1) has the
following form:

[
0 E12

In−p E22

][
ẋ1

ẋ2

]
=
[
A11 A12

A21 A22

][
x1

x2

]
+
[
B1

B2

]
u

+
[
D11

0

]
f1 +

[
0

D22

]
f2

y = x2,

(2.25)

where x = [xT
1 xT

2 ]
T
, x1 ∈ Rn−p, x2 ∈ Rp and

f −→ Uf =
[
fT
1 fT

2

]T
. (2.26)

The descriptor system (2.25)may be considered as the systemwith the fault f1 and the
disturbance f2. Using the fault reconstructionmethod in [33], the fault f1 can be reconstructed
and the L2 gain from the f2 to reconstruction error of fault f1 can be minimized. But the fault
f2 and the state x1 cannot be estimated. Inspired by Tan et al. [20, 21], the cascaded sliding
mode observer is applied to estimate both the state x and fault f in the following.
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3. Design of Cascaded Sliding Mode Observer

The primary sliding mode observer for system (2.25) is

ż = (T1A −K1C)z + T1Bu +K1y + FT2y +Gnυ

x̂ = z + T2y

ŷ = x̂2,

(3.1)

where z ∈ Rn is the state vector of the SMO, x̂ = [x̂T
1 x̂T

2 ]
T with x̂1 ∈ Rn−p and x̂2 ∈ Rp is the

estimation of the state vector x, Gn = [0 I]T , T1 and T2 are defined by

T1 =
[
Z1 In−p
Z2 0

]
(3.2)

T2 =
[
0
Ip

]
− T1

[
E12

E22

]
(3.3)

Z1 =
[
Z11 0

]
, (3.4)

Z1 ∈ R(n−p)×(m−n+p), Z11 ∈ R(n−p)×(m−n+p−q), Z2 ∈ Rp×(m−n+p) is full rank, υ is the discontinuous
output error injection vector defined by:

υ =

⎧
⎨

⎩
−η P2e2

‖P2e2‖ e2 /= 0

0 other,
(3.5)

e2 = x̂2 − x2, η > 0, Z11, Z2, K1, F, and P2 are parameters to be designed.
In [33], it is shown that for an appropriate choice of observer parameters an ideal

sliding motion takes place on S = {(e1, e2) | e2 = 0} in finite time.
Define e = x̂ − x as the state estimation error, the following estimation error dynamic

is obtained:

ė1 = (A21 + Z1A11)e1 + (Z1A12 +A22 −K11)e2 +D22f2

ė2 = Z2A11e1 + (Z2A12 −K12)e2 − Z2D11f1 + υ,
(3.6)

where e = [eT1 eT2 ]
T , e1 ∈ Rn−p, K1 = [KT

11 KT
12]

T , K11 ∈ R(n−p)×p, and K12 ∈ Rp×p.
Assuming the primary sliding mode observer has been designed, and that a sliding

motion has been achieved, then e2 = ė2 = 0, and the error equation becomes

ė1 = (A21 + Z1A11)e1 +D22f2

Z+
2υeq = −A11e1 +D11f1,

(3.7)
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where Z+
2 is the generalized inverse matrix of Z2, υeq is the equivalent output error injection

term that can be approximated to any degree of accuracy by replacing (3.8)with

υeq = −η P2e2
‖P2e2‖ + δ

, (3.8)

where δ is a small positive constant.
The remaining system freedom can be used to estimate the state x1 and reconstruct the

fault f2. Equation (3.7) can be rewritten as

ė1 = (A21 + Z1A11)e1 +D22f2 (3.9)

D⊥
11Z

+
2υeq = −A111e1, (3.10)

where D⊥
11 = [ Im+p−n−l 0 ].

For any A111, there exists a nonsingular matrix W so that WA111 = [ ÂT
111 0 ]T , where

Â111 ∈ Rp̂×(n−p) is full row rank. We have

[
Ip̂ 0

]
WD⊥

11Z
+
2υeq = −Â111e1. (3.11)

The system (3.9) and (3.11)may be considered as the linear systemwith the q− l faults,
the n − p states f1 and the p̂ outputs. Using the sliding mode observer design method for the
linear system in [17], we can design a secondary sliding mode observer to estimate e1 and f2
if the following conditions hold:

rank
(
Â111D22

)
= rank(D22)

rank

[
sI − (A21 + Z1A11) D22

Â111 0

]
= n − p + q − l, Re(s) ≥ 0.

(3.12)

Obviously, (3.12) are equivalent to

rank(A111D22) = rank(D22) (3.13)

rank
[
sI − (A21 + Z1A11) D22

A111 0

]
= n − p + q − l, Re(s) ≥ 0. (3.14)

Combined with (3.4), (3.14) is equivalent to

rank
[
sI −A21 D22

A111 0

]
= n − p + q − l, Re(s) ≥ 0. (3.15)

From the above analysis, if the conditions (3.13) and (3.15) satisfy, there exists a
cascaded sliding mode observer for the descriptor system (2.1).

Next, the fault reconstruction method based cascaded sliding mode observer is given.
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Assuming that the secondary sliding mode observer has been designed and the ê1 and
f̂2 are the estimations of e1 and f2, respectively. Then, the reconstruction signal of the fault f1
is described by

f̂1 = A112ê1 +
[
0 Il
]
Z+

2υeq, (3.16)

and the estimation of the state x1 is described by

x̂1 − ê1 −→ x1. (3.17)

The reconstruction of fault is described by

f̂ = U−1
[
f̂ T
1 f̂ T

2

]T
(3.18)

Equations (3.13) and (3.15) are the sufficient conditions for the existence of the
cascaded sliding mode observer, but these cannot be checked using the parameters of the
original system (2.1). Now, for system (2.1), sufficient conditions for the existence of the
cascaded sliding mode observer can be given by Theorem 3.1.

Theorem 3.1. There exists a cascaded sliding mode observer for system (2.1) if the following condi-
tions hold:

rank
[
E
C

]
= n (3.19)

rank

⎡
⎢⎢⎣

E A D 0
0 E 0 D
C 0 0 0
0 C 0 0

⎤
⎥⎥⎦ = n + q + rank

[
E D
C 0

]
, (3.20)

rank
[
sE −A D

C 0

]
= n + q, Re(s) ≥ 0. (3.21)

Proof. If l is equal to q, the conclusion is obviously true. So, the following is to prove the case
that l is less than q.
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Substituting (2.8) and (2.25) into (3.20), we have

rank

⎡
⎢⎢⎣

E A D 0
0 E 0 D
C 0 0 0
0 C 0 0

⎤
⎥⎥⎦

= rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 E12 A11 A12 D11 0 0 0
In−p E22 A21 A22 0 D22 0 0
0 0 0 E12 0 0 D11 0
0 0 In−p E12 0 0 0 D22

0 Ip 0 0 0 0 0 0
0 0 0 Ip 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= n + p + l + rank
[
A11 D11 0
In−p 0 D22

]

= n + p + l + rank

⎡

⎣
A111 0 0
A112 Il 0
In−p 0 D22

⎤

⎦

= n + p + 2l + rank
[
In−p D22

A111 0

]

= 2n + q + l.

(3.22)

So we have

rank
[
In−p D22

A111 0

]
= n − p + q − l. (3.23)

By Lemma 1 in [32], (3.13) holds.
Substituting (2.18), (2.19), and (2.20) into (3.21), we can obtain (3.15).

4. Cascaded Sliding Mode Observer Design and Fault Reconstruction
for General Descriptor Systems

In Section 2, it is assumed that E is full row rank. In the following, it is discussed that E is
rank deficient. Let r := rank(E) ≤ min{m,n}.

Now, since rank(E) = r, there exists a regular matrix P ∗ such that (2.1) is restricted
system equivalent to

E∗ẋ = A∗x + B∗u +D∗f

y1 = −B1u = A1x +D1f

y = Cx,

(4.1)
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where P ∗E =
[
E∗
0

]
, P ∗A =

[
A∗

A1

]
, P ∗B =

[
B∗

B1

]
, P ∗D =

[
D∗

D1

]
, E∗ ∈ Rr×n, A∗ ∈ Rr×n, B∗ ∈ Rr×k,

D∗ ∈ Rr×p, A1 ∈ R(m−r)×n, B1 ∈ R(m−r)×k, and D1 ∈ R(m−r)×q.
First passing the output y1 through a nonsingular matrix P∗ so that

P∗y1 =

{
y11(t) = A11x

y12(t) = A12x +D1f,
(4.2)

where D1 ∈ Rp×q is row full rank.
Consider a new state xf ∈ Rp which is a filtered version of y12 satisfying

ẋf = −Afxf +Afy12, (4.3)

where −Af ∈ Rp×p is a stable (filter) matrix.
Equations (4.1), (4.2), and (4.3) can be combined to form an augmented state-space

system with order ñ as follows:

Ea
˙̃x = Aax̃ + Bau +Daf

ya = Cax̃,
(4.4)

where Ea =
[
E∗ 0
0 I

]
, Aa =

[
A∗ 0

AfA12 −Af

]
, Ba =

[
B∗
0

]
, Da =

[
D∗

AfD1

]
, Ca =

[A11 0
C 0
0 I

]
, x̃ = [xT xT

f
]T , ya =

[yT
11 yT xT

f ]
T , ñ = n + p, and p̃ = p +m − r.

Obviously, the matrix Ea is full row rank so that the cascaded sliding mode observer
can be designed using the method in Section 3.

In the following, the existence conditions of the cascaded sliding mode observer for
general descriptor systems are given by Theorem 4.1.

Theorem 4.1. There exists a cascaded sliding mode observer for system (2.1) with rank-deficient E if
the following conditions hold:

rank
[
E A D
0 C 0

]
= m + p (4.5)

rank

⎡

⎣
E A D
0 E 0
0 C 0

⎤

⎦ = n + rank
[
E D

]
(4.6)

rank

⎡
⎢⎢⎢⎢⎢⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= n + q + rank

⎡

⎣
E A D 0
0 E 0 D
0 C 0 0

⎤

⎦, (4.7)

rank
[
sE −A D

C 0

]
= n + q, Re(s) ≥ 0. (4.8)
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Proof. Define a nonsingular matrix as follows:

P1 = diag
([

I 0
0 P∗

]
P ∗,
[
I 0
0 P∗

]
P ∗, I

)
. (4.9)

We have

rankP ∗[E D
]
= rank

[
E∗ D∗

0 D1

]
= r + p (4.10)

rank

⎡

⎣
E A D
0 E 0
0 C 0

⎤

⎦ = rankP1

⎡

⎣
E A D
0 E 0
0 C 0

⎤

⎦

= rank

⎡
⎢⎢⎣

A11 0
0 Ip
E∗ 0
C 0

⎤
⎥⎥⎦ + r,

(4.11)

rank
[
Ea

Ca

]
= rank

⎡
⎢⎢⎢⎢⎢⎣

E∗ 0
0 Ip

A11 0
C 0
0 Ip

⎤
⎥⎥⎥⎥⎥⎦

= rank

⎡
⎢⎢⎣

A11 0
0 Ip
E∗ 0
C 0

⎤
⎥⎥⎦. (4.12)

Combining (4.6), (4.10), (4.11), and (4.12), we have

rank
[
Ea

Ca

]
= ñ. (4.13)

Define a nonsingular matrix as follows:

P2 = diag
([

I 0
0 P∗

]
P ∗,
[
I 0
0 P∗

]
P ∗,
[
I 0
0 P∗

]
P ∗, I, I

)
. (4.14)
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We have

rankP2

⎡
⎢⎢⎢⎢⎢⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= r + p + rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗ A∗ D∗ 0
0 A12 D1 0
0 E∗ 0 D∗

0 0 0 D1

C 0 0 0
A11 0 0 0
0 C 0 0
0 A11 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.15)

rank

⎡
⎢⎢⎣

Ea Aa Da 0
0 Ea 0 Da

Ca 0 0 0
0 Ca 0 0

⎤
⎥⎥⎦ = 2p + rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗ A∗ D∗ 0
0 A12 D1 0
0 E∗ 0 D∗

0 0 0 D1

A11 0 0 0
C 0 0 0
0 A11 0 0
0 C 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.16)

rankP1

⎡

⎣
E A D 0
0 E 0 D
0 C 0 0

⎤

⎦ = rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E A D 0
0 A11 0 0
0 A12 D1 0
0 E 0 D
0 0 0 D1

0 C∗ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡
⎢⎢⎢⎢⎢⎣

A12 D1 0
E 0 D
0 0 D1

A11 0 0
C∗ 0 0

⎤
⎥⎥⎥⎥⎥⎦
+ r

= rank
[
Ea Da

Ca 0

]
+ r.

(4.17)

Combining (4.7), (4.15), (4.16), and (4.17), we have

rank

⎡
⎢⎢⎣

Ea Aa Da 0
0 Ea 0 Da

Ca 0 0 0
0 Ca 0 0

⎤
⎥⎥⎦ = ñ + q + rank

[
Ea Da

Ca 0

]
. (4.18)

Define a nonsingular matrix as follows:

P3 = diag
([

I 0
0 P∗

]
P ∗, I

)
. (4.19)
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We have

rank
[
sE∗ −A∗ D∗

C∗ 0

]
= rankP3

[
sE∗ −A∗ D∗

C 0

]

= rank

⎡
⎢⎢⎣

sE −A D
−A11 0
−A12 D1

C∗ 0

⎤
⎥⎥⎦ = n + q;

(4.20)

thus,

rank

⎡
⎢⎢⎢⎢⎢⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−A12 0 D1

C∗ 0 0
0 Ip 0

⎤
⎥⎥⎥⎥⎥⎦

= n + q + p. (4.21)

Define

P4 =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 0
0 0 Af 0 s +Af

0 I 0 0 0
0 0 0 I 0
0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎦
, (4.22)

Then,

rank

⎡
⎢⎢⎢⎢⎢⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−A12 0 D1

C∗ 0 0
0 Ip 0

⎤
⎥⎥⎥⎥⎥⎦

= rankP4

⎡
⎢⎢⎢⎢⎢⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−AfA12 0 AfD1

C∗ 0 0
0 Ip 0

⎤
⎥⎥⎥⎥⎥⎦

= rank

⎡
⎢⎢⎢⎢⎢⎣

sE∗ −A∗ 0 D∗

−AfA12 s +Af AfD1

−A11 0 0
C∗ 0 0
0 Ip 0

⎤
⎥⎥⎥⎥⎥⎦

= rank
[
sEa −Aa Da

Ca 0

]
.

(4.23)

Hence,

rank
[
sEa −Aa Da

Ca 0

]
= ñ + q, Re(s) ≥ 0. (4.24)

Combining (4.12), (4.16), and (4.24), we get the conclusion by Theorem 3.1.
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Corollary 4.2. There exists a cascaded sliding mode observer for linear system if the following condi-
tions hold:

rank
[
CAD CD
CD 0

]
= rank(CD) + rank(D), (4.25)

rank
[
sI −A D

C 0

]
= n + q, Re(s) ≥ 0. (4.26)

Proof. Obviously, since E = I for linear systems, (4.5), (4.6), and (4.8) hold. Hence, the
following is to prove that (4.7) holds.

In [21], the canonical form of the linear system is given as follows:

A =
[
A1 A2

A3 A4

]
, C =

[
0 T
]
, D =

[
D1 0
0 D2

]
, A3 =

[
A3a A3b

A3c A3d

]

D1 =
[
D11

0

]
, D2 =

[
0

D22

]
,

(4.27)

where A1 ∈ R(n−p)×(n−p), A3a ∈ R(p−l)×(q−l), T ∈ Rp×p is orthogonal, D1 ∈ R(n−p)×l, D11 ∈
R(q−l)×(q−l), and D22 ∈ Rl×l are invertible.

Substituting (4.27) into (4.25), we obtain

rank
[
T 0
0 T

][
CAD CD
CD 0

]
= rank(A3aD11) + 2l. (4.28)

Combining (4.25) and (4.28), we obtain

rank(A3a) = q − l. (4.29)

Substituting (4.27) into (4.7), we obtain

rank

⎡
⎢⎢⎢⎢⎢⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

= n + rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

In−p 0 A1 A2 D1 0 0 0
0 Ip A3 A4 0 D2 0 0
0 0 In−p 0 0 0 D1 0
0 0 0 Ip 0 0 0 D2

0 Ip 0 0 0 0 0 0
0 0 0 Ip 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 2n + p + rank

⎡

⎣
A3 D2 0 0
In−p 0 D1 0
0 0 0 D2

⎤

⎦
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= 3n − q + l + 2 rank(D22) + rank(A3a) + rank(D11)

= 3n + l + q,

rank

⎡

⎣
E A D 0
0 E 0 D
0 C 0 0

⎤

⎦ = rank

⎡

⎣
In−p 0 D1 0
0 Ip 0 D2

0 Ip 0 0

⎤

⎦ + n

= 2n + l.

(4.30)

Obviously, (4.7) holds.

Remark 4.3. For the linear system, the rank conditions (4.25) and (4.26) are identical to the
ones in [21], it is obvious that the conclusion of the paper is more general compared with
[21].

5. Simulation

A machine infinite bus system linear model is described as follows [29]:

ẋ1 = x4 ẋ2 = x5 ẋ3 = x6

ẋ4 =
1

M1
(u1 − Y12V1V2(x1 − x2) − Y15V1V5(x1 − x7) −D2x4)

ẋ5 =
1

M2
(u2 − Y21V1V2(x2 − x1) − Y25V2V5(x2 − x7) −D2x5)

ẋ6 =
1

M3
(u3 − Y34V3V4x3 − Y35V3V5(x3 − x7) −D3x6)

0 = Pch − Y51V5V1(x7 − x1) − Y52V5V2(x7 − x2)

− Y53V5V3(x7 − x3) − Y54V5V4x7,

(5.1)

where x1, x2, x3, and x7 are the generator angles, x4, x5, and x6 are the generator speeds. u1,
u2, and u3 are the mechanical power, Pch is unknown load, the nominal values of inertia M1,
M2 andM3, of dampingD1,D2, andD3, of admittance Y15, Y25, Y35, Y51, Y52, Y53, and Y54 and
of potential V1, V2, V3, V4, and V5 are shown in

M1 = 0.014 M2 = 0.026 M3 = 0.02 D1 = 0.057 D2 = 0.15
D3 = 0.11 Y15 = 0.5 Y25 = 1.2 Y34 = 0.7 Y45 = 1
Y34 = 0.7 Y12 = 1 Vi = 1 (i = 1–5).

(5.2)

It is assumed that the available measurements are the generator angles x1, x2, x3, and
x7. In order to illustrate the effectiveness of the design method, it is assumed that there exist
faults on the actuator u1 − u3. It is easy to verify that the existence conditions of sliding mode



Mathematical Problems in Engineering 17

0 2 4 6 8 10

0

0.2

Time (s)

−0.2

−0.4

−0.6

−0.8

−1

ꉱf1

f1

Figure 1: Fault signal f1 and its reconstruction signal f̂1.

observer in [32] do not hold, but the existence conditions of cascaded sliding mode observer
hold.

In the following simulation, the cascaded sliding mode observer in Section 3 is
designed to reconstruct the actuator faults.

Considering system (5.1) affected by the inputs u1 = 1, u2 = 1, and u3 = 2 + sin(5t), the
unknown load Pch = sin(t) and an uncertain admittance

Yij = Yij + ΔYij , (5.3)

where ΔYij = δij sin(ωijt), |δij | < 0.1, |ωij | < 1rd/s, i = 1, . . . , 5, j = 1, . . . , 5.
Figures 1, 2, and 3 show faults and reconstruction signals. Although there exists

unknown input and parameter uncertainty in the system, the cascaded slidingmode observer
faithfully reconstructs the faults.

6. Conclusions and Future Works

This paper proposes a fault reconstruction method for a class of descriptor systems using
cascaded sliding mode observer. The method can effectively relax the restrictions on the
existence of a sliding mode observer, which allows the applicability of our proposed method
to a wider range of systems. In our future work, the proposed actuator fault reconstruction
schemes can be extended to some sensor fault reconstruction problems by using a suitable
output filtering technique. Another interesting future research topic is to extend the current
results to fault estimation of nonlinear systems based on T-S fuzzy models [34–36].
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This paper presents a novel multiloop and Multi-objective cooperative intelligent control system
(MMCICS) used to improve the performance of position, velocity and acceleration integrated con-
trol on a complex multichannel plant. Based on regulation mechanism of the neuroendocrine sys-
tem (NES), a bioinspired motion control approach has been used in the MMCICS which includes
four cooperative units. The planning unit outputs the desired signals. The selection unit chooses
the real-time dominant control mode. The coordination unit uses the velocity Jacobian matrix to
regulate the cooperative control signals. The execution unit achieves the ultimate task based on
sub-channel controllers with the proposed hormone regulation self-adaptive Modules (HRSMs).
Parameter tuning is given to facilitate the MMCICS implementation. The MMCICS is applied to
an actual 2-DOF redundant parallel manipulator where the feasibility of the new control system is
demonstrated. The MMCICS keeps its subchannels interacting harmoniously and systematically.
Therefore, the plant has fast response, smooth velocity, accurate position, strong self-adaptability,
and high stability. The HRSM improves the control performance of the local controllers and the
global system as well, especially for manipulators running at high velocities and accelerations.

1. Introduction

With the development of the high-standard manufacturing requirement, plants become more
complex while controlled by several of subchannels [1, 2]. Usually, the different sub-channels
have different characteristics and control requirements. Therefore, the sub-channels have to
interact harmoniously and systematically to achieve multiobjective integrated control [3, 4].
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In that manner, the plants can have a quick start and stop, a fine uniformmovement, an accu-
rate destination, and a strong self-adaptability with stability [5]. In general, position based
control cannot keep uniform velocity, while velocity-based control cannot satisfy accurate
position requirement [6, 7]. It’s also challenging to achieve acceleration control directly
[8]. Some bio-intelligent control algorithms can overcome mathematical model problem of
complex plants and have better control performances with physiological regulation to
achieve multiobjective control [1, 9].

Neuroendocrine system (NES) is a major homeostatic system in human body and has
some outstanding multiobjective cooperative modulation mechanisms. Being a multiloop
feedback mechanism, NES can still regulate the functions of several organs and glands with
high self-adaptability and stability, by means of regulating their hormone secretions syn-
chronously [10]. Some researchers have presented several models for modulationmechanism
[11], feedback control [12], and hormone release [13] of NES. Based on such mechanisms,
some novel artificial neuroendocrine systems (ANES) have been developed and applied to
the complex control field. Neal and Timmis [14] proposed the first artificial endocrine system
(AES) which includes secretion, regulation and control of hormones. The theory is applied
to design a useful emotional mechanism for robot control. Vargas et al. [15] has extended the
previous work of literature [14], studied the interactions between the nervous and endocrine
systems and provided a comprehensive methodology to design a novel AES for autonomous
robot navigation. Córdova and Cañete [16] discussed in conceptual terms the feasibility of
designing an ANES in robots and to reflect upon the bionic issues highly associated with
complex automatons.

To achieve multi-objective cooperative control, some recent work concentrates on how
to use multi-loop and multi-objective regulation mechanism of the NES to design some novel
control structures and systems. Stear [11] summarized all hormone regulation processes and
described a series of control structures. Liu et al. [17] designed a NES-based two-level struc-
ture controller, which can not only achieve accurate control but adjust control parameters
in real time as well. Ding and Liu et al. [18] developed a bio-inspired decoupling controller
from the bi regulation principle of growth hormone in NES. Tang et al. [19] presents an NES-
inspired approach for adaptive manufacturing control system. Based on NES, Guo et al. [20]
proposes a position-velocity cooperative intelligent controller for motor motion. Compared
to conventional control system, these novel control systems always have better simplicity,
practicality, stability, and adaptability. These approaches provide some new ideas to multi-
objective integrated control field and have good results in simulation. Nevertheless, no
experiment has been done on actual plants, especially for multi-objective cooperative control
of the position, velocity and acceleration of different parts of the controlled plant.

In this paper, a novel multi-loop and multi-objective cooperative intelligent control
system (MMCICS) based on regulation mechanism of NES is proposed. Inherited from NES,
the MMCICS consists of four subunits: Planning unit regulates position, velocity and acceler-
ation signals based on ultralong loop feedback. Selection unit is a soft switcher to smoothly
select dominant motion control signal based on long loop feedback. As short loop feedback,
coordination unit is responsible for processing and transmitting coordination signals to
several sub-channels in execution unit. The execution unit is an integrity whose sub-channels
interact harmoniously and systematically based on ultra-short loop feedback. Each channel
has a proposed hormone regulation self-adaptive module (HRSM) which identifies control
error and regulates control parameters in real time. The control performance of the proposed
MMCICS is verified by an actual 2-DOF redundant parallel manipulator. The experimental
results demonstrate that, through regulation mechanism of the MMCICS, the multiobjective
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integrated control task can be achieved easily while the stability, accuracy, adaptability, and
response rate of the plant is improved by proposed HRSM.

The main contribution of this paper lies in that it generalizes the characteristics of the
NES for regulation, and then reveals the similarity between the NES and a motion control
system where the coordination of position, velocity, and acceleration are implemented by the
cooperation of different subchannels of the plant. Furthermore, based on the regulation
characteristics of theNES, a bioinspiredmotion control approach is provided, it has been used
inMMCICS design. According to our knowledge, this is the first time that theMMCICS based
on biological NES is proposed and especially applied to an actual manipulator. The proposed
approach is practical and easy to implement, which provides a new efficient method for the
intelligent control of complex systems.

The remainder of this paper is arranged as follows. In Section 2, the regulation mech-
anism of the NES is described while a corresponding bio-inspired motion control approach
is presented. In Section 3, the detailed design of the MMCICS is elaborated including system
structure, control algorithms, and parameters tuning methods. The experimental results are
given to verify the effectiveness of the proposed control system in Section 4. Finally, the work
is summarized in Section 5.

2. Regulation Mechanism and Bioinspired Motion Control Approach

2.1. Regulation Mechanism of Neuroendocrine System

The NES mainly includes nervous system and endocrine system [15]. The nervous system
is primarily responsible for receiving stimuli of environmental change and processing
corresponding nerve impulse. The endocrine system can be viewed as a system of glands that
works with the nervous system in regulating the activity of internal glands and coordinating
the long-range response to external stimuli [21]. One of the most important interactions
between them is regulated by means of their hormone secretions.

A typical regulation mechanism of the neuroendocrine hormone can be generalized as
follows [12, 13, 20, 22]: central nervous system detects the changes in the internal and external
environments and transmits the nerve impulse as appropriate response to hypothalamus.
Hypothalamus receives the nerve impulses and secretes relevant releasing hormone (RH),
which stimulates pituitary to secrete tropic hormone (TH). Under the influence of pituitary’s
TH, other glands (such as thyroid, adrenal, gonads, etc.) secrete corresponding hormones
which regulate the situation of human physiological balance. There are massive of feedback
loops in neuroendocrine system. Four types of typical feedbacks include ultra-short, short,
long and ultra-long loop feedbacks [22, 23]. The ultrashort loop feedback means that the
hormone released by a certain gland is directly fed back to its source and changes its status.
In the short, long and ultralong loop feedbacks, the concentration of corresponding hormone
is fed back to the pituitary, hypothalamus and central nervous system, respectively. Through
the multiloop feedback mechanism, multihormone control is stable and easy to practice, as
shown in Figure 1.

2.2. Regulation Characteristics and Bioinspired Motion Control Approach

The regulation characteristics of NES can be summarized as below: (1) the NES has several
feedback loops and glands. Each feedback mechanism has its own function and different
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Figure 1: Hormone regulation of the NES.

messages can be transferred among them so that the whole system has a multiobjective reg-
ulation mechanism of integrity. (2) Central nervous system is the foremost command center.
(3) Hypothalamus is the medium between the nervous system and the endocrine system.
(4) Pituitary has the ability to achieve multi-hormone coordinative control. (5) The different
glands always have different hormone secretion scopes and different hormone secretion
standards. But they have the similar regulation mechanism that can enhance identification
and secretion precision within a certain range of stimulus [13].

Therefore, corresponding to the motion control system, the central nervous system,
the hypothalamus, the pituitary, and glands of NES can be regarded as the planning unit, the
selection unit, the coordination unit, and the execution unit, respectively. In this scenario, the
planning unit receives input signal and transmits the suitable motion planning signal to the
selection unit. The selection unit processes the motion planning signal and chooses the dom-
inant motion control signal. And then, the coordination unit converts dominant motion con-
trol signal to various coordination signals according to its performance characteristic. Various
sub-channels in the execution unit receive their own coordination signal from the coordina-
tion unit and accomplish homologous task. Ultimately, the whole system could be controlled
through the combined action of these sub-channels.

3. MMCICS Design Inspired from NES

3.1. MMCICS Structure Design

According to the bioinspiredmotion control approach, a novel multi-loop andmulti-objective
cooperative intelligent control system (MMCICS) is proposed to achieve intelligent coordina-
tion of position, velocity, and aceleration implemented by cooperation of several subchannels
of plants, as shown in Figure 2.
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Figure 2: The structure of MMCICS.

3.2. Units Design of MMCICS

3.2.1. Planning Unit

The planning unit is primarily responsible for receiving and processing input signals of the
position Pin(t), the velocity Vin(t), and the acceleration Ain(t), and transmitting the desired
position Pout(t), the desired velocity Vout(t), and the breaking factor εbrake signals to the
selection unit. The planning algorithm includes the automatic braking process and the co-
operative planning process.

(1) Automatic braking process. The position error is defined as

eP1(t) = Pin(t) − P(t). (3.1)

When it satisfies

|eP1(t)| ≤ εbrake, (3.2)

the input velocity signal is changed automatically to

Vin(t) = 0, (3.3)

where

εbrake =

∣∣∣∣∣
V 2(tbrake)
2Ain(tbrake)

∣∣∣∣∣ (3.4)

is the braking factor, tbrake is the initial time of the automatic braking process. The
actual position signal P(t) and the actual velocity signal V (t) are obtained via ultra-
long feedback.

(2) Cooperative planning process. Since acceleration is hardly to be controlled directly,
the Vin(t) and theAin(t) are regulated by the cooperative planning process while the
Pin(t) is sent to the selection unit directly. Some typical planningmethods have good
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results and have been used in practice for a long time. In order to test the control
performance of theMMCICSmore clearly, trapezoid curvemethod has been chosen
in this paper. The algorithm can be described as

Pout(t) = Pin(t),

Vout(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Ain(t) ·
(
t − tup

)
+ V
(
tup
)
, t ∈ Tup

Vin(t), t ∈ (Tup ∪ Tdown
)c

V (tdown) −Ain(t) · (t − tdown), t ∈ Tdown,

(3.5)

where

Tup =
{
t | Ain(t) ·

(
t − tup

)
+ Vout

(
tup
) ≤ Vin

(
tup
)}

,

Tdown = {t | Vout(tdown) −Ain(t) · (t − tdown) ≥ Vin(tdown)},
(3.6)

where, tup and tdown is the initial time when Vin(tup) > Vout(tup) and Vin(tdown) <
Vout(tdown), respectively.

3.2.2. Selection Unit

The selection unit is designed as a switcher for the real-time dominant control mode. This
unit receives the actual position feedback signal via long-loop feedback mechanism while
the dominant motion control signal is transmitted to the coordination unit. Velocity-velocity
control mode is on when the actual position is far from desired position while velocity control
signal is sent to keep smooth movement. Position-velocity control mode takes over when the
actual position is close to the desired position while position control signal is send to achieve
accurate position. This rule for automatic switching is described as follows [6, 20]:

strategy =

{
velocity-velocity, r > rc,

position-velocity, r ≤ rc,
(3.7)

where r is the distance between actual position and desired position, and rc is a switcher dis-
tance which is decided by current state of plant and switching strategy. To guarantee smooth
switch, a simple conversion factor Kc is also designed in the selection unit. The control
algorithm can be designed as follows:

H(t) =

{
Vout(t), |eP2(t)| > εbrake · ηswitch

eP2(t) ·Kc, |eP2(t)| ≤ εbrake · ηswitch,
(3.8)

where

eP2(t) = Pout(t) − P(t),

Kc =
|Vout(tswitch)|
εbrake · ηswitch

,
(3.9)
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where H(t) is the output of the selection unit, eP2(t) is the error signal between desired and
actual position, 0% < ηswitch ≤ 100% is a switching coefficient which decides switching posi-
tion, Kc is the conversion factor, and tswitch is the initial time of the switching process.

3.2.3. Coordination Unit

The coordination unit is a coordinator which sends cooperative control signals to each sub-
channel of the plant. Many methods and mathematic models are suitable for this unit, the
velocity Jacobian matrix is chosen in this paper due to the velocity control is our foremost
object. In this scenario, all the input signals and output signals are regarded as the velocity
signals whether the velocity-velocity control mode or the position-velocity control mode is
selected. That output signals can be calculated by

[C1(t), C2(t), . . . , Cn(t)]T = J ·H(t), (3.10)

where Ci(t) is the ouput signal of the coordination unit to channel i, (i = 1, 2, . . . ,n) of the
execution unit, J is the velocity Jacobian matrix of the plant.

3.2.4. Execution Unit

The execution unit, which includes a number of sub-channels, is the core and key unit of the
MMCICS. To keep sub-channels interact harmoniously and systematically, the same control
method and control structure have been applied to each channel. As shown in Figure 3, each
channel has its own independent control subsystem which includes a primary controller, a
hormone regulation self-adaptive module (HRSM), and a controlled subpart of plant. There
are two ultra-short loop feedbacks. One is that the actual velocity signal is fed back to the
primary controller; the other is that the adjusted control parameters are fed back to theHRSM,
which can improve the local and global control effectiveness.

Some advanced controllers widely used in industry can be applied as primary control-
ler. The controller can obey PID control algorithm, fuzzy control algorithm [24, 25], H-infinity
control algorithm [26, 27], and so forth. Due to their simpledescription, high-dependability,
and satisfactory performances, in the MMCICS, the control law of primary controller obeys
the conventional PID control algorithm

Oi(t) = Kp0i · ei(t) +Ki0i ·
∫
ei(t)dt +Kd0

i ·
dei(t)
dt

, (3.11)

where

ei(t) = Ci(t) − vi(t) (3.12)

is the error signal between the input signal Ci(t) and the actual velocity vi(t) of the part i,
Oi(t) is the output of the primary controller,Kp0i ,Ki0i , andKd0

i are the initial PID parameters.
The HRSM is designed to improve primary controller self-adaptive performance.

The regulation algorithm of HRSM is inspired from hormone regulation mechanism which
includes identification and regulation processes.
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Figure 3: The structure of sub-channel.

(1) Identification. In NES, the gland can enhance identification and secretion precision
within the working scope. However, when the stimulate signal beyond the control
scope, hormone secretion rate is at its high limit. Similarly, the control error ei(t)
in HRSM can be regarded as the stimulate signal, and its identification approach
follows the principle of the hormone secretion. Therefore, the absolute value of
control error ei(t) is calculated at first and then mapped to the correspond ding
regulation scope. Hormone identification error 0 ≤ Ei(t) ≤ 1 is defined as

Ei(t) =

⎧
⎨

⎩

|ei(t)|
eimax − eimin

, |ein(t)| < eimax − eimin,

1, |ein(t)| ≥ eimax − eimin,
(3.13)

where eimax and eimin are the high and low limited error of the optimal working
scope, respectively.

(2) Regulation. The hormone secretion rate in NES is always nonnegative and mono-
tone, and its secretion regulation mechanism usually follows the Hill functions, the
growth curve, and so forth [13, 21]. Based on the Sigmoid function, a hormone
regulation factor is designed to regulate primary controller parameter as

α
j

i (t) =
k
j

i

1 +
(
k
j

i − 1
)
e−β

j

i ((Ei(t)/η
j

i )−1)
, (3.14)

where j = p, i, d, 0% < η
j

i ≤ 100% is the critical regulation coefficient, kj

i ≥ 1 is the
high limited regulation coefficient, 0 < β

j

i ≤ 10 is the sensitivity regulation coef-
ficient. These three coefficients joint control the function curve’s slope. Where η

j

i

decides the critical point between the up- and down-regulation, as

α
j

i (t) < 1, Ei(t) < η
j

i ,

α
j

i (t) = 1, Ei(t) = η
j

i ,

α
j

i (t) > 1, Ei(t) > η
j

i .

(3.15)
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The k
j

i decides the high limited value. Because if (Ei(t)/η
j

i ) � 1, then

e−β
j

i ((Ei(t)/η
j

i )−1) → 0 that αj

i (t) → k
j

i . Meanwhile, it also should be noted that if
k
j

i = 1, then α
j

i (t) = 1. The βji decides the response rate and has amajor impact on the
low limited value of αj

i (t).When β
j

i is bigger, the α
j
i(t) curve changes acutely and the

low limit of αj

i (t) is lower; in contrast, the gentle changes results to higher low limit.

Then primary controller parameter can be regulated by its control characteristic. In
the PID control algorithm, when the control error is too big, the proportion gain Kp0i should
decrease to weaken the control action, thus reduces the overshoot. In contrast, the proportion
gain should increase to enhance control precision and eliminate control error quickly [20].
The correcting regulation of the integral coefficient Ki0i and the differential coefficient Kd0

i

are similar to that of the proportion gain. Therefore, the parameter regulation algorithm of
the PID controller is

Kpi(t) = Kp0i /α
p

i (t)Kii(t)

= Ki0i · αi
i(t)Kdi(t)

=
Kd0

i

αd
i (t)

.

(3.16)

where, when α
p

i (t) > 1, Kp0i will be reduced; when α
p

i (t) < 1, Kp0i will be increased; when
α
p

i (t) = 1, Kp0i will not be changed. Meanwhile, Ki0i and Kd0
i have similar regulation chara-

cteristics. The regulation principle of the HRSM satisfies the optimization task and then (3.11)
will be changed to optimized control law

Oi(t) = Kpi(t) · ei(t) +Kii(t) ·
∫
ei(t)dt +Kdi(t) · dei(t)

dt
, (3.17)

where Kpi(t), Kii(t), and Kdi(t) are optimized control parameters.

3.3. Parameters Tuning of MMCICS

(1) Tune the primary controller parameter. First, only take the primary controller into
action, and then tune the initial control parameters Kp0i , Ki0i , and Kd0

i approxi-
mately.

(2) Determine the high and low limited hormone identification error. According to the
response characteristics of the experimental results in step (1), determine the high
limited error eimax and low limited error eimin of the optimal working scope.

(3) Tune the regulation coefficients of the hormone regulator. Take the execution unit
into action, according to the response characteristic and overshoot of the experi-
mental results, tune the critical regulation coefficient ηj

i to decide critical working
point of the hormone regulator. And then when control error ei(t) is too big, tune
the high limited regulation coefficient kj

i to ensure a stable and faster movement of
the plant with little or without overshoot. In contrast, tune the sensitivity regulation
coefficient βji to ensure accuracy and stability.
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Figure 4: The 2-DOF redundant parallel manipulator.

(4) Determine the switching coefficient. Take the MMCICS into action and then deter-
mine the switching coefficient ηswitch to ensure the control strategy switching
smoothly.

4. Experimental Results and Analysis

Some typical experimental results are provided in this section to explore two main experi-
ments of proposed MMCICS. Firstly, the control results with and without HRSM are
compared to find out whether HRSM yields better in subchannel experiment. Next more
comprehensive experiments are performed to verify multiobject cooperative control perfor-
mance of the MMCICS, and whether HRSM has better global control effect.

As shown in Figure 4, a 2-DOF redundant parallel manipulator (Googol Tech Ltd.’s
GPM2002) [28, 29] is selected as the experiment platform due to its complex redundancy
structure and multi-channel inputs. Three bases of the manipulator are equipped with three
AC servo motors with harmonic gear drives. The coordinates of three bases are A1(0, 250),
A2(433, 0), and A3(433, 500), and all the links have the same length l = 244. The unit of
coordinates and length is millimeter. Active joint angles are qa1, qa2 and qa3, and passive
joint angles are qb1, qb2 and qb3. Position signals of the motors are measured with the
absolute optical electrical encoders, and input voltage signals are controlled by a motion con-
trol board. All algorithms are implemented with Matlab/Simulink environment on an
industrial controlling computer with a 2.8GHz processor and 1024MBmemory. The real-time
implementation is executed with the Real Time Workshop (RTW) of Matlab, and sampling
period is 5ms.

Firstly, to verify the effectiveness of the proposed HRSM in the execution unit, we only
take active joint 1 (base A1) without loads and links into action. The control performance of
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the conventional PID controller and the PID controller with HRSM (HRSM-PID) are com-
pared under the six different velocities of the servo motor 1, namely the motor of base A1. To
make the contrast effect more clearly, the conventional PID parameters are designed as the
same as the initial PID parameters in HRSM-PID controller, as shown in Table 1.

Motor in sub-channel has different dynamic characteristics at different velocities but
has similar results in the same parameter sets. Multiple experiments have the similar results,
and a typical result is as shown in Figure 5(a), when motor is running at low velocities,
the steady-state errors are obvious due to load influence. The HRSM-PID controller achieves
better stabilities, higher accuracies, slightly faster dynamic responses, and lower or no
overshoots, compared with the conventional PID controller. Figure 5(b) shows that when
running at high velocities, themotor has bettermotion performance and spendsmore times to
achieve higher velocity. HRSM-PID controller achieves significantly faster dynamic responses
compared with the PID controller. Figure 5(c) shows a typical output control signal O1(t)
when input velocity step is 5. As the expected, when the error is too big, the HRSM decreases
the output control signals to reduce the overshoot. In contrast, the output control signals
are increased to enhance control precision and eliminate control error quickly. With such
strong self- adaptability, the HRSM improves the dynamic performances. The detailed lower
quartile, median, upper quartile, average, and variance of the 10 time’s results are shown
in Table 2. Where, Vd is the desired velocity, ts is the settling time, σ is the overshoot, and
|ess| is the absolutely value of steady-state error. The sub-channel experimental results show
that based on hormone regulation mechanism, the HRSM owns strong self-adaptability that
improves the response, accuracy, and stability of the subchannel.

To verify the multiobject cooperative control performance of the MMCICS, the end-
effector of the redundant parallel manipulator is viewed as a controlled plant, and three active
joints are viewed as three subchannels. The velocity Jacobian matrix between the end-effector
and three active joints is

J =
1
l

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos qb1
sin
(
qb1 − qa1

)
sin qb1

sin
(
qb1 − qa1

)

cos qb2
sin
(
qb2 − qa2

)
sin qb2

sin
(
qb2 − qa2

)

cos qb3
sin
(
qb3 − qa3

)
sin qb3

sin
(
qb3 − qa3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.1)

Due to the complex mechanism structure of the parallel manipulator with actuation
redundancy, it is a typical nonlinear system and difficult to get the accurate dynamic and
frictionmodel [28, 29]. Although themanipulator has different dynamic characteristics in dif-
ferent positions, velocities, and accelerations, the proposed MMCICS can overcome accurate
mathematical model problem. To verify the control performance of the MMCICS more
thoroughly and whether the HRSM also achieves better control effectiveness in the proposed
MMCICS, many different experiments were tested and have similar results. A representative
contrast experimental result is shown in Figure 6, where the MMCICS without HRSM is
chosen as contrast control system (CCS). The experiments are implemented with the same
input signals and control parameters. The starting position, input goal position, and input
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Figure 5: Contrast effect of the velocity control. (a) Low velocity control, (b) high velocity control. (c)
Output control signal.

acceleration are [216.5, 250]T , [316.5, 350]T , and [1500, 1500]T , respectively. The input velocity
signal is

Vin(t) = [0, 0]T , t ≥ 0s

Vin(t) = [100, 100]T , t ≥ 0.1s

Vin(t) = [300, 300]T , t ≥ 3.5s.

(4.2)

The switching coefficient is ηswitch = [20%, 20%]T in selection unit, and control parameters in
channel 1, 2, and 3 are the same as in Table 1. Similarly, the parameters of CCS are the same
as MMCICS.

As shown in Figures 6(a) and 6(b), MMCICS achieves a faster response, better stability,
and higher accuracy of velocity control compared with CCS. Especially, when the mani-
pulator is running at high velocities, it is hard to achieve object velocity using CCS, due to
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Figure 6: Multichannel control experimental results. (a) X-direction velocity. (b) Y-direction velocity. (c)
X-direction position. (d) Y-direction position.

Table 1: Parameter set.

Initial PID Error factors Hormone regulation factors

Kp0i = 0.03 eimax = 1 r/s k
p

i = 5, βpi = 1.2, ηp

i = 20%

Ki0i = 0.004 eimin = −1 r/s ki
i = 5, βii = 1.2, ηi

i = 15%

Kd0
i = 0.005 kd

i = 3, βdi = 1, ηd
i = 10%

complex plan structure and big load. However, MMCICS still maintains high performance
as low velocity process. From the velocity response during the ascent, it’s easy to find that
the MMCICS has more stable acceleration response than CCS does. That means, based on
the HRSM, the cooperative planning algorithm in the planning unit can be implemented
easier for acceleration control. Moreover, during control strategy switching, CCS always has
a significant negative overshoot of the velocity in braking process. In contrast, MMCICS can
stop quickly with little or no negative overshoot due to its strong adaptability. Compared
with Figures 6(a) and 6(b), we can find that, due to uneven distribution of loads, the CCS
performance in Y-direction is worse than X-direction. However, MMCICS can overcome this
problem, since its local self-adaptability improves the global self-adaptability.

Figures 6(c) and 6(d) shows that due to faster, more stable, and accurate velocity
response, the MMCICS can achieve better position accuracy compared with the CCS. In the
braking process, because of its better adaptability when control strategy is switched from
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Table 3: Performance evaluation for comprehensive experiment.

Positon Veloctiy
Final error Settling time Error Braking overshoot

Vin(t) = [100, 100]T Vin(t) = [300, 300]T

MMCICS [0.02, 0.05]T 0.82 s [6.62, 7.50]T [7.22, 5.64]T [2.41, 3.13]T

CCS [0.05, 0.22]T 1.07 s [13.82, 18.20]T [32.2, 52.06]T [10.25, 25.20]T

the velocity-velocity control to the position-velocity control, theMMCICS has a faster position
response, which makes position stable with lower overshoot or no overshoot.

Some compare results of the 10 time’s average absolute values are shown in Table 3.
The experimental results show that, with the planning algorithm in the planning unit, the
soft switching algorithm in the selection unit, and the velocity cooperative control in the
coordination unit, both MMCICS and CCS take advantages of position control and velocity
control, and achieve cooperative control for position, velocity and acceleration. Particularly,
with strong self-adaptability, faster response, and better stability of HRSM, control potentials
of the MMCICS are exploited more thoroughly. The MMCICS achieves multi-objective
cooperative intelligent control with higher performance even at high velocities and accelera-
tions, for a nonlinear multi-input complex plant without accurate dynamics model.

5. Conclusions

This work presents a bioinspired cooperative intelligent control system for position, velocity,
and acceleration multi-objective integrated control of a parallel plant. The similarity between
the NES and motion control system revealed, and a bio-inspired motion control approach
is proposed. Under the context of such approach, the MMCICS with system structure, algo-
rithm, and steps in parameter tuning is proposed to achievemultiobjective control. The exper-
iments are carried out with a 2-DOF redundant parallel manipulator where the feasibility
of the new control system is demonstrated. The contrast effect shows that the stability,
accuracy, adaptability, response rate of the proposed MMCICS is superior to those of the
conventional controllers. According to our knowledge, this is the first time that NES-based
MMCICS andHRSM are proposed and used for an actual parallel manipulator. The proposed
MMCICS can be implemented easily and provides a new and efficient method for multiob-
jective integrated control of complex multichannel systems. In future works, force and torque
control will be considered to establish a more complete multi-objective control system. More
rigorous and advanced algorithm and proof are required instead of the PID controller.
Besides, parameter optimization, dynamics, and stability analysis can be conducted on
MMCICS.
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This paper is devoted to the problems of gain-scheduled control for a class of discrete-
time stochastic systems with infinite-distributed delays and missing measurements by utilizing
probability-dependent Lyapunov functional. The missing-measurement phenomenon is assumed
to occur in a random way, and the missing probability is time varying with securable upper and
lower bounds that can be measured in real time. The purpose is to design a static output feedback
controller with scheduled gains such that, for the admissible random missing measurements,
time delays, and noises, the closed-loop system is exponentially mean-square stable. At last, a
simulation example is exploited to illustrate the effectiveness of the proposed design procedures.

1. Introduction

Gain-scheduling is one of the most popular methods of controller design and has been
extensively applied in engineering, such as rotation speed control of engine, aircraft control
and process control. Over the past decades, the gain-scheduled control problem has been
extensively studied both from theoretical and practical viewpoint, see, for example, [1–6]. For
the controller design problems for parameter-varying systems, the gain-scheduling approach
has been found to be one of the most effective ones, whose main idea is to design controller
gains as functions of the scheduling parameters, which are supposed to be available in real
time and, therefore, have much less conservatism than the conventional ones.

On the other hand, instead of using the information of system states, static output
feedback (SOF) control directly makes use of system outputs to design controllers, which
has also attracted attentions of many researchers over the past two decades, see, for
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example, [7–12]. It is obvious that the structure of SOF controllers is simple and easy to
implement. However, to the best of the authors’ knowledge, there has been little research
attention on the control problem for discrete-time nonlinear stochastic systems with a
missing phenomenon based on the time-varying occurring probability by a gain-scheduling
method.

The missing-measurement phenomenon, due to various reasons such as probabilistic
network congestion and intermittent mechanical failures, usually occurs in many real-world
systems, which has attracted considerable attention during the past few years, see, for
example, [13–15]. The Bernoulli distribution has been successfully applied to model this
phenomenon, in which 0 is used to stand for an entire signal missing and 1 denotes the
intactness (i.e., there is no signal missing at all), and all sensors have the same missing
probability, which is simple and effective and has become very popular during the past years,
see, for example, [5, 13, 14, 16]. However, in the practical systems, the occurring probability of
the missing-measurement phenomenon might be time varying; consequently, a time-varying
Bernoulli distribution model is more suitable for such parameter-varying systems.

In another aspect, considering the signal propagation often distributed during a
certain time period, then, a new kind of delays, namely, distributed time-delays, has drawn
many researchers’ attention, see, for example, [17–22], but most of the existing works on
distributed delays have focused on continuous-time systems which are described either in
the form of finite or infinite integral. As we all know, when it comes to implementing the
control laws in a digital way, the discrete-time system is much better than continuous-time
one. Naturally, it turns out to be meaningful to investigate the issue of how distributed delays
influence the dynamical behavior of a discrete-time system. However, as far as authors know,
based on gain-scheduled control methods, the SOF control problem for nonlinear stochastic
systems with infinite-distributed delays andmissing measurements with time-varying occur-
ring probability has not been addressed yet and is still a very interesting and challenging
problem.

Themain contributions of this paper are summarized as follows: (1) a new SOF control
problem is addressed for a class of discrete-time nonlinear stochastic systems with missing
measurements and infinite-distributed delays via a gain-scheduling approach; (2) a sequence
of stochastic variables satisfying Bernoulli distributions is introduced to describe the time-
varying features of the missing measurements in the sensor; (3) a time-varying Lyapunov
functional dependent on the missing probability is proposed and then applied to improve
the performance of the gain-scheduled controller; and (4) a gain-scheduled controller is
designed, in which the controller parameters can be adjusted online according to the missing
probabilities estimated through statistical tests.

Notation 1. In this paper, R
n, R

n×m, and I
+ denote, respectively, the n-dimensional Euclidean

space, and the set of all n × m real matrices, the set of all positive integers. | · | refers to the
Euclidean norm in R

n. I denotes the identity matrix of compatible dimension. The notation
X ≥ Y (resp., X > Y ), where X and Y are symmetric matrices, means that X − Y is positive
semidefinite (resp., positive definite). For a matrix M, MT and M−1 represent its transpose
and inverse, respectively. The shorthand diag{M1,M2, . . . ,Mn} denotes a block diagonal
matrix with diagonal blocks being thematricesM1,M2, . . . ,Mn. In symmetric blockmatrices,
the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if they are not
explicitly stated, are assumed to have compatible dimensions. In addition, E{x} and Prob{y}
will, respectively, mean expectation of x and probability of y.
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2. Problem Formulation

Consider the following discrete-time nonlinear stochastic systems with infinite-distributed
delays:

x(k + 1) = Ax(k) + Bu(k) +D
+∞∑

d=1

μdx(k − d) +Nf(z(k)) + Ex(k)w(k), (2.1)

x(k) = ρ(k), k = −d,−d + 1, . . . , 0, (2.2)

where x(k) ∈ R
n is the state, z(k) := Gx(k) + Gd

∑+∞
d=1 μdx(k − d). ω(k) is a one-dimensional

Gaussian white noise sequence satisfying E{ω(k)} = 0 and E{ω2(k)} = σ2, ρ(k) is the initial
state of the system. A, B, D, N, E, G, and Gd are constant real matrices of appropriate
dimensions and B is of full-column rank.

The nonlinear function f(·) with (f(0) = 0) is assumed as nonlinear disturbances and
satisfies the following sector-bounded condition:

[
f(z(k)) − F1z(k)

]T[
f(z(k)) − F2z(k)

] ≤ 0, (2.3)

where f(·) is called to belong to the sector [F1, F2] and F1 and F2 are given constant real
matrices.

For the technique convenience, the nonlinear function f(z(k)) can be decomposed into
a linear and a nonlinear part as

f(z(k)) = fs(z(k)) + F1z(k), (2.4)

then, from (2.3), we have

fT
s (z(k))

(
fs(z(k)) − Fz(k)

) ≤ 0, (2.5)

where F = F2 − F1 > 0.
On the other hand, μd ≥ 0 is the convergence constant that satisfies the following

condition:

+∞∑

d=1

μd ≤
+∞∑

d=1

dμd < +∞. (2.6)

Remark 2.1. The distributed delay is one important type of time delays and has been widely
recognized and intensively studied, see, for example, [17–22]. The delay term

∑+∞
d=1 μdx(k−d)

in the resulted stochastic system (2.1) called infinitely distributed delay. However, almost
all existing references concerning distributed delays are concerned with the continuous-time
systems, where the distributed delays are described in the form of a finite or infinite integral.
In this paper, the constants μd (d = 1, 2, . . .) are assumed to satisfy the convergence conditions
(2.6), which can guarantee the convergence of the terms of infinite delays as well as the
Lyapunov-Krasovskii functional defined later.
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The measurement output with missing sensor data is described as

y(k) = ξ(k)Cx(k), (2.7)

where C is a constant real matrix of appropriate dimensions and ξ(k) ∈ R is a random white
sequence characterizing the probabilistic sensor-data missing, which obeys the following
time-varying Bernoulli distribution:

Prob{ξ(k) = 1} = E{ξ(k)} = p(k),

Prob{ξ(k) = 0} = 1 − E{ξ(k)} = 1 − p(k), (2.8)

where p(k) is a time-varying positive scalar sequence and belongs to [p1 p2] ⊆ [0 1] with p1
and p2 being the lower and upper bounds of p(k), respectively. In this paper, for simplicity,
we assume that ξ(k), ω(k) and ρ(k) are uncorrelated.

Remark 2.2. In (2.7), a random white sequence satisfying the time-varying Bernoulli
distribution is introduced to reflect the missing-measurement phenomenon that has attracted
considerable attention in the past few years, see, for example, [13–15]. However, the missing
probability in most relevant literatures has always been assumed to be a constant. Such
an assumption, unfortunately, tends to be conservative in handling time-varying missing
measurements. In this paper, the missing probability is allowed to be time-varying with
known lower and upper bounds, which will then be used to schedule controller gains,
thereby reducing the possible conservatism.

In this paper, we are interested in designing the following gain-scheduled controller:

u(k) = K
(
p
)
y(k), (2.9)

where K(p) is the controller gain sequence to be designed and assumed as the following
structure:

K
(
p
)
= K0 + p(k)Ku, (2.10)

for every time step k, p(k) is the time-varying parameter of the controller gain, which takes
value in [p1, p2] andK0, Ku are the constant parameters of the controller gain to be designed.

The closed-loop system of the static output feedback gain-scheduled controller is as
follows:

x(k + 1) = Ax(k) + ξ(k)BK
(
p
)
Cx(k) +D

+∞∑

d=1

μdx(k − d) +Nf(z(k)) + Ex(k)w(k). (2.11)

Before formulating the problem to be investigated, we first introduce the following
stability concepts.
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Definition 2.3. The closed-loop system (2.11) is said to be exponentially mean-square stable
if, with w(k) = 0, there exist constants α > 0 and τ ∈ (0, 1) such that

E

{∥∥η(k)
∥∥2
}
≤ ατk sup

−d≤i≤0
E

{∥∥η(i)
∥∥2
}
, k ∈ I

+. (2.12)

In this paper, our purpose is to design a probability-dependent gain-scheduled
controller of the form (2.9) for the system (2.1) by exploiting a probability-dependent
Lyapunov functional and LMImethod such that, for all admissible infinite-distributed delays,
missing measurements with time-varying probability, and exogenous stochastic noises, the
closed-loop system (2.11) is exponentially mean-square stable.

3. Main Results

The following lemmas will be used in the proofs of our main results in this paper.

Lemma 3.1 ([Schur complement] see[23]). Given constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1

and 0 < Σ2 = ΣT
2 , then Σ1 + ΣT

3Σ
−1
2 Σ3 ≥ 0 if and only if

[
Σ1 ΣT

3
Σ3 −Σ2

]
≥ 0 or

[−Σ2 Σ3

ΣT
3 Σ1

]
≥ 0. (3.1)

Lemma 3.2 (see [24]). Let M ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n and constant ai >
0 (i = 1, 2, . . .). If the series concerned is convergent, then one has

( ∞∑

i=1

aixi

)T

M

( ∞∑

i=1

aixi

)
≤
( ∞∑

i=1

ai

) ∞∑

i=1

aix
T
i Mxi. (3.2)

Lemma 3.3 (see [25]). Let the matrix B ∈ Rn×m be of full-column rank. There always exist two
orthogonal matricesU ∈ Rn×n and V ∈ Rn×n such that

B = U

[
Σ
0

]
V T ,

Σ = diag{σ1, σ2, . . . , σm}.
(3.3)

If matrix S has the following structure:

S = U

[
S11 S12

0 S22

]
UT, (3.4)

where S11 ∈ Rn×m, S12 ∈ Rn×(n−m), S22 ∈ R(n−m)×(n−m), then there exists a nonsingular matrix
R ∈ Rm×m such that SB = BR.

In the following theorem, a probability-dependent gain-scheduled static output
feedback control problem is dealt with for a class of discrete-time nonlinear stochastic systems
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(2.1) by exploiting Lyapunov theory and LMI method. A sufficient condition is derived to
guarantee the solvability of the desired gain-scheduled control problem and, simultaneously,
the parameters of the gain-scheduled controller can be obtained by solving the LMIs and the
measured time-varying probability.

Theorem 3.4. Consider the discrete-time nonlinear stochastic systems (2.11). If there exist positive-
definite matrices Q(p(k)) and Qτ , slack matrix S and nonsingular matrices Y (p) and R, such that
the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)BY

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)BY

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.5)

where

Λ = −Q(p(k + 1)
)
+ S + ST , μ =

+∞∑

d=1

μd, ΔP (k) = P(k)(1 − P(k)),

A = A +NF1G, D = D +NF1Gd,

STB = BR, RK
(
p
)
= Y
(
p
)
, K

(
p
)
= R−1Y

(
p
)
,

(3.6)

in this case, the constant gains of the desired controller can be obtained as follows:

K0 = R−1Y0, Ku = R−1Yu, (3.7)

and the closed-system (2.11) is then exponentially mean-square stable for all p(k) ∈ [p1 p2].

Proof. Define the Lyapunov functional:

V (k) := xT (k)Q
(
p(k)

)
x(k) +

+∞∑

d=1

μd

k−1∑

s=k−d
xT (s)Qτx(s). (3.8)
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Then, noting E{ξ(k) − p(k)} = 0, E{ω(k)} = 0 and E{[ξ(k) − p(k)]2} = p(k)(1 − p(k)), we can
get that

E{ΔV (k)} = E

{
xT (k + 1)Q

(
p(k + 1)

)
x(k + 1) − xT (k)Q

(
p(k)

)
x(k) + μxT (k)Qτx(k)

−
+∞∑

d=1

μdx
T (k − d)Qτx(k − d)

}

≤ E

⎧
⎨

⎩

[(
A + p(k)BK

(
p
)
C
)
x(k) +D

+∞∑

m=1

μdx(k − d) +Nfs(z(k))

]T
Q
(
p(k + 1)

)

×
[(

A + p(k)BK
(
p
)
C
)
x(k) +D

+∞∑

m=1

μdx(k − d) +Nfs(z(k))

]

+
[
p(k)

(
1 − (p(k))BK(p)C)x(k)]TQ(p(k + 1)

)
BK
(
p
)
Cx(k) + σ2xT (k)ET

×Q
(
p(k + 1)

)
Ex(k) − xT (k)Q

(
p(k)

)
x(k) −

+∞∑

d=1

μdx
T (k − d)Qτx(k − d)

+ μxT (k)Qτx(k) + 2fT
s (z(k))FGx(k) + 2fT

s (z(k))FGd

+∞∑

m=1

μdx(k − d)

−2fT
s (z(k))fs(z(k))

}
.

(3.9)

From Lemma 3.2, it is obvious that

−
+∞∑

d=1

μd

(
xT (k − d)Qτx(k − d)

)
≤ − 1

μ

(
+∞∑

d=1

μdx
T (k − d)

)
Qτ

(
+∞∑

d=1

μdx(k − d)

)
. (3.10)

Denote the following matrix variables

η(k) =

[
xT (k)

+∞∑

d=1

μdx
T (k − d) fT

s (z(k))

]T
. (3.11)
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Combining (3.9), (3.10), and (3.11), we can get

E{ΔV (k)} ≤ E

{
ηT (k)Ωη(k)

}
,

Ω =

⎡

⎣
Ω1 ∗ ∗
Ω2 Ω3 ∗
Ω4 Ω5 Ω6

⎤

⎦,

Ω1 =
(
A + p(k)BK

(
p
)
C
)T

Q
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
+ σ2ETQ

(
p(k + 1)

)
E

+ p(k)
(
1 − p(k))(BK

(
p
)
C
)T
Q
(
p(k + 1)

)
BK
(
p
)
C + μQτ −Q

(
p(k)

)
,

Ω2 = D
T
Q
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
,

Ω3 = D
T
Q
(
p(k + 1)

)
D − 1

μ
Qτ,

Ω4 = NTQ
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
+ FG,

Ω5 = NTQ
(
p(k + 1)

)
D + FGd,

Ω6 = NTQ
(
p(k + 1)

)
N − 2I.

(3.12)

If Ω ≤ 0, we can conclude the following matrix inequalities by Schur complement:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
A + p(k)BK

(
p
)
C D N −Λ ∗ ∗

E 0 0 0 −σ−2Λ ∗
BK
(
p
)
C 0 0 0 0 −Δ−1

p (k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.13)

with Λ = Q−1(p(k + 1)).
At this time, preforming the congruence transformation diag{I, I, I, S, σ2S,Δp(k)S} to

(3.13), we can have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)STBK

(
p
)
C STD STN −Λ̂ ∗ ∗

σ2STE 0 0 0 −σ2Λ̂ ∗
Δp(k)STBK

(
p
)
C 0 0 0 0 −Δp(k)Λ̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Λ̂ = STQ−1(p(k + 1)
)
S,

(3.14)
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then from inequality

STQ−1(p(k + 1)
)
S ≥ ST + S −Q

(
p(k + 1)

)
= Λ, (3.15)

we can get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)STBK

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)STBK

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)

and from lemma 3, we have STB = BR denoting RK(p) = Y (p), and K(P) = R−1Y (p). Then
(3.16) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)BY

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)BY

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.17)

Furthermore, by Lemma 3.1, we can know from that Ω < 0 and, subsequently,

E{ΔV (k)} < −λmin(−Ω)E
∣∣η(k)

∣∣2, (3.18)

where λmin(−Ω) is the minimum eigenvalue of (−Ω). Finally, we can confirm from Lemma 1
of [13] that the closed-loop system is exponentially mean-square stable, then the proof of this
theorem is complete.

Remark 3.5. In the above theorem, a static output feedback controller has been designed
based on a set of LMIs. However, the LMIs are actually infinite owing to the time-varying
parameter p(k) ∈ [p1 p2]. In this case, the desired controller cannot be obtained directly
from Theorem 3.4 due to the infinite number of LMIs. To handle such a problem, in the next
theorem, we have to convert this problem to a computationally accessible one by assigning a
specific form to p(k). Let us set Q(p(k)) = Q0 + p(k)Qu.
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Theorem 3.6. Consider the discrete-time nonlinear stochastic system with infinite-distributed delays
and missing measurements (2.11). If there exist positive-difinite matricesQ0,Qu andQτ , slack matrix
S and nonsingular matrices Y (p) and R, such that the following LMIs hold:

Mijlm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Qi
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + piBY

mC STD STN −Λl ∗ ∗
σ2STE 0 0 0 −σ2Λ

l ∗
ΔijBYmC 0 0 0 0 −ΔijΛ

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.19)

where

Λ
l
= −Q0 − plQu + S + ST , Δij = pi

(
1 − pj

)
,

Qi(p(k)
)
= Q0 + piQu, Ym = Y0 + pmYu,

STB = BR, RK
(
p
)
= Y
(
p
)
, K

(
p
)
= R−1Y

(
p
)
,

(3.20)

the constant gains of the desired controller can be obtained as follows:

K0 = R−1Y0, Ku = R−1Yu, (3.21)

and the closed-system (2.11) is then exponentially mean-square stable for all p(k) ∈ [p1 p2].

Proof. Firstly, set

α1(k) =
p2 − p(k)
p2 − p1

, α2(k) =
p(k) − p1
p2 − p1

, (3.22)

then, we have

p(k) = α1(k)p1 + α2(k)p2, (3.23)

with αi(k) ≥ 0 (i = 1, 2) and α1(k) + α2(k) = 1. Similarly, let

β1(k) =
p2 − p(k + 1)

p2 − p1
, β2(k) =

p(k + 1) − p1
p2 − p1

, (3.24)

then we have

p(k + 1) = β1(k)p1 + β2(k)p2, (3.25)
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with βi(k) ≥ 0 (i = 1, 2), β1(k) + β2(k) = 1. From the above transformation, we can easily get

Q
(
p(k)

)
=

2∑

i=1

αi(k)Qi, Λ =
2∑

l=1

βl(k)Λ
l
,

Y
(
p(k)

)
=

2∑

m=1

αm(k)Ym(p
)
.

(3.26)

On the other hand, it is easy to find that

2∑

i,j,l,m=1

αi(k)αj(k)αm(k)βl(k)Mijlm < 0. (3.27)

From (3.22)–(3.27), we can have that (3.5) in Theorem 3.4 is true, then the proof is now
complete.

Remark 3.7. The above conclusions can be extended to multiple sensor case of measurement
output. In this paper, to make the main idea and the proof more clear and concise, we choose
the single sensor.

4. An Illustrative Example

In this section, the gain-scheduled static output feedback controller is designed for the
discrete-time nonlinear stochastic systems with infinite-distributed delays and missing
measurements.

The system parameters are given as follows:

A =
[
0.97 0
0 0.21

]
, N =

[
0.13 0.21
0.28 0.33

]
, B =

[
0.06 0
0 0.16

]
,

C =
[
0.1 0.2
0.15 0.23

]
, D =

[
0.23 0
0.15 0.18

]
, F1 =

[
0.06 0
0 0.07

]
,

F2 =
[
0.61 0
0 0.25

]
, G =

[
0.11 0.12
0.18 0.12

]
, Gd =

[
0.11 0.29
0.18 0.09

]
, E =

[
0.03 0.19
0.21 0.33

]
,

p1 = 0.19, p2 = 0.51, σ2 = 1, μ = 2−3.

(4.1)

Set the time-varying Bernoulli distribution sequences as p(k) = p1 + (p2 − p1)| sin(k)|
and the sector nonlinear function f(u) is taken as

f(u) =
F1 + F2

2
u +

F2 − F1

2
sin(u), (4.2)

which satisfies (2.3). Also, select the initial state as follows: ρ = [2 − 2]T .
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Figure 1: State evolution x(k) of uncontrolled systems.

Table 1: Computing results.

k p(k) Q(p(k)) K(p)

0 0.4593
[ 3.4334 −0.2204
−0.2204 2.1583

] [ 606.0619 −529.7133
10.7547 −16.6786

]

1 0.4810
[ 3.4368 −0.2282
−0.2282 2.1833

] [ 607.6342 −531.0712
10.7201 −16.6872

]

2 0.2352
[ 3.3986 −0.1400
−0.1400 1.9006

] [ 589.8268 −515.6926
11.1130 −16.5901

]

3 0.4322
[ 3.4292 −0.2107
−0.2107 2.1272

] [ 604.0991 −528.0183
10.7981 −16.6679

]

...
...

...
...

According to Theorem 3.6, the constant controller parameters K0, Ku can be obtained
as follows:

K0 =
[
572.7914 −500.9808
11.4889 −16.4972

]
, Ku =

[
72.4419 −62.5612
−1.5985 −0.3949

]
. (4.3)

Then, according to the measured time-varying probability parameters p(k), the gain-
scheduled controller gainK(p) and parameter-dependent Lyapunovmatrix can be calculated
at every time step k as in Table 1.

Figure 1 gives the response curves of state x(k) of uncontrolled systems. Figure 2
depicts the simulation results of state x(k) of the controlled systems. The simulation results
have illustrated our theoretical analysis.
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Figure 2: State evolution x(k) of controlled systems.

5. Conclusions

In this paper, the problem of gain-scheduled control for a class of discrete stochastic systems
with infinite-distributed delays and missing measurements has been studied, the missing-
measurement phenomenon is assumed to occur in a random way, the missing probability
is governed by an individual random variable satisfying a certain probabilistic distribution
in the interval [0 1], and distributed delays are described in a discrete way. By employing
probability-dependent Lyapunov functional, we have designed a gain-scheduled controller
with the gain including both constant parameters and time-varying parameters such that,
for the admissible missing measurements with time-varying probability, infinite-distributed
delays, and noise disturbances, the closed-loop system is exponentially mean-square stable.
Moreover, we can extend the main results to more complex and realistic systems, for instance,
system with norm-bounded or polytopic uncertainties. Meanwhile, we can also consider
dynamic output feedback control problem for discrete stochastic systems with missing
measurements by gain-scheduling approach as well as the relevant applications in networked
control system or robotic manipulator.
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We consider a class of impulsive neutral second-order stochastic functional evolution equations.
The Sadovskii fixed point theorem and the theory of strongly continuous cosine families of
operators are used to investigate the sufficient conditions for the controllability of the system
considered. An example is provided to illustrate our results.

1. Introduction

Controllability, as a fundamental concept of control theory, plays an important role both
in stochastic and deterministic control problems. The study of controllability of linear and
nonlinear systems represented by infinite-dimensional systems in Banach spaces has been
raised by many authors recently, see Chang [1], Sakthivel [2], Ren and Sakthivel [3], Ntouyas
and Regan [4], Kang et al. [5], Sakthivel and Mahmudov [6], and Shubov et al. [7]. With the
help of fixed point theorem, Luo [8, 9] and Burton [10–13] have investigated the problem of
controllability of the systems in Banach spaces.

Recently, stochastic partial differential equations (SPDEs) arise in the mathematical
modeling of various fields in physics and engineering science cited by Sobczyk [14]. Among
them, several properties of SPDEs such as existence, controllability, and stability are studied
for the first-order equations. But in many situations, it is useful to investigate the second-
order abstract differential equations directly rather than to convert them to first-order systems
introduced by Fitzgibbon [15]. The second-order stochastic differential equations are the right
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model in continuous time to account for integrated processes that can be made stationary. For
instance, it is useful for engineers to model mechanical vibrations or charge on a capacitor
or condenser subjected to white noise excitation by second-order stochastic differential
equations. A useful tool for the study of abstract second-order equations is the fixed point
theory and the theory of strongly continuous cosine families.

In the past decades, the theory of impulsive differential equations or inclusions is
emerging as an active area of investigation due to the application in area such as mechanics,
electrical engineering, medicine biology, and ecology, see Benchohra and Henderson [16],
Liu and Willms [17], Hernández et al. [18], Prato and Zabczyk [19], and Fattorini [20]. As an
adequate model, impulsive differential equations are used to study the evolution of processes
that are subject to sudden changes in their states.

The focus of this paper is the controllability of mild solutions for a class of impulsive
neutral second-order stochastic evolution equations of the form:

d
[
x′(t) −D(xt)

]
=
[
Ax(t) + Bu(t) + f(t, xt)

]
dt + g(t, xt)dw(t), t ∈ [0, T], t /= tk

Δx(tk) = Ik(x(tk)), Δx′(tk) = Ĩk(x(tk)), k = 1, . . . , n, x(0) = φ, x′(0) = y0.
(1.1)

Here, x(·) is a stochastic process taking values in a real separable Hilbert space H with
inner product (·, ·) and norm ‖ · ‖. A : D(A) ⊂ H → H is the infinitesimal generator
of a strongly continuous cosine family on H. W is a given K-valued Wiener process with a
finite trace nuclear covariance operatorQ ≥ 0 defined on a filtered complete probability space
(Ω, F, {Ft}t≥0, P) and K is another separable Hilbert space with inner product (·, ·)K and norm
‖ · ‖K. The fixed time tk, k = 1, . . . , n, satisfies 0 < t1 < · · · < tn < T , x(t+k) and x(t−k) denote the
right and left limits of x(t) at t = tk, and Δx(tk) = x(t+k) − x(t−k) represents the jump in the
state x at time tk, where Ik ∈ C(H,H) (k = 1, 1, 2, . . . , m) are bounded which determine the
size of the jump. Similarly x′(t+

k
) and x′(t−

k
) denote, respectively, the right and left limits of x′

at tk. f, B, g are appropriate mappings specified later; x0 and y0 are F0-measurable random
variables with finite second moment. The main contributions are as follows. The Sadovskii
fixed point theorem and the theory of strongly continuous cosine families of operators are
used to investigate the sufficient conditions for the controllability of the system considered.
The differences of using the fixed point theorem between our proposedmethod and others are
that Sadovskii fixed point theorem is much easier in application, and the condition is easier
to be satisfied than other fixed point theorem. To our best knowledge, there are few works
about the controllability for mild solutions to second-order semilinear impulsive stochastic
neutral functional evolution equations, motivated by the previous problems, our current
consideration is on second-order semilinear impulsive stochastic neutral functional evolution
equations. We will apply the Sadovskii fixed point theorem to investigate the controllability
of mild solution of this class of equations.

The rest of this paper is arranged as follows. In Section 2, we briefly present some basic
notations and preliminaries. Section 3 is devoted to the controllability of mild solutions for
the system (1.1) and an example is given to illustrate our results in Section 4. Conclusion is
given in Section 5.

2. Preliminaries

In this section, we briefly recall some basic definitions and results for stochastic equations
in infinite dimensions and cosine families of operators. We refer to Prato and Zabczyk [19]
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and Fattorini [20] for more details. Throughout this paper, let L(K,H) be the set of all linear
bounded operators from K into H, equipped with the usual operator norm ‖ · ‖. Let (Ω, F, P)
be a complete probability space furnished with a normal filtration{Ft}t≥0. Suppose {βk}k≥1 is
a sequence of real independent one-dimensional standard Brownian motions over (Ω, F, P).
Set

W(t) =
∞∑

k=1

√
λkβk(t)ek, t ≥ 0, (2.1)

where {ek}k≥1 is the complete orthonormal system in K and λk, k ≥ 1, a bounded sequence of
nonnegative real numbers. LetQ ∈ L(K, K) be an operator defined byQek = λkek, k = 1, 2, . . .,
with trQ =

∑∞
k=1 λk < ∞. The K-valued stochastic process W = (Wt)t≥0 is called a Q-Wiener

process. Let L0
2 = L2(Q1/2K,H) be the space of all Hilbert-Schmidt operators from Q1/2K to

H with the inner product 〈ϕ, φ〉L0
2
= tr[ϕQφ∗].

The collection of all strongly measurable, square-integrable H-valued random

variables, denoted by L2(Ω,H), is a Banach space equipped with norm ‖x‖L2 = (E‖x‖2)1/2.
An important subspace of L2(Ω,H) is given by

L2
0(Ω,H) =

{
L2(Ω,H) � x is F0 −measurable

}
. (2.2)

Let

℘ := D([0, T],H)

=
{
x : [0, T] −→ H, x|(tk ,tk+1] ∈ C((tk, tk+1],H), and there exists x

(
t+k
)
for k = 1, 2, . . . , n

}
,

℘ := D([0, T],H)

=
{
x ∈ ℘, x|(tk ,tk+1] ∈ C1((tk, tk+1],H), and there exists x′(t+k

)
for k = 1, 2, . . . , n

}
.

(2.3)

It is obvious that D([0, T],H) and D([0, T],H) are Banach spaces endowed with the norm

‖x‖℘ =

(
sup
t∈[0,T]

E‖x(t)‖2
)1/2

(2.4)

and ‖x‖℘ = ‖x‖℘ + ‖x′‖℘, respectively.
To simplify the notations, we put t0 = 0, tm+1 = T , and for u = H2, we denote by

ũk ∈ C([tk, tk+1], L2(Ω,H)), k = 0, 1, . . . , m, the function given by

ũk(t) =

{
u(t), t ∈ (tk, tk+1],
u
(
t+
k

)
, t = tk.

(2.5)

Moreover, for B ⊂ H2 we denote B̃k = {ũk : u ∈ B}, k = 1, . . . , m. To prove our results, we
need the following lemma introduced in Hernández et al. [18].
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Lemma 2.1. A set B ⊂ ℘ is relatively compact in ℘ if and only if the set B̃k is relatively compact in
C([tk, tk+1],H), for every k = 0, 1,. . . , m.

Now, we recall some facts about cosine families of operators, see Fattorini [20] and
Travis and Webb [21].

Definition 2.2. (1) The one-parameter family {C(t) : t ∈ R} ⊂ L(H,H) is said to be a strongly
continuous cosine family if the following hold:

(1) C(0) = I;

(2) C(t)x is continuous in t on R for any x ∈ H;

(3) C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R.

(2) The corresponding strongly continuous sine family {S(t):t ∈ R} ⊂ L(H,H) is
defined by

S(t)x =
∫ t

0
C(s)xds, t ∈ R, x ∈ H. (2.6)

(3) The (infinitesimal) generator A : H → H of {C(t):t ∈ R} is given by

Ax =
d2

dt2
C(t)x

∣∣∣∣∣
t=0

, (2.7)

for all x ∈ D(A) = {x ∈ H : C(·)x ∈ C2(R,H)}.

It is known that the infinitesimal generator A is a closed, densely defined operator on
H, and the following properties hold, see Travis and Webb [21].

Proposition 2.3. Suppose that A is the infinitesimal generator of a cosine family of operators {C(t) :
t ∈ R}. Then, the following hold

(i) There exist a pair of constants MA ≥ 1 and α ≥ 0 such that ‖C(t)‖ ≤ MAe
α|t| and hence,

‖S(t)‖ ≤ MAe
α|t|.

(ii) A
∫ r
s S(u)xdu = [C(r) − C(s)]x, for all 0 ≤ s ≤ r < ∞.

(iii) There existN ≥ 1 such that ‖S(s) − S(r)‖ ≤ N| ∫ rs eα|s|ds|, for all 0 ≤ s ≤ r < ∞.

The uniform boundedness principle: as a direct consequence we see that both {C(t) : t ∈ [0, T]} and
{S(t) : t ∈ [0, T]} are uniformly bounded byM∗ = MAe

α|T |.

At the end of this section we recall the fixed point theorem of Sadovskii [22] which is
used to estimate the controllability of the mild solution to the system (1.1).

Lemma 2.4. Let Φ be a condensing operator on a Banach space H. IfΦ(N) ⊂ N for a convex, closed,
and bounded set N of H, then Φ has a fixed point in H.
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3. Main Results

In this section we consider the system (1.1). We first present the definition of mild solutions
for the system.

Definition 3.1. An Ft−adapted stochastic process x(t) : [0, T] → H is said to be a mild solution
of the system (1.1) if

(1) x0, y0 ∈ L2
0(Ω,H);

(2) Δx(tk) = x(t+
k
) − x(t−

k
) = Ik(x(tk)), Δx′(tk) = x′(t+

k
) − x′(t−

k
) = Ĩk(x(tk)), k = 1, . . . , n;

(3) x(t) satisfies the following integral equation:

x(t) = C(t)φ(0) + S(t)
[
y0 −D

(
0, φ

)]
+
∫ t

0
C(t − s)D(s, xs)ds

+
∫ t

0
S(t − s)Bu(s)ds +

∫ t

0
S(t − s)f(s, xs)ds

+
∫ t

0
S(t − s)g(s, xs)dW(s) +

∑

0<tk<t

C(t − tk)Ik(x(tk))

+
∑

0<tk<t

S(t − tk)Ĩk(x(tk)).

(3.1)

In this paper, we will work under the following assumptions.

(A1) The cosine family of operators {C(t) : t ∈ [0, T]} on H and the corresponding sine
family {S(t):t ∈ [0, T]} are compact for t > 0, and there exists a positive constant M
such that

‖C(t)‖ ≤ M, ‖S(t)‖ ≤ M. (3.2)

(A2) D, f, g are continuous functions, and there exist some positive constants
MD,Mf,Mg , such that D, f, g satisfy the following Lipschitz condition:

∥∥D
(
t, ϕ

) −D
(
t, φ

)∥∥ ≤ MD

∥∥ϕ − φ
∥∥,

∥∥f
(
t, ϕ

) − f
(
t, φ

)∥∥ ≤ Mf

∥∥ϕ − φ
∥∥,

∥∥g
(
t, ϕ

) − g
(
t, φ

)∥∥ ≤ Mg

∥∥ϕ − φ
∥∥,

(3.3)
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for all ϕ, φ ∈ H, k = 1, . . . , n and t ∈ [0, T], and there exist positive constants
MD, Mf, Mg that satisfy the following linear growth condition:

∥∥D
(
t, ϕ

)∥∥2 ≤ MD

(∥∥ϕ
∥∥2 + 1

)
,

∥∥f
(
t, ϕ

)∥∥2 ≤ Mf

(∥∥ϕ
∥∥2 + 1

)
,

∥∥g
(
t, ϕ

)∥∥2 ≤ Mg

(∥∥ϕ
∥∥2 + 1

)
(3.4)

for all ϕ, φ ∈ H, k = 1, . . . , n and t ∈ [0, T].

(A3) Ik, Ĩk : H → H are continuous and there exist positive constants Mk, Nk such that

∥∥Ik(x) − Ik
(
y
)∥∥ ≤ Mk

∥∥x − y
∥∥2

,
∥∥∥Ĩk(x) − Ĩk

(
y
)∥∥∥ ≤ Nk

∥∥x − y
∥∥2 (3.5)

for each x, y ∈ H, k = 1, . . . , n.

(A4) B is a continuous operator fromΩ toH and the linear operatorW : L2
0(Ω,H) → X

defined by

Wu =
∫T

0
S(T − s)Bu(s)ds (3.6)

has a bounded invertible operatorW−1 which takes values in L2
0(Ω,H)/kerW such

that ||B|| ≤ M1, ||W−1|| ≤ M2, for some positive constants M1,M2.

We formulate and prove conditions for the approximate controllability of semilinear
control differential systems

Theorem 3.2. Assume that (A1)–(A4) are satisfied and x0, y0 ∈ L2
0(Ω,H), then the system (1.1) is

controllable on [0, T] provided that

8M2

[
TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(
TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)]
< 1.

(3.7)
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Proof. Define the control process with final value ξ = x(T)

uT
x(t) = W−1

{
ξ − S(T)

[
y0 −D

(
0, φ

)] − C(T)φ(0) −
∫T

0
C(T − s)D(s, xs)ds

−
∫T

0
S(T − s)f(s, xs)ds −

∫T

0
S(T − s)g(s, xs)dW(s)

−
∑

0<tk<t

C(T − tk)Ik(x(tk)) −
∑

0<tk<t

S(T − tk)Ĩk(x(tk))

}
(t).

(3.8)

Let BN = {x ∈ H2 : ‖x‖2℘ ≤ N}, for every positive integer N. It is clear that BN is a bounded
closed convex set in H2 for each N. Define an operator π : H2 → H2 by

(πx)(t) = C(t)φ(0) + S(t)
[
y0 −D

(
0, φ

)]
+
∫ t

0
C(t − s)D(s, xs)ds +

∫ t

0
S(t − s)Bu(s)ds

+
∫ t

0
S(t − s)f(s, xs)ds +

∫ t

0
S(t − s)g(s, xs)dW(s)

+
∑

0<tk<t

C(t − tk)Ik(x(tk)) +
∑

0<tk<t

S(t − tk)Ĩk(x(tk)).

(3.9)

Now let us show that π has a fixed point in H2 which is a solution of (1.1) by Lemma 2.4.
This will be done in the next lemmas.

Lemma 3.3. There exists a positive integer N such that π(BN) ⊂ BN .

Proof. This proof can be done by contradiction. In fact, if it is not true, then for each positive
number N and tN ∈ [0, T], there exists a function xN ∈ BN , but π(xN)(tN) /∈ BN . That
is, E‖π(xN)(tN)‖2 > N. By applying assumptions (A1)–(A4) one can obtain the following
estimates:

E

∥∥∥∥∥∥

∑

0<tk<tN
S
(
tN − tk

)
Ĩk
(
xN(tk)

)
∥∥∥∥∥∥

2

≤ NM2
∑

0<tk<T

E
∥∥∥Ĩk

(
xN(tk)

)
− Ĩk(0) + Ĩk(0)

∥∥∥

≤ 2NM2

(
N∑

k=1

NkE
∥∥∥xN(tk)

∥∥∥
2
+

N∑

k=1

∥∥∥Ĩk(0)
∥∥∥
2
)
,

(3.10)

E

∥∥∥∥∥∥

∑

0<tk<tN
C
(
tN − tk

)
Ik
(
xN(tk)

)
∥∥∥∥∥∥

2

≤ NM2
∑

0<tk<T

E
∥∥∥Ik

(
xN(tk)

)
− Ik(0) + Ik(0)

∥∥∥

≤ 2NM2

(
N∑

k=1

MkE
∥∥∥xN(tk)

∥∥∥
2
+

N∑

k=1

‖Ik(0)‖2
)
,

(3.11)
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E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
g(s, xs)dW(s)

∥∥∥∥∥

2

≤ tr(Q)M2
∫ tN

0
E
∥∥g(s, xs)

∥∥2
ds

≤ tr(Q)M2M
2
g

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds,

(3.12)

E

∥∥∥∥∥

∫ tN

0
C
(
tN − s

)
D(xs)ds

∥∥∥∥∥

2

≤ TM2M
2
D

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds, (3.13)

E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
f(s, xs)ds

∥∥∥∥∥

2

≤ TM2M
2
f

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds, (3.14)

E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
Bu(s)ds

∥∥∥∥∥

2

≤ 8M2M
2

(
‖ξ‖2 + ∥∥ϕ(0)

∥∥2 + y2
0

+ (T + 1)M
2
D

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+ TM
2
f

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+M
2
g

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+ 2N
N∑

k=1

NkE
∥∥∥xN(tk)

∥∥∥
2

+ 2N
N∑

k=1

MkE
∥∥∥xN(tk)

∥∥∥
2
)

:= M2U

(3.15)

which gives

N ≤ E
∥∥∥
(
πxN

)(
tN

)∥∥∥
2 ≤ 8E

∥∥∥C
(
tN

)[
ϕ(0)

]∥∥∥
2
+ 8E

∥∥∥S
(
tN

)[
y0 −D

(
0, ϕ

)]∥∥∥
2

+ 8E

∥∥∥∥∥

∫ tN

0
C
(
tN − s

)
D
(
s, ϕ

)
ds

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
f
(
s, ϕ

)
ds

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
g
(
s, ϕ

)
dW(s)

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥∥

∑

0<tk<tN
C
(
tN − tk

)
Ik
(
xN(tk)

)
∥∥∥∥∥∥

2

+ 8E

∥∥∥∥∥∥

∑

0<tk<tN
S
(
tN − tk

)
Ĩk
(
xN(tk)

)
∥∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
Bu(s)ds

∥∥∥∥∥

2
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≤ L + 8M2

[
TM

2
DN + TM

2
fN + tr(Q)M

2
gN + 2NM2

n∑

k=1

Mk + 2NM2
n∑

k=1

Nk

+ 8M2

(
TM

2
DN + TM

2
fN + tr(Q)M

2
gN + 2NM2

n∑

k=1

Mk + 2NM2
n∑

k=1

Nk

)]
,

(3.16)

where

L = 8M2

[
E‖x0‖2 + E

∥∥y0
∥∥2 + TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(
TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)] (3.17)

Dividing both sides of (3.16) by N and taking limit as N → ∞, we obtain that

8M2

[
TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(
TM

2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)]
≥ 1

(3.18)

which is a contradiction by (3.7). Thus, π(BN) ⊂ BN , for some positive number N.
In what follows, we aim to show that the operator π has a fixed point on BN , which

implies that (1.1) is controllable. To this end, we decompose π as follows:

π = π1 + π2, (3.19)

where π1, π2 are defined on BN , respectively, by

(π1x)(t) = S(t)
[
y0 −D

(
0, ϕ

)]
+
∫ t

0
C(t − s)D

(
0, ϕ

)
ds +

∫ t

0
S(t − s)f(s, xs)ds

+
∑

0<tk<t

C(t − tk)Ik(x(tk)) +
∑

0<tk<t

S(t − tk)Ĩk(x(tk)),
(3.20)

(π2x)(t) = C(t)φ(0) +
∫ t

0
S(t − s)g(s, xs)dW(s) +

∫ t

0
S(t − s)Bu(s)ds. (3.21)

Lemma 3.4. The operator π1 as above is contractive.
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Proof. Let x, y ∈ BN . It follows from assumptions (A1)–(A4) and Hölder’s inequality that

E
∥∥(π1x)(t) −

(
π1y

)
(t)

∥∥2

≤ 5E
∥∥S(t)

[
D
(
0, ϕ

) −D
(
0, φ

)]∥∥2

+ 5E

∥∥∥∥∥

∫ t

0
C(t − s)

[
D
(
0, ϕ

) −D
(
0, φ

)]
ds

∥∥∥∥∥

2

+ 5E

∥∥∥∥∥

∫ t

0
S(t − s)

[
f
(
s, ϕ

) − f
(
s, φ

)]
ds

∥∥∥∥∥

2

+ 5E

∥∥∥∥∥
∑

0<tk<t

C(t − tk)
[
Ik(x(tk)) − Ik

(
y(tk)

)]
∥∥∥∥∥

2

+ 5E

∥∥∥∥∥
∑

0<tk<t

S(t − tk)
[
Ĩk(x(tk)) − Ĩk

(
y(tk)

)]
∥∥∥∥∥

2

≤ 5M2M2
D sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2 + 5TM2M2
D sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2

+ 5TM2M2
f sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2 + 5nM2
∑

0<tk<t

MkE
∥∥x(tk) − y(tk)

∥∥2

+ 5nM2
∑

0<tk<t

NkE
∥∥x(tk) − y(tk)

∥∥2

(3.22)

which deduces

sup
s∈[0,T]

E
∥∥(π1x)(s) −

(
π1y

)
(s)

∥∥2

≤ 5M2

[
M2

D + TM2
D + TM2

f + n
n∑

i=0

Mk + n
n∑

i=0

Nk

]
sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2
(3.23)

and the lemma follows.

Lemma 3.5. The operator π2 is compact.

Proof. Let N > 0 be such that π2(BN) ⊂ BN .
We first need to prove that the set of functions π2(BN) is equicontinuous on [0, T]. Let

0 < ε < t < T and δ > 0 such that ‖S(s)x − S(s′)x‖2 < ε and ‖C(s)x − C(s′)x‖2 < ε, for every
s, s′ ∈ [0, T]with |s − s′| ≤ δ. For x ∈ BN and 0 < |h| < δ with t + h ∈ [0, T] we have

E‖(π2x)(t + h) − (π2x)(t)‖2

≤ 3E
∥∥[C(t + h) − C(t)]φ(0)

∥∥2

+ 3E

∥∥∥∥∥

∫ t

0
[S(t + h − s) − S(t − s)]g(s, xs)dW(s) −

∫ t+h

t

S(t + h − s)g(s, xs)dW(s)

∥∥∥∥∥

2

+ 3E

∥∥∥∥∥

∫ t

0
[S(t + h − s) − S(t − s)]Bu(s)ds −

∫ t+h

t

S(t + h − s)Bu(s)ds

∥∥∥∥∥

2
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≤ 3εE
∥∥φ(0)

∥∥2 + 6 tr(Q)M2
∫ t+h

t

E
∥∥g

(
s, x′(s), xs

)∥∥2
ds + 6M2

∫ t+h

t

E‖Bu(s)‖2ds

+ 6M2
∫ t

0
E‖Bu(s)‖2ds + 6 tr(Q)

∫ t

0
E
∥∥[S(t + h − s) − S(t − s)]g(s, xs)

∥∥2
ds

≤ 4εE‖x0‖2 + 4εE
∥∥g(x)

∥∥2 + 4ε tr(Q)
∫ t

0
E
∥∥g(s, xs)

∥∥2
ds

+ 4 tr(Q)M2
∫ t+h

t

E
∥∥g(s, sx(s))

∥∥2
ds.

(3.24)

Noting that E‖g(s, sx(s))‖2 ≤ hN(s) ∈ L1([0, T]), we see that π2(BN) is equicontinuous on [0,
T].

We next need to prove that π2 maps BN into a precompact set in BN . That is, for every
fixed t ∈ [0, T], the set V (t) = {(π2x)(t) : x ∈ BN} is precompact in BN . It is obvious that
V (0) = {(π2x)(0)} is precompact. Let 0 < t ≤ T be fixed and 0 < ε < t. For x ∈ BN , define

(
πε
2x

)
(t) = C(t)φ(0) +

∫ t−ε

0
S(t − s)g(s, xs)dW(s) +

∫ t−ε

0
S(t − s)Bu(s)ds

= C(t)φ(0) + S(ε)
∫ t−ε

0
S(t − ε − s)g(s, xs)dW(s) + S(ε)

∫ t−ε

0
S(t − ε − s)Bu(s)ds.

(3.25)

Since C(t), S(t), t > 0, are compact, it follows that Vε(t) = {(πε
2x)(t) : x ∈ BN} is precompact

in H for every 0 < ε < t. Moreover, for each x ∈ BN , we have

E
∥∥(π2x)(t) −

(
πε
2x

)
(t)

∥∥2 ≤ 2 tr(Q)M2
∫ t

t−ε
E
∥∥g(s, xs)

∥∥2
ds + 2M2

∫ t

t−ε
E‖Bu(s)‖2ds

≤ ε2M2
[
tr(Q)E

(∥∥ϕ
∥∥2 + 1

)
+U

]
−→ 0 as ε −→ 0+

(3.26)

which means that there are precompact sets arbitrary close to the set V (t). Thus, V (t) is
precompact in BN .

Finally, from the assumptions on g, it is obvious that π2 is continuous. Thus, Arzelá-
Ascoli theorem yields that π2 is compact. Therefore, π is a condensing map on B N .

4. Applications

In this section, we now give an example to illustrate the theory obtained. Considering the
following impulsive neutral second-order stochastic differential equation:

d

[
∂x(t, z)

∂t
+ a(t)x(t, z)

]
=

∂2

∂z2
x(t, z)dt + σ(t, x(t, z))dW(t), t ∈ [0, 1]

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],
∂x(0, z)

∂t
= x1(z), z ∈ [0, π]

Δx(tk)(z) = Ik(x(tk))(z), Δx′(tk)(z) = Ĩk(x(tk))(z), t = tk,

(4.1)
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to rewrite (4.1) into the abstract form of (1.1), let H = L2[0, π], A : H → H be an operator
by Ax = x′′ with domain

D(A) =
{
x ∈ H : x, x′ are absolutely continuous, x′′ ∈ H, x(0) = x(π) = 0

}
. (4.2)

It is well known that A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ∈ R} inH and is given by

C(t)x =
∞∑

n=1

cos(nt)〈x, en〉en, x ∈ H, (4.3)

where en(ξ) =
√
2/π sin(nξ) and i = 1, 2, . . . is the orthogonal set of eigenvalues of A. The

associated sine family {S(t) : t > 0} is compact and is given by

S(t)x =
∞∑

n=1

1
n
sin(nt)〈x, en〉en, x ∈ H. (4.4)

Thus, we can impose some suitable conditions on the above functions to verify the condition
in Theorem 3.2.

5. Conclusions

In this paper, we have studied the controllability of second-order impulsive evolution
equations. Through the Sadovskii fixed point theorem and the theory of strongly continuous
cosine families of operators, we have investigated the sufficient conditions for the
controllability of the system considered. At last, an example is provided to show the
usefulness and effectiveness of proposed controllability results.
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The problems of almost sure (a.s.) stability and a.s. stabilization are investigated for hybrid
stochastic systems (HSSs)with time-varying delays. The different time-varying delays in the drift
part and in the diffusion part are considered. Based on nonnegative semimartingale convergence
theorem, Hölder’s inequality, Doob’s martingale inequality, and Chebyshev’s inequality, some
sufficient conditions are proposed to guarantee that the underlying nonlinear hybrid stochastic
delay systems (HSDSs) are almost surely (a.s.) stable. With these conditions, a.s. stabilization
problem for a class of nonlinear HSDSs is addressed through designing linear state feedback
controllers, which are obtained in terms of the solutions to a set of linearmatrix inequalities (LMIs).
Two numerical simulation examples are given to show the usefulness of the results derived.

1. Introduction

In the past decades, the problems of stability analysis and stabilization synthesis of stochastic
systems have received significant attentions, and many results have been reported; see, for
example [1–7] and the references therein. Commonly, the above problems can be solved not
only in moment sense [8–10] but also in a.s. sense [11, 12]. However, in recent years, much
interest has been focused on a.s. stability problems for stochastic systems; see, for example
[8, 13] and the references therein.

It is well known that a lot of dynamical systems have variable structures subject
to abrupt changes in their parameters, which are usually caused by abrupt phenomena
such as component failures or repairs, changing subsystem interconnections, and abrupt
environmental disturbances. The HSSs, which are regarded as the stochastic systems with
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Markovian switching in this paper, have been used to model the previous phenomena; see,
for example [14–18] and the references therein. The HSSs combine a part of the state x(t) that
takes values in R

n continuously and another part of the state r(t) that is a Markov chain
taking discrete values in a finite space S = {1, 2, . . . ,N}. One of the important issues in
the study of HSSs is the analysis of stability. In particular, it is not necessary for the stable
HSSs to require every subsystem to be stable; in other words, even all the subsystems are
unstable; as the result of Markovian switching, the HSSs may be stable. These reveal that the
Markovian jumps play an important role in the stability analysis of HSSs. Therefore, in the
past few decades, a great deal of literature has appeared on the topic of stability analysis and
stabilization synthesis of HSSs; see, for example [2, 13, 14, 19, 20].

On the other hand, time delays are frequently encountered in a variety of dynamic
systems, such as nuclear reactors, chemical engineering systems, biological systems, and
population dynamics models. They are often a source of instability and poor performance of
systems. So the problems of stability analysis and stabilization synthesis of HSDSs have been
of great importance and interest. The classical efforts can be classified into two categories,
namely, moment sense criteria, see, for example [21–23], and a.s. sense criteria, see, for
example [24, 25]. Among the existing results, in [25], based on the techniques proposed in
[26] which were developed via the results of [11], a.s. stability and stabilization of HSDSs
were studied. In [24], the a.s. stability analysis problem for a general class of HSDSs was
derived from extending the results in [25] to HSSs with mode-dependent interval delays.
However, to the author’s best knowledge, when the different time-varying delays in the
drift part and in the diffusion part are considered, the a.s. stability analysis and stabilization
synthesis problems for nonlinear HSDSs have not been adequately addressed and remain an
interesting and challenging research topic. This situation motivates the present study.

In this paper, we are concerned with a.s. stability analysis and stabilization synthesis
problems for HSDSs. The purpose of stability is to develop conditions such that the
underlying systems are a.s. stable. Following the same idea as in dealing with the stability
problem, linear state feedback controllers are designed such that the special nonlinear or
linear closed-loop systems are a.s. stable. The explicit expressions for the desired state
feedback controllers are given by means of the solutions to a set of LMIs. Two numerical
simulation examples are exploited to verify the effectiveness of the theoretical results. The
main contribution of this paper is mainly twofold: (1) the different time-varying delays in the
drift part and in the diffusion part are considered for nonlinear HSDSs; (2) for a class of nonlinear
HSDSs, the stabilization synthesis problem is investigated in the a.s. sense.

This paper is organized as follows. In Section 2, we formulate some preliminaries.
In Section 3, we investigate the a.s. stability for the hybrid stochastic systems with time-
varying delays. In Section 4, the results of Section 3 are then applied to establish a sufficient
criterion for the stabilization. In Section 5, two examples are discussed for illustration. Finally,
conclusions are drawn in Section 6.

Notation 1. The notation used here is fairly standard unless otherwise specified. Rn and R
n×m

denote, respectively, the n dimensional Euclidean space and the set of all n ×m real matrices,
and letR+ = [0,+∞). (Ω,F, {Ft}t≥0,P) be a complete probability space with a natural filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous, and F0 contains all P-null
sets). If x, y are real numbers, then x ∨ y stands for the maximum of x and y, and x ∧ y the
minimum of x and y. MT represents the transpose of the matrix M. λmax(M) and λmin(M)
denote the largest and smallest eigenvalue ofM, respectively. | · | denotes the Euclidean norm
in R

n. E{·} stands for the mathematical expectation. P{·}means the probability. C([−τ, 0];Rn)
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denotes the family of all continuous R
n-valued function ϕ on [−τ, 0] with the norm |ϕ| =

sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}. Cb
F0
([−τ, 0);Rn) being the family of all F0-measurable bounded

C([−τ, 0);Rn)-value random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. L1(R+;R+) denotes the family
of functions λ : R+ → R+ such that

∫∞
0 λ(t)dt < ∞.

2. Problem Formulation

In this paper, let r(t), t ≥ 0 be a right-continuousMarkov chain on the probability space taking
values in a finite state space S = {1, 2, . . . ,N}with generator Γ = (γij)N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

{
γijΔ + o(Δ) if i /= j,

1 + γiiΔ + o(Δ) if i = j,
(2.1)

whereΔ > 0 and γij ≥ 0 is the transition rate frommode i tomode j if i /= j while γii = −∑j /= i γij .
Assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is known
that almost all sample paths of r(·) are right-continuous step functions with a finite number
of simple jumps in any finite subinterval of R+ := [0,∞).

Let us consider a class of stochastic systems with time-varying delays:

dx(t) = f(x(t), x(t − τ1(t)), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dB(t) (2.2)

with initial data x0 = {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0
([−τ, 0);Rn) and r(0) = r0 ∈ S, where

τ � max{τ1, τ2}, τ1 and τ2 are positive constant and τ1(t) and τ2(t) are nonnegative differential
functions which denote the time-varying delays and satisfy

0 ≤ τ1(t) ≤ τ1, τ̇1(t) ≤ dτ1 < 1,

0 ≤ τ2(t) ≤ τ2, τ̇2(t) ≤ dτ2 < 1.
(2.3)

The nonlinear functions f : R
n × R

n × R+ × S → R
n and g : R

n × R
n × R+ × S → R

n×m satisfy
the local Lipschitz condition in (x, y, z); that is, for any K > 0, there is LK > 0 such that

∣∣f
(
x, y, t, i

) − f
(
x, y, t, i

)∣∣ ∨ ∣∣g(x, z, t, i) − g(x, z, t, i)
∣∣

≤ LK

(|x − x| + ∣∣y − y
∣∣ + |z − z|),

(2.4)

for all |x| ∨ |y| ∨ |z| ∨ |x| ∨ |y| ∨ |z| ≤ K, t ≥ 0 and i ∈ S, and moreover, supt≥0,i∈S{|f(0, 0, t, i)| ∨
|g(0, 0, t, i)| : t ≥ 0, i ∈ S} ≤ K0 with some nonnegative number K0.

Remark 2.1. It should be pointed out that the systems (2.2) can be seen as the specialization
of multiple time-varying delays systems which are of the form

dx(t) = f(x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dt

+ g(x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dB(t).
(2.5)
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But it is easy to see that the results in this paper can be applied to the systems (2.5) by the
similar assumption in (2.4).

Let C2,1(Rn × R+ × S;R+) denote the family of all nonnegative functions V (x, t, i) on
R

n ×R+ × S that are twice continuously differentiable in x and once in t. If V ∈ C2,1(Rn ×R+ ×
S;R+), define an operator L associated with (2.2) from R

n × R
n × R

n × R+ × S to R by

LV
(
x, y, z, t, i

)
= Vt(x, t, i) + Vx(x, t, i)f

(
x, y, t, i

)

+
1
2
trace

[
gT (x, z, t, )Vxx(x, t, i)g(x, z, t, i)

]
+

N∑

j=1

γijV
(
x, t, j

)
.

(2.6)

Remark 2.2. LV is thought as a single notation and is defined on R
n × R

n × R
n × R+ × Swhile

V is defined on R
n × [−τ,∞) × S.

Definition 2.3. The system (2.2) is said to be a.s. stable if for all ξ ∈ Cb
F0
([−τ, 0);Rn) and r0 ∈ S

P

(
lim
t→∞

x(t; ξ, r0) = 0
)

= 1. (2.7)

3. Main Results

Theorem 3.1. Assume that there exist nonnegative functions V ∈ C2,1(Rn × R+ × S;R+), λ ∈
L1(R+;R+), ω1, ω2, ω3 ∈ C(Rn;R+) such that

LV
(
x, y, z, t, i

) ≤ λ(t) − k1ω1(x) + k2ω2
(
y
)
+ k3ω3(z),

∀(x, y, z, t, i) ∈ R
n × R

n × R
n × R+ × S,

(3.1)

ω1(x) > ω2(x) +ω3(x), ∀x /= 0, (3.2)

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) = ∞, (3.3)

where k1, k2 and k3 are positive numbers satisfying k1 ≥ max{k2/(1 − dτ1), k3/(1 − dτ2)}. Then
system (2.2) is almost surely stable.

To prove this theorem, let us present the following lemmas.

Lemma 3.2 (see [24, 25]). If V ∈ C2,1(Rn × R+ × S;R+), then for any t ≥ 0, the generalized Itô’s
formula is given as

dV (x(t), t, r(t)) = LV (x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dt

+ Vx(x(t), t, r(t))g(x(t), x(t − τ2(t)), t, r(t))dB(t)

+
∫

R

[V (x(t), t, r(t) + l(r(t), α)) − V (x(t), t, r(t))] × μ(dt, dα),

(3.4)

where function l(·, ·) and martingale measure μ(·, ·) are defined as, for example, (2.6) and (2.7) in [25].
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Lemma 3.3 (see [27]). Let A1(t) and A2(t) be two continuous adapted increasing processes on
t ≥ 0 with A1(0) = A2(0) = 0 a.s., let M(t) be a real-valued continuous local martingale with
M(0) = a.s., and let ζ be a nonnegative F0-measurable random variable such that Eζ < ∞. Denote
X(t) = ζ +A1(t) −A2(t) +M(t) for all t ≥ 0. If X(t) is nonnegative, then

{
lim
t→∞

A1(t) < ∞
}

⊂
{
lim
t→∞

X(t) < ∞
}
∩
{
lim
t→∞

A2(t) < ∞
}

a.s., (3.5)

where C ⊂ D a.s. means P(C ∩Dc = 0) = 0. In particular, if limt→∞A1(t) < ∞ a.s., then,

lim
t→∞

X(t) < ∞, lim
t→∞

A2(t) < ∞, −∞ < lim
t→∞

M(t) < ∞ a.s.. (3.6)

That is, all of the three processes X(t), A2(t), and M(t) converge to finite random variables
with probability one.

Lemma 3.4 (see [25]). Under the conditions of Theorem 3.1, for any initial data {x(θ) : −τ ≤ θ ≤
0} = ξ ∈ Cb

F0
([−τ, 0);Rn) and r(0) = i0 ∈ S, (2.2) has a unique global solution.

Proof. Fix any initial data ξ, r0, and let β be the bound for ξ. For each integer k ≥ β, define

f (k)(x, y, t, i
)
= f

(
|x| ∧ k

|x| x,

∣∣y
∣∣ ∧ k
∣∣y
∣∣ y, t, i

)
, (3.7)

where we set (|x| ∧ k/|x|)x = 0 when x = 0. Define g(k)(x, z, t, i) similarly. By (2.4), we
can observe that f (k) and g(k) satisfy the global Lipschitz condition and the linear growth
condition. By the known existence-and-uniqueness theorem, there exists a unique global
solution xk(t) on t ∈ [−τ,∞) to the equation

dxk(t) = f (k)(xk(t), xk(t − τ1(t)), t, r(t))dt

+ g(k)(xk(t), xk(t − τ2(t)), t, r(t))dB(t)
(3.8)

with initial data {xk(θ) : −τ ≤ θ ≤ 0} = ξ and r(0) = r0.
Define the stopping time

σk = inf{t ≥ 0 : |xk(t)| ≥ k}, (3.9)

where we set inf ∅ = ∞ as usual. It is easy to show that xk(t) = xk+1(t) if 0 ≤ t ≤ σk, which
implies that σk is increasing in k. Letting σ = limk→∞σk, the property above also enables us
to define x(t) for t ∈ [−τ, σ) as x(t) = xk(t) if −τ ≤ t ≤ σk.
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It is clear that x(t) is a unique solution of (2.2) for t ∈ [−τ, σ). To complete the proof,
we only need to show P{σ = ∞} = 1. By Lemma 3.2, we have that for any t > 0,

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk)) = EV (xk(0), 0, r(0))

+ E

∫ t∧σk

0
L(k)V (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s))ds,

(3.10)

where operator L(k)V is defined similarly as LV was defined by (2.6). By the definitions of
f (k) and g(k), if 0 ≤ s ≤ t ∧ σk, we hence observe that

L(k)V (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s))

= LV (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s)).
(3.11)

By the conditions of (3.1) and (3.2), we derive that

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk))

≤ V (ξ(0), 0, r0) + E

∫ t

0
[−k1ω1(x(s)) + k2ω2(x(s − τ1(s))) + k3ω3(x(s − τ2(s)))]ds

+
∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫ t

0
−k1ω1(x(s))ds + E

∫ t−τ1(t)

−τ1

(
k2

1 − dτ1

)
ω2(s)ds

+ E

∫ t−τ2(t)

−τ2

(
k3

1 − dτ2

)
ω3(s)ds +

∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫0

−τ
k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ

− E

∫ t

0
k1(ω1(s) −ω2(s) −ω3(s))ds +

∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫0

−τ
k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ +

∫ t

0
λ(s)ds.

(3.12)

On the other hand,

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk)) ≥
∫

{σk≤t}
V (xk(t ∧ σk), t ∧ σk, r(t ∧ σk))dP

≥ P{σk ≤ t} inf
|x|≥k,t≥0,i∈S

V (x, t, i).
(3.13)
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This yields

P{σk ≤ t} ≤ V (ξ(0), 0, r0) + E
∫0
−τ k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ +

∫ t
0 λ(s)ds

inf|x|≥k,t≥0,i∈SV (x, t, i)
. (3.14)

Letting k → ∞ and using (3.3), we obtain P(σ ≤ t) = 0. Since t is arbitrary, we must
have P(σ = ∞) = 1. The proof is therefore complete.

Let us now begin to prove our main result.

Proof. Let ω(x) = ω1(x) − ω2(x) − ω3(x) for all x ∈ R
n. Inequality (3.2) implies ω(x) > 0

whenever x /= 0. Fix any initial value ξ and any initial state r0, and for simplicity write
x(t; ξ, r0) = x(t).

By Lemma 3.2 and condition (3.1), we have

V (x(t), t, r(t)) = V (ξ(0), 0, r0) +
∫ t

0
LV (x(s), x(s − τ1(s)), x(s − τ2(s)), s, r(s))ds

+
∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα)

≤ V (ξ(0), 0, r0) +
∫ t

0
λ(s)ds −

∫ t

0
k1ω1(x(s))

+
∫ t

0
[k2ω2(x(s − τ1(s))) + k3ω3(x(s − τ2(s)))]ds

+
∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα)

≤ V (ξ(0), 0, r0) +
∫ t

0
λ(s)ds + k1

∫0

−τ
[ω2(x(s)) +ω3(x(s))]ds

− k1

∫ t

0
ω(x(s))ds +

∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα).

(3.15)



8 Mathematical Problems in Engineering

Since
∫∞
0 λ(s)ds < ∞, applying Lemma 3.3 we obtain that

lim
t→∞

∫ t

0
ω(x(s))ds =

∫∞

0
ω(x(s))ds < ∞ a.s., (3.16)

lim
t→∞

supV (x(t), t, r(t)) < ∞ a.s.. (3.17)

Define β : R+ → R+ as β(r) = inf|x|≥r,0≤t<∞,i∈SV (x, t, i). Then, it is obvious to see from (3.17)
that

sup
0≤t<∞

β(|x(t)|) ≤ sup
0≤t<∞

V (x(t), t, r(t)) < ∞ a.s.. (3.18)

On the other hand, by (3.3)we have sup0≤t<∞|x(t)| < ∞ a.s.. It is easy to find an integer
k0 such that |ξ| < k0 a.s. because of ξ ∈ Cb

F0
([−τ, 0);Rn). Furthermore, for any integer k > k0,

we can define the stopping time

ρk = inf{t ≥ 0 : |x(t)| ≥ k}, (3.19)

where inf ∅ = ∞ as usual. Clearly, ρk → ∞ a.s. as k → ∞. Moreover, for any given ε > 0,
there is kε ≥ k0 such that P{ρk < ∞} ≤ ε for any k ≥ kε.

It is straightforward to see from (3.16) that limt→∞ infω(x(t)) = 0 a.s.; then we claim
that

lim
t→∞

ω(x(t)) = 0 a.s.. (3.20)

The rest of the proof is carried out by contradiction. That is, assuming that (3.20) is
false, we have

P

{
lim
t→∞

supω(x(t)) > 0
}

> 0. (3.21)

Furthermore, there exist ε0 > 0 and ε > ε1 > 0 such that

P
(
σ2j < ∞ : j ∈ Z

) ≥ ε0, (3.22)

where Z is a set of natural numbers and {σj}j≥1 are a sequence of stopping times defined by

σ1 = inf{t ≥ 0 : ω(x(t)) ≥ 2ε1},
σ2j = inf

{
t ≥ σ2j−1 : ω(x(t)) ≤ ε1

}
, j = 1, 2, . . . ,

σ2j+1 = inf
{
t ≥ σ2j : ω(x(t)) ≤ 2ε1

}
, j = 1, 2, . . . .

(3.23)
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By the local Lipschitz condition (2.4), for any given k > 0, there exists Lk > 0 such that

∣∣f
(
x, y, t, i

)∣∣ ∨ ∣∣g(x, z, t, i)∣∣ ≤ Lk, (3.24)

for all |x| ∨ |y| ∨ |z| ≤ k, t ≥ 0 and i ∈ S.
For any j ∈ Z, let T < σ2j − σ2j−1; by Hölder’s inequality and Doob’s martingale

inequality, we compute

E

{
I{σ2j<ρk} sup

0≤t≤T

∣∣x
(
σ2j−1 + t

) − x
(
σ2j−1

)∣∣2
}

= E

⎧
⎨

⎩I{σ2j<ρk} sup
0≤t≤T

∣∣∣∣∣

∫σ2j−1+t

σ2j−1
f(x(s), x(s − τ1(s)), s, r(s))ds

+
∫σ2j−1+t

σ2j−1
g(x(s), x(s − τ2(s)), s, r(s))dB(s)

∣∣∣∣∣

2
⎫
⎬

⎭

≤ 2E

⎧
⎨

⎩I{σ2j<ρk} sup
0≤t≤T

∣∣∣∣∣

∫σ2j−1+t

σ2j−1
f(x(s), x(s − τ1(s)), s, r(s))ds

∣∣∣∣∣

2
⎫
⎬

⎭

+ 8E

{
I{σ2j<ρk} sup

0≤t≤T

∫σ2j−1+t

σ2j−1

∣∣g(x(s), x(s − τ2(s)), s, r(s))
∣∣2ds

}

≤ 2L2
kT(T + 4),

(3.25)

where IA is the indicator of set A.
Since ω(x) is continuous in R

n, it must be uniformly continuous in the closed ball
Sk = {x ∈ R

n : |x| ≤ k}. For any given b > 0, we can choose cb > 0 such that |ω(x) −ω(y)| < b

whenever x, y ∈ Sk and |x − y| < cb. Furthermore, let us choose

ε =
ε0
3
, k ≥ kε, b = ε1. (3.26)

By inequality (3.25) and Chebyshev’s inequality, we have

P
({

ρk ≤ σ2j
})

+ P

(
{
σ2j < ρk

} ∩
{
sup
0≤t≤T

∣∣ω
(
x
(
σ2j−1 + t

)) −ω
(
x
(
σ2j−1

))∣∣ ≥ ε1

})

≤ P
({

ρk ≤ σ2j
} ∩ {σ2j = ∞})

+ P
({

ρk ≤ σ2j
} ∩ {σ2j < ∞})

+ P

(
{
σ2j < ρk

} ∩
{
sup
0≤t≤T

∣∣x
(
σ2j−1 + t

) − x
(
σ2j−1

)∣∣ ≥ cε1

})

≤ 2L2
kT(T + 4)

c2ε1
+ 1 − 2ε.

(3.27)
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Meanwhile, we can also choose T = T(ε, ε1, k) sufficiently small for

2L2
k
T(T + 4)

c2ε1
≤ ε. (3.28)

And then, (3.27) and (3.28) yield

P
({

σ2j < ρk
} ∩Ωj

) ≥ ε, (3.29)

where Ωj = {sup0≤t≤T |ω(x(σ2j−1 + t)) −ω(x(σ2j−1))| < ε1}.
In the following, we can obtain from (3.16) and (3.29) that

∞ > E

∫∞

0
ω(x(t))dt

≥
∞∑

j=1

E

[
I{σ2j<ρk}

∫σ2j

σ2j−1
ω(x(t))dt

]

≥
∞∑

j=1

ε1E
[
I{σ2j<ρk}

(
σ2j − σ2j−1

)]

≥
∞∑

j=1

Tε1P
({

σ2j < ρk
} ∩Ωj

)

≥
∞∑

j=1

Tε1ε =
1
3

∞∑

j=1

Tε0ε1 = ∞.

(3.30)

This is a contradiction. So there is an Ω ∈ Ωwith P(Ω) = 1 such that

lim
t→∞

ω(x(t, ω)) = 0, sup
0≤t<∞

|x(t, ω)| < ∞, ∀ω ∈ Ω. (3.31)

Finally, any fixed ω ∈ Ω, {x(t, ω)}t≥0 is bounded in R
n. By Bolzano-Weierstrass

theorem, there is an increasing sequence{ti}i≥1 such that {x(t, ω)}i≥1 converges to some z ∈ R
n

with |z| < ∞. Since ω(x) > 0 whenever x /= 0, we must have ω(x) = 0 if and only if x = 0. This
implies that the solution of (2.2) is a.s. stable, and the proof is therefore completed.

Remark 3.5. The techniques proposed in Theorem 3.1 can be used to deal with the a.s. stability
problem for other HSDSs, such as the ones in [25]. In a very special case when τ1(t) = τ2(t) = τ
for all t ≥ 0 and i ∈ S, it is easy to see that τ̇1(t) = τ̇2(t) = 0, and Theorem 3.1 is exactly
Theorem 2.1 in [25]. Similarly, Theorem 2.2 in [25] can be generalized to system (2.2) as a
LaSalle-type theorem (see [24, 26]) for HSSs with multiple time-varying delays.
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4. Almost Sure Stabilization of Nonlinear HSDSs

Consider the following nonlinear HSDSs:

dx(t) =
[
A(r(t))x(t) +Ad(r(t))x(t − τ1(t)) + f(x(t), x(t − τ1(t)), t, r(t)) + Bu(r(t))u(t)

]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t),
(4.1)

where Bu(r(t)) are known constant matrices with appropriate dimensions and B(t) represents
a scalar Brownian motion (Wiener process) on (Ω,F, {Ft}t≥0,P) that is independent of
Markov chain r(t) and satisfies:

E{dB(t)} = 0, E
{
dB(t)2

}
= dt, (4.2)

f and g are both functions from R
n ×R

n ×R+ ×S to R
n which satisfy local Lipschitz condition

and the following assumptions:

∣∣f(x(t), x(t − τ1(t)), t, r(t))
∣∣2

≤ xT (t)F1(r(t))x(t) + xT (t − τ1(t))F2(r(t))x(t − τ1(t)),
∣∣g(x(t), x(t − τ2(t)), t, r(t))

∣∣2

≤ xT (t)G1(r(t))x(t) + xT (t − τ2(t))G2(r(t))x(t − τ2(t)),

(4.3)

where, for each r(t) = j ∈ S, A(r(t)), Ad(r(t)) are known constant matrices with appropriate
dimensions, and Fi(r(t)) ∈ R

n×n, Gi(r(t)) ∈ R
n×n(i = 1, 2) are positive definite matrices.

In the sequel, we denote the matrix associated with the ith mode by

Γi � Γ(r(t) = i), (4.4)

where the matrix Γ could be A, Ad, Bu, F1, F2, G1, G2, G, or Gd.
As the given HSDSs (4.1) is nonlinear, we here consider the resulting systems can be

stabilized only by linear state feedback controller which is of the form

u(t) = K(r(t))x(t), (4.5)

where K(r(t)) are controller parameters to be designed.
Under control law (4.5), the closed-loop system can be given as follow:

dx(t) =
[
A(r(t))x(t) +Ad(r(t))x(t − τ1(t)) + f(x(t), x(t − τ1(t)), t, r(t))

+ Bu(r(t))K(r(t))x(t)
]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t).

(4.6)
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The stabilization problem is therefore to design matrices K(r(t)) for the closed-loop system
(4.6) to be a.s. stable. In order to guarantee the solvability of K(r(t)), the following theorem
is given.

Theorem 4.1. If there exist sequences of scalars ε1i > 0, ε2i > 0, δi > 0, positive definite matrices
Xi > 0 and matrices Yi such that the following LMIs

⎡

⎣
Mi1 Mi2 Mi4

∗ −Mi3 0
∗ ∗ −Mi5

⎤

⎦ < 0 ∀i, j ∈ S, (4.7)

Xi ≥ δiI (4.8)

hold, where

Mi1 = AiXi +XiA
T
i + BuiYi + YT

i B
T
ui + ε1iAdiA

T
di + ε2iI + γiiXi,

Mi2 = [Xi,Xi, Xi, Xi, Xi],

Mi3 = diag
(
ε2iF

−1
1i , c1ε2jF

−1
2j , δiG

−1
1i , c2δiG

−1
2j , c1ε1j I

)
,

Mi4 =
[√

γi1Xi, . . . ,
√
γi(i−1)Xi,

√
γi(i+1)Xi, . . . ,

√
γiNXi

]
,

Mi5 = diag(X1, . . . , Xi−1, Xi+1, . . . , XN),

c1 = 1 − dτ1 , c2 = 1 − dτ2 ,

(4.9)

then the controlled system (4.6) is a.s. stable and the state feedback controller determined by

u(t) = Kix(t), Ki = YiX
−1
i , i ∈ S. (4.10)

Proof. Let Pi = X−1
i and V (x, i) = xTPix +

∫ t
t−τ1(t) x

T (s)Q1x(s)ds +
∫ t
t−τ2(t) x

T (s)Q2x(s)ds.
The operator LV : R

n × R
n × R

n × S → R has the form

LV
(
x, y, z, i

)
= xTQ1x − (1 − τ̇1(t))yTQ1y + xTQ2x − (1 − τ̇2(t))zTQ2z

+ 2xTPi

(
Aix +Adiy + f

(
x, y, i

)
+ BuiKix

)

+ gT (x, z, i)Pig(x, z, i) +
N∑

j=1

γijx
TPjx
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≤ xT

⎡

⎣Q1 +Q2 + PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi

+ ε2iP
2
i +

N∑

j=1

γijPj + ε−12i F1i + δ−1
i G1i

⎤

⎦x

+ yT
[
ε−11i I + ε−12i F2i − (1 − dτ1)Q1

]
y + zT

[
δ−1
i G2i − (1 − dτ2)Q2

]
z.

(4.11)

So

LV
(
x, y, z, i

) ≤ −ω1i(x) + (1 − dτ1)ω2i
(
y
)
+ (1 − dτ2)ω3i(z), (4.12)

where

ω1i(x) = xT

[
−Q1 −Q2 − PiAi −AT

i Pi − PiBuiKi − (BuiKi)TPi − ε1iPiAdiA
T
diPi

− ε2iP
2
i − ε−12i F1i − δ−1

i G1i −
N∑

k=1

γikPk

]
x,

ω2i(x) = xT
[
c−11 ε−11i I + c−11 ε−12i F2i −Q1

]
x,

ω3i(x) = xT
[
c−12 δ−1

i G2i −Q2

]
x.

(4.13)

By assumption 1, it is easy to see that we can choose Q1 and Q2 such that ω2i(x) ≥
0, ω3i(x) ≥ 0 for all x ∈ R

n, i ∈ S.
Noting that Pi = X−1

i and Yi = KiXi, we can pre- and postmultiply (4.7) by
diag(Pi, . . . , Pi), and using Schur complements, we can obtain

Φij < 0, (4.14)

where

Φij = PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi + ε2iP

2
i + δ−1

i G1i

+ ε−12i F1i +
N∑

k=1

γikPk + c−11 ε−11j I + c−11 ε−12j F2j + c−12 δjG2j .
(4.15)

This implies

ω1i(x) > ω2j(x) +ω3j(x) ≥ 0, ∀x /= 0. (4.16)

Let ω1(x) = mini∈Sω1i(x), ω2(x) = maxi∈Sω2i(x), and ω3(x) = maxi∈Sω3i(x).
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Clearly

ω1(x) > ω2(x) +ω3(x) ≥ 0, ∀x /= 0. (4.17)

Moreover, by (4.24) we further obtain

LV
(
x, y, z, i

) ≤ −ω1(x) + (1 − dτ1)ω2
(
y
)
+ (1 − dτ2)ω3(z). (4.18)

The required assertion now follows from Theorem 3.1.

If the systems (4.6) reduces to linear HSDSs of the form

dx(t) = [A(r(t))x(t) +Ad(r(t))x(t − τ1(t))

+ Bu(r(t))K(r(t))x(t)]dt + [G(r(t))x(t) +Gd(r(t))x(t − τ2(t))]dB(t),
(4.19)

where A(r(t)), Ad(r(t)), Bu(r(t)), G(r(t)), and Gd(r(t)) are known constant matrices with
appropriate dimensions.

Then, the following corollary follows directly from Theorem 4.1.

Corollary 4.2. If there exist sequences of scalars ε1i > 0, ε2i > 0, positive definite matrices Xi > 0
and matrices Yi such that the following LMIs

⎡

⎣
Mi1 Mi2 Mi4

∗ −Mi3 0
∗ ∗ −Mi5

⎤

⎦ < 0 ∀i, j ∈ S (4.20)

hold, where

Mi1 = AiXi +XiA
T
i + BuiYi + YT

i B
T
ui + ε1iAdiA

T
di + γiiXi,

Mi2 =
[√

2XiG
T
i , Xj , Xj ,

√
2XT

j Gdj

]
,

Mi3 = diag
(
Xi, c1ε1j I, ε2j I, Xj

)
,

Mi4 =
[√

γi1Xi, . . . ,
√
γi(i−1)Xi,

√
γi(i+1)Xi, . . . ,

√
γiNXi

]
,

Mi5 = diag(X1, . . . , Xi−1, Xi+1, . . . , XN),

c1 = 1 − dτ1 , c2 = 1 − dτ2 ,

(4.21)

then the controlled system (4.19) is a.s. stable and the state feedback controller determined by

u(t) = Kix(t), Ki = YiX
−1
i , i ∈ S. (4.22)
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Proof. Let Pi = X−1
i and V (x, i) = xTPix +

∫ t
t−τ1(t) x

T (s)Q1x(s)ds +
∫ t
t−τ2(t) x

T (s)Q2x(s)ds.
The operator LV : R

n × R
n × R

n × S → R has the form

LV
(
x, y, z, i

)
= xTQ1x − (1 − τ̇1(t))yTQ1y + xTQ2x − (1 − τ̇2(t))zTQ2z

+ 2xTPi

[
Aix +Adiy + BuiKix

]
+ [Gix +Gdiz]TPi[Gix +Gdiz]

+
N∑

k=1

γikx
TPkx

≤ xT

[
Q1 +Q2 + PiAi +AT

i Pi + PiBuiKi + (BuiKi)TPi

+ ε1iPiAdiA
T
diPi +

N∑

k=1

γikPk + 2GT
i PiGi

]
x

+ yT
[
ε−11i I − (1 − dτ1)Q1

]
y + zT

[
ε−12i I + 2GT

diPiGdi − (1 − dτ2)Q2

]
z.

(4.23)

So

LV
(
x, y, z, i

) ≤ −ω1i(x) + (1 − dτ1)ω2i
(
y
)
+ (1 − dτ2)ω3i(z), (4.24)

where

ω1i(x) = xT

[
−Q1 −Q2 − PiAi −AT

i Pi − PiBuiKi − (BuiKi)TPi

− ε1iPiAdiA
T
diPi −

N∑

k=1

γikPk − 2GT
i PiGi

]
x,

ω2i(x) = xT
[
c−11 ε−11i I −Q1

]
x,

ω3i(x) = xT
[
ε−12i I + 2c−12 GT

diPiGdi −Q2

]
x.

(4.25)

It is easy to see that we can choose Q1 and Q2 such that ω2i(x) ≥ 0, ω3i(x) ≥ 0 for all
x ∈ R

n, i ∈ S.
Noting that Pi = X−1

i and Yi = KiXi, we can pre- and postmultiply (4.7) by
diag(Pi, . . . , Pi), and using Schur complements, we can obtain

Φij < 0, (4.26)
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where

Φij = PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi

+
N∑

k=1

γikPk + 2GT
i PiGi + c−11 ε−11j I + ε−12j I + 2c−12 GT

djPjGdj .
(4.27)

This implies

ω1i(x) > ω2j(x) +ω3j(x) ≥ 0, ∀x /= 0. (4.28)

Let ω1(x) = mini∈Sω1i(x), ω2(x) = maxi∈Sω2i(x), and ω3(x) = maxi∈Sω3i(x).
Clearly

ω1(x) > ω2(x) +ω3(x) ≥ 0, ∀x /= 0. (4.29)

Moreover, by (4.24) we further obtain

LV
(
x, y, z, i

) ≤ −ω1(x) + (1 − dτ1)ω2
(
y
)
+ (1 − dτ2)ω3(z). (4.30)

The required assertion now follows from Theorem 3.1.

5. Examples

In this section we will provide two examples to illustrate our results. In the following
examples we assume that B(t) is a scalar Brownian motion, γ(t) is a right-continuous Markov
chain independent of B(t) and taking values in S = {1, 2}, and the step size Δ = 0.0001. By
using the YALMIP toolbox, simulations results are shown in Figures 1–3. Figure 1 gives a
portion of state γ(t) of Example 5.1 for clear display. Figure 2 simulates the numerical results
for Example 5.1. The simulation results have illustrated our theoretical analysis. Following
from Theorem 4.1, the simulation results for Example 5.2 can be founded in Figure 3, which
verify our desired results.

Example 5.1. Let

Γ =
(
γij
)
2 × 2 =

(−0.8 0.8
0.3 −0.3

)
. (5.1)

Consider scalar nonlinear HSDSs:

dx(t) = f(x(t), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dB(t), (5.2)
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2

1

0 0.01 0.02 0.03

t

Figure 1: The state γ(t) of Example 5.1.

t

7

6

5

4

3

2

1

0

−1
0 0.2 0.4 0.6 0.8

X
(t
)

Figure 2: The state evolution of Example 5.1.

where

f(x, t, 1) = −6 5
√
x,

g(x, z, t, 1) = − 5
√
x3 + 2 5

√
z3,

f(x, t, 2) =
3

2 3
√
1 + t

− 4 5
√
x,

g(x, z, t, 2) =
5
√
x3 cos(t) +

5
4

5
√
z3 sin(t),

(5.3)

τ2(t) = 0.3 + 0.3 sin(t).
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The controlled states
The uncontrolled states

t

X
(t
)

1.2

1

0.8

0.6

0.4

0.2

0

−0.2
0 0.2 0.4 0.6 0.8 1

Figure 3: The state evolution of Example 5.2.

To examine the stability of system (5.2), we consider a Lyapunov function candidate
V : R × S → R+ as V (x, i) = x2 for i = 1, 2. Then we have

LV (x, z, t, 1) ≤ −10x6/5 + 4z6/5,

LV (x, z, t, 2) ≤ 3x
3
√
1 + t

− 6x6/5 +
25
8
z6/5.

(5.4)

By the elementary inequality αcβ1−c ≤ cα + (1 − c)β for all α ≥ 0, β ≥ 0, and 0 ≤ c ≤ 1,
we see that inequality

3x
3
√
1 + t

=
(
6
5
κx6/5

)6/5
(
6
(
κ

5

)−5
(1 + t)−2

)1/6

≤ κx6/5 +
κ1

(1 + t)2
(5.5)

holds for any κ > 0, where κ1 = (κ/5)−5.
From inequalities (5.4)–(5.5), we have

LV (x, z, t, i) ≤ κ1

(1 + t)2
− (6 − κ)x6/5 + 4z6/5, (5.6)

for all t ≥ 0 and i ∈ S. By τ2(t) = 0.3 + 0.3 sin(t), it is easy to see that dτ2(t) < 1/3; then, we
choose constant κ such that 0 < κ < (2 − 6dτ2)/(1 − dτ2), and hence conditions of Theorem 3.1
are satisfied.
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Example 5.2. Let

Γ =
(
γij
)
2 × 2 =

(−0.6 0.6
0.5 −0.5

)
. (5.7)

Consider scalar nonlinear closed-loop HSDSs:

dx(t) =
[
f(x(t), x(t − τ1(t)), t, r(t)) + B(r(t))K(r(t))x(t)

]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t)
(5.8)

with

f
(
x, y, t, 1

)
= x +

1
2
y +

2x3

(|x| + 1)2
+ y sin(t),

g(x, z, t, 1) = x cos(t) +
z3

(|z| + 1)2
,

(5.9)

f
(
x, y, t, 2

)
= −2x + y +

x3

(|x| + 2)2
+

y3

(|y| + 1
)2 ,

g(x, z, t, 2) = 2x sin(t) +
x3

2(|x| + 1)2
+

z3

(|z| + 2)2
,

(5.10)

τ1(t) = 0.1 + 0.1 sin(t), τ2(t) = 0.2 + 0.2 sin(2t), B1 = 2, B2 = −3,A1 = 1,A2 = 2, Ad1 = 1/2,
Ad2 = 1, F11 = 8, F12 = G11 = 2, G12 = F21 = F22 = 2, G21 = 1/2, G22 = 2.

By Theorem 4.1 we can find the feasible solution K1 = −3, K2 = 2 for the a.s. stability.

6. Conclusions

In this paper, we have investigated the a.s. stability analysis and stabilization synthesis
problems for nonlinear HSDSs. Some sufficient conditions are given to guarantee the
resulting systems to be a.s. stable. Under these conditions, a.s. stabilization problem for a
class of nonlinear HSDSs is solved in terms of the solutions to a set of LMIs. Finally, the
results of this paper have been demonstrated by two numerical simulation examples.
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The error bound in probability between the approximate maximum likelihood estimator
(AMLE) and the continuous maximum likelihood estimator (MLE) is investigated for nonlinear
nonhomogenous stochastic system with unknown parameter. The rates of convergence of the
approximations for Itô and ordinary integral are introduced under some regular assumptions.
Based on these results, the in probability rate of convergence of the approximate log-
likelihood function to the true continuous log-likelihood function is studied for the nonlinear
nonhomogenous stochastic system involving unknown parameter. Finally, the main result which
gives the error bound in probability between the ALME and the continuous MLE is established.

1. Introduction

It is now well known that the parameter estimation is one of the foundational problems
in stochastic differential equations which are used to model practical systems that with
random influences. Since 1962, Arato et al. who first applied parameter estimation to a
geophysical problem in [1]. Various parameter estimation methods have been developed for
many advanced models with an increasing number of application to physical, biological and
financial systems. Over the past few decades, a lot of effective approaches have proposed
in this research area, see for example, [2–5]. In particular, maximum likelihood estimation
(MLE) gives a unified approach to estimation, which is well defined in the case of the
normal distribution and many other statistical models. Therefore the MLE technique has
been widely used for the parameter estimation problem of stochastic systems [6]. Byes
estimation (BE), which is a decision rule that minimizes the posterior expected value of a
loss function, has been developed in [7]. Since some inconvenience is encountered in the
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real-time application that location and scale parameters are not uniquely determined, M-
estimator has been studied toward the theory of robust estimation [8]. Other widely used
parameter estimationmethods can be generally categorized as least squares estimation (LSE),
maximum probability estimation (MPE), minimum distance estimation (MDE), minimum
contrast estimation (MCE), and filtering method for parameter estimation, see for example,
[9–18] and the references therein.

In reality, nonhomogenous stochastic differential equations are useful for modeling
term structure of interest rates in finance and other fields. A large number of results have
been published in the literature on a variety of research topics including strong or weak
consistency and asymptotic efficiency as well as asymptotic normality on various parameter
estimators of nonhomogenous stochastic systems [19, 20]. On the other hand, recognizing
that nonlinearity is commonly encountered in engineering practice, the parameter estimation
problem for nonlinear nonhomogenous stochastic systems deserves more research attention
from both the theoretical and practical viewpoints and, accordingly, some promising results
have been reported. For example, weak consistency, asymptotic normality, and convergence
of moments of MLE and BE of the drift parameter in the nonlinear nonhomogenous Itô
stochastic differential equations having nonstationary solutions have been studied in [21] for
the small noise asymptotic case. In [22], the martingale approach but under some stronger
regularity conditions has been used to study strong consistency and asymptotic normality
for nonlinear nonhomogenous stochastic system in the large sample case. It should be
pointed out that, so far, many parameter estimation methods and corresponding probability
properties have been widely investigated for nonlinear nonhomogenous Itô stochastic
differential equation with constant diffusion. Unfortunately, the parameter problem of
general nonlinear nonhomogenous system has gained much less research attention despite
its potential in practical application.

The stochastic processes which can be observed continuously over a specified time
period are first used to model real system for the most part [23, 24]. In practice, it is obviously
impossible to observe a process continuously over any given time period, due to the
limitations on the precision of the measuring instrument or to unavailability of observations
at every time point, and so forth. In other words, stochastic inference based on discrete
observations is of major importance in dealing with practical problems. Hence, parameter
estimation problem based on discrete observations has naturally become a hot topic in recent
years [25, 26]. An approximation method has been proposed based on the discretization of
the continuous time likelihood function in [27] for linear stochastic differential equation. A
numerical approximate likelihood method has been developed in [28] based on iterations of
the Gaussian transition densities emanating from the Euler scheme. [29] has used a specific
transformation of the diffusion to obtain accurate theoretical approximations based on the
Hermite function expansions and studied the asymptotic behavior of the approximate MLE.
Up to now, although some parameter estimation problems have been established based on
discretization scheme, how close are the discrete parameter estimator to the true continuous
one for general nonlinear nonhomogenous stochastic system has not been fully studied due
probably to the mathematical complexity, and this situation motivates our present paper.

Summarizing the above discussions, in this paper, we are motivated to study the
rate of convergence of the approximate maximum likelihood estimator (AMLE) to the true
continuous MLE for a class of general nonlinear nonhomogenous stochastic system with
unknown parameter. The main contributions of this paper lie in the following aspects. (1)
The Itô type approximation for the stochastic integral is introduced to obtain an approximate log-
likelihood function. (2) The rate of convergence of the approximation is investigated for Itô type
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integral. (3) The in probability rate of convergence of the approximate log-likelihood function is
established for the nonlinear nonhomogenous stochastic system involving unknown parameter. (4)
The error bound in probability of the ALME and the LME is studied for the nonlinear nonhomogenous
stochastic system. The rest of this paper is outlined as follows. In Section 2, the approximate
log-likelihood function is proposed and the problem under consideration is formulated. In
Section 3, several lemmas are given to analyze the rates of convergence of the approximations
for Itô and ordinary integral; furthermore, the main results are discussed to analyze the rate
of convergence of the approximate log-likelihood function and the error bound of the ALME
and the LME. Finally, we conclude the paper in Section 4.

2. Problem Formulation and Preliminaries

Consider the real valued diffusion process Xt, t ≥ 0 on (Ω,F, {Ft}t≥0,P) satisfying the
following stochastic differential equation:

dXt = θf(t, Xt)dt + g(t, Xt)dWt, (2.1)

where Wt, t ≥ 0 is a standard Wiener process adapted to Ft, t ≥ 0 such that for 0 ≤ s < t,
Wt − Ws is independent of Fs, θ ∈ Θ open in R is the unknown parameter to be estimated.
Let θ0 be the true value of the parameter θ.

Throughout this paper C is a generic constant, we use following notations:

fx =
∂f

∂x
, ft =

∂f

∂t
, fxx =

∂2f

∂x2
, ftt =

∂2f

∂t2
, ftx =

∂2f

∂t∂x
. (2.2)

We assume the following condition:

(A1) f(·, ·) and g(·, ·) are Lipschitz continuous inXt ∈ R uniformly in t ∈ R+, that is, there
exists a constant K ≥ 0 such that

∣∣f(t, X1) − f(t, X2)
∣∣2 ∨ ∣∣g(t, X1) − g(t, X2)

∣∣2 ≤ K|X1 −X2|2, (2.3)

for any t ∈ R+ and X1, X2 ∈ R.

(A2) f(·, ·) and g(·, ·) satisfy linear growth condition, that is, there exists a constantK ≥ 0
such that

∣∣f(t, x)
∣∣2 ∨ ∣∣g(t, x)∣∣2 ≤ K

(
1 + |x|2

)
, (2.4)

for any t ∈ R+ and x ∈ R.

(A3)

inf
{t,Xt}

g2(t, Xt) > 0. (2.5)
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(A4)

∀p ≥ 0, sup
{t,Xt}

E
∣∣f(t, Xt)

∣∣p < ∞, sup
{t,Xt}

E
∣∣g(t, Xt)

∣∣p < ∞. (2.6)

(A5)j f(·, ·) and g(·, ·) are continuously differentiable with respect to Xt up to order j ≥ 1
and

sup
0≤t≤T

E
∣∣fx(t, Xt)

∣∣8 < ∞, sup
0≤t≤T

E
∣∣gx(t, Xt)

∣∣16 < ∞,

sup
0≤t≤T

E
∣∣fxx(t, Xt)

∣∣8 < ∞, sup
0≤t≤T

E
∣∣gxx(t, Xt)

∣∣16 < ∞.
(2.7)

(A6)k f(·, ·) and g(·, ·) are continuously differentiable with respect to t up to order k ≥ 1
and

sup
0≤t≤T

E
∣∣ft(t, Xt)

∣∣4 < ∞, sup
0≤t≤T

E
∣∣gt(t, Xt)

∣∣8 < ∞,

sup
0≤t≤T

E
∣∣ftt(t, Xt)

∣∣4 < ∞, sup
0≤t≤T

E
∣∣gtt(t, Xt)

∣∣4 < ∞.
(2.8)

(A7)

sup
0≤t≤T

E
∣∣ftx(t, Xt)

∣∣8 < ∞, sup
0≤t≤T

E
∣∣gtx(t, Xt)

∣∣8 < ∞. (2.9)

(A8)

E|X0|8 < ∞. (2.10)

Remark 2.1. As (A1) and (A2) are established, it is well known that stochastic differential
equation (2.1) has a unique solution. Please see the details in [30].

DenoteXT
0 = {Xt, 0 ≤ t ≤ T}. Let PT

θ be the measure generated on the space (CT , BT ) of
the continuous functions on [0, T] with the associated Borel σ-algebra BT generated under
the supremum norm by the process XT

0 and PT
0 be the standard Wiener measure. Under

assumptions (A3) and (A4), the measure PT
θ
and PT

0 are equivalent and the Randon-Nikodym
derivative of PT

θ with respect to PT
0 is given by

dPT
θ

dPT
0

= exp

{
θ

∫T

0

f(t, Xt)
g2(t, Xt)

dXt − θ2

2

∫T

0

f2(t, Xt)
g2(t, Xt)

dt

}
, (2.11)
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along the sample path XT
0 . Let

LT (θ) = log
dPT

θ

dPT
0

= θ

∫T

0

f(t, Xt)
g2(t, Xt)

dXt − θ2

2

∫T

0

f2(t, Xt)
g2(t, Xt)

dt (2.12)

be the log-likelihood function. The maximum likelihood estimate (MLE) of θ is defined as

θT = argmax
θ∈Θ

LT (θ)

{∫T

0

f(t, Xt)
g2(t, Xt)

dXt

}{∫T

0

f2(t, Xt)
g2(t, Xt)

dt

}−1
. (2.13)

Now, we study the approximation of the MLE θT when stochastic Xt is observed at the
discrete-time points 0 = t0 < t1 < · · · < tn = T with ti − ih, i = 0, 1, 2, . . . , n such that h → 0
as n → ∞. Itô approximation of the stochastic integral and rectangular approximation of the
ordinary integral in the log-likelihood (2.12) yields the approximate log-likelihood function:

Ln,T (θ) = θ

{
n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Xti −Xti−1)

}
− θ2

2

{
n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1)

}
. (2.14)

The corresponding approximate maximum likelihood estimator (AMLE) is established as
follow:

θn,T =

{
n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Xti −Xti−1)

}{
n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1)

}−1
. (2.15)

The main purpose of this paper is to study the rate of the convergence of the
approximate log-likelihood functions and furthermore analyze the error bound in probability
between the AMLE and the continuous MLE.

3. Main Results

Firstly, let us give the following lemmas which will be used in the proof of our main results.

Lemma 3.1. Under the assumptions (A1)–(A4), (A5)2, and (A6)1, one has

E

∣∣∣∣∣

n∑

i=1

f2(ti−1, Xi−1)
g2(ti−1, Xi−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

≤ C
T3

n2
. (3.1)
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Proof. By Itô formula we can derive that for t ∈ [0, T],

f2(t, Xt)
g2(t, Xt)

− f2(ti−1, Xi−1)
g2(ti−1, Xi−1)

=
∫ t

ti−1

2f(u,Xu)fu(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gu(u,Xu)
g4(u,Xu)

du

+
∫ t

ti−1

2f(u,Xu)fx(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gx(u,Xu)
g4(u,Xu)

θf(u,Xu)du

+
∫ t

ti−1

[
f2
x(u,Xu)g2(u,Xu)+3f2(u,Xu)g2

x(u,Xu)−4f(u,Xu)g(u,Xu)fx(u,Xu)gx(u,Xu)
]
du

+
∫ t

ti−1

[
f(u,Xu)g2(u,Xu)fxx(u,Xu) − f2(u,Xu)g(u,Xu)gxx(u,Xu)

]
du

+
∫ t

ti−1

2f(u,Xu)fx(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gx(u,Xu)
g4(u,Xu)

dWu

�
∫ t

ti−1
F1(u,Xu)du +

∫ t

ti−1
F2(u,Xu)dWu,

(3.2)

where

F1(u,Xu) = F11(u,Xu) + F12(u,Xu) + F13(u,Xu) + F14(u,Xu),

F11(u,Xu) =
2f(u,Xu)fu(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gu(u,Xu)

g4(u,Xu)
,

F12(u,Xu) =
2f(u,Xu)fx(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gx(u,Xu)

g4(u,Xu)
θf(u,Xu),

F13(u,Xu) = f2
x(u,Xu)g2(u,Xu) + 3f2(u,Xu)g2

x(u,Xu) − 4f(u,Xu)g(u,Xu)fx(u,Xu)gx(u,Xu),

F14(u,Xu) = f(u,Xu)g2(u,Xu)fxx(u,Xu) − f2(u,Xu)g(u,Xu)gxx(u,Xu).
(3.3)
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For F11(u,Xu) and F13(u,Xu), by assumption (A3), (A4), (A5)2, (A6)1, and Hölder’s
inequality, one has

E

(∫ t

ti−1
F11(u,Xu)

)2

= E

(∫ t

ti−1

2f(u,Xu)fu(u,Xu)g2(u,Xu) − 2f2(u,Xu)g(u,Xu)gu(u,Xu)
g4(u,Xu)

du

)2

≤ CE

∫ t

ti−1
f2(u,Xu)du + CE

∫ t

ti−1
f2
u(u,Xu)du + CE

∫ t

ti−1
g2
u(u,Xu)du

≤ C,

E

(∫ t

ti−1
F13(u,Xu)

)2

= E

(∫ t

ti−1
f2
x(u,Xu)g2(u,Xu) + 3f2(u,Xu)g2

x(u,Xu)

−4f(u,Xu)g(u,Xu)fx(u,Xu)gx(u,Xu)du

)2

≤ CE

∫ t

ti−1
f4(u,Xu)du + CE

∫ t

ti−1
g4(u,Xu)du + CE

∫ t

ti−1
f4
x(u,Xu)du + CE

∫ t

ti−1
g4
x(u,Xu)du

≤ C.

(3.4)

Similarly, we have

E

(∫ t

ti−1
F12(u,Xu)

)2

≤ C, E

(∫ t

ti−1
F14(u,Xu)

)2

≤ C. (3.5)

This means

E

(∫ t

ti−1
F1(u,Xu)

)2

≤ C. (3.6)
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Hence, it follows Cr inequality that

E

∣∣∣∣∣

n∑

i=1

f2(ti−1, Xi−1)
g2(ti−1, Xi−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

= E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

[
f2(ti−1, Xi−1)
g2(ti−1, Xi−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

]
dt

∣∣∣∣∣

2

= E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

[∫ t

ti−1
F1(u,Xu)du +

∫ t

ti−1
F2(u,Xu)dWu

]
dt

∣∣∣∣∣

2

≤ 2E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

∫ t

ti−1
F1(u,Xu)dudt

∣∣∣∣∣

2

+ 2E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

∫ t

ti−1
F2(u,Xu)dWudt

∣∣∣∣∣

2

� 2G1 + 2G2.

(3.7)

By assumptions (A3), (A4), (A5)2, and (A6)1, we obtain

G1 = E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

∫ t

ti−1
F1(u,Xu)dudt

∣∣∣∣∣

2

≤ E

n∑

i=1

(∫ ti

ti−1

∫ t

ti−1
F1(u,Xu)dudt

)2

+ E

n∑

1=i /= j

(∫ ti

ti−1

∫ t

ti−1
F1(u,Xu)dudt

)(∫ tj

tj−1

∫ t

tj−1
F1(u,Xu)dudt

)

≤ E

n∑

i=1

(ti − ti−1)
∫ ti

ti−1

∣∣∣∣∣

∫ t

ti−1
F1(u,Xu)dudt

∣∣∣∣∣

2

dt

+
n∑

1=i /= j

⎧
⎨

⎩E

(∫ ti

ti−1

∫ t

ti−1
F1(u,Xu)dudt

)2

E

(∫ tj

tj−1

∫ t

tj−1
F1(u,Xu)dudt

)2
⎫
⎬

⎭

1/2

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1
E

∣∣∣∣∣

∫ t

ti−1
F1(u,Xu)dudt

∣∣∣∣∣

2

dt

+
n∑

1=i /= j

⎧
⎨

⎩(ti−ti−1)
∫ ti

ti−1
E

(∫ t

ti−1
F1(u,Xu)du

)2

dt
(
tj−tj−1

) ∫ tj

tj−1
E

(∫ t

tj−1
F1(u,Xu)du

)2

dt

⎫
⎬

⎭

1/2

≤ C
n∑

i=1

(ti − ti−1)3 + C
n∑

1=i /= j

{
(ti − ti−1)3

(
tj − tj−1

)3}1/2 ≤ C
T3

n2
.

(3.8)



Mathematical Problems in Engineering 9

Due to the orthogonality, Itô isomorphism, the Cauchy-Schwarz inequality, assumption (A3),
(A4), and (A5)1, we get

G2 = E

∣∣∣∣∣

n∑

i=1

∫ ti

ti−1

∫ t

ti−1
F2(u,Xu)dWudt

∣∣∣∣∣

2

≤ E

n∑

i=1

(∫ ti

ti−1

∫ t

ti−1
F2(u,Xu)dWudt

)2

+
n∑

1=i /= j

E

(∫ ti

ti−1

∫ t

ti−1
F2(u,Xu)dWudt

)(∫ tj

tj−1

∫ t

tj−1
F2(u,Xu)dWudt

)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1
E

∣∣∣∣∣

∫ t

ti−1
F2(u,Xu)dWudt

∣∣∣∣∣

2

dt

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

∫ t

ti−1
E|F2(u,Xu)|2dudt

≤ C
n∑

i=1

(ti − ti−1)
∫ ti

ti−1
(t − ti−1)dt

≤ C
n∑

i=1

(ti − ti−1)3

≤ C
T3

n2
.

(3.9)

Obviously, it follows from bounds for G1 and G2 that

E

∣∣∣∣∣

n∑

i=1

f2(ti−1, Xi−1)
g2(ti−1, Xi−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

≤ C
T3

n2
. (3.10)

The proof is now complete.

Next, we will go on to analyze the rate of convergence of the approximations for Itô
integral whose result will be used in the following theorems.

Lemma 3.2. Under the assumptions (A1)–(A4), (A5)2, (A6)2, (A7), and (A8), one has

E

∣∣∣∣∣

n∑

i=1

f(ti−1, Xti−1)
g(ti−1, Xti−1)

(Wti −Wti−1) −
∫T

0

f(t, Xt)
g(t, Xt)

dWt

∣∣∣∣∣

2

≤ C
T3

n2
. (3.11)
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Proof. Let πn be the partition πn = 0 = t0 < t1 < · · · < tn = T, ti = ih, i = 0, 1, . . . , n such that
h → 0. Define S and Sn as

S =
∫T

0

f2(t, Xt)
g2(t, Xt)

dWt,

Sn =
n∑

i=1

f(ti−1, Xti−1)
g(ti−1, Xti−1)

(Wti −Wti−1).

(3.12)

Let π ′
n be a partition which is finer than πn, obtained by choosing the mid point t̂i−1 from each

of the interval ti−1 < t̂i−1 < ti, i = 0, 1, · · · , n. Let 0 = t′0 < t′1 < · · · < t′2n = T be the points of
subdivision of the refined partition π ′

n. Define the approximating sum Sπ ′
n
as before. We take

two steps to prove the assertion in this lemma.
Step 1. We will first obtain the bounds on E|Sπn − Sπ ′

n
|2.

Let 0 ≤ t̃0 < t̃1 < t̃2 ≤ T be three equally space points on [0, T] and let us denote Xt̃i
by

Xi and Wt̃i
by Wi, i = 0, 1, . . . , n. Define

H =
f
(
t̃0, X0

)

g
(
t̃0, X0

) (W2 −W0) −
⎧
⎨

⎩

f
(
t̃1, X1

)

g
(
t̃1, X1

) (W2 −W1) +
f
(
t̃0, X0

)

g
(
t̃0, X0

) (W1 −W0)

⎫
⎬

⎭

= (W2 −W1)

⎧
⎨

⎩

f
(
t̃0, X0

)

g
(
t̃0, X0

) −
f
(
t̃1, X1

)

g
(
t̃1, X1

)

⎫
⎬

⎭.

(3.13)

Denote

I =
∫ t̃1

t̃0

f(t, Xt)
g(t, Xt)

dt. (3.14)

Applying the Taylor expansion, one has

f
(
t̃0, X0

)

g
(
t̃0, X0

) −
f
(
t̃1, X1

)

g
(
t̃1, X1

)

= (X0 −X1)
fxg − gxf

g2

(
t̃1, X1

)
+
(
t̃0 − t̃1

)ftg − gtf

g2

(
t̃1, X1

)

+
1
2
(X0 −X1)2

(
fxxg

2 − gxxf
)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

+
1
2

(
t̃0 − t̃1

)2
(
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)
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+
(
t̃0 − t̃1

)
(X0 −X1)

(
ftxg − fgtx − fxgt − ftgx

)
g2 + 2fggtgx

g4
(t∗, X∗)

= −(W1 −W0 + I)
fxg − gxf

g2

(
t̃1, X1

)
+
(
t̃0 − t̃1

)ftg − gtf

g2

(
t̃1, X1

)

+
1
2
(X0 −X1)2

(
fxxg

2 − gxxf
)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

+
1
2

(
t̃0 − t̃1

)2
(
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)

+
(
t̃0 − t̃1

)
(X0 −X1)

(
ftxg − fgtx − fxgt − ftgx

)
g2 + 2fggtgx

g4
(t∗, X∗),

(3.15)

where |X1 −X∗| < |X0 −X1|, |t̃1 − t∗| < |t̃0 − t̃1|.
Relations (3.15) to (3.13) show that

H = −(W2 −W1)I
fxg − gxf

g2

(
t̃1, X1

)
+ (W2 −W1)

(
t̃0 − t̃1

)ftg − gtf

g2

(
t̃1, X1

)

+ (W2 −W1)
1
2
(X0 −X1)2

(
fxxg

2 − gxxf
)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

+ (W2 −W1)
1
2

(
t̃0 − t̃1

)2
(
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)

+ (W2 −W1)
(
t̃0 − t̃1

)
(X0 −X1)

(
ftxg − fgtx − fxgt − ftgx

)
g2 + 2fggtgx

g4
(t∗, X∗).

(3.16)

Notice that H’s corresponding to different subintervals of [0, T]-generated by πn form a
martingale difference sequence. Observe that

E|H|2 = E(W2 −W1)2E

{
− I

fxg − gxf

g2

(
t̃1, X1

)
+
(
t̃0 − t̃1

)ftg − gtf

g2

(
t̃1, X1

)

+
1
2
(X0 −X1)2

(
fxxg

2 − gxxf
)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

+
1
2

(
t̃0 − t̃1

)2
(
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)

+
(
t̃0 − t̃1

)
(X0 −X1)

(S)g2 + 2fggtgx
g4

(t∗, X∗)

}2
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≤ 4
(
t̃2 − t̃1

)
⎧
⎨

⎩E

(
I
fxg − gxf

g2

(
t̃1, X1

))2

+
(
t̃0 − t̃1

)2
E

(
ftg − gtf

g2

(
t̃1, X1

))2

+
1
4

E

⎡

⎣(X0 −X1)4
((

fxxg
2 − gxxf

)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

)2
⎤

⎦

+
1
4

(
t̃0 − t̃1

)4
E

((
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)

)2

+
(
t̃0 − t̃1

)2
E

⎡

⎣(X0 −X1)2
(

(S)g2 + 2fggtgx
g4

(t∗, X∗)

)2
⎤

⎦

⎫
⎬

⎭

≤ 4
(
t̃2 − t̃1

)
⎧
⎨

⎩

[
EI4E

(
fxg − gxf

g2

(
t̃1, X1

))4
]1/2

+
(
t̃0 − t̃1

)2
E

(
ftg − gtf

g2

(
t̃1, X1

))2

+
1
4

⎡

⎣E(X0 −X1)8E

((
fxxg

2 − gxxf
)
g − 2

(
fxg − gxf

)
ggx

g4
(t∗, X∗)

)8
⎤

⎦
1/2

+
1
4

(
t̃0 − t̃1

)4
E

((
fttg

2 − gttf
)
g − 2

(
ftg − gtf

)
ggt

g4
(t∗, X∗)

)2

+
(
t̃0 − t̃1

)2
⎡

⎣E(X0 −X1)4E

(
(S)g2 + 2fggtgx

g4
(t∗, X∗)

)4
⎤

⎦
1/2
⎫
⎪⎬

⎪⎭

≤ 4
(
t̃2 − t̃1

){(
EI4

)1/2
C

[(
Ef8

x

(
t̃1, X1

))1/2
+
(
Eg8

x

(
t̃1, X1

))1/2
+
(
Ef8

(
t̃1, X1

))1/2]1/2

+
(
t̃0 − t̃1

)2
C

[(
Ef4

t

(
t̃1, X1

))1/2
+
(
Eg4

t

(
t̃1, X1

))1/2
+
(
Ef4

(
t̃1, X1

))1/2]

+
1
4

(
E(X0 −X1)8

)1/2
C

[(
Ef8

xx(t
∗, X∗)

)1/2
+
(
Eg8

xx(t
∗, X∗)

)1/2

+
(
Ef8(t∗, X∗)

)1/2
+
(
Ef8

x(t
∗, X∗)

)1/2

+
(
Ef16

x (t∗, X∗)
)1/2]1/2

+
1
4

(
t̃0 − t̃1

)4
C

[(
Ef4

tt(t
∗, X∗)

)1/2
+
(
Eg4

tt(t
∗, X∗)

)1/2
+
(
Ef4

t (t
∗, X∗)

)1/2

+
(
Eg4

t (t
∗, X∗)

)1/2
+
(
Eg8

t (t
∗, X∗)

)1/2]
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+
(
t̃0− t̃1

)2[
E(X0−X1)4

]1/2[(
Ef8

tx(t
∗, X∗)

)1/2
+
(
Eg8

tx(t
∗, X∗)

)1/2

+
(
Ef8

x

(
t̃1, X1

))1/2
+
(
Eg8

x

(
t̃1, X1

))1/2

+
(
Ef8

t

(
t̃1, X1

))1/2
+
(
Eg8

t

(
t̃1, X1

))1/2]1/2
}
.

(3.17)

where S denotes ftxg − fgtx − fxgt − ftgx.
By Theorem 4 of [31], for any 0 ≤ s < t ≤ T , there exists C > 0 such that

E(Xt −Xs)2m ≤ C
(
EX2m

0 + 1
)
(t − s)m, m ≥ 1. (3.18)

Hence

E(Xt −Xs)8 ≤ C
(
EX8

0 + 1
)
(t − s)4,

E(Xt −Xs)4 ≤ C
(
EX4

0 + 1
)
(t − s)2.

(3.19)

Furthermore by (A2) and (A3), we have

EI4 = E

(∫ t̃1

t̃0

f(t, Xt)
g(t, Xt)

dt

)4

≤ CE

(∫ t̃1

t̃0

f4(t, Xt)dt

)

≤ CE

(∫ t̃1

t̃0

(
1 + |Xt|2

)2
dt

)

≤ C
(
t̃1 − t̃0

)4
sup
0≤t≤T

E

(
1 + |Xt|2

)2

≤ C
(
t̃1 − t̃0

)4
.

(3.20)

Thus

E(H)2 ≤ C
(
t̃2 − t̃1

)(
t̃1 − t̃0

)2
. (3.21)
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Using the property that H corresponding to different subintervals forms a martingale
difference sequence, it follows that

E
∣∣Sπn − Sπ ′

n

∣∣2 ≤ C
T3

n2
, (3.22)

for some constant C > 0.
Step 2. We will show now the bounds on E|Sπ ′

n
− S|2.

Let π(p)
n , p ≥ 0 be the sequence of partitions such that π(i+1)

n is a refinement of π(n)
n

by choosing the midpoint of the subintervals generated by π
(n)
n . Note that π(0)

n = πn and
π

(1)
n = π ′

n. The analysis given above proves that

E
∣∣Sπn

(
p
) − Sπn(p+1)

∣∣2 ≤ C
T3

2pn2
, p ≥ 0, (3.23)

where Sπn(p) is the approximation corresponding to π
(p)
n and Sπn(0) = Sπn .

Therefore, applying the Hölder inequality and the Minkovski inequality, one gets

E
∣∣Sπn(0) − Sπn(p+1)

∣∣2

≤ E

[
p∑

k=0

(
Sπn(k) − Sπn(k+1)

)
]2

≤
[

p∑

k=0

(
E
∣∣Sπn(k) − Sπn(k+1)

∣∣2
)1/2

]2

≤
⎡

⎣
p∑

k=0

(
CT3

2pn2

)1/2
⎤

⎦
2

≤ C
T3

n2
,

(3.24)

for all p ≥ 0. Let p → ∞. Since the integral S exists, Sπn(p+1) converges inL2 to S as p → ∞.
Note that π(p+1)

n , P ≥ 0 is a sequence of partitions such that the mesh of the partition tends to
zero as p → ∞ for any fixed n.

Thus

E|Sπn − S|2 ≤ C
T3

2pn2
, p ≥ 0, (3.25)
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where

S = lim
n→∞

Sπn =
∫T

0

f(t, Xt)
g(t, Xt)

dWt. (3.26)

The proof is now complete.

Theorem 3.3. Under assumptions (A1)–(A4), (A5)2, (A6)2, (A7), and (A8), one has

E|Ln,T (θ) − LT (θ)|2 ≤ C
T3

n2
,

E

∣∣∣L′
n,T (θ) − L′

T (θ)
∣∣∣
2 ≤ C

T3

n2
.

(3.27)

Proof. By the analysis given above, one has

|Ln,T (θ) − LT (θ)|2

=

∣∣∣∣∣θ
[

n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Xti −Xti−1) −
∫T

0

f(t, Xt)
g2(t, Xt)

dXt

]

−θ
2

2

[
n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

]∣∣∣∣∣

2

≤ θ4

2

∣∣∣∣∣

n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

+ 2θ2

∣∣∣∣∣

n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Wti −Wti−1) −
∫T

0

f(t, Xt)
g2(t, Xt)

dWt

∣∣∣∣∣

2

.

(3.28)

Hence, it follows from Lemmas 3.1 and 3.2 that

E|Ln,T (θ) − LT (θ)|2

≤ θ4

2
E

∣∣∣∣∣

n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

+ 2θ2
E

∣∣∣∣∣

n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Wti −Wti−1) −
∫T

0

f(t, Xt)
g2(t, Xt)

dWt

∣∣∣∣∣

2

≤ C
T3

n2
.

(3.29)
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Next, note that

∣∣∣L′
n,T (θ) − L′

T (θ)
∣∣∣
2

=

∣∣∣∣∣θ
n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Xti −Xti−1)

−θ
n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1) −
[∫T

0

f(t, Xt)
g2(t, Xt)

dXt −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

]∣∣∣∣∣

2

= (1 − θ)2
∣∣∣∣∣

n∑

i=1

f2(ti−1, Xti−1)
g2(ti−1, Xti−1)

(ti − ti−1) −
∫T

0

f2(t, Xt)
g2(t, Xt)

dt

∣∣∣∣∣

2

+

∣∣∣∣∣

n∑

i=1

f(ti−1, Xti−1)
g2(ti−1, Xti−1)

(Wti −Wti−1) −
∫T

0

f(t, Xt)
g2(t, Xt)

dWt

∣∣∣∣∣

2

.

(3.30)

Similarly, by Lemmas 3.1 and 3.2, we obtain

E

∣∣∣L′
n,T (θ) − L′

T (θ)
∣∣∣
2 ≤ C

T3

n2
. (3.31)

The proof is now complete.

Remark 3.4. The rate of convergence of the approximations for Itô and ordinary integral
have been investigated in Lemmas 3.1 and 3.2. Based on these analysis results, the rate
of convergence of the approximate log-likelihood function for nonlinear nonhomogenous
stochastic system with unknown parameter has been established in Theorem 3.3. It should
be pointed out that the corresponding approximate result gained in [27] is the special case
for linear stochastic differential equation, furthermore, the conclusions in [9] also can be
regarded as a special example under the result in Theorem 3.3 for nonlinear nonhomogenous
stochastic system with constant diffusion.

Finally, we will study the error bound in probability between the AMLE and the
continuous MLE for nonlinear nonhomogenous stochastic system with unknown parameter.

Theorem 3.5. Under assumption (A1)–(A4), (A5)2, (A6)2, (A7), and (A8), one has

E|θn,T − θT |2 ≤ C
T3

n2
. (3.32)

Proof. We know θn,T and θT are the solutions of equations L′
n,T (θ) = 0 and L′

T (θ) = 0,
respectively.
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Hence, one gets

|θn,T − θT |2

=

∣∣∣∣∣∣

∑n
i=1
(
f(ti−1, Xti−1)/g

2(ti−1, Xti−1)
)
(Xti −Xti−1)∑n

i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

−
∫T
0

(
f(t, Xt)/g2(t, Xt)

)
dXt

∫T
0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑n
i=1
(
f(ti−1, Xti−1)/g(ti−1, Xti−1)

)
(Wti −Wti−1)∑n

i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

−
∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

∫T
0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑n
i=1
(
f(ti−1, Xti−1)/g(ti−1, Xti−1)

)
(Wti −Wti−1) −

∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

−
∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

[∑n
i=1
(
f2(ti−1, Xti−1)/g

2(ti−1, Xti−1)
)
(ti − ti−1) −A]

[∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

] ∫T
0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣

∑n
i=1
(
f(ti−1, Xti−1)/g(ti−1, Xti−1)

)
(Wti −Wti−1) −

∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣

∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

[∑n
i=1
(
f2(ti−1, Xti−1)/g

2(ti−1, Xti−1)
)
(ti − ti−1) −A]

[∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

] ∫T
0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣∣

2

.

(3.33)

As we know that
∑n

i=1(f
2(ti−1, Xti−1)/g

2(ti−1, Xti−1))(ti − ti−1) > 0, so there exists a
constant C > 0 such that

1
∑n

i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

≤ C. (3.34)

Therefore, applying Itô isomorphism, the Cauchy-Schwarz inequality, Lemmas 3.1 and 3.2,
we obtain

E|θn,T − θT |2

≤ 2E

∣∣∣∣∣∣

∑n
i=1
(
f(ti−1, Xti−1)/g(ti−1, Xti−1)

)
(Wti −Wti−1) −

∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

∣∣∣∣∣∣

2

+ 2E

∣∣∣∣∣∣

∫T
0

(
f(t, Xt)/g(t, Xt)

)
dWt

[∑n
i=1
(
f2(ti−1, Xti−1)/g

2(ti−1, Xti−1)
)
(ti − ti−1) −A]

[∑n
i=1
(
f2(ti−1, Xti−1)/g2(ti−1, Xti−1)

)
(ti − ti−1)

] ∫T
0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣∣

2
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≤ CE

∣∣∣∣∣

n∑

i=1

(
f(ti−1, Xti−1)/g(ti−1, Xti−1)

)
(Wti −Wti−1) −

∫T

0

(
f(t, Xt)/g(t, Xt)

)
dWt

∣∣∣∣∣

2

+ CE

∣∣∣∣∣

n∑

i=1

(
f2(ti−1, Xti−1)/g

2(ti−1, Xti−1)
)
(ti − ti−1) −

∫T

0

(
f2(t, Xt)/g2(t, Xt)

)
dt

∣∣∣∣∣

2

≤ C
T3

n2
,

(3.35)

where A denotes
∫T
0 (f

2(t, Xt)/g2(t, Xt))dt.
The proof is now complete.

Remark 3.6. Up to present, the rate of the convergence of the approximate log-likelihood
functions and the error bound in probability between the AMLE and the continuous MLE
have been obtained for the nonlinear nonhomogenous stochastic system with unknown
parameter. As well, the corresponding results gained in [9, 27] are the direct conclusions
after applying Chebyshev’s inequality on (3.32).

4. Conclusions

In this paper, we have investigated the error bound in probability between the ALME and
the continuous MLE for a class of general nonlinear nonhomogenous stochastic system
with unknown parameter. The rates of convergence of the approximations for Itô and
ordinary integral have been derived under some regular assumptions. On the basis of these
analysis results, we have studied the in probability rate of convergence of the approximate
log-likelihood function to the true continuous log-likelihood function for the nonlinear
nonhomogenous stochastic system involving unknown parameter. Finally, the main result
which gives the error bound in probability between the ALME and the continuous MLE
has been established. It should be noted that one of the future research topics would be
to investigate the asymptotic normality of the ALME for the nonlinear nonhomogenous
stochastic system with unknown parameter mentioned in this paper.
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[15] L. Birgé and P. Massart, “Rates of convergence for minimum contrast estimators,” Probability Theory
and Related Fields, vol. 97, no. 1-2, pp. 113–150, 1993.

[16] B. Shen, Z. Wang, H. Shu, and G. Wei, “On nonlinearH∞ filtering for discrete-time stochastic systems
with missing measurements,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2170–2180,
2008.

[17] B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H∞ filtering for polynomial nonlinear
stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp.
1971–1979, 2011.

[18] B. Shen, Z. Wang, and X. Liu, “A stochastic sampled-data approach to distributed H∞ filtering in
sensor networks,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 9, pp. 2237–2246, 2011.

[19] V. Harison, “The Bernstein-von Mises theorem for a certain class of Gaussion diffusion processes,”
Publications du Service deMathematiques, Umiversite d’Antananarivo, vol. 6, pp. 1–7, 1992.

[20] D. Levanony, A. Shwartz, and O. Zeitouni, “Recursive identification in continuous-time stochastic
processes,” Stochastic Processes and Their Applications, vol. 49, no. 2, pp. 245–275, 1994.

[21] Ju. A. Kutojanc, “Estimation of a parameter of a diffusion type process,”Akademiya Nauk SSSR. Teoriya
Veroyatnosteı̆ i ee Primeneniya, vol. 23, no. 3, pp. 665–672, 1978.

[22] V. Borkar and A. Bagchi, “Parameter estimation in continuous-time stochastic processes,” Stochastics,
vol. 8, no. 3, pp. 193–212, 1982.

[23] J. Hu, Z.Wang, andH. Gao, “A delay fractioning approach to robust slidingmode control for discrete-
time stochastic systems with randomly occurring non-linearities,” IMA Journal of Mathematical Control
and Information, vol. 28, no. 3, pp. 345–363, 2011.

[24] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas, “Robust sliding mode control for discrete
stochastic systemswithmixed timedelays, randomly occurring uncertainties and randomly occurring
nonlinearities,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 3008–3015, 2012.

[25] D. Dacunha-Castelle and D. Florens-Zmirou, “Estimation of the coefficients of a diffusion from
discrete observations,” Stochastics, vol. 19, no. 4, pp. 263–284, 1986.

[26] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, vol. 8 ofKendall’s Library of Statistics,
Edward Arnold, Oxford University Press, London, UK, 1999.

[27] A. Le Breton, “On continuous and discrete sampling for parameter estimation in diffusion type
processes,”Mathematical Programming Study, vol. 5, pp. 124–144, 1976.



20 Mathematical Problems in Engineering

[28] A. R. Pedersen, “Consistency and asymptotic normality of an approximate maximum likelihood
estimator for discretely observed diffusion processes,” Bernoulli, vol. 1, no. 3, pp. 257–279, 1995.

[29] Y. Ait-Sahalia, “Maximum likelihood estimation of discretely sampled diffusions: a closed-form
approximation approach,” Econometrica, vol. 70, no. 1, pp. 223–262, 2002.

[30] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Series in
Mathematics & Applications, Horwood Publishing, Chichester, UK, 1997.

[31] I. I. Gikham and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin, Germany, 1972.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 768212, 22 pages
doi:10.1155/2012/768212

Research Article
Linear Matrix Inequalities in
Multirate Control over Networks

Ángel Cuenca, Ricardo Pizá, Julián Salt, and Antonio Sala

Departamento de Ingenierı́a de Sistemas y Automática, Instituto Universitario de
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This paper faces two of the main drawbacks in networked control systems: bandwidth constraints
and timevarying delays. The bandwidth limitations are solved by using multirate control
techniques. The resultant multirate controller must ensure closed-loop stability in the presence
of time-varying delays. Some stability conditions and a state feedback controller design are
formulated in terms of linear matrix inequalities. The theoretical proposal is validated in two
different experimental environments: a crane-based test-bed over Ethernet, and a maglev based
platform over Profibus.

1. Introduction

Networked control systems (NCSs) [1, 2] are becoming a powerful research area because of
introducing considerable advantages [3] (wiring reduction, easier and cheaper maintenance,
cost optimization) in several kinds of control applications (teleoperation, supervisory
control, avionics, chemical plants, etc). Nevertheless, as a consequence of sharing the
same communication medium among different devices (sensor, actuator, controller), some
problems such as time-varying delays [4–6], bandwidth limitations [7, 8], packet dropouts
[9–13], packet disorder [14], and lack of synchronization [15] can arise in this kind of systems.
So, the analysis and design of NCS is a complex problem and, usually, some simplifying
assumptions are made.

In this work, neither packet dropouts nor packet disorder will be considered (as later
detailed). In addition, devices will be assumed to be synchronized (by means of a suitable
initial synchronization procedure or by implementing time-stamping techniques). Thus, only
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bandwidth limitations and time-varying delays will be faced. To solve these issues, some
previous authors’ developments such as those in [4, 16–19] are revised and conveniently
adapted and gathered together in the present work.

Regarding bandwidth constraints, this could be the case if the network configuration
imposes a limitation in the control frequency (say, because of an excessive number of devices
sharing the communication link). In this context, the consideration of a dual-rate controller
[20–22] might be useful in terms of achievable performance [23, 24], since the controller can
work at a faster rate than the network one which provides the measurements (a multirate
input control (MRIC) structure will be considered, which is able to generateN control actions
for each sampled output).

As time-varying delays are assumed in an NCS, the control problem becomes a linear
time-varying (LTV) one. Then, stability and design for arbitrary time-varying network delays
must be carried out. Depending on what kind of information about the delay is provided,
different stability analysis can be performed. So, if the probability density function of the
network delay is unknown, a robust stability analysis must be proved. However, if the
probability function is provided, stochastic stability can be analyzed. In this work, in order to
prove any of these situations in a dual-rate NCS, linear matrix inequalities (LMIs) [25] will
be considered. So, both LMIs for the robust case and for the probabilistic one (with extension
to a multiobjective analysis) will be formulated. With respect to design approaches, a state
feedback controller enunciated in terms of LMIs will be presented. The reader is referred, for
example, to [6, 13] to find other LMI-based state feedback controller approaches. As well in
terms of LMIs, in [11, 12] H∞ controllers are enunciated, and in [21] a multirate controller is
proposed.

As a summary, the main novelties introduced by this work can be lumped as the
followoing.

(i) NCS analysis improvements: in [4, 16] control system stability is studied via LMIs.
In the former work, a robust analysis is treated, whereas in the latter work, a
stochastic analysis is presented. Both works use as a controller an output feedback
one. In the present work, notation used in both approaches is unified and extended
to the state feedback controller case. In addition, a hierarchical structure for the
controller is contemplated.

(ii) NCS design improvements: firstly, in [19], a multirate controller design procedure
is introduced by splitting the controller into two sides—the slow-rate side and
the fast-rate side. No shared communication medium is considered between both
sides. Now, in the present work, from the previous idea a distributed controller for
the proposed multirate NCS can be implemented (details in Section 2). Secondly,
in [18], a single-rate state feedback controller to deal with time-varying delays is
proposed. Now, this controller is adapted to be included in the slow-rate side of the
multirate NCS. In addition, in order to reach a null steady-state error, an integral
action can be added to this controller. The obtained results show a better control
system performance than that achieved in [17].

The paper is divided into five parts: in Section 2 the dual-rate NCS scenario is exposed.
Closed-loop realizations from lifted plant and controller are formulated in Section 3. By
means of LMIs, for this kind of LTV systems, Section 4 proposes several stability analysis, and
Section 5 introduces a state feedback controller. Finally, Section 6 presents stability and design
results obtained for the test-bed platforms, and Section 7 enumerates the main conclusions.



Mathematical Problems in Engineering 3

Figure 1: Chronogram of the proposed NCS.

2. Problem Scenario

Depending on the network configuration, three main options arise when integrating a dual-
rate controller in an NCS.

(i) The dual-rate controller is located at a remote side (with no direct link to the plant),
and its fast-rate control actions can be sent from this side to the local actuator
(directly connected to the plant) following a packet-based approach [26].

(ii) The dual-rate controller is located at the local side, being directly connected to the
actuator [16].

(iii) The dual-rate controller is split into two subcontrollers [19] (a slow-rate one located
at the remote side, and a fast-rate one situated at the local side); then a rude slow-
rate control action is sent from the remote side to the local one in order to be refined
and converted to a fast-rate control signal by the local subcontroller [4].

From the last option, Figure 1 represents a typical chronogram for this kind of dual-
rate NCS. Both time-driven and event-driven policies are required [27]. The meaning of the
encircled numbers is now detailed.

(1) The sensor works in a time-triggered operation mode, sampling the process output
y1,k at period NT (the measurement period). The output is sent through the
network.

(2) After a certain processing and propagation time has elapsed τS−C
k

, the remote
controller receives the packet.

(3) Then, at the remote controller an event is triggered. As a consequence, after a
computation delay τCk , a slow-rate control action is generated and sent to the local
controller, which is directly connected to the actuator.
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(4) After a certain processing and propagation time has elapsed τC−Ak , the local con-
troller receives the packet.

(5) Then, at the local side an event is triggered. Its main consequence is the application
of N faster-rate control actions to the process. Such actions are scheduled to be
applied taking into account the total delay:

τk = τS−Ck + τCk + τC−Ak , (2.1)

where, in this work, τk ∈ [0, τmax], being τmax < NT in order to avoid causality and
packet order issues, and no sample losses. Note that the lumped delay in (2.1) can
be adopted if the controller is a static one. In addition, if the total delay τk can be
measured and finally compensated at the local side (as assumed in this work), (2.1)
can also be considered in the control strategy. In any other case, it is inappropriate
or impossible to lump all delays as one. Please, see for example in [28, 29] on how
to deal with delays on different communication links separately.

Regarding theN control actions, the first of them will be applied at the time of arrival
of the packet (τk time units after the measurement was taken). The remaining control actions,
as they are not influenced by the network delay, will be applied every T time units (the control
period), triggered by a fast-rate clock signal. Note, if the delay fulfills

τk ≥ dT, d ∈ N+, (2.2)

the first d control actions will never be applied to the process.

3. Preliminaries and Notation

Consider a continuous linear time-invariant plant P , which admits a state-space realisation
Σc = (Ac, Bc, C,D), with suitable dimensions, fulfilling the followig:

ẋ = Acx + Bcu,

y = Cx +Du.
(3.1)

Being an arbitrary number, ξ is denoted as

B(ξ) =

⎧
⎪⎨

⎪⎩

∫ ξ

0
eAcγBcdγ, ξ > 0

0, ξ ≤ 0.
(3.2)
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It is well known [30, 31] that, in the case the input changes every T time units, being constant
in the intersample period (zero-order hold, ZOH) and the output is sampled synchronously
to that input, the sampled output verifies the discrete-time equations:

xk+1 = eAcTxk + B(T)uk

yk = Cxk +Duk.
(3.3)

When the input change and output sampling do not follow such a conventional
sampling pattern, but they follow an arbitrary but periodic one with period NT , the
discretization is a periodic linear time-varying discrete system. However, the process can be
equivalently represented by a multivariable linear time-invariant discrete systemwith period
NT and the so-called “lifted” input and output vectors, which are formed by stacking all the
input and output signals; this methodology is denoted as “lifting” [32].

3.1. Lifted Plant Realization

Consider the above system (3.1) (as most physical system have D = 0, it will be assumed on
the sequel) being subject to inputs ui at time τi, i = 0, . . . ,N under ZOH conditions (i.e., input
at time τi is held constant until time reaches τi+1), and τ0 = 0, τN+1 = NT (see Figure 1). It is
easy to show [31, 33] that the state at an arbitrary time t is given by:

x(t) = eActx(0) +
N∑

i=0

B(min(t, τi+1) − τi)eAc(t−min(t,τi+1))ui, (3.4)

and, from the above formula, a lifted realization can be computed when inputs are applied
at times τi and outputs are read at times ηj , j = 1, . . . , m inside a metaperiod NT . Indeed, the
discrete state equations comes from replacing t = NT in (3.4), and the output equation comes
from replacing t = ηj in (3.4) and multiplying by C. In the following, as the above equations
will be evaluated every NT seconds, notation ui,k will describe the input at time kNT + τi,
and similarly, yj,k will denote the sample at time kNT + ηj .

In a networked control framework, since u0,k is the last controller output from the
previous sampling period (the controller will be assumed to apply (with delay τ1) a set of
N control actions (u1,k, . . . , uN,k) (see Figure 1), an additional set of states ψ must be added
[18, 34]. So, incorporating the “memory” equation ψk+1 = uN,k, and replacing u0,k by ψk, (3.4)
yields the following:

x(kNT + t) = eActxk + B(min(t, τ0))eAc(t−min(t,τ0))ψk

+
N∑

i=1

B(min(t, τi+1) − τi)eAc(t−min(t,τi+1))ui,k.
(3.5)
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The output equations would be built by stacking for all needed ηj the following expression:

yj,k = CeAcηj xk + CB
(
min
(
ηj , τ0

))
eAc(ηj−min(ηj ,τ0))ψk

+
N∑

i=1

CB
(
min
(
ηj , τi+1

) − τi
)
eAc(ηj−min(ηj ,τi+1))ui,k.

(3.6)

As described, an MRIC strategy is considered in this work, and hence only the first
sampled output y1,k is needed to be sent to the controller. Then, for the sake of simplicity, let
us describe the lifted plant model ΣP = (AP, BP , CP ,DP ) in this way:

x̃k+1 = APx̃k + BPUk,

Yk = CPx̃k +DPUk,
(3.7)

where x̃k = (xk, ψk)
T ,Uk = (u1,k, . . . , uN,k)

T , Yk ≡ y1,k, and

AP =
(
eAcNT B∗

0
0 0

)
, BP =

(
B∗
1 · · · B∗

N

0 · · · 1

)
(3.8)

CP =
(
C 0

)
, DP =

(
0 · · · 0

)
, (3.9)

being B∗
i = B(τi+1 − τi)eAc(NT−τi+1). Standard complete CP and DP matrices can be reviewed,

for instance, in [32].

3.2. Controller and Closed-Loop Realization

In this paper, two different structures for the controller will be taken into account: a one-
degree-of-freedom linear regulator R, and a hierarchical controller H.

For the first case, the regulator R, two alternative cases can be treated as follows:

(i) an output feedback regulator, whose lifted discrete realization will be ΣR =
(AR, BR, CR,DR) [32]:

ζk+1 = ARζk − BRYk,

Uk = CRζk −DRYk,
(3.10)

where set-points are considered to be zero, so −y = e (being e the loop error),

(ii) a state feedback regulator, with a gain F:

Uk = −Fx̃k. (3.11)
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From the previous plant representation ΣP = (AP, BP , CP ,DP ), its closed-loop
connection to the output feedback regulator implies a dynamical system governed by this
expression [31]:

(
ζk+1
x̃k+1

)
=
(

AR −BRCP

BPCR AP − BPDRCP

)(
ζk
x̃k

)
= Aclxk. (3.12)

For the state feedback regulator, the closed-loop realization will yield the following
[31]:

x̃k+1 = (AP − BPF)x̃k = Ãclx̃k. (3.13)

Regarding the second regulator, the hierarchical oneH, it will be decomposed into two
parts at different rates (remember Section 2). Different alternatives could be used to design
each part. For brevity, let us consider and formulate the option developed in the second
example of Section 6, where

(i) fast-rate local subcontrollers are designed by means of robust H∞ control
techniques [42],

(ii) a coordinating, slow-rate remote subcontroller is designed using a state feedback
approach (to be detailed in Section 5).

Then, the representation of each local subcontroller will be similar to (3.10). And, the
remote subcontroller will yield an expression like in (3.11) but with these variations:

Usr,k = −F∗xk, (3.14)

where Usr,k is the slow-rate control action, and F∗ is the resultant controller gain when
considering the augmented state x, which includes the overall local side state (controller +
plant, remember (3.12)).

Let us denote the lifted expression Σ∗ = (A∗, B∗, C∗, D∗), where, respectively,A∗, B∗,C∗,
D∗ are obtained like AP , BP , CP , DP in (3.8), but now considering the overall local side state
x (details omitted for brevity). Then, the closed-loop realization for the hierarchical control
structure will be similar to (3.13), but now

xk+1 = (A∗ − B∗F∗)xk = A∗
clxk. (3.15)

4. Stability Analysis

As commented, time-varying delays can appear in an NCS framework. Thus, a variation in
the instants where the outputs are measured (ηj) or those in which the input commands
are presented to the plant (τi) is expected. Let us denote the set of parameters that might
vary from metaperiod to metaperiod as ρk = {η1,k, η2,k, . . . , τ1,k, τ2,k, . . .}. Since matrices in
(3.7) depend on ρk, then ΣP = (AP, BP , CP ,DP ), or Σ∗ = (A∗, B∗, C∗, D∗), can vary from
metaperiod to metaperiod. Further time variance occurs if the controller is also intentionally
dependent on all or some of the parameters included in ρk; this is the case, for example, in
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a gain-scheduling approach [16, 35]. Subsequently, the closed-loop realization Acl, Ãcl, A∗
cl

does depend on the above parameters, and then it will be replaced by Acl(ρk) in (3.12), by
Ãcl(ρk) in (3.13), and byA∗

cl
(ρk) in (3.15), representing a discrete LTV system. For the sake of

simplicity, only one of the closed-loop realizations (Acl) will be considered on the sequel. In
addition, in this work the actual time-varying parameter ρk used will be the network delay
τk, that is, the delay of the first control action ρk = {τ1,k} ≡ {τk}.

Three different scenarios will be studied as follows.

(i) Consideration of arbitrary delay changes with unknown probability: a robust
stability analysis will be needed.

(ii) A probability density function of the network delay for each network situation is
assumed known: a stochastic stability analysis can be independently carried out for
each situation.

(iii) Several network states are considered, which are defined by different probability
density functions and different performance objectives: a multiobjective analysis
will be developed.

4.1. Robust Analysis

In order to prove robust stability of the discrete LTV system:

xk+1 = Acl(τk)xk, (4.1)

with a geometric decay rate (the geometric decay rate is a performance measure for nonlinear
and LTV systems which guarantees that there exists λ ∈ R so ‖xk‖ ≤ λ‖x0‖αk. When
particularized to a discrete linear time-invariant system, the decay rate is the modulus of
the dominant pole), 0 ≤ α ≤ 1, a common Lyapunov function

V (x) = xTQx, Q > 0, (4.2)

must be found [18, 25, 36] so that V (xk+1) < α2V (xk) (obviously, α < 1 implies stability, given
by the decrescence condition V (xk+1) < V (xk)). Replacing the closed-loop equations in (4.2),
the Lyapunov decrescence condition can be written as the following LMI:

Acl(ϑ)
TQAcl(ϑ) − α2Q < 0 ∀ϑ ∈ Θ, (4.3)

where ϑ is a dummy parameter ranging in a set Θ, where the time-varying parameters τk are
assumed to take values in, and matrixQ is composed of decision variables to be found by the
semidefinite programming solver. In this work, Θ will be an interval [0, τmax] (as defined in
(2.1)).

If Acl is an affine function of τk and Θ is polytopic, then (4.3) can be checked with a
finite number of LMIs. Otherwise, for bounded Θ a dense enough gridding must be set up
in order to approximately check for the above conditions. This procedure is denoted as LMI
gridding [18, 36].
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4.2. Probabilistic Analysis

Now, a probabilistic model of the network delay τk will be considered, so a probability
density function p(τk) is assumed known.

As the network delay is supposed to vary in a randomway, stability of the closed-loop
system will be analyzed in the mean square sense [37] (a particular case of the Martingales
convergence theorem [38]), by means of the quadratic Lyapunov function (4.2), which will
be shown to decrease in average. So, denoting E[·] as the statistical expectation, E[V (xk)]
will tend to zero, and hence the state will converge to zero with probability one. The average
descent to prove will be expressed as

E[V (xk+1)] ≤ E[V (xk)], (4.4)

or, considering an average decay rate 0 < α < 1, the descent expression yields

E[V (xk+1)] ≤ α2E[V (xk)]. (4.5)

Replacing the closed-loop equations in (4.2), the Lyapunov decrescence condition (4.5)
can be written as the following probabilistic LMI:

∫
p(ϑ)

(
Acl(ϑ)

TQAcl(ϑ) − α2Q
)
dϑ < 0, (4.6)

where ϑ, Θ, and Q were defined after (4.3).
For a generic probability distribution, working with the above integral may be

cumbersome. For bounded Θ, a dense enough gridding in ϑ must be set up in order to
approximately check for the above conditions. This procedure extends the LMI gridding in
[18, 36] to a probabilistic case. Choosing a set of l equally spaced values ϑj , j = 1, . . . , l so that
ϑ1 = 0, ϑl = τmax (Θ is an interval [0, τmax]), (4.6) can be approximately rewritten as

l∑

j=1

p
(
ϑj

)
Acl

(
ϑj

)T
QAcl

(
ϑj

) − α2Q < 0, (4.7)

which is a standard LMI to be solved by widely known methods [25, 39].
Note that the above results are more relaxed than those in the robust case. Indeed, in

a probabilistic case there is only one LMI constraint (average decay) instead of one for each
possible sampling period. In this way, temporal random increases of the Lyapunov function
are tolerated as long as the average over time is decreasing. Hence, better results in stability
analysis can be obtained; however, the gridding approach leaves intermediate points out of
the analysis so, in rigor, the results are not valid unless the grid is very fine.

4.3. Multiobjective Analysis

The above idea can be extended to considering several possible network states, say no,
with different performance objectives. Each network state will be described by a probability
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density of the network delay pi(τk), and a performance objective αi, i = 1, . . . , no. For example,
two objectives can be considered: the first one can be defined by the probability function for
an unloaded network (with a probability distribution around a “short” delay mean), and the
other objective for a saturated network case (with a larger delay mean).

Then, the Lyapunov decrescence conditions can be written as the following
probabilistic LMI (expressed, for computation, in its discrete approximation):

l∑

j=1

pi
(
ϑj

)
Acl

(
ϑj

)T
QAcl

(
ϑj

) − α2
i Q < 0. (4.8)

It is well known that the optimal result of multiobjective analysis will be a Pareto front
with the optimal performance α′

i for a particular i′, being the rest fixed. If the performance
bounds on the rest of constraints are made more restrictive, the resulting αi′ decreases. The
reader is referred to [40] for basic ideas on multiobjective optimization.

Note that the use of the shared Lyapunov function in (4.8) proves stability of the
networked control system for any probabilistic mixture of the considered network states (i.e.,
a network state whose probability density can be expressed as a convex combination of those
in LMIs (4.8)).

5. State Feedback Controller Design

Apart from stability and decay rate, well-known LMI conditions can be set up for pole region
placement, H∞ and H2 norms, and so forth. The reader is referred to [25, 41] for details. In
this section, a state feedback synthesis approach will be presented. The resultant controller
can be used as a slow-rate subcontroller in a dual-rate framework.

As previously shown, from a lifted model Σ∗ = (A∗, B∗, C∗, D∗), the control synthesis
problem can be cast as a state-feedback one (3.14). But, as a consequence of time-varying
network-induced delays, a different F∗ must be designed for each possible delay value τk
(leading to, e.g., gain scheduling approaches [16, 35]). Another possibility is to achieve a
unique stabilizing controller F∗ subject to any possible time-varying delay. In this case, an
LMI gridding procedure can be considered. So, from [18], if there exist matrices X and M so
that

[
e−2βNTX XA∗T −MTB∗T

A∗X − B∗M X

]
> 0 (5.1)

is verified for any τk, the feedback controller F∗ = MX−1 stabilizes Σ∗ = (A∗, B∗, C∗, D∗)
with decay rate β (which is the continuous-time equivalent exponential decay rate, that is,
α = e−βNT), and V (xk) = xT

kX
−1xk is the associated Lyapunov function.

Due to the existence of time-varying delays, the lifted state xk could not be known
when updating the control gain F∗. This problem can be solved by adding any kind of state
observer to the control strategy, for example, a nonstationary Kalman filter [18].
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6. Experimental Results

6.1. A Crane-Based Platform over Ethernet: A Stability Analysis Example

In this section, a test-bed Ethernet environment is used to implement a dual-rate NCS, where
the controller will be split into two parts. The proposed NCS includes the following devices
(see Figure 2):

(i) an industrial crane platform (to be controlled) equipped with three cc motors (to
actuate each axis: x, y, z) and five encoders (to sense the three axis and two different
angles). The motors are controlled by an analog signal in the range ±1V. The
encoders provide a position measurement of 1V/m. In this application only the
X-axis is actuated and sensed, whose behavior is modeled by

P(s) =
6.3

s(s + 17.7)
. (6.1)

Details on the crane characteristics can be obtained at http://www.inteco.com.pl
(3D crane apparatus).

(ii) A local computer which is connected to the platform by means of a DAQ board,
and where the local subcontroller is implemented.

(iii) Two PLCs and one computer working as interference nodes in order to introduce
different load scenarios.

(iv) A switch shared by the previous devices to connect them to Ethernet.

(v) A remote laptop computer where the remote subcontroller is implemented.

In this example, the controller will be a dual-rate PID one. Its parameters will
be retuned according to Ethernet network delays, leading to a gain-scheduling proposal.
In this case, the scheduling follows a Taylor-series-based approach (see [16] for details).
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Figure 3: Experimental delay histograms.

Table 1: LMI decay rate for the dual-rate PD controller (robust stability).

Max. delay Scheduled Nominal
bound (in s) PD PD
0.1 0.42 0.59
0.15 0.63 0.73
0.20 0.84 0.84
0.30 1 0.99

An LMI analysis will be required to observe the stability benefits of the scheduled controller
compared with the nominal unscheduled one. Finally, from experimental implementation,
time response for both controllers will be obtained in order to observe transient behavior.

First of all, several experiments are carried out, where the number and complexity of
the tasks developed by the interference nodes is modified in order to obtain different load
scenarios ranging between the two extreme histograms on Figure 3. According to this figure,
the output sampling time is chosen to be NT = 0.4 s, since the largest delay obtained is
0.39 s (delay bound: τmax = 0.39 s), and then the requirement commented after (2.1), that is
τmax < NT , is fulfilled.

Since the crane model (6.1) includes an integrator, a dual-rate PD is designed in order
to achieve an overshoot of 8% and a settling time of 0.65 s (with no steady-state error). The
resultant controller’s gains are: Kp = 6.95, Ki = 0, Kd = 2.2, f = 0.1 (derivative filter).

6.1.1. Robust Stability Analysis

Let us suppose that no information about probability distribution is known. Then, the worst-
case behavior of the proposed PD regulator can be assessed by means of the LMIs in (4.3).
Testing different maximum delay bounds, the consequent results appear on Table 1.

As a conclusion, the proposed gain scheduled regulator improves worst-case perfor-
mance for small delays (up to 0.2 s). In large delays, the approach used for retuning the PD
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Table 2: LMI decay rate for the dual-rate PD controller (with probability information).

Network context Scheduled PD Nominal PD
Only unloaded 0.50 0.65
Only loaded 0.68 0.83

parameters (based on Taylor-series) loses precision and results are similar (marginally worse)
than those of a nonscheduled regulator. In fact, there are delay distributions involving delays
larger than 0.3 s which might render the system unstable.

6.1.2. Probabilistic Stability Analysis: Extension to the Multiobjective Case

Now, information about probability distribution provided by experimental tests is taken into
account. So, stability of the setup in probabilistic time-varying delays can be assessed. The
LMI gridding in (4.7) can be carried out computing the closed-loop realization for the delay
bound τmax = 0.39 s (Θ = [0, 0.39]). According to Figure 3, the number of grid points l for the
probability density approximation is taken as l = 16.

Two cases are analyzed as follows:

(i) firstly, considering each network situation separately (a different Lyapunov
function for each load scenario), the LMI in (4.7) is applied to each situation to
obtain the minimum α for which a feasible solution Q exists,

(ii) secondly, a multiobjective analysis is performed by considering a unique Lyapunov
function for both network load scenarios.

The second case is more conservative but allows stability guarantees for mixtures and
random switching between both scenarios. The two proposed cases are somehow extreme
situations fromwhich would happen in a practical situation. If each of the network behaviors
is very likely to remain active for a dwell time significantly longer than the loop’s settling
time, then assumptions in case 1 will be closer to reality. If arbitrary, fast, network load
changes were expected, then case 1 would be too optimistic and the analysis in case 2 would
be recommended.

Regarding the first analysis, results are presented in Table 2, both for the scheduled PD
and for the nominal one. In conclusion, the less the network is loaded, the better worst-case
performance can be guaranteed. In addition, the scheduled approach shows better behavior
than the nominal one.

Now, the second (multiobjective) study is carried out. Figure 4 shows a Pareto front
that summarizes the analysis, which is developed by setting the decay-rate of one objective
and optimizing the other’s one. As depicted, the decay-rates obtained in the previous study
for the unloaded network case (here, the first objective) can not be now achieved, despite
considering the highest decay-rate for the second objective (α2 = 0.99), that is, the loaded
network scenario. However, if α1 = 0.99, the previous decay-rates for the loaded network
case can be achieved. Finally, the figure reveals the scheduled approach outperforms again
the nominal one.

In summary, from the analysis of both Tables 1 and 2, two main conclusions arise:

(i) if the probability of large delays is low, the use of probabilistic information indicates
(as intuitively expected) that the gain scheduling approach used in this example
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(based on Taylor-series) seems a sensible practical procedure, because of improving
average performance.

(ii) if no likelihood of (transient) instability is required, then the network must be
reconfigured so the maximum delay does not exceed 0.3 s, or the initial controller
specifications must be changed (reducing gains to improve robustness).

6.1.3. Control System Time Response

Since the previous figures indicate only stability and decay rate, to complete the study the
control system time response is obtained. So, other performance differences (such as
overshoot) can be evaluated.

Figures 5 and 6 present one of the different experiments tested for each network
situation. As observed in the LMI analysis, the scheduled PD controller points out a better
behavior than the nominal PD controller, being a more marked trend when working in a
loaded network. So, Figures 5 and 6 show that the scheduled controller reduces the overshoot
at least a 10% and up to a 40%, and the settling time up to a 60%, with a 30% on the average.

6.2. A Maglev-Based Platform over Profibus:
A State Feedback Design Example

In this example, the position of a triangular platform assembled by joining three maglevs is
hierarchically controlled by means of a dual-rate controller over Profibus. The proposed NCS
(see Figure 7) includes:

(i) a levitated platformwith an equilateral triangle shape where eachmaglev is located
at each corner. The maglevs provide position information from an infrared sensor
array in ±10V. The control signal is provided to a power amplifier, being in ±10V.
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For more information about these levitators see http://www.xdtech.com, model
ML-EA,

(ii) a National Instruments CompactRio 9074 acting as local subcontrollers,

(iii) a desktop PC acting as a remote subcontroller,
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Table 3: Experimental network round-trip time delay histogram.

Delay 5ms 10ms 15ms
Occurrences 123,154 1,084,502 292,357
Percentage 8.21% 72.3% 19.49%

(iv) a Profibus-DP network configured to work with a bus rate of 187.5 kBits/s, and
with asynchronous operation mode. This enables sending a remote control action
every 20ms.

In this example, a standalone, fast-rate local subcontroller is designed for each maglev
by using robustH∞ control techniques [42]. The coordinating, slow-rate remote subcontroller
is a state feedback one, designed by using the LMI-gridding techniques presented in Section 5.
So, the controller is assured to be robust in the presence of time-varying network-induced
delays. Experimental time responses will validate this aspect.

After carrying out several experimental tests, network-induced time delays are
measured (see histogram in Table 3). The main conclusion is that the most repeated round-
trip time delay corresponds to a 10ms period, with eventual delays at 5ms and 15ms. So,
to design the state feedback controller, the grid of delay values to be considered will be
(5, 10, 15)ms, and hence (5.1) will be actually a collection of 3 LMIs. As the least delay value
is 5ms, then T = 5ms. And according to the bus rate, NT = 20ms, and hence N = 4.
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Now, the linearized state space for a generic maglev i is presented as follows:

⎛

⎝
İi(t)
żi(t)
z̈i(t)

⎞

⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−Ri

Li
0

−Qi

Li

0 0 1

3Ki
1

M

3Ki
2

M
0

⎞
⎟⎟⎟⎟⎟⎠

·
⎛

⎝
Ii(t)
zi(t)
żi(t)

⎞

⎠ +

⎛
⎜⎜⎝

1
Li
0
0

⎞
⎟⎟⎠ · vi(t),

yi(t) =
(
0 Ki

3 0
) ·
⎛

⎝
Ii(t)
zi(t)
żi(t)

⎞

⎠,

(6.2)

where Ii is intensity on levitator’s electromagnetic circuit, zi is the system output (i.e., a
measure of airgap between levitated load and magnet taken with infrared sensors), Ri, Li

are resistance and inductance of the electromagnetic circuit for levitator i, M is mass of the
levitated body, and Ki

1, K
i
2, K

i
3, Qi are constants of the magnetic levitator i.

From this representation, and using the robust control toolbox in Matlab, a fast-rate,
local H∞ subcontroller for each single maglev is designed (T = 5ms). All the controllers are
very similar, and hence one of them is now presented as follows:

GR(z) =
u(z)
e(z)

=
10.845(z + 1)(z − 0.878)(z − 0.641)

(z + 0.93)
(
(z − 0.54)2 + 0.272

) . (6.3)

If the coupled global platform model is obtained (details omitted for brevity; more
information in [17]), the slow-rate, remote state feedback subcontroller will be designed.
First, denoting the state, input, and output vectors as

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1
I2
I3
z
ż
α
α̇
γ
γ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, u =

⎛

⎝
v1

v2

v3

⎞

⎠, y =

⎛
⎜⎜⎝

K1
3z1

K2
3z2

K3
3z3

⎞
⎟⎟⎠, (6.4)

where α, γ are angles of rotation of the levitated platform aroundX- and Y -axes, respectively,
and being vi = Liİi + Qiżi + RiIi. Then, the linearized state space for the coupled platform
yields

ẋ = Ax + Bu,

y = Cx,
(6.5)
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where

A =
(
A11 A12

A21 A22

)
,
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(6.6)

being, respectively, Jxx, Jyy moments of inertia around x- and y-axes of the levitated body.
From the previous model, the resulting state feedback controller in (3.14) obtained for

a decay rate β = 1.45 in (5.1) has the next gain matrix of dimensions 3 × 21:

F∗ =

⎛

⎝
−5.36 383.2 −0.63 44.76 −0.001 −0.008 0.57 0.001 0 0.22 0.12
−4.75 349.4 0.29 −20.32 −0.5 35.34 −0.003 0.33 −0.0003 −0.003 −0.120
1.963 395.7 −0.11 −23.14 −0.19 40.08 0.0004 −00002 0.06 0.0008 0.037

· · · −0.013 0.001 0.044 0 0.001 0.012 0 0.104 0.0004 0
· · · 0 0.194 −2.45 −0.008 −0.001 −0.02 0 −0.001 0.06 −0.001
· · · −0.0001 0.0001 0.007 0 0.042 −6.86 −0.004 0.001 0 −0.15

⎞

⎠.

(6.7)

As the design strategy contemplated in this example is the same than that used in [17],
the controllers obtained in both cases show negligible differences.

6.2.1. Control System Time Response

Once the dual-rate controller is designed, the next experiment is carried out in the proposed
network scenario (adding a nonstationary Kalman filter as a state observer) .

The experiment starts with the platform in equilibrium point, as shown in Figure 8.
In this figure, the top graphic shows the position error (center of mass), the middle one
shows the control signal applied to the maglev, and the bottom one shows the supervision
signal generated by the remote subcontroller and sent through the network to the local
subcontroller. For clarity, only one of the three control and supervision signals is plotted.
At time t = 1.75 s, some load (a coin of 2 euros, 8.5 g) is applied. After a transient, the system
reaches a new, stable equilibrium point, but with some position error (experiment 1). Possible
disturbances introduced by coupling between the three maglevs are compensated by the
coordinating remote subcontroller.

Next, as position error is presented, a new remote subcontroller that includes
accumulated error in system state is developed. So the controller is designed considering

(
xk+1

sk+1

)
=
(

A∗ 0
−C∗ I

)
·
(
xk

sk

)
+
(
B∗

−0
)
·Usr,k, (6.8)

where A∗, B∗, C∗ were introduced before (3.15), and the position error in C∗x will be zero in
steady state [31].

Following this reasoning, the system state vector is expanded by adding the
accumulated error for each one of the three maglevs. According to this new plant model, the
feedback state controller is recalculated via LMI gridding, obtaining a new state feedback gain
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Figure 8: Figure results for experiments 1 and 2.

F∗ with dimensions 3× 24 (details omitted for brevity). As shown in Figure 8 (experiment 2),
despite time-varying delays this new remote subcontroller (with the integral action) can keep
the platform stable even with load variations (coin), improving control system performance
with respect to that obtained in experiment 1 (which is related to [17]).

7. Conclusions

In this paper, in order to face arbitrary time-varying delays in a dual-rate NCS framework,
different stability conditions and a state feedback design approach are presented in terms of
LMIs. Multirate control techniques are proposed to avoid bandwidth limitations.

Regarding the stability conditions, three scenarios are treated: the robust case, the
probabilistic case, and its extension to the multiobjective case. With respect to the state
feedback controller, it is designed to assure robust stability for any possible time delay
measured for the considered network.

Experimental results from two different dual-rate NCS implementations (a crane sys-
tem over Ethernet, and a maglev-based platform over Profibus) validates the applicability of
these LMI-based dual-rate control techniques.
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The asymptotic parameter estimation is investigated for a class of linear stochastic systems with
unknown parameter θ : dXt = (θα(t) + β(t)Xt)dt + σ(t)dWt. Continuous-time Kalman-Bucy linear
filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis.
Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence
of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison
theorem.

1. Introduction

Stochastic differential equations (SDEs) are a natural choice to model the time evolution
of dynamic systems which are subject to random influences. Such models have been used
with great success in a variety of application areas, including biology, mechanics, economics,
geophysics, oceanography, and finance. For instance, refer to [1–8]. In reality, it is unavoidable
that a stochastic system contains unknown parameters. Since 1962, Arato et al. [10] first
applied parameter estimation to geophysical problem. Parameter estimation for SDEs has
attracted the close attention of many researchers, and many parameter estimation methods
for various advanced models have been studied, such as maximum likelihood estimation
(MLE), Bayes estimation (BE), maximum probability estimation (MPE), minimum distance
estimation (MDE), minimum contrast estimation (MCE), and M-estimation (ME). See [10–
15] for details.

In practice, most stochastic systems cannot be observed completely, but the develop-
ment of filtering theory provides an effective method to solve this problem. Over the past
few decades, a lot of effective approaches have been proposed to overcome the difficulties
in parameter estimation for stochastic models by filtering methods. It turns out to be
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helpful both in computability and asymptotic studies. See [9, 16–26]. In particular, the
parameter estimation has been studied based on filtering observation, and the strong con-
sistency property has also been shown in [27, 28]. In [29], a large deviation inequality has
been obtained which implies the strong consistency, local asymptotic normality, and the
convergence of moments. The asymptotic properties of estimators have been studied for a
class of special Gaussian Itô processes with noisy observations in [30]. It should be pointed
out that, so far, although the parameter estimation problem has been widely investigated for
SDEs, the parameter estimation problem for stock price model has gained much less research
attention due probably to the mathematical complexity.

Stock return volatility process is an important topic in options pricing theory. During
the past decades, many SDEs have been modeled to solve the financial problems. For
instance, refer to [2, 31–35]. Particularly, the so-called Hull-White model has been established
by Hull and White [34] to analyze European call options prices under stochastic volatility
at 1987. Using Taylor series expansion, an accurate formula for call options has been derived
where stock returns and stock volatilities are uncorrelated. In addition, the Hull-White model
readily lends itself to the estimation of underlying stochastic process parameters. Since the
Hull-White formula is an effective options pricing model, it has been widely used to model
the practice stock price problem. Therefore, it is reasonable to study the parameter estimation
problem for Hull-White model with unknown parameter. Unfortunately, to the best of the
authors’ knowledge, the parameter estimation for Hull-White model with unknown para-
meter based on Kalman-Bucy linear filtering theory has not been fully studied despite its
potential in practical application, and this situation motivates our present investigation.

Summarizing the above discussions, in this paper, we aim to investigate the parameter
estimation problem for a general class of linear stochastic systems. The main contributions of
this paper lie in the following aspects. (1) Kalman-Bucy linear filtering is used to solve the para-
meter estimation problem. (2) The asymptotic convergence of the estimator is investigated by analyzing
Riccati equation. (3) The strong consistent property is studied by comparison theorem. The rest of
this paper is organized as follows. In Section 2, we formulate the problem and state the well-
known fact which would be used later. In Section 3, we study the asymptotic convergence
of the estimator. In Section 4, the strong consistent of estimator is given. In Section 5, some
conclusions are drawn.

Notation. The notation used here is fairly standard except where otherwise stated. R =
(−∞,+∞) and R+ = [0,+∞). For a vector x =∈ R, |x| is the Euclidean norm (or L2 norm)
with |x| =

√
x · x. MT and M−1 represent the transpose and inverse of the matrix M.

det(M) denotes the determinant of the matrixM. I denotes the identity matrix of compatible
dimension. Moreover, let (Ω,F,P) be a complete probability space with a natural filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous, and F0 contains all P-null
sets). E[x] stands for the expectation of the stochastic variable x with respect to the given
probability measure P. C(R+) denotes the class of all continuous time on t ∈ R+.

2. Problem Statement

Hull-White model is a continuous-time, real stochastic process as follows:

Xt = X0 +
∫ t

0

(
α(s) + β(s)Xs

)
ds +

∫ t

0
σ(s)dWs (2.1)
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with initial value X0 as a Gaussian random variable, where α, β, σ are deterministic con-
tinuous functions on time t, Wt is a Brownian motion independent of the initial value X0.
Obviously, Hull-White model (2.1) is a general continuous-time linear SDE for Xt, and we
assume that the coefficient α contains an unknown parameter θ ∈ R as follows:

dXt =
(
θα(t) + β(t)Xt

)
dt + σ(t)dWt t ≥ 0, (2.2)

and we observe the process Xt by the following filtering observations:

dYt = μ(t)Xtdt + γ(t)dVt t ≥ 0, (2.3)

where μ, γ are deterministic bounded continuous functions on time t, and Vt is a Brownian
motion independent ofWt.

Now, our aim is to estimate θ in (2.2) based on the observation of (2.3). First, we can
use Bayesian analysis to deal with the unknown parameter θ. We model θ as a random vari-
able and denoted it as θ0. We assume θ0 normally distributed and independent of σ(Wt, Vt, t ≥
0). Then, we can rewrite (2.2) as a two-component system for (Xt, θt) as follows:

(
dXt

dθt

)
=
(
β(t) α(t)
0 0

)(
Xt

θt

)
dt +

(
σ(t)
0

)
dWt t ≥ 0. (2.4)

Similarly, filtering observations system (2.3) can be expressed as follows:

dYt =
(
μ(t) 0

)(Xt

θt

)
dt + γ(t)dVt t ≥ 0. (2.5)

Therefore, we can use the Kalman-Bucy linear filtering theory to estimate θ0 as follows:

θ̂t = E[θ0 | Ys, 0 ≤ s ≤ t], (2.6)

and moreover, we also have X̂t = E[Xt|Ys, 0 ≤ s ≤ t].
For given Gaussian initial conditions X0 and θ0, it is well known from Kalman-Bucy

linear filtering theory that error covariance matrix S(t) satisfies the following Riccati equa-
tion:

Ṡ(t) = AS + SAT − SCT
(
DDT

)−1
CS + BBT , (2.7)

where A =
(

β(t) α(t)
0 0

)
, B =

(
σ(t)
0

)
, C = (μ(t) 0), D = γ(t), and as we all know the error cova-

riance matrix S(t) is defined as follows:

S(t) =
(
Sxx(t) Sxθ(t)
Sθx(t) Sθθ(t)

)
=

⎛
⎜⎜⎝

E

[(
Xt − X̂t

)2]
E

[(
Xt − X̂t

)(
θ0 − θ̂t

)]

E

[(
Xt − X̂t

)(
θ0 − θ̂t

)]
E

[(
θ0 − θ̂t

)2]

⎞
⎟⎟⎠. (2.8)
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Set a = Sxx, b = Sxθ = Sθx, and c = Sθθ. From Riccati equation (2.7), one can get the following
system:

ȧ = 2βa + 2αb + σ2 − μ2

γ2
a2,

ḃ = βb + αc − μ2

γ2
ab,

ċ = − μ2

γ2
b2.

(2.9)

Remark 2.1. Equation (2.9) is a nontrivial nonlinear ordinary differential equation system,
and it is well known from the Kalman-Bucy linear filtering theory that such Riccati equations
have unique solutions for all t ∈ R+.

Remark 2.2. From the equation ċ = −(μ2/γ2)b2, we can see that the error variance E[(θ0 − θ̂t)2]
is monotonically decreasing.

3. Asymptotic Convergence Analysis

Assume that the initial conditions X0 and θ0 are independent and have nonvariances, so that
b(0) = 0 and a(0) = E[X2

0] > 0, c(0) = E[θ2
0] > 0; thus, S(0) is a regular matrix. For the

property of continuity of S(t), S−1(t) exists at least for small times. In order to obtain the rate
of convergence of the estimator, S(t) should satisfy the regularity conditions. The following
Theorem certifies the regularity of S(t).

Theorem 3.1. (a1) Assume the initial conditions X0 and θ0 for system (2.2) are independent and
have nonvanishing variances.

(a2) Let α(t), β(t), σ(t), μ(t), γ(t) ∈ C(R+).
Then, the error covariance matrix S(t) satisfies det(S(t)) > 0 for all t ≥ 0, and

Sxx(t) > 0, Sθθ(t) > 0 ∀t ≥ 0. (3.1)

Proof. By Kalman-Bucy linear filtering theory, we know that det(S(t)) > 0 for all t ≥ 0. Fur-
thermore, it is not difficult to show that (3.1) holds for all t ≥ 0.

Since det(S(t)) > 0, it follows that S−1(t) exists. Set

R(t) = S−1(t) =
(
e(t) f(t)
f(t) g(t)

)
. (3.2)

As we know that R = 1/S implies that Ṙ = −(1/S2)Ṡ, one can easily have that

Ṙ = −RṠR. (3.3)
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It follows readily form (2.9) and (3.3) that

Ṙ = −RA −ATR + CT
(
DDT

)−1
C − RBBTR. (3.4)

Using a similar computation as (2.9), we can get

ė =
μ2

γ2
− 2βe − σ2e2,

ḟ = − αe − βf − σ2ef,

ġ = − 2αf − σ2f2.

(3.5)

The condition (a1) shows that a(0) > 0, b(0) = 0, and c(0) > 0, which implies that e(0) > 0,
f(0) = 0, and g(0) > 0. Since the Riccati equations (2.9) have unique solutions on R+, thus
the nonlinear system (3.5) has a unique solution on R+. Furthermore, the first equation ė =
μ2/γ2 − 2βe − σ2e2 with initial condition e(0) > 0 has a unique solution on a maximal time
interval [0, T), where T ∈ R+. Assume that there exists a smallest time t ∈ (0, T) such that
e(t) = 0. By the property of continuity of e(t), we have e(t) > 0, for 0 ≤ t < t. Thus,

ė(t) = lim
Δt→ 0

e
(
t
)
− e
(
t −Δt

)

Δt
< 0, (3.6)

this contradicts with ė(t) = μ2(t)/γ2(t) − 2β(t)e(t) − σ2(t)e2(t) ≤ μ2(t)/γ2(t) for all t ∈ [0, T).
Therefore, e(t) > 0, for t ∈ [0, T).

As long as ė(t) = μ2(t)/γ2(t) − 2β(t)e(t) − σ2(t)e2(t) ≤ μ2(t)/γ2(t) for all t ∈ [0, T) and
μ(t), γ(t) are bounded, we have ė(t) ≤ C, where C is a constant. So that e(t) is bounded from
below by 0 and from above by e(0) + t, which implies that e(t) cannot explode in finite time,
thus T = +∞. This shows that system (3.5) has a unique solution on R+ because the second
equation is a linear equation for f which can be solved analytically on R+, and g can get by
integration.

Define h(t) := det(R(t)) = e(t)g(t) − f2(t). Since det(S(t)) > 0 for all t ≥ 0, thus h(t) =
det(R(t)) = 1/det(S(t)) > 0 for all t ≥ 0, moreover, Sθθ > 0 for all t ≥ 0. Finally, we assume that
there exists t0 such that, Sxx(t0) = 0, then g(t0) = Sxx(t0)h(t0) = 0, so that h(t0) = e(t0)g(t0) −
f2(t0) ≤ 0, and this contradicts h(t0) > 0. Hence, Sxx > 0 for all t ≥ 0.

The proof is complete.

In order to obtain the convergence rate, the Riccati equation must be solved, and we
just need the solution of (3.5). Now, we solve the equation ė = μ2/γ2 − 2βe − σ2e2 when
β, σ, μ, γ are equal to constants.

In the case e(0)/= l2, we get

e(t) =
l1 + l2L exp

[
(l1 + l2)σ2t

]

L exp[(l1 + l2)σ2t] − 1
, (3.7)
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where L = (e(0) + l1)/(e(0) − l2), l1 = (2β/σ2 +
√
4β2/σ4 + 4μ2/σ2γ2 )/2, l2 = (−(2β/σ2) +

√
4β2/σ4 + 4μ2/σ2γ2 )/2.

In the other case e(0) = l2, the solution shows that e(t) = l2 for all t ≥ 0.
Thus, for each α > 0, β > 0, σ > 0, μ > 0, γ > 0, the solution e(t) obviously satisfies

e(t) −→ l2 as t −→ +∞. (3.8)

The convergence rate of the estimator is given by following theorem.

Theorem 3.2. Assume that α, β, σ, μ, γ ∈ C(R+), are all bounded, and there are constants α1, α2, β1,
β2, σ1, σ2, μ1, μ2, γ1, γ2, and t0, such that

(b1) : 0 < α1 ≤ |α(t)| ≤ α2 for all t ≥ t0;

(b2) : 0 < β1 ≤ |β(t)| ≤ β2 for all t ≥ t0;

(b3) : 0 < σ1 ≤ |σ(t)| ≤ σ2 for all t ≥ t0;

(b4) : 0 < μ2 ≤ |μ(t)| ≤ μ1 for all t ≥ t0;

(b5) : 0 < γ1 ≤ |γ(t)| ≤ γ2 for all t ≥ t0;

(b6) : 2α1(β1 + σ2
1 l22) > σ2

2 l21 where l2i = (−2βi/σ2
i +
√
(4β2i )/(σ

4
i ) + (4μ2

i )/(σ
2
i γ2i ))/2, i =

1, 2.

Then, for arbitrary ε > 0 and T > 0, we have

P
(∣∣∣θ0 − θ̂t

∣∣∣ > ε
)
≤ 1

ε2
CT−1, (3.9)

where C is a positive constant independent of ε and T .

Proof. Let ei be the solution to ėi = μ2
i /γ

2
i − 2βiei − σ2

i e
2
i , i = 1, 2, and ei(t0) = e(t0).

Since μ2
2/γ

2
2 − 2β2e − σ2

2e
2 ≤ ė = μ2/γ2 − 2βe − σ2e2 ≤ μ2

1/γ
2
1 − 2β1e − σ2

1e
2 for all t ≥ t0,

by the comparison theorem [2, 36], we obtain that

e2(t) ≤ e(t) ≤ e1(t) ∀t ≥ t0. (3.10)

It follows from (3.7) that e is bounded, and for any given δ ∈ (0, 1), there is a t1 ≥ t0 such that

0 < l22(1 − δ) ≤ e(r) ≤ l21(1 + δ) ∀r ≥ t1. (3.11)
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For t ≥ t1, we can obtain from (3.5) and f(0) = 0 that

f(t) = −
∫ t

0
exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

= − exp

[
−
∫ t

0

(
β(r) + σ2(r)e(r)

)
dr

]∫ t1

0
exp

[∫s

0

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

−
∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds.

(3.12)

As β(r) + σ2(r)e(r) ≥ β1 + σ2
1 l22(1 − δ) holds for all t ≥ t1, thus, the first term in (3.12) goes to

0 as t → ∞. For the second term in (3.12), we have

∣∣∣∣∣

∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

∣∣∣∣∣

≤
∫ t

0
exp
[
−
(
β1 + σ2

1 l22(1 − δ)
)
(t − s)

]
l21(1 + δ)ds

=
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

∫ t

0
exp
[
−
(
β1 + σ2

1 l22(1 − δ)
)
(t − s)

]
d
(
β1 + σ2

1 l22(1 − δ)
)
s

=
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

(
1 − exp

[
−
(
β1 + σ2

1 l22(1 − δ)
)
t
])

≤ l21(1 + δ)
β1 + σ2

1 l22(1 − δ)
.

(3.13)

By similar arguments, we obtain that

∣∣∣∣∣

∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

∣∣∣∣∣ ≥
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

. (3.14)

Therefore, for any ξ > 0, there exists t(ξ) > 0 such that

l22(1 − δ)
β2 + σ2

2 l21(1 + δ)
≤ ∣∣f(t)∣∣ ≤ l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

∀t ≥ t(ξ). (3.15)
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For all t ≥ t(ξ), we can get from (3.5) that

ġ =
(
2|α| − σ2∣∣f

∣∣
)∣∣f
∣∣

≥
(
2α1 − σ2

2
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

)
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

=

(
2α1
(
β1 + σ2

1 l22
) − σ2

2(l21(1 + δ))

β1 + σ2
1 l22(1 − δ)

)
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

.

(3.16)

By assumption (b6), we get ġ > 0 for a sufficiently small ξ > 0. This implies that g(t) goes to
infinity at least as a linear function. Thus, there exists a constant C > 0, such that

E

(
θ0 − θ̂t

)2
= Sθθ =

e

h
≤ Ct−1. (3.17)

Hence, for arbitrary ε > 0 and all T > 0, it follows from Chebyshev’s inequality that

P
(∣∣∣θ0 − θ̂t

∣∣∣ > ε
)
≤ 1

ε2
CT−1. (3.18)

The proof is complete.

Remark 3.3. From the proof of Theorem 3.2, we can see that θ0 − θ̂t goes to 0 in L2-sense under
the given conditions. In other words, θ̂t is asymptotically unbiased.

Remark 3.4. It is well known that Kalman-Bucy linear filtering theory remains valid if one
replaces the Brownian motion (Wt, Vt) in systems (2.2) and (2.3) by an arbitrary centered
orthogonal increment process of the same covariance structure. Thus, Theorem 3.2 remains
valid under this replacement.

4. Strong Consistency

In last section, we give the conditions for the convergence rate of the estimator. Furthermore,
we use the comparison theorem to proof the strong consistency in this section. As we all
know, if the parameter θ is, a genuine Gaussian random variable, then we can have a clear
statistical interpretation for the convergence rate. Firstly, we pick θ0 at random; secondly, let
system (2.2) run up to time t and simultaneously observe Y by system (2.3); finally, compute
θ̂t as the following form.
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The Kalman-Bucy linear filtering theory shows us

(
dXt

dθt

)
=

(
A(t) − CT (t)C(t)

D2(t)
S(t)

)(
Xt

θt

)
dt +

C(t)
D2(t)

S(t)dYt

=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠

(
Xt

θt

)
dt +

μ2(t)
γ2(t)

(
Sxx(t)
Sθx(t)

)
dYt

(4.1)

with initial conditions X̂0 = E[X0] and θ̂0 = E[θ0]. If we denote that Φ(t) is the matrix funda-
mental solution of the deterministic linear system

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠

(
x(t)
y(t)

)
, (4.2)

then the solution to (4.1) is given by

(
X̂t

θ̂t

)
= Φ(t)Φ−1(0)

(
E[X0]
E[θ0]

)
+
∫ t

0
Φ(t)Φ−1(s)

(
Sxx(t)
Sθx(t)

)
dYs. (4.3)

And for every particular experiment ω, the quantity (θ0(ω) − θ̂t(ω))2 would be the squared
estimation error.

But in this paper θ is a fixed parameter, so we can only choose θ0(ω) = θ, and then
the statistical mean over different values of θ0(ω) has no experimental meaning. The true
estimation error is given by θ − θ̂t, not θ0 − θ̂t. It is therefore desirable that estimator θ̂t con-
verges to θ0 for “all fixed values υ = θ0” a.s. To establish such an assertion we work with a
product space (R × Ω,B(R) ⊗ F, η ⊗ P), where η denotes the law of θ0, and (Ω,F, P) is the
underlying probability space for Brownian motion (Wt, Vt)t≥0. This space is most appropriate
because one can make P a.s. statements for fixed υ ∈ R. Notice that in this representation we
have θ0(υ,ω) = υ for all (υ,ω) ∈ R ×Ω. Assuming this underlying probability space, we use
the comparison theorem to get the following consistency result.

In the proof of Theorem 3.2, we know that e, f is bonded and g is monotonically
increasing, moreover, Sxx(t) = a = g/h = g/(eg − f2) = (g − f2/e + f2/e)/(eg − f2) =
1/e + f2/e(eg − f2) and Sθx(t) = b = f/h = f/(eg − f2). Thus, there exist positive constants
a1, a2, b1, and b2 such that a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2.

Theorem 4.1. Assume that the following two conditions are satisfied:

(c1) : θ̂t converges to θ0 in L2(η ⊗ P);

(c2) : β2 − μ2
2/γ

2
2 < 0;

(c3) : (β2 − (μ2
2/γ

2
2 )a2)

2 − 4α2(μ2
2/γ

2
2 )b2 < 0.
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Then, for all fixed υ ∈ R, we have

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.4)

Proof. We will show that (4.4) holds for all υ ∈ Nc, where η(N) = 0.
By Kalman-Bucy linear filtering theory, we know

(
dXt

dθt

)
=

(
A(t) − CT (t)C(t)

D2(t)
S(t)

)(
Xt

θt

)
dt +

C(t)
D2(t)

S(t)dYt

=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠

(
Xt

θt

)
dt +

μ2(t)
γ2(t)

(
Sxx(t)
Sθx(t)

)
dYt

(4.5)

with initial conditions X̂0 = E[X0] and θ̂0 = E[θ0] = E[υ] = υ.
Since the following linear equations:

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠

(
x(t)
y(t)

)
(4.6)

equal to

ẋt =

[
β(t) − μ2(t)

γ2(t)
Sxx(t)

]
x(t) + α(t)Y (t),

ẏt = − μ2(t)
γ2(t)

Sθx(t)x(t),

(4.7)

it follows from (c1)–(c3) that

β1 −
μ2
1

γ21
a1 ≤ β(t) − μ2(t)

γ2(t)
Sxx(t) ≤ β2 −

μ2
2

γ22
a2 < 0,

α1 ≤ α(t) ≤ α2,

−μ
2
1

γ21
b1 ≤ −μ

2(t)
γ2(t)

Sθx(t) ≤ −μ
2
2

γ22
b2.

(4.8)
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For linear equations:

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎜⎜⎝

β1 −
μ2
1

γ21
a1 α1

−μ
2
1

γ21
b1 0

⎞
⎟⎟⎟⎟⎟⎠

(
x(t)
y(t)

)
,

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎜⎜⎝

β2 −
μ2
2

γ22
a2 α2

−μ
2
2

γ22
b2 0

⎞
⎟⎟⎟⎟⎟⎠

(
x(t)
y(t)

)
,

(4.9)

if we setΦ1(t) andΦ2(t) that are the matrix fundamental solution of (4.9), we can obtain from
the comparison theorem that

Φ1(t) ≤ Φ(t) ≤ Φ2(t). (4.10)

It is not difficult to explore (4.9), and get

Φ1(t) =

⎛
⎜⎜⎜⎝

− λ′1
N21

eλ
′
1t − λ′2

N21
eλ

′
2t

eλ
′
1t eλ

′
2t

⎞
⎟⎟⎟⎠, Φ2(t) =

⎛
⎜⎜⎝

− λ1
M21

eλ1t − λ2
M21

eλ2t

eλ1t eλ2t

⎞
⎟⎟⎠,

Φ−1
1 (t) =

⎛
⎜⎜⎜⎜⎜⎝

− N21

λ′1 − λ2
e−λ

′
1t − λ′2

λ′1 − λ′2
e−λ

′
1t

N21

λ′1 − λ′2
e−λ

′
2t

λ′1
λ′1 − λ′2

e−λ
′
2t

⎞
⎟⎟⎟⎟⎟⎠

, Φ−1
2 (t)

⎛
⎜⎜⎜⎜⎝

− M21

λ1 − λ2
e−λ1t − λ2

λ1 − λ2
e−λ1t

M21

λ1 − λ2
e−λ2t

λ1
λ1 − λ2

e−λ2t

⎞
⎟⎟⎟⎟⎠

,

(4.11)

whereN11 = β1−(μ2
1/γ

2
1 )a1, N12 = α1, N21 = (μ2

1/γ
2
1 )b1, λ

′
1 = (N11+

√
N2

11 − 4N12N21)/2, λ′2 =

(N11 −
√
N2

11 − 4N12N21)/2, M11 = β2 − (μ2
2/γ

2
2 )a2, M12 = α2, M21 = (μ2

2/γ
2
2 )b2, λ1 = (M11 +√

M2
11 − 4M12M21)/2,λ2 = (M11 −

√
M2

11 − 4M12M21)/2.
By assumption (c2) and (c3), we know that λ′1 < 0, λ′2 < 0, λ1 < 0, and λ2 < 0.
By the ODE theory [37, 38] and above discussion, we know that the solution of (4.1) is

given by

(
X̂t

θ̂t

)
= Φ(t)Φ−1(0)

(
E[X0]
E[θ0]

)
+
∫ t

0
Φ(t)Φ−1(s)

(
Sxx(t)
Sθx(t)

)
dYs. (4.12)
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Using the similar method, we can also obtain the solutions for the following two equations:

(
dX̂t

dθ̂t

)
=

⎛
⎜⎜⎜⎜⎜⎝

β1 −
μ2
1

γ21
a1 α1

−μ
2
1

γ21
b1 0

⎞
⎟⎟⎟⎟⎟⎠

(
X̂t

θ̂t

)
dt +

μ1

γ1

(
a1

b1

)
dYt, (4.13)

(
dX̂t

dθ̂t

)
=

⎛
⎜⎜⎜⎜⎜⎝

β2 −
μ2
2

γ22
a2 α2

−μ
2
2

γ22
b2 0

⎞
⎟⎟⎟⎟⎟⎠

(
X̂t

θ̂t

)
dt +

μ2

γ2

(
a2

b2

)
dYt, (4.14)

where X̂0 = E[X0] and θ̂0 = E[θ0] = E[υ] = υ.
The solutions of the two equations are explored as the following form:

(
X̂t

θ̂t

)
= Φ1(t)Φ−1

1 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ1(t)Φ−1

1 (s)
(
a1

b1

)
dYs,

(
X̂t

θ̂t

)
= Φ2(t)Φ−1

2 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ2(t)Φ−1

2 (s)
(
a2

b2

)
dYs.

(4.15)

For (4.14), we have that

(
X̂t

θ̂t

)
= Φ2(t)Φ−1

2 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ2(t)Φ−1

2 (s)
(
a2

b2

)
dYs (4.16)

yields that

θ̂t =
∫ t

0

[
a2

(
M21

λ1 − λ2
e−λ2(t−s) − M21

λ1 − λ2
e−λ2(t−s)

)
+ b2

(
λ1

λ1 − λ2
e−λ2(t−s) − λ2

λ1 − λ2
e−λ2(t−s)

)]
dYs

+
(

M21

λ1 − λ2
e−λ2t − M21

λ1 − λ2
e−λ2t

)
X0 +

(
λ1

λ1 − λ2
e−λ2t − λ2

λ1 − λ2
e−λ2t

)
θ0.

(4.17)

Since λ1 < 0 and λ2 < 0, it is easy to get

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.18)

For (4.13), we can also get

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.19)



Mathematical Problems in Engineering 13

Hence, for (4.1), we can get the following result:

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.20)

The proof is complete.

Remark 4.2. Under the probability space used in this paper, we can see that Theorem 3.2 is the
particular form of Theorem 4.1 if we use Chebyshev’s inequality on the result of Theorem 4.1.

Remark 4.3. The strong consistency in Deck [30] requires that θ̂t is a martingale, while, in our
result, θ̂t can be not a martingale. Furthermore, when θ̂t is a martingale, our result is more
strong than Deck’s, so in that case we can relax the conditions as Deck.

5. Conclusions

In this paper, we have investigated the parameter estimation problem for a class of linear
stochastic systems called Hull-White stochastic differential equations which are important
models in finance. Firstly, Bayesian viewpoint is first chosen to analyze the parameter
estimation problem based on Kalman-Bucy linear filtering theory. Secondly, some sufficient
conditions on coefficients are given to study the asymptotic convergence problem. Finally, the
strong consistent property of estimator is discussed by Kalman-Bucy linear filtering theory
and comparison theorem.
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Gradient-based algorithms are efficient to compute numerical solutions of optimal control prob-
lems for hybrid systems (OCPHS), and the key point is how to get the sensitivity analysis of the
optimal control problems. In this paper, optimality condition-based sensitivity analysis of optimal
control for hybrid systemswithmode invariants and control constraints is addressed under a priori
fixed mode transition order. The decision variables are the mode transition instant sequence and
admissible continuous control functions. After equivalent transformation of the original problem,
the derivatives of the objective functional with respect to control variables are established based on
optimal necessary conditions. By using the obtained derivatives, a control vector parametrization
method is implemented to obtain the numerical solution to the OCPHS. Examples are given to
illustrate the results.

1. Introduction

In many fields of applications, such as powertrain systems of automobiles and multistage
chemical processes, dynamics of the systems involve a sequence of distinct modes with fixed
mode transition order, forming a hybrid system characterized by the coexistence and inter-
action of discrete and continuous dynamics (the mode is commonly denoted by a discrete
state of the systems in hybrid systems literature). To achieve some overall optimal perfor-
mance for the systems, the duration and the admissible continuous control function of each
mode must be determined as a whole [1–3]; thus, it necessitates the use of theories and
techniques for the analysis and synthesis of hybrid dynamical systems. With the growing
importance of hybrid models, various classes of hybrid systems for analysis, design, and
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optimization have been addressed by research communities in recent years. For more discus-
sions on various literature results, the reader is referred to [4–8], and the references therein.

The existed results on OCPHS can be divided into the following two categories. One is
about the optimal control theory onOCPHS. The theory inherits conventional optimal control
theory and can be regarded as the extension of conventional optimal control theory [3, 9–14].
When control can take any value, Xu and Antsaklis [3] and Hwang et al. [9] addressed the
variational method for hybrid systems. Sussmann [10], Shaikh and Caines [11], and Dmitruk
and Kaganovich [12] established the Maximum Principle for hybrid systems with control
constraints. Branicky et al. [14] and Bensoussan and Menaldi [13] provided the dynamic
programming principle for general hybrid systems.

The other results focus on how to compute optimal control for OCPHS, which can
be carried out by using a wide variety of methods (see [3, 6, 11, 15–20] and the references
therein). Given a prespecified order of mode transitions, Xu and Antsaklis [3] obtained
the optimal continuous control and optimal switching instants based on parameterization
of the switching instant for switching hybrid systems with free control. Under a fixed
switching sequence of modes, Attia et al. [19] considered an optimization problem for a
class of impulsive hybrid systems where continuous control function is not involved. When
switching hybrid systems with control constraints are considered, Shaikh and Caines [11]
proposed two algorithms for obtaining the optimal control. As far as switching hybrid
systems without external continuous control function are concerned, Egerstedt et al. [6] and
Johnson and Murphey [18] derived the gradients and second-order derivatives of the cost
functional, respectively, and used them to design an associated algorithm to get the mode
transition instants. Based on the hybrid Maximum Principle, Taringoo and Caines [20]
provided gradient geodesic and Newton geodesic algorithms for the optimization of autono-
mous hybrid systems, and convergence analysis for the algorithms was also provided. From
the view of dynamic programming, Seatzu et al. [16] provided an optimal state feedback
control law to switched piecewise affine autonomous systems. Generally, these algorithms
pose the hierarchy [17, 21, 22], and the basic module of the hierarchical algorithms is how
to get optimal continuous control and optimal mode transition instants, though the main
challenge of OCPHS is how to get the optimal mode transition order. The basic module of the
hierarchical algorithms is commonly gradient based due to that gradient information can
provide a better searching direction and hence reduce computation burden and help the
gradient-based algorithms converge quickly, which motivates us to pay attention to the
sensitivity analysis of optimal control for hybrid systems.

Although the derivative of cost functional with respect to switching instants has been
discussed in the aforementioned literature [3, 6, 18], the derivative of cost functional with
respect to control function is not involved. When hybrid systems are considered, due to
the coexistence and interaction of discrete and continuous dynamics, the derivative of cost
functional w.r.t control functions is nontrivial and is not directly formulated by ∂H/∂u as
conventional optimal control indicates, whereH is the Hamiltonian function. The derivative
will be a function of the derivatives of continuous states w.r.t control functions at the instants
of subsequent modes. In this paper, the derivatives of cost functional w.r.t control functions
are established analytically, which can facilitate the design of associated gradient-based
algorithms.

Motivated by the work of Vassiliadis et al. [1, 2] and Jennings et al. [23], in this
paper, optimal control problem of hybrid systems (OCPHS) with mode invariants which
describe the conditions that continuous states have to satisfy at this mode are considered.
Based on optimal necessary conditions, the derivatives of the objective functional w.r.t control
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variables, that is, the mode transition instant sequence and admissible continuous control
functions, are derived analytically. As a result, a control vector parametrization method is
implemented to obtain the numerical solution to optimal control of the hybrid systems with
the obtained derivatives. The sensitivity analysis in Vassiliadis et al. [1, 2] is similar to the
work, in which the sensitivity of states w.r.t control parameters is directly obtained from the
state equations and the sensitivity of objective functional with respect to control parameters
is not involved. In contrast, this paper derives the derivatives of cost functional w.r.t control
variables based on the optimality conditions and gives the explicitly expression of the deriva-
tives. Therefore, the main contributions of this paper are listed as follows. (a)Optimality con-
ditions-based sensitivity analysis of optimal control for hybrid systems with mode invariants
are given explicitly, and (b) following the given derivatives, a control vector parameterization
method is designed to obtain the numerical solution. Compared with the existing results on
the OCPHS with fixed mode transition order, the settings in this paper cover not only the
control constraints, but also the continuous states constraints, which makes the results here
more general.

The paper is organized as follows. In the next section, the hybrid system with mode
invariants and its optimal control problem are formulated. In Section 3, the equivalent prob-
lem and associated optimal conditions are analyzed. The derivatives of the objective func-
tional w.r.t control variables are established in Section 4, and a control vector parametriza-
tion approach is also proposed in this section. Some numerical examples are presented in
Section 5, and Section 6 contains conclusions.

Terminology and Notation

N denotes the set of positive integers. R and R+ denote the set of real numbers and non-
negative real numbers, respectively. AT denotes the transpose of a vector (or a matrix) A.
Cl([a, b],Rn) denotes the family of continuous functions f from [a, b] to R

n with up to l order
derivatives. ‖ · ‖ denotes the Euclidean norm.

2. Hybrid Systems and Its Optimal Control Problem

2.1. Hybrid Systems

Engineered systems, such as chemical engineering systems and powertrain systems of
automobiles, always undergo multiple modes which are represented by a discrete state i
taking values from set I .= {1, 2, . . . ,M} and pose hybrid characters. The evolution of discrete
state i is determined by mode transition sequence. A mode transition sequence schedules the
sequence of active modes ij , ij ∈ I and is a sequence of pairs of (tj−1, ij), which can be defined
by {(t0, i1), (t1, i2), . . .} .= (θ, π) where θ

.= {t0, t1, . . .} and π
.= {i1, i2, . . .} are referred to as

mode transition instants and mode transition order, respectively. A pair of (tj−1, ij) indicates
that at instant tj−1, the hybrid system transits from mode ij−1 to mode ij . During the time
interval [tj−1, tj), mode ij is active and unchanged.

The mode transition order π of the considered hybrid dynamical systems is known a
priori. Without loss of generality, it is supposed that themode transition order is {i1, i2, . . . , iK}
over the finite horizon [t0, tf], ij ∈ I, j = 1, 2, . . . , K. Moreover, according to each distinct
mode, the continuous states are restricted in a specified range which is referred to as mode
invariants. Here, the mode invariants are formulated by a set of inequalities. Thus, for each
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mode ij ∈ I and its active horizon [tj−1, tj), the dynamics of the considered systems can be
formulated by

ẋ = fij (x, u),

pij (x) < 0,

x
(
tj−1
)
= ψij

(
x
(
t−j−1
))

,

gij
(
x
(
t−j
))

= 0,

(2.1)

where x ∈ R
n, u ∈ Uij ⊆ R

m is a piecewise continuous function, fij : R
n × Uij → R

n, tj is the
mode transition instant when a particular mode transition occurs, pij , ψij , and gij are hij < n,
n and rij ≤ n dimensional vectors for ij ∈ I, respectively. n,m, hij , rij ∈ N. To make the hybrid
systems formulated by (2.1) well defined, the following assumption is needed.

Assumption 2.1. For any ij ∈ I, fij ∈ Cl(Rn × Uij ;R
n), l ≥ 1, l ∈ N, and such that a uniform

Lipschitz condition holds, that is, there exists Kf < ∞ such that

∥∥∥fij (x, u) − fij
(
x′, u

)∥∥∥ ≤ Kf

∥∥x − x′∥∥, (2.2)

where x, x′ ∈ R
n, u ∈ Uij .

Remark 2.2. pij (x) < 0 indicates mode invariant for mode ij ∈ I, which describes the con-
ditions that the continuous states have to satisfy at this mode and can be referred to as the
path constraints of the continuous states in Vassiliadis et al. [1, 2].

Remark 2.3. gij (x(t
−
j )) = 0 can be referred to as mode transition conditions which describe

the conditions on the continuous states under which a particular mode transition takes place.
When mode ij is active over [tj−1, tj), then, at t−j , x meets an (n − rij )-dimensional smooth
manifold Sij = {x | gij (x) = 0} and mode transition from ij to ij+1 occurs. The mode transition
conditions implicitly define the mode ij ’s active horizon [tj−1, tj). To prevent Zeno behavior
from occurrence, tj−1 < tj is assumed. Physically, the mode transition conditions are always
the boundary of closure of the mode invariant pij < 0.

Remark 2.4. x(tj−1) = ψij (x(t
−
j−1)) is the outcome of themode transition and describes the effect

that the transition will have on the continuous states. It can be viewed as junction conditions
in Vassiliadis et al. [1, 2]. It is assumed that ψij ∈ Cl(Rn), l ≥ 1, l ∈ N.

Remark 2.5. Basically, for general hybrid systems, the evaluation of i should be formulated
by a function of impulsive control or a graph, which generates mode transition sequence, as
formulated in Song and Li [24] and Cassandras and Lygeros [8]. However, the order of the
mode transition π is known a prior here thus, the evaluation of i is determined only by the
transition instants tj , and the evaluation function of i is omitted here.

Besides Assumption 2.1, to make the considered systems to be well defined, there are
some additional assumptions on mode invariants and mode transition conditions should be
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imposed. Here, it is supposed that the mode invariants and mode transition conditions meet
the requirements as in Taringoo and Caines [20].

2.2. Optimal Control Problem for Hybrid Systems

Let Li ∈ Cl(Rn×Ui;R) be a running cost function, ϕij ∈ Cl(Rn;R+) be a discrete state transition
cost function, and φ ∈ Cl(Rn;R+) be a terminal cost function, i, j ∈ I, l ≥ 1, l ∈ N, respectively.
The optimal control problem for the hybrid systems (2.1) is stated as follows.

Optimal Problem A

Consider a hybrid system formulated by (2.1), given a fixed time interval [t0, tf] and a
prespecified mode transition order π = {i1, i2, . . . , iK}, find a continuous control u ∈ Uij in
each mode ij ∈ I and mode transition instants θ = {t1, . . . , tK−1}, such that the corresponding
continuous state trajectory x departs from a given initial state x(t0) = x0 andmeets an (n− lf)-
dimensional smooth manifold Sf = {x | ϑ(x) = 0, ϑ : R

n → R
lf }, lf ∈ N, at tf and the cost

functional

J(θ, u) = φ
(
x
(
tf
))

+
∫ tf

t0

Li(t)(x(t), u(t))dt +
K−1∑

j=1

ϕij ij+1

(
x
(
t−j
))

(2.3)

is minimized.

Remark 2.6. As it is well known, when t0 and tf are unknown points in some fixed interval
T ⊂ R+, this problem can be transformed to one with fixed time essentially by introducing an
additional state variable.

There are fruitful strategies about how to compute OCPHS (see [15] and the references
therein), and the basic idea is briefly reviewed as follows for completeness.

Obtaining the optimal control for hybrid systems is very difficult due to the inter-
actions between the continuous states and discrete states which produce a mode transition
sequence that increases the feasibility range of the decision variables. One algorithm frame-
work for dealing with this complexity is the decomposition method as follows:

min
((π,θ),u)

J((π, θ), u) = min
(π,θ)

min
u

J(u | (π, θ)) = min
π

min
θ

min
u

J((u, θ) | π), (2.4)

where J(· | b)means that b is given.
According to this framework, the master problem is how to get the optimum of the

inner functional, that is, minimize J(u, θ) given π . The key point of finding the optimal solu-
tion of J(u, θ) is how to get the sensitivity of the objective with respect to control variables,
which provides a better direction for searching and hence reduces computational burden
and help associated algorithms converge quickly and accelerate the primary problem con-
vergence eventually.

In next section, the derivatives of cost functional with respect to control variables
are established analytically based on optimality condition, which can facilitate the design
of associated gradient-based algorithms.
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3. Equivalent Problem and Its Optimal Conditions

When control vector parametrization methods are implemented to obtain numerical solution
to the OCPHS, updating the parameters of control profiles should be at the same time point
when iterative procedure is running. However, the fact is that the mode active horizon
[tj−1, tj) for mode ij ∈ I is varying during the procedure running, so a fixed horizon should be
introduced, which will guarantee the updating of parameters of control profiles is at the same
time point. For this purpose, let τ ∈ [0, K] be a time independent variable, and t ∈ [tj−1, tj)
can be formulated by

t = tj−1 +
(
τ − (j − 1

))(
tj − tj−1

)
, τ ∈ [j − 1, j

)
, j = 1, . . . , K. (3.1)

In addition, to deal with mode invariants constraints pij (x) < 0, slack algebraic

variable sij = [sij1, . . . , sijhij
]T ∈ R

hij

+ is introduced for each mode ij ∈ I, such that pij (x) +
diag[sij1, . . . , sijhij

]sij = 0. For τ ∈ [j − 1, j), denote xj(τ)
.= x(tj−1 + (τ − (j − 1))(tj − tj−1)),

uj(τ)
.= u(tj−1 + (τ − (j − 1))(tj − tj−1)), sj(τ)

.= sij (tj−1 + (τ − (j − 1))(tj − tj−1)), and let
x = [x1, . . . , xK]

T , u = [u1, . . . ,uK]
T , and s = [s1, . . . , sK]

T .
According to the above definition, the Optimal Problem A can be transcribed into an

equivalent Optimal Problem B as follows:

Optimal Problem B

Given a fixed interval [0, K], find continuous inputs u ∈ Ui1 × · · · × UiK , s ∈ R
hi1
+ × · · · × R

hiK
+

and θ, such that the corresponding continuous state trajectory x1 departs from a given initial
state x1(0) = x0 and xK meets an (n − lf)-dimensional smooth manifold Sf = {xK | ϑ(xK) =
0, ϑ : R

n → R
lf } at K, and the cost functional

J̃(θ,u, s) = φ(xK(K)) +
K∑

j=1

∫ j

j−1
L̃ij

(
xj(τ),uj(τ), sj(τ)

)
dτ +

K−1∑

j=1

ϕij ij+1

(
xj
(
j−
))

(3.2)

is minimized, subject to

dxj(τ)
dτ

= f̃ij
(
xj(τ),uj(τ)

) .=
(
tj − tj−1

)
fij
(
xj(τ),uj(τ)

)
,

xj
(
j − 1

)
= ψij

(
xj−1
((

j − 1
)−))

,

gij
(
xj
(
j−
))

= 0,

(3.3)

where

L̃ij

(
xj ,uj , sj

)
=
(
tj − tj−1

)
Lij , Lij = Lij

(
xj ,uj

)
+M

hij∑

l=1

(
pij l
(
xj
)
+ s2ij l

)2
, (3.4)

and M is a large positive constant.
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According to Theorems 2 and 3 in Dmitruk and Kaganovich [12], when M is big
enough Optimal Problem B is equivalent to Optimal Problem A.

Remark 3.1. The penalty function term, say, M
∑hij

l=1(pij l(xj) + s2
ij l
)2, cannot always guarantee

the state satisfies the mode invariant conditions. However, the methodworks well in practice;
moreover, the mode transition order is fixed in this paper which reduces the negative effect
of the penalty function method for OCPHS.

For τ ∈ [j − 1, j), j = 1, . . . , K, let λj ∈ R
n, and define Hamiltonian function Hj by

Hj

(
λj , xj ,uj , sj

)
= L̃ij

(
xj ,uj , sj

)
+ λTj f̃ij

(
xj ,uj

)
, (3.5)

and according to Sussmann [10], Shaikh and Caines [11], and Dmitruk and Kaganovich [12],
the following Theorem 3.2 holds.

Theorem 3.2. In order that u and s are optimal for Optimal Problem B, it is necessary that there exist
vector functions λj , j = 1, . . . , K, such that the following conditions hold:

(a) for almost any τ ∈ [j − 1, j), the following state equations hold:

dxj(τ)
dτ

= f̃ij
(
xj(τ),uj(τ)

)
, (3.6)

(b) for almost any τ ∈ [j − 1, j), the following costate equations hold:

λ̇j = −
(

∂L̃ij

∂xj

)T

−
⎛

⎝∂f̃ij
∂xj

⎞

⎠
T

λj , (3.7)

(c) for a.e. τ ∈ [j − 1, j),

Hj

(
λ∗j , x

∗
j ,u

∗
j , s

∗
j

)
= 0, (3.8)

(d) minimality condition: for all τ ∈ [j − 1, j),

min{
uj∈Uij

,sj∈R

hij
+

}Hj

(
λ∗j , x

∗
j ,uj , s∗j

)
= 0,

(3.9)
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(e) transversality conditions for λj ,

λj+1
(
j
)
= βj , j = 1, . . . , K − 1,

λj
(
j−
)
=

(
∂gij

∂xj
(
j−
)
)T

αj −
(

∂ψij+1

∂xj
(
j−
)
)T

βj +

(
∂ϕij ij+1

∂xj
(
j−
)
)T

, j = 1, . . . , K − 1,

λK(K) =
(

∂φ

∂xK(K)

)T

+
(

∂ϑ

∂xK(K)

)T

αK,

(3.10)

where αj ∈ R
hi , βj ∈ R

n are Lagrangian multipliers. Based on Theorem 3.2, the sensitivity analysis is
established in the next section for Optimal Problem B.

4. Sensitivity Analysis and Parametrization Method

For finding numerical solution to the OCPHS effectively, based on Theorem 3.2, the deriva-
tives of the objective functional J̃(·) with respect to the control u, s, and the mode transition
instant tj , j = 1, . . . , K−1 are established in this section, and by using the obtained derivatives
associated parametrization method is proposed.

4.1. Sensitivity Analysis

Lemma 4.1. The derivatives of xj(j−), j = 1, . . . , K, w.r.t tk and uk are given, respectively, as follows
for k = 1, . . . , K − 1,

dxj
(
j−
)

dtk
= 0, j = 1, . . . , k − 1,

dxk(k−)
dtk

= fik
(
xk
(
k−),uk

(
k−)),

dxk+1
(
(k + 1)−

)

dtk
= Ωk+1,

dxj
(
j−
)

dtk
=

[
j∏

l=k+2

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)
]
Ωk+1, j = k + 2, . . . , K,

(4.1)

δxj
(
j−
)

δuk
= 0, j = 1, . . . , k − 1,

δxk(k−)
δuk

= Γk(τ),

δxj
(
j−
)

δuk
=

j∏

l=k+1

[
Φl(l, l − 1)

dψil

dxl−1
(
(l − 1)−

)
]
Γk(τ), j = k + 1, . . . , K,

(4.2)
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where

Ωk+1 = Φk+1(k + 1, k)
dψik+1

dxk(k−)
fik
(
xk
(
k−),uk

(
k−)) − fik+1(xk+1(k),uk+1(k)),

Γk(τ) = (tk − tk−1)Φk(k, τ)
∂fik
∂uk

, Φl(τ, v) = exp
(∫ τ

v

(tl − tl−1)
∂fil
∂xl

da

)
.

(4.3)

Note that x(tj) is a functional vector of uk, and the expression δxj/δuk is used, where
the notation δxj/δuk is the functional derivatives which describe the response of the func-
tional xj to an infinitesimal change in the function uk at each point.

Proof. The proof of (4.1) is only going to be shown for easily reading. The proof for (4.2) can
be found in Appendix.

When j = 1, . . . , k − 1, xj(j−) and xj+1(j) are independent of tk, and obviously dxj(j−)/
dtk = 0 holds. In the case of j = k, xk(k−) is a function of tk which gives rise to dxk(k−)/dtk =
fik(xk(k

−),uk(k−)).
Case i. (j = k + 1). In this case, xk+1 is a function of tk and xk+1(k), and we have

dxk+1(τ)
dtk

=
∂xk+1
∂tk

+
∂xk+1

∂xk+1(k)
∂xk+1(k)

∂tk
. (4.4)

Note that in (4.4), ∂xk+1/∂tk is produced by the perturbation of tk, and (∂xk+1/
∂xk+1(k))(∂xk+1(k)/∂tk) is produced by the perturbation of xk+1(k) with respect to tk. Obvi-
ously, for τ ∈ [k, k + 1),

∂xk+1(τ)
∂tk

= −fik+1(xk+1(k),uk+1(k)). (4.5)

The solution to ∂xk+1(τ)/∂xk+1(k) is given by

∂xk+1(τ)
∂xk+1(k+)

= I + (tk+1 − tk)
∫ τ

k

∂fik+1
∂xk+1

∂xk+1(v)
∂xk+1(k)

dv. (4.6)

Equation (4.6) is a linear system about ∂xk+1/∂xk+1(k). Define the state transition
matrix Φl(τ, v) by

Φl(τ, v) = exp
(∫ τ

v

(tl − tl−1)
∂fil(a)
∂xl(a)

da

)
, (4.7)

according to (4.6), and we have

∂xk+1(τ)
∂xk+1(k)

= Φk+1(τ, k). (4.8)
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Thus,

dxk+1(τ)
dtk

= Φk+1(τ, k)
∂xk+1(k)

∂tk
− fik+1(xk+1(k),uk+1(k)). (4.9)

At transition instants tj , since xj+1(j) = ψij+1(xj(j
−)), so

dxj+1
(
j
)

dtk
=

dψij+1

dxj
(
j−
)
dxj
(
j−
)

dtk
, (4.10)

which implies

∂xk+1(k)
∂tk

=
dψik+1

dxk(k−)
dxk(k−)

dtk
=

dψik+1

dxk(k−)
fik
(
xk
(
k−),uk

(
k−)). (4.11)

According to (4.9), and we have

dxk+1
(
(k + 1)−

)

dtk
= Φk+1(k + 1, k)

dψik+1

dxk(k−)
fik
(
xk
(
k−),uk

(
k−))

− fik+1(xk+1(k),uk+1(k))
.= Ωk+1.

(4.12)

Case ii. (j = k + 2, . . . , K). When j = k + 2, . . . , K, the following holds:

dxj(τ)
dtk

=
dxj
(
j − 1

)

dtk
+
(
tj − tj−1

) ∫ τ

j−1

∂fij
∂xj

dxj(v)
dtk

dv, τ ∈ [j − 1, j
)
. (4.13)

Then,

dxj(τ)
dtk

= Φj

(
τ, j − 1

)dxj
(
j − 1

)

dtk
. (4.14)

Substituting the term dxj(j − 1)/dtk in (4.14) by (4.10), we obtain

dxj
(
j−
)

dtk
=

[
j∏

l=k+2

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)
]
Ωk+1. (4.15)
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Theorem 4.2. The derivatives of the objective functional J̃(·) w.r.t tk, uk and sk are given, respec-
tively, as follows:

dJ̃

dtk
= Lik

(
xk
(
k−),uk

(
k−), sk

(
k−)) − Lik+1(xk+1(k),uk+1(k), sk+1(k))

+ λk
(
k−)Tfik

(
xk
(
k−),uk

(
k−)) − λk+1(k)

Tfik+1(xk+1(k),uk+1(k))

−
K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk
− αT

K

∂ϑ

∂xK(K)
dxK(K)

dtk

δJ̃

δuk
=

∂Hk

∂uk
−

K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)
δxj
(
j−
)

δuk
− αT

K

∂ϑ

∂xK(K)
δxK(K)
δuk

δJ̃

δsk
=

∂Hk

∂sk
.

(4.16)

Before proving Theorem 4.2, Lemma 4.3 is firstly given as follows.

Lemma 4.3. For j = k + 2, . . . , K,

d

dtk

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ = λj

(
j − 1

)T dxj
(
j − 1

)

dtk
− λj
(
j−
)T dxj

(
j−
)

dtk
. (4.17)

Proof. For any j = k + 2, . . . , K, we have

d

dtk

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ =

∫ j

j−1

d

dtk

(
Hj

(
λj , xj ,uj , sj

) − λTj f̃ij

)
dτ

=
∫ j

j−1

⎛

⎝∂Hj

∂xj

dxj
dtk

+
∂Hj

∂λj

dλj

dtk
−
(

dλj

dtk

)T

f̃ij − λTj
d

dtk
f̃ij

⎞

⎠dτ.

(4.18)

Since the following holds by Theorem 3.2,

(
∂Hj

∂xj

)T

= −λ̇j ,
(

∂Hj

∂λj

)T

= f̃ij , (4.19)
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then

d

dtk

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ =

∫ j

j−1

⎛

⎝−(λ̇j
)T dxj

dtk
+
(
f̃ij

)T dλj
dtk

−
(

dλj

dtk

)T

f̃ij − λTj
d

dtk
f̃ij

⎞

⎠dτ

=
∫ j

j−1

(
−(λ̇j

)T dxj
dtk

− λTj
d

dtk
f̃ij

)
dτ = −

∫ j

j−1

d

dτ

(
λTj

dxj
dtk

)
dτ

= λj
(
j − 1

)T dxj
(
j − 1

)

dtk
− λj
(
j−
)T dxj

(
j−
)

dtk
.

(4.20)

Obviously, when j = k, k + 1, we have

d

dtk

∫k

k−1
L̃ik(xk,uk, sk)dτ =

d

dtk

∫ tk

tk−1
Lik(x, u, sik)dt = Lik

(
xk
(
k−),uk

(
k−), sk

(
k−)),

(4.21)

d

dtk

∫k+1

k

L̃ik+1(xk+1,uk+1, sk+1)dτ = λk+1(k)
T dxk+1(k)

dtk
− λk+1

(
(k + 1)−

)T dxk+1
(
(k + 1)−

)

dtk

− Lik+1(xk+1(k),uk+1(k), sk+1(k)).
(4.22)

Nowwe prove Theorem 4.2. We are only going to show dJ̃/dtk for easily reading. The
proofs for δJ̃/δuk and δJ̃/δsk can be found in Appendix.

Proof. J̃(θ,u, s) can be formulated as

J̃(θ,u, s) = φ(xK(K)) +
k−1∑

j=1

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ

+
K∑

j=k

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ +

K−1∑

j=1

ϕij ij+1

(
xj
(
j−
))
.

(4.23)

Since L̃ij (·) is independent of tk for j = 1, . . . , k − 1, then dJ̃/dtk can be obtained by

dJ̃

dtk
(θ,u, s) =

∂φ(xK(K))
∂xK(K)

dxK(K)
dtk

+
d

dtk

K∑

j=k

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ +

K−1∑

j=1

∂ϕij ij+1

∂xj
(
j−
)
dxj
(
j−
)

dtk
.

(4.24)
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Substituting (4.17), (4.21), and (4.22) into (4.24), we have

dJ̃

dtk
(θ,u, s) =

∂φ(xK(K))
∂xK(K)

dxK(K)
dtk

+ Lik

(
xk
(
k−),uk

(
k−), sk

(
k−))

− Lik+1(xk+1(k),uk+1(k), sk+1(k)) + λk+1(k)
T dxk+1(k)

dtk
+

∂ϕikik+1

∂xk(k−)
dxk(k−)

dtk

−
K−1∑

j=k+1

(
λj
(
j−
)T dxj

(
j−
)

dtk
− λj+1

(
j
)T dxj+1

(
j
)

dtk
−

∂ϕij ij+1

∂xj
(
j−
)
dxj
(
j−
)

dtk

)

− λK(K)T
dxK(K)

dtk
.

(4.25)

Due to Theorem 3.2 and (4.10), dJ̃/dtk can be formulated by

dJ̃

dtk
(θ,u, s) =

(
∂φ(xK(K))
∂xK(K)

− λK(K)T
)
dxK(K)

dtk
+ Lik

(
xk
(
k−),uk

(
k−), sk

(
k−))

− Lik+1(xk+1(k),uk+1(k), sk+1(k)) + λk
(
k−)T dxk(k−)

dtk

− λk+1(k)
Tfik+1(xk+1(k),uk+1(k))

− αT
k

∂pik
∂xk(k−)

dxk(k−)
dtk

−
K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk

= Lik

(
xk
(
k−),uk

(
k−), sk

(
k−)) − Lik+1(xk+1(k),uk+1(k), sk+1(k))

+ λk
(
k−)Tfik

(
xk
(
k−),uk

(
k−)) − λk+1(k)

Tfik+1(xk+1(k),uk+1(k))

−
K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk
− αT

K

∂ϑ

∂xK(K)
dxK(K)

dtk
.

(4.26)

Note that when second-order derivatives are needed, there is no difficulty to obtain
the second-order derivatives following the above procedure.

4.2. Parametrization Method

To obtain the numerical solution to optimal control for hybrid systems, continuous control
profiles are parameterized on each mode active horizon in this section. Then the numerical
solution to optimal controls can be computed based on the obtained sensitivity analysis
results. The basic idea behind the proposed method using finite parameterizations of the
controls is to transcribe the original infinite dimensional problem, that is, C-problem, into
a finite dimensional nonlinear programming problem, that is, P -problem [25]. Here, the
parametrization method that the control profiles are approximated by a family of Lagrange
form polynomials is implemented.
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Partition each horizon [j − 1, j) into Nj elements as j − 1 = τj0 < τj1 < · · · < τjNj = j
where τjl are referred to as collocation points, l = 0, . . . ,Nj . Let ujl denote the value of uj at
τjl, l = 0, . . . ,Nj . Thus, the control variable uj is represented approximately by a Lagrange
interpolation profile for j = 1, . . . , K,

uj(τ) =
Nj∑

l=0

l̂l(τ)ujl, τ ∈ [j − 1, j
)
, (4.27)

where l̂l(τ) =
∏Nj

m=0,m/= l
((τ − τjm)/(τjl − τjm)). sj is also parameterized by

sj(τ) =
Nj∑

l=0

l̂l(τ)sjl, τ ∈ [j − 1, j
)
, (4.28)

where sjl is the value of sj at the collocation points τjl, l = 0, . . . ,Nj .
As a result, based on the obtained derivatives, the numerical solution of u and θ

to optimal control for the hybrid systems can be solved simultaneously and efficiently by
adopting gradient-based algorithms as described in Xu and Antsaklis [3] and Egerstedt et al.
[6]. Note that the derivatives are functions of costate λj as formulated in Theorem 4.2. When
control polynomial profiles are implemented, a multipoint boundary value problem about
state and costate expressed by (3.6), (3.7), and (3.10) will be solved, which produces the
derivatives.

Although the Lagrange interpolation profiles may cause the state or/and control tra-
jectories violate their constraints, this parameterizations method has been proved useful in
practice. Moreover, there are some techniques to decrease the defect [1, 2].

Remark 4.4. Control variable uj can be approximated by several piecewise Lagrange inter-
polation profiles by further partitioning the element [j − 1, j). More detail of the parameter-
izations methods can be found in Vassiliadis et al. [1, 2], Kameswaran and Biegler [26], and
the references therein. Only one Lagrange interpolation profile is used here to show the pro-
cess of the proposed method.

5. Some Examples

To illustrate the effectiveness of the developed method, two examples with different situa-
tions are presented in the following. Numerical examples are conducted on an ThinkPad X61
2.10-GHz PC with 2G of RAM. The program is implemented using MatLab 7. The order of
Lagrange polynomials in the examples is 3.

Example 5.1. The prototype of this example comes from Vassiliadis et al. [1]. The hybrid sys-
tem consists of two batch reactors as shown in Figure 1. The first reactor denoted by mode 1
is fitted with a heating coil which can be used to manipulate the reactor temperature u over
time and is initially loaded with 0.1m3 of an aqueous solution of component x1 of concen-
tration 2000mol/m3. This reacts to form components x2 according to the consecutive reaction
scheme 2x1 → x2. After completion of the first reaction, an amount of dilute aqueous solution
of component x2 of concentration 600mol/m3 is added instantaneously to the products of
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x1

x2

Heat
exchange

Mode 1 Mode 2

Figure 1: Two batch reactors system.

the first reactor, and the mixture is loaded into the second reactor denoted by mode 2 where
the reaction x2 → x3 takes place under isothermal conditions at a fixed temperature. The
decision variables are the temperature u of the mode 1, and the durations of the two mode
over the horizon [0, 180]. The dynamics of the hybrid systems can be described by

Mode 1:

ẋ1 = − 0.0888e(−2500/u)x2
1,

ẋ2 = 0.0444e(−2500/u)x2
1 − 6889.0e(−5000/u)x2,

ẋ3 = 0.

(5.1)

Mode 2:

ẋ1 = 0,

ẋ2 = − 0.07x2 − 8.0 × 10−5x2
2,

ẋ3 = 0.02x2,

(5.2)

with x(0) = [2000 0 0]T . The system transits once at t = t1(t0 < t1 < tf) from mode 1 to 2
with x1(t1) = x1(t−1 )/1.7, x2(t1) = (x2(t−1 ) + 420)/1.7. The OCPHS is to find an optimal mode
transition instant t1 and an optimal input 298 ≤ u(t) ≤ 398, t ∈ [t0, t1], to maximize the cost
functional

max
t1,u

x3
(
tf
)
, (5.3)

with x3(tf) ≥ 150 must be satisfied.

By using the proposed method, the optimal mode transition instant is t1 = 105 and
the corresponding optimal cost is J∗ = 150.0285. The corresponding continuous control and
state trajectories are shown in Figure 2. In Vassiliadis et al. [1], the transition instants and
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Figure 2: State trajectories and control input of Example 5.1.

the optimal cost are t1 = 106, J∗ = 150.294, respectively, which are solved by software package
DAEOPT.

Example 5.2. Example 5.2 comes from Xu and Antsaklis [3] and is also reconsidered by
Hwang et al. [9]. Different from the example in the two references, the control constraint is
imposed. The example can be referred to as autonomous switching hybrid systems with
mode invariants. Consider the hybrid system consisting of

Mode 1:

ẋ =
(
1.5 0
0 1

)
x +
(
1
1

)
u, (5.4)

Mode 2:

ẋ =
(

0.5 0.866
0.866 −0.5

)
x +
(
1
1

)
u, (5.5)

with x0 = [1 1]T . Assume that t0 = 0, tf = 2 and the system transits once at t = t1 (t0 <
t1 < tf) from Mode 1 to 2 when the state trajectories intersect the linear manifold defined by
m(x) = x1 + x2 − 7 = 0. Mode 1 is active with its mode invariant x1 + x2 − 7 < 0 and Mode
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Figure 3: State trajectories and control input of Example 5.2.

2 is active with its mode invariant x1 + x2 − 7 > 0. The OCPHS is to find an optimal mode
transition instant t1 and an optimal input u(t) ∈ [−1, 1] such that the cost functional

J(t1, u) =
1
2

[
(
x1
(
tf
) − 10

)2 +
(
x2
(
tf
) − 6

)2 +
∫ tf

t0

u2(t)dt

]
(5.6)

is minimized.

By using the method developed here, the optimal mode transition instant is t1 = 1.1857
and the corresponding optimal cost is J∗ = 0.1246. The corresponding continuous control and
state trajectories are shown in Figure 3. In Xu and Antsaklis [3], the transition instants and
the optimal cost are t1 = 1.1624, J∗ = 0.1130, respectively. The bad performance results from
that the optimal control is approximated by polynomial.

6. Conclusions

The optimal control problem for hybrid systems (OCPHS)with mode invariants and control
constraints is addressed under a priori fixed mode transition order. By introducing new
independent variables and auxiliary algebraic variables, the original OCPHS is transformed
into an equivalent optimal control problem, and the optimality conditions for the OCPHS
is stated. Based on the optimality conditions, the derivatives of the objective functional w.r.t
control variables, that is, mode transition instant sequence and admissible continuous control
functions, are established analytically. As a result, a control vector parametrization method
is implemented to obtain the numerical solution by using gradient-based algorithms with
the obtained derivatives. Compared with the existing results on the OCPHS with fixed mode
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transition order, the settings cover not only the control constraints but also the continuous
states constraints, which makes the obtained results more general. Note that when no infor-
mation about the mode transition sequence is known a priori, the discrete model methods
formulated in Bemporad and Morari [27], Barton et al. [15], and Song et al. [28] seem
appropriate. In addition, when uncertainties are considered in the systems, the reader is
referred to Hu et al. [29] and the references therein.

Appendix

For any τ ∈ [k − 1, k), k = 1, . . . , K, let uk(τ) ∈ Uik be given and let δuk(τ) ∈ Uik be arbitrary
but fixed. Define a perturbation of uk as

uk(τ ; ε) = uk(τ) + εδuk(τ), (A.1)

where ε ∈ R is arbitrarily small such that uk(τ ; ε) ∈ Uik . For the time being, assume that
the other controls, uj , j = 1, . . . , K, j /= k, be given and fixed. For brevity, let xj and xj(·; ε)
denote the state trajectories corresponding to uk and uk(τ ; ε), respectively. Similarly, let λj
and λj(·; ε) denote the costate trajectories corresponding to uk and uk(ε), respectively, which
are the solutions of the costate equations

xj(·; ε) = xj(·) + εδxj(·),
λj(·; ε) = λj(·) + εδλj(·).

(A.2)

Proof of (4.2) in Lemma 4.1. When j = 1, . . . , k − 1, obviously in these cases xj is independent
of uk, that is, δxj(j−; ε) = 0, which leads to

δxj
(
j−
)

δuk
= 0, j = 1, . . . , k − 1. (A.3)

Case i (j = k). Since

δẋk = (tk − tk−1)
(
∂fik
∂xk

δxk +
∂fik
∂uk

δuk

)
, (A.4)

with δxk(k − 1) = 0, thus we have

δxk
(
k−) =

∫k

k−1
Φk(k, τ)(tk − tk−1)

∂fik
∂uk

δukdτ, (A.5)

where Φk is the state transition matrix defined in Section 3. Based on the definition of func-
tional derivative, there exists

δxk(k−)
δuk

= (tk − tk−1)Φk(k, τ)
∂fik
∂uk

.= Γk(τ). (A.6)
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Case (ii) (j = k + 1, . . . , K). In this case,

δẋj(τ ; ε) =
(
tj − tj−1

)∂fij
∂xj

δxj , τ ∈ [j − 1, j
)
, (A.7)

which gives rise to

δxj
(
j−; ε
)
= Φj

(
j, j − 1

)
δxj
(
j − 1

)
. (A.8)

Atmode transition instant tj , j = 1, . . . , K−1, xj+1(j) = ψij+1(xj(j
−)) holds, which results

in

δxj+1
(
j
)
=

dψij+1

dxj
(
j−
)δxj

(
j−
)
. (A.9)

Substituting (A.9) into (A.8), we obtain

δxj
(
j−
)
=

j∏

l=k+1

[
Φl(l, l − 1)

dψil

dxl−1
(
(l − 1)−

)
]
δxk
(
k−). (A.10)

According to the definition of functional derivative, we have

δxj
(
j−
)

δuk
=

j∏

l=k+1

[
Φl(l, l − 1)

dψil

dxl−1
(
(l − 1)−

)
]
Γk(τ). (A.11)

This completes the proof.

Before proving the δJ̃/δuk in Theorem 4.2, Lemma A.1 is firstly given as follows.

Lemma A.1. For any j = k + 1, . . . , K,

δ

∫ j

j−1
L̃ij

(
xj ,uj , si

)
dτ = λj

(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
)
. (A.12)

Proof. Note that

δ

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ = δ

∫ j

j−1

(
Hj

(
λj , xj ,uj , sj

) − λTj f̃ij

)
dτ

=
∫ j

j−1

(
∂Hj

∂xj
δxj +

∂Hj

∂λj
δλj −

(
δλj
)T
f̃ij − λTj δf̃ij

)
dτ.

(A.13)
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Since the following holds by Theorem 3.2:

(
∂Hj

∂xj

)T

= −λ̇j ,
(

∂Hj

∂λj

)T

= f̃ij , (A.14)

therefore,

δ

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ = −

∫ j

j−1

((
λ̇j
)T
δxj + λTj δf̃ij

)
dτ = −

∫ j

j−1

((
λ̇j
)T
δxj + λTj δẋij

)
dτ

= −
∫ j

j−1

d

dτ

(
λTj δxj

)
dτ = λj

(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
)
.

(A.15)

Obviously, when j = k, we have

δ

∫k

k−1
L̃ik(xk,uk, sk)dτ = λk(k − 1)Tδxk(k − 1) − λk

(
k−)Tδxk

(
k−) +

∫k

k−1

∂Hk

∂uk
δukdτ.

(A.16)

Proof of δJ̃/δuk in Theorem 4.2. J̃(θ,u(ε), s) can be rewritten by

J̃(θ,u(ε), s) = φ(xK(K)) +
k−1∑

j=1

∫ j

j−1
L̃ij

(
xj ,uj , sj

)
dτ +

∫k

k−1
L̃ik(xk(ε),uk(ε), sk)dτ

+
K∑

j=k+1

∫ j

j−1
L̃ij

(
xj(ε),uj , sj

)
dτ +

K−1∑

j=1

ϕij ij+1

(
xj
(
j−
))
.

(A.17)

Applying a δ-operation to (A.17) leads to

δJ̃ =
dJ̃
(
ρ,u(ε), s

)

dε

∣∣∣∣∣
ε=0

=
∂φ(xK(K))
∂xK(K)

δxK(K) +
∫k

k−1

∂Hk

∂uk
δukdτ

+
K∑

j=k

(
λj
(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
))

+
K−1∑

j=1

∂ϕij ij+1

∂xj
(
j−
)δxj

(
j−
)

=
∂φ(xK(K))
∂xK(K)

δxK(K) +
∫k

k−1

∂Hk

∂uk
δukdτ + λk(k − 1)Tδxk(k − 1)

−
K−1∑

j=k

(
λj
(
j−
)T
δxj
(
j−
) − λj+1

(
j
)T
δxj+1

(
j
) −

∂ϕij ij+1

∂xj
(
j−
)δxj

(
j−
)
)

− λK(K)TδxK(K).

(A.18)
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Due to Theorem 3.2 and (A.9), δJ̃ can be reformulated by

δJ̃ =
(
∂φ(xK(K))
∂xK(K)

− λK(K)T
)
δxK(K) +

∫k

k−1

∂Hk

∂uk
δukdτ

−
K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)δxj

(
j−
)

=
∫k

k−1

∂Hk

∂uk
δukdτ −

K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)δxj

(
j−
) − αT

K

∂ϑ

∂xK(K)
δxK(K).

(A.19)

Then according to the definition of functional derivative, we have

δJ̃

δuk
=

∂Hk

∂uk
−

K−1∑

j=k

αT
j

∂gij

∂xj
(
j−
)
δxj
(
j−
)

δuk
− αT

K

∂ϑ

∂xK(K)
δxK(K)
δuk

. (A.20)

Obviously, the functional derivative of J̃ with respect to sk can be directly given by

δJ̃

δsk
=

∂Hk

∂sk
. (A.21)

This completes the proof.
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This paper studies the problem of observer-based stabilization of stochastic nonlinear systems
with limited communication. A communication channel exists between the output of the plant
and the input of the dynamic controller, which is considered network-induced delays, data packet
dropouts, and measurement quantization. A new stability criterion is derived for the stochastic
nonlinear system by using the Lyapunov functional approach. Based on this, the design procedure
of observer-based controller is presented, which ensures asymptotic stability in the meansquare of
the closed-loop system. Finally, an illustrative example is given to illustrate the effectiveness of the
proposed design techniques.

1. Introduction

Stochastic variables frequently exist in practical systems such as aircraft systems, biology
systems, and electronic circuits. Without taking them into account in the system design, the
stochastic variables can bring negative effects on the performance of control systems and
even make the systems unstable. According to the way stochastic variable occurs, stochastic
system mode can be classified as Itô stochastic differential equation [1, 2], Markov switched
systems [3–5], and other systems with stochastic variables [6–9]. Since the introduction of
the concept of stochastic differential equation by Itô [10] in 1951, Itô stochastic system model
has been used successfully in numerous applications, such as the analysis of stock systems
and prediction for ecosystem. In automatic control of stochastic systems, a great number of
important results have been reported in the literature [11, 12].

In the past two decades, network-based control technology has been developed to
combine a communication network with conventional control systems to form the Network
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Control Systems (NCSs), which have wide applications due to their advantages, such as
reduced weight, power requirements, low installation cost, and easy maintenance [13]. Since
the capacity of the communication channel is limited [14–16], signal transmission delay and
data packet dropout are two fundamental problems in NCSs. To deal with these issues,
considerable research results on this topic have been reported, see for example [17–20] and
the references therein. In [21], the robust H∞ control problem was considered for a class of
networked systems with random communication packet losses.

Among the reported results, most NCSs are mainly based on deterministic physical
plant. However, stochastic systems models also have wide applications in the dynamical
systems. This has motivated the researches on networked control for stochastic systems and
many results have been reported in the literature. In [22], the problem of network-based
control for stochastic plants was studied, and a new model of stochastic time-delay systems
was presented including both network-induced delays and packet dropouts. In [23], the
problem of sampled-data control for networked control systems was considered. In recent
years, much attention is paid to the problem of the observer-based controller design for
NCSs [24–27]. In [28], the problem of the NCS design for continuous-time systems with
random measurement was investigated, where the measurement channel is assumed to be
subjected to random sensor delay. To the authors’ knowledge, the problem of observer-based
controller design for stochastic nonlinear systems with limited communication has not been
fully investigated and still remains challenging, which motivates us for the present study.

In this paper, we investigate the problem of observer-based stabilization of stochastic
nonlinear systems with limited communication. A new model is proposed to describe the
stochastic nonlinear systemswith a communication channel, which exists between the output
of the stochastic plant and the input of the observer-based controller. Based on this, the design
procedure of observer-based controller is proposed, which ensures the asymptotic stability of
the resulting closed-loop system. Finally, a mechanical system example consisted of two cars,
a spring and a damper, is given to illustrate the effectiveness of the proposed controller design
method.

Notation. The notation used throughout the paper is fairly standard. R
n denotes the n-

dimensional Euclidean space and the notation P > 0 (≥0)means that P is real symmetric and
positive definite (semidefinite). In symmetric block matrices or complex matrix expressions,
we use an asterisk (∗) to represent a term that is induced by symmetry and diag{· · · } standing
for a block-diagonal matrix. sym(A) is defined as A + AT . Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for algebraic operations. E{x} means the
expectation of x. The space of square-integrable vector functions over [0,∞) is denoted by

L2[0,∞), and for w = {w(t)} ∈ L2[0,∞), its norm is given by: ‖w‖2 =
√∫∞

t=0 |w(t)|2dt.

2. Problem Formulation

Consider the following stochastic nonlinear system:

dx(t) =
[
Ax(t) + Bu(t) + g(x(t))

]
dt + Ex(t)dω(t),

y(t) = Cx(t),

x(t) = φ(t), t ∈ [−2κ, 0],
(2.1)
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Figure 1: The stochastic systems with limited communication.

where x(t) ∈ R
n is the state vector; u(t) ∈ R

m is the control input; y(t) ∈ R
p is the control

output; g(·) : R
n → R

nf is unknown nonlinear function; C and E are constant matrices with
an appropriate dimension; κ is the maximum delay; ω(t) is a zero-mean real scalar Wiener
process, which satisfies E{dω(t)} = 0 and E{dω(t)2} = dt.

For system (2.1), it is assumed that the states are not fully measured. Thus, we consider
the following observer-based controller:

dx̂(t) =
[
Ax̂(t) + Bu(t) + g(x̂(t)) + L

(
ŷ(t) − Cx̂(t)

)]
dt,

u(t) = Kx̂(t),
(2.2)

where x̂(t) ∈ R
n is the estimation of the state vector x(t); ŷ(t) ∈ R

p denotes the output of the
zero-order hold (ZOH); K and L are the controller and observer gains.

Under control law (2.2), the closed-loop system in (2.1) is given by

dx(t) =
[
Ax(t) + BKx̂(t) + g(x(t))

]
dt + Ex(t)dω(t). (2.3)

The structure of the stochastic systems with limited communication is shown in
Figure 1. In this system, for convenience of analysis, it is assumed that communication delay
occurs only in the sampler-to-controller side. The stochastic plant continuously sends the
output signal y(t) to the controller by a network. y(t) is firstly sampled by the sampler,
which is assumed to be clock-driven. Then, y(tk), where tk denotes the sampling instant for
k = 0, 1, 2, . . ., is encoded and decoded by the quantizer and sent to ZOH, which are assumed
to be event-driven. ŷ(t) and u(t) are the input of the observer-based controller and x̂(t) is the
output of the observer-based controller.

In this paper, the quantizer is chosen as the logarithmic quantizer. The set of quantized
levels is described by:

Ui =
{
±u(j)

i , u
(j)
i = ρiju

(j)
0 , i = ±1,±2, . . .

}
∪
{
±u(j)

0

}
∪ {0}, 0 < ρj < 1, u(j)

0 > 0. (2.4)



4 Mathematical Problems in Engineering

Each of the quantization level u(j)
i corresponds to a segment such that the quantizer maps the

whole segment to this quantization level. In addition, these segments form a partition of R,
that is, they are disjoint and their union for i equals to R. For the logarithmic quantizer, the
associated quantizer fi(·) is defined as

fi(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u
(j)
i if

1
1 + σj

u
(j)
i < v ≤ 1

1 − σj
u
(j)
i , v > 0,

0 if v = 0,
−fj(−v) if v < 0,

(2.5)

where σj = (1 − ρj)/(1 + ρj ).
When taking into account signal transmission delays ηk from sampler to ZOH, the

quantized output signal takes the following form:

ŷ(tk) = f
(
y
(
tk − ηk

))
=
[
f1
(
y1
(
tk − ηk

))
f2
(
y2
(
tk − ηk

)) · · · fn
(
yn

(
tk − ηk

))]T
. (2.6)

Considering the behavior of the ZOH, we have

ŷ(t) = f
(
y
(
tk − ηk

))
, tk ≤ t < tk+1, (2.7)

with tk+1 being the next updating instant of the ZOH after tk.
A natural assumption on the network induced delays ηk can be made as

0 ≤ ηk ≤ η, (2.8)

where η denotes the maximum delay. In addition, at the updating instant tk+1 the number of
accumulated data packet dropouts since the last updating instant tk is denoted as δk+1. We
assume that the maximum number of data packet dropouts is δ, that is,

δk+1 ≤ δ. (2.9)

Then, it can be seen from (2.8) and (2.9) that

tk+1 − tk = (δk+1 + 1)h + ηk+1 − ηk, (2.10)

where h denotes the sampling period.
As the time sequence tk depends on both the network-induced delays and data packet

dropouts, the period tk+1 − tk for the sampled-data system in (2.3) is variable and uncertain.
Now let us represent tk − ηk in (2.7) as

tk − ηk = t − η(t), (2.11)

where

η(t) = t − tk + ηk. (2.12)
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Then, from (2.10) we have

0 ≤ η(t) ≤ κ, (2.13)

where

κ = η +
(
δ + 1

)
h. (2.14)

Considering the quantization shown in (2.5) and by substituting (2.11) into (2.7), (2.2)
can be expressed as

dx̂(t) =
[
Ax̂(t) + Bu(t) + g(x̂(t)) + L

(
(I + Λ(t))y

(
t − η(t)

) − Cx̂(t)
)]
dt,

u(t) = Kx̂(t),
(2.15)

where

Λ(t) = diag{Λ1(t),Λ2(t), . . . ,Λn(t)}, (2.16)

with

Λj(t) ∈
[−σj , σj

]
, j = 1, . . . , n. (2.17)

Defining the estimation error e(t) = x(t) − x̂(t), we obtain

dx(t) =
[
(A + BK)x(t) − BKe(t) + g(x(t))

]
dt + Ex(t)dω(t),

de(t) =
[
LCx(t) + (A − LC)e(t) + g(x(t)) − g(x(t) − e(t))

−L(I + Λ(t))Cx
(
t − η(t)

)]
dt + Ex(t)dω(t).

(2.18)

Before proceeding further, we introduce the following assumption and lemma, which
will be used in subsequent developments.

Assumption 2.1. For a stochastic system mode, there exists known real constant matrices
G ∈ R

n×n, such that the unknown nonlinear vector function g(·) satisfies the following
boundedness condition:

∣∣g(x(t))
∣∣ ≤ |Gx(t)|, ∀x(t) ∈ R

n. (2.19)

Lemma 2.2 (see [29]). Given appropriately dimensioned matrices Σ1,Σ2 and Σ3, with ΣT
1 = Σ1,

then,

Σ1 + Σ3H(t)Σ2 + ΣT
2H

T (t)ΣT
3 < 0 (2.20)
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holds for all H(t) satisfying HT (t)H(t) ≤ I if and only if for some ε > 0,

Σ1 + ε−1Σ3ΣT
3 + εΣT

2Σ2 < 0. (2.21)

3. Main Results

In this section, the problem of asymptotical stabilization of stochastic system with limited
communication is studied. We are first concerned with the asymptotical stability analysis
problem. The following theorem develops a sufficient condition for system (2.18) to be
asymptotically stable in the meansquare.

Theorem 3.1. The nominal stochastic system (2.18) is asymptotically stable in the mean square if
there exist scalars εi > 0, (i = 1, 2, 3) and matrices Pj > 0, Rj > 0, Sj , Uj , (j = 1, 2) satisfying

⎡
⎢⎢⎢⎢⎢⎣

Π1 + ε3ΠT
4Π4

√
κ + 1V ΠT

2 ΠT
3 ΠT

5
∗ Π6 0 0 0
∗ ∗ −R−1

1 0 0
∗ ∗ ∗ −R−1

2 −L
∗ ∗ ∗ ∗ −ε3I

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.1)

where

Π1 = sym
(
WT

x P1Wr1 +WT
e P2Wr2 + VWv −WT

x

(
ε2G

TG
)
We

)
+WT

gΨ1Wg

+WT
x E

T (P1 + κR1 + P2 + κR2)Wx,

Wx =
[
In 0n,5n

]
, We =

[
0n,2n In 0n,3n

]
, V =

[
S̃ Ũ

]
,

Ψ1 = diag
{
(ε1 + ε2)GTG, ε2G

TG,−ε1I,−ε2I
}
,

S̃ =
[
ST
1 ST

2 0n 0n 0n 0n
]T
, Ũ =

[
0n 0n UT

1 UT
2 0n 0n

]T
,

Wv =

[
In −In 0n,4n

0n,2n In −In 0n,2n

]
, Wg =

⎡
⎢⎢⎢⎢⎢⎣

In 0n,5n

0n,2n In 0n,3n

0n,4n In 0n

0n,5n In

⎤
⎥⎥⎥⎥⎥⎦
,

Π2 =
√
κWr1 , Wr1 =

[
A + BK 0n −BK 0n In 0n

]
,

Π3 =
√
κWr2 , Wr2 =

[
LC −LC A − LC 0n In −In

]
,

Π4 =
[
0n ΛC 0n 0n 0n 0n

]
, Λ = diag{Λ1,Λ2, . . . ,Λn},

Π5 =
[
0n,p 0n,p −LTP2 0n,p 0n,p 0n,p

]
, Π6 = diag{−R1,−R2}.

(3.2)
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Proof. For technical convenience, we rewrite (2.18) as

dx(t) = r1(t)dt + Ex(t)dω(t),

de(t) = r2(t)dt + Ex(t)dω(t),
(3.3)

where

r1(t) = (A + BK)x(t) − BKe(t) + g(x(t)),

r2(t) = LCx(t) + (A − LC)e(t) + g(x(t))

− g(x(t) − e(t)) − L(I + Λ(t))Cx
(
t − η(t)

)
.

(3.4)

Now, choose the following Lyapunov-Krasovskii functional:

V (t) = xT (t)P1x(t) +
∫ t

t−κ

∫ t

s

rT1 (θ)R1r1(θ)dθds +
∫ t

t−κ

∫ t

s

xT (θ)ETR1Ex(θ)dθds

+ eT(t)P2e(t) +
∫ t

t−κ

∫ t

s

rT2 (θ)R2r2(θ)dθds +
∫ t

t−κ

∫ t

s

xT (θ)ETR2Ex(θ)dθds,

(3.5)

where Pj > 0, Rj > 0, (j = 1, 2) are matrices to be determined. Then, by Itô’s formula and from
(3.5), we obtain the stochastic differential as

dV (t) = LV (t)dt + 2
(
xT (t)P1Ex(t) + eT(t)P2Ex(t)

)
dω(t) (3.6)

and

LV (t) = 2xT (t)P1r1(t) + rT1 (t)κR1r1(t)

−
∫ t

t−κ
rT1 (s)R1r1(s)ds + xT (t)ET (P1 + κR1)Ex(t)

−
∫ t

t−κ
xT (s)ETR1Ex(s)ds + 2eT (t)P2r2(t) + rT2 (t)κR2r2(t) −

∫ t

t−κ
rT2 (s)R2r2(s)ds

+ x(t)TE
T
(P2 + κR2)Ex(t) −

∫ t

t−κ
xT (s)ETR2Ex(s)ds

≤ 2xT (t)P1r1(t) + rT1 (t)κR1r1(t) + x(t)TET (P1 + κR1 + P2 + κR2)Ex(t)

−
∫ t

t−η(t)
rT1 (s)R1r1(s)ds −

∫ t

t−η(t)
xT (s)ETR1Ex(s)ds

+ 2eT (t)P2r2(t) + rT2 (t)κR2r2(t)

−
∫ t

t−η(t)
rT2 (s)R2r2(s)ds −

∫ t

t−η(t)
xT (s)ETR2Ex(s)ds + 2X1(t) + 2X2(t),

(3.7)
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where

X1(t) = ξT1 (t)S

(
x(t) − x

(
t − η(t)

) −
∫ t

t−η(t)
r1(s)ds −

∫ t

t−η(t)
Ex(s)dω(s)

)
= 0,

X2(t) = ξT2 (t)U

(
e(t) − e

(
t − η(t)

) −
∫ t

t−η(t)
r2(s)ds −

∫ t

t−η(t)
Ex(s)dω(s)

)
= 0,

ξT1 (t) =
[
xT (t) xT

(
t − η(t)

)]
, S =

[
ST
1 ST

2

]T
,

ξT2 (t) =
[
eT(t) eT

(
t − η(t)

)]
, U =

[
UT

1 UT
2

]T
.

(3.8)

From (2.19), we obtain

Y1(t) = ε1x
T (t)GTGx(t) − ε1g

T (x(t))g(x(t)) ≥ 0,

Y2(t) = ε2(x(t) − e(t))TGTG(x(t) − e(t))

− ε2g
T (x(t) − e(t))g(x(t) − e(t)) ≥ 0,

(3.9)

where ε1 and ε2 are positive constants. Then, taking expectation on both sides of (3.7), we
have

E{LV (t)} + Y1(t) + Y2(t) ≤ E

{
ξT (t)

[
Π6 + Σ4 + Σ5

]
ξ(t)

}
+ Σ6 + Σ7, (3.10)

where

Π1 = sym
(
WT

x P1Wr1 +WT
e P2Wr̃2 + VWv

)
+WT

x E
T (P1 + κR1 + P2 + κR2)Wx +WT

gΨ1Wg,

Σ4 = κWT
r1R1Wr1 + κWT

r̃2
R2Wr̃2 , Σ5 = (κ + 1)S̃R−1

1 S̃T + (κ + 1)ŨR−1
2 ŨT ,

Wr̃2 =
[
LC −L(I + Λ(t))C A − LC 0 I −I],

Σ6 = −
∫ t

t−η(t)

[
ξT1 (t)S + r1(s)R1

]
R−1

1

[
STξ1(t) + R1r1(s)

]
ds,

Σ7 = −
∫ t

t−η(t)

[
ξT2 (t)U + r2(s)R2

]
R−1

2

[
UTξ2(t) + R2r2(s)

]
ds,

ξT (t) =
[
ξT1 (t) ξT2 (t) gT (x(t)) gT (x(t) − e(t))

]
.

(3.11)

Note that R1 > 0 and R2 > 0, thus Σ6 and Σ7 are nonpositive. Therefore, from (3.10) we know
that E{LV (t)} + Y1(t) + Y2(t) < 0 if

Π1 + Σ4 + Σ5 < 0, (3.12)
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which by Schur complements, is equivalent to

⎡
⎢⎢⎢⎣

Π1
√
κ + 1V ΠT

2 Π
T

7
∗ Π6 0 0
∗ ∗ −R−1

1 0
∗ ∗ ∗ −R−1

2

⎤
⎥⎥⎥⎦

< 0, (3.13)

where Π7 =
√
κWr̃2 . Now, rewrite (3.13) in the form (2.20) with

Σ1 =

⎡
⎢⎢⎣

Π1
√
κ + 1V ΠT

2 ΠT
3

∗ Π6 0 0
∗ ∗ −R−1

1 0
∗ ∗ ∗ −R−1

2

⎤
⎥⎥⎦,

Σ2 =
[
Π4 0 0 0

]
, Σ3 =

[
Π5 0 0 −LT

]T
, H(t) = Λ(t)Λ−1.

(3.14)

By Lemma 2.2 together with a Schur complement operation, (3.13) holds if for some ε > 0,
(3.1) holds. Thus, we have

E{LV (t)} < 0, (3.15)

which ensures that the closed-loop system in (2.18) is asymptotically stable by [30].
Theorem 3.1 is proved.

Since our main objective is to design K and L to stabilize the system (2.18), (3.1) is
actually a nonlinear matrix inequality. We will transform them into tractable conditions to
solve the control synthesis problem.

Theorem 3.2. There exists an observer-based controller such that the closed-loop system in (2.18) is
asymptotically stable in the mean square if there exist scalars εi > 0 (i = 1, 2, 3) and matrices P 1 > 0,
P2 ≥ 0, R1 > 0, R2 > 0, Zi > 0, Qi > 0 and S, U, K, L, satisfying

[
Ξ1 Ξ2

∗ Ξ3

]
< 0, (3.16)

[
Φ1 Φ2

∗ Φ3

]
< 0, (3.17)

[
Z1 I
∗ Q1

]
> 0,

[
Z3 I
∗ Q2

]
> 0,

[
R1 I
∗ Q3

]
> 0, (3.18)
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where

Ξ1 = sym
(
WT

e P2Wr2 + VWv −WT
x̂

(
ε2G

TG
)
We

)
+WT

gΨ1Wg +WT
z ZWz,

Ξ2 =
[√

κΥT
1

√
κ + 1 V ΥT

2 ΥT
3

]
, Z = diag{−Z1, Z2, Z3},

Ξ3 = diag{R2 − 2P2,−R1,−R2,−P2,−R2,−ε3I},

Φ1 = sym
(
WT

xWr1

)
−WT

yZWy, Z = diag
{
Z2, 2P 1 −Q2

}
,

Φ2 =

⎡
⎢⎢⎣

√
κ
(
P 1A

T +K
T
BT

)
P 1E

T
√
κP 1E

T
P 1√

κI 0 0 0

−√κK
T
B
T

0 0 0

⎤
⎥⎥⎦,

Φ3 = diag
{
−Q3,−P 1,−Q3,−Q1

}
, V =

[
S U

]
, Wx̂ =

[
0n,3n In 0n,2n

]
,

S =
[
0n ST

2 0n ST
1 0n 0n

]T
, U =

[
UT

2 0n,4n UT
1

]T
,

Wx =
[
In 0n,2n

]
, Wr1 =

[
AP + BK In −BK

]
,

We =
[
0n,5n In

]
, Wr2 =

[
0n −LC −In LC In A − LC

]
,

Υ1 =
[
0n −LC −P2 LC P2 P2A − LC

]
,

Υ2 =
[
0 0 0 P2E 0 0
0 0 0

√
κR2E 0 0

]
,

Υ3 =
[
0 0 0 0 0 −LT

]
,

Wv =

[
0n −In 0n In 0n,2n

−In −0n,4n In

]
, Wy =

[
0n In 0n

0n,2n In

]
,

Wg =

⎡
⎢⎢⎢⎢⎢⎣

0n,3n In 0n,2n

0n,5n In

0n,4n In 0n

0n,2n In 0n,3n

⎤
⎥⎥⎥⎥⎥⎦
, Wz =

⎡
⎢⎢⎣

0n,3n In 0n,2n

0n,4n In 0n

0n,5n In

⎤
⎥⎥⎦.

(3.19)

Moreover, if the above conditions are satisfied, a desired controller gain and observer gain are
given as follows:

K = KP 1
−1
, L = P 2

−1
L. (3.20)
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Proof. Define the following matrix:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0n,3n In 0n,2n

0n In 0n,4n

0n,5n In

In 0n,5n

0n,4n In 0n

0n,2n In 0n,3n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.21)

Perform a congruence transformation to (3.1) by W1 = diag{W, I, I, I, I, I}, which are to
exchange the first row and the forth row with the third row and the sixth row, then exchange
the first column and the forth column with the third column and the sixth column.

Then, by using Lemma 1 in [25] and Theorem 3.2, we have

[
Ξ1 Ξ2

∗ Ξ3

]
< 0, (3.22)

[
Φ1 Φ2

∗ Φ3

]
< 0, (3.23)

where

Ξ1 = sym
(
WT

e P2Wr2 + VWv −WT
x̂

(
ε2G

TG
)
We

)
+WT

gΨ1Wg +WT
z ZWz,

Ξ2 =
[
Υ
T

1

√
κ + 1V Υ

T

2 Υ
T

3

]
,

Ξ3 = diag
{
−R−1

2 ,−R1,−R2,−P−1
2 ,−R−1

2 ,−ε3I
}
,

Υ1 =
√
κWr2 , Wr2 =

[
0n −LC −In LC In A − LC

]
,

Υ2 =
[
0 0 0 E 0 0
0 0 0

√
κE 0 0

]
, Υ3 =

[
0 0 0 0 0 −LTP2

]
,

Φ1 = sym
(
WT

x P1Wr1

)
−WT

yZWy, Wr1 =
[
A + BK In −BK]

,

Φ2 =

⎡

⎣

√
κ
(
AT +KTBT

)
ET

√
κET

√
κI 0 0

−√κKTBT 0 0

⎤

⎦, Wy =

⎡
⎢⎢⎣

In 0n,2n

0n In 0n

0n,2n In

⎤
⎥⎥⎦,

Φ3 = diag
{
−R−1

1 ,−P−1
1 ,−R−1

1

}
.

(3.24)

Perform a congruence transformation to (3.22) by J2 = diag{I6n, J1} with J1 =
diag{P2, I2n, P2, R2, In}. Defining L = P2L, we have (3.16). Performing a congruence
transformation to (3.23) by J4 = diag{J3, I3n} with J3 = diag{P−1

1 , I, P−1
1 } and defining

P 1 = P−1
1 , K = KP−1

1 , Q1 = Z−1
1 , Q2 = Z−1

3 , Q3 = R−1
1 , −P−1

1 Z3P
−1
1 ≤ Z−1

3 − 2P−1
1 and

−P2R
−1
2 P2 ≤ R2 − 2P2 we have (3.17). We can solve the inequalities (3.18) by using of the

cone complementarity linearization (CCL) algorithm in [31]. The proof is completed.
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k

b

u

y1 y2

M1 M2

Figure 2: Mechanical system.

4. Illustrative Example

In this section, we use a mechanical example to illustrate the applicability of the theoretical
results developed in this paper.

The controlled plant is a mechanical system consisted of two cars, a spring, and a
damper, as shown in Figure 2. The objective is to design controllers such that the system
will maintain the zero position (y1 = 0 and y2 = 0) when the disturbance disappears. M1

and M2 denote the two car mass, respectively; k is the elastic coefficient of the spring; b is
the viscous damping coefficient of the damper; u denotes control input; y1 and y2 are the
displacements of the two cars, respectively. The right is the positive direction of the force and
the displacement. When u = 0, the balance positions are the zero place of the two cars y1 and
y2.

Choose the following set of state variables:

x =
[
x1 x2 x3 x4

]
=
[
y1 y2 ẏ1 ẏ2

]
. (4.1)

The equations of the mechanical system are in the following:

dx1 = x3dt,

dx2 = x4dt,

dx3 =
(
− k

m1
(x1 − x2) − b

m1
(x3 − x4) + u(t) + 0.001 sin(0.5t)

)
dt

+ 0.01x1dω(t),

dx4 =
(

k

m2
(x1 − x2) +

b

m2
(x3 − x4) + 0.001 sin(0.2t)

)
dt.

(4.2)

The parameters of the mechanical system are m1 = 1 kg, m2 = 2 kg, k = 36N/m, and b =
0.06Ns/m. Then the state-space matrices are given by

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−36 36 −0.6 0.6
18 −18 0.3 −0.3

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦, C =

[
1 0 0 0
0 1 0 0

]
,

E =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0.01 0 0 0
0 0 0 0

⎤
⎥⎥⎦, G =

⎡
⎢⎢⎣

0.05 0 0 0
0 0.05 0 0
0 0 0.05 0
0 0 0 0.05

⎤
⎥⎥⎦.

(4.3)
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Figure 3: State responses of closed-loop system.

The eigenvalues ofA are −0.4500±7.3347i, 0, 0, and thus this system is unstable. Our objective
is to design an observer-based controller in the form of (2.2) such that the closed-loop system
(2.1) is asymptotically stable in mean square. The network-related parameters are assumed:
the sampling period h = 2ms, the maximum delay η = 4ms, the maximum number of data
packet dropouts δ = 1, the quantizer parameters ρ = 0.9, and u0 = 2. By Theorem 3.2, we
obtain the following matrices (other associated matrices are omitted here):

P 1 =

⎡
⎢⎢⎣

0.5130 0.4367 −0.1801 −0.1547
0.4367 0.4903 −0.1504 −0.1654
−0.1801 −0.1504 3.4095 −1.2803
−0.1547 −0.1654 −1.2803 1.0595

⎤
⎥⎥⎦, K

T
=

⎡
⎢⎢⎣

−0.4605
−0.4650
−1.6411
0.0173

⎤
⎥⎥⎦,

P2 =

⎡
⎢⎢⎣

2.7987 −0.4600 −0.7901 −1.4199
−0.4600 5.3953 −1.2876 −2.5287
−0.7901 −1.2876 0.7402 1.3478
−1.4199 −2.5287 1.3478 2.7867

⎤
⎥⎥⎦, L =

⎡
⎢⎢⎣

9.2859 −4.2200
−6.3928 7.7879
0.5443 0.8766
1.2269 1.3828

⎤
⎥⎥⎦.

(4.4)
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Figure 4: Network-induced delays.

According to (3.20), the gain matrices for the observer-based controller is given by:

KT =

⎡
⎢⎢⎣

−0.9531
−1.1033
−1.2654
−1.8243

⎤
⎥⎥⎦, L =

⎡
⎢⎢⎣

7.7216 2.5661
2.8715 4.5438
10.5690 8.6714
1.8687 1.7328

⎤
⎥⎥⎦. (4.5)

In the following, we provide simulation results. The initial condition is assumed to be
[−0.3, 0.7, 0.1,−0.5]. The state responses are depicted in Figure 3, from which we can
see that all the four state components of the closed-loop system converge to zero. In
the simulation, the network-induced delays and the data packet dropouts are generated
randomly (uniformly distributed within their ranges) according to the above assumptions,
and shown in Figures 4 and 5. The output signals y(t) and the successfully transmitted signal
arriving at the ZOH ŷ(t) (denotes as yZOH in figure) are shown in Figure 6, where we can see
the discontinuous behavior of the transmitted measurements.

5. Conclusion

In this paper, the problem of observer-based stabilization of the stochastic nonlinear systems
with limited communication has been studied. A new model has been proposed to describe
the stochastic nonlinear systems with a communication channel, which exists between the
output of the physical plant and the input of the dynamic controller. Based on this, the design
procedure of observer-based controller has been proposed, which guarantees the asymptotic
stability of the closed-loop systems. Finally, a mechanical system example is given to show
the effectiveness of the proposed controller design method.
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[5] A. P. C. Gonçalves, A. R. Fioravanti, and J. C. Geromel, “H∞ filtering of discrete-time Markov jump
linear systems through linear matrix inequalities,” IEEE Transactions on Automatic Control, vol. 54, no.
6, pp. 1347–1351, 2009.

[6] H. Gao, J. Wu, and P. Shi, “Robust sampled-data H∞ control with stochastic sampling,” Automatica,
vol. 45, no. 7, pp. 1729–1736, 2009.

[7] Z. Wang, D. W. C. Ho, Y. Liu, and X. Liu, “Robust H∞ control for a class of nonlinear discrete time-
delay stochastic systems with missing measurements,” Automatica, vol. 45, no. 3, pp. 684–691, 2009.

[8] R. Yang, P. Shi, G. Liu, and H. Gao, “Network-based feedback control for systems with mixed delays
based on quantization and dropout compensation,” Automatica, vol. 47, no. 12, pp. 2805–2809, 2011.

[9] X. Luan, P. Shi, and F. Liu, “Stabilization of networked control systems with random delays,” IEEE
Transactions on Industrial Electronics, vol. 45, no. 3, pp. 4323–4330, 2011.

[10] K. Itô, “On stochastic differential equations,” Memoirs of the American Mathematical Society, no. 4, pp.
1–51, 1951.

[11] X. Mao, “Robustness of exponential stability of stochastic differential delay equations,” IEEE
Transactions on Automatic Control, vol. 41, no. 3, pp. 442–447, 1996.

[12] S. Xu and T. Chen, “H∞ output feedback control for uncertain stochastic systems with time-varying
delays,” Automatica, vol. 40, no. 12, pp. 2091–2098, 2004.

[13] P. Antsaklis and J. Baillieul, “Guest editorial. Special issue on networked control systems,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1421–1423, 2004.

[14] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited information,” IEEE Transactions
on Automatic Control, vol. 46, no. 9, pp. 1384–1400, 2001.

[15] G. N. Nair and R. J. Evans, “Exponential stabilisability of finite-dimensional linear systems with
limited data rates,” Automatica, vol. 39, no. 4, pp. 585–593, 2003.

[16] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE Transactions on
Automatic Control, vol. 49, no. 7, pp. 1056–1068, 2004.

[17] H. Gao and T. Chen, “H∞ estimation for uncertain systems with limited communication capacity,”
IEEE Transactions on Automatic Control, vol. 52, no. 11, pp. 2070–2084, 2007.

[18] D. Xie, D. Zhang, and Z. Wang, “Robust H∞ faulttolerant control for uncertain networked control
system with two additive random delays,” International Journal of Innovative Computing, Information
and Control, vol. 7, no. 1, pp. 315–326, 2011.

[19] H. Yang, Y. Xia, and P. Shi, “Stabilization of networked control systems with nonuniform random
sampling periods,” International Journal of Robust and Nonlinear Control, vol. 21, no. 5, pp. 501–526,
2011.

[20] Y. Zhao, J. Lam, and H. Gao, “Fault detection for fuzzy systems with intermittent measurements,”
IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 398–410, 2009.

[21] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust H∞ control for networked systems with random
packet losses,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, no. 4, pp. 916–924,
2007.

[22] X.Meng, J. Lam, andH. Gao, “Network-basedH∞ control for stochastic systems,” International Journal
of Robust and Nonlinear Control, vol. 19, no. 3, pp. 295–312, 2009.

[23] L.-S. Hu, T. Bai, P. Shi, and Z. Wu, “Sampled-data control of networked linear control systems,”
Automatica, vol. 43, no. 5, pp. 903–911, 2007.

[24] H. R. Karimi, “Observer-based mixed H2/H∞ control design of linear systems with time-varying
delays: an LMI approach,” International Journal of Control, Automation and Systems, vol. 6, no. 1, pp.
1–14, 2008.

[25] E. Tian, D. Yue, and C. Peng, “Quantized output feedback control for networked control systems,”
Information Sciences, vol. 178, no. 12, pp. 2734–2749, 2008.

[26] Y. Cheng, B. Jiang, Y. Fu, and Z. Gao, “Robust observer based reliable control for satellite attitude
control systems with sensor faults,” International Journal of Innovative Computing, Information and
Control, vol. 7, no. 7 B, pp. 4149–4160, 2011.

[27] I. Saboori, M. B. Menhaj, and B. Karimi, “A nonlinear adaptive observer based on neural networks
for nonlinear systems including secure communication problems,” International Journal of Innovative
Computing, Information and Control, vol. 6, no. 11, pp. 4771–4782, 2010.

[28] C. Lin, Z. Wang, and F. Yang, “Observer-based networked control for continuous-time systems with
random sensor delays,” Automatica, vol. 45, no. 2, pp. 578–584, 2009.



Mathematical Problems in Engineering 17

[29] L. Xie, M. Fu, and C. E. de Souza, “H∞-control and quadratic stabilization of systems with parameter
uncertainty via output feedback,” IEEE Transactions on Automatic Control, vol. 37, no. 8, pp. 1253–1256,
1992.

[30] V. B. Kolmanovskii and A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1992.

[31] L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static
output-feedback and related problems,” IEEE Transactions on Automatic Control, vol. 42, no. 8, pp.
1171–1176, 1997.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 705828, 12 pages
doi:10.1155/2012/705828

Research Article
Finite-Time Boundedness and Stabilization of
Networked Control Systems with Time Delay

Yeguo Sun and Jin Xu

Department of Mathematics and Computational Science, Huainan Normal University,
238 Dongshan West Road, Huainan 232038, China

Correspondence should be addressed to Yeguo Sun, yeguosun@126.com

Received 30 March 2012; Revised 6 June 2012; Accepted 26 June 2012

Academic Editor: Bo Shen

Copyright q 2012 Y. Sun and J. Xu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The finite-time control problem of a class of networked control systems (NCSs) with time delay
is investigated. The main results provided in the paper are sufficient conditions for finite-time
stability via state feedback. An augmentation approach is proposed to model NCSs with time
delay as linear systems. Based on finite time stability theory, the sufficient conditions for finite-time
boundedness and stabilization of the underlying systems are derived via linear matrix inequalities
(LMIs) formulation. Finally, an illustrative example is given to demonstrate the effectiveness of the
proposed results.

1. Introduction

Networked control systems (NCSs) are feedback control systems with control loops closed
via digital communication channels. Compared with the traditional point-to-point wiring,
the use of the communication channels can reduce the costs of cables and power, simplify the
installation and maintenance of the whole system, and increase the reliability. NCSs have
many industrial applications in automobiles, manufacturing plants, aircrafts, and HVAC
systems [1]. However, the insertion of communication networks in feedback control loops
makes the NCSs analysis and synthesis complex; see [2–8] and the references therein.

One issue inherent to NCSs, however, is the network-induced delay that occurs
while exchanging date among devices connected to the shared medium. This delay, either
constant or time varying, can degrade the performance of control systems designed without
considering it and even destabilize the system. Thus the issues of stability analysis for NCSs
have received considerable attention for decades [9–15]. In [9, 10], NCSs with random delays
are modelled as jump linear systems with two modes; the necessary and sufficient conditions
on the existence of stabilizing controllers are given. By introducing indicator functions, mean-
square asymptotic stability is derived for the closed-loop networked control system in [11].
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Actuator Plant Sensor

Controller

Network

Figure 1: Illustration of NCSs over communication network.

Based on a discrete system model with time-varying input delays, stability analysis and
control design are carried out in [12, 13]. In [14], an observer-based stabilizing controller has
been designed for networked systems involving both random measurement and actuation
delays. In [15], a novel state feedback H∞ control with the compensator for the effects
of network delays in both forward and feedback channels is proposed by introducing an
augmented state variable.

On the other hand, finite-time boundedness and stability can be used in all those
applications where large values of the state should not be attained, for instance, in the
presence of saturations. However, most of the results in the literature are focused on
Lyapunov stability. Some early results on finite-time stability (FTS) can be found in [16],
more recently the concept of FTS has been revisited in the light of recent results coming from
linear matrix inequalities (LMIs) theory, which has made it possible to find less conservative
conditions for guaranteeing FTS and finite time stabilization of discrete-time and continuous-
time systems [17–26]. In [27, 28], sufficient conditions for finite-time stability of networked
control systems with packet dropout are provided; however, controller design methods are
not given.

To the best of our knowledge, the finite-time stabilization problems for NCSs with
delay have not been fully investigated to date. Especially for the case where the plant
subjects to external interference, very few results related to NCSs are available in the existing
literature, which motivates the study of this paper. The main contributions of this paper are
definitions of finite-time boundedness and stabilization are extended to NCSs. Furthermore,
sufficient conditions for finite-time boundedness and stabilization linear matrix inequalities
formulation are given.

In this paper, the finite-time stabilization and boundedness problems of a class of
NCSs with time delay are studied. The sufficient conditions for finite-time stabilization
and boundedness of the underlying systems are derived via LMIs formulation. Lastly, an
illustrative example is given to demonstrate the effectiveness of the proposed methods.

This paper is organized as follows. An augmentation approach is proposed to model
NCSs with time delay as linear system in Section 2. The finite-time stabilization and
boundedness conditions for NCSs with time delay are derived via LMIs in Section 3. Section 4
provides a numerical example to illustrate the effectiveness of our results. Finally, Section 5
gives some concluding remarks.

2. Problem Formulation and Preliminaries

Consider NCS depicted in Figure 1 consists of three components: a plant to be controlled, a
network such as the Internet, and a controller.
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In this paper, it is assumed that the plant is described by

ẋ(t) = Ax(t) + Bu(t) +Gw(t) (2.1)

and time-invariant controller

u(kh) = −Kx(Kh), k = 0, 1, 2, . . . , (2.2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, and w(t) ∈ R
q is the exogenous

input. A, B, and G are known real constant matrices with appropriate dimensions. The
sampling period h is fixed and known. There are two sources of delays from the network:
the sensor-to-controller delay τsc and the controller-to-actuator delay τca. For the fixed
control law, the sensor-to-controller delay and the controller-to-actuator delay can be lumped
together as τ = τsc + τca for analysis purpose. We make the following assumptions about
NCSs.

Assumption 2.1. The sensors are clock-driven sensors, and controllers and actuators are event-
driven.

Assumption 2.2. The network-induced delay is constant and less than one sampling period.

Assumption 2.3. During the finite time T , there exists a positive constant d, such that the
exogenous input w(t) satisfies

∫T

0
wT (t)w(t)dt ≤ d2. (2.3)

Then the system equation can be written as

ẋ(t) = Ax(t) + Bu(t) +Gw(t), t ∈ [kh + τ, (k + 1)h + τ),

y(t) = Cx(t),

u(t+) = −Kx(t − τ), t ∈ {kh + τ, k = 1, 2, . . .}.
(2.4)

Sampling the system with period h, we obtain

x(k + 1) = Φx(k) + Γ0(τ)u(k) + Γ1(τ)u(k − 1) + Ψw(k),

y(t) = Cx(t),
(2.5)

where

Φ = eAh, Ψ =
∫h

0
eAsGds. (2.6)



4 Mathematical Problems in Engineering

Γ0(τ) and Γ1(τ) are defined as follows:

Γ0(τ) =
∫h−τ

0
eAsB ds, Γ1(τ) =

∫h

h−τ
eAsB ds. (2.7)

Define the augmented state vector x̃(k) as follows:

x̃(k) = [x(k), u(k − 1)]T (2.8)

and the augmented exogenous input vector w̃(k) as

w̃(k) = [w(k), 0]T . (2.9)

Then we have the augmented closed-loop system

x̃(k + 1) =
(
Ã + B̃K̃

)
x̃(k) + G̃w̃(k), (2.10)

where

Ã =
[
Φ Γ1(τ)
0 0

]
, B̃ =

[−Γ0(τ)
−I

]
, G̃ =

[
Ψ 0
0 0

]
(2.11)

and K̃ is defined as follows

K̃ =
[
K 0

]
. (2.12)

Remark 2.4. According to Assumption 2.3, we can derive that there exists a positive constant
d, such that the condition

N∑

k=1

w̃T (k)w̃(k) ≤ d2 (2.13)

is satisfied, for finite positive integer N.

Remark 2.5. When the delay is longer than one sampling period, that is to say, h < τ < lh,
where l > 1, the augmented state vector x̃(k) is defined as

x̃(k) = [x(k), u(k − l), . . . , u(k − 1)]T (2.14)

and the corresponding augmented closed-loop system can be derived.

The main aim of this paper is to find some sufficient conditions which guarantee that the
system given by (2.10) is bounded over a finite-time interval. The general idea of finite-time
stability concerns the boundedness of the state of a system over a finite time interval for given
initial conditions; this concept can be formalized through the following definitions.
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Definition 2.6. System (2.10) with (2.13) is said to be finite-time bounded with respect to
(α, d, β, R,N), where R is a positive-definite matrix, 0 < α < β, if

xT (0)Rx(0) ≤ α2 =⇒ xT (k)Rx(k) ≤ β2, k ∈ {1, . . . ,N}. (2.15)

Definition 2.7. System (2.10) with w(k) = 0 is said to be finite-time stable with respect to
(α, β, R,N), where R is a positive-definite matrix, 0 < α < β, if

xT (0)Rx(0) ≤ α2 =⇒ xT (k)Rx(k) ≤ β2, k ∈ {1, . . . ,N}. (2.16)

To this end, the following lemma will be essential for the proofs in the next section and its
proof can be found in the cited references.

Lemma 2.8 (Schur complement lemma, see [29]). For a given symmetric matrixW =
[
W11 W12

WT
12 W22

]
,

where W11 ∈ R
p×p,W22 ∈ R

q×q, and W12 ∈ R
p×q, the following three conditions are mutually

equivalent:

(1) W < 0,

(2) W11 < 0, W22 −WT
12W

−1
11 W12 < 0,

(3) W22 < 0, W11 −W12W
−1
22 W

T
12 < 0.

3. Main Results

In this section, we will find a state feedback control matrixK, such that system (2.10) is finite-
time bounded with respect to (α, d, β, R,N). In order to solve the problem, the following
theorem will be essential.

Theorem 3.1. For given state feedback control matrix K, system (2.10) is finite-time bounded with
respect to (α, d, β, R,N), if there exist symmetric positive definite matrices P1 and P2 and a scalar
γ ≥ 1, such that the following conditions hold:

⎡
⎢⎣

(
Ã + B̃K̃

)T
P1

(
Ã + B̃K̃

)
− γP1

(
Ã + B̃K̃

)T
P1G̃

G̃TP1

(
Ã + B̃K̃

)
G̃TP1G̃ − γP2

⎤
⎥⎦ < 0, (3.1)

λ2
λ1

γNα2 +
λ3
λ1

γNd2 < β2, (3.2)

where

λ1 = λmin

(
P̃1

)
,

λ2 = λmax

(
P̃1

)
,

λ3 = λmax(P2),

P̃1 = R−1/2P1R
1/2.

(3.3)
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Proof. Choose the Lyapunov function as

V (x̃(k)) = x̃T (k)P1x̃(k). (3.4)

Then we have

V (x̃(k + 1)) = x̃T (k + 1)P1x̃(k + 1)

=
((

Ã + B̃K̃
)
x̃(k) + G̃w(k)

)T
P1

((
Ã + B̃K̃

)
x̃(k) + G̃w(k)

)

=
[
x̃(k)
w(k)

]T
⎡

⎣
(
Ã + B̃K̃

)T
P1

(
Ã + B̃K̃

) (
Ã + B̃K̃

)T
P1G̃

G̃TP1

(
Ã + B̃K̃

)
G̃TP1G̃

⎤

⎦
[
x̃(k)
w(k)

]
.

(3.5)

It follows from (3.1) that

V (x̃(k + 1)) ≤ γV (x̃(k)) + γwT (k)P2w(k). (3.6)

Applying iteratively (3.6), we obtain

V (x̃(k)) ≤ γkV (x̃(0)) +
k∑

j=1

γjwT(k − j
)
P2w

(
k − j

)

= γk

⎛

⎝V (x̃(0)) +
k∑

j=1

γj−kwT(k − j
)
P2w

(
k − j

)
⎞

⎠

≤ γk

⎛

⎝V (x̃(0)) + λ3
k∑

j=1

γj−kwT(k − j
)
w
(
k − j

)
⎞

⎠.

(3.7)

Using the fact that γ ≥ 1, we have

V (x̃(k)) ≤ γk

⎛

⎝V (x̃(0)) + λ3
k∑

j=1

wT(k − j
)
w
(
k − j

)
⎞

⎠

≤ γN
(
λ2α

2 + λ3d
2
)
.

(3.8)

On the other hand,

V (x̃(k)) = x̃T (k)P1x̃(k) ≥ λ1x̃
T (k)Rx̃(k). (3.9)

From (3.8) and (3.19), it can be seen that

x̃T (k)Rx̃(k) ≤ λ2
λ1

γNα2 +
λ3
λ1

γNd2 < β2 (3.10)
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which means that

x̃T (k)Rx̃(k) ≤ β2, k = 1, . . . ,N. (3.11)

This completes the proof.

Corollary 3.2. For given state feedback control matrixK, system (2.10) with the disturbance w̃(k) =
0 is finite-time stable with respect to (α, β, R,N), if there exist symmetric positive definite matrix P
and a scalar γ ≥ 1, such that the following conditions hold:

(
Ã + B̃K̃

)T
P
(
Ã + B̃K̃

)
− γP < 0,

cond
(
P̃
)
<

1
γN

β2

α2
,

(3.12)

where

P̃ = R−1/2PR1/2, cond
(
P̃
)
=

λmax

(
P̃
)

λmin

(
P̃
) . (3.13)

Now we turn back to our original problem, that is, to find sufficient conditions which
guarantee that the system (2.4) with the controller (2.2) is finite-time bounded with respect
to (α, d, β, R,N). The solution of this problem is given by the following theorem.

Theorem 3.3. System (2.10) is finite-time bounded with respect to (α, d, β, R,N) if there exist
symmetric positive definite matrices Q11, Q12, and Q2, a matrix L, and a scalar γ ≥ 1, such that
the following conditions hold:

⎡
⎢⎢⎣

−γQ1 0
(
ÃQ1 + B̃LS

)T

0 −γQ2 G̃T

ÃQ1 + B̃LS G̃ −Q1

⎤
⎥⎥⎦ < 0, (3.14)

λ5
λ4

γNα2 + λ5λ6γ
Nd2 < β2, (3.15)

where

λ4 = λmin

(
Q̃1

)
,

λ5 = λmax

(
Q̃1

)
,

λ6 = λmax(Q2),

Q̃1 = R−1/2Q1R
1/2

(3.16)
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S and Q1 are defined as follows

S =
[
I 0
0 0

]
, Q1 =

[
Q11 0
0 Q12

]
. (3.17)

Then the controller K is given by the first p columns of K̃ = LSQ−1
1 , which is in the form (2.12).

Proof. Let us consider Theorem 3.1 with Q1 = P−1
1 and Q2 = P2. Condition (3.2) can be

rewritten as in (3.15) recalling that for a positive definite matrix Q

λmax(Q) =
1

λmin
(
Q−1) . (3.18)

Denote Â = Ã + B̃K̃. Then condition (3.1) can be rewritten as

⎡

⎣
ÂTQ−1

1 Â − γQ−1
1 ÂTQ−1

1 G̃

G̃TQ−1
1 Â G̃TQ−1

1 G̃ − γQ2

⎤

⎦ < 0. (3.19)

Pre- and postmultiplying (3.19) by the symmetric matrix

[
Q1 0
0 I

]
, (3.20)

the following equivalent condition is obtained

⎡

⎣
Q1Â

TQ−1
1 ÂQ1 − γQ1 Q1Â

TQ−1
1 G̃

G̃TQ−1
1 ÂQ1 G̃TQ−1

1 G̃ − γQ2

⎤

⎦ < 0. (3.21)

By using Lemma 2.8, (3.21) is equivalent to the following:

⎡
⎢⎣
Q1Â

TQ−1
1 ÂQ1 − γQ1 Q1Â

TQ−1
1 G̃ 0

G̃TQ−1
1 ÂQ1 −γQ2 G̃T

0 G̃ −Q1

⎤
⎥⎦ < 0. (3.22)

Premultiply (3.22) by

⎡
⎢⎣
I 0 −Q1Â

TQ−1
1

0 I 0
0 0 I

⎤
⎥⎦ (3.23)
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and postmultiply it by the transpose of (3.23). In this way, we obtain the following equivalent
condition:

⎡
⎢⎢⎣

−γQ1 0 Q1Â
T

0 −γQ2 G̃T

ÂQ1 G̃ −Q1

⎤
⎥⎥⎦ < 0. (3.24)

Recalling that Â = Ã + B̃K̃ and letting K̃Q1 = LS, we obtain that condition (3.1) is equivalent
to (3.14). This completes the proof.

Remark 3.4. The chosen structures formatrices S andQ1 guarantee that K̃ is in the form (2.12).
In fact

K̃ = LSQ−1
1 = L

[
I 0
0 0

][
Q11 0
0 Q12

]
= L

[
Q−1

11 0
0 0

]
=
[
K 0

]
. (3.25)

Remark 3.5. Once we have fixed γ , the feasibility of the conditions stated in (3.14) can be
turned into LMI feasibility problems. On the other hand, for θ1 > 0, θ2 > 0, it is easy to check
that condition (3.15) can be guaranteed by

θ1R
−1 < Q1 < R−1,

0 < Q2 < θ2I,

⎡
⎢⎣
β2 − θ2d

2γN α
√
γN

α
√
γN θ1

⎤
⎥⎦ > 0.

(3.26)

Corollary 3.6. System (2.10) with the disturbance w̃(k) = 0 is finite-time stable with respect to
(α, β, R,N), if there exist symmetric positive definite matricesQ1,Q2, a matrix L, and a scalar γ ≥ 1,
such that the following conditions hold:

⎡

⎣ −γQ
(
ÃQ + B̃LS

)T

ÃQ + B̃LS −Q

⎤

⎦ < 0,

R−1 < Q <
1
γN

β2

α2
R−1,

(3.27)

where

S =
[
I 0
0 0

]
, Q =

[
Q1 0
0 Q2

]
. (3.28)

Then the controller K is given by the first p columns of K̃ = LSQ−1.
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4. Numerical Example

Consider the following system:

ẋ(t) =
[
0 1
0 −0.1

]
x(t) +

[
0
0.1

]
u(t) +

[
1 0
0 1

]
w(t),

y(t) =
[
0.1 0.5

]
x(t).

(4.1)

Choose the sampling h = 0.3s. Suppose τ = 0.1s. The corresponding matrices are given by

Φ =
[
1.0000 0.2955

0 0.9704

]
, Ψ =

[
0.3000 0.0446

0 0.2955

]
, (4.2)

Γ0(τ) =
[
0.0020
0.0198

]
, Γ1(τ) =

[
0.0025
0.0098

]
(4.3)

which yields

Ã =

⎡

⎣
1.0000 0.2955 0.0025

0 0.9704 0.0098
0 0 0

⎤

⎦, B̃ =

⎡

⎣
−0.0020
−0.0198

−1

⎤

⎦, G̃ =

⎡

⎣
0.3000 0.0446 0

0 0.2955 0
0 0 0

⎤

⎦. (4.4)

It is assumed that α = 1, d = 3, β = 20, R = I, N = 10. Applying Theorem 3.3 with γ = 1.5, it is
found that

Q1 =

⎡

⎣
0.9472 0.0318 0
0.0318 0.7947 0

0 0 0.8616

⎤

⎦,

L =
[
0.0030 0.0187 0

]
.

(4.5)

Therefore, the desired controller gain is given by

K̃ = LSQ−1
1 =

[
K 0

]
=
[
0.0024 0.0235 0

]
. (4.6)

5. Conclusions

In this paper, we have considered the finite-time boundedness problems of a class of
networked control systems (NCSs) subject to disturbances. Based on the augmentation
approach, the NCSs with time delay as linear systems. The sufficient conditions for finite-
time boundedness of the underlying systems are derived via linear matrix inequalities (LMIs)
formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the
proposed results.
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The exponential synchronization for a class of discrete-time uncertain complex networks with
stochastic effects and time delay is investigated by using the Lyapunov stability theory and
discrete Halanay inequality. The uncertainty arises from the difference of the nodes’ reliability
in the complex network. Through constructing an appropriate Lyapunov function and applying
inequality technique, some synchronization criteria and two control methods are obtained to
ensure the considered complex network being exponential synchronization. Finally, a numerical
example is provided to show the effectiveness of our proposed methods.

1. Introduction

Since the discovery of small-world effect [1] and scale-free feature [2] of complex networks,
many researchers in the fields of science and engineering have paid more attention to the
topic and provided some valuable results which can be found in [3–9] and the references
therein. Particularly, the broad application in the fields of ecosystems, the Internet, biological
neural networks, and large-scale robotic system (see [10–12]), and so forth, promotes the
complex network becoming a more significant topic.

Synchronization, as one of the important dynamical characters of the complex
networks, has been studied in many papers. For example, the authors studied the pinning
synchronization problem of stochastic impulsive network by using Lyapunov stability
theory and provided some sufficient criteria to ensure that the dynamical network is
asymptotical synchronization and exponential synchronization in mean square in [13]. Based
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on the parameter-dependent Lyapunov function, the authors considered the synchronization
problem for a network family with different network structure and proposed some
synchronization criteria in [14]. Similar with the continuous complex networks, there also
exist many control methods to study the synchronization stability for discrete complex
networks recently, which can be found in [15–20] and the references therein. For instance, the
authors investigated the synchronization problem for the discrete-time complex networks
with distributed time delays by using the Lyapunov stability theory, Kronecker product,
and the linear matrix inequalities method in [17]. In [18], the authors revisited the
synchronization stability problem for discrete complex dynamical networks with a time
varying delay and constructed a new Lyapunov-Krasovskii functional by dividing the time-
varying delay into a constant part and a variant part. In [20], the authors investigated
the synchronization and state estimation problems for discrete-time complex network by
utilizing a time varying real-valued function and the Kronecker product and provided a novel
concept of bounded H∞ synchronization.

However, in the real world, some nodes in a complex network usually do not
normally work for some reasons. Particularly, this phenomenon easily appears in a complex
network composed of many electronic components since that the reliability of every electric
component exists the difference in general. The reason resulted in this phenomenon can
be found in [21–23]. Therefore, it is necessary to study the synchronization problem for
this kind of complex network with uncertain nodes. Motivated by the above discussion,
we intend to study the exponential synchronization problem for a discrete-time uncertain
complex network with stochastic effects in this paper. Different from some previous papers,
the contributions of our paper are as follows. (1) We consider the uncertainty arising from
the nodes’ reliability in the complex network. (2) We consider the case that all the nodes in
the complex network are effected by the working circumstance. (3)Our approach used in the
paper is different from the methods in the papers listed.

The rest of this paper is organized as follows. In Section 2, the investigated discrete
complex network and some necessary lemmas, assumptions are given. In Section 3, the
exponential synchronization criteria and control methods for the complex network are
derived. In Section 4, a numerical example is provided to illustrate the effectiveness of our
method. Finally, this paper is ended with a conclusion in Section 5.

Notation 1. In this paper, Rn and Rn×m, respectively, denote the n-dimensional Euclidean
space and the set of all n × m real matrices. For a vector x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈
Rn, ‖x(t)‖ =

√∑n
i=1 x

2
i (t) denotes its norm. AT denotes the transpose of matrix A.

(Ω,F, {Ft}t≥0,P) denotes the complete probability space with a filtration {Ft}t≥0 satisfying
right continuous and F0 containing all P-null sets. In is the n × n identical matrix. 1n =
(1, 1, . . . , 1)T and 1n×n ∈ Rn×n are an n-dimensional vector and an n × n matrix with all the
elements being 1, respectively. ⊗ is the Kronecker product. λmax(H) stands for the biggest
eigenvalues of matrix H. E{·} denotes the mathematical expectation.

2. Preliminaries

In this paper, we consider the following discrete-time complex network consisting of N
identical nodes with diffusive couplings. Each node is an n-dimensional dynamical system
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and the state equation is

xi(k + 1) = Axi(k) + f(xi(k), xi(k − τ(k))) + c
N∑

j=1,j /= i

ξigijΓ
[
xj(k − τ(k)) − xi(k − τ(k))

]
+ ui(k)

+ ϕ(xi(k))w(k), i = 1, 2, . . . ,N,

(2.1)

whereN is the number of coupled nodes. xi(k) = (xi1(k), xi2(k), . . . , xin(k))
T ∈ Rn is the state

vector of node i at sampling time kT with sampling period T > 0, A ∈ Rn×n is a constant
matrix, f(·) : Rn × Rn → Rn is a nonlinear vector function, and scalar c > 0 denotes the
coupling strength. The working situation of every node in the complex network is described
by two random events:

Event 1 : the node is available,

Event 2 : the node is unavailable.
(2.2)

Random variables ξi (i = 1, 2, . . . ,N) are defined as

ξi =

{
1, if Event 1 occurs,
0, if Event 2 occurs,

(2.3)

where ξi(i = 1, 2, . . . ,N) areN independent random variables with mathematical expectation
E{ξi} = pi and the variance Var{ξi} = qi. In practice, since the availability of each node in
the considered complex network is usually not identical, so it is very reasonable to describe
the working situation using different random variables for different nodes. Outer-coupling
matrix

G =

⎡
⎢⎢⎣

g11 g12 · · · g1N
g21 g22 · · · g2N
· · · · · · · · · · · ·
gN1 gN2 · · · gNN

⎤
⎥⎥⎦ =

[
g11 G12

G21 G22

]
, (2.4)

where gii = −∑N
j=1,j /= i gij , G12 = [ g12 g13 ··· g1N ], and G21 = [ g21 g31 ··· gN1 ]T . gij (i, j = 1, 2, . . . ,N)

are defined as follows: if there exists a connection between node i with node j, then gij = 1,
or else gij = 0. Inner-coupling matrix Γ ∈ Rn×n is a positive definite diagonal matrix. τ(k)
denotes the transmission time delay and satisfies 0 ≤ τ(k) ≤ τ for a positive scalar τ > 0.
w(k) is a scalar Wiener process defined on a probability space (Ω,F, {Ft}t≥0,P) with

E{w(k)} = 0, E
{
w2(k)

}
= 1, E

{
w(i)w

(
j
)}

= 0, i /= j. (2.5)
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The noise strength ϕ(·) : Rn → Rn is a vector function. ui(k) ∈ Rn (i = 1, 2, . . . ,N) are the
control input to be designed. The complex network (2.1) can be written as

xi(k + 1) = Axi(k) + f(xi(k), xi(k − τ(k))) + c
N∑

j=1

ξigijΓxj(k − τ(k)) + ui(k)

+ ϕ(xi(k))w(k), i = 1, 2, . . . ,N.

(2.6)

Letting ei(k) = xi(k) − x1(k), we get

ei(k + 1) = Aei(k) + f(xi(k), xi(k − τ(k))) − f(x1(k), x1(k − τ(k))) + c
N∑

j=1

ξigijΓxj(k − τ(k))

− c
N∑

j=1

ξ1g1jΓxj(k − τ(k)) + ui(k) − u1(k) +
[
ϕ(xi(k)) − ϕ(x1(k))

]
w(k),

i = 2, . . . ,N.

(2.7)

Define

e(k) =
(
eT2 (k), e

T
3 (k), . . . , e

T
N(k)

)T
, ξ̂ = diag(ξ2, ξ3, . . . , ξN), ξ = ξ1 · IN−1,

P̂ = diag
(
p2, p3, . . . , pN

)
, P = p1 · IN−1, Q̂ = diag

(
q2, q3, . . . , qN

)
, Q = q1 · IN−1,

Fi(ei(k)) = f(xi(k), xi(k − τ(k))) − f(x1(k), x1(k − τ(k))),

F(e(k)) =
(
FT
2 (e2(k)), F

T
3 (e3(k)), . . . , F

T
N(eN(k))

)T
,

u(k) =
(
uT
2 (k), u

T
3 (k), . . . , u

T
N(k)

)T
,

Ψi(ei(k)) = ϕ(xi(k)) − ϕ(x1(k)), Ψ(e(k)) =
(
ΨT

2 (e2(k)),Ψ
T
3 (e3(k)), . . . ,Ψ

T
N(eN(k))

)T
,

G1 =

⎡
⎢⎢⎣

g12 g13 · · · g1N
g12 g13 · · · g1N
· · · · · · · · · · · ·
g12 g13 · · · g1N

⎤
⎥⎥⎦ ∈ R(N−1)×(N−1),

(2.8)

then the error system (2.7) can be written as the following form

e(k+1) = (IN−1⊗A)e(k)+F(e(k))+c
(
ξ̂G22

)
⊗ Γe(k−τ(k))−c

(
ξG1

)
⊗Γe(k − τ(k))

+ u(k) − 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.9)
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Note that (2.9) is equivalent to

e(k + 1) = (IN−1 ⊗A)e(k) + F(e(k)) + c
(
P̂G22

)
⊗ Γe(k − τ(k)) − c

(
PG1

)
⊗ Γe(k − τ(k))

+ c
[(

ξ̂ − P̂
)
G22

]
⊗ Γe(k − τ(k)) − c

[(
ξ − P

)
G1

]
⊗ Γe(k − τ(k))

+ u(k) − 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.10)

Letting Θ1 = cP̂G22 − cPG1, Θ2 = c(ξ̂ − P̂)G22 − c(ξ − P)G1, then we have

e(k + 1) = (IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k)) + u(k)

− 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.11)

Throughout this paper, the following assumptions are needed.

(A1) The nonlinear vector function f(·) in the system (2.1) satisfies

∥∥f(x(k), x(k − τ(k))) − f
(
y(k), y(k − τ(k))

)∥∥2

≤ L1
∥∥x(k) − y(k)

∥∥2 + L2
∥∥x(k − τ(k)) − y(k − τ(k))

∥∥2
(2.12)

for any x(k) ∈ Rn and y(k) ∈ Rn, where L1 ≥ 0 and L2 ≥ 0 are positive constants.

From (2.12), it can be verified that

‖Fi(ei(k))‖2 ≤ L1‖ei(k)‖2 + L2‖ei(k − τ(k))‖2 (2.13)

for i = 2, 3, . . . ,N.

(A2) There exists a positive constant M > 0 such that the nonlinear vector function ϕ(·)
in the system (2.1) satisfies

∥∥ϕ(x(k)) − ϕ
(
y(k)

)∥∥ ≤ M
∥∥x(k) − y(k)

∥∥ (2.14)

for any x(k) ∈ Rn and y(k) ∈ Rn.
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From (2.14), one can conclude that

ΨT (e(k))Ψ(e(k)) =
N∑

i=2

ΨT
i (ei(k))Ψi(ei(k))

≤
N∑

i=2

M2eTi (k)ei(k)

= M2eT (k)e(k).

(2.15)

Definition 2.1. The complex network (2.1) is said to be exponential synchronization in mean
square if there exist positive constants h > 0 and γ ∈ (0, 1) such that

E
{∥∥xi(k) − xj(k)

∥∥2
}
≤ hγk, i, j = 1, 2, . . . ,N, k = 1, 2, . . . (2.16)

for any initial values x(s), s = −τ, . . . , 0, where γ is called the exponential convergence rate.

Remark 2.2. FromDefinition 2.1, it is easy to see that the complex network (2.1) is exponential
synchronization in mean square only if there exist positive constants h > 0 and γ ∈ (0, 1) such
that

E
{
‖xi(k) − x1(k)‖2

}
≤ hγk, i = 2, . . . ,N, k = 1, 2, . . . (2.17)

for any initial values x(s), s = −τ, . . . , 0.

Remark 2.3. The complex network model (2.1) not only includes time delay and stochastic
disturbances, but also considers the uncertainty of nodes’ working situation. To date, there
have existed many literatures [13, 15, 19] to study the synchronization control problem for
discrete-time complex networks. However, for this case, there exist less results. Moreover,
different from [13, 17], we are not necessary to use the information of target node given
beforehand in the paper.

Lemma 2.4 (see [24]). Let d > 0 be a natural number and {U(k)}k≥−d a sequence of real numbers
satisfying the inequality

ΔU(k) ≤ −aU(k) + b ·max{U(k), U(k − 1), . . . , U(k − d)}, k ≥ 0, (2.18)

where ΔU(k) = U(k + 1) −U(k). If 0 < b < a ≤ 1, then there exists a constant η0 ∈ (0, 1) such that

U(k) ≤ max{0, U(0), U(−1), . . . , U(−d)}ηk
0 , k ≥ 0. (2.19)
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Moreover, η0 can be chosen as the root of the equation

ηd+1 + (a − 1)ηd − b = 0 (2.20)

in the interval (0, 1).

Lemma 2.5 (see [25]). The Kronecker product ⊗ has the following properties:

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C,C ⊗ (A + B) = C ⊗A + C ⊗ B,

(2) (A ⊗ B)T = AT ⊗ BT ,

(3) (A ⊗ B)−1 = A−1 ⊗ B−1,

(4) (A ⊗ C)(B ⊗D) = AB ⊗ CD.

where, A,B,C, and D are real matrices with appropriate dimensions.

3. Synchronization Analysis and Control

In this section, we will derive some synchronization criteria for the complex network (2.1)
without input and two different synchronization control methods, respectively.

Theorem 3.1. Under assumptions (A1)∼(A2), if there exist positive constants δ1 > 0, δ2 > 0, α > 0,
and β > 0 such that

β < α ≤ 1,

Π1 =
[
IN−1 ⊗

[(
M2 + α

) · In + (1 + δ1 + δ2)L1 · In +ATA − In
]

IN−1 ⊗AT

IN−1 ⊗A −δ1 · In(N−1)

]
< 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.1)

where Θ3 = c2GT
22Q̂G22 + c2GT

1QG1, then the complex network (2.1) without input is exponential
synchronization in mean square.

Proof. Choosing the following Lyapunov function:

V (e(k)) = eT(k)e(k), (3.2)
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and calculating the difference of V (e(k)) along the trajectories of the system (2.11) without
the input, we get

E{ΔV (e(k))} = E{V (e(k + 1)) − V (e(k))}

= E
{
[(IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k))]T

× [(IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k))]

− eT(k)e(k) + ΨT (e(k))Ψ(e(k))
}

= E
{
eT (k)

[
IN−1 ⊗

(
ATA

)]
e(k) + 2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

+ 2eT (k)
(
Θ1 ⊗ATΓ

)
e(k − τ(k)) + 2eT (k)

(
Θ2 ⊗ATΓ

)
e(k − τ(k))

+ FT (e(k))F(e(k)) + 2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k))

+ 2FT (e(k))(Θ2 ⊗ Γ)e(k − τ(k))

+ eT(k − τ(k))
[(

ΘT
1Θ1 + 2ΘT

1Θ2 + ΘT
2Θ2

)
⊗ ΓTΓ

]
e(k − τ(k))

− eT(k)e(k) + ΨT (e(k))Ψ(e(k))
}

= E
{
eT (k)

[
IN−1 ⊗

(
ATA − In

)]
e(k) + 2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

+ 2eT (k)
(
Θ1 ⊗ATΓ

)
e(k − τ(k)) + FT (e(k))F(e(k))

+ 2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k)) + ΨT (e(k))Ψ(e(k))

+ eT(k − τ(k))
[(

ΘT
1Θ1 + Θ3

)
⊗ ΓTΓ

]
e(k − τ(k))

}
.

(3.3)

It is noted that

E
{
2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

}

≤ E
{
δ−1
1 eT (k)

(
IN−1 ⊗AT

)
(IN−1 ⊗A)e(k) + δ1F

T (e(k))F(e(k))
}

≤ E
{
δ−1
1 eT (k)

(
IN−1 ⊗AT

)
(IN−1 ⊗A)e(k)

+ L1δ1e
T(k)e(k) + L2δ1e

T (k − τ(k))e(k − τ(k))
}
,
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E
{
2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k))

}

≤ E
{
δ2F

T (e(k))F(e(k)) + δ−1
2 eT (k − τ(k))

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)e(k − τ(k))

}

≤ E
{
δ2L1e

T(k)e(k) + δ2L2e
T (k − τ(k))e(k − τ(k))

+ δ−1
2 eT(k − τ(k))

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)e(k − τ(k))

}
,

E
{
FT (e(k))F(e(k))

}
≤ E

{
L1e

T (k)e(k) + L2e
T (k − τ(k))e(k − τ(k))

}
,

ΨT (e(k))Ψ(e(k)) ≤ M2eT(k)e(k).

(3.4)

From (3.4), one can get

E{ΔV (e(k))} ≤ E
{
eT (k)

[
IN−1 ⊗

(
ATA − In

)
+ δ−1

1

(
IN−1 ⊗AT

)
(IN−1 ⊗A)

+ (1 + δ1 + δ2)L1 · In(N−1) +M2 · In(N−1)
]
e(k)

+ eT(k − τ(k))
[(

ΘT
1Θ1 + Θ3

)
⊗ ΓTΓ + (1 + δ1 + δ2)L2 · In(N−1)

+ δ−1
2

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)

]
e(k − τ(k))

}

≤ E
{
eT (k)Ω1e(k) + eT (k − τ(k))Ω2e(k − τ(k))

}
,

(3.5)

where

Ω1 = M2 · In(N−1) + (1 + δ1 + δ2)L1 · In(N−1) + IN−1 ⊗
(
ATA − In

)
+ δ−1

1

(
IN−1 ⊗AT

)
(IN−1 ⊗A),

Ω2 = (1 + δ1 + δ2)L2 · In(N−1) +
(
ΘT

1Θ1 + Θ3

)
⊗ ΓTΓ + δ−1

2

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ).

(3.6)

By the Schur complement lemma, we know that (3.1) is equivalent to Ω1 < −αIn(N−1) and
Ω2 < βIn(N−1). So, we have

E{ΔV (e(k))} ≤ E
{−αV (e(k)) + β ·max{V (e(k)), V (e(k − 1)), . . . , V (e(k − τ))}}. (3.7)

By Lemma 2.4, there exists a constant η0 ∈ (0, 1) such that

E{V (e(k))} ≤ max{V (e(0)), V (e(−1)), . . . , V (e(−τ))}ηk
0 , k ≥ 0. (3.8)
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In particular, η0 is the root of the equation

ηd+1 + (α − 1)ηd − β = 0 (3.9)

in the interval (0, 1). Therefore, the complex network (2.1) is exponential synchronization in
mean square. This completes the proof of Theorem 3.1.

While using the following state feedback controller:

ui(k) = −kxi(k), i = 1, 2, . . . ,N, (3.10)

to control every node in the complex network (2.1), we can obtain the error system

e(k + 1) = [IN−1 ⊗ (A − kIn)]e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k))

+ Θ2 ⊗ Γe(k − τ(k)) + Ψ(e(k))w(k),
(3.11)

where k > 0 is the control gain to be determined. So, by Theorem 3.1, we can obtain the
following result.

Theorem 3.2. Under assumptions (A1)∼(A2), if there exist positive constants k > 0, δ1 > 0, δ2 >
0, α > 0, and β > 0 such that

β < α ≤ 1,

Π̂1 =

⎡
⎢⎣

Π̂1,11 IN−1 ⊗ (A − kIn)
T IN−1 ⊗ (A − kIn)

T

IN−1 ⊗ (A − kIn) −δ1 · In(N−1) 0
IN−1 ⊗ (A − kIn) 0 −In(N−1)

⎤
⎥⎦ < 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.12)

where

Π̂1,11 = IN−1 ⊗
{[

M2 + α + (1 + δ1 + δ2)L1 − 1
]
· In

}
, (3.13)

then the complex network (2.1) is exponential synchronization in mean square under the action of the
controller (3.10).

While using the pinning controller to control arbitrary l nodes in the complex network
(2.1), we suppose that the number of the controlled nodes are 2, 3, . . . , l + 1, respectively.
Substituting the following control law:

ui(k) = −kixi(k), i = 2, 3, . . . , l + 1, (3.14)
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into the error system (2.11), we get

e(k + 1) = [IN−1 ⊗A −K ⊗ In]e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k))

+ Θ2 ⊗ Γe(k − τ(k)) + Ψ(e(k))w(k),
(3.15)

where ki > 0 (i = 2, 3, .., l + 1) are the control gains to be determined, K = diag(k2, k3, . . . ,
kl+1, 0, . . . , 0︸ ︷︷ ︸

N−1−l

). By Theorem 3.1, we can obtain the following result.

Theorem 3.3. Under assumptions (A1)∼(A2), if there exist positive constants ki > 0 (i=2,3,. . . ,l+1),
δ1 > 0, δ2 > 0, α > 0, and β > 0 such that

β < α ≤ 1,

Π̃1 =

⎡
⎢⎣

Π̃1,11 IN−1 ⊗AT −K ⊗ In IN−1 ⊗AT −K ⊗ In
IN−1 ⊗A −K ⊗ In −δ1 · In(N−1) 0
IN−1 ⊗A −K ⊗ In 0 −In(N−1)

⎤
⎥⎦ < 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.16)

where

Π̃1,11 = IN−1 ⊗
{[

M2 + α + (1 + δ1 + δ2)L1 − 1
]
· In

}
, (3.17)

then the complex network (2.1) is exponential synchronization in mean square under the action of the
pinning controller (3.14).

Remark 3.4. If the time delay τ(k) = 0 in the complex network (2.1), applying the same
method in the paper, we can also obtain the synchronization criteria and synchronization
controllers for the following complex network:

xi(k + 1) = Axi(k) + f(xi(k)) + c
N∑

j=1,j /= i

ξigijΓ
[
xj(k) − xi(k)

]

+ ui(k) + ϕ(xi(k))w(k)

(3.18)

for i = 1, 2, . . . ,N.

Remark 3.5. Similar with [21–23], we will investigate the H∞ synchronization for the
uncertain complex network (2.1) in our future work.
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4. A Numerical Example

Example 4.1. Consider the complex network (2.1)with ten nodes, and let each node be a three-
dimensional dynamical subsystem whose parameters are as follows: A = diag{0.3, 0.5, 0.4},

f(xi(k), xi(k − τ(k))) =

⎡

⎣
tanh(0.2xi1(k)) + tanh[−0.4xi1(k − τ(k))]
tanh(0.3xi2(k)) + tanh[−0.2xi2(k − τ(k))]
tanh(0.4xi3(k)) + tanh[0.1xi3(k − τ(k))]

⎤

⎦,

c = 0.1, Γ = diag{0.1, 0.2, 0.3}, τ(k) = 2 +
1
k
, ϕ(xi(k)) = 0.4xi(k),

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 1 0 1 1 1 0 1 0 1
1 −5 1 0 1 0 0 1 0 1
0 1 −6 0 1 1 1 0 1 1
1 0 0 −5 1 1 0 1 0 1
1 1 1 1 −7 0 1 1 0 1
1 0 1 1 0 −6 1 1 1 0
0 0 1 0 1 1 −5 0 1 1
1 1 0 1 1 1 0 −7 1 1
1 0 1 0 0 1 1 1 −5 0
1 1 1 1 1 0 1 1 0 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E{ξ1} = 0.6, E{ξ2} = 0.7, E{ξ3} = 1, E{ξ4} = 0.9, E{ξ5} = 0.7,

E{ξ6} = 1, E{ξ7} = 0.5, E{ξ8} = 0.8, E{ξ9} = 0.6, E{ξ10} = 0.9.

(4.1)

It is easy to verify that assumptions (A1)∼(A2) hold while L1 = L2 = M = 0.2. By the LMI
toolbox in the Matlab, we can obtain a feasible solution of inequalities (3.12) as follows:

δ1 = 0.2748, δ2 = 0.3624, α = 0.5126, β = 0.5047, k = 0.4003. (4.2)

Therefore, according to Theorem 3.2, we know that all the nodes in the complex network can
exponentially synchronize each other. The state error curves are shown in Figure 1, and these
figures show that all the nodes synchronize well. However, for this example, inequalities
(3.16) are infeasible. So, from Theorem 3.3, we know that all the nodes in the complex
network cannot achieve exponential synchronization by using the pinning controller (3.14).

5. Conclusions

This paper has investigated the exponential synchronization problem for a class of discrete-
time uncertain delay complex networkwith stochastic effects based on the Lyapunov stability
theory and discrete Halanay inequality and provided some synchronization criteria and two
different control schemes. Different from some existing results, this paper has considered the
uncertainty arising from the nodes’ working situation. Moreover, we do not need the state
information of the target node given beforehand. The numerical illustration has shown that
our proposed methods are effective.
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Figure 1: The state error curves of the complex network (2.1) with the given parameters in Example 4.1
(i = 2, . . . , 10).
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We study the concept of stabilization with internal loop for infinite-dimensional discrete time-
varying systems in the framework of nest algebra. We originally give a parametrization of all
stabilizing controllers with internal loop, and it covers the parametrization of canonical or dual
canonical controllers with internal loop obtained before. We show that, in practical application,
the controller with internal loop overcomes the awkwardness brought by the extra invertibility
condition in the parametrization of the conventional controllers. We also prove that the strong
stabilization problem can be completely solved in the closed-loop system with internal loop. Thus
the advantage of the controller with internal loop is addressed in the framework of nest algebra.

1. Introduction

The closed-loop system whose stability is achieved by the controller with internal loop
has attracted the attention of many authors in recent years (see [1–5]). This system was
originally introduced by Weiss and Curtain in 1997 in [1]. When they extended the theory of
dynamic stabilization to regular linear systems (a subclass of the well-posed linear systems),
it was shown in Example 6.5 of [1] that even the standard observer-based controller is not
a well-posed linear system as needed, correspondingly, its transfer function is not well-
posed. To overcome this difficulty, a new type of controller, the so-called stabilizing controller
with internal loop, was introduced. This controller is more general and useful than the
standard feedback controller. Until now, only a special class of stabilizing controllers with
internal loop called canonical controllers is widely investigated. In [1], a procedure was
developed to design the canonical controllers for stabilizable and detectable plants. In [6],
the parametrization for all canonical controllers is given which is clean and avoids the extra
invertibility condition in the parametrization for the controller in the standard feedback
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system. In [7], the author extended the theory to non-well posed systems, and the robust
stabilization problem is considered by using the canonical controller.

In recent years, the study of time-varying systems using modern mathematical meth-
ods has come into its own. This was a scientific necessity. After all, many common physical
systems are time varying. In [8], A. Feintuch specifically introduced a framework of nest
algebra and the control theory for linear time-varying systemswas studied in this framework.
Meanwhile, many stabilization problems for various nonlinear time-varying systems were
widely considered as well (see [9–16]). Based on these cases, we are motivated to consider
the new model of closed-loop feedback system with internal loop for time-varying systems.

In this paper, we study the concept of stabilization with internal loop for the linear
time-varying system under the framework of nest algebra. We extend our study of controllers
with internal loop to more general cases and originally give a parametrization of all sta-
bilizing controllers with internal loop. It is found that the parametrization of the canonical
controller obtained in [6] can be viewed as a special case of the parametrization obtained
here. As we know, the parametrization of the conventional controller is not clean, and there is
always an extra invertibility condition on the parameter. This in turnmakes it awkward to use
this parametrization to solve the practical problems. While the controller with internal loop
overcomes this awkwardness. We take the sensitivity minimization problem as an example to
show this advantage of the controller with internal loop. The strong stabilization problem is
known as the design of a stable controller which stabilizes the given plant. In the framework
of nest algebra, it is still an open problem and only a necessary condition is addressed in
[17] for this problem. We prove that any stabilizable plant can be strongly stabilized by
the controller with internal loop. This means that the strong stabilization problem can be
completely solved in the system with internal loop. We also give a simple example to show
how to design the strongly stabilizing controller with internal loop.

This paper is organized as follows. In Section 2, we recall some basic concepts of the
linear systems in the framework of nest algebra. In Section 3, we introduce the closed-loop
system whose stability is achieved by the controller with internal loop and firstly give a
parametrization for all stabilizing controllers with internal loop. In Section 4, we focus on the
canonical controller and show the benefit of the controller with internal loop in the practical
application. In Section 5, we define the strongly stabilizing controller with internal loop and
address an advantage of the controller with internal loop in the framework of nest algebra.

2. Preliminaries

Let H be the complex infinite dimensional Hilbert sequence space:

�2 =

{
(x0, x1, x2, . . .) : xi ∈ C,

∞∑

i=0
|xi|2 < ∞

}
, (2.1)

where | · | denotes the standard Euclidean norm on C with inner product (x, y) =
∑∞

i=0 xiyi.
He will denote the extended space:

He = {(x0, x1, x2, . . .) : xi ∈ C}. (2.2)
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Figure 1: Standard feedback configuration.

For each n ≥ 0, let Pn denote the standard truncation projection defined on H and He by

Pn(x0, x1, . . . , xn, xn+1, . . .) = (x0, x1, . . . , xn, 0, 0, . . .). (2.3)

A continuous linear transformation T on He with the standard seminorm topology ([8,
Chapter 5]) is a causal linear system (or a linear system) if for each n ≥ 0, PnT = PnTPn.
Let L be the set of all linear systems on He. Then any element of L is a lower triangular
matrix (with respect to the standard basis, see [8, Chapter 5]).

A linear system T is stable if its restriction toH is a bounded operator ([8, Chapter 5]).
We denote the set of stable systems by S, then S is a weakly closed algebra containing the
identity, referred to in the operator algebra literature as a nest algebra ([8, Chapter 5]).

For P,C ∈ L, we consider the standard feedback configuration with plant P and
controller C shown in Figure 1.

u1, u2 denote the externally applied inputs; e1, e2 denote the inputs to the plant and
compensator, respectively, and y1, y2 denote the outputs of the plant and compensator, re-
spectively. The closed loop system equations are

[
u1

u2

]
=
[
I C
−P I

][
e1
e2

]
. (2.4)

The system is well posed if the internal input e = [ e1
e2 ] can be expressed as a causal function

of the external input u = [ u1
u2 ]. This is equivalent to requiring that

[
I C
−P I

]
be invertible. This

inverse can be easily computed and is given by the transfer matrix

H(P,C) =

[
(I + CP)−1 −C(I + PC)−1

P(I + CP)−1 (I + PC)−1

]
. (2.5)

Definition 2.1 (see [8]). The closed loop system {P,C} is stable if all the entries ofH(P,C) are
stable systems on H. The plant P is stabilizable if there exists a causal linear system C such
that {P,C} is stable.

Recall that the graph of a linear transformation P with domain D(P) = {x ∈ H :
Px ∈ H} is G(P) = {[ x

Px ] : x ∈ D(P)}. Then we can give the definitions of strong right
representation and strong left representation.



4 Mathematical Problems in Engineering

Definition 2.2 (see [8]). A plant P has a strong right representation
[
M
N

]
withM andN stable

if
(1) G(P) = Ran

[
M
N

]
,

(2) there exist X,Y ∈ S such that [YX]
[
M
N

]
= I.

A plant P has a strong left representation [−N̂M̂] with M̂ and N̂ stable if
(1) G(P) = Ker[−N̂M̂],
(2) there exist X̂, Ŷ ∈ S such that [−N̂M̂]

[
−X̂
Ŷ

]
= I.

The following result on strong right representation is proved in [8].

Theorem 2.3 (see [8]). Suppose M,N ∈ S. Then [M
N

]
is a strong right representation of P ∈ L if

and only if
(1) there exist X,Y ∈ S such that [YX]

[
M
N

]
= I,

(2)M is invertible in L.

We say that a plant P has a right coprime factorization if there exist M, N, X, Y ∈ S
such that P = NM−1 and YM + XN = I. The proof of Theorem 2.1 in [8] implies that

[
M
N

]

is a strong right representation of P if and only if NM−1 is a right coprime factorization of
P . Similarly, [−N̂M̂] is a strong left representation of P if and only if M̂−1N̂ is a left coprime
factorization of P .

The following theorem is the classical Youla Parametrization Theorem.

Theorem 2.4 (see [8]). A causal linear system P ∈ L is stabilizable if and only if P has a strong
right and a strong left representation. If this is the case, the representations can be chosen so that one
has the double Bezout identity

[
Y X

−N̂ M̂

][
M −X̂
N Ŷ

]
=

[
M −X̂
N Ŷ

][
Y X

−N̂ M̂

]
=
[
I 0
0 I

]
. (2.6)

A causal linear system C stabilizes P if and only if it has a strong right representation
[
Ŷ−NQ

X̂+MQ

]
and a

strong left representation [−(X +QM̂)Y −QN̂] for some Q ∈ S.

3. Controllers with Internal Loop

In this section, we investigate the stabilization of the time-varying system by controllers with
internal loop in the framework of nest algebra. This system is illustrated in Figure 2.

The intuitively interpretation of Figure 2: P ∈ L is the plant and KI is a transfer map
from [ e2

e3 ] to
[ y2
y3

]
when all the connections are open. Then the connection from y3 to e3 is

called internal loop. The closed loop system determined by the plant P and the controller KI

with internal loop is denoted by {P,KI}.
Partitioning KI into

[
C11 C12

C21 C22

]
, (3.1)
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P
u1 e1

e2y2
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−

KI

u3e3y3

Figure 2: The plant P connected to a controller KI with internal loop.

where Cij ∈ L, i, j = 1, 2, the closed loop system equations are

⎡

⎣
u1

u2

u3

⎤

⎦ =

⎡

⎣
I C11 C12

−P I 0
0 −C21 I − C22

⎤

⎦

⎡

⎣
e1
e2
e3

⎤

⎦. (3.2)

We say that the system is well posed if
[

I C11 C12
−P I 0
0 −C21 I−C22

]
is invertible and We denote this

inverse by H(P,KI).

Definition 3.1. The closed loop system {P,KI} determined by the plant P ∈ L and the
controller with internal loop KI is stable if all the entries of H(P,KI) are stable. The plant
P is stabilizable by a controller with internal loop if there exists a KI such that H(P,KI) is
stable. In this case, KI is called a stabilizing controller with internal loop for P .

In the previous papers, the study of stabilizing controller with internal loop is mainly
focused on the case that P and KI are both well-posed transfer functions (bounded and
analytic on some right half plane). And in all applications, the controller KI is assumed to
be stable and satisfy two conditions proposed in [1] (refer to Proposition 4.8 in [1]). While,
in the framework of nest algebra, we extend the study to the more general case that Cij ∈ L,
i, j = 1, 2 and KI need not to satisfy the two conditions proposed in [1].

Suppose I − C22 is invertible in L, then we have that

H(P,KI) =

⎡
⎢⎣

(I + CP)−1 −C(I + PC)−1 T13
P(I + CP)−1 (I + PC)−1 T23

T31 T32 T33

⎤
⎥⎦, (3.3)

where

C = C11 + C12(I − C22)−1C21,

T13 = − (I + CP)−1C12(I − C22)−1,

T23 = − P(I + CP)−1C12(I − C22)−1,
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T31 = (I − C22)−1C21P(I + CP)−1,

T32 = (I − C22)−1C21(I + PC)−1,

T33 =
(
I − (I − C22)−1C21P(I + CP)−1C12

)
(I − C22)−1.

(3.4)

Remark 3.2. Notice that the upper left 2 × 2 corner of the above transfer matrix H(P,KI) is
just the transfer matrix H(P,C) of the standard feedback system with the plant P and the
controller C = C11 + C12(I − C22)

−1C21. This implies that the closed-loop system stabilized
by controllers with internal loop is more general than the standard feedback system and its
transfer matrix provides more information.

Now we can give a parametrization of all stabilizing controllers with internal loop
with I − C22 invertible in L.

Theorem 3.3. Suppose P ∈ L and there exist M, N, X, Y , M̂, N̂, X̂, Ŷ ∈ S such that
[
M
N

]
and

[−N̂M̂] are, respectively, strong right and left representation for P that satisfy the double Bezout
identity

[
Y X

−N̂ M̂

][
M −X̂
N Ŷ

]
=

[
M −X̂
N Ŷ

][
Y X

−N̂ M̂

]
=
[
I 0
0 I

]
. (3.5)

Then all stabilizing controllers with internal loop KI =
[
C11 C12
C21 C22

]
are parameterized by

C11 =
(
X̂ +MQ

)(
Ŷ −NQ

)−1

−
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
,

C12 =
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

C21 =
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
,

C22 = I −
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

(3.6)

for some Q,R1, R2, R3 ∈ S.

In order to prove this theorem clearly, we need the following result which is an
improvement of Theorem 2.4. It is interesting that while the two representations for the
controller in Theorem 2.4 are independent, the same Q will in fact work for both.

Theorem 3.4. Suppose P satisfies the assumption in Theorem 2.4. Then the stabilizing controller C
for P has the form C = (Y −QN̂)−1(X +QM̂) = (X̂ +MQ)(Ŷ −NQ)−1 for some Q ∈ S.
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Proof. Suppose C stabilizes P . By Theorem 2.4, we have that C has a right coprime factoriza-
tion C = (X̂ +MQ)(Ŷ −NQ)−1 for some Q ∈ S. It is easy to check that

[
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

][
−N Ŷ −NQ

M X̂ +MQ

]
=

[
−N Ŷ −NQ
M X̂ +MQ

][
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

]

=
[
I 0
0 I

]
.

(3.7)

Thus,

[
−
(
X +QM̂

)
Y −QN̂

][ Ŷ −NQ

X̂ +MQ

]
= 0. (3.8)

This implies that

G(C) = Ran

[
Ŷ −NQ

X̂ +MQ

]
⊆ Ker

[
−
(
X +QM̂

)
Y −QN̂

]
. (3.9)

On the other hand, for any
[ x
y
] ∈ Ker[−(X +QM̂) Y −QN̂], we have

[
x
y

]
=

[
−N Ŷ −NQ

M X̂ +MQ

][
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

][
x
y

]

=

([−N
M

][
−
(
X +QM̂

)
Y −QN̂

]
+

[
Ŷ −NQ

X̂ +MQ

][
M̂ N̂

])[x
y

]

=

[
Ŷ −NQ

X̂ +MQ

][
M̂ N̂

][x
y

]
∈ G(C),

(3.10)

that is,

Ker
[
−
(
X +QM̂

)
Y −QN̂

]
⊆ G(C). (3.11)

Thus,

G(C) = Ker
[
−
(
X +QM̂

)
Y −QN̂

]
. (3.12)

Since

[
−
(
X +QM̂

)
Y −QN̂

][−N
M

]
= I, (3.13)
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we obtain that [−(X + QM̂) Y − QN̂] is a strong left representation of C and C = (Y −
QN̂)−1(X +QM̂). This completes the proof.

Now we can give the proof of Theorem 3.3.

Proof of Theorem 3.3. Suppose {P,KI} is stable, then every entry of the matrix

[
(I + CP)−1 −C(I + PC)−1

P(I + CP)−1 (I + PC)−1

]
(3.14)

is in S and T13, T23, T31, T32, T33 ∈ S. Note that (3.14) is just the transfer matrixH(P,C) for the
standard feedback system. By Theorem 3.4, we see that C has the following representation:

C =
(
Y −QN̂

)−1(
X +QM̂

)
=
(
X̂ +MQ

)(
Ŷ −NQ

)−1
, (3.15)

for some Q ∈ S. In this case,

T13 = − (I + CP)−1C12(I − C22)−1

= −M
(
Y −QN̂

)
C12(I − C22)−1 ∈ S,

T23 = − P(I + CP)−1C12(I − C22)−1

= −N
(
Y −QN̂

)
C12(I − C22)−1 ∈ S,

(3.16)

if and only if

(
Y −QN̂

)
C12(I − C22)−1 ∈ S. (3.17)

It follows that

C12(I − C22)−1 =
(
Y −QN̂

)−1
R1 (3.18)

for some R1 ∈ S.
In the same way, we obtain that

(I − C22)−1C21 = R2

(
Ŷ −NQ

)−1
, (3.19)

for some R2 ∈ S. So we get

C12 =
(
Y −QN̂

)−1
R1(I − C22),

C21 = (I − C22)R2

(
Ŷ −NQ

)−1
.

(3.20)
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Since

T33 =
(
I − (I − C22)−1C21P(I + CP)−1C12

)
(I − C22)−1

= (I − C22)−1 − R2

(
Ŷ −NQ

)−1
N
(
Y −QN̂

)(
Y −QN̂

)−1
R1

= (I − C22)−1 − R2

(
Ŷ −NQ

)−1
NR1 ∈ S,

(3.21)

we have

(I − C22)−1 = R3 + R2

(
Ŷ −NQ

)−1
NR1, (3.22)

for some R3 ∈ S. Thus,

C22 = I −
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
. (3.23)

Then we can obtain the following representations for C12 and C21:

C12 =
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

C21 =
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
.

(3.24)

Substituting the representations of C, C12, C21, and C22 into C11 = C − C12(I − C22)
−1C21, we

obtain

C11 =
(
X̂ +MQ

)(
Ŷ −NQ

)−1 −
(
Y −QN̂

)−1

× R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
.

(3.25)

This completes the proof.

It was said in [1] that the controller with internal loop was particularly well suited for
tracking, and a physical interpretation was given for the system with internal loop. In [6], the
author described a seemingly impossible problem, the “intriguing control problem”, which
can be easily solved by the system with internal loop. In the next two sections, we will show
the other great advantages of the controller with internal loop.
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4. Canonical Controllers and Dual Canonical Controllers

In this section, we focus on two special classes of controllers with internal loop called canon-
ical controllers and dual canonical controllers, respectively. Here below it is given their
definitions in the framework of nest algebra.

Definition 4.1. A controller with internal loop is called the canonical controller for the plant
P if it is of the form KI =

[ 0 I
C21 C22

]
with C21,C22 ∈ S. Analogously, a controller with internal

loop is called a dual canonical controller for the plant P if it is of the form
[
0 C12
I C22

]
with C12,

C22 ∈ S.
For canonical controllers, we have the following results.

Theorem 4.2. The canonical controllerKI =
[ 0 I
C21 C22

]
stabilizes P ∈ L with internal loop if and only

if Δ = I − C22 + C21P is invertible in L and Δ−1, PΔ−1 ∈ S.
If P has a strong right representation

[
M
N

]
, then the canonical controllerKI stabilizes P if and

only if D = M − C22M + C21N is invertible in S.

Proof. According to the system equations in (3.2), we have that, for the canonical controllers
KI =

[ 0 I
C21 C22

]
, the transfer matrix H(P,KI) can be given by

H(P,KI) =

⎡

⎣
I −Δ−1C21P −Δ−1C21 −Δ−1

P
(
I −Δ−1C21P

)
I − PΔ−1C21 −PΔ−1

Δ−1C21P Δ−1C21 Δ−1

⎤

⎦. (4.1)

Thus,H(P,KI) ∈ M3(S) if and only if Δ−1, PΔ−1, Δ−1C21P , and P(I −Δ−1C21P) are all
in S. SinceΔ−1C21P = Δ−1(Δ+C21P)−I = Δ−1(I−C22)−I and P(I−Δ−1C21P) = PΔ−1(I−C22).
We have that all the entries of H(P,KI) are in S if and only if Δ−1 and PΔ−1 are in S. Thus
the first statement is proved.

Let us prove the second assertion in the theorem. If P = NM−1 and D−1 ∈ S, we have
that Δ−1 = M(M − C22M + C21N)−1 = MD−1 ∈ S and PΔ−1 = ND−1 ∈ S. By using the first
result, we have that KI =

[ 0 I
C21 C22

]
stabilizes P . Conversely, if KI =

[ 0 I
C21 C22

]
stabilizes P . By

the first result, we have that Δ−1, PΔ−1 are both in S. Suppose that M, N, X, and Y are as in
Definition 2.2, then

YΔ−1 +XPΔ−1 = (YM +XN)(M − C22M + C21N) = D−1. (4.2)

Since X and Y are in S, we see that D−1 ∈ S. This completes the proof.

There is a similar result for the dual canonical controller.

Theorem 4.3. The dual canonical controller KI =
[
0 C12
I C22

]
stabilizes P ∈ L with internal loop if and

only if Δ̂ = I − C22 + PC12 is invertible in L and Δ̂−1, Δ̂−1P ∈ S.
If P has a strong left representation [−N̂ M̂], then the dual canonical controllerKI stabilizes

P if and only if D̂ = M̂ − M̂C22 + N̂C12 is invertible in S.

In [6], the parametrization of all canonical controllers and dual canonical controllers
is given and it can be easily extended to our framework.
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Theorem 4.4. Suppose P ∈ L satisfies the assumption of Theorem 3.3. Then all canonical controllers
that stabilize P are parameterized by

[
0 I

E
(
X +QM̂

)
I − E

(
Y −QN̂

)
]
, (4.3)

where Q ∈ S and E is invertible in S.
Analogously, all dual canonical controllers that stabilize P are parameterized by

⎡

⎣
0

(
X̂ +MQ

)
R

I I −
(
Ŷ −NQ

)
R

⎤

⎦, (4.4)

where Q ∈ S and R is invertible in S.

Remark 4.5. Indeed, if we choose the parameters in Theorem 3.3 such that R1 = E−1, R2 =
X̂ +MQ, and R3 = ME−1, we can obtain the same result of the above theorem. This implies
that the result derived in [6] can be regarded as a special case of Theorem 3.3.

The following theorem gives a strong relation between the stabilization with canonical
controller and the usual concept of stabilization.

Theorem 4.6. Suppose I − C22 is invertible in L, then P can be stabilized by a canonical controller
with internal loop if and only if P is stabilizable in the framework of standard feedback system.

Proof . Suppose P is stabilized by a canonical controllerKI =
[
0 C12
I C22

]
with I −C22 invertible in

L. Then all entries ofH(P,KI) in (4.1) are in S. By computation, we can easily obtain that the
upper left 2×2 corner of the transfer matrixH(P,KI) is just the transfer matrixH(P,C) in the
standard feedback system with the plant P and the controller C = (I − C22)

−1C21. It follows
that P is stabilizable in the standard feedback system.

On the other hand, suppose P is stabilizable in the standard feedback system. Then,
from Theorem 2.4, all the stabilizing controllers can be given by C = (Y − QN̂)−1(X + QM̂)
with some Q ∈ S. Let C21 = X + QM̂, C22 = Y − QN̂, then we obtain a canonical controller
KI =

[
0 I

X+QM̂ Y−QN̂

]
and it is easy to verify that KI stabilizes P .

Naturally, there exists a dual result for the dual canonical controller.
Now we can explain the advantage of the controller with internal loop in the practical

application.
Recall the parametrization of the conventional controllers in Theorem 2.4, it is not

clean and an extra invertibility condition is imposed on the Youla parameter. This in turn
makes it awkward to use this parametrization to solve the practical problems. For example,
in [8, Section 7], the sensitivity minimization problem for the system described in Figure 3 is
studied. The weighted sensitivity operator for this system is defined by SW = (I + PC)−1W
and the weighted sensitivity minimization problem is to find

inf{‖SW‖ : C stabilizes P}. (4.5)



12 Mathematical Problems in Engineering

P

C

u1 e1

e2y2

y1

u2

W

v

d

−

Figure 3: Standard feedback system with outside disturbance d and W invertible.

Suppose P ∈ L satisfy the condition in Theorem 2.4, then all stabilizing controllers can
be given by C = (X̂ +MQ)(Ŷ −NQ)−1 with Q ∈ S and Ŷ −NQ is invertible in L. By simple
computation, we can obtain that the weighted sensitivity minimization problem is to find

inf
{∥∥∥ŶM̂W −NQM̂W

∥∥∥ : Q ∈ S, Ŷ −NQ is invertible in L
}
. (4.6)

Obviously, the extra condition that Ŷ − NQ is invertible in L makes the practical control
engineers difficult to continue their computations. So they have to choose to ignore the fact
that the Youla parameter can not be taken for all the elements in S.

Fortunately, the controller with internal loop overcomes this awkwardness. Let us
consider the sensitivity minimization problem for the system with internal loop as described
in Figure 4. We consider this problem for the dual canonical controller KI =

[
0 C12
I C22

]
with C12,

C22 ∈ S. When u1 = u2 = u3 = 0, it is easy to check that the weighted sensitivity operator for
this system is

SW =
[
I − PC12(I − C22 + PC12)−1

]
W, (4.7)

and the weighted sensitivity minimization problem is to find

inf
{
‖SW‖ : KI =

[
0 C12

I C22

]
stabilizes P

}
. (4.8)

By using the parametrization of the dual canonical controller given in Theorem 4.4, the
weighted sensitivity minimization problem is to find

inf
{∥∥∥ŶM̂W −NQM̂W

∥∥∥ : Q ∈ S
}
. (4.9)

Obviously, it avoids the extra invertibility condition for the parameter Q as it appears in
the standard feedback system. This overcomes the difficulty arisen in the standard feedback
system.
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Figure 4: System with internal loop with outside disturbance d and W invertible.

5. Strong Stabilization with Internal Loop

Practicing control engineers is reluctant to use unstable compensators for the purpose of
stabilization. This motivated considering the strong stabilization problemwhether among the
stabilizing controllers for a given stabilizable plant P , there exist stable ones. If there exists
such a controller, P is said to be strongly stabilizable and the stable controller is called the
strongly stabilizing controller. In this section, we consider the strong stabilization problem for
the system with internal loop and address another advantage of the controller with internal
loop.

Definition 5.1. P ∈ L is said to be strongly stabilizable with internal loop if it can be stabilized
by the controllerKI =

[
C11 C12
C21 C22

]
with Cij ∈ S, i, j = 1, 2. This controllerKI is called the strongly

stabilizing controller with internal loop.
Obviously, the canonical controller and dual canonical controller are both the strongly

stabilizing controller with internal loop. From the parametrization of controllers with internal
loop given in Theorem 3.3, we see that the strongly stabilizing controller with internal loop
can be characterize by choosing the parameters Q, R1, R2, and R3 in Theorem 3.3 such that
Ŷ − NQ and R3 + R2(Ŷ − NQ)−1NR1 are invertible in S. The following theorem shows the
existence of the strongly stabilizing controller with internal loop.

Theorem 5.2. Suppose P ∈ L is stabilizable, then P can be strongly stabilized by the controller with
internal loop.

Proof. Suppose P is stabilizable. From Theorem 2.4, the controller stabilizes P has the
parametrization that C = (Y − QN̂)−1(X + QM̂) for some stable Q. Set C11 = 0, C12 = I,
C21 = (X + QM̂) and C22 = I − (Y − QN̂), then KI =

[
0 I

X+QM̂ I−(Y−QN̂)

]
is a stable controller

with internal loop and it strongly stabilizes the plant P .

Remark 5.3. In [17], it is proved that a given plant P with left coprime factorization P = M̂−1N̂
can be strongly stabilized in the standard feedback system if N̂ is compact. While in the
case where N̂ is not compact, it is still an open problem whether or not there exists a stable
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controller that stabilizes the plant. Theorem 5.2 shows that any stabilizable plant can be
stabilized by a stable controller with internal loop. It implies that the strong stabilization
problem can be completely solved by the controller with internal loop. And this addresses an
advantage of the controller with internal loop in the framework of nest algebra.

From the proof of Theorem 5.2, we see that it also provides a method to design the
strongly stabilizing controller with internal loop. We end our paper with a simple example to
show this design method.

Example 5.4. Suppose P = I, it is obviously stabilizable. Take

N = N̂ = M = M̂ = I,

Y = Ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
1
2

0 0
1
3

0 0 0
1
4

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X = X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
1
2

0 0
2
3

0 0 0
3
4

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(5.1)

From Theorem 2.4, we obtain the parametrization of the stabilizing controller C = (Y −
QN̂)−1(X +QM̂) for some stable Q. Take Q = 0, then

C = Y−1X stabilizes P and C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0 1
0 0 2
0 0 0 3
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.2)

is unstable. In order to satisfy the practicing control engineers’ requirement, we set C11 = 0,
C12 = I, C21 = X and C22 = I−Y . Then we obtain a stable controllerKI =

[
0 I
X I−Y

]
with internal

loop which stabilizes the plant P .

6. Conclusion

In this paper, the closed-loop system whose stability is achieved by the controller with
internal loop is studied in the framework of nest algebra. The controllers with internal
loop considered here are more general than those in the previous paper and they are not
necessarily stable and need not to satisfy the two conditions proposed in [1]. We give a
parametrization for all stabilizing controllers with internal loopwhich has never been studied
before. Then we show that this parametrization covers the parametrization for canonical or
dual canonical controllers obtained in [6]. By taking the sensitivity minimization problem as
an example, we show that, in the practical application, the controller with internal loop solves
the difficulty brought by the invertibility condition in the parametrization of the conventional
controller. In the framework of nest algebra, the strong stabilization problem is still an open
problem, and no sufficient and necessary condition was found to characterize the plant
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which can be strongly stabilized. While, with the help of the concept of stabilization with
internal loop, we show that any stabilizable plant can be strongly stabilized by the controller
with internal loop. This addresses an advantage of the controller with internal loop in the
framework of nest algebra. By using the parametrization of the controller with internal loop,
we are considering other questions in the control theory for the this model of closed-loop
systems with internal loop.
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