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The concept of metamaterials, which has been enunciated
in the pivotal works of V. G. Veselago and ]. B. Pendry, has
drastically altered our way of thinking about light-matter
interactions and greatly enriched the fields of classical and
quantum electrodynamics. It has become apparent over the
last decade that the propagation of electromagnetic waves
can be manipulated almost at will using artificially fabricated
structures with prescribed electromagnetic properties, the
diversity of which is limited only by the ingenuity of
the researchers and the sophistication of the fabrication
techniques. This new understanding has revolutionized the
design paradigm of photonic devices and quickly resulted
in the experimental demonstration of several counterintu-
itive effects with far-reaching breakthrough applications. In
particular, it was shown that not only could negative-index
metamaterials be fabricated practically, but they can also
be used to create super- and hyperlenses with subwave-
length optical resolution. Likewise, it is possible to fabricate
metamaterials designed using the transformation optics
approach and apply them in real invisibility cloaks. Today,
scientists and engineers all over the world are combating the
fundamental and technological challenges that deter the wide
commercial use of these and other exciting functionalities
offered by metamaterials.

As is customary with great ideas, the reality of unusual
metamaterial properties has been the subject of much
controversy. Even now, some experts in optics and electro-
magnetism argue over this reality in regards to phase advance

in evanescent waves, as well as over the existence of a negative
refractive index, thus showing that the physics behind these
phenomena is more complicated than it may appear at first
glance. Interestingly, the analysis of metamaterial critiques
may be quite instructive, as it helps one to appreciate the
subtleties of the field and gain a deeper insight into it. While
leaving such an analysis for future textbooks, we wish to note
here that disproving the objections against any metamaterial
phenomenon requires the careful consideration of several
fundamental principles, including the causality requirement,
which makes metamaterials essentially dispersive.

Despite all the differences between the electromagnetic
behaviour of ordinary materials and metamaterials, they
are both governed by the same set of Maxwell equations.
Therefore, it is the new functionalities and design guide-
lines enabled by the metamaterial paradigm—rather than
new physics—that have aroused a relentless interest in
metamaterials. This interest remains equally strong from
both the physics and engineering communities since the
field of metamaterials mediates science and technology. It
is therefore not surprising that in recent years we have
witnessed a rapidly escalating number of publications on
the physics, design, and applications of various types of
metamaterials. The focus of theoretical studies shifts from
negative-index materials to hyperbolic, tuneable, nonlinear,
and nonlocal metamaterials, as well as to media with extreme
material parameters. The modern trends in metamaterial
applications include superresolution imaging and optical



sensing, the advancement of photonic circuitry with meta-
tronics, all-optical and electrooptical dynamic control of
light, electromagnetic cloaking, and light harvesting for
improved solar-cell technology. This special issue focuses on
the advances along these research avenues and on the new
photonic devices associated with them.
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We review the properties of hyperbolic metamaterials and show that they are promising candidates as substrates for nanoimaging,
nanosensing, fluorescence engineering, and controlling thermal emission. Hyperbolic metamaterials can support unique bulk
modes, tunable surface plasmon polaritons, and surface hyperbolic states (Dyakonov plasmons) that can be used for a variety of
applications. We compare the effective medium predictions with practical realizations of hyperbolic metamaterials to show their
potential for radiative decay engineering, bioimaging, subsurface sensing, metaplasmonics, and super-Planckian thermal emission.

1. Introduction

Metamaterial technologies have matured over the past
decade for a variety of applications such as superresolution
imaging [1, 2], cloaking [3], and perfect absorption [4].
Various classes of metamaterials have emerged that show
exotic electromagnetic properties like negative index [5],
optical magnetism [6], giant chirality [7-9], epsilon-near-
zero [10], bianisotropy [11], and spatial dispersion [12]
among many others. The central guiding principle in all the
metamaterials consists of fabricating a medium composed of
unit cells far below the size of the wavelength. The unique
resonances of the unit cell based on its structure and material
composition as well as coupling between the cells lead to a
designed macroscopic electromagnetic response.

One class of artificial media which received a lot of atten-
tion are hyperbolic metamaterials [13—15]. They derive their
name from the unique form of the isofrequency curve which
is hyperbolic instead of circular as in conventional dielectrics.
The reason for their widespread interest is due to the relative
ease of nanofabrication, broadband nonresonant response,
wavelength tunability, bulk three-dimensional response, and
high figure of merit [16]. Hyperbolic metamaterials (HMMs)
can be used for a variety of applications from negative index
waveguides [13] and subdiffraction photonic funnels [17] to
nanoscale resonators [18]. In the visible and near-infrared
wavelength regions, HMMs are the most promising artificial
media for practical applications [19].

In this paper, we describe the potential of hyperbolic
metamaterial substrates for five distinct applications: (1)
fluorescence engineering [20-22], (2) nanoimaging [23—
25], (3) subsurface sensing [26], (4) dyakonov plasmons
[27, 28], and (5) super-Planckian thermal emission [29,
30]. Our work presents a unified view for these distinct
applications and elucidates many key design principles useful
to experimentalists and theorists. We focus on the physical
origin of hyperbolic behavior in various practical realizations
and compare the device performances to theoretical ideal-
izations. We expect this work to provide an overview and
starting point for varied practical applications of hyperbolic
metamaterials.

2. Hyperbolic Metamaterials

HMMs can be considered as uniaxial metacrystals
with an extremely anisotropic dielectric tensor, T =
diag[eyx, €y, €22] such that ey = ¢, and &, - & < 0. The
properties of HMMs are best understood by studying the
isofrequency surface of extraordinary waves in this medium:

(k§+k§) +ki _ (9)2' (1)

&2z Exx c

The above equation represents a hyperboloid when
&2z * &xx < 0 which is an open surface in stark contrast to
the closed spherical dispersion in an isotropic medium. The
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FIGURE 1: k-Space topology. (a) The isofrequency contour for an isotropic dielectric is a sphere. For extraordinary waves in an extremely
anisotropic uniaxial medium, the isofrequency contour becomes a hyperboloid which supports waves with unbounded wavevectors, in stark
contrast to an isotropic medium. (b) A type 1 HMM has one component of the dielectric tensor negative (e,, = ¢,, > 0 and &,; < 0) and
supports low-k and high-k waves. (c) A type 2 HMM has two components of the dielectric tensor negative (¢, = €,, < 0 and &,; > 0) and

only supports high-k waves.

FIGURE 2: (a) Multilayer realization of hyperbolic metamaterials consisting of alternating subwavelength layers of metal and dielectric (b)

metal nanorod realization in a dielectric host matrix.

immediate physical consequence of this dispersion relation
is the existence of propagating waves with large wavevectors
known as high-k waves which are evanescent in conventional
media. Multiple device applications and physical phenomena
in hyperbolic metamaterials are related to the properties of
these high-k waves. It was recently proposed that these states
cause a broadband divergence in the photonic density of
states, the physical quantity governing various phenomena
such as spontaneous and thermal emission [20, 31-33].
This prediction led to multiple experimental [21, 34] and
computational efforts [35, 36] to verify the predictions and
explore applications of this phenomenon.

We now introduce nomenclature to classify the two
types of hyperbolic metamaterials based on the number of
components of the dielectric tensor which are negative [19].
Note that if all three components are negative, we have an
effective metal, and propagating waves are not allowed in
such a medium.

Type I: if there is only one negative component,
that is, &, < 0 in the tensor, then we term such
metamaterials as type I HMMs. They have low loss
because of their predominantly dielectric nature but
are difficult to achieve in practice.

Type II: if there are two components in the dielectric
tensor which are negative, that is, ex, = £,, < 0, we
term them as type II HMMs. They have higher loss
and high-impedance mismatch with vacuum due to
their predominantly metallic nature.

Figure 1 shows the isofrequency surfaces for an isotropic
dielectric (i.e., glass) and for a type 1 and type 2 HMMs.

3. 1D and 2D Realizations

There are two prominent methods to engineer practical
hyperbolic media. The first consists of alternating layers of
metal and dielectric with the layer thicknesses far below
the size of the wavelength. The second approach consists
of metal nanorods in a dielectric host such as porous
anodic alumina (AAO). Figure 2 is a schematic illustration
of these two approaches. Both these approaches achieve
the desired extremely anisotropic response according to
Maxwell-Garnett effective medium theory [16, 37—40]. It
is important to note that effective medium theory predicts
the desired response in a broad spectral bandwidth because
of its nonresonant nature. This is crucial since absorption
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FIGURE 3: (a) Dispersion of the dielectric constants in a practical multilayer semiconductor realization of the HMM. Note the broadband
region in which type I HMM response is achieved. (b) Exact numerical calculation (neglecting loss) in the multilayer structure showing the
Bloch high-k mode and coupled surface plasmons at the interfaces. (c) Evanescent wave incident on an effective medium slab couples to the
high-k mode and is transmitted. In contrast, the evanescent wave decays away in vacuum.

in resonant metamaterials is a major detriment to practical
applications.

3.1. Material Systems. The response of the hyperbolic meta-
material can be tuned by the choice of constituent metal and
dielectric and their relative volume ratios.

(1) UV and visible: silver is the ideal choice of metal due
to its low losses. Alumina (Al,O3) is a compatible
dielectric in the UV range, but at higher wavelengths,
the large negative real part of the metallic dielectric
constant requires a shift to high-index dielectrics.
Titanium dioxide is an excellent candidate due to
its large index, opening the possibility of impedance
matching with vacuum [41].

(ii) Near-IR: none of the conventional plasmonic metals
such as gold or silver are good candidates for hyper-
bolic metamaterials at near-IR wavelengths. This
is because far below the plasma frequency, metals
are extremely reflective and lead to high-impedance
mismatch with surrounding media. The recently
developed alternative plasmonic metals based on
oxides and nitrides are ideal for applications in hyper-
bolic metamaterials since their plasma frequency can
be tuned to lie in the near-IR [42].

(iii) Mid-IR: at midinfrared wavelengths, doped semi-
conductors can act as the metallic building block
for hyperbolic metamaterials [16]. Another option is
the use of phonon-polaritonic metals such as silicon

carbide which have their Reststrahlen band in the
mid-IR range [43].

3.2. What Is the Origin of the High-k Modes? We now
analyze the physical origin of the high-k modes in a
practical realization of hyperbolic metamaterials. Due to
the metallic building block needed to achieve a negative
dielectric constant in one direction, HMMs support bulk
plasmon-polaritonic or phonon-polaritonic modes. Thus,
high-k modes of HMM can be considered as engineered
bulk polaritonic modes which owe their large momentum to
light-matter coupling. In Figure 3, we contrast an incident
evanescent wave on a conventional dielectric as opposed to a
hyperbolic metamaterial. We take negligible losses to clarify
the origin of the high-k states. The evanescent wave decays
in a simple dielectric but couples to a high-k propagating
wave in the hyperbolic metamaterial. We consider a practical
multilayer semiconductor realization of the hyperbolic meta-
material [16]. The high-k mode is seen to arise due to the
coupling between the surface plasmon polaritons on each of
the interfaces. Thus, the high-k modes are in fact the Bloch
modes due to the coupled surface plasmon polaritons on the
metal-dielectric multilayer superlattice [12].

3.3. Validity of Effective Medium Theory. We now consider
the transmission of evanescent waves through a practical
multilayer structure to determine the largest wavevector that
can be transmitted/supported by the hyperbolic metamate-
rial. In the effective medium limit, waves with infinitely large
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FIGURE 4: (a) Transmission of waves through a multilayer realization consisting of silver-tio2 layers each of 10 nm thickness (total 16 layers)
including loss and dispersion. The high-k modes are seen to tunnel across the layers. (b) In the effective medium limit, there are infinitely
many high-k waves in the type I and type Il HMM. Notice that there is no upper cutoff in the effective medium limit, but in the multilayer
realization, the size of the unit cell imposes a strict upper limit to tunneling (ko is the free space wavevector).

wavevectors can be transmitted in the entire bandwidth of
hyperbolic dispersion. However, this is never true in reality
since the size of the unit cell places an upper cutoff to
the largest wavevector that can be transmitted through the
structure. Waves with wavevectors comparable to the inverse
unit cell size lie at the edge of the Brillouin zone of the
periodic lattice. They do not perceive the metamaterial in
the effective medium limit but in fact start Bragg scattering.
This is evident in the comparison shown in Figure 4 which
considers an Ag/TiO2 multilayer HMM stack both in the
effective medium limit and a practical multilayer realization.
Our transfer matrix simulations take into account the
absorption, dispersion, and the size of the unit cell. It is seen
that high-k waves are transmitted through the multilayer
structure in excellent agreement with the effective medium
theory prediction. The practical realization however has a
cutoff to the largest wavevector that can be transmitted which
is related to the unit cell size of the HMM.

4. Applications

4.1. Fluorescence Engineering. The presence of high-k waves
opens a new route into which quantum emitters can
decay when placed on an HMM substrate. In the near
field of any medium, there are in general three routes
of decay corresponding to the types of electromagnetic
modes supported by the structure (Figure 5). A quantum
emitter or fluorophore can emit into propagating waves of
vacuum or bound modes (such as waveguide modes or
surface plasmon polaritons), and if the body is absorptive
(Im(e) #0), the third nonradiative route for relaxation is
opened up. Fluorescence can be completely quenched due to
near-field absorption.

The physical origin for quenching can be understood by
considering the size of the fluorescent dye molecule (point

dipole like) which is far below the size of the wavelength.
This implies that waves with large wavevectors are necessarily
emitted by the emitter which do not normally carry energy
to the far field. However, these waves can be completely
absorbed in the near field by lossy structures. In stark
contrast to quenching, the HMM couples to these waves with
large wavevectors leading to radiative relaxation in the near
field. The signature of this coupling is the enhanced decay
rate of dye molecules placed on hyperbolic metamaterial
substrates. The coupling to high-k states opens the possibility
of high-contrast fluorescence imaging as well as sensitive-
phase measurements [20, 21, 44]. The decay rate in the near
field at a distance “d” from the HMM is dominated by high-k
waves and for type I HMM is given by

HZL 2\/ ‘gxx"‘:zz (2)

S8hd3 1+ |exxlers

Thigh-k =

where y, is the dipole moment of a perpendicularly oriented
dipole. The decay rate into the high-k modes of the HMM
can exceed the rate of emission into vacuum by factors
of 10 even without any subwavelength confinement of the
emitters.

The validity of the effective medium theory and point
dipole approximation for spontaneous emission has been
studied in detail [19, 35, 36, 45].

4.2. Super-Planckian Thermal Emission. The above-men-
tioned high-k states which lead to decrease in radiative
spontaneous emission lifetime can also play a key role in
thermal conductivity [32] and thermal emission [30]. This
was initially pointed out in multiple references as [19-
21, 31, 32] as well as [46, 47]. Figure 6 shows that due to
the enhanced density of states, a hyperbolic metamaterial in
equilibrium at temperature T emits super-Planckian thermal
radiation [30]. This can lead to near-field thermal energy
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FIGURE 5: A subwavelength emitter such as quantum dot emits light with all spatial frequencies (i.e., wavevectors). (a) The light can couple
to propagating waves in vacuum which are reflected and transmitted by a slab (e.g., dielectric) placed in the vicinity of the emitter. (b) If
the slab is metallic, another route opens up which corresponds to the coupling of light to surface plasmons. The wavevector of light that
couples to the surface plasmon polariton is kg, > k. (c) The light with large wavevectors emanating from the emitter cannot propagate in
vacuum. If the slab is lossy (metal or dielectric), these high-k waves are simply absorbed. This is the phenomenon of quenching occurring in
the near field of any lossy object. (d) A slab of hyperbolic metamaterial allows the propagation of these high-k waves. In the near field, the
subwavelength emitter couples most efficiently to the HMM states as compared to plasmons or propagating waves in vacuum. This is due to

the availability of a large number of these HMM states.

transfer beyond the black body limit. The main property that
sets it apart from other resonant methods of super-planckian
thermal emission is the broad bandwidth and also presence
of topological transitions [30].

In the effective medium limit, the thermal energy density
in the near field of the hyperbolic metamaterial is given by

M(Z w T)z<</\ ~ UBB(w> T) I: 2\/ |5xx5zz|
’ 8 (kOZ)3(1 + lexx€zz])

rr z(exx + SZZ) :|
(k02)3(1 + |5xxszz|)2 ’

(3)

where u(z,w,T) is the energy density at a distance z
and frequency w, while T denotes the temperature. k, =

JkE+kE, ko = w/c, € = e+ i, e, = e, +ie’, and
&y * & < 0 and Upp(w,T) is the black body emission
spectrum at temperature T. These results were recently
presented [30], where the fluctuational electrodynamics of

hyperbolic metamaterials was developed. This has many
implications for thermal engineering using metamaterials,
and experiments are currently underway using phonon-
polaritonic HMMs [43] to measure this unique effect using
topological transitions [30, 44].

4.3. Nano-Imaging. The hyperlens is an imaging device
made of hyperbolic metamaterials which can break the far-
field diffraction limit [23, 25]. The subwavelength resolution
in the far field arises from the cylindrical (or spherical)
nature of the HMM. The device can be fabricated by the
same multilayer design principles presented earlier. In the
future, integrating the hyperlens with microfluidic channels
can make a significant impact for real-time bioimaging.

The functioning of the device can be understood by
noting that the diffraction limit arises since waves with large
spatial frequencies which carry subwavelength information
are evanescent in vacuum. This leads to a loss of information
in the far-field image. Near the HMM, these high-k waves are
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FIGURE 6: Recently, a fluctuational electrodynamics of hyperbolic
metamaterials was developed, and super-planckian thermal emis-
sion from these media was predicted [30]. In the nearfield, a
heated HMM can emit and thus transfer thermal radiation beyond
the black body limit. This paves the way for near-field thermal
engineering using metamaterials.

captured and turned into propagating waves, and the infor-
mation is carried within the HMM. Conservation of angular
momentum (m ~ kgr) ensures that at the outer surface of
the hyperlens, the tangential momentum is reduced, and the
waves can escape to the far field. Another interpretation of
far-field imaging is based on the realization that hyperbolic
media only allow waves to propagate along subwavelength
resonance cones in the radial direction [48, 49]. Thus, points
on the inner surface are mapped one to one to points on the
outer surface. Thus, the spacing between diffraction-limited
points on the inner radius can be much larger than the
wavelength on the outer surface, if the outer radius is chosen
to be big enough [49]. These well-separated points can be
viewed by a conventional microscope even if the original
points cannot. Figure 7 shows a conceptualized hyperlens-
based device capable of providing real-time and truly nano-
scale resolution of biological material being transported in a
microfluidic channel.

4.4. Subsurface Sensing. A doped semiconductor-based
HMM can be used for noninvasive subsurface sensing [26]
and subdiffraction imaging in the IR. The semiconductor
InGaAs can be doped to have its metallic properties tuned
across the IR. Therefore, a multilayer structure consisting
of InGaAs/AllnAs layers can be constructed to have a
broadband (AA ~ 2 um) type 1 HMM behavior across the IR
[16]. AllnAs act as the dielectric. Potential applications and
device geometries are described below.

Subsurface sensing and imaging are especially important
for IR fingerprinting. Combining IR spectroscopy with
subdiffraction imaging may allow for chemical identification
on a truly molecular scale. Another application is quality
control in integrated circuits (ICs) or microelectromechan-
ical devices (MEMs) since silicon is transparent to IR
wavelengths. Therefore, cracks or defects in ICs or MEMs can
be detected through the scattering and diffraction of IR light

Advances in OptoElectronics
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FiGure 7: Integrating microfluidic channels with the hyperlens
can lead to real-time superresolution imaging for biological appli-
cations. The schematic shows the optofluidic channel and the
cylindrical multilayer hyperlens.

at these defects. The main problem with the conventional
technique is the diffraction limit: cracks and defects smaller
than the illuminating wavelength cannot be imaged noninva-
sively. In terms of IR, this corresponds to imperfections of the
size ~2-3 ym. By using an HMM, subdiffraction resolution
may be obtained so that defects with deep subwavelength
dimensions may be observed noninvasively.

The applications described above are conceptualized in
Figure 8. Refractive index changes may be detected nonin-
vasively through HMM slab. The emission power densities
are overlayed to demonstrate the capability of sub-surface
sensing. The power densities are calculated using the Green’s
function approach for an effective medium HMM slab.

4.5. Dyakonov Plasmons. Hyperbolic isofrequency curves
can also be obtained for two-dimensional surface states.
This is schematically shown in Figure 9. The isofrequency
curve for in-plane surface plasmon polaritons on a gold
substrate is circular. As opposed to this, when a uniaxial
crystal is placed on top of the metal film with different
indices along the principle axes, there exists the possibility
that plasmons are allowed to propagate in one direction but
not in the perpendicular direction. This gives rise to in-
plane hyperbolic isofrequency curves for the surface plasmon
polaritons. They are a mixed state consisting of both TE and
TM polarized light and are called Dyakonov plasmons [28].

The above example is that of interface states on a
metallic substrate with a uniaxial dielectric on top. Hyper-
bolic metamaterials can support surface states with similar
unconventional properties [28]. If the principle axis of
the hyperbolic metamaterial (z-axis) lies in the interface
plane with vacuum, then Dyakonov plasmon solutions
with hyperbolic isofrequency curves are allowed. Dyakonov
plasmons show all the properties of bulk hyperbolic states
such as subdiffraction imaging and directional resonance
cone beaming [27, 28, 50].
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NSOM

(a) (b)

F1GURE 8: Subsurface sensing: illumination of a Si wafer from below by A ~ 9.8 ym. The incident light scatters through cracks in the wafer.
(a) A subwavelength dimension crack in a Si wafer can be detected by a near-field scanning optical microscope (NSOM) only if the detector
is brought very close to the crack (< A/6). (b) If an AllnAs/InGaAs HMM is placed above the wafer, then the NSOM can detect the crack up
to 2-3 X A from the wafer. The HMM allows high spatial frequencies to propagate and enhances their intensity in the image.

(a) (b)

F1GURE 9: Dyakonov plasmonics: schematic showing (a) isofrequency curve of conventional plasmons on an isotropic gold film. The circular
isofrequency curve corresponds to the fact that plasmons can propagate in all directions (blue arrows). (b) Isofrequency curve becomes
hyperbolic when an anisotropic slab is placed on top of the gold film. This occurs in the range of frequencies when conventional plasmons
which occur along the high-symmetry directions are allowed in one direction (blue arrow) but are not allowed in the perpendicular direction

(red arrow).

Note that the above-mentioned states are fundamen-
tally different from conventional surface-plasmon polariton
(SPP) solutions allowed in type II metamaterials when the
interface plane permittivity is negative and the principle axis
(z-axis), normal to the plane, has positive dielectric per-
mittivity. All modes of hyperbolic media (high-k, SPP, and
Dyakonov plasmons) are tunable since the optical constants
governing them depend on the metallic fill fraction.

5. Future and Conclusion

The last decade has seen tremendous progress in the physics
and nanofabrication of various classes of metamaterials. The
next decade is set for metamaterial applications in different
fields. For devices in the visible and near-IR wavelength
ranges, hyperbolic metamaterials are expected to lead the
way due to their varied properties and applicability. One
major direction of application will be quantum nanopho-
tonics [51, 52]. We have shown here the potential of HMMs
for nanoimaging, subsurface sensing, Dyakonov plasmonics,
fluorescence engineering, and thermal emission control. This

paper should help experimentalists gather a unified view of
the multiple applications of hyperbolic metamaterials for
designing devices.
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Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials
is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between
metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained
analytical results are compared with the known experimental ones.

1. Introduction

Metamaterials are artificial media that allow tailoring the
macroscopic properties of the light propagation by a careful
choice of a design for the microscopic unit cell (called the
meta-atom). By controlling the geometrical shape and the
material dispersion of the meta-atom, novel effects such
as negative refraction [1-3], optical cloaking [4-9], as well
as series of optical analogues to phenomena known from
different disciplines in physics could be observed [10-14].
Despite the possibility to rely on rigorous computations
for describing the light propagation on the microscopic
level, an enduring problem in metamaterial research is the
question on how the effective material tensor looks like for
a certain metamaterial. A simple and versatile analytical
model describing propagation of electromagnetic waves in
metamaterials has been recently developed following classical
approach of Maxwell equation averaging procedure [15].
This transition from the microscopic to macroscopic system
of Maxwell equations takes into account all peculiarities
of carriers dynamics under the action of the resulted
electromagnetic field through the introduction of multipole
moments which are supposed to be represented as the
functions of the macroscopic electric and magnetic fields
[16]. One of the great advantages of this model is the
ability to evaluate straightforwardly influence of the charge
dynamics of the meta-atoms on the effective properties
of the metamaterials. In fact, the multipole moments are
calculated through the averaged charge dynamics in the

meta-atoms. Any factors influencing the charge dynamics
(e.g., interaction between the meta-atoms, extra coupling
of the meta-atoms with the other objects, etc.) cause the
changes in the multipole expressions, which in turn change
the effective parameters. It is important for the analysis
presented here that the interaction between the meta-atoms
and hence its influence on the effective permittivity and
permeability can be straightforwardly taken into account
[17].

The interaction between the small particles, both dielec-
tric and metallic, and propagation of an optical exci-
tation in a regular chain of such particles have been
intensively investigated [18-23]. Interest to the chains of
metallic nanoparticles is stipulated mainly by the request
for subwavelength guiding structures for a new generation
of the optoelectronic components for communication and
information processing. Nevertheless, theoretical tools for
the modeling of these chains (irrespective to the nature and
sizes) remain invariant: the electromagnetic excitation in the
particles are supposed to be described by taking into account
all possible eigen modes [18, 20] and interaction between
all particles in a chain. There are several approximations
which are typically accepted in this kind of problems. First,
depending on the size of the particles, the model can be
restricted by consideration of dipole moment only (for
metallic nanoparticles) [19, 23]; the higher moments can be
taken into consideration as well in the case of investigation
of magnetic response [22, 24]. Usually, for the problem
of electromagnetic excitation propagation along the chain,



the dipole approximation is enough [25], provided distance
between particles is not less than about three times their
sizes. Second, the interaction between the particles in a
chain can be considered in the frame of the quasi-static
approximation, where no retardation between particles is
retained; otherwise, interaction between dipoles contains
terms proportional to the 1/r and 1/r? in addition to the
quasi-static term 1/r® (r is the distance between dipoles). The
problem possesses an exact solution for the infinite chain
in the quasistatic case, while taking into consideration the
retardation leads to known math difficulties and requires
continuation into the lower half frequency plane [19].
Consideration of the finite chain is free from these excessive
math problems but can be treated only numerically; the
respective solutions for both longitudinal and transverse
modes are presented in [19, 26].

Natural expansion of the developed models of the elec-
tromagnetic excitation transport on a chain of particles with
randomly varying parameters revealed several interesting
peculiarities. The problem of wave propagation through
disordered systems attracts great attention in both quantum
and classical physics [27]. In disordered chains of different
dimensions, destructive interference between scattered waves
gives rise to an existence of the localized modes, exponen-
tially decaying in space—this effect has been originally found
in solid state physics and is known as Anderson localization
[28]. The existence of delocalized modes that can extend over
the sample via multiple resonances and have a transmission
close to 1 was found in [29, 30] and experimentally con-
firmed in [31, 32]. Disorder-induced change of the guiding
properties in a chain of plasmonic nanoparticles under small
random uncontrollable disorder was considered in [26], and
analogy of the Anderson localization in a chain of such
particles was theoretically investigated in [33]. In the present
analysis, the effect of Anderson localization is not considered;
nevertheless, it is believed, that the developed analytical tool
in this paper turns out to be suitable for the treatment of
the similar effect in metamaterials with different types of
disorder.

An influence of various types of disorder on the effective
properties of the metamaterials was intensively investigated
as well. Light propagation and Anderson localization in
superlattices were theoretically considered in [34, 35] using
the model of multilayered system with phenomenological
permittivity and permeability (positive and negative) in each
of the layers. The effect of the statistical distribution of the
sizes of the meta-atoms on the increase of losses in the
operation frequency band was considered in [36] using gen-
eralized Clausius-Mossotti relation. A significant influence of
asmall (10%) deviation of the parameters of the microscopic
resonances on the propagation wave in a wide frequency
range was found in [37] using quasistatic expressions
for the effective parameters. Averaging of the Lorenz-type
expressions for the effective permittivity and permeability
using a phenomenological probability distribution function
showed that passband and negative refraction are still present
under small positional disorder [38]; the results were proven
experimentally as well. Interaction in a chain of magnetic
particles and its influence on the effective permeability
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FIGURE 1: (a) Regular and (b) laterally (along z direction) random
positioning of the meta-atoms in a metamaterial. Plane wave
propagation is in y direction, and electric field polarization
coincides with the x axis and with the elongation of the nano wires.
Note that only one layer, which the metamaterial consists of, is
shown in the figure.

were investigated in [24]. Using the introduced concept
of “coherent” and “incoherent” metamaterials, authors of
[39] showed that the influence of disorder on long-range
correlated metamaterials is significantly more pronounced
in comparison with the same effect in short-range ordered
metamaterials. Random variation of interaction between
meta-atoms was shown to be a main reason for the disap-
pearance of the long-range correlation and consequently of
the “coherent” state [39].

In the presented work, attention is primarily devoted to
the extension of the multipole approach to describe in-plane
disorder in metamaterials, which means the randomness in
positioning of the meta-atoms in the plane of the substrate;
see Figure 1. In [26], it was shown that the variations of
the electromagnetic properties of the inclusions are less
important than the disorder in their positions. Metamaterials
formed by a self-organization display exactly this kind of
disorder [40-43]. Results of control experiments with the
2D metamaterials exhibiting such in-plane disorder [44] are
used as a test of the model. The most notable discovery is
the fact that although disorder has a deterrent effect on the
permittivity, the permeability seems to remain practically
unaffected. A theoretical model for such a class of random
metamaterials should reproduce these observations.

The qualitative explanation of the influence of the
spatial disorder on the effective parameters is in following.
The positional disorder creates different conditions for the
charged dynamics in the meta-atoms due to the interaction
between them [21, 22]. This in turn leads to the changes
of the averaged dipole, quadrupole, and magnetic dipole
moments of the media and results in the changes of
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the effective parameters, which are expressed through these
averaged multipole moments [15, 45].

This qualitative hypothesis requires further development
of the existing theoretical multipole model; in particular,
the interaction between the meta-atoms [17] has to be
incorporated and adopted to the random character of this
interaction. Let us assume that the charge dynamics in the
microscopic multipole moments of the meta-atoms depends
on the distance & between them (see Figure 2). Following
the approach of [15], it is necessary to average the resulted
charge dynamics in the multipole moments over all possible
representations; in other words, the microscopic multipole
moments have to be additionally averaged over all possible
distances between the meta-atoms, which mathematically
is expressed as an integral over a probability distribution
function PDF(Jk); namely,

Yomacro = jxmmwk)PDF(ak)dak, (1)

Here, Xmicro(0) is the microscopic multipole moment of the
meta-atoms, and PDF(§) governs the distribution over all
possible interseparation distances d in a randomly arranged
ensemble of the meta-atoms. In case of regular spatial
distribution, each metaatom is affected by the same fields,
PDF(6k) is reduced to the delta function, and averaging (1)
restores the microscopic multipole moments.

The quest to obtain such PDF(px) and the effort to
incorporate the effect of disorder into the existing multipole
model are discussed in details here. The paper is organized
as follows. First, the probability model used to incorporate
positional disorder into the multipole theory is described. As
a test of principle and in order to create a systematic model,
the approach is then applied to the simple case of randomly
arranged dipoles. Then the treatment is extended to the
case of randomly arranged quadrupoles. The probabilistic
approach is applied to the specific case of randomly posi-
tioned meta-atoms, and the obtained results are compared
with the experimental observations [44]; the mathematical
procedures used to account for the other forms of disorder
are highlighted.

The main difference of the approach here in comparison
with the previous ones in the use of the multipole model
is that the charge dynamics in meta-atoms is primarily
considered and calculated taking into account the interaction
between meta-atoms, which is expressed as a function of
distance between them. Finally, averaging over all possible
realization of the inter-metaatom distance gives the expres-
sion for the effective parameters. This paper is primarily
devoted to the elaboration of the model and to the effective
parameters calculation; further applications of the presented
approach (disorder in propagation direction, transition
“coherent-incoherent” states, influence of the Anderson
localization on the effective parameters, etc.) will be done
elsewhere. Interaction between meta-atoms is taken into
account using a simplest way of dipole-dipole near field
interaction in quasi-static limit; extrapolation of the model
on the dynamic case is left for the future work. The inter-
action between quadrupoles is treated the same way, which
makes the presented approach suitable for consideration of

3
(1) (2) (k-=1) (k) (k+1)
Yy
vy | N . .
PDF (p;) PDF (py) PDF (pi_1) PDF (pg) PDF (p11)

FiGURe 2: Geometry for the probability function elaboration,
the spheres show meta-atoms. The first row shows a regular
arrangement of the meta-atoms, where each meta-atom occupies
the center of a slot of length equal to the mean period. The second
row depicts an arrangement of the meta-atoms exhibiting random
uncorrelated positional disorder (denoted by pi), the extent of the
disorder being governed by the PDF(px) as shown in the last row.
The interseparation §; between the two subsequent meta-atoms is a
function of the random variables py and p_, and the analytic form
of the PDF(J) can be obtained by the use of the statistical methods
if the analytic form of the PDF(py) is given.

the magnetic properties of the metamaterials. In spite of
the excessive simplification of the interaction, the presented
model treats the effective parameters (especially magnetic
response) in much more correct way than it was done
before by just introduction of permeability and/or magnetic
susceptibility, and is believed to provide a suitable platform
for analytical or semianalytical treatment of the problems,
appearing in the case of disordered metamaterials.

2. Modeling of Positional Disorder

The problem of the positional disorder modeling can be
tackled in several ways. The most general formulation of the
problem requires a Markovian treatment. As an illustration,
the one-dimensional equivalent of the problem is considered
here. Supposing that the meta-atoms are introduced one by
one on a line of given length, the probability that a particle
will take up a certain position on the line, and hence the
probability of a particular inter separation distance, depends
not only on the last particle, but also on the history and
existing configuration. This is the essence of the Markovian
approach. Standard techniques exist for tackling such prob-
lems, formulating a rigorous treatment. Nevertheless, due to
its complex nature, an alternative simpler math treatment is
developed in the present paper.

The math treatment accepted in the presented work is
stipulated by the real technological chains for the producing
of the nanostructure. When performing control experi-
ments, masks for random metamaterials are manufactured
by e-beam lithography methods. The writing algorithms are
modified so that instead of a periodic grid a randomized one
is generated by the scanner. The extent of randomness can be
specifically controlled, and statistically relevant parameters



such as the mean period and the variance can be assigned to
each mask. Translating the above approach to mathematics,
one assumes that the meta-atoms are initially placed in well-
defined slots of equal length (see Figure 1) and then are
perturbed from their mean positions. The perturbation is
described by PDF(pr). This PDF describes the extent of
the perturbation and also ensures that the displacement is
not beyond a certain space slot. However, PDF(py) is the
positional disorder distribution function not the PDF for
the metaatom interseparation PDF(d); the latter has to
be found based on given PDF(px), and PDF(8;) can then
be used in averaging procedure (1) to obtain the required
material parameters. In this work, interseparation PDF(dx)
is obtained by employing a characteristic function approach.
The characteristic function Q,(w) is given by a Fourier
transformation of given PDF(py):

Quilw) = | PDE(pe) e dp, @)

where PDF(py) satisfies the normalization condition:

| PoE(p)dpc =1 3)

Alternatively, the characteristic function can be considered as
an expectation value of function e*":

Q@) = <eiwt> ‘PDF(pk)' (4)

The one-dimensional equivalent of the problem is formu-
lated as follows. A periodic arrangement of N meta-atoms
on a given length L is considered (see Figure 1). The spacing
period for the slots is given by zy = L/N, and the location of
the kth metaatom can thus be given as zx = (20/2)(2k + 1).
Now, the perturbation of the kth metaatom from its mean
position can be given using a random function py, such that.

20 Zk 2k
=—QRk+1)+pr, —— < —.
Zk ) (2k ) Pk ) < Pk ) (5)

So, the spacing between the meta-atoms is given by.
Ak = zks1 — 2k = 20 + (Pk+1 — pk) = 20 + Ok (6)

The random functions pi and pi+1 are completely indepen-
dent from each other. For the present problem, the random
function of interest is

Ok = Pk+1 — Pk (7)

The mathematical form of PDF(dx) has to be found. The
form of the above probability function can be obtained by
using characteristic functions. The characteristic function
formed by a sum or difference of two or more PDFs is
nothing but the product of the characteristic functions of the
ingredient PDFs. That is, if one is interested in a probability
distribution function for variable z, given by

Z=y1t yate Aty (8)
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where y;, y, and so forth are independent random functions
and Q;(w) are their mutually independent characteristic
functions, then the characteristic function of z will be given
by

Qz(0) = Q(0)Q(@) - - - Qu(w). )

So, the form of z can be simply obtained by an inverse
Fourier transformation on the product of the characteristic
functions.

Define the characteristic functions for px and py1 as

Qu@) = | PDE(p)erdpy,
Qpr1(w) = Q;kkﬂ(w) = L PDF (pgs1) e 1 dpyyy.

(10)

Then making use of the above-stated method, the character-
istic function Qs(w) of the required PDF(Jy) is.

Qsk(w) = Qp1(w)Qy, (). (11)

Then, required PDF(Jk) can be obtained by simply using the
convolution theorem:

PDF(8) = FT ™[ Qpi (@) Qj (@) ]

| PDE(PDE (G - pdpc (12)

| PDF(pPDEG: — pi)dp

Hence, required PDF(py) is the autocorrelation function of
the positional disorder PDF(py). The integral is taken over
the displacement of the metaatom from its mean position
and limited by the finite values of the slot length. The
strength of the method is the fact that no explicit assumption
has been made regarding the form of PDF(py) describing the
positional disorder.

The mathematical procedure has to ensure that the
perturbation does not become so large that the meta-atoms
overlap each other. In the analysis, the particles are assumed
to be placed in average in the center of the slots of a
length equal to the mean spacing period. The particles can
randomly move within their own slot, and the extent of the
displacement from the center of the slot is given by PDF(py).
A consequence of such a restraint is that PDF(px) has to be
restricted and normalized within this slot. Figure 5 shows
how the autocorrelation function approaches a triangular
function from its initial Gaussian form, as the position of
the particle within the slot becomes completely random (i.e.,
PDF(px) takes a rectangular form). A simple algebraic form
of the probability distribution function cannot be obtained
due to this truncation. Hence, the following approach was
adopted: the normalized versions of PDF(Jx) for the inter
separation were obtained using numerical code, and they
were subsequently used for numerical integration (according
to (1)) for obtaining the effective material parameters.
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FIGURE 3: Geometry of propagation for randomly arranged dipole
ensemble.

3. Case of Randomly Positioned Dipoles

In this section, using the above mentioned principles, the
effect of disorder in a chain of periodically placed dipoles
is investigated. The geometry is given in Figure 3. The bold
arrow shows the direction of propagation of the electro-
magnetic wave.

The system can be mathematically modeled as follows.
Considering the coupling dynamics between two equal
adjacent oscillators, one can write the equation describing
their dynamics as

*x 0x1 q
ﬁ + y§ + w(z)xl + 0x; = *Ex,
X (13)
0°x; 0x) q
w + )/§ + w(Z)XZ + ox1 = ;Ex

The term on the right side is the same for both oscillators,
and as the same field impinges on both of them. By
substituting the time ansatz x;(t) = xi(w)exp(—iwt), the
system can be easily solved for x; (w) and x,(w) as follows:

R o xl(w) _ i Ex(w)
o R x(w) | m|Ex(w) |’ (14)
R = w} - w - iyo.

Thus,

%1(0) = @) =~ E (),
wy—w — iyw + 0

(15)

2

o=0(z) =09 Z—g
Here, 0y and gy are the coupling constant and the distance
between the oscillator. It is assumed that the interaction
between the oscillators is the near field one between the
dipoles that stipulates the inverse cubic distance dependence

in the second equation in (15).

Randomly arranged
quadrupole ensemble

y 4w 4 y 4 Ay &Y y 4
A & y 4 V4w 4 y 4
Ex
R Normally incident em-field,
ky g with E-field polarized
’ along y-axis
B,

FIGURe 4: Geometry of propagation for randomly arranged
quadrupole ensemble.

The response of the system can thus be obtained by mon-
itoring the susceptibility of the medium. The polarization of
the system can be written as

297 1
Px > = . Ex >
(2 @) m wj—w-iyw + o(z) (@) (16)

so that the effective susceptibility is

2g9°n 1
m wj—w-—iyw +0(z)

Xz, w) = (17)

To incorporate the effect of disorder, following (1), the
averaged form of the above susceptibility can be obtained as

(@), = | PDEG, Dz, 0,0)d0 (1)

or

(a0 @),

>

(19)

(20 +96)’
2

2%y (*
= 21 PDEG,D) , s
m Joo (0§ — w — iyw) (2o + 8)” + 0pay

where PDF(§, D) is the inter separation PDF and D here
quantizes the amount of disorder presented in the system.

4. Case of Randomly Positioned Quadrupoles

The extension of the above model to metamaterials (i.e.,
taking into account the magnetic response) firstly requires
that the interaction between the adjacent meta-atoms is
taken into consideration. The system is taken to be similar as
the one shown in Figure 3, but the dipoles are now replaced
by quadrupoles (Figure 4). The long axis of the cut wires
is oriented along the x-axis. The cut wires forming the
quadrupole are separated along the y direction. The meta-
atoms are arranged randomly (in terms of above described
random positioning in the respective slots) along the z di-
rection.



Assuming that a plane electromagnetic wave now prop-
agates through the ensemble along the y direction, while
its electric vector is polarized along the x direction, the
coupled dynamics of two meta-atoms can be modeled via
four coupled oscillator equations:

%4— I s 4 axs + by oy = L
o )/at 0X1 2 3 4 X,1>
@+ 92 | s +axy + by + g = L
o2 )/at 0X2 1 3 4 %2> o)
%+ %+w2x +axs+bxy o = L
o )’at 0X3 4 1 2 m X,3>
82x4 8x4 2 q
—— 4+ y— 4+ wixs +axs + bxy +cx; = —Ey4,
o )’at 0X4 3 2 1 " X,4
where
3 3
0 0
a = 0p, bzo‘OyT) ¢ = 0p 5 yz 3727 (21)
z (yo +22)

and oy is the value of the coupling constant measured for the
interseparation y,. The magnitude of the coupling constant
varies inversely as the cube of the distance, and so its value
can be obtained for other interseparations—here z and the

diagonal distance (y + 22)"*. The exponential phase factors
in the right side take into account the retardation effect. It
is clear that a change in the excitation conditions will affect
the form of the right hand side of the above equations,
while a change in the configuration of the meta-atoms can
be accounted by a change in the form of the coupling
coefficients. The procedure of determining the response of
the medium then remains the same—one seeks to determine
effective susceptibilities (corresponding to the symmetric
and antisymmetric modes of oscillation), average them over
all possible coupling configurations, and then use these
values for ascertaining the effective material parameters.

The first step is to find the solution of the above set of
equations. They can be transferred to the Fourier domain by
using ansatz x;(f) = x;(w)exp(—iwt), i = 1,2,3,4, so that
the system can be rewritten in a matrix form:
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The modes of oscillation of interest are given by x,(¢) =+
%2(w). The system can be solved to obtain the values of
x1(t) and x,(w), and the modes of the system can be written
as.

qEx 2cos(kyr)
m wj—w—iyw+(@+b+c)

x1() + x2(w) =

() (23)
B _ qEx 2cos(ky:
7t —x(w) = m wj—w—iyw—(a—b+c)’
and hence one can define the effective susceptibilities:
E 2 cos(k
X (20, 0,0) = £ ky1) (24)

m wj—w—iyw*(axb+c)

where the zp and § dependences are due to a, b, and c.
Due to this form of definition, the functional forms of
the polarization, quadrupole moment, and magnetizaton re-
main the same:

2x* (@) cos(kyr)
P =2qny 0 Ec(y, ),
0
0 2iy~ (w)sin(ky;) 0
Q = gy | 2ix (w) sin(ky1) 0 0
0 0 0 (25)
X Ex()/) (1)),
0
M = gqny 0 E:(y, ).

2ixy~ (w) sin(ky,)

The effect of disorder can then be taken into account by
carrying out the extra averaging integration (1):

Rabc x1(w) Ey(w) exp(iky1)
aRcb x(w) | g |Edw)exp(—iky) ©
b ¢ Ral|ll|xw | m| Ew)exp(iky)) | <)(i(zo,w>D)> :J PDEF(8, D)x™ (20, 6, w)d§, (26)
c baR x4(w) Ey(w) exp(—iky) -
R = 0w} - w - iyo.
(22) or, more explicitly:
- h 1
(x* 0,0, D)) = J_ PDE(3, D) @,

where z; is the mean period. The limits of the integration
indicate that the autocorrelation procedure for PDF(§, D)

(w§ — w — iyw) + a9

(1 N (yS/(zO +8)3) " (yg/(yé +(20+8)2)3/2)> >

has been already carried out. This integral can be solved
numerically for a given value of frequency.



Advances in OptoElectronics

With the effective susceptibility as defined above, one
may now consider a planar metamaterial, which is formed
by the identical rows of the randomly positioned meta-
atoms. The effect of randomness is taken into account by the

K(w) =

averaging procedure, and hence the dispersion relation and
the effective material parameters can be written in analogy
o [16]. Adhering to the same conditions of geometry and
excitation, the following expressions can be utilized:

> 1+ A<X+(zo,w,D)>

=1 +A<X+(z0,w,D)>

2

kf/)’l (1

24 (wz/cz)Ay%<(l/2)<X+(zo,w,D)> - <X‘(zo, w,D)>) '

(28)

3 (X" (20,0, D)) = (x (20, w,D)>>,

1

Ueff =

The previous expressions can be easily carried over to a
numerical code to obtain the material parameters of interest.
The following section presents the results and compares
them with the experimental observations.

5. Method of Numerical Implementation

For convenience, the integrations and other expressions have
been converted to their normalized versions. The frequencies

1 — (w¥/c?)Ay? <X_ (2o, w,D)> .

are normalized with respect to the resonant frequency wy of
the independent cut wire, while the distances are normalized
with respect to the cut-wire spacing ag. Specifically, the
susceptibilities for the case of dipoles and quadrupoles are

(x* (@ w))_ = JZ PDE(3,, D,)

)

1+ 68, s
(1 - w2 — i(wa/Q)) (1 +8,) + 6o/w] "
PDE(8,, D) 2

(), - |

where

PDEF(px, D) is assumed to be Gaussian:

1 P ao ag
PDF(pi D) = meXp<‘z1y)’ T PR
a a
PDE(pi, D) =0, =2 <pio pr > 5"

(31)

The excursion of the dipoles around their mean posi-
tions had to be limited within the interval [—ay/2,a0/2];
recalculation PDF(px, D) into PDF(Jk, D) is given by (12).
The integrals cannot be taken analytically and was done
using the mathematical software MATLAB. Truncation of
the positional PDF was achieved by coding. To obtain the
autocorrelation of the PDE, a standard subroutine was used.
The results of the operations are shown in Figure 5.

(- @ - i Q) £ 0015 1)+ 60"+ 1/(1+ (@) +8,7°) )

dé,

All the constants used in the analysis were taken from
[16]. The spacing between the cut wires ay was taken to be
65 nm, and the resonant frequency of an isolated cut wire was
taken as wy = 1.39 x 10" rads™!. The damping coefficient
was taken to be y = 9.42 x 103 rad s™!. The mean periodic
spacing z, = 1.8 (the mean spacing between the meta-atoms
was taken to be 1.8 times the cut wire spacing yy).

To verify the correct functioning of the code, the results
for a very small disorder were compared with the result for
a perfectly ordered system (with neighboring meta-atoms
interacting with each other); see Figure 6.

6. Results

The results of the analysis for dipoles are presented in
Figure 7, and the results of the analysis for quadrupoles are
presented in Figures 8 and 9.

The analysis was carried out for two values of the
spacing period z,, namely, z, = 1.2 (Figure 8) and z, = 1.8
(Figure 9). The positional PDF was taken for the four
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FiGure 5: Relationship between the positional disorder function
(a) and the interseparation probability distribution function (b). As
the positional PDF (b) deviates from the Gaussian form for higher
values of disorder (due to restrained excursion), the interseparation
PDF approaches a triangular form.

different values of the standard deviation D, and conse-
quently the inter separation PDF(J,, D) was obtained using
numerical coding in MATLAB. The effective susceptibilities
were calculated by numerical implementation of the integra-
tion (29) and (31), and then the effective material parameters
(28) were calculated.

The following features are clearly noted.

(i) For the disordered dipole ensemble, the fall in the
permittivity with increasing disorder is clearly visible
(Figures 7(e), 7(f), 7(g), and 7(h)). The Im(e) curve
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FIGURE 6: Verification of the code—typical values from [16] were
used in the computer code written for the calculation of the
effective material parameters for metamaterials with positional
disorder having a very small amount of disorder (D = 0.01). The
results obtained match with those in [16]—this is expected as the
nature of coupling considered in the present theory should have
negligible influence upon the material parameters for very large
spatial periods (z, > 3).
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FiGuURe 7: Effective material parameter curves for dipole ensembles exhibiting positional disorder. The effective permittivity and permeability
curves for disordered dipole ensembles are presented for different values of disorder. The first column pertains to values obtained for a mean
period of z, = 1.2, while the second column pertains to those obtained for a mean period of z, = 1.8. For the respective periodicities: (a)
and (b) the positional disorder function; (c) and (d) the respective interseparation PDFs; (e) and (f) scaled real part of the permittivity; (g)
and (h) scaled imaginary parts of the permittivity. Clearly, increase in disorder brings about a fall in the maximums of the response of the

system.
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Figure 8: Dispersion and effective material parameter curves for quadrupole ensemble with z, = 1.2: (a) positional disorder function PDF;
(b) interseparation PDF; (c) and (d) real and imaginary part of k-vector (in normalized units of cut-wire separation distance a,/2); (e) and
(f) real and imaginary parts of effective permittivity; (g) and (h) real and imaginary parts of effective permeability.

disordered system can be thought to be made up of
several different periodic systems. The resonant fre-
quency for each periodic ensemble depends inversely
on its spatial period. If the response of the disordered
system is approximated by the sum of the responses

is symmetric for very small values of the variance
(here, D = 0.01). But as the disorder increases, the
peak shifts towards lower frequencies, and the curves
becomes broadened and asymmetric. The reason for
these observed effects can be explained as follows. A
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FiGgure 9: Dispersion and effective material parameter curves for quadrupole ensemble with z, = 1.8: (a) positional disorder function; (b)
interseparation PDF; (c¢) and (d) real and imaginary part of k-vector (normalized with the cut-wire separation distance ay/2) (e) and (f) real
and imaginary parts of effective permittivity; (g) and (h) real and imaginary parts of effective permeability.

of its constituent periodic systems, it becomes evident
that the final curve will develop a tail approaching
the blue end of the spectrum. The asymmetry can
thus be attributed to an inverse power relationship
between resonance frequency and interseparation.
The effect of broadening is a consequence of
particle conservation. On the other hand, the lowest
frequency/largest wavelength of response is not
a function of the periodicity, but is actually limited
by the eigenfrequency of the independent oscillator.
In fact, the resonance frequency approaches the
eigenfrequency for a periodic assembly of dipoles,

when the spatial period becomes large. Hence, as the
disorder in the system increases, the curves become
broadened and asymmetric, and the peak response
shifts towards the eigenfrequency of the independent
oscillator.

(ii) In the case of the quadrupole ensemble, a decrease

in the value of the electric permittivity is observed
as D is increased. This is in agreement with the
experimental results. However, there is also a de-
crease in the value of the magnetic permeability.
This decrease is more pronounced for z, = 1.2 as
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F1Gure 10: Disorder along the cut-wire axis direction—the figure shows a one-dimensional disorder arrangement of meta-atoms. The extent
of disorder can be quantified in terms of the angle, the total range of variation being limited to (—n/2,7/2).
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FIGURE 11: (a) Rectangular and (b) Gaussian forms of distribution function used for governing the positional disorder of the metamaterials
along the lateral direction. The positional disorder is expressed in terms of the relative angle between two neighboring meta-atoms. The
effective material parameters of the ensemble are derived and presented in Figure 12 for three different values of disorder.

compared to z, = 1.8. This is an unexpected result,  In the light of the above arguments, it is concluded that
as the magnetic response should remain almost  as the observed positions of the resonances and the relative
unaffected. The reason for this discrepancy could lie ~ magnitudes of the parameters are within the limits of
in the simple form of the probabilistic model chosen ~ approximation, the analysis is valid and can be used to
to describe the randomness. roughly predict the properties of metamaterials with incor-
porated randomness.

(iii) Generally speaking, the final expressions for the
permittivity and the permeability were derived under
several approximations, associated with (1). The
observed discrepancy could also be attributed to 7. Other Forms of Disorder
these approximations. Above all, the fundamental
limitations of the multipole theory itself could affect ~ In the preceding analysis, the effect of positional disorder
the final results as well. These possibilities have to be ~ (arising due to aperiodicity) on the averaged material
investigated further. parameters was considered. In a random metamaterial other
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FIGURE 12: Effective material parameters for metamaterials exhibiting positional disorder along the lateral direction (y direction) governed
by the rectangular distribution function (Figure 11(a)). The first column gives the material parameters for a metamaterial ensemble having
a mean period of z, = 1.2, while the second column is for metamaterials having a mean period of z, = 1.8.

forms of disorder can exist as well. A particular case of
interest is positional disorder along the cut-wire axis; see
Figure 10.

If this form of positional disorder is taken into consid-
eration along with the aperiodicity, the model would then
be a step closer to emulate a true self-organized random
metamaterial [46]. In the multipole model, the individual
cut wires are replaced by dipoles. In case the quadrupoles
are disarrayed, the coupling between them will also be

a function of their relative angular positioning. This angular
dependence can be introduced into the coupling terms of the
dynamic equations. More specifically, the coupling constants
b and c in the differential equations will include the angular
dependence. All other mathematics remaining the same, the
averaging procedure can now be carried out between angles
(—=7/2,7/2).

The curves in Figures 12 and 13 summarize the results
obtained by using the multipole approach.
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FIGURE 13: Effective material parameters for metamaterials exhibiting positional disorder along the lateral direction (x-direction) governed
by the Gaussian distribution function (Figure 11(b)). The first column gives the material parameters for a metamaterial ensemble having a
mean period of z, = 1.2, while the second column is for metamaterials having a mean period of z, = 1.8.

Two forms of the distribution function were used in the
analysis (Figure 11). The extent of disorder is correlated to
the relative angular position of the dipoles. The first form of
the angular PDF distribution function used was a rectangular
function (see Figure 11(a)). The second form used was a
Gaussian distribution (Figure 11(b)), the random variable
being the relative angular position. The function is centered
about 0 degrees, the extent of disorder being quantified by
the standard deviation D; b and ¢ are multiplied by the
term cos(6) to incorporate the angular dependence. Clearly

then, when 6 = /2, there is no interaction between the
cut wires. The Riemannian integration is limited between the
values (—7/2,7/2). The constants were again taken from the
original reference [22], and the mean periodicity was taken
to be z, = 1.8. The results (Figures 12 and 13) show that
both the effective permittivity and permeability are clearly
affected by the angular disorder. In a similar fashion, in-plane
and out-of-plane skew disorders of meta-atoms can also be
accounted by the model, by making appropriate changes to
the coupling terms.
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8. Conclusions

In extending the multipole approach [16] to the case of
random metamaterials, the effect of spatial distribution
of the meta-atoms was taken into account by considering
the near field coupling between neighboring meta-atoms.
The effective susceptibility was expressed as a function
of the inter-separation between meta-atoms, the ensemble
averaged susceptibility was then obtained as an expectation
value, weighed by the probability distribution function
of all possible inter-separations. In the present work, the
disorder was considered only along one direction (in-
plane, perpendicular to cut-wire long axis), assuming that
adjacent rows of meta-atoms do not interact with each
other. Results obtained by the numerical implementation
of the equations indeed confirm the experimental finding
that increasing disorder has a more pronounced effect on
the effective electrical permittivity than on the effective
magnetic permeability. For smaller periodicities, however,
the electrical permittivity and magnetic permeability are
affected equally. This conflicting result could be caused by a
coupling of the quadrupole moments of neighboring meta-
atoms. This has not been explicitly considered in the present
version of the model. Also, other factors such as the effect
of incident polarization, or the coupling between adjacent
rows, have not been considered in the present theory. The
understanding gained from the study of this simple case can
now be used to account for the above specific and more
involved cases.
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In this paper we review metamaterials fabricated from self-rolling strained metal-semiconductor layer systems. These systems
relax their strain upon release from the substrate by rolling up into microtubes with a cross-section similar to a rolled-up carpet.
We show that the walls of these microtubes represent three-dimensional optical metamaterials which so far could be used, for
example, for the realization of broadband hyperlenses, fishnet metamaterials, or optically active three-dimensional metamaterials
utilizing the unique possibility to stack optically active semiconductor heterostructures and metallic nanostructures. Furthermore,
we discuss THz metamaterials based on arrays of rolled-up metal semiconductor microtubes and helices.

1. Introduction

While the concept of metamaterials, that is, tailoring the
optical properties of a material to desired values by cleverly
designing its subwavelength composites, is in principle
scalable in frequency, the realization of three-dimensional
metamaterials for optical frequencies remains one of the
current challenges in the research area of metamaterials [1,
2]. Compared to the fabrication used in the pioneering works
on metamaterials operating in the microwave regime [3-6],
which were composed of millimeter-sized metallic structures
produced with well-established printed circuit board tech-
niques, the deliberate structuring on the nanoscale in three
dimensions for the production of three-dimensional optical
metamaterials is much more elaborate. Possible routes are,
for example, stacking of single-layered metamaterials by
repeating planar lithographic processing steps [7], focused
ion beam milling of multilayers [8], multilayer deposition
on patterned substrates [9, 10], galvanization in combination
with three-dimensional laser interference lithography [11],
or galvanization in combination with anodic oxidation [12].
Here we discuss three-dimensional metamaterials prepared
by rolling up a single-layered metamaterial with multiple
rotations into a radial stack, similar to rolling up a bilayer
of biscuit and cream into a Swiss-roll cake. One possibility

to follow this route is actively rolling up the layer system
as demonstrated by Gibbons and colleagues, who rolled
up a gold-polymer bilayer around a millimeter-sized glass
rod and obtained a high quality radial multilayer system
[13]. Another possibility is utilizing the concept of strain
induced self-rolling of nanolayers which was pioneered
by Prinz and coworkers for the InGaAlAs semiconductor
system [14, 15] and since then adopted to various kinds
of material systems including metals, semiconductors, iso-
lators, and hybrids thereof [16-22]. Smith and coworkers
pointed out in theoretical works that rolled-up metal-isolator
systems might be promising candidates for the realization
of metamaterial waveguides [23] and hyperlenses [24, 25].
Particularly interesting are hybrid systems of semiconductors
and metals, since they open up the unique possibility to
stack electrically or optically active semiconductor layers and
metallic components in order to obtain active metamaterials.
In the following we review our work in this direction utilizing
self-rolling strained InGaAlAs/metal layers for the realization
of three-dimensional optical metamaterials including hyper-
lenses [26—28], fishnet metamaterials [29], and optically
active metamaterials [30-32]. In addition we discuss the
possibility to use arrays of rolled-up InGaAs/metal structures
to realize metamaterials for far infrared frequencies [33,
34].
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FIGURE 1: (a) layer sequence for producing a rolled-up metamaterial, (b) rolled-up multilayer of silver and (In)GaAs. Inset: the wall of the
resulting tube represents a three-dimensional metamaterial. (c) Scanning electron microscopic cross-section image of a realized metamaterial

consisting of 6 lattice cells with dyg = 22 nm and dp, = 34nm.

2. Preparation of Rolled-Up Metamaterials

Figure 1(a) shows a typical layer sequence, as used, for
example, for the preparation of the rolled-up hyperlens
shown in Figure 1(c) and discussed in Section 3. Molecular
beam epitaxy (MBE) is used to grow a typically 40 nm
thick AlAs sacrificial layer followed by a strained (Al)InGaAs
layer and an (Al)GaAs layer, each a few nanometers thick,
on top of a GaAs substrate. On top of this strained
semiconductor heterostructure a few nanometers thick
metal film is deposited by thermal evaporation. After the
selective etching of the AlAs sacrificial layer with buffered
hydrofluoric acid, the strained layer system is detached
from the substrate and rolls up into a tube as sketched
in Figure 1(b). The walls of these tubes are the basic
structure used for the optical three-dimensional metal-
semiconductor metamaterials discussed in the following.
Due to the fact that the entire structure comes from the
same layer, rolled-up metamaterials exhibit a perfect uni-
formity and give the unique opportunity to stack identical
MBE-grown semiconductor heterostructures with metallic
structures. The tube diameter of the devices discussed here
typically amounts to a few microns and can be controlled
by the layer thicknesses and composition; the number of
revolutions N is adjustable by the etching time. The passive
rolled-up hyperlens structure consisting of nonfunction-
alized semiconductor layers and planar metal films, as
shown in Figure 1, is discussed in Section 3. Patterning the
rolled-up structures shown in Figure 1 after the rolling-
up process results in fishnet metamaterials as discussed
in Section 4. In Sections 5 and 6 we demonstrate that
quantum wells can be integrated into the semiconductor
component of the rolled-up structures to realize optically
active metamaterials. Optionally, the metal films can be
replaced by plasmonic nanostructures, which are prepared
onto the strained semiconductor prior to rolling up, as
demonstrated in Section 6. A different ansatz using the same
preparation technique but considering the whole tube as one
cell of a metamaterial for the THz regime is addressed in
Section 7.

3. Rolled-Up Hyperlens

Multistacks of thin metal layers and thin dielectric layers
might be approximated as an effective medium with an
anisotropic permittivity tensor as described, for example,
in [35]. This permittivity tensor has on the major axis
g = (em + nep)/(1 + n) for the two directions in the
plane of the layers and e, = (1 + #)/(1/em + n/ep) for the
direction perpendicular to the layers and zeros otherwise.
In this case, ¢p is the permittivity of the dielectric layer,
eum is the permittivity of the metal layer, and # is the layer
thickness ratio of dielectric and metal layer. Due to the
special ellipsoidal and hyperbolic shapes of their Fresnel
surfaces, that is, their isofrequency surfaces in k space, one
can use such media for subwavelength imaging under certain
conditions [35-37]. For 0 < ¢ < |e,.| one obtains flat
extended iso-frequency surfaces in k space, which leads to
the propagation of very high k components with a common
group velocity perpendicular to the multilayers. This directed
imaging of very fine details is called hyperlensing and, when
using curved instead of flat multilayers, can be used to
magnify subwavelength details with a magnification given by
the ratio of outer and inner radius of the multilayer structure
[38]. Cylindrical hyperlenses working in the ultraviolet [10]
as well as spherical hyperlenses operating in the blue [9]
could be realized in the group of Xiang Zhang by sequential
deposition of layers of silver and dielectric on patterned
substrates.

Rolled-up metamaterials made of silver-InGaAs multi-
layers are promising candidates for hyperlensing at near
infrared and visible frequencies. Due to the significantly
higher permittivity of the semiconductor compared to
dielectrics like, for example, Aluminum Oxide or Titanium
Oxide, the operation range, where the condition 0 < g <«
le, | is satisfied in silver-InGaAs multilayers, can easily be
shifted over the visible and near infrared regime by choosing
the respective layer ratio 7. Experimentally, the zero crossing
of ¢ and thus the lower cutoff frequency for hyperlensing
operation can be obtained from transmission and reflection
measurements. At normal incidence one expects ¢ < 0 for
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FIGURE 2: (a) Experimental reflectance and transmittance of a rolled-up hyperlens together with corresponding theoretical curves from
transfer matrix calculations. (b), (c¢) Simulation of the imaging of two dipoles from the inside of the hyperlens to the outer perimeter for
two frequencies above the plasma edge, (d) Corresponding simulation for a frequency below the plasma edge. (e) Experimentally observed
frequency of the plasma edge as a function of layer thickness ratio of silver and InGaAs.

metallic reflection and ¢ > 0 for dielectric transmission; that
is, & = 0 marks the plasma edge of the effective material.
While the measurement of reflection from a rolled-up
metamaterial can be performed with slight modifications of
conventional reflection setups, the measurement of trans-
mission through the rolled-up metamaterials is challenging
since it requires a transmission light source inside the rolled-
up structure. As sketched in Figure 4(a) in Section 5 we
realize such a transmission source with a metal coated fiber
which we manipulate into the rolled-up metamaterial by
means of piezo actuators. Light scattered from a nanohole
with typically a few 100nm diameter, which is prepared
into the metallization of the fiber tip by focused ion
beams, is transmitted through the rolled-up metamaterial
and collected with a microscope objective. As a reference

we measure the emission from the nanohole with the fiber
tip outside of the rolled-up metamaterial. Figure 2(a) shows
transmission measurements (black squares) and reflection
measurements (red curve) of a rolled-up silver-InGaAs
hyperlens (7 = 0.5, dag = 17nm, dipgaas = 34nm, N =
4), together with corresponding transfer matrix calculations.
The red arrows indicate the plasma edge. At frequencies
above the plasma edge distinct resonances appear. In [28]
we could show that these resonances are due to Fabry-Perot
interferences corresponding to the total layer thickness and
can be used to enhance the transmission through a rolled-up
hyperlens at desired frequencies. Towards high frequencies,
the transmission decreases again due to the high absorption
in the semiconductor component. As Figure 2(e) illustrates,
we have experimentally demonstrated that the plasma edge
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FIGURE 3: (a) Microroll with six alternating layers of metal and semiconductor with a fishnet pattern obtained by focused ion beam milling.
As visible, the end of the tube exhibits noncompact layer stacking. Nevertheless, in the area of the fishnet pattern the layer stacking is
compact. The sketch shows the unit cell of the fishnet pattern. The electromagnetic wave is incident in z direction. (b) Calculated reflection

and transmission through the structure in (a). (c) The permeability (4 = ¢’ + iy’") and refractive index (n =

n' +in""), calculated by a

parameter retrieval method, reveal that n" becomes negative at certain frequencies. (d) A wave impinging from the left (f = 220 THz) gets
negatively refracted by a prism that is cut into the fishnet structure. The prism is depicted by the white, dashed lines, with the structure
infinitely extended in the direction perpendicular to the image plane. Figure reprinted from [29] with slight modifications.
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FIGURE 4: (a) Sketch of the setup for measurements of the transmission through an active rolled-up metamaterial. The setup allows to
optically excite active layers, for example, InGaAs quantum wells, inside the metamaterial to enhance the light transmission. (b) The
transmission enhancement of an active rolled-up metamaterial is plotted against the photon energy showing a pronounced maximum of
AT/T = 10% at a photon energy of E = 1.36 V. Images taken from [30].
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FIGURE 5: (a)-(b) Scanning electron micrographs of a rolled-up metamaterial consisting of a three-dimensional silver lattice interleaved with
quantum wells. (c) Schematic of the metamaterial according to the cross-section shown in (b). (d) Pump-induced change in transmission
through the metamaterial (blue squares), together with a Fano fit (blue line).

(a)

Metal
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FIGURE 6: (a) Chiral metamaterial made of an array of rolled-up InGaAs/GaAs/Ti/Au microhelices realized by Prinz and coworkers. The
material exhibits circular dichroism and linear polarization rotation in the operation frequency range around 2 THz. The image is taken
from [34]. (b) Metamaterial made of an array of rolled-up InGaAs/GaAs/Cr microtubes. The zoom-in shows a single microtube. As sketched
in the bottom right, the microtubes exhibit slightly more than one rotation resembling the concept of a split ring resonator [3]. We showed
by means of finite difference time domain simulations that these structures might be used to obtain a magnetic response at THz frequencies.

can be shifted over the visible and near infrared regime
by changing the layer thickness ratio #. Figures 2(b)-2(d)
show finite difference time domain simulations (Lumerical
EDTD Solutions) for light propagation in the hyperlens with
a plasma edge at 1.57eV (cf. Figure 2(a)). On the inner
surface of the hyperlens two dipoles are placed at a distance
of 300 nm. In fact, for frequencies at and above the plasma
edge we observe hyperlensing, that is, radially directed
imaging of the dipoles onto the outer hyperlens surface
(Figures 2(b) and 2(c)). In contrast to this, no hyperlensing
occurs for frequencies below the plasma edge (Figure 2(d)).
A vparticularly interesting aspect of these simulations is
the fact that hyperlensing occurs also for relatively thick
individual layers as used in our structures, which exceed the
individual layer thickness limit of approximately 5 nm for the

applicability of effective medium retrieval methods to our
structures [27].

4. Three-Dimensional Fishnet Metamaterial
with Negative Refractive Index at 1000 nm
Wavelength

Figure 3(a) shows a rolled-up metamaterial similar to the
one presented in Figure 1 with six windings, where an
array of holes with diameters smaller than 100 nm has been
cut into its wall using focused ion beam milling after the
rolling-up process. In [29] we showed by means of finite
difference time domain simulation that a negative index
of refraction in the near-infrared regime is expected in
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FIGURE 7: (a) Sketch of a microroll consisting of an (In)GaAs (red) and a gold layer (yellow). (b) Simulation setup: black lines indicate the
simulation volume with periodic boundary conditions in the x and y direction. A plane wave is incident in z direction with the magnetic
field vector pointing along the tube axis; that means in the y direction. (¢) Simulated transmission spectra of microroll arrays with varying
winding numbers # and the calculated resonance frequencies f;. (d) Retrieved complex permeability g of a microroll array for a winding
number of n = 1.05. Figure reprinted from [33] with slight modifications.

such a three-dimensional fishnet metamaterial. Figure 3(b)
depicts the simulated reflection and transmission through
the structure. Retrieving the effective refractive index reveals
that the real part (n’) is negative at the resonance positions
in the reflectivity. At the positions where the real part
is negative, the effective permeability shows a Lorentzian-
shaped resonance (see Figure 3(c)). In Figure 3(d) a prism
has been cut into the multilayer stack. As depicted by the
black arrows it can be clearly seen that a wave impinging from
the left side gets negatively refracted. Calculating the real part

of the refractive index via Snell’s law for a frequency of f =
220 THz leads to a refractive index of n° = —1.03. This is in
very good agreement with the refractive index of n’ = —1.07
calculated from the simulated spectra with the parameter
retrieval method by Smith et al. [39]. Apart from the high
uniformity and possibility to activate the semiconductor
component as discussed above in the fabrication section,
our rolled-up fishnet metamaterials have the advantage
that they need much thinner functional layers due to the
high refractive index of the semiconductor component in
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comparison to the commonly discussed fishnet structures
based on sequential deposition of metal and materials like
MgF, or hydrogen silsesquioxane (n" = 1.5).

5. Optically Active Rolled-Up Metamaterials

The integration of quantum emitters into metamaterials
opens up the exciting opportunity to study quantum emitters
in tailorable dielectric environments. For hyperbolic meta-
materials an enhanced spontaneous emission is expected
[40—42]. Furthermore, metamaterials can be optically acti-
vated by the integration of quantum emitters, for example,
to compensate for the typically very high ohmic losses given
by the metallic component of metamaterials or to investig-
ate coupling effects with the metallic components of the
metamaterials. A major challenge is the realization of such
metamaterials with embedded quantum emitters. Mono-
layered metamaterials with integrated quantum emitters
have been realized as fishnet metamaterials with embedded
rhodamine dye molecules [43], slit-ring resonator arrays
covered with colloidal quantum dots [44, 45], and slit-ring
resonator arrays prepared on top of an InGaAs quantum well
heterostructure [46, 47]. Reference [41] is one of the few
examples in literature for three-dimensional metamaterials
containing quantum emitters. In their work Tumkur et al.
sequently deposited metal layers and polymer layers doped
with dye molecules.

As discussed in the fabrication section, three-dimen-
sional rolled-up metamaterials fabricated from semiconduc-
tor systems intrinsically offer the possibility to embed high
quality quantum structures. In [30] we showed that optically
active quantum wells embedded in a hyperlens structure can
be used to actively modify the transmission and reduce losses
via optical pumping. The investigated structure was based on
a semiconductor heterostructure grown by MBE on a GaAs
substrate. The functional semiconductor heterostructure
consists of a strained In;3Al,0Gagz As barrier layer (23 nm), a
strained In;6GassAs quantum well (7 nm), and an unstrained
Al,3Gaz;As barrier layer (21 nm). After MBE growth the
structure was metalized with an Ag layer (13nm) and
rolled up into a microtube with several rotations. Like the
hyperlens structure presented in Section 3, the wall of the
rolled-up microtube represents a metamaterial consisting of
alternating layers of Ag and semiconductor, but in contrast to
the passive hyperlens, it represents an optically active rolled-
up metamaterial.

In order to investigate the influence of optical pumping
of the embedded quantum well, the transmission enhance-
ment was measured. For that purpose a low-temperature
transmission measurement setup operating at liquid helium
temperatures was used as sketched in Figure 4(a). In this
setup a light emitting fiber tip was inserted into the
hollow core of the microtube to illuminate the rolled-up
metamaterial from the inside. The light transmitted through
the metamaterial was collected by a microscope objective
and detected with a single photon counting diode. A pump
laser was simultaneously focused onto the outer perimeter of
the metamaterial to optically pump the embedded quantum

well. With this setup the transmission enhancement of
the metamaterial AT/T was obtained from the transmitted
light intensity Itpy under optical excitation of the quantum
well, the photoluminescence intensity Ipr, when no light
is transmitted through the metamaterial, the transmitted
intensity It without pumping of the quantum well, and the
dark count intensity Ip, as follows: AT/T = (Itpy, —Ipr)/(I7—
Ip). In Figure 4(b) the transmission enhancement AT/T
(squares) of the active rolled-up metamaterial is plotted
against the photon energy of the transmitted light. The
transmission enhancement has a maximum at a photon
energy of E = 1.36 eV with a value of AT/T = 10%.

6. Fano Resonance in Optically Active
Rolled-Up Plasmonic Metamaterials

After the first observation of optical gain by quantum
emitters in a three-dimensional rolled-up metamaterial as
discussed above, we in the next step realized rolled-up meta-
materials with integrated quantum emitters and plasmonic
nanostructures and detected a characteristic Fano resonance
caused by the coupling between the quantum emitters and
the plasmon polaritons in the plasmonic structures [31]. As
a quantum emitter we used a GaAs quantum well (17 nm)
embedded between an In,gAl;gGasypAs barrier (17 nm) and
an AlyoGagoAs barrier (17 nm). Before the rolling-up process
the upper AlyGagyAs barrier was modulated with a wire
profile with a height of &/ = 10nm, a wire width of w =
100nm and a period of a = 500 nm using laser interference
lithography and wet chemical etching. Subsequently, a 13 nm
thick silver film was deposited onto the modulated surface.
Rolling-up this structure along the wire profiles (Figure 5(a))
results in a three-dimensional metamaterial consisting of
alternating layers of a quantum well heterostructure and
silver wires as sketched in Figure 5(c). Figure 5(b) shows the
corresponding scanning electron micrographs of a realized
metamaterial. To make the stacked wire structure visible, a
hole was cut into the rolled-up metamaterial using focused
ion beams. As visible in Figure 5(b) and the corresponding
sketch in Figure 5(c) the wires are not perfectly stacked but
laterally displaced by A due to the finite angle y between
wire direction and rolling direction. For compactly rolled-
up systems one obtains A = m(d + 2tN)tan(y), where
d is the diameter of the rolled-up metamaterial, ¢ is the
single layer thickness, and N is the index of the respective
rotation position. We have investigated such stacked lattice
structures using finite difference time domain simulations
and rigorous coupled wave analysis and found plasmon
polariton resonances with a spectral position, which strongly
depends on the lattice parameters h, w, a, and A. We modeled
the embedded quantum well as a Lorentz resonance in the
permittivity of the semiconductor component and exam-
ined the coupling of the quantum well with the plasmon
polaritons. Depending on their spectral overlap and the gain
assumed for the quantum well, we predicted characteristic
Fano resonances in the pumpinduced transmission change.
For spectral coincidence and moderate quantum well gain we
expect a pumping-induced reduction of transmission and for



very strong quantum well gain we expect a net gain through
the metamaterial [32].

In measurements of the pumpinduced transmission
change AT/T through rolled-up metamaterials as shown in
Figure 5 we indeed found characteristic Fano resonances, as
depicted in Figure 5(d) [31]. The transmission enhancement
AT/T (squares) is plotted against the photon energy of
the transmitted light. The measured data can be fitted by
applying a Fano resonance model (solid lines) assuming
a Fano type resonance interaction between the quantum
well resonance and the surface plasmon polariton resonance
mediated via the embedded grating. The pumping-induced
reduction in the transmission reflects the moderate gain of
the GaAs quantum well used in these structures. In the next
step it is a very interesting question, if optimization of the
coupling and maximization of the quantum well gain might
enable net gain through these structures.

7. Rolled-Up Metamaterials for
the Terahertz Regime

Instead of using the walls of rolled-up structures as meta-
materials for optical frequencies, as discussed above, an
alternative approach is to use the entire rolled-up structures
as a unit cell of a metamaterial. Prinz and coworkers showed
that rolled-up nanostructures also allow the experimental
realization of metamaterials with strong chiral properties in
the Terahertz regime [34]. An array of (In)GaAs/GaAs/Ti/Au
microhelices of 11 ym diameter and 52-53 degree helix angle
is shown in Figure 6(a). For the preparation of such helices
with well defined helix angle, Prinz and coworkers utilized
the strong preferential rolling direction of self-rolling layers
in the InGaAs system. A strained mesa, which is aligned to
one of the <100> rolling directions, rolls up into a tube
while a strained mesa, which is canted with respect to the
rolling direction, rolls up into a helix with helix angle given
by the canting angle of the mesa. In polarization resolved
transmission measurements Prinz and coworkers found cir-
cular dichroism and polarization rotation around 2 THz for
the chiral metamaterial shown in Figure 6(a) in agreement
with analytical modeling [34]. Figure 6(b) shows a THz
metamaterial, which was developed in our group and is based
on an array of rolled-up InGaAs/GaAs/Cr microtubes. As
schematically illustrated at the bottom right, these structures
exhibit slightly more than one rotation and resemble an LC
circuit in analogy to the concept of a split ring resonator [3].
In [33] we investigated this type of metamaterial theoretically
and found magnetic responses, which can be tuned from
a few THz to a few ten THz depending on the number
of rotations. Figures 7(a) and 7(b) illustrate the simulation
setup. We could show that arrays of gold/(In)GaAs microrolls
with slightly more than one winding (see Figure 7(a)) exhibit
a negative permeability in the Terahertz regime. Figure 7(c)
depicts the transmission spectra of arrays of microrolls with
varying winding numbers of n = 1.00, 1.02, 1.05, and 1.10.
Well pronounced resonances are found with frequencies in
the Terahertz regime that can be tailored by the winding
number. The resonance frequency can be well modeled with
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a simple Lorentz-oscillator model. The (In)GaAs in the
overlap area is sandwiched between two metal layers that
form a capacitance C. The inductivity L of the microroll
can be approximated by the inductivity of a ring coil with
a single winding. The resonance frequency f, = 1/+/LC can
then be calculated in good agreement with the simulation
results (cf. vertical lines in Figure 7(c)). Retrieving the real
and imaginary parts of the effective permeability of the array
with the parameter retrieval method by Smith et al. [39]
reveals that its real part becomes negative near the resonance.
This is exemplarily shown for the array with the winding
number n = 1.05 (Figure 7(d)).

8. Conclusion

In conclusion we reviewed pioneering works for the fabri-
cation and utilization of metamaterials based on self-rolling
strained layers including three-dimensional optical meta-
materials like broadband rolled-up hyperlenses, rolled-up
fishnet metamaterials, and optically active devices containing
semiconductor quantum wells as well as THz metamaterials
exhibiting circular dichroism and negative permeability.
These works demonstrate that the concept of rolled-up
metamaterials is a powerful and unique tool to produce
three-dimensional metamaterials, optionally with integrated
semiconductor quantum emitters, from two-dimensional
metamaterial layers. Such robust three-dimensional systems
are interesting, for example, for the investigation of the Pur-
cell effect in hyperbolic media [40—42], for gain experiments
on stacked plasmonic elements interleaved with quantum
emitters [48], or for the realization of polarizers based on
stacks of plasmonic structures [49].
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Light propagation is analyzed in a negative refraction material (NRM) with gain achieved by pumping. An inherent spatial “walk-
off” between the directions of phase propagation and energy transfer is known to exist in lossy NRMs. Here, the analysis is extended
to the case where the NRM acts as an active material under various pumping conditions. It is shown that the condition for perfect
imaging is only possible for specific wavelengths under special excitation conditions. Under excessive gain, the optical imaging can

no longer be perfect.

1. Introduction

Negative refraction is known to offer a wide range of
potential applications [1-4]. However, losses, which are
an inherent feature of the negative refraction, present a
major impediment to the performance of NRMs [5-9]. To
overcome these problems, NRMs with gain were proposed
to compensate the losses, even to turn the materials into
amplified systems. Nevertheless, it is often stated that the
gain will destroy the negative refraction due to causality
considerations [10], although the statement was disputed
by a theory demonstrating that negative refraction may be
preserved in a limited spectral region [11, 12].

Common methods to introduce gain in NRMs include
optical parametric amplification (OPA) [13] and externally
pumped gain materials [14-18]. Optical imaging needs to
collect both propagating and evanescent waves. However,
only within a limited range may the wave vectors receive gain
from OPA because of the strict phase-matching condition,
the application of OPA to achieve perfect imaging in NRMs
is not possible.

In this paper, we demonstrate that, under the action of
the pumping gain, lossless and amplified light propagation
may occur in a special spectral window of the NRM.

The propagation behavior is shown to be closely related to
the dispersion and pumping configuration. Propagation in
NRMs is also examined in different pumping configurations.

1.1. Spatial “Walk-Off” in Lossy NRMs. Light incidents from
free space onto a homogeneous, isotropic, lossy NRM, of
permittivity & (w) = & + i’ and permeability y,(w) =
y +iy”, were studied in detail [8]. The complex effective
refractive index is then defined as n*(w) = & (w)y,(w) or
n(w) = n' +in”. In free space, the incident wave vector

lg is real, while in the lossy NRM, the wave vector a =
qxx + (g, +iq. )Z is complex. At a given optical frequency w,

this implies that 52 = n?(w)k? for both the propagating wave
(Igx| < In(w)k|) and the evanescent one (|gx| > [n(w)k|).

To analyze light propagation in the NRM, the phase
and group velocities are expressed as v » = (w/ \élz)a and
vy = Vaw(q) = ((A - iB)/(A? + B?)q, where A =
d[Re(n?(w))k*]/dw and B = d[Im(n*(w))k?]/dw are deter-
mined by the NRM dispersion. The energy propagation is
approximately determined by the group velocity under the
assumption of low losses [19-21]. The Poynting vector can
also be used to define the energy propagation.



For complex vectors v p and ;g, the direction of the
phase propagation and energy transfer in the wave packet are
determined by their real parts [22]:

- w ~ A
vp = —3(@:X +q;2), (1)
1q|
- A ~ 1A B .
V= T (gxX+q.2) + gl (2)

In an ideal NRM, where the refractive index is negative
without losses, the phase velocity and group velocity are
strictly antiparallel [1, 19]. However, (1) and (2) show that
the group velocity is no longer antiparallel because of the
contribution of the last term in (2). This spatial “walk-off,”
that is, the noncollinearity between the phase propagation
and the energy transfer, becomes obvious in a homogenous,
isotropic, lossy NRM. The angle between the phase velocity
and the group velocity is

5 =0,+06, (3)

with the “walk-off” angle defined as 180° — .

The propagation behavior is discussed here for both
propagating and evanescent waves. The dispersive curve is
described as the Lorentz model, with &, host (@) = 1+wf,/ (wf, -
w? = iP), prhost(@) = 1 + wf,/(wf, - w? — ipw), and
wp, = 100 X 10257y =3 x 1012571 9, =5x 10257 in
Figure 1(a) for the real and imaginary parts of the refractive
index. For a typical propagating wave with |gx| < [ql, the
size of the “walk-oft” is numerically simulated as shown in
Figure 1(b). The analysis of the “walk-off” can be extended
to evanescent waves with |g.| > |gl, where it is found that
the “walk-off” dramatically increases with |g.|, also shown
in Figure 1(b).

For perfect focusing, the “walk-off” appearing at differ-
ent |gx| should be suppressed. It was shown that this goal
can be achieved by a pumping gain scheme [18]. Here, we
show, in a pumped four-level model of signal amplification,
that the realization of perfect imaging is possible only for a
specific wavelength under strict pumping condition.

2. NRMs with Pumping Gain

Four-level systems represent conventional gain media. The
intensity of light in a chosen spectral interval can be
amplified in NRMs by introducing an extra term in the
electrical field susceptibility [14, 17, 23]. It is assumed here
that the gain medium is pumped in the linear regime, and
no gain saturation arises. Accordingly, the population of the
ground level N; (which can be considered as the population
of the gain medium) is much larger than in the other
three levels as per the usual pumping condition. With the

definition of polarization P = ye & E, the permittivity, with
the extra term in the susceptibility, is given by

sr(w) = Erhost T Xex

w12> Grpump Nl T32/£0 (4)

=1+ - - - .
wWp — Wiy wE—w— iy w
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As shown below, the last term of (4) is crucial to the
performance of the gain-compensated NRMs. The compo-
nents of the effective refractive index, n" and n"’, are shown
in Figure 2.

Whereas the optical losses in the NRM can be effectively
compensated by pumping, as shown in Figure 2(b), an
amplification of the input signal is achievable; the elim-
ination of the “walk-off” depends on both the real and
imaginary parts of the refractive index. The ideal case is the
one with n’ = —1 and n”’ = 0, giving rise to perfect imaging
[1, 6]. However, as shown in Figure 2, this condition holds
only at the optimal frequency where w = 121.28 x 10?2 s7!
under appropriate pumping conditions.

Optical imaging with resolution above or below the
diffraction limit depends on the system’s ability to recover the
wavevector’s component for either propagating or evanes-
cent waves. Figure 3(b) shows the size of the “walk-oft” for
different |gx| with the appropriate pumping rate of 0.21 X
10° s71. The propagating waves correspond to |g.| < Iql,
while the evanescent ones correspond to |qx| > Iql. After
introducing the pumping gain, a red shift is observed in the
n’ curve. At the optimal frequency (w = 121.28 x 10'2s71)
where n7 = —1, the angles between the group and phase
velocities are strictly antiparallel for all |gy|. Because of
the antiparallel directions of the energy transfer and phase
propagation, the spatial “walk-off” is suppressed, so that
the ability of directional transmission (for the propagating
waves) and perfect focusing (for evanescent waves in the
near-field) will be preserved. Thus, the pumping can effec-
tively cancel the losses only in a limited spectral region,
under appropriate pumping conditions. This conclusion is
in agreement with those reported in [11, 12].

By contrast, the propagation in an active NRM under
excessive pumping exhibits a peculiar behavior. Figure 3(c)
shows the “walk-off” angles at different |g,| for excessive
pumping rate (here Tymp = 0.48 x 10° s™!) at the frequency
where n7 = —1 (here w = 121.44 x 10'?s7!). The & angles
are then larger than 180°, indicating that the “walk-off”
reappears, with the respective angles 180° + §. The “walk-
off” becomes more significant at larger |gy|. It also shows
that ¢ increases dramatically with the increase of |g,| for the
evanescent wave with |gx| > |ql. Hence, the perfect focus
for the near-field component is impossible under excessive
pumping. Notice that because of the red shift in n’(w), the
“walk-off” is suppressed at the frequency of 121.20x 1012 571,
where #'(w) = —1.3 (the red arrow in Figure 3(c)). However,
perfect lensing requires n'(w) = —1 [1, 6], hence the perfect
focus cannot be obtained under excessive pumping.

In order to achieve perfect focusing, the pumping rates
should be reduced and the pumping central frequencies
should be blue-shifted, as shown in Figure 3(c). Light with
all values of |gx| can then perfectly focus through the slab.

3. Conclusions

To conclude, we have analyzed the effect of gain on the
negative refraction in NRMs. In a lossy NRM, even though it
is isotropic and homogeneous, the group and phase velocities



Advances in OptoElectronics 3

e
1
]| Walkeoff

180

170 S

160 -

Refraction index
(=}

150

Angle § (deg) between V), and V

T T T 140 T T T
110 115 120 125 130 110 115 120 125 130
w (1012571 w (1012571)
— — 1gxl=0.2Ig] — lgxl=1.2Ig]
— n” —— lgxl=0.5lql

(a) (b)

FIGURE 1: (a) The refractive index of the NRM slab. The red and blue lines show the real and imaginary parts of the refractive index n(w),
respectively. The frequency is w = 121.67 x 10'2s7!, where &,(w) = p,(w) = —1 [15]. (b) v, and v, are not strictly antiparallel (§ < 180°)
in the lossy NRM slab, featuring the “walk-off” angle about 3.2° at |q.| = 0.2]q/, 8.5 at [g«| = 0.5|ql, and 26.4" at |q,| = 1.2|q|. The carrier
frequency is w = 121.67 X 102 s7L.

~0.5 - - ’
0.25 +
Red shift
« -1 .
= 0
—0.25 - g
—1.5 A B

T T T -0.5
120 122 124 120 122 124
w (1012571) © (1012571)
— Tpump =0 —— Tpump = 021 x 10%s7! — Tpump =0 T pump = 021X 10%57!
—— Tpump = 0.12x 10?571 — T'pump = 0.48x 10°s7! —— Tpump = 0.12x 10%s71 — T pump = 0.48x 10°s7!

(a) (b)

FIGURE 2: The parameters for the four-level system are chosen as 0 = 107* C?/kg (C stands for Coulomb), which is the strength of the
coupling between the gain material and the host NRM, y, = 0.76 x 10'2s7! is related to the linewidth of the gain medium, w, = 121.6 X
10'2s7! is the central pumping frequency, determined by the frequency difference between state 3 and state 2, at which n/(w) ~ —1 is
satisfied without the gain (see Figure 1(a)), and the decay time of the gain level 2 is 73, = 5 X 1072 s. The value of the occupation density
is set to be N; = 5 x 102 m~>. The pumping rates I,ymp are assumed to be 0.12 x 10° s™! for insufficient pumping, 0.21 x 10? s™! for the
appropriate pumping (to be discussed below), and 0.48 x 10 s7! for the excessive pumping, respectively. (a) The real part of the refractive
index for different pumping amplitudes. A red shift of the frequency is observed at n’ = —1. (b) The imaginary part of the refractive index
for different pumping amplitudes. Loss-free windows (intervals of amplification) are revealed by the n’" curves. Increasing the pumping rate
may compensate the losses, or even turn the material into an active medium.
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lead to degradation of the optical performance of an NRM.

are not strictly antiparallel, yielding a spatial “walk-oft”,
which may restrict the applications of NRM:s in a variety of
fields. By introducing gain, losses can be effectively reduced,
and light amplification can be realized within a narrow
spectral range. Appropriately setting the gain to strictly
cancel the losses, the “walk-oftf” for both propagating and
evanescent waves can be effectively eliminated for all values
of |gxl, leading to an ideal NRM. However, for excessively
pumped NRMs, the spatial “walk-off” reappears. Thus, the
use of optical pumping to realize perfect imaging is restricted
to a very narrow spectral region, under precisely defined

pumping conditions. An alternative method of overcoming
NRM losses without signal distortion may involve self-
induced transparency (SIT) solitons, which were predicted in
metamaterials [24], in analogy with SIT in other resonantly
absorbing structures [25, 26].
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The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been
introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design,
in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation
results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with
respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer,
localized surface plasmon resonance (LSPR) of Ag stripes, and surface plasmon polaritons (SPP) arising from the bottom grating,
and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute
to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for

thin film solar cell applications.

1. Introduction

The low conversion efficiencies and high production costs
have been the major difficulties facing photovoltaic technol-
ogy. For solar cells based on bulk crystalline silicon, around
40% of a solar cell module’s price comes from the silicon
(Si) materials and its processing costs. To reduce the costs,
thin film solar cells with an active layer thickness of about 1
to 2 um are desired. Thin film solar cells with the thickness
of material film smaller than the carrier diffusion length
can also reduce carrier recombination and improve car-
rier collection efficiency in bulk recombination-dominated
semiconductors. In addition, a significant reduction of the
active materials enables some scare semiconductor materials
such as Te and In to be used in a large scale. However, the
performance of all thin film solar cells is limited by the poor
light absorption due to the reduced absorber thickness. For
example, the indirect band gap semiconductor Si material
has poor absorption to near-band gap light, where the
absorption length is larger than 300 ym. Therefore, light

trapping schemes are essential for the design of ultrathin
solar cells with improved absorption.

In the past years, many light trapping techniques have
been investigated for solar cell applications. A typical
example is the use of micron-size pyramidal surface textures
[1]. However, such textures are not suitable for thin film
solar cells due to large texturing size with respect to the
film thickness. Recently, the concept of plasmonic solar cells,
that is, the combination of plasmonics and photovoltaic
fields, has been proposed to improve light absorption [2—
4]. Metallic nanostructures engineered within the solar cell
geometry enable concentrating and folding light into the
ultrathin active layer, and thereby increase light absorption.
For example, Au or Ag nanoparticles placed on the top
surface of solar cells can act as scattering elements to couple
light into the absorber layer through effectively increasing
the optical path length [5-8]. Over 30% enhancement
in photocurrent has been demonstrated experimentally in
a 1.25pum thick silicon-on-insulator by utilizing this
approach [8]. The dependences of incoupling efficiency on



nanoparticle shape and size have also been discussed in
detail [9]. Furthermore, the strong near fields resulting from
the LSPRs excitations of metallic strips on the top of the
active layer can effectively trap light into the absorber layer
and lead to an enhancement of about 43% in short circuit
currents [10]. More recently, a kind of novel thin film
solar cell design of introducing several metallic patterned
back contacts has been investigated widely [11-15]. These
patterned back contacts can couple the sunlight into SPP
mode propagating along the metal/semiconductor interface
and waveguide mode within the absorber layer, leading to
about 30% broadband absorption enhancement over the
solar spectrum when compared to the bared thin film cells
[11].

Since the excitation of plasmon resonances can capture
and trap the sunlight into the active layer and increase
absorption strength, multiple plasmon resonances are
desired for the thin film solar cell with superior performance.
Previous designs of plasmonic solar cells are mostly based
on placing one- or two-dimensional metallic nanoparticle
arrays on the top or buried inside the active layer [5-8, 16—
18], or introducing several metallic nanogratings, such as
the nanohole, hexagonal or triangular structures [12, 19, 20]
at the bottom of active layer as the patterned back contacts
for improving light absorption. The common disadvantages
associated with those efforts are that LSPR or SPP modes are
excited individually only by utilizing the metallic nanoparti-
cles or nanograting structures. In this work, we propose an
ultrathin solar cell design, which consists of a periodic array
of Ag strips on a silica-coated Si film supported by a metallic
grating substrate, as shown in Figure 1. This design not
only takes advantage of LSPR excited in metal strips on the
top, but also can couple sunlight to multiple SPP modes at
metal/semiconductor interface by the coupling of the bottom
nanograting. Furthermore, the coupling effects between the
LSPR and SPP modes can be achieved by tuning the array
periods for further increasing light absorption inside the
active layer. A remarkable absorption enhancement of about
170% with a broad period range is obtained over the full
solar spectrum when compared with the case of metallic
nanostructures absence (i.e., the bared thin film cells). Such
an absorption enhancement is much higher than those
reported previously for ultrathin Si solar cells based on
metal nanostructures placed on the top or at the bottom
[10, 11, 14, 16-20] where either LSPR modes or SPP modes
are excited alternatively. Additionally, the proposed design
with the ultrathin absorber layer can reduce the usage of
the active materials significantly and decrease the production
costs of solar cells. Moreover, the metallic stripes on the
top surface can also act as surface electrodes, eliminating
the involvement of common surface electrodes (e.g., ITO).
Finally, the fabrication of such metal-semiconductor-metal
nanograting structures is technically feasible by using some
advance nanofabrication methods [21, 22].

2. Structure Design and Simulation Method

The proposed structure with the defined structural param-
eters is illustrated in Figures 1(a) and 1(b), which consists
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from the top surface to the bottom of a periodic array
of Ag strips, a dielectric spacer layer of SiO,, an absorber
layer of Si, and an Ag nanograting substrate. The grooves of
nanogating are filled with SiO,. The dielectric spacer layer
can avoid the strong damping of LSPR in Ag stripes, which
is responsible for enhanced light absorption inside absorber
layer. Since a large spacer is very detrimental for high
near-fields enhancement inside the active layer, a suitable
thickness of 5nm was selected here. In all our calculations,
the thickness of Ag strips and the depth of nanograting are set
to t = s = 40 nm; the widths of the Ag strips and the grooves
in nanograting are chosen to be w = 50 nm and g = 150 nm;
the thickness of Si layer and the height of Ag nanograting are
fixed at h; = 80nm and h, = 100 nm, and the period is set
to p = 300 nm, respectively.

Numerical electromagnetic simulations were performed
by the commercial finite element software of COMSOL
Multiphysics 3.5. The periodic boundaries were employed
to a unit cell for simulating an infinite array. Perfectly
matched layers (PML) were applied in the propagation
direction to eliminate the nonphysical reflections at domain
boundaries. The whole structure was illuminated from the
top surface at normal incidence with E-field along the metal
stripes (TE wave) or H-field along the metal stripes (TM
wave). The absorption inside the absorber layer for an
incidence monochrome plane wave with certain wavelength
was calculated by using

Absorption = ﬂ: S(7,1) - da, (1)

where S(7;1) is the Poynting vector and s is the boundary of
the analyzed active layer [11].

The absorption enhancement function (IT(A)) is defined
as the ratio of the absorption inside the absorber layer
combined with metal nanostructures to that without the
metal nanostructures. The absorption efficiency for the thin
film solar cell was obtained by calculating the ratio of light
absorption power inside the Si layer to the incident light
power. In our simulations, the absorber material is crystalline
silicon and the dispersive optical properties (refractive index,
absorption) of silver and crystalline silicon materials are
from the experimentally obtained data [23, 24]. The SiO;
permittivity is chosen to be 3.24 and the external dielectric
environment is considered to be air. In addition, to match
the solar spectrum to Si absorption, a wavelength range from
400 nm to 1000 nm was considered.

3. Results and Discussions

3.1. Excitations of Multiple Absorption Enhancement Bands.
Figures 2(a) and 2(b) show the absorption efficiency spec-
tra for the thin film solar cells with and without metal
nanostructures, respectively. For the case of the bared Si
film (Figure 2(a)), two absorption peaks are exhibited in
the considered spectrum range. The enhanced magnetic
fields inside the Si layer associated with the two absorption
resonances reveal them originating from the Fabry-Periot
(FP) cavity resonance [25], as the insets shown in Figure 2(a).
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FIGURE 1: (a) Schematic diagram of the proposed thin film Si solar cell structure. (b) Side view of the unit cell, where the structural parameters

are defined.

The FP resonance occurs generally when both the layer
thickness and the incidence wavelengths satisfy the resonance
condition, and thereby are sensitively dependent on the
thickness of the Si layer. As the layer thickness increases, the
FP cavity resonances shift to red and its higher-order modes
will appear at the short wavelengths. When combining the
Si film with the metal nanostructures, multiple absorption
peaks appear in the absorption spectrum (Figure 2(b)). For
comparison, the absorption enhancement spectrum (IT(1))
is also calculated as shown in the insets of Figure 2(b). It can
be seen clearly that the introduction of metal structures leads
to multiple strong enhanced absorption bands. Furthermore,
it is also indicated that generating the large absorption
enhancements at the longer wavelengths where the Si film
is weakly absorbing is relatively easy compared to the short
wavelengths where the Si film exhibits strong absorption.

3.2. Absorption Enhancement Mechanisms. To explore the
mechanisms of absorption enhancement and improve the
light absorption capability of the proposed structure for
solar cell applications, the absorption enhancement map
(TI(A)) versus the period of unit cells and the normalized
magnetic field distributions (|H,/Hy|) across the Si layer
at the wavelengths of the absorption enhancement peaks
are investigated, as shown in Figures 3 and 4, respectively.
Inside those maps of Figure 3, each point represents the full-
field simulation result with the corresponding wavelengths
and periods. The field distributions (|H,/Hy|) in Figure 4
correspond to illuminations with TM polarized plane wave
(H-field along the metal strips and E-field in this plane
normal to the metal stripes). Four possible enhancement
mechanisms, including the slab waveguide modes, the high
near field enhancement associated with LSPR modes of metal
strips, and the SPP modes at the metal/silicon interface as

well as the coupling effects between LSPR and SPP modes
will be discussed in detail in the following.

Figure 3(a) shows that the proposed structure exhibits
multiple strong absorption enhancement bands at different
values of periods. For the structure with a period of 320 nm
(as the vertical white dashed line shown in Figure 3(a)),
three obvious absorption enhancement peaks are observed,
which are marked as “a” “b,” and “c” in the map and the
corresponding field distributions (|H,/Hy|) are plotted in
Figures 4(a), 4(b), and 4(c), respectively. In Figure 3(a), the
wavelength of the absorption peak “a” is always located
around 550 nm when the period changes (the horizontal red
dashed line). Moreover, the corresponding magnetic field
distributions in Figure 4(a) exhibit a modal profile of the
slab waveguide modes of finite thickness planar dielectric
films, which have been given in various situations including
with and without the metal back contacts [12, 26]. The
wavelength of the slab waveguide mode depends on the
absorber thickness. The induced electromagnetic fields for
the slab waveguide mode are mostly confined inside the
absorber layer and decay sharply into the surrounding air or
metal slab, contributing to the absorption enhancement.

In Figure 3(a), the absorption enhancement peak “b”
is always located around 700 nm (the black dashed line)
while the absorption enhancement peak “c” depends quite
sensitively on the array periods (the green dashed line
of “27), suggesting different physical origins of the two
absorption enhancement bands. Since the peak “b” does not
shift with changing the periods and the corresponding field
distributions in Figure 4(b) carry a clear feature of localized
surface plasmon mode with the enhanced magnetic fields
still confined in the Si layer but mostly surrounding the
metal strips, it can be attributed to LSPR mode of the metal
strips. The resonant wavelength of the LSPR mode depends
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FIGURE 3: Map of the absorption enhancement (IT(1)) spectra for the proposed structure with 80 nm thick Si layer versus the periods of unit
cell under (a) TM and (b) TE polarized plane wave incidence, respectively.

sensitively on the structural parameters of metal strips. The
width w and thickness ¢ of metal strips have been carefully
chosen through optimization because small nanoparticles
scatter very weakly, whereas large nanoparticles behave like
a mirror to reflect a large fraction of incident light back
into free space and are not beneficial for light absorption
inside the absorber layer. The peak “c” shifts to red with
increasing the periods and the changing trend (the green
dashed line of “2”) presents a dispersive behavior of a
SPP mode propagating at the metal/semiconductor interface
according to the grating coupling theory [27, 28]. Moreover,
the corresponding field distribution in Figure 4(c) exhibits
the characteristic of surface wave with the maximum field
intensity near the metal/silicon interface but decay quickly

« _»

apart from the interface. Thus, the peak “c” can be attributed
to SPP mode excited by the bottom grating. Since the
attenuation rate of the field intensity in the metal is much
larger than that in the silicon layer due to higher loss of metal
materials, the view of coupled light energies mostly confined
into the semiconductor layer give a suggestion of absorption
enhancement mechanism.

Figure 3(a) shows that as the period is increased from
the initial value of 200 nm, the wavelength of the SPP mode
redshifts to approach that of the LSPR mode and a behavior
of anticrossing is observed around p = 280 nm, suggesting a
strong interaction of the localized and propagating surface
plasmons [29, 30]. The absorption enhancement bands of
LSPR and SPP modes become stronger and broader in
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FiGure 4: The normalized magnetic field distribution (|H,/Hy|) in the cross-section for TM polarized plane wave incidence at the

wavelengths of (a) 545 nm, (b) 670 nm, and (c) 760 nm, corresponding to the three absorption enhancement peaks “a,” “b,

in Figure 2(b), respectively.

the regions of coupling and light absorption is increased
further by coupling effects. When the period continues to
increase, multiple absorption enhancement bands appear
and the anticrossing behavior is observed when the wave-
lengths of these absorption peaks overlap with that of
LSPR mode. The changing trend of other three enhanced
absorption bands with the periods are highlighted by the
green dashed lines of “1,” “3” and “4,” respectively, which
present a similar dispersive behavior as that of the SPP
mode marked by “2,)” implying a SPP-related absorption
enhancement mechanism. Obviously, as the period increases,
the SPP mode redshifts and more higher-order SPP modes
appear, leading to multiple absorption enhancement bands
at longer wavelengths.

Unlike TM polarizations, the SPP and LSPR modes are
absent under TE plane wave incidence (E-field along the
metal strips and H-field in this plane normal to the metal
strips). Only the enhanced absorption related to the TE

«_»«p »

and “c” displayed

waveguide modes are observed in Figure 4(b), where the two
enhanced absorption bands marked as the black dashed line
of “17 and “2” are expected to attribute to the TE, and
TE, waveguide modes. It can be seen that the absorption
enhancement factor related to the TE waveguide modes is
very high, but the width of absorption enhancement bands
is very narrow. As the period become large, the absorption
enhancement increases and some higher-order modes of
TE, waveguide appear (the red dashed line), contributing
to the overall absorption enhancement under TE plane wave
incidence.

3.3. Total Absorption Enhancement under the Solar Illumi-
nations. To perform a full evaluation on the performance
of the proposed design, the total absorption enhancement
under solar illuminations must be considered. Generally,
the short circuit current in a solar cell is proportional to
the number of absorbed photons if assuming unity internal
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FIGURE 5: (a) Photon number spectrum of the AM1.5 solar irradiations (AM(A)). (b) Absorption efficiency spectrum (A(A)). (c) Absorbed
photon number spectrum (APNS). (d) Total enhancement of absorbed photon number (TEAPN) inside the Si layer over the entire solar
spectrum versus the different array periods. The subscripts “TE” and “TM” in (a) and (b) represent different polarizations for the proposed
solar cells with a period of 550 nm. The subscript “B” corresponds to the bared Si film with a thickness of 80 nm.

quantum efficiency (every photoexcited electron-hole pair
is collected). Therefore, the total absorption enhancement
must be evaluated based on the number of photons being
absorbed. Figure 5(a) presents the photon number spectrum
of the standard AMI1.5 solar irradiation (AM(A)). The
absorbed photon number spectrum (APNS) inside the active
layer under solar illuminations can be obtained by using the
following equation [31]:

APNS(A) = A(A) x AM(Q), (2)

where the absorption efficiency spectrum A()) represents the
absorbed power inside the Si layer with unity incident light
power, as shown in Figure 5(b) for TM or TE polarized light
incidence. Figure 5(c) displays the APNS for the proposed
solar cells at two polarizations and that for an 80 nm thick
bared Si film, respectively. Compared to the bared Si film,
the introduction of metal structures in thin film solar cells
leads to an obvious increase of the absorbed photon numbers
inside the Si layer.
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Considering the equal contributions from TE and TM
polarized light, the APNS of the proposed solar cells under
randomly polarized sunlight can be described as

APNS()) = %(APNSTE(A) +APNS (L), (3)

TEAPN =

f APNS (A )with,metal-structures d\ - J APNS (A) without_metal-structures di

where the subscript represent the case of TE or TM
polarizations. The total enhancement of absorbed photon
number (TEAPN) inside the Si layer is defined as

f APNS (/1)without,metal—structures dr

The wavelength range for integrating is selected from 400 nm
to 1000 nm. Figure 5(d) shows the simulation results of the
total enhancement (TEAPN) versus different array periods.
Obviously, a very large enhancement up to 170% can be
achieved in our designed structures when compared with the
case of a bared Si layer. Furthermore, the high enhancement
of about 170% is broadband for the array period with a
large range from about 300 nm to 550 nm, thus providing
a very good fabrication tolerance for practical devices. Such
results are impressive and superior to those of some previous
designs of plasmonic thin film solar cells. In addition, it
should be pointed that although the thickness of 80 nm
employed in our simulations was used in certain devices,
the active layer thickness for the ultrathin Si solar cells is
typically 200-600 nm in the practical device applications. In
this case, more optical waveguide modes would be excited
to play important roles in absorption enhancement [11, 12].
Therefore, for the proposed structure with thicker active
layer, multiple plasmon resonance modes associated with the
introduction of metal structures together with these optical
modes are predicated to contribute to the overall absorption
enhancement. Since the configuration of metallic materials
rather than the discussed crystalline silicon materials is
responsible for the absorption enhancement in our proposed
design, similar performances are also expected by extending
the similar design into other active solar materials such as
CdTe and organics. Therefore, our proposed design has the
potential to become a solar cell platform for various thin film
solar cell systems.

4. Conclusion

In conclusion, the light absorption properties of a novel
ultrathin film Si solar cell structure were discussed in detail
by using the finite element method. As compared to a bared
Si thin film, the total absorption enhancement of absorbed
photon number can reach to 170% within a broad period
range by introducing Ag strips on top and Ag nanograting as
the back contacts in the solar cell structure. The absorption
enhancement mechanisms are revealed by analyzing the
enhanced field distributions and investigating the absorption
enhancement spectra as a function of periods. These results
pave a promising way for the realization of high efficiency
thin-film solar cells.

. (4)
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The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give
them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally
excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic
superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the
external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of
the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that
large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the
superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by

an e€-near-zero (ENZ) or low-index metamaterial.

1. Introduction

Increased field intensity in a localized area is required in a
variety of applications from simple traditional implementa-
tions to complex state-of-the-art experiments. Indicatively,
a resonance plasmon mode, characterized by a substantial
local electric field enhancement, has been reported to
be formed between a gold nanorod and an infinite slab
in infrared range [1]. In addition, the optical trapping
force on a spherical dielectric particle for an arbitrarily
positioned focused beam has been demonstrated in [2], by
using the generalized vector diffraction theory. Moreover,
when considering a simple, analytically solvable cylindrical
configuration, it has been shown that optical vortices appear
which can be used to stably trap particles of particular
sizes and index contrasts with the background [3]. Field
enhancement of incident near-infrared light has been also
investigated in [4], by using the exhibited surface plasmon
polariton from erbium ions in a golden film.

On the other hand, layered, dielectric slab configurations
are commonly used in electromagnetic (EM) devices since
they possess certain functional advantages such as conforma-
bility and ease of fabrication. In particular, dielectric layers,
with carefully selected physical and geometrical parame-
ters, are extensively employed to lend particular beneficial
characteristics to the considered devices. In [5], a multi-
layered dielectric coating has been used in semiconductor
laser diode optical amplifiers to reduce the reflection coeffi-
cient. Furthermore, a discontinuous parallel-plate waveguide
acquiring highly selective frequency features through a nar-
row rectangular layer, filled with axially anisotropic media,
has been proposed in [6]. The effect of a metal cladding
on the band structure with a two-dimensional photonic
crystal slab has been also analyzed in [7]; several types of
claddings were used and the way that each cladding changes
the background crystal has been identified. The fact that a
single isotropic (idealized) cloaking layer may successfully
suppress the dominant scattering coefficients of moderately



thin elongated objects, even for finite lengths comparable
with the incident wavelength, has been pointed out in [8].
Finally, in [9], an additional cloaking dielectric layer has been
exploited in a microstrip receiving antenna in order to render
it as low profile as possible and also mitigate its EM response.

In this work, we combine the two aforementioned
concepts, namely, the potential field enhancement by the
addition of extra layers, in order to examine possible
improvements offered in a relatively simple scattering con-
figuration. More precisely, we consider the basic structure of
a perfect electric conducting (PEC) grounded dielectric film-
slab, which is frequently employed in several EM devices, see
for example, [10, 11]. The slab structure is externally excited
by a normally incident Gaussian beam; such an incident wave
is commonly considered in similar configurations [12]. On
the top of the dielectric film-slab, we use an additional super-
strate layer, with controllable permittivity and permeability,
in order to increase the induced field concentration inside the
original film-slab. In this way, we seek to achieve an optimal
transfer of the EM power from the external source to the
internal region, where enhanced intensity is required. We
solve semi-analytically the related boundary-value problem,
and then define a basic quantity of interest expressing how
large is the field concentration in the film-slab when the
superstrate layer is present compared to the case when it
is absent; this quantity is called “enhancement factor.” The
variations of the enhancement factor with respect to the
operating frequency and to the physical and geometrical
characteristics of the structure are depicted. It is shown that
it is possible to achieve large enhancement factor values
by choosing properly the permittivity, the permeability,
and the thickness of the superstrate layer. Particularly, it
is demonstrated that the film-slab’s field is significantly
enhanced when the slab is composed by an €-near-zero
(ENZ) or low-index metamaterial.

2. Geometrical Configuration and
Incident Field

The under consideration two-dimensional (2D) configura-
tion, as well as the respective Cartesian (x, y,z) coordinate
system, are depicted in Figure 1. The configuration is
comprised of a perfect electric conductor (PEC) plane at
y = L+ w; covered by a dielectric film-slab occupying
the area L < y < L + w; (region 1). The film-slab is
filled by a magnetically inert material with complex relative
dielectric permittivity €,;. The structure of the PEC plane
and the film-slab is additionally covered by a slab superstrate
(region 2) of thickness w, < L and relative intrinsic physical
parameters €,, and y,,. The infinite plane region y < L — w»
(vacuum region 0) above the superstrate is characterized by
permittivity €9 and permeability yo. The entire structure is
assumed uniform along the direction z.

The adopted time dependence is of the form exp(jwt),
with w = 27f being the angular frequency, and is being
suppressed throughout hereinafter. Under this considera-
tion, the imaginary part of the permittivity €, is negative
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FiGURE 1: Geometrical configuration of the 2D structure under
investigation composed of a planar dielectric film-slab, lying
between a PEC plane and a superstrate. The structure is excited
externally by a Gaussian beam.

(corresponding to passive materials). The remaining relative
material parameters €,, and p,, are real.

A Gaussian beam, with its source at the origin O
of the Cartesian coordinate system, illuminates normally
the above described planar configuration. This incident
Gaussian electric field is z-polarized and propagates along
the y-axis (as will be analyzed below in details). Hence, due to
the 2D nature of the configuration, all reflected and refracted
electric fields in regions 0, 1, and 2 will also be z-polarized.

The aim of this work is to select suitable geometrical and
physical parameters of the superstrate layer (w,, €2, y4y2) in
order to enhance the intensity of the field induced in the film-
slab region 1 by the external Gaussian beam excitation. More
precisely, we require the EM field concentration in region 1
to become as large as possible in order to make it feasible
for this “trapped” EM energy to be processed efficiently and
be subsequently utilized for relevant applications, like for
example, the ones pointed out above in the Introduction;
see [1-9]. It is worth to note that we are interested only
in the potential enhancement of the induced EM energy
in the film-slab and not in the investigation of surface
guided waves that may propagate in the infinite slab. For
this reason, we consider that the slab is composed of a lossy
material, characterized by a complex permittivity €,;, hence
constituting waves in the film-slab to become evanescent.

3. Analysis of the Incident Gaussian Beam

3.1. Approximate Expression of the Beam’s Envelope. The
electric field of an incident Gaussian beam propagating in
vacuum along the +y-axis is expressed as follows:

Eoinc (x,y) = Z1l(x, y) exp(~jkoy), y>0, (1)

where kg = w./€pfip is the free space wavenumber, while
II(x, y) is the envelope of the beam. It is reasonable to
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consider that I1(x, y) is described by an exponential function
involving the product of a complex function (y) with a —x?
factor; the latter assures the Gaussian nature of the beam.
Hence, we conclude to the expression

(x,y) = A(y) exp[-B(y)x*], (2)

where A(y) is a complex amplitude function, while
R[B(y)] = 0.

Next, in order to determine, by analytical means, approx-
imate expressions for A(y) and S(y), we substitute expres-
sion (1) of Egjnc(x, y) into the vector Helmholtz equation
for vacuum region 0 and assume that the term proportional
to 0*I1/0y? is negligible, since the main contribution with
respect to y in the electric field is contained in the term
exp(—jkoy). In this way, we result to two first-order coupled
nonlinear ordinary differential equations, which are solved
exactly yielding [13, 14]

BON+ B0 =0 =B =gt )
A+ EDap) 0= 1

jko

A = T
() \/M (4)

where § is an arbitrary coefficient measured in area units. We
consider that S = —2x/ky, where the parameter y > 0 has
length units. By combining (2)—(4) and separating the real
and imaginary parts, we find that the envelope function is

given by
I(x,y) = = arctan )/)]
X
(5)
X exp[ ] exp [—szko ]
R(y.x)
where

R(y.x) =2y[1+ (;‘)2] (6)

The parameter y characterizes the Gaussian beam and
will be hereinafter called “concentration length,” since it is
inversely related to the local power concentration at the
source (origin O). In other words, a large concentration
length indicates a slowly decaying behavior of the envelope,
as |x| and |y| increase. Representative visualizations of the
absolute value of the Gaussian beam’s electric field for
x = 0.1, 0.3, and 0.9 are depicted in Figures 2(a)-2(c),
respectively.

3.2. Fourier Integral Expression of the Beam. Let v(x,y) =
Zv(x,y) be a vector function satisfying the Helmholtz
equation. We consider the 1D Fourier transform pair of
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Figure 2: Contour plots of the absolute value of the Gaussian
beam’s field given by (1) and (5), for kg = 27 and y = 0.1, 0.3, and
0.9, respectively; both axes correspond to arbitrary length units.
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v(x,0) (namely of the restriction of v(x,y) on y = 0) as
folllows:
1 +oo
v(x,0) = EJ V(a) exp(jox)da, (7)
+ 00
V() = J v(x,0) exp(— jax)dx. (8)

Equation (7) expresses a complex function v(x,0) as a

weighted integral of the exponential factors exp(jax).
Moreover, if a function w(x,y) = Z exp(jax)w(y)

satisfies the Helmholtz equation, then it is readily obtained

that w(y) = exp(+ya? — k}). Therefore, by taking into

account [13]
il _xe? (9)
. exp % )

where the envelope ITis given by (5), and considering that the
incident field Eginc, expressed by (1) and (5), approximately
satisfies the vector Helmholtz equation, we result to (see also
the discussions in [14])

Eoinc (%, y) = ZV2 / J exp( Zko)
X exp(jocx — ot — k%)doc, y > 0.

The square root is evaluated with a positive imaginary part
(in case |a| < ko). We emphasize that (10) is not equivalent
to the expression (1) of Egjnc (with IT given by (5)), since the
latter expression satisfies only approximately the Helmholtz
equation (the term 9°I1/9y* was assumed negligible).

Now, we assume that an arbitrary 2D layered configura-
tion is excited at y > 0 with a plane wave of the form:

Jﬂo TI(x,0) exp(—jox)dx = /2

(10)

€inc (%, ¥, ) =iexp(jocx—y az—ké), (11)

(which is propagating for |a| < ko and evanescent for
la| > ko), and we determine the generated scattered field
escat (%, ¥, &) in each of the layers. Then, the corresponding
scattered field due to a Gaussian incident beam is computed
by acting with the following operator:

_s X (T xe?
Jif} = ﬁ\/;koJ'_m exp<—2k0>fdcx, (12)

on the vector f = ey (x, y,a). This conclusion is due to
the fundamental principle of superposition and the linearity
of the Maxwell’s equations. The factor exp(—ya®/2ko),
appearing in (12), guarantees the convergence of the integral
for [a] — +oo (recall that y > 0).

4. Solution of the Scattering Problem

4.1. Auxiliary Problem: Plane Wave Excitation. First, we
analyze the auxiliary scattering problem, corresponding to
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plane wave excitation. To this end, we consider that the
layered configuration of Figure 1 is excited by the plane wave

eo.inc (%, ysa) = Zexp[jax — yo(a) y], (13)

where the real parameter & determines the direction of
propagation; & = 0 corresponds to normal incidence on the
layered structure. The radiation functions y are defined by

Yu((x) =\ o — k(Z)Eru,urua u=0,1,2, (14)

with €0 = Uro = 1.
The electric field in the film-slab region 1 is given by

e (x, y;a) = 2Cy (o) sinh [y (@) (y — L — wy) | exp(jax),
(15)

where Cj(a) is a complex function of a. By imposing
the related boundary conditions, namely, continuity of the
tangential electric and magnetic field components on y = L,
and the PEC boundary condition on y = L + w;, we obtain
the following explicit form:

Ci(a) = 4670(“)(W2_L)yr2 yo(a@)y2(a)

[ e 2@z (ype(a) — ya(a)
X [pra cosh (y1 (a)w1) y1 ()
—sinh(y1(a@)w1)y2(a)] (16)
| —e”@ (uoyo(a) + ya(@) [

X [pr2 cosh(y1 (@) wr) y1(a)
+sinh(y; (a@)wy)y2(a)]

Equations (15) and (16) constitute the solution of the
scattering problem due to the plane incident wave (13).

Moreover, we are also interested in the case where the
superstrate is absent, namely, €, = p,, = 1 and hence
y2(a) = yo(a). For this case the electric field in the film-slab
region 1 is given by

& (x, y3) = 2Ci () sinh[yi(a) (y — L — wi)] exp(jax),
(17)

where function C)(«) takes now the following simplified
form:

2e Yola yo((x)

cosh (y(a@)wy)y1(a) + sinh (y (@) wy) yo(a)
(18)

61(05) ==

Equations (17) and (18) provide the solution of the scattering
problem due to the plane incident wave (13) impinging
on the corresponding configuration of Figure 1 where the
superstrate layer is absent.

4.2.  Enhancement Factor. Once the plane wave incidence
electric field has been determined by means of (15) or (17),
the total field induced in region 1, due to the Gaussian beam
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incidence, is computed by using of the operator defined in
(12) as follows:

Ei(x,y) = Z{ei(x, y;a)
(19)
B f\/ 27ko J ( >e1 (x,y; a)da
Ei(x,y) = g{&(x, y;)

(20)
) ,27TkoJ exp( )el(x,y, Yda.

The first and second of the above equations correspond,
respectively, to the case with and without the superstrate.
Moreover, we remind that the parameter y (concentration
length) is the only degree of freedom characterizing and
describing the incident Gaussian beam.

The integrations in (19) and (20) are carried out by using
conventional numerical integration techniques. In particular,
in order to exploit the MATLAB matrix-oriented architec-
ture, we use the embedded trapz(x, Y) function for ordinary
trapezoidal integrations which can accept multidimensional
arguments. To be more specific, in compiled languages (like
C++), the loop bodies are transformed into machine code
only once at compile time. On the other hand, in interpreted
languages (like MATLAB), the loop body is interpreted
each time a loop is executed. Therefore, it is preferable
to perform vectorized operations in MATLAB for repeated
integrations. This is feasible only with trapz(x,Y), where
Y can be a multidimensional matrix, contrary to adaptive
MATLAB routines such as quad(f, a, b) where a function f
is integrated from a to b.

Moreover, we point out that the integrands in (19)
and (20) have singularities corresponding to the eigenmode
solutions of the slab waveguides formed by the grounded
film-slab and the superstrate layer in isolation. However,
these singularities are complex since the film-slab has been
assumed to be composed of a lossy dielectric material (in
order not to deal with possible surface guided waves; see
Section 2 above). Hence, they do not contribute to the
evaluation of the associated integrals where the integrations
are performed on the real axis of the a-plane.

Now, in order to estimate the effect of the superstrate
layer (region 2) on the total EM power concentrated in region
1, we introduce the follwing “enhancement factor™:

I R Eey) |

Wy 0 |~ N 2 ’
ILL+ [ ‘Z-El(x,y)‘ dxdy

This factor represents the ratio of the total field’s power
induced in the film-slab when the superstrate is present over
the corresponding power when the superstrate is absent.
The beneficial influence of the superstrate layer, leading to
an enhanced power concentration, is demonstrated when
EF > 1.

5. Numerical Results

In this Section, we depict and discuss the variations of
the enhancement factor & versus the superstrate’s char-
acteristics wy, €,2, and p,, as well as versus the operating
frequency f. In the following numerical simulations, we
choose the material parameters composing the grounded
layered slab configuration under consideration according
to typical values encountered in similar configurations;
see for example, indicatively [3, 4, 15]. In particular, the
following parameters remain constant hereinafter (unless
stated otherwise): operating frequency f; = 300 THz with
corresponding fixed wavelength Ay, film-slab’s thickness
wi = Ao, distance between the source and the film-slab
L = 0.5, and beam’s concentration length y = 0.1A,.

Figures 3(a) and 3(b) show the enhancement factor
&F contour plots with respect to the superstrate’s relative
dielectric permittivity €,, and relative magnetic permeability
yr2 for €,1 = 50 — 5j with (a) wy = 0.1 and (b) w, = 0.4A,.
The purpose of examining such contour graphs is to find
“operation points” with respect to €,, and p,, for which the
electric field induced in the film-slab region 1 is considerably
enhanced. From Figures 3(a) and 3(b), we observe that such
points indeed exist equalling, for example, approximately
(€2, pr2) = (18,3) for wy = 0.1 and (€2, pr2) = (8,1.2) for
wy = 0.4)¢. At these two operating points, the & F values are
increased to nearly 250%, meaning that the power induced in
region 1 of the layered configuration of Figure 1 is nearly 2.5
times the power induced in the corresponding superstrate-
free configuration. We conclude that several choices exist for
operating points with large values of & ¥; in particular, by
comparing Figures 3(a) and 3(b), we see that the number
of potential operating points increases with the thickness
wy of the superstrate. The fact that §¥ may take large
values for several choices of €,,, p,2, and w, offers flexibility
in designing the structure and choosing appropriate and
realizable material values with respect to the applications
under consideration.

Moreover, Figures 4(a) and 4(b) depict §F as function
of the superstrate’s relative thickness w,/L for €,1 = 50 — 57,

r2 =9, 42 = 1lwith (a) L = 0.5, and y/A¢ = 0.01,0.05,0.5,
and (b) y/A¢ = 0.1, and L/Ay = 0.1,0.2,0.3, 1. Figure 4(a)
shows that §F attains certain maxima with respect to w,
and the values of these maxima increase with w;. Also,
&F generally decreases with increasing y, namely, as the
incident Gaussian beam becomes less concentrated in the
vicinity of the origin O. Even for initially very concentrated
beams (small y) there exist certain thicknesses w; for which
EF takes large values. On the other hand, from Figure 4(b)
we see that large values of &€ ¥ may be achieved even for
small distances L between the source and the film-slab. This
fact could be exploited appropriately, particularly for lasing
applications.

Figures 5(a) and 5(b) represent &F as function of the
normalized operating frequency f/fy for fy = 300THz,
€1 = 50 — 5j, w, = 0.25A¢ with (a) g, = 1, and €, =
2,5,10,15, and (b) €,2 = 5, and y,» = 1,2, 3,4. In the entire
examined frequency band, the values of €% are larger than
1. Moreover, & ¥ is oscillatory with f with the period of the
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FiGgure 3: Enhancement factor contour plots as functions of the
superstrate’s relative dielectric permittivity €,, and relative magnetic
permeability y,, for fo = 300 THz, w; = Ao, L = 0.54¢, €,1 = 50-57,
X = 0.1A¢ with (a) w, = 0.14¢ and (b) w, = 0.4A,.

oscillations decreasing for increasing €,2(u,2) with constant
ﬂr2(€r2)'

Also, we point out that additional numerical simulations
(not reported here) have demonstrated that the values of €,,
and p,, giving local maxima of € ¥ are independent of the
film-slab’s permittivity €,1. Besides, the related maximum
values of & F increase with €,1.

Now, we turn our attention to the investigation of the
associated EM field concentration phenomena encountered
in representative optical applications. To this end, we select
realizable material parameter values in the optical region,
according to those reported in [16—18]. Figures 6(a) and 6(b)
depict the & F versus the superstrate’s relative (a) permittiv-
ity €,, for y,, = 1, and (b) permeability y,, for €, = 2,
with wy = 0.25/10, %[6,1] = -5-2,-0.1,2,5, and S[E,—]] =
—0.1/R[€/1]]. As shown in Figure 6(a), when €,; < 0, that
is, the film-slab is composed of a material with negative
permittivity, the & ¥ attains large values at certain distinct
locations of the superstrate’s permittivity in the region 1 <
€2 < 5. In particular, &F exhibits some sharp resonances
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for a film-slab permittivity corresponding to an €-near-
zero (ENZ) material [19, 20] or a low-index metamaterial
(LIM) [21, 22]. Such materials are known to possess also
other remarkable EM properties, including controlling the
radiation pattern, and tunneling of electromagnetic energy
[19, 20]. On the other hand, Figure 6(b) shows that sharp
EF resonances with significantly large values occur for
distinct negative values of the superstrate’s permeability y,
and for a film-slab with both positive as well as negative
permittivity €,;. It is important to point out that §F may
take a value of the order of 50 for an ENZ film-slab, namely,
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50 — 57, wy = 0.25A¢ with (a) 4, = 1 and €, = 2,5,10,15 and
(b) €2 =5and py, = 1,2,3,4.

meaning that the induced total field inside an ENZ film-
slab, covered by the specific superstrate, becomes 50 times
the corresponding field in the same slab when the superstrate
is absent.

Next, we depict in Figures 7(a) and 7(b), the visualization
of the total electric field induced inside the film-slab when
the superstrate is absent and present, respectively. It is
evident that the electric field in the slab is considerably
enhanced when it is covered by a suitable superstrate. This
fact also verifies that the enhancement factor &, defined
according to (21), is an adequate measure in order to describe
properly the induced field enhancement.
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FIGURE 6: Enhancement factor as function of the superstrate’s (a)
relative permittivity €,, for constant g, = 1 and (b) relative
permeability 4,, for constant €,, = 2, with w, = 0.25, R[€,1] =
-5,-2,-0.1,2,5and J[€,1] = —0.1|R[€]].

Finally, we address the key issue concerning the physical
mechanism of the achieved field enhancement. To this end,
Figures 8(a) and 8(b) show the visualization of the total elec-
tric field induced in the region x € R,L — w, < y < L when
(a) no superstrate is present, and (b) the region is occupied
by the specific superstrate, considered in Figure 7. Clearly,
the field in the region under consideration is significantly
reduced when the superstrate is present compared to when it
is absent. This fact is directly related with the corresponding
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FiGgure 7: Contour plots of the total electric field induced inside the
film-slab for €,; = —5(1 + 0.17) and for (a) no superstrate and (b)
superstrate with €,, = 1.94, g, = 1, w, = 0.25A,.

significant field enhancement observed inside the film-slab
region when a suitable superstrate covers the slab, as depicted
and discussed in Figure 7. Hence, the field is redistributed
between the superstrate and film-slab regions in the sense
that

(1) when no superstrate is present, then the total field

(i) in the region x € R,L —w;, < y < L attains large
values since this region is close to the beam’s
source and no intermediate layer exists causing
reflections;

(ii) in the film-slab attains moderate values;

(2) when a suitable superstrate is present, then the total
field
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Figure 8: Contour plots of the total electric field induced in the
regionx € R,L—w, < y < L for the same set of constant parameters
with Figure 7, when (a) no superstrate is present, and (b) the region
is occupied by a superstrate with €,, = 1.94, p,» = 1, wy = 0.25A,.

(1) in the film-slab is significantly enhanced pre-
cisely due to the presence of the specific super-
strate;

(ii) in the region x € R,L — w, < y < L is
considerably reduced compared to case 1 where
the superstrate is absent.

6. Conclusions

We analyzed the Gaussian beam external excitation of a
grounded dielectric slab configuration. The related boundary
value problem was solved by analytical techniques. The main
focus was given at the investigation of the device’s potential
application as an electromagnetic power concentrator by
suitably altering the physical and geometrical parameters of
an additional superstrate layer, lying on top of the device.
We defined the “enhancement factor” representing the ratio
of the total field’s power induced in the film-slab when
the superstrate is present over the corresponding power
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when the superstrate is absent. Numerical simulations were
presented concerning the achieved enhancement factor of the
slab configuration. It was demonstrated that it is possible
to achieve large enhancement factor values by choosing
properly the permittivity, the permeability, and the thickness
of the superstrate layer. In particular, it was exhibited that
the film-slab’s field is significantly enhanced when the slab is
composed by an e-near-zero or low-index metamaterial.

Interesting future work directions concern the conduc-
tion of a systematic investigation of the optimization of
the superstrate’s parameters in order to achieve the largest
possible enhancement factor values for a given grounded slab
configuration.
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A new method is proposed for realizing radar illusion of an electromagnetic target by using active devices. The devices are installed
around the target but may closely cover the target or not, leading to closed or open configurations. The amplitudes and phases of
the active devices are determined by using T-matrix method. The numerical computation is calculated using MATLAB, and the
results show that this method is convenient, flexible, and efficient, which has important significances for implementation of novel

electromagnetic devices.

1. Introduction

Since invisible cloaking using metamaterials was theoretically
proposed and experimentally demonstrated in 2006 [1,
2], various methods have been put forward for realizing
this fabulous electromagnetic (EM) phenomenon [1-8].
Generally speaking, EM invisibility, or illusion in general,
can be roughly divided into four categories: (1) rendering the
object transparent or invisible by controlling the parameters
of metamaterials based on the scattering cancellation theory
[7,9]; (2) making the object invisible or illusory by exploiting
the abnormal EM properties and the special ability to control
EM waves of metamaterials based on the transformation
optics theory [10, 11]; (3) invisibility using anomalous
localized resonance method [12, 13]; (4) realizing invisibility
or illusion using the surface integral equation of the EM
field based on active devices [14-18]. So far, realization
of radar illusion for an EM target is mainly based on the
method of transformation optics [19-26]. Compared with
the transformation optics method, active devices can be
designed to work at a broadband of frequencies and do not
need materials with extreme parameters. However, only a few
works on radar illusion have been reported for an object by
using active devices [17, 18], to the best of our knowledge.
In this paper, we use two kinds of active devices to realize
the radar illusion of an object. One is called the closed
configuration, where the active devices are set around and

closely wrap the object. The other is called open config-
uration, where the active devices are deployed around the
object but do not cover it. The drawback of the former one is
that signals from outside have been blocked, leading to poor
communication for the target, while the latter does not affect
the information transmission. Compared to the previous
works [14-18], our scheme can not only make an object
invisible to the outsider but also mimic a totally different
object at a different place. It is thus a direct extension of the
original work. In the next section, the two kinds of active
devices are designed and simulated, and errors are analyzed.
Though only rotation and virtual shift effects are studied
in the paper, other illusion effects can be realized using the
same method, including superscattering, geometry change,
and parameter transformation [22-25]. Hence the method
has important applications in military sectors. We remark
that the method has its weakness, and a serious drawback is
that the probing wave must be known in advance [14-16].

2. Theory Analysis

For simplicity, we only consider problems in the two-
dimensional (2D) situation. The schematic diagrams of
active devices to realize virtual rotation and shift are shown
in Figure 1. In Figure 1(a), the real object (a green-colored
hexagon) is put at the bottom side, and it will appear at
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FIGURE 1: Schematic diagrams of the proposed active device to realize radar illusion. (a) Closed configuration; (b) open configuration.

the top side by using closed devices which are set along its
periphery (T, in the figure). The position of the active device,
the boundary of the controlling illusion, and that of the quiet
zone are expressed as I'y, I'y, and I, respectively. Figure 1(b)
depicts the radar illusion using an open configuration. In this
case, the active device is deployed near the device but does
not cover it, which is important for practical applications.
The shift of the object can also be realized by using the active
devices which are deployed on the boundary T,. In both
cases, an outsider will see a virtually shifted pentagon instead
of the hexagon, that is, radar illusion.

Suppose the probing wave works at w, then the wave
function u(r, t) satisfies Helmholtz’s equation

Viu+k*u =0, (1)

where k = 27/) is the wave number, A = 27¢/w is the
wavelength, and c is the velocity of light.

For an arbitrary incident wave ujyc, the cancellation field
generated by the active devices on I'; is required to assure a
zero total field in the “quiet zone,” as its name suggests. So
any object in this region has no scattering at all. At the same
time, the active devices will generate a properly designed
scattering field on I', so that an external observer will see
a different object at a different location and probably with
different EM “fingerprint,” that is, radar illusion. When that
specific field is set to zero, it means the object is totally
shielded from the outsider. However, if the scattered field
on I'y is consistent with what is generated by another object
at another place without active devices, it means the virtual
shifting effect is realized. Other illusions can be implemented
using the same methodology.

Since the active devices can be considered as a series of
line sources with certain distribution, the total fields radiated
can be expressed by using the Fourier-Bessel series:

% amH" (k|p - p,,| )&, (2)

1n=-N

ME

m

where HV (x) is Hankel function of the first kind with order
n, p represents an arbitrary position vector, p,, represents the
position vector on I'y, and the angle 0,, = arg(p — p,,,) shows
direction angle between the vector p — p, and the horizontal
direction.

To realize virtual shift of an object, the boundary
condition should be set to

fmete)

VpeTl,,

3
Vp Ty, (3)

uda(p) =

where ughisi(p) denotes the scattered field produced by a
shifted object on I',.

During numerical calculation, one must divide the
boundaries into discrete points. In our design, we set number
of points to M on I';, M on I';, and M, on I, respectively.
According to (3), the field on I', and I'c can be expressed as

ua(p?) =§ i anH" (k|p? = p,, | )" Vp! €Ty,
m=1n=—N
M N )
uapj) = 3 3 it (ko ~p,| )" vpf T
m=1n=—N
(4)

The coefficients a,,m can be found numerically by
enforcing (3) on points pl,pz, .. ,pr, and p§, p5,. .., pjy, for
boundary I'y and I, respectively. From (2), (3), and (4), the
following linear equations can be obtained:

H B Ushife
HIEEEA!

Where B = [aln,QQn,...,aMbn], C = [aln)a2n)---)aM,n])
[Hy] = Hy(klp® - p, e/, n € [-N,N], and [H] =
Hy(,l)(klpc - pml)ef”H'". The equation M(2N + 1) = M, + M,

must be maintained to ensure H as a square matrix.



Advances in OptoElectronics

(a)

6 2
1.5
4
1
2
0.5
0 0
-0.5
-2
-1
—4
-1.5
-6 -2

-6 —4 -2 0 2 4 6

(c)

FIGURE 2: Numerical results for the active cloaking device. (a)-(b) Total fields for the closed and open configuration; (c)-(d) scattered fields

for the closed and open configuration.

3. Numerical Calculation and Simulation for
a Special Case

We first give the numerical calculation for a very special case,
that is, invisibility cloaking using active devices. In this case,
it is very clear that external and internal cloaking can be
achieved by setting usigr = 0 in (3). In the simulation, a
rightward propagating plane wave u;,. = e /%* is used as
a probing wave just for its simplicity, but other forms of
incident waves are applicable too. The total fields and the
scattered fields for the two kinds of cloaking devices are
shown in Figure 2, where Figures 2(a) and 2(b) show the
total fields and Figures 2(c) and 2(d) show the scattered
fields. In the left panels, where the closed configuration is
demonstrated, active devices are uniformly placed on an
elliptical curve, whose major axis is 1.35m and the minor
axis is 0.75m. For the controlling boundary T, we set the
major axis as 1.5m and the minor axis as 0.9 m. While for
I, the major axis is 1.2 m and the minor axis is 0.6 m. In

the right panels, we show the open configuration in which
the active devices are placed on two separated crescents. The
major and minor axes for the controlling boundary I, are
4.2 m and 2.52 m, respectively and those for I'c are 1.2 m and
0.6 m, respectively. In both cases, the following parameters
are chosen, wavelength A =0.3m, M(2N + 1) = 630, M, =
300, and M, = 330. Employing the scheme described in the
preceding section, we can achieve an approximate solution
numerically. We can see from Figure 2 that the field inside
the quiet zone is essentially zero with no scattering.

In order to quantify the overall quality of the solution,
we consider the following error functions on the boundary
I, and T;:

M, '
Ere(ry) = S 14a(0) ~ tiia(p)|

b r bl
= usir(p) | pett
" (6)
< Jua(p) +ui(p) |
E FC = > FC-
) = 2 N PE
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FIGURE 3: The virtual shift of a rectangular column using the open configuration. (a) Total fields distribution when the column is placed at
(0, —0.6 m) with 45 degree to the horizon; (b) similar to (a) but the active device is turned on. (c) Total fields distribution when the column

is placed at (0, 0.6 m) with zero degree to the horizon.

TasLE 1: The relationship between the errors on the boundary I'y, I and the values of N, M;, and M, for the cloak shown in Figure 2(a)

(M = 60).

N 1 2 3 4 5 7 8 9 10 11 12

M, 120 200 250 320 400 500 550 600 700 760 820

M. 60 100 170 220 260 400 470 540 560 620 680

Err(T,) 2.5728 9.3572 1.3964 1.0182  4.6384 1.7500 1.1827  2.4238 8.3650 2.8560 1.5247 3.0913
e—005 e—006 e—005 e—007 e—007 e—009 e—008 e—009 e—012 e—013 e—012 e—013

Err(T}) 3.1699 1.1729 1.7795 1.2499 6.4917 2.4167 2.6140  4.7026  9.8610 3.7850 2.1948  4.0417
e—005 e—005 e—005 e—007 e—007 e—009 e—008 e—009 e—012 e—013 e—012 e—013

The calculated errors on I', and I, are given in Tables
1 and 2 for the two configurations mentioned above, where
Table 1 shows the errors for the internal cloak in Figure 2(a),
and Table 2 shows the errors for the external cloak shown
in Figure 2(b). From these two tables, it can be seen that
the error decreases as we increase N. In other words, we are

able to achieve better cloaking effects if we can control the
boundary fields more precisely. At the same time, it can be
seen that the errors depend on the choice of M, My, and
M, for a given working frequency, and the accuracy of the
calculation is quite high. The results show that this method
is convenient and flexible.
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FIGURE 4: The virtual shift of a rectangular column using the closed configuration. (a) Total fields distribution when the column is placed at
(0, —0.6 m) with 45 degree to the horizon; (b) similar to (a) but the active device is turned on. (c) Total fields distribution when the column
is placed at (0, 0.6 m) with zero degree to the horizon.

TasLE 2: The relationship between the errors on the boundary I, T'. and the values of N, M,, and M. for the cloak shown in Figure 2(b)
(M = 60).

N 1 2 3 4 5 6 7 8 9 10 11 12
M, 120 200 250 320 400 450 500 550 600 700 760 820
M. 60 100 170 220 260 330 400 470 540 560 620 680
Err(T,)  1.2086 9.7481 2.5488 2.8345 2.4315 1.8331 6.6296 1.8940 4.9820 8.9760 1.3725 4.6240
e—005 e—008 e—008 e—008 e—008 e—009 e—009 e—010 e—011 e—011 e—012
Err(T,) 14135 7.8877 2.3319 2.6458 2.5146 1.9514 8.9207 2.4907 7.2545 1.3302 1.9367 5.5004
e—005 e—008 e—008 e—008 e—008 e—009 e—009 e—010 e—010 e—011 e—012

4. Numerical Calculation and Simulation for
Illusion of an Object

Next, we demonstrate the illusion effect where an object
placed somewhere inside the quiet zone will appear at a
different place. As an example, we choose a rectangular
column with a cross-section of about 0.7 * 0.15m? and

& =10, y, = 1. The wavelength of the incoming plane wave
is A = 0.3m. And other parameters are M(2N + 1)

630, M. = 300, and M, = 330, respectively. Figure 3(a)
shows the total fields when the rectangular column is located
at (0, —0.6m) with 45 degree to the horizon under the
plane wave illumination, while Figure 3(c) gives similar
results but the rectangular column is located at (0, 0.6 m)
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F1GURE 5: The virtual shift of a copper cylinder with a pair of metallic wings using the open configuration. (a) Total fields distribution
when the column is placed at (0, —0.6 m) with 90 degree to the horizon; (b) similar to (a) but the active device is turned on. (c) Total fields
distribution when the column is placed at (0, 0.6 m) with zero degree to the horizon.

with zero degree to the horizon; that is, it parallels to the
horizontal line. In Figure 3(b), we show the total field of
this rectangular column when the proposed active device
shown in Figure 1(b) is turned on. Comparing Figure 3(b)
with Figure 3(c) for the total fields outside the controlling
boundary, we can see that they are very similar with each
other. Therefore, the shift of the object is clearly realized
together with a rotation. Figure 4 demonstrates similar
results; however the closed configuration in Figure 1(a) is
adopted.

Figures 5 and 6 show the virtual shift of a copper cylinder
with a pair of metallic wings. The radius of the metal cylinder
is about one wavelength. Other parameters are the same as
those mentioned above. Figure 5(a) shows the total fields
of this metal cylinder located at (0, —0.6 m) with the wings
vertical to the horizon under the illumination of the plane
wave. Figure 5(c) shows the total fields of the metal cylinder
which is located at (0, 0.6 m) with the wings parallel to
the horizon. And Figure 5(b) shows the total fields of this

metal cylinder with the active devices shown in Figure 1(b)
switched on. Careful comparison between Figure 5(b) with
Figure 5(c) shows that the distribution of the EM wave is
exactly the same for the two figures out of the controlling
boundary, which is another proof of the shift and rotation
effect using this method. Figure 6 shows the similar results
using active devices depicted in Figure 1(a).

To quantitatively validate the performance of the active
illusion device, we also calculate the normalized scattering
width for different cases, and the results are shown in
Figure 7. The detailed calculation process can be found in
[26]. In Figure 7(a), we give the scattering width for the
open configuration, whose near fields are demonstrated in
Figure 5. A careful examination shows that the normalized
scattering pattern for the vertically placed metallic cylinder,
represented by the blue dotted line, differs greatly from the
horizontally placed one at a different position (green sold
line). However, when active sources are deployed around
the former one, we obtain a very similar scattering pattern,
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F1GURE 6: The virtual shift of a copper cylinder with a pair of metallic wings using the closed configuration. (a) Total fields distribution
when the column is placed at (0, —0.6 m) with 90 degree to the horizon; (b) similar to (a) but the active device is turned on. (c) Total fields
distribution when the column is placed at (0, 0.6 m) with zero degree to the horizon.

denoted by the red dash-dotted line. The differences mainly
come from the following approximations: (1) limited terms
used for Hankel’s function, N = 3 in our case; (2) limited
points on the control boundary, that is, I', and I, which are
330 and 300 in our calculation; (3) limited sources on I,
which we set to 90. As mentioned in the previous section,
larger numbers can lead to better performances. Figure 7(b)
shows similar result for the closed structure, whose field
distributions are demonstrated in Figure 6. In this case,
better performances are obtained using the same parameter.
This observation may be explained by a more uniform source
distribution around the vertically placed metallic cylinder,
which is clearly shown in Figure 1.

5. Summary

This paper presents a new method for realizing radar illusion
for an arbitrary object by using active devices. The numerical

calculation and simulation in the 2D case are studied,
which include both closed and open configurations, and the
results firmly support our design. The method is convenient,
flexible, efficient, and accurate. The work can be extended
to three dimensions and to include other illusion effects
[22-25]. The limitation of this type of radar illusion is
that it requires the prior knowledge of the probing wave.
However, with the development of modern digital signal
processing technology, the result in this paper may have
practical significance for realizing novel EM devices.
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We show how one may obtain conical (Dirac) dispersions in photonic crystals, and in some cases, such conical dispersions can be
used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals
with C,, symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at I' point, whose band dispersion
comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point.
If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium
with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is
effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those
cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate
the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in

contrast with the Berry phase of 7 for Dirac cones at the zone boundary.

1. Introduction

The Dirac equation is the wave equation formulated to
describe relativistic spin 1/2 particles [1]. In the special case
where the effective mass of the spin 1/2 particle is zero,
and the solution to Dirac equation has a linear dispersion
in the sense that the energy E is linearly proportional to
the wave vector k. The electric band structure of graphene
near the Fermi level can be described by the massless Dirac
equation and hence exhibit the Dirac dispersion [2-15]. The
electronic band dispersion is linear near the six corners of
the two-dimensional (2D) hexagonal Brillouin zone at the K
and K’ points, and the dispersion close to the Fermi energy
at each of these corner k-points can be visualized as two
cones meeting at the Fermi level at one point called the
Dirac point, and the conical dispersion near the Dirac point
is usually referred to as Dirac cones. This rather singular
electronic band structure of graphene near the Fermi level
gives rise to many unusual transport properties [2-15],
including quantum hall effect [4-6], Zitterbewegung [7-
11], and Klein paradox [12]. Dirac cone dispersions are not
limited to graphene but can also be found in classical wave
periodic systems such as photonic crystals [16-24]. In fact,
linear dispersions at the Brillouin zone boundary for 2D

triangular photonic crystals appeared in the photonic band
gap literature a long time ago [16] except that the attention
at that time was focused on the creation of band gaps [25-27]
and as Dirac points are by definition gapless, their existence
was largely ignored. The special properties of such conical
dispersions at the zone boundary of triangular photonic
crystals were not explicitly noted until much later [21, 22]. It
was noted that if an external magnetic field is used to break
time reversal symmetry, unidirectional and backscattering
immune electromagnetic wave propagation, analogous to
quantum hall edge states, can be realized, and such ideas were
indeed demonstrated subsequently using photonic crystals
constructed with gyromagnetic materials [21-24, 28-32].
In 2D, the acoustic wave equation has the same form as
the Maxwell equation for one polarization, and it follows
immediately that Dirac cone dispersions can also be realized
in acoustic wave crystals [33]. In fact, some intriguing
wave transport phenomena such as Zitterbewegung is the
consequence of the Dirac dispersion and hence can be
realized in 2D photonic [20] and phononic crystal [33],
and such effects were indeed numerically demonstrated [20]
and experimentally verified [33]. With much longer wave-
length compared to electrons, and without the complication
of electron-electron interaction, photonic, and phononic



crystals have become an ideal platform to study various
interesting wave propagation properties related to Dirac
dispersion.

It turns out that the Dirac dispersion has interesting rela-
tionship with metamaterials, which are artificial composite
materials that have novel wave manipulation capabilities.
Since the theoretical proposal of materials with negative
refractive indices proposed by Veselago in 1968 [34] and
the first demonstration of a material with both effective
permittivity (eer) and effective permeability (pes) less than
zero in 2001 [35], metamaterials with all kinds of effective
permittivity (ef) and effective permeability (y.f) not found
in nature have been designed and realized [35-48]. With the
help of these metamaterials, many interesting waveguiding
properties, some seemingly fictional, have been achieved
including negative refraction [35-39], superlens [40, 41],
cloaking [42-44], field concentrators [45], superscatterer
[46], field rotators [47], and illusion optics [48]. While
previous attention may have been focused on realizing meta-
materials with negative refractive indices, materials that have
zero refractive indices are equally interesting. As n> = ey,
a zero-refractive-index material can have either single zero
(eeft = 0 or per = 0) or double zero (eeff = pesr = 0)
[49-64]. There is no phase variance in the wave transport
process inside a zero-index material. This leads to many
peculiar properties such as the tunneling of electromagnetic
waves through subwavelength channels and bends [49-57],
the tailoring of the radiation phase pattern of arbitrary
sources [58-60], and the cloaking of objects inside a channel
with specific boundary conditions [61-64]. The tunneling
phenomenon has been demonstrated experimentally using
complementary split ring resonators at the microwave fre-
quency [55]. However, the impedance mismatch is typically
huge for single-zero materials, and the incident wave may
encounter reflection when the aperture of the waveguide
is larger than wavelength [60, 64]. This problem can be
mitigated if we use double-zero material (¢er = 0 and gegr = 0
at the same frequency).

While Dirac cone dispersion and zero-index materials
may seem unrelated, there is a subtle relationship between
them. If we have a homogeneous material with isotropic
dispersive permittivity ¢(w) and permeability y(w) at a par-
ticular frequency wo and e(wg) = p(wy) = 0, the dispersion
near wo will have a linear dispersion, w = wo + vgk, where k is
the wave vector and vy is the corresponding group velocity
[65]. This linear dispersion and the associated conical
dispersion are different from the Dirac dispersion found in
graphene [2-15] or hexagonal photonic/phononic crystals
[16-24, 31-33] as the Dirac point is not at the Brillouin zone
boundary but at the zone center. This relationship opened
a new window to the physics related to Dirac cones but the
question is whether we can construct a metamaterial with
e(wp) = p(wp) = 0 at a particular frequency wp using a
conical dispersion at k = 0 close to this frequency. Another
important issue is that a homogenous e(wg) = p(wy) = 0
implies a Dirac cone dispersion but the converse may not
be true for the simple reason that an effective medium
description may or may not be applicable to the composite
material with a Dirac cone dispersion. We will show by
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examples that there are indeed systems which have Dirac-
like cone at k = 0, and we will examine the conditions for
effective medium theory to be applicable [66].

We will show that if a 2D photonic crystal has Cy,
symmetry, we can obtain accidental degeneracy of a twofold
degenerate state and a nondegenerate state at I' point by
tuning the parameters of the structure, and that two of the
states of the triply degenerate state have linear dispersions
near I', and they can generate conical dispersions. We will
further demonstrate that if the triply degenerate state is
derived from monopole and dipole excitations, we can use
effective medium theory to map this photonic crystal to a
zero-index material with both permittivity and permeability
equal to zero simultaneously [66]. We will also give examples
that conical dispersions at the zone center can be obtained
for situations in which the bands are not derived from
monopole and dipole excitations, and in these cases, we will
demonstrate that these Dirac-like cone systems cannot be
related to an effective medium with a zero refractive index.
In this paper, we will also examine the Berry phase [67]
associated with the Dirac-like cone at k = 0 which is the
phase acquired by the eigenvector over a cyclic evolution
in k space about the Dirac point. It is known that the
Berry phase associated with the Dirac cone is 7 in electronic
graphene and has very subtle implications in wave function
transport properties [4—6]. We will show that the Berry
phase associated with the Dirac-like cone at I' point is
different from that of graphene because of the existence of an
additional quasi-longitudinal mode. The paper is organized
as follows. In Section 2, we introduce the Dirac-like point
at I' point and M point in 2D photonic crystal with Cy,
symmetry and examine the possibility and consequences of
effective medium descriptions. In Section 3, we calculate the
Berry phase of the triply degenerate state formed by Dirac-
like point. We will then give a summary.

2. Dirac-Like Point at I’ Point and
M Point in C,;, Symmetry

Let us first consider an example of a 2D photonic crystal
that exhibits a Dirac-like cone in the zone center and in
this specific structure, effective medium theory can be used
to relate the system to an effectively zero-refractive-index
system [66]. The photonic crystal is a square array of alumina
cylinders with relative permittivity ¢ = 8.8 in air and the
polarization is transverse-magnetic (TM) polarization, with
electric field parallel to the cylinder axis. The radii of the
cylinders are 0.221a, where a is the lattice constant. There
is a triply degenerate state at a frequency wp at the I point.
We note that the triple degeneracy is not a consequence
of lattice symmetry in the sense that if we choose other
system parameters (e.g., a different cylinder radius), the
triple degenerate state will split into a doublet and a
singlet. The field patterns of these three states are shown in
Figures 1(d)—1(f). We see that electromagnetic field is mostly
confined inside the high refractive index rod and two of
the eigenmodes (panels (e) and (f)) have a strong dipolar
character, with the wave vector perpendicular/parallel to
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FIGURE 1: (a) The band structure of a two-dimensional photonic crystal composing of alumina cylinders arranged in a square lattice for the
TM polarization. The radii of the cylinders are 0.221a. The relative permittivity of the cylinders is 8.8. At the I point, a triply degenerate
state is formed, and the linear dispersion near the zone center is highlighted in (b). (c) The effective permittivity e« (black solid line) and
permeability pes (red dash line) of this alumina photonic crystal. Note that e = per = 0 at the Dirac-like point. (d)—(f) The field patterns
of the three eigenmodes near the Dirac-like point with a very small k along I'X direction.

the dipole moment (transverse/longitudinal dipole mode),
and the other eigenmode has a monopole character. By
examining carefully the band diagram near wp ((Figure 1(b))
corresponding to the solid blue region in Figure 1(a), we
found that the two linear bands generate a conical dispersion
with the upper and lower cones touching at a Dirac-like
point at wp. The equifrequency contours are circular near
wp and eigenmodes in the cones are linear combinations
of transverse dipole and monopole modes. There is an
extra flat band intersecting the Dirac-like cones at wp. The
modes in this flat sheet of states are quasi-longitudinal such
that the magnetic field is mostly parallel to the k-vector.
It can be shown [68] that if the band dispersions in a 2D
photonic crystal can be described by monopole and dipole
interactions, an effective medium theory [68] can be applied
to extract effective constitutive parameters and when these
parameters of the photonic crystal are retrieved, we find
that eq(wp) = pesf(wp) = 0 at the Dirac frequency wp
(Figure 1(c)). The sheet of quasi-longitudinal modes cutting
through the Dirac-like point corresponds to the longitudinal
solution to the Maxwell equation when y, = u, = 0 for
TM polarization (or &¢ = ¢, = 0 for TE polarization).
For a homogenous isotropic medium with ¢ = y = 0, this
longitudinal mode has exactly zero group velocity but in a
composite system, this mode has a quadratic dispersion far
away from the zone center because of spatial dispersion.

In order to demonstrate that the photonic crystal with
a band dispersion shown in Figure 1 does have eg(wp) =
perr(wp) = 0 at the Dirac frequency, numerical simulations,
and microwave experiments were carried out [66]. Both the
focusing effect through a concave lens and the waveguiding
and cloaking effect through a waveguide filled with e =
perr = 0 photonic crystal were demonstrated. The ey = pefr =
0 photonic crystal was demonstrated to have nearly the same
field distributions as a homogenous ¢ = y = 0 medium
in wave transport simulations. For example, as there is no
phase change during the propagation through a zero-index
material, the zero-index material can serve as a wavefront
transformer [58-60]. Here, we numerically demonstrate
another wavefront transformer phenomenon, the transfor-
mation of a Gaussian beam to a plane wave. In Figure 2(a),
an 18a x 18a block of a hypothetical homogeneous e = y = 0
medium is put inside a waveguide and is illuminated with
a tightly focused Gaussian beam whose waist is equal to 3a,
where a is the lattice constant of the photonic crystal shown
in Figure 1. As the only allowed propagation mode through
a homogeneous ¢ = y = 0 medium is a plane wave with
zero parallel wavevector and as the exit surface is flat, the
wave leaving the exit surface should be a plane wave with
equal phase at the exit surface as demonstrated numerically
in Figure 2(a). The field inside the homogeneous ¢ =
¢ = 0 medium is constant. In Figure 2(b), we replace the
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FIGURE 2: Numerical simulation that demonstrates the e.r = prer = 0 property of the alumina photonic crystal with Dirac-like cone dispersion
at the Brillouin zone center. (a) An 18a X 18a block of a hypothetical homogeneous ¢ = y = 0 medium is placed inside a waveguide with a
tightly focused (waist equal to 3a) Gaussian beam incident at the surface of the homogeneouse = g = 0 medium. As the ¢ = y = 0 medium
only allows plane wave with k; = 0 to propagate, we expect only plane wave can exit, which can be clearly seen. The Gaussian wave front is
transformed to a plane wave. (b) By replacing the homogeneous ¢ = y = 0 medium with the e = per = 0 alumina photonic crystal, very
similar wavefront transformation can be observed. Here, a is the lattice constant of the photonic crystal.

homogeneous ¢ = ¢ = 0 medium with the photonic crystal
consisting of alumina cylinders, and we observe a similar
transformation of a Gaussian wave to a plane wave. The field
distributions inside the photonic crystal are slightly different
from the homogeneous ¢ = g = 0 medium shown in
Figure 2(a) due to the excitation of the quasi-longitudinal
mode in the photonic crystal.

The realization of e.r = per = 0 using dielectric photonic
crystals may enable us to achieve various waveguiding
applications specific to zero-refractive-index medium in
the near future. There are multiple ways to realize a zero
refractive index. For example, eef = 0 Or pesr = 0 OF & =
Uerr = 0 metamaterial can be designed and fabricated using
metallic resonant structures [55]. However, metallic resonant
structure is always lossy, and the loss will become more
severe when at higher frequencies. On the other hand, as the
photonic crystals with Dirac-like cone at k = 0 are made with
dielectric, the system can function as e = per = 0 system
with small material loss all the way up to optical frequencies
and the fabrication of nanoscale dielectric pillar structure
is feasible with modern silicon nanofabrication technology
[69]. We also remark that the Dirac-like cone at k = 0 gives
us gt = 0 and per = 0 simultaneously (“double zero”) which
has the advantage of a finite group velocity and favorable
impedance matching as compared to a “single zero” material
(eet = 0 or per = 0 but not both) which has a zero group
velocity and poor impedance matching. The double-zero
condition is difficult to satisty if we use metallic resonators
to obtain e = 0 and per = 0 at the same frequency.

As the necessary (but not sufficient) condition to get
an &f = Hef = O photonic crystal is a Dirac-like cone
at k = 0 and the condition to get a Dirac-like cone at
the zone center is accidental degeneracy, we will discuss
here how to obtain accidental degeneracy, and we limit
our discussion here to square lattice systems. The point
group symmetry of a photonic crystal of square array of
cylinders belongs to the Cy, group [70]. The irreducible
representations of Cy, point group are A;, By, Az, B, and
E, where A, By, A, B, are nondegenerate representations,
and E is a doubly degenerate representation. The eigenstates
at k = 0 of a square lattice photonic crystal should have

symmetries related to these irreducible representations. At
a finite frequency, the dispersion of a nondegenerate band
at Brillouin zone center has to be parabolic as required by
time reversal symmetry [71-73]. However, we need linear
bands to generate Dirac-like cones. Linear dispersion at the
Brillouin zone center (I' point) can emerge as a consequence
of accidental degeneracy of states which are not required by
lattice symmetry to be equal in frequency and such accidental
degeneracy can be obtained by tuning the dielectric constant
or the radii of the cylinders in 2D photonic crystals.

For a periodic structure with a permittivity distribution

s(?), the Bloch eigenfunction wk(?) should satisfy the
equation

V| v xp(7) | = D (7) )
e(r) a

where i (1) is the eigenmode of the magnetic field and wy is
the corresponding eigenvalue. The Bloch eigenfunction can
be chosen to a linear combination of the localized states (e.g.,
Wannier-type function) of A;, B;, Az, By, E representations
of the Cy, point group [72-75] centered on the cylinders. It
can be written as

w(7) =y S TAMO(T ) o)

where 7, = lax + may, a is the lattice constant. V is

the volume of the unit cell. M (r) are localized functions
of Ay, By, Ay, B,, E representations, where i labels the
irreducible representation. These basis functions are chosen
to be orthogonal

Ld MO (7) - MO (7) = vy, (3)

The integral is over the whole unit cell V.

These basis functions have different symmetry proper-
ties. For instance, modes of the A; representation invariant
for all symmetry operation and if a band is derived from the
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monopole excitations of the cylinders, it should be expanded

by M41(r). As modes of E representations have mirror
symmetry about the x- and y-axis, respectively, M{,(r) can
be used to expand bands that derived from dipole excitations
of the cylinders in the photonic crystals. We can obtain a
“double-zero” photonic crystal if we design the system to
have accidental degeneracy so that the monopole and dipole
derived bands become degenerate at the zone center. In
that case, the eigenmodes near the zone center should be

expressed as a linear combination of M4 () and ME ,(7)
states. Generally speaking, if there is accidental degeneracy at
the zone center, the eigenmodes will be a combination of two
irreducible states, either a mix of three states (for the case of
E state degenerate with any nondegenerate state) or a mix of
two states (the degeneracy of two nondegenerate states). For
simplicity, we only consider the accidental degeneracy of E
state and A; state. If we only consider the nearest neighbor
interaction, I,m = 0,+1, multiply M 0N (r)on both side
of (1), integrate over the unit cell V, and use orthogonal
condition of (3), we can transfer (1) into a secular equation

‘?—1 = 0. (4)

— ij

S is a 3 x 3 matrix with S;; = >, emRIL) where
Ll = (V) [yd r MO (r) - ¥ x [(1/e(r))V x MO(r —

T1m)] is a transfer integral. wp is the accidental degeneracy
frequency. M"/J) can be either M4 or M} ,. By solving (4)
close to the I' point, with tiny k, and k,, the dispersion near
wp can be found consisting of two linear bands with a finite
group velocity along with a quadratic band which is very
flat near the I' point. The linear bands will generate conical
dispersion (Dirac cone) close to the degeneracy frequency
wp near the T’ point. The degenerate frequency wp is the
Dirac-like point frequency we are looking for. We note that
the emergence of linear bands as a consequence of accidental
degeneracy at k = 0 can also be obtained using multiple
scattering theory [66] or k - p perturbation [76, 77]. Conical
dispersions will also emerge from the accidental degeneracy
of E states and the other three nondegeneracy states By, As,
B;. The linear bands giving rise to conical dispersion will
always be accompanied by a quadratic band if the accidental
degeneracy is threefold.

We now have a recipe to create Dirac dispersion at a
finite frequency at k = 0 for the lattice with Cy4, point group
symmetry. However, we should emphasize that Dirac dis-
persion is a necessary but not sufficient condition to obtain
&ff = et = 0. As we are always dealing with composite
materials with at least two components, an effective medium
theory must be applied to extract the effective constitutive
parameters from the optical properties of the discrete system.
For photonic applications, we prefer to use “local” effective
parameters which depend only on the frequency but not
the wave vector. The Dirac cones that are discussed in the
literature are located at the Brillouin zone boundary [16—
24] and at such a large wave vector, no effective medium

theory can be applied reliably. Even at the I' point, effective
medium theory can be applicable only if certain conditions
are satisfied. It can be shown that in 2D photonic crystals,
effective medium theory can be applied to extract e and
et if the bands are derived from the monopole and dipole
scattering of the building blocks [68], and this condition
is indeed satisfied by the photonic crystal system shown in
Figures 1 and 2. This condition can typically be satisfied in
photonic crystals comprising dielectric cylinders in air in
which the low-lying bands are formed by the scattering of
monopole and dipole excitations of the individual dielectric
cylinders, and the field distributions of the eigenmodes
tend to be confined in the cylinders. If the eigenmodes
have projections on higher multipoles, the effective medium
description will not be good. This can happen if the dielectric
constant of the cylinders is small so that Dirac-like cone
appears at high frequencies. Also, if we have an inverted
structure, such as photonic crystals with cylindrical holes
drilled in high dielectric background medium, the effective
medium will naturally fail as the eigenmodes in those
situations typically have large projections on high multipoles
centered on the holes.

From symmetry considerations, we know that as long
as there is an accidental degeneracy of a doubly degenerate
state with a nondegenerate state, the Dirac-like point can be
formed. And we have already shown in Figure 1 that Dirac-
like cones can be formed when there is accidental degeneracy
of monopole and dipole modes that are described by E and
A, representations, and the photonic crystal behaves like
a zero-index material near the Dirac-like point. Here, we
give an example of a photonic crystal which has a Dirac-
like point that is formed by the accidental degeneracy of
eigenmodes of E and B, representations. The system consists
of core-shell cylinders arranged in a square lattice and the
band structure for the TE polarization with the magnetic
field along the cylinder axis is shown in Figure 3(a). The
radii of the shell and core are Rghef = 0.4a and Regre =
0.181a respectively. Here, a is the lattice constant. The relative
permittivity of the shell and core egpen = 11.75 and ecore = 1.
There is a Dirac-like point at the T point at the location
highlighted by the blue box, comprising of two linear bands
and a flat band cross intersecting at the same frequency
(Figure 3(a)). The enlarged band structure near the Dirac-
like point is shown in the inset. In order to understand the
underlying physics, we plot the eigenmodes of this triply
degenerate state in Figures 3(b) to 3(d). Figures 3(b) and
3(c) show that the eigenmode has strong dipole character,
and Figure 3(d) shows a quadrupole excitation. Symmetry
analysis shows that the dipole excitations belong to the E
representation, while the quadrupole excitation belongs to
the B, representation. As effective medium theory [68] is not
expected to work when the bands have a strong quadrupole
character, we expect that the system should not behave like a
zero-index medium even though it has a conical dispersion.
To see the wave transport properties of this system near
the Dirac frequency, a Gaussian beam is illuminated to this
photonic crystal as shown in Figure 3(e), with the same
parameters as in Figure 2(b). There are phase changes inside
the photonic crystal, and the field distributions outside are
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FiGURE 3: (a) The band structure of a core-shell photonic crystal arranged in square lattice for the TE polarization. The radii of the shell
and core to be Ry = 0.4a and Reore = 0.181a. The relative permittivity of the shell and core are ey = 11.75 and ecore = 1. Near the T
point, there is a Dirac-like cone dispersion. The inset is the enlarged part near the Dirac-like point shown by blue solid region. (b)—(d) The
eigenmodes of the photonic crystal at the T point. (b) and (c) dipole excitations, (d) quadrupole excitation. (e) As effective medium theory
cannot be applied here, the crystal cannot be mapped to a eef = peir = 0 system and hence the field distributions for an incident Gaussian
beam deviate from what is expected for homogeneous € = y = 0 medium (Figure 2(a)).

not a plane wave front. The wave transport behavior deviates
from what is expected from an ¢ = y = 0 medium.

For completeness, we also show the properties of pho-
tonic crystals consisting of low dielectric cylinders and we
examine whether such systems can be used to mimic a
gff = Her = O material. We use a low dielectric constant
material, PMMA with € = 2.6 for the cylinders. We can adjust
the structural parameters to obtain accidental degeneracy
and Dirac-like cone dispersion can be achieved as shown
in Figure 4(a). A Dirac-like cone is obtained when the radii
of the cylinders are 0.3035a. The band structure is shown
for the TM polarization in Figure 4(a). When we repeat the
same simulation as in Figure 2(b) for this PMMA photonic
crystal, the wavefront transformation effect (Figure 4(b)) is
also different to what is expected from homogeneous ¢ =
¢y = 0 medium. In this low dielectric contrast system, the
low-lying bands are better described by a plane wave basis
rather than the coupling of localized modes centered on a
cylinder. Alternatively, one may say that the Dirac-like cone
will be found at high frequencies if the dielectric cylinders
have a low refractive index and effective medium theory has
to fail at high frequencies. In fact, calculations show that

the effective medium description gets better and better if
the cylinders have progressively higher dielectric constants
with the corresponding Dirac-like cone moving to lower
frequencies.

Some remarks are in order here. We note that the band
dispersion is not just linear in one direction, but it is isotropic
and linear in all directions of k-vectors and as such, the
isotropic linear dispersion generates two cones that touch at
one point commonly referred to a Dirac point. The Dirac
cone dispersion in graphene is generated by two degrees
of freedom, frequently formulated as two components of a
pseudospin. These two degrees of freedom are actually the
amplitude of the p, wave functions on sites A and B of
the carbon atoms within the unit cell of graphene. In the I
point Dirac cone in photonic crystals, we actually have three
degrees of freedom, two from the dipolar excitations and
one from the monopolar excitation. These three freedoms
generate a conical dispersion plus a flat band. We also
remark that not all linear dispersions form Dirac cone/Dirac
point. For example, most classical wave systems have linear
dispersions in the limit of @ — 0, but this is not a Dirac cone
as the negative frequency solution has no physical meaning.
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FIGURE 4: (a) The band structure of PMMA photonic crystal arranged in a square lattice for the TM polarization. The radii of the cylinders
are 0.3035a. The relative permittivity of the PMMA is 2.6. Near the I point, there is also a Dirac-like cone dispersion. The inset is the enlarge
part near the Dirac-like point shown by blue solid region. (b) The field distributions for a Gaussian beam illumination. The Gaussion beam

parameters are the same as in Figure 2.
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FIGURE 5: (a) The band structure of a alumina vein structure for the TE polarization, with the thickness of the vein equal to 0.176a. At the
M point, a conical dispersion intersects with an extra sheet. A closeup of the band diagram contour of the blue solid region is shown in
the inset. (b) The field distributions for a Gaussian beam incidence deviate from what is expected for homogeneous ¢ = y = 0 medium

(Figure 2(a)).

We also remark that linear bands cutting at one point can
be found in one-dimensional photonic crystals but it takes a
two-dimensional system to define a cone in k-space.

The square lattice has the special property that the group

of the M point (ky = (/a)x+(n/a)y) is the same as that of T
point and they both are Cy,. Triply degenerate state can again
be constructed by arranging for the accidental degeneracy of
the two fold degenerate state and one nondegenerate state
at the M point. Symmetry analysis shows that we can get a
conical dispersion close to the M point, whose dispersion

can be written as w(z) = wy + Vgl k —kuml to the first
order where wy is the frequency of the triply degenerate

state, v, is the group velocity of the linear band. Along
with the conical dispersion, an extra band intersects the
conical dispersion at wy. As we show in Figure 5(a), linear
dispersion can indeed be constructed at the M point if there
is accidental degeneracy while the dispersion is quadratic
if the degeneracy comes from lattice symmetry [71]. To
illustrate this point, the dispersion of photonic crystal with
an alumina vein structure for the TE polarization is shown
in Figure 5(a). As the Dirac-like cone appears at a zone
boundary point M, we should not expect effective medium
theory to be applicable, and the wave guiding property
(Figure 5(b)) is indeed different from what is expect from a
homogeneous ¢ = ¢ = 0 medium. In addition, we can also



use vein-like structures to achieve Dirac-like cone dispersion
at T’ point, which corresponds to a large square hole drill
inside background medium. Again, the low-lying bands of
that type of structures cannot be described by monopole and
dipole excitations and the system cannot be mapped to a
homogeneous ¢ = g = 0 medium even if there is conical
dispersion.

The above discussions show that Dirac-like cone dis-
persion at the I' point is a necessary condition to obtain
€ = u = 0 but it is not a sufficient condition. The & =
Uer = O property is a special property of some (but not
all) photonic crystals with conical dispersion. We note that
other intriguing wave transport properties such as pseudo-
diffusive transmission [17, 18] and Zitterbewegung [20, 33]
are properties of the conical dispersion and can be observed
as long as there is a cone, irrespective of whether effective
parameters are retrievable or not.

3. The Berry Phase of Dirac-Like Point with
Triply Degenerate State

In the above discussion, we considered the relationship
between Dirac-like point and zero-index material. The zero-
index property is related to a triply degenerate state, with a
flat band of a quasi-longitudinal mode crossing the Dirac-
like point formed by cones generated by two linear bands.
At a first glance, the longitudinal flat band with a zero group
velocity in homogeneous material has no role in the Dirac-
like point physics and in the literature, there are indeed
calculations that ignored the longitudinal mode at all [65].
Even though the longitudinal mode inside the zero-index
material cannot be excited by incident plane waves and hence
do not participate in the wave transport for some cases, its
existence does have some subtle effects. For example, if this
longitudinal mode is ignored, the modes near the Dirac-like
point can be described by a 2 X 2 Hamiltonian which can be
mapped to the Hamiltonian of a spinor, and such systems
can potentially carry a nonzero Berry phase [78, 79]. On
the other hand, the triple degenerate state is similar to the
spin 1 system [78, 79] and the Berry phase should be zero.
Therefore, the existence of the longitudinal state changes the
Berry phase of the Dirac-like point which bears implication
when we consider effects such as coherent backscattering of
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light [80] when disordered is introduced. Since our zero-
index materials correspond to the accidental degeneracy of
the monopole and dipole, it is convenient to use the multiple
scattering theory (MST) to calculate the Berry phase, as will
be sketched below.

The MST equation can be written as [66]

1
So——— =S S
0 D, 1 2 b,
1
—Sfl So — HO _Sl b() =0, (5)
1 by
So, -S.1 So-— E

where D,, and b,, are the T-matrix and Mie scattering coef-
ficients of the angular momentum number m, respectively,
and S,, denotes the lattice sum in MST. The mathematical
details of the MST method can be found in [66]. We can do
a small k expansion for the eigenmodes near the I' point. As
0k — 0,8y — 1/Dy, Sy — 1/D~1, S; and S, can be written as

So — — =~ i(Ao(w) + B(w)dk?),

So ~ i(A;(w) + B(w)dk?),

b
D, (6)

S1 = Ci(w)Ske'?,

52 =~ C2 (w, (pk)(Skz,

where Ayg(w), A1(w), B(w), and C;(w) are all real functions
of w only, and C,(w, ¢x) is a function of w and ¢x - ¢ is

the angle of 8k in the polar coordinate. If there is accidental
degeneracy, such that w,, = wg = w*(here w,, and w, are
the eigen frequencies of the monopole and dipole excitations,
resp.), we can do a small w expansion near w* and obtain
So — 1/Dg =~ i(Ay(w*)(w — w*) + B(w)8k?), where Aj(w) =
0A¢(w)/dw, and Sy — 1/D+1 = i(A}(w*)(w — w*) + B(w)dk?),
where A](w) = dA;(w)/dw. By substituting them into (5), we
can obtain

i(A}(w — w*) + Bok?) —C, Oke% C,0k? b,
C)0ke % i(Ah(w — w*) + Bok?) —C 0kei¥* | b | =0 (7)
—C}ok? C18ke it i(A} (0 — @*) + Bok?) b

The secular equation of (7) is a cubic equation of dw:

— (A}8w + BSK?) (Apdw + BSK?)
+2(A} 0w + BSKk?) C 26k + (Apdw + BOk?) | C,|*k*
— 21m(C5 ) C3ok* = 0,
(8)

where dw = w — w™*. By solving this secular equation, we
find three solutions: one is w; — w* = 0 + O(8k?), which
corresponds to a band of quadratic dispersion. The other
two solutions are wy3 — w* = *v bk + O(8k?), where Vg =

V2| Cy1/4/A}Aj, which corresponds to two bands with linear
dispersions that generate a Dirac cone.
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Neglecting the 6k? term, and substitute dw = (~/2|Cyl/

\A1A))Sk = vk into (7) for the accidental degenerate
monopole and dipoles, (7) can be written as

iA g8k  —C, ke 0 b,
C,8ke iA(’)vg(Sk —C, 8kei® by | =0. 9)
0 C18k€7i¢k IAS Vg8k b,

Solving (9), we can obtain the relationships between b_j,
by with by,

,C1€i¢k
- 7 0>
Alvg

Cle‘i¢k
Alvg

b, = by =i bo. (10)

- —ifk
§i<®k | Vi) - dk= %i(icjév
g

_ f; iC1€7i¢k
-7 iAjvg

From the above analysis, we can see that the Berry phase
is equal to zero, which is caused by the existence of the
longitudinal flat band. This result is consistent with the
discussion shown in [77].

4. Conclusion

In summary, we show that a Dirac-like point formed by
a triply degenerate state can exist at the k-points I' and
M in photonic crystals with Cy, symmetry. Such triply
degenerate states are consequences of accidental degeneracy,
which can be achieved by tuning system parameters. Such
systems have linear bands crossing the degeneracy point
and these linear bands generate Dirac-like cone dispersions.
These conical dispersions are generally accompanied by
additional parabolic bands that are very flat at the Dirac-
like point. For the special case in which the triply degenerate
state is derived from monopole and dipole excitations,
the system can be mapped to e = per = 0 material
through effective medium theory. For other cases in which
the bands near the Dirac-like point are not derived from
monopole and dipole excitations, effective medium theory
does not apply. Using the multiple scattering theory, we
calculate the Berry phase of eigenmodes in the Dirac-like
cone when there is accidental degeneracy and the phase
is found to be zero. Similarly, we can extend Dirac dis-
persion and effective medium theory to three dimensions
(81, 82].

9
The eigenvector of (9) is:
,C] ei"’k
i
Ajv,
1
| D) = ‘ . (11)
. C1 e %k
! Alv,
Therefore, the Berry phase of the eigenstate | Dy ) is
. C1 ei‘f”‘
—i
; Alv
.Ciei® 178 -
—i=le ) vl 1 |.ak
Al Vg ) C] e-i¢k
: Alvg
(12)
C] €i¢k
; Al
C, el 1Vg .
_ 1,6 ) 0 V - dk=0.
Al Vg Cl e,i¢k
Alvg
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It is shown that printed antennas loaded with metamaterial resonators can be designed to exhibit multiband functionality.
Two different antenna types and metamaterial loading are considered: (i) printed dipoles or monopoles loaded with open
complementary split ring resonators (OCSRRs) and (ii) meander line or folded dipole antennas loaded with split ring resonators
(SRRs) or spiral resonators (SRs). In the first case, multiband operation is achieved by series connecting one or more OCSRRs
within the dipole/monopole. Such resonators force opens at their positions, and by locating them at a quarter wavelength (at the
required operating frequencies) from the feeding point, it is possible to achieve multiple radiation bands. In the second case, dual-
band functionality is achieved through the perturbation of the antenna characteristics caused by the presence of the metamaterial
resonators. This latter strategy is specially suited to achieve conjugate matching between the antenna and the chip in radiofrequency
identification (RFID) tags at two of the regulated UHF-RFID bands.

1. Introduction

Metamaterials are effective media made of periodic (or
quasiperiodic) inclusions of conventional materials (typ-
ically metals and dielectrics) with controllable acoustic,
electromagnetic, or optical properties. Indeed, by properly
structuring these artificial materials, it is possible to achieve
unique and exotic properties, such as negative refraction or
subwavelength focusing, among others, and it is potentially
possible to implement acoustic and optical cloaks. There
has been an intensive research activity in this field since
2000 [1-10], when the first metamaterial structure by Smith
and co-workers was reported [11]. Key to the success of
this research field was the synthesis of negative effective
permeability media by means of split ring resonators (SRRs)
[12]. These particles are electrically small resonators that can
be excited by means of an axial magnetic field. Hence, if an
array of SRRs is illuminated by means of an electromagnetic
radiation with the magnetic field axial to the SRRs, the
structure behaves as an effective medium with negative
permeability in a narrow band above SRR resonance. By
combining SRRs with metallic posts (exhibiting a negative

effective permittivity up to the so-called plasma frequency),
the first structure simultaneously exhibiting negative permit-
tivity and permeability was synthesized [11]. These struc-
tures are called left-handed, or double negative, materials,
and the main relevant feature of such media, derived from
the negative sign of the constitutive parameters, is the anti-
parallelism between the phase and group velocities [13].
The metamaterial concept and some metamaterial prop-
erties were soon transferred to the microwave engineering
field, since it was demonstrated that by loading a transmis-
sion line with series capacitances and shunt inductances, left-
handed wave propagation (i.e., backward waves) is achieved
[14-16]. These artificial lines loaded with series capacitances
and shunt inductances and exhibiting some metamaterial
properties are called metamaterial transmission lines. In
2003, it was demonstrated that metamaterial transmission
lines can also be implemented by means SRRs [17]. Specif-
ically, by properly combining SRRs and shunt strips in
a coplanar waveguide (CPW) transmission line, backward
wave propagation in a narrow band arises, and by merely
loading the CPW with SRRs, the structure exhibits a stop-
band behavior that has been interpreted as due to the
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antenna loaded with OCSRRs.

negative value of the effective permeability in the stop band
[18]. It is important to mention that even though effective
permeability and permittivity in metamaterial transmission
lines can be defined [1, 2, 4], the relevant parameters in
transmission lines (fundamental for design purposes) are the
phase constant and the characteristic impedance. Thanks to

the presence of reactive elements (inductances, capacitances,
or electrically small resonators) in metamaterial transmis-
sion lines, it is possible to tailor these parameters to some
extend in these artificial lines. Therefore, the key advantage
of metamaterial transmission lines over conventional lines
is the controllability of the phase constant and characteristic
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impedance [19]. In many applications few (or even a single)
unit cells suffice to achieve the required line specifications.
Hence, periodicity and homogeneity (necessary for the
implementation of effective media metamaterials) are not a
due in metamaterial transmission lines. Indeed, some times,
rather than tailoring the characteristic impedance or the
phase of a transmission line, it might be simply necessary
to use coupled resonators in order to achieve a transmission
zero or to perturb somehow the line characteristics in the
vicinity of particle resonance. As long as the considered
resonators are electrically small and related to the SRR, these
resonator-loaded lines are called transmission lines with
metamaterial loading. This concept can be made extensive to
other structures such as printed antennas, which is the case
considered in this paper.

The paper is organized as follows. In Section 2, the meta-
material resonators considered in this paper are reviewed.
Section 3 is focused on multiband printed dipole and
monopole antennas loaded with open complementary split
ring resonators (OCSRRs), and Section 4 is devoted to the
implementation of dual-band UHE-RFID tags based on
meander line and folded dipole antennas with metamaterial
loading. Finally the main conclusions are highlighted in
Section 5.

2. SRRs and Other Related
Metamaterial Resonators

The typical topology of the SRR is depicted in Figure 1(a).
It consists on a pair of coupled split rings with the apertures
on opposite sides. The coupling between both rings drives
the first resonance frequency to low values, as compared to
that of the individual rings, and for this reason the SRR
is electrically small. By virtue of the small electrical size of
the particle, a quasistatic analysis can be applied to the SRR
[4, 20], and the capacitance and inductance are given by the
series connection of the distributed (edge) capacitances of
both SRR halves and by the inductance of a single loop of
identical width ¢ and average radius ry. Pairs of SRRs etched
in the back substrate side of CPW transmission lines can
be inductively driven by the magnetic field generated by the
line, resulting in negative effective permeability metamaterial
transmission lines [17, 18].

By applying duality, the complementary split ring res-
onator (CSRR) results [21, 22] (Figure 1(b)). This resonator
exhibits roughly the same resonance frequency to that of
the SRR (provided the same dimensions and substrate are
considered) and is typically driven by an axial time-varying
electric field. CSRRs have been used for the implementation
of negative effective permittivity metamaterial transmission
lines in microstrip technology, where the CSRRs are etched in
the ground plane beneath the conductor strip (more details
on the calculation of particle inductance and capacitance are
given in [23]).

Let us now consider the open versions of the previous
particles, that is, the open SRR (OSRR) [24] and the open
CSRR (OCSRR) [25]. The typical topologies are depicted
in Figures 1(c) and 1(d), respectively. Notice that as long

FiGURE 3: Picture of the fabricated prototypes. Top: unloaded
printed dipole antenna. Bottom: proposed dual-band printed
dipole antenna.

[S11] (dB)

Frequency (GHz)

—— Measured, dual-band antenna
Simulated, dual-band antenna
- -- Measured, conventional antenna

FIGURE 4: Measured and simulated reflection coefficient of the
proposed dual-band antenna compared to the unloaded antenna.
(——) measured dual-band printed dipole antenna; (- - - -)
simulated dual-band printed dipole antenna; (— —) measured
unloaded printed dipole antenna.

as these particles are open resonators (the connecting pins
are indicated), they can be excited by means of a voltage or
a current source. As compared to SRRs and CSRRs, OSRRs
and OCSRRs are electrically smaller by a factor of two. The
reason is simple: for the OSRR, the inductance is identical to
that of the SRR, but the capacitance is the edge capacitance of
the whole circumference, and hence it is 4 times higher than
that of the SRR. This reduces the resonance frequency of the
OSRR to half the resonance frequency of the SRR. For the
OCSRR, the capacitance is identical to that of the CSRR, but
the inductance is four times larger since in the CSRR there
are two inductive paths (in parallel) between the inner region
of the particle and the outside metallic region, whereas for
the OCSRR there is a single inductive path corresponding
to the whole circumference of the particle. As can be seen
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Figure 5: Simulated normalized radiation patterns for the dual-band dipole antenna. (a) XZ plane. (b) YZ plane. (——) 1.575GHz
(copolar component); (— —); 1.575 GHz (cross-polar component); (- - - -) 2.45 GHz (copolar component); (— -—) 2.45 GHz (cross-

polar component).

in the circuit models depicted in Figure 1, the OSRR is
an open series resonator, whereas the OCSRR is an open
parallel resonator. It has been demonstrated that combined
OSRRs and OCSRR in CPW and microstrip lines are useful
for the implementation of metamaterial transmission lines
(and many circuits based on them) and broadband bandpass
filters [26].

By connecting the external pins of the OSRR, a 2-turn
spiral resonator (2-SR) results [27, 28] (other multiple-turn
spirals have been studied in the literature [29]). Therefore the
2-SR is a closed resonator that exhibits the same resonance
frequency as that of the OSRR. It can also be concluded from
duality arguments that the complementary counterpart of
the 2-SR exhibits also this resonance frequency (which is also
that of the OCSRR).

3. Multiband Printed Dipole and Monopole
Antennas with Metamaterial Loading

Let us now focus on the design of antennas loaded with meta-
material resonators. Indeed, the improvement of antenna
performance by means of metamaterials has been a subject
of intensive research in recent years. Metamaterial substrates
and superstrates to improve the antenna directivity in planar
antennas, or leaky wave antennas with scanning capability
based on metamaterial transmission lines, are two of the
multiple applications of metamaterial technology in the field
of antennas [1-5, 30-33] (an in-depth review of this topic is
out of the scope of this paper).

In this section, the focus is on metamaterial-loaded
printed antennas [34-36]. The idea of this technique is
based on loading a conventional printed antenna with a
set of resonant particles. For example, in [34], it is shown

that a dual-band antenna is achieved by coupling a set of
SRRs to a printed dipole. Using this approach, the benefits
of printed antennas are kept while dual-band antennas are
achieved by using a simple design technique. The SRRs
produce open circuits in their positions at the resonance
frequencies. Hence the antenna resonance is achieved not
only when the effective length of the dipole arms is /4 (A
being the guided wavelength), but also when the different
locations of the SRR are 1/4 from the antenna feeding point
(the SRRs must be tuned at these frequencies). By using
SRRs, narrow bandwidths are reported in [34] for the bands
associated with the SRR loading. Even the use of SRRs
with different resonance frequencies leads to bandwidths
smaller than 5% [35], which might not be useful for most
applications. However, an open circuit in the dipole arms can
also be obtained by means of OCSRRs. The advantage is that
by series connecting OCSRRs within the dipole, broadband
responses can be achieved (as compared to SRRs), due to the
relative values of capacitance and inductance.

To illustrate the potential of OCSRR-loaded printed
antennas, we report here a dual-band dipole [37] and a
tri-band monopole [38]. The layout of the printed dipole
(an antipodal structure) and the details of the OCSRR are
depicted in Figure 2, whereas the photograph of the antenna
is shown in Figure 3, and compared to the conventional
monoband dipole. The parameters of each dipole strip are
the length L and the width W (which must be engineered
to optimize matching). This configuration has been chosen
because it avoids the use of a balun to feed the antenna.
This is possible because the antipodal printed dipole is
fed through a paired strips transmission line with a SMA
connector soldered to the end of the line. The dimensions
of the feeding line are the length Ly and the width Wjy.
An OCSRR is connected in series to each dipole strip at
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FiGgure 6: Sketch of the proposed dual-band (a), and triband (b) printed monopole antenna loaded with OCSRRs, and respective

photographs (c).

a distance docsgr from the center of the antenna. The
different dimensions of the proposed antenna have been
optimized to simultaneously operate at the L1-GPS fre-
quency (1.575GHz) and the WiFi band of 2.4-2.48 GHz.
The final dimensions of the design are L = 22.00 mm, W
= 2.50mm, Ly = 25.00mm, W; = L15mm, docsrr =
17.00 mm, ler = 4.00mm, and ¢ = d = 0.30 mm. The used
substrate is the Rogers RO3010 with ¢ = 10.2 and h =
1.27 mm.

In the case of the conventional unloaded antenna, there
is only one series resonance within the band of interest. This
resonance frequency is 2.2 GHz. This resonance corresponds
to the fundamental mode of the dipole antenna. Moreover,
in the vicinity of the resonance, the value of the real part of
the impedance is close to 50 Q (not shown), which produces
proper matching, as it can be observed in Figure 4. On the

other hand, the OCSRR loading introduces a parallel reso-
nance in the proposed dual-band antenna input impedance.
The addition of this parallel resonance has a double effect
on the input impedance of the proposed dual-band antenna.
The first one is a slight shift on the series resonance of
the dipole antenna towards higher frequencies. In this case,
this resonance is found at 2.45 GHz. The second effect is
the appearance of an additional series resonance below the
parallel resonance of the OCSRRs. This additional series
resonance is found at 1.6 GHz. The real part of the input
impedance is around 50 Q) in the vicinity of this additional
series resonance. This allows achieving an additional band
with proper matching in the proposed antenna (Figure 4).
As it can be seen, this additional frequency is below the
fundamental frequency of the unloaded dipole antenna,
achieving some degree of miniaturization.
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FiGure 7: Simulated and measured reflection coefficient of the proposed dual-band and tri-band printed monopole antennas. The simulated
reflection coefficient of the conventional monopole antenna is also plotted.

Considering |S; | below —10 dB, the first working band is
centered at 1.56 GHz with 5% bandwidth and the second one
is centered at 2.46 GHz with 9% bandwidth. It is important
to note that this is a considerable improvement with respect
to other works in which the bandwidth of one of the bands
was always below 5% [34, 35]. The obtained results cover
the bandwidth of the proposed applications (GPS and WiFi).
The gain of the antenna has been estimated in a TEM cell
from the power received by the antenna and the incident
field measured by a probe [39]. The measured gain of the
proposed antenna is 0.85dB at the GPS band (1.575 GHz)
and 2 dB at the WiFi band (2.45 GHz). These experimental
results agree with the CST-simulated ones: 0.9 dB at the first
band and 2.2 dB at the second one.

The CST-predicted radiation patterns for the proposed
dual-band antenna are shown in Figure 5 for completeness.
A dipolar-like radiation pattern is obtained at both working
bands. The typical figure of eight is obtained in the XZ plane
and an omnidirectional pattern is obtained in the YZ plane at
both frequencies (1.575 and 2.45 GHz). The only difference
between both working bands is the cross-polarization level,
which is around —10dB in the first band while it is —20 dB
in the second one.

Following the ideas of the antipodal dipole antennas
with metamaterial loading, we have also designed multiband
printed monopole antennas. Figure 6 shows a photograph
of two fabricated prototypes: a dual band and a tri-band
printed monopole. The considered substrate in this case is
the low-cost FR4 (¢, = 4.5 and h = 1.5mm). The dual-
band antenna covers the bands of 2.40-2.48 GHz (Bluetooth
and WiFi) and 5.15-5.80 GHz (WiFi). The final dimensions
of the monopole are L, = 21 mm, W,, = 5.85mm. The
parameters of the feeding line are set to obtain a 50 O CPW.

Hence, S = 2.44 mm and W = 0.30 mm. The dimensions of
each ground plane are L, = 16 mm and W, = 13.48 mm.
The gap between the ground planes and the monopole is ¢ =
0.30 mm. The OCSRR is placed at a distance d, = 12.50 mm
and its parameters are ley; = 2.30 mm, ¢ = d = 0.25 mm. The
gap o is set to 0.50 mm.

The tri-band monopole antenna is an extension of the
previous dual-band antenna and it covers the previous bands
and the IEEE 802.11y band of 3.65-3.70 GHz. According
to the layout of the tri-band monopole (Figure 6), the
additional OCSRR is placed at a distance d,, = 18.00 mm.
Its design parameters are ley = 2.70 mm, ¢ = d = 0.25 mm.
This corresponds to a resonance frequency of 3.65 GHz. The
gap go2 is set to 0.40 mm. These values have been optimized
to only cover the desired bandwidth and not interfere with
other systems. The other parameters of the antenna remain
unchanged with respect to the dual-band design, except the
length of the monopole which is reduced to L,, = 19.75 mm
to compensate the inductive behavior of the OCSRRs below
their resonance frequencies.

The simulated and measured reflection coefficients of the
dual-band and tri-band monopoles are depicted in Figure 7.
The dual-band printed monopole antenna exhibits good
matching (|S;;] < —10dB) from 2.29GHz to 2.52GHz
at the lower frequency band. This corresponds to a 9.6%
bandwidth. In the upper band, the antenna is well matched
from 4.66 GHz to at least 7GHz. Thus, the fabricated
antenna satisfies the specifications of Bluetooth and WiFi
(bands of 2.40-2.48 GHz and 5.15-5.80 GHz). The fabri-
cated tri-band monopole antenna is well matched from
2.30GHz to 2.52GHz for the first band. Its reflection
coefficient is below —10 dB between 3.56 GHz and 3.78 GHz
for the second band, and between 5.06 GHz and 6.71 GHz
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FIGURE 8: Measured radiation patterns of the tri-band printed monopole antenna. (a) 2.45 GHz, (b) 3.65 GHz, (c) 5.40 GHz.

for the third band. Hence, the fabricated prototype is
well matched within the regulated bandwidths of Blue-
tooth and WiFi including IEEE 802.11y (3.65-3.70 GHz
band).

The proposed antennas present monopolar radiation
characteristics at all the bands. As an example, the normal-
ized measured radiation patterns of the tri-band monopole

antenna are shown in Figure 8. A monopolar radiation
pattern is obtained at the three frequencies. The cross-polar
component (XPOL) has low values (below —20dB in all of
the cases, except the XY plane of the third frequency which
is below —15 dB). The gains of this design are 1.4 dB, 1.2 dB,
and 1.7 dB at the first, second, and third bands, respectively.
These results are in good agreement with simulations, in



I
—_— <
Wm
Sh Iy
d dr
<>
:
, O
:
(a) (b)

Advances in OptoElectronics

FIGURE 9: Layout of the meander line antenna considered for tag implementation (a) and layout of the MLA perturbed by the presence of a
coupled two-turns spiral resonator, 2-SR (b). The strip width of the 2-SR is 0.5 mm, and the separation between strips is 0.3 mm.

6000 6000
4500 1 4500
g 3000 13000 E
) <}
8 1500 11500 8
=] =]
< <
2 3
g 0 I
—1500 —1500
[
("

-3000 + + — + -3000
0.7 0.8 0.9 1 1.1 1.2
Frequency (GHz)

--— Reactance
—— Resistance

(a)

1000 1000
800 1800
E 600 4600 E
) <}
8 400 1400 ot
=] =]
< <
Z g
g 200 1200 g
0F 10
~200 L L " . . -200
0.7 0.75 0.8 0.85 0.9 0.95 1
Frequency (GHz)
- - Reactance
—— Resistance

(b)

FIGURE 10: Input impedance of the MLA depicted in Figure 9(a) in a broader band (a) and input impedance of the MLA in the region of

interest (b).

which the radiation efficiency is 92%, 83%, and 94% and
the overall efficiency is 91%, 82%, and 93% at the central
frequency of each band.

4. Dual-Band UHF-RFID Tags

Metamaterial loading is also interesting for the implementa-
tion of dual-band antennas with closed frequency bands, as
is the case of UHF-RFID, where the different regulated bands
worldwide are contained in the spectral region between
860 MHz and 960 MHz. In this case, however, the approach is
based on a perturbation method which was reported in [40].
The key aspect in the implementation of long read-range
UHEF-RFID tags is to achieve conjugate matching between
the antenna and the integrated circuit (or chip). The input
impedance of the chip is provided by the manufacturer

and varies with frequency. Therefore, the implementation of
dual-band UHF-RFID tags means to design the antenna (and
the matching network, if it is present) so that the chip “sees”
its conjugate impedance at the required frequencies. This
can be done by cascading a dual-band impedance matching
network between the antenna and the chip, consisting on
a transmission line loaded with a metamaterial resonator
[40]. The resonator produces a perturbation in both the
characteristic impedance and the phase constant of the
transmission line, and conjugate matching at two frequencies
can be obtained (the details are given in [40]). However, it is
possible to directly actuate on the characteristic impedance
of the antenna, by loading it with metamaterial resonant
particles [41] (avoiding thus the matching circuitry). The
principle is very similar to that reported in [40] for matching
networks.
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correspond to the resonance frequencies of the dual-band MLA.

Following the above-cited perturbation approach, several
dual-band UHF-RFID tag antennas have been implemented.
One prototype device consists on a meander line antenna
(MLA) loaded with a spiral resonator (SR). The layout of
the antenna, compared to the one without the SR is depicted
in Figure 9. The dual-band antenna has been designed to be
operative at the European (867 MHz) and USA (915 MHz)
UHF-RFID regulated bands. The antenna has been designed
on the Rogers RO3010 with dielectric constant &, = 10.2 and
thickness & = 0.127 mm. The considered RFID chip is the
SL31001 from NXP semiconductors. The impedance of the
chip at the intermediate frequency is Zpip, = 20 — j485 Q.
This impedance is considered as reference impedance so that
the antenna is designed to roughly exhibit the conjugate
impedance of the chip at this intermediate frequency, and
then the perturbation (by means of the SR) is introduced
in order to achieve conjugate matching at the required
frequencies. The dimensions of the MLA are 48 mm X
48 mm, and the strip width is 1.4 mm. The other relevant
dimensions are I, = 16.3 mm, w,, = 4.8 mm, d; = 7.3 mm,
dr = 33.9 mm, and dy = 14.2 mm. The input impedance of
the MLA is depicted in Figure 10, whereas Figure 11 depicts
the input impedance and matching of the MLA loaded with
the SR. As can be appreciated, the dual-band functionality in
the SR-loaded MLA is achieved.

Both antennas have been fabricated, and the read range,
given by

A [EIRPG,t
=\ (1)

r 4 Penip
has been measured through the experimental setup available
in our laboratory (Figure 12). In (1), A is the wavelength,
EIRP, determined by local country regulations, is the product
of P:G; which are the transmission power and the trans-
mission gain, respectively, Pcyip is the minimum threshold

Vector signal
generator

[ Q%
[

[€=;

Amplifier

TEM cell

Vector signal Circulator

analyzer

F1GURE 12: Bloch diagram of the experimental setup.

power necessary to activate the RFID chip, G, is the gain of
the receiving tag antenna, and 7 is the power transmission
coefficient. The value of EIRP in European frequencies is
3.3 W; whereas in American frequencies it is 4 W. The power
transmission coefficient is inferred from the simulation of
the return loss of the antenna, using as port impedance that
of the chip. The tag gain is also obtained from simulation;
hence the theoretical read range can be calculated.

The experimental setup consists of a N5182A vector
signal generator which creates RFID frames. Such generator
is connected to a TEM cell by means of a circulator. The tag
under test is located inside the TEM cell and it is excited
by the frame created by the generator. Then the tag sends
a backscatter signal to a N9020A signal analyzer through
the circulator. The RFID frame frequency is swept with a
specific power. Once the operation frequencies are identified,
the output power is decreased until the tag stops working.
Finally, a probe is placed into the TEM cell in order to
determine the incident electric field intensity E, at each
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FIGURE 13: (a) Simulated and measured read ranges of the monoband and dual-band MLA RFID tags, and fabricated monoband (b) and

dual-band (c) MLA RFID tags.

frequency, which is related to the received power by the chip
according to

|E0|2 AZGr

Pchip = SAeT = 2}7 A T,

(2)
where S is the incident power density, A.f is the effective area
of the tag antenna, and # is the free-space wave impedance
(which is equivalent to 1207 Q). The measured read range
can be inferred by introducing (2) in (1), resulting in

+/60EIRP

b )

As indicated before, the EIRP European value is lower
than the USA counterpart, so the read range in Europe would
be roughly reduced by a 0.9 factor for the same incident
electric field intensity.

The fabricated tags, as well as the simulated and mea-
sured read ranges, are depicted in Figure 13, where it can

be seen that the read range obtained in the dual-band tags
(at the frequencies of interest) is superior to that of the
monoband tag. The read range of the monoband MLA
tag is roughly 4m at the frequencies of interest, whereas
almost 6 m and 8 m at the European and USA frequency
bands, respectively, are achieved by means of the designed
dual-band MLA. This enhancement in the read range is
due to an improved matching between the antenna and the
integrated circuit, since it has been verified by simulation
that the radiation efficiency of the monoband MLA is
almost constant from 867 MHz to 950 MHz. In fact, if it
was possible to achieve a perfect matching between the
monoband antenna and the integrated circuit in all the band
of interest, the obtained read range would be around 8 m at
all frequencies. Nevertheless, this assumption is not possible
due to the particularities of the chip impedance.

The perturbation method reported above can also be
applied to folded dipole RFID tag antennas [42]. Figure 14
depicts a prototype, fabricated on the Rogers RO3010 with
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FiGure 14: Photograph of the designed dual-band tag based on a
folded dipole antenna.
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FiGure 15: EM simulation and measurement of the read range of
the tag shown in Figure 13, compared to that of the tag without SR.

dielectric constant & = 10.2 and thickness & = 0.25 mm.
The dimensions are 62.7mm X 17.9 mm. The simulated
and measured read ranges are depicted in Figure 15 and
compared to those of the tag without the presence of the
SR. Again, the dual-band functionality at the regulated RFID
European and USA frequency bands is achieved.

We would like to mention that in the designed RFID tags,
the resonator frequency is set at the intermediate frequency
(891 MHz), and as a consequence, the resonator impact
on the antenna radiation efficiency can be neglected at the
frequency bands of interest (867 MHz and 915 MHz).

5. Conclusions

In conclusion, two different approaches for the implementa-
tion of multiband printed antennas have been reviewed: one
of them consisting on the introduction of series connected
OCSRRs in the arms of printed dipole or printed monopole
antennas; the other one based on a perturbation method
achieved by loading printed antennas, such as meander line
antennas (MLAs) or folded dipoles, with spiral resonators
(SRs). The former approach has been revealed to be useful
for personal area networks (PANs) and wireless local area
networks (WLANSs); the second one is of interest in the field
of UHF-RFID. In both cases, the multiband functionality has
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been demonstrated through the fabrication and characteriza-
tion of several prototype devices.
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An efficient and compact coupler—a device that matches a microwaveguide and a nanowaveguide—is an essential component
for practical applications of nanophotonic systems. The number of coupling approaches has been rapidly increasing in the past
ten years with the help of plasmonic structures and metamaterials. In this paper we overview recent as well as common solutions
for nanocoupling. More specifically we consider the physical principles of operation of the devices based on a tapered waveguide
section, a direct coupler, a lens, and a scatterer and support them with a number of examples.

1. Introduction

Photonic components have advantages comparing to the
electronic ones. Infrared and optical frequencies 10'-
10' Hz provide much broader operational bandwidth than
the fastest electronic circuits. The losses in optical waveguides
are smaller than in metallic wires. This is why, as D. Miller
wrote, “the optical interconnects are progressively replacing
wires” [1]. To achieve larger functionality on an integrated
optical chip the optical components have to be miniaturized.
A natural limitation, however, comes into play: the diffrac-
tion limit claims that we cannot focus light in a spot less than
a half of the wavelength. The transverse size of conventional
dielectric waveguides (e.g., silicon waveguides) is also limited
to a half of the wavelength. Only employment of metals
allows to overcome the diffraction limit and to confine a
wave to a smaller area, very often at the cost of increased
propagation losses.

Nevertheless, the problem is not only to create efficient
waveguides that provide subwavelength mode confinement,
but also to make an efficient interface between free space or
an optical fiber and a subwavelength nanowaveguide, that is,
to focus light and launch it efficiently into the waveguide. The
artistic view of the situation is depicted in Figure 1. Trying
to pour water from a big bowl into a bottle with a narrow
bottleneck, one would waste a lot. However, usage of a funnel

simplifies the task and increases the efficiency significantly.
An optical coupler plays the role of a funnel for light.

The problem of optical coupling originates from the
pronounced modal mismatch between an optical fiber (a
conventional single-mode telecommunication fiber has the
core of 8 ym in diameter) and a nanosized waveguide, which
has a core less than 1ym. They have a small overlap of
modal fields that prevents from the efficient coupling. Long
adiabatically tapered fibers can solve the coupling problem
of a subwavelength waveguide, but for an efficient mode
conversion the tapered region may reach the length of several
millimeters that is totally incompatible with modern micro-
and nanofabrication. The compact efficient subwavelength
couplers require new approaches.

We are witnessing a real explosion of various metamate-
rial and plasmonic solutions for focusing and nanocoupling
in recent years. The reasons for that are first of all the
extraordinary optical properties the artificial metal-dielectric
structures offer. Not only the proposed device geometries are
different, but also the very physical principles they are based
on vary significantly.

The goal of this paper is to give an overview of existing
nanocoupling solutions for the visible and near-infrared
(telecom) range and to reveal the most efficient ones. We
wish to focus mostly on the physical effects employed for
nanocoupling rather than on technical details of the devices.



FIGURE 1: An artistic view of the problem of coupling light from a
wide microscopic fiber to a nanoscopic waveguide. Employment of
a coupler, which is represented by a funnel on the figure, minimizes
the losses and simplifies optical alignment.

We are not going to provide the complete set of references on
nanocouplers, since with heaps of articles already published
and being published every month it is almost impossible.
The cited papers should be considered rather as valuable
examples of each physical effect employment.

The paper is organized as follows. In Section 2 the def-
initions of a nanocoupler and a nanowaveguide are given
as well as the basic information on the common waveg-
uide properties. Various physical principles, on which the
nanocoupler realization can be grounded, are listed in
Section 3. The tapered waveguide-based nanocouplers are
discussed in Section 4. Section 5 deals with the directional
nanocouplers. The lenses-based and scatterer-based couplers
are considered in Section 6 and Section 7 correspondingly.
Other ideas are listed in Section 8. Conclusions summarize
the paper.

2. Definitions

2.1. Nanowaveguide. We define a nanowaveguide as an elec-
tromagnetic waveguide that has lateral sizes in the “nano”
range, that is, 1-1000 nm. Depending on the waveguide
material and the wavelength of the light nanowaveguide
can be subwavelength or not. The modal size of the
subwavelength waveguide is smaller than the size of a focused
light beam can be. The nanowaveguides can be divided in two
groups: dielectric and plasmonic waveguides. Their combi-
nations, the so-called hybrid waveguides, are also possible.

2.2. Dielectric Waveguide. The most common material for
dielectric waveguides is silicon due to its high refractive
index, transparency at the telecom wavelengths, and CMOS
compatibility. Typically, silicon waveguides are rib, ridge, and
photonic crystal waveguides. The high refractive index of
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the silicon waveguide makes it possible to reduce the cross-
section down to 200 x 500 nm?. The dielectric waveguide
always has a cut-off size, below which the waveguide modes
become leaky and the waveguide cannot transport light on
reasonable distances.

Miniaturization of optoelectronic components requires
decreasing the size of optical waveguides. However, the
natural limitation comes into play. Due to diffraction the
smallest size of an optical beam in a medium is on the
order of the wavelength. If we consider a wave of the
frequency w propagating in the medium with the refractive
index n, the wavenumber is k = 2mn/A. The transverse
wavevector components, for example, k, can take the values
from —k to k, so its maximal uncertainty can be Akym.x =
2k = 4nn/A. Due to the uncertainty principle (or likewise
Fourier transformations), the coordinate uncertainty Ax is
connected to the wavevector uncertainty Ak, [2] through

AxAky = 2. (1)
That limits the size of the light beam to

_2m A

x—ﬁ—g. (2)

Considering, for example, the telecom wavelength 1 =
1.55 ym and silica refractive index n = 1.5 we can estimate
the smallest size of a light beam as Axi, = 517 nm. Light can
be confined to smaller spots only by using surface plasmons
at an interface between metal and dielectric.

2.3. Plasmonic Waveguide. Plasmonic waveguides are by
default metal-dielectric waveguides. They attract a lot of
attention since in some configurations they can show the
absence of the cut-off wavelength at any waveguide size.
Therefore, the mode size can be reduced to extremely small
values but at the cost of increased optical losses. Another
advantage of the plasmonic waveguides is the presence of
metal that can be used not only as a waveguiding element
but also as an electric contact that allows using it for tuning
the dielectric surrounding (e.g., due to the electrooptical or
thermooptical effects). Plasmonic waveguides are currently
considered for the potential replacement of the electronic
interconnects in the future generation integrated circuits.

Surface plasmon polaritons (SPPs) are the eigenmodes
of a metal-dielectric interface. SPPs are combined light-
electrons density waves. On a flat metal (permittivity ¢ )-
dielectric (permittivity ¢,) interface the SPPs are transverse
waves with the magnetic field parallel to the interface. In the
visible and near-infrared ranges the permittivity of metal is
very dispersive. The propagating SPP solutions correspond
to a case Re(e; + &) < 0. For a detailed background on plas-
monics theory and applications we refer the reader to [3, 4].

Several types of plasmonic waveguiding structures
were proposed, for example, metal-insulator-metal and
insulator-metal-insulator multilayered structures [5], strip
[6], trenches and V-grooves [7, 8], wedge [9], slot [10, 11],
and nanoparticles chain [12] waveguides. A comprehensive
overview of the plasmonic waveguides and nanoplasmonic
systems can be found in [3, 4, 13-15].
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Nanocoupler

FrGure 2: Nanocoupler concept: a focusing device or a mode con-
vertor. As an example the mode of the dielectric waveguide (left) is
gradually transformed into the mode of the plasmonic waveguide
(right).

2.4. Nanocoupler Definition. A nanocoupler is a device that
facilitates coupling of light from free space or a macroscopic
optical fiber to a nanowaveguide. It can be understood as a
focusing device, a sort of an optical funnel (see Figure 1) that
squeezes light into a small spot. If we talk about matching
a thick and a thin waveguides that have different modal
distributions, the nanocoupler can be also understood as a
mode convertor, a device that transforms a mode of the thick
waveguide to a mode of the thin waveguide (see Figure 2).

2.5. Requirements to a Nanocoupler. We understand the
nanocoupler as a focusing device or a mode convertor that
gives a high coupling efficiency (CE) which is the ratio of the
power loaded into the waveguide Py to the power incident
on the nanocoupler from free space or power delivered by a
thick waveguide Pjy:

Pwg
Pinc .
High coupling efficiency automatically means low losses,

including absorption A, reflection R, and scattering S. Addi-
tional requirements to the nanocoupler can be as follows.

CE = (3)

(1) Small size on the order of several micrometers. This is
an important requirement for the integration of the
nanocoupler within an optical integrated circuit.

(2) Simplicity and small price of fabrication. This
requirement is important for the mass production
but not so important on the stage of the scientific
development.

(3) Spectral selectivity. The importance of this property
depends on the application. In many cases a broad
bandwidth is desirable. However, there are some
applications, where a narrow bandwidth is preferable,
for example, if the coupler is used at the same time for
the wavelength demultiplexing.

(4) Polarization sensitivity. The importance of this
requirement depends on the application and on the
selected nanowaveguide. If the nanowaveguide is
polarization sensitive, the nanocoupler’s working
polarization should be matched with the polarization
of the waveguide or it should be polarization insensi-
tive.

We have to emphasize that the nanocoupler differs from
a nanofocusing or a nanoimaging device. The goal of
nanoimaging or nanofocusing is only to image a tiny light
source or focus light into a small spot, respectively, no
matter how large is the fraction of the transmitted power
with respect to the incident power, while for the nanocoupler
the coupling efficiency is the most crucial parameter. For
example, the stimulated emission depletion technique
[16, 17] allows for a fantastic resolution below 10 nm in the
visible light imaging systems, but it can hardly be used for
an efficient coupling.

3. Nanocouplers Classification

The role of the nanocoupler is to match the impedances (or
wavevectors) and field profiles of an incident wave and a
mode of the accepting nanowaveguide. Depending on the
employed physical mechanisms several types of nanocou-
plers can be singled out.

(1) Tapered waveguides (Figure 3(a)) which will be
referred to as tapered waveguide coupler. In this case
a waveguide with the gradually reduced core cross-
section compresses a wave towards the matching
parameters with the accepting nanowaveguide.

(2) Light can be coupled first to a wide waveguide (e.g.,
a silicon or long-range surface plasmon-polariton
waveguide) and then with the help of a directional
coupler or a resonant stub coupled into a smaller
nanowaveguide (Figure 3(b)). We will refer to this
case as a direct coupler.

(3) Light can be tightly focused with a lens (Figure 3(c)).
This is what we are referring to as a lens coupler.

(4) A single or multiple scatterers can be used for
coupling (Figure 3(d)). Correspondingly, the device
is called a scatterer coupler.

(5) There are some other ideas that do not fall into
the previously mentioned categories. We will refer to
them under a unified shield as other solutions.

The nanocoupler can be arranged as a separate device
(Figure 4(a)), as a device integrated with a waveguide on a
chip (Figure 4(b)), or as a device integrated with an exci-
tation fiber (Figure 4(c)). For the practical applications the
integrated configurations (b) and (c) are preferable, since a
lesser number of movable parts simplifies optical alignment.

Two main excitation configurations are important in the
practical applications: lateral coupling (Figure 5(a)), when
the incident wave direction coincides with the nanowaveg-
uide, and vertical coupling (Figure 5(b)), when the light
direction is perpendicular to the nanowaveguide. The second
configuration can provide not only incoupling from free
space, but also communication of the optical elements
between two layers of an optical integrated circuit. Incident
angles of light different from 0 and 90 degrees are also
possible.
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FIGURE 3: Types of the possible nanocouplers realizations: (a) tapered waveguide coupler, (b) direct coupler transferring the power from a
wide waveguide to a narrow waveguide, (c) lens coupler, (d) scatterer coupler.
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FIGURE 4: Possible geometrical configurations of the coupler: (a) a separate device, (b) integrated with a nanowaveguide (WG) on the same

chip, (¢) integrated with an excitation fiber.

4. Tapered Waveguide Coupler

As we already mentioned the tapered waveguide coupler is
nothing else but a waveguide with the gradually decreasing
core. A mode of the waveguide is subjected to adiabatic com-
pression, when propagating to the tip. Thus it reaches more
favorable conditions for coupling to the nanowaveguide.
The tapering angle and the rate of compression determine
the coupling efficiency and depend on the properties of
materials. Therefore, further classification of the tapered
waveguides follows the material properties:

(1) fully dielectric tapers having the dielectric core and
the dielectric cladding (Figure 6(a)),

(2) hybrid tapers having the metallic core and dielectric
cladding or the dielectric core and metallic cladding
(Figure 6(b)),

(3) metamaterial tapers having the structured metal-
dielectric composite core (Figure 6(c)).

4.1. Dielectric Core and Cladding. If one takes an optical
fiber, heats it up, and then pulls, the diameters of the core
and shell simultaneously decrease. So it is possible to draw
the core down to a nanosize diameter. Low-loss tapered
fibers were fabricated and measured [18]. The optical losses
for a fiber of diameter d = 750nm at A = 1.55um are
0.017 dB/mm. However, it was also theoretically shown [19]
that even an ideal fiber does not allow the substantial core

thinning, since the propagating mode completely vanishes
for the core size of one order of magnitude smaller than the
wavelength. In the real fibers with imperfections this limita-
tion is even tougher.

Nevertheless, the dielectric tapered waveguide coupler
finds useful applications. As L. Zimmermann reported at the
Silicon Photonics Workshop in 2011 [20], an inverted taper
is commonly used for lateral coupling from a high numerical
aperture lensed optical fibers with a spot size of 3um to a
200 x 500 nm? silicon waveguide. The inverted taper is also
used for coupling to and from the slow light photonic crystal
waveguide [21] reducing the insertion loss value to 10dB.
Tapering came out to be useful to outcoupling efficiency
increase and far-field shaping of the nanopillar single photon
sources [22, 23]. The coupling efficiency can be very large
(80% and higher) for certain pairs waveguides, for example,
for silicon ridge and silicon slot waveguides [24, 25].

4.2. Metallic Core or Cladding. Tapered fiber tips covered
with metal are the essential part of the scanning near-
field optical microscopy. It allows spatial compression of
light below the diffraction limit by employment of SPPs
[26]. Metal-dielectric-metal tapered plate waveguides were
theoretically and experimentally demonstrated for the tera-
hertz [27-30] and optical ranges [31-34] showing the ability
of ultrahigh energy concentration. In the latter work [34]
the maximal transmittivity of 8% was measured for the
wavelength A = 780 nm in an adiabatically tapered metalized
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FIGURE 5: Two practically important coupling configurations: (a) lateral and (b) vertical. Black arrows show the direction of light

propagation.

F1GURE 6: The types of taper couplers: (a) fully dielectric taper, (b) hybrid taper with metal core or cladding, (c) metamaterial taper.

fiber with the tip opening of about 150 nm. The prominent
property of such system is that a metal-dielectric-metal
waveguide does not have a cut-off, and only losses limit
its performance. Nanofocusing with a V-shaped metallic
groove, which is a similar system, was experimentally
demonstrated [35]. A wave with A = 1.5 ym wavelength was
focused into a spot of 1/40. The reported energy efficiency
was 50%. In 2004 M. Stockman predicted that a tapered
metallic wire allows the giant energy accumulation and
intensity enhancement at the tip of the metal taper [36].
The idea is applicable not only in the optical range but also
in the terahertz range if the surface of the tapered wire is
corrugated [37]. An experimental realization of the tapered
wire structure was reported [38]. In this case light with A =
1.55 um was coupled to a 2000 nm wide wire and compressed
down to 90 nm. The transmittivity of 20% was shown.

Another approach was proposed in [35]. A metallic
funnel consisting of long metallic nanocylinders of the radii
from 10 to 24 nm separated with a 2nm thick dielectric
was shown to focus a Gaussian beam of 200 nm full width
into a spot of 20 nm with a power transmittivity of 80%
[39]. However, a practical realization of such system is hardly
possible at the moment.

4.3. Metamaterial Core. The idea behind this nanocoupler
type is to use a metamaterial as the taper core. The advantage
of utilization of metamaterials is that their properties are not

strictly limited to that we have from natural materials and can
be designed to reach amazing diversity and values. An optical
funnel containing a metal-dielectric photonic crystal was
proposed in [40]. The field compression down to 1/30 with a
transmission of 13% was reported. The metamaterial-based
nanotips for field enhancement were theoretically proposed
[41, 42]. The nanotip consists of metallic nanospheres of
a gradually changing density. They can be used for field
concentration (200 times field enhancement was reported)
and the light compression to a spot of 10 nm. In the work
[41] it is stated that the power efficiency of such metamaterial
tip is larger than of a metalized taper with the 10 nm output
hole, but the exact values of the transmittivity are not
mentioned.

4.4. Summary. A dielectric adiabatically tapered fiber is a
well-known instrument of field concentration. However, it
can provide either small spot size with low transmission or
high transmission at the cost of large size of the light beam
and the coupler itself. The metal- or metamaterial-based
tapers can be of significantly smaller length. They can give
field concentration and reasonable transmittivity (e.g., 20%).
The difficulties in practical realization of effective design
solutions are connected with the technological constrains;
for example, fabrication of a regularly packed bundle of
metallic cylinders of radius 10nm separated with 2nm of
dielectric is currently out of reach.



5. Direct Coupler

Based on the geometrical position of one waveguide with
respect to another, the direct couplers can be divided into
the following classes:

(1) one waveguide next to or inside another
(Figure 7(a)),

(2) end-fire direct connection of the waveguides
(Figure 7(b)),

(3) resonant stub between the waveguides (Figure 7(c)).

Direct couplers as we classified them are either direc-
tional couplers or schemes including end-fire coupling.
Directional couplers are classical components of photonic
integrated circuits. They are typically used for wavelength
division or light switching. The principle of their operation
is based on the coupling between parallel waveguides due to
overlapping of their modes fields. The coupling leads to the
hybrid modes (supermodes, compound modes) formation.
The strength of the mode coupling can be controlled by
the distance between the cores. Therefore, such couplers
require preliminary feeding of a large waveguide at an
intermediate step. Then disposing the first waveguide in
a close proximity with a nanowaveguide we initiate their
coupling with a consequent transit of the light energy in the
second channel. Directional couplers are characterized by the
coupling length, the distance, on which the maximal amount
of the energy is transferred in the second channel and vice
versa. The coupling length, in turn, is proportional to the
wavenumbers mismatch. As a rule, directional couplers have
a relatively large coupling length, what results in the total size
of such systems about 10-20 ym.

The end-fire coupling scheme also exploits the fields
overlapping mechanism. Here the coupling appears as a
result of the field profiles matching. The scheme does not
require a lengthy coupling part; however, short sizes come
at a price of lower coupling efficiency. To improve the
efficiency a resonant stub is often placed between the input
and nanosized waveguides.

5.1. One Waveguide Next to or inside Another. A typical
scheme for direct coupling is to arrange one waveguide
above another such that the eigenmodes of the waveguides
hybridize, and the waveguides become coupled. In such
case energy from the input mode is transferred from one
waveguide to another and back. Making the overlap region
equal to the coupling length it is possible to achieve the max-
imal energy transfer efficiency. Such systems were proposed,
simulated, and experimentally realized for dielectric [43] and
plasmonic long- and short-range waveguides [44—48]. The
coupling length may vary from several micrometers [47, 49]
to hundreds of micrometers [43]. For certain waveguides
(dielectric to long-range surface plasmon polariton) the
coupling efficiency can be extremely large. The theoretical
prediction of coupling efficiency CE = 60% from dielectric
to plasmonic slot waveguide at A = 1.55ym was confirmed
in measurements [47]. However, we should take into account
that light should be first coupled from a fiber to an input
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(silicon) waveguide and that the maximal coupling efficiency
is in the order of 60-70%. That makes the total coupling
efficiency of the system about 30-40%. It is possible to obtain
light coupling by placing metal nanowires on top of the
dielectric waveguide perpendicular to the latter [50]. In such
arrangement the overlapping region is extremely small, and
the coupling efficiency of such system is reported to be only
1%.

The configuration when one waveguide protrudes into
another is possible to certain waveguide types only, since
the bigger waveguide should contain empty space inside.
For example, it is possible to insert a silicon waveguide
inside a plasmonic slot waveguide, but not into another
silicon waveguide. Several designs for telecom wavelengths
were proposed [51-53] and experimentally realized, giving
a theoretical coupling efficiency of 88% and measured
coupling efficiency about 35% [53].

5.2. End-Fire Coupling. The end-fire coupling is the simplest
case of the waveguides connections, and it is common in the
optical communication systems. Nevertheless, the end-fire
coupling from a dielectric to plasmonic slot waveguide or a
nanowire is not usually very efficient due to the pronounced
impedances mismatch. However, if the optimization of the
geometry is conducted the coupling efficiency more than
70% [54, 55] and even 90% can be achieved [56, 57]. For
example, at the wavelength of A = 1.55um the coupling
efficiency of 80% was measured for a long-range surface plas-
mon polaritons waveguide connected to a silicon waveguide
[58]. In another work the coupling from a silicon to plas-
monic slot waveguide with 30% efficiency at A = 1.55 ym was
experimentally demonstrated [59]. End-fire coupler based
on optical tunneling can be used for identical waveguides
separated with a small gap [60]. Varying the width of the gap
one can tune the transmission and reflection in a wide range.

5.3. Resonant Stub between the Waveguides. The use of res-
onant stubs (e.g., a A/4-transformer) for the efficient wave
coupling is the well-known technique in the microwave
waveguides engineering. It is based on the resonant transmis-
sion increase due to the constructive interference similarly to
the antireflection coatings for lenses. The same concept can
be used in the optical range, for the plasmonic waveguides
of different cross-sections [11, 61-63] and for the silicon
and plasmonic waveguides [64] matching. The coupling
efficiency can be enhanced in comparison with the end-fire
coupling. However, as based on the resonant phenomena
the scheme has limited bandwidth and very individual
application range.

The A/4-transfomer matching 500 nm and 50 nm wide
plasmonic transmission lines with the coupling efficiency of
86% was shown numerically [61]. Matching of a 300 nm
wide silicon waveguide with a 40 nm wide plasmonic slot
waveguide with the coupling efficiency of 88% was also
demonstrated [64].

5.4. Summary. While giving high values of the coupling
efficiency (in case of a directional coupler up to 60%) and
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FiGure 7: Types of the direct couplers: (a) one waveguide next to or inside another, (b) end-fire coupling, (c) resonant stub between

waveguides.

being feasible for fabrication, the direct nanocouplers require
additional structures such as an input silicon waveguide and
a preliminary coupler to this silicon waveguide. That makes
the total CE of up to 40% and extends the nanocoupler
dimensions up to several dozens of micrometers. Moreover,
additional structures (e.g., a preliminary coupler) may
require additional processing steps during fabrication.

6. Lens Coupler

Lens is a well-known focusing device. However, we should
emphasize that the requirements for a nanocoupler are
stricter than to a focusing device, since nanocoupler should
provide, apart from focusing, the high coupling efficiency.
To be implemented as a nanocoupler a lens must have high
transmission and execute matching of the focused beam to
the nanowaveguide mode.

Based on the lens material and their functionality we
divide lenses into the following categories:

(1) dielectric lens (Figure 8(a)),

(2) plasmonic lens (Figure 8(b)),

(3) negative refractive index lens (Figure 8(c)),
(4) photonic crystal lens (Figure 8(d)),

(5) hyperlens (Figure 8(e)).

6.1. Dielectric Lens. A dielectric lens is a focusing device
known for several centuries. It is well described in clas-
sical optical textbooks (see, e.g., [65]). The lens can pro-
vide the excellent light transmission, but its resolution is
diffraction limited and for coherent light cannot be better
than 0.77A/NA, where NA is a numerical aperture. The
numerical aperture cannot exceed the refractive index n of a
surrounding material. Even such resolution is hard to achieve
in practice, as it requires a complex optical setup with a
high numerical aperture objective; therefore, a conventional
dielectric lens is not a suitable solution for nanocoupling.
Except a standard dielectric lens we should mention also
two other focusing devices, namely, a Fresnel lens and a
graded index (GRIN) lens. The Fresnel lens and zone plate
are well described in optical textbooks [65]. The zone plate

consists of a set of concentric rings (Fresnel zones). Rings
are transparent and nontransparent in the alternating order
or have the 180° phase difference for the transmitted light.
An important requirement is that the geometrical sizes of
the zones impose the constructive interference conditions in
the desired focal point. Being much lighter and much more
compact than a bulk dielectric lens, the Fresnel lenses have
worse resolution due to the diffraction at the zones’ borders.

The GRIN lens was developed for photonics packaging
[66]. It is called a lens even though its shape is far from
being concave or convex (etymologically “lens” means to be
of a double convex shape). It is usually a multilayer dielectric
structure with a gradually changing refractive index. The
refractive index gradient forces the wave propagating along
the waveguide to refract and concentrate in a thin bottom
layer, from where it is easier to launch it into a smaller
waveguide. For example, a GRIN lens for silicon waveguides
[67] allows for 45% coupling efficiency.

Very useful for practical purposes is a focusing optical
fiber that combines mechanical flexibility of a fiber with the
focusing effect of a lens. Commercial focusing fibers can
provide a focal spot down to 2um in diameter [68]. The
focusing effect of the fiber can be reached either by making a
lensed output end or by the gradual index distribution within
the fiber [69]. The extension of the latter approach is the
nanoengineered fiber core [70] that uses complex refractive
index distribution with the nanometric features to reach the
desired functionalities. The disadvantage of the GRIN lens is
that, being composed of dielectrics, it cannot overcome the
diffraction limit.

6.2. Plasmonic Lens. Using plasmonic effects in metal-
dielectric zone plates is quite new since fabrication of fine
metallic structures has become possible only recently. The
plasmons, excited in the concentric grating by an incident
light wave, contribute to the energy transfer to the central
ring. The wave constructive interference condition should
be satisfied not only for the diffracted light waves but also
for the plasmons. A comprehensive review of the plasmonic
lenses can be found in [71]. An interesting property of the
plasmonic Fresnel lens is that different wavelengths have
different focal points. That gives opportunity to use such
lenses for spectroscopy purposes.
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FiGure 8: Types of lens couplers: (a) dielectric lens, (b) plasmonic lens, (c) negative index lens, (d) photonic crystal lens, (e) hyperlens.

The focusing effect of a plasmonic lens was experimen-
tally shown in 2002 by Lezec et al. [72]. The theory and
performance dependence on the geometry were discussed in
the works [73-75]. A lens consisting of concentric rings of
holes (the so-called nanopinhole lens) was numerically ana-
lyzed in [76]. Such lens allows for high transmission at A =
550 nm with focal spot of 250 nm, that is, just a bit less than
a half of the wavelength. A subwavelength focusing of the
A = 532 nm monochromatic light into the spot of /10 with
the transmittivity of 30% was numerically shown in [77].
Such high transmittivity is reached by adding a resonator to
the entrance of the lens. Experimental investigation of the
subwavelength focusing was also conducted [78]. Focusing
of the visible light wave with A = 633 nm to a subwavelength
spot with the diameter 468 nm was reported.

As can be seen from the previously mentioned results the
plasmonic lens can provide the subwavelength focusing, but
practically the focal spot is not much smaller comparing to
a dielectric lens, while the transmittivity is lower due to the
presence of metal elements.

6.3. Negative Refractive Index Lens. The seminal idea that a
plane slab of a negative index material may focus light was
mentioned by Veselago in 1968 [79]. However, the interest
to the negative index material lenses exploded only at the
beginning of the 21st century, when Pendry showed that a
negative index slab not only focuses the propagating waves,
but also enhances the evanescent waves, which contain
the deep-subwavelength image details [80]. Such perfect
lens works in the near-field regime and can provide the
ideal image that repeats all small details of an original
object. To function as a superresolution lens the negative
index material should be isotropic. Some special cases of
anisotropic materials without spatial dispersion may also be
suitable [81].

The negative refractive index occurs as a rule in materials
that simultaneously possess negative dielectric permittivity
and magnetic permeability. A comprehensive overview of the
negative index metamaterials can be found in [82, 83].

A negative index slab lens can be used not only for
focusing and imaging but also as a coupler. The idea to use a
flat negative index slab for coupling between two identical
nanowaveguides was proposed by Degiron et al. [84]. By
making a concave lens out of NIM, one can match two

waveguides with different cross-section. However, to be uti-
lized for the nanocoupler construction the negative refractive
index material must have bulk isotropic optical properties
with small losses. The requirement for the bulk behavior
means that the effective properties of the homogenized
metamaterial should not depend on the slab thickness. It is
usual situation that the properties of a metamaterial depend
on the thickness (number of monolayer) due to the coupling
between monolayers [85] with rare exceptions only [86].

In the most cases proposed metamaterials consist of
planar layers, since their fabrication is based on the planar
technology. That results in the optical anisotropy. To over-
come such drawback several isotropic NIMs designs were
proposed [87-93], but the material parameters needed to
obtain the desired resonances in the optical regime can
hardly be found in nature, thus limiting the application of
such design to the microwave region. Moreover, the unit cell
of most metamaterials is not very small comparing with the
wavelength of light (usually it is in the order of A/10 — —1/4)
that leads to spatial dispersion and hence deterioration of
the effective properties introduction. So even the highest
possible cubic symmetry of the unit cells and placement of
unit cells in a cubic lattice do not ensure optical isotropy of
negative index metamaterials [94].

The losses in a negative index metamaterial coupler are
an important issue, since they reduce the coupling efficiency
and decrease the spatial resolution. This is why a lot of efforts
are applied at the moment to compensate the losses with
gain material [95-97] or by switching for better plasmonic
materials [98, 99]. Moreover, as it is shown in recent work
[100], although the subwavelength resolution is possible
in metamaterial-based lenses, practical focusing beyond
the diffraction limit is challenging, and when designing
such device one should consider “granularity, degree of
isotropy and transverse size of the metamaterial lens.” Large
losses, low coupling efficiency, anisotropy, and fabrication
difficulties prevent a practical realization of the negative
index metamaterial lens nanocoupler.

6.4. Photonic Crystal Lens. The negative refraction phe-
nomenon may occur not only in negative index materials but
also in photonic crystals typically at frequencies close to the
bandgap edge [101]. This effect can be exploited to make a
photonic crystal slab working for light focusing. For example,
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in the theoretical work [102] there was reported that a pho-
tonic crystal in the so-called canalization regime provides the
subwavelength focusing down to a spot of A/6. To increase the
transmission through a photonic crystal lens an antireflec-
tion coating can be applied [103]. Experimental realization
of an InGaAsP/InP photonic crystal lens for A = 1.5ym
was reported in the work [104]. They managed to obtain a
focal spot of the area 0.12A° that overcomes the diffraction
limit. Similar results for A = 1.55um in a InP/InGaAsP/InP
photonic crystal lens were obtained in the work [105], where
a focal spot of 0.381 size was demonstrated.

6.5. Hyperlens. Another solution for the subwavelength fo-
cusing involves a material with the hyperbolic dispersion, a
so-called indefinite medium [106, 107] that simultaneously
possesses positive and negative principle components of the
permittivity tensor. This results in a hyperbolic isofrequency
diagram, not circular or elliptical ones as in the case of con-
ventional dielectric with positive permittivity. An important
advantage of the hyperbolic material is that for a certain
permittivity tensor it allows propagating waves with any
values of the tangential component of the wavevector.

A medium with the hyperbolic dispersion is anisotropic
by definition. To reach positive and negative permittivity for
different directions one may use either metallic wires or a
metal-dielectric multilayer stack. In case of wires the effective
permittivity can be negative for electric field polarization
along the wires, while for the polarization perpendicular
to the wires the relevant principle value of the permittivity
tensor is positive. In case of the metal-dielectric stack, the
electric field polarized parallel to the metallic plates expe-
riences negative dielectric response, while the permittivity
associated with the perpendicular polarization is positive. A
detailed theory of the multilayer and wire-medium hyperlens
can be found in the works [108, 109].

The first theoretical work on a wire medium hyperlens
[110] showed a subwavelength resolution A/6 for A = 1.5 ym.
In another theoretical work [109] the A/10 resolution was
achieved in the infrared range. The same devices were
successfully simulated and experimentally validated in the
microwave range [111-113]. In the work [113] an impressive
A/15 resolution was experimentally demonstrated.

Arranging metal wires in the tapering-up-like manner,
not only the 1:1 image transfer but also the image magni-
fication can be achieved. An analysis of the homogeneous
medium approximation eligibility for the wire medium
superlens was conducted in work [114]. In the work [115]
a lens for color imaging in the visible range is proposed.
The idea is to engineer the wavelength selective response
introducing gaps in metallic nanowires. The experimental
demonstration of a wire lens for the optical range [116] and
for telecom A = 1.55um has been recently shown [117].
The resolution measured with a scanning near-field optical
microscope was about A/4.

A flat metal-dielectric stack can transfer the subdiffrac-
tion image as a near-field lens. Using cylindrical or spherical
multilayer system the image may be magnified up to above
the diffraction limit. Such magnified image may be registered

with an optical microscope afterwards. So the hyperlens can
serve as an addition to the standard optical microscope or
photolithographic system improving the resolution below
the diffraction limit. The first theoretical work [118] showed
the resolution of A/4.5. The hyperlens theory was described
in paper [108]. The experimental realization of the lensing
effect for the ultraviolet light A = 365 nm, which is a standard
wavelength for the optical lithography, with the resolution
less than A/4 was presented [119]. In theory the resolution
was pushed further significantly. Ultraviolet light designs
providing A/18 [120] and A/60 [121] resolution have been
recently proposed.

Despite the fantastic resolution, the hyperlens typically
has low transmission. Using the Fabry-Perot effect it is
possible to increase the transmittivity values. For example, in
the work [122] the three-layer thick hyperlens showed 50%
transmission. However, the magnification of such hyperlens
was very low due to the small ratio of the outer and inner
radii—about 1.25. Making the thickness of the hyperlens
thicker, one would lose a lot in transmission. So, when
designing a hyperlens one should find a trade-off between
tight focusing and high transmission.

6.6. Summary. An imaging device such as lens does not nec-
essarily provide high coupling efficiency since the primary
goal of imaging is focusing of light, regardless of the
transmittivity. The dielectric lens can give high transmittivity
(close to 100%) but the focal spot size is diffraction limited. A
photonic crystal lens can indeed provide focusing at a specific
frequency. However, the resolution of such lens is not much
better than the diffraction limit allows. The plasmonic lens
can provide a better spatial resolution with the cost of lower
transmittivity. The negative index metamaterial lens is still
far from the practical realization. From the resolution point
of view, the hyperlens is the best. Theoretically it can provide
the resolution as small as A/60. However, the transmittivity
through the hyperlens is not high due to the employment
of a metal-dielectric multilayer stack or metallic nanowires,
which hinder its coupling applicability.

7. Scatterer Coupler

The main idea behind the scatterer coupler is that there are
single or multiple particles that first capture the radiation
from the free space and then launch it into the waveguide.
Based on the geometrical placement and material we singled
out the following types:

(1) antenna coupler (Figure 9(a)),
(2) grating coupler (Figure 9(b)),

(3) random scatterers (Figure 9(c)).

7.1. Antenna Coupler. According to the definition [123, 124],
an antenna is a device that converts a free propagating radi-
ation into the localized power and vice versa. For example,
television antennas capture the waves propagating in air and
transform them into an electrical current. In other words, an
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FIGURE 9: Types of scatterer couplers: (a) antenna, (b) grating, (c) random scatterers.

antenna is a coupler that matches together the impedances
of free space and a waveguide. This application of antennas
accounts for more than one hundred years, since Hertz,
Popov, and Markoni invented the principles of the radio
transmission. Now radio and microwave antennas are well-
known engineering systems.

In principle, according to the definition, some nanocou-
plers of other types, for example, a lens coupler, can also be
called antennas. In this section, however, we limit ourselves
to the traditional geometrical antenna configurations, which
consist of a single of multiple metallic particles, specially
tuned for accepting electromagnetic radiation.

Optical nanoantennas drew the attention of many re-
search groups [142-151]. Nanoantennas can be considered
as the optical analogue of the microwave and radio antennas
[142]. An incident electromagnetic wave excites charges
oscillations along the metallic antenna, which are in the
optical range nothing else than localized surface plasmons,
and then couples to a mode of the connected waveguide.

Despite a lot of similarities, there are essential differences
between radio and plasmonic antennas [152]

(1) Metals are not such good conductors in the optical
range as on the radio frequencies. Their permittivity
is dispersive. It can be approximated by the Drude or
more accurate Drude-Lorentz formulas [3] account-
ing for interband transitions in noble metals.

(2) A typical penetrations depth is several dozens of
nanometers [3], and that is very important for metal-
lic nanostructures of comparable size.

(3) The usual condition for the resonance of radiofre-
quency antennas is that the length of the antenna
must be equal to the integer of a half of the wave-
length. This condition is not satisfied for the optical
antennas and should be corrected [145, 153, 154].

Plasmonic nanoantennas have attracted huge attention in
the recent years because of their ability to concentrate light in
the tiny gaps and significantly enhance light intensity [143,
144, 149, 154]. A comprehensive overview of the nanoanten-
nas theory and applications can be found in [123, 152, 155].

Despite the fact that from the very beginning antennas
served for coupling to a waveguide (transmission line), the
application of an antenna for optical nanocoupling was

proposed only recently [125-127, 129-131]. The reasons for
that are mainly the difficulties of ultrafine metallic structures
fabrication (feature size on the order of 10-100 nm).

The advantage of the nanoantenna is that it is very
compact. Moreover, the directivity of the antenna coupler
can be tuned by design, thus enabling the maximal coupling
efficiency at any desired angle of incidence. The first nanoan-
tenna couplers analysis showed theoretically the coupling
efficiency of 10% [125] for A = 1.55um and 28% [126] for
A = 830nm for a focused Gaussian spot. Experimentally
measured coupling efficiency of 15% for A = 1.55um was
demonstrated in the work [129]. It was shown that the
coupling efficiency can be increased at least by two times by
applying additional reflectors and arranging nanoantennas
in a parallel or serial array [130].

7.2. Grating Coupler. An array of nanoantennas is closely
related to the diffraction grating employment as a coupler.
However, the difference is that each nanoantenna has a
specific length designed to be in resonance with an incident
electromagnetic wave, while in the diffraction grating each
line can be very long. The lines of the diffraction grating lie
on top of the waveguide and scatter light into the waveguide.
It is of outmost importance that the scattered radiation from
each line contributes constructively to the wave propagating
in the waveguide. In other words, the role of the grating
is to match the tangential wavevector component k; of the
incident wave with the waveguide propagation constant f3.
The grating with a specific period P allows light to diffract to
a diffraction order m such that § = k; + 2nm/P.

A diffraction grating is typically employed for coupling
to a silicon waveguide in the vertical coupling configuration.
The spot size from a single mode fiber is usually about
10 ym. The wave should not be strictly perpendicular to the
waveguide, but incident at a small angle (about 5 degrees)
to provide the wavevector matching. The maximal coupling
efficiency of 60-70% was reported [132, 133]. There was
also claimed a high-efficiency (96%) vertical coupler based
on the subwavelength grating [134]. Making the grating
lines concentric and adding tapering it is possible to couple
and focus light simultaneously. For example, a 40 ym size
focusing grating coupler with 25% coupling efficiency at
A = 2.75 ym was demonstrated in the work [135].
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TasLE 1: Comparison of various nanocoupling approaches.
Coupling
efficiency: low Size: compact Subwavelength Lateral or
Approach (<10%), medium (<10 pm) or large coupling or vertical References
(10-50%), high (>10 ym) focusing coupling
(>50%)
4.1. Tapered dielectric High Both No Lateral [18-25]
4.2. Tapered metal Medium and large Compact Yes Lateral [26-39]
4.3. Taperefi Low and medium Compact Yes Lateral [40-42]
metamaterial
5.1. Next to another High Both Yes Lateral [43-53]
5.2. End-fire High Compact No Lateral [54-60]
5.3. Resonant stub High Compact Yes Lateral [11, 61-64]
6.1. Dielectric lens High Large No Lateral [66’7607]’ 69,
6.2. Plasmonic lens Medium Compact Yes Lateral [71-78]
6.3. Negative index lens N/a N/a Yes Lateral [79’1 ggi 84,
6.4. Photonic crystal lens N/a Compact Yes Lateral [101-105]
6.5. Hyperlens Low or medium Compact Yes Lateral [107-122]
7.1. Antenna Medium Compact Yes Both [125-131]
7.2. Grating High Large No Vertical [132-140]
7.3. Random scatterers Low N/a Yes Both [141]

A grating coupler can also be used for the surface
plasmon polaritons waveguide excitation. The coupling
efficiency up to 68% was theoretically shown [51, 136-138].
The grating can be designed to be polarization independent
[139]. It can also combine the functions of a coupler and a
nonlinear higher-order harmonics generator [140].

7.3. Random Scatterers. As we mentioned before the
nanocoupler can be understood as a mode transforming
device. In principle we can designate two extreme cases for
mode conversion: evolution, that is, a careful adiabatic com-
pression towards mode profile matching—this is realized by
long tapered fibers—and revolution, that is, complete mode
structure destruction and then construction of another mode
in the same way as a new building can be built from the bricks
of a ruined house. This analogy would mean introduction of
a set of random scatterers. The photons coming from the first
waveguide experience multiple scattering, and statistically
some of them can couple to a mode of the second waveguide.

It is clear that the coupling efficiency of such ran-
dom material coupler cannot be high due to the random
nature of the photon scattering process. However, there was
recently shown that under certain circumstances a disordered
medium can work for light focusing [141].

7.4. Summary. The antenna nanocoupler is a natural tran-
sition of a standard microwave approach for coupling an
electromagnetic wave to an optical (plasmonic) waveguide.
There is a theoretical 50% limit of the coupling efficiency of
the antenna systems [156] due to reradiation of the captured
power back into free space. Practically, the nanoantennas

can exhibit the coupling efficiency close to the theoretical
limit, being constrained only by optical losses and fabrication
imperfections. Nevertheless, the main advantage of the
nanoantenna coupler is that it is the most compact among
all the nanocoupling solutions. Diffraction gratings are very
efficient vertical coupling solutions providing the coupling
efficiency up to 70%. Their disadvantage is relatively large
size (more than 10 ym). The random scatterers have very low
coupling efficiency due to stochastic scattering of light into
the desired waveguide mode, so they are hardly suitable for
the nanocoupling applications.

8. Other Solutions

In this section we included all other ideas that do not fall into
the previously mentioned categories. Such coupling ideas
are:

(1) transformation optics coupler,

(2) topology optimization designed coupler.

8.1. Transformation Optics Coupler. Inspired by the meta-
materials possibilities of obtaining whatever permittivity
and permeability values the field of transformation optics
has recently emerged [157-159]. The transformation optics
solves the problem of determination of the spatial per-
mittivity and permeability distribution that provides a
required wave propagation trajectory. For example, in case of
invisibility cloaking engineering it is required that light rays
pass around an object not interacting with it [160].

A problem of coupling can be expressed in the language
of the transformation optics. To design a nanocoupler
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is to determine such spatial distribution of permittivity
and permeability that provides impedance matching and
squeezing of the light from a thick waveguide to a thin
one. In some sense the GRIN lens is also an example of
the transformation optics application. Some designs for
squeezing light [161] or light concentration [162, 163] were
proposed.

Very often, however, the transformation optics designs
require unusual values of permittivity and permeability that
are not realistic even with the help of metamaterials (e.g.,
diverging permittivity and permeability values without losses
or extremely large anisotropy).

8.2. Topology Optimization. Another approach to the cou-
pler design is to select from the very beginning the realistic
material properties (in the simplest case, of two materials)
and to determine the spatial distribution (topology) of the
materials that gives the largest coupling efficiency. With the
efficient numerical algorithms one has no need to go deep
into physical consideration when designing the nanocoupler.
Such approach is called topology optimization [164]. The
optimized structures usually have very weird shapes [165].
Setting some constraints on the geometrical size of the fine
features one can design an efficient coupler that is reasonable
for fabrication [166].

8.3. Summary. The transformation optics devices very often
require unrealistic material properties. In contrary to the
transformation optics the topology optimization starts from
the realistic material properties and then finds the necessary
geometry. We should admit that both of these approaches
can be applied to almost any coupler in the Sections
4-7. Therefore we should better say that these are not
independent physical approaches, but rather useful design
methodologies.

9. Conclusions

In this paper we have analyzed various physical principles
that can be used for coupling light from an optical fiber or
free space to nanosized waveguides. The range of approaches
is very broad, so we divided the subject into four classes
(tapered waveguide coupler, direct coupler, lens coupler,
and scatterer coupler). The most important features of each
approach are summarized in Table 1.

The most compact solution for the nanocoupling is the
antenna coupler. The most efficient are the tapered waveg-
uide and the grating coupler combined with the directional
coupler. The hyperlens gives a good trade-off between sub-
diffraction imaging and transmission. The designs that use
negative index materials are lossy and therefore can hardly
be used for the nanocoupler at the moment. A discovery
of new plasmonic materials with smaller losses or optical
losses compensation with gain can probably make the latter
approaches useful for light coupling.

We see the future of the nanocouplers mostly in their
technical improvement. This includes a search for better

Advances in OptoElectronics

materials, optimization of the designs, and fabrication tech-
nologies. The previously mentioned coupling approaches
can also be the building blocks of more advanced photonic
devices. For example, tapering the directional slot waveg-
uides coupler and filling the slots with a nonlinear material
[167] give a new nanophotonic functionality and can be used
for all-optical switching. Another direction is the transfer of
the optical coupling approaches to other fields of physics, for
example, to acoustics or surface waves.
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The counterpart of metamaterials in light optics for nonrelativistic matter waves governed by the Schrédinger equation can
be found by transiently reversing the group velocity using a so called comoving potential. Possible applications to wave-packet
dynamics, atom interferometry, and atom deceleration are described.

1. Introduction

The genuine concept of “meta” materials for electromagnetic
waves originates from the now famous Veselago’s paper
published in 1967 [1]. The basic idea is that, in a material
with negative electric permittivity (¢ < 0) and negative
magnetic permeability (4 < 0), Maxwell equations impose
that the wave vector k and the Poynting vector S of a planar
wave have opposite directions and, because of causality,
the effective optical index is real negative: n = —(ey)l/ ’,
The realisation of such artificial or “meta” materials, also
called left-handed materials (LHM), in a wide range of
wavelengths, has been—and continues to be—the subject
of considerable theoretical and experimental efforts [2—4].
Compared to an ordinary material with a positive index, a
metamaterial has a similar group velocity, whereas its phase
velocity is reversed. This gives rise to the negative refraction
phenomenon, owing to which so-called “meta” lenses are
conceivable. The concept is rather easily extended to matter
waves, provided that the effective mass of the particle be zero
or close to zero, as it is the case for electrons in graphene,
governed by a (relativistic) Dirac equation [5].

Paradoxically the situation is much more intricate with
nonrelativistic particles, as atoms having a thermal velocity
(a few hundreds ms™!), the dynamics of which is governed by

the Schrodinger equation. The first obstacle is the inability of
atoms to penetrate dense matter: hence a “material” should
be replaced by a “medium”, namely, some external potential
created in vacuum. A second difficulty comes from the fact
that, in this situation, the phase velocity is an ambiguous
concept since it is gauge dependent and its inversion appears
to be problematic, if not meaningless. Nevertheless the key
property of a metamedium lies in the opposite directions
of phase and group velocities, a property which will be
realised in our case by simply reversing the group velocity.
Obviously, given a source of atoms, this property has
necessarily a transient character since the group velocity
is associated to the density of the probability flux which
should finally be oriented outwards from the source. As a
consequence, the external potential, assumed to depend on
a single spatial coordinate (x), must be also time dependent,
of the type V(x,t). In the following, the variation in x
of this potential will be considered as being slow at the
de Broglie wavelength (1) scale, allowing us to use “short
wavelength approximations,” for example, WKB or iconal
approximation. As shown in part 2, comoving potentials [6],
of the general form

Vix,t) = Vys(t) cos (271%), (1)



where Vj is a constant amplitude, s(¢) is a normalized signal
of finite duration, are able to cause the searched inversion
of the group velocity and to induce a negative refraction
upon the atomic trajectory [7]. The direct observation of
this negative refraction on atomic trajectories implies a low
velocity and/or a sufficiently high magnitude Vj, that is,
in the case of a magnetic potential, a sufficiently intense
magnetic field (typically a few hundreds Gauss at a velocity
of a few ms~!. An atom interferometer as a Stern-Gerlach
interferometer [8] is a much more sensitive tool to evidence
the effect, in so far as it transforms a phase shift into a
variation of intensity (part 3).

Two other consequences of the group-velocity inversion
are worth to be noted: (i) primarily the negative refraction
concerns the motion of a wave packet centre, but it affects
also the shape of this wave packet, especially its width—
which is reduced—, along the same general trend, namely,
a transient time reversal [9]; (ii) for similar reasons, the
fact that the potential is time dependent results into a
nonconservation of energy and more precisely (in the
case of negative refraction) into a decrease of the atom
velocity. This phenomenon plays an important role in atom
interferometry. It can be used to slow down atoms (part 4).
As the total length of such a slower is an increasing function
of the spatial period A of the potential, there is a great
advantage to make use of a comoving optical potential for
which A is of a few hundreds of nm [10].

Whilst they can give rise to similar effects (together
with other specific effects), metamedia for atomic waves
are basically different from metamaterials for light optics
essentially because of the fundamental difference existing
between the related wave equations (Schrodinger versus
Maxwell or Dirac). To conclude (part 5), owing to the
relative simplicity of their realisation as well as their large
domain of applicability, metamedia are expected to play in
the future a significant role in atom optics. Nevertheless
note that a distinct approach to negative refraction for
ultra-cold atoms, based upon “quantum simulators,” allows
one to simulate condensed matter physics processes with
cold atoms (For instance honeycomb optical lattices may
be used to reproduce electron dynamics in grapheme [11,
12]. Also specific non-Abelian gauge potentials, simulated
with light fields of given wave-vectors and frequencies allow
one to assign a quasi-null effective mass to ultracold atoms
(v < lcm/s) [13]. Thus, an adequate Klein potential
barrier should induce negative refraction.) [11-13]. In the
following of this paper we shall not consider this type of
situations.

2. General Principle: Negative Index

The concept of comoving field of the form given previously,
together with its generic property to fashion the momen-
tum (k)-dependence of the resulting phase shift, have been
introduced in 1997 [6]. Indeed it can be shown [10], using
the WKB approximation, that for a field differing from
zero within a given interval [0, 7;], an incident plane wave
Yo (k,x,t) of specific momentum k, freely propagating along
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the direction x, is altered by the comoving potential via a
simple phase factor, becoming ¥ = We®!) with

T hk
_ —1 ’ ’ 7
ok, t) = —h Jo dt' Vos(t )cos(anmAt )

— W™ Wos(17)®(t — 1) cos (271%71)0 - 1)
(2)

In (2), T = min[t,7;], 7; is smaller than and arbitrarily
close to 11, m is the atom mass and © the Heaviside function.
The second term in (2) results from the time-dependence
of V, hence the nonconservation of energy. It warrants the
continuity of ¢ and ¥ and their derivatives at t = 7.

Let us now consider a wave packet, the momentum
distribution of which, p(k), is centred at ko. Using the
stationary-phase approximation, it is seen that the potential
induces a spatial shift §x, upon the motion x(¢) of the wave
packet centre:

Xe = X0 + Oxc = fko , _ (9], (3)
m 0
which gives:
_ 27TVO
Oxc(t) = i
T ’
X U £s(t') sin(M>dt' +s(m)O(t - 1)
0 mA
. ([ 2mhk
X sm(%) (t — Tl):|.

(4)

For t > 1, the integral part takes a finite limiting value,
whereas the other term, linear in (t — 1;), corresponds to a
definite change

27'[V0

ovin) = —mns(n) sin(

27'[ﬁk0‘l’1 ) (5)

mA

of the final velocity. This change becomes negligible for
comoving pulses of a sufficiently long duration, provided
that the product 71s(7;) tends to zero when 77 — . The
important point here is that, by a proper choice of s(t),
the k-dependence of ¢ can be made such that the group
velocity (i.e., the velocity of the wave packet centre) be
transiently negative. A trajectory initially in plane x, z, with
initial velocity components vy > 0, v;0 > 0, remains in this
plane, exhibiting the negative refraction since v, becomes
transiently negative whereas the motion along z remains
unaltered. For a sufficiently large value of 7,, the behaviour
of the trajectory is similar to that of a ray traversing a
negative-index flat plate with parallel surfaces. Figure 1(a)
shows an example of such a trajectory for a metastable argon
atom Ar*(*P,), spin polarized in Zeeman state M = +2,
experiencing a magnetic comoving potential with V, =
2gupBy, g beingthe Landé factor, yp the Bohr magneton and
By = 50mT the magnetic field intensity. In this example,
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FiGuRe 1: (a) Example of negative refraction of metastable argon atoms Ar* (°P,) polarized in Zeeman state M = +2. Lower red curve: atomic
trajectory in plane z, x under the action of a magnetic field comoving in the x direction. Blue straight line: free propagation. Parameters of
the comoving field are as follows (see text): spatial period A = 5mm, magnitude of the magnetic field By = 49 mT, velocity components
vox = 1.2ms™ 1, vp, = 20 ms™!, time constant 7 = 0.37 ms, duration 7; = 4.0 ms. The point-like source is on the z axis at z = —2 cm. The
angle 5 between the local velocity and the z axis (see text) is shown. (b) Effective constant index (see text, (6a)) as a function of By. Curve
> 0: the index is negative for By > 38 mT. Curve M < 0: the index (multiplied by 10) is positive for any value of B. (c) Index # as a function
of z and 0, derived from an ensemble of trajectories similar to that shown in (a), but with different incidence angles. Positions in the (z, 8)
plane where n — +oo correspond to points where the atom velocity is parallel to the z axis. In between these two values, # is negative.

A = 5mm, v,y = 1.2ms™ !, v,o = 20ms~!. The time-
dependent signal is s(#) = exp[—t/7r] with 7 = 0.37ms
and 7; = 4ms. Note that, at these low velocities, the lateral
shift of the trajectory is rather large (1.2 mm) in spite of the
relatively modest value of the magnetic field. Other values
of M(+1,0,—1,—2) would lead to shifts proportional to M,
which means that the comoving potential acts as an efficient
beam splitter. More generally the comoving potential zone
behaves as a multirefringent plate.

Assuming that deflection angles are small, by comparison
with the light-optics counterpart under similar conditions,
one can obtain an effective index n given, for 7; > 7, by [14]

3 2
-1 o g - 20 MgusBo (2—”) , (6)

MTmax A

where T,y 1s an estimate of the time at which 8x, reaches its
asymptotic value (Tmax = 1.67). As it is seen in Figure 1(b),
for M > 0, the effective index becomes negative for values
of By larger than a critical value, B = 38 mT in the present
case. The fact that  — oo at By = B. is not really a
singularity since it simply means, in the light-optics analogy,
that the ray inside the plate is normal to the plate’s surfaces.
On the other hand, for M < 0, n is positive for any value of
By, giving rise to ordinary positive refraction. The effective
index given by (6a) is a constant related to a simplified
trajectory consisting of three portions of straight lines. In the
case of a comoving field, on the other hand, the index is z-
dependent. It can be derived from the usual ray equation in
an inhomogeneous medium: (nr’)" = Vn, where (") = d/ds, s
being the curvilinear abscissa. As a function of the variable



X(z) = (dx/dz), the element of curvilinear abscissa is ds =
dz~/1 + X?. Then the index is simply:

/X2

poaYXrl (6b)
X

where A is a constant such that n(z = 0) = 1. This expression

of n simply reflects the Snell-Descartes refraction law in a

medium stratified by planes orthogonal to z, namely

nsin § = constant, (6¢)

where 3 = ArcTan(vy/vo;). Finally, once modelled the
trajectory, the index profile n(z) can be derived. Note that
n has the sign of X and, as expected, it is infinite when
X = 0. Actually especially at large values of z, the index
profile derived from ((6b)-(6¢c)) depends on the angle of
incidence 0 since the constant in (6¢) is sin 6. On the other
hand the medium is invariant in any translation along x. As a
conclusion the metamedium is anisotropic. Figure 1(c) shows
the 2D profile of the index #n(z, 8) derived from an ensemble
of trajectories similar to that of Figure 1(a), but calculated
with different incidence angles ranging from 0 to 0.1 rad.

3. Negative-Index Medium in a Stern-Gerlach
Atom Interferometer

A standard Stern-Gerlach atom interferometer [8], also
called some years later “spin-echo experiment,” in analogy
to the well-known method of neutron spin-echo [15, 16],
is a longitudinal polarisation interferometer in which an
integrable static magnetic field profile B(x), that is, a M-
dependent magnetic potential W(x) = gupMB(x), induces
upon a planar wave (of momentum k) describing the
external motion along x, a phase shift of the form M¢. In
the following semiclassical approximation:

1 +00
b~ Lo W (x)dx, (7)

where v = hk/m. Starting from a given Zeeman state
| M) issued from a polarizer, for example, a Stern-Gerlach
polarizer, one first prepares, using Majorana transitions (fast
rotation of a tiny magnetic field) [17], a linear superposition
of M-states

I¥i) = > amm|M), (8)
M

where the ap,nm are constant coefficients. Beyond the field
profile B(x), it becomes

[¥7) = S awoue™ 1A, ©)

Then a second Majorana zone generates the new combina-
tion (where the by -s are constant)

¥o) = D ammbaar ™ | M'). (10)
MM’
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Finally, an analyzer (similar to the polarizer) selects a specific
Zeeman state | M;) and one measures the final intensity

2

Z anmbum, e™M¢

M

I = (11)

It contains interference terms in ¢ which can be evidenced by
varying the magnitude of the magnetic field or the velocity.
In place of a static field profile, a comoving field can be
used as well, as it has been demonstrated in [6] with a
beam of fast (v = 10*ms™') metastable hydrogen atoms
H*(2%8), F = 1). Very recently, experiments dealing with
similar questions have been realized by Sulyok et al. with a
beam of neutrons at a velocity of 2000 ms™!, in a so-called
perfect crystal interferometer [18]. The magnetic potential
they use is a sum of terms of the form C(x)Vj cos(wit +
¢k), where C(x) is a square function of a definite width L
and Vi, wk, @k are constants. It might seem different from
our comoving potential. However it can be readily seen (by
taking the Fourier transform of the spatial dependence) that
this potential is actually a sum of comoving terms.

The main questions that arise about the use of comoving
potentials as phase objects in an interferometer deal with
similarities and differences they present with respect to static
potentials. The first specificity of comoving potentials is that,
because of the transient character of the effect, a treatment
using wave packets is needed. Apart from the narrowing
effect mentioned previously (difficult to observe except at
low velocity), the first consequence of that is the critical
velocity dependence of the interference effect, particularly
when a purely sinusoidal signal of the type s(t) = cos(27mvt)
is used. Indeed in that case there exists a “resonant” atomic
velocity coinciding with the field velocity ucom = vA. This
resonant velocity can correspond to a bright fringe or a dark
fringe, according to the value of the magnitude B, of the
magnetic field (which is generally low, less than 100 mG).
This central fringe is surrounded by few other fringes within
the envelope of the resonance. This phenomenon has been
observed using a time-of-flight technique, with a single zone
(see Figure 2, taken from [6]) or a double zone of comoving
field.

Another manifestation, specific of comoving potentials,
appears when a nonsinusoidal signal of a finite duration is
used, for example, s(t) = e 7 for 0 < t < 71, = 0 elsewhere.
When the value of the cut-off time 7, is large compared to
7, final velocities v4 and v_ related to sublevels M > 0 and
M < 0, are almost equal to the initial velocity vo. On the
contrary, when 7, is comparable to or smaller than 7, one
gets v; < vy (beginning of a negative refraction) and v_ > vy.
At T = 71, the abscissas of the “+” and “—” wave packets are
such that x; < x_, then their mutual longitudinal separation
Arx monotonously increases with ¢ or x, which cancels any
interference effect between them (once remixed), in other
words a total loss of contrast as the distance to the detector
is increased. Figure 3(a) shows Apx as a function of x in the
realistic case of metastable argon atoms of initial velocity
vp = 560 ms~!. Whilst the magnitude of A;x may seem small
(a fraction of 1um), it is much larger than the wavelength
(0.02nm) and the effect on the interference is drastic.
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FiGure 2: Time-of-flight spectrum over a distance of 49 cm, of
hydrogen metastable atoms (H*2s, F = 1) going out of a
Stern-Gerlach atom interferometer (see text). The atom velocity is
10km L. Open circles: a comoving field is used as a phase object.
The value By = 6.5uT is chosen to get a central bright fringe. The
spatial period is A = 2cm and a unique frequency v = 440kHz
is used. The field velocity is Av = 8.8kms™!, which corresponds
to the time of flight indicated by a vertical (red) arrow. Light line:
time-of-flight spectrum without the interferometer.

A similar phenomenon is described in [18] for the case of
neutron interferometry. In principle it is possible to recover
the contrast via the action of a second reversed comoving
pulse provided that the characteristics of this second pulse
(especially its duration 7;) are adjusted such that the final
velocities are exactly equal to each other. Figure 3(b) shows
an example of such compensation—over a distance of several
centimetres—by means of a second reversed pulse similar to
the first one but applied 2 ms later.

Figure 4 shows the high sensitivity of the interferometer
operating with metastable argon atoms at thermal velocity
(560 ms™!). At such large velocity the inelastic effect induced
by the potential pulse is small enough to make the contrast
practically independent of the distance at which the detector
is placed (from 0.1 to 1 m). On the other hand the contrast
is reduced at “large” field magnitude, of the order of 0.1 mT
or more, because of the increasing spatial separation between
the two interfering wave packets and the related decrease of
their overlap.

4. Atom (or Molecule) Slower

As explained in part 2, the primary effect of a potential
pulse, comoving in the x direction, the sign of which is such
that (for a sufficient magnitude) it results into a negative
refraction, is to reduce the velocity component along x by
an amount, derived from (3) (for t < 71):

2V 2mhkot )
mA '

OV = 3idx. = 2 st sin (12)
In principle this effect can be used to slow down atoms
or molecules. For neutrons this was shown to work [19].
However when the initial velocities are in the thermal range
(e.g., 560 ms~! for Ar* atoms) the predicted reduction of v
is quite small, typically of a few mm ™!, at least (in the case
of a magnetic potential) for reasonable values of By, namely

less than 0.1 T. As a consequence, to reduce the velocity down
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FIGURE 3: (a) Effect of a short comoving pulse on the final velocities.
The conditions are the same as in Figure 1(a) except the pulse
duration, 7; = 1.5ms (instead of 4 ms), indicated (converted in z
value) by the broken vertical line. It is seen that the final velocity for
atoms in state M = —2 (upper green trajectory) is larger than for
atoms in state M = +2 (lower red trajectory). The two related wave
packets fligh apart from each other, cancelling the interference effect
between them once they are remixed (see text). (b) Compensation
of this effect by means of a second reversed comoving pulse. The
first pulse is the same as in 3(a) (starting time ¢t = 0, duration
71 = 1.5ms, By = 49mT). The second pulse starts at t = 2.0ms
(second vertical broken line), its duration is also 1.5 ms and its
amplitude is By = 49 mT. Resulting trajectories are shown as in (a).
Final velocities become equal to the initial velocity.

to almost zero, a large number of successive pulses is needed.
This is made possible by the fact that, immediately after the
end of a pulse of duration 7, the velocity is practically equal
to the reduced velocity obtained at time 7;. Then, when (after
a short blank) the next pulse is applied, this latter velocity
becomes the initial velocity, which is in turn reduced, and
so forth. The best choice for the pulse duration 7, is such
that |8v(71)| derived from (5) takes its first maximum value.
For a signal of the form s(t) = exp(—#/7) [6], there exists an
optimum value of the time constant 7 leading to an absolute
maximum of [§v(7;)|. For v = 20 ms™!, the best values are
obtained for 7 = 63.3us and 7; = 62.6 us. Actually they are
almost equal to each other and their dependence on v is such
that the product of the optimum value of 7; by v is a constant.
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FiguRe 4: Calculated interference pattern of Ar* (°P,) atoms passing
through a Stern-Gerlach interferometer at 560 ms™!. The phase
object is a comoving potential pulse similar to that considered in
Figure 1(a), except for the magnitude B, of the field which is now
the variable parameter. About 260 fringes are present within the
interval [0, 0.1 mT = 1 Gauss] (see the inset for a zoom over an
interval of 5 yT = 50 milliGauss). The contrast decreases together
with the overlap of the interfering wave packets (see text).

This means that the atomic path covered through successive
pulses is almost a constant.

The present method bears some similarities with the so-
called “adiabatic slowing” [20, 21]. This latter method has
been applied to a wide variety of species, such as hydrogen
atoms, polar and non polar molecules [22], Rydberg atoms
and Rydberg molecules [23-25]. Low final velocities (a few
10 ms™!) are accessible, but at the price of rather strong fields
(e.g., By = 5.2T in [23-25]). Here, the nature of the force
is quite different, since it derives from a special potential
depending on both space and time. In principle the method
is applicable to the same species, with the advantage that it
uses much lower fields.

As shown in [10] an atom slower using magnetic
potential pulses (By = 80 mT, A = 5mm) is able to reduce
the velocity of metastable argon atoms from 560 ms~! down
to almost zero over a distance of 2.2 m, comparable to the
total length of a standard Zeeman slower [26]. For a given
magnitude of the potential, the length is governed by the
spatial period A. In a simple magnetic version, it is almost
impossible to reduce it below 1 mm, whereas the use of a
dipolar optical potential obtained in a off-resonance standing
wave provides us with a huge reduction of the period, which
is half the optical wavelength A = Aop/2 (= 0.4 ym in the
case of metastable argon atoms). Far from resonance the
general form of such a potential is [27]:

hQ?

Vix,t) = —s(t)cos? | 27 X , (13)
dw Aopt

where Q is the Rabi frequency and dw the detuning. To

operate “far from resonance” (to avoid any spontaneous

emission), the difference between the laser frequency and the
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F1Gure 5: Calculated evolution of the velocity v along the slowing
process using optical comoving pulses (see text), as a function of the
abscissa z. An almost complete stopping is achieved at z = 19 cm.

two resonances appearing in the standing wave, Doppler-
shifted by Aw = = kopv, must be large compared to the
power-broadened line width y° = (1+3%)"%y, where y
is the natural line width and ¥ the saturation parameter.
To get a magnitude of the potential sufficiently high to
achieve the complete slowing over a distance shorter than say,
20 cm, using a reasonable laser power (e.g., 32 mW mm~2),
a moderately large (negative) detuning should be chosen,
such as w = —273.45 x 10° rad/s (3.45 GHz). This leads to
aratio = dw/y" = 12.49, large compared to 1. As the velocity
v is lowered, Aw decreases, tending to zero as v — 0. Then
either the detuning is kept constant and the condition R > 1
is better and better verified, or dw is kept equal to 5Aw(v),
allowing us to reduce the intensity (as v) as well as y’ (as
v12), but then the ratio R decreases as v'/2, which implies
a lower limit for v (R = 1 at v = 3.59m/s). As before a
series of many pulses separated from each other by small
blanks is applied, each of them (numbered n) providing
a small decrease [§v| of the velocity (a few mm/s). The
duration 7,(n) of each pulse is adjusted in such a way that
the first maximum value of |dv| is reached at the end of
the pulse. As previously the path vr; covered by the atom
during successive pulses is roughly a constant (~0.12 ym).
Figure 5 shows how the velocity v decreases down to almost
zero (with the restriction mentioned before) as a function of
z. The total number of applied pulses is large (about 2 10°)
but the total length is now 19.2 cm. Note that the method
does not imply any permanent magnetic moment of the
atom and is applicable for instance to Ar*(*P,) metastable
atoms.

In addition to the advantages of its short length and
the absence of any random spreading of the velocity (at
least if the spontaneous emission is negligible), the present
decelerator is interesting from the point of view of the
atomic density in the phase space. Indeed an important
characteristic of comoving fields is their effect on the
longitudinal spatial width of the atomic wave-packet. As
mentioned previously [9], comoving potentials are able to
transiently narrow wave packets, compensating for the free-
propagation natural spreading. In the present case this effect
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is very small at the beginning of the deceleration process but
becomes more and more important as the velocity decreases.
As a result the wave packet width dx progressively deviates
from the free-propagation width dxo(#) to rejoin its initial
value dx0(0). On the other hand it can be verified, using
the Wigner function, that the width dk of the momentum
distribution remains unchanged, the reason being that the
effect of the potential is a pure real phase shift. Consequently
the density (8k8x)~! in the phase space (x,k,), instead of
continuously decreasing, recovers its initial value at the end
of the slowing process.

5. Conclusion

In this paper comoving fields have been introduced in
view of realizing negative-index media for matter waves
in the nonrelativistic regime. Because of the fundamental
difference between Schrodinger and Maxwell (or Dirac)
equations, especially for what concerns the phase veloc-
ity, a method quite different from those used in light
optics or ultrarelativistic particle optics is needed. The
aim of our method is the transient inversion of the
group velocity. Phenomena similar to those observed in
metamaterials, as the negative refraction, metalens, etc.)
are expected. Other properties are specific of our “meta-
media.” In particular, the evolution of the wave-packet spatial
width exhibits unusual features, as a transient narrowing,
accompanying the negative refraction and related to time
reversal, and also a velocity change in the case of short
comoving potential pulses because of the nonconservation of
energy.

All these effects, on atom trajectories or wave-packet
width evolution, are directly observable provided that the
atomic velocities are low, typically of a few ms™'. At
higher velocity, like a few hundreds of ms™!, more sensitive
techniques are necessary. Atom interferometers in general
and Stern-Gerlach interferometers in particular, offer such
sensitivity. We have shown that observable optical-index
effects appear with magnetic fields as small as a few uT.

We have proposed an approach to atom beam decel-
eration based on dispersive optical forces. Atom stopping
should be almost achieved on short distances using a
moderate laser power, for example, less than 50 mW/mm?.
The absence of spontaneous emission processes should
allow preservation of the transverse coherence properties
of the initial beam. The technique is especially applicable
to narrow supersonic beams, like metastable rare-gas atom
beams, and it is able to provide us with ultra-low-velocity
beams for coherent atom optics and atomic interferometry.
It is also a promising technique applicable to slowing
down not solely diamagnetic atoms (such as metastable
argon atoms in the 3Py state) but also molecules since any
optical pumping toward molecular levels other than those
interacting with light is absent. Slowing and trapping of
molecules is a subject of a particular importance in the
investigation of cold collisions (determination of intermolec-
ular potentials at large distances, resonances of various

kinds).
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We demonstrate that homogeneous naturally-occurring materials can form hyperbolic media, and can be used for nonmagnetic
negative refractive index systems. We present specific realizations of the proposed approach for the THz and far-IR frequencies.
The proposed structures operate away from resonance, thereby promising the capacity for low-loss devices.

Following the initial proposal by Veselago in 1968 [1],
negative refraction materials spent over 30 years as a forlorn
curiosity before being resurrected with renewed interest from
both theoretical and experimental groups. Within the last
decade it was realized that these materials (known also as
left-handed materials), along with a broader classes of exotic
media (known as epsilon near-zero materials, hyperbolic
materials, etc.) possess unusual properties, some of which
were not recognized at the time of their conceptions [2].
These properties include resonant enhancement of evanes-
cent fields, strong suppression of diffraction, unusual modi-
fication to optical density of states, potentially enabling near-
perfect imaging below the diffraction limit, and leading to a
new class of optical devices [3], as well as nontrivial behavior
in the nonlinear regime [4]. Despite initial controversy
over the realizability of negative index materials (NIMs),
successful proof of principle demonstrations have been
accomplished [3, 5-8].

Existing designs for left-handed materials rely on achiev-
ing overlapping dipolar and magnetic resonances in sub-
wavelength composites (metamaterials) [9, 10], or using
photonic crystals near the bandgap [3, 11]. Both of these
approaches necessitate complicated 3D patterning of the
medium with microstructured periodic arrays. Fabrication
of such structures presents significant challenges even for

GHz applications, while manufacturing metamaterials for
higher frequencies becomes harder still [12]. Furthermore,
near-resonant operational losses impose severe limitations
on the imaging resolution [13].

As an alternative to periodic systems, a waveguide-based
implementation of a NIM was proposed [14], which obviates
the need for negative magnetic permeability and does not
require periodic patterning. This approach circumvents
major manufacturing obstacles to achieving NIM behavior
at terahertz or optical frequencies, and simultaneously opens
a new avenue in imaging, sensing, and light emission
applications [15, 16].

To achieve this behavior, the waveguide material must
possess characteristics of a uniaxial medium with a signif-
icant anisotropy. Furthermore, this anisotropy must ensure
that €, (the component of € transverse to the planar wave-
guide) is negative, while € =€, (= €;) (in-plane component)
remains positive. TM modes in such waveguide undergo
negative refraction in the waveguide plane, and propagate
with negative phase velocity [14]. The materials with
extremely strong anisotropy, hyperbolic materials, have since
become a very active research area, enabling far-field imaging
and focusing with subdiffraction resolution, broadband
negative refraction, and superb control over light emission
[17-22].



One of the key aspects in designing such a hyperbolic
system is selecting the material for with strong underlying
anisotropy. Several options have been proposed for the
core material, in particular, nanostructured composites in
a dielectric host and quantum well structures [14]. While
being within the grasp of existing technology [23-25], the
fabrication of such systems remains highly challenging.

In this work we present an alternative approach to hyper-
bolic media for THz and far-infrared domains based on nat-
urally occurring materials with large dielectric anisotropy. In
particular, we discuss the possibility of negative refraction in
a system at approximately 20 ym, 58 ym, and 255 ym using,
respectively, sapphire, bismuth, or triglycine sulfate in the
waveguide core. Similar results were recently demonstrated
at UV frequencies in graphite [26]. We focus on monocrys-
talline bismuth as an attractive option for manufacturing
the NIM waveguide core thanks to its large anisotropy and
availability of samples with high purity. We illustrate the
perspectives of natural hyperbolic metamaterials on example
of negative refraction in planar waveguide geometry.

In a planar waveguide with anisotropic dielectric core
the wave vector components k, and k, are governed by the
dispersion relation

2
2,12 _ W
k; +k, —evcz, (1)

with v = (1 — x2c?/€| w?), where w is the frequency of light,
€ = €,(€)) for the TM(TE) modes, « is the transverse mode
parameter, and k., and k, lie in the waveguide plane. For
perfectly conducting waveguide walls (a good approximation
for silver and other metals at THz and far-IR frequencies
[27]), k =mmn/d, where m is an integer and d is the thickness
of the waveguide [14]. The effective refractive index for
propagating waveguide modes in this system is given by
nZ; = €v. To support propagating modes, € and v must have
the same sign. The case € > 0, v > 0 is typically realized in
an isotropic planar waveguide operating above cut-off. How-
ever, in the case € < 0, ¥ < 0 negative refraction occurs [14],
with refractive index given by

NG )

Note that if « is regarded as the transverse wave vector
component, (1) can be rewritten as a hyperbolic dispersion
relation k2 /¢ — kﬁ/|€x| = w?/c?, identified in [28] with the
onset of negative refraction.

As follows from the definition of v, the propagation with
negative phase velocity occurs only for TM modes when € >
0, €, < 0. This behavior is observed in a number of materials
where structural anisotropy strongly affects the dielectric
response.

One example of such materials is triglycine sulfate (TGS),
a compound widely used in fabricating infrared photodetec-
tors. Spectroscopic studies of the crystal at low temperature
have shown that phonon modes polarized parallel to the
crystal’s monoclinic C,-axis significantly differ in frequency
from phonons transverse to the axis. This results in a large
anisotropy in the dielectric tensor along these directions. In
particular, dielectric response for the field polarized along

Neff =
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the C,-axis features a resonance at 268 ym, which is absent
if the incident field is polarized transverse to the C,-axis [29].
Dielectric function € in the vicinity of this resonance can
be fitted with the Lorentz-Drude model [30], while €, in
this region can be taken approximately constant [29, 31].
Lorentz-Drude model parameters from [30] were used to
construct Figure 1(a). As is evident from the figure, €, < 0,
while € > 0 in the region 250 < A < 268 ym. Furthermore,
the imaginary part of € becomes small away from the
resonance, minimizing absorption. A TGS-filled waveguide
with C;-axis oriented perpendicular to the waveguide plane
would support negative index propagation, while suffering
from minimal propagation losses (Im[€] ~ 107> at 250 ym).

Whereas the phonon anisotropy of TGS exists in the
low-THz domain, for other materials, it may occur in a
different spectral band. In particular, the strong anisotropy
of the dielectric response of sapphire (Al,O3) is also due
to excitation of different phonon modes (polarized either
parallel or perpendicular to the c-axis of the rhombohedral
structure), but occurs around 20um. Figure 1(b) shows
experimentally determined [32] € and €, as functions of
frequency. As with TGS, a region of €, < 0, €) > 0 is
evident in the experimental data. This potentially enables a
sapphire-based waveguide NIM (with the c-axis of sapphire
core perpendicular to the waveguide plane). Note that the
minimum of the material absorption occurs in the frequency
range of interest.

Anisotropic phonon excitations are not the only mecha-
nism that can lead to strong dielectric anisotropy. Bismuth, a
Group V semimetal with rhombohedral lattice and trigonal
symmetry, exhibits such anisotropy due to a substantial
difference in its electron effective masses along different
directions in the crystal.

In the frequency region of interest, the spectral depen-
dence of the electric permittivity of Bismuth can be ade-
quately described by the Drude model,

w21
e=e|1-—2—|, 3
L( w2+iwr—1> G)

with € the lattice permittivity, w,; = N e%/e; meg the plasma
frequency, and 7 the relaxation time. These parameters are
known from interferometric and reflectance studies of Bi
samples. In particular, plasma frequency of pure Bismuth at
4K was measured to be 158 cm™! for the incident E-field
polarized perpendicular to the trigonal axis, and 186 cm™!
for the field polarized parallel to the axis [33]. These values
are in agreement with other experiments [34, 35]. The lattice
dielectric constant €; for the field perpendicular to the
trigonal axis was found to be 110 + 10 [35], in reasonable
agreement with [34]. For polarization parallel to the trigonal
axis, €, = 76 [36].

There can be substantial variation in the relaxation time
7 depending on the purity of the sample. We take 7 =
0.1 ns [35], however, this is a conservative estimate; for low
temperatures, relaxation times over an order of magnitude
greater have been reported as far back as 1975 [36]. Even
with 7 = 0.1 ns, the typical ratio of imaginary and real parts
of the dielectric function in Bi is on the order of 0.1% in
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FIGURE 1: (a) The real (top panel) and the imaginary (bottom panel) parts of the dielectric function of TGS; the monoclinic C,-axis is along
the “perpendicular” (x) direction. (b) Same for sapphire; the crystallographic c-axis is along the “perpendicular” (x) direction. (c) Same for
monocrystalline Bismuth.
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FIGURE 2: The effective refractive index of the three lowest order modes in a Bismuth waveguide. Inset: numerical simulation showing the
refraction of a beam within a metallic waveguide (of thickness d = 4.5 um) at an interface between an isotropic dielectric with € = 55 and

monocrystalline Bismuth; A = 61 ym.

the frequency interval of interest, which enables many
imaging and transmission applications [13]. It should also be
noted that high-quality single-crystal films as thin as 1 ym,
with the trigonal axis (Cs) oriented perpendicular to the film
plane, have been reported [37], thereby essentially solving
the technological issues in fabricating the proposed negative
index device.

Figure 1(c) shows the behavior of real and imaginary
components of € for Bi based on (3). The most prominent
feature of these plots, the transition from € > 0 to € < 0,
is determined by the highly anisotropic plasma frequency.
This anisotropy creates a window between A = 53.7 ym and
63.2 ym where € < 0 for the E-field along the Cs-axis, while
€ > 0 for E transverse to Cs. The existence of such 10 ym
window was confirmed by direct measurement [38].

To allow for left-handed propagation in this frequency
interval, Bi should be integrated into the core of a planar
waveguide, with the Cs-axis oriented in the transverse
direction. In Figure 2 we examine the behavior of the effective
refractive index #.g (2) for the proposed subcritical (d < A/2)
waveguide structure with Bismuth core. Note that negative
effective index is possible for all modes over the entire
(ex < 0, € > 0) range. Negative refraction behavior of our
system was further confirmed by a numerical calculation of
the electric field incident on the Bi waveguide. The results of
this calculation are presented in Figure 2 (inset). We assume
a TM wave with a Gaussian profile, mode-matched into the
Bi waveguide in the transverse direction by, for example,
propagating the beam from a metallic waveguide of the same
thickness, filled with a regular dielectric. One can clearly see

the negative refraction at the boundary. Furthermore, it is
evident that attenuation of the transmitted wave is weak,
as expected from low values of the imaginary part of the
dielectric constant (Figure 1(c)).

In addition, this calculation shows that the NIM waveg-
uide remains transparent despite the fact that transverse
dimension of the waveguide is much smaller than the
wavelength, which indicates strong confinement of the field
within the core (since the cladding is assumed to be perfectly
conducting). This behavior is not found in a subwavelength
dielectric waveguide, where much of the field spreads into
the cladding, or a subwavelength metallic waveguide, which
does not support propagating modes. Such strong field
confinement may find applications in photonic structures
and nonlinear optics [39].

In conclusion, we have proposed a novel negative
refraction system for several wavelengths from low-THz to
far-IR. Our approach is nonmagnetic, avoids the use of
periodic patterning, utilizes naturally occurring materials,
and promises the capacity for low-loss devices.
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Quantum-dots (QDs) provide an exciting option for the gain media incorporated in active coated nanoparticles (CNPs) because
they possess large gain coefficients resulting from their extreme confinement effects. The optical properties of core/shell QDs
can be tuned by changing the relative size of the core/shell, that is, by effectively changing its band gap structure. Similarly, the
resonance of a CNP can be adjusted by changing the relative sizes of its layers. It is demonstrated here that by optimally locating the
QDs inside a resonant CNP structure it is possible to greatly enhance the intrinsic amplifying behavior of the combined QD-CNP

system.

1. Introduction

The active coated nanoparticle (CNP) designs studied previ-
ously considered active silica cores coated with either Ag or
Au shells (depending on the wavelength region of interest)
[1-3] or the corresponding “inside-out” (I0) designs, that
is, metallic cores covered with active silica coatings [2,
4]. In general, these designs used a simple gain model
that did not include the dispersion behavior typical of a
physical, active medium. These nanoamplifier designs were
predicted to require a gain value of 10*~10° cm™!. This is
achievable with quantum dots (QDs); and, consequently,
they have been a preferred choice for some discussions on
the physical realizations of these nanoamplifiers [3]. QDs
offer an alternative, more robust option to dye-based gain
media, which are susceptible to bleaching. Nonetheless, the
active IO-CNP has been experimentally verified with a dye
impregnated silica coating [4]. Moreover, it and related
studies [5, 6] suggest that the strong localized field and
large cross-section effects associated with these plasmonic
nanostructures reduce the model-based large gain values to
more practical ones. We demonstrate here that QDs, which
can be obtained commercially and could be integrated with
the CNPs, do in fact represent an exciting practical option for
a variety of active CNP designs. Moreover, it is established

that the number of QDs needed for a successful active CNP
design is considerably smaller than anticipated.

2. Quantum-Dot Gain Model

The effective permittivity of a core-shell QD has been
modeled by Holmstrém et al. and is applicable for core-shell
QDs in the strong confinement regime [7]. This model is
motivated by Maxwell-Garnett effective medium theory and
is given by the following:

2 ezf/(f’HoEo)
cs _ ,CS
€GD,Lor (@) = €7 + Ve (fe= 1) W — @} + 2wy (1)
where VSIS) = (471/3)R3 is the volume of the entire core-

shell structure; f is the oscillator strength; f. and f,
are, respectively, the conduction and valence band carrier
distribution functions; y is a dampening term associated
with the resonance width. The model assumes that a pump
signal at a frequency higher than the resonance frequency,
fres = wo/27, creates the difference between the conduction-
and valence-band populations: (f. — f,). However, because
this population difference term is effectively related to the
pump strength, it takes on values between 0 and 1. It will be
termed the gain scale. It supplies the model with the ability



to represent a desired gain value at the resonance frequency.
The core-shell background dielectric constant €§° is given by
the following:

€. — €
€+ 265 - fcore(ec - Es)’

€5° = €+ 3 feore€s

(2)

where fere is ratio of the core volume to the entire QD
volume, and €, and €, are the bulk dielectric constants of
the core and shell, respectively. The model was originally
applied to an InAs/GaAs QD which operated at a bandgap
energy of 0.8eV (A = 1550nm). Because of the desire
to conduct prototype experiments to demonstrate their
potential nanosensor applications, we have extended it here
to commercially available QD structures.

Many different types of quantum dots are now available
commercially in the frequency range of interest. For instance,
Sigma-Aldrich produces a range of CdSe/ZnS core-shell
quantum dots for use in the visible and near-infrared parts
of the spectrum. The published properties of some of their
CdSe/ZnS core-shell QDs are given in Table 1 [8]; they show
a considerable range of available gain values and related
optical extinction coefficients, g = —2 (wo/c) «, ¢ being the
vacuum speed of light.

Their 560 nm emitting QD, whose diameter is 6.0 nm
was chosen for our study; it has a gain value which is close
to those used in our previous studies [6]. Moreover, its
core-shell configuration conforms nicely to our analytical
simulation approach. The indexes of refraction for CdSe
and ZnS$ at visible wavelengths are approximately 2.5 and
2.41, respectively [9, 10]. These values, along with the
published QD material properties, were used to calculate
the wavelength-dependent effective permittivity and, hence,
the index of refraction of a QD layer. Figure 1 depicts the
wavelength dependence of the index of refraction for the
commercially available Sigma-Aldrich 560 nm QD based on
the theoretical model given by (1)-(2). It will be denoted
as “SA-560 QD” in the following discussions. The oscillator
strength f and the damping term y were chosen, respectively,
to be 1.9185 and 5.0 meV to match the corresponding peak
gain value given in Table 1. Consequently, when the gain
scale value equals one, the model recovers that peak gain
value. As Table 1 shows, the observed QD resonance strength
increases as the QD size becomes larger. As a consequence, its
dispersion properties are quite large over the frequency band
of interest. Moreover, the active CNP’s resonant linewidth,
as would be expected for a core-shell amplifier, is quite
narrow [1]. While the available gain bandwidth for these
QDs is wider than the active CNP resonance, both of these
properties nevertheless present added degrees of difficulty in
the design and fabrication of any QD-CNP structure. The
center frequency of the CNP resonance is rather sensitive to
the material properties of its layers and to their respective
radii. To achieve the desired enhanced responses, the final
configuration must provide a significant overlap of the CNP
and QD resonances.
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FIGURE 1: Behavior of the real, n, and imaginary, «, parts of
the index of refraction of the SA-560 QD as a function of the
wavelength.

TaBLe 1: Physical properties of commercially available Sigma-
Aldrich core-shell quantum dots.

Emission Core QD
wavelength g x 10° (cm™") 4 diameter ~ diameter
(nm) (nm) (nm)
510 0.045 -0.018 3.0 4.9
530 0.065 -0.027 3.3 5.2
560 0.97 —0.432 3.4 6.0
590 1.6 -0.751 4.0 6.2
610 4.90 -2.379 5.2 7.7
640 5.90 —3.005 6.3 8.6

3. Active CNP Designs

The previously studied CNP and corresponding 10 designs
possess strong resonant behaviors [4, 6] and serve as the basis
for the QD-augmented designs reported here. In particular,
we replace the active silica region in the previous designs
with an equivalent cluster of QDs, which we treat as a
continuous region whose thickness is determined by the
number of SA-560 QDs that could fit radially into the
layer and whose permittivity is specified by (1) and (2).
We used our previously-developed Mie theory CNP models
[1, 3, 6, 11] to calculate the behavior of the proposed
QD-augmented CNP designs. Silver was selected for the
metal; it was modeled with a size- and wavelength-dependent
permittivity [1] that recovers the known measured results
[12]. As noted above, a background pump signal is assumed
to create the necessary population difference to achieve the
gain value specified by the manufacturer and recovered by
the QD permittivity model, (1).
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F1GURE 2: Contour plots of the electric field distribution along with
the normalized total Poynting’s vector field for a single SA-560 QD.

While a QD possesses amplifying behavior by itself, it
only weakly couples to an incident field, which leads to a
weak response. Figure 2 shows the electric field distribution
and the corresponding Poynting’s vector field for the SA-
560 QD when it is excited by an incident plane wave at its
resonance frequency. The streamlines of the Poynting’s vector
field flow around the QD, indicating a weak interaction of the
incident field with it.

On the other hand, if the QD is simply coated with a
metal, the coupling to and the localization of the incident
field energy in the gain region can be improved substan-
tially and the resulting resonant plasmonic behavior will
significantly enhance its response. We have found that while
a single SA-560 QD, when coated with an Ag shell, can
be designed to have a strong resonance, it does not have
enough gain to overcome the intrinsic losses associated with
that shell. On the other hand, slightly larger CNPs that
contain several QDs generally exhibit stronger light-matter
interactions with (i.e., have a stronger coupling to) the
incident field and, hence, have larger resonant responses. A
multilayered cluster of QDs can be employed in the core and
if the shell is properly designed, the resulting multilayer gain-
augmented core-shell system will exhibit a super-resonance
state [1] when its gain value is large enough to overcome its
intrinsic losses. Figure 3 shows the electric field distribution
for a core size equivalent to the radius of “two” QD layers
(9 nm), that is, a QD in the center and one full layer of dots
surrounding it, when coated with a 3 nm Ag shell. While the
QD core region is treated as a continuous medium in the
simulation, we have included circles that are overlayed in the
core to represent the size of the individual QDs relative to the
entire structure.

There is a significant enhancement in the electric field
amplitude when compared to the single bare SA-560 QD
seen in Figure 2. This enhancement effect can be increased
with up to three layers of QDs. However, we found that it

z (nm)

F1GURE 3: Contour plots of the electric field distribution along with
the normalized total Poynting’s vector field for a set of SA-560 QDs
encapsulated in a 3.0 nm thick silver shell having a 12.0 nm exterior
radius.

begins to fall off with four- and more layered cores because
the gain is so large it significantly detunes the overlap of
the QD and structural resonances. On the other hand, by
placing the active region more strategically, as suggested by
previous 3-layer designs [6], one can dramatically improve
the active CNP performance while decreasing the number of
QDs required.

The two designs whose performance characteristics are
noticeably the best are the Ag/QD/SiO, (called the QD-CNP)
and QD/Ag/SiO; (called the IO-CNP) configurations. Both
are three-layer designs consisting of the same materials, but
differ in the placement of the QD layer. The QD layer of
the QD-CNP design lies between the Ag shell and the SiO,
core, while the QD layer of the IO-CNP is the outermost
layer. The core and shell sizes were adjustable parameters;
the QD size was fixed by the manufacturer’s specifications.
Both of the resulting optimized designs feature a 17.5 nm
radius core and a 6 nm thick QD layer. For both cases, a single
layer of QDs is sufficient to achieve a very large resonant
response. The optimized thickness of the Ag shell in the
QD-CNP design was 6.2nm (29.7 nm total radius); it was
6.3 nm thick (29.8 nm total radius) for the IO-CNP design.
We note that other three layer designs featuring a single QD
inside a metal coated dielectric core/shell structure have been
proposed [13].

However, we have found that placing the active material
near the shell boundary can greatly increase the performance
of the active CNP. In fact, while we have studied designs with
the active region near, but separated from the shell, we have
seen that the optimal location of the active region is directly
adjacent to the shell. While it is known that placing the active
region next to a metal will enhance the nonradiative decay
rate of the active material, that is, it will quench the emission
rate, recent theoretical and experimental studies have shown
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FIGURE 4: Scattering and extinction efficiencies for the optimized
QD-CNP and the IO-CNP configurations.

that plasmonic-related effects can actually significantly
enhance the radiative decay rates [14-20]. In particular,
by properly designing a multi-layer structure to retain the
unique optical and electronic properties of the QD and CNP
and to provide a much larger density of radiating states
to which the emissions can couple, one can produce active
CNPs with very efficient florescence behaviors, especially for
materials with high internal quantum efficiencies which QDs
possess. Even though the metal layer is thin and the QDs
are not, which would lead to lower quenching effects in any
event, designs exhibiting the large radiated power enhance-
ments associated with a super-resonance state [1] correspond
to ones that foster enhanced radiative decays. Thus, the
proposed optimized QD-CNP and IO-CNP designs avoid
quenching and significantly outperform the single QD, two-
layer version. The scattering efficiency and the absolute value
of the extinction efficiency for these designs are plotted
against the gain scale factor in Figure 4. We note that the
optimized configurations require less than the peak gain
value to achieve their resonant states, which would be quite
advantageous in practice when fabrication and experimental
tolerances tend to negatively impact the ideal component
performance characteristics. Also note that the extinction
efficiency achieves a negative value on the larger gain factor
value (right) side of the resonant peaks of the scattering
efficiency. (we note that this feature appears in the |Qex!
curves as the sharp nulls since the absolute value is being
plotted). Recall that when the extinction efficiency becomes
negative, it means the losses are overcome and the incident
field is amplified. One immediately observes that the scat-
tering and extinction behaviors of the QD-CNP design are
several orders of magnitude larger than those of the IO-CNP.

The resonant CNP-based designs have cross sections
much larger than their physical size [6]; this behavior
impacts the actual, rather than the model-based gain values
needed for their operation. Figure 5 shows the power flow
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F1cUre 5: Contour plots of the electric field distribution along with
the normalized total Poynting’s vector field for the QD-CNP and
IO-CNP designs.

behavior of the total Poynting’s vector field for both designs
when the incident plane wave has a 560 nm wavelength. The
QDs are drawn as circles representing their actual size with
respect to the size of the structure. In both the QD-CNP
and IO-CNP cases, these structures produce a strong overall
dipole resonance in their exteriors. However, it is clear that
power is flowing more strongly outward from the QD layer
in the QD-CNP structure than it is in the IO-CNP one (note
that the minimum level in Figure 5(a) is the maximum one
in Figure 5(b)), further emphasizing the large scattering
cross section differences shown in Figure 4.

Although the gain region in the three-layer QD-CNP and
IO-CNP designs is only a single layer of QDs, it has a volume
equivalent to 282 and 481 individual dots, respectively.
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FIGURE 6: The core-shell model required gain values (blue) and
the actual required gain values of the QD-CNP (red) and IO-CNP
(black) designs (in cm™!).

However, the field overlap in the gain region is strong and
is caused, in part, by an increase in the incident power flow
into the gain region. This strong coupling of the incident field
to the gain region leads to a large scattering cross-section
Qscat> Which is in turn effectively related to the enhancement
of the gain value by the amount +/Qs.t, that is, the gain
enhancement factor [6]. This enhanced coupling to the gain
region thus leads to a reduction of the actual gain values
required to achieve the results shown in Figure 4. They are
given in Figure 6, where the model-based gain value (blue)
and the actual gain values of the QD-CNP (red) and IO-
CNP (black) designs are plotted versus the QD gain scale
factor. The largest gain enhancement factor for the QD-CNP
and I0-CNP configurations are, respectively, =287 and ~17.
We again note that the optimized configurations require less
than the peak gain value to achieve their resonant states.
Moreover, the tolerance of the gain scale factor (i.e., the
widths of the resonances in Figure 6) to achieve a significant,
high gain enhancement factor provides further tolerances in
practice to potential fabrication and experimental errors.

We note that the IO-CNP design has a similar, but
weaker behavior. It simply does not possess as large a gain
enhancement factor. This is due to the QD layer being the
outermost one. In the QD-CNP case, the QD layer is within
the cavity formed by the silica core and the metal shell.
Thus, the coupling of the large fields in the core to the
SPPs created in the Ag shell at the Ag-QD (i.e., an € < 0,
€ > 0) interface provides a much larger feedback mechanism
through the QD gain layer. This feedback is much smaller
in the IO-CNP case because it occurs between the outside
vacuum region and the metal shell. These interpretations are
supported by earlier 3-layer observations [6] that included
an exterior metal coating to the basic IO-CNP configuration
that substantially improved its performance.

4. Conclusions

With an enhancement factor of ~287, the actual required
gain value in the QD-CNP configuration might be achieved
with only 1 QD instead of the predicted 282 QDs that would
make up an entire layer. In reality, the actual effectiveness of
coupling energy into each QD would be lower than these
ideal values. Nevertheless, the large enhancement factors
observed indicate that designs using only a few QDs may
be possible and that QD-QD coupling effects, while out of
the scope of this study, can quite possibly be ignored due to
the drastically reduced QD requirements. Also, the reduction
of quenching effects seen with highly resonant plasmonic
structures [14-20] suggests that QDs placed near the metal
layer may not suffer from quenching effects, but rather could
be further enhanced by the plasmonic resonance. These
results further suggest that QDs may be a very realistic gain
medium for active CNP designs and that QD-CNPs would be
viable candidates for a variety of nanoamplifier applications.
While the Mie theory analysis is limited in its scope, it has
been used to describe the experimentally observed spectra of
active NPs [4] and provides a good foundation for analyzing
the effects of the resonant CNPs. The inclusion of off-the-
shelf QD geometry and performance characteristics in this
modeling added engineering realism to its outcomes. Future
work includes experimentally encapsulating QDs in these
CNP structures to measure the predicted enhancements
in their emissions and, hence, to verify the theory and
modeling.
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The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined.
The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity
of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the
anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency
conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures.

1. Introduction

A new generation of artificial electromagnetic materials has
opened up new opportunities for engineering the media with
the specified properties. The latest advancements in this field
have prompted a surge of research in the new phenomenol-
ogy, which could extend a range of functional capabilities
and enable the development of innovative devices in the
millimeter, terahertz (THz), and optical ranges.

Frequency conversion in dielectrics with nonlinearities
of the second and third order has been investigated in
optics, particularly, in the context of the second (SHG) and
third (THG) harmonic generation. The recent studies have
indicated that nonlinear photonic crystals (PhCs) and meta-
materials (MMs) have significant potential for enhancement
of the nonlinear activity associated with the mechanisms
of field confinement, dispersion management and resonant
intensification of the interacting waves. For example, it
has been demonstrated in [1-5] that the PhCs dispersion
can be tailored to facilitate the phase synchronism (The
phase synchronism between pump wave and its harmonic
is a prerequisite for efficient frequency conversion.) between
the second harmonic and the pump wave of fundamental

frequency. The harmonic generation efficiency can be further
increased when the pump wave frequencies are close to the
PhC band edges [6-12] where the higher density of states
provides favourable phase-matching conditions. The SHG
efficiency also grows with the PhC thickness or the number
of stacked layers [5].

Combinatorial frequency generation by mixing pump
waves of two different frequencies provides alternative means
for frequency conversion. The efficiency of mixing process
can be dramatically increased in the layered structures,
for example, at the higher order Wolf-Bragg resonances of
the combinatorial frequencies generated in the anisotropic
nonlinear dielectric slabs. As shown in [13], at the specific
thickness of the layers illuminated by the plane waves of two
tones, the mixing products reach their extremes and exhibit
either giant growth of the peak intensity or full suppression.
The global maxima and nulls at Wolf-Bragg resonances in the
layer are achieved only at the particular combinations of the
two frequencies w;, of pump waves and the layer parameters
and anisotropy.

The aim of this paper is to explore the mechanisms of the
combinatorial frequency generation in the PhC composed
of a periodic stack of binary anisotropic nonlinear dielectric
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layers illuminated by two-tone pump waves that allows us to
combine the effects of the resonance mixing with the disper-
sion control provided by the structure periodicity. Here the
properties of the combinatorial frequencies generated by the
nonlinear anisotropic dielectric PhC illuminated by plane
waves of two tones are investigated. A generic approach,
based on the transfer matrix method (TMM) [14], has been
devised here to take into account nonlinear polarization
of the constituent anisotropic layers and analyse frequency
mixing of the two-tone plane waves obliquely incident
on the PhC. The problem statement and the solution of
the respective boundary value problem obtained in the
three-wave approximation [15] are outlined in Section 2.
The results of the numerical analysis and the properties
of TM waves of combinatorial frequencies scattered by the
nonlinear PhC are discussed in Section 3 and the main
features of the three-wave mixing products generated by the
anisotropic nonlinear PhCs are summarised in Conclusions.

2. Nonlinear Scattering in Three-Wave
Mixing Process

Wave propagation and scattering in linear stratified media
are usually modelled by TMM, which sequentially relates the
fields at the layer interfaces, see, for example, [14, 16]. The
TMM approach has also been applied to the study of optical
harmonic generation and frequency mixing in 1D nonlinear-
layered structures at normal incidence of the pump waves
[17-20]. The nondepleted pump wave approximation has
been usually employed taking into account multiple reflec-
tions from the layer interfaces and interference between
all propagating waves, including the forward and backward
propagating waves. A relatively simple approach based upon
the TMM generalisation to a multiwavelength case has been
proposed in [19] where interaction between the different
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frequencies was described by the “effective” refractive index
characteristic for each optical wave. The latter technique
allows simulations of multiple optical wave interactions in
the homogenised metamaterials as well as in PhCs.

In order to examine the three-wave mixing process in the
1D anisotropic PhC, it is necessary to generalise the TMM-
based analysis for the case of two pump waves, incident at
arbitrary angles. To elucidate the main features of the devel-
oped approach, we consider here a canonical PhC structure
with the cross-section shown in Figure 1. It is composed
of the periodic binary dielectric layers of thicknesses d,
and d, and infinite extent in the x and y directions. The
total thickness of the periodic stack is L = N - (d; + dy),
where N is the number of periods (unit cells). The PhC is
surrounded by the linear homogeneous medium with the
dielectric permittivity &, at z < 0 and z = L. It is illuminated
by two plane waves of frequencies w; and w; incident at
angles ©®;; and ®j,, respectively, as shown in Figure 1.

Each layer has 6 mm class of anisotropy and is described
by the linear dielectric permittivity tensor &€ = (&xx Exx» €22)
and the second-order nonlinear susceptibility tensor ¥:

0 0 0 0 Xuxz O
)? = 0 0 0 Xz O O] (1)
Xzxx Xzxx  Xzzz 0 0 0

Owing to the structure uniformity in the x0y plane and
symmetry of the tensors € and ¥, we can assume without
loss of generality that d/dy = 0. In this case, Maxwell’s
equations for TE and TM polarised waves are separated and
can be treated independently. Only TM waves are considered
in the rest of the paper (the analysis of TE waves is similar
and somewhat simpler being unaffected by anisotropy of
X defined in (1)). The electric E,. and magnetic H, field
components of TM waves in each layer satisfy the following
system of nonlinear equations:

8Exj aEZj 18Hyj B
9z ox ¢ ot
aHy; sxxj aEx] _ 4 0
0z c ot | KXy (Ex]EZJ>’

0H,; 2zj OE;;
ke at] = 477[ [szXj% (EXJEXJ) +Xzzzj% (EZjEZj)]’

ox c

(2)

where j = 1,2 denotes the respective constituent nonlinear
layer in the binary unit cell, ¢ is the speed of light.

In the approximation of weak nonlinearity, the scattering
characteristics of the TM waves can be obtained separately
at each frequency by the harmonic balance method. Thus at
the combinatorial frequency w3 = w; + w,, the system of
nonlinear equations (2) can be reduced to inhomogeneous
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Helmbholtz equation for H,; in each nonlinear anisotropic
dielectric layer

?Hyj(ws) %

zz]

d ZXX 22z
= 47ks |:28<X ]E](wl)Ex](w2)+X ]Ezj(wl)Ezj(w2)>
X\ €zzj Ezzj

_ Xuxzj 0
Exxj Jz

( x](wl)Ez;(wz) + Ex](wZ)EZ](wl))]
(3)

where k, = w,/c,p = 1,2,3 and k3 = k3./g;5in ®;3. Since
kys must obey the requirement of the waveform invariance
along the layer interfaces, the phase synchronism condition
in the three-wave mixing process [15] is enforced here in the
following form:

kx3 = kxl + kxl: (4)

where kyipo = ki /€sin®j . In order to make the
solution procedure more transparent, we assume here that
both incident pump waves of frequencies w; > have the same
amplitudes equal to unity. Generalisation to the case of
unequal pump wave amplitudes is straightforward but the
resulting expressions are more cumbersome.

The full solution of inhomogeneous equation (3) is
composed of the partial and general solutions which can be
represented in the form

2. (3) _ _aqB gt
H}(,';)(w3,x, z) = (A?J’e’kufz +A] e ike1jz 4 D’f}re’kﬂfz

—q + . — ik= . — —ik= .
+Djfe it + DY e + Dy e ’kzlfz)

X e*iw,; t+iky3x
(5)

Here the amplitude coefficients A”* are associated with
the general solution of (3) and are determined by means
of enforcing the continuity conditions for the tangential
field components at the layer interfaces. The coefficients
Df;,; represent the partial solution of inhomogeneous
equation (3) and are expressed in terms of the refracted field

B (wp)

- (410 = (o)) (1500

zLj

R(wy)

_ M11 (a)p) + (k;g)/(sakp))Mlz (wp) — (Sakp/kg‘g)) 21 (wp) — Mzz (wp)

amplitudes in each layer at the pump wave frequencies w;
and w;:

By (@B} (@)

(k) - (K5)"

B} (w1)B} ™ (w2)

k) - (k)T
e B (w1)B} (w,)

B} (w1) B} (w,)

DY} = a;p;

n+ __
Dyj =«

n-— _ . . —
D2j - a])/] (k_ )2 _ <k(3))2’
zLj zLj
o= A ks
! Ezzj kiky’
2) Xxxzj
ﬂf = kzL]kxlkzL] )
X X €
— ks ( :xx} kzL] zL] ZZ;] 2 kxlkx2>
XX] zzj
_ (2) Xxxzj
yi = kajkak.p c

XX

i
+ kx3 (szxj kzL] kz%)] XZZZ; = kxlkxz) >

XX] zzj
k2
£XX] >
€zzj )

p=123;

+ (1) (2) (p)
a1y = ko ks kzL] <kp

=12
(6)

Here kzLJ are the z components of the wave vectors in jth
layer at frequencies w,, respectively; superscript # identifies
the period number in the stack. The coefficients B]’-’i (w1,2) are
the field amplitudes inside the jth layer of the nth period at
the incident wave frequencies w; and w,. These coefficients
are obtained by imposing the continuity conditions for
the tangential field components of each pump wave of
frequencies w = w;, independently at the layer interfaces
and can be represented in the form:

(p) k
(s ) B ) 1~ (o))

zLj

(7)

M (wp> + (kgg)/(fukp> >M12

(wp) + (eukp/k<p))

=12,

(wp) + Mar ()



where kég) = ky./€s cos ®j, is the longitudinal wavenumber
in the surrounding medium and R(w,) is the reflection

coefficient at frequency w,. The transfer matrix M (wp) of
the finite linear periodic structure containing N periods
can be expressed in terms of the transfer matrix m(w,) =
mp(wp)mpy(wp) of a single period using Abeles theorem
[21]: ]\A/I(wp) = (r?a(wp))N, where 111 15(wp) are the transfer
matrices of the constituent layers of the unit cell. The
n)

matrices s ;

((wp)"™) " and & (wp) = ((wp)"™" - fip(wy))

To satisfy the boundary conditions at the interfaces of the
nonlinear layers at the combinatorial frequency w3, the TMM
procedure has to be modified in order to take into account
the contribution of the frequency mixing products generated
in each layer and subsequently refracted through the periodic
stack. Namely, the fields at interfaces of the first layer in the
binary unit cell are related as follows:

in (7) are defined as follows: §(1”)(wp) =

(H;‘l’ws,x,c))) o (w3)<H;?<w3,x, d1)>
E\} (w3,,0) Ey(ws,x,dy)

(8)
N d
e (3160
Similarly, for the second layer we obtain
b (w3, x, dl)) _ ( 2 (wS,x, dy +d2)>
(E,Eﬁ)(wa,x, a) =N ED (s + )
)

A T1(dy + dy)
+ i (@s) (521(611 + dz))'

Thus, (8) and (9) define the interrelation between the fields
at the external interfaces of the constituent unit cell. After
applying the boundary conditions sequentially to all N unit
cells, the fields at the stack outer interfaces can be represented
in the form:

( 1)(w33xa0)>

(1)(603,3(',0)
_ 2 (wS)x L) A~ Tll(dl)
M(““)(Ey (s, ,L>>+m“(‘”3)<fn<d1))

+ iy (w3) s (ws) <Ziggi ii;)

s z)

(10)
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Here 7j, and &j,, contain the terms proportional to coeffi-
cients D{j,,j = 1,2:
n+ — n— _+ n— .—
Tjn = D{} 01] +Djj o1+ Dyjoy; + Dy oy,

_ pynt ot nt _— n— _+ n— _—
Ein = Dfj a3 + D3 o3; + Dij 0y + D3 oy,

Tk
zLj ikt .d.
of; = coskzL] j £ i) ] smkzL dj — et
zLj
k;
zLj
055 = coskzL]d +i (3{ smkzL]d — e*ikaydy
zLj
(3)
< kz kzL kzL
ot = ZeLj isink® d + ]co k(3)d — eLj eikiLid;
3j W € zLj%) zLj%) k(3)
3 Sxxj zL] zLj
(3)
C kzL kzL 3 kzL +
03 = — J( 1nkzL]d + Jcosk;L)]d T J e*ikadi |,
W3 Exx
7 zL] zL]

(11)

The magnetic field of frequency w3 emitted from the stack
of nonlinear layers into the surrounding homogeneous
medium has the form:

.2 (3)

—ikza z
Hu(w ) _ e—iw3t+ikx3x F’e “5 z= 0’
y\W3 F ikg)z > L
t€ > Z =L,

(12)
where k&) = k3e, — k25 is the longitudinal wave number of
the wave at frequency w3 in the homogeneous media and the
nonlinear scattering coefficient F, and F; are determined by
enforcing the interface boundary conditions at z = 0, L.

Finally, by combining (5), (10), and (12) we obtain the
sought coefficients F, ;:

kseq , A ~ ksgq ;A ~
F, = ( 3(3) (1IN )y + (’7N)22>/11_(k3£‘31) ()4 + (’1N)12))‘2’

k3£u>
A +A
< )

(13)
where
1 N
=3 z [ ) pytin + () poin + (i) py 720 + () pon ]
p=L2%
. . K3 ksea -
A= (i) + () o + 1 (i) 1o+ 3y (AN) 215
ksea za
fin = [M(w3))", 7y = flaaimin(ws), Ay = M(ws).
(14)

It is necessary to note that F,; in (13) always remain finite

inspite of the fact that coefficients Dj,; have singularity

at k7j; = kﬁ)] However, it can be shown that coefficients
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A" in (5) contain exactly the same pole as DI}, at
®;1 = Oj, and their combined contribution is finite at all
frequencies and incidence angles.

Thus the modified TMM approach presented in this
section gives the closed-form expressions for the nonlinear
scattering coefficients of the finite PhC composed of the
binary nonlinear layers. The obtained analytical formula-
tions not only provide a qualitative insight in the formation
of the nonlinear response and the properties of the scattered
fields but also enable fast quantitative analysis of the specific
PhC configurations.

The results of numerical simulations based upon the
analytical solutions obtained here are presented in the next
section to illustrate the effects of structure and materials
parameters on the properties TM waves of combinatorial
frequencies generated by nonlinear PhC in the three-wave
mixing process.

3. Properties and Mechanisms of Nonlinear
Scattering by Finite Periodic Stacks

The analytical solutions for the coefficients F,; obtained
in the preceding section have allowed us to examine the
mechanisms of nonlinear scattering in 1D anisotropic non-
linear PhCs. The effects of the constituent layer parameters,
unit cell aspect ratio, and the pump wave frequencies w;,
and incidence angles ©;;> on the properties of the waves
of combinatorial frequency ws = w; + w, generated in the
three-wave mixing process have been analysed with the aim
of increasing the efficiency of nonlinear processes in the
artificial medium.

To illustrate the features of the frequency mixing in the
1D nonlinear anisotropic PhCs, the characteristics of the
combinatorial frequency waves are discussed here with the
examples of periodic stacks of binary anisotropic dielectric
layers of CdS and ZnO described by the tensors € and y (1)
with the following parameters [22]:

CdS: exx1 = 5.382,e,,1 = 5.457 () = &xx1/Ez21 =
0.986), Yxxz1 = 2.1 X107, yzex1 = 192X 1077, yzzz1 =
3.78 x 1077;

ZnO: g0 = 1.4, &, = 2.6(ap = €xx2/€220 = 0.538),
Yoxzz = 2.82X 1078, yo00 = 2.58X 1078, y,200 = 8.58 %
1075,

The constituent layer thicknesses are d; = 0.08 mm and
d, = 0.05mm, unless specifically defined. Exterior of the
layer stack in Figure 1 is an air with permittivity ¢, = 1.

3.1. Spectral Efficiency of the Combinatorial Frequency Gen-
eration. PhCs are known to be instrumental in enhancing
the SHG and THG efficiency by choosing the pump wave
frequency close to the PhC band edge. Therefore, it was
interesting to explore whether similar facility could be
exploited for the combinatorial frequencies generated in the
three-wave mixing process. The spectral bands of a periodic
stack of binary linear anisotropic dielectric layers have been
inferred first from the reflectance |R(w)| of the pump waves.
Figure 2 illustrates |R(w)| for the TM wave incident at angle
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FI1GURE 2: Reflectance of plane TM wave incident at ®; = 30° on
the periodic stack of N = 7 binary dielectric layers of thicknesses
d; = 0.08 mm and d, = 0.05 mm.

®;; = 30° on the periodic stack containing N = 7 unit
cells. The bandgaps, corresponding to |R(w)| ~ 1, are clearly
observable in Figure 2, but it is necessary to note that the
respective frequency bands change with the incidence angle
and layers’ parameters.

The field intensities | F, ;| 2 at the combinatorial frequency
w3 = w; + w, generated in the same structure are shown in
Figure 3 for variable frequency w; of a pump wave incident
at ®; = 30°, while the frequency w, = 1.135 X 1083571 of
the other pump wave, incident at ®;, = 45°, was fixed at the
passband edge. Comparison of Figures 2 and 3 demonstrates
strong correlation between IF,,tI2 and |R(w)|. However, in
contrast to SHG and THG, the band edges have little effect on
the w; generation efficiency, namely, |F; | reaches its maxima
inside the transparency bands, and only |F, |2 exhibits small
kinks at the band edges when frequency w, of the first pump
wave varies.

Figure 3 also shows that the peak intensity |F;|° grows
with w; and the efficiency of the frequency conversion
is higher when the w; remains inside the pump wave
transparency bands. This effect can be attributed to the
increase of the pump wave interaction length at the higher
frequencies further assisted by the enhanced mixing effi-
ciency at Wolf-Bragg resonances of Bloch waves in the finite
PhCs. It is noteworthy that (N-1) resonances occur in each
transparency band of the N-cell stack. At these resonances
[R(w)| = 0 as the stack overall thickness equals an integer
number of Bloch half-waves with the wavenumbers k(w),
that is, Nk(w) (dy +dz) = nq, g = 0,%1,+2,..., where k(w)
is defined by the relation cos k(di +dy) = (my1 + ma)/2, mp
and m», are elements of the unit cell transfer matrix 71(w)
defined in connection with (7).

| 2

3.2. Effect of the Stack Thickness. As indicated in the preced-
ing section, the number N of stacked unit cells and thickness
of the whole stack may have strong impact on the efficiency
of harmonic generation in nonlinear PhC. This effect has
been predicted by the analytical formulations (13) and
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FIGURE 3: The field intensity at frequency w3 = w; + w, radiated
in the reverse (|F,|*: red solid line) and forward (|F;|*: black dash-
dot line) directions of the z-axis at @;; = 30°; ®@;; = 45°, N = 7,
d, = 0.08 mm, d, = 0.05mm, and w, = 1.135 x 10”571,

confirmed by the numerical simulations in Figure 4. Indeed,
the field intensity IFr,tI2 exhibits nonmonotonic depend-
ences on the number N of unit cells in the stack as illustrated
by Figure 4 for two different combinatorial frequencies w3 =
w; + w; (the pump wave frequencies w; and w; are close to
the PhC band edges in both cases). Indeed, Figure 4(a) shows
that |F,|? has maxima at N = 32,57,89,..., whereas |F,|?
has a higher peak at N = 32 and then follows almost the
same pattern as |F,|2. However, at the higher frequency w;,
maxima of |F,;|* occur at N = 108 and N = 127 as shown
in Figure 4(b), where the peak values of |F,|? are about two
orders of magnitude higher than those in Figure 4(a) and
about 20 times larger than for |F,|%. The IF,,tI2 can also
exhibit giant growth and reach their extrema at Wolf-Bragg
resonances of very high orders in rather thick stacks with
the special combinations of the pump wave frequencies,
incidence angles, and the layer parameters as suggested in
[13].

3.3. Effect of the Pump Wave Incidence Angles on the Frequency
Mixing Efficiency. Harmonic generation in 1D PhCs are
usually analysed at normal incidence of pump wave on
the stacked layers. In the case of combinatorial frequency
generation by a pair of pump waves, incident at different
angles, an additional degree of freedom exists in realising
the phase synchronism and controlling the whole frequency
mixing process. To gain insight in the effect of the incidence
angle on the combinatorial frequency field intensities, IFr,tI2
have been simulated at variable incidence angle ®;; and fixed
angle ®;, of the respective pump waves and different number
of the unit cells in the stack: N = 7,15, 25.

Examination of |F, ;(®;1) 12 in Figure 5 shows that when
the stack is relatively thin (N = 7), both |F,|* and |F,|*
exhibit similar behaviour and smoothly vary with ©;.
However, additional resonances arise in the thicker stacks,
and the IFr,t(®,-1)|2 dependencies qualitatively change. Sev-
eral factors are responsible for these alterations. At first,
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dissimilar reflectance and transmittance of the individual
pump waves have significant effect on the ratio of the pump
wave amplitudes in the three-wave mixing process. Secondly,
angular variations of the PhC transparency bands become
more noticeable in the thicker stacks. Finally, the higher
order spatial harmonics, which can resonate in thicker stacks,
contribute to the combinatorial frequency generation.

Both the reflectance/transmittance of pump waves and
the phase synchronism in the mixing process are essen-
tially dependent on the permittivities and anisotropy of
the constituent binary layers. Therefore the effect of the
constituent layer parameters has been assessed first to dis-
criminate contributions of the aforementioned mechanisms
to the combinatorial frequency generation. In order to
evaluate the effect of the layer anisotropy, the intensities
|F,(®;1)]* have been simulated at the modified permittivity
ratios exx1/€zz1 = 200, €xxa/€20 = 202, and &1/ = 1/2,
&xx2/€z2 = /2 and are shown in Figure 6. Comparison
of the plots in Figure 5(b) for ex1/e;z1 = a1, &x2/€z0 =
o, with the respective plots in Figure 6 for the modified
tensor € demonstrates that variations of the layer anisotropy
qualitatively alter the efficiency of the combinatorial fre-
quency generation. Namely, we can observe that when the
layer anisotropy deviates from the specified values of a5,
in either direction, the combinatorial frequency intensity
considerably decreases, from a few times to several orders of
magnitude. Furthermore, additional angular undulations of
the field intensity occur at several incidence angles, Figure 6,
being inflicted by the resonances of the higher order spatial
harmonics.

3.4. Effects of Constituent Layer Thicknesses and Resonance
Enhancement of Frequency Conversion. The stack overall
thickness may have profound influence on the frequency
mixing efficiency. This can be the result of the increased
number of unit cells in the stack as illustrated in Figure 4 or
variations in the thicknesses of the constituent layers. The
earlier studies have demonstrated that the efficiency of
combinatorial frequency generation can significantly vary
with thickness of an individual nonlinear layer at the higher
order Wolf-Bragg resonances [13]. This suggests that the
aspect ratio of the binary layers in the unit cell as well as
the unit cell size can provide independent controls of the
dispersion and the pump wave reflectance/transmittance.
In order to elucidate this effect, the intensities \F,,tl2 at
frequency w3 = w; + w; have been analysed at the variable
thickness of one layer, while thickness of the other was
fixed. Figure 7 displays \Fr,[l2 for a stack with N = 7 unit
cells illuminated by the pump waves incident at ®;; = 38°
and ®; = 45° corresponding to the maximal intensity of
IF,,tI2 for the reference unit cell with d; = 0.08 mm and
d, = 0.05mm in Figure 5. It can be seen that both IFNI2
grow with thickness of the layers in the period, while |F,|?
always remains greater than |F,|%. It is necessary to note
that the growth rate of the IF,)tI2 versus d; (Figure 7(b)) is
higher than that versus d, (Figure 7(a)) for nearly an order
of magnitude. This effect is directly related to the fact that
the components of the nonlinear susceptibility tensor ¥ in
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frequencies w;= 0.4585 X 10" s! and w, = 1.135 x 10" s~! are incident at ®;, = 45° and variable angle ®;.

the first layer are an order of magnitude greater than in the
second one. Therefore when both layers are thin as compared
with the wavelength, |F, ; |2 are small at the low order Wolf-
Bragg resonances. However, when thickness of one of the
layers increases, this leads to considerable difference in the
IF,,tI2 undulation frequencies and the growth rates due to
substantial dissimilarity of the constitutive parameters of the
layers in the unit cell. The additional periodic undulations
of IFr,,fI2 can also be attributed to unequal variations of the
reflection coefficients R(w;,) of the incident pump waves
which cause the pump wave amplitude and phase disbalance
in the mixing process.

The analytical study of nonlinear scattering by an isolated
anisotropic dielectric slab in [13] has revealed that the
efficiency of the combinatorial frequency generation can be
increased for several orders of magnitude at the high-order

Wolf-Bragg resonances. In particular, in the CdS slab with the
parameters & and ¥; defined at the beginning of this section,
IF,,tI2 reaches the global maxima at the thickness d; =
1.695 mm, frequency ratio w;/w, = 1.911, the pump wave
incidence angles ®;; = 30°, ®;, = 60°. Similar analysis has
been performed here for the periodic stacks containing N =
7 unit cells with the thick binary layers of CdS and ZnO. The
simulation results in Figure 8 shows that the higher order
Wolf-Bragg resonances in individual layers create additional
modulation of the |F,|* magnitude and the peak intensity
is reached at d, = 1.35mm, 4.05mm and multiples of
these thicknesses. In contrast to the case of an isolated layer,
there is no full cancellation of the combinatorial frequency
generation at the Wolf-Bragg resonances in the layer 2.
Therefore when d, changes, IF,,tI2 vary about the same
median level determined by the layer of thickness d;.
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FiGure 6: The field intensity at frequency ws = w; + w, radiated in the forward direction of the z-axis; pump waves of frequencies w, =
0.4585 x 10" s7! and w; = 1.135 x 10" 57! are incident at @;, = 45° and variable angle ®;; the constituent binary layers have the modified

anisotropy (a) &xx1/€:21 = 2a; and &x0/€220 = 205 (b) &xn1/€221 = a1/2 and e/ = a2/2.
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F1GURE 7: Intensities \F,,tlz of the field at frequency w;

w; + w, and the pump waves of frequencies w; = 0.4585 x 10" s~ and w,

1.135x 10 s, ®;; = 38°,0,, = 45°, N = 7; (a) d, = 0.08 mm; (b) d, = 0.05 mm.

3.5. Effect of Loss on the Three-Wave Mixing Process in the Peri-
odic Stacks of Binary Layers. The combinatorial frequency
generation in the periodic stacks of binary layers discussed
so far has been based upon the analysis of the lossless
structures. To estimate the effect of dissipation on IFNIZ,
the structures with the same parameters as in Figures 2
and 3 have been simulated in the cases of imperfect layers
with the loss tangents tgdyx., = 0.01,0.1. Comparison of
the plots in Figures 9 and 10 with the respective results for
the lossless cases in Figures 2 and 3 shows that dissipation
strongly affects both the reflection coefficients R(w,,2) of the
pump waves and the intensities of |F,;|* of the generated
combinatorial frequencies. First of all, this effect is caused
by the lower reflection coefficients R(w;,) of the pump
waves (cf. Figures 2 and 9). In contrast to the lossless
case in Figure 3, unequal dissipation of the pump waves
in the nonlinear layers of the periodic structure entails an

additional disbalance in the three-wave mixing process which
further reduces the efficiency of the combinatorial frequency
generation, as seen in Figure 10. Moreover, in the case of
higher losses (tgdxy.z = 0.1, Figure 10(b)), the combined
effect of the pump wave dissipation and attenuation of the
mixing products passing through the stack causes dramatic
reduction of the |F;|? peak values, which become nearly an
order of magnitude smaller than |F, 12,
The effect of loss on the intensity IF,,,(w3)|2 of the
combinatorial frequency generation in the stack of thick
layers with variable thickness is illustrated in Figure 11 for
the structure with the same parameters as in Figure 8.
Comparison of Figures 8 and 11 shows that in the presence
of loss, both the median and the first peak levels of the
IF,,t(w3)|2 decrease for about 3 times for |F,|> and 5 times
for |F;|>. When thickness of the second layer increases the
higher order resonance peaks of |F;|* progressively decay
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faster than the peak values of |F, |* as evidenced by Figure 11.
These results show that the strong enhancement of the com-
binatorial frequency generation efficiency at the high order
Wolf-Bragg resonances is feasible at the practical level of
dissipation loss.

4. Conclusions

The properties and mechanisms of the combinatorial fre-
quency generation by periodic stacks of binary nonlinear
anisotropic dielectric layers have been analysed. The closed-
form solutions for the nonlinear scattering coefficients
have been obtained in the approximation of the three-
wave mixing process in the presence of weak polarisation
nonlinearity. The effects of the structure parameters and the

= 0.01, (b) tgdyx, 2z = 0.1.

incident pump wave characteristics on the efficiency of the
combinatorial frequency generation have been investigated
in detail. The performed parametric study has shown that
in contrast to SHG and THG in the PhCs, the spectral
band edges of the binary layer stacks do not improve
the combinatorial frequency generation efficiency for the
refracted waves. Alternatively, it is shown that the frequency
conversion efficiency can be significantly enhanced at Wolf-
Bragg resonances occurring at the appropriate combinations
of the pump wave frequencies, incidence angles, and the
layers’ constitutive parameters. The effects of the individual
parameters on the frequency mixing efficiency have been
discussed in detail for the lossless and lossy constitutive
layers in the periodic stacks. It has been demonstrated
that the combinatorial frequency generation efficiency can
be dramatically increased at the higher order Wolf-Bragg
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resonances in the stacks with thick constitutive layers. The
performed analysis provides insight in the main features
of the combinatorial frequency generation by the periodic
stacks of binary nonlinear anisotropic dielectric layers.
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A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality
is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the
wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL) is used to
pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the
wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra.
The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based
L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular
and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media.
This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low

loss.

1. Introduction

Metamaterials are artificial electromagnetic materials with
constituent elements that are subwavelength in size relative
to the incident field and engineered to produce bulk electro-
magnetic properties not readily found in nature. The interest
in these materials has grown steadily since the seminal
theoretical work by Pendry [1] and subsequent experimental
work by Shelby et al. [2]. Various interesting and exotic
phenomena can be realized using metamaterials including
the reverse Vavilov-Cherenkov effect [3], negative refraction
[1, 2], sub-diffraction-limit imaging [1, 4-6], the reverse
Doppler effect, slow light [7-9], and cloaking [10-12]. Appli-
cations of metamaterials span the electromagnetic (EM)
spectrum with potential transformative impact in fields such
as imaging (superlens) [1, 13], data storage [14], optical
switching [15], electromagnetic shielding, and stealth tech-
nology [16-18].

To date, the majority of research on metamaterials has
focused on developing negative index materials (NIMs) as
first proposed by Veselago [3]. Initially, these were designed

to have simultaneous negative values of permittivity, ¢, and
permeability, u. To achieve this, many of the early NIMs
operating at GHz and THz frequencies made use of an
electromagnetic resonance involving subwavelength metallic
structures such as split-ring resonators (SRR) [19] and pairs
of cut wires (PCW) [20, 21]. However, it was found that
this approach has drawbacks. The reliance on resonance
leads to NIM behavior with limited bandwidth, and the
use of metallic structures results in relatively high loss. As
the field advanced, other metamaterial constructs such as
fishnet structures [22, 23] emerged and were shown to be
superior to SRR and PCW designs in terms of a lower loss
and ease in achieving overlap between electric and magnet-
ic resonances. Nevertheless, the desire for practical metama-
terials with wide bandwidth and low loss persists. In addition
to performance limitations, there are issues associated with
the fabrication of metamaterials, especially for use at optical
frequencies. To date, the majority of such materials for THz
applications have been fabricated using “top-down” tech-
niques such as electron-beam lithography (EBL) or focused-
ion beam (FIB) milling [23]. While these methods provide an



adequate nanometer resolution for tailoring subwavelength
constituent elements, they tend to be limited to the fab-
rication of 2D planar materials on rigid substrates at low
throughput and with high cost. Currently, there is intense
interest and effort towards the development of fabrication
methods and materials that overcome the aforementioned
limitations.

In this paper, we introduce a new laser-based chiral
chemical approach to metamaterials that overcomes some
of the limitations of more conventional approaches. Our
approach involves the use of a pulsed laser to pattern novel
chiral polymer materials that exhibit chirality at two distinct
length scales, intrinsically at the molecular level and geo-
metrically at a length scale on the order of the wavelength
of the incident field. Specifically, we use femtosecond-
pulsed laser-induced two-photon initiated polymerization of
a photoresist, which is premixed with a chiral polymer, to
write patterned arrays of chiral polymer-based 2D planar
chiral structures. Thus, this fabricated metamaterial exhibits
chirality due to both its molecular structure and geometric
shape. The idea is to obtain enhanced bulk chirality by tuning
the wavelength-dependent chiral response at both the molec-
ular and geometric level so as to ensure an overlap in their
respective spectra.

Chiral metamaterials offer an alternate route to NIMs
as compared to the more conventional metallic-structure-
based resonance approach. The chirality of a material can be
characterized in terms of a chirality parameter «. If x is suffi-
ciently large, a bulk negative index can be realized within the
material. Specifically, in a chiral material, negative refraction
will occur at one of the eigen (circular) polarization states
of the incident field if « is larger than the square root of the
product of real parts of permittivity and permeability, that is,
when

K >JE -, (1)

where the refractive index is given by

n=.& -y —-x (2)

and ¢ and y’ are the relative values of the real parts of
the permittivity and permeability, respectively. Thus, in the
chiral approach to NIMs, a negative index can potentially
be achieved with a wider bandwidth and lower loss as there
is no need to introduce lossy resonant metallic constituents.
Our strategy is to use a laser to fabricate materials with en-
hanced multiscale chirality (sufficiently large x) in order to
obtain polymer-based NIMs without resorting to top-down
fabrication or resonant metallic structures as is common in
conventional approaches to metamaterials. In the following,
we report of the progress towards this end by describing
the synthesis and demonstrating the fabrication of novel 2D
planar media possessing multiscale chirality. We also present
modeling results that demonstrate the effects of multiscale
chirality on the optical response (optical rotation) of such
media.
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FIGURE 1: Chemical structure of PFBT polymer.

2. Fabrication

The fabrication of our multiscale chiral media begins with
the formation of a photoresist-chiral polymer mixture con-
sisting of SU-8 2025 from Microchem and Chiral Poly(flu-
orene-alt-benzothiadiazole) (PFBT) in a mixture ratio of
35:1. The PFBT was synthesized using palladium-catalyzed
Suzuki polycondensation as the final step and purified
with a Soxhlet extraction. We introduced chirality in PFBT
of the fluorene-based monomer modified with (S)-3,7-
dimethyloctyl substituents at the 9 positions as shown in
Figure 1 and described in [24]. The photoresist-chiral poly-
mer mixture is stirred for 24 hours and then spin-coated at
1000 rpm on a glass substrate. After spin coating, the sample
is baked for 30 min at 95°C to evaporate the solvent before
performing lithograph patterning. The circular dichroism
(CD) (differential absorption of left and right circularly
polarized light) and absorption spectra of both the pure
PEBT polymer and SU-8/PFBT blend are shown in Figure 2.
Note that the SU-8/PFBT exhibits a 68-fold increase in
optical activity at A = 500 nm. Presently, the reason for the
enhanced optical activity is not fully understood and is the
subject of continued investigation by our group. The chirality
parameters for the PFBT polymer and the SU-8/PFBT are on
the order of x ~ 107> and 2 x 107, respectively.

In order to obtain multiscale chirality, we pattern the
chiral SU-8/PFBT film into a planar array of L-structures
using two-photon photolithography (TPL). We use a near-IR
(800 nm) writing wavelength and a schematic of the writing
set up is shown in Figure 3(a). In this system, a piezo stage
moves the sample relative to a fixed laser beam and a desired
pattern is produced within the sample by controlling the
motion of the stage while exposing the sample. Once the
sample is patterned, it is developed with Propylene Glycol
Methyl Ether Acetate for 3 hours, which removes the unex-
posed material leaving only the patterned media. We have
recently reported the use of this method for writing novel
subwavelength polymer-based planar plasmonic metamate-
rials, which were prepared using SU-8 with a high gold
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FIGure 2: CD (a) and UV-vis absorption (b) spectra of (dots) annealed pure PFBT film; (solid) PFBT/SU-8 blending, 1/30 mass ratio film
spin-coated from 20% solid content solution, after prebaking and annealing.

precursor (metallic salt) loading [25, 26]. Specifically, we
used a femtosecond-pulsed laser to induce two-photon
initiated in situ reduction of the metal salt and simultaneous
polymerization of the SU8. Gold nanoparticles are formed
during the writing process, which renders a plasmonic func-
tionality in the written structures [26]. Figure 3(b) shows
examples of different written structures, which demonstrate
the versatility of the writing process. The present effort on
patterning chiral SU-8/PFBT film is an extension of this prior
work on plasmonic structures.

A 2D array of planar L-structures fabricated using this
method is shown in Figure 4. Note that while the L geometry
is not chiral in a 3D sense, it is considered chiral in a 2D
planar sense because it cannot be mapped onto its mirror
image using a sequence of rotations or translations confined
to the plane; that is, it needs to be lifted out of the plane and
rotated to achieve this. Thus, based on geometric considera-
tions alone, that is, ignoring the chirality of the SU-8/PFBT,
the fabricated material is not chiral in 3D; for example, it
would not rotate polarization of waves propagating in the
plane of L-structures, rather it is bianisotropic. However, in
addition to the planar geometric chirality, the L-structures
possess intrinsic chirality due to the constituent SU-8/PFBT.
Thus, the material shown in Figure 4 represents a 2D planar
metamaterial with multiscale chirality. In principle, this
process can be used to fabricate bulk enhanced 3D chiral
metamaterials layer-by-layer, wherein a stacked sequence of
carefully chosen 2D patterns combine to produce a 3D
unit cell chiral geometry, an approach that we are currently
pursuing.

3. Theory and Simulation

From a theoretical perspective, a periodic array of planar
chiral L-structure elements, such as shown in Figure 4, will
exhibit circular birefringence in the visible and near-infrared

regions of the spectrum when their linear dimensions
are close to these wavelengths [27, 28]. In principle, the
molecular chirality of the constituent polymer can be tuned
to occur at these wavelengths as well, allowing for the
development of materials with enhanced multiscale chirality
as described above.

We use computational electrodynamics to model the
electromagnetic response of chiral polymer-based chiral L-
structures as shown in Figure 4. However, to facilitate the
computational analysis, we use submicron geometric dimen-
sions, that is, slightly smaller than those shown in Figure 4. In
order to take into account the overlap of 2D geometric chi-
rality with molecular chirality [24, 29] we modify Maxwell’s
equations to include natural optical activity. This emerges
when the spatial dispersion of a medium is considered along
with the time dispersion in the linear relation between
the applied electric field and the medium’s displacement
vector [30]. In case of relatively weak spatial dispersion, the
dielectric permittivity tensor, &;(w, k), can be expanded in a
series over powers of the wave vector. The coefficient of the
first-order term can be related to the macroscopic chirality
parameter of the medium after some algebraic operations.
The Oth-order term represents the usual local dielectric
permittivity tensor. In the case of an isotropic medium, con-
sisting of a randomly oriented collection of chiral molecules,
both the Oth-and 1st-order coefficients become averaged.

To compute the rotation of polarization of an incident
field we employed the Finite-Element-(FE) based COMSOL
multiphysics RF solver using a time-harmonic approxima-
tion (http://www.comcol.com/). The computational domain
for the L-Structure is shown in Figure 5. In this model, the
polymeric L-structure resides on a glass substrate with a
refractive index of 1.6. The base of the unit cell is 1050 nm
by 750 nm, and its height is 2 microns. The dimensions of
the L-shape are as follows: 750 nm in length, 450 nm at the
base, the width of both branches is 150 nm, and the thickness
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is 500 nm. Note that while these dimensions are slightly
smaller than the fabricated structures shown in Figure 4, the
analysis presented here is scalable as long as the molecular
chirality can be tuned to overlap the structural chirality.
The isotropic refractive index of the modeled L-structure
is 1.4. Scattering (low reflection) boundary conditions with
Perfectly Matching Layers (PML) are applied at the top and
bottom of the solution space as described in [31, 32]. Double
periodic boundaries are imposed on the side boundaries to
account for the fact that this structure is one element of a
2D array, that is, the periodic conditions account for the
presence of the other elements, even though they do not
appear in the model. The incident (input) field is generated
by a time-harmonic surface current source positioned in
the x-y plane [31, 32]. The magnitude of the surface current
is chosen to provide an x-polarized plane wave with a field
magnitude of E; = 2 X 10°V/m [31-33].
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FiIGure 4: SEM of fabricated chiral polymer-based chiral L-
structures.

The intrinsic chirality of the L-structure is introduced
via the bulk chirality parameter, ¥, which is related to
macroscopic optical rotation of the medium. Here, we are
not concerned with the microscopic origin of chirality [29].
Instead, we model the frequency dispersion of chirality para-
meter with a damped Lorentzian centered at a certain reso-
nant wavelength. Specifically, the permittivity tensor for our
analysis is of the following diagonal form:

ei(w) = 1w+ (), [0 i (3)
& Eji
where
’ _ Ko
w(w) = (w— wy) +iT’ (4)

and n is homogeneous refractive index, wy is the reso-
nant frequency of molecular optical activity, and I' is the
damping rate of corresponding molecular resonance. In our
simulations the damping rate is set to 10'*sec™! and xo
to 10'2sec!. It should be noted that the specific form of
permittivity tensor (3) results in the corresponding disper-
sion relation and an equation for the square of the effective
refractive index of the medium. Equation (2) is then derived
via Taylor expansion over the small parameter, assuming
the smallness of chirality parameter, ' (w). Therefore x of
(2) and «'(w) of (3) are related through a simple for-
mula: ¥ (w) =2 % n * k.

It is instructive to note that the resonance is a molecular
resonance and basically determined by the microscopic elec-
tronic structure of constituent chiral molecules. Significantly,
the resonance can be tuned in a relatively broad range from
UV to near IR for a class of m-conjugated donor-acceptor
molecules depending on the donor and acceptor strength and
conjugation length. For example, the first absorption band
of the PFBT molecule was tuned to approximately 500 nm
to overlap with the plasmon resonance of gold nanoparticles
in our previous work [30]. Shifting the molecular resonance
to the infrared region, with a simultaneous decrease of the
linear dimensions of the L-structure, results in an overlap
of resonant features and an effective increase of the degree
of optical rotation. The peak absolute value of chirality
parameter, |k, |, was set to 0.1 in our simulations. This
value is a projected maximum that can be readily achieved
with combined plasmonic [24], excitonic [34], and structural
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FIGUre 5: Computational domain for the planar chiral L-structure EM analysis.

enhancement [35] of chirality. Even higher values of chirality
parameter can be expected from combinations of natural
optical activity with (i) a magneto-optical effect enhanced by
magnetoplasmonic nanoparticles, (ii) further modifications
of chiral molecular building blocks, and/or (iii) chiral
aggregation in thick films. The optical rotation of an L-
structure with molecular chirality is compared to one with
just spatial chirality in Figure 5 and the discussion thereof.

To make sure the observed optical rotation is due to
actual chirality of the L-shapes and not a computational
artifact or accidental diffraction pattern we compared the
EM transmission of a dielectric sphere to that of sphere made
from chiral material (Figure 6). The dielectric sphere should
show no optical activity as the geometry it is not chiral.
As shown in Figure 7, and discussed below, the polarization
state of the incident light was preserved in the former case as
expected. However, the sphere consisting of chiral molecules,
and therefore possessing a bulk chirality parameter, showed
a chiral signature.

The results of our simulations of optical rotation are
presented in Figure 7. The angle is computed with respect
to the initial polarization of the incoming field. First, note
that the L-structure without molecular chirality rotates the

polarization in a broad range. Rotation in this case is solely
determined by the shape and dimensions of the scattering
object and is not resonant in nature. However, the L-
structure made of chiral material shows a narrow resonance
on top of the broad rotation curve. Similarly, in the case of
the spherical geometry one can see that there is no rotation
of polarization in the case of the dielectric sphere. However,
the chiral sphere reveals rotation due to the chiral nature of
its material: the chiral signature is centered at the wavelength
of the molecular resonance. This analysis demonstrates the
distinction between molecular and geometric-based chirality
and the effects of the enhanced multiscale chirality on the
optical response of the media.

4. Conclusions

We have introduced a novel approach to metamaterials that
combines the use of ultrafast pulsed laser-based fabrication
with chiral chemistry to produce a new class of polymeric
metamaterials that have enhanced bulk chirality. The en-
hanced chirality is achieved by tuning the wavelength-
dependent chiral response of the media at both the molec-
ular and geometric level so as to ensure an overlap of



(a)

A 75468

x10°
1

0.8

0.6

0.4

0.2

[}
E, (V/m)

-0.2

-0.4

-0.6

-0.8

-1

V¥ —6165.5

Advances in OptoElectronics

A 1.8042 x 10°
x10°

(=)
w
E, (V/m)

-0.5

W —8.144 x 10*

(b)

Fi1GURE 6: Simulated EM transmission (y-component of the E-field is plotted): (a) dielectric sphere without intrinsic molecular chirality;

(b) sphere with intrinsic molecular chirality.

Rotation angle (deg)
[e)}

4 -
2 -
0
1.2 122 1.24 126 128 1.3 132 134 136 138 1.4
Wavelength (um)
— Dielectric sphere —— Dielectric L
—— Chiral sphere —— Chiral L

FIGURE 7: Predictions of the optical rotation angle for structures

with and without molecular chirality.

their respective spectra. This approach is demonstrated
via the fabrication of a metamaterial consisting of a two-
dimensional array of chiral polymer-based planar chiral L-
structures. The fabrication process is described and modeling
is performed to demonstrate the effects of multiscale chirality
of the optical response (optical rotation) of such media. This
new approach to metamaterials holds promise for the devel-
opment of tunable, polymer-based negative index optical
metamaterials with low loss.
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We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser
writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have
made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and
we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with
600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined
diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile
structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless
plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.

1. Introduction scaffolds for biomolecules and cells [5-7], and photonics and
metamaterials [8—10].
There has been a lot of research efforts to improve the

resolution of DLW technology, which for a long time has

Direct fs laser writing is a technique that allows the construc-
tion of three-dimensional micro-and nanostructures [1]. It

is based on the phenomenon of multiphoton absorption and
subsequent polymerization; the beam of an ultrafast laser is
tightly focused into the volume of a photosensitive material,
initiating multiphoton polymerization within the focused
beam voxel. By moving the beam three-dimensionally,
arbitrary 3D, high-resolution structures can be written. By
simply immersing the sample in an appropriate solvent, the
unscanned, unpolymerized area can be removed, allowing
the 3D structure to reveal. A variety of applications have been
proposed including microfluidics [2], micro-optics [3, 4],

been in the range of 100 nm. The method which most
successfully and substantially has increased the resolution
not only of single lines but also of 3D structures is
DIW inspired by stimulated-emission-depletion (STED)
fluorescence microscopy [11, 12]. In STED-DIW, two laser
beams are used; one is used to generate the radicals,
and the second beam to deactivate them. Several schemes
have been proposed including single-photon (rather than
multiphoton) excitation [13], a one-color scheme [14] and
multiphoton two-color scheme [15, 16]. Structures with



FIGURE 1: The design of the 3D spirals.

very high resolution and very small intralayer distances
have been fabricated using this approach. However, the
implementation of DIW-STED is complicated, requiring
very fine beam control and specialized photoinitiators which
not only have high two-photon cross-section, but also high
fluorescence quantum efficiency [15, 17]. Consequently, only
geometrically simple structures have been fabricated to-date.

Our team has shown recently that it is possible to increase
the writing resolution of multiphoton polymerization by
employing diffusion-assisted DIW (DA-DIW), a scheme
based on quencher diffusion, in a chemical equivalent of
STED [18]. This is based on the combination of a mobile
quenching molecule with a slow laser scanning speed,
allowing the diffusion of the quencher in the scanned area,
the depletion of the generated radicals, and the regeneration
of the consumed quencher. The material used as quencher
is 2-(dimethylamino) ethyl methacrylate (DMAEMA), an
organic monomer which is also part of the polymer struc-
ture. Due to its amine moieties, this is the same monomer
we have employed in the past as a metal ligand, to enable
the selective metallization of 3D photonic crystals [19]. In
general, metallic nanostructures are very interesting due to
their potential electromagnetic functionalities, which are not
observed in bulk materials [20-23]. Metallic periodic nanos-
tructures can significantly modify the properties of light with
wavelength close to their periodicity, resulting in potential
applications in scientific and technical areas such as filters,
optical switches, sensing, imaging, energy harvesting and
photovoltaics, cavities, and efficient laser design [24]. Several
fabrication techniques have been employed for the fabri-
cation of such structures, including colloidal lithography,
[25] focused ion beam drilling [26], photopolymerization
and photoreduction [27], and others [28]. Our approach
was to fabricate 3D dielectric nanostructures containing
the metal binding material DMAEMA and subsequently
selectively metallize them with silver using electroless plating
(EP). EP is a fairly simple process that does not require
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any specialized equipment, and the metal deposition can
be done without using any electrical potential [29, 30].
In general, it is characterized by the selective reduction of
metal ions at the surface of a catalytic substrate immersed
into an aqueous solution of metal ions, with continued
deposition on the substrate through the catalytic action of
the deposit itself. Using DLW and selective EP, we successfully
fabricated 3D metallic photonic crystals with bandgaps at
optical wavelengths [31].

In this paper, we combine these two methodologies
to fabricate 3D metallic and structures with complex
geometries and subdiffraction limit resolution. We fabricate
woodpile and spiral photonic crystals, and we show that
they have well-defined diffraction patterns, indicating the
quality of their fabrication and their internal periodicity.
In addition, we have fabricated 3D structures decorated
with gold nanoparticles. Such structures can be useful in
applications such as biosensing.

2. Design

In this paper, we present three kinds of nanostructures.

(i) Silver-coated woodpile structures with a period of
600 nm: these type of structures were investigated
theoretically and experimentally in [31], and they
were found to have bandgaps at optical wavelengths.

(ii) Dielectric woodpile structures, also with period
600 nm, decorated with gold nanoparticles: these can
be useful in applications such as biosensing, where
thiol chemistry can be employed for biomolecule
immobilization [32].

(iii) Spiral photonic structures: these were modeled on
the structures presented in [33] by Ganzel and
colleagues from KIT, Germany (Figure 1). In the KIT
study, voids were fabricated into a positive photore-
sist using DLW, which were subsequently filled with
gold using electroplating. Their structures were used
as broadband polarizers. In our study, we have copied
the spiral design and used a metal-binding negative
photopolymer to recreate these spiral structures. As
these spirals have high aspect ratio and it is difficult
for them to remain free standing during the sample
development process, support structures were added
to the design, as it will be shown in the Results
section.

3. Fabrication

The materials investigation, synthesis, and metallization
protocols employed have been described in detail previously
in [18, 19, 31]. The silver-coated structures were fabricated
using 30% DMAEMA [19], while the gold-nanoparticle-
covered ones 10% DMAEMA [18]. The gold nanoparticles
were prepared following the metallization process described
in [19], omitting the last plating step.

For the fabrication of the 3D nanostructures, a Ti:
Sapphire femtosecond laser (800 nm, 75 MHz, <20fs) was



Advances in OptoElectronics

FORTH-IESL

F1GURE 3: Woodpiles decorated with gold nanoparticles (a) the whole structure, (b) detail.

focused into the photopolymerisable composite using a
high numerical aperture focusing microscope objective
lens (100x, N.A. = 1.4, Zeiss, Plan Apochromat). Sample
movement was achieved using piezoelectric and linear stages,
for accurate and step movement, respectively (PI). The
whole DIW setup, which is described in detail in [34],
was computer controlled using the 3DPoli software. Here,
the average laser power used for the fabrication of the
high-resolution woodpile structures was 1.85 mW, measured
before the objective, while the average transmission to the
sample was 20%. For the spiral structures, the average power
was increased to 5.5 mW, scanning the beam at 10 y/s and
20 u/s to write the spirals and the supports, respectively. To
avoid contact with the lens immersion oil, all structures were
fabricated upside down with the glass substrate in contact
with the oil. They were built in a layer-by-layer fashion
starting from the top with the last layer adhering to the
substrate. This way, the laser beam did not cross an already
polymerized layer, causing second polymerization or beam
distortion.

4. Diffraction Spectra

To check the quality of the structures, we used the diffrac-
tion pattern in the transmitted waves produced by the
structure when illuminated using a white light beam. In
general, diffraction patterns reveal structural characteristics

as well as sample quality [35]. For this, a home-built
setup was employed, built according to [36, 37]. Light
from a Ti:Sapphire laser (800 nm, 180 fs, 1 m]J/pulse, 1 KHz
repetition rate) was focused usingan f = 3 cm lens into a 3 cm
long cell filled with distilled water, in order to produce white
light continuum, providing a useful broad spectral range of
450 nm to 1000 nm wavelength. The light was collimated and
then focused on the sample. The sample was mounted to
have accurate 3D and rotational control. The half-opening
angle of the incident light was reduced to 5°, assured by iris
diaphragms.

5. Results and Discussion

Figure 2(a) shows a scanning electron microscopy (SEM)
image of a woodpile structure with 600 nm period fabricated
and metallized using the procedure described earlier. Fig-
ure 2(b) shows a detail of such a structure. It can be seen
that the resolution achieved is in the order of 100 nm.

Figure 3 shows SEM images of woodpile structures
decorated with gold nanoparticles. Figure 3(a) shows the
whole structure, while Figure 3(b) shows a detail of such
a structure, where the nanoparticles are clearly visible. The
density of these nanoparticles can increase or decrease
by increasing or decreasing the percentage of DMAEMA,
respectively [19]. The size of the nanoparticles can be
modified by altering the growing conditions [19].
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F1GURE 4: EDX spectrogram of the woodpile structures. The gold (Au) peaks are clearly visible.

(d)

FiGURE 5: Spiral photonic crystal structures. (a) An array of dielectric spirals. (b) An array of metalized spirals. (c) Detail of a spiral with
lateral resolution is in the order of 100 nm. (d) The diffraction pattern generated when the structure is illuminated with white light.

Figure 4 shows the energy-dispersive X-ray (EDX) spec-
trogram of the woodpile structures, where the gold (Au)
peaks are clearly visible.

Figure 5 shows a series of dielectric and silver-coated
spiral structures fabricated as described earlier. Figures 3(a)
and 3(b) show 14 X 14 arrays of spirals before silver coating,
respectively. Support lines between the spirals are clearly
visible. It is also clear that even thought there is some
debris on the glass substrate, the silver metallization is
selective. Figure 3(c) shows a close SEM image of a spiral; the
resolution achieved is in the order of 100 nm. In addition,
the silver coating is fairly uniform, with no visible large silver
grains. Figure 3(d) shows the diffraction pattern produced
when the spirals were illuminated with white light. As it can

be seen, the pattern is regular, symmetric, and having well-
defined colours, indicating the periodicity of the structures.
This periodicity is not disturbed by the support structures.

6. Conclusions

To conclude, we have employed DA-DLW and EP of a metal-
binding hybrid material to make helical spirals and woodpile
structures with 600 nm intralayer periodicity. The fabricated
nanostructures have a smooth surface and exhibit well-
defined diffraction spectra, indicating their good fabrication
quality and internal periodicity. We have shown that this
methodology combination can be employed as a viable route
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for the fabrication of 3D dielectric, nanoparticle-coated, and
metallic photonic nanostructures.
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We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without
the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To
illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation
formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

1. Introduction

In the numerical solution of spatially unbounded electro-
magnetic problems it is often necessary to truncate the com-
putational domain. The use of a region of finite spatial
size can introduce reflections and other spurious effects in
the calculations. Several techniques have been proposed to
overcome this problem. An established one, used commonly
in finite-difference time-domain (FDTD) calculations [1],
is the perfectly matched layer (PML) technique proposed
by Berenger [2]. Such a layer can absorb electromagnetic
waves without reflections at the vacuum-PML interfaces.
Methods of calculation based on Green’s theorem (see, e.g.,
[3]) do not present such complications with volume waves,
but the truncation of the interfaces can produce spurious
effects in the presence of surface waves, like surface plasmon-
polaritons (SPPs).

The basic properties of SPPs have been known for some
time, but their importance for nanophotonic applications
has produced a renewed interest on the subject [4, 5]. In
studies of the interactions of SPPs with objects or surface
structures, the computational problem grows as a function
of the physical size of the sample and, thus, it is desirable to
reduce the computational domain as much as possible. The

PML techniques known to us were not designed to handle
truncation effects involving SPPs, and are not well-adapted
for situations involving metallic structures and evanescent
waves [6].

In this paper, we present a procedure for determining the
optical constants of absorbing materials for the attenuation
of SPPs without introducing, or minimizing at least, spurious
reflections and/or radiative scattering effects. Although SPPs
are already lossy traveling waves, a reduction of their
propagation length in the matched medium permits an
important reduction in the dimensions of the region over
which the computational domain extends. Although our
approach is related in spirit to the usual PML techniques, we
point out that it addresses a different problem, namely, the
termination of surfaces over which surface waves propagate
without the introduction of artificial scattering or reflection
effects.

The absorbing materials that we propose are homo-
geneous and isotropic. The flexibility for choosing their
optical properties permits the selection of materials that are
appropriate for the use of impedance boundary conditions.
All these facts simplify considerably the electromagnetic
problem. The results presented here can be applied not only
for electromagnetic calculations based on integral equations,
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Figure 1: Schematic diagram of the three media considered.
The upper medium is a dielectric, characterized by its electric
permittivity €; and magnetic permeability y; in the frequency
region of interest. Similarly, the metals 1 and 2 are characterized
by €1, y1 and €, y,, respectively.

like the one used for our examples, but also for those based
on differential equations, like the FDTD.

2. Theory

To describe the technique, let us consider the generic geom-
etry illustrated in Figure 1. The figure shows a flat interface
involving three media: a semi-infinite dielectric and two met-
als, defined through their permittivities and permeabilities,
with a vertical boundary. We assume that SPPs traveling
from left to right, impinge on the vertical boundary between
media 1 and 2. The optical properties of medium 2 are
to be chosen in such a way that the SPPs are strongly
attenuated without the introduction of significant reflections
or coupling into radiative modes.

Let us consider the magnetic field associated with an SPP
traveling on the flat surface of medium 2, in the direction
+x;. This field may be conveniently written in terms of the
magnetic field along the x,-direction. We write

1(2) . (2)
H; (x1,x3) = Hoe'krxitiaalksy)x yep > 0, (1a)

I e
H2< (Xl,X3) = Hoelksl’ xy—iay (ks )63 x3 <0, (lb)

where Hj is a constant,

>

K — ‘UJ €46 (€204 — €a2)

e € — €3

ad(kﬁé’) = \/Edﬂd(f)z - <ks(§))2) @
w(ky) = \/em(‘:)z - (k2"

The signs of the square roots are taken in such a way that the

imaginary parts of ks(f,), ocd(kif,)), and ocz(kgf,)), are positive. In
the dielectric, the attenuation constant along x3 is given by

€3 (€xp — €apla)
€ — €}

K; = Sm{ad(kgﬁ))} = %Sm (3)

Similar expressions can be written for the interface between
the dielectric and medium 1.
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To minimize the scattering losses due to the vertical
metallic interface of Figure 1, the transverse profile of the SPP
wave must be the same on the two sides of the interface [7-9].
That is, one must have that x; = x5. On the other hand, the
reflection of the SPP at the boundary should be minimized

when %e{kg)} = %e{kﬁ},) }. We will refer to these conditions
as the no scattering and no reflection conditions.

At this stage, we focus our attention on the case in which
€4 = 1, yg = 1, and assume that the metal on the left is
nonmagnetic at optical frequencies (i.e., 41 = 1), while that
on the right has arbitrary properties. As a particular example,
we consider the design of absorbing layers that match the
properties of gold at the vacuum wavelength A = 980 nm.
Then, €, = —40.44 +i2.97 [10] and y; = 1.0. Since €, and
Y2 are complex quantities, one must seek solutions in a four-
dimensional space. To simplify matters, we have decided to
fix the imaginary parts of €, and y,, and explore the space
(Re{€ez2} — Refur}).

For physical reasons, we choose Im{e,} > 0. Although
there seems to be no problem with the choice of a negative
Imips} [11], we also took it as positive. With these choices,
the search space is restricted to the quadrant defined by the
conditions Refe,} < 0and Re{u,} > 0.

For our first example we have set Im{e,} = 3.0
and Im{u,} = 0.0. The solutions to the equations for
no scattering and no reflection are shown in Figure 2(a).
We observe that the two curves practically coincide when
Ref€e,} < —10 and that they gradually separate as Re{e}
approaches zero. It is thus advisable to seek solutions in the
region Re{e,} < —10.

One can see in Figure 2(a) that the pair of x, y values
(—40.44, 1), which corresponds to the properties of medium
1, lie on the solution curve. This is due to the closeness
between the chosen value of 3m{e€,} and that of Im{e,}.

As one moves along these solution curves from left

to right, the absorption coefficient of the SPPs, Sm{ks(f,)},
increases. The behavior is illustrated in Figure 2(b). On the
basis of these results, and since we are looking for solutions
with a strong attenuation coefficient, we have chosen a value
of Re{e,} = —10.0, which leads to Re{y,} = 0.19 and an

attenuation constant Sm{ks(f,)} = 0.033 ‘um’l. We will refer
to this example as case 1.

Values of the real parts of €, and g, that result in higher
attenuation coefficients are not appropriate for our purposes,
as they produce a mismatch between the no scattering and no
reflection conditions. Moreover, as can be inferred from the
discussion in the following section, they lead to solutions that
are more difficult to handle computationally.

For our second example, we chose Im{e;} = 3.0
and Im{u,} = 10.0. The solution map is shown in
Figure 3(a), and the attenuation coefficient for SPPs is
shown in Figure 3(b). We see that, with these parameters,
the curves corresponding to the no scattering and no
reflection conditions are fairly close, but differ by an
increasing amount as the magnitude of Re{e,} decreases.
The attenuation coefficient curves, on the other hand, are
practically indistinguishable in this case. For this second
example, we choose Re{e,} = —531.62, and based on
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FIGURE 2: (a) Solution curves corresponding to the no reflection and no scattering conditions assuming Im{e,} = 3.0 and Im{u,} = 0.0.

(b) Behavior of Im {ks(f,)} along the solution curves. The value of Re{e€,} chosen for the example is denoted by the vertical dashed line.
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F1GURE 3: (a) Solution curves corresponding to the no reflection and no scattering conditions assuming I3m{e,} = 3.0 and Im{u,} = 10.0.

(b) Behavior of Im {kiﬁ)} along the solution curves. The value of Re{€,} chosen for the example is denoted by the vertical dashed line.

the no-scattering-condition curve, one has that Re{y,} =

13.44 and Sm{kg)} = 0.06um™1. We will refer to this
example as case II. It is worth mentioning that the results
obtained with these parameters are practically the same as
those obtained with the parameters corresponding to the no
reflection curve.

Scattering calculations involving gold and the materials
proposed in this section will be presented and discussed in
Section 4.

3. A Nonlocal Impedance Boundary Condition

The attenuation of SPPs in the proposed matching media can
be visualized through rigorous electromagnetic simulations
of the problem. We base our calculations on an integral

equation formulation that has been used for rough-surface-
scattering studies [3]. Geometries like the one depicted in
Figure 1 pose some difficulties for this kind of approach,
but the problem can be simplified with the use of an
impedance boundary condition [12-14]. The use of an
impedance boundary condition in the present problem leads
to a formulation of the scattering problem that does not
require knowledge of the field below the interface.
Impedance boundary conditions have been used in the
past for scattering calculations and are known to provide
accurate results for good conductors, like gold and silver,
in the near infrared [15]. We shall see however that, due to
the rapid decay of the SPPs in the absorbing region, a local
impedance boundary condition is insufficient to deal with
some of the media considered here. So, before discussing
the scattering calculations, we present a brief derivation of



the impedance boundary condition for flat surfaces, which
includes the first nonlocal term.

With reference to Figure 1, we consider the field below
a flat interface, inside a medium with the properties of
medium 2. It can be written in the form

H2<(xl>x3) = J_ %A(q)eiqxl’mzw)xs’ (4)

9]

where A(q) is the scattering amplitude, or angular spectrum
of the field below the interface.
Here, az(q) = w/ezluz(w/c)2 — q%, with Im{ay(q)} > 0.

Since
A(q) = JZ dx|Hs (x},0)e "1, (5)
one can write
Hs (x1,x3) = jw @Jw dx;
e e (6)

X H2< (xi’ O)ei‘J(xl *X{)*idz(Q)XS.

From this expression, one can establish the following integral
equation involving the field and its normal derivative on the
interface:
0Hj (x1,3)
8x3

= J dxiK(xl’xi)H;(xi’o)’ (7)
x3=0 —00
where

L1 (e d o
Kad) =1 [ Halger. @)

We now seek the solution of (7) by expanding a,(q) as
follows:

Y PR
a:(q) ~ 62#2(5)[1 2€2.”2(w/6)2+ } ©)

which leads to
7 1 4
K(.X],Xl) = ?1/62[42(%)5(361 —xl)

1
S
* 2i(w/c). /2l
In this expression, §(x;) is a delta function and 8" (x;) its

second derivative.
Keeping only the first two terms, we find the relation

oH; (x1, 1
OH; (x1,X3) - - 62#2(%)H2<(X1,X3)

(10)
-3+

0x3 x3=0 x3=0
i 1 82H2< (Xl 5 X3)
2i. /63 (w/c) ox? 0
(11)

and using the continuity of the tangential components of the
fields across the interface we find that

ooy 1)1t CATTS
?dL (x1) = 62[.\/62#2(C)H (x1)

i
(12)

N 1 d*H> (x;)
2i /& (w/c)  dx? ’
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where
H”(x1) = H; (x1,%3) | 4,05

OH; (x1,x3) (13)

L (x1 ) = 8x3 .
X3=0

Finally, we write (12) in the form

d*H>
L (x) = K H (x)) + K{f’#, (14)
dxl
where
K}(}m = .QGd &,
1c €
(15)
) €4/€>

K, = ——.
? 2i /e (w/c)

The first term in the impedance expansion (14) represents a
local relation between L>(x;) and H”(x;) (or between the E
and H fields). The second term, represents the first nonlocal
correction.

We see that as the attenuation of the SPPs becomes
stronger, the second derivative of the field appearing in
(14) becomes larger. Looking at the quantities entering the

expression for KI(,Z), we conclude that it is desirable to have
media with a high refractive index n, = /&;. For a
more quantitative evaluation of this issue, we consider the
ratio between the first two terms of the expansion. This
ratio R constitutes an incomplete but, nevertheless, essential
knowledge for establishing the validity of the local relation
and the convergence of the expansion. Using the general
form of the field associated with an SPP on a flat surface given
by (1a), we find that

2
KD (PH ()dd) | 1| kg iy
R = (0) = 5 b ( )
K H>(x)) 2 | ny(w/c)

where 7, is the complex refractive index of medium 2.
In normal circumstances (i.e., when y, = 1), for a good

conductor one has that n, is large and that Ikﬁlz,)l ~ (w/c).
Thus, R is small, and the nonlocal term can be neglected.
For instance, for a gold-vacuum interface and the wavelength
considered, this ratio is R = 0.0125.

Turning our attention to the absorbing materials pro-
posed in Section 2, for our first example (case I) this ratio
turns out to be R = 0.258. It is clear that a local impedance
boundary condition would not be accurate on the absorbing
side of the boundary and that nonlocal correction terms
are needed. This conclusion is supported by the numerical
calculations presented in Section 4.

For case II, the ratio between the first two terms of
expansion (14) is R = 1.67 X 107°. Not surprisingly, the local
impedance boundary condition is very accurate in this case.
This case leads to parameters that are more convenient for
our type of calculation.
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FIGURE 4: Schematic diagram of the scattering geometry considered
for the calculations. A Gaussian beam illuminates a short gold
grating that couples a fraction of the incident light to SPPs traveling
to the right. The absorbing material is represented by the darker
region.
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FIGURE 5: Magnitude of the surface field calculated using the local
impedance boundary condition and the first nonlocal correction
for case 1. The boundary between the two metals is at x; = 0 and,
to facilitate the visualization of the interaction of the SPP with the
metal-metal boundary, the region of the grating is not shown.

4. Results and Discussion

In this section, we present scattering calculations corre-
sponding to the two examples of matching media proposed
in Section 2, starting with a summary of their properties: For
case [ we have €; = —10.0+3.0i and y, = 0.19, while for case
II,e; = —531.62+3.0i and p, = 13.44+10.0i. In the first case,

the attenuation constant for SPPs is Sm{ks(,%)} =0.033um™!,

while for the second Sm{k{'} = 0.06 um™1.

The geometry employed for the scattering calculations is
shown in Figure 4. Based on previous results [16], to excite
SPPs traveling to the right, we use an array of 5 rectangular
grooves of period T = 0.863 A, illuminated by a Gaussian
beam of width ¢ = 2 A with an angle of incidence 6, ~ —6.5°.
The coupling efficiency for the SPPs travelling to the right
is about 45%. The distance between the start of the buffer
material and the end of the surface is 45 ym.

The magnitude of the surface field associated with the
SPP propagating along the surface for case I is shown
in Figure 5. To simplify the visualization of the region of
interest, the section with the grating was omitted from
the figure. The curve shown with a continuous line was
calculated with a local impedance boundary condition,

while for the dashed-line curve we included also the first
nonlocal term. One observes that the attenuation constant
of SPP changes as the wave enters the absorbing material.
As expected, the nonlocal correction does make a substantial
difference in the calculations. The small ripples observed in
the upper curve are due to standing waves caused by the
reflection of the SPP at the end of the surface. With this
material it is important to use at least the first nonlocal
correction in expansion (14).

In Figure 6, we show the calculated magnetic near-field
intensity map (i.e., |H|?) for case L. As in the previous figure,
only the rightmost section of the sample is shown. It can be
observed that the SPP arrives from the left and decays quite
steeply as it enters the absorbing medium. The results are
encouraging. The incident SPP is not perturbed much by
the interface, and it is clear that the reflection and scattering
effects are low.

The near-field intensity map corresponding to case II is
shown in Figure 7. The attenuation of the SPP is stronger in
this case, and the local impedance boundary condition gives
accurate results. As desired, the SPP wave practically vanishes
after only a few microns. As in case I, the incident SPP does
not appear to be perturbed much by the interface.

To investigate the possible leakage of the SPPs guided
waves due to the absorbing boundary, we present, in
Figure 8, far-field calculations corresponding to a complete
gold sample and to samples terminated with the absorbing
materials that we have called cases I and II (see Figure 4).

The scattering curves show that there is a relatively strong
reflected beam in the specular direction (6; = —6.5°) as well
as a broad, grazing diffraction order. The rapid oscillations
observed in the diffraction order for the case of the gold
surface are due to the leakage of the SPP at the end of the
surface, which interfere with the grazing order. Moreover,
the SPP reflected at this end propagate back and leak into
the specular direction upon interaction with the grating. This
gives rise to the small-scale oscillations over the whole curve.

The differential reflection coefficient curves correspond-
ing to cases I and II are much cleaner. In particular, the fine-
scale oscillations that can be observed over the whole curve
associated with the gold surface have disappeared. Also, the
strong and rapid oscillations in the region of the diffraction
order have been replaced by smoother and less important
oscillations that seem to be due to residual scattering at the
metal-metal interface.

5. Summary and Conclusions

In this paper, we have presented a procedure for designing
metal-metal boundaries for the strong attenuation of surface
plasmon-polaritons, minimizing the introduction of reflec-
tions or scattering effects.

We have illustrated the results by means of computer
simulations based on an integral equation formulation of the
scattering problem and an impedance boundary condition.
Depending on the parameters chosen for the matching
medium, nonlocal corrections might be needed for the
calculations.
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The results show that with the method described here,
SPPs can be attenuated strongly without introducing signifi-
cant effects in near field calculations. The propagation of the
SPP is practically unperturbed along the original interface
and spurious reflection and scattering effects are minimal.
The implementation of the technique is fairly simple and
can be used effectively in plasmonic and nanophotonic
calculations by different methods.

The far-field results, however, seem to indicate the
presence of some residual scattering originating from the
metal-metal boundary. It is worth pointing out that this
leakage is not due to the use of an impedance boundary
condition or to the small difference between the values of the
dielectric constants corresponding to the no-scattering and
no-reflection conditions.
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Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal
nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we
analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical
manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive
optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

1. Introduction

Optical forces can be exerted on objects by transferring light
momentum. A tightly focused optical field can produce a
stable trapping force around its focus and is highly useful
for trapping particles or biological molecules; this effect is
known as “optical tweezers” [1-3]. More generally, carefully
tailored wavefronts of light can be utilized for various types
of optical manipulation such as particle guiding and rotation
[4-6]. Recently, plasmonic nanostructures have attracted
attention for this application [7-9]. A variety of nanopat-
terns such as metallic nanoparticles [10] and sharp tips
[11] have been considered for plasmonic optical tweezers.
Those structures have tighter light confinement and greater
field gradient than conventional optical tweezers and thus
produce a larger trapping force and smaller trapping volume.

However, plasmonic antenna structures are also useful
for shaping intermediate and far-field beam patterns. Metal
nanostructures provide a general platform for wavefront
engineering [12, 13]. Metal slitgroove or hole-groove struc-
tures were shown to be useful for collimating/directing light
[14-16]. Metal nanoslit or nanohole arrays were used for
focusing a beam into a small spot [17-19]. Metal nanos-
tructures were also studied for angular momentum control
of light [20-22]. Previously, such beam shaping has been

achieved with elaborate wavefront and beam control (such
as Bessel, Airy, or Laguerre-Gaussian beams) involving bulky
diffractive or holographic components [5]. Nanostructured
metal films provide an alternative, compact way for tailoring
wavefronts without such bulky and complicated elements.

In this paper, we analyze optical forces caused by nanos-
tructured metal films and show that they can be used
for general optical manipulation. The force magnitude is
comparable to that achieved with conventional diffractive
optics, but the plasmonic nanostructures have larger design
and patterning flexibility. Moreover, the planar geometry
facilitates integration with other components, such as lasers
[23] and optical fibers [24]. They can be integrated with
microfluidics or micromechanical systems too. Thus, we
expect that plasmonic beam shaping will give another
interesting venue for optical manipulation studies, especially
promising for compact integrated systems.

2. Guiding along a Linear Trajectory

We first consider optical forces using symmetric metal slit-
groove structures. Lezec et al. demonstrated narrow angle
(+3°) light collimation using such structures [14]. Light still
diverges, but it can be collimated tightly over a nonnegligible



distance (more than tens of micrometers for visible light).
Figure 1(a) shows a plasmonic beaming structure exhibiting
such light collimation in water. A metal slit is surrounded by
6 side grooves on each side. The optimal groove parameters
for beaming were chosen using numerical simulations
(Figure 1(a) caption). Laser light (g = 633 nm) is incident
from the left and collimated after passing the slitgroove.

An incident plane wave excites surface plasmon waves in
the slit, and those surface plasmons are scattered into far-field
light again at the exit slit. The properly designed sidegrooves
produce the constructive interference of scattered light and a
collimated, narrow-angle beam as shown in Figure 1(b) [25].
The incident side of the metal film can be also patterned
to increase the optical power throughput by orders of
magnitude [26]. This will reduce the required incident laser
power for optical manipulation. However, it is well known
that the beaming pattern is determined solely by the groove
pattern on the output side.

We now calculate the optical forces and show that this
beaming structure can be used for dielectric particle guiding.
A dielectric sphere (diameter D = 1lum, n = 1.59) is
placed around the collimated beam, and we perform
numerical simulations (3-dimensional finite difference time
domain, FDTD) [27] to obtain the total electromagnetic
fields (including both incident and scattered fields). Then,
we evaluate the optical force on a particle by calculating and
integrating Maxwell’s stress tensor over a surface surround-
ing the particle. The time-averaged optical force is

(F) = jm nda, (1)

where n is the unit vector normal to the surface, and T is the
Maxwell’s stress tensor [28] given by

I
T = egoBE + yy,HH — E(sso|E|2 +upgH). ()

Figure 1(c) shows optical forces for a particle located
12 ym away from the film. The force in the Y-direction (Fy)
has a negative slope around the beam center (which means
the particle is attracted toward the beam center), and the
force in the X-direction (Fx) is positive (which means the
particle is pushed forward). We calculate the pushing force
Fx as a function of the particle diameter and find it increasing
rapidly with size in the considered range (Figure 1(d)).
We gradually move a particle (within the dotted region in
Figure 1(b)) and obtain the force vector map (Figure 1(e)).
The arrows indicate the direction and magnitude of optical
forces at a corresponding position. A particle is trapped into
the center of the collimated beam due to the gradient force
and is pushed forward along a linear trajectory due to the
scattering force.

Such optical guiding has been achieved with nondiffrac-
tive or propagation-invariant laser modes (such as Bessel
beams) which are generated by diffractive or holographic
optical elements [5, 29]. The origin of nondiffracting beams
can be explained by the decomposition of a field into plane
waves. Each plane wave component acquires an equal phase
shift as the field propagates in such beams. This makes the
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sum of plane waves invariant, generating diffraction-free
behavior over a limited distance range. The nanopatterned
metal films provide a simple, alternative way for particle
guiding over a nonnegligible distance.

3. Guiding along a Tilted or Curved Trajectory

We can also guide a particle at a predefined direction with a
slightly modified structure. An asymmetric slitgroove struc-
ture shown in Figure 2(a) generates a collimated beam at an
angle (Figure 2(b)). The different groove periods on either
side generate constructive interference in the off-axis direc-
tion. As in the previous section, we optimize the asymmetric
groove parameters through numerical simulations. The
calculated force vector map for this structure (Figure 2(c))
shows that a particle is trapped and guided into the off-axis
direction; the trajectory is also curved. The slitgroove
structures in Figures 1 and 2 extend in the Z-direction.
Thus, the collimated beam also extends in the Z-direction
and this is good for manipulating elongated particles or
molecules. Moreover, we could also use a holegroove or
bull’s eye structure [14] to get 2-dimensional collimation.
Then, a particle will be trapped and guided along an axial
beam. With shifted hole/groove positions, the axial beam
can be also directed off-axis [30], similar to Figure 2(b).

Such curved optical guiding can also be achieved using
sophisticated optical beam modes. For example, Airy beams
were recently used to guide a dielectric particle along a
curved trajectory over 75 ym, termed “optical snowblowing”
[31]. Airy beams do not propagate along straight lines but
instead follow parabolic trajectories. Such beams can be used
to transfer particles and cells between microfluidic chambers
or remove particles from a region of space. Plasmonic
antenna structures provide a simple, alternative way for such
optical manipulation.

Similar guiding of a particle has been demonstrated using
waveguide structures too [32-35]. A dielectric particle can
be trapped by the evanescent field of waveguide modes and
pushed along the waveguide toward the light propagation
direction. In contrary to this waveguide method, the plas-
monic beam shaping enables such guiding even in regions
beyond the extent of evanescent fields (intermediate to far
field). Furthermore, plasmonic beam shaping has larger
design flexibility and tunability.

It is possible to obtain dynamic tuning in our beaming
and optical manipulation system. Figure 3 shows the simu-
lated field intensities for two incident light wavelengths (1o =
560 nm and 700 nm). The pattern geometry is the same as
Figure 2(a) (i.e., asymmetric slitgroove). We notice that the
shorter wavelength light (g = 560 nm) is directed along the
center line (Figure 3(a)), while the long wavelength light (1o
=700 nm) is directed upward (Y > 0, Figure 3(b)). Different
wavelengths result in different interference conditions and
beaming directions. This also implies that a particle will be
pushed into different directions depending on the incident
laser wavelength. If we use two different wavelength laser
sources or a tunable laser, we can change the optical force
directions. Moreover, light diffraction in these slitgroove
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FiGgure 1: (Color online) Optical guiding with a symmetric slitgroove along a linear trajectory. (a) Schematic of the silver slitgroove. W =
80nm, G = ¢ = 415nm, d = 40nm, and H = 300 nm. The film is immersed in water (1 = 1.33). The structure is extended in the
Z-direction. The optimal geometry for beaming was determined by numerical simulations. (b) Electric field intensity obtained from a
numerical simulation. (c) Optical force for a dielectric particle (D = 1um, n = 1.59) located at X = 12um. The force magnitude is
normalized to the transmitted power (through the slit) of 10 mW/um in the Z-direction. (d) Optical force Fx as a function of the particle
diameter. The particle is located at X = 12 um, Y = 0 ym. (e) Optical force vector map.
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& =320nm, W = 80nm, d = 40 nm, and H = 300 nm. (immersed in water). (b) Electric field intensity showing the plasmonic beaming at

off-axis. (c) Optical force vector map for the dotted region in (b).

systems is sensitive to the refractive index of a medium
inside the slit or on the grooves. There have been studies for
dynamic control of metal slit transmission using nonlinear
optical medium [36] or optical interference with a control
beam [37]. Thus, if we dynamically tune the refractive index
either optically or electrically, we can actively control optical
force directions without using any moving parts.

4. “On-Chip” Optical Rotation

Light also possesses angular momentum, and the transfer
of angular momentum can lead to rotational motion of a
particle (by exerting optical torques on the object). For a
monochromatic field, the time-averaged optical torque [8]
can be obtained as

my:—ﬁTmﬁxn-mnw, (3)

where n is the unit vector normal to a surface surrounding
the particle, and T is the Maxwell’s stress tensor.

Nanopatterned metal films have also been used for
angular momentum control of light. Linearly polarized light
can be converted into circularly polarized one (that possesses
the spin angular momentum of h/2m per photon), for
example, by passing through an elliptical metal hole-groove
structure (Figure 4(a)) [20] or coupled orthogonal metal
slits [21]. These structures effectively work as a plasmonic
quarter waveplate. Recently, a plasmonic spiral waveplate was
demonstrated, consisting of arrays of rotated V-shaped plas-
monic antennas [22, 38]. This structure generates a helical
wavefront that possesses the orbital angular momentum of
Ih/2r per photon (where [ is an integer). V-shaped plas-
monic antennas impart abrupt phase shifts to propagating
light. By arranging continuously rotated V-shaped antennas
(Figure 4(b)) on a transparent substrate, we can implement
a plasmonic spiral waveplate. Laguerre-Gaussian laser modes
are typically used to generate such a helical wavefront [3]. But
metal nanostructures provide an alternative, compact way to
produce it without bulky diffractive optical components. We
can potentially combine these plasmonic structures with a
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FiGure 4: (Color online) Schematics for the “on-chip” optical rotation. A dielectric microlens is integrated with (a) a plasmonic quarter
waveplate (milled on a metal film) or (b) a plasmonic spiral waveplate (consisting of V-antenna arrays on a transparent substrate). Linearly
polarized light is incident from below and focused on top passing through the microlens. Objects can be trapped at the focus and be rotated

on a chip.

dielectric microlens to achieve optical trapping and rotation
simultaneously (Figure 4). This will be an interesting topic of
future investigation.

5. Conclusion

In summary, we have studied optical forces generated by
plasmonic beam shaping antenna structures and find that
they are suitable for general optical manipulation, such as
guiding of a dielectric particle along a linear or curved
trajectory. The planar geometry and design flexibility make
them ideal for large array fabrication. This could enable
a multitude of new opportunities for integrating optical
manipulation into compact, chip-scale systems.
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Most metamaterials exhibit pronounced anisotropic properties that are crucial for the understanding of their superior optical
behavior, especially when they are integrated into the structure of a plasmonic waveguide. In this paper, we analytically solve the
dispersion relation for a slot plasmonic waveguide filled with an anisotropic-stratified metamaterial and reveal that it supports two
modes featuring relatively long propagation lengths in the limit of vanishing slot thickness. We classify these modes according to
their physical origin and study the variation of their dispersion properties with material parameters.

1. Introduction

The ultimate goal of optics is to enable a perfect control of
the interaction between light and matter. This goal has been
brought closer by the recent advances in nanotechnology that
have made possible the fabrication of optical metamaterials
[1, 2]. The unusual electromagnetic properties of metama-
terials are expected to enable a new generation of optical
devices. In developing design strategies and new concepts
for such devices, it is paramount that anisotropic properties
of metamaterials are considered along with their other
material features. Moreover, even the ways in which common
devices operate require revisions when ordinary materials
in their design are replaced by anisotropic metamaterials. A
considerable amount of theoretical effort has been recently
devoted to the analysis of optical propagation through
different types of metamaterial structures, including uniaxial
dielectrics [3] and indefinite media [4, 5], metal-dielectric
heterostructures [6] and superlattices [7], and strongly
anisotropic waveguides [8]. In this paper, we reexamine
the guiding properties of slot plasmonic waveguides filled
with an anisotropic medium. Our work is intended to
demonstrate that integration of plasmonic waveguides with
anisotropic optical metamaterials not only brings additional
freedom to their design, but can also lead to new physical
phenomena that may benefit the waveguide performance.

The plasmonic waveguide discussed here consists of an
anisotropic medium of thickness 2k embedded between two
metals of permittivity &,,. We assume that the medium’s
permittivity is described by a constant, diagonal tensor
e = diag(ex, &y, €z;) with its principle axes parallel to the
waveguide’s edges. Even though the permeability has similar
anisotropic properties, only one component of its tensor
affects the transverse magnetic (TM) modes, which are of
primary interest for plasmonic waveguides. This allows us to
describe the permeability using a single parameter y. As is
well known, the evolution of the electric field E = (E,, 0, E,)
and the magnetic field H = (0,H,,0) of a TM mode is
governed by the propagation constant 8. In the case of an
anisotropic core layer, 3 obeys the dispersion relation

tanh (gh) —[(kg‘) (;)T (1)

where g = \/(szz/gm)ﬁ2 — & Uk2, ki = \[B? — emk?, k = w/c,
w is the frequency of the surface plasmon polariton (SPP), ¢
is the speed of light in vacuum, and the + signs correspond
to the symmetric and antisymmetric modes, respectively.
Equation (1) is applicable to a broad range of metama-
terial-based plasmonic waveguides and requires the specifi-
cation of metamaterial design for further analysis. We restrict
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Figure 1: (Color online) Three types of plasmonic waveguides made using a stratified metamaterial. In all cases, SPP modes propagate in

the z direction and the waveguide extends to infinity in the y direction.

ourselves to the simplest scenario in which the metamaterial
is created via stacking layers of isotropic materials into a
periodic heterostructure. If the layers’ thicknesses are much
smaller than the optical wavelength, then the permittivity
tensor of the heterostructure has only two different diagonal
components given by [9]

n 1 n
o =2fe =2
j=1 e

~

j
o 2)
where the subscripts || and L designate directions parallel
and perpendicular to the layers, n is the number of layers
within one heterostructure period, and f; is the filling
factor for the jth layer of permittivity ¢; (all filling factors
must add up to unity). Such a stratified metamaterial offers
fabrication of the three types of plasmonic waveguides shown
in Figure 1. Their permittivities are &, = diag(ey, e, €)),
& = diag(e,¢g,€.), and e, = diag(e,, ¢, ¢)). Although
all of them can, in principle, be created using modern
fabrication techniques, we focus here on the last structure
that is relatively easy to fabricate.

Apart from the ease of fabrication, the third type of
plasmonic waveguide in Figurel is the only one that
supports symmetric TM modes with complex f values in
the limit of vanishing ¢, which can be realized by properly
matching metamaterial constituents and compensating for
the absorption losses inside them (note that the condition
gl = 0 is not equivalent to an epsilon-near-zero (ENZ)
regime [10], because the permittivity is a complex tensor).
Within the slot region, these modes are characterized by the
components E; and H, that are independent of x, and by
E, o< x. Solving (1) in the limit ¢ — 0 yields the following
four values of f:

ﬁ:i(l+2r‘uK4_r‘/1+4r(‘u—r)K)1/2’ 3)

21212

where K = &,(kh)* and r = gu/e, is the ratio of the
dielectric constants. Since both of these parameters are
generally complex, f = " + i is also complex, and its real
and imaginary parts provide the phase velocity and energy
loss of various SPP modes. Because 8 in (3) satisfies (1)
approximately in the limit of small h (when |glh < 1) even

when ¢ #0, the following analysis allows us to elucidate
some general features of the SPP behavior in metamaterial-
based plasmonic waveguides.

For simplicity, we focus on the stratified heterostructure
composed of two different nonmagnetic (4 = 1) materials,
one of which is the metal used for waveguide cladding.
The permittivity of the second material is then fixed by the
condition g = 0 (this material should provide gain, since
metals are essentially lossy). It then follows that the ratio
r depends solely on the filling factor f of the metal; r =
2 — 1/f. We use silver as a metal in our simulations, take
its permittivity in the form of a seven-pole Drude-Lorentz
formula given in the work by Pannipitiya et al. [11], and
introduce an absorption parameter y, such that &,(y) = ¢ +
iye”. For definiteness, we also choose ' > 0 and refer to 8"
as the “damping factor,” thus implying that our waveguides
do not amplify SPPs.

According to (3), the waveguide in Figure 1(c) supports a
maximum of two SPP modes regardless of slot’s thickness,
provided that ¢y = 0. The dispersion curves of these two
modes are plotted in Figure 2 for three values of y and two
sets of material parameters f and h. In the lossless case
(y = 0, green curves), the modes can be grouped into
three distinct classes: (i) propagating modes with 7 = 0
and B’ # 0; (ii) complex modes with " #0 and " # 0; (iii)
evanescent modes with 8/ # 0 and 8’ = 0. The first two types
of modes may travel either forward or backward, except for
certain “degenerate” frequencies for which the group velocity
and total energy flow of SPPs vanish. In our example, the
degenerate frequencies correspond to the points A, B, and C
of the energy spectrum. The degeneracy of waves traveling in
the opposite directions is removed by absorption (see pink
curves for y = 0.2) since the two modes develop a slightly
different lateral confinement.

The complex modes of a lossy waveguide arise through
quasimixing of the three types of modes as y is gradually
varied from 0 to 1. Such transformation of the propagating,
complex, and/or evanescent modes is accompanied by their
degeneracy removal, which is also the scenario followed by
the quadrupole modes of plasmonic nanowires [12]. Indeed,
the twofold degenerate propagating mode at point B and the
twofold degenerate evanescent mode at point C split into two
nondegenerate complex modes for y = 1 (see Figure 2). The
process of modes transformation allows one to track their
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FiGgure 2: (Color online) Transformation of [(a) and (c)] SPP energy spectrum and [(b) and (d)] damping-factor dispersion with changing
absorption parameter y. The SPP frequency is normalized to the plasma frequency w, of silver. Solid green curves show propagating modes,

whereas dashed curves show complex and evanescent modes.

origin and better understand waveguide performance. For
example, because of the strong damping intrinsic to evanes-
cent modes, one can expect that the segments of spectra
B (w) emerging from them in the case of real losses will
be lesser affected by the dispersion properties of ¢ (w) than
the segments that stem from undamped propagating modes.
This conclusion is confirmed by Figures 2(b) and 2(d), where
the damping factors are separately shown for the forward
(right curves) and backward (left curves) propagating SPP
modes. Notice that the spectra in Figure 2 are congregate of

the results valid for different plasmonic waveguides, rather
than spectra corresponding to a specific structure.

As we have seen, dispersions of the real and imaginary
parts of  drastically depend on the filling factor of metal
and slot thickness. To study this dependance, we set w =
0.2w,, where w,, is the plasma frequency of silver, and plot in
Figure 3 8’ and " as functions of slot thickness for five
values of f. By looking at this figure from left to right, one
can draw up the following picture of SPP behavior. When the
filling factor of metal is small, two SPP modes of different
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F1GUre 3: (Color and multimedia online) Transformation of the real (upper panels) and imaginary (lower panels) parts of f8 at a specific
frequency w = 0.2w,, as the filling factor f of the metal is increased from 0.2 to 0.8. Insets show a magnified view of mode 2.

origins are supported by the waveguide. One of them—
mode 1 shown by red curves—springs from the propagating
mode of a lossless waveguide and, therefore, exhibits small
damping. The other—mode 2 plotted in blue—arises from
the evanescent mode when h < hy = k™ 'le,| Y2 ~ 25nm
and from the propagating mode when h > hg (ho is the
skin depth of a metal in the limit f — 0). The first mode
propagates backward regardless of h, whereas the second one
changes its traveling direction from forward to backward
around h = hy/2. Because modes 1 and 2 originate from the
propagating modes for h > hy and f < 0.5, their damping
rates are almost the same for this range of parameters h
and f. When f = 0.5, the ratio r = 0 since the transverse
component of the permittivity tensor becomes infinite, and
only mode 2 with 8 = +k+/e,,(1 + K) survives. For f > 0.5,
mode 1 becomes forward propagating, while mode 2 gets
strongly attenuated for all h. The overall dynamics of such
changes with f isillustrated in the supplementary animation.
It should be emphasized that these results are based on
the effective-medium theory and approximate. For a more
accurate treatment, the inclusion of nonlocality effects is
required [13, 14].

An important feature of the modes given in (3) is that
they can exhibit relatively small damping depending on the
values of the parameters f and h. For example, low damping
occurs for both modes for f < 0.2 and h > hy. Moreover,
the damping of mode 1 vanishes in the limit of small 4 for all
values of f #0.5. This behavior is opposite to that of SPPs
in ordinary (isotropic) metal-dielectric-metal waveguides,
whose attenuation rate diverges as 1/h [15]. Also noteworthy
is that the confinement of mode 1, determined by the evanes-
cent decay length scaling like 8; o< hRe+/r2 when h — 0,

improves with the reduction of the waveguide thickness,
whereas the confinement of mode 2 worsens in the limit
of small A, due to the divergence of the decay length &, oc

-1
(hk3 Re+/e2,(1 — r)?) . Hence, we expect that metamaterial-
based plasmonic waveguides may enable strong localization
of optical energy in an SPP mode that can propagate over
relatively long lengths.

In conclusion, we have found that a maximum of two
symmetric TM modes with essentially different propagation
properties are supported by plasmonic slot waveguides filled
with a stratified metamaterial exhibiting a relatively small
permittivity in the plane of the layers.
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We studied the sensing properties of stereo-SRRs metamaterials composed from two twisted split-ring resonators (SRRs). Due
to the strong hybridization effect in the system, the polarization state of the transmitted wave is greatly changed at resonances.
Since the stereo-SRRs structure is strongly coupled to the surrounding medium, the polarization change of the transmitted waves
is quite sensitive to the refractive index change of the environment medium. The polarization ratio PRyan = T,/T is used as
sensing parameter and its figure of merit can reach 22.3 at the hybridized magnetic plasmon resonance. The results showed that
the stereo-SRRs metamaterial can be applied to optical sensors an or other related field.

1. Introduction

Recently, a new concept in nanophotonics named as stere-
ometamaterial was proposed [1]. This indicated that the
electromagnetic properties of plasmonic metamaterials are
determined not only by the geometry structure of elements
but also by the spatial arrangement of these elements. Up
to now, some different stereometamaterials are reported,
such as gammadions (2], spirals [3], crosses [4], and
stacked wires [5]. Among them, the twisted-SRRs system,
also named as stereo-SRRs, is an interesting example for
investigation. According to the previous studies, the electro-
magnetic responses could be tuned through changing the
orientation angle of the SRRs [6]; a Lagrange model was
introduced to demonstrate the chiral optical properties [7]
and give a good description for the polarization change of
the electromagnetic wave passing through the twisted-SRRs
metamaterials [8, 9].

As is well known, surface plasmon resonance and local-
ized surface plasmon resonance based on metal structures
can be used as optical sensors because the resonance modes
shift with the refractive index change of the surrounding
medium [10, 11]. Since the magnetic plasmon resonance had
a stronger field localization and narrower response linewidth,
it could also be used as sensors [12, 13]. In this work, we
will show that polarization change induced by magnetic
plasmon resonances in the stereo-SRRs could be strongly

coupled to the environment and is sensitive to the refractive
index fluctuation of the surrounding medium. Stereo-SRRs
structure could possibly work as a new kind of optical
$ensor.

2. Design of Numerical Models

Figure 1 presents one unit cell of the stereo-SRRs metamate-
rial with its geometry parameters. The structure is composed
of two stacked SRRs, between which there is a twisted angle
90°. The period of the unit cell is p = 700 nm. The incident
electromagnetic wave propagates in the z direction. Periodic
boundary condition is used in the x and y direction, and
the open boundary condition is used in the z direction. The
substrate and the middle layer between the two SRRs are
MgF,, whose permittivity is taken as ¢ = 1.9.

To study the electromagnetic response of the twisted-
SRRs metamaterial, a commercial software package CST
Microwave Studio (Computer Simulation Technology
GmbH, Darmstadt, Germany) is employed to investigate the
transmission properties. The permittivity of metal is defined
by the Drude model, ¢(w) = 1 — wf,/(w2 + iw,w), where w,
and w, are the bulk plasma frequency and the relaxation
rate, respectively. For gold, the characteristic frequencies
fitted to experimental data are w, = 27 x 2.175 x 10" s7!
and w; = 27 X 6.5 x 102571 [14].
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Frcure 1: Schematics of unit cell of the stereo-SRRs metamaterial,
together with the direction of the incident wave. The geometry
parameters were | = 230nm, w = 90nm, ¢t = 50nm, and
d = 50nm. The periods in both of the x and y directions were
p =700 nm.

3. Results and Discussions

In the simulations, the incident linearly polarized plane wave
shined on the structure along the z direction with its electric
field in the x direction (see Figure 1). As reported in [6—
9], there are two magnetic plasmon modes induced in the
twisted-SRRs system due to the hybridization effect. For the
mode at the shorter resonance wavelength, the magnetic
fields in two SRRs are in the opposite direction along the z
axis (this mode is named as mode 1); while for the mode at
the longer resonance wavelength, the magnetic fields in two
SRRs are in the same direction along the z axis (this mode
is named as mode 2). Like the electromagnetic properties
of localized surface plasmon resonance, the electromagnetic
field is strongly localized around the twisted SRRs at these
two resonance wavelengths. This makes the structure couple
with the environment strongly. The fluctuation of the
refractive index of the surrounding medium will change
the magnetic plasmon resonances of the structure greatly.
Thus, the two hybrid magnetic plasmon modes could also
be possibly applied in sensing.

Due to the chirality of this structure, the polarization
state of the transmission wave will be changed at two
resonance wavelengths [7]. Generally, the transmitted wave
is not linearly x-polarized state. It includes the electric field
components in both the x and y direction: E¥*® and E'*".
Figures 2(a) and 2(b) give the transmitted energy of the
two electric components Ty = |Ern|%/ IE,icnl2 and T, =
IEty”‘nlz/ IE}C“I2 of the transmitted wave through the twisted-
SRRs metamaterials. Here, the input signal of the excited
plane wave is normalized. The two hybridized magnetic
plasmon modes correspond to two absorption ditches in
the transmission curves of Ty, while for the transmission
curves of T), they correspond to two peaks. This means that
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part of the energy of the incident wave EP is transferred
into the transmitted wave E;,ra“. Here, we could define the
polarization ratio (PR) PR = T,/T, to characterize the
polarization change between the incident wave and the
transmitted one. Obviously, for the x polarized incident
wave, PR;, = 0. For the transmitted wave, PR,y results can
be determined through the simulation data, which are given
in Figure 2(c). Compared with the curves of Ty, and T, it
can be obviously found that the PRy, curves have narrower
linewidth. This makes PRy a better sensing parameter.

In order to investigate the sensing properties of the
twisted-SRRs system, we change the refractive index of the
surrounding medium to see what happens to the magnetic
plasmon response of the structure. In our simulations,
when the refractive index of the surrounding medium
is increased from 1.312 to 1.352 with step being 0.01,
different transmission curves are obtained, and the res-
onance wavelengths will shift to longer wavelengths (see
Figure 2). For mode 1, the resonance wavelength changes
from 1.859pym to 1.877 ym. For mode 2, the resonance
wavelength changes from 2.083 ym to 2.107 ym. Under the
different refractive indices of the surrounding medium, the
resonance wavelengths of the two magnetic plasmon modes
show good linear relationship. As is well known to all, the
slope of the wavelength shift via the refractive index change
represents the sensitivity as sensing element. That is to say,
the sensitivity m here is defined as the wavelength shift over
one refractive index unit change of the surrounding medium.
So, for the case of our proposed twisted-SRRs system, the
sensitivities for mode 1 and mode 2 are equal to 461 nm/RIU
(refractive index unit) and 581 nm/RIU, respectively.

To understand the sensing performance of the two
hybridized magnetic plasmon modes in the twisted-SRRs
metamaterials, the general concept “figure of merit” (FOM)
is introduced as follows [15]:

m (nm/RIU)
FWHM (nm)"

Here, m and FWHM are the sensitivity of the two hybridized
magnetic plasmon modes and the full width at half max-
imum of the obtained curves (Tx, T, or PRyqn). Due to
including the information of the sensitivity m and the
linewidth of the signals, the parameter FOM represents the
overall sensing performance of the twisted-SRRs metamate-
rials. Table 1 shows the calculated linewidth and FOM at the
two resonance modes. In Table 1, when T, is chosen as the
sensing parameter, the FOM for mode 1 and mode 2 is 9.1
and 12.5, respectively, both of which are larger than that of
the single-SRR structures being 8.73. While T, is used for
the sensing parameter, the FOM for mode 1 and mode 2 is
8.0 and 10.6. Obviously, T, is better than T,. For the PRyan
curves, it can be clearly found that the FOM parameters for
mode 1 and mode 2 are 14.0 and 22.3, respectively. Both of
them are larger not only than the FOM of the single SRR
structures, but also than T and T, of the stereo-SRRs system.
Especially, the FOM at mode 2 is even much larger than
mode 1. Thus, PRyan is the best choice of sensing parameter.

As we reported before, when two SRRs compose one
magnetic dimer, the coupling between the two SRRs leads to

FOM = (D
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F1GURE 2: The calculated transmission spectrums for (a) T, (b) T}, together with (c) PRy curves obtained by the simulated transmission
data. The arrows in Figure 2 denoted that the resonance wavelengths shifted to longer wavelength when the refractive index of the

surrounding medium was increased from 1.312 to 1.352.

TaBLE 1: The FOM for the two hybridized magnetic plasmon modes
of the stereo-SRRs metamaterials, and the parameters FWHM.
Obviously, when the PRy, result was used as sensing signal, the
sensing performance of the two modes was best.

Eigenmode FWHM (nm) FOM
Mode 1 (T,) 50.7 9.1

Mode 2 (T,) 463 12.5
Mode 1 (T}) 57.8 8.0

Mode 2 (T,) 54.6 10.6
Mode 1 (PRyay) 33.0 14.0
Mode 2 (PRyan) 26.0 223

the hybridization of the magnetic response in the magnetic
dimer, and two magnetic plasmon modes could be excited

[8,9, 16]. That is to say, the two magnetic plasmon resonance
modes of the twisted SRRs come from the coupling between
the two SRRs. Then their sensing properties are dependent
on the coupling process. In the simulation, we change
coupling strength through changing the distance between
two SRRs. The dependence of sensitivity m, FWHM, and
FOM of PRap at the two modes on the distance between two
SRRs is calculated and given in Figures 3—5. The results show
that, for both two modes, when the distance between two
SRRs is reduced, the sensitivity m is increased (see Figure 3).
Simultaneously, their FWHM is decreased (see Figure 4). As
a result, FOM of the two modes will be increased when the
distance between the two SRRs is decreased (see Figure 5).
This means that stronger coupling will improve the sensing
performance.
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According to our former work, the chirality of stereo-
SRRs metamaterial comes from the magnetic coupling
between two SRRs. Due to this coupling effect, the part
of energy of the x-component of the incident wave can
be converted to the y-component of the transmitted wave.
The polarization conversion efficiency is determined by the
coupling process. When we decrease the distance between
two SRR, the coupling effect becomes stronger. Then we can
obtain larger FOM and better sensing performance.

4. Conclusion

In conclusion, the sensing properties of the stereo-SRRs
metamaterials are investigated in this work. Based on the
hybridization effect of the twisted SRRs, the polarization
state of the transmitted wave is changed and great polar-
ization ratio PRy, is obtained at resonances. Compared
with the transmission curves of T, and Ty, PRy, has
narrower linewidth and larger FOM and is a better sensing
parameter. Our work shows that stereo-SRRs metamaterials
can be possibly applied in optical sensors and other related
techniques.
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