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The lung organ of human anatomy captured by a medical device reveals inhalation and exhalation information for treatment and
monitoring. Given a large number of slices covering an area of the lung, we have a set of three-dimensional lung data. And then,
by combining additionally with breath-hold measurements, we have a dataset of multigroup CT images (called 4DCT image set)
that could show the lung motion and deformation over time. Up to now, it has still been a challenging problem to model a
respiratory signal representing patients’ breathing motion as well as simulating inhalation and exhalation process from 4DCT
lung images because of its complexity. In this paper, we propose a promising hybrid approach incorporating the local binary
pattern (LBP) histogram with entropy comparison to register the lung images. The segmentation process of the left and right
lung is completely overcome by the minimum variance quantization and within class variance techniques which help the
registration stage. The experiments are conducted on the 4DCT deformable image registration (DIR) public database giving us
the overall evaluation on each stage: segmentation, registration, and modeling, to validate the effectiveness of the approach.

1. Introduction

Nowadays, diseases of the respiratory system have been
increasing because of more and more pollution in many cit-
ies. Besides, smoking cigarettes or aging also affects the
respiratory tract of people. An approach to model or visual-
ize a respiratory cycling process from 4DCT images for diag-
nosis is highly encouraged but still has a lot of challenges.
Although researchers in this field try to investigate and solve
the problem, the results are still rather limited and unsatis-
fied. To develop a treatment plan by the way of modeling
lung movements, registration methods must be taken into
account carefully.

There are many conventional approaches in 4DCT lung
images, but generally, we can classify them into three types:
segmentation, registration, and modeling. In lung segmenta-
tion, in 2019, Pang et al. suggested a novel automatic seg-

mentation model using a combination of handcrafted
features (gray-level cooccurrence matrix) and deep features
(U-Net) [1]. In the paper [2], in 2020, Peng et al. applied
two processes to extract coarse lung contours first and then
refine the segmentation depending on the basis of the prin-
cipal curve model. This approach is rather complicated and
requires a model initialization for the process. For registra-
tion, some researchers use deep learning approaches based
on the displacement field to obtain the optimal parameters
[3], which must be trained with big data until reaching the
optimization. Some other approaches require a landmark
tracking process [4], which must be determined by
specialists.

In respiratory modeling, a question in regard to per-
forming the registration using only the lung images still
needs more researches. There are only a few papers men-
tioned about lung modeling in computer vision fields such
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Image 1 Image 2 Image 3 Image 4 Image 5

Image 6 Image 7 Image 8 Image 9 Image 10

Image 11 Image 12 Image 13 Image 14 Image 15

Figure 1: The representation of 4DCT DIR database from slides 1 to 15 in phase T00.

Image 16 Image 17 Image 18 Image 19 Image 20

Image 21 Image 22 Image 23 Image 24 Image 25

Image 26 Image 27 Image 28 Image 29 Image 30

Figure 2: The representation of 4DCT DIR database from slides 16 to 30 in phase T00.
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Figure 3: The before and after resultant of lung image in artifact removal.

2 BioMed Research International



as the paper of Yang et al. [5] proposed using optical flow to
model the motion of the lung. The registration is applied
using a multigrid approach and a feature-preserving image
downsampling max filter to achieve higher computational
speed and registration accuracy. Ehrhardt et al. [6] suggested
using the statistical modeling which gives good model result
but still depends on landmarks.

In this paper, we suggest an approach using local binary
pattern (LBP) and entropy error evaluation (EEE) for regis-

tration and modeling 4DCT images into a breathing signal
without using any landmark. LBP descriptor is a grayscale
and rotation-invariant operator. It is not affected by rotation
and variation of the images. The 4DCT lung images have
dark and light areas that look like grayscale images. LBP
can run faster than other descriptors and extract relevant
features for the lung [7]. Then, we make a visualization of
the output signal. It will help a doctor easily track or monitor
a patient respiratory process for an accurate treatment plan.

(b) (c) (d)

(a)

Remove artifacts

(e)

Figure 4: (a) Original image with artifacts. (b) Image after filling holes. (c) Image with three indexes after applying minimum variance
quantization. (d) Select the maximum index region, and fill holes. (e) Segmented image with only the index region from the previous step.

1. Input the Matrix SliceIM (One lung slice image in each phase)
2. Find the Dark and Light Area in an image

LightArea = find(image, ‘light’);
DarkArea = find(image, ‘dark’);

3. Fill the DarkArea within a LightArea
SliceIM = floodfill(SliceIM, LightArea, DarkArea);

4. Quantitate SliceIM into three indexed images using the Minimum Variance Quantization
IndexIM = Quantization(SliceIM, 3)

5. Select the index partition in which it is the largest area
MaxPartitionIM = MaxArea(IndexIM)

6. Fill the holes in MaxPartionIM to get the whole lung partition without artifacts
OutputIM = FillHoles(MaxPartitionIM)

7. End
8. Result in the Matrix OutputIM (The lung slice image without artifacts, have only lung and body area)
Appendix
FillHoles method
1. Find the Dark and Light Area in an image

LightArea = find(image, ‘light’);
DarkArea = find(image, ‘dark’);

2. Fill the DarkArea within a LightArea by floodfill
image = floodfill(image, LightArea, DarkArea);

Algorithm 1: Remove artifacts.
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The segmentation, registration, and modeling stages will be
described in detail. Firstly, the 4DCT images include inhale
and exhale states. The images for the exhale state are seg-
mented and served as the reference model. Secondly, images
that belong to different respiratory phases from a given ana-
tomical position are aligned with each other. The accuracy of
lung segmentation is very important for registration and
modeling. Minimum variance quantization (MVQ) and

within class variance (WCV) methods are applied for seg-
mentation effectively and precisely.

2. 4DCT Data Structure Exploratory

Generally, in a single scan, a 4DCT dataset includes about
700 to 1500 computer tomography (CT) images. Each image
has two dimensions corresponding to the width and height

Foreground

Background

(a) (b) (c)

Figure 5: (a) Original image. (b) Foreground and background separation by Otsu threshold. (c) The complement of the (b) result.

(a) (b) (c)

Figure 6: (a) The complemented binary image. (b) The body binary image. (c) The result after multiplication of two binary images (a) and
(b).

(a)

Largest
on left

(b)

Largest
on right

(c)

Figure 7: (a) Center line based on the center point of the body. (b) The left lung is the largest region on the left. (c) The right lung is the
largest region on the right.

(a) (b) (c)

Figure 8: (a) Original image. (b) The binary image of two lungs. (c) The segmented two lungs.
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of the image. The third dimension is the order number of
slices, which is scanned at a certain defined interval along
the patient’s body. The last dimension is phases of scanning
time.

Deformable image registration (DIR) is an emerging
technology with diagnostic and therapeutic medical applica-
tions. DIR algorithms were first developed in computer
vision research to estimate motion by warping a source
image onto a target, producing an estimated image that visu-
ally appeared like the target image.

In this research, the 4DCT dataset was acquired as a part
of the standard planning process for the treatment of tho-
racic malignancies at The University of Texas M. D. Ander-
son Cancer Center in Houston and offered by DIR-LAB [3].
In 4DCT imaging, thoracic movements are monitored by a
Varian Real-time Position Management (RPM) system dur-
ing the CT scan. The RPM system divides the complete
respiratory cycle into ten phases, from 0% (phase T00) to
90% (T90) at 10% intervals, where 0% corresponds to the
end inspiration [8]. Then, the reconstructed CT images are
sorted into the ten phases based on the temporal correlation

between the RPM respiration data and the CT data acquisi-
tion time of each image. The dataset has the following
structure:

(i) First and second dimensions: 256 × 256 images

(ii) Third dimension: 92 slices from the top to the bot-
tom of a lung with 2.5mm slice spacing

(iii) Fourth dimension: phases of time from T00 to T90

Figures 1 and 2 demonstrate a part of the dataset along
the third dimension from slice 1 to slice 30 in phase T00.

3. Lung Segmentation and Artifact Removal

The process of segmentation has two steps. The first one is
artifact removal, and the second one is lung segmentation.

Step 1 (artifact removal): because the outside area of the
lung and body region contains some artifacts that might
affect segmentation result, the body and the lung area from
the image should be extracted. To enhance the virtualization

(a) (b)

Figure 9: Left and right lung segmentation and highlight.

1. Input the SliceIM (One lung slice image in a phase without artifacts)
2. Within Class Variance approach to binarize an image

BinaryIM = WithinClassVariance(SliceIM)
3. Complement of the BinaryIM to change the area of interest into 1 and background into
0 with BinaryIM =1 – BinaryIM;
4. Fill all holes in BinaryIM and keep these large areas (in this case the large area is greater than 30)

BinaryIM = FillHoles(BinaryIM)
BinaryIM = LargeArea(BinaryIM, 30)

5. Store the result as a Candidate Lung partition
CandidateIM = BinaryIM

6. End
7. Result in CandidateIM (The candidate lung partitions)
Appendix
WithinClassVariance method
1. Compute histograms and probabilities of each intensity level
2. Set up initial ωi(0) and μi(0)
3. Step through all possible thresholds t =1, .. maximum intensity

a. Update ωi(0) and μi(0)
b. Compute σ2b(t)

4. Desired threshold corresponds to the maximum σ2b(t)

Algorithm 2: Candidate lung partition segmentation.

5BioMed Research International



1. Input the LungIM (the binary image containing all candidate lung partitions)
2. Find the vertical line in the image

Height = Height(LungIM);
CenterX = CenterPoint(LungIM,’X’);
VerticalLine = (CenterX, 1) to (CenterX, Height)

3. Get a List of Candidate Partitions on the left and right side of VerticalLine
CandidateList = GetListPartition(LungIM);
LeftCandidateList = CandidateList ? CandidateList on left of VerticalLine : null;
RightCandidateList = CandidateList ? CandidateList on right of VerticalLine : null;

4. Find the largest Candidates on the left and the right
LeftLungIM = LeftCandidateList (Index(LeftCandidateList,’largest’))
RightLungIM = RightCandidateList (Index(RightCandidateList,’largest’))

5. End
6. Result in LeftLungIM (the left lung partition) and RightLungIM (the right lung partition)
Appendix
GetListPartition method
1. Set label to each unconnected partition from 1 … number of partitions
2. Initiate a list
3. Step through all possible idx =1, .. number of partitions

a. Extract the partition in index = idx
b. Store it to the list

4. Finish
Index method
1. Sort the list from the largest area to the smallest one
2. Take the first element in the list if the input is ‘largest’
3. Take the last element in the list if the input is ‘smallest’

Algorithm 3: Left and right lung segmentation.

Slice 20 Slice 25 Slice 70

(a)

1 2 3 4
LBP histogram bins

Squared error of LBP histograms
0.012

0.01

0.008

0.006

0.004

0.002

0
5 6 7 8

Slices 20 vs Slice 25
Slices 20 vs Slice 70

(b)

Figure 10: (a) The lung presentation in slices 20th, 25th, and 70th. (b) The squared error of LBP (formula in Appendix in Algorithm 4)
between slices. Slices 20th and 70th have lower squared error than slices 20th and 25th in all bins. This means that the slices 20th and
25th are in the same respiratory stage, while the slices 20th and 70th are not in the same stage.
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of the artifacts, the original 4DCT images are converted
from grayscale to color as shown in Figure 3. Then, the min-
imum variance quantization method [9] is applied to cluster
image pixels.

Minimum variance quantization associates pixels into
groups based on the variance between their pixel values.
For example, a set of blue pixels might be grouped together
because they have a small variance from the mean pixel
value of the group. In the lung image, the region of interest
is the group of pixels at the center of the image, which con-
tains those representing the lung. By focusing on this group,
all artifacts outside the body part could be removed. These

artifacts come from the lighting of background objects out-
side the patient’s body in a scan.

In general, minimum variance quantization can be
replaced by other clustering methods such as K-means, K
-nearest-neighbor (KNN), and expectation maximization
(EM). By comparing their results, we decide to use the min-
imum variance quantization for artifact removal. The details
of this step are demonstrated in Figure 4 and described in
Algorithm 1.

Step 2 (lung segmentation): after removing artifacts, we
need to segment two lungs from the image. The seg-
mented result allows a comparison between phases and

1. Input the source slice: SrcSliceIM (contains only the left and right lungs) and the target slice: TarSliceIM (contains only the left and
right lungs)
2. Extract the LBP features of the source and target slices

SrcLBPFeatures = ExtractLBPFeatures(SrcSliceIM)
TarLBPFeatures = ExtractLBPFeatures(TarSliceIM)

3. Gauge the similarity between the LBP features by computing the squared error between them
Similarity = square(TarLBPFeatures – SrcLBPFeatures)

4. Local Binary Pattern Error Rate
LBPErrorRate = sum(Similarity)

5. End
6. Result in LBPErrorRate
Appendix
ExtractLBPFeatures method
1. The texture T as the joint distribution of the gray levels of P +1 image pixel

T = tðgc, g0 ⋯ gp−1Þ,
where gc is the gray level value of the center pixel, surrounded by P equally spaces pixels of gray levels gp, located on a circle of radius R.
2. Define the Local Binary Pattern (LBP), a grayscale invariant and rotation invariant operator:

LBPriu2
P,R =

∑
P−1

i=0
σðgp − gcÞ if UðLBPP,RÞ ≤ 2

P + 1 otherwise

8
><

>:

Where

UðLBPP,RÞ = jσðgp−1 − gcÞ − σðg0 − gcÞj + ∑
P−1

i=1
jσðgi − gcÞ − σðgi−1 − gcÞj

and σð:Þis the sign function. The uniformity functionUðLBPp,RÞ corresponds to the number of spatial transitions in the neighbor-
hood: the larger it is, the more likely a spatial transition occurs in the local pattern.

Algorithm 4: Local binary pattern error rate.

1. Input the source slice: SrcSliceIM (contains only the left and right lungs) and the target slice: TarSliceIM (contains only the left and
right lungs)
2. Compute the entropy of each source and target slices

SrcEntropyFeatures = ExtractEntropyFeatures(SrcSliceIM)
TarEntropyFeatures = ExtractEntropyFeatures(TarSliceIM)

3. Entropy Error Rate
EntropyErrorRate = abs(TarEntropyFeatures - SrcEntropyFeatures)

4. End
5. Result in EntropyErrorRate
Appendix
ExtractEntropyFeatures method
1. Calculated p contains the normalized histogram counts returned from the image
2. Entropy is defined as -sum(p.∗log2(p))

Algorithm 5: Entropy error rate.
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determining the inhalation and exhalation phases in a
breathing cycle.

Within class variance method by Otsu [10] was applied
to separate the foreground and background regions from
the input image. Otsu’s thresholding method involves iterat-
ing through all the possible threshold values and calculating
a measure of spread for pixel values from each side of the
threshold. The aim is to find the threshold value where the
sum of foreground and background spreads is at the
minimum.

We perform the following steps to segment left and right
lung areas. First, we make the complement of the binary
image. Two lungs will be represented in the complemented
image (in Figure 5). Second, the body region (i.e., the outline
of the patient’s body) is multiplied with the complemented
image to obtain the regions of two lungs (in Figure 6). Note
that there remain some unexpected regions besides lung
areas. Third, the center point of the body image is used to
segment the two lungs exactly. The left and right lungs are
now on the opposite sides of the center point and repre-

sented by the largest white regions in the multiplied image
(Figures 7–9). Detailed calculation steps are described in
Algorithms 2 and 3.

4. Deformable Image Registration

In this step, we need to locate the position of a slice belong-
ing to one phase to match with another slice in a different
phase. By matching the slice of two phases, we can register
these slices and reconstruct the exhalation and inhalation
phases.

4.1. Texture Matching by Local Binary Pattern. Before apply-
ing local binary pattern (LBP) [11] to the lung image, a LBP
descriptor should be determined. First, we convert the input
color image to grayscales, since LBP works only on grayscale
images. For each pixel, we calculate the LBP value using its
neighborhood. After calculating the LBP value of the pixel,
we update the corresponding pixel location in the LBP mask,

1
0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8 9 10 11

Slice : 55

Slice : 56

Slice : 58Slice : 57

Slice : 60

Entropy error metric

LBP error metric

Slice : 61
Slice : 62

Slice : 63

Slice : 64

Slice : 59

Register slice number 60 in T30 to which slices in T00

Slice : 65

Figure 11: The registration from one image with the whole phase using LBP and entropy error metric.

Test image Slice : 55 Slice : 56 Slice : 57

Slice : 58 Slice : 59

Registration

Slice : 60 Slice : 61

Figure 12: The registration from one image with the whole phase in visualization.
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which has the same matrix dimension as the input image,
with the calculated LBP value.

Around each pixel, there are 8 neighboring ones. If the
central pixel value is greater or equal to the value of a
given neighboring pixel, the corresponding value in the
binary array is set to 1, otherwise is set to 0. After calcu-
lating the LBP mask, we construct the LBP histogram. The
LBP mask values range from 0 to 255, giving the LBP
descriptor size of 1 × 256. Then, the LBP histograms are
normalized for comparison. Figure 10 illustrates the appli-
cation of LBP in comparing two contexts from two
images.

Next, we apply the LBP to create a metric for a com-
parison of slices in different phases. LBP will return a
pair of slices with the most similarity in texture. By sub-
tracting the LBP of two slices, we can extract the LBP
error metric for the registration process. Algorithm 4
describes the method of calculating local binary pattern
error rate.

4.2. Registration Decision by Entropy Error Measurement.
Entropy is a measure of the disorder level of a system [12].
The more the disorder, the higher the entropy of the system.
Two slices with the same entropy will have a high probability
to be in the same registered position. Although the LBP
helps us to make the texture matching between slices, in
some specific cases, we can get wrong results or are unable
to decide which slice in two or three slices having the similar
LBP metrics. Therefore, entropy can support our decision in
registration. By subtracting the entropy of two slices, we can
get the entropy error metric for our registration process.
Algorithm 5 shows the steps to calculate the entropy error
rate of the images.

5. Modeling Respiratory Signals of Inhalation
and Exhalation

In the process of modeling the respiratory of signals of inha-
lation and exhalation, we apply LBP and entropy methods in

1. Input the phase T00, T10, T90 are the checking phases. All SliceIM(i,j) is the SliceIM in the phase i and in the index j. And SliceIM
must contain only the left and right lung partitions. Slices with valid lung segmentation are selected for modeling.
2. Registration

a) Step through all possible phases = T10, .. T90
b) Step through all possible slices =1, .. number of slice in the considered phase
c) Calculate LBPErrorRate(i,j,phase) = CalcLBPErrorRate(Slice(slice,phase), Slice(slice-5:slice+5,T00)
d) Calculate EntropyErrorRate(i,j,phase) = CalcEntropyErrorRate(Slice(slice,phase), Slice(slice-5:slice+5,T00)
e) Find the index of slice with minimum LBP and Entropy Error Rate RegisterIdx = Index(LBPErrorRate(i,j,m), 2, ‘smallest’)
UNION Index(EntropyErrorRate(i,j,m), 2, ‘smallest’)
f) Store EntropyErrorRate and LBPErrorRate LBPErrorRateRegistrationResult(slice,phase) = LBPErrorRate(i, RegisterIdx,

phase) and EntropyErrorRateRegistrationResult(slice,phase) = EntropyErrorRate(i, RegisterIdx, phase)
3. Signal Modeling

a) Step through all possible phases = T10, .. T90
b) Calculate the standard deviation of LBP Error Rate and Entropy Error Rate for each phase from slices STD_LBPErrorRa-

te(phase) = StandardDeviation(LBPErrorRateRegistrationResult(:,phase)) and STD_EntropyErrorRate(phase) =
StandardDeviation(EntropyErrorRateRegistrationResult(:,phase))

c) Take the sum of error rates on each phase in registration to phase T00 ErrorRate(phase) = STD_LBPErrorRate(phase) +
STD_EntropyErrorRate(phase)

d) Signal Model by plotting the variation of error rates from phases T10, …, T90
e) Evaluation If the signal increases, it represents the inhalation process and If the signal decreases, it represents the exhalation

process
4. End
5. Result in Respiratory signal
Appendix
StandardDeviation method
1. Calculate Mean

FOR i =0 to N
sum = sum + X[i]
next i
ENDLOOP
M = sum / N // Divides the sum by the total number, N, to get Mean

2. Calculate Variance
FOR j =0 to N
sumOfSquares = sumOfSquares + ((X[j] - M)^2) // etc...
next j
ENDLOOP

3. Standard Deviation
stdDev = sqrt(sumOfSquares / (N -1))

Algorithm 6: Respiratory signal modeling.
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Section 4. The following is an example of registering phase
T30 to phase T00 and decide if the checking image belongs
to inhaling or exhaling stages.

For example, for slide 60 in phase T30, we need to find
the most similar slice in phase T00. Three steps are per-
formed as follows (Figures 11 and 12 and Algorithm 6):

(i) Considering only the slices from 55 to 65 in T00
(the margin is 5 slices)

(ii) Comparing the LBP error metrics, there are two
slices 57 and 58 with minimum LBP error metrics.
We need to determine which one could be regis-
tered for slice 60 in phase T30

(iii) Comparing the entropy error metrics of the slices 57
and 58, we see that the slice 60 in T30 can be regis-

tered to the slice 57 in T00 because the entropy
error metric of slice 57 is less than that of slice 58

(iv) After registration, we notice that the process from
phases T00 to T30 is the inhalation stage of the
breathing process of a patient

6. Evaluation of Experimental Results

6.1. Ground Truth Lung Segmentation Determination. The
DIR database provides 4DCT lung image datasets from the
phase indexes T00 to T90. In each phase, a 4DCT dataset
contains 94 images which are scanned from the top to the
bottom of a patient lung. However, there is no ground truth
lung segmentation that is specified by a specialist. To solve
this problem, the ground truth segmentation is determined

Table 1: The ground truth lung segmentation from phase T20.

Pixel boundary specification Threshold Ground truth segmentation

Slice 30
Phase T20

42

Slice 40
Phase T20

51

Slice 50
Phase T20

48

Slice 60
Phase T20

65

Slice 70
Phase T20

76

10 BioMed Research International



based on grayscale pixel values on the boundary between the
lung and body partitions.

Table 1 shows the ground truth segmentation method of
some slices in phase T20. The ground truth lung segmenta-
tion has an important role in the next processes of registra-
tion and modeling. If the segmentation is not close to the
real lung partition, all following calculated comparison met-
rics in the registration will give unexpected results.

6.2. Lung Segmentation Evaluation. To evaluate the quality
of lung segmentation for the left and right partitions, we
use Dice’s similarity coefficient (DSC), which measures the
volume overlap percentage. The DSC is described as

DSC = Vs ∩Vt

Vs +Vtð Þ/2 :100, ð1Þ

where Vs is the volume of the left (or right) experimental
segmentation and Vt is the volume of the corresponding
ground truth segmentation. The closer to 100% DSC is, the
better confident and efficient the segmentation is. Table 2
shows that the result of DSC is from 96% to 99%. The slices

from 30 to 70, which are the major slices in a phase dataset,
have especially high DSC values.

6.3. Deformable Lung Registration Evaluation. For evalua-
tion of registration, we apply the coefficient of variation
(CVar) to compare with the registration for other datasets.
The formula for CVar is

CVar = s
�X
:100, ð2Þ

where s and �X are the standard deviation and the mean of all
registration results, respectively.

In a 4DCT dataset, not all slices contribute to the regis-
tration or modeling the respiratory phase. In general, only
the slices from 30 to 70 are significant in the comparison
because they have clear lung segmentation information.
Table 3 shows that lung information is trivial or undeter-
minable for images outside that range.

Table 4 demonstrates the coefficient of variation from
the phases T10 to T90. In this experiment, the source
phase is T00 and the target phase is T10 to T90. The

Table 2: The DSC measurement to evaluate the lung segmentation on ground truth in phase T20.

Slide Original slice Ground truth Segmentation DSC

Slice 30, phase T20 98.08%

Slice 40, phase T20 98.54%

Slice 50, phase T20 96.13%

Slice 60, phase T20 99.61%

Slice 70, phase T20 97.68%
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CVars are small enough to indicate high confidence. The
registration of phases T10 and T90 is more confident.
The registration of T20, T60, T70, and T80 has acceptable
CVars. The CVars for T30 and T40 are high but are still
controllable.

6.4. Respiratory Signal Evaluation. Inhalation (exhalation) is
a process of inbreathing (breathing). The lung becomes
small (large) in the inhalation (exhalation) stage. If phase
T00 is the starting of the inhalation process, the error rate
of LBP and entropy will be small in the registration for
T10 and T00. On the contrary, if any phase in registration
to T00 has a high error rate LBP and entropy, that phase is
in the exhalation stage.

In Table 5, the sum of standard deviations of LBP and
entropy error rate on each slice from 30 to 70 in each phase
is calculated. LBP and entropy error rate are the appropriate
metrics to represent the inhalation and exhalation of a lung.
Starting from phase T00, the error rate summation increases
in phase T50 and decreases in phase T90. Figure 13, which
illustrates the values in Table 5, shows that registration and
modeling are successful.

Figure 14 describes the overall framework for this regis-
tration step. In this workflow, the artifact removal and lung
segmentation are applied for testing images and reference
images. The registration process with LBP and entropy mea-
surements is the key for checking the best candidate before
giving the final decision in choosing one of the two states,

Table 3: The slices from 1 to 30 and 70 to 94 are unused and insignificant for registration because of little lung information.

Slice index Slice lung information Remark

01 No lung information

15 Too little lung information

80 The undetermined shape of the lung

90 No left lung information

Table 4: The CVar measurement of the registration process from target phases T10 to T90 in registration to the phase T00.

Registration of the target phase
to the source phase T00

Slice index range in calculation CVar measurements Remark

T10 Index from 30 to 70 1.6117 Confident

T20 Index from 30 to 70 1.9134 Acceptable

T30 Index from 30 to 70 2.0173 Relatively high

T40 Index from 30 to 70 2.1167 Relatively high

T50 Index from 30 to 70 1.9572 Acceptable

T60 Index from 30 to 70 1.9207 Acceptable

T70 Index from 30 to 70 1.9559 Acceptable

T80 Index from 30 to 70 1.8909 Acceptable

T90 Index from 30 to 70 1.2455 Confident
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inhalation or exhalation. The reference model lung images
are used from the source phase T00, and the testing lung
images are used from the target phases T10-T90. In each
phase, the images with indexes from 30 to 70 are used
because there are available lung segments in this index
range.

In comparison with the learning-based approach in
registration problem VoxelMorph (Balakrishnan et al.)
[13, 14], diffeomorphic (Mok and Chung) [15], and
DeepFLASH (Wang and Zhang) [16] registration, we
have the following conclusion about advantages and
disadvantages.

Table 5: The sum of LBP and entropy error rate represents the respiratory signal for slides from 30 to 70.

Registration of target phase to
the source phase T00

Slice index
Sum of standard deviation of LBP

and entropy error rate
Remark

T10 Index from 30 to 70 0.1370 Start inhalation

T20 Index from 30 to 70 0.3220 Inhalation

T30 Index from 30 to 70 0.4321 Inhalation

T40 Index from 30 to 70 0.5655 Inhalation

T50 Index from 30 to 70 0.7124 Start exhalation

T60 Index from 30 to 70 0.6361 Exhalation

T70 Index from 30 to 70 0.4863 Exhalation

T80 Index from 30 to 70 0.4721 Exhalation

T90 Index from 30 to 70 0.1552 Finish

1
0.1

0.2

0.3

0.4

0.5

T10

Start inhalation

Inhalation

Start exhalation

Exhalation

Finish
T20

T30

T40

T50
T60

T70
T80

T90

0.6

0.7

0.8

2 3 4 5 6 7 8 9

Figure 13: The demonstration of respiratory signal from phases T10 to T90 in registration to phase T00.

T10 − T90
(index 30 − 70)

4DCT dataset

T00
(Index 30 − 70 ) Reference model

lung images Artifact removal

Artifact removal

The best candidate slice with the
margin of 5 slices befor and after

Entropy metric
comparison

Left and right lung
segmentation

Left and right lung
segmentationTesting lung images

Registration process

LBP metric
comparisonExhalation

Inhalation

Figure 14: The overall framework of the proposed registration process with LBP and entropy measurements.
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These approaches are applied mainly to the MRI brain
images, which are more complicated with at least five seg-
ments: background, skull, white matter, gray matter, and
cerebrospinal fluid. Moreover, the movements of these seg-
ments are also too difficult to track. Therefore, the authors
Balakrishnan et al. and Mok and Chung propose the
learning-based approach using a feature map from U-Net
to minimize the loss function. Their approaches require
large amounts of data for feeding and tracking in the train-
ing process.

Because we only want to model the respiratory signals,
using U-Net is more complicated than necessary in the lung
registration step. This is the main point of using a hybrid
LBP descriptor with entropy registration in our approach.
We do experiments for VoxelMorph and diffeomorphic
methods with our data. The Dice measurements of Voxel-
Morph and diffeomorphic methods are 90% and 97%,
respectively, in comparison with 96% of our proposed
method. If we feed more training data, the result of Voxel-
Morph and DeepFLASH would be higher. Another compar-
ison is with the DeepFLASH method, which applies the duel
net with frequency spectrum domain. The Dice measure-
ment for the DeepFLASH method is 91%. Similarly, if we
continue training, the result might be improved. The advan-
tage of our approach is that it is a fast and effective method
for modeling respiratory. This method does not require
more data for feeding training. We only need the reference
model lung images to control the modeling.

7. Conclusion

There are two stages in the process of registration and respi-
ratory modeling for the 4DCT image. The first stage, which
is essential to the whole process, is lung segmentation, and
the second stage is registration and modeling. If the artifacts
are not removed completely, the subsequent metrics used in
the registration and modeling give incorrect results. The
more accurate segmentation is performed, the more accurate
registration is obtained. Therefore, the minimum variance
quantization and within class variance are combined for a
good segmentation.

After segmentation, the LBP and entropy are applied in
sequence to perform the registration. LBP can be used to
find near context information between two images in differ-
ent phases. Then, the entropy verifies and decides the correct
registered image. If LBP and entropy are applied indepen-
dently, the result becomes incorrect. Because all images in
neighbor slices are similar in visualization, our method
enhances efficiency of the automatic process in registration
and respiratory modeling for the 4DCT datasets.

In summary, our proposed approach in modeling respi-
ratory signals by deformable image registration on 4DCT
lung images has some discriminant and promising features
in comparison to conventional and deep learning
approaches as follows:

(i) We construct a complete process from segmenta-
tion, registration, and modeling with careful selec-
tions from the minimum variance quantization

method, LBP feature descriptor to entropy measure-
ment to minimize the complexity of the process

(ii) We still ensure the high accuracy in segmentation
via DSC measurement and in registration via CVar
measurement, as well as in modeling via LBP and
entropy error rate

(iii) We do not need too many images like other deep
learning approaches for training data

(iv) We can have a comparative and robust result in
comparison to other traditional computer vision
approaches

(v) The results of DSC, CVar, and entropy in segmenta-
tion, registration, and modeling can be applied as
parameters for constructing loss function in deep
learning approaches

Besides the above advantages, the only limitation is that
our approach cannot work well if the background illumina-
tion is quite different between the reference and test images.
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The manual delineation of the lesion is mainly used as a conventional segmentation method, but it is subjective and has poor
stability and repeatability. The purpose of this study is to validate the effect of a radiomics model based on MRI derived from
two delineation methods in the preoperative T staging of patients with rectal cancer (RC). A total of 454 consecutive patients
with pathologically confirmed RC who underwent preoperative MRI between January 2018 and December 2019 were
retrospectively analyzed. RC patients were grouped according to whether the muscularis propria was penetrated. Two
radiologists segmented lesions, respectively, by minimum delineation (Method 1) and maximum delineation (Method 2), after
which radiomics features were extracted. Inter- and intraclass correlation coefficient (ICC) of all features was evaluated. After
feature reduction, the support vector machine (SVM) was trained to build a prediction model. The diagnostic performances of
models were determined by receiver operating characteristic (ROC) curves. Then, the areas under the curve (AUCs) were
compared by the DeLong test. Decision curve analysis (DCA) was performed to evaluate clinical benefit. Finally, 317 patients
were assessed, including 152 cases in the training set and 165 cases in the validation set. Moreover, 1288/1409 (91.4%) features
of Method 1 and 1273/1409 (90.3%) features of Method 2 had good robustness (P < 0:05). The AUCs of Model 1 and Model 2
were 0.808 and 0.903 in the validation set, respectively (P = 0:035). DCA showed that the maximum delineation yielded more
net benefit. MRI-based radiomics models derived from two segmentation methods demonstrated good performance in the
preoperative T staging of RC. The minimum delineation had better stability in feature selection, while the maximum delineation
method was more clinically beneficial.

1. Introduction

Rectal cancer (RC) is one of the most frequently diagnosed
malignancies worldwide [1]. Accurate preoperative assess-
ment of T staging of rectal cancer is a critical step in clinical
treatment strategy, where a total mesorectal excision (TME)
is considered as an optimal treatment approach for early
staged RC (T1–2 and N-), while the treatment strategy for a
locally advanced stage of RC (T3–4 and/or N+) is neoadju-
vant chemotherapy (CRT) before TME [2, 3].

Currently, magnetic resonance imaging (MRI) is the
common first-line modality for accurate pretreatment assess-
ment of patients with RC. Moreover, rectal high-resolution

T2-weighted images (T2WIs) have a vital role in the preoper-
ative T staging of RC [3–5]. However, when there is an inva-
sion of muscular layers by vessels, exudative changes around
the lesion, and desmoplastic reaction, it is often hard to dis-
tinguish them from tumor infiltration outside the intestinal
wall, which often leads to common mistakes in the staging
of T2 and early T3 [4, 5].

Radiomics, a novel noninvasive tool, has shown multiple
gratifying advantages in the preoperative assessment, predic-
tion of treatment outcome, and distant metastasis of RC [6–
10], thereby providing important details of tissue features,
including the preoperative T staging. Among the factors that
affect radiomics analysis, segmentation is vital as the first step
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of the imaging process. Still, recent publications have demon-
strated that manual delineation of lesions is mainly used as a
conventional segmentation method, but it is subjective and
has poor stability and repeatability [9–11]. Zhang et al. [12]
showed that delineation discrepancy in volumes of interest
(VOIs) might affect predicting the performance of nasopha-
ryngeal carcinoma and breast cancer radiomics models.

Some studies have reported on manual delineation based
on MR images in RC patients. Most methodologies advocate
using the volume of the whole primary tumor, which is man-
ually drawn along the border of the tumor on each axial slice
to cover the lesion [7, 8, 13–18]. Yet, most studies have no
precise definition of the outer edge of the tumor. The type
of manual segmentation method that can yield higher clinical
benefit in patients with RC has been less discussed and
requires further quantitative assessment. Therefore, the aim
of our study was to validate and compare different radiomics
tumor delineation models in evaluating the repeatability of
feature extraction and exploring the preoperative T staging
of RC based on high-resolution T2WI.

2. Materials and Methods

2.1. Participants. 454 consecutive patients with RC who
underwent 3.0T rectal MRI before surgical resection at
Changhai hospital between January 2018 and December
2019 were retrospectively assessed. Inclusion criteria were
(1) pathologically confirmed RC with baseline MRI data,
(2) baseline MRI within 14 days before surgical resection,
and (3) single focus. Exclusion criteria were (1) a history of
previous malignant tumor or pelvic surgery (n = 7), (2) poor
quality of the images (n = 14), (3) received any treatment

before and/or after baseline MR examination (n = 85), and
(4) distant metastases (n = 31).

Based on the National Comprehensive Cancer Network
(NCCN) and American Joint Committee on Cancer (AJCC)
staging system [19], the patients were grouped according to
different pathological T stages: T1–2 as a group without the
penetrated muscularis propria and T3–4 as the group with
penetration.

The training dataset and validation dataset were chro-
nologically divided: 152 consecutive RC patients between
January and December 2018 were included in the training
set, while 165 consecutive RC patients between January
2019 and December 2019 were enrolled in the validation
set (Figure 1).

The present study received approval from the local Insti-
tutional Review Board (Committee on Ethics of Biomedicine,
Changhai Hospital). Informed consent was waived for this
retrospective study.

2.2. Imaging Acquisition. Rectal MRI was scanned on two 3.0
T MR systems (Siemens Skyra 3.0T and GE Discovery 750w
3.0T) using a phased array coil. Before scanning, intestinal
cleaning was performed by enema administration with 20ml
of glycerin. Oblique-axial high-resolution T2WI was perpen-
dicular to the long axis of the rectum comprising the lesion.
Routine sequences including sagittal T2WI, axial diffusion-
weighted images (DWI, b-value: 0, 1000 s/mm2), axial T1-
weighted images (T1WI), and gadolinium contrast-enhanced
T1WI of the pelvis were obtained in the sagittal, coronal,
and axial planes. Details on parameters applied for high-
resolution T2WI, which were used for radiomics models, are
shown in Supplemental Table 1.

454 consecutive patients underwent rectal MRI with a pathologic 
diagnosis of RC from January 2018 to December 2019

231 consecutive RC patients from 
January to December 2018 were 

included in training set

223 consecutive RC patients from 
January to December 2019 were 

included in validation set

152 RC patients available for 
inclusion in training set

165 RC patients available for 
inclusion in validation set

4 patients excluded with a history of

8 patients excluded due to poor quality of 
the images

previous malignant tumor or pelvic surgery

48 patients excluded due to chemotherapy 
or radiotherapy before and/or after baseline 

MR examination

19 patients excluded with distant metastases

3 patients excluded with a history of 
previous malignant tumor or pelvic surgery

6 patients excluded due to poor quality of 
the images

37 patients excluded due to chemotherapy 
or radiotherapy before and/or after baseline 

MR examinationa 

12 patients excluded with distant metastases

Figure 1: Diagram for the inclusion of patients into the study. RC: rectal cancer.
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2.3. Image Segmentation. All original high-resolution T2WI
DICOMdata were uploaded to the HuiyingMedical Radcloud
radiomics platform (http://radcloud.cn/). As the T2W images
were required from two different MR systems in our study,
image normalization was essential for all data to achieve
homogeneity. Each image intensity was normalized to mini-
mize the MRI signal variations using the following formula:

f xð Þ = s x − μxð Þ
σx

, ð1Þ

where f ðxÞ indicates the normalized intensity, x indicates
the original intensity, μ refers to the mean value, σ indicates
the variance, and s is an optional scaling, which is by default
set to 1. While reserving the diagnostic intensity discrepancy,
the signal discrepancy in MR parameters was decreased for
subsequent radiomics analysis.

The region of interest (ROI) of each lesion was manually
delineated slice-by-slice on high-resolution T2W images. We
used two kinds of manual segmentations for ROI: Method
1—minimum delineation and the smallest and clearest solid
border that best fit the tumor region, excluding the blurry
region of the margin; Method 2—maximum delineation,

while the maximummargin of the lesion, including the entire
region of perirectal tissues, was used to define the ROI
(Figure 2). Then, the volume of interest (VOI) was recon-
structed through the ROIs.

2.4. Feature Extraction and Reduction. Two radiologists with
8 (H.L.) and 5 years (Z.Z.) working experience in abdom-
inal imaging independently reviewed all these images, who
were blinded to the patient information. Next, all delinea-
tions were checked by one senior radiologist (Y.Y., who
had 10 years of working experience in rectal MRI). Two
radiologists (H.L. and Z.Z.) performed image processing
of all cases on the platform, comprising Method 1 and
Method 2, respectively. One radiologist (H.L.) repeated
the segmentations of all cases one week later for final fea-
ture selection.

1409 radiomics features were extracted from each
method of segmentation with the above platform. All fea-
tures were grouped into four categories: (1) first-order fea-
tures, which quantitatively delineated the distribution of
voxel intensities of MR image by basic indexes; (2) shape-
based features, including the shape and size of the VOI
(e.g., the volume of segmentation); (3) texture features and
quantification of the region heterogeneity differences; (4)

(a) (b)

(c) (d)

Figure 2: Representative images for lesion delineation. (a, b) Minimum delineation of ROI on oblique-axial T2-weighted MR images (arrow)
and volume renderings of VOIs (Method 1). (c, d) Maximum delineation of ROI on oblique-axial T2-weighted MR images (arrow) and
volume renderings of VOIs (Method 2).

3BioMed Research International

http://radcloud.cn/


higher order features, which included the transformation of
first-order statistics and shape and texture characteristics,
such as logarithm, exponential, gradient, square, square
root, local binary patterns (LBP), and wavelet transforma-
tion [7, 8].

The inter- and intraclass correlation coefficient (ICC)
was calculated to assess the reliability and reproducibility
of all features. Features with both inter- and intraobserver
ICCs exceeding 0.8 were applied for subsequent analysis,
which suggested good robustness of features. To reduce
the redundant features and select the optimal features,
the variance threshold algorithm (variance threshold = 0:8)
and Select-K-Best algorithm were adopted. The Select-K-
Best algorithm used P < 0:05 to determine optimal features
related to the T stage.

2.5. Machine Learning and Model Analysis. The radiomics
analysis was performed in the Radcloud platform. Based on
the selected features, the radiomics-based model was con-
structed with the support vector machine (SVM) in the train-
ing set, then verified in the validation set. For SVM, details of
the parameters, kernel (linear), penalty coefficient (1),
gamma (auto), class weight (balanced), decision function
shape (one-to-many), and random state (NA), were used.

To assess the model’s diagnostic performance, the
receiver operator characteristic (ROC) curve was obtained
by calculating areas under the curve (AUCs) in both datasets.
The DeLong test was performed to evaluate differences
between the ROC curves. The clinical benefits of radiomics
models were estimated by decision curve analysis (DCA).
Statistical significance was defined as P < 0:05.

Table 1: Pathological characteristics of the patients.

Variables
Training set Validation set

P value
(n = 152) (n = 165)

Gender
Male 94 (61.8%) 109 (66.1%) 0.434

Female 58 (38.2%) 56 (33.9%)

Age (years) 58:9 ± 8:3 57:5 ± 8:8 0.147

BMI (kg/m2) 23:8 ± 3:2 23:5 ± 3:1 0.397

Tumor location

Upper 36 (23.7%) 32 (19.4%) 0.648

Middle 92 (60.5%) 105 (63.6%)

Lower 24 (15.8%) 28 (17.0%)

Histological type

Adenocarcinoma 131 (86.2%) 146 (88.5%) 0.325

Mucinous adenocarcinoma 15 (9.9%) 17 (10.3%)

Signet ring cell carcinoma 6 (3.9%) 2 (1.2%)

Differentiation

High 20 (13.2%) 17 (10.3%) 0.713

Moderate 112 (73.7%) 127 (77.0%)

Poor 20 (13.2%) 21 (12.7%)

T stage

T1 22 (14.5%) 17 (10.3%) 0.320

T2 44 (28.9%) 51 (30.9%)

T3 74 (48.7%) 90 (54.5%)

T4 12 (7.9%) 7 (4.2%)

N stage

N0 94 (61.8%) 99 (60.0%) 0.056

N1 37 (24.3%) 28 (17.0%)

N2 21 (13.8%) 38 (23.0%)

Tumor deposit
Negative 118 (77.6%) 137 (83.0%) 0.226

Positive 34 (22.4%) 28 (17.0%)

Lymphovascular invasion
Negative 91 (59.9%) 100 (60.6%) 0.893

Positive 61 (40.1%) 65 (39.4%)

Perineural invasion
Negative 106 (69.7%) 117 (70.9%) 0.819

Positive 46 (30.3%) 48 (29.1%)

Tumor budding
Negative 114 (75.0%) 126 (76.4%) 0.777

Positive 38 (25.0%) 39 (23.6%)

CEA∗ Negative 107 (70.4%) 115 (69.7%) 0.892

Positive 45 (29.6%) 50 (30.3%)

CA19-9∗
Negative 126 (82.9%) 126 (76.4%) 0.150

Positive 26 (17.1%) 39 (23.6%)

BMI: body mass index; CEA: carcinoembryonic antigen; CA19-9: carbohydrate antigen 19-9. ∗Preoperative blood samples.
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3. Statistical Analysis

The Kolmogorov-Smirnov statistical test was used to test for
the normality in all continuous variables. A paired Student’s t
-test or Wilcoxon test was used to compare variables between
the two groups. Qualitative variables were assessed by the
chi-square test or Fisher’s exact test. SPSS software (version
20.0, Chicago, IL, USA) and R software (version 3.4.3) were
used for statistical analysis. A P value of <0.05 was consid-
ered to be a statistically significant difference.

4. Results

4.1. Participant Characteristics. A total of 317 patients were
finally enrolled. There was no significant difference between
the training and validation sets. The patient characteristics
and pathological outcomes are summarized in Table 1.
According to the T stage by postoperative pathological exam-
ination, 183 patients (57.7%) were assigned to the penetra-
tion group.

4.2. Radiomics Features. All radiomics features extracted
from Method 1 and Method 2 with ICCs ranged from 0.005
to 1.000. 1288/1409 features of Method 1 (91.4%) and
1273/1409 features of Method 2 (90.3%) had good robustness
and were applied for subsequent analysis (both inter- and
intraobserver ICCs ≥ 0:8). There was a significant statistical
difference (Z = 18:574, P < 0:001) between the two methods.

The median (quartile range) volume of the two methods
was 5.981 (2.490, 13.907) cm3 and 11.617 (5.594, 31.117)
cm3, respectively. There was a significant difference in tumor
size between Method 1 and Method 2 (Z = 3:29, P = 0:001).

Finally, 4 optimal features (Method 1) and 7 optimal
features (Method 2) associated with T stage were selected to
build the radiomics models (Model 1 and Model 2) (Table 2
and Supplemental Figure 1).

4.3. Performance of Radiomics Model. The ROC curves of the
SVM classifier showed good performance with AUCs of
0.838 and 0.928 for Model 1 and Model 2 in the training

set, respectively. For estimating differences in the two models
in the validation set, Model 2 had an AUC of 0.903 (95% CI:
0.807-0.999), with a sensitivity of 87.0% and specificity of
82.3%, indicating a better performance compared with
Model 1 that had an AUC of 0.808 (Figure 3). The DeLong
test showed a significant difference (P = 0:035). Details con-
tained in the models are shown in Table 3.

The decision curves demonstrated better performance of
SVM models in predicting the T stage of RC than either the
“all” or the “none” scheme at a threshold probability of 0.0-
0.9 (Figure 4). The DCA showed that the Model 2 algorithm
added more net benefit than that of Model 1.

Table 2: Selected radiomics features.

Model No Radiomics feature Radiomics class Filter

Method 1

1 Skewness First order Wavelet-HLL∗

2 Maximum First order Wavelet-HLL∗

3 High gray level zone emphasis GLSZM Wavelet-HLH∗

4 Gray level nonuniformity GLSZM Wavelet-LHL∗

Method 2

1 Skewness First order Wavelet-HLL∗

2 High gray level zone emphasis GLSZM Wavelet-LHL∗

3 Skewness First order Wavelet-LHL∗

4 High gray level run emphasis GLRLM Original

5 High gray level run emphasis GLRLM Logarithm

6 High gray level run emphasis GLRLM Square root

7 High gray level run emphasis GLRLM Wavelet-LLL∗

GLSZM: gray level size zone matrix; GLRLM: gray level run length matrix. ∗The wavelet transform decomposes the tumor area image into low-frequency
components (L) or high-frequency components (H) in the x, y, and z axes. Method 1: minimum delineation method; Method 2: maximum delineation method.

AUC
Method 2: 0.903
Method 1: 0.808

1.0

0.8

0.6

0.4Se
ns

iti
vi

ty

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − specificity

Figure 3: Receiver operator characteristic (ROC) curves in the
validation set. AUC was 0.808 for the minimum delineation model
(Method 1); AUC was 0.903 for the maximum delineation model
(Method 2).
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5. Discussion

Our work showed that Method 2 had a better value in differ-
entiating T1-2 from T3-4. Although the statistical difference
was found between the two manual segmentations of MRI-
based radiomics in ROC, Method 1 gained more stability
and repeatability.

Due to the diverse treatments and prognoses, the distinc-
tion between T1-2 and T3-4 is quite important as it can pre-
vent undertreatment or overtreatment. Among the widely
used imaging methods, high-resolution MRI is the most
commonly used imaging approach for this purpose. Even

though rectal high-resolution T2WI is suggested for the con-
ventional preoperative staging of RC, differentiation between
T2 and early T3 tumors is still unsatisfactory [20, 21]. One
common misunderstanding is caused by penetration to the
muscular propria layers by small vessels and desmoplastic
reaction, which may lead to a great challenge in staging by
using traditional imaging methods [4, 5].

Previous academic studies have demonstrated that radio-
mics have good performance in evaluating many types of
tumors and can be utilized as a profitable noninvasive modal-
ity for the local staging in RC [6–12]. The workflow involves
acquisition and segmentation of images and extraction and
reduction of features, and when the features are selected, a
statistical model is established [10]. Among the factors that
affect radiomics analysis, segmenting is essential as the imag-
ing processing step. There are three segmentation methods:
manual, semiautomatic, and automatic, each of which has
its advantages and disadvantages. At present, manual delin-
eation of the ROI is most commonly used as a conventional
segmentation method; however, it is subjective and has poor
stability and repeatability [22].

In the present study, two different manual segmenta-
tions were utilized to explore the influence of diverse delin-
eation on the stability of feature selection and preoperative
T staging’s diagnostic efficiency. The inter- and intraclass
correlation coefficients of features were computed. Our
results showed that features based on minimum delineation
had high robustness, which suggested good reliability and
reproducibility.

Meanwhile, our results also showed that the diagnostic
performance of radiomics models could be affected by delin-
eation discrepancy. The above analysis indicated that the
SVM model based on maximum delineation had a higher
predictive performance than the minimum delineation
model (P < 0:05) for T stage classification, thus suggesting
good diagnostic efficiency. In their nasopharyngeal carci-
noma and breast cancer studies, Zhang et al. [12] built a
quantitative image postprocessing algorithm that demon-
strated delineation differences in segmentation affecting
radiomics-based diagnostic performance. Kocak et al. [23]
analyzed the effect of radiomics segmentation with margin
shrinkage in the evaluation of renal carcinomas. Neverthe-
less, manual segmentation tends to lead to the excessive
delineation of the lesion border to ensure the entire lesion
is recognized in most clinical practices [24]. Our clinical
decision-making curves revealed that the clinical benefits of
the maximum delineation algorithm were greater than the
minimum approach in the evaluation of the T stage in RC
patients, which is consistent with previous research [12, 25–
29] and could be explained by the dilated margin of perirectal
tissues containing complex information about identifying
tumor heterogeneity.

This present study has several limitations. First, VOIs
were manually delineated instead of being semiautomatical-
ly/automatically segmented, thus making it difficult to avoid
subjective errors and making it unsuitable for large-scale data
processing [30, 31]. Studies had indicated that semiautoma-
ted/automated segmentations can provide the reproducible
and accurate estimates of the tumor [31–34]. However, similar

Table 3: ROC analysis of the prediction model for the training and
validation sets.

Training set Validation set
Method 1 Method 2 Method 1 Method 2

AUC 0.838 0.928 0.808 0.903

95% CI 0.764-0.912 0.864-0.992 0.669-0.947 0.807-0.999

Sensitivity 0.871 0.903 0.956 0.870

Specificity 0.805 0.866 0.588 0.823

Accuracy 0.823 0.876 0.800 0.850

PLR 4.464 6.733 2.323 4.927

NLR 0.160 0.112 0.074 0.158

PPV 0.628 0.718 0.759 0.870

NPV 0.943 0.960 0.909 0.823

P∗ 0.036 0.035

PLR: positive likelihood ratio; NLR: negative likelihood ratio; NPV: negative
predictive value; PPV: positive predictive value. ∗Compared by DeLong test.

Figure 4: Decision curve analysis (DCA) of the two schemes of
delineation. DCA showed that at the probability threshold of 0.0
to 0.9, the SVM model based on the maximum algorithm
provided more net benefit than utilizing the minimum delineation
scheme. Model 1: minimum delineation method; Model 2:
maximum delineation method.
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to the previous studies, which used manual segmentation in
RC patients, these studies described a semiautomated/auto-
mated delineated manner along the tumor’s outer edge on
each consecutive slice, with no precise definition of the border
of the whole lesion. Second, this was a retrospective single-
center cohort study without external validation. Therefore, a
future multicenter study is required to verify our findings.
Finally, we only discussed the effects of twomanual segmenta-
tions of VOIs using T2WI. The effect of other routine
sequences on diverse delineations, such as DWI and
contrast-enhancedMRI, is still unclear and needs to be further
investigated [35].

6. Conclusions

In this study, we developed two radiomics models based on
different manual segmentations to assess the T stage in RC
patients. The diverse delineation could cause certain differ-
ences in feature selection. Despite this discrepancy, both
methods had good diagnostic performance in the preopera-
tive T staging of RC. The minimum delineation had better
stability in feature selection, while the maximum delineation
was more beneficial in clinical decision-making.
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Gastric cancer is a common and deadly cancer in the world. The gold standard for the detection of gastric cancer is the histological
examination by pathologists, where Gastric Histopathological Image Analysis (GHIA) contributes significant diagnostic
information. The histopathological images of gastric cancer contain sufficient characterization information, which plays a crucial
role in the diagnosis and treatment of gastric cancer. In order to improve the accuracy and objectivity of GHIA, Computer-Aided
Diagnosis (CAD) has been widely used in histological image analysis of gastric cancer. In this review, the CAD technique on
pathological images of gastric cancer is summarized. Firstly, the paper summarizes the image preprocessing methods, then
introduces the methods of feature extraction, and then generalizes the existing segmentation and classification techniques. Finally,
these techniques are systematically introduced and analyzed for the convenience of future researchers.

1. Introduction

1.1. Background. Cancer is a disease in which human cells
grow out of control. In 2018, about 9.6 million people died
of cancer [1]. Gastric cancer is a kind of cancer that is caused
by an abnormal cell population that proliferates endlessly in
the stomach and eventually forms tumors. According to the
morphological characteristics of gastric tumors, gastric
cancer can be classified into the following categories: adeno-
carcinoma, mucinous carcinoma, signet ring cell carcinoma,
adenosquamous carcinoma, squamous cell carcinoma, and
undifferentiated cell carcinoma. Adenocarcinoma accounts

for more than 95% of all gastric malignancies. In general,
gastric cancer refers to gastric adenocarcinoma. Adenocar-
cinoma includes tubular adenocarcinoma and papillary
adenocarcinoma. Tubular adenocarcinoma has a well-
defined glandular lumen.

Gastric cancer ranks second in morbidity and mortality
among all cancers [2]. Gastric cancer kills about 800,000 peo-
ple a year, according to the World Health Organization
(WHO). China and Japan have the highest incidence of stom-
ach cancer, accounting for 30 percent of all cancers, and the
number of cancer cases each year is also increasing in the
United States. In gender analysis, gastric cancer is the second
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most common cancer amongmen, at 26 percent, and the third
most common among women, at 11 percent. It is estimated
that about 30,000 new cases of gastric cancer occur each year.

The diagnosis of gastric cancer is mainly through patho-
logical biopsy, which is stained with hematoxylin and eosin.
The biopsy morphology and tissue characteristics under the
microscope are observed, and the detection results are deter-
mined by a synthesis of the doctor’s knowledge. But each
pathology doctor’s diagnosis is made according to their dif-
ferent experiences and states, which may result in making
different judgments on gastric cancer tissue pathology
images. At the same time, the pathologist has to examine a
large number of histopathological images every day [3].
The diagnosis process requires long periods of concentration,
and long hours of work can lead doctors to misdiagnose sit-
uations. Therefore, accurate screening and diagnosis of gas-
tric cancer by pathologists is a major problem [4]. The
number of pathologists is also very scarce. In order to allevi-
ate the shortage of pathologists and reduce the misdiagnosis
rate of histopathological examination, the CAD system is
introduced into the detection of pathological images of gas-
tric cancer [5]. With the assistance of a CAD system, the area
of the malignant tumor is marked, and the accurate judgment
of the computer is used as a second opinion to assist the
pathologist in making a judgment [6].

The CAD system began in the 1980s. Its main purpose is
to assist pathologists to make judgments by using the accuracy
and efficiency of computers. The CAD system can make judg-
ments objectively, and excellent algorithms can reduce the
processing time [7]. In the past few decades, the continuous
progress of machine learning algorithms has enabled the rapid
development of CAD technology in gastric cancer, which can
more quickly and accurately identify cancer regions [8] [9].

In the CAD system of machine learning in the field of
gastric cancer, there are mainly two kinds of segmentation
and classification. The main step of the classification algo-
rithm is to preprocess the image first, in order to improve
the quality of the image and make the data meet the experi-
mental requirements. Then, feature extraction is carried out
to find the features of the image that are of interest to the
experiment. Finally, a suitable classifier is designed to classify
the features. The segmentation algorithm consists of two
steps: image preprocessing and image segmentation [10]. In
recent years, a new technology has emerged: deep learning
technology. A deep learning algorithm can directly act on
RGB images, automatically learn the features of images
through convolutional neural network, search for similar fea-
tures of experimental data through a lot of training, and
finally achieve segmentation and classification [11].

1.2. Motivation. At present, some references summarize
related works of histopathological image analysis approaches,
but little is done for gastric cancer. Therefore, this work
focuses on the technical analysis of gastric cancer histopatho-
logical images.

In 1979, the comprehensive survey “Computer-Aided
Medical Diagnosis: Literature Review”was presented [12]. This
paper summarizes all the medical diagnostic techniques

involved in the development, testing, and application of
CAD. In this survey, there is one work related to gastric cancer.

In 2004, the paper in [13] proposed a survey paper about
“Artificial Intelligence in Medicine.” In this paper, artificial
intelligence is introduced that can analyze complex medical
data and can diagnose, treat, and predict outcomes in the
field of medicine. This paper is related to seven histopathol-
ogies, one of which is gastric histopathology.

In 2005, the paper in [14] presents a survey about “auto-
mated cancer diagnosis based on histopathological images.”
In this paper, from the three aspects of image preprocessing,
feature extraction, and image classification, a total of 75
papers are summarized. A total of 11 cancers are covered,
but only one is related to stomach cancer.

In 2007, a survey on “Neural Networks and Other
Machine Learning Methods in Cancer Research” was com-
pleted [15]. This paper summarizes some machine learning
methods mainly used in the field of cancer and discusses their
respective advantages and disadvantages in the field of med-
icine. In this work, ten types of cancer tissues are mentioned,
but only one paper is about gastric cancer.

In 2018, a survey on “Deep Learning and Medical
Diagnosis: A Review of Literature” was carried out. This
paper provides a comprehensive analysis of deep learning
techniques in histopathological images [16]. There are 46
articles on deep learning in this work, but there is only one
paper that focuses on GHIA. Besides the related work men-
tioned above, there are some other surveys for histopathology
analysis [17, 18, 19, 20], but they do not involve gastric cancer.

From the works mentioned above, we can find that there
are many review papers on histopathological image analysis,
which summarize various cancers in the medical field. How-
ever, none of them specially focus on histopathological images
in the direction of gastric cancer.In this paper, we summarize a
state-of-the-art review for gastric histopathology image analysis
approaches. Figure 1 shows the histopathological image litera-
ture of gastric cancer collected by Google Scholar according to
the keywords of histopathological analysis of gastric cancer. A
total of 364 relevant papers were downloaded, and 234 papers
that were not about gastric cancer were deleted through simple
reading, and then 106 papers that were not about histopatho-
logical images in gastric cancer were also deleted; finally, 24
papers were selected. As shown in Figure 2, this paper classifies
and summarizes the literature according to four aspects: pre-
processing, feature extraction, segmentation, and classification.
As can be seen from Figure 2, papers related to GHIA were
published mainly since 2012, and the number of relevant
papers gradually increased after that. There are only 4 and 6
papers on image preprocessing and image segmentation, while
the feature extractionmethod has 8 papers. There are 14 papers
with the largest number of classification methods.

Figure 3 is the structure diagram of this paper, summariz-
ing the histopathology of gastric cancer from four aspects.
Figure 3(a) shows the preprocessing aspect. Data enhance-
ment is used in the preprocessing step, augmenting the data-
set and preparing for the following experiments. Figure 3(b)
shows the feature extraction aspect. The histograms of
oriented gradient (HOG) feature and the gray-level cooccur-
rence matrix (GLCM) feature, along with the other features,
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are used for extracting the color, texture, and other character-
istics of the nucleus. Linear discriminant analysis (LDA) and
local linear embedding (LLE) are the processing feature
vectors. Figure 3(c) shows the segmentation aspect. The
minimum-model method and the deep learning network are
devoted to find the nuclear region. Figure 3(d) shows the clas-
sification aspect. The artificial neural network (ANN) and the
convolutional neural network (CNN) are applied to screen the
cells needed for the experiment from histopathological images.

2. Image Preprocessing Methods

2.1. Related Work. Image preprocessing [21] is an important
part of GHIA. In experiments, the quantity of data may be
small and the image quality may be poor. Therefore, in order
for experiments to be more accurately classified or seg-
mented, a mass of datasets are needed. The experimental data
need to be preprocessed so that the data can meet the exper-
imental requirements and get better results.

In [22], a method is proposed for presenting an automatic
lymphocyte detectionmodel based on the Deep Convolutional
Neural Network (DCNN) in immunohistochemical images of
gastric cancer. This work extracts data from a 40-fold magni-
fication scan of full-sizedmicrographs of gastric cancer tissues.
The experimental data consist of 3,257 images. However, these
datasets are far from enough. In the study, the data expansion
methods of rotation and reflection are used to increase the
number of datasets, resulting in a total of 10,868 datasets.

The work in [23] comes up with an efficient learning
algorithm to replace the traditional feature extraction
method. This algorithm requires a large dataset for machine
learning. Some standard data augmentation methods are
used to generate a large number of images, and various data
enhancement methods are used to process the data in this
work, including 0.3x overlap, reflection, postreflection rota-
tion, and shearing. Through these methods, 21,000 images
can be produced per pathological section, and a total of 11
sections of experimental data are generated for a total of
231,000 datasets.

The work in [24] proposes a framework for automatic
recognition of gastric cancer based on deep learning. In this
work, the resolution of the original gastric image dataset is
2048 × 2048, and the deep learning network cannot directly
process the gastric image, so a patch of 224 × 224 is inter-

cepted from the original gastric image. The gastric dataset
contains 560 gastric cancer sections and 140 normal sections.
In order to increase the dataset, the patch is rotated 90°, 180°,
and 270°. After rotation, the data are cut, and the data
becomes 8,992 pieces of gastric cancer data and 14,000 pieces
of normal data.

In [25], an image classification model is proposed that can
alleviate the bad annotation training set. By fine-tuning the
neural network in two stages and introducing a new interme-
diate dataset, the performance of the network in image classi-
fication with a poor annotation training set is improved.

2.2. Summary. It can be concluded from the above works that
machine learning requires a huge number of datasets. Aug-
mentation approaches are the main solution. Augmentation
approaches mentioned in the above work include rotation,
reverse, and scale transformation. In addition, there are some
other data augmentation approaches, such as adding noise
and color vibrance. Figure 4(a) shows the original image.
Figure 4(b) shows rotation transformation, with a clockwise
rotation of 90°, 180°, and 270° from the original image.
Figure 4(c) shows color vibrance, with brightness enhanced
at 10% or brightness reduced to 10% and 20%. In
Figure 4(d), noise is added: Gaussian noise, salt and pepper
noise, and Poisson noise; Figure 4(e) shows reverse transfor-
mation: horizontal rotation and vertical rotation.

3. Feature Extraction Methods

3.1. Related Work. Feature extraction [26] refers to finding
representative data in the region of interest in the image. Fea-
ture extraction mainly includes three parts: the color feature,
the texture feature, and the shape feature. Some of them
require postprocessing of features, such as feature dimen-
sionality reduction.

3.2. Color Feature. Features based on color intensity are very
important in pathology. Due to the use of special staining, the
cytoplasm, nucleus, cell wall, and other stains are different in
the pathological image, which can be manifested by color fea-
tures. The work in [23, 27] extracts hue, saturation, and value
(HSV) histograms; gray histograms; and red, green, and blue
(RGB) histograms as color features to describe the difference
between the colors.

3.3. Texture Feature. Texture feature is also a commonly used
histopathological image detection method. In the histopath-
ological images of gastric cancer, the texture features can be
extracted from the nucleus and cell wall. Texture features
mainly include the GLCM feature, the HOG feature, and
the local binary pattern (LBP) feature.

In [23], GLCM, LBP, and Gabor filter bank features are
extracted, respectively, as texture feature extraction in the
comparison experiment.

In [28], the HOG feature is extracted from gastric cancer
histopathological images. The HOG feature is drawn on nor-
mal, benign, and malignant gastric images to obtain the HOG
feature vector. The histogram of gastric cancer is drawn by
HOG feature histograms. Then, the data in the HOG

Initial dataset 364
papers

Irrelevant title 234
papers

Paper on gastric
cancer 130 papers

Papers included in
our review 24 papers

Delete
nonhistopathology

106 papers

Figure 1: The systematic flowchart of paper selection for our work.
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histogram is directly used for classification. The accuracy rate
of this work classification is 100%.

The work in [29] proposes a HOG-LDA-ANN method
for gastric histopathological image classification. HOG fea-
tures are compared with the GLCM and LBP features.
HOG-LDA-ANN has an accuracy rate of 88.9%. There are
two contrast experiments: GLCM-LPP-ANN has an accuracy

rate of 85.56% and LBP-LPP-ANN has an accuracy rate of
80.12%.

The work in [30] extracts the HOG and LBP features.
This work tests many feature dimension reduction methods
and classifiers. Through comparison, the LBP feature is
superior to the HOG feature in gastric cancer histopatholog-
ical images.
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Figure 3: A framework for gastric histopathology image analysis.
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3.4. Shape Feature. A shape feature is used to extract the
topological structure information from the image as a fea-
ture. For example, the distance of some points in the image
is extracted as features and then classified.

The work in [31] obtains the location information of the
nucleus and then extracts features. First, the alignment and
mean distance of the three adjacent cells are measured, and
then the mean value and standard deviation of these two
indicators are calculated as the first feature set. Another fea-
ture set is extracted from a circle of 40 microns around the
central cell. The ratio of the number of nuclei in the circle
to the empty circle section is calculated as the feature.

The work in [32] extracts four types of nuclear location
information: epithelial cells, leukocytes, fibrocytes, and
conglomerates, and obtains the cell nuclei attributed rela-
tional graph. Then, the mean, variance, skewness, and
kurtosis features can be obtained from the vertices and edges
of the nucleus.

3.5. Postprocessing Methods of Features. In [29], the HOG-
LDA-ANN method for gastric cancer images is proposed.
LDA is a dimension reduction technique for supervised
learning, which can retain and screen effective features and
eliminate inefficient features. In this work, 46,900 HOG fea-
ture vectors are obtained through feature extraction, and 90
groups of vectors are obtained through feature dimensional-
ity reduction by the LDA algorithm.

The work in [30] compares a variety of feature reduction
methods: Sammon mapping, stochastic neighbor embed-
ding, Laplacian mapping, Isomap, classical multidimensional
scaling, local linear embedding, linear discriminant analysis,

and t-distribution random neighbor embedding. According
to the final classification accuracy, two better classification
methods are obtained: the LBP-MDS-ANN and LBP-LLE-
ANN methods.

The work in [33] improves the PCA+LDA algorithm.
Based on the traditional PCA+LDA, the LDA transformation
is optimized. This method improves the generalization of
traditional PCA+LDA to test samples and improves the
classification accuracy. The optimized algorithm improves
the classification accuracy by 3.43%.

3.6. Summary. This paper summarizes the feature extraction
method in Table 1. In conclusion, among the three features,
color features have strong limitations. It is only useful for gas-
tric cancer histopathological images with good staining effect
and high contrast. Texture features are widely used, and
many articles choose the texture feature method. Shape fea-
tures are used the least, and most of the extraction methods
are to extract the nucleus and extract the features from the
position relationship between the nuclei.

For the feature postprocessing of gastric cancer histopa-
thology, dimensionality reduction is the main method, and
features are processed by PCA, LDA, and other different
algorithms. In general, LDA has a good effect on the feature
dimension reduction of traditional methods. In the analysis
of histopathological images of other cancers, we have also
consulted relevant postprocessing methods. Although there
are few relevant literatures, the main methods are PCA and
LDA, such as in cervical cancer [34, 35], breast cancer [36,
37], and colorectal cancer [38].

(a)

(b)

(c)

(d)

(e)

Figure 4: Some common augmentation approaches in the preprocessing stage.
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4. Segmentation Methods

4.1. Related Work. Image segmentation [39] divides the
image into several specific and unique regions. Then, the part
of interest in the experiment is extracted. Image segmenta-
tion is an important step in image analysis.

In [27], the authors propose a nuclear segmentation tech-
nique, which automatically separates the nucleus by using a
minimum-model method. The minimum model consists of
two main steps. The first is the minimum prior information,
and the second is the contour detection method independent
of the image shape. This method avoids the segmentation
deviation of shape features and can be accurately segmented.

In [40], the authors propose a deep learning model for
the segmentation of histopathological images of gastric can-
cer. The workflow of this approach is shown in Figure 5. It
contains two convolutional layers, three pooling layers, three
multiscale module, one feature pyramid module, and one
upsampling convolutional module. The convolution layer
uses a3 × 3convolution kernel and the maximum pooling size
is 2 × 2. In order to extract and fuse features, multiscale mod-
ules are used for the shallow layer and feature pyramids are
used for the deep layer layers. The segmentation performance
of the framework is 90.88%.

In [41], the authors present a gastric cancer segmentation
method based on deformable convolution and multiscale
embedding networks. The workflow of this approach is
shown in Figure 6. This work combines atrous convolution,
deformation convolution, and atrous space pyramid pool
module. Then, the features of different semantic levels are
extracted in the subsampling and feature fusion by using
the lightweight decoder. Finally, intensive upsampling is per-
formed. In this work, the dataset includes 500 pathological
images of gastric cancer with an image size of2048 × 2048,
and a 91.60% pixel-level accuracy and 82.65% mean intersec-
tion are achieved. This method compares with previous
methods, such as FCN, VGG, U-net, and DeepLab-V3. The
segmentation effect is the highest, with an accuracy rate of
91.6%.

In [42], a partial marker of the gastric tumor segmenta-
tion method based on reiterative learning is proposed. The
architecture of the model is shown in Figure 7. In the absence
of manual labeling, the average intersection of union

coefficients obtained by training weakly labeled datasets is
0.883, and the average accuracy is 91.09%. After that, the
deviation between patches is eliminated through overlapped
region forecast.

In [43, 44], the authors propose a method for the segmen-
tation of histopathological images for gastric cancer based on
the hierarchical conditional random field (HCRF). The work-
flow of this approach is shown in Figure 8. This method can
automatically locate and mark cancer regions in gastric cancer
histopathological images. In this work, a total of 560 H&E-
stained pathological images of gastric cancer are collected in
the dataset. The segmentation accuracy is 78.91%, the recall
is 65.59%, and the specificity is 81.33% through this method.

4.2. Summary. In summary, there are two main segmentation
methods in gastric cancer histopathological image segmenta-
tion: the traditional machine learning segmentation method
and the deep learning segmentation method. The traditional
method uses edge detection for segmentation, and the deep
learning method uses the FCN model for segmentation. U-
net has a good effect on the segmentation of pathological
images. However, there has been no work on the histopatho-
logical segmentation of gastric cancer using U-net. The
advantage of depth segmentation lies in its good segmenta-
tion effect. It is a general frame structure and can adapt to
various features. But the disadvantage is high time complex-
ity and space complexity. Machine learning segmentation
has the advantages of wide coverage and strong adaptability,
while the disadvantages include large computation, complex
model design, and high hardware requirements.

5. Classifier Design Methods

Classifier [45] design is a very important part. Choosing an
appropriate classifier can make the experimental results bet-
ter. In traditional machine learning, classifiers generally
include SVM and RF. For deep learning networks, ResNet
and U-net are commonly used networks.

5.1. Machine Learning Classifiers. In [27], a traditional
machine learning method is presented for cell classification.
This model uses a minimum-model method for multiresolu-
tion image segmentation and then extracts 7 intensity-based

Table 1: Summary of feature extraction.

Aim Year Reference Team Method

Feature extraction

2017 [23] Sharma et al. GLCM, LBP, HSV, and RGB

2015 [27] Sharma et al. RGB feature, shape feature, and texture feature

2017 [28] Korkmaz et al. HOG feature

2017 [29] Korkmaz et al. HOG feature

2018 [30] Korkmaz et al. LBP feature, HOG feature

2013 [31] Cosatto et al. Feature of nuclear location relationship

2017 [32] Sharma et al. Feature of nuclear location relationship

Postprocessing

2017 [29] Korkmaz et al. LDA

2018 [30] Korkmaz et al. SNE, Isomap, MDS, LLE, LDA, and T-SNE

2012 [33] Gan et al. PCA and LDA
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features, 20 morphological features, and 4 texture features.
Then, the cells are divided into eight categories by Adaboost.
Finally, the multiresolution segmentation results are com-
bined and evaluated.

In [30], the authors make a comparison from three per-
spectives in the gastric cancer histopathological image, such
as feature extraction, feature dimensionality reduction, and
classifier. In classifier, this work compares RF and ANN.
The ANN classifier is superior to the RF classifier.

In [32], the authors propose a method to classify histo-
pathological images of gastric cancer by nuclear attribute
relation graphs. The image is preanalyzed, and the nuclei
are segmented first [46], followed by selective nuclear classi-
fication. According to the classification, different types of
nuclei are constructed into cell relationship maps, and each
cell relationship map is extracted for features. A total of 332
feature vectors are extracted according to the characteristics
of the map, including the mean, variance, skewness, and kur-
tosis. Finally, random forests are used for classification.

In [47], the authors propose three deep learning classifi-
cation algorithms for gastric cancer histopathology. The

workflow of this approach is shown in Figure 9. The first
group of experiments is classified by the CNN method. The
first layer is the input layer, and the input image size is 512
× 512 × 3. Each layer from the second to the fourth is convo-
lution and pooling; the convolution kernel is 3 × 3, the step
length is 1, and the maximum pooling size is 2 × 2. The fifth
layer is a 64 × 1 × 1 convolution feature. The accuracy of the
classification results is 86.4%. In the second group of experi-
ments, the features are extracted by CNN and then classified
by an RBF kernel support vector machine. The accuracy of
the classification results is 89.2%. In the third group of exper-
iments, K-SVD is used to learn the features extracted from
CNN to obtain an overcomplete dictionary, and then, sparse
decomposition is carried out. Using linear kernel SVM for
classification, the classification accuracy is 95%.

5.2. Deep Learning Classifiers. In [22], a nine-layer DCNN is
proposed, which is made up of three convolutional layers,
three max-pooling layers, two fully connected layers, and
one output layer. The workflow of this approach is shown
in Figure 10. The 3 × 3 convolution kernel is convolved with

M
SM

, 3
2

M
SM

, 6
4

M
SM

, 1
28

Fe
at

ur
e p

yr
am

id

U
CM

Segmentation
result 

M
P,

 2
 ×

 2

M
P,

 2
 ×

 2

M
P,

 2
 ×

 2

Co
nv

, 3
 ×

 3
, 1

6

Co
nv

, 3
 ×

 3
, 1

6

224 × 224

Figure 5: The framework of the proposed method in [40]. This figure corresponds to Figure 2 in the original paper.

(b) Image pooling

Upsample by 4Concat

Upsample by 2 Upsample by 4

4

Depthwise Conv

Sum

Conv1
+

Pool1 Block1 Block2 Block3 Block4

Image

Output
stride

Prediction

4 8 16 16 16

4

4

Dense
upsample by 4 

Atrous conv
rate = 2Deform Conv

1 × 1 Conv

1 × 1 Conv 1 × 5 Conv

1 × 5 Conv5 × 1 Conv

5 × 1 Conv

3 × 3 Conv, rate = 12

3 × 3 Conv, rate = 6

3 × 3 Conv, rate = 18

Concat
+

1 × 1 Conv

(a) Atrous spatial pyramid
pooling

1

1

Figure 6: The framework of the proposed method in [41]. This figure corresponds to Figure 6 in the original paper.

7BioMed Research International



a step length of 1. The convolution output is pooled to a
maximum size of 2 × 2. The number of output features after
three convolutional pooling is 64, 128, and 256. Finally, the
pooling results are put into two full connection layers to
obtain 2,048 feature vectors. This work produces an accu-
racy of 96.88%.

In [23], the authors design a pure supervised feedforward
CNN model. As shown in Figure 11, the model consists of 9
layers, 3 convolution layers and pooling layers, and finally 3
fully connected layers. The size of the convolution kernel of
the three convolutional layers is 7 × 7, 5 × 5, and 3 × 3. The
max pooling is the pooling layer with the size of 2 × 2. Finally,
the eigenvector enters the full connection layer. The accuracy
of the network in classifying tumor and necrotic areas is
69.9% and 81.4%. In addition, several comparative experi-
ments are also done in this work. AlexNet is used in deep
learning, color and texture features are used in machine
learning, and RF is used for classification.

In [24], the authors propose a new deep learning
network-based classification model of gastric cancer histo-
pathological images. In order to extract deep features, the
deep learning network proposed in this work has different
structures, namely, the shallow multiscale module and the
deep network module. The workflow of this approach is
shown in Figure 12. The green rectangle represents the
convolutional layer, and it has a convolution kernel size of
3 × 3. The blue rectangle represents the maximum pooling
layer, and the kernel size is 2 × 2. The orange rectangle repre-
sents the average pooling layer, and the kernel size is 7 × 7.
The purple rectangle represents the fully connected layer.
Several comparative experiments are performed, such as
AlexNet, VGG-16, ResNet-50, ResNet-101, Inception-V4,
and DenseNet-121. After comparison, the network of this
work has achieved good results. For the patch level, the clas-
sification accuracy of the model is 97.93%. For the slice level,
the classification accuracy of the model is 100%.
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In [48], the authors built a 50-layer residual network
model. In this model, multisize convolution kernels are
used to extract features, which are 7 × 7 and 3 × 3 convo-
lution kernels with 2 steps. Then, ReLU or Sigmoid func-
tion is used to activate the features nonlinearly. After a lot

of training, the network achieves an output F-score of
95.5%. On top of that, the model is optimized to increase
the F-score to 96%.

In [49], a feature balanced module (FBM) is proposed
that can distinguish slight differences in an image. The
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flowchart of FBM is shown in Figure 13. The balance module
has two types of channels: the first is channel concern (CA)
modules, and the second is space concern (SA) modules. In
CA, the input features are upsampled, and then, max pooling
and average pooling are performed. Convolution uses a9 × 9
convolution kernel, ReLU function is used for activation, and
convolution uses a7 × 7convolution kernel. Finally, add the
two outputs as output features. In SA, the convolution ker-
nels 3, 5, and 7 are used for convolution, and the features
are compressed.

In [50], the authors propose a ten-layer convolutional
neural network, in which three convolutional layers extract
features, four pooling layers reduce image size, and three full
connection layers output feature values. The workflow of this
approach is shown in Figure 14.

In [51], the authors propose a gastric cancer histopatho-
logical image classification method based on recalibrated
multi-instance deep learning. In this method, two convolu-
tion layers and one pooling layer are added to transform
the ResNet-v2 network into a complete network model.
The pooling layer is average pooling, and there are two con-
volution layers: one for feature extraction and the other for
classification. This network is shown in Figure 15. The net-
work is mainly composed of three modules, the first is
local-global feature fusion, the second is the recalibration
module, and the third is multi-instance pooling. The classifi-
cation accuracy of the model is 86.5%.

In [52], the authors fuse the two networks of DeepLab-V3
and ResNet-50, introduce the structure of ResNet-50 network
into DeepLab-V3, and build a new convolutional neural net-
work based on DeepLab-V3. In this work, 2,166 whole slices
are selected as the training set and 300 slices as the test set.
After a lot of training, the final accuracy of the model is
87.3%, the sensitivity is 99.6%, and the specificity is 84.3%.

In [53], the authors propose a multiscale deep learning
network, in which images of different magnification levels
are selected from the whole WSI image, patches of the same
size are extracted from images of different magnification
rates, and then these patches are put into the deep HIPO.
Then, the network can learn images at multiple scales. The
network is shown in Figure 16.

In [54], the authors use a standard Inception-V3 network
framework. By changing the depth multiplier, the parameters
are reduced. In order to increase the robustness of the image,
data enhancement methods are used such as mirror and rota-
tion. Adam optimization algorithm is used to optimize the
network. After a lot of training, the network model with the
smallest verification error is selected.

In [55], the authors propose three classical convolutional
neural networks for image classification: AlexNet, ResNet-50,
and Inception-V3. In data selection, tenfold cross validation
is used to test the performance of classification. The data is
divided into ten parts, and train : validation : test = 8 : 1 : 1.
For each combination, the classification results of the three
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classic networks are obtained. Finally, the ten results are the
output in a series to calculate the accuracy, sensitivity, and
specificity. The network is shown in Figure 17.

5.3. Summary. In the classification design of gastric cancer
histopathology images, there are few articles using the tradi-
tional machine learning classification method, among which
the techniques used include SVM, RF, ANN, and Adaboost.
There are many classified articles using deep learning direc-
tion. Convolutional neural networks mainly include ResNet,
Inception-V3, and some of their own proposed networks. In
Table 2, this paper summarizes the classification methods of
all gastric cancer histopathological images.

6. Method Analysis

6.1. The Gastric Histopathology Method Analysis. This paper
summarizes the works on gastric cancer histopathology
images from the perspectives of preprocessing, feature
extraction, segmentation methods, and classifier design

methods. Below, this paper briefly introduces the methods
used in each step.

6.1.1. Image Preprocessing Methods. By summarizing the
paper, image enhancement technology is the most com-
monly used method in image preprocessing. Experimental
training requires a large amount of data, but the data
obtained from experiments are often insufficient. At this
time, the experiment needs to enhance the data image.

Figure 18 shows the preprocessingmethod of gastric cancer
histopathological images. The work in [22, 23, 24] expanded
the experimental data through data enhancement methods
such as rotation and mirroring. This reduces the overfitting
situation and provides a powerful help to the experiment.

6.1.2. Feature Extraction Methods. Histopathological feature
extraction of gastric cancer includes feature extraction and
postprocessing of features. Feature extraction methods
mainly include color, texture, and shape features. Feature
postprocessing is mainly about feature dimensionality
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reduction. Figure 19 shows the feature extraction method for
gastric cancer histopathological images.

(1) Traditional Feature Extraction Methods. The main
methods of color feature are RGB histograms and HSV histo-

grams. RGB histograms reflect the composition and distribu-
tion of colors in the image, that is, which colors appear and
the probability of the appearance of various colors. The work
in [56] firstly proposed the method of using color histogram
as the representation of image color features. HSV histogram

432 patients

TCGA-STAD

Fold 1

Fold 2

Fold 3

Fold 9

Fold 10

Training set: 346 patients

Validation set: 43 patients

Test set: 43 patients

(1) 10-fold split
(train : validation : test = 8 : 1 : 1)

pixel patch

(2) Segmentation
360 × 360

AlexNet

ResNet-50

Inception-v3

(3) Classification

or

or

Fo
ld

 1
Fo

ld
 2

Fo
ld

 3
Fo

ld
 1

0
Fo

ld
 9

(4) Concatenation of results

(5) ROC curve

(6) Permutation test
to compare ROC curves

Figure 17: The framework of the proposed method in [55]. This figure corresponds to Figure 1 in the original paper.

Table 2: Classification-based gastric cancer image analysis.

Aim Year Reference Team Dataset Method Evaluation

Machine
learning

2015 [27] Sharma et al.
5,541 30x and

3,730 40x images
Adaboost ACC = 59:15%

2017 [32] Sharma et al. 795 images Random forest ACC = 73:78%

2018 [47] Liu et al.
560 cancer and
140 noncancer

CNN and SVM ACC = 95%

Deep learning

2017 [22] Garcia et al. 3,275 images DCNN ACC = 96:88%

2017 [23] Sharma et al. 21,000 images Proposed CNN
Accuracy of cancer classification is 69.9%;
accuracy of necrosis detection is 81.4%

2018 [24] Li et al.
560 cancer and
140 noncancer

Proposed CNN
Accuracy of patch level classification is 97.93%;
accuracy of slice level classification is 100%

2018 [48] Liu et al. 1.2 million images ResNet F − score = 96%

2019 [51] Wang et al.
608 whole slide

images
ResNet ACC = 86:5%

2020 [52] Song et al. 2,123 digital slides
DeepLab-V3
and ResNet

Acc = 87:3%, Sn = 99:6%, Sp = 84:3%

Problem Aim Methods

Insufficient data
set overfitting
experiment 

Data expansion
(i) Rotation transformation

(ii) Reverse transformation
(iii) Color vibrance

Figure 18: Image preprocessing method.
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[57, 58] is a further expression form of the RGB histogram. In
RGB color space, only color information can be obtained,
and the distance between colors cannot be used to represent
the similarity. Therefore, features more representative of
color information are extracted on the basis of RGB color
space, for example, hue (H), saturation (S), and value (V).
The histopathological images of gastric cancer are obtained
mainly through H&E staining of gastric tissue sections. The
colors of the tissues in the images obtained are in sharp con-
trast with each other and have relatively obvious color char-
acteristics. The work in [23, 27] used HSV and RGB
histograms to extract color features from gastric cancer histo-
pathological images and achieved good results.

Texture feature is a kind of image global feature, which
can describe the attributes of an image, mainly including
HOG and GLCM. The HOG feature is a feature of statistical
gradient direction change among pixels, which has good geo-
metric invariance and optical invariance, and is excellent in
human body detection. The work in [59] shows that HOG
can be more effectively used in human detection than the
existing feature. GLCM proposed by [60] is a matrix that
describes the grayscale relationship between a certain pixel
in a local area of an image and adjacent pixels or pixels within
a certain distance. GLCM is a feature that describes the rela-
tionship between pixels. A gray-level cooccurrence matrix is
constructed on the original image, and then, the statistical
attributes in the matrix are extracted as feature vectors. Com-
pared with normal gastric tissue cells, the texture of the can-
cerous stomach tissue cells changed, the nucleus became
larger, and the shape of the nucleus became irregular.
Extracting these texture features can distinguish normal gas-
tric tissue from cancerous gastric tissue. In [28] [29], the
HOG feature is drawn on normal, benign, and malignant
gastric images to obtain the HOG feature vector.

Shape features are described by using an algorithm to get
shape parameters. The cells in cancerous gastric tissues
become dense, and the density between the cells can be
expressed by describing the position relationship between
the nuclei; thus, effective shape features can be extracted.
The work [31] obtains shape features by extracting the loca-
tion and structure of the nucleus. In [32], the authors extract
the cell nuclei attributed relational graph of four types of cells
as shape features.

(2) Postprocessing Methods. The dimension of feature extrac-
tion is very large in GHIA. The purpose of feature postpro-

cessing is to reduce the dimension of features, reduce the
running memory of the computer, and improve the working
efficiency. The main methods include LDA and PCA. Both
LDA and PCA use the idea of matrix decomposition to
achieve dimensionality reduction of data.

LDA [61] is a method to realize the feature classification of
two or more objects. It can be used for data dimensionality
reduction or classification. It is supervised learning; LDA pro-
jects the data with a higher dimension into the vector space
that canmake the best discrimination. In the new vector space,
the maximum interclass distance and the minimum intraclass
distance of samples can be obtained. In this way, classification
information and feature dimension reduction can be extracted
better. The work in [29] uses LDA dimension reduction pro-
cessing to get more efficient feature data.

PCA [62] is a commonly used data analysis method,
which converts the original data into a set of linearly inde-
pendent representations through linear transformation. It is
a kind of unsupervised learning that can be used to extract
the main features of the data and is often used to reduce
the dimension. The work in [33] uses the dimension reduc-
tion method of PCA, and the redundant features in the orig-
inal data are removed to make the variance of the projection
on each dimension as large as possible.

6.1.3. SegmentationMethods. In terms of gastric cancer histo-
pathological images, the existing image segmentation
methods mainly include machine learning and deep learning.
In terms of machine learning, the edge detection segmenta-
tion method is adopted, while the U-net network is used in
deep learning. Figure 20 shows the segmentation methods
of gastric cancer histopathological images.

Edge detection is to find out the point where the gray
level of the image changes greatly, which can reduce the
amount of data, find the place with the obvious boundary,
and retain the important structural attributes of the image.

U-net [63] is a semantic segmentation network based on
FCN, which is originally applied to the segmentation of med-
ical cell microscopic images. In the encoder part, the input is
downsampling and downsampling through maximum pool-
ing. In the decoder part, upsampling is carried out for the
output of encoder to restore the resolution, and upsampling
is implemented by deconvolution. Skip-connect is used for
feature fusion. The work in [41] uses U-net to segment gas-
tric histopathology images and to compare with other neural
network structures. U-net has a better segmentation effect.
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(i) Color feature
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(iii) Shape feature
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Figure 19: Feature extraction method.
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6.1.4. Classifier Design Methods. In the gastric histopathology
images, there are two kinds of classification designs, machine
learning and deep learning. Machine learning classifier mainly
uses SVM, Adaboost, and random forest. Deep learning uses
convolutional neural networks for classification, such as
ResNet and Inception-V3. Figure 21 shows the classifier
design methods of the gastric cancer histopathological images.

(1) Machine Learning Classifier Design Methods. SVM [64] is
a dichotomous model. By mapping data to a high-
dimensional space and finding a hyperplane in the high-
dimensional space, the distance between separated data
classes is maximized, so as to achieve the purpose of optimal
classification. This work [48] uses the SVM classifier and
optimizes kernel function in the SVM classifier to improve
classification accuracy.

The Adaboost [65] algorithm is a lifting method, which
combines several weak classifiers into a strong classifier.
Adaboost trains one weak classifier at a time and then iterates
to train the next weak classifier after training. The work in
[27] uses the Adaboost classifier to classify three feature
groups of color, texture, and shape and finally obtains the
optimal classification result.

Random forest [66] is an ensemble learning method in
machine learning. This method integrates multiple decision
trees through ensemble learning. Limitations can be avoided
by integrating multiple models. This work [32] uses a
random forest classifier to classify the shape features of the
reticular map made up of nuclei.

(2) Deep Learning Classifier Design Methods. ResNet [67]
applies the idea of residuals to the convolutional neural net-
work. Different from the traditional convolutional neural

network which directly represents the mapping relationship
between input and output, it represents the residual between
input and output through multiple parameterization layers.
The authors in [48, 55] use an encoder based on ResNet to
process the gastric histopathological image. Compared with
other neural network structures, ResNet can provide end-
to-end services for users and retain more detailed informa-
tion on gastric cancer histopathological images.

Inception-V3 [68] uses convolutional kernels of differ-
ent sizes in the convolutional layer to improve the percep-
tion of the network and proposes batch standardization to
alleviate the problem of gradient disappearance. It uses
better convolution kernel decomposition methods on the
basis of Inception-V2 to make computational complexity
more efficient, reduce representational bottlenecks of fea-
tures, and avoid information loss. The work [54] has
optimized the Inception-V3 network architecture to reduce
network parameters, avoid overfitting, and improve net-
work effectiveness.

6.2. The Potential Methods in Gastric Histopathology
Image Analysis

6.2.1. Image Preprocessing Methods. In image preprocessing
[69], methods in other fields can also be applied in the field
of gastric cancer histopathology.

In [70], the authors develop an image denoising network
based on CNN and optimize the denoising network by utiliz-
ing the advantages of complex numerical operations to
increase the tightness of convolution.

In [71], the authors propose a new image denoising
method using a new loss function, which pays attention to
the perceived visual quality and applies the loss function to
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Figure 21: Classifier design methods.
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the jump connection network to obtain images with high
precision details. In the histopathological images of gastric
cancer, the operation of sectioning and staining will affect
the image quality and generate noise. The image denoising
method in [70, 71] can be applied to the histopathology of
gastric cancer to improve the image quality.

In [72], the authors propose a data expansion method. In
the histopathology of gastric cancer, due to the problem of
data collection, the amount of data is relatively small, so this
data expansion method can be applied to the histopathology
of gastric cancer to increase the dataset and improve the
experimental quality.

In [73], the authors propose a method for contrast
enhancement of retinal images, which uses a shearlet trans-
form and adaptive gamma correction-based singular value
equalization hybrid technique combined with a contrast-
limited adaptive histogram equalization technique. In the his-
topathological images of gastric cancer, HE staining is usually
used in the image, which has distinct color features. The image
contrast enhancement technology in [73] can make the color
features more prominent and improve the image quality.

6.2.2. Feature Extraction Methods. The work in [74] summa-
rizes the feature extraction methods. Feature extraction is
also an important step in gastric cancer histopathological
images, and many feature extraction techniques in [74] can
be applied to gastric cancer histopathological images.

In [75], the authors extract image feature vectors based
on computed radiography and obtain 279 image descriptors.
Through the Hellwig method, they find the feature combina-
tion set of the overall index with the maximum information
capacity. Then, by testing the classification results of 11 clas-
sifiers, they select the two feature sets with the highest accu-
racy. This method can also be applied to the feature
selection of gastric cancer histopathological images to select
the most effective feature.

In [76], the authors propose a new unsupervised feature
selection method, which calculates the dependencies between
features and avoids selecting redundant features. The experi-
mental operation efficiency is improved. In the histopatholog-
ical images of gastric cancer, the experimental data are large,
the system execution time is long, and the memory demand
is large during the experiment. The feature selection method
mentioned in [76] can also be applied to the histopathology
of gastric cancer to improve the operating environment of
the system and the operation efficiency of the experiment.

6.2.3. Segmentation Methods. The work in [77] summarizes
the segmentation techniques applied in various fields. In the
histopathology of gastric cancer, image segmentation is often
used, and the current mainstream segmentation techniques
can also be applied in the histopathology of gastric cancer.

In medical images, the authors in [78] propose a new
polyp segmentation method based on multidepth codec
network combination. The network can extract the features
of different effective receptive fields and multisize images to
represent the multilevel information, and it can also extract
the effective information features from the missing pixels in

the training stage. The method of [78] can be applied to
gastric cancer histopathological images,

In [79], the authors propose an image segmentation
method based on a scalable multichannel weighted region
model. In order to improve the performance of image Mosaic,
a new edge detection function is proposed. Themodel can also
be used to segment images in gastric cancer histopathology.

In [80], the work proposes a radiology-based deep super-
vised U-net for the segmentation of prostate and prostatic
lesions. The U-net network can also be used to segment the
normal and cancerous areas in the histopathological images
of gastric cancer.

In [81], the work proposes an image segmentation method
combining low-level operation, affine probabilistic graph, and
multigraph. This method is used for segmentation of com-
puted tomography (CT) images. Experimental results show
that compared with atlas selection and nonrigid registration,
this method has better performance in the whole region of
interest. This method can also be applied to histopathological
image segmentation of gastric cancer and obtain good results.

6.2.4. Classifier Design Methods. In [82], the authors summa-
rize various classifier techniques, many of which can be
applied to gastric cancer histopathological images.

In [83], the authors used a combination of convolutional
neural network and machine learning classifier to classify
traffic density and compared CNN, CNN-SVM, CNN-RF,
and CNN-Xgboot to select an appropriate model. This
method can also be applied to gastric cancer histopathologi-
cal images. Features are extracted through deep learning net-
work and then classified by machine learning method.

In [84], the authors propose a new method for classifica-
tion of breast masses based on the deep learning model. It can
automatically process small two-dimensional radiofrequency
signals and their amplitude samples. A deep learning classifi-
cation model of breast masses was constructed using radio-
frequency data. This classification model can also be used
for the classification of gastric cancer pathology.

In [85], the authors propose a Deep CNN based on the
Dolphin Echolocation-based Sine Cosine Algorithm. The
algorithm uses Dolphin-SCA-based fuzzy fusion model for
segmentation, and then, the statistical attributes of weight,
mean value, variance, and skewness are used for feature
calculation. Finally, the convolutional neural network is used
for classification. This method can also be applied to the his-
topathology of gastric cancer.

In [86], the authors propose a dictionary learning method
based on multiclass loss feedback discrimination for support
vector machines. The framework learns the discriminant dic-
tionary while training the SVM, which makes the features
extracted from the learner dictionary better matched with
the SVM. This classification model can also be used for the
classification of gastric cancer pathology.

6.3. The Gastric Histopathology Methods for Other
Potential Fields

6.3.1. Image Preprocessing Methods. In the histopathology of
gastric cancer, the image preprocessing method is mainly
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data enhancement. The data enhancement techniques can
apply to other areas, such as database enhancements in the
field of microbiology. In [87], the microbial data are
expanded by combining geometric transformation and
GAN network. In the pathological images of breast cancer,
the number of datasets is also insufficient. The data enhance-
ment technique is also applicable to increase the dataset to
make the experiment more accurate. In [88], the authors
use the geometric transformation method to increase the
number of datasets, reduce the overfitting situation, and
make the experiment more accurate.

6.3.2. Feature Extraction Methods. In the histopathology of
gastric cancer, CRF and GLCM methods are used for feature
extraction. These methods are also widely used in the field of
microbiology because the cell morphology and size of gastric
cancer histopathology are similar to that of microorganisms.
In [89], a CNN-CRF network framework is adopted to
extract features, which CRF is used for feature postproces-
sing. Texture feature is also a common feature extraction
method in breast cancer pathological images. In [90], the
GLCM method is used for feature extraction.

6.3.3. Segmentation Methods. In gastric cancer histopathol-
ogy, image segmentation includes threshold segmentation
based on color and edge detection based on texture. Com-
pared with the gastric cancer histopathological image, the
color contrast between the microorganisms and the back-
ground in the microbial image is also relatively bright, and
threshold segmentation can be adopted. The microbe’s tex-
ture and background are also quite different, so edge detec-
tion can be used. In [91], the authors use an image
segmentation method related to color and texture. In the
pathology of cervical cancer [92], because cervical cancer
cells are similar to gastric cancer cells, the segmentation
method of gastric cancer can also be used in the pathological
images of cervical cancer, and the minimum-model method
can also be used in cervical cancer.

6.3.4. Classifier Design Methods. In the histopathology of gas-
tric cancer, SVM and RF methods were used for image clas-
sification. These methods can also be applied to microbial
images and pathological images of cervical cancer. In [93],
the methods of microbial classification are summarized and
it is found that the methods applied to gastric cancer histo-
pathological images can be applied to microbial images. In
[94], SVM classifier is used to classify cervical cancer.

7. Conclusion and Future Work

This paper reviews the methods of histopathological image
analysis of gastric cancer, including preprocessing, feature
extraction, segmentation, and classification. In preprocess-
ing, in order to solve the problem of lack of data, the method
of data enhancement is adopted. The data enhancement
method is mainly image rotation and geometric transforma-
tion. In terms of feature extraction, it is summarized from
two aspects: the machine learning method and the deep
learning method. The machine learning method includes
color feature, texture feature, and morphological feature. In

terms of image segmentation, there are many papers adopt-
ing the machine learning method, mainly adopting edge
detection, the segmentation method, and the U-net convolu-
tional neural network for deep learning. In terms of image
classification, machine learning classifiers such as SVM and
RM are mainly applied. Deep learning networks employ
some classical convolutional neural network structures, such
as ResNet and Inception-V3. Others are frameworks com-
bining machine learning and deep learning, extracting fea-
tures by deep learning network, and then classified by
machine learning classifier.

In the future, there is still space for improvement in the
histopathological image analysis of gastric cancer. First of
all, there are few papers related to image analysis methods
in the field of gastric cancer. Researchers can develop a new
network model combining with gastric cancer histopatholog-
ical images to analyze gastric cancer histopathological
images. The following techniques, for example, “DoDNet:
Learning to Segment Multiorgan and Tumors from Multiple
Partially Labeled Datasets” [95], “3D Cascaded Convolu-
tional Networks for Multivertebrae Segmentation” [96], and
“PGL: Prior-Guided Local Self-supervised Learning for 3D
Medical Image Segmentation” [97], can be applied to the
pathological image processing of gastric cancer. Secondly,
in the field of gastric cancer histopathology, there is a lack
of complete, clear, and accurately labeled pathological
images, so the establishment of more perfect data can provide
great help for the experiment. Finally, in terms of feature
extraction and classifier design, there are many novel
techniques that can be applied to gastric cancer histopatho-
logical image analysis, which is a promising and valuable
research direction.
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Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel
segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a
multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure.
Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are
merged. The algorithm proposed in this paper has been verified and evaluated on the DRIVE, STARE, and CHASE_DB1
datasets. The experimental results show that the proposed algorithm can segment small blood vessels better than most other
methods. We conclude that our algorithm has reached 0.8745, 0.8903, and 0.8916 on the three datasets in the sensitivity metric,
respectively, which is nearly 0.1 higher than other existing methods.

1. Introduction

The human eyes consist of the following parts: cornea, pupil,
iris, vitreous, and retina. Abnormalities in any of these tissue
structures may cause vision defects or even blindness.
Among them, the study of retinal structure and its blood ves-
sels is significant [1]. The extraction of retinal blood vessels
and the characterization of morphological properties, such
as diameter, shape, distortion, and bifurcation, can be used
to screen, evaluate, and treat different ocular abnormalities
[2]. Evaluation of retinal vascular properties, such as changes
in width, is used to analyze hypertension, while bifurcation
points and tortuosity can help identify cardiovascular disease
and diabetic retinopathy [3].

The retinal vessel extraction methods, including pattern
recognition, are classified into five core classes [4]. The pat-
tern recognition techniques are generally divided into two
categories: supervised learning and unsupervised learning.
The supervised learning method needs to use manual seg-

mentation images of ophthalmologists for training. This
method requires many training images, and the training time
is longer than that of other methods, but this method has an
excellent generalized effect and can be applied to other
images of the same type. Compared with supervised learning,
nonsupervised learning methods, such as matched filtering,
mathematical morphology operations, blood vessel tracking,
and clustering, do not require corresponding image labels but
analyze and process based on the existing data. These two
types of methods have been applied and innovated by many
researchers in recent years.

1.1. Unsupervised Learning Methods. Literature [5] proposed
a new kernel-based technique, viz, Fréchet PDF-based
matched filter. The new method performs a better matching
between the vessel profile and Fréchet template. Literature
[6] improved the extraction method of blood vessels, using
a series of morphological operations to extract small blood
vessels, and finally fused with the segmented image to supple-
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ment the small blood vessels. Compared with other algo-
rithms, it can segment as many tiny blood vessels as possible.
However, the steps of the algorithm are too complicated, and
although the final segmentation effect obtains the smallest
blood vessels, the small blood vessels are in an intermittent
state as a whole, and they are not well connected with thicker
blood vessels. Literature [7] proposed a newmatched filtering
method, which applies contrast-limited adaptive histogram
equalization and Gaussian second-derivative-based matched
filter in preprocessing and uses an entropy-based optimal
threshold method performing binarization. This algorithm
effectively improves the sensitivity metric of segmentation,
but like literature [6], it does not perform well with accuracy.

Literature [8] proposed an automatic segmentation method
of retinal blood vessels using a matched filter and fuzzy C
-means clustering. The algorithm uses contrast-limited adap-
tive histogram equalization to enhance the contrast of the
image. After using Gabor and Frangi filters for noise removal
and background removal, the fuzzy C-means are used to
extract the initial vascular network, and the integrated level
set method is used to refine segmentation further. The algo-
rithm has good sensitivity and specificity. The problem is that
the ability to segment small blood vessels is limited, and
many segmentation details are missed. Literature [9] pro-
posed a novel method to extract the retinal blood vessel using
local contrast normalization and a second-order detector.

(a) (b)

(c) (d)

Figure 2: Color fundus image and its different RGB channels: (a) original RGB image; (b) red channel; (c) green channel; (d) blue channel.

(a) (b)

(c) (d)

Figure 3: Typical images after each preprocessing step: (a) original RGB image; (b) red channel; (c) image after CLAHE operation; (d) image
after gamma correction.
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The proposed methodology achieves higher accuracy in ves-
sel segmentation than existing techniques. Literature [10]
proposed a novel matched filter approach with the Gumbel
probability distribution function as its kernel. The reason to
achieve the higher accuracy is due to a better matching filter
with the Gumbel PDF-based kernel.

1.2. Supervised Learning Methods. Literature [11] proposed a
method using deep conventional neural networks and a hys-
teresis threshold method to detect the vessels accurately. The
proposed method gives good performance in which more
tiny vessels are detected. Literature [12] proposed a multi-
level CNNmodel applied for automatic blood vessel segmen-
tation in retinal fundus images. A novel max-resizing
technique is proposed to improve the generalization of the
training procedure for predicting blood vessels from retinal
fundus images. Literature [13] proposed a new segment-
level loss used with the pixel-wise loss to balance the impor-
tance between thick vessels and thin vessels in the training
process. Literature [14] proposed a cross-connected convolu-
tional neural network (CcNet) to automatically segment ret-
inal vessel trees. The cross connections between a primary
path and a secondary path fuse the multilevel features. This
method has relatively advanced performances, including
competitive strong robustness and segmentation speed. Lit-
erature [15] proposed a method for retinal vessel segmenta-
tion using patch-based fully convolutional networks.
Literature [16] applied dilated convolutions in a deep neural
network to improve the segmentation of retinal blood vessels
from fundus images. Literature [17] proposed a new

improved algorithm based on the U-Net network model.
The algorithm integrates the Inception-Res structure module
and the Dense-Inception structure module into the U-Net
structure. The algorithm dramatically deepens the depth of
the network but does not add additional training parameters.
It has good segmentation performance in the image segmen-
tation of retinal blood vessels and has strong generalization
ability. Literature [18] proposed a new hybrid algorithm for
retinal vessel segmentation on fundus images. The proposed
algorithm applies a new directionally sensitive blood vessel
enhancement before sending fundus images to U-Net. Liter-
ature [19] proposed a supervised method based on a pre-
trained fully convolutional network through transfer
learning. This method simplifies the typical retinal vessel seg-
mentation problem into regional semantic vessel element
segmentation tasks. Generally, unsupervisedmethods are less
complex and suffer from relatively lower accuracy than
supervised methods [13].

To solve the problem of insufficient segmentation of
small blood vessels in most papers, we have devised a new
automatic segmentation framework for retinal vessels based
on improving U-Net and a multiscale matched filter. The cre-
ative points of this paper are summarized as follows:

(1) We proposed an improved black hat algorithm to
enhance the characteristics of blood vessels and
reduce the interference of other tissues

(2) An algorithm combining a multiscale matched filter
and U-Net neural network is proposed. This paper
mainly uses the improved U-Net convolutional

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: (a, e, i) The fundus images, (b, f, j) green channel images applying CLAHE and gamma transformation, (c, g, k) background
extracted by close operation, and (d, h, l) the final results. The different samples of (a–d) DRIVE, (e–h) STARE, and (i–l) CHASE_DB1.
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neural network combined with a multiscale matched
filter to performmultichannel blood vessel segmenta-
tion processing on the retinal fundus image

(3) We have devised a new loss function to train the
improved U-Net neural network to solve pixel imbal-
ance in the image better

The rest of this paper is organized as follows. Section 2
outlines the proposed method and datasets. The performance
of the proposed method and the discussion are described in
detail in Section 3. A conclusion is drawn in Section 4.

2. Materials and Methods

2.1. System Overview. The proposed algorithm consists of
three steps: preprocessing datasets, training U-Net in 3 chan-
nels, and postprocessing. This algorithm’s main feature
extraction framework is based on the improved U-Net
model, using three feature extraction channels. It is mainly
to perform a whole feature extraction of the image in channel
1 so that some morphological operations are performed in
the preprocessing part to reduce image artifacts and noise.
On the remaining two channels, matched filters are used to

extract retinal vessels of different scales, and then, the
improved U-Net model is used to extract features, and the
OR-type operator is used to fuse the final output image.
Experimental results verify that the image processed by mul-
tichannel matched filtering is better than the unprocessed
image. The overall flowchart is shown in Figure 1.

2.2. Datasets. To verify the effectiveness of the algorithm in
this paper, this paper chooses three commonly used public
datasets for training and testing: DRIVE, STARE, and
CHASE_DB1 datasets. These datasets include a wide range
of challenging images. The DRIVE contains 40 color retinal
fundus images divided into a training set and a testing set.
The plane resolution of DRIVE is 565 × 584. The STARE
contains 20 color retinal fundus images with a resolution of
605 × 700 pixels. Unlike the DRIVE, this dataset does not
have a training set and a testing set. The CHASE_DB1 con-
tains 28 color retinal fundus images with a resolution of
960 × 999 pixels, and the training set and testing set are also
not divided. Each image in these three datasets has a label
of retinal blood vessel image segmented manually by two
professional physicians. We randomly selected 5 images in
the STARE dataset as test images (im0002, im0077, im0163,

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 5: (a, f, k) The grayscale images after preprocessing operation, (b, g, l) large-scale matched filtered images, background extracted by (c,
h, m) close operation and (d, i, n) subtraction operation, and (e, j, o) final results. The different samples of (a–e) DRIVE, (f–j) STARE, and (k–
o) CHASE_DB1.
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im0255, and im0291), and the remaining 15 images were set
as the training set. In CHASE_DB1, we select the last 8
images as the test set and the remaining 20 images as the
training set. Note that mask images of STARE and
CHASE_DB1 are not available, so we extracted the green
channel of the images and then used some morphological
algorithms and threshold algorithm to obtain the mask
images.

2.3. Preprocessing. In this paper, the green channel is selected
as the input image of the preprocessing part. This is
because the retinal blood vessels presented by the green
channel have better contrast with the background com-
pared with the red channel and the blue channel [20,
21], as shown in Figure 2.

It can be seen from Figure 2 that the appearance of blood
vessels on the green channel of the color image consists of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 6: (a, f, k) The grayscale images after preprocessing operation, (b, g, l) small-scale matched filtered images, background extracted by (c,
h, m) close operation and (d, i, n) subtraction operation, and (e, j, o) final results. The different samples of (a–e) DRIVE, (f–j) STARE, and (k–
o) CHASE_DB1.

3×3
Conv+BN+LReLU

2×2 Maxpooling

1×1Conv+Concat

Upsamling

Figure 7: U-Net model architecture.
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more information compared to that on the red and blue
channel images, but the overall image is still dark, and the
contrast is not obvious. In order to improve this situation,
adaptive histogram threshold processing (CLAHE) [22] and
gamma transformation are performed on the extracted green
channel grayscale image, as shown in Figure 3. In this part of
the process, CLAHE is used to enhance the contrast between
the nonvessels and blood vessels, and gamma transformation
is used to adjust and reduce the background noise in the
image. We can see Tables 1–3 in Supplementary Materials
for a comprehensive comparison of blood vessel enhanced
algorithms, and these data can prove that the CLAHE
method improves the general performance of the proposed
method.

2.4. Multichannel Feature Extraction

2.4.1. Channel 1. In order to retain all the blood vessel feature
information of the image as much as possible, some morpho-
logical operations are used in channel 1 to remove back-
ground noise, and then, the U-Net network is used for
feature extraction. For the artifacts caused by uneven illumi-
nation in the image and nonvascular structures, we use the
morphological closing operation algorithm to estimate the
background and then perform the result using the mathe-
matical operation shown in equation (1).

It can be seen intuitively from Figure 4 that the brighter
video disc structure in the original image is removed, and

most of the artifacts are also processed.

g x, yð Þ = 255 − Iclose x, yð Þ − I x, yð Þ + 1
m ∗ n

〠
m

x=1
〠
n

y=1
Iclose x, yð Þ

 !
,

f x, yð Þ = 255
max g x, yð Þð Þ −min g x, yð Þð Þ ∗ g x, yð Þ −min g x, yð Þð Þj j,

8>>>><
>>>>:

ð1Þ

where f ðx, yÞ is the processed image and Icloseðx, yÞ is the
image after a morphological closing operation. We select disk
type structuring elements for the closing operator having a
radius of eleven pixels. Iðx, yÞ is the original image; m and
n are the image pixel size.

2.4.2. Channel 2. By analyzing the gray image of retinal blood
vessels, it can be found that the cross-sectional gray intensity
of blood vessels is distributed in an inverted Gaussian curve,
the gray value of the center line of the blood vessel is low, and
the gray value at the edge of the blood vessel is high [5]. Aim-
ing at this remarkable feature of retinal blood vessel images,
Chaudhuri et al. [23] designed a Gaussian matched filter
and used its distribution to simulate the grayscale intensity
distribution of blood vessel cross sections and filter the blood
vessels in sections. In this paper, the matched filters are used
in channel 2 and channel 3 to separately enhance and extract
the large and small blood vessels to realize the comprehensive
segmentation of retinal blood vessels.

Input: Train imagesX, ground truth G
Input: Initial epochs E⟵ 30, batch size ⟵ 1, learning rate lr⟵ 0.01
Input: Initialize best loss bl⟵ Inf
Output: Predicted images P, U-Net parameter
1. Xpre⟵ preprocessing (X)
2. Xenh⟵ enhancement (Xpre)
3. fore⟵ 0 to Edo
4. ife = 1/3 ∗ Ethen
5. lr⟵0:1 ∗ lr
6. else ife = 2/3 ∗ Ethen
7. lr⟵0:1 ∗ lr
8. end if
9. N⟵ compute the number of train imagesX
10. par⟵ initial parameter of U-Net
11. whilen⟵ 1 <N + 1do
12. Yn⟵Unet ( Xenh

n, par)
13. lossn⟵DiceðYn, GnÞ + λCross entropyðYn, GnÞ
14. iflossn < blthen
15. bl⟵ lossn
16. par⟵ new par
17. end if
18. par⟵ SGDðpar, lrÞ
19. end while
20. end for
21. P⟵UnetðXenh, parÞ
22. returnP, par

Algorithm 1: Training of U-Net with dynamic learning rate.
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Define the two-dimensional Gaussian kernel function as

K x, yð Þ = −e− x2/2s2ð Þ, yj j ≤ l
2
, ð2Þ

where s is the width of the Gaussian kernel and l is the length
of the Gaussian kernel. The blood vessel starts from the cen-
ter of the optic disc and extends in multiple directions. Rotat-
ing the Gaussian kernel is used to filter the multidirectional
blood vessels.

Assuming that pðx, yÞ is a discrete point in the kernel
function, the rotation matrix is

gi =
cos θi −sin θi

sin θi cos θi

" #
: ð3Þ

θið0 ≤ θi ≤ pÞ is the angle of the i-th kernel function, and
the coordinate value of pðx, yÞ after rotation is �pi = ðu, vÞ;
then, the i-th template kernel function is

Ki x, yð Þ = −e− u2/2s2ð Þ, ∀�pi ∈N , ð4Þ

where N is the template field, and the value range is

N = u, vð Þ, uj j ≤ 3s, vj j ≤ l
2

� �
: ð5Þ

In actual algorithm applications, it is often necessary to
consider the mean value of the correlation coefficient of the

template filter, as shown in

mi = 〠
�pi∈N

Ki x, yð Þ
A

: ð6Þ

Among them, A represents the number of points in the
template area. So, the final template kernel function is

Ki′ x, yð Þ = Ki x, yð Þ −mi, ∀�pi ∈N: ð7Þ

This paper improves and optimizes the dependence of
Gaussian matched filter response on a vessel diameter. The
image enhancement result using large-scale Gaussian
matched filtering in channel 2 is shown in Figure 5, where
the parameters are set to l = 10:8, s = 1:9, and 8 directions
which means i = ½1, 2,⋯,8� in equation (3). It can be seen
from the image that the algorithm has a better segmentation
effect for thicker blood vessels and strong antinoise, but it has
a poor segmentation effect on small blood vessels, and there
is a problem that the smaller blood vessels cannot be distin-
guished from the background, and the blood vessels are easily
broken. In order to solve this problem, this paper proposes an
improved method based on the black hat algorithm, which
can effectively reduce the influence of background noise by
subtracting the original image before matching filter process-
ing and the obtained image after processing to enhance the
characteristics of blood vessels. We performed a series of pro-
cessing transformations as shown in equations (8) and (9) on
the images processed by large-scale matched filtering. We call

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 8: Comparison of postprocessing: (a–e) segmentation image without postprocessing; (f–j) segmentation image applying
postprocessing.
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this algorithm black hat2.

Bhat fð Þ = f x, yð Þ∙b u, vð Þð Þ − f x, yð Þ, ð8Þ

g x, yð Þ = 255 − f x, yð Þ − 2 ∗ Bhat fð Þ, ð9Þ
where ∙ is the morphological closing operation and bðu, vÞ is
disk type structuring element, Bhatð f Þ is the black hat trans-
formation, f ðx, yÞ is the original image, and gðx, yÞ is the
final processed image.

2.4.3. Channel 3. This paper uses a small-scale Gaussian
matched filter to enhance the image of small blood vessels,
as shown in Figure 6. After many experiments, the parame-
ters of the matched filter are set as l = 5, s = 0:1, and 18 direc-
tions which means i = ½1, 2,⋯,18� in equation (3). Using

small-scale filters can effectively enhance the small blood ves-
sels in the image, but at the same time, it also enhances much
striped noise in the image, and the enhancing effect on the
thick blood vessels with central reflection is poor. To reduce
the background noise, the black hat2 algorithm used in chan-
nel 2 is also used to remove the background in channel 3.

2.5. U-Net Model. In image semantic segmentation using
deep learning, the U-Net network model is the most widely
used, which is improved based on the classic full convolu-
tional network (FCN) [24]. U-Net is an image-to-image
pixel-level classification network, and its network structure
is apparent, as shown in Figure 7. U-Net is different from
other standard segmentation networks: U-Net uses an
entirely different feature fusion method—splicing. U-Net
stitches the features together in the channel dimension. This

Table 1: The parameters of the U-Net architecture.

Block name Layer name Image size Parameters

DoubleConv

Conv (ksize = 3, pad = 1) 3 ∗ 3 ∗ C1 + 1ð Þ ∗ C2

BN + LReLU 2 ∗ C2

Conv (ksize = 3, pad = 1) 3 ∗ 3 ∗ C2 + 1ð Þ ∗ C2

BN + LReLU 2 ∗ C2

9 ∗ C1 + C2ð Þ ∗ C2 + 6 ∗ C2

Input 1 × 576 × 576 0

Encoder block_1
DoubleConv_1 64 × 576 × 576 9 ∗ 1 + 64ð Þ ∗ 64 + 6 ∗ 64 = 37824

Maxpooling (ksize = 2) 64 × 576 × 576 0

Encoder block_2
DoubleConv_2 128 × 288 × 288 9 ∗ 64 + 128ð Þ ∗ 128 + 6 ∗ 128 = 221952

Maxpooling (ksize = 2) 128 × 288 × 288 0

Encoder block_3
DoubleConv_3 256 × 144 × 144 9 ∗ 128 + 256ð Þ ∗ 256 + 6 ∗ 256 = 886272

Maxpooling (ksize = 2) 256 × 144 × 144 0

Encoder block_4
DoubleConv_4 512 × 72 × 72 9 ∗ 256 + 512ð Þ ∗ 512 + 6 ∗ 512 = 3542016

Maxpooling (ksize = 2) 512 × 72 × 72 0

Encoder block_5
DoubleConv_5 512 × 36 × 36 9 ∗ 512 + 512ð Þ ∗ 512 + 6 ∗ 512 = 4721664

Maxpooling (ksize = 2) 512 × 36 × 36 0

Decoder block_1

Upsampling (bilinear) 512 × 72 × 72 0

Concat 1024 × 72 × 72 0

DoubleConv_6 256 × 72 × 72 9 ∗ 1024 + 256ð Þ ∗ 256 + 6 ∗ 256 = 2950656

Decoder block_2

Upsampling (bilinear) 256 × 144 × 144 0

Concat 512 × 144 × 144 0

DoubleConv_7 128 × 144 × 144 9 ∗ 512 + 128ð Þ ∗ 128 + 6 ∗ 128 = 738048

Decoder block_3

Upsampling (bilinear) 128 × 288 × 288 0

Concat 256 × 288 × 288 0

DoubleConv_8 64 × 288 × 288 9 ∗ 256 + 64ð Þ ∗ 64 + 6 ∗ 64 = 184704

Decoder block_4

Upsampling (bilinear) 64 × 576 × 576 0

Concat 128 × 576 × 576 0

DoubleConv_9 64 × 576 × 576 9 ∗ 128 + 64ð Þ ∗ 64 + 6 ∗ 64 = 110976

Output Conv (ksize = 1) 1 × 576 × 576 1 ∗ 1 ∗ 64 + 1 = 65
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method fuses the in-depth features extracted from the image
with the shallow features to form thicker features, while the
fusion operation of FCN only uses corresponding point addi-
tion and does not obtain thicker features.

Unlike the structure in the original literature [24], this
paper sets the padding value of 1 in each layer’s convolution
operation, and the convolution kernel size is 3 ∗ 3. The pur-
pose is to ensure that the output and input image sizes are
consistent and avoid the size increasing operation in the out-
put layer. It is essentially a binary classification operation in
the output layer of U-Net. We use an adaptive threshold seg-
mentation algorithm for processing in this paper. The idea of
this algorithm is not to calculate the global image threshold
but to calculate the local threshold according to different
areas of the image, so for different areas of the image, the
algorithm can adaptively calculate different thresholds and
perform binary segmentation. The specific calculation pro-
cess is shown in

T = −b + 1
2m + 1ð Þ × 2n + 1ð Þ〠

n

i=0
〠
m

j=0
g x ± i, y ± jð Þ, ð10Þ

where b is the fixed parameter, ð2m + 1Þ × ð2n + 1Þ is the
area, and T is the area’s threshold.

This paper proposes a new loss function that combines
the Dice coefficient with the two-class cross-entropy loss
function. The Dice coefficient is widely used in the evaluation
of image segmentation. In order to facilitate the formation of
the minimized loss function, as shown in

Ldice = 1 −
2 X ∩ Yj j
Xj j + Yj j , ð11Þ

where X ∩ Y represents the common elements of the predic-

tion graph and the label graph, X and Y represent the num-
ber of elements of the prediction graph and the label. In order
to facilitate the calculation, approximate ∣X ∩ Y ∣ as the dot
product between the predicted probability map and the label,
and add the elements in the result. ∣X ∣ and ∣Y ∣ are quanti-
fied by summing the squares of each element. As shown in

Ldice = 1 −
2∑N

i p k, ið Þq k, ið Þ
∑N

i p
2 k, ið Þ +∑N

i q
2 k, ið Þ

, ð12Þ

where N is the number of pixels, pðk, iÞ ∈ ½0, 1� and qðk, iÞ ∈
½0, 1� are the predicted probabilities and true labels of the
pixel belonging to category k.

The cross-entropy loss function used to optimize the net-
work is shown as

Lr = −〠
N

i

1 −
TP
Np

 !
y log pð Þ + 1 −

TN
Nn

� �
1 − yð Þ log 1 − pð Þ

" #
,

ð13Þ

where TP and TN are the numbers of true positive and true
negative pixels, respectively; Np and Nn are the numbers of
segmented pixels and nonsegmented pixels, respectively; y
is the label value (y = 1, segmentation target; y = 0, back-
ground); and p is the predicted probability value of the pixel.

(a) Retinal image (b) Channel 1 (c) Channel 2 (d) Channel 3 (e) Fusion result

Figure 9: Performance of each channel’s segmentation result.

Table 2: Segmentation results of improvements on DRIVE.

Channel Se Sp ACC AUC

Channel 1 0.8174 0.9768 0.9626 0.8971

Channel 2 0.8008 0.9741 0.9587 0.8875

Channel 3 0.8113 0.9748 0.9633 0.8931

3 channels of fusion 0.8745 0.9624 0.9546 0.9185
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A coefficient λ is introduced to define the new loss func-
tion Loss, as shown in

Loss = Ldice + λLr: ð14Þ

Notably, the coefficient λ is set to 0.5 in this work, and the
flowchart of U-Net is summarized in Algorithm 1.

2.6. Postprocessing. In the postprocessing, since the final seg-
mentation image merges the three segmentation images, the
noise in the resulting image is also superimposed on all the
noises of the three images. Noises will undoubtedly have a
significant impact on the actual effect of the segmented
image, so this paper addresses this issue in the final postpro-
cessing step. In this paper, a morphological algorithm is used
to calculate the size of the connected area of the image. The 8-
adjacent connection method is adopted to eliminate the area
with the connected area less than 25 pixels, which is to reclas-
sify the area pixels as background. This paper selects a test
image in the DRIVE dataset for experimental comparison,
and the comparison images are shown in Figure 8.

2.7. Experimental Design

2.7.1. U-Net Implementation Details. The U-Net model used
in this paper is slightly different from the structure in litera-
ture [24]. In order to keep the input and output image sizes
of the model consistent, the convolution structure is adjusted
accordingly. The specific model structure parameters are
shown in Table 1.

In training, we set the epoch to 30 and the initial learning
rate lr to 0.01, and then, the learning rate is set to update in a
three-stage formula, as shown in

lr =

0:01, epoch > 10,

0:001, 10 < epoch ≤ 20,

0:0001, 20 < epoch ≤ 30:

8>><
>>: ð15Þ

Setting a larger learning rate at the beginning is to make
the model obtain the vicinity of the optimal global parame-
ters faster, and this operation can reduce the training time
of the model. After training for a particular epoch, the learn-
ing rate needs to be reduced accordingly in order to make the
parameters closer to the optimal value in subsequent updates.
The stochastic gradient descent (SGD) algorithm is used in
the optimization of the loss function.

2.7.2. Training Image Preparation. We randomly select 15
images from STARE and the first 20 images from CHASE_

Table 3: Comparison of the proposed method with other methods
on the DRIVE dataset.

Method Se Sp ACC AUC

Khan et al. (2016) [9] 0.7373 0.9670 0.9501 0.8522

Khan et al. (2016) [29] 0.780 0.972 0.952 0.876

Soomro et al. (2017) [11] 0.746 0.917 0.946 0.8315

Ngo and Han (2017) [12] 0.7464 0.9836 0.9533 0.8650

Biswal et al. (2017) [30] 0.71 0.97 0.95 0.84

Yan et al. (2018) [13] 0.7653 0.9818 0.9542 0.8736

Oliveira et al. (2018) [15] 0.8039 0.9804 0.9576 0.8922

Wang et al. (2019) [25] 0.7648 0.9817 0.9541 0.8733

Guo et al. (2019) [31] 0.7800 0.9806 0.9551 0.8803

Feng et al. (2019) [14] 0.7625 0.9809 0.9528 0.8717

Ribeiro et al. (2019) [32] 0.7880 0.9819 0.9569 0.8850

Dharmawan et al. (2019) [18] 0.8314 0.9726 — 0.902

Saroj et al. (2020) [5] 0.7307 0.9761 0.9544 0.8534

Dash and Senapati (2020) [33] 0.7403 0.9905 0.9661 0.8654

Biswas et al. (2020) [16] 0.7823 0.9814 0.9561 0.8819

Budak et al. (2020) [34] 0.7439 0.9900 0.9685 0.8670

2nd human observer 0.7760 0.9724 0.9472 0.8742

Proposed method 0.8745 0.9624 0.9546 0.9185

Table 4: Comparison of the proposed method with other methods
on the STARE dataset.

Method Se Sp ACC AUC

Khan et al. (2016) [9] 0.7359 0.9708 0.9502 0.8534

Khan et al. (2016) [35] 0.7728 0.9649 0.9518 0.8689

Khan et al. (2017) [36] 0.778 0.966 0.951 0.872

Soomro et al. (2017) [11] 0.748 0.922 0.948 0.835

Biswal et al. (2017) [30] 0.70 0.97 0.95 0.835

BahadarKhan et al. (2017) [37] 0.758 0.963 0.946 0.861

Yan et al. (2018) [13] 0.7581 0.9846 0.9612 0.8714

Oliveira et al. (2018) [15] 0.8315 0.9858 0.9694 0.9087

Wang et al. (2019) [25] 0.7523 0.9885 0.9640 0.8704

Guo et al. (2019) [31] 0.8201 0.9828 0.9660 0.9015

Feng et al. (2019) [14] 0.7709 0.9848 0.9633 0.8779

Dharmawan et al. (2019) [18] 0.7924 0.9827 — 0.8876

Saroj et al. (2020) [5] 0.7278 0.9724 0.9509 0.8501

Tamim et al. (2020) [38] 0.7806 0.9825 0.9632 0.8816

2nd human observer 0.8952 0.9384 0.9349 0.9168

Proposed method 0.8903 0.9744 0.9699 0.9323

Table 5: Comparison of the proposed method with other methods
on the CHASE_DB1 dataset.

Method Se Sp ACC AUC

Biswal et al. (2017) [30] 0.76 0.97 — 0.865

Yan et al. (2018) [13] 0.7633 0.9809 0.9610 0.8721

Oliveira et al. (2018) [15] 0.7779 0.9864 0.9653 0.8822

Wang et al. (2019) [25] 0.7730 0.9792 0.9603 0.8761

Guo et al. (2019) [31] 0.7888 0.9801 0.9627 0.8845

Soomro et al. (2019) [39] 0.8020 0.968 0.891 0.885

Tamim et al. (2020) [38] 0.7585 0.9846 0.9577 0.8716

Joshua et al. (2020) [40] 0.7796 0.9864 0.9722 0.8830

2nd human observer 0.7686 0.9779 0.9560 0.8733

Proposed method 0.8916 0.9596 0.9561 0.9256
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DB1 as their respective training set. Due to the limited num-
ber of images in the existing dataset, to avoid the overfitting
phenomenon in the model training, we perform data expan-
sion processing on the training set of each dataset. Thanks to
the translation invariance of the convolutional structure, the
images in the training set in this paper were flipped horizon-
tally and vertically and rotated 180 degrees to increase the
amount of data 4 times.

2.7.3. Measuring Metrics. In order to evaluate the segmenta-
tion performance of this algorithm, we use the following met-
rics to perform a comprehensive evaluation of the
segmentation result. These metrics are accuracy (ACC), sen-
sitivity (Se), specificity (Sp), and AUC and calculated as fol-
lows:

ACC = TP + TN
TP + FN + TN + FP

, ð16Þ

Se =
TP

TP + FN
, ð17Þ

Sp =
TN

TN + FP
, ð18Þ

AUC =
1
2

TP
TP + FN

+
TN

TN + FP

� �
, ð19Þ

where TP is true positive, FP is false positive, TN is true neg-
ative, and FN is false negative. Se is the sensitivity, which
indicates the degree of classification of blood vessels and
nonvascular pixels. In this paper, higher sensitivity indicates
that more tiny blood vessels can be detected. Sp is specificity,
which is used to express the ability of the algorithm to recog-
nize nonvascular pixels. ACC is the accuracy of algorithm
segmentation, reflecting the gap between the algorithm seg-
mentation result and the natural result. AUC is the area
under the ROC curve, and we adopt another calculation
method to get the AUC, as shown in equation (19) [11].

Besides, we also use two other evaluation metrics to mea-
sure the effect of segmentation: MCC and CAL.

MCC =
TP × TN − TP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp :

ð20Þ

MCC is a correlation coefficient between the segmenta-
tion output of the algorithm and ground truth. It compre-
hensively considers TP, TN, FP, and FN, which is a
relatively balanced metric. Finally, it is more suitable for an
imbalanced class ratio.

CAL can be expressed as the product of C, A, and L as fol-
lows:

f C, A, Lð Þ = C × A × L: ð21Þ

Suppose S and SG are the segmentation result and the
corresponding ground truth, respectively. These functions
are defined as follows:

(1) Connectivity (C): it evaluates the fragmentation
degree between S and SG by comparing the number
of connected components:

C = 1 −min 1, #C SGð Þ − #C Sð Þj j
# SGð Þ

� �
, ð22Þ

where #Cð∙Þ means the number of connected components,

Table 6: Segmentation results of all test images of the three datasets.

Image ACC Se Sp AUC

DRIVE

01_test 0.946 0.928 0.947 0.938

02_test 0.952 0.914 0.956 0.935

03_test 0.955 0.817 0.970 0.894

04_test 0.959 0.868 0.968 0.918

05_test 0.958 0.838 0.971 0.904

06_test 0.958 0.811 0.973 0.892

07_test 0.954 0.851 0.964 0.907

08_test 0.958 0.820 0.971 0.896

09_test 0.959 0.849 0.969 0.909

10_test 0.957 0.863 0.965 0.914

11_test 0.945 0.870 0.952 0.911

12_test 0.958 0.875 0.966 0.920

13_test 0.953 0.859 0.963 0.911

14_test 0.954 0.901 0.959 0.930

15_test 0.951 0.917 0.954 0.935

16_test 0.954 0.889 0.961 0.925

17_test 0.958 0.845 0.968 0.907

18_test 0.954 0.913 0.958 0.935

19_test 0.954 0.937 0.956 0.946

20_test 0.955 0.925 0.957 0.941

Avg. 0.955 0.875 0.962 0.918

STARE

im0002 0.972 0.839 0.981 0.910

im0077 0.967 0.966 0.961 0.964

im0163 0.961 0.976 0.960 0.968

im0255 0.970 0.872 0.979 0.926

im0291 0.980 0.798 0.990 0.894

Avg. 0.970 0.890 0.974 0.932

CHASE_DB1

11L 0.946 0.937 0.947 0.942

11R 0.942 0.950 0.942 0.946

12L 0.953 0.878 0.959 0.919

12R 0.958 0.872 0.965 0.918

13L 0.958 0.884 0.963 0.923

13R 0.956 0.850 0.963 0.907

14L 0.970 0.895 0.968 0.931

14R 0.966 0.867 0.971 0.919

Avg. 0.956 0.892 0.960 0.926
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while #ð∙Þ means the number of vessel pixels in the consid-
ered binary image.

(2) Area (A): it evaluates the degree of intersecting area
between S and SG and is defined as

A =
# δα Sð Þ ∩ SGð Þ ∪ δα SGð Þ ∩ Sð Þð Þ

# S ∪ SGð Þ , ð23Þ

where δαð·Þ is a morphological dilation using a disc of α
pixels in radius. We set α = 2.

(3) Length (L): it evaluates the equivalent degree between
S and SG by computing the total length:

L =
# φ Sð Þ ∩ δβ SGð Þ� �

∪ δβ Sð Þ ∩ φ SGð� �� �� �
# φ Sð Þ ∪ φ SGð Þð Þ , ð24Þ

where φð·Þ is the homotopic skeletonization and δβð∙Þ is a
morphological dilation with a disc of β pixel in radius. We
set β = 2.

According to [26], the CAL metric is essential to quantify
thick and thin vessels more equally.

Table 7: MCC and CAL metrics of existing techniques on the three datasets.

Method
DRIVE STARE CHASE_DB1

MCC CAL MCC CAL MCC CAL

Azzopardi et al. (2015) [41] 0.719 0.721 0.698 0.709 0.656 0.608

Orlando et al. (2016) [42] 0.740 0.675 0.726 0.665 0.689 0.571

Dharmawan et al. (2017) [18] 07991 0.8834 0.7959 0.8181 — —

Yang et al. (2018) [43] 0.725 — 0.662 — — —

Strisciuglio et al. (2019) [44] 0.729 0.728 0.698 0.709 0.663 0.620

Khan et al. (2020) [45] 0.739 0.696 0.707 0.566 0.629 0.547

2nd human observer 0.770 0.771 0.741 0.622 0.626 0.722

Proposed method 0.756 0.796 0.796 0.837 0.566 0.733

(a) Original image (b) Ground truth (c) Literature [5]

(d) Literature [11] (e) Literature [14] (f) Literature [10]

(g) Literature [27] (h) Proposed result

Figure 10: Comparison of different methods on the DRIVE dataset.
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3. Results and Discussion

As shown in Figure 9, one test image is selected from each of
the three datasets to display the segmentation results of each
channel and the fusion results. It can be seen that some of the
intermittent blood vessels of each channel are reconnected
after fusion, and the number of small blood vessels in the
fusion map is significantly higher than that of each channel
segmentation map.

The DRIVE dataset is selected as the experimental object
and compares the three channels’ metric data in this paper.
The results show that the overall fusion effect of the three
channels is better than the segmentation results of every sin-
gle channel; in particular, the sensitivity has been dramati-
cally improved, as shown in Table 2.

To illustrate this paper’s segmentation effect, we list var-
ious metrics on the DRIVE, STARE, and CHASE_DB1 data-
sets of different papers in recent years in Tables 3–5. It can be
seen that the algorithm in this paper is superior to most sim-
ilar papers in sensitivity and AUC metrics. To have a more
comprehensive understanding of the overall segmentation
effect of the test set, we show the relevant indicators of the
prediction results of all test set images in Table 6. The other
essential metrics are MCC and CAL, and they achieved by
the proposed method has been contrasted with existing seg-
mentation techniques on the DRIVE, STARE, and CHASE_
DB1 datasets shown in Table 7.

We selected image 19_test from the test set of the DRIVE
dataset to display the segmentation results, as shown in
Figure 10. Literature [5, 27] segmented some small blood ves-
sels, but it is still slightly insufficient compared to this paper’s

segmentation diagram. Literature [10] lacks many details,
and the small blood vessels are not segmented. The segmen-
tation result of literature [11] contains a lot of edge noise, and
there are many intermittent blood vessels. Compared with
the existing segmentation methods, the segmentation results
in this paper have a good performance in terms of the integ-
rity of the whole blood vessels and the segmentation of small
blood vessels.

As shown in Figure 11, we select the test results of the
image im0163 in the STARE dataset for comparison. It can
be shown that the segmentation results of this paper are sim-
ilar to those of literature [13, 14], but the background noise in
literature [13] is not eliminated. Compared with literature [5,
10, 27], the algorithm in this paper illuminates the optic disc
structure in the original image as much as possible in the pre-
processing part, so the problem that is incorrectly dividing
part of the optic disc structure into blood vessels like these
papers did not appear in the final segmentation result.

The CHASE_DB1 dataset is not used in most of the
papers about retinal blood vessel segmentation. One of the
reasons is that the dataset contains half of the abnormal
images, which may cause some interference to the trained
segmentation model. Meanwhile, this dataset is also a new
and challenging dataset compared to the classic DRIVE and
STARE datasets. We selected four images image_12R,
image_13L, image_13R, and image_14L from the test set of
the CHASE_DB1 dataset to compare the segmentation
results in order to verify the generalizability of the proposed
algorithm, as shown in Figure 12. The segmentation result
of the algorithm in literature [19] has much noise, and some
blood vessels are not effectively separated. Literature [28]

(a) Original image (b) Ground truth (c) Literature [5]

(d) Literature [13] (e) Literature [14] (f) Literature [10]

(g) Literature [27] (h) Proposed result

Figure 11: Comparison of different methods on the STARE dataset.

14 BioMed Research International



does an excellent job in the segmentation of small blood ves-
sels, but there is a problem that some blood vessels are not
connected. Due to the postprocessing in this paper, the seg-
mentation result on this dataset contains less noise and guar-
antees the continuity of most blood vessels. However,
compared with the manual label, some tiny blood vessels
cannot be completely segmented from the image
background.

The source codes of the proposed framework have been
running on the PC (Intel Core i5-6300HQ CPU, 2.30GHz,
12.0GB RAM, NVIDIA GTX 950M GPU). DRIVE, STARE,

and CHASE_DB1 have spent 11.3 h, 7.1 h, and 16.4 h on
training separately in each channel. The average testing
time of test images was 1.34 s. Table 8 shows the parame-
ter comparison of the proposed method with other
methods based on U-Net, which can help us compare
the framework complexity of different methods. Note that
the parameters are not equal to the training time because
some methods use slices of a train image as input of the
network. For example, literature [19] has 42421 slices as
the training set, which means it needs more time to train
the network.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 12: (a, e, i, m, q) Image_12R, (b, f, j, n, r) image_13L, (c, g, k, o, s) image_13R, and (d, h, l, p, t) image_14L from the CHASE_DB1
dataset. (a–d) Original images, (e–h) ground truth, (i–l) literature [19], (m–p) literature [28], and (q–t) proposed segmentation images.
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4. Conclusion

This paper proposes a new retinal blood vessel segmentation
method, which combines a multiscale matched filter with a
U-Net neural network model of deep learning. First of all,
we use an improved morphological image algorithm to effec-
tively reduce the impact of image background in feature
extraction. Additionally, in order to avoid ignoring the char-
acteristics of small blood vessels, this paper performs multi-
channel feature extraction and segmentation on retinal
blood vessel images. Finally, the segmented images of the
three channels are merged, and various characteristics of ret-
inal blood vessels are obtained as much as possible. In the
training of the U-Net model, we used the loss function
weighted by the Dice coefficient and the binary cross-
entropy to solve the image pixel imbalance problem. The
algorithm of this paper is tested on the existing public data-
sets DRIVE, START, and CHASE_DB1. The experimental
results show that there is better performance in four metrics
compared with similar papers. The average sensitivity of the
algorithm in this paper reached 0.8745, 0.8903, and 0.8916 on
the DRIVE, STARE, and CHASE_DB1 datasets, respectively.
This result is nearly 0.1 higher than the average sensitivity of
other papers. The improvement of the sensitivity metric also
reflects that the algorithm in this paper has a good perfor-
mance in extracting small blood vessels. The focus of this
paper is to combine the advantages of unsupervised algo-
rithms and supervised algorithms. We did not make too
many improvements to the U-Net network. Therefore, how
to prune the deep learning network model structure will be
an interesting research direction in the future.
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Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less
accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and
treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50
years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical
image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical
cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer
using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is
adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network
(CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are
estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for
VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate
classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores
of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19%
higher than the VGG19 (TL) model.
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1. Introduction

Cervical cancer is the secondmost deadly condition for women
in the medical world following breast cancer and later believed
that cervical cancer remains incurable in the later stages. Much
recent progress has beenmade to improve the disease detection
rate by using an image. Statistics by the World Health Organi-
zation (WHO) revealed that cervical cancer is the fourth most
prevalent cancer globally, with a reporting rate of 5,70,000 new
cases in 2018, accounting for 7.5% of all women cancer deaths
[1]. Over 3,11,000 cervical cancer deaths per year were reported
at around 85% in low- and intermediate-income countries, and
the early diagnosis of cervical cancer offers a way of saving a
life. Women with HIV are sixfold more likely to develop cervi-
cal cancer than women without HIV, and it is estimated that
5% of all cervical cancer cases are related to HIV. A variety of
considerations have redefined screening effectiveness, which
includes the access to equipment, consistency of screening tests,
adequate supervision, and detection and treatment of lesions
detected [2]. Despite severe medical and science advancements,
this disease is not completely curable, mainly if diagnosed in a
developing state. Prevention and screening services, therefore,
play a crucial role in the fight against cervical cancer. The
screening of cervical cancer follows a typical workflow: HPV
testing, cytology or PAP smear testing, colposcopy, and biopsy.
Several tools supported the workflow which have been created
to make it more effective, practical, and inexpensive. The PAP
smear image screening is mostly employed for the treatment of
cervical cancer, but it requires a greater number of microscopic
examinations to diagnosis of cancer and noncancer patients,
and also it is time consuming and requires trained profes-
sionals, but there is a chance of missing the positive cases by
using the conventional screening method. The PAP smear
and HPV testing are very costly treatment, and it also provides
lower sensitivity. On the other side, the colposcopy treatment is
widely used in the developing countries. To overcome the
shortcomings in PAP smear images and HPV testing, the
colposcopy screening is used. Both cervical and other cancers
are more likely to be treated in the early stage, but the lack of
signs and symptoms at this stage hinders the early diagnosis.
Cervical cancer deaths can be avoided by successful screening
schemes and can lead to lowered sickness and impermanence
[3]. In low- andmiddle-income nations, cervical cancer screen-
ing facilities are very sparse because of a shortage of qualified
and educated health care staff and insufficient healthcare fund-
ing to fund screening systems [4].

Colposcopy is a popular surgical procedure to prevent
cervical cancer. Timely identification and classification of this
type of cancer may significantly improve the patient’s eventual
clinical care. Several works have been taken various approaches
for collecting details from images in digital colposcopy. These
studies’ key aim is to provide health practitioners with tools
during colposcopy exams irrespective of their level of compe-
tence. Previous studies have been developed in diagnosis using
computer-aided systems for a range of tasks, including
improvement and evaluation of image quality, regional seg-
mentation, picture identification, identification of unstable
regions and patterns, transition zone type classification (TZ)
type, and cancer risk classification [5]. CAD instruments help

improve the picture of cervical colposcopy and areas of concern
segments and identify certain anomalies. These methods help
clinicians to make diagnostic choices, but they should have
adequate experience and expertise to make an appropriate
diagnosis. The appearance of pathological regions may indicate
such neoplasms; so in a colposcopy analysis, the detection of
these lesionsmay be very critical. These abnormal areas include
acetowhite, abnormal vascularization, mosaic areas, and punc-
tures [6, 7]. Most literature surveys recommended a mecha-
nism to spot irregular areas in conventional colposcopy
images. Most works include inconsistent zone segmentation,
including exclusion from specular reflection, segmentation of
the cervix, acetowhite field segmentation [8], mosaic regions
recognition, vasculature and puncture, and classification [9].

Deep learning has made significant advances in different
applications such as computer vision, natural language pro-
cessing, forecasting, and battery health monitoring [10].
Medical image processing, including classification, identifica-
tion, segmentation, and registration, plays an essential role in
disease diagnosis. Medical images such as MRI, CT, and
ultrasound images and blood smear images [11], make up
the vast majority of the image data processed. Deep learning’s
multilayer neural network perception mechanism can learn
more abstract features in images and is expected to address
the issues that plague conventional medical CAD systems.
However, the deep learning techniques should be supported
with an extensive database, especially for positive cases. To
overcome this issue, many transfer learning and ensemble
learning approaches are discussed in the previous work.
The convolution neural network (CNN) is used to identify
MI signals in an efficient computer-aided diagnosis (CAD)
framework for urban healthcare in smart cities [12]. The
novel feature extraction protocol followed by the genetic
algorithm is proposed to detect arrhythmia to improve the
performance using several tiers [13]. The structure is as
follows: Section 2 discusses the related work connected with
cervical screening, Section 3 elaborates the proposed archi-
tecture of CYENET to cervical screening, Section 4 interprets
the results obtained out of the implementation, and Section 5
drawn the conclusion and future scope of this work.

2. Related Work

Several algorithms were utilized for machine learning, and
their segmentation refining was matched to a cervical cancer
classifier in which random forests showed the best output
[14]. Also, robust refinementmethods have been used to man-
age, and unattended learning approaches to the different
image or superpixel patches from extracted objects methods
include Adaboost detectors [15], SVM supports [16], or
Gaussian mixture models [17]. A novel Markov random field
segmentation based on superpixels was proposed and imple-
mented for nonoverlapping cells [18]. The multifilter SVM is
executed, and the parameters were set for the identification
of cervical cells [19]. It was suggested that cervical cell classifi-
cation using artificial neural networks (ANN) was built and
tested with a precision of 78% [20]. Unbalanced medical
evidence for the variety of cervical cancer without any param-
eter change was addressed using an unsupervised approach
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[21]. The particle swarm optimization (PSO) with KNNmem-
bership values outperformed all other fundamental classifica-
tion models [22]. The cervical cancer cell is classified using
shape and texture characteristics of the segmentation and
classification method and Gabor characteristics. It was found
that a greater accuracy of 89% was obtained for both normal
and cancer cell classification [23]. The extracted features from
CNN were classified using the least square support vector
machine (LSSVM) and produced more remarkable results,
one of the suggested model’s reference components [24].
Radial basis function- (RBF-) SVM also obtained a strong out-
come and outperformed logistic regression and random forest
methods [25]. Based on the features, it was found that the
accuracies were ranged from 90 to 95%.

New deep architectures such as ResNet, Inception, and tree
models [26] have recently shown promising results in many
applications and detect cancer cells. As one of the deep learning
methods, the convolutional neural networks is the commonly
used technique to identify and recognize cervical cancer [27].
Early cervical cancer cell identification and classification
method based on CNN’s was developed to extract deep learned
features from the cervical images [28]. The extreme learning
machine (ELM) was used to categorize the input images. The
CNN paradigm was used for fine-tuning and transfer learning.
Alternatives to classifiers based on the ELM, the multilayered
perceptron (MLP), and the automotive encoder (AE) were also
studied. It was reported that the stacked soft-max autoencoder
reported a 97.25% precision on the cervical cancer dataset [29].
It was concluded that a tentative effort was made to tackle the
issue of patient risk prediction using the applications for
machine learning to grow cervical cancer. The machine learn-
ing software with cervical screening was used to tackle the
problem of predicting the patient’s risk [30]. They concentrated
on the transition of information between linear classifiers to
related activities to predict the patient’s risk. Since the related
risk factors in the population are highly sparsely influenced,
the techniques for reducing dimensionality can boost the
power of predictive machine learning models [31]. However,
several projects benefit from reducing dimensionality and clas-
sification by using suboptimal methods in which each part is
learned separately [32]. For the efficient collection and classifi-
cation of cell properties in cervical smeared images [33], a
quantum hybrid- (QH-) innovative approach was combined
with adaptive search capability of the quantum-behaved parti-
cle swarm optimization (QPSO) method with the intuitionist
reasonableness of the standard fuzzy k-nearest neighboring
(fuzzy k-NN) algorithm (known simply as Q-fuzzy approach).

A model was suggested for the cervical cancer prediction
model (CCPM) that produces an early prediction of cervical
cancer with input risk factors [34]. CCPM eliminates outliers
first by employing outlier identification methods such as
Density-Based Spatial Noise Cluster (DBSCAN) and isola-
tion Forest (iForest) by balancing the number of cases in
the dataset. This approach has shown greater accuracy in cer-
vical cancer forecasting. To design an integrated cervical cell
diagnostic and screening device, the authors have developed
a new Regionally Growing Extraction Function (RGBFE) to
extract diagnostic features from the images [35]. Data from
the cervical cell images with extracted features were supplied

into the intelligent diagnostic component. Precancerous
phases were forecasted using a new architecture called the
Hybrid Multilayered Perceptron (H2MLP) network using
an artificial neural network is created. The cells are classified
into normal, low-quality intraepithelesis (LSIL), and high-
quality intraepithelesis (HSIL). Improved screening systems
are also inaccessible in developing countries, owing to the
difficulty and time-consuming nature of manually screening
irregular cells from a cervical cytology specimen. This system
focused on transfer learning, and pretrained and densely
connected convolutional networks are used to suggest a
computer-aided diagnostic (CAD) method for automated
cervical image classification to assess CIN2 or higher level
lesions in the cervical imaging (ImageNet and Kaggle). The
effect of various training strategies on model results, includ-
ing scratch random initialization (RI), pretrained model
(FT) tuning, different size of training data, and K-fold cross
validation, was evaluated. Experimental findings demon-
strated accuracy of 73.08% for 600 test images [36]. The
summary of the literature related to the screening of cervical
cancer is provided in Table 1. Owing to the millions of cells
that a pathologist must examine, Pap smear screening takes
longer days for analyses. Deep learning models were used
to identify all cells and other materials present in the Pap
smear image screening. The system is often difficult to
classify since two cells overlap. To address the need for this
problem, meticulously annotated data is required; developing
this form of the medical field dataset is very difficult. Consid-
ering the challenges mentioned above, a novel deep learning
model for cervical cancer screening via colposcopy is pro-
posed. The significant aspects of using colposcopy images
for cervical cancer screening are that it provides more focus
to the patients because it is a simple and noninvasive proce-
dure (no need to introduce instruments into the body).
When compared to the other tests, the colposcopy dataset
array is sparse. The automated classification of cervical can-
cer from colposcopy images helps mass screening for medical
professionals to quickly determine whether further diagnos-
tic checks are necessary. This paper presents the computer-
ized system for cervical cancer prediction using colposcopy
images. The critical contribution of the article is as follows:

(i) This research is aimed at developing automatic cer-
vical cancer detection from colposcopy images using
the proposed deep convolutional neural network
named CYENET. Unlike previous work reported in
the literature, this proposed method does not require
segmentation and feature engineering stages; it can
also extract the discriminative features using ensem-
ble approaches

(ii) The transfer learning approach is used by fine-tuning
the VGG19 model, which is widely used for medical
image processing to predict accuracy. Besides the
extensive experiment on the cancerous and noncan-
cerous colposcopy images to effectively demonstrate
the proposed CYENET (colposcopy ensemble net-
work) and pretrained VGG model with recently pro-
posed methods, and our proposed method achieves
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better accuracy as compared with the existingmethod
in terms of classifying cervical cancer from colpos-
copy images

(iii) The convolutional neural network from scratch is
designed to automate screening the cervical images
by using an optimized architecture with an ensemble
approach named CYENET (colposcopy ensemble
network) deep learning architecture with a signifi-
cant increase in diagnostic accuracy

(iv) Intel ODT dataset is used for experimentation. The
data augmentation technique is performed on the
colposcopy images to prevent the trained model’s
overfitting problem. This technique is an efficient

strategy to learn the particular features to achieve
superior accuracy

(a) Another significant contribution of this paper is
the use of occlusion sensitivity maps to visualize
the picture characteristics of cervical cancers for
classification purposes

3. Materials and Methods

A colposcopy image is an essential aid in early cancer diagno-
sis. The assessment and identification of people with irregu-
lar cytology who need further care or follow-up depend on
the transition zone colposcopic examination (TZ). The title

Table 1: Summary of the related works for screening cervical cancer.

S.no Methods Dataset Advantages Disadvantages

1 Inception V3 model [1] Herlev dataset
(i) High accuracy
(ii) Good universality
Low complexity

(i) The deep network needs further
study to investigate cervical cells.

2
Transfer learning, pretrained

DenseNet [2]
Fujian Maternal and child
health hospital Kaggle

(i) More feasibility and
effective

(i) Limited data

3
CNN-extreme learning

machine- (ELM-) based system
[6]

Herlev dataset
(i) Fast learning
(ii) Easy convergence
(iii) Less randomized

(i) More complexity
(ii) Need more investigation

4
Gene-assistance module,

voting strategy [7]

Chinese hospital and
Universitario De Caracas,

Venezuela

(i) More scalable and
practical

(i) Limited datasets

5
Random forest and Adaboost

[14]
Radiotherapy dataset

(i) Better treatment
planning

(i) Need to extract features
(ii) Painful treatment

6 ColpoNet [16] Colposcopy images
(i) Better accuracy
(ii) Efficient classification

(i) Need to improve accuracy by
extracting relevant information

7 CNN Model [17]
Papanicolaou-stained cervical

smear dataset
(i) Better sensitivity and
specificity

(i) Reported 1.8% false-negative
images

8
Fourier transform and

machine learning methods.
[18]

Microscopic images
(i) Fully automatic system
(ii) Saving precious time for
the microscopist

(i) The level of complexity is more

9 CNN-SVM model [21] Herlev and one private dataset
(i) Good robustness
(ii) Highest accuracy

(i) Need improvement to adjust
parameter
(ii) Need of hand-crafted features

10 Stacked Autoencoder [27] UCI database
(i) High accuracy
(ii) Reduced data dimension

(i) Training time is very high due to
reducing the dimension

11 PSO with KNN algorithm [33] Cervical smear images
(i) Better accuracy
(ii) Good feature selection

(i) Time-consuming due to two-
phase feature selection

12 Ensemble model [34] PAP smear image

(i) For 2 class problem
achieves the accuracy of
96%
(ii) For 7 class problem
achieves an accuracy of 78%

(i) Overall of cells are difficult to
identify

13 Multimodal deep network [37] National Cancer Institute

(i) Good correlation
(ii) High accuracy
(iii) Learn better
complementary features

(i) More complexity in image fusion
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of the TZ is also an essential aspect of this study. Intra- and
interobserver heterogeneity in the colposcopy perception of
distinctive properties is considered to be relatively strong,
but the observer heterogeneity of the TZ form and squamous
column junction (SCJ) visibility evaluation and the quantita-
tive calculation of the intra- and interobserver similarities of
TZ contour tracing [37] are hardly studied. A TZ has been
graded as type 1 because it is fully ectocervical (without any
endocervical portion). Type 2 and Type 3 transition areas still
have an endocervical component. When the latest SCJ was
fully visible in TZ, it was considered a type 2. If even using
external instruments, the new SCJ was not fully visible, and
it was listed as type 3 [38]. It is used to assess a patient with
pathological cytology, although it is not a final diagnostic
examination. Variations may be made by the same colposco-
pies or by various colposcopies. The biggest downside of
using colposcopy as a diagnostic instrument is the clinician’s
expertise and experience. Different experiments demon-
strated good sensitivity and low accuracy in colposcopy diag-
nosed invasive and preinvasive cervix lesions [39].

The ensemble learning approach is employed using seven
machine learning algorithms that are stacked together for
automated detection for hepatocellular carcinoma [40] and
using collaborative representation classification with boosting
technique for classifying the hyperspectral image [41]. The
flow map of the proposed automated method for detecting
early cervical cancer is shown in Figure 1. The region between
the original and the new SCJ is described colposcopically as
the TZ [42]. The recognition of the TZ is essential information
that all colposcopies require. Next, to identify the TZ as type 1,
2, or 3, you must find the new boundary between squamous
and columnar epithel. Figure 2 displays example pictures from
the dataset with type 1, 2, and 3 classifications. The center
image in the green is the image taken by passing the green light
to improve the cervical part’s visibility.

3.1. Deep Convolutional Neural Network Model. The CNN
models have been popular in many image processing applica-
tions, including medical image analysis. Detecting cervical
cancer in the colposcopy images is an obvious computer
vision problem. When comparing deep learning with con-
ventional features, the neural network, especially convolu-
tional, is used to distinguish cases type 1, type 2, and type 3.
The test is to diagnose cervical lesions using deep convolu-
tional neural networks (moderate). The proposed VGG 19
(TL) model is fine-tuned to classify three cervical cancer clas-
ses by freezing the top layers and tested with the cervical
image dataset. We proposed a CYENET architecture by
incorporating the essential advantages of depth and parallel
convolutional filter, to enhance the extraction of specific cer-
vical cancer features from colposcopy images. The proposed
model consists of two types of convolution layers, i.e.,
traditional convolution layers at the beginning of a network
preceded by one single convolution filter and multiple con-
volution layers to extract various features from the same data.
Multiple convolutional filters are used to remove the biased
parts to reduce the overfitting effect. This proposed model
involves three phases: (1) data preprocessing, (2) CNNmodel
training, and (3) classification results. The CYENET model

consists of 15 convolutional layers, 12 activation layers, five
max pooling layers, and four cross channel normalization
layers. The test data are entered into the trained model, and
the output parameters are measured. The initial strata are
inspired by Google net architecture, several layers for manip-
ulating functionality, and two fully connected layers with
Softmax classification layers seen in Figure 3. The network
description of the CYENETmodel is provided in Table 2 that
refers to the convolution layer and max-pooling layer, vary-
ing the filter size in the parallel convolutional block.

3.2. Dataset and Preprocessing. The dataset consists of 5679
colposcopy photographs obtained from the cervical screen-
ing data collection by Intel and Smartphone ODT. The data
is classified by considering the transition zone visible in the
diagnostic study’s specific picture [36]. The dataset is prepro-
cessed to delete all the cases’ ethical details. Firstly, the data
are divided into three categories through diagnostic records:
type 1, type 2, and type 3. A referenced pretrained dataset
identifies the area of interest (ROI) of the cervical images
due to minimal professionalism with MATLAB image labeler
applications’ assistance. The central region in which the
lesion occurs is the ROI area called the clinic’s transition zone
(TZ). The original picture is obtained first with annotations,
marks, and ROI.

The total images are 691 cases of type 1, 3126 cases of type
2, and 1862 cases of type 3. By observing the entire dataset, it is
found that the dataset is imbalanced due to its unequal
distribution of images. Due to dataset imbalancing, the model
maybe leads to an overfitting issue. To overcome this issue, the
oversampling technique is adopted. The oversampling method
is known to repeat the type 1 and type 3 images arbitrarily and
equal to the number of images in type 2. The cumulative
images in the data collection after the oversampling technique
are 9378 images. Secondly, data enhancement methods are
used to optimize the volume of training data. Using the data
augmentation method, the model robustness is increased,
and the overfitting problem is reduced. The input image is
augmented by rotating, adjusting the brightness, cropping,
and randomly increasing the dataset. After the image augmen-
tation process, the total image size is increased to 11266. All
transformed image data is eventually dimensioned to 227 ×
227 for CNN to fit the model. The dataset is divided into the
training data with 7498 images, validation data with 1,884,
and testing data with 1,884 photos. Figures 4(a) and 4(b) dis-
play the data augmentation technique to increase the data
before the input of data to train neural networks.

3.3. Model Parameters. In this work, the two-deep learning
model is used to diagnose cervical lesions through the colpo-
scopic images. The transfer learning VGG_19 is fine-tuned
for the proposed method, and CYENET architecture devel-
oped from scratch. The standard neural network framework
uses a single type of CNN filter with an input data size vary-
ing from 1 × 1 to 5 × 5. The filter convolved with the input
data to produces the same input data with a discriminatory
feature map. The multilayer convolutional filter design’s
motivation is fundamental that incorporating several convo-
lutional filters to extracts the discrimination-based multilayer
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features. It extends further clusters from the same data. The
three different kernel sizes are included in the training timing
with 1 × 1, 3 × 3, and 5 × 5 to extract specific features. The
proposed CYENET architecture and model parameters are

fixed as an epoch of 50, batch size of 64, Adam optimization
algorithm with a learning rate of 0.0001, and a decaying
learning rate of 0.01 using piecewise technique every ten
epochs. Before training, the data are shuffled at each point to

Colposcopy image dataset
Data preprocessing
Data preprocessing

Split dataset

Validation data Training data Testing data

CNN model
Feature map
Softmax layer

Confusion chart
CYE net

Better
training

loss
Model fine tuning

Yes

No

Classification metrics 

Figure 1: Flow chart of the proposed CYENET model for diagnosis of cervical cancer.

Figure 2: Dataset samples of type 1, type 2, and type 3 classes.
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Figure 3: Strucutre of the proposed CYENET model.
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bring about a normalizing effect during training. Additional
discriminative features are extracted by each convolutional
layer which is adding an advantage in prediction. Figure 5(a)
shows the activation map for type 1 cases extracted from the
single filter from the convolutional layer 1and Figure 5(b).
The activation map for type1 instances extracted from the 64
filters from the convolutional layer 1. It has been done to
understand what features our CNN model is extracting for
the detection of particular classes.

Mathematical equations that decide the performance of a
neural network are activation functions. The functionality is
attached to each neuron in the network to determine whether
or not it should be triggered (“fired”), depending on input rel-
evance with the model prediction. ReLU is a piecewise linear
function that, if the input is positive, outputs directly; other-
wise, it outputs zero. The ReLU activation is used due to its
faster converges and avoids easy saturation. It overcomes the
problem faced by logistic regression and tan hyperbolic func-
tion of an inability to output the values greater than 1. The
ReLU activation function is used in all the hidden layers. It
is defined as

f xð Þ =max 0, xð Þ, ð1Þ

where x is the input of the neuron. The ReLU activation func-
tion is programmed to exit the limitless activation function.
The concatenation layer is used to concatenate the different
features provided by the other kernel. After each concatena-
tion layer, the local response normalization is employed to
carry out the channel wise normalization of the activation
function to reduce the model’s overfitting problem. The local
response normalization can be done in two ways: (i) within
the channel and (ii) across the channel. In this proposed
method, the local response normalization is carried out as
cross channel normalization for pixel-wise normalization in

the particular layer. It is given by equation (2).

xi =
xi

k + α∑jx
2
j

� �� �β
: ð2Þ

In equation two, the terms k, α, and β∈R are hyperpara-
meters, and xi is the input pixel value. The Ax pooling layer
is used to minimize dimensionality after performing normali-
zation. The max-pooling layer is used to reduce the dimension
of features extracted from the convolutional layer and reduce
the model’s computation complexity by only keeping the
channel’s maximum pixel values with the specified kernel size
2 × 2. After the max-pooling layer 5, fully connected layer 1
with 128 output nodes with a drop out ratio of 0.5 is connected
that follows the FC1 layer. The fully connected layer 2 with
three output nodes is associated with the dropout ratio of
0.3% to reduce the overfitting problem. The softmax layer out-
puts each class’s probabilities concerning the ground truth
marks of the training and validation performance. The colpo-
scopic images’ three-class output are type 1, type 2, and type
3 to reduce the model’s computation complexity instead of
having 100 to 1000 nodes. The softmax activation function is
indicated as

f i zð Þ = ezi

∑ge
zg
: ð3Þ

In equation (3), f i is the i
th part of the class scores f and z

vector, abd a vector of arbitrary real-valued scores is squashed 0
to 1 with the probability ofthe prediction rate. The categorical
crossentropy function is used as the cost function to determine
the error between the predicted and observed classes. The

Table 2: Description of network architecture of the CYENET model.

Layer No. Layer type Filter size Stride No. of filters FC units Input Output

1 Convolution 1 5 × 5 2 × 2 64 — 3 × 227 × 227 64 × 112 × 112
2 Max-pool_1 3 × 3 2 × 2 — — 64 × 112 × 112 64 × 56 × 56
3 Convolution 2 1 × 1 1 × 1 64 — 64 × 56 × 56 64 × 56 × 56
4 Convolution 3 3 × 3 1 × 1 128 — 64 × 56 × 56 128 × 56 × 56
5 Max-pool_2 3 × 3 2 × 2 — — 128 × 56 × 56 128 × 28 × 28
6 Parallel convolution 1 1 × 1, 3 × 3, 5 × 5 1 × 1 32⊕ 64⊕ 128 — 128 × 28 × 28 224 × 28 × 28
7 Max-pool_3 3 × 3 2 × 2 — — 224 × 28 × 28 224 × 14 × 14
8 Parallel convolution 2 1 × 1, 3 × 3, 5 × 5 1 × 1 32⊕ 64⊕ 128 — 224 × 14 × 14 224 × 14 × 14
9 Parallel convolution 3 1 × 1, 3 × 3, 5 × 5 1 × 1 32⊕ 64⊕ 128 — 224 × 14 × 14 224 × 14 × 14
10 Max-pool_4 3 × 3 2 × 2 — — 224 × 14 × 14 224 × 7 × 7
11 Parallel convolution 4 1 × 1, 3 × 3, 5 × 5 1 × 1 32⊕ 64⊕ 128 — 224 × 7 × 7 224 × 7 × 7
12 Max-pool_5 5 × 5 1 × 1 — — 224 × 7 × 7 224 × 2 × 2
13 Fully connected 1 — — — 512

14 Fully connected 2 — — — 3

8 BioMed Research International



(a)

Random rotate

Random brightness

Random crop

Random blur

(b)

Figure 4: (a) Sample input images and (b) augmented images using different techniques.
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categorical crossentropy function is given in equation (4).

Hp qð Þ = −〠
N

i=1
yi:log byið Þð Þ: ð4Þ

In equation (4), ðbyi Þ, the ith scalar value is in the model
output, yi is the corresponding target value, and N is the num-
ber class label (0 for type 1, 1 for type 2, and 2 for type 3). We
investigated the twomodels CYENET andVGG 19, in the pro-
posed process. The CYENET is developed from scratch, and
the model VGG 19 is explored through the adaptation of the
transfer learning process. Both the model is trained to classify
the type of cervical cancer from the colposcopic images.

4. Results and Discussion

The experiment is implemented in MATLAB 2020b, per-
formed on a 24GB Quadro NVIDIA RTX 6000 workstation
computer with an Intel i9 processor. Experimental data is
derived from the Kaggle dataset [36]. The colposcopy cervical
cancer dataset is split into 80% training, 10% validation, and
10% testing. Approximately 7498 training images and 1884
validation images are used for the training and validation pro-
cess. The depth of the layer, initial learning rate, optimizer,
momentum value, and L2 regularization value are calculated
from the Bayesian optimization. The number of epochs is
fixed as 50 for training the model. The model is trained with
a multi-GPU environment, batch size of 64, and initial learn-
ing rate of 0.0001. As discussed in Section 3, CYENET and
VGG 19 with fine-tuning are trained with the same image
dataset with fixed parameters. The precision, sensitivity, spec-
ificity, and Cohen’s kappa score are evaluated to analyze the
deep learning model. The confusion matrix is also used to test
the models since it deals with a multiclass classification prob-
lem. The confusion matrix is used to analyze the classification
model’s performance in Figure 6, the training accuracy of the
proposed method VGG_19, and the CYENET model trained
against the training dataset with epoch 50.

The training accuracy gradually increased concerning the
epoch’s number and reached the training accuracy of 97.1%
for the CYENETmodel and 87% for the VGG_19 (TL) model.
The validation plot for the proposed CYENET and the pre-

cisely tuned VGG 19 against the epoch is shown in Figure 7.
The accuracy of the model is undoubtedly growing regarding
the number of epochs the model is trained. After 23 epochs,
the proposed CYENET model achieves the validation accu-
racy value of 91.3%. Simultaneously, the sophisticated VGG-
19 model achieved some early oscillation in the accuracy due
to the chosen learning rate of 0.0001. The VGG 19 model
obtained a validation accuracy of 68.8%. The results indicate
that cervical screening from colposcopic images of the CYE-
NET model performs better than the VGG19 model due to
its more robust and more straightforward architecture.

The training and validation loss curve of the proposed
model CYENET and VGG 19 are shown in Figure 8. The
model convergence of the proposed network is determined
by the shift in the validation loss curve. Compared to the
VGG 19, CYENET converges very quickly with a loss value
of 0.2982, and the model VGG 19 converges to 0.9885 loss
values. In comparison, the validation model of the VGG 19
is unstable, CYENET is stable, and the loss curve is smoother.

Figure 9 displays the confusion matrix for the proposed
CYENET model with test data, which shows the cumulative
number of images projected with accurate label correspon-
dence to the predicted label data from the confusion matrix.
The CYENET confusion matrix includes true positive (True
positive), false positive (False positive), true negative (True
negative), and false negative (False negative). Table 2 reports
accuracy, sensitivity, specificity, positive predicted value
(PPV), and negative predicted value (NPV) as our evaluation
metrics. Sensitivity and specificity are the most accurate
assessment metrics for classifier completeness computed
from the confusion matrix in medical images.

Accuracy = True Positive + False Negative
True Positive + T rue Negative + False Positive + False Negative

, ð5Þ

Sensitivity = True Positive
True Positive + False Negative

, ð6Þ

Specificity = True Negative
True Negative + False Positive

, ð7Þ

PPV = True Positive
True Positive + False Positive

, ð8Þ

(a) (b)

Figure 5: (a) Feature map of the convolutional layer with (a) 1 filter and (b) 64 filter.
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NPV = True Negative
True Negative + False Negative

: ð9Þ

Sensitivity is the percentage of people who test positive
out of all those who have the disease. The proportion of
people who test negative among all those who do not have
the disease is the specificity of a test. The PPV is the possibil-
ity that a person will have the disease after receiving a positive
test result. The NPV is the possibility that a person will not
have the disease after receiving a negative test result.
Table 3 shows the test results of the proposed model tested
with 1884 test images. The above experimental result CYE-
NET model outperformed all the other models in the table
trained on the colposcopic images. The DenseNet-121 and
DenseNet-169 achieved lower accuracy with 72.42% and
69.79%, respectively. The model performance is influenced
by the size of the dataset and also the depth of the layer. The
deep architecture may decline its overall model classification
performance due to the problem of interclass similarity. The
Inception-Resnet-v2 model provides a lower specificity of
70.6% due to the dataset imbalance. The model is prone to
image characteristics such as contrast, brightness, tone, and
quality of the image capturing devices. The SVM method dis-
cussed in the performance table achieves an accuracy of
63.27% and the lowest sensitivity value of 38.46%. The model
is trained on both hand-crafted features and features extracted
from the CNN model. It is a time-consuming difficult task to
perform in real-time even though the cost is nominal. The
colponet model based on the CNN architecture provides an
accuracy of 81.0% for classifying cervical cancer from the
colposcopy images. The difference between the training accu-
racy and validation accuracy of the component model is very
high. The model’s training time is very high where the model
is trained for 3000 epochs and provides the convergence loss
of 1.12, which is very for the application of medical image
processing. The proposed CYENET model is designed and
trained to achieve an overall testing accuracy of 92.30% by
considering all these disadvantages. The proposed model uses
a different filter size to extract distinct features and works well
for unexpected data. It offers a 92.40% sensitivity and a 96.20%
specificity, which improves sensitivity and specificity by
approximately 25% compared with Inception-Resnet-v2 in
[45]. The proposed method has trouble distinguishing the
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false positive samples from those with fewer false positives.
The CYENET model evaluates cervical epithelial features
rather than morphological ones, and its false-negative epider-
mal features are close to true negatives. The improved sensitiv-
ity and precision indicate that positive and negative samples
are predicted wisely. Since the model proposed is compared
to traditional metrics such as precision, sensitivity, and speci-
ficity, sometimes, the above metrics for multiclass problems
does not make sufficient to prove the model’s general ability.

By taking this into consideration, the F1 score of the
model is calculated by the harmonic mean of the accuracy
and reminder. Still class imbalances in the dataset influence
the f1 score, but Cohen’s Kappa metrics are seen to have
the right measure to tackle multiple class issues as well as
class imbalances which the statistical standards to find the
agreement between two parties. The suggested models CYE-
NET and VGG 19 (TL), both calculated with the colposcopy
images of the cervical cancer diagnosis, are measured using
F1measurements and Cohen’s kappa. The F1 score of the pro-
posed CYENET and VGG 19 (TL) is 92.0% and 44.80%,
respectively, and Cohen’s Kappa score of 88% and 53.5%,
respectively. The proposed model CYENET is superior to
the literature models and even to the proposed model VGG

19 (TL). Figure 10 shows the graphical representation of the
model discussed in Table 2.Due to the existence of several
distractors such as pubic hair, intrauterine instruments, the
speculum, and even human parts, the proposed method for
cervical cancer screening using colposcopy can suffer. Another
issue with the proposed approach if the captured images are
out of focus and prediction accuracy will be reduced.

Figure 11 indicates the positive and negative expected
values (PPV) of CYENET and VGG 19 models. By fixing the
probability (prevalence) of infection to 0.05, the positive pre-
dicted value and negative predicted value of the CYENET
model are calculated with sensitivity and specificity of 92.40%
and 96.20%, respectively, for varying probabilities of infection
shown in Figure 11(b), and the VGG 19 (TL) model achieves
the sensitivity and specivity of 33.0% and 79.0%, respectively,
for varying probability demonstrated in Figure 11(a). The inci-
dence graph helps the medical practitioners to classify groups
with a previous risk of diagnosis with cervical cancer.

The overall run time of the proposed model CYENET is 3
minutes 32 seconds, and for VGG19 5 minutes 24 seconds,
the batch size of 64 is provided in Table 4. The total number
of parameters for the CYENET is 8465376, and the total
number of parameters for the VGG19 is 123642856. Still,
the top layers are frozen to reduce the number of trainable
parameters. Among the compared models, the densenet
architecture proves to be having a significant training time
due to its dense nature.

4.1. Occlusion Sensitivity Map Visualization. We used occlu-
sion sensitivity maps [42] to determine the colposcopy images’
aspects that are most appropriate for the CYENET classifica-
tion decision in this experiment. Occlusion sensitivity is a sim-
ple technique for deciding which deep neural network uses
image features to make a classification decision. Precisely,
occlusion sensitivity measures the variation in likelihood score
for a given class as a function of mask location by systemati-
cally occluding various portions of the input picture with an
occluding mask (usually a grey square). Figure 12 depicts sev-
eral cervical cancer input colposcopy images with occlusion
sensitivity maps superimposed on them. The occlusion sensi-
tivity maps indicate that the colposcopy images’ parts contrib-
ute more to the score for cervical cancer classes and which
factors contribute less or none at all. It can be seen from the
occlusion maps that CYENET was able to distinguish regions
with speculum and other opacities. Compared to the Grad-
CAM process, the visualization results support our argument
that occlusion sensitivity maps are intuitive and interpretable.

Table 3: Comparative experiment results of proposed architecture with different models.

Model name Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Ref

DenseNet-121 72.42 59.86 76.83 48.39 84.52 [43]

DenseNet-169 69.79 65.00 71.48 44.84 85.31 [43]

Colponet 81.0 — — — — [16]

SVM 63.27 38.46 71.85 32.43 76.87 [44]

Inception-Resnet-v2 69.3 66.70 70.6 47.20 84.00 [45]

CYENET 92.30 92.40 96.20 92.00 95.00 Present study

VGG19 (TL) 73.30 33.00 79.00 70.00 88.00 Present study
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Table 4: Comparative results of proposed architecture with several parameters and run time.

Model name Number of parameters Run time (per epoch)

DenseNet-121 [43] 7978856 21min 10 s

DenseNet-169 [43] 28681000 24min 59 s

Colponet [16] 6977000 16min 27 s

Inception-Resnet-v2 [45] 55843161 15min 36 s

CYENET 8465376 3min 32 s

VGG19 (TL) 123642856 5min 24 s

Type_1
Confidence: 0.99

Type_2
Confidence: 0.98

Type_3
Confidence: 0.93

Type_1
Confidence: 0.98

Type_2
Confidence: 0.82

Type_3
Confidence: 0.91

Figure 12: Occlusion sensitivity map for test data.
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5. Conclusion

A new deep learning architecture name CYENET is proposed
for classifying the cervical cancer type from colposcopic
images. The image dataset is balanced using the oversampling
technique for improving the classification results. Two models
are presented in this paper. One is using a transfer learning
approach with VGG19 architecture. The other is a dedicated
new model called CYENET for cervical cancer type classifica-
tion using the ODT colposcopy image dataset. Both themodels
are evaluated using classification accuracy, sensitivity, specific-
ity, Cohen’s Kappa score, and F1-measure. The VGG19 (TL)
model’s sensitivity and specificity are 33% and 79%, respec-
tively, with Cohen’s Kappa score of 53.5%. The classification
accuracy for VGG19 was 73.3%. Relatively satisfied results are
obtained for VGG (TL). From the kappa score of the VGG19
model, we can interpret that it comes under the category of
moderate classification.

Similarly, the proposed CYENET exhibited high sensitiv-
ity, specificity, and kappa scores of 92.4%, 96.2%, and 88%,
respectively. The classification accuracy of the CYENET
model is improved as 92.3%, which is 19% higher than the
VGG19 (TL) model. Comparing the results of CYENET with
previously reported results of the work, CYENET is an effec-
tive and promising prospect as a diagnosis assist tool for clini-
cians. The proposed method of cervical cancer classification
can benefit a target population that does not need invasive
intervention. The proposed CYENET has better classification
efficiency and can assist medical professionals and skilled
healthcare practitioners in increasing the diagnostic sensitivity
and accuracy of cervical cancer detection through colposcopy
screening as a result. In the future, the theoretical deep learn-
ing model will be checked for different datasets. The approach
can also be enhanced by combining some advanced image
processing techniques and CNN algorithms to create a diag-
nostic system for cervical precancerous new data.
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Each level of the coronary artery has different sizes and properties. The primary coronary arteries usually have high contrast to the
background, while the secondary coronary arteries have low contrast to the background and thin structures. Furthermore, several
small vessels are disconnected or broken up vascular segments. It is a challenging task to use a single model to segment all coronary
artery sizes. To overcome this problem, we propose a novel segmenting method for coronary artery extraction from angiograms
based on the primary and secondary coronary artery. Our method is a coarse-to-fine strategic approach for extracting coronary
arteries in many different sizes. We construct the first U-net model to segment the main coronary artery extraction and build a
new algorithm to determine the junctions of the main coronary artery with the secondary coronary artery. Using these
junctions, we determine regions of the secondary coronary arteries (rectangular regions) for a secondary coronary artery-
extracted segment with the second U-net model. The experiment result is 76.40% in terms of Dice coefficient on coronary X-ray
datasets. The proposed approach presents its potential in coronary vessel segmentation.

1. Introduction

In all living mammal species, including humans, blood ves-
sels inside the body are highly organized and complex, ensur-
ing that blood flows unidirectionally on vessel branches.
Localization, segmentation, and visualization of blood vessels
from X-ray angiograms are highly necessary and useful in
various medical diagnoses. Based on the blood vessel width,
reflectivity, and abnormal branching, we can determine
symptoms of vessel diseases such as stenosis, vascular mal-
formation, and atherosclerosis. By using the X-ray angio-
gram, medical experts or doctors manually detect and
delineate the blood vessels. However, this process is time-
consuming and challenging in the cases of enormous number
of X-ray angiograms and small and thin vessel structures.
Hence, it is highly necessary to develop automatic and accu-
rate blood vessel detection and segmentation methods from

angiograms. Many related works conducted the coronary
vessel segmentation based on the weak contrast between
the coronary arteries and the background, strong overlapping
shadows of the bones, nonuniform illumination in X-ray
angiogram, small and thin vessel branches, complex shape
of the vessel tree, and/or other body tissues [1, 2]. These fac-
tors can decrease the accuracy of segmentation results.

The improvements in coronary vessel enhancement
and segmentation algorithms can be divided into six
main categories, such as pattern recognition approaches,
model-based approaches, tracking-based approaches, arti-
ficial intelligence-based approaches, neural network-based
approaches, and miscellaneous tube-like object detection
approaches [2]. Liao et al. [3] applied an enhanced multi-
scale approach to extract 2D coronary artery central lines
from X-ray projection images. Authors introduced the 3D
symbolic reconstruction based on an energy minimization
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problem incorporating a soft epipolar line constraint and
a smoothness term. The nonlinear anisotropic filtering [4]
approach performs anisotropic smoothing without blur-
ring the vessel edges on the local orientation. Hessian-
based multiscale filtering [5–8] has been proposed for
vessel enhancement. In this technique, an input image is
filtered by the derivatives of a Gaussian at multiple scales.
Then, the Hessian matrix is analyzed at each pixel in the
filtered image to determine the structures’ local shape.
However, due to the second-order derivatives, the
Hessian-based approaches are highly sensitive to noise.
Furthermore, this approach led to suppressing junctions,
as junctions are characterized similarly to the blob-like
structures.

In [6], the authors proposed a filter model based on the
regularized gradient vector correlation matrix to avoid the
need for second-order derivatives. However, this technique
faces the same limitations as Hessian-based filters in finding
small and low-contrast vessels when dealing with angiogra-
phy images, which are noisier and suffer from nonuniform
illumination. Truc et al. [7] introduced a new framework
for vessel enhancement by applying the directional informa-
tion present in an image. The input images are first decom-
posed by a decimation-free directional filter bank (DDFB)
into a set of directional images. Distinct appropriate
enhancement filters are then used to enhance vessels in the
respective directional images. Finally, the enhanced direc-
tional images are recombined to generate the output image
with enhanced vessels. Although this approach is still noise-
sensitive, it reveals the small vessel network and avoids junc-
tion suppression. Trinh et al. [8] introduced a hierarchical
approach to extract coronary vessels from an X-ray angio-
gram. They applied the DDFB and Homographic Filtering
(HF) since they are suitable for strengthening the vessels at
different orientations and radii. To obtain the main and small
coronary vessels in various sizes, they used a coarse-to-fine
strategy for iterative segmentation based on the Otsu
algorithm.

Recently, deep learning approaches have been applied for
medical image segmentation and analysis [9–13]. These new
powerful techniques based on convolutional neural networks
(CNNs) lead to high performance in the field of medical
imaging for segmentation without expert knowledge. Many
studies confirm that deep learning models outperform tradi-
tional medical segmentation systems. In [10], authors devel-
oped a successful and well-known network based on the
CNN, named as U-net, for biomedical image segmentation.
The network architecture consists of two paths: encoder
and decoder. The encoder is a contraction stack of convolu-
tional layers used to capture the context of input images.
After each convolutional layer, a rectified linear unit (ReLU),
max pooling, and dropout layers are added. The decoder is an
expansive path that is used to enable precise localization by
using transposed convolutions. In the decoder, the final layer
is used to map the feature vector to the binary prediction (i.e.,
vessel vs. nonvessel). The U-net requires the inputs as 2D
image patches and returns the 2D segmentation probability
map for each given patch. Milletari et al. [11] introduced a
V-net architecture that adopts a volumetric CNN for prostate

segmentation from MRI. Similar to U-net, V-net induced
two paths. The first path (left path) of the V-net consists of
a compression path. The second one (right path) decom-
presses the input image until its original size is reached.
Holistic-net [12] was proposed for brain tumor segmenta-
tion. It is a combination of holistic CNNs and generalized
Wasserstein Dice scores for multiclass segmentation. In
[13], a graph neural network (GNN) is proposed to learn
global vascular structures in medical images. The authors
combined the GNN into a unified CNN architecture to learn
not only local appearances but also the global structures of
vessels.

Deep learning-based automated ventricle segmentation
methods are summarized in the research [14]. Authors [15]
developed a novel encoder-decoder deep network algorithm
to exploit 2D + t sequential images’ contextual information
in a sliding window. The encoder extracts the temporal-
spatial features. The skip connection layers subsequently fuse
these features and deliver them to the corresponding decoder
stages. The decoder employed the channel attention mecha-
nism. In [16], the authors proposed a nested encoder-
decoder architecture named T-Net. T-Net consists of several
small encoder-decoders for each block constituting a convo-
lutional network. They evaluated T-Net by segmenting only
three main vessels in coronary angiography images and
archive the Dice similarity coefficient score of 88.97%. In
the research [17], the blood vessels are segmented from both
the coronary angiogram and the retinal fundus images using
a single VSSC Net after performing the image-specific pre-
processing. The VSSC Net consists of two-vessel extraction
layers with additional supervision on top of the base VGG-
16 network. The VSSC Net attains average AUC values of
0.98205 across the target datasets. Authors [18] proposed a
novel weakly supervised training framework to alleviate the
annotator’s burden by learning from noisy pseudo labels gen-
erated from automatic vessel enhancement instead of fully
manual annotation. Their annotation-refining self-paced
learning framework (AR-SPL) corrects the possible errors
using suggestive annotation. Experiments confirm that their
proposed framework largely reduced annotation cost and
Dice score of 82.09%. Another study proposed an automated
prostate MRI data segmentation using bicubic interpolation
with improved 3D V-Net. Two clinical prostate-MRI data
datasets were used to evaluate the model’s effectiveness with
the manual delineations available as the ground truth [19].
The segmentation result is 98.29% of average accuracy and
0.9765 of Dice metric.

With the supportive goal of interpreting pathophysio-
logical processes and clinical decision-making, the study
[20] developed a multiview recurrent aggregation network
(MV-RAN) for the echocardiographic sequence’s segmen-
tation with the full cardiac cycle analysis. Experiments
were conducted on spatial-temporal (2D + t) datasets of
multicenter and multiscanner clinical studies. Compared
to other studies, the research [20] achieved results of
0.92 Dice score.

This study proposes a novel hierarchical approach to
extract coronary vessels from X-ray coronary angiographic
images. We use a coarse-to-fine strategy for iterative
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segmentation based on the U-net model to segment the cor-
onary vessels in various sizes as follows:

(i) We use U-net to segment the main and large blood
vessels

(ii) We propose a new approach to extract junctions
from vascular trees and detect small vessel regions
based on the main information from extracted
vessels

(iii) We apply the region-based U-net segmentation to
locate and obtain the small vessels

2. Materials and Methods

In this section, we describe the proposed hierarchical
approach in detail. As illustrated in Figure 1, our proposed
framework includes tree main steps: preprocessing, extract-
ing the large coronary vessels, and extracting the small ones.

The preprocessing procedure is applied to remove high-
frequency noise and also enhance the contrast of X-ray coro-
nary angiographic images. We first apply a Gaussian filter to
smooth the vessel image. The Gaussian filter is low-pass fil-
tering that is used to reduce high-frequency noise in order
to make our vessel segmentation more accurate. In our study,
we use Gaussian smoothing to detect false edges or artifacts
(not small artery fragments) due to noises and reduce their
effect on the input. In addition, a histogram equalization
method [21] is applied to adjust the contrast of images.
Figure 2 shows our preprocessing process.

In the next step, we apply a coarse-to-fine strategy for
iterative segmentation. Particularly, we segment regions that
include the main coronary vessels based on the high-contrast
pixels. The main coronary vessels include features such as
vascular tree and junctions. Subsequently, we use coarse
information extracted in the previous step to detect the small
vessels that often have low contrast and are affected by noises.
We describe each step of the proposed technique in detail in
the following sections.

2.1. Large Vessel Extraction Based on U-net. In this section,
we describe a method to extract vessels by using U-net and
the coarse-to-fine segmentation strategy. Figure 3 shows a
block diagram of the vessel’s extraction.

The U-net model is proposed for biomedical image seg-
mentation [10]; as shown in Figure 4, the network architec-
ture consists of encoder and decoder paths. The encoder is
a contraction path that captures the context in the input
image. The decoder is an expansive path that applies trans-
posed convolutions to enable precise localization. In the
decoder, the final layer maps the feature vector to the binary
outputs such as vessel or nonvessel. The U-net receives the
inputs as 2D image patches and returns the 2D segmentation
probability map for each given patch.

The U-net uses the loss function as the cross-entropy
function shown as follows:

J = −〠
x∈Ω

w xð Þ log pl xð Þ xð Þ
� �

, ð1Þ

where plðxÞ is the soft-max function defined by plðxÞ = exp ð
alðxÞÞ/ð∑L

l ′=1expðal ′ðxÞÞÞ , where alðxÞ is an activation in fea-
ture channel l at the pixel position x ∈Ω with Ω ⊂ Z2, l : Ω
→ f1,⋯, Lg is the true label of each pixel x, and L denotes
the number of classes.

The weight map is computed as

w xð Þ =wc xð Þ +w0 ⋅ exp −
d1 xð Þ + d2 xð Þð Þð Þ2

2σ2

 !
, ð2Þ

where wc : Ω→ R denotes the weight map to balance the
class frequencies, d1 : Ω→ R is the distance to the border
of the nearest cell, and d2 : Ω→ R denotes the distance to
the border of the second nearest cell. In experiments, we set
w0 = 10 and σ = 5 pixels following the related research [10].

In this study, the original input images and their corre-
sponding segmentation labeling (or ground truth segmenta-
tion) are used to train U-net for extracting the large vessels.
For a test case, the input image is required for the U-net
model and returns a 2D segmentation probability map.
Figure 5 presents an example of U-net segmentation for large
vessels. We can realize that the U-net model can obtain a
good performance for large vessel segmentation because of
its high contrast to the background. However, the model per-
formance is limited for small vessels. Figure 5 illustrates that
some small vessels are disconnected or broken up vascular
segments due to their low contrast to the background and
thin structures. Subsequently, to overcome this problem, we
propose a coarse-to-fine algorithm-based U-net for detecting
and extracting small and thin blood vessels.

2.2. Small Vessel Extraction Based on Coarse-to-Fine
Algorithm-Based U-net. In the previous section, we represent
the U-net approach to extract the main coronary vessels.
However, it cannot reveal well the small vessels due to their
blurring and low contrast compared with the background.
To solve this problem, as shown in Figure 6, we use the infor-
mation of the main extracted vessels and propose a new
method to extract junctions on the vascular tree and extract
small regions that included small vessel branches. Then, we
apply a region-based U-net approach to segment small ves-
sels based on a coarse-to-fine mechanism.

The branching geometry and junctions of the blood ves-
sel tree are challenges in applying the coarse-to-fine U-net
framework for vessel segmentation. The Zhang-Suen thin-
ning algorithm [21] can be applied to extract the skeleton
or central line of the main vessels. However, after segmenta-
tion, thin broken blood vessels may appear due to low con-
trast or low signal-to-noise ratio, leading to reduced
performance. Therefore, we introduce an improved Zhang-
Suen thinning algorithm to connect small broken blood ves-
sels. We summarize this approach in Algorithm 1, and
Figure 7 displays the result after applying this algorithm.
Figure 8 presents the blood vessel’s central line result based
on an improved Zhang-Suen thinning algorithm.

The start, end, and junction nodes of the blood vessels are
determined based on the central line of the large vessel seg-
mentation result. In an X-ray angiogram, because of the huge
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number of vessel branches, it is necessary to distinguish each
blood vessel branch. Algorithm 2 describes a method to
detect important nodes in the blood vessel. Given a central
line image (skeleton binary image) of the large vessel seg-
mentation result (output from Algorithm 1), object pixels
(foreground) will have the value 1 (belonging to the blood
vessel tree) and background pixels will have 0. For each pixel
in the binary image, we classify each pixel ði, jÞ belonging to a
particular label. Specifically, background pixels that have the
value of 0 is classified into class 0 (or label 0). These back-
ground pixels are ignored while finding the important nodes.

Consider object pixels as the foreground, whether an object
pixel has exactly two neighbour object pixels, this object pixel
is considered a midpoint in the skeleton image (not the start,
end, or junction points) and it is classified into class 1 and is
ignored while finding the important nodes. Finally, an object
pixel that has exactly one neighbour object pixel is consid-
ered start and end nodes and is classified into class 2; the
object pixel has more than two neighbour object pixels, and
it is a junction node and is classified into class 2. For each
object pixel ði, jÞ in the skeleton image and having label 2,
we find all neighbour object pixels of pixel ði, jÞ that were

Input
image Pre-processing Large vessel 

extraction
Small vessel 

extraction Output

Figure 1: An illustration of the proposed method.
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image Smoothing Histogram

equalization
Preprocessed

image

Figure 2: Preprocessing process.
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Figure 3: Vessel’s extraction based coarse-to-fine segmentation.
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Figure 4: Illustration of the U-net architecture [10].
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classified into class 2 and then calculate their centroid point.
The centroid points are considered the important nodes.
Figure 9 demonstrates the determined nodes in the blood
vessel tree.

Usually, the small vessels from an X-ray angiogram are
blurring low-contrast images. It is difficult to extract large
and small vessels simultaneously. For that reason, a local

region-based segmentation approach should be used to
extract the small ones. Based on the idea from local thresh-
olding, we apply a region-based U-net to segment these small
vessels. This approach helps reduce the effect of changing in
grayscale values between the vessels and the background
compared to the global approach. For each node in the
blood vessel tree, we will construct a window between

(a) Input (b) U-net segmentation (c) Ground truth

Figure 5: An example of U-net segmentation result.

Input
image

Large vessel
extraction

Junction of vessel
tree detection

ResultsRegion-based U-net
segmentation

Small vessel
extraction

Small vessel regions

Figure 6: A block diagram for small vessel extraction.

Input: Binary image after applying large vessel extraction-based U-net
Output: Central line of vessels (output central line)
Step 1. Remove small regions less than γ pixels (γ ~116 pixels)
Step 2. Apply the baseline Zhang-Suen thinning algorithm to get the skeleton image, Γ
Step 3. Reconnect the broken segments in the Γ image

+ Find connected components in the Γ image
+ Find the largest connected component, LCC, in the Γ image
+ Initialize: output central line = LCC
+ For each remaining connected component (small component) in the Γ image, do

(i) Determine orientation (or direction) of small component to the LCC and connect each small connected component to the
LCC.

(ii) Update: output central line = LCC

Algorithm 1: Vessel central line extraction from a binary image.

(a) (b)

Figure 7: An example of connecting the nearest the central lines: (a) input image and (b) image after connecting the nearest central lines
(reproduced from Trinh et al. 2019 [under the Creative Commons Attribution License/public domain]).
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Input image Result of the baseline 
Zhang-Suen thinning 

algorithm 

Result of the improve 
Zhang-Suen thinning 

algorithm 

Figure 8: Results of the central lines of blood vessels based on the improved Zhang-Suen thinning algorithm. Input image. Result of the
baseline Zhang-Suen thinning algorithm. Result of the improved Zhang-Suen thinning algorithm.

Input: The central line of the large vessel segmentation result (output central line)
Output: L: List of important nodes in the blood vessels
Step 1. Based on the image of the central line of a large vessel (binary image), we classify each pixel (i, j) into three classes (three labels)

[0, 1, 2] as follows: labelði, jÞ =
0, pixelði, jÞis background ðhave value of 0Þ,
1, pixelði, jÞ is foreground and its two neighbour pixels are foreground,
2, pixelði, jÞ is foreground and it has one or at least three neighbour pixels are foreground:

8>><
>>:

Step 2. Find the important nodes (start, end, and junction nodes)
While pixelði, jÞ ∈ output central line (skeleton image) and labelði, jÞ ==2:
+ Find neighbour object pixels of pixel ði, jÞ that were classified into class 2 (label 2), and then calculate centroid point of them.
+ node ← centroid point
+ L.append(node) (add determined node into List L)

End

Algorithm 2: Detecting important nodes in the blood vessel tree.

(a) Central line image (b) Nodes on skeleton image

(c) Nodes on main vessel segmentation

Figure 9: An example of nodes (starting, end, and junction points) in the blood vessel tree.
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nodes i and j. The width (w) and height (h) of the
window are described by

w = xi − xj
� ��� �� + bias, ð3Þ

h = yi − yj
� ����

��� + bias: ð4Þ

In our experiment, we select a bias of 20 pixels for
obtaining small vessels near node i. The proposed
approach focuses on determining regions of small blood
vessels as summarized in Algorithm 3. Figure 10 describes
an example of a local region that includes small vessels. In
the local region, there exists a large vessel with high inten-
sity and high contrast to the background compared to
small vessels. Thus, we remove the effect of the large vessel
in the window and then apply contrast adjustment based
on image processing to areas that include the small vessels.
Figure 11 presents a contrast enhancement based on image
processing in the small region. Additionally, we apply the
region-based U-net approach to segment these small
vessels.

3. Results and Discussion

3.1. Dataset.All of the experiments were conducted on the X-
ray angiogram database of the coronary vessel, which was
collected and supported by local hospitals. The database con-
tains 48 different vessel images corresponding to two catego-
ries: D1 and D2. The size of each image is 512 × 512 pixels,
with 256 gray levels per pixel. The D1 dataset consists of 20
images that obtain a direct front view of the coronary vessels.

Input: L: List of important nodes in the blood vessels, the central line image (skeleton binary image), label of object pixels.
Output: B: List of rectangles including small blood vessels
Step 1. Find blood vessel segments, edges

Init: edges = ∅
Visit every node of list L:

edge = ∅
Repeat

(i) Find neighbour object pixel (called as nb) of the current node (the pixel with label of 1 in the central line image),
(ii) Update: node = nb,
(iii) edge.append(node)

Until nb∈ L
edges.append(edge)

Step 2. Find the top-left and bottom-right coordinates of rectangle
Init: i =0; B = ∅
For edge ∈ edges:

(i) Find two points, p1 and p2, so that p1 is the top-left point and p2 is the bottom-right point of a rectangle that includes the
largest blood vessel region based on equations (3) and (4).

(ii) B[i].append(p1, p2)
(iii) i = i+1

End

Algorithm 3: Small blood vessel region detection.

(a) A single region (b) Small vessel regions

Figure 10: An example of a region constructed between two nodes.

(a) (b)

Figure 11: An example of contrast enhancement in the region
analysis: (a) input image and (b) result from contrast
enhancement (reproduced from Trinh et al. 2019 [under the
Creative Commons Attribution License/public domain]).

Figure 12: Ground truth of an X-ray angiogram image.
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The D2 dataset includes 28 images taken from four different
angles of the coronary vessels [8].

Our dataset is divided into 40 images for training and
8 images for testing. During the training process, we use
data augmentation methods to enhance the performance
of the segmentation result. This method allows the net-
work to become invariant and robust to certain transfor-
mations when the size of the training set is limited. For
example, rotation, flip, and shear operators are usually
used for convolutional neural networks and yield the
desired invariance and robustness properties of the result-
ing network. In our experiment, the augmentation was
applied using the ImageDataGenerator function imple-
mented in Keras.

3.2. Experimental Environment. In the experiments, we use
the software MIPAR of Sosa [22] to create ground truth in
order to evaluate the performance of the segmentation algo-
rithm. We compute the Dice similarity coefficient [23]
between binary segmentation results and the ground truths
to evaluate the accuracy of our system. Figure 12 shows
a sample image and its ground truth. Our experiments
are implemented on an Intel® Xeon® E5-2630, CPU @
2.3GHz with 128GB RAM, 4 GPU NVIDIA Geforce
GTX 1080Ti - Vram 11GB (CUDA 6.1). The average run-
time of the proposed algorithm to be applied to each
image is 66.67ms. In the large blood vessel extraction pro-
cedure, we use the U-net model with 64 filters for the first
convolutional layer, followed by the ReLU activation func-
tion, we set the learning rate of 1e − 4, and the sigmoid
function is used as the final activation function. The train-
ing process of region-based U-net is similar to that of the
original U-net model. The region-based U-net is a small
version of the original U-net. Particularly, it is modified
with a small number of filters of 16 for the first convolu-
tional layer to deal with small input images (including
small vessel regions). The small vessel regions from the
same original training set are used to train a region-
based U-net model.

In the small blood vessel extraction procedure, we use the
U-net model with 16 filters for the first convolutional layer,
followed by the ReLU activation function, we set the learning
rate of 1e − 4, and the sigmoid function is applied for the final
activation function.

4. Results

This research investigates the coronary vessel segmentation
performance based on the coarse-to-fine strategy-based U-
net for iterative segmentation comprising other approaches.
Figure 13 illustrates a segmentation result of the proposed
approach. We found through experimental analysis that
our method segments the large coronary vessels significantly.
The performance of size-independent coronary vessel seg-
mentation attains 80.17%. Besides, our method reveals a large
number of small and thin blood vessels. Finally, the proposed
approach obtains the average of the performance of coronary
vessel segmentation of 76.40%. We also compare the pro-
posed approach’s performance with the baseline U-net and
the other techniques in [7, 8] on our database. Figure 14
shows a comparison of segmentation results. Table 1
describes a summary of the coronary vessel segmentation
performance in terms of the Dice coefficient. The experimen-
tal results are described as mean ± standard deviation.

From Figure 14 and Table 1, we realize that our method
using the hierarchical approach based on deep learning and
coarse-to-fine strategy obtains better segmentation results
and outperforms the standard approaches. In Figure 14, we
can realize that the DFB-based segmentation [7] leads to
more artifacts and fails to enhance small vessels compared
to our approach correctly. Furthermore, it cannot detect the
small vessels that have low intensity and large vessels with
missing parts. Our method detects the large and small vessels
at the same time; even in the case of existing large difference
in intensity between the large vessels (which are high-
contrast objects) and the small vessels (which are low-
contrast objects), the DFB-based method cannot significantly
extract small vessels. The proposed method in [8] can extract
large blood vessels very well, but it leads to missed extraction
of small and thin vessels and vessels with low contrast to the
background. Experimental analysis indicated that the base-
line U-net yields higher accuracy than the traditional DFB
and Otsu approach. The U-net can obtain very high accuracy
for the main vessels. However, it also leads to missed extrac-
tion of small ones. Our proposed method-based U-net and
coarse-to-fine strategy-based segmentation provide the opti-
mal performance.

Our method is proposed to overcome the problem by
separately detecting the large vessels and small vessels based

(a) (b) (c)

Figure 13: Segmentation result of the proposed approach: (a) input image; (b) ground truth; (c) segmented blood vessels.
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on a hierarchical technique via the U-net model. Because we
consider that the large vessels always have high contrast to
the background than the small vessels, the U-net model is
suitable for extracting them. The coarse-to-fine strategy-
based segmentation guarantees that the method can correctly
extract the large vessels. In the small vessel extraction stage,
we first reduce the effect of large vessels and make a contrast
enhancement on the region that includes small vessels. This
deals with the low-contrast problem on small vessel regions.
When the small vessel regions have increased the contrast,
they were easily detected and segmented by U-net. This is
significant to extract small vessels. The experimental results
show that our method overcomes the limitations of the stan-
dard approaches, such as small vessel intensity and noise sen-
sitivity. It also performs better on real angiography images.

However, most errors occurred while processing small
vessels. These errors cause contrast enhancement based on
an image processing technique and quality of small images.
In particular, the traditional contrast enhancement approach
has errors due to the background enhancement with fewer
artifacts. In our cases, several small vessel images are affected
by illumination and noises, such as low-light conditions and
low contrast. The traditional contrast enhancement
approach cannot deal with all problems leading to reducing
the accuracy of our segmentation system. Figure 15 shows a

small vessel image affected by illumination and contrast
enhancement. Some small vessel branches are missing.

Our research contains other limitations rather than the
dependence on traditional methods for contrast enhance-
ment. There is a limitation in the number of public datasets
of X-ray angiograms of the coronary vessels. Researchers
have limited access to X-ray angiograms of coronary vessel
data. In addition, this research is a proof-of-concept study
and limited by the size of the dataset. Our dataset is consid-
ered small for developing a completed medical image-based
deep learning application. Medical image segmentation-
based deep learning requires sufficient data to obtain higher
accuracy than traditional systems.

5. Conclusions

We introduce an improved coronary vessel segmentation
technique by a hierarchical approach based on the coarse-
to-fine strategy for iterative segmentation using U-net archi-
tecture. Our method not only segments the main blood ves-
sels but also locates and extracts the small and thin vessel
branches. Through experiments results, it has been con-
firmed that our proposed method is effective and can
enhance the performance of vessel segmentation. However,
small vessel images are missing due to enhancing the back-
ground with fewer artifacts when these images are applied
to contrast enhancement based on the traditional image pro-
cessing technique. In the future, we intend to improve the

(a) (b)

(c) (d)

Figure 14: Comparison of the segmentation results: (a) input
image; (b) result in [7]; (c) result in [8]; (d) result of our method.

Table 1: Performance comparison of the coronary vessel
segmentation in terms of Dice coefficient.

Method Dice coefficient (%)

DFB-based segmentation [7] 45:50 ± 1:31%
Coarse-to-fine-based DFB and Otsu [8] 71:34 ± 0:80%
Baseline U-net [10] 73:64 ± 1:32%
Proposed approach 76:40 ± 1:02%

(a) (b)

(c) (d)

Figure 15: Under segmentation error of small vessel image due to
the effect of illumination: (a) input image; (b) contrast
enhancement image; (c) result using U-net; (d) result of our
method.
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results for small and thin vessels by exploiting the superpixel-
based deep learning approach to enhance the quality of small
vessel image and explore other deep learning frameworks for
coronary vessel segmentation and an extended method to
deal with 3D images.
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Background. To evaluate the role of radiomics based on magnetic resonance imaging (MRI) in the biological activity of hepatic
alveolar echinococcosis (HAE). Methods. In this study, 90 active and 46 inactive cases of HAE patients were analyzed
retrospectively. All the subjects underwent MRI and positron emission tomography computed tomography (PET-CT) before
surgery. A total of 1409 three-dimensional radiomics features were extracted from the T2-weighted MR images (T2WI). The
inactive group in the training cohort was balanced via the synthetic minority oversampling technique (SMOTE) method. The
least absolute shrinkage and selection operator (LASSO) regression method was used for feature selection. The machine learning
(ML) classifiers were logistic regression (LR), multilayer perceptron (MLP), and support vector machine (SVM). We used a
fivefold cross-validation strategy in the training cohorts. The classification performance of the radiomics signature was evaluated
using receiver operating characteristic curve (ROC) analysis in the training and test cohorts. Results. The radiomics features
were significantly associated with the biological activity, and 10 features were selected to construct the radiomics model. The
best performance of the radiomics model for the biological activity prediction was obtained by MLP (AUC = 0:830 ± 0:053;
accuracy = 0:817; sensitivity = 0:822; specificity = 0:811). Conclusions. We developed and validated a radiomics model as an
adjunct tool to predict the HAE biological activity by combining T2WI images, which achieved results nearly equal to the PET-
CT findings.

1. Introduction

Hepatic alveolar echinococcosis (HAE) is a parasitic disease
caused by the larvae of Echinococcus multilocularis that par-
asitize the liver [1]. HAE causes lesions that are infiltrative
and may spread to distant regions of the body, impairing
health and may cause death. In its initial stages, HAE is idio-
pathic; thus, most patients are diagnosed late, rendering
them unsuitable for radical resection surgery as they already
have large hepatic lesions with vascular or biliary structure
involvement [2]. The only choice of treatment for patients
who are not candidates for radical resection surgery and
those undergoing palliative resection involves antihydatid
therapy with drugs such as albendazole [3]. However, there

is no well-defined treatment period for HAE, which leads to
long-term medication-associated complications in patients
[4, 5]. Theoretically, the critical indicator for medication ter-
mination involves the absence of biological activity of HAE
lesions; however, this criterion is not clinically feasible. As a
result, assessing the biological activity of the HAE lesions is
vital for the selection and design of treatment methods,
including antiechinococcal chemotherapy for patients before
and after surgery. It is against this background that determin-
ing the state of HAE lesions, whether active or inactive, is the
primary goal of imaging procedures in clinical practice.

Although the proliferation and biological activity of HAE
lesions can be evaluated by CT perfusion, energy CT imag-
ing, and diffusion-weighted MRI [6–9], PET-CT is the most
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prioritized method globally for assessing HAE lesions [10,
11]. However, compared with CT and PET-CT, MRI has
the advantages of having no radiation and being noninvasive.
Moreover, MRI shows better tissue contrast and shows the
small vesicle structure of the lesions [6, 7]. Furthermore,
MRI can detect small lesions in the early stage noninvasively
and does not use radiation; therefore, MRI is used as the pre-
ferred imaging examination for HAE lesions in patients.

Research has shown that radiomics data analysis can pro-
vide vital quantitative imaging information to quantitatively
and objectively analyze tumors and other lesions [12].
Accordingly, radiomics has been successfully applied in the
diagnosis, treatment, and evaluation of multiple tumor types
in the medical field [13–18]. Currently, radiomics research
on HAE is in its early stages. This study is aimed at extracting
high-throughput features through HAE lesion segmentation,
dimensional reduction analysis, and training machine learn-
ing to establish prediction models for prognosis, diagnosis,
and monitoring of HAE lesions in patients.

2. Materials and Methods

2.1. Data Collection. This was a retrospective study in a single
institution, approved by the Medical Ethics Review Commit-
tee of the First Affiliated Hospital of Xinjiang Medical Uni-
versity, and exempted from informed consent. From
January 2012 to June 2020, 156 patients with HAE were
admitted and diagnosed at the First Affiliated Hospital of
Xinjiang Medical University. In this study, the PET-CT find-
ings were considered as the “gold standard” to assess whether
the lesions have biological activity or not. After that, a predic-
tive model based on MRI was constructed to predict the bio-
logical activity of HAE lesions as a basis for prognosis,
diagnosis, and monitoring of HAE lesions in patients. HAE
patients (confirmed by imaging and postoperative pathol-
ogy) who underwent abdominal MRI scan and PET-CT
examination (images were transferred to PACS), with no his-
tory of chronic liver disease, with no previous history of liver
surgery, and with no primary solitary space-occupying lesion
were included. Conversely, HAE patients whose MRI and
PET-CT image quality were poor (n = 2); whose PET imag-
ing results were lacking (n = 15); who had extensive fibrosis,
nodules, or old lesions in the liver (n = 1); and who previ-
ously confirmed and were already treated by surgical inter-
vention (n = 2) were excluded. As a result, 136 patients
were enrolled in this study. According to the results of
PET-CT, the patients were divided into the active group (90
cases) and the inactive group (46 cases).

2.2. Image Data Acquisition. In this study, MRI was per-
formed using the Siemens 3.0T (Skyra) or 1.5T (Avanto)
MR scanner with an 18/8-channel phased array body coil.
All patients were asked to fast for about six hours before
scanning, after which they underwent upper abdomen MRI
examination in the supine position. All patients underwent
MR imaging with T1-weighted, T2-weighted, and fat-
suppressed T2-weighted image delineation. The MR imaging
protocol was slightly adjusted due to different devices causing

minor adjustments to the parameters. The MR scan
sequences were as follows:

(1) 3.0T

(a) T1WI: TR/TE = 400/8:0ms; FOV = 320mm ×
320mm; matrix = 320 × 192; NEX = 2:0; ST =
3:0mm

(b) T2WI: TR/TE = 4000/125ms; NEX = 4:0; slice
thickness = 3:0mm

(2) 1.5T

(a) T1WI: TR/TE = 200/4:5ms; matrix = 204 × 256

(b) T2WI: TR/TE = 3500/100ms

After the acquisition of 3D data, the attenuation correc-
tion of the PET image was performed based on the CT image,
and the corrected PET image was automatically fused with
the CT image to obtain axial, coronal, sagittal, and PET-CT
fusion images. Two nuclear medicine doctors with more than
ten years of experience in the diagnosis of PET-CT examined
the images. In case of disagreement, the negotiated results
were considered. According to the information provided by
the MRI images, the SUV value was measured at the corre-
sponding position. For each patient, two independent exam-
inations were performed and completed within a week.

2.3. Radiomics Workflow. Figure 1 illustrates the radiomics
workflow adopted in this study. It included image collection;
lesion segmentation; and radiomic feature extraction, selec-
tion of features, construction of models in the training
cohorts, and evaluation of the performance of prediction
models in the test cohorts.

2.4. Image Preprocessing and HAE Lesion Segmentation.
T2WI data in DICOM format is uploaded to the Radcloud
platform (version 3.1.0, http://radcloud.cn/, Huiying Medical
Technology Co., Ltd., Beijing, China). As MR scanning with
different field intensities is used, image preprocessing is
required to obtain more robust radiomics features. Image
preprocessing consists of two steps.

Step 1.We used the following formula to normalize the inten-
sity of the image to minimize the change in MRI intensity
collected by machines with different parameters (i is the orig-
inal intensity; FðiÞ shows the normalized intensity; μi is the
mean value of the image intensity values; σi indicates the
standard deviation of the image intensity values; and s is an
optional zoom and is set to 1 by default). Normalization is
for the whole image, not just the region of segmentation.

F ið Þ = s i − μið Þ
σi

: ð1Þ

Step 2. In order to eliminate the intrinsic dependence of
radiomics features on voxel size, the resampling method with
a linear interpolation algorithm was used to normalize voxel
size.
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As shown in Figure 2, to obtain the volume of interest
(VOI) for further analysis, four radiologists manually delin-
eated the region of interest (ROI) along the edge of the lesion,
layer by layer, on each T2WI. All depicted regions of interest
(ROI) in T2WI were strictly delineated with the same criteria
and visually validated by the same expert (with 10 years of
experience in abdomenMRI). Then, the 3D VOI of the lesion
is generated automatically by computer interpolation.

2.5. Feature Extraction. In this study, the “pyradiomics”
package (version 2.1.2, https://pyradiomics.readthedocs.io/)
in Python was used to extract 1409 radiomics features in

the VOI of each T2WI. The features can be divided into
four categories: shape features, first-order gray histogram
features, second-order texture features, and higher-order
features based on filter transformation. Shape features
(n = 14) reflect the three-dimensional size and shape of a
given VOI, including mesh volume, surface area, surface
area to volume ratio, sphericity, compactness and spherical
disproportion, elongation, and flatness. First-order gray
histogram features (n = 18) reflect the overall information
of the histogram, including energy, minimum, 10th/90th
percentile, maximum, mean, median, standard deviation,
range, mean absolute deviation, and entropy. Second-

5-fold cross-validation

Training cohorts Test cohorts

Feature
extraction 1409

Feature

Group 1: first-order statistics (n = 18)
Group 2: shape features (n = 14)
Group 3: texture features (n = 75)
Group 4: higher-order statistical features (n = 1302)

Feature
preprocessing

Smote

Feature normalization

Lasso

Feature selection

Optimal features

Model
construction

Classifiers

LR MLP SVM

Prediction
performance

evaluation

0

1

2

3

4

1 2 3 4

0 2 3 4

0 1 3 4

0 1 2 4

0 1 2 3

136 VOIs

0 1 2 3 4

Image collection
and lesion

segmentation

Figure 1: Illustration of the radiomics workflow adopted in this study. Note: SMOTE (synthetic minority oversampling technique); LASSO
(least absolute shrinkage and selection operator); LR (logistic regression); MLP (multilayer perceptron); SVM (support vector machine).
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order texture features include the gray-level cooccurrence
matrix (GLCM, n = 24), gray-level size zone matrix
(GLSZM, n = 16), gray-level dependence matrix (GLDM,
n = 14), neighborhood gray-level dependence matrix
(NGLDM, n = 5), and gray-level run-length matrix
(GLRLM, n = 16). The second-order texture features can
respond to the image pixels at a certain level of relative
distribution from the side, so they expound the complexity
and heterogeneity within the lesion. High-order filter
transform features (n = 1302) also include the original
image through the filter transform to get the intensity
and texture feature, through the neighborhood grayscale
difference matrix and gray areas such as the size of the
matrix computation, using seven kinds of filters: logarithm

filter, exponential filter, gradient filter, square filter, square
root filter, local binary pattern (LBP) filter, and wavelet fil-
ter. Features are compliant with definitions as defined by
the Imaging Biomarker Standardization Initiative (IBSI)
[19].

2.6. Subsampling. The experiment took into account the
imbalance between the active and inactive HAE groups,
which does not satisfy the balanced endpoint hypothesis of
most machine learning-based prediction models. To tackle
this problem, we use the synthetic minority oversampling
technique (SMOTE) for subsampling. It is important to note,
however, that the synthesized new data appears only in the
training cohorts and not in the test cohorts.

(a) Active T2-weighted image delineation in a

47-year-old male HAE patient

(b) Inactive T2-weighted image delineation in a

39-year-old female HAE patient

(c) A 47-year-old male HAE patient with active

computer-generated 3D VOI

(d) 39-year-old female HAE patient without active

computer-generated 3D VOI

Figure 2: A representation of the manual segmentation in the T2-weighted images.
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2.7. Feature Selection and Model Construction. Prior to the
steps of feature selection, because the range of radiomics fea-
tures of different properties varies greatly, the normalization
of radiomics features ensures the convergence of the training
model. At the same time, in order to avoid model overfitting,
fivefold cross-validation was performed during the experi-
ments. In each fold of the training cohorts, the least absolute
shrinkage and selection operator (LASSO) feature selection
algorithm was used to select the relevant features and calcu-
late the correlation coefficient of the selected features. The
ten most valuable features with the highest correlation coeffi-
cient are retained as the final feature subset.

We used multiple ML algorithms to test the impact of dif-
ferent machine learning models on the predictive perfor-
mance, including logistic regression (LR), multilayer
perceptrons (MLP), and support vector machine (SVM).
We developed diagnostic classifiers based on quantitative
image grouping features (by using the T2WI features selected
from the training queue) and quantitative radiomics features
(by using the T2WI features selected in a training cohort).
The evaluation indicators included the receiver operating
characteristic curve (ROC curve) with indices of area under
the curve (AUC), 95% confidence level (95% CI, AUC), accu-
racy, sensitivity, and specificity.

2.8. PET-CT Observation Items and Evaluation Criteria. The
standardized uptake value (SUV) was calculated automati-
cally by semiquantitative analysis in the workstation to judge
the FDG uptake of the lesions according to the SUV value.
Prior to analysis for measurement of SUV values, the basic
information of each case and the location, size, and Kodama
classification of the lesions were registered in detail to ensure
that the lesions measured on PET-CT images and those seg-
mented on MRI were one lesion. Most of the HAE lesions
showed elevated cyclic glucose metabolism on PET-CT, and
no hyperglycemia was found in the lesions. If the SUV of
the lesion is higher than that of the surrounding liver at the
same plane, the lesion is judged to be active; if the SUV value
of the lesion is lower than that of the surrounding liver, the
lesion is not active.

2.9. Statistical Analysis. The study was performed using the
programming language Python 3.6 (https://www.python
.org/). The packages of “pyradiomics” (https://pyradiomics
.readthedocs.io/), “scikitlearn” (https://scikit-learn.org/),
and “matplotlib” (https://matplotlib. org/) were used for fea-
ture selection, model building, and plotting in this study.
Another statistical analysis was performed with SPSS 17.0
and MedCalc15.2.2. P value < 0.05 was considered statisti-
cally significant. ROC curve analysis was used to evaluate
the diagnostic performances of ML classifiers.

3. Results

3.1. Demographic Data of the HAE Patients. Among the 136
patients, there were 64 males (47%) and 72 females (53%),
with an average age of 39 ± 13 years. They were comprised
of the Kazakh, Uygur, Han, and Tibetan ethnic groups. There
was no significant difference in gender, age, lesion location,

lesion size, and other clinical characteristics between the
observation group and the control group (P > 0:05; Table 1).

3.2. Feature Selection of Radiomics. In this study, 1409 fea-
tures were obtained from each T2WI VOI image, and the
data were divided into five groups of different training and
test sets using a fivefold cross-validation method (the data
set was divided into 5 parts, 4 of which were training sets
and 1 was a test set). The dimensionality of each training
set was analyzed by the LASSO method, which adopted a
10-fold intragroup cross-validation strategy, and the maxi-
mum iteration times of the model. To avoid model overfit-
ting problems caused by a high-feature dimension, an alpha
with the least mean square error in cross-validation was
selected, and the corresponding correlation coefficient was
calculated. The absolute value of the correlation coefficient
was further determined by ranking the correlation coeffi-
cients of features for groups with more than 10 features after
LASSO feature screening. The 10 characteristics of HAE
lesions are shown in Table 2.

A bar graph was constructed using the sum of the best
feature coefficients in the 5 groups of experiments with five-
fold cross-validation, as shown in Figure 3. The results
showed that optimal features were the first-order statistical
features (n = 2) and texture features (n = 1) on the original
image. Also, optimal first-order statistical features (n = 16)
and texture features (n = 29) after wavelet transformation of
the first-order statistical features of the maximum operator
(wavelet-HLH_firstorder_Maximum) were obtained. The
results suggested that cumulative maximum correlation coef-
ficients can be used as biomarkers for effective radiomics to
assess HAE characteristics.

3.3. Diagnostic Performance of the Radiomics Models. A vari-
ety of machine learning algorithms were used to train the
model using a fivefold cross-validation procedure. Figures 4
and 5 show the ROC curves of the three machine learning
classifier models. Tables 3 and 4 summarize the diagnostic
performance and model cutoff values of the three machine
learning classifier models. In general, all three machine

Table 1: Demographic data of the HAE patients.

Patient attributes
Active
group

Inactive
group

P
value

n 90 46

Age (mean ± SD, yr) 39 ± 13 38 ± 14 0.847

Gender 0.816

Male 43 21

Female 47 25

Location of lesions 0.264

Less than 3 liver segments 18 14

3-6 liver segments 67 28

More than 6 liver
segments

5 4

Lesion size (mm3) 1388844.180 1357771.448 0.926
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learning classifier models performed well. The average AUC
of the test cohorts was higher than 0.800. The MLP had the
best discrimination for HAE characteristic prediction. The
mean AUC of the training cohorts was 0:925 ± 0:057, with
a mean accuracy of 0.866. The mean sensitivity was 0.883,
while the mean specificity was 0.889. Besides, the mean
AUC of the test cohorts was 0:830 ± 0:053, with a mean accu-
racy of 0.817. The mean sensitivity was 0.822, and the mean
specificity was 0.811.

4. Discussion

Hepatic alveolar echinococcosis (HAE) is a rare disease, often
known as “worm cancer,” affecting the liver [20]. Compared
with cystic echinococcosis (CE), HAE is by far more severe in
affected patients. Despite the marked healthcare improve-
ments in the western agricultural and pastoral regions of
China, and the rising national health examination rates, the
early detection rates of HAE cases continue to rise at an
alarming rate [21, 22]. In the past, radical resection surgery
was the first choice for patients with HAE [23]; however, with
early diagnosis of lesions and the progress of treatment,
choosing the treatment with less trauma and fewer complica-
tions can better reflect the humanistic care for the patients
[24–26]. Therefore, it is imperative to accurately evaluate
and analyze the biological activity of the lesions for better

medical care. However, conventional imaging examinations
are not sufficient to accurately and quantitatively evaluate
the disease.

Invasive diagnostic methods, such as biopsy examina-
tions, only obtain a small part of the lesion tissue, which
may not fully reflect all characteristics of the lesion, and
therefore, offer insufficient information. To date, a robust,
noninvasive, affordable, and accessible method of evaluating
and monitoring HAE lesions has not been developed. The
rapid development of artificial intelligence, especially radio-
mics, in the field of radiology, in recent years, has presented
unprecedented opportunities for the assessment of HAE
lesions. Radiomics, which performs the high-throughput
information extraction, yields robust and valuable data more
reliably than visual observation. However, the research on its
potential application in the diagnosis and treatment of HAE
lesions is still in its initial stages.

The main pathological manifestations of HAE lesions are
liquefaction, necrosis, calcification, and solid areas. Micro-
scopically, numerous small vesicles are observed at the edge
of the solid areas of the lesions. Many inflammatory cells,
eosinophils, necrotic areas, new capillaries, and other struc-
tures are evident around the vesicles. The small vesicles con-
tinue to proliferate and erode the surrounding normal liver
tissue. There are granulomatous reactions around HAE
lesions characterized by fibrous tissue hyperplasia;
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Figure 3: Cumulative graph of optimal feature coefficients of 5-fold cross-validation.
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Figure 4: Continued.
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infiltration of eosinophils, lymphocytes, and foreign body
giant cells; and observable formation of alveolar echinococ-
cosis nodules. This area is regarded as the bioactive part of
HAE lesions. Therefore, internal vascularization and fibrosis
of HAE lesions appear alternately and constitute the basic
pathological changes of alveolar echinococcosis lesions in
different periods [27–29].

Compared with CT and ultrasound images, MRI images
can more accurately display the active part of the lesions,
which can significantly reduce errors of manual operation
for early imaging procedures. Besides, PET-CT has the char-
acteristics of both anatomical morphology and functional
metabolic imaging. It detects the status of glucose metabo-
lism in parasites and indirectly interferes with the prolifera-
tive activity of lesions. The 18F-FDG PET-CT reflects the
metabolism of the lesions through the semiquantitative index
(SUV) value to determine biological activity in HAE lesions.
Therefore, the 18F-FDG PET-CT shows the active areas of
lesions that cannot be detected by traditional imaging exam-
inations [30–32].

In this study, PET-CT showed that the FDG uptake pat-
tern of HAE lesions was located in marginal areas, and most
of them were semicircular and nodular, which was consistent
with the distribution characteristics of small vesicles on MRI
images. According to the study of Kodama et al. [33], in the
early stage of HAE, a parasitic cyst manifests as a small vesi-
cle structure. The formation of the germinal layer into a ves-
icle is among the two important larval development stages.
Small vesicles structurally surround the granulation tissue,
thus stimulating and mediating host immune responses
[34]. The immune cells can absorb FDG, but the vesicles
can not, thus indicating the biological activity of lesions. It

could be better explained that 18F-FDG in PET-CT is mainly
concentrated at the margin of the lesion rather than the small
vesicles.

This study suggests that an imaging model based on the
combination of radiomics features and machine learning
methods might improve the accuracy of noninvasive diagno-
sis and serve as a valuable guide in clinical decision-making
[35–37]. The construction of the HAE activity prediction
model based on MRI radiomics features to evaluate the activ-
ity of HAE lesions does not use radiation, has high economic
efficiency, and has high consistency with PET-CT, which
would be an indispensable evaluation method for the diagno-
sis and treatment of HAE in the future.

In this study, conventional T2WI imaging features were
extracted, and dimensionality reduction analysis was carried
out by the LASSO regression algorithm to select the features
that could best reflect the difference in HAE activity. The
purpose of the LASSO method was to minimize the cost
function and to obtain all features with nonzero coefficients,
which would improve the interpretation and prediction
accuracy of the model. The selected optimal feature subset
contained a large number of first-order statistical features
and texture features. The first-order statistical features reflect
the internal voxel intensity of the lesions, and the texture fea-
tures reflect the gray distribution characteristics in dimen-
sional space, suggesting the heterogeneity of the lesions.
Among them, the maximum intensity descriptor (wavelet-
HLH_firstorder_Maximum, P = 0:00167, U test) appeared
in five groups of experiments simultaneously showing the
highest cumulative correlation. This indicates the heteroge-
neity of composition or distribution in HAE lesions by the
maximum gray level intensity within the VOI and may be
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Figure 4: The ROC curves of the LR, MLP, and SVM machine learning classifiers in the training cohorts: (a) LR, (b) MLP, and (c) SVM.
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Figure 5: The ROC curves of the LR, MLP, and SVM machine learning classifiers in the test cohorts: (a) LR, (b) MLP, and (c) SVM.

Table 3: Diagnostic performance of machine learning-based MRI radiomics classifiers to assess the bioactivity of HAE lesions in the training
cohort.

AUC Accuracy Sensitivity Specificity 95% CI, AUC Cutoff

LR

0-fold 0.898 0.868 0.861 0.875 0.836-0.942 0.517

1-fold 0.861 0.806 0.903 0.708 0.793-0.913 0.436

2-fold 0.855 0.819 0.819 0.819 0.786-0.908 0.484

3-fold 0.822 0.757 0.889 0.625 0.750-0.881 0.392

4-fold 0.842 0.778 0.708 0.847 0.772-0.898 0.563

Mean 0:855 ± 0:025 0.806 0.836 0.775 0.750-0.942

MLP

0-fold 0.900 0.875 0.847 0.903 0.839-0.944 0.544

1-fold 1.000 1.000 1.000 1.000 0.975-1.000 0.834

2-fold 0.991 0.958 0.986 0.931 0.958-1.000 0.387

3-fold 0.861 0.778 0.778 0.778 0.793-0.913 0.527

4-fold 0.888 0.819 0.806 0.833 0.825-0.935 0.488

Mean 0:925 ± 0:057 0.886 0.883 0.889 0.793-1.000

SVM

0-fold 0.898 0.868 0.861 0.875 0.836-0.942 0.517

1-fold 0.861 0.806 0.903 0.708 0.793-0.913 0.436

2-fold 0.855 0.819 0.819 0.819 0.786-0.908 0.484

3-fold 0.822 0.757 0.889 0.625 0.750-0.881 0.392

4-fold 0.842 0.778 0.708 0.847 0.772-0.898 0.563

Mean 0:907 ± 0:037 0.806 0.836 0.775 0.750-0.942
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used as an effective imaging biomarker to evaluate the activ-
ity of HAE lesions.

Considering that the performance of some classifiers
may vary with different lesions, we employed three
machine learning methods with different computing mech-
anisms to construct a biological activity prediction model
of HAE lesions. Both LR and SVM are linear classification
algorithms if the kernel function is not considered. How-
ever, SVM only considers the points near the local bound-
ary line, while LR considers all. MLP is a generalization of
a single-layer perceptron, which could solve the nonlinear
problems that a single-layer perceptron could not solve
[38]. In this study, the MLP training cohorts showed a
promising AUC of 0.928. Generally, the three models per-
formed well, and the average AUCs of the test cohorts
were higher than 0.800. This also suggests that MRI
images have higher tissue resolution and could reflect the
internal heterogeneity of the lesions better.

Also, the results showed significantly improved model
sensitivity and specificity after the data ratio of the active
group and the inactive group was balanced by the SMOTE
algorithm. The SMOTE algorithm is an enhanced sam-
pling method. Computation for new synthetic sampling
is based on Euclidian distance for variables, rather than a
simple oversampling [39]. It has been shown that SMOTE
is robust to the variation of unbalanced ratio with various
classifiers.

Nevertheless, the present research has several limitations.
First, it is a single center study with a small sample size; fur-
ther expanding the sample size and carrying out a multicen-
ter study to improve the effectiveness of the model is needed.
Second, the retrospective nature of this study, the long
period, the incomplete clinical data, the manual segmenta-
tion of lesions, subjectivity, the inevitable existence of selec-
tive bias, and the results of different personnel calibration
may affect the establishment of the model. Third, the radio-
mics model of HAE lesions based on MRI features needs fur-
ther discriminant analysis with intrahepatic neoplasia and
tumor with poor blood supply. Finally, the diagnostic effi-
ciency of the radiomics model of HAE activity needs to be
further compared with Kodama classification and Graeter
classification.

5. Conclusions

In conclusion, T2WI-based imaging features and machine
learning models can evaluate the biological activity of HAE
lesions, which is helpful for the selection and monitoring of
clinical treatment methods.
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Table 4: Diagnostic performance of machine learning-based MRI radiomics classifiers to assesses bioactivity of HAE lesions in the test
cohort.

AUC Accuracy Sensitivity Specificity 95% CI, AUC

LR 0:809 ± 0:046 0.794 0.778 0.811 0.565-0.959

MLP 0:830 ± 0:053 0.817 0.822 0.811 0.571-0.960

SVM 0:804 ± 0:035 0.794 0.778 0.811 0.565-0.959
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The segmentation of a skin lesion is regarded as very challenging because of the low contrast between the lesion and the
surrounding skin, the existence of various artifacts, and different imaging acquisition conditions. The purpose of this study is to
segment melanocytic skin lesions in dermoscopic and standard images by using a hybrid model combining a new hierarchical K
-means and level set approach, called HK-LS. Although the level set method is usually sensitive to initial estimation, it is widely
used in biomedical image segmentation because it can segment more complex images and does not require a large number of
manually labelled images. The preprocessing step is used for the proposed model to be less sensitive to intensity inhomogeneity.
The proposed method was evaluated on medical skin images from two publicly available datasets including the PH2 database
and the Dermofit database. All skin lesions were segmented with high accuracies (>94%) and Dice coefficients (>0.91) of the
ground truth on two databases. The quantitative experimental results reveal that the proposed method yielded significantly
better results compared to other traditional level set models and has a certain advantage over the segmentation results of U-net
in standard images. The proposed method had high clinical applicability for the segmentation of melanocytic skin lesions in
dermoscopic and standard images.

1. Introduction

Melanoma is a dangerous skin cancer that mostly appears in
pigmented cells (melanocytes) in the skin. It is a major cause
of death associated with skin cancer [1]. Early diagnosis of
melanoma is essential because early-stage detection and
proper treatment increase the survival rate [2, 3]. Melanoma
is mostly detected by expert dermatologists through visual
inspection using the naked eye alone with a diagnostic accu-
racy of about 60% [4, 5].

Clinical images are normally obtained using digital cam-
eras. However, the imaging conditions are frequently incon-
sistent because images are acquired from different distances
or under variable illumination conditions. These may lead
to problems when the size of the lesion is too small. Dermo-
scopy, a technique whereby a hand-held device is used to
detect a mole and inspect the underlying skin, is better than

unaided visual inspection and increases the sensitivity of
detection by 10-30% [6]. Nevertheless, the within- and
between-observer concordance is very low, even for expert
clinicians [7]. An additional problem is related to the pres-
ence of intrinsic noise and artifacts, such as hair, blood ves-
sels, air bubbles, and frames; variegated colors inside the
lesion; and the lack of distinct boundaries to the surrounding
skin [8]. These make it difficult to distinguish the skin lesion
[9]. Thus, a growing interest has developed in the computa-
tional analysis of skin lesion images to assist clinicians in dis-
tinguishing early melanoma from benign lesions [10].

The first step in the computerized analysis of skin lesion
images is the segmentation of the lesion. The segmentation
of skin lesions from the surrounding skin is essential to pro-
vide important information for an accurate analysis of skin
lesions and to extract important clinical features such as
atypical pigment networks, blue-white areas, and globules
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[11, 12]. Moreover, this step is the key process by which
lesion diameters are quantified and the extent of border irreg-
ularities are evaluated. Effective methods have been proposed
to improve the segmentation accuracy.

Active contour-based medical image segmentation, such
as a level set, is a well-established approach [13]. It was first
introduced by Osher and Sethian. Level set evolution, which
is established on partial differential equations and dynamic
implicit interfaces, has been widely used in the field of med-
ical image segmentation. Silveira and Marquez [13], Nour-
mohamadi and Pourghassem [14], and Li et al. [15] used
the level set method with clustering-based initial estimation
models, such as the Otsu thresholding, weighting combina-
tion of fuzzy C-mean and K-means, and spatial fuzzy cluster-
ing. The level set method is an efficient way to identify low
contrast boundaries [16]. Schmid [17] presented a color
clustering-based technique with a modified version of fuzzy
C-means clustering. Donadey et al. [18] also detected a bor-
der by using the intensity component of hue-saturation-
intensity (HSI) space. However, traditional models such as
the region-based active contour model often failed when
applied to images containing inhomogeneities. These are
very sensitive to parameter tuning [16]. Recently, machine
learning algorithms, including deep learning architectures,
such as Residual net [1] or U-net [9], have emerged as reli-
able segmentation methods for skin lesion images. However,
these algorithms can deal with inhomogeneities but require
postprocessing and a large training set [16]. Some cases still
show a low performance of skin lesion segmentation due to
very low contrast and hair artifacts in skin lesion images
[8]. These make it hard to train effectively deep networks
with a large number of parameters [1].

To tackle the abovementioned problems, a hybrid model
which integrates unsupervised learning with a region-based
active contour model is proposed in this study. The proposed
method combined the hierarchical K-means clustering and
level set methods. This model thus can be less sensitive to
parameter controlling of the level set model and to intensity
inhomogeneity. The rest of this study was organized as fol-
lows. Section 2 introduces the overall processes used in the
segmentation: (a) preprocessing, (b) segmentation, and (c)
performance evaluation. Sections 3 and 4 provide the exper-
imental results and discussions, respectively. Finally, Section
5 concluded the paper and identified future directions.

2. Materials and Methods

To segment a melanocytic skin lesion accurately, the pro-
posed method was implemented through four steps: image
acquisition, preprocessing, a two-stage segmentation model,
and postprocessing. The statistical significance of the sug-
gested method was evaluated by the Jaccard index, the Dice
coefficient, sensitivity, and other measures. Figure 1 shows
an overall flowchart of the suggested approach for the seg-
mentation of each skin lesion. The detailed procedures are
described below.

2.1. Image Acquisition. This study used dermoscopic and
standard images from the following two dermatology atlases:

(1) The PH2 data [19] is a dataset that includes 200 der-
moscopic images, including 40 malignant melano-
mas and 160 melanocytic nevus (80 common nevi
and 80 atypical nevi) at 768 × 560 resolution, col-
lected by a group of researchers from the Technical
Universities of Porto and Lisbon in the Dermatology
Service of Pedro Hispano Hospital. Each image has 8-
bit red, green, and blue (RGB) channels.

(2) The Edinburgh Dermofit Image Library [20] is a
dataset that includes high-quality skin lesion images
(1,300 biopsy-proven cancers and moles) collected
across 10 different classes, including 331 melanocytic
nevus images and 76 malignant melanoma images.
The images are snapshots of the skin lesions sur-
rounded by normal skin captured using a Canon
EOS 350D SLR camera with a pixel resolution of
about 0.03mm.

Figure 2 shows the sample images with different artifacts
and aberrations. The skin images obtained from these atlases
were annotated by expert dermatology resource providers.
All images were allocated to diagnosis labels and binary seg-
mentation masks that denote the lesion area. In the binary
segmentation mask, the pixels outside the lesions were
assigned pixel intensity values of 0 and pixels inside the lesion
were assigned pixel intensity values of 255. 116 images of
malignant melanoma and 491 images of melanocytic nevus
were acquired from two different atlases (Table 1).

2.2. Preprocessing. Dermoscopic and standard images usually
contain artifacts such as illumination variations, dermo-
scopic gel, air bubbles, and outlines (hair, skin lines, vignett-
ing around the lesion, ruler markers, and blood vessels).
These artifacts can attenuate the accuracy of border detection
and increase computational time. As a result, there is a need
for robust methods to attenuate artifacts. To do this, the first
step of this study is to create an image that converts the image
into a different color space and removes artifacts including
hair, vignetting around the lesion, and ruler markings as
shown in Figure 3.

All skin images are RGB-colored images, which are the
combination of gray values from the individual R, G, and B
channels [21]. This color space is not as sensitive as human
vision. The segmentation of skin lesions on RGB-colored
images is difficult because of the influence of the pixel inten-
sity [10]. Specifically, a skin lesion is likely to show different
visual colors due to various conditions, such as illumination
variations and low contrast between the skin lesions and a
surrounding skin region. The RGB-colored images were con-
verted to International Commission on Illumination (CIE)
L ∗ a ∗ b color space to clearly detect the color differences
between the skin lesion and the background skin. In the
CIE L ∗ a ∗ b color space, L indicates the luminance (light-
ness) and a and b are chromaticity coordinates. The a axis
represents a complementary color of the green-red compo-
nent, and the b axis represents a complementary color of
the blue-yellow component [22]. After color space trans-
forming, only both of the two channels (a and b) were
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extracted and the lightness channel was excluded. The histo-
gram equalization was applied to only two channels. Finally,
we created a new 3-channel fusion image that reduces the
illumination variations and skin color difference.

After the first step, maximum filters with a 5 × 5 kernel
were also applied before the border detection to remove
noise, such as hair and air bubbles. Vignetting around the
image was removed by extracting the largest blobs in the
binary image.

2.3. A Hybrid Two-Stage Segmentation Model. After prepro-
cessing, a hybrid two-stage model was constructed for the
segmentation of a melanocytic skin lesion. To obtain an ini-
tial contour mask of a melanocytic skin lesion area, the
hybrid HK clustering was implemented first. Secondly, the
Distance Regularized Level Set Evolution (DRLSE) was used
to segment the fine border of the lesion. The detailed lesion
segmentation step is described below.

2.3.1. Hybrid Hierarchical K-Means Clustering (HK
Clustering). The basic concept of HK is to recursively split
the dataset into a tree of clusters with predefined branches
at each node. There are two approaches to hierarchical clus-
tering. One is the top-down technique, and the other one is
the bottom-up technique [23–25]. The top-down is more

efficient than bottom-up because of the fast task and greedy
attributes, meaning that it cannot cross the boundaries
imposed by the top level [26, 27]. In other words, nearby
points may end up in different clusters. The proposed
method was a modified version of the top-down approach
by Chen et al. [24]. At first, the data starts as one combined
cluster. Next, the cluster splits into distinct parts of K1
according to some degree of similarity (level 1). Finally, the
clusters separate into distinct parts of K2 again and again
until the clusters only contain some small fixed number of
points (level 2). Figure 4 shows a visualization of the hybrid
HK clustering used in this study. Kn represents the number
of clusters at the hierarchical level of n. The optimal number
of clusters were set toK1 of 2 at level 1 and K2 of 3 at level 2 as
shown in Figures 4(b) and 4(c). The number of iterations for
each level of K-means was set to 20. The squared Euclidean
distance measure was adopted for a similarity function.

2.3.2. A Fine Border Segmentation Based on DRLSE Model.
To segment the fine border of the melanocytic skin lesion,
the DRLSE, which is one of the level set evolution
approaches, was employed. The traditional level set methods
consider the front as the zero-level set of an embedded func-
tion on a track moving front, called the level set function
(LSF) [28–31]. The objects were detected in a given image

Image acquisition
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a and b 
channels

`
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equalization
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I21
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Figure 1: Overall flowchart of the proposed scheme for the segmentation of each skin lesion image in dermoscopic and standard images.
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(a) (b)

(c) (d)

Figure 2: Continued.
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(e) (f)

(g) (h)

(i) The samples of dermoscopic images (PH2) are

shown in (a), (c), (e), (g), and (i)

(j) The samples of standard images (Dermofit) are

shown in (b), (d), (f), (h), and (j)

Figure 2: Illustrative examples of dermoscopic images (a, c, e, g, and i) and standard images (b, d, f, h, and j).
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by curve evolution [32]. To stop the curve evolution, the tra-
ditional level set method is influenced by the gradient of the
given image by changing the LSF value. However, the LSF
typically develops irregularities during its evolution in con-
ventional level set formulations, which make an impact on
numerical errors and eventually destroy the stability of the
evolution [33]. Thus, to eliminate the need for reinitialization
and avoid numerical errors, the DRLSE was employed to seg-
ment the fine border of the melanocytic skin lesions.

Each border of a skin lesion image can be regarded as the
zero-level set of an LSF. Although the final segment result of
the level set method is the zero-level set of the LSF, it is essen-
tial to maintain the LSF in a balanced state. This requirement
can be satisfied by using signed distance functions with the
unique property of j∇ϕj = 1, which is referred to as the signed
distance property.

Given the LSF ϕ : Ω→R in a rectangular domain, the
energy function EðϕÞ is defined by

E fð Þ = μRp fð Þ + Eext fð Þ, ð1Þ

where ϕ is the level set function, and RpðϕÞ and ΕextðϕÞ indi-
cate the level set regularization term and external energy
function, respectively. μ > 0 is a constant, and the level set
regularization term RpðϕÞ can be defined by

Rp ϕð Þ ≜
ð
Ω

p ∇ϕj jð Þdx, ð2Þ

where p indicates the potential function (p : ½0,∞�→R).
The energy ΕextðϕÞ is designed to achieve a minimum value
when the zero-level set of the skin lesion is located at the
desired position. Moreover, the edge indicator function g is
stated by

g =
1

1 + ∇ Gσ ∗ Ið Þj j2 , ð3Þ

where I is the image Iðx, yÞwith a smoothing Gaussian kernel
Gσ, and σ is the standard deviation. The edge indication
function stops the level set evolution when the zero-level set
of the skin lesion approaches the optimal position. The
energy functional EðϕÞ is determined by

E fð Þ = μRp fð Þ + λAg fð Þ + αBg fð Þ, ð4Þ

where λ > 0 and α represent the coefficients of the energy
functions ΑgðϕÞ andΒgðϕÞ, which can be written as follows:

Ag ϕð Þ ≜
ð
Ω

gδ ϕð Þ ∇ϕj jdx, ð5Þ

Bg ϕð Þ ≜
ð
Ω

gH −ϕð Þdx, ð6Þ

where δ and H represent the Dirac delta function and the
Heaviside function, respectively. Since a signed distance
function is used as the initial level set function (ϕ0) in the
standard level set and initialization should be done periodi-
cally to retain a stable evolution of zero level set function,
the computational cost of these methods is high [34]. The
level set evolution is derived as the gradient flow that mini-
mizes an energy functional with a distance regularization
term and an external energy that drives the motion of the
zero-level set toward the desired location. The distance regu-
larization term is defined by a potential function which
includes a unique forward-and-backward (FAB) diffusion
effect [33]. For instance, when the initial borders were located
outside of the desired borders, alfa was set to a positive value
to force the zero-level set to shrink toward the region of inter-
est. In contrast, alfa was assigned a negative value to expand
the borders when the initial borders were located on the
inside. The detailed equation has been described previously
[33].

The DRLSE parameters were set as follows: a constant
controlling the gradient strength of the initial LSFðc0Þ of 3,
a coefficient of the weighted length term (λ) of 5, a width of
the Dirac delta function (δ) of 1.5, a coefficient of the distance
regularization term (μ) of 0.02, a time-step of 8, and a stan-
dard deviation of the Gaussian kernel (σ) of 1.5. The initial
LSF (R0) of this study was automatically detected by using
the results of the HK clustering as shown in Figure 5. A set
of if-then rules were applied to optimize the parameters at
different conditions of images. An α, the coefficient of the
weighted area term, was set to 3 or 5 regarding the size of
the initial LSF. Double-well potential was used for a distance
regularization term, and the iteration numbers were set to
600 and 1000 for the images of malignant and melanocytic
nevi, respectively. A binary image was obtained with a
threshold of 80. The area inside the fine border was filled in
during the postprocessing step. A morphological erosion of
the mask, using a square with a width of 5 pixels, and Delau-
nay triangulation were also carried out in the postprocessing
step. Examples of the border segmentation results for the der-
moscopic image (PH2 dataset) and standard image (Dermofit
dataset) are presented in Figure 6.

2.4. Performance Evaluation. The output of the proposed
method was binarized with a lesion mask. The performance
of the proposed method was evaluated on two different data-
sets of melanocytic skin lesion images from the PH2 database
[19] and the Dermofit database [20], which are publicly avail-
able on the ground truth data. To evaluate the proposed
method, the well-known segmentation measures were calcu-
lated, including accuracy, specificity, sensitivity, Jaccard

Table 1: Dataset statistics.

Atlas (the number of
images)

Skin lesion
The number of

images

PH2 data (200)
Malignant melanoma 40

Nevus (common,
melanocytic)

160

Dermofit (407)
Malignant melanoma 76

Melanocytic nevus 331

Total (607)
Malignant melanoma 116

Melanocytic nevus 491

6 BioMed Research International



(a) (f)

(b) (g)

Figure 3: Continued.
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(c) (h)

(d) (i)

Figure 3: Continued.
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index (JI), Dice coefficient (DC), F-measure, and Hausdorff
distance (HD). Specifically, these measures were calculated
from the following four error factors: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)

Accuracy =
TP + TNð Þ

TP + TN + FP + FNð Þ , ð7Þ

Sensitivity =
TPð Þ

TP + FNð Þ , ð8Þ

Specificity =
TNð Þ

TN + FPð Þ , ð9Þ

where TP represents the pixel numbers of a skin lesion
correctly segmented as a skin lesion, TN represents the

(e) (j)

Figure 3: Example results of preprocessing on PH2 (a, c, e, g, and i) and Dermofit (b, d, f, h, and j). The first row (a, b) contains original
images. The second row (c, d) contains the images converted from RGB to CIE LAB color space. The 3rd row (e, f) contains histogram
equalization images of channel a and (g, h) channel b. The 4th row (i, j) contains the final fusion images.

(c) Level 2

(b) Level 1

(a) Input image

Figure 4: Visualization of the hybrid hierarchical K-means (HK) clustering method with K1 = 2 and K2 = 3 at level 1 and level 2, respectively.
(a) Input image which was obtained after the preprocessing step. (b) Initial contour mask with K1 = 2 at level 1. (c) Final initial contour mask
with K2 = 3 at level 2. K is the number of clusters at each hierarchical level.
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pixel numbers of background skin correctly characterized
as background, FP denotes the pixel numbers of back-
ground skin incorrectly characterized as a skin lesion, FN
denotes the pixel numbers of a skin lesion incorrectly
characterized as background skin. Accuracy was defined
as the ability to segment all areas correctly. Sensitivity
was the ability to segment skin lesions. Specificity was
the ability to segment the background of the skin. F
-measure is a statistical measure of a method’s accuracy
that considers both the recall and the precision of the
method [35]. An F-measure value close to 1.0 indicated
that the accuracy of the proposed approach was very high.
HD was calculated to measure the resemblance of two sets
of points [36]. It measures how far two subsets are from
each other. The smaller the HD, the greater is their degree
of similarity. Additionally, the Bland-Altman plots, known
as the scatter plots of the difference against the mean
between the area inside the automatic border and the area
inside the manual border, were also used to visualize
errors and potential bias in the border detection. Further-
more, linear regression was utilized to quantitatively com-
pare the area inside the border drawn by the two
measurements. These analyses were carried out using SPSS
version 23 software (SPSS Inc., Chicago, IL, USA). A p
value < 0.05 was considered to indicate statistical
significance.

The algorithm was implemented on an Intel® Core™ i5-
7500 CPU at 3.40GHz with 16.00GB RAM. All procedures
were implemented with the MATLAB software package
(R2018b, MathWorks Inc., Natick, MA, USA).

3. Results

3.1. Comparison Results of Accuracy and Run-Time for
Different Numbers of Clusters at Each Level (K1 and K2). To
obtain good segmentation results, the number of clusters
for each level of HK clustering was experimentally deter-
mined. Figure 7 shows the mean accuracy and speed of the
proposed method in different conditions of the number of

clusters from set 1 to set 4 at each hierarchical level. The
run-time performance was calculated by the total time taken
from the preprocessing phase to the postprocessing phase.
The run-time performance for each different condition had
the following relationship: set 2 ð19:2 secondsÞ < set 1 ð19:28
secondsÞ < set 3 ð19:72 secondsÞ < set 4 ð20:4 secondsÞ. This
suggests that set 2 outperforms other conditions in terms of
run-time performance. The experimental results showed that
the optimal numbers of clusters were 2 and 3 at level 1 and
level 2, respectively, which achieved an accuracy of 94.6%
and a speed of 19.2 seconds.

3.2. Quantitative Evaluation of the Proposed Two-Stage
Segmentation Approach in Dermoscopic and Standard
Images. The performance of the segmentation-based level
set scheme depends on an initial contour mask [15, 23].
Thus, the initial segmentation is a key step to increasing sen-
sitivity. Our method was evaluated for two different datasets
as shown in Table 2. The mean accuracy for each of the two
atlases was greater than 90%. The F-measure for each of the
two datasets was high (>0.91), and a very small difference of
0.02 was found between the two atlases. Small average HDs of
0:07 ± 0:02 and 0:09 ± 0:03 were obtained for each dataset.
Our method achieved higher performance in the PH2 data-
base for all evaluation parameters, including sensitivity, spec-
ificity, and accuracy, than in the Dermofit database. All
evaluation parameters showed promising results of over
90%, except for the Jaccard index which was 0.826 and
0.833 for the Dermofit and PH2 data, respectively.

3.3. Comparison of Results of Segmentation between Different
Disease Classes (Melanocytic Nevus and Malignant
Melanoma). The proposed segmentation model was com-
pared in two different disease classes, melanocytic nevus
(common nevi, atypical nevi, and melanocytic nevi) and
malignant melanoma. Table 3 shows the segmentation
results that were obtained by processing the melanocytic
nevus images and melanoma images. Our method
obtained good accuracy for 607 skin lesion images, includ-
ing an accuracy of 93.4% for 331 images of melanocytic
nevus images and 95.6% for the 76 melanoma images in
the Dermofit dataset. In the PH2 dataset, the proposed
method achieved an accuracy of 95.6% for the 160 mela-
nocytic nevus images and 90.8% for the 40 melanoma
images. Of note, the proposed method obtained a higher
sensitivity of 92.6% for the melanocytic nevus images
compared to a sensitivity of 86.4% for the melanoma
images in the Dermofit dataset. Moreover, the F-mea-
sures showed 0.921 and 0.887 for the melanocytic nevus
and melanoma images, respectively. In contrast, our
method achieved a higher sensitivity of 92.5 for melanoma
images compared to 91.7% for the melanocytic nevus
images in the PH2 dataset. The F-measures became 0.920
and 0.907 for the melanoma and melanocytic nevus
images, respectively.

3.4. The Bland-Altman Plots and Linear Regression Analysis
for the Area inside Each Border Detected Manually and by
the Proposed Method. The mean values of the differences in

Figure 5: One example of the proposed method for the detection of
a melanocytic skin lesion. The red rectangle indicates the boundary
selection scheme, which includes the outline of a skin lesion.

10 BioMed Research International



(a) (d)

(b) (e)

(c) (f)

Figure 6: Examples of lesion segmentation results from the hierarchical K-means level set scheme for the PH2 and Dermofit atlases. (a)
IMD144 dermoscopic image from the PH2 dataset. (c) IMD168 dermoscopic image from the PH2 dataset. (e) D105 dermoscopic image
from the Dermofit dataset. (b, d, and f) Error evaluations: white pixels show true positives (TP), black pixels show true negatives (TN),
pink pixels show false positives (FP), and green pixels show false negatives (FN).
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the Bland-Altman plots detected by the ground truth and the
proposed approach are illustrated in Figures 8 and 9. In
the PH2 database, the average differences between the
areas inside the borders detected by the ground truth
and our method were 82:077 ± 15951:228 and −2702:371
± 1498:615 for melanoma and melanocytic nevus images,
respectively. In the Dermofit database, the average differ-
ences were 5025:59 ± 27,250:079 and −2279:233 ±
5734:517 for melanoma and melanocytic nevus images,
respectively. All results showed differences close to 0,
which were generally included within the limits of the
agreement range.

The linear regression analysis shown in Figure 10
reports a high correlation (>0.97 and >0.96 for the Der-
mofit database and the PH2 database, respectively)
between the areas inside the automated extracted borders

and contours of the ground truth. These results showed
that the proposed segmentation method strongly corre-
lated with the segmentation ground truth datasets.

3.5. Comparison of Segmentation Performance with Other
Automated Segmentation Methods. The proposed method
was compared with traditional segmentation methods in
the same dataset. Results of the comparison between tra-
ditional classifiers and the proposed method are summa-
rized in Table 4. Traditional classifiers showed relatively
poorer results for melanocytic lesion segmentation com-
pared to the proposed method. Specifically, the Otsu
thresholding method showed the lowest segmentation
accuracies in the Dermofit and PH2 data (68.3% and
65.2%, respectively). The proposed method achieved a
higher specificity of 94.4% than that of K-means

K1 = 2, K2 = 2 K1 = 2, K2 = 3 K1 = 3, K2 = 2 K1 = 3, K2 = 3
Total run-time (s) 19.28 19.2 19.72 20.4
Preprocessing (s) 5.14 5.09 5.07 5.27
HK-LS (s) 11.08 11.06 11.58 12.07
Postprocessing (s) 3.06 3.05 3.07 3.06
Mean of accuracy (%) 94.4 94.6 93.7 91.6
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Figure 7: Comparison of the mean accuracy and computation time (s) for different conditions of K1 and K2 at each level (p value < 0.05). K
indicates the number of clusters at each hierarchical level.

Table 2: Quantitative evaluation of the segmentation for the Dermofit and PH2 atlases in terms of accuracy, sensitivity, specificity, Jaccard
index, Dice coefficient, F-measure, and Hausdorff distance.

Group Jaccard index Dice coefficient Sensitivity Specificity Accuracy F-measure Hausdorff distance

Dermofit 0:826 ± 0:08 0:912 ± 0:07 0:919 ± 0:08 0:944 ± 0:06 0:942 ± 0:05 0:912 ± 0:07 0:07 ± 0:02

PH2 data 0:833 ± 0:09 0:914 ± 0:05 0:923 ± 0:08 0:964 ± 0:05 0:946 ± 0:03 0:914 ± 0:05 0:09 ± 0:03

Table 3: Comparative results of segmentation between melanocytic nevus and melanoma images.

Group Class Jaccard index Dice coefficient Sensitivity Specificity Accuracy F-measure Hausdorff distance

Dermofit
Nevus 0:858 ± 0:08 0:921 ± 0:08 0:926 ± 0:09 0:936 ± 0:7 0:934 ± 0:04 0:921 ± 0:08 0:067 ± 0:02

Melanoma 0:813 ± 0:08 0:887 ± 0:07 0:864 ± 0:07 0:971 ± 0:05 0:956 ± 0:06 0:887 ± 0:07 0:097 ± 0:038

PH2 data
Nevus 0:823 ± 0:09 0:907 ± 0:06 0:917 ± 0:09 0:978 ± 0:03 0:956 ± 0:02 0:907 ± 0:06 0:078 ± 0:03

Melanoma 0:855 ± 0:06 0:920 ± 0:04 0:925 ± 0:05 0:845 ± 0:07 0:908 ± 0:04 0:920 ± 0:04 0:101 ± 0:05
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clustering implemented on the same color space (CIE L
∗ a ∗ b). In addition, Pennisi et al. [37] segmented mela-
noma lesion images in the PH2 database using ASLM
with Delaunay triangulation. They showed the accuracy
of 89.7% in the PH2 data. In contrast, the overall accu-
racy of the proposed method was also better than that
of the other techniques when the same dataset was used.
These results demonstrated the feasibility of the proposed
method for skin image segmentation.

In the comparative results between U-net [40] and our
method for the PH2 dataset, although U-net performed better
according to the Jaccard index of (0:87 ± 0:19) and Dice coef-
ficient (0:93 ± 0:13) compared to our method, U-net pro-
duced a much larger standard deviation than that of the
proposed method (Table 5). Moreover, our method had bet-
ter segmentation results for the Dermofit dataset compared
to that of U-net [41]. These results confirm its effectiveness
for melanocytic skin lesion segmentation in standard images
compared to U-net.

4. Discussion

The segmentation of skin lesions in dermoscopic and stan-
dard images is crucial for quantifying the clinical diagnos-
tic factors of melanoma lesions. The segmentation
accuracy can greatly affect the next diagnostic procedure
[45]. One issue with the level set model is its sensitivity
to the initial contours. Recently, machine learning algo-
rithms, such as U-net, have emerged as reliable segmenta-
tion methods for skin lesion images. However, the limited
training dataset is a challenging task for skin lesion seg-
mentation. The important challenge in machine learning
algorithms is that these models require a large training
set to reduce overfitting. Some cases still show a low per-
formance due to low contrast and hair artifacts. Current
state-of-the-art research using machine learning algorithms
is sometimes required on postprocessing techniques, such
as level sets [46]. Another challenge in machine learning
such as CNN is that, when a network goes deeper, it is
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Figure 8: The Bland-Altman plots between the ground truth and automated segmentation of skin images obtained from the PH2 database. (a)
Area inside the skin lesion border of the melanoma image and (b) the melanocytic nevus image (unit: pixels2).
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difficult to tune the parameters of the early layers [8]. To
tackle these problems, the purpose of this study was to
propose a new two-stage segmentation model which inte-
grates the Distance Regularization Level Set Evolution
and the hierarchical K-means clustering. The proposed
method that combines two different methods has the
advantage of improving the final result of the image seg-
mentation process, such as accurately defining the initial
contours, and finding the approximate location of the
lesion. The quantitative experimental results revealed that
the proposed method yielded significantly better results
compared to other traditional level set models, and has a
certain advantage over the segmentation results of U-net
in standard images.

The contribution of this paper can be summarized in the
following aspects. Firstly, the proposed model integrates
hierarchical K-means clustering with DRLSE. Some studies
have attempted to use a mono-K-mean clustering-based level
set evolution model with unsatisfactory results [15, 28].
However, this study showed the reliable accuracy of the seg-
mentation of skin lesions under intrinsic noise and artifacts.
To the best of our knowledge, no such studies for skin lesion
segmentation have been reported previously. Secondly, the
controlling parameters of level set segmentation are now
derived from the results of the simple decision tree approach
by using a set of if-then rules. Thirdly, the experimental
results indicate that a new gray-scale image by using only
the color components of a and b from CIE L ∗ a ∗ b color
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Figure 9: The Bland-Altman plots between the ground truth and automated segmentation of skin images obtained from the Dermofit
database. (a) Area inside the skin lesion border of the melanoma image and (b) the melanocytic nevus image (unit: pixels2).
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Figure 10: Continued.
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Figure 10: Linear regression analysis between the manual and automated segmentations of skin images obtained from the PH2 and Dermofit
databases. (a) Area inside the skin lesion border of melanoma images from the PH2 database, (b) melanocytic nevus images from the PH2

database, (c) melanoma images from the Dermofit database, and (d) melanocytic nevi images from the Dermofit database (unit: pixels2).

Table 4: Comparative results of segmentation between the existing and proposed methods for images from the PH2 and Dermofit atlases.

Methods Dermofit PH2 data
SEN SPE ACC SEN SPE ACC

Otsu with RGB (MATLAB 2018b) 0.611 0.723 0.683 0.522 0.706 0.652

Level set with RGB (MATLAB 2018b) 0.712 0.878 0.805 0.719 0.800 0.784

FC-LS with RGB [28] 0.873 0.926 0.918 0.891 0.914 0.904

Adaptive thresholding with YIQ [38] 0.618 0.980 0.937 0.703 0.949 0.879

K-means with CIELAB [21] 0.809 0.789 0.824 0.869 0.953 0.932

Local binary pattern clustering [39] 0.787 0.923 0.704 0.884 0.948 0.859

Proposed method (HK-LS with CIELAB) 0.919 0.944 0.942 0.923 0.964 0.946
∗FC-LS: fuzzy C-mean thresholding-based level set; HK-LS: hierarchical K-means clustering-based level set; SEN: sensitivity; SPE: specificity; ACC: accuracy.
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space makes it less sensitive to illumination artifacts. Finally,
we also evaluated the proposed method on two different
datasets including the PH2 database (dermoscopic image
repository) and the Dermofit database (standard image
repository). All skin lesions were segmented with high accu-
racy (>94%) and high correlation (>0.96) of the ground truth
in the two databases. The segmentation results outperformed
other initial estimation methods for level set models of mela-
noma and nonmelanoma images with various artifacts.

One of the main concerns of existing image segmentation
methods resides mainly in the noise and artifacts of dermo-
scopic and standard images [47]. Moreover, another factor
that complicates the lesion segmentation is the low contrast
of the lesion boundaries [48]. Our designated model
improved the segmentation performance in most cases, espe-
cially the proportion of true positive results. Experimental
results show that this approach is insensitive to the low
contrast between background around the lesion and skin
lesion pixels. The main difference between the proposed
method and other models was that only the color channels
of CIE L ∗ a ∗ b were used to constitute a new gray-scale
image for the initial contour mask. Unlike the RGB and
CMYK color spaces, the CIE L ∗ a ∗ b is designed to
approximate human vision. This color space is approxi-
mately perceptually uniform because the similarities
between the perceived and the measured color are propor-
tional [11]. Additionally, CIE L ∗ a ∗ b color space is
known to be less sensitive to artifacts from digital cameras
and scanner images [21].

When our method and other segmentation methods are
compared, especially with a classifier such as U-net, our
model can get better segmentation results in standard
images. The latest deep learning segmentation approaches
such as U-net have been applied to segment melanoma
lesions because these algorithms can handle complex pat-
terns, but the limited quality training dataset and degradation
problems are often limitations [1]. In addition, data augmen-
tation, such as flipping, rotating, shifting, scaling, and chang-
ing the contrast of the original image, is usually required
when the classifier is trained on medical images [49]. How-
ever, it is easier to lose the important features of melanocytic
skin lesions in data augmentation because the proportional
size of the skin lesion on the images is very small [50].

Although the proposed model achieved admirable seg-
mentation accuracy in most of the images in the two inde-
pendent atlases, there were cases where the proposed model

revealed the need for further improvement. The challenge
in the proposed method is the increase of the run-time when
the size of the image is large, compared with deep learning
approaches. The proposed method can be further improved
for the more effective segmentation pipeline, in terms of
average run-time.

5. Conclusions

The segmentation of the skin lesions is regarded as very chal-
lenging because of the low contrast between the lesion and
the surrounding skin, the existence of various artifacts, and
different imaging acquisition conditions. The traditional
model such as the region-based active contour model has
often failed when applied to images containing inhomogene-
ities. These are very sensitive to parameter tuning. The
appropriate initialization and optimal configuration of con-
trolling parameters in the presence of various artifacts are
important to obtain the accurate performance of the level
set segmentation. The important challenge in machine learn-
ing algorithms is that these models require a large training set
to reduce overfitting. Current state-of-the-art research using
machine learning algorithms is usually required on postpro-
cessing techniques, such as level sets. The contribution of this
study is to propose a new two-stage segmentation model in
dermoscopic and standard images. This method integrates
a new hierarchical K-means and level set approach. For the
initial estimation of the level set function, the hybrid hierar-
chical K-means clustering was carried out. After initial seg-
mentation by the hybrid HK clustering, DRLSE was
implemented to achieve fine border segmentation. Moreover,
only the color channels of a and b from CIE L ∗ a ∗ b were
used by this model to obtain robust image segmentation
results in the presence of noise and artifacts. The generaliza-
tion ability of the proposed model was validated by the inde-
pendent testing of two publicly available databases. The
experimental results showed the superior performance of
the proposed method compared to other traditional level
set models, and a certain advantage over the segmentation
results of U-net in standard images. Additionally, the linear
regression analysis demonstrated a good correlation of
>0.98 and >0.96 with the proposed method for melanoma
and melanocytic nevus images. The proposed model gives
accurate segmentation results and requires a small dataset
because our model is not sensitive to parameter tuning.
Our experimental results revealed that integrating

Table 5: Comparative Jaccard index and Dice coefficient results for segmentation of images from the PH2 and Dermofit atlases by U-net and
the proposed method.

Group
Dermofit PH2 data

Jaccard index Dice coefficient Jaccard index Dice coefficient

U-net [40, 41] 0.781 0.887 0:87 ± 0:19 0:93 ± 0:13
U-net with illumination-based
transformation [42]

0:774 ± 0:006 0:867 ± 0:004 0:756 ± 0:009 0:853 ± 0:007

Mutual bootstrapping DCNN [43] — — 0.894 0.942

FCN-16s [44] 0.802 0.881

Proposed method 0:826 ± 0:008 0:912 ± 0:07 0:833 ± 0:09 0:914 ± 0:05

17BioMed Research International



hierarchical K-means clustering and DRLSE had high clinical
applicability even in the presence of various artifacts and
small datasets. The proposed model may facilitate the combi-
nation of machine learning and level set models in skin lesion
images.

Data Availability
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Objectives. To explore the application of computed tomography (CT) texture analysis in differentiating lymphomas from other
malignancies of the small bowel. Methods. Arterial and venous CT images of 87 patients with small bowel malignancies were
retrospectively analyzed. The subjective radiological features were evaluated by the two radiologists with a consensus agreement.
The region of interest (ROI) was manually delineated along the edge of the lesion on the largest slice, and a total of 402
quantified features were extracted automatically from AK software. The inter- and intrareader reproducibility was evaluated to
select highly reproductive features. The univariate analysis and minimum redundancy maximum relevance (mRMR) algorithm
were applied to select the feature subsets with high correlation and low redundancy. The multivariate logistic regression analysis
based on texture features and radiological features was employed to construct predictive models for identification of small bowel
lymphoma. The diagnostic performance of multivariate models was evaluated using receiver operating characteristic (ROC)
curve analysis. Results. The clinical data (age, melena, and abdominal pain) and radiological features (location, shape, margin,
dilated lumen, intussusception, enhancement level, adjacent peritoneum, and locoregional lymph node) differed significantly
between the nonlymphoma group and lymphoma group (p < 0:05). The areas under the ROC curve of the clinical model,
arterial texture model, and venous texture model were 0.93, 0.92, and 0.87, respectively. Conclusion. The arterial texture model
showed a great diagnostic value and fitted performance in preoperatively discriminating lymphoma from nonlymphoma of the
small bowel.

1. Introduction

Primary small bowel malignancies (PSBM) are relatively rare,
representing less than 3% of all gastrointestinal tract malig-
nancies [1]. Early detection and differential diagnosis of small
bowel tumors can be challenging for both clinicians and radi-
ologists because of the nonspecificity of clinical signs and
tumor deep location [2].

Although primary small bowel lymphoma (PSBL)
accounts for a small proportion of PSBM (approximately
15%), the incidence has been increasing [3]. Surgery is con-

sidered to be the first-line treatment for most small bowel
tumors, especially malignant and borderline tumors; how-
ever, chemotherapy seems to have a survival benefit over
surgery alone in treating PSBL [4]. Due to the different man-
agement, it is of great significance to improve the imaging
approach for preoperative identification of PSBL and other
types of PSBM.

Clinically, several modalities are useful to investigate sus-
pected small bowel tumors including capsule endoscopy,
computed tomography (CT), or magnetic resonance (MR)
enterography or enteroclysis. However, CT imaging is
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currently recognized as the mostly used and valuable tool for
evaluating small bowel masses. In clinical work, the ability of
dynamic contrast-enhanced CT imaging to detect and for-
mulate differential diagnosis of intestinal tumors has been
well known. Previous studies have investigated the capacity
of conventional multiphasic CT imaging and the diagnostic
ability of the CT attenuation values for distinguishing differ-
ent pathological types of small bowel tumors [5–8]. In addi-
tion, Yang et al. have reported the value of dual-energy
spectral CT imaging and iodine quantification in the preop-
erative differentiation between PSBL and small bowel adeno-
carcinoma [9]. However, there are a number of overlaps
between CT findings of PSBL and other small bowel tumors.
Therefore, conventional CT imaging mainly focuses on
subjective and qualitative features and provides limited
quantitative parameters for differential diagnosis of small
bowel tumors [6].

Recently, the advances in CT texture analysis have
improved the processing capacity for tumor heterogeneity
at imaging and provide indirect information of the tumor
microenvironment within a certain range of quantitative
parameters [10]. CT texture analysis reflects the distribution
and relationship of pixels in CT images, which could reveal
the subtle differences that cannot be recognized by the
human eyes and make up for the shortcomings of conven-
tional CT imaging.

The potential use of CT texture analysis has been widely
studied in tumor research and demonstrates to be valuable
for prognostic prediction in pathological features, overall
survival, and treatment response of multiple tumor types
[11–14]. Several studies have declared that CT texture analy-
sis may potentially serve as biomarkers for preoperative risk
stratification of small bowel gastrointestinal stromal tumors
(GIST) [15, 16]. To the best of our knowledge, the diagnostic
ability of CT texture analysis has not yet been fully studied in
differentiating lymphoma from other types of PSBM.

We aimed to establish preoperative prediction models
based on arterial and venous CT images for discriminating
patients with PSBL from those with other types of PSBM.
We also compared the predictive efficacy of texture models
with that of subjective radiological features.

2. Materials and Methods

2.1. Patients. This retrospective study was approved by the
local ethics committee, and the requirement for informed
consent was waived.

From January 2013 to December 2019, a total of 87
patients with a diagnosis of PSBM who underwent contrast-
enhanced CT examination at our hospital were identified
and included in this study (Figure 1).

The inclusion criteria were as follows: (1) a pathological
confirmation of small bowel malignant tumors based on his-
tological examinations of biopsied or resected tissues and (2)
availability of contrast-enhanced CT examination before
treatment.

The exclusion criteria were as follows: (1) a history of
other primary malignancies (n = 1); (2) loss of contrast-
enhanced CT images (n = 4); (3) located in the duodenal

papilla owing to an extremely rare incidence of lymphomas
in the ampulla region (n = 53) [17]; (4) poor visualization
of the lesion due to peristaltic motion, insufficient distention,
or obvious artifacts (n = 5); and (5) pathological types with
less than 3 cases (n = 6).

The clinical data, including gender, age, histologic type, and
clinical symptoms (melena, abdominal pain, and intestinal
obstruction), was obtained and recorded from the electronic
medical record system. Patient and tumor characteristics are
summarized in Tables 1 and 2.

2.2. Image Acquisition and Analysis. CT examinations were
performed on a multidetector row scanner (SOMATOM
Definition Flash, Siemens Medical Systems; iCT 256, Philips
Healthcare; or Optima CT670, GE Healthcare). All patients
were requested to fast for at least six hours before the proce-
dure. All patients underwent abdominal CT protocol or CT
enterography. For abdominal CT protocol, patients received
600–1000mL water orally prior to the examination. For CT
enterography, patients were encouraged to drink 1000–
2000mL 20% mannitol for over 40–60min prior to the CT
scanning.

All patients were in the supine position, and the scan cov-
ered the entire abdomen. The patients were trained to hold
their breath during CT scanning. Intravenous 1.0mL/kg con-
trast medium (iohexol injection, 300mg/mL, Beilu Pharma-
ceutical Co. Ltd., Beijing, China) was injected at a flow rate
of 3.0–3.5mL/s using a power injector (Ulrich CT Plus 150,
Ulrich Medical), followed by a saline flush (20mL). Arterial
phase scanning and venous phase scanning were performed
at 30 seconds and 70 seconds, respectively, after initiation
of contrast material injection.

The CT scanning parameters were as follows: automatic
tube current and tube voltage 120 kV, detector collimation
64 × 0:6 or 128 × 0:625mm, matrix 512 × 512, slice thickness
5mm, slice interval 5mm, and reconstructed section thick-
ness 1.25 or 2mm.

2.3. Image Interpretation and Segmentation. Transverse
reconstructed CT images were reviewed and interpreted by
two abdominal radiologists (reader 1 and reader 2, with 3
and 10 years of working experience, respectively) without
knowledge of the clinical data of patients. The radiological
features derived from subjective CT interpretation were eval-
uated by the two radiologists with a consensus agreement.
The observed contents were recorded, as follows: (1) location
(duodenum, jejunum, or ileum), (2) shape (regular or irregu-
lar), (3) margin (well defined or ill defined), (4) lumen dila-
tion (positive or negative), (5) intussusception (positive or
negative), (6) enhancement pattern (homogeneous or hetero-
geneous), (7) enhancement level (mild, moderate, or high),
(8) adjacent peritoneum (clear or unclear), and (9) locoregio-
nal lymph node (enlarged or non-enlarged). The interpreta-
tion criteria were mainly based on clinical experience or
previous studies [5, 18]. Lumen dilation was considered to
be present if intralesion dilation of the lumen was observed
on at least two planes. For the enhancement pattern, masses
with intratumoral low-enhancing or nonenhancing areas
were considered as heterogeneous enhancement. The high
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enhancement level was defined as solid components with
the CT attenuation greater than 90HU in arterial CT
images. Lesions with CT attenuation less than 60HU in
arterial CT images were considered to be mild enhance-
ment. An enlarged lymph node was considered to be pres-
ent when a lymph node was greater than 10mm in a
short-axis diameter.

The arterial and venous reconstructed CT images were
segmented using ITK-SNAP 3.8.0 (http://www.itksnap
.org,USA).The region of interest (ROI) was manually delin-
eated along the edge of the lesion on the largest slice by reader
1, excluding bowel lumen and blood vessels. To evaluate the
reproducibility of feature extraction, 30 cases of CT images
were randomly selected for calculating inter- and intraclass
correlation coefficients (ICCs). Reader 2 independently drew
the ROIs of the 30 cases. Reader 1 repeated the segmentations
three months later. Texture features with an ICC greater than
0.75 suggested good agreement [19].

2.4. Feature Extraction and Selection. The original images
were normalized before feature extraction, and texture fea-
tures were automatically calculated and extracted by using
AK software (Analysis Kit 1.0.3; GE Healthcare, China). A
total of 402 quantified features were extracted from the delin-
eated ROIs, including 42 histograms, 15 form factor features,
180 gray level run-length matrix (GLRLM) features with an
offset of 1/4/7, 154 gray level cooccurrence matrix (GLCM)
features with an offset of 1/4/7, and 11 grey level size zone
matrix (GLSZM) features. The image analysis and feature
extraction were performed separately for the arterial phase
and venous phase based on CT images, following the same
procedure.

We followed a four-step procedure to identify robust and
predictive texture features. First, the texture features with
both inter- and intrareader ICCs > 0:75were retained for fur-
ther procedure (Supplementary materials Part 1). Second,

Inclusion criteria: Patients who
(i) Underwent surgical resection or biopsy and had a pathological confirmation of small bowel
malignant tumors
(ii) Underwent contrast-enhanced CT examination before treatment

106 patients met the criteria and were enrolled at first

Exclusion criteria:
(i) With a history of other primary malignancies
(ii) Loss of contrast-enhanced CT images
(iii) Located in the papilla owing to an extremely rare incidence of lymphomas
(iv) Poor visualization due to peristaltic motion, insufficient distention or obvious artifacts
(v) Pathological types with less than 2 cases

GIST (n = 48)

87 patients were included in final study cohort

Lymphoma (n = 30) Adenocarcinomas (n = 9)

Figure 1: Flowchart of the patient inclusion and exclusion. Data in parentheses are the numbers of patients.

Table 1: Clinicopathological characteristics of patients with
primary small bowel malignancies.

Feature n = 87 (percentage)
Gender

Male 47 (54.0%)

Female 40 (46.0%)

Age

<50 years 18 (20.7%)

≥50 years 69 (79.3%)

Location

Duodenum 4 (4.6%)

Jejunum 32 (36.8%)

Ileum 51 (58.6%)

Histologic type

GIST 48 (55.2%)

Lymphoma 30 (34.5%)

Adenocarcinomas 9 (10.3%)
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Table 2: The univariate analysis of clinical data and radiological features between the nonlymphoma group and the lymphoma group in
patients with primary small bowel malignancies.

Feature Nonlymphoma (n = 57) Lymphoma (n = 30) p value FDR-adjusted p values

Gender 0.206 0.050

Male 28 19

Female 29 11

Age 0.008 0.029

<50 7 11

≥50 50 19

Melena 0.001 0.011

Negative 29 26

Positive 28 4

Abdominal pain 0.008 0.029

Negative 28 6

Positive 29 24

Intestinal obstruction 0.177 0.046

Negative 53 30

Positive 4 0

Location 0.037 0.039

Duodenum 3 1

Jejunum 26 6

Ileum 28 23

Shape 0.002 0.018

Regular 27 4

Irregular 30 26

Margin 0.001 0.011

Clear 32 6

Unclear 25 24

Dilated lumen 0.002 0.018

Negative 49 17

Positive 8 13

Intussusception 0.017 0.036

Negative 56 25

Positive 1 5

Enhancement pattern 0.053 0.043

Homogeneous 20 17

Heterogeneous 37 13

Enhancement level <0.001 0.004

Mild 3 12

Moderate 15 11

High 39 7

Adjacent peritoneum 0.002 0.018

Clear 42 12

Unclear 15 18

Locoregional lymph node <0.001 0.004

Nonenlarged 46 7

Enlarged 11 23

FDR: false discovery rate.
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Mann–WhitneyU test was performed, exploring whether the
features were significantly different between two groups.
Then, univariate logistic regression was applied to select
related features (with p < 0:05). Finally, we used the mini-
mum redundancy maximum relevance (mRMR) algorithm
to select the feature subsets; 8 features with high correlation
and low redundancy were retained.

2.5. Model Construction and Evaluation. Two texture models
based on the arterial phase and venous phase were con-
structed, by using the multivariable logistic regression to
filter the independent features and construct the multivari-
able model, through backward stepwise selection with the
likelihood ratio test to select the most predictive feature sub-
set. The radiomics score of each patient was calculated.

Meanwhile, the clinical and radiologic features with p < 0:1
in univariate logistic regression were selected to develop a clin-
ical model using the multivariate logistic regression analysis.

The 100-fold leave group out crossvalidation (LGOCV)
was performed to verify that the multivariate models were
valuable in discriminating one group from anther group
and the result was not due to overfitting. The data analysis
workflow is shown in Figure 2.

In order to assess the reliability of CT texture analysis, the
support vector machine (SVM) also has been applied further
for comparative analysis.

2.6. Statistical Analyses. The differences of continuous vari-
ables were analyzed by the Mann–Whitney U test, and the
chi-square test or Fisher’s exact test was used for categorical
variables. The diagnostic performance of multivariate models
was evaluated using ROC analysis and area under the ROC
curve (AUC). Diagnostic sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive value
(NPV) were also calculated. The corresponding definition/e-
quation was presented in Supplementary materials Part 2. All
these statistical analyses were performed with R statistical
software 3.5.1 (R Foundation for Statistical Computing). A
two-tailed p value of less than 0.05 was considered statisti-
cally significant. To control false-positive rates in multiple
testing, the false discovery rate-adjusted p values were also
calculated during multiple univariate analysis [20].

3. Results

3.1. Patient Characteristics. A total of 87 lesions from 87
patients were enrolled in the retrospective study for analysis:
48 gastrointestinal stromal tumors (GIST) (2 duodenal, 20
jejunal, and 26 ileal), 30 lymphomas (1 duodenal, 6 jejunal,
and 23 ileal), and 9 adenocarcinomas (1 duodenal, 6 jejunal,
and 2 ileal). Of these patients, there were 47 males and 40
females, and the mean age was 58 years (age range, 4–80 years).

3.2. Clinical and Radiological Feature Evaluation. Our data
showed that controlling the false discovery rate in multiple
chi-square tests found as many significant results as without
false discovery rate adjustment (Table 2). For the clinical data,
no significant difference was found between the nonlymphoma
group and lymphoma group with regard to the gender
(p = 0:206) and intestinal obstruction (p = 0:177). There was

a significant difference between the nonlymphoma group and
lymphoma group in the age (p = 0:008), melena (p = 0:001),
and abdominal pain (p = 0:008). For radiological features, the
location, shape, margin, dilated lumen, intussusception,
enhancement level, adjacent peritoneum, and locoregional
lymph node differed significantly between the nonlymphoma
group and lymphoma group (p ≤ 0:001–0.037). However, there
was no significant difference between the nonlymphoma group
and lymphoma group in the enhancement pattern (p = 0:053).

The univariate logistic regression analysis of clinical data
and radiological features is shown in Supplementary Table 1.
Multivariate logistic regression analysis revealed that the
margin, locoregional lymph node, enhancement level, and
enhancement pattern were independent indicators to
distinguish the nonlymphoma from the lymphoma of the
small bowel (Table 3). The ill-defined margin, homogeneous
enhancement, mild or moderate enhancement, and enlarged
lymph node were apt to be a PSBL rather than other types of
PSBM. The sensitivity, specificity, accuracy, and AUC of the
clinical model were 93.3%, 79.0%, 83.9%, and 0.93 (95% CI
0.87–0.98), respectively (Table 4).

3.3. Texture Feature Evaluation. After dimension reduction,
8 texture features of the arterial phase, 8 texture features of
the venous phase, and 8 texture features of the dual phases
were selected. There were significant differences of all those
texture parameters between small bowel lymphoma and non-
lymphoma (Supplementary Tables 2 and 3). The diagnostic
performance of the selected texture features is presented in
Supplementary Tables 4 and 5.

By using multivariate logistic regression analysis, the arte-
rial texture model was generated using 6 selected features from
arterial CT images (Supplementary Table 6). The sensitivity,
specificity, accuracy, and AUC were 83.3%, 89.3%, 87.2%,
and 0.92 (95% CI 0.87–0.98), respectively (Table 4). Similarly,
the venous texture model was developed using 6 selected
features (Supplementary Table 7). The sensitivity, specificity,
accuracy, and AUC were 73.3%, 85.7%, 81.4%, and 0.87 (95%
CI 0.79–0.94), respectively (Table 4). The corresponding
RAD scores are shown in Supplementary materials Part 3.

As seen in Table 5, the crossvalidation trials showed that the
average accuracy, sensitivity, and specificity values of the three
multivariate models were all relatively stable in the training
and validation sets. The predictive performance of the arterial
texture model was slightly better than that of the venous model
and clinical model. The appeared times of selected features dur-
ing the 100-time crossvalidations are shown in Figure 3. Most
texture features and all radiological features appeared more
than 50 times during the 100-time trials, which means that
these features had high stability and diagnostic values [21].

The diagnostic value of the SVM classification algorithm
was presented in Supplementary Table 8. The predictive
performance of SVM classifications was slightly better than
that of the logistic regression model.

4. Discussion

The detection and differential diagnosis of small bowel neo-
plasms has been attracting the attention of researchers. Our
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study developed and validated two CT-based texture models
and one radiological model as a novel approach to preopera-
tively differentiate the PSBL from other types of PSBM,
which has never been reported previously.

Most previous studies mainly focused on evaluating the
morphological findings and enhancement pattern of small
bowel neoplasms for differential diagnosis [5, 6]. Our data
showed that the clinical features (age, melena, and abdominal
pain) and radiological features (location, shape, margin,
dilated lumen, intussusception, enhancement level, adjacent
peritoneum, and locoregional lymph node) differed signifi-
cantly between the nonlymphoma group and lymphoma
group. As reported previously, lymphoma of the small bowel
tended to be more homogenous and show less contrast
enhancement compared with other small bowel malignancies
[22]. Our findings were relatively consistent with conven-
tional consensus.

In the present study, 2 multivariate texture models, based
on arterial and venous phases, were built to aid in preopera-
tively discriminating PSBL from other types of PSBM. The
arterial logistic model showed a better diagnostic value than
the venous logistic model; however, the predictive perfor-
mance of the venous SVM classifier performed slightly better
than that of the arterial SVM classifier. According to previous

studies, the arterial phase can reflect the blood supply and
functional capillary density and the venous phase may reflect
more dysfunctional neovessels and represent distribution of
contrast media in interstitial spaces [23]. Our findings indi-
cated that the arterial and venous texture features both
played a role in reflecting the heterogeneity of small intestine
neoplasms.

Our data also suggested that the clinical model has a sim-
ilar diagnostic ability compared to the arterial texture model.
The clinical model is a multivariate logistic regression model
enrolling 4 radiological features, including the margin, locor-
egional lymph node, enhancement level, and enhancement
pattern. The results indicated that the ill-defined margin,
enlarged lymph node, mild or moderate enhancement, and
homogeneous enhancement derived from subjective CT
interpretation were independent indicators of a diagnosis of
small bowel lymphoma. Attentively, the definition of the
enhancement level and enhancement pattern was based on
the CT attenuation of small bowel neoplasms in arterial CT
images.

Therefore, our findings indicated that the routine radio-
logical features and texture analysis based on arterial CT
imaging both held great diagnostic value in distinguishing
nonlymphoma and lymphoma of the small bowel. Shinya
et al. also reported that the CT attenuation of the arterial
phase performed better than that of the venous phase in dis-
criminating small bowel GIST from lymphoma, with an
accuracy of 78.6% and 75.0%, respectively [6]. The potential
explanation is that the blood supply distribution of small
bowel lymphoma might be less robust and more homoge-
neous than that of GIST and adenocarcinoma of the small
bowel.

The results of 100-fold crossvalidation showed that 5 of
the selected 6 features in the arterial model appeared more
than 50 times during the 100 times crossvalidations and all

Segmentation Feature extraction

Original image

Normalization

1. Reproducibility
analysis

Multivariable
logistic regression

100-fold LGOCV

(i) Arterial texture

(ii) Venous texture

(iii) Clinical model

2. Mann-Whitney
U testFeature class

(i) Histogram

(ii) Form factors

(iii) GLRLM

(iv) GLCM

(v) GLSZM

3. Univariate logistic
regression

4. mRMR feature
selection

Feature selection Model building

Figure 2: Flowchart of texture analysis. Main steps are tumor segmentation, feature extraction and selection, model construction, and
validation. GLRLM: gray level run-length matrix; GLCM: gray level cooccurrence matrix; GLSZM: grey level size zone matrix; mRMR:
minimum redundancy maximum relevance; LGOCV: leave group out crossvalidation.

Table 3: The multivariate logistic regression analysis of the clinical
data and radiological features.

Log OR SE OR p value

Margin 3.265 1.156 26.179 0.005

Locoregional lymph node 2.984 0.825 19.766 <0.001
Enhancement level −2.148 0.604 0.117 <0.001
Enhancement pattern −2.17 0.906 0.114 0.017

Log OR: Logarithm of odds ratio; SE: standard error; OR: odds ratio.
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6 texture features of the venous model appeared more than
50 times, indicating that the two models were reliable
and not overfitting. The arterial texture model included 1
GLRLM feature and 5 GLCM features. GLRLM_Run-
LengthNonuniformity, GLCM_ClusterShade, and GLCM_
Correlation had great value and stability in identifying
small bowel lymphoma. RunLengthNonuniformity
describes the similarity of run lengths throughout the
image, with a higher value indicating more heterogeneity
among run lengths in the image. Cluster shade is a measure
of the skewness and uniformity of the GLCM, with a higher
value implying greater asymmetry about the mean. Correla-
tion is a value between 0 (uncorrelated) and 1 (perfectly corre-
lated) showing the linear dependency of gray level values to
their respective pixels in the GLCM. In the venous texture
analysis, 1 histogram feature, 2 GLRLM features, 2 GLCM fea-
tures, and 1 GLSZM feature formed the multivariable model.
GLRLM_RunLengthNonuniformity and GLCM_Correlation
also had high stability and diagnostic values in the venous tex-
ture model. Besides, GLRLM_HighGreyLevelRunEmphasis
and GLSZM_GreyLevelNonuniformity held a certain value
in the venous texture model. HighGreyLevelRunEmphasis
reflects the distribution of the higher gray level values, with a
higher value indicating a greater concentration of high gray
level values in the image. GreyLevelNonuniformity evaluates
the variability of gray level intensity values in the image, with
a lower value indicatingmore homogeneity in intensity values.
Our data suggested that there was significant difference in the
heterogeneity of small bowel lymphoma and nonlymphoma
and those texture parameters could help to discriminate pri-
mary lymphoma from other small bowel malignancies.

The crossvalidation trials showed that the diagnostic effi-
ciency of three multivariate models were all relatively valu-
able and stable in the training and validation sets. However,
the radiological features are a type of subjective findings with
individual experience, leading potential diagnostic variation
in the imaging analysis. CT texture analysis is an objective

tool, and the overall predictive value of our arterial texture
model was slightly better than that of the clinical model dur-
ing crossvalidation trials. The predictive performance of
SVM classifications was slightly better than that of the
logistic regression model. Hence, CT texture analysis might
provide more objective and valuable information in preoper-
atively discriminating lymphoma from nonlymphoma of the
small bowel.

CT texture analysis has been widely investigated in risk
grade prediction and prognosis assessment of GIST [15, 16,
24]. The role of CT texture analysis in discriminating lym-
phoma from nonlymphoma of the small bowel has never
been reported previously, which might be due to the rare
incidence of PSBL. Several studies have proved the potential
promise of CT texture or radiomics analysis in identifying
gastric lymphoma. Ma et al. reported that venous CT radio-
mics analysis had a potential to accurately differentiate Borr-
mann type IV gastric cancer from primary gastric lymphoma
[25]. In another study, Ba-Ssalamah et al. found that CT tex-
ture features proved to be highly successful in distinguishing
between gastric adenocarcinoma and lymphoma and GIST
and lymphoma, with low misclassification [26]. CT texture
analysis over small bowel lymphoma still deserves further
investigation.

Our study had several limitations. First, it was a retro-
spective single-center study and the sample size was relatively
small and imbalanced. We will further explore the effect of
imbalanced data using oversampling or sample weighting
method such as SMOTE on the texture analysis model in
our future work [27]. Second, bias in patient selection was
unavoidable in this retrospective study and no external vali-
dation was set owing to small sample size. Hence, the texture
model deserves prospective and external validation to
confirm its practicability. Third, texture analysis based on
delayed-phase CT images was not performed in this study
due to no available reconstructed images. The diagnostic effi-
ciency of delayed texture features in small bowel malignant

Table 4: The diagnostic performance of the clinical model and two texture models.

Arterial texture Venous texture Clinical model

AUC (95% CI) 0.92 (0.87-0.98) 0.87 (0.79-0.94) 0.93 (0.86-0.98)

Accuracy 0.872 0.814 0.839

Sensitivity 0.833 0.733 0.933

Specificity 0.893 0.857 0.790

PPV 0.804 0.730 0.700

NPV 0.910 0.859 0.957

PPV: positive predictive value; NPV: negative predictive value.

Table 5: The crossvalidation of three multivariate models.

Arterial texture Venous texture Clinical model
Training Test Training Test Training Test

Accuracy 0.900 0.831 0.838 0.762 0.854 0.828

Sensitivity 0.877 0.829 0.840 0.780 0.818 0.801

Specificity 0.941 0.833 0.832 0.727 0.920 0.883
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Figure 3: The appeared times of selected features for 100-fold leave group out crossvalidation (LGOCV) in the arterial texture model (a),
venous texture model (b), and clinical model (c). The concrete details are shown in Supplementary materials Part 4.
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tumors requires further investigation. Finally, the number of
patients with small bowel adenocarcinoma was relatively
small. Therefore, those patients were grouped together with
patients with GIST, as the nonlymphoma group. Further
studies with a more precise classification and lager sample
size will be needed.

In conclusion, the arterial texture model showed a great
diagnostic value and fitted performance in differentiating
PSBL from other types of PSBM, which could provide
objective information to screen those patients with suspicion
of PSBL.

Abbreviations

CT: Computed tomography
PSBL: Primary small bowel lymphoma
PSBM: Primary small bowel malignancies
GIST: Gastrointestinal stromal tumor
ROI: Regions of interest
ROC: Receiver operating characteristic
AUC: Area under the curve
mRMR: Minimum redundancy maximum relevance
LGOCV: Leave group out crossvalidation
PPV: Positive predictive value
NPV: Negative predictive value.

Data Availability

The data underlying the findings of our study are publicly
available wherever possible. Please send an email to Zaixian
Zhang (email: befate@126.com) if required.

Additional Points

Key points. Texture features extracted from arterial CT
images outperformed those from venous CT images in
identifying small bowel lymphoma. The clinical model and
arterial texture models held a similar value in discriminating
lymphoma from nonlymphoma of the small bowel. The
texture models and clinical model showed relatively stable
performance during crossvalidation trials.
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Supplementary Materials

The inter- and intrareader correlation coefficients (ICCs) are
shown in Supplementary materials Part 1. The definition/e-
quation of accuracy, sensitivity, specificity, positive predic-
tive value, and negative predictive value was presented in
Supplementary materials Part 2. The arterial and venous tex-
ture rad-scores are shown in Supplementary materials Part 3.
The appeared times of selected features for 100-fold leave-
group-out crossvalidation (LGOCV) in the arterial texture
model, venous texture model, and clinical model are shown
in Supplementary materials Part 4. The univariate logistic
regression analysis of clinical data and radiological features
is shown in Supplementary Table 1. The statistical descrip-

tion of the selected arterial and venous texture features is pre-
sented in Supplementary Tables 2 and 3. The diagnostic
performance of the selected arterial and venous texture fea-
tures is presented in Supplementary Tables 4 and 5. The mul-
tivariate logistic regression analysis of the selected arterial
and venous texture features is shown in Supplementary
Tables 6 and 7. The diagnostic performance of the SVM clas-
sifier and logistic regression model is seen in Supplementary
Table 8. (Supplementary Materials)
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Under the background of 18F-FDG-PET/CT multimodal whole-body imaging for lung tumor diagnosis, for the problems of
network degradation and high dimension features during convolutional neural network (CNN) training, beginning with the
perspective of dividing sample space, an E-ResNet-NRC (ensemble ResNet nonnegative representation classifier) model is
proposed in this paper. The model includes the following steps: (1) Parameters of a pretrained ResNet model are initialized
using transfer learning. (2) Samples are divided into three different sample spaces (CT, PET, and PET/CT) based on the
differences in multimodal medical images PET/CT, and ROI of the lesion was extracted. (3) The ResNet neural network was
used to extract ROI features and obtain feature vectors. (4) Individual classifier ResNet-NRC was constructed with nonnegative
representation NRC at a fully connected layer. (5) Ensemble classifier E-ResNet-NRC was constructed using the “relative
majority voting method.” Finally, two network models, AlexNet and ResNet-50, and three classification algorithms, nearest
neighbor classification algorithm (NNC), softmax, and nonnegative representation classification algorithm (NRC), were
combined to compare with the E-ResNet-NRC model in this paper. The experimental results show that the overall classification
performance of the Ensemble E-ResNet-NRC model is better than the individual ResNet-NRC, and specificity and sensitivity are
more higher; the E-ResNet-NRC has better robustness and generalization ability.

1. Introduction

Lung tumors [1, 2] are one of the malignant tumors with high
morbidity and mortality [3]. The data reveals that the inci-
dence of lung tumors is increasing year by year, which is a seri-
ous threat to human health. The early clinical features of lung
tumors are pulmonary nodules [4]. There are no specific clin-
ical symptoms; hence, it is difficult to be detected and diag-
nosed in time. Once the disease is diagnosed, the cancer is at
an advanced stage. Therefore, early diagnosis and early detec-
tion are essential for the treatment of lung cancer. Medical
imaging techniques [5, 6] are widely used in the diagnosis of
lung tumors, such as ultrasound, X-ray imaging, Computer-

ized Tomography imaging(CT), Magnetic Resonance Imagi-
ng(MRI), and positron emission tomography imaging(PET).
In particular, the advantages of PET and CT are combined
by 18F-FDG-PET/CT [7]. It can realize the same machine
fusion of anatomical image CT and functional metabolism
image PET and accurately locate physical characteristics of
the lesion, such as the location, size, shape, and density of
the lesion. Finally, the effect of “1 + 1 > 2” is achieved. Mass
medical images not only provide more detailed and accurate
diagnostic information but also increase the workload of clini-
cians. Computer-aided diagnosis system (CAD) for lung
tumors is an effective solution [8, 9]. On the one hand, CAD
can provide doctors with accurate quantitative analysis
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services, so as to make up for the defects of human inertia and
insensitivity to gray scales [10, 11]; on the other hand, it can
effectively reduce the error rate of doctors' interpretation of
medical images, thereby helping doctors to better diagnose
diseases and improve the diagnosis rate.

Ensemble learning is a machine learning paradigm. Its
essence is to use multiple classifiers to solve the same
problem and finally use “majority voting” to determine
the final result [12]. In recent years, deep learning has
become a machine learning hot topic. It has been success-
fully applied in the field of medical image processing,
especially in the auxiliary classification, recognition, detec-
tion, and segmentation of malignant tumors, achieving
impressive results that surpass human performance.
Ensemble deep learning, which couples deep learning
and ensemble learning, can make full use of the advan-
tages of the two methods and can provide a new research
direction for computer-aided diagnosis. For example,
Wang et al. employed transfer learning with relative
majority voting to construct a convolutional neural net-
work (CNN) model for the computer-aided diagnosis of
lung tumors [13]. In another work, Xiao et al. [14] ensem-
ble a variety of different machine learning models for the
accurate diagnosis of lung cancer; five classifiers, namely,
k-nearest neighbor (KNN), support vector machine
(SVM), decision trees (DTs), random forest (RF), and gra-
dient boosted decision tree (GBDTs), were ensembled to
construct a multimodal ensemble model to predict the
incidence of both normal and abnormal cancer. Harangi
[15] uses an integrated method to integrate four types of
deep neural networks, including AlexNet, GoogleNet,
VGG and ResNet. Yu and Wang [16] integrated the three
deep learning network models of AlexNet, GoogleNet, and
VGG for computer-aided diagnosis of lung cancer; there
are good generalization ability of ensemble network model.
Alzubi and Bharathikannan [17] use weight optimization
and maximum likelihood boosting (MLB) to achieve a bet-
ter false-positive rate and accuracy. Sirazitdinov et al. [18],
propose an ensemble of two convolutional neural net-
works, namely RetinaNet and Mask R-CNN for pneumo-
nia detection and localization. The algorithm is validated
on a recently released dataset of 26,684 images from the
Kaggle Pneumonia Detection Challenge and scored among
the top 3% of submitted solutions.

R-Ensembler, a parameter free greedy ensemble attri-
bute selection method is proposed by Bania and Halder
[19] adopting the concept of rough set theory by using
the attribute-class, attribute-significance and attribute-
attribute relevance measures to select a subset of attributes
which are most relevant, significant and non-redundant
from a pool of different attribute subsets in order to pre-
dict the presence or absence of different diseases in medi-
cal dataset. The main role of the proposed ensembler is to
combine multiple subsets of attributes produced by differ-
ent rough set filters and to produce an optimal subset of
attributes for subsequent classification task. Cao et al.
[20] propose an ensemble ELM (Extreme Learning
Machine) combining with the SRC (En-SRC) algorithm.
Rather than using the output vector from single ELM to

decide the threshold for data partition, En-SRC incorpo-
rates multiple ensemble outputs to improve the reliability
and classification accuracy. Jiang et al. [21] propose a con-
textual attention mechanism and a spatial attention mech-
anism for learning fine-grained representation of
pulmonary nodules. an ensemble of 3D Dual Path Net-
works (DPNs) is used to boost the pulmonary nodule clas-
sification performance, Experimental results demonstrate
the effectiveness of the proposed method.

Improving the generalizability of individual classifiers
and increasing the heterogeneity of individual classifiers in
ensemble learning architectures are two crucial factors that
can improve the performance of ensemble learning models.
Therefore, from the perspective of splitting the sample space
in the framework of ensemble learning, and based on the
ResNet with nonnegative representation classification
(NRC), a 18F-FDG-PET/CT whole-body imaging lung tumor
diagnosis E-ResNet-NRC model is proposed. Firstly, three
modalities of PET, CT, and PET/CT medical images of lung
tumors are collected; according to the medical image modal-
ity, the medical image is divided into three sample spaces:
PET, CT, and PET/CT. Secondly, constructing an individual
classifier based on residual neural network in a different sam-
ple space, each individual classifier is trained by migration
learning, which can ensure the rapid learning ability of the
individual classifier and the difference of the individual clas-
sifier. Thirdly, using nonnegative representation classifica-
tion NRC in the fully connected layer improves the sparse
representation ability and classification performance of sam-
ple data. Finally, a relatively majority vote is used for ensem-
ble learning, and the results of computer-aided diagnosis of
lung tumor images are obtained.

2. Background

2.1. 18F-FDG-PET/CT Whole-Body Imaging. Molecular
imaging is a science that uses imaging techniques to reveal
the distinct levels of tissue organization at the cellular and
subcellular levels, reflecting variations in vivo at the molecu-
lar level and allowing to conduct qualitative and quantitative
research on biological behaviors based on images. 18F-FDG-
PET/CT is an important assessment modality in molecular
imaging. It can detect the initial state of the disease in the
body before the disease shows clinical symptoms or changes
in anatomical structure. Therefore, early intervention of the
disease can be realized, and the purpose of reversing, pre-
venting or delaying the occurrence of the disease can be
achieved, and the efficiency of the disease cure can be greatly
improved (Figure 1).

2.2. ResNet. The ResNet(ResiDual Neural network) is com-
posed of convolutional layers for feature extraction and pool-
ing layers for feature processing. After multiple convolution
and pooling operations, the input image is classified and out-
put through a fully connected layer [22]. The ResNet uses
shortcut connections and fitting residual representations.
The identity mapping reconstructs the learning process, redi-
rects the network information flow, and increases the depth
of the network. This improves the representation capability
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of the model, accelerates the network convergence speed, and
effectively solves common issues such as network degrada-
tion and gradient vanishing. The residual neural network is
composed of multiple residual block structures overlapping,
while adjacent convolutional layers are connected by short-
cuts to form residual blocks. The structure of the residual
block is shown in Figure 2.

Hi represents the input, Hi+1 represents the output, Wi
represents the weights, and F represents residual mapping.
The residual block mapping is thus represented as follows:

Hi+1 = Relu Hi + F HiWið Þð Þ: ð1Þ

When the input dimension Hi and the output dimension
Hi+1 are different, the linear projection φ is used to match the
dimensions. Therefore, Equation (1) can be expressed as

Hi+1 = Relu φ Hð Þi + F HiWið Þ� �
: ð2Þ

The residual mapping is more easily learned empirically
through experimentation when compared with the original
mapping. Therefore, the ResNet learns the residual mapping
through the middle stacked layers. The residual mapping F is
more sensitive to variations in the output, and the parameter
adjustment range is comparably broader, thus speeding up
learning and improving the network optimization perfor-
mance. Therefore, the ResNet-50 network was chosen in this
study.

2.3. NRC Algorithm. In recent years, sparse representation
[23, 24] of high-dimensional feature data has become a

research hot topic in the field of machine learning. Sparse
representation classification (SRC) [25, 26] for high-
dimensional data recognition proves advantageous in
improving sparse representation and classification perfor-
mance. The main concept of SRC is the association of
the test sample with a linear combination of the training
samples; then, the test samples are divided into their cor-
responding classes with the minimum distance or approx-
imation error [27]. However, the encoding coefficient of
SRC is negative, which, in practice, causes the weights
corresponding to the positive and negative coefficients to
offset. This affects the classification accuracy to some
extent. The classification criterion of nonnegative repre-
sentation classification (NRC) [28] is the classification
according to the similarity of training and test samples.
This approach is similar to sparse representation classifi-
cation (SRC) with the difference being that the coding
coefficient of NRC is limited to nonnegative [29]. The
nonnegative representation can improve the representa-
tion of isomorphic samples while inhibiting the represen-
tation of heterogeneous samples, resulting in sparse
encoding coefficients from the same correct class; there-
fore, the nonnegative representation is at the same time
sparse and distinguished. Therefore, nonnegative repre-
sentation tends to find homogeneous samples, which
translates to higher recognition accuracy [30].

The main idea of NRC revolves around the query samples
y ∈ RD, and the training sample matrix X = ½X1,⋯:,Xk� ∈
RD×N. Firstly, each column of Y and X is normalized to a unit
L2 standard; the encoding vector ĉ is then calculated by que-
rying the samples Y and X. The larger the difference between
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reconstruction residuals, as calculated from the matric coeffi-
cients, the higher the similarity of the test sample to the
training sample. The output label category is assigned based
on the degree of residual similarity. The algorithm design is
shown in Table 1.

2.4. Ensemble Learning. The core concept of ensemble
learning is to train multiple homogeneous and different
individual learning algorithms to solve the same problem
[31]. Then, the final predicted result is obtained by com-
bining the weighed outputs of all individual learners
through a variety of strategies. In order to design a robust
ensemble classification model, it is necessary to improve
the generalization ability of individual classifiers as well
as to increase the differences between the individual classi-
fiers in the ensemble.

Ensemble learning [31] can significantly improve the
generalization ability of the learning system. The most
common techniques include bagging, boosting, and stack-
ing. The conventional methods used to generate base clas-
sifiers can be roughly divided into two broad categories:
the first one comprising the application of different types
of learning algorithms to the same data set, with the
resulting base classifier referred to as heterogeneous, and
the second one consisting on the application of the same
learning algorithm to different training sets, producing a
homogeneous classifier [32].

The combination of strategies of ensemble learning for
classifiers includes the average, voting, and learning
methods. Different combinations of methods are chosen
depending on the application. For example, for regression
estimation, the prediction results of individual learners are
usually simply averaged or weighed averaged. Meanwhile,
for classification, the results of each individual classifier
are usually voted to obtain the final classification result.
The voting method is divided into the absolute majority
voting and the relative majority voting method. The abso-
lute majority voting method is characterized by more than
half of the individual learners delivering the same answer;
the output is the final classification result of the ensemble.
The relative majority voting method is characterized by
the majority of individual learners outputting a certain
classification result, this result is the final classification
result of the ensemble.

3. Ensemble E-ResNet-NRC Model with
Partitioned Sample Space

3.1. Algorithm Rationale. In this study, an ensemble E-
ResNet-NRC model with partitioned sample space is
proposed. The overall design of the model is as follows:

3.1.1. Data Collection. 9000 CT, PET, and PET/CT of
patient’s lung images were collected from a 3A hospital in
Ningxia between 2014 and 2016, including 3000 cases of each
modal image. Figure 3 shows a PET image of lung tumor
(upper left), CT image of a pulmonary tumor (lower left),
whole-body image (upper right), and PET/CT image of lung
tumor (lower right).

Sample Set Division. Lung medical image sample set is
as follows: Sample_Lung, Sample Size ∣ Sample Lung ∣ =
9000, according to the types of medical image (CT, PET, or
PET/CT). Sample Lung = fSample CT, Sample PET, Sample
PET/CTg. The sample lung was divided into three sample sub-
sets: Sample_CT, Sample_PET, and Sample_PET/CT. with
sample sizes ∣Sample CT ∣ = 3000, ∣Sample PET ∣ = 3000,
and ∣Sample PET/CT ∣ = 3000. The negative and positive
samples of each sample subset are the same, i.e., Sample CT
= fSample CT Negative Sample CT Positiveg, ∣Sample CT
Negative ∣ = ∣ Sample CT Positive ∣ = 1500, Sample PET = f
Sample PET Negative Sample PET Positiveg, ∣Sample PET
Negative ∣ = ∣ Sample PET Positive ∣ = 1500, Sample PET/

Table 1: NRC algorithm.

Algorithm: NRC

1 Input: training sample matrix X = X1,⋯:,Xk½ � and query sample y

2 Normalize each column of matrix X and query sample y to the unit L2 norm

3 The encoding vector of y on X is solved by the NRC model

4 Calculate the coefficient matrix: ĉ = arg minc y − Xck k22s:t:c ≥ 0

5 Calculate residual similarity: rk = y − Xkĉkk k2
6

Output label category:
Label yð Þ = arg min rkf g

Figure 3: CT, PET, and PET/CT original images.
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CT = fSample PET/CT Negative Sample PET/CT Positiveg,
∣Sample PET/CT Negative ∣ = ∣ Sample PET/CT Positive ∣
= 1500.

3.1.2. Transforming Pseudocolor into Gray Images. Sample
Lung = rgb2graðSample LungÞ:

3.1.3. ROI. Local features (i.e., the region of interest) are
extracted from the global gray images based on clinical markers
corresponding to the lesion area. Then, the ROI is normalized
to experimental data as 50px × 50px, sample lung = ROI lung
(sample lung). The ROI extraction process for each of the three
sample subsets is as follows: Sample CT ROI = ROI Lungð
Sample CTÞ, Sample PET ROI = ROI LungðSample PETÞ,
Sample PET/CT ROI = ROI LungðSample PET/CTÞ.

3.1.4. Constructing Different Sample Spaces. The lung medical
image sample set (Sample_Lung) is composed of three
different medical image modalities CT, PET, and PET/CT.
The local features of the lesion area are used to define the
ROI and obtain the same set as the original Sample_CT_
ROI: Sample CT ROI = fSample CT ROI, Sample PET ROI
, Sample PET/CT ROIg. In these three sample subsets, each
of 3000 cases and each sample subset (negative and positive
samples) are the same size, i.e., 1500 cases: Sample CT ROI

= fSample CT ROI −Negative Sample CT ROI Positiveg, ∣
Sample CT ROI Negative ∣ = ∣ Sample CT ROI Positive ∣ =
1500, Sample PET ROI = fSample PET ROI Negative
Sample PET ROI Positiveg, ∣Sample PET ROI Negative ∣ =
∣ Sample PET ROI Positive ∣ = 1500, Sample PET/CT ROI
= fSample PET/CT ROI Negative Sample PET/CT ROI
Positiveg, ∣Sample PET/CT ROI Negative ∣ = ∣ Sample PET/
CT ROI Positive ∣ = 1500.

Figure 4 shows that Sample_Lung set is divided into three
sample spaces.

3.1.5. Construction of a Fivefold Cross-Experimental Dataset
Based on Sample Space Division in the Three Sample
Subsets, Namely Sample_CT_ROI, Sample_PET_ROI, and
Sample_PET_CT_ROI. A dividing algorithm was used to
separate the negative and positive sample sets of each sample
subset into 5 uniform datasets, each one of 300 samples, to
obtain a 5-fold cross-sample set.

3.1.6. Construction of the ResNet-NRC. Individual classifiers
were designed based on sample subsets of the three image
modalities.

(1) The ResNet-50 was pretrained via transfer learning.
The parameters in the pretraining network were

Data 
collection
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sample 

set
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Figure 4: Sample_Lung set division.
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taken as the initialization parameters: ResNet −
NRC = Transfer learning (ResNet-50, NRC); Table 2
shows ResNet-50 parameters

(2) In three sample subsets Sample_CT_ROI, Sample_
PET_ROI, and Sample_PET/CT_ROI, the ResNet-
NRC network is retrained to get individual classifiers:
ResNet −NRC − CT = TrainingðResNet −NRC,
Sample CT ROIÞ, ResNet −NRC − PET = Trainingð
ResNet −NRC, Sample PET ROIÞ, ResNet −NRC
− PET/CT = TrainingðResNet −NRC, Sample PET/
CT ROIÞ.

3.1.7. The ResNet-NRC Classifier. The ResNet-NRC classifier
was ensembled via relative majority voting to obtain three
individual classifiers: ResNet −NRC = EnsemblefðResNet −
NRC − CT, ResNet −NRC − PET, ResNet −NRC − PETg.

Figure 5 shows an algorithm flow chart.

3.2. Key Technology: ResNet-NRC Model. Transfer learning
refers to the initialization of a small training set of parameters
by using a pretrained network with a proven learning capac-
ity. This method can this be used to transfer existing learning
abilities from one network to another. In this paper, three
individual classifiers, namely, ResNet-NRC-CT in CT mode,
ResNet-NRC-PET in PET mode, and ResNet-NRC-PET/CT
in PET/CT mode, were constructed via transfer learning
based on the ResNet-50. This model was used to identify lung
tumors from CT, PET, and PET/CT medical images,
respectively.

Input: The three sample subsets Sample_CT_ROI, Sam-
ple_PET_ROI, and Sample_PET/CT_ROI.

Output: Three ResNet-NRC Individual classifiers,
ResNet-NRC-CT, ResNet-NRC-PET, and ResNet-NRC-
PET/CT.

The process to obtain these is as follows.

(1) Transfer learning was used to train the ResNet-50:
ResNet = TransferLearningðResNet − 50Þ

(2) For the three modalities, the initialization parameters
are taken from the pretrained ResNet-50 network.
The training and extraction of the fully connected
layer features carried in the ResNet: ResNet − CT =
TrainingðResNet, Sample i ROIÞ, i = 1, 2, 3, where 1,
2, and 3 refer to CT, PET, and PET/CT, respectively

(3) Taking the Sample-CT-ROI as an example, for the
training samples X = ½X1,⋯Xk�, Xi ∈ Sample-CT-
ROI, and testing sample y = ½y1,⋯yn�, yi ∈ Sample-
CT-ROI. Through the ResNet-50 feature extraction,
the training sample matrix of the feature space is
obtained as X ′ = ½X1′ ,⋯Xk′�, with a test sample matrix
y′ = ½y1′ ,⋯yn′�.

(4) Each column of the matrix X ′ and query sample y′
are normalized to unit L2 standard:

X ′
�� ��

2 =

ffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
x′2i

s
,

y′
�� ��

2 =

ffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
y′2i

s ð3Þ

(5) The training sample X ′ in the feature space y′ is non-
negative. Therefore, the nonnegative coefficient ĉ can
be obtained as

ĉ = arg minc y′ − X ′c
�� ��s:t:c ≥ 0 ð4Þ

(6) Training samples are used to classify the nonnegative
representations of the test samples based on their
similarity as

rk = y′ − Xk′̂ck
�� ��

2 ð5Þ

(7) Finally, the label category of the residual output result
is defined as

Label y′
� �

= arg min rkf g: ð6Þ

4. Experiments

4.1. Experimental Environment. Software environment is as
follows: Windows10 operating system, MatlabR2019a;

Table 2: ResNet-50 parameters.

Layers Output size Parameter

Conv1 112 × 112 7× 7, 64, stride 2
Max-Pool 112 × 112 3× 3, 64, stride 2

Conv2_x 56 × 56

1 × 1, 64

3 × 3, 64

1 × 1, 256

2
664

3
775 × 3

Conv3_x 28 × 28

1 × 1, 128

3 × 3, 128

1 × 1, 512

2
664

3
775 × 4

Conv4_x 14 × 14

1 × 1, 256

3 × 3, 256

1 × 1, 1024

2
664

3
775 × 6

Conv5_x 7 × 7

1 × 1, 512

3 × 3, 512

1 × 1, 2048

2
664

3
775 × 3

Avg_pool 7 × 7 2048

FC 1 × 1 1000
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hardware environment is as follows: Intel(R)Core(TM)i5-
7200U CPU @2.50GHz 2.70GHz, 4.0GB memory, 500GB
hard drive.

4.2. Evaluation Metrics. In this paper, the evaluation metrics
include accuracy, sensitivity, specificity, F-score value, and
Matthews correlation coefficient (MCC), which are described
as follows:

Accuracy, sensitivity, and specificity were calculated by
true-positive (TP), false-positive (FP), true-negative (TN),
and false-negative (FN). TP indicates a benign tumor was
predicted correctly, FP indicates a malignant tumor was pre-
dicted incorrectly, TN indicates a malignant image was pre-
dicted correctly, and FN indicates that benign tumors were
predicted incorrectly. They are calculated by the following
formulae:

Accuracy = TP + TN
TP + TN + FP + FN

,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
:

ð7Þ

The F-value is a summed average of the percentages of
completeness and accuracy. It is used as a trade-off between
accuracy and recall. The calculation formula is as follows:

F =
2 × TP

2 × TP + FP + FN
: ð8Þ

MCC is a more comprehensive evaluation metric that
reflects the reliability of the algorithm. When the number
of categories is different, the value of the measure is consid-
ered balanced ranging from -1 to +1. The MCC takes the
value of 1 when the prediction error is 0 for both FP and
FN, which means that the classification is completely correct;
when the prediction error is 0 for both TP and TN, the MCC
takes the value of -1, which means that the classification is
completely wrong. It is calculated as follows:

MCC =
TP × TN‐FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp : ð9Þ

4.3. Experimental Results and Analysis. The experiments
were performed using a 5-fold cross-validation for training.
The final results were averaged over five experiments. 2400
training samples and 600 test samples were used. The exper-
iments were carried out in CT, PET, and PET/CT trimodal
datasets. AlexNet and ResNet-50 were used for comparison.
Classification was achieved through the nearest neighbor
classification (NNC), softmax, and nonnegative representa-
tion classification (NRC) algorithms. The algorithms were
pairings were as follows: AlexNet+NNC, AlexNet+Softmax,
AlexNet+NRC, ResNet-50+NNC, ResNet-50+Softmax, and
ResNet-50+NRC.

4.3.1. Experiment 1: Comparison of the Accuracy and Times of
the Different Models. This experiment explored the effects of
different network models, classification algorithms, and sam-
ple spaces on the ResNet recognition rate and training time.
The following six combinations of algorithms were
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examined: AlexNet+NNC, AlexNet+Softmax, AlexNet
+NRC, ResNet-50+NNC, ResNet-50+Softmax, and ResNet-
50+NRC. The recognition accuracy, running time for train-
ing, and standard deviation (SD) in the sample space of CT,
PET, and PET/CT are shown in Table 3.

(1) Not Using Ensemble Learning. The experiment was also
carried out without using ensemble learning. In the first sce-
nario, different network models with the same classification
algorithms were used. As in Experiment 1, three groups of
comparative experiments were performed, namely, AlexNet
+NNC and ResNet-50+NNC, AlexNet+Softmax, and

Table 3: Comparison of accuracy, standard deviation, and training times in different models.

Evaluation index
AlexNet
+NNC

AlexNet
+Softmax

AlexNet
+NRC

ResNet-50
+NNC

ResNet-50
+Softmax

ResNet-50
+NRC

CT

Acc (%) 96.37 98.20 98.80 97.00 98.13 99.07

SD (%) 1.29 1.14 0.93 1.51 1.34 0.50

Training time (s) 161.48 164.33 185.91 1176.91 1182.28 1204.95

PET

Acc (%) 99.57 99.50 99.83 99.50 99.63 99.80

SD (%) 0.75 1.31 0.25 1.31 1.30 0.48

Training time (s) 146.63 148.77 169.46 1035.85 1036.29 1059.48

PET/CT

Acc (%) 96.60 97.63 97.97 97.53 97.90 98.33

SD (%) 5.04 3.60 3.37 3.14 2.63 3.01

Training time (s) 139.25 138.29 162.38 1162.93 1169.76 1187.22

Ensemble

Acc (%) 99.10 98.87 99.43 99.23 99.33 99.57

SD (%) 2.03 2.28 0.86 1.67 1.45 1.07

Training time (s) 422.39 420.09 491.20 3080.76 3234.90 3179.38

Table 4: Accuracies of different network models and classification
algorithms.

Network
model

Classification
algorithm

CT
(%)

PET
(%)

PET/CT
(%)

Ensemble
(%)

AlexNet

NNC 96.37 99.57 96.60 99.10

Softmax 98.20 99.50 97.63 98.87

NRC 98.80 99.83 97.97 99.43

ResNet-50

NNC 97.00 99.50 97.53 99.23

Softmax 98.13 99.63 97.90 99.33

NRC 99.07 99.80 98.33 99.57

Table 5: Comparison of sensitivity results of different network
models and classification algorithms.

Network
model

Classification
algorithm

CT
(%)

PET
(%)

PET/CT
(%)

Ensemble
(%)

AlexNet

NNC 99.00 100.00 99.60 99.87

Softmax 99.20 100.00 98.27 99.27

NRC 99.07 100.00 98.87 99.53

ResNet-50

NNC 98.80 100.00 99.00 99.93

Softmax 98.73 100.00 98.80 99.87

NRC 99.40 100.00 99.33 99.73

Table 6: Comparison of specificity results of different network
models and classification algorithms.

Network
model

Classification
algorithm

CT
(%)

PET
(%)

PET/CT
(%)

Ensemble
(%)

AlexNet

NNC 93.73 99.13 93.60 98.33

Softmax 97.20 99.00 97.00 98.47

NRC 98.53 99.67 97.07 99.33

ResNet-50

NNC 95.20 99.00 96.07 98.53

Softmax 97.53 99.27 97.00 98.80

NRC 98.73 99.60 97.33 99.40

Table 7: Comparison of F-value results of different network models
and classification algorithms.

Network
model

Classification
algorithm

CT
(%)

PET
(%)

PET/CT
(%)

Ensemble
(%)

AlexNet

NNC 96.46 99.57 96.70 99.11

Softmax 98.22 99.50 97.65 98.87

NRC 98.80 99.83 97.98 99.43

ResNet-50

NNC 97.05 99.50 97.57 99.24

Softmax 98.14 99.63 97.92 99.34

NRC 99.07 99.80 98.35 99.57

Table 8: Comparison of MCC results of different network models
and classification algorithms.

Network
model

Classification
algorithm

CT
(%)

PET
(%)

PET/CT
(%)

Ensemble
(%)

AlexNet

NNC 92.86 99.14 93.37 98.21

Softmax 96.42 99.00 95.27 97.74

NRC 97.66 99.67 95.95 98.87

ResNet-50

NNC 94.06 99.00 95.11 98.48

Softmax 96.27 99.27 95.82 98.67

NRC 98.14 99.60 96.69 99.13
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ResNet-50+Softmax, as well as AlexNet+NRC and ResNet-
50+NRC.

Taking the third group as an example, in the CT sample
space, the accuracy of the proposed ResNet-50+NRC model
was 0.27% higher than that of the AlexNet+NRC model with
a training time of 1019.04 seconds. It is noted that the ResNet
is deeper when compared with the AlexNet; for this reason,
the extracted image features are richer, and the classification
accuracy is higher; however, the training time is greatly
increased, in this case, by 648.14%. The results of the other
two groups were similar (data not shown).

In the second scenario, the same network with different
classification algorithms was used. In Experiment 1, there
were three groups of comparative experiments, namely,
AlexNet+NNC and AlexNet+Softmax, AlexNet+NRC and
ResNet-50+NNC, and ResNet-50+Softmax and ResNet-50
+NRC. Taking the second group as an example, in the CT
sample space, the classification accuracy of the individual
classifier ResNet-50+NRC was 2.07% and 0.94% higher than
that of the ResNet-50+NNC and ResNet-50+Softmax,
respectively. In terms of the training times, Net-50+NRC
was 28.04 and 22.67 seconds faster than the ResNet-50
+NNC and ResNet-50+Softmax models, respectively. Com-
pared with the first scenario, the overall training time was
greatly improved; however, after the network model was
determined, the increase in training time was not significant.
It is noted that when using the same network architecture,
the NRC model exhibits a better classification accuracy when
compared with the NNC and Softmax models. This algo-
rithm also proved suitable for handling high-dimensional
data and reduced training times significantly.

(2) Using Ensemble Learning. In this experiment, the same
network architecture and classification algorithms under dif-
ferent sample spaces were used. Six groups of comparative

experiments were considered: AlexNet+NNC and E-Alex-
Net+NNC, AlexNet+Softmax and E-AlexNet+Softmax,
AlexNet+NRC and E-AlexNet+NRC, ResNet-50+NNC
and E-ResNet-50+NNC, ResNet-50+Softmax and E-
ResNet-50+Softmax, and ResNet-50+NRC and E-ResNet-
50+NRC.

Taking the third group in the three different sample
spaces as an example, the classification accuracy of E-Alex-
Net+NRC model was 0.63% and 1.46% higher than that of
the AlexNet+NRC in the CT and PET/CT sample spaces,
respectively. When taking the sixth group in the three sample
spaces as an example, the classification accuracy of the pro-
posed E-ResNet-50+NRC model was 0.50% and 1.24%
higher than that of the ResNet-50+NRC model in the sample
space of CT and PET/CT, respectively. Meanwhile, the train-
ing time was improved by 1974.43 and 1992.16 seconds,
respectively. It is noted that when using the same network
model and classification algorithm on different sample
spaces, ensemble learning can improve the classification
accuracy at the expense of substantially increased training
times. From the comparative experiments in Experiment 1,
namely, E-AlexNet+NNC, E-AlexNet+Softmax, E-AlexNet
+NRC, E-ResNet-50+NNC, E-ResNet-50+Softmax, and E-
ResNet-50+NRC, the classification accuracy of the proposed
E-ResNet-50+NRC model was 99.57%—the highest among
the six tested models.

4.3.2. Experiment 2: Comparison of Evaluation Indexes of
Different Models. In this experiment, six algorithms were
examined: AlexNet+NNC, AlexNet+Softmax, AlexNet
+NRC, ResNet-50+NN, ResNet-50+Softmax, and ResNet-
50+NRC. Training and recognition were carried out in three
sample spaces: CT, PET, and PET/CT. The algorithms were
evaluated in terms of their accuracy, sensitivity, specificity,
F-value, and MCC (Tables 4–8).
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Figure 6: Accuracy of the AlexNet and ResNet-50 models. (a) Accuracy of the AlexNet model. (b) Accuracy of the ResNet-50 model.
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From Tables 4–8, it is noted that when using different
network architectures with the same classification algorithm,
the ResNet50-NRC showed improvements of 0.27%, 0.33%,
0.2%, 0.13%, and 0.48 seconds in accuracy, sensitivity, speci-
ficity, F-value, and MCC, respectively, when compared with
the AlexNet-NRC and the Text E-ResNet50-NRC. When
compared with the AlexNet-NRC, the sensitivity, specificity,
F-value, and MCC were increased by 0.14%, 0.2%, 0.07%,
0.14%, and 0.36%, respectively. Plotting the average value of
the indicators presented in Figures 6–10 provides with a clear
visual representation of the differences between the different
algorithms.

From the information derived from the above experi-
ments and analyses, it is noted that, when using the same net-
work architecture, the NRC algorithm exhibited a better
performance when compared with the NNC and Softmax
algorithms. The NCR algorithm with a ResNet proved more
robust for handling high-dimensional data in the CT, PET,
and PET/CT sample spaces. In terms of classification accu-
racy, the experimental results showed that the ResNet-50
architecture was better suited when compared with the Alex-
Net. The ResNet reconstructs the learning process and redi-
rects the information flow through deep convolutional
layers, which solves the issues of network degradation and
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Figure 7: Sensitivity of the AlexNet and ResNet-50 models. (a) Sensitivity of the AlexNet model. (b) Sensitivity of the ResNet-50 model.
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deepens the architecture without the necessity of additional
parameters and computation. The generalizability and con-
vergence of the model are improved. When using the same
network architecture and classification algorithm in the three
sample spaces, the experimental results showed that the per-
formance of the ensemble model was better suited than that
of the individual classifier models. Most notably, the E-
ResNet-50+NRC model proposed proved better than the
other six architectures tested; this model exhibited a higher
accuracy, sensitivity, specificity, F-value, and MCC, as well
as a robust depth and generalizability. Finally, it is noted that
the training times were significantly increased; this can be

mitigated by the integration of more powerful hardware such
as GPUs or cloud computing platforms. Additionally, in the
PET sample space, the classification accuracy of all models
was relatively high; this is because the PET silhouette con-
tains less information, mainly highlighted information,
which accounts for a large contrast—the explanation is not
clear.

5. Conclusion

In this paper, an E-ResNet-NRC model was proposed and
implemented by dividing the sample space based on
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Figure 9: F-score of the AlexNet and ResNet-50 models. (a) F-score of the AlexNet model. (b) F-score of the ResNet-50 model.
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ensemble learning and using nonnegative representation
classification with a ResNet for the classification of medical
images of lung tumors. Firstly, the parameters were initial-
ized using transfer learning from a pretrained ResNet. Next,
the sample is divided into three different spaces (CT, PET,
and PET/CT) according to the different medical imaging
techniques. The ResNet extracts the ROI features and uses
them to construct feature vectors. Then, an individual classi-
fier, ResNet-NRC, was constructed by employing nonnega-
tive NRC at the fully connected layer. Finally, the ensemble
classifier E-ResNet-NRC was achieved by employing relative
majority voting. The experimental results showed that the
overall classification performance of the proposed E-NRC-
ResNet model was better than that of the individual classifier.
Its specificity and sensitivity were also higher, while posses-
sing good robustness and generalizability.
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Background. Body mass index, measured at colorectal cancer (CRC) diagnosis has been associated with recurrence and survival
outcomes. Computed tomography- (CT-) defined body compositions accurately reflect body mass, but there was no consistent
perspective on the influence of visceral adipose tissue (VAT) and skeletal muscle mass (SM) on the prognosis of nonmetastasis
CRC, especially in the patients underwent surgery and regularly standard chemotherapy. Methods. We investigated the
associations of CT-quantified body composition (VAT and SM) with CRC patients successively underwent surgery and regular
8-12 of periods standard chemotherapy. All of the CT images were obtained at the level of the L3/4 spinal level. The prognostic
value of the body compositions was analyzed using the Cox regression model, and precise clinical nomograms were established.
Results. In XELOX-treated patients, progression-free survival (PFS) (P = 0:025) and overall survival (OS) (P = 0:032) were lower
in the high-SM than in the low-SM group. The univariate analysis demonstrated that compared with low-SM patients, patients
with high-SM showed a strikingly poor prognosis in both OS (P = 0:0512) and PFS in the T4 subgroup (P = 0:0417), while
contrary to the T2-3 subgroup. Conclusions. CT-quantified body compositions have a significant influence on CRC patients
successively underwent curative resection and regularly standard chemotherapy with the endpoints of 1-year, 3-year, and 5-year
both OS and PFS. Patients with high-SM showed a strikingly poor prognosis in OS and PFS in the T4 subgroup; however, the
prognosis role of body composition was opposite in T2-3 patients.

1. Introduction

Currently, colorectal cancer has a high incidence rate and is
the secondary causation of cancer mortality worldwide,
extremely posing a threat to human health [1, 2]. Therefore,
it is necessary to identify the prognostic factors of
progression-free survival (PFS) and overall survival (OS) in
the early time and take effective and targeted interventions
to improve the prognosis. According to previous literature,
overweight and obesity were found associated with
recurrence-free (RF) and survival among colorectal cancer
patients. However, conflicting results between them are
observed in different studies. Besides, traditional index, such
as body mass index (BMI), is insufficient for reflecting the
distinguishing between fat and muscle mass or visceral adi-

pose tissue (VAT) and skeletal muscle (SM) [3]. Abdomino-
pelvic computed tomography (CT) imaging is not only a
routine examination as a pretreatment staging way of clinical
management in cancer patients but also a more accurate
method to differentiate body composition, which means that
no further test exposure is required, and no additional finan-
cial burden is placed on the patient. Moreover, CT-defined
body composition is widely confirmed for accurate reflecting
on different types of adipose tissue as well as muscle mass [4].

The rapid growth and proliferation of tumor cells require
a large amount of energy, which is a key factor resulting in
high death from tumors. Based on existing researches, base-
line fat and muscle distribution are closely related to post-
operation recovery and complications, tolerance of
chemotherapy-induced toxicity, and recurrence as well as
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health-related quality of life [5–7]. Therefore, we speculate
that body compositions may play a role in nonmetastasis
colorectal cancer patients. Although it is acknowledged that
body compartments are independent prognostic predictors,
however, there was no consistent perspective on the influence
on VAT and SM to the prognosis of nonmetastasis colorectal
cancer, especially in the patients who successively underwent
curative resection and regularly standard chemotherapy [8,
9]. Moreover, the general consensus demonstrated that the
prognosis of colorectal cancer was closely associated with
the staging features of TNM classification, including patho-
logic T stage, absence, of nodal involvement, with or without
distance. Worse prognosis in these colorectal cancer patients
with distant metastases, thus, we did not include these
patients to avoid bias in the results of our research. In addi-
tion, previous researches about the relationship between
body compositions and the prognosis of CRC, most of which
were based on the CRC stage or not, there was a lack of divid-
ing T stage into two groups to explore the connection
between them [10].

Our study is aimed at exploring the relationship between
CT-quantified body compositions and recurrence as well as
the overall survival of colorectal cancer patients who success-
fully underwent curative resection and had regular 8-12
periods of standard chemotherapy. Also, the independent
risk factors in these patients were analyzed. Thus, we try to
construct the OS and RF nomogram to predict the 1-year,
3-year, and 5-year survival probability based on the prognos-
tic factors derived from multivariate Cox regression analysis.

2. Methods

2.1. Study Population and Design. The records of 221 persons
diagnosed with CRC at the First Affiliated Hospital of Wen-
zhou Medical University between January 2014 and January
2017 were reviewed. Eligible patients were defined as firstly
diagnosed with primary colorectal cancer, excluded other
malignant tumors, 18 years or over, stage I–III, complete
pathology, laboratory, and able to provide informed consent.
Simultaneously, all of the patients successively underwent
surgery and regular 8-12 periods of standard chemotherapy
(including XELOX and FOLFIRI/FOLFOX). Patients who
did not undergo adequate abdominopelvic computed tomog-
raphy scanning before starting surgery, those treated for
irregular or no chemotherapy, and those who lose followed-
up for <24 months were excluded. Pathologists assessed the
tumor stage according to the 8th edition of the AJCC TNM
staging guidelines. In general, there were 221 eligible cases
selected in this study, and the pathological T stages were
T2-4. All of these patients were followed up, and 91 recurrent
and 66 dead patients were recorded during the follow-up.
According to the American Joint Committee on Cancer
(AJCC) TNM (Tumor, Nodes, Metastasis) system and the
staging 8th edition of colorectal cancer, pathologic T4 stage
was defined as tumor invasion of the visceral peritoneum or
adherences to adjacent organ or structure. The deep tumor
penetration and invasion of adjacent organs were extremely
related to the risk of relapse and overall survival among
CRC patients without distant metastasis. Based on many pre-

vious studies, T4 had a significant impact on affecting both
the duration and effect of chemotherapy [11]. Meanwhile,
combined with other existing researches on the grouping of
T staging [12], we divided all patients into T2-3 and T4
groups. The cutoff time of the study was set in August
2020. The study protocols were approved by the Wenzhou
Medical University Ethics Committee. All procedures adhere
to the BRISQ Guidelines for reporting research on human
biospecimens.

2.2. Body Composition. Muscle mass and visceral fat mass
were evaluated using pretreatment CT images obtained at
the level of the L3/4 spinal level in detail [13]. Patients all
underwent multidetector CT scans with quantification of
body composition within 15 days before surgery. Specific
regions of interest (ROI) were manually determined: VAT
(by defining the fascial plane of the abdominal muscle wall,
using standard Hounsfield Unit (HU) ranges adipose tissue
-190 to -30, Figure 1(a)) and SM (by defining the skeletal
muscle using HU ranges muscle tissue 40 to 100,
Figure 1(b)). All CT examinations were performed using
the scanners: Brilliance-64, Philips Medical Systems, Eindho-
ven, The Netherlands; 128-MDCT scanner Somatom Defini-
tion, Siemens Health-care Sector, Forchheim, Germany. Two
experienced radiologists drew the eligible CT planar, and
then, CT analysis of the contrast-enhanced CT images was
performed using LifeX software. To assess accuracy, two
individuals performed scan measurements.

2.3. Body Mass Index. Patients were categorized according to
their Eastern Cooperative Performance Status (ECOG-PS)
into five district grades (grades 0–4) and assessed by either
the treating clinician or clinical research staff. In this analysis,
we gathered grade 0 as ECOG-1, grades 1-2 as ECOG-, and
grades 3-4 as ECOG-3. The metabolic syndrome was interna-
tionally defined as included more than three criteria: (1) BMI
was greater than 25.0 kg/m2; (2) diagnosed with diabetes; (3)
diagnosed with hypertension SBP/DBP > 140/90mmHg; (4)
bloodHDL − C < 0:9mmol/L; (5) blood TG > 1:7mmol/L.

2.4. Statistical Analyses. R software, GraphPad Prism, and
Stats were conducted for statistical analyses. The OS and
PFS nomogram were constructed based on the prognostic
factors derived from multivariate Cox regression analysis to
predict 1-, 3-, and 5-year survival possibilities. Continuous
variables were exhibited for means, medians, range, and stan-
dard deviation (SD) and compared using an independent t
-test or Wilcoxon test; Spearman’ correlation coefficient
was used for variable correlation; Chi-square test was used
to analyze categorical variables; log-rank survival analysis
was employed to determine the effect of various variables
on patient OS and PFS. All statistical tests were two-sided
and P < 0:05 was considered statistically significant.

3. Results

3.1. Participators Characteristics. Of 221 eligible colorectal
cancer patients, who were treated with surgery and periodic
chemotherapy, were recruited from Wenzhou Medical Uni-
versity from 2014 January 1st to 2017 January 1st. Other
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CRC patients were excluded from the current analysis for
having incomplete or no CT-based body compositions quan-
tification or irregular chemotherapy. In our study, the pro-
portion of patients with hypertension, diabetes, and MetS
was 36.5%, 30.8%, and 12.1%, respectively. As of August
2020, 63 patients died during follow-up, none lost follow-
up. Baseline clinicopathological parameters were presented
in Table 1. As for the associations of adipose and muscle tis-
sue with health-related index, we observed that SM was
closely associated with ECOG and Mets score in T2-3 CRC
subgroups (Table S1-S2).

Of 221 eligible patients who were diagnosed with CRC,
179 received XELOX chemotherapy and 42 received FOL-
FIRI/FOLFOX as first-line treatment for CRC (Table 1).
The median age was 60:66 ± 12:45months in patients treated
with XELOX and 61:17 ± 16:29months in those treated with
FOLFIRI/FOLFOX. Baseline characteristics were similar

between XELOX-treated and FOLFIRI/FOLFOX-treated
patients except for BMI and ECOG-PS score, which was sim-
ilar within the two groups.

3.2. Impact of Body Composition on Survival in CRC Patients
with T Stage. The average median VAT and SM were 8.852
and 6.504, respectively. T4 stage was defined as penetrating
the visceral peritoneum or directly invading or adhering to
other organs or structures according to the 8th edition of
the AJCC TNM staging guidelines. The degree of penetration
of the tumor through the bowel wall or adhere to adjacent
organs or structures played a crucial role in the prognosis
of CRC. In present proof-of studies had found that the tumor
stage (T4) was an independent risk factor for recurrence and
OS [11, 14]. Thus, we divided the patients into T < 4, and T4
in the cohort. Recurrence and overall survival outcomes of
<T4 and T4 patients basing on VAT and SM were shown,

(a)

(b)

Figure 1: Example of a computed tomography (CT) scan with the area-based, densitometric quantification of adipose tissue (threshold: −190
to −30 HU)measured at spinal level L3/4: regions of interest (ROI) containing visceral fat area (VAT) (a) and an example of the densitometric
quantification of muscle area (SM), dorsal and psoas muscles (threshold: 40 to 100 HU) (b).
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respectively, in Figure S1 and Figure 2. We surprisingly
found that the prognosis roles of body compositions seem
to be opposite in these two subgroups. Especially, the
univariate analysis demonstrated that compared with low-
SM patients, patients with high-SM showed a strikingly
poor prognosis in both OS (P = 0:0512, Figure 2(c)) and
PFS in the T4 subgroup (P = 0:0417, Figure 2(d)). Time on
the T2-3 subgroup was shorter for the low group than for
the high group, although the difference was not statistically
significant in OS and PFS (Figure S1).

3.3. Body Composition and Use of Chemotherapy. Totally, 179
and 42 CRC patients were treated with XELOX- and FOL-
FIRI/FOLFOX-treated chemotherapy, respectively, with a
median of eight and twelve treatment cycles. In XELOX-
treated patients, patients PFS (P = 0:025; Figure S2C) and
OS survival (P = 0:032; Figure S2D) were lower in the high-
SM than in the low-SM group. In FOLFIRI/FOLFOX-
treated patients, overall survival (P = 0:2108 and 0.2701;

Figure S3A and S3C), and progression-free survival
(P = 0:6163 and 0.8542; Figure S3B and S3D) were similar
between the VAT and SM high and low groups.

3.4. Construction of the CT-Based Nomogram. To establish a
clinically applicable method for predicting the prognosis of
CRC patients, we next established a prognostic nomogram
to predict the survival probability at 1, 3, and 5 years for
XELOX patients. Some independent prognostic parameters,
including Mets, chemotherapy, grade, N stage, Age, VAT,
and SM, were enrolled in the prediction model (Figure 3).
As shown in Figure 3, the VAT and SM contributed the most
risk points in CRC patients, whereas the other clinical factors
contributed much less. In advanced malignant CRC patients,
patients PFS and OS were higher in low-SM and VAT than in
the high-SM and VAT group (Figures 3(c) and 3(d)). The
trend was totally reversed in the <T3 subgroup
(Figures 3(a) and 3(b)). In general, the VAT and SM were
independent risk predictors for the survival of CRC patients.

Table 1: Baseline patient characteristics.

All Xelox (N = 179) Folfox/Folfiri (N = 42) P value

Characteristics Patient (%)

Age (range) 0.297

Median (range) 60:98 ± 12:50 60:66 ± 12:45 61:17 ± 16:29
<50 45 (20.3%) 34 (19.0%) 11 (26.2%)

≥50 176 (79.7%) 145 (81.0%) 31 (73.8%)

Gender 0.161

Male 129 (53.1%) 103 (57.5%) 26 (63.4%)

Female 92 (46.9%) 66 (42.5%) 15 (36.6%)

T stage 0.173

T2-3 116 (19.5%) 93 (52.0%) 23 (54.8%)

T4 105 (80.5%) 76 (48.0%) 19 (45.2%)

Lymph node metastasis 0.135

No 138 (56.3%) 116 (64.8%) 22 (52.4%)

Yes 86 (43.7%) 63 (35.2%) 20 (47.6%)

TNM stage 0.197

I-II 130 (54.5%) 109 (60.9) 21 (50.0)

III 91 (45.5%) 70 (39.1) 21 (50.0)

BMI <0.001
<18.5 12 (5.4%) 8 (4.5%) 4 (9.5%)

18.5-25 168 (76.0%) 135 (75.4%) 33 (78.6%)

≥25 41 (18.6%) 36 (20.1%) 5 (11.9%)

MetS 0.893

No 196 (88.7%) 159 (88.8%) 37 (88.1%)

Yes 25 (11.3%) 20 (11.2%) 5 (11.9%)

ECOG <0.001
1 77 (34.8%) 71 (39.7%) 6 (14.3%)

2 119 (53.8%) 99 (55.3%) 20 (47.6%)

>3 25 (11.3%) 9 (5.0%) 16 (38.1%)

Status

Alive 156 (79.1%) 133 (74.3) 23 (54.8%)

Death 65 (20.9%) 46 (25.7) 19 (45.2%)
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4. Discussion

Body mass index has been found associated with CRC post-
operative complications and survival outcomes. However,
traditional indexes, such as Mets, BMI, waist/hip ratio, and
ECOG-PS, do not provide detailed quantitative data for clin-
ical reference [15]. Recently, body composition has appeared
as a substitution to the traditional index. Body compositions,
including skeletal muscle and visceral fat, can be estimated
easily and accurately using CT images and software pro-
grams. Based on existing studies, pathological T staging was
extremely associated with the duration of postoperative adju-
vant chemotherapy. Furthermore, the T4 stage was the criti-
cal prognostic factor of tumor recurrence and overall
survival. To our knowledge, this was the first literature to
divide into subgroups according to T staging and investigate
the association between body composition and disease pro-
gression, mortality, and efficacy of first-line treatment in
nonmetastasis CRC patients who underwent regular chemo-
therapy after surgery in CT-based parameters manner.
Besides, CT-quantified body composition nomograms have
not systematically been estimated in CRC patients who suc-

cessfully underwent curative resection and had regular stan-
dard chemotherapy.

According to the nomogram, SM and VAT played a
dominant role in the prognosis of CRC patients, especially
in T4 patients. We surprisingly found some conclusions wor-
thy of consideration. High VAT and high SM were poor
prognosis of RF and OS in the T4 subgroup while were pro-
tective prognosis in the T2-3 subgroup. On the other hand,
body composition was associated with the risk of not only
survival rate, but also chemotherapy toxicity. XELOX and
FOLFOX/FOLFIRI are the most widely used first-line che-
motherapy in patients with CRC. Although chemotherapy
treatments have demonstrated a survival benefit and are
widely approved for clinical use for CRC patients, the opti-
mal treatment strategy remains to be determined. The thera-
peutic effects are unquestionably valid for patients, however,
whether it can work on different physiological features of
CRC patients is still controversial and has not been reported
to date. Therefore, predictive markers of survival and treat-
ment response in CRC are critically needed. In XELOX-
treated patients, the high-SM group had lower progression-
free survival (P = 0:025) and overall survival (P = 0:032) than

0
0

25Pe
rc

en
t s

ur
vi

va
l

50

75

100

1000 2000
Time (days)

Visceral fat area

OS T4

P = 0.143

High
Low

3000

(a)

Pe
rc

en
t s

ur
vi

va
l

PFS T4 

P = 0.271

0
0

25

50

75

100

1000 2000
Time (days)

3000

Visceral fat area
High
Low

(b)

Pe
rc

en
t s

ur
vi

va
l

OS T4

P = 0.0512

0
0

25

50

75

100

1000 2000
Time (days)

3000

Skeletal muscle area
High
Low

(c)

Pe
rc

en
t s

ur
vi

va
l

PFS T4 

P = 0.0417

0
0

25

50

75

100

1000 2000
Time (days)

3000

Skeletal muscle area
High
Low

(d)

Figure 2: Outcomes T4 CRC patients based on CT body composition. Outcomes based on visceral fat in T4 GC patients from the time of
diagnosis. (a) OS; (b) PFS; outcomes based on skeletal muscle in T4 GC patients from the time of diagnosis. (c) OS; (d) PFS.
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the low-SM group. Given the limited number of patients, we
have not explored the associated risk of CRC progression,
radiologic progression, and overall mortality in FOLFOX/-
FOLFIRI-treated patients.

As was showed in Figure S1, lower VAT and SM were
meaningful risk factors in CRC recurrence and overall
survival among the T2-3 stages of CRC patients received
regular chemotherapy after curative surgery, consistent
with the view that lacking muscle mass had adverse
consequences early in the malignant tumor. We speculate
that low-VAT and low-SM may be related to higher
chemotherapy toxicity, especially in the early stage [16].
Besides, there may be an extreme loss of fat and muscle
tissue during not only the development of cancer but
also the chemotherapy process [17]. T2-3 stages of CRC
patients have longer OS than the T4 subgroup, higher
VAT, and SM provided fat tissue and muscle tissue to
be consumed and was easier to tolerate the side effects
of chemotherapy, resulting in slower developing a state
of cachexia and confer a survival advantage. Moreover,
fewer myokines and interleukin were released as a
consequence of low SM, leading to an imbalance of the
immune system and having a poor impact on prognosis
in the lower T stage [18]. Thus, targeted and preventive

intervention strategies such as nutritional intervention
and physical exercise should be given for CRC T2-3
stage patients, avoiding developing sarcopenia, thereupon
then decreasing the recrudescence and overall survival
rate [19, 20]. However, due to skeletal muscle did not
effectively reflect muscle function, CT-based body
components combined with functional measures assessed
by handgrip strength and stair-climbing power would be
more precise [21].

As for CRC T4 stage patients, in our research, low
VAT and low SM were propitious to have a survival ben-
efit; in addition, visceral fat had a greater impact than
muscle, contradicted with T2-3 stages. The reasons why
gave rise to the opposite phenomenon deserved deeper
investigation. Inferring that most of the T4 stage CRC
patients were at the state of cachexia, a multifactorial para-
neoplastic syndrome characterized by carbohydrate, lipid,
and protein metabolic disturbance, inflammatory and
immunocompromised status, and higher VAT and SM
would be a burden for advanced cancer patients, rather
than an advantage [22]. CRC patients of the T4 stage,
the higher VAT, and SM, the more enhanced inflamma-
tion, and hypermetabolism entered a vicious cycle, ending
up in refractory cachexia [23]. Advanced cachexia,
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Figure 3: The nomogram to predict the 1-, 3-, and 5-year overall survival (a) and progression-free survival rates (b) of T2-T3 CRC patients.
The nomogram to predict the 1-, 3-, and 5-year overall survival (c) and progression-free survival rates (d) of T4 CRC patients.
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nevertheless, was extremely difficult to redress for drugs,
nutrition intake, and physical exercise according to exist-
ing studies. The human body reached a relative metabolic
balance via abatement lipolysis and proteolysis [24]. Fur-
thermore, high visceral fat was inclined to cause insulin
resistance, which was a risk factor for cancer progression
[25]. Adiposity as well as a metabolic disorder was suscep-
tible to infection and other complications, which were
contributors to shortened progression-free survival and
overall survival. Moreover, immune cell expression and
secretion were induced by cancer; in the pathogenesis of
a malignant tumor, more fat and muscle would provide
a better environment, resulting in the suppression of
immune and chronic inflammation.

FOLFIRI/FOLFOX-treated was a strong combination
chemotherapy regimen, and the adverse reactions caused
by chemotherapy were also stronger. Patients with poor
physical condition and intolerance to strong combination
chemotherapy regimens were more inclined to choose
the XELOX-treated regimen. Therefore, most CRC
patients who choose XELOX-treated were more likely in
an advanced cachexia state, which was similar to the rea-
son for the T4 stage.

The findings outlined above suggest that high skeletal
muscle mass may be associated with an increased risk of dis-
ease progression and mortality in patients with T4 nonme-
tastasis CRC patients. Moreover, the significance of these
relationships is also significant in postoperation patients
treated with XELOX. These results suggest that assessing
skeletal muscle mass may be worthwhile when selecting
treatments for CRC.

Nomogram is an alignment chart composed of lines of
different proportions, which generates a total point to pre-
dict the likelihood of clinical events [26]. Quantify the rel-
ative contribution of each prognostic factor and convert
complex regression models into visual graphics, which is
more practical and convenient for evaluating the prognosis
of CRC patients. According to the construction of the CT-
based nomogram, some effective and targeted visceral fat
and skeletal muscle mass interventions should be taken
to reduce recurrence and prolong overall survival in CRC
patients underwent surgery and regularly standard chemo-
therapy [27].

However, there are several limitations to our study.
Firstly, CRC patients, without abdominal CT scans before
curative surgery, were excluded. Besides, our study was
comprised of a limited number of CRC patients; in partic-
ular, the diametrically inverse results in the T2-3 and T4
subgroups were found. Therefore, it will be more accurate
and meaningful to establish quantified nomograms for OS
and PFS if the number of samples is larger. In addition,
these factors, such as correction of height, measurement
of muscle density, and exclusion of fat infiltration in the
muscle, had not been taken into consideration by us.
Meanwhile, combined preoperative CT-quantified body
component measures with muscular physical function
measures will better predict the prognosis of CRC patients
in the early stage. Another shortcoming of our research
was the lack of regular follow-up CT scans during chemo-

therapy, and body composition measures were not avail-
able to verify the hypothesis.

5. Conclusions

CT-quantified body compositions have a significant influence
on CRC patients successively underwent curative resection
and regularly standard chemotherapy with the endpoints of
1-year, 3-year, and 5-year both OS and PFS. Patients with high
SM showed a strikingly poor prognosis in OS and PFS in the
T4 subgroup; however, the prognosis role of body composi-
tion was totally opposite in T2-3 patients.
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Based on the better generalization ability and the feature learning ability of the deep convolutional neural network, it is very
significant to use the DCNN on the computer-aided diagnosis of a lung tumor. Firstly, a deep convolutional neural network was
constructed according to the fuzzy characteristics and the complexity of lung CT images. Secondly, the relation between model
parameters (iterations, different resolution) and recognition rate is discussed. Thirdly, the effects of different model structures
for the identification of a lung tumor were analyzed by changing convolution kernel size, feature dimension, and depth of the
network. Fourthly, the different optimization methods on how to influence the DCNN performance were discussed from three
aspects containing pooling methods (maximum pooling and mean pooling), activation function (sigmoid and ReLU), and
training algorithm (batch gradient descent and gradient descent with momentum). Finally, the experimental results verified the
feasibility of DCNN used on computer-aided diagnosis of lung tumors, and it can achieve a good recognition rate when
selecting the appropriate model parameters and model structure and using the method of gradient descent with momentum.

1. Introduction

Lung cancer is regarded as one of the malignant tumors with
high morbidity and mortality, which is a serious threat to
human health and life, and it is very difficult for lung cancer
patients to be discovered and diagnosed because there are no
apparent symptom and typical imaging performance [1];
therefore, early detection and diagnosis are essential for lung
cancer patients. In the early diagnosis of lung cancer, multi-
layer spiral CT (MSCT) can show the transverse, vertical,
and coronal planes of the lesion area clearly by a reconstruc-
tion technique. In the interim diagnosis, MSCT jointed sur-
face shadowing and multiple planar reconstruction can
clearly show the location of the tumor, internal structure,
edge features, blood supply, extent of surrounding tissue
invasion, and surrounding tissue changes; it gets high accu-
racy [2]. Hence, the CT image provides an important refer-
ence for the diagnosis and identification of lung cancer.
Aimed at the massive medical image data, it can reduce the
doctors’ workload, improve the recognition rate, and reduce

the misdiagnosis rate and missed diagnosis rate with the help
of computer-aided diagnosis (CAD).

Deep learning [3] as a new field of machine learning anal-
yses and interprets data through simulating a human brain.
In particular, a convolutional neural network with the unique
deep structure can learn the complex mapping between input
and output effectively. At present, the design of the DCNN
model is mainly focused on the model parameters, the activa-
tion function, the size of the receptive field, the designation of
the pooling layer, and so on. Based on the classical model
LeNet-5 structure, Chen [4] constructed several different
convolutional neural networks by adjusting the number of
parameters and the interlayer connection mode, and they
were used on optical digital recognition. Ma et al. [5] simpli-
fied network structure by removing the third convolutional
layer of LeNet-5 and replacing the softmax classifier with
an SVM classifier. Hinton constructed a CNN with five con-
volutional layers, and it achieved good results when used on
ImageNet data set [6] in 2012. Gao [7] used whitening pre-
treatment and stochastic pooling based on traditional CNN;
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it improved the network generalization ability for military
image classification by this method. Zhang et al. [8] con-
structed a deep convolutional neural network (DCNN) with
seven layers for the vehicle type identification; the recogni-
tion rate reached 96.8% based on comparative experiment
with different model parameters. Guo [9] constructed a
DCNN used on hand-printed character recognition; the
experimental results show that the receptive field size has a
significant influence on the number of model parameters
but has little effect on the recognition rate and the running
time is in a reverse trend. He and Sun [10] discussed how to
balance the number of layers, the number of feature maps,
and the size of the convolution kernel in the limited train-
ing time and computational complexity; they showed that
the recognition performance of CNN with small convolu-
tion kernel and deep layers is better than that with large
convolution kernel and shallow layers. Gunavathi et al.
[11] give a review on convolutional neural network-based
deep learning methods in gene expression data for disease
diagnosis. Zhou et al. [12] propose a lung tumor
Computer-aided diagnosis model in chest CT image based
on DenseNet-NSCR (Non-negative, Sparse and collabora-
tive representation classification of DenseNet) in this paper;
the result shows that the DenseNet+NSCR model has better
robustness and generalization capabilities compared with
AlexNet+SVM, AlexNet+SRC, AlexNet+NSCR, Google-
Net+SVM, GoogleNet+SRC, GoogleNet+NSCR, DenseNet-
201+SVM, and DenseNet-201+SRC. Zhou et al. [13] use
AlexNet, GoogleNet, and ResNet to realize the ensemble
deep learning model for novel COVID-19 on CT images. A
novel method for stock trend prediction uses a graph convo-
lutional feature-based convolutional neural network (GC-
CNN) model, in which both stock market information and
individual stock information are considered in Chen et al.
[14]. The deep convolutional neural network (DCNN) [15]
can automatically extract the high-level features of the image
and express the image effectively, and the data is mapped
into a new space by the linear or nonlinear transformation
of the input data; by this way, the essential feature of an
image can be extracted effectively and stably. However, it is
necessary to optimize the DCNN for a specific research
object and application field. In this paper, the deep convolu-
tional neural network was proposed to identify a lung tumor
based on global features of the CT image; on the basis of the
original DCNN, the effects of different model parameters,
model structure, and optimization algorithm on the recogni-
tion performance are discussed in order to validate the feasi-
bility of DCNN used on computer-aided diagnosis of lung
tumors and provide a reference for computer-aided diagno-
sis of a lung tumor.

2. Method and Material

2.1. DCNN Model Structure. The deep convolutional neural
network model is a simulation of simple and complex cell
function in the visual cortex, and it extracted features
through the alternate convolutional layer and pooling layer
and combined with the corresponding classifier to realize
image recognition.

2.1.1. Convolutional Layer. Each convolutional layer [16] is
composed of multiple feature maps, the neurons in each fea-
ture map are connected to the neurons in the input layer or
the pooling layer, and the neuron in the same feature map
is connected with the neuron in the corresponding receptive
field sharing weight; each output feature map can be
combined with multiple feature maps:

xlj = f 〠
i∈Mj

xl−1i ∗ klij + bji

 !
, ð1Þ

where xlj is the output map of channel j in convolutional layer

l, klij represents the convolution kernel matrix, and bji is the
bias; the different convolution kernel weights have different
convolution operations.

2.1.2. Pooling Layer. Each pooling layer [17] is also composed
of multiple feature maps, the number of feature maps are the
same as the number of feature maps in the convolutional
layer, and the neuron values are calculated by the maximum
or average pooling. The pooling formula is as follows:

xlj = f βl
j ∗ down xl−1i

� �
+ bji

� �
, ð2Þ

where downð⋅Þ represents the pooling function, and each
output image has its own multiply bias β and additive bias
b.

2.1.3. Full Connection Layer. In the full connection layer, the
feature maps of all the two dimensional images are connected
to one dimension features as the input of the full connection
network, and the output of the full connection layer is
obtained by the weighted summation of inputs and calculat-
ing the response of the activation function:

xl = f wlxl−1 + bl
� �

ð3Þ

where wl is the weight coefficient of the connected network,
xl−1 represents feature maps, and bl is the bias of the full con-
nection layer.

2.2. Training Method of DCNN. The DCNN training process
mainly used the backpropagation algorithm, that is, training
data input, activation values of each neuron calculation, then
error calculation, gradient calculation of each weight and
bias, and weight and deviation adjustment.

2.2.1. Gradient Calculation of the Full Connection Layer. For
the full connection layer of DCNN, the BP [18] is used to cal-
culate the partial derivative that error function acts on weight
bias. Assuming a multiclassification problem contains N
training samples and C types, the formula of error function
is EN = 1/2∑N

n=1∑
c
k−1ðtnk − ynkÞ2, where tnk represents a class

label corresponding to the first k dimension between n sam-
ples and ynk represents the predicted output value corre-
sponding to the first k dimension between n samples.
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The “error” of the backpropagation network is regarded
as the “sensitivity” of each neural unit to the deviation (resid-
ual), and the partial derivative of error with respect to net-
work parameters is defined as follows:

∂E
∂b

=
∂E
∂u

∂u
∂b

= δ, ð4Þ

in the formula ∂u/∂b = 1.
The sensitivity of output layer neurons was calculated by

the following formula:

δL = f ′ uL
� �

∘ yn − tnð Þ, ð5Þ

where “∘” expresses the dot product; that is, the correspond-
ing elements in the matrix were multiplied.

The sensitivity calculation formula of the full connection

layer is δl = ðWl+1ÞTδl+1 ∘ f ′ðulÞ.
The update rule for the weights of neurons is to multiply

the input of the neuron with the triangle of the neuron. It is
the inner product of the input vector and the residual vector
by the vector representation:

∂E
∂Wl

= xl−1 δl
� �T

,

ΔWl = −η
∂E
∂Wl

:

ð6Þ

Usually, each weight wij has a corresponding ηij
differently.

2.2.2. Gradient Calculation of the Convolutional Layer. Each
convolutional layer l of CNN is connected with the pooling
layer l + 1; in the process of backpropagation, we need to
sum up all the residuals in the layer l + 1 corresponding to
the neuron and calculate the residuals of neurons in the layer
l; then, these residuals are multiplied by the corresponding
weights and multiplied by the function of the current neuron.
Calculate sensitivity by chain derivation:

δlj = βl+1
j f ′ ulj

� �
∘ up δl+1j

� �� �
, ð7Þ

where upð⋅Þ represents upsampling.
The gradient formula of bias b by δlj is ∂E/∂bj =∑u,v

ðδljÞuv.
The gradient formula of bias k by using MATLAB is

∂E
∂klij

= rot180 conv2 xl−1i , rot180 δlj

� �
, ′valid′

� �� �
: ð8Þ

2.2.3. Gradient Calculation of the Pooling Layer. In the back-
propagation process of the pooling layer, the residual graph is
first calculated, and then, the two learning parameters with β
and b are updated.

δ can be calculated by MATLAB:

δlj = f ′ ulj
� �

∘ conv2 δl+1j , rot180 kl+1j

� �
, ′full′

� �
: ð9Þ

The gradient of the additive bias b is the sum of the ele-
ments in the residual graph:

∂E
∂bj

=〠
u,v

δlj

� �
uv
: ð10Þ

The gradient of the multiplicative bias β is ∂E/∂βj =
∑u,vðδlj ∘ dljÞuv.

2.3. Evaluation Indicator. In this paper, six evaluation
indexes are selected to measure the experimental results:
accuracy, sensitivity, specificity, Matthews correlation coeffi-
cient (MCC), F1 score [13], and training time, and they are
calculated by true positive (TP), false positive (FP), true neg-
ative (TN), and false negative (NN). Besides, TP indicates
that the normal image is predicted to be normal, FP indicates
that the abnormal image is predicted to be normal, TN indi-
cates that lung tumor images are predicted as lung tumor
images, and FN indicates that the normal lung image is
predicted to be abnormal.

(1) Training time: it is the time that the algorithm spends
from start to finish; in the process of convolution
operation, the total time of the whole training process
and testing process is expressed when the specified
iteration times are reached

(2) Accuracy: it is the description of the correct classifi-
cation of the lung CT image; the value is between 0
and 1; the greater the value, the better the classifier;
and this value reflects the performance of the correct
identification

Accuracy = TP + TN
TP + TN + FP + FN

: ð11Þ

(3) Sensitivity and specificity: sensitivity indicates that
the proportion of the normal lung image is accurately
recognized, and specificity indicates that the propor-
tion of lung tumor images is accurately identified:

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
:

ð12Þ

(4) MCC: it is a more balanced evaluation standard,
which takes into account the true false positives and
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false negatives; especially, in the case of different
numbers, it is generally considered to be a balanced
measure. MCC is essentially a correlation coefficient
between the observed and predicted binary classifiers
and returns the value between -1 and 1, where 1 rep-
resents a perfect prediction, 0 represents a random
prediction, and -1 indicates that the classification
result is completely wrong. The MCC formula is as
follows:

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp : ð13Þ

(5) F1 score: it is an index measuring the recognition
performance of two classification models, taking into
account the classification accuracy and recall rate,
which can be regarded as a kind of weighted average
with precision and recall. Its maximum value is 1, the
minimum value is 0, and the value that is closer to 1
indicates that the accuracy is higher. The formula is
as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

NegPrecision =
TN

FN + TN
,

NegRecall =
TN

TN + FP
,

F1 score =
Precision ∗ Recall
Precision + Recall

+
NegPrecision ∗NegRecall
NegPrecision + NegRecall

:

ð14Þ

2.4. Computer-Aided Diagnosis Model of a Lung Tumor
Based on DCNN and Global Fuzzy Feature

2.4.1. Algorithm Idea. In order to verify the feasibility of the
convolutional neural network used on medical diagnosis of a
lung tumor, a deep convolutional neural network is designed
for lung tumor recognition based on the global features of
CT images. Although the deep learning model has good gen-
eralization ability and robustness [19], the performance of
different models is different for different image recognition.
According to the fuzzy characteristics of lung CT images
and the complexity of medical images, three aspects model
parameters, model structure, and optimization algorithm
are discussed. Firstly, the effects of different resolution and
iteration times on the identification results are discussed.
Secondly, different DCNN models are constructed and ana-
lyzed from the different convolution kernel sizes, feature
dimensions, and network layers. Finally, the different opti-
mization methods on how to influence the DCNN perfor-
mance from three aspects including sampling methods
(maximum pooling and mean pooling), activation function
(sigmoid and ReLU), and training algorithm (batch gradient

descent and gradient descent with momentum) were dis-
cussed. In a word, the research objective is to explore the
optimal DCNN model for lung tumor computer-aided
diagnosis.

The specific steps for computer-aided diagnosis research
of a lung tumor based on DCNN and global features are as
follows:

(1) Data collection: 5000 CT images with DICOM for-
mat were collected from the General Hospital of
Ningxia Medical University. The 2500 images were
selected as the lung tumor images according to the
doctor’s mark and the doctor’s advice, and the 2500
normal CT images were taken as contrast images

(2) Image preprocessing: the collected images were con-
verted into gray image and normalized to the same
size of experimental data, and then, lung tumor CT
data set was constructed for DCNN training and
testing

(3) Construction of DCNN: construct a deep convolu-
tional neural network with eight layers aimed at
global features of lung cancer, including an input
layer, 3 convolutional layers, 3 pooling layers, 2 full
connection layers, and an output layer with a softmax
classifier

(4) Discussion based on different model parameters with
the same model structure: the influence of different
resolution and the number of iterations on the
DCNN recognition rate and training time is dis-
cussed aimed at the CT global feature set

(5) Discussion of different model structures: based on the
initial construction of DCNN, the recognition perfor-
mance for the lung tumor by changing the convolu-
tion kernel size and the number of feature maps
and network layers is discussed

(6) Comparison analysis of different optimization algo-
rithms: after choosing the suitable model, compara-
tive experiments with different methods were done,
including pooling method (mean pooling and maxi-
mum pooling), activation function (sigmoid function
and ReLU function), and training algorithm (batch
gradient descent method and gradient descent
method with momentum)

(7) Evaluation: Construct an optimal DCNN model
through the analysis of experiment and comparison
of different model parameters and structures, and it
is used on computer-aided diagnosis of a lung tumor
based on global features, in order to improve the rec-
ognition rate, reduce the training time, and enhance
the robustness and generalization ability

2.4.2. Model Construction. The convolutional neural network
can directly input the original image and has obvious advan-
tage to the complex image recognition; besides, CT is widely
used in the diagnosis of a lung tumor, but the lesion area
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accounted for a smaller region in the whole CT images, and
the characteristic is not obvious and it is difficult to distin-
guish, so a deep convolution neural network is constructed
to extract the hidden features of the lung tumor for
computer-aided diagnosis. The DCNN model structure is
shown in Figure 1.

(1) Input layer: the input image is the whole CT image
of 64 ∗ 64, and it is also the lung global feature input
for DCNN classification

(2) C1 layer: it is the first convolutional layer, each neu-
ron is convoluted with the local receptive field of the
input image 5 ∗ 5, feature maps’ size is 60 ∗ 60, and
it contains 6 different feature maps

(3) S2 layer: it is the first pooling layer, the pooling
method was used on 2 ∗ 2 neighborhood, feature
maps’ size is 30 ∗ 30, and it contains 12 different fea-
ture maps

(4) C3 layer: it is the second convolutional layer, 12 con-
volution kernels of 7 ∗ 7 are used for convolution
operation, feature maps’ size is 24 ∗ 24 after convolu-
tion, and it contains 12 different feature maps

(5) S4 layer: it is the second pooling layer, and it got 12
feature maps of 12 ∗ 12 after subsampling without
repetition

(6) C5 layer: it is the third convolutional layer, and it
contains 18 feature maps of 8 ∗ 8

(7) S6 layer: it is the third pooling layer, and it contains
18 feature maps of 4 ∗ 4

(8) F7 layer: it is the first full connection layer, and it
contains 120 neurons and connects with the S6 layer

(9) F8 layer: it is the second full connection layer, and it
contains 84 neurons and connected with the upper
layer and the output layer

(10) Output layer: it connects with the softmax classifier
that is used to calculate the probability of different

images that belong to which types. The formula is
as follows:

d ið Þ
j =

exp WT
j x

ið Þ + aj
� �

∑2
j=1exp WT

j x
ið Þ + aj

� � , ð15Þ

where W = ½W1,W2� ∈ Rd×2 and a = ½a1, a2� ∈ Rd×2

are classifier parameters and dðiÞj is a possibility pre-

diction for which xðiÞ belongs to class j; finally, the
output is of two types: normal and abnormal lung
images.

3. Discussion and Conclusion

3.1. Experiment Platform. The software and hardware envi-
ronment is as follows:

Software environment: Windows 7 operating system,
MATLAB R2014b

Hardware environment: Intel Xeon CPU E5-2407 v2 @
2.40GHz, 32.0GB memory, 3.5 TB HD

3.2. Experimental Data

3.2.1. Data Sources. 5000 CT images were collected from a
hospital in Ningxia of China: the 2500 images were selected
as the lung tumor images according to the doctor’s mark
and the doctor’s advice, and the 2500 normal CT images were
taken as contrast images; the original image is shown in
Figure 2.

3.2.2. Data Preprocessing. Firstly, the CT image of a lung
tumor was selected according to the marker of three PET/CT
modality images; secondly, the normal lung CT image was
selected according to the DICOM documents and the doc-
tor’s advice; then, the experimental data is converted into a
gray image; finally, the experimental data are normalized to
the same size: 4000 cases are selected as training data ran-
domly and 1000 cases are regarded as test data. The pre-
treated images are shown partly in Figure 3: abnormal

Convolutions Subsampling Full connections

C1:FMs
6@60⁎60Input

64⁎64
S2:FMs

6@30⁎30

C3:FMs
12@24⁎24

S4:FMs
12@12⁎12

C5:FMs
18@8⁎8 S6:FMs

18@4⁎4

F7:layer
120 F8:layer

84
Output

2

Full connections

Convolutions Subsampling Subsampling
Convolutions

Figure 1: DCNN model construction.

5BioMed Research International



images are shown in the first line and normal images are
shown in the second line.

3.3. Analysis of Experimental Results

3.3.1. Experiment 1: Research on Different Model Parameters
Based on the Same Model Structure

(1) Output of Intermediate Feature Maps. Image recognition
using the deep convolution neural network is based on the
abstract features of the hidden layer, and three convolutional
layers and three pooling layers are used to extract and output
features from different angles after input original images. The
output of the intermediate feature maps is shown in Figure 4.
From left to right, the feature maps are shown of which the
original input image is C1, S2, C3, S4, C5, and S6. It clearly
showed that the edge information and contour information
of the input image are extracted by the first two layers; that
is, the characteristics of low level, such as image edges, lines,
and angles, are extracted by the bottom of the convolutional
layers. And the abstraction of higher semantic information
and essential information is performed by back layers. It can-
not be identified with the naked eye, and it has also shown the
superior learning ability of deep learning. In a word, the bot-
tom layer of DCNN can learn the physical features such as
edge and shape. With the increase in the number of hidden
layers in the network, more complex and abstract visual fea-
tures can be learned.

(2) The Influence of Different Resolution on Recognition
Results. Due to the different resolution of the images used
in the training samples, different convolution and downsam-

pling operations will affect the recognition rate of the model,
so based on the same model structure of the convolutional
neural network, it was selected among different lung CT
images with different resolution for the experiments, includ-
ing 28 ∗ 28, 32 ∗ 32, 64 ∗ 64, and 100 ∗ 100 different resolu-
tion images. The experimental results are shown in Table 1.

According to the table, we can see that (1) the higher the
resolution of the image, the longer the training time is; that is,
the more complex the image is, the longer the training time
is. (2) The higher the resolution, the higher the recognition
rate, because of the low resolution of the image which means
that the input information of the image is lost in different
degrees. (3) The sensitivity is generally higher than the spec-
ificity regardless of the resolution. The results show that the
lung tumor image is easy to be recognized as a normal image,
and it also accords with the current situation of pulmonary
nodules missed. (4) As for the MCC and F1 score, the higher
the resolution, the higher the value.

In short, high-resolution images will not only lead to
more processing time but also reduce the quality of spatial
resolution, but the deep convolutional neural network got
high accuracy for high-resolution image recognition, so the
CT images of 64 ∗ 64 resolution are chosen for subsequent
experiments that are about different model structures and
optimization methods based on the consideration of time
complexity and accuracy.

(3) The Influence of Iterations on Recognition Results. The
iterative method is used to calculate the weight of the convo-
lutional neural network model, the weight and the error will
be adjusted in each iteration, and the experimental results

Figure 2: Original experimental data.

Figure 3: Experimental data after pretreatment.
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will be different with different iterations; in this experiment,
the ideal weight parameters are obtained by many iterations,
and then, the influence of the number of iterations on the
recognition results is discussed. The experimental results
are shown in Table 2.

It can be seen from Table 2 that, with the increase in the
number of iterations, the accuracy increases first and then
decreases, while the training time increases with the itera-
tions increasing. The main reason lies in the idea that the
learning of the convolutional neural network is not sufficient
when the number of iterations is lower than the normal

times. With the increase in the number of iterations, the net-
work has achieved a high recognition rate in the training and
learning processes. However, when the number of iterations
increases to a certain degree, the recognition rate will
decrease. It shows that the network model was trained under
the appropriate iterations, the parameters have been opti-
mized to the optimal state, the network also entered the con-
vergence phase, and the network model got the best
performance. The increase in the number of iterations will
affect the change of the training time, and this change has a
positive correlation, and the test time and the number of iter-
ations are not directly linked.

Table 1: Effects of different resolution samples on experimental results.

Different resolution Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 Score

28 ∗ 28 68.66 76.20 23.80 99.40 53.00 0.59 0.75

32 ∗ 32 92.21 68.50 31.50 100.00 37.00 0.47 0.65

64 ∗ 64 605.97 87.30 12.70 95.40 79.20 0.76 0.87

100 ∗ 100 1328.17 89.70 10.30 99.00 80.40 0.81 0.90

Figure 4: Output of the intermediate feature maps.

Table 2: Effects of different iterations on the experimental results.

Iterations 1 10 30 50 100 150 200 250 300

Accuracy (%) 50.00 59.98 77.25 75.55 83.43 86.83 84.13 83.93 85.33

Time (s) 25.08 256.78 700.35 1250.68 2429.52 3750.23 5016.18 6274.23 7803.60
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3.3.2. Experiment 2: Recognition Based on Different Model
Structures. The deep convolutional neural network is con-
structed for the first time, and it contains 1 input layer, 3 con-
volutional layers, 3 pooling layers, 2 full connection layers,
and 1 output layer. Input images are lung CT images of 64
∗ 64; the number of feature maps of three convolutional
layers are, respectively, 6, 12, and 18; the convolution kernel
size is 5 ∗ 5, 7 ∗ 7, and 5 ∗ 5; sigmoid function is regarded as
activation function; the output layer connected with the soft-
max classifier, and the outputs are of two types: normal and
abnormal lung images. On the basis of the construction of
the deep convolution neural network structure, the convolu-
tion kernel size, the number of feature maps, and the depth of
the network are changed, and they are used to do further
experiments.

(1) Different Convolution Kernel Sizes. In order to discuss
the influence of different convolution kernel sizes on
DCNN recognition results, the deep convolutional neural
network structure was fixed and the DCNN was trained
by using different convolution kernels; the results are shown
in Table 3.

At first, the three convolution kernels of 5 ∗ 5, 7 ∗ 7, and
5 ∗ 5 are adopted, and the recognition rate was 85.3%. Then,
the convolution kernel size was reduced to 5 ∗ 5, and the rec-
ognition rate reduced to 69.7%. Next, the recognition rate
reached 80.9% when the convolution kernel sizes were 5 ∗ 5
, 9 ∗ 9, and 9 ∗ 9. When the recognition rate reached 86.3%,
the convolution kernel sizes were 5 ∗ 5, 11 ∗ 11, and 11 ∗ 11
; however, when the convolution kernel sizes increase to 11
∗ 11, 11 ∗ 11, and 9 ∗ 9, the recognition rate decreased. In
a word, with the increase in convolution kernel size, the run-
ning time increases; the smaller the convolution kernel size,
the less the training time, because small convolution kernels
have less training parameters and the space complexity and
time complexity are reduced. However, when the convolu-
tion kernel is too large or too small, the recognition rate will
be reduced. When the convolution kernel is too small, it can-
not extract the valid local features; when the convolution ker-
nel is too large, the complexity of the extracted feature may
be difficult to express by the convolution kernel. In general,
small convolution kernel can handle images finely, but it
needs more layers to achieve good results; the large convolu-
tion 5kernel can extract abstract features of images, but it
needs more training parameters.

When the convolution kernels are 5 ∗ 5, 11 ∗ 11, and 11
∗ 11, the sensitivity is 99.6% and the sensitivity is higher than
the specificity. The MCC and F1 score are consistent with the
recognition rate, and the F1 score reached 0.86 with the
choice of the optimal convolution kernel. Therefore, the con-
volution kernel size should be set reasonably combined with
the input image size, and it is very important to improve the
performance of CNN but also to protect the CNN parameter
tuning. After the discussion of different convolution kernel
sizes, it chooses the convolution kernel of 5 ∗ 5, 11 ∗ 11,
and 11 ∗ 11 and carries on the following experimental analy-
sis under the high recognition rate.

(2) Different Feature Maps. The number of feature maps is
the number of features extracted from each layer, with the
same number of convolution kernels per layer. On the pre-
mise that the convolution kernel size is invariable, in this
paper, we change the number of feature maps on the basis
of 6-12-18 and discuss the influence of the extracted feature
dimensions on the recognition results; the experimental
results are shown in Table 4.

As we can see from Table 4, the number of feature maps
is reduced and the running time is reduced, but the recogni-
tion rate is not significantly increased. With the increase in
the number of feature maps of the third layer, the running
time is obviously rising and the recognition rate is also
increasing. Although the number of feature maps continues
to increase, the number of CT image features is more and
the training time is also increasing, and the recognition rate
and other evaluation indexes are decreased; especially, the
number of features achieves 16-32-200; it took more than
two hours, but the recognition rate was only 71.7%. On the
whole, with the increase in the number of extracted features,
the recognition rate, sensitivity, specificity, MCC, and F1
score were all increased; when the number of features is 6-
12-24, the recognition rate reaches 89.3%. The experimental
results show that the number of feature maps of the first layer
is less, the number of features in the back layer was increased
by 2 times, and it can achieve the highest recognition rate.

Because of the small number of features, the feature
description is not sufficient and the large number of feature
maps will be overfitting; therefore, we should refer to the size
of the data and complexity of the actual sample to select the
number of feature maps or convolution kernels and adjust
the feature dimension. Generally, using more convolution

Table 3: Effect of different convolution kernel sizes on experimental results.

Convolution kernel
size Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 score

k1 k2 k3

5 5 5 868.26 69.70 30.30 99.80 39.60 0.49 0.67

5 7 5 779.64 85.30 14.70 80.80 89.80 0.71 0.85

5 9 9 950.25 80.90 19.10 100.00 61.80 0.67 0.80

5 11 11 1150.56 86.30 13.70 99.60 73.00 0.75 0.86

7 5 7 706.79 83.40 16.60 97.60 69.20 0.70 0.83

11 11 9 1765.49 82.30 17.50 99.60 65.40 0.69 0.82
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kernel will get better performance, and the appropriate fea-
tures maps will certainly be helpful to achieve the desired
classification results. Through the discussion of the number
of different feature maps, this paper selects the number of
feature maps with 6-12-24 and then carries on the following
experiment on the premise of ensuring the high recognition
rate and the appropriate running time.

(3) Different Network Layers. Although the most essential dif-
ference between deep and shallow learning is the number of
hidden layers, generally, the more the hidden layers are, the
easier it is to learn the underlying features of the image.
Aimed at lung CT global features of 64 ∗ 64 size, the deep
convolutional neural network is constructed, and the influ-
ence of the DCNN model on the recognition results is dis-
cussed by changing the network layer in this experiment.
The results of the specific layer assignment and experiment
are shown in Table 5; C1 is the first convolutional layer, S1
is the first pooling layer, C2 is the second convolutional layer,
and so on.

As we can see from Table 5, with the increase in the num-
ber of network layers, from 2 to 8 layers, the recognition rate
increased first and then decreased. The recognition rate has
only 50% probability with only one convolutional layer and
a pooling layer, and it showed that too small number of layers
exerts a tremendous influence on recognition result. As the
number of layers increases to 6, the recognition rate is up

to 89.3%, and then, by adding a convolutional layer, the rec-
ognition rate began to decline to 85.4%; the recognition rate
is reduced to 76% when constructing the hidden layer of
the 8 layers. In general, the deep network structure can pro-
mote the reuse of features and get more abstract features with
high-level expression; with the increase in network layers, the
recognition rate is also increasing; however, there are too
many layers in the network, which requires the much convo-
lution and downsampling operations, and the parameters are
increasing. In short, the increasing network layers appropri-
ately will ensure the less running time and the higher recogni-
tion rate, but too many layers will lead to excess parameters,
and the phenomenon of overfitting occurs and the recognition
rate reduced. The two indicators MCC and F1 score have the
same change trend with the recognition rate. When the num-
ber of hidden layers is 6, the maximum value of the two indi-
cators shows that the recognition efficiency and the fitting
effect of the network structure are the best.

3.3.3. Experiment 3: Recognition Based on Different
Optimization Methods. Based on the study of the DCNN
model structure and model parameters, the optimization of
the DCNN model structure for different optimization
methods was discussed. Firstly, two kinds of pooling method
were analyzed; then, the two activation functions ReLU and
sigmoid were analyzed, and finally, two optimization training
methods that are the batch gradient descent method and gra-
dient descent method with momentum are compared.

Table 4: Effect of feature maps on the experimental results.

Feature maps
Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 scoreFM1 FM2 FM3

2 4 8 214.06 86.50 13.50 80.40 92.60 0.74 0.86

3 6 12 443.72 85.40 14.60 81.20 89.60 0.71 0.85

6 12 18 779.64 85.30 14.70 80.80 89.80 0.71 0.85

6 12 24 1161.70 89.30 10.70 92.00 86.60 0.79 0.89

6 12 36 1189.80 86.80 13.20 98.20 75.40 0.76 0.87

6 12 120 1392.19 87.00 13.00 98.60 75.40 0.76 0.87

6 12 150 1463.30 85.10 14.90 78.80 91.40 0.71 0.85

6 12 200 1582.14 86.80 13.20 83.80 89.80 0.74 0.87

6 16 32 2054.51 86.70 13.30 81.60 91.80 0.74 0.87

6 16 120 1812.94 87.90 12.10 93.80 82.00 0.76 0.88

6 16 200 2070.36 85.30 14.70 77.80 92.80 0.71 0.85

16 32 200 8616.49 71.70 28.30 100.00 43.40 0.53 0.69

Table 5: Relationship between the number of layers and recognition performance.

Layer Convolution and pooling layers Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 score

2 C1-S1 117.76 50.00 — — — — —

4 C1-S1-C2-S2 485.38 82.30 17.50 99.60 65.40 0.69 0.82

5 C1-S1-C2-S2-C3 1161.70 83.80 16.20 72.40 95.20 0.69 0.84

6 C1-S1-C2-S2-C3-S3 1765.49 89.30 10.70 92.00 86.60 0.79 0.89

7 C1-S1-C2-S2-C3-S3-C4 1779.64 85.40 14.60 97.00 73.80 0.73 0.85

8 C1-S1-C2-S2-C3-S3-C4-S4 1881.06 76.00 24.00 65.60 86.40 0.53 0.76
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(1) Mean Pooling and Maximum Pooling. The deep convolu-
tional neural network model is composed of two kinds of
special hidden layers: the convolutional layer and the pooling
layer; however, the pooling layer can reduce the feature
dimension, reduce the amount of computation, prevent over-
fitting, and provide a certain degree of translation and rota-
tion invariance. At present, the commonly used sampling
methods are mean pooling andmax pooling [20]: mean pool-
ing is the average of the feature points in the neighborhood
and max pooling is the maximum value of the feature points
in the neighborhood. Two groups of experiments were con-
ducted to discuss the effects of different sampling methods
on the final results, the learning rate is 0.0005, and the batch
size is 200; the experimental analysis was carried out using
two DCNN, and the results are shown in Tables 6 and 7.

The results show that the recognition rate of using the
max pooling is higher than that of the mean pooling with
the same DCNNmodel, but the two methods have little effect
on the training time. When the number of feature maps is 6-
16-120 and the number of iterations is 12, the recognition
rate of using the max pooling method is up to 79.94%, but
the recognition rate of using the mean pooling method is
76.65%. With the increasing iterations, the recognition rate
increased first and declined next based on two methods.
When the number of feature maps is reduced to 6-16-24,
the convergence rate is slow, and the recognition rate of using
max pooling is 86.83% and the recognition rate of using
mean pooling is about 83.43%. In conclusion, using max
pooling is superior to the mean pooling method for the iden-
tification of the CT global features on lung tumors.

According to the theory of pattern recognition, the error
of feature extraction mainly comes from two aspects: the first
is the increase in the variance of the estimation result caused
by the limited size of the neighborhood and the other is the

deviation of the estimated mean value caused by the param-
eter error of the convolutional layer [21]. In general, the
mean pooling can reduce the first error and more retain the
background information of the image, while the max pooling
can reduce the second kinds of error and retain the texture
information. In the average sense, it is similar to the mean
pooling, and in the local sense, it obeys the principle of max
pooling; therefore, we should pay more attention to the
ROI of the lung CT image; that is to say, the lesion area is
more reserved for the local area; hence, the max pooling is
better than the mean pooling for the lung tumor recognition
based on global features.

(2) Sigmoid Function and ReLU Function. The activation
function can be joined by the nonlinear factor, because the
expression ability of the linear model is not enough, and
the function is mapped to the specified range by the activa-
tion function. There are two kinds of activation functions:
sigmoid function and ReLU function [22]. Sigmoid function
is one of the most commonly used activation functions; the
formula is as follows:

S zð Þ = 1
1 + exp −zð Þ : ð16Þ

The calculation of the ReLU activation function can be
greatly reduced, and it is helpful to the characteristic effect;
the formula is as follows:

R zð Þ =max 0, xð Þ: ð17Þ

Two different DCNN models were selected aimed at dif-
ferent activation functions, and the effects of the two com-
mon activation functions on the global feature recognition

Table 6: Experimental results of different sampling methods.

Feature maps Convolution kernels Activation function Pooling
Iterations/accuracy (%)

Time (s)
5 10 12 15 20 30 50 100

6-16-120 5-10-10 Sigmoid
Max 60.08 65.37 79.94 73.75 71.76 70.26 69.86 63.67 2738.62

Avg 50.00 68.66 76.65 68.06 65.37 61.58 57.49 58.48 2718.68

Table 7: Experimental results of different sampling methods.

Feature maps Convolution kernels Activation function Pooling
Iterations/accuracy (%)

Time (s)
50 100 140 150 160 200 250 300

6-16-24 5-10-10 Sigmoid
Max 75.55 83.34 86.23 86.83 84.63 84.13 83.93 85.33 7524.27

Avg 69.46 81.74 81.24 83.43 80.54 82.14 83.03 83.83 7620.68

Table 8: Experimental results of different activation functions.

Feature maps Convolution kernels Pooling Activation function Iterations Accuracy (%) Time (s)

6-16-120 5-10-10 Max pooling
Sigmoid 150 73.82 543.73

ReLU 3 72.07 11.37

20-50-500 5-10-10 Max pooling
Sigmoid 8 80.00 4971.42

ReLU 1 72.82 1043.57
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of lung tumors were discussed on the basis of the max pool-
ing. The results are shown in Table 8.

It can be seen from the table that when the structure of
the DCNNmodel is unchanged, the sigmoid function is used
to achieve the recognition rate of 73.82% when the iteration is
150 times, and the recognition rate reached 72.07% by using
the ReLU function in the iteration of 3; compared with the
saturation activation function, ReLU has a faster convergence
rate and lower training error. Although the recognition rate
of using ReLU activation function is not significantly higher
than that of the sigmoid function, it converges quickly and
the training time is significantly reduced, so we can use the
ReLU function to speed up the convergence rate, reduce the
training time, and improve the recognition performance.

(3) Batch Gradient Descent Method and Gradient Descent
Method with Elastic Momentum. The batch gradient descent
method [23] is used to do iterative training and parameter
tuning by selecting different batch sizes; in the experiment,
the effect of batch size on classification results was discussed,
and the effects of two optimization methods batch gradient
descent method and gradient descent method with elastic
momentum were compared. The experimental results are
shown in Table 9.

As we can see from the table, the batch size is closely
related to the identification results; the smaller the batch size,
the longer the running time, but the recognition rate will con-
tinue to increase; when the batch size is too small, the recog-
nition rate will be maintained at a certain level, because when
the batch size is too small or too large, training is not enough
and the adjustment of the parameters is not enough, so it
makes the recognition rate decreased. Therefore, it is neces-
sary to combine the size of the training set and select the
appropriate batch size, in order to ensure each parameter
adjustment based on adequate training and backpropagation.

It can be seen from Table 10 that the gradient descent
method with the elastic momentum is higher than the batch
gradient descent method, its recognition rate achieved 96.4%,

the sensitivity and specificity were above 95%, and MCC and
F1 score are close to 1. It is indicated that the gradient descent
method with elastic momentum is more suitable for lung CT
recognition based on DCNN. The gradient descent method
with elastic momentum is used to train the network, which
reduces the oscillation of the learning process of the neural
network, and the network can converge quickly. It can reduce
the sensitivity of the local detailed feature for error surface
and suppress the network into local minima effectively.

3.4. Conclusions. In the paper, the DCNN is directly used for
lung tumor recognition based on CT global features, because
of the better feature representation ability of the deep convo-
lutional neural network, and image processing and feature
extraction are nonessential. There are three comparison
experiments with different model parameters, network struc-
ture, and training algorithm; the results verified the feasibility
of DCNN for the global characteristics of CT lung tumors,
and the experiment results show that the appropriate convo-
lution kernel size, the number of feature maps, and the num-
ber of layers of the network can be used to ensure a good
recognition performance; being too large or too small will
make the feature learning not sufficient for parameter fitting.
For lung tumor image recognition, the maximum pooling
results are better than the average pooling results; the choice
of ReLU activation function can speed up the convergence
and reduce the running time; the gradient descent method
with momentum not only improves the recognition rate
but also makes the recognition rate of DCNN for lung cancer
reach 94.6%. Thus, the good feature learning ability and good
generalization ability and robustness of the deep convolu-
tional neural network are proven.

In a word, with the deep convolutional neural network,
the more the layers, the more the feature maps, the larger
the feature space can be represented by the network, and
the stronger the feature learning ability of the network.
However, the computational complexity is larger, and the
phenomenon of overfitting is easy to appear. Therefore, it
is necessary to select appropriate layers, the number of fea-
ture maps, the convolution kernel size, and other parameters

Table 9: Effect of batch size on experimental results.

Batch size Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 score

20 1816.22 90.50 9.50 98.80 82.20 0.82 0.90

50 1708.21 91.70 8.30 99.40 84.00 0.84 0.92

100 1619.94 89.90 10.10 97.20 82.60 0.81 0.90

200 1533.37 86.30 13.70 99.60 73.00 0.75 0.86

300 1526.66 85.60 14.40 99.40 71.80 0.74 0.85

500 1508.10 68.40 31.60 100.00 36.8 0.47 0.65

Table 10: Results of the batch gradient descent and gradient descent method with elastic momentum.

Training method Time (s) Accuracy (%) Error (%) Sensitivity (%) Specificity (%) MCC F1 score

Batch gradient descent 5809.73 91.70 8.30 99.40 84.00 0.84 0.92

Gradient descent method with elastic momentum 5016.18 96.40 3.60 97.60 95.20 0.93 0.96
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in the practical application of the specific field; in this way,
it can train a better model and ensure relatively little
training time.

Data Availability
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from the corresponding author on request.
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Congenital heart defects (CHD) are structural imperfections of the heart or large blood vessels that are detected around birth and their
symptoms vary wildly, withmild case patients having no obvious symptoms and serious cases being potentially life-threatening. Using
cardiovascular magnetic resonance imaging (CMRI) technology to create a patient-specific 3D heart model is an important
prerequisite for surgical planning in children with CHD. Manually segmenting 3D images using existing tools is time-consuming
and laborious, which greatly hinders the routine clinical application of 3D heart models. Therefore, automatic myocardial
segmentation algorithms and related computer-aided diagnosis systems have emerged. Currently, the conventional methods for
automatic myocardium segmentation are based on deep learning, rather than on the traditional machine learning method. Better
results have been achieved, however, difficulties still exist such as CMRI often has, inconsistent signal strength, low contrast, and
indistinguishable thin-walled structures near the atrium, valves, and large blood vessels, leading to challenges in automatic
myocardium segmentation. Additionally, the labeling of 3D CMR images is time-consuming and laborious, causing problems in
obtaining enough accurately labeled data. To solve the above problems, we proposed to apply the idea of adversarial learning to the
problem of myocardial segmentation. Through a discriminant model, some additional supervision information is provided as a
guide to further improve the performance of the segmentation model. Experiment results on real-world datasets show that our
proposed adversarial learning-based method had improved performance compared with the baseline segmentation model and
achieved better results on the automatic myocardium segmentation problem.

1. Introduction

Congenital heart defect (CHD), also known as congenital
heart anomaly or congenital heart disease, is a structural
defect of the heart or large blood vessels that occurs at birth.
Symptoms vary widely, depending on the specific type of
defects [1], ranging from mild to life-threatening. Symptoms
typically include shortness of breath, bluish to purple skin
color, abnormal weight gain, and fatigue. CHD is usually
associated with complications of heart failure without caus-
ing chest pain, while most CHD are unrelated to other dis-
eases. CHD is the most common birth defect [2]. In 2015,
about 48.9 million people globally suffered from CHD [3].
In different countries and regions, CHD affects 4 to 75 cases
per 1,000 live births, and moderate or severe problems can

occur in 6 to 19 people per 1,000 [1, 4]. CHD is the main
cause of death associated with birth defects. Among many
types of CHD, the most common involves the inner walls
of the heart, valves, or large blood vessels that pump blood
into and out of the heart. Some minor defects do not require
treatment, but moderate and severe cases can be effectively
treated with catheter-based or cardiac surgery. However,
many operations are often required, potentially even includ-
ing heart transplants. Nevertheless, the death rate from CHD
can be greatly reduced, given appropriate treatment is
provided.

Cardiovascular magnetic resonance imaging (CMRI) is a
noninvasive medical imaging technique used to evaluate the
function and structure of the cardiovascular system. By using
electrocardiographic (ECG) gated control and high time
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resolution, regular MRI is adapted to cardiovascular imaging,
and its importance is paramount in the evidence-based diag-
nosis and treatment of cardiovascular diseases [5]. Accurate
diagnosis is essential for the development of appropriate
treatment regimens for CHD. CMRI can safely provide
comprehensive information about CHD, without the use of
X-rays or intrusions. This technique is often used in conjunc-
tion with other diagnostic techniques, such as echocardiogra-
phy and diagnostic cardiac catheterization. The use of CMRI
for blood pools and myocardium segmentation is a prerequi-
site for surgical planning and patient-specific heart models
for children with complex CHD. The use of existing tools
for manual segmentation of 3D images is time-consuming
and laborious, which greatly impedes the routine clinical
use of 3D heart models. Therefore, automatic myocardial
segmentation algorithms and related computer-aided diag-
nosis systems were developed.

Traditional automatic myocardial segmentation algo-
rithms are generally based on semiautomatic segmentation
algorithms. Using prior knowledge, steps such as manual
selection of initial contour and initial seed points are auto-
mated to realize the automation of the entire cardiac segmen-
tation task. Common myocardial segmentation algorithms
include horizontal set segmentation algorithm [6], regional
growth segmentation algorithm [7], and threshold segmenta-
tion algorithm [8]. However, the segmentation results using
this kind of automatic cardiac segmentation algorithms are
not ideal, and algorithm robustness is not adequate. With
the continuous improvement of hardware equipment and
the development of technology, deep learning has been
increasingly applied in image processing, resulting in the
deep learning-based image segmentation algorithm, surpass-
ing the traditional image segmentation algorithm in many
specific tasks [9].

In recent years, with the increase of available data volume
and the improvement of computing power, deep learning has
made breakthrough progress in various applications in the
field of computer vision [10, 11]. Based on these successful
experiences, deep learning is now also widely applied in med-
ical image processing [12], including myocardial segmenta-
tion. However, common problems in the field of medical
image analysis still exist, namely, the low volume of labeled
data and networks prone to overfitting. In the field of cardiac
segmentation in particular, due to the complex structure of
the heart, cardiac labeling is often time-consuming and labo-
rious, which results in the lack of labeled cardiac data. Simul-
taneously, due to the complex shape of myocardium,
myocardium and other surrounding organs and tissues are
poorly differentiated in CMR images, and due to the influ-
ence of factors such as the tortuous segmentation boundary,
room for improvement remains in the final myocardial
image segmentation model.

This paper applies the idea of antagonistic learning to the
segmentation of myocardium, as an attempt to address these
issues. Through a discriminant model, additional supervisory
information is given to the segmentation model as a guide to
further improve its performance. The myocardial segmenta-
tion algorithm based on antagonistic learning is mainly com-
posed of two modules: (1) a segmentation network and (2)

discrimination networks. Similarly, to the generation of the
maximum and minimum game against the network, the seg-
mentation network accepted the input image and generated
the segmentation probability graph. The discriminant net-
work received images and corresponding segmentation
results simultaneously and determined whether the input
segmentation results came from the segmentation network
or from manual annotation. We evaluated the method on
the HVSMR2016 dataset and the experimental results
showed that our method can achieve good results. An exam-
ple of the raw image and its segmentation regions is showed
in Figure 1.

2. Related Work

2.1. Myocardial Segmentation. Algorithms based on proba-
bility models are commonly used to solve the problem of
myocardial segmentation among the traditional methods,
especially the Gaussian mixture model (GMM) [13, 14].
According to the maximum likelihood (ML) estimation crite-
rion, the expectation maximization (EM) algorithm is usually
employed to calculate the parameters in the GMM [15]. On
this basis, the Naive Bayes classifier is used to classify each
pixel or voxel. Ngo et al. [16] proposed a fully automatic
myocardial segmentation method based on depth learning
and the level-set algorithm; Mukhopadhyay [17] proposed
a fully automatic myocardial segmentation algorithm based
on a variational random forest; Tziritas [18] proposed a fully
automatic myocardial segmentation algorithm based on the
3DMarkov random field; Shahzad et al. [19] proposed a fully
automatic myocardial segmentation algorithm that combines
the multiple atlas and level-set algorithms. To address the
issue of performance and robustness, myocardial segmenta-
tion algorithms based on deep learning have been the subject
of research. Yu et al. proposed a fully automatic myocardial
segmentation algorithm based on 3D fractal convolutional
neural networks and dense connection convolutional neural
networks [20, 21]. Wolterink et al. [22] proposed a fully auto-
matic myocardial segmentation algorithm based on dilated
convolutional neural networks. Avendi et al. [23] applied
two deep structures, using convolutional neural networks to
automatically detect the left ventricle and a stack automatic
encoder to infer the shape of the left myocardium. The
inferred shape was then combined into the variability model,
to improve the segmentation accuracy. Tran [24] applied
fully convolutional network to myocardial MRI segmenta-
tion for the first time, extracting ROI regions, and then using
the network structure proposed by ROI region pairs to train
left and right ventricular segmentation using the stochastic
gradient descent (SGD) optimization algorithm. Tao et al.
[25] propose a novel shape-transfer GAN for LGE images,
which can (1) learn to generate realistic LGE images from
bSSFP with the anatomical shape preserved and (2) learn to
segment the myocardium of LGE images from these gener-
ated images. It is worth to note that no segmentation label
of the LGE images is used during this procedure.

2.2. Generative Adversarial Networks (GAN). Generative
adversarial networks (GAN), proposed by Goodfellow et al.
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[26], learn by pitting two neural networks in a zero-sum
game with each other. In recent years, GAN have become
the most popular learning method of complex probability
distribution. They consist of a generator and a discriminator.
The goal of the generator is generating samples that are as
close to the real data distribution as possible in an attempt
to deceive the discriminator, and the goal of the discrimina-
tor is to correctly distinguish whether the data belongs to
the real distribution or to the generator. The generator and
discriminator of conditional generative adversarial networks
(CGAN) [27] also use additional condition information, to
make the generated data satisfy certain constraints. On the
basis of CGAN, Luc et al. [28] used GAN for semantic image
segmentation. Xue et al. [29] proposed a novel end-to-end
adversarial network architecture called SegAN for MRI
image semantic segmentation tasks. Inspired by the original
GAN [26], the training process of SegAN is similar to the
minimax game, training the segmented network and dis-
criminant network alternately, minimizing and maximizing
the objective function, respectively, and combining multi-
scale loss in SegAN.

3. Dataset

The dataset used in this experiment was the HVSMR 2016
dataset. This dataset included 20 MR images with various
congenital heart defects, where in 10 cases, the image data
and their corresponding manual segmentation labeling have
been made public (training set). The remaining 10 cases con-
stitute the test set, which did not include manual segmenta-
tion tagging, and the segmentation results needed to be
submitted to an online test platform that returned the test
results.

The images of this dataset were acquired during clinical
practice at Boston Children’s Hospital, Boston, MA, USA.
Some subjects included in the dataset have undergone inter-
ventions. Imaging was done in an axial view on a 1.5T scan-
ner (Phillips Achieva), without contrast agent, using a
steady-state free precession (SSFP) pulse sequence. The sub-
jects breathed freely during the scan, and ECG and respira-
tory gating were used to eliminate the effects of cardiac and
respiratory movements for the duration of the imaging. Man-
ual segmentation of the ventricular myocardium was per-
formed by a trained rater and validated by two clinical
experts.

There were three classes of labeling: blood pool, myocar-
dial layer, and background. The blood pool class included the
left and right atria, left and right ventricles, aorta, pulmonary
veins, pulmonary arteries, and the superior and inferior vena
cava. The myocardium class included the thick muscle sur-
rounding the two ventricles and the septum between them.
Image dimensions and image spacing vary across subjects,
with an average of 390 × 390 × 165 pixels and 0:9 × 0:9 ×
0:85mm, respectively, in the full-volume training dataset.

4. Method

4.1. Data Preprocessing. The data processing part of the
experiment consisted of two steps: data standardization and
random block taking.

4.1.1. Data Standardization. The preprocessing process of
the experiment was standardized using the Z-score:

x∗ = x − �x
s

, ð1Þ

where x is the input image, �x is the average of the gray value
of each voxel in the input image, that is, �x = 1/n∑n

i=1xi , and s
is the sample standard deviation of the input image, that is,

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n − 1∑n

i=1ðxi − �xÞ2
q

. After standardization, the mean

value of x∗ was 0 and the standard deviation was 1. Data
standardization is the most commonly used standardization
method and was performed to eliminate the systematic devi-
ation between data as much as possible and be robust to
abnormal data values.

4.1.2. Sliding Window Block Taking. Limited by the very
small dataset size, data augmentation was a necessary data
preprocessing process. In addition, the original 3D image
was large in size, therefore, too expensive to input directly
into the network for training. Consequently, the method of
sliding window block taking was adopted in this experiment.
An image block with a size of 64 × 64 × 64 from a standard-
ized input image was extracted along three spatial dimen-
sions with independent uniform distribution, and the
corresponding tensor was cut out from the segmentation
label according to the corresponding spatial position as the
segmentation label of the extracted image block. In order to
further expand the size of the training set and to consider

(a) Raw MRI image (b) Segmentation regions

Figure 1: An example of the raw image and its segmentation regions.
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the possible direction invariance caused by the acquisition
process of MRI, random 90°, 180° and 270° rotations in the
axial plane and symmetric flip about the axial plane were also
introduced.

4.2. Overall Framework. The cardiac muscle segmentation
algorithm based on adversarial learning consisted mainly of
two modules, namely, the segmentation network and the dis-
crimination network. The segmentation network received the
input image and generated the segmentation probability
map. The discrimination network then received the image
and the corresponding segmentation results simultaneously
and determined whether the input segmentation result came
from the segmentation network or from manual annotation.
The outline of the algorithm is shown in Figure 2. The dis-
crimination network can be regarded as a special loss func-
tion, different from the commonly used cross-entropy loss-
function and dice loss function, which directly depends on
the value of each pixel and defines a complete loss function.
The discrimination network analyzed the image and segmen-
tation results jointly and had a deep network structure and a
large number of learnable parameters, therefore, it was able
to provide advanced guidance information for the segmenta-
tion network.

For the input 3D image block and its corresponding seg-
mentation result x, y, the segmentation probability map SðxÞ
given by the network was obtained through the segmentation
network S, using forward reasoning calculation, and the seg-
mentation loss function Jseg and the adversarial loss function
Jadv were calculated, during training. Similar to the training
process of GAN, the segmentation network S and the dis-
crimination network D were trained in turn, and the param-
eters of the corresponding network model were updated by
the back-propagation algorithm.

In the prediction process, the input 3D image was pre-
processed and then several image blocks were extracted in a
certain step along the three spatial dimensions and input into
the segmentation network S, respectively, to obtain the seg-
mentation probability map of the corresponding image
blocks. Finally, the segmentation probability maps corre-
sponding to the image blocks at different positions were syn-
thesized, and the segmentation results corresponding to the
input 3D images were obtained after postprocessing.

4.3. Segmentation Network. A 3D full convolutional neural
network was used to segment the cardiac muscle and blood
pool. In theory, the full-convolutional neural network can
process input images of any size. However, the input image
size is directly related to the size of the characteristic tensor
of each layer of the network, demanding a lot of runtime
memory for oversized input images. Additionally, because
the input image and convolution kernel are 3D tensors, the
computational complexity will increase significantly with
the increase of input image size. Therefore, the sliding win-
dow block strategy of size 64 × 64 × 64 was used for the input
image, during both training and testing. The training process
blocked the input image at random positions. This step can
be seen as a form of data augmentation, which expands the
size of the training data set and also creates reasonable con-

straints on the size of the input image block, so that the net-
work model can complete the training process with limited
memory and within reasonable calculation time. The input
images were taken along three spatial dimensions with over-
lapping blocks at equal intervals during the test process, and
the extracted image blocks were input into the segmentation
model to obtain a segmentation probability map; then, the
segmentation probability maps at different positions were
divided according to the input image block. The spatial posi-
tion was arranged, and the overlapping part adopted the vot-
ing strategy to average the segmentation probability map and
finally obtain the segmentation result of the original image.

A full-convolutional neural network model with a struc-
ture similar to 3D U-Net was designed in this study. As a seg-
mentation network part, the network structure is shown in
Figure 3. The network model used a symmetric encoder-
decoder structure to extract the characteristics of the input
image and obtain the segmentation probability map through
forward reasoning calculation. The network used jump con-
nections, connecting the shallow and deep layers of the net-
work, and was able to simultaneously use high-dimensional
semantic features and low-dimensional grayscale, texture,
and other image detail features to jointly participate in the
final segmentation probability map calculation.

Each scale part of the encoder part was composed of two
identical stacked modules, with each module including a
convolutional layer with a kernel of 3 × 3 × 3, a step size of
1, a batch normalization (BN) layer, and linear rectification
function (Rectified Linear Unit, ReLU). Each time the maxi-
mum pooling was performed, the spatial scale of the feature
map was halved, but the number of feature channels was
doubled to retain a certain amount of information. The
decoder part was generally symmetrical with the encoder
part and had a similar structure. The kernel size and stride
of deconvolution are 2 × 2 × 2 and 2, respectively. The input
tensor of each scale consisted of the output of the previous
layer after deconvolution, while the output features of the
encoder of the corresponding size were spliced together.
After deconvolution, the spatial scale of features was doubled,
and the number of feature channels was halved. Finally, the
network used a convolutional layer with an output channel
of 3 and the SoftMax activation function to obtain a

Input image

Segmentation network

Probability
map

Segmentation label

Discrimination
network

OR

Figure 2: Outline of the cardiac muscle segmentation algorithm
based on adversarial learning.
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segmentation probability map. The three channels represent
the three category labels of cardiac muscle, blood pool, and
background, respectively.

4.4. Discriminant Network. A full-convolutional neural net-
work model is presented in this paper. The number of layers
is shallow, and the structure is similar to the VGG network.
The network structure is shown in Figure 4. The basic mod-
ule consisted of a convolutional layer with a step size of two,
followed by batch normalization and a linear rectification
activation function. The convolutional layer with a step size
of two can extract features and reduce the scale of the feature
map. The input of the discriminant network was the input
image and segmentation results. After the processing of four
basic network modules, the discriminate results were
obtained by global average pooling and sigmoid activation
function. The output value, ranging from 0 to 1, represented
the probability that the segmentation result was derived from
the manual annotation.

Compared with the segmented network, the discriminant
network was shallower, and the number of parameters used is
lower. The reason for this design was that the segmentation
network was tasked with the relatively complex task of gener-
ating segmentation results, which was the main part of the
model. Conversely, the sole output of the discriminant net-
work was one probability value, and too many parameters
are easy to over fit, which is not conducive to the convergence
of the model.

4.5. Loss Function. The most commonly used loss function in
image segmentation tasks is the pixel by pixel loss entropy
error function. The value of the loss function on each pixel
(voxel) was calculated independently. The pixel classification
prediction was compared with the standard vector encoded
by one-hot to measure the difference between them. The cal-
culation formula of the cross-entropy loss function is shown
in equation (2):

JCE = −
1
N

〠
classes

〠
N

i=1
gi ln pi, ð2Þ

where N is the total number of pixels (voxels), classes repre-
sent each category, gi denotes whether the i-th pixel is
marked as the true label of the current category, and pi is
the prediction probability that the i-th pixel is predicted as
the current category. It is clear from the formula that the
cross-entropy loss function was evaluated separately for each
pixel and then the contribution of all pixels was averaged to
obtain the final loss value. The segmentation network model
combined with cross entropy loss function was the basic
method used to address the image segmentation problem
by deep learning, and it was also the baseline method of the
experiment in this paper.

Adversarial loss function, Jadv is a minimum-
maximization function, defined as equation (3):

minS maxDJadv S,Dð Þ = Ex,y~Pdata x,yð Þ log D x, yð Þ − log D x, S xð Þ½ �f g,
ð3Þ

where S and D are the segmentation network and the dis-
crimination network, respectively, X and Y are the input
image block and the corresponding segmentation result
annotation, respectively, Pdata is the data distribution com-
posed of the training data set, and Dðx, yÞ is the prediction
probability of the segmentation result corresponding to X,
determined by the segmentation network. When the param-
eters of the segmentation network were fixed, the discrimina-
tion network minimized the binary cross entropy loss
function. When the parameters of the discriminant network
were fixed, the discrimination network was minimized as
follows:

−EX,Y~Pdata x,yð Þ log D x, S xð Þ½ �: ð4Þ
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Figure 3: Outline of the segmentation network model.
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In other words, the segmentation network was induced to
produce a more realistic segmentation result.

The cross-entropy loss could effectively measure the dif-
ference between the classification prediction value of each
pixel and the gold standard, while the counter loss function
could comprehensively measure the difference between the
predicted image segmentation results and the gold standard
from a global perspective, complementing each other. The
two loss functions were used at the same time in this study,
in order to utilize both their advantages, and the total loss
function was defined as shown in equation (4):

J = JCE + αJadv, ð5Þ

where α is a super parameter used to adjust the relative
weight of the above two loss functions. Larger values of α lead
to larger relative weight of Jadv, which also cause the influence
of the adversarial network on segmentation results to be
more explicit. On the other hand, smaller α values lead to
larger relative weight of JCE, causing the influence of adver-
sarial network on segmentation results to be less explicit.
Experimental results showed that when α was set as 0.15,
the overall performance of the model is optimal. The related
parameters are discussed in detail in the discussion part.

4.6. Evaluation Index and Implementation Details. The com-
monly used image segmentation task evaluation index Dice
coefficient (DSC) was used to evaluate the performance of
myocardial and blood pool segmentation. The definition of
DSC is as follows:

DSC = 2 X
T

Yj j
Xj j+∣Y ∣

, ð6Þ

where X and Y are the predicted segmentation result and the
manually annotated segmentation result, respectively. DSC is
a dimensionless number between 0 and 1 that measures the
similarity of two sets. High DSC values are associated with
close match between the predicted segmentation result of

the model and that of manual annotation, meaning better
model performance.

The experiment was based on the deep learning frame-
work Keras. The Adam adaptive optimization algorithm
was used to complete the training and testing of the network
model, using an NVIDIA 1080Ti GPU hardware platform.
The network was trained on the HVSMR 2016 dataset. The
Leave-One-Out scheme was used in the study, since there
were only 10 samples in the training set. One sample was
selected as the validation set, and the remaining nine samples
were selected as the training set that the 10-fold cross-
validation experiment was performed in turn to verify the
effectiveness of the proposed method and the discussion
experiment of super parameter. The final model was then
tested online with the complete training set and the opti-
mized hyperparameter training. The learning rate is 0.001,
and the batch size is 16.

5. Experiments and Results

We demonstrated the myocardial segmentation algorithm
based on adversarial learning and analyzed its effectiveness
by conducting ablation experiments. The training datasets
of the HVSMR 2016 datasets were used to conduct cross-
validation using the leave-one-out method and use the aver-
age value of the Dice score to evaluate the performance of the
model. The experimental results are shown in Table 1.
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Figure 4: Outline of the discrimination network model.

Table 1: Ablation study experimental results of the discriminative
network.

Model
Myocardial

dice
Blood pool

dice

3D UNet (baseline) 0.712 0.926

3D UNet + discrimination
network

0.753 0.929
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The segmentation network shown in Figure 2 was used as
the baseline model on the HVSMR 2016 datasets. The dis-
crimination network, as shown in Figure 3, was then added.
We conducted relevant experiments again to verify the effec-
tiveness of the discriminative network. Comparing the exper-
imental results in Table 1, it is reasonable to conclude that
after using the discriminative network and introducing the
adversarial learning mechanism, the performance of the net-
work model in myocardial segmentation was considerably
improved and the Dice score increased from 0.712 to 0.753.
The improvement of the blood pool segmentation was very
small, because the blood pool has a simple shape and no
internal texture and structure. The blood pool was also rela-
tively easy to segment compared to the complex-shaped
myocardium with a thin layer structure. The baseline model
achieved good results, and improved space was relatively
small. Figure 5 shows the segmentation results of the
learning-based segmentation of the partial validation set. It
can be seen that the network model that introduced the
adversarial learning mechanism gained a better segmentation
result than the baseline model, thereby achieving more accu-
rate myocardial segmentation.

The network model trained on the HVSMR 2016 datasets
was tested online on the test datasets and compared with
other methods published in recent years. These methods
are mainly divided into two categories based on traditional
machine learning and deep learning, as shown in Table 2.

The traditional machine learning algorithms included a
variation random forest algorithm proposed by Mukhopad-
hyay [17], a 3-D MRF model random field proposed by
Tziritas [18], and methods combining multiatlases and level
sets proposed by Shahzad et al. [19]. Limited to the character-
istics of manual design, the overall performance was slightly
worse than the methods based on deep learning. However,
in terms of deep learning models, the 3D FractalNet pro-
posed by Yu et al. introduced the idea of recursion, with the
network model being a complex fractal structure [20].
Wolterink et al. proposed a convolutional neural network
model with two-dimensional holes [22] that combines the

Table 2: Quantitative comparison of the method presented in this
paper to segmentation performance of different methods from the
literature.

Method Myocardial dice Blood pool dice

Mukhopadhyay [17] 0.495 0.794

Tziritas [18] 0.612 0.867

Shahzad [19] 0.747 0.885

3D UNet [30] 0.707 0.926

Ours 0.762 0.928

Wolterink et al. [22] 0.802 0.926

Yu et al. [20] 0.786 0.931

Input image Ground truth Baseline Proposed method

Figure 5: Comparison of segmentation results on the validation set. Each row corresponds to a different case sample. The first column is the
CMR image slice of the case sample, the second column is the manually marked segmentation results, and the third column is the baseline
model. The fourth column is the segmentation result of the complete model.
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ideas of multiple perspectives. 3D UNet has a relatively sim-
ple structure and a wide range of applications. Even though a
difference in performance was still present between the
method of 3D UNet + discrimination network proposed in
this paper and the optimal method, compared with the base-
line model, the performance was notably improved.

6. Discussion

The influence of the discriminator on the final segmentation
result was affected by using different loss function weight
coefficients α, further affecting the final average Dice coeffi-
cient. In the 10-fold cross-validation experiment conducted
on the training datasets, the α value was adjusted depending
on the average dice coefficient. The performance indexes of
different α values on the validation datasets are shown in
Figure 6. Experiments showed that the model achieves best
performance when α = 0:15.

7. Conclusion

A myocardial segmentation algorithm based on adversarial
learning was proposed in this paper, and experiments were
designed to comparatively analyze the effectiveness of the
adversarial learning mechanism on myocardial tissue seg-
mentation tasks. The introduction of adversarial learning
mechanism for model focus on the overall spatial structure
and context consistency was successful, and a more accurate
segmentation result was obtained. Our method improved the
quantitative segmentation performance index considerably,
compared with the baseline model.
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dataset, which is available at: http://segchd.csail.mit.edu/
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A new robust adaptive fusion method for double-modality medical image PET/CT is proposed according to the Piella framework.
The algorithm consists of the following three steps. Firstly, the registered PET and CT images are decomposed using the
nonsubsampled contourlet transform (NSCT). Secondly, in order to highlight the lesions of the low-frequency image, low-
frequency components are fused by pulse-coupled neural network (PCNN) that has a higher sensitivity to featured area with
low intensities. With regard to high-frequency subbands, the Gauss random matrix is used for compression measurements,
histogram distance between the every two corresponding subblocks of high coefficient is employed as match measure, and
regional energy is used as activity measure. The fusion factor d is then calculated by using the match measure and the activity
measure. The high-frequency measurement value is fused according to the fusion factor, and high-frequency fusion image is
reconstructed by using the orthogonal matching pursuit algorithm of the high-frequency measurement after fusion. Thirdly, the
final image is acquired through the NSCT inverse transformation of the low-frequency fusion image and the reconstructed high-
frequency fusion image. To validate the proposed algorithm, four comparative experiments were performed: comparative
experiment with other image fusion algorithms, comparison of different activity measures, different match measures, and
PET/CT fusion results of lung cancer (20 groups). The experimental results showed that the proposed algorithm could better
retain and show the lesion information, and is superior to other fusion algorithms based on both the subjective and objective
evaluations.

1. Introduction

The main purpose of medical image fusion is to generate a
composite image by integrating the complementary informa-
tion from multiple medical source images of the same scene
[1]. Molecular images and anatomical images are integrated
by PET/CT fusion; the fused image contains information
on the pathophysiology of different modality images and
improves the identifiability of the lesion areas. It not only

provides images for the differential diagnosis of benign or
malignant lesions and the detection rate of local space-
occupying lesions but also carries out whole body imaging
in tumor exploration. Medical image fusion plays an impor-
tant role in clinical applications such as image-guided radio-
therapy, image-guided surgical procedure, and noninvasive
diagnosis, thereby helping the diagnosis and differential diag-
nosis, treatment planning, therapeutic monitoring, and prog-
nostic evaluation of many serious diseases [2]. In Reference
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[3], by analyzing the Piella framework and multiscale analy-
sis theory, four construction methods of pixel level fusion
rules are presented on the basis of the Piella framework; a
self-adaption fusion algorithm of lung cancer PET/CT based
on Piella frame and DT-CWT is proposed in first fusion path.

The general framework of multiresolution image fusion
method was firstly proposed by Zhang and Blum [4]. On this
basis, Piella [5] has been developing and extending the
framework by categorizing the key technology technologies
multiresolution image fusion method into two parts, which
includes multiresolution transform and fusion rule, making
the multiresolution image fusion method more systematic
and standardized. At present, the research on PET/CT image
fusion method can be divided into two aspects. One aspect is
multiresolution transformation; the fusion schemes based on
multiresolution transform are widely used in practical appli-
cations. The commonly used methods based on wavelet
transform are to overcome the limitations of spectral distor-
tion, but they can only obtain limited directional informa-
tion. Novel multiresolution transform-based approaches are
proposed, such as ridgelet transform [6], curvelet transform
[7], bandlet transform [8], contourlet transform [9], nonsub-
sampled contourlet transform (NSCT) [10], and shearlet
transform [11]. The medical image fusion algorithm based
on weighted contourlet transformation coefficient weighting
is studied in [12]. In addition, the medical image fusions of
NSCT transform and contourlet transform are compared
[13] and the experimental results show that the NSCT trans-
form can improve the contrast of the fused image in the
fusion process. The other is the design of the fusion rule
based on the Piella framework; the purposes of which are to
explore how to construct the match measure and the activity
measure by improving and optimizing the traditional fusion
rule [14, 15].

In recent years, researchers have proposed many new
methods of image fusion [16–19], such as CT image
feature-level fusion with rough sets using in pulmonary nod-
ule detection [20], GA-SVM [21], COVID-19 on CT images
[22], high-dimensional feature reduction based on variable
precision rough set, and genetic algorithm in medical image
[23]. Fusion method based on compressed sensing domain
is also emerging in recent years to solve the high time com-
plexity in the process of medical image fusion. The com-
pressed sensing theory is applied to image fusion firstly by
Wan and Canagarajah [24]. Luo et al. [25] proposed the
classification-based image fusion method, with the data sim-
ilarity as the adjustment term of the weights in fusion pro-
cess, the standard of measuring the energy of the original
image by mean observed value of observation of the fusion
rule. In 2011, the superiority and effectiveness of compressed
sensing theory in image fusion applications are demonstrated
[26]. Medical image fusion based on compressed sensing can
improve the time and space efficiency in the network
transmission process and provide technical support for
mobile medical services and medical treatment.

The characteristics of medical image fusion based on
compression perception domain are as follows. Firstly, it is
not a simple fusion based on pixel, but a small amount of
sampling data fusion processing. Secondly, the characteris-

tics of the compression measurement are different from the
traditional transformation coefficient and the fusion rules
are designed to be adapted. Thirdly, the time and space effi-
ciency of image fusion is improved. Fourthly, the redundant
information between different source images is reduced.

In general, specific integration framework can be summa-
rized as follows. Firstly, the source image is transformed with
the appropriate sparse representation methods. Secondly, the
sparse coefficients are sampled by using the compression mea-
surement matrix, according to the characteristics of observed
value and designed fusion rules. Thirdly, the fused image is
reconstructed by performing the corresponding inverse trans-
form over themerged coefficients. The fusion process is shown
in Figure 1.

In this paper, we propose a self-adaptive fusion algorithm
of PET/CT based on compressed sensing and histogram dis-
tance as described in the Piella framework. The fusion rule of
low-frequency coefficients in the NSCT transform domain is
calculated by using the pulse-coupled neural network
(PCNN) method [27]. For high-frequency images, the Gauss
random matrix is used for compression measurement after
NSCT transform of subbands, the regional energy is mea-
sured as the activity measure, and the histogram distance
between subbands in eight directions is calculated as the
matching measure. The fusion factor d is calculated by using
the match measure and the activity measure. According to
the fusion factor, the high-frequency measurement value is
fused, and the high-frequency fusion image is reconstructed
by using the orthogonal matching pursuit algorithm of the
high-frequency measurement after fusion. By combining
NSCT and compressed sensing, high-frequency subbands
with sparsity are obtained after NSCT transform and the
fused image can be reconstructed by a few of the observed
data extracted from a large number of redundant data gener-
ated from the multiresolution decomposition. Experimental
results show that the algorithm reduces the workload of
high-frequency signal sampling and improves the image
contrast. In addition, the fused image has good visual effect
and can be improved by the objective index.

2. Method and Material

2.1. The Piella Framework. The multiresolution image fusion
framework of Piella is shown in Figure 2. The two original
images A and B are decomposed using the multiresolution,
which has been transitioned gradually from the conventional
pyramid decomposition to the wavelet transform and curvelet
transform. Decomposition coefficient CI (I = A, B) is obtained
by multiresolution transform, and the fusion rules of the
decomposition coefficient are summarized as four modules
outlined in the dashed box in Figure 2: matchmeasure, activity
measure, decision module, and combination module. The
match measureMI (I = A, B) is used to measure the matching
and similarity between two original images (I = A, B); the
activity measure aI (I = A, B) is used to extract the feature
information and highlight different parts. The activity and
match measures are used in the decision module, and the
degree of similarity and feature information of the decomposi-
tion coefficient are obtained by the decision factor d. The
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decomposition coefficient yF of the fusion image is obtained
by synthesizing the image decomposition coefficients accord-
ing to the decision factor d, and the fusion image F is obtained
by multiresolution inverse transform of yF.

2.2. Image Fusion Based on NSCT and Compressed Sensing.
NSCT was proposed by Cunha in 2006. It can be constructed
through double filter banks approach, nonsubsampled pyra-
mid structure (NSP), and nonsubsampled directional filter
banks (NSDFB) [28]. The source image is filtered firstly by
passing through NSP filter to get K + 1 subband images with
equal size to the source images assuming that the NSP
decomposition is with K level. After NSP decomposition,
the obtained high-frequency subbands are subjected to trans-
formation in direction at I level by passing through filter
composed of iterated two-channel NSDFB to generate 2I
high-frequency images. Therefore, a low-frequency subband
∑I

K=12IK and high-frequency subbands can be obtained after
the NSCT decomposition.

In the compressed sensing theory, the original signal can
be recovered by a small amount of observation data, which
are applied to the image to extend the one-dimensional signal
to the operation of the two-dimensional matrix. Assuming
that the observation matrix Φ ∈ RM×N is used to measure
the image f ∈ RN×N , the observation vector y ∈ RM is
obtained.

y =Φf : ð1Þ

In this process, the image data from the N dimension
are reduced to the observation data of M dimension, and
the compressed sampling is realized [29]. However, the
prerequisite for data compression is to satisfy the prior
condition of sparsity, i.e., the sparse representation can
be obtained by orthogonal basis transformation or tight
frame transformation.

f = ψa, ð2Þ

where α is the representation of image in the Ψ domain in
Equation (2).

If the nonzero K of α is much smaller than N , that image
is sparse and α is the image sparse coefficient in the Ψ
domain. In this paper, we take the NSCT as the sparse basis
of original image. Equation (3) can be obtained by transfor-
mation of Equations (1) and (2).

y =Φf =Φψa =Θa: ð3Þ

Among them, ΘðM ×NÞ is the sensing matrix; the
number of equations is far less than the number of unknowns
(M < <N); there is no determined solution for the equation.
Since the signal is K sparse (K < <M), the uniqueness of the
solution can be warranted if the sensing matrix satisfies the
restricted isometry property (RIP). For any given signal f
with K sparse and constant δK , the following expression
should be met.

1 − δKð Þ fk k2 ≤ Θfk k2 ≤ 1 + δKð Þ fk k2: ð4Þ

In Equation (4), constant δK ∈ ð0, 1Þ is known as the RIP
constant [30]. The image is subjected to sparse transforma-
tion and measurement matrix, and the fusion rule is designed

CT MRI UI

PET SPECT

N

i−1

Fusion
image

Fusion

Restructure

Observation
value

Measure

Sparse

arg min ||f||0s.t. y = Фf

y = Фf

f =

CT MRI UI

𝛼i𝜓i

Figure 1: Medical image fusion based on compressed sensing.
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Figure 2: Multiresolution image fusion framework of Piella.
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to fuse the compressed measurement value. The high-
dimensional image is restored from the fused measurement
value using reconstruction algorithm. The above process is
transformed into a minimum L1 norm problem and
expressed mathematically as follows:

f ∗ = arg min fk k1s:t:y =Φf : ð5Þ

This is a convex optimization problem in mathematics
[31]. A convex relaxation algorithm can be used to solve
the l1 norm optimization problem and total variation (TV)
optimization. In addition, the signal can be reconstructed
by other methods, such as relaxation of l0 norm to lP norm
followed by optimization problem solving, or reconstruction
of image using Bayesian method on the basis of introducing
sparsity by prior distribution.

Taken together, we can get one low-frequency subband
and some high-frequency subbands after NSCT transform
and different image fusion methods should be applied to
high- or low-frequency subbands. Since high-frequency sub-
bands of NSCT transform usually contain multidirectional
image information, a large amount of computations are
required in the process of fusion, thereby making the process
time-consuming and ineffective. In contrast, the combina-
tion of NSCT and compressed sensing can significantly
reduce the amount of computation and space of data storage
in image fusion.

2.3. Self-Adaptive Fusion Algorithm of PET/CT Based on
Compressed Sensing and Histogram Distance

2.3.1. Algorithm Idea. By analyzing the features of PET and
CT images, an adaptive fusion algorithm of PET/CT fusion
based on compressed sensing and histogram distance is
proposed. The main steps of the algorithm are as follows:

First step: monolayer NSCT transform of PET and CT
source images is registered (PET for image A, CT for image
B) and a low-frequency subband LI (I = A and B) and eight

high-frequency subbandsHξ
I (I = A, B, ζ is the direction num-

ber: ζ = 1, 2,⋯, 8) in different directions are obtained.
Second step: LI mainly contains the low-frequency signal

with poor sparsity. In this paper, the fusion rule of the PCNN
is used to fuse the low-frequency LI and get fusion image LF
since PCNN has high sensitivity to the featured region of an
image.

Third step: Hξ
Imainly contains the detailed information

of the original image with higher sparsity, and a higher
reconstruction accuracy can be obtained by compressive
sampling. Therefore, Gauss random matrix Φ is used for

compression measurement of Hξ
I to get the measured value

YI .
Fourth step: the fusion rule of Hξ

I is determined accord-
ing to that used for the Piella framework:

(1) Match measure: Hξ
I is divided into blocks and the

histogram distance between the blocks is calculated,
getting the match measure MAB

(2) Activity measure: the regional energy of Hξ
I is calcu-

lated and used as the activity measure aI

(3) Decision module: the fusion factor d of the self-
adaptive decision model is calculated using MAB
and aI

(4) Combination module: the measured value YI is fused
based on fusion factor d and the fusion measurement
value YF is obtained. The high-frequency imageHF is
then reconstructed using the orthogonal matching
pursuit algorithm

Fifth step: the final fusion image F is obtained by NSCT
inverse transform of LF and HF. The framework of fusion
algorithm is shown in Figure 3.

2.3.2. Lowpass Subband Fusion Rule. The gray levels of the
PET and CT images are different and usually of mutually
exclusive property since the imaging mechanisms are differ-
ent between PET and CT. Therefore, a PET scan shows the
metabolically active malignant lesion as a dark spot, while
CT scan provides detailed images of bones and organs inside
the body. The low-frequency image of the source image
obtained by the NSCT transform mainly contains the
approximate components of the source image with very low
sparsity. If the random measurement matrix is used for com-
pressive sampling, the reconstruction accuracy of the fusion
of low-frequency subbands will be affected. Since the low-
frequency subband image mainly shows the background
information, the fusion rule of PCNN based on the fact that
human visual system is more sensitive to the featured objects
or regions is employed to highlight the lesions in the whole
image.

The PCNN of a single neuron is composed of a receiving
section, a modulation section, and a pulse generator as shown
in the following [29]:

Fpq nð Þ = e−aFFpq n − 1ð Þ +VF〠
kl
MpqklYkl n − 1ð Þ + Spq,

Ipq nð Þ = e−aI Ipq n − 1ð Þ +VI〠
kl
WpqklYkl n − 1ð Þ,

Dpq nð Þ = e−aDDpq n − 1ð Þ + VDOpq nð Þ,
Upq nð Þ = Fpq nð Þ 1 + βIpq nð Þ� �

,

Opq nð Þ =
1, Upq nð Þ >Dpq n − 1ð Þ,
0, other,

(

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6Þ

where Fpq is the feedback input, Ipq is the link input, Dpq is
the dynamic threshold, Upq is the internal activity term,
Opq is the pulse output, pq is the neuron label, and n is the
number of iterations. Spq is the external stimulus, Wpqkl and
Mpqkl are the synaptic connection weights between neurons,
i.e., the strength of the connection between the feedback
domain in neuron p and the input domain in neuron q. αF,
αL, and αD are the time decay constants; VF, VL, and VD
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are the coefficients of method, and β is the coefficient of
internal active connection.

The specific steps for applying PCNN to the low-
frequency image fusion are as follows:

(1) The low-frequency coefficient LI of the source images
obtained by the NSCT transform is used as the input
of the neuron

(2) A neuron pulse is generated according to Equation
(6) and the number of ignition is calculated and used
as the basis for the selection of low-frequency fusion
coefficient. The formula is as follows:

Tpq nð Þ = Tpq n − 1ð Þ +Opq nð Þ: ð7Þ

(3) The low-frequency subband coefficients with more
ignition times are selected as low-frequency fusion
coefficients, and the low-frequency fusion image LF
is obtained as follows:

LF i, jð Þ =
LA i, jð Þ, TA,pq ≥ TB,pq,
LB i, jð Þ, TA,pq < TB,pq:

(
ð8Þ

2.3.3. Highpass Subband Fusion Rule

Definition 1. Histogram distance refers to the accumulated
value of the difference between two histograms, i.e., the
sum of the difference in frequency between gray scales
corresponding to two images.

In this paper, the histogram distance between the corre-
sponding blocks of high-frequency coefficients is calcu-
lated. Assuming the numerical interval of a coefficient
block is ½u, v�, then the histogram function of this coeffi-
cient block is pðrkÞ = nk/n, where n is the total number
of coefficients in this coefficient block, nk is the kth sum
of numerical value in the coefficient block, and rk is the
kth numerical value, k = u, u + 1,⋯, v.

Histogram distance is used to evaluate the similarity
between frames in video image processing. Prompted by this,
in this paper, distance histogram is introduced to the similar-
ity measure of high-frequency subbands. Since high-
frequency subbands mainly contain the detailed characteris-
tics and edge information of the image, therefore, the high-
frequency subbands obtained by multiresolution conversion
of images of lung cancer are of multidirectional characteris-
tics and structural similarity. In this paper, image is blocked
with high-frequency coefficients and the histogram distance
between the corresponding coefficient blocks is used to deter-
mine the similarity of the high-frequency decomposition
coefficients. The calculation procedure of histogram distance
is shown in Figure 4.

The specific steps are as follows:
First step—compressed measurement: linear measure-

ment of high-frequency subband coefficient Hξ
I is performed

using Gaussian randommeasurement matrixΦ and the mea-
surement value YI of the corresponding subband coefficient
is obtained.

Second step—computation of match measure: the high-
frequency subband Hξ

I is divided into blocks with the size
of 8 × 8. The coefficient blocks are extracted in accordance
with the principle of top to bottom, left to right. The histo-
gram distance T1 between the high-frequency subbands of
the two source images A and B is calculated according to
Equation (9) and the obtained T1 is used as the match
measure.

T1 = 〠
u

i=1
〠
v

j=1
p Hξ

A rkð Þ
� �

− p Hξ
B rkð Þ

� ���� : ð9Þ

In Equation (9), pðHξ
AðrkÞÞ is the histogram of the coeffi-

cient blocks of high-frequency subbands of the source image;
the numerical interval of the coefficient block is ½u, v�, and rk
is the kth numerical value. The smaller the T1 value, the
higher the similarity between the two coefficients and the
smaller the difference in histogram frequency of coefficient
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Figure 3: The framework of the self-adaptive fusion algorithm of
PET/CT based on compressed sensing and histogram distance.
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blocks. In contrast, the bigger the T1 value, the lower the
similarity between source images A and B.

Third step—calculation of active measures: regional
energy can better maintain correlation between two images
and retain original useful information, thereby generating
fused images with better visual effect. Thus, the regional
energy is used as the active measure of the high-frequency
fusion rule. Neighborhood division of high-frequency sub-

bands Hξ
I by ωðM ×NÞ is conducted by defining a 3 × 3

neighborhood window to calculate the regional energy with
the following equation:

Eξ
I i, jð Þ = 〠

i,jð Þ∈Ω M,Nð Þ
ω i, jð ÞHξ

I i +M, j +Nð Þ2 I = A, Bð Þ, ð10Þ

where Eξ
I ði, jÞ is the energy of the coefficient points ði, jÞ in

the neighborhood range of ωðM ×NÞ and wði, jÞ = 1/8
1 2 1 ; 2 1 2 ; 1 2 1½ � is the 3 × 3 neighborhood win-
dow used to calculate regional energy of high-frequency
subbands.

Fourth step—self-adaptive decision module: the match
measure MAB and activity measure aI are used to construct
the self-adaptive decision model and calculate the fusion fac-
tor d for the high-frequency subbands. The threshold T is set
as follows: it is assumed that if T1 < T , the similarity of

coefficient blocks is higher, then the fusion factor of low-
frequency subbands is calculated by using the self-adaptive
weighted calculation with regional energy. If T1 ≥ T , the dif-
ference in regional energy between the two high-frequency
subbands is significant, then the high-frequency subbands
with higher energy are used as the high-frequency subband
coefficients of fusion image. Because the histogram distance
of the high-frequency coefficient blocks of the two source
images is quite different, the mean value of the histogram dis-
tance between the coefficient blocks is used as the threshold
value in order to make it more flexible. Self-adaptive thresh-
old setting can improve the accuracy of decision-making
module. Decision factor d is calculated as follows:

d =

1, T1 ≥ T , EA i, jð Þ > EB i, jð Þ,
0, T1 ≥ T , EA i, jð Þ < EB i, jð Þ,

EA i, jð Þ
EA i, jð Þ + EB i, jð Þ , T1 < T:

8>>>><
>>>>:

ð11Þ

Fifth step—combination module: after the determination
of the match measure and activity measure, as well as the
calculation of the decision factor d, the high-frequency
measurement value YI is then determined, thereby getting
the combination module. The specific expression of the
combination module is as follows:

YF i, jð Þ = d × YA i, jð Þ + 1 − dð Þ × YB i, jð Þ, ð12Þ

where YAði, jÞ and YBði, jÞ are the measured values of high-
frequency subband coefficients of source images A and B
after multiresolution decomposition. YF is the high-
frequency fused measurement value of the fusion image F.

Sixth step—reconstruction and recovery: the orthogonal
matching pursuit algorithm is used to reconstruct the fused
measurement value YF to get the high-frequency fusion
image HF. The final fusion image F is obtained by NSCT
inverse transform of LF and HF simultaneously.

3. Discussion and Conclusion

3.1. Experimental Environment

3.1.1. Hardware Environment. The hardware platform used
for the simulation experiment is Dual-Core (R) CPU E6700
Pentium, 3.2GHz, 2.0GB memory, with the operating
system of Windows 7.

3.1.2. Software Environment. The software environment used
is R2012b MATLAB version.

3.1.3. Experimental Data. As shown in Figure 5, the CT and
PET images with the size of 256 × 256 were from two groups
of registered patients with lung cancer.

3.1.4. Parameter Settings of NSCT Transform. The filter level
is set to 1 and the direction of the series is set to 3, in which
the NSP structure uses the double orthogonal wavelet for
decomposition and NSDFB uses the trapezoidal filter.
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Figure 4: The calculation procedure of histogram distance.
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3.2. Experimental Results and Analysis. In order to verify the
superiority of the proposed algorithm, the proposed algo-
rithm was compared with other fusion methods, including
the traditional pixel image fusion methods—maximum
method, minimum method, and weighted average method;
image fusion methods based on compressed sensing—com-
pressed sensing image fusion based on wavelet transform
(W-CS) and compressed sensing image fusion based on con-
tourlet transform (CT-CS). On this basis, a further experi-
ment was conducted to study the effect of the activity
measure and the match measure on the Piella framework,
and to analyze the effect of different active measures and
match measures on the performance of PET/CT image
fusion.

The evaluation of the fusion image includes subjective
evaluation and objective evaluation. Subjective evaluation is
the most reliable for image quality inspection, especially in
medical image fusion, which plays an important role in help-
ing doctors make diagnosis. However, it is not easy to con-
duct a subjective evaluation since it not only requires
equipment and strict working conditions but also requires a
close cooperation of related persons. Therefore, those param-
eters for objective evaluation of the quality and performance
of the fusion image were employed in this paper, including

standard deviation (SD), average gradient (AG), spatial fre-
quency (SF), peak signal-to-noise ratio (PSNR), information
entropy (IE), mutual information (MI), and edge preserving
quantity (QAB/F).

3.2.1. Experiment One: Comparative Experiment of Fusion
Methods. Our proposed algorithm in this paper was com-
pared with several other algorithms, including maximum
method, minimum method, weighted average method, com-
pressed sensing image fusion based on wavelet transform
(W-CS), and compressed sensing image fusion based on con-
tourlet transform (CT-CS). Among these algorithms, the
sparse transformation matrix of W-CS is weighted by the
weighted average method as the fusion rule and the low-
frequency subbands in CT-CS are weighted by Gauss mem-
bership function as the fusion rule. For the high-frequency
subbands, a method based on average gradient and regional
energy is used to fuse the high-frequency measurement. In
the fusion method based on compressive sensing, the mea-
surement matrix is Gauss randommatrix and the reconstruc-
tion algorithm is orthogonal matching pursuit algorithm,
with the sampling rate of 50%. Figure 6 shows the fusion
results of six methods.

CT1 PET1 CT2 PET2

Figure 5: Source images.

Minimum Maximum Weighted average

W-CS CT-CS Proposed algorithm

Figure 6: Fusion results of six methods.
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As shown in Figure 6, grayscale fluctuations of the fusion
images obtained with the simple pixel-level image fusion
methods were generally smaller. For example, the pixel value
of the fusion image obtained with the minimum method was
lower and the brightness of the bone was dark. The pixel value
of the fusion image with the maximum method was higher
and the contrast of lesions was high, with a severely damaged
spatial resolution. The fusion image obtained with the average
weighted method, which calculates the median of maximum
and minimum, was weakened and the lesions could not be
accurately identified. While the W-CS and CT-CS methods
had a twofold compression (50% reduction in file size) of the
amount of data relative to the source images, the fusion quality
is not high. The fusion image obtained with the W-CS
method, for example, exhibited a water wave-like pattern hor-
izontally, with a fuzzy texture and a blurred contour. The phe-
nomenon of slight spectral overlap was observed in the fusion
image obtained with the CT-CS method, which was resulted
from the contourlet transform. The fusion method proposed
in this paper could not only show clearly and completely the
metabolic function of the lesions and the surrounding tissues
but also increase the contrast between bone and soft tissues
and organs. In contrast to the traditional fusion methods, the
proposed method in this paper could reduce the fusion oper-
ation of the high-frequency image with 256 × 256 to 128 ×
256 dimension and the reduction of the dimension of the data
by compressed measurement greatly reduces the amount of
data in the image fusion. The combination of compressed
sensing and multiresolution transform can achieve the
purpose of reducing the storage space in the process of image
fusion.

The histogram of objective evaluation results for image
fusion is shown in Figure 7. It could be seen that the proposed
algorithm is superior to the other five methods in the evalu-
ation of the objective index. With 50% of the sampling rate,
the standard deviation (SD), average gradient (AG), spatial
frequency (SF), and the peak signal-to-noise ratio (PSNR)
of the proposed algorithm fusion image were higher than
those of other five algorithms. Regarding the information

entropy (IE), W-CS and CT+CS fusion algorithms were bet-
ter than the proposed algorithm, which was caused by the
fact that the fusion image of W-CS showed significant blur
in some area and the contourlet transform could produce
the phenomenon of spectral overlap, with a big change in
gray level and a large edge fluctuation in the fusion image,
thereby resulting in a larger quantity of image information.
Except for the information entropy, the index values of the
proposed fusion method were better than those of CT+CS
and W-CS algorithm. Therefore, the multiresolution trans-
form could make the image more sparse than the wavelet
transform, producing a fusion image with a more detailed
and complete information.

3.2.2. Experiment 2: Comparative Experiment of Activity
Measure. The similarity between CT and PET was measured
by the histogram distance which was used as the match mea-
sure, and the commonly used methods in image fusion,
including energy, gradient, variance, and signal intensity,
were used as the activity measure to investigate the effect of
different activity measures on the fusion performance. Exper-
imental results are shown in Table 1.

As shown in Table 1, overall, the changes in activity mea-
sure had no significant effect on the final result of the image
fusion and there was no significant difference among the
seven evaluation indexes. However, the standard deviation
(SD), the average gradient (AG), spatial frequency (SF), and
mutual information (MI) of the proposed algorithm were
the highest of the fusion results in the four different active
measures. When signal intensity was used as the activity
measure, the peak signal-to-noise ratio (PSNR) and informa-
tion entropy (IE) were the highest. The edge preserving
quantity (QAB/F) was the highest when regional variance
was used as the activity measure. Therefore, with the same
match measure, it still can be concluded that the activity
measure based on the regional energy has a better stability
and a wide applicability and that the activity measure based
on regional gradient has the least impact on the performance
of image fusion.
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Figure 7: The histogram of six fusion methods for objective evaluation index.
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3.2.3. Experiment 3: Comparative Experiment of Match
Measure. On the basis of experiment 2, the regional energy
was chosen as the active measure to compare the PET and
CT images. The gradient ratio, energy ratio, signal intensity
ratio, structural similarity, all of which are commonly used
to describe the similarities of images, and the proposed histo-
gram distance were used as match measures to compare their
influence on the performance of image fusion. The experi-
mental results are shown in Table 2.

The standard deviation (SD), average gradient (AG), spa-
tial frequency (SF), peak signal-to-noise ratio (PSNR), and
mutual information (MI) were the highest when histogram
distance was used as the match measure. In comparison,
the information entropy (IE) and the edge preserving quan-
tity (QAB/F) ranked the highest when the signal intensity ratio
was used as the match measure. Therefore, it could be con-
cluded that the match measure based on the histogram dis-
tance has a better stability and a wide applicability with the
same activity measure; this is because that the match measure
has the adaptability, enabling the fusion image to better inte-
grate the redundant and complementary information of the
source image and strengthen the ability of extract informa-
tion from the source image. Taken the results of experiments
2 and 3 together, compared with other active measures and
match measures, the proposed image fusion method based
on the combination of regional energy and the histogram
distance improves the performance and quality of image
fusion, and has certain practical value.

3.2.4. Experiment 4: PET/CT Fusion Results of Lung Cancer
(20 Groups). To further validate the effectiveness of this algo-
rithm, a simulation experiment of 20 patients’ PET and CT
images with lung cancer was performed. Image size is 256
∗ 256 and compared with maximum method, minimum
method, weighted average method, compressed sensing
image fusion based on wavelet transform (W-CS), and com-
pressed sensing image fusion based on contourlet transform
(CT-CS). The fusion results are shown in Table 3.

For these six methods, the objective evaluation is further
carried out, indicators including standard deviation (SD),
average gradient (AG), peak signal-to-noise ratio (PSNR),
information entropy (IE), and edge preserving quantity
(QAB/F). The evaluation indicators of these six methods were
compared, respectively.

As can be seen in Table 4 and Figure 8, compared with
weighted average method, compressed sensing image fusion
based on wavelet transform (W-CS), and compressed sensing
image fusion based on contourlet transform (CT-CS)
method, the standard deviation values of proposed algorithm
are the largest. The fusion results of the proposed algorithm
are as follows: the 16 groups’ standard difference value of
fused image is higher than the maximum method (the pro-
portion is 80%); the 17 groups’ standard difference of fused
image is higher than the minimum method (the proportion
is 85%).

As can be seen in Table 5 and Figure 9, compared with
minimum method, weighted average method, and com-
pressed sensing image fusion based on wavelet transform
(W-CS), average gradient value of proposed algorithm is
the biggest. The fusion results of the proposed algorithm
are as follows: the 14 groups’ average gradient value of fused
image is higher than compressed sensing image fusion based
on contourlet transform (CT-CS); the proportion is 70%. The
19 groups’ average gradient value of fused image is higher
than the maximum method; the proportion is 95%.

As can be seen in Table 6 and Figure 10, compared with
minimum and maximummethod, weighted average method,
compressed sensing image fusion based on wavelet transform
(W-CS), and compressed sensing image fusion based on con-
tourlet transform (CT-CS) method, PSNR results of fused
image of proposed algorithm were the highest; next is the
minimum method; the PSNR of maximum is the least.

As can be seen in Table 7 and Figure 11, compared with
weighted average method, compressive sensing image fusion
based on wavelet transform(W-CS), and compressed sensing
image fusion based on contourlet transform (CT-CS)

Table 2: Objective evaluation index values of different match measures for image fusion.

Methods
(sampling rate = 50%) SD AG SF PSNR MI IE QAB/F

Histogram distance 52.3534 6.7850 17.0333 59.5880 4.7553 6.0011 0.5044

Gradient ratio 52.3496 6.7836 17.0158 59.4785 4.7404 6.0041 0.5041

Energy ratio 52.3507 6.7781 17.0177 59.4676 4.7356 6.0040 0.5042

Signal strength ratio 52.3500 6.7829 17.0092 59.5400 4.7355 6.0139 0.5047

Structural similarity 52.3435 6.7721 17.0290 59.5362 4.7543 6.0083 0.5043

Table 1: Objective evaluation index values of different activity measures for image fusion.

Methods (sampling rate = 50%) SD AG SF PSNR MI IE QAB/F

Regional energy 52.3534 6.7850 17.0333 59.5880 4.7553 6.0011 0.5044

Regional gradient 52.0898 6.2285 15.3709 58.1131 4.2094 6.0039 0.4050

Regional variance 52.3518 6.7766 17.0194 59.5400 4.7473 6.0030 0.5058

Signal strength 52.3503 6.7729 16.9984 59.7836 4.7489 6.0109 0.5046
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Table 3: Fusion results of proposed algorithm and other algorithms (20 groups).

No. CT PET Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1

2

3

4

5

6

7

8

9

10
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method, information entropy of proposed algorithm is the
largest, and it is close to minimum method; the information
entropy of maximum method is greater than the proposed
algorithm.

As can be seen in Table 8 and Figure 12, compared
with weighted average method, compressed sensing image
fusion based on wavelet transform (W-CS) method, and
compressed sensing image fusion based on contourlet

Table 3: Continued.

No. CT PET Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

11

12

13

14

15

16

17

18

19

20
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transform (CT-CS) method, the edge preserving quantity
of fused images is the largest. The fusion results of the
proposed algorithm are as follows: the 15 groups’ QAB/F

value of fused image is higher than maximum method;
the proportion is 75%. The 19 groups’ QAB/F value of fused

image is higher than minimum method; the proportion is
95%.

In summary, proposed algorithm got a better effect both
from subjective evaluation and objective evaluation, already
obtained higher amount of information of fusion image,

Table 4: SD results of six fusion methods.

No. Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1 40.8197 36.9042 21.6015 21.5099 25.4149 43.9313

2 35.4407 40.1216 28.3254 28.2984 33.3080 42.6002

3 47.9880 38.7795 24.2483 24.2095 31.2767 49.5474

4 44.8688 34.0856 23.1505 23.1364 29.3985 46.1418

5 39.2653 42.1417 22.5138 22.3139 28.7261 45.9070

6 32.4256 43.7024 25.5027 25.3936 31.6841 37.2577

7 44.0279 39.5197 28.1370 27.8942 30.1352 51.9443

8 38.9748 37.6799 28.2563 28.0749 33.8124 46.1748

9 39.2371 47.6241 33.3346 33.223 41.9339 51.0566

10 49.4623 46.8517 25.7300 25.5751 28.5237 53.7019

11 41.9787 46.8397 24.5689 24.4434 28.2317 47.4076

12 43.3735 43.1237 24.6357 24.5633 28.3111 49.9585

13 42.1685 48.7261 27.2208 27.0723 31.8086 47.8887

14 44.6154 38.9140 23.7810 23.5821 26.9285 49.3080

15 53.2571 46.9942 31.1363 30.7504 34.2505 58.8691

16 46.4683 40.8302 23.1941 23.0332 29.8259 38.6864

17 43.4063 42.2500 21.5156 21.5181 26.6296 34.9590

18 46.4432 41.1815 23.2101 23.1058 29.3805 38.6287

19 36.1625 35.5986 21.4938 21.3850 29.0136 38.3435

20 39.6568 36.0124 20.4559 20.3050 25.1195 42.8999
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Figure 8: SD results of six fusion methods.

12 BioMed Research International



extracted the useful information in original image, and
showed a significant comprehensive advantage; the extrac-
tion and synthesis of useful information in original images
showed a significant advantage, which fully reflects the
advantages of compressed sensing and nonsubsampled con-
tourlet transform. Fusion images effectively combine the

functional information and anatomical structure of CT
image and the physiological and pathological information
of PET image in patients with lung cancer. It is good for doc-
tors to analyze and judge the lesions, and provide effective
imaging information for clinical work, surgery, and disease
diagnosis.

Table 5: AG results of six fusion methods.

No. Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1 6.3568 6.1624 4.9747 5.4682 5.0510 6.7764

2 6.4543 6.0410 5.1052 5.8527 6.0453 7.4259

3 6.8936 5.0006 5.0906 5.8554 7.7507 7.2631

4 6.9435 4.6529 5.1536 5.9005 8.3495 7.1439

5 6.1762 6.2140 5.0389 2.7049 5.6455 6.6749

6 4.9021 7.8187 5.1719 5.7303 6.1396 5.8516

7 7.4819 6.1103 5.6800 6.5694 7.7932 8.7691

8 7.3826 6.3881 5.6352 6.4652 7.7400 8.3470

9 8.8585 8.6682 7.1002 7.9744 9.9618 11.7203

10 7.0904 5.7411 5.5165 6.4633 6.6269 7.5915

11 6.8790 6.0677 5.4230 6.3439 5.9420 7.2829

12 6.6091 6.0912 5.1921 5.9674 5.9810 7.2460

13 8.1346 6.6117 6.3075 7.3008 6.6988 9.2933

14 6.6621 6.0377 5.4031 6.2970 6.8243 7.3030

15 8.5520 6.4565 6.3934 7.4013 9.2418 9.6747

16 5.8153 5.3448 4.7786 5.4066 8.8269 6.2349

17 5.0234 5.3312 4.3953 5.0137 6.246 5.3011

18 5.7055 5.4326 4.5938 5.3087 7.9593 6.1365

19 5.703 4.1691 4.0767 4.7882 7.6893 6.3831

20 6.2097 5.4733 4.5821 5.1453 4.6855 6.7737
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Figure 9: AG results of six fusion methods.
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4. Conclusions

In this paper, a fusion rule, which is a self-adaptive fusion algo-
rithm of PET/CT based on compressed sensing and histogram
distance, is proposed. Firstly, the NSCT transform is per-
formed on the PET and CT images. The fusion rule of the

PCNN, which has a higher sensitivity to low-frequency image,
is then used to highlight the lesions of the image. Secondly, the
Gauss randommatrix is used to obtain the measured values of
the high-frequency subbands, the histogram distance of the
high-frequency subblocks is used as the match measure, and
the regional energy of the high-frequency subbands is used

Table 6: PSNR results of six fusion methods.

No. Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1 67.6778 4.2274 16.9469 16.7103 25.9103 98.4371

2 51.3925 4.0218 17.5258 18.1958 25.8573 58.6880

3 57.8488 3.1679 16.7534 17.3400 26.3616 61.6637

4 68.9252 2.7377 15.9110 16.2908 30.5160 74.8556

5 49.1341 4.3197 17.3668 18.5973 25.9304 56.4141

6 37.8793 4.9918 17.0994 16.8266 25.6844 41.7599

7 48.6666 5.5057 19.1978 18.8378 28.1369 64.9162

8 51.7864 5.5254 19.2524 18.5608 30.6913 60.3129

9 38.8599 8.3020 21.7048 21.4392 29.9463 43.9237

10 63.0813 4.0567 16.8100 18.1006 27.2135 76.2280

11 61.1094 5.1122 17.398 17.9735 31.5651 80.3592

12 54.2517 4.9864 17.4909 17.5970 27.5333 65.8369

13 55.5879 4.2598 18.064 19.1143 27.9871 63.5656

14 63.3288 3.6572 16.3681 16.8296 22.7251 79.6963

15 58.5403 5.3442 19.1583 19.9471 28.8951 79.7845

16 64.2377 2.2901 16.1327 17.0276 24.9213 71.2614

17 70.716 2.3219 15.7789 15.8686 26.5409 78.4282

18 66.8253 2.2940 16.1412 16.5010 24.9676 73.1706

19 55.7279 2.2588 16.0742 15.9996 27.0434 63.3388

20 65.7483 4.2700 16.6521 17.3850 31.7650 91.9760
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Figure 10: PSNR results of six fusion.
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Table 7: IE results of six fusion methods.

No. Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1 5.7490 6.5975 3.4647 2.1908 1.3935 5.8255

2 4.6736 5.9679 3.7436 2.3225 1.8385 4.4064

3 4.7806 5.0008 3.7177 2.1721 1.5721 4.6331

4 4.6065 4.6319 3.3908 1.9372 1.2853 4.5862

5 5.5333 6.2812 3.5865 2.0250 1.5522 5.4658

6 4.1414 6.7461 4.0673 2.4312 1.8106 3.8784

7 4.9011 6.3873 4.1083 2.2561 1.5276 4.7905

8 5.4872 6.9503 3.8959 2.2320 1.6782 5.2839

9 5.9661 7.3766 3.8357 2.4102 2.1632 5.1696

10 5.1174 5.8507 3.7360 2.0422 1.4869 5.1696

11 6.0299 6.5942 3.8602 2.3184 1.6808 6.2032

12 5.4917 6.7467 3.7625 2.3607 1.6099 5.5316

13 4.5776 5.8927 3.9867 2.0982 1.4397 4.4849

14 4.8837 5.6078 3.6012 2.0416 1.4039 4.9171

15 5.5988 6.3457 4.1377 2.2427 1.7230 5.5535

16 4.0555 4.4984 3.4031 1.8996 1.3138 3.9313

17 4.0548 4.6739 3.2521 1.8294 1.2491 4.0369

18 4.1442 4.5384 3.3886 1.9017 1.3587 4.0917

19 4.3144 4.5056 3.2706 1.8754 1.3255 4.1776

20 5.7146 6.7371 3.5198 2.2422 1.3879 5.7593
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Figure 11: IE results of six fusion.
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as the activity measure. The fusion factor d is calculated by
using the match measure and the activity measure; the high-
frequency measurement value is fused according to the fusion
factor, and the high-frequency fusion image is reconstructed
by using the orthogonal matching pursuit algorithm of the

high-frequency measurement. Thirdly, the final fusion image
is acquired through the NSCT inverse transformation of
low-frequency fusion image and high-frequency fusion image.
Finally, four experiments’ results show that the algorithms are
better than other algorithms.

Table 8: QAB/F results of six fusion methods.

No. Minimum Maximum Weighted average W-CS CT-CS Proposed algorithm

1 0.4906 0.5260 0.3378 0.2408 0.1899 0.5256

2 0.4650 0.5164 0.3411 0.2474 0.1960 0.5002

3 0.5168 0.4404 0.3694 0.2552 0.2027 0.5359

4 0.5420 0.4557 0.3885 0.2749 0.2085 0.5527

5 0.4649 0.5347 0.3385 0.2424 0.1945 0.4866

6 0.3623 0.6141 0.3347 0.2431 0.1641 0.3925

7 0.4974 0.4715 0.3558 0.2543 0.1660 0.5836

8 0.4856 0.4882 0.3434 0.2300 0.1827 0.5249

9 0.4689 0.5099 0.3358 0.2205 0.1725 0.5662

10 0.5378 0.4542 0.3750 0.2612 0.1934 0.5662

11 0.4962 0.5030 0.3644 0.2535 0.1925 0.5252

12 0.4953 0.5143 0.3546 0.2499 0.1913 0.5306

13 0.4831 0.4622 0.3678 0.2469 0.1594 0.5439

14 0.4954 0.4986 0.3607 0.2549 0.1736 0.5416

15 0.5194 0.4292 0.3655 0.2405 0.1774 0.5839

16 0.4555 0.4885 0.3665 0.2605 0.1765 0.4862

17 0.4436 0.5474 0.3720 0.2633 0.1812 0.4169

18 0.4854 0.5289 0.3653 0.2592 0.1715 0.5113

19 0.4552 0.4303 0.3294 0.2359 0.1873 0.4924

20 0.4875 0.5215 0.3340 0.2438 0.2010 0.5362
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Figure 12: QAB/F results of six fusion methods.
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Tumor segmentation in brain MRI images is a noted process that can make the tumor easier to diagnose and lead to effective
radiotherapy planning. Providing and building intelligent medical systems can be considered as an aid for physicians. In many
cases, the presented methods’ reliability is at a high level, and such systems are used directly. In recent decades, several methods
of segmentation of various images, such as MRI, CT, and PET, have been proposed for brain tumors. Advanced brain tumor
segmentation has been a challenging issue in the scientific community. The reason for this is the existence of various tumor
dimensions with disproportionate boundaries in medical imaging. This research provides an optimized MRI segmentation
method to diagnose tumors. It first offers a preprocessing approach to reduce noise with a new method called Quantum
Matched-Filter Technique (QMFT). Then, the deep spiking neural network (DSNN) is implemented for segmentation using the
conditional random field structure. However, a new algorithm called the Quantum Artificial Immune System (QAIS) is used in
its SoftMax layer due to its slowness and nonsegmentation and the identification of suitable features for selection and extraction.
The proposed approach, called QAIS-DSNN, has a high ability to segment and distinguish brain tumors from MRI images. The
simulation results using the BraTS2018 dataset show that the accuracy of the proposed approach is 98.21%, average error-
squared rate is 0.006, signal-to-noise ratio is 97.79 dB, and lesion structure criteria including the tumor nucleus are 80.15%. The
improved tumor is 74.50%, and the entire tumor is 91.92%, which shows a functional advantage over similar previous methods.
Also, the execution time of this method is 2.58 seconds.

1. Introduction

Brain tumors, which are well known to be one of the most
common diseases of the nervous system, can cause many
damages to human health and can also result in death. In this
matter, the most common type of brain tumor among adults
is glioma [1]. These tumors can be classified based on their
grades as follows: Low-Grade Gliomas (LGG) exhibit benign
trends and provide better patient awareness, whereas High-
Grade Gliomas (HGG) are malignant, which may lead to
receiving worse patient awareness [2]. The medical image

of brain tumors helps assess disease development before
and after treatment. Several imaging techniques, such as
MRI, CT, PET, and SPECT imaging, have been used to exam-
ine brain tumors. However, MRI imaging is now the main
imaging technique that can be used for glioma’s diagnosis
and treatment, because it has advantages such as good soft-
tissue disparity, multiplied parameters, shooting in the
desired direction, noninvasive photography, and so on. It
also has various sequences, such as T1 weight images, T1 or
T1ce-enhanced contrast, T2 weight, and Fluid Attenuation
Inversion Retrieval (FLAIR). These sequences offer additional
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details about different parts of brain tumors [3]. For instance,
the tumor area via peritumoral edema may be diagnosed in
FLAIR and T2 images. Conversely, the tumor nucleus area
without peritumoral edema is more prominent in images of
T1 and T1ce. In this way, the different main MRI methods
focus on detailed information of images, which describe the
features of brain tumors under several sides.

For a medical diagnosis, accurate segmentation of these
tumors is critical and needs therapeutic planning. Segmenta-
tion of brain tumors in an automatic way and existing infra-
structures from medical imaging allow for accurate diagnosis
of tumors. It can help plan surgery and the treatment of brain
tumors by providing a more efficient and better diagnosis [4].
In particular, it is critical to divide these tumor tissues, such
as enhancing core, necrosis, edema, and nonenhancing core
in terms of the natural brain tissue, containing white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF).
Nevertheless, the precise automatic segmentation of these
tumors is a challenging issue due to several reasons. In image
segmentation operations, the outlines between the normal
tissues and brain tumor are blurred because of the partial size
effects, the gradient filtering intensity, and the magnetic field
artifacts. Moreover, brain tumors are very varied in terms of
size, shape, and location in patients. It is recommended to
utilize a novel, robust, and fast method with the utmost care
in the field of image segmentation. The segmentation of dif-
ferent images is a separate issue, and the right method should
be designed according to each structure that should be seg-
mented with a specific purpose. Deep convolutional neural
networks have done very well in recent years in brain tumor
segmentation [5]. In this regard, the convolutional neural
network (so-called CNN) is a popular deep learning model
that can elicit some favorite features for the original data clas-
sification [6].

This article proposes a new optimal framework of the
brain tumor segmentation of MRI images that uses the struc-
ture of an optimized deep spiking network with the Quantum
Artificial Immune System (QAIS). This framework is fully
integrated with the QAIS-DSNN and conditional random
field (CRF) combination. In the first step, a multiplied level
architecture network is proposed to consider interdepen-
dence segmentation among neighboring pixels and supple-
mentary information in various layers and measures. The
background textual information of the three-dimensional
MRI images is essential for brain tumor segmentation that
is not taken into account by the CNNs. The study also intro-
duces connected CRFs to correct the mapping probability
attained by QAIS-DSNN.

2. Literature Review

To date, several methods have been proposed for MRI imag-
ing. This section examines an overview of several classified
methods.

2.1. Research on Deep Learning-Based Methods. The impor-
tance of MRI imaging methods for brain tumors in recent
years with deep learning principles and methods due to high
applications and relevant results has been highly regarded. In

[7], the design of different types of convolutional neural net-
work architecture is proposed in the form of 3 × 3windowing
with a deep layer in different grades of gliomas specimens
using small nuclei. A two-way convolutional neural network
model has been proposed in [8], and one channel provides
detailed features of local and the other provides universal fea-
ture extraction. In [9], a convolutional neural network archi-
tecture has been created as a cascaded CNN to obtain the
local dependencies of tags, achieving better performance in
segmentation. Besides, they selected a two-step training strat-
egy to address label imbalance distribution. Recently, there
are advantages of multiscale features of the convolutional
neural network in segmentation work [10–16]. In general,
there are two methods to elicit features of multiplied scales:
the first method is to use feature mapping of different net-
work levels to show multiscale features [10].

In this respect, a multiscale convolutional neural network
has been suggested to divide the retinal vein in [17]. Scale
images are identified at different stages of the convolutional
neural network to obtain the retinal arteries’ probability
mappings. Also, in [18], the structure of the Fully Convolu-
tional Neural Network (FCNN) was developed for training
with CRF; however, the process of training them was
extremely time-consuming and expensive in terms of mem-
ory consumption. The second case is the transfer of versions
on a different scale from the input image using the same net-
work [10]. Also, multiscale features have been obtained by the
convolutional neural network in [18]. This paper adopted
three-dimensional CRFs to process segmentation results, but
configuring three-dimensional CRFs is a complex process. In
[18], different sizes from a convolutional neural network
architecture have been used as cascaded CNN to record multi-
scale features. Due to this research and, of course, many other
types of research that are beyond the scope of this research, the
convolutional neural network has achieved significant
achievements. The ability to learn neural networks with archi-
tecture and fixed parameters is limited, and the useful infor-
mation, for three-dimensional MRI data, may be overlooked.

Some researchers use two-dimensional [19] or three-
dimensional convolutional neural network models [18, 20,
21] to deal with three-dimensional images. For brain tumor
segmentation, a three-dimensional semantic segmentation
network based on the encoder-decoder architecture was
developed in this way [22]. A hierarchical segmentation sys-
tem that has varied the segmentation into three binary tasks
has been proposed [19, 23, 24]. They also taught models of
segmentation from sagittal, coronal, and axial perspectives.
In the practical step, to achieve the final results, they averaged
the SoftMax outputs obtained in the mentioned perspectives.
Even though these methods do work very well, they raise
both memory consumption and fiscal complexity. Thus, fis-
cal models, such as conditional random fields (CRFs) and
Markov Random Fields (MRFs), are mainly employed to
investigate spatial text information. In [25], a neonatal struc-
ture of a deep neural network called the Growing Deep Con-
volutional Neural Network (GCNN) is presented to segment
MRI images to diagnose brain tumors.

There is also another method combined with GCNN that
is a Stationary Wavelet Transform (SWT). The hybrid deep
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learning method is simulated with the use of BraTS2018
dataset and evaluated using the peak signal-to-noise ratio
(PSNR), the average square error, and so on. In [26], a com-
plete convolutional neural network with pyramidal features
is presented as an Atrous convolution for brain tumor seg-
mentation by MRI images. This research uses data sets from
BraTS2013, BraTS2015, and BraTS2018, the results of which
have a functional advantage over lesion structure, including
tumor nucleus, improved tumor, and the whole tumor, com-
pared to previous methods, especially the convolutional neu-
ral network. These results are based on the Dice criterion,
76.88% for the tumor nucleus, 74.43% for the optimized
nucleus, and 86.58% for the entire tumor. Also, in [27], the
convolutional neural network is used in three dimensions
based on a method called Test-Time Augmentation. This
research uses BraTS2018 data and shows the results of its
evaluation with a lesion structure, including tumor nucleus,
improved tumor, and whole tumor, with functional superior-
ity over many convolutional methods and deep networks.
These results were in two ways using the Dice criterion,
which was 90.21% for the tumor nucleus, 79.72% for the opti-
mized nucleus, and 85.83% for the entire tumor. In a similar
study, in [28], the convolutional neural network is considered
to be multicascaded (CNN) and conditional random field
proposed as MCCNN. The results of this study, based on
the lesion structure criteria, were 71.78% for the improved
nucleus, 88.24% for the total tumors, and 74.81% for the
tumor nucleus. For breast imaging monitoring and data
system ranking, Kang et al. [29] indicated a dominant fuzzy
full-connected layer. The aim of the model was to establish
complementary scoring properties for semantic segmenta-
tion with fuzzy rules.

2.2. A Review of Deep Spiking Neural Network. First of all, it
should be noted that sparks are the neurons of the neural net-
work that use spikes instead of neurons in the spiking neural
network, and a set of neurons in an input layer with spikes is
called a spark. spiking neural networks (SNNs) are driven by
the processing of biological knowledge, which communicates
in parallel scattered and nonsynchronous binary signals. In
neuromorphic hardware, SNNs indicate some appropriate
features such as fast inference, low energy use, and event-
dependent processing of information. It creates interesting
applicants to apply deep learning (DL) networks effectively
and a selection process for several learning tasks at a com-
puter. Here, SNNs consider a wide range of training
methods, including the conversion of convolutional deep
networks to SNNs, limited preconversion training, and a
variety of biological motivations [30].

Neural networks are usually read if they have at least two
hidden layers of nonlinear input conversion. In this study,
only feedback networks are considered to calculate mapping
from input to output. Spiking neural networks were initially
studied as biological information processing models in which
neurons exchange information through spikes. Here, all
spikes are expected to be stereotypical events; in this way,
data processing is minimized to two main factors: First of
all, the timing of spikes, for example, firing frequency, the rel-
ative timing of pre-/postsynapse spikes, and special patterns

of movement. Secondly, the identification of the synapses
used means it is possible to connect nerve cells, whether the
synapse is stimulating or inhibitory. With regard to the
degree of detail of the simulation neurons, the two neurons
are the point at which the input spikes alter their (somatic)
membrane potential immediately or are built together with
complex (dendritic) spatial structures as multichamber
models. Hence, the dendritic currents will communicate
before that. There were also changes to physical capacity.
Here, several models of spike neurons, such as Hodgkin’s
Huxley model, integrate-and-fire, and spike response,
explain the evolution of membrane potential and the spike
of different rates of detail in development. Essentially, the
membrane potential of the stream merges with the entry of
the spikes and generates a new spike since the threshold is
crossed. After the spike is obtained, the small axon is sent
to all the linked nerve cells by a delay via the axon, based
on which the membrane potential is adjusted to a certain
base. Figure 1 shows this.

Direct communication between spiking and analog neu-
ral networks is formed by assuming a stable state, by consid-
ering the activation of an analog neuron is equal to the firing
rate of a spiking neuron. Many geometric models used those
rate codes to describe brain computational processes. Never-
theless, more complex processes can also form the neural
spike models, which depend on some reference signals or rel-
ative timing between spikes, such as network fluctuations.
Temporary codes are very important in biology; even a spike
or small time-consuming changes in neuron firing may cause
different reactions, as most decisions must be calculated
before a reliable estimation of the spike [30].

In addition to the biological definition of SNNs, they con-
tain a pragmatic functional representation in the field of neu-
ral engineering; SNNs are commonly referred to as spikes
and are event-based. An event here is a collection of digital
information defined by a time marker’s origin and destina-
tion address. Unlike biologically motivated SNNs, it may
have several bits of load information. The source for this pro-
tocol is the address index or AER (Address Event Represen-
tation) protocol, which is used after processing to link to
event-based sensors through digital connection to neural
chips or digital hardware. Event-based visual sensors use
the loading bit to differentiate between silent and visual
events; however, the loading bit can also be used to send
other types of information to postsynapse targets, potentially
to calculate more advanced functions than the fire integra-
tion method or integrate and fire used. The reason for
researching SNNs is that, in real-world activities, the brains
display considerable cognitive function. With continuing
efforts to enhance our perception of brain-like calculations,
models closer to biology are closer to achieving human intel-
ligence than more abstract, or at least more computationally
effective, models [30].

In this way, SNN methods are ideally appropriate to pro-
cess the space-time information based on neuro sensors,
which are themselves energy-efficient. Sensors collect precise
environmental information, and SNNs can use some useful
time codes for their calculations. This information process-
ing is also the focus of the event, which is denoted whenever

3BioMed Research International



a small amount of information is not recorded in the SNN; it
does not do much calculation, but the SSN creates more
spikes when an activity explosion is recorded. It leads to a
very efficient way of calculation, assuming that information
from the outside world is usually scattered. Also, time-
domain input is another precious piece of information com-
pared to framework-based approaches, where an artificial
timeline is introduced entered by the sensor. It can result in
an effective calculation features such as optical current or ste-

reo inequality combined with spike-sensitive learning rules.
In deep SNNs, asynchronous axis-based computing mode
results in the rapid dissemination of prominent information
through multiple network layers. In practical terms, SNNs
must be run on neuromorphic hardware to take advantage
of this effect. This process is a quasisimultaneous data pro-
cessing combined with an event-based sensor, which implies
that after the first input spikes are registered, the first esti-
mated output of the final layer is immediately available. Also,
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Figure 1: General structure and mechanism of a spiking neural network or SNN [30].
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for multilayered networks, it is right as the spikes extend
immediately to the higher layers as soon as enough activity
is generated by the bottom layer. You do not have to wait
to complete of the complete input series, which is unlike tra-
ditional deep neural networks, where it is important to
completely charge all layers until the final output is calcula-
ble. The primary performance spikes are inevitably based
on incomplete data. It was thus concluded that deep SNNs
would increase their efficiency in classification and decrease
the processing time of the spike more than their input. To
decrease the expected delays in inference, SNNs can also be
specifically fitted. SNNs are the computational model chosen
to run highly energy-efficient neuromorphic hardware
devices supporting a data-driven processing mode and main-
taining local calculations, thus prohibiting access to expen-
sive memory [30].

Here, despite recent advances, one of the major deep
SNN disadvantages is their accuracy in standard metrics such
as MNIST, CIFAR, or ImageNet which is not as good as that
of their machine learning counterparts. The existence of the
benchmarks present in traditional frame-based images can
perhaps be attributed to this, to some extent. A sort of con-
version of the picture to the Spark sequence that is typically
inefficient is therefore required. The lack of training algo-
rithms that take advantage of Spark neurons’ features, such
as efficient timescales, is another limiting factor. In contrast,
several approaches employ many approximations according
to the rate of use of convolutional deep learning neural net-
works, denoting that no progress can be expected. Deep
SNNs may be practical in these cases and maybe faster, in
which they get more efficient than convolutional systems,
where SNN runs on diagonal neural hardware. For SNNs,
the training algorithms are difficult to analyze due to
their noncomputational and discontinuous computational
methods, which generated direct use of successful techniques
behind the scenes, especially for deep neural networks be dif-
ficult [30]. In traditional AI standards, the performance of
SNNs should only be considered as concept proof, but not
as the ultimate research goal. If biology is the model of spike
networks, it can be concluded that they are designed for
behavioral tasks such as making decisions based on continu-
ous current input when moving in the real world. Whereas
brains may solve these things, they are certainly not optimal
for it. Recently, the Internet environment lacks good metrics
and evaluation metrics that can measure effective perfor-
mance in the real world [30].

3. Proposed Approach

The preprocessing phase of the proposed approach is aimed
at reducing the initial noise. In the following, the operation
of segmentation and extraction of features is aimed at distin-
guishing tumor masses from the data set. The preprocessing
section applies a method called Quantum Matched-Filter
Technique, followed by a CRF-based QAIS-DSNN combina-
tion approach.

3.1. Preprocessing Phase. Initially, there will be a preprocess-
ing phase involving noise reduction. Every single image is

displayed in a combination of local threshold and active con-
touring using a two-dimensional array of pixels; their values
are integers in the range of [0,255]. Local thresholds initialize
images in two steps. First, the input noise image is considered
the primary image to which image noise removal will be
applied. This operation is mainly utilized as a local search
operator to enhance the initial images, using the Quantum
Matched-Filter Technique (QMFT). The use of local thresh-
olds and active contours has been used in this paper because
they are computationally faster than other methods in the lit-
erature. Thus, at the end of the first step, there will be a
decomposed image. In the second step, thresholding is done
on the detail coefficients, and one of these decomposed sec-
tions is randomly selected and sent to a reconstruction oper-
ation. The reconstruction section can be defined:

(i) Gaussian blur: uses a Gaussian filter to filter the
image. Between 3 × 3 pixels and 5 × 5 pixels, the fil-
ter size is accidentally selected

(ii) Mean filter (averaging filter): filters the image using
an average filter

(iii) Intensity change: all image pixels are multiplied by a
similar criterion randomly selected in the range
[0.7, 1.3]

(iv) Implement light-intensive sections in quantum and
reverse processing that performs the QMFT

Then, the following operations are performed:

(i) One-point row: a pixel row is chosen randomly

(ii) One-point column: it is identical to the preceding
form, but instead of a row, the column is considered

(iii) Point-to-point random: accidentally, every pixel is
selected from the decomposition until a new image
is created

(iv) Identify all points in a row and column in the image
to reduce the majority of noise as QMFT

After analysis, when the selected range value [0.1] is less
than the local search rate in the QMFT, a new image of the
local search operator may pass. As the decomposition is com-
plete, the entire image is sorted by its pixel value. Then the
best aspect ratio in the image is considered as a quantum
value in the sequel. A signal in MRI images may be broken
down into multiple displaced or resized displays of features
known at the feature extraction stage. Local thresholds and
active contours can be used to analyze an image into its com-
ponents. It is possible to perform image segmentation opera-
tions after applying QMFT along with local and active
contouring thresholds. In this case, the local threshold coeffi-
cients and the active contour based on QMFT can be
destroyed to eliminate some details. Local thresholds and
QMFT-based active contours have a tremendous advantage
in separating fine detail in an image. Active contour can be
used to isolate very fine details of an image. At the same time,
local thresholds can detect large details, combining fine and

5BioMed Research International



large details, and reading all rows and columns linearly and
diagonally. Quantum satisfies QMFT to minimize the noise
in the MRI image. QMFT based on local thresholds and
active contours can create a sparse display. A local and active
contouring threshold function with QMFT has two main fea-
tures, the first of which is a function of oscillation or wave
appearance, such as

ð0
−∞

Ψ tð Þ
����
2
dt <∞: ð1Þ

In this case, most of the energy inΨ (t) is limited to a lim-
ited time, which is in the form of

ð0
−∞

Ψ tð Þdt = 0: ð2Þ

The proposed method is generally calculated to reduce
the noise in

Ω Ið Þ = 〠
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + β2 ∇Ij j2

q !
+ λ

2 I − I0ð Þ2: ð3Þ

In Equation (3), the term ðI − I0Þ2 ensures a certain
degree of validity and accuracy between the rated and origi-
nal image, in which I denotes the rated image while I0 means
the noisy image. The ∇I parameter is defined as the sum of
the variable adjustment periods, β and λ are the balancing
parameters, and Ω is the sum of the image’s points. The pur-
pose of minimizing Equation (3) is to decrease total image
diversity while maintaining accuracy and validity. The balan-
cing values are changed from 1 to the size of the image for
both β and λ to minimize Equation (3).

3.2. Segmentation with QAIS-DSNN Combined Approach.
The deep spiking neural network presented in this study,
due to its high flexibility, can use a linear and nonlinear func-
tions such as sigmoid or sinusoidal in hidden layers. Use
nonderivative as well as intermittent activation. By default,
DSNN has

y pð Þ = 〠
m

j=1
βiβjg 〠

n

i=1
wi,jxi + bj

 !
: ð4Þ

According to Equation (4), βi displays the weights
between the input and the hidden layers, and βj displays
the weights between the output and the input layers (bj).
The value of the neuron threshold is in the hidden layer
or the bias. gð:Þ is an activator or stimulus function. The
weights of the input layer, w ði, jÞ, and bias, bj, are randomly
assigned. The beginning of the neuron number on the input
layer n and the neuron number on the hidden layer m is
assigned to activation function gð⋯Þ. If the known param-

eters in the general equilibrium are combined and con-
trolled on the basis of this information, the output layer
will be similar to

H wi,j, bj, xi
� �

=
g w1,1x1 + b1ð Þ
g wn,1xn + b1ð Þ

⋯

⋯

g w1,mxm + bmð Þ
g wn,mxm + bmð Þ

" #
, y =Hβ:

ð5Þ

The main goal is to minimize errors as much as possible
in all models of training-based algorithms. The yp the out-
put error function is obtained by the actual ymain output in
DSNN, which can be done with two training sections, ∑s

k

ðymain − ypÞ and the test section, k∑s
kðymain − ypÞ2k. The

output yp generated by the real output, ymain, must be iden-
tical with the same yp for both functions. An unknown
parameter is specified when this equation is performed
and the results are satisfying. While spikes have been used
to understand local label dependencies, for medical images
such as MRI, they are not appropriate. Typically, that is
because anatomical forms have complex shapes for models
that are distinct.

Moreover, either the temporal or the spatial relationship
of MRI data also plays a critical role in classification, which
should be paid attention to with regard to the method. There-
fore, it is better to modify the mapping of the probability
achieved by DSNN. A rather low-probability matrix may be
the H-matrix, which means that the amount of data in the
training process will not be identical to the total number of
data characteristics. But it would be a big challenge to reverse
½H� and find weights or β. A fully connected CRF matrix is
used to overcome this challenge in DSNN, which can develop
an approximate reversal of the matrix that cannot be
reversed. It can reduce the size, selection, and extraction of
features at the segmentation with high precision and incred-
ible speed compared to other methods. Currently, CRFs have
been implemented in many medical imaging applications
because they perform well when modeling some complex
spatial data dependencies. In this way, to segment brain
tumors, CRFs can be used not only to model the relationship
between an image pixel and poster properties but also to
make local pixel properties and their labels dependent. As
discussed earlier, in [11] and [26], CRFs were employed to
visualize images through image formulation as neural net-
works. Nevertheless, the process of training their method is
cumbersome and mathematically complex. In contrast, CRFs
will be utilized as a suitable hash method. Using the fully con-
nected matrix and CRF layer, the output matrix β∗ and the
matrix H∗ are all inverted and generalized by H. Therefore,
due to the improvement of DSNN as CRF-DSNN in this sec-
tion, the problem of the output weights in DSNN has been
resolved and converted to B∗ =H∗. In general, CRF-DSNN
becomes a series of repeating units over time in the training
phase. CRF-DSNN will be able to act as a belt conveyor and
add or subtract information to neurons. Unlike deep learning
structures and other classification models, such as backup
conveyor machines or nanoscale works, no weight update is
performed during training. CRF-DSNN can define features
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at the segmentation. By reducing CRF energy performance, a
suitable model is taught that can be modeled as

E Yð Þ = 〠
N

i

Ψu yið Þ + 〠
N

∀i,j,i≠j
Ψp yi, yj
� �

, ð6Þ

where u, p ∈ f1, 2,⋯, CnÞ are the designations of the segmen-
tation and i, j ∈ f1, 2,⋯,Ng properties are specific pixels of
the original image or I. ΨpðyiÞ = −log Pðyi ∣ IÞ is the negative
logarithmic probability where Pðyi ∣ IÞ is a probability
obtained by DSNN per pixel i. While measuring the capabili-
ties of a matrix pair of CRFs in a fully connected layer, it deals
with the relationship between each pixel that is defined as

Ψp yi, yj
� �

= μ yi, yj
� �

〠
M

m=1
w mð Þk mð Þ f i, f j

� �
, ð7Þ

whereM = 2, the number of Gaussian nuclei andwðmÞ indicate
a weight for the Gaussian nucleus mth, and μðyi, yjÞ = ½yi ≠ yj�
is the label of consistent function. kð1Þ displays the core
appearance, which tries to assign the same class labels to
neighboring and adjacent pixels with the same intensity. kð2Þ

displays the kernel smoothness, which is associated with elim-
inating unnecessary areas. These two steps are shown as

k 1ð Þ f i, f j
� �

= exp −
si − sj
�� ��
2θ2α

−
ei − ej
�� ��
2θ2β

 !
, ð8Þ

k 2ð Þ f i, f j
� �

= exp −
si − sj
�� ��
2θ2γ

 !
: ð9Þ

ei and ej are the light intensities of the pixel i and j and si
and sj are the corresponding spatial coordinates. f i and f j
mean the characteristics of each pixel pair, i.e., the brightness
intensity and spatial information. θα, θβ, and θγ show the
parameters of the Gaussian nucleus, respectively. However,
some points in the mass may not be segmented in this way,
so this algorithm optimization will be done in layers. In gen-
eral, the DSNN method’s layers are the use of the input layer
with the number of neurons (spikes). Then, the structure of
the training and testing layer used convolution, pooling, and
fully connected layers along with CRF. Then, a SoftMax layer
is embedded for it and then an output layer to display the
work. The training layer window is in the form of a matrix,
9 × 9 in the convolution layer, 7 × 7 in the pooling layer,
and 5 × 5 in the maximum section (Maxpool). The struc-
ture of the fully connected layer is 9 × 9. The SoftMax layer
is also 7 × 7.

The Quantum Artificial Immune System (QAIS) is used
to optimize the segmentation process during high-altitude
neural network training in the SoftMax layer section. The
QAIS uses a factor called an antigen. In an MRI image, all
antigens are detected through a memory-based adult detec-
tion system, which has a fault tolerance experiment with a
choice of the colon and immune mutations. Colonial choices

and immune mutations are the other two factors of the QAIS
algorithm. The more MRI data, the more copies are dupli-
cated. In this algorithm, reproduction is plural, especially like
a crossover in the genetic algorithm [12, 13]. Antibodies
focus on modern quantum memory detection systems in
mass segmentation in real time and examine detection and
cross-sectional states against the MRI image structure.

The display of MRI image data is performed by a set of
antigens Ag = fad ∣ ad ⊂ Sg, in which the antigens determine
the ad. They display one bit of binary string bits’ properties
that are represented by MRI image data antigens. These bits
contain Trait codes. Also, S is the spatial state in the QAIS
that is presented by S = f0, 1gl and displays all the activities
of the primary population in the image in segmentation. l is
the natural state number in the QAIS algorithm, which is
considered as a constant value. There are two states of self-
adjusting and non-self-adjusting in the artificial immune
system algorithm. The self-adjusting state (self ⊂Ag) dis-
plays all MRI image data and the non-self-adjusting state
(nonself ⊂Ag) displays all the segmented data. Therefore,
there is a relationship between self-adjusting and non-self-
adjusting states, represented by self ∪ nonself = Ag and self
∩ nonself =∅ equations.

The safety diagnostic set is also D = fab, p, t, age, cntj ab
∈ S, p ∈ R, t, age, cnt ∈Ng, where ab is the antibody, p is the
concentration of the antibody, t is the tolerance of error,
age indicates the age of memory and the maturity of genes,
R is a set of real numbers, and N is the case number natural
genes. Memory detection set Md = fd ∣ d ∈D, d · cnt > βg
and the gene recognition maturity group are shown as Td
= fd jd ∈D, d · age < λ, d · cnt < βg. There is also immatu-
rity, which is defined as the immaturity of genes that are
expressed as Id = fdjd ∈D, d:t < αg. In these relationships,
D =Md ∪ Td ∪ Id , where α represents the threshold for error
in detecting immature status, λ represents the gene life cycle,
and β represents the threshold value for detecting gene
maturity.

In order to establish and evaluate the structure of diag-
nostic development, an immature gene detector becomes
the mature state detector, which will be successful in the fault
tolerance phase. When the adaptive time between the adult
gene detector in the gene’s life cycle and the antigens acti-
vated exceeds the β threshold, the adult detector clones or
collects itself and then evolves into a memory detector. It
means that genes and antigens will have a memory. Once
the antigens are recognized by a specialist, he/she assembles
the mature diagnostic compound. To ensure that antigens
are effectively detected and that a variety of antibodies are
detected in the reagent (mature or immature), they will
detect known or unknown attacks. A total of three operators
are used for the QAIS algorithm to improve the transverse
distribution of MRI image data, which includes dependency
assessment, reproduction selection, or safety and mutation
combination, which are described separately.

Hamming distance is used to compute the correlation
for antigen detection. For example, the error tolerance mode
is considered to create a model of correlation assessment. An
unsuccessful identifier can succeed, if the immature identi-
fier has never been compared to all elements of the self-
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organizing group in the α variable. On the contrary, it can
lead to the death of genes and antigens. The s ∈ self is
assumed, and Equation (10) shows how id is determined
by the s.

fmatch s, idð Þ = 1,
f affinity
ld

> γ,

0, otherwise:

8><
>: ð10Þ

According to Equation (10), 1, 0 indicate whether the id
is compatible with s and ld is the size of the id detector, so
f affinity is used to calculate the correlation between s and id.
Likewise, γ as γð0 ≤ γ ≤ 1Þ represents the correlation thresh-
old. Equation (11) is used to implement the mature error
detector of the immature id, and Equation (12) is used to
add the self-enforced identifier time when the results of the
Equation (11) return to 1, and if t ≥ α, the immature identity
must develop into a mature

f tolerance s, idð Þ =
0, ∃s ∈ self , fmatch s, idð Þ = 1,
1, otherwise,

(
ð11Þ

Td = Td ∪ id, Id = Id − id, if id ∈ Id , id · t ≥ α,
id · t = id · t + 1, if id · t < α ∧ f tolerance s, idð Þ = 1:

(
ð12Þ

The colonial or combination choice operator performs
cellular operators in mature and memory diagnosis. Equa-
tion (13) is used to detect cloning state and a mixture of
genes and antigens.

Cnum dð Þ = ξ · 1 − nd
Nd

� 	
 �
: ð13Þ

According to Equation (13), ξ ð>0Þ is a colonial or com-
bination constant. Nd = Td ∪Md shows all the combina-
tions. The colonial determinant or combination factor is
used to analyze the performance of cellular operators in
mature and memory diagnosis. Equation (13) is used to
detect the cloning state and a mixture of genes and antigens.
In Equation (14), Tcln and Mcln display the colonic selection
group or group of memory and mature detectors. After mak-
ing a colonial selection or group of genes and antigens in a
generation, the cloned or combined section is added to the
adult diagnostic group, and the same detector dtð∈TdÞ, in
the colonial selection group, or the Tcln and Mcln combina-
tion will be removed.

Td = Td ∪ Tcln ∪Mcln − dtf j dt ∈ Tcln∨dt ∈MclnÞ: ð14Þ

The goal of the immune mutation operator is to enhance
the detector’s diversity with the mutation of the antibody
generation in the corresponding detector, which is used to
improve the ability to detect antigens. Considering the ðld
− f affinityðd, agÞÞ bit, the dð∈NdÞ detector set is matched by
the agð∈AgÞ antigen; these bits are used by 0.1 instead of
randomly. ld displays the size of d. The mutant detector is

used as an immature detector by the self-regulating set. To
detect the adult mode, if the adaptive time is greater than
the activated threshold β, the stimulus operation is per-
formed using Equation (13) and then combined with the
memory detector according to

Md =Md ∪ d ∣ d ∈ Td , d · p = η1, d · age = 0f g: ð15Þ

Equation (15) is assumed to represent the arranged
numbers of the reagent that can be matched with antigens.
Therefore, the memory diagnosis segment is combined with
Equation (16), but this occurs when the memory diagnosis
segment can be successfully matched with antigens.

Md = d ∣ d ∈Md , d · p tð Þ = η1 + η2 · d · p t − 1ð Þ, d · age = 0f g:
ð16Þ

Equation (17) also illustrates a different type of antigen
removed in the MRI image data for display.

d · p =
d · p 1 − 1

θ − d · age

� 	
, d · age++<θ,

0, d · age++≥θ:

8><
>: ð17Þ

Intensity and variety are two important features of
swarm intelligence algorithms. The intensity is in the search
of the best-obtained solutions and choosing the best candi-
date points. It is worthwhile to mention that the diversifica-
tion procedure can allow the optimizer to explore the search
space more efficiently. Inertial weight parameters ðwn,wf Þ
indicate changes in optimal global attractiveness that affect
the convergence rate and update each mass’s position in
the combination algorithm QAIS-DSNN. In the proposed
QAIS-DSNN hybrid algorithm, the inertial weights ðwn,wf Þ
are set to a large value to emphasize exploration, i.e., 0.9,
which are set in the initial search mode, finally reduced to
0.1 linearly for the importance of linear optimization.
Inspired by the classic artificial immune system, it is guaran-
teed that quantitatively, global characteristics for optimal
segmentation can be determined when using the spiking neu-
ral network. As the number of repetitions increases, the ini-
tial population is encouraged to local search. Finally, the
population should only carefully search for a local area with-
out discovery to find out if there are any other masses. As a
result, the first quantum combination strategy is to provide
a linear weight reduction of the new frequency. The model
ðwn,wf Þ is created as

wtotal = 0:9 − 0:9 − 0:1
MI

� 	
× J , ð18Þ

where ½0:1, 0:9� is the inertial weight range and MI is the
maximum number of repetitions, in which J denotes the
number of repetitions. As such, bothwn and wf are linearly
decreased from 0.9 to 0.1 in the repeat cycle. The developed
mixed QAIS-DSNN algorithm may be trapped in local
improvement due to the presence of different iterative cycles

8 BioMed Research International
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Figure 2: Flowchart of the proposed approach.

Figure 3: Input image.
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in the tumor fractionation improvement process, in addition
to the high research capacity. Therefore, to solve this prob-
lem, it is possible to provide a comparative update strategy
for the Cbest parameter that is best to assist neurons and pri-
mary residents of the proposed algorithm out of the optimal

local areas. In this strategy, Cbest is considered the best at a
great value in the initial phase of finding the optimum value
of the QAIS-DSNN algorithm with strong exploration ability
(global search) and gradually decreasing with increasing fre-
quency for accurate searching.

Figure 4: QMFT noise reduction algorithm applied in a row, column, and diagonal without repetition.

Figure 5: The result of image noise reduction and highlighting.
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Equation (19) displays the optimal value for the better
adaptive update scheme Cbest used here.

Cbest = 2 × 1 − J
MI , ð19Þ

where J means the number of repetitions, whereas MI
denotes the maximum number of repetitions. The next step
is to introduce a novel method for updating the neurons and
the initial population to accelerate global convergence. Ini-
tially, the status vector is updated by
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Figure 6: The PSNR criterion for noise reduction measurement.
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Δt = Ct 〠
NV

j−1
UBj − LBj

� �
, ð20Þ

where NV is the total number of variables, UBj is the upper

limit, and LBj is the lower limit of the variable in the jth var-
iable. Ct is the search environment, the same as the main
input image. Randomization is then performed that prevents
trapping in the optimal local solution, so randomization is

introduced in Equation (21) with the value of αrand, which
is a randomization parameter.

Xi t + Δtð Þ = Xi t + Δtð Þ + Xgbets − Xi t + Δtð Þ� �
+ αrand × rand − 1

2

� 	
,

ð21Þ

where Xgbets is the position of each neuron, and the initial
population of the combination approach and rand is a

Filtered image Segmentation results Necrosis Edema and core

Figure 8: Display of training operations to test the segmentation of the image and identify the masses. From left to right: the overall result of
noise reduction as input in QAIS-DSNN and QAIS-DSNN approach segmentation, finding necrosis, and finding edema (part completely
black) and nucleus (the almost white part inside the edema).
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random number generated, represented as a uniform distri-
bution in the range of ½0, 1�. In general, the flowchart of the
proposed approach is shown in Figure 2.

3.3. Investigating the Computational Complexity of the QAIS-
DSNN Method. Here, the computational complexity of the
developed QAIS-DSNN algorithm is investigated. Computa-
tional complexity includes temporal and spatial complexity.
The time complexity of the QAIS-DSNN algorithm depends
on two steps including calculation of the motion and updat-
ing of the positions of the neurons and the initial population.
Therefore, the complexity of time can be defined in

O QAIS‐DSNNð Þ =OðtðO intensity neighbor edgesð Þ
+O position updateð ÞÞÞ, ð22Þ

O QAIS‐DSNNð Þ =O t n2 × d + n × d
� �� �

=O tn2d + tnx
� �

=O tn2d
� �

,
ð23Þ

where t is the maximum repetition cycle, n denotes the num-
ber of neurons or initial population, and d is the dimensions
of the problem.

4. Simulation and Results

BraTS data is a collection of brain tumorMRI images, includ-
ing 145 folders for patients under different conditions. The
dataset consists of 4 versions from 2012 to 2018. Database
versions are getting better every year. The primary data is
in DICOM format which have been converted to JPEG for-
mat for easier use through DICOM Viewer software. The
input images are three-dimensional. Due to the large size of
the images in the BraTS, we used 1000 video input samples
to study the proposed approach. The simulation will be done
in MATLAB 2015b environment and a system with 7-core
processor specifications with 6MB of cache and 3.6MHz
and 6GB of memory in Windows 10. When the simulation
is performed, all BraTS2018 data are trained and tested by
the proposed method. For visualization, an example of
images is shown to examine the proposed approach’s results,
step by step. Initially, the input image is given to the system,
as shown in Figure 3.

In all BraTS2018 data images, an initial noise reduction is
required, using the QMFT algorithm, in which the image is
read linearly, columnar, and diagonally without any repeti-
tion to reduce noise. The schematic of this output is in the
form of Figure 4, and the result of the image that the noise
reduction operation and its initial highlighting is in Figure 5.

The value of peak signal-to-noise ratio (PSNR) is illus-
trated in Figure 6. The analysis is done for 1120 MRI images.
The mean value of PSNR is 87.35. It can be seen that the noise
reduction provides an interesting picture in which a good
segmentation can be applied. For this purpose, a deep neural
network spiking or DSNN method is applied to the noise
reduction operation output, and the BraTS2018 video data
set is trained, which will be 75% training and 25% test. But
the combined DSNN approach with the QAIS algorithm is

made in this section so that the overall result is visible.
According to the DSNN structure, it is observed that five
input layers are considered, in which all BraTS2018 video
data are placed. Then, there are three rows of training layers,
the first of which is the training deep layer. In this row, from
the deep layer, one by one, the convolution layer with 9 × 9
windowing, and then the random polarizing layer with 7 ×
7windowing, again the convolution layer with 9 × 9window-
ing, and then the maximum polarization layer as 5 × 5 is
located. The stimulus function of this layer is a zygomatic
logarithm in that the number of general layers is 20. Then,
the fully connected layer is associated with CRF, which is
considered as 10 layers.

Then, there is a SoftMax layer with the QAIS algorithm
designed to optimize DSNN segmentation during training
and testing, more accurate mass detection, and feature selec-
tion operations. Its drive function is linear. There are separate
settings for the QAIS algorithm. The initial population of this
algorithm is considered to be 200. The colonial rate is 0.04,
and its repetition rate is 10 cycles for optimizing the DSNN
algorithm segmentation and selecting features in the SoftMax
layer. In the end, there is an output layer that is a layer to dis-
play the output. The number of raw data training and testing
rounds in QAIS-DSNN is equal to 7000 rounds. The QAIS-
DSNN core is resilient back-propagation, and its perfor-
mance is measurable with average error squares. The training
process is illustrated in Figure 7. The termination criterion
for the training process is mean square error as 10−5. Regrad-
ing Figure 7, 1342 epochs lead to converge the training pro-
cess. When the proposed approach is applied to multiple
images, the overall result will be Figure 8.
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Figure 9: ROC diagram and AUC rate.
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The ROC chart and the AUC rate are the proposed
approach in Figure 9. This curve is known as one of the most
important evaluation criteria, which measures the efficiency
of classification operations in a system. In general, in a binary
classification system in which the differentiation threshold
differs, the ROC curve is a graphical representation of the
degree of sensitivity or correct prediction versus false predic-
tion. The ROC curve is also shown by plotting the correct
positives against the predicted false positives. A number
which measures and evaluates an aspect of performance is
the area below the ROC curve. This area below the curve is
called the AUC. A value above 0.7 to 1 indicates an excellent
level of prediction and classification performance. According
to Figure 9, it is observed that the value of AUC is a number
below one, which shows the optimization of the proposed
approach as much as possible. The presence of some similar
sections with cancerous masses in the available data and pre-
sented method led to the creation of a series of minor errors
that have not been adapted to the fitting line. The blue circles
are the criterion values, and the red line is the ROC diagram
on which the data is fitted. In some areas where the data is a
bit far away, an error occurs and leads to a decrease in inac-
curacy. Also in the middle line is regression called the ROC
peak relative to regression, and the area below it is AUC.
After applying the proposed approach, it is necessary to com-
pare the proposed approach with other proposed methods,

which are examined in terms of different evaluation criteria
to determine the guarantee of the proposed approach. For
this purpose, Table 1 shows a comparison in terms of average
error squares, signal-to-noise ratio, and accuracy. Also, a
comparison has been made in terms of Dice evaluation cri-
teria for tumor nucleus, total tumor, and tumor areas, the
results of which can be seen in Table 2.

The next comparison is the percentage-based accuracy
for segmentation to distinguish the mass region from the
images, which are averaged from the BraTS data set. The
results are reported in Table 3.

Finally, a comparison is made in terms of computational
complexity in terms of time between the method presented in

Table 2: The comparison of the proposed approach with previous ones in terms of Dice evaluation criteria.

Tumor improvement or ET areas Tumor nucleus or TC Total tumor or WT Method Reference

81.84% 88.34% 91.2% ADNN-PSO Irfan Sharif et al. [32]

85.83% 79.72% 90.21% 3D cascaded CNN-TTA Wang et al. [27]

79.19% 85.40% 90.31% Cascaded CNN Wang et al. [27]

77.07% 73.04% 89.56% Multiclass WNet+TTA Wang et al. [27]

71.78% 74.81% 88.24% MCCNN Hu et al. [28]

72.29% 76.75% 86.23% Two-stage Zhou et al. [26]

70.9% 75.1% 85.1% Ordinary fusion Zhou et al. [26]

73.44% 76.58% 86.38% 3D UNet Zhou et al. [26]

72.55% 75% 84.94% APFNet Zhou et al. [26]

74.43% 76.88% 86.56% APF+3D-CRF Zhou et al. [26]

74.50% 80.15% 91.92% QAIS-DSNN Proposed approach

Table 3: Comparison of the proposed approach with previous
methods in terms of accuracy in terms of percentage.

Accuracy (%) Method Reference

98.20% GCNN Mittal et al. [25]

95% 3D cascaded CNN-TTA Wang et al. [27]

88.50% MCCNN Hu et al. [28]

96.12% BAT-IT2FCM Alagarsamy et al. [31]

92% ADNN-PSO Irfan Sharif et al. [32]

98% PSO-LDA-GA-ANN Sharif et al. [33]

98.21% QAIS-DSNN Proposed approach

Table 1: The comparison of the proposed approach with previous ones in terms of mean square error, peak signal-to-noise ratio, and
accuracy.

The peak signal-to-noise
ratio (decibels)

Mean square error Method Reference

72.1 0.23 KNN Mittal et al. [25]

88.4 0.045 Genetic algorithm Mittal et al. [25]

74.2 0.021 SVM Mittal et al. [25]

73.5 0.256 SOM Mittal et al. [25]

94.2 0.012 CNN Mittal et al. [25]

96.64 0.001 GCNN Mittal et al. [25]

77.7 0.001 BAT-IT2FCM Alagarsamy et al. [31]

97.79 0.006 QIAS-DSNN Proposed approach
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this study and the methods in reference [25], the results of
which are shown in Table 4. It is noteworthy that this study
has listed the system used during the processing of the pro-
posed method, and this comparison is made on a case-by-
case basis with reference [25].

Based on the results of the comparisons in terms of eval-
uation, it is observed that the proposed approach is optimal
in terms of the mean error squares of most methods, but
the GCNN [25] and BAT-IT2 FCM [38] algorithms have bet-
ter results than the research approach. In terms of signal-to-
noise ratio, the proposed method of compared algorithms
has had better results. In terms of Dice evaluation criteria,
most research is on the same level. There are differences in
the parts of the whole tumor, the tumor nucleus, or the
improved part of the tumor, depending on the different
methods available. In terms of accuracy, the prediction
approach has better results, but with the GCNN [25] algo-
rithm, it is 0.01% more efficient. Also, the results were
obtained at the level of convolutional methods, and the com-
putational complexity of the proposed approach has been
implemented in the system; however, the computational
complexity can be seen by combining the existing algorithms.

5. Conclusion

This article is innovative in the field of noise reduction and
segmentation of MRI images to detect the area of tumor
masses. Also, we used the QMFT method to find noise and
reconstruct it with adjacent pixels to process them horizon-
tally, vertically, and diagonally. It is formed in the fastest time
and has been able to move the noise by identifying and
reviewing neighbors and matching the pixel data with neigh-
bors based on the edge of the image. Then, the segmentation
operation was performed with a QAIS-DSNN combination
approach. In this approach, the deep neural network of spik-
ing with CRF is considered, so that after the input layer—in-
cluding neurons (spikes)—the training layer has convolution
and polarizing layers. All of them are connected to the CRF
format. Then, there is a SoftMax layer outside the training
layer, which is optimized for segmentation and detection to
accurately identify tumor features, in this method with the
QAIS. The simulation results show that the proposed
QAIS-DSNN approach has a functional advantage over the

previous methods evaluation criteria. Among these evalua-
tion results, we can point out the accuracy in segmentation
and detection of the exact mass area in MRI images with an
accuracy of 98.21%. Also, the average rate of error squares
is 0.006, and the peak rate of the signal-to-noise ratio is
97.79 decibels. The use of lesion structural criteria includes
a tumor nucleus of 80.15%, improved tumor of 74.50%, and
a total tumor of 91.92%, which is a functional advantage over
similar previous methods. Reducing computational complex-
ity compared to previous methods and improving execution
time by 2.58 seconds also confirms it. In the future, the plan
is to use a huge dataset or transfer this system to the breast,
lung, and some other tumor detection tasks. Moreover, we
are going to add this automated segmentation method for
CNN-based segmentation ground truth images. Further-
more, the presented filtering system can be added as a layer
in the CNN method and change the resolution of the matrix
in each iteration.
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Purpose. To investigate whether the radiomics analysis of MR imaging in the hepatobiliary phase (HBP) can be used to predict
microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Method. A total of 130 patients with HCC,
including 80 MVI-positive patients and 50 MVI-negative patients, who underwent MR imaging with Gd-EOB-DTPA were
enrolled. Least absolute shrinkage and selection operator (LASSO) regression was applied to select radiomics parameters derived
from MR images obtained in the HBP 5min, 10min, and 15min images. The selected features at each phase were adopted into
support vector machine (SVM) classifiers to establish models. Multiple comparisons of the AUCs at each phase were performed
by the Delong test. The decision curve analysis (DCA) was used to analyze the classification of MVI-positive and MVI-negative
patients. Results. The most predictive features between MVI-positive and MVI-negative patients included 9, 8, and 14 radiomics
parameters on HBP 5min, 10min, and 15min images, respectively. A model incorporating the selected features produced an
AUC of 0.685, 0.718, and 0.795 on HBP 5min, 10min, and 15min images, respectively. The predictive model for HBP 5min,
10min and 15min showed no significant difference by the Delong test. DCA indicated that the predictive model for HBP
15min outperformed the models for HBP 5min and 10min. Conclusions. Radiomics parameters in the HBP can be used to
predict MVI, with the HBP 15min model having the best differential diagnosis ability.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors in the liver [1]. Surgery is regarded as the
first choice for eligible patients [2]. Microvascular invasion
(MVI) is a vital predictor of HCC recurrence, especially in
the early stage after surgical resection [3, 4]. Previous studies
have identified MVI as a major risk factor for early recur-
rence within two years after hepatectomy and transplanta-
tion [5]. The application of preoperative imaging methods
to predict MVI has important clinical significance. Therefore,

it is necessary to predict MVI to identify tumor invasion
and predict tumor recurrence after hepatectomy and
transplantation.

Previous studies found that some imaging features, such
as the tumor size, shape, capsule, margin, apparent diffusion
coefficient (ADC) values, and enhancement pattern, may
contribute to the diagnosis of MVI before surgery [6–8].
However, these qualitative findings can be affected by many
factors, including the variability between observers and the
lack of external validation, and there is still debate about
the predictive value of MVI in HCC. Recently, radiomics
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analysis has become an emerging quantitative image process-
ing method. It can quantify tissue heterogeneity by evaluat-
ing the distribution of radiomics roughness and irregularity
within lesions. Different from tissue biomarkers, which can
assess the microheterogeneity of regional tumors, radioactive
biomarkers can noninvasively examine the whole tumor at
the millimeter level [9]. Therefore, this method is expected
to quantitatively evaluate lesion characteristics in more detail
and with better repeatability than visual analysis by human
observers. Some published studies have evaluated the poten-
tial of radiomics in predicting MVI in hepatocellular carci-
noma [4, 10–12]. To the best of our knowledge, no research
on predicting MVI or comparing imaging at different hepa-
tobiliary phase (HBP) times using radiomics analysis of
gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic
acid- (Gd-EOB-DTPA-) enhanced MR has been reported.

Thus, the aim of this study was to investigate whether
radiomics analysis of MR imaging with Gd-EOB-DTPA in
HBP can be used to predict MVI in patients with HCC and
compare the prediction of MVI on different HBP delay times.

2. Materials and Methods

2.1. Patients. This retrospective study was approved by our
institutional review committee, and patient informed con-
sent was waived. By searching our institution’s database,
294 consecutive liver cancer patients were selected between
January 2015 and May 2020. The inclusion criteria were as
follows: (1) MR images showing liver tumors larger than
1 cm in diameter; (2) Gd-EOB-DTPA-enhanced MRI scan
including complete examination recordings at HBP 5min,
10min, and 15min; and (3) HCC diagnosed by postoperative
pathology. The exclusion criteria were as follows: (1) patients
who underwent MRI examination more than one month
before surgery; (2) patients who had received liver cancer
treatment before surgery; and (3) insufficient image quality
for radiomics analysis. Finally, 130 HCC patients, including
80MVI-positive patients and 50MVI-negative patients, were
included in this study. The MVI information was obtained
from the HIS system at our hospital and was diagnosed by
the same pathologist. According to the date of MRI, the
cohort was divided into a training set (n = 91; 60 men and
31 women; mean age 57:8 ± 12:6 years) and a time-
independent validation set (n = 39; 29 men and 10 women;
average age 58:6 ± 11:6 years).

2.2. MR Techniques. All study patients underwent MR imag-
ing using a 3.0T scanner (GEHCGEHC, GE medical systems,
Waukesha, WI). A dose of 0.1mL/kg (0.025mmol/kg) Gd-
EOB-DTPA (Primovist, Bayer HealthCare, Berlin, Ger-
many)) was administered at a flow rate of 1.0mL/s followed
by 25mL of saline. A 3D fat-suppressed Liver Acquisition
with Volumetric Acceleration (LAVA, GE Healthcare)
sequence was performed in the axial plane at 5, 10, and
15min after contrast agent injection (HBP 5min, 10min,
and 15min, respectively). The imaging parameters of the
LAVA sequence were as follows: TR/TE, 2.5/1.1; inversion
time, 5.0 milliseconds; flip angle, 9°; thickness, 5mm; slice
spacing, 2.5mm; FOV, 380–450mm; 256 × 256matrix; num-

ber of signals acquired, 0.70; and bandwidth, 976.6 kHz. The
comparison of dynamic T1-weighted and T2-weighted imag-
ing was not the focus of this study and was not conducted.

2.3. MR Radiomics Analysis. The workflow of the radiomics
analysis included tumor segmentation, feature extraction,
feature selection, and model construction and evaluation
(Figure 1).

Three-dimensional segmentation of HCC using the IBEX
software (http://bit.ly/IBEX) was performed by two radiolo-
gists in abdominal diagnostics with 8-year and 10-year MR
experience who were blinded to the MVI information. When
patients had multiple tumors, the largest tumor was ana-
lyzed. The regions of interest were drawn manually on HBP
5min, 10min, and 15min images, covering the whole tumor.
Radiomics parameters were selected using the IBEX software
and included eight categories: Gradient Orient Histogram,
Gray Level Cooccurrence Matrix 25, Gray Level Run Length
Matrix 25, Intensity Direct, Intensity Histogram, Intensity
Histogram Gauss Fit, Neighbor Intensity Difference 25,
and Shape. Each category included different radiomics
parameters. The intraclass correlation coefficient (ICC) of
30 randomly selected tumors was calculated to test the
repeatability of features extracted by repeated segmentation,
and features with an ICC less than 0.80 were excluded.

2.4. Statistical Analysis. Two independent sample t tests were
used to compare the mean age between the MVI-positive and
MVI-negative patients. The chi-square test was used to com-
pare the sex distribution between the MVI-positive and
MVI-negative patients. The least absolute shrinkage and
selection operator (LASSO) regression method was used to
select the most valuable parameter from all parameters
obtained at HBP 5min, 10min, and 15min. Receiver operat-
ing characteristic (ROC) curves and areas under the ROC
curve (AUCs) of the radiomics parameters selected at each
phase were calculated. The selected features at each phase
were adopted into support vector machine (SVM) classifiers
to establish models. SVM models were evaluated by 10-fold
cross-validation to reduce overfitting. Multiple comparisons
of the AUCs at each phase were performed by the Delong test

Imaging

Segmentation

Extraction of radiomic
features

Intensity, texture, shape

Feature selectionLASSO selection

ROC curve, decision curve Model analysis and evaluation

Figure 1: Workflow of radiomics analysis.
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with Bonferroni-adjusted p values. To present the distribu-
tion of the radiomics parameters in which HBP imaging
can best differentiate MVI-positive and MVI-negative
patients, a heat map was created. Decision curve analysis
(DCA) was used to analyze the classification. The interob-
server reproducibility of the selected valuable radiomics
parameter was evaluated by ICC. SPSS 22.0 (Chicago,
Illinois, USA) was used for statistical analysis. LASSO regres-
sion, ROC curves, the Delong test, and DCA were performed
by using R (https://www.r-project.org/). p < 0:05 was consid-
ered statistically significant.

3. Results

3.1. Demographics. Eighty MVI-positive HCC patients and
50 MVI-negative patients were included. There was no sig-
nificant difference in age or sex between MVI-positive and
MVI-negative patients. Examples of HCCs in MVI-positive
and MVI-negative patients are shown in Figure 2.

3.2. Comparison of MR Radiomics Analyses with LASSO
Regression. Each ROI has 8 categories and 1768 radiomics
parameters. The most predictive features between MVI-

positive and MVI-negative patients included 9 radiomics
parameters at HBP 5min, 8 radiomics parameters at HBP
10min, and 14 radiomics parameters at HBP 15min
(Table 1). The two radiomics parameters with the top two
AUC values were X0.7 Homogeneity (AUC = 0:641) and
Compactness2 (AUC = 0:615) in the hepatobiliary phase
(HBP) at 5min, X1.7 Contrast (AUC = 0:625) and X4.7 Auto
Correlation (AUC = 0:605) in the hepatobiliary phase (HBP)
at 10min, and X6.1 Difference Entropy (AUC = 0:645) and
X4.7 Dissimilarity (AUC = 0:638) in the hepatobiliary phase
(HBP) at 15min. A model incorporating all radiomics
parameters selected by LASSO in each phase produced AUCs
of 0.685, 0.718, and 0.795 at HBP 5min, 10min, and 15min,
respectively (Figure 3).

3.3. Comparison of the 3 HBP Delays in Differentiating MVI.
The results of the Delong test used to differentiate MVI-
positive and MVI-negative patients for the 3 HBP delays
are shown in Table 2. The predictive model for HBP 5min,
10min, and 15min showed no significant difference (HBP
5min vs. HBP 10min, p = 0:751; HBP 5min vs. HBP
15min, p = 0:362; HBP 10min vs. HBP 15min, p = 0:440).
The radiomics parameter distribution at HBP 15min is

(a) (b) (c)

(d) (e) (f)

Figure 2: Axial MR imaging with Gd-EOB-DTPA on HBP in a HCC MVI-negative patient ((a) HBP 5min, (b) HBP 10min, and (c) HBP
15min), and a MVI-positive patient ((d) HBP 5min, (e) HBP 10min, and (f) HBP 15min). The imaging of MVI negative shows a
smooth tumor margin, while MVI-positive shows a nonsmooth tumor margin. However, other tumor features between MVI positive and
negative are difficult to identify by visual inspection.

3BioMed Research International

https://www.r-project.org/


demonstrated with a heat map in Figure 4. The results of
DCA at HBP 5min, 10min, and 15min are shown in
Figure 5. There was no net benefit of HBP 5min when the
threshold probability was less than approximately 0.5 and
no net benefit of HBP 10min within almost the same thresh-
old probability range. HBP 15min had a larger net benefit
than HBP 5min when the threshold probability was less than
approximately 0.7, and there was a slightly lesser net benefit
when the threshold probability was between approximately
0.7 and 0.8.

3.4. Interobserver Agreement for the Selected Valuable
Radiomics Parameter at HBP 15Min. The interobserver
agreement between the 2 radiologists was good for the
selected valuable radiomics parameter at HBP 15min (ICC
range: 0801–0.997) (Table 3).

4. Discussion

MVI is a vital independent predictor of early recurrence
in HCC patients [13, 14]. Gd-EOB-DTPA is a biphasic
T1-weighted MRI contrast agent which enters hepatocytes
in an ATP-dependent manner through the organic anion
transport polypeptide (OATP1B1/B3) and is finally excreted
through the biliary tract. It is used for dynamically contrast-
enhanced MRI of the liver, as well as the specific imaging
process during the HBP after injection. A previous study
indicated that radiomics signatures on HBP 20min images
could assess MVI in patients with HCC [15]. However, few
studies have been conducted to assess MVI and compare
HBP 5min, 10min, and 15min images using radiomics from
Gd-EOB-DTPA-enhanced MR. In the present study, after
recruiting patients with HCC, we employed radiomics to

Table 1: The most predictive features between MVI-positive and MVI-negative selected by LASSO regression.

Phase Radiomics parameter Which category belongs to Regression coefficient

HBP 5min

Compactness2 Shape 0.30551482

Mass Shape 0.03586056

VoxelSize Shape 0.08370105

TextureStrength NeighborIntensityDifference25 -0.4756972

7.7Energy GrayLevelCooccurenceMatrix3 -0.22185

0.7Homogeneity GrayLevelCooccurenceMatrix3 0.17812152

4.1InformationMeasureCorr1 GrayLevelCooccurenceMatrix3 0.10846544

1.4InverseDiffMomentNorm GrayLevelCooccurenceMatrix3 0.0502487

X10.4InverseDiffNorm GrayLevelCooccurenceMatrix3 -0.10842471

HBP 10min

.333ShortRunHighGrayLevelEmpha GrayLevelRunLengthMatrix25 -0.025523039

0ShortRunHighGrayLevelEmpha - GrayLevelRunLengthMatrix25 -0.037606409

NumberOfObjects Shape -0.150641355

SurfaceArea SurfaceArea 0.04154656

1.7Contrast GrayLevelCooccurenceMatrix3 -0.327361605

.333.7Dissimilarity 7Dissimilarity -0.159344876

7.7Energy GrayLevelCooccurenceMatrix3 -0.247759079

6.7MaxProbability GrayLevelCooccurenceMatrix3 -0.301320203

HBP 15min

MedianAbsoluteDeviation GradientOrientHistogram 0.012259179

5Percentile GradientOrientHistogram -0.064760131

Mass Shape 0.052851135

SphericalDisproportion Shape -0.067929609

4.7AutoCorrelation GrayLevelCooccurenceMatrix3 -0.182481531

1.7Contrast GrayLevelCooccurenceMatrix3 -0.049683698

9.4Contrast GrayLevelCooccurenceMatrix3 -0.300911891

6.1DifferenceEntropy GrayLevelCooccurenceMatrix3 -0.105303216

4.7Dissimilarity GrayLevelCooccurenceMatrix3 -0.205762541

8.4InverseDiffNorm GrayLevelCooccurenceMatrix3 -0.002903426

1.1InverseVariance GrayLevelCooccurenceMatrix3 0.046277632

11.4InverseVariance GrayLevelCooccurenceMatrix3 -0.001397914

12.4InverseVariance GrayLevelCooccurenceMatrix3 -0.188965726

8.4MaxProbability GrayLevelCooccurenceMatrix3 -0.251615445

HBP, hepatobiliary phases.
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assess MVI in HCC with Gd-EOB-DTPA on HBP 5min,
10min, and 15min images. We verified the capability of the
radiomics model for preoperative prediction of MVI status
in a verification cohort.

Manifestations on the HBP images of Gd-EOB-DTPA-
enhanced MRI indicate the functions of hepatocytes. HCC
cells, relative to hepatocytes, fail to carry out the absorption
of Gd-EOB-DTPA in the HBP. This can lead to low intensity
within the tumor at this stage. However, previous studies [7,
16] reported that the occurrence of MVI cannot be predicted
by assessing the difference in the occurrence of intratumoral
hypointensity on HBP. In the present study, a model incor-
porating the radiomics parameters on HBP 5min, 10min,
and 15min images produced AUCs of 0.685, 0.718, and
0.795, indicating that the HBP model can assess MVI in
HCC. This is because radiomics has the advantages of stable
calculation, high repeatability, indefatigability, and being free
from human subjective initiative interference [17, 18].
Tumor heterogeneity is likely to be difficult to identify and
quantify by conventional imaging tools, the subjective assess-
ment of images, or random sampling biopsy [19], whereas

the mentioned techniques have been shown to be tightly
associated with the pathophysiology of cancer. Existing stud-
ies have reported that the characteristics of radiomics show
tight associations with the microstructure and biological
behavior of tumors [20, 21]. In the present study, 14 quanti-
tative characteristics on HBP 15min images were found,
which were not presented previously. Radiomics characteris-
tics are important markers of intratumoral homogeneity. Of
the 14 radiomics characteristics related to MVI in the present
study, 2 were histogram-related characteristics (Median
Absolute Deviation, 5th Percentile), 2 were shape-related
characteristics (Mass, Spherical Disproportion), and others
were matrix-related characteristics (4.7 Auto Correlation,
1.7 Contrast, 9.4 Contrast, 6.1 Difference Entropy, 4.7 Dis-
similarity, 8.4 Inverse Diff Norm, 1.1 Inverse Variance, 11.4
Inverse Variance, 12.4 Inverse Variance, and 8.4 Max Proba-
bility). The features based on the histogram are first-order
statistics, primarily determined by the statistics of intensity
information (or brightness information) in and around the
tumor. Subsequently, the overall distribution of intensity
information in and around the tumor was explored. The sig-
nal intensity of MVI-positive HCC was lower than that of
MVI-negative HCC, and differences in histogram character-
istics were more frequent [22]. Shape-related characteristics
were adopted to express the complexity of the lesion shape.
Given histological studies, MVI-positive HCC exhibited an
aggressive tendency, invading the tumor envelope and
extending into the noncancerous substance, thereby causing
a higher incidence of irregular tumor margins [23]. Matrix-
based characteristics are second-order statistics applied to
express lesions complex characteristics, the variation of hier-
archical structure, and the thickness of texture. The differ-
ence in the mentioned parameters may indicate the
heterogeneity of the tumor that is difficult to identify by the
subjective assessment of images. Although radiomics has
already been applied, it can effectively mark images, which
can facilitate the assessment and quantification of processes
of tumor space-related heterogeneity [24]. Nevertheless, the
radiomics characteristics are acquired and determined with
a PC. It is very challenging to explain the relationships
between the radiomics characteristics, and pathology-
related manifesting data are a challenge to develop [25]. First,
the pathophysiological process involves several interacting
parts; second, the maximum data acquired by the PC image
study are significantly greater that acquired by visual
examination.

The predictive models for HBP 5min, 10min, and 15min
had no significant differences according to the Delong test
(HBP 5min vs. HBP 10min, p = 0:751; HBP 5min vs. HBP
15min, p = 0:362; and HBP 10min vs. HBP 15min, p =
0:440). To further compare the models for HBP 5min,
10min, and 15min, this study applied DCA, i.e., a method
to assess the models in terms of the clinical consequences
and calculate the benefit and the loss of the assessed models
for respective individuals [26]. This method attempts to
overcome the limitations of traditional statistical indicators
and complete decision analysis methods, which cannot
directly provide clinical value information, nor can they be
used in routine biostatistics practice [27]. The present study
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Figure 3: The ROC curves and AUC values of HBP 5min, 10min,
and 15min to differentiate MVI-positive and MVI-negative
patients. The HBP 15min produced the highest AUC of 0.795.

Table 2: The results of multiple comparisons of the AUCs by the
Delong test.

Z statistic p

HBP 5min-HBP 10min -0.3173 0.751

HBP 5min-HBP 15min -0.9121 0.362

HBP10min-HBP 15min -0.7725 0.440

HBP, hepatobiliary phases.
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revealed that HBP 15min images achieved the largest net
benefit under the threshold probability, only with a slightly
lesser net benefit when the threshold probability was between
approximately 0.7 and 0.8. Gd-EOB-DTPA enters hepato-
cytes through organic anion transport polypeptides and is
finally excreted through the biliary tract; this process takes
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Figure 4: The heat map of HBP 15min shows the distribution of the most predictive texture parameters between MVI-positive and MVI-
negative patients. Difference in colors means different values of radiomics parameter.
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15min had a larger net benefit than HBP 5min when the threshold
probability is less than about 0.7, and a little lesser net benefit when
the threshold probability is about between 0.7 and 0.8.

Table 3: The interobserver reproducibility of the most predictive
features on HBP 15min.

Radiomics parameter ICC

MedianAbsoluteDeviation 0.924

5Percentile 0.903

Mass 0.997

SphericalDisproportion 0.847

4.7AutoCorrelation 0.898

1.7Contrast 0.850

9.4Contrast 0.801

6.1DifferenceEntropy 0.948

4.7Dissimilarity 0.939

8.4InverseDiffNorm 0.832

1.1InverseVariance 0.975

11.4InverseVariance 0.812

12.4InverseVariance 0.838

8.4MaxProbability 0.929

ICC, intraclass correlation coefficient.
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some time to complete. Therefore, we predicted that this, in
theory, is why the HBP 15min model outperformed the
HBP 5min and 10min model. Wu et al. [28] found that the
severity of liver cirrhosis had a significant negative effect on
the detection of HCC by HBP. For patients with severe cir-
rhosis, HBP 15min or longer seems to be more suitable for
HCC than BHP 5min and 10min. Nakamura [29] reported
that more focal liver lesions could be assessed on HBP
15min images compared with HBP 5 and 10min images.
HCC patients often have a background of cirrhosis, leading
to varying degrees of damage to liver function. The present
study showed that the predictive model for HBP 15min out-
performed the HBP 5min and 10min models, which is in
line with the proposed theory and previous research. Feng
et al. [4] reported that the AUC of the HBP 20min model
for predicting MVI in the training and validation cohorts
was 0.85 and 0.83, respectively; the diagnostic efficiency of
this model was slightly higher than that of our study. How-
ever, their model combined intratumoral and peritumoral
radiomics information. Liang et al. [30] reported that HBP
15min was sufficient for lesion characterization in cirrhosis
patients with mild liver dysfunction when compared with
HBP 20min. Though the present study did not include data
for HBP 20min, we predicted that the model for HBP
15min was sufficient for MVI prediction in HCC. Addition-
ally, other features and biomarkers could be incorporated in
HBP 15min to improve diagnostic efficiency.

Several limitations are revealed in this study. First, this
study was a retrospective study, which may have caused inev-
itable selection bias, and lacks external validation. Second,
compared with the relatively large number of variables, the
sample size remained limited. Third, our verification cohort
and training cohort were from the same center, and the radi-
ology analysis conducted for the stability assessment will be
further optimized in future multicenter studies. Fourth, in
the present study, only MR images of HBP at 5min,
10min, and 15min were explored. There are no data for
HBP at 20min on account of daily busy clinical work pres-
sure. A multicenter and prospective study with a longer delay
time and a larger population is needed to validate these
results in the future. Ideally, the characterization of MVI
should involve both intratumoral and peritumoral areas;
therefore, it was another limitation for only analyzing intra-
tumoral area in this study.

5. Conclusion

In conclusion, radiomics parameters on the HBP 5min,
10min, and 15min images after Gd-EOB-DTPA injection
can be used to predict MVI for HCC, with the HBP 15min
model having the best differential diagnosis ability; this
model has potential clinical value for preoperative noninva-
sive prediction of MVI in HCC patients.
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Diabetic retinopathy is one of the main causes of blindness in human eyes, and lesion segmentation is an important basic work for
the diagnosis of diabetic retinopathy. Due to the small lesion areas scattered in fundus images, it is laborious to segment the lesion of
diabetic retinopathy effectively with the existing U-Net model. In this paper, we proposed a new lesion segmentation model named
FFU-Net (Feature Fusion U-Net) that enhances U-Net from the following points. Firstly, the pooling layer in the network is
replaced with a convolutional layer to reduce spatial loss of the fundus image. Then, we integrate multiscale feature fusion
(MSFF) block into the encoders which helps the network to learn multiscale features efficiently and enrich the information
carried with skip connection and lower-resolution decoder by fusing contextual channel attention (CCA) models. Finally, in
order to solve the problems of data imbalance and misclassification, we present a Balanced Focal Loss function. In the
experiments on benchmark dataset IDRID, we make an ablation study to verify the effectiveness of each component and
compare FFU-Net against several state-of-the-art models. In comparison with baseline U-Net, FFU-Net improves the
segmentation performance by 11.97%, 10.68%, and 5.79% on metrics SEN, IOU, and DICE, respectively. The quantitative and
qualitative results demonstrate the superiority of our FFU-Net in the task of lesion segmentation of diabetic retinopathy.

1. Introduction

Diabetic retinopathy is one of the main causes of blindness in
human eyes, and regular fundus screening is an effective way
to discover the location of disease [1–6]. At present, fundus
screening is mainly diagnosed by analyzing fundus images
manually, which requires ophthalmologists to have expert
clinical experience. Therefore, the automatic screening and
diagnosis of diabetic retinopathy have important practical
significance. Moreover, the lesion segmentation of diabetic
retinopathy is the prerequisite work for screening and diag-
nosing diabetic retinopathy, and it also lays a foundation
for the subsequent grading of the severity of diabetic retinop-
athy. Generally, common diabetic retinopathy consists of
microaneurysms (MA), hard exudates (EX), soft exudates
(SE), and hemorrhage (HE).

In the past few decades, numerous researchers have
devoted themselves to solving the segmentation of diabetic
retinopathy. In early years, the researchers focused on tradi-
tional image processing methods, such as morphological
operations and threshold segmentation [7–9]. Limited by
the heavy dependence of the design level, the traditional
methods of lesion segmentation are relatively infeasible in
real-world application.

With the rapid development of deep learning technology,
many researchers resort to deep learning methods to segment
the lesion of diabetic retinopathy [3]. Although deep learning
models can avoid handcrafted complex image features, it is
difficult to segment tiny lesions composed of relatively mac-
rostructures, such as microaneurysms and hemorrhage. As
a classical medical semantic segmentation network, the
symmetry-driven U-Net model [10] is weak in processing
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tiny lesions. In order to achieve more accurate results, we
propose a deep neural model called FFU-Net with an
encoder-decoder structure. In detail, the pooling layer of U-
Net is substituted with a convolutional layer to reduce the
spatial loss of the fundus image. For the purpose of extracting
multiscale lesion features, the MSFF block is embedded in the
encoder by considering splitting operations and residual
modules into account. For the decoders, contextual channel
attention modules is integrated with the concatenation of
skip connection and lower-resolution decoder. To alleviate
the imbalance problem between lesion area and normal area
in a fundus image, an improved Focal Loss named Balanced
Focal Loss is proposed to train our model. In comparison
with the state of the art, the experimental results on the pub-
lic IDRID demonstrate that our model surpasses other
models on metrics SEN, IOU, and DICE.

Our contributions are summarized as follows: (1) We
replace the pooling layer of U-Net with a convolutional layer
for downsampling, which helps to preserve spatial loss of
fundus images as much as possible. (2) In the encoders, we
integrate MSFF block with U-Net to extract multiscale lesion
features by taking splitting operation and residual module
into account, which is beneficial to representing informative
features. (3) In the decoders, we propose the CCA module
to fuse the information between skip connection and lower-
resolution decoder, which share attentions and enhance their
representative ability efficiently. (4) We propose a new loss to
address the imbalance data problem when training our
model, which facilitates the discrimination ability of our
model. (5) We conduct several evaluations of the compara-
tive methods on the benchmark dataset to figure out the
superiority of our model.

The rest of this paper is organized as follows. Materials
and Methods displays the related work, methodology, and
experiment settings. The experimental results and the discus-
sion are presented in Results and Discussion. Finally, Con-
clusion and Future Work concludes our work and suggests
possible topics for future research.

2. Materials and Methods

2.1. Related Work. In the early years, the medical researchers
focused on the segmentation of diabetic retinopathy based on
traditional digital image processing methods, such as mor-
phological operations and threshold segmentation. For
example, Fleming et al. [7] used morphological operations
and Gaussian matched filters to extract candidate regions of
microaneurysms and then collected various statistical fea-
tures to eliminate false positive points in blood vessels,
yielding accurate segmentation of microaneurysms. Antal
and Hajdu [11] adopted an ensemble learning strategy to
integrate a series of image preprocessing approaches to
improve final segmentation of microaneurysms. Kavitha
and Duraiswamy [8] extracted exudate features using a
multilayer threshold method, but this model has require-
ments for the input image quality. In conclusion, the tra-
ditional methods of lesion segmentation are relatively
inefficient with poor generalization.

Recently, the development of deep learning has been
widely concerned in the field of medical treatment. Medical
image segmentation [12] has also become a hot topic. Most
existing models with excellent performance in medical image
segmentation tasks are reconstructed based on FCN or U-
Net. In FCN [13, 14], the last full connection layer was
replaced with a convolution layer. Rather than a fixed input
size required by the classical CNN model, it allowed input
image with arbitrary size. Also, skip connections were
employed to combine local information learned from shallow
layers and complex information learned from deeper layers.
In U-Net, a contracting path was used for capturing context
and a symmetric expanding path is designed for precise local-
ization. With reference to the upsampling strategy, FCN
applied upsampling operation to the last feature map while
U-Net transformed high-level features to low-level features
by deconvolution operations. References [15, 16] advanced
in U-Net by using max-pooling indices and multipath input,
respectively. Van Grinsven et al. [17] sped up the training by
dramatically selecting misclassified negative samples.
Sambyal et al. [18] presented a modified U-Net architecture
based on the residual network and employ periodic shuffling
with subpixel convolution initialized to convolution nearest-
neighbor resize.

2.2. Methodology

2.2.1. Network Description. The overall pipeline of our pro-
posed model is depicted in Figure 1. U-net was originally
designed and developed for biomedical image segmentation.
Its architecture is broadly regarded as an encoder network
followed by a decoder network. For the encoder network, it
is usually a pretrained classification network in which a
downsampling pooling layer is appended at multiple differ-
ent levels. For the decoder network, it includes upsampling
and concatenation followed by regular convolution opera-
tions. The discriminative feature obtained by the encoder is
projected onto pixel space to predict pixel-wise classification.
As an extension of U-Net, our model makes the following
three improvements adapted for lesion segmentation of dia-
betic retinopathy. (1) In the encoder stage, the maximum
pooling layer of the original U-Net model for downsampling
is substituted with a convolutional layer, in which the kernel
size is 3 × 3 and stride = 2. The motivation behind this strat-
egy could be explained as two points. (a) Compared with the
pooling layer, downsampling with the convolution layer
could keep structure information of diabetic retina images
as much as possible. (b) It promotes the fusion of informa-
tion between different channels, which is beneficial to the
lesion segmentation task of diabetic retinopathy. Moreover,
inspired by Inception block [19] and channel splitting idea
[20], we design a new multiscale feature-fused block named
MSFF to capture the features of the diabetic retinopathy
image at different scales. As illustrated in Figure 2(a), the
MSFF uses a series of multiscale residual splitting operations
to extract different scale features. Firstly, as dilated convolu-
tion [21] could increase the receptive field under the condi-
tion that the resolution of the feature map is unchanged, we
use a 3 × 3 dilated convolution followed by the RReLu layer
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to perceive more information. Then, we put forward a series
of splitting steps to produce multiscale features efficiently.
For each step, MSFF employs 3 × 3 and 5 × 5 convolution
layers to split the preceding features into two parts. One part
is retained, and the other part is fed into the next step. After

three splitting steps, all the distilled features are concatenated
together and then fed into a 1 × 1 convolution to reduce the
channels and parameters. In our implementation, only 1/3
channels in each splitting step are kept. (2) In the decoder
stage, the concatenation procedure between skip connection
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Figure 2: The improvements in the encoders and decoders of FFU-Net: (a) the structure of MSFF; (b) the CCA module in the decoders.
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Figure 1: The overall architecture of the proposed FFU-Net model.
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and lower-resolution decoder is improved with the contex-
tual channel attention (CCA) module. We borrow the idea
from SeNet [22] and depict the detail in Figure 2(b). Given
lower-resolution decoder LD and skip connection SK with
the size h ×w × c, the proposed concatenation procedure
with CCA can be described as

CLD = Conv1 RReLu Conv1 BN GAPool UP LDð Þð Þð Þð Þð Þ,
CSK = Conv1 RReLu Conv1BN GAPool S Kð Þð Þð Þð ,

CCA = RReLu CLD ⊕ CSKð Þ,
F = Concat CCA ⊗ LDð Þ, CCA ⊗ S Kð Þ,

ð1Þ

where UP and GAPool denote upsampling operation and
global average pooling. Conv1_BN is the 1 × 1 convolution
followed by batch normalization while Conv1 is the common
1 × 1 convolution. RReLu and Concat represent the RReLu
activation function and concatenation operation along the
channel dimension. After the GAPooling operation, 1 × 1 ×
ðc/rÞ ðr = 2Þ is employed to extract channel-wise statistics
efficiently. As a contextual channel attention, CCA carries
the channel-wise attentions from both LR and SK and then,
respectively, multiply itself by LR and SK. Later, these two
features are concatenated to replace the original concatena-
tion procedure appearance in U-Net. In this way, LR and
SK fully fuse the context information and share channel
attention to provide more informative representation, which
is conducive to the segmentation accuracy.

Besides, all the activation layers are replaced with nonlin-
ear activation RReLu layers [23]. The reason why we prefer
RReLu than other activation functions is that it could provide
a random value from a uniform distribution to reduce over-
fitting during training. Herein, benefiting from the above-
mentioned improvements, our FFU-Net achieves segmenta-
tion accuracy of the four lesions of diabetic retinopathy
effectively.

2.2.2. Loss Function. Apart from the network architecture,
loss function also plays a key part in network design. In a dia-
betic retinopathy image, huge contrast could be found
between the lesion and the normal from the perspective of
appearance. Additionally, the size of the lesion area is always
much smaller than the rest. Provided that we still insist on
training our model to minimize the classification cross-
entropy loss, the performance might not be like what it is
supposed to be. This phenomenon can be ascribed to the
imbalance problem occurring in the medical dataset. To
address this issue, one can resort to data augmentation tech-
nology which duplicates samples to make the overall training
set balanced. However, on account of the lack of diversity, the
new dataset cannot provide clear improvement for our
model. Alternatively, we turn to loss function according to
the intrinsic distribution of data samples. Generally, the error
penalties for the majority class and the minority class are dif-
ferent. Thus, we attempt to assign different weights to differ-
ent classes and construct a Balanced Focal Loss for our model
[24]. When training with this loss function, our model high-

lights the lesions of diabetic retinopathy. Different from orig-
inal focal loss, in the task of medical segmentation in our
application, the difference between easy and hard examples
is more imperceptible. Mathematically, the loss function is
formulated as follows:

L = 〠
n

i=1
−w y −Q

y
i

�
�

�
�

� �
1 − yð Þ log 1 −Qið Þ + y log Qið Þ, ð2Þ

where n represents the number of pixels in a diabetic retinop-
athy image and i denotes the ith sample. Here, ∣· ∣ guarantees
the nonnegativity. If the pixel is normal, its corresponding
value is set to 0. If the pixel belongs to the lesion area, its cor-
responding value is set to 1. The parameter w represents the
weight coefficient, which refers to the ratio between the pixels
labeled as abnormal and the number of pixels in all samples.
Qi is the probability predicted by our proposed model; γ is
the tunable focusing parameter which is always set to 2 in
practice. As a comparison, we depict the values of Balanced
Focal Loss and Focal Loss in Figure 3. As can be seen, when
Qi → 1 and y = 1, the loss for well-classifier examples is
downweighted. For instance, when y = 1, an example with
Qi = 0:9 and w = 0:1 would be 5x lower (0.002) than cross-
entropy (0.010). Although the case with Focal Loss shows
100x lower (0.0001), the gap between Balanced Focal Loss
and Focal Loss is 0.0019. Besides, another example with
Qi = 0:1 and w = 0:1 generates 0.227, which is closer to
the result of cross-entropy (0.230). By this means, this
proposed Balanced Focal Loss increases the importance
of correcting misclassified examples.

2.3. Data Preparation and Processing

2.3.1. Data Preparation. The dataset we adopted is the Indian
Diabetic Retinopathy Image Dataset (IDRID) [25], which is
derived from a patient’s fundus image during a real clini-
cal examination at an ophthalmology clinic in India. All
images in the dataset were taken by a Kowa VX-10α color
fundus camera with a 50-degree field of view close to the
macular area. All images have a resolution of 4288 × 2848
in JPG format. In our experiment, we select 81 color fun-
dus images from 516 images along with pixel-level annota-
tions. As illustrated in Figure 4(a), four typical diabetic
retinopathy abnormalities appear in this dataset. The
IDRID is split into the training set and testing set accord-
ing to different lesion labels. Empirically, the distribution
results are displayed in Table 1.

2.3.2. Fundus Image Preprocessing. A fundus image is taken
with a color fundus camera. In most cases, influenced by
uneven light intensity and camera lens contamination, the
resultant fundus images are corrupted by uneven brightness,
resulting in blurry and noisy areas. If the corrupted images
are trained by the deep neural model directly, the noises will
have adverse impact on the subsequent lesion segmentation
of diabetic retinopathy.

To address the above problems, we take measures before
feeding the fundus images into our network, such as image
cropping, image denoising, image enhancement [26], image
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normalization, data augmentation, and image dicing. Here,
we will illustrate the detail of preprocessing procedures.
(1) Image cropping: the original samples are usually
enclosed with a black border. To get the Region of Interest
(ROI), OTSU and maximum connected components are
used to obtain the optimal treatment threshold and
remove outliers, respectively. (2). Image denoising: in the
nature scenery, most photos are collected in Gaussian
noise environment. To improve the robustness, Gaussian
filter with 3 × 3 kernel is utilized to depress image noises.
(3) Image enhancement: it can be observed that microa-
neurysms, hemorrhage, and blood vessel have indistin-
guishable appearance in color space. If one aims to
enhance image quality towards the direction of color var-
iance, it is in vain for recognizing the three objects. There-
fore, CLAHE (Contrast Limited Adaptive Histogram
Equalization) is applied to enhance images in contrast
[27]. (4) Image normalization: considering that the color
and brightness of fundus images are quite different, we
need to confine some parameters in our network model
to a reasonable range. Otherwise, the overlarge parameters

will slow the convergence speed of our model. Thus, we
use normalization operation to speed up and boost the
performance of our model at the same time. Formally,
the normalized image can be generated as follows:

xnorm =
x − u
θ

, ð3Þ

where x and xnorm denote the original image and normal-
ized image, respectively. μ and θ are the mean value and
standard derivation of all the samples in dataset IDRID.
(5) Data augmentation: in contrast with traditional RGB
images, collecting medical images is arduous. However,
the performance of a deep neural network relies heavy
on the scale of training data. Hence, we resort to
common-used data augmentation strategies: random hori-
zon flips, rotation, random crop, shift, and rescaling. (6)
Image dicing: as we can see, the resolution of the original
image in dataset IDRID is 4288 × 2848, which hinders the
deep model from running in low-capacity devices. Besides,
the areas occupied by lesions are usually relatively small,
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Figure 3: The comparative curves of Balanced Focal Loss and Focal Loss. (a) The results of Balanced Focal Loss and Focal Loss with different
weights. (b) The zoom results of Balanced Focal Loss and Focal Loss when w = 1.
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and the locations of lesions are scattered. So, we resolve to
improving the performance of our model via image dicing
technology. In Figures 4(b) and 4(c), motivated by the
sliding window method, the dataset is divided into positive
samples (with lesions) and negative samples (without
lesions). As depicted in Figure 5, the detailed characteris-
tics of the lesion area are clear enough, which is conducive
to the subsequent lesion segmentation.

After the above image preprocessing operations, as dis-
played in Figures 4(b) and 4(c), the original high-
resolution fundus images are transformed into several sub-
images with 256 × 256 pixels using the sliding window
strategy with stride = 64. Then, the subimages with a black
background are eliminated, and the remaining are treated
as the valid input.

2.3.3. Fundus Image Postprocessing. After the above-
mentioned image preprocessing, the whole image has been

transformed into a group of subimages. For our trained
model, the segmentation output has the same shape with
the input subimage. Nevertheless, in real-world applica-
tion, the pixels of the original image should be assigned
with predicted labels in the final segmentation output.
To achieve it, we attempt to merge these subimages to
form the final segmentation result. The predicted label of
a pixel is jointly determined by averaging the segmentation
results of multiple subimages.

As mentioned in Fundus Image Preprocessing, the subi-
mages are generated by the sliding window strategy. In this
way, several subimages are overlapped inevitably. For the
pixel inside the boundary, its final label will be assigned by
averaging 16 subimage blocks. For the pixel on the boundary,
it should be processed individually.

2.4. Experiments and Analysis

2.4.1. Training Parameters. All the experiments are executed
on hardware devices with Intel Xeon CPU, 128GB memory,
and NVIDIA Tesla P100 GPU. The software environment is
Ubuntu 16.04 operating system and PyTorch 1.0 framework.
The input size is 256 × 256, and the batch size is set to 64.
Since no pretrained model is provided, He initialization is
used to initialize our model [28]. The network is trained by
optimizing loss L for 100 epochs. As we all know, a higher
and fixed learning rate cannot guarantee to bring better

Hard exudates

Soft exudatesMicroaneurysms

Hemorrhage

(a) Lesions of diabetic retinopathy (b) Positive samples

(c) Negative samples

Figure 4: Color fundus samples of dataset IDRID: (a) the sample contains microaneurysms, hard exudates, soft exudates, and hemorrhage;
(b) positive samples; (c) negative samples.

Table 1: The distribution of IDRID.

Lesion type Training set Testing set

Microaneurysms 54 27

Hard exudates 54 27

Soft exudates 26 14

Hemorrhage 53 27
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convergence to the deep neural network. Consequently, we
adjust the learning rate as the training procedure goes on.
The initial learning rate is set to 2 × 103. When the loss stops
decreasing during training, the learning rate is reduced by a
factor of 10. Also, the Adam optimizer with setting
(β1 = 0:9, β2 = 0:999) is adopted. To be fair, all the compara-
tive methods are implemented and line with the hyperpara-
meters and parameters in their papers.

2.4.2. Evaluation Metrics. Evaluation metrics play an impor-
tant role in measuring the performance of comparative
models. In order to analyze the experimental results quanti-
tatively, we use several specific metrics to evaluate the perfor-
mance in the task of segmenting diabetic retinopathy image,
including Sensitivity (SEN), Intersection-over-Union (IOU),
and Dice coefficient (DICE). To implement them, we first
calculated true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). TP here refers to the intersec-
tion of the true lesion area and predicted lesion area, FP
denotes the intersection of the true normal area and pre-
dicted lesion area, TN is the intersection of the true normal
area and predicted normal area, and FN is defined as the
intersection of the true lesion area and predicted normal
area. Based on the above concepts, we introduce the fol-
lowing metrics:

SEN sensitivityð Þ = TP
TP + FN

,

IOU =
TP

TP + FP + FN
,

DICE =
2TP

2TP + FP + FN
:

ð4Þ

Let us take a close look at the three metrics. Sensitivity
can be treated as the misdiagnosis rate of a disease. In our
work, it refers to the proportion of TP and true lesion
area, which is a critical and foremost factor for patients
and doctors. In real-world application, we try to decrease
the misdiagnosis rate to the best of our ability. IOU is
an evaluation metric used to measure the accuracy of a

semantic segmentation model, and it specifies the amount
of overlap between the predicted results and the ground-
truth. DICE is a measure of how similar the prediction
and groundtruth are, which not only is a measure of
how many positives the models predict but also penalizes
for the false positives of the models. Regarding the above
commonly used metrics, the closer they are to 1, the better
the segmentation performance.

3. Results and Discussion

In this section, we conduct our experiments to evaluate
the performance of our segmentation methods. The exper-
iments include three parts: the first part makes ablation
study of our method. It demonstrates the different perfor-
mance brought by the components appearing in our
methods. The second part makes user study to evaluate
our method against several state-of-the-art methods on
dataset IDRID. The last part describes the parameters
and costs of all the methods to verify their efficiency.

3.1. Ablation Study. To better evaluate our proposed method,
we design an ablation study by replacing each component
and keeping the rest unchanged. We place particular empha-
sis on differences brought by four improvements discussed in
Network Description. Thus, we conduct the following
experiments.

Experiment 1: the original U-Net model is trained and
tested on our testing samples.

Experiment 2: based on the original U-Net, the cross-
entropy loss is replaced with Balanced Focal Loss function
(denoted as U-Net-FL for convenience).

Experiment 3: based on Experiment 2, the pooling layers
in encoders are replaced with 3 × 3 convolution layers, and all
the activation functions are set to RReLu (denoted as U-Net
V1 for convenience).

Experiment 4: on the basis of Experiment 3, the MSFF
block to extract multiscale features is integrated into
encoders (denoted as U-Net V2 for convenience).

(a) Original diabetic retina image (b) Diabetic retina image after preprocessing

Figure 5: The comparison between the original diabetic retinopathy image and its corresponding preprocessed result.
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Experiment 5: on the basis of Experiment 4, the CCA
module is deployed to fuse skip connection and lower-
resolution decoder (denoted as FFU-Net for convenience).

All the above experiments are performed on a prepro-
cessed dataset, and the quantitative results are illustrated in
Tables 2 and 3. Obviously, FFU-Net consistently outper-
forms U-Net on all metrics in the task of segmenting lesions.
This improvement is mainly attributed to MSFF, CCA, and
Balanced Focal Loss. Using Balanced Focal Loss, U-Net-FL
increase IOU by up to an average 0.031 points on all lesion
types, which proves that Balanced Focal Loss function is
capable of coping with data imbalance and misclassification
in the segmentation task. After the pooling layers are
replaced with 3 × 3 convolution layers and all the activations
are set to RReLu, U-Net V1 achieve slightly better than U-
Net-FL. The introduction of MSFF brings more improve-
ment on metrics SEN, IOU, and DICE, which verifies the
effectiveness of MSFF block to lesion segmentation for dia-
betic retinopathy. With the help of CCA, FFU-Net achieves
the DICE value increased by 0.0291 points, and the IOU
value increased by 0.0347 points. Note that in the analyses
of CCA and MSFF, we find that they surpass U-Net V1 by
a large margin on all metrics. This indicates that the compo-
nents of CCA and MSFF play more critical roles in segmen-
tation of medical images.

In Figure 6, we visually present the segmentation results
of different methods on dataset IDRID. It can be seen that
U-Net and U-Net-FL cause too many defects with lower
accuracy. Seen from the prediction results by U-Net V1, we
observe that it can provide more clear boundaries than
U-Net-FL. Since MSFF is utilized in the encoders, it
appears that U-Net V2 produce clear and pleasing seg-
mentation results. Nevertheless, we find that U-Net V2
fails to recognize the lesion with smaller size (MA). By

incorporating the CCA module, FFU-Net aid in refining
the details of lesions, leading to closer segmentation result
to the groundtruth. Therefore, we can safely draw the con-
clusion that the improvements mentioned in FFU-Net are
effective quantitatively and qualitatively.

3.2. User Study. To confirm the effectiveness and robustness
of our proposed method, we conduct a user study against
the state of the art on metrics SEN, IOU, and DICE. The
comparative methods include the Dai et al. method [29],
Zhang et al. method [30], Van Grinsven et al. method [17],
M-Net [31], FC-DenseNet [32], Sambyal et al. method [18],
and original U-Net. To further show our superiority, we,
respectively, display the segmentation quantitative results
on four lesion types in Tables 4 and 5. As can be seen,
FFU-Net claims its superiority over the others on segmenting
all the lesions. In comparison with the second best method
(Sambyal et al.), FFU-Net achieves the DICE value increased
by 2.0% and the IOU value increased by 3.5%. As reported in
[29], the Dai et al. method is designed for timely detection
and treatment of MA, which is consistent with our results
in Table 5. However, it is unable to cope with the detection
of other lesion types (EX and SE). Similarly, Zhang et al.
aim to automatically detect exudates in color eye fundus
images and perform better in segmenting EX and SE but
work worse in segmenting MA and HE. Van Grinsven et al.
solve the unbalanced problem by dynamically selecting mis-
classified negative samples and apply CNN to HE segmenta-
tion. The results reported in work [17] are verified in our
experiment. Limited by the lack of generalization ability,
Van Grinsven et al. are incapable of processing EX, SE, and
MA perfectly. Although M-Net achieves state-of-the-art
OD and OC segmentation results on the glaucoma dataset,
it fails to transfer to our IDRID well. Besides, FC-DenseNet
extends DenseNet to deal with the problem of semantic seg-
mentation on natural images. When applying it to IDRID, it
cannot show enough ability of presenting irregular microle-
sions. Sambyal et al. employ periodic shuffling with subpixel
convolution initialized to convolution nearest neighbor
resize. As we all know, the subpixel strategy is a common
trick in the superresolution task. Whereas in Figure 7, we
found more holes in the segmentation results, leading to
unsatisfactory quantitative results on all metrics. Benefiting
from theMSFF, CCA, and Balanced Focal Loss, our proposed
FFU-Net achieves consistent improvement to all existing
methods on all three performance metrics. Figure 7 shows
some visual examples of four lesion types, where we observe
that our method could generate closer results to the ground-
truth without introducing additional artifacts. Apparently,
we can see that Dai et al., Zhang et al., and Van Grinsven
et al. suffer from inaccurate prediction for the boundaries
of all lesion types. Also, the failure of M-Net and FC-
DenseNet in transferring to all image samples is attributed
to their poor generalization ability. Therefore, it can safely
come to the conclusion that FFU-Net achieves comparable
performance quantitatively and qualitatively.

3.3. The Overhead of Parameters and Computation. It is nec-
essary to analyze the overhead of parameters and

Table 2: Ablation study of the proposed model against U-Net, U-
Net V1, U-Net V2, and U-Net-FL on EX and SE.

EX SE
Methods SEN IOU DICE SEN IOU DICE

FFU-Net 0.8755 0.8414 0.9138 0.7933 0.7876 0.8812

U-Net V2 0.8440 0.8159 0.8986 0.7547 0.7535 0.8594

U-Net V1 0.8033 0.7867 0.8769 0.6934 0.7028 0.8191

U-Net-FL 0.7929 0.7763 0.8704 0.6801 0.6893 0.8099

U-Net 0.7819 0.7602 0.8638 0.6713 0.6707 0.8029

Table 3: Ablation study of the proposed model against U-Net, U-
Net V1, U-Net V2, and U-Net-FL on MA and HE.

MA HE
Methods SEN IOU DICE SEN IOU DICE

FFU-Net 0.5933 0.5610 0.7188 0.7342 0.7365 0.8450

U-Net V2 0.5508 0.5267 0.6669 0.6936 0.6917 0.8177

U-Net V1 0.5172 0.4891 0.6334 0.6598 0.6562 0.7897

U-Net-FL 0.4968 0.4626 0.6255 0.6447 0.6425 0.7797

U-Net 0.4810 0.4490 0.6197 0.6366 0.6333 0.7755
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computation of our comparative methods. Notably, all com-
parisons are evaluated on the same machine. Evidently, as
seen in Table 6, the Dai et al. method and Zhang et al.
method are significantly lighter than other models, but this
comes at the price of an apparent performance drop. With
respect to the Van Grinsven et al. method, it solves the seg-
mentation task through a CNN pixel-wise classifier. Whereas
without taking spatial relationship into account, Van Grins-
ven et al. cannot achieve pleasing results. Since FC-
DenseNet has more dense residual modules and more than

100 layers, it needs more time and more parameters in the
testing procedure. As another modified U-Net, the Sambyal
et al. method employs periodic shuffling with subpixel con-
volution based on U-Net, so it will take more time to imple-
ment in our application. By introducing splitting operation
into FFU-Net, we observe that FFU-Net elapses less time
while making noticeable improvement on segmentation per-
formance. From the above discussions, it is observed that
perhaps FFU-Net is the best choice when considering the
influences between various factors.

Table 4: Comparative segmentation results of the proposed model against the state of the art on EX and SE.

EX SE
Methods SEN IOU Dice SEN IOU DICE

Dai et al. 0.8074 0.7843 0.8791 0.7006 0.7071 0.8284

Zhang et al. 0.8418 0.8137 0.8973 0.7523 0.7505 0.8575

Van Grinsven et al. 0.8031 0.7749 0.8732 0.6988 0.692 0.818

M-Net 0.8327 0.8083 0.894 0.7297 0.7156 0.8343

FC-DenseNet 0.8414 0.8099 0.8949 0.7554 0.7623 0.8651

Sambyal et al. 0.8421 0.8183 0.9001 0.7563 0.763 0.8656

FFU-Net 0.8755 0.8414 0.9138 0.7933 0.7876 0.8812

U-Net 0.7819 0.7602 0.8638 0.6713 0.6707 0.8029

Table 5: Comparative segmentation results of the proposed model against the state of the art on MA and HE.

MA HE
Methods SEN IOU DICE SEN IOU DICE

Dai et al. 0.5498 0.5237 0.6874 0.6895 0.6990 0.8228

Zhang et al. 0.4897 0.4723 0.6416 0.6418 0.6407 0.7810

Van Grinsven et al. 0.4832 0.4667 0.6364 0.6844 0.6761 0.8068

M-Net 0.5366 0.5097 0.6753 0.6872 0.6796 0.8093

FC-DenseNet 0.5521 0.5276 0.6908 0.6976 0.6960 0.8208

Sambyal et al. 0.5537 0.5438 0.7045 0.6998 0.7038 0.8261

FFU-Net 0.5933 0.5610 0.7188 0.7342 0.7365 0.8450

U-Net 0.4810 0.4490 0.6197 0.6366 0.6333 0.7755

FFU-NetU-Net V2U-Net V1U-Net FLU-Net Input GroundTruth

EX

HE

MA

SE

Figure 6: The visual segmentation results of U-Net, U-Net-FL, U-Net V1, U-Net V2, and FFU-Net. Zoom in to see the details.
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4. Conclusion and Future Work

Based on the original U-Net network, we propose a new
model named FFU-Net which is suitable for lesion segmenta-
tion of diabetic retinopathy. The FFU-Net network model
mainly has the following contributions: The original pooling
layer is replaced with a convolutional layer to reduce the spa-
tial loss of the fundus image. MSFF block is incorporated to
extract multiscale features and speed up feature fusion with
splitting operation. By virtue of the CCA module, FFU-Net
fuses the information between skip connection and lower-
resolution decoder with shared attention weights. Consider-
ing the data imbalance problem in diabetic retinopathy, we
present a Balanced Focal Loss function. Finally, in order to
verify the effectiveness of our proposed model, ablation study
and user study are carried out on the public benchmark
IDRID. The final experimental results demonstrate the effec-
tiveness and advancement of our proposed FFU-Net in terms
of almost all metrics.

In the future, we will investigate a more general and com-
prehensive segmentation method for diabetic retinopathy
and put emphasis on the following points: (1) Few-shot

learning: though we solve the overfitting problem caused by
insufficient data by data slicing, the burden of collecting
large-scale supervised data for real-world application is still
challenging. Thus, we resort to few-shot learning to achieve
better segmentation. (2) Contaminated labels: different from
the benchmark that is refined and maintained by profes-
sionals, the practical images of diabetic retinopathy are vul-
nerable to be contaminated and damaged. Thus, we should
learn how to segment the lesion images only with incomplete
and contaminated labels. (3) Grading the severity of diabetic
retinopathy: as a foundation work, we plan to expand our
work to grade the severity of diabetic retinopathy and apply
our achievements to real-world application.
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Table 6: The overhead of parameters and computation of different
comparative models.

Models Running time Parameters

Dai et al. method 616ms —

Zhang et al. method 688ms —

Van Grinsven et al. method 2598ms 0.98M

M-Net 3745ms 1.67M

FC-DenseNet 4361ms 1.73M

Sambyal et al. method 1535ms 1.33M

FFU-Net 695ms 0.97M

U-Net 780ms 1.93M
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Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in
medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR
systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional
neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are
decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way
with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000
X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average
precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best
result compared with existing literature for this dataset.

1. Introduction

Imaging through different kinds of medical devices plays a
fundamental role in clinical diagnosis [1], treatment plan-
ning [2], and treatment response assessing [3] in the process
of medical care. In modern hospitals, different modalities and
protocols of digital imaging techniques have been used to
generate diagnostic images for each patient, including com-
puted tomography (CT), X-ray, ultrasound, hybrid positron
emission tomography and computed tomography (PET-
CT), and magnetic resonance imaging (MRI). These medical
images with multiple dimensions (e.g., 2D, volumetric 3D,
and time series) reflect anatomic and functional aspects of
organs and tissue types that require domain experts’ analysis
and interpretation. These volumes are usually formed in the
Digital Imaging and Communications in Medicine
(DICOM) format and stored in picture archiving and com-
munication systems (PACS) [4]. A domain expert can search
PACS through patient’s ID, study ID, time range, or other
textual keywords, which is labor intensive and time consum-
ing. As an important part of computer-aided diagnostics

(CAD), content-based medical image retrieval (CBMIR) [5–
8] can retrieve medical images mainly via visual contents
(e.g., same modality, same body orientation, same anatomi-
cal region, or same disease condition) in an existing dataset
for more accurate comparative diagnosis.

In the CBMIR domain, there are two major directions in
research works. One kind of methods focuses on automatic
retrieving images from PACS-like databases, which search
images of the same imaging modality, body orientation, body
region, and the like [9–11]. Another kind of methods put
their efforts into retrieving images that characterize the sim-
ilar disease convenient for diagnostic comparing [12, 13]. In
this study, we follow the former methods to propose an effec-
tive CBMIR system for 2D slice retrieval. That is because vol-
umetric 3Dmedical images are formed by a series of 2D slices
acquired from the target body organ, and physicians mainly
rely on these 2D slices when they are analyzing and interpret-
ing images on hand [8].

Unlike similarity defined in generic image retrieval
domain, the retrieved medical images by directly comparing
features using some similarity measure may not be in
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accordance with what a physician would want for diagnosis,
which formed a “semantic gap” in medical image retrieval
[5]. To reduce this gap, CBMIR systems are generally
designed under a classification-driven strategy. That is, a
CBMIR system is trained using supervised approaches with
labeled images. When a query image is submitted to the
CBMIR system, the query image is classified first, and then,
some visual features and similarity measures are used for
similarity retrieval [9, 10, 14]. Deep learning is a break-
through in machine learning research. Using artificial neural
networks with many hidden layers to represent digital images
has been proven to be a very effective method to describe
low-level, mid-level, and high-level semantic features of an
image for recognition and other purposes [15–17]. Among
different deep learning architectures, deep convolutional
neural networks (CNNs) have proven to be powerful tools
that achieved very high precision results in many natural
image classification contests [18–20]. In the medical field,
deep CNNs are also quickly applied for different tasks, and
promising results are emerging [9, 10, 21–24]. Training deep
CNNs need a large number of labeled images to choose the
huge number of parameters. Note that in the medical
domain, such large image datasets are quite rare, due to the
unbearable high cost of domain experts’manual image label-
ing and annotations [5, 21, 24]. And in contrast to generic
image databases, medical image datasets usually are unbal-
anced because of uneven incidence rates of different malig-
nancies. Dropout [25], data augmentation, and transfer
learning [26] are the most common techniques used to pre-
vent overfitting in the process of training deep CNNs on
small and unbalanced image datasets. However, for medical
image analysis tasks, these techniques meet various problems
[5, 9, 24]; the requirement for a more effective and more
robust CBMIR system is still urgent.

In this paper, inspired by pioneering research works [9, 10,
14], we focus on 2D medical image retrieval and put forth an
effort to alleviate the two main difficulties in CBMIR (i.e., (1)
the labeled medical image datasets are commonly not large
enough for training deep CNNs and (2) the imbalance prob-
lem is naturally attached to medical image datasets from clinic
diagnosis). A new deep CNN-based 2D medical slice retrieval
method is proposed, which can be effectively trained on rela-
tively small labeled and unbalanced medical image dataset
and promote the retrieval precision. First, in addition to com-
monly used methods for training deep CNNs on small and
unbalanced datasets, e.g., dropout [25] and data augmenta-
tion, we supplement nonlinear components by using empirical
mode decomposition (EMD) on 2D medical images to
enhance effective information and reduce the image noise
for training deep CNNs. Second, as for deep CNN architecture
in this work, we employ residual network (ResNet) [19] as the
backbone network adapted for learning different level features
from medical images, which is combined with an attention
mechanism to focus on the most relevant features by integrat-
ing local and global features in different scales [27]. And center
loss function is combined with softmax loss function as a
supervision signal in a deep CNN training process to facilitate
nearest-neighbor similarity retrieval performance. The contri-
butions of this paper are given as follows:

(1) Nonlinear empirical mode decomposition on 2D
medical images is proposed for supplementing effec-
tive information to original 2D medical images for
better distinctively expressing 2D medical images

(2) A residual network-based deep CNN model with
attention and center loss modules is employed and
trained on publicly available medical image datasets.
The learned concise feature vectors are suitable for
both classification-based and nearest-neighbor
similarity-based medical image retrieval and show
the great potential to handle large-scale medical
image retrieval

2. Related Work

Among CBMIR literatures, there are two crucial factors that
determine the performance of systems: (1) Feature vector
construction: medical image features such as texture, shape,
etc., should be extracted and formed into a vector to repre-
sent the query image and the images in datasets. (2) Retrieval
strategy: classification-based retrieval strategy, nearest-
neighbor search strategy, or their combination should be
carefully chosen for different medical retrieval task.

2.1. Hand-Crafted Features. Hand-crafted features including
texture features, keypoint-based features, local features, and
global features are commonly used in CBMIR systems [5, 6,
8, 28, 29]. Jiang et al. [30] proposed a retrieval strategy that
used mammographic region of interest (ROI) as query input,
then retrieve breast tumor based on SIFT features. Caicedo
et al. [31] used SIFT features to retrieve basal-cell carcinoma.
Haas et al. [32] used SURF to capture the local texture of lung
CTs for retrieval. Local Binary Patterns (LBPs) as local tex-
ture features were successfully used in ImageCLEFmed, 2D-
Hela, and brain MRI retrieval tasks [33–35]. Xu et al. [36]
proposed a corner-guided partial shape matching method
that can dramatically increase the matching speed for spine
X-ray image retrieval. Holistic features such as global GIST,
global HOG, global color histogram, and moments were also
used in medical image retrieval [37–41].

2.2. Learned Features Using Deep CNNs. In recent years,
using features get through deep CNNs has achieved impres-
sive results in generic image classification, object recognition,
detection, retrieval, and other related tasks. But in the medi-
cal field, there is not much attention on exploring deep neural
networks CBMIR task, partially because the amount of
labeled medical images is typically limited. Qayyum et al.
[10] proposed a CNN framework and trained the CNN on
the medical image set they collected. Khatami et al. [9, 14]
tried two retrieval strategies for medical image retrieval: the
first method used one CNN model with transferred weights
to shrink the search space and then used Radon projection
to do similarity search. The second method employed multi-
ple CNN models trained in a parallel way to get the shrunk
search space. Bar et al. [42] used a pretrained CNN model
from natural images for chest X-ray retrieval. Semedo and
Magalhães [43] trained their CNN models on provided med-
ical images in ImageCLEFmed 2016; they employed dropout
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and data augmentation to avoid overfitting. Hofmanninger
and Langs [44] trained CNN using clinical routine images
and radiology reports and carried out fine-tuning on current
medical image retrieval task.

3. Methodology

There are pioneering studies that have been performed on
deep CNNs for medical image retrieval and have shown
promising results [9, 10, 14]; the problems of short of labeled
images and highly imbalanced data distribution are still two
main challenges for applying deep CNNs in medical image
retrieval task [5]. There are also needs for more accurate
and faster image retrieval methods for CBMIR [5]. To tackle
these problems, in this work, we propose a multicomponent
combined deep CNN framework for 2D medical image
retrieval. The flowchart of content-based medical image
retrieval is shown in Figure 1. This deep convolutional neural
network is trained by a supervised learning way for classifica-
tion and gets a concise feature vector for efficient nearest
neighbor searching similar medical images. A brief descrip-
tion of the proposed framework is presented in the following
sections.

3.1. Processing 2D Medical Image with Empirical Mode
Decomposition (EMD). Empirical mode decomposition was
originally introduced for the adaptive analysis of nonstation-
ary and nonlinear time-domain signals and has become one
of the most powerful tools for analyzing time-frequency (T-
F) signal [45]. Then, EMD was extended to handle multidi-
mensional data and acquired successful application in image
tasks [46–49]. For image analysis, EMD is a fully data-
adaptive multiresolution data analysis technique to decom-
pose the multispatial resolution spatial-frequency-
amplitude components of the image into a set of intrinsic
mode functions (IMFs) [50, 51]. By advantage of the EMD
principle, we can get multifrequency components (i.e., IMFs)
of 2D medical images, and these frequencies are not prede-
signed; these frequencies can self-adapt to different content
of an image. Thus, we acquire nonstationary and nonlinear

multiresolution components of 2D medical images, which
can provide supplementary information to commonly used
spatial filter sets in image processing. EMD is implemented
in an iterative process. First, a sifting process is used to find
IMFs. Given a signal xðtÞ, Equation (1) is the process to get
one IMF.

x tð Þ − 〠
k

i=1
mi = hk ⇒ hk = c1, ð1Þ

where mi is the local mean of the maxima and minima enve-
lopes. These two envelopes are formed by connecting all local
maxima or minima with a cubic spline. With the IMFs, the
data xðtÞ can be decomposed by another sifting process:

x tð Þ − 〠
n

j=1
cj + rn, ð2Þ

where cj (j = 1 to n) is the IMFs and rn is the final residual
component. Figure 2 shows an example of a 2D X-ray image
decomposed using EMD.

3.2. The Proposed Medical Image Retrieval Method. In this
section, we introduce a deep CNN framework for medical
image retrieval on a rather small dataset and with highly
imbalanced data distribution. First, we discuss the network
architecture employed in this work. Second, the supervision
signal combining softmax loss function with center loss func-
tion to train deep CNN is discussed. Third, the training pro-
cess is detailed. The proposed deep CNN framework is
illustrated in Figure 3. For the input of the network, we
employ original image and its IMF2, IMF3, and IMF4 com-
ponents, because IMF1 contains mainly noise with quite high
spatial frequency, and IMF5 contains the overall image inten-
sity trend with very low spatial frequency. For medical image
classification, IMF1 and IMF5 cannot provide useful struc-
ture information.

Query
image

Medical image
training dataset

Deep CNN
training

Features of
images in the

database

Trained CNN model

Feature extraction
Features of the

query image

Similarity
measure

Retrieved
images

Figure 1: The proposed deep CNN-based content-based medical image retrieval flowchart.
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3.2.1. The Network Architecture. The proposed deep CNN
architecture employs Residual Attention Network (RAN)
[27] as the backbone network. In RAN, mixed attention acti-
vation function is used for both spatial and channel attention.

The attention mechanism was implemented as multiple
attention modules, and each module consisted of a mask
branch and a trunk branch, in which the mask branch was
used to select good properties of original features and

(a) Original (b) IMF1 (c) IMF2 (d) IMF3 (e) IMF4 (f) IMF5

Figure 2: An example of a medical X-ray image is decomposed into five IMFs using empirical mode decomposition.
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x

T(x)
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Figure 3: The proposed deep CNN framework for content-based medical image retrieval.
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suppress noises from trunk features. Residual learning was
introduced in the learning process of RAN; the mask branch
was constructed as identical mapping. With the residual
learning, Residual Attention Network can go very deep, and
the training process was much efficient. For medical image
retrieval task, the nearest-neighbor similarity search is the
most common way used to rank retrieved images. If the
length of vector used to compute the similarity between two
compared medical images is too long, the retrieval process
will be very time consuming and cannot be used in practice.
Thus, a dimensionality reduction model is added to get con-
cise while strong distinguishing features. Table 1 details the
CNN structure used in this work.

3.2.2. Joint Loss Function. Wen et al. [52] firstly introduced
center loss function in deep CNN for face recognition task.
In their work, center loss function was linearly jointed with
softmax loss function to form a mixture supervision signal
to train deep CNN. These two loss functions that were used
in conjunction with each other can achieve discriminative
feature learning, that is, the deeply learned features contained
intraclass compactness and interclass dispersion. Discrimi-
native features are very suitable for medical image classifica-
tion and retrieval task in which nearest-neighbor similarity

search is most commonly used to accomplish the retrieve.
Equation (3) formulates this joint loss function.

Lossmixture = Losssoftmax + λLosscenter − 〠
m

i=1
log

eW
T
yi
xi+byi

∑n
j=1e

WT
yi
xi+byi

+
λ

2
〠
m

i=1
xi − cyi

��� ���2
2
,

ð3Þ

where the left part is the original softmax loss and the right
part is the center loss. The cyi denotes the yith class center
in the form of a feature vector. The parameter λ is empirically
set as 0.002 in this paper’s experiments.

3.2.3. Network Training Setting. As shown in Figure 3, the
input of the network is the original medical image with its
EMD components that contain IMF2, IMF3, and IMF4 got
from EMD. The network training is developed and trained
by using Keras on TensorFlow. The training processes are
performed on a workstation with Ubuntu 18.04, having
Intel(R) Xeon(R) Gold 6154 CPUwith 256G RAM, and NVI-
DIA TITAN V graphic card with 12G RAM. Data

Table 1: The details of deep CNN used for medical image retrieval.

Layer name Output size Layer

Conv1 128 × 128 7 × 7, 64, stride 2
Max pooling 64 × 64 3 × 3 stride 2

Residual attention unit 64 × 64

1 × 1, 64

3 × 3, 64

1 × 1,256

0
BB@

1
CCA × 1

Attention mask block × 1

Residual attention unit 32 × 32

1 × 1, 128

3 × 3,128

1 × 1,512

0
BB@

1
CCA × 1

Attention mask block × 1

Residual attention unit 16 × 16

1 × 1, 256

3 × 3,256

1 × 1, 1024

0
BB@

1
CCA × 1

Attention mask block × 1

Residual unit 8 × 8

1 × 1, 512

3 × 3, 512

1 × 1, 2048

0
BB@

1
CCA × 3

Conv2 8 × 8 3 × 3, 32, stride 1, padding: same

Max pooling 4 × 4 2 × 2 stride 1
Average pooling 1 × 1 4 × 4 stride 1
FC, softmax, Center loss 116

Trunk depth 57
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argumentation and dropout are employed in the training
process. The number of epochs is 500, the batch size is 16,
the initial learning rate is 0.0001, and early stopping is on.
When the network accuracy is not improved within 20 train-
ing iterations, the early stopping mechanism will be trig-
gered. The 500 epoch setting is to make sure that in most
cases, the network training is stopped by the early stopping
mechanism.

4. Experimental Results

In this paper, the very challenging IRMA dataset is chosen to
evaluate the proposed framework and compare with other
methods reported in the literature. The proposed CNN
model is evaluated in terms of classification performance
and retrieval performance, respectively.

4.1. Database Description. IRMA (Image Retrieval in Medical
Applications) database is a well-known medical image data-
set for content-based medical image retrieval research, which
was made by Aachen University of Technology (RWTH)
[53]. This dataset was arbitrarily selected from a routine at
the Department of Diagnostic Radiology, Aachen University
of Technology. IRMA code is used to specify each image’s
class along four independent hierarchical axes: TTTT-
DDD-AAA-BBB. In this code, T represents the technical
code (imaging modality), D represents the directional code
(body orientations), A represents the anatomical code (the
body region examined), and B represents the biological code
(the biological system examined). This dataset contains a
total of 12,000 images divided into 116 classes, 11,000 image
radiographs with known categories for training, and the rest
1000 radiographs as test. Figure 4 illustrates a sample image
with the corresponding IRMA code.

4.2. Classification Performance

4.2.1. IRMA Error. ImageCLEF07 proposed the error evalua-
tion procedure for IRMA Medical Image Annotation to cal-

culate the retrieval error [54, 55]. The total IRMA error can
be computed by the following formula:

〠
I

i=1

1
bi

1
i
δ li, l̂i
� �

with δ li, l̂i
� �

=

0, if l j = l̂ j,∀j ≤ i,

0:5, if l j = ∗,∃j ≤ i,

1, if l j ≠ l̂ j,∃j ≤ i:

8>>><
>>>:

ð4Þ

Here, lI1 = l1, l2,⋯, li,⋯, lI is the correct code (for one

axis) of an image, and l̂
I
1 = l̂1, l̂2,⋯, l̂i,⋯, l̂I is the classified

code (for one axis) of an image. I is the depth of the tree to
which the classification is specified. If there is an incorrect
classification at position l̂I , all succeeding decisions will be
considered as wrong decisions.

4.2.2. Commonly Used Classification Performance Measure.
To evaluate the performance of different methods for classi-
fication task, commonly used performance evaluation indica-
tors include average precision (AP), average recall (AR), and
F1 measure. These indicators are calculated as the following:

AP =
1
M

〠
M

i=1

TPi

TPi + FPi
,

AR =
1
M

〠
M

i=1

TPi

TPi + TNi
,

F1measure = 2 ×
AP × AR
AP + AR

,

ð5Þ

where TP is true positive, indicating the number of images
correctly classified as class k; FP is false positive, indicating
the number of images misclassified as class k; TN is true neg-
ative, indicating the number of images correctly classified as
not class k; FN is false negative, indicating the number of
images misclassified as not class k; and M means the total

IRMA Code

Technical code

Directional code

Anatomical code

Biological code Musculosceletal system

X-ray, plain radiography, analog, overview
image

1121-240-422-700

Sagittal, lateromedial

Upper extremity (arm), radio carpal joint, right
carpal joint

Figure 4: A sample image (arm) with the corresponding IRMA code.
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number of classes that is 116 IRMA classes in this paper. As
the F1 measure is more sensitive to data distribution, it is a
suitable measure for classification problems on imbalanced
datasets [10].

4.2.3. Classification Performance and Comparison. The per-
formance of the proposed single-model framework for med-
ical image classification is evaluated by the IRMA error and
commonly used measures for image classification methods,
which are detailed in Sections 4.2.1 and 4.2.2. Table 2 com-
pares the IRMA error got by the proposed framework and
several deep CNN-based methods reported in the literature
[9, 14]. Table 2 shows that with the fast development of the
deep CNN technique, much better classification accuracy
(i.e., lower IRMA error score) can be gotten by employing a
more powerful CNN model as a backbone network. In terms
of the IRMA error, our proposed framework gets a much
lower score than referenced deep CNN-based methods
reported in the literature.

Considering the relative lag of the technology applied on
IRMA dataset and the rapid development of the deep CNNs
in computer vision area, Table 3 compares the classification
accuracy measures on the IRMA dataset including IRMA
error, AP, AR, and F1 measure of the proposed method with
various state-of-the-art deep CNNs including VGG [18],
ResNet [19], and AttentionResNet [27] that have achieved a
very high recognition score on large image dataset challenges
(such as ImageNet [58] and CoCo [59]). Table 3 shows that
the proposed framework performs better in classifying IRMA
images. The proposed framework and the compared deep
CNNs are trained under the same condition, that is, using
the same training dataset, same image argumentation strat-
egy, same number of epochs, same learning rate, and so on.

For classification-based medical image retrieval, the retrieval
performance depends entirely on the accuracy of classifica-
tion, the higher classification accuracy means the better
retrieval performance. As in Table 3, our proposed frame-
work achieved the lowest IRMA error and the best F1
measure.

The confusion matrix is shown in Figure 5, where most
classes can be classified rightly. There are 38.2% classes with
accuracy better than 90%, 51.2% classes with accuracy better
than 80%, and 59.1% classes with accuracy better than 70%.

Table 2: Comparison of our classification performance to other
CNN reported in the literature for IRMA images. The IRMA error
with ∗ was the best test value selected from the literature.

Methods IRMA error

Proposed method 68.48

Parallel shrink CNN+Radon [9] 165.55∗

Sequential shrink CNN+LBP [14] 168.05∗

CNN+Radon [56] 210.35

CNNC+RBC [57] 224.13

Table 3: Comparison of classification performance of the proposed
framework with other deep models and state-of-the-art on IRMA
images.

Methods
IRMA
error

AP AR
F1

measure

VGG16 [18] 115.08 0.56 0.56 0.53

ResNet50 [19] 80.80 0.65 0.64 0.63

AttentionResNet56 [27] 76.83 0.65 0.66 0.64

AttentionResNet56+center
loss [52]

73.85 0.68 0.66 0.66

Proposed method 68.48 0.67 0.67 0.66

100
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Figure 5: Confusion matrix of IRMA image classification with 116
classes using the proposed deep CNN.

Table 4: Comparison of our retrieval performance to other CNN
reported in the literature for IRMA images. The proposed method
used Cosine similarity measure to get the IRMA error in this table.

Methods IRMA error

Proposed method 43.21

SVM+multiscale LBP [61] 146.55

Parallel shrink CNN+LBP, HOG, Radon [9] 165.55

Sequential shrink CNN+LBP [14] 168.05

TAUbiomed [60] 169.5

Diap [60] 178.93

CNN+Radon [56] 210.35

CNNC+RBC [57] 224.13

FEITIJS [60] 242.46

SuperPixel [57] 249.34

VPA [60] 261.16

SP-R [57] 311.8

MedGIFT [60] 317.53

SP-RBC [57] 356.57

IRMA [60] 359.29

MedGIFT [60] 420.91
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4.3. Retrieval Performance

4.3.1. Retrieval Performance Measure. Precision and recall are
two measures commonly used as retrieval performance eval-
uation measures [5].

P = Numberofrelevantimagesretrieved
Totalnumberof imagesretrieved

,

R =
Numberofrelevantimagesretrieved
Totalnumberofrelevantimages

:

ð6Þ

Besides precision and recall, mean average precision
(MAP) is a very popular evaluation metric for algorithms
that do search in medical image sets [5]. MAP combines pre-
cision and recall in one number. It is defined as the mean of
average precision (AP) metric over all queries that can allevi-
ate the bias during precision evaluation. The AP and mAP
can be formulated as the following:

AP qð Þ = 1
NR

〠
NR

n=1
Pq Rnð Þ, ð7Þ

where PqðRnÞ is the precision value when the recall value is
Rn and NR indicates the top NR-ranked relevant images for
the query image q.

mAP =
1
Qj j 〠q∈Q

AP qð Þ, ð8Þ

where Q is the query image set and jQj is the number of the
query image set.

4.3.2. Retrieval Performance and Comparison. In the pro-
posed deep CNN framework, the feature vector for nearest-
neighbor similarity searching of medical images is gotten
from the last fully connected layer. For comparison, the pro-
posed framework retrieval performance on the IRMA dataset
is evaluated using both the IRMA error and the mean average
precision (mAP). The calculation of the IRMA error in image
retrieval follows the nearest-neighbor rule, that is, the query
image’s class label is determined by the most similar image
returned in the retrieval process. Table 4 compares the
retrieval performance achieved by the proposed framework
with the other methods reported in the literature [9, 14, 56,
57, 60, 61] on the IRMA dataset with the IRMA error. The
proposed deep CNN framework gets the lowest IRMA error
in nearest-neighbor similarity retrieval. Table 5 compares
the proposed framework with state-of-the-art deep CNNs
on the IRMA error and mAP. For mAP, we test three usually
used distance/similarity measures in image retrieval: Euclid-
ean distance, Manhattan distance, and Cosine similarity,
and the IRMA error is evaluated by using the best distance/-
similarity measure: Cosine similarity. Table 5 shows that the
proposed deep CNN framework gets the best mAP and the
lowest IRMA error on these three distance/similarity mea-
sures and gets the highest score on Cosine similarity. In
Table 5, we also list the vector length used for similarity
retrieval. The feature vector for retrieval gotten from the pro-
posed framework is just 32 dimensions that are much shorter
than output vectors reported in literatures and state-of-the-
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Figure 6: mAP vs. recall for medical retrieval on IRMA images.
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art deep CNNs, which illustrate the great potential of our
method to implement large-scare medical retrieval. Suppose
a and b are two feature vectors representing two medical
images, the three distance/similarity measures are formulated
as the following:

Euclidean distance a, bð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
ai − bið Þ2

s
,

Manhattan distance a, bð Þ = 〠
n

i=1
ai − bij j,

Cosine similarity a, bð Þ = a∙b
ak k∙ bk k

ð9Þ

Figure 6 summarizes the retrieval performance of the
proposed framework and state-of-the-art deep CNNs by the
mAP-recall curve. And all these curves are calculated using
the Cosine similarity measure.

4.4. Performance Comparison with and without EMD
Components. To illustrate the effect of EMD components,
Table 6 details the classification and retrieval measures
between the proposed framework and the state-of-the-art
deep CNNs with and without using EMD components. The
results show that with EMD components, we can get higher
performance in both classification and retrieval applications.
With EMD components, deep CNNs can consistently
achieve better classification and retrieval performance than
without EMD components except for VGG16 on the IRMA
error. This may be because the ResNet backbone is deeper
than VGG16, so the CNNs based on the ResNet backbone
can effectively handle more image information.

5. Conclusions

This paper has proposed a deep convolutional neural net-
work for medical image retrieval task. By training deep
CNN with input medical image and its multifrequency com-
ponents (i.e., IMFs get from empirical mode decomposition
(EMD)) in a supervised classification way, we have got a
scheme that is very suitable for similarity-based medical
image retrieval. Using an imbalanced IRMA medical image
dataset, the proposed framework has surpassed existing algo-

rithms with the highest classification accuracy and lowest
retrieval error. The concise and distinguishable feature vector
output from the proposed deep CNN has also shown great
potential to handle large-scale medical image retrieval. We
intend to further examine CBMIR on other medical datasets,
different modalities, and 3D volumetric applications.
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The spiculation sign is one of the main signs to distinguish benign and malignant pulmonary nodules. In order to effectively extract
the image feature of a pulmonary nodule for the spiculation sign distinguishment, a new spiculation sign recognition model is
proposed based on the doctors’ diagnosis process of pulmonary nodules. A maximum density projection model is established to
fuse the local three-dimensional information into the two-dimensional image. The complete boundary of a pulmonary nodule is
extracted by the improved Snake model, which can take full advantage of the parallel calculation of the Spike Neural P Systems
to build a new neural network structure. In this paper, our experiments show that the proposed algorithm can accurately extract
the boundary of a pulmonary nodule and effectively improve the recognition rate of the spiculation sign.

1. Introduction

A pulmonary nodule is an early pattern of lung cancer.
Malignant lesions might occur in some pulmonary nodules
and even threaten patients’ lives seriously [1]. The spicula-
tion sign is the feature of a pulmonary nodule. It is a radial
and unbranched strip shadow extending from the boundary
of a pulmonary nodule to the surrounding pulmonary
parenchyma [2]. Its detection may cost more time and energy
of doctors.

The diagnosis of benign and malignant pulmonary nod-
ules can be divided into imaging detection and “biopsy.”
The most accurate detection method is “biopsy,” but it can-
not predict the development trend of pulmonary nodules.
Imaging analysis is still the mainstream detection method

[3, 4]. It is also a main method to predict the development
trend of benign and malignant pulmonary nodules from
the perspective of imaging [5, 6]. “Biopsy” needs to sample
the suspected lung lesions for detection. In the detection pro-
cess, the instrument needs to be deep into the lung, which is
easy to cause discomfort to patients. The suspected area for
“biopsy” should be determined in advance. It needs to be
analyzed by modeling from the perspective of imaging, so it
is very important to start prepositioning from the perspective
of imaging. “Biopsy” is the gold standard for judging benign
and malignant pulmonary nodules. But the probability of
malignant pulmonary nodules is far less than that of malig-
nant. For this reason, not all pulmonary nodules must be
biopsied. Main imaging features of pulmonary nodules
include lobulation sign, spiculation sign, and cavity sign. It
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is necessary to identify the signs in biopsy of high probability
pulmonary nodules. According to the sign features of
pulmonary nodules, a single model cannot realize recogni-
tion accurately and effectively. Therefore, we need to analyze
the signs and establish the model one by one. “Biopsy” can
only detect the current benign and malignant pulmonary
nodules, but cannot predict the development of pulmonary
nodules. But the imaging is different, it can compare the
change rate of the same lesion point in different time periods,
predict the development area of pulmonary nodules in the
future, and further guide the diagnosis. Therefore, our
research is significant.

The main signs of pulmonary nodules are lobulation sign,
spiculation sign, cavity sign, and calcification. The spicula-
tion sign has the highest deterioration rate, and it is difficult
to distinguish the lobulated sign. Therefore, our research is
based on the spiculation sign in this paper. Pulmonary
nodules present a limited number of pixels in the image,
and pulmonary nodules are volume data with three-
dimensional structure. As a result, CT cannot accurately
locate the signs of pulmonary nodules and make accurate
judgment. Aiming at this problem, a density projection
algorithm is proposed to integrate local 3D information into
two-dimensional images for accurate diagnosis.

With the development of computer imaging technology,
computer-aided diagnosis becomes possible for doctors and
also has been successfully applied into the detection of pul-
monary nodules: Qiu et al. [2] establishes a model to detect
solitary pulmonary nodules. Gavrielides et al. [7] built a
three-dimensional model to analyze the volume of pulmo-
nary nodules. El-Baz et al. [8] judges the malignant degree
of pulmonary nodules through analyzing morphological
characteristics of pulmonary nodules. Brandman and Ko
[9] establish a complete process including the detection of
pulmonary nodules and the distinguishment and manage-
ment of signs. Chen et al. [10] establish a neural network
and a regression model to distinguish pulmonary nodules.
Huang et al. [11] introduce the practical application of mem-
brane calculation and achieves good results. Fan et al. [12]
analyze the sign of pulmonary nodules from a mathematical
and statistical perspective. Vinay et al. [13] construct an
optimal classifier to distinguish the spiculation sign from a
three-dimensional perspective. Dhara et al. [14] quantify
the speculation sign on the basis of a three-dimensional
model. Han et al. [15] focus on boundary characteristics to
analyze the benign and malignant pulmonary nodules. Wang
et al. [16] establish an image enhancement model to highlight
pulmonary nodules. Choi and Choi [17] use a fixed threshold
to segment pulmonary nodules. Rubin [18] sets seed points
for local growth of pulmonary nodules. Shen et al. [19] estab-
lish a bidirectional coding system to improve the efficiency of
the proposed algorithm. Qiang et al. [20] apply the active
contour model for the segmentation of pulmonary nodules.
Messay et al. [21] realize the segmentation of pulmonary
nodules through analyzing the characteristics of CT pixel
distribution from the linear regression perspective. Zhang
et al. [22] analyze the spiking neural P systems based on
the principle and puts forward a fast solution algorithm.
Kumar et al. [23] classify pulmonary nodules by depth fea-

tures. Bartholmai et al. [24] analyze the characteristics of
pulmonary nodules with a computer. Firmino et al. [25]
analyze the malignant degree of pulmonary nodules from
the sign perspective. Dhara et al. [26] establish a gradient
model to extract pulmonary nodules. Gonçalves et al. [27]
establish the Hessian matrix to segment pulmonary nod-
ules. Wang et al. [28] establish a data-driven model to
focus on the pulmonary nodule area. Soliman et al. [29]
establish the Adaptive Appearance-Guided Shape Model
to simulate the distribution of pulmonary nodules. Froz
et al. [30] classify pulmonary nodules with the support
vector machine. Hoogi et al. [31] improve the level set
algorithm for the pulmonary nodule segmentation. Wang
et al. [32] apply the spiking neural P systems to realize
the target tracking and path planning. Shakir et al. [33]
establish a three-dimensional level set algorithm based on
the two-dimensional segmentation. Qiu et al. [34] classify
pulmonary nodules based on the geometric theory. Xie
et al. [35] fuse multiple features to distinguish pulmonary
nodules. Wang et al. [36] propose a set of complete data
training algorithm to classify pulmonary nodules. Pang
et al. [37] Automatic lung segmentation based on texture
and deep features of hrct images with interstitial lung dis-
ease. Rong et al. [38] improve the spike neural P systems
and improve the diagnosis accuracy. Cao et al. [39] used
two-stage convolutional neural networks for nodule detec-
tion. Xu et al. [40] used multiresolution CT screening
images to detect nodules.

Currently, the main problems of the computer-aided
diagnosis of pulmonary nodules can be summarized as
follows: (1) the two-dimensional and three-dimensional
features of pulmonary nodules are difficult to be balanced
during the modeling process. (2) The accurate segmentation
of pulmonary nodules cannot be realized with gray values
and without boundary features. (3) An effective distinguish-
ing mechanism cannot be established after obtaining features
of pulmonary nodules.

Therefore, in this paper, a spiculation sign recognition
algorithm is proposed after studying the doctors’ diagnosis
process of pulmonary nodules. (1) A maximum intensity
projection model is established to fuse the three-
dimensional information into the two-dimensional image
to reduce the missed rate of spiculation signs. (2) The accu-
rate extraction of pulmonary nodules can be realized by the
improved Snake model to strengthen the boundary effect.
(3) A neural network framework based on the Spike Neural
P Systems is constructed through focusing on boundary
features of pulmonary nodules.

2. Algorithm

The spiculation sign recognition process of pulmonary nod-
ules is simulated by the computer, as shown in Figure 1. (1)
The maximum intensity projection algorithm is constructed
to fully display the features of pulmonary nodules. (2) The
boundary of pulmonary nodules is focused by the improved
Snake algorithm. (3) The Spiking Neural P Systems is
optimized to realize the sign recognition.
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2.1. Projection Algorithm. The spiculation sign is the main
feature to distinguish benign pulmonary nodules frommalig-
nant ones. It is defined as a radial and unbranched stripe
shadow extending from the boundary of a pulmonary nodule
to the surrounding pulmonary parenchyma. According to
the local highlight of a pulmonary nodule, its section struc-
ture is extracted layer by layer to construct a model from
the perspective of local three-dimensional information.

The maximum gray value along the ray direction of
continuous multiframes is used by MIP as the gray value of
the corresponding point on the projection image [41],

MIP x, yð Þ =max I0 x, yð Þ⋯ IN x, yð Þð Þ, ð1Þ

where MIPðx, yÞ is the gray value at the point ðx, yÞ on the
MIP image. N is the number of projection layers. Ikðx, yÞ is
the gray value at the point ðx, yÞ on the k-th image in the
original CT sequence images. MIP images contain local
three-dimensional features, which can restore the local
three-dimensional information of pulmonary nodules, as
shown in Figure 2.

2.2. The Segmentation Algorithm of Pulmonary Nodule. A
pulmonary nodule is displayed in the highlighted area and
occupies a limited number of pixels in CT images.

A benign pulmonary nodule has features of small area,
high luminance, and smooth boundary; however, a malig-
nant pulmonary nodule has features of large area, high
luminance, and blurred boundary. Complete segmentation
is the premise of the pulmonary nodule distinguishment.

2.2.1. The Snake Model. The Snake model algorithm can per-
form the target segmentation from the perspective of internal
energy and external energy [42]. It has the following advan-
tages: image data, initial estimation, target contour, and
knowledge-based constraints are unified in one process. It
can automatically converge to the state of minimum energy
after proper initialization. Minimizing the energy from
coarse to fine in scale space can greatly expand the capture
area and reduce the complexity. Meanwhile, the Snake model
algorithm also has its disadvantages: It is sensitive to the ini-
tial position, and Snake needs to be placed near the image
features depending on other mechanisms. It may converge
to the local extremum or even diverge because of the noncon-
vexity of the Snake model. Dong et al. [43] introduce the deep
learning theory to constrain the Snake algorithm to segment
targets. Rajinikanth et al. [44] achieve the three-dimensional
target segmentation based on the Snake algorithm and the
Otsu algorithm. Ma et al. [45] fuse the local phase position,
and the Snake algorithm alleviates the problem of conver-
gence to the local extremum.

When the Snake model achieves the balance of internal
energy and external energy, the optimal segmentation effect
is obtained. The energy functional is defined as:

E =
ð1
0
Ein C sð Þ½ � +f Eout C sð Þ½ �gds,

C sð Þ = x sð Þ, y sð Þð Þs ∈ 0, 1½ �,

8><
>: ð2Þ

where CðsÞ is a contour curve and Ein½CðsÞ� is an internal
energy function. Ein½CðsÞ� is only related to the curve itself,
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Figure 1: Flow chart of the spiculation sign recognition algorithm.
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so that the curve keeps continuity and smoothness during
deformation. Eout½CðsÞ� is an external energy function, and
Eout½CðsÞ� is only related to the image itself, which can drive
the curve to move towards the target boundary continuously.

Ein C sð Þ½ � = 1
2 α C′ sð Þ�� ��2 + β C″ sð Þ�� ��2h i

, ð3Þ

where α is the elastic energy weight coefficient and β is the
rigid energy weight. The minimization of variational princi-
ple CðsÞ should satisfy the Euler equation:

αC″ − βC″″−∇Eout = 0: ð4Þ

The GVF model [46] introduces the gradient vector flow
Vðx, yÞ = ðuðx, yÞ, vðx, yÞÞ to replace the external force of the
Snake model, then the energy functional of the external force
field is

εGVF = min ∬ w u2x + u2y + v2x + v2y
� �nn

+ ∇fj j2 V−∇fj j2�dxdy�,
ð5Þ

wherew is the weight coefficient to control the smoothness of
the external force field. f ðx, yÞ is an image boundary map-
ping function. When the curve is far from the target contour,
the first term plays a major role. On the contrary, the second
term plays a major role in expanding the search scope. By
solving

w∇2u − u − f xð Þ f 2x + f 2y
� �

= 0,

w∇2v − v − f xð Þ f 2x + f 2y
� �

= 0,

8><
>: ð6Þ

where the GVF field is obtained, where▽2 is a Laplacian
operator. The Laplace operator produces an isotropic
smoothing effect on the external force field and cannot
protect the boundary.

2.2.2. The Improved Model. As the traditional Snake algo-
rithm is easy to converge to the local extreme and cannot
protect boundary, we have analyzed the Laplace operator:

The Laplace operator can be decomposed into normal and
tangent components, and the normal direction component
can promote the contour line to converge to the deep concave
part. Thus, w ∣ JvP ∣ term is added to make the curve con-
verge to the small deep concave boundary. The improved
function is as follows:

ε =min ∬ m x, yð Þ ∇Vj j2�n
+h x, yð Þ w JvPj j2 + V−∇fj j2� ��

dxdy
�
,

ð7Þ

where w, gðx, yÞ, and hðx, yÞ are weighting functions and Jv
is the Jacobian matrix of external force field. In order to
enhance the corresponding boundary, we construct

P =

−
Ixyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2xx + I2xy
q , Ixxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2xx + I2xy
q

−
Iyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2yx + I2yy
q ,

Iyxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2yx + I2yy

q

2
6666664

3
7777775
, ð8Þ

to increase the accuracy of corner positioning.
In Eq. (7), j▽V j2 has a strong smoothing effect on the

boundary. To reduce boundary weakening, j▽V j2 is replaced
by

G = 1 + ∇Vj j2� �q ∇fj jð Þ/2q ∇fj jð Þ = 1 + 1
1 + ∇fj j : ð9Þ

In the smoothing area, ∣▽f ∣→ 0, qð∣▽f ∣ Þ→ 2, the
external force field has an isotropic diffusion effect. At the
boundary, ∣▽f ∣→∞, qð∣▽f ∣ Þ→ 1, G→ ∣▽V ∣ , the exter-
nal force field only diffuses along the boundary direction to
prevent boundary leakage and improve the antinoise perfor-
mance. The energy function is

ε =min ∬ m x, yð ÞGf
n

+h x, yð Þ w JvPj j2 + V−∇fj j2� ��
dxdy

�
,

ð10Þ
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Figure 2: MIP effect image.
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which corresponds to the Euler equations ZðuÞ = 0 and Z
ðvÞ = 0.

The iterative formula of numerical solution lðun+1i,j Þ,
lðvn+1i,j Þ is

l an+1i,j

� �
= 1 − Δt · h ∇fj jð Þani,j + Δt · g ∇fj jð Þ
�

� 1 + ∇aj j2� �q−2/2h
att + q − 2ð Þ ∇aj j2 1 + ∇aj j2� �q−4/2�

+ 1 + ∇aj j2� �q−2/2 + 1
�
unn

i
+ Δt

· w2h ∇fj jð Þ P2
11axx + P2

12ayy + 2P11P12
� �

+ ca

 �

,
ð11Þ

where cu = hðj∇f jÞf x, cv = hðj∇f jÞf y . Δt is the iteration step.
ðuni,j, vni,jÞ represents the field forces at coordinates ði, jÞ with
n iterations. Pulmonary nodules are extracted layer by layer
to obtain complete pulmonary nodules.

2.3. Neural Network System Based on Spiking Neural P
Systems. The SN P systems are a parallel computing model
derived from organisms [47]. Wang et al. [48] introduce
the fuzzy set theory on the basis of SN P systems, which
solves the problem of fault diagnosis to a certain extent.

The topological structure of SN P systems is composed of a
directed graph. Each neuron in the system is represented by
a node, and the synapse between two adjacent neurons in
the system is represented by edge. It is similar to the topolog-
ical structure of the artificial neural network. There are abun-
dant theoretical and applied researches in ANN, so the
learning rules in ANN can be introduced into SN P systems.

The neural network based on SN P systems can be
defined as

B = O, σ1,⋯, σm, syn, y, in, outð Þ,
σi = ni, Rið Þ,

ð12Þ

where O represents a set of pulses; σm represents the m-th
neuron in System B; ni ≥ 0 represents the number of original
pulses; Ri represents a set of all rules in neuron σi; The form
of excitation rule is E/ac → a, c ≥ 1; The rule of oblivion is
as → λ, s ≥ 1; y represents the learning function of system;
in and out represent the input and output neurons of the sys-
tem, respectively. Define the rule as E/ac → αkði,QjÞ, k ≥ 1,
c ≥ 1, 1 ≤ j ≤ ∣Ri ∣ . When the rule is called, all neurons in σi
and Qj establish the connection state.
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Syn represents a synapse between σi and σ j; wijðtÞ repre-
sents the weight of synapse ði, jÞ. T = fwijðtÞ ∣ t = 1,2,3⋯ g
represents a set of weights on synapsesði, jÞ at different times.

According to the state of time t and wijðtÞ, the synaptic
weight set wijðt + 1Þ at time t + 1 can be obtained by y; pr
ðσiÞ and poðσiÞ represent the label set of presynaptic neu-
rons and postsynaptic neurons of σi, respectively.

If σi contains b pulses and ab ∈ LðEÞ, E/ac → αkði,QÞ is
used. If the rules in the system are excited, c pulses will be
consumed. Then, the next step will be performed according
to the value of α:

(i) For α = +, if 1 ≤ ∣Q − prðσiÞ ∣ ≤k, σi selects all neuron
tags in Q − prðσiÞ to create synapses. If ∣Q − prðσiÞ
∣ >k, σi randomly selects k neuron tags in Q − pr
ðσiÞ to create synapses. If Q − prðσiÞ =∅ or
prðσiÞ =∅, C pulses are consumed but synapses
are not established. In this case, the principle of
synaptic creation rules is similar to that of stan-
dard rules of oblivion

(ii) For α = −, if ∣prðσiÞ ∣ ≤k, all synapses are deleted in
prðσiÞ. If ∣prðσiÞ ∣ >k, k neurons are selected in
prðσiÞ and the synaptic connection with each
selected neuron is deleted

(iii) For α = ∓, synapses are created at the time t and
deleted at the time t + 1. Conversely, for α = ±, syn-
apses are deleted at the time t and created at the time
t + 1. In this case, the use of rules is similar to that of
α = + and α = −. From time t to time t + 1, σi is

always in an open state, but σi uses other rules at
time t + 2

If σi has k pulses and ak ∈ LðEÞ, k ≥ c, the excited rule E/
ac → ap; d is used. When this rule is used, σi will delete c
pulses. At the same time, p pulses are sent to all neurons con-
nected to σi after d time intervals. When the excited rule is
used to the d-th time intervals, σi is in a closed state. Rules
and processing pulses can only be used by σi when the execu-
tion conditions are met. If σi uses the excitation rule E/ac
→ ap at t-th step, σi at t-th, t + 1 − th,⋯t + d − 1 − th step
is not executed. After t + d steps, σi is in the excited state.

If a neuron has s pulses, the rule of oblivion E’/as → λ, s
≥ 1 is used. When this rule is used, σi will consume s pulses.
No new pulse will be produced.

The state of System P at a certain time is expressed as
Cr = <k1/t1,⋯, km/tm > ,1 ≤ i ≤m, where ki represents the
number of pulses stored in neuron σi in this state; ti repre-
sents the time taken for σi to be reactivated. At the beginning
of System P calculation, all neurons meet the excitation rule
conditions. By rules, the state of the system is transferred.
C1 ⇒ C2 means that the system is transferred from state C1
to state C2. When all neurons in the system have been acti-
vated, the termination state means that there are no rules in
the neurons that can be activated again. If a system is able
to calculate till the termination state, then the calculation is
regarded as the one that can be terminated.

According to the state of time t and wijðtÞ, the synaptic
weight set wijðt + 1Þ is obtained at time t + 1. Theoretically,
if there is a transfer of Mt

t+1 from time t to time t + 1 in
the system, and the set of weights on the synapse is wijðtÞ.

Figure 4: Experimental data.
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Then, under the transfer ofMt
t+1, the set function of synaptic

weights at time t + 1 is wijðt + 1Þ = yðMt
t+1,wijðtÞÞ.

2.4. Network Connection. Based on the above analysis, the
boundary extraction image is combined with the neural
network system of SN P systems. The parallelism of SN P
systems and the flexibility of neural networks are taken full
advantage.

(1) Mark the boundary of a pulmonary nodule as 1,
which is regarded as a pulse signal. Nonboundary
areas are marked as 0

(2) Normalize the boundary image size of a pulmonary
nodule to 5 × 7

(3) The neurons are divided into three parts, as shown in
Figure 3. The flow direction of a pulse signal is from
Module 1 to Module 2 and then to Module 3. Three
neurons of Module 1 establish the neural connection
of Module 2 through the defined SN P systems rules,
and the weights of all synapses are 1. There is only
one excitation rule for the neurons of Module 2 and
Module 3, that is, if the neuron contains pulses, the
neuron is excited until the number of pulses in the
neuron changes to 0, and the calculation is termi-
nated. Module 2 has four layers, and each layer con-
tains three neurons. Module 3 has four layers, and
each layer contains five neurons. The neurons of
Module 2 and Module 3 are connected by synapses

3. Experiment and Result Analysis

All the experimental data are from the database of the Inter-
national Early Lung Cancer Action Project and the American
Association of Lung Imaging Databases, as shown in
Figure 4. 514 pulmonary nodules with spiculation signs and
501 pulmonary nodules without spiculation signs are labeled
by two professional doctors as the detection basis. The ratio
of training data and test data is 1 : 1.

3.1. Image Segmentation. The area overlap measure ðAOMÞ
is used to evaluate the segmentation effect.

AOM A, Bð Þ = S A ∩ Bð Þ
S A ∪ Bð Þ × 100%: ð13Þ

AOM is the overlap degree of area. A is the standard
image. B is the segmentation result image. S ð:Þ represents
the pixel number of the corresponding area. The larger the
AOM value, the better the segmentation effect.

Different algorithms are used to segment common pul-
monary nodules and pulmonary nodules with speculation
sign, as shown in Table 1. It illustrates that the segmentation
effect for common pulmonary nodules is better than that for
pulmonary nodules with spiculation sign. That is because
common pulmonary nodules have high gray value and high
density, and pulmonary nodules with spiculation sign have
high gray values including small protrusions. The fixed
threshold [17] algorithm achieves segmentation of pulmo-

nary nodules by selecting threshold artificially, and the result
is good. But the threshold setting is manual. The gradient
model [26] algorithm focuses on the boundary to extract
pulmonary nodules. AAGSM [29] used an initial shape of
pulmonary nodules to constrain segmentation of pulmonary
nodules. LS [31] algorithm establishes the iterative model to
achieve segmentation of pulmonary nodules. The Snake
[38] algorithm establishes internal force and external force
balance mechanism to extract pulmonary nodules. The
Esnake [40] algorithm introduces the Otsu algorithm to
improve Snake and achieves good results. On the basis of
the Snake algorithm, our algorithm protects boundary infor-
mation and suppresses falling into local minimum. It has a
strong segmentation effect for common pulmonary nodules
and pulmonary nodules with speculation sign.

3.2. The Speculation Discrimination Effect. The ROC curve is
introduced to measure the effect of all algorithms. The rec-
ognition results of the original pulmonary nodule image
by different algorithms are shown in Figure 5(a), and the
recognition results of different algorithms in MIP pulmo-
nary nodule images are shown in Figure 5(b). It can be
seen that the MIP algorithm can better reflect the bound-
ary features of pulmonary nodules and improve the distin-
guishing effect of spiculation sign. The fractal model (FM)
[34] uses the fractal operator to calculate the fractal degree
of pulmonary nodules to judge the signs of pulmonary
nodules. The nerve network model (NNM) [10] algorithm
introduces a learning mechanism to realize feature learn-
ing, which requires a large number of samples to train
parameters. 3DM [13] establishes a three-dimensional
pulmonary nodule model and analyzes the pulmonary
nodule signs from a spatial perspective, which can realize
the identification of pulmonary nodule signs, but the algo-
rithm has high complexity. The feature fusion model
(FFM) [35] extracts the gray value and boundary informa-
tion of pulmonary nodules to realize the identification of
pulmonary nodules. Our algorithm fuses the pulmonary
nodule information from three locations and proposes a
time series analysis algorithm, which achieves good results.
The proposed algorithm in this paper focuses on the
boundary of the pulmonary nodule spiculation sign and
integrates the SN P systems into the neural network. It
gives full play to the advantages of the SN P systems
and has a better effect.

Table 1: The effect comparison of algorithms.

Algorithm
AOM %

Common Spiculation

Fixed threshold [17] 94 92

Gradient model [26] 85 76

AAGSM [29] 86 79

LS [31] 89 83

Snake [38] 91 84

Esnake [40] 93 87

Ours 94 90
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4. Conclusion

In view of the recognition of pulmonary nodules with
computer, a complete recognition system of speculation sign
of pulmonary nodules is proposed from the doctors’ perspec-
tive. The MIP algorithm is proposed to restore the three-
dimensional local structure of pulmonary nodules. The
improved Snake algorithm can extract the boundary infor-
mation of pulmonary nodules completely. The neural
network system based on SNP systems can help doctors to
make accurate diagnosis with computer-aided. On the basis
of existing datasets, we will expand the amount of data. By
labeling the dataset, it is of great significance to integrate
the imaging features and pathological features of different
time periods into the model and carry out the research on
the prediction of benign and malignant development trend
of pulmonary nodules.
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Nonnegative sparse representation has become a popular methodology in medical analysis and diagnosis in recent years. In order to
resolve network degradation, higher dimensionality in feature extraction, data redundancy, and other issues faced when medical
images parameters are trained using convolutional neural networks. Lung tumors in chest CT image based on nonnegative, sparse,
and collaborative representation classification of DenseNet (DenseNet-NSCR) are proposed by this paper: firstly, initialization
parameters of pretrained DenseNet model using transfer learning; secondly, training DenseNet using CT images to extract feature
vectors for the full connectivity layer; thirdly, a nonnegative, sparse, and collaborative representation (NSCR) is used to represent
the feature vector and solve the coding coefficient matrix; fourthly, the residual similarity is used for classification. The
experimental results show that the DenseNet-NSCR classification is better than the other models, and the various evaluation
indexes such as specificity and sensitivity are also high, and the method has better robustness and generalization ability through
comparison experiment using AlexNet, GoogleNet, and DenseNet-201 models.

1. Introduction

Chest CT images offer the advantages of easy access, cost-
effectiveness, and low radiation dosage needed, making it
the most common screening procedure in daily clinical
practice. Diagnostic testing of multiple diseases of the
chest from CT images by radiologists can provide useful
references for the diagnosis and treatment of lung diseases.
Lung cancer [1] is one of the malignant tumors with a
high rate of morbidity and mortality, posing a serious
threat to human health. Early diagnosis and early detec-
tion are crucial to the treatment of lung cancer.
Computer-assisted diagnostic technology (CAD) [2] has
been widely used in the diagnosis and treatment of various
diseases, especially lung cancer detection, which is one of
the most common applications of CAD technology. The
introduction of computer-aided diagnosis technology has
an important and positive effect on the early detection
and diagnosis of lung cancer, so it has great prospects

for development in the field of assisting doctors in diag-
nosing and treating lung cancer.

In recent years, deep learning [3] had achieved great suc-
cess in the field of image processing due to its excellent learn-
ing capabilities. Deep learning, exemplified by DenseNet [4],
has been increasingly applied in the field of medical imaging;
good results have been achieved in clinically assisted classifi-
cation, identification, detection, and segmentation for benign
and malignant tumors, brain functions, cardiovascular dis-
eases, and other major diseases. Residual neural networks
(ResNet) [5, 6] reduce feature redundancy and reuse existing
features by sharing parameter shortcut connections and pre-
serving intermediate features. Khened et al. [7] proposed a
fully convolutional multiscale residual DenseNets for cardiac
segmentation and automated cardiac diagnosis using ensem-
ble of classifiers. In Alzheimer’s disease diagnosis, hippocam-
pus analysis by combination of 3-D DenseNet and shapes are
putted forward by Cui and Liu [8]. Tong et al. [9] proposed a
channel-attention-based DenseNet network for remote
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sensing image scene classification. However, the trade-off is
that it is difficult to rediscover the underlying features using
high-level information; DenseNet effectively leverages high-
level information to rediscover new features at the bottom
layer, enhancing feature transmission across the network
and enabling enhanced feature reuse, effectively reducing
the number of parameters. Chen et al. [10] proposed a new
DenseNet and ResNet-based dual asymmetric feature learn-
ing network, DualCheXNet, which uses two homogeneous
DCNNs to learn each other supplemented with more accu-
rate features for multilabeled thoracic disease classification,
which is relatively robust; Dai et al. [11] proposed the
improved lung nodule classification identification algorithm
based on DenseNet; the model is based on DenseNet and uses
intermediate dense projection method to obtain three-
dimensional information about pulmonary nodules and train
the network using Focal Loss to enable the network to focus
on learning the difficult resolved lung nodules, with good
experimental results; Zhu and Qin [12] proposed an
improved U-Net convolutional neural network lung nodule
detection algorithm using convolutional and pooling opera-
tion to retrieve high-level features, enable high-speed flow
of feature information between input and output layers
through DenseNet, and generate in combination with expan-
sion convolution. Multiscale features improve the utilization
of low-level features of pulmonary nodules. Li et al. [13] used
a DenseNet for computer-aided diagnosis of lung cancer,
which uses a patch-based, multiresolution DenseNet to
extract features and classify them using four different inte-
gration methods.

Sparse representation (SR) and collaborative represen-
tation (CR) have become a popular methodology in pat-
tern classification and computer vision for computer-
aided diagnosis (CAD) and tumor recognition in recent
years [14]. These methods first encode the query sample
as a linear combination of the given training samples
and then assign the query sample to the corresponding
class with the minimal distance or approximation error.
One seminal work in this category is the sparse represen-
tation- (SR-) based classifier (SRC). Sparse representation
models often contain two stages: sparse coding and dictio-
nary learning. Li et al. [15] propose a nonnegative
dictionary-based sparse representation and classification
scheme for ear recognition. The nonnegative dictionary
includes the Gabor feature dictionary extracted from the
ear images and nonnegative occlusion dictionary learned
from the identity occlusion dictionary. A test sample with
occlusion can be sparsely represented over the Gabor fea-
ture dictionary and the occlusion dictionary. The sparse
coding coefficients are noted with nonnegativity and much

more sparsity, and the nonnegative dictionary has shown
increasing discrimination ability. Mi et al. [16] propose a
robust supervised sparse representation (RSSR) model,
which uses a two-phase robust representation to compute
a sparse coding vector. Huber loss is employed as the
fidelity term in the linear representation, which improves
the competitiveness of correct class in the first phase.
Then, training samples with weak competitiveness are
removed by supervised way. In the second phase, the com-
petitiveness of correct class is further boosted by Huber
loss. Zhang et al. [17] propose a nonlinear nonnegative
sparse representation model: NNK-KSVD. In the sparse
coding stage, a nonlinear update rule is proposed to obtain
the sparse matrix. In the dictionary learning stage, the
proposed model extends the kernel KSVD by embedding
the nonnegative sparse coding. The proposed nonnegative
kernel sparse representation model was evaluated on sev-
eral public image datasets for the task of classification.
Fuzzy discriminative sparse representation (FDSR) is pro-
posed by Ghasemi et al. [18]; the proposed fuzzy terms
increase the interclass representation difference and the
intraclass representation similarity. Also, an adaptive fuzzy
dictionary learning approach is used to learn dictionary
atoms. A robust sparse representation for medical image
classification is proposed based on the adaptive type-2
fuzzy learning (T2-FDL) system by Ghasemi et al. [19].
In the proposed method, sparse coding and dictionary
learning processes are executed iteratively until a near-
optimal dictionary is obtained. Moradi and Mahdavi-
Amiri [20] propose a sparse representation-based method
for segmentation and classification of lesion images. The
main idea of our framework is based on a kernel sparse
representation, which produces discriminative sparse codes
to represent features in a high-dimensional feature space.
Our novel formulation for discriminative kernel sparse
coding jointly learns a kernel-based dictionary and a linear
classifier. We also present an adaptive K-SVD algorithm
for kernel dictionary and classifier learning. In order to
solve the semantic gap problem between low-level features
and high-level image semantic, which will largely degrade
the classification performance, Zhang et al. [21] propose
a multiscale nonnegative sparse coding-based medical
image classification algorithm.

This paper presents methods for classification of for
benign and malignant lung tumors based on non-negative,
sparse, and collaborative representation classification of
DenseNet (DenseNet-NSCR). First, CT modal medical
images were collected and preprocessed. The dataset is then
trained in a DenseNet to construct a DenseNet model to
extract the full connection layer feature vector. It was

Identity mapping F 

Input
layer 

Hi Wi Hi +1

Convolutional
layer Relu Convolutional

layer Relu Output
layer

Figure 1: Residual block.

2 BioMed Research International



concluded with the results of lung tumor classification in the
NSCR classifier, compared by a total of nine models, AlexNet
+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet+SVM,
GoogleNet+SRC, GoogleNet+NSCR, DenseNet+SVM, Den-
seNet+SRC, and DenseNet+NSCR. The DenseNet+NSCR
model outperforms the other models with better robustness
and generalization capabilities.

2. Basic Principle

2.1. The Basic Structure of DenseNet. DenseNet is typically
composed of multiple Dense Blocks and transition layer
structures overlap to form a multilayer neural network. Its
internal Dense Block structure uses the residual neural net-
work’s shortcut connection [5] structure. The deep residual
neural network is usually composed of multiple residual
block structures overlapping each other. Neighboring convo-
lutional layers are connected by a shortcut to form a residual
block. The residual block structure is shown in Figure 1,
whereHi is input,Hi+1 is output,Wi is weight, and F denotes
the identity mapping. The residual block mapping is repre-
sented in Figure 1 as

Hi+1 = Re lu Hi + F Hi,Wið Þð Þ: ð1Þ

The DenseNet structure uses dense connections in
model building as shown in Figure 1, where the current
network layer is connected to each subsequent layer. The
feature map within each Dense Block is of the same size,
and the features learned by the DenseNet are reused
within the network. The dense connections between the
DenseNet layers facilitate the flow of information through-
out the network. Its nonlinear function is shown in Eq. (2)
where xi denotes the output of layer l. ½x0 x1 x2 ⋯ xl−1�
indicates the collocation of feature maps from the input
layer to the l-1 layer. Hi denotes the nonlinear function
which is a combined operation containing the batch nor-
malization (BN) layer, the Relu layer, and the convolu-
tional layer. As a result, the training of the deep network
becomes more efficient and the performance of the model
is improved as shown in Figure 2.

DenseNet has fewer parameters for network training
compared to ResNet networks. Also, the use of dense con-
nections alleviates the overfitting problem for models with
small datasets. For the transition layer, it mainly connects
two Dense Blocks, which contain a 1 × 1 convolution and

2 × 2 average pooling to reduce the feature map size. If
the Dense Block of the previous layer outputs m feature
maps, the transition layer can generate θ feature maps,
where 0 ≤ θ ≤ 1 is called the compression factor; when θ
= 1, the feature map remains unchanged; when θ < 1, the
transition layer can further compress the model. In this
paper, DenseNet’s k = 32 and θ = 0:5 are used.

xl =Hi x0x1x2 ⋯ xl−1½ �ð Þ: ð2Þ

DenseNet has the following features: firstly, DenseNet
effectively alleviates the gradient vanishing problem caused
by an overly deep network. DenseNet effectively
strengthens feature forward transmission by acquiring the
loss function of all preceding layers for each layer, so that
deeper networks can be trained; secondly, compared to
ResNet, which uses summation to transmission features,
DenseNet uses inception’s concatenation channel merge,
which merges all previous layer outputs together as the
current input, thus significantly improving feature trans-
mission efficiency; thirdly, residual neural networks reduce
feature redundancy and reuse existing features by sharing
parameters across layers and preserving intermediate fea-
tures, with the disadvantage that it is difficult to rediscover
the underlying features using high-level information; Den-
seNet effectively leverages high-level information to redis-
cover new features at the bottom layer, enhancing feature
transmission across the network and enabling and enhanc-
ing feature reuse; fourthly, DenseNet effectively reduces
the number of parameters compared to ResNet which
has a larger number of parameters.

2.2. NSCR Algorithm. There are many redundant or irrele-
vant features in high-dimensional data, thus facing the
curse of dimensionality. On one hand, high computational
time and space are required; on the other hand, problems
such as overfitting occur in classification tasks. Therefore,
data dimension reduction is a challenging task in machine
learning. The sparse representation of high-dimensional
feature data is one of the recent research hotspots in the
field of machine learning, and SRC/CRC/NRC’s [16,
22]core idea is that test samples that are represented
approximately by linear combinations of training samples
from all classes, and then, the test samples are assigned
to the corresponding class with minimum distance or
approximate error. However, the coding coefficients in
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the sparse representation classifier SRC/CRC will be nega-
tive, which in practice makes the problem of the corre-
sponding weights of positive and negative coding
coefficients offset, which affects the sample classification
accuracy to some extent. Nonnegative representation of
classification NRC coding coefficients for classification
ideas are restricted to nonnegative, and non-negative rep-
resentation enhances the representation of homogeneous
samples’ capabilities while limiting the representation of
heterogeneous samples. Despite the success of the three
classifiers, SRC/CRC/NRC, in the image recognition task,
they have their corresponding localization. When using
the entire training image to reconstruct the test image y,
on the one hand, both SRC and CRC are generated in
the coding coefficient vector deviation. The reason is that
from a generative point of view, it is not physically feasible
to reconstruct real-world images from training images
with complex negative (minus) and positive (plus) coeffi-
cients. NRC constrains the coding coefficients to be non-
negative, but due to the lack of proper regularization,
NRC classification is not flexible enough to deal with
real-world problems. NSCR [23] combines the advantages
of sparse, collaborative, and nonnegative representations
to be physically more robust and generalizable than previ-
ous sparse, collaborative, and nonnegative representations.

The NSCR classifier can be reconstructed as a bivariate
problem bounded by a linear equation and can be solved
under the alternate direction [24] method (ADMM) of the
multiplicative subframe. Each subproblem can be solved effi-
ciently in closed form and can converge to a global optimum.
Extensive experiments of NSCR on various visual classifica-
tion datasets have verified the effectiveness of NSCR classi-
fier, and NSCR classification is better than advanced
classification algorithms such as SVM and SRC. Based on
the above discussion, the NSCR algorithm for a given test
sample and training sample matrix X, X consists of several
classes of samples, where X = ½X1,⋯, X′k� ∈ RD×N ; its algo-
rithmic idea is shown in Table 1:

2.3. Evaluation Metrics. In this paper, the evaluation metrics
[25] include accuracy, sensitivity, specificity, F-score value,
and Matthews correlation coefficient (MCC), which are
described as follows:

Accuracy, sensitivity, and specificity were calculated by
true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). TP indicates a benign tumor was
predicted correctly, FP indicates a malignant tumor was pre-

dicted incorrectly, TN indicates a malignant image was pre-
dicted correctly, and FN indicates that benign tumors were
predicted incorrectly. They are calculated by the following
formulae. The calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð3Þ

Specificity =
TP

TP + FN
, ð4Þ

Specificity =
TN

TN + FP
: ð5Þ

The F value is a summed average of the percentages of
completeness and accuracy. It is used as a trade-off between
accuracy and recall. The calculation formula is as follows:

F =
2 × TP

2 × TP + FP + FN
: ð6Þ

MCC is a more comprehensive evaluation metric that
reflects the reliability of the algorithm. When the number
of categories is different, the value of the measure considered
to be balanced ranges from -1 to +1. The MCC takes the
value of 1 when the prediction error is 0 for both FP and
FN, which means that the classification is completely correct;
when the prediction error is 0 for both TP and TN, the MCC
takes the value of -1, which means that the classification is
completely wrong. It is calculated as follows:

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp : ð7Þ

3. NSRC-Based DenseNet Model

Target the network degradation problem when training
CT modal medical images using convolutional neural net-
works, high dimensionality, and data redundancy during
feature extraction and other problems. This paper com-
bines the DenseNet-based feature extraction method and
the classification recognition method based on nonnega-
tive, sparse, and collaborative representation, in the pro-
posal of a DenseNet-based nonnegative, sparse, and
collaborative representation (DenseNet-NSCR) classifica-
tion of benign and malignant lung tumors. The steps of
the calculation as a whole are divided into image

Table 1: The NSCR-based classifier.

The NSCR based classifier

1 Input: training sample matrix X = X1,⋯, Xk½ � and query sample y

2 Normalize each column of matrix X and query sample y to the unit L_2 norm

3 The encoding vector of y on X is solved by the NSCR model

4 Calculate the coefficient matrix: ĉ = arg minc y′ = Xc
�� �� + α ck k22 + βc s:t:c ≥ 0

5 Calculate residual similarity: rk = y − Xkĉkk k2
6 Output label category: label yð Þ = arg min rkf g
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preprocessing, DenseNet feature extraction, and NSCR
classification.

3.1. Image Preprocessing. (1)Data collection: 5000 raw images
of lung CT models were collected from a hospital in Ningxia
of China between 2014 and 2016. The number of both benign
and malignant lung tumors was 2500 cases [26].

(2) Data preprocessing: the original images of the lung
CT models have numbered accordingly and recolored into
grayscale images. Based on the clinical markers, the focal
areas were intercepted from the full-grayscale images and
normalized to the same size as the ROI images, e.g., 64
px × 64 px, to obtain CT modal samples, which were
divided into benign samples and lung malignancy samples.

The benign sample and the lung malignancy sample were
each 2500 samples. The two types of targets were divided
into a test set and a training set of 4000 and 1000 cases,
respectively, according to a certain ratio, and constructed
with its corresponding binary labels, where the benign
label is 1 and the lung malignancy label is 2.

3.2. Dense Neural Network-DenseNet. (1) Transfer learning:
the dense neural network, DenseNet-201 model is first pre-
trained on a large natural image dataset, ImageNet, with the
parameters from the pretrained network as the initialization
parameters in the network where the growth rate of the Den-
seNet is k = 32 while the compression rate of the transition
layer is θ = 0:5.

(2) DenseNet partial feature extraction: the datasets and
labels are input into the pretrained dense neural network,
DenseNet-201, respectively, and a single-module network
based on the DenseNet model, which is CT-DenseNet, is
constructed; DenseNet is trained to extract the feature vec-
tors of training samples and test samples at the full-joint
layer.

3.3. NSCR Classification Identification. Extract the feature
vectors of training sample matrices and test sample matri-
ces at the full connection layer of a DenseNet, input the
feature matrix as an NSCR classifier, standardize all

Input training sample matrix Xʹ
And query sample yʹ 

Standardize training sample and the
query sample to the range of L_2 

Calculate the coefficient matrix :
ĉ = ARG MIN c ||yʹ–Xʹc|| + 𝛼||c||2

2 + 𝛽c s.t. c ≥0 

Calculate residual similarity :
rk = ||yʹ–Xʹkĉk||2

Output label category :
LABEL (yʹ) = ARG MIN {rk}
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Figure 3: Flowchart of NRC DenseNet-based algorithm.

Table 2: Accuracy under the regularization parameters.

α

β

0.01 0.05 0.1 0.5 1

0.01 99.37 99.33 99.32 99.15 99.01

0.05 99.47 99.36 99.33 99.17 99.01

0.1 99.48 99.40 99.31 99.20 99.00

0.5 99.03 99.15 99.24 99.12 98.93

1 98.33 97.06 97.05 99.01 98.79
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training sample matrices, and test sample matrices to the
L_2 paradigm and solve the coefficient matrix, which in
turn is used to find the reconstruction error for each cat-
egory. Finally, the final classification identification is com-
pleted based on the similarity of the reconstruction
residuals as follows:

(1) For the training sample X ′ = ½X′1,⋯, X′K �; Xi ∈ CT,
and for the testing sample y′ = ½y′1:⋯, y′n�; yi ∈ CT.
After dense neural network, DenseNet-201 feature
extraction, a training sample matrix X ′ = ½X′1,⋯, X
′K �, and a test sample matrix of the feature space y′
= ½y′1:⋯, y′n� are obtained

(2) Standardize each column X ′ of the matrix and the
query sample y′ to the range of L_2

(3) The nonnegative sparse and collaborative representa-
tion processing of y′ with the training sample X ′ in
feature space is done to obtain the matrix of represen-
tation coefficient ĉ:

ĉ = arg minc y′ = X ′c
�� �� + α ck k22 + βc s:t:c ≥ 0 ð8Þ

(4) Classify the residual similarity of nonnegative, sparse,
and collaborative representation of test samples by
training samples:

rk = y′ − X′kĉk
�� ��

2 ð9Þ

(5) Output the label categories corresponding to the
residual results:

Label y′
� �

= arg min rkf g ð10Þ

The NSCR-based DenseNet model DenseNet-NSCR is
shown in Figure 3.

4. Algorithm Simulation Experiments

4.1. Experimental Environment. Software environment: Win-
dows10 operating system, MatlabR2019a;

Hardware environment: Intel(R)Core(TM)i5-7200U
CPU @2.50GHz 2.70GHz, 4.0GB memory, 500GB hard disk.

4.2. Results and Analysis of Experiments. To ensure the reli-
ability of the data, the five-fold crossover method was used
in this experiment. All samples were divided into five equal
parts. Each copy contains equal proportions of the number
of samples in different categories; 4 sets of data were used
as training samples at a time, while the remaining 1 sample
was used as a test sample, and each result was averaged to
get the final result. That is, the number of training samples
each session is 4000, the number of test samples is 1000,
and the average of five experiments is taken. Experiments
are conducted on three different network models, AlexNet,
GoogleNet, and DenseNet, and three classification algo-
rithms: the SVM, the SRC, and the NSCR. The results of
the experimental comparison of the two combined models
are as follows:

4.2.1. Experiment 1: NSCR Regularization Parameter
Optimization. The regularization parameters α and β affect
the performance of the NSCR classifier to achieve the optimal
performance of the NSCR classifier. In this experiment, the
regularization parameters α and β were selected as 0.01,
0.05, 0.1, 0.5, and 1, respectively, with CT medical images
as the dataset, the dataset was randomly divided 7 : 3, and a
five-fold crossover experiment was performed. The optimal
regularization parameters α and β were found with classifica-
tion accuracy as the index.

As shown in Table 2, the selection of different regulariza-
tion parameters α and β affects the performance of the NSCR
classifier. When α = 0:01 and β = 0:1, the NSCR classification
accuracy is 99.48% and the performance of the NSCR
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Figure 4: Regularization parameters α and β.

Table 3: Comparison of accuracy and training time results for
different models.

Dataset CT
Model Accuracy (/%) Training time (/s)

AlexNet+SVM 97.50 224.58

AlexNet+SRC 96.32 604.20

AlexNet+NSCR 98.52 334.39

GoogleNet+SVM 97.90 662.44

GoogleNet+SRC 98.02 1081.21

GoogleNet+NSCR 98.82 773.97

DenseNet-201+SVM 98.26 3182.66

DenseNet-201+SRC 98.32 3962.32

DenseNet-201+NSCR 99.10 3234.63
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classifier is optimal. To better indicate the effect of the selec-
tion of the regularization parameters α and β on the classifi-
cation results, the three indicators were plotted in a three-
dimensional histogram, as shown in Figure 4.

4.2.2. Experiment 2: Comparison of Accuracy of Different
Models and Time. This experiment focuses on the recogni-
tion accuracy and training time of nine algorithms (Alex-
Net+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet
+SVM, GoogleNet+SRC, GoogleNet+NSCR, DenseNet
+SVM, DenseNet+SRC, and DenseNet+NSCR) for training
and recognition on CT sampling space and probes the effects
of different network models, different classification algo-
rithms, and different sampling spaces on the recognition rate
and training time of dense neural networks, as shown in
Table 3.

In the first case, different network models are used with
the same classification algorithm. In experiment 1, there are
three sets of comparison experiments, namely, (AlexNet
+SVM, GoogleNet+SVM, and AlexNet+SVM), (AlexNet
+SRC, GoogleNet+SRC, and DenseNet-201+SRC), and
(AlexNet+NSCR, GoogleNet+NSCR, and DenseNet-201
+NSCR). To illustrate with the third group, in the CT sam-
pling space, the accuracy of the DenseNet-201+NSCR model
proposed in this paper is 0.28% and 0.58% higher, and the
training time is 2460.66 s and 2900.24 s higher than the Alex-
Net+NSCR and GoogleNet+NSCR models, respectively. Not
surprisingly, the DenseNet-201 has deep network layers, rich
extracted image features, and high classification accuracy
compared to other models. However, the cost is a significant
increase in training time. The other two sets of results are
similar and will not be recounted here.

In the second case, the same network and different classi-
fication algorithms are used. In experiment 1, there are three
groups of comparison experiments, which are (AlexNet
+SVM, AlexNet+SRC, and AlexNet+NSCR), (GoogleNet
+SVM, GoogleNet+SRC, and GoogleNet+NSCR), and (Den-
seNet-201+SVM, DenseNet-201+SRC, and DenseNet-201
+NSCR). To illustrate the third set, in the CT sample space,
the classification accuracy of the DenseNet-201+NSCR
model proposed in this paper is better than that of the Den-
seNet-201+SVM is 0.84% higher and 0.78% higher than
DenseNet-201+SRC. In terms of training time, it is 51.97 s
more than the DenseNet-201+SVM model and 727.69 s

lower than the DenseNet-201+SRC model. Compared to
the first two cases, the overall training time is significantly
improved. However, after the network model is determined,
the increase in training time complexity compared to the
SVM classifier is relatively reduced. Moreover, the time com-
plexity is significantly reduced compared to the SRC classifi-
cation algorithm. Not surprisingly, under the same network
model, the nonnegative, sparse, and collaborative representa-
tion classification algorithm NSCR has better classification
accuracy, which better solves the optimization problem of
high-dimensional data and with a much lower time cost
compared to SVM and SRC.

4.2.3. Experiment 3: Comparison of Different Combinations of
Networks and Classifier Algorithms. The experiment focuses
on nine algorithms (AlexNet+SVM, AlexNet+SRC, AlexNet
+NSCR, GoogleNet+SVM, GoogleNet+SRC, GoogleNet
+NSCR, DenseNet-201+SVM, DenseNet-201+SRC, and
DenseNet-201+NSCR) trained on CT sampling space, in
terms of accuracy, sensitivity, specificity, F value, and MCC
for a total of five metrics to evaluate the merits of the algo-
rithm. The results are shown in Table 4.

As shown in Table 4, the DenseNet-201+NSCR algo-
rithm performance are all better than The DenseNet-201
+NSCR algorithm has better metrics than other algorithms
in terms of accuracy, sensitivity, specificity, F value, and
MCC on the CT dataset improved by 2.78%, 3.24%, 2.32%,
2.78, and 5.56%, respectively. To point out the differences
between the different algorithms on each indicator more
clearly, the mean values of these five indicators are plotted
on a line graph with the three network models in horizontal
coordinates and the five evaluation indicators in vertical
coordinates, respectively, as shown in Figure 5.

Through these two experiments and the correlation anal-
ysis, one can easily see that, with the same network model,
this paper compares three classification algorithms, SVM,
SRC, and NSCR, and the result of the experiments show that
NSCR classification outperforms SVM and SRC classification
algorithms for DenseNet in medical image extraction. The
NSRC algorithm has better robustness for the problems of
DenseNet in which features extracted from medical images
appear to have high dimensionality and data redundancy.
With the same classification algorithm, this paper compares
three network models, AlexNet, GoogleNet, and DenseNet-

Table 4: Comparison of CT results for different network models and classification algorithms.

Network model Classification algorithm Accuracy (%) Sensitivity (%) Specificity (%) F-score (%) MCC (%)

AlexNet

SVM 97.50 97.40 97.60 97.50 95.00

SRC 96.32 96.36 96.28 96.32 92.64

NSCR 98.52 98.44 98.60 98.52 97.04

GoogleNet

SVM 97.90 97.76 98.04 97.90 95.80

SRC 98.02 99.20 96.84 98.04 96.07

NSCR 98.82 99.20 98.44 98.82 97.64

DenseNet-201

SVM 98.26 98.32 98.20 98.26 96.52

SRC 98.32 99.60 97.04 98.34 96.67

NSCR 99.10 99.60 98.60 99.10 98.20
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201. The results show that DenseNet outperforms AlexNet
and GoogleNet models, and DenseNet effectively uses high-
level information to rediscover new features at the bottom
layer, enhances the propagation of features across networks,

and implements and strengthens feature reuse. The result
shows that DenseNet outperforms AlexNet and GoogleNet,
especially the DenseNet-201+NSCR model with deep net-
work depth, strong network generalization capability, high
classification accuracy, and better accuracy, sensitivity, spec-
ificity, F value, and MCC than the other models.

5. Conclusion

In this paper, a DenseNet based on nonnegative, sparse, and
collaborative representation classification for benign and
malignant classification of lung tumors (DenseNet-NSCR)
is proposed. First, CT medical images were collected and pre-
processed. The dataset is then trained in a DenseNet to con-
struct a DenseNet model to extract the full connection layer
feature vector. Finally, the lung tumor classification results
were obtained in the NSCR classifier and compared by Alex-
Net+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet
+SVM, GoogleNet+SRC, GoogleNet+NSCR, DenseNet-201
+SVM, DenseNet-201+SRC, and DenseNet-201+NSCR for
a total of nine models. The DenseNet+NSCR model outper-
forms the other models with better robustness and generali-
zation capabilities.
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