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Fractional calculus (fractional derivatives and fractional
integrals together with their applications) is undergoing a
rapid development, from both theoretical as well as applied
viewpoints. Such a tool is an emergent topic, and within
its framework new concepts and applications, which lead
to a challenging insight, have appeared during the last few
decades.

It may be the nonlocal property of fractional operators
that could have motivated the rising of numerous new and
important applications in many branches of applied sciences
and engineering. Among other applications, modeling of
the dynamics of processes through complex media using
fractional calculus is an important one and has significantly
contributed to the popularity of the subject.

Therefore, the goal of this special issue was focused
on related topics with high current interest, both from
theoretical and practical points of view.

We received 70 manuscripts and only 35 highest quality
papers were accepted from the areas of mathematics, physics,
engineering, biology, and other fields. This special issue
contains the research papers on the existence theory of initial
and boundary value problems of fractional order, numerical
solutions of fractional differential equations, andmodeling of
real-world problems using fractional calculus.
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Bashir Ahmad



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 531038, 12 pages
http://dx.doi.org/10.1155/2013/531038

Research Article
The Positive Properties of Green’s Function for Fractional
Differential Equations and Its Applications

Fuquan Jiang,1 Xiaojie Xu,2 and Zhongwei Cao3

1 The Department of Foundation, Harbin Finance University, Harbin 150030, China
2 College of Science, China University of Petroleum (East China), Qingdao 266580, China
3Department of Applied Mathematics, Changchun Taxation College, Changchun 130117, China

Correspondence should be addressed to Fuquan Jiang; jfqsz@163.com

Received 13 July 2012; Revised 10 December 2012; Accepted 24 December 2012

Academic Editor: Dumitru Baleanu

Copyright © 2013 Fuquan Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the properties of Green’s function for the nonlinear fractional differential equation boundary value problem:D𝛼
0+
𝑢(𝑡)+

𝑓(𝑡, 𝑢(𝑡))+𝑒(𝑡) = 0, 0 < 𝑡 < 1, 𝑢(0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢(1) = 𝛽𝑢(𝜂), where 𝑛−1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3, 0 < 𝛽 ≤ 1, 0 ≤ 𝜂 ≤ 1,D𝛼

0+

is the standard Riemann-Liouville derivative. Here our nonlinearity 𝑓may be singular at 𝑢 = 0. As applications of Green’s function,
we give some multiple positive solutions for singular boundary value problems by means of Schauder fixed-point theorem.

1. Introduction

Fractional differential equations have been of great interest
recently. This is due to the intensive development of the
theory of fractional calculus itself as well as its applica-
tions. Apart from diverse areas of mathematics, fractional
differential equations arise in rheology, dynamical processes
in selfsimilar and porous structures, fluid flows, electrical
networks, viscoelasticity, chemical physics, and many other
branches of science. For details, see [1–10].

It should be noted that most of the papers and books
on fractional calculus are devoted to the solvability of linear
initial fractional differential equations on terms of special
functions. Recently, there are some papers dealing with
the existence and multiplicity of solution to the nonlinear
fractional differential equations boundary value problems,
see [11–17].

Bai [14] investigated the existence and uniqueness of
positive solutions for a nonlocal boundary value problem of
fractional differential equation

D𝛼
0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) ,

(1)

by contraction map principle and fixed-point index theory,
where 1 < 𝛼 ≤ 2, 0 < 𝛽𝜂

𝛼−1
< 1, 0 < 𝜂 < 1, D𝛼

0+
is

the standard Riemann-Liouville derivative. The function 𝑓 is
continuous on [0, 1] × [0,∞).

Li et al. [17] investigated the the existence andmultiplicity
results of positive solutions for the nonlinear differential
equation of fractional order

D𝛼
0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, D𝛽
0+
𝑢 (1) = 𝑎D𝛽

0+
𝑢 (𝜉) ,

(2)

by using some fixed-point theorems, where 1 < 𝛼 ≤ 2, 0 <

𝛽 ≤ 1, 0 ≤ 𝑎 ≤ 1, 𝜉 ∈ (0, 1), 𝑎𝜉𝛼−𝛽−2 ≤ 1 − 𝛽, 0 ≤ 𝛼 − 𝛽 − 1,
D𝛼
0+

is the standard Riemann-Liouville derivative.
Xu and Fei [18] considered the properties of Green’s

function for the nonlinear fractional differential equation
boundary value problem

D𝛼
0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) + 𝑒 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, D𝛽
0+
𝑢 (1) = 𝑎D𝛽

0+
𝑢 (𝜉) ,

(3)

where 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 0 ≤ 𝑎 ≤ 1, 0 < 𝜉 < 1,
𝛼 − 𝛽 − 1 ≥ 0, D𝛼

0+
is the standard Riemann-Liouville

derivative. Here the nonlinearity 𝑓may be singular at 𝑢 = 0.
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As applications of Green’s function, they give some existence
of positive solutions for singular boundary value problems by
means of Schauder fixed-point theorem. Here they consider
the case: 𝛾

∗
= 0, 𝛾
∗
≥ 0, 𝛾∗ ≤ 0.

In this paper, we consider the singular boundary value
problem

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) + 𝑒 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) ,

(4)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3, 0 < 𝛽, 𝜂 < 1 is a real constant,
𝐷
𝛼

0+
is the standard Riemann-Liouville fractional derivative.

We will deduce a property of Green’s function. The result we
establish in Section 2 can be stated as follow.

Theorem 1. The Function 𝐺(𝑡, 𝑠) defined by (12) is continuous
and satisfies

𝑀𝑡
𝛼−1

𝑠(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
≤ 𝐺 (𝑡, 𝑠) ≤

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
,

𝑓𝑜𝑟 𝑡, 𝑠 ∈ [0, 1] ,

(5)

where 0 < 𝑀 = min{1 − 𝛽𝜂𝛼−1, 𝛽𝜂𝛼−2(1 − 𝜂), 𝛽𝜂𝛼−1} < 1.

In this paper, we give some existence of positive solutions
for singular boundary value problems by means of Schauder
fixed-point theorem for the case: 𝛾

∗
= 0, 𝛾

∗
≥ 0, 𝛾∗ ≤ 0,

𝛾
∗
< 0 < 𝛾

∗.
The paper is organized as follows. In Section 2, we state

some known results and give a property of Green’s function.
In Section 3, using Schauder fixed-point theorem, the exis-
tence of positive solutions to singular problems are obtained.

2. Background Materials

For the convenience of the reader, we present here the
necessary definitions from fractional calculus theory.

Definition 2 (see [7]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑦 : (0,∞) → 𝑅 is given
by

𝐼
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠, (6)

provided the right side is pointwise defined on (0,∞).

Definition 3 (see [7]). The Riemann-Liouville fractional de-
rivative of order 𝛼 > 0 of a continuous function 𝑦 : (0,∞) →

𝑅 is given by

𝐷
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

𝑦 (𝑠)

(𝑡 − 𝑠)
𝛼−𝑛+1

𝑑𝑠, (7)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number 𝛼,
provided that the right side is pointwise defined on (0,∞).

From the definition of Riemann-Liouville’s derivative, we
can obtain the statement.

Lemma4 (see [7]). Let𝛼 > 0, if one assumes that𝑢 ∈ 𝐶(0, 1)∩
𝐿(0, 1), then the fractional differential equation

D𝛼
0+
𝑢 (𝑡) = 0 (8)

has 𝑢(𝑡) = 𝐶
1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑁
𝑡
𝛼−𝑁, 𝐶

𝑖
∈ 𝑅, 𝑖 =

1, 2, . . . , 𝑁, as unique solutions, where𝑁 is the smallest integer
greater than or equal to 𝛼.

Lemma 5 (see [7]). Assume that 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with a
fractional derivative of order 𝛼 > 0 that belongs to 𝐶(0, 1) ∩
𝐿(0, 1). Then,

𝐼
𝛼

0+
D𝛼
0+
𝑢 (𝑡) = 𝑢 (𝑡) + 𝐶

1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑁
𝑡
𝛼−𝑁

, (9)

for some 𝐶
𝑖
∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑁, 𝑁 is the smallest integer

greater than or equal to 𝛼.

Lemma 6. Given ℎ ∈ 𝐶(0, 1) the problem

𝐷
𝛼

0+
𝑢 (𝑡) + ℎ (𝑡) = 0, 0 < 𝑡 < 1, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0,

𝑢 (1) = 𝛽𝑢 (𝜂) , 0 < 𝛽, 𝜂 < 1

(10)

is equivalent to

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (11)

where

𝐺 (𝑡, 𝑠) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

([𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

−(𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

))

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜂,

([𝑡 (1 − 𝑠)]
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

))

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

,

0 < 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

([𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

)

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 < 1,

([𝑡 (1 − 𝑠)]
𝛼−1

)

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜂 ≤ 𝑠.

(12)

Proof. We can apply Lemma 5 to reduce (10) to an equivalent
integral equation

𝑢 (𝑡) = −𝐼
𝛼

0+
ℎ (𝑡) + 𝐶

1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑛
𝑡
𝛼−𝑛

, (13)
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for some 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
∈ 𝑅. Consequently, the general

solution of (10) is

𝑢 (𝑡) = −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

+ 𝐶
1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑛
𝑡
𝛼−𝑛

.

(14)

By 𝑢(0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, this is 𝐶

2
= 𝐶
3
= ⋅ ⋅ ⋅ =

𝐶
𝑛
= 0.
On the other hand, 𝑢(1) = 𝛽𝑢(𝜂) combining with

𝑢 (1) = −
1

Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠 + 𝐶
1
,

𝑢 (𝜂) = −
1

Γ (𝛼)
∫

𝜂

0

(𝜂 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠 + 𝐶
1
𝜂
𝛼−1

(15)

yields

𝐶
1
=

1

1 − 𝛽𝜂𝛼−1
∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

−
𝛽

1 − 𝛽𝜂𝛼−1
∫

𝜂

0

(𝜂 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠.

(16)

Therefor, the unique solution of problem (10) is

𝑢 (𝑡) = − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+
1

1 − 𝛽𝜂𝛼−1
∫

1

0

(𝑡 (1 − 𝑠))
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

−
𝛽

1 − 𝛽𝜂𝛼−1
∫

𝜂

0

(𝑡 (𝜂 − 𝑠))
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠.

(17)

For 𝑡 ≤ 𝜂, we have

𝑢 (𝑡) = − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+
1

1 − 𝛽𝜂𝛼−1
[(∫

𝑡

0

+∫

𝜂

𝑡

+∫

1

𝜂

)
(𝑡 (1 − 𝑠))

𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠]

−
𝛽

1 − 𝛽𝜂𝛼−1
[(∫

𝑡

0

+∫

𝜂

𝑡

)
(𝑡 (𝜂 − 𝑠))

𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠]

= ∫

𝑡

0

( ([𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽[𝑡 (𝜂 − 𝑠)]
𝛼−1

−(𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

))

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

) ℎ (𝑠) 𝑑𝑠

+ ∫

𝜂

𝑡

[𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽[𝑡 (𝜂 − 𝑠)]
𝛼−1

(1 − 𝛽𝜂𝛼−1) Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+ ∫

1

𝜂

[𝑡 (1 − 𝑠)]
𝛼−1

(1 − 𝛽𝜂𝛼−1) Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠.

(18)

For 𝑡 ≥ 𝜂, we have

𝑢 (𝑡) = − [(∫

𝜂

0

+∫

𝑡

𝜂

)
(𝑡 − 𝑠)

𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠]

−
𝛽

1 − 𝛽𝜂𝛼−1
∫

𝜂

0

(𝑡 (𝜂 − 𝑠))
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+
1

1 − 𝛽𝜂𝛼−1
[(∫

𝜂

0

+∫

𝑡

𝜂

+∫

1

𝑡

)
(𝑡 (1 − 𝑠))

𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠]

= ∫

𝜂

0

( ([𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽[𝑡 (𝜂 − 𝑠)]
𝛼−1

−(𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

))

×((1 − 𝛽𝜂
𝛼−1

) Γ (𝛼))
−1

) ℎ (𝑠) 𝑑𝑠

+ ∫

𝑡

𝜂

[𝑡 (1 − 𝑠)]
𝛼−1

− (1 − 𝛽𝜂
𝛼−1

) (𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂𝛼−1) Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+ ∫

1

𝑡

[𝑡 (1 − 𝑠)]
𝛼−1

(1 − 𝛽𝜂𝛼−1) Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠.

(19)

The proof is complete.

Proof of Theorem 1. It is easy to prove that 𝐺(𝑡, 𝑠) is contin-
uous on [0, 1] × [0, 1], here we omit it. In the following, we
consider (1 − 𝛽𝜂

𝛼−1
)Γ(𝛼)𝐺(𝑡, 𝑠). When 0 ≤ 𝑠 < 𝑡 ≤ 1, 𝑠 < 𝜂,

let

𝑔
1
(𝑡) = [𝑡 (1 − 𝑠)]

𝛼−1
− 𝛽𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

) .

(20)

We have

𝑔
1
(𝑡) = [𝑡 (1 − 𝑠)]

𝛼−1
− 𝛽𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

)

= [𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝜂
𝛼−1

𝑡
𝛼−1

(1 −
𝑠

𝜂
)

𝛼−1

− 𝑡
𝛼−1

(1 −
𝑠

𝑡
)

𝛼−1

(1 − 𝛽𝜂
𝛼−1

)
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≥ [𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝜂
𝛼−1

𝑡
𝛼−1

(1 −
𝑠

𝜂
)

𝛼−1

− 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

)

= 𝑡
𝛼−1

𝛽𝜂
𝛼−1

[(1 − 𝑠)
𝛼−1

− (1 −
𝑠

𝜂
)

𝛼−1

]

= 𝑡
𝛼−1

𝛽𝜂
𝛼−1

[(1 − 𝑠)
𝛼−1

− (1 −
𝑠

𝜂
)

𝛼−2

(1 −
𝑠

𝜂
)]

≥ 𝑡
𝛼−1

𝛽𝜂
𝛼−1

(1 − 𝑠)
𝛼−2

[1 − 𝑠 − (1 −
𝑠

𝜂
)]

= 𝑡
𝛼−1

𝛽𝜂
𝛼−1

(1 − 𝑠)
𝛼−2

𝑠
1 − 𝜂

𝜂

≥ 𝛽𝜂
𝛼−1

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

𝑠
1 − 𝜂

𝜂

≥ 𝑀𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

𝑠.

(21)

When 0 < 𝜂 ≤ 𝑠 < 𝑡 ≤ 1, let

𝑔
2
(𝑡) = [𝑡 (1 − 𝑠)]

𝛼−1
− (𝑡 − 𝑠)

𝛼−1
(1 − 𝛽𝜂

𝛼−1
) . (22)

We have

𝑔
2
(𝑡) = [𝑡 (1 − 𝑠)]

𝛼−1
− (𝑡 − 𝑠)

𝛼−1
(1 − 𝛽𝜂

𝛼−1
)

= [𝑡 (1 − 𝑠)]
𝛼−1

− 𝑡
𝛼−1

(1 −
𝑠

𝑡
)

𝛼−1

(1 − 𝛽𝜂
𝛼−1

)

≥ [𝑡 (1 − 𝑠)]
𝛼−1

− 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

(1 − 𝛽𝜂
𝛼−1

)

= 𝛽𝜂
𝛼−1

(𝑡 − 𝑡𝑠)
𝛼−1

≥ 𝑀𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

𝑠.

(23)

When 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 < 1, let 𝑔
3
(𝑡) = [𝑡(1 − 𝑠)]

𝛼−1
− 𝛽𝑡
𝛼−1

(𝜂 −

𝑠)
𝛼−1, we have

𝑔
3
(𝑡) = [𝑡 (1 − 𝑠)]

𝛼−1
− 𝛽𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

= [𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝜂
𝛼−1

𝑡
𝛼−1

(1 −
𝑠

𝜂
)

𝛼−1

≥ [𝑡 (1 − 𝑠)]
𝛼−1

− 𝛽𝜂
𝛼−1

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

= (1 − 𝛽𝜂
𝛼−1

) 𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

≥ 𝑀𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

𝑠.

(24)

When 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜂 ≤ 𝑠, we have

(1 − 𝛽𝜂
𝛼−1

) Γ (𝛼) 𝐺 (𝑡, 𝑠) = [𝑡 (1 − 𝑠)]
𝛼−1

≥ 𝑀𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

𝑠.

(25)

It is easy to see that𝐺(𝑡, 𝑠) ≤ 𝑡
𝛼−1

(1−𝑠)
𝛼−1

/Γ(𝛼)(1−𝛽𝜂
𝛼−1

).
Thus, the proof is complete.

Let us fix some notations to be used in the following. “For
a.e.”means “for almost every”.Given𝑎 ∈ 𝐿1(0, 1), wewrite𝑎 ≻
0 if 𝑎 ≥ 0 for a.e. 𝑡 ∈ [0, 1], and it is positive in a set of positive
measure, we write 𝑓 ∈ Car((0, 1) × (0, +∞), (0, +∞)) if 𝑓 :

(0, 1) × (0, +∞) → (0, +∞) is a 𝐿1-caratheodory function,
that is, the map 𝑥 → 𝑓(𝑡, 𝑥) is continuous for a.e. 𝑡 ∈ (0, 1),
and the map 𝑡 → 𝑓(𝑡, 𝑥) is measurable for all 𝑥 ∈ (0, +∞).

Let us define

𝛾
∗
= sup
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑠)

𝑡𝛼−1
𝑒 (𝑠) 𝑑𝑠,

𝛾
∗
= inf
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑠)

𝑡𝛼−1
𝑒 (𝑠) 𝑑𝑠.

(26)

Then,

𝑡
𝛼−1

𝛾
∗
≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠 ≤ 𝑡
𝛼−1

𝛾
∗
. (27)

3. Main Results

In this section, we establish the existence of positive solutions
for equation

D𝛼
0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) + 𝑒 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) ,

(28)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3, 0 < 𝛽 ≤ 1, 0 ≤ 𝜂 ≤ 1,
𝑓 ∈ Car((0, 1) × (0, +∞), (0, +∞)), 𝑒(𝑡) ∈ 𝐿

1
[0, 1], D𝛼

0+
is

the standard Riemann-Liouville derivative. The following is
the first main result in this section.

Theorem7. Suppose that the following conditions are satisfied.

(H
1
) For each 𝐿 > 0, there exists a function 𝜙

𝐿
≻ 0 such that

𝑓(𝑡, 𝑡
𝛼−1

𝑥) ≥ 𝜙
𝐿
(𝑡) for a.e. 𝑡 ∈ (0, 1), all 𝑥 ∈ (0, 𝐿].

(H
2
) There exist 𝑔(𝑥), ℎ(𝑥), and 𝑘(𝑡) ≻ 0, such that

0 ≤ 𝑓 (𝑡, 𝑥) ≤ 𝑘 (𝑡) {𝑔 (𝑥) + ℎ (𝑥)}

𝑓𝑜𝑟 𝑎.𝑒.𝑡 ∈ (0, 1) , 𝑎𝑙𝑙 𝑥 ∈ (0,∞) ,

(29)

here

𝑔 : (0, +∞)

→ [0, +∞) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑛𝑑 𝑛𝑜𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔,

ℎ : [0, +∞)

→ [0, +∞) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑎𝑛𝑑
ℎ

𝑔
𝑖𝑠 𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔.

(30)
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(H
3
) There exist two positive constants 𝑅 > 𝑟 > 0 such that

𝑅 > Φ
𝑅1
+ 𝛾
∗
≥ 𝑟 > 0,

∫

1

0

𝑘 (𝑠) 𝑔 (𝑟𝑠
𝛼−1

) 𝑑𝑠 < +∞,

𝑅≥(1 +
ℎ (𝑅)

𝑔 (𝑅)
)∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 (𝑟𝑠

𝛼−1
) 𝑑𝑠+𝛾

∗
,

(31)

and here

Φ
𝑅1

= ∫

1

0

𝑀𝑠(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝜙
𝑅
(𝑠) 𝑑𝑠. (32)

Then, (28) has at least one positive solution.

Proof. Let 𝐸 = (𝐶[0, 1], ‖ ⋅ ‖), and Ω is a closed convex set
defined as

Ω = {𝑥 ∈ 𝐶 [0, 1] : 𝑡
𝛼−1

𝑟 ≤ 𝑥 (𝑡) ≤ 𝑡
𝛼−1

𝑅 ∀𝑡 ∈ [0, 1]} , (33)

here 𝐸 = 𝐶[0, 1] is the Banach space of continuous functions
defined on [0, 1] with the norm

‖𝑥‖ := max
𝑡∈[0,1]

|𝑥 (𝑡)| , (34)

and 𝑅 > 𝑟 > 0 are positive constants to be given below.
Now, we define an operator 𝑇 : Ω → 𝐸 by

(𝑇𝑥) (𝑡) := ∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠. (35)

Then, (28) is equivalent to the fixed-point problem

𝑥 = 𝑇𝑥. (36)

Let 𝑅 be the positive constant satisfying (H
3
) and

Φ
𝑅1
+ 𝛾
∗
≥ 𝑟. (37)

Then, we have 𝑅 > 𝑟 > 0. Now, we prove 𝑇(Ω) ⊂ Ω.
In fact, for each 𝑥 ∈ Ω and for all 𝑡 ∈ (0, 1), by (H

1
) and

(H
3
)

(𝑇𝑥) (𝑡) ≥ ∫

1

0

𝑡
𝛼−1 𝑀𝑠(1 − 𝑠)

𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝜙
𝑅
(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠

≥ 𝑡
𝛼−1

[Φ
𝑅1
+ 𝛾
∗
] ≥ 𝑡
𝛼−1

𝑟.

(38)

On the other hand, by conditions (H
2
) and (H

3
), we have

(𝑇𝑥) (𝑡)

≤ ∫

1

0

𝑡
𝛼−1 (1 − 𝑠)

𝛼−𝛽−1

Γ (𝛼) (1 − 𝑎𝜉𝛼−𝛽−1)
𝑘 (𝑠)

× [𝑔 (𝑠
𝛼−1 𝑥 (𝑠)

𝑠𝛼−1
) + ℎ (𝑠

𝛼−1 𝑥 (𝑠)

𝑠𝛼−1
)] 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠

≤ 𝑡
𝛼−1

[∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 (𝑠

𝛼−1 𝑥 (𝑠)

𝑠𝛼−1
)

×{1 +
ℎ (𝑠
𝛼−1

(𝑥 (𝑠) /𝑠
𝛼−1

))

𝑔 (𝑠𝛼−1 (𝑥 (𝑠) /𝑠𝛼−1))
} 𝑑𝑠 + 𝛾

∗
]

≤ 𝑡
𝛼−1

×[(1+
ℎ (𝑅)

𝑔 (𝑅)
)∫

1

0

(1−𝑠)
𝛼−1

Γ (𝛼) (1−𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 (𝑟𝑠

𝛼−1
) 𝑑𝑠+𝛾

∗
]

≤ 𝑡
𝛼−1

𝑅.

(39)

In conclusion, 𝑇(Ω) ⊂ Ω.
Finally, it is standard that𝑇 : Ω → Ω is a continuous and

completely continuous operator. By a direct application of
Schauder’s fixed-point theorem, (28) has at least one positive
solution 𝑥(𝑡) ∈ 𝐶[0, 1], the proof is finished.

Case 1 (𝛾
∗
= 0). As an application ofTheorem 7, we consider

the case 𝛾
∗
= 0. The following corollary is a direct result of

Theorem 7 with 𝑟 = Φ
𝑅1
.

Corollary 8. Suppose that 𝑓(𝑡, 𝑥) satisfies conditions (H
1
)-

(H
2
). Furthermore, assume the following.

(H∗
3
) There exists a positive constant 𝑅 > 0 such that

𝑅 > Φ
𝑅1

> 0,

∫

1

0

𝑘 (𝑠) 𝑔 [(Φ
𝑅1
) 𝑠
𝛼−1

] 𝑑𝑠 < +∞,

𝑅 ≥ (1 +
ℎ (𝑅)

𝑔 (𝑅)
)

× ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1−𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 [(Φ

𝑅1
) 𝑠
𝛼−1

] 𝑑𝑠+𝛾
∗
,

(40)

and here

Φ
𝑅1

= ∫

1

0

𝑀𝑠(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝜙
𝑅
(𝑠) 𝑑𝑠. (41)

Then, (28) has at least one positive solution.
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From now on, let us define

𝛽
1
= ∫

1

0

𝑀𝑠
1−𝜆(𝛼−1)

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑑𝑠,

𝛽
2
= ∫

1

0

𝑠
−𝜆(𝛼−1)

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑑𝑠.

(42)

Example 9. Suppose that the nonlinearity in (28) is

𝑓 (𝑡, 𝑥) =
𝑘 (𝑡)

𝑥𝜆
, (43)

where 𝑘 ≻ 0, 0 < 𝜆 < 1 and

𝜔 (𝜆) := ∫

1

0

𝑘 (𝑠) 𝑠
−𝜆(𝛼−1)

𝑑𝑠 < +∞. (44)

If 𝛾
∗
= 0, then (28) has at least one positive solution.

Proof. We will apply Corollary 8. To this end, we take

𝜙
𝐿
(𝑡) =

𝑘 (𝑡)

(𝑡𝛼−1𝐿)
𝜆
, 𝑔 (𝑥) =

1

𝑥𝜆
, ℎ (𝑥) ≡ 0, (45)

then (H
1
) and (H

2
) are satisfied since 𝜔(𝜆) < +∞, and the

existence condition (H∗
3
) becomes

(
𝑅
𝜆

𝛽
1

)

𝜆

𝛽
2
+ 𝛾
∗
≤ 𝑅, 𝑅 >

𝛽
1

𝑅𝜆
, 𝜔 (𝜆) < +∞, (46)

for some 𝑅 > 0. Since 0 < 𝜆 < 1, we can choose 𝑅 > 0 large
enough such that (46) is satisfied, and the proof is finished.

Example 10. Suppose that the nonlinearity in (28) is

𝑓 (𝑡, 𝑥) = 𝑘 (𝑠) (𝑥
−𝜆
+ 𝜇𝑥
𝜈
) , (47)

where 0 < 𝜆 < 1, 𝜈 ≥ 0 and 𝜇 ≥ 0 is a nonnegative parameter.
For each 𝑒(𝑡) with 𝛾

∗
= 0, 𝜔(𝜆) < +∞,

(i) if 𝜆 + 𝜈 < 1 − 𝜆
2, then (28) has at least one positive

solution for each 𝜇 ≥ 0.

(ii) If 𝜆 + 𝜈 ≥ 1 − 𝜆
2, then (28) has at least one positive

solution for each 0 ≤ 𝜇 < 𝜇
1
, where 𝜇

1
is some

positive constant.

Proof. We will apply Corollary 8. To this end, we take

𝜙
𝐿
(𝑡) =

𝑘 (𝑡)

(𝑡𝛼−1𝐿)
𝜆
, 𝑔 (𝑥) = 𝑥

−𝜆
, ℎ (𝑥) = 𝜇𝑥

𝜈
. (48)

Then, (H
1
)-(H
2
) are satisfied since 𝜔(𝜆) < +∞. Now, the

existence condition (H∗
3
) becomes 𝜔(𝜆) < +∞, and

𝜇 ≤
𝑅
1−𝜆
2

𝛽
𝜆

1
− 𝛾
∗
𝛽
𝜆

1
𝑅
−𝜆
2

− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

, (49)

for some 𝑅 > 0 with 𝑅1+𝜆 > 𝛽
1
. So, (28) has at least one posi-

tive solution for

0 < 𝜇 < 𝜇
1
= sup
𝑅>𝛽
1/1+𝜆

1

𝑅
1−𝜆
2

𝛽
𝜆

1
− 𝛾
∗
𝛽
𝜆

1
𝑅
−𝜆
2

− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

. (50)

Note that 𝜇
1
= ∞ if 𝜆 + 𝜈 < 1 − 𝜆

2 and if 𝜆 + 𝜈 ≥ 1 − 𝜆
2, set

𝑙 (𝑅) :=
𝑅
1−𝜆
2

𝛽
𝜆

1
− 𝛾
∗
𝛽
𝜆

1
𝑅
−𝜆
2

− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

, (51)

then, we have

𝑙

(𝑅) =

1

𝑅𝜆+𝜈+1𝛽
2

[(1 − 𝜆
2
− 𝜆 − 𝜈)𝑅

1−𝜆
2

𝛽
𝜆

1

+ (𝜆
2
+ 𝜆 + 𝜈) 𝛾

∗
𝛽
𝜆

1
𝑅
−𝜆
2

+ (𝜆 + 𝜈) 𝛽
2
] .

(52)

Let the function 𝑙(𝑅) possess a maximum at 𝑅
0
, then

(𝜆
2
+ 𝜆 + 𝜈 − 1) 𝑅

1−𝜆
2

0
𝛽
𝜆

1

= (𝜆
2
+ 𝜆 + 𝜈𝜆) 𝛾

∗
𝛽
𝜆

1
𝑅
−𝜆
2

0
+ (𝜆 + 𝜈) 𝛽

2
,

(53)

so we have

(𝜆 + 𝜈 − 1 + 𝜆
2
) 𝛽
𝜆

1
𝑅
0
≥ (𝜆 + 𝜈) 𝛽

2
𝑅
𝜆
2

0
, (54)

it is easy to find that 𝑅
0
> (𝛽
2
/𝛽
𝜆

1
)
1/(1−𝜆

2
) since 𝜆+𝜈 ≥ 1−𝜆

2,
and 0 < 𝜆 < 1. Finally, it would remain to prove 𝑅

0
> 𝛽
1/1+𝜆

1
.

This is easily verified through elementary computations since
𝛽
1
≤ 𝛽
2
. We have the desired results (i) and (ii).

Case 2 (𝛾
∗
> 0). The next result explores the case when 𝛾

∗
>

0. In this case 𝑟 = 𝛾
∗
.

Corollary 11. Suppose that𝑓(𝑡, 𝑥) satisfies (H
2
). Furthermore,

assume the following.

(H
4
) There exists 𝑅 > 0, ∫1

0
𝑘(𝑠)𝑔(𝛾

∗
𝑠
𝛼−1

)𝑑𝑠 < +∞, such
that

(1 +
ℎ (𝑅)

𝑔 (𝑅)
)∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 (𝛾

∗
𝑠
𝛼−1

) 𝑑𝑠+𝛾
∗
≤𝑅.

(55)

If 𝛾
∗
> 0, then (28) has at least one positive solution.

Example 12. Suppose that the nonlinearity in (28) be (43)
with 𝑘 ≻ 0, 𝜆 > 0. If 𝛾

∗
> 0, 𝜔(𝜆) < +∞, then (28) has at

least one positive solution.

Proof. We will apply Corollary 11. Take 𝑘(𝑡), 𝑔(𝑥), and ℎ(𝑥)

as the same in the proof of Example 9.Then, (H
2
) is satisfied,

and the existence condition (H
4
) is satisfied if we take 𝑅 > 0

with 𝑅 ≥ 𝛽
2
/𝛾
𝜆

∗
+ 𝛾
∗, and 𝜔(𝜆) < +∞.

Example 13. Let the nonlinearity in (28) be (47) with 𝜆 > 0

and 𝜈 ≥ 0. For each 𝑒(𝑡) with 𝛾
∗
> 0, 𝜔(𝜆) < +∞,
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(i) if 𝜆+𝜈 < 1, then (28) has at least one positive solution
for each 𝜇 ≥ 0.

(ii) If 𝜆+𝜈 ≥ 1, then (28) has at least one positive solution
for each 0 ≤ 𝜇 < 𝜇

2
, where 𝜇

2
is some positive

constant.

Proof. We will apply Corollary 11. To this end, we take 𝑔(𝑥),
ℎ(𝑥), and 𝑘(𝑡) as the same in the proof of Example 10, then
(H
2
) is satisfied, and the existence condition (H

4
) becomes

𝜔(𝜆) < +∞,

𝜇 ≤
𝑅𝛾
𝜆

∗
− 𝛾
∗
𝛾
𝜆

∗
− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

, (56)

for some 𝑅 > 0. So, (28) has at least one positive solution for

0 < 𝜇 < 𝜇
2
= sup
𝑅>0

𝑅𝛾
𝜆

∗
− 𝛾
∗
𝛾
𝜆

∗
− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

. (57)

Note that 𝜇
2
= ∞ if 𝜆 + 𝜈 < 1 and 𝜇

2
= 𝛾
𝜆

∗
/𝛽
2
if 𝜆 + 𝜈 = 1,

and if 𝜆 + 𝜈 > 1 set

𝑙 (𝑅) :=
𝑅𝛾
𝜆

∗
− 𝛾
∗
𝛾
𝜆

∗
− 𝛽
2

𝛽
2
𝑅𝜆+𝜈

. (58)

The function 𝑙(𝑅) possesses a maximum at

𝑅
0
:=

(𝜆 + 𝜈) (𝛾
∗
𝛾
𝜆

∗
+ 𝛽
2
)

(𝜆 + 𝜈 − 1) 𝛾𝜆
∗

, (59)

then 𝜇
2
= 𝑙(𝑅
0
). We have the desired results (i) and (ii).

Case 3 (𝛾∗ ≤ 0). The next result considers the case 𝛾∗ ≤ 0.

Corollary 14. Suppose that 𝑓(𝑡, 𝑥) satisfies (H
1
)-(H
2
). Fur-

thermore, assume the following.

(H
5
) There exist two positive constants 𝑅 > 𝑟 > 0 such that

𝑅 > Φ
𝑅1
+ 𝛾
∗
≥ 𝑟 > 0,

∫

1

0

𝑘 (𝑠) 𝑔 (𝑟𝑠
𝛼−1

) 𝑑𝑠 < +∞,

𝑅 ≥ (1 +
ℎ (𝑅)

𝑔 (𝑅)
)∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝑘 (𝑠) 𝑔 (𝑟𝑠

𝛼−1
) 𝑑𝑠,

(60)

here

Φ
𝑅1

= ∫

1

0

𝑀𝑠(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝛽𝜂𝛼−1)
𝜙
𝑅
(𝑠) 𝑑𝑠. (61)

Then, (28) has at least one positive solution.

Example 15. Suppose that the nonlinearity in (28) be (43)
with 𝑘 ≻ 0, 𝜆 > 0. If 𝛾∗ ≤ 0, 𝜔(𝜆) < +∞,

𝛾
∗
≥ [

𝛽
1
𝜆
2

𝛽𝜆
2

]

1/(1−𝜆
2
)

(1 −
1

𝜆2
) , (62)

then (28) has at least one positive solution.

Proof. Wewill apply Corollary 14. Take 𝑘(𝑡), 𝑔(𝑥) as the same
in the proof of Example 9. Then, (H

2
) is satisfied, and the

existence condition (H
5
) is satisfied if we take 𝑅 > 𝑟 > 0

with
𝛽
1

𝑅𝜆
+ 𝛾
∗
≥ 𝑟, 𝑅 ≥

𝛽
2

𝑟𝜆
, (63)

and 𝜔(𝜆) < +∞. If we fix 𝑅 = 𝛽
2
/𝑟
𝜆, then the first inequality

holds if 𝑟 satisfies
𝛽
1

𝛽𝜆
2

𝑟
𝜆
2

+ 𝛾
∗
≥ 𝑟, (64)

or equivalently

𝛾
∗
≥ 𝑙 (𝑟) := 𝑟 −

𝛽
1

𝛽𝜆
2

𝑟
𝜆
2

. (65)

The function 𝑙(𝑟) possesses a minimum at

𝑟
0
:= [

𝛽
1

𝛽𝜆
2

𝜆
2
]

1/(1−𝜆
2
)

. (66)

Taking 𝑟 = 𝑟
0
, then the first inequality in (63) holds if 𝛾

∗
≥

𝑙(𝑟
0
), which is just condition (62).The second inequality holds

directly from the choice of 𝑅, so it remains to prove that
𝑅 = 𝛽

2
/𝑟
𝜆
> 𝑟
0
. This is easily verified through elementary

computations.

Example 16. Let the nonlinearity in (28) be (47) with 𝑘 ≻

0, 𝜆 > 0 and 𝜈 ≥ 0. If 𝛾∗ ≤ 0, 𝜔(𝜆) < +∞,

𝛾
∗
≥ 𝑚
𝜆

0
[𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

− 𝛽
1
] , (67)

here𝑚
0
is the unique solution of the equation

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

+ 𝜇 (1 − 𝜆 − 𝜈)𝑚
1−𝜆−𝜈−𝜆

2

] = 𝜆
2
𝛽
1
.

(68)

Then (28) has at least one positive solution.

Proof. We will apply Corollary 14. To this end, we take
𝑔(𝑥), ℎ(𝑥), and 𝑘(𝑡) as the same in the proof of Example 10,
then (H

2
) is satisfied, and the existence condition (H

5
) is

satisfied if we take 𝑅 > 𝑟 > 0 with

𝛾
∗
≥ 𝑟 − 𝛽

1
𝑅
−𝜆
, (1 + 𝜇𝑅

𝜆+𝜈
) 𝛽
2
𝑟
−𝜆

≤ 𝑅, (69)

and 𝜔(𝜆) < +∞. If we fix 𝑅 = (1+𝜇𝑅
𝜆+𝜈

)𝛽
2
𝑟
−𝜆, then the first

inequality holds if 𝑅 satisfies

𝛾
∗
≥ [

(1 + 𝜇𝑅
𝜆+𝜈

) 𝛽
2

𝑅
]

1/𝜆

− 𝛽
1
𝑅
−𝜆
. (70)

Let𝑚 = 1/𝑅, then

𝛾
∗
≥ 𝑚
𝜆
[𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆

− 𝛽
1
] =: 𝐹 (𝑚) .

(71)
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Then, we have

𝐹

(𝑚)

= 𝜆𝑚
𝜆−1

[(𝛽
2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

))
1/𝜆

− 𝛽
1
]

+ 𝑚
𝜆
[
1

𝜆
(𝛽
2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

))
1/𝜆−1

× ((1 − 𝜆
2
) 𝛽
2
𝑚
−𝜆
2

+𝜇 (1 − 𝜆 − 𝜈 − 𝜆
2
) 𝛽
2
𝑚
−𝜆−𝜈−𝜆

2

) ]

=
1

𝜆
𝑚
𝜆−1

{𝜆
2
[(𝛽
2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

))
1/𝜆

− 𝛽
1
]

+ 𝛽
1/𝜆

2
[(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× ((1 − 𝜆
2
)𝑚
1−𝜆
2

+𝜇 (1 − 𝜆 − 𝜈 − 𝜆
2
)𝑚
1−𝜆−𝜈−𝜆

2

) ]}

=
1

𝜆
𝑚
𝜆−1

{𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝜆
2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)

+ ((1 − 𝜆
2
)𝑚
1−𝜆
2

+𝜇 (1 − 𝜆 − 𝜈 − 𝜆
2
)𝑚
1−𝜆−𝜈−𝜆

2

)] − 𝜆
2
𝛽
1
}

=
1

𝜆
𝑚
𝜆−1

{𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

+ 𝜇 (1 − 𝜆 − 𝜈)𝑚
1−𝜆−𝜈−𝜆

2

] − 𝜆
2
𝛽
1
} .

(72)

Let 𝐹(𝑚) = 0, then we have

1

𝜆
𝑚
𝜆−1

{𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

+ 𝜇 (1 − 𝜆 − 𝜈)𝑚
1−𝜆−𝜈−𝜆

2

] − 𝜆
2
𝛽
1
} = 0.

(73)

Now, let us define Φ(𝑚) by

Φ (𝑚) =: 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

+ 𝜇 (1 − 𝜆 − 𝜈)𝑚
1−𝜆−𝜈−𝜆

2

] .

(74)

It is easy to see thatΦ(𝑚) is a nondecreasing function for
𝑚 ∈ [0, +∞) andΦ(𝑚) → +∞, as𝑚 → +∞.Thus,Φ(𝑚) =
𝜆
2
𝛽
1
has a unique solution𝑚

0
such that

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆−1

× [𝑚
1−𝜆
2

0
+ 𝜇 (1 − 𝜆 − 𝜈)𝑚

1−𝜆−𝜈−𝜆
2

0
] = 𝜆
2
𝛽
1
,

(75)

and 𝐹(𝑚
0
) = inf

𝑚>0
𝐹(𝑚).

So, it remains to prove that 𝑅 > 𝑟 = [(1+𝜇𝑅
𝜆+𝜈

)𝛽
2
/𝑅]
1/𝜆,

that is,

𝑚
𝜆+1

0
𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

< 1. (76)

In fact, by (75), we have

𝜆
2
𝛽
1
≥ (𝛽
2
𝑚
1−𝜆
2

0
)
1/𝜆−1

(𝛽
2
𝑚
1−𝜆
2

0
) = (𝛽

2
𝑚
1−𝜆
2

0
)
1/𝜆

, (77)

that is,

𝑚
0
≤ (

𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

. (78)

Also we have

𝜆
2
𝛽
1
≥ 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆−1

× [(1 − 𝜆 − 𝜈)𝑚
1−𝜆
2

0
+ 𝜇 (1 − 𝜆 − 𝜈)𝑚

1−𝜆−𝜈−𝜆
2

0
]

= (1 − 𝜆 − 𝜈) 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

,

(79)

that is,

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

≤
𝜆
2
𝛽
1

1 − 𝜆 − 𝜈
. (80)

Thus, we have

𝑚
𝜆+1

0
𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

< ((
𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

)

𝜆+1

𝜆
2
𝛽
1

1 − 𝜆 − 𝜈

= (
𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆)

𝜆
2
𝛽
1

1 − 𝜆 − 𝜈

= 𝜆
2𝜆/(1−𝜆)

(
𝛽
1

𝛽
2

)

1/(1−𝜆)
𝜆
2

1 − 𝜆 − 𝜈
< 1

(81)

since 0 < 𝜆, 𝜈 < 1, and 1 − 𝜆 − 𝜈 − 𝜆2 > 0.
We have the desired results.



Abstract and Applied Analysis 9

Case 4 (𝛾
∗
< 0 < 𝛾

∗).

Example 17. Suppose that the nonlinearity in (28) be (43)with
𝑘 ≻ 0, 𝜆 > 0. If 𝛾

∗
< 0 < 𝛾

∗
, 𝜔(𝜆) < +∞,

𝛾
∗
≥ 𝑚
𝜆

0
[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

0
− 𝛽
1
(1 + 𝛾

∗
𝑚
0
)
−𝜆

] , (82)

and here𝑚
0
is the unique solution of the equation

𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆
(1 + 𝛾

∗
𝑚)
𝜆+1

= 𝜆
2
𝛽
1
, (83)

then (28) has at least one positive solution.

Proof. We will apply Theorem 7. Take 𝑘(𝑡), 𝑔(𝑥) as the same
in the proof of Example 9. Then, (H

2
) is satisfied, and the

existence condition (H
3
) is satisfied if we take 𝑅 > 𝑟 > 0

with

𝛾
∗
≥ 𝑟 − 𝛽

1
𝑅
−𝜆
, 𝛽

2
𝑟
−𝜆
+ 𝛾
∗
≤ 𝑅, (84)

and 𝜔(𝜆) < +∞. If we fix 𝑅 = 𝛽
2
/𝑟
𝜆
+ 𝛾
∗, then the first

inequality holds if 𝑅 satisfies

𝛾
∗
≥ (

𝛽
2

𝑅 − 𝛾∗
)

1/𝜆

− 𝛽
1
𝑅
−𝜆
. (85)

Taking𝑚 = 1/(𝑅 − 𝛾
∗
), then for𝑚 ∈ (0, +∞), we have

𝛾
∗
≥ (𝛽
2
𝑚)
1/𝜆

−
𝛽
1
𝑚
𝜆

(1 + 𝛾∗𝑚)
𝜆

= 𝑚
𝜆
[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

− 𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆

] =: 𝐹 (𝑚) .

(86)

Then, we have

𝐹

(𝑚)

= 𝜆𝑚
𝜆−1

[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

− 𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆

]

+ 𝑚
𝜆
[
1 − 𝜆
2

𝜆
𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆−1

+ 𝜆𝛽
1
𝛾
∗
(1 + 𝛾

∗
𝑚)
−𝜆−1

]

=
1

𝜆
𝑚
𝜆−1

{𝜆
2
[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

− 𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆

]

+ 𝜆𝑚[
1 − 𝜆
2

𝜆
𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆−1

+𝜆𝛽
1
𝛾
∗
(1 + 𝛾

∗
𝑚)
−𝜆−1

]}

=
1

𝜆
𝑚
𝜆−1

[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

− 𝜆
2
𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆−1

]

=
1

𝜆
𝑚
𝜆−1

(1+𝛾
∗
𝑚)
−𝜆−1

[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆
(1+𝛾
∗
𝑚)
𝜆+1

−𝜆
2
𝛽
1
] .

(87)

Let 𝐹(𝑚) = 0, then we have
1

𝜆
𝑚
𝜆−1

(1+𝛾
∗
𝑚)
−𝜆−1

[𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆
(1 + 𝛾

∗
𝑚)
𝜆+1

−𝜆
2
𝛽
1
]=0.

(88)

Now, let us define Φ(𝑚) by

Φ (𝑚) =: 𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆
(1 + 𝛾

∗
𝑚)
𝜆+1

. (89)

It is easy to see that Φ(𝑚) is a nondecreasing function
for 𝑚 ∈ [0, +∞), and Φ(𝑚) → +∞, as 𝑚 → +∞. Thus,
Φ(𝑚) = 𝜆

2
𝛽
1
has a unique solution𝑚

0
such that

𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆
(1 + 𝛾

∗
𝑚)
𝜆+1

= 𝜆
2
𝛽
1
, (90)

and 𝐹(𝑚
0
) = inf

𝑚>0
𝐹(𝑚).

So, it remains to prove that 𝑅 > 𝑟 = [𝛽
2
/(𝑅 − 𝛾

∗
)]
1/𝜆, that

is,

𝛽
1/𝜆

2
𝑚
1+1/𝜆

0
≤ 1 + 𝛾

∗
𝑚
0
. (91)

In fact, by (90), we have

𝛽
1/𝜆

2
𝑚
(1−𝜆
2
)/𝜆

0
≤ 𝜆
2
𝛽
1
, (92)

that is,

𝑚
0
≤ (

𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

. (93)

Thus, we have

𝛽
1/𝜆

2
𝑚
1+1/𝜆

0
< 𝛽
1/𝜆

2
((

𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

)

(1+𝜆)/𝜆

𝑚
1+1/𝜆

0

= 𝜆
2/(1−𝜆)

(
𝛽
1

𝛽
2

)

1/(1−𝜆)

< 1 < 1 + 𝛾
∗
𝑚
0
.

(94)

The proof is complete.

Example 18. Let the nonlinearity in (28) be (47) with 𝑘 ≻

0, 𝜆 > 0 and 𝜈 ≥ 0. If 𝛾
∗
< 0 < 𝛾

∗
, 𝜔(𝜆) < +∞,

𝛾
∗
≥ 𝑚
𝜆

0
[𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚
0
)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

−𝛽
1
(1 + 𝛾

∗
𝑚
0
)
−𝜆

] ,

(95)

here𝑚
0
is the unique solution of the equation

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

(1 + 𝛾
∗
𝑚)
𝜆+1

+ 𝜇 (1 − 𝜆 − 𝜈 + 𝛾
∗
𝑚)𝑚
1−𝜆−𝜈−𝜆

2

×(1 + 𝛾
∗
𝑚)
2𝜆+𝜈

] = 𝜆
2
𝛽
1
.

(96)

Then (28) has at least one positive solution.

Proof. We will apply Theorem 7. To this end, we take 𝑔(𝑥),
ℎ(𝑥), and 𝑘(𝑡) as the same in the proof of Example 10, then
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(H
2
) is satisfied, and the existence condition (H

3
) is satisfied

if we take 𝑅 > 𝑟 > 0 with

𝛾
∗
≥ 𝑟 − 𝛽

1
𝑅
−𝜆
, (1 + 𝜇𝑅

𝜆+𝜈
) 𝛽
2
𝑟
−𝜆
+ 𝛾
∗
≤ 𝑅, (97)

and 𝜔(𝜆) < +∞. If we fix 𝑅 = (1+𝜇𝑅
𝜆+𝜈

)𝛽
2
𝑟
−𝜆
+𝛾
∗, then the

first inequality holds if

𝛾
∗
≥ [

(1 + 𝜇𝑅
𝜆+𝜈

) 𝛽
2

𝑅 − 𝛾∗
]

1/𝜆

− 𝛽
1
𝑅
−𝜆
. (98)

Let𝑚 = 1/(𝑅 − 𝛾
∗
), then

𝛾
∗
≥ 𝑚
𝜆
[𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆

−𝛽
1
(1 + 𝛾

∗
)
−𝜆

] =: 𝐹 (𝑚) .

(99)

Then, we have

𝐹

(𝑚)

= 𝜆𝑚
𝜆−1

[𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆

−𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆

]

+ 𝑚
𝜆
[
1

𝜆
𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× ((1 − 𝜆
2
)𝑚
−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

× (1 − 𝜆 − 𝜈 − 𝜆
2
)𝑚
−𝜆−𝜈−𝜆

2

+𝜇 (𝜆 + 𝜈) (1 + 𝛾
∗
𝑚)
𝜆+𝜈−1

𝑚
1−𝜆−𝜈−𝜆

2

𝛾
∗
)

+𝛽
1
𝜆(1 + 𝛾

∗
𝑚)
−𝜆−1

𝛾
∗
]

=
1

𝜆
𝑚
𝜆−1

{𝜆
2
𝛽
1/𝜆

2
[(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆

− 𝜆
2
𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆

+ 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

×𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [(1 − 𝜆
2
)𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

× (1 − 𝜆 − 𝜈 − 𝜆
2
)𝑚
1−𝜆−𝜈−𝜆

2

+ 𝜇 (𝜆 + 𝜈) (1 + 𝛾
∗
𝑚)
𝜆+𝜈−1

×𝑚
1−𝜆−𝜈−𝜆

2

𝑚𝛾
∗
] ]

+𝜆
2
𝛽
1
(1 + 𝛾

∗
𝑚)
−𝜆−1

𝑚𝛾
∗
}

=
1

𝜆
𝑚
𝜆−1

{𝛽
1/𝜆

2
[(𝑚
1−𝜆
2

+𝜇(1+𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)]
1/𝜆−1

× [𝜆
2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)

+ (1 − 𝜆
2
)𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

(1 − 𝜆 − 𝜈 − 𝜆
2
)𝑚
1−𝜆−𝜈−𝜆

2

+𝜇 (𝜆 + 𝜈) (1 + 𝛾
∗
𝑚)
𝜆+𝜈−1

𝑚
1−𝜆−𝜈−𝜆

2

𝑚𝛾
∗
]

× 𝜆
2
𝛽
1
(1+𝛾
∗
𝑚)
−𝜆−1

𝑚𝛾
∗
−𝜆
2
𝛽
1
(1+𝛾
∗
𝑚)
−𝜆

}

=
1

𝜆
𝑚
𝜆−1

(1 + 𝛾
∗
𝑚)
−𝜆−1

× {𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

×[𝑚
1−𝜆
2

(1 + 𝛾
∗
𝑚)
𝜆+1

+𝜇 (1 − 𝜆 − 𝜈+𝛾
∗
𝑚)

×𝑚
1−𝜆−𝜈−𝜆

2

(1 + 𝛾
∗
𝑚)
2𝜆+𝜈

] − 𝜆
2
𝛽
1
} .

(100)

Let 𝐹(𝑚) = 0, then we have

1

𝜆
𝑚
𝜆−1

(1 + 𝛾
∗
𝑚)
−𝜆−1

× {𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

(1 + 𝛾
∗
𝑚)
𝜆+1

+ 𝜇 (1 − 𝜆 − 𝜈 + 𝛾
∗
𝑚)𝑚
1−𝜆−𝜈−𝜆

2

×(1 + 𝛾
∗
𝑚)
2𝜈+𝜈

] − 𝜆
2
𝛽
1
} = 0.

(101)

Now, let us define Φ(𝑚) by

Φ (𝑚)

=: 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

+ 𝜇(1 + 𝛾
∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

)
1/𝜆−1

× [𝑚
1−𝜆
2

(1 + 𝑚𝛾
∗
𝑚)
𝜆+1

+𝜇 (1 − 𝜆 − 𝜈 + 𝛾
∗
𝑚)𝑚
1−𝜆−𝜈−𝜆

2

(1 + 𝛾
∗
𝑚)
2𝜆+𝜈

] .

(102)
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It is easy to see that Φ(𝑚) is a nondecreasing function
for 𝑚 ∈ [0, +∞), and Φ(𝑚) → +∞, as 𝑚 → +∞. Thus,
Φ(𝑚) = 𝜆

2
𝛽
1
has a unique solution𝑚

0
such that

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆−1

× [𝑚
1−𝜆
2

0
(1 + 𝛾

∗
𝑚)
𝜆+1

+𝜇 (1 − 𝜆 − 𝜈 + 𝛾
∗
𝑚)𝑚
1−𝜆−𝜈−𝜆

2

0
(1 + 𝛾

∗
𝑚
0
)
2𝜆+𝜈

]

= 𝜆
2
𝛽
1
,

(103)

and 𝐹(𝑚
0
) = inf

𝑚>0
𝐹(𝑚).

So, it remains to prove that 𝑅 > 𝑟 = [(1 + 𝜇𝑅
𝜆+𝜈

)𝛽
2
/(𝑅 −

𝛾
∗
)]
1/𝜆, that is,

𝑚
𝜆+1

0
𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

< 1 + 𝛾
∗
𝑚
0
.

(104)

In fact, by (103), we have

𝜆
2
𝛽
1
≥ (𝛽
2
𝑚
1−𝜆
2

0
)
1/𝜆−1

(𝛽
2
𝑚
1−𝜆
2

0
) = (𝛽

2
𝑚
1−𝜆
2

0
)
1/𝜆

, (105)

that is,

𝑚
0
≤ (

𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

. (106)

Also we have

𝜆
2
𝛽
1

≥ 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆−1

× [(1 − 𝜆 − 𝜈)𝑚
1−𝜆
2

0

+𝜇 (1 − 𝜆 − 𝜈)𝑚
1−𝜆−𝜈−𝜆

2

0
(1 + 𝛾

∗
𝑚)
𝜆+𝜈

]

= (1 − 𝜆 − 𝜈) 𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

,

(107)

that is,

𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

≤
𝜆
2
𝛽
1

1 − 𝜆 − 𝜈
.

(108)

Thus, we have

𝑚
𝜆+1

0
𝛽
1/𝜆

2
(𝑚
1−𝜆
2

0
+ 𝜇(1 + 𝛾

∗
𝑚)
𝜆+𝜈

𝑚
1−𝜆−𝜈−𝜆

2

0
)
1/𝜆

< ((
𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆
2
)

)

𝜆+1

𝜆
2
𝛽
1

1 − 𝜆 − 𝜈

= (
𝜆
2
𝛽
1

𝛽
1/𝜆

2

)

𝜆/(1−𝜆)

𝜆
2
𝛽
1

1 − 𝜆 − 𝜈

= 𝜆
2𝜆/(1−𝜆)

(
𝛽
1

𝛽
2

)

1/(1−𝜆)
𝜆
2

1 − 𝜆 − 𝜈
< 1 < 1 + 𝛾

∗
𝑚,

(109)

since 0 < 𝜆, 𝜈 < 1 and 1 − 𝜆 − 𝜈 − 𝜆2 > 0.
Thus, the proof is complete.

Remark 19. It is easy to find that analogous results to
Examples 10, 13, 16, and 18 for the general equation with the
nonlinearity in (28) are

𝑓 (𝑡, 𝑥) =
𝑏 (𝑡)

𝑥𝜆
+ 𝜇𝑐 (𝑡) 𝑥

𝜈
+ 𝑒 (𝑡) , (110)

with 𝑏, 𝑐 ≻ 0, but the notation becomes cumbersome. Here
we consider the nonlinearity (47) only for the simplicity.

Acknowledgments

Theworkwas supported byNSFCofChina (no. 10971021), the
Science and Technology Research Project of Jilin Provincial
Department of Education of China (no. 2011176), and the
Science and Technology Research Project of Jilin Provincial
Department of Education of China (no. 2010391). Supported
by Scientific Research Fund of Heilongjiang Provincial Edu-
cation Department.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory
and Applications of Fractional Differential Equations, vol. 204
of North-Holland Mathematics Studies, Elsevier Science B.V.,
Amsterdam, The Netherlands, 2006.

[2] K. B. Oldham and J. Spanier, The Fractional Calculus, Math-
ematics in Science and Engineering, vol. 111, Academic Press,
New York, NY, USA, 1974.

[3] B. Ross, Ed., Fractional Calculus and Its Applications, Lecture
Notes inMathematics, vol. 457, Springer, Berlin, Germany, 1975.

[4] T. F.Nonnenmacher andR.Metzler, “On the Riemann-Liouville
fractional calculus and some recent applications,” Fractals, vol.
3, no. 3, pp. 557–566, 1995.

[5] F. B. Tatom, “The relationship between fractional calculus and
fractals,” Fractals, vol. 3, no. 1, pp. 217–229, 1995.

[6] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[7] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives: Theory and Applications, Gordon and
Breach Science, Yverdon, Switzerland, 1993.

[8] R.Magin, X. Feng, andD. Baleanu, “Solving the fractional order
Bloch equation,”Concepts inMagnetic Resonance Part A, vol. 34,
no. 1, pp. 16–23, 2009.

[9] D. Baleanu and J. I. Trujillo, “A new method of finding
the fractional Euler-Lagrange and Hamilton equations within
Caputo fractional derivatives,” Communications in Nonlinear
Science and Numerical Simulation, vol. 15, no. 5, pp. 1111–1115,
2010.



12 Abstract and Applied Analysis

[10] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus Models and Numerical Methods, vol. 3 of Series on
Complexity, Nonlinearity and Chaos, World Scientific, Hacken-
sack, NJ, USA, 2012.
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The joint lawof the total local times at two levels forℎ-paths of symmetric Lévy processes is shown to admit an explicit representation
in terms of the laws of the squared Bessel processes of dimensions two and zero. The law of the total local time at a single level for
bridges is also discussed.

1. Introduction

Markov processes associated to heat semigroups generated
by fractional derivatives are called symmetric stable Lévy
processes (cf., e.g., [1]) or Lévy flights (cf., e.g., [2]). The
purpose of the present paper is to study the laws of the
total local times for ℎ-paths and bridges of (one-dimensional)
symmetric Lévy processes.We give an explicit representation
(Theorem 16) of the joint law as a weighted sum of the law
of the squared Bessel process of dimension two and the
generalized excursionmeasure for the squared Bessel process
of dimension zero. We also give an expression (Theorem 20)
of the law of the total local time at a single level for bridges.

It is well known as one of the Ray-Knight theorems (see,
e.g., [3, Chapter XI] and [4, Chapter 3]) that the total local
time process with space parameter for a Bessel process of
dimension three is a squared Bessel process of dimension
two. Since the Bessel process of dimension three is the ℎ-path
process of a reflected Brownian motion, Theorem 16 may be
considered to be a slight generalization of this result.

Eisenbaum and Kaspi [5] have proved that the total local
time of a Markov process with discontinuous paths is no
longer Markov. As an analogue of Ray-Knight theorems,
Eisenbaum et al. [6] have recently characterized the law of the
local time process with space parameter at inverse local time
in terms of some Gaussian process whose covariance is given
by the resolvent density of the potential kernel. Moreover,

if the Lévy process is a symmetric stable process, then the
corresponding Gaussian process is a fractional Brownian
motion.Their results are based on a version of Feynman-Kac
formulae, which characterizes the Laplace transform of the
joint laws of total local times of Markov processes at several
levels.

In this paper we first focus on the ℎ-path process of a
symmetric Lévy process, which has been introduced in the
recent works [7–9] by Yano et al. The ℎ-path process may
be obtained as the process conditioned to avoid the origin
during the whole time (see [10]). We will also start from
a version of Feynman-Kac formulae and obtain an explicit
representation of the joint law of the total local times at two
levels. (For some discussions of the joint law of the total local
times, see Blumenthal-Getoor [11, pages 221–226] and Pitman
[12].) Unfortunately, we have no better result on the law of the
total local time process with space parameter. The difficulty
will be explained in Remark 3.

In comparisonwith the results by Pitman [13] and Pitman
and Yor [14] about the Brownian and Bessel bridges, we also
investigate the law of the total local time at a single point
for bridges of symmetric Lévy process, which we call Lévy
bridges in short, and also for bridges of the ℎ-paths, which we
call ℎ-bridges in short. We will prove a version of Feynman-
Kac formulae (Theorem 7) for Lévy bridges with the help
of the general theorems by Fitzsimmons et al. [15]. As an
application of the Feynman-Kac theorem, we will give an



2 Abstract and Applied Analysis

expression of the law of the total local time at a single level
for the Lévy bridges, while, unfortunately, we do not have any
nice formula for the ℎ-bridges.

The present paper is organized as follows. In Section 2, we
give two versions of Feynman-Kac formulae in general set-
tings. In Section 3, we recall several formulae about squared
Bessel processes and generalized excursion measures. In
Section 4, we recall several facts about symmetric Lévy
processes. In Section 5, we deal with the joint law of the total
local times at two levels for the ℎ-paths of symmetric Lévy
processes. In Section 6, we study the laws of the total local
times for the Lévy bridges and for the ℎ-bridges.

2. Feynman-Kac Formulae

In order to study the laws of total local times, we prepare
two versions of Feynman-Kac formulae, which describe their
Laplace transforms. One is for transient Markov processes,
and the other is for Markovian bridges.

Let D denote the space of càdlàg paths 𝜔 : [0,∞) →

R ∪ {Δ} with lifetime 𝜁 = 𝜁(𝜔):

∀𝑡 < 𝜁, 𝜔 (𝑡) ∈ R, ∀𝑡 ≥ 𝜁, 𝜔 (𝑡) = Δ. (1)

Let (𝑋
𝑡
) denote the canonical process:𝑋

𝑡
(𝜔) = 𝜔(𝑡). Let (F

𝑡
)

denote its natural filtration and F
∞

= 𝜎(∪
𝑡
F

𝑡
). For 𝑎 ∈ R,

we write 𝑇
{𝑎}

for the first hitting time of the point 𝑎:

𝑇
{𝑎}

= inf {𝑡 > 0 : 𝑋
𝑡
= 𝑎} . (2)

The set of all nonnegative Borel functions on R will be
denoted byB

+
(R).

Let (P
𝑥

: 𝑥 ∈ R) denote the laws on D of a right Markov
process. We assume that the transition kernels have jointly
measurable densities 𝑝

𝑡
(𝑥, 𝑦) with respect to a reference

measure 𝜇(𝑑𝑦):

P
𝑥
(𝑋

𝑡
∈ 𝑑𝑦) = 𝑝

𝑡
(𝑥, 𝑦) 𝜇 (𝑑𝑦) . (3)

We define

𝑢
𝑞
(𝑥, 𝑦) = ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦) 𝑑𝑡, 𝑞 ≥ 0, (4)

which are resolvent densities if they are finite.We also assume
that there exists a local time (𝐿

𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
𝜇 (𝑑𝑦) , 𝑡 > 0, 𝑓 ∈ B

+
(R) (5)

holds with P
𝑥
-probability one for any 𝑥 ∈ R.

2.1. Feynman-Kac Formula for TransientMarkov Processes. In
this section, we prove Feynman-Kac formula for transient
Markov processes. We assume the following conditions:

(i) the process is transient;
(ii) 𝑢

0
(𝑥, 𝑦) < ∞ for any 𝑥, 𝑦 ∈ R with 𝑥 ̸= 0 or 𝑦 ̸= 0.

Note that 𝑢
0
(0, 0) may be infinite. We note that

P
𝑥
(∀𝑦 ∈ R, 𝐿

𝑦

∞
< ∞) = 1 for any 𝑥 ∈ R. (6)

By formula (5), it is easy to see that

P
𝑥
[𝐿

𝑦

∞
] = 𝑢

0
(𝑥, 𝑦) , 𝑥 ∈ R, 𝑦 ∈ R \ {0} . (7)

We will prove a version of Feynman-Kac formulae following
Marcus-Rosen’s book [16] where it is assumed that 𝑢

0
(0, 0) <

∞.
For 𝑡 ≥ 0 and 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
∈ R \ {0}, we set

𝐽
𝑡
(x) = ∫

∞

𝑡

𝑑𝐿
𝑥
1

𝑡
1

∫

∞

𝑡
1

𝑑𝐿
𝑥
2

𝑡
2

⋅ ⋅ ⋅ ∫

∞

𝑡
𝑛−1

𝑑𝐿
𝑥
𝑛

𝑡
𝑛

, (8)

where x = (𝑥
1
, . . . , 𝑥

𝑛
).

Theorem 1 (Kac’s moment formula). Let 𝑥
0

∈ R and
𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
∈ R \ {0}. Then we has

P
𝑥
0

[𝐽
0
(x)] = 𝑢

0
(𝑥

0
, 𝑥

1
) 𝑢

0
(𝑥

1
, 𝑥

2
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛−1
, 𝑥

𝑛
) . (9)

The proof is essentially the same to that of [16, Theorem
2.5.3], but we give it for completeness of the paper.

Proof. Note that

𝐽
0
(x) = ∫

∞

0

𝐽
𝑡
(x) 𝑑𝐿

𝑥
1

𝑡
, (10)

where x = (𝑥
2
, . . . , 𝑥

𝑛
). Denote 𝜏

𝑥
1

𝑙
= inf{𝑡 > 0; 𝐿

𝑥
1

𝑡
> 𝑙}.

Since 𝐽
𝑡
(x) = 𝐽

0
(x) ∘ 𝜃

𝑡
, the strong Markov property yields

that

P
𝑥
0

[𝐽
0
(x)] = P

𝑥
0

[∫

∞

0

𝐽
0
(x) ∘ 𝜃

𝜏
𝑥1

𝑙

1
{𝜏
𝑥1

𝑙
<∞}

𝑑𝑙]

= P
𝑥
0

[∫

∞

0

1
{𝜏
𝑥1

𝑙
<∞}

𝑑𝑙] P
𝑥
1

[𝐽
0
(x)]

= P
𝑥
0

[𝐿
𝑥
1

∞
]P

𝑥
1

[𝐽
0
(x)] .

(11)

This yields (9) from (7).

Theorem 2 (Feynman-Kac formula). Let 𝑥
1
, . . . , 𝑥

𝑛
∈ R\{0}.

Set

Σ = (

𝑢
0
(𝑥

1
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

1
, 𝑥

𝑛
)

...
. . .

...
𝑢
0
(𝑥

𝑛
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛
, 𝑥

𝑛
)

) ,

Σ
0
= (

𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

...
. . .

...
𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

) .

(12)

Then, for any diagonal matrix Λ = (𝜆
𝑖
𝛿
𝑖,𝑗
)
𝑛

𝑖,𝑗=1
with nonnega-

tive entries, we have

P
0
[exp{−

𝑛

∑

𝑖=1

𝜆
𝑖
𝐿
𝑥
𝑖

∞
}] =

det (𝐼 + (Σ − Σ
0
)Λ)

det (𝐼 + ΣΛ)
. (13)

The proof is almost parallel to that of [16, Lemma 2.6.2],
but we give it for completeness of the paper.
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Proof. Let 𝜆
1
, . . . , 𝜆

𝑛
∈ R. For 𝑘 ∈ N, we have

P
0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑥
𝑗

∞)

𝑘

]

]

=

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
1

⋅ ⋅ ⋅ 𝜆
𝑗
𝑘

P
0
[𝐿

𝑥
𝑗1

∞ ⋅ ⋅ ⋅ 𝐿
𝑥
𝑗
𝑘

∞ ]

(14)

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
1

⋅ ⋅ ⋅ 𝜆
𝑗
𝑘

P
0
[𝐽
0
(𝑥

𝑗
1

, . . . , 𝑥
𝑗
𝑘

)] .

(15)

It follows fromTheorem 1 that

(15) = 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
0
(0, 𝑥

𝑗
1

) 𝜆
𝑗
1

⋅ 𝑢
0
(𝑥

𝑗
1

, 𝑥
𝑗
2

) 𝜆
𝑗
2

⋅ ⋅ ⋅ 𝑢
0
(𝑥

𝑗
𝑘−1

, 𝑥
𝑗
𝑘

) 𝜆
𝑗
𝑘

= 𝑘!{(Σ̃Λ̃)
𝑘

1}
0

,

(16)

where 1 =
⊤
(1, . . . , 1), {v}

0
= 𝑣

0
for v =

⊤
(𝑣
0
, 𝑣
1
, . . . , 𝑣

𝑛
),

Σ̃ = (

0 𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

0 𝑢
0
(𝑥

1
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

1
, 𝑥

𝑛
)

...
...

. . .
...

0 𝑢
0
(𝑥

𝑛
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛
, 𝑥

𝑛
)

) ,

Λ̃ = (

0 0 ⋅ ⋅ ⋅ 0

0 𝜆
1

⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 𝜆
𝑛

).

(17)

Hence, for all 𝜆
1
, . . . , 𝜆

𝑛
∈ R such that |𝜆

𝑖
|’s are small enough,

we have

P
0
[exp{

𝑛

∑

𝑖=1

𝜆
𝑖
𝐿
𝑥
𝑖

∞
}]

=

∞

∑

𝑘=0

{(Σ̃Λ̃)
𝑘

1}
0

= {(𝐼 − Σ̃Λ̃)
−1

1}
0

.

(18)

By Cramer’s formula, we obtain

{(𝐼 − Σ̃Λ̃)
−1

1}
0

=

det ((𝐼 − Σ̃Λ̃)
(1)

)

det (𝐼 − Σ̃Λ̃)
=
det (𝐼 − (Σ − Σ

0
)Λ)

det (𝐼 − ΣΛ)
.

(19)

Here, for a matrix 𝐴, we denote by 𝐴
(1) the matrix which

is obtained by replacing each entry in the first column of 𝐴
by number 1. Since Σ is nonnegative definite, we obtain the
desired result (13) by analytic continuation.

Remark 3. Eisenbaum et al. [6] have proved an analogue of
Ray-Knight theorem for the total local time of a symmetric
Lévy process killed at an independent exponential time. We
may say that the key to the proof is that Σ − Σ

0 is a constant
matrix which is positive definite. The difficulty in the case of
the ℎ-path process of a symmetric Lévy process is that the
matrix Σ − Σ

0 no longer has such a nice property.

2.2. Feynman-Kac Formula for Markovian Bridges. In this
section, we show Feynman-Kac formula for Markovian
bridges. For this, we recall several theorems for Markovian
bridges from Fitzsimmons et al. [15]. See [15] for details.

For 𝑡 > 0, 𝑥, 𝑦 ∈ R, let P𝑡
𝑥,𝑦

denote the bridge law, which
serves as a version of the regular conditional distribution for
{𝑋

𝑠
; 0 ≤ 𝑠 ≤ 𝑡} under P

𝑥
given 𝑋

𝑡−
= 𝑦. In this section, we

assume the following condition:

(i) 0 < 𝑝
𝑡
(𝑥, 𝑦) < ∞ for any 𝑡 > 0, 𝑥, 𝑦 ∈ R.

We also assume that there exists a local time (𝐿
𝑥

𝑡
) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑠
𝜇 (𝑑𝑦) , 0 ≤ 𝑠 ≤ 𝑡,

𝑓 ∈ B
+
(R)

(20)

holds with P𝑡
𝑥,𝑦

-probability one for any 𝑡 > 0 and 𝑥, 𝑦 ∈ R.

Theorem 4 (see [15, Lemma 1]). Let 𝑡 > 0, 𝑥, 𝑦, 𝑧 ∈ R. Then
one has

P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑋
𝑠
) 𝑑𝐿

𝑧

𝑠
] = ∫

𝑡

0

𝑑𝑠
𝑝
𝑠
(𝑥, 𝑧) 𝑝

𝑡−𝑠
(𝑧, 𝑦)

𝑝
𝑡
(𝑥, 𝑦)

𝑓 (𝑠, 𝑧)

(21)

for any nonnegative Borel function 𝑓.

We will also use the following conditioning formula.

Theorem 5 (see [15, Proposition 3]). Let 𝑡 > 0, 𝑥, 𝑦, 𝑧 ∈ R.
Then one has

P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑋
𝑠
)𝐻

𝑠
𝑑𝐿

𝑧

𝑠
]

= P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑧)P𝑠
𝑥,𝑧

[𝐻
𝑠
] 𝑑𝐿

𝑧

𝑠
]

(22)

for any nonnegative Borel function 𝑓 and any nonnegative
predictable process 𝐻

𝑠
.

For 𝑠 ≥ 0 and 𝑧
1
, . . . , 𝑧

𝑛
∈ R, we define

𝐻
𝑠
(z(𝑛)) = ∫

𝑠

0

𝑑𝐿
𝑧
𝑛

𝑠
𝑛

∫

𝑠
𝑛

0

𝑑𝐿
𝑧
𝑛−1

𝑠
𝑛−1

⋅ ⋅ ⋅ ∫

𝑠
2

0

𝑑𝐿
𝑧
1

𝑠
1

, (23)

where z(𝑛) = (𝑧
1
, . . . , 𝑧

𝑛
). The following theorem is a version

of Kac’s moment formulae.
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Theorem 6. For any 𝑞 > 0, 𝑛 ∈ N and for any 𝑧
1
, . . . , 𝑧

𝑛
∈ R,

one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦)P𝑡

𝑥,𝑦
[𝐻

𝑡
(z(𝑛))] 𝑑𝑡

= 𝑢
𝑞
(𝑥, 𝑧

1
) ⋅

𝑛−1

∏

𝑗=1

𝑢
𝑞
(𝑧

𝑗
, 𝑧

𝑗+1
)

⋅ 𝑢
𝑞
(𝑧

𝑛
, 𝑦) .

(24)

Proof. Let us prove the claim by induction. For 𝑛 = 1, the
assertion follows fromTheorem 4. Suppose that formula (24)
holds for a given 𝑛 ≥ 2. Note that

𝐻
𝑡
(z(𝑛+1)) = ∫

𝑡

0

𝐻
𝑠
(z(𝑛)) 𝑑𝐿

𝑧
𝑛+1

𝑠
. (25)

Since𝐻
𝑠
(z(𝑛)) is a nonnegative predictable process,Theorems

5 and 4 show that

P𝑡
𝑥,𝑦

[𝐻
𝑡
(z(𝑛+1))]

= ∫

𝑡

0

𝑑𝑠
𝑝
𝑠
(𝑥, 𝑧

𝑛+1
) 𝑝

𝑡−𝑠
(𝑧

𝑛+1
, 𝑦)

𝑝
𝑡
(𝑥, 𝑦)

P𝑡
𝑥,𝑧
𝑛+1

[𝐻
𝑠
(𝑧

(𝑛)
)] .

(26)

Hence, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦)P𝑡

𝑥,𝑦
[𝐻

𝑡
(𝑧

(𝑛+1)
)] 𝑑𝑡

= ∫

∞

0

𝑒
−𝑞𝑡

𝑑𝑡

× ∫

𝑡

0

𝑝
𝑠
(𝑥, 𝑧

𝑛+1
) 𝑝

𝑡−𝑠
(𝑧

𝑛+1
, 𝑦)P𝑠

𝑥,𝑧
𝑛+1

[𝐻
𝑠
(z(𝑛))] 𝑑𝑠

= ∫

∞

0

𝑒
−𝑞𝑠

𝑝
𝑠
(𝑥, 𝑧

𝑛+1
)P𝑠

𝑥,𝑧
𝑛+1

[𝐻
𝑠
(z(𝑛))] 𝑑𝑠

× ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑧

𝑛+1
, 𝑦) 𝑑𝑡

= 𝑢
𝑞
(𝑥, 𝑧

1
) ⋅

𝑛−1

∏

𝑗=1

𝑢
𝑞
(𝑧

𝑗
, 𝑧

𝑗+1
)

⋅ 𝑢
𝑞
(𝑧

𝑛
, 𝑧

𝑛+1
) ⋅ 𝑢

𝑞
(𝑧

𝑛+1
, 𝑦) ,

(27)

by the assumption of the induction. Nowwe have proved that
formula (24) is valid also for 𝑛+1, which completes the proof.

The following theorem is a version of Feynman-Kac
formulae.

Theorem 7. Let 𝑧
1
= 0, 𝑧

2
, . . . , 𝑧

𝑛
∈ R and let 𝜆

1
, . . . , 𝜆

𝑛
≥ 0.

Suppose that

𝑢
𝑞
(𝑧

𝑖
, 𝑧

𝑗
) < ∞, 𝑞 > 0, 𝑖, 𝑗 = 1, . . . , 𝑛. (28)

Let Σ(𝑞) be the matrix with elements Σ(𝑞)
𝑖,𝑗

= 𝑢
𝑞
(𝑧
𝑖
, 𝑧

𝑗
). Then, for

any diagonal matrix Λ = (𝜆
𝑖
𝛿
𝑖,𝑗
)
𝑛

𝑖,𝑗=1
with nonnegative entries,

one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[𝑒

−∑
𝑛

𝑗=1
𝜆
𝑗
𝐿
𝑧𝑗

𝑡 ] 𝑑𝑡

= {(𝐼 + Σ
(𝑞)

Λ)
−1

Σ
(𝑞)

}
1,1

.

(29)

Proof. We have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡
)

𝑘

]

]

𝑑𝑡

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
𝑘

⋅ ⋅ ⋅ 𝜆
𝑗
1

× ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[𝐻

𝑡
(𝑧

𝑗
𝑘

, . . . , 𝑧
𝑗
1

)] 𝑑𝑡.

(30)

UsingTheorem 6, we see that the above quantity is equal to

𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
𝑞
(𝑧

1
, 𝑧

𝑗
1

) 𝜆
𝑗
1

⋅

𝑘−1

∏

𝑖=1

𝑢
𝑞
(𝑧

𝑗
𝑖

, 𝑧
𝑗
𝑖+1

) 𝜆
𝑗
𝑖+1

⋅ 𝑢
𝑞
(𝑧

𝑗
𝑘

, 𝑧
1
) ,

(31)

which amounts to 𝑘!{(Σ
(𝑞)

Λ)
𝑘
Σ
(𝑞)

}
1,1
. Hence, for all 𝜆

1
, . . .,

𝜆
𝑛
> 0 sufficiently small, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

exp
{

{

{

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡

}

}

}

]

]

𝑑𝑡

= 𝑢
𝑞
(0, 0) +

∞

∑

𝑘=1

{(Σ
(𝑞)

Λ)
𝑘

Σ
(𝑞)

}
1,1

= {(𝐼 − Σ
(𝑞)

Λ)
−1

Σ
(𝑞)

}
1,1

.

(32)

Since Σ
(𝑞) is nonnegative definite, we obtain the desired result

(29) by analytic continuation.

The following theorem is valid even if

𝑢
𝑞
(0, 𝑧

𝑗
) = 𝑢

𝑞
(𝑧

𝑗
, 0) = ∞, 𝑞 > 0, 𝑗 = 1, . . . , 𝑛. (33)

Theorem 8. Let 𝑧
1
, . . . , 𝑧

𝑛
∈ R \ {0} and let 𝜆

1
, . . . , 𝜆

𝑛
≥ 0.

Suppose that

𝑢
𝑞
(𝑧

𝑖
, 𝑧

𝑗
) < ∞, 𝑞 > 0, 𝑖, 𝑗 = 1, . . . , 𝑛. (34)

Let Σ(𝑞) be the matrix with elements Σ(𝑞)
𝑖,𝑗

= 𝑢
𝑞
(𝑧
𝑖
, 𝑧

𝑗
),

u(𝑞) = (

𝑢
𝑞
(0, 𝑧

1
)

...
𝑢
𝑞
(0, 𝑧

𝑛
)

) , v(𝑞) = (

𝑢
𝑞
(𝑧

1
, 0)

...
𝑢
𝑞
(𝑧

𝑛
, 0)

) , (35)
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and let Λ be the matrix with elements Λ
𝑖,𝑗

= 𝜆
𝑖
𝛿
𝑖,𝑗
. Then one

has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[1 − 𝑒

−∑
𝑛

𝑗=1
𝜆
𝑗
𝐿
𝑧𝑗

𝑡 ] 𝑑𝑡

=
⊤u(𝑞)Λ(𝐼 + Σ

(𝑞)
Λ)

−1

v(𝑞).
(36)

Proof. UsingTheorem 6, we see that

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡
)

𝑘

]

]

𝑑𝑡

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
𝑞
(0, 𝑧

𝑗
1

) 𝜆
𝑗
1

⋅

𝑘−1

∏

𝑖=1

𝑢
𝑞
(𝑧

𝑗
𝑖

, 𝑧
𝑗
𝑖+1

) 𝜆
𝑗
𝑖+1

⋅ 𝑢
𝑞
(𝑧

𝑗
𝑘

, 0) .

(37)

Hence, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

exp
{

{

{

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡

}

}

}

− 1]

]

𝑑𝑡

=

∞

∑

𝑘=1

{
⊤u(𝑞)Λ(Σ

(𝑞)
Λ)

𝑘−1

v(𝑞)}

=
⊤u(𝑞)Λ(𝐼 − Σ

(𝑞)
Λ)

−1

v(𝑞).

(38)

The rest of the proof is now obvious.

3. Preliminaries: Squared Bessel Processes and
Generalized Excursion Measures

In this section, we recall squared Bessel processes and
generalized excursion measures.

First, we introduce several notations about squared Bessel
processes, for which we follow [3, XI.1]. For 𝛿 ≥ 0, let (Q𝛿

𝑧
:

𝑧 ≥ 0) denote the law of the 𝛿-dimensional squared Bessel
process where the origin is a trap when 𝛿 = 0. Then the
Laplace transform of a one-dimensional marginal is given by

Q𝛿

𝑧
[exp {−𝜆𝑋

𝑡
}] =

1

(1 + 2𝜆𝑡)
𝛿/2

exp{−
𝜆𝑧

1 + 2𝜆𝑡
} . (39)

We may obtain the transition kernels Q𝛿

𝑧
(𝑋

𝑡
∈ 𝑑𝑤) by the

Laplace inversion.

(i) For 𝛿 > 0 and 𝑧 > 0, we have

Q𝛿

𝑧
(𝑋

𝑡
∈ 𝑑𝑤)

=
1

2𝑡
(
𝑤

𝑧
)

(1/2)(𝛿/2−1)

exp {−
𝑧 + 𝑤

2𝑡
} 𝐼

𝛿/2−1
(
√𝑧𝑤

𝑡
) 𝑑𝑤,

(40)

where 𝐼
𝜈
stands for the modified Bessel function of

order 𝜈.

(ii) For 𝛿 > 0 and 𝑧 = 0, we have

Q𝛿

0
(𝑋

𝑡
∈ 𝑑𝑤) =

1

(2𝑡)
𝛿/2

Γ (𝛿/2)
𝑤
𝛿/2−1 exp {−

𝑤

2𝑡
} 𝑑𝑤,

(41)

where Γ stands for the gamma function.

(iii) For 𝛿 = 0 and 𝑧 ≥ 0, we have

Q0

𝑧
(𝑋

𝑡
∈ 𝑑𝑤) = exp {−

𝑧

2𝑡
} 𝛿

0
(𝑑𝑤)

+
1

2𝑡
(
𝑤

𝑧
)

−1/2

exp {−
𝑧 + 𝑤

2𝑡
}

× 𝐼
1
(
√𝑧𝑤

𝑡
) 𝑑𝑤.

(42)

The squared Bessel process satisfies the scaling property: for
𝛿 ≥ 0, 𝑧 ≥ 0, and 𝑐 > 0, it holds that

(𝑐𝑋
𝑡/𝑐

) under Q𝛿

𝑧/𝑐

law
= (𝑋

𝑡
) under Q𝛿

𝑧
. (43)

Second, we recall the notion of the generalized excursion
measure. By formula (39), we have

Q4

0
[

1

𝑋2

𝑠+𝑡

; 𝑋
𝑠+𝑡

∈ 𝐵] = Q4

0
[

1

𝑋2

𝑠

⋅ Q0

𝑋
𝑠

(𝑋
𝑡
∈ 𝐵)] (44)

for 𝑠, 𝑡 > 0 and 𝐵 ∈ B([0,∞)). If we put 𝜇
𝑡
(𝑑𝑥) =

(1/𝑥
2
)Q4

0
(𝑋

𝑡
∈ 𝑑𝑥), we have

𝜇
𝑠+𝑡

(𝐵) = ∫𝜇
𝑠
(𝑑𝑥)Q0

𝑥
(𝑋

𝑡
∈ 𝐵) . (45)

This shows that the family of laws {𝜇
𝑡

: 𝑡 > 0} is an entrance
law for {Q0

𝑥
: 𝑥 > 0}. In fact, there exists a unique 𝜎-finite

measure n(0) on D such that

n(0) (𝑋
𝑡
1

∈ 𝐵
1
, . . . , 𝑋

𝑡
𝑛

∈ 𝐵
𝑛
)

= ∫
𝐵
1

𝜇
𝑡
1

(𝑑𝑥
1
) ∫

𝐵
2

Q0

𝑥
(𝑋

𝑡
2
−𝑡
1

∈ 𝑑𝑥
2
)

⋅ ⋅ ⋅ ∫
𝐵
𝑛

Q0

𝑥
(𝑋

𝑡
𝑛
−𝑡
𝑛−1

∈ 𝑑𝑥
𝑛
)

(46)

for 0 < 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛
and 𝐵

1
, . . . , 𝐵

𝑛
∈ B([0,∞)). Note

that, to construct such a measure n(0), we can not appeal to
Kolmogorov’s extension theorem, because the entrance laws
have infinite total mass. However, we can actually construct
n(0) via the agreement formula (see Pitman-Yor [17, Cor. 3]
with 𝛿 = 4), or via the time change of a Brownian excursion
(see Fitzsimmons-Yano [18, Theorem 2.5] with change of
scales).Wemay calln(0) the generalized excursionmeasure for
the squared Bessel process of dimension 0. See the references
above for several characteristic formulae of n(0).
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4. Symmetric Lévy Processes

Let us confine ourselves to one-dimensional symmetric Lévy
processes. We recall general facts and state several results
from [7].

In what follows, we assume that (P
𝑥
) is the law of a

one-dimensional conservative Lévy process. Throughout the
present paper, we assume the following conditions, whichwill
be referred to as (A), are satisfied:

(i) the process is symmetric;
(ii) the origin (and, consequently, any point) is regular for

itself;
(iii) the process is not a compound Poisson.

Under the condition (A), we have the following. The charac-
teristic exponent is given by

𝜃 (𝜆) := − logP
0
[𝑒
𝑖𝜆𝑋
1] = 𝑣𝜆

2
+ 2∫

∞

0

(1 − cos 𝜆𝑥) 𝜈 (𝑑𝑥) ,

(47)

for some 𝑣 ≥ 0 and some positive Radonmeasure 𝜈 on (0,∞)

such that

∫
(0,∞)

min {𝑥
2
, 1} 𝜈 (𝑑𝑥) < ∞. (48)

The reference measure is 𝜇(𝑑𝑥) = 𝑑𝑥 and we have

𝑝
𝑡
(𝑥, 𝑦) = 𝑝

𝑡
(𝑦 − 𝑥) =

1

𝜋
∫

∞

0

(cos 𝜆 (𝑦 − 𝑥)) 𝑒
−𝑡𝜃(𝜆)

𝑑𝜆,

(49)

𝑢
𝑞
(𝑥, 𝑦) = 𝑢

𝑞
(𝑦 − 𝑥) =

1

𝜋
∫

∞

0

cos 𝜆 (𝑦 − 𝑥)

𝑞 + 𝜃 (𝜆)
𝑑𝜆. (50)

There exists a local time (𝐿
𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
𝑑𝑦, 𝑓 ∈ B

+
(R) , (51)

with P
𝑥
-probability one for any 𝑥 ∈ R. Then it holds that

P
𝑥
[∫

∞

0

𝑒
−𝑞𝑠

𝑑𝐿
𝑦

𝑠
] = 𝑢

𝑞
(𝑦 − 𝑥) , 𝑥, 𝑦 ∈ R. (52)

Let n denote the excursion measure associated to the local
time 𝐿

0

𝑡
. We denote by (P0

𝑥
: 𝑥 ∈ R \ {0}) the law of the

process killed upon hitting the origin; that is,

P0
𝑥
(𝐴; 𝜁 > 𝑡) = P

𝑥
(𝐴; 𝑇

{0}
> 𝑡) , 𝑥 ∈ R \ {0} ,

𝑡 > 0, 𝐴 ∈ F
𝑡
.

(53)

Then the excursion measure n satisfies the Markov property
in the following sense: for any 𝑡 > 0 and for any nonnegative
F

𝑡
-measurable functional 𝑍

𝑡
and for any nonnegative F

∞
-

measurable functional 𝐹, it holds that

n [𝑍
𝑡
𝐹 (𝑋

𝑡+⋅
)] = ∫n [𝑍

𝑡
; 𝑋

𝑡
∈ 𝑑𝑥]P0

𝑥
[𝐹 (𝑋)] . (54)

We need the following additional conditions:

(R) the process is recurrent;
(T) the function 𝜃(𝜆) is nondecreasing in 𝜆 > 𝜆

0
for some

𝜆
0
> 0.

Under the condition (A), the condition (R) is equivalent to

∫

∞

0

𝑑𝜆

𝜃 (𝜆)
= ∞. (55)

All of the conditions (A), (R), and (T) are obviously satisfied
if the process is a symmetric stable Lévy process of index 𝛼 ∈

(1, 2]:

𝜃 (𝜆) = |𝜆|
𝛼
. (56)

In what follows, we assume, as well as the condition (A), that
the conditions (R) and (T) are also satisfied.

The Laplace transform of the law of 𝑇
{0}

is given by

P
𝑧
[𝑒
−𝑞𝑇
{0}] =

𝑢
𝑞
(𝑧)

𝑢
𝑞
(0)

, (57)

see, for example, [19, pp. 64]. It is easy to see that the entrance
law has the space density:

𝜌 (𝑡, 𝑥) =
n (𝑋

𝑡
∈ 𝑑𝑥)

𝑑𝑥
. (58)

In view of [7, Theorem 2.10], the law of the hitting time 𝑇
{0}

is absolutely continuous relative to the Lebesgue measure 𝑑𝑡

and the time density coincides with the space density of the
entrance law:

𝜌
𝑥
(𝑡) =

P
𝑥
(𝑇

{0}
∈ 𝑑𝑡)

𝑑𝑡
= 𝜌 (𝑡, 𝑥) . (59)

4.1. Absolute Continuity of the Law of the Inverse Local Time.
Let 𝜏(𝑙) denote the inverse local time at the origin:

𝜏 (𝑙) = inf {𝑡 > 0; 𝐿
0

𝑡
> 𝑙} . (60)

We prove the absolute continuity of the law of inverse local
time. Note that 𝜏(𝑙) is a subordinator such that

P
0
[𝑒
−𝑞𝜏(𝑙)

] = 𝑒
−𝑙/𝑢
𝑞
(0)

, (61)

see, for example, [19, pp. 131].

Lemma 9. For fixed 𝑙 > 0, the law of 𝜏(𝑙) under P
0
has a

density 𝛾
𝑙
(𝑡):

P
0
(𝜏 (𝑙) ∈ 𝑑𝑡) = 𝛾

𝑙
(𝑡) 𝑑𝑡. (62)

Furthermore, 𝛾
𝑙
(𝑡) may be chosen to be jointly continuous in

(𝑙, 𝑡) ∈ (0,∞) × (0,∞).

Proof. Following [7, Sec. 3.3], we define a positive Borel
measure 𝜎 on [0,∞) as

𝜎 (𝐴) =
1

𝜋
∫

∞

0

1
𝐴
(𝜃 (𝜆)) 𝑑𝜆, 𝐴 ∈ B ([0,∞)) . (63)
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Then we have 𝑢
𝑞
(0) = ∫

[0,∞)
(𝜎(𝑑𝜉)/(𝑞 + 𝜉)) for 𝑞 > 0,

and hence there exists a Radon measure 𝜎
∗ on [0,∞) with

∫
[0,∞)

(𝜎
∗
(𝑑𝜉)/(1 + 𝜉)) < ∞ such that

1

𝑞𝑢
𝑞
(0)

= ∫
[0,∞)

1

𝑞 + 𝜉
𝜎
∗
(𝑑𝜉) , 𝑞 > 0. (64)

Hence, the Laplace exponent 1/𝑢
𝑞
(0) may be represented as

1

𝑢
𝑞
(0)

= ∫

∞

0

(1 − 𝑒
−𝑞𝑢

) 𝜈 (𝑢) 𝑑𝑢, (65)

where 𝜈(𝑢) = ∫
(0,∞)

𝑒
−𝑢𝜉

𝜉𝜎
∗
(𝑑𝜉). Since ∫

∞

0
(1 ∧ 𝑢

2
)𝜈(𝑢)𝑑𝑢 <

∞, we may appeal to analytic continuation of both sides of
formula (61) and obtain

P
0
[𝑒
𝑖𝜆𝜏(𝑙)

] = exp{𝑙 ∫

∞

0

(𝑒
𝑖𝜆𝑢

− 1) 𝜈 (𝑢) 𝑑𝑢} . (66)

Following [20, Theorem 3.1], we may invert the Fourier
transform of the law of 𝜏(𝑙) and obtain the desired result.

4.2. ℎ-Paths of Symmetric Lévy Processes. We follow [7]
for the notations concerning ℎ-paths of symmetric Lévy
processes. For the interpretation of the ℎ-paths as some kind
of conditioning, see [10].

We define

ℎ (𝑥) = lim
𝑞→0+

{𝑢
𝑞
(0) − 𝑢

𝑞
(𝑥)}

=
1

𝜋
∫

∞

0

1 − cos 𝜆𝑥
𝜃 (𝜆)

𝑑𝜆, 𝑥 ∈ R.

(67)

The second equality follows from (50). Then the function ℎ

satisfies the following:

(i) ℎ(𝑥) is continuous;
(ii) ℎ(0) = 0, ℎ(𝑥) > 0 for all 𝑥 ∈ R \ {0};
(iii) ℎ(𝑥) → ∞ as |𝑥| → ∞ (since the condition (R) is

satisfied).

See [7, Lemma 4.2] for the proof. Moreover, the function ℎ is
harmonic with respect to the killed process:

P0
𝑥
[ℎ (𝑋

𝑡
)] = ℎ (𝑥) if 𝑥 ∈ R \ {0} , 𝑡 > 0,

n [ℎ (𝑋
𝑡
)] = 1 if 𝑡 > 0.

(68)

See [7, Theorems 1.1 and 1.2] for the proof. We define the ℎ-
path process (Pℎ

𝑥
: 𝑥 ∈ R) by the following local equivalence

relations:

𝑑Pℎ
𝑥

F
𝑡

=

{{

{{

{

ℎ (𝑋
𝑡
)

ℎ (𝑥)
𝑑P0

𝑥

F
𝑡

if 𝑥 ∈ R \ {0} ,

ℎ (𝑋
𝑡
) 𝑑nF

𝑡

if 𝑥 = 0.

(69)

Remark that, from the strong Markov properties of (𝑋
𝑡
)

under P0
𝑥
and n, the family {Pℎ

𝑥
|
F
𝑡

; 𝑡 ≥ 0} is consistent, and
hence the probability measure Pℎ

𝑥
is well defined.

The ℎ-path process is then symmetric; more precisely,
the transition kernel has a symmetric density 𝑝

ℎ

𝑡
(𝑥, 𝑦) with

respect to the measure ℎ(𝑦)
2
𝑑𝑦. Here the density 𝑝

ℎ

𝑡
(𝑥, 𝑦) is

given by

𝑝
ℎ

𝑡
(𝑥, 𝑦) =

1

ℎ (𝑥) ℎ (𝑦)
{𝑝

𝑡
(𝑦 − 𝑥) −

𝑝
𝑡
(𝑥) 𝑝

𝑡
(𝑦)

𝑝
𝑡
(0)

}

if 𝑥, 𝑦 ∈ R \ {0} ,

𝑝
ℎ

𝑡
(𝑥, 0) = 𝑝

ℎ

𝑡
(0, 𝑥) =

𝜌 (𝑡, 𝑥)

ℎ (𝑥)

if 𝑥 ∈ R \ {0} ,

𝑝
ℎ

𝑡
(0, 0) = ∫

(0,∞)

𝑒
−𝑡𝜉

𝜉𝜎
∗
(𝑑𝜉) .

(70)

By (65), we see that 𝑝ℎ
𝑡
(0, 0) is characterized by

∫

∞

0

(1 − 𝑒
−𝑞𝑡

) 𝑝
ℎ

𝑡
(0, 0) 𝑑𝑡 =

1

𝑢
𝑞
(0)

, 𝑞 > 0. (71)

See [7, Section 5] for the details. The ℎ-path process also
satisfies the following conditions:

(i) the process is conservative;
(ii) any point is regular for itself;
(iii) the process is transient (since the condition (T) is

satisfied).

We can easily prove regularity of any point by the local
equivalence (69). See [7, Theorem 1.4] for the proof of
transience.

The resolvent density of the ℎ-path process with respect
to ℎ(𝑦)

2
𝑑𝑦 is given by

𝑢
ℎ

𝑞
(𝑥, 𝑦) =

1

ℎ (𝑥) ℎ (𝑦)
{𝑢

𝑞
(𝑥 − 𝑦) −

𝑢
𝑞
(𝑥) 𝑢

𝑞
(𝑦)

𝑢
𝑞
(0)

} ,

𝑞 > 0, 𝑥, 𝑦 ∈ R \ {0} ,

𝑢
ℎ

𝑞
(𝑥, 0) = 𝑢

ℎ

𝑞
(0, 𝑥) =

1

ℎ (𝑥)
⋅
𝑢
𝑞
(𝑥)

𝑢
𝑞
(0)

, 𝑞 > 0, 𝑥 ∈ R \ {0} .

(72)

We remark here that, since lim
𝑞→∞

𝑢
𝑞
(0) = 0, we see, by (71),

that

𝑢
ℎ

𝑞
(0, 0) = ∞. (73)

The Green function 𝑢
ℎ

0
(𝑥, 𝑦) = lim

𝑞→0+
𝑢
ℎ

𝑞
(𝑥, 𝑦) exists and is

given by

𝑢
ℎ

0
(𝑥, 𝑦) =

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥) ℎ (𝑦)
, 𝑥, 𝑦 ∈ R \ {0} ,

𝑢
ℎ

0
(𝑥, 0) = 𝑢

ℎ

0
(0, 𝑥) =

1

ℎ (𝑥)
, 𝑥 ∈ R \ {0} .

(74)
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See [7, Section 5.3] for the proof. Since 𝑢
ℎ

0
(𝑥, 𝑦) ≥ 0, we have

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) ≥ 0, 𝑥, 𝑦 ∈ R. (75)

It follows from the local equivalence (69) that there exists
a local time (𝐿

𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
ℎ(𝑦)

2

𝑑𝑦, 𝑡 > 0, 𝑓 ∈ B
+
(R)

(76)

with Pℎ
𝑥
-probability one for any 𝑥 ∈ R. We have

Pℎ
𝑥
[𝐿

𝑦

∞
] = 𝑢

ℎ

0
(𝑥, 𝑦) , 𝑥 ∈ R, 𝑦 ∈ R \ {0} . (77)

Example 10. If the process is the symmetric stable process of
index 𝛼 ∈ (1, 2], then the harmonic function ℎ(𝑥) may be
computed as

ℎ (𝑥) = 𝐶 (𝛼) |𝑥|
𝛼−1

, (78)

where 𝐶(𝛼) is given as follows (see [9, Appendix]):

𝐶 (𝛼) =
1

𝜋
∫

∞

0

1 − cos 𝜆
𝜆𝛼

𝑑𝜆 =
1

2Γ (𝛼) sin (𝜋 (𝛼 − 1) /2)
.

(79)

5. The Laws of the Total Local
Times for ℎ-Paths

In this section, we state and prove our main theorems
concerning the laws of the total local times of ℎ-paths.

5.1. Laplace Transform Formula for ℎ-Paths. In this section,
we prove Laplace transform formula for ℎ-paths at two levels.

Lemma 11. For 𝑥, 𝑦 ∈ R \ {0} and 𝜆
1
, 𝜆

2
≥ 0, one has

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆

2
ℎ (𝑦) 𝐿

𝑦

∞
}]

=
1 + 𝜆

1
+ 𝜆

2
+ 𝐷𝜆

1
𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

,

(80)

where

𝐷 = 𝐷 (𝑥, 𝑦) = ℎ (𝑥 − 𝑦) ⋅
ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥) ℎ (𝑦)
≥ 0,

𝐸 = 𝐸 (𝑥, 𝑦) = 1 −
(ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦))

2

4ℎ (𝑥) ℎ (𝑦)
≥ 0.

(81)

Proof. Let us apply Theorem 2 with

𝐼 + (Σ − Σ
0
)Λ

= (

1 + 𝜆
1

ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥)
𝜆
2

ℎ (𝑥) − ℎ (𝑥 − 𝑦)

ℎ (𝑦)
𝜆
1

1 + 𝜆
2

),

𝐼 + ΣΛ

=(

1+2𝜆
1

ℎ (𝑥)+ℎ (𝑦)−ℎ (𝑥 − 𝑦)

ℎ (𝑥)
𝜆
2

ℎ (𝑥)+ℎ (𝑦)−ℎ (𝑥 − 𝑦)

ℎ (𝑦)
𝜆
1

1+2𝜆
2

).

(82)

Then we obtain (80) by an easy computation.
By (75), we have 𝐷 ≥ 0. Since

𝐸 =
ℎ (𝑥) ℎ (𝑦)

4
det(

𝑢
ℎ

0
(𝑥, 𝑥) 𝑢

ℎ

0
(𝑥, 𝑦)

𝑢
ℎ

0
(𝑦, 𝑥) 𝑢

ℎ

0
(𝑦, 𝑦)

) , (83)

we obtain 𝐸 ≥ 0 by nonnegative definiteness of the above
matrix. The proof is now complete.

5.2. The Law of 𝐿𝑥
∞
. Using formula (80), we can determine

the law of 𝐿𝑥
∞
; see [16, Example 3.10.5] for the formula in a

more general case.

Theorem 12. For any 𝑥 ∈ R \ {0}, one has

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝑑𝑙) =

1

2
{𝛿

0
(𝑑𝑙) + 𝑒

−𝑙/2 𝑑𝑙

2
} , (84)

where 𝛿
0
stands for the Dirac measure concentrated at 0.

Consequently, one has

Pℎ
0
(𝐿

𝑥

∞
= 0) =

1

2
. (85)

Proof. Letting 𝜆
2
= 0 in Lemma 11, we have

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
}] =

1 + 𝜆
1

1 + 2𝜆
1

=
1

2
(1 +

1

1 + 2𝜆
1

) ,

(86)

which proves the claim.

Remark 13. Since 𝐿
𝑥

∞
= 0 if and only if 𝑇

{𝑥}
= ∞, the identity

(85) is equivalent to

Pℎ
0
(𝑇

{𝑥}
= ∞) =

1

2
. (87)

This formula may also be obtained from the following
formula (see [9, Proposition 5.10]):

n (𝑇
{𝑥}

< 𝜁) =
1

2ℎ (𝑥)
. (88)
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Suppose that, in the definition (69), we may replace the fixed
time 𝑡 with the stopping time 𝑇

{𝑥}
. Then we have

Pℎ
0
(𝑇

{𝑥}
< ∞) = n [ℎ (𝑋

𝑇
{𝑥}

) ; 𝑇
{𝑥}

< 𝜁]

= ℎ (𝑥)n (𝑇
{𝑥}

< 𝜁) =
1

2
.

(89)

5.3. The Probability That Two Levels Are Attained. Let us
discuss the probability that the total local times at two given
levels are positive.

Theorem 14. Let 𝑥, 𝑦 ∈ R \ {0} such that 𝑥 ̸= 𝑦. Then one has
𝐸 > 0 and

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
> 0) = Pℎ

0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

𝐷

4𝐸
, (90)

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
= 0) = Pℎ

0
(𝐿

𝑥

∞
= 0, 𝐿

𝑦

∞
> 0) =

1

2
−

𝐷

4𝐸
.

(91)

Consequently, one has 𝐷 ≤ 2𝐸.

Proof. Letting 𝜆
1
= 𝜆

2
= 𝜆 ≥ 0 in formula (80), we have

Pℎ
0
[exp {−𝜆ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆ℎ (𝑦) 𝐿

𝑦

∞
}] =

1 + 2𝜆 + 𝐷𝜆
2

1 + 4𝜆 + 4𝐸𝜆2
.

(92)

If 𝐸 were zero, then 𝐷 would be positive, and hence the
right-hand side of (92) would diverge as 𝜆 → ∞, which
contradicts the fact that the left-hand side of (92) is bounded
in 𝜆 > 0. Hence, we obtain 𝐸 > 0.

Taking the limit as 𝜆 → ∞ in both sides of formula (92),
we have

Pℎ
0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

𝐷

4𝐸
, (93)

which is nothing else but the second equality of (90). By
formula (85), we obtain

Pℎ
0
(𝐿

𝑥

∞
= 0, 𝐿

𝑦

∞
> 0) = Pℎ

0
(𝐿

𝑥

∞
= 0)

− Pℎ
0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

1

2
−

𝐷

4𝐸
.

(94)

Thus we obtain (91). Therefore, we obtain

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
> 0) = 1 −

𝐷

4𝐸
− 2 {

1

2
−

𝐷

4𝐸
} =

𝐷

4𝐸
, (95)

which is nothing else but the first equality of (90). The proof
is now complete.

5.4. Joint Law of 𝐿𝑥
∞

and 𝐿
𝑦

∞
. Let us discuss the joint law of

𝐿
𝑥

∞
and 𝐿

𝑦

∞
for 𝑥, 𝑦 ∈ R \ {0} such that 𝑥 ̸= 𝑦.

By Lemma 11, we know that 𝐷 ≥ 0. First, we discuss the
case of 𝐷 = 0.

Theorem 15. Suppose that ℎ(𝑥) + ℎ(𝑦) − ℎ(𝑥 − 𝑦) = 0. Then

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝑑𝑙

1
, ℎ (𝑦) 𝐿

𝑦

∞
∈ 𝑑𝑙

2
)

=
1

2
{𝑒

−𝑙
1
/2 𝑑𝑙1

2
⋅ 𝛿

0
(𝑑𝑙

2
) + 𝛿

0
(𝑑𝑙

1
) ⋅ 𝑒

−𝑙
2
/2 𝑑𝑙2

2
} .

(96)

Proof. Since 𝐷 = 0 and 𝐸 = 1, formula (80) implies

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆

2
ℎ (𝑦) 𝐿

𝑦

∞
}]

=
1 + 𝜆

1
+ 𝜆

2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝜆

1
𝜆
2

.

(97)

We may rewrite the right-hand side as

1

2
(

1

1 + 2𝜆
1

+
1

1 + 2𝜆
2

) , (98)

which proves the claim.

Second, we discuss the case of 𝐷 > 0.

Theorem 16. Suppose that ℎ(𝑥) + ℎ(𝑦) − ℎ(𝑥 − 𝑦) > 0. Set

𝑚 = 𝑚(𝑥, 𝑦) = ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) ,

𝑀 = 𝑀(𝑥, 𝑦) =
4ℎ (𝑥) ℎ (𝑦)

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)
.

(99)

Then one has 𝐸 > 0 and 0 < 𝑚 < 𝑀. For any 𝐴, 𝐵 ∈

B([0,∞)), one has

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝐴, ℎ (𝑦) 𝐿

𝑦

∞
∈ 𝐵) =

4

∑

𝑘=1

𝐶
𝑘
Φ
𝑘
(𝐴 × 𝐵) ,

(100)

where 𝐶
𝑘
= 𝐶

𝑘
(𝑥, 𝑦), 𝑘 = 1, 2, 3, 4 are constants given as

𝐶
1
=

𝐷

4𝐸
, 𝐶

3
= 𝐶

4
=

1

2𝐸
(1 −

𝐷

2𝐸
) ,

𝐶
2
= 1 − 𝐶

1
− 𝐶

3
− 𝐶

4

(101)

and Φ
𝑘
, 𝑘 = 1, 2, 3, 4 are positive measures on [0,∞)

2 such
that

Φ
1
(𝐴 × 𝐵) = 𝛿

0
(𝐴) 𝛿

0
(𝐵) , (102)

Φ
2
(𝐴 × 𝐵) = Q2

0
(
𝑋
𝑚

𝑚
∈ 𝐴,

𝑋
𝑀

𝑀
∈ 𝐵)

= Q2

0
(
𝑋
𝑀

𝑀
∈ 𝐴,

𝑋
𝑚

𝑚
∈ 𝐵) ,

(103)

Φ
3
(𝐴 × 𝐵) = Φ

4
(𝐵 × 𝐴)

= Q2

0
[
𝑋
𝑚

𝑚
∈ 𝐴;Q0

𝑋
𝑚

(
𝑋
𝑀−𝑚

𝑀
∈ 𝐵)] .

(104)

Remark 17. The expression (104) coincides with

n(0) [2𝑚𝑋
𝑚
;
𝑋
𝑚

𝑚
∈ 𝐴,

𝑋
𝑀

𝑀
∈ 𝐵] , (105)

where n(0) is the generalized excursion measure introduced
in Section 3.
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The proof ofTheorem 16 will be given in the next section.

Remark 18. In the case where 𝛼 = 2, the process
((𝑋

𝑡
/√2), Pℎ

0
) is the symmetrized three-dimensional Bessel

process. In other words, if we set

Ω
+

= {𝑤 ∈ D : ∀𝑡 > 0, 𝑤 (𝑡) > 0} ,

Ω
−

= {𝑤 ∈ D : ∀𝑡 > 0, 𝑤 (𝑡) < 0} ,

(106)

then we have

Pℎ
0
(Ω

+
) = Pℎ

0
(Ω

−
) =

1

2
(107)

and the processes ((𝑋
𝑡
/√2), Pℎ

0
(⋅ | Ω

+
)) and ((−𝑋

𝑡
/√2),

Pℎ
0
(⋅ | Ω

−
)) are one-sided three-dimensional Bessel processes.

Hence, the Ray-Knight theorem implies that the process
(𝑥

2
𝐿
𝑥

∞
: 𝑥 ≥ 0) conditional on Ω

+
is the squared Bessel

process of dimension two. Let us check thatTheorems 15 and
16 are consistent with this fact. Since ℎ(𝑥) = |𝑥|/2, we have

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) =
|𝑥| +

𝑦
 −

𝑥 − 𝑦


2

= {
min {|𝑥| ,

𝑦
} if 𝑥𝑦 > 0,

0 if 𝑥𝑦 < 0.

(108)

If 𝑥 > 0 > 𝑦, then we should look at Theorem 15 which
implies that

Pℎ
0
(𝐿

𝑥

∞
∈ 𝐴, 𝐿

𝑦

∞
∈ 𝐵 | Ω

+
) = Q2

0
(𝑋

1
∈ 𝐴) ⋅ 𝛿

0
(𝐵) . (109)

If 𝑥, 𝑦 > 0, then we should look at Theorem 16. Note that

𝑚(𝑥, 𝑦) = min {𝑥, 𝑦} , 𝑀 (𝑥, 𝑦) = max {𝑥, 𝑦} ,

𝐷 =
2
𝑥 − 𝑦



max {𝑥, 𝑦}
, 𝐸 =

𝑥 − 𝑦


max {𝑥, 𝑦}
,

𝐷

4𝐸
=

1

2

(110)

and that

𝐶
1
= 𝐶

2
=

1

2
, 𝐶

3
= 𝐶

4
= 0. (111)

Hence, Theorem 16 implies that

Pℎ
0
(𝑥

2
𝐿
𝑥

∞
∈ 𝐴, 𝑦

2
𝐿
𝑦

∞
∈ 𝐵 | Ω

+
) = Q2

0
(𝑋

𝑥
∈ 𝐴,𝑋

𝑦
∈ 𝐵) .

(112)

5.5. Proof of Theorem 16. We give the proof of Theorem 16.
We divide the proofs into several steps.

Step 1. Since

0 < 𝐷 ≤ 2𝐸 = 2 (1 −
𝑚

𝑀
) , (113)

we have 0 < 𝑚 < 𝑀.

Step 2. Let us compute the Laplace transform:

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
− 𝜆

2

𝑋
𝑀

𝑀
}] . (114)

By the Markov property, the right-hand side is equal to

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
}Q2

𝑋
𝑚

[exp {−𝜆
2

𝑋
𝑀−𝑚

𝑀
}]] . (115)

By formula (39), this expectation is equal to

1

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

× Q2

0
[exp{−(

𝜆
1

𝑚
+

𝜆
2
/𝑀

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

)𝑋
𝑚
}] .

(116)

Again by formula (39), this expectation is equal to

1

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

⋅
1

1 + 2 (𝜆
1
/𝑚 + (𝜆

2
/𝑀) / (1 + 2 (𝜆

2
/𝑀) (𝑀 − 𝑚)))𝑚

.

(117)

Simplifying this quantity with 𝐸 = 1 − 𝑚/𝑀, we see that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

2
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(118)

Note that this expression is invariant under interchange
between 𝜆

1
and 𝜆

2
, which proves the second equality of (103).

Step 3. Let us compute the Laplace transform:

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
}Q0

𝑋
𝑚

[exp {−𝜆
2

𝑋
𝑀−𝑚

𝑀
}]] . (119)

By formula (39), this expectation is equal to

Q2

0
[exp{−(

𝜆
1

𝑚
+

𝜆
2
/𝑀

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

)𝑋
𝑚
}] . (120)

Using the equality between (116) and (118), we see that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

3
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1 + 2𝐸𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(121)

Now we also obtain

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

4
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1 + 2𝐸𝜆
1

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(122)

Step 4. Noting that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

1
(𝑑𝑙

1
× 𝑑𝑙

2
) = 1, (123)
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we sum up formulae (123), (118), (121), and (122), and we
obtain

4

∑

𝑘=1

𝐶
𝑘
∬𝑒

−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

𝑘
(𝑑𝑙

1
× 𝑑𝑙

2
)

=
1 + 𝜆

1
+ 𝜆

2
+ 𝐷𝜆

1
𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(124)

By Lemma 11, we see that the right-hand side coincides with
the Laplace transform of the joint law of (𝐿

𝑥

∞
, 𝐿

𝑦

∞
) under

Pℎ
0
. By the uniqueness of Laplace transforms, we obtain the

desired conclusion.

6. The Laws of Total Local Times for Bridges

In this section, we study the total local time of Lévy bridges
and ℎ-bridges.

6.1. The Laws of the Total Local Times for Lévy Bridges. Let us
work with the Lévy bridge P𝑡

0,0
and its local time (𝐿

𝑧

𝑠
: 0 ≤ 𝑠 ≤

𝑡) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑧) 𝐿

𝑧

𝑠
𝑑𝑧, 0 ≤ 𝑠 ≤ 𝑡, 𝑓 ∈ B

+
(R)

(125)

withP𝑡
0,0
-probability one. Let us study the lawof the total local

time 𝐿
𝑧

𝑡
under P𝑡

0,0
.

Theorem 19. For 𝑡 > 0, it holds that

P𝑡
0,0

(𝐿
0

𝑡
∈ 𝑑𝑙) =

𝛾
𝑙
(𝑡)

𝑝
𝑡
(0)

𝑑𝑙. (126)

Proof. UsingTheorem 7 with 𝑛 = 1 and 𝑧
1
= 0, we have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0)P𝑡

0,0
[𝑒

−𝜆𝐿
0

𝑡] 𝑑𝑡 =
1

1/𝑢
𝑞
(0) + 𝜆

. (127)

By formula (61), we have

1

1/𝑢
𝑞
(0) + 𝜆

= ∫

∞

0

𝑒
−(1/𝑢

𝑞
(0)−𝜆)𝑙

𝑑𝑙

= ∫

∞

0

P
0
[𝑒
−𝑞𝜏(𝑙)

] 𝑒
−𝜆𝑙

𝑑𝑙.

(128)

Hence, using Lemma 9, we obtain (126) by the Laplace
inversion. The proof is now complete.

Theorem 20. For any 𝑧 ∈ R \ {0}, one has

P𝑡
0,0

(𝐿
𝑧

𝑡
= 0) =

𝑝
𝑡
(0) − (𝜌

𝑧
∗ 𝜌

𝑧
∗ 𝑝

⋅
(0)) (𝑡)

𝑝
𝑡
(0)

, (129)

P𝑡
0,0

(𝐿
𝑧

𝑡
∈ 𝑑𝑙) =

(𝜌
𝑧
∗ 𝜌

𝑧
∗ 𝛾

𝑙
) (𝑡)

𝑝
𝑡
(0)

𝑑𝑙, for 𝑙 ̸= 0, (130)

where the symbol ∗ stands for the convolution operation.

Proof. Using Theorem 7 with 𝑛 = 2, 𝜆
1
= 0, 𝜆

2
= 𝜆, 𝑧

1
= 0,

and 𝑧
2
= 𝑧, we have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0)P𝑡

0,0
[𝑒
−𝜆𝐿
𝑧

𝑡] 𝑑𝑡

= 𝑢
𝑞
(0) (1 −

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2
) +

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2

1

1/𝑢
𝑞
(0) + 𝜆

.

(131)

On the one hand, it follows from (57) that

𝑢
𝑞
(0) (1 −

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2
)

= (∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0) 𝑑𝑡) (1 − P

𝑧
[𝑒
−𝑞𝑇
{0}]

2

) .

(132)

This implies (129). On the other hand, by (61) and (57), we
have

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2

1

1/𝑢
𝑞
(0) + 𝜆

= P
𝑧
[𝑒
−𝑞𝑇
{0}]

2

∫

∞

0

P
0
(𝑒

−𝑞𝜏(𝑙)
) 𝑒

−𝜆𝑙
𝑑𝑙.

(133)

This implies (130). The proof is now complete.

6.2. The Laws of the Total Local Times for ℎ-Bridges. Let us
work with the ℎ-bridge Pℎ,𝑡

0,0
and its local time (𝐿

𝑧

𝑡
) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑧) 𝐿

𝑧

𝑠
ℎ(𝑧)

2
𝑑𝑧, 0 ≤ 𝑠 ≤ 𝑡, 𝑓 ∈ B

+
(R)

(134)

with Pℎ,𝑡
0,0
-probability one. We give the Laplace transform

formula for the law of the total local time 𝐿
𝑧

𝑡
under Pℎ,𝑡

0,0
.

Lemma 21. For 𝑧 ∈ R \ {0} and 𝜆 ≥ 0, one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
ℎ

𝑡
(0, 0)Pℎ,𝑡

0,0
[1 − 𝑒

−𝜆ℎ(𝑧)
2
𝐿
𝑧

𝑡] 𝑑𝑡

=
(𝑢

𝑞
(𝑧)

2
/𝑢

𝑞
(0)

2
) 𝜆

1 + 𝑢
𝑞
(0) {1 − 𝑢

𝑞
(𝑧)

2
/𝑢

𝑞
(0)

2
} 𝜆

.

(135)

Proof. Using Theorem 8 with 𝑛 = 1, 𝜆
1

= 𝜆, and 𝑧
1

= 𝑧, we
have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
ℎ

𝑡
(0, 0)Pℎ,𝑡

0,0
[1 − 𝑒

−𝜆𝐿
𝑧

𝑡] 𝑑𝑡 =
𝑢
ℎ

𝑞
(0, 𝑧)

2
𝜆

1 + 𝑢ℎ
𝑞
(𝑧, 𝑧) 𝜆

. (136)

By formulae (72), we obtain the desired formula.

7. Concluding Remark

We gave an explicit formula which describes the joint
distribution of the total local times at two levels and we
discussed several formulae related to the law of the total
local times. However, we could not obtain any better result
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on the law of the total local time with space parameter. As
we noted in Remark 3, a difficulty arises in the case of ℎ-
paths, which comes from the asymmetry of thematrix Σ−Σ

0.
We also remark that we have no better result related to the
law of total local time in the case where the Markov process
is asymmetric. We left the further study of the law of the
total local time for asymmetric Markov process with space
parameter for future work.
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We independently propose a new kind of the definition of fractional difference, fractional sum, and
fractional difference equation, give some basic properties of fractional difference and fractional
sum, and give some examples to demonstrate several methods of how to solve certain fractional
difference equations.

1. Introduction

Fractional calculus is an emerging field recently drawing attention from both theoretical and
applied disciplines. During the last two decades, it has been successfully applied to several
fields [1–6], and it is well known that there is a large quantity of research on what is usually
called integer-order difference equations [7, 8]. However, discrete fractional calculus and
fractional difference equations represent a very new area for scientists. A pioneering work
has been done by Atici et al. [9–12], Anastassiou [13, 14], Bastos et al. [15], Abdeljawad
et al. [16–20], and Cheng [21–23], and so forth. In this paper, limited to the length of the
paper, we will introduce some of our basic works about discrete fractional calculus and
fractional difference equations. Some proofs and results of the theorems and examples in
Sections 3–5 are well proved by a more concise method. We refer to the monographer [23]
for more further results. In [23] we also aim at presenting some basic properties about
discrete fractional calculus and, in a systematic manner, results including the existence and
uniqueness of solutions for the Cauchy Type and Cauchy problems, involving nonlinear
fractional difference equations, explicit solutions of linear difference equations and linear
difference system by their deduction to Volterra sum equation and by using operational
methods, applications of Z-transform, R-transform, N-transform, Adomian decomposition
method, method of undetermined coefficients, Jordan matrix theory method, and by discrete
Mittag-Leffler function and discrete Green’ function, and a theory of so-called sequential
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linear fractional difference equations, as well as some introduction for discrete fractional
difference variational problem, and so forth.

2. Integer-Order Difference and Sum with Real Variable

Let us start from sum and difference of the integer order. Define

h

t∑

s=a
x(s) � [x(a) + x(a + h) + x(a + 2h) + · · · + x(t)], (2.1)

where t = a + jh, j ∈N0 = {0, 1, 2, . . .}.

Definition 2.1. Let a, t be real numbers, and let h be a positive number, we call

a∇−1
h x(t) = h

t∑

s=a
x(s)h (2.2)

one-order backward sum of x(t), where t = a + jh, j ∈N0 = {0, 1, 2, . . .}. We call

a∇−k
h x(t) = a∇−1

h

(
a∇−(k−1)

h x(t)
)

(2.3)

k-order backward sum of x(t), where k is a positive integer number.

Definition 2.2. Let a, t be real numbers, and let h be a positive number, we call

aΔ−1
h x(t) = h

t−h∑

s=a
x(s)h (2.4)

one-order forward sum of x(t), where t = a + jh, j ∈N1 = {1, 2, . . .}. We call

aΔ−k
h x(t) = aΔ−1

h

(
aΔ

−(k−1)
h x(t)

)
(2.5)

k-order forward difference of x(t), where k is a positive integer number.

Definition 2.3. Let t be a real number, and let h be a positive number, we call

∇hx(t) =
x(t) − x(t − h)

h
(2.6)

one-order backward difference of x(t), where h is step. We call

∇k
hx(t) = ∇h

(
∇k−1
h x(t)

)
(2.7)

k-order backward difference of x(t), where k is a positive integer number.

Similarly, we can define forward difference as follows.
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Definition 2.4. Let t be a real number, and let h be a positive number, we call

Δhx(t) =
x(t + h) − x(t)

h
(2.8)

one-order forward difference of x(t), where h is step. We call

Δk
hx(t) = Δh

(
Δk−1
h x(t)

)
(2.9)

k-order forward difference of x(t), where k is a positive integer number.

Theorem 2.5. The following two equalities hold:

(1) ∇h(a∇−1
h x(t)) = x(t),

(2) Δh(aΔ
−1
h x(t)) = x(t).

Definition 2.6. If k, t are real numbers, and let h be a positive number, define

tkh = hk
Γ(t/h + k)
Γ(t/h)

, (k ∈ R) (2.10)

rising factorial function, and set t0
h
= 1. If k is a positive integer number, then we have

tkh = t(t + h)(t + 2h) · · · (t + (k − 1)h). (2.11)

Definition 2.7. Let k, t be real numbers, and let h be a positive number, define

t
(k)
h

= hk
Γ(t/h + 1)

Γ(t/h + 1 − k) , (k ∈ R) (2.12)

down factorial function, and set t(0)
h

= 1. If k is an positive integer number, then

t
(k)
h = t(t − h)(t − 2h) · · · (t − (k − 1)h). (2.13)

In Definitions 2.6 and 2.7, if h = 1, we can simply denote tk
h
, t(k)

h
as tk, t(k).

Definition 2.8. For any k, γ ∈ R, h > 0, we define

[
γ
k

]
�

Γ
(
k + γ

)

Γ
(
γ
)
Γ(k + 1)

,

[
γ
k

]

h

� hγ

⎡

⎢
⎣

γ

k

h

⎤

⎥
⎦. (2.14)
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If k ∈N, h = 1, then it is easy to see that

[
γ
k

]
=
γ
(
γ + 1

) · · · (γ + k − 1
)

k!
. (2.15)

If we let t/h = t̃, or t = t̃h, then we clearly have the following.

Theorem 2.9. Assume that k ∈ R, h > 0, t/h = t̃; then

tkh = hkt̃k; t
(k)
h = hkt̃(k). (2.16)

Theorem 2.10. Let k ∈ R, h > 0, then, following equality holds:

lim
h→ 0

tkh = lim
h→ 0

t
(k)
h = tk. (2.17)

3. Fractional Sum and Difference with Real Variable

Before giving the definitions of fractional sum a∇−γ
h
x(t), γ > 0, let us revisit the calculation of

the sum of the integer order. By Definition 2.1, we have

a∇−1
h x(t) = h

t∑

s=a
x(s)h, t = a + jh, j ∈N0, (3.1)

then

a∇−2
h x(t) = a∇−1

h

[
a∇−1

h x(t)
]
= h

t∑

s=a
a∇−1

h x(s)h = h

[

h

t∑

s=a
h

s∑

r=a
x(r)h

]

= h2
[

h

t∑

r=a
h

t∑

s=r
x(r)

]

= h2
[

h

t∑

r=a

t − r + h
h

x(r)

]

= h

t∑

r=a
(t − r + h)1hx(r)h,

a∇−3
h x(t) = a∇−1

h

[
a∇−2

h x(t)
]
= h

t∑

s=a
a∇−2

h x(s)h = h2
[

h

t∑

s=a
h

s∑

r=a

t − r + h
h

x(r)h

]

=
h3

2

[

h

t∑

r=a

(
t − r + h

h

)(
t − r + 2h

h

)
x(r)

]

=
1
2!

[

h

t∑

r=a
(t − r + h)2hx(r)h

]

. . . .

(3.2)

By recursive, it is not hard to obtain

a∇−m
h x(t) =

hm

(m − 1)!

[

h

t∑

s=a

(
t − s + h

h

)(
t − s + 2h

h

)
· · ·
(
t − s + (m − 1)h

h

)
x(s)

]

=
1

Γ(m)

[

h

t∑

s=a
(t − s + h)m−1

h x(s)h

]

=
1

Γ(m)

[

h

t∑

s=a

(
t − ρh(s)

)m−1
h x(s)h

]

,

(3.3)

where ρh(s) = s − h.



Abstract and Applied Analysis 5

Obviously, the right side of formula (3.3) is also meaningful for all real m > 0, so we
define fractional sum as follows.

Definition 3.1. Let γ > 0, a ∈ R, h > 0, t = a + kh, k ∈N0, we call

a∇−γ
h
x(t) =

1
Γ
(
γ
)

[

h

t∑

s=a

(
t − ρh(s)

)γ−1
h
x(s)h

]

(3.4)

γ order fractional sum of x(t).

For any positive number order fractional difference, we take the following.

Definition 3.2. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

a∇μ

hx(t) = ∇m
h

(
a∇−(m−μ)

h x(t)
)

(3.5)

as μ order R-L type backward fractional difference. Meantime, define

C
a∇μ

hx(t) =
(
a∇−(m−μ)

h

)
∇m
h x(t) (3.6)

as μ order Caputo type backward fractional difference.

If we start from Definition 2.2,

aΔ−1
h x(t) = h

t−h∑

s=a
x(s)h, t = a + jh, j ∈N1, (3.7)

completely in a similar way, we get positive integerm-order forward sum

aΔ−m
h x(t) =

1
Γ(m)

[

h

t−mh∑

s=a
(t − σh(s))(m−1)

h x(s)h

]

, (3.8)

where σh(s) = s + h.
The right side of (3.8) is meaningful for all real m > 0, so we can define forward

fractional sum as follows.

Definition 3.3. Let γ > 0, a ∈ R, h > 0, t = a + γh + kh, k ∈N0, define

aΔ
−γ
h x(t) =

1
Γ(ν)

⎡

⎣h
t−γh∑

s=a
(t − σh(s))(γ−1)h x(s)h

⎤

⎦ (3.9)

as γ order fractional sum of x(t), where σh(s) = s + h.
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Definition 3.4. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

aΔ
μ

h
x(t) = Δm

h

(
aΔ

−(m−μ)
h

x(t)
)

(3.10)

as μ order R-L type forward fractional difference. Meantime, define

C
aΔ

μ

h
x(t) =

(
aΔ

−(m−μ)
h

)
Δm
h x(t) (3.11)

as μ order Caputo type forward fractional difference.

In Definitions 3.1–3.4, if step h = 1, it is a kind of important situation. At this time, we
simply denote a∇−γ

h , aΔ
−γ
h ; ∇μ

h, Δ
μ

h as a∇−γ , aΔ−γ ; ∇μ, Δμ. When h = 1, backward fractional
sum is defined as follows.

Definition 3.5. Let γ > 0, and define

a∇−γx(t) =
1

Γ
(
γ
)

t∑

s=a

(
t − ρ(s))γ−1x(s) (3.12)

as γ order fractional sum of x(t), where t = a mod (1), ρ(s) = s − 1.

For any positive number order fractional difference, we can take the following way.

Definition 3.6. Let μ > 0 and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

a∇μx(t) = ∇m
(
a∇−(m−μ)x(t)

)
(3.13)

as μ order R-L type backward fractional difference. Meantime, define

C
a∇μx(t) =

(
a∇−(m−μ)

)
∇mx(t) (3.14)

as μ order Caputo type backward fractional difference.

We can define forward fractional sum as follows.

Definition 3.7. Let γ > 0, and define

aΔ−γx(t) =
1

Γ
(
γ
)
t−γ∑

s=a
(t − σ(s))(γ−1)x(s) (3.15)

as γ order forward fractional sum of x(t), where t − γ = a mod (1), σ(s) = s + 1.
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Definition 3.8. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

aΔμx(t) = Δm
(
aΔ−(m−μ)x(t)

)
(3.16)

as μ order R-L type forward fractional difference. Meantime, define

C
aΔ

μx(t) =
(
aΔ−(m−μ)

)
Δmx(t) (3.17)

as μ order Caputo type forward fractional difference.

By Definition 2.8, it is easy to calculate

[
γ

t − s
]
=

1
Γ
(
γ
)
(
t − ρ(s))γ−1,

[
γ

t − γ − s
]
=

1
Γ
(
γ
) (t − σ(s))γ−1.

(3.18)

By Theorem 2.9 we have

(t − s + h)γ−1h

Γ
(
γ
) = hγ−1

((t − s)/h + 1)γ−1

Γ
(
γ
) = hγ−1

⎡

⎢
⎣

γ

t − s
h

⎤

⎥
⎦,

(t − s − h)(γ−1)h

Γ
(
γ
) = hγ−1

((t − s)/h − 1)(γ−1)

Γ
(
γ
) = hγ−1

⎡

⎢
⎣

γ

t − s
h

− γ

⎤

⎥
⎦.

(3.19)

Therefore, if we adopt Definition 2.8, then Definitions 3.1, 3.3, 3.5, and 3.7 can be
rewritten as follows.

Definition 3.9. Assume that γ > 0, let a ∈ R, h > 0, t = a + kh, k ∈N0, and define

a∇−γ
h x(t) = h

t∑

s=a

[
γ

t − s
]

h

x(s) (3.20)

as γ order backward fractional sum of x(t).

Definition 3.10. Assume that γ > 0, let a ∈ R, h > 0, t = a + γh + kh, k ∈N0, and define

aΔ
−γ
h
x(t) = h

t−γh∑

s=a

[
γ

t − s − γh
]

h

x(s) (3.21)

as γ order forward fractional sum of x(t).
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Definition 3.11. Assume that γ > 0, t, a ∈ R, and t = a mod (1), and define

a∇−γx(t) =
t∑

s=a

[
γ

t − s
]
x(s) (3.22)

as γ order backward fractional sum of x(t).

Definition 3.12. Assume that γ > 0, t, a ∈ R, and t − γ = a mod (1), and define

aΔ−γx(t) =
t−γ∑

s=a

[
γ

t − γ − s
]
x(s) (3.23)

as γ order forward fractional sum of x(t).

Set a/h = ã, t/h = t̃, or a = ãh, t = t̃h, and set x(t) = x(t̃h) = y(t̃); then by Theorem 2.9
and Definitions 3.1–3.4, one obtains the following.

Theorem 3.13. For any γ, μ > 0, the following equalities hold:

(1) a∇−γ
h
x(t) = hγ[ã∇−γy(t̃)]; aΔ

−γ
h
x(t) = hγ[ãΔ

−γy(t̃)],

(2) a∇μ

h
x(t) = h−μ[ã∇μy(t̃)]; aΔ

μ

h
x(t) = h−μ[ãΔ

μy(t̃)],

(3) C
a∇μ

hx(t) = h
−μ[Cã∇μy(t̃)]; CaΔ

μ

hx(t) = h
−μ[CãΔ

μy(t̃)].

From Theorem 3.13 we can see, by stretching t = t̃h, the functions a∇−γ
h
x(t) and

a∇μ

h
x(t), with common step h, can be convert into the functions a∇−γy(t̃) and a∇μy(t̃) with

step h = 1, respectively. In essence, nothing arises much different, but the latter is more
convenient in research.

In view of Definitions 3.1–3.4 and Theorem 2.10, if we let h → 0, then we can obtain
the following.

Corollary 3.14. Assume that x(t) is integrable, then:

(1) limh→ 0(a∇−γ
h
x(t)) = limh→ 0(a∇−γ

h
x(t)) = (1/Γ(γ))

∫ t
a(t − s)γ−1x(t)ds � D

−γ
t x(t),

(2) limh→ 0(a∇μ

hx(t)) = limh→ 0(a∇μ

hx(t)) = D
m(aD

−(m−μ)
t x(t)) �a D

μ
t x(t),

(3) limh→ 0(
C
a∇μ

h
x(t)) = limh→ 0(

C
a∇μ

h
x(t)) = Dm(aD

−(m−μ)
t x(t)) �C

a D
μ
t x(t).

4. Some Basic Properties

We sometimes only list some basic results here, for more detailed results and their proofs can
been seen in monographer [23].

Theorem 4.1. Assume that the following function is well defined; then

(1) ∇ht
γ

h
= γtγ−1

h
, Δht

(γ)
h

= γt(γ−1)
h

,

(2) (t + γh)tγ
h
= tγ+1

h
, (t − γh)t(γ)

h
= t(γ+1)

h
, γ ∈ R,
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(3) If 0 < γ < 1, then tαγh ≤ (tαh)
γ , t(αγ)h ≥ (t(α)h )γ ,

(4) tα+β
h

= (t + β)αht
β

h
, t(α+β)

h
= (t − β)(α)

h
t
(β)
h
,

(5) Let 0 < t ≤ r, if γ > 0, then tγ
h
≤ rγ

h
, t

(γ)
h

≤ rγ
h
; If γ < 0, then tγ

h
≥ rγ

h
, t

(γ)
h

≥ rγ
h
.

Theorem 4.2. Let 0 ≤ m−1 < γ ≤ m,m ∈N, where x(t) is defined inNh,a = {a, a+h, a+2h, . . .},
then

(1) a∇−γ
h
x(t) = aΔ

−γ
h
x(t + γh), t ∈Nh,a,

(2) a∇γx(t) = aΔγx(t − γh), t ∈Nh,m+a.

Theorem 4.3. Let 0 ≤ m − 1 < γ ≤ m, m ∈N, x(t) is defined inNh,a = {a, a + h, a + 2h, . . .}, then
(1) aΔ

−γ
h
x(t) = a∇−γ

h
x(t − γh), t ∈Nh,a+γ ,

(2) aΔ
γ

h
x(t) = a∇γ

h
x(t + γh), t ∈Nh,a−γ+m.

Theorem 4.4. For any real γ , the following equality holds:

(1) a∇−γ
h ∇hx(t) = ∇h(a∇−γ

h )x(t) − ((t − a − 1)γ−1h /Γ(γ))x(a − h),
(2) aΔ

−γ
h
Δhx(t) = Δh(aΔ

−γ
h
)x(t) − ((t − a)(γ−1)

h
/Γ(γ))x(a).

Theorem 4.5. For any real γ and p > 0, the following equality holds:

(1) a∇−γ
h
∇p

h
x(t) = ∇p

h
(a∇−γ

h
x(t)) −∑p−1

k=0((t − a + 1)γ−p+k
h

/Γ(γ + k − p + 1))∇k
h
x(a − h),

(2) aΔ
−γ
h Δp

hx(t) = Δp

h(aΔ
−γ
h x(t)) −

∑p−1
k=0((t − a)

(γ−p+k)
h /Γ(γ + k − p + 1))Δk

hx(a).

Theorem 4.6. Let p, γ > 0, then

(1) ∇p

h(a∇
−γ
h x(t)) = a∇−(γ−p)

h x(t),

(2) Δp

h
(aΔ

−γ
h
x(t)) = aΔ

−(γ−p)
h

x(t).

In the previous theorems, we only need to consider the simplest case h = 1, but actually
the methods of proof and conclusions can also be extended for general step h > 0. In fact, we
only need do a stretching transformation and then make use of Theorem 2.9.

Next, we discusses fractional sum transform such as: Z transform, N transform, R
transform, and some properties of these transforms.

Definition 4.7. Let f(t) be defined inN0 = {0, 1, 2, . . .}, we call

f(t) =
∞∑

t=0

f(t)z−t (4.1)

is a Z transform of f(t), denote it by Z[f(t)].

Definition 4.8. Let f(t) be defined inNt0 = {t0, t0+1, t0+2, . . .}, t0 ∈ R, and defineN transform
as follows:

Nt0

(
f(t)
)
(s) =

∞∑

t=t0

(1 − s)t−1f(t). (4.2)

If the domain of the function f(t) isN1, then we use the notationN(f(t)).
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If we set t − t0 = n ∈N0, define

f
{t0}
n = f(n + t0) = f(t), f

{t0}
n−1 = f(n − 1 + t0) = f(t − 1), . . . ,

f
{t0}
0 = f(0 + t0) = f(t0).

(4.3)

Then, f(t0), f(t0 + 1), . . . , f(t), . . . can be regarded as a sequence

f
{t0}
0 , f

{t0}
1 , . . . f

{t0}
n , . . . . (4.4)

Under this definition,N transform can be simply rewritten as

N0
(
f(t)
)
(s) =

∞∑

t=t0

(1 − s)t−1f(s)

=
∞∑

n=0
(1 − s)n+t0−1f(n + t0)

= (1 − s)t0−1
∞∑

n=0
(1 − s)nf{t0}

n .

(4.5)

Set z = 1/(1 − s), then we have

N0
(
f(t)
)
(s) = z1−t0

∞∑

n=0

f
{t0}
n z−n = z1−t0F(z), (4.6)

where F(z) is Z transform of sequence f{t0}
n .

If t0 = 1, then

N
(
f(t)
)
= F(z),

(
z =

1
1 − s

)
. (4.7)

Theorem 4.9. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

(1) N(t
γ−1
)(s) = Γ(γ)/sγ , |1 − s| < 1,

(2) N(t
γ−1
α−t)(s) = αγ−1Γ(γ)/(s + α − 1)γ , |1 − s| < α.

Proof. (1) Making use of (4.7), we get

N

(
tγ−1

Γ
(
γ
)

)

= F(z), (4.8)
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where F(z) is Z transform of sequence f{1}
n = f(n + 1),

f
{1}
n = f(n + 1) =

(n + 1)γ−1

Γ
(
γ
) =

[
γ
n

]
. (4.9)

Since (see [21–23])

F

([
γ
n

])
=
(
z − 1
z

)−γ
=

1
sγ
, (|z| > 1, |1 − s| < 1), (4.10)

hence

N

(
tγ−1

Γ
(
γ
)

)

=
1
sγ
, (|1 − s| < 1). (4.11)

(2) It is only to use

∞∑

t=1

(1 − s)t−1tγ−1α−t = 1
α

∞∑

t=1

(
1 − s + α − 1

α

)t−1
tγ−1, (4.12)

then the proof of (2) follows from the proof of (1).

Theorem 4.10. Let f(t) and g(t) be defined inNa, and define convolution of f(t), g(t) as follows:

(
h ∗ g)a(t) =

t∑

s=a
h
(
t − ρ(s))g(s). (4.13)

For h(t) = tγ−1/Γ(γ), then

(
h ∗ g)a(t) =

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s))γ−1g(s) = a∇−γg(t). (4.14)

Theorem 4.11. Let f , g be defined inNa, then

Na

(
f ∗ g) =N1

(
f
)
Na

(
g
)
. (4.15)

Theorem 4.12. For any real γ , one has

Na

(
a∇−γf(t)

)
= s−γNa

(
f(t)
)
. (4.16)

Theorem 4.13. For 0 < γ ≤ 1, one has

Na+1
(
a∇−γf(t)

)
= sγNa

(
f(t)
)
(s) − (1 − s)α−1f(a), (4.17)

where f is defined inNa.
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Theorem 4.14. Let μ ∈ R \ {. . . ,−2,−1, 0}, γ > 0, then

1∇−γ
(

tμ

Γ
(
μ + 1

)

)

=
tμ+γ

Γ
(
μ + γ + 1

) . (4.18)

Theorem 4.15. Let f be a real function, μ, γ > 0, then

a∇−γ[
a∇−μf(t)

]
= a∇−(μ+γ)f(t) = a∇−μ[

a∇−γf(t)
]
. (4.19)

Definition 4.16. Let f(t) be defined inNt0 , and define R transform as follows:

Rt0

(
f(t)
)
=

∞∑

t=t0

(
1

s + 1

)t+1
f(t). (4.20)

In Definition 4.16, if we set t − t0 = n ∈N0, and define:

f
{t0}
n = f(n + t0) = f(t), f

{t0}
n−1 = f(n − 1 + t0) = f(t − 1), . . . ,

f
{t0}
0 = f(0 + t0) = f(t0),

(4.21)

then, f(t0), f(t0 + 1), . . . , f(t), . . . can be regarded as a sequence

f
{t0}
0 , f

{t0}
1 , . . . f

{t0}
n , . . . . (4.22)

Under this definition, R transform can be simply rewritten as

Rt0

(
f(t)
)
(s) =

∞∑

t=t0

(
1

s + 1

)t+1
f(t)

=
∞∑

n=0

(
1

s + 1

)n+t0+1
f(n + t0)

=
(

1
s + 1

)t0+1 ∞∑

n=0

(
1

1 + s

)n
f
{t0}
n .

(4.23)

Set z = 1 + s, then

Rt0

(
f(t)
)
(s) = z−1−t0

∞∑

n=0

f
{t0}
n z−n = z−1−t0F(z), (4.24)

where F(z) is a Z transform of sequence f{t0}
n .
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Theorem 4.17. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

(1) Rγ−1(t(γ−1))(s) = Γ(γ)/sγ ,

(2) Rγ−1(t(γ−1)αt)(s) = αγ−1Γ(γ)/(s + 1 − α)γ .

Proof. (1) let t0 = γ − 1, then

Rγ−1

(
t(γ−1)

Γ
(
γ
)

)

= z−γF(z), (4.25)

where F(z) is a Z transform of sequence f{γ−1}
n . Since

f
{γ−1}
n = f

(
n + γ − 1

)
=

(
n + γ − 1

)(γ−1)

Γ
(
γ
) =

[
γ
n

]
, (4.26)

and (see [22, 23])

F

([
γ
n

])
=
(
z − 1
z

)−γ
, (4.27)

hence

Rγ−1

(
t(γ−1)

Γ
(
γ
)

)

= (z − 1)−γ = s−γ , (|1 + s| < 1), (4.28)

or

Rγ−1

(
t(γ−1)

Γ
(
γ
)

)

=
1
sγ
, (|1 + s| < 1). (4.29)

(2) The proof of (2) follows from the proof of (1).

Definition 4.18. Define convolution of h(t) and g(t) as follows:

(
h ∗ g)(t) =

t−γ∑

s=a
h(t − σ(s))g(s). (4.30)

If h(t) = t(γ−1)/Γ(γ), then

(
h ∗ g)a(t) =

1
Γ
(
γ
)
t−γ∑

s=a

(
t − ρ(s))(γ−1)g(s) = aΔ−γg(t). (4.31)
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Theorem 4.19. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

Rγ+a
(
h ∗ g) = Rγ−1(h)Ra

(
g
)
. (4.32)

Theorem 4.20. Let μ > 0, m − 1 < μ ≤ m ∈N1, and let f(t) be defined inNμ−m = {μ −m,μ −m +
1, . . .}, then

R0
(
Δμf(t)

)
(s) = sμRμ−m

(
f(t)
)
(s) −

m−1∑

k=0

sm−k−1Δk−m+μf(t)

∣
∣
∣
∣
∣
t=0

. (4.33)

Theorem 4.21. Let μ ∈ R \ {. . . ,−2,−1, 0}, γ > 0, then

Δ−γ
(

t(μ)

Γ
(
μ + 1

)

)

=
t(μ+γ)

Γ
(
μ + γ + 1

) . (4.34)

Theorem 4.22. Let f be a real function, μ, γ > 0, then for all t = μ + γ mod (1), one has

Δ−γ[Δ−μf(t)
]
= Δ−(μ+γ)f(t) = Δ−μ[Δ−γf(t)

]
. (4.35)

5. The Solution of the Fractional Difference Equations with
Real Variable

In this section, we give examples to demonstrate the solving method of fractional difference
equations and reveal the inner relationship between fractional differential equations and
fractional differential equations.

Theorem 5.1. Let μ ∈ R, γ ∈ R, then

(1) ∇γ tμ = μ(γ)tμ−γ , Δγ t(μ) = μ(γ)t(μ−γ),

(2) Δγ tμ = μ(γ)(t + γ)μ−γ , ∇γ t(μ) = μ(γ)(t − γ)(μ−γ).

Proof. (1) The proof of (1) directly follows from Theorem 4.1 and Theorem 4.2.
(2) By Theorem 4.2 and (1), we have

Δγ tμ = ∇γ(t + γ
)μ = μ(γ)(t + γ

)μ−γ
,

∇γ t(μ) = Δγ(t − γ)(μ) = μ(γ)(t − γ)(μ−γ).
(5.1)

Example 5.2. Consider Euler type fractional difference equations

t2αΔ2αx(t) + atαΔαx(t) + bx(t) = 0, (0 < α < 1). (5.2)
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Set x(t) = tγ , and take it into previous equation, we get

t2αγ (2α)(t + 2α)γ−2α + atαγ (α)(t + α)γ−α + btγ = 0. (5.3)

By Theorem 4.1 (4), we obtain

γ (2α)tγ + aγ (α)tγ + btγ = 0, (5.4)

and get indicator equation

γ (2α) + aγ (α) + b = 0. (5.5)

Therefore, we can transform Euler type fractional difference equations into its indicator equa-
tion.

Example 5.3. Consider initial value problem of homogeneous linear γ order (0 < γ ≤ 1)
fractional difference equation with constant coefficient

∇γy(t) + a∇0y(t) = 0, t ∈N0,

∇γ−1(t)
∣∣∣
t=−1

= a0.
(5.6)

Note that ∇γ−1y(t) is defined inN−1 = {−1, 0, 1, 2, . . .}, since

−1∇γ−1f(t)
∣∣∣
t=−1

=
1

Γ
(
1 − γ)

t∑

s=−1

(
t − ρ(s))−γy(s)

=
1−γ

Γ
(
1 − γ)y(−1) = y(−1).

(5.7)

Therefore, initial problem of (5.6) is equivalent to initial problem

∇γy(t) + a∇0y(t) = 0, t ∈N,

y(−1) = a0.
(5.8)

The solution of initial problem of (5.6) is equivalent to the solution of sum equations

y(t) =
(t + 1)γ−1

Γ
(
γ
) a0 + a

t∑

s=0

(
t − ρ(s))γ−1y(s). (5.9)
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We use approximation method to solve these sum equations. Set

y0(t) =
(t + 1)γ−1

Γ
(
γ
) a0,

ym(t) = y0(t) +
a

Γ
(
γ
)

t∑

s=0

(
t − ρ(s))γ−1ym−1(s)

= y0(t) + a∇−γym−1(t), m = 1, 2, . . . .

(5.10)

Applying power law (Theorem 4.22), we get

y1(t) = y0(t) + a∇−γy0(t) = a0

(
(t + 1)γ−1

Γ
(
γ
) + a

(t + 1)2γ−1

Γ
(
2γ
)

)

. (5.11)

Applying power law repeatedly, and by recursion, we obtain

ym(t) = a0
m∑

i=0

aitiγ+γ−1

Γ
(
(i + 1)γ

) , m = 0, 1, 2, . . . . (5.12)

Letm → ∞, then

y(t) = a0
∞∑

i=0

ai(t + 1)iγ+γ−1

Γ
(
(i + 1)γ

) = a0
∞∑

i=0

ai
[
iγ + γ
t

]
. (5.13)

Example 5.4. Let γ = 1/q, q ∈N, we call

∇γy(t) − a∇0y(t) = 0, t ∈N0, (5.14)

the fractional difference equation of order (1, q).

In order to solve this equation, we need to introduce some special functions.

Definition 5.5. Define function

Λ
(
t, γ, λ

)
= a∇−γλt, γ ∈ R, (5.15)

where t = a mod (1). Sometimes denote it Λ(γ, λ) or Λ(t, γ, λ;a).

In view of Theorems 4.2 and 4.3, we can establish the following theorem.

Theorem 5.6. Assume the following function is well defined; then

(1) Λ(t, γ, λ) = (1 − 1/λ)Λ(t, γ + 1, λ) + (t − a + 1)γ/Γ(γ + 1),

(2) ∇Λ(t, γ + 1, λ) = Λ(t, γ, λ),

(3) ∇pΛ(t, γ + t, λ) = Λ(t, γ, λ), where p = 0, 1, 2, . . .,
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(4) ∇μΛ(t, γ, λ) = Λ(t, γ − μ, λ), where p − 1 < μ ≤ p,
(5) ∇−μΛ(t, γ, λ) = Λ(t, γ + μ, λ).

Now we will use the method of undetermined coefficients to solve Example 5.4. By
Theorem 5.6, we notice that

∇γΛ(t, 0, λ) = Λ
(
t,−γ, λ),

∇γΛ
(
t,−γ, λ) = Λ

(
t,−2γ, λ),

...

∇γΛ
(
t,−(q − 2

)
γ, λ
)
= Λ
(
t,−(q − 1

)
γ, λ
)
,

∇γΛ
(
t,−(q − 1

)
γ, λ
)
= Λ(t,−1, λ) =

(
1 − 1

λ

)
Λ(t, 0, λ).

(5.16)

The significance of these applications is that if we apply the operator ∇γ to

Λ(t, 0, λ),Λ
(
t,−γ, λ), . . . ,Λ(t,−(q − 1

)
γ, λ
)
, (5.17)

then we get a cyclic permutation of the same functions. That is, no new functions are
introduced. Therefore, we will choose a linear combination of these functions as a candidate
for a solution of (5.14). Say

y(t) = b0Λ(t, 0, λ) + b1Λ
(
t,−γ, λ)

+ . . . + bq−2Λ
(
t,−(q − 2

)
γ, λ
)
+ bq−1Λ

(
t,−(q − 1

)
γ, λ
)
.

(5.18)

Then

∇γy(t) = b0Λ
(
t,−γ, λ) + b1Λ

(
t,−2γ, λ)

+ . . . + bq−2Λ
(
t,−(q − 1

)
γ, λ
)
+ bq−1

(
1 − 1

λ

)
Λ(t, 0, λ).

(5.19)

Taking y(t), ∇γy(t) into the left side of (5.14), we obtain

∇γy(t) − ay(t) =
[
bq−1

(
1 − 1

λ

)
− ab0

]
Λ(t, 0, λ)

+ (b0 − ab1)Λ
(
t,−γ, λ) + · · · + (bq−2 − abq−1

)
Λ
(
t,−(q − 1

)
γ, λ
)
.

(5.20)

In order to make the right side equate zero, set

bk = cα−k,
(
k = 1, 2, . . . , q − 1

)
. (5.21)
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Then

bk−1 − abk = c
(
α−k+1 − aα−k

)
= cα−k(α − a). (5.22)

If we let α be a root of the indicial equation

P(x) = x − a = 0, (5.23)

or α = a, then we have

bk−1 − abk = ca−kP(a) = 0
(
k = 1, 2, . . . , q − 1

)
. (5.24)

Since we also need

0 = bq−1
(
1 − 1

λ

)
− ab0 = ac

[(
1 − 1

λ

)
a−q − 1

]
, (5.25)

so let us set

(
1 − 1

λ

)
= aq, λ =

1
1 − αq . (5.26)

Since c is an arbitrary number, set c = aq−1, then

bk = aq−1−k. (5.27)

Therefore, we obtain a solution of fractional difference of order (1, q) as

y(t) =
q−1∑

k=0

bkΛ
(
t,−kγ, λ)

=
q−1∑

k=0

aq−1−kΛ
(
t,−kγ, 1

1 − aq
)

� λa(t).

(5.28)

The fractional difference equation of order (1, q) in Example 5.4 can be solved by the
method ofN0 transform. MakeN1 transform to the following equation:

∇γy(t) − a∇0y(t) = 0. (5.29)
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We have

sγN0
(
f(t)
) − (1 − s)−1f(0) + aN1

(
f(t)
)
= 0,

N1
(
f(t)
)
=

∞∑

t=1

(1 − s)t−1f(t)

=
∞∑

t=0
(1 − s)t−1f(t) − (1 − s)−1f(0).

(5.30)

Taking them into previos equation, we get

sγN0
(
f(t)
) − (1 − a)(1 − s)−1f(0) − aN0

(
f(t)
)
= 0, (5.31)

and we have

N0
(
f(t)
)
= (1 − a)y(0) 1

(1 − s)(sγ − a)

= (1 − a)y(0)
∑q−1

k=0 a
q−1−kskγ

(1 − s)(sγ − a)∑q−1
k=0 a

q−1−kskγ

= (1 − a)y(0)
∑q−1

k=0 a
q−1−kskγ

(1 − s)(s − aq) .

(5.32)

In [23], we have the following

Theorem 5.7. The following equality holds:

(1) N0(Λ(t, 0, λ)) =N0(λt) = 1/(1 − s) · 1/(1 − (1 − s)λ),
(2) N0(Λ(t,−kγ, λ)) =N0(∇kγλt) = 1/(1 − s) · skγ/(1 − (1 − s)λ) · (k = 1, 2, . . . , q − 1).

Set λ = 1/(1 − aq), then

N0Λ
(
t, 0,

1
1 − aq

)
=

1
1 − s · 1 − a

q

s − aq ,

N0Λ
(
t,−kγ, 1

1 − aq
)

=
skγ

1 − s · 1 − a
q

s − aq .
(
k = 1, 2, . . . , q − 1

)
.

(5.33)

By Theorem 5.7 and (5.33), we know that

y(t) = (1 − a)y(0)
q−1∑

k=0

aq−1−kΛ
(
t,−kγ, 1

1 − aq
)

(5.34)

is a solution of (5.14). Except a constant, the solution y(t) is the same as the solution (5.28), where

y(t) = λa(t), (5.35)

which is solved by the method of undetermined coefficients before.
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6. Relationship between the Fractional Difference Equations and
the Fractional Differential Equations

In this section, we only give an example to demonstrate the relationship between integers
order difference equations and integral order differential equation.

Let us recall the definition of fractional sum when step h = 1

a∇−γ
t f(t) =

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s))γ−1f(s), (6.1)

where t ∈Na = {a, a + 1, a + 2, . . .}. If we set

t − a = n ∈N0, s − a = r ∈N0,

f
{a}
r = f(r + a) = f(s), f

{a}
n = f(n + a) = f(t),

(6.2)

then

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s))γ−1f(s) = 1

Γ
(
γ
)
n+a∑

s=a

(
n + a − ρ(s))γ−1f(s)

=
1

Γ
(
γ
)

n∑

r=0
(n + a − (r + a + 1))γ−1f(r + a)

=
1

Γ
(
γ
)

n∑

r=0
(n − r + 1)γ−1f{a}

r = 0∇−γ
n f

{a}
n .

(6.3)

And it is easy to prove that

a∇μ
t f(t)=0∇μ

nf
{a}
n ,

(
μ > 0

)
. (6.4)

Therefore, we have the following.

Theorem 6.1. Let t ∈Na, and set t − a = n ∈N0, f
{a}
n = f(n + a) = f(t), then

a∇−γ
t f(t) = 0∇−γ

n f
{a}
n ; a∇μ

t f(t) = 0∇μ
nf

{a}
n ,

(
μ, γ > 0

)
. (6.5)

Example 6.2. (1) Set γ = 1/q, q ∈ N,n ∈ N, and solve the fractional difference equation of
order (1, q),

∇γx(n) − αx(n) = 0. (6.6)

(2) Let t ∈ R, and solve the equation

∇γx(t) − αx(t) = 0. (6.7)
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(3) Let h ∈ R+, t ∈ R, and solve the equation

∇γ

h
x(t) − αx(t) = 0. (6.8)

(4) If we let h → 0, we ask whether the limit solution of (6.8) is equivalent to that of
the following fractional differential equation? Consider

Dγx(t) − αx(t) = 0, (t ∈ R). (6.9)

Solution 1. (1) By a result in Chapter 7 of book [23], the solution of (6.6) is

x(n) = λα(n) =
q−1∑

k=0

αq−k−1Λn

[
−kγ,

(
1

1 − αq
)n]

. (6.10)

(2) Set t − t0 = n ∈N0, and define

x
{t0}
n = x(n + t0) = x(t), x

{t0}
n−1 = x(n − 1 + t0) = x(t − 1), . . . ,

x
{t0}
0 = x(0 + t0) = x(t0).

(6.11)

Hence, we can regard the following x(t0), x(t0 + 1), . . . , x(t), . . . as a sequence

x
{t0}
0 , x

{t0}
1 , . . . x

{t0}
n , . . . . (6.12)

Under this definition, (6.7) is actually equivalent to the following integer variable difference
equation:

∇γx
{t0}
n − αx{t0}

n = 0. (6.13)

By (1), we know that its solution is

x
{t0}
n =

q−1∑

k=0

αq−k−1Λn

[
−kγ,

(
1

1 − αq
)n]

=
q−1∑

k=0

αq−k−1Λ

[

t,−kγ,
(

1
1 − αq

)t]

.

(6.14)

That is

x(t) =
q−1∑

k=0

αq−k−1Λ

[

t,−kγ,
(

1
1 − αq

)t]

� λα(t). (6.15)
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(3) Set t = sh, x(t) = x(sh) = y(s), then (6.8) is equivalent to

h−γ∇γy(s) − αy(s) = 0. (6.16)

By (2), we obtain that the solution of (6.16) is

x(t) = y(s) = λαhγ (s)

=
q−1∑

k=0

(αhγ)q−k−1Λ
[
s,−kγ,

(
1

1 − (αhγ)q

)s]
.

(6.17)

Since

Λ
[
s,−kγ,

(
1

1 − (αhγ)q

)s]
= hkγΛh

[

t,−kγ,
(

1
1 − (αhγ)q

)t/h]

, (6.18)

hence we have

x(t) =
q−1∑

k=0

(αhγ)q−k−1hkγΛh

[

t,−kγ,
(

1
1 − (αhγ)q

)t/h]

. (6.19)

(4) Let h → 0, and since

(
1

1 − αqh
)t/h

−→ eα
q

,

hkγΛh

[

t,−kγ,
(

1
1 − αqh

)t/h]

= hkγ∇kγ

h

(
1

1 − αqh
)t/h

−→ Dkγeα
q

= E
(−kγ, αq).

(6.20)

We then obtain

x(t) = eα(t) =
q−1∑

k=0

αq−k−1E
(−kγ, αq), (6.21)

and this is exactly the solution of (6.9). (See Chapter 5 in monographer [2]).

Remark 6.3. If we take γ = 1/2, q = 2, then the followong occurs.
(1) The solution of (6.19) reduces to

x(t) = α

(
1

1 − α2
)t

+∇1/2
(

1
1 − α2

)t

= αF

(
t, 0,

1
1 − α2

)
+ F
(
t,−1

2
,

1
1 − α2

)
,

(6.22)

and this result is consistent with the solution (5.28) or (5.34) in Example 5.4 in Section 5.
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(2) The solution (6.21) reduces to

x(t) = αh1/2
(

1
1 − αqh

)t/h
+ h1/2∇1/2

h

(
1

1 − αqh
)t/h

= h1/2
[

α

(
1

1 − αqh
)t/h

+∇1/2
h

(
1

1 − αqh
)t/h]

.

(6.23)

Let h → 0, then
[

α

(
1

1 − αqh
)t/h

+∇1/2
h

(
1

1 − αqh
)t/h]

(6.24)

tend to

αeα
qt +D1/2eα

qt = eα(t). (6.25)

The results perfectly coincide with the monographer [2].

From Theorem 6.1, we see that if we take t as a, a+1, a+2, . . ., it is only a sequence with
step 1, but the initial time is not zero but a. If we make a translation variable transformation,
set t = n + a, n ∈ N0, then we can change the definition of fractional sum and fractional
difference with real variable into the definition of fractional sum and difference with integer
variable. But, no doubt, it will be more convenient for us to study fractional sum and
difference with integer variable.

7. Conclusion

This work reveals some results in discrete fractional calculus and fractional h-difference
equations. This study also provides a reference for researchers in this area. First, this
paper gives the definition of the fractional h-difference from the difference of integer order.
Then some integral transforms are proposed, that is, Z transform, N transform, and R
transform. These integral transforms are applied to linear fractional h-difference equations,
and approximate solutions are obtained. At last, the study explains the relationship between
the fractional difference equations and the fractional differential equations.
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An adaptive pseudospectral method is presented for solving a class of multiterm fractional
boundary value problems (FBVP) which involve Caputo-type fractional derivatives. The
multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE).
By dividing the interval of the problem to subintervals, the unknown function is approximated
using a piecewise interpolation polynomial with unknown coefficients which is based on
shifted Legendre-Gauss (ShLG) collocation points. Then the problem is reduced to a system of
algebraic equations, thus greatly simplifying the problem. Further, some additional conditions
are considered to maintain the continuity of the approximate solution and its derivatives at the
interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular
ones, integration by parts is utilized. In the method developed in this paper, the accuracy can
be improved either by increasing the number of subintervals or by increasing the degree of the
polynomial on each subinterval. Using several examples including Bagley-Torvik equation the
proposed method is shown to be efficient and accurate.

1. Introduction

Due to the development of the theory of fractional calculus and its applications, such as
in the fields of physics, Bode’s analysis of feedback amplifiers, aerodynamics and polymer
rheology, and so forth, many works on the basic theory of fractional calculus and fractional
order differential equations have been established [1–3].

In general, the analytical solutions for most of the fractional differential equations are
not readily attainable, and thus the need for finding efficient computational algorithms for
obtaining numerical solutions arises. Recently, there have been many papers dealing with
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the solutions of initial value and boundary value problems for linear and nonlinear fractional
differential equations. These methods include finite difference approximation method [4],
collocation method [5, 6], the Adomian decomposition method [7, 8], variational iteration
method [9–12], operational matrix methods [13–16], and homotopy methods [17, 18]. In
[19] suitable spline functions of polynomial form are derived and used to solve linear and
nonlinear fractional differential equations. The authors of [20] have investigated the existence
and multiplicity of positive solutions of a nonlinear fractional differential equation initial
value problem. Furthermore, some physical and geometrical interpretations of fractional
operators and fractional differential equations have been of concern to many authors
[12, 21, 22].

In the present paper, we intend to introduce an efficient adaptive pseudospectral
method for multiterm fractional boundary value problems (FBVP) of the form

F
(
x, y(x), Dα1y(x), . . . , Dαmy(x)

)
= 0, x ∈ [0, L], (1.1)

subject to

Hr

(
y(ξ0), . . . , y(l)(ξ0), . . . , y(ξl), . . . , y(l)(ξl)

)
= 0, r = 0, 1, . . . , l, (1.2)

where F can be nonlinear in general, 0 < α1 < α2 < · · · < αm, l < αm ≤ l + 1, L ∈ R, Hr are
linear functions, the points ξ0, ξ1, . . ., ξl lie in [0, L], and Dαq denotes the Caputo-fractional
derivative of order αq, defined as follows [23]:

Dαqy(x) =
1

Γ
(
nq − αq

)
∫x

0

y(nq)(t)

(x − t)αq+1−nq dt, nq =
[
αq
]
+ 1, q = 1, 2, . . . , m, (1.3)

where [αq] denotes the integer part of the real number αq. For details about the mathematical
properties of fractional derivatives, see [2].

In this method, the multi-term FBVP is first converted into a singular Volterra
integrodifferential equation (SVIDE). By dividing the interval of the problem to subintervals,
the unknown function is approximated using a piecewise interpolation polynomial with
unknown coefficients which is based on shifted Legendre-Gauss (ShLG) collocation points.
Then the problem is reduced to a system of algebraic equations using collocation. Further,
some additional conditions are considered to maintain the continuity of the approximate
solution and its first l derivatives at the interface of subintervals. The singular integrals
of SVIDE are converted into nonsingular ones by utilizing integration by parts and thus
greatly improve the accuracy and convergence rate of the approximate solution. The main
characteristics of the method are that it converts the FBVP into a system of algebraic equations
which greatly simplifies it. In addition, in the method developed in this paper, the accuracy
can be improved either by increasing the number of subintervals or by increasing the degree
of the polynomial on each subinterval. The present adaptive pseudospectral method can be
implemented for FBVPs defined in large domains. Moreover, this new algorithm also works
well even for some solutions having oscillatory behavior. Numerical examples including
Bagley-Torvik equation subject to boundary conditions are also presented to illustrate the
accuracy of the present scheme. Finally, in order to have a physical understanding of
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fractional differential equations, the derivation of Bagley-Torvik equation is given in the
appendix.

The outline of this paper is as follows. In Section 2, some basic properties of Legendre
and shifted Legendre polynomials, which are required for our subsequent development,
are first presented. Piecewise polynomials interpolation based on ShLG points and its
convergence properties are then investigated, and finally the adaptive pseudospectral
method for FBVPs is explained. Section 3 is devoted to some numerical examples. In Section 4,
a brief conclusion is given. The appendix is given which consists of the derivation of Bagley-
Torvik equation.

2. The Adaptive Pseudospectral Method for FBVPs

In this section we drive the adaptive pseudospectral method based on ShLG collocation
points and apply it to solve the nonlinear multi-term FBVP (1.1)-(1.2).

2.1. Review of Legendre and Shifted Legendre Polynomials

The Legendre polynomials, Pi(z), i = 0, 1, 2, . . ., are the eigenfunctions of the singular Sturm-
Liouville problem

[(
1 − z2

)
P ′
i (z)

]′
+ i(i + 1)Pi(z) = 0. (2.1)

Also, they are orthogonal with respect to L2 inner product on the interval [−1, 1] with the
weight function w(z) = 1, that is,

∫1

−1
Pi(z)Pj(z)dz =

2
2i + 1

δij , (2.2)

where δij is the Kronecker delta. The Legendre polynomials satisfy the recursion relation

Pi+1(z) =
2i + 1
i + 1

zPi(z) − i

i + 1
Pi−1(z), (2.3)

where P0(z) = 1 and P1(z) = z. If Pi(z) is normalized so that Pi(1) = 1, then, for any i, the
Legendre polynomials in terms of power of z are

Pi(z) =
1
2i

[i/2]∑

k=0

(−1)k
(
i
k

)(
2i − 2k

i

)
zi−2k, (2.4)

where [i/2] denotes the integer part of i/2.
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The Legendre-Gauss (LG) collocation points −1 < z1 < z2 < · · · < zN−1 < 1 are the roots
of PN−1(z). No explicit formulas are known for the LG points; however, they are computed
numerically using existing subroutines. The LG points have the property that

∫1

−1
p(z)dz =

N−1∑

j=1

wjp
(
zj
)
, (2.5)

is exact for polynomials of degree at most 2N − 3, where

wj =
2

(
1 − z2

j

)[
P ′
N−1

(
zj
)]2

, j = 1, 2, . . . ,N − 1, (2.6)

are LG quadrature weights. For more details about Legendre polynomials, see [24].
The shifted Legendre polynomials on the interval x ∈ [a, b] are defined by

P̂i(x) = Pi
(

1
b − a (2x − a − b)

)
, i = 0, 1, 2, . . . , (2.7)

which are obtained by an affine transformation from the Legendre polynomials. The set
of shifted Legendre polynomials is a complete L2[a, b]-orthogonal system with the weight
function w(x) = 1. Thus, any function f ∈ L2[a, b] can be expanded in terms of shifted
Legendre polynomials.

The ShLG collocation points a < x1 < x2 < · · · < xN−1 < b on the interval [a, b] are
obtained by shifting the LG points, zj , using the transformation

xj =
1
2
(
(b − a)zj + a + b

)
, j = 1, 2, . . . ,N − 1. (2.8)

Thanks to the property of the standard LG quadrature, it follows that for any polynomial p
of degree at most 2N − 3 on (a, b),

∫b

a

p(x)dx =
b − a

2

∫1

−1
p

(
1
2
[(b − a)z + a + b]

)
dz

=
b − a

2

N−1∑

j=1

wjp

(
1
2
[
(b − a)zj + a + b

]
)

=
N−1∑

j=1

ŵjp
(
xj
)
,

(2.9)

where ŵj = ((b − a)/2)wj , 1 � j � N − 1 are ShLG quadrature weights.

2.2. Function Approximation

Suppose that the interval [0, L] is divided into K subintervals Ik = [(k − 1)h, kh], k =
1, 2, . . . , K, where h = L/K. Let yk(x) be the solution of the problem in (1.1)-(1.2) in the
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subinterval Ik. Consider now the ShLG collocation points (k − 1)h < xk1 < · · · < xk,N−1 < kh
on the kth subinterval Ik, k = 1, 2, . . . , K, obtained using (2.8). Obviously,

xkj =
h

2
(
zj + 2k − 1

)
, j = 1, 2, . . . ,N − 1. (2.10)

Also, consider two additional noncollocated points xk0 = (k − 1)h and xkN = kh. Let us define

�kN = Span{Lk0(x), Lk1(x), . . . , LkN(x)}, x ∈ Ik, (2.11)

where

Lki(x) =
N∏

l=0,l /= i

x − xkl
xki − xkl , i = 0, 1, . . . ,N, (2.12)

is a basis of Lagrange interpolating polynomials on the subinterval Ik that satisfy Lki(xkj) =
δij , where δij is the Kronecker delta function. The L2(Ik)-orthogonal projection IN : L2(Ik) →
�kN is a mapping in a way that for any yk ∈ L2(Ik)

〈
IN
(
yk
) − yk, φk

〉
= 0, ∀φk ∈ �kN, (2.13)

or equivalently

IN
(
yk
)
(x) =

N∑

i=0

ykiLki(x), x ∈ Ik, (2.14)

where yki = yk(xki).
Here, it can be easily seen that for i = 0, 1, . . . ,N and k = 1, 2, . . . , K, we have

Lki(x) = L1i(x − xk0), x ∈ Ik. (2.15)

Thus, by utilizing (2.15) for (2.14), the approximation of yk(x) within each subinterval Ik can
be restated as

yk(x) ≈ IN
(
yk
)
(x) =

N∑

i=0

ykiL1i(x − xk0) = Y
T

k · Lk(x), x ∈ Ik, (2.16)

where Yk and Lk(x) are (N + 1) × 1 matrices given by Yk = [yk0, . . . , ykN]T and Lk(x) =
[L10(x − xk0), . . . , L1N(x − xk0)]

T

. It is important to observe that the series (2.16) includes the
Lagrange polynomials associated with the noncollocated points xk0 = (k − 1)h and xkN = kh.
Moreover, it is seen from (2.15)-(2.16) that, in the present adaptive scheme, it is only needed
to produce the basis of Lagrange polynomials L1i(x) at the first subinterval.
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By nm + 1 times (nm is defined in (1.3)) differentiating of (2.16), we obtain

y
(r)
k (x) ≈ Y T

k · L(r)
k (x), x ∈ Ik, (2.17)

where L(r)
k
(x) = (dr/dxr)Lk(x).

2.3. Convergence Rate

For N � 1 we introduce the piecewise polynomials space

ΨN
Ik

=
{
y ∈ C0([0, L]) : yk = y|Ik ∈ PN(Ik)

}
, (2.18)

which is the space of the continuous functions over [0, L] whose restrictions on each
subinterval Ik are polynomials of degree � N. Then, for any continuous function y in
[0, L], the piecewise interpolation polynomial ψN(y) coincides on each subinterval Ik with
the interpolating polynomial IN(y) of yk = y|Ik at the ShLG points.

In [25], with the aid of the formulas (5.4.33), (5.4.34) of [24], we prove the convergence
properties of piecewise interpolation polynomial based on shifted Legendre-Gauss-Radau
points in the norms of the Sobolev spaces. Accordingly, the following results for the
convergence based on ShLG points hold.

Theorem 2.1. Suppose that y ∈ Hv(0, L) with v � 1. Then

∥∥y − ψN
(
y
)∥∥

L2(0,L) � cN−v∣∣y
∣∣
H0;v;N;h(0,L), (2.19)

and, for 1 � u � v, if h � 1, then

∥∥y − ψN(y)
∥∥
Hu(0,L) � cN2u−(1/2)−v∣∣y

∣∣
Hu;v;N;h(0,L), (2.20)

and if h > 1, then

∥∥y − ψN(y)
∥∥
Hu(0,L) � cN2u−(1/2)−v∣∣y

∣∣
H0;v;N;h(0,L). (2.21)

Note that c denotes a positive constant that depends on v, but which is independent of
the function y and integer N. Moreover, we introduce the seminorm of Hv(0, L), 0 � u � v,
N � 0, h > 0, as

∣∣y
∣∣
Hu;v;N;h(0,L) =

⎛

⎝
v∑

l=min{v,N+1}
h2l−2u

∥∥∥y(l)
∥∥∥

2

L2(0,L)

⎞

⎠

1/2

. (2.22)

Remark 2.2. Whenever N � v − 1, using (2.19)–(2.22), we get

∥∥y − ψN(y)
∥∥
L2(0,L) � cN−vhv

∥∥∥y(v)
∥∥∥
L2(0,L)

, (2.23)
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and, for u � 1, if h � 1, then

∥
∥y − ψN(y)

∥
∥
Hu(0,L) � cN2u−(1/2)−vhv−u

∥
∥
∥y(v)

∥
∥
∥
L2(0,L)

, (2.24)

and if h > 1, then

∥
∥y − ψN(y)

∥
∥
Hu(0,L) � cN2u−(1/2)−vhv

∥
∥
∥y(v)

∥
∥
∥
L2(0,L)

. (2.25)

Equations (2.23)–(2.25) show that if y is infinitely smooth on [0, L] and h � 1, the
convergence rate of ψN(y) to y is faster than h to the power of N + 1 − u and any power
of 1/N, which is superior to that for the global collocation method over [0, L]. Thus, the
bigger the subinterval length the slower the convergence rate.

2.4. Problem Replacement and the Solution Technique

Consider the multi-term FBVP in (1.1)-(1.2). With substituting the definition of the Caputo-
derivative (1.3) into (1.1), we can convert (1.1) into an equivalent SVIDE as

F

(

x, y(x),
1

Γ(n1 − α1)

∫x

0

y(n1)(t)

(x − t)α1+1−n1
dt, . . . ,

1
Γ(nm − αm)

∫x

0

y(nm)(t)

(x − t)αm+1−nm dt

)

= 0.

(2.26)

The problem is to find y(x), x ∈ [0, L], satisfying (2.26) and (1.2).
The generally nonlinear SVIDE in (2.26) is given in subinterval Ik, k = 1, 2, . . . , K as

follows:

F

⎛

⎝x, yk(x),
1

Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s(x) +
∫x

(k−1)h

y
(n1)
k (t)

(x − t)α1+1−n1 dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s(x) +
∫x

(k−1)h

y
(nm)
k (t)

(x − t)αm+1−nm dt

⎤

⎦

⎞

⎠ = 0,

(2.27)

where x ∈ Ik and

Λαq,s(x) =
∫ sh

(s−1)h

y
(nq)
s (t)

(x − t)αq+1−nq dt, q = 1, 2, . . . , m; s = 1, 2, . . . , k − 1. (2.28)

It is important to note that, at the first subinterval, the summations in (2.27) are automatically
discarded. For approximating the functions Λαq,s(x), q = 1, . . . , m; s = 1, . . . , k − 1, with the
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aid of (2.17) and the Gaussian integration formula in the subinterval Is, given by (2.9), we
obtain

Λαq,s(x) 	
h

2

N−1∑

j=1

wj

Y
T

s · L(nq)
s

(
xsj

)

(
x − xsj

)αq+1−nq , (2.29)

where the ShLG collocation points xsj on the subinterval Is are defined by (2.10).
From (2.27), (2.16), and (2.17), for k = 1, 2, . . . , K we have

F

⎛

⎝x, Y
T

k · Lk(x), 1
Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s(x) +
∫x

xk0

Y
T

k · L(n1)
k (t)

(x − t)α1+1−n1
dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s(x) +
∫x

xk0

Y
T

k
· L(nm)

k (t)

(x − t)αm+1−nm dt

⎤

⎦

⎞

⎠ = 0, x ∈ Ik.

(2.30)

We now collocate (2.30) at collocation points xkj , k = 1, 2, . . . , K and j = 1, . . . ,N − l as

F

⎛

⎝xkj , Y
T

k · Lk
(
xkj

)
,

1
Γ(n1 − α1)

⎡

⎣
k−1∑

s=1

Λα1,s

(
xkj

)
+
∫xkj

xk0

Y
T

k · L(n1)
k (t)

(
xkj − t

)α1+1−n1
dt

⎤

⎦

, . . . ,
1

Γ(nm − αm)

⎡

⎣
k−1∑

s=1

Λαm,s

(
xkj

)
+
∫xkj

xk0

Y
T

k · L(nm)
k (t)

(
xkj − t

)αm+1−nm dt

⎤

⎦

⎞

⎠ = 0.

(2.31)

The integrals involved in (2.31) are singular. In order to convert them into nonsingular
integrals, using integration by parts and with the aid of (2.10) we obtain

F

⎛

⎝xkj , ykj ,
1

Γ(n1 − α1)

×
⎡

⎣
k−1∑

s=1

Λα1,s

(
xkj

)
+

1
n1 − α1

⎛

⎝xn1−α1
1j Y

T

k · L(n1)
k (xk0) +

∫xkj

xk0

Y
T

k · L(n1+1)
k (t)

(
xkj − t

)α1−n1
dt

⎞

⎠

⎤

⎦,

. . . ,
1

Γ(nm − αm)

×
⎡

⎣
k−1∑

s=1

Λαm,s

(
xkj

)
+

1
nm − αm

⎛

⎝xnm−αm1j Y
T

k · L(nm)
k (xk0) +

∫xkj

xk0

Y
T

k · L(nm+1)
k (t)

(
xkj − t

)αm−nm dt

⎞

⎠

⎤

⎦

⎞

⎠ = 0.

(2.32)
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In order to use the Gaussian integration formula in the subinterval Ik for (2.32), we transfer
the t-interval [xk0, xkj] into the τ-interval Ik by means of the transformation τ = (h/x1j) (t −
xk0) + xk0. Using this transformation, the Gaussian integration formula and (2.10), we have

∫xkj

xk0

Y
T

k
· L(nq+1)

k (t)
(
xkj − t

)αq−nq dt =
x1j

h

∫xkN

xk0

Y
T

k
· L(nq+1)

k

((
x1j/h

)
(τ − xk0) + xk0

)

(
x1j − (x1j/h)(τ − xk0)

)αq−nq dτ

	 x1j

2

N−1∑

p=1

wp

Y
T

k
· L(nq+1)

k

((
x1jx1p/h

)
+ xk0

)

(
x1j − (x1j x1p/h)

)αq−nq := Gq

(
x1j

)
.

(2.33)

By (2.33), (2.32) may be approximated as

F

(

xkj , ykj ,
1

Γ(n1 − α1)

[
k−1∑

s=1

Λα1,s

(
xkj

)
+

1
n1 − α1

(
xn1−α1

1j Y
T

k · L(n1)
k (xk0) +G1

(
x1j

))
]

, . . . ,
1

Γ(nm − αm)

[
k−1∑

s=1

Λαm,s

(
xkj

)
+

1
nm − αm

(
xnm−αm1j Y

T

k · L(nm)
k (xk0) +Gm

(
x1j

))
])

= 0.

(2.34)

In addition, substituting (2.16) and (2.17) into the boundary conditions (1.2) yields

Hr

(
Y

T

ρ0
· Lρ0(ξ0), . . . , Y

T

ρ0
· L(l)

ρ0 (ξ0), . . . , Y
T

ρl · Lρl(ξl), . . . , Y
T

ρl · L
(l)
ρl (ξl)

)
= 0, r = 0, 1, . . . , l,

(2.35)

where ξr ∈ Iρr . Besides, it is required that the approximate solution and its first l derivatives
be continuous at the interface of subintervals, that is,

Y
T

k · L(r)
k (xkN) = Y

T

k+1 · L
(r)
k+1(xk+1,0), k = 1, 2, . . . , K − 1, r = 0, 1, . . . , l. (2.36)

Equation (2.34) for k = 1, . . . , K, j = 1, . . . ,N − l together with (2.35)-(2.36) gives a
system of equations with K(N + 1) set of algebraic equations, which can be solved to find the
unknowns of the vectors Yk, k = 1, 2, . . . , K. Consequently, the unknown functions y(x)|

Ik
	

yk(x) given in (2.16) can be calculated.

3. Numerical Examples

In this section we give the computational results of numerical experiments with the method
based on preceding sections to support our theoretical discussion.
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Example 3.1. In this example, we consider the Bagley-Torvik equation [26]

Ay′′(x) + BDαy(x) + Cy(x) = f(x), x ∈ [0, L], (3.1)

with boundary conditions

y(0) = c0, y(L) = c1, (3.2)

where A,B,C ∈ R and A/= 0. Bagley-Torvik equation involving fractional derivative of order
1/2 or 3/2 arises in the modeling of the motion of a rigid plate in a Newtonian fluid and a
gas in a fluid. Since the Bagley-Torvik equation is a prototype fractional differential equation
with two derivatives and represents a general form of the fractional problems, its solution can
give many ideas about the solution of similar problems in fractional differential equations.
Podlubny [2] has investigated the solution of Bagley-Torvik equation (3.1) and for α = 3/2
gave the analytical solution with homogeneous initial conditions by using Green’s function,
as follows:

y(x) =
∫x

0
G3(x − t)f(t)dt,

G3(x) =
1
A

∞∑

k=0

(−1)k

k!

(
C

A

)k

x2k+1E
(k)
1/2,2+(3k/2)

(
−B
A

√
x

)
,

E
(k)
λ,μ(z) =

dk

dzk
Eλ,μ(z) =

∞∑

j=0

(
j + k

)
!zj

j!Γ
(
λj + λk + μ

) , k = 0, 1, 2, . . . ,

(3.3)

where Eλ,μ is the Mittag-Leffler function in two parameters and the G3 three-term Green’s
function. However, in practice, these equations can not be evaluated easily for different
functions f(x). Several other authors have proposed different techniques for the solution
of this equation. A review of the solution techniques for Bagley-Torvik equation can be found
in [27].

Here, we solve (3.1) with two-point boundary conditions (3.2) by using the adaptive
pseudospectral method. For comparison purposes and in order to demonstrate the efficiency
of our method, we investigate the following cases. Further, for completeness, the derivation
of Bagley-Torvik equation is given in the appendix.

Case 1. In (3.1)-(3.2) set α = 3/2, A = B = C = 1, f(x) = x2 + 2 + 4
√
x/π , L = 5, c0 = 0, and

c1 = 25. It is readily verified that the exact solution of this case is y(x) = x2. Using the adaptive
pseudospectral method in Section 2 with K = 1 and N = 2, the unknowns yki, k = 1, . . . , K,
i = 0, . . . ,N in (2.16) are found to be

y10 = 0, y11 = 6.25, y12 = 5, (3.4)

which lead to the exact solution y(x) = x2. This case was solved in [6] using a collocation-
shooting method. Their computed maximum absolute error and L2 error norm were 2.00 ×
10−14 and 3.78 × 10−12, respectively, which show that our method is more efficient.
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Table 1: Maximum absolute errors for Example 3.1, Case 2.

N = 10 N = 20 N = 30 N = 40
K = 1 3.5 × 10−5 3.8 × 10−6 1.5 × 10−6 4.4 × 10−7

K = 2 6.9 × 10−6 7.1 × 10−7 2.0 × 10−7 8.4 × 10−8

Table 2: Comparison of solutions for Example 3.1, Case 3.

x GTCM [27] Present method Analytical [2]
0 0 0 0
0.1 0.03648555 0.03648741 0.03648748
0.2 0.14063472 0.14063951 0.14063962
0.3 0.30747623 0.30748449 0.30748463
0.4 0.53327129 0.53328396 0.53328411
0.5 0.81473561 0.81475679 0.81475695
0.6 1.14880581 1.14883734 1.14883742
0.7 1.53252126 1.53256541 1.53256543
0.8 1.96297499 1.96302931 1.96302925
0.9 2.43745598 2.43733391 2.43733397
1 2.95407000 2.95258388 2.95258388

Case 2. Set α = 3/2, A = B = C = 1, f(x) = (15/4)
√
x + (15/8)

√
πx + x5/2 + 1, L = 1, c0 = 1,

and c1 = 2. The exact solution of this case, which was considered in [5], is y(x) = x5/2 + 1. In
Table 1 the maximum absolute errors for different values of K and N are presented. We see
from Table 1 that, as stated in Section 2.3, the more rapid convergence rate is obtained with
smaller subinterval length.

Case 3. For comparison, the same coefficients as considered in [27] have been used here.
Set α = 3/2, A = 1, B = C = 1/2, f(x) = 8, L = 1, c0 = 0, and c1 = 2.95258388. Table 2
shows the comparison of solutions of this case by the present method (with K = 2, N = 40),
GTC method [27] and the analytical solution [2], and the good agreement of our adaptive
pseudospectral solution with analytical solution.

Case 4. Set α = 1/2, A = B = C = 1, f(x) = 8, L = 1, c0 = 0, and c1 = 3.10190571. The
numerical solutions obtained by the present method (with K = 2, N = 40), fractional finite
difference method (FDM), the Adomian decomposition method (ADM), and the variational
iteration method (VIM) from [28] are given in Table 3. The exact solution refers to the closed
form series solution given in [28]. Table 3 shows the excellent agreement of our adaptive
pseudospectral solution with the exact solution.

Example 3.2. As a multi-term equation, consider the linear multi-term FBVP described by

√
πxD5/2y(x)+ 10Γ

(
2
3

)
3
√
xD4/3y(x) + Γ

(
3
4

)
4
√
xD1/4y(x) − 40

77
y(x) = 12x + 54x2 +

8
7
x3,

y(0) = y′(0) = 0, y(1) = 1.
(3.5)
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Table 3: Comparison of solutions for Example 3.1, Case 4.

x FDM [28] ADM [28] VIM [28] Present method Exact
0 0 0 0 0 0
0.1 0.039473 0.039874 0.039874 0.03975004 0.03975003
0.2 0.157703 0.158512 0.158512 0.15703584 0.15703582
0.3 0.352402 0.353625 0.353625 0.34736999 0.34736998
0.4 0.620435 0.622083 0.622083 0.60469514 0.60469515
0.5 0.957963 0.960047 0.960047 0.92176757 0.92176764
0.6 1.360551 1.363093 1.363093 1.29045651 1.29045656
0.7 1.823267 1.826257 1.826257 1.70200794 1.70200797
0.8 2.340749 2.344224 2.344224 2.14728692 2.14728693
0.9 2.907324 2.911278 2.911278 2.61700100 2.61700101
1 3.517013 3.521462 3.521462 3.10190571 3.10190571

Table 4: Comparison of maximum absolute errors for Example 3.2.

Present method Method [13]
N = 4 N = 8 N = 16 N = 24 J Error

K = 1 6.9 × 10−4 6.4 × 10−5 4.1 × 10−6 9.9 × 10−7 4 1.5 × 10−3

K = 2 2.2 × 10−4 1.2 × 10−5 1.3 × 10−6 2.5 × 10−7 5 6.1 × 10−4

K = 3 8.1 × 10−5 4.7 × 10−6 4.0 × 10−7 9.8 × 10−8 6 1.8 × 10−4

K = 4 4.5 × 10−5 2.8 × 10−6 2.4 × 10−7 5.9 × 10−8 7 7.2 × 10−5

The exact solution to this problem is y(x) = x3. Since this problem is a third-order equation, it
can demonstrate the effect of the continuity conditions (2.36) on the approximate solution.
Table 4 compares the maximum absolute errors obtained using the present method for
different values of K and N with the errors reported in [13] using operational matrix of
fractional derivatives using B-spline functions. Note that in [13], for each value of J , the
obtained algebraic system is of order 2J+1, while in the present method the obtained algebraic
system is of order K(N + 1). It is important to see that our method provides more accurate
results with solving lower-order algebraic systems. Further, it is seen that in the present
method the accuracy can be improved either by increasing the number of subintervals or
by increasing the number of collocation points within each subinterval.

Example 3.3. Consider the nonlinear multi-term FBVP described by

y′′(x) + Γ
(

4
5

)
5
√
x6D6/5y(x) +

11
9
Γ
(

5
6

)
6
√
xD1/6y(x) − (y′(x)

)2 = 2 +
1
10
x2,

y(0) = 1, y(1) = 2.

(3.6)

The exact solution to this problem is y(x) = x2 + 1. In Table 5, we compare the maximum
absolute errors obtained using the present adaptive method for different values of K and
N with the errors reported in [13] using operational matrix of fractional derivatives using
B-spline functions.
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Table 5: Comparison of maximum absolute errors for Example 3.3.

Present method Method [13]
N = 10 N = 20 N = 30 N = 40 J Error

K = 1 1.3 × 10−6 8.9 × 10−8 2.0 × 10−8 6.7 × 10−9 4 1.2 × 10−3

K = 2 7.5 × 10−7 5.3 × 10−8 1.7 × 10−8 4.9 × 10−9 5 3.3 × 10−4

K = 3 6.5 × 10−7 4.7 × 10−8 1.4 × 10−8 3.6 × 10−9 6 8.1 × 10−5

K = 4 5.0 × 10−7 3.6 × 10−8 7.9 × 10−9 2.8 × 10−9 7 2.1 × 10−5

Table 6: Comparison of absolute errors for Example 3.4.

α x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

1.1 Present method 2.7 × 10−10 5.0 × 10−10 2.1 × 10−9 6.4 × 10−10 1.3 × 10−9

Method [16] 2.9 × 10−4 6.0 × 10−3 8.4 × 10−3 5.8 × 10−3 3.4 × 10−3

1.3 Present method 2.6 × 10−9 9.0 × 10−9 2.4 × 10−8 1.5 × 10−8 9.4 × 10−9

Method [16] 2.0 × 10−4 3.0 × 10−3 4.5 × 10−3 3.0 × 10−3 4.0 × 10−3

1.5 Present method 6.3 × 10−9 3.8 × 10−8 1.0 × 10−7 7.9 × 10−8 2.9 × 10−8

Method [16] 9.7 × 10−5 1.5 × 10−3 2.4 × 10−3 1.5 × 10−3 4.7 × 10−3

1.7 Present method 3.1 × 10−8 1.6 × 10−8 2.0 × 10−7 1.8 × 10−7 7.9 × 10−8

Method [16] 4.8 × 10−5 7.5 × 10−4 1.3 × 10−3 6.0 × 10−4 5.4 × 10−3

1.9 Present method 2.1 × 10−7 3.7 × 10−7 2.0 × 10−7 1.2 × 10−7 2.2 × 10−7

Method [16] 2.9 × 10−5 3.7 × 10−4 6.8 × 10−4 9.2 × 10−5 6.2 × 10−3

2.0 Present method 7.0 × 10−14 9.0 × 10−14 6.8 × 10−14 3.7 × 10−13 2.1 × 10−13

Method [16] 2.4 × 10−5 2.6 × 10−4 4.9 × 10−4 7.0 × 10−5 6.6 × 10−3

Example 3.4. Consider the following nonlinear FBVP:

Dαy(x) + ayn(x) = f(x), 1 < α � 2,

y(0) = c0, y(1) = c1.
(3.7)

For comparison, we choose n = 2, a = e−2π , f(x) = (105
√
π/16Γ((9/2) − α))x(7/2)−α + e−2πx7,

c0 = 0, and c1 = 1. It is readily verified that the exact solution is y(x) = x7/2. In Table 6,
the absolute errors obtained using the present adaptive pseudospectral method for K = 4
and N = 40 and different values of α are compared with the errors obtained in [16] using
Legendre wavelets, which show that the present method provides more accurate numerical
results.

Example 3.5. In this example, to show the applicability of the present method for larger
interval, we consider the nonlinear FBVP described by

Dαy(x) + y2(x) = E2
α(−xα) − Eα(−xα), 1 < α � 2,

y(0) = 1, y(10) = Eα(−10α).
(3.8)
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Figure 1: Comparison of y(x) for K = 20, N = 30 with exact solutions for Example 3.5.

Table 7: Maximum absolute errors for α = 1.75 for Example 3.5.

N = 10 N = 20 N = 30
K = 5 3.5 × 10−3 8.1 × 10−4 3.5 × 10−4

K = 10 1.7 × 10−3 3.9 × 10−4 1.8 × 10−4

K = 20 9.4 × 10−4 2.1 × 10−4 9.1 × 10−5

The exact solution of this problem is given by y(x) = Eα(−xα), where Eα(z) =
∑∞

k=0(z
k/Γ(αk+

1)) is the Mittag-Leffler function.
In Table 7, the maximum absolute errors in the interval [0, 10] for α = 1.75 and different

values ofK andN are presented, which shows the efficiency of the present method for FBVPs
in large domains. Also, the numerical results for y(x) by adaptive pseudospectral method for
K = 20, N = 30 and α = 1.25, 1.5, 1.75, 1.95, and 2 together with the exact solutions are
plotted in Figure 1, which indicates that the numerical results are in high agreement with the
exact ones. Moreover, Figure 1 demonstrates the efficiency of the present method for solutions
having oscillatory behavior. For α = 2, the exact solution is given as y(x) = cos(x). Note that
as α approaches 2, the numerical solution converges to the analytical solution; that is, in the
limit, the solution of the fractional differential equations approaches to that of the integer-
order differential equations.

Example 3.6. Finally consider the nonlinear multi-term FBVP described by

ay′′(x) + bDα2y(x) + c
(
Dα1y(x)

)2 + ey3(x) = f(x), 0 � x � 2,

y(0) = 0, y(2) =
8
3
,

(3.9)

where a, b, c, e ∈ R, 0 < α1 � 1, 1 < α2 � 2 and f(x) = 2ax + (2b/Γ(4 − α2))x3−α2 +
c((2/Γ(4 − α1))x3−α1)2 + e((1/3)x3)3. The exact solution to this problem is y(x) = (1/3)x3.
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For a = b = c = e = 1, α1 = 0.555, and α2 = 1.455 the maximum absolute errors
obtained using the adaptive pseudospectral method are given in Table 8. Also, for a = 0.1,
b = c = e = 0.5, α1 = 0.219, and α2 = 1.965 the maximum absolute errors are given in
Table 9. Again, it is seen that in the present adaptive pseudospectral method the accuracy
is improved either by increasing the number of subintervals or by increasing the number of
collocation points within each subinterval.

4. Conclusion

In this work a new adaptive pseudospectral method based on ShLG collocation points has
been proposed for solving the multi-term FBVPs. We converted the original FBVP into
a SIVDE and then reduced it to a system of algebraic equations using collocation. The
difficulty in SIVDE, due to the singularity, is overcome here by utilizing integration by
parts. By considering some additional conditions, the continuity of the approximate solution
and its first l derivatives is kept. It was also shown that the accuracy can be improved
either by increasing the number of subintervals or by increasing the number of collocation
points in subintervals. Moreover, this method is valid for large-domain calculations. The
achieved results are compared with exact solutions and with the solutions obtained by some
other numerical methods, which demonstrate the convergence, validity, and accuracy of the
proposed method.

Appendix

The Derivation of Bagley-Torvik Equation

Here, in order to give a physical understanding of fractional differential equations, the
derivation of Bagley-Torvik equation, which describes the modeling of the motion of a rigid
plate in a Newtonian fluid, is given.

Consider a half-space Newtonian viscous fluid in which certain motions are induced
by the general transverse motion of an infinite plate. The equation of motion of the half-space
fluid is the diffusion equation:

ρ
∂v(z, t)
∂t

= μ
∂2v(z, t)
∂z2

, (A.1)

where ρ is the fluid density, μ is the viscosity, and v(z, t) describes the transverse fluid velocity
as a function of z and t. Taking the Laplace transform of (A.1) and using the properties of the
Laplace transform, one obtains

ρsL[v(z, t)] − ρv(z, t = 0) = μ
∂2

∂z2
L[v(z, t)]. (A.2)

Torvik and Bagley assumed the initial velocity profile in the fluid to be zero and thus (A.2)
reduces to

ρsL[v(z, t)] = μ
∂2

∂z2
L[v(z, t)]. (A.3)
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Since the Laplace transformation is evaluated with respect to the time variable, only the
following representation for the velocity profile with respect to the depth z can be used:

v(z, t) = v(t)eλz, (A.4)

thus

L[v(z, t)] = eλzL[v(t)],

∂2

∂z2
L[v(z, t)] = λ2eλzL[v(t)].

(A.5)

With insertion of (A.5) in (A.3) the following algebraic equation for the unknown parameter
λ is obtained:

λ =

√
sρ

μ
. (A.6)

Next, the shear stress relationship of the Newtonian fluid given as

σ(z, t) = μ
∂v(z, t)
∂z

(A.7)

can be transformed into the Laplace domain using the above results:

L[σ(z, t)] = μ

√
sρ

μ
e
√

(sρ/μ)zL[v(t)] =
√
μρ

√
sL[v(z, t)]. (A.8)

Equation (A.8) can be restated as

L[σ(z, t)] =
√
μρ

s√
s
L[v(z, t)]. (A.9)

Now, the following two transforms can be identified in (A.9):

sL[v(z, t)] = L
[
∂v(z, t)
∂t

]
,

1√
s
= L

[
1

Γ(1/2)
√
t

]

.

(A.10)

With substituting (A.10) into (A.9), one obtains

L[σ(z, t)] =
√
μρL

[
1

Γ(1/2)
√
t

]

· L[v̇(z, t)]. (A.11)
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Table 8: Maximum absolute errors for a = b = c = e = 1, α1 = 0.555, α2 = 1.455 for Example 3.6.

N = 10 N = 20 N = 30
K = 1 1.4 × 10−3 1.7 × 10−4 5.0 × 10−5

K = 2 3.3 × 10−4 4.1 × 10−5 8.3 × 10−6

K = 4 2.2 × 10−5 3.0 × 10−6 9.1 × 10−7

Table 9: Maximum absolute errors for a = 0.1, b = c = e = 0.5, α1 = 0.219, α2 = 1.965 for Example 3.6.

N = 10 N = 20 N = 30
K = 1 1.9 × 10−2 1.7 × 10−3 6.6 × 10−4

K = 2 2.4 × 10−3 4.2 × 10−4 1.7 × 10−4

K = 4 3.2 × 10−4 5.8 × 10−5 2.4 × 10−5

The product of two transforms in (A.11) corresponds to the following convolution when
evaluating the inverse transformation:

σ(z, t) =
√
μρ

1
Γ(1/2)

∫ t

0

v̇(z, τ)

(t − τ)1/2
dτ =

√
μρD1/2

t v(z, t), (A.12)

which introduces a fractional derivative of degree α = 1/2 within the shear stress-velocity
relationship of a half-space Newtonian fluid.

Finally, consider a rigid plate of mass m immersed into an infinite Newtonian fluid.
The plate is held at a fixed point by means of a spring of stiffness k. It is assumed that the
motions of the spring do not influence the motion of the fluid, and that the surface A of the
plate is very large, such that the stress-velocity relationship in (A.12) is valid on both sides of
the plate. Equilibrium of all forces acting on the plate gives

my′′(t) + ky(t) + 2Aσ(z = 0, t) = 0. (A.13)

By substituting (A.12) one obtains

my′′(t) + ky(t) + 2A
√
μρD1/2

t v(z = 0, t) = 0. (A.14)

With v(z = 0, t) = y′(t), a fractional differential equation of degree α = 3/2 follows for the
displacement of a rigid plate immersed into an infinite Newtonian fluid, as follows:

my′′(t) + ky(t) + 2A
√
μρD3/2

t y(t) = 0. (A.15)
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In the paper, a class of perturbed Volterra equations of convolution type with three kernel functions
is considered. The kernel functions gα = tα−1/Γ(α), t > 0, α ∈ [1, 2], correspond to the class of
equations interpolating heat and wave equations. The results obtained generalize our previous
results from 2010.

1. Introduction

We study perturbed Volterra equations of the form

u(x, t) = u(x, 0) +
∫ t

0

[
gα(t − s) +

(
gα ∗ k

)
(t − s)]Δu(x, s)ds +

∫ t

0
b(t − s)u(x, s)ds, (1.1)

where x ∈ R
d, t > 0, gα(t) = tα−1/Γ(α), Γ is the gamma function, gα ∗ k denotes the

convolution, α ∈ [1, 2], b, k ∈ L1
loc(R+; R), and Δ is the Laplace operator.

The perturbation approach to Volterra equations of convolution type has been used
by many authors, see, for example, [1]. Such approach may be applied to more general, not
necessary convolution equations, too. Recently, perturbed Volterra equations, deterministic
and stochastic as well, have been studied for instance by Karczewska and Lizama [2].
The authors consider the class of equations with three kernel functions which satisfy some
scalar auxiliary equations. Such condition enables to construct the family of resolvent
operators admitted by the Volterra equations. In consequence, the resolvent approach to the
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considered Volterra equations can be used. Unfortunately, the resolvent approach proposed
by Karczewska and Lizama may be used to (1.1) for some particular kernel functions b, k
and gα, α ∈ (0, 1/2) for t > 1, only. Hence, in our case, the method proposed in [2] cannot be
applied for (1.1).

Motivation for the study of the fractional integro-differential equations comes
from several problems appearing in physics, biology, and/or engineering. There are
many phenomena well modeled by deterministic or stochastic fractional equations, see,
for example, [3–7]. Several results on stochastic Volterra equations, fractional as well,
particularly on the existence of strong solutions to those equations have been obtained by
one of us [8–14].

Equation (1.1) is an interesting example of using the so-called fractional calculus in the
theory of “classical” equations. Let us emphasize that (1.1) is a generalization of the equations
which interpolate the heat and wave equations [15, 16]. Two convolutions appearing in (1.1)
with the kernel functions b and k, respectively, represent some perturbation acting on the
Volterra equation of convolution type.

Fractional calculus is a generalization of ordinary differentiation and itegration to
arbitrary order [4, 17–19]. There is an increasing interest in applications of fractional calculus
in many fields of mathematics [20], mechanics [5, 21, 22], physics [23, 24], and even in biology
[6, 25]. A thorough and comprehensive survey of analytical and numerical methods used
in solving many problems with applications of fractional calculus is contained in a recent
monograph by Baleanu et al. [17].

Spectral methods belong to frequently used tools to obtain approximate solutions to
complicated problems like fluid dynamic equations, weather predictions, and many others
(see e.g., the monograph of Canuto et al. [26]). Recently, these methods have been used as a
tool for calculation of fractional derivatives and integrals [27] and to solve Volterra equations
with fractional time [28]. In general, spectral methods consist in representation of the solution
to the equation under consideration in a finite subspace whereas the exact solution belongs to
space of infinite dimension. The method presented in the present paper belongs to that class.

The paper is organized as follows. In Section 2, a general idea of Galerkin method to
integral equations is presented and approximation by the use of finite dimensional Hilbert
space is explained. Section 3 presents a system of linear equations obtained from (1.1)
by a discrete formulation enabling for numerical solutions. The detailed form of matrices
appearing in that approximation is presented for one dimensional case in Section 3.1 and
for two spatial dimension case in Section 3.2. The set of basis functions is represented
in Section 3.3 and numerical methods used to solve large-scale sparse linear systems are
discussed in Section 3.4, as well. Examples of numerical solutions to (1.1) are exhibited and
discussed in detail in Section 4, whereas error estimations for the precision of approximate
results are given in Section 5.

2. Galerkin Method

Let {φi : i = 1, 2, . . . ,∞} represent a set of orthonormal functions on the interval [0, t],
spanning a Hilbert space H.

Definition 2.1. Let f, g ∈ H. The number

〈
f(t), g(t)

〉
:=
∫ t

0
f(τ)g(τ)Θ(τ)dτ, (2.1)
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where Θ is a weight function, is called the scalar product of functions f, g on the interval [0, t].

Let us recall that two functions are orthonormal when

∀i,j
〈
φi(t), φj(t)

〉
= δij , (2.2)

where δij is the Kronecker delta.
We are looking for an approximate solution to (1.1) as an element of the subspace Hnφ ,

spanned on nφ first basic functions {φj : j = 1, 2, . . . , nφ}

unφ(x, t) =
nφ∑

j=1

cj(x)φj(t). (2.3)

For simplicity of notations, let us consider (1.1) in one spatial dimension only. Inserting (2.3)
into (1.1), one obtains

unφ(x, t) = u(x, 0) +
∫ t

0
[a(t − s) + (a ∗ k)(t − s)]Δunφ(x, s)ds

+
∫ t

0
b(t − s)unφ(x, s)ds + εnφ(x, t),

(2.4)

where function εnφ represents the approximation error function. From (2.3) and (2.4), one
gets

εnφ(x, t) =
nφ∑

j=1

cj(x)φj(t) −
∫ t

0
[a(t − s) + (a ∗ k)(t − s)]

nφ∑

j=1

d2

dx2
cj(x)φj(s)ds

−
∫ t

0
b(t − s)

nφ∑

j=1

cj(x)φj(s)ds − u(x, 0).
(2.5)

Definition 2.2. The Galerkin approximation of (1.1) is the function unφ ∈ Hnφ , such that εnφ ⊥
Hnφ , that is,

∀j=1,2,...,n

〈
εnφ(x, t), φj(t)

〉
= 0. (2.6)
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It follows from Definitions 2.2 and 2.1 and (2.5) that

0 =
∫ t

0

⎡

⎣
nφ∑

j=1

cj(x)φj(τ)

⎤

⎦φi(τ)Θ(τ)dτ −
∫ t

0
u(x, 0)φi(τ)Θ(τ)dτ

−
∫ t

0

⎡

⎣
∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]

nφ∑

j=1

d2

dx2
cj(x)φj(s)ds

⎤

⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡

⎣
∫ τ

0
b(τ − s)

nφ∑

j=1

cj(x)φj(s)ds

⎤

⎦φi(τ)Θ(τ)dτ for i = 1, 2, . . . , nφ.

(2.7)

Therefore

∫ t

0
u(x, 0)φi(τ)Θ(τ)dτ =

∫ t

0

⎡

⎣
nφ∑

j=1

cj(x)φj(τ)

⎤

⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡

⎣
∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]

nφ∑

j=1

d2

dx2
cj(x)φj(s)ds

⎤

⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡

⎣
∫ τ

0
b(τ − s)

nφ∑

j=1

cj(x)φj(s)ds

⎤

⎦φi(τ)Θ(τ)dτ, i = 1, 2, . . . , nφ.

(2.8)

Using (2.2), (2.8) can be written in an abbreviated form

gi(x) = ci(x) −
nφ∑

j=1

aij
d2

dx2
cj(x) −

nφ∑

j=1

bijcj(x), (2.9)

where

gi(x) = u(x, 0)
∫ t

0
φi(τ)Θ(τ)dτ, (2.10)

aij =
∫ t

0

[∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]φj(s)ds

]
φi(τ)Θ(τ)dτ, (2.11)

bij =
∫ t

0

[∫ τ

0
b(τ − s)φj(s)ds

]
φi(τ)Θ(τ)dτ. (2.12)

In general aij /=aji.
The solution of the set of nφ coupled differential equations (2.9) for coefficients

cj(x), j = 1, 2, . . . , nφ provides Galerkin approximation (2.3) to (1.1).
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3. Discretization

Equations can be solved using discretization in a space variable. In one-dimesional case, let
us introduce a grid of points (x1, x2, . . . , xnh), where xl − xl−1 = h. The grid approximation of
a second derivative of a function f : R → R is given by

f ′′(x) ≈ f(x − h) − 2f(x) + f(x + h)
h2

+O
(
h3
)
. (3.1)

Then the set of equations (2.9) takes the following form:

gi(xl) = ci(xl) +
1
h2

nφ∑

j=1

aij
[−cj(xl−1) + 2cj(xl) − cj(xl+1)

] −
nφ∑

j=1

bijcj(xl)

= ci(xl) +
1
h2

nφ∑

j=1

[
−aijcj(xl−1) +

(
2aij − h2bij

)
cj(xl) − aijcj(xl+1)

]
,

(3.2)

where i = 1, 2, . . . , nφ and l = 1, 2, . . . , nh.
In two-dimensional case, with the grid (x1, x2, . . . , xnh) × (y1, y2, . . . , ynh), where xl −

xl−1 = ym − ym−1 = h for l,m = 2, 3, . . . , nh, the set of equations (2.9) takes the form

gi
(
xl, ym

)
= ci

(
xl, ym

)
+

1
h2

nφ∑

j=1

aij
[−cj

(
xl−1, ym

) − cj
(
xl, ym−1

)

+4cj
(
xl, ym

) − cj
(
xl+1, ym

) − cj
(
xl, ym+1

)]

−
nφ∑

j=1

bijcj
(
xl, ym

)

= ci
(
xl, ym

)
+

1
h2

nφ∑

j=1

[
− aijcj

(
xl−1, ym

) − aijcj
(
xl, ym−1

)

+
(

4aij − h2bij
)
cj
(
xl, ym

) − aijcj
(
xl+1, ym

) − aijcj
(
xl, ym+1

)]
.

(3.3)

Both sets of linear equations (3.2) and (3.3) can be written in a matrix form

g = Ac, (3.4)
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where vectors g, c and matrix A have block forms

g =

⎛

⎜
⎜
⎜
⎜
⎝

G1

G2
...

Gnφ

⎞

⎟
⎟
⎟
⎟
⎠
, c =

⎛

⎜
⎜
⎜
⎜
⎝

C1

C2
...

Cnφ

⎞

⎟
⎟
⎟
⎟
⎠
, A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[A11] · · ·
[
A1nφ

]

[A21] · · ·
[
A2nφ

]

...
. . .

...[
Anφ1

]
· · ·

[
Anφnφ

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.5)

Detailed structure of blocks occurring in (3.5) is given below.

3.1. One-Dimensional Case

Blocks Gi and Gi are nφ-dimensional column vectors. For the sake of space, we present their
transpositions

GT
i =

(
gi(x1), gi(x2), . . . , gi(xnh)

)
,

CT
i = (ci(x1), ci(x2), . . . , ci(xnh)).

(3.6)

Blocks [Aij] have the form

[
Aij

]
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

μij ηij 0 · · · 0 θij
ηij μij ηij · · · 0 0
0 ηij μij · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μij ηij
θij 0 0 · · · ηij μij

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

nh×nh

, (3.7)

where μij = δij + (2/h2)aij − bij , ηij = −(1/h2)aij , whereas

θij =

{
ηij for periodic boundary conditions,
0 for closed boundary conditions.

(3.8)

Vectors g and c are nφnh-dimensional, whereas the matrix A has dimension nφnh ×
nφnh. The matrix A is a sparse one. The number of nonzero elements of the matrix A is
at most n2

φ(3nh − 2) (with closed boundary conditions) or 3n2
φnh (with periodic boundary

conditions).
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3.2. Two-Dimensional Case

In two-dimensional case, nφn2
h
-dimensional vectors GT

i and CT
i read as

GT
i =

(
gi
(
x1, y1

)
, gj
(
x1, y2

)
, . . . , gi

(
x1, ynh

)
, gi
(
x2, y1

)
, gi
(
x2, y2

)
, . . . , gi

(
xnh , ynh

))
,

CT
i =

(
ci
(
x1, y1

)
, ci
(
x1, y2

)
, . . . , ci

(
x1, ynh

)
, ci
(
x2, y1

)
, ci
(
x2, y2

)
, . . . , ci

(
xnh , ynh

))
.

(3.9)

Blocks [Aij] have the form of embedded blocks

[
Aij

]
=

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(αij) (βij) (0) · · · (0) (0) (γij)
(βij) (αij) (βij) · · · (0) (0) (0)
(0) (βij) (αij) · · · (0) (0) (0)

...
...

...
. . .

...
...

...
(0) (0) (0) · · · (αij) (βij) (0)
(0) (0) (0) · · · (βij) (αij) (βij)
(γij) (0) (0) · · · (0) (βij) (αij)

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

nh×nh

, (3.10)

where each term (·) is an embedded block of the size nh × nh. In particular

(
γij
)
=

{(
βij
)

for periodic boundary conditions,
(0) for closed boundary conditions,

(3.11)

block (0) is a matrix nh × nh with all null elements, block (αij) is again a sparse matrix of the
form

(
αij
)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

μij ηij 0 · · · 0 θij
ηij μij ηij · · · 0 0
0 ηij μij · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μij ηij
θij 0 0 · · · ηij μij

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

nh×nh

, (3.12)

where μij = δij + (4/h2)aij − bij , ηij = −(1/h2)aij ,

θij =

{
ηij for periodic boundary conditions,
0 for closed boundary conditions

(3.13)
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and block (βij) is diagonal

(
βij
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
h2
aij 0 0 · · · 0 0 0

0
−1
h2
aij 0 · · · 0 0 0

0 0
−1
h2
aij · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −1
h2
aij 0 0

0 0 0 · · · 0
−1
h2
aij 0

0 0 0 · · · 0 0
−1
h2
aij

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

nh×nh

. (3.14)

The matrix A is the sparse matrix of nφn2
h
× nφn2

h
elements. However, only at most n2

φ
(5nh −

4)nh (with closed boundary conditions) or 5n2
φn

2
h (with periodic boundary conditions) elem-

ents are nonzero.

3.3. Basis Functions

The basis functions {φj : j = 1, 2, 3, . . .} have to be orthogonal on the interval [0, t] with respect
to a weight function Θ. We use the set of Legendre polynomials Pl which are solutions of the
Legendre differential equation

d

dx

[(
1 − x2

) d

dx
Pl(x)

]
+ l(l + 1)Pl(x) = 0 (3.15)

for l = 0, 1, 2, . . .. The Legendre polynomials are orthogonal on the interval [−1, 1] with the
weight function Θ ≡ 1

∫1

−1
Pl(x)Pm(x)dx =

2
2l + 1

δlm. (3.16)

Taking the basis function in the form

P̃l(x) =

√
2j − 1
t

Pl−1

(
2x
t

− 1
)
, l = 1, 2, 3, . . . , (3.17)

ensures that the functions Pl(x) fulfill the orthonormality relations (2.2) on the interval [0, t].
Therfeore they can be used as a basis in the Galerkin method. In principle, any set of functions
orthonormal on the interval [0, t] can be used. For our purposes, however, the Lagrange
polynomials appeared more efficient in practical applications than for instance Chebyshev
polynomials.
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3.4. Methods for Solving Large Linear Systems

The matrices A, both in one- and two-dimensional case, are sparse matrices. In order to obtain
a reasonable approximation of the solution to (1.1), their sizes have to be large. Those facts
suggest an application of iterative methods for solving the linear systems (3.4).

In general, the matrix A is nonsymmetric. We have tested on our examples two
iterative methods developed for solving large-scale linear systems of non-symmetric
matrices. One of those metods is so called BiCGSTAB (BiConjugate Gradient Stabilized
method) [29, 30]. The other one is the GMRES (General Minimal Residual method) [29, 31].
In both methods, a suitable preconditioning is necessary.

For cases discused in the paper, the GMRES method appeared to be more efficient.
Usually, after a proper choice of auxiliary parameters of calculations, the GMRES was
requiring less number of iterations and converging faster than the BiCGSTAB method.

4. Examples of Numerical Solutions

In this section, several examples of approximate numerical solutions to (1.1) are presented.
The function

u(x, 0) =
1

1 + exp((|x| − r1)/r2)
, (4.1)

where |x| =
√∑d

i=1 x
2
i and d is the space dimension has been taken as the initial condition.

Such function, which is substantially different than zero only in a finite region, may represent
a distribution of the temperature in a rod (or plane) heated locally or a distribution of gas (or
liquid) particles which may diffuse in a nonhomogeneous medium. The values of constants
r1 = 3 and r2 = 0.3 in (4.1) were chosen for a clear graphical presentation of the results.

4.1. One-Dimensional Case

For presentation of approximate numerical results we chose an interval x ∈ [−10, 10] with
nh = 201 equidistant grid points. The Hilbert space Hnφ was spanned on the basis of nφ = 20
functions described in Section 3.3.

In our previous study [28], we have shown that when α increases from α = 1 to α =
2 the solution of unperturbed evolution governed by (1.1) with k = b = 0 changes from
pure heat (diffusive) behaviour to pure wave motion. Below we present results for fractional
cases α = 1.5 (an intermediate case) pointing out the effects of perturbations. For the sake of
space, we show a few examples only, explaining the general influences of perturbations on
the character of solutions.

Figure 1 illustrates the effect of perturbation in the form k(t) = c·cos(t), where c ∈ [0, 1]
represents an intensity of the perturbation, whereas the function b ≡ 0. It is clearly seen
that this perturbation, periodic in time variable, produces a wavy formations in space with
amlitudes strongly depending on the intensity of perturbation. Results obtained with the
opposite sign of the perturbation term, c → −c, (not presented here for the sake of space),
show that such perturbation decreases diffusive behaviour of the system and enforces a
wavelike evolution.
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Figure 1: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 5], k(t) = c · cos(t), b ≡ 0.

The effect of the perturbation of the form b = c · e−t, when k ≡ 0, is presented in
Figure 2. As in the former case c ∈ [0, 1] represents the intensity of perturbation. It is clear
that the perturbation in such form generally increases the amplitude of the solution. The
change of sign of the perturbation, c → −c, produces the opposite effect, the amplitude of
u(x, t) decreases, like in the case of dumping.

4.2. Two-Dimensional Case

In this subsection, we show some results obtained for two-dimensional case. The calculations
have been performed on the grid of nh×nh points, where nh = 101, x, y ∈ [−5, 5], with nφ = 20
basic functions spanning the Hilbert space Hnφ .

Figures 3, 4, and 5 illustrate several examples of the numerical solutions to (1.1) for
α = 1.5 and different perturbation functions k and b.

The case k ≡ b ≡ 0, corresponds to the unperturbed equation. Its solution, as seen
from Figure 3, evolves in the wave manner with a significant influence of diffusion due to
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Figure 2: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 5], k ≡ 0, b(t) = c · e−t.

fractional value of α = 1.5, between the pure diffusion case (α = 1) and the pure wave case
(α = 2). For more examples of unperturbed evolution of solutions to (1.1) in two-dimensional
case, see [28].

Results obtained for two-dimensional cases with nonzero perturbations generally
exhibit the properties similar to those in one-dimensional case. Again, like in the one-
dimensional case, the presence of perturbation in the form of k(t) = cos(t) results in an
increase of a wave frequency (see, e.g., Figure 4). In other words the perturbation of such form
produces additional wavy behaviour of the solution. The change of sign of the perturbation
term changes the phase of that behaviour.

The presence of perturbation term with b /= 0 influences mainly the amplitude of the
solution. Comparing Figure 5 to Figure 4, one notices that the amplitude increases with b =
e−t. Perturbation with the opposite sign b(t) = −e−t results in decrease of amplitude, like in
the case of dumping.
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Figure 3: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k ≡ 0, b ≡ 0. Closed boundary conditions.

5. Precision of Numerical Results

A comparison between the analytic and numerical solutions to (1.1) is possible only for one-
dimensional case when there is no perturbation and α = 1 or α = 2. Despite the existence of
the analytic solutions for this case for an arbitrary α ∈ [1, 2], given (for d = 1 case) in terms of
Mittag-Leffler functions [15, 16], their computation is not practical.
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Figure 4: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k(t) = cos(t), b ≡ 0. Periodic boundary
conditions.

For non-perturbed case, we defined in [28] an error estimate as the maximum of
the absolute value of the difference between the exact analytical solution and approximate
numerical one

Δunφ,nh(t) = max
∣∣∣uanal

nφ,nh(xi, t) − unum
nφ,nh(xi, t)

∣∣∣
nh

i=1
, (5.1)
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Figure 5: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k(t) = cos(t), b(t) = e−t. Periodic boundary
conditions.

where maximum is taken over all grid points xi. For d = 1 and α = 1 and 2, nφ > 20, nh > 100,
t ≤ 6 the error estimate Δunφ,nh(t) was always less than 10−5.

When we consider presented method for obtaining numerical solution to fractional
perturbed Volterra equation (1.1), there are three levels of numerical errors.
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The first level corresponds to the error of Galerkin approximation (2.3) which depends
on basic functions number nφ. In a special case, when k ≡ 0, b ≡ 0 and Δ operator is replaced
by identity operator, we can estimate the approximation error using the following result from
[27].

Remark 5.1 (see [27, Remark 5.2]). If unφ(x, t) (see (2.3)) is the Legendre-Gauss-Lobatto
interpolation of u(x, t), u ∈ Hr(I), I = [0, t], t > 0, then

∥
∥
∥u − unφ

∥
∥
∥
L∞(I)

≤ Cn3/4−r
φ ‖u‖Hr(I), r ∈ N, (5.2)

where C is a positive constant (see [26]). Therefore, we can get the following error bounds:

∥∥
∥
∥
∥

∫ t

0
gα(t − s)(u(x, s) − unφ(x, s))ds

∥∥
∥
∥
∥
L∞(I)

≤ Cn3/4−r
φ ‖u‖Hr(I), α > 0, r ≥ 1. (5.3)

Also at the first level, the integrals (2.11) and (2.12) are calculated. In our method,
we use a Gauss-Legendre quadrature for numerical integration. The exact error of such
quadrature can be found, for example, in Theorem 7.3.5 in [32].

The second level is the Laplacian discretization (Section 3). In this case, the numerical
error can be estimated by O(h3), where h is the spatial grid step.

The last one is is the residual error of GMRES method for solving large linear systems.
In our computations, the residual error threshold was set to 10−9, which was small enough to
obtain reliable solution.

The joint error estimate from all three levels is not obvious. Moreover, in the considered
perturbed case, the analytic solution to (1.1) is not known. Therefore, in order to estimate the
accuracy of numerical solutions, we proceed in the following manner which is also applicable
for two- and higher-dimensional cases.

When we are not able to confront the numerical solutions with analytic ones, we can
investigate how does approximate solution change with increasing numbers of grid points
and increasing number of basic functions. One can expect that increasing number of grid
points and increasing number of basic functions should result in a better approximation
of the true (unknown) solution. Taking appropriate sequences of those numbers and
estimating the largest differences between consecutive solutions, one can show convergence
of approximation errors. To do it let us define the following quantities.

Let Δφunφ,nh(t) denote the maximum difference between two solutions obtained for
the same t and the same grid (defined by nh) but with different numbers of basic functions
nφ and nφ−2.

Δφunφ,nh(t) := max
i

∣∣∣unφ,nh(xi, t) − unφ−2,nh(xi, t)
∣∣∣. (5.4)

Then let Δhunφ,nh(t) denote the maximum difference between two solutions obtained
for the same t and the same Hilbert space (the same nφ) but with different numbers of grid
points (in one direction) nh and nh−10

Δhunφ,nh(t) := max
i

∣∣∣unφ,nh(xi, t) − ũnφ,nh−10(xi, t)
∣∣∣ , (5.5)
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Figure 6: Error estimate (5.4) for one-dimensional case, for t = 1.8, nh = 121, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Periodic boundary conditions.

where ũnφ,nh−10(xi, t) means the value in the node of bigger size obtained from values
calculated for grid of smaller size by cubic-spline interpolation.

In two-dimensional cases, the appropriate error estimates read

Δφunφ,nh(t) := max
i,j

∣∣∣unφ,nh
(
xi, yj , t

) − unφ−2,nh
(
xi, yj , t

)∣∣∣, (5.6)

Δhunφ,nh(t) := max
i,j

∣∣∣unφ,nh
(
xi, yj , t

) − ũnφ,nh−10
(
xi, yj , t

)∣∣∣. (5.7)

Figures 6, 7, and 8 present some examples of the dependence of the above defined error
estimates on the numbers of grid points and the size of the basis. Presented examples contain
both one- and two-dimensional cases and two cases of boundary conditions.

The general conclusions of that investigation are the following. In all cases the error
estimates decrease fast with increasing number of grid points or with increasing size of the
basis. That decrease is in log plots seen as close to a straight line, that is, error estimates
decrease almost exponentially. Then taking large enough grid and large enough set of basic
functions, one can obtain, in principle, an error less then arbitrary small number. In practice
increasing the sizes of basis and grid produces a sharp increase of numerical operations
causing accumultion of rounding errors. That property can be compensated by increasing the
precision of representation of real numbers (using double or quadruple precision) and so on.
All those actions require higher and higher computer power to obtain results in a reasonable
computing time.

Our estimates show, however, that a reasonable approximations can be obtained with
relatively low values of nφ and nh.
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Figure 7: Error estimate (5.5) for one-dimensional case, for t = 1.8, nφ = 20, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Closed boundary conditions.
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Figure 8: Error estimate (5.6) for two-dimensional case, for t = 1.8, nh = 101, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Closed boundary conditions.
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A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position
control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC),
which is insensitive to uncertainties and load disturbances, is studied widely in the application
of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on
the integer-order integration or differentiation of the state variables, while in this proposed robust
FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the
state variables. In fact, the conventional SMC method can be seen as a special case of the proposed
FOSMC method. The performance and robustness of the proposed method are analyzed and tested
for nonlinear load torque disturbances, and simulation results show that the proposed algorithm
is more robust and effective than the conventional SMC method.

1. Introduction

Permanent magnet synchronous motor (PMSM) has many applications in industries due
to its superior features such as compact structure, high efficiency, high torque to inertia
ratio, and high power density [1]. To get fast four-quadrant operation, good acceleration,
and smooth starting, the field-oriented control or vector control is used in the design of
PMSM drives [1–4]. However, the PMSM is a typical high nonlinear, multivariable coupled
system, and its performance is sensitive to external load disturbances, parameter changes in
plant, and unmodeled and nonlinear dynamics. To achieve good dynamic response, some
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robust control strategies such as nonlinear control [5, 6], adaptive control [7, 8], H∞ control
[9–11], and sliding mode control (SMC) [12–18] have been developed.

The SMC is a powerful nonlinear control technique and has been widely used for
speed and position control of PMSM system, because it provides a fast dynamic response and
is insensitive to external load disturbances and parameter variations. In [14], a fuzzy sliding
mode controller was proposed for the speed and position control of PMSM. In [15], a
hybrid controller (HC) which consists of a parallel connected sliding mode controller and
a neurofuzzy controller was proposed for the speed control of PMSM. In [16], a robust
wavelet-neural-network sliding mode controller was proposed which can achieve favourable
decoupling control and high-precision speed tracking performance of PMSM. The design of
the SMC mainly contains two steps: the first step is to select the sliding surface, which is usu-
ally the linear manifold of the state variables and can guarantee the asymptotic stability; the
second step is to determine the control output, which drives the system state to the designed
sliding surface and constrains the state to the surface subsequently. Usually, the design of
sliding surface for a PMSM is limited to integer order, which means that the sliding surface
is constructed by the integer-order integration or differentiation of the state variables.

Fractional calculus has a 300-year-old history, and for a long time, it was considered
as a pure theoretical subject with nearly no applications. In recent decades, not only the
theory of fractional-order calculus is developed greatly, but also the application of fractional
controller attracts increasing attention due to the higher degree of freedom provided [19–36].
In [33] the fractional-order adaptation law for integer-order sliding mode control is studied
and applied in the 2DOF robot. In [34], the synchronization of chaotic and uncertain Duffing-
Holmes system has been done using the sliding mode control strategy and fractional order
mathematics. In [35], a robust fractional-order proportion-plus-differential (FOPD) controller
for the control of PMSM was proposed. In control practice, it is useful to consider the
fractional-order controller design for an integer-order plant. This is due to the fact that the
plant model may have already been obtained as an integer-order model in classical sense. In
most cases, our objective of using fractional calculus is to apply the fractional-order control
(FOC) to enhance the system control performance.

This paper applies the fractional calculus into the sliding surface design and proposes
a robust fractional-order sliding mode controller (FOSMC) for the position control of a
PMSM. The rest of this paper is organized as follows. In Section 2, the fractional-order cal-
culus operation is introduced. In Section 3, the mathematical model of PMSM is given. In
Section 4, the conventional integer-order SMC for PMSM is reviewed. In Section 5, the
FOSMC method for position control of PMSM is derived. In Section 6, the robustness of
the proposed FOSMC method is analyzed. In Section 7, the effectiveness of the proposed
algorithm is illustrated through numerical examples and compared with the conventional
integer-order SMC. In Section 8, the guidance for parameters selection and design is given.
Finally, conclusions are presented in Section 9.

2. Fractional Calculus

Fractional calculus has been known since the development of the integer-order calculus, but
for a long time, it has been considered as a sole mathematical problem. In recent decades,
fractional calculus has become an interesting topic among system analyses and control fields.
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Fractional calculus is a generalization of integer-order integration and differentiation
to non-integer-order ones. Let symbol aDλ

t denote the fractional-order fundamental operator,
defined as follows [20, 21]:

Dλ � aD
λ
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dλ

dtλ
R(λ) > 0,

1 R(λ) = 0,
∫ t
a (dτ)

−λ R(λ) < 0,

(2.1)

where a and t are the limits of the operation, λ is the order of the operation, and generally
λ ∈ R and λ can be a complex number.

The two most used definitions for the general fractional differentiation and integration
are the Grunwald-Letnikov (GL) definition [22] and the Riemann-Liouville (RL) definition
[23]. The GL is given by

aD
λ
t f(t) = lim

h→ 0
h−λ

[(t−a)/h]∑

j=0
(−1)j

(
λ
j

)
f
(
t − jh), (2.2)

where [·] means the integer part.
The RL definition is given as

aD
λ
t f(t) =

1
Γ(n − λ)

dn

dtn

∫ t

a

f(τ)

(t − τ)λ−n+1
dτ, (2.3)

where n − 1 < λ < n, and Γ(·) is the Gamma function.
Having zero initial conditions, the Laplace transformation of the RL definition for a

fractional-order λ is given by

L
{
aD

λ
t f(t)

}
= sλF(s), (2.4)

where F(s) is the Laplace transformation of f(t).
Distinctly, the fractional-order operator has more degrees of freedom than that with

integer order. It is likely that a better performance can be obtained with the proper choice of
order.

3. Mathematical Model of PMSM

The PMSM is composed of a stator and a rotor; the rotor is made by a permanent magnet,
and the stator has 3-phase windings which are distributed sinusoidally. To get the model of
the PMSM, some assumptions are made: (a) the eddy current and hysteresis losses are ignored;
(b) magnetic saturation is neglected; (c) no damp winding is on the rotor; (d) the induced EMF is
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sinusoidal. Under the above assumptions, the mathematics model of a PMSM can be described
in the rotor rotating reference frame as follows [2]:

ud = Rid −ωeLqiq + Ld
did
dt

,

uq = Riq +ωeLdid +ωeψf + Lq
diq

dt
.

(3.1)

In the above equations, ud and uq are voltages in the d- and q-axes, id and iq are currents in
the d- and q-axes, Ld and Lq are inductances in the d- and q-axes, R is the stator resistance,
ωe is the electrical angular velocity, and ψf is the flux linkage of the permanent magnet.

The corresponding electromagnetic torque is as follows:

Te = P
[
ψf iq +

(
Ld − Lq

)
idiq
]
, (3.2)

where Te is the electromagnetic torque, and P is the pole number of the rotor.
For surface PMSM, we have Ld = Lq; thus, the electromagnetic torque equation is

rewritten as follows:

Te = Pψf iq. (3.3)

The associated mechanical equation is as follows:

Te − TL = J
dωm

dt
+ Bωm, (3.4)

where J is the motor moment inertia constant, TL is the external load torque, B is the viscous
friction coefficient, and ωm is the rotor angular speed, and it satisfies

ωe = Pωm. (3.5)

In this paper, the id = 0 decoupled control method is applied, which means that there is
no demagnetization effect, and the electromagnetic torque and the armature current are the
linear relationship.

4. Review of Conventional SMC

4.1. State Equations of PMSM System

The object of the designed controller is to make the position θm strictly follow its desired
signal θref. Let

x1 = θref − θm,
x2 = ẋ1 = θ̇ref − θ̇m,

(4.1)
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where x1 and x2 are the state error variables of the PMSM system,

θ̇m = ωm,

θ̈m = ω̇m.
(4.2)

From (4.1) and (4.2), it is obvious that

ẋ1 = x2 = θ̇ref − θ̇m,
ẋ2 = θ̈ref − θ̈m = θ̈ref − ω̇m.

(4.3)

Substituting (3.3) and (3.4) into (4.3), we have

ẋ2 = θ̈ref − 1
J

[
Pψf iq − TL − Bωm

]
. (4.4)

Then the state-space equation of the PMSM control system can be written as follows:

[
ẋ1

ẋ2

]
=
[

0 1
0 0

][
x1

x2

]
+
[

0
E

]
U +

[
0
F

]
, (4.5)

where

E = −Pψf
J

, F = θ̈ref +
TL + Bωm

J
, U = iq. (4.6)

4.2. The Conventional Integer-Order SMC

The design of the SMC usually consists of two steps. Firstly, the sliding surface is designed
such that the system motion on the sliding mode can satisfy the design specifications; sec-
ondly, a control law is designed to drive the system state to the designed sliding surface and
constrains the state to the surface subsequently.

The conventional integer-order sliding surface S is designed as follows [4]:

S = cx1 + x2, (4.7)

where c is set as a positive constant, and the derivative of (4.7) is as follows:

Ṡ = cẋ1 + ẋ2. (4.8)

Substituting (4.3) and (4.4) into (4.8), we have

Ṡ = cx2 + θ̈ref − 1
J

[
Pψf iq − TL − Bωm

]
. (4.9)
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When TL = 0, and forcing Ṡ = 0, then the control output is obtained as follows:

Ueq = iq =
J

Pψf

(
cx2 + θ̈ref +

1
J
Bωm

)
. (4.10)

Here, Ueq is the equivalent control, which keeps the state variables on the sliding surface.
When the system has immeasurable disturbances with upper limit TL-max, then the

final control output can be given as

U = iq = Ueq + k sgn(S) =
J

Pψf

(
cx2 + θ̈ref +

1
J
Bωm

)
+ k sgn(S), (4.11)

where k is a positive switch gain, and sgn(·) denotes the sign function defined as

sgn(S) =

⎧
⎪⎪⎨

⎪⎪⎩

1 S > 0,
0 S = 0,
−1 S < 0.

(4.12)

4.3. Stability Analysis

The Lyapunov function is defined as

V =
1
2
S2. (4.13)

According to the Lyapunov stability theorem, the sliding surface reaching condition is SṠ < 0.
Taking the derivative of (4.13) and substituting (4.11) into (4.9), we have

V̇ = SṠ = S
[
TL-max

J
− Pψf

J
k sgn(S)

]
. (4.14)

From (4.14), it is obvious that when

k >
TL-max

Pψf
, (4.15)

then SṠ < 0, and the system is globally and asymptotically stable; S and Ṡ will approach zero
in a finite time duration.

5. Proposed Fractional-Order SMC (FOSMC)

In this section, the fractional-order sliding mode controller (FOSMC) for the position control
of PMSM will be proposed.
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5.1. Design of Fractional-Order Sliding Surface

First, the fractional-order sliding surface is designed as follows:

S = kpx1 + kdDμx1 = kpx1 + kdDμ−1x2, (5.1)

where kp and kd are set as positive constants, the functionDμ is defined as (2.1), and 0 < μ < 1.
From (5.1), it can be seen that the fractional-order differentiation of x1 is used to construct the
sliding surface. Meanwhile, as −1 < μ − 1 < 0, the operator Dμ−1x2 in (5.1), which means the
(μ−1)th-order integration of x2, can be seen as a low-pass filter and can reduce the amplitude
of high-frequency fluctuations of x2. In this sense, the fractional-order sliding surface defined
by (5.1) is more smooth compared with the conventional sliding surface shown as (4.7).

5.2. Design of FOSMC

Taking the time derivative on both sides of (5.1) yields

Ṡ = kpẋ1 + kdDμ+1x1 = kpx2 + kdDμ−1ẋ2. (5.2)

Substituting (4.4) into (5.2), we have

Ṡ = kpx2 + kdDμ−1ẋ2 = kpx2 + kdDμ−1
{
θ̈ref − 1

J

[
Pψf iq − TL − Bωm

]
}
, (5.3)

when TL = 0, and forcing Ṡ = 0, then the control output can be obtained as follows:

Dμ−1
{
θ̈ref − 1

J

[
Pψf iq − Bωm

]
}

= −kp
kd
x2. (5.4)

Taking the (1 − μ)th-order derivative on both sides of (5.4) will result in

θ̈ref − 1
J

[
Pψf iq − Bωm

]
= D1−μ

(

−kp
kd
x2

)

. (5.5)

From (5.5), the equivalent control can be obtained as

Ueq = iq =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

. (5.6)

Similar to (4.11), when the system has load disturbances with upper limit TL-max, then the
control output of FOSMC method can be given as

U = iq = Ueq + k sgn(S) =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

+ k sgn(S), (5.7)

where μ is called as the order of FOSMC method. If we set kp = c, kd = 1, and let A = Pψf/J ,
then the block diagram of the proposed FOSMC method can be shown in Figure 1.
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e

θref

ωm

c

du

dtu

d

dt

x2

d2

dt2

B

J

+
+

kp

kd

d1−μ

dt1−μ

k

+
+
+

1
A

+
+

iq

(x1)

Figure 1: Block diagram of the proposed FOSMC method.

5.3. Stability Analysis of FOSMC with Sign Function

When the sign function is used in the control output, then substituting (5.7) into (5.3), we
have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)
. (5.8)

From (5.8), we can get the following.

(a) When S < 0, then sgn(S) = −1, and we have

δ1 �
(
TL-max

J
− Pψf

J
k sgn(S)

)
=
(
TL-max

J
+
Pψf

J
k

)
> 0. (5.9)

So the (μ − 1)th-order fractional integration of δ1 is higher than zero, that is,

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)
> 0, (5.10)

which implies that the derivative of the Lyapunov function V̇ = SṠ < 0.

(b) When S > 0, then sgn(S) = 1, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k

)
. (5.11)

From (5.11), it is clear that when

δ2 � TL-max

J
− Pψf

J
k < 0, (5.12)

that is,

k >
TL-max

Pψf
, (5.13)
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then the (μ − 1)th-order fractional integration of δ2 is lower than zero, that is, Ṡ < 0, which
means that V̇ = SṠ < 0.

From (5.8) to (5.13), it is obvious that when

k >
TL-max

Pψf
, (5.14)

then the system is globally stable; S and Ṡ will approach zero in a finite time duration.
Moreover, from (5.8), it can be seen that because of the integration effect by the

operator Dμ−1(·), the variation amplitude of Ṡ in (5.8) is smaller than that of Ṡ in (4.14),
which means that when the sign function is used, the sliding surface of the proposed FOSMC
method has smaller chattering amplitude than the sliding surface of the conventional SMC
method.

5.4. Stability Analysis of FOSMC with Saturation Function

From (5.7), it can be seen that the sign function is involved in the output, so the chattering
phenomenon will be caused. In this paper, a saturation function is adopted to reduce the
chattering problem, described as follows:

sat(S) =

⎧
⎪⎪⎨

⎪⎪⎩

1 S > ε,
S

ε
−ε ≤ S ≤ ε,

−1 S < −ε,
(5.15)

where ε > 0 denotes the thickness of the boundary layer.
When the saturation function is used, the control output can be rewritten as

U = iq = Ueq + k sat(S) =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

+ k sat(S), (5.16)

then, similar to (5.8), substituting (5.16) into (5.3), we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)
. (5.17)

From (5.17), the following is clear.

(a) When S < 0, then sat(S) < 0,

δ3 �
(
TL-max

J
− Pψf

J
k sat(S)

)
> 0. (5.18)
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So the (μ − 1)th-order fractional integration of δ3 is higher than zero, that is,

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)
> 0, (5.19)

which means that the derivative of the Lyapunov function V̇ = SṠ < 0.

(b) When S > ε, then sat(S) = 1, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k

)
. (5.20)

Similar with (5.11)–(5.13), when

k >
TL-max

Pψf
, (5.21)

then Ṡ < 0, which means that V̇ = SṠ < 0.

(c) When 0 < S ≤ ε, then sat(S) = S/ε, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k
S

ε

)
. (5.22)

From (5.22), it can be seen that when

δ4 �
(
TL-max

J
− Pψf

J
k
S

ε

)
< 0, (5.23)

that is,

k >
TL-max

Pψf

ε

S
≥ TL-max

Pψf
, (5.24)

then Ṡ < 0. Here, it is assumed that a load disturbance with magnitude TL-max is exerted on
the system. From (5.24), it can be seen that when the value of S is very small, then ε/S � 1,
so the condition for Ṡ < 0 is that the value of k is much higher than TL-max/Pψf , but in fact
the parameter k will not be given a so high value. Here, it is assumed that k is assigned a
minimum value which meets condition (5.21). Then the sliding surface S will undergo the
following stages.

(i) In the period 0 < S� ε, we have Ṡ� 0, so the system is unstable, meanwhile S will
rapidly arrive at the peak value S∗ (where S∗ > ε ) in a finite time with large initial
positive velocity.

(ii) As S = S∗ > ε, then from (5.24), it can be seen that the value of k satisfies condition
(5.21), so Ṡ < 0 and V̇ = SṠ < 0, that is, the system is globally stable again. In this
moment, because S > 0 and Ṡ < 0, then S will decrease with negative velocity.
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(iii) When S decreases until S < ε, then from (5.24), it can be seen that the value of k
does not satisfy condition (5.21) any longer, which means that Ṡ > 0, then S starts
to increase.

(iv) When S increases until S > ε, then similar to (ii), we have S > 0 and Ṡ < 0, then S
will decrease with negative velocity.

(v) After several oscillations and adjustments between stages (iii) and (iv), the sliding
surface function S will finally maintain on the point of S = ε, and the system is in a
stable state with Ṡ = 0.

When the system is in the stable state described by (v), then from (4.7) or (5.1), it can
be seen that x2 = 0 or Dμx1 = 0, and the stable position error x1 can be estimated as follows:

S = cx1 = ε =⇒ x1 =
ε

c
(5.25)

or

S = kpx1 = ε =⇒ x1 =
ε

kp
. (5.26)

Generally, when the load disturbance is TL (TL < TL-max), then similar to the above analysis,
the stable position error x1 can be estimated as follows:

S = cx1 =
εTL
kPψf

=⇒ x1 =
εTL

ckPψf
(5.27)

or

S = kpx1 =
εTL
kPψf

=⇒ x1 =
εTL

kpkPψf
. (5.28)

With the maximum permissible position error x1 of the PMSM system, (5.26) or (5.28) will be
the constraint in designing the parameter ε and c or kp.

Remark 5.1. In the above analysis of parts (b) and (c), the integration effect of the operator
Dμ−1(·) is ignored temporarily. If the integration effect is considered, then the fractional-order
μ will decide the phase delay and variation magnitude of Ṡ. When μ is too small, especially
when μ = 0, then the operator Dμ−1(·) becomes a first-order integer integrator, and the long
time integration effect will lead to the largest phase delay and smallest variation magnitude of
Ṡ, and the stable condition V̇ = SṠ < 0 may not be satisfied promptly, and so the system will
become unstable. When μ is too large, especially when μ = 1, then the operator Dμ−1(·) does
not have integration action, and Ṡ has zero-phase delay and the largest variation magnitude,
which are the same as the convention SMC method. When μ is selected as a proper value in
the range (0, 1), then the suitable phase delay of Ṡwill satisfy the stable condition V̇ = SṠ < 0,
and meanwhile, the appropriate variation magnitude of Ṡ will make the sliding surface S
change with small fluctuation, so a better control performance can be obtained.
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6. Robustness and Effectiveness Analysis of FOSMC

The robustness and effectiveness of the proposed FOSMC method will be analyzed in the
following two aspects.

6.1. Analysis of the Control Output

From the control output of the FOSMC method shown as (5.7) or (5.16), it can be seen that
two important terms are included.

(a) The term D1−μx2 denotes the (1 − μ)th-order differentiation of x2, so the fractional
dimension accelerating change rate of position error is contained in the output,
which means that the output of the FOSMC method is more sensitive to the change
rate of position error and can provide a prompt output.

(b) The other term is the sgn(S) in (5.7) or the sat(S) in (5.16), the former is a
high-frequency switching signal, and the latter is a relative smooth switch signal.
According to the sliding surface S defined by (5.1), it is clear that an (μ− 1)th-order
integrator for x2 is contained, that is, the proposed sliding surface S is more smooth
than the conventional sliding surface. In other words, by using the FOSMC method,
the chattering of sgn(S) in (5.7) is eliminated to some degree, and the term sat(S)
in (5.16) is more smooth.

6.2. Analysis of Stable Condition

With (5.8) and (5.17), it can be seen that when substituting the control output into the deri-
vative of fractional-order sliding surface S, we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)
= kdDμ−1δ1 (6.1)

or

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)
= kdDμ−1δ3. (6.2)

Here, the operator Dμ−1(·) means the fractional-order integration since 0 < μ < 1.
The following is assumed:

(i) the value of k is set as a constant which is satisfied with condition (5.14) or (5.21);

(ii) the system is in a reaching state (i.e., V̇ = SṠ < 0) or in a stable state (i.e., S =
0 or constant, and Ṡ = 0).

Then the following three cases will be discussed.
(a) When the system is in a reaching state and S > 0, Ṡ < 0, then

Ṡ = kdDμ−1δ1 < 0 =⇒ δ1 < 0 (6.3)
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or

Ṡ = kdDμ−1δ3 < 0 =⇒ δ3 < 0. (6.4)

If an instant load disturbance Tinstant which is greater than TL-max is applied on the system,
then from (6.1) or (6.2), it can be seen that in this moment δ1 > 0 or δ3 > 0, but because of the
integration effect by the fractional-order integration operator Dμ−1(·), the integration value
that is, Dμ−1(δ1) or Dμ−1(δ3), will not be greater than zero instantaneous, in other words the
system will remain stable for an extra short time.

While for the conventional SMC method, from (4.14), it can be seen that the derivative
of sliding surface S is

Ṡ =
[
TL-max

J
− Pψf

J
k sgn(S)

]
(6.5)

or

Ṡ =
[
TL-max

J
− Pψf

J
k sat(S)

]
. (6.6)

It is clear that when an instant load disturbance Tinstant (Tinstant > TL-max) is applied on the
system, then Ṡ < 0 immediately, and the system is also unstable at once.

(b) When the system is in a reaching state and S < 0, Ṡ > 0, then

Ṡ = kdDμ−1δ1 > 0 =⇒ δ1 > 0 (6.7)

or

Ṡ = kdDμ−1δ3 > 0 =⇒ δ3 > 0. (6.8)

Similar to the above analysis, when an instant negative load disturbance (i.e., an opposite
direction load disturbance) Tinstant which is smaller than (−TL-max) is applied on the system,
then from (6.1) or (6.2), it can be seen that in this moment δ1 > 0 or δ3 > 0, but because of the
integration effect by the operator Dμ−1(·), the integration value, that is, Dμ−1(δ1) or Dμ−1(δ3),
will not be smaller than zero instantaneously in other words, the system will continue to be
stable for an extra short time.

While for the conventional SMC method, it is clear that when an instant negative load
disturbance Tinstant (Tinstant < −TL-max) is exerted on the system, then according to (6.5) and
(6.6), it can be seen that Ṡ will be smaller than zero (i.e., Ṡ < 0) immediately, and thus, the
system is also unstable at once.

(c) When the system is in a stable state, that is, S = 0 or constant, and Ṡ = 0, then

Ṡ = kdDμ−1δ1 = 0 =⇒ δ1 = 0 (6.9)
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or

Ṡ = kdDμ−1δ3 = 0 =⇒ δ3 = 0. (6.10)

If an instant positive or negative load disturbance Tinstant is applied on the system, then from
(6.1) or (6.2), it is obvious that in this moment there is a step change for δ1 or δ3, but because
of the integration effect by the fractional-order integration operator Dμ−1(·), the integration
value, that is, Dμ−1(δ1) or Dμ−1(δ3), will not change greatly in a short time, which means that
the sliding surface S will change with smaller fluctuation comparing with the conventional
SMC method, so a better control performance is obtained.

In addition, when the load disturbance Tinstant is greater than TL-max, then the same
conclusions as those made from the above analysis of (a) and (b) can be obtained.

From the above analysis, it is obvious that the proposed FOSMC method is more
robust than the conventional SMC method.

7. Numerical Computation Examples and Simulation

7.1. Approximation of Fractional-Order Operator

The Matlab/Simulink is used to simulate the FOSMC control system. In the simulation,
a discrete-time finite-dimensional (z) transfer function is computed to approximate the
continuous-time fractional-order operator Dμ(·) by the IRID method [37], that is, dfod =
irid fod(u, Ts,N). In the simulation, the sampling frequency of FOSMC controller is 2 KHz;
thus, in the IRID method, Ts = 0.0005 sec, and the approximation order is N = 5.

7.2. System Block and Configuration

The block diagram of the PMSM drive system using FOSMC method is shown in Figure 2, in
which the block “SMC” means the conventional integer-order SMC method, and the block
“FOSMC” is the proposed method, which is shown in Figure 1. The performance of the
proposed FOSMC is compared with that of the conventional SMC. The rotor of the PMSM
is the permanent magnet, and the flux linkage is constant. The specifications of the PMSM
are shown in Table 1.

As shown in Figure 2, the drive system has an outer loop of position controller based
on FOSMC method and an inner loop including two current controllers, that is, the q-axis
and d-axis stator current regulators, both of which are based on PI control algorithm with
sampling frequency of 10 KHz, and the d-axis stator current command is set to zero. In the
block, ωref is the reference rotor speed in mechanical revolutions per minute, ω is the rotor
speed in mechanical revolutions per minute measured by encoder, and the space vector PWM
was used for the PWM generation.

For comparison, we first determine the optimal parameters of the conventional SMC
method, and then the corresponding parameters of the new proposed FOSMC method are
set similarely, that is, in Figure 2, the following parameters of SMC and FOSMC are set to be
the same, that is,

k = 3, kp = c = 100, kd = 1, ε = 1. (7.1)
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Figure 2: Block diagram of the PMSM position control system.
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Figure 3: Phase traces of the conventional SMC method and the proposed FOSMC method with saturation
function.

7.3. Simulation and Comparison

7.3.1. Simulation of Phase Trace

In this simulation, the phase traces by the conventional SMC method and the proposed
FOSMC method are simulated and compared. The given position reference is θref = π rad,
which is a step input with soft-start mode, and the order of the proposed FOSMC method is
μ = 0.6.

Figure 3 shows the simulation results of the phase traces by the conventional SMC
method and the proposed FOSMC method with saturation function. Figure 4 is similar to
Figure 3, and the only difference is that the saturation function is replaced by the sign function
in the two methods.
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Figure 4: Phase traces of the conventional SMC method and the proposed FOSMC method with sign
function.
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Figure 5: Sliding surfaces with saturation function and load disturbance of 2.5 Nm at t = 0.5 s (μ = 0.6).

From Figure 3, it can be seen that the phase traces of both methods can reach the sliding
surface (S = 0) and arrive at the origin finally, but because of the fractional-order integration
effect (i.e., the term Dμ−1x2 in S), the phase trace of the proposed FOSMC method is more
smooth than that of the conventional SMC method; this also means that the proposed FOSMC
has smaller speed vibration, which is consistent with the analysis of Section 5.1.

From Figure 4, it is obvious that the phase trace of the proposed FOSMC method is
more focused on the origin than that of the conventional SMC method, which means that the
proposed FOSMC has smaller speed error.

7.3.2. Simulation of Stability Condition

In this simulation, the stability condition will be tested. The position reference is step input
θref = π rad, the order of FOSMC is μ = 0.6, and other parameters are set as (7.1). From
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Figure 6: Position responses and error with saturation function and load disturbance of 2.5 Nm at t = 0.5 s
(μ = 0.6).
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Figure 7: Sliding surfaces with saturation function and load disturbance of 2.6 Nm at t = 0.5 s (μ = 0.6).

(5.13), (5.21), and Table 1, it can be calculated that the maximum load disturbance is TL-max =
2.568 Nm. In each of the following cases, the conventional SMC method and the proposed
FOSMC method are executed.

Figures 5–8 are the time curves of sliding surface function S, position responses, and
position error, respectively. The saturation function is adopted, and different load disturbance
is applied at time t = 0.5 s.

In Figures 5 and 6, the load disturbance is 2.5 Nm, and we can see that the system
controlled by SMC or FOSMC is stable, because the load disturbance is less than TL-max.
Meanwhile, from Figures 5 and 6(b), it can be seen that the stable value of sliding surface
function is S ≈ ε = 1, and the stable position error is x1 ≈ ε/c = 0.01, which are consistent
with the analysis of Section 5.4 and (5.26).
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Figure 8: Position responses and error with saturation function and load disturbance of 2.6 Nm at t = 0.5 s
(μ = 0.6).
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Figure 9: Sliding surfaces with sign function and load disturbance of 2.3 Nm at t = 0.5 s (μ = 0.6).

From Figure 5, one can see that when the external load is exerted on the system at
t = 0.5 s, the variation amplitude of the sliding surface by the FOSMC method is smaller than
that of the conventional SMC method, and consequently, the position error by the FOSMC
method is smaller than that by the conventional SMC method, just as shown by Figure 6(b).
The above two simulation results meet the analysis of Section 6.2(c).

In Figures 7 and 8, the load disturbance is 2.6 Nm, and it is obvious that the system
controlled by SMC or FOSMC method is unstable, just because the load disturbance is greater
than TL-max. Moreover, an important result can be obtained from Figures 7 and 8, that is, when
the load disturbance is greater than TL-max, although the system is unstable any longer, the
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Figure 10: Position responses and error with sign function and load disturbance of 2.3 Nm at t = 0.5 s
(μ = 0.6).
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Figure 11: Sliding surfaces with sign function and load disturbance of 2.5 Nm at t = 0.5 s (μ = 0.6).

position error by the proposed FOSMC method is smaller than that by the conventional SMC
method, which is keeping with the analysis of Section 6.2.

Figures 9–14 are the time curves of sliding surface function S, position responses,
and position error, respectively, in which the sign function is adopted, and different load
disturbance is applied at t = 0.5 s.

In Figures 9 and 10, the load disturbance is 2.3 Nm, and we can see that the system is
stable under the load disturbance, because the load disturbance is less than TL-max. Because of
the use of sign function, the chattering phenomenon exists in the sliding surface S, just as
shown in Figure 9. Meanwhile from Figures 9 and 10, two important results can be seen, that
is, (a) the chattering amplitude of the sliding surface S by the FOSMC method is smaller
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Figure 12: Position responses and error with sign function and load disturbance of 2.5 Nm at t = 0.5 s
(μ = 0.6).
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Figure 13: Sliding surfaces with sign function and load disturbance of 2.6 Nm at t = 0.5 s (μ = 0.6).

than that by the conventional SMC method; (b) the position error by the proposed FOSMC
method is also distinctly smaller than that by the conventional SMC method. The above two
results meet the analysis of Sections 5.3 and 6.1.

In Figures 11 and 12, the load disturbance is 2.5 Nm, and it can be seen that the system
is critically stable after the load disturbance is applied, just because the load disturbance is
close to TL-max. And we also can see that the chattering amplitude of the sliding surface S
and the position error, by the FOSMC method, are also distinctly smaller than those by the
conventional SMC method, which meet the analysis of Sections 5.3 and 6.1.
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Figure 14: Position responses with sign function and load disturbance of 2.6 Nm at t = 0.5 s (μ = 0.6).
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Figure 15: Position responses and velocity responses with load disturbances around t = 0.5 s and 1.0 s.

In Figures 13 and 14, the load disturbance is 2.6 Nm, and it is clear that the system
driven by FOSMC or SMC method is unstable after the time 0.5 s, just because the load
disturbance is greater than TL-max. Meanwhile, although the system is unstable any longer,
the position error by the proposed FOSMC method is smaller than that by the conventional
SMC method, which is keeping with the analysis of Section 6.2.

All of the above simulation results show the correctness of the stability condition
shown by (5.13) or (5.21); meanwhile, the robustness analyses of Sections 5.3, 5.4, and 6 are
also verified.
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Figure 16: Results of the control outputs.

7.3.3. Simulation of Dynamic Position Response with Step Input Signal

In this simulation, the position reference is θref = π rad, the order of FOSMC is μ = 0.6, and
the saturation function is adopted. A step disturbance load of 3.1 Nm is applied at t = 0.5 s and
withdrawn at t = 0.6 s, another step disturbance load of −3.1 Nm is applied at t = 1.0 s and
withdrawn at t = 1.1 s. Figures 15(a) and 15(b) show the dynamic position and velocity
responses, respectively, of the conventional SMC method and the proposed FOSMC method
in the presence of the above disturbances load. Obviously, the position error by the proposed
FOSMC method is significantly smaller than that by the conventional SMC method; in other
words, the FOSMC method is of more robustness than the conventional SMC method, which
is in agreement with the analysis of Section 6.



Abstract and Applied Analysis 23

0 0.2 0.4 0.6 0.8 1

0

2

4

Time (s)

Po
si

ti
on

 (r
ad

)

Reference
SMC
FOSMC

−4

−2

(a) Position responses

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Time (s)

E
rr

or
 (r

ad
)

SMC
FOSMC

−0.8

−0.6

−0.4

−0.2

(b) Position error

Figure 17: Position responses and error to sinusoidal input signal with load disturbances at t = 0.3 s and
0.75 s.
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Figure 20: Trapezoid reference input.
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Figure 21: Position error and error square with sine reference input (2.3 Nm pulse disturbance, with
saturation function).

Figure 16(a) shows the control output iq between [0 s, 1.5 s], and the particular time
period b, c, and d in Figure 16(a) is zoomed in as shown by Figures 16(b), 16(c), and 16(d),
respectively. Figure 16(b) shows the control output iq between [0 s, 0.02 s], during which the
PMSM motor just started; Figure 16(c) shows the control output iq between [0.195 s, 0.22 s] in
this time period, the position output reaches the desired reference value; Figure 16(d) shows
control output iq between [0.60 s, 0.66 s], in which the external disturbance load is withdrawn.
From Figures 16(b), 16(c), and 16(d), it can be seen that the control output iq of the proposed
FOSMC method is more smooth than that of the conventional SMC method; in other words,
the system chattering is eliminated to some degree by the FOSMC method.

7.3.4. Simulation of Dynamic Position Response with Sinusoidal Input Signal

In this simulation, the position reference is a sinusoidal trajectory with θref(t) = π sin(10t)rad,
the order of FOSMC is μ = 0.6, and the saturation function is used. A step disturbance load



Abstract and Applied Analysis 25

Table 1: PMSM specifications.

Features Values
Rated Voltage 300 V
Maximum Speed (ωm) 2400 rpm
Number of Poles (P) 4
Phase Resistance (Rs) 2.46Ω
Winding Inductance (Ls) 4.233 mh
Motor Inertia (J) 1.02 × 10−3 Kg·m2

Friction Coefficient (B) 1.0 × 10−4 N·m·s·rad−1

Rotor Flux Linkages ψf 0.214 Wb
Torque (Te) 5.25 Nm

Table 2: Controller Performance.

Controller Type Δe |Δe|2
SMC 0.8766 0.2899
FOSMC
μ = 0.35 575.6 90180
μ = 0.4 351.9 34470
μ = 0.45 0.4186 0.0669
μ = 0.5 0.2695 0.0413
μ = 0.55 0.3014 0.0409
μ = 0.6 0.328 0.0463
μ = 0.65 0.363 0.0549
μ = 0.7 0.4057 0.0675
μ = 0.75 0.4575 0.085
μ = 0.8 0.517 0.1078
μ = 0.85 0.5895 0.1384
μ = 0.9 0.6738 0.1781
μ = 0.95 0.7716 0.2292
μ = 0.99 0.8492 0.2745

of 3.1 Nm is applied at t = 0.3 s and vanished at t = 0.35 s, and another step disturbance
load of −3.1 Nm is applied at t = 0.75 s and vanished at t = 0.8 s. Figures 17(a) and 17(b)
show the position responses and position error, respectively. From the results, it is clear
that the dynamic tracking error of the proposed FOSMC method is smaller than that of the
conventional SMC method.

7.3.5. Controller Performance with Different Fractional Orders

We let the motor angle to track a sinusoidal trajectory θref(t) = π sin(10t)rad, and a pulse load
disturbance with 3.1 Nm amplitude, 50% pulse width, and 100 ms period is applied to the
PMSM the total running time is 5 seconds. Table 2 shows the controller performance of the
conventional SMC method and the proposed FOSMC method with different fractional-order
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Figure 22: Position error and error square with sine reference input (2.3 Nm pulse disturbance, with sign
function).

μ, and the saturation function is adopted in both methods. In Table 2, the error Δe and error
square |Δe|2 are defined as follows:

Δe =
∫
|θref(t) − θm(t)|dt,

|Δe|2 =
∫
|θref(t) − θm(t)|2dt.

(7.2)

From Table 2, it can be seen that when the fractional order of the proposed FOSMC method
is set to small value, the performance is poor, but once the order is got value between μ ∈
[0.45, 0.95], then the position error and error square of the proposed FOSMC method are
significantly smaller than those of conventional SMC method, especially when μ ∈ [0.5, 0.6].
This also means that the control performance of the FOSMC method can be improved by
selecting a proper fractional-order μ and designing a corresponding fractional-order sliding
surface.

7.3.6. Controller Performance with Different Fractional-Order and Different
Reference Input

In this simulation, we check the effectiveness of the proposed FOSMC method to another
position reference input and find the general regularity between the control performance and
the different fractional-order μ. Three position reference inputs, that is, sine wave, triangle
wave, and trapezoid wave, are considered and, respectively, shown in Figures 18, 19, and 20.
A pulse load disturbance with 50% pulse width, 100 ms period, and alternative amplitude of
3.1 Nm and 2.3 Nm is applied to the PMSM. The total running time is 5 seconds.

In the simulation, for each position reference input, the position error and error square
of the proposed FOSMC method and the convention SMC method are regarded as the control
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Figure 23: Position error and error square with sine reference input (3.1 Nm pulse disturbance, with
saturation function).
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Figure 24: Position error and error square with sine reference input (3.1 Nm pulse disturbance, with sign
function).

performance. The amplitude of the pulse load disturbance is set as 2.3 Nm and 3.1 Nm,
respectively, which means that the system is stable under the load disturbance of 2.3 Nm
and unstable under the load disturbance of 3.1 Nm. Moreover, under the two kinds of load
amplitude, the saturation function and sign function are considered, respectively.

For comparison convenience, in Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and
32, the red dot line represents the error or error square obtained by the conventional SMC
method, and it has no relationship with the fractional-order μ, while the green solid line is
the error and error square got by the proposed FOSMC method with different fractional-order
μ.
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Figure 25: Position error and error square with triangle reference input (2.3 Nm pulse disturbance, with
saturation function).
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Figure 26: Position error and error square with triangle reference input (2.3 Nm pulse disturbance, with
sign function).

From Figures 21–32, it is clear that when μ ∈ (0, μ∗), then the error or error square
of the FOSMC method is bigger than that of the conventional SMC method, but when μ ∈
[μ∗, 1), the error or error square of the FOSMC method is significantly smaller than that of
the conventional SMC method. Moreover, from Figures 21–32, one can see that the value of μ∗

is around 0.5; this also means that when the fractional-order μ ∈ [0.5, 1), then the proposed
FOSMC method outperforms the conventional SMC method.

In fact, from the simulation results shown from Figures 21–32, it can be seen that the
best selection range for μ is [0.5, 0.6].
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Figure 27: Position error and error square with triangle reference input (3.1 Nm pulse disturbance, with
saturation function).
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Figure 28: Position error and error square with triangle reference input (3.1 Nm pulse disturbance, with
sign function).

8. Guidance for Parameters Selection and Design of FOSMC

In the proposed FOSMC method, there are five parameters, that is, kp, kd, k, ε, and μ, which
need to be designed. From the above analyses and numerical simulation results, one can
select and design the five parameters through the following procedures:

(i) select a value in the range [0.5, 0.6] or [0.5, 1) for the fractional-order μ;

(ii) estimate the maximum load disturbance TL-max;

(iii) according to the TL-max and (5.21), compute the value range of parameter k and then
select a suitable value for k;
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Figure 29: Position error and error square with trapezoid reference input (2.3 Nm pulse disturbance, with
saturation function).
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Figure 30: Position error and error square with trapezoid reference input (2.3 Nm pulse disturbance, with
sign function).

(iv) because kd is the coefficient of fractional-order differentiation of position error x1, if
the value of kd is big, it will be too sensitive to the variation of position error x1 and
cause oscillation. In general, kd can be set as a suitable small value, for example, in
this paper kd = 1;

(v) with the maximum permissible position error x1 of the PMSM system and the para-
meter k designed by the procedure (iii), then parameters ε and kp can be designed
and selected according to (5.28).
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Figure 31: Position error and error square with trapezoid reference input (3.1 Nm pulse disturbance, with
saturation function).
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Figure 32: Position error and error square with trapezoid reference input (3.1 Nm pulse disturbance, with
sign function).

9. Conclusions

A new and systematic design of the fractional-order sliding mode controller (FOSMC) for
PMSM position control system is presented. By selecting a proper fractional-order μ and
designing a fractional-order sliding surface, the control performance such as control precision
and system robustness of the proposed FOSMC method is distinctly more excellent than that
of the conventional SMC method, because an extra fractional order, the real parameters μ,
is involved. The robustness of the proposed FOSMC method is analyzed in detail, and the
guidance for parameters selection and design is given. The numerical simulation results
demonstrate the effectiveness and robustness of the proposed FOSMC method.
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This paper is devoted to the study of abstract time-fractional equations of the following form:
Dαn
t u(t) +

∑n−1
i=1 AiD

αi
t u(t) = ADα

t u(t) + f(t), t > 0, u(k)(0) = uk , k = 0, ..., �αn� − 1, where n ∈ N \ {1},
A andA1, ..., An−1 are closed linear operators on a sequentially complete locally convex space E, 0 ≤
α1 < · · · < αn, 0 ≤ α < αn, f(t) is an E-valued function, and Dα

t denotes the Caputo fractional deri-
vative of order α (Bazhlekova (2001)). We introduce and systematically analyze various classes of
k-regularized (C1, C2)-existence and uniqueness (propagation) families, continuing in such a way
the researches raised in (de Laubenfels (1999, 1991), Kostić (Preprint), and Xiao and Liang (2003,
2002). The obtained results are illustrated with several examples.

1. Introduction and Preliminaries

A great number of abstract time-fractional equations appearing in engineering, mathematical
physics, and chemistry can be modeled through the abstract Cauchy problem

Dαn
t u(t) +

n−1∑

i=1

AiDαi
t u(t) = ADα

t u(t) + f(t), t > 0,

u(k)(0) = uk, k = 0, . . . , �αn� − 1.

(1.1)

For further information about the applications of fractional calculus, the interested reader
may consult the monographs by Baleanu et al. [1], Klafter et al. (Eds.) [2], Kilbas et al. [3],
Mainardi [4], Podlubny [5], and Samko et al. [6]; we also refer to the references [7–19].
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The aim of this paper is to develop some operator theoretical methods for solving the
abstract time-fractional equations of the form (1.1). We start by quoting some special cases.
The study of qualitative properties of the abstract Basset-Boussinesq-Oseen equation:

u′(t) −ADα
t u(t) + u(t) = f(t), t ≥ 0, u(0) = 0 (α ∈ (0, 1)), (1.2)

describing the unsteady motion of a particle accelerating in a viscous fluid under the action of
the gravity, has been initiated by Lizama and Prado in [17]. For further results concerning the
C-wellposedness of (1.2), [20, 21] are of importance. In [12], Karczewska and Lizama have
recently analyzed the following stochastic fractional oscillation equation:

u(t) +
∫ t

0
(t − s)[ADα

su(s) + u(s)]ds =W(t), t > 0, (1.3)

where 1 < α < 2, A is the generator of a bounded analytic C0-semigroup on a Hilbert space
H and W(t) denotes an H-valued Wiener process defined on a stochastic basis (Ω,F, P). The
theory of (a, k)-regularized resolvent families (cf. [12, Theorems 3.1 and 3.2]) can be applied
in the study of deterministic counterpart of (1.3) in integrated form:

u(t) +
∫ t

0

(t − s)1−α

Γ(2 − α) Au(s)ds +
∫ t

0
(t − s)u(s)ds =

∫ t

0
(t − s)f(s)ds, t > 0, (1.4)

where Γ(·) denotes the Gamma function and f ∈ L1
loc([0,∞) : E). Equation (1.4) generalizes

the so-called Bagley-Torvik equation, which can be obtained by plugging α = 3/2 in (1.4),
and models an oscillation process with fractional damping term (cf. [21] for the analysis of
C-wellposedness and perturbation properties of (1.4)). After differentiation, (1.4) becomes,
in some sense,

u′′(t) +ADα
t u(t) + u(t) = f(t), t ≥ 0; u(0) = u′(0) = 0. (1.5)

Notice also that the periodic solutions for the equation

Dαu(t) + BDβu(t) +Au(t) = f(t), t ∈ [0, 2π], (1.6)

where A and B are closed linear operators defined on a complex Banach space X, 0 ≤ β < α ≤
2, f ∈ C([0, 2π] : X) and Dα denotes the Liouville-Grünwald fractional derivative of order
α, have been studied by Keyantuo and Lizama in [13]. Observe also that Diethelm analyzed
in [22, Chapter 8] scalar-valued multiterm Caputo fractional differential equations. Consider,
for illustration purposes, the following abstract time-fractional equation:

Dα
t u(t) +Dβ

t u(t) = au(t), t > 0; u(0) = u0, u
′(0) = 0, (1.7)
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where 1 < α < 2, 0 < β < α and A = a is a certain complex constant. Applying the Laplace
transform (see, e.g., [10, (1.23)]), we get:

(
λα + λβ

)
ũ(λ) −

(
λα−1 + λβ−1

)
u0 = aũ(λ). (1.8)

Therefore,

ũ(λ) =
λα−1 + λβ−1

λα + λβ − au0. (1.9)

By (24) and (26) in [19], it readily follows that:

u(t) =
∞∑

n=0
(−1)nt(α−β)n

[
En+1
α,(α−β)n+1

(atα) + tα−βEn+1
α,(α−β)(n+1)+1

(atα)
]
u0, (1.10)

where

E
γ

α,β(z) =
∞∑

n=0

(
γ
)
nz

n

Γ
(
nα + β

)
n!

(1.11)

is the generalized Mittag-Leffler function. Here (γ)n = γ(γ +1) · · · (γ +n−1) (n ∈ N) and (γ)0 =
1. The formula (1.10) shows that it is quite complicated to apply Fourier multiplier theorems
to the abstract time-fractional equations of the form (1.1); for some basic references in this
direction, the reader may consult [16, 23]. Before going any further, we would also like to
observe that Atanacković et al. considered in [8], among many other authors, the following
fractional generalization of the telegraph equation:

τDα
t u(t) +Dβ

t u(t) = Duxx, x ∈ (0, l), t > 0, (1.12)

where 0 < β ≤ α ≤ 2, τ > 0 and D > 0. In that paper, solutions to signalling and Cauchy
problems in terms of a series and integral representation are given.

In the second section, we continue the analysis from our recent paper [15], where it
has been assumed that Aj = cjI for some complex constants cj ∈ C (1 ≤ j ≤ n − 1); here, and
in the sequel of the second section, I denotes the identity operator on E. We introduce and
clarify the basic structural properties of various types of k-regularized (C1, C2)-existence and
uniqueness propagation families. This is probably the best concept for the investigation of
integral solutions of the abstract time-fractional equation (1.1) with Aj ∈ L(E), 1 ≤ j ≤ n − 1.
If there exists an index j ∈ Nn−1 such thatAj /∈ L(E), then the vector-valued Laplace transform
cannot be so easily applied (cf. Theorems 2.10–2.11), which implies, however, that there exist
some limitations to the introduced classes of propagation families. The notion of a strong
solution of (1.1) is introduced in Definition 2.1, and the notions of strong and mild solutions
of inhomogeneous equations of the form (2.15) below are introduced in Definition 2.7. The
generalized variation of parameters formula is proved in Theorem 2.8.

On the other hand, the notions of C1-existence families and C2-uniqueness families
for the higher order abstract Cauchy problem (ACPn) were introduced by Xiao and Liang in
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[24, Definition 2.1]. In the third section, we will introduce more general classes of (local) k-
regularizedC1-existence families for (1.1), k-regularizedC2-uniqueness families for (1.1), and
k-regularized C-resolvent families for (1.1). Our intention in this section is to transfer results
of [24] to abstract time-fractional equations. In addition, various adjoint type theorems for
k-regularized C-resolvent families are considered in Theorem 3.6.

Throughout this paper, we will always assume that E is a Hausdorff sequentially com-
plete locally convex space over the field of complex numbers, SCLCS for short, and that the
abbreviation � stands for the fundamental system of seminorms which defines the topology
of E; in this place, we would like to mention in passing that the locally convex spaces are
very important to describe a set of mixed states in quantum theory [2]. The completeness of
E, if needed, will be explicitly emphasized. By L(E) is denoted the space of all continuous
linear mappings from E into E. Let B be the family of bounded subsets of E and let pB(T) :=
supx∈Bp(Tx), p ∈ �, B ∈ B, T ∈ L(E). Then pB(·) is a seminorm on L(E) and the system
(pB)(p,B)∈�×B induces the Hausdorff locally convex topology on L(E). Recall that L(E) is sequ-
entially complete provided that E is barreled. Henceforth A is a closed linear operator acting
on E, L(E) 	 C is an injective operator, and the convolution like mapping ∗ is given by
f ∗ g(t) :=

∫ t
0 f(t − s)g(s)ds. The domain, resolvent set and range of A are denoted by D(A),

ρ(A) and R(A), respectively. Since it makes no misunderstanding, we will identify A with its
graph. Recall that the C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{
λ ∈ C; λ −A is injective and (λ −A)−1C ∈ L(E)

}
. (1.13)

Suppose F is a linear subspace of E. Then the part of A in F, denoted by A|F , is a linear
operator defined by D(A|F) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F).

Define Ep := E/p−1(0) (p ∈ �). Then the norm of a class x + p−1(0) is defined by
||x + p−1(0)||Ep := p(x) (x ∈ E). The canonical mapping Ψp : E → Ep is continuous and the
completion of Ep under the norm || · ||Ep is denoted by Ep. Since no confusion seems likely, we
will also denote the norms onEp and L(Ep) (Ep and L(Ep)) by ||·||; L�(E) denotes the subspace
of L(E) which consists of those bounded linear operators T on E such that, for every p ∈ �,
there exists cp > 0 satisfying p(Tx) ≤ cpp(x), x ∈ E. If T ∈ L�(E) and p ∈ �, then the operator
Tp : Ep → Ep, defined by Tp(Ψp(x)) := Ψp(Tx), x ∈ E, belongs to L(Ep). This operator is
uniquely extensible to a bounded linear operator Tp on Ep, and the following holds: ||Tp|| =
||Tp||. The function πqp : Ep → Eq, defined by πqp(Ψp(x)) := Ψq(x), x ∈ E, is a continuous
homomorphism of Ep onto Eq, and extends therefore, to a continuous linear homomorphism
πqp of Ep onto Eq. The reader may consult [25] for the basic facts about projective limits of
Banach spaces (closed linear operators acting on Banach spaces) and their projective limits.
Recall, a closed linear operator A acting on E is said to be compartmentalized (w.r.t. �) if, for
every p ∈ �, Ap := {(Ψp(x),Ψp(Ax)) : x ∈ D(A)} is a function. Therefore, T ∈ L�(E) is a
compartmentalized operator.

Given s ∈ R in advance, set s� := sup{l ∈ Z : s ≥ l} and �s� := inf{l ∈ Z : s ≤ l}.
The principal branch is always used to take the powers. Set Nl := {1, . . . , l}, N

0
l := {0, 1, . . . , l},

0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0) and g0 := the Dirac δ-distribution. If γ ∈ (0, π], then we
define Σγ := {λ ∈ C : λ/= 0, | arg(λ)| < γ}. We refer the reader to [26] and references cited there
for the basic material concerning integration in sequentially complete locally convex spaces
and vector-valued analytic functions.
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Let α > 0, let β ∈ R, and let the Mittag-Leffler function Eα,β(z) be defined by Eα,β(z) :=∑∞
n=0 z

n/Γ(αn+β), z ∈ C. In this place, we assume that 1/Γ(αn+β) = 0 if αn+β ∈ −N0. Set, for
short,Eα(z) := Eα,1(z), z ∈ C. The Wright function Φγ(t) is defined by Φγ(t) := L−1(Eγ(−λ))(t),
t ≥ 0, where L−1 denotes the inverse Laplace transform. For further information concerning
Mittag-Leffler and Wright functions, we refer the reader to [10, Section 1.3].

The following definition has been recently introduced in [27].

Definition 1.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k /= 0, a ∈ L1
loc([0, τ)), a/= 0 and A is a closed

linear operator on E.

(i) Then it is said that A is a subgenerator of a (local, if τ < ∞) (a, k)-regularized (C1,
C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆ L(E) × L(E) if and only if
the mapping t �→ (R1(t)x,R2(t)x), t ∈ [0, τ) is continuous for every fixed x ∈ E and
if the following conditions hold:

(a) Ri(0) = k(0)Ci, i = 1, 2,

(b) C2 is injective,

(c)

A

∫ t

0
a(t − s)R1(s)xds = R1(t)x − k(t)C1x, t ∈ [0, τ), x ∈ E, (1.14)

∫ t

0
a(t − s)R2(s)Axds = R2(t)x − k(t)C2x, t ∈ [0, τ), x ∈ D(A). (1.15)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that A is a sub-
generator of a (local, if τ < ∞) (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) if
and only if R1(0) = k(0)C1 and (1.14) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that A is a sub-
generator of a (local, if τ <∞) (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
if and only if R2(0) = k(0)C2, C2 is injective and (1.15) holds.

It will be convenient to remind us of the following definitions from [14, 20, 26].

Definition 1.2. (i) Let 0 < τ ≤ ∞, k ∈ C([0, τ)), k /= 0 and let a ∈ L1
loc([0, τ)), a/= 0. A strongly

continuous operator family (R(t))t∈[0,τ) is called a (local, if τ < ∞) (a, k)-regularized C-
resolvent family having A as a subgenerator if and only if the following holds:

(a) R(t)A ⊆ AR(t), t ∈ [0, τ), R(0) = k(0)C and CA ⊆ AC,

(b) R(t)C = CR(t), t ∈ [0, τ),

(c) R(t)x = k(t)Cx +
∫ t

0 a(t − s)AR(s)xds, t ∈ [0, τ), x ∈ D(A),

(R(t))t∈[0,τ) is said to be nondegenerate if the condition R(t)x = 0, t ∈ [0, τ) implies
x = 0, and (R(t))t∈[0,τ) is said to be locally equicontinuous if, for every t ∈ (0, τ), the
family {R(s) : s ∈ [0, t]} is equicontinuous. In the case τ = ∞, (R(t))t≥0 is said to be
exponentially equicontinuous (equicontinuous) if there exists ω ∈ R (ω = 0) such
that the family {e−ωtR(t) : t ≥ 0} is equicontinuous.
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(ii) Let β ∈ (0, π] and let (R(t))t≥0 be an (a, k)-regularized C-resolvent family. Then
it is said that (R(t))t≥0 is an analytic (a, k)-regularized C-resolvent family of angle β, if there
exists a function R : Σβ → L(E) satisfying that, for every x ∈ E, the mapping z �→ R(z)x,
z ∈ Σβ is analytic as well as that

(a) R(t) = R(t), t > 0 and

(b) limz→ 0,z∈ΣγR(z)x = k(0)Cx for all γ ∈ (0, β) and x ∈ E,

(R(t))t≥0 is said to be an exponentially equicontinuous, analytic (a, k)-regularized
C-resolvent family, respectively, equicontinuous analytic (a, k)-regularized C-
resolvent family of angle β, if for every γ ∈ (0, β), there exists ωγ ≥ 0, respectively,
ωγ = 0, such that the set {e−ωγ |z|R(z) : z ∈ Σγ} is equicontinuous. Since there is no
risk for confusion, we will identify in the sequel R(·) and R(·).

Definition 1.3. (i) Let k ∈ C([0,∞)) and a ∈ L1
loc([0,∞)). Suppose that (R(t))t≥0 is a global

(a, k)-regularized C-resolvent family having A as a subgenerator. Then it is said that (R(t))t≥0
is a quasi-exponentially equicontinuous (q-exponentially equicontinuous, for short) (a, k)-
regularized C-resolvent family having A as subgenerator if and only if, for every p ∈ �, there
exist Mp ≥ 1, ωp ≥ 0 and qp ∈ � such that:

p(R(t)x) ≤Mpe
ωptqp(x), t ≥ 0, x ∈ E. (1.16)

(ii) Let β ∈ (0, π], and let A be a subgenerator of an analytic (a, k)-regularized C-
resolvent family (R(t))t≥0 of angle β. Then it is said that (R(t))t≥0 is a q-exponentially equi-
continuous, analytic (a, k)-regularized C-resolvent family of angle β, if for every p ∈ � and
ε ∈ (0, β), there exist Mp,ε ≥ 1, ωp,ε ≥ 0 and qp,ε ∈ � such that

p(R(z)x) ≤Mp,εe
ωp,ε |z|qp,ε(x), z ∈ Σβ−ε, x ∈ E. (1.17)

For a global (a, k)-regularized (C1, C2)-existence and uniqueness family (R1(t),
R2(t))t≥0 having A as subgenerator, it is said that is locally equicontinuous (exponentially
equicontinuous, (q-)exponentially equicontinuous, analytic, (q-)exponentially analytic,. . .) if
and only if both (R1(t))t≥0 and (R2(t))t≥0 are.

The reader may consult [26, Theorems 2.7 and 2.8] for the basic Hille-Yosida type the-
orems for exponentially equicontinuous (a, k)-regularized C-resolvent families. The charac-
terizations of exponentially equicontinuous, analytic (a, k)-regularized C-resolvent families
in terms of spectral properties of their subgenerators are given in [26, Theorems 3.6 and
3.7]. For further information concerning q-exponentially equicontinuous (a, k)-regularized
C-resolvent families, we refer the reader to [20, 25].

Henceforth, we assume that k, k1, k2, . . . are scalar-valued kernels and that a/= 0 in
L1

loc([0, τ)). All considered operator families will be nondegenerate.
The following conditions will be used in the sequel:

(H1) A is densely defined and (R(t))t∈[0,τ) is locally equicontinuous.

(H2) ρ(A)/= ∅.

(H3) ρC(A)/= ∅, R(C) = E and (R(t))t∈[0,τ) is locally equicontinuous.

(H3)’ ρC(A)/= ∅ and C−1AC = A.



Abstract and Applied Analysis 7

(H4) A is densely defined and (R(t))t∈[0,τ) is locally equicontinuous, or ρC(A)/= ∅.

(H5) (H1) ∨ (H2) ∨ (H3) ∨ (H3)
′
.

(P1) k(t) is Laplace transformable, that is, it is locally integrable on [0,∞) and there
exists β ∈ R so that k̃(λ) = L(k)(λ) := limb→∞

∫b
0 e

−λtk(t)dt :=
∫∞

0 e−λtk(t)dt exists
for all λ ∈ C with �λ > β. Put abs(k) := inf{�λ : k̃(λ) exists}.

2. The Main Structural Properties of k-Regularized (C1, C2)-Existence
and Uniqueness Propagation Families

In this section, we will always assume that E is a SCLCS, A and A1, . . . , An−1 are closed linear
operators acting on E, n ∈ N \ {1}, 0 ≤ α1 < · · · < αn and 0 ≤ α < αn. Our intention is to clarify
the most important results concerning the C-wellposedness of (1.1). Set mj := �αj�, 1 ≤ j ≤ n,
m := m0 := �α�, A0 := A and α0 := α.

Definition 2.1. A function u ∈ Cmn−1([0,∞) : E) is called a (strong) solution of (1.1) if and only
if AiD

αi
t u ∈ C([0,∞) : E) for 0 ≤ i ≤ n − 1, gmn−αn ∗ (u −∑mn−1

k=0 ukgk+1) ∈ Cmn([0,∞) : E) and
(1.1) holds. The abstract Cauchy problem (1.1) is said to be (strongly) C-wellposed if:

(i) for every u0, . . . , umn−1 ∈ ⋂0≤j≤n−1 C(D(Aj)), there exists a unique solution u(t;u0,
. . . , umn−1) of (1.1);

(ii) for every T > 0 and q ∈ �, there exist c > 0 and r ∈ � such that, for every u0,
. . . , umn−1 ∈ ⋂0≤j≤n−1 C(D(Aj)), the following holds:

q(u(t;u0, . . . , umn−1)) ≤ c
mn−1∑

k=0

r
(
C−1uk

)
, t ∈ [0, T]. (2.1)

In the case of abstract Cauchy problem (ACPn), the definition of C-wellposedness
introduced above is slightly different from the corresponding definition introduced by Xiao
and Liang [28, Definition 5.2, page 116] in the Banach space setting (cf. also [28, Defini-
tion 1.2, page 46] for the caseC = I). Recall that the notion of a strongC-propagation family is
important in the study of existence and uniqueness of strong solutions of the abstract Cauchy
problem (ACPn); compare [28, Section 3.5, pages 115–130] for further information in this
direction. Suppose now that u(t) ≡ u(t;u0, . . . , umn−1), t ≥ 0 is a strong solution of (1.1), with
f(t) ≡ 0 and initial values u0, . . . , umn−1 ∈ R(C). Convoluting both sides of (1.1) with gαn(t),
and making use of the equality [10, (1.21)], it readily follows that u(t), t ≥ 0 satisfies the
following:

u(·) −
mn−1∑

k=0

ukgk+1(·) +
n−1∑

j=1

gαn−αj ∗Aj

⎡

⎣u(·) −
mj−1∑

k=0

ukgk+1(·)
⎤

⎦

= gαn−α ∗A
[

u(·) −
m−1∑

k=0

ukgk+1(·)
]

.

(2.2)

In the sequel of this section, we will primarily consider various types of solutions of the inte-
gral equation (2.2).
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Given i ∈ N
0
mn−1 in advance, setDi := {j ∈ Nn−1 : mj−1 ≥ i}. Then it is clear thatDmn−1 ⊆

· · · ⊆ D0. Plugging uj = 0, 0 ≤ j ≤ mn − 1, j /= i, in (2.2), one gets:

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]

+
∑

j∈Di

gαn−αj ∗Aj

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]

+
∑

j∈Nn−1\Di

[
gαn−αj ∗Aju(·; 0, . . . , ui, . . . , 0)

]

=

{
gαn−α ∗Au(·; 0, . . . , ui, . . . , 0), m − 1 < i,
gαn−α ∗A

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]
, m − 1 ≥ i,

(2.3)

where ui appears in the ith place (0 ≤ i ≤ mn − 1) starting from 0. Suppose now 0 < τ ≤ ∞,
0/=K ∈ L1

loc([0, τ)) and k(t) =
∫ t

0 K(s)ds, t ∈ [0, τ). Denote Ri(t)C−1ui = (K ∗ u(·; 0, . . . ,
ui, . . . , 0))(t), t ∈ [0, τ), 0 ≤ i ≤ mn − 1. Convoluting formally both sides of (2.3) with K(t),
t ∈ [0, τ), one obtains that, for 0 ≤ i ≤ mn − 1:

[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]
+
∑

j∈Di

gαn−αj ∗Aj

[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]

+
∑

j∈Nn−1\Di

[
gαn−αj ∗AjRi(·)C−1ui

]

=

{(
gαn−α ∗ARi

)
(·)C−1ui, m − 1 < i,

gαn−α ∗A
[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]
, m − 1 ≥ i.

(2.4)

Motivated by the above analysis, we introduce the following definition.

Definition 2.2. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C, C1, C2 ∈ L(E), C and C2 are injective. A
sequence ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) of strongly continuous operator families in L(E)
is called a (local, if τ <∞):

(i) k-regularized C1-existence propagation family for (1.1) if and only if Ri(0) = (k ∗
gi)(0)C1 and the following holds:

[
Ri(·)x − (k ∗ gi

)
(·)C1x

]
+
∑

j∈Di

Aj

[
gαn−αj ∗

(
Ri(·)x − (k ∗ gi

)
(·)C1x

)]

+
∑

j∈Nn−1\Di

Aj

(
gαn−αj ∗ Ri

)
(·)x

=

{
A
(
gαn−α ∗ Ri

)
(·)x, m − 1 < i, x ∈ E,

A
[
gαn−α ∗

(
Ri(·)x − (k ∗ gi

)
(·)C1x

)]
(·), m − 1 ≥ i, x ∈ E,

(2.5)

for any i = 0, . . . , mn − 1.
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(ii) k-regularized C2-uniqueness propagation family for (1.1) if and only if Ri(0) = (k ∗
gi)(0)C2 and

[
Ri(·)x − (k ∗ gi

)
(·)C2x

]
+
∑

j∈Di

gαn−αj ∗
[
Ri(·)Ajx − (k ∗ gi

)
(·)C2Ajx

]

+
∑

j∈Nn−1\Di

(
gαn−αj ∗ Ri(·)Ajx

)
(·)

=

{(
gαn−α ∗ Ri(·)Ax

)
(·), m − 1 < i,

gαn−α ∗
[
Ri(·)Ax − (k ∗ gi

)
(·)C2Ax

]
(·), m − 1 ≥ i,

(2.6)

for any x ∈ ⋂0≤j≤n−1 D(Aj) and i ∈ N
0
mn−1.

(iii) k-regularized C-resolvent propagation family for (1.1), in short k-regularized C-
propagation family for (1.1), if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a k-regularized
C-uniqueness propagation family for (1.1), and if for every t ∈ [0, τ), i ∈ N

0
mn−1 and

j ∈ N
0
n−1, one has Ri(t)Aj ⊆ AjRi(t), Ri(t)C = CRi(t) and CAj ⊆ AjC.

The above classes of propagation families can be defined by purely algebraic equations
(cf. [11, 15, 27]). We will not go into further details about this topic here.

As indicated before, we will consider only nondegenerate k-regularized C-resol-
vent propagation families for (1.1). In case k(t) = gζ+1(t), where ζ ≥ 0, it is also said that
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a ζ-times integrated C-resolvent propagation family for
(1.1); 0-times integrated C-resolvent propagation family for (1.1) is simply called C-resolvent
propagation family for (1.1). For a k-regularized (C1, C2)-existence and uniqueness family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)), it is said that is locally equicontinuous (exponentially equi-
continuous, (q-)exponentially equicontinuous, analytic, (q-)exponentially analytic,. . .) if and
only if all single operator families (R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ) are. The above termi-
nological agreements and abbreviations can be simply understood for the classes of k-
regularized C1-existence propagation families and k-regularized C2-uniqueness propagation
families. The class of k-regularized (C1, C2)-existence and uniqueness propagation families
for (1.1) can be also introduced (cf. Definitions 1.1 and 3.1 below).

In case that Aj = cjI, where cj ∈ C for 1 ≤ j ≤ n − 1, it is also said that the operator
A is a subgenerator of ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)). Now we would like to notice
the following: if A is a subgenerator of a k-regularized C-resolvent propagation family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) for (1.1), then, in general, there do not exist ai ∈ L1

loc([0, τ)),
i ∈ N

0
mn−1 and ki ∈ C([0, τ)) such that (Ri(t))t∈[0,τ) is an (ai, ki)-regularized C-resolvent

family with subgenerator A; the same observation holds for the classes of k-regularized
C1-existence propagation families and k-regularized C2-uniqueness propagation families.
Despite this fact, the structural results for k-regularized C-resolvent propagation families can
be derived by using appropriate modifications of the proofs of corresponding results for
(a, k)-regularized C-resolvent families. Furthermore, these results can be clarified for any
single operator family (Ri(t))t∈[0,τ) of the tuple ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)).



10 Abstract and Applied Analysis

Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a k-regularized C-resolvent propagation fam-
ily with subgenerator A. Then one can simply prove that the validity of condition (H5)
implies the following functional equation:

[
Ri(·)x − (k ∗ gi

)
(·)Cx] +

n−1∑

j=1

cjgαn−αj ∗
[
Ri(·)x − (k ∗ gi

)
(·)Cx]

+
∑

j∈Nn−1\Di

cj
[
gαn−αj+i ∗ k

]
(·)Cx

=

{
A
[
gαn−α ∗ Ri

]
(·)x, m − 1 < i, x ∈ E,

A
[
gαn−α ∗

(
Ri(·)x − (k ∗ gi

)
(·)Cx)], m − 1 ≥ i, x ∈ E,

(2.7)

for any i = 0, . . . , mn − 1. The set consisted of all subgenerators of ((R0(t))t∈[0,τ), . . . ,
(Rmn−1(t))t∈[0,τ)), denoted by χ(R), need not to be finite. Notice that the supposition A ∈
χ(R) obviously implies C−1AC ∈ χ(R). The integral generator Â of ((R0(t))t∈[0,τ), . . . ,
(Rmn−1(t))t∈[0,τ)) is defined as the set of all pairs (x, y) ∈ E × E such that, for every i =
0, . . . , mn − 1 and t ∈ [0, τ), the following holds:

[
Ri(·)x − (k ∗ gi

)
(·)Cx] +

n−1∑

j=1

cjgαn−αj ∗
[
Ri(·)x − (k ∗ gi

)
(·)Cx]

+
∑

j∈Nn−1\Di

cj
[
gαn−αj+i ∗ k

]
(·)Cx

=

{[
gαn−α ∗ Ri

]
(·)y, m − 1 < i,

gαn−α ∗
[
Ri(·)y − (k ∗ gi

)
(·)Cy], m − 1 ≥ i.

(2.8)

It is a linear operator on E which extends any subgenerator A ∈ χ(R) and satisfies Â =
C−1ÂC. We have the following.

(i) Ri(t)(λ − A)−1C = (λ − A)−1CRi(t), t ∈ [0, τ), provided A ∈ χ(R), λ ∈ ρC(A) and
0 ≤ i ≤ mn − 1.

(ii) Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be locally equicontinuous. Then:

(a) Â is a closed linear operator.
(b) Â ∈ χ(R), if Ri(t)Ri(s) = Ri(s)Ri(t), 0 ≤ t, s < τ , i ∈ N

0
mn−1.

(c) Â = C−1AC, if A ∈ χ(R) and (H5) holds. Furthermore, the condition (H5) can
be replaced by (2.7).

(iii) Let {A,B} ⊆ χ(R). Then Ax = Bx, x ∈ D(A) ∩ D(B), and A ⊆ B ⇔ D(A) ⊆ D(B).
Assume that (2.7) holds for A, and that (2.7) holds for A replaced by B. Then we
have the following:

(a) C−1AC = C−1BC and C(D(A)) ⊆ D(B).
(b) A and B have the same eigenvalues.
(c) A ⊆ B ⇒ ρC(A) ⊆ ρC(B).



Abstract and Applied Analysis 11

Albeit the similar assertions can be considered in general case, we will omit the corresponding
discussion even in the case that Aj ∈ L(E) for 1 ≤ j ≤ n − 1.

Proposition 2.3. Let i ∈ N
0
mn−1, and let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a locally equicon-

tinuous k-regularized C-resolvent propagation family for (1.1). If (2.5) holds with C1 = C, then the
following holds:

(i) the equality

Ri(t)Ri(s) = Ri(s)Ri(t), 0 ≤ t, s < τ (2.9)

holds providedm − 1 < i and the following condition:

(�) any of the assumptions f(t) +
∑

j∈Di
Aj(gαn−αj ∗f)(t) = 0, t ∈ [0, τ), orA(gαn−α ∗f)

(t) = 0, for some f ∈ C([0, τ) : E), implies f(t) = 0, t ∈ [0, τ);

(ii) the equality (2.9) holds providedm − 1 ≥ i, Nn−1 \Di /= ∅, and the following condition:

(��) if∑j∈Nn−1\Di
Aj(gαn−αj ∗ f)(t) = 0, t ∈ [0, τ), for some f ∈ C([0, τ) : E), then f(t) =

0, t ∈ [0, τ).

Proof. Let x ∈ E and s ∈ [0, τ) be fixed. Define ui(t) := Ri(t)Ri(s)x − Ri(s)Ri(t)x, t ∈ [0, τ).
Using (2.5), it is not difficult to prove that

A

∫ t

0
gαn−α(t − r)u(r)dr = u(t) +

n−1∑

j=1

∫ t

0
Aj

(
gαn−αj ∗ u

)
(r)dr = 0, t ∈ [0, τ). (2.10)

Let m − 1 < i. Convoluting both sides of (2.10) with Ri(·), we easily infer that u(t) +∑n−1
j=1 Aj(gαn−αj ∗ u)(t) = 0, t ∈ [0, τ) and A(gαn−α ∗ u)(t) = 0, t ∈ [0, τ). Now the equality

(2.9) follows from (�). The proof is quite similar in the case m − 1 ≥ i.

Remark 2.4. The equations (1.1) with α = 0 are much easier to deal with, since in this case,
m = 0 and m − 1 < i for all i ∈ N

0
mn−1. In general, (1.1) with α > 0 cannot be reduced to an

equivalent equation of the previously considered form.

Proposition 2.5. Suppose ((Rj,0(t))t∈[0,τ), . . . , (Rj,mn−1(t))t∈[0,τ)) is a locally equicontinuous kj-
regularized C-resolvent propagation family for (1.1), j = 1, 2, and 0 ≤ i ≤ mn − 1. Then we have
the following.

(i) Ifm − 1 < i and (�) holds, then

(k1 ∗ R2,i)(t)x = (k2 ∗ R1,i)(t)x, x ∈
n−1⋂

j=0

D
(
Aj

)
, t ∈ [0, τ). (2.11)



12 Abstract and Applied Analysis

If, additionally,

n−1⋂

j=0

D
(
Aj

)
is dense in E, (2.12)

then (2.11) holds for all x ∈ E.
(ii) The equality (2.11) holds providedm−1 ≥ i, Nn−1 \Di /= ∅ and (��); assuming additionally

(2.12), we have the validity of (2.11) for all x ∈ E.

Proof. We will only prove the second part of proposition. Let x ∈ ⋂n−1
j=0 D(Aj). Then the

functional equation of (Rj,i(t))t∈[0,τ) (j = 1, 2) implies:

[(
k2 ∗ gi

) ∗ (R1,i(·)x − (k1 ∗ gi
)
(·)Cx)](·)

=

⎧
⎨

⎩
R2,i(·) +

∑

j∈Di

gαn−αj ∗
[
R2,i(·)Aj −

(
k ∗ gi

)
(·)CAj

]

+
∑

j/∈Di

gαn−αj ∗ R2,i(·)Aj − gαn−α ∗
[
R2,i(·)A − (k ∗ gi

)
(·)CA]

⎫
⎬

⎭

∗ [R1,i(·)x − (k ∗ gi
)
(·)Cx](·)

=

⎧
⎨

⎩
R2,i(·) +

∑

j∈Di

gαn−αj ∗
[
R2,i(·)Aj −

(
k ∗ gi

)
(·)CAj

]
+
∑

j/∈Di

gαn−αj ∗ R2,i(·)Aj

⎫
⎬

⎭

∗ [R1,i(·) −
(
k1 ∗ gi

)
(·)Cx](·)

− [R2,i(·)x − (k2 ∗ gi
)
(·)C] ∗A(gαn−α ∗

[
R1,i(·)x − (k1 ∗ gi

)
(·)Cx])(·),

(2.13)

which yields after a tedious computation:

∑

j/∈Di

gαn−αj ∗Aj[(k2 ∗ R1,i)(·) − (k1 ∗ R2,i)(·)] ≡ 0. (2.14)

In view of (��), the above equality shows that (k2 ∗ R1,i)(t)x = (k1 ∗ R2,i)(t)x, t ∈ [0, τ). It can
be simply verified that the condition (2.12) implies that (2.9) holds for all x ∈ E.

Proposition 2.6. Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a locally equicontinuous k-regularized
C1-existence propagation family (k-regularized C2-unique-ness propagation family, k-regularized C-
resolvent propagation family) for (1.1), and let b ∈ L1

loc([0, τ)) be a kernel. Then the tuple(((b ∗
R0)(t))t∈[0,τ), . . . , ((b ∗ Rmn−1)(t))t∈[0,τ)) is a locally equicontinuous (k ∗ b)-regularized C1-existence
propagation family ((k ∗ b)-regularized C2-uniqueness propagation family, (k ∗ b)-regularized C-
resolvent propagation family) for (1.1).
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Suppose now E is complete, (1.1) is C-wellposed,
⋂n−1
j=0 D(Aj) is dense in E and 0 ≤

i ≤ mn − 1. Set Ri(t)x := u(t; 0, . . . , Cx, . . . , 0)(t), t ≥ 0, x ∈ ⋂n−1
j=0 D(Aj), where 0 ≤ i ≤ mn − 1

and Cx appears in the ith place in the preceding expression. Since we have assumed that E is
complete, the operator Ri(t) (t ≥ 0) can be uniquely extended (cf. also (ii) of Definition 2.1) to
a bounded linear operator on E. It can be easily proved that ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ))
is a locally equicontinuous C-uniqueness propagation family for (1.1), and that the
assumption CAj ⊆ AjC, j ∈ N

0
n−1 implies Ri(t)C = CRi(t), t ≥ 0. In case that Aj = cjI,

where cj ∈ C for 1 ≤ j ≤ n − 1, one can apply the arguments given in the proof of [29,
Proposition 1.1, page 32] in order to see that ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a locally
equicontinuous C-resolvent propagation family for (1.1). Regrettably, it is not clear how one
can prove in general case that Ri(t)Aj ⊆ AjRi(t), j ∈ N

0
n−1, t ≥ 0.

The following definition also appears in [15].

Definition 2.7. Let T > 0 and f ∈ C([0, T] : E). Consider the following inhomogeneous equa-
tion:

u(t) +
n−1∑

j=1

(
gαn−αj ∗Aju

)
(t) = f(t) +

(
gαn−α ∗Au

)
(t), t ∈ [0, T]. (2.15)

A function u ∈ C([0, T] : E) is said to be

(i) a strong solution of (2.15) if and only if Aju ∈ C([0, T] : E), j ∈ N
0
n−1 and (2.15)

holds for every t ∈ [0, T];

(ii) a mild solution of (2.15) if and only if (gαn−αj ∗u)(t) ∈ D(Aj), t ∈ [0, T], j ∈ N
0
n−1 and

u(t) +
n−1∑

j=1

Aj

(
gαn−αj ∗ u

)
(t) = f(t) +A

(
gαn−α ∗ u

)
(t), t ∈ [0, T]. (2.16)

It is clear that every strong solution of (2.15) is also a mild solution of the same prob-
lem. The converse statement is not true, in general. One can similarly define the notion of a
strong (mild) solution of the problem (2.2).

Let 0 < τ ≤ ∞, and let T ∈ (0, τ). Then the following holds:

(a) if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a C1-existence propagation family for (1.1),
then the function u(t) =

∑mn−1
i=0 Ri(t)xi, t ∈ [0, T], is a mild solution of (2.2) with ui =

C1xi for 0 ≤ i ≤ mn − 1;

(b) if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is aC2-uniqueness propagation family for (1.1),
and AjRi(t)x = Ri(t)Ajx, t ∈ [0, T], x ∈ ⋂n−1

j=0 D(Aj), i ∈ N
0
mn−1, j ∈ N

0
n−1, then the

function u(t) =
∑mn−1

i=0 Ri(t)C−1
2 ui, t ∈ [0, T], is a strong solution of (2.2), provided

ui ∈ C2(
⋂n−1
j=0 D(Aj)) for 0 ≤ i ≤ mn − 1.
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Theorem 2.8. Suppose ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a locally equicontinuous k-regularized
C2-uniqueness propagation family for (1.1), (2.5) holds, T ∈ (0, τ) and f ∈ C([0, T] : E). Then the
following holds:

(i) ifm − 1 < i, then any strong solution u(t) of (2.15) satisfies the equality:

(
Ri ∗ f

)
(t) =

(
k ∗ gi ∗ C2u

)
(t) +

∑

j∈Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), (2.17)

for any t ∈ [0, T]. Therefore, there is at most one strong (mild) solution for (2.15), provided
that (�) holds,

(ii) ifm − 1 ≥ i, then any strong solution u(t) of (2.15) satisfies the equality:

(
Ri ∗ f

)
(t) = −

∑

j∈Nn−1\Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), t ∈ [0, T]. (2.18)

Therefore, there is at most one strong (mild) solution for (2.15), provided that Nn−1 \Di /= ∅
and that (��) holds.

Proof. We will only prove the second part of theorem. Let m−1 ≥ i. Taking into account (2.6),
we get:

[
Ri −

(
k ∗ giC

)] ∗ f =
[
Ri −

(
k ∗ giC

)] ∗
⎧
⎨

⎩
u +

n−1∑

j=1

(
gαn−αj ∗Aju

)
− (gαn−α ∗Au

)
⎫
⎬

⎭

=
[
Ri −

(
k ∗ giC

)] ∗
⎛

⎝u +
n−1∑

j=1

(
gαn−αj ∗Aju

)
⎞

⎠

−
⎧
⎨

⎩
[
Ri −

(
k ∗ giC

)]
+
∑

j∈Di

[
gαn−αj ∗

(
Ri(·)Ajx − (k ∗ gi

)
(·)C2Ajx

)]

+
∑

j/∈Di

(
gαn−αj ∗ Ri(·)Ajx

)
⎫
⎬

⎭
∗ u

= −
∑

Nn−1\Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), t ∈ [0, T].

(2.19)

This implies the uniqueness of strong solutions to (2.15), provided that Nn−1 \Di /= ∅ and that
(��) holds. The uniqueness of mild solutions in the above case follows from the fact that,
for every such a solution u(t), there exists a sufficiently large ζ > 0 such that the function
(gζ ∗ u)(·) is a strong solution of (2.15), with f(·) replaced by (gζ ∗ f)(·) therein.

If ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a (local) k-regularized C-resolvent propagation fam-
ily for (1.1), then Theorem 2.8 shows that there exist certain relations between single operator
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families (R0(t))t≥0, . . ., and (Rmn−1(t))t≥0 (cf. also [15] and [28, page 116]). It would take too
long to analyze such relations in detail.

The subsequent theorems can be shown by modifying the arguments given in the
proof of [30, Theorem 2.2.1].

Theorem 2.9. Suppose k(t) satisfies (P1), ω ≥ max(0, abs(k)), (Ri(t))t≥0 is strongly continuous,
and the family {e−ωtRi(t) : t ≥ 0} is equicontinuous, provided 0 ≤ i ≤ mn − 1. LetA be a closed linear
operator on E, let C1, C2 ∈ L(E), and let C2 be injective. Set Pλ := λαn−α +

∑n−1
j=1 λ

αj−αAj − A,
λ ∈ C \ {0}.

(i) Suppose Aj ∈ L(E), j ∈ Nn−1. Then ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a global k-regula-
rized C1-existence propagation family for (1.1) if and only if the following conditions hold.

(a) The equality

Pλ

∫∞

0
e−λtRi(t)xdt = λαn−α−ik̃(λ)C1x +

∑

j∈Di

λαj−α−ik̃(λ)AjC1x, (2.20)

holds provided x ∈ E, i ∈ N
0
mn−1,m − 1 < i and �λ > ω.

(b) The equality

Pλ

∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C1x

]
dt = −

∑

j∈Nn−1\Di

λαj−α−ik̃(λ)AjC1x, (2.21)

holds provided x ∈ E, i ∈ N
0
mn−1,m − 1 ≥ i and �λ > ω.

(ii) Suppose Ri(0) = (k∗gi)(0)C2x, x ∈ E\⋂0≤j≤n−1 D(Aj), i ∈ N
0
mn−1. Then ((R0(t))t≥0, . . . ,

(Rmn−1(t))t≥0) is a global k-regularized C2-uniqueness propagation family for (1.1) if and
only if, for every λ ∈ C with �λ > ω, and for every x ∈ ⋂0≤j≤n−1 D(Aj), the following
equality holds:

∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C2x

]
dt

+
∑

j∈Di

λαj−αn
∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C2Ajx

]
dt

+
∑

j∈Nn−1\Di

λαj−αn
∫∞

0
e−λtRi(t)Ajx dt

=

{
λα−αn

∫∞
0 e−λtRi(t)Ax dt, m − 1 < i,

λα−αn
∫∞

0 e−λt
[
Ri(t)Ax − (k ∗ gi

)
(t)C2Ax

]
dt, m − 1 ≥ i.

(2.22)

Theorem 2.10. Suppose k(t) satisfies (P1), ω ≥ max(0, abs(k)), (Ri(t))t≥0 is strongly continuous,
and the family {e−ωtRi(t) : t ≥ 0} is equicontinuous, provided 0 ≤ i ≤ mn − 1. Let CAj ⊆ AjC,
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j ∈ N
0
n−1,Aj ∈ L(E), j ∈ Nn−1,AiAj = AjAi, i, j ∈ Nn−1 andAjA ⊆ AAj , j ∈ Nn−1. Assume, addi-

tionally, that the operator λαn−i +
∑

j∈Di
λαj−iAj is injective for every i ∈ N

0
mn−1 withm− 1 < i and for

every λ ∈ C with �λ > ω and k̃(λ)/= 0, and that the operator
∑

j∈Nn−1\Di
λαj−iAj is injective for every

i ∈ N
0
mn−1 with m − 1 ≥ i and for every λ ∈ C with �λ > ω and k̃(λ)/= 0. Then ((R0(t))t≥0, . . . ,

(Rmn−1(t))t≥0) is a global k-regularized C-resolvent propagation family for (1.1), and (2.5) holds, if
and only if the equalities (2.20)-(2.21) are fulfilled.

Keeping in mind Theorem 2.10, one can simply clarify the most important Hille-Yosida
type theorems for exponentially equicontinuous k-regularized C-resolvent propagation
families (cf. also [15] and [26, Theorem 2.8] for further information in this direction). Notice
also that the preceding theorem can be slightly reformulated for k-regularized (C1, C2)-
existence and uniqueness resolvent propagation families.

The analytical properties of k-regularized C-resolvent propagation families are stated
in the following two theorems whose proofs are omitted (cf. [14, Theorems 2.16-2.17] and
[26, Lemma 3.3, Theorems 3.4, 3.6, and 3.7]).

Theorem 2.11. Suppose β ∈ (0, π/2], ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is an analytic k-regularized
C-resolvent propagation family for (1.1), k(t) satisfies (P1), (2.5) holds, and k̃(λ) can be analytically
continued to a function k̂ : ω + Σ(π/2)+β → C, where ω ≥ max(0, abs(k)). Suppose CAj ⊆ AjC,
j ∈ N

0
n−1, Aj ∈ L(E), j ∈ Nn−1, AiAj = AjAi, i, j ∈ Nn−1 and AjA ⊆ AAj , j ∈ Nn−1. Let the family

{
e−ωzRi(z) : z ∈ Σγ

}
be equicontinuous, provided i ∈ N

0
mn−1 and γ ∈ (0, β), (2.23)

and let the set

{
(λ −ω)k̂(λ)λ−i : λ ∈ ω + Σ(π/2)+γ

}
(2.24)

be bounded provided γ ∈ (0, β) andm − 1 ≥ i. Set

Ni :=

⎧
⎨

⎩
λ ∈ ω + Σ(π/2)+β : k̂(λ)

⎛

⎝λαn +
∑

j∈Di

λαjAj

⎞

⎠ is injective

⎫
⎬

⎭
, (2.25)

providedm − 1 < i, and

Ni :=

⎧
⎨

⎩
λ ∈ ω + Σ(π/2)+β : k̂(λ)

⎛

⎝λαn +
∑

j∈Nn−1\Di

λαjAj

⎞

⎠ is injective

⎫
⎬

⎭
, (2.26)

providedm − 1 ≥ i. SupposeNi is an open connected subset of C, and the setNi ∩ {λ ∈ C : �λ > ω}
has a limit point in {λ ∈ C : �λ > ω}, for any i ∈ N

0
mn−1. Then the operator Pλ is injective for every

λ ∈Ni and i ∈ N
0
mn−1,

lim
λ→+∞,λ∈Ni

λk̃(λ)P−1
λ

⎛

⎝λαn−α−i +
∑

j∈Di

λαj−α−iAj

⎞

⎠Cx =
(
k ∗ gi

)
(0)Cx, (2.27)
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providedm − 1 < i and x ∈ E, and

lim
λ→+∞,λ∈Ni

λk̃(λ)P−1
λ

∑

j∈Nn−1\Di

λαj−α−iAjCx = 0, (2.28)

providedm − 1 ≥ i and x ∈ E. Suppose, additionally, that there exists μ ∈ C such that P−1
μ C ∈ L(E).

Then the family

⎧
⎪⎨

⎪⎩
(λ −ω)k̂(λ)

⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1

×
⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠ : λ ∈Ni ∩
(
ω + Σ(π/2)+γ

)
⎫
⎬

⎭
is equicontinuous,

(2.29)

providedm − 1 < i and γ ∈ (0, β), respectively, the family

⎧
⎪⎨

⎪⎩
(λ −ω)k̂(λ)

⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1
∑

j∈Nn−1\Di

λαj−α−iAjC

: λ ∈ Ni ∩
(
ω + Σ(π/2)+γ

)

⎫
⎪⎬

⎪⎭
is equicontinuous,

(2.30)

providedm − 1 ≥ i and γ ∈ (0, β), the mapping

λ �−→
⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠x, (2.31)

defined for λ ∈Ni, is analytic, providedm − 1 < i and x ∈ E, and the mapping

λ �−→
⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1
∑

j∈Nn−1\Di

λαj−α−iAjCx, λ ∈Ni, (2.32)

is analytic, providedm − 1 ≥ i and x ∈ E.

Theorem 2.12. Assume k(t) satisfies (P1), ω ≥ max(0, abs(k)), β ∈ (0, π/2] and, for every i ∈
N

0
mn−1 withm − 1 ≥ i, the function (k ∗ gi)(t) can be analytically extended to a function ki : Σβ → C

satisfying that, for every γ ∈ (0, β), the set {e−ωzki(z) : z ∈ Σγ} is bounded. Let CAj ⊆ AjC,
j ∈ N

0
n−1, Aj ∈ L(E), j ∈ Nn−1, AiAj = AjAi, i, j ∈ Nn−1 and AjA ⊆ AAj , j ∈ Nn−1. Assume,

additionally, that for each i ∈ N
0
mn−1 the set Vi := Ni ∩ {λ ∈ C : �λ > ω} contains the set {λ ∈

C : �λ > ω, k̃(λ)/= 0}, and that R(λαnC +
∑

j∈Di
λαjAjC) ⊆ R(Pλ), provided m − 1 < i and λ ∈ Vi,
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respectively,R(λαnC+
∑

j∈Nn−1\Di
λαjAjC) ⊆ R(Pλ), providedm−1 ≥ i and λ ∈ Vi (cf. the formulation

of preceding theorem). Suppose also that the operator λαnI+
∑

j∈Di
λαjAj is injective, providedm−1 < i

and λ ∈ Vi, and that the operator λαnI +
∑

j∈Nn−1\Di
λαjAj is injective, providedm − 1 ≥ i and λ ∈ Vi.

Let qi : ω+Σ(π/2)+β → L(E) (0 ≤ i ≤ mn−1) satisfy that, for every x ∈ E, the mapping λ �→ qi(λ)x,
λ ∈ ω + Σ(π/2)+β is analytic as well as that:

qi(λ)x = k̃(λ)P−1
λ

⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠x, x ∈ E, λ ∈ Vi, (2.33)

providedm − 1 < i,

qi(λ)x = −k̃(λ)P−1
λ

∑

j∈Nn−1\Di

λαj−α−iAjCx, x ∈ E, λ ∈ Vi, (2.34)

providedm − 1 ≥ i,

the family
{
(λ −ω)qi(λ) : λ ∈ ω + Σ(π/2)+γ

}
is equicontinuous ∀γ ∈ (0, β), (2.35)

and, in the case D(A)/=E,

lim
λ→+∞

λqi(λ)x =

⎧
⎨

⎩

(
k ∗ gi

)
(0)Cx, x /∈ D(A), m − 1 < i,

0, x /∈ D(A), m − 1 ≥ i.
(2.36)

Then there exists an exponentially equicontinuous, analytic k-regularized C-resolvent propagation
family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1). Furthermore, the family {e−ωzRi(z) : z ∈ Σγ} is equi-
continuous for all i ∈ N

0
mn−1 and γ ∈ (0, β), (2.5) holds, and Ri(z)Aj ⊆ AjRi(z), z ∈ Σβ, j ∈ N

0
n−1.

In this paper, we will not consider differential properties of k-regularized C-resolvent
(propagation) families. For more details, the interested reader may consult [30], and espe-
cially, [26, Theorems 3.18–3.20]. Notice also that the assertion of [26, Proposition 3.12] can be
reformulated for k-regularized C-resolvent (propagation) families.

In the following theorem, which possesses several obvious consequences, we consider
q-exponentially equicontinuous k-regularized I-resolvent propagation families in complete
locally convex spaces.

Theorem 2.13. (i) Suppose k(0)/= 0, ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a q-exponentially equicontin-
uous k-regularized I-resolvent propagation family for (1.1), Aj ∈ L�(E), j ∈ Nn−1, and for every
p ∈ �, there existMp ≥ 1 and ωp ≥ 0 such that

p(Ri(t)x) ≤Mpe
ωptp(x), t ≥ 0, x ∈ E, 0 ≤ i ≤ mn − 1. (2.37)

Then A is a compartmentalized operator and, for every seminorm p ∈ �, ((R0,p(t))t≥0, . . . ,

(Rmn−1,p(t))t≥0) is an exponentially bounded k-regularized Ip-resolvent propagation family for (1.1),
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in Ep, with Aj replaced by Aj,p (0 ≤ j ≤ n − 1). Furthermore,

∥
∥
∥Ri,p(t)

∥
∥
∥ ≤Mpe

ωpt, t ≥ 0, 0 ≤ i ≤ mn − 1, (2.38)

and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0) is a q-exponentially equicontinuous, analytic k-regularized Ip-
resolvent propagation family of angle β ∈ (0, π], provided that ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is.
Assume additionally that (2.5) holds. Then, for every p ∈ �, (2.5) holds withAj and ((R0(t))t≥0, . . . ,

(Rmn−1(t))t≥0) replaced by Aj,p and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0).
(ii) Suppose k(t) satisfies (P1), E is complete,A is a compartmentalized operator in E,Aj = cjI

for some cj ∈ C (1 ≤ j ≤ n − 1) and, for every p ∈ �, Ap is a subgenerator (the integral generator,
in fact) of an exponentially bounded k-regularized Ip-resolvent propaga-tion family ((R0,p(t))t≥0,

. . . , (Rmn−1,p(t))t≥0) in Ep satisfying (2.38), and (2.5) with A and ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0)
replaced, respectively, byAp and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0). Suppose, additionally, that Nn−1 \
Di /= ∅ and

∑
j∈Nn−1\Di

|cj |2 > 0, provided m − 1 ≥ i. Then, for every p ∈ �, (2.37) holds (0 ≤ i ≤
mn − 1) and A is a subgenerator (the integral generator, in fact) of a q-exponentially equicontinuous
k-regularized I-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) satisfying (2.5). Further-
more, ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a q-exponentially equicontinuous, analytic k-regularized I-
resolvent propagation family of angle β ∈ (0, π] provided that, for every p ∈ �, ((R0,p(t))t≥0, . . . ,

(Rmn−1,p(t))t≥0) is a q-exponentially bounded, analytic k-regularized Ip-resolvent propagation family
of angle β.

Proof. The proof is almost completely similar to that of [20, Theorem 3.1], and we will only
outline a few relevant facts needed for the proof of (i). Suppose x, y ∈ D(A) and p(x) = p(y)
for some p ∈ �. Then (2.6) in combination with (2.37) implies that Ψp(Ri(t)A(x − y)) = 0,
t ≥ 0, provided m − 1 < i, and Ψp(Ri(t)A(x − y) − (k ∗ gi)(t)(x − y)) = 0, t ≥ 0, provided
m − 1 ≥ i. In any case, Ψp(Ri(t)A(x − y)) = 0, t ≥ 0, which implies p(Ri(t)A(x − y)) = 0,
t ≥ 0, and in particular p(k(0)A(x − y)) = 0. Since k(0)/= 0, we obtain p(Ax − Ay) = 0 and
p(Ax) = p(Ay). Therefore, A is a compartmentalized operator. It is clear that (2.38) holds
and that the mapping t �→ Ri,p(t)xp, t ≥ 0 is continuous for any xp ∈ Ep. This implies by the
standard limit procedure that the mapping t �→ Ri,p(t)xp, t ≥ 0 is continuous for any xp ∈ Ep.
Now we will prove that, for every p ∈ �, the operator Ap is closable for the topology of
Ep. In order to do that, suppose (xn) is a sequence in D(A) with limn→∞Ψp(xn) = 0 and
limn→∞Ψp(Axn) = y, in Ep. Using the dominated convergence theorem, (2.6) and (2.37), we
get that

∫ t
0 gαn−α(t − s)Ri,p(s)yds = limn→∞

∫ t
0 gαn−α(t − s)Ri,p(s)Ψp(Axn)ds = 0, for any t ≥ 0.

Taking the Laplace transform, one obtains Ri,p(t)y = 0, t ≥ 0. Since Ri,p(0) = k(0)Ip, we get
that y = 0 and that Ap is closable, as claimed. Suppose 0 ≤ i ≤ mn − 1. It is checked at once
that Ri,p(t)Aj,p ⊆ Aj,pRi,p(t), t ≥ 0, i ∈ N

0
mn−1, j ∈ Nn−1. The functional equation (2.6) for the

operators Aj,p, 0 ≤ j ≤ n − 1 and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0) can be trivially verified,
which also holds for the functional equation (2.6) in case of its validity for the operators
Aj , 0 ≤ j ≤ n − 1, and ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0). The remaining part of the proof can be
obtained by copying the final part of the proof of [20, Theorem 3.1(i)].
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Remark 2.14. In the second part of Theorem 2.13, we must restrict ourselves to the case in
which Aj = cjI for some cj ∈ C (1 ≤ j ≤ n − 1). As a matter of fact, it is not clear how one
can prove that the operator λαnIp +

∑
j∈Di

λαjAj,p is injective, provided m − 1 < i, �λ > ω and

k̃(λ)/= 0, as well as that the operator
∑

j∈Nn−1\Di
λαjAj,p is injective, provided m − 1 ≥ i, �λ > ω

and k̃(λ)/= 0. Then Theorem 2.10 is inapplicable, which implies that the argumentation used
in the proof of [20, Theorem 3.1(ii)] does not work for the proof of fact that, for every i ∈
N

0
mn−1 and t > 0, {Ri,p(t) : p ∈ �} is a projective family of operators.

3. k-Regularized (C1, C2)-Existence and Uniqueness Families for (1.1)

Throughout this section, we will always assume that X and Y are sequentially complete
locally convex spaces. By L(Y,X) is denoted the space which consists of all bounded linear
operators from Y into X. The fundamental system of seminorms which defines the topology
onX, respectively, Y , is denoted by �X , respectively, �Y . The symbol I designates the identity
operator on X.

Let 0 < τ ≤ ∞. A strongly continuous operator family (W(t))t∈[0,τ) ⊆ L(Y,X) is said to
be locally equicontinuous if and only if, for every T ∈ (0, τ) and for every p ∈ �X , there
exist qp ∈ �Y and cp > 0 such that p(W(t)y) ≤ cpqp(y), y ∈ Y , t ∈ [0, T]; the notion of equi-
continuity of (W(t))t∈[0,τ) is defined similarly. Notice that (W(t))t∈[0,τ) is automatically locally
equicontinuous in case that the space Y is barreled.

Following Xiao and Liang [24], we introduce the following definition.

Definition 3.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C1 ∈ L(Y,X), and C2 ∈ L(X) is injective.

(i) A strongly continuous operator family (E(t))t∈[0,τ) ⊆ L(Y,X) is said to be a (local, if
τ < ∞) k-regularized C1-existence family for (1.1) if and only if, for every y ∈ Y ,
the following holds: E(·)y ∈ Cmn−1([0, τ) : X), E(i)(0)y = 0 for every i ∈ N0 with
i < mn − 1, Aj(gαn−αj ∗ E(mn−1))(·)y ∈ C([0, τ) : X) for 0 ≤ j ≤ n − 1, and

E(mn−1)(t)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E(mn−1)

)
(t)y −A

(
gαn−α ∗ E(mn−1)

)
(t)y = k(t)C1y, (3.1)

for any t ∈ [0, τ).

(ii) A strongly continuous operator family (U(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if
τ < ∞) k-regularized C2-uniqueness family for (1.1) if and only if, for every τ ∈
[0, τ) and x ∈ ⋂0≤j≤n−1 D(Aj), the following holds:

U(t)x +
n−1∑

j=1

(
gαn−αj ∗U(·)Ajx

)
(t) − (gαn−α ∗U(·)Ax)(t)y =

(
k ∗ gmn−1

)
(t)C2x. (3.2)

(iii) A strongly continuous family ((E(t))t∈[0,τ), (U(t))t∈[0,τ)) ⊆ L(Y,X) × L(X) is said to
be a (local, if τ < ∞) k-regularized (C1, C2)-existence and uniqueness family for
(1.1) if and only if (E(t))t∈[0,τ) is a k-regularized C1-existence family for (1.1), and
(U(t))t∈[0,τ) is a k-regularized C2-uniqueness family for (1.1).
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(iv) Suppose Y = X and C = C1 = C2. Then a strongly continuous operator family
(R(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if τ < ∞) k-regularized C-resolvent family
for (1.1) if and only if (R(t))t∈[0,τ) is a k-regularized C-uniqueness family for (1.1),
R(t)Aj ⊆ AjR(t), for 0 ≤ j ≤ n − 1 and t ∈ [0, τ), as well as R(t)C = CR(t), t ∈ [0, τ),
and CAj ⊆ AjC, for 0 ≤ j ≤ n − 1.

In case k(t) = gζ+1(t), where ζ ≥ 0, it is also said that (E(t))t∈[0,τ) is a ζ-times integrated
C1-existence family for (1.1); 0-times integrated C1-existence family for (1.1) is also said to be
aC1-existence family for (1.1). The notion of (exponential) analyticity ofC1-existence families
for (1.1) is taken in the sense of Definition 1.2(ii); the above terminological agreement can be
simply understood for all other classes of uniqueness and resolvent families introduced in
Definition 3.1.

Integrating both sides of (3.1) sufficiently many times, we easily infer that (cf. [24,
Definition 2.1, page 151; and (2.8), page 153]):

E(l)(t)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E(l)

)
(t)y −A

(
gαn−α ∗ E(l)

)
(t)y =

(
k ∗ gmn−1−l

)
(t)C1y, (3.3)

for any t ∈ [0, τ), y ∈ Y and l ∈ N
0
mn−1. In this place, it is worth noting that the identity (3.3),

with k(t) = 1, l = 0, τ = ∞ and αj = j (0 ≤ j ≤ n − 1), has been used in [24] for the definition
of a C1-existence family for (ACPn). It can be simply proved that this definition is equivalent
with the corresponding one given by Definition 3.1.

Proposition 3.2. Let ((E(t))t∈[0,τ), (U(t))t∈[0,τ)) be a k-regularized (C1, C2)-existence and unique-
ness family for (1.1), and let (U(t))t∈[0,τ) be locally equicontinuous. If Aj ∈ L(X), j ∈ Nn−1 or
α ≤ min(α1, . . . , αn−1), then C2E(t)y = U(t)C1y, t ∈ [0, τ), y ∈ Y .

Proof. Let y ∈ Y be fixed. Using the local equicontinuity of (U(t))t∈[0,τ), we easily infer that
the mappings t �→ ((gαn−α ∗U) ∗ E(·)y)(t), t ∈ [0, τ) and t �→ (U ∗ (gαn−α ∗ E(·)y))(t), t ∈ [0, τ)
are continuous and coincide. The prescribed assumptions also imply that, for every j ∈ Nn−1,
t ∈ [0, τ) and y ∈ Y ,

(
gαn−α ∗U ∗Aj

(
gαn−αj ∗ E(·)y

))
(t)y =

(
gαn−α ∗UAj ∗ gαn−α ∗ E(·)y

)
(t)y. (3.4)

Keeping in mind (3.2)-(3.3) and the foregoing arguments, we get that

gαn−α ∗U ∗
⎡

⎣E(·)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E

)
(·)y − k(·)C1y

⎤

⎦

= gαn−α ∗UA ∗ [gαn−α ∗ E
]
(·)y

=

⎡

⎣U(·) +
n−1∑

j=1

(
gαn−αj ∗U(·)Aj

)
− k(·)C2

⎤

⎦ ∗ gαn−α ∗ E(·)y.

(3.5)

This, in turn, implies the required equality C2E(t)y = U(t)C1y, t ∈ [0, τ).
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Definition 3.3. Suppose 0 ≤ i ≤ mn − 1. Then we define D′
i := {j ∈ N

0
n−1 : mj − 1 ≥ i}, D′′

i :=
N

0
n−1 \D′

i and

Di :=

⎧
⎨

⎩
x ∈

⋂

j∈D′′
i

D
(
Aj

)
: Ajui ∈ R(C1), j ∈ D′′

i

⎫
⎬

⎭
. (3.6)

In the first part of subsequent theorem (cf. also [24, Remark 2.2, Example 2.5,
Remark 2.6]), we will consider the most important case k(t) = 1. The analysis is similar if
k(t) = gn+1(t) for some n ∈ N.

Theorem 3.4. (i) Suppose (E(t))t∈[0,τ) is a C1-existence family for (1.1), T ∈ (0, τ), and ui ∈ Di for
0 ≤ i ≤ mn − 1. Then the function

u(t) =
mn−1∑

i=0

uigi+1(t) −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ E(mn−1−i)

)
(t)vi,j

+
mn−1∑

i=m

(
gαn−α ∗ E(mn−1−i)

)
(t)vi,0, 0 ≤ t ≤ T,

(3.7)

is a strong solution of the problem (2.2) on [0, T], where vi,j ∈ Y satisfyAjui = C1vi,j for 0 ≤ j ≤ n−1.
(ii) Suppose (U(t))t∈[0,τ) is a locally equicontinuous k-regularized C2-uniqueness family for

(1.1), and T ∈ (0, τ). Then there exists at most one strong (mild) solution of (2.2) on [0, T], with
ui = 0, i ∈ N

0
mn−1.

Proof. A straightforward computation involving (3.3) shows that

u(·) −
mn−1∑

i=0

uigi+1(·) +
n−1∑

j=1

Aj

⎛

⎝gαn−αj ∗
⎡

⎣u(·) −
mj−1∑

i=0

uigi+1(·)
⎤

⎦

⎞

⎠

= −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ R(mn−1−i)

)
(·)vi,j +

mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

+
n−1∑

j=1

Aj

⎛

⎝gαn−αj ∗
⎧
⎨

⎩

mn−1∑

i=mj

gi+1(·)ui −
mn−1∑

i=0

∑

l∈Nn−1\Di

(
gαn−αl ∗ R(mn−1−i)

)
(·)vi,l

+
mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

}⎞

⎠

= −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ R(mn−1−i)

)
(·)vi,j +

mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

+
n−1∑

j=1

mn−1∑

i=mj

C1vi,jgαn−αj+i+1(·) −
mn−1∑

i=0

∑

l∈Nn−1\Di

gαn−αl
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∗
[
−R(mn−1−i)(·)vi,l +A

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,l + gi+1(·)C1vi,l

]

+
mn−1∑

i=m

gαn−α ∗
[
−R(mn−1−i)(·)vi,0 +A

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0 + gi+1(·)C1vi,0

]

= gαn−α ∗A
[

u(·) −
m−1∑

i=0

uigi+1(·)
]

,

(3.8)

since

n−1∑

j=1

mn−1∑

i=mj

C1vi,jgαn−αj+i+1(·) =
mn−1∑

i=0

∑

j∈Nn−1\Di

C1vi,jgαn−αj+i+1(·). (3.9)

This implies that u(t) is a mild solution of (2.2) on [0, T]. In order to complete the proof of
(i), it suffices to show that Dαn

t u(t) ∈ C([0, T] : X) and AiD
αi
t u ∈ C([0, T] : X) for all i ∈ N

0
n−1.

Towards this end, notice that the partial integration implies that, for every t ∈ [0, T],

gmn−αn ∗
[

u(·) −
mn−1∑

i=0

uigi+1(·)
]

(t) =
mn−1∑

i=m

(
gmn−α+i ∗ E(mn−1)

)
(t)vi,0

−
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gmn−αj+i ∗ E(mn−1)

)
(t)vi,j .

(3.10)

Therefore, Dαn
t u ∈ C([0, T] : X) and

Dαn
t u(t) =

dmn

dtmn

{

gmn−αn ∗
[

u(·) −
mn−1∑

i=0

uigi+1(·)
]

(t)

}

=
mn−1∑

i=m

(
gi−α ∗ E(mn−1)

)
(t)vi,0 −

mn−1∑

i=0

∑

j∈Nn−1\Di

(
gi−αj ∗ E(mn−1)

)
(t)vi,j .

(3.11)

Suppose, for the time being, i ∈ N
0
n−1. Then Aiuj ∈ R(C1) for j ≥ mi. Moreover, the inequality

l ≥ αj holds provided 0 ≤ l ≤ mn−1 and j ∈ Nn−1\Dl, andAj(gαn−αj ∗E(mn−1))(·)y ∈ C([0, T] : X)
for 0 ≤ j ≤ n − 1 and y ∈ Y . Now it is not difficult to prove that

AiD
αi
t u(·) =

mn−1∑

j=mi

gj+1−αi(·)Aiuj −
mn−1∑

l=0

∑

j∈Nn−1\Dl

[
gl−αj ∗Ai

(
gαn−αi ∗ E(mn−1)

)]
(·)vl,j

+
mn−1∑

l=m

[
gl−α ∗Ai

(
gαn−αi ∗ E(mn−1)

)]
(·)vl,0 ∈ C([0, T] : X),

(3.12)
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finishing the proof of (i). The second part of theorem can be proved as follows. Suppose u(t)
is a strong solution of (2.2) on [0, T], with ui = 0, i ∈ N

0
mn−1. Using this fact and the equality

∫ t

0

∫ t−s

0
gαn−αj (r)U(t − s − r)Aju(s)drds =

∫ t

0

∫s

0
gαn−αj (r)U(t − s)Aju(s − r)drds, (3.13)

for any t ∈ [0, T] and j ∈ N
0
n−1, we easily infer that (for more general results, see [31, Propo-

sition 2.4(i)], and [29, page 155]):

(U ∗ u)(t) = (k ∗ gmn−1C2 ∗ u
)
(t)

+
∫ t

0

∫ t−s

0

[
gαn−αj (r)U(t − s − r)Aju(s) − gαn−α(r)U(t − s − r)Au(s)

]
drds

=
(
k ∗ gmn−1C2 ∗ u

)
(t) + (U ∗ u)(t), t ∈ [0, T].

(3.14)

Therefore, (k ∗ gmn−1C2 ∗ u)(t) = 0, t ∈ [0, T] and u(t) = 0, t ∈ [0, T].

Before proceeding further, we would like to notice that the solution u(t), given by (3.7),
need not to be of class C1([0, T] : X), in general. Using integration by parts, it is checked at
once that (3.7) is an extension of the formula [24, (2.5); Theorem 2.4, page 152]. Notice, finally,
that the proof of Theorem 3.4(ii) is much simpler than that of [24, Theorem 2.4(ii)].

The standard proof of following theorem is omitted (cf. also [24, Theorem 2.7,
Remark 2.8, Theorem 2.9] and [28, Chapter 1]).

Theorem 3.5. Suppose k(t) satisfies (P1), (E(t))t≥0 ⊆ L(Y,X), (U(t))t≥0 ⊆ L(X), ω ≥ max(0,
abs(k)), C1 ∈ L(Y,X) and C2 ∈ L(X) is injective. Set Pλ := I +

∑n−1
j=1 λ

αj−αnAj − λα−αnA, �λ > 0.

(i) (a) Let (E(t))t≥0 be a k-regularized C1-existence family for (1.1), let the family {e−ωtE(t) :
t ≥ 0} be equicontinuous, and let the family {e−ωtAj(gαn−αj ∗ E)(t) : t ≥ 0} be equicon-
tinuous (0 ≤ j ≤ n − 1). Then the following holds:

Pλ

∫∞

0
e−λtE(t)ydt = k̃(λ)λ1−mnC1y, y ∈ Y, �λ > ω. (3.15)

(b) Let the operator Pλ be injective for every λ > ωwith k̃(λ)/= 0. Suppose, additionally, that
there exist strongly continuous operator families (W(t))t≥0 ⊆ L(Y,X) and (Wj(t))t≥0 ⊆
L(Y,X) such that {e−ωtW(t) : t ≥ 0} and {e−ωtWj(t) : t ≥ 0} are equicontinuous (0 ≤ j ≤
n − 1) as well as that

∫∞

0
e−λtW(t)ydt = k̃(λ)P−1

λ C1y,

∫∞

0
e−λtWj(t)ydt = k̃(λ)λαj−αnAjP−1

λ C1y,

(3.16)
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for every λ ∈ C with �λ > ω and k̃(λ)/= 0, y ∈ Y and j ∈ N
0
n−1. Then there exists a k-

regularized C1-existence family for (1.1), denoted by (E(t))t≥0. Furthermore, E(mn−1)(t)y =
W(t)y, t ≥ 0, y ∈ Y and Aj(gαn−αj ∗ E(mn−1))(t)y =Wj(t)y, t ≥ 0, y ∈ Y , j ∈ N

0
n−1.

(ii) Let the assumptions of (i) hold with k(t) = 1. Ifmn > 1, then one suppose additionally that,
for every j ∈ N

0
n−1, there exists a strongly continuous operator family (Vj(t))t≥0 ⊆ L(Y,X)

such that {e−ωtVj(t) : t ≥ 0} is equicontinuous as well as that

∫∞

0
e−λtVj(t)ydt = λαj−αn−1P−1

λ AjC1y, (3.17)

for every λ ∈ C with �λ > ω, and y ∈ D(AjC1). Let ui ∈ Di, and let C1vi = ui for some
vi ∈ Y (0 ≤ i ≤ mn − 1). Then, for every p ∈ �X , there exist cp > 0 and qp ∈ �Y such that
the corresponding solution u(t) satisfies the following estimate:

p(u(t)) ≤ cpeωt
mn−1∑

i=0

qp(vi), t ≥ 0, if ω > 0, (3.18)

p(u(t)) ≤ cpgmn(t)
mn−1∑

i=0

qp(vi), t ≥ 0, if ω = 0. (3.19)

(iii) Suppose (U(t))t≥0 is strongly continuous and the operator family {e−ωtU(t) : t ≥ 0} is
equicontinuous. Then (U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1) if and
only if, for every x ∈ ⋂n−1

j=0 D(Aj), the following holds:

∫∞

0
e−λtU(t)Pλx dt = k̃(λ)λ1−mnC2x, �λ > ω. (3.20)

The Hausdorff locally convex topology on E∗ defines the system (|·|B)B∈B of seminorms
on E∗, where |x∗|B := supx∈B|〈x∗, x〉|, x∗ ∈ E∗, B ∈ B. Let us recall that E∗ is sequentially com-
plete provided that E is barreled. Following Wu and Zhang [32], we also define on E∗ the
topology of uniform convergence on compacts of E, denoted by C(E∗, E); more precisely,
given a functional x∗

0 ∈ E∗, the basis of open neighborhoods of x∗
0 with respect to C(E∗, E) is

given by N(x∗
0 : K, ε) := {x∗ ∈ E∗ : supx∈K|〈x∗ − x∗

0, x〉| < ε}, where K runs over all compacts
of E and ε > 0. Then (E∗,C(E∗, E)) is locally convex, complete and the topology C(E∗, E) is
finer than the topology induced by the calibration (| · |B)B∈B.

Now we focus our attention to the adjoint type theorems for (local) k-regularized C-
resolvent families. The proof of following theorem follows from the arguments given in the
proofs of [26, Theorems 2.14 and 2.15]; because of that, we will omit it.

Theorem 3.6. (i) Suppose X is barreled, ζ > 0, (R(t))t∈[0,τ) is a k-regularized C-resolvent family

for (1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Then ((gζ ∗ R(·)∗)(t))t∈[0,τ) is a k-regularized C∗-resolvent

family for (1.1), with Aj replaced by A∗
j (0 ≤ j ≤ n − 1).
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(ii) Suppose X is barreled, (R(t))t∈[0,τ) is a (local, global exponentially equicontinuous) k-

regularized C-resolvent family for (1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Put Z :=

⋂n−1
j=0 D(A∗

j ). Then
(R(t)∗|Z)t∈[0,τ), is a (local, global exponentially equicontinuous) k-regularized C

∗
|Z-resolvent family for

(1.1), in Z.
(iii) Suppose (R(t))t∈[0,τ) is a locally equicontinuous k-regularized C-resolvent family for

(1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Then (R(t)∗)t∈[0,τ) is a locally equicontinuous k-regularized

C∗-resolvent family for (1.1), in (X∗,C(X∗, X)), withAj replaced byA∗
j (0 ≤ j ≤ n−1). Furthermore,

if (R(t))t≥0 is exponentially equicontinuous, then (R(t)∗)t≥0 is also exponentially equicontinuous.

Notice here that a similar theorem can be proved for the class of k-regularized C-resol-
vent propagation families.

Let f ∈ C([0, T] : X). Convoluting both sides of (1.1) with gαn(t), we get that

u(·) −
mn−1∑

k=0

ukgk+1(·) +
n−1∑

j=1

gαn−αj ∗Aj

⎡

⎣u(·) −
mj−1∑

k=0

ukgk+1(·)
⎤

⎦

= gαn−α ∗A
[

u(·) −
m−1∑

k=0

ukgk+1(·)
]

+
(
gαn ∗ f

)
(·), t ∈ [0, T].

(3.21)

In the subsequent theorem, whose proof follows from a slight modification of the proof
of [24, Theorem 3.1(i)], we will analyze inhomogeneous Cauchy problem (3.21) in more
detail.

Theorem 3.7. Suppose (E(t))t∈[0,τ) is a locally equicontinuous C1-existence family for (1.1), T ∈
(0, τ), and ui ∈ Di for 0 ≤ i ≤ mn − 1. Let f ∈ C([0, T] : X), let g ∈ C([0, T] : Y ) satisfy C1g(t) =
f(t), t ∈ [0, T], and let G ∈ C([0, T] : Y ) satisfy (gαn−mn+1 ∗ g)(t) = (g1 ∗G)(t), t ∈ [0, T]. Then the
function

u(t) =
mn−1∑

i=0

uigi+1(t) −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ E(mn−1−i)

)
(t)vi,j

+
mn−1∑

i=m

(
gαn−α ∗ E(mn−1−i)

)
(t)vi,0 +

∫ t

0
E(t − s)G(s)ds, 0 ≤ t ≤ T

(3.22)

is a mild solution of the problem (3.21) on [0, T], where vi,j ∈ Y satisfyAjui = C1vi,j for 0 ≤ j ≤ n−1.
If, additionally, g ∈ C1([0, T] : Y ) and (E(mn−1)(t))t∈[0,τ) ⊆ L(Y,X) is locally equicontinuous, then
the solution u(t), given by (3.22), is a strong solution of (1.1) on [0, T].

Remark 3.8. Suppose that all conditions quoted in the first part of the above theorem hold,
and the family (E(mn−1)(t))t∈[0,τ) ⊆ L(Y,X) is locally equicontinuous. We assume, instead of
condition g ∈ C1([0, T] : Y ), that there exists a locally equicontinuous C2-uniqueness family
for (1.1) on [0, τ), as well as that there exist functions hj ∈ L1([0, T] : Y ) such that Ajf(t) =
C1hj(t), t ∈ [0, T], 0 ≤ j ≤ n − 1 (cf. also the formulation of [24, Theorem 3.1(ii)]). Using
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the functional equation for (E(t))t∈[0,τ), one can simply prove that, for every σ ∈ [0, T], the
function

rσ(·) = E(·)g(σ) − gmn(·)f(σ)

+
n−1∑

j=1

(
gαn−αj ∗ E(·)hj(σ)

)
(·) − (gαn−α ∗ E(·)h0(σ)

)
(·)

(3.23)

is a mild solution of the problem

u(t) +
n−1∑

j=1

Aj

(
gαn−αj ∗ u

)
(t) −A(gαn−α ∗ u

)
(t) = 0, t ∈ [0, T]. (3.24)

By the uniqueness of solutions, we have that the following holds:

E(t − σ)g(σ) − gmn(t − σ)f(σ) +
n−1∑

l=1

(
gαn−αl ∗ E(·)hl(σ)

)
(t − σ)(gαn−α ∗ E(·)h0(σ)

)
(t − σ) = 0,

(3.25)

provided 0 ≤ t, σ ≤ T and σ ≤ t. Fix i ∈ N
0
n−1. Then the above equality implies that, for every

j ∈ N
0
mn−1 with j ≤ min(αi +mn − αn−1 − 1�, αi +mn − α − 1�), one has:

AiE
(j)(t − σ)g(σ) − gmn−j(t − σ)C1hi(σ) +

n−1∑

l=1

Ai

(
gαn−αl ∗ E(j)(·)hl(σ)

)
(t − σ)

−Ai

(
gαn−α ∗ E(j)(·)h0(σ)

)
(t − σ) = 0,

(3.26)

provided 0 ≤ t, σ ≤ T and σ ≤ t. For such an index j, we conclude from (3.26) that the
mapping t �→ ∫ t0 AiE

(j)(t − σ)g(σ)dσ, t ∈ [0, T] is continuous. Observe now that the condition

αn − αi −mn + min(αi +mn − αn−1 − 1�, αi +mn − α − 1�) ≥ 0, i ∈ N
0
n−1, (3.27)

which holds in the case of abstract Cauchy problem (ACPn), shows that the mapping t �→
Ai[gαn−αi−mn+j ∗ E(j) ∗ g](t), t ∈ [0, T] is continuous as well as that the mapping t �→
(d/dt)[E(mn−1) ∗ g](t), t ∈ [0, T] is continuous. Hence, the validity of condition (3.27) implies
that the function u(t), given by (3.22), is a strong solution of (1.1) on [0, T].

4. Subordination Principles

The proof of following theorem can be derived by using Theorem 3.5 and the argumentation
given in [10, Section 3].
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Theorem 4.1. Suppose C1 ∈ L(Y,X), C2 ∈ L(X) is injective and γ ∈ (0, 1).

(i) Let ω ≥ max(0, abs(k)), and let the assumptions of Theorem 3.5(i)-(b) hold. Put

Wγ(t) :=
∫∞

0
t−γΦγ

(
t−γs
)
W(s)y ds, t > 0, y ∈ Y, Wγ(0) :=W(0). (4.1)

Define, for every j ∈ N
0
n−1 and t ≥ 0, Wj,γ(t) by replacing W(t) in (4.1) with Wj(t).

Suppose that there exist a number ν > 0 and a continuous kernel kγ(t) satisfying (P1)
and k̃γ(λ) = λγ−1k̃(λγ), λ > ν. Then there exists an exponentially bounded kγ -regularized
C1-existence family (Eγ(t))t≥0 for (1.1), with αj replaced by αjγ therein (0 ≤ j ≤ n − 1).
Furthermore, the family {(1 + t�αnγ�−2)−1e−ω

1/γ tEγ(t) : t ≥ 0} is equicontinuous.
(ii) Let ω ≥ 0, let the assumptions of Theorem 3.5(ii) hold, and let k(t) = kγ(t) = 1. Define,

for every j ∈ N
0
n−1 and t ≥ 0, Vj,γ(t) by replacingW(t) in (4.1) with Vj(t). Then, for every

j ∈ N
0
n−1, the family {e−ω1/γ tVj,γ(t) : t ≥ 0} is equicontinuous,

∫∞

0
e−λtVj,γ(t)ydt = λαjγ−αnγ−1P−1

λγ AjC1y, (4.2)

for every λ ∈ C with �(λγ) > ω, and y ∈ D(AjC1). Let ui ∈ Di,γ (defined in the obvious
way), and let C1vi = ui for some vi ∈ Y (0 ≤ i ≤ �αnγ� − 1). Then, for every p ∈ �X , there
exist cp > 0 and qp ∈ �Y such that the corresponding solution u(t) satisfies the following
estimate:

p(u(t)) ≤ cpe
ω1/γ t

�αnγ�−1∑

i=0

qp(vi), t ≥ 0, if ω > 0,

p(u(t)) ≤ cpg�αnγ�(t)
�αnγ�−1∑

i=0

qp(vi), t ≥ 0, if ω = 0.

(4.3)

(iii) Suppose (U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1), and the family
{e−ωtU(t) : t ≥ 0} is equicontinuous. Define, for every t ≥ 0, Uγ(t) by replacing W(t)
in (4.1) with U(t). Suppose that there exist a number ν > 0 and a continuous kernel kγ(t)
satisfying (P1) and k̃γ(λ) = λγ(2−mn)−2+�αnγ�k̃(λγ), λ > ν. Then there exists a kγ -regularized
C2-uniqueness family for (1.1), with αj replaced by αjγ therein (0 ≤ j ≤ n−1). Furthermore,
the family {e−ω1/γ tUγ(t) : t ≥ 0} is equicontinuous.

Remark 4.2. (i) Consider the situation of Theorem 4.1(iii). Then we have the obvious equality
(k ∗ gmn−1)(0) = (kγ ∗ g�αnγ�−1)(0). If σ ≥ 1, k(t) = gσ(t) and (σ − 1 +mn − 1)γ + 1 − �αnγ� ≥ 0
(this inequality holds provided σ ≥ 2), then kγ(t) = g(σ−1+mn−1)γ+2−�αnγ�(t).

(ii) Let b ∈ L1
loc([0,∞)) be a kernel, and let (U(t))t∈[0,τ) be a (local) k-regularized C2-

uniqueness family for (1.1). Then ((b ∗ U)(t))t∈[0,τ) is a (b ∗ k)-regularized C2-uniqueness
family for (1.1).

(iii) Concerning the analytical properties of kγ -regularized C1-existence families in
Theorem 4.1(i), the following facts should be stated.



Abstract and Applied Analysis 29

(a) The mapping t �→ Eγ(t), t > 0 admits an extension to Σmin(((1/γ)−1)(π/2),π) and, for
every y ∈ Y , the mapping z �→ Eγ(z)y, z ∈ Σmin(((1/γ)−1)(π/2),π) is analytic.

(b) Let ε ∈ (0,min(((1/γ) − 1)(π/2), π)), and let (W(t))t≥0 be equicontinuous. Then
(Eγ(t))t≥0 is an exponentially equicontinuous, analytic kγ -regularized C1-existence
family of angle min(((1/γ)−1)(π/2), π), and for every p ∈ �X , there exist Mp,ε > 0
and qp,ε ∈ �Y such that

p
(
Eγ(z)y

) ≤Mp,εqp,ε
(
y
)(

1 + |z|�αnγ�−1
)
, z ∈ Σmin(((1/γ)−1)(π/2),π)−ε. (4.4)

(c) (Eγ(t))t≥0 is an exponentially equicontinuous, analytic kγ -regularizedC1-exis-tence
family of angle min(((1/γ) − 1)(π/2), π/2).

The similar statements hold for the kγ -regularized C2-uniqueness family (Uγ(t))t≥0 in
Theorem 4.1(iii).

The results on k-regularized (C1, C2)-existence and uniqueness families can be applied
in the study of following abstract Volterra equation:

u(t) = f(t) +
n−1∑

j=0

(
aj ∗Aju

)
(t), t ∈ [0, τ), (4.5)

where 0 < τ ≤ ∞, f ∈ C([0, τ) : X), a0, . . . , an−1 ∈ L1
loc([0, τ)), and A0, . . . , An−1 are closed

linear operators on X. As in Definition 2.7, by a mild solution, respectively, strong solution,
of (4.5), we mean any function u ∈ C([0, τ) : X) such thatAj(aj ∗u)(t) ∈ C([0, τ) : X), j ∈ N

0
n−1

and that

u(t) = f(t) +
n−1∑

j=0

Aj

(
aj ∗ u

)
(t), t ∈ [0, τ), (4.6)

respectively, any function u ∈ C([0, τ) : X) such that u(t) ∈ ⋂n−1
j=0 D(Aj), t ∈ [0, τ) and that

(4.5) holds.
We need the following definition.

Definition 4.3. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C1 ∈ L(Y,X), and C2 ∈ L(X) is injective.

(i) A strongly continuous operator family (E(t))t∈[0,τ) ⊆ L(Y,X) is said to be a (local, if
τ <∞) k-regularized C1-existence family for (4.5) if and only if

E(t)y = k(t)C1y +
n−1∑

j=0

Aj

(
aj ∗ E

)
(t)y, t ∈ [0, τ), y ∈ Y. (4.7)

(ii) A strongly continuous operator family (U(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if
τ <∞) k-regularized C2-uniqueness family for (4.5) if and only if

U(t)x = k(t)C2x +
n−1∑

j=0

(
aj ∗AjU

)
(t)x, t ∈ [0, τ), x ∈

n−1⋂

j=0

D
(
Aj

)
. (4.8)
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Notice also that one can introduce the classes of k-regularized (C1, C2)-existence
and uniqueness families as well as k-regularized C-resolvent families for (4.5); compare
Definition 3.1. The full analysis of k-regularized (C1, C2)-existence and uniqueness families
for (4.5) falls out from the framework of this paper.

The following facts are clear.

(i) Suppose (E(t))t∈[0,τ) is a k-regularized C1-existence family for (4.5). Then, for every
y ∈ Y , the function u(t) = E(t)y, t ∈ [0, τ), is a mild solution of (4.5) with f(t) =
k(t)C1y, t ∈ [0, τ).

(ii) Let (U(t))t∈[0,τ) be a locally equicontinuous k-regularized C2-uniqueness family for
(4.5). Then there exists at most one mild (strong) solution of (4.5).

The proof of following subordination principle is standard and therefore omitted (cf.
the proofs of [29, Theorem 4.1, page 101] and [24, Theorem 2.7]).

Theorem 4.4. (i) Suppose there is an exponentially equicontinuous k-regularizedC1-existence family
for (1.1). Let c(t) be completely positive, let c(t), k(t) and k1(t) satisfy (P1), and let ω0 > 0 be such
that, for every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, the following holds:

ãj(λ) = −k̃1(λ)c̃(λ)
1+αn−αj λ

k̃(1/c̃(λ))
, j ∈ Nn−1,

ã0(λ) = −k̃1(λ)c̃(λ)
1+αn−α λ

k̃(1/c̃(λ))
.

(4.9)

Assume, additionally, that there exist a number z ∈ C and a function k2(t) satisfying (P1) so that, for
every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, one has:

k̃1(λ)

k̃(1/c̃(λ))
= z + k̃2(λ). (4.10)

Then there exists an exponentially equicontinuous k1-regularized C1-existence family for (4.5).
(ii) Suppose there is an exponentially equicontinuous k-regularized C2-uniqueness family for

(1.1). Let c(t) be completely positive, let c(t), k(t) and k1(t) satisfy (P1), and let ω0 > 0 be such that,
for every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, the following holds:

ãj(λ) = c̃(λ)
αn−αj , j ∈ N

0
n−1, k̃1(λ) = λ−1c̃(λ)mn−2k̃

(
1

c̃(λ)

)
. (4.11)

Then there exists an exponentially equicontinuous k1-regularized C2-uniqueness family for (4.5).
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It is not difficult to reformulate Theorem 4.4 for the class of strong C-propagation
families (cf. also Example 5.3 below).

Although our analysis tends to be exhaustive, we cannot cover, in this limited space,
many interested subjects. For example, the characterizations of some special classes of q-
exponentially equicontinuous k-regularized (C1, C2)-existence and uniqueness families in
complete locally convex spaces. We also leave to the interested reader the problem of clari-
fying the Trotter-Kato type theorems for introduced classes.

5. Examples and Applications

We start this section with the following example.

Example 5.1. Suppose cj ∈ C (1 ≤ j ≤ n − 1) and, for every i ∈ N
0
mn−1 with m − 1 ≥ i, one has

Nn−1 \Di /= ∅ and
∑

j∈Nn−1\Di
|cj |2 > 0. Let Aj = cjI for 1 ≤ j ≤ n − 1.

(i) (a) Suppose 0 < δ ≤ 2, σ ≥ 1, (πδ/2(αn − α)) − (π/2) > 0, and A is a subgenerator
of an exponentially equicontinuous (gδ, gσ)-regularized C-resolvent family
(Rδ(t))t≥0 which satisfies the following equality:

A

∫ t

0
gδ(t − s)Rδ(s)x ds = Rδ(t)x − gσ(t)Cx, x ∈ E, t ≥ 0. (5.1)

Put σ ′ := max(1, 1+(αn−α)(σ−1)δ−1) and θ := min(π/2, πδ/2(αn−α)−(π/2)).
By [26, Theorem 2.7], we have that, for every sufficiently small ε > 0, there
exists ωε > 0 such that ωε + Σ(π/2)δ−ε ⊆ ρC(A) and the family {|λ|(δ−σ)/δ(1 +
|λ|1/δ)(λ −A)−1C : λ ∈ ωε + Σ(π/2)α−ε} is equicontinuous. Notice also that

arg

⎛

⎝λαn−α +
n−1∑

j=1

cjλ
αj−α

⎞

⎠

= arg

⎛

⎝λαn−α|λ|α−((αn−1+αn)/2) +
n−1∑

j=1

cjλ
αj−α|λ|α−((αn−1+αn)/2)

⎞

⎠

≈ arg
(
λαn−α|λ|α−((αn−1+αn)/2)

)

= (αn − α) arg(λ), λ −→ ∞, arg(λ) <
π

αn − α.

(5.2)

Due to the choice of θ, we have that, for every sufficiently small ε > 0, there
exists ωε > 0 such that, for every λ ∈ ωε + Σ(π/2)+θ−ε, one has:

arg

⎛

⎝λαn−α +
n−1∑

j=1

cjλ
αj−α

⎞

⎠ <
π

2
δ − ε. (5.3)
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Therefore, we have the following: if the operator A is densely defined, then
the above inequality in combination with Theorem 2.12 indicates that A is a
subgenerator of an exponentially equicontinuous, analytic (σ ′ − 1)-times inte-
grated C-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1),
with θ being the angle of analyticity; if the operator A is not densely defined,
then the above conclusion continues to hold with σ ′ replaced by any number
σ ′′ > σ ′.

(a′) Suppose 0 < δ ≤ 2, σ ≥ 1, (δ((π/2) + γ)/(αn − α)) − (π/2) > 0, A is a
subgenerator of an exponentially equicontinuous, analytic (gδ, gσ)-regulari-
zed C-resolvent family (Rδ(t))t≥0 of angle γ ∈ (0, π/2], and (5.1) holds.
Put σ1 := σ ′ and θ1 := min(π/2, (δ((π/2) + γ)/(αn − α)) − (π/2)). If the
operator A is densely defined, then it follows from [26, Theorem 3.6] and
the above analysis that the operator C−1AC is the integral generator of an
exponentially equicontinuous, analytic (σ1 − 1)-times integrated C-resolvent
propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1), with θ1 being the
angle of analyticity; if the operator A is not densely defined, then the above
conclusion continues to hold with σ1 replaced by any number σ2 > σ1. Now
we will apply this result to the following fractional analogue of the telegraph
equation:

Dα2
t u(t, x) + c1D

α1
t u(t, x) = DΔxu(t, x), t > 0, x ∈ R

n, (5.4)

where c1 > 0, D > 0 and 0 < α1 ≤ α2 < 2. Let E be one of the spaces Lp(Rn)
(1 ≤ p ≤ ∞), C0(Rn), Cb(Rn), BUC(Rn) and 0 ≤ l ≤ n. Put N

l
0 := {α ∈ N

n
0 :

αl+1 = · · · = αn = 0} and recall that the space El (0 ≤ l ≤ n) is defined
by El := {f ∈ E : f (α) ∈ E for all α ∈ N

l
0}. The totality of seminorms

(qα(f) := ||f (α)||E, f ∈ El; α ∈ N
l
0) induces a Fréchet topology on El. Let Tl

possess the same meaning as in [33], and let A := DΔ act with its maximal
distributional domain. Suppose first E/=L∞(Rn) and E/=Cb(Rn). Then the
operator A is the integral generator of an exponentially equicontinuous,
analytic C0-semigroup of angle π/2, which implies that A is the integral gene-
rator of an exponentially equicontinuous, analytic I-regularized resolvent pro-
pagation family (R0(t))t≥0, if α2 ≤ 1, respectively, ((R0(t))t≥0, (R1(t))t≥0) if
α2 > 1, of angle ζ = min(π/2, (π/α2) − (π/2)); the established conclusion also
holds in the Fréchet nuclear space Ξ which consists of those smooth functions
on R

n with period 1 along each coordinate axis [26]. In this place, we would
like to observe that it is not clear whether the angle of analyticity of constructed
I-regularized resolvent propagation families, in the case that α1 < α2 < 1,
can be improved by allowing that ζ takes the value min(π, (π/α2) − (π/2)).
Suppose now E = L∞(Rn) or E = Cb(Rn). Then, for every σ ′ > 1, the operatorA
is the integral generator of an exponentially equicontinuous, analytic (σ ′ − 1)-
times integrated I-regularized resolvent propagation family (R0(t))t≥0, if α2 ≤
1, respectively, ((R0(t))t≥0, (R1(t))t≥0) if α2 > 1, of angle min(π/2, (π/α2) −
(π/2)).

(b) Suppose 0 < δ ≤ 2, σ ≥ 1, (πδ/2(αn − α)) − (π/2) > 0, a > 0, b ∈ (0, 1),
ka,b(t) := L−1(exp(−aλb))(t), t ≥ 0 and A is a subgenerator of an exponentially
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equicontinuous (gδ, ka,b)-regularized C-resolvent family (Ra,b(t))t≥0 which
satisfies the following equality:

A

∫ t

0
gδ(t − s)Ra,b(s)x ds = Ra,k(t)x − ka,b(t)Cx, x ∈ E, t ≥ 0. (5.5)

Let θ be defined as in (a). Then it is checked at once that (αn − α)bδ−1 < 1
and (αn − α)bδ−1((π/2) + θ) < π/2. Put k1(t) := ka1,b1(t), t ≥ 0, where b1 :=
(αn − α)bδ−1 and a1 > a(cos((αn − α)bδ−1((π/2) + θ)))−1. It is clear that, for
every θ′ ∈ (0, θ), there exists a sufficiently large ωθ′ > 0 such that, for every
λ ∈ ωθ′ + Σ(π/2)+θ′ ,

∣
∣∣k̃1(λ)

∣
∣∣

∣∣∣∣k̃
((

λαn−α +
∑n−1

j=1 cjλ
αj−α
)1/δ
)∣∣∣∣

≤
∣∣∣k̃1(λ)

∣∣∣ exp

⎛

⎝a|λ|b1 +
n−1∑

j=1

∣∣cj
∣∣|λ|(αj−α)b/δ

⎞

⎠.

(5.6)

Arguing as in (a), we reveal that A is a subgenerator of an exponen-
tially equicontinuous, analytic k1-regularized C-resolvent propagation family
((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1), with θ being the angle of analyticity.

(b′) Suppose 0 < δ ≤ 2, σ ≥ 1, δ(((π/2) + γ)/(αn − α)) − (π/2) > 0, Aj = cjI
(1 ≤ j ≤ n − 1), a > 0, b ∈ (0, 1), A is a subgenerator of an exponentially equi-
continuous, analytic (gδ, ka,b)-regularized C-resolvent family (Ra,b(t))t≥0 of
angle γ ∈ (0, π/2], and (5.5) holds. Assume, additionally, that b(1 + (2γ/π)) ≤
1. Define θ1 as in (a)

′
, and k2(t) := ka2,b2(t), t ≥ 0, where b2 := (αn − α)bδ−1

and a2 > a(cos((αn − α)bδ−1((π/2) + θ1)))
−1. Then one can simply verify that

(αn − α)b < δ and (αn − α)bδ−1((π/2) + γ) ≤ π/2. Making use of [26, Theo-
rem 3.6] and the foregoing arguments, we obtain that the operator C−1AC is
the integral generator of an exponentially equicontinuous, analytic k2-regula-
rized C-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1),
with θ being the angle of analyticity. Before proceeding further, we would
like to recommend for the reader [14, 20, 21, 26, 30, 34] for some examples
of (nondensely defined, in general) differential operators generating various
types of (gσ, ka,b)-regularized C-resolvent families.

(ii) Suppose E is complete, 0 < δ ≤ 2, (πδ/2(αn − α)) − (π/2) > 0, and A is the
densely defined generator of a q-exponentially equicontinuous (gδ, g1)-regularized
I-resolvent family (Rδ(t))t≥0 which satisfies that, for every p ∈ �, there exist Mp ≥ 1
and ωp ≥ 0 such that p(Rδ(t)x) ≤ Mpe

ωptp(x), t ≥ 0, x ∈ E. By [20, Theorem 3.1],
we infer that A is a compartmentalized operator and that, for every p ∈ �,
the operator Ap is the integral generator of an exponentially bounded (gδ, g1)-
regularized Ip-resolvent family in Ep. Then the first part of this example shows
that Ap is the integral generator of an exponentially bounded, analytic Ip-resolvent
propagation family, with min(π/2, (πδ/2(αn − α)) − (π/2)) being the angle
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of analyticity. By Theorem 2.13(ii), we obtain that A is the integral generator
of a q-exponentially equicontinuous, analytic I-resolvent propagation family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) for (1.1), and that the corresponding angle of
analyticity is min(π/2, (πδ/2(αn − α)) − (π/2)). It can be simply shown that, for
every p ∈ � and i ∈ N

0
mn−1, there exist Mp,i ≥ 1 and ωp,i ≥ 0 such that p(Ri(t)x) ≤

Mp,ie
ωp,itp(x), t ≥ 0, x ∈ E. In the continuation, we will also present some

other applications of (a, k)-regularized C-resolvent families in the analysis of some
special cases of (1.1); as already mentioned, this theory is inapplicable if some
of initial values u0, . . . , umn−1 is a non-zero element of E. Consider the abstract
Basset-Boussinesq-Oseen equation (1.2) and assume that E is complete. Set aα(t) :=
L−1(λα/(λ + 1))(t), t ≥ 0, kα(t) := e−t, t ≥ 0 and δα := min(π/2, (πα/2(1 − α))).
Suppose A is the integral generator of a q-exponentially equicontinuous (g1, g1)-
regularized I-resolvent family (R(t))t≥0 satisfying (2.37); cf. [20, 25] for important
examples of differential operators generating q-exponentially equicontinuous
(gδ, g1)-regularized I-resolvent families. Then it has been proved in [20] that A is
the integral generator of a q-exponentially equicontinuous, analytic (aα, kα)-regu-
larized resolvent family of angle δα. Notice, finally, that the choice of function aα(t)
instead of g1(t) has some advantages.

Example 5.2. Suppose 1 ≤ p ≤ ∞, E := Lp(R), m : R → C is measurable, aj ∈ L∞(R),
(Ajf)(x) := aj(x)f(x), x ∈ R, f ∈ E (1 ≤ j ≤ n − 1) and (Af)(x) := m(x)f(x), x ∈ R, with
maximal domain. Assume s ∈ (1, 2), δ = 1/s, Mp = p!s and kδ(t) = L−1(e−λ

δ
)(t), t ≥ 0.

Denote by M(t) the associated function of the sequence (Mp) [30] and put Λα′,β′,γ ′ := {λ ∈ C :
Reλ ≥ γ ′−1M(α′λ) + β′}, α′ > 0, β′ > 0, γ ′ > 0. Clearly, there exists a constant Cs > 0 such that
M(λ) ≤ Cs|λ|1/s, λ ∈ C. Hereafter we assume that the following condition holds:

(H) for every τ > 0, there exist α′ > 0, β′ > 0 and d > 0 such that τ ≤ cos(δπ/2)/Csα
′1/s

and

∣∣∣∣∣∣
λαn−α +

n−1∑

j=1

λαj−αaj(x) −m(x)

∣∣∣∣∣∣
≥ d, x ∈ R, λ ∈ Λα′,β′,1. (5.7)

Notice that the above condition holds provided n = 2, α2 − α = 2, α2 − α1 = 1 and m(x) =
(1/4)a2

1(x) − (1/16)a4
1(x) − 1, x ∈ R (cf. [31]), and that the validity of condition (H) does

not imply, in general, the essential boundedness of the function m(·). We will prove that A
is the integral generator of a global (not exponentially bounded, in general) kδ-regularized
I-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1). Clearly, it suffices to
show that, for every τ ∈ (0,∞),A is the integral generator of a local kδ-regularized I-resolvent
propagation family for (1.1) on [0, τ). Suppose that τ > 0 is given in advance, and that α′ > 0,
β′ > 0 and d > 0 satisfy (H), for this τ . Let Γ denote the upwards oriented boundary of
ultralogarithmic region Λα′,β′,1. Put, for every t ∈ [0, τ), f ∈ E and x ∈ R,

(
Ri(t)f

)
(x) :=

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ, (5.8)
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if m − 1 < i, and

(
Ri(t)f

)
(x) :=

(−1)
2πi

∫

Γ
eλt−λ

δ λαj−α−iaj(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ +
(
kδ ∗ gi

)
(t)f(x), (5.9)

if m − 1 ≥ i. It is clear that, for every i ∈ N
0
mn−1, Ri(t)Aj ⊆ AjRi(t), t ∈ [0, τ), j ∈ N

0
n−1 and that

(Ri(t))t∈[0,τ) ⊆ L(E) is strongly continuous. Furthermore, the Cauchy theorem implies that
Ri(0) = 0 = kδ(0), i ∈ N

0
mn−1. Now we will prove that the identity (2.6) holds provided

m − 1 < i and C2 = I. Let f ∈ D(A). Then a straightforward computation involving Cauchy
theorem shows that (2.6) holds, with x replaced by f(·) therein, if and only if:

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

+
n−1∑

j=1

1
2πi

∫

Γ

(∫ t

0
gαn−αj (t − s)eλs ds

)

e−λ
δ

[
λαn−α−i +

∑
l∈Di

λαl−α−igl(x)
]
f(x)

λαn−α +
∑n−1

l=1 λ
αl−αal(x) −m(x)

dλ

− 1
2πi

∫

Γ

(∫ t

0
gαn−α(t − s)eλs ds

)

e−λ
δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
m(x)f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

=
1

2πi

∫

Γ
eλt−λ

δ

⎡

⎣λ−if(x) +
∑

j∈Di

λαj−αn−iaj(x)f(x)

⎤

⎦dλ.

(5.10)

Using [28, Lemma 5.5, page 23] and the Cauchy theorem, the above equality is equivalent
with:

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

+
n−1∑

j=1

1
2πi

∫

Γ

eλt−λ
δ

λαn−αj

[
λαn−α−i +

∑
l∈Di

λαl−α−igl(x)
]
f(x)

λαn−α +
∑n−1

l=1 λ
αl−αal(x) −m(x)

dλ

− 1
2πi

∫

Γ

eλt−λ
δ

λαn−α

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
m(x)f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

=
1

2πi

∫

Γ
eλt−λ

δ

⎡

⎣λ−if(x) +
∑

j∈Di

λαj−αn−iaj(x)f(x)

⎤

⎦dλ,

(5.11)

which is true because the integrands appearing on both sides of this equality are equal
identically. One can similarly prove that the identity (2.6) holds provided m − 1 ≥ i and
C2 = I, so that ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0), defined in the obvious way, is a kδ-regularized
I-resolvent propagation family for (1.1), with subgenerator A. Notice that the condition (H)
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implies m(·)/(λαn−α +∑n−1
j=1 λ

αj−αaj(·)−m(·)) ∈ L∞(R) for all λ ∈ Λα′,β′,1, which has as a further
consequence that R(Ri(t)) ⊆ D(A), provided t ≥ 0 and m − 1 < i, and that R(Ri(t) − (kδ ∗
gi)(t)) ⊆ D(A), provided t ≥ 0 and m − 1 ≥ i. The equality (2.5) holds for ((R0(t))t≥0, . . . ,
(Rmn−1(t))t≥0), the integral generator of ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0), defined similarly as in
the second section, coincides with the operator A, which is the unique subgenerator of
((R0(t))t≥0, . . . , (Rmn−1(t))t≥0). Notice that, for every compact setK ⊆ [0,∞), there exists hK > 0
such that

sup
t∈K,p∈N0,i∈N

0
mn−1

∥
∥
∥h

p

k(d
p/dtp)Ri(t)

∥
∥
∥

p!s
<∞, (5.12)

and that one can similarly consider the generation of local k1/2-regularized I-resolvent
propagation families which oblige a modification of the property stated above with s = 2.
Now we would like to give an example of kδ-regularized I-resolvent propagation family for
(1.1) in which Aj /∈ L(E) for some j ∈ Nn−1. Assume n = 2, α2 −α = 2, α2 −α1 = 1, a1(x) = −2x,
x ∈ R and m(x) = x2 − x4 − 1, x ∈ R. Define A1, A and Ri(·) as before (i = 0, 1). Then the
established conclusions continue to hold since, for every τ > 0, there exist α′ > 0, β′ > 0 and
d > 0 such that (H) holds as well as that:

x2 +
(
x4 − x2 + 1

)|λ|−2

∣∣λ2 − 2xλ +
(
x4 − x2 + 1

)∣∣ ≤ d, x ∈ R, λ ∈ Λα′,β′,1. (5.13)

Notice, finally, that it is not so difficult to construct examples of local k-regularized C-
resolvent propagation families which cannot be extended beyond its maximal interval of
existence.

Example 5.3. Suppose 1 ≤ p ≤ ∞, X := Lp(R), a ∈ R, r > 0, ϑ(·) ∈ W1,∞(R), 1/2 < γ ≤ 1,
T > 0, f ∈ C([0, T] : X), and (d/dt)(g2γ−1 ∗ (d/dx)f(t, ·)) ∈ C([0, T] : X). Put A1 := ad/dx
and Au := rΔu−ϑ(·)u with maximal distributional domain. Now we will focus our attention
to the following fractional analogue of damped Klein-Gordon equation:

D2γ
t u(t, x) + a

∂

∂x
Dγ
t u(t, x) − rΔxu(t, x) + ϑ(x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R.

(5.14)

The case γ = 1 has been analyzed in [24, Example 4.1], showing that there exists an expo-
nentially bounded I-uniqueness family for (5.14) and that, for every μ0 ∈ ρ(A1), there exists
an exponentially bounded (μ0−A1)

−1-existence family for (5.14) with Y = X. It is worth noting
that the estimates obtained in cited example enables one to simply verify that the conditions
of Theorem 4.1(i)-(ii) hold with k(t) = 1 and C1 = (μ0 − A1)

−1, and that the conditions of
Theorem 4.1(iii) hold with k(t) = t and C2 = I. This implies that there exists an exponentially
bounded g2γ -regularized I-uniqueness family (Uγ(t))t≥0 for (5.14) with αj = jγ , j = 0, 1, 2, and
that there exists an exponentially bounded (μ0 − A1)

−1-existence family (Eγ(t))t≥0 for (5.14)
with αj = jγ , j = 0, 1, 2. Applying Theorem 3.7, we obtain that, for every φ ∈ W3,p(R) and
ψ ∈ W3,p(R), there exists a unique mild solution u(t, x) of the corresponding problem (3.21)
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as well as that there exist M ≥ 1 and ω ≥ 0 such that the following estimate holds for each
t ≥ 0:

‖u(t, x)‖Lp(R) ≤ Meωt
[
∥
∥φ
∥
∥
W1,p(R) +

∥
∥ψ
∥
∥
W1,p(R) +

∫ t

0
(t − s)2γ−2∥∥f(s, ·)∥∥Lp(R)ds

+
∫ t

0

∥
∥
∥
∥
d

ds

(
g2γ−1 ∗ d

dx
f(s, ·)

)∥∥
∥
∥
Lp(R)

ds

]

.

(5.15)

It is checked at once that the solution u(t, x) is analytically extensible to the sector
Σ((1/γ)−1)(π/2), provided that f(t, x) ≡ 0. Suppose now ϑ(x) ≡ ϑ > 0, κ ≥ |1/2 − 1/p|, provided
1 < p <∞, respectively, κ > 1/2, provided p ∈ {1,∞}, C := (1 −Δ)−(1/2)κ and f(t, x) ≡ 0. Then
there exists a strong C-propagation family {(S0(t))t≥0, (S1(t))t≥0} for the problem (5.14) with
γ = 1 (cf. [28, Example 5.8, page 130]). Using [10, (1.23), page 12; Theorems 3.1–3.3, pages
40–42] and [28, Proposition 5.3(iii), page 116], it readily follows that, for every φ ∈ Wp,2(R)
and ψ ∈Wp,2(R), the function uγ(t, ·), t > 0, given by

uγ(t, ·) :=
∫∞

0
t−γΦ

(
st−γ
)[
S1(s)φ + S′

1(s)φ
]
ds

+
∫ t

0
g1−γ(t − s)

∫∞

0
s−γΦ

(
rs−γ
)
S1(r)ψdrds,

(5.16)

is a unique strong solution of the corresponding integral equation (3.21) with u0 = Cφ
and u1 = Cψ; obviously, this solution is analytically extensible to the sector Σ((1/γ)−1)(π/2).
Notice also that one can similarly consider (cf. [24, Example 4.2] for more details) the results
concerning the existence and uniqueness of mild solutions of the following time-fractional
equation:

D2γ
t u(t, x) +

(

ρ1
∂3

∂x3
− ρ2

∂2

∂x2

)

Dγ
t u(t, x) +

(

c
∂2

∂x2
+ a(x)

)

u(t, x) = f(t, x), (5.17)

u(0, x) = φ(x), ut(0, x) = ψ(x), (5.18)

and that Theorem 4.4 can be applied in the analysis of the following integral equation:

u(t, x) = a
∫ t

0
a1(t − s) ∂

∂x
u(s, x)ds +

∫ t

0
a2(t − s)[rΔxu(s, x) − ϑ(x)u(s, x)]ds + f(t, x),

(5.19)

for certain kernels a1(t) and a2(t). We leave details to the interested reader.



38 Abstract and Applied Analysis

Consider now the following slight modification of (5.14):

D2γ
t u(t, x) + a

∂

∂x
Dγ
t u(t, x) − rei(2−2γ)(π/2)Δxu(t, x) + ϑ(x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = φ(x),
(
Dγ
t u(t, x)

)

|t=0
= ψ(x), x ∈ R.

(5.20)

Suppose now that a/= 0 (for further information concerning the case a = 0, [21, 23] may be
of some importance). Although the equality D2γ

t u(t, x) = Dγ
t u(t, x)D

γ
t u(t, x) does not hold in

general, we would like to point out that the existence and uniqueness of mild solutions to the
homogeneous counterpart of (5.20) cannot be so easily proved for initial values belonging to
the Sobolev space Wk,p(R), for some k ∈ N. In order to better explain this, we will introduce
the new function v(t, x) by v(t, x) := Dγ

t u(t, x). Then (5.20) can be rewritten in the following
equivalent matricial form:

Dγ
t

[
u(t, x) v(t, x)

]T
=
[

0 1
−rei(2−2γ)π/2 −aix

]
(A)
[
u(t, x) v(t, x)

]T
, t ≥ 0, (5.21)

where A = −id/dx; see, for example, [35, 36]. The characteristic values of associated
polynomial matrix P(x) := [ 0 1

−rei(2−2γ)(π/2) −aix ] are λ1,2(x) = (1/2)(−aix ±
√
a2 + 4rei(2−2γ)(π/2)),

x ∈ R, which implies that the condition of Petrovskii for systems of abstract time-fractional
equations, that is, supx∈R

�((λ1,2(x))
1/γ) < ∞, is not satisfied [36]. Notice, finally, that (1.1)

cannot be converted to an equivalent matrix form, except for some very special values of
α0, . . . , αn.

Before proceeding further, we would like to observe that several examples of k-times
integrated (C1, C2)-existence and uniqueness families, acting on products of possibly dif-
ferent Banach spaces (k ∈ N), can be constructed following the consideration given in [37,
Section 7].

Example 5.4. Let s′ > 1,

E :=

{

f ∈ C∞[0, 1];
∥∥f
∥∥ := sup

p≥0

∥∥f (p)
∥∥
∞

p!s
′ <∞

}

,

A := − d

ds
, D(A) :=

{
f ∈ E; f ′ ∈ E, f(0) = 0

}
.

(5.22)

Then ρ(A) = C, and for every η > 1, ||R(λ : A)|| = O(eη|λ|), λ ∈ C [21]. Consider now the
complex non-zero polynomials Pj(z) =

∑nj
l=0 aj,lz

l, z ∈ C, aj,nj /= 0 (0 ≤ j ≤ n − 1), and
define, for every λ ∈ C and j ∈ N

0
n−1, the operator Pj(A) by D(Pj(A)) := D(Anj ) and

Pj(A)f :=
∑nj

l=0 aj,lA
lf , f ∈ D(Pj(A)). Our intention is to analyze the smoothing properties

of solutions of the equation (3.21) with Aj := pj(A), j ∈ N
0
n−1, uk = 0, k ∈ N

0
mn−1, and

a suitable chosen function f(t). In order to do that, set N := max(dg (P0), . . . , dg (Pn−1)),



Abstract and Applied Analysis 39

Pλ(z) := 1+
∑n−1

j=1 λ
αj−αnPj(z)−λα−αnP0(z) (λ ∈ C\{0}, z ∈ C), and after that, Φ := {λ ∈ C\{0} :

dg (Pλ(·)) = N,Pλ(0)/= 0}. Then it is not difficult to prove (cf. [21, Example 2.10]) that, for
every λ ∈ C \ {0}, P−1

λ
= (I +

∑n−1
j=1 λ

αj−αnAj − λα−αnA)−1 ∈ L(E) and that

P−1
λ = (−1)Ng(λ)−1R(z1,λ : A) · · ·R(zN,λ : A), λ ∈ Φ, (5.23)

where z1,λ, . . . , zN,λ denote the zeroes of Pλ(z) and g(λ) :=N!−1P(N)
λ (0), λ ∈ Φ. Suppose now

that the following condition holds:

(H) there exist σ ∈ (0, 1), ω > 0 and m > 0 such that, for every j ∈ N
0
n−1, one has:

|zj,λ| ≤ m|λ|σ , λ ∈ Φ, �λ > ω.

It is well known from the elementary courses of numerical analysis [38] that the
condition:

(H1) there exist σ ∈ (0, 1), ω > 0 and m > 0 such that, for every j ∈ N
0
n−1, one has:

∣∣∣∣∣∣

N!P(j)
λ (0)

j!P(N)
λ (0)

∣∣∣∣∣∣

1/(N−j)

≤ 1
2
m|λ|σ, λ ∈ Φ, �λ > ω, (5.24)

implies (H). The validity of last condition can be simply verified in many concrete situations,
and it seems that slightly better estimates can be obtained only in the case of very special
equations of the form (1.1). We would also like to point out that the condition (H) need
not to be satisfied, in general. Using (5.23), the inequality ||AlR(μ1 : A) · · ·R(μl : A)|| ≤
(1 + |μ1|||R(μ1 : A)||) · · · (1 + |μl|||R(μl : A)||) (l ∈ N, μ1, . . . , μl ∈ C), as well as the continuity of
mappings λ �→ P−1

λ
, �λ > ω and λ �→ AjP−1

λ
, �λ > ω, for 0 ≤ j ≤ n − 1, we obtain the existence

of a positive polynomial p(·) such that

∥∥∥P−1
λ

∥∥∥ +
n−1∑

j=0

∥∥∥AjP−1
λ

∥∥∥ ≤ p(|λ|)emN|λ|σ , �λ > ω. (5.25)

In what follows, we will use the following family of kernels. Define, for every l > 0, the entire
function ωl(·) by ωl(λ) :=

∏∞
p=1(1 + (lλ/ps)), λ ∈ C, where s := σ−1. Then it is clear that

|ωl(λ)| ≥ supk∈N

∏k
p=1|1 + (lλ/ps)| ≥ supk∈N

∏k
p=1l|λ|/ps ≥ supk∈N

(l|λ|)k/p!s, λ ∈ C, �λ ≥ 0.
Hence, |ωl(λ)| ≥ eM(l|λ|), λ ∈ C, �λ ≥ 0, where M(λ) := supp∈N0

ln |λ|p/p!s, λ ∈ C \ {0} and
M(0) := 0. It is also worth noting that, for every ζ ∈ (0, π/2), p ∈ N0 and λ ∈ Σ(π/2)+ζ, we have
|1 + (lλ/ps)| ≥ l|�λ|/ps ≥ l(1 + tan ζ)−1|λ|/ps, and

|ωl(λ)| ≥ eM(l(1+tan ζ)−1|λ|), ζ ∈
(

0,
π

2

)
, l > 0, λ ∈ Σ(π/2)+ζ. (5.26)

Put now Kl(t) := L−1(1/ωl(λ))(t), t ≥ 0, l > 0. Then, for every l > 0, 0 ∈ suppKl, Kl(0) = 0
and Kl(t) is infinitely differentiable for t ≥ 0. By Theorem 3.5(i)-(b) and (iii), we easily infer
from (5.25) that there exists k > 0 such that, for every l > k, there exists an exponentially
bounded Kl-regularized I-resolvent family (El(t))t≥0 for (1.1), with Y = X = E. Furthermore,
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the mapping t �→ El(t), t ≥ 0 is infinitely differentiable in the uniform operator topology of
L(E) and, for every compact set K ⊆ [0,∞) and for every l > k, there exists hK,l > 0 such that

sup
p≥0,t∈K

h
p

K,l

∥
∥
∥E

(p)
l (t)

∥
∥
∥

p!s
<∞. (5.27)

One can similarly construct examples of exponentially bounded, analytic Kl-regularized I-
resolvent families.
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This paper deals with the existence of mild solutions for a class of fractional evolution equations
with compact analytic semigroup. We prove the existence of mild solutions, assuming that the
nonlinear part satisfies some local growth conditions in fractional power spaces. An example is
also given to illustrate the applicability of abstract results.

1. Introduction

The differential equations involving fractional derivatives in time have recently been proved
to be valuable tools in the modeling of many phenomena in various fields of engineering,
physics, economics, and science. Numerous applications can be found in electrochemistry,
control, porous media, electromagnetic, see for example, [1–5] and references therein. Hence
the study of such equations has become an object of extensive study during recent years, see
[6–23] and references therein.

In this paper, we consider the existence of the following fractional evolution equation:

Dq u(t) +Au(t) = f(t, u(t), Gu(t)), t ∈ J = [0, T],

u(0) = x0,
(1.1)

where Dq is the Caputo fractional derivative of order q ∈ (0, 1), −A is the infinitesimal
generator of a compact analytic semigroup S(·) of uniformly bounded linear operators, f
is the nonlinear term and will be specified later, and
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Gu(t) =
∫ t

0
K(t, s)u(s)ds (1.2)

is a Volterra integral operator with integral kernel K ∈ C(Δ, R+),Δ = {(t, s) : 0 ≤ s ≤ t ≤
T}, R+ = [0,+∞). Throughout this paper, we denote by K∗ := max(t,s)∈ΔK(t, s)

In some existing articles, the fractional differential equations were treated under the
hypothesis that nonlinear term satisfies Lipschitz conditions or linear growth conditions. It
is obvious that these conditions are not easy to be verified sometimes. To make the things
more applicable, in this work, we will prove the existence of mild solutions for (1.1) under
some new conditions. More precisely, the nonlinear term only satisfies some local growth
conditions (see conditions (H1) and (H2)). These conditions are much weaker than Lipschitz
conditions and linear growth conditions. The main techniques used here are fractional
calculus, theory of analytic semigroup, and Schauder fixed point theorem.

The rest of this paper is organized as follows. In Section 2, some preliminaries are given
on the fractional power of the generator of a compact analytic semigroup and the definition
of mild solutions of (1.1). In Section 3, we study the existence of mild solutions for (1.1). In
Section 4, an example is given to illustrate the applicability of abstract results obtained in
Section 3.

2. Preliminaries

In this section, we introduce some basic facts about the fractional power of the generator of a
compact analytic semigroup and the fractional calculus that are used throughout this paper.

Let X be a Banach space with norm ‖ · ‖. Throughout this paper, we assume that −A :
D(A) ⊂ X → X is the infinitesimal generator of a compact analytic semigroup S(t) (t ≥ 0)
of uniformly bounded linear operator in X, that is, there exists M ≥ 1 such that ‖S(t)‖ ≤ M
for all t ≥ 0. Without loss of generality, let 0 ∈ ρ(−A), where ρ(−A) is the resolvent set of −A.
Then for any α > 0, we can define A−α by

A−α :=
1

Γ(α)

∫∞

0
t(α−1)S(t)dt. (2.1)

It follows that each A−α is an injective continuous endomorphism of X. Hence we
can define Aα by Aα := (A−α)−1, which is a closed bijective linear operator in X. It can be
shown that each Aα has dense domain and that D(Aβ) ⊂ D(Aα) for 0 ≤ α ≤ β. Moreover,
Aα+βx = AαAβx = AβAαx for every α, β ∈ R and x ∈ D(Aμ) with μ := max{α, β, α + β}, where
A0 = I, I is the identity in X. (For proofs of these facts, we refer to the literature [24–26]).

We denote by Xα the Banach space of D(Aα) equipped with norm ‖x‖α = ‖Aαx‖ for
x ∈ D(Aα), which is equivalent to the graph norm of Aα. Then we have Xβ ↪→ Xα for 0 ≤ α ≤
β ≤ 1 (with X0 = X), and the embedding is continuous. Moreover, Aα has the following basic
properties.

Lemma 2.1 (see [24]). Aα has the following properties.

(i) S(t) : X → Xα for each t > 0 and α ≥ 0.

(ii) AαS(t)x = S(t)Aαx for each x ∈ D(Aα) and t ≥ 0.
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(iii) For every t > 0, AαS(t) is bounded in X and there existsMα > 0 such that

‖AαS(t)‖ ≤Mαt
−α. (2.2)

(iv) A−α is a bounded linear operator for 0 ≤ α ≤ 1 in X.

In the following, we denote by C(J,Xα) the Banach space of all continuous functions
from J into Xα with supnorm given by ‖u‖C = supt∈J‖u(t)‖α for u ∈ C(J,Xα). From
Lemma 2.1(iv), since A−α is a bounded linear operator for 0 ≤ α ≤ 1, there exists a constant
Cα such that ‖A−α‖ ≤ Cα for 0 ≤ α ≤ 1.

For any t ≥ 0, denote by Sα(t) the restriction of S(t) to Xα. From Lemma 2.1(i) and (ii),
for any x ∈ Xα, we have

‖S(t)x‖α = ‖Aα · S(t)x‖ = ‖S(t) ·Aαx‖ ≤ ‖S(t)‖ · ‖Aαx‖ = ‖S(t)‖ · ‖x‖α,
‖S(t)x − xα‖ = ‖Aα · S(t)x −Aαx‖ = ‖S(t) ·Aαx −Aαx‖ −→ 0

(2.3)

as t → 0. Therefore, S(t) (t ≥ 0) is a strongly continuous semigroup in Xα, and ‖Sα(t)‖α ≤
‖S(t)‖ for all t ≥ 0. To prove our main results, the following lemma is also needed.

Lemma 2.2 (see [27]). Sα(t) (t ≥ 0) is an immediately compact semigroup in Xα, and hence it is
immediately norm-continuous.

Let us recall the following known definitions in fractional calculus. For more details,
see [16–20, 23].

Definition 2.3. The fractional integral of order σ > 0 with the lower limits zero for a function
f is defined by

Iσf(t) =
1

Γ(σ)

∫ t

0
(t − s)σ−1f(s)ds, t > 0, (2.4)

where Γ is the gamma function.
The Riemann-Liouville fractional derivative of order n − 1 < σ < n with the lower

limits zero for a function f can be written as

LDσf(t) =
1

Γ(n − σ)
dn

dtn

∫ t

0
(t − s)n−σ−1f(s)ds, t > 0, n ∈ N. (2.5)

Also the Caputo fractional derivative of order n − 1 < σ < n with the lower limits zero for a
function f ∈ Cn[0,∞) can be written as

Dσf(t) =
1

Γ(n − σ)
∫ t

0
(t − s)n−σ−1f (n)(s)ds, t > 0, n ∈ N. (2.6)
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Remark 2.4. (1) The Caputo derivative of a constant is equal to zero.
(2) If f is an abstract function with values in X, then integrals which appear in

Definition 2.3 are taken in Bochner’s sense.

Lemma 2.5 (see [12]). A measurable function h : J → X is Bochner integrable if ‖h‖ is Lebesgue
integrable.

For x ∈ X, we define two families {U(t)}t≥0 and {V (t)}t≥0 of operators by

U(t)x =
∫∞

0
ηq(θ)S(tqθ)xdθ, V (t)x = q

∫∞

0
θηq(θ)S(tqθ)xdθ, 0 < q < 1, (2.7)

where

ηq(θ) =
1
q
θ−1−(1/q)ρq

(
θ−(1/q)

)
, ρq(θ) =

1
π

∞∑

n=1

(−1)n−1θ−qn−1 Γ
(
nq + 1

)

n!
sin

(
nπq

)
,

θ ∈ (0,∞),

(2.8)

ηq is a probability density function defined on (0,∞), which has properties ηq(θ) ≥ 0 for all
θ ∈ (0,∞) and

∫∞

0
ηq(θ)dθ = 1,

∫∞

0
θηq(θ)dθ =

1
Γ
(
q + 1

) . (2.9)

The following lemma follows from the results in [7, 11–13].

Lemma 2.6. The operators U and V have the following properties.

(i) For fixed t ≥ 0 and any x ∈ Xα, we have

‖U(t)x‖α ≤M‖x‖α, ‖V (t)x‖α ≤ qM

Γ
(
1 + q

)‖x‖α =
M

Γ
(
q
)‖x‖α. (2.10)

(ii) The operatorsU(t) and V (t) are strongly continuous for all t ≥ 0.

(iii) U(t) and V (t) are norm-continuous in X for t > 0.

(iv) U(t) and V (t) are compact operators in X for t > 0.

(v) For every t > 0, the restriction of U(t) to Xα and the restriction of V (t) to Xα are norm-
continuous.

(vi) For every t > 0, the restriction of U(t) to Xα and the restriction of V (t) to Xα are compact
operators in Xα.

Based on an overall observation of the previous related literature, in this paper, we
adopt the following definition of mild solution of (1.1).
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Definition 2.7. By a mild solution of (1.1), we mean a function u ∈ C(J,Xα) satisfying

u(t) = U(t)x0 +
∫ t

0
(t − s)q−1V (t − s)f(s, u(s), Gu(s))ds (2.11)

for all t ∈ J .

3. Existence of Mild Solutions

In this section, we give the existence theorems of mild solutions of (1.1). The discussions
are based on fractional calculus and Schauder fixed point theorem. Our main results are as
follows.

Theorem 3.1. Assume that the following condition on f is satisfied.

(H1) There exists a constant β ∈ [α, 1] such that f : J ×Xα ×Xα → Xβ satisfies:

(i) for each (x, y) ∈ Xα ×Xα, the function f(·, x, y) : J → Xβ is measurable;

(ii) for each t ∈ J , the function f(t, ·, ·) : Xα ×Xα → Xβ is continuous;

(iii) for any r > 0, there exists a function gr ∈ L∞(J,R+) such that

sup
‖x‖α≤r, ‖y‖α≤K∗Tr

∥∥f
(
t, x, y

)∥∥
β ≤ gr(t), t ∈ J, (3.1)

and there is a constant γ > 0 such that

lim inf
r−→+∞

1
r

∫ t

0

gr(s)

(t − s)1−q ds ≤ γ < +∞. (3.2)

If x0 ∈ Xα andMCβ−αγ < Γ(q), then (1.1) has at least one mild solution.

Proof. Define an operator Q by

(Qu)(t) = U(t)x0 +
∫ t

0
(t − s)q−1V (t − s)f(s, u(s), Gu(s))ds, t ∈ J. (3.3)

It is not difficult to verify that Q : C(J,Xα) → C(J,Xα). We will use Schauder fixed point
theorem to prove that Q has fixed points in C(J,Xα).

For any r > 0, let Br := {u ∈ C(J,Xα) : ‖u(t)‖α ≤ r, t ∈ J}. We first show that there
is a positive number r such that Q(Br) ⊂ Br . If this were not the case, then for each r > 0,
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there would exist ur ∈ Br and tr ∈ J such that ‖(Qur)(tr)‖α > r. Thus, from Lemma 2.6(i) and
(H1)(iii), we see that

r < ‖(Qur)(tr)‖α ≤ ‖U(tr)x0‖α +
∫ tr

0
(tr − s)q−1∥∥V (tr − s)f(s, ur(s), Gur(s))

∥∥
αds

≤ M‖x0‖α +
∫ tr

0
(tr − s)q−1

∥
∥
∥Aα−βV (tr − s) ·Aβf(s, ur(s), Gur(s))

∥
∥
∥ds

≤ M‖x0‖α +
MCβ−α
Γ
(
q
)

∫ tr

0
(tr − s)q−1gr(s)ds.

(3.4)

Dividing on both sides by r and taking the lower limit as r → +∞, we have

MCβ−αγ ≥ Γ
(
q
)
, (3.5)

which is a contradiction. Hence Q(Br) ⊂ Br for some r > 0.
To complete the proof, we separate the rest of proof into the following three steps.

Step 1. Q : Br → Br is continuous.
Let {un} ⊂ Br with un → u ∈ Br as n → ∞. From the assumption (H1)(ii), for each

s ∈ J , we have

f(s, un(s), Gun(s)) −→ f(s, u(s), Gu(s)) (3.6)

as n → ∞. Since ‖f(s, un(s), Gun(s)) − f(s, u(s), Gu(s))‖β ≤ 2gr(s), by the Lebesgue
dominated convergence theorem, for each t ∈ J , we have

‖(Qun)(t) − (Qu)(t)‖α ≤
∫ t

0
(t − s)q−1∥∥V (t − s)[f(s, un(s), Gun(s)) − f(s, u(s), Gu(s))

]∥∥
αds

≤
∫ t

0
(t − s)q−1

∥∥∥Aα−βV (t − s)

·Aβ[f(s, un(s), Gun(s)) − f(s, u(s), Gu(s))
]∥∥∥ds

≤ MCβ−α
Γ
(
q
)

∫ t

0
(t − s)q−1∥∥f(s, un(s), Gun(s))

−f(s, u(s), Gu(s))∥∥β ds −→ 0

(3.7)

as n → ∞, which implies that Q : Br → Br is continuous.
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Step 2. (QBr)(t) := {(Qu)(t) : u ∈ Br} is relatively compact in Xα for all t ∈ J .
It follows from (2.9) and (3.3) that (QBr)(0) = {(Qu)(0) : u ∈ Br} = {x0} is compact in

Xα. Hence it is only necessary to consider the case of t > 0. For each t ∈ (0, T], ε ∈ (0, t), and
any δ > 0, we define a set (Qε,δBr)(t) by

(Qε,δBr)(t) := {(Qε,δu)(t) : u ∈ Br}, (3.8)

where

(Qε,δu)(t) =
∫∞

δ

ηq(θ)S(tqθ)dθx0

+ q
∫ t−ε

0
(t − s)q−1

∫∞

δ

θηq(θ)S
(
(t − s)qθ)dθ · f(s, u(s), Gu(s))ds

= S(εqδ)
[ ∫∞

δ

ηq(θ)S(tqθ − εqδ)dθx0

+q
∫ t−ε

0
(t − s)q−1

∫∞

δ

θηq(θ)S
(
(t − s)qθ − εqδ)dθ · f(s, u(s), Gu(s))ds

]

.

(3.9)

Then the set (Qε,δBr)(t) is relatively compact in Xα since by Lemma 2.2, the operator
Sα(εqδ) is compact in Xα. For any u ∈ Br and t ∈ (0, T], from the following inequality:

‖(Qu)(t) − (Qε,δu)(t)‖α ≤
∥∥∥∥∥

∫δ

0
ηq(θ)S(tqθ)dθx0

∥∥∥∥∥
α

+

∥∥∥∥∥
q

∫ t

0
(t − s)q−1

∫δ

0
θηq(θ)S

(
(t − s)qθ)dθ

·f(s, u(s), Gu(s))ds
∥∥∥∥∥
α

+

∥∥∥∥∥
q

∫ t

0
(t − s)q−1

∫∞

δ

θηq(θ)S
(
(t − s)qθ)dθ · f(s, u(s), Gu(s))ds

− q
∫ t−ε

0
(t − s)q−1

∫∞

δ

θηq(θ)S
(
(t − s)qθ)dθ

·f(s, u(s), Gu(s))ds
∥∥∥∥∥
α

≤ M‖x0‖α
∫δ

0
ηq(θ)dθ + qMCβ−α

∥∥gr
∥∥
L∞

∫ t

0
(t − s)q−1ds

∫δ

0
θηq(θ)dθ

+ qMCβ−α
∥∥gr

∥∥
L∞

∫ t

t−ε
(t − s)q−1ds

∫∞

0
θηq(θ)dθ
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≤ M‖x0‖α
∫δ

0
ηq(θ)dθ +MCβ−αTq

∥
∥gr

∥
∥
L∞

×
∫δ

0
θηq(θ)dθ +

MCβ−α
∥
∥gr

∥
∥
L∞

Γ
(
q + 1

) εq.

(3.10)

One can obtain that the set (QBr)(t) is relatively compact in Xα for all t ∈ (0, T). And since it
is compact at t = 0, we have the relatively compactness of (QBr)(t) in Xα for all t ∈ J .

Step 3. QBr := {Qu ∈ C(J,Xα) : u ∈ Br} is equicontinuous.
For τ ∈ [0, T), by (3.3), we have

‖(Qu)(τ) − (Qu)(0)‖α ≤ ‖U(τ)x0 − x0‖α

+
∥∥∥∥

∫ τ

0
(τ − s)q−1V (τ − s)f(s, u(s), Gu(s))ds

∥∥∥∥
α

≤ ‖U(τ) − I‖ · ‖x0‖α +
MCβ−α

∥∥gr
∥∥
L∞

Γ
(
q + 1

) τq.

(3.11)

Hence it is only necessary to consider the case of t > 0. For 0 < t1 < t2 ≤ T , by Lemma 2.1 and
Lemma 2.6(i), we have

‖(Qu)(t2) − (Qu)(t1)‖α ≤ ‖U(t2)x0 −U(t1)x0‖α

+

∥∥∥∥∥

∫ t2

0
(t2 − s)q−1V (t2 − s)f(s, u(s), Gu(s))ds

−
∫ t1

0
(t1 − s)q−1V (t1 − s)f(s, u(s), Gu(s))ds

∥∥∥∥∥
α

≤ ‖U(t2) −U(t1)‖ · ‖x0‖α

+

∥∥∥∥∥

∫ t2

t1

(t2 − s)q−1V (t2 − s)f(s, u(s), Gu(s))ds
∥∥∥∥∥
α

+

∥∥∥∥∥

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
V (t2 − s)f(s, u(s), Gu(s))ds

∥∥∥∥∥
α

+

∥∥∥∥∥

∫ t1

0
(t1 − s)q−1f(s, u(s), Gu(s))[V (t2 − s) − V (t1 − s)]ds

∥∥∥∥∥
α

≤ ‖U(t2) −U(t1)‖ · ‖x0‖α +
MCβ−α

∥∥gr
∥∥
L∞

Γ
(
q + 1

) (t2 − t1)q

+
MCβ−α

∥∥gr
∥∥
L∞

Γ
(
q + 1

)
[
t
q

2 − t
q

1 − (t2 − t1)q
]
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+

∥
∥
∥
∥
∥

∫ t1

0
(t1 − s)q−1[V (t2 − s) − V (t1 − s)] · f(s, u(s), Gu(s))ds

∥
∥
∥
∥
∥
α

� I1 + I2 + I3 + I4.

(3.12)

From Lemma 2.6(v), we see that I1 → 0 as t2 → t1 independently of u ∈ Br . From the
expressions of I2 and I3, it is clear that I2 → 0 and I3 → 0as t2 → t1 independently of u ∈ Br .
For any ε ∈ (0, t1), we have

I4 ≤
∥
∥
∥
∥
∥

∫ t1−ε

0
(t1 − s)q−1[V (t2 − s) − V (t1 − s)] · f(s, u(s), Gu(s))ds

∥
∥
∥
∥
∥
α

+

∥
∥∥∥∥

∫ t1

t1−ε
(t1 − s)q−1[V (t2 − s) − V (t1 − s)] · f(s, u(s), Gu(s))ds

∥
∥∥∥∥
α

≤ 1
q
Cβ−α

∥∥gr
∥∥
L∞(Tq + εq) sup

0≤s≤t1−ε
‖V (t2 − s) − V (t1 − s)‖ +

2MCβ−α
∥∥gr

∥∥
L∞

Γ
(
q + 1

) εq.

(3.13)

It follows from Lemma 2.6(v) that I4 → 0 as t2 → t1 and ε → 0 independently of
u ∈ Br . Therefore, we prove that QBr is equicontinuous.

Thus, the Arzela-Ascoli theorem guarantees that Q is a compact operator. By the
Schauder fixed point theorem, the operator Q has at least one fixed point u∗ in Br , which
is a mild solution of (1.1). This completes the proof.

Remark 3.2. In assumption (H1)(iii), if the function gr(t) is independent of t, then we can
easily obtain a constant γ > 0 satisfying (3.2). For example, if there is a constant af > 0 such
that

∥∥f
(
t, x, y

)∥∥
β ≤ af

(
1 + ‖x‖α +

∥∥y
∥∥
α

)
(3.14)

for all x, y ∈ Xα and t ∈ J , then for any r > 0, x, y ∈ Xα with ‖x‖α ≤ r, ‖y‖α ≤ K∗Tr,
we have ‖f(t, x, y)‖β ≤ af + af(1 + K∗T)r � gr(t), where gr(t) is independent of t. Thus,
γ := (1/q)afTq(1 +K∗T) > 0 is the constant in (3.2).

More generally, if f satisfies the following condition:

(H2) there is a constant β ∈ [α, 1] such that f : J ×Xα ×Xα → Xβ satisfies:

(i) for each (x, y) ∈ Xα ×Xα, the function f(·, x, y) : J → Xβ is measurable,

(ii) for any r > 0, there exists a function � ∈ L∞(J,R+) such that

∥∥f
(
t, x1, y1

) − f(t, x2, y2
)∥∥

β ≤ �(t)
(‖x1 − x2‖α +

∥∥y1 − y2
∥∥
α

)
(3.15)

for any xi, yi ∈ Xα with ‖xi‖α ≤ r, ‖yi‖α ≤ K∗Tr (i = 1, 2) and t ∈ J , then we have the
following existence and uniqueness theorem.
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Theorem 3.3. Assume that the condition (H2) is satisfied. If x0 ∈ Xα and MCβ−αTq(1 +
K∗T)‖�‖L∞ < Γ(q + 1), then (1.1) has a unique mild solution.

Proof. For any r > 0, if x, y ∈ Xα with ‖x‖α ≤ r, ‖y‖α ≤ K∗Tr, then from (H2)(ii), we have

∥
∥f

(
t, x, y

)∥∥
β ≤ �(t)(1 +K∗T)r + b(t) � gr(t), (3.16)

where b(t) = ‖f(t, 0, 0)‖β. Therefore, the condition (H1)(iii) is satisfied with γ = ((1 +
K∗T)Tq‖�‖L∞ )/q. By Theorem 3.1, (1.1) has at least one mild solution u∗ ∈ Br .

Let u1, u2 ∈ Br be the solutions of (1.1). We show that u1 ≡ u2. Since u1(t) = (Qu1)(t)
and u2(t) = (Qu2)(t) for all t ∈ J , we have

‖u1(t) − u2(t)‖α = ‖(Qu1)(t) − (Qu2)(t)‖α

≤
∫ t

0
(t − s)q−1∥∥V (t − s)[f(s, u1(s), Gu1(s)) − f(s, u2(s), Gu2(s))

]∥∥
αds

=
∫ t

0
(t − s)q−1

∥∥∥Aα−βV (t − s) ·Aβ[f(s, u1(s), Gu1(s)) − f(s, u2(s), Gu2(s))
]∥∥∥ds

≤ MCβ−α
Γ
(
q
)

∫ t

0
(t − s)q−1 · ∥∥f(s, u1(s), Gu1(s)) − f(s, u2(s), Gu2(s))

∥∥
βds

≤ MCβ−α
Γ
(
q
)

∫ t

0
(t − s)q−1 · �(s)(‖u1(s) − u2(s)‖α + ‖Gu1(s) −Gu2(s)‖α)ds

≤ MCβ−α‖�‖L∞

Γ
(
q
) (1 +K∗T)

∫ t

0
(t − s)q−1 · ‖u1(s) − u2(s)‖αds.

(3.17)

By using the Gronwall-Bellman inequality (see [14, Theorem 1]), we can deduce that ‖u1(t)−
u2(t)‖α = 0 for all t ∈ J , which implies that u1 ≡ u2. Hence (1.1) has a unique mild solution
u∗ ∈ Br . This completes the proof.

Remark 3.4. In Theorem 3.3, we only assume that f satisfies a local Lioschitz condition (see
condition (H2)), and an existence and uniqueness result is obtained. If f(t, u, v) ≡ f(t, u) :
J ×Xα → X, then the assumption (H2) deletes the linear growth condition (3) of assumption
(Hf) in [12]. Therefore, the Theorem 3.3 extends and improves the main result in [12].

4. An Example

Assume that X = L2[0, π] equipped with its natural norm and inner product defined,
respectively, for all u, v ∈ L2[0, π], by

‖u‖X =
(∫π

0
|u(x)|2dx

)1/2

, 〈u, v〉 =
∫π

0
u(x)v(x)dx. (4.1)
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Consider the following fractional partial differential equation:

∂1/2

∂t1/2
u(x, t) − ∂2

∂x2
u(x, t) = g

(
x, t, u(x, t),

∫ t
0 K(t, s)u(x, s)ds

)
, t ∈ [0, T], x ∈ [0, π]

u(0, t) = u(π, t) = 0, t ∈ [0, T],
u(x, 0) = u0(x), x ∈ [0, π],

(4.2)

where T > 0 is a constant.
Let the operator A : D(A) ⊂ X → X be defined by

D(A) :=
{
v ∈ X : v′′ ∈ X, v(0) = v(π) = 0

}
, Au = −∂

2u

∂x2
. (4.3)

It is well known that A has a discrete spectrum with eigenvalues of the form n2, n ∈ N,
and corresponding normalized eigenfunctions given by zn =

√
(2/π) sin(nx). Moreover, −A

generates a compact analytic semigroup S(t) (t ≥ 0) in X, and

S(t)u =
∞∑

n=1

e−n
2t〈u, zn〉zn. (4.4)

It is not difficult to verify that ‖S(t)‖L(X) ≤ e−t for all t ≥ 0. Hence, we take M = 1.
The following results are also well known.

(I) The operator A can be written as

Au =
∞∑

n=1

n2〈u, zn〉zn (4.5)

for every u ∈ D(A).

(II) The operator A1/2 is given by

A1/2u =
∞∑

n=1

n〈u, zn〉zn (4.6)

for each u ∈ D(A1/2) := {v ∈ X :
∞∑

n=1
n < v, zn > zn ∈ X} and ‖A−(1/2)‖L(X) = 1.

Lemma 4.1 (see [28]). If m ∈ D(A1/2), then m is absolutely continuous, m′ ∈ X and ‖m′‖X =
‖A1/2m‖X .

Let X1/2 = (D(A1/2), ‖ · ‖1/2), where ‖x‖1/2 := ‖A1/2x‖X for all x ∈ D(A1/2). Assume
that g : [0, π] × [0, T] × R × R → R satisfies the following conditions.

(i) For each (x, t) ∈ [0, π] × [0, T], the function g(x, t, ·, ·) is continuous.

(ii) For each (ξ, η) ∈ R
2, the function g(·, ·, ξ, η) is measurable.
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(iii) For each t ∈ [0, T] and ξ, η ∈ R, g(·, t, ξ, η) is differentiable, and (∂/∂x)g(x, t, ξ, η) ∈
X.

(iv) g(0, ·, ·, ·) = g(π, ·, ·, ·) = 0.

(v) There exist the functions �1, �0 ∈ L∞([0, T],R+) such that

∣
∣
∣
∣
∂

∂x
g
(
x, t, ξ, η

)
∣
∣
∣
∣ ≤ �1(t)

(|ξ| + ∣∣η∣∣) + �0(t) (4.7)

for all (x, t, ξ, η) ∈ [0, π] × [0, T] × R × R.
Define f(t, u(t), Gu(t))(x) = g(x, t, u(x, t),

∫ t
0 K(t, s)u(x, s)ds). Then, for each φ ∈ X1/2,

from assumptions (iii) and (iv), we have

〈
f
(
t, φ,Gφ

)
, zn

〉
=
∫π

0
g

(

x, t, φ(x, t),
∫ t

0
K(t, s)φ(x, s)ds

)

·
√

2
π

sin(nx)dx

=
1
n

∫π

0

(
∂

∂x
g

(

x, t, φ(x, t),
∫ t

0
K(t, s)φ(x, s)ds

))

·
√

2
π

cos(nx)dx.

(4.8)

This implies from (II) that f : [0, T] ×X1/2 ×X1/2 → X1/2. Moreover, for any r > 0, by
Minkowski inequality, assumption (v) and Lemma 4.1, we have

sup
‖φ‖1/2

≤r

∥∥f
(
t, φ,Gφ

)∥∥
1/2 = sup

‖φ‖1/2
≤r

∥∥∥∥∥
∂

∂x
g

(

x, t, φ(x, t),
∫ t

0
K(t, s)φ(x, s)ds

)∥∥∥∥∥
X

= sup
‖φ‖1/2

≤r

⎛

⎝
∫π

0

∣∣∣∣∣
∂

∂x
g

(

x, t, φ(x, t),
∫ t

0
K(t, s)φ(x, s)ds

)∣∣∣∣∣

2

dx

⎞

⎠

1/2

≤ sup
‖φ‖1/2

≤r

(∫π

0

[

�1(t)

(
∣∣φ(x, t)

∣∣ +

∣∣∣∣∣

∫ t

0
K(t, s)φ(x, s)ds

∣∣∣∣∣

)

+�0(t)
]2

dx

)1/2

≤ sup
‖φ‖1/2

≤r

[
�1(t)

(∥∥φ
∥∥
X +K∗T

∥∥φ
∥∥
X

)
+ �0(t)

]

= sup
‖φ‖1/2

≤r

[
(1 +K∗T)�1(t)

∥∥∥A−(1/2) ·A1/2φ
∥∥∥
X
+ �0(t)

]

≤ (1 +K∗T)r�1(t) + �0(t) � gr(t).
(4.9)

Therefore, f satisfies the condition (H1) with γ = 2T1/2(1 + K∗T)‖�1‖(L∞). Thus, (4.2)
has at least one mild solution provided that γ <

√
π due to Theorem 3.1.
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Assume furthermore that the function g satisfies the following:

(vi) for any r > 0, there exists a function �2 ∈ L∞([0, T],R+) such that

∣
∣
∣
∣
∂

∂x
g
(
x, t, ξ1, η1

) − ∂

∂x
g
(
x, t, ξ2, η2

)
∣
∣
∣
∣ ≤ �2(t)

(|ξ1 − ξ2| +
∣
∣η1 − η2

∣
∣) (4.10)

for (x, t, ξ1, η1), (x, t, ξ2, η2) ∈ [0, π] × [0, T] × R × R with |ξi| ≤ r and |ηi| ≤ K∗Tr, i = 1, 2.
Then for each φ1, φ2 ∈ X1/2, by Lemma 4.1, we have

∥
∥f

(
t, φ1, Gφ1

) − f(t, φ2, Gφ2
)∥∥

1/2 =
∥
∥
∥A1/2[f

(
t, φ1, Gφ1

) − f(t, φ2, Gφ2
)]∥∥
∥
X

=

∥∥∥∥∥
∂

∂x
g

(

x, t, φ1(x, t),
∫ t

0
K(t, s)φ1(x, s)ds

)

− ∂

∂x
g

(

x, t, φ2(x, t),
∫ t

0
K(t, s)φ2(x, s)ds

)∥∥∥∥∥
X

=

(∫π

0

∣∣∣∣∣
∂

∂x
g

(

x, t, φ1(x, t),
∫ t

0
K(t, s)φ1(x, s)ds

)

− ∂

∂x
g

(

x, t, φ2(x, t),
∫ t

0
K(t, s)φ2(x, s)ds

)∣∣∣∣∣

2

dx

⎞

⎠

1/2

≤
(∫π

0

∣∣∣∣�2(t)
(∣∣φ1(x, t) − φ2(x, t)

∣∣

+

∣∣∣∣∣

∫ t

0
K(t, s)φ1(x, s)ds

−
∫ t

0
K(t, s)φ2(x, s)ds

∣∣∣∣∣

)∣∣∣∣∣

2

dx

⎞

⎠

1/2

≤ �2(t)

⎡

⎢
⎣

(∫π

0

∣∣φ1(x, t) − φ2(x, t)
∣∣2
dx

)1/2

+

(∫π

0

∣∣∣∣∣

∫ t

0
K(t, s)φ1(x, s)ds

−
∫ t

0
K(t, s)φ2(x, s)ds

∣∣∣∣∣

2

dx

⎞

⎠

1/2
⎤

⎥
⎦
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= �2(t)
(∥∥φ1 − φ2

∥
∥
X +

∥
∥Gφ1 −Gφ2

∥
∥
X

)

= �2(t)
(∥∥
∥A−(1/2) ·A1/2(φ1 − φ2

)∥∥
∥
X

+
∥
∥
∥A−(1/2) ·A1/2(Gφ1 −Gφ2

)∥∥
∥
X

)

≤ �2(t)
(∥∥
∥A1/2(φ1 − φ2

)∥∥
∥
X
+
∥
∥
∥A1/2(Gφ1 −Gφ2

)∥∥
∥
X

)

= �2(t)
(∥
∥φ1 − φ2

∥
∥

1/2 +
∥
∥Gφ1 −Gφ2

∥
∥

1/2

)
.

(4.11)

This shows that f satisfies the condition (H2). Hence by Theorem 3.3, the mild solution of
(4.2) is unique.
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We consider the numerical solution of a time-fractional heat equation, which is obtained from
the standard diffusion equation by replacing the first-order time derivative with Riemann-Liouville
fractional derivative of order α, where 0 < α < 1. The main purpose of this work is to extend the
idea on Crank-Nicholson method to the time-fractional heat equations. We prove that the proposed
method is unconditionally stable, and the numerical solution converges to the exact one with the
order O(τ2 + h2). Numerical experiments are carried out to support the theoretical claims.

1. Introduction

Fractional calculus is one of the most popular subjects in many scientific areas for decades.
Many problems in applied science, physics and engineering are modeled mathematically by
the fractional partial differential equations (FPDEs). We can see these models adoption in
viscoelasticity [1, 2], finance [3, 4], hydrology [5, 6], engineering [7, 8], and control systems
[9–11]. FPDEs may be investigated into two fundamental types: time-fractional differential
equations and space-fractional differential equations.

Several different methods have been used for solving FPDEs. For the analytical
solutions to problems, some methods have been proposed: the variational iteration method
[12, 13], the Adomian decomposition method [13–16], as well as the Laplace transform and
Fourier transform methods [17, 18].

On the other hand, numerical methods which based on a finite-difference approxima-
tion to the fractional derivative, for solving FDPEs [19–24], have been proposed. A practical
numerical method for solving multidimensional fractional partial differential equations,
using a variation on the classical alternating-directions implicit (ADI) Euler method,
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is presented in [25]. Many finite-difference approximations for the FPDEs are only first-
order accurate. Some second-order accurate numerical approximations for the space-fractional
differential equations were presented in [26–28]. Here, we propose a Crank-Nicholson-type
method for time-fractional differential heat equations with the accuracy of order O(τ2 + h2).

In this work, we consider the following time-fractional heat equation:

∂αMu(t, x)
∂tα

=
∂2u(t, x)
∂x2

+ f(t, x), (0 < x < 1, 0 < t < 1),

u(0, x) = r(x), 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(1.1)

Here, the term ∂αMu(t, x)/∂t
α denotes α-order-modified Riemann-Liouville fractional deriva-

tive [29] given with the formula:

∂αMu(t, x)
∂tα

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(1 − α)

∂

∂t

∫ t

0

u(s, x) − u(0, x)
(t − s)α ds, if 0 < α < 1,

∂

∂t
u(t, x), if α = 1,

(1.2)

where Γ(·) is the Gamma function.

Remark 1.1. If r(x) = 0, then the Riemann-Liouville and the modified Riemann-Liouville
fractional derivatives are identical, since the Riemann-Liouville derivative is given by the
following formula:

∂αu(t, x)
∂tα

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(1 − α)

∂

∂t

∫ t

0

u(s, x)
(t − s)α ds, if 0 < α < 1,

∂

∂t
u(t, x), if α = 1.

(1.3)

If r(x) is nonzero, then there are some problems about the existence of the solutions for the
heat equation (1.1). To rectify the situation, two main approaches can be used: the modified
Riemann-Liouville fractional derivative can be used [29] or the initial condition should be
modified [30]. We chose the first approach in our work.

2. Discretization of the Problem

In this section, we introduce the basic ideas for the numerical solution of the time-fractional
heat equation (1.1) by Crank-Nicholson difference scheme.

For some positive integers M and N, the grid sizes in space and time for the finite-
difference algorithm are defined by h = 1/M and τ = 1/N, respectively. The grid points in
the space interval [0, 1] are the numbers xi = ih, i = 0, 1, 2, . . . ,M, and the grid points in the
time interval [0, 1] are labeled tn = nτ , n = 0, 1, 2, . . . ,N. The values of the functions U and f
at the grid points are denoted Un

i = U(tn, xi) and fni = f(tn, xi), respectively.



Abstract and Applied Analysis 3

As in the classical Crank-Nicholson difference scheme, we will obtain a discrete
approximation to the fractional derivative ∂αU(t, x)/∂tα at (tn+(1/2), xi). Let

H(t, x) =
1

Γ(1 − α)
∫ t

0

u(s, x) − u(0, x)
(t − s)α ds. (2.1)

Then, we have

∂αU(tn+1/2, xi)
∂tα

=
∂

∂t
H(tn+1/2, xi) =

H(tn+1, xi) −H(tn, xi)
τ

+O
(
τ2
)
. (2.2)

Now, we will find the approximations for H(tn+1, xi) and H(tn, xi):

H(tn+1, xi) =
1

Γ(1 − α)
∫ tn+1

0

u(s, xi) − u(0, xi)
(tn+1 − s)α

ds

=
1

Γ(1 − α)
n+1∑

j=1

∫ jτ

(j−1)τ

u(s, xi)
(tn+1 − s)α

ds − u(0, xi) ((n + 1)τ)1−α

Γ(2 − α)

=
1

Γ(1 − α)
n+1∑

j=1

∫ jτ

(j−1)τ

[(
s − tj

)

−τ U
j−1
i +

(
s − tj−1

)

τ
U
j

i +O
(
τ2
)] 1

(tn+1 − s)α
ds

−U0
i

((n + 1)τ)1−α

Γ(2 − α)

= τ
n∑

j=0

(
aj − jbj

)
U
n−j
i − τ

n∑

j=0

(
aj −

(
j + 1

)
bj
)
U
n−j+1
i −U0

i

((n + 1)τ)1−α

Γ(2 − α) + Rn+1,

(2.3)

where

Rn+1 =
1

Γ(1 − α)
n+1∑

j=1

∫ jτ

(j−1)τ
O
(
τ2
) ds

(tn+1 − s)α

=
1

(1 − α)Γ(1 − α)O
(
τ2
) n+1∑

j=1

[(
n − j + 2

)1−α − (n − j + 1
)1−α]

τ1−α

=
1

Γ(2 − α)(n + 1)1−αO
(
τ3−α
)
.

(2.4)
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Similarly, we can obtain

H(tn, xi) =
1

Γ(1 − α)
∫ tn

0

u(s, xi) − u(0, xi)
(tn − s)α

ds

= τ
n∑

j=1

(
aj−1 −

(
j − 1

)
bj−1
)
U
n−j
i − τ

n∑

j=1

(
aj−1 − jbj−1

)
U
n−j+1
i −U0

i

(nτ)1−α

Γ(2 − α) + Rn,

(2.5)

where Rn = (1/Γ(2 − α))n1−αO(τ3−α) and

aj =
τ−α

(2 − α)Γ(1 − α)
[(
j + 1

)2−α − j2−α
]
, bj =

τ−α

(1 − α)Γ(1 − α)
[(
j + 1

)1−α − j1−α
]
. (2.6)

Then, we can write the following approximation:

∂αU(tn+1/2, xi)
∂tα

=
H(tn+1, xi) −H(tn, xi)

τ
+O
(
τ2
)

= qnU0
i +

n∑

j=0

pjU
n+1−j
i +

Rn+1 − Rn

τ
+O
(
τ2
)

= qnU0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(n + 1)1−α − n1−α

]
O
(
τ2−α
)
+O
(
τ2
)

= qnU0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(n + 1)1−α − n1−α

τ

]

O
(
τ3−α
)
+O
(
τ2
)

= qnU0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(τ(n + 1))1−α − (τn)1−α

τ

]

O
(
τ2
)
+O
(
τ2
)
,

(2.7)

where

q0 = 3a0 − a1 + 2b1 − 2b0,

qn = an − an−1 + (n − 1)bn−1 − (n + 1)bn, for 1 ≤ n ≤N − 1,

p0 = b0 − a0,

p1 = 2a0 − a1 + 2b1 − b0,

pj =
(−aj−2 + 2aj−1 − aj

)
+
(
j − 2

)
bj−2 −

(
2j − 1

)
bj−1 +

(
j + 1

)
bj , for j ≥ 2.

(2.8)

On the other hand, using the mean-value theorem, we get

(τ(n + 1))1−α − (τn)1−α

τ
= f ′(c) = constant, (2.9)
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where f(x) = x1−α and tn < c < tn+1. So, we obtain the following second-order approximation
for the modified Riemann-Liouville derivative:

∂αU
(
tn+(1/2), xi

)

∂tα
=
H(tn+1, xi) −H(tn, xi)

τ
+O
(
τ2
)

= qnU0
i +

n∑

j=0

pjU
n+1−j
i +O

(
τ2
)
.

(2.10)

3. Crank-Nicholson Difference Scheme

Using the approximation above, we obtain the following difference scheme which is accurate
of order O(τ2 + h2):

qnU
0
i +

n∑

j=0

pjU
n+1−j
i −

[
Un+1
i+1 − 2Un+1

i +Un+1
i−1

2h2
+
Un
i+1 − 2Un

i +U
n
i−1

2h2

]

= f
(
tn +

τ

2
, xi
)
, 0 ≤ n ≤N − 1, 1 ≤ i ≤M − 1,

U0
i = r(xi), 1 ≤ i ≤M − 1,

Un
0 = 0, Un

M = 0, 0 ≤ n ≤N.

(3.1)

We can arrange the system above to obtain

(
− 1

2h2

)(
Un+1
i+1 +Un

i+1

)
+ qnU0

i +
n∑

j=0

pjU
n+1−j
i +

(
− 1

2h2

)(
Un+1
i−1 +Un

i−1

)

= f
(
tn +

τ

2
, xi
)
, 0 ≤ n ≤N − 1, 1 ≤ i ≤M − 1,

U0
i = r(xi), 1 ≤ i ≤M − 1,

Un
0 = 0, Un

M = 0, 0 ≤ n ≤N.

(3.2)

The difference scheme above can be written in matrix form:

AUi+1 + BUi +AUi−1 = ϕi, (3.3)

where ϕi = [ϕ0
i , ϕ

1
i , ϕ

2
i , . . . , ϕ

N
i ]T , ϕ0

i = r(xi), ϕni = f(tn+1/2, xi), 1 ≤ n ≤ N, 1 ≤ i ≤ M, and

Ui = [U0
i , U

1
i , U

2
i , . . . , U

N
i ]T .
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Here, A(N+1)×(N+1) and B(N+1)×(N+1) are the matrices of the form

A =
(
− 1

2h2

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1 1

1 1
. . . . . .

1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

q0 +
1
h2

p0 +
1
h2

q1 p1 +
1
h2

p0 +
1
h2

q2 p2 p1 +
1
h2

p0 +
1
h2

...
. . . . . . . . .

qN−1 pN−1 . . . p2 p1 +
1
h2

p0 +
1
h2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.4)

We note that the unspecified entries are zero at the matrices above.
Using the idea on the modified Gauss-Elimination method, we can convert (3.3) into

the following form:

Ui = αi+1Ui+1 + βi+1, i =M − 1, . . . , 2, 1, 0. (3.5)

This way, the two-step form of difference schemes in (3.3) is transformed to one-step
method as in (3.5).

Now, we need to determine the matrices αi+1 and βi+1 satisfying the last equality. Since
U0 = α1U1 + β1 = 0, we can select α1 = O(N+1)×(N+1) and β1 = O(N+1)×1. Combining the
equalities Ui = αi+1Ui+1 + βi+1 and Ui−1 = αiUi + βi and the matrix equation (3.3), we have

(A + Bαi+1 +Aαiαi+1)Ui+1 +
(
Bβi+1 +Aαiβi+1 +Aβi

)
= ϕi. (3.6)

Then, we write

A + Bαi+1 +Aαiαi+1 = 0,

Bβi+1 +Aαiβi+1 +Aβi = ϕi,
(3.7)

where 1 ≤ i ≤M − 1.
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So, we obtain the following pair of formulas:

αi+1 = −(B +Aαi)−1A,

βi+1 = (B +Aαi)−1(ϕi −Aβi
)
,

(3.8)

where 1 ≤ i ≤M − 1.

4. Stability of the Method

The stability analysis is done by using the analysis of the eigenvalues of the iteration matrix
αi (1 ≤ i ≤M) of the scheme (3.5).

Let ρ(A) denote the spectral radius of a matrixA, that is, the maximum of the absolute
value of the eigenvalues of the matrix A.

We will prove that ρ(αi) < 1, (1 ≤ i ≤M), by induction.
Since α1 is a zero matrix ρ(α1) = 0 < 1.

Moreover, α2 = −B−1A, ρ(α2) = ρ(−B−1A) =
−1

1/h2 + p0
· −1

2h2
=

1/h2

2(1/h2 + p0)
, since α2 is

of the form

α2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

∗ 1/h2

2
(
1/h2 + p0

)

∗ ∗ 1/h2

2
(
1/h2 + p0

)

. . .

∗ ∗ ∗ 1/h2

2
(
1/h2 + p0

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(N+1)×(N+1)

,

p0 = b0 − a0 =
τ−α

(1 − α)Γ(1 − α) −
τ−α

(2 − α)Γ(1 − α) =
τ−α

Γ(3 − α) > 0,

(4.1)

therefore, ρ(α2) < 1.
Now, assume ρ(αi) < 1. After some calculations, we find that

αi+1 = −(B +Aαi)−1A

=
(

1
2h2

)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

∗ 1
B2,2 − (1/2h2)αi2,2

∗ ∗ 1
B3,3 − (1/2h2)αi3,3

∗ ∗ ∗ . . .

∗ ∗ ∗ 1
BN+1,N+1 − (1/2h2)αiN+1,N+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(4.2)
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and we already know that Bj,j = 1/h2 +w0 and αij,j = ρ(αi) for 2 ≤ j ≤N + 1:

ρ(αi+1) =

∣
∣
∣
∣
∣

1/2h2

1/h2 + p0 − (1/2h2)ρ(αi)

∣
∣
∣
∣
∣
=

M2

2
[
M2
(
1 − ρ(αi)/2

)
+ p0
] . (4.3)

Since 0 ≤ ρ(αi) < 1, it follows that ρ(αi+1) < 1. So, ρ(αi) < 1 for any i, where 1 ≤ i ≤M.

Remark 4.1. The convergence of the method follows from the Lax equivalence theorem [31]
because of the stability and consistency of the proposed scheme.

5. Numerical Analysis

Example 5.1. Consider

∂αu(t, x)
∂tα

=
∂2u(t, x)
∂x2

+
2t(2−α)

Γ(3 − α) sin
(
x − x2

)

+ t2
[
sin
(
x − x2

)
(1 − 2x)2 + 2 cos

(
x − x2

)]
, (0 < x < 1, 0 < t < 1),

u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(5.1)

Exact solution of this problem is U(t, x) = t2 sin(1 − x)x. The solution by the Crank-
Nicholson scheme is given in Figure 1. The errors when solving this problem are listed in the
Table 1 for various values of time and space nodes.

The errors in the table are calculated by the formula max0≤n≤M, 0≤k≤N |u(tk, xn) − Uk
n|

and the error rate formula is |Ek|/|Ek+1|.

Example 5.2. Consider

∂αu(t, x)
∂tα

=
∂2u(t, x)
∂x2

+
24t(2−α)

Γ(5 − α)
(
x2 − x

)
− 2t4, (0 < x < 1, 0 < t < 1),

u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(5.2)

Exact solution of this problem is U(t, x) = t4x(x − 1). The solution by the Crank-
Nicholson scheme is given in Figure 2. The errors when solving this problem are listed in
Table 2 for various values of time and space nodes and several values of α.

It can be concluded from the tables and the figures that when the step size is reduced
by a factor of 1/2, the error decreases by about 1/4. The numerical results support the claim
about the order of the convergence.
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Figure 1: (a) The approximate solutions of Example 5.1 by the proposed method when N = 32, M = 32,
and α = 0.5. (b) The errors for some values of M and N when t = 1 and α = 0.5.

Table 1: Error table for Example 5.1.

α = 0.2 α = 0.5 α = 0.9
M N Error Rate Error Rate Error Rate
32 8 0.0018870311 — 0.0016846217 — 0.0009754809 —
32 16 0.0004703510 4.01 0.0004052354 4.16 0.0002461078 3.97
32 32 0.0001172029 4.01 0.0000969929 4.18 0.0000650942 3.78
32 64 0.0000291961 4.01 0.00002314510 4.19 0.0000198362 3.28
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Figure 2: (a) The approximate solutions of Example 5.2 by the proposed method when N = 32, M = 32,
and α = 0.5. (b) The errors for some values of M and N when t = 1 and α = 0.5.
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Table 2: The errors for some values of M, N, and α.

α = 0.3 α = 0.5 α = 0.8
M N Error Rate Error Rate Error Rate
4 4 0.02321328680 — 0.02286737567 — 0.02173420667 —
8 8 0.00583004420 3.98 0.00577931685 3.96 0.00554721754 3.92
16 16 0.00146112785 3.99 0.00145293106 3.98 0.00140076083 3.96
32 32 0.00036572715 3.995 0.00036424786 3.99 0.00035252421 3.97
64 64 0.00009148685 3.998 0.00009122231 3.99 0.00008860379 3.98

6. Conclusion

In this work, the Crank-Nicholson difference scheme was successfully extended to solve
the time-fractional heat equations. A second-order approximation for the Riemann-Liouville
fractional derivative is obtained. It is proven that the time-fractional Crank-Nicholson
difference scheme is unconditionally stable and convergent. Numerical results are in good
agreement with the theoretical results.
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[23] I. Karatay, S. R. Bayramoğlu, and A. Şahin, “Implicit difference approximation for the time fractional
heat equation with the nonlocal condition,” Applied Numerical Mathematics, vol. 61, no. 12, pp. 1281–
1288, 2011.

[24] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods,
vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ,
USA, 2012.

[25] M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional
fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249–261, 2006.

[26] C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, “A second-order accurate numerical approxima-
tion for the fractional diffusion equation,” Journal of Computational Physics, vol. 213, no. 1, pp. 205–213,
2006.

[27] L. Su, W. Wang, and Z. Yang, “Finite difference approximations for the fractional advection-diffusion
equation,” Physics Letters A, vol. 373, no. 48, pp. 4405–4408, 2009.

[28] A. M. Abu-Saman and A. M. Assaf, “Stability and convergence of Crank-Nicholson method for
fractional advection dispersion equation,” Advances in Applied Mathematical Analysis, vol. 2, no. 2,
pp. 117–125, 2007.

[29] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable
functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376,
2006.

[30] S. Zhang, “Monotone iterative method for initial value problem involving Riemann-Liouville frac-
tional derivatives,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 5-6, pp. 2087–2093,
2009.

[31] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience Publish-
ers, New York, NY, USA, 1967.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 747503, 30 pages
doi:10.1155/2012/747503

Research Article
Alternative Forms of Compound Fractional
Poisson Processes

Luisa Beghin1 and Claudio Macci2

1 Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Piazzale Aldo Moro 5,
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We study here different fractional versions of the compound Poisson process. The fractionality is
introduced in the counting process representing the number of jumps as well as in the density
of the jumps themselves. The corresponding distributions are obtained explicitly and proved to
be solution of fractional equations of order less than one. Only in the final case treated in this
paper, where the number of jumps is given by the fractional-difference Poisson process defined
in Orsingher and Polito (2012), we have a fractional driving equation, with respect to the time
argument, with order greater than one. Moreover, in this case, the compound Poisson process is
Markovian and this is also true for the corresponding limiting process. All the processes considered
here are proved to be compositions of continuous time random walks with stable processes (or
inverse stable subordinators). These subordinating relationships hold, not only in the limit, but
also in the finite domain. In some cases the densities satisfy master equations which are the
fractional analogues of the well-known Kolmogorov one.

1. Introduction and Preliminary Results

The fractional Poisson process (FPP), which we will denote by Nβ(t), t > 0, β ∈ (0, 1],
has been introduced in [1], by replacing, in the differential equation governing the Poisson
process, the time derivative with a fractional one. Later, in [2, 3], it was proved to be a renewal
process with Mittag-Leffler distributed waiting times (and therefore with infinite mean). In
[4] it has been expressed as the composition N(Tβ(t)) of a standard Poisson process N with
the fractional diffusion Tβ, independent of N. A full characterization of Nβ in terms of its
finite multidimensional distributions can be found in [5]. In [6] the coincidence between Nβ

and the fractal time Poisson process (FTPP) defined as N(Lβ(t)) has been proved, where
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Lβ(t), t ≥ 0 is the inverse of the stable subordinator Aβ(t) of index β (with parameters
μ = 0, θ = 1, σ = (t cosπβ/2)1/β, in the notation of [7], that we will adopt hereafter). Thus,
the process Aβ is characterized by the following Laplace pairs:

Ee−kAβ(t) = e−k
βt, k, t > 0,

∫+∞

0
e−sthβ(x, t)dt = xβ−1Eβ,β

(
−sxβ
)
, s, x > 0,

(1.1)

where Eβ,δ is the Mittag-Leffler function of parameters β, δ and hβ(x, t) is the density of
Aβ(t). The inverse stable subordinator Lβ is defined by the following relation:

Lβ(t) := inf
{
s : Aβ(s) = t

}
, z, t > 0, (1.2)

and therefore we get

Ee−kLβ(t) = Eβ,1
(
−ktβ
)
, k, t > 0,

∫+∞

0
e−stlβ(x, t)dt = sβ−1e−xs

β

, s, x > 0,
(1.3)

where lβ(x, t) is the density of Lβ(t).
We will make use also of different forms of FPP such as the alternative fractional

Poisson process in [8] and the fractional-difference Poisson process in [9].
In this paper we study several fractional compound Poisson processes and, to help the

reader, we list the acronyms used throughout the paper by the end of the paper.
The first form of fractional compound Poisson process has been introduced in [10], in

the form of a continuous time random walk with infinite-mean waiting times (see also [11]).
This corresponds to the following random walk time changed via the FTPP, that is,

Yβ(t) =
N(Lβ(t))∑

j=1

Xj, t ≥ 0, (1.4)

with Xj , j = 1, 2, . . . are i.i.d. random variables, independent from N and Lβ. The
last assumption (that we will adopt throughout the paper) corresponds to the so-called
uncoupled case.

In [6] it is proved that subordinating random walk to the fractional Poisson process
Nβ(t), t ≥ 0, produces the same one-dimensional distribution. The (generalized) density
function of Yβ(t) can be expressed as

gYβ
(
y, t
)

:= Eβ,1
(
−λtβ
)
δ
(
y
)
+ fYβ

(
y, t
)
, y, t ≥ 0, (1.5)
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where the first term refers to the probability mass concentrated in the origin, δ(y) denotes the
Dirac delta function, and fYβ denotes the density of the absolutely continuous component.
The function gYβ given in (1.5) satisfies the following fractional master equation, that is,

∂β

∂tβ
gYβ
(
y, t
)
= −λgYβ

(
y, t
)
+ λ
∫+∞

−∞
gYβ
(
y − x, t)fX(x)dx, (1.6)

where ∂β/∂tβ is the Caputo fractional derivative of order β ∈ (0, 1] (see, for example, [12])
and the random variables Xj , j = 1, 2, . . . have continuous density fX .

We also recall the following result proved in [13] for the rescaled version of the time-
fractional compound Poisson process (hereafter TFCPP): if the random variables Xj, j =
1, 2, . . . are centered and have finite variance, then

c−β/2Yβ(ct) =⇒W
(Lβ(t)

)
, c −→ ∞, (1.7)

where W is a standard Brownian motion and ⇒ denotes weak convergence.
A detailed exposition of the theory of TFCPP and continuous time random walks can

be found in [14, 15], where the density fYβ is expressed in terms of successive derivatives of
the Mittag-Leffler function as follows:

fYβ
(
y, t
)
=

∞∑

n=1

f∗n
X

(
y
)
Pr
{Nβ(t) = n

}
=

∞∑

n=1

f∗n
X

(
y
)
(
λtβ
)n

n!
∂n

∂xn
Eβ,1(x)

∣∣∣∣
x=−λtβ

, t, y ≥ 0, (1.8)

where f∗n
X is the nth convolution of the density fX of the r.v.’s Xj .

A further asymptotic result has been proved in [15], under the assumption that the
density of the jump variables (which we will denote, in this special case, as X∗

j ) behaves
asymptotically as

f̂X∗(hκ) :=
∫+∞

−∞
eiκhxf̂X∗(x)dx � 1 − hα|κ|α, h −→ 0, α ∈ (0, 1], (1.9)

where ·̂ denotes the Fourier transform. In this case the TFCPP is defined as Y ∗
β (t) =

∑Nβ(t)
j=1 X∗

j

and the rescaled version displays the following weak convergence:

hY ∗
β

(
t

r

)
=⇒ Z(t), (1.10)

for h, r → 0, s.t. hα/rβ → 1. The characteristic function of the limiting process Z(t) is given
by

Eβ,1
(
−λtβ|κ|α

)
(1.11)

and thus it can be represented as Sα(Lβ(t)), where Sα is a symmetric α-stable process with
parameters μ = 0, θ = 0, σ = (t cosπα/2)1/α. For β < 1, the inverse stable subordinator
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Lβ(t) is not Markovian as well as not Lévy (see [10]) and the same is true for Sα(Lβ(t)), as
remarked in [15]; moreover, the density u = u(y, t) of the latter is the solution to the space-
time fractional equation:

∂βu

∂tβ
= λ

∂αu

∂
∣
∣y
∣
∣α
, u

(
y, 0
)
= δ
(
y
)
, y ∈ R, t > 0, (1.12)

where ∂α/∂|y|α denotes the Riesz-Feller derivative of order α ∈ (0, 1] (see [16]). Thus, in the
special case α = 1, it reduces to the composition of a Cauchy process with Lβ.

Finally, we recall the following result proved in [17]: under the assumption of heavy
tailed r.v.’s representing the jumps, that is,

Pr
{∣∣Xj

∣
∣ > x
} ∼ x−α, x −→ ∞, (1.13)

the following convergence holds, as c → ∞,

c−β/αYβ(ct) =⇒ I(Lβ(t)
)
. (1.14)

In (1.14) I is a α-stable Lévy process with density pα(x, t) and characteristic function

p̂α(κ, t) = etb[q(−iκ)
α+(1−q)(iκ)α], for

{
b < 0, 0 < α < 1
or b > 0, 1 < α < 2,

(1.15)

under the assumption that limx→∞ Pr{Xj < −x}/Pr{|Xj | > x} = q ∈ 0, 1]. The density of the
limiting process is proved to satisfy the following time and space fractional equation:

D
β

0+,tu = qbDα
−,xu +

(
1 − q)bDα

0+,xu, (1.16)

where the fractional derivatives are intended in the Riemann-Liouville sense (see [12],
formulae (2.2.3) and (2.2.4), page 80).

We present, in this paper, different versions of the compound Poisson process (CPP),
fractional (under different acceptions) with respect to time and space; we provide for them
analytic expressions of the distributions and some composition relationships with stable and
inverse-stable processes, holding not only in the scaling limit, but also in the finite domain.

Tables 1 and 2 provide a summary of these results in the finite and asymptotic
domains, respectively.

We assume here exponential jumps (generalized later to Mittag-Leffler), since this
allows to obtain explicit equations (fractional in most cases) driving these fractional CPP’s
for any finite value of the time and space arguments. This kind of explicit formulae, together
with the knowledge of the related governing differential equations, is of great importance in
many actuarial applications (see, for example, [18], Section 4.2). In risk theory it is related to
the Tweedie’s compound Poisson model (see [19]). The hypothesis of exponential jumps has
been widely applied also in other fields: in natural sciences it leads to the so-called compound
Poisson-Gamma model, which is used for rainfall prediction (see, for example, [20]).
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2. Time-Fractional Compound Poisson Processes

We consider different forms of TFCPP, starting with the more familiar one given in (1.4) and
then comparing the results with those obtained for an alternative definition of FPP.

2.1. The Standard Case

In order to get a form of the density of the TFCPP more explicit than (1.8), we assume that the
Xj ’s are exponentially distributed: in this case it can be expressed in terms of the generalized
Mittag-Leffler function:

E
γ

α,δ(x) =
∞∑

j=0

(
γ
)(j)

j!
xj

Γ
(
αj + δ

) , α, δ, γ ∈ C, R(α),R(δ) > 0, (2.1)

where (x)(n) = x(x + 1) · · · (x + n − 1) is the rising factorial (or Pochhammer symbol).
Moreover, we can obtain the fractional partial-differential equation satisfied by the density
of its absolutely continuous component.

Theorem 2.1. The process

Yβ(t) =
Nβ(t)∑

j=1

Xj, t ≥ 0, (2.2)

with Xj, j = 1, 2 . . ., independent and exponentially distributed with parameter ξ, has the following
distribution:

Pr
{
Yβ(t) ≤ y

}
= Eβ,1

(
−λtβ
)

1[0,+∞)
(
y
)
+
∫y

−∞
fYβ(z, t)dz, t ≥ 0, y ∈ R, (2.3)

where

fYβ
(
y, t
)
=
e−ξy

y

∞∑

n=1

(
λξtβy

)n

(n − 1)!
En+1
β,βn+1

(
−λtβ
)

1[0,+∞)
(
y
)
, t ≥ 0. (2.4)

The function fYβ(y, t) given in (2.4) satisfies the following partial differential equation:

ξ
∂β

∂tβ
fYβ = −

[

λ +
∂β

∂tβ

]
∂

∂y
fYβ , t, y ≥ 0, (2.5)

where ∂β/∂tβ denotes the Caputo fractional derivative with the conditions

fYβ
(
y, 0
)
= 0,

∫+∞

0
fYβ
(
y, t
)
dy = 1 − Eβ,1

(
−λtβ
)
.

(2.6)
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Proof . Formula (1.8) can be rewritten by considering that f∗n
X (y) = ξnyn−1e−ξy/(n − 1)! and

using the expression of Pr{Nβ(t) = n} in terms of generalized Mittag-Leffler functions (see
[21]), that is,

Pr
{Nβ(t) = n

}
= λntnβEn+1

β,βn+1

(
−λtβ
)
, n ≥ 0. (2.7)

In order to derive (2.5), we evaluate the following partial derivatives of (2.4):

∂β

∂tβ
fYβ
(
y, t
)
=
e−ξy

ytβ

∞∑

n=1

(
λξtβy

)n

(n − 1)!n!

∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

) ,

∂

∂y
fYβ
(
y, t
)
= −ξe

−ξy

y

∞∑

n=1

(
λξtβy

)n

(n − 1)!n!

∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn + 1

)+

+
e−ξy

y2

∞∑

n=2

(
λξtβy

)n

(n − 2)!n!

∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn + 1

) ,

∂

∂y

∂β

∂tβ
fYβ
(
y, t
)
= −ξe

−ξy

ytβ

∞∑

n=1

(
λξtβy

)n

n!(n − 1)!

∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑

n=2

(
λξtβy

)n

(n − 2)!n!

∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)

= −ξe
−ξy

ytβ

∞∑

n=1

(
λξtβy

)n

((n − 1)!)2

∞∑

j=0

(
n + j − 1

)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)+

− ξe−ξy

ytβ

∞∑

n=1

(
λξtβy

)n

n!(n − 1)!

∞∑

j=1

(
n + j − 1

)
!
(−λtβ)j

(
j − 1
)
!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑

n=2

(
λξtβy

)n

(n − 2)!(n − 1)!

∞∑

j=0

(
n + j − 1

)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑

n=2

(
λξtβy

)n

(n − 2)!n!

∞∑

j=0

(
n + j − 1

)
!
(−λtβ)j

(
j − 1
)
!Γ
(
βj + βn − β + 1

) .

(2.8)

By inserting (2.8) in (2.5), the equation is satisfied. Finally, it can be easily verified that the
initial condition holds. In order to check the second condition in (2.6), we integrate fYβ with
respect to y:

∫∞

0

e−ξy

y

∞∑

n=1

(
λξtβy

)n

(n − 1)!
En+1
β,βn+1

(
−λtβ
)
dy =

∞∑

n=1

(
λξtβ
)n

(n − 1)!
(n − 1)!
ξn

En+1
β,βn+1

(
−λtβ
)
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=
∞∑

n=0

(
λtβ
)n
En+1
β,βn+1

(
−λtβ
)
− Eβ,1

(
−λtβ
)

= 1 − Eβ,1
(
−λtβ
)
,

(2.9)

where, in the last step, we have applied formula (2.30) of [21], for u = 1.

2.1.1. The Nonfractional Case β = 1

From (2.4), we obtain the distribution of the standard CPP, defined as Y (t) =
∑N(t)

n=1 Xj , under
the assumption of exponential jumps Xj , which reads

Pr
{
Y (t) ≤ y} = e−λt1[0,+∞)

(
y
)
+
∫y

−∞
fY (z, t)dz, t ≥ 0, y ∈ R, (2.10)

where

fY
(
y, t
)
=
e−ξy−λt

y

∞∑

n=1

(
λξty
)n

n!(n − 1)!
1[0,+∞)

(
y
)

= λξte−ξy−λtW1,2
(
λξty
)
1[0,+∞)

(
y
)
, t ≥ 0,

(2.11)

Wα,β(z) =
∞∑

j=0

zj

j!Γ
(
αj + β

) , α > −1, β, z ∈ C, (2.12)

is the Wright function. Equation (4.2.8) in [18] provides another expression of fY in terms of
the modified Bessel function. The density (2.11) satisfies the following equation:

ξ
∂

∂t
fY = −

[
λ +

∂

∂t

]
∂

∂y
fY , (2.13)

with conditions

fY
(
y, 0
)
= 0,

∫+∞

0
fY
(
y, t
)
dy = 1 − e−λt,

(2.14)

as can be easily verified directly.
Now we recall the following subordination law presented in [6] in a more general

setting:

Yβ(t)
d= Y
(Lβ(t)

)
, (2.15)
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where Lβ(t), t ≥ 0 is the inverse stable subordinator defined by (1.2). We give an explicit
proof of (2.15), which will be useful to prove analogous results in the next sections. We start
with the evaluation of the Laplace transform (hereafter denoted by ·̃) of Yβ(t) with respect to
y: by considering the probability generating function of Nβ, that is,

EuNβ(t) = Eβ,1
(
−λtβ(1 − u)

)
, |u| ≤ 1, (2.16)

we get

g̃Yβ(k, t) := Ee−kYβ(t) = Eβ,1
(
− λk

k + ξ
tβ
)
. (2.17)

Formula (2.17), Laplace transformed with respect to t, gives

˜̃gYβ(k, s) :=
∫+∞

0
e−stg̃Yβ(k, t)dt =

sβ−1(k + ξ)
sβ(k + ξ) + kλ

, (2.18)

which can be rewritten as

˜̃gYβ(k, s) = s
β−1
∫+∞

0
e−s

βt
Ee−kY (t)dt

=
[
by (1.3)

]

=
∫+∞

0
Ee−kY (z) l̃β(z; s)dz,

(2.19)

where l̃β(z; s) :=
∫+∞

0 e−stlβ(z, t)dt. Thus, by inverting the double Laplace transform, we get

Pr
{
Yβ(t) ∈ dy

}
=
∫+∞

0
Pr
{
Y (z) ∈ dy}lβ(z, t)dz. (2.20)

Now it is also easy to derive (2.5), since we can write in particular from (2.20) that

fYβ
(
y, t
)
=
∫+∞

0
fY
(
y, z
)
lβ(z, t)dz (2.21)

and thus we get

∂β

∂tβ
fYβ
(
y, t
)
=
∫+∞

0
fY
(
y, z
) ∂β

∂tβ
lβ(z, t)dz

= −
∫+∞

0
fY
(
y, z
) ∂
∂z
lβ(z, t)dz.

(2.22)
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Indeed, it is well known that Lβ(t) is governed by the following equation:

∂β

∂tβ
lβ(z, t) = − ∂

∂z
lβ(z, t), lβ(z, 0) = δ(z), z, t ≥ 0. (2.23)

By integrating by parts and applying the initial condition, (2.22) becomes

∂β

∂tβ
fYβ
(
y, t
)
=
∫+∞

0

∂

∂z
fY
(
y, z
)
lβ(z, t)dz

=
[
by (2.13)

]

= −1
ξ

∂

∂y

∫+∞

0

∂

∂z
fY
(
y, z
)
lβ(z, t)dz − λ

ξ

∂

∂y

∫+∞

0
fY
(
y, z
)
lβ(z, t)dz

= −1
ξ

∂

∂y

∂β

∂tβ
fYβ
(
y, t
) − λ

ξ

∂

∂y
fYβ
(
y, t
)
.

(2.24)

2.2. An Alternative Case

We consider now a different model of TFCPP, based on the alternative definition of FPP given
in [4], that is,

Pr
{
Nβ(t) = k

}
=

(
λtβ
)k

Γ
(
βk + 1

)
1

Eβ,1
(
λtβ
) , t, k ≥ 0. (2.25)

The process with the above state probabilities plays a crucial role in the evolution of some
random motions (see [22]) and can be considered as a fractional version of the Poisson
process because its probability generating function (displayed below) satisfies a fractional
equation (see formula (4.5) of [4]). The distribution (2.25) can be interpreted as a weighted
Poisson distribution (for the general concept of discrete weighted distribution see, e.g., [23],
page 90, and the references cited therein) and, as explained in [8], the weights that do not
depend on t; actually we have

Pr
{
Nβ(t) = k

}
=

wkpk
(
tβ
)

∑
j≥0 wjpj

(
tβ
) , t, k ≥ 0, (2.26)

where wj = j!/Γ(βj + 1), j = 0, 1, . . . (for all t) and pj(t) = ((λt)j/j!)e−λt, j = 0, 1, . . . are the
distribution of the standard Poisson process N with intensity λ. We also recall [24] where one
can find a sample path version of the weighted Poisson process.

We remark that the corresponding process is not Markovian, as Nβ, and moreover
is not a renewal. Nevertheless, it is, for some aspects, more similar to the standard Poisson
process N than Nβ. For example, the rate of the asymptotic behavior of its moments is the
same as for N.
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The moment generating function is given by

EeθNβ(t) =
Eβ,1
(
λtβeθ

)

Eβ,1
(
λtβ
) , (2.27)

so that we get

ENβ(t) =
λtβ

β

Eβ,β
(
λtβ
)

Eβ,1
(
λtβ
) . (2.28)

By applying the following asymptotic formula of the Mittag-Leffler function

Eβ,ν(z) � 1
β
z(1−ν)/β exp

{
z1/β
}
, as z −→ ∞, (2.29)

(see, for example, [25] or [26]) we get

ENβ(t) � 1
β
λ1/βt, as t −→ ∞, (2.30)

while for Nβ the mean value behaves asymptotically as tβ.
We define the alternative TFCPP as

Yβ(t) =
Nβ(t)∑

j=1

Xj, t ≥ 0, β ∈ (0, 1], (2.31)

where again Xj ’s are i.i.d. with exponential distribution, independent from Nβ. Under this
assumption we obtain the following result on the distribution of Yβ.

Theorem 2.2. The process Yβ defined in (2.31), withXj, j = 1, 2, . . ., independent and exponentially
distributed with parameter ξ, has the following distribution:

Pr
{
Yβ(t) ≤ y

}
=

1
Eβ,1
(
λtβ
)1[0,+∞)

(
y
)
+
∫y

−∞
fYβ

(z, t)dz, t ≥ 0, y ∈ R, (2.32)

where

fYβ

(
y, t
)
=
λξtβe−ξy

Eβ,1
(
λtβ
)Wβ,β+1

(
λξtβy

)
1[0,+∞)

(
y
)
, t ≥ 0. (2.33)
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Proof. The density (2.33) can be obtained as follows:

fYβ

(
y, t
)
=

e−ξy

Eβ,1
(
λtβ
)

∞∑

n=1

(
λtβ
)n

Γ
(
βn + 1

)
ξnyn−1

(n − 1)!

=
λξtβe−ξy

Eβ,1
(
λtβ
)

∞∑

l=0

(
λξtβ
)l

l!Γ
(
βl + β + 1

) .

(2.34)

Moreover, one can check that

∫∞

0
fYβ

(
y, t
)
dy = 1 − 1

Eβ,1
(
λtβ
) , (2.35)

and this completes the proof.

Remark 2.3. For β = 1, formula (2.33) reduces to (2.11). We note that, as happens for the
standard case, the density in (2.33) is expressed in terms of a single Wright function instead of
an infinite sum of generalized Mittag-Leffler functions (as for the process Yβ). Nevertheless,
the presence of a Mittag-Leffler in the denominator does not allow to evaluate the equation
satisfied by fYβ

.

2.2.1. Asymptotic Results

The analogy with the standard case is even more evident in the asymptotic behavior of the
rescaled version of (2.31). Under the assumption (1.9) for the r.v.’s X∗

j , we can prove that, as
h, r → 0, s.t. hα/r → 1 (not depending on β),

hY
∗
β

(
t

r

)
=

Nβ(t/r)∑

j=1

hX∗
j =⇒ Sβ

α(t), (2.36)

where Sβ
α is a symmetric α-stable Lévy process with μ = θ = 0 and σ =

((1/β)λ1/βt cos(πα/2))1/α. Indeed, the characteristic function of (2.36) can be written as

ĝhY ∗
β

(
κ,
t

r

)
= EeiκhY

∗
β(t/r) =

1
Eβ,1
(
λ
(
tβ/rβ

))
∞∑

n=0

(
λ
(
tβ/rβ

)
f̂hX(κ)

)n

Γ
(
βn + 1

)

=
Eβ,1
(
λf̂hX(κ)

(
tβ/rβ

))

Eβ,1
(
λ
(
tβ/rβ

))

=
[
by the assumption (1.9)

]
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� Eβ,1
(
λ
(
tβ/rβ

) − λ(tβhα|κ|α/rβ))

Eβ,1
(
λ
(
tβ/rβ

))

= [for (2.29)]

� exp

{
λ1/βt

r

[(
1 − hα|κ|α)1/β − 1

]}

.

(2.37)

By considering the generalized binomial theorem, we get from (2.37) that

ĝhY ∗
β

(
κ,
t

r

)
� exp

⎧
⎨

⎩
λ1/βt

r

∞∑

j=0

⎛

⎝
1
β
j

⎞

⎠(−hα|κ|α)j
⎫
⎬

⎭

= exp

{
λ1/βt

r

[
1 − hα|κ|α

β
+ o(hα)

]}

.

(2.38)

Therefore, the limiting process is represented by the α-stable process Sβ
α with characteristic

function e−(1/β)λ
1/βt|κ|α , instead of the subordinated process Sα(Lβ(t)) obtained in the limit

when considering the FPP Nβ; note that Sα(Lβ(t)) coincides withZ(t) in (1.10). It is clear that
the dependence on β is limited to the scale parameter; the space-fractional equation satisfied
by its density is therefore given by

∂u

∂t
=
λ1/β

β

∂αu

∂
∣∣y
∣∣α
, u

(
y, 0
)
= δ
(
y
)
, y ∈ R, t ≥ 0, (2.39)

instead of (1.12). For α = 1 the density of the limiting process reduces to a Cauchy with scale
parameter λ1/βt/β.

3. Space-Fractional Compound Poisson Process

We define now a space-fractional version of the compound Poisson process (which we will
indicate hereafter by SFCPP): indeed, its distribution satisfies (2.5), but with integer time
derivative and fractional space derivative. We consider the standard CPP

Y (α)(t) =
N(t)∑

j=1

X
(α)
j , α ∈ (0, 1], (3.1)

where, as usual, N(t), t > 0 is a standard Poisson process with parameter λ and the random
variables X(α)

j have the following heavy tail distribution:

fX(α) (x) = ξxα−1Eα,α(−ξxα), x > 0, α ∈ (0, 1] (3.2)
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for ξ > 0. The Laplace transform of (3.2) is f̃X(α) (k) = ξ/(kα + ξ). The distribution of X(α)
j given

in (3.2) is usually called Mittag-Leffler and coincides with the geometric-stable law of index
α (hereafter GSα) with parameters μ = 0, θ = 1, andσ = [cos(πα/2)/ξ]1/α (see [27]). The
density of

∑n
j=1 X

(α)
j is given by

f∗n
X(α)

(
y
)
= ξnyαn−1Enα,αn

(−ξyα) (3.3)

with Laplace transform

f̃∗n
X(α) (k) =

ξn

(kα + ξ)n
. (3.4)

Note that (3.3) coincides with the density of the nth event waiting time for the fractional
Poisson process Nα (see [21]). It is easy to check that the variableX(α)

j displays the asymptotic
behavior (1.13).

Theorem 3.1. The process Y (α) defined in (3.1), with X(α)
j , j = 1, 2, . . ., independent and distributed

according to (3.2), has the following distribution:

Pr
{
Y (α)(t) ≤ y

}
= e−λt1[0,+∞)

(
y
)
+
∫y

−∞
fY (α) (z, t)dz, t ≥ 0, y ∈ R, (3.5)

where

fY (α)
(
y, t
)
=
e−λt

y

∞∑

n=1

(
ξλtyα

)n

n!
Enα,αn
(−ξyα)1(0,+∞)

(
y
)
, t ≥ 0. (3.6)

The density (3.6) satisfies the following equation:

ξ
∂

∂t
fY (α) = −

[
λ +

∂

∂t

]
∂α

∂yα
fY (α) , t ≥ 0, y > 0, (3.7)

with conditions

fY (α)
(
y, 0
)
= 0,

∫+∞

0
fY (α)
(
y, t
)
dy = 1 − e−λt.

(3.8)

The following composition rule holds for the one-dimensional distribution of (3.1):

Y (α)(t) d= Aα(Y (t)), (3.9)

whereAα(t) is the stable subordinator defined in (1.1) and Y is the standard CPP.
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Proof. We start by noting that the absolutely continuous part of the distribution is defined
in (0,∞), with the exclusion of y = 0, where only the discrete component gives some
contribution.

In order to check (3.7) we evaluate the following fractional derivatives, arguing as in
the proof of Theorem 2.1:

∂

∂t
fY (α)
(
y, t
)
= −λe

−λt

y

∞∑

n=1

(
λξtyα

)n

(n − 1)!n!

∞∑

j=0

(
n + j − 1

)
!
(−ξyα)j

j!Γ
(
αj + αn

) +

+
e−λt

yt

∞∑

n=1

(
λξtyα

)n

((n − 1)!)2

∞∑

j=0

(
n + j − 1

)
!
(−ξyα)j

j!Γ
(
αj + αn

) ,

∂α

∂yα
fY (α)
(
y, t
)
=
e−λt

y1+α

∞∑

n=1

(
λξtyα

)n

n!(n − 1)!

∞∑

j=0

(
n + j − 1

)
!
(−ξyα)j

j!Γ
(
αj + αn − α) ,

∂α

∂yα
∂

∂t
fY (α)
(
y, t
)
= − e

−λt

y1+α

∞∑

n=2

(
λξtyα

)n

n!(n − 2)!

∞∑

j=0

(
n + j − 2

)
!
(−ξyα)j

j!Γ
(
αj + αn − α) +

+
e−λt

y1+αt

∞∑

n=1

(
λξtyα

)n

((n − 1)!)2

∞∑

j=1

(
n + j − 2

)
!
(−ξyα)j

(
j − 1
)
!Γ
(
αj + αn − α)+

+
e−λt

y1+αt

∞∑

n=2

(
λξtyα

)n

(n − 1)!(n − 2)!

∞∑

j=0

(
n + j − 2

)
!
(−ξyα)j

j!Γ
(
αj + αn − α) +

+
e−λt

y1+α

∞∑

n=1

(
λξtyα

)n

n!(n − 1)!

∞∑

j=1

(
n + j − 2

)
!
(−ξyα)j

(
j − 1
)
!Γ
(
αj + αn − α) .

(3.10)

The initial condition is immediately satisfied by (3.6), while the second condition in (3.8) can
be verified as follows:

∫∞

0
e−kyfY (α)

(
y, t
)
dy = e−λt

∞∑

n=1

(ξλt)n

n!kαn

∞∑

j=0

(
n + j − 1

)
!

j!kαj

= e−λt
∞∑

n=1

1
n!

(
ξλt

kα + ξ

)n

= e−λt
(
eλtξ/(k

α+ξ) − 1
)
,

(3.11)

which, for k = 0, becomes 1 − e−λt. The composition rule given in (3.9) can be verified by
taking the Laplace transform of Y (α),

g̃Y (α) (k, t) := Ee−kY
(α)(t) = e−(λk

α/(kα+ξ))t, (3.12)
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which Laplace transformed with respect to t gets

˜̃gY (α) (k, s) :=
∫∞

0
e−stg̃Y (α) (k, t)dt =

kα + ξ
kα(λ + s) + sξ

=
∫+∞

0
Ee−k

αY (z)e−szdz. (3.13)

Thus,

g̃Y (α) (k, t) = Ee−k
αY (t) =

∫+∞

0
e−k

αvPr{Y (t) ∈ dv}, (3.14)

so that, by (1.1), we get

Pr
{
Y (α)(t) ∈ dy

}
=
∫+∞

0
hα
(
y, v
)
Pr{Y (t) ∈ dv}dy, (3.15)

and formula (3.9) follows.

Remark 3.2. Equation (3.15) yields an alternative proof of (3.7) noting that the density of Aλ,ξ
α

satisfies the following equation (where the space-fractional derivative is defined now in the
Caputo sense):

∂u

∂t
= −∂

αu

∂yα
, u

(
y, 0
)
= δ
(
y
)
, y, t ≥ 0. (3.16)

Indeed, we get

∂α

∂yα
fY (α)
(
y, t
)
=
∫+∞

0

∂α

∂yα
hα
(
y, v
)
fY (v, t)dv

= −
∫+∞

0

∂

∂v
hα
(
y, v
)
fY (v, t)dv

=
∫+∞

0
hα
(
y, v
) ∂
∂v

fY (v, t)dv

=
[
by (2.5)

]

= − ξ
λ

∂

∂t

∫+∞

0
hα
(
y, v
)
fY (v, t)dv − 1

λ

∂

∂t

∫+∞

0
hα
(
y, v
) ∂
∂v

fY (v, t)dv

= − ξ
λ

∂

∂t
fY (α)
(
y, t
) − 1

λ

∂

∂t

∂α

∂yα
fY(α)
(
y, t
)
.

(3.17)

By considering (3.9) together with (1.2), we can write the following relationship:

FY (α)(t)(z) = Pr
{
Y (α)(t) ≤ z

}
= Pr{Aα(Y (t)) ≤ z} = Pr{Y (t) ≥ Lα(z)}, (3.18)

while for the first version of TFCPP we had, from (2.15), that FYβ(t)(z) = Pr{Y (Lβ(t)) ≤ z}.
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We finally note that the process Y (α) is still a Markovian and Lévy process, since it is
substantially a special case of CPP.

3.1. Special Cases

For α = 1, since theXj ’s reduce to exponential r.v.’s, from (3.6) and (3.7) we retrieve the results
(2.11) and (2.13) valid for the standard CPP, under the exponential assumption for Xj ’s. As
a direct check of (3.9), we can consider the special case α = 1/2, so that the law h1/2(·, z) can
be written explicitly as the density of the first passage time of a standard Brownian motion
through the level z > 0. Then by considering (3.15) we can write

Pr
{
Y1/2(t) ∈ dy

}
=
∫+∞

0
h1/2
(
y, v
)
fY (v, t)dv dy

=
∫+∞

0

ze−z
2/2y

√
2πy3

e−ξz−λt

z

∞∑

n=1

(λξtz)n

n!(n − 1)!
dzdy

=
e−λt

y

∞∑

n=1

(λξt)n

n!(n − 1)!
(−1)n

dn

dξn

∫+∞

0

e−z
2/2y

√
2πy

e−ξzdz dy

=
e−λt

2y

∞∑

n=1

(λξt)n

n!(n − 1)!
(−1)n

dn

dξn
E1/2,1

(
−ξy1/2

)
dy,

(3.19)

where the last equality holds by (2.11)-(2.12) in [28]; then, by (1.10.3) in [12], we get

Pr
{
Y1/2(t) ∈ dy

}
=
e−λt

2y

∞∑

n=1

(λξt)n

(n − 1)!
yn/2

n!

∞∑

j=0

(
n + j
)
!
(−ξy1/2)j

j!Γ
(
j/2 + n/2 + 1

)dy

=
e−λt

y

∞∑

n=1

(
λξty1/2)n

n!
En1/2,n/2

(
−ξy1/2

)
dy.

(3.20)

3.2. Asymptotic Results

We study now the asymptotic behavior of the rescaled version of Y (α) defined as

hY (α)
(
t

r

)
=

N(t/r)∑

j=1

hX
(α)
j , (3.21)

for h, r → 0. The Fourier transform of the r.v.’s, X(α)
j , for any α ∈ (0, 1), is given by

f̂X(α) (κ) =
1

1 + (1/ξ) cos(πα/2)|κ|α(1 − i sgn(κ) tan(πα/2)
) (3.22)
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(see [27], formula (2.4.1)), which, in the limit, behaves as

f̂X(α) (hκ) � 1 −Ahα|κ|α, h −→ 0, (3.23)

whereA = (1/ξ) cos(πα/2)(1− i sgn(κ) tan(πα/2)). Thus, the characteristic function of (3.21)
can be written as

ĝhY (α)

(
κ,
t

r

)
= eλ(t/r)[f̂X(α) (hκ)−1]

� e−(λt/ξ) cos(πα/2)|κ|α(1−i sgn(κ) tan(πα/2)), α ∈ (0, 1),

(3.24)

for h, r → 0, s.t. hα/r → 1. We can conclude that

hY (α)
(
t

r

)
=⇒ Aλ,ξ

α (t), (3.25)

where the limiting process is represented, in this case, by an α-stable subordinator Aλ,ξ
α (t)

with parameters μ = 0, θ = 1, σ = ((λt/ξ) cosπα/2)1/α, whose density satisfies

∂u

∂t
= −λ

ξ

∂αu

∂yα
, u

(
y, 0
)
= δ
(
y
)
, y > 0, t > 0. (3.26)

4. Compound Poisson Processes Fractional in Time and Space

We consider now together the results obtained in the previous sections, by defining a CPP
fractional both in space and time (STFCPP), that is,

Y
(α)
β (t) =

Nβ(t)∑

j=1

X
(α)
j , t > 0, (4.1)

where X(α)
j ’s are i.i.d. with density (3.2) and Nβ(t), t > 0 is again the FPP.

Theorem 4.1. The process Y (α)
β

(t), t > 0, defined in (4.1) has the following distribution:

Pr
{
Y

(α)
β (t) ≤ y

}
= Eβ,1

(
−λtβ
)

1[0,+∞)
(
y
)
+
∫y

−∞
f
Y

(α)
β
(z, t)dz, t ≥ 0, y ∈ R, (4.2)

where

f
Y

(α)
β

(
y, t
)
=

1
y

∞∑

n=1

(
λξtβyα

)n
En+1
β,βn+1

(
−λtβ
)
Enα,αn
(−ξyα)1(0,+∞)

(
y
)
, t ≥ 0. (4.3)
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The density f
Y

(α)
β

solves the following equation:

ξ
∂β

∂tβ
fYαβ = −

[

λ +
∂β

∂tβ

]
∂α

∂yα
f
Y

(α)
β
, t ≥ 0, y > 0, (4.4)

with conditions
f
Y

(α)
β

(
y, 0
)
= 0,

∫+∞

0
f
Y

(α)
β

(
y, t
)
dy = 1 − Eβ,1

(
−λtβ
)
.

(4.5)

The following equality of the one-dimensional distributions holds:

Y
(α)
β (t) d= Sα

(
Yβ(t)

)
. (4.6)

Proof. In order to check (4.4) we evaluate the following fractional derivatives:

∂

∂tβ
f
Y

(α)
β

(
y, t
)
=

1
ytβ

∞∑

n=1

(
λξtβyα

)n

(n − 1)!n!

⎛

⎝
∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)

⎞

⎠
( ∞∑

r=0

(n + r − 1)!
(−ξyα)r

r!Γ(αr + αn)

)

,

∂α

∂yα
f
Y

(α)
β

(
y, t
)
=

1
y1+α

∞∑

n=1

(
λξtβyα

)n

n!(n − 1)!

⎛

⎝
∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn + 1

)

⎞

⎠
( ∞∑

r=0

(n + r − 1)!
(−ξyα)r

r!Γ(αr + αn − α)

)

,

∂α

∂yα
∂

∂tβ
f
Y

(α)
β

(
y, t
)
=

1
y1+αtβ

∞∑

n=1

(
λξtβyα

)n

n!(n − 1)!

⎛

⎝
∞∑

j=0

(
n + j
)
!
(−λtβ)j

j!Γ
(
βj + βn − β + 1

)

⎞

⎠

×
( ∞∑

r=0

(n + r − 1)!
(−ξyα)r

r!Γ(αr + αn − α)

)

.

(4.7)

By some algebraic manipulations we finally get (4.4). While the initial condition is trivially
satisfied, the second condition in (4.5) can be checked as follows:

∫∞

0
e−kyf

Y
(α)
β

(
y, t
)
dy =

∞∑

n=1

(
λξtβ
)n

kαn
En+1
β,βn+1

(
−λtβ
) ∞∑

r=0

(
n + r − 1

r

)(
− ξ

kα

)r

=
∞∑

n=1

(
λξtβ

kα + ξ

)n

En+1
β,βn+1

(
−λtβ
)

=
[
by (2.30) of [21]

]

= Eβ,1

(

−λξt
βkα

kα + ξ

)

− Eβ,1
(
−λtβ
)
,

(4.8)

which, for k = 0, becomes 1 − Eβ,1(−λtβ).
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The relationship (4.6) can be checked by evaluating the double Laplace transform of
Y

(α)
β as follows:

˜̃g
Y

(α)
β
(k, s) =

∫+∞

0
Ee

−kY (α)
β

(t)
e−stdt =

sβ−1(kα + ξ)
sβ(kα + ξ) + λkα

. (4.9)

We then rewrite formula (4.9) as

˜̃g
Y

(α)
β
(k, s) = sβ−1

∫+∞

0
e−s

βz
Ee−k

αY (z)dz (4.10)

and we follow the same lines which lead to (2.15) to get the conclusion.

Remark 4.2. For α = 1 formulae (4.3) and (4.4) coincide with (2.4) and (2.5), while for α = β = 1
we get (3.6) and (3.7).

From (4.6), by considering (1.2), we get the following relation:

F
Y

(α)
β

(t)(z) = Pr
{
Y

(α)
β (t) ≤ z

}
= Pr
{Sα

(
Yβ(t)

) ≤ z} = Pr
{
Yβ(t) ≥ Lα(z)

}
, (4.11)

where Lα is the inverse stable subordinator.

4.1. Asymptotic Results

For the rescaled version of Y (α)
β we obtain the following asymptotic result, which agrees with

(1.14) and (1.15) proved in [17]: the characteristic function of the process

hY
(α)
β

(
t

r

)
=

Nβ(t/r)∑

j=1

hX
(α)
j (4.12)

can be written as

ĝ
hY

(α)
β

(
κ,
t

r

)
= Eβ,1

(

λ
tβ

rβ

[
f̂hX(α) (κ) − 1

])

. (4.13)

By applying formula (3.23) we conclude that (4.13) converges, for h, r → 0 s.t. hα/rβ → 1,
to

Eβ,1

(

−λt
β

ξ
|κ|α cos

πα

2

(
1 − i sgn(κ) tan

πα

2

))

(4.14)
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so that the process hY
(α)
β (t/r) converges weakly to the α-stable subordinator Aλ,ξ

α (t),
composed with the inverse β-stable subordinator Lβ. Indeed, the characteristic function of
Aλ,ξ

α (Lβ(t)) can be evaluated as follows:

∫+∞

0
e−stf̂Aλ,ξ

α (Lβ)
(κ, t)dt =

∫+∞

0
e−stdt

∫+∞

0
eiκydy

∫+∞

0
p
λ,ξ
α

(
y; z
)
lβ(z, t)dz

= sβ−1
∫+∞

0
e−zλ|κ|

αAe−zs
β

dz

=
sβ−1

λ|κ|αA + sβ
,

(4.15)

where hλ,ξα (y, z) is the law of Aλ,ξ
α (z) and A = (1/ξ) cos(πα/2)(1 − i sgn(κ) tan(πα/2)). By

inverting the Laplace transform in (4.15) we get (4.14). The density of Aλ,ξ
α (Lβ(t)) satisfies

the following equation:

∂βu

∂tβ
= −λ

ξ

∂αu

∂yα
, y, t > 0, (4.16)

as can be easily seen from (4.15) (see also [29]). A relevant special case of this result can be
obtained by taking α = β = ν, so that the composition Aλ,ξ

ν (Lν(t)) is proved to display a
Lamperti-type law (see on this topic [30, 31]); therefore, the latter can be seen as the weak
limit of the STFCPP.

We note that in the particular case β = 1, the Fourier transform (4.14) reduces to (3.24)
and correspondingly (4.16) coincides with (3.26).

Finally, we consider the case where we have Nβ(t) in place of Nβ(t). If the jumps are
Mittag-Leffler distributed, we get the following space-time fractional CPP:

Yα,β(t) =
Nβ(t)∑

j=1

X
(α)
j , (4.17)

whose distribution is given by

Pr
{
Yα,β ≤ y

}
=

1
Eβ,1
(−λtβ)1[0,+∞)

(
y
)
+
∫y

−∞
fYα,β

(z, t)dz, t ≥ 0, y ∈ R, (4.18)

where

fYα,β

(
y, t
)
=

1
Eβ,1
(
λtβ
)

∞∑

n=1

(
λξtβyα

)n

Γ
(
βn + 1

)Enα,αn
(−ξyα)1[0,+∞)

(
y
)
, t ≥ 0. (4.19)
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The rescaled version of (4.17) is defined as

hYα,β

(
t

r

)
=

Nβ(t/r)∑

j=1

hX
(α)
j =⇒ Aλ,ξ

α (t) (4.20)

for h, r → 0, s.t. hα/r → 1, where again Aλ,ξ
α denotes the α-stable subordinator with

characteristic function given in (3.24) (last line). Thus, in the limit, the fractional nature of
the counting process Nβ does not exert any influence, in analogy with the result given in
(3.25).

5. Fractional-Difference Compound Poisson Process

We present now a final version of the fractional CPP, where the fractionality of the counting
process is referred to the difference operator involved in the recursive equation governing
its distribution. Let B denote the standard backward shift operator, Δ = 1 − B, and let γ be a
fractional parameter in (0, 1], then the fractional recursive differential equation

d

dt
pΔk (t) = −λγΔγpΔk (t), pΔk (0) = 1[k=0], (5.1)

has been introduced in [9]. In (5.1) the following definition of the fractional difference
operator Δγ of a function f(n) has been used (see [12], formula (2.8.2), page121):

Δγf(n) =
∞∑

j=0

(−1)j
(
γ
)
j

j!
f
(
n − j), (5.2)

where (x)n = x(x − 1) · · · (x − (n − 1)) is the falling factorial. We use the notation pΔ
k
(t) :=

Pr{NΔ(t) = k}, k ≥ 0, t > 0, and we have

pΔk (t) =
(−1)k

k!

∞∑

r=0

(−λγ t)r
r!
(
γr
)
k, γ ∈ (0, 1]. (5.3)

It can be proved thatNΔ is not a renewal process, by verifying that the density of the kth event
waiting time cannot be expressed as kth convolution of i.i.d. random variables. Nevertheless,
NΔ(t) is a Lévy process, with infinite expected value for any t. Moreover, by (5.3), one can
check that (as h → 0)

Pr{NΔ(h) = k} = (−1)k+1 λ
γ
(
γ
)
k

k!
h + o(h), ∀k ≥ 1 (5.4)

instead of o(h) for k ≥ 2, as for the standard or the time-fractional Poisson process. We
can obtain (5.1) from (5.4) by taking into account that the increments are independent and
stationary.
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Let us define the corresponding fractional-difference compound Poisson process
(hereafter ΔFCPP) as

YΔ(t) =
NΔ(t)∑

j=1

Xj, t ≥ 0, γ ∈ (0, 1] (5.5)

so that we can obtain, under the assumption of i.i.d. exponential Xj ’s, the distribution of
YΔ together with the differential equation which is satisfied by its absolutely continuous
component.

Theorem 5.1. For γ ∈ (0, 1], the distribution of the process YΔ defined in (5.5), withXj, j = 1, 2, . . .,
independent and exponentially distributed with parameter ξ, is given by

Pr
{
YΔ(t) < y

}
= e−λ

γ t1[0,+∞)
(
y
)
+
∫y

0
fYΔ(z, t)dz, t, y ≥ 0, (5.6)

where

fYΔ

(
y, t
)
=
e−ξy

y

∞∑

n=1

(−ξy)n
n!(n − 1)!

∞∑

r=0

(−λγ t)r
r!
(
γr
)
n1[0,+∞)

(
y
)
, t ≥ 0. (5.7)

The density fYΔ solves the differential equation:

ξD
1/γ
−,t fYΔ =

[
λ −D1/γ

−,t
] ∂
∂y

fYΔ , (5.8)

where D1/γ
0−; t is the right-sided fractional Riemann-Liouville derivative on the half-axis R

+, with
conditions

fYΔ

(
y, 0
)
= 0,

Dr
−,tfYΔ

(
y, t
)∣∣∣

t=0
= Φr

(
y
)
,

∫+∞

0
fYΔ

(
y, t
)
dy = 1 − e−λγ t,

(5.9)

where Φr(y) = (λγre−ξy/y)
∑∞

n=1((−ξy)n(γr)n/n!(n − 1)!).
The following subordinating relationship holds for (5.5):

YΔ(t)
d= Y
(Aγ(t)

)
, (5.10)

where, as usual,Aγ denotes the γ-stable subordinator.
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Proof. Formula (5.7) can be easily derived by (5.3) and can be checked by verifying that, for
γ = 1, it reduces to (2.11):

fYΔ(y, t)
∣∣
γ=1 =

e−ξy

y

∞∑

n=1

(−ξy)n
n!(n − 1)!

∞∑

r=n

(−λt)r
r!

(r)n

=
e−ξy

y

∞∑

n=1

(−ξy)n
n!(n − 1)!

(−λt)ne−λt.
(5.11)

We now prove the relationship (5.10) as follows. The Laplace transform of YΔ(t) is given by

g̃YΔ(k, t) = Ee−kYΔ(t) =
∞∑

n=0

(−ξ)n
n!

1
(k + ξ)n

∞∑

r=0

(−λγ t)r
r!
(
γr
)
n

=
∞∑

r=0

(−λγ t)r
r!

∞∑

n=0

(
γr
)
n

n!

(
− ξ

k + ξ

)n

=
∞∑

r=0

(−λγ t)r
r!

(
1 − ξ

k + ξ

)γr
= e−λ

γkγ t/(k+ξ)γ ;

(5.12)

moreover, (5.12) can be rewritten as

g̃YΔ(k, t) =
∫+∞

0
e−λzeλξz/(k+ξ)hγ(z, t)dz

=
∞∑

n=0

(λξ)n

n!(ξ + k)n

∫+∞

0
zne−λzhγ(z, t)dz

=
∫+∞

0
Ee−kY (z)hγ(z, t)dz,

(5.13)

which gives (5.10). Thus, we also have that

fYΔ

(
y, t
)
=
∫+∞

0
fY
(
y, z
)
hγ(z, t)dz. (5.14)

In order to prove that (5.7) satisfies (5.8), we recall the following result proved in [32]: the
density hν/n(y, t) of the stable subordinator Aν/n is governed by the following equation (as
well as by (3.16) for α = ν/n):

Dn
−,thν/n =

∂ν

∂yν
hν/n, y, t ≥ 0, ν ∈ (0, 1], (5.15)
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for n ∈ N, with conditions

hν/n(0, t) = 0,

hν/n
(
y, 0
)
= δ
(
y
)
,

Dr
−,thν/n(y, t)

∣
∣
∣
t=0

=
y−(νr/n)−1

Γ(−rν/n) , r = 1, . . . , n − 1.

(5.16)

We can prove that the slightly different result holds:

D
1/γ
−,t hγ =

∂

∂y
hγ , y, t ≥ 0, γ ∈ (0, 1], n =

⌊
1
γ

⌋
+ 1 (5.17)

with the following conditions

hγ(0, t) = 0,

hγ
(
y, 0
)
= δ
(
y
)
,

Dr
−,thγ(y, t)

∣∣∣
t=0

=
y−γr−1

Γ
(−γr) , r = 1, . . . , n − 1.

(5.18)

Equation (5.17) can be checked by resorting to the Laplace transform with respect to y as
follows:

D
1/γ
−,t h̃γ(k, t) = D

1/γ
−,t e

−kγ t

=
[
by (2.2.15) of [12]

]

= ke−k
γ t

=
∫+∞

0
e−ky

∂

∂y
hγ
(
y, t
)
dy.

(5.19)

Analogously, we can check (5.18): in particular we get

Dr
−,th̃γ(k, t)

∣∣∣
t=0

= (−1)r
∂r

∂tr
h̃γ(k, t)

∣∣∣∣
t=0

= kγr

=
∫+∞

0
e−ky

y−γr−1

Γ
(−γr)dy.

(5.20)
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We now take the derivative of (5.14) of order 1/γ with respect to t:

D
1/γ
−,t fYΔ

(
y, t
)
=
∫+∞

0
fY
(
y, z
)
D

1/γ
−,t hγ(z, t)dz

=
∫+∞

0
fY
(
y, z
) ∂
∂z
hγ(z, t)dz

=
[
by considering (2.11)

]

= −
∫+∞

0

∂

∂z
fY
(
y, z
)
hγ(z, t)dz

=
1
ξ

∂

∂y

∫+∞

0

∂

∂z
fY
(
y, z
)
hγ(z, t)dz +

λ

ξ

∂

∂y
fYΔ

(
y, t
)

= −1
ξ

∂

∂y
D

1/γ
−,t fYΔ

(
y, t
)
+
λ

ξ

∂

∂y
fYΔ

(
y, t
)
.

(5.21)

We remark that, for γ = 1, D1/γ
−,t fYΔ = −∂fYΔ/∂t, and therefore the previous equation reduces

to (2.13). Finally, we have to check (5.9): the first initial condition is trivially satisfied, while
the second condition can be checked either directly by taking the derivatives of (5.7) or by
noting that

Dr
−,tfYΔ

(
y, t
)
=
∫+∞

0
fY
(
y, z
)
Dr

−,thγ(z, t)dz

=
[
by (5.18)

]

=
e−ξy

y

∞∑

n=1

(
λξy
)n

n!(n − 1)!

∫+∞

0
e−λz

zn−rγ−1

Γ
(−rγ)dz

=
λγne−ξy

y

∞∑

n=1

(
ξy
)n

n!(n − 1)!
Γ
(
n − rγ)

Γ
(−rγ)

=
λγne−ξy

y

∞∑

n=1

(
ξy
)n

n!(n − 1)!
(−γr)(n)

=
λγne−ξy

y

∞∑

n=1

(−ξy)n
n!(n − 1)!

(
γr
)
n,

(5.22)

where, in the last step, we have applied the following relationship between falling and rising
factorial (x)n = (−1)n(x)(n). The last condition in (5.9) holds, since g̃YΔ(0, t) = 1 by (5.12), so
that f̃YΔ(0, t) = g̃YΔ(0, t) − e−λ

γ t = 1 − e−λγ t.
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Remark 5.2. We show that the distribution of the ΔFCPP satisfies a fractional master equation
of order 1/γ greater than one, when the jumps have an arbitrary continuous density fX . If we
consider the (generalized) density function of YΔ(t),

gYΔ

(
y, t
)

:= e−λ
γ tδ
(
y
)
+ fYΔ

(
y, t
)
, y, t ≥ 0, (5.23)

then we get

D
1/γ
−,t gYΔ

(
y, t
)
= λgYΔ

(
y, t
) − λ

∫+∞

−∞
gYΔ

(
y − x, t)fX(x)dx, (5.24)

which is analogue to (1.6) for the TFCPP Yβ. Indeed, by (5.10), we can write (5.23) as

gYΔ

(
y, t
)
=
∫+∞

0
gY
(
y, z
)
hγ(z, t)dz, (5.25)

where gY (y, t) = e−λtδ(y)+fY (y, t) and fY (y, t) are the density of the standard CPP. By taking
the fractional time-derivative of (5.25) we get

D
1/γ
−,t fYΔ

(
y, t
)
=
∫+∞

0
gY
(
y, z
)
D

1/γ
−,t hγ(z, t)dz

=
[
by (5.17)

]

=
∫+∞

0
gY
(
y, z
) ∂
∂z
hγ(z, t)dz

=
[
by (5.18)

]

= −
∫+∞

0

∂

∂z
gY
(
y, z
)
hγ(z, t)dz

=
[
by the Kolmogorov master equation

]

= λ
∫+∞

0
gY
(
y, z
)
hγ(z, t)dz − λ

∫+∞

−∞
fX(x)

∫+∞

0
gY
(
y − x, z)hγ(z, t)dzdx,

(5.26)

which coincides with (5.24). For γ = 1 (5.24) reduces to the well-known master equation of
the standard CPP, by considering again that D1/γ

−,t fYΔ = −∂fYΔ/∂t.
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5.1. Asymptotic Results

We study the asymptotic behavior of the rescaled version of (5.5) under the two alternative
assumptions on the r.v.’s representing the jumps: for X∗

j distributed according to (1.9) and for

X
(α)
j with density (3.2). In the first case, we have that

hYΔ

(
t

r

)
=

NΔ(t/r)∑

j=1

hX∗
j =⇒ Sαγ(t) (5.27)

for h, r → 0, s.t. hαγ/r → 1, where Sαγ(t) is a symmetric stable process of index αγ (which
is strictly less than one) and parameters μ = 0, θ = 0, and σ = (t cosπαγ/2)1/αγ . Indeed,
the characteristic function of (5.27) can be evaluated, by considering that the probability
generating function of NΔ is G(u, t) = e−λ

γ t(1−u)γ (see [9]) as follows:

f̂hYΔ

(
κ,
t

r

)
= e−(λ

γ t/r)(1−f̂hX∗ (κ))
γ

� e−λγ t|κ|αγ .
(5.28)

Under the assumption of Mittag-Leffler distributedX(α)
j ’s, we get instead the following result:

the rescaled process

hY
(α)
Δ

(
t

r

)
=

NΔ(t/r)∑

j=1

hX
(α)
j =⇒ Aλ,ξ

αγ (t) (5.29)

can be written as

f̂
hY

(α)
Δ

(
κ,
t

r

)
� exp

{
−λ

γ t

ξγ r

(
cos

πα

2

)γ
hαγ |κ|αγ

(
1 − i sgn(κ) tan

πα

2

)γ}

� exp
{
−λ

γ t

ξγ
|κ|αγ exp

{
−i sgn(κ)

παγ

2

}}
,

(5.30)

for h, r → 0, s.t. hαγ/r → 1. The last line of (5.30) corresponds to the Fourier transform
of a stable subordinator Aλ,ξ

αγ of index αγ and with parameters μ = 0, θ = 1, and
σ = ((λγ t/ξγ) cosπαγ/2)1/αγ . Therefore, in both cases, the limiting processes are simply the
stable symmetric process and the stable subordinator of index αγ , respectively, instead of
their compositions with the inverse stable subordinator as happened when Nβ was used as
counting process.
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Table 1: Main results in finite domain.

Process Equation

CPP Y (t) ξ
∂

∂t
= −
[
λ +

∂

∂t

]
∂

∂y

TFCPP Yβ(t)
d= Y (Lβ(t)) ξ

∂β

∂tβ
= −
[

λ +
∂β

∂tβ

]
∂

∂y

SFCPP Y (α)(t) d= Sα(Y (t)) ξ
∂

∂t
= −
[
λ +

∂

∂t

]
∂α

∂yα

STFCPP Y
(α)
β

(t) d= Sα(Yβ(t)) ξ
∂β

∂tβ
= −
[

λ +
∂β

∂tβ

]
∂α

∂yα

ΔFCPP YΔ(t)
d= Y (Aγ (t)) ξD

1/γ
−,t =

[
λ −D1/γ

−,t
] ∂
∂y

Table 2: Main results in asymptotic domain.

Process Hypothesis on jumps Limiting process Limiting equation

TFCPP Yβ X∗
j Sα(Lβ(t))

∂βu

∂tβ
= λ

∂αu

∂|y|α

” X
(α)
j Aα(Lβ(t))

∂βu

∂tβ
= −λ∂

αu

∂yα

Altern. TFCPP Yβ X∗
j Sβ

α(t)
∂u

∂t
=
λ1/β

β

∂αu

∂|y|α

” X
(α)
j Aλ,ξ

α (t)
∂u

∂t
= −λ

ξ

∂αu

∂yα

ΔFCPP YΔ X∗
j Sαγ (t)

∂u

∂t
= λγ

∂αγu

∂|y|αγ

” X
(α)
j Aλ,ξ

αγ (t)
∂u

∂t
= −λ

γ

ξ

∂αγu

∂yαγ

Acronym

CPP: Compound Poisson process
TFCPP: Time-fractional compound Poisson process
SFCPP: Space-fractional compound Poisson process
STFCPP: Space-time fractional compound Poisson process
ΔFCPP: Fractional-difference compound Poisson process.
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The reaction-diffusion equations have been widely used in physics, chemistry, and other areas.
Forest fire can also be described by such equations. We here propose a fighting forest fire model.
By using the normal form approach theory and center manifold theory, we analyze the stability of
the trivial solution and Hopf bifurcation of this model. Finally, we give the numerical simulations
to illustrate the effectiveness of our results.

1. Introduction

The forest fire is an important issue in the world. It has brought us huge losses. It not only
burns our forests but also destroys the local ecological environment. Many factors lead to
forest fires. Several authors have studied them in depth [1–6]. Some important organizations,
especially the USDA Forest Service, have also researched them in their themes [7].

Reaction-diffusion equations have been applied in forest fire model for several
years. Some authors analyzed the dynamical behavior of the fire front propagations using
hyperbolic reaction-diffusion equations [8]. Lots of articles related to percolation theory [9]
and self-organized criticality [10] are trying to provide a different dynamical model for the
spread of the fire. In this paper, the model describes the condition that people are putting out
the fire when the fire is spreading. We analyze dynamic properties of the reaction-diffusion
equations. Kolmogorov et al. proposed the famous KPP model [11] in the 1930s. From then
on, it had been applied in various fields including forest fire:

ut = d1uxx + u + f(u), x ∈ R, t ≥ 0, (1.1)

where u = u(x, t) can be seen as the area of the burned forest. uxx is a diffusion term of u
in space, and d1 is the diffusion coefficient. f(u) is a nonlinear function. The equation can
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describe the speed of fire spreading. Zeldovich et al. gave the famous theory of combustion
and explosions [12]. We can get inspiration from it:

The people will go to put out the fire as soon as they realize the forest fire. We can use
a reaction-diffusion equation to describe it.

vt = d2vxx − cv + g(v). (1.2)

In this equation, v = v(x, t) is the area where the fire has been put out. vxx is a diffusion term
of v in space, and d2 is the diffusion coefficient. c is the resurgence probability of v. g(v) is a
nonlinear function which represents the ability of people to put out the fire.

Now, let us consider the two reaction-diffusion equations together. As we know, u and
v influence each other. Thus, f and g must be functions of u, v. We define g(u, v) by referring
to the combustion model [13]:

g(u, v) =
uv

b(u + 1)
, b > 0. (1.3)

Since g(u, v) has opposite effect on the fire area (or u), we can also define f(u, v) by
taking into account KPP model [8]:

f(u, v) = −au2 − uv

b(u + 1)
. (1.4)

Then we get a new model:

ut − d1uxx = u − au2 − uv

b(u + 1)
,

vt − d2vxx = −cv +
uv

b(u + 1)
,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(1.5)

Define

H = L2[0, π] × L2[0, π] =
{(

f
g

)
: f, g ∈ L2[0, π]

}
, (1.6)

and an inner product is given by

〈(
f1

g1

)
,

(
f2

g2

)〉
=
〈
f1, f2

〉
L2 +

〈
g1, g2

〉
L2 =

2
π

∫π

0
f1f2 dx +

2
π

∫π

0
g1g2 dx, (1.7)
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where (f1, g1)
T ∈H, (f2, g2)

T ∈H. From the standpoint of biology, we are only interested in the
dynamics of model (1.5) in the region:

R2
+ = {(u, v) | u > 0, v > 0}. (1.8)

2. Stability Analysis

Firstly, we consider the location stability [14, 15] and the number of the equilibria of model
(1.5) in R2

+. We can also study autowave solutions [16] of the model. The interior equilibrium
point is a root of the following equation:

u − au2 − uv

b(u + 1)
= 0,

−cv +
uv

b(u + 1)
= 0.

(2.1)

It is obvious that (2.1) has an only real solution Y0 = (u0, v0), where

u0 =
bc

1 − bc , v0 = ab
(

1
a
− u0

)
(1 + u0), (2.2)

and b < 1/c(a + 1).
Now, we analyze the asymptotic stability of (u0, v0) by Lyapunov function.

Lemma 2.1. For the model (1.5),
(1) if a ≥ 1, (u0, v0) is global asymptotic stability.
(2) if a < 1 and (1 − a)/c ≤ b ≤ 1/(ac + c), (u0, v0) also has global asymptotic stability.

Proof. Defining

ω(u, v) =
∫ lπ

0

∫u

u0

r/b(r + 1) − c
r/(r + 1)

dr dx +
1
b

∫ lπ

0

∫v

v0

s − v0

s
ds dx, (2.3)

we can get

∂ω

∂t
=

1
b

∫ lπ

0
(h(u) − h(u0))

(
p(u) − p(u0)

)
dx + Y (t), (2.4)

where

h(u) =
u

u + 1
, p(u) = (1 − au)(u + 1),

Y (t) = −d1c

∫ lπ

0

h′(u)
h2(u)

u2
xdx +

d2v0

b

∫ lπ

0

v2
x

v2
dx.

(2.5)
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In what follows, we split it into two cases to prove. If a ≥ 1, for all u > 0, p′(u) < 0, since
h′(u) = 1/(u + 1)2 > 0, we can get

(h(u) − h(u0))
(
p(u) − p(u0)

) ≤ 0. (2.6)

If a < 1 and (1 − a)/c ≤ b ≤ 1/(ac + c) (equal to v0 ≤ b), we can still get (2.6). That is to say

wt(u, v) < 0. (2.7)

We prove the conclusion.

Because of the conclusion of Lemma 2.1, we always assume a < 1 and 0 < b < (1 −
a)/(2ac − c). Introducing perturbations u∗ = u − u0, v

∗ = v − v0, and replace (u∗, v∗) with
(u, v), for which model (1.5) yields

ut − d1uxx = u + u0 − a(u + u0)2 − (u + u0)(v + v0)
b(u + u0 + 1)

,

vt − d2vxx = −c(v + v0) +
(u + u0)(v + v0)
b(u + u0 + 1)

,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(2.8)

Now we can get the linearized system of parametric model (2.8) at (0, 0),

(
ut
vt

)
=
(
Δ̃ + L(b)

)(u
v

)
, (2.9)

where

Δ̃ =

⎛

⎜⎜
⎝

0 d1
∂2

∂x2

d2
∂2

∂x2
0

⎞

⎟⎟
⎠, L(b) =

⎛

⎜⎜⎜⎜
⎝

u0(1 − a − au0)
1 + u0

−c

1 − au0

1 + u0
0

⎞

⎟⎟⎟⎟
⎠
. (2.10)

The eigenvalues of Δ̃ are as follows:

{

−d2
n2

l2
,−d1

n2

l2

}+∞

n=0

, (2.11)

and the corresponding eigenvectors as follows:

{
β1
n, β

2
nk

}+∞

n=0
, (2.12)
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where

β1
n =

⎛

⎜
⎝

0

cos
(n
l
x
)

⎞

⎟
⎠, β2

n =

⎛

⎜
⎝

cos
(n
l
x
)

0

⎞

⎟
⎠. (2.13)

Define for all y ∈ H

y =
n∑

k=1

YT
k

⎛

⎝
β1
k

β2
k

⎞

⎠, Yk =

⎛

⎝
〈y, β1

k
〉

〈y, β2
k
〉

⎞

⎠. (2.14)

It is easy to get, λ ∈ (Δ̃ + L(b)), if and only if the equation

n∑

k=1

YT
k

⎛

⎜⎜
⎝Eλ − L(b) −

⎛

⎜⎜
⎝

−d1
k2

l2
0

0 −d2
k2

l2

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

⎛

⎝
β1
k

β2
k

⎞

⎠ = 0 (2.15)

is held.
We obtain

∣∣∣∣∣∣∣∣

Eλ − L(b) −

⎛

⎜⎜
⎝

−d1
n2

l2
0

0 −d2
n2

l2

⎞

⎟⎟
⎠

∣∣∣∣∣∣∣∣

= 0. (2.16)

Rewrite it as

λ2 − Tn(b)λ +Dn(b) = 0, (2.17)

where

Tn(b) = bc
(

1 − a − 2a
bc

1 − bc
)
− (d1 + d2)n2

l2
,

Dn(b) = c(1 − bc − abc) − d2bc

(
1 − a − 2abc

1 − bc
)
n2

l2
+
d1d2n

4

l4
.

(2.18)

From (2.18), when (1−a)/(ac+ c) < b < (1−a)/c is held, we can get Tn(b) < 0, Dn(b) > 0. So
the system’s eigenvalues have negative real part, and (u0, v0) has local asymptotic stability.
Then, we can conclude that the system has Hopf bifurcation [14] in b ∈ (0, (1 − a)/(ac + c)).

Define

B =
{
b0 | Tn(b0) = 0, Dn(b0) > 0, Tj(b0)/= 0, Dj(b0)/= 0, ∀j /=n

}
. (2.19)
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b0 ∈ B ∪ (0, (1 − a)/(ac + c)), α(b) ± iω(b) are characteristic roots of Δ̃ + L(b), where

α(b) =
1
2

(
A(b) − d1 + d2

l2
n2
)
, ω(b) =

√
Dn(b) − α2(b),

A(b) = bc
(

1 − a − 2a
bc

1 − bc
)
.

(2.20)

Now we compute transversality condition:

α′(b0) =
1
2
a(1 − b0c)

2

(
1
a
− 1 − 4b0c

1 − b0c
−
(

b0c

1 − b0c

)2
)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> 0, 0 < b0 <
1
c

(

1 −
√

2a
1 + a

)

,

< 0,
1
c

(

1 −
√

2a
1 + a

)

< b0 <
1 − a
ac + c

.

(2.21)

Now we consider A(0) = A(bB0 ) = 0 and A(b) is positive in (0, bB0 ). So we can get the
maximum value of A(b) (defined as A(b∗)):

Define

ln = n

√
d1 + d2

A(b∗)
, n ∈ N, A(b∗) = a

⎛

⎝

√
1
a
+ 1 −

√
2

⎞

⎠

2

, (2.22)

for all l ∈ (ln, ln+1], 0 ≤ j ≤ n, bBj,− and bBj,+ are two roots of the equation

A(b) =
d1 + d2

l2
j2. (2.23)

It is easy to get

0 < bB1,− < · · · < bBn,− <
1
c

⎛

⎝1 −
√

2a
1 + a

⎞

⎠ < bBn,+ < · · · < bB1,+ < bB0 . (2.24)

Then we give the condition of Dn(bBj,±)/= 0 especially Dn(bBj,±) > 0.
As we know

Dn(b) ≥ ac − d2A(b∗)
n2

l2
+ d1d2

n4

l4
. (2.25)
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Then Dn(b) > 0 is held if and only if

d1d2 > 0,

(d2A(b∗))2 − 4d1d2ac > 0.
(2.26)

Theorem 2.2. Assume that d1, d2, c > 0, 0 < a < 1, and the equation is held:

d2A
2(b∗) − 4d1ac > 0, (2.27)

where

ln = n

√
d1 + d2

A(b∗)
, n ∈ N, A(b∗) = a

⎛

⎝

√
1
a
+ 1 −

√
2

⎞

⎠

2

, (2.28)

then for all l ∈ (ln, ln+1], existing b = bBj,± or b = bB0 ; there are Hopf bifurcations at the real solution of
model (1.5).

Furthermore

0 < bB1,− < · · · < bBn,− <
1
c

⎛

⎝1 −
√

2a
1 + a

⎞

⎠ < bBn,+ < · · · < bB1,+ < bB0 . (2.29)

3. Hopf Bifurcation

In the above section, we have already obtained the conditions which ensure that model (2.8)
undergoes the Hopf bifurcation at the critical values b0 or bj,± (j = 1, · · · ). In the following
part, we will study the direction and stability of the Hopf bifurcation based on the normal
form approach theory and center manifold theory introduced by Hassard at al. [14].

Firstly, by the transformation u∗ = u−u0, v
∗ = v−v0, and replacing (u∗, v∗) with (u, v),

the parametric system (1.5) is equivalent to the following functional differential equation
(FDE) system:

∂U

∂t
=
(
Δ̃ + L(b0)

)
+ F(b0, U), (3.1)

where

U = (u, v)T , F(b0, U) =

(
f − fuu − fvv
g − guu − gvv

)

. (3.2)
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The adjoint operator of Ln(b) is defined as

L∗(b0) =

⎛

⎜
⎜
⎝
d1

∂2

∂x2
+ fu(b0) fv(b0)

gu(b0) d2
∂2

∂x2
+ gv(b0)

⎞

⎟
⎟
⎠. (3.3)

It is easy to get

〈u, L(b0)v〉 = 〈L∗(b0)u, v〉. (3.4)

From the discussions in Section 2, define q∗ = (a∗n, b
∗
n)
T cos(n/l)x. We have

L∗(b0)q∗ = −iωq∗, 〈
q∗, q

〉
= 1,

〈
q∗, q

〉
= 0. (3.5)

Decompose X as X = Xc ⊕ Xs, where Xc = {zq + zq | z ∈ C} and Xs = {u ∈ x | 〈q∗, u〉 = 0}.
For all (u, v) ∈ X, existing z ∈ C and ω = (ω1, ω2) ∈ Xs, we can obtain

(
u
v

)
= zq + zq +

(
ω1

ω2

)
. (3.6)

Rewrite (3.1) as

ż = iω0z +
〈
q∗, F∗

0
〉
,

ω̇ = L(b0)ω +H(z, z,ω),
(3.7)

where

F∗
0 = zq + zq +ω, H(z, z,ω) = F∗

0 −
〈
q∗, F∗

0
〉
q −
〈
q∗, F∗

0

〉
q. (3.8)

Using the same notations as in [11],

F∗
0(U) =

1
2
Q(U,U) +

1
6
C(U,U,U) +O

∣∣∣U4
∣∣∣, (3.9)

where U = (u, v) and Q,C are symmetrical multilinear functions. We can compute

Q
(
q, q
)
=

⎛

⎝
A1
n

A2
n

⎞

⎠cos2n

l
x, Q

(
q, q
)
=

⎛

⎝
B1
n

B2
n

⎞

⎠cos2n

l
x, C

(
q, q, q

)
=

⎛

⎝
C1
n

C2
n

⎞

⎠cos3n

l
x,

(3.10)
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where

A1
n = fuua

2
n + 2fuvanbn + fvvb2

n,

A2
n = guua

2
n + 2guvanbn + gvvb2

n,

B1
n = fuu|an|2 + fuv

(
anbn + anbn

)
+ fvv|bn|2,

B2
n = guu|an|2 + guv

(
anbn + anbn

)
+ gvv|bn|2,

C1
n = fuuu|an|2an + fuuv

(
2|an|2bn + a2

nbn
)
+ fuvv

(
2b2

nan + b
2
nan
)
+ fvvv|bn|2bn,

C2
n = guuu|an|2an + guuv

(
2|an|2bn + a2

nbn
)
+ guvv

(
2b2

nan + b
2
nan
)
+ gvvv|bn|2bn.

(3.11)

Define

H(z, z,ω) =
1
2
H20z

2 +H11zz +
1
2
H02z

2 + o(|z||ω|), (3.12)

where

H20 = Q
(
q, q
) − 〈q∗, Q(q, q)〉q −

〈
q∗, Q

(
q, q
)〉
q,

H11 = Q
(
q, q
) − 〈q∗, Q(q, q)〉q −

〈
q∗, Q

(
q, q
)〉
q.

(3.13)

On the center manifold, we have

ω =
1
2
ω20z

2 +ω11zz +
1
2
ω02z

2 + o
(
|z|3
)
. (3.14)

We can obtain

w20 = [2iω0I − Ln(b0)]
−1H20, ω11 = [Ln(b0)]

−1H11. (3.15)

Comparing (3.9) and (3.13), we can get

H20 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q
(
q, q
) −
⎛

⎝
A1
n

A2
n

⎞

⎠cos2n

l
x −
⎛

⎝
A1
n

A2
n

⎞

⎠
(

1
2

cos2n

2
x +

1
2

)
, n ∈ N

∗,

⎛

⎝
A1

0

A2
0

⎞

⎠ − 〈q∗, Q(q, q)〉
(
a0

b0

)

− 〈q∗, Q(q, q)〉
⎛

⎝
a0

b0

⎞

⎠, n = 0.

(3.16)
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Similarly

ω11 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
[L(bo)]

−1

⎛

⎝
C1
n

C2
n

⎞

⎠
(

cos2n

2
+ 1
)
, n ∈ N

∗,

−[L(b0)]
−1

⎡

⎣

⎛

⎝
c1

0

c2
0

⎞

⎠ − 〈q∗, Q(q, q)〉
⎛

⎝
a1

0

b2
0

⎞

⎠ −
〈
q∗, Q

(
q, q
)〉
⎛

⎝
a0

b0

⎞

⎠

⎤

⎦, n = 0.

(3.17)

Then on the center manifold rewrite (dU) as

dz

dt
= iω0z +

〈
q∗, F∗

0
〉
= iω0z +

∑

2≤i+j≤3

gij

i!j!
zizj + o

(
|z|4
)
, (3.18)

where

g20 =
〈
q∗, Q

(
q, q
)〉

=
4cω0a

2 − a(1 − a)2ω0 − 2ca2(3a − 1)i
(1 − a2)ω0

,

g11 =
〈
q∗, Q

(
q, q
)〉

=
a
(
a − q)ω0 − 2ca2i

(1 + a)ω0
,

g02 =
〈
q∗, Q

(
q, q
)〉

=
a(1 − a)2 + 2cω0a

2 − 4ca2i

(1 − a2)ω0
,

g21 = 2
〈
q∗, Q

(
w11, q

)〉
+
〈
q∗, Q

(
w20, q

)〉
+
〈
q∗, C

(
q, q, q

)〉

=
−12a3(1 − a)ω0 − 8ca3ω0 + 4ca3(3−5a)i

(1 − a)(1 + a)2ω0
.

(3.19)

Using conclusions in [14] we can get

C1(b) =
g20g11(3α(b) + iω(b))

2(α2(b) +ω2(b))
+

∣∣g11
∣∣2

α(b) + iω(b)
+

∣∣g02
∣∣2

2(α(b) + 3iω(b))
+
g21

2
, (3.20)

then

C1(b0) =
i

2ω0

(
g20g11 − 2

∣∣g11
∣∣2 − 1

3
∣∣g02
∣∣2
)
+
g21

2
,

μ2 = − Re{c1(0)}
Re{b′(τn)} , β2 = 2 Re{c1(0)},

T2 =
2π
ω0

(
1 + τ2s

2
)
+ o
(
s4
)
,

(3.21)



Abstract and Applied Analysis 11

0
10

20

0
5

10

0

1

2

u
(1
)

tx

(a)

0
10

20

0

5

10

0

1

2

3

t
x

u
(2
)

(b)

Figure 1: When b = 0.1, the positive equilibrium point Y0 is asymptotically stable.

where

τ2 = − 1
ω0

[
Im(c1(b0)) − Re(c1(b0))

α′(b0)
ω′(b0)

]
. (3.22)

Now we give a conclusion.

Conclusion. (1) The sign of μ2 determines the direction of Hopf bifurcation. When μ2 > 0, the
Hopf bifurcation is supercritical; when μ2 < 0, the Hopf bifurcation is subcritical.

(2) β2 determines the stability of bifurcated periodic solutions. When β2 < 0, the
periodic solutions are stable; when β2 > 0, the periodic solutions are unstable.

(3) T2 determines the period of bifurcated periodic solutions. When T2 > 0, the period
increases; when T2 < 0, the period decreases.

4. Example

In this section, we use a numerical simulation to illustrate the analytical results we obtained
in previous sections.

Let x ∈ (0, lπ), d1 = 1, d2 = 3, c = 4, a = 0.0588. The system (1.5) is

ut − uxx = u − 0.0588u2 − uv

b(u + 1)
,

vt − 3vxx = −4v +
uv

b(u + 1)
,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ (0, lπ).

(4.1)

Now we determine the direction of a Hopf bifurcation with b ∈ B and the other properties of
bifurcating periodic solutions based on the theory of Hassard et al. [14], as discussed before.
By means of software MATLAB 7.0, we can get some figures to illustrate the effectiveness of
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Figure 2: When b = 0.1253, periodic solutions occur from Y0.
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Figure 3: When b = 1.3, the positive equilibrium point Y0 is unstable.

our results. bB0 = 0.2222, b∗ = 0.1667,A(b∗) = 0.4706, ln = 2.9155n, and (2.27) is held. When n =
2, l = 3.1162, (ln, ln+1] = (2.9155, 5.8302], l ∈ (ln, ln+1]. We can get B = (0.1253, 0.1944, 0.2222).
The only positive equilibrium point of (4.1) is Y0 = (4b/(1−4b), b(0.0588−u0)(1+u0)/0.0588).
When b = 0.1253, we can compute

Re c1(0.1253) = 0.2856 > 0, μ2 = −0.3423 < 0, T2 = 1.2346 > 0. (4.2)

The positive equilibrium point of (4.1) is unstable and the Hopf bifurcation is supercritical.
The positive equilibrium point Y0 of system (4.1) is locally asymptotically stable when b = 0.1
as is illustrated by computer simulations in Figure 1. And periodic solutions occur from Y0

when b = 0.1253 as is illustrated by computer simulations in Figure 2. When b = 1.3, we
can easily show that the positive equilibrium point Y0 is unstable as is illustrated in Figure 3.
From the above results, we can conclude that the stability properties of the system could
switch with parameter b.
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We show that two recent definitions of discrete nabla fractional sum operators are related.
Obtaining such a relation between two operators allows one to prove basic properties of the
one operator by using the known properties of the other. We illustrate this idea with proving
power rule and commutative property of discrete fractional sum operators. We also introduce and
prove summation by parts formulas for the right and left fractional sum and difference operators,
where we employ the Riemann-Liouville definition of the fractional difference.We formalize initial
value problems for nonlinear fractional difference equations as an application of our findings. An
alternative definition for the nabla right fractional difference operator is also introduced.

1. Introduction

The following definitions of the backward (nabla) discrete fractional sum operators were
given in [1, 2], respectively. For any given positive real number α, we have

∇−α
a f(t) =

1
Γ(α)

t∑

s=a+1

(
t − ρ(s))α−1f(s), (1.1)

where t ∈ {a + 1, a + 2, . . .}, and

�−α
a f(t) =

1
Γ(α)

t∑

s=a

(
t − ρ(s))α−1f(s), (1.2)

where t ∈ {a, a + 1, a + 2, . . .}.
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One significant difference between these two operators is that the sum in (1.1) starts at
a + 1 and the sum in (1.2) starts at a. In this paper we aim to answer the following question:

Do these two definitions lead the development of the theory of the nabla fractional
difference equations in two directions?

In order to answer this question, we first obtain a relation between the operators in
(1.1) and (1.2). Then we illustrate how such a relation helps one to prove basic properties of
the one operator if similar properties of the other are already known.

In recent years, discrete fractional calculus gains a great deal of interest by several
mathematicians. First Miller and Ross [3] and then Gray and Zhang [1] introduced
discrete versions of the Riemann-Liouville left fractional integrals and derivatives, called the
fractional sums and differences with the delta and nabla operators, respectively. For recent
developments of the theory, we refer the reader to the papers [2, 4–19]. For further reading in
this area, we refer the reader to the books on fractional differential equations [20–23].

The paper is organized as follows. In Section 2, we summarize some of basic notations
and definitions in discrete nabla calculus. We employ the Riemann-Liouville definition
of the fractional difference. In Section 3, we obtain two relations between the operators
∇−α
a and �−α

a . So by the use of these relations we prove some properties for ∇−α
a -operator.

Section 4 is devoted to summation by parts formulas. In Section 5, we formalize initial value
problems and obtain corresponding summation equation with∇−α

a -operator. This section can
be considered as an application of the results in Section 3. Finally, in Section 6, a definition of
the nabla right fractional difference resembling the nabla right fractional sum is formulated.
This definition can be used to prove continuity of the nabla right fractional differences with
respect to the order α.

2. Notations and Basic Definitions

Definition 2.1. (i) For a natural numberm, them rising (ascending) factorial of t is defined by

tm =
m−1∏

k=0

(t + k), t0 = 1. (2.1)

(ii) For any real number α, the rising function is defined by

tα =
Γ(t + α)
Γ(t)

, t ∈ R − {. . . ,−2,−1, 0}, 0α = 0. (2.2)

Throughout this paper, we will use the following notations.

(i) For real numbers a and b, we denote Na = {a, a + 1, . . .} and bN = {. . . , b − 1, b}.

(ii) For n ∈ N, we define

�Δnf(t) := (−1)nΔnf(t). (2.3)
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Definition 2.2. Let ρ(t) = t − 1 be the backward jump operator. Then

(i) the (nabla) left fractional sum of order α > 0 (starting from a) is defined by

∇−α
a f(t) =

1
Γ(α)

t∑

s=a+1

(
t − ρ(s))α−1f(s), t ∈ Na+1 (2.4)

(ii) the (nabla) right fractional sum of order α > 0 (ending at b) is defined by

b∇−αf(t) =
1

Γ(α)

b−1∑

s=t

(
s − ρ(t))α−1f(s) = 1

Γ(α)

b−1∑

s=t
(σ(s) − t)α−1f(s), t ∈b−1 N. (2.5)

We want to point out that the nabla left fractional sum operator has the following
characteristics.

(i) ∇−α
a maps functions defined on Na to functions defined on Na.

(ii) ∇−n
a f(t) satisfies the nth order discrete initial value problem

∇ny(t) = f(t), ∇iy(a) = 0, i = 0, 1, . . . , n − 1. (2.6)

(iii) The Cauchy function (t − ρ(s))n−1/Γ(n) satisfies ∇ny(t) = 0.

In the same manner, it is worth noting that the nabla right fractional sum operator has
the following characteristics.

(i) b∇−α maps functions defined on bN to functions defined on bN.

(ii) b∇−nf(t) satisfies the nth order discrete initial value problem

�Δny(t) = f(t), �Δiy(b) = 0, i = 0, 1, . . . , n − 1. (2.7)

(iii) The Cauchy function (s − ρ(t))n−1/Γ(n) satisfies �Δny(t) = 0.

Definition 2.3. (i) The (nabla) left fractional difference of order α > 0 is defined by

∇α
af(t) = ∇n∇−(n−α)

a f(t) =
∇n

Γ(n − α)
t∑

s=a+1

(
t − ρ(s))n−α−1f(s), t ∈ Na+1. (2.8)

(ii) The (nabla) right fractional difference of order α > 0 is defined by

b∇ α
f(t) = �Δn

b∇−(n−α)f(t) = �Δn

Γ(n − α)
b−1∑

s=t

(
s − ρ(t))n−α−1f(s), t ∈b−1 N. (2.9)

Here and throughout the paper n = [α] + 1, where [α] is the greatest integer less than
or equal α.



4 Abstract and Applied Analysis

Regarding the domains of the fractional difference operators we observe the following.

(i) The nabla left fractional difference ∇α
a maps functions defined on Na to functions

defined on Na+n (on Na if we think f = 0 before a).

(ii) The nabla right fractional difference b∇α maps functions defined on bN to functions
defined on b−nN (on bN if we think f = 0 after b).

3. A Relation between the Operators ∇−α
a and �−α

a

In this section we illustrate how two operators, ∇−α
a and �−α

a are related.

Lemma 3.1. The following holds:

(i) �−α
a+1f(t) = ∇−α

a f(t),

(ii) �−α
a f(t) = (1/Γ(α))(t − a + 1)α−1f(a) +∇−α

a f(t).

Proof. The proof of (i) follows immediately from the above definitions (1.1) and (1.2). For the
proof of (ii), we have

�−α
a f(t) =

1
Γ(α)

t∑

s=a

(
t − ρ(s))α−1f(s)

=
1

Γ(α)
(t − a + 1)α−1f(a) +

1
Γ(α)

t∑

s=a+1

(
t − ρ(s))α−1f(s)

=
1

Γ(α)
(t − a + 1)α−1f(a) +∇−α

a f(t).

(3.1)

Next three lemmas show that the above relations on the operators (1.1) and (1.2) help
us to prove some identities and properties for the operator∇−α

a by the use of known identities
for the operator �−α

a .

Lemma 3.2. The following holds:

∇−α
a ∇f(t) = ∇∇−α

a f(t) −
(t − a)α−1

Γ(α)
f(a). (3.2)

Proof. It follows from Lemma 3.1 and Theorem 2.1 in [13]

∇−α
a ∇f(t) = �−α

a+1∇f(t) = ∇�−α
a f(t) −

(t − a + 1)α−1

Γ(α)
f(a)

= ∇
{

1
Γ(α)

(t − a + 1)α−1f(a) +∇−α
a f(t)

}
− (t − a + 1)α−1

Γ(α)
f(a)
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=
(α − 1)
Γ(α)

(t − a + 1)α−2f(a) +∇∇−α
a f(t) −

(t − a + 1)α−1

Γ(α)
f(a)

= ∇∇−α
a f(t) −

(t − a)α−1
Γ(α)

f(a).

(3.3)

Lemma 3.3. Let α > 0 and β > −1. Then for t ∈ Na, the following equality holds

∇−α
a (t − a)μ =

Γ
(
μ + 1

)

Γ
(
μ + α + 1

) (t − a)α+μ. (3.4)

Proof. It follows from Theorem 2.1 in [13]

∇−α
a (t − a)μ = �−α

a+1(t − a)μ =
Γ
(
μ + 1

)

Γ
(
μ + α + 1

) (t − a)α+μ. (3.5)

Lemma 3.4. Let f be a real-valued function defined on Na, and let α, β > 0. Then

∇−α
a ∇−β

a f(t) = ∇−(α+β)
a f(t) = ∇−β

a ∇−α
a f(t). (3.6)

Proof. It follows from Lemma 3.1 and Theorem 2.1 in [2]

∇−α
a ∇−β

a f(t) = �−α
a+1�

−β
a+1f(t) = �−(α+β)

a+1 f(t) = ∇−(α+β)
a f(t). (3.7)

Remark 3.5. Let α > 0 and n = [α] + 1. Then, by Lemma 3.2 we have

∇∇α
af(t) = ∇∇n

(
∇−(n−α)
a f(t)

)
= ∇n

(
∇∇−(n−α)

a f(t)
)

(3.8)

or

∇∇α
af(t) = ∇n

[

∇−(n−α)
a ∇f(t) + (t − a)n−α−1

Γ(n − α) f(a)

]

. (3.9)

Then, using the identity

∇n (t − a)n−α−1
Γ(n − α) =

(t − a)−α−1
Γ(−α)

(3.10)

we verified that (3.2) is valid for any real α.

By using Lemma 3.1, Remark 3.5, and the identity ∇(t − a)α−1 = (α − 1)(t − a)α−2, we
arrive inductively at the following generalization.
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Theorem 3.6. For any real number α and any positive integer p, the following equality holds:

∇−α
a+p−1∇pf(t) = ∇p∇−α

a+p−1f(t) −
p−1∑

k=0

(
t − (

a + p − 1
))α−p+k

Γ
(
α + k − p + 1

) ∇kf
(
a + p − 1

)
, (3.11)

where f is defined on Na.

Lemma 3.7. For any α > 0, the following equality holds:

b∇−α
� Δf(t) =� Δ b∇−αf(t) − (b − t)α−1

Γ(α)
f(b). (3.12)

Proof. By using of the following summation by parts formula

Δs

[
(
ρ(s) − ρ(t))α−1f(s)

]

= (α − 1)
(
s − ρ(t))α−2f(s) + (

s − ρ(t))α−1Δf(s)
(3.13)

we have

b∇−α
� Δf(t) = − 1

Γ(α)

b−1∑

s=t

(
s − ρ(t))α−1Δf(s)

=
1

Γ(α)

[

−
b−1∑

s=t
Δs

(
(
ρ(s) − ρ(t))α−1f(s)

)
+ (α − 1)

b−1∑

s=t

(
s − ρ(t))α−2f(s)

]

=
1

Γ(α − 1)

b−1∑

s=t

(
s − ρ(t))α−2f(s) − (b − t)α−1

Γ(α)
f(b).

(3.14)

On the other hand,

�Δ b∇−αf(t)

= − 1
Γ(α)

b−1∑

s=t
Δt

(
s − ρ(t))α−1f(s) = 1

Γ(α − 1)

b−1∑

s=t

(
s − ρ(t))α−2f(s),

(3.15)

where the identity

Δt

(
s − ρ(t))α−1 = −(α − 1)

(
s − ρ(t))α−2 (3.16)

and the convention that (0)α−1 = 0 are used.
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Remark 3.8. Let α > 0 and n = [α] + 1. Then, by the help of Lemma 3.7 we have

�Δ b∇αf(t) = �Δ�Δn
(
b∇−(n−α)f(t)

)

= �Δn
(
�Δ b∇−(n−α)f(t)

) (3.17)

or

�Δ b∇αf(t) = �Δn

[

b∇−(n−α)
� Δf(t) +

(b − t)n−α−1
Γ(n − α) f(b)

]

. (3.18)

Then, using the identity

�Δn (b − t)n−α−1
Γ(n − α) =

(b − t)−α−1
Γ(−α)

(3.19)

we verified that (3.12) is valid for any real α.

By using Lemma 3.7, Remark 3.8, and the identity Δ(b − t)α−1 = −(α − 1)(b − t)α−2, we
arrive inductively at the following generalization.

Theorem 3.9. For any real number α and any positive integer p, the following equality holds:

b−p+1∇−α
� Δpf(t) =� Δp

b−p+1∇−αf(t) −
p−1∑

k=0

(
b − p + 1 − t)α−p+k
Γ
(
α + k − p + 1

)
�
Δkf

(
b − p + 1

)
, (3.20)

where f is defined on bN.

We finish this section by stating the commutative property for the right fractional sum
operators without giving its proof.

Lemma 3.10. Let f be a real valued function defined on bN, and let α, β > 0. Then

b∇−α
[
b∇−βf(t)

]
=b ∇−(α+β)f(t) = b∇−β[

b∇−αf(t)
]
. (3.21)

4. Summation by Parts Formulas for Fractional Sums and Differences

We first state summation by parts formula for nabla fractional sum operators.

Theorem 4.1. For α > 0, a, b ∈ R, f defined on Na and g defined on bN, the following equality holds

b−1∑

s=a+1

g(s)∇−α
a f(s) =

b−1∑

s=a+1

f(s)b∇−αg(s). (4.1)
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Proof. By the definition of the nabla left fractional sum we have

b−1∑

s=a+1

g(s)∇−α
a f(s) =

1
Γ(α)

b−1∑

s=a+1

g(s)
s∑

r=a+1

(
s − ρ(r))α−1f(r). (4.2)

If we interchange the order of summation we reach (4.1).

By using Theorem 3.6, Lemma 3.4, and ∇−(n−α)
a f(a) = 0, we prove the following result.

Theorem 4.2. For α > 0, and f defined in a suitable domain Na, the following are valid

∇α
a∇−α

a f(t) = f(t), (4.3)

∇−α
a ∇α

af(t) = f(t), when α /∈ N, (4.4)

∇−α
a ∇α

af(t) = f(t) −
n−1∑

k=0

(t − a)k
k!

∇kf(a), when α = n ∈ N. (4.5)

We recall that D−αDαf(t) = f(t), where D−α is the Riemann-Liouville fractional
integral, is valid for sufficiently smooth functions such as continuous functions. As a result
of this it is possible to obtain integration by parts formula for a certain class of functions (see
[23] page 76, and for more details see [22]). Since discrete functions are continuous we see
that the term ∇−(1−α)

a f(t)|t=a, for 0 < α < 1 disappears in (4.4), with the application of the
convention that

∑a
s=a+1 f(s) = 0.

By using Theorem 3.9, Lemma 3.10, and b∇−(n−α)f(b) = 0, we obtain the following.

Theorem 4.3. For α > 0, and f defined in a suitable domain bN, we have

b∇−α
b∇−αf(t) = f(t), (4.6)

b∇−α
b ∇αf(t) = f(t), when α /∈ N, (4.7)

b∇−α
b∇αf(t) = f(t) −

n−1∑

k=0

(b − t)k
k! �

Δkf(b), when α = n ∈ N. (4.8)

Theorem 4.4. Let α > 0 be noninteger. If f is defined on bN and g is defined onNa, then

b−1∑

s=a+1

f(s)∇α
ag(s) =

b−1∑

s=a+1

g(s)b∇αf(s). (4.9)

Proof. Equation (4.7) implies that

b−1∑

s=a+1

f(s)∇α
ag(s) =

b−1∑

s=a+1b

∇−α(
b∇αf(s)

)∇α
ag(s). (4.10)
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And by Theorem 4.1 we have

b−1∑

s=a+1

f(s)∇α
ag(s) =

b−1∑

s=a+1
b∇αf(s)∇−α

a ∇α
ag(s). (4.11)

Then the result follows by (4.4).

5. Initial Value Problems

Let us consider the following initial value problem for a nonlinear fractional difference equa-
tion

∇α
a−1y(t) = f

(
t, y(t)

)
for t = a + 1, a + 2, . . . , (5.1)

∇−(1−α)
a−1 y(t)|t=a = y(a) = c, (5.2)

where 0 < α < 1 and a is any real number.
Apply the operator ∇−α

a to each side of (5.1) to obtain

∇−α
a ∇α

a−1y(t) = ∇−α
a f

(
t, y(t)

)
. (5.3)

Then using the definition of the fractional difference and sum operators we obtain

∇−α
a

{
∇∇−(1−α)

a−1 y(t)
}
= ∇−α

a f
(
t, y(t)

)

∇−α
a

{

∇∇−(1−α)
a y(t) +∇

{
(t − a + 1)−α

Γ(1 − α) y(a)

}}

= ∇−α
a f

(
t, y(t)

)
,

(5.4)

∇−α
a ∇α

ay(t) +∇−α
a ∇

{
(t − a + 1)−α

Γ(1 − α) y(a)

}

= ∇−α
a f

(
t, y(t)

)
. (5.5)

It follows from Lemma 3.2 that

∇−α
a ∇

{
(t − a + 1)−α

Γ(1 − α) y(a)

}

= ∇∇−α
a

{
(t − a + 1)−α

Γ(1 − α) y(a)

}

− (t − a)α−1
Γ(α)

y(a). (5.6)

Note that

∇−α
a

{
(t − a + 1)−α

Γ(1 − α) y(a)

}

= ∇−α
a−1

(t − (a − 1))−α

Γ(1 − α) y(a) − (t − a + 1)α−1

Γ(1 − α) y(a). (5.7)
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Hence we obtain

∇−α
a ∇

{
(t − a + 1)−α

Γ(1 − α) y(a)

}

= ∇
{

∇−α
a−1

(t − (a − 1))−α

Γ(1 − α) y(a) − (t − a + 1)α−1

Γ(1 − α) y(a)

}

− (t − a)α−1
Γ(α)

y(a)

= y(a)∇
{
Γ(1 − α)(t − (a − 1))0

}
− (α − 1)y(a)

(t − a + 1)α−2

Γ(α)
− (t − a)α−1

Γ(α)
y(a)

= − (t − a + 1)α−1

Γ(α)
y(a),

(5.8)

which follows from the power rule in Lemma 3.3.
Let us put this expression back in (5.5) and use (4.4), we have

y(t) =
(t − a + 1)α−1

Γ(α)
y(a) +∇−α

a f
(
t, y(t)

)
. (5.9)

Thus, we have proved the following lemma.

Lemma 5.1. y is a solution of the initial value problem, (5.1), (5.2), if, and only if, y has the represen-
tation (5.9).

Remark 5.2. A similar result has been obtained in the paper [13] with the operator �α
a. And

the initial value problem has been defined in the following form

�α
ay(t) = f

(
t, y(t)

)
for t = a + 1, a + 2, . . . , (5.10)

�−(1−α)
a y(t)|t=a = y(a) = c, (5.11)

where 0 < α ≤ 1 and a is any real number. The subscript a of the term �α
ay(t) on the left hand

side of (5.10) indicates directly that the solution has a domain starts at a. The nature of this
notation helps us to use the nabla transform easily as one can see in the papers [2, 12]. On the
other hand, the subscript a − 1 in (5.1) indicates that the solution has a domain starts at a.

6. An Alternative Definition of Nabla Fractional Differences

Recently, the authors in [18], by the help of a nabla Leibniz’s Rule, have rewritten the nabla
left fractional difference in a form similar to the definition of the nabla left fractional sum. In
this section, we do this for the nabla right fractional differences.

The following delta Leibniz’s Rule will be used:

Δt

b−1∑

s=t
g(s, t) =

b−1∑

s=t
Δtg(s, t) − g(t, t + 1). (6.1)
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Using the following identity

Δt

(
s − ρ(t))α = −α(s − ρ(t))α−1, (6.2)

and the definition of the nabla right fractional difference (ii) of Definition 2.3, for α > 0, α /∈ N

we have

b∇αf(t) = (−1)nΔn
b∇−(n−α)f(t)

=
(−1)nΔn

Γ(n − α)
b−1∑

s=t

(
s − ρ(t))n−α−1f(s)

=
(−1)nΔn−1

Γ(n − α) Δt

b−1∑

s=t

(
s − ρ(t))n−α−1f(s)

=
(−1)nΔn−1

Γ(n − α)

[

−(n − α − 1)
b−1∑

s=t

(
s − ρ(t))n−α−2f(s) − (t − t)n−α−1

]

=
−(−1)nΔn−1

Γ(n − α − 1)

b−1∑

s=t

(
s − ρ(t))n−α−2f(s).

(6.3)

By applying the Leibniz’s Rule (6.1), n − 1 number of times we get

b∇αf(t) =
1

Γ(−α)
b−1∑

s=t

(
s − ρ(t))−α−1f(s). (6.4)

In the above, it is to be insisted that α /∈ N is required due the fact that the term 1/Γ(−α) is
undefined for negative integers. Therefore we can proceed and unify the definitions of nabla
right fractional sums and differences similar to Definition 5.3 in [18]. Also, the alternative
formula (6.4) can be employed, similar to Theorem 5.4 in [18], to show that the nabla right
fractional difference b∇αf is continuous with respect to α ≥ 0.

7. Conclusions

In fractional calculus there are two approaches to obtain fractional derivatives. The first
approach is by iterating the integral and then defining a fractional order by using Cauchy
formula to obtain Riemann fractional integrals and derivatives. The second approach is by
iterating the derivative and then defining a fractional order by making use of the binomial
theorem to obtain Grünwald-Letnikov fractional derivatives. In this paper we followed the
discrete form of the first approach via the nabla difference operator. However, we noticed that
in the right fractional difference case we used both the nabla and delta difference operators.
This setting enables us to obtain reasonable summation by parts formulas for nabla fractional
sums and differences in Section 4 and to obtain an alternative definition for nabla right
fractional differences through the delta Leibniz’s Rule in Section 6.

While following the discrete form of the first approach, two types of fractional sums
and hence fractional differences appeared; one type by starting from a and the other type,
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which obeys the general theory of nabla time scale calculus, by starting from a + 1 in the left
case and ending at b − 1 in the right case. Section 3 discussed the relation between the two
types of operators, where certain properties of one operator are obtained by using the second
operator.

An initial value problem discussed in Section 5 is an important application exposing
the derived properties of the two types of operators discussed throughout the paper, where
the solution representation was obtained explicitly for order 0 < α < 1. Regarding this
example we remark the following. In fractional calculus, Initial value problems usually make
sense for functions not necessarily continuous at a (left case) so that the initial conditions are
given by means of a+. Since sequences are nice continuous functions then in Theorem 4.2,
which is the tool in solving our example, the identity (4.4) appears without any initial
condition. To create an initial condition in our example we shifted the fractional difference
operator so that it started at a − 1.
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This paper presents the application of homotopy perturbation and variational iteration methods
as numerical methods for Fredholm integrodifferential equation of fractional order with initial-
boundary conditions. The fractional derivatives are described in Caputo sense. Some illustrative
examples are presented.

1. Introduction

Fractional differential equations have attracted much attention, recently, see for instance
[1–4]. This is mostly due to the fact that fractional calculus provides an efficient and
excellent instrument for the description of many practical dynamical phenomena arising
in engineering and scientific disciplines such as, physics, chemistry, biology, economy,
viscoelasticity, electrochemistry, electromagnetic, control, porous media and many more, see
for example, [5, 6].

During the past decades, the topic of fractional calculus has attracted many
scientists and researchers due to its applications in many areas, see [4, 7–9]. Thus
several researchers have investigated existence results for solutions to fractional differential
equations, see [10, 11]. Further, many mathematical formulation of physical phenomena
lead to integrodifferential equations, for example, mostly these type of equations arise in
fluid dynamics, biological models and chemical kinetics, and continuum and statistical
mechanics, for more details see [12–16]. Integrodifferential equations are usually difficult to
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solve analytically, so it is required to obtain an efficient approximate solution. The homotopy
perturbation method and variational iteration method which are proposed by He [17–26] are
of the methods which have received much concern. These methods have been successfully
applied by many authors, such as the works in [19, 27, 28].

In this work, we study the Integrodifferential equations which are combination of
differential and Fredholm-Volterra equations that have the fractional order. In particular,
we applied the HPM and VIM for fractional Fredholm Integrodifferential equations with
constant coefficients

∞∑

k=0

PkD
α
∗y(t) = g(t) + λ

∫a

0
H(x, t)y(t)dt, a ≤ x, t ≤ b, (1.1)

under the initial-boundary conditions

Dα
∗y(a) = y(0), (1.2)

Dα
∗y(0) = y

′(a), (1.3)

where a is constant, and 1 < α < 2, and Dα
∗ is the fractional derivative in the Caputo sense.

For the geometrical applications and physical understanding of the fractional
Integrodifferential equations, see [14, 26]. Further, we also note that fractional integro-
differential equations were associated with a certain class of phase angles and suggested a
new way for understanding of Riemann’s conjecture, see [29].

In present paper, we apply the HPM and VIM to solve the linear and nonlinear
fractional Fredholm Integrodifferential equations of the form (1.1). The paper is organized
as follows. In Section 2, some basic definitions and properties of fractional calculus theory
are given. In Section 3, the basic idea of HPM exists. In Section 4, also is the basic idea of
VIM. In Sections 5 and 6, analysis of HPM and VIM exsists, respectively. some examples are
given in Section 7. Concluding remarks are listed in Section 8.

2. Preliminaries

In order to modeling the real world application the fractional differential equations are
considered by using the fractional derivatives. Thus, in this section, we give some basic
definitions and properties of fractional calculus theory which is used in this paper. There
are many different starting points for the discussion of classical fractional calculus, see
for example, [30]. One can begin with a generalization of repeated integration. If f(t) is
absolutely integrable on [0, b), as in [31] then

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
f(t1)dt1 =

1
(n + 1)!

∫ t

0
(t − t1)n−1f(t1)dt1 =

1
(n + 1)!

tn−1 ∗ f(t),
(2.1)
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where n = 1, 2, . . ., and 0 ≤ t ≤ b. On writing Γ(n) = (n − 1)!, an immediate generalization in
the form of the operation Iα defined for α > 0 is

(
Iαf
)
(t) =

1
Γ(α)

∫ t

0
(t − t1)α−1f(t1)dt1 =

1
Γ(α)

tα−1 ∗ f(t), 0 ≤ t < b, (2.2)

where Γ(α) is the Gamma function and tα−1 ∗ f(t) =
∫ t

0 f(t − t1)
α−1(t1)dt1 is called the

convolution product of tα−1 and f(t). Equation (2.2) is called the Riemann-Liouville fractional
integral of order α for the function f(t). Then, we have the following definitions.

Definition 2.1. A real function f(x), x > 0 is said to be in space Cμ, μ ∈ R if there exists a real
number p > μ, such that f(x) = xpf1(x), where f1(x) ∈ C(0,∞), and it is said to be in the
space Cn

μ if fn ∈ Rμ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function
f ∈ Cμ, μ ≥ −1 is defined as

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, t > 0. (2.3)

In particular, J0f(x) = f(x).
For β ≥ 0 and γ ≥ −1, some properties of the operator Jα:

(1) JαJβf(x) = Jα+βf(x),

(2) JαJβf(x) = JβJαf(x),

(3) Jαxγ = (Γ(γ + 1)/Γ(α + γ + 1))xα+γ .

Definition 2.3. The Caputo fractional derivative of f ∈ Cm
−1, m ∈ N is defined as

Dαf(x) =
1

Γ(m − α)
∫x

0
fm(t)dt, m − 1 < α ≤ m. (2.4)

Lemma 2.4. Ifm − 1 < α ≤ m, m ∈ N, f ∈ Cm
μ , μ > −1 then the following two properties hold

(1) Dα[Jαf(x)] = f(x),

(2) Jα[Dαf(x)] = f(x) −∑m−1
k=1 f

k(0)(xk/k!).

Now, if f(x) is expanded to the block pulse functions, then the Riemann-Liouville
fractional integral becomes

(
Iαf
)
(x) =

1
Γ(α)

xα−1 ∗ f(x) � ξT 1
Γ(α)

{
xα−1 ∗ φm(x)

}
. (2.5)

Thus, if xα−1 ∗φm(x) can be integrated, then expanded in block pulse functions, the Riemann-
Liouville fractional integral is solved via the block pulse functions. Thus, one notes on that
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Kronecker convolution product can be expanded in order to define the Riemann-Liouville
fractional integrals for matrices by using the Block Pulse operational matrix as follows:

1
Γ(α)

∫ t

0
(t − t1)α−1φm(t1)dt1 � Fαφm(t), (2.6)

where

Fα =
(
b

m

)α 1
Γ(α + 2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ξ2 ξ3 · · · ξm
0 1 ξ2 · · · ξm−1

0 0 1 · · · ξm−2

0 0 0
. . .

...
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.7)

see [32].

3. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the following nonlinear differential
equation:

A(u) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator; B is a boundary operator; f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

In general, the operator A can be divided into two parts L and N, where L is linear,
while N is nonlinear. Equation (3.1) therefor, can be rewritten as follows:

L(u) +N(u) − f(r) = 0. (3.3)

By the homotopy technique [33–35], we construct a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies

H
(
v, p
)
=
(
1 − p)[L(v) − L(u0)] + p

[
A(v) − f(r)] = 0, p ∈ [0, 1], r ∈ Ω (3.4)

or

H
(
v, p
)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)] = 0, (3.5)
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where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation of (3.1) which
satisfies the boundary conditions. From (3.2) and (3.3) we have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0
(3.6)

the changing in the process of p from zero to unity is just that of v(r, p) from u0(r) to u(r).
In topology, this called deformation, and L(v) − L(u0) and A(v) − f(r) are called homotopic.
Now, assume that the solution of (3.2) and (3.3) can be expressed as

v = v0 + pv1 + p2v2 + · · · . (3.7)

Setting p = 1 results in the approximate solution of (3.1).
Therefore,

u = limv
p→ 1

= v0 + v1 + v2 + · · · . (3.8)

4. The Variational Iteration Method

To illustrate the basic concepts of VIM, we consider the following differential equation

L(u) +N(u) = g(x), (4.1)

where L is a linear operator; N is nonlinear operator, and g(x) is an nonhomogeneous term.
According to VIM, one constructs a correction functional as follows:

yn+1 = yn +
∫x

0
λ
[
Lyn(s) −Nỹn(s)

]
ds, (4.2)

where λ is a general Lagrange multiplier, and ỹn denotes restricted variation that is δỹn = 0.

5. Analysis of Homotopy Perturbation Method

To illustrate the basic concepts of HPM for Fredholm Integrodifferential equation (1.1) with
boundary conditions (1.2) and (1.3). We use the view of He in [19, 20], where the following
homotopy was constructed for (1.1) as the following:

(
1 − p)

∞∑

k=0

PkD∗αy(x) + p

[ ∞∑

k=0

PkD∗αy(x) − g(t) − λ
∫b

a

H(x, t)y(x)dx

]

= 0 (5.1)

or

∞∑

k=0

PkD∗αy(x) = p

[

g(t) + λ
∫b

a

H(x, t)y(x)dx

]

, (5.2)
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where p ∈ [0, 1] is an embedding parameter. If p = 0, (5.2) becomes linear fractional differen-
tial equation

∞∑

k=0

PkD∗αy(x) = 0, (5.3)

and when p = 1, the (5.2) turn out to be the original equation. In view of basic assumption of
HPM, solution of (1.1) can be expressed as a power series in p

y(x) = y0(x) + p1y1(x) + p2y2(x) + · · · , (5.4)

when p = 1, we get the approximate solution of (5.4)

y(x) = y0(x) + y1(x) + y2(x) + · · · . (5.5)

The convergence of series (5.5) has been proved in [21]. Substitution (5.4) into (5.2), and
equating the terms with having identical power of p, we obtain the following series of
equations:

p0 :
∞∑

k=0

PkD
α
∗y0 = 0,

p1 :
∞∑

k=0

PkD
α
∗y1 = g(t) − λ

∫b

a

H(x, t)y0(x)dx,

p2 :
∞∑

k=0

PkD
α
∗y2 = −λ

∫b

a

H(x, t)y1(x)dx,

p3 :
∞∑

k=0

PkD
α
∗y3 = −λ

∫b

a

H(x, t)y2(x)dx,

...

(5.6)

with the initial-boundary conditions

Dα
∗y(a) = y(0), Dα

∗y(0) = y
′(a). (5.7)

The initial approximation can be chosen in the following manner.

y0 =
1∑

j=0

γj
xj

j!
= γ0 + γ1x, where γ0 = Dα

∗y(a)γ1 = Dα
∗y(0). (5.8)
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Note that the (5.6) can be solved by applying the operator Jα∗ and by some computation, we
approximate the series solution of HPM by the following N-term truncated series

χn(x) = y0(x) + y1(x) + · · · + yN−1(x), (5.9)

which is the approximate solution of (1.1)–(1.3).

6. Analysis of VIM

To solve the fractional Integrodifferential equation by using the variational iteration method,
with boundary conditions (1.2) and (1.3) we construct the following correction functional:

yk+1(x) = yk(x) + Jα
[

μ

( ∞∑

k=0

PkD
α
∗y(x) − g̃(x) − λ

∫a

0
H(x, s)ỹk(s)ds

)]

(6.1)

or

yk+1(x) = yk(x) +
1

Γ(α)

∫x

0
(x − s)α−1μ(s)

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk
(
p
)
dp

]

,

(6.2)

where μ is a general Lagrange multiplier, and g̃k(x) and ỹk(x) are considered as restricted
variation, that is, δg̃k(x) = 0 and δỹk(x) = 0.

Making the above correction functional stationary, the following condition can be
obtained

δyk+1(x) = δyk(x) +
∫x

0
(x − s)α−1μ(s)

[ ∞∑

k=0

PkδD
α
∗y(s) − δg̃k(s) − λ

∫a

0
H
(
x, p
)
δỹk
(
p
)
dp

]

.

(6.3)

It’s boundary condition can be obtained as follows:

1 − μ′(s) |x=s = 0, μ(s) |x=s = 1. (6.4)

The Lagrange multipliers can be identified as follows:

μ(s) =
1
2
(x − s). (6.5)
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We obtain the following iteration formula by substitution of (6.5) in (6.2):

yk+1(x)

= yk(x) +
1

2Γ(α − 1)

∫x

0
(x − s)α−2(s − x)

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk
(
p
)
dp

]

ds.

(6.6)

That is,

yk+1(x) = yk(x) − (α − 1)
2Γ(α)

∫x

0
(x − s)α−1

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk
(
p
)
dp

]

ds.

(6.7)

This yields the following iteration formula:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[ ∞∑

k=0

PkD
α
∗y(x) − gk(x) − λ

∫a

0
H(x, s)ỹk(s)ds

]

. (6.8)

The initial approximation y0 can be chosen by the following manner which satisfies initial-
boundary conditions (1.2)-(1.3)

y0 = γ0 + γ1x, where γ0 = Dα
∗y(a) γ1 = Dα

∗y(0). (6.9)

We can obtain the following first-order approximation by substitution of (6.9) in (6.8)

y1(x) = y0(x) − (α − 1)
2

Jα
[ ∞∑

k=0

PkD
α
∗y(x) − g0(x) − λ

∫a

0
H(x, s)ỹ0(s)ds

]

. (6.10)

Finally, by substituting the constant values of γ0 and γ1 in (6.10) we have the results as the
approximate solutions of (1.1)–(1.3), see the further details in [36–40].

7. Applications

In this section, we have applied homotopy perturbation method and variational iteration
method to fractional Fredholm Integrodifferential equations with known exact solution.

Example 7.1. Consider the following linear Fredholm Integrodifferential equation:

Dαy(x) =

(
3
2
+
e2x

2

)

+
∫x

0
ety(t)dt 0 ≤ x ≤ 1, 1 < α ≤ 2, (7.1)
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with initial boundary conditions

y(0) = 1, y′(1) = e (7.2)

the exact solution is y(x) = ex. Now we construct

Dαy(x) = p

((
3
2
+
e2x

2

)

+
∫x

0
ety(t)dt

)

. (7.3)

Substitution of (5.4) in (7.3) and then equating the terms with same powers of p, we get the
series

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) =
(

3
2
+

2
3
e2x
)
+
∫x

0
ety0(t)dt,

p2 : Dαy2(x) = −
∫x

0
ety1(t)dt.

...

(7.4)

Now applying the operator Jα to the equations (7.4) and using initial-boundary conditions
yields

y0(x) = 1, (7.5)

y1(x) = 1 +Ax + Jα
((

3
2
+
e2x

2

)

+
∫x

0
ety0dt

)

, (7.6)

y2(x) = Jα
(∫x

0
ety1dt

)
, (7.7)

yn(x) = Jα
(∫x

0
etyn−1dt

)
, n = 2, 3, 4, . . . . (7.8)

Then by solving (7.5)–(7.8), we obtain y1, y2, . . . as

y1(x) = 1 +Ax +
5xα

2Γ(α + 1)
+

2xα+1

Γ(α + 2)
+

3xα+2

2Γ(α + 3)
+

5xα+3

6Γ(α + 4)
, (7.9)

y2(x) =
xα+1

Γ(α + 2)
+ (A + 1)

xα+2

2Γ(α + 3)
+
(
A

3
+

1
2

)
xα+3

Γ(α + 4)

+
(
A

8
+

1
12

)
xα+4

Γ(α + 5)
+

Axα+5

15Γ(α + 6)
+

5x2α+1

2Γ(2α + 2)
+ · · · .

(7.10)
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Table 1: Values of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A −2.33209843875457 −1.906444021198994 −0.88898224618462 −0.098915873901025

Table 2: Value of A for different values of α using (7.14).

α = 1.25 α = 1.5 α = 1.75 α = 2
A 1.23429062479478 0.73267858113358 0.66218167845861 0.54744784230252

Now, we can form the 2 term approximation as follows:

φ2(x) = 1 +Ax +
5xα

2Γ(α + 1)
+

3xα+1

Γ(α + 2)
+ (A + 2)

xα+2

2Γ(α + 3)

+ (A + 4)
xα+3

3Γ(α + 4)
+
(
A

8
+

1
12

)
xα+4

Γ(α + 5)
+

Axα+5

15Γ(α + 6)
+

5x2α+1

2Γ(2α + 2)
+ · · · ,

(7.11)

where A can be determined by imposing initial-boundary conditions (7.2) on φ2. Table 1
shows the values of A for different values of α.

Now, we solve (7.1)-(7.2) by variational iteration method. According to variational
iteration method, the formula (6.8) for (7.1) can be expressed in the following form:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[

Dαy(x) −
(

3
2
+
e2x

2

)

−
∫x

0
ety(t)dt

]

. (7.12)

Then, in order to avoid the complex and difficult fractional integration, we can consider the
truncated Taylor expansions for exponential term in (7.6)–(7.8) for example, ex ∼ 1 + x +
x2/2 + x3/6 and further, suppose that an initial approximation has the following form which
satisfies the inial-boundary conditions

y0(x) = 1 +Ax. (7.13)

Now by iteration formula (7.12), the first approximation takes the following form:

y1(x) = y0(x) − (α − 1)
2

Jα
[

Dαy0(x) −
(

3
2
+
e2x

2

)

−
∫x

0
ety0(t)dt

]

= 1 +Ax +
(α − 1)

2
xα
[

5
Γ(α + 1)

+
2x

Γ(α + 2)
+
(A + 3)x2

2Γ(α + 3)

+
(5/2 +A)x3

3Γ(α + 4)
+
(A/2 + 1/6)x4

6Γ(α + 5)
− Ax5

30Γ(α + 6)

]

.

(7.14)

By imposing initial-boundary conditions (7.2) on y1, we can obtain the values of A for
different α which we show in Table 2.
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Example 7.2. Consider the following linear Fredholm Integrodifferential equation:

Dαy(x) =
(

1 − x

4

)
+
∫x

0
xty2(t)dt 0 ≤ x ≤ 1, 1 < α ≤ 2 (7.15)

with initial boundary conditions

y(0) = 0, y′(1) = 1. (7.16)

then the exact solution is y(x) = x. By applying the HPM, we have

Dαy(x) = p
((

1 − x

4

)
+
∫x

0
xty2(t)dt

)
. (7.17)

Substitution of (5.4) in (7.15) and then equating the terms with same powers of p, we get the
following series expressions:

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) =
(

1 − x

4

)
+
∫x

0
xty0

2(t)dt,

p2 : Dαy2(x) = 2
∫x

0
xty0(t)y1(t)dt,

p3 : Dαy3(x) =
∫x

0
xt
(
y0(t)y2(t) + y1

2(t)
)
dt,

p4 : Dαy4(x) =
∫x

0
xt
(

2y0(t)y4(t) + 2y1y3 + y2
2(t)
)
dt,

...

(7.18)

Applying the operator Jα to (7.18) and using initial-boundary conditions, then we get

y0(x) = 0,

y1(x) = Ax + Jα
((

1 − x

4

)
+
∫x

0
xty0

2(t)dt
)
,

y2(x) = 0,

y3(x) = Jα
(∫x

0
xt
(
y0(t)y2(t) + y1

2(t)
)
dt

)
,

y4(x) = Jα
(∫x

0
xt
(

2y0(t)y4(t) + 2y1y3 + y2
2(t)
)
dt

)
,

...

(7.19)
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Table 3: Value of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A 0.179304 0.153796 0.0673477 0.124989

Table 4: Value of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A 0.88967375 0.76492075 0.650263 0.5625

Thus, by solving (7.19), we obtain y1, y2, y3, . . .

y1(x) = Ax +
xα

Γ(α + 1)
− xα+1

4Γ(α + 2)
,

y2(x) = 0,

y3(x) =
A2xα+5

4Γ(α + 6)
+

2Ax2α+4

(α + 3)Γ(α + 1)Γ(2α + 5)
+

x3α+3

(2α + 2)Γ(α + 1)Γ(α + 1)Γ(3α + 4)
+ · · · .

(7.20)

Now, we can form the 3 term approximation

φ2(x) = Ax +
xα

Γ(α + 1)
− xα+1

4Γ(α + 2)
+

A2xα+5

4Γ(α + 6)
+

2Ax2α+4

(α + 3)Γ(α + 1)Γ(2α + 5)

+
x3α+3

(2α + 2)Γ(α + 1)Γ(α + 1)Γ(3α + 4)
+ · · · ,

(7.21)

where A can be determined by imposing initial-boundary conditions (7.16) on φ2. Thus, we
have Table 3.

Similarly, by variational iteration method we have the following form:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[
Dαy(x) −

(
1 − x

4

)
+
∫x

0
xty2(t)dt

]
, (7.22)

where we suppose that an initial approximation has the following form which satisfies
the initial-boundary conditions y0(x) = Ax. Now by using the iteration formula, the first
approximation takes the following form:

y1(x) = y0(x) − (α − 1)
2

Jα
[
Dαy0(x) −

(
1 − x

4

)
+
∫x

0
xty0

2(t)dt
]

= Ax +
(α − 1)

2
Jα
[

−xα
Γ(α + 1)

+
xα+1

4Γ(α + 2)

]

.

(7.23)

By imposing initial-boundary conditions, we can obtain the following Table 4.
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8. Conclusion

In this work, homotopy perturbation method (HPM) and variational iteration method (VIM)
have been applied to linear and nonlinear initial-boundary value problems for fractional
Fredholm Integrodifferential equations. Two examples are presented in order to illustrate the
accuracy of the present methods. Comparisons of HPM and VIM with exact solution have
been given in the Tables 1–4.
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This paper studies the information content of the chromosomes of twenty-three species. Several
statistics considering different number of bases for alphabet character encoding are derived. Based
on the resulting histograms, word delimiters and character relative frequencies are identified.
The knowledge of this data allows moving along each chromosome while evaluating the flow of
characters and words. The resulting flux of information is captured by means of Shannon entropy.
The results are explored in the perspective of power law relationships allowing a quantitative
evaluation of the DNA of the species.

1. Introduction

During the last years the genome sequencing project produced a large volume of data that is
presently available for computational processing [1–14]. Researchers have been tackling the
information content of the deoxyribonucleic acid (DNA), but interesting questions remain
still open [15–21].

This paper addresses the information flow along each DNA strand. For this purpose
several statistics are developed, and the relative frequencies of distinct types of symbol
associations are evaluated. The concepts of character, word, word delimiter, and phrase are
defined, and the information content of each chromosome message is quantified. Power
law (PL) relationships emerge in the information locus. PL distributions, often known as
heavy tail distributions, Pareto laws, Zipf laws, or others, have been largely reported in the
modeling of distinct real phenomena [22–31]. It was recognized [11, 32–34] that DNA has
an information structure that reveals long range behavior, somehow in the line of thought
of systems with dynamics described by the tools of Fractional Calculus (FC) [35–37]. It is
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Figure 1: Amplitude of the Fourier transform versus frequency ω for chromosome 1 of the human being
(solid line) and PL approximation (dashed line).

known the existence of a strong relationship between FC and PL; nevertheless, up to the
present state of knowledge, no formal demonstration supported that observation based on
empirical and experimental measurements. Therefore, it is not a surprise that both FC and PL
descriptions emerge when analyzing DNA with distinct mathematical tools. In the present
study PL descriptions are applied for condensing the charts characterizing the chromosomes
of twenty-three species.

Having these ideas in mind, this paper is organized as follows. Section 2 presents the
DNA sequence decoding concepts, the mathematical tools and formulates the algorithm that
computes the information for each chromosome and species. Section 3 analyzes the DNA
information dynamical content of 463 chromosomes corresponding to a set of twenty-three
species. Finally, Section 4 outlines the main conclusions.

2. Preliminary Notes on the DNA Information

In the DNA double helix there are four distinct nitrogenous bases, namely, thymine, cytosine,
adenine, and guanine, denoted by the symbols {T,C,A,G}. Each type of base on one strand
connects with only one type of base on the other strand, forming the base pairing A − T and
G − C. Besides the four symbols {T,C,A,G}, the available chromosome data includes a fifth
symbol “N” which is believed to have no practical meaning for the DNA decoding.

For processing the DNA information a possible technique is to convert the symbols
into a numerical value. In previous papers was adopted the direct symbol translation = 1+ i0,
C = −1+i0, T = 0+i, G = 0−i, N = 0+i0, where i =

√−1. We can move along the DNA strip, one
symbol (base) at a time. The resulting values form a “signal” x(t) where “t” can be interpreted
as a pseudotime. The signal can be treated by the Fourier transform F{x(t)} =

∫+∞
−∞ x(t)e−iωdt,

where ω represents the angular frequency.
Figure 1 shows one example with the amplitude of the Fourier transform for

chromosome 1 of the human being. The frequency interval 10−7 ≤ ω ≤ 100 is adopted and
a PL approximation is superimposed revealing a strong correlation.
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<begin> <end>

WordWord

Space

Word
Space

Message

AC TA CGTT GG GT TC AG AAA CC

Figure 2: Example of a message when considering n = 2, {TT, AA} ≡ “spaces”, {TC, TA, TG, CT, CC, CA,
CG, AT, AC, AG, GT, GC, GA, GG} ≡ “word characters.” Multiple consecutive spaces are considered as a
single space.

This technique has, however, one drawback which is the initial assignment of numeri-
cal values to the DNA symbols. Therefore, it is important to design an alternative method of
analysis avoiding that problem, but, on the other hand, capable of revealing fractional order
phenomena. Bearing this strategy in mind, in this paper is adopted an approach based on the
histograms of symbol alignment, information theory, and PL approximations.

This study focuses over twenty-three species yielding a space of 463 chromosomes.
Therefore, denoting by Nj the number of chromosomes of species j = 1, . . . , 23, we con-
sider the {Species,Tag,Nj}j given by {Mosquito (Anopheles gambiae), Ag, 5}1, {Honeybee,
(Apis mellifera), Am, 16}2, {Caenorhabditis briggsae, Cb, 6}3, {Caenorhabditis elegans, Ce, 6}4,
{Chimpanzee, Ch, 25}5, {Dog, Dg, 39}6, {Drosophila simulans, Ds, 6}7, {Drosophila yakuba, Dy,
10}8, {Horse, Eq, 32}9, {Chicken, Ga, 31}10, {Human, Ho, 24}11, {Medaka, Me, 24}12, {Mouse,
Mm, 21}13, {Opossum, Op, 9}14, {Orangutan, Or, 24}15, {Cow, Ox, 30}16, {Pig, Po, 19}17, {Rat,
Rn, 21}18, {Yeast (Saccharomyces cerevisiae), Sc, 16}19, {Stickleback, St, 21}20, {Zebra Finch, Tg,
32}21, {Tetraodon, Tn, 21}22 and {Zebrafish, Zf, 25}23.

The DNA information decoding is addressed in this paper, and we start by defining
the underlying concepts. The fundamental unit is the “symbol” that, in our case, consists in
one of the four possibilities {T,C,A,G}, while “N” is simply disregarded. Each “character” is
represented by an n-tuple association (n = 1, 2, . . .) of the 4 symbols, resulting in a total of 4n

possible symbols per character. For example, with n = 2 we get a maximum of 42 characters
represented by the 16 two-symbol sequences {TT, TC, TA, TG, CT, CC, CA, CG, AT, AC,
AA, AG, GT, GC, GA, GG}. The sequences are obtained when moving sequentially along
the DNA. The characters may have different significance and are divided into two classes,
namely, characters with relevant information, to be denoted in the sequel as “word char-
acters,” and delimiters denoted as “spaces.” Therefore, joining consecutive “word charac-
ters” yields a “word,” that ends in the presence of one or more consecutive “spaces” (i.e.,
multiple spaces are considered as a single space). When the complete association of con-
secutive words is fulfilled, we obtain a “message.”

Figure 2 depicts a simple example of a message with 21 symbols and 3 words. The
message {ACTACGTTGGGTTCAGAAACC} is processed according to the proposed scheme
for n = 2 and considering the 2 sequences {TT, AA} as spaces, and the 14 sequences {TC, TA,
TG, CT, CC, CA, CG, AT, AC, AG, GT, GC, GA, GG} as characters. Therefore, the resulting
words are {AC TA CG}, {GG GT TC AG} and {CC}.

We verify that we may have words with different lengths and that it is considered as a
single space any repetition of spaces. The message finishes when the end of the DNA strand
is attained, and, therefore, it is not considered the case of multiple messages for each chromo-
some.
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After defining the concepts for symbol, character (with the categories of word cha-
racter and space), and message, we need to establish the numerical value to be adopted by
n and the method for measuring the information. In what concerns n no a priori optimal
value is considered. Therefore, in the experiments is analyzed the influence when going from
n = 1 up to n = 12, or, correspondingly, when going from 41 up to 412 symbols per cha-
racter. This evaluation is performed for one chromosome. Based on this first assessment,
given the huge computational load required by high values of n, the set of twenty-three
species, totalizing 463 chromosomes, is analyzed for n = {1, . . . , 8}. In what concerns the infor-
mation measurement it is adopted the Shannon information [38–49] Ii = − ln(pi) where Ii rep-
resents the quantity of information of event i that has a probability pi. In this topic we can refer
to [50] calculating also the Shannon information for short DNA words of differing lengths,
where the authors find that genomes share universal statistical properties. It is also worth
mentioning that other entropies, such as the Rényi, Tsallis, and Ubriaco definitions [51, 52]
were tested. Nevertheless, experiments with these expressions and distinct numerical values
of the parameters did not reveal any significant conceptual difference. Therefore, for simpli-
city in the sequel it is adopted merely the Shannon definition.

In our case, for a n-tuple symbol encoding, the occurrence of the ith character within
the 4n set has probability pi

char,n leading to information − ln(pichar,n), and, therefore, the total
information content of a word Iword,n yields

Iword,n = −
m∑

i=1

ln
(
pi

char,n
)
, (2.1)

where m represents the total number of word characters including the first space. In fact, it
was numerically evaluated the effect of including, or not, the space information but, due to
its low importance, the final effect is negligible. Therefore, it is considered the inclusion of
one space as the information for delimiting the word, while further consecutive repetitions
of spaces are disregarded.

The message information is the sum of all word information:

Imes,n =
r∑

i=1

Ii
word,n, (2.2)

where r denotes the total number of words included in the message (i.e., the chromosome).
The information measurement requires the knowledge of pichar,n. While we can expect

an equilibrium of probabilities for n = 1, that may be not true for larger values of n. Therefore,
in the sequel it is adopted a numerical procedure that starts by reading the chromosome mes-
sage based on the n-tuple character setup leading to the construction of one histogram per
chromosome. In the set of 4n bins are chosen, by inspection, those that are more frequent (and
have smaller information content) for the role of spaces. In a second phase, the relative fre-
quencies, which are adopted as approximants to the probabilities, and the information values
(2.1) and (2.2) are calculated numerically while traveling along the DNA strand.

This strategy does not consider some a priori optimal value of n. Therefore, as
mentioned previously, several distinct values of n will be studied before establishing any con-
clusions.
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Figure 3: Histograms for Ho12 and n = {1, 2, 3, 4}.

3. Capturing the DNA Information

We start by considering Human chromosome 12 (Ho12) and n = {1, . . . , 12}. This chromo-
some is represented by a medium size file (130 Mbytes) and may be considered a good com-
promise between length and computational load.

Figure 3 depicts the histograms for n = {1, 2, 3, 4} where, for simplifying the visua-
lization, the characters are ordered by decreasing magnitude of relative frequency. For the
histograms construction two counting methods were envisaged: (i) counting with disjoint
set of n symbols and (ii) counting the sets while sliding one symbol at a time. At first sight
it seems that (i) is the most straightforward, but if we consider that we do not have reliable
information for starting and synchronizing the counting, then method (ii) is more robust and,
therefore, is adopted in the sequel.

Figure 4 shows the word information dynamics when travelling along the Ho12 strand
for n = {1, 2, 3, 4}. We observe the existence of quantum information levels that somehow
vanish when n increases. This is due to finite number of quantifying levels of information that
occur before a space terminates a word. The number of quantum levels increases with n while
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Figure 4: Word information versus length for the Ho12 and n = {1, 2, 3, 4}.

the length of each word increases. Besides this interesting effect, we also note a considerable
randomness and a uniform behavior along all length of the strand.

The total chromosome information, the number of words Nw, and the average word
information Iav versus n are depicted in Figures 5(a) and 5(b). We verify a maximum of the
total chromosome information for n = 3. For larger values of n the information decreases
slightly due to the effect of dropping out repeated consecutive spaces. Therefore, we can
say that large values of n seem to lead to a slightly better estimate of the total information
content, while the cases of n = 1 or n = 2 lead to an inferior measurement process. We also
observe that the number of words decreases with n but its average information varies in
the opposite way. Therefore, it is relevant to plot one variable against the other, with n as
parameter (Figure 5(c)). A PL trendline approximation demonstrates that the two quantities
are inversely proportional. In fact, we get numerically Iav = aNw

b with a = 2.07 108,
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Figure 5: Chromosome Ho12: (a) total information versus n, (b) average word information and number of
words versus n, (c) average word information versus number of words.

b = −1.02. For the rest of the chromosomes it was observed a similar type of behavior, but
with different numerical values for the parameters.

For other values of n the resulting histograms reveal identical characteristics, namely,
two characters with a very large relative frequency (depicted at the left part of the histograms
of Figure 3). Furthermore, experiments with other chromosomes lead to similar results. The
two characters are simply a succession of symbols A or T and the corresponding n-tuples
(i.e., A · · ·A and T · · · T) are adopted in the sequel as “spaces.”

Figure 6 shows the total information, that is, the information resulting from summing
the information of all the chromosomes of each species versus the corresponding number of
chromosomes, for character encoding with n = 8. We observe a weak correlation between
both variables.

Figure 7 shows the length of each chromosome Li
crom versus its information content

Ii
crom,n, i = 1, . . . , 463, estimated by the proposed method with n = 8. In this case we observe
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Figure 7: Chromosome length Li
crom versus its information content Iicrom,8, i = 1, . . . , 463, n = 8.

a strong correlation between both variables, meaning that the implementation of the DNA
code has a large similarity between all species. In fact, we can calculate a PL trendline over
the 463 chromosomes yielding the relationship Ii

crom,8 = 0.79(Li
crom)1.03.

Bearing these ideas in mind it was decided to explore the PL behavior, that is, the rela-
tion Iav = aNw

b, a > 0, b < 0, of the average word information Iav versus the number of words
Nw (with n as parameter) per chromosome. The extensive evaluation of the 463 chromo-
somes for n = {1, . . . , 8} leads to the locus (a, b) of the PL trendline depicted in Figure 8. The
point for chromosome DyYh is not included to allow a better visualization of the remaining
set of points. Moreover, the individual chromosome labels are not included to make the plot
more readable.

We verify that the map produces clear patterns, not only by grouping the
chromosomes of each species but also by the relative positioning of the different species.
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Nevertheless, the large number of points complicates the visualization. Therefore, it was
decided to represent each species by a single point having for coordinates the geometric and
arithmetic averages of parameters a and b, respectively. Figure 9 depicts the resulting locus
where is now easier to analyze the previously mentioned relations. The microchromosomes
Ga32 and Tg16, which have a very small base pair counting, were not included in the
calculations because they significantly disturb the results.

We verify the emergence of clusters that are in reasonable accordance with phylo-
genetics, going from the less “complex” species at left up to the most “complex” species at the
right. The cluster of mammals is at the right and includes the subcluster of primates {Ho, Ch,
Or}, with Ch closer to Hu than Or. In the rest of mammals it is interesting to see Po close to
the primates and the position of the marsupial Op relatively distant from the placental mam-
mals. In what concerns the rest of the points we notice Cb close to Ce and, in a middle posi-
tion, the clusters of birds {Ga, Tg}, fishes {Tn, St, Me, Zf}, and insects {Dy, Ds, Am, Ag}.

In conclusion, the proposed information measure leads to an assertive and quantitative
classification of chromosomes and species. Furthermore, it can be further explored for
decoding in more detail other aspects of the DNA code in association with the FC tools.

4. Conclusions

Chromosomes have a code based on a four-symbol alphabet, and it can be analyzed with
methods usually adopted in information processing. The information structure has resem-
blances to those occurring in systems characterized by fractional dynamics. Nevertheless,
schemes based on assigning numerical values to the DNA symbols may deform the informa-
tion, and alternative methods that avoid such problem need to be implemented. In this paper
it was proposed a scheme based on the Shannon information theory. Bearing these ideas in
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Figure 9: Locus of geometric average of a versus the arithmetic average of b for the twenty-three species.

mind, the chromosomes were processed in the perspective of a PL relationship between the
average information and the total number of words, for distinct values of character encoding.
For condensing the information an averaging of the PL parameters was also adopted. The
resulting locus revealed the emergence of clearly interpretable patterns in accordance with
current knowledge in phylogenetics. The proposed methodology opens new directions of
research for DNA information processing and supports the recent discoveries that fractional
phenomena are present in this biological structure.
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sequence, comparative analysis and haplotype structure of the domestic dog. Nature.
2005 Dec 8; 438 : 803-19), Drosophila simulans (http://genome.wustl.edu/genomes/view/
drosophila simulans white 501), Drosophila yakuba (http://genome.wustl.edu/genomes/
view/drosophila yakuba), Horse (http://www.broad.mit.edu/mammals/horse/), Chicken
(International Chicken Genome Sequencing Consortium Sequence and comparative analysis
of the chicken genome provide unique perspectives on vertebrate evolution. Nature.
2004 Dec 9; 432(7018): 695-716. PMID: 15592404), Human (Genome Reference Consortium,
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/), Medaka (http://dolphin
.lab.nig.ac.jp/medaka/), Mouse (Mouse Genome Sequencing Consortium. Initial seq-
uencing and comparative analysis of the mouse genome. Nature, 420, 520–562 (2002),
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http://www.hgsc.bcm.tmc.edu/projects/mouse/), Opossum (The Broad Institute, http://
www.broad.mit.edu/mammals/opossum/), Orangutan (Genome Sequencing Center at
WUSTL, http://genome.wustl.edu/genome.cgiGENOME=Pongo%20abelii), Cow (The
Baylor College of Medicine Human Genome Sequencing Center, http://www.hgsc.bcm
.tmc.edu/projects/bovine/), Pig (The Swine Genome Sequencing Consortium, http://pig-
genome.org/), Rat (The Baylor College of Medicine Human Genome Sequencing Center,
http://www.hgsc.bcm.tmc.edu/projects/rat/, Rat Genome Sequencing Project Consor-
tium. Genome sequence of the Brown Norway rat yields insights into mammalian evo-
lution. Nature 428(6982), 493–521 (2004)), Yeast (Saccahromyces Genome Database,
http://www.yeastgenome.org/), Stickleback (http://www.broadinstitute.org/scientific-
community/science/projects/mammals-models/vertebrates-invertebrates/stickleback/
stickleba), Zebra Finch (Genome Sequencing Center at Washington University St. Louis
School of Medicine), Tetraodon (Genoscope, http://www.genoscope.cns.fr/), and Zebrafish
(The Wellcome Trust Sanger Institute, http://www.sanger.ac.uk/Projects/D rerio/).
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This paper investigates the consensus problem for a class of fractional-order uncertain multiagent
systems with general linear node dynamics. Firstly, an observer-type consensus protocol is
proposed based on the relative observer states of neighboring agents. Secondly, based on property
of the Kronecker product and stability theory of fractional-order system, some sufficient conditions
are presented for robust asymptotical stability of the observer-based fractional-order control
systems. Thirdly, robust stabilizing controllers are derived by using linear matrix inequality
approach and matrix’s singular value decomposition. Our results are in the form of linear
matrix inequalities which can easily be solved by LMI toolbox in MATLAB. Finally, a numerical
simulation is performed to show the effectiveness of the theoretical results.

1. Introduction

The coordination problem of multiagent dynamical systems have attracted an increasing
attention in recent years due to its applications in sensor networks, robotic teams,
satellites formation [1–3]. Particularly, the consensus of multiagent systems, which has been
extensively studied in the past few years [4–8].

Note that for most of aforementioned results, the agent dynamics is assumed to be
first-order, second-order, or high-order integrators, which may be restrictive in many cases.
Recently, consensus of multiagent systems with general linear node dynamics has received
dramatic attention [9–11], the output feedback consensus problem is studies in [9] for
high-order linear system, the consensus is reached if there exists a stable compensator. In
[10], the consensus problem of multiagent systems with general form of linear dynamics is
investigated under a time-invariant communication topology, an observer-type consensus
protocol based on relative output measurements between neighboring agents has been
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proposed. Li et al. [11] investigate the consensus problems for multiagent systems with
continuous-time and discrete-time linear dynamics, distributed reduce-order consensus
protocols have been proposed based on the information of relative outputs of neighboring
agents. In the above-mentioned works on consensus of multiagent systems, the systems
are described by an integer-order dynamics, but many phenomena in nature cannot be
explained in the framework of integer-order dynamics, for example, the synchronized
motion of agents in fractional circumstances, such as molecule fluids and porous media, the
stress-strain relationship demonstrates non-integer-order dynamics rather than integer-order
dynamics [12]. In addition, fractional-order systems provide an excellent instrument for the
description of memory and hereditary properties of various materials and processes, such as
dielectric polarization, electrode-electrolyte polarization, and visco-elastic systems [13–16].
For the fractional-order dynamical systems, it is very difficult and inconvenient to construct
Lyapunov functions, because there exist substantial differences between fractional-order
differential systems and integer-order differential ones. As a way of efficiently solving
the robust stability and stabilization problem, the linear matrix inequality approach is
presented [17–20], which provides the designing method of state feedback controllers
for fractional-order systems. A recent study [21] investigates the distributed formation
control problem for multiple fractional-order systems under dynamic interaction, sufficient
conditions on the network topology are given to ensure the formation control. In [21], the
coordination algorithms for networked fractional-order systems are studied when the fixed
interaction graph is directed, the coordination algorithms for integer-order system can be
considered a special case of those for fractional-order systems. Only two of the above studies
considered fractional-order multiagent systems. In addition, in previous results, static
consensus protocols based on relative states of neighboring agents are used, which require
the absolute output measurement of each agent to be available, which is impractical in many
cases, the agent states in relatively large scale networks are not often completely available.
Thus, in many application, one often needs to estimate the agent states through available
measurements and then utilizes the estimated states to achieve certain design objectives such
as consensus of multiagent systems, synchronization of complex networks [22–25]. To date,
very little research effort has been done about the consensus problem for fractional-order
uncertain multiagent systems. The purpose of our study is to fill this gap.

Motivated by the above discussion, the consensus problem is investigated for a
class of fractional-order uncertain multiagent systems with general linear node dynamics.
An observer-type consensus protocol is proposed based on the relative observer states
of neighboring agents. Some sufficient conditions are presented for robust asymptotical
stability of the observer-based fractional-order control systems, and robust stabilizing
controllers are derived by using linear matrix inequality approach and matrix’s singular value
decomposition. Finally, an illustrative example is provided to demonstrate the effectiveness
of the proposed approach.

The main novelties of this study are summarized as follows: (1) a novel observer-
type consensus protocol is proposed based on the relative observer states of neighboring
agents. Different from [26], the observer state is used instead of the agent’s state in consensus
protocol, and the dynamic behavior of multiagent is described by fractional-order system; (2)
the uncertainty is considered in multiagent systems due to external disturbing factors such
as environment temperature, voltage fluctuation, and mutual interfere among components;
(3) the feedback gain matrices can be derived by matrix’s singular value decomposition, and
the consensus criteria are in the form of linear matrix inequalities which can be solved by
applying the LMI toolbox.
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The rest of this paper is organized as follows. In Section 2, preliminaries and problem
statement are given. In Section 3, the consensus conditions are derived by using linear matrix
inequality approach and matrix’s singular value decomposition. In Section 4, a simulation
example is provided to show the advantages of the obtained results. Conclusions are
presented in Section 5.

2. Preliminaries and Problem Statement

2.1. Graph Theory Notions

Let g = {v, ε,A} be a weighted directed graph of order N, with the set of nodes v =
{v1, v2, . . . , vN}, an edge set ε ⊆ v × v, and a weighted adjacency matrix A = (aij)N×N
with aij > 0 if (vj , vi) ∈ ε and aij = 0, otherwise. The neighbor set of node i is defined by
Ni = {j ∈ v | (vj , vi) ∈ ε}, and the in-degree and out-degree of node i are defined as

degin(i) =
N∑

j=1,j /= i

aij , degout(i) =
N∑

j=1,j /= i

aji. (2.1)

A diagraph is called balanced if degin(i) = degout(i) for all i ∈ v.
The Laplacian matrix L = (lij)N×N associated with the adjacency matrix A is defined

as

lij = −aij
(
i /= j

)
,

lii = −
N∑

j=1,j /= i

aij , (i = 1, 2, . . . ,N).
(2.2)

It is straightforward to verify that L has at least one zero eigenvalue with a
corresponding eigenvalue with a corresponding eigenvector 1, where 1 is an all-one column
vector with a compatible size.

2.2. Caputo Fractional Operator

With the development of fractional calculus, it has been found that many physical systems
show fractional dynamical behavior because of special materials and chemical properties,
which can be described more accurately using fractional-order calculus than traditional
integer-order calculus [27, 28]. Therefore, fractional-order calculus has become a hot research
issue in recent years. There are many definitions of fractional derivatives [29–31], such as
the Riemann-Liouville derivative and the Caputo derivative which are used in fractional
systems. In physical systems, Caputo fractional derivative is more appropriate for describing
the initial value problem of fractional differential equations, the Laplace transform of the
Caputo derivative allows utilization of initial values of classical integer-order derivatives
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with clear physical interpretations [17]. Therefore, the following Caputo fractional operator
is adopted in this paper for fractional derivatives of order α:

Dαx(t) =
1

Γ(m − α)
∫ t

t0

(t − τ)m−α−1x(m)(τ)dτ (m − 1 < α < m), (2.3)

where m ∈ Z+, Γ(·) is a gamma function given by Γ(z) =
∫∞

0 tz−1e−tdt.
In order to simulate the fractional-order multiagent systems, a predictor corrector

algorithm is introduced as follows.
The fractional-order differential equation is given by

Dαx(t) = f(t, x(t)) (0 ≤ t ≤ T, 0 < α < 1),

x(i)(0) = x(i)
0 (i = 0, 1, 2, . . . , n − 1)

(2.4)

which is equivalent to the following Volterra integral equation:

x(t) =
�a�−1∑

i=0

ti

i!
x
(i)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f(τ, x(τ))dτ. (2.5)

Set h = T/N (N ∈ Z+) and tn = nh(n = 1, 2, . . . ,N), where h is the step size, T is
simulation time, and N is the number of sample points, (2.4) can be discretized as follows:

xh(tn+1) =
�a�−1∑

i=0

tin+1

i!
x
(i)
0 +

hα

Γ(α + 2)
f
(
tn+1, x

p

h(tn+1)
)

+
hα

Γ(α + 2)

n∑

j=0

aj,n+1f
(
tj , xh

(
tj
))
,

(2.6)

where

x
p

h(tn+1) =
n−1∑

i=0

tin+1

i!
x
(i)
0 +

1
Γ(α)

n∑

j=0

bj,n+1f
(
tj , xh

(
tj
))
,

aj,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nα+1 − (n − α)(n + 1)α+1 (
j = 0

)

(
n − j + 2

)α+1 +
(
n − j)α+1 − 2

(
n − j + 1

)α+1 (
1 ≤ j ≤ n)

1
(
j = n + 1

)
,

bj,n+1 =
hα

α

((
n − j + 1

)α − (
n − j)α),

(2.7)

the estimation error of this approximation is e = maxj=0,1,...,N |x(tj) − xh(tj)| = O(hp), where
p = min(2, 1 + α).
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2.3. Problem Formulation

Consider multiagent systems of N identical linear dynamical systems, the dynamics of agent
i is described by

Dαxi(t) = Axi(t) + Bui(t)
yi(t) = Cxi(t) (i = 1, 2, . . . ,N),

(2.8)

where 0 < α < 1 is the fractional order, xi(t) = (xi1(t), xi2(t), . . . , xin(t)) ∈ R
n is position state

vector of ith agent, ui(t) = (ui1(t), ui2(t), . . . , uim(t)) ∈ R
m is the control input, and yi(t) =

(yi1(t), yi2(t), . . . , yip(t)) ∈ R
p is the measured output. A, B, and C are some real matrices with

compatible dimensions, and

A = A0 + ΔA(t), B = B0 + ΔB(t), (2.9)

where ΔA(t) and ΔB(t) represent the parameter uncertainties satisfying the following
conditions:

ΔA(t) = DAFA(t)EA, ΔB(t) = DBFB(t)EB, (2.10)

and DA, EA, DB, and EB are some constant matrices with appropriate dimensions, FA(t)
and FB(t) are the uncertainties satisfying FTA(t)FA(t) ≤ I, FTB(t)FB(t) ≤ I, in which I ∈ R

n×n

denotes the identity matrix.

Remark 2.1. In [9–11], observer-based protocols are proposed for consensus of linear
multiagent systems with reduced order, where the multiagent systems are described by
integer-order systems, uncertainty is not considered. But in (2.1), every agent is required with
the same dynamics and uncertainties, which have certain conservation. In order to reduce this
conservation, we can consider a more general multiagent systems:

Dαxi(t) = Aixi(t) + Biui(t)

yi(t) = Cixi(t) (i = 1, 2, . . . ,N),

Ai = Ai0 + ΔAi(t), Bi = Bi0 + ΔBi(t),

(2.11)

where ΔAi(t) and ΔBi(t) represent the parameter uncertainties of ith agent satisfying the
following conditions:

ΔAi(t) = DAiFAi(t)EAi, ΔBi(t) = DBiFBi(t)EBi, (2.12)

for the above model, we can get similar results, but the mathematical treatment becomes more
complicated, the important and meaningful research topics will be considered for our future
research.
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Based on the design idea of the observer, a Luenberger-type fractional-order linear
observer is constructed as follows:

Dαx̂i(t) = Ax̂i(t) + Bui(t) +K2
(
yi(t) − ŷi(t)

)
ŷi(t) = Cx̂i(t) (i = 1, 2, . . . ,N), (2.13)

where x̂i(t) and ŷi(t) are the state and the output of observer. K2 ∈ R
n×p is a feedback gain

matrix to be determined later.
Similar to [26], observer-type consensus protocol based on the relative observer states

between neighboring agents is given as

ui(t) = K1

∑

j∈Ni

aij
(
x̂i(t) − x̂j(t)

)
= −

∑

j∈Ni

lijK1x̂j(t) (i = 1, 2, . . . ,N), (2.14)

where K1 ∈ R
p×n is the feedback gain matrix to be designed.

Remark 2.2. It should be noticed that the consensus protocol (2.14) is based on the relative
states of the neighboring observers. To our best knowledge, it is novel for fractional-order
multiagent systems.

Substituting (2.14) into (2.8), and (2.13) respectively, and using Kronecker product,
(2.8) and (2.13) can be rewritten in the following compact form:

Dαx(t) = (IN ⊗A)x(t) − (L ⊗ BK1)x̂(t),

y(t) = (IN ⊗ C)x(t),
Dαx̂(t) = (IN ⊗A − L ⊗ BK1)x̂(t) + (IN ⊗K2C)(x(t) − x̂(t)),

ŷ(t) = (IN ⊗ C)x̂(t),

(2.15)

Let e(t) = x(t) − x̂(t), the closed-loop system is given by

Dαx̂(t) = (IN ⊗A − L ⊗ BK1)x̂(t) + (IN ⊗K2C)e(t)

Dαe(t) = (IN ⊗A − IN ⊗K2C)e(t)
(2.16)

which can be rewritten as

DαX(t) = AKX(t), (2.17)

where

X(t) =
[
x̂(t)
e(t)

]
, AK =

[
IN ⊗A − L ⊗ BK1 IN ⊗K2C

0 IN ⊗A − IN ⊗K2C

]
. (2.18)

In the following, an LMI-based design method is developed for the consensus of a class
of linear fractional-order uncertain multiagents. Before giving the main results, the following
definition and lemmas are introduced.
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Definition 2.3 (see [26]). The consensus problem of multiagent systems (2.8) is solved by
protocol (2.14) if the states of (2.8) satisfy

lim
t→∞

∥
∥xi(t) − xj(t)

∥
∥ = 0 (i = 1, 2, . . . ,N). (2.19)

Lemma 2.4 (see [32]). Let a ∈ R and A,B,C,D be matrices with appropriate dimensions. The
following properties can be proved by the definition of Kronecker product:

(1)a(A ⊗ B) = (aA) ⊗ B = A ⊗ (aB),

(2) (A ⊗ B)T = AT ⊗ BT ,
(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(4)A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

(2.20)

Lemma 2.5 (see [33]). Let A ∈ R
n×n be a real matrix, a necessary and sufficient condition for the

asymptotical stability of Dαx(t) = Ax(t) is

∣∣arg
(
spec(A)

)∣∣ >
απ

2
, (2.21)

where spec(A) is the spectrum of all eigenvalues of A, fractional order satisfying 0 < α < 2.

Lemma 2.6 (see [18]). Let A ∈ R
n×n and 0 < α < 1, then the fractional-order system Dαx(t) =

Ax(t) is asymptotically stable if and only if there exist two real symmetric positive definite matrices
Pk1 ∈ R

n×n(k = 1, 2) and two skew-symmetric matrices Pk2 ∈ R
n×n(k = 1, 2), such that

2∑

i=1

2∑

j=1

sym
{
θij ⊗

(
APij

)}
< 0,

[
P11 P12

−P12 P11

]
> 0

[
P21 P22

−P22 P21

]
> 0,

(2.22)

where

θ11 =
[

sin θ − cos θ
cos θ sin θ

]
, θ12 =

[
cos θ sin θ
− sin θ cos θ

]
,

θ21 =
[

sin θ cos θ
− cos θ sin θ

]
, θ22 =

[− cos θ sin θ
− sin θ − cos θ

]
,

(2.23)

and θ = απ/2.

Lemma 2.7 (see[34]). Let H and E be real matrices of appropriate dimensions with F(t) satisfying
FT (t)F(t) < I, and there exists positive scalar ε > 0, such that

HF(t)E + ETFT (t)HT < εHHT + ε−1ETE. (2.24)
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Recall that for any matrix Π ∈ R
m×n with full row rank, there exists a singular value

decomposition of Π as follows:

Π = U[S 0]V T , (2.25)

where S ∈ R
m×p is a diagonal matrix with positive elements in decreasing order, p = min{m,n},

U ∈ R
p×p and V ∈ R

n×n are unitary matrices. Then the following, lemma holds.

Lemma 2.8 (see [19]). Given matrix Π ∈ R
m×n with rank(Π) = p, assume that X ∈ R

n×n is a
symmetric matrix, there exists a matrix X ∈ R

m×n satisfying ΠX = XΠ if and only if X can be
expressed as

X = V
[
X11 0

0 X22

]
V T , (2.26)

where X11 ∈ R
m×m and X22 ∈ R

(n−m)×(n−m).

Remark 2.9. As we known, the existing results about stability of fractional-order deterministic
systems are based on Lemma 2.5, which cannot be applied directing to fractional-order
uncertain systems, because this method needs to compute all eigenvalues of system (2.17),
it is hard to yield all eigenvalues for fractional-order systems with uncertain parameters, the
paper can effectively avoid this difficulty by using Lemma 2.6.

3. Main Results

In this section, a sufficient condition is first derived for robust asymptotic stability of
uncertain fractional-order linear systems (2.17), based on the stability criterion, an LMI-
based approach is proposed for designing observer-type consensus protocol for the uncertain
fractional-order multiagent systems (2.8).

Theorem 3.1. For given two feedback gain matrix K1 ∈ R
p×n and K2 ∈ R

n×p, the uncertain
fractional-order multiagent systems (2.17) are asymptotically stable if there exist two positive matrices
Q1 ∈ R

n×n, Q2 ∈ R
n×n and four real positive scalars a1, a2, b1, and b2 such that the following linear

matrix inequality holds:

⎡

⎢⎢⎢⎢⎢
⎣

Π1 ∗ ∗ ∗ ∗
Π2 −a1 ⊗ I4Nn ∗ ∗ ∗
Π2 0 −a2 ⊗ I4Nn ∗ ∗
Π3 0 0 −b1 ⊗ I4Nn ∗
Π3 0 0 0 −b2 ⊗ I4Nn

⎤

⎥⎥⎥⎥⎥
⎦
< 0, (3.1)

where

Π1 =

⎡

⎢⎢
⎣

Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗

0 0 Π11 ∗
0 0 Π21 Π22

⎤

⎥⎥
⎦,
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Π2 =

⎡

⎢
⎢
⎣

IN ⊗ EAQ1 0 0 0
0 IN ⊗ EAQ2 0 0
0 0 IN ⊗ EAQ1 0
0 0 0 IN ⊗ EAQ2

⎤

⎥
⎥
⎦,

Π3 =

⎡

⎢
⎢
⎣

IN ⊗ EBK1Q1 0 0 0
0 0 0 0
0 0 IN ⊗ EBK1Q1 0
0 0 0 0

⎤

⎥
⎥
⎦,

Π11 = 2
(
IN ⊗A0Q1 + IN ⊗Q1A

T
0 − L ⊗ B0K1Q1 − LT ⊗Q1K

T
1B

T
0

)
sin θ

+ (a1 + a2)IN ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Π21 = 2
(
IN ⊗Q2C

TKT
2

)
sin θ,

Π22 = 2
(
IN ⊗A0Q2 + IN ⊗Q2A

T
0 − IN ⊗K2CQ2 − IN ⊗Q2C

TKT
2

)
sin θ + (a1 + a2) ⊗DAD

T
A.

(3.2)

Proof. It follows from Lemma 2.6 that the system (2.17) is asymptotically stable if there exist
two real symmetric positive definite matrices Pk1 ∈ R

2n×2n (k = 1, 2) and two skew-symmetric
matrices Pk2 ∈ R

2n×2n (k = 1, 2) such that the following linear matrix inequality holds:

Π =
2∑

i=1

2∑

j=1

sym
{
θij ⊗

(
AKPij

)}
< 0. (3.3)

Setting P11 = P21 = Q = diag{IN ⊗ Q1, IN ⊗ Q2} and P12 = P22 = 0, then (3.3) will
degenerate to the following inequality:

Π =
2∑

i=1

sym{θi1 ⊗ (AKQ)} < 0, (3.4)

then system (2.17) is asymptotically stable. By simple calculation, the following equality
holds:

AKQ =
[
IN ⊗A0Q1 − L ⊗ B0K1Q1 IN ⊗K2CQ2

0 IN ⊗A0Q2 − IN ⊗K2CQ2

]

+
[
IN ⊗DAFA(t)EAQ1 0

0 IN ⊗DAFA(t)EAQ2

]
+
[−L ⊗DBFB(t)EBK1Q1 0

0 0

]
.

(3.5)
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For the convenience of later analysis, we denote

Δ1 =
[
IN ⊗A0Q1 − L ⊗ B0K1Q1 IN ⊗K2CQ2

0 IN ⊗A0Q2 − IN ⊗K2CQ2

]
, (3.6)

Δ2 =
[
IN ⊗DAFA(t)EAQ1 0

0 IN ⊗DAFA(t)EAQ2

]
, (3.7)

Δ3 =
[−L ⊗DBFB(t)EBK1Q1 0

0 0

]
. (3.8)

We rewrite (3.5) as follows:

Π =
2∑

i=1

sym{θi1 ⊗ (AKQ)}

=
2∑

i=1

sym{θi1 ⊗Δ1} +
2∑

i=1

sym{θi1 ⊗Δ2} +
2∑

i=1

sym{θi1 ⊗Δ3}.
(3.9)

Based on Lemma 2.6, it follows from (3.5) that

2∑

i=1

sym{θi1 ⊗Δ1} = sym
{[

2 sin θ 0
0 2 sin θ

]
⊗Δ1

}

=

⎡

⎢⎢
⎣

Π11 −Φ1 ∗ ∗ ∗
Π21 Π22 −Φ2 ∗ ∗

0 0 Π11 −Φ1 ∗
0 0 Π21 Π22 −Φ2

⎤

⎥⎥
⎦,

(3.10)

where

Φ1 = (a1 + a2) ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Φ2 = (a1 + a2) ⊗DAD
T
A.

(3.11)

Note that θi1θTi1 = I2 (i = 1, 2), for any real positive scalars a1 and a2, it follows from
(3.9) and Lemma 2.7 that

2∑

i=1

sym{θi1 ⊗Δ2}

=
2∑

i=1

sym
{
θi1 ⊗

{
IN ⊗

[
DA 0
0 DA

][
FA(t) 0

0 FA(t)

][
EAQ1 0

0 EAQ2

]}}
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=
2∑

i=1

sym
{
θi1 ⊗

{[
IN ⊗DA 0

0 IN ⊗DA

][
IN ⊗ FA(t) 0

0 IN ⊗ FA(t)
][
IN ⊗ EAQ1 0

0 IN ⊗ EAQ2

]}}

=
2∑

i=1

sym
{(

θi1 ⊗
[
IN ⊗DA 0

0 IN ⊗DA

])(
I2 ⊗

[
IN ⊗ FA(t) 0

0 IN ⊗ FA(t)
])

×
(
I2 ⊗

[
IN ⊗ EAQ1 0

0 IN ⊗ EAQ2

])}

≤
2∑

i=1

{

ai

(
θi1 ⊗

[
IN ⊗DA 0

0 IN ⊗DA

])(
θi1 ⊗

[
IN ⊗DA 0

0 IN ⊗DA

])T

+a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])}

=
2∑

i=1

{
ai

(
I2 ⊗

[
IN ⊗DAD

T
A 0

0 IN ⊗DAD
T
A

])

+a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])}

.

(3.12)

By the same argument, for any real positive scalars b1 and b2, one has

2∑

i=1

sym{θi1 ⊗Δ3}

≤
2∑

i=1

{

bi

(
I2 ⊗

[
LLT ⊗DBD

T
B 0

0 0

])

+b−1
i

(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])T(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])}

.

(3.13)

Combined with (3.10)–(3.13), we can obtain

Π ≤ sym
{[

2 sin(θ) 0
0 2 sin(θ)

]
⊗Δ1

}
+

2∑

i=1

{
ai

(
I2 ⊗

[
IN ⊗DAD

T
A 0

0 IN ⊗DAD
T
A

])}

+
2∑

i=1

{
bi

(
I2 ⊗

[
LLT ⊗DBD

T
B 0

0 0

])}

+
2∑

i=1

a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])

+
2∑

i=1

b−1
i

(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])T(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])
,

(3.14)
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we can immediately obtain (3.14) from (3.1) by using the Schur complement. This completes
the proof.

Remark 3.2. If K1 and K2 are not given beforehand, owing to the existence of the nonlinear
terms such as K1Q1, K2CQ2, the matrix inequality (3.1) is not an LMI. However, applying
Lemma 2.8, it can be transformed into an LMI, and the main results are given in the following
theorem.

Theorem 3.3. Assume that singular value decomposition of output matrix C with full-row rank
is C = U[S 0]V T , then the closed-loop control system (2.17) under the observer-type consensus
protocol (2.14) is robust asymptotically stable, if there exist symmetric positive matrices Q1 ∈ R

n×n,
Q11 ∈ R

p×p,Q22 ∈ R
(n−p)×(n−p) and two matricesX1 ∈ R

p×n,X2 ∈ R
n×p, and four real positive scalars

a1, a2, b1, and b2 such that the following linear matrix inequality holds:

⎡

⎢⎢⎢⎢⎢
⎣

Π1 ∗ ∗ ∗ ∗
Π2 −a1 ⊗ I4Nn ∗ ∗ ∗
Π2 0 −a2 ⊗ I4Nn ∗ ∗
Π3 0 0 −b1 ⊗ I4Nn ∗
Π3 0 0 0 −b2 ⊗ I4Nn

⎤

⎥⎥⎥⎥⎥
⎦
< 0, (3.15)

where

Π1 =

⎡

⎢⎢⎢
⎣

Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗

0 0 Π11 ∗
0 0 Π21 Π22

⎤

⎥⎥⎥
⎦
,

Π3 =

⎡

⎢⎢
⎣

IN ⊗ EBX1 0 0 0
0 0 0 0
0 0 IN ⊗ EBX1 0
0 0 0 0

⎤

⎥⎥
⎦,

Π11 = 2
(
IN ⊗A0Q1 + IN ⊗Q1A

T
0 − L ⊗ B0X1 − LT ⊗XT

1B
T
0

)
sin θ

+ (a1 + a2)IN ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Π21 = 2
(
IN ⊗ CTXT

2

)
sin θ,

Π22 = 2
(
IN ⊗A0Q2 + IN ⊗Q2A

T
0 − IN ⊗X2C − IN ⊗ CTXT

2

)
sin θ + (a1 + a2) ⊗DAD

T
A,

Q2 = V
[
Q11 0

0 Q22

]
V T ,

(3.16)

then the feedback gain matrices are given by

K1 = X1Q
−1
1 , K2 = X2USQ

−1
11S

−1U−1. (3.17)
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Proof. Since C = U[S 0]V T and Q2 = V
[
Q11 0

0 Q22

]
V T , from Lemma 2.5, there exists Q2, such

that CQ2 = Q2C, where Q2 = USQ11S
−1U−1, it is easy derived that Q

−1
2 = USQ−1

11S
−1U−1.

Setting K1Q1 = X1 and K2Q2 = X2, and (3.1) is inequivalent to (3.15). Moreover, the feedback
gain matrices are obtained by

K1 = X1Q
−1
1 ,

K2 = X2Q
−1
2 = X2USQ

−1
11S

−1U−1.
(3.18)

Remark 3.4. Linear matrix inequality technique has attracted much more attention and has
wide applications because of its high performance in analysis and design in the control
systems, which in particular has a better advantage in dealing with uncertain systems. Noting
that Theorem 3.3 provides an LMI-based method of designing feed-back gain matrices, that
is, K1 and K2 can easily be obtained by LMI toolbox.

In particular, if the position state of multiagent can be obtained, then we can select the
following consensus protocol:

ui(t) = −
∑

j∈Ni

lijKxj(t) (i = 1, 2 . . . ,N), (3.19)

substituting (3.19) into (2.8), we have

Dαx(t) = (IN ⊗A − L ⊗ BK)x(t),

y(t) = (IN ⊗ C)x(t). (3.20)

Based on (3.20), the following consensus criteria can derived without proof.

Corollary 3.5. The fractional-order uncertain multiagent systems (3.20) can achieve consensus by
protocol (3.19) if there exist symmetric positive matrix Q ∈ R

n×n and a matrix X ∈ R
p×n, and four

real-positive scalars a1, a2, b1, and b2, such that

⎡

⎢⎢⎢⎢⎢
⎣

Π̂1 ∗ ∗ ∗ ∗
Π̂2 −a1 ⊗ I2Nn ∗ ∗ ∗
Π̂2 0 −a2 ⊗ I2Nn ∗ ∗
Π̂3 0 0 −b1 ⊗ I2Nn ∗
Π̂3 0 0 0 −b2 ⊗ I2Nn

⎤

⎥⎥⎥⎥⎥
⎦
< 0, (3.21)

where

Π̂1 =

[
Π̂11 ∗

0 Π̂11

]

,
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Π̂2 =
[
IN ⊗ EAQ 0

0 IN ⊗ EAQ
]
,

Π̂3 =
[
IN ⊗ EBX 0

0 IN ⊗ EAX
]
,

Π̂11 = 2
(
IN ⊗A0Q + IN ⊗QAT

0 − L ⊗ B0X − LT ⊗XTBT0

)
sin θ,

(3.22)

then the feedback gain matrix is given as follows:

K = XQ−1. (3.23)

4. A Numerical Example

In this section, a numerical example is given to verify the effectiveness of proposed observer-
type consensus protocol in the preceding section.

Example 4.1. Consider fractional-order uncertain multiagent systems consisting of four
agents, the interaction diagraph is shown in Figure 1 with the weights on the connections.
The related parameters are given as follows:

A0 =

⎡

⎣
−0.4 0.35 −0.65
−0.9 −2.7 1.1
−0.5 −1.35 −2.25

⎤

⎦, B0 =

⎡

⎣
1.45
0.75
0.75

⎤

⎦ C =

⎡

⎣
1.5
2
1

⎤

⎦

T

,

DA =

⎡

⎣
−0.1 0.05 0.1
−0.1 −0.3 0.1
−0.15 −0.08 −0.4

⎤

⎦, EA =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, DB =

⎡

⎣
−0.01 0.05 0.01
−0.15 −0.08 −0.04

0 0 1

⎤

⎦,

EB =

⎡

⎣
0.1

0.15
0.15

⎤

⎦, FA(t) = FB(t) =

⎡

⎣
sin(0.1πt) 0 0

0 cos(0.1πt) 0
0 0 sin(0.1πt)

⎤

⎦.

(4.1)

For given fractional-order α = 0.9, by using the Matlab LMI toolbox in Theorem 3.3,
the feasible solution (3.15) is given as follows:

Q1 =

⎡

⎣
6.8316 −2.7412 −0.5239
−2.7412 5.3247 0.6660
−0.5237 0.6660 5.2857

⎤

⎦, Q11 = 11.7744, Q22 =
[

8.4600 1.9039
1.9039 6.1330

]

X1 =
[
0.0701 −0.0483 −0.1461

]
, X2 =

[
0.8652 −2.9990 −2.7827

]T

(4.2)

the gain matrices are given as follows:

K1 =
[
0.0075 −0.0019 −0.0267

]
, K2 =

[
0.0735 −0.2547 −0.2363

]T
. (4.3)
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Figure 1: The topology structure of the agents.
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Figure 2: The position curves xi(t) (i = 1, 2, 3, 4) for fractional-order α = 0.9.

In the numerical simulation, the position state curves of four multiagents are shown
in Figure 2 with random initial state values, it can be seen that the consensus is achieved, and
the response of the error e(t) between the position state x(t) and its estimate x̂(t) are shown in
Figure 3, which converge to zero. Therefore, the numerical simulation perfectly supports our
theoretical results. To provided relatively complete information, the gain matrices are also
listed in Table 1 for different fractional orders.

Remark 4.2. If fractional order α = 1, multiagent systems (2.8) reduce to integer-order
multiagent systems as follows:

Dxi(t) = Axi(t) + Bui(t),
yi(t) = Cxi(t) (i = 1, 2, . . . ,N),

(4.4)

similar to the process of Section 2, we can obtain the following augment system:

DX(t) = AKX(t). (4.5)
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Figure 3: the error response e(t) between the position x(t) and its estimate x̂(t) for fractional-order α = 0.9.

Table 1: Controller gain matrices K1 and K2 for different fractional order α.

Fractional orders α Feedback gain matrices K1 and K2

0.4 K1 = [0.0031 − 0.0136 − 0.0953], K2 = [0.0137 − 0.2220 − 0.1835]T

0.5 K1 = [0.0173 − 0.0001 − 0.0160], K2 = [0.0728 − 0.2379 − 0.2279]T

0.6 K1 = [0.0127 − 0.0006 − 0.0255], K2 = [0.0686 − 0.2462 − 0.2304]T

0.7 K1 = [0.0097 − 0.0012 − 0.0281], K2 = [0.0691 − 0.2507 − 0.2326]T

0.8 K1 = [0.0082 − 0.0017 − 0.0275], K2 = [0.0716 − 0.2533 − 0.2348]T

0.9 K1 = [0.0075 − 0.0019 − 0.0267], K2 = [0.0735 − 0.2547 − 0.2363]T

0.99 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

0.999 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

0.9999 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

α → 1− K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

Construct the following Lyapunov function:

V (t) = XT (t)PX(t), (4.6)

where P = diag{IN ⊗ P1, IN ⊗ P2}.
We can easily obtain similar results with Theorem 3.1 and Theorem 3.3, by using LMI

toolbox in MATLAB, two unknown matrices can be obtained as follows:

K1 =
[−0.0098 −0.0118 0.0852

]
, K2 =

[
0.2423 −0.1882 −0.2746

]T
, (4.7)

the results are consistent with corresponding fractional-order case in Table 1, when α → 1−.
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5. Conclusions

The study investigates the consensus for a class of fractional-order uncertain multiagent
systems. The consensus criteria are derived by applying the observer-type consensus protocol
and stability theory of the fractional-order system, and these criteria are in the form of linear
matrix inequalities which can be readily solved by applying the LMI toolbox. A numerical
example is provided to demonstrate the validity of the presented consensus protocol.
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We consider the existence of positive solutions for a class of nonlinear integral boundary value
problems for fractional differential equations. By using some fixed point theorems, the existence
and multiplicity results of positive solutions are obtained. The results obtained in this paper
improve and generalize some well-known results.

1. Introduction

This paper is concerned with the existence of positive solutions to the following boundary
value problem (BVP) for fractional differential equation:

Dα
0+u(t) + f

(
t, u(t), u′(t), . . . , u(n−2)(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(n−2)(1) = β
[
u(n−2)

]
,

(1.1)

where β[v] =
∫1

0 v(t)dA(t) is a linear functional on C[0, 1] given by a Riemann-Stieltjes
integral with A representing a suitable function of bounded variation, Dα

0+ is the Riemann-
Liouville fractional derivative of order n− 1 < α ≤ n, n ≥ 2, f : [0, 1]×R

n−1 → R
+ satisfies the

Carathéodory type conditions, R = (−∞,+∞) and R
+ = [0,+∞).
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Fractional differential equations arise in the modeling and control of many real-
world systems and processes particularly in the fields of physics, chemistry, aerodynamics,
electrodynamics of complex media, and polymer rheology. Fractional differential equations
also serve as an excellent tool for the description of hereditary properties of various materials
and processes. Hence, intensive research has been carried out worldwide to study the
existence of solutions of nonlinear fractional differential equations (see [1–25]). For example,
by means of a mixed monotone method, Zhang [11] studied a unique positive solution for
the singular boundary value problem

Dα
0+u(t) + q(t)f

(
t, u(t), u′(t), . . . , u(n−2)(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.2)

where α ∈ (n − 1, n], n ≥ 2, Dα
0+ is the standard Riemann-Liouville derivative, f = g + h is

nonlinear, and g and h have different monotone properties.
Recently, nonlocal boundary value problems for fractional differential equations were

investigated intensively [13–23]. In [14], Bai concerned the existence and uniqueness of a
positive solution for the following nonlocal problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, βu
(
η
)
= u(1),

(1.3)

where 1 < α ≤ 2, 0 < βηα−1 < 1, 0 < η < 1, Dα
0+ is the standard Riemann-Liouville

differentiation. The function f is continuous on [0, 1] × R
+.

In [20], El-Shahed and Nieto investigated the existence of nontrivial solutions for the
following nonlinear m-point boundary value problem of fractional type:

RD
α
0+u(t) + f(t, u(t)) = 0, t ∈ [0, 1], α ∈ (n − 1, n], n ∈ N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑

i=1

aiu
(
ηi
)
,

(1.4)

where n ≥ 2, ai > 0 (i = 1, 2, . . . , m − 2), 0 < η1 < η2 < · · · < ηm−2 < 1, f ∈ C([0, 1] × R, R). Also
the authors considered the analogous problem using the Caputo fractional derivative:

CD
α
0+u(t) + f(t, u(t)) = 0, t ∈ [0, 1], α ∈ (n − 1, n], n ∈ N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑

i=1

aiu
(
ηi
)
.

(1.5)

Under certain growth conditions on the nonlinearity, several sufficient conditions for
the existence of nontrivial solution are obtained by using the Leray-Schauder nonlinear
alternative.
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Inspired by the work of the above papers, the aim of this paper is to establish the
existence and multiplicity of positive solutions of the BVP (1.1). We discuss the boundary
value problem with the Riemann-Stieltjes integral boundary conditions, that is, the BVP (1.1),
which includes fractional order two-point, three-point, multipoint, and nonlocal boundary
value problems as special cases. Moreover, the β[·] in (1.1) is a linear function on C[0, 1]
denoting the Riemann-Stieltjes integral; the A in the Riemann-Stieltjes integral is of bounded
variation, namely, dA can be a signed measure. By using the Krasnosel’skii fixed point
theorem, the Leray-Schauder nonlinear alternative and the Leggett-Williams fixed point
theorem, some existence and multiplicity results of positive solutions are obtained.

The rest of this paper is organized as follows. In Section 2, we present some lemmas
that are used to prove our main results. In Section 3, the existence and multiplicity of positive
solutions of the BVP (1.1) are established by using some fixed point theorems. In Section 4,
we give four examples to demonstrate the application of our theoretical results.

2. Basic Definitions and Preliminaries

We begin this section with some preliminaries of fractional calculus. Let α > 0 and n = [α]+1,
where [α] is the largest integer smaller than or equal to α. For a function f : (0,+∞) → R, we
define the fractional integral of order α of f as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.1)

provided the integral exists. The fractional derivative of order α > 0 of a continuous function
f is defined by

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1f(s)ds, (2.2)

provided the right-hand side is pointwise defined on (0,+∞). We recall the following
properties [26, 27] which are useful for the sequel. For α > 0, β > 0, we have

Iα0+I
β

0+f(t) = I
α+β
0+ f(t), Dα

0+I
α
0+f(t) = f(t). (2.3)

As an example, we can choose a function f such that f, Dα
0+f ∈ C(0,+∞) ∩ L1

loc(0,+∞).
For α > 0, the general solution of the fractional differential equation Dα

0+u(t) = 0 with
u ∈ C(0, 1) ∩ L(0, 1) is given by

u(t) = c1t
α−1 + c2t

α−2 · · · +cntα−n, (2.4)

where ci ∈ R (i = 1, 2, . . . , n). Hence for u ∈ C(0, 1) ∩ L(0, 1), we have

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 · · · +cntα−n. (2.5)
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Set

G0(t, s) =
1

Γ(α − n + 2)

⎧
⎨

⎩

[t(1 − s)]α−n+1 − (t − s)α−n+1, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−n+1, 0 ≤ t ≤ s ≤ 1.
(2.6)

Lemma 2.1 (see [11]). Let y ∈ Cr[0, 1](Cr[0, 1] = {y ∈ C[0, 1], try ∈ C[0, 1], 0 ≤ r < 1}). Then
the boundary value problem,

Dα−n+2
0+ v(t) = y(t), 0 < t < 1, n − 1 < α ≤ n, n ≥ 2,

v(0) = 0, v(1) = 0,
(2.7)

has a unique solution

v(t) =
∫1

0
G0(t, s)y(s)ds. (2.8)

Lemma 2.2 (see [11]). The function G0(t, s) defined by (2.6) satisfies the following properties:

(i) G0(t, s) ≥ 0, G0(t, s) ≤ G0(s, s) for all t, s ∈ [0, 1];

(ii) there exist a positive function ρ ∈ C(0, 1) and 0 < ξ < η < 1 such that

min
t∈[ξ,η]

G0(t, s) ≥ ρ(s)G0(s, s), s ∈ (0, 1), (2.9)

where

ρ(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
η(1 − s)]α−n+1 − (η − s)α−n+1

[s(1 − s)]α−n+1
, s ∈ (0, r],

(
ξ

s

)α−n+1

, s ∈ [r, 1).

(2.10)
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By (2.4), the unique solution of the problem

Dα−n+2
0+ v(t) = 0, 0 < t < 1, n − 1 < α ≤ n, n ≥ 2,

v(0) = 0, v(1) = β[v]
(2.11)

is γ(t) = tα−n+1, with β[v] replaced by 1. As in [21], the Green’s function for boundary value
problem (2.11) is given by

G(t, s) =
γ(t)

1 − β[γ]G(s) +G0(t, s), (2.12)

where G(s) :=
∫1

0 G0(t, s)dA(t).

Lemma 2.3. Let 0 ≤ β[γ] < 1 and G(s) ≥ 0 for s ∈ [0, 1], the Green function G(t, s) defined by
(2.12) has the following properties:

(i) G(t, s) ≥ 0, G(t, s) ≤ (1 + β[1]/(1 − β[γ]))G0(s, s) for all t, s ∈ [0, 1];

(ii) mint∈[ξ,η]G(t, s) ≥ mint∈[ξ,η]G0(t, s) ≥ ρ(s)G0(s, s), s ∈ (0, 1).

Proof. By Lemma 2.2, it is easy to prove this lemma, so we omit it.

Let X = C[0, 1]. It follows that (X, ‖ · ‖) is a Banach space, where ‖ · ‖ is defined by the
supernorm ‖x‖ = supt∈[0,1]|x(t)|. P = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}. Clearly P is a cone of X.
Now, in the following, we give the assumptions to be used throughout the rest of this paper.

(H1) A is a function of bounded variation, G(s) ≥ 0 for s ∈ [0, 1] and 0 ≤ β[γ] < 1.

(H2) f : [0, 1] × R
n−1 → R

+ satisfies the following conditions of Carathéodory type:

(i) f(·, x) is Lebesgue measurable for each fixed x ∈ R
n−1;

(ii) f(t, ·) is continuous for a.e. t ∈ [0, 1].

In order to overcome the difficulty due to the dependance of f on derivatives, we
consider the following modified problem:

Dα−n+2
0+ v(t) + f

(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)
= 0, 0 < t < 1,

v(0) = 0, v(1) = β[v],
(2.13)

where n − 1 < α ≤ n, n ≥ 2.
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Lemma 2.4. The nonlocal fractional order boundary value problem (1.1) has a positive solution if and
only if the nonlinear fractional integrodifferential equation (2.13) has a positive solution.

Proof. If u is a positive solution of the fractional order boundary value problem (1.1), let
v(t) = Dn−2

0+ u(t). Then from the boundary value conditions of (1.1) and the definition of the
Riemann-Liouville fractional integral and derivative, we have

v(t) = Dn−2
0+ u(t) = u(n−2)(t),

I1
0+v(t) = I

1
0+u

(n−2)(t) =
1

Γ(1)

∫ t

0
u(n−2)(s)ds = u(n−3)(t),

I2
0+v(t) = I

2
0+u

(n−2)(t) =
1

Γ(2)

∫ t

0
(t − s)u(n−2)(s)ds = u(n−4)(t),

...

In−2
0+ v(t) = In−2

0+ u(n−2)(t) =
1

Γ(n − 2)

∫ t

0
(t − s)n−3u(n−2)(s)ds = u(t),

(2.14)

Dα−n+2
0+ v(t) =

1
Γ(2n − α − 2)

(
d

dt

)n ∫ t

0
(t − s)2n−α−3u(n−2)(s)ds

=
1

Γ(2n − α − 3)

(
d

dt

)n ∫ t

0
(t − s)2n−α−4u(n−3)(s)ds

= · · ·

=
1

Γ(n − α)
(
d

dt

)n ∫ t

0
(t − s)n−α−1u(s)ds

= Dα
0+u(t),

(2.15)

which imply that v(0) = u(n−2)(0) = 0, v(1) = u(n−2)(1) = β[u(n−2)] = β[v]. Thus v(t) is a
positive solution of the nonlinear fractional integrodifferential equation (2.13).

On the other hand, if v is a positive solution of the nonlinear fractional integrodiffer-
ential equation (2.13), let u(t) = In−2

0+ v(t), then by (2.3) and the definition of the Riemann-
Liouville fractional derivative, we have

u′(t) = D1
0+u(t) = D

1
0+I

n−2
0+ v(t) = D1

0+I
1
0+I

n−3
0+ v(t) = In−3

0+ v(t),

u′′(t) = D2
0+u(t) = D

2
0+I

n−2
0+ v(t) = D2

0+I
2
0+I

n−4
0+ v(t) = In−4

0+ v(t),

...

u(n−3)(t) = Dn−3
0+ u(t) = Dn−3

0+ In−2
0+ v(t) = Dn−3

0+ In−3
0+ I1

0+v(t) = I
1
0+v(t),

u(n−2)(t) = Dn−2
0+ u(t) = Dn−2

0+ In−2
0+ v(t) = v(t),
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Dα
0+u(t) =

dn

dtn
In−α0+ u(t) =

dn

dtn
In−α0+ In−2

0+ v(t) =
dn

dtn
I2n−α−2

0+ v(t) = Dα−n+2
0+ v(t)

= −f
(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)

= −f
(
t, u(t), u′(t), . . . , u(n−3)(t), u(n−2)(t)

)
, 0 < t < 1,

(2.16)

which imply that u(0) = u′(0) = · · · = u(n−3)(0) = 0, u(n−2)(0) = v(0) = 0, u(n−2)(1) =
v(1) = β[v] = β[u(n−2)]. Moreover, it follows from the monotonicity and property of In−2

0+ that
In−2

0+ v(t) ∈ C([0, 1],R+). Consequently, u(t) = In−2
0+ v(t) is a positive solution of the fractional

order boundary value problem (1.1).

By Lemma 2.4, we will concentrate our study on (2.13). We here define an operator
T : P → P by

Tv(t) =
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds, t ∈ [0, 1]. (2.17)

Clearly, v is a fixed point of T in P , and so v is a positive solution of BVP (2.13).
In order to prove our main results, we need the following lemmas.

Lemma 2.5 (see [28]). Let X be a real Banach space,Ω be a bounded open subset of X, where θ ∈ Ω,
T : Ω → X is a completely continuous operator. Then, either there exist x ∈ ∂Ω, μ ∈ (0, 1) such that
μT(x) = x, or there exists a fixed point x∗ ∈ Ω.

Lemma 2.6 (see [29]). Let X be a real Banach space, P be a cone in X. Assume that Ω1 and Ω2 are
two bounded open sets of X with θ ∈ Ω1 and Ω1 ⊂ Ω2. Let T : P ∩ (Ω2 \Ω1) → P be a completely
continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

Lemma 2.7 (see [30, 31]). Let P be a cone in a real Banach space X, Pc = {x ∈ P : ‖x‖ < c},
ϕ be a nonnegative continuous concave functional on P such that ϕ(x) ≤ ‖x‖ for all x ∈ Pc, and
P(ϕ, b, d) = {x ∈ P : b ≤ ϕ(x), ‖x‖ ≤ d}. Suppose that T : Pc → Pc is completely continuous and
there exist positive constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P(ϕ, b, d) : ϕ(x) > b}/=φ and ϕ(Tx) > b for x ∈ P(ϕ, b, d),
(C2) ‖Tx‖ < a for x ∈ Pa,
(C3) ϕ(Tx) > b for x ∈ P(ϕ, b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, and x3 satisfying

‖x1‖ < a, b < ϕ(x2), a < ‖x3‖ with ϕ(x3) < b. (2.18)
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Remark 2.8. If d = c, then condition (C1) of Lemma 2.7 implies condition (C3) of Lemma 2.7.
For notational convenience, we introduce the following constants:

L1 =
∫η

ξ

ρ(s)G0(s, s)ds, L2 =

(

1 +
β[1]

1 − β[γ]
)∫1

0
G0(s, s)ds, (2.19)

and a nonnegative continuous concave functional ϕ on the cone P defined by

ϕ(v) = min
ξ≤t≤η

|v(t)|. (2.20)

3. Main Results

In this section, we present and prove our main results.

Theorem 3.1. Assume that (H1) and (H2) hold and there exist nonnegative functions
h1, h2, . . . , hn−1 ∈ L[0, 1] such that

∣∣f(t, x1, x2, . . . , xn−1) − f
(
t, y1, y2, . . . , yn−1

)∣∣ ≤
n−1∑

i=1

hi(t)
∣∣xi − yi

∣∣, (3.1)

for almost every t ∈ [0, 1] and all (x1, x2, . . . , xn−1 ), (y1, y2, . . . , yn−1 ) ∈ Rn−1.
If

0 <
∫1

0
G0(s, s)

n−1∑

i=1

hi(s)ds <

(

1 +
β[1]

1 − β[γ]
)−1

, (3.2)

then BVP (1.1) has a unique positive solution.

Proof. We will show that T is a contraction mapping. For any v1, v2 ∈ P and 1 ≤ i ≤ n − 2, by
the definition of fractional integral, we obtain

∣∣∣Ii0+v1(t) − Ii0+v2(t)
∣∣∣ =

∣∣∣∣∣
1

(i − 1)!

∫ t

0
(t − s)i−1(v1(s) − v2(s))ds

∣∣∣∣∣

≤ 1
(i − 1)!

∫ t

0
(t − s)i−1|v1(s) − v2(s)|ds

≤ 1
(i − 1)!

∫ t

0
(t − s)i−1 ds‖v1 − v2‖

=
1
i!
ti‖v1 − v2‖ ≤ ‖v1 − v2‖.

(3.3)



Abstract and Applied Analysis 9

So, for any v1, v2 ∈ P , by (3.3) and Lemma 2.3, we have

|Tv1(t) − Tv2(t)| =
∣∣
∣
∣
∣

∫1

0
G(t, s)

[
f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)

−f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)]
ds

∣
∣
∣
∣∣

≤
∫1

0
G(t, s)

∣
∣
∣f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)

−f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)∣∣
∣ds

≤
∫1

0

(

1 +
β[1]

1 − β[γ]
)

G0(s, s)
n−1∑

i=1

hi(s)
∣
∣∣In−1−i

0+ v1(s) − In−1−i
0+ v2(s)

∣
∣∣ds

≤
(

1 +
β[1]

1 − β[γ]
)∫1

0
G0(s, s)

n−1∑

i=1

hi(s)ds‖v1 − v2‖.

(3.4)

This implies that

‖Tv1 − Tv2‖ ≤ κ‖v1 − v2‖, (3.5)

where κ = (1 + β[1]/(1 − β[γ])) ∫1
0 G0(s, s)

∑n−1
i=1 hi(s)ds ∈ (0, 1). By the Banach contraction

mapping principle, we deduce that T has a unique fixed point v∗. Thus, by Lemma 2.4, u∗(t) =
In−2

0+ v∗(t) is a unique positive solution of BVP (1.1).

Lemma 3.2. Assume that (H1) and (H2) hold and the following conditions are satisfied.

(H3) There exist nonnegative real-valued functions q, p1, p2, . . . , pn−1 ∈ L[0, 1] such that

f(t, x1, x2, . . . , xn−1) ≤ q(t) +
n−1∑

i=1

pi(t)|xi|, (3.6)

for almost every t ∈ [0, 1] and all (x1, x2, . . . , xn−1) ∈ Rn−1.
Then T : P → P is a completely continuous operator.

Proof. For any v ∈ P , as G(t, s) ≥ 0 for all t, s ∈ [0, 1], we have Tv(t) ≥ 0, so T(P) ⊂ P . Let
D ⊂ P be any bounded set. Then there exists a constant L > 0 such that ‖v‖ ≤ L for any v ∈ D.
Moreover for anyv ∈ D, s ∈ [0, 1], v(s) ≤ ‖v‖ ≤ L. Proceeding as for (3.3), we obtain

∣∣∣In−1−i
0+ v(s)

∣∣∣ = In−1−i
0+ v(s) ≤ ‖v‖ ≤ L, i = 1, 2, . . . , n − 1. (3.7)
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Thus,

|Tv(t)| =
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤
∫1

0

(

1 +
β[1]

1 − β[γ]
)

G0(s, s)

[

q(s) +
n−1∑

i=1

pi(s)In−1−i
0+ v(s)

]

ds

≤
(

1 +
β[1]

1 − β[γ]
)∫1

0
G0(s, s)

[

q(s) +
n−1∑

i=1

pi(s)‖v‖
]

ds

≤
(

1 +
β[1]

1 − β[γ]
)

(L + 1)
∫1

0
G0(s, s)

[

q(s) +
n−1∑

i=1

pi(s)

]

ds

< +∞.

(3.8)

Therefore, T(D) is uniformly bounded.
Now we show that T(D) is equicontinuous on [0, 1]. Since G(t, s) is continuous on

[0, 1]×[0, 1], G(t, s) is uniformly continuous on [0, 1]×[0, 1]. Hence, for any ε > 0, there exists
a constant δ0 > 0 such that for any s ∈ [0, 1], t, t′ ∈ [0, 1], when |t − t′| < δ0, it holds

∣∣G(t, s) −G(t′, s)∣∣ <
[

1 + (L + 1)
∫1

0

(

q(s) +
n−1∑

i=1

pi(s)

)

ds

]−1

ε. (3.9)

Consequently, for any t, t′ ∈ [0, 1] and |t − t′| < δ0, we have

∣∣Tv(t) − Tv(t′)∣∣ ≤
∫1

0

∣∣G(t, s) −G(t′, s)∣∣f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤
∫1

0

∣∣G(t, s) −G(t′, s)∣∣
[

q(s) +
n−1∑

i=1

pi(s)‖v‖
]

ds

≤ (L + 1)
∫1

0

∣∣G(t, s) −G(t′, s)∣∣
[

q(s) +
n−1∑

i=1

pi(s)

]

ds

< ε.

(3.10)

This implies that T(D) is equicontinuous. Thus according to the Ascoli-Arzela Theorem, T(D)
is a relatively compact set.

In the end, we show that T : P → P is continuous. Assume that vm, v0 ∈ P (m =
1, 2, . . .), vm → v0 (m → +∞), then

|vm(t) − v0(t)| ≤ ‖vm − v0‖ −→ 0, (3.11)
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and ‖vm‖ ≤ L (m = 0, 1, 2, . . .), where L is a positive constant. Keeping in mind that f satisfies
Carathéodory conditions on [0, 1] × R

n−1, we have

lim
m→+∞

f
(
t, In−2

0+ vm(t), In−3
0+ vm(t), . . . , I1

0+vm(t), vm(t)
)

= f
(
t, In−2

0+ v0(t), In−3
0+ v0(t), . . . , I1

0+v0(t), v0(t)
)
, for a.e. t ∈ [0, 1].

(3.12)

Proceeding as for (3.3), for m ∈ N we obtain

∣
∣
∣In−1−i

0+ vm(s)
∣
∣
∣ = In−1−i

0+ vm(s) ≤ ‖vm‖ ≤ L i = 1, 2, . . . , n − 1. (3.13)

This together with (3.6),

0 ≤ f
(
t, In−2

0+ vm(t), In−3
0+ vm(t), . . . , I1

0+vm(t), vm(t)
)
≤ q(t) + L

n−1∑

i=1

pi(t). (3.14)

The Lebesgue dominated convergence theorem gives

lim
m→+∞

∫1

0

∣∣∣f
(
s, In−2

0+ vm(s), In−3
0+ vm(s), . . . , I1

0+vm(s), vm(s)
)

−f
(
s, In−2

0+ v0(s), In−3
0+ v0(s), . . . , I1

0+v0(s), v0(s)
)∣∣∣ds = 0.

(3.15)

Now we deduce from (3.15), Lemma 2.3

|Tvm(t) − Tv0(t)|

=

∣∣∣∣∣

∫1

0
G(t, s)

[
f
(
s, In−2

0+ vm(s), In−3
0+ vm(s), . . . , I1

0+vm(s), vm(s)
)

−f
(
s, In−2

0+ v0(s), In−3
0+ v0(s), . . . , I1

0+v0(s), v0(s)
)]
ds

∣∣∣∣∣

≤
(

1 +
β[1]

1 − β[γ]
)∫1

0
G0(s, s)

∣∣∣f
(
s, In−2

0+ vm(s), In−3
0+ vm(s), . . . , I1

0+vm(s), vm(s)
)

−f
(
s, In−2

0+ v0(s), In−3
0+ v0(s), . . . , I1

0+v0(s), v0(s)
)∣∣∣ds

≤
(

1 +
β[1]

1 − β[γ]
)

max
s∈[0,1]

G0(s, s)
∫1

0

∣∣∣f
(
s, In−2

0+ vm(s), In−3
0+ vm(s), . . . , I1

0+vm(s), vm(s)
)

−f
(
s, In−2

0+ v0(s), In−3
0+ v0(s), . . . , I1

0+v0(s), v0(s)
)∣∣∣ds

(3.16)
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that ‖Tvm − Tv0‖ → 0, as m → +∞. So T : P → P is continuous. Therefore T : P → P is
completely continuous.

Remark 3.3. If f : [0, 1] × R
n−1 is continuous, by similar argument as above, we can show that

T is completely continuous.

Theorem 3.4. Assume that (H1)–(H3) hold. If

∫1

0
G0(s, s)

n−1∑

i=1

pi(s)ds <
(

1 +
β[1]

1 − β[γ]
)−1

, (3.17)

then BVP (1.1) has at least one positive solution.

Proof. Let

Ω = {v ∈ P : ‖v‖ < r}, where r =

(
1 + β[1]/

(
1 − β[γ])) ∫1

0 G0(s, s)q(s)ds

1 − (1 + β[1]/
(
1 − β[γ])) ∫1

0 G0(s, s)
∑n−1

i=1 pi(s)ds
,

(3.18)

we have Ω ⊂ P . From Lemma 3.2, we know that T : Ω → P is completely continuous. If there
exists v ∈ ∂Ω, μ ∈ (0, 1) such that

v = μTv, (3.19)

then by (H3) and (3.19), we have

v(t) = μTv(t) = μ
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤ μ
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤ μ
(

1 +
β[1]

1 − β[γ]
)[∫1

0
G0(s, s)q(s)ds +

∫1

0
G0(s, s)

n−1∑

i=1

pi(s)ds‖v‖
]

,

(3.20)

which implies that

‖v‖ ≤ μ
(

1 +
β[1]

1 − β[γ]
)[∫1

0
G0(s, s)q(s)ds + r

∫1

0
G0(s, s)

n−1∑

i=1

pi(s)ds

]

<

(

1 +
β[1]

1 − β[γ]
)[∫1

0
G0(s, s)q(s)ds + r

∫1

0
G0(s, s)

n−1∑

i=1

pi(s)ds

]

= r.

(3.21)

This means that v /∈ ∂Ω. By Lemma 2.5, T has a fixed point v̂ ∈ Ω. By Lemma 2.4, BVP (1.1)
has at least one positive solution û(t) = In−2

0+ v̂(t).
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Theorem 3.5. Assume that (H1)–(H3) hold. If there exist two positive constants r1 < r2 such that

(i) f(t, x1, x2, . . . , xn−1) ≤ L−1
2 r2, for (t, x1, x2, . . . , xn−1) ∈ [0, 1] × [0, r2] × · · · × [0, r2],

(ii) f(t, x1, x2, . . . , xn−1) ≥ L−1
1 r1, for (t, x1, x2, . . . , xn−1) ∈ [0, 1] × [0, r1] × · · · × [0, r1],

where L1, L2 are defined by (2.19), then BVP (1.1) has at least one positive solution.

Proof. Let Ω2 = {v ∈ P : ‖v‖ < r2}. For any v ∈ ∂Ω2, we have ‖v‖ = r2 and 0 ≤ v(t) ≤ r2 for
every t ∈ [0, 1]. Similar to (3.7), for 0 ≤ v(s) ≤ r2, we have

0 ≤
∣
∣
∣In−1−i

0+ v(s)
∣
∣
∣ = In−1−i

0+ v(s) ≤ ‖v‖ ≤ r2, i = 1, 2, . . . , n − 1. (3.22)

It follows from condition (i) that

f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
≤ L−1

2 r2, for (s, v) ∈ [0, 1] × [0, r2]. (3.23)

Thus, for any v ∈ ∂Ω2, by (3.23) and Lemma 2.3, we have

|Tv(t)| =
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤
∫1

0
G(t, s)L−1

2 r2 ds ≤
(
1 + β[1]/

(
1 − β[γ]))L−1

2 r2

∫1

0
G0(s, s)ds

= r2 = ‖v‖, t ∈ [0, 1],

(3.24)

which means that

‖Tv‖ ≤ ‖v‖, v ∈ ∂Ω2. (3.25)

On the other hand, let Ω1 = {v ∈ P : ‖v‖ < r1}. For any v ∈ ∂Ω1, we have ‖v‖ = r1 and
0 ≤ v(t) ≤ r1 for every t ∈ [0, 1]. Similar to (3.23), from condition (ii), we can get

f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
≥ L−1

1 r1, for (s, v) ∈ [0, 1] × [0, r1]. (3.26)

Hence for any t ∈ [ξ, η], v ∈ ∂Ω1, by (3.26) and Lemma 2.3 we have

|Tv(t)| =
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≥
∫1

0
G(t, s)L−1

1 r1 ds ≥ L−1
1 r1

∫η

ξ

G(t, s)ds

≥ L−1
1 r1

∫η

ξ

ρ(s)G0(s, s)ds

= r1 = ‖v‖.

(3.27)
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Thus we get

‖Tv‖ ≥ ‖v‖, v ∈ ∂Ω1. (3.28)

By (3.25), (3.28), and Lemma 2.6, T has a fixed point ṽ ∈ Ω2 \Ω1 such that r1 ≤ ‖ṽ‖ ≤ r2. By
Lemma 2.4, BVP (1.1) has at least one positive solution ũ(t) = In−2

0+ ṽ(t).

Theorem 3.6. Assume that (H1)–(H3) hold. If there exist constants 0 < a < b < c such that

(I) f(t, x1, x2, . . . , xn−1) < L−1
2 a, for (t, x1, x2, . . . , xn−1) ∈ [0, 1] × [0, a] × · · · × [0, a],

(II) f(t, x1, x2, . . . , xn−1) ≤ L−1
2 c, for (t, x1, x2, . . . , xn−1) ∈ [0, 1] × [0, c] × · · · × [0, c],

(III) f(t, x1, x2, . . . , xn−1) ≥ L−1
1 b, for (t, x1, x2, . . . , xn−1) ∈ [ξ, η] × [(b/(n − 2)!)ξn−2, c] ×

[(b/(n − 3)!)ξn−3, c] × · · · × [bξ, c] × [b, c],

where L1, L2 are defined by (2.19), then BVP (1.1) has at least three positive solutions u1, u2, and u3

satisfying

∥∥∥Dn−2
0+ u1

∥∥∥ < a, b < ϕ
(
Dn−2

0+ u2

)
<
∥∥∥Dn−2

0+ u2

∥∥∥ ≤ c,

a <
∥∥∥Dn−2

0+ u3

∥∥∥, ϕ
(
Dn−2

0+ u3

)
< b.

(3.29)

Proof. We will show that all conditions of Lemma 2.7 are satisfied.
First, if v ∈ Pc, then ‖v‖ ≤ c. So we have 0 ≤ v(t) ≤ c, t ∈ [0, 1]. Similar to (3.23), it

follows from condition (II) that

f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
≤ L−1

2 c, for (s, v) ∈ [0, 1] × [0, c]. (3.30)

Thus, for any v ∈ Pc, by (3.30), we have

|Tv(t)| =
∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≤
∫1

0
G(t, s)L−1

2 c ds ≤
(

1 +
β[1]

1 − β[γ]
)

L−1
2 c

∫1

0
G0(s, s)ds

= c,

(3.31)

which means that ‖Tv‖ ≤ c, v ∈ Pc. Therefore, T : Pc → Pc. By Lemma 3.2, we know that
T : Pc → Pc is completely continuous.

Next, similar to (3.30) and (3.31), it follows from condition (I) that if v ∈ Pa then
‖Tv‖ < a. So the condition (C2) of Lemma 2.7 holds.
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Now, we take v(t) = (b+c)/2, t ∈ [0, 1]. It is easy to see that v(t) = (b+c)/2 ∈ P(ϕ, b, c),
and so

ϕ(v) = min
ξ≤t≤η

|v(t)| = b + c
2

> b, (3.32)

where ϕ(v) is defined by (2.20). This proves that {v ∈ P(ϕ, b, c) : ϕ(v) > b}/=φ.
On the other hand, if v ∈ P(ϕ, b, c), then b ≤ v(t) ≤ c, t ∈ [ξ, η]. By the definition of

fractional integral, for any t ∈ [ξ, η], 1 ≤ i ≤ n − 2, we obtain

b

i!
ξi ≤ b

(i − 1)!

∫ t

0
(t − s)i−1 ds ≤ Ii0+v(t) =

1
(i − 1)!

∫ t

0
(t − s)i−1v(s)ds

≤ c

(i − 1)!

∫ t

0
(t − s)i−1 ds

≤ c

i!
ηi ≤ c.

(3.33)

It follows from (3.33) and condition (III) that

f
(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
≥ L−1

1 b, for s ∈ [ξ, η], v ∈ P(ϕ, b, c). (3.34)

Hence we have

ϕ(Tv) = min
ξ≤t≤η

|Tv(t)|

= min
ξ≤t≤η

∫1

0
G(t, s)f

(
s, In−2

0+ v(s), In−3
0+ v(s), . . . , I1

0+v(s), v(s)
)
ds

≥ L−1
1 bmin

ξ≤t≤η

∫1

0
G(t, s)ds > L−1

1 b

∫η

ξ

ρ(s)G0(s, s)ds = b,

(3.35)

which implies that ϕ(Tv) > b, for v ∈ P(ϕ, b, c). This shows that condition (C1) of Lemma 2.7
is also satisfied.

By Lemma 2.7 and Remark 2.8, BVP (2.13) has at least three positive solutions v1, v2,
and v3 such that ‖v1‖ < a, b < ϕ(v2) < ‖v2‖ ≤ c, and a < ‖v3‖, ϕ(v3) < b. By Lemma 2.4,
BVP (1.1) has at least three positive solutions ui(t) = In−2

0+ vi(t), (i = 1, 2, 3). By (2.3), we have
Dn−2

0+ ui(t) = Dn−2
0+ In−2

0+ vi(t) = vi, i = 1, 2, 3. So u1, u2, u3 are three positive solutions of BVP (1.1)
satisfying

∥∥∥Dn−2
0+ u1

∥∥∥ < a, b < ϕ
(
Dn−2

0+ u2

)
<
∥∥∥Dn−2

0+ u2

∥∥∥ ≤ c,

a <
∥∥∥Dn−2

0+ u3

∥∥∥, ϕ
(
Dn−2

0+ u3

)
< b.

(3.36)

The proof of Theorem 3.6 is completed.
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4. Examples

Example 4.1. Consider the following problem:

D7/2
0+ u(t) +

(1 − t)3etu

(1 + et)(1 + u)
+

1
2
t2sin2u′ +

1
4
tu′′ = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = β
[
u′′
]
.

(4.1)

Let β[u′′] = (1/2) u′′(1/2). Then

G0(t, s) =
1

Γ(3/2)

{
[t(1 − s)]1/2 − (t − s)1/2, 0 ≤ s ≤ t ≤ 1,
[t(1 − s)]1/2, 0 ≤ t ≤ s ≤ 1.

(4.2)

G(s) = 1
2
G0

(
1
2
, s

)
≥ 0, β[1] =

∫1

0
dA(t) =

1
2
, β

[
γ
]
=
∫1

0
t1/2dA(t) =

√
2

4
< 1. (4.3)

Let

f
(
t, x, y, z

)
=

(1 − t)3etx

(1 + et)(1 + x)
+

1
2
t2sin2y +

1
4
tz,

h1(t) =
(1 − t)3et

1 + et
, h2(t) =

1
2
t2, h3(t) =

1
4
t.

(4.4)

Then f is a nonnegative continuous function on [0, 1] × (R+)3 and, for any (t, x1, y1, z1) and
(t, x2, y2, z2) ∈ [0, 1] × (R+)3, satisfies

∣∣f
(
t, x1, y1, z1

) − f(t, x2, y2, z2
)∣∣ ≤ h1(t)|x1 − x2| + h2(t)

∣∣y1 − y2
∣∣ + h3(t)|z1 − z2|. (4.5)

So we have

∫1

0
G0(s, s)

3∑

i=1

hi(s)ds ≤ 1
Γ(3/2)

∫1

0
(s(1 − s))1/2

(
(1 − s)3 + s2 + s

)
ds

=
B(3/2, 9/2) + B(7/2, 3/2) + B(5/2, 3/2)

Γ(3/2)
=

33
128

√
π ≈ 0.4569608

<

(

1 +
β[1]

1 − β[γ]
)−1

=
4 − √

2

6 − √
2
≈ 0.5638901,

(4.6)

where B(·, ·) denotes a Beta function. So all conditions of Theorem 3.1 are satisfied. Thus, by
Theorem 3.1, BVP (4.1) has at least one positive solution.
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Example 4.2. Consider the following problem:

D5/2
0+ u(t) +

1
2

(
t − t2

)
ln(1 + u) +

1
2
t2u′ + t3 + sin t = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = β
[
u′
]
,

(4.7)

where β[u′] =
∫1

0 u
′(s)dA(s) with

A(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s ∈
[

0,
1
4

)
,

2, s ∈
[

1
4
,

9
16

)
,

1, s ∈
[

9
16
, 1
]
.

(4.8)

Set

f
(
t, x, y

)
=

1
2

(
t − t2

)
ln(1 + x) +

1
2
t2y + t3 + sin t, p1(t) =

1
2

(
t − t2

)
,

p2(t) =
1
2
t2, q(t) = t3 + 1.

(4.9)

Then f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is continuous and

f
(
t, x, y

) ≤ p1(t)x + p2(t)y + q(t). (4.10)

As in [21], β[γ] =
∫1

0 γ(t)dA(t) = 2
√

1/4+ (−1)×
√

9/16 = 1/4 < 1, G(s) = ∫1
0 G0(t, s)dA(t) ≥ 0,

∫1

0
G0(s, s)

(
p1(s) + p2(s)

)
ds ≤ 1

Γ(3/2)

∫1

0
(s(1 − s))1/2

((
s − s2

)
+ s2
)
ds

=
B(5/2, 5/2) + B(7/2, 3/2)

Γ(3/2)
=

1
8
√
π ≈ 0.22155673

<

(

1 +
β[1]

1 − β[γ]
)−1

=
3
7
≈ 0.42857143,

(4.11)

where B(·, ·) denotes a Beta function and G0(t, s) is defined by (4.2). So all conditions of
Theorem 3.4 are satisfied. Thus, by Theorem 3.4, BVP (4.7) has at least one positive solution.
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Example 4.3. Consider the following problem:

D5/2
0+ u(t) +

t2

5
ln(1 + u) +

tetu′

10 + 10et
+

sin t
20

+
1
2
= 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = β
[
u′
]
,

(4.12)

where β[u′] =
∫1

0 u
′(s)dA(s) with A(s) as given by (4.8). Set

f
(
t, x, y

)
=
t2

5
ln(1 + x) +

tety

10 + 10et
+

sin t
20

+
1
2
, p1(t) =

t2

5
,

p2(t) =
tet

10 + 10et
, q(t) =

sin t
20

+
1
2
.

(4.13)

Then f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is continuous and

f
(
t, x, y

) ≤ p1(t)x + p2(t)y + q(t). (4.14)

By Example 4.2, β[γ] =
∫1

0 γ(t)dA(t) = 1/4 < 1, G(s) =
∫1

0 G0(t, s)dA(t) ≥ 0, where G0(t, s) is
defined by (4.2). As in [1, 3], we also take ξ = 1/4, η = 3/4, then

L−1
1 =

(∫3/4

1/4
ρ(s)G0(s, s)ds

)−1

≈ 13.6649,

L−1
2 =

(

1 +
β[1]

1 − β[γ]
)−1(∫1

0
G0(s, s)ds

)−1

=
12

7
√
π

≈ 0.967182.

(4.15)

Choosing r1 = 1/30, r2 = 1, we have

f
(
t, x, y

) ≤ 0.85 ≤ L−1
2 r2, for

(
t, x, y

) ∈ [0, 1] × [0, 1] × [0, 1],

f
(
t, x, y

) ≥ 0.5 ≥ L−1
1 r1, for

(
t, x, y

) ∈ [0, 1] ×
[

0,
1

30

]
×
[

0,
1

30

]
.

(4.16)

So all conditions of Theorem 3.5 are satisfied. Thus, by Theorem 3.5, BVP (4.12) has at least
one positive solution.

Example 4.4. Consider the following problem:

D5/2
0+ u(t) + f

(
t, u(t), u′(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = β
[
u′
]
,

(4.17)
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where β[u′] =
∫1

0 u
′(s)dA(s) with A(s) as given by (4.8). Set

f
(
t, x, y

)
=

⎧
⎪⎪⎨

⎪⎪⎩

t2

100
ln(1 + x) + 15y2 +

t

1000
,

(
t, x, y

) ∈ [0, 1] × [0, 1] × [0, 1],

t2

100
ln(1 + x) +

29
2

+
1
2
y +

t

1000
,
(
t, x, y

) ∈ [0, 1] ×
(
(R+)2 \ [0, 1]2

)
,

p1(t) =
t2

100
, p2(t) = 15, q(t) =

t

1000
+

29
2
.

(4.18)

Then

f
(
t, x, y

) ≤ p1(t)x + p2(t)y + q(t). (4.19)

By Example 4.3, β[γ] =
∫1

0 γ(t)dA(t) = 1/4 < 1, G(s) = ∫1
0 G0(t, s)dA(t) ≥ 0,

L−1
1 =

(∫3/4

1/4
ρ(s)G0(s, s)ds

)−1

≈ 13.6649,

L−1
2 =

(

1 +
β[1]

1 − β[γ]
)−1(∫1

0
G0(s, s)ds

)−1

=
12

7
√
π

≈ 0.967182.

(4.20)

Choosing a = 1/20, b = 1, c = 100, we have

f
(
t, x, y

) ≤ 0.044845 < L−1
2 a ≈ 0.048359, for

(
t, x, y

) ∈ [0, 1] ×
[

0,
1
20

]
×
[

0,
1

20

]
,

f
(
t, x, y

) ≥ 14.5025 ≥ L−1
1 b ≈ 13.6649, for

(
t, x, y

) ∈
[

1
4
,

3
4

]
×
[

1
4
, 100

]
× [1, 100],

f
(
t, x, y

) ≤ 65.501 ≤ L−1
2 c ≈ 96.7182, for

(
t, x, y

) ∈ [0, 1] × [0, 100] × [0, 100].

(4.21)

So all conditions of Theorem 3.6 are satisfied. Thus, by Theorem 3.6, BVP (4.17) has at least
three positive solutions u1, u2, and u3, satisfying

max
0≤t≤1

∣∣u′1(t)
∣∣ <

1
20
, 1 < min

1/4≤t≤3/4

∣∣u′2(t)
∣∣ < max

0≤t≤1

∣∣u′2(t)
∣∣ ≤ 100,

1
20

≤ max
0≤t≤1

∣∣u′3(t)
∣∣ ≤ 100 with min

1/4≤t≤3/4

∣∣u′3(t)
∣∣ < 1.

(4.22)
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We introduce certain type of weighted variant of Riemann-Liouville fractional integral on R
n and

obtain its sharp bounds on the central Morrey and λ-central BMO spaces. Moreover, we establish a
sufficient and necessary condition of the weight functions so that commutators of weighted Hardy
operators (with symbols in λ-central BMO space) are bounded on the central Morrey spaces. These
results are further used to prove sharp estimates of some inequalities due to Weyl and Cesàro.

1. Introduction

Let 0 < α < 1. The well-known Riemann-Liouville fractional integral Iα is defined by

Iαf(x) :=
1

Γ(α)

∫x

0

f(t)

(x − t)1−α dt, x > 0, (1.1)

for all locally integrable functions f on (0,∞). The study of Riemann-Liouville fractional
integral has a very long history and number of papers involved its generalizations, variants,
and applications. For the earlier development of this kind of integrals and many important
applications in fractional calculus, we refer the interested reader to the book [1]. Among
numerous material dealing with applications of fractional calculus to (ordinary or partial)
differential equations, we choose to refer to [2] and references therein.
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As the classical n-dimensional generalization of Iα, the well-known Riesz potential
(the solution of Laplace equation) Iα with 0 < α < n is defined by setting, for all locally
integrable functions f on R

n,

Iαf(x) := Cn,α

∫

Rn

f(t)
|x − t|n−α dt, x ∈ R

n, (1.2)

where Cn,α := πn/22α(Γ(α/2))/(Γ((n − α)/2)). The importance of Riesz potentials lies
in the fact that they are indeed smoothing operators and have been extensively used in
many different areas such as potential analysis, harmonic analysis, and partial differential
equations. Here we refer to the paper [3], which is devoted to the sharp constant in the
Hardy-Littlewood-Sobolev inequality related to Iα.

This paper focused on another generalization, the weighted variants of Riemann-
Liouville fractional integrals on R

n. We investigate the boundedness of these weighted
variants on the type of central Morrey and central Campanato spaces and also give the sharp
estimates. This development begins with an equivalent definition of Iα as

xαIαf(x) =
∫1

0
f(tx)

1

Γ(α)(1 − t)1−α dt, x > 0. (1.3)

More generally, we use a positive function (weight function)ω(t) to replace 1/(Γ(α)(1−t)1−α)
in (1.3) and generalize the parameter x from the positive axle to the Euclidean space R

n

therein. We then derive a weighted generalization of |x|αIα on R
n, which is called the

weighted Hardy operator (originally named weighted Hardy-Littlewood avarage)Hω.
More precise, let ω be a positive function on [0, 1]. The weighted Hardy operator Hω is

defined by setting, for all complex-valued measurable functions f on R
n and x ∈ R

n,

Hωf(x) :=
∫1

0
f(tx)ω(t)dt. (1.4)

Under certain conditions on ω, Carton-Lebrun and Fosset [4] proved that Hω maps Lp(Rn),
1 < p <∞, into itself; moreover, the operator Hω commutes with the Hilbert transform when
n = 1, and with certain Calderón-Zygmund singular integrals including the Riesz transform
when n ≥ 2. Obviously, for n = 1 and 0 < α < 1, if we take ω(t) := 1/(Γ(α)(1 − t)1−α), then as
mentioned above, for all x > 0,

Hωf(x) = x−αIαf(x). (1.5)

A further extension of [4] was due to Xiao [5] as follows.

Theorem A. Let 1 < p <∞. Then,Hω is bounded on Lp(Rn) if and only if

A :=
∫1

0
t−n/pω(t)dt <∞. (1.6)
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Moreover,
∥
∥Hωf

∥
∥
Lp(Rn)→Lp(Rn) = A. (1.7)

Remark 1.1. Notice that the condition (1.6) implies that ω is integrable on [0, 1] since
∫1

0 ω(t)dt ≤
∫1

0 t
−n/pω(t)dt. We naturally assumeω is integrable on [0, 1] throughout this paper.

Obviously, Theorem A implies the celebrated result of Hardy et al. [6, Theorem 329],
namely, for all 0 < α < 1 and 1 < p <∞,

‖Iα‖Lp(dx)→Lp(x−pαdx) =
Γ
(
1 − 1/p

)

Γ
(
1 + α − 1/p

) . (1.8)

The constant A in (1.6) also seems to be of interest as it equals to p/(p − 1) if ω ≡ 1 and n = 1.
In this case, Hω is precisely reduced to the classical Hardy operatorH defined by

Hf(x) =
1
x

∫x

0
f(t)dt, x > 0, (1.9)

which is the most fundamental integral averaging operator in analysis. Also, a celebrated
operator norm estimate due to Hardy et al. [6], that is,

‖H‖Lp(R+)→Lp(R+) =
p

p − 1 (1.10)

with 1 < p <∞, can be deduced from Theorem A immediately.
Recall that BMO(Rn) is defined to be the space of all b ∈ Lloc(Rn) such that

‖b‖BMO := sup
B⊂Rn

1
|B|
∫

B

|b(x) − bB| dx <∞, (1.11)

where bB = (1/|B|) ∫B b and the supremum is taken over all balls B in R
n with sides parallel

to the axes. It is well known that L∞(Rn) � BMO(Rn), since BMO(Rn) contains unbounded
functions such as log |x|. Another interesting result of Xiao in [5] is that the weighted Hardy
operator Hω is bounded on BMO(Rn), if and only if

∫1

0
ω(t)dt <∞. (1.12)

Moreover,

‖Hω‖BMO(Rn)→BMO(Rn) =
∫1

0
ϕ(t)dt. (1.13)

In recent years, several authors have extended and considered the action of weighted Hardy
operators on various spaces. We mention here, the work of Rim and Lee [7], Kuang [8], Krulić
et al. [9], Tang and Zhai [10], Tang and Zhou [11].
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The main purpose of this paper is to make precise the mapping properties of weighted
Hardy operators on the central Morrey and λ-central BMO spaces. The study of the central
Morrey and λ-central BMO spaces are traced to the work of Wiener [12, 13] on describing the
behavior of a function at the infinity. The conditions he considered are related to appropriate
weighted Lq (1 < q < ∞) spaces. Beurling [14] extended this idea and defined a pair of dual
Banach spaces Aq and Bq

′
, where 1/q + 1/q′ = 1. To be precise, Aq is a Banach algebra with

respect to the convolution, expressed as a union of certain weighted Lq spaces. The space Bq
′
is

expressed as the intersection of the corresponding weighted Lq
′
spaces. Later, Feichtinger [15]

observed that the space Bq
′
can be equivalently described by the set of all locally q′-integrable

functions f satisfying that

∥∥f
∥∥
Bq

′ = sup
k≥0

(
2−kn/q

′∥∥fχk
∥∥
q′

)
<∞, (1.14)

where χ0 is the characteristic function of the unit ball {x ∈ R
n : |x| ≤ 1}, χk is the characteristic

function of the annulus {x ∈ R
n : 2k−1 < |x| ≤ 2k}, k = 1, 2, 3, . . ., and ‖ · ‖q′ is the norm in Lq

′
.

By duality, the space Aq, called Beurling algebra now, can be equivalently described by the
set of all locally q-integrable functions f satisfying that

∥∥f
∥∥
Aq =

∞∑

k=0

2kn/q
′∥∥fχk

∥∥
q <∞. (1.15)

Based on these, Chen and Lau [16] and Garcı́a-Cuerva [17] introduced an atomic space HAq

associated with the Beurling algebra Aq and identified its dual as the space CMOq, which is
defined to be the space of all locally q-integrable functions f satisfying that

sup
R≥1

(
1

|B(0, R)|
∫

B(0,R)

∣∣f(x) − fB(0,R)
∣∣qdx

)1/q

<∞. (1.16)

By replacing k ∈ N ∪ {0} with k ∈ Z in (1.3) and (1.6), we obtain the spaces Ȧq and
Ḃq

′
, which are the homogeneous version of the spaces Aq and Bq

′
, and the dual space of Ȧq

is just Ḃq
′
. Related to these homogeneous spaces, in [18, 19], Lu and Yang introduced the

homogeneous counterparts of HAq and CMOq, denoted by ḢAq and CṀOq, respectively.
These spaces were originally denoted by HKq and CBMOq in [18, 19]. Recall that the space
CṀOq is defined to be the space of all locally q-integrable functions f satisfying that

sup
R>0

(
1

|B(0, R)|
∫

B(0,R)

∣∣f(x) − fB(0,R)
∣∣qdx

)1/q

<∞. (1.17)

It was also proved by Lu and Yang that the dual space of ḢAq is just CṀOq.
In 2000, Alvarez et al. [20] introduced the following λ-central bounded mean

oscillation spaces and the central Morrey spaces, respectively.
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Definition 1.2. Let λ ∈ R and 1 < q <∞. The central Morrey space Ḃq,λ(Rn) is defined to be the
space of all locally q-integrable functions f satisfying that

∥
∥f
∥
∥
Ḃq,λ = sup

R>0

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣
∣f(x)

∣
∣qdx

)1/q

<∞. (1.18)

Definition 1.3. Let λ < 1/n and 1 < q < ∞. A function f ∈ L
q

loc(R
n) is said to belong to the

λ-central bounded mean oscillation space CṀOq,λ(Rn) if

∥
∥f
∥
∥

CṀOq,λ = sup
R>0

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣
∣f(x) − fB(0,R)

∣
∣qdx

)1/q

<∞. (1.19)

We remark that if two functions which differ by a constant are regarded as a function
in the space CṀOq,λ, then CṀOq,λ becomes a Banach space. Apparently, (1.19) is equivalent
to the following condition:

sup
R>0

inf
c∈C

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣∣f(x) − c∣∣qdx
)1/q

<∞. (1.20)

Remark 1.4. Ḃq,λ is a Banach space which is continuously included in CṀOq,λ. One can easily
check Ḃq,λ(Rn) = {0} if λ < −1/q, Ḃq,0(Rn) = Ḃq(Rn), Ḃq,−1/q(Rn) = Lq(Rn), and Ḃq,λ(Rn) �

Lq(Rn) if λ > −1/q. Similar to the classical Morrey space, we only consider the case −1/q <
λ ≤ 0 in this paper.

Remark 1.5. The space CṀOq,λ when λ = 0 is just the space CṀOq. It is easy to see that
BMO ⊂ CṀOq for all 1 < q < ∞. When λ ∈ (0, 1/n), then the space CṀOq,λ is just the central
version of the Lipschitz space Lipλ(R

n).

Remark 1.6. If 1 < q1 < q2 < ∞, then by Hölder’s inequality, we know that Ḃq2,λ ⊂ Ḃq1,λ for
λ ∈ R, and CṀOq2,λ ⊂ CṀOq1,λ for λ < 1/n.

For more recent generalization about central Morrey and Campanato space, we refer
to [21]. We also remark that in recent years, there exists an increasing interest in the study of
Morrey-type spaces and the related theory of operators; see, for example, [22].

In this paper, we give sufficient and necessary conditions on the weight ω which
ensure that the corresponding weighted Hardy operator Hω is bounded on Ḃq,λ(Rn) and
CṀOq,λ(Rn). Meanwhile, we can work out the corresponding operator norms. Moreover, we
establish a sufficient and necessary condition of the weight functions so that commutators
of weighted Hardy operators (with symbols in central Campanato-type space) are bounded
on the central Morrey-type spaces. These results are further used to prove sharp estimates of
some inequalities due to Weyl and Cesàro.
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2. Sharp Estimates of Hω

Let us state our main results.

Theorem 2.1. Let 1 < q < ∞ and −1/q < λ ≤ 0. ThenHω is a bounded operator on Ḃq,λ(Rn) if and
only if

B :=
∫1

0
tnλω(t)dt <∞. (2.1)

Moreover, when (2.1) holds, the operator norm ofHω on Ḃq,λ(Rn) is given by

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) = B. (2.2)

Proof. Suppose (2.1) holds. For any R > 0, using Minkowski’s inequality, we have

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣∣(Hωf
)
(x)
∣∣qdx

)1/q

≤
∫1

0

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣∣f(tx)
∣∣qdx

)1/q

ω(t)dt

=
∫1

0

(
1

|B(0, tR)|1+λq
∫

B(0,tR)

∣∣f(x)
∣∣qdx

)1/q

tnλω(t)dt

≤ ∥∥f∥∥Ḃq,λ(Rn)

∫1

0
tnλω(t)dt.

(2.3)

It implies that

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) ≤
∫1

0
tnλω(t)dt. (2.4)

Thus Hω maps Ḃq,λ(Rn) into itself.
The proof of the converse comes from a standard calculation. If Hω is a bounded

operator on Ḃq,λ(Rn), take

f0(x) = |x|nλ, x ∈ R
n. (2.5)

Then

∥∥f0
∥∥
Ḃq,λ(Rn) = Ω−λ

n

1
(
nqλ + n

)1/q
, (2.6)

where Ωn = πn/2/(Γ(1 + n/2)) is the volume of the unit ball in R
n.
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We have

Hωf0 = f0

∫1

0
tnλω(t)dt, (2.7)

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) ≥
∫1

0
tnλω(t)dt. (2.8)

(2.8) together with (2.4) yields the desired result.

Corollary 2.2. (i) For 0 < α < 1, 1 < q <∞, and −1/q < λ ≤ 0,

‖Iα‖Ḃq,λ(dx)→ Ḃq,λ(x−qαdx) =
Γ(1 + λ)

Γ(1 + α + λ)
. (2.9)

(ii) For 1 < q <∞ and −1/q < λ ≤ 0,

‖H‖Ḃq,λ → Ḃq,λ =
1

1 + λ
. (2.10)

Next, we state the corresponding conclusion for the space CṀOq,λ(Rn).

Theorem 2.3. Let 1 < q < ∞ and 0 ≤ λ < 1/n. Then Hω is a bounded operator on CṀOq,λ(Rn)
if and only if (2.1) holds. Moreover, when (2.1) holds, the operator norm of Hω on CṀOq,λ(Rn) is
given by

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) = B. (2.11)

Proof. Suppose (2.1) holds. If f ∈ CṀOq,λ(Rn), then for any R > 0 and ball B(0, R), using
Fubini’s theorem, we see that

(
Hωf

)
B(0,R) =

∫1

0

(
1

|B(0, R)|
∫

B(0,R)
f(tx)dx

)

ω(t)dt =
∫1

0
fB(0,tR)ω(t)dt. (2.12)
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Using Minkowski’s inequality, we have

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣
∣
∣
(
Hωf

)
(x) − (Hωf

)
B(0,R)

∣
∣
∣
q
dx

)1/q

=

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣
∣
∣
∣
∣

∫1

0

(
f(tx) − fB(0,tR)

)
dt

∣
∣
∣
∣
∣

q

dx

)1/q

≤
∫1

0

(
1

|B(0, R)|1+λq
∫

B(0,R)

∣
∣f(tx) − fB(0,tR)

∣
∣qdx

)1/q

ω(t)dt

=
∫1

0

(
1

|B(0, tR)|1+λq
∫

B(0,tR)

∣
∣f(x) − fB(0,tR)

∣
∣qdx

)1/q

tnλω(t)dt

≤ ∥∥f∥∥CṀOq,λ(Rn)

∫1

0
tnλω(t)dt,

(2.13)

which implies Hω is bounded on CṀOq,λ(Rn) and

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) ≤ B. (2.14)

Conversely, if Hω is a bounded operator on CṀOq,λ(Rn), take

f0(x) =

{
|x|nλ, x ∈ R

n
r ,

−|x|nλ, x ∈ R
n
l
,

(2.15)

where R
n
r and R

n
l

denote the right and the left halves of R
n, separated by the hyperplane

x1 = 0, and x1 is the first coordinate of x ∈ R
n.

Thus, by a standard calculation, we see that (f0)B(0,R) = 0 and

∥∥f0
∥∥

CṀOq,λ(Rn) = Ω−λ
n

1
(
nqλ + n

)1/q
,

Hωf0 = f0

∫1

0
tnλω(t)dt.

(2.16)

From this formula we have

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) ≥ B. (2.17)

The proof is complete.
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Corollary 2.4. (i) For 1 < q <∞ and 0 ≤ λ < 1, we have

‖H‖CṀOq,λ →CṀOq,λ =
1

1 + λ
. (2.18)

(ii) For 1 < q <∞, we have ‖H‖CṀOq →CṀOq = 1.

3. A Characterization of Weight Functions via Commutators

A well-known result of Coifman et al. [23] states that the commutator generated by Calderón-
Zygmund singular integrals and BMO functions is bounded on Lp(Rn), 1 < p < ∞. Recently,
we introduced the commutators of weighted Hardy operators and BMO functions introduced
in [24]. For any locally integrable function b on R

n and integrable function ω : [0, 1] →
[0,∞), the commutator of the weighted Hardy operatorHb

ω is defined by

Hb
ωf := bHωf −Hω

(
bf
)
. (3.1)

It is easy to see that when b ∈ L∞(Rn) and ω satisfies the condition (1.6), then the
commutator Hb

ω is bounded on Lp(Rn), 1 < p < ∞. An interesting choice of b is that
it belongs to the class of BMO(Rn). When symbols b ∈ BMO(Rn), the condition (1.6) on
weight functions ω can not ensure the boundedness of Hb

ω on Lp(Rn). Via controlling Hb
ω

by the Hardy-Littlewood maximal operators instead of sharp maximal functions, we [24]
established a sufficient and necessary (more stronger) condition on weight functionsω which
ensures that Hb

ω is bounded on Lp(Rn), where 1 < p < ∞. More recently, Fu and Lu [25]
studied the boundedness of Hb

ω on the classical Morrey spaces. Tang et al. [26] and Tang and
Zhou [11] obtained the corresponding result on some Herz-type and Triebel-Lizorkin-type
spaces. We also refer to the work [27] for more general m-linear Hardy operators.

Similar to [24], we are devoted to the construction of a sufficient and necessary
condition (which is stronger than B = ∞ in Theorem 2.1) on the weight functions so that
commutators of weighted Hardy operators (with symbols in λ-central BMO space) are
bounded on the central Morrey spaces. For the boundedness of commutators with symbols
in central BMO spaces, we refer the interested reader to [28, 29] and Mo [30].

Theorem 3.1. Let 1 < q1 < q < ∞, 1/q1 = 1/q + 1/q2, −1/q < λ < 0. Assume further that ω
is a positive integrable function on [0, 1]. Then, the commutator Hb

ω is bounded from Ḃq,λ(Rn) to
Ḃq1,λ(Rn), for any b ∈ CṀOq2(Rn), if and only if

C :=
∫1

0
tnλω(t) log

2
t
dt <∞. (3.2)

Remark 3.2. The condition (2.1), that is, B <∞, is weaker than C <∞. In fact, let

D :=
∫1

0
tnλω(t) log

1
t
dt <∞. (3.3)
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By C = B log 2 + D, we know that C < ∞ implies B < ∞. But the following example shows
that B <∞ does not imply C <∞. For 0 < β < 1, if we take

es(−nλ−1)ω̃(s) =

⎧
⎪⎪⎨

⎪⎪⎩

s−1+β, 0 < s ≤ 1,
s−1−β, 1 < s <∞,

0, s = 0,∞,

(3.4)

and ω(t) = ω̃(log(1/t)), where 0 ≤ t ≤ 1, then B <∞ and C = ∞.

Proof. (i) Let R ∈ (0,∞). Denote B(0, R) by B and B(0, tR) by tB. Assume C <∞. We get

(
1
|B|
∫

B

∣∣∣Hb
ωf(x)

∣∣∣
q1
dx

)1/q1

≤
(

1
|B|
∫

B

(∫1

0

∣∣(b(x) − b(tx))f(tx)∣∣ω(t)dt
)q1

dx

)1/q1

≤
(

1
|B|
∫

B

(∫1

0

∣∣(b(x) − bB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

+

(
1
|B|
∫

B

(∫1

0

∣∣(bB − btB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

+

(
1
|B|
∫

B

(∫1

0

∣∣(b(tx) − btB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

:= I1 + I2 + I3.

(3.5)

By the Minkowski inequality and the Hölder inequality (with 1/q1 = 1/q + 1/q2), we
have

I1 ≤
∫1

0

(
1
|B|
∫

B

∣∣(b(x) − bB)f(tx)
∣∣q1dx

)1/q1

ω(t)dt

≤
∫1

0

(
1
|B|
∫

B

|b(x) − bB|q2dx

)1/q2
(

1
|B|
∫

B

∣∣f(tx)
∣∣qdx

)1/q

ω(t)dt

≤ |B|λ‖b‖CṀOq2

∫1

0

(
1

|tB|1+qλ
∫

tB

∣∣f(x)
∣∣qdx

)1/q

tnλω(t)dt

≤ |B|λ‖b‖CṀOq2

∥∥f
∥∥
Ḃq,λ

∫1

0
tnλω(t)dt.

(3.6)
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Similarly, we have

I3 ≤
∫1

0

(
1
|B|
∫

B

∣
∣(b(tx) − btB)f(tx)

∣
∣q1dx

)1/q1

ω(t)dt

≤
∫1

0

(
1

|tB|
∫

tB

|b(x) − btB|q2dx

)1/q2
(

1
|tB|
∫

tB

∣
∣f(x)

∣
∣qdx

)1/q

ω(t)dt

≤ |B|λ‖b‖CṀOq2

∫1

0

(
1

|tB|1+qλ
∫

tB

∣
∣f(x)

∣
∣qdx

)1/q

tnλω(t)dt

≤ C|B|λ‖b‖CṀOq2

∥
∥f
∥
∥
Ḃq,λ

∫1

0
tnλω(t)dt.

(3.7)

Now we estimate I2,

I2 ≤
∫1

0

(
1
|B|
∫

B

∣∣f(tx)
∣∣q1dx

)1/q1

|bB − btB|ω(t)dt

≤ ∥∥f∥∥Ḃq,λ
∫1

0
|tB|λ|bB − btB|ω(t)dt

=
∥∥f
∥∥
Ḃq,λ

∞∑

k=0

∫2−k

2−k−1
|tB|λ|bB − btB|ω(t)dt

≤ ∥∥f∥∥Ḃq,λ
∞∑

k=0

∫2−k

2−k−1
|tB|λ
{(

k∑

i=0
|b2−iB − b2−i−1B|

)

+ |b2−k−1B − btB|
}

ω(t)dt.

(3.8)

We see that

k∑

i=0
|b2−iB − b2−i−1B| ≤ C

k∑

i=0

(
1

|2−iB|

∫

2−iB

∣∣b
(
y
) − b2−iB

∣∣q2dy

)1/q2

≤ C‖b‖CṀOq2 (k + 1).

(3.9)

Therefore,

I2 ≤ C|B|λ‖b‖CṀOq2

∥∥f
∥∥
Ḃq,λ

∫1

0
tnλω(t) log

1
t
dt. (3.10)

Combining the estimates of I1, I2, and I3, we conclude that Hb
ω is bounded from

Ḃq,λ(Rn) to Ḃq1(Rn).
Conversely, assume that for any b ∈ CṀOq2 ,Hb

ω is bounded from Ḃq,λ(Rn) to Ḃq2,λ(Rn).
We need to show that C < ∞. Since C = B log 2 + D, we will prove that B < ∞ and D < ∞,
respectively. To this end, let

b0(x) = log|x| (3.11)
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for all x ∈ R
n. Then it follows from Remark 1.5 that b0 ∈ BMO ⊂ CṀOq2 , and

∥
∥
∥Hb0

ω

∥
∥
∥
Ḃq,λ → Ḃq1 ,λ

<∞. (3.12)

Let f0(x) = |x|nλ, x ∈ R
n. Then

∥
∥f0
∥
∥
Ḃq,λ = Ω−λ

n

1
(
nqλ + n

)1/q
,

Hb0
ω f0(x) = |x|nλ

∫1

0
tnλω(t) log

1
t
dt.

(3.13)

For λ > −1/q > −1/q1, we obtain

∥∥∥Hb0
ω f0

∥∥∥
Ḃq1 ,λ

= Ω−λ
n

1
(
nq1λ + n

)1/q1

∫1

0
tnλω(t) log

1
t
dt. (3.14)

So,

∥∥∥Hb0
ω

∥∥∥
Ḃq1 ,λ → Ḃq,λ

≥ Cn,λ,q,q1

∫1

0
tnλω(t) log

1
t
dt. (3.15)

Therefore, we have

D <∞. (3.16)

On the other hand,

∫1/2

0
tnλω(t)dt ≤ C

∫1/2

0
tnλω(t) log

1
t
dt <∞,

∫1

1/2
tnλω(t)dt <∞,

(3.17)

since tnλ and ω(t) are integrable functions on [1/2, 1]. Combining the above estimates, we get

B <∞. (3.18)

Combining (3.18) and (3.16), we then obtain the desired result.

Notice that comparing with Theorems 2.1 and 2.3, we need a priori assumption
in Theorem 3.1 that ω is integrable on [0, 1]. However, by Remark 1.1, this assumption is
reasonable in some sense.
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When b ∈ CṀOq2,λ2(Rn) with λ2 > 0, namely, b is a central λ-Lipschitz function, we
have the following conclusion. The proof is similar to that of Theorem 3.1. We give some
details here.

Theorem 3.3. Let 1 < q1 < q < ∞, 1/q1 = 1/q + 1/q2, −1/q < λ < 0, −1/q1 < λ1 < 0,
0 < λ2 < 1/n, and λ1 = λ + λ2. If (2.1) holds true, then for all b ∈ CṀOq2,λ2(Rn), the corresponding
commutatorHb

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Proof. Let I1, I2, and I3 be as in the proof of Theorem 3.1. Then, following the estimates of I1

and I3 in the proof of Theorem 3.1, we see that

I1 ≤ |B|λ1‖b‖CṀOq2 ,λ2

∥
∥f
∥
∥
Ḃq,λ

∫1

0
tnλω(t)dt,

I3 ≤ |B|λ1‖b‖CṀOq2 ,λ2

∥∥f
∥∥
Ḃq,λ

∫1

0
tnλ1ω(t)dt

≤ |B|λ1‖b‖CṀOq2 ,λ2

∥∥f
∥∥
Ḃq,λ

∫1

0
tnλω(t)dt.

(3.19)

For I2, we also have

I2 ≤ ∥∥f∥∥Ḃq,λ
∞∑

k=0

∫2−k

2−k−1
|tB|λ
{(

k∑

i=0
|b2−iB − b2−i−1B|

)

+ |b2−k−1B − btB|
}

ω(t)dt. (3.20)

Since now 0 < λ2 < 1/n, we see that

k∑

i=0
|b2−iB − b2−i−1B| ≤ C

k∑

i=0

(
1

|2−iB|

∫

2−iB

∣∣b
(
y
) − b2−iB

∣∣q2dy

)1/q2

≤ C‖b‖CṀOq2 ,λ2 |B|λ2

k∑

i=0

2−inλ2

≤ C‖b‖CṀOq2 ,λ2 |B|λ2 .

(3.21)

Therefore,

I2 ≤ C|B|λ1‖b‖CṀOq2 .λ2

∥∥f
∥∥
Ḃq,λ

∫1

0
tnλω(t)dt. (3.22)

Combining the estimates of I1, I2, and I3, we conclude that Hb
ω is bounded from

Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Different from Theorem 3.1, it is still unknown whether the condition (2.1) in
Theorem 3.3 is sharp. That is, whether the fact that Hb

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn)
for all b ∈ CṀOq2,λ2(Rn) induces (2.1)?
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More general, we may extend the previous results to the kth order commutator of the
weighted Hardy operator. Given k ≥ 1 and a vector 	b = (b1, . . . , bk), we define the higher
order commutator of the weighted Hardy operator as

H
	b
ωf(x) =

∫1

0

⎛

⎝
k∏

j=1

(
bj(x) − bj(tx)

)
⎞

⎠f(tx)ω(t)dt, x ∈ R
n. (3.23)

When k = 0, we understand that H	b
ω = Hω. Notice that if k = 1, then H	b

ω = Hb
ω.

Using the method in the proof of Theorems 3.1 and 3.3, we can also get the following
Theorem 3.4. For the sake of convenience, we give the sketch of the proof of Theorem 3.4(i)
here.

Theorem 3.4. Let k ≥ 2, 1 < q1 < q, q2, . . . , qk < ∞, 1/q1 = 1/q +
∑k

i=2 1/qi, −1/q < λ < 0,
−1/q1 < λ1 < 0, 0 ≤ λ2, . . . , λk < 1/n, and λ1 = λ +

∑k
i=2 λi.

(i) Assume further that ω is a positive integrable function on [0, 1]. The commutator H	b
ω is

bounded from Ḃq,λ(Rn) to Ḃq1,λ(Rn), for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), if
and only if

∫1

0
tnλω(t)

(
log

2
t

)k−1

dt <∞. (3.24)

(ii) Let λ2, . . . , λk > 0 and 	b = (b2, . . . , bk) ∈ CṀOq2,λ2(Rn) × · · · × CṀOqk,λk(Rn). If (2.1) holds
true, then the corresponding commutatorH	b

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Proof. Let R ∈ (0,∞). Denote B(0, R) by B and B(0, tR) by tB. Assume C <∞. We get

(
1
|B|
∫

B

∣∣∣H
	b
ωf(x)

∣∣∣
q1
dx

)1/q1

≤
⎧
⎨

⎩
1
|B|
∫

B

⎡

⎣
∫1

0

∣∣∣∣∣∣

⎛

⎝
k∏

j=2

(
bj(x) − bj(tx)

)
⎞

⎠f(tx)

∣∣∣∣∣∣
ω(t)dt

⎤

⎦

q1

dx

⎫
⎬

⎭

1/q1

≤ C
∑

I⊂{2,...,k}

∑

J⊂{2,...,k},J∩I=∅

⎧
⎨

⎩
1
|B|
∫

B

⎡

⎣
∫1

0

∣∣∣∣∣∣

⎛

⎝
∏

i∈I

∏

j∈J

∏

m∈{2,...,k}\(I∪J)
(bi(x) − bi(tx))

×
(
bj(x) −

(
bj
)
B

)
(bm(tx) − (bm)tB)

⎞

⎠f(tx)

∣∣∣∣∣∣
ω(t)dt

⎤

⎦

q1

dx

⎫
⎬

⎭

1/q1

.

(3.25)
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Then, applying the Minkowski inequality and the Hölder inequality (with 1/q1 = 1/q +
∑k

i=2 1/qi), and repeating the arguments in the proof of Theorem 3.1, H	b
ω is bounded from

Ḃq,λ(Rn) to Ḃq1(Rn) for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), provided

∫1

0
tnλω(t)

(
log

2
t

)k−1

dt <∞. (3.26)

Conversely, assume that H
	b
ω is bounded from Ḃq,λ(Rn) to Ḃq1(Rn) for any 	b =

(b2, . . . , bk) ∈ CṀOq2(Rn)×· · ·×CṀOqk(Rn). We choose 	b = (b2, . . . , bk) with bj(x) = log |x| for
all x ∈ R

n and j ∈ {2, . . . , k}. Then 	b ∈ CṀOq2(Rn)×· · ·×CṀOqk(Rn). Repeating the argument
in the proof of Theorem 3.1 then yields the desired conclusion.

We point out that, it is still unknown whether the condition (2.1) in Theorem 3.4(ii) is
sharp.

4. Adjoint Operators and Related Results

In this section, we focus on the corresponding results for the adjoint operators of weighted
Hardy operators.

Recall that the weighted Cesàro operator Gω is defined by

Gωf(x) =
∫1

0
f
(x
t

)
t−nω(t)dt, x ∈ R

n. (4.1)

If 0 < α < 1, n = 1, and ω(t) = 1/(Γ(α)((1/t) − 1)1−α), then Gωf(·) is reduced to
(·)1−αJαf(·), where Jα is a variant of Weyl integral operator and defined by

Jαf(x) =
1

Γ(α)

∫∞

x

f(t)

(t − x)1−α
dt

t
(4.2)

for all x ∈ (0,∞). When ω ≡ 1 and n = 1, Gω is the classical Cesàro operator:

Gf(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫∞

x

f
(
y
)

y
dy, x > 0,

−
∫x

−∞

f
(
y
)

y
dy, x < 0.

(4.3)

It was pointed out in [5] that the weighted Hardy operator Hω and the weighted
Cesàro operator Gω are adjoint mutually, namely,

∫

Rn

g(x)Hωf(x)dx =
∫

Rn

f(x)Gωg(x)dx (4.4)

for all admissible pairs f and g.
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Since Ȧq and Ḃq
′

are a pair of dual Banach spaces, it follows from Theorem 2.1 the
following.

Theorem 4.1. Let 1 < q <∞. Then Gω is bounded on Ȧq(Rn) if and only if

E :=
∫1

0
ω(t)dt <∞. (4.5)

Moreover, when (4.5) holds, the operator norm of Gω on Ȧq(Rn) is given by

‖Gω‖Ȧq(Rn)→ Ȧq(Rn) = E. (4.6)

Corollary 4.2. (i) For 0 < α < 1 and 1 < q <∞,

‖Jα‖Ȧq(dx)→ Ȧq(xq(1−α)dx) =
Γ(1)

Γ(1 + α)
. (4.7)

(ii) For 1 < q <∞, we have

‖G‖Ȧq(Rn)→ Ȧq(Rn) = 1. (4.8)

Since the dual space of HȦq(1 < q < ∞) is isomorphic to CṀOq′ (see [18, 19]),
Theorem 2.3 implies the following result.

Theorem 4.3. Let 1 < q <∞. ThenGω is a bounded operator onHȦq(Rn) if and only if (4.5) holds.
Moreover, when (4.5) holds, the operator norm of Gω onHȦq(Rn) is given by

‖Gω‖HȦq(Rn)→HȦq(Rn) = E. (4.9)

Corollary 4.4. For 1 < q <∞, we have

‖G‖HȦq →HȦq = 1. (4.10)

Following the idea in Section 3, we define the higher order commutator of the
weighted Cesàro operator as

G
	b
ωf(x) =

∫1

0

⎛

⎝
k∏

j=1

(
bj
(x
t

)
− bj(x)

)
⎞

⎠f
(x
t

)
t−nω(t)dt, x ∈ R

n. (4.11)

When k = 0, G	b
ω is understood as Gω. Notice that if k = 1, then G	b

ω = Gb
ω. Similar to the proofs

of Theorems 3.1 and 3.3, we have the following result.

Theorem 4.5. Let k ≥ 2, 1 < q1 < q, q2, . . . , qk < ∞, 1/q1 = 1/q +
∑k

i=2 1/qi, −1/q < λ < 0,
−1/q1 < λ1 < 0, 0 ≤ λ2, . . . , λk < 1/n, and λ1 = λ +

∑k
i=2 λi.
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(i) Assume further that ω is a positive integrable function on [0, 1]. The commutator G	b
ω is

bounded from Ḃq,λ(Rn) to Ḃq1,λ(Rn), for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), if
and only if

∫1

0
t−n(λ+1)ω(t)

(
log

2
t

)k−1

dt <∞. (4.12)

(ii) Let λ2, . . . , λk > 0 and 	b = (b2, . . . , bk) ∈ CṀOq2,λ2(Rn) × · · · ×CṀOqk,λk(Rn). Then the
corresponding commutator G	b

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn), provided that

∫1

0
t−n(λ+1)ω(t)dt <∞. (4.13)

We conclude this paper with some comments on the discrete version of the weighted
Hardy and Cesàro operators.

Let N0 be the set of all nonnegative integers and 2−N0 denote the set {2−j : j ∈ N0}.
Let now ϕ be a nonnegative function defined on 2−N0 and f be a complex-valued measurable
function on R

n. The discrete weighted Hardy operator H̃ω is defined by

(
H̃ωf

)
(x) =

∞∑

k=0

2−kf
(

2−kx
)
ω
(

2−k
)
, x ∈ R

n, (4.14)

and the corresponding discrete weighted Cesàro operator is defined by setting, for all x ∈ R
n,

(
G̃ωf

)
(x) =

∞∑

k=0

f
(

2kx
)

2k(n−1)ω
(

2−k
)
. (4.15)

We remark that, by the same argument as above with slight modifications, all the results
related to the operators Hω and Gω in Sections 1–4 are also true for their discrete versions H̃ω

and G̃ω.
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This paper is concerned with the existence of three solutions to a nonlinear fractional boundary
value problem as follows: (d/dt)((1/2)0D

α−1
t (C0 D

α
t u(t)) − (1/2)tDα−1

T (Ct D
α
Tu(t))) + λa(t)f(u(t)) =

0, a.e. t ∈ [0, T], u(0) = u(T) = 0, where α ∈ (1/2, 1], and λ is a positive real parameter. The
approach is based on a critical-points theorem established by G. Bonanno.

1. Introduction

Differential equations with fractional order have recently proved to be strong tools in the
modeling of many physical phenomena in various fields of physical, chemical, biology,
engineering, and economics. There has been significant development in fractional differential
equations, one can see the monographs [1–5] and the papers [6–20] and the references
therein.

Critical-point theory, which proved to be very useful in determining the existence of
solution for integer-order differential equation with some boundary conditions, for example,
one can refer to [21–25]. But till now, there are few results on the solution to fractional
boundary value problem which were established by the critical-point theory, since it is often
very difficult to establish a suitable space and variational functional for fractional boundary
value problem. Recently, Jiao and Zhou [26] investigated the following fractional boundary
value problem:

d

dt

(
1
2 0D

−β
t

(
u′(t)

)
+

1
2 tD

−β
T

(
u′(t)

)
)
+∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0
(1.1)
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by using the critical point theory, where 0D
−β
t and tD

−β
T are the left and right Riemann-

Liouville fractional integrals of order 0 ≤ β < 1, respectively, F : [0, T] × RN → R is a given
function and ∇F(t, x) is the gradient of F at x.

In this paper, by using the critical-points theorem established by Bonanno in [27], a
new approach is provided to investigate the existence of three solutions to the following
fractional boundary value problems:

d

dt

(
1
2 0D

α−1
t

(
C
0 D

a

t u(t)
)
− 1

2 tD
α−1
T

(
C
t D

a

Tu(t)
))

+ λa(t)f(u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(1.2)

where α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville fractional

integrals of order 1 − α respectively, c
0D

α
t and c

tD
α
T are the left and right Caputo fractional

derivatives of order α respectively, λ is a positive real parameter, f : R → R is a continuous
function, and a : R → R is a nonnegative continuous function with a(t)/≡ 0.

2. Preliminaries

In this section, we first introduce some necessary definitions and properties of the fractional
calculus which are used in this paper.

Definition 2.1 (see [5]). Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order α for function f denoted by aD

−α
t f(t) and tD

−α
b
f(t),

respectively, are defined by

aD
−α
t f(t) =

1
Γ(α)

∫ t

a

(t − s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫b

t

(s − t)α−1f(s)ds, t ∈ [a, b], α > 0,

(2.1)

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the gamma
function.

Definition 2.2 (see [5]). Let γ ≥ 0 and n ∈ N.
(i) If γ ∈ (n − 1, n) and f ∈ ACn([a, b],RN), then the left and right Caputo fractional

derivatives of order γ for function f denoted by C
aD

γ
t f(t) and C

t D
γ

b
f(t), respectively, exist

almost everywhere on [a, b], C
aD

γ
t f(t) and C

t D
γ

bf(t) are represented by

C
aD

γ
t f(t) =

1
Γ
(
n − γ)

∫ t

a

(t − s)n−γ−1f (n)(s)ds, t ∈ [a, b],

C
t D

γ

bf(t) =
(−1)n

Γ
(
n − γ)

∫b

t

(s − t)n−γ−1f (n)(s)ds, t ∈ [a, b],

(2.2)

respectively.
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(ii) If γ = n − 1 and f ∈ ACn−1([a, b],RN), then C
aD

n−1
t f(t) and C

t D
n−1
b f(t) are

represented by

C
aD

n−1
t f(t) = f (n−1)(t), C

t D
n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b]. (2.3)

With these definitions, we have the rule for fractional integration by parts, and
the composition of the Riemann-Liouville fractional integration operator with the Caputo
fractional differentiation operator, which were proved in [2, 5].

Property 1 (see [2, 5]). we have the following property of fractional integration:

∫b

a

[
aD

−γ
t f(t)

]
g(t)dt =

∫b

a

[
tD

−γ
b g(t)

]
f(t)dt, γ > 0 (2.4)

provided that f ∈ Lp([a, b],RN), g ∈ Lq([a, b],RN), and p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 + γ or
p /= 1, q /= 1, 1/p + 1/q = 1 + γ .

Property 2 (see [5]). Let n ∈ N and n − 1 < γ ≤ n. If f ∈ ACn([a, b],RN) or f ∈ Cn([a, b],RN),
then

aD
−γ
t

(
C
aD

γ

t f(t)
)
= f(t) −

n−1∑

j=0

f (j)(a)
j!

(t − a)j ,

tD
−γ
b

(
C
t D

γ

bf(t)
)
= f(t) −

n−1∑

j=0

(−1)jf (j)(b)
j!

(b − t)j ,
(2.5)

for t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and f ∈ AC([a, b],RN) or f ∈ C1([a, b],RN), then

aD
−γ
t

(
C
aD

γ

t f(t)
)
= f(t) − f(a), tD

−γ
b

(
C
t D

γ

bf(t)
)
= f(t) − f(b). (2.6)

Remark 2.3. In view of Property 1 and Definition 2.2, it is obvious that u ∈ AC([0, T]) is a
solution of BVP (1.2) if and only if u is a solution of the following problem:

d

dt

(
1
2 0D

−β
t

(
u′(t)

)
+

1
2 tD

−β
T

(
u′(t)

)
)
+ λa(t)f(u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(2.7)

where β = 2(1 − α) ∈ [0, 1).

In order to establish a variational structure for BVP (1.2), it is necessary to construct
appropriate function spaces.

Denote by C∞
0 [0, T] the set of all functions g ∈ C∞[0, T] with g(0) = g(T) = 0.
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Definition 2.4 (see [26]). Let 0 < α ≤ 1. The fractional derivative space Eα0 is defined by the
closure of C∞

0 [0, T] with respect to the norm

‖u‖α =

(∫T

0

∣
∣
∣ C0 D

α

t u(t)
∣
∣
∣

2
dt +

∫T

0
|u(t)|2dt

)1/2

, ∀u ∈ Eα0 . (2.8)

Remark 2.5. It is obvious that the fractional derivative space Eα0 is the space of functions u ∈
L2[0, T] having an α-order Caputo fractional derivative C

0 D
α
t u ∈ L2[0, T] and u(0) = u(T) = 0.

Proposition 2.6 (see [26]). Let 0 < α ≤ 1. The fractional derivative space Eα0 is reflexive and
separable Banach space.

Lemma 2.7 (see [26]). Let 1/2 < α ≤ 1. For all u ∈ Eα0 , one has the following:
(i)

‖u‖L2 ≤ Tα

Γ(α + 1)

∥∥∥ C0 D
α

t u
∥∥∥
L2
. (2.9)

(ii)

‖u‖∞ ≤ Tα−1/2

Γ(α)(2(α − 1) + 1)1/2

∥∥∥ C0 D
α

t u
∥∥∥
L2
. (2.10)

By (2.9), we can consider Eα0 with respect to the norm

‖u‖α =

(∫T

0

∣∣∣ C0 D
α

t u(t)
∣∣∣

2
dt

)1/2

=
∥∥∥ C0 D

α

t u
∥∥∥
L2
, ∀u ∈ Eα0 (2.11)

in the following analysis.

Lemma 2.8 (see [26]). Let 1/2 < α ≤ 1, then for all any u ∈ Eα0 , one has

|cos(πα)|‖u‖2
α ≤ −

∫T

0

C
0 D

α

t u(t) · Ct Dα
Tu(t)dt ≤

1
|cos(πα)| ‖u‖

2
α. (2.12)

Our main tool is the critical-points theorem [27] which is recalled below.

Theorem 2.9 (see [27]). Let X be a separable and reflexive real Banach space; Φ : X → R be
a nonnegative continuously Gateaux differentiable and sequentially weakly lower semicontinuous
functional whose Gateaux derivative admits a continuous inverse on X∗; Ψ : X → R be a
continuously Gateaux differentiable function whose Gateaux derivative is compact. Assume that there
exists x0 ∈ X such that Φ(x0) = Ψ(x0) = 0, and that

(i) lim‖x‖→+∞ (Φ(x) − λΨ(x)) = +∞, forallλ ∈ [0,+∞]. Further, assume that there are
r > 0, x1 ∈ X such that
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(ii) r < Φ(x1);

(iii) sup
x∈Φ−1 ( ]−∞,r[ )

w Ψ(x) < (r/(r + Φ(x1)))Ψ(x1).

Then, for each

λ ∈ Λ1 =

⎤

⎥
⎥
⎦

Φ(x1)
Ψ(x1) − sup

x∈Φ−1( ]−∞,r[ )
w Ψ(x)

,
r

sup
x∈Φ−1( ]−∞,r[ )

w Ψ(x)

⎡

⎢
⎢
⎣ , (2.13)

the equation

Φ′(x) − λΨ′(x) = 0 (2.14)

has at least three solutions in X and, moreover, for each h > 1, there exists an open interval

Λ2 ⊂
[

0,
hr

(r(Ψ(x1)/Φ(x1))) − sup
x∈Φ−1( ]−∞,r[ )

w Ψ(x)

]

(2.15)

and a positive real number σ such that, for each λ ∈ Λ2, (2.14) has at least three solutions in X whose
norms are less than σ.

3. Main Result

For given u ∈ Eα0 , we define functionals Φ,Ψ : Eα → R as follows:

Φ(u) := −1
2

∫T

0

C
0 D

α

t u(t) · Ct D
α

Tu(t)dt,

Ψ(u) :=
∫T

0
a(t)F(u(t))dt,

(3.1)

where F(u) =
∫u

0 f(s)ds. Clearly, Φ and Ψ are Gateaux differentiable functional whose
Gateaux derivative at the point u ∈ Eα0 are given by

Φ′(u)v = −1
2

∫T

0

(
C
0 D

α

t u(t) · Ct D
α

Tv(t) +
C
t D

α

Tu(t) · C0 D
α

t v(t)
)
dt,

Ψ′(u)v =
∫T

0
a(t)f(u(t))v(t)dt = −

∫T

0

∫ t

0
a(s)f(u(s))ds · v′(t)dt,

(3.2)
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for every v ∈ Eα0 . By Definition 2.2 and Property 2, we have

Φ′(u)v =
∫T

0

(
1
2 0D

α−1
t

(
C
0 D

α

t u(t)
)
− 1

2 tD
α−1
T

(
C
t D

α

Tu(t)
))

· v′(t)dt. (3.3)

Hence, Iλ = Φ − λΨ ∈ C1(Eα0 ,R). If u∗ ∈ Eα0 is a critical point of Iλ, then

0 = I ′λ(u∗)v

=
∫T

0

(
1
2 0D

α−1
t

(
C
0 D

α

t u∗(t)
)
− 1

2 tD
α−1
T

(
C
t D

α

Tu∗(t)
)

+λ
∫ t

0
a(s)f(u∗(s))ds

)

· v′(t)dt,

(3.4)

for v ∈ Eα0 . We can choose v ∈ Eα0 such that

v(t) = sin
2kπt
T

or v(t) = 1 − cos
2kπt
T

, k = 1, 2, . . . . (3.5)

The theory of Fourier series and (3.4) imply that

1
2 0D

α−1
t

(
C
0 D

α

t u∗(t)
)
− 1

2 tD
α−1
T

(
C
t D

α

Tu∗(t)
)

+ λ
∫ t

0
a(s)f(u∗(s))ds = C (3.6)

a.e. on [0, T] for some C ∈ R. By (3.6), it is easy to know that u∗ ∈ Eα0 is a solution of BVP
(1.2).

By Lemma 2.7, if α > 1/2, we have for each u ∈ Eα0 that

‖u‖∞ ≤ Ω

(∫T

0

∣∣∣ C0 D
α

t u(t)
∣∣
∣

2
dt

)1/2

= Ω‖u‖α, (3.7)

where

Ω =
Tα−1/2

Γ(α)
√

2(α − 1) + 1
. (3.8)

Given two constants c ≥ 0 and d /= 0, with c /=
√
(2A(α)/| cos(πα)|)Ω · d, where Ω as in

(3.8).
For convenience, set

A(α) :=
8Γ2(2 − α)
Γ(4 − 2α)

T1−2α
((

1 + 33−2α
)

24α−5 − 22α−3 − 1
)
. (3.9)
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Theorem 3.1. Let f : R → R be a continuous function, a : R → R be a nonnegative continuous
function with a(t)/≡ 0, and 1/2 < α ≤ 1. Put F(x) =

∫x
0 f(s)ds for every x ∈ R, and assume that

there exist four positive constants c, d, μ, and p, with c <
√
(2A(α)/| cos(πα)|)Ω · d and p < 2,

such that

(H1) F(x) ≤ μ(1 + |x|p), for all x ∈ R;

(H2) F(x) ≥ 0for all x ∈ [0,Γ(2 − α)d], and

F(x) <
|cos(πα)|c2

(|cos(πα)|c2 + 2Ω2A(α)d2)
∫T

0 a(t)dt

×
[

F(Γ(2 − α)d)
∫3T/4

T/4
a(t)dt

+
T

4Γ(2 − α)d
∫Γ(2−α)d

0
b(s)F(s)ds

]

, ∀x ∈ [−c, c],

(3.10)

where b(s) = a((T/4Γ(2 − α)d)s) + a(T − (T/4Γ(2 − α)d)s). Then, for each

λ ∈ Λ1

=

⎤

⎦ A(α)d2

�a +� ∫Γ(2−α)d0 b(x)F(x)dx − ∫T0 a(t)dt · max|x|≤c F(x)
,

c2|cos(πα)|
2Ω2
∫T

0 a(t)dt · max|x|≤c F(x)

⎡

⎣ ,

(3.11)

where�a and� denote F(Γ(2−α)d) ∫3T/4
T/4 a(t)dt and T/(4Γ(2−α)d) respectively, the problem (1.2)

admits at least three solutions in Eα0 and, moreover, for each h > 1, there exists an open interval

Λ2 ⊂
⎡

⎣0,
hA(α)d2

�a +� ∫2Γ(2−α)
0 b(x)F(x)dx − (2Ω2A(α)d2/c2|cos(πα)|) ∫T0 a(t)dt · max|x|≤c F(x)

⎤

⎦

(3.12)

such that, for each λ ∈ Λ2, the problem (1.2) admits at least three solutions in Eα0 whose norms are
less that σ.

Proof. Let Φ,Ψ be the functionals defined in the above. By the Lemma 5.1 in [26], Φ is
continuous and convex, hence it is weakly sequentially lower semicontinuous. Moreover,
Φ is coercive, continuously Gateaux differentiable functional whose Gateaux derivative
admits a continuous inverse on Eα0 . The functional Ψ is well defined, continuously Gateaux
differentiable and with compact derivative. It is well known that the critical point of the
functional Φ − λΨ in Eα0 is exactly the solution of BVP (1.2).
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From (H1) and (2.12), we get

lim
‖u‖α →+∞

(Φ(u) − λΨ(u)) = +∞, (3.13)

for all λ ∈ [0,+∞[. Put

u1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4Γ(2 − α)d
T

t, t ∈
[

0,
T

4

[
,

Γ(2 − α)d, t ∈
[
T

4
,

3T
4

]
,

4Γ(2 − α)d
T

(T − t), t ∈
]
T

4
, T

]
.

(3.14)

It is easy to check that u1(0) = u1(T) = 0 and u1 ∈ L2[0, T]. The direct calculation shows

C
0 D

α
t u1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4d
T
t1−α, t ∈

[
0,
T

4

[
,

4d
T

(

t1−α −
(
t − T

4

)1−α)

, t ∈
[
T

4
,

3T
4

]
,

4d
T

(

t1−α −
(
t − T

4

)1−α
−
(
t − 3T

4

)1−α)

, t ∈
]

3T
4
, T

]
,

‖u1‖2
α =
∫T

0

(
C
0 D

α

t u1(t)
)2
dt =

∫T/4

0
+
∫3T/4

T/4
+
∫T

3T/4

(
C
0 D

α

t u1(t)
)2
dt

=
16d2

T2

[∫T

0
t2(1−α)dt +

∫T

T/4

(
t − T

4

)2(1−α)
dt +

∫T

3T/4

(
t − 3T

4

)2(1−α)
dt

− 2
∫T

T/4
t1−α
(
t − T

4

)1−α
dt − 2

∫T

3T/4
t1−α
(
t − 3T

4

)1−α
dt

+2
∫T

3T/4

(
t − T

4

)1−α(
t − 3T

4

)1−α
dt

]

=
16d2

T2

[(

1 +
(

3
4

)3−2α

+
(

1
4

)3−2α
)
T3−2α

3 − 2α
− 2
∫T

T/4
t1−α
(
t − T

4

)1−α
dt

−2
∫T

3T/4
t1−α
(
t − 3T

4

)1−α
dt + 2

∫T

3T/4

(
t − T

4

)1−α(
t − 3T

4

)1−α
dt

]

<∞ .

(3.15)
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That is, C
0 D

α
t u1 ∈ L2[0, T]. Thus, u1 ∈ Eα0 . Moreover, the direct calculation shows

C
t D

α
Tu1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4d
T

(

(T − t)1−α −
(

3T
4

− t
)1−α

−
(
T

4
− t
)1−α)

, t ∈
[

0,
T

4

[
,

4d
T

(

(T − t)1−α −
(

3T
4

− t
)1−α)

, t ∈
[
T

4
,

3T
4

]
,

4d
T
(T − t)1−α, t ∈

]
3T
4
, T

]
,

Φ(u1) = − 1
2

∫T

0

C
0 D

α

t u1(t) · Ct D
α

Tu1(t)dt

= − 8d2

T2

[∫T/4

0
t1−α
(

(T − t)1−α −
(

3T
4

− t
)1−α

−
(
T

4
− t
)1−α)

dt

+
∫3T/4

T/4

(

t1−α −
(
t − T

4

)1−α)(

(T − t)1−α −
(

3T
4

− t
)1−α)

dt

+
∫T

3T/4

(

t1−α −
(
t − T

4

)1−α
−
(
t − 3T

4

)1−α)

(T − t)1−αdt

]

= − 8d2

T2

[∫T

0
t1−α(T − t)1−αdt −

∫T/4

0
t1−α
(
T

4
− t
)1−α

dt

+
∫3T/4

T/4

(
t − T

4

)1−α(3T
4

− t
)1−α

dt −
∫T

3T/4

(
t − 3T

4

)1−α
(T − t)1−αdt

−
∫3T/4

0
t1−α
(

3T
4

− t
)1−α

−
∫T

T/4

(
t − T

4

)1−α
(T − t)1−αdt

]

=
8Γ2(2 − α)
Γ(4 − 2α)

T1−2αd2
((

1 + 33−2α
)

24α−5 − 22α−3 − 1
)
= A(α)d2,

Ψ(u1) =
∫T

0
a(t)F(u1(t))dt

=
∫T/4

0
a(t)F

(
4Γ(2 − α)d

T
t

)
dt +

∫3T/4

T/4
a(t)F(Γ(2 − α)d)dt

+
∫T

3T/4
a(t)F

(
4Γ(2 − α)d

T
(T − t)

)
dt

= F(Γ(2 − α)d)
∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d
∫Γ(2−α)d

0
b(x)F(x)dx.

(3.16)

Let r = (| cos(πα)|/2Ω2)c2. Since c <
√
(2A(α)/| cos(πα)|)Ω · d, we obtain r < Φ(u1).
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By (2.12) and (3.7), one has Φ(u) ≤ r ⇒ ‖u‖∞ ≤ c. Thus,

sup
u∈Φ−1( ]−∞,r[ )

w

Ψ(u) = sup
u∈Φ−1( ]−∞,r ])

Ψ(u) ≤ max
|x|≤c

F(x)
∫T

0
a(t)dt. (3.17)

Moreover, we have

r

r + Φ(u1)
Ψ(u1)

=

(|cos(πα)|/2Ω2)c2

(|cos(πα)|/2Ω2)c2 +A(α)d2

×
[

F(Γ(2 − α)d)
∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d
∫Γ(2−α)d

0
b(x)F(x)dx

]

=
|cos(πα)|c2

|cos(πα)|c2 + 2Ω2A(α)d2

×
[

F(Γ(2 − α)d)
∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d
∫Γ(2−α)d

0
b(x)F(x)dx

]

.

(3.18)

Hence, from (H2) one has

sup
u∈Φ−1( ]−∞,r[ )

w

Ψ(u) <
r

r + Φ(u1)
Ψ(u1). (3.19)

Now, taking into account that

Φ(u1)
Ψ(u1) − sup

u∈Φ−1( ]−∞,r[ )
w Ψ(u)

≤ A(α)d2

�a +� ∫Γ(2−α)d0 b(x)F(x)dx − ∫T0 a(t)dt · max|x|≤c F(x)
,

r

sup
u∈Φ−1( ]−∞,r[ )

w Ψ(u)
≥ c2|cos(πα)|

2Ω2
∫T

0 a(t)dt · max|x|≤c F(x)
,

hr

r(Ψ(u1)/Φ(u1)) − sup
u∈Φ−1( ]−∞,r[ )

wΨ(u)

≤ hA(α)d2

�a +� ∫2Γ(2−α)
0 b(x)F(x)dx − (2Ω2A(α)d2/c2|cos(πα)|) ∫T0 a(t)dt · max|x|≤c F(x)

= m.
(3.20)
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Thus, by Theorem 2.9 it follows that, for each λ ∈ Λ1, BVP (1.2) admits at least three solutions,
and there exists an open interval Λ2 ⊂ [0, m] and a real positive number σ such that, for each
λ ∈ Λ2, BVP (1.2) admits at least three solutions in Eα0 whose norms are less than σ.

Finally, we give an example to show the effectiveness of the results obtained here.
Let α = 0.8, T = 1, a(t) ≡ 1, and f(u) = e−uu8(9 − u) + √

u. Then BVP (1.2) reduces to
the following boundary value problem:

d

dt

(
1
2 0D

−0.2
t

(
C
0 D

0.8
t u(t)

)
− 1

2 tD
−0.2
1

(
C
t D

0.8
1 u(t)

))
+ λ
(
e−uu8(9 − u) +√

u
)

= 0, a.e. t ∈ [0, 1],

u(0) = u(1) = 0.

(3.21)

Example 3.2. Owing to Theorem 3.1, for each λ ∈]0.291, 0.318[, BVP (3.21) admits at least
three solutions. In fact, put c = 1 and d = 2, it is easy to calculate that Ω = 1.1089, A(0.8) =
1.3313, and

√
2A(0.8)

|cos(0.8π)|Ω · d = 4.0235 > 1 = c. (3.22)

Since

F(x) =
∫x

0
f(s)ds = e−xx9 +

2
3
x3/2, (3.23)

we have that condition (H1) holds. Moreover, F(x) ≥ 0 for each x ∈ [0, 2Γ(1.2)], and

|cos(0.8π)|
|cos(0.8π)| + 2Ω2A(0.8) · 22

[
1
2
F(2Γ(1.2)) +

1
4Γ(1.2)

∫2Γ(1.2)

0
F(s)ds

]

> 1.064 > 1.0345 = e−1 +
2
3
≥ F(x), |x| ≤ 1,

(3.24)

which implies that condition (H2) holds. Thus, by Theorem 3.1, for each λ ∈ ]0.291, 0.318[,
the problem (3.21) admits at least three nontrivial solutions in E0.8

0 . Moreover, for each h > 1,
there exists an open interval Λ ⊂]0, 3.4674h[ and a real positive number σ such that, for each
λ ∈ Λ, the problem (3.21) admits at least three solutions in E0.8

0 whose norms are less than σ.
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We consider finite element Galerkin solutions for the space fractional diffusion equation with a
nonlinear source term. Existence, stability, and order of convergence of approximate solutions for
the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete
scheme. The analytical convergent orders are obtained as O(k + hγ̃ ), where γ̃ is a constant
depending on the order of fractional derivative. Numerical computations are presented, which
confirm the theoretical results when the equation has a linear source term. When the equation has
a nonlinear source term, numerical results show that the diffusivity depends on the order of frac-
tional derivative as we expect.

1. Introduction

Fractional calculus is an old mathematical topic but it has not been attracted enough for
almost three hundred years. However, it has been recently proven that fractional calculus is
a significant tool in the modeling of many phenomena in various fields such as engineering,
physics, porous media, economics, and biological sciences. One can see related references in
[1–7].

In the classical diffusion model, it is assumed that particles are distributed in a normal
bell-shaped pattern based on the Brownian motion. In general, the nature of diffusion is
characterized by the mean squared displacement

〈
(� r)2

〉
= 2dκμtμ, (1.1)

where d is the spatial dimension and κμ is the diffusion constant. The classical normal
diffusion case arises when the exponent μ = 1. When μ/= 1, anomalous diffusions arise.
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The anomalous diffusion is classified as the process is subdiffusive (diffusive slowly) when
μ < 1 or superdiffusive (diffusive fast) when μ > 1.

As mentioned before, in many real problems, it is more adequate to use anomalous
diffusion described by fractional derivatives than the classical normal diffusion [4, 5, 8–12].
One typical model for anomalous diffusion is the fractional superdiffusion equation arising
in chaotic and turbulent processes, where the usual second derivative in space is replaced by
a fractional derivative of order 1 < μ < 2.

In this paper we discuss Galerkin approximate solutions for the space fractional diffu-
sion equation with a nonlinear source term. The equation is described as

∂u(x, t)
∂t

= κμ∇μu(x, t) + f(x, t, u) (1.2)

with an initial condition

u(x, 0) = u0, x ∈ Ω ⊂ R (1.3)

and boundary conditions

u(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T, (1.4)

where κμ denotes the anomalous diffusion coefficient and ∂Ω is the boundary of the domain
Ω. And the differential operator ∇μ is

∇μ =
1
2 aD

μ
x +

1
2 xD

μ

b
, (1.5)

where aD
μ
x and xD

μ

b are called the left and the right Riemann-Liouville space fractional deriva-
tives of order μ, respectively, defined by

Dμu := aD
μ
xu(x) = Dn

aD
μ−n
x u(x) =

1
Γ
(
n − μ)

dn

dxn

∫x

a

(x − ξ)n−μ−1u(ξ)dξ,

Dμ∗u := xD
μ

b
u(x) = (−D)n xD

μ−n
b

u(x) =
(−1)n

Γ
(
n − μ)

dn

dxn

∫b

x

(ξ − x)n−μ−1u(ξ)dξ.

(1.6)

Here n is the smallest integer such that n − 1 ≤ μ < n.
Throughout this paper, we will assume that the nonlinear source term f(x, t, u) is

locally Lipschitz continuous with constants Cl and Cf such that

∥∥f(u) − f(v)∥∥L2(Ω) ≤ Cl‖u − v‖L2(Ω), (1.7)
∥∥f(u)

∥∥
L2(Ω) ≤ Cf‖u‖L2(Ω) (1.8)

for u, v ∈ {w ∈ Hμ/2
0 (Ω) | ‖w‖L2(Ω) ≤ l}.
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Baeumer et al. [8, 13] have proved existence and uniqueness of a strong solution for
(1.2) using the semigroup theory when f(x, t, u) is globally Lipschitz continuous. Further-
more, when f(x, t, u) is locally Lipschitz continuous, existence of a unique strong solution
has also been shown by introducing the cut-off function.

Finite difference methods have been studied in [14–16] for linear space fractional
diffusion problems. They used the right-shifted Grüwald-Letnikov approximate for the frac-
tional derivative since the standard Grüwald-Letnikov approximate gives the unconditional
instability even for the implicit method. Using the right-shifted Grüwald-Letnikov approxi-
mation, the method of lines has been applied in [12] for numerical approximate solutions.

For the space fractional diffusion problems with a nonlinear source term, Lynch et al.
[17] used the so-called L2 and L2C methods in [6] and compared computational accuracy of
them. Baeumer et al. [8] give existence of the solution and computational results using finite
difference methods. Choi et al. [18] have shown existence and stability of numerical solutions
of an implicit finite difference equation obtained by using the right-shifted Grüwald-Let-
nikov approximation. For the time fractional diffusion equations, explicit and implicit finite
difference methods have been used in [11, 19–23].

Compared to finite difference methods on the fractional diffusion equation, finite
element methods have been rarely discussed. Ervin and Roop [24] have considered finite
element analysis for stationary linear advection dispersion equations, and Roop [25] has
studied finite element analysis for nonstationary linear advection dispersion equations.
The finite element numerical approximations have been discussed for the time and space
fractional Fokker-Planck equation in Deng [9] and for the space general fractional diffusion
equations with a nonlocal quadratic nonlinearity but a linear source term in Ervin et al. [26].

As far as we know, finite element methods have not been considered for the space
fractional diffusion equation with nonlinear source terms. In this paper, we will discuss
finite element solutions for the problem (1.2)–(1.4) under the assumption of existence of a
sufficiently regular solution u of the equation. Finite element numerical analysis of the semi-
discrete and fully discrete methods for (1.2)–(1.4) will be considered using the backward
Euler method in time and Galerkin finite element method in space as well as the semidiscrete
method. We will discuss existence, uniqueness, and stability of the numerical solutions for the
problem (1.2)–(1.4). Also, L2-error estimate will be considered for the problem (1.2)–(1.4).

The outline of the paper is as follows. We introduce some properties of the space
fractional derivatives in Section 2, which will be used in later discussion. In Section 3, the
semidiscrete variational formulation for (1.2) based on Galerkin method is given. Existence,
stability and L2-error estimate of the semidiscrete solution are analyzed. In Section 4, exis-
tence and unconditional stability of approximate solutions for the fully discrete backward
Euler method are shown following the idea of the semidiscrete method. Further, L2-error
estimates are obtained, whose convergence is of O(k + hγ̃), where γ̃ = μ if μ/= 3/2 and γ̃ =
μ − ε, 0 < ε < 1/2, if μ = 3/2. Finally, numerical examples are given in order to see the
theoretical convergence order discussed in Section 5. We will see that numerical solutions of
fractional diffusion equations diffuse more slowly than that of the classical diffusion problem
and diffusivity depends on the order of fractional derivatives.

2. The Variational Form

In this section we will consider the variational form of problem (1.2)–(1.4) and show existence
and stability of the weak solution. We first recall some basic properties of Riemann-Liouville
fractional calculus [9, 24].
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For any given positive number μ > 0, define the seminorm

|u|JμL (R) = ‖Dμu‖L2(R) (2.1)

and the norm

‖u‖JμL (R) =
(
‖u‖2

L2(R) + |u|2
J
μ

L (R)

)1/2
, (2.2)

where the left fractional derivative space JμL(R) denotes the closure of C∞
0 (R) with respect to

the norm ‖ · ‖JμL (R).
Similarly, we may define the right fractional derivative space JμR(R) as the closure of

C∞
0 (R) with respect to the norm ‖ · ‖JμR(R), where

‖u‖JμR(R) =
(
‖u‖2

L2(R) + |u|2
J
μ

R(R)

)1/2
(2.3)

and the seminorm

|u|JμR(R) = ‖Dμ∗u‖L2(R). (2.4)

Furthermore, with the help of Fourier transform we define a seminorm

|u|Hμ(R) =
∥∥|ω|μû∥∥L2(R) (2.5)

and the norm

‖u‖Hμ(R) =
(
‖u‖2

L2(R) + |u|2Hμ(R)

)1/2
. (2.6)

Here Hμ(R) denotes the closure of C∞
0 (R) with respect to ‖ · ‖Hμ(R). It is known in [24] that

the spaces JμL(R), J
μ

R(R), andHμ(R) are all equal with equivalent seminorms and norms. Ana-
logously, when the domain Ω is a bounded interval, the spaces JμL,0(Ω), JμR,0(Ω), and H

μ

0 (Ω)
are equal with equivalent seminorms and norms [24, 27].

The following lemma on the Riemann-Liouville fractional integral operators will be
used in our analysis, which can be proved by using the property of Fourier transform [24].

Lemma 2.1. For a given μ > 0 and a real valued function u

(Dμu,Dμ∗u) = cos
(
πμ
)‖Dμu‖2

L2(R). (2.7)

Remark 2.2. It follows from (2.7) that we may use the following norm:

‖u‖2
H

μ/2
0 (R)

= ‖u‖2
L2(R) + κμ

∣∣∣cos
(
π · μ

2

)∣∣∣|u|2
H

μ/2
0 (R)

(2.8)

instead of the norm ‖u‖Hμ(R).
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For the seminorm on H
μ

0 (Ω) with Ω = (a, b), the following fractional Poincaré-
Friedrich’s inequality holds. For the proof, we refer to [9, 24].

Lemma 2.3. For u ∈ Hμ

0 (Ω), there is a positive constant C such that

‖u‖L2(Ω) ≤ C|u|Hμ

0 (Ω) (2.9)

and for 0 < s < μ, s /=n − 1/2, n − 1 ≤ μ < n, n ∈ N,

|u|Hs
0 (Ω) ≤ C|u|Hμ

0 (Ω). (2.10)

Hereafter, a positive numberC will denote a generic constant. Also the semigroup pro-
perty and the adjoint property hold for the Riemann-Liouville fractional integral operators
[9, 24]: for all μ, ν > 0, if u ∈ Lp(Ω), p ≥ 1, then

aD
−μ
x aD

−ν
x u(x) = aD

−μ−ν
x u(x), ∀x ∈ Ω,

xD
−μ
b xD

−ν
b u(x) = xD

−μ−ν
b

u(x), ∀x ∈ Ω,
(2.11)

and specially

(
aD

−μ
x u, v

)

L2(Ω)
=
(
u, xD

−μ
b v
)

L2(Ω)
, ∀u, v ∈ L2(Ω). (2.12)

In the rest of this section, we will consider a weak problem for (1.2)–(1.4) with 1 < μ <
2: find a function u ∈ Hμ/2

0 (Ω) such that

(ut, v) =
(
κμ∇μu, v

)
+
(
f(u), v

)
, ∀v ∈ Hμ/2

0 (Ω). (2.13)

Since there is a weak solution of (2.13) when f is locally Lipschitz continuous as in
[8, 13], we here only discuss the stability of the weak solution, to show that we need the
following lemma.

Lemma 2.4. For all v ∈ Hμ/2
0 (Ω), the following inequality holds:

−(κμ∇μv, v
) ≥ κμ

∣∣∣cos
(
π · μ

2

)∣∣∣|v|2
H

μ/2
0 (Ω)

. (2.14)
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Proof. Following the ideas in [9, 26], we obtain the following inequality by using the pro-
perties (2.11)-(2.12) and Lemmas 2.1–2.3:

−(κμ∇μv, v
)
= −κμ

2

{(
aD

μ
xv, v

)
+
(
xD

μ

bv, v
)}

= −κμ
2

{∫b

a

(
D2

aD
−(2−μ)
x v

)
v dx +

∫b

a

(
(−D)2

xD
−(2−μ)
b

v
)
v dx

}

=
κμ

2

{∫b

a

(
DaD

−(2−μ)
x v

)
Dvdx +

∫b

a

(
DxD

−(2−μ)
b

v
)
Dvdx

}

=
κμ

2

{∫b

a

(
aD

−(2−μ)
x Dv

)
Dvdx +

∫b

a

(
xD

−(2−μ)
b

Dv
)
Dvdx

}

=
κμ

2

{∫b

a

(
aD

−(2−μ)/2
x aD

−(2−μ)/2
x Dv

)
Dvdx

+
∫b

a

(
xD

−((2−μ)/2)
b xD

−(2−μ)/2
b

Dv
)
Dvdx

}

=
κμ

2

{∫b

a

(
aD

−(2−μ)/2
x Dv

)(
xD

−(2−μ)/2
b Dv

)
dx

+
∫b

a

(
xD

−(2−μ)/2
b Dv

)(
aD

−(2−μ)/2
x Dv

)
dx

}

= −κμ
(
Dμ/2v,D(μ/2)∗v

)

= −κμ cos
(
π · μ

2

)∥∥∥Dμ/2v
∥∥∥

2

L2(Ω)

≥ κμ
∣∣∣cos
(
π · μ

2

)∣∣∣|v|2
H

μ/2
0 (Ω)

.

(2.15)

This completes the proof.

We consider the stability of a weak solution u for (2.13).

Theorem 2.5. Let u be a solution of (2.13). Then there is a constant C such that

‖u(t)‖L2(Ω) ≤ C‖u(0)‖L2(Ω). (2.16)

Proof. Taking v = u(t) in (2.13), we obtain

(ut, u) −
(
κμ∇μu, u

)
=
(
f(u), u

)
. (2.17)
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Since the second term on the left hand side is nonnegative from Lemma 2.4, we have

1
2
d

dt
‖u‖2

L2(Ω) ≤
1
2
d

dt
‖u‖2

L2(Ω) + κμ
∣
∣
∣cos
(
π · μ

2

)∣∣
∣|u|2

H
μ/2
0 (Ω)

≤ ∥∥f(u)∥∥L2(Ω)‖u‖L2(Ω)

≤ Cf‖u‖2
L2(Ω).

(2.18)

Integrating both sides with respect to t, we obtain

‖u(t)‖2
L2(Ω) ≤ ‖u(0)‖2

L2(Ω) + C
∫ t

0
‖u(s)‖2

L2(Ω)ds. (2.19)

An application of Gronwall’s inequality gives that there is a constant C such that

‖u(t)‖2
L2(Ω) ≤ C‖u(0)‖2

L2(Ω). (2.20)

This completes the proof.

3. The Semidiscrete Variational Form

In this section, we will analyze the stability and error estimates of Galerkin finite element
solutions for the semidiscrete variational formulation for (1.2).

Let Sh be a partition of Ω with a grid parameter h such that Ω = {∪K | K ∈ Sh} and
h = maxK∈ShhK, where hK is the width of the subinterval K. Associated with the partition Sh,
we may define a finite-dimensional subspace Vh ⊂ H

μ/2
0 (Ω) with a basis {ϕi}Ni=1 of piecewise

polynomials. Then the semidiscrete variational problem is to find uh ∈ Vh such that

(uh,t, v) =
(
κμ∇μuh, v

)
+
(
f(uh), v

)
, ∀v ∈ Vh, (3.1)

uh(x, 0) = u0, (3.2)

uh(a, t) = uh(b, t) = 0. (3.3)

Since uh can be represented as

uh(x, t) =
N∑

i=1

αi(t)ϕi(x), (3.4)

we may rewrite (3.1) in a matrix form:

Au̇(t) + Bu = F(u), (3.5)
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where N ×N matrices A and B and vectors u and F are

A =
(
aij
)
, aij =

(
ϕi, ϕj

)
,

B =
(
bij
)
, bij = −κμ

2

[(
Dμ/2ϕi,D(μ/2)∗ϕj

)
+
(
Dμ/2ϕj,D(μ/2)∗ϕi

)]
,

F(u) =
(
Fj
)
, Fj =

(

f

(
N∑

l=1

αlϕl

)

, ϕj

)

,

u = (α1(t), α2(t), . . . , αN(t))T .

(3.6)

It follows from
∑N

i,j=1 αiαj(ϕi, ϕj) = (
∑N

i=1 αiϕi,
∑N

j=1 αjϕj) ≥ 0 and Lemma 2.4 that mat-
rices A and B are nonnegative definite and nonsingular. Thus this system (3.5) of ordinary
differential equations has a unique solution since f is locally Lipschitz continuous.

The stability for the semidiscrete variational problem (3.1) can be obtained by follow-
ing the proof of Theorem 2.5, which is

‖uh‖L2(Ω) ≤ C‖u0‖L2(Ω). (3.7)

Now we will consider estimates of error between the weak solution of (2.13) and the
one of semidiscrete form (3.1). The finite dimensional subspace Vh ⊂ H

μ/2
0 (Ω) is chosen so

that the interpolation Ihu of u satisfies an approximation property [9, 28]: for u ∈ Hγ(Ω),
0 < γ ≤ n, and 0 ≤ s ≤ γ , there exists a constant C depending only on Ω such that

∥∥∥u − Ihu
∥∥∥
Hs(Ω)

≤ Chγ−s‖u‖Hγ (Ω). (3.8)

Since the norm ‖ · ‖Hs(Ω) is equivalent to the seminorm | · |Hs(Ω), we may replace (3.8) by the
relation

∥∥∥u − Ihu
∥∥∥
Hs(Ω)

≤ Chγ−s|u|Hγ (Ω). (3.9)

Further we need an adjoint problem to find w ∈ Hμ(Ω) ∩Hμ/2
0 (Ω) satisfying

−κμ∇μw = g, in Ω,

w = 0, on ∂Ω.
(3.10)

Bai and Lü [29] have proved existence of a solution to the problem (3.10). We assume as in
Ervin and Roop [24] that the solution w satisfies the regularity

‖w‖Hμ(Ω) ≤ C
∥∥g
∥∥
L2(Ω), μ /=

3
2
, (3.11)

‖w‖Hμ−ε(Ω) ≤ C
∥∥g
∥∥
L2(Ω), μ =

3
2
, 0 < ε <

1
2
. (3.12)
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Let ũh = Phu be the elliptic projection Ph : Hμ/2
0 (Ω) → Vh of the exact solution u,

which is defined by

−κμ(∇μ(u − ũh), v) = 0, ∀v ∈ Vh. (3.13)

Let θ = uh − ũh and ρ = ũh − u. Then the error is expressed as

eh = uh − u = (uh − ũh) + (ũh − u) = θ + ρ. (3.14)

First, we consider the following estimates on ρ.

Lemma 3.1. Let ũh be a solution of (3.13) and let u ∈ Hμ(Ω)∩Hμ/2
0 (Ω) be the solution of (2.13). Let

ρ(t) = ũh(t) − u(t). Then there is a constant C such that

∥∥ρ(t)
∥∥
L2(Ω) ≤ Chγ̃‖u(t)‖Hγ (Ω),

∥∥ρt(t)
∥∥
L2(Ω) ≤ Chγ̃‖u(t)‖Hγ (Ω),

(3.15)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2 if μ = 3/2.

Proof. It follows from the fractional Poincaré-Friedrich’s inequality and the adjoint property
(2.12) that for ψ, χ ∈ Vh ⊂ Hμ/2

0 (Ω)

(
Dμψ, χ

)
=
∫b

a

(
Dμ/2ψ

)
D(μ/2)∗χdx

≤ ∣∣ψ∣∣
J
μ/2
L,0 (Ω)

∣∣χ
∣∣
J
μ/2
R,0 (Ω)

≤ C∥∥ψ∥∥
H

μ/2
0 (Ω)

∥∥χ
∥∥
H

μ/2
0 (Ω).

(3.16)

Similarly we obtain

(
Dμ∗ψ, χ

)
=
∫b

a

(
D(μ/2)∗ψ

)
Dμ/2χdx ≤ C∥∥ψ∥∥

H
μ/2
0 (Ω)

∥∥χ
∥∥
H

μ/2
0 (Ω). (3.17)

It follows from Lemma 2.4 that for v ∈ Vh

κμ
∣∣∣cos
(
π · μ

2

)∣∣∣|u − ũh|2
H

μ/2
0 (Ω)

≤ −κμ(∇μ(u − ũh), u − ũh)

≤ −κμ(∇μ(u − ũh), u − v) − κμ(∇μ(u − ũh), v − ũh)
≤ C‖u − ũh‖Hμ/2

0 (Ω)‖u − v‖
H

μ/2
0 (Ω).

(3.18)
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Using the equivalence of seminorms and norms, we obtain

‖u − ũh‖Hμ/2
0 (Ω) ≤ C inf

v∈Vh
‖u − v‖

H
μ/2
0 (Ω) ≤ C

∥
∥
∥u − Ihu

∥
∥
∥
H

μ/2
0 (Ω)

. (3.19)

In case of μ/= 3/2 and v ∈ Vh, by taking g = ρ in (3.10) and using (3.13), (3.16)-(3.17)
and the adjoint property (2.12), we have

(
ρ, ρ
)
= −κμ

(∇μw, ρ
)

= −κμ
(∇μ(w − v), ρ) − κμ

(∇μρ, v
)

= −κμ
(∇μ(w − v), ρ)

≤ C‖w − v‖
H

μ/2
0 (Ω)

∥
∥ρ
∥
∥
H

μ/2
0 (Ω).

(3.20)

Taking v = Ihw in the previously mentioned inequalities, we have

∥∥ρ
∥∥2
L2(Ω) ≤ C

∥∥∥w − Ihw
∥∥∥
H

μ/2
0 (Ω)

∥∥ρ
∥∥
H

μ/2
0 (Ω)

≤ Chμ/2‖w‖Hμ(Ω)

∥∥∥u − Ihu
∥∥∥
H

μ/2
0 (Ω)

≤ Chμ/2∥∥ρ
∥∥
L2(Ω)h

μ/2‖u‖Hμ(Ω).

(3.21)

Thus we obtain

∥∥ρ
∥∥
L2(Ω) ≤ Chμ‖u‖Hμ(Ω). (3.22)

We now differentiate (3.13). Then we obtain −κμ(∇μρt, v) = 0 for all v ∈ Vh. Using the pre-
vious duality arguments again, we have

∥∥ρt
∥∥
L2(Ω) ≤ Chμ‖u‖Hμ(Ω). (3.23)

In case of μ = 3/2, we can similarly prove (3.15) by applying the assumption (3.12).
This completes the proof.

We now consider the estimates on θ.

Lemma 3.2. Let uh and ũh be the solutions of (3.1)–(3.3) and (3.13), respectively. Let θ(t) = uh(t)−
ũh(t). Then there is a constant C such that

‖θ(t)‖L2(Ω) ≤ Chγ̃ , (3.24)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2 if μ = 3/2.
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Proof. It follows from (3.1) and (3.13) that for v ∈ Vh,

(θt, v) − κμ(∇μθ, v) =
(
f(uh) − f(u), v

) − (ρt, v
)
. (3.25)

Replacing v = θ in (3.25), we obtain

1
2
d

dt
‖θ‖2

L2(Ω) ≤ Cl‖uh − u‖L2(Ω)‖θ‖L2(Ω) +
∥
∥ρt
∥
∥
L2(Ω)‖θ‖L2(Ω). (3.26)

Using Young’s inequality

d

dt
‖θ‖2

L2(Ω) ≤ C
(
‖uh − ũh‖L2(Ω) + ‖ũh − u‖L2(Ω)

)
‖θ‖L2(Ω) +

∥∥ρt
∥∥
L2(Ω)‖θ‖L2(Ω)

≤ C
(
‖θ‖L2(Ω) +

∥∥ρ
∥∥
L2(Ω) +

∥∥ρt
∥∥
L2(Ω)

)
‖θ‖L2(Ω)

≤ C1‖θ‖2
L2(Ω) + C2

∥∥ρ
∥∥2
L2(Ω) + C3

∥∥ρt
∥∥2
L2(Ω).

(3.27)

Integration on time t gives

‖θ(t)‖2
L2(Ω) ≤ ‖θ(0)‖2

L2(Ω) + C
∫ t

0
‖θ‖2

L2(Ω)ds + C
∫ t

0

(∥∥ρ
∥∥2
L2(Ω) +

∥∥ρt
∥∥2
L2(Ω)

)
ds. (3.28)

Applying Gronwall’s inequality, we obtain

‖θ(t)‖2
L2(Ω) ≤ C1‖θ(0)‖2

L2(Ω) + C2

∫ t

0

(∥∥ρ
∥∥2
L2(Ω) +

∥∥ρt
∥∥2
L2(Ω)

)
ds. (3.29)

Since

‖θ(0)‖L2(Ω) ≤ ‖uh(0) − u(0)‖L2(Ω) + ‖ũh(0) − u(0)‖L2(Ω)

≤ Chγ̃‖u0‖Hγ (Ω),
(3.30)

we obtain the desired inequality

‖θ(t)‖L2(Ω) ≤ Chγ̃ , (3.31)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2, if μ = 3/2.
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Combining Lemmas 3.1 and 3.2, we obtain the following error estimates.

Theorem 3.3. Let uh and u be the solutions of (3.1)–(3.3) and (1.2)–(1.4), respectively. Then there is
a constant C(u) such that

‖u(t) − uh(t)‖L2(Ω) ≤ C(u)hμ, μ /=
3
2
,

‖u(t) − uh(t)‖L2(Ω) ≤ C(u)hμ−ε, μ =
3
2
, 0 < ε <

1
2
.

(3.32)

4. The Fully Discrete Variational Form

In this section, we consider a fully discrete variational formulation of (1.2). Existence and
uniqueness of numerical solutions for the fully discrete variational formulation are discussed.
The corresponding error estimates are also analyzed.

For the temporal discretization let k = T/M for a positive integer M and tm = mk. Let
um be the solution of the backward Euler method defined by

um+1 − um
k

= κμ∇μum+1 + f
(
um+1

)
(4.1)

with an initial condition

u0(x) = u0, x ∈ Ω = (a, b) (4.2)

and boundary conditions

um+1(a) = um+1(b) = 0, m = 0, 1, . . . ,M − 1. (4.3)

Then we get the fully discrete variational formulation of (1.2) to find um+1 ∈ H
μ/2
0 (Ω) such

that for all v ∈ Hμ/2
0 (Ω)

(
um+1, v

)
− k
(
κμ∇μum+1, v

)
=
(
kf
(
um+1

)
, v
)
+ (um, v). (4.4)

Thus a finite Galerkin solution um+1
h

∈ Vh ⊂ Hμ/2
0 (Ω) is a solution of the equation

(
um+1
h , vh

)
− kκμ

(
∇μum+1

h , vh
)
= k
(
f
(
um+1
h

)
, vh
)
+
(
umh , vh

)
, ∀vh ∈ Vh (4.5)

with an initial condition

u0
h = u0 (4.6)
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and boundary conditions

um+1
h (a) = um+1

h (b) = 0, m = 0, 1, . . . ,M − 1. (4.7)

Now we prove the existence and uniqueness of solutions for (4.5) using the Brouwer
fixed-point theorem.

Theorem 4.1. There exists a unique solution um+1
h

∈ Vh ⊂ Hμ/2
0 (Ω) of (4.5)–(4.7).

Proof. Let

G
(
um+1
h

)
= um+1

h − kκμ∇μum+1
h − kf

(
um+1
h

)
− umh . (4.8)

Then G(v) is obviously a continuous function from Vh to Vh. In order to show the existence of
solution for G(v) = 0, we adopt the mathematical induction. Assume that u0

h
, u1

h
, . . . , um

h
exist

for m <M. It follows from (1.8), Lemma 2.4, and Young’s inequality that

(G(v), v) = (v, v) − (umh , v
) − k(κμ∇μv, v

) − k(f(v), v)

≥ ‖v‖2
L2(Ω) −

∥∥umh
∥∥
L2(Ω)‖v‖L2(Ω) + kκμ

∣∣∣cos
(
π · μ

2

)∣∣∣|v|2
H

μ/2
0 (Ω)

− Cfk‖v‖2
L2(Ω)

≥ ‖v‖2
L2(Ω) −

∥∥umh
∥∥
L2(Ω)‖v‖L2(Ω) − Cfk‖v‖2

L2(Ω)

≥ ‖v‖2
L2(Ω) −

1
2

(∥∥umh
∥∥2
L2(Ω) + ‖v‖2

L2(Ω)

)
− Cfk‖v‖2

L2(Ω)

=
(

1
2
− Cfk

)
‖v‖2

L2(Ω) −
1
2
∥∥umh
∥∥2
L2(Ω).

(4.9)

If we take sufficiently small k so that k < 1/2Cf and ‖v‖L2(Ω) > ‖umh ‖L2(Ω)/(1−2Cfk), then the
Brouwer’s fixed-point theorem implies the existence of a solution.

For the proof of the uniqueness of solutions, we assume that u and v are two solutions
of (4.5). Then we obtain

(
u − v, ψ) = kκμ

(∇μ(u − v), ψ) + k(f(u) − f(v), ψ), ∀ψ ∈ Vh ⊂ Hμ/2
0 (Ω). (4.10)

Replacing ψ = u − v in the above equation and applying Lemma 2.4, we obtain

‖u − v‖2
L2(Ω) ≤ −kκμ

∣∣∣cos
(
π · μ

2

)∣∣∣|u − v|
H

μ/2
0 (Ω) + k

∥∥f(u) − f(v)∥∥L2(Ω)‖u − v‖L2(Ω)

≤ k∥∥f(u) − f(v)∥∥L2(Ω)‖u − v‖L2(Ω)

≤ kCl‖u − v‖2
L2(Ω).

(4.11)

This implies u − v = 0 since u(0) = v(0).
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The following theorem presents the unconditional stability for (4.4).

Theorem 4.2. The fully discrete scheme (4.4) is unconditionally stable. In fact, for anym

∥
∥
∥um+1

∥
∥
∥
L2(Ω)

≤ C‖u0‖L2(Ω). (4.12)

Proof. It follows from (1.8), Lemma 2.4, and Young’s inequality that by taking v = um+1 in
(4.4), we obtain

0 =
(
um+1, um+1

)
− k
(
κμ∇μum+1, um+1

)
− k
(
f
(
um+1

)
, um+1

)
−
(
um, um+1

)

≥
∥
∥
∥um+1

∥
∥
∥

2

L2(Ω)
+ kκμ

∣
∣
∣cos
(
π · μ

2

)∣∣
∣
∣
∣
∣um+1

∣
∣
∣

2

H
μ/2
0 (Ω)

− Cfk
∥∥∥um+1

∥∥∥
2

L2(Ω)
− ‖um‖L2(Ω)

∥∥∥um+1
∥∥∥
L2(Ω)

≥ 1
2

∥∥∥um+1
∥∥∥

2

L2(Ω)
+ kκμ

∣∣∣cos
(
π · μ

2

)∣∣∣
∣∣∣um+1

∣∣∣
2

H
μ/2
0 (Ω)

− Cfk
∥∥∥um+1

∥∥∥
2

L2(Ω)
− 1

2
‖um‖2

L2(Ω).

(4.13)

Then

1
2

∥∥∥um+1
∥∥∥

2

L2(Ω)
≤ 1

2

∥∥∥um+1
∥∥∥

2

L2(Ω)
+ kκμ

∣∣∣cos
(
π · μ

2

)∣∣∣
∣∣∣um+1

∣∣∣
2

H
μ/2
0 (Ω)

≤ Cfk
∥∥∥um+1

∥∥∥
2

L2(Ω)
+

1
2
‖um‖2

L2(Ω).

(4.14)

Adding the above inequality from m = 0 to m, we obtain

(
1 − 2Cfk

)∥∥∥um+1
∥∥∥

2

L2(Ω)
≤ ‖u0‖2

L2(Ω) + 2Cfk
m∑

j=1

∥∥∥uj
∥∥∥

2

L2(Ω)
. (4.15)

Applying the discrete Gronwall’s inequality with sufficiently small k such that k < 1/2Cf ,
we obtain the desired result.

The following theorem is an error estimate for the fully discrete problem (4.4).

Theorem 4.3. Let u be the exact solution of (1.2) and let um be the solution of (4.4). Then there is a
constant C such that

‖u(tm) − um‖L2(Ω) ≤ Ck. (4.16)
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Proof. Let em = u(tm) − um be the error at tm. It follows from (1.2) and (4.4) that for any v ∈
H

μ/2
0 (Ω)

(
em+1, v

)
− k
(
κμ∇μem+1, v

)
= k
(
f(u(tm+1)) − f

(
um+1

)
, v
)
+ (em, v) +

(
krm+1, v

)
, (4.17)

where r = O(k). Taking v = em+1,

∥
∥
∥em+1

∥
∥
∥

2

L2(Ω)
≤
∥
∥
∥em+1

∥
∥
∥

2

L2(Ω)
+ kκμ

∣
∣
∣cos
(
π · μ

2

)∣∣
∣
∣
∣
∣em+1

∣
∣
∣

2

H
μ/2
0 (Ω)

≤ k
∥
∥
∥f(u(tm+1)) − f(um+1)

∥
∥
∥
L2(Ω)

∥
∥
∥em+1

∥
∥
∥
L2(Ω)

+ ‖em‖L2(Ω)

∥
∥∥em+1

∥
∥∥
L2(Ω)

+
∥
∥∥krm+1

∥
∥∥
L2(Ω)

∥
∥∥em+1

∥
∥∥
L2(Ω)

.

(4.18)

Applying the locally Lipschitz continuity of f and Young’s inequality, we obtain

∥∥∥em+1
∥∥∥

2

L2(Ω)
≤ kCl

∥∥∥em+1
∥∥∥

2

L2(Ω)
+ ‖em‖L2(Ω)

∥∥∥em+1
∥∥∥
L2(Ω)

+
∥∥∥krm+1

∥∥∥
L2(Ω)

∥∥∥em+1
∥∥∥
L2(Ω)

≤ kCl

∥∥∥em+1
∥∥∥

2

L2(Ω)
+ ε1‖em‖2

L2(Ω) +
1

4ε1

∥∥∥em+1
∥∥∥

2

L2(Ω)

+ ε2

∥∥∥krm+1
∥∥∥

2

L2(Ω)
+

1
4ε2

∥∥∥em+1
∥∥∥

2

L2(Ω)
.

(4.19)

That is,

(
1 − 1

4ε1
− 1

4ε2

)∥∥∥em+1
∥∥∥

2

L2(Ω)
≤ kCl

∥∥∥em+1
∥∥∥

2

L2(Ω)
+ ε1‖em‖2

L2(Ω) + ε2

∥∥∥krm+1
∥∥∥

2

L2(Ω)
. (4.20)

Denoting ε0 = 1 − 1/4ε1 − 1/4ε2 and adding the above equation from m = 0 to m, we obtain

(ε0 − kCl)
∥∥∥em+1

∥∥∥
2

L2(Ω)
≤ ε1

∥∥∥e0
∥∥∥

2

L2(Ω)
+ (kCl + ε1 − ε0)

m∑

i=1

∥∥∥ei
∥∥∥

2

L2(Ω)
+ ε2

m+1∑

i=1

∥∥∥kri
∥∥∥

2

L2(Ω)
. (4.21)

Applying the discrete Gronwall’s inequality with sufficiently small k such that (ε0 − ε1)/Cl <
k < ε0/Cl, we obtain the desired result since

∑m+1
i=1 ‖kri‖L2(Ω) ≤ Ck and ‖e0‖L2(Ω) = ‖u(0) −

u0‖L2(Ω) = 0.

As in the previous section, denote θm+1 = um+1
h − ũm+1

h and ρm+1 = ũm+1
h − u(tm+1). Here

ũm+1
h

is the elliptic projection of u(tm+1) defined in (3.13). Then

em+1
h = θm+1 + ρm+1. (4.22)
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Theorem 4.4. Let u be the exact solution of (1.2)–(1.4) and let {umh }Mm=0 be the solution of (4.5)–
(4.7). Then when μ/= 3/2

∥
∥
∥u(tm+1) − um+1

h

∥
∥
∥
L2(Ω)

≤ Ck + Chμ‖u(tm+1)‖Hμ(Ω) (4.23)

and when μ = 3/2, 0 < ε < 1/2,

∥
∥
∥u(tm+1) − um+1

h

∥
∥
∥
L2(Ω)

≤ Ck + Chμ−ε‖u(tm+1)‖Hμ−ε(Ω). (4.24)

Proof. Since we know the estimates on ρ from Lemma 3.1, we have only to show boundedness
of θm+1. Using the property (3.13), we obtain for v ∈ Vh

(
θm+1, v

)
− k
(
κμ∇μθm+1, v

)
= k
(
f
(
um+1
h

)
− f(u(tm+1)), v

)
+
(
umh − u(tm), v

)

−
(
krm+1, v

)
−
(
ρm+1, v

)
,

(4.25)

where r = O(k).
Taking v = θm+1 and applying Lemma 2.4, the locally Lipschitz continuity of f ,

Young’s inequality, and the triangle inequality, we obtain

∥∥∥θm+1
∥∥∥

2

L2(Ω)
≤
∥∥∥θm+1

∥∥∥
2

L2(Ω)
+ kκμ

∣∣∣cos
(
π · μ

2

)∣∣∣
∣∣∣θm+1

∣∣∣
2

H
μ/2
0 (Ω)

≤ k
∥∥∥f(um+1

h ) − f(u(tm+1))
∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

+
∥∥emh
∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

+
∥∥∥krm+1

∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

+
∥∥∥ρm+1

∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

≤ kCl

∥∥∥em+1
h

∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

+
(
‖θm‖L2(Ω) +

∥∥ρm
∥∥
L2(Ω)

)∥∥∥θm+1
∥∥∥
L2(Ω)

+
∥∥∥krm+1

∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

+
∥∥∥ρm+1

∥∥∥
L2(Ω)

∥∥∥θm+1
∥∥∥
L2(Ω)

≤ kCl

(
1 +

1
4ε6

)∥∥∥θm+1
∥∥∥

2

L2(Ω)
+
(

1
4ε3

+
1

4ε4
+

1
4ε5

+
1

4ε6

)∥∥∥θm+1
∥∥∥

2

L2(Ω)

+ ε3‖θm‖2
L2(Ω) + ε4

∥∥∥krm+1
∥∥∥

2

L2(Ω)
+ ε5
∥∥ρm
∥∥2
L2(Ω) + (1 + kCl)ε6

∥∥∥ρm+1
∥∥∥

2

L2(Ω)
.

(4.26)
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This implies that

(
1 − 1

4ε3
− 1

4ε4
− 1

4ε5
− 1

4ε6

)∥
∥
∥θm+1

∥
∥
∥

2

L2(Ω)

≤ kCl

(
1 +

1
4ε6

)∥
∥
∥θm+1

∥
∥
∥

2

L2(Ω)
+ ε3‖θm‖2

L2(Ω) + ε4

∥
∥
∥krm+1

∥
∥
∥

2

L2(Ω)

+ ε5
∥
∥ρm
∥
∥2
L2(Ω) + (1 + kCl)ε6

∥
∥
∥ρm+1

∥
∥
∥

2

L2(Ω)
.

(4.27)

Denote ε7 = 1 − 1/4ε3 − 1/4ε4 − 1/4ε5 − 1/4ε6 and ε8 = 1 + 1/4ε6. Then adding the above
inequality from m = 0 to m, we obtain

(ε7 − kClε8)
∥∥∥θm+1

∥∥∥
2

L2(Ω)
≤ ε3

∥∥∥θ0
∥∥∥

2

L2(Ω)
+ (kClε8 + ε3 − ε7)

m∑

i=1

∥∥∥θi
∥∥∥

2

L2(Ω)

+ ε4

m+1∑

i=1

∥∥∥kri
∥∥∥

2

L2(Ω)
+ ε5

m∑

i=0

∥∥∥ρi
∥∥∥

2

L2(Ω)

+ (1 + kCl)ε6

m+1∑

i=1

∥∥∥ρi
∥∥∥

2

L2(Ω)
.

(4.28)

Applying the discrete Gronwall’s inequality with sufficiently small k such that (ε7 − ε3)/
ε8Cl < k < ε7/Clε8,

∥∥∥θm+1
∥∥∥

2

L2(Ω)
≤ C1

∥∥∥θ0
∥∥∥

2

L2(Ω)
+ C2

m+1∑

i=1

∥∥∥kri
∥∥∥

2

L2(Ω)
+ C3

m+1∑

i=0

∥∥∥ρi
∥∥∥

2

L2(Ω)
. (4.29)

Also, using Lemma 3.1 and the initial conditions (1.3) and (4.6), we obtain

∥∥∥θ0
∥∥∥
L2(Ω)

≤
∥∥∥u0

h − u(0)
∥∥∥
L2(Ω)

+
∥∥∥ũ0

h − u(0)
∥∥∥
L2(Ω)

≤ Chγ̃‖u0‖Hγ (Ω).

(4.30)

Since
∑m+1

i=1 ‖kri‖L2(Ω) ≤ Ck, we get

∥∥∥θm+1
∥∥∥
L2(Ω)

≤ Ck + C(u)hγ̃ , (4.31)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2, if μ = 3/2. Thus we obtain the desired
result.
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Table 1: L2-error and order of convergence in x when μ = 1.6.

h
‖u − uh‖L2(Ω)

Error Order
1/4 8.37811e − 03 —
1/8 2.73537e − 03 1.615
1/16 8.75752e − 04 1.643
1/32 2.83167e − 04 1.629

5. Numerical Experiments

In this section, we present numerical results for the Galerkin approximations which supports
the theoretical analysis discussed in the previous section.

Let Sh denote a uniform partition of Ω and let Vh denote the space of continuous
piecewise linear functions defined on Sh. In order to implement the Galerkin finite element
approximation, we adapt finite element discretization on the spatial axis and the backward
Euler finite difference scheme along the temporal axis. We associate shape functions of space
Vh with the standard basis of the functions on the uniform interval with length h.

Example 5.1. We first consider a space fractional linear diffusion equation:

∂u(x, t)
∂t

= ∇μu(x, t) +
2t

t2 + 1
u(x, t) −

(
t2 + 1

)

×

⎛

⎜
⎝

{
x2−μ + (1 − x)2−μ

}

Γ
(
3 − μ) −

6
{
x3−μ + (1 − x)3−μ

}

Γ
(
4 − μ) +

12
{
x4−μ + (1 − x)4−μ

}

Γ
(
5 − μ)

⎞

⎟
⎠

(5.1)

with an initial condition

u(x, 0) = x2(1 − x)2, x ∈ [0, 1] (5.2)

and boundary conditions

u(0, t) = u(1, t) = 0. (5.3)

In this case, the exact solution is

u(x, t) =
(
t2 + 1

)
x2(1 − x)2. (5.4)

Tables 1, 2, and 4 show the order of convergence and L2-error between the exact solu-
tion and the Galerkin approximate solution of the fully discrete backward Euler method for
(5.1) when μ = 1.6, μ = 1.8 and μ = 1.5, respectively. For numerical computation, the temporal
step size k = 0.001 is used in all three cases. Table 3 shows L2-errors and orders of convergence
for the Galerkin approximate solution when μ = 1.8 and the spatial step size h = 0.0625.
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Table 2: L2-error and order of convergence in x when μ = 1.8.

h
‖u − uh‖L2(Ω)

Error Order
1/4 8.03045e − 03 —
1/8 2.28959e − 03 1.810
1/16 6.32962e − 04 1.855
1/32 1.76406e − 04 1.843

Table 3: L2-error and order of convergence in t when μ = 1.8.

k
‖u − uh‖L2(Ω)

Error Ratio
1/20 4.20420e − 03 —
1/30 2.94873e − 03 0.951
1/40 2.31793e − 03 0.954
1/50 1.93046e − 03 0.961

Table 4: L2-error and order of convergence in x when μ = 1.5.

h
‖u − uh‖L2(Ω)

Error Order
1/4 5.47750e − 03 —
1/8 2.20129e − 03 1.315
1/16 8.86858e − 04 1.312
1/32 3.57629e − 04 1.310

According to Tables 1–3, we may find the order of convergence of O(k + hμ) for
this linear fractional diffusion problem (5.1)–(5.3) when μ/= 3/2. Furthermore, Table 4 shows
orders of numerical convergence for the problem when μ = 3/2, where we may see that the
order of convergence is of O(k + hμ−ε), 0 < ε < 1/2. It follows from Tables 1–4 that numerical
computations confirm the theoretical results.

We plot the exact solution and approximate solutions obtained by the backward Euler
Galerkin method using h = 1/32 and k = 1/1000 for (5.1) with μ = 1.6 and μ = 1.8. Figure 1
shows the contour plots of an exact solution and numerical solutions at t = 1, and Figure 2
shows log-log graph for the order of convergence.

Example 5.2. We consider a space fractional diffusion equation with a nonlinear Fisher type
source term which is described as

∂u(x, t)
∂t

= κμ∇μu(x, t) + λu(x, t)
(
1 − βu(x, t)) (5.5)
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with an initial condition

u(x, 0) = u0(x) (5.6)

and boundary conditions

u(−1, t) = u(1, t) = 0. (5.7)
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Figure 3: Numerical solutions for (5.5) with (5.8).

In fact, we will consider the case of κμ = 0.1, β = 1 in (5.5) with an initial condition

u0(x) =

{
e−10x, x ≥ 0,
e10x, x < 0.

(5.8)

For numerical computations, we have to take care of the nonlinear term f(u) = λu(1 −
βu). This gives a complicated nonlinear matrix. In order to avoid the difficulty of solving non-
linear system, we adopted a linearized method replacing λun+1(1 − βun+1) by λun+1(1 − βun).
Figure 3 shows contour plots of numerical solutions at t = 1 for (5.5)–(5.8) with λ = 0.25.
For numerical computations, step sizes h = 0.01 and k = 0.005 are used. From the numerical
results we may find that numerical solutions converge to the solution of classical diffusion
equation as μ approaches to 2.

Example 5.3. We now consider (5.5) with κμ = 0.1, β = 1 and boundary conditions

lim
|x|→∞

u(x, t) = 0. (5.9)

We will consider an initial condition with a sharp peak in the middle as

u0(x) = sech2(10x) (5.10)

and an initial condition with a flat roof in the middle as

u0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

e−10(x−1), x > 1,
1, −1 < x ≤ 1,
e10(x+1), x ≤ −1.

(5.11)

Tang and Weber [30] have obtained computational solutions for (5.5) with initial con-
ditions (5.10) and (5.11) using a Petrov-Galerkin method when (5.5) is a classical diffusion
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Figure 5: Numerical solutions at t = 4 for (5.5) and (5.10) with λ = 1.

problem. We obtain computational results using the method as in Example 5.2. Figure 4
shows contour plots of numerical solutions at t = 1 for (5.5) with an initial condition (5.10)
when Ω = (−2, 2) and λ = 0.25. Figure 5 shows also contour plots of numerical solutions at
t = 4 for (5.5) and (5.10) when Ω = (−4, 4) and λ = 1. In both cases, step sizes h = 0.01 and
k = 0.005 are used for computation. According to Figures 4 and 5, we may see that the diffu-
sivity depends on μ but it is far less than that of the classical solution. That is, the fractional
diffusion problem keeps the peak in the middle for longer time than the classical one does.

Figure 6 shows contour plots of numerical solutions for (5.5) with an initial condition
(5.10) when μ = 1.8, Ω = (−2, 2) and λ = 1. In this case, step sizes h = 0.01 and k = 0.005
are also used for computation. But the period of time is from t = 0 to t = 5. According to
Figure 6, we may see that the peak goes down rapidly for a short time, and it begins to go up
after the contour arrives at the lowest level.

Figure 7 shows contour plots of numerical solutions at t = 1 for (5.5) with an initial
condition (5.11) when Ω = (−4, 4) and λ = 0.25. In this case, step sizes h = 0.01 and k =
0.005 are also used for computation. According to Figure 7, we may find that the fractional
diffusion problem keeps the flat roof in the middle for longer time than the classical one does.
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6. Concluding Remarks

Galerkin finite element methods are considered for the space fractional diffusion equation
with a nonlinear source term. We have derived the variational formula of the semidiscrete
scheme by using the Galerkin finite element method in space. We showed existence and sta-
bility of solutions for the semidiscrete scheme. Furthermore, we derived the fully time-space
discrete variational formulation using the backward Euler method. Existence and uniqueness
of solutions for the fully discrete Galerkin method have been discussed. Also we proved that
the scheme is unconditionally stable, and it has the order of convergence of O(k + hγ̃), where
γ̃ is a constant depending on the order of fractional derivative. Numerical computations
confirm the theoretical results discussed in the previous section for the problem with a linear
source term. For the fractional diffusion problem with a nonlinear source term, we may find
that the diffusivity depends on the order of fractional derivative, and numerical solutions of
fractional order problems are less diffusive than the solution of a classical diffusion problem.
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[8] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Numerical solutions for fractional reaction-diffusion
equations,” Computers & Mathematics with Applications, vol. 55, no. 10, pp. 2212–2226, 2008.

[9] W. Deng, “Finite element method for the space and time fractional Fokker-Planck equation,” SIAM
Journal on Numerical Analysis, vol. 47, no. 1, pp. 204–226, 2008.

[10] Z. Q. Deng, V. P. Singh, and L. Bengtsson, “Numerical solution of fractional advection-dispersion
equation,” Journal of Hydraulic Engineering, vol. 130, no. 5, pp. 422–431, 2004.

[11] Y. Lin and C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equa-
tion,” Journal of Computational Physics, vol. 225, no. 2, pp. 1533–1552, 2007.

[12] F. Liu, A. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,”
Journal of Computational and Applied Mathematics, vol. 166, pp. 209–219, 2004.
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We study the dynamic properties (equilibrium points, local and global stability, chaos and
bifurcation) of the continuous dynamical system of the logistic equation of complex variables.
The existence and uniqueness of uniformly Lyapunov stable solution will be proved.

1. Introduction

Dynamical properties and chaos synchronization of deterministic nonlinear systems have
been intensively studied over the last two decades on a large number of real dynamical
systems of physical nature (i.e., those that involve real variables). However, there are also
many interesting cases involving complex variables. As an example, we mention here the
complex Lorenz equations, complex Chen and Lü chaotic systems, and some others (see [1–
8] and the references therein).

The topic of fractional calculus (derivatives and integrals of arbitrary orders) is
enjoying growing interest not only among mathematicians, but also among physicists and
engineers (see [9–16] and references therein).

Consider the following fractional-order Logistic equation of complex variables:

Dαz(t) = ρz(t)(1 − z(t)) = ρz(t) − ρz2(t), t > 0, (1.1)

z(0) = zo = xo + iyo, (1.2)
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where

z(t) = x(t) + iy(t), |z(t)| ≤ 1,

ρ = a + ib, a, b > 0.
(1.3)

Here we study the dynamic properties (equilibrium points, local and global stability, chaos
and bifurcation) of the continuous dynamical system of complex variables (1.1)-(1.2). The
the existence of a unique uniformly stable solution and the continuous dependence of the
solution on the initial data (1.2) are also proved.

Now we give the definition of fractional-order integration and fractional-order
differentiation.

Definition 1.1. The fractional integral of order β ∈ R+ of the function f(t), t ∈ I is

Iβf(t) =
∫ t

0

(t − s)β−1

Γ
(
β
) f(s) ds, (1.4)

and the Caputo’s definition for the fractional order derivative of order α ∈ (0, 1] of f(t) is
given by

Dαf(t) = I1−α d
dt
f(t). (1.5)

2. Existence and Uniqueness

The following lemma (formulation of the problem) can be easily proved.

Lemma 2.1. The discontinuous dynamical system (1.1)-(1.2) can be transformed to the system

Dαx(t) = ax(t) − by(t) − a
(
x2(t) − y2(t)

)
+ 2bx(t)y(t), t > 0, (2.1)

Dαy(t) = bx(t) + ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t), t > 0, (2.2)

with the initial values

x(0) = xo, y(0) = yo, (2.3)

where |x(t)| ≤ 1 and |y(t)| ≤ 1.
Let C[0, T] be the class of continuous functions defined on [0, T].
Let Y be the class of columns vectors (x(t), y(t))τ , x, y ∈ C[0, T] with the norm

∥∥(x, y
)τ∥∥

Y = ‖x‖ + ∥∥y∥∥ = sup
t∈[0,T]

|x(t)| + sup
t∈[0,T]

∣∣y(t)
∣∣. (2.4)
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Let X be the class of columns vectors (x(t), y(t))τ , x, y ∈ C[0, T] with the equivalent norm
∥
∥(x, y

)τ∥∥
X = ‖x‖∗ + ∥∥y∥∥∗ = sup

t∈[0,T]
e−Nt|x(t)| + sup

t∈[0,T]
e−Nt

∣
∣y(t)

∣
∣, N > 0. (2.5)

Write the problem (2.1)-(2.3) in the following matrix form:

Dα(x, y
)τ =

(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
,

(2.6)

and

(
x(0), y(0)

)τ =
(
xo, yo

)τ
, (2.7)

where τ is the transpose of the matrix.
Now we have the following theorem.

Theorem 2.2. The problem (2.6)-(2.7) has a unique solution (x, y) ∈ X.

Proof. Integrating (2.6) α-times we obtain

(
x(t), y(t)

)τ =
(
x(0), y(0)

)τ + Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
.

(2.8)

Define the operator F : X → X by

F
(
x(t), y(t)

)τ =
(
x(0), y(0)

)τ + Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
,

(2.9)

then by direct calculations, we can get

∥∥F
(
x, y
) − F(u, v)τ∥∥X ≤ K∥∥(x, y) − (u, v)τ

∥∥
X, (2.10)

where

K = 5(a + b)
1
Nα

. (2.11)

Choose N large enough we find that K < 1 and by the contraction fixed theorem [17] the
problem (2.6)-(2.7) has a unique solution (x, y) ∈ X.
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From the continuity of the solution we deduce that (see [10])

Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ∣∣
∣
t=0

= 0,
(2.12)

then the solution satisfies the initial condition. Differentiating (2.8), then by the same way as
in ([18, 19]), we deduce that the integral equation (2.8) satisfies the problem (2.6)-(2.7) which
completes the proof.

3. Uniform Stability

Theorem 3.1. The solution of the problem (2.6)–(2.7) is uniformly stable in the sense that

|xo − x∗
o| +
∣∣yo − y∗

o

∣∣ ≤ δ =⇒ ∥∥(x, y) − (x∗, y∗)∥∥
X ≤ ε, (3.1)

where (x∗(t), y∗(t)) is the solution of the differential equation (2.6) with the initial data

(
x(0), y(0)

)τ =
(
x∗
o, y

∗
o

)τ
. (3.2)

Proof. Direct calculations give

∥∥(x, y
) − (x∗, y∗)τ∥∥

X ≤ |xo − x∗
o| +
∣∣yo − y∗

o

∣∣ +K
∥∥(x, y

) − (x∗, y∗)τ∥∥
X, (3.3)

which implies that

∥∥(x, y) − (
(
x∗, y∗)τ∥∥

X ≤ (1 −K)−1(|xo − x∗
o| +
∣∣yo − y∗

o

∣∣) ≤ ε, (3.4)

ε = (1 −K)−1δ. (3.5)

4. Equilibrium Points and Their Asymptotic Stability

Let α ∈ (0, 1] and consider the system ([9, 20–22])

Dαy1(t) = f1
(
y1, y2

)
,

Dαy2(t) = f2
(
y1, y2

)
,

(4.1)

with the initial values

y1(0) = yo1, y2(0) = yo2. (4.2)
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To evaluate the equilibrium points, let

Dαyj(t) = 0 =⇒ fj
(
y

eq
1 , y

eq
2

)
= 0, j = 1, 2, (4.3)

from which we can get the equilibrium points yeq
1 , y

eq
2 .

To evaluate the asymptotic stability, let

yj(t) = y
eq
j + εj(t). (4.4)

So the the equilibrium point (yeq
1 , y

eq
2 ) is locally asymptotically stable if both the

eigenvalues of the Jacobian matrix A

⎡

⎢⎢⎢
⎣

∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2

⎤

⎥⎥⎥
⎦

(4.5)

evaluated at the equilibrium point satisfies (| arg(λ1)| > απ/2, | arg(λ2)| > απ/2) ([9, 20–23]).
For the fractional-order Logistic equation of complex variables consider the following:

Dαx(t) = ax(t) − by(t) − a
(
x2(t) − y2(t)

)
+ 2bx(t)y(t), t > 0,

Dαy(t) = bx(t) + ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t), t > 0.

(4.6)

To evaluate the equilibrium points, let

Dαx = 0,

Dαy = 0,
(4.7)

then (xeq, yeq) = (0, 0), (1, 0), are the equilibrium points.
For (xeq, yeq) = (0, 0) we find that

A =
[
a −b
b a

]
(4.8)

its eigenvalues are

λ = a ∓ bi. (4.9)

A sufficient condition for the local asymptotic stability of the equilibrium point (0, 0) is

∣∣arg(λ1)
∣∣ >

απ

2
,
∣∣arg(λ2)

∣∣ >
απ

2
, 0 < α < 1, (4.10)
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that is,

b

a
> tan

(απ
2

)
(4.11)

and x0 is small.
For (xeq, yeq) = (1, 0) we find that

A =
[−a b
−b −a

]
(4.12)

its eigenvalues are

λ = −a ± bi. (4.13)

A sufficient condition for the local asymptotic stability of the equilibrium point (1, 0) is a > 0
and x0 is not close to zero.

5. Numerical Methods and Results

An Adams-type predictor-corrector method has been introduced and investigated further in
([24–26]). In this paper we use an Adams-type predictor-corrector method for the numerical
solution of fractional integral equation.

The key to the derivation of the method is to replace the original problem (2.1)-(2.2)
by an equivalent fractional integral equations

x(t) = x(0) + Iα
[
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t)

]
,

y(t) = y(0) + Iα
[
bx(t) + ay(t) − b

(
x2(t) − y2(t)

)
− 2ax(t)y(t)

]
,

(5.1)

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.
The approximate solutions displayed in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12

for different 0 < α ≤ 1. In Figures 1–4 we take x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9 and
found that the equilibrium point (0, 0) is local asymptotic stable for α = 0.8, 0.9 because the
condition b/a > tan(απ/2) is satisfied and the equilibrium point (1, 0) is local asymptotic
stable for α = 1.0. In Figures 5–8 we take x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5 and found
that the equilibrium point (0, 0) is local asymptotic stable for α = 0.8 because the condition
b/a > tan(απ/2) is satisfied and the equilibrium point (1, 0) is local asymptotic stable for
α = 0.9, 1.0. In Figures 9–12 we take x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4 and found that the
equilibrium point (1, 0) is local asymptotic stable for α = 0.8, 0.9, 1.0.

6. Conclusions

In this paper we considered the fractional-order Logistic equations of complex variables.
Here we studied the dynamic properties (equilibrium points, local and global stability, chaos
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Figure 1: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9, alpha = 0.8.
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Figure 3: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9, alpha = 1.0.
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and bifurcation). The existence of a unique uniformly stable solution and the continuous
dependence of the solution on the initial data (1.2) are also proved. Also we studied the
numerical solution of the system (1.1)-(1.2).

We like to argue that fractional-order equations are more suitable than integer-order
ones in modeling biological, economic, and social systems (generally complex adaptive
systems) where memory effects are important.
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This paper is concerned with the existence of integral solutions for nondensely defined fractional
functional differential equations with impulse effects. Some errors in the existing paper concerned
with nondensely defined fractional differential equations are pointed out, and correct formula of
integral solutions is established by using integrated semigroup and some probability densities.
Sufficient conditions for the existence are obtained by applying the Banach contraction mapping
principle. An example is also given to illustrate our results.

1. Introduction

The aim in this paper is to study the existence of the integral solutions for the fractional
semilinear differential equations of the form

Dqy(t) = Ay(t) + f
(
t, yt
)
, t ∈ J := [0, b], t /= tk, k = 1, . . . , m,

Δy
∣∣
t=tk

= Ik
(
y
(
t−k
))
, k = 1, . . . , m,

y(t) = φ(t), t ∈ [−τ, 0],

(1.1)

where 0 < q < 1, Dq is the Caputo fractional derivative. f : J × D → E is a given function,
D = {ψ : [−τ, 0] → E, ψ is continuous everywhere except for a finite number of points s at
which ψ(s−), ψ(s+) exist and ψ(s−) = ψ(s)}, and E is a real Banach space with the norm | · |.
Denoting the domain of A by D(A), A : D(A) ⊂ E → E is nondensely closed linear operator
on E, φ ∈ D. Ik : E → E, 0 = t0 < t1 < · · · < tm < tm+1 = b, y(t+

k
) and y(t−

k
) represent the right
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and left limits at tk of y(t) as usual; we assume y(t−k) = y(tk). Δy|t=tk = y(t+k)−y(t−k) represents
the jump in the state y at time tk. Moreover, for any t ∈ J , the histories yt belong to D defined
by yt(ς) = y(t + ς), ς ∈ [−τ, 0].

In the past decades, the theory of fractional differential equations has become an
important area of investigation because of its wide applicability in many branches of physics,
economics, and technical sciences [1–10]. In recent years, many authors were devoted to mild
solutions to fractional evolution equations, and there have been a lot of interesting works. For
instance, in [11], El-Borai discussed the following equation in Banach space X:

Dqu(t) = Au(t) + B(t)u(t),

u(0) = u0,
(1.2)

where A generates an analytic semigroup, and the solution was given in terms of some
probability densities. In [12], Zhou and Jiao concerned the existence and uniqueness of mild
solutions for fractional evolution equations by some fixed point theorems. Cao et al. [13]
studied the α-mild solutions for a class of fractional evolution equations and optimal controls
in fractional powder space. For more information on this subject, the readers may refer to
[14–16] and the references therein.

Research on integer order differential evolution equations including a nondensely
defined operator was initialed by Da Prato and Sinestrari [17] and has been extensively
investigated by many authors [18–25]. The main methods used in their work are based on
integrated semigroup theory. Recently, existence results for integral solutions of nondensely
defined fractional evolution equations were established in some papers [9, 26]. But there are
some errors in transforming integral solution into an available form. For example, definition
of integral solution [9] is given by

x(t) = S(t)
(
x0 − g(x)

)
+ lim
λ→∞

1
Γ
(
q
)
∫ t

0
(t − s)q−1S(t − s)B(λ,A)f(s, x(s))ds, t ≥ 0. (1.3)

Here D(A) ⊂ E and D(A)/=E. B(λ,A) := λ(λI −A)−1 will be introduced in next section. If we
let f take values in D(A), then (1.3) becomes

x(t) = S(t)
(
x0 − g(x)

)
+

1
Γ
(
q
)
∫ t

0
(t − s)q−1S(t − s)f(s, x(s))ds. (1.4)

According to [19], integral solution should be mild solution in this case. But as pointed in
[14], (1.4) is not the mild solution.

Motivated by these papers and the fact that impulse effects exist widely in the realistic
situations, we give the definition of integral solution and prove the existence results for
impulsive semilinear fractional differential equations with nondensely defined operators.
The rest of the paper will be organized as follows. In Section 2, we will recall some basic
definitions and preliminary facts from integrated semigroups and fractional derivation and
integration which would be used later. Section 3 is devoted to the existence of integral
solutions of problem (1.1). We present an example to illustrate our results in Section 4. At
last, we end the paper with a conclusion.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary results which would be
used in the rest of the paper.

We denote by C([0, b];E) the Banach space of all continuous functions from [0, b] into
E with the norm

‖x‖∞ = sup
{∣∣y(t)

∣
∣ : t ∈ [0, b]

}
. (2.1)

For φ ∈ D the norm of φ is defined by

∥
∥φ
∥
∥
D = sup

{∣∣φ(ς)
∣
∣ : ς ∈ [−τ, 0]}. (2.2)

B(E) denotes the Banach space of bounded linear operators from E into E, with the norm

‖N‖ = sup
{∣∣N

(
y
)∣∣ :
∣∣y
∣∣ = 1

}
, (2.3)

where N ∈ B(E) and y ∈ E. Let Lp([0, b];E) be the space of E-valued Bochner function on
[0, b] with the norm

‖x‖Lp =
(∫b

0

∣∣y(s)
∣∣pds

)1/p

, 1 ≤ p <∞. (2.4)

In order to define an integral solution of problem (1.1), we will introduce the set of functions

PC =
{
y : J −→ D(A), is continuous except for t = tk, k = 1, 2, . . . , m,

there exist y
(
t−k
)

and y
(
t+k
)

such that y
(
t−k
)
= y(tk)

}
.

(2.5)

Endowed with the norm ‖y‖PC = supt∈J |y(t)|, (PC, ‖ · ‖PC) is a Banach space.
Seting

Ω =
{
y : [−τ, b] −→ D(A) : y ∈ D ∩ PC

}
, (2.6)

then Ω is a Banach space with the norm
∥∥y
∥∥
Ω = max

{∥∥y
∥∥
D,
∥∥y
∥∥

PC

}
. (2.7)

Definition 2.1 (see [27]). Letting E be a Banach space, an integrated semigroup is a family of
operators (S(t))t≥0 of bounded linear operators S(t) on E with the following properties:

(i) S(0) = 0;

(ii) t → S(t) is strongly continuous;

(iii) S(s)S(t) =
∫s

0 (S(t + r) − S(r))dr for all t, s ≥ 0.
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Definition 2.2 (see [28]). An operator A is called a generator of an integrated semigroup,
if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A), and there exists a strongly continuous
exponentially bounded family (S(t))t≥0 of linear bounded operators such that S(0) = 0 and
(λI −A)−1 = λ

∫∞
0 e−λtS(t)dt for all λ > ω.

Proposition 2.3 (see [27]). LetA be the generator of an integrated semigroup (S(t))t≥0. Then for all
x ∈ E and t ≥ 0,

∫ t

0
S(s)xds ∈ D(A), S(t)x = A

∫ t

0
S(s)xds + tx. (2.8)

Definition 2.4 (see [29]). We say that a linear operator A satisfies the Hille-Yosida condition if
there exists M ≥ 0 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup
{
(λ −ω)n∥∥(λI −A)−n

∥
∥, n ∈ N, λ > ω

} ≤M. (2.9)

Here and hereafter, we assume that A satisfies the Hille-Yosida condition. Let us
introduce the part A0 of A in D(A) : A0 = A on D(A0) = {x ∈ D(A);Ax ∈ D(A)}.
Let (S(t))t≥0 be the integrated semigroup generated by A. We note that (S′(t))t≥0 is a C0-
semigroup on D(A) generated by A0 and ‖S′(t)‖ ≤ Meωt, t ≥ 0, where M and ω are the
constants considered in the Hille-Yosida condition [28, 30].

Let B(λ,A) := λ(λI −A)−1; then for all x ∈ D(A), B(λ,A)x → x as λ → ∞. Also from
the Hille-Yosida condition it is easy to see that limλ→∞|B(λ,A)x| ≤M|x|.

For more properties on integral semigroup theory the interested reader may refer to
[18, 30].

Definition 2.5 (see [3]). The Riemann-Liouville fractional integral of order q ∈ R+ of a function
h : (0, b] → E is defined by

I
q

0h(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1h(s)ds, (2.10)

provided the right-hand side is pointwise defined on (0, b] and where Γ is the gamma
function.

Remark 2.6. According to [10], Iq0 I
β

0 = Iq+β0 holds for all q, β ≥ 0.

Definition 2.7 (see [3]). The Caputo fractional derivative of order 0 < q < 1 of a function
f ∈ C1([0,∞), E) is defined by

Dqf(t) =
1

Γ
(
1 − q)

∫ t

0
(t − s)−qf ′(s)ds, t > 0. (2.11)

3. Main Results

In this section we will establish the existence and uniqueness of integral solution for problem
(1.1).
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Definition 3.1. A function y ∈ Ω is said to be an integral solutions of (1.1) if

(i)
∫ t
tk
(t − s)q−1y(s)ds ∈ D(A) for t ∈ (tk, tk+1], k = 0, 1, . . . , m,

(ii) y(t) = φ(t), t ∈ [−τ, 0],
(iii)

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0) +
1

Γ
(
q
)A
∫ t

0
(t − s)q−1y(s)ds +

1
Γ
(
q
)
∫ t

0
(t − s)q−1f

(
s, ys

)
ds, t ∈ (0, t1],

y
(
t−1
)
+ I1
(
y
(
t−1
))

+
1

Γ
(
q
)A
∫ t

t1

(t − s)q−1y(s)ds

+
1

Γ
(
q
)
∫ t

t1

(t − s)q−1f
(
s, ys

)
ds, t ∈ (t1, t2],

...

y(t−m) + Im
(
y(t−m)

)
+

1
Γ
(
q
)A
∫ t

tm

(t − s)q−1y(s)ds

+
1

Γ
(
q
)
∫ t

tm

(t − s)q−1f
(
s, ys

)
ds, t ∈ (tm, b].

(3.1)

Lemma 3.2. If y is an integral solution of (1.1), then for all t ∈ [0, b], y(t) ∈ D(A). In particular,
φ(0), y(t−1 ) + I1(y(t−1 )),. . .,y(t

−
m) + I1(y(t−m)) belong to D(A).

Proof. Using Remark 2.6, for each t ∈ (tk, tk+1], I1
tk
y(t) = I

1−q
tk

I
q
tk
y(t) ∈ D(A) since Iqtky(t) ∈

D(A). Consequently, for h > 0 such that t + h ∈ (tk, tk+1], (1/h)
∫ t+h
t y(s)ds ∈ D(A) because

I1
tk
y(t) =

∫ t
tk
y(s)ds ∈ D(A). Hence, we deduce that y(t) = limh→ 0(1/h)

∫ t+h
t y(s)ds ∈ D(A).

The proof is completed.

Lemma 3.3 (see [31]). Let Ψq(θ) = (1/π)
∑∞

n=1(−1)n−1θ−qn−1(Γ(nq + 1)/n!) sin(nπq), θ ∈ R+;
then Ψq(θ) is a one-sided stable probability density function, and its Laplace transform is given by

∫∞

0
e−pθΨq(θ)dθ = e−p

q

, q ∈ (0, 1), p > 0. (3.2)

Lemma 3.4. For t ∈ (0, b], the integral solution in Definition 3.1 is given by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds, t ∈ (0, t1],

S(t − t1)
(
y
(
t−1
)
+ I1
(
y
(
t−1
)))

+ lim
λ→∞

∫ t

t1

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (t1, t2],

...

S(t − tm)
(
y(t−m) + Im

(
y(t−m)

))

+ lim
λ→∞

∫ t

tm

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (tm, b],

(3.3)
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where

S(t) =
∫∞

0
hq(θ)S′(tqθ)dθ, T(t) = q

∫∞

0
θhq(θ)S′(tqθ)dθ, (3.4)

where hq(θ) = (1/q)θ−1−1/qΨq(θ−1/q) is the probability density function defined on R+.

Proof. From the definition, for t ∈ (0, t1] we have

y(t) = φ(0) +
1

Γ
(
q
)A
∫ t

0
(t − s)q−1y(s)ds +

1
Γ
(
q
)
∫ t

0
(t − s)q−1f

(
s, ys

)
ds, t ∈ [0, b]. (3.5)

Consider the Laplace transform

v
(
p
)
=
∫∞

0
e−ptB(λ,A)y(t)dt, w

(
p
)
=
∫∞

0
e−ptB(λ,A)f

(
t, yt
)
dt, p > 0. (3.6)

Note that for each 0 < t ≤ t1, Bλy(t), B(λ,A)f(t, yt) ∈ D(A), then we have v(p), w(p) ∈ D(A).
Applying (3.6) to (3.5) yields

v
(
p
)
=

1
p
B(λ,A)φ(0) +

1
pq
Av
(
p
)
+

1
pq
w
(
p
)

= pq−1(pqI −A)−1
B(λ,A)φ(0) +

(
pqI −A)−1

w
(
p
)

= pq−1
∫∞

0
e−p

qsS′(s)B(λ,A)φ(0)ds +
∫∞

0
e−p

qsS′(s)w
(
p
)
ds,

(3.7)

where I is the identity operator defined on E.
From (3.2), we get

pq−1
∫∞

0
e−p

qsS′(s)B(λ,A)φ(0)ds

=
∫∞

0
pq−1e−(pt)

q

S′(tq)B(λ,A)φ(0)qtq−1dt

=
∫∞

0
−1
p

d

dt

(
e−(pt)

q
)
S′(tq)B(λ,A)φ(0)dt

=
∫∫∞

0

(
θΨq(θ)e−ptθS′(tq)B(λ,A)φ(0)

)
dθ dt

=
∫∫∞

0

(
Ψq(θ)e−psS′

((
s

θ

)q)
B(λ,A)φ(0)

)
dθ ds

=
∫∞

0
e−pt
(∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

)
dt,
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∫∞

0
e−p

qsS′(s)w
(
p
)
ds

=
∫∫∞

0
e−p

qse−ptS′(s)B(λ,A)f
(
t, yt
)
dt ds

=
∫∫∞

0
qsq−1e−(ps)

q

e−ptS′(sq)B(λ,A)f
(
t, yt
)
dt ds

=
∫∫∫∞

0
qΨq(θ)e−psθe−ptS′(sq)B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∫∫∞

0
qΨq(θ)e−p(s+t)

sq−1

θq
S′
((

s

θ

)q)
B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∞

0
e−psq

∫s

0

∫∞

0
Ψq(θ)

(s − t)q−1

θq
S′
(
(s − t)q
θq

)
B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ dsdt.

(3.8)

According to (3.7) and (3.8), we have

v
(
p
)
=
∫∞

0
e−pt
(∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

)
dt

+
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ dsdt.

(3.9)

Inverting the last Laplace transform, we obtain

B(λ,A)y(t) =
∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

+ q
∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ ds

=
∫∞

0
hq(θ)S′(tqθ)B(λ,A)φ(0)dθ

+ q
∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ ds.

(3.10)
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In view of limλ→∞B(λ,A)x = x for x ∈ D(A) and Lemma 3.2, we have

y(t) =
∫∞

0
hq(θ)S′(tqθ)φ(0)dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)

× f(s, ys
)
dθ ds

= S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds.

(3.11)

For t ∈ (tk, tk+1], k = 1, 2, . . . , m, we can prove the results by the similar methods used
previously. The proof is completed.

Remark 3.5. According to [31], one can easily check that

∫∞

0
θhq(θ)dθ =

∫∞

0

1
θq

Ψq(θ)dθ =
1

Γ
(
1 + q

) . (3.12)

We are now in a position to state and prove our main results for the existence and
uniqueness of solutions of problem (1.1).

Let us list the following hypotheses.

(H1) A satisfies the Hille-Yosida condition, and assume that M := sup{‖S′(t)‖ : t ∈
[0,+∞]} <∞.

(H2) For u ∈ D, f(·, u) : [0, b] → E is strongly measurable.

(H3) There exists a constant q1 ∈ (0, q) and l ∈ L1/q1 ([0, b];R+) such that

∣∣f(t, u)
∣∣ ≤ l(t), a.e. t ∈ J, and each u ∈ D. (3.13)

(H4) There exists ρ > 0 such that

|Ik(u) − Ik(v)| ≤ ρ|u − v| ∀u, v ∈ E, k = 1, . . . , m. (3.14)

(H5) There exists a constant κ such that

∣∣f(t, u) − f(t, v)∣∣ ≤ κ‖u − v‖D, for t ∈ J and every u, v ∈ D. (3.15)

Theorem 3.6. Assuming that hypotheses (H1)–(H5) hold, then problem (1.1) has a unique integral
solution y ∈ Ω provided thatM(1 + ρ) + (MMκbq/Γ(1 + q)) < 1.

Proof. Define Q : Ω → Ω by

(
Qy
)
(t) = φ(t), t ∈ [−τ, 0], (3.16)
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and for t ∈ J ,

(
Qy
)
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s) × B(λ,A)f

(
s, ys

)
ds, t ∈ (0, t1],

S(t − t1)
(
y
(
t−1
)
+ I1
(
y
(
t−1
)))

+ lim
λ→∞

∫ t

t1

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (t1, t2],

...
S(t − tm)

(
y(t−m) + Im

(
y(t−m)

))

+ lim
λ→∞

∫ t

tm

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (tm, b].

(3.17)

Firstly we check that Q is well defined on Ω.
For each y ∈ Ω, take t ∈ (0, t1]. It is obvious that S(t)φ(0) is well defined. Direct

calculation shows that (t − s)q−1 ∈ L(1/(1−q1))[0, t], for t ∈ [0, t1] and q1 ∈ (0, q). Let

a =
q − 1
1 − q1

∈ (−1, 0), M1 = ‖l‖L1/q1 [0,b]. (3.18)

Then for t ∈ [0, t1], we have

∫ t

0

∣∣∣(t − s)q−1f
(
s, ys

)∣∣∣ds ≤
(∫ t

0
(t − s)((q−1)/(1−q1))ds

)1−q1

‖l‖L1/q1 [0,t]

≤ M1

(1 + a)1−q1
b(1+a)(1−q1).

(3.19)

From (H1), (3.12), (3.19), and the fact that ‖B(λ,A)‖ ≤M, we get

∫ t

0

∣
∣∣∣

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ

∣∣∣∣ds

≤MM

∫ t

0

∫∞

0
θhq(θ)

∣∣∣(t − s)q−1f
(
s, ys

)∣∣∣dθ ds

≤ MM0

Γ
(
1 + q

)
∫ t

0

∣∣∣(t − s)q−1f
(
s, ys

)∣∣∣ds

≤ MM0M1

Γ
(
1 + q

)
(1 + a)1−q1

b(1+a)(1−q1), for t ∈ [0, t1].

(3.20)

It means that | ∫∞0 θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f(s, ys)dθ| is Lebesgue integrable with
respect to s ∈ [0, t] for all t ∈ [0, t1]. Therefore

∫∞
0 θ(t−s)q−1hq(θ)S′((t−s)qθ)B(λ,A)f(s, ys)dθ

is Bochner integrable with respect to s ∈ [0, t] for all t ∈ [0, t1].



10 Abstract and Applied Analysis

From [19], we know limλ→∞
∫ t

0(t − s)q−1S′((t − s)qθ)B(λ,A)f(s, ys)ds exists; then

lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds

= lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ ds

= lim
λ→∞

q

∫∞

0
θhq(θ)

∫ t

0
(t − s)q−1S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dsdθ

= q
∫∞

0
θhq(θ) lim

λ→∞

∫ t

0
(t − s)q−1S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dsdθ

(3.21)

exists. Therefore we get (Qy)(·) which is well defined on [0, t1].
For t ∈ (tk, tk+1], k = 1, 2, . . . , m, similar discussion could obtain (Qy)(·) is well

defined. Hence, Q is well defined on Ω.
Secondly, we will prove operator Q is a contraction.
For t ∈ (0, t1] and y, z ∈ Ω, by the hypotheses and ‖B(λ,A)‖ ≤M, we get

∣∣(Qy
)
(t) − (Qz)(t)

∣∣

=

∣∣∣∣∣
lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)

(
f
(
s, ys

) − f(s, zs)
)
ds

∣∣∣∣∣

=

∣∣∣∣∣
lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)

(
f
(
s, ys

) − f(s, zs)
)
dθ ds

∣∣∣∣∣

≤ MM

Γ
(
1 + q

)
∫ t

0
q(t − s)q−1∣∣f

(
s, ys

) − f(s, zs)
∣∣ds

≤ MMκ

Γ
(
1 + q

)
∫ t

0
q(t − s)q−1∥∥ys − zs

∥∥
Dds

≤ MMκbq

Γ
(
1 + q

)
∥∥y − z∥∥Ω.

(3.22)

Now take t ∈ (tk, tk+1], k = 1, 2, . . . , m and y, z ∈ Ω:

∣∣(Qy
)
(t) − (Qz)(t)

∣∣

≤ ∣∣S(t − tk)
[
y
(
t−k
)
+ Ik
(
y
(
t−k
)) − z(t−k

) − Ik
(
z
(
t−k
))]∣∣

+

∣∣∣∣∣
lim
λ→∞

∫ t

tk

(t − s)q−1T(t − s)B(λ,A)
(
f
(
s, ys

) − f(s, zs)
)
ds

∣∣∣∣∣
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≤M(1 + ρ
)∥∥y − z∥∥Ω +

MMκbq

Γ
(
1 + q

)
∥
∥y − z∥∥Ω

≤
(

M
(
1 + ρ

)
+
MMκbq

Γ
(
1 + q

)

)
∥
∥y − z∥∥Ω.

(3.23)

In view of M(1+ρ)+(MMκbq/Γ(1+q)) < 1, we have that the operator Q is a contraction. By
the Banach contraction principle we have that Q has a unique fixed point y ∈ Ω, which gives
rise to a unique integral solution to the problem (1.1). The proof is finished.

Remark 3.7. For impulsive Caputo fractional differential equations, its integral solutions (or
mild solutions; see [14]) can be expressed only by using piecewise functions. Thus Definition
2.3 given in [15] is unsuitable.

4. An Example

As an application of our results we consider the following fractional differential equations of
the form

Dqu(t, z) =
∂2

∂z2
u(t, z) + F(t, ut(ς, z)), z ∈ [0, π], t ∈ [0, 1] \

{
1
2

}
,

u

(
1
2

+

, z

)
− u
(

1
2

−
, z

)
= ρu

(
1
2

−
, z

)
, z ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

u(ς, z) = φ(ς, z), ς ∈ [−1, 0], z ∈ [0, π].

(4.1)

Consider E = C([0, π];R) endowed with the supnorm and the operator A : D(A) ⊂
E → E defined by

D(A) =
{
u ∈ C2([0, π];R) : u(t, 0) = u(t, π) = 0

}
, Au =

∂2

∂z2
u(t, z). (4.2)

Now, we have D(A) = {u ∈ E : u(t, 0) = u(t, π) = 0}/=E. As we know from [17] that A
satisfies the Hille-Yosida condition with (0,+∞) ⊆ ρ(A) and λ > 0, |R(λ,A)| ≤ 1/λ. Hence,
operator A satisfies (H1) and M =M = 1/2.

Then the system (4.1) can be reformulated as

Dqy(t) = Ay(t) + f
(
t, yt
)
, t ∈ J := [0, b], t /=

1
2
,

Δy
∣∣
t=1/2 = I

(
y

(
1
2

−))
, k = 1, . . . , m,

y(t) = φ(t), t ∈ [−τ, 0],

(4.3)

where y(t)(z) = u(t, z), f(t, yt)(z) = F(t, ut(ς, z)), I(x) = ρx, φ(t)(z) = φ(t, z).
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If we take q = 1/3, ρ = 1/10, f(t, yt) = (1/(t + 1)(t + 2)) sinyt. We easily get that

∣
∣f(t, u) − t(t, v)∣∣ ≤ 1

3
‖u − v‖D, for t ∈ J and every u, v ∈ D. (4.4)

Then all conditions of Theorem 3.6 are satisfied and we deduce (4.1) has a unique integral
solution.

5. Conclusions

An essence error of the formula of solutions which appeared in the recent work on the
nondensely defined fractional evolution differential equations is reported in this work. A
correct formula of integral solutions for nondensely defined fractional evolution equations
could be obtained from the results in this paper.

In view of the complicated definitions for integral or mild solutions for impulsive
fractional evolution equations, many fixed point theorems related to completely continuous
operators are hard to be used to establish the existence results. As far as we know, only [14]
applied Leray Schauder Alternative theorem to the existence of mild solutions of impulsive
fractional differential equations. But there is a mistake in proving that Γ(Br) is equicontinuous
(page 2009, Step 3). How to overcome this difficulty is our next work.
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We investigate the existence and uniqueness of positive solutions for the following singular
fractional three-point boundary value problem Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) =
u′′(0) = 0, u′′(1) = βu′′(η), where 3 < α ≤ 4, Dα

0+ is the standard Riemann-Liouville derivative and
f : (0, 1] × [0,∞) → [0,∞) with limt→ 0+f(t, ·) = ∞ (i.e., f is singular at t = 0). Our analysis relies
on a fixed point theorem in partially ordered metric spaces.

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by the
intensive development of the theory of fractional calculus itself and by the applications (see,
e.g., [1–5]).

Recently, many papers have appeared dealing with the existence of solutions of
nonlinear fractional boundary value problems.

In [6], the authors studied the existence and multiplicity of positive solutions for the
boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)

where 1 < α ≤ 2 and f : [0, 1] × [0,∞) → [0,∞) is continuous, by using some fixed point
theorem on cones.
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In [7], the authors considered the following nonlinear fractional boundary value
problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
(1.2)

where 3 < α ≤ 4 and f : [0, 1] × [0,∞) → [0,∞) is continuous. They obtained their results by
using lower and upper solution method and fixed point theorems.

In [8] the authors investigated the existence and uniqueness of positive and
nondecreasing solutions for a class of singular fractional boundary value problems by using
a fixed point theorem in partially ordered metric spaces.

Very recently, in [9] the authors studied the existence of solutions of the following
three-point boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′
(
η
)
,

(1.3)

where 3 < α ≤ 4, 0 < η < 1, 0 < βηα−3 < 1 and f : [0, 1] × [0,∞) → [0,∞) is continuous.
Motivated by [8, 9], in this paper we discuss the existence and uniqueness of positive

solutions for Problem (1.3) assuming that f : (0, 1] × [0,∞) → [0,∞) is such that
limt→ 0+f(t, ·) = ∞ (i.e., f is singular at t = 0). Our main tool is a fixed point theorem in
partially ordered metric spaces which appears in [10].

2. Preliminaries and Basic Facts

For the convenience of the reader, we present some notations and lemmas which will be used
in the proof of our results.

Definition 2.1 (see [5]). The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,∞) and where Γ(α) denotes the
classical gamma function.

Definition 2.2 (see [2]). The Riemann-Liouville fractional derivative of order α > 0 of a
function f : (0,∞) → R is defined as

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

f(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of α.
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The following two lemmas can be found in [2] and they are crucial in finding an
integral representation of the boundary value problem (1.3).

Lemma 2.3 (see [2]). Assume that u ∈ C(0, 1) ∩ L1(0, 1) and α > 0.
Then the fractional differential equation

Dα
0+u(t) = 0 (2.3)

has

u(t) = c1tα−1 + c2tα−2 + · · · + cntα−n, (2.4)

where ci ∈ R, i = 1, 2, . . . , n and n = [α] + 1, as unique solution.

Lemma 2.4 (see [2]). Assume that u ∈ C(0, 1) ∩ L1(0, 1) with fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2tα−2 + · · · + cntα−n, (2.5)

for some ci ∈ R, i = 1, 2, . . . , n and n = [α] + 1.

By using Lemma 2.4, in [9] the authors proved the following result.

Lemma 2.5 (see [9]). Let 0 < η < 1 and β /= 1/ηα−3 and h ∈ C[0, 1].
Then the boundary value problem

Dα
0+u(t) + h(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′
(
η
)
,

(2.6)

where 3 < α ≤ 4, has as unique solution

u(t) =
∫1

0
G(t, s)h(s)ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
h(s)ds, (2.7)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα−1(1 − s)α−3 − (t − s)α−1
Γ(α)

, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−3
Γ(α)

, 0 ≤ t ≤ s ≤ 1,

H(t, s) =
∂2G(t, s)
∂t2

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)(α − 2)
Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]
, 0 ≤ s ≤ t ≤ 1,

(α − 1)(α − 2)
Γ(α)

tα−3(1 − s)α−3, 0 ≤ t ≤ s ≤ 1.

(2.8)
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Remark 2.6. In [9] it is proved that G is a continuous function on [0, 1] × [0, 1], G(t, s) ≥ 0,
G(t, 1) = 0 and

sup
0≤t≤1

∫1

0
G(t, s)ds =

2
(α − 2)Γ(α + 1)

,

∫1

0
H
(
η, s
)
ds =

ηα−3(α − 1)
(
1 − η)

Γ(α)
. (2.9)

In the sequel, we present the fixed point theorem which we will use later. Previously,
we present the following class of functions.

By S we denote the class of functions β : [0,∞) → [0, 1) satisfying the following
condition:

β(tn) −→ 1 implies tn −→ 0. (2.10)

Examples of functions belonging to S are β(t) = kt with 0 ≤ k < 1 and β(t) = 1/(1 + t).
The fixed point theorem which we will use later appears in [10].

Theorem 2.7 (see [10]). Let (X,≤) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such
that there exists an element x0 ∈ X with x0 ≤ Tx0. Suppose that there exists β ∈ S such that

d
(
Tx, Ty

) ≤ β(d(x, y))d(x, y) for x, y ∈ X with x ≥ y. (2.11)

Assume that either T is continuous or X is such that

if (xn) is a nondecreasing sequence in X such that xn −→ x then xn ≤ x ∀n ∈ N. (2.12)

Besides, if

for all x, y ∈ X there exists z ∈ X which is comparable to x, y, (2.13)

then T has a unique fixed point.

In our considerations, we will work in the Banach space C[0, 1] = {x : [0, 1] →
R, x is continuous}with the classical metric given by d(x, y) = sup0≤t≤1|x(t) − y(t)|.

Notice that this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for any t ∈ [0, 1]. (2.14)

In [11] it is proved that (C[0, 1],≤) satisfies condition (2.12) of Theorem 2.7. Moreover, for
x, y ∈ C[0, 1], as the function max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.13).

3. Main Result

Our starting point of this section is the following lemma.



Abstract and Applied Analysis 5

Lemma 3.1. Suppose that 0 < σ < 1, 3 < α ≤ 4, and F : (0, 1] → R is a continuous function with
limt→ 0+F(t) = ∞. If tσF(t) is a continuous function on [0, 1] then the function defined by

L(t) =
∫1

0
G(t, s)F(s)ds (3.1)

is continuous on [0, 1], where G(t, s) is the Green’s function appearing in Lemma 2.5.

Proof. We divide the proof into three cases.
Case 1 (t0 = 0). It is clear that L(0) = 0.
Since tσF(t) is a continuous function on [0, 1], we can find a constantM > 0 such that

|tσF(t)| ≤M for any t ∈ [0, 1].
Then, we get

|L(t) − L(0)| = |L(t)| =
∣
∣∣∣∣

∫1

0
G(t, s)F(s)ds

∣
∣∣∣∣
=

∣
∣∣∣∣

∫1

0
G(t, s)s−σsσF(s)ds

∣
∣∣∣∣

=

∣∣∣∣∣

∫ t

0

tα−1(1 − s)α−3 − (t − s)α−1
Γ(α)

s−σsσF(s)ds +
∫1

t

tα−1(1 − s)α−3
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

tα−1(1 − s)α−3
Γ(α)

s−σsσF(s)ds −
∫ t

0

(t − s)α−1
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

≤
∣∣∣∣∣

∫1

0

tα−1(1 − s)α−3
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣
+

∣∣∣∣∣

∫ t

0

(t − s)α−1
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

≤ Mtα−1

Γ(α)

∫1

0
(1 − s)α−3s−αds + M

Γ(α)

∫ t

0
(t − s)α−1s−αds

=
Mtα−1

Γ(α)

∫1

0
(1 − s)α−3s−αds + Mtα−1

Γ(α)

∫ t

0

(
1 − s

t

)α−1
s−αds

=
Mtα−1

Γ(α)
β(1 − σ, α − 2) +

Mtα−1

Γ(α)

∫ t

0

(
1 − s

t

)α−1
s−αds.

(3.2)

If in the integral
∫ t
0 (1 − (s/t))α−1s−σdswe use the change of variables u = s/t then we have

∫ t

0

(
1 − s

t

)α−1
s−σds = t1−σ

∫1

0
(1 − u)α−1u−σdu = t1−σβ(1 − σ, α). (3.3)

This and (3.2) give us

|L(t)| ≤ Mtα−1

Γ(α)
β(1 − σ, α − 2) +

Mtα−σ

Γ(α)
β(1 − σ, α) (3.4)

and letting t → 0, we see that |L(t)| → 0.
This proves the continuity of L at t0 = 0.
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Case 2 (t0 ∈ (0, 1)). We take tn → t0 and we have to prove that L(tn) → L(t0).
Without loss of generality, we can take tn > t0 (the same argument works for

tn < t0).
In fact,

|L(tn) − L(t0)| =
∣
∣
∣
∣
∣

∫ tn

0

tα−1n (1 − s)α−3 − (tn − s)α−1
Γ(α)

s−σsσF(s)ds

+
∫1

tn

tα−1n (1 − s)α−3
Γ(α)

s−σsσF(s)ds

−
∫ t0

0

tα−10 (1 − s)α−3 − (t0 − s)α−1
Γ(α)

s−σsσF(s)ds

−
∫1

t0

tα−10 (1 − s)α−3
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

tα−1n (1 − s)α−3
Γ(α)

s−σsσF(s)ds −
∫ tn

0

(tn − s)α−1
Γ(α)

s−σsσF(s)ds

−
∫1

0

tα−10 (1 − s)α−3
Γ(α)

s−σsσF(s)ds +
∫ t0

0

(t0 − s)α−1
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

=

∣∣∣∣∣

∫1

0

(
tα−1n − tα−10

)
(1 − s)α−3

Γ(α)
s−σsσF(s)ds

−
∫ t0

0

(tn − s)α−1 − (t0 − s)α−1
Γ(α)

s−σsσF(s)ds

−
∫ tn

t0

(tn − s)α−1
Γ(α)

s−σsσF(s)ds

∣∣∣∣∣

≤ M
(
tα−1n − tα−10

)

Γ(α)

∫1

0
(1 − s)α−3s−σds

+
M

Γ(α)

∫ t0

0

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σds

+
M

Γ(α)

∫ tn

t0

(tn − s)α−1s−σds

≤ M
(
tα−1n − tα−10

)

Γ(α)
β(1 − σ, α − 2) +

M

Γ(α)
I1n +

M

Γ(α)
I2n,

(3.5)
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where

I1n =
∫ t0

0

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σds,

I2n =
∫ tn

t0

(tn − s)α−1s−σds.
(3.6)

In the sequel, we will prove that I1n → 0 when n → ∞.
In fact, as tn → t0, then

(
(tn − s)α−1 − (t0 − s)α−1

)
s−σ −→ 0 when n −→ ∞. (3.7)

Moreover,

∣∣∣
(
(tn − s)α−1 − (t0 − s)α−1

)
s−σ
∣∣∣ ≤
(
|tn − s|α−1 + |t0 − s|α−1

)
s−σ ≤ 2s−σ (3.8)

and, as

∫1

0
2s−σds = 2

[
s−σ+1

−σ + 1

]1

0

=
2

1 − σ <∞, (3.9)

we have that the sequence ((tn−s)α−1−(t0−s)α−1)s−σ converges pointwise to the zero function
and |((tn − s)α−1 − (t0 − s)α−1)s−σ | is bounded by a function belonging to L1[0, 1], then by
Lebesgue’s dominated convergence theorem

I1n −→ 0 when n −→ ∞. (3.10)

Now, we will prove that I2n → 0 when n → ∞.
In fact, as

I2n =
∫ tn

t0

(tn − s)α−1s−σds ≤
∫ tn

t0

s−σds =
1

1 − σ
(
t1−σn − t1−σ0

)
(3.11)

and letting n → ∞ and, taking into account that tn → t0, from the last expression we get

I2n −→ 0 when n −→ ∞. (3.12)

Finally, from (3.5), (3.10), and (3.12)we get

|L(tn) − L(t0)| −→ 0 when n −→ ∞. (3.13)

This proves the continuity of L at t0.
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Case 3 (t0 = 1). It is easily checked that L(1) = 0.
Now, following the same lines that in the proof of Case 1, we can demonstrate the

continuity of L at t0 = 1.
This finishes the proof.

Lemma 3.2. Suppose that 0 < σ < 1, 3 < α ≤ 4, 0 < βηα−3 < 1, and F : (0, 1] → R is a continuous
function with limt→ 0+F(t) = ∞.

If tσF(t) is a continuous function on [0, 1] then the function defined by

N(t) =
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
F(s)ds (3.14)

is continuous on [0, 1], whereH(t, s) is the function appearing in Lemma 2.5.

Proof. Since tσF(t) is continuous on [0, 1], there exists a constantM > 0 such that |tσF(t)| ≤M
for any t ∈ [0, 1].

Taking into account that

|H(t, s)| ≤ 2(α − 1)(α − 2)
Γ(α)

(3.15)

we have
∣∣∣∣∣

∫1

0
H
(
η, s
)
F(s)ds

∣∣∣∣∣
=

∣∣∣∣∣

∫1

0
H
(
η, s
)
s−σsσF(s)ds

∣∣∣∣∣

≤ 2M(α − 1)(α − 2)
Γ(α)

∫1

0
s−σ ds =

2M(α − 1)(α − 2)
Γ(α)(1 − α) <∞,

(3.16)

and, consequently, the functionN is continuous at any point t ∈ [0, 1].

Remark 3.3. Notice that the functionH(t, s) appearing in Lemma 2.5 which is defined as

H(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)(α − 2)
Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]
, 0 ≤ s ≤ t ≤ 1,

(α − 1)(α − 2)
Γ(α)

tα−3(1 − s)α−3, 0 ≤ t ≤ s ≤ 1,
(3.17)

is continuous function on [0, 1] × [0, 1] and, moreover,H(t, s) ≥ 0.
In fact, for 0 ≤ t ≤ s ≤ 1 it is clear thatH(t, s) ≥ 0.
In the case, 0 ≤ s ≤ t ≤ 1, we have

H(t, s) =
(α − 1)(α − 2)

Γ(α)

[
tα−3(1 − s)α−3 − (t − s)α−3

]

=
(α − 1)(α − 2)

Γ(α)

[
(t − ts)α−3 − (t − s)α−3

]
≥ 0.

(3.18)

This proves the nonnegative character of the functionH on [0, 1] × [0, 1].
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Lemma 3.4. Suppose that 0 < σ < 1. Then

sup
0≤t≤1

∫1

0
G(t, s)s−σds =

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α)), (3.19)

where G(t, s) is the function appearing in Lemma 2.5.

Proof. By definition of G(t, s), we have

∫1

0
G(t, s)s−σds =

∫ t

0
G(t, s)s−σds +

∫1

t

G(t, s)s−σds

=
∫ t

0

tα−1(1 − s)α−3 − (t − s)α−1
Γ(α)

s−σds +
∫1

t

tα−1(1 − s)α−3
Γ(α)

s−σds

=
∫1

0

tα−1(1 − s)α−3
Γ(α)

s−σds −
∫ t

0

(t − s)α−1
Γ(α)

s−αds

=
tα−1

Γ(α)

∫1

0
(1 − s)α−3s−σds − 1

Γ(α)

∫ t

0
(t − s)α−1s−σds.

(3.20)

As we saw in Case 1 of Lemma 3.1.

∫ t

0
(t − s)α−1s−σds = tα−σ

Γ(α)
β(1 − σ, α) (3.21)

and, therefore,

∫ t

0
G(t, s)s−σds =

tα−1

Γ(α)
β(1 − σ, α − 2) − tα−σ

Γ(α)
β(1 − σ, α). (3.22)

Now, using elemental calculus it is easily seen that the function

ϕ(t) =
β(1 − σ, α − 2)

Γ(α)
tα−1 − β(1 − σ, α)

Γ(α)
tα−σ (3.23)

is increasing on the interval [0, 1] and, therefore,

sup
0≤t≤1

∫1

0
G(t, s)s−σds = sup

0≤t≤1
ϕ(t) = ϕ(1) =

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α)). (3.24)

Lemma 3.5. Suppose that 0 < σ < 1 then

∫1

0
H
(
η, s
)
s−σds =

(α − 1)(α − 2)
Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2), (3.25)
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whereH(t, s) is the function appearing in Lemma 2.5.

Proof. By definition ofH(t, s), we have

∫1

0
H
(
η, s
)
s−σds =

∫η

0
H
(
η, s
)
s−σds +

∫1

η

H
(
η, s
)
s−σds

=
∫η

0

(α − 1)(α − 2)
Γ(α)

[
ηα−3(1 − s)α−3 − (η − s)α−3

]
s−σds

+
∫1

η

(α − 1)(α − 2)
Γ(α)

ηα−3(1 − s)α−3s−σds

=
∫1

0

(α − 1)(α − 2)
Γ(α)

ηα−3(1 − s)α−3s−σds −
∫η

0

(α − 1)(α − 2)
Γ(α)

(
η − s)α−3s−σds

=
(α − 1)(α − 2)

Γ(α)
ηα−3

∫1

0
(1 − s)α−3s−σds − (α − 1)(α − 2)

Γ(α)

∫η

0

(
η − s)α−3s−σds

=
(α − 1)(α − 2)

Γ(α)
ηα−3β(1 − σ, α − 2) − (α − 1)(α − 2)

Γ(α)

∫η

0

(
η − s)α−3s−σds.

(3.26)

By a similar argument that the one used in the Case 1 of Lemma 3.1, we have

∫1

0
H
(
η, s
)
s−σds =

(α − 1)(α − 2)
Γ(α)

ηα−3β(1 − σ, α − 2) − (α − 1)(α − 2)
Γ(α)

ηα−σ−2β(1 − σ, α − 2)

=
(α − 1)(α − 2)

Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2).

(3.27)

This finishes the proof.

By commodity, we denote by K the constant given by

K =
1

Γ(α)

[(

1 +
β
(
ηα−3 − ηα−σ−2)

1 − βηα−3
)

β(1 − σ, α − 2) − β(1 − σ, α)
]

. (3.28)

Moreover, we introduce the following class of functions which will be used in the main
result of the paper. By A we denote the class of functions φ : [0,∞) → [0,∞) satisfying
the following:

(i) φ is nondecreasing.

(ii) φ(x) < x for any x > 0.

(iii) β(x) = φ(x)/x ∈ S, where S is the class of functions introduced in Remark 2.6.
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Theorem 3.6. Let 0 < σ < 1, 3 < α ≤ 4, 0 < η < 1, 0 < βηα−3 < 1, and f : (0, 1] × [0,∞) → [0,∞)
is a continuous function with limt→ 0+f(t, ·) = ∞ and such that tσf(t, y) is a continuous function on
[0, 1] × [0,∞). Assume that there exists 0 < λ ≤ 1/K such that for x, y ∈ [0,∞) with y ≥ x and
t ∈ [0, 1]

0 ≤ tσ(f(t, y) − f(t, x)) ≤ λφ(y − x), (3.29)

where φ ∈ A.
Then Problem (1.3) has a unique positive solution (this means that x(t) > 0 for t ∈ (0, 1)).

Proof. Consider the cone:

P = {u ∈ C[0, 1] : u(t) ≥ 0}. (3.30)

Since P is a closed set of C[0, 1], P is a complete metric space with the distance given by
d(u, v) = sup0≤t≤1|u(t) − v(t)|, for u, v ∈ P .

It is easily checked that P satisfies conditions (2.12) and (2.13) of Theorem 2.7.
Now, for u ∈ P we define the operator T by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, u(s))ds. (3.31)

By Lemmas 3.1 and 3.2, for u ∈ P we have Tu ∈ C[0, 1].
Moreover, in view of the nonnegative character ofG(t, s),H(η, s), and f(s, x), we have

that Tu ∈ P for u ∈ P .
In what follows, we check that assumptions in Theorem 2.7 are satisfied.
Firstly, we will prove that T is nondecreasing.
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In fact, by (3.29), for u ≥ v we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, u(s))ds

=
∫1

0
G(t, s)s−σsσf(s, u(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσf(s, u(s))ds

≥
∫1

0
G(t, s)s−σsσf(s, v(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσf(s, v(s))ds

=
∫1

0
G(t, s)f(s, v(s))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, v(s))ds = (Tv)(t).

(3.32)

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and u/=v, we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t) − (Tv)(t)| = sup
0≤t≤1

((Tu)(t) − (Tv)(t))

= sup
0≤t≤1

[∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s)))ds

+
βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)(
f(s, u(s)) − f(s, v(s)))ds

]

≤ sup
0≤t≤1

∫1

0
G(t, s)s−σsσ

(
f(s, u(s)) − f(s, v(s)))ds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σsσ

(
f(s, u(s)) − f(s, v(s)))ds

≤ sup
0≤t≤1

∫1

0
G(t, s)s−σλ

(
φ(u(s) − v(s)))ds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σλ

(
φ(u(s) − v(s)))ds.

(3.33)
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Since φ is nondecreasing, the last inequality implies

d(Tu, Tv) ≤ λφ(d(u, v))sup
0≤t≤0

∫1

0
G(t, s)s−σds

+
β

(α − 1)(α − 2)
(
1 − βηα−3)λφ(d(u, v))

∫1

0
H
(
η, s
)
s−σds

= λφ(d(u, v))

[

sup
0≤t≤0

∫1

0
G(t, s)s−σ ds +

β

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
s−σds

]

.

(3.34)

Now, from Lemmas 3.4 and 3.5 it follows:

d(Tu, Tv) ≤ λφ(d(u, v))

[
1

Γ(α)
(
β(1 − σ, α − 2) − β(1 − σ, α))+ β

(α − 1)(α − 2)
(
1 − βηα−3)

× (α − 1)(α − 2)
Γ(α)

(
ηα−3 − ηα−σ−2

)
β(1 − σ, α − 2)

]

= λφ(d(u, v))
[

1
Γ(α)

(
β(1 − σ, α − 2) − β(1 − σ, α))

+
β
(
ηα−3 − ηα−σ−2)

(
1 − βηα−3)Γ(α) β(1 − σ, α − 2)

]

= λφ(d(u, v))

[
1

Γ(α)

[(

1 +
β
(
ηα−3 − ηα−σ−2)

1 − βηα−3
)

β(1 − σ, α − 2) − β(1 − σ, α)
]]

= λφ(d(u, v))K.
(3.35)

Since 0 < λ ≤ 1/K, from the last inequality we obtain

d(Tu, Tv) ≤ λφ(d(u, v))K ≤ φ(d(u, v)), (3.36)

and, since u/=v,

d(Tu, Tv) ≤ φ(d(u, v))
d(u, v)

d(u, v) = β(d(u, v))d(u, v). (3.37)

Since this inequality is obviously satisfied for u = v, we have

d(Tu, Tv) ≤ β(d(u, v))d(u, v) for any u, v ∈ P with u ≥ v. (3.38)
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Finally, since the zero function satisfies 0 ≤ T0, Theorem 2.7 says us that the operator T has a
unique fixed point in P , or, equivalently, Problem (1.3) has a unique nonnegative solution x
in C[0, 1].

Now, we will prove that x is a positive solution.
In contrary case, we can find 0 < t∗ < 1 such that x(t∗) = 0.
Taking into account that the nonnegative solution x of Problem (1.3) is a fixed point of

the operator, we have

x(t) =
∫1

0
G(t, s)f(s, x(s))ds +

βtα−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, x(s))ds (3.39)

and, particularly,

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds +

βt∗α−1

(α − 1)(α − 2)
(
1 − βηα−3)

∫1

0
H
(
η, s
)
f(s, x(s))ds = 0.

(3.40)

Since both summands in the right hand are nonnegative (see Remarks 2.6 and 3.3) we have

∫1

0
G(t∗, s)f(s, x(s))ds = 0,

∫1

0
H
(
η, s
)
f(s, x(s))ds = 0.

(3.41)

Given the nonnegative character of G(t, s),H(η, s), and f(s, u), we have

G(t∗, s)f(s, x(s)) = 0 a.e. (s),

H
(
η, s
)
f(s, x(s)) = 0 a.e. (s).

(3.42)

Taking into account that limt→ 0+f(t, 0) = ∞, this means that for M > 0 we can find δ > 0
such that for s ∈ [0, 1] ∩ (0, δ) we have f(s, 0) > M. Notice that [0, 1] ∩ (0, δ) ⊂ {s ∈ [0, 1] :
f(s, x(s)) > M} and μ([0, 1] ∩ (0, δ)) > 0, where μ is the Lebesgue measure on [0, 1].

This and (3.42) give us that

G(t∗, s) = 0 a.e. (s),

H
(
η, s
)
= 0 a.e. (s),

(3.43)

and this is a contradiction since G(t∗, s) andH(η, s) are rational functions in the variable s.
Therefore, x(t) > 0 for t ∈ (0, 1).
This finishes the proof.

In order to present an example which illustrates our results, we need to prove some
properties about the hyperbolic tangent function.

Previously, we recalled some definitions.
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Definition 3.7. A function f : [0,∞) → [0,∞) is said to be subadditive if it satisfies

f
(
x + y

) ≤ f(x) + f(y) for any x, y ∈ [0,∞). (3.44)

An example of subadditive function is the square root function, that is, f(x) =
√
x.

Remark 3.8. Suppose that f : [0,∞) → [0,∞) is subadditive and y ≤ x then

f(x) − f(y) ≤ f(x − y). (3.45)

In fact, since

f(x) = f
(
x − y + y

) ≤ f(x − y) + f(y) (3.46)

this inequality implies that

f(x) − f(y) ≤ f(x − y). (3.47)

Recall that a function f : [0,∞) → [0,∞) is concave if for any x, y ∈ [0,∞) and
λ ∈ [0, 1].

f
(
λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y). (3.48)

Lemma 3.9. Let f : [0,∞) → [0,∞) be a concave function with f(0) = 0. Then f is subadditive.

Proof. We take x, y ∈ [0,∞).
Since f is concave and f(0) = 0, we get

f(x) = f
(

y

x + y
0 +

x

x + y
(
x + y

)
)

≥ y

x + y
f(0) +

x

x + y
f
(
x + y

)
=

x

x + y
f
(
x + y

)
,

f
(
y
)
= f
(

x

x + y
0 +

y

x + y
(
x + y

)
)

≥ x

x + y
f(0) +

y

x + y
f
(
x + y

)
=

y

x + y
f
(
x + y

)
.

(3.49)

Adding these inequalities, we have

f(x) + f
(
y
) ≥ x

x + y
f
(
x + y

)
+

y

x + y
f
(
x + y

)
= f
(
x + y

)
. (3.50)

This proves the lemma.

In what follows, we will prove that the function

f(x) = tanhx =
e2x − 1
e2x + 1

(3.51)

belongs to the class A previously defined.
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Lemma 3.10. The function f : [0,∞) → [0,∞) defined as

f(x) = tanhx =
e2x − 1
e2x + 1

(3.52)

satisfies:

(a) f ∈ A.

(b) f is subadditive.

Proof. (a) Since f ′(x) = 4e2x/(e2x + 1)2 > 0 for x > 0, f is nondecreasing.
Moreover, the function

g(x) = x − tanhx = x − e2x − 1
e2x + 1

(3.53)

has as derivative

g ′(x) =

(
e2x − 1

)2

(e2x + 1)2
> 0 for x > 0 (3.54)

and, consequently, g is strictly nondecreasing on (0,∞).
Since g(0) = 0, we have 0 = g(0) < g(x) for x > 0 or, equivalently, f(x) = tanhx < x

for x > 0.
In order to prove that β(x) = tanhx/x ∈ S, notice that if β(tn) → 1 then the sequence

(tn) is a bounded sequence.
In fact, in contrary case tn → ∞ and we have

β(tn) =
tanh tn
tn

−→ 0 (3.55)

which contradicts the fact that β(tn) → 1.
Now, we suppose that β(tn) → 1 and tn � 0.
Then, we can find ε > 0 such that for each n ∈ N there exists �n ≥ nwith t�n ≥ ε.
Since (tn) is a bounded sequence (because β(tn) → 1) we can find a subsequence of

(t�n), which we will denote of the same way, such that t�n → a.
As β(tn) → 1, it follows that

β
(
t�n
)
=

tanh t�n
t�n

−→ tanha
a

= 1 (3.56)

and, as the unique solution of the equation tanhx = x on [0,∞) is x0 = 0, we deduce that
a = 0.

Therefore, t�n → 0 and this implies that there exists n0 ∈ N such that t�n < ε for n ≥ n0.
This contradicts the fact that t�n ≥ ε for any n ∈ N.
Therefore, tn → 0.
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This proves that β(x) = tanhx/x ∈ S.
Therefore, f ∈ A.
(b) Since tanh 0 = 0 and

(tanhx)′′ =
8e2x

(
1 − e2x)

(e2x + 1)3
< 0 for x > 0, (3.57)

this means that f(x) = tanhx is a concave function with tanh 0 = 0 and, by Lemma 3.9,
f(x) = tanhx is subadditive.

Remark 3.11. By Remark 3.8 and by (b) of Lemma 3.9, for x, y ∈ [0,∞) with y ≤ x

tanhx − tanhy ≤ tanh
(
x − y). (3.58)

Now, we present an example which illustrates our result.

Example 3.12. Consider the following singular fractional boundary value problem

D7/2
0+ u(t) +

λ
(
t2 + 1

)
tanhu(t)

t1/2
= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = u′′
(
1
4

)
.

(3.59)

In this case, σ = 1/2, η = 1/4, β = 1 and α = 7/2.
Moreover, in this case f(t, u) = λ(t2 + 1) tanhu/t1/2 for (t, u) ∈ (0, 1] × [0,∞).
Notice that f is continuous in (0, 1] × [0,∞) and limt→ 0+f(t, ·) = ∞.
Now, we check that f(t, u) satisfies assumptions appearing in Theorem 3.6.
It is clear that t1/2f(t, u) = λ(t2 + 1) tanhu is a continuous function on [0, 1] × [0,∞).
Moreover, by Lemma 3.10 and Remark 3.11, for u ≥ v and t ∈ [0, 1] we have

0 ≤ t1/2
(
f(t, u) − f(t, v))

= λ
(
t2 + 1

)
(tanhu − tanhv)

≤ λ
(
t2 + 1

)
tanh(u − v) ≤ 2λ tanh(u − v),

(3.60)

where f(x) = tanhx is a function belonging toA (see, Lemma 3.10).
Finally, Theorem 3.6 says us that Problem (3.59) has a unique positive solution for

2λ ≤ 1
K

=
Γ(7/2)

(
1 +
(
(1/4)1/2 − 1/4

)
/
(
1 − (1/4)1/2

))
β(1/2, 3/2) − β(1/2, 7/2)

=
30

7
√
π
.

(3.61)

Or, equivalently, for λ ≤ 15/7
√
π .
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[11] J. J. Nieto and R. Rodrı́guez-López, “Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 325984, 15 pages
doi:10.1155/2012/325984

Research Article
On Antiperiodic Boundary Value Problems for
Higher-Order Fractional Differential Equations

Ahmed Alsaedi, Bashir Ahmad, and Afrah Assolami

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Ahmed Alsaedi, aalsaedi@hotmail.com

Received 18 May 2012; Accepted 1 July 2012

Academic Editor: Dumitru Baleanu

Copyright q 2012 Ahmed Alsaedi et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We study an antiperiodic boundary value problem of nonlinear fractional differential equations of
order q ∈ (4, 5]. Some existence results are obtained by applying some standard tools of fixed-point
theory. We show that solutions for lower-order anti-periodic fractional boundary value problems
follow from the solution of the problem at hand. Our results are new and generalize the existing
results on anti-periodic fractional boundary value problems. The paper concludes with some
illustrating examples.

1. Introduction

In the preceding years, there has been a great advancement in the study of fractional calculus.
A variety of results on initial and boundary value problems of fractional order, ranging
from the theoretical aspects of existence and uniqueness of solutions to the analytic and
numerical methods for finding solutions, have appeared in the literature. It is mainly due
to the extensive application of fractional differential equations in many engineering and
scientific disciplines such as physics, chemistry, biology, economics, control theory, signal
and image processing, biophysics, blood flow phenomena, aerodynamics, and fitting of
experimental data [1–5]. For an updated account of mathematical tools for fractional models
and methods of solutions for fractional differential equations, we refer the reader to a recent
text [6] by Baleanu et al. Fractional derivatives are also regarded as an excellent tool for
the description of memory and hereditary properties of various materials and processes
[7]. These characteristics of the fractional derivatives make the fractional-order models more
realistic and practical than the classical integer-order models. For more details and examples,
see [8–20].

Antiperiodic boundary value problems occur in the mathematical modeling of a
variety of physical processes and have received a considerable attention. Examples include
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antiperiodic trigonometric polynomials in the study of interpolation problems, antiperiodic
wavelets, antiperiodic boundary conditions in physics, and so forth (for details, see [21]
and the references therein). Some recent work on antiperiodic boundary value problems of
fractional-order can be found in [21–27] and references therein.

In this paper, we consider an antiperiodic boundary value problems of fractional
differential equations of order q ∈ (4, 5] given by

cDqx(t) = f(t, x(t)), t ∈ [0, T], T > 0, 4 < q ≤ 5,

x(0) = − x(T), x′(0) = −x′(T), x′′(0) = −x′′(T),

x′′′(0) = − x′′′(T), x(iv)(0) = −x(iv)(T),

(1.1)

where cDq denotes the Caputo fractional derivative of order q and f is a given continuous
function.

The main objective of the present work is to develop the existence theory for problem
(1.1) and relate problem (1.1) with lower-order fractional antiperiodic boundary value
problems. Our results are new and give further insight into the characteristics of fractional-
order antiperiodic boundary value problems.

2. Preliminaries

Definition 2.1 (see [4]). The Riemann-Liouville fractional integral of order q for a continuous
function g is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.1)

provided the integral exists.

Definition 2.2 (see [4]). For at least n-times continuously differentiable function
g : [0,∞) → R, the Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ
(
n − q)

∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.2)

where [q] denotes the integer part of the real number q.

To study the nonlinear problem (1.1), we need the following lemma, which deals with
a linear variant of problem (1.1).
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Lemma 2.3. For any y ∈ C[0, T], the unique solution of the boundary value problem:

cDqx(t) = y(t), t ∈ [0, T], 4 < q ≤ 5,

x(0) = − x(T), x′(0) = −x′(T), x′′(0) = −x′′(T),

x′′′(0) = − x′′′(T), x(iv)(0) = −x(iv)(T)

(2.3)

is

x(t) =
∫T

0
G(t, s)y(s)ds, (2.4)

where G(t, s) is the Green’s function given by

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(t − s)q−1 − (T − s)q−1
2Γ
(
q
) +

(T − 2t)(T − s)q−2
4Γ
(
q − 1

) +
t(T − t)(T − s)q−3

4Γ
(
q − 2

)

+

(
6t2T − 4t3 − T3)(T − s)q−4

48Γ
(
q − 3

) +

(
2Tt3 − t4 − tT3)(T − s)q−5

48Γ
(
q − 4

) , 0 < s < t < T,

− (T − s)q−1
2Γ
(
q
) +

(T − 2t)(T − s)q−2
4Γ
(
q − 1

) +
t(T − t)(T − s)q−3

4Γ
(
q − 2

)

+

(
6t2T − 4t3 − T3)(T − s)q−4

48Γ
(
q − 3

) +

(
2Tt3 − t4 − tT3)(T − s)q−5

48Γ
(
q − 4

) , 0 < t < s < T.

(2.5)

Proof. It is well known [4] that the solution of cDqx(t) = y(t) can be written as

x(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) y(s)ds − bo − b1t − b2t2 − b3t3 − b4t4, (2.6)

where bo, b1, b2, b3, and b4 ∈ R are arbitrary constants. Using the boundary conditions for
problem (2.3) in (2.6), we find that

bo =
1
2

∫T

0

(T − s)q−1
Γ
(
q
) y(s)ds − T

4

∫T

0

(T − s)q−2
Γ
(
q − 1

) y(s)ds

+
T3

48

∫T

0

(T − s)q−4
Γ
(
q − 3

) y(s)ds,
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b1 =
1
2

∫T

0

(T − s)q−2
Γ
(
q − 1

) y(s)ds − T

4

∫T

0

(T − s)q−3
Γ
(
q − 2

) y(s)ds +
T3

48

∫T

0

(T − s)q−5
Γ
(
q − 4

) y(s)ds,

b2 =
1
4

∫T

0

(T − s)q−3
Γ
(
q − 2

) y(s)ds − T

8

∫T

0

(T − s)q−4
Γ
(
q − 3

) y(s)ds,

b3 =
1
12

∫T

0

(T − s)q−4
Γ
(
q − 3

) y(s)ds − T

24

∫T

0

(T − s)q−5
Γ
(
q − 4

) y(s)ds,

b4 =
1
48

∫T

0

(T − s)q−5
Γ
(
q − 4

) y(s)ds.

(2.7)

Substituting the values of bo, b1, b2, b3, and b4 in (2.6), we obtain

x(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) y(s)ds − 1

2

∫T

0

(T − s)q−1
Γ
(
q
) y(s)ds

+
(T − 2t)

4

∫T

0

(T − s)q−2
Γ
(
q − 1

) y(s)ds +
t(T − t)

4

∫T

0

(T − s)q−3
Γ
(
q − 2

) y(s)ds

+

(
6t2T − 4t3 − T3)

48

∫T

0

(T − s)q−4
Γ
(
q − 3

) y(s)ds +

(
2Tt3 − t4 − tT3)

48

∫T

0

(T − s)q−5
Γ
(
q − 4

) y(s)ds

=
∫T

0
G(t, s)y(s)ds,

(2.8)

where G(t, s) is given by (2.5). This completes the proof.

2.1. Relationship with Lower-Order Problems

We observe that the first term in expressions for G(t, s) given by (2.5) corresponds to the
Green’s function for the problem:

cDqx(t) = f(t, x(t)), t ∈ [0, T], T > 0, 0 < q ≤ 1,

x(0) = −x(T);
(2.9)

the first two terms in (2.5) form Green’s function for the problem [21]:

cDqx(t) = f(t, x(t)), t ∈ [0, T], T > 0, 1 < q ≤ 2,

x(0) = −x(T), x′(0) = −x′(T);
(2.10)



Abstract and Applied Analysis 5

the first three terms in (2.5) give the Green’s function for the problem [22]:

cDqx(t) = f(t, x(t)), t ∈ [0, T], T > 0, 2 < q ≤ 3,

x(0) = −x(T), x′(0) = −x′(T), x′′(0) = −x′′(T);
(2.11)

while the first four terms in (2.5) yield the Green’s function for the antiperiodic problem [23]:

cDqx(t) = f(t, x(t)), t ∈ [0, T], T > 0, 3 < q ≤ 4,

x(0) = −x(T), x′(0) = −x′(T), x′′(0) = −x′′(T), x′′′(0) = −x′′′(T).
(2.12)

From the above deductions, it can easily be concluded that Green’s function (2.5) for an
antiperiodic boundary value problem of fractional order q ∈ (4, 5] contains Green’s function
(or solution) for lower-order fractional antiperiodic problems. We can further interpret that
the last term in expressions for Green’s function (2.5) arises due to consideration of the
order q ∈ (4, 5], whereas the remaining terms correspond to the lower-order problems.
This observation gives a useful insight into the study of antiperiodic fractional boundary
value problems that a unit-increase in the fractional order of the problem gives rise to a new
term in expressions for Green’s function, preserving the terms corresponding to lower-order
antiperiodic problems. In other words, one can say that Green’s function (or solution) for a
higher-order antiperiodic fractional boundary value problem inherits all the characteristics
of lower-order fractional antiperiodic problems. Hence, our results generalize the existing
results on antiperiodic fractional boundary value problems ([21–23]).

3. Existence Results

Let E := C([0, T],R) denotes the Banach space of all continuous functions defined on [0, T]×R

endowed with a topology of uniform convergence with the norm ‖x‖ = supt∈[0,T]|x(t)|.
To prove the existence results for problem (1.1), we need the following known results

[28].

Theorem 3.1. Let X be a Banach space. Assume that T : X → X is completely continuous operator
and the set

V =
{
u ∈ X | u = μTu, 0 < μ < 1

}
(3.1)

is bounded. Then T has a fixed point in X.

Theorem 3.2. Let X be a Banach space. Assume that Ω is an open-bounded subset of X with θ ∈ Ω
and let T : Ω → X be a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω. (3.2)

Then T has a fixed point in Ω.
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By Lemma 2.3, we define an operator U : E → E as

(Ux)(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) f(s, x(s))ds − 1

2

∫T

0

(T − s)q−1
Γ
(
q
) f(s, x(s))ds

+
(T − 2t)

4

∫T

0

(T − s)q−2
Γ
(
q − 1

) f(s, x(s))ds +
t(T − t)

4

∫T

0

(T − s)q−3
Γ
(
q − 2

) f(s, x(s))ds

+

(
6t2T − 4t3 − T3)

48

∫T

0

(T − s)q−4
Γ
(
q − 3

) f(s, x(s))ds

+

(
2Tt3 − t4 − tT3)

48

∫T

0

(T − s)q−5
Γ
(
q − 4

) f(s, x(s))ds, t ∈ [0, T].

(3.3)

Observe that the problem (1.1) has a solution if and only if the operator equationUx =
x has a fixed point.

Theorem 3.3. Assume that there exists a positive constant L1 such that |f(t, x)| ≤ L1 for t ∈
[0, T], x ∈ R. Then the problem (1.1) has at least one solution.

Proof. First of all, we show that the operator U is completely continuous. Note that the
operator U is continuous in view of the continuity of f . Let B ⊂ E be a bounded set. By
the assumption that |f(t, x)| ≤ L1, for x ∈ B, we have

|(Ux)(t)| ≤
∫ t

0

(t − s)q−1
Γ
(
q
)
∣∣f(s, x(s))

∣∣ds +
1
2

∫T

0

(T − s)q−1
Γ
(
q
)
∣∣f(s, x(s))

∣∣ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2
Γ
(
q − 1

)
∣∣f(s, x(s))

∣∣ds

+
1
4
|t(T − t)|

∫T

0

(T − s)q−3
Γ
(
q − 2

)
∣∣f(s, x(s))

∣∣ds

+

∣∣6t2T − 4t3 − T3
∣∣

48

∫T

0

(T − s)q−4
Γ
(
q − 3

)
∣∣f(s, x(s))

∣∣ds

+

∣∣2Tt3 − t4 − tT3
∣∣

48

∫T

0

(T − s)q−5
Γ
(
q − 4

)
∣∣f(s, x(s))

∣∣ds

≤ L1

[
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds + 1

2Γ
(
q
)
∫T

0
(T − s)q−1ds

+
|T − 2t|

4Γ
(
q − 1

)
∫T

0
(T − s)q−2ds + |t(T − t)|

4Γ
(
q − 2

)
∫T

0
(T − s)q−3ds
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+

∣
∣6t2T − 4t3 − T3

∣
∣

48Γ
(
q − 3

)
∫T

0
(T − s)q−4ds +

∣
∣2Tt3 − t4 − tT3

∣
∣

48Γ
(
q − 4

)
∫T

0
(T − s)q−5ds

]

≤ L1

[
Tq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)]

= L2,

(3.4)

which implies that ‖(Ux)‖ ≤ L2. Further, we find that

∣
∣(Ux)′(t)∣∣ =

∫ t

0

(t − s)q−2
Γ
(
q − 1

)
∣
∣f(s, x(s))

∣
∣ds +

1
2

∫T

0

(T − s)q−2
Γ
(
q − 1

)
∣
∣f(s, x(s))

∣
∣ds

+
|T − 2t|

4

∫T

0

(T − s)q−3
Γ
(
q − 2

)
∣∣f(s, x(s))

∣∣ds +
|t(T − t)|

4

∫T

0

(T − s)q−4
Γ
(
q − 3

)
∣∣f(s, x(s))

∣∣ds

+

∣∣6Tt2 − 4t3 − T3
∣∣

48

∫T

0

(T − s)q−5
Γ
(
q − 4

)
∣∣f(s, x(s))

∣∣ds

≤ L1

[∫ t

0

(t − s)q−2
Γ
(
q − 1

) ds +
1
2

∫T

0

(T − s)q−2
Γ
(
q − 1

) ds

+
|T − 2t|

4

∫T

0

(T − s)q−3
Γ
(
q − 2

) ds +
|t(T − t)|

4

∫T

0

(T − s)q−4
Γ
(
q − 3

) ds

+

∣∣6Tt2 − 4t3 − T3
∣∣

48

∫T

0

(T − s)q−5
Γ
(
q − 4

)

]

≤ L1

[
Tq−1

2Γ
(
q
)

(

3 +

(
q − 1

)(
q2 − 2q + 12

)

24

)]

= L3.

(3.5)

Hence, for t1, t2 ∈ [0, T], we have

|(Ux)(t2) − (Ux)(t1)| ≤
∫ t2

t1

∣∣(Ux)′(s)∣∣ds ≤ L3(t2 − t1). (3.6)

This implies that U is equicontinuous on [0, T]. Thus, by the Arzela-Ascoli theorem, the
operator U : E → E is completely continuous.

Next, we consider the set

V =
{
x ∈ E | x = μUx, 0 < μ < 1

}
, (3.7)
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and show that the set V is bounded. Let x ∈ V , then x = μUx, 0 < μ < 1. For any t ∈ [0, T],
we have

x(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) f(s, x(s))ds − 1

2

∫T

0

(T − s)q−1
Γ
(
q
) f(s, x(s))ds

+
(T − 2t)

4

∫T

0

(T − s)q−2
Γ
(
q − 1

) f(s, x(s))ds +
t(T − t)

4

∫T

0

(T − s)q−3
Γ
(
q − 2

) f(s, x(s))ds

+

(
6t2T − 4t3 − T3)

48

∫T

0

(T − s)q−4
Γ
(
q − 3

) f(s, x(s))ds

+

(
2Tt3 − t4 − tT3)

48

∫T

0

(T − s)q−5
Γ
(
q − 4

) f(s, x(s))ds,

(3.8)

|x(t)| = μ|(Ux)(t)| ≤
∫ t

0

(t − s)q−1
Γ
(
q
)
∣∣f(s, x(s))

∣∣ds +
1
2

∫T

0

(T − s)q−1
Γ
(
q
)
∣∣f(s, x(s))

∣∣ds

+
|T − 2t|

4

∫T

0

(T − s)q−2
Γ
(
q − 1

)
∣∣f(s, x(s))

∣∣ds

+
|t(T − t)|

4

∫T

0

(T − s)q−3
Γ
(
q − 2

)
∣∣f(s, x(s))

∣∣ds

+

∣∣6t2T − 4t3 − T3
∣∣

48

∫T

0

(T − s)q−4
Γ
(
q − 3

)
∣∣f(s, x(s))

∣∣ds

+

∣∣2Tt3 − t4 − tT3
∣∣

48

∫T

0

(T − s)q−5
Γ
(
q − 4

)
∣∣f(s, x(s))

∣∣ds

≤ L1

[
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds + 1

2Γ
(
q
)
∫T

0
(T − s)q−1ds

+
|T − 2t|

4Γ
(
q − 1

)
∫T

0
(T − s)q−2ds + |t(T − t)|

4Γ
(
q − 2

)
∫T

0
(T − s)q−3ds

+

∣∣6t2T − 4t3 − T3
∣∣

48Γ
(
q − 3

)
∫T

0
(T − s)q−4Γ(q − 3

)
ds

+

∣∣2Tt3 − t4 − tT3
∣∣

48Γ
(
q − 4

)
∫T

0
(T − s)q−5ds

]

≤ max
t∈[0,T]

{
2|tq| + Tq
2Γ
(
q + 1

) +
|T − 2t|Tq−1

4Γ
(
q
) +

|t(T − t)|Tq−2
4Γ
(
q − 1

) +

∣∣6t2T − 4t3 − T3
∣∣Tq−3

48Γ
(
q − 2

)

+

∣∣2Tt3 − t4 − tT3
∣∣Tq−4

48Γ
(
q − 3

)

}

L1

= M1.

(3.9)
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Thus, ‖x‖ ≤ M1 for any t ∈ [0, T]. So, the set V is bounded. Thus, by the conclusion of
Theorem 3.1, the operator U has at least one fixed point, which implies that (1.1) has at least
one solution.

Theorem 3.4. Let there exist a small positive number τ such that |f(t, x)| ≤ δ|x| for 0 < |x| < τ ,
where δ > 0 satisfies the condition

max
t∈[0,T]

{
2|tq| + Tq
2Γ
(
q + 1

) +
|T − 2t|Tq−1

4Γ
(
q
) +

|t(T − t)|Tq−2
4Γ
(
q − 1

) +

∣
∣6t2T − 4t3 − T3

∣
∣Tq−3

48Γ
(
q − 2

)

+

∣
∣2Tt3 − t4 − tT3

∣
∣Tq−4

48Γ
(
q − 3

)

}

δ ≤ 1.

(3.10)

Then the problem (1.1) has at least one solution.

Proof. Let us define Bτ = {x ∈ E | ‖x‖ < τ} and take x ∈ E such that ‖x‖ = τ , that is, x ∈ ∂Bτ .
As before, it can be shown that U is completely continuous and

‖Ux‖ ≤ max
t∈[0,T]

{
2|tq| + Tq
2Γ
(
q + 1

) +
|T − 2t|Tq−1

4Γ
(
q
) +

|t(T − t)|Tq−2
4Γ
(
q − 1

) +

∣∣6t2T − 4t3 − T3
∣∣Tq−3

48Γ
(
q − 2

)

+

∣∣2Tt3 − t4 − tT3
∣∣Tq−4

48Γ
(
q − 3

)

}

δ‖x‖,
(3.11)

which in view of (3.10) yields ‖Ux‖ ≤ ‖x‖, x ∈ ∂Bτ . Therefore, by Theorem 3.2, the operator
U has at least one fixed point, which in turn implies that the problem (1.1) has at least one
solution.

Our next existence result is based on Krasnoselskii’s fixed point theorem [29].

Theorem 3.5. Let M be a closed convex and nonempty subset of a Banach space X. Let A and B be
the operators such that (i)Ax +By ∈M whenever x, y ∈M; (ii)A is compact and continuous; (iii)
B is a contraction mapping. Then there exists z ∈M such that z = Az + Bz.

Theorem 3.6. Let f : [0, T] × R → R be a jointly continuous function. Further, we assume that

(A1) |f(t, x) − f(t, y)| ≤ L|x − y|, for all t ∈ [0, T], x, y ∈ R;

(A2) |f(t, x)| ≤ μ(t), for all (t, x) ∈ [0, T] × R, and μ ∈ C([0, T], R+).

Then the problem (1.1) has at least one solution on [0, T] if

LTq

2Γ
(
q + 1

)

(

1 +
q

2
+
q
(
q − 1

)

8
+
q
(
q − 1

)(
q − 2

)

24
+
5q
(
q − 1

)(
q − 2

)(
q − 3

)

384

)

< 1. (3.12)
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Proof. Letting supt∈[0,1]|μ(t)| = ‖μ‖, we fix

r ≥
∥
∥μ
∥
∥Tq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)

(3.13)

and consider Br = {x ∈ E : ‖x‖ ≤ r}. We define the operators U1 and U2 on Br as

(U1x)(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) f(s, x(s))ds,

(U2x)(t) = −1
2

∫T

0

(T − s)q−1
Γ
(
q
) f(s, x(s))ds +

1
4
(T − 2t)

∫T

0

(T − s)q−2
Γ
(
q − 1

) f(s, x(s))ds

+
1
4
(t(T − t))

∫T

0

(T − s)q−3
Γ
(
q − 2

) f(s, x(s))ds

+

(
6t2T − 4t3 − T3)

48

∫T

0

(T − s)q−4
Γ
(
q − 3

) f(s, x(s))ds

+

(
2Tt3 − t4 − tT3)

48

∫T

0

(T − s)q−5
Γ
(
q − 4

) f(s, x(s))ds.

(3.14)

For x, y ∈ Br , we find that

∥∥U1x +U2y
∥∥ ≤

∥∥μ
∥∥Tq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)

≤ r. (3.15)

Thus, U1x +U2y ∈ Br . It follows from the assumption (A1) that U2 is a contraction mapping
for

LTq

2Γ
(
q + 1

)

(

1 +
q

2
+
q
(
q − 1

)

8
+
q
(
q − 1

)(
q − 2

)

24
+
5q
(
q − 1

)(
q − 2

)(
q − 3

)

384

)

< 1. (3.16)

Continuity of f implies that the operatorU1 is continuous. Also,U1 is uniformly bounded on
Br as

‖U1x‖ ≤
∥∥μ
∥∥Tq

Γ
(
q + 1

) . (3.17)

Now we prove the compactness of the operator U1. In view of (A1), we define

sup
(t,x)∈[0,T]×Br

∣∣f(t, x)
∣∣ = fm <∞, (3.18)
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and consequently, for t1, t2 ∈ [0, T]with t1 < t2, we have

|(U1x)(t2) − (U1x)(t1)| ≤
fm

Γ
(
q
)

∣
∣
∣
∣
∣

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds

+
∫ t2

t1

(t2 − s)q−1ds
∣
∣
∣
∣
∣
,

(3.19)

which is independent of x and tends to zero as t2 − t1 → 0. So U1 is relatively compact on
Br . Hence, By the Arzela-Ascoli theorem, U1 is compact on Br . Thus all the assumptions
of Theorem 3.5 are satisfied. Therefore, the conclusion of Theorem 3.5 applies and the
antiperiodic fractional boundary value problem (1.1) has at least one solution on [0, T]. This
completes the proof.

Theorem 3.7. Assume that f : [0, T] × R → R is a jointly continuous function satisfying the
condition

∣∣f(t, x) − f(t, y)∣∣ ≤ L∣∣x − y∣∣, ∀t ∈ [0, T], x, y ∈ R (3.20)

with

LΔ < 1, (3.21)

Δ =
Tq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)

. (3.22)

Then the antiperiodic boundary value problem (1.1) has a unique solution.

Proof. Let us define supt∈[0,T]|f(t, 0)| = M and select rκ ≥ MΔ/(1 − κ) where LΔ ≤ κ < 1.
Then we show that UBrκ ⊂ Brκ , where Brκ = {x ∈ E : ‖x‖ ≤ rκ}. For x ∈ Brκ , we have

‖(Ux)‖ ≤ max
t∈[0,T]

{∫ t

0

(t − s)q−1
Γ
(
q
)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds

+
1
2

∫T

0

(T − s)q−1
Γ
(
q
)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2
Γ
(
q − 1

)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds
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+
1
4
|t(T − t)|

∫T

0

(T − s)q−3
Γ
(
q − 2

)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds

+
1
48

∣
∣
∣6t2T − 4t3 − T3

∣
∣
∣

∫T

0

(T − s)q−4
Γ
(
q − 3

)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds

+

∣
∣2Tt3 − t4 − tT3

∣
∣

48

∫T

0

(T − s)q−5
Γ
(
q − 4

)
(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)∣∣)ds

}

≤ (Lrκ +M)max
t∈[0,T]

{
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds + 1

2Γ
(
q
)
∫T

0
(T − s)q−1ds

+
|T − 2t|

4Γ
(
q − 1

)
∫T

0
(T − s)q−2ds + |t(T − t)|

4Γ
(
q − 2

)
∫T

0
(T − s)q−3ds

+
1

48Γ
(
q − 3

)
∣∣∣6t2T − 4t3 − T3

∣∣∣

∫T

0
(T − s)q−4ds

+

∣∣2Tt3 − t4 − tT3
∣∣

48Γ
(
q − 4

)
∫T

0
(T − s)q−5ds

}

≤ (Lrκ +M)

[
Tq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)]

= (Lrκ +M)Δ ≤ κrκ +MΔ ≤ rκ,
(3.23)

where (3.22) is used. Now, for x, y ∈ E, we obtain

∥∥(Ux) − (Uy)∥∥

≤ max
t∈[0,T]

{∫ t

0

(t − s)q−1
Γ
(
q
)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

+
1
2

∫T

0

(T − s)q−1
Γ
(
q
)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2
Γ
(
q − 1

)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

+
1
4
|t(T − t)|

∫T

0

(T − s)q−3
Γ
(
q − 2

)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

+
1
48

∣∣∣6t2T − 4t3 − T3
∣∣∣

∫T

0

(T − s)q−4
Γ
(
q − 3

)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

+
1
48

∣∣∣2Tt3 − t4 − tT3
∣∣∣

∫T

0

(T − s)q−5
Γ
(
q − 4

)
∥∥f(s, x(s)) − f(s, y(s))∥∥ds

}
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≤ L∥∥x − y∥∥max
t∈[0,T]

{
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds + 1

2Γ
(
q
)
∫T

0
(T − s)q−1ds

+
|T − 2t|

4Γ
(
q − 1

)
∫T

0
(T − s)q−2ds + |t(T − t)|

4Γ
(
q − 2

)
∫T

0
(T − s)q−3ds

+
1

48Γ
(
q − 3

)
∣
∣
∣6t2T − 4t3 − T3

∣
∣
∣

∫T

0
(T − s)q−4Γ(q − 3

)
ds

+
1
48

∣
∣
∣2Tt3 − t4 − tT3

∣
∣
∣

∫T

0

(T − s)q−5
Γ
(
q − 4

)

}

≤ LTq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)
∥
∥x − y∥∥ = ΔL

∥
∥x − y∥∥,

(3.24)

where we have used (3.22). It follows by the condition (3.21) that U is a contraction. So, by
Banach’s contraction mapping principle, problem (1.1) has a unique solution.

Example 3.8. Consider the following antiperiodic fractional boundary value problem:

CDqx(t) =
e(1−cos

2x(t))2[4 sin 2t + 8 ln
(
17 + 5 cos2x(t)

)]

√
(17 + sinx(t))

, 0 < t < 1,

x(0) = −x(1), x′(0) = −x′(1), x′′(0) = −x′′(1),

x′′′(0) = −x′′′(1), xiv(0) = −xiv(1),

(3.25)

where 4 < q ≤ 5 and T = 1.

Clearly, |f(t, x)| ≤ L1 = e(1 + 2 ln 22), and the hypothesis of Theorem 3.3 holds.
Therefore, the conclusion of Theorem 3.3 applies to problem (3.25).

Example 3.9. Consider the following problem:

CDqx(t) = x
(
a2 + x3(t)

)1/2
+ 2
(
1 + t4

)3
(1 − cosx(t)), x /= 0, a > 0, 0 < t < 1,

x(0) = −x(1), x′(0) = −x′(1), x′′(0) = −x′′(1),
(3.26)

x′′′(0) = −x′′′(1), xiv(0) = −xiv(1), (3.27)

where 4 < q ≤ 5, and T = 1.
For sufficiently small x (ignoring x2 and higher powers of x), we have

∣∣∣∣x
(
a2 + x3(t)

)1/2
+ 2
(
1 + t4

)3
(1 − cosx(t))

∣∣∣∣ ≤ a|x|, (3.28)
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where a ≤ δ, and (3.10) takes the form

(
3

2Γ
(
q + 1

) +
1

4Γ
(
q
) +

1
16Γ
(
q − 1

) +
1

48Γ
(
q − 2

) +
5

768Γ
(
q − 3

)

)

δ ≤ 1 (3.29)

(in particular, for q = 9/2, δ ≤ 1920
√
π/313). Thus all the assumptions of Theorem 3.4 hold.

Consequently, the conclusion of Theorem 3.4 implies that the problem (3.26) has at least one
solution

Example 3.10. Consider the following antiperiodic fractional boundary value problem:

cD9/2x(t) =
1

√
(t + 2025)

( |x|
1 + |x| + tan−1x

)
+ sin t, t ∈ [0, π],

x(0) = − x(π), x′(0) = −x′(π), x′′(0) = −x′′(π),

x′′′(0) = − x′′′(π), x(iv)(0) = −x(iv)(π),

(3.30)

where q = 9/2, and T = π . Clearly, L = 2/45 as |f(t, x) − f(t, y)| ≤ 2/45|x − y|. Further,

LΔ =
LTq

2Γ
(
q + 1

)

(

3 +
q

2
+
q
(
q − 1

)(
5q2 − 9q + 46

)

384

)

=
313π4

43200
< 1. (3.31)

Thus, all the assumptions of by Theorem 3.7 are satisfied. Hence, the fractional boundary
value problem (3.30) has a unique solution on [0, π].
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We discuss the existence of positive solutions to the following fractional m-point boundary value
problem with changing sign nonlinearity Dα

0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, u(0) = 0, Dβ

0+u(1) =
∑m−2

i=1 ηiD
β

0+u(ξi), where λ is a positive parameter, 1 < α ≤ 2, 0 < β < α − 1, 0 < ξ1 < · · · < ξm−2 < 1

with
∑m−2

i=1 ηiξ
α−β−1
i < 1, Dα

0+ is the standard Riemann-Liouville derivative, f and may be singular
at t = 0 and/or t = 1 and also may change sign. The work improves and generalizes some previous
results.

1. Introduction

In this paper, we consider the following fractional differential equation with m-point boun-
dary conditions:

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi),
(1.1)

where 1 < α ≤ 2, λ > 0 is a parameter, 0 < β < α−1, 0 < ξ1 < · · · < ξm−2 < 1 with
∑m−2

i=1 ηiξ
α−β−1
i <

1, Dα
0+ is the standard Riemann-Liouville derivative, and f ∈ C((0, 1)× [0,+∞) → (−∞,+∞))

may be singular at t = 0 and/or t = 1 and also may change sign. In this paper, by a positive
solution to (1.1), we mean a function u ∈ C[0, 1] which is positive on (0, 1] and satisfies (1.1).
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In recent years, great efforts have been made worldwide to study the existence of
solutions for nonlinear fractional differential equations by using nonlinear analysis methods
[1–24]. Fractional-order multipoint boundary value problems (BVP) have particularly
attracted a great deal of attention (see, e.g., [13–19]). In [10], the authors discussed some
properties of the Green function for the Direchlet-type BVP of nonlinear fractional differential
equations

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(1.2)

where 1 < α < 2,Dα
0+ is the standard Riemann-Liouville derivative and f : C([0, 1]×[0,+∞) →

[0,+∞)) is continuous. By using the Krasnosel’skii fixed-point theorem, the existence of
positive solutions was obtained under some suitable conditions on f .

In [14], the authors investigated the existence and multiplicity of positive solutions by
using some fixed-point theorems for the fractional differential equation given by

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) = aD
β

0+u(ξ),
(1.3)

where 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < ξ < 1, 0 ≤ a ≤ 1 with aξα−β−2 < 1 − β, 0 ≤ α − β − 1, f is
nonnegative.

It should be noted that in most of the works in literature the nonlinearity needs to
be nonnegative in order to establish positive solutions. As far as we know, semipositone
fractional nonlocal boundary value problems with 1 < α ≤ 2 have been seldom studied due
to the difficulties in finding and analyzing the corresponding Green function.

In [23], the authors investigated the following fractional differential equation with
three-point boundary conditions:

Dα
0+u(t) + f(t, u(t)) + e(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) = aD
β

0+u(ξ),
(1.4)

where 1 < α ≤ 2, 0 < β ≤ 1, 0 < ξ < 1, 0 ≤ a ≤ 1,0 ≤ α − β − 1, e(t) ∈ L[0, 1], and f satisfies the
Caratheodory conditions. The authors obtained the properties of the Green function for (1.4)
as follows:

βtα−1s(1 − s)α−β−1

Γ(α)
≤ G(t, s) ≤ tα−1(1 − s)α−β−1

Γ(α)
(
1 − aξα−β−1

) . (1.5)

By using the Schauder fixed-point theorem, the authors obtained the existence of positive
solution of (1.4) with the following assumptions:

(A1) for each L > 0, there exists a function φL � 0 such that f(t, tα−1x) ≥ φL(t) for a.e.
t ∈ (0, 1), for all x ∈ (0, L];
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(A2) there exist g(x), h(x), and k(t) � 0, such that

0 ≤ f(t, x) ≤ k(t){g(x) + h(x)}, ∀x ∈ (0,∞), a.e. t ∈ (0, 1), (1.6)

here g : (0,∞) → [0,∞) is continuous and nonincreasing, h : [0,∞) → [0,∞) is continuous,
and h/g is nondecreasing;

(A3) There exist two positive constants R > r > 0 such that

R > ΦR1 + γ∗ ≥ r > 0,
∫1

0
k(s)g

(
rsα−1

)
ds < +∞,

R ≥
(

1 +
h(R)
g(R)

)∫1

0

(1 − s)α−β−1

Γ(α)
(
1 − aξα−β−1

)k(s)g
(
rsα−1

)
ds + γ∗.

(1.7)

Here

ΦR1 =
∫1

0

βs(1 − s)α−β−1

Γ(α)
φR(s)ds. (1.8)

The assumptions on nonlinearity are not suitable for frequently used conditions, such as
superlinear or some sublinear. For instance, f(t, x) = xμ, μ > 0, obviously, f does not satisfy
(A1).

Inspired by the previous work, the aim of this paper is to establish conditions for the
existence of positive solutions of the more general BVP (1.1). Our work presented in this
paper has the following new features. Firstly, we consider few cases of 1 < α ≤ 2 which
has been studied before, and in dealing with the difficulties related to the Green function
for this case, some new properties of the Green function have been discovered. Secondly, the
BVP (1.1) possesses singularity; that is, f may be singular at t = 0 and/or t = 1. Thirdly,
the nonlinearity f may change sign and may be unbounded from below. Finally, we impose
weaker positivity conditions on the nonlocal boundary term; that is, some of the coefficients
ηi may be negative.

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries and lemmas that are to be used to prove our main results. We also discover
some new positive properties of the corresponding Green function. In Section 3, we discuss
the existence of positive solutions of the semipositone BVP (1.1). In Section 4, we give an
example to demonstrate the application of our theoretical results.

2. Basic Definitions and Preliminaries

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions can also be found in the recent literature.
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Definition 2.1. The fractional integral of order α > 0 of a function u : (0,+∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, (2.1)

provided that the right-hand side is pointwisely defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a function u :
(0,+∞) → R is given by

Dα
0+u(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1u(s)ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of the number α, provided that the right-
hand side is pointwisely defined on (0,+∞).

Lemma 2.3 (see [3]). Let α > 0. Then the following equality holds for u ∈ L(0, 1), Dα
0+u ∈ L(0, 1);

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cntα−n, (2.3)

where ci ∈ R, i = 1, 2, . . . , n, n − 1 < α ≤ n.

Set

G0(t, s) =
1

Γ(α)

⎧
⎨

⎩
tα−1(1 − s)α−β−1, 0 ≤ t ≤ s ≤ 1,

tα−1(1 − s)α−β−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
(2.4)

p(s) = 1 −
∑

s≤ξi
ηi

(
ξi − s
1 − s

)α−β−1

, (2.5)

G(t, s) = G0(t, s) + q(s)tα−1, (2.6)

where

q(s) =
p(s) − p(0)
Γ(α)p(0)

(1 − s)α−β−1, p(0) = 1 −
m−2∑

i=1

ηiξ
α−β−1
i . (2.7)

For convenience in presentation, we here list the assumption to be used throughout the paper.

(H1) p(0) > 0, q(s) ≥ 0 on [0, 1].

Remark 2.4. If ηi = 0 (i = 1, . . . , m−2), we have p(0) = 1 and q(s) ≡ 0. If ηi ≥ 0 (i = 1, . . . , m−2)
and

∑m−2
i=1 ηiξ

α−β−1
i < 1, we have q(s) ≥ 0 on [0, 1].
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Lemma 2.5 (see [14]). Assume that g(t) ∈ L[0, 1] and α > β > 0. Then

D
β

0+

∫ t

0
(t − s)α−1g(s)ds =

Γ(α)
Γ
(
α − β)

∫ t

0
(t − s)α−β−1g(s)ds. (2.8)

Lemma 2.6. Assume (H1) holds, and y(t) ∈ L[0, 1]. Then the unique solution of the problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi)
(2.9)

is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.10)

where G(t, s) is the Green function of the boundary value problem (2.9).

Proof. From Lemma 2.3, the solution of (2.9) is

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2. (2.11)

Consequently,

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1 + c2t
α−2. (2.12)

From u(0) = 0, we have c2 = 0.
By Lemma 2.5, we have

D
β

0+u(t) = − 1
Γ
(
α − β)

∫ t

0
(t − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β) t

α−β−1. (2.13)

Therefore,

D
β

0+u(1) = − 1
Γ
(
α − β)

∫1

0
(1 − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β) ,

D
β

0+u(ξi) = − 1
Γ
(
α − β)

∫ ξi

0
(ξi − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β)ξ

α−β−1
i .

(2.14)



6 Abstract and Applied Analysis

By Dβ

0+u(1) =
∑m−2

i=1 ηiD
β

0+u(ξi), we have

c1 =

∫1
0 (1 − s)α−1y(s)ds −∑m−2

i=1 ηi
∫ ξi

0 (ξi − s)α−β−1y(s)ds
Γ(α)p(0)

=

∫1
0 (1 − s)α−β−1p(s)y(s)ds

Γ(α)p(0)
.

(2.15)

Therefore, the solution of (2.9) is

u(t) = c1t
α−1 − 1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.16)

Lemma 2.7. The function G0(t, s) has the following properties:

(1) G0(t, s) > 0, for t, s ∈ (0, 1);

(2) Γ(α)G0(t, s) ≤ tα−1, for t, s ∈ [0, 1];

(3) βtα−1h(s) ≤ Γ(α)G0(t, s) ≤ h(s)tα−2, for t, s ∈ (0, 1),

where

h(s) = s(1 − s)α−β−1. (2.17)

Proof. (1) When 0 < t ≤ s < 1, it is clear that

G0(t, s) =
1

Γ(α)
tα−1(1 − s)α−β−1 > 0. (2.18)

When 0 < s ≤ t < 1, we have

tα−1(1 − s)α−β−1 − (t − s)α−1 ≥ tα−1(1 − s)α−β−1 − tα−1(1 − s)α−1

= tα−1(1 − s)α−β−1
[
1 − (1 − s)β

]
> 0.

(2.19)

(2) By (2.4), for any t, s ∈ [0, 1], we have

Γ(α)G0(t, s) ≤ tα−1(1 − s)α−β−1 ≤ tα−1. (2.20)

In the following, we will prove (3).
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(i) When 0 < s ≤ t < 1, noticing that 0 < β < α − 1 ≤ 1, we have

∂

∂β

{
tα−2s(1 − s)α−β−1 − tα−1(1 − s)α−β−1

}
= tα−2(1 − s)α−β−1(t − s) ln(1 − s) ≤ 0. (2.21)

Therefore,

tα−2s(1 − s)α−β−1 −
(
tα−1(1 − s)α−β−1 − (t − s)α−1

)
≥ tα−2s − tα−1 + (t − s)α−1

= − tα−2(t − s) + (t − s)α−1 ≥ 0,
(2.22)

which implies

Γ(α)G0(t, s) ≤ h(s)tα−2. (2.23)

On the other hand, we have

d

ds

{
βs + (1 − s)β

}
≤ 0, s ∈ [0, 1). (2.24)

Therefore, βs + (1 − s)β ≤ 1, which implies

[
1 − (1 − s)β

]
≥ βs. (2.25)

Then

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 − (t − s)α−1

≥ tα−1(1 − s)α−β−1 − (t − s)β(t − ts)α−β−1

=
[

1 −
(

1 − s

t

)β]
tα−1(1 − s)α−β−1

≥
[
1 − (1 − s)β

]
tα−1(1 − s)α−β−1

≥ βtα−1h(s).

(2.26)

(ii) When 0 < t ≤ s < 1, we have

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 = tα−2t(1 − s)α−β−1

≤ tα−2s(1 − s)α−β−1 = h(s)tα−2,
(2.27)
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On the other hand, clearly we have

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 ≥ βtα−1h(s). (2.28)

The inequalities (2.23)–(2.28) imply that (3) holds.

By Lemma 2.7, we have the following results.

Lemma 2.8. Assume (H1) holds, then the Green function defined by (2.6) satisfies

(1) G(t, s) > 0, for all t, s ∈ (0, 1);

(2) G(t, s) ≤ tα−1((1/(Γ(α))) + q(s)), for all t, s ∈ [0, 1];

(3) βtα−1Φ(s) ≤ G(t, s) ≤ tα−2Φ(s), for all t, s ∈ (0, 1),

where

Φ(s) =
(
h(s)
Γ(α)

+ q(s)
)
. (2.29)

Lemma 2.9. Assume (H1) holds, then the function G∗(t, s) =: t2−αG(t, s) satisfies

(1) G∗(t, s) > 0, for all t, s ∈ (0, 1);

(2) G∗(t, s) ≤ t((1/(Γ(α))) + q(s)), for all t, s ∈ [0, 1];

(3) βtΦ(s) ≤ G∗(t, s) ≤ Φ(s), for all t, s ∈ [0, 1].

For convenience, we list here four more assumptions to be used later:

(H2) f ∈ C((0, 1) × [0,+∞), (−∞,+∞)) satisfies

f(t, x) ≥ −r(t), f
(
t, tα−2x

)
≤ z(t)g(x), t ∈ (0, 1), x ∈ [0,+∞), (2.30)

where r, z ∈ C((0, 1), [0,+∞)), g ∈ C([0,+∞), [0,+∞)).

(H3)
∫1

0 r(s)ds < +∞, 0 <
∫1

0 z(s)ds < +∞.

(H4) There exists [a, b] ⊂ (0, 1) such that

lim inf
x→+∞

min
t∈[a,b]

f(t, x)
x

= +∞. (2.31)

(H5) There exists [c, d] ⊂ (0, 1) such that

lim inf
x→+∞

min
t∈[c,d]

f(t, x) = +∞,

lim
x→+∞

g(x)
x

= 0.
(2.32)
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Remark 2.10. The second limit of (H5) implies

lim
u→+∞

g∗(u)
u

= 0, (2.33)

where

g∗(u) = max
x∈[0,u]

g(x). (2.34)

Proof. By limu→+∞(g(u)/u) = 0, for any ε > 0, there exists N1 > 0, such that for any u > N1

we have

0 ≤ g(u) < εu. (2.35)

Let N = max{N1, ((g∗(N1))/ε)}, for any u > N we have

0 ≤ g∗(u) < εu + g∗(N1) < 2εu. (2.36)

Therefore, limu→+∞((g∗(u))/u) = 0.

Lemma 2.11. Assume (H1) holds and r(t) ∈ C(0, 1) ∩ L[0, 1] is nonnegative, then the BVP

Dα
0+u(t) + r(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi)
(2.37)

has a unique solution ω(t) =
∫1

0 G(t, s)r(s)ds with ω(t) ≤ ktα−1, where

k =
∫1

0

(
1

Γ(α)
+ q(s)

)
r(s)ds, t ∈ [0, 1]. (2.38)

Proof. By Lemma 2.6, ω(t) =
∫1

0 G(t, s)r(s)ds is the unique solution of (2.37). By (2) of
Lemma 2.8, we have

ω(t) =
∫1

0
G(t, s)r(s)ds ≤ tα−1

∫1

0

(
1

Γ(α)
+ q(s)

)
r(s)ds. (2.39)

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1|u(t)| and define
a cone P by

P =
{
u(t) ∈ E : there exists lu > 0 such that βt‖u‖ ≤ u(t) ≤ lut

}
, (2.40)

and then set Br = {u(t) ∈ E : ‖u‖ < r}, Pr = P ∩ Br , ∂Pr = P ∩ ∂Br .
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Next we consider the following singular nonlinear BVP:

Dα
0+u(t) + λ

[
f
(
t, [u(t) − λω(t)]+) + r(t)] = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi),
(2.41)

where λ > 0, [v(t)]+ = max{v(t), 0}, ω(t) is defined in Lemma 2.11.
Let

Tu(t) = λ
∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.42)

Clearly, if u(t) ∈ P is a fixed point of T , then y(t) = tα−2u(t) is a positive solution of
(2.41).

Lemma 2.12. Suppose that (H1)–(H3) hold. Then T : P → P is a completely continuous operator.

Proof. It is clear that T is well defined on P . For any u ∈ P , Lemma 2.9 implies

Tu(t) ≥ βtλ
∫1

0
Φ(s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.43)

On the other hand,

Tu(t) ≤ λ
∫1

0
Φ(s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.44)

Therefore, Tu(t) ≥ βt ‖Tu‖. Noticing that

Tu(t) ≤ λt
∫1

0

(
1

Γ(α)
+ q(s)

)[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds, (2.45)

we have T : P → P .
Using the Ascoli-Arzela theorem, we can then get that T : P → P is a completely

continuous operator.

Lemma 2.13 (see [25]). Let E be a real Banach space and let P ⊂ E be a cone. Assume that Ω1 and
Ω2 are two-bounded open subsets of E with θ ∈ Ω1,Ω1 ⊂ Ω2, T : P ∩ (Ω2 \Ω1) → P a completely
continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).
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3. Existence of Positive Solutions

Theorem 3.1. Suppose that (H1)–(H4) hold. Then there exists λ∗ > 0 such that the BVP (1.1) has
at least one positive solution for any λ ∈ (0, λ∗).

Proof . Choose r1 > kβ
−1. Let

λ∗ = min

⎧
⎨

⎩
1,

r1
(
g∗(r1) + 1

) ∫1
0 Φ(s)(z(s) + r(s))ds

⎫
⎬

⎭
, (3.1)

where

g∗(r) = max
x∈[0,r]

g(x). (3.2)

In the following of the proof, we suppose λ ∈ (0, λ∗).
For any u ∈ ∂Pr1 , noticing u(t) ≥ βtr1 and Lemma 2.11, we have

tα−2u(t) − λω(t) ≥ (βr1 − λk
)
tα−1 ≥ (βr1 − k

)
tα−1 ≥ 0, (3.3)

r1 ≥ u(t) − λt2−αω(t) ≥ (βr1 − k
)
t ≥ 0. (3.4)

Therefore,

Tu(t) = λ

∫1

0
G∗(t, s)

(
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

)
ds

≤ λ

∫1

0
Φ(s)

(
z(s)g

([
u(s) − λs2−αω(s)

]+)
+ r(s)

)
ds

≤ λ
(
g∗(r1) + 1

)
∫1

0
Φ(s)(z(s) + r(s))ds

< λ∗
(
g∗(r1) + 1

)
∫1

0
Φ(s)(z(s) + r(s))ds ≤ r1.

(3.5)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Pr1 . (3.6)

Now choose a real number

L >
2

λβ2
∫b
a Φ(s)sα−1ds

. (3.7)
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By (H4), there exists a constant N > 0 such that

f(t, x) > Lx, for any t ∈ [a, b], x ≥N. (3.8)

Let

r2 = r1 +
2k
β

+
2N
βaα−1

. (3.9)

Then for any u ∈ ∂Pr2 , we have

tα−2u(t) − λω(t) ≥ (βr2 − k
)
tα−1 ≥ βr2

2
tα−1, ∀t ∈ (0, 1]. (3.10)

Thus, for any t ∈ [a, b], we have tα−2u(t) − λω(t) > N. Hence, we get

‖Tu‖ = max
t∈[0,1]

λ

∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds

≥ max
t∈[0,1]

λ

∫b

a

G∗(t, s)f
(
s,
[
sα−2u(s) − λω(s)

])
ds

≥ max
t∈[0,1]

λL

∫b

a

G∗(t, s)
(
sα−2u(s) − λω(s)

)
ds

≥ max
t∈[0,1]

λL

∫b

a

G∗(t, s)
βr2

2
sα−1ds

≥ max
t∈[0,1]

λLβ2r2

2
t

∫b

a

Φ(s)sα−1ds

=
λLβ2r2

2

∫b

a

Φ(s)sα−1ds ≥ r2.

(3.11)

Therefore,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Pr2 . (3.12)

By Lemma 2.13, T has a fixed point u ∈ P such that r1 ≤ ‖u‖ ≤ r2. Let u(t) = tα−2u(t) − λω(t).
Since ‖u‖ ≥ r1, by (3.3) we have u(t) ≥ 0 on (0, 1] and limt→ 0+ t

α−2u(t) = 0. Notice that ω(t) is
the solution of (2.37) and tα−2u(t) is the solution of (2.41). Thus, u(t) is a positive solution of
the BVP (1.1).

Theorem 3.2. Suppose that (H1)–(H3) and (H5) hold. Then there exists λ∗ > 0 such that the BVP
(1.1) has at least one positive solution for any λ ∈ (λ∗,+∞).
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Proof. By the first limit of (H5), there exists N > 0 such that

f(t, x) ≥ 2k

β2
∫d
c Φ(s)ds

, for any t ∈ [c, d], x ≥N. (3.13)

Let

λ∗ =
N

kcα−1
. (3.14)

In the following part of the proof, we suppose λ > λ∗.
Let

R1 =
2λk
β
. (3.15)

Then for any u ∈ ∂PR1 , we have

tα−2u(t) − λω(t) ≥ (βR1 − λk
)
tα−1 = λktα−1 ≥ λ∗ktα−1, ∀t ∈ (0, 1]. (3.16)

Therefore, tα−2u(t) − λω(t) ≥N, for any t ∈ [c, d] and u ∈ ∂PR1 . Then

Tu(t) = λ

∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds

≥ λ

∫d

c

G∗(t, s)f
(
s,
[
sα−2u(s) − λω(s)

]+)
ds

≥ 2λk

β2
∫d
c Φ(s)ds

∫d

c

G∗(t, s)ds

≥ 2λkt

β
∫d
c Φ(s)ds

∫d

c

Φ(s)ds = R1t.

(3.17)

This implies

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂PR1 . (3.18)

On the other hand, g(x) is continuous on [0,+∞), and thus from the second limit of
(H5), we have

lim
x→+∞

g∗(x)
x

= 0, (3.19)
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where g∗(x) is defined by (3.2). For

ε =

(

2λ
∫1

0
Φ(s)z(s)ds

)−1

, (3.20)

there exists X0 > 0 such that g(u) ≤ εx for any x ≥ X0 and u ∈ [0, x].
Let

R2 = X0 + R1 + 2λ
∫1

0
Φ(s)r(s)ds. (3.21)

For any u ∈ ∂PR2 , by (3.16) we can get R2 ≥ u(t) − λt2−αω(t) ≥ 0, for all t ∈ [0, 1]. Therefore,

‖Tu‖ ≤ λ

∫1

0
Φ(s)

[
z(s)g

([
u(s) − λs2−αω(s)

]+)
+ r(s)

]
ds

≤ λεR2

∫1

0
Φ(s)z(s)ds + λ

∫1

0
Φ(s)r(s)ds

≤ R2

2
+
R2

2
= R2.

(3.22)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂PR2 . (3.23)

By Lemma 2.13, T has a fixed point u ∈ P such that R1 ≤ ‖u‖ ≤ R2. Let u(t) = tα−2u(t) − λω(t).
Since ‖u‖ ≥ R1, by (3.16) we have u(t) ≥ 0 on (0, 1] and limt→ 0+t

α−2u(t) = 0. Notice that ω(t)
is a solution of (2.37) and tα−2u(t) is a solution of (2.41). Thus, u(t) is a positive solution of
the BVP (1.1).

By the proof of Theorem 3.2, we have the following corollary.

Corollary 3.3. The conclusion of Theorem 3.2 is valid if (H5) is replaced by (H∗
5). There exist [c, d] ⊂

(0, 1) andN > 0 such that for any t ∈ [c, d] and x ≥N,

f(t, x) ≥ 2k

β2
∫d
c Φ(s)ds

,

lim
x→+∞

g(x)
x

= 0.

(3.24)
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4. Example

Example 4.1 (a 4-point BVP with coefficients of both signs). Consider the following problem:

D7/4
0+ u(t) + λf(t, u(t)) = 0, t ∈ (0, 1), u(0) = 0,

D1/4
0+ u(1) = D

1/4
0+ u

(
1
4

)
− 1

2
D1/4

0+ u

(
4
9

)
,

(4.1)

where

f(t, x) = x2 + ln t. (4.2)

We have

G0(t, s) =
1

Γ(7/4)

⎧
⎪⎪⎨

⎪⎪⎩

t3/4(1 − s)1/2, 0 ≤ t ≤ s ≤ 1,

t3/4(1 − s)1/2 − (t − s)3/4, 0 ≤ s ≤ t ≤ 1,

(4.3)

p(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(
(1/4) − s

1 − s
)1/2

− 1
2

(
(4/9) − s

1 − s
)1/2

, 0 ≤ s ≤ 1
4
,

1 − 1
2

(
(4/9) − s

1 − s
)1/2

,
1
4
< s ≤ 4

9
,

1,
4
9
< s ≤ 1.

(4.4)

By direct calculations, we have p(0) = (1/6) and q(s) ≥ 0, which implies that (H1) holds.
Let r(t) = − ln t, z(t) = t−1/2, g(x) = x2. It is easy to see that (H2) and (H3) hold.

Moreover,

lim inf
x→+∞

min
t∈[(1/4),(3/4)]

f(t, x)
x

= +∞. (4.5)

Therefore, the assumptions of Theorem 3.1 are satisfied. Thus, Theorem 3.1 ensures that there
exists λ∗ > 0 such that the BVP (4.1) has at least one positive solution for any λ ∈ (0, λ∗).

Remark 4.2. Noticing that λx2 does not satisfy (A1), therefore, the work in the present paper
improves and generalizes the main results of [23].
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We prove coupled coincidence point and coupled fixed point results of F : X×X → X and g : X →
X involving Meir-Keeler type contractions on the class of partially ordered metric spaces. Our
results generalize some recent results in the literature. Also, we give some illustrative examples
and application.

1. Introduction and Preliminaries

Fixed point theory has wide applications in many areas. In economics it has applications
in the study of market stability, in dynamic systems it is used to deterministic timed
systems on feedback semantics, and in the theory of differential and integral equations to
demonstrate the existence and uniqueness of solutions; see, for example, [1–5]. On the other
hand, fixed point theory, in particular fixed point iteration, has also numerous applications
in engineering. For example, use of the fixed point iteration in image retrieval provides
much better accuracy [6]. Fixed point algorithms proved to be very successful in practical
optimization of the contrast functions in independent component analysis in neural-network
research, as well as in statistics and signal processing [7]. These algorithms optimize the
contrast functions very fast and reliably. Relaxation in linear systems and relaxation and
stability in neural networks are also analyzed by means of fixed point iteration [8].

The problem of existence and uniqueness of fixed points in partially ordered sets has
been studied thoroughly because of its interesting nature. The first result in this direction was
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given by Turinici [9], where he extended the Banach contraction principle in partially ordered
sets. Ran and Reurings [10] presented some applications of Turinici’s theorem to matrix
equations. The result of Turinici was further extended and refined in [11–25]. In particular,
Gnana Bhaskar and Lakshmikantham in [12] introduced the concept of coupled fixed point
of a mapping F : X×X → X and investigated some coupled fixed point theorems in partially
ordered sets. They also discussed an application of their result by investigating the existence
and uniqueness of solution of the periodic boundary value problem:

u′(t) = f(t, u(t)), t ∈ [0, T],

u(0) = u(T),
(1.1)

where the function f satisfies certain conditions. Following this trend, Harjani et al. [4]
studied the existence and uniqueness of solutions of a nonlinear integral equation as an
application of coupled fixed points. Very recently, motivated by [5], Jleli and Samet [13]
discussed the existence and uniqueness of a positive solution for the singular nonlinear
fractional differential equation boundary value problem:

Dα
0+u(t) = f(t, u(t), u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.2)

where 3 < α ≤ 4 is a real number, Dα
0+ is the Riemann-Liouville fractional derivative and

f : (0, 1]× [0,∞)× [0,∞) → [0,∞) is continuous, limt→ 0+f(t, ·, ·) = +∞ (f is singular at t = 0)
for all t ∈ (0, 1], f(t, ·, ·) is nondecreasing with respect to first component and decreasing with
respect to its second and third components.

On the other hand, Lakshmikantham and Ćirić [19] proved coupled coincidence
and common coupled fixed point theorems for nonlinear contractive mappings in partially
ordered complete metric spaces which extend the coupled fixed point theorem given in [12].
Recently, Samet [23] proved some coupled fixed point theorems under a generalized Meir-
Keeler contractive condition.

In this paper, we introduce the definition of weak generalized g-Meir-Keeler type
contractions and prove some coupled coincidence point theorems for such contractions. The
theorems presented here generalize, enrich, and improve the previous results. Moreover, they
have application potential in the theory of existence and uniqueness of solutions of boundary
value problems.

Hereafter, we assume that X /= ∅ and we use the notation

Xk = X ×X × · · · ×X︸ ︷︷ ︸
k-many

.
(1.3)

Let R be the set of real numbers.
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Definition 1.1 (see [12]). Let (X,≤) be a partially ordered set and F : X2 → X. The mapping F
is said to have the mixed monotone property if F(x, y) is monotone nondecreasing in x and
monotone nonincreasing in y; that is, for any x, y ∈ X,

x1 ≤ x2 =⇒ F
(
x1, y

) ≤ F(x2, y
)
, for x1, x2 ∈ X,

y1 ≤ y2 =⇒ F
(
x, y2

) ≤ F(x, y1
)
, for y1, y2 ∈ X.

(1.4)

Definition 1.2 (see [12]). An element (x, y) ∈ X2 is said to be a coupled fixed point of the
mapping F : X2 → X if

F
(
x, y

)
= x, F

(
y, x

)
= y. (1.5)

The following result of Gnana Bhaskar and Lakshmikantham [12] was also proved in
the context of cone metric spaces in [16].

Theorem 1.3 (see [12]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X × X → X be a given mapping having the
mixed monotone property on X. Assume that there exists k ∈ [0, 1) with

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
[
d(x, u) + d

(
y, v

)]
, ∀u ≤ x, y ≤ v. (1.6)

Assume either F is continuous, or X satisfies the following property:

(i) if a nondecreasing sequence {xn} ∈ X converges to x, then xn ≤ x, for all n;
(ii) if a nonincreasing sequence {yn} ∈ X converges to y, then y ≤ yn, for all n.

If there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then, there exist x, y ∈ X such
that x = F(x, y) and y = F(y, x).

Inspired by Definition 1.1, Lakshmikantham and Ćirić [19] introduced the concept of
the mixed g-monotone property.

Definition 1.4 (see [19]). Let (X,≤) be a partially ordered set. Let F : X2 → X and let g : X →
X. The mapping F is said to have the mixed g-monotone property if F(x, y) is monotone
g-nondecreasing in x and is monotone g-nonincreasing in y; that is, for any x, y ∈ X,

g(x1) ≤ g(x2) =⇒ F
(
x1, y

) ≤ F(x2, y
)
, for x1, x2 ∈ X,

g
(
y1
) ≤ g(y2

)
=⇒ F

(
x, y2

) ≤ F(x, y1
)
, for y1, y2 ∈ X.

(1.7)

It is clear that Definition 1.4 reduces to Definition 1.1 when g is the identity map.

Definition 1.5 (see [19]). An element (x, y) ∈ X2 is called a coupled coincidence point of the
mappings F : X2 → X and g : X → X if

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (1.8)
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Moreover, (x, y) ∈ X2 is called a common coupled fixed point of F and g if

F
(
x, y

)
= g(x) = x, F

(
y, x

)
= g

(
y
)
= y. (1.9)

Definition 1.6 (see [19]). Let F : X2 → X and let g : X → X. The mappings F and g are said
to commute if

g
(
F
(
x, y

))
= F

(
g(x), g

(
y
))
, ∀x, y ∈ X. (1.10)

In 2009, Lakshmikantham and Ćirić [19] also proved a common coupled fixed point
on partially ordered complete metric spaces.

Theorem 1.7 (see [19]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X2 → X and let g : X → X such that F has
the mixed g-monotone property. Suppose that there exists k ∈ [0, 1) such that

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
, (1.11)

for all x, y, u, v ∈ X for which g(x) ≤ g(u) and g(v) ≤ g(y). Suppose F(X2) ⊆ g(X), g is
continuous and commutes with F. Also suppose that either F is continuous or X has the following
property:

if a nondecreasing sequence {xn} −→ x, then xn ≤ x, ∀n,
if a nonincreasing sequence

{
yn

} −→ y, then y ≤ yn, ∀n.
(1.12)

If there exist x0, y0 ∈ X such that g(x0) ≤ F(x0, y0) and g(y0) ≥ F(y0, x0), then there exist x, y ∈ X
such that g(x) = F(x, y) and g(y) = F(y, x); that is, F and g have a coupled coincidence point.

In 2010, Samet [23] introduced the mixed strict monotone property.

Definition 1.8 (see [23]). Let (X,≤) be a partially ordered set and let F : X2 → X. F is said to
have mixed strict monotone property if F(x, y) is monotone increasing in x and is monotone
decreasing in y; that is, for any x, y ∈ X,

x1 < x2 =⇒ F
(
x1, y

)
< F

(
x2, y

)
, for x1, x2 ∈ X,

y1 < y2 =⇒ F
(
x, y2

)
< F

(
x, y1

)
, for y1, y2 ∈ X.

(1.13)

Also, Samet [23] defined generalized Meir-Keeler contractions as follows.

Definition 1.9 (see [23]). Let (X,≤) be a partially ordered set, and suppose that there is a
metric d on X. Let F : X × X → X. The mapping F is said to be a generalized Meir-Keeler
type contraction if for any ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[
d(x, u) + d

(
y, v

)]
< ε + δ(ε) =⇒ d

(
F
(
x, y

)
, F(u, v)

)
< ε, (1.14)

for all x, y, u, v ∈ X with x ≤ u, y ≥ v.
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The existence and uniqueness of common coupled coincidence points via generalized
Meir-Keeler type contractions was investigated by Samet [23].

Theorem 1.10 (see [23]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d
on X such that (X, d) is a complete metric space. Let F : X2 → X be a map satisfying the following
conditions:

(i) F has the mixed strict monotone property,

(ii) F is a generalized Meir-Keeler type contraction,

(iii) there exist x0, y0 ∈ X such that

x0 < F
(
x0, y0

)
, y0 ≥ F

(
y0, x0

)
. (1.15)

Assume either F is continuous or X satisfies the following property:

(i) if a nondecreasing sequence {xn} ∈ X converges to x, then xn ≤ x, for all n,
(ii) if a nonincreasing sequence {yn} ∈ X converges to y, then y ≤ yn, for all n.

Then F has a coupled fixed point in X2; that is, there exist x, y ∈ X such that

F
(
x, y

)
= x, F

(
y, x

)
= y. (1.16)

Very recently, Gordji et al. [26] replaced the mixed g-monotone property by the mixed
strict g-monotone property.

Definition 1.11 (see [26]). Let (X,≤) be a partially ordered set. Let F : X2 → X and let g : X →
X. F is said to have the mixed strict g-monotone property if F(x, y) is monotone g-increasing
in x and is monotone g-decreasing in y; that is, for any x, y ∈ X,

g(x1) < g(x2) =⇒ F
(
x1, y

)
< F

(
x2, y

)
, for x1, x2 ∈ X,

g
(
y1
)
< g

(
y2
)
=⇒ F

(
x, y2

)
< F

(
x, y1

)
, for y1, y2 ∈ X.

(1.17)

If we replace g with identity map in (1.17), we get Definition 1.8 of the mixed strict
monotone property of F.

Gordji et al. [26] gave also the following definition.

Definition 1.12 (see [26]). Let (X, d,≤) be a partially ordered metric space and F : X×X → X,
g : X → X. The operator F is said to be a generalized g-Meir-Keeler type contraction if for
any ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
< ε + δ(ε) =⇒ d

(
F
(
x, y

)
, F(u, v)

)
< ε, (1.18)

for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v).

Note that if we replace g with the identity in (1.18), we get Definition 1.9 of generalized
Meir-Keeler type contraction.
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Gordji et al. [26] proved the following theorem.

Theorem 1.13 (see [26]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d
on X such that (X, d) is a complete metric space. Let F : X2 → X and let g : X → X be mappings
such that F(X2) ⊆ g(X), g is continuous and commutes with F. Suppose also that F satisfies the
following conditions:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) F is a generalized g-Meir-Keeler type contraction,

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(
x0, y0

)
, g

(
y0
) ≥ F(y0, x0

)
. (1.19)

Then F and g have a coupled coincidence point in X2; that is, there exist x, y ∈ X such that

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (1.20)

In this paper, we proved coupled coincidence point results in the setting of partially
ordered metric spaces. Also, the existence and uniqueness of a common coupled fixed point
of F : X ×X → X and g : X → X is studied. Our results improve the results of Berinde [15]
and Gordji et al. [26]. We give two examples and an application that illustrate our results.

2. Existence of Coupled Fixed Point

We start this section with the following definition which is modification of Definition 1.12.

Definition 2.1. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X
such that (X, d) is a metric space. Let F : X ×X → X and g : X → X. The mapping F is said
to be a weak generalized g-Meir-Keeler type contraction if for any ε > 0 there exists δ(ε) > 0
such that

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
< ε + δ(ε)

=⇒ 1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
< ε,

(2.1)

for all x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v).

Remark 2.2. If we replace g with the identity in (2.1), we get the definition of a weak Meir-
Keeler type contraction; that is, for all ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[
d(x, u) + d

(
y, v

)]
< ε + δ(ε) =⇒ 1

2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
< ε,

(2.2)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v.
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Note that (2.2) corresponds to a Meir-Keeler contraction type studied very recently by
Berinde [15].

The following fact can be derived easily from Definition 2.1.

Lemma 2.3. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X such that
(X, d) is a metric space. Let F : X×X → X and g : X → X. If F is a weak generalized g-Meir-Keeler
type contraction, then we have

d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)
<
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
, (2.3)

for all x, y, u, v ∈ X with g(x) < g(u), g(y) ≥ g(v) or g(x) ≤ (u), g(y) > g(v).

Proof. Without loss of generality, suppose that g(x) < g(u), g(y) ≥ g(v) where x, y, u, v ∈ X.
It is clear that d(g(x), g(u)) +d(g(y), g(v)) > 0. Set ε = (1/2)[d(g(x), g(u)) +d(g(y), g(v))] >
0. Since F is a weak generalized g-Meir-Keeler type contraction, then for this ε, there exits
δ = δ(ε) > 0 such that

ε ≤ 1
2
[
d
(
g(x0), g(u0)

)
+ d

(
g
(
y0
)
, g(v0)

)]
< ε + δ

=⇒ 1
2
[
d
(
F
(
x0, y0

)
, F(u0, v0)

)
+ d

(
F
(
y0, x0

)
, F(v0, u0)

)]
< ε,

(2.4)

for all x0, y0, u0, v0 ∈ X with g(x0) < g(u0), g(y0) ≥ g(v0). The result follows by choosing
x = x0, y = y0, u = u0 and z = z0, that is:

d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)
< d

(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)
. (2.5)

Next, we state an existence theorem of a coupled coincidence point for F : X2 → X
and g : X → X.

Theorem 2.4. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Let F : X2 → X and g : X → X be mappings such that
F(X2) ⊆ g(X). Moreover, assume that g is continuous and commutes with F. Suppose also that the
following conditions hold:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) F is a weak generalized g-Meir-Keeler type contraction,

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(
x0, y0

)
, g

(
y0
) ≥ F(y0, x0

)
. (2.6)

Then F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (2.7)
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Proof. Let (x0, y0) ∈ X2 be a point satisfying (iv); that is, g(x0) < F(x0, y0) and g(y0) ≥
F(y0, x0). We define the sequences {xn} and {yn} in the following way. Because of the
assumption F(X2) ⊆ g(X), we can choose (x1, y1) ∈ X2 such that g(x1) = F(x0, y0) and
g(y1) = F(y0, x0). By the same argument, we can take (x2, y2) ∈ X2 in such a way that
g(x2) = F(x1, y1) and g(y2) = F(y1, x1). Inductively, we define

g(xn+1) = F
(
xn, yn

)
, g

(
yn+1

)
= F

(
yn, xn

) ∀n = 0, 1, 2, . . . . (2.8)

We claim that the the sequence {g(xn)} is increasing and the sequence {g(yn)} is
decreasing, that is:

· · · > g(xn) > g(xn−1) > · · · > g(x1) > g(x0),
· · · < g(yn

)
< g

(
yn−1

)
< · · · < g(y1

) ≤ g(y0
)
.

(2.9)

We will use mathematical induction to show (2.9). By assumption (iv), we have

g(x0) < F
(
x0, y0

)
= g(x1), g

(
y0
) ≥ F(y0, x0

)
= g

(
y1
)
. (2.10)

Assume that (2.9) holds for some n ≥ 1. Regarding the mixed strict g-monotone property of
F, we have

g(xn−1) < g(xn) =⇒
{
F
(
xn−1, yn−1

)
< F

(
xn, yn−1

)
,

F
(
yn−1, xn−1

)
> F

(
yn−1, xn

)
.

(2.11)

By repeating the same arguments, we observe that

g
(
yn−1

)
> g

(
yn

)
=⇒

{
F
(
xn, yn−1

)
< F

(
xn, yn

)
,

F
(
yn−1, xn

)
> F

(
yn, xn

)
.

(2.12)

Combining the previous inequalities, together with (2.8), we get

g(xn) = F
(
xn−1, yn−1

)
< F

(
xn, yn

)
= g(xn+1),

g
(
yn

)
= F

(
yn−1, xn−1

)
> F

(
yn, xn

)
= g

(
yn+1

)
.

(2.13)

We conclude that (2.9) holds for all n ≥ 1. Set

Δn = d
(
g(xn), g(xn+1)

)
+ d

(
g
(
yn

)
,g
(
yn+1

))
. (2.14)
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Making use of Lemma 2.3 and (2.8), we obtain

d
(
g(xn), g(xn+1)

)
+ d

(
g
(
yn

)
, g

(
yn+1

))

= d
(
F
(
xn−1, yn−1

)
, F

(
xn, yn

))
+ d

(
F
(
yn−1, xn−1

)
, F

(
yn, xn

))

< d
(
g(xn−1), g(xn)

)
+ d

(
g
(
yn−1

)
, g

(
yn

))
.

(2.15)

Thus, we have Δn < Δn−1. Hence, the sequence {Δn} is monotone decreasing and clearly
bounded below by 0. Therefore, limn→∞Δn = L for some L ≥ 0.

We show that L = 0. Suppose the contrary; that is, L/= 0. Then, for some positive integer
k, we have for all n ≥ k

ε ≤ Δn

2
=

1
2
[
d
(
g(xn), g(xn+1)

)
+ d

(
g
(
yn

)
, g

(
yn+1

))]
< ε + δ(ε), (2.16)

where we choose ε = L/2. In particular, for n = k

ε ≤ Δk

2
=

1
2
[
d
(
g(xk), g(xk+1)

)
+ d

(
g
(
yk

)
, g

(
yk+1

))]
< ε + δ(ε). (2.17)

Regarding the assumption (iii) and (2.17), we have

1
2
[
d
(
F
(
xk, yk

)
, F

(
xk+1, yk+1

))
+ d

(
F
(
yk, xk

)
, F

(
yk+1, xk+1

))]
< ε, (2.18)

which by (2.8) is equivalent to

1
2
[
d
(
g(xk+1), g(xk+2)

)
+ d

(
g
(
yk+1

)
, g

(
yk+2

))]
< ε. (2.19)

Hence, we obtain

Δk+1

2
< ε, (2.20)

which contradicts (2.16) for n = k + 1. Thus, we deduce that L = 0, that is:

lim
n→∞

Δn = lim
n→∞

[
d
(
g(xn), g(xn+1)

)
+ d

(
g
(
yn

)
, g

(
yn+1

))]
= 0. (2.21)

This implies that

lim
n→∞

d
(
g(xn), g(xn+1)

)
= 0 = lim

n→∞
d
(
g
(
yn

)
, g

(
yn+1

))
. (2.22)
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We claim that the sequences {g(xn)} and {g(yn)} are Cauchy sequences. Take an arbitrary
ε > 0. It follows from (2.21) that there exists k ∈ N such that

1
2
[
d
(
g(xk), g(xk+1)

)
+ d

(
g
(
yk

)
, g

(
yk+1

))]
< δ(ε). (2.23)

Without loss of the generality, assume that δ(ε) ≤ ε and define the following set:

Π :=
{(
x, y

) ∈ X2 : d
(
x, g(xk)

)
+ d

(
y, g

(
yk

))
< 2(ε + δ(ε)), x > g(xk), y ≤ g(yk

)}
.

(2.24)

Take ∧ = (g(X), g(X)) ∩Π. We claim that

(
F
(
p, q

)
, F

(
q, p

)) ∈ ∧ ∀(x, y) =
(
g
(
p
)
, g

(
q
)) ∈ ∧ where p, q ∈ X. (2.25)

Take (x, y) = (g(p), g(q)) ∈ Π. Then, by (2.23) and the triangle inequality we have

1
2
[
d
(
g(xk), F

(
p, q

))
+ d

(
g
(
yk

)
, F

(
q, p

))]

≤ 1
2
[
d
(
g(xk), g(xk+1)

)
+ d

(
g(xk+1), F

(
p, q

))]

+
1
2
[
d
(
g
(
yk

)
, g

(
yk+1

))
+ d

(
g
(
yk+1

)
, F

(
q, p

))]

=
1
2
[
d
(
g(xk), g(xk+1)

)
+ d

(
g
(
yk

)
, g

(
yk+1

))]
+
1
2
d
(
F
(
p, q

)
, F

(
xk, yk

))

+
1
2
d
(
F
(
yk, xk

)
, F

(
q, p

))

< δ(ε) +
1
2
d
(
F
(
p, q

)
, F

(
xk, yk

))
+
1
2
d
(
F
(
yk, xk

)
, F

(
q, p

))
.

(2.26)

We distinguish two cases.

First Case. (1/2)[d(x, g(xk)) + d(y, g(yk))] = (1/2)[d(g(p), g(xk)) + d(g(q), g(yk))] ≤ ε.
By Lemma 2.3 and the definition of Π, (2.26) turns into

1
2
[
d
(
g(xk), F

(
p, q

))
+ d

(
g
(
yk

)
, F

(
q, p

))]

< δ(ε) +
1
2
d
(
F
(
p, q

)
, F

(
xk, yk

))
+
1
2
d
(
F
(
yk, xk

)
, F

(
q, p

))

< δ(ε) +
1
2
[
d
(
g
(
p
)
, g(xk)

)
+ d

(
g
(
q
)
, g

(
yk

))] ≤ δ(ε) + ε.

(2.27)

Second Case. ε < (1/2)[d(x, g(xk)) + d(y, g(yk))] = (1/2)[d(g(p), g(xk)) + d(g(q), g(yk))] <
ε + δ(ε).
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In this case, we have

ε <
1
2
[
d
(
g
(
p
)
, g(xk)

)
+ d

(
g
(
q
)
, g

(
yk

))]
< ε + δ(ε). (2.28)

Since x = g(p) > g(xk) and y = g(q) ≤ g(yk), by (ii), we get

1
2
[
d
(
F
(
p, q

)
, F

(
xk, yk

))
+ d

(
F
(
yk, xk

)
, F

(
q, p

))]
< ε. (2.29)

Thus, combining (2.26) and (2.29), we obtain

1
2
[
d
(
g(xk), F

(
p, q

))
+ d

(
g
(
yk

)
, F

(
q, p

))]
< ε + δ(ε). (2.30)

On the other hand, using (i), it is obvious that

F
(
p, q

)
> g(xk), F

(
q, p

) ≤ g(yk
)
. (2.31)

We conclude that (F(p, q), F(q, p)) ∈ Π. Since F(X2) ⊂ g(X), so

(
F
(
p, q

)
, F

(
q, p

)) ∈ ∧, (2.32)

that is, (2.25) holds. By (2.23), we have (g(xk+1), g(yk+1)) ∈ ∧. This implies with (2.25) that

(
g(xk+1), g

(
yk+1

)) ∈ ∧ =⇒ (
F
(
xk+1, yk+1

)
, F

(
yk+1, xk+1

))
=
(
g(xk+2), g

(
yk+2

)) ∈ ∧
=⇒ (

F
(
xk+2, yk+2

)
, F

(
yk+2, xk+2

))
=
(
g(xk+3), g

(
yk+3

)) ∈ ∧
=⇒ · · · =⇒ (

g(xn), g
(
yn

)) ∈ ∧ =⇒ · · · .
(2.33)

Then, for all n > k, we have (g(xn), g(yn)) ∈ ∧. This implies that for all n,m > k, we have

d
(
g(xn), d(xm)

)
+ d

(
g
(
yn

)
, g

(
ym

)) ≤ d(g(xn), g(xk)
)
+ d

(
g
(
yn

)
, g

(
yk

))

+ d
(
g(xk), g(xm)

)
+ d

(
g
(
yk

)
, g

(
ym

))

< 4(ε + δ(ε)) ≤ 8ε.

(2.34)

Thus, the sequences {g(xn)} and {g(yn)} are Cauchy in (X, d).
Since (X, d) is complete, so there exist x, y ∈ X such that

lim
n→∞

d
(
x, g(xn)

)
= 0,

lim
n→∞

d
(
y, g

(
yn

))
= 0.

(2.35)
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Finally, by continuity of F and g, the commutativity of F and g, and using exactly the same
argument of Lakshmikantham and Ćirić [19], we get that F(x, y) = g(x) and F(y, x) = g(y),
which completes the proof.

Remark 2.5. Theorem 2.4 holds if we replace (iv) by the following: there exist x0, y0 ∈ X such
that

g(x0) ≤ F
(
x0, y0

)
, g

(
y0
)
> F

(
y0, x0

)
. (2.36)

Theorem 2.6. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a metric space. Let F : X2 → X and let g : X → X be mappings such that F(X2) ⊆ g(X).
Assume that X satisfies the following property:

(a) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . .,

(b) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..

Suppose the following conditions hold:

(i) F has the mixed strict g-monotone property,

(ii) F is a weak generalized g-Meir-Keeler type contraction,

(iii) g(X) is a complete subspace of (X, d),

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(
x0, y0

)
, g

(
y0
) ≥ F(y0, x0

)
. (2.37)

Then F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (2.38)

Proof. Proceeding exactly as in Theorem 2.4, we have that {g(xn)} and {g(yn)} are Cauchy
sequences in the complete metric space (g(X), d). Then, there exist x, y ∈ X such that
g(xn) → g(x) and g(yn) → g(y). Since {g(xn)} is increasing and {g(yn)} is decreasing,
using the assumptions (a) and (b), we have

g(xn) < g(x), g
(
yn

)
> g

(
y
)
, (2.39)

for each n ≥ 0. Using triangle inequality together with (2.8), we find

d
(
F
(
x, y

)
, g(x)

) ≤ d(F(x, y), g(xn)
)
+ d

(
g(xn), g(x)

)

= d
(
F
(
x, y

)
, F

(
xn−1, yn−1

))
+ d

(
g(xn), g(x)

)
.

(2.40)
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Similarly,

d
(
F
(
y, x

)
, g

(
y
)) ≤ d(F(y, x), g(yn

))
+ d

(
g
(
yn

)
, g

(
y
))

= d
(
F
(
y, x

)
, F

(
yn−1, xn−1

))
+ d

(
g
(
yn

)
, g

(
y
))
.

(2.41)

Taking side-by-side sum of the above mentioned inequalities and having in mind (2.39), the
fact that g(xn) → g(x), g(yn) → g(y) and Lemma 2.3, we get

d
(
F
(
x, y

)
, g(x)

)
+ d

(
F
(
y, x

)
, g

(
y
))

≤ d(F(x, y), F(xn−1, yn−1
))

+ d
(
F
(
y, x

)
, F

(
yn−1, xn−1

))

+ d
(
g(xn), g(x)

)
+ d

(
g
(
yn

)
, g

(
y
))

<
[
d
(
g(x), g(xn−1)

)
+ d

(
g
(
y
)
, g

(
yn−1

))]
+ d

(
g(xn), g(x)

)
+ d

(
g
(
yn

)
, g

(
y
)) −→ 0,

(2.42)

as n → ∞. Hence, we end up with d(F(x, y), g(x)) = 0 = d(F(y, x), g(y)), that is, F(x, y) =
g(x) and F(y, x) = g(y), which completes the proof.

As a particular case of Theorems 2.4 and 2.6, we state the following corollary where
the function g is taken as the identity function.

Corollary 2.7. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X. Suppose that F satisfies the following conditions:

(i) F has the mixed strict monotone property,

(ii) F is a weak Meir-Keeler type contraction,

(iii) there exist x0, y0 ∈ X such that

x0 < F
(
x0, y0

)
, y0 ≥ F

(
y0, x0

)
. (2.43)

Assume either F is continuous or X satisfies the following property:

(a) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . .,

(b) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..

Then F has a coupled fixed point; that is, there exist x, y ∈ X such that

F
(
x, y

)
= x, F

(
y, x

)
= y. (2.44)

We give the following examples.
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Example 2.8. Let X = R and d(x, y) = |x−y|. Set F : X2 → X and let g : X → X be defined as
F(x, y) = (3x3 − 7y3)/12 and g(x) = x3. Then, the mapping F has the strict mixed monotone
property. We claim that condition (2.1) holds, but the condition (1.18) is not satisfied.

Note that in order to guarantee (1.18), we must have

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
< ε + δ(ε) =⇒ d

(
F
(
x, y

)
, F(u, v)

)
< ε, (2.45)

for x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v). This means that

ε ≤ 1
2

(∣∣
∣x3 − u3

∣
∣
∣ +

∣
∣
∣y3 − v3

∣
∣
∣
)
< ε + δ(ε) =⇒

∣
∣
∣
∣∣
3x3 − 7y3

12
− 3u3 − 7v3

12

∣
∣
∣
∣∣
< ε. (2.46)

Choosing x = u for simplicity (so g(x) = g(u)), we get

ε ≤ 1
2

(∣∣∣y3 − v3
∣∣∣
)
< ε + δ(ε), g

(
y
) ≥ g(v). (2.47)

Hence for g(y) > g(v), (2.46) implies that

∣∣∣∣∣
3x3 − 7y3

12
− 3u3 − 7v3

12

∣∣∣∣∣
=

∣∣∣∣∣
7v3 − 7y3

12

∣∣∣∣∣
=

7
12

∣∣∣y3 − v3
∣∣∣ < ε. (2.48)

Combining (2.47) and(2.48), we get that

2ε ≤
∣∣∣y3 − v3

∣∣∣ <
12
7
ε < 2ε, (2.49)

which is a contradiction.
On the other hand, F and g satisfy (2.1). Indeed, if we take the sum of

∣∣∣∣∣
3x3 − 7y3

12
− 3u3 − 7v3

12

∣∣∣∣∣
≤ 3

12

∣∣∣x3 − u3
∣∣∣ +

7
12

∣∣∣v3 − y3
∣∣∣, g(x) ≤ g(u), g(y) ≥ g(v),

∣∣∣∣∣
3y3 − 7x3

12
− 3v3 − 7y3

12

∣∣∣∣∣
≤ 3

12

∣∣∣v3 − y3
∣∣∣ +

7
12

∣∣∣x3 − u3
∣∣∣, g(x) ≤ g(u), g(y) ≥ g(v),

(2.50)
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and divide by 2, we obtain for g(x) ≤ g(u) and let g(y) ≥ g(v)

1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]

=
1
2

(∣
∣
∣
∣
∣
3x3 − 7y3

12
− 3u3 − 7v3

12

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
7x3 − 3y3

12
− 7u3 − 3v3

12

∣
∣
∣
∣
∣

)

≤ 5
12

(∣∣
∣x3 − u3

∣
∣
∣ +

∣
∣
∣y3 − v3

∣
∣
∣
)

=
5
6

{
1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
}
.

(2.51)

Choosing δ(ε) < ε/5, we get the desired result. Note also that x0 = −1 and y0 = 1 satisfy (2.6).
So Theorem 2.4 can be applied to F ad g in this example to conclude that F and g have

a coupled coincidence point (0, 0), while Theorem 1.13 cannot be applied since (1.18) is not
satisfied.

Example 2.9. Let X = R and d(x, y) = |x − y|. Set F : X2 → X and let g : X → X be defined
as F(x, y) = (x − 2y)/4 and g(x) = 2x. Then, the mapping F has the strict mixed monotone
property. We claim that condition (2.1) holds for g(x) ≤ g(u) and g(y) ≥ g(v). Indeed,

1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]

=
1
2

(∣∣∣∣
x − 2y

4
− u − 2v

4

∣∣∣∣ +
∣∣∣∣
y − 2x

4
− v − 2u

4

∣∣∣∣

)

=
3
8
(
(u − x) + (

y − v))

=
3
8

{
1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
}
.

(2.52)

Choosing δ(ε) < 5ε/3, we get the desired result. Note also that x0 = 0 and y0 = 1 satisfy (2.6).
All hypotheses of Theorem 2.4 are satisfied. Here, F and g have a coupled coincidence

point (0, 0).

3. Uniqueness of Common Coupled Fixed Point

In this section we will prove the uniqueness of a common coupled fixed point. We endow the
product space X2 with the following partial order:

(u, v) ≤ (
x, y

) ⇐⇒ u ≤ x, y ≥ v, ∀(x, y), (u, v) ∈ X2. (3.1)

Note that a pair (x, y) ∈ X2 is comparable with (u, v) ∈ X2 if either (x, y) ≤ (u, v) or (u, v) ≤
(x, y). We next state the conditions for the existence and uniqueness of a common coupled
fixed point of maps F and g.
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Theorem 3.1. In addition to the hypotheses of Theorem 2.4 (resp., Theorem 2.6), assume that for all
(x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then, F and g have a unique common coupled fixed
point, that is:

x = g(x) = F
(
x, y

)
, y = g

(
y
)
= F

(
y, x

)
. (3.2)

Proof. The set of coupled coincidence points of F and g is not empty due to Theorem 2.4
(resp., Theorem 2.6). We suppose that (x, y), (x∗, y∗) ∈ X2 are two coupled coincidence points
of F and g. We distinguish the following two cases.

First Case. (F(x, y), F(y, x)) is comparable to (F(x∗, y∗), F(y∗, x∗)with respect to the ordering
in X2, where

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
, F

(
x∗, y∗) = g(x∗), F

(
y∗, x∗) = g

(
y∗). (3.3)

Without loss of the generality, we may assume that

g(x) = F
(
x, y

)
< F

(
x∗, y∗) = g(x∗), g

(
y
)
= F

(
y, x

) ≥ F(y∗, x∗) = g
(
y∗). (3.4)

By Lemma 2.3, we have

d
(
g(x), g(x∗)

)
+ d

(
g
(
y
)
, g

(
y∗)) = d

(
F
(
x, y

)
, F

(
x∗, y∗)) + d

(
F
(
y, x

)
, F

(
y∗, x∗))

< d
(
g(x), g(x∗)

)
+ d

(
g
(
y
)
, g

(
y∗)),

(3.5)

which is a contradiction. Therefore, we have g(x) = g(x∗) and g(y) = g(y∗).

Second Case. Suppose that (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)) are not comparable.
By assumption there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)).

Setting a = a0, b = b0, as in the proof of Theorem 2.4, we define the sequences {g(an)}
and {g(bn)} as follows:

g(an+1) = F(an, bn), g(bn+1) = F(bn, an) ∀n = 0, 1, 2, . . . . (3.6)

Since (F(x, y), F(y, x)) = (g(x), g(y)) and (F(a, b), F(b, a)) = (g(a1), g(b1)) are comparable,
we may assume without loss of generality that g(x) < g(a1) and g(y) ≥ g(b1). Inductively,
we observe that g(x) < g(an) and g(y) ≥ g(bn) for all n ≥ 1. Thus, by Lemma 2.3, we get that

d
(
g(x), g(an+1)

)
+ d

(
g
(
y
)
, g(bn+1)

)
= d

(
F
(
x, y

)
, F(an, bn)

)
+ d

(
F
(
y, x

)
, F(bn, an)

)

< d
(
g(x), g(an)

)
+ d

(
g
(
y
)
, g(bn)

)
.

(3.7)

Set λn = d(g(x), g(an)) + d(g(y), g(bn)). Hence, for each n ≥ 0

λn+1 < λn. (3.8)
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Therefore, the sequence {λn} is decreasing and bounded below by 0. Hence, it converges to
some L ≥ 0. Assume that L > 0. Then, for some positive integer k, we have for all n ≥ k

ε ≤ λn
2

=
1
2
[
d
(
g(x), g(an)

)
+ d

(
g
(
y
)
, g(bn)

)]
< ε + δ(ε), (3.9)

where we choose ε = L/2. In particular, for n = k

ε ≤ λk
2

=
1
2
[
d
(
g(x), g(ak)

)
+ d

(
g
(
y
)
, g(bk)

)]
< ε + δ(ε). (3.10)

Having in mind (3.10) and the fact that F is a weak generalized g-Meir-Keeler contraction,
we get that

1
2
[
d
(
F
(
x, y

)
, F(ak, bk)

)
+ d

(
F
(
y, x

)
, F(bk, ak)

)]
< ε, (3.11)

which is equivalent to

1
2
[
d
(
g(x), g(ak+1)

)
+ d

(
g
(
y
)
, g(bk+1)

)]
< ε. (3.12)

Hence, we obtain

λk+1
2

< ε, (3.13)

which contradicts (3.9) for n = k + 1. Thus, we deduce that L = 0, that is:

lim
n→∞

d
(
g(x), g(an)

)
+ d

(
g
(
y
)
, g(bn)

)
= 0. (3.14)

In a similar manner, we can show that

lim
n→∞

d
(
g(x∗), g(an)

)
+ d

(
g
(
y∗), g(bn)

)
= 0. (3.15)

By the triangle inequality, we have

0 ≤ d(g(x), g(x∗)
) ≤ d(g(x), g(an)

)
+ d

(
g(an), g(x∗)

)

−→ 0 as n −→ ∞,

0 ≤ d(g(y), g(y∗)) ≤ d(g(y), g(bn)
)
+ d

(
g(bn), g

(
y∗))

−→ 0 as n −→ ∞.

(3.16)
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Combining all observations mentioned previously, we get d(g(x∗), g(x)) = 0 and d(g(y∗),
g(y)) = 0. Hence, we have

g(x) = g(x∗), g
(
y
)
= g

(
y∗). (3.17)

Last, we show that g(x) = x and g(y) = y. Let g(x) = u and g(y) = v. By the commutativity
of F and g and the fact that g(x) = F(x, y) and F(y, x) = g(y), we have

g(u) = g
(
g(x)

)
= g

(
F
(
x, y

))
= F

(
g(x), g

(
y
))

= F(u, v),

g(v) = g
(
g
(
y
))

= g
(
F
(
y, x

))
= F

(
g
(
y
)
, g(x)

)
= F(v, u).

(3.18)

Thus, (u, v) is a coupled coincidence point of F and g. However, according to (3.17), we must
have

g(x) = g(u), g
(
y
)
= g(v). (3.19)

Hence, we deduce

u = g(u) = F(u, v), v = g(v) = F(v, u), (3.20)

that is, the pair (u, v) is the coupled common fixed point of F and g.
We claim that (u, v) is the unique coupled common fixed point of F and g. Assume

that (z,w) is another coupled common fixed point of F and g. But,

u = g(u) = g(z) = z, v = g(v) = g(w) = w (3.21)

follows from (3.17).

The particular case in which g is the identity function can be given as a corollary.

Corollary 3.2. In addition to the hypotheses of Corollary 2.7, assume that for all (x, y), (x∗, y∗) ∈ X2,
there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both (F(x, y), F(y, x)) and
(F(x∗, y∗), F(y∗, x∗)). Then, F has a unique coupled fixed point.

4. Application

In this section we give an application of the main theorems relevant to weak generalized
g-Meir-Keeler type contractions. For this, we need the following theorem.

Theorem 4.1. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X. Let
F : X2 → X and let g : X → X be two given mappings. Let also φ : [0,∞) → [0,∞) be a function
satisfying the following:

(i) φ(0) = 0 and φ(t) > 0 for all t > 0,

(ii) φ is nondecreasing and right continuous,
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(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X with g(x) ≤ g(u) and
g(y) ≥ g(v)

ε ≤ φ
(
1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
)
< ε + δ(ε)

=⇒ φ

(
1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
)
< ε.

(4.1)

Then the mapping F is a weak generalized g-Meir-Keeler contraction.

Proof. By the condition (i) φ(ε) > 0 for any ε > 0. Then according to (iii), for φ(ε) > 0 there
exists γ > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v)

φ(ε) ≤ φ
(
1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
)
< φ(ε) + γ

=⇒ φ

(
1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
)
< φ(ε).

(4.2)

Since φ is right continuous, so there exists δ > 0 such that

φ(ε + δ) < φ(ε) + γ. (4.3)

Now, fix x, y, u, v ∈ X satisfying g(x) ≤ g(u), g(y) ≥ g(v) and

ε ≤ 1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
< ε + δ. (4.4)

Since φ is nondecreasing, so we have

φ(ε) ≤ φ
(
1
2
[
d
(
g(x), g(u)

)
+ d

(
g
(
y
)
, g(v)

)]
)

≤ φ(ε + δ) < φ(ε) + γ. (4.5)

From (4.2),

φ

(
1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
)
< φ(ε). (4.6)

Regarding the nondecreasing behavior of the function φ, we get

1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
< ε. (4.7)

Consequently, F is a weak generalized g-Meir-Keeler type contraction.

If g is the identity function, we derive the following special case of the Theorem 4.1.
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Corollary 4.2. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X. Let
F : X2 → X. Let also φ : [0,∞) → [0,∞) be a function satisfying the following:

(i) φ(0) = 0 and φ(t) > 0 for all t > 0,

(ii) φ is nondecreasing and right continuous,

(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X with x ≤ u and y ≥ v,

ε ≤ φ
(
1
2
[
d(x, u) + d

(
y, v

)]
)
< ε + δ(ε)

=⇒ φ

(
1
2
[
d
(
F
(
x, y

)
, F(u, v)

)
+ d

(
F
(
y, x

)
, F(v, u)

)]
)
< ε.

(4.8)

Then, the mapping F is a weak Meir-Keeler contraction.

The subsequent results are particular cases of Theorems 2.4 and 4.1.

Corollary 4.3. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X and let g : X → X be two given mappings such
that F(X2) ⊆ g(X), g is continuous and commutes with F. Also, suppose the following conditions:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) for any ε > 0, there exists δ(ε) > 0 such that for all x, y, u, v ∈ X satisfying g(x) ≤ g(u)
and g(y) ≥ g(v),

ε ≤
∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0
φ(s)ds < ε + δ(ε)

=⇒
∫ (1/2)[d(F(x,y),F(u,v))+d(F(y,x),F(v,u))]

0
φ(s)ds < ε,

(4.9)

where φ : [0,∞) → [0,∞) is locally integrable and for all t > 0

∫ t

0
φ(s)ds > 0, (4.10)

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(
x0, y0

)
, g

(
y0
) ≥ F(y0, x0

)
. (4.11)

Then, F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (4.12)
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If, in addition, for all (x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is
comparable to both (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)), then F and g have a unique common
coupled fixed point.

Corollary 4.4. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X be a mapping satisfying the following conditions:

(i) F is continuous,

(ii) F has the mixed strict monotone property,

(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X satisfying x ≤ u and
y ≥ v,

ε ≤
∫ (1/2)[d(x,u)+d(y,v)]

0
φ(s)ds < ε + δ(ε)

=⇒
∫ (1/2)[d(F(x,y),F(u,v))+d(F(y,x),F(v,u))]

0
φ(s)ds < ε,

(4.13)

where φ : [0,∞) → [0,∞) is locally integrable and for all t > 0

∫ t
0 φ(s)ds > 0, (4.14)

(iv) there exist x0, y0 ∈ X such that

x0 < F
(
x0, y0

)
, y0 ≥ F

(
y0, x0

)
. (4.15)

Then F has a coupled fixed point; that is, there exist x, y ∈ X such that

F
(
x, y

)
= x, F

(
y, x

)
= y. (4.16)

If, in addition, for all (x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is
comparable to both (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)), then F has a unique coupled fixed
point.
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We investigate the existence of at least two positive solutions to eigenvalue problems of fractional
differential equations with sign changing nonlinearities in more generalized boundary conditions.
Our analysis relies on the Avery-Peterson fixed point theorem in a cone. Some examples are given
for the illustration of main results.

1. Introduction

The theory of fractional differential equations has become an important aspect of differential
equations (see [1–8]). Boundary value problems of fractional differential equations have been
investigated in many papers (see [9–46]). The existence of positive solutions to boundary
value problems of fractional differential equations has been studied by many authors when
nonlinearities are positive (see [9–24]). There are a few papers to study the existence of
positive solutions of semipositone fractional differential equations. For example, using the
Krasnoselskii fixed point theorem, Yuan et al. [9] discussed the existence of positive solutions
for the singular positone and semipositone two-point boundary value problems

Dα
0+u(t) = μa(t)f(t, u(t)),

u(0) = u′(0) = u(1) = u′(1) = 0, 3 < α ≤ 4,
(1.1)
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where μ > 0, a and f are continuous. In [10], Wang et al. studied the existence of positive
solutions for the singular semipositone two-point boundary value problems

Dα
0+u(t) + λf(t, u(t)) = 0, (1.2)

u(0) = u′(0) = u(1) = 0, 2 < α ≤ 3, (1.3)

where λ > 0, f is continuous.
In [11], using Krasnoselskii fixed point theorem, Goodrich discussed the existence of

at least one positive solutions for the system of fractional boundary value problems

−Dν1
0+y1(t) = λ1a1(t)f

(
y1(t), y2(t)

)
, −Dν2

0+y2(t) = λ2a2(t)g
(
y1(t), y2(t)

)
,

y
(i)
1 (0) = y(i)

2 (0) = 0, 0 ≤ i ≤ n − 2, Dα
0+y1(t)|t=1 = φ1

(
y
)
, Dα

0+y2(t)|t=1 = φ2
(
y
)
,

(1.4)

where a1, a2, f , and g are nonnegative for t ∈ [0, 1].
Motivated by the excellent results mentioned above, in this paper, we investigate the

existence of at least two positive solutions for the problem

Dα
0+y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+y(t)|t=1 = h
(
y
)
,

(1.5)

where λ > 0, α ∈ (n−1, n], n ≥ 3, 1 ≤ β ≤ n−2 < α−1, f ∈ C([0, 1]×R
+, [−M,∞)), M > 0, h ∈

C (C(R+),R+), R
+ = [0,∞). The main tool is the Avery-Peterson theorem. To the best of our

knowledge, this is the first paper dealing with eigenvalue problems of fractional differential
equations with sign changing nonlinearities involving more general boundary conditions.
Our results improve some of the earlier work presented in [10, 17, 46].

2. Preliminaries

For the convenience of the readers, we present here some necessary definitions and lemmas
from fractional calculus theory. For more details see [1, 2].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function y :
(0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,∞).



Abstract and Applied Analysis 3

Definition 2.2. The Riemann-Liouville fractiontal derivative of order α > 0 of a function y :
(0,∞) → R is given by

Dα
0+y(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1y(s)ds, (2.2)

provided that the right-hand side is pointwise defined on (0,∞), where n = [α] + 1.

Lemma 2.3. Assume f ∈ C[0, 1], q ≥ p ≥ 0, then

D
p

0+I
q

0+f(t) = I
q−p
0+ f(t). (2.3)

Lemma 2.4. Assume α > 0, then

(1) If λ > −1, λ/=α − i, i = 1, 2, . . . , [α] + 1, t > 0, then

Dα
0+t

λ =
Γ(λ + 1)

Γ(λ − α + 1)
tλ−α. (2.4)

(2) Dα
0+t

α−i = 0, i = 1, 2, . . . , n.

(3) Dα
0+I

α
0+u(t) = u(t), for a.e. t ∈ [0, 1], where u ∈ L1[0, 1].

(4) Dα
0+u(t) = 0 if and only if

u(t) = c1t
α−1 + c2t

α−2 + · · · + cntα−n, (2.5)

for some ci ∈ R, i = 1, 2, . . . , n, where n is the least integer greater than or equal to α.

Lemma 2.5 (see[11]). Given g ∈ C[0, 1], y is a solution of the problem

Dα
0+y(t) + g(t) = 0, t ∈ [0, 1],

y(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+y(t)|t=1 = h
(
y
)
,

(2.6)

if and only if it satisfies

y(t) =
Γ
(
α − β)

Γ(α)
tα−1h

(
y
)
+
∫1

0
G(t, s)g(s)ds, (2.7)
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where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−β−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.8)

Lemma 2.6 (see[11]). G(t, s) is continuous on [0, 1] × [0, 1] and

0 ≤ G(t, s) ≤ G(1, s), t, s ∈ [0, 1]. (2.9)

Lemma 2.7. G(t, s) ≥ tα−1G(1, s), t, s ∈ [0, 1].

Proof. For s ≤ t,

G(t, s) =
tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)

= tα−1 (1 − s)α−β−1 − (1 − s/t)α−1

Γ(α)

≥ tα−1 (1 − s)α−β−1 − (1 − s)α−1

Γ(α)
= tα−1G(1, s).

(2.10)

For s > t,

G(t, s) =
tα−1(1 − s)α−β−1

Γ(α)
≥ tα−1 (1 − s)α−β−1 − (t − s)α−1

Γ(α)
= tα−1G(1, s). (2.11)

By simple calculation, we can get

∫1

0
G(1, s)ds =

β
(
α − β)Γ(α + 1)

,

∫1

1/2
G(1, s)ds =

2βα − α + β
2α
(
α − β)Γ(α + 1)

. (2.12)

By Lemma 2.5, we can easily get the following lemma.

Lemma 2.8. The boundary value problem

Dα
0+u(t) + 1 = 0, 0 < t < 1,

u(i)(0) = Dβ

0+u(t)|t=1 = 0, 0 ≤ i ≤ n − 2,
(2.13)
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has a unique solution

u(t) =
tα−1

Γ(α)

(
1

α − β − t

α

)
. (2.14)

Obviously, u satisfies

βtα−1

(
α − β)Γ(α + 1)

≤ u(t) ≤ tα−1
(
α − β)Γ(α) , t ∈ [0, 1]. (2.15)

Lemma 2.9. ỹ ≥ λMu is a solution of the following problem:

Dα
0+ ỹ + λ

[
f
(
t, ỹ − λMu

)
+M

]
= 0, t ∈ [0, 1],

ỹ(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+ ỹ(t)|t=1 = h
(
ỹ − λMu

)
,

(2.16)

if and only if y = ỹ − λMu is a positive solution of (1.5).

Proof. In fact, if y is a positive solution of the problem (1.5), by Lemma 2.8, we get that y
satisfies

Dα
0+
(
y + λMu

)
+ λ
[
f
(
t, y
)
+M

]
= 0, t ∈ [0, 1],

(
y + λMu

)(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+
(
y + λMu

)|t=1 = h
(
y
)
.

(2.17)

Take ỹ = y + λMu. Then ỹ satisfies (2.16) and ỹ ≥ λMu.
On the other hand, if ỹ is a solution of (2.16) and ỹ ≥ λMu. Take y = ỹ − λMu. By

Lemma 2.8, we can easily get that y satisfies (1.5). Clearly, y ≥ 0.

Define functions h̃, f̃ and an operator T : C[0, 1] → C[0, 1] by

h̃
(
y
)
= h
(
max

{
y − λMu, 0

})
, f̃

(
t, y
)
= f
(
t,max

{
y − λMu, 0

})
+M.

Ty(t) =
Γ
(
α − β)

Γ(α)
tα−1h̃

(
y
)
+ λ
∫1

0
G(t, s)f̃

(
s, y(s)

)
ds.

(2.18)

Obviously, y ≥ λMu is a fixed point of the operator T if and only if y − λMu is a
positive solution of the problem (1.5).

Take X = C[0, 1] with norm ‖x‖ = maxt∈[0,1]|x(t)|. Define a cone P by

P =
{
y ∈ C[0, 1] | y(t) ≥ tα−1∥∥y

∥∥, t ∈ [0, 1]
}
. (2.19)
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Lemma 2.10. T : P → P is a completely continuous operator.

Proof. Take y ∈ P . By Lemmas 2.6 and 2.7, we get

Ty(t) ≥ tα−1

[
Γ
(
α − β)

Γ(α)
h̃
(
y
)
+ λ
∫1

0
G(1, s)f̃

(
s, y(s)

)
ds

]

≥ tα−1∥∥Ty
∥
∥. (2.20)

So, T : P → P . Let Ω ⊂ P be bounded. It follows from the continuity of h, f that there exist
constants M1 and M2 such that h̃(y) ≤M1 and f̃(t, y) ≤M2 for t ∈ [0, 1], y ∈ Ω. Thus,

∥
∥Ty

∥
∥ ≤ Γ

(
α − β)

Γ(α)
M1 + λM2

∫1

0
G(1, s)ds. (2.21)

That is T(Ω) is bounded. For y ∈ Ω, t1, t2 ∈ [0, 1],

∣∣Ty(t1) − Ty(t2)
∣∣ ≤M1

Γ
(
α − β)

Γ(α)

∣∣∣tα−1
1 − tα−1

2

∣∣∣ + λM2

∫1

0
|G(t1, s) −G(t2, s)|ds. (2.22)

By the uniform continuity of tα−1 and G(t, s), we get that T(Ω) is equicontinuous. Obviously,
T : P → P is continuous. By the Arzela-Ascoli theorem, we get that T : P → P is completely
continuous.

Definition 2.11. A map φ is said to be a nonnegative, continuous, and concave functional on a
cone P of a real Banach space E if and only if φ : P → R

+ is continuous and

φ
(
tx + (1 − t)y) ≥ tφ(x) + (1 − t)φ(y), (2.23)

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.12. A map Φ is said to be a nonnegative, continuous, and convex functional on a
cone P of a real Banach space E iff Φ : P → R

+ is continuous and

Φ
(
tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y), (2.24)

for all x, y ∈ P and t ∈ [0, 1].

Let ϕ and Θ be nonnegative, continuous, and convex functional on P , Φ a nonnegative,
continuous, and concave functional on P , and Ψ a nonnegative continuous functional on P .
Then, for positive numbers a, b, c, and d, we define the following sets:

P
(
ϕ, d
)
=
{
x ∈ P : ϕ(x) < d

}
,

P
(
ϕ,Φ, b, d

)
=
{
x ∈ P : b ≤ Φ(x), ϕ(x) ≤ d},

P
(
ϕ,Θ,Φ, b, c, d

)
=
{
x ∈ P : b ≤ Φ(x), Θ(x) ≤ c, ϕ(x) ≤ d},

R
(
ϕ,Ψ, a, d

)
=
{
x ∈ P : a ≤ Ψ(x), ϕ(x) ≤ d}.

(2.25)
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We will use the following fixed point theorem of Avery and Peterson to study the
problem (1.5).

Theorem 2.13 (see [47]). Let P be a cone in a real Banach space E. Let ϕ and Θ be nonnegative,
continuous, and convex functionals on P , Φ a nonnegative, continuous, and concave functional on P ,
and Ψ a nonnegative continuous functional on P satisfying Ψ(kx) ≤ kΨ(x) for 0 ≤ k ≤ 1, such that
for some positive numbersM and d,

Φ(x) ≤ Ψ(x), ‖x‖ ≤Mϕ(x) (2.26)

for all x ∈ P(ϕ, d). Suppose that

T : P
(
ϕ, d
) −→ P

(
ϕ, d
)

(2.27)

is completely continuous and there exist positive numbers a, b, c with a < b, such that the following
conditions are satisfied:

(S1) {x ∈ P(ϕ,Θ,Φ, b, c, d) : Φ(x) > b}/= ∅ and Φ(Tx) > b for x ∈ P(ϕ,Θ,Φ, b, c, d);
(S2) Φ(Tx) > b for x ∈ P(ϕ,Φ, b, d) with Θ(Tx) > c;

(S3) 0 /∈ R(ϕ,Ψ, a, d) and Ψ(Tx) < a for x ∈ R(ϕ,Ψ, a, d) with Ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(ϕ, d), such that

ϕ(xi) ≤ d, for i = 1, 2, 3,

b < Φ(x1), a < Ψ(x2), Φ(x2) < b, Ψ(x3) < a.
(2.28)

3. Main Results

We define a concave function Φ(x) = mint∈[1/2,1]|x(t)| and convex functions Ψ(x) = Θ(x) =
ϕ(x) = ‖x‖.

Theorem 3.1. Assume that there exists a constant 0 < l < Γ(α)/Γ(α − β), such that h(y) ≤ l‖y‖
for y ∈ P . In addition, suppose that there exist constants k, a, b, c, d with k > 22α−1βΓ(α)/(Γ(α) −
Γ(α − β)l), [Γ(α) − Γ(α − β)l]αM/βΓ(α) < a < b − [Γ(α) − Γ(α − β)l]αM/βΓ(α) < 2α−1b < c < d,
such that the following conditions hold:

(C1) f(t, y) ≤ d −M, for (t, y) ∈ [0, 1] × [0, d];

(C2) f(t, y) ≥ kb −M, for (t, y) ∈ [1/2, 1] × [b − [Γ(α) − Γ(α − β)l]αM/βΓ(α), c];

(C3) f(t, y) ≤ a −M, for (t, y) ∈ [0, 1] × [0, a].

Then the problem (1.5) has at least two positive solutions for

22α−1(α − β)Γ(α + 1)

k
[
α
(
2β − 1

)
+ β
] < λ <

α
(
α − β)[Γ(α) − Γ

(
α − β)l]

β
. (3.1)
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Proof. Take y ∈ P(ϕ, d). By ‖max{y − λMu, 0}‖ ≤ d, (C1), Lemma 2.6, (2.12), and (3.1), we
have

∥
∥Ty

∥
∥ ≤ Γ

(
α − β)

Γ(α)
ld + λd

∫1

0
G(1, s)ds

=

[
Γ
(
α − β)

Γ(α)
l + λ

∫1

0
G(1, s)ds

]

d ≤ d.
(3.2)

This means that T : P(ϕ, d) → P(ϕ, d).
It is easy to see that {y ∈ P(ϕ,Θ,Φ, b, c, d) : Φ(y) > b}/= ∅. y ∈ P(ϕ,Θ,Φ, b, c, d) implies

mint∈[1/2,1]y(t) ≥ b, ‖y‖ ≤ c. It follows from (2.15) and (3.1) that mint∈[1/2,1](y − λMu) ≥
b − α[Γ(α) − Γ(α − β)l]M/βΓ(α). By (C2), (2.12), (3.1), and Lemma 2.7, we get

Φ
(
Ty
)
= min

t∈[1/2,1]
Ty(t) ≥ λ min

t∈[1/2,1]

∫1

0
G(t, s)f̃

(
s, y(s)

)
ds ≥

(
1
2

)α−1

λkb

∫1

1/2
G(1, s)ds > b.

(3.3)

So, the condition (S1) of Theorem 2.13 holds.
Take y ∈ P(ϕ,Φ, b, d) with Θ(Ty) > c. By Ty ∈ P , we get

min
t∈[1/2,1]

Ty(t) ≥ min
t∈[1/2,1]

tα−1∥∥Ty
∥∥ ≥ 1

2α−1

∥∥Ty
∥∥ >

1
2α−1

c > b. (3.4)

Thus, (S2) holds.
By a > 0, we have 0 /∈ R(ϕ,Ψ, a, d). Take y ∈ R(ϕ,Ψ, a, d) with Ψ(y) = a. By (C3), we

get

Ψ
(
Ty
)
=
∥∥Ty

∥∥ ≤ Γ
(
α − β)

Γ(α)
la + λa

∫1

0
G(1, s)ds

=

[
Γ
(
α − β)

Γ(α)
l + λ

∫1

0
G(1, s)ds

]

a ≤ a.
(3.5)

By Theorem 2.13, we get that T has at least three fixed points y1, y2, y3 ∈ P(ϕ, d) such that
‖yi‖ ≤ d, i = 1, 2, 3, and

b < Φ
(
y1
)
, a < Ψ

(
y2
)
, Φ

(
y2
)
< b, Ψ

(
y3
)
< a. (3.6)

If y ∈ P and ‖y‖ > a, by (2.15) and (3.1), we have

y(t) ≥ tα−1∥∥y
∥∥ > atα−1 > λMu(t). (3.7)

Obviously, ‖y1‖ > b > a and ‖y2‖ > a. So, y1 − λMu, y2 − λMu are two positive
solutions of (1.5). The proof is completed.
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4. Example

For convenience, we define the following notations:

[a, b] := {x : x ∈ R, a ≤ x ≤ b}, (a, b] := {x : x ∈ R, a < x ≤ b}, for a, b ∈ R, a < b. (4.1)

Example 4.1. Consider the following boundary value problem:

D5/2
0+ y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(0) = y′(0) = 0,

y′(1) = h
(
y
)
,

(4.2)

where h(y) =
∫1

0 y(s)dg(s), g(s) is a bounded variation function on [0, 1] with 0 <
∨1

0(g) ≤
1 < 3/2,

f
(
t, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
t − 1

2

)
π − 1 − √

y,
(
t, y
) ∈ [0, 1] × [0, 6],

sin
(
t − 1

2

)
π − 1 + 601

(
y − 6

) − √
y,

(
t, y
) ∈ [0, 1] × (6, 7],

sin
(
t − 1

2

)
π + 600 − √

y,
(
t, y
) ∈ [0, 1] × (7, 900],

sin
(
t − 1

2

)
π + 570,

(
t, y
) ∈ [0, 1] × (900,+∞).

(4.3)

Corresponding to the problem (1.5), we get that α = 5/2, β = 1, n = 3, h(y) ≤ ‖y‖∨1
0(g).

Take l = 1, k = 50,M = a = 6, b = 12, c = 36, d = 620.
By simple calculation, we can get that the conditions of Theorem 3.1 are satisfied. So,

when (9/35)
√
π < λ < (15/16)

√
π , the problem (4.2) has at least two positive solutions.

Example 4.2. Consider the following boundary value problem:

D7/2
0+ y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(0) = y′(0) = y′′(0) = 0,

D3/2
0+ y(t)|t=1 = h

(
y
)
,

(4.4)
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where h(y) =
∫1

0 y(s)dg(s), g(s) is a bounded variation function on [0, 1] with 0 <
∨1

0(g) ≤
(15/8)

√
π − 1,

f
(
t, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3
4

cos
π

2
t − 1

4
√
y,

(
t, y
) ∈ [0, 1] × [0, 1],

−3
4

cos
π

2
t + 3205

(
y − 1

) − 1
4
√
y,

(
t, y
) ∈ [0, 1] × (1, 1.2],

−3
4

cos
π

2
t + 641 − 1

4
√
y,

(
t, y
) ∈ [0, 1] × (1.2, 12],

−3
4

cos
π

2
t + 641 − 1

2

√
3,

(
t, y
) ∈ [0, 1] × (12,+∞).

(4.5)

Corresponding to the problem (1.5), we get that α = 7/2, β = 3/2, n = 4, h(y) ≤ ‖y‖∨1
0(g).

Take l = (15/8)
√
π − 1, k = 320,M = a = 1, b = 2, c = 12, d = 642.

Obviously, f ∈ C ([0, 1] × R
+, [−1,∞)), h(y) ≤ l‖y‖. By simple calculation, we can get

that k, l, a, b, c, d, α, β,M satisfy 0 < l < Γ(α)/Γ(α − β), k > 22α−1βΓ(α)/(Γ(α) − Γ(α − β)l), and

[
Γ(α) − Γ

(
α − β)l]αM

βΓ(α)
< a < b −

[
Γ(α) − Γ

(
α − β)l]αM

βΓ(α)
< 2α−1b < c < d. (4.6)

It is easy to see that f(t, y) + 1 ≤ 642, for (t, y) ∈ [0, 1] × [0, 642], and f(t, y) + 1 ≤ 1, for
(t, y) ∈ [0, 1] × [0, 1]. So, conditions (C1) and (C3) of Theorem 3.1 hold.

For (t, y) ∈ [1/2, 1] × [2 − 56/45
√
π, 12], f(t, y) + 1 ≥ kb = 640. Therefore, condition

(C2) of Theorem 3.1 holds. So, for (21/8(7
√

2 − 2))
√
π < λ < 14/3, the problem (4.4) has at

least two positive solutions.
Specially, in Example 4.2, we take

g(t) =

⎧
⎨

⎩

0, t < ξ,

1, t ≥ ξ,
(4.7)

where 0 < ξ < 1 and all other conditions remain unchanged. Then h(y) = y(ξ). Clearly,
∨1

0(g) = 1 < (15/8)
√
π − 1. The problem (4.4) has at least two positive solutions for

(21/8(7
√

2 − 2))
√
π < λ < 14/3.
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We discuss the initial value problem for the nonlinear fractional differential equation L(D)u =
f(t, u), t ∈ (0, 1], u(0) = 0, where L(D) = Dsn − an−1D

sn−1 − · · · − a1D
s1 , 0 < s1 < s2 < · · · < sn < 1,

and aj < 0, j = 1, 2, . . . , n − 1, Dsj is the standard Riemann-Liouville fractional derivative and
f : [0, 1] × R → R is a given continuous function. We extend the basic theory of differential
equation, the method of upper and lower solutions, and monotone iterative technique to the initial
value problem. Some existence and uniqueness results are established.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
noninteger order, so fractional differential equations have wider application. Fractional
differential equations have gained considerable importance; it can describe many phenomena
in various fields of science and engineering such as control, porous media, electrochemistry,
viscoelasticity, and electromagnetic.

In the recent years, there has been a significant development in fractional calculus
and fractional differential equations; see Kilbas et al. [1], Miller and Ross [2], Podlubny [3],
Baleanu et al. [4], and so forth. Research on the solutions of fractional differential equations is
very extensive, such as numerical solutions, see El-Mesiry et al. [5] and Hashim et al. [6], mild
solutions, see Chang et al. [7] and Chen et al. [8], the existence and uniqueness of solutions
for initial and boundary value problem, see [9–30], and so on.
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With the deep study, many papers that studied the fractional equations contained more
than one fractional differential operator; see [16–20].

Babakhani and Daftardar-Gejji in [16] considered the initial value problem of nonlin-
ear fractional differential equation

L(D)u = f(t, u), u(0) = 0, 0 < t < 1. (1.1)

By using Banach fixed point theorem and fixed point theorem on a cone some results of
existence and uniqueness of solutions are established.

Zhang in [17] studied the singular initial value problem for fractional differential
equation by nonlinear alternative of Leray-Schauder theorem:

L(D)u = f(t, u), t1−snu(t)|t=0 = 0, 0 < t ≤ 1. (1.2)

In above two equations, L(D) is defined L(D) := Dsn − an−1D
sn−1 − · · · − a1D

s1 , where
0 < s1 < s2 < · · · < sn < 1, and aj > 0, j = 1, 2, . . . , n − 1, Dsj is the standard Riemann-Liouville
fractional derivative.

McRae in [14] studied the initial value problem by the method of upper and lower
solutions and monotone iterative technique:

Dqu = f(t, u), t ∈ (t0, T], 0 < q < 1,

u(t0) = u0 = u(t)(t − t0)1−q|t=t0 .
(1.3)

In this paper, we use similar method as in [16] to consider the initial value problem:

L(D)u = f(t, u), t ∈ (0, 1],

u(0) = 0,
(1.4)

where L(D) = Dsn−an−1D
sn−1−· · ·−a1D

s1 , 0 < s1 < s2 < · · · < sn < 1, and aj < 0, j = 1, 2, . . . , n−1,
Dsj is the standard Riemann-Liouville fractional derivative and f : [0, 1] × R → R is a given
continuous function.
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Since f is assumed continuous, the IVP (1.4) is equivalent to the following Volterra
fractional integral equation:

u(t) =
n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sn−1−1u(s)ds +

1
Γ(sn)

∫ t

0
(t − s)sn−1f(s, u(s))ds. (1.5)

In Section 2, we give some definitions and lemmas that will be useful to our main
results. In Section 3, we will use the basic theory of differential equation, the method of
upper and lower solutions, and monotone iterative technique to investigate the initial value
problem (1.4), and some existence and uniqueness results are established. In Section 4, an
example is presented to illustrate the main results.

2. Preliminaries

In this section, we need the following definitions and lemmas that will be useful to our main
results. These materials can be found in the recent literatures; see [1, 11, 16].

Definition 2.1 (see [1]). Let Ω = [a, b](−∞ < a < b < +∞) be a finite interval on the real axis
R. The Riemann-Liouville fractional integrals Iαa+f and Iα

b−f of order α > 0 are defined by

Iαa+f(x) =
1

Γ(α)

∫x

a

(x − t)α−1f(t)dt, x > a,

Iαb−f(x) =
1

Γ(α)

∫b

x

(x − t)α−1f(t)dt, x < b,

(2.1)

respectively. Here Γ(α) is the Gamma function. These integrals are called the left-sided and
the right-sided fractional integrals. We denote Iα0+f(x) by Iαf(x) in the following paper.

Definition 2.2 (see [1]). Let Ω = [a, b] (−∞ < a < b < +∞) be a finite interval on the real axis
R. The Riemann-Liouville fractional derivatives Dα

a+f and Dα
b−f of order α > 0 are defined by

Dα
a+f(x) =

(
d

dx

)n(
In−αa+
)
f(x) =

1
Γ(n − α)

(
d

dx

)n ∫x

a

(x − t)n−α−1f(t)dt, x > a,

Dα
b−f(x) =

(
− d

dx

)n(
In−αb−
)
f(x) =

1
Γ(n − α)

(
− d

dx

)n ∫b

x

(x − t)n−α−1f(t)dt, x < b,

(2.2)

respectively, where n = [α] + 1, [α] means the integral part of α. These derivatives are called
the left-sided and the right-sided fractional derivatives. We denote Dα

0+f(x) by Dαf(x) in the
following paper.
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Definition 2.3. Letting v,w ∈ C([0, 1],R) be locally Hölder continuous with exponent sn <
λ < 1, we say that w is an upper solution of (1.4) if

L(D)w ≥ f(t,w),

w(0) ≥ 0,
(2.3)

and v is a lower solution of (1.4) if

L(D)v ≤ f(t, v),
v(0) ≤ 0.

(2.4)

Next, we will list the following lemma from [11] that is useful for our main results.

Lemma 2.4 (see [11, Lemma 2.1]). Let m ∈ C([0, 1],R) be locally Hölder continuous with
exponent q < λ < 1 such that for any t1 ∈ (0, 1], we have

m(t1) = 0, m(t) ≤ 0 for 0 ≤ t ≤ t1. (2.5)

Then it follows that Dqm(t1) ≥ 0.

Corollary 2.5. Let m ∈ C([0, 1],R) be locally Hölder continuous with exponent sn < λ < 1 such
that for any t1 ∈ (0, 1], we have

m(t1) = 0, m(t) ≤ 0 for 0 ≤ t ≤ t1. (2.6)

Then it follows that L(D)m(t1) ≥ 0 provided aj < 0, j = 1, 2, . . . , n − 1.

Lemma 2.6. Let {uε(t)} be a family of continuous functions on [0, 1], for each ε > 0, where
L(D)uε(t) = f(t, uε(t)), uε(0) = 0 and |f(t, uε(t))| ≤ M for 0 ≤ t ≤ 1. Then the family {uε(t)} is
equicontinuous on [0, 1].

Proof. Since {uε(t)} is a family of continuous functions on [0, 1], there exists l > 0 such that
|uε(t)| ≤ l for 0 ≤ t ≤ 1.

Let δ < min{(∑n−1
j=1 εΓ(sn−sj +1)/(4l|aj |))1/(sn−sn−1), (εΓ(sn+1)/(4M))1/sn}. For 0 ≤ t1 <

t2 ≤ 1, t2 − t1 < δ, we get

|uε(t2) − uε(t1)| =
∣∣∣∣∣∣

n−1∑

j=1

Isn−sj aju(t2) −
n−1∑

j=1

Isn−sj aju(t1) + Isnf(t2, u(t2)) − Isnf(t1, u(t1))
∣∣∣∣∣∣

=

∣∣∣∣∣∣

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t1

0

[
(t2 − s)sn−sj−1 − (t1 − s)sn−sj−1

]
u(s)ds

+
n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t2

t1

(t2 − s)sn−sj−1u(s)ds +
1

Γ(sn)

∫ t2

t1

(t2 − s)sn−1f(s, u(s))ds
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+
1

Γ(sn)

∫ t1

0

[
(t2 − s)sn−1 − (t1 − s)sn−1

]
f(s, u(s))ds

∣
∣
∣
∣
∣
∣

≤
n−1∑

j=1

l
∣
∣aj
∣
∣

Γ
(
sn − sj

)
∫ t1

0

[
(t1 − s)sn−sj−1 − (t2 − s)sn−sj−1

]
ds

+
n−1∑

j=1

l
∣
∣aj
∣
∣

Γ
(
sn − sj

)
∫ t2

t1

(t2 − s)sn−sj−1ds +
M

Γ(sn)

∫ t2

t1

(t2 − s)sn−1ds

+
M

Γ(sn)

∫ t1

0

[
(t1 − s)sn−1 − (t2 − s)sn−1

]
ds

=
n−1∑

j=1

l
∣
∣aj
∣
∣

Γ
(
sn − sj + 1

)
(
t
sn−sj
1 − tsn−sj2

)
+
n−1∑

j=1

2l
∣
∣aj
∣
∣

Γ
(
sn − sj + 1

) (t2 − t1)sn−sj

+
M

Γ(sn + 1)
(
tsn1 − tsn2

)
+

2M
Γ(sn + 1)

(t2 − t1)sn

≤
n−1∑

j=1

2l
∣∣aj
∣∣

Γ
(
sn − sj + 1

) (t2 − t1)sn−sn−1 +
2M

Γ(sn + 1)
(t2 − t1)sn

≤ ε

2
+
ε

2
= ε.

(2.7)

Thus, {uε(t)} is equicontinuous on [0, 1].

Lemma 2.7 (see [16, Theorem 4.2]). Let f : [0, 1] × R → R be continuous and Lipschitz with
respect to second variable with Lipschitz constant L. Let aj satisfy

0 <
L

Γ(sn + 1)
+
n−1∑

j=1

∣∣aj
∣∣

Γ
(
sn − sj + 1

) < 1. (2.8)

Then IVP (1.4) has a unique solution.

Lemma 2.8. Let v,w ∈ C([0, 1],R) be locally Hölder continuous with exponent q < λ < 1, f ∈
C([0, 1] × R,R) and

L(D)w ≥ f(t,w), L(D)v ≤ f(t, v), 0 < t ≤ 1 (2.9)

one of the nonstrict inequalities being strict. Then v(0) < w(0) implies v(t) < w(t), 0 ≤ t ≤ 1.

Proof. Suppose that v(t) < w(t), 0 ≤ t ≤ 1 is not true. We suppose the inequality L(D) >
f(t,w(t)). Letting m(t) = v(t) −w(t), there exists 0 < t1 ≤ 1 such that m(t) ≤ 0, 0 ≤ t ≤ t1, and
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m(t1) = 0. Then by Corollary 2.5, we can obtain L(D)m(t1) ≥ 0. From the conditions and the
definition of m(t), we have

f(t1, v(t1)) ≥ L(D)v(t1) ≥ L(D)w(t1) > f(t1, w(t1)). (2.10)

This is a contradiction to v(t1) = w(t1). The proof is complete.

Lemma 2.9. Assume that the conditions of Lemma 2.8 hold with nonstrict inequalities (2.3) and
(2.4). Furthermore, suppose that

f(t, x) − f(t, y) ≤N(x − y), where x ≥ y, N > 0. (2.11)

Then v(0) ≤ w(0) implies v(t) ≤ w(t), 0 ≤ t ≤ 1 providedN < 1/Γ(1 − sn) −
∑n−1

j=1 aj/Γ(1 − sj).

Proof. Let wε(t) = w(t) + ε. For small ε > 0, we have

wε(0) > w(0), wε(t) > w(t), 0 ≤ t ≤ 1. (2.12)

Then, from (2.11) and (2.12) we get

L(D)wε(t) = L(D)w(t) + L(D)ε

= f(t,w(t)) + ε

⎡

⎣ t−sn

Γ(1 − sn) −
n−1∑

j=1

ajt
−sj

Γ
(
1 − sj

)

⎤

⎦

≥ f(t,wε(t)) −Nε + ε

⎡

⎣ t−sn

Γ(1 − sn) −
n−1∑

j=1

ajt
−sj

Γ
(
1 − sj

)

⎤

⎦

≥ f(t,wε(t)) −Nε + ε

⎡

⎣ 1
Γ(1 − sn) −

n−1∑

j=1

aj

Γ
(
1 − sj

)

⎤

⎦

> f(t,wε(t)), 0 < t ≤ 1.

(2.13)

Applying Lemma 2.8, we obtain v(t) < wε(t), 0 ≤ t ≤ 1. By the arbitrariness of ε > 0, we can
conclude that v(t) ≤ w(t). The proof is complete.

Corollary 2.10. The function f(t, u) = σ(t)u, where σ(t) ≤ N, is admissible in Lemma 2.9 to yield
v(t) ≤ 0 on 0 ≤ t ≤ 1.

3. Main Results

In this section, we establish the existence and uniqueness criteria of solutions for initial value
problem (1.4).
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Theorem 3.1. Assume that f ∈ C(R0,R), where R0 = {(t, u) : 0 ≤ t ≤ 1, |u(t)| ≤ b} and |f(t, u)| ≤
M. Then IVP (1.4) possesses at least one solution u(t) on 0 ≤ t ≤ α, where α = min{1, (bΓ(1 +
sn)/(2M))1/sn , (

∑n−1
j=1 Γ(sn − sj + 1)/(2|aj |))1/(sn−sn−1)}.

Proof. Let u0(t) be a continuous function on [−δ, 0], δ > 0, such that u0(0) = 0, |u0(t)| ≤ b and
|L(D)u0(t)| ≤ M, where D

sj
0−u0(t), j = 1, 2, . . . , n − 1 are the continuous fractional derivatives.

For 0 < ε ≤ δ, we define the function uε(t) = u0(t) on [−δ, 0] and

uε(t) =
1

Γ(sn)

∫ t

0
(t − s)sn−1f(s, uε(s − ε))ds +

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1uε(s − ε)ds

(3.1)

on [0, α1], where α1 = min{ε, α}. We observe that Dsjuε(t), j = 1, 2, . . . , n exist for t ∈ [0, α1]
and

|uε(t)| ≤ 1
Γ(sn)

∫ t

0
(t − s)sn−1∣∣f(s, uε(s − ε))

∣∣ds +
n−1∑

j=1

∣∣aj
∣∣

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1|uε(s − ε)|ds

≤ M

Γ(sn)

∫ t

0
(t − s)sn−1ds +

n−1∑

j=1

b
∣∣aj
∣∣

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1ds

=
M

Γ(sn + 1)
tsn +

n−1∑

j=1

b
∣∣aj
∣∣

Γ
(
sn − sj + 1

) tsn−sj

≤ M

Γ(sn + 1)
αsn +

n−1∑

j=1

b
∣∣aj
∣∣

Γ
(
sn − sj + 1

)αsn−sn−1

≤ b

2
+
b

2
= b.

(3.2)

If α1 < α, we can employ (3.1) to extend uε(t) as a continuously fractional differentiable
function on [−δ, α2], α2 = min{α, 2ε} such that uε(t) ≤ b holds. Continuing this process, we
can define uε(t) over [−δ, α] so that uε(t) ≤ b; it has a continuous fractional derivative and
satisfies (3.1) on the same interval [−δ, α]. Furthermore, |L(D)uε(t)| ≤ M, since |f(t, uε(t −
ε))| ≤ M on R0. Therefore, from Lemma 2.6, the family {uε(t)} is an equicontinuous and
uniformly bounded function. An application of Ascoli-Arzela Theorem shows the existence
of a sequence {εn} such that ε1 > ε2 > · · · > εn → 0 as n → ∞, and u(t) = limn→∞uεn(t)
exists uniformly on [−δ, α]. Due to f being uniformly continuous, we can obtain f(t, uεn(t −
εn)) which uniformly tends to f(t, u(t)), and uεn(t − εn) uniformly tends to u(t) as n → ∞.
Therefore, term by term, integration of (3.1) with ε = εn, α1 = α yields

u(t) =
1

Γ(sn)

∫ t

0
(t − s)sn−1f(s, u(s))ds +

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1u(s)ds. (3.3)

This proves that u(t) is a solution of IVP (1.4) and the proof is complete.
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Theorem 3.2. Let v,w ∈ C([0, 1],R) be lower and upper solutions of the IVP (1.4) which are locally
Hölder continuous with exponent sn < λ < 1 such that v(t) ≤ w(t), t ∈ [0, 1] and f ∈ C(Ω,R),
where Ω = {(t, u) : v(t) ≤ u(t) ≤ w(t), t ∈ [0, 1]}. Furthermore, suppose that

⎛

⎝
n−1∑

j=1

Γ
(
sn − sj + 1

)

2
∣
∣aj
∣
∣

⎞

⎠

1/(sn−sn−1)

≥ 1. (3.4)

Then there exists a solution u(t) of IVP (1.4) satisfying v(t) ≤ u(t) ≤ w(t) on [0, 1].

Proof. For the need of proof, we define function p(t, u) : [0, 1] × R → R as

p(t, u) = max{v(t),min{u,w(t)}}. (3.5)

Therefore, f(t, p(t, u)) defines a continuous extension of f to [0, 1] ×R which is also bounded
because f is bounded on Ω. Then by Theorems 3.1 and 3.2, we can obtain that the initial value
problem

L(D)u = f
(
t, p(t, u)

)
, t ∈ (0, 1],

u(0) = 0,
(3.6)

has a solution on [0, 1].
Clearly, from the definition of function p(t, u), we know that if IVP (3.6) exits a solution

u(t) satisfying v(t) ≤ u(t) ≤ w(t) on [0, 1], then u(t) is also a solution of IVP (1.4). In the
following, we will prove that the solution u(t) of IVP (3.6) satisfies v(t) ≤ u(t) ≤ w(t) on
[0, 1].

For any ε > 0, we consider

wε(t) = w(t) + ε, vε(t) = v(t) − ε. (3.7)

Then, we get

wε(0) = w(0) + ε, vε(0) = v(0) − ε. (3.8)

Therefore, it follows that vε(0) < u(0) < wε(0). Next, we will show that vε(t) < u(t) < wε(t),
t ∈ [0, 1]. Suppose that it is not true. Then there exists t1 ∈ (0, 1] such that

u(t1) = wε(t1), vε(t) < u(t) < wε(t), 0 ≤ t < t1. (3.9)
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Therefore, u(t1) > w(t1), p(t1, u(t1)) = w(t1) and v(t1) ≤ p(t1, u(t1)) ≤ w(t1). Letting m(t) =
u(t) − wε(t), we have m(t1) = 0 and m(t) ≤ 0, 0 ≤ t ≤ t1. Then from Corollary 2.5, we can
obtain L(D)m(t1) ≥ 0 and

f(t1, w(t1)) = f
(
t1, p(t1, w(t1))

)

= L(D)u(t1) ≥ L(D)wε(t1)

= L(D)w(t1) + L(D)ε(t1)

= L(D)w(t1) + ε

⎡

⎣
t−sn1

Γ(1 − sn) −
n−1∑

j=1

ajt
−sj
1

Γ
(
1 − sj

)

⎤

⎦

> L(D)w(t1) = f(t1, w(t1)),

(3.10)

which is a contradiction. The other case vε(t) < u(t) can be proved similarly.
Hence, we get vε(t) < u(t) < wε(t) on [0, 1]. Letting ε → 0, we obtain v(t) ≤ u(t) ≤

w(t) on [0, 1]. The proof is complete.

Now, we will give the existence of maximal and minimal solutions of initial value
problem (1.4).

Theorem 3.3. Let f ∈ C([0, 1] × R,R), v0, w0 be lower and upper solutions of (1.4) such that
v0 ≤ w0 on [0, 1]. Furthermore, suppose that

f(t, x) − f(t, y) ≥ −N(x − y), for v0 ≤ y ≤ x ≤ w0, N ≥ 0, (3.11)

and aj satisfy

0 <
N

Γ(sn + 1)
+
n−1∑

j=1

∣∣aj
∣∣

Γ
(
sn − sj + 1

) < 1. (3.12)

Then there exist monotone sequences {vn} and {wn} such that vn → ρ, wn → r as n → ∞
uniformly on [0, 1], where ρ and r are minimal and maximal solutions of IVP (1.4), respectively.

Proof. For any η ∈ C([0, 1],R) satisfying v0 ≤ η ≤ w0, we consider the following linear
fractional differential equation:

L(D)u = f
(
t, η
) −N(u − η), t ∈ (0, 1],

u(0) = 0.
(3.13)

Obviously, the right hand side of (3.13) satisfies the Lipschitz condition. From (3.11) and
Lemma 2.7, it is clear that for every η, there exists a unique solution u of (3.13) on [0, 1].
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Define the operator T by Tη = u and use it to construct the sequences {vn}, {wn}. We need to
prove the following propositions hold:

(i) v0 ≤ Tv0, w0 ≥ Tw0;

(ii) T is a monotone operator on the segment

〈v0, w0〉 = {u ∈ C([0, 1],R) : v0 ≤ u ≤ w0}. (3.14)

To prove (i), let Tv0 = v1, where v1 is the unique solution of (3.13) with η = v0. Letting
p = v0 − v1, we have

L(D)p = L(D)v0 − L(D)v1 ≤ f(t, v0) −
[
f(t, v0) −N(v1 − v0)

]
= −Np,

p(0) = v0(0) − v1(0) ≤ 0.
(3.15)

By Corollary 2.10, we can obtain that p(t) ≤ 0 on [0, 1], that is, v0 ≤ Tv0.
Similarly, we can get w0 ≥ Tw0.
To prove (ii), let η1, η2 ∈ 〈v0, w0〉 such that η1 ≤ η2. Assume that u1 = Tη1 and u2 = Tη2.

Setting p = u1 − u2, then using the condition (3.11), we have

L(D)p = L(D)u1 − L(D)u2 = f
(
t, η1
) −N(u1 − η1

) − [f(t, η2
) −N(u2 − η2

)]

≤ −N(η1 − η2
) −N(u1 − η1

)
+N

(
u2 − η2

)
= −Np,

p(0) = u1(0) − u2(0) = 0.

(3.16)

From Corollary 2.10, we can obtain that p(t) ≤ 0 on [0, 1], which implies Tη1 ≤ Tη2. And (ii)
is proved.

Therefore, we can define the sequences vn = Tvn−1, wn = Twn−1. From the previous
discussion, we can get

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w1 ≤ w0 on [0, 1]. (3.17)

Clearly, the sequences {vn}, {wn} are uniformly bounded on [0, 1]. From (3.13), we
have |L(D)vn|, |L(D)wn| which are also uniformly bounded. By Lemma 2.6, we know that
{vn}, {wn} are equicontinuous on [0, 1]. Then applying Ascoli-Arzela Theorem, there exist
subsequences {vnk}, {wnk} that converge uniformly on [0, 1]. From (3.17), we can see that
the entire sequences {vn}, {wn} converge uniformly and monotonically to ρ, r, respectively,
as n → ∞. It is now easy to show that ρ, r are solutions of IVP (1.4) by the corresponding
Volterra fractional integral equation for (3.13).

In the following, we will prove that ρ and r are the minimal and maximal solutions
of IVP (1.4), respectively. We need to show that if u is any solution of IVP (1.4) satisfying
v0 ≤ u ≤ w0 on [0, 1], then we have v0 ≤ ρ ≤ u ≤ r ≤ w0 on [0, 1].



Abstract and Applied Analysis 11

We assume that for some n, vn ≤ u ≤ wn on [0, 1] and letting p = vn+1 − u, we have

L(D)p = L(D)vn+1 − L(D)u = f(t, vn) −N(vn+1 − vn) − f(t, u)
≤ −N(vn − u) −N(vn+1 − vn) = −Np,

p(0) = vn+1(0) − u(0) = 0,

(3.18)

which implies vn+1 ≤ u. Similarly, we have u ≤ wn+1 on [0, 1]. Since v0 ≤ u ≤ w0 on [0, 1], this
proves vn ≤ u ≤ wn for all n by induction. Letting n → ∞, we conclude that ρ ≤ u ≤ r on
[0, 1] and the proof is complete.

Theorem 3.4. Suppose that the conditions of Theorem 3.3 hold. In addition, we assume

f(t, x) − f(t, y) ≤N(x − y), v0 ≤ y ≤ x ≤ w0, N > 0. (3.19)

Then ρ = r = u is the unique solution of IVP (1.4) providedN < 1/Γ(1 − sn) −
∑n−1

j=1 aj/Γ(1 − sj).

Proof. We have proved ρ ≤ r in Theorem 3.3, so we just need to prove ρ ≥ r. Letting p = r − ρ,
we get

L(D)p = f(t, r) − f(t, ρ) ≤Np,

p(0) = r(0) − ρ(0) = 0.
(3.20)

From Corollary 2.10, we obtain p ≤ 0 on [0, 1], which implies ρ ≥ r. Hence, ρ = r = u is the
unique solution of IVP (1.4).

4. Examples

In this paper, we will present an example to illustrate the main results.

Example 4.1. Consider the initial value problem of fractional differential equation

D0.8u + 0.4D0.6u =
u2t0.2

10Γ(0.2)
− ut0.4

2Γ(0.4)
, t ∈ (0, 1],

u(0) = 0.

(4.1)

Choose w = 5, v = −5; then we can obtain

D0.8w + 0.4D0.6w ≥ w2t0.2

10Γ(0.2)
− wt0.4

2Γ(0.4)
,

D0.8v + 0.4D0.6v ≤ v2t0.2

10Γ(0.2)
− vt0.4

2Γ(0.4)
.

(4.2)
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That is, v andw are the lower and upper solutions of initial value problem (4.1). Furthermore,
v and w are locally continuous with exponent 1 > λ > 0.8.

Since

(
Γ(0.8 − 0.6 + 1)

2|−0.4|
)1/(0.8−0.6)

= 1.9914 > 1, (4.3)

then by Theorem 3.2, there exists a solution u(t) of initial value problem (4.1) satisfying −5 ≤
u(t) ≤ 5.

Next, we will prove the existence of maximal and minimal solutions for initial value
problem (4.1) by using Theorem 3.3.

Let v0 = −5 and w0 = 5 be lower and upper solutions of (4.1). Furthermore, for any
−5 ≤ y ≤ x ≤ 5, we have

f(t, x) − f(t, y) = x2t0.2

10Γ(0.2)
− xt0.4

2Γ(0.4)
− y2t0.2

10Γ(0.2)
+

yt0.4

2Γ(0.4)

=
t0.2

10Γ(0.2)
(
x − y)(x + y

) − t0.4

2Γ(0.4)
(
x − y)

≥ − 1
2Γ(0.4)

(
x − y).

(4.4)

Then let N = 1/2Γ(0.4) ≈ 0.2254. We get

0 <
N

Γ(0.8 + 1)
+

|−0.4|
Γ(0.8 − 0.6 + 1)

≈ 0.6777 < 1. (4.5)

Thus, from Theorem 3.3, there exist monotone sequences {vn} and {wn} such that vn → ρ,
wn → r as n → ∞ uniformly on [0, 1], where ρ and r are minimal and maximal solutions of
initial value problem (4.1), respectively.

In addition,

f(t, x) − f(t, y) =
x2t0.2

10Γ(0.2)
− xt0.4

2Γ(0.4)
− y2t0.2

10Γ(0.2)
+

yt0.4

2Γ(0.4)

=
t0.2

10Γ(0.2)
(
x − y)(x + y

) − t0.4

2Γ(0.4)
(
x − y)

≤ 10
10Γ(0.2)

(
x − y)

≤N(x − y),

0 < N <
1

Γ(1 − 0.8)
− −0.4
Γ(1 − 0.6)

≈ 0.3982.

(4.6)

Hence, by Theorem 3.4, initial value problem (4.1) has a unique solution.
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5. Conclusion

In this paper, we considered the initial value problem of nonlinear fractional differential equa-
tion

L(D)u = f(t, u), t ∈ (0, 1],

u(0) = 0.
(5.1)

The basic theory of differential equation, the method of upper and lower solutions, and
monotone iterative technique have been applied for the existence and uniqueness of solutions
of the initial value problem. And several results were obtained. Besides, we studied the
existence of minimal and maximal solutions. In Section 4, we also give an example to illustrate
our results.
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We prove an integral inequality with singularity, which complements some known results. This
inequality enables us to study the dependence of the solution on the initial condition to a fractional
differential equation in the weighted space.

1. Introduction

Integral inequalities provide an excellent tool for the properties of solutions to differential
equations, such as boundedness, existence, uniqueness, and stability (e.g., see [1–10]). For
this reason, the study of integral inequalities has been emphasized by many authors. For
example, in 1919, Gronwall in [11] proved a remarkable inequality which can be described
by the following.

Suppose that x(t) satisfies the relation

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s)ds, t0 ≤ t < T, (1.1)

where all the functions involved are continuous on the interval [t0, T), T ≤ ∞, and k(t) ≥ 0.
Consider

x(t) ≤ h(t) +
∫ t

t0

h(s)k(s) exp

(∫ t

s

k(τ)dτ

)

ds, t0 ≤ t < T. (1.2)
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The inequality has attracted and continues to attract considerable attention in the literature.
In 2007, Ye et al. [12] reported an integral inequality with singular kernel. The inequality can
be stated as follows.

If β > 0, a(t) is a nonnegative and locally integrable on 0 ≤ t < T , g(t) is a nonnegative,
nondecreasing continuous function on 0 ≤ t < T , and g(t) ≤M, where T ≤ ∞, M is a positive
constant. Further suppose that u(t) is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s)ds, 0 ≤ t < T. (1.3)

Then

u(t) ≤ a(t) +
∞∑

n=1

(
g(t)Γ

(
β
))n

Γ
(
nβ
)

∫ t

0
(t − s)nβ−1a(s)ds, 0 ≤ t < T. (1.4)

Besides the above-mentioned inequalities, there are still many inequalities (e.g., see [13–15]).
But in the analysis of the dependence of the solution on the initial condition of a

fractional differential equation in the weighted space, the bounds provided by the existing
inequalities are not adequate. So it is natural and necessary to seek new inequality in order
to obtain our desired results. In this paper, we present a new integral inequality, and then
apply our inequality to investigate the dependence of the solution on the initial condition of
a fractional differential equations in the weighted space.

2. An Integral Inequality

In this section, our main aim is to establish an integral inequality with singularity. Before
proceeding, we give some useful definitions and lemmas.

Definition 2.1 (see [14, 16]). The gamma function is defined by Γ(z) =
∫∞

0 e−ttz−1dt, z > 0.

Definition 2.2 (see [14, 16]). The beta function is defined by B(z,w) =
∫1

0 (1 − t)z−1tw−1dt, z,w > 0.

The beta function is connected with gamma function by the following relation [3, 14]:

B(z,w) =
Γ(z)Γ(w)
Γ(z +w)

, z,w > 0. (2.1)

Lemma 2.3 (see [14]). Let z > 0, a, b ∈ R. Then the quotient expansion of two gamma functions at
infinity can be represented as follows:

Γ(z + a)
Γ(z + b)

= za−b
(

1 +O
(

1
z

))
, z → ∞. (2.2)
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Lemma 2.4. Let z > 0, a, b ∈ R. Then one has

Γ(z + a)
Γ(z + b)

= O
(
za−b
)
, z −→ ∞. (2.3)

Proof. By Lemma 2.3, we have limz→∞(Γ(z + a)/Γ(z + b))/za−b = limz→∞(1 + O(1/z)) =
1, which proves that Γ(z + a)/Γ(z + b) = O(za−b) as z → ∞. The proof of this lemma is
completed.

Based on Lemma 2.4, we can define a function.

Definition 2.5. Let b > a > 0, ρ > 0. Then the following definition:

Fρ,a,b(z) :=
∞∑

k=0

ckz
k, z ∈ R (2.4)

is well defined, where c0 is a positive constant, and ck+1 = (Γ(kρ + a)/Γ(kρ + b))ck.

Proof. We only need to show that the series in (2.4) is uniformly convergent for z ∈ R. By
Lemma 2.4, we know that ck+1/ck = Γ(kρ + a)/Γ(kρ + b) = O((kρ)a−b) as k → ∞. Since
b > a > 0, ck+1/ck → 0 as k → ∞. This implies that the series in (2.4) is uniformly convergent
for z ∈ R. It follows that the definition is well defined.

Lemma 2.6. Let z,w > 0, t, s ∈ R and t /= s. Then one has

∫ t

s

(t − τ)z−1(τ − s)w−1dτ = (t − s)z+w−1 Γ(z)Γ(w)
Γ(z +w)

. (2.5)

Proof. Making the substitution τ = s + ξ(t − s) and combining the relation (2.1), we obtain

∫ t

s

(t − τ)z−1(τ − s)w−1dτ = (t − s)z+w−1
∫1

0
(1 − ξ)z−1ξw−1dξ

= (t − s)z+w−1B(z,w) = (t − s)z+w−1 Γ(z)Γ(w)
Γ(z +w)

.

(2.6)

The proof of this lemma is completed.

Now we can state the integral inequality.

Theorem 2.7. Let α, β, γ > 0, δ = α+γ−1 > 0, ν = β+γ−1 > 0, a > 0, and let b(t) be a nonnegative,
nondecreasing continuous function on 0 ≤ t < T , b(t) ≤ M, where T ≤ ∞,M is a positive constant.
Further suppose that u(t) is nonnegative and tγ−1u(t) is locally integrable on 0 ≤ t < T with

u(t) ≤ atα−1 + b(t)
∫ t

0
(t − s)β−1sγ−1u(s)ds, 0 ≤ t < T. (2.7)
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Then one has

u(t) ≤ atα−1Fν,δ,δ+β
(
Γ
(
β
)
b(t)tβ

)
, 0 ≤ t < T. (2.8)

Proof. For convenience, we define an operator

(Ru)(t) = b(t)
∫ t

0
(t − s)β−1sγ−1u(s)ds. (2.9)

Then (2.7) can be rewritten in the form

u(t) ≤ atα−1 + (Ru)(t). (2.10)

Since b(t) and u(t) are nonnegative, it is easy to induce that

u(t) ≤
n∑

k=0

(
Rkatα−1

)
(t) +

(
Rn+1u

)
(t), n ∈N. (2.11)

Let us prove that the following relation

(Rnu)(t) ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b(t)
(
Γ
(
β
)
b(t)
)n−1

n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − s)nν−γ sγ−1u(s)ds, 0 < γ < 1,

(
Γ
(
β
)
b(t)
)n
t(n−1)(γ−1)

Γ
(
nβ
)

∫ t

0
(t − s)nβ−1sγ−1u(s)ds, γ ≥ 1,

(2.12)

holds for any n ∈N+, where
∏0

i=11 = 1, and (Rnu)(t) → 0 as n → ∞ for each t in 0 ≤ t < T .
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Obviously, inequality (2.12) is valid for n = 1, due to
∏0

i=11 = 1. Suppose that the
inequality is satisfied for any fixed n ∈ N+. Let us verify that it is also satisfied for n + 1. We
first prove the case 0 < γ < 1. According to the induction hypothesis and Lemma 2.6, we have

(
Rn+1u

)
(t) = b(t)

∫ t

0
(t − s)β−1sγ−1(Rnu)(s)ds

≤ b2(t)
(
Γ
(
β
)
b(t)
)n−1

n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − s)β−1sγ−1

∫ s

0
(s − τ)nν−γ τγ−1u(τ)dτds

= b2(t)
(
Γ
(
β
)
b(t)
)n−1

n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1sγ−1(s − τ)nν−γds

≤ b2(t)
(
Γ
(
β
)
b(t)
)n−1

n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1(s − τ)nν−1ds

= b2(t)
(
Γ
(
β
)
b(t)
)n−1

n−1∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
τγ−1u(τ)(t − τ)nν+β−1 Γ

(
β
)
Γ(nν)

Γ
(
nν + β

) dτ

= b(t)
(
Γ
(
β
)
b(t)
)n n∏

i=1

Γ(iν)
Γ
(
iν + β

)
∫ t

0
(t − τ)(n+1)ν−γ τγ−1u(τ)dτ,

(2.13)

which is estimated with the help of

sγ−1 ≤ (s − τ)γ−1, 0 ≤ τ ≤ s, 0 < γ < 1. (2.14)

So, for the case 0 < γ < 1, inequality (2.12) is true for any n ∈ N+. Now we prove the case
γ ≥ 1. Similarly, according to the induction hypothesis and Lemma 2.6, we get

(
Rn+1u

)
(t) = b(t)

∫ t

0
(t − s)β−1sγ−1(Rnu)(s)ds

≤ b(t)
∫ t

0
(t − s)β−1sγ−1

(
Γ
(
β
)
b(s)
)n
s(n−1)(γ−1)

Γ
(
nβ
)

∫s

0
(s − τ)nβ−1τγ−1u(τ)dτds

= b(t)

(
Γ
(
β
)
b(t)
)n

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1sn(γ−1)(s − τ)nβ−1ds

≤ b(t)

(
Γ
(
β
)
b(t)
)n
tn(γ−1)

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)dτ

∫ t

τ

(t − s)β−1(s − τ)nβ−1ds

= b(t)

(
Γ
(
β
)
b(t)
)n
tn(γ−1)

Γ
(
nβ
)

∫ t

0
τγ−1u(τ)(t − τ)nβ+β−1 Γ

(
β
)
Γ
(
nβ
)

Γ
(
nβ + β

) dτ

=

(
Γ
(
β
)
b(t)
)n+1

tn(γ−1)

Γ
(
(n + 1)β

)
∫ t

0
τγ−1u(τ)(t − τ)(n+1)β−1dτ,

(2.15)
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which is calculated with the help of

sn(γ−1) ≤ tn(γ−1), 0 ≤ s ≤ t, γ ≥ 1, n ∈N+. (2.16)

So, for the case γ ≥ 1, inequality (2.12) is true for any n ∈ N+. Based on this analysis, we
conclude that inequality (2.12) holds for any n ∈N+.

Next, we show that (Rnu)(t) → 0 as n → ∞. Now, we go back to inequality
(2.12). For the case 0 < γ < 1, we denote Kn(t, s) = Bn(t − s)nν−γ , where Bn =
b(t)(Γ(β)b(t))n−1∏n−1

i=1 (Γ(iν)/Γ(iν + β)). Note that

B1 = b(t),
Bn+1

Bn
= Γ
(
β
)
b(t)

Γ(nν)
Γ
(
nν + β

) . (2.17)

Since b(t) ≤ M, by Lemma 2.4, we obtain Bn+1/Bn → 0 as n → ∞. This implies that
Kn(t, s) → 0 as n → ∞. It follows that (Rnu)(t) → 0 as n → ∞ for the case 0 < γ < 1.
For the case γ ≥ 1, we denote Kn(t, s) = Bn(t − s)nβ−1, where Bn = (Γ(β)b(t))nt(n−1)(γ−1)/Γ(nβ).
Note that

B1 = b(t),
Bn+1

Bn
= Γ
(
β
)
b(t)tγ−1 Γ

(
nβ
)

Γ
(
nβ + β

) . (2.18)

Using the same arguments as above, we know that Kn(t, s) → 0 as n → ∞. It follows that
(Rnu)(t) → 0 as n → ∞ for the case γ ≥ 1. So, it has (Rnu)(t) → 0 as n → ∞ for the two
cases 0 < γ < 1 and γ ≥ 1. This, together with (2.11), leads to u(t) ≤∑∞

k=0(Rkatα−1)(t).
Finally, we show that

(
Rkatα−1

)
(t) ≤ a(Γ(β)b(t))kcktα−1tkν, k ∈N, (2.19)

where c0 = 1, ck =
∏k−1

i=0 (Γ(iν + δ)/Γ(iν + δ + β)), k ∈N+.
Obviously, inequality (2.19) is true for k = 0. Suppose that the inequality is satisfied

for any fixed k ∈ N. Let us verify that it is also satisfied for k + 1. According to the induction
hypothesis and Lemma 2.6, we obtain

(
Rk+1atα−1

)
(t) ≤ b(t)

∫ t

0
(t − s)β−1sγ−1

(
Rkasα−1

)
(s)ds

≤ a
(
Γ
(
β
)
b(t)
)k
ckb(t)

∫ t

0
(t − s)β−1skν+δ−1ds

= a
(
Γ
(
β
)
b(t)
)k
ckb(t)tkν+δ+β−1 Γ

(
β
)
Γ(kν + δ)

Γ
(
kν + δ + β

)

= a
(
Γ
(
β
)
b(t)
)k+1

ck+1t
α−1t(k+1)ν.

(2.20)



Abstract and Applied Analysis 7

This proves that inequality (2.19) is satisfied for any k ∈ N. In other words, we have proved
that

u(t) ≤
∞∑

k=0

a
(
Γ
(
β
)
b(t)
)k
ckt

α−1tkν, (2.21)

where c0 = 1, ck =
∏k−1

i=0 (Γ(iν + δ)/Γ(iν + δ + β)), k ∈ N+. By virtue of Definition 2.5, we can
arrive at inequality (2.8) and the proof of this theorem is completed.

For the case b(t) ≡ b > 0 in Theorem 2.7, we can obtain the following corollary, which
can be found in [17].

Corollary 2.8. Let α, β, γ > 0, δ = α + γ − 1 > 0, ν = β + γ − 1 > 0, a, b > 0. And suppose that u(t)
is nonnegative and tγ−1u(t) is locally integrable on 0 ≤ t < T (T ≤ ∞) with

u(t) ≤ atα−1 + b
∫ t

0
(t − s)β−1sγ−1u(s)ds, 0 ≤ t < T. (2.22)

Then one has

u(t) ≤ atα−1Fν,δ,δ+β
(
Γ
(
β
)
btβ
)
, 0 ≤ t < T. (2.23)

For α = γ = 1 in Theorem 2.7, we can arrive at the following corollary, which can be
found in [12].

Corollary 2.9. Let β, a > 0, b(t) be a nonnegative, nondecreasing continuous function on 0 ≤ t < T ,
b(t) ≤ M, where T ≤ ∞,M is a positive constant. And suppose that u(t) is nonnegative and locally
integrable on 0 ≤ t < T with

u(t) ≤ a + b(t)
∫ t

0
(t − s)β−1u(s)ds, 0 ≤ t < T. (2.24)

Then one has

u(t) ≤ aEβ
(
Γ
(
β
)
b(t)tβ

)
, 0 ≤ t < T. (2.25)

3. Application

In this section, we will apply our established result to study the dependence of the solution
on the initial condition of a fractional differential equation with the Riemann-Liouville
derivative.

For the reader’s convenience, we first recall several definitions of the Reimann-
Liouville integral and derivative. From now on, we assume that T is a finite positive constant,
that is, T /=∞.
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Definition 3.1 (see [14, 16]). Let 0 < p < 1. The Riemann-Liouville integral of order p is defined
by

(
I
p

0+x
)
(t) =

1
Γ
(
p
)
∫ t

0
(t − s)p−1x(s)ds, 0 ≤ t ≤ T. (3.1)

Definition 3.2 (see [14, 16]). Let 0 < p < 1. The Riemann-Liouville derivative of order p is
defined by

(
D
p

0+x
)
(t) =

1
Γ
(
1 − p)

d

dt

∫ t

0
(t − s)−px(s)ds, 0 ≤ t ≤ T. (3.2)

Now we consider the following initial value problem of the form

(
D
p

0+x
)
(t) = f(t, x(t)), lim

t→ 0+

(
I

1−p
0+ x

)
(t) = x0, 0 < p < 1, 0 < t ≤ T, x0 ∈ R. (3.3)

With regard to problem (3.3), the existence and uniqueness of the solution can be
found in the book by Kilbas et al. [14]. For the completeness of this paper, we give the
existence and uniqueness of the solution to (3.3) in the weighted spaceC1−p([0, T]). The space
C1−p([0, T]) consists of all functions x ∈ C((0, T]) such that t1−px(t) ∈ C([0, T]), which turns
out to be a Banach space when endowed with the norm |x|1−p = max0≤t≤T |t1−px(t)|.

Theorem 3.3 (see [14]). Let 0 < p < 1, and f(t, x) : (0, T] × R → R be a function such that for
any x ∈ R, f(t, x) ∈ C1−p([0, T]). Further assume that for any t ∈ (0, T], x, y ∈ R, the following
inequality

∣∣f(t, x) − f(t, y)∣∣ ≤ L∣∣x − y∣∣ (3.4)

holds, where L > 0 is a constant. Then there exists a unique solution x(t) to problem (3.3) in the space
C1−p([0, T]).

Theorem 3.4. Let 0 < p < 1, and f(t, x) : (0, T] × R → R be a function such that for any x ∈ R,
f(t, x) ∈ C1−p([0, T]). Further assume that for any t ∈ (0, T], x, y ∈ R, the following inequality

∣∣f(t, x) − f(t, y)∣∣ ≤ L∣∣x − y∣∣ (3.5)

holds, where L > 0 is a constant. Assume that x and y are the solutions of problem (3.3) and

(
D
p

0+y
)
(t) = f

(
t, y(t)

)
, lim

t→ 0+

(
I

1−p
0+ y

)
(t) = y0, 0 < t ≤ T, y0 ∈ R, (3.6)
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respectively. Then, for 0 ≤ t ≤ T , one has

t1−p
∣
∣x(t) − y(t)∣∣ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣x0 − y0

∣
∣

Γ
(
p
) F2p−1,p,2p(Lt),

1
2
< p < 1, 0 ≤ t ≤ T,

∣
∣x0 − y0

∣
∣

Γ
(
p
) F2p+q−1,p+q,2p+q(L∗t), 0 < p ≤ 1

2
, 0 ≤ t < 1,

∣
∣x0 − y0

∣
∣

Γ
(
p
) F2p+q′−1,p+q′,2p+q′(L′t), 0 < p ≤ 1

2
, 1 ≤ t ≤ T,

(3.7)

where q, q′, L∗, L′ are positive constants such that

1 − 2p < q < logL/L
∗

t , 0 < p ≤ 1
2
, 0 < t < 1,

q′ > max
{

1 − 2p, logL/L
′

t

}
, 0 < p ≤ 1

2
, 1 ≤ t ≤ T.

(3.8)

Proof. The proof is rather technical. We first prove the case 1/2 < p < 1 and 0 ≤ t ≤ T . Since
x(t) and y(t) are the solutions of (3.3) and (3.6), we have

x(t) =
x0t

p−1

Γ
(
p
) +

1
Γ
(
p
)
∫ t

0
(t − s)p−1f(s, x(s))ds,

(3.9)

y(t) =
y0t

p−1

Γ
(
p
) +

1
Γ
(
p
)
∫ t

0
(t − s)p−1f

(
s, y(s)

)
ds. (3.10)

Subtracting (3.10) from (3.9) and using the Lipschitz condition (3.5), we obtain

∣∣x(t) − y(t)∣∣ ≤
∣∣x0 − y0

∣∣tp−1

Γ
(
p
) +

L

Γ
(
p
)
∫ t

0
(t − s)p−1∣∣x(s) − y(s)∣∣ds. (3.11)

Taking into account that x(t), y(t) ∈ C1−p([0, T]), we multiply at both sides of inequality (3.11)
by t1−p to get

t1−p
∣∣x(t) − y(t)∣∣ ≤

∣∣x0 − y0
∣∣

Γ
(
p
) +

Lt1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp−1s1−p∣∣x(s) − y(s)∣∣ds. (3.12)

Denote u(t) = t1−p|x(t) − y(t)|. Then, (3.12) can be written as

u(t) ≤
∣∣x0 − y0

∣∣

Γ
(
p
) +

Lt1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp−1u(s)ds. (3.13)
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Putting a = |x0 − y0|/Γ(p), b(t) = Lt1−p/Γ(p), α = 1, β = p, γ = p, we see that α, β, γ > 0,
δ = α + γ − 1 = p > 0, ν = β + γ − 1 = 2p − 1 > 0, a > 0, and b(t) is a nondecreasing continuous
function due to p, L > 0. So, applying Theorem 2.7 to (3.13), we obtain

u(t) ≤
∣
∣x0 − y0

∣
∣

Γ
(
p
) F2p−1,p,2p(Lt),

1
2
< p < 1, 0 ≤ t ≤ T. (3.14)

Next, we prove the case 0 < p ≤ 1/2 and 0 ≤ t < 1. Notice that the Lipschitz condition
(3.5) holds for each t in t ∈ (0, T]. Since t > 0 and L > 0, we can always choose two positive
constants q, L∗ such that

1 − 2p < q < logL/L
∗

t , 0 < t < 1. (3.15)

Condition (3.15) means that 0 ≤ 1 − 2p < q and L < L∗tq. That is to say, if the Lipschitz
condition (3.5) holds for each t in t ∈ (0, T], then we can always choose two positive constants
q, L∗ such that the following condition

0 ≤ 1 − 2p < q,
∣∣f(t, u) − f(t, v)∣∣ ≤ L∗tq|u − v| (3.16)

holds for each t in t ∈ (0, T].
Subtracting (3.10) from (3.9) and using condition (3.16), we obtain

∣∣x(t) − y(t)∣∣ ≤
∣∣x0 − y0

∣∣tp−1

Γ
(
p
) +

L∗

Γ
(
p
)
∫ t

0
(t − s)p−1sq

∣∣x(s) − y(s)∣∣ds. (3.17)

Multiplying t1−p on both sides of (3.17), we get

u(t) ≤
∣∣x0 − y0

∣∣

Γ
(
p
) +

L∗t1−p

Γ
(
p
)
∫ t

0
(t − s)p−1sp+q−1u(s)ds, (3.18)

where u(t) is defined as before. Now, putting a = |x0 − y0|/Γ(p), b(t) = L∗t1−p/Γ(p), α = 1,
β = p, γ = p + q, we see that α, β, γ > 0, δ = α + γ − 1 = p + q > 0, ν = β + γ − 1 = 2p + q − 1 =
q − (1 − 2p) > 0, a > 0, b(t) is a nondecreasing continuous function due to p, L∗ > 0. So,
applying Theorem 2.7 to (3.18), we have

u(t) ≤
∣∣x0 − y0

∣∣

Γ
(
p
) F2p+q−1,p+q,2p+q(L∗t), 0 < p ≤ 1

2
, 0 ≤ t < 1. (3.19)

Finally, we prove the case 0 < p ≤ 1/2 and 1 ≤ t ≤ T . Since t > 0 and L > 0, we can
always choose two positive constants q′, L′ such that

q′ > max
{

1 − 2p, logL/L
′

t

}
, 1 ≤ t ≤ T. (3.20)
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Condition (3.20) means that 0 ≤ 1 − 2p < q′ and L < L′tq. Using the same arguments as above,
we can obtain that

u(t) ≤
∣
∣x0 − y0

∣
∣

Γ
(
p
) F2p+q′−1,p+q′,2p+q′

(
L′t
)
, 0 < p ≤ 1

2
, 1 ≤ t ≤ T, (3.21)

where u(t) is defined as before. So the conclusion of this theorem is true.

From the proof of Theorem 3.4, we can see that the integral inequality in Theorem 2.7
is very useful. This demonstrates that our investigation is meaningful.
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This paper studies musical opus from the point of view of three mathematical tools: entropy,
pseudo phase plane (PPP), and multidimensional scaling (MDS). The experiments analyze ten
sets of different musical styles. First, for each musical composition, the PPP is produced using
the time series lags captured by the average mutual information. Second, to unravel hidden
relationships between the musical styles the MDS technique is used. The MDS is calculated based
on two alternative metrics obtained from the PPP, namely, the average mutual information and the
fractal dimension. The results reveal significant differences in the musical styles, demonstrating
the feasibility of the proposed strategy and motivating further developments towards a dynamical
analysis of musical sounds.

1. Introduction

For many centuries, philosophers, music composers, and mathematicians worked intensively
to find mathematical formulae that could explain the process of music creation. As a matter of
fact, music and mathematics are intricately related: strings vibrate at certain frequencies and
sound waves can be described by mathematical equations. Although it seems not possible
to find an expression that models the musical works, it is recognized that there are certain
inherent mathematical structures in all types of music. Through the history of music, we
have been faced with the proposal of formal techniques for melody composition, claiming
that musical pieces can be created as a result of applying certain rules to some given initial
material [1–12]. More recently, the growth of computing power made it possible to generate
music automatically.
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The concept of entropy was introduced in the field of thermodynamics by Clausius
(1862) and Boltzmann (1896) and was later applied by Shannon (1948) and Jaynes (1957)
in information theory [13–15]. However, recently more general entropy measures were
proposed, allowing the relaxation of the additivity axiom for application in several types
of complex systems [16–24]. The novel ideas are presently under a large development and
open up promising perspectives.

The pseudo phase space (PPS) is used to analyze signals with nonlinear behavior. For
the two-dimensional case it is called pseudo phase plane (PPP) [25–27]. To reconstruct the
PPS it is necessary to find the adequate time lag between the signal and one delayed image of
the original signal. To determine the proper lag (or time delay) often the mutual information
concept is used.

The Multidimensional Scaling (MDS) has its origins in psychometrics and psy-
chophysics, where it is used as a tool for perceptual and cognitive modeling. From the
beginning MDS has been applied in many fields, such as psychology, sociology, anthropology,
economy, and educational research. In the last decades this technique has been applied also in
others areas, including computational chemistry [28], machine learning [29], concept maps
[30], and wireless network sensors [31].

Bearing these facts in mind, the present study combines the referred concepts and is
organized as follows. Section 2 introduces a brief description of the fundamental concepts.
Section 3 formulates and develops the musical study through several entropy measures and
MDS analysis. Finally, Section 4 outlines the main conclusions.

2. Fundamental Concepts

This section presents the main tools adopted in this study, namely, the musical signals, the
PPP, the fractional dimension, and the MDS.

2.1. Musical Sounds

In the context of this study, a musical work is a set of one or more time-sequenced digital data
streams, representing a certain time sampling of the original musical source. For all musical
objects, the original data streams result from sampling at 44 kHz, subsequently converted to
a single (mono-) digital data series, each sample being a 32-bit signed floating value.

These sounds have a strong variability, making difficult their direct comparison in
the time domain. In this line of thought, several tests were developed to obtain methods
that establish a compromise between smoothing the high signal variability and handling
the rhythm and style time evolution that are the essence of each composition. The Shannon
entropy S of the signals is shown to be an appropriate method:

S = −
∑

x∈X
p(x) ln

[
p(x)

]
, (2.1)

where X is the set of all possible events and p(x) is the probability that event i occurs so that∑
x∈X p(x) = 1.

For a bidimensional random variable the join entropy becomes

S = −
∑

x∈X

∑

y∈Y
p
(
x, y

)
ln
[
p
(
x, y

)]
. (2.2)
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2.2. Pseudo Phase Plane

The PPS is used to analyze signals with nonlinear behavior. The proper time lagTd, for the
delay measurements, and the adequate dimension d ∈ N of the space must be determined
in order to achieve the phase space. In the PPS the measurement s(t) forms the pseudo vector
y(t) according to

y(t) = [s(t), s(t + Td), . . . , s(t + (d − 1)Td)]. (2.3)

The vector y(t) can be plotted in a d-dimensional space forming a curve in the PPS. If d = 2
we have a two-dimensional space, and, therefore, the PPP is a particular case of the PPS
technique.

The procedure of choosing a sufficiently large d is formally known as embedding
and any dimension that works is called an embedding dimension dE. The number of
measurements dE should provide a phase space dimension, in which the geometrical
structure of the plotted PPS is completely unfold and where there are no hidden points in
the resulting plot.

Among others [26], the method of delays is the most common method for
reconstructing the phase space. Several techniques have been proposed to choose an
appropriate time delay [27]. One line of thought is to choose Td based on the correlation of
the time series with its delayed image. The difficulty of correlation to deal with nonlinear
relations leads to the use of the mutual information. This concept, from the information
theory [32], recognizes the nonlinear properties of the series and measures their dependence.
The average mutual information for the two series of variables t and t + Td is given by

I(t, t + Td) =
∫

t

∫

t+Td
F1{s(t), s(t + Td)}log2

F1{s(t), s(t + Td)}
F2{s(t)}F3{s(t + Td)}dtd(t + Td), (2.4)

where F1{s(t), s(t + Td)} is a bidimensional probability density function and F2{s(t)} and
F3{s(t + Td)} are the marginal probability distributions of the two series s(t) and s(t + Td),
respectively.

The index I allows us to obtain the time lag required to construct the pseudo phase
space. For finding the best value Td of the delay, I is computed for a range of delays and the
first minimum is chosen. Usually I is referred [25–27] as the preferred alternative to select the
proper time delay Td.

2.3. Fractal Dimension

The fractal dimension is a quantity that gives an indication of how completely a spatial
representation appears to fill space. There are many specific methods to compute the
fractal dimension [33, 34]. The most popular methods are the Hausdorff and box-counting
dimensions. Here the box-counting dimension method is used due to its simplicity of
implementation and is defined as

fd = lim
ε→ 0

ln[N(ε)]
ln(1/ε)

, (2.5)
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where N(ε) represents the minimal number of covering cells (e.g., boxes) of size ε required
to cover the set analyzed. The slope on a plot of ln[N(ε)] versus ln(1/ε) provides an estimate
of the fractal dimension.

2.4. Multidimensional Scaling

MDS is a generic name for a family of algorithms that construct a configuration of points
in a low-dimensional space from information about interpoint distances measured in high-
dimensional space. The new geometrical configuration of points, preserving the proximities
of the high dimensional space, facilitates the perception underlying structure of the data and
often makes it much easier to analyze. The problem addressed by MDS can be stated as
follows: given n items in anm-dimensional space and an n×nmatrix C of proximity measures
among the items, MDS produces a p-dimensional configuration Φ, p ≤ m, representing the
items such that the distances among the points in the new space reflect, with some degree
of fidelity, the proximities in the data. The proximity measures the closeness (in MDS terms
usually referred as similarities) among the items and, in general, it is a distance measure: the
more similar two items are, the smaller their distance is.

The Minkowski distance metric provides a general way to specify distance for
quantitative data in a multidimensional space:

dij =

(
m∑

k=1

wk

∣∣xik − xjk
∣∣r
)1/r

, (2.6)

where m is the number of dimensions, xik is the value of the kth component of object i, and
wk is a weight factor.

For wk = 1, if r = 2 then (2.6) yields the Euclidean distance, and if r = 1 then it leads to
the city-block (or Manhattan) distance. In practice, the Euclidean distance is generally used,
but there are several other definitions that can be applied, including for binary data [35].

Typically MDS is used to transform the data into two or three dimensions for
visualizing the result to uncover the data hidden structure, but any p < m is possible. Some
authors use a rule of thumb to determine the maximum number of m, which is to ensure
that there are at least twice as many pairs of items than the number of parameters to be
estimated, resulting in m ≥ 4p + 1 [36]. The geometrical representation obtained with MDS is
indeterminate with respect to translation, rotation, and reflection [37].

There are two forms of MDS, namely, the metric MDS and the nonmetric MDS. The
metric MDS uses the actual values of dissimilarities, while nonmetric MDS effectively uses
only their ranks [38, 39]. Metric MDS assumes that the dissimilarities δij calculated in the
original m-dimensional data and distances dij in the p-dimensional space are related as
follows:

dij ≈ f
(
δij

)
, (2.7)

where f is a continuous monotonic function. Metric (scaling) refers to the type of
transformation f of the dissimilarities and its form determines the MDS model. If dij = δij (it
means f = 1) and a Euclidean distance is used then we obtain the classical (metric) MDS.
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Figure 1: Entropy S versus time t of four musical compositions using a sliding window of T = 1 second.
Musical compositions—The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night and Day,” Mozart: “KV527
Menuet Don Giovani,” and Stevie Wonder: “For Your Love.”

In metric MDS the dissimilarities between all objects are known numbers and they
are approximated by distances. Therefore, objects are mapped into a low-dimensional space,
distances are calculated and compared with the dissimilarities. Then objects are moved in
such way that the fit becomes better, until an objective function (called stress function in the
context of MDS) is minimized.

In nonmetric MDS, the metric properties of f are relaxed, but the rank order of the
dissimilarities must be preserved. The transformation function f obeys the monotonicity
constraint δij < δrs ⇒ f(δij) ≤ f(δrs) for all objects. The advantage of nonmetric MDS is that
no assumptions need to be made about the underlying transformation function f . Therefore,
it can be used in situations that only the rank order of dissimilarities is known (ordinal data).
Additionally, it can be used in cases which there are incomplete information. In such cases, the
configuration Φ is constructed from a subset of the distances, and, at the same time, the other
(missing) distances are estimated by monotonic regression. In nonmetric MDS it is assumed
that dij ≈ f(δij) and, therefore, f(δij) are often referred as the disparities [40–42] in contrast to
the original dissimilarities δij , on one hand, and the distances dij of the configuration space,
on the other hand. In this context, the disparity is a measure of how well the distance dij
matches the dissimilarity δij .

With further developments over the years, MDS techniques are commonly classified
according to the type of data to analyze. From this point of view, the techniques are embedded
into the following MDS categories [35, 42]: (i) one-way versus multiway: in K-way MDS
each pair of objects has K dissimilarity measures from different replications (e.g., repeated
measures); (ii) one-mode versus multimode: similar to (i) but the K dissimilarities are
qualitatively different (e.g., distinct experimental conditions).

There is no rigorous statistical method to evaluate the quality and the reliability of
the results obtained by an MDS analysis. However, there are two methods often used for
that purpose: the Shepard plot and the stress. The Shepard plot is a scatter plot of the
dissimilarities and disparities against the distances, usually overlaid with a line having
unitary slope. The plot provides a qualitative evaluation of the goodness of fit. On the other
hand, the stress value gives a quantitative evaluation. Additionally, the stress plotted as a
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Figure 2: Average mutual information I versus lag Td of four musical compositions—The Beatles: “Yellow
Submarine,” Ella Fitzgerald: “Night and Day,” Mozart: “KV527 Menuet Don Giovani,” and Stevie Wonder:
“For Your Love.”

function of dimensionality can be used to estimate the adequate p-dimension (known as scree
plot). When the curve ceases to decrease significantly the resulting “elbow” may correspond
to a substantial improvement in fit.

Beyond the aspects referred before, there are other developments of MDS that include
Procrustean methods, individual differences models (also known as three-way models), and
constrained config uration.

In the Procrustean methods the data is analyzed by scaling each replication separately
and then comparing or aggregating the different MDS solutions. The individual differences
models scale a set of K dissimilarity matrices into only one MDS solution. The procedure
of constraints on the configuration (which Borg and Groenen called “confirmatory MDS”
[43]) is used when the researcher has some substantive underlying theory regarding a
decomposition of the dissimilarities and, consequently, tries to restrain the configuration
space.

3. Study of Musical Sounds

This section develops the musical study using entropy applied to a large sample of repre-
sentative musical works. Once having the entropy measurements, the corresponding time
lags and the PPP are calculated. Finally, an MDS analysis is performed using two alternative
criteria, namely, based on mutual information and fractal dimension.

3.1. Entropy Analysis of Musical Compositions

For the calculation of the entropy S is considered a rectangular window of duration T that
slides over time t capturing a limited part of the signal evolution. Each new window overlaps
50% with the previous one. For the signal captured in the window a histogram of relative
frequency of amplitudes is obtained and S(t) calculated. Several experiments demonstrated
that a sampling window with width T = 1 represented a good compromise between
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Figure 3: PPP of four musical compositions: (a) The Beatles: “Yellow Submarine”; (b) Ella Fitzgerald: “Night
and Day”; (c) Mozart: “KV527 Menuet Don Giovani”; (d) Stevie Wonder: “For Your Love.”

the original signal’s frequency (tenths of microseconds) and the musical piece’s duration
(hundreds of seconds).

Figure 1 shows the evolution of several musical sounds viewed through the entropy
versus time for a sliding window of T = 1. The entropy curves represent four different
compositions, namely, The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night and Day,”
Mozart: “KV527 Minuet Don Giovanni,” and Stevie Wonder: “For Your Love.”

3.2. Pseudo Phase Plane of Entropy Curves from Musical Compositions

Having established the concept of time evolution of the entropy measure for musical com-
positions, the question of how the entropies of compositions with different “types” are inter-
related was investigated. Several music titles from different “types” were selected: “Classi-
cal” (49 titles), “Easy” (31), “Electro” (16), “Jazz” (50), “Brazilian Music” (18), “Portuguese
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Figure 4: MDS using cIij for (a) classic compositions; (b) all musical compositions tested; (c) Shepard plot
for 3D; (d) scree plot.

Music” (17), “Pop and Rock” (167), “Rhythm Blues” (44), “Reggae” (15), and “Slow Rock”
(19). These samples lead to a population of N = 426 music titles.

For each signal S(t) derived from the 426 compositions, the average mutual informa-
tion I was calculated. For example, Figure 2 shows the average mutual information I versus
lag Td of four musical compositions—The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night
and Day,” Mozart: “KV527 Menuet Don Giovani,” and Stevie Wonder: “For Your Love.” The
minimum of the average mutual information Imin and the corresponding delay yield
(Td, Imin) = {(14.3, 0.6), (43.6, 0.6), (9, 1), (12.2, 0.5)}, respectively. To reconstruct the PPP, the
first minimum of I was considered. The corresponding PPPs are represented in Figure 3.

Usually Td is just calculated for the PPP reconstruction. However, the time lag
represents a “memory” of previous parts of the time series and, therefore, this information
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Figure 5: 2D locus generated by MDS using cIij for: (a) Classic; (b) Pop-Rock; (c) Reggae; all musical
compositions tested.

is related with the fractional dynamics embedded in the music [44–46]. Consequently, the
value of Imin and the characteristics of the PPP chart obtained for Td are important details to
be included in the MDS maps to be formulated in the next subsection.

3.3. Multidimensional Scaling Analysis of Musical Compositions

In order to reveal hypothetical relationships between the musical compositions the MDS
technique is used. Two alternative metrics to compare objects i and j were adopted, namely,

cIij = e
−(Imini−Iminj )

2

, i, j = 1, . . . ,N, (3.1)

c
fd

ij = e−(fdi−fdj )
2
, i, j = 1, . . . ,N, (3.2)
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where N is the total number of music, cIij defined in (3.1) is based on the minimal of the

average mutual information Imin, and c
fd

ij defined in (3.2) is based on the fractal dimension
fd of the reconstructed PPP.

For each of the two indices a 426 × 426 symmetrical matrix C with 1’s in the main
diagonal was calculated and the MDS maps obtained.

Figure 4(a) shows the locus of the classic compositions obtained by MDS using cIij for
the dimension p = 3. The locus obtained with this exponential type of metric forms a curve.
Due to space limitations we are only depicting the locus obtained for some individual types
of music. The tests developed show that each type of music occupies a certain segment in the
curve obtained for all the musical compositions (Figure 4(b)). Figures 4(c) and 4(d) depict
two tests computed to evaluate the consistency of the results obtained by MDS analysis.
The Shepard plot (Figure 4(c)) shows the fitting of the 3D configuration distances to the
dissimilarities. The value of the stress function versus the dimension is shown in Figure 4(d),
that allows the estimation of the adequate p-dimension. An “elbow” occurs at dimension two
for a low value of stress, which corresponds to a significant improvement in fit. From the scree
plot can be concluded that the improvement obtained for the increasing of the p-dimension
from p = 2 to p = 3 is very low. Therefore, the 2D MDS configuration is appropriate.

In this line of thought, Figures 5(a)–5(c) show the 2D locus for the Classic, Pop
and Rock, and Reggae types of music, respectively. The Classic music compositions
(Figure 5(a)) occupy a segment of approximately 80% of the curve obtained for all the musical
compositions tested (Figure 5(d)). This segment begins near one end of the curve. The Pop
and Rock music is located over a segment of approximately 80% of the curve beginning near
the other end (Figure 5(b)). Therefore, approximately 60% of the positions for these two types
of music are superimposed in the center of the curve. For the Pop and Rock most of the
positions are concentrated in the half of the segment positioned at the opposite side of the
classic music. The Reggae music compositions are located over a limited zone near the center
of the curve (Figure 5(c)). Figure 5(d) shows the curve obtained for the 426 musical titles
tested. The Jazz zone is centered approximately in the middle of the curve and corresponds
to the superimposed zone of the Classic and the Pop and Rock. The Rhythm Blues titles are
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Figure 7: 2D locus generated by MDS using c
fd

ij for (a) Classic; (b) Pop-Rock; (c) Reggae; (d) all musical
compositions tested.

located approximately in the same zone of that corresponding to the Reggae. The Slow Rock
and the Electro types occupy approximately the same segment that corresponds to the Classic
music, nevertheless in a scattered way near the end of the curve. The Easy type occupies a
shorter segment than the one occupied by the Slow Rock and the Electro. Finally, the Brazilian
and the Portuguese compositions occupy a segment that corresponds approximately to the
Reggae one, but with a slightly shift to the side of the Classic music. The shift is more
pronounced for the case of the Portuguese music.

Figure 6 depicts the Shepard plot that confirms the good fitting of the 2D configuration
distances to the dissimilarities.

Figure 7 shows the locus of the musical compositions obtained by MDS using the
metric cfdij . Figures 7(a)–7(c) show the locus for the Classic, Pop and Rock, and Reggae types
of music, respectively. The Classic music compositions form a segment located in one end of
the curve (Figure 7(a)). The Pop and Rock musical opus occupies the most part of the curve
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Figure 8: Evaluation of MDS results using cfdij : scree plot (a); Shepard plot for 2D (b).

in a scattered way, but with a slightly superimposition over the Classic (Figure 7(b)). The
Reggae music compositions are located on a limited zone superimposed over the Classic and
the Pop and Rock compositions (Figure 7(c)).

Figure 7(d) shows the locus of the 426 musical titles. In general the relative positions
for the others types of music are similar to those obtained for cIij . Nevertheless the positions

achieved with the metric cfdij are represented in a curve shorter than the one obtained with cIij
that occasionally can make the analysis difficult.

Figure 8 shows the scree and Shepard plots to evaluate the results obtained by MDS
using cfdij . Again, an “elbow” occurs at dimension two for a low value of stress (Figure 8(a)),
which corresponds to a significant improvement in fit. Additionally, the Shepard plot
(Figure 8(b)) shows the fitting of the 2D configuration distances to the dissimilarities.

The results obtained with the proposed tools, namely, the MDS and the PPP, together
with the tested metrics proved to be assertive methods to analyze the musical compositions.

4. Conclusions

Through the history of music many authors tried to find mathematical formulae that could
explain the process of music creation. In this perspective, the study analyzes the musical
compositions from a mathematical view point. The representation in the time domain of the
music compositions presents characteristics which makes difficult their direct comparison. To
overcome this limitation the Shannon entropy was used together with other tools, namely, the
pseudo phase plane and multidimensional scaling. These tools were applied to an aggregate
of different type sets of music compositions. The proposed tools proved to be assertive
methods to analyze music. In future work, we plan to pursue several research directions
to help us understand the behavior of the musical signals. These include other techniques to
measure the similarities of the signals.
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We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary
differential equations (Dα − ρtDβ)x(t) = f(t, x(t),Dγx(t)), t ∈ (0, 1) with boundary conditions
x(0) = x0, x(1) = x1 or satisfying the initial conditions x(0) = 0, x′(0) = 1, where Dα denotes
Caputo fractional derivative, ρ is constant, 1 < α < 2, and 0 < β + γ ≤ α. Schauder’s fixed-point
theorem was used to establish the existence of the solution. Banach contraction principle was used
to show the uniqueness of the solution under certain conditions on f .

1. Introduction

Fractional calculus deals with generalization of differentiation and integration to the
fractional order [1, 2]. In the last few decades the fractional calculus and fractional differential
equations have found applications in various disciplines [2–6]. Owing to the increasing
applications, a considerable attention has been given to exact and numerical solutions of
fractional differential equations [2, 6–11]. Many papers were dedicated to the existence and
the uniqueness of the fractional differential equations, to the analytic methods for solving
fractional differential equations, e.g., Greens function method, the Mellin transform method,
and the power series (see for example references [2, 6–26] and the references therein). On
this line of taught in this manuscript we proved the existence and uniqueness of a specific
nonlinear fractional order ordinary differential equations within Caputo derivatives. Very
recently in [27–31], the authors and other researchers studied the existence and uniqueness
of solutions of some classes of fractional differential equations with delay. The paper is
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organized as follows: In Section 2 we introduce some necessary definitions and mathematical
preliminaries of fractional calculus. In Section 3 sufficient conditions are established for
the existence and uniqueness of solutions for a class fractional order differential equations
satisfying the boundary conditions or satisfying the initial conditions. In order to illustrate
our results several examples are presented in Section 3.

2. Fractional Integral and Derivatives

In this section, we present some notations, definitions, and preliminary facts that will be
used further in this work. The Caputo fractional derivative allows the utilization of initial
and boundary conditions involving integer order derivatives, which have clear physical
interpretations. Therefore, in this work we will use the Caputo fractional derivative D
proposed by Caputo in his work on the theory of viscoelasticity [32].

Let α ∈ R, n−1 < α ≤ n ∈ N and x ∈ C((0,∞),R); then the Caputo fractional derivative
of order α defined by

Dαx(t) = In−α
(
dnx(t)
dtn

)
, (2.1)

where

Iαx(t) = 1
Γ(α)

∫ t

0
(t − s)α−1x(s)ds, (2.2)

is the Riemann-Liouville fractional integral operator of order α and Γ is the gamma function.
The fractional integral of x(t) = (t − a)β, a ≥ 0, β > −1 is given as

Iαx(t) = Γ
(
β + 1

)

Γ
(
β + α + 1

) (t − a)β+α. (2.3)

For α, β ≥ 0, we have the following properties of fractional integrals and derivative [33].
The fractional order integral satisfies the semigroup property

Iα
(
Iβx(t)

)
= Iβ(Iαx(t)) = Iα+βx(t). (2.4)

The integer order derivative operator Dm commutes with fractional order Dα, that is:

Dm(Dαx(t)) = Dm+αx(t) = Dα(Dmx(t)). (2.5)

The fractional operator and fractional derivative operator do not commute in general. Then
the following result can be found in [33, 34].
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Lemma 2.1 (see [33, 34]). For α > 0, the general solution of the fractional differential equation
Dαx(t) = 0 is given by

x(t) =
r−1∑

i=0

cit
i, ci ∈ R, i = 0, 1, 2, . . . , r − 1, r = [α] + 1, (2.6)

where [α] denotes the integer part of the real number α.
In view of Lemma 2.1 it follows that

Iα(Dαx(t)) = x(t) + c0 + c1t + c2t
2 + · · · + cr−1t

r−1 for some ci ∈ R, i = 0, 1, . . . , r − 1.
(2.7)

But in the opposite way we have

Dα
(
Iβ(t)

)
= Dα−βx(t). (2.8)

Proposition 2.2. Assume that x : [0,∞) → R is continuous and 0 < β ≤ α. Then

(i) Iα(tx(t)) = tIαx(t) − αIα+1x(t),

(ii) Iα{tDβx(t)} = tIα−βx(t) − αIα−β+1x(t).

The proof of the above proposition can be found in [9, page 53].
As a pursuit of this in this paper, we discuss the existence and uniqueness of solution

for nonlinear fractional order differential equations

(
Dα − ρtDβ

)
x(t) = f(t, x(t),Dγx(t)), t ∈ (0, 1), (2.9)

satisfying the boundary conditions

x(0) = x0, x(1) = x1, (2.10)

or satisfying the initial conditions

x(0) = x0, x′(0) = 1, (2.11)

where 1 < α ≤ 2 and 0 < β + γ ≤ α.
In the following, we present the existence and the uniqueness results for fractional

differential equation (2.9) with boundary conditions (2.10).
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3. Existence and Uniqueness of Solutions

Lemma 3.1. Assume that f : [0, 1] × R
2 → R is continuous. Then x ∈ C[0, 1] is a solution of the

boundary value problem (2.9) and (2.10) if and only if x(t) is the solution of the integral equation

x(t) = −c0 − c1t + ρtIα−βx(t) − ραIα−β+1x(t) + Iαf(t, x(t),Dγx(t))

= x0 + (x1 − x0)t +
∫1

0
G(t, s)ds,

(3.1)

for some constants c0, c1 where G(t, s) given by

G(t, s) =
⎧
⎨

⎩

G1(t, s) 0 ≤ s < t,
G2(t, s), t ≤ s ≤ 1,

(3.2)

where

G1(t, s) = ρ

{
αt(1 − s)α−β
Γ
(
α − β + 1

) − t(1 − s)α−β−1

Γ
(
α − β) +

t(t − s)α−β−1

Γ
(
α − β) − α(t − s)α−β

Γ
(
α − β + 1

)

}

x(s)

+

{
(t − s)α−1

Γ(α)
− t(1 − s)α−1

Γ(α)

}

f(s, x(s),Dγx(s)),

G2(t, s) = ρt

{
α(1 − s)α−β
Γ
(
α − β + 1

) − (1 − s)α−β−1

Γ
(
α − β)

}

x(s)

− t(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s)).

(3.3)

Proof. Assume that x ∈ C[0, 1] is a solution of the fractional differential equation (2.9)
satisfying boundary conditions (2.10). Then in view of Lemma 2.1 and Proposition 2.2, we
have

x(t) = ρtIα−βx(t) − ραIα−β+1x(t) + Iαf(t, x(t),Dγx(t)) − c0 − c1t

= ρ
∫ t

0

{
t(t − s)α−β−1

Γ
(
α − β) − α(t − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds

+
∫ t

0

(t − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds − c0 − c1t,

(3.4)
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for some constants c0 and c1. Hence using the boundary conditions (2.10) we obtain c0 = −x0

and

c1 = x0 − x1 + ρ
∫1

0

{
(1 − s)α−β−1

Γ
(
α − β) − α(1 − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds

+
∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds.

(3.5)

Substituting c0 = −x0 and c1 into (3.4) we get

x(t) = x0 + (x1 − x0)t − ρt
∫1

0

{
(1 − s)α−β−1

Γ
(
α − β) − α(1 − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds (3.6)

− t
∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds (3.7)

+
∫ t

0

{
t(t − s)α−β−1

Γ
(
α − β) − α(t − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds (3.8)

+ ρ
∫ t

0

(t − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds,

= x0 + (x1 − x0)t

+ ρ
∫ t

0

{
αt(1 − s)α−β
Γ
(
α − β + 1

) − t(1 − s)α−β−1

Γ
(
α − β) +

t(t − s)α−β−1

Γ
(
α − β) − α(t − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds

+
∫ t

0

{
(t − s)α−1

Γ(α)
− t(1 − s)α−1

Γ(α)

}

f(s, x(s),Dγx(s))ds

+ ρ
∫1

t

{
αt(1 − s)α−β
Γ
(
α − β + 1

) − t(1 − s)α−β−1

Γ
(
α − β)

}

x(s)ds

−
∫1

t

t(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds

= x0 + (x1 − x0)t +
∫1

0
G(t, s)ds.

(3.9)

We consider the space

B = {x(t) : x(t) ∈ C[0, 1],Dγx(t) ∈ C[0, 1]}, (3.10)
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furnished with the norm

‖x(t)‖ = max
t∈[0,1]

|x(t)| + max
t∈[0,1]

|Dγx(t)|. (3.11)

The space B is a Banach space [35].

Theorem 3.2. Let f : [0, 1]×R
2 → R be continuous, and there exists a function η : [0, 1] → [0,∞],

such that f(t, x, y) ≤ η(t) + a|x| + b|y|, a, b ≥ 0, 2a + 2b + α|ρ| ≤ 2δ where δ = min{Γ(α − β − γ +
2),Γ(α − β − γ + 1),Γ(α − γ + 1),Γ(α + 1)}. Then, the boundary value problem (2.9), (2.10) has a
solution.

Proof. Define an operator F : B → B by

Fx(t) = x0 + (x1 − x0)t − t
∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds (3.12)

+ ρt
∫1

0

{
α(1 − s)α−β
Γ
(
α − β + 1

) − (1 − s)α−β−1

Γ
(
α − β)

}

x(s)ds (3.13)

+ ρtIα−βx(t) − ραIα−β+1x(t) + Iαf(t, x(t),Dγx(t)) (3.14)

= x0 + (x1 − x0)t +
∫1

0
G(t, s)ds. (3.15)

In order to show that the boundary value problem (2.9), (2.10) has a solution, it is sufficient
to prove that the operator F has a fixed point. For s ≤ t, from (3.2), we have

|G(t, s)| ≤ ∣∣ρ∣∣
{

2α(1 − s)α−β
Γ
(
α − β + 1

) +
2(1 − s)α−β−1

Γ
(
α − β)

}

|x(s)|

+

{
2(1 − s)α−1

Γ(α)

}
∣∣f(s, x(s),Dγx(s))

∣∣

≤ m1

{
α(1 − s)α−β + (1 − s)α−β−1

}
|x(s)|

+m1(1 − s)α−1∣∣f(s, x(s),Dγx(s))
∣∣

≤ m1

{
(α + 1)(1 − s)α−β−1|x(s)| + (1 − s)α−1∣∣f(s, x(s),Dγx(s))

∣∣
}

≤ m1(1 − s)α−β−1{3|x(s)| + ∣∣f(s, x(s),Dγx(s))
∣∣}

≤ m1(1 − s)α−β−1{(3 + a)|x(s)| + η(s) + b|Dγx(s)|}

≤ m1m2(1 − s)α−β−1,

(3.16)
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where

m1 = max

{
2
∣
∣ρ
∣
∣

Γ
(
α − β + 1

) ,
2
∣
∣ρ
∣
∣

Γ
(
α − β) ,

2
Γ(α)

}

,

m2 = max
{
(3 + a)|x(s)|, η(s), b|Dγx(s)|, 0 ≤ s ≤ 1

}
.

(3.17)

On the other hand, for s > t, we arrive at same conclusion. Therefore,

∫1

0
|G(t, s)|ds ≤ m1m2

∫1

0
(1 − s)α−β−1ds =

m1m2

α − β . (3.18)

Choose R ≥ max{R1,R2}, where R1 = max{m1m2/2(α − β), (1/2)(2|x0| + |x1|)} and

R2 = max

{
5|x1 − x0|
2Γ
(
1 − γ) ,

5
∥∥η
∥∥

2Γ
(
α − γ + 1

) ,
5
∥∥η
∥∥

2Γ(α + 1)
,

5
∣∣ρ
∣∣α

2Γ
(
α − β + 2

) ,
5
∣∣ρ
∣∣

2Γ
(
α − β + 1

)

}

. (3.19)

Define the set Ω = {x ∈ B : ‖x‖ ≤ 8R}. For x ∈ Ω, using (3.15) and (3.18), we obtain

|Fx(t)| ≤ |x0| + |x1 − x0|t +
∫1

0
|G(t, s)|ds ≤ 2|x0| + |x1| + m1m2

α − β ≤ 2R + 2R = 4R. (3.20)

From the Caputo derivative and with using (3.12)–(3.14), we have

Dγ(Fx(t)) = I1−γ
{
dFx(t)
dt

}

= −I1−γ d
dt

{

t

∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds

}

+ I1−γ d
dt

{

ρt

∫1

0

{
α(1 − s)α−β
Γ
(
α − β + 1

) − (1 − s)α−β−1

Γ
(
α − β)

}

x(s)ds

}

+ I1−γ
{
d

dt

[
x0 + (x1 − x0)t + ρtIα−βx(t) − ραIα−β+1x(t)

]}

+ I1−γ
{
d

dt
Iαf(t, x(t),Dγx(t))

}
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= −I1−γ
∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds

+ ρI1−γ
∫1

0

{
α(1 − s)α−β
Γ
(
α − β + 1

) − (1 − s)α−β−1

Γ
(
α − β)

}

x(s)ds

+ I1−γ
{
x1 − x0 + ρ(1 − α)Iα−βx(t) + ρtIα−β−1x(t) + Iα−1f(t, x(t),Dγx(t))

}
.

(3.21)

Then, (2.3) yields

Dγ(Fx(t)) = − t1−γ

Γ
(
1 − γ)

∫1

0

(1 − s)α−1

Γ(α)
f(s, x(s),Dγx(s))ds

+
ρt1−γ

Γ
(
1 − γ)

∫1

0

{
α(1 − s)α−β
Γ
(
α − β + 1

) − (1 − s)α−β−1

Γ
(
α − β)

}

x(s)ds

+
(x1 − x0)t1−γ

Γ
(
1 − γ) + ρ(1 − α)Iα−β−γ+1x(t)

+ ρtIα−β−γx(t) + Iα−γf(t, x(t),Dγx(t)).

(3.22)

Hence,

|Dγ(Fx(t))| ≤ t1−γ

Γ(α + 1)
{
η(t) + a|x(t)| + b|Dγx(t)|}

+
∣∣ρ
∣∣
{

α

Γ
(
α − β + 2

) +
1

Γ
(
α − β + 1

)

}

t1−γ

+
x1 − x0

Γ
(
1 − γ) +

∣∣ρ(1 − α)∣∣‖x‖
Γ
(
α − β − γ + 1

)
∫ t

0
(t − s)α−β−γds

+

∣∣ρ
∣∣‖x‖

Γ
(
α − β − γ)

∫ t

0
(t − s)α−β−γ−1ds + Iα−γ

{
η(t) + a|x(t)| + b|Dγx(t)|}

≤ t1−γ

Γ(α + 1)
{
η(t) + a|x(t)| + b|Dγx(t)|}

+
∣∣ρ
∣∣
{

α

Γ
(
α − β + 2

) +
1

Γ
(
α − β + 1

)

}

t1−γ

+
|x1 − x0|
Γ
(
1 − γ) +

∣∣ρ(1 − α)∣∣‖x‖tα−β−γ+1

Γ
(
α − β − γ + 2

) +

∣∣ρ
∣∣‖x‖tα−β−γ

Γ
(
α − β − γ + 1

) +

∥∥η
∥∥ + (a + b)‖x‖
Γ
(
α − γ + 1

) tα−γ .

(3.23)
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Thus,

|Dγ(Fx(t))| ≤ |x1 − x0|
Γ
(
1 − γ) +

∥
∥η
∥
∥

Γ
(
α − γ + 1

) +

∥
∥η
∥
∥

Γ(α + 1)

+ R
( ∣

∣ρ(1 − α)∣∣
Γ
(
α − β − γ + 2

) ,

∣
∣ρ
∣
∣

Γ
(
α − β − γ + 1

) +
a + b

Γ
(
α − γ + 1

) +
a + b

Γ(α + 1)

)

+
ρα

Γ
(
α − β + 2

) +

∣
∣ρ
∣
∣

Γ
(
α − β + 1

)

≤ 2R +R
(∣∣ρ

∣∣(α − 1)
δ

+

∣∣ρ
∣∣

δ
+

2a + 2b
δ

)

= 2R +
2a + 2b + α

∣∣ρ
∣∣

δ
R ≤ 2R + 2R = 4R.

(3.24)

Therefore, ‖Fx(t)‖ ≤ 4R + 4R = 8R. Thus, F : Ω → Ω. Finally, it remains to show that F is
completely continuous. For any x ∈ Ω, let � = maxt∈[0,1]|f(t, x(t),Dγx(t))|; then for 0 ≤ t1 ≤
t2 ≤ 1 and using (3.12)–(3.14), we have

|Fx(t2) − Fx(t1)| ≤ |x1 − x0||t2 − t1| + �|t2 − t1|
∫1

0

(1 − s)α−1

Γ(α)
ds

+
∣∣ρ
∣∣|t2 − t1|

∫1

0

{
(1 − s)α−β−1

Γ
(
α − β) − α(1 − s)α−β

Γ
(
α − β + 1

)

}

x(s)ds

+ �

∣∣∣∣∣

∫ t2

0

(
(t2 − s)α−1

Γ(α)
− (t1 − s)α−1

Γ(α)

)

ds

∣∣∣∣∣

+
∣∣ρ
∣∣‖x‖

∣∣∣∣∣

∫ t2

0

(
t2(t2 − s)α−β−1

Γ
(
α − β) − α(t2 − s)α−β

Γ
(
α − β + 1

)

)

ds

−
(
t1(t1 − s)α−β−1

Γ
(
α − β) − α(t1 − s)α−β

Γ
(
α − β + 1

)

)

ds

∣∣∣∣∣

≤ |x1 − x0||t2 − t1| + �|t2 − t1|
Γ(α + 1)

+
∣∣ρ
∣∣‖x‖|t2 − t1|

(
1

Γ
(
α − β + 1

) − α

Γ
(
α − β + 2

)

)

+ �
|t1 − t2|α +

∣∣tα1 − tα2
∣∣

Γ(α + 1)

+ α‖x‖
|t1 − t2|α−β+1 +

∣∣∣t
α−β+1
1 − tα−β+1

2

∣∣∣

Γ
(
α − β + 2

) + ‖x‖|t1 − t2|
t
α−β
1 + |t1 − t2|α−β
Γ
(
α − β + 1

) .

(3.25)
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Hence, it follows that ‖Fx(t2) − Fx(t1)‖ → 0, as t2 → t1. By the Arzela-Ascoli theorem,
F : Ω → Ω is completely continuous. Thus by using the Schauder fixed-point theorem, it
was proved that the boundary value problem (2.9), (2.10) has a solution.

Theorem 3.3. Let f : [0, 1] × R
2 → R be continuous. If there exists a constant μ such that

|f(t, x, y)−f(t, x̃, ỹ)| ≤ μ(|x− x̃|+ |y− ỹ|) for each t ∈ [0, 1] and all x, x̃, y, ỹ ∈ R and 4M+3μ ≤ 1,
where

M = max
{

2|ρ|
Γ(α − β + 1)

,
|ρ|(1 + α)

Γ(α − β + 2)
,

|ρ(1 − α)|
Γ(α − β − γ + 2)

,
|ρ|

Γ(α − β − γ + 1)

}
. (3.26)

Then the boundary value problem (2.9) with boundary conditions (2.10) has a unique solution.

Proof. Under condition on f , we have

|Fx(t) − Fx̃(t)| ≤ t
∣∣∣∣∣
ρ

∫1

0

{
(1 − s)α−β−1

Γ
(
α − β) − α(1 − s)α−β

Γ
(
α − β + 1

)

}

[x̃(s) − x(s)]ds
∣∣∣∣∣

+ t

∣∣∣∣∣

∫1

0

(1 − s)α−1

Γ(α)
[
f(s, x̃(s),Dγ x̃(s)) − f(s, x(s),Dγx(s))

]
ds

∣∣∣∣∣

+

∣∣∣∣∣
ρ

∫ t

0

{
t(t − s)α−β−1

Γ
(
α − β) − α(t − s)α−β

Γ
(
α − β + 1

)

}

[x(s) − x̃(s)]ds
∣∣∣∣∣

+

∣∣∣∣∣

∫ t

0

(t − s)α−1

Γ(α)
[
f(s, x(s),Dγx(s)) − f(s, x̃(s),Dγ x̃(s))

]
ds

∣∣∣∣∣

≤
∣∣∣∣∣

ρ

Γ
(
α − β + 1

) − αρ

Γ
(
α − β + 2

)

∣∣∣∣∣
‖x − x̃‖ + 2μ‖x̃ − x‖

Γ(α + 1)

+

∣∣∣∣∣
ρtα−β

Γ
(
α − β + 1

) − ραt

Γ
(
α − β + 2

)

∣∣∣∣∣
‖x − x̃‖ + 2μ‖x − x̃‖tα

Γ(α + 1)

≤
(∣∣ρ

∣∣(1 + tα−β
)

Γ
(
α − β + 1

) +

∣∣ρ
∣∣(1 + α)t

Γ
(
α − β + 2

) +
2μ(1 + tα)
Γ(α + 1)

)

‖x − x̃‖.

(3.27)

Using (3.22) we conclude

|Dγ(Fx)(t) − Dγ(Fx̃)(t)| ≤ ∣∣ρ(1 − α)∣∣
∣∣∣Iα−β−γ+1(x(t) − x̃(t))

∣∣∣ + t
∣∣∣ρIα−β−γ(x(t) − x̃(t))

∣∣∣

+
∣∣Iα−γ

(
f(t, x(t),Dγx(t)) − f(t, x̃(t),Dγ x̃(t))

)∣∣
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≤
∣
∣ρ(1 − α)∣∣‖x − x̃‖
Γ
(
α − β − γ + 1

)
∫ t

0
(t − s)α−β−γds

+

∣
∣ρ
∣
∣‖x − x̃‖

Γ
(
α − β − γ)

∫ t

0
(t − s)α−β−γ−1ds

+
2μ‖x − x̃‖
Γ
(
α − γ)

∫ t

0
(t − s)α−γ−1ds

≤
(

ρ|1 − α|tα−β−γ+1

Γ
(
α − β − γ + 2

) +
ρtα−β−γ

Γ
(
α − β − γ + 1

) +
2μtα−γ

Γ
(
α − γ + 1

)

)

‖x − x̃‖.

(3.28)

Thus, we have

‖Fx(t) − Fx̃(t)‖ ≤
(

4M +
6μ

Γ(α + 1)

)
<
(
4M + 3μ

)‖x − x̃‖. (3.29)

Therefore, by the contraction mapping theorem, the boundary value problem (2.9), (2.10) has
a unique solution.

Theorem 3.4. Let f : [0, 1] → [0,∞], such that f(t, x, y) ≤ η(t) + a|x| + b|y|, a, b ≥ 0 with
a + b + α|ρ ≤ δ| where δ = min{Γ(α − β − γ + 1),Γ(α − β − γ + 2),Γ(α − β − γ + 3)}. Then the initial
value problem (2.9), (2.10) has a solution.

Proof. In view of Lemma 2.1 and Proposition 2.2, we have

x(t) = ρtIα−βx(t) − ραIα−β+1x(t) + Iαf(t, x(t),Dγx(t)) − c0 − c1t. (3.30)

Then,

x′(t) = ρ(1 − α)Iα−βx(t) + ρtIα−β−1x(t) + Iα=1f(t, x(t),Dγx(t)) − c0 − c1t. (3.31)

By initial conditions we have c0 = −x0 and c1 = −1. Define an operator T : Ω → Ω by

Tx(t) = x0 + t + ρtIα−βx(t) − ραIα−β+1x(t) + Iαf(t, x(t),Dγx(t)). (3.32)

Can be easily to prove that T : Ω → Ω is completely continuous as operator F.

Theorem 3.5. Let f : [0, 1] × R
2 → R be continuous. If there exists a constant μ such that

|f(t, x, y)−f(t, x̃, ỹ)| ≤ μ(|x− x̃|+ |y− ỹ|) for each t ∈ [0, 1] and all x, x̃, y, ỹ ∈ R and 3(M+μ) ≤ 1,
where

M = max

{ ∣∣ρ
∣∣

Γ
(
α − β + 1

) ,

∣∣ρ
∣∣α

Γ
(
α − β + 2

) ,

∣∣ρ
∣∣

Γ
(
α − β − γ + 1

)

}

, (3.33)

then the initial value value problem (2.9), (2.11) has a unique solution.
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The proof of the Theorem 3.5 is similar to the proof of Theorem 3.3. Note that

dTx(t)
dt

= 1 + ρ(1 − α)Iα−βx(t) + ρtIα−β−1x(t) + Iα−1f(t, x(t),Dγx(t)). (3.34)

Then using Proposition 2.2 we have,

Dγ(Tx(t))

= I1−γ
{
dTx(t)
dT

}

=
t1−γ

Γ
(
1 − γ) +

(
α
(
1 − ρ) − ρ(1 − α))Iα−β−γ+1x(t) + ρtIα−β−γx(t) + Iα−γf(t, x(t),Dγx(t))

(3.35)

Example 3.6. Consider the following boundary value problem for nonlinear fractional order
differential equation:

(
D3/2 − tD1/2

)
x(t) =

(
3et +

1
10
x(t) +

1
10

D1/2x(t)
)1/3

, t ∈ (0, 1),

x(0) = x0, x(1) = x1.

(3.36)

Then, (3.36) with assumed boundary conditions has a solution in Ω.

In Example 3.6 f(t, x(t),Dγx(t)) = 3
√

3et + (1/10)x(t) + (1/10)D1/2x(t) satisfies the
conditions required in Theorem 3.2, that is

f
(
t, x(t),D1/2x(t)

)
≤ et + 1

30
|x(t)| + 1

30

∣∣∣D1/2x(t)
∣∣∣ (3.37)

and δ = min{Γ(3/2),Γ(2),Γ(5/2)} = Γ(3/2) =
√
π/2 and 2a + 2b + αρ = 47/30 < 2δ =

√
π .

Example 3.7. Consider the following boundary value problem for nonlinear fractional order
differential equation:

(
D3/2 − (1/8)tD1/2

)
x(t) =

1
21
x(t) +

1
21

D1/2x(t), t ∈ (0, 1),

x(0) = x0, x(1) = x1.
(3.38)

Then, (3.38) with assumed boundary conditions has unique solution in Ω.

In Example 3.7 f(t, x(t),Dγx(t)) = (1/21)x(t) + (1/21)D1/2x(t) satisfies the conditions
required in Theorem 3.3. L = max{1/3

√
π, 1/8

√
π, 1/12

√
π, 1/4

√
π} = 1/3

√
π and 4M+3μ =

4/3
√
π + 1/7 < 1.
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4. Conclusion

We considered a class of nonlinear fractional order differential equations involving Caputo
fractional derivative with lower terminal at 0 in order to study the existence solution
satisfying the boundary conditions or satisfying the initial conditions. The unique solution
under Lipschitz condition is also derived. In order to illustrate our results several examples
are presented. The presented research work can be generalized to multiterm nonlinear
fractional order differential equations with polynomial coefficients.
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We investigate the existence and multiplicity of positive solutions for the nonlinear fractional dif-
ferential equation initial value problem Dα

0+u(t) + D
β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, where
0 < β < α < 1, Dα

0+ is the standard Riemann-Liouville differentiation and f : [0, 1]×[0,∞) → [0,∞)
is continuous. By using some fixed-point results on cones, some existence and multiplicity results
of positive solutions are obtained.

1. Introduction

Fractional differential equations have been subjected to an intense debate during the last few
years (see, e.g., [1–5] and the references therein). This trend is due to the intensive develop-
ment of the theory of fractional calculus itself and by the applications of such constructions
in various sciences such as physics, mechanics, chemistry, and engineering [5–15]. The frac-
tional differential equations started to be used extensively in studying the dynamical systems
possessing memory effect. Comprehensive treatment of the fractional equations techniques
such as Laplace and Fourier transform method, method of Green function, Mellin transform,
and some numerical techniques are given in [5, 7, 9] and the references therein. In classical
approach, linear initial fractional differential equations are solved by special functions [9, 16].
In some papers, for nonlinear problems, techniques of functional analysis such as fixed point
theory, the Banach contraction principle, and Leray-Schauder theory are applied for solving
such kind of the problems (see, e.g., [17–19] and the references therein). The existence of
nonlinear fractional differential equations of one time fractional derivative is considered
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in [6, 7, 9, 20]. Also, the existence and multiplicity of positive solutions to nonlinear Dirichlet
problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u(1) = 0, 1 < α ≤ 2, α ∈ R, (1.1)

where f : [0, 1] × [0,∞) → [0,∞) is continuous and Dα
0+ is the Riemann-Liouville differen-

tiation, have been reviewed by some authors (see e.g., [18–21] and the references therein).
In this paper, by using some fixed-point results, we investigate the existence and

multiplicity of positive solutions for the nonlinear fractional differential equation initial value
problem

Dα
0+u(t) +D

β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, (1.2)

where 0 < β < α < 1, Dα
0+ is the standard Riemann-Liouville differentiation, and f : [0, 1] ×

[0,∞) → [0,∞) is continuous. Now, we present some necessary notions. The Riemann-
Liouville fractional integral of order α > 0 is defined by Iαf(t) := (1/Γ(α))

∫ t
0(t − τ)α−1f(τ)dτ

[20]. Also, the Riemann-Liouville fractional derivative of order α > 0 is defined by Dαf(t) :=
(1/Γ(n − α))(d/dt)n ∫ t0(t − τ)n−α−1f(τ)dτ , where n = [α] + 1 and the right side is pointwise
defined on (0,∞) ([20]). The formula of Laplace transform for the Riemann-Liouville deriva-
tive is defined by

L
{
Dαf(t); s

}
= sαf̃(s)

m−1∑

k=0

[
DkIm−α

]
f(0+)sm−k−1 (1.3)

when the limiting values f (k)(0+) are finite and m − 1 < α < m. This formula simplifies
to L{Dαf(t); s} = sαf̃(s) [21]. Also, two-parametric Mittag-Leffler function is defined by
E(α,β)(z) =

∑∞
k=0 z

k/Γ(kα + β) for α > 0 and β > 0 [21]. Analytic properties and asymptotical
expansion of this function are given in [9]. For example, if α < 2, πα/2 < μ < min(π,πα), β ∈
R and c3 is a real constant, then |Eα,β(z)| ≤ c3/(1 + |z|), whenever |z| ≥ 0 and μ ≤ | arg z| ≤ π .
Also, by using the formula for integration of the Mittag-Leffler function term by term, we
have (see [9])

∫z

0
tβ−1Eα,β(λtα)dt = zβEα,β+1(λtα). (∗)

Let P be a cone in a Banach spaceE. The map θ : P → [0,∞] is said to be a nonnegative
continuous concave functional whenever θ is continuous and θ(tx + (1 − t)y) ≥ tθ(x) + (1 −
t)θ(y) for all x, y ∈ P and 0 ≤ t ≤ 1 [20]. We need the following fixed point theorems for
obtaining our results.

Lemma 1.1 (see [22]). Let E be a Banach space, P a cone in E, and Ω1, Ω2 two bounded open balls
of E centered at the origin with Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \Ω1) → P is a completely con-
tinuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \Ω1).
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Lemma 1.2 (see [23]). Let P be a cone in a real Banach space E, c, b, and d positive real numbers,
Pc = {x ∈ P : ‖x‖ ≤ c}, θ a nonnegative concave functional on P such that θ(x) ≤ ‖x‖ for all x ∈ Pc
and

P(θ, b, d) = {x ∈ P : b ≤ θ(x), ‖x‖ ≤ d}. (1.4)

Suppose thatA : Pc → Pc is completely continuous and there exist constants 0 < a < b < d ≤ c such
that

(c1) {x ∈ P(θ, b, d) : θ(x) > b}/= ∅, and for some x ∈ P(θ, b, d) we have θ(Ax) > b,
(c2) ‖Ax‖ < a for all x with ‖x‖ ≤ a,
(c3) θ(Ax) > b for all x ∈ P(θ, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 such that ‖x1‖ < a, b < θ(x2), a < ‖x3‖ with
θ(x3) < b.

Note that the condition (c1) implies (c3) whenever d = c.

2. Main Results

As we know, there is an integral form of the solution for the following equation:

Da
0+u(t) +D

β

0+u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, (2.1)

Suppose that the functions u and f are continuous on [0, 1]. Then u(t) =
∫ t

0 G(t−τ)f(τ, u(τ))dτ
is a solution for (2.1), where G(t) = tα−1Eα−β,α(−tα−β) and Eα,β is the two-parameter function
of the Mittag-Leffler type (see [9]). Now, we give an equivalent solution for (2.1). In fact, if
we apply the Laplace transform to (2.1), then by using a calculation and finding the inverse
Laplace transform we get that u(t) = tα−1Eα−β,α(−tα−β) ∗ f(t, u(t)) is an equivalent solution for
(2.1). In this way, note that

Dαu(t) +Dβu(t) =
(
DαG(t) +DβG(t)

)
∗ f(t, u(t)), (2.2)

where G(t) = tα−1Eα−β,α(−tα−β). But, we have

DαG(t) +DβG(t) = t−1Eα−β,0
(
−tα−β

)
+ tα−β−1Eα−β,α−β

(
−tα−β

)

= Eα−β,0
(
−tα−β

)
− Eα−β,0

(
−tα−β

)
− 1
t

1
Γ
(
α − β) .

(2.3)

Since limt→ 0(1/t)(1/Γ(α − β)) = δ(t), we get DαG(t) +DβG(t) = δ(t) and so

Dαu(t) +Dβu(t) = δ(t) ∗ f(t, u(t)) = f(t, u(t)). (2.4)

Now, we establish some results on existence and multiplicity of positive solutions for the
problem (2.1). Let E = (C[0, 1], ‖·‖∞) be endowed via the order u ≤ v if and only if u(t) ≤ v(t)
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for all t ∈ [0, 1]. Consider the cone P = {u ∈ E | u(t) ≥ 0} and the nonnegative continuous
concave functional θ(u) = inf1/2<t<1|u(t)|. Now, we give our first result.

Lemma 2.1. Define T : P → P by Tu(t) :=
∫ t

0 G(t−τ)f(τ, u(τ))dτ , whereG(t) = tα−1Eα−β,α(−tα−β)
and Eα,β(z) is the two-parameter function of the Mittag-Leffler type. Then T is completely continuous.

Proof. Since the mappings G and f are nonnegative and continuous, it is easy to see that T is
continuous. Now, we show that T is a relatively compact operator. This implies that T is com-
pletely continuous. Let Ω ⊂ P be a bounded subset. Then there exists a positive constant
M > 0 such that ‖u‖ ≤ M for all u ∈ Ω. Put L = sup0≤t≤1|f(t, u(t))| + 1. Then, for each u ∈ Ω,
we have

|Tu(t)| =
∣
∣
∣
∣
∣

∫ t

0
(t − τ)α−1Eα−β,α

(
−(t − τ)α−β

)
f(τ, u(τ))dτ

∣
∣
∣
∣
∣

≤ L
∣∣∣−tαEα−β,α+1

(
−tα−β

)∣∣∣ ≤ L
∣∣∣∣∣

−tα
1 +
∣∣−tα−β∣∣

∣∣∣∣∣
≤ Ltα ≤ L,

(2.5)

where 0 < α < 1 and t ∈ [0, 1]. Thus, T is uniformly bounded. Now, we show that T is equi-
continuous. Let t, τ ∈ [0, 1] and t1 ≤ t2. Thus,

|Tu(t1) − Tu(t2)|

=

∣∣∣∣∣

∫ t1

0
G(t1 − τ)f(τ, u(τ))dτ −

∫ t2

0
G(t2 − τ)f(τ, u(τ))dτ

∣∣∣∣∣

=

∣∣∣∣∣

∫ t1

0

(
G(t1 − τ)f(τ, u(τ)) −G(t2 − τ)f(τ, u(τ))

)
dτ +

∫ t1

t2

G(t2 − τ)f(τ, u(τ))dτ
∣∣∣∣∣

≤
∣∣∣∣∣

∫ t1

0

[
G(t1 − τ)f(τ, u(τ)) −G(t2 − τ)f(τ, u(τ))

]
dτ

∣∣∣∣∣
+

∣∣∣∣∣

∫ t1

t2

G(t2 − τ)f(τ, u(τ))dτ
∣∣∣∣∣
.

(2.6)

Now, by using the formula for integration of the Mittag-Leffler function term by term given
in (∗), we obtain that

|Tu(t1) − Tu(t2)|

≤ ∥∥f∥∥
⎡

⎣

⎛

⎝ tα1

1 +
∣∣∣−tα−β1

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣
+

(t2 − t1)α

1 +
∣∣∣−(t2 − t1)α−β

∣∣∣

⎞

⎠

+

⎛

⎝ tα2

1 +
∣∣∣−tα−β2

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣
− (t2 − t1)α

1 +
∣∣∣−(t2 − t1)α−β

∣∣∣

⎞

⎠

⎤

⎦

=
∥∥f
∥∥

⎡

⎣
tα2

1 +
∣∣∣−tα−β2

∣∣∣
− tα1

1 +
∣∣∣−tα−β1

∣∣∣

⎤

⎦ ≤ ∥∥f∥∥
⎡

⎢
⎣

(
tα2 − tα1

) − tα2
(
t
α−β
2 − tα−β1

)
+ tα−β2

(
tα2 − tα1

)

(
1 +
∣∣∣−tα−β1

∣∣∣
)(

1 +
∣∣∣−tα−β2

∣∣∣
)

⎤

⎥
⎦.

(2.7)
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Thus, by using the formula ts2−ts1 = (t2−t1)/(ts−1
2 +· · ·+ts−1

1 ), we obtain a common factor (t1−t2).
This implies that small changes of u cause small changes of Tu. that is, T is equicontinuous.
Now by using the Arzela-Ascoli theorem, we get that T is a relatively compact operator.

Theorem 2.2. Suppose that in the problem (1.2) there exists a positive real number r > 0 such that

(A1) f(t, u) ≤ αr for all (t, u) ∈ [0, 1] × [0, r],

(A2) f(t, u) ≥ 0 for all t ∈ [0, 1] with u(t) = 0.

Then the problem (1.2) has a positive solution u such that 0 ≤ |u| ≤ r.

Example 2.3. Consider the nonlinear fractional differential equation initial value problem

D3/2u(t) +D1/2u(t) + u(t) + sin t = 0, u(0) = 0, (0 < t < 1). (2.8)

Put r = 2 and α = 3/2. Since f(t, u) = u(t)+sin t ≤ u+1 ≤ 3 = αr for all (t, u) ∈ [0, 1]×[0, 2] and
f(t, u) = u+ sin t ≥ 0 for all (t, u) ∈ [0, 1]× {0}, by using Theorem 2.2 we get that this problem
has a positive solution we get that this problem has a positive solution u with 0 ≤ ‖u‖ ≤ 2.

Proof. First, let us to consider the operator (Tu)(t) =
∫ t

0 G(t − τ)f(τ, u(τ))dτ , where G(t) =
tα−1Eα−β,α(−tα−β)(0 < β < α < 1). By using Lemma 2.1, T is completely continuous and note
that u is a solution of the problem (1.2) if and only if u = T(u). Let Ω1 = {u ∈ P : ‖u‖ = 0} and
Ω2 = {u ∈ P : ‖u‖u ∈ ∂Ω1} we have u(t) = 0 for all t ∈ [0, 1]. By using the assumption (A2),
we have

(Tu)(t) =
∫ t

0
G(t − τ)f(τ, u(τ))dτ ≥ 0 = ‖u‖ (2.9)

and so ‖Tu‖ ≥ ‖u‖. Also, for u ∈ ∂Ω2 we have 0 ≤ u(t) ≤ r for all t ∈ [0, 1]. By using the
assumption (A1) we have

‖Tu‖ = max
0≤t≤1

∫ t

0
G(t − τ)f(τ, u(τ))dτ ≤ αr

∫ t

0
(t − τ)α−1dτ = rtα ≤ r = ‖u‖. (2.10)

This completes the proof.

Theorem 2.4. Suppose that in the problem (2.1) there exist positive real numbers 0 < a < b < c such
that

(A1) f(t, u) < αa for all (t, u) ∈ [0, 1] × [0, a],

(A2) f(t, u) > Nb for all (t, u) ∈ [1/2, 1] × [b, c], where

N−1 = inf
1/2<t<1

∣∣∣∣∣

∫ t

0
G(t − s)ds

∣∣∣∣∣
, (2.11)

(A3) f(t, u) ≤ αc for all (t, u) ∈ [0, 1] × [0, c].
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Then the problem (2.1) has at least there positive solutions u1, u2, and u3 such that sup0≤t≤1|u1(t)| < a,
b < inf1/2≤t≤1|u2(t)| < sup1/2≤t≤1|u2(t)| ≤ c, a < sup0≤t≤1|u3(t)| ≤ c and inf1/2≤t≤1|u3(t)| < b.

Proof. Define Pc = {x ∈ P : ‖x‖ ≤ c}. Then, ‖u‖ ≤ c for all u ∈ Pc. Note that, the assumption
(A3) implies that f(t, u(t)) ≤ αc for all t. Thus,

‖Tu‖ = sup
0≤t≤1

∣
∣
∣
∣
∣

∫ t

0
G(t − τ)f(τ, u(τ))dτ

∣
∣
∣
∣
∣
≤ αc

∫ t

0
(t − τ)α−1dτ = αc

tα

α
= ctα ≤ c. (2.12)

Hence, T is a operator on Pc. Also, note that the assumption (A1) implies that f(t, u(t)) < αa
for all 0 ≤ t ≤ 1. Thus, the condition (c2) in Lemma 1.2 holds. It is sufficient that we show that
the condition (c1) in Lemma 1.2 holds. Put u(t) = (b + c)/2 for all 0 ≤ t ≤ 1. It is easy to see
that u(t) ∈ P(θ, b, c) and θ(u) = θ((b + c)/2) > b. Thus, {u ∈ P(θ, b, c) : θ(u) > b}/= ∅ and
so b ≤ u(t) ≤ c for all u ∈ P(θ, b, c) and 1/2 ≤ t ≤ 1. But, the assumption (A2) implies that
f(t, u(t)) ≥Nb for all 1/2 ≤ t ≤ 1 and so

θ(Tu) = inf
1/2≤t≤1

|(Tu)(t)| = inf
1/2≤t≤1

∣∣∣∣∣

∫ t

0
G(t − τ)f(τ, u(τ))dτ

∣∣∣∣∣
> NbN−1 = b. (2.13)

Thus, θ(Tu) > b for all u ∈ P(θ, b, c). This shows that the condition (c1) in Lemma 1.2 holds.
This completes the proof.
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This paper investigates the existence of solutions for a coupled system of nonlinear fractional
differential equations with m-point fractional boundary conditions on an unbounded domain.
Some standard fixed point theorems are applied to obtain the main results. The paper concludes
with two illustrative examples.

1. Introduction

In the last few decades, the subject of fractional calculus has gained considerable popularity
and importance as it finds its applications in numerous fields of science and engineering.
Some of the areas of recent applications of fractional models include fluid mechanics, solute
transport or dynamical processes in porous media, material viscoelastic theory, dynamics
of earthquakes, control theory of dynamical systems, and biomathematics. In the afore-
mentioned areas, there are phenomena with estrange kinetics involving microscopic complex
dynamical behaviour that cannot be characterized by classical derivative models. It has been
learnt through experimentation that most of the processes associated with complex systems
have nonlocal dynamics possessing long-memory in time, and the integral and derivative
operators of fractional order do have some of these characteristics. Thus, due to the modeling
capabilities of fractional integrals and derivatives for complex phenomena, the fractional
modelling has emerged as a powerful tool and has accounted for the rapid development
of the theory of fractional differential equations. Fractional differential equations also serve
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as an excellent tool for the description of hereditary properties of various materials and
processes [1]. The presence of memory term in such models not only takes into account the
history of the process involved but also carries its impact to present and future development
of the process. For more details and applications, we refer the reader to the books [2–6]. For
some recent work on the topic, see [7–27] and references therein.

The study of coupled systems involving fractional differential equations is also
important as such systems occur in various problems of applied nature. For some recent
results on systems of fractional differential equations, see [28–35].

Much of the work on fractional differential equations has been considered on finite
domain and there are few papers dealing with infinite domain [36–43]. In this paper, we
discuss the existence and uniqueness of the solutions of a coupled system of nonlinear
fractional differential equations with m-point boundary conditions on an unbounded
domain. Precisely, we consider the following problem:

Dpu(t) + f(t, v(t)) = 0, 2 < p < 3,

Dqv(t) + g(t, u(t)) = 0, 2 < q < 3,

u(0) = u′(0) = 0, Dp−1u(+∞) =
m−2∑

i=1

βiu(ξi),

v(0) = v′(0) = 0, Dq−1v(+∞) =
m−2∑

i=1

γiv(ξi),

(1.1)

where t ∈ J = [0,+∞), f, g ∈ C(J × R,R), 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, Dp and Dq denote
Riemann-Liouville fractional derivatives of order p and q, respectively, and βi > 0, and γi > 0
are such that 0 <

∑m−2
i=1 βiξ

p−1
i < Γ(p) and 0 <

∑m−2
i=1 γiξ

q−1
i < Γ(q).

2. Preliminaries

For the convenience of the readers, in this section we first present some useful definitions and
lemmas.

Definition 2.1 (see [5]). The Riemann-Liouville fractional derivative of order δ for a
continuous function f is defined by

Dδf(t) =
1

Γ(n − δ)
(
d

dt

)n ∫ t

0
(t − s)n−δ−1f(s)ds, n = [δ] + 1, (2.1)

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 (see [5]). The Riemann-Liouville fractional integral of order δ for a function f
is defined as

Iδf(t) =
1

Γ(δ)

∫ t

0
(t − s)δ−1f(s)ds, δ > 0, (2.2)

provided that such integral exists.
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For the forthcoming analysis, we define the spaces

X =

{

u ∈ C[0,+∞) : sup
t∈J

|u(t)|
1 + tp−1

< +∞
}

,

Y =

{

v ∈ C[0,+∞) : sup
t∈J

|v(t)|
1 + tq−1

< +∞
} (2.3)

equipped with the norms

‖u‖X = sup
t∈J

|u(t)|
1 + tp−1

, (2.4)

‖v‖Y = sup
t∈J

|v(t)|
1 + tq−1

. (2.5)

Obviously X and Y are Banach spaces.

Lemma 2.3 (see [38]). Let h ∈ C([0,+∞)). For 2 < α < 3, the fractional boundary value problem

Dαu(t) + h(t) = 0,

u(0) = u′(0) = 0, Dα−1u(+∞) =
m−2∑

i=1

βiu(ξi)
(2.6)

has a unique solution

u(t) =
∫+∞

0
G(t, s)h(s)ds, (2.7)

where

G(t, s) = G∗(t, s) +G∗∗(t, s), (2.8)

with

G∗(t, s) =
1

Γ(α)

{
tα−1 − (t − s)α−1, 0 ≤ s ≤ t < +∞,

tα−1, 0 ≤ t ≤ s < +∞.
(2.9)

G∗∗(t, s) =
∑m−2

i=1 βit
α−1

Γ(α) −∑m−2
i=1 βiξ

α−1
i

G∗(ξi, s). (2.10)

Lemma 2.4 (see [38]). For (s, t) ∈ [0,+∞) × [0,+∞), G(t, s)/1 + tα−1 ≤ L1, where

L1 =
1

Γ(α)
+

∑m−2
i=1 βiξ

α−1
m−2

Γ(α)
(
Γ(α) −∑m−2

i=1 βiξ
α−1
i

) . (2.11)
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3. Main Results

This section is devoted to some existence and uniqueness results for problem (1.1).
Define the space

Z = {(u, v) | u ∈ X, v ∈ Y} (3.1)

equipped with the norm

‖(u, v)‖Z = max{‖u‖X, ‖v‖Y}. (3.2)

Clearly Z is a Banach space.
Let an operator Q : Z → Z be defined by

Q(u, v) = (Q1(v), Q2(u))

=
(∫+∞

0
G1(t, s)f(t, v(s))ds,

∫+∞

0
G2(t, s)g(t, u(s))ds

)
,

(3.3)

where G1(t, s) = G11(t, s) +G12(t, s), G2(t, s) = G21(t, s) +G22(t, s), with

G11(t, s) =
1

Γ
(
p
)

{
tp−1 − (t − s)p−1, 0 ≤ s ≤ t < +∞,

tp−1, 0 ≤ t ≤ s < +∞,

G12(t, s) =
∑m−2

i=1 βit
p−1

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

G11(ξi, s),

G21(t, s) =
1

Γ
(
q
)

{
tq−1 − (t − s)q−1, 0 ≤ s ≤ t < +∞,

tq−1, 0 ≤ t ≤ s < +∞,

G22(t, s) =
∑m−2

i=1 γit
q−1

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

G21(ξi, s).

(3.4)

Observe that the problem (1.1) has a solution if and only if the operator Q defined by (3.3)
has a fixed point.

Lemma 3.1. For (s, t) ∈ [0,+∞) × [0,+∞), one has

G1(t, s)
1 + tp−1

≤ L ,
G2(t, s)
1 + tq−1

≤ L, (3.5)

where

L = max

⎧
⎨

⎩
1

Γ
(
p
) +

∑m−2
i=1 βiξ

p−1
m−2

Γ
(
p
)(

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

) ,
1

Γ
(
q
) +

∑m−2
i=1 γiξ

q−1
m−2

Γ
(
q
)(

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

)

⎫
⎬

⎭
. (3.6)
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Theorem 3.2. Assume that

(H1) there exist nonnegative functions a(t), b(t) ∈ C[0,+∞) such that

∣
∣f(t, x)

∣
∣ ≤ a(t)|x| + b(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tq−1

)
a(t)dt <

1
L
,

∫+∞

0
b(t)dt < +∞;

(3.7)

(H2) there exist nonnegative functions c(t), d(t) ∈ C[0,+∞) such that

∣
∣g
(
t, y
)∣∣ ≤ c(t)∣∣y∣∣ + d(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tp−1

)
c(t)dt <

1
L
,

∫+∞

0
d(t)dt < +∞.

(3.8)

Then the system (1.1) has a solution.

Proof. Let us take

R > max

{
L
∫+∞

0 b(s)ds

1 − L ∫+∞0

(
1 + sq−1

)
a(s)ds

,
L
∫+∞

0 d(s)ds

1 − L ∫+∞0

(
1 + sp−1

)
c(s)ds

}

, (3.9)

and define

BR = {(u, v) ∈ Z | ‖(u, v)‖Z ≤ R}. (3.10)

Obviously, BR is a bounded closed and convex set of Z.
As a first step, we show that the operator Q is BR → BR.
For any (u, v) ∈ BR, we have

‖Q1v‖X = sup
t∈J

1
1 + tp−1

∣∣∣∣

∫+∞

0
G1(t, s)f(s, v(s))ds

∣∣∣∣

≤ sup
t∈J

1
1 + tp−1

∫+∞

0
G1(t, s)(a(s)|v(s)| + b(s))ds

≤ L
∫+∞

0

(
1 + sq−1

)
a(s)ds‖v‖Y + L

∫+∞

0
b(s)ds

<
L
∫+∞

0 b(s)ds

1 − L ∫+∞0

(
1 + tq−1

)
a(s)ds

< R.

(3.11)
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Similarly, we can get

‖Q2u‖Y = sup
t∈J

1
1 + tq−1

∣
∣
∣
∣

∫+∞

0
G2(t, s)g(s, u(s))ds

∣
∣
∣
∣

≤ L
∫+∞

0

(
1 + sp−1

)
c(s)ds‖u‖X + L

∫+∞

0
d(s)ds

<
L
∫+∞

0 d(s)ds

1 − L ∫+∞0

(
1 + sp−1

)
c(s)ds

< R.

(3.12)

That is, ‖Q(u, v)‖Z ≤ R. Thus, QBR ⊂ BR.
Next, we show that Q is completely continuous. By continuity of f, g,G1, and G2, it

follows that Q is continuous. On the other hand, by a similar process used in [38], we can
easily prove that the operators Q1 and Q2 are equicontinuous. Therefore it follows that QBR
is an equicontinuous set. Also, it is uniformly bounded as QBR ⊂ BR. Thus, we conclude that
Q is a completely continuous operator. Hence, by Schauder fixed point theorem, there exists
a solution of (1.1). This completes the proof.

Theorem 3.3. Assume that

(H3) there exist 0 < ρ1 < 1 and nonnegative functions a1(t), b1(t) ∈ C[0,+∞) such that

∣∣f(t, x)
∣∣ ≤ a1(t)|x|ρ1 + b1(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tq−1

)
a1(t)dt < +∞,

∫+∞

0
b1(t)dt < +∞.

(3.13)

(H4) there exist 0 < ρ2 < 1 and nonnegative functions c1(t), d1(t) ∈ C[0,+∞) such that

∣∣g
(
t, y
)∣∣ ≤ c1(t)

∣∣y
∣∣ρ2 + d1(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tp−1

)
c1(t)dt < +∞,

∫+∞

0
d1(t)dt < +∞.

(3.14)

Then the system (1.1) has a solution.

Proof. In this case, we take

R > max

{

2L
∫+∞

0
b1(s)ds,

(
2L
∫+∞

0

(
1 + sq−1

)
a1(s)ds

)1/(1−ρ1)

,

2L
∫+∞

0
d1(s)ds,

(
2L
∫+∞

0

(
1 + sp−1

)
c1(s)ds

)1/(1−ρ2)
}

.

(3.15)

The rest of the proof is similar to that of Theorem 3.2. So we omit it.
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Remark 3.4. By taking ρ1, ρ2 > 1 (instead of 0 < ρ1 < 1, 0 < ρ2 < 1) in (H3) and (H4), one can
show that (1.1) has a solution.

Theorem 3.5. Assume that
(H5) the functions f and g satisfy Lipschitz condition; that is, there exist nonnegative functions

K1(t) and K2(t) such that

∣
∣f(t, x) − f(t, y)∣∣ ≤ K1(t)

∣
∣x − y∣∣, t ∈ [0,+∞),

∣
∣g(t, x) − g(t, y)∣∣ ≤ K2(t)

∣
∣x − y∣∣, t ∈ [0,+∞).

(3.16)

Then the problem (1.1) has a unique solution if

μ = L
∫+∞

0
K1(s)

(
1 + sq−1

)
ds < 1, τ = L

∫+∞

0
K2(s)

(
1 + sp−1

)
ds < 1. (3.17)

Proof. For any (u1, v1), (u2, v2) ∈ Z, we have

‖Q1v2 −Q1v1‖X = sup
t∈J

1
1 + tp−1

∣∣∣∣

∫+∞

0
G1(t, s)

[
f(s, v2(s)) − f(s, v1(s))

]
ds

∣∣∣∣

≤ sup
t∈J

∫+∞

0

G1(t, s)
1 + tp−1

K1(s)|(v2 − v1)(s)|ds

≤ L
∫+∞

0
K1(s)

(
1 + sq−1

)
ds‖v2 − v1‖Y

= μ‖v2 − v1‖Y .

(3.18)

Similarly, it can be shown that

‖Q2u2 −Q2u1‖Y = sup
t∈J

1
1 + tq−1

∣
∣∣∣

∫+∞

0
G1(t, s)

(
g(s, u2(s)) − f(s, u2(s))

)
ds

∣
∣∣∣

≤ L
∫+∞

0
K2(s)

(
1 + sp−1

)
ds‖u2 − u1‖X

= τ‖u2 − u1‖X.

(3.19)

Thus, we get

‖Q(u2, v2) −Q(u1, v1)‖Z ≤ max
{
μ, τ
}‖(u2, v2) − (u1, v1)‖Z. (3.20)

Obviously, Q is a contraction. Thus, the conclusion of the theorem follows by the contraction
mapping principle. This completes the proof.
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4. Example

Example 4.1. Consider the following multipoint boundary value problem on an unbounded
domain:

D9/4u(t) +
sin t ln(1 + |v(t)|)
(
1 + t7/4

)
(2 + t)2

+ (1 + cos 2t)e−t = 0,

D11/4v(t) +
e−5t sin|u(t)|

3
(
1 + t5/4

)
(1 + t)2

+
4

(t + 4)2
= 0,

u(0) = u′(0) = 0, D5/4u(+∞) =
2
5
u

(
1
4

)
+

1
10
u(1),

v(0) = v′(0) = 0, D7/4v(+∞) =
3

10
u

(
1
4

)
+

1
5
u(1).

(4.1)

Here t ∈ [0,+∞), p = 9/4, q = 11/4, ξ1 = 1/4, ξ2 = 1, β1 = 2/5, β2 = 1/10, γ1 =
3/10, and γ2 = 1/5. One has

f(t, v(t)) =
sin t ln(1 + |v(t)|)
(
1 + t7/4

)
(2 + t)2

+ (1 + cos 2t)e−t, g(t, u(t)) =
e−5t sin|u(t)|

3
(
1 + t5/4

)
(1 + t)2

+
4

(t + 4)2
.

(4.2)

For a(t) = 1/(1 + t7/4)(2 + t)2, b(t) = 2e−t, c(t) = 1/3(1 + t5/4)(1 + t)2, d(t) = 4/(t + 4)2,
by direct calculation we find that

L = max

⎧
⎨

⎩
1

Γ
(
p
) +

∑m−2
i=1 βiξ

p−1
m−2

Γ
(
p
)(

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

) ,
1

Γ
(
q
)

+
∑m−2

i=1 γiξ
q−1
m−2

Γ
(
q
)(

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

)

⎫
⎬

⎭

= max

⎧
⎨

⎩
1

Γ(9/4)
+

(2/5) + (1/10)

Γ(9/4)
(
Γ(9/4) − 2/5(1/4)5/4 − (1/10)

) ,
1

Γ(11/4)

+
(3/10) + (1/5)

Γ(11/4)
(
Γ(11/4) − 3/10(1/4)7/4 − (1/5)

)

⎫
⎬

⎭

= 1.341213,
∣∣f(t, x)

∣∣ ≤ a(t)|x| + b(t), ∣∣g
(
t, y
)∣∣ ≤ c(t)∣∣y∣∣ + d(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tq−1

)
a(t)dt =

1
2
<

1
L

= 0.745594,
∫+∞

0
b(t)dt = 2 < +∞,

∫+∞

0

(
1 + tp−1

)
c(t)dt =

1
3
<

1
L

= 0.745594,
∫+∞

0
d(t)dt = 1 < +∞.

(4.3)

Thus all conditions of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2, the couple system
of nonlinear fractional differential (4.1) has at least one solution.
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Example 4.2. Consider the following problem on an unbounded domain:

Dpu(t) +M1(t) sinv(t) +N1(t) = 0,

Dqv(t) +
M2(t)

1 + u2(t)
+N2(t) = 0,

u(0) = u′(0) = 0, Dp−1u(+∞) =
2
5
u

(
1
4

)
+

1
10
u(1),

v(0) = v′(0) = 0, Dq−1v(+∞) =
3
10
u

(
1
4

)
+

1
5
u(1).

(4.4)

Here t ∈ [0,+∞), 2 < p, q < 3, ξ1 = 1/4, ξ2 = 1, β1 = 2/5, β2 = 1/10, γ1 = 3/10, and γ2 = 1/5,
M1(t), M2(t), N1(t), N2(t) ∈ C([0,+∞),R).

With

f(t, v(t)) =M1(t) sinv(t) +N1(t), g(t, u(t)) =
M2(t)

1 + u2(t)
+N2(t), (4.5)

we have
∣∣f(t, x) − f(t, y)∣∣ = |M1(t)|

∣∣sinx − siny
∣∣ ≤ |M1(t)|

∣∣x − y∣∣, t ∈ [0,+∞),
∣∣g(t, x) − g(t, y)∣∣ = |M2(t)|

∣∣∣∣
1

1 + x2
− 1

1 + y2

∣∣∣∣ ≤ |M2(t)|
∣∣x − y∣∣, t ∈ [0,+∞),

(4.6)

where K1(t) = |M1(t)|, K2(t) = |M2(t)|. So, the condition (H5) holds. Let us assume that

μ = L
∫+∞

0
|M1(s)|

(
1 + sq−1

)
ds < 1, τ = L

∫+∞

0
|M2(s)|

(
1 + sp−1

)
ds < 1. (4.7)

For example, condition (4.7) holds if we take

p =
9
4
, q =

11
4
, M1(t) =

1
(
1 + t7/4

)
(2 + t)2

, M2(t) =
1

3
(
1 + t5/4

)
(1 + t)2

.

(4.8)

Thus all the conditions of Theorem 3.5 are satisfied. Therefore, by the conclusion of
Theorem 3.5, the coupled system (4.4) has a unique solution.

5. Conclusion

We have shown the existence and uniqueness of solutions for a coupled system of nonlinear
fractional differential equations with multipoint fractional boundary conditions on a semi-
infinite domain. Our existence results are based on Schauder’s fixed point theorem, while
the uniqueness result is obtained by applying Banach’s contraction mapping principle. The
existence of solutions for (1.1) has been addressed for different kinds of growth conditions.
Our approach is simple and can easily be applied to a variety of problems. This has been
demonstrated by solving two examples.
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This paper studies a fractional differential inequality involving a new fractional derivative (Hilfer-
Hadamard type) with a polynomial source term. We obtain an exponent for which there does not
exist any global solution for the problem. We also provide an example to show the existence of
solutions in a wider space for some exponents.

1. Introduction

Fractional derivatives have proved to be very efficient and adequate to describe many
phenomena with memory and hereditary processes. These phenomena are abundant in
science, engineering (viscoelasticity, control, porous media, mechanics, electrical engineering,
electromagnetism, etc.) as well as in geology, rheology, finance, and biology. Unlike the
classical derivatives, fractional derivatives have the ability to characterize adequately
processes involving a past history. We are witnessing a huge development of fractional
calculus and methods in the theory of differential equations. Indeed, after the appearance
of the papers by Bagley and Torvik [1–3], researchers started to deal directly with differential
equations containing fractional derivatives instead of ignoring them as it used to be the case.
For analytical treatments, we may refer the reader to [4–36], and for some applications, one
can consult [1–3, 8, 25, 26, 26, 27, 27–31, 33, 34, 37–49] to cite but a few.

We will consider the problem:

(
Dα,β
a+ u
)
(t) = f[t, u(t)], 0 < α < 1, 0 ≤ β ≤ 1, t > a > 0,

(
D(β−1)(1−α)
a+ u

)
(a) = u0 ≥ 0,

(1.1)
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where Dα,β
a+ u is a new type of fractional derivative we will define below and u0 is a given

constant. This new fractional derivative interpolates the Hadamard fractional derivative and
its Caputo counterpart [26, 34], in the same way the Hilfer fractional derivative interpolates
the Riemann-Liouville fractional derivative and the Caputo fractional derivative. That is why
we are naming it after Hilfer and Hadamard.

A nonexistence result for global solutions of the problem (1.1) will be proved when
f[t, u(t)] ≥ (log(t/a))μ|u(t)|m for some m > 1 and μ ∈ R. That is we consider the Cauchy
problem:

(
Dα,β
a+ u
)
(t) ≥

(
log

t

a

)μ
|u(t)|m, t > a > 0, m > 1, μ ∈ R,

(
Dγ−1
a+ u
)
(a) = u0 ≥ 0,

(1.2)

where γ = α+β−αβ and show that no solutions can exist for all time for certain values of μ and
m. Clearly, sufficient conditions for nonexistence provide necessary conditions for existence
of solutions. In addition, we construct an example for which there exist solutions for some
powers m and in some appropriate space.

The existence and uniqueness of solutions for problem (1.1) has been discussed in [50]
in the space Cα,β

δ;1−γ,μ[a, b] defined by

C
α,β

δ;1−γ,μ[a, b] =
{
y ∈ C1−γ,log[a, b],Dα,β

a+ y ∈ Cμ,log[a, b]
}
, (1.3)

where

Cγ,log[a, b] =
{
g : (a, b] −→ R :

(
log

x

a

)γ
g(x) ∈ C[a, b]

}
(1.4)

for 0 ≤ μ < 1 and C0,log[a, b] = C[a, b].

We also point out here that the case where Dα,β
a+ is the usual Riemann-Liouville

fractional derivative has been studied in [26] (see also references therein). There are very
few papers [26, 29] dealing with the pure Hadamard case, that is, when β = 0.

The rest of the paper is divided into three sections. In Section 2, we present some
definitions, notations, and lemmas which will be needed later in our proof. Section 3 is
devoted to the nonexistence result and Section 4 contains an example of existence of solutions.

2. Preliminaries

In this section, we present some background material for the forthcoming analysis. For more
details, see [25, 26, 33, 42, 51, 52].
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Definition 2.1. The space Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) consists of those real-valued Lebesgue

measurable functions g on (a, b) for which ‖g‖Xp
c
<∞, where

∥
∥g
∥
∥
X
p
c
=

(∫b

a

∣
∣tcg(t)

∣
∣p dt

t

)1/p

, 1 ≤ p <∞, c ∈ R,

∥
∥g
∥
∥
X∞
c
= ess sup

a≤x≤b

∣
∣xcg(x)

∣
∣, c ∈ R.

(2.1)

In particular, when c = 1/p, we see that Xp

1/p(a, b) = Lp(a, b).

Definition 2.2. Let Ω = [a, b] (0 < a < b < ∞) be a finite interval and 0 ≤ γ < 1, we introduce
the weighted space Cγ,log[a, b] of continuous functions g on (a, b]:

Cγ,log[a, b] =
{
g ∈ C(a, b] :

(
log

x

a

)γ
g(x) ∈ C[a, b]

}
. (2.2)

In the space Cγ,log[a, b], we define the norm:

∥∥g
∥∥
Cγ,log

=
∥∥∥∥
(

log
x

a

)γ
g(x)

∥∥∥∥
C

,
∥∥g
∥∥
C0,log

=
∥∥g
∥∥
∞. (2.3)

Definition 2.3. Let δ = x(d/dx) be the δ-derivative, for n ∈ N, we denote by Cn
δ,γ
[a, b] (0 ≤

γ < 1) the Banach space of functions g which have continuous δ-derivatives on [a, b] up to
order n − 1 and have the derivative δng of order n on (a, b] such that δng ∈ Cγ,log[a, b]:

Cn
δ,γ[a, b] =

{
g : (a, b] −→ R : δkg ∈ C[a, b], k = 0, . . . , n − 1, δng ∈ Cγ,log[a, b]

}
(2.4)

with the norm:

∥∥g
∥∥
Cn
δ,γ

=
n−1∑

k=0

∥∥∥δkg
∥∥∥
C
+
∥∥δng

∥∥
Cγ,log

. (2.5)

When n = 0, we set

C0
δ,γ[a, b] = Cγ,log[a, b]. (2.6)

Definition 2.4. Let (a, b) (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+ and
let α > 0. The Hadamard left-sided fractional integral Jα

a+f of order α > 0 is defined by

(Jα
a+f
)
(x) :=

1
Γ(α)

∫x

a

(
log

x

t

)α−1 f(t)dt
t

, a < x < b (2.7)
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provided that the integral exists. When α = 0, we set

J0
a+f = f. (2.8)

Definition 2.5. Let (a, b) (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+ and
let α > 0. The Hadamard right-sided fractional integral Jα

b−f of order α > 0 is defined by

(Jα
b−f
)
(x) :=

1
Γ(α)

∫b

x

(
log

t

x

)α−1 f(t)dt
t

, a < x < b, (2.9)

provided that the integral exists. When α = 0, we set

J0
b−f = f. (2.10)

Definition 2.6. The left-sided Hadamard fractional derivative of order 0 ≤ α < 1 on (a, b) is
defined by

(Dα
a+f
)
(x) := δ

(
J1−α
a+ f

)
(x), (2.11)

that is,

(Dα
a+f
)
(x) =

(
x
d

dx

)
1

Γ(1 − α)
∫x

a

(
log

x

t

)−α f(t)dt
t

, a < x < b. (2.12)

When α = 0, we set

D0
a+f = f. (2.13)

Definition 2.7. The right-sided Hadamard fractional derivative of order α (0 ≤ α < 1) on (a, b)
is defined by

(Dα
b−f
)
(x) := −δ

(
J1−α
b− f

)
(x), (2.14)

that is,

(Dα
b−f
)
(x) = −

(
x
d

dx

)
1

Γ(1 − α)
∫b

x

(
log

t

x

)−α f(t)dt
t

, a < x < b. (2.15)

When α = 0, we set

D0
b−f = f. (2.16)
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Lemma 2.8. If α > 0, β > 0 and 0 < a < b <∞, then

(

Jα
a+

(
log

t

a

)β−1
)

(x) =
Γ
(
β
)

Γ
(
α + β

)
(

log
x

a

)β+α−1
,

(

Dα
a+

(
log

t

a

)β−1
)

(x) =
Γ
(
β
)

Γ
(
β − α)

(
log

x

a

)β−α−1
.

(2.17)

In particular, if β = 1, then the Hadamard fractional derivative of a constant is not equal to zero:

(Dα
a+1
)
(x) =

1
Γ(1 − α)

(
log

x

a

)−α
, (2.18)

when 0 < α < 1.

Lemma 2.9. Let 0 < a < b <∞, α > 0, and 0 ≤ μ < 1.

(a) If μ > α > 0, then Jα
a+ is bounded from Cμ,log[a, b] into Cμ−α,log[a, b]. In particular, Jα

a+ is
bounded in Cμ,log[a, b].

(b) If μ ≤ α, then Jα
a+ is bounded from Cμ,log[a, b] into C[a, b]. In particular, Jα

a+ is bounded
in Cμ,log[a, b].

This lemma justifies the following one

Lemma 2.10 (the semigroup property of the fractional integration operator Jα
a+). Let α >

0, β > 0, and 0 ≤ μ < 1. If 0 < a < b <∞, then, for f ∈ Cμ,log[a, b],

Jα
a+J

β
a+f = Jα+β

a+ f (2.19)

holds at any point x ∈ (a, b]. When f ∈ C[a, b], this relation is valid at any point x ∈ [a, b].

Lemma 2.11. Let 0 ≤ α < 1 and 0 ≤ γ < 1. If f ∈ C1
γ,log[a, b], then the fractional derivatives Dα

a+

and Dα
b− exist on (a, b] and [a, b), respectively, (a > 0) and can be represented in the forms:

(Dα
a+f
)
(x) =

f(a)
Γ(1 − α)

(
log

x

a

)−α
+

1
Γ(1 − α)

∫x

a

(
log

x

t

)−α
f ′(t)dt,

(Dα
b−f
)
(x) =

f(b)
Γ(1 − α)

(
log

b

x

)−α
− 1
Γ(1 − α)

∫b

x

(
log

t

x

)−α
f ′(t)dt,

(2.20)

respectively.
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Lemma 2.12 (fractional integration by Parts). Let α > 0 and 1 ≤ p ≤ ∞. If ϕ ∈ Lp(R+) and
ψ ∈ Xq

−1/p, then

∫∞

0
ϕ(x)

(Jα
+ψ
)
(x)

dx

x
=
∫∞

0
ψ(x)

(Jα
−ϕ
)
(x)

dx

x
, (2.21)

where 1/p + 1/q = 1.

Definition 2.13. The fractional derivative cDα
a+f of order α (0 < α < 1) on (a, b) defined by

cDα
a+f = J1−α

a+ δf, (2.22)

where δ = x(d/dx), is called the Hadamard-Caputo fractional derivative of order α.

Now, motivated by the Hilfer fractional derivative introduced in [41, 42], we introduce
the new fractional derivative which we call Hilfer-Hadamard fractional derivative of order
0 < α < 1 and type 0 ≤ β ≤ 1:

(
Dα,β
a+ u
)
(t) = Jβ(1−α)

a+

(
t
d

dt

)(
J(1−β)(1−α)
a+ u

)
(t). (2.23)

The Hilfer fractional derivative interpolates the Riemann-Liouville fractional derivative
and the Caputo fractional derivative. This new one interpolates the Hadamard fractional
derivative and its caputo counterpart. Indeed, for β = 0, we find the Hadamard fractional
derivative as defined in Definition 2.6 and, for β = 1, we find its Caputo type counterpart
(Definition 2.13).

Theorem 2.14 (Young’s inequality). If a and b are nonnegative real numbers and p and q are
positive real numbers such that 1/p + 1/q = 1, then one has

ab ≤ ap

p
+
bq

q
. (2.24)

Equality holds if and only if ap = bq.

3. Nonexistence Result

Before we state and prove our main result, we will start with the following lemma.

Lemma 3.1. If α > 0 and f ∈ C[a, b], then

(Jα
a+f
)
(a) = lim

t→a

(Jα
a+f
)
(t) = 0,

(Jα
b−f
)
(b) = lim

t→ b

(Jα
b−f
)
(t) = 0.

(3.1)
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Proof. Since f ∈ C[a, b], then on [a, b] we have |f(t)| < M for some positive constant M.
Therefore,

∣
∣(Jα

a+f
)
(t)
∣
∣ ≤ 1

Γ(α)

∫ t

a

(
log

t

s

)α−1∣
∣f(s)

∣
∣ds
s

≤ M

Γ(α)

∫ t

a

(
log

t

s

)α−1ds

s

≤ M

Γ(α + 1)

(
log

t

a

)α
.

(3.2)

As α > 0, we see that

(Jα
a+f
)
(a) = lim

t→a

(Jα
a+f
)
(t) = 0. (3.3)

In a similar manner, we prove the second part of the lemma.

The proof of the next result is based on the test function method developed by Mitidieri
and Pokhozhaev in [52].

Theorem 3.2. Assume that μ ∈ R and m < (1 + μ)/(1 − γ). Then, Problem (1.2) does not admit
global nontrivial solutions in Cγ

1−γ,log[a, b], where

C
γ

1−γ,log[a, b] =
{
y ∈ C1−γ,log[a, b] : Dγ

a+y ∈ C1−γ,log[a, b]
}

(3.4)

when u0 ≥ 0.

Proof. Assume that a nontrivial solution exists for all time t > a. Let ϕ(t) ∈ C1([a,∞)) be a
test function satisfying ϕ(t) ≥ 0, ϕ(t) is non-increasing and such that

ϕ(t) :=

{
1, a ≤ t ≤ θT,
0, t ≥ T, (3.5)

for some T > a and some θ (θ < 1) such that a < θT < T . Multiplying the inequality in (1.2)
by ϕ(t)/t and integrating over [a, T], we get

∫T

a

ϕ(t)
(
Dα,β
a+ u
)
(t)

dt

t
≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
. (3.6)

Observe that the integral in left-hand side exists and the one in the right-hand side exists for
m < (1 + μ)/(1 − γ) when u ∈ C

γ

1−γ,log[a, b]. Moreover, from the definition of (Dα,β
a+ u)(t), we

can rewrite (3.6) as

∫T

a

ϕ(t)
(
Jβ(1−α)
a+ t

d

dt
J1−γ
a+ u

)
(t)

dt

t
≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
. (3.7)
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By virtue of Lemma 2.12 (after extending by zero outside [a, T]), we may deduce from (3.7)
that

∫T

a

d

dt

(
J1−γ
a+ u
)
(t)
(
Jβ(1−α)
T− ϕ(t)

)
(t)dt ≥

∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
. (3.8)

Notice that Lemma 2.12 is valid in our case since ((log(t/a))(1−γ)(Dγ
a+u) ∈ C[a, T] implies that

|(log(t/a))(1−γ)(Dγ
a+u)(t)| ≤M on [a, T] for some positive constant M)

∫T

a

∣
∣∣t−1/p

(
Dγ
a+u
)
(t)
∣
∣∣
p′ dt

t
≤M

∫T

a

t1−p
′
(

log
t

a

)−p′(1−γ)dt
t

≤M
∫∞

a

t1−p
′
(

log
t

a

)−p′(1−γ)dt
t
.

(3.9)

Let s = (p′ − 1)(log(t/a)), then by the definition of the Gamma function,

∫T

a

∣∣∣t−1/p
(
Dγ
a+u
)
(t)
∣∣∣
p′ dt

t
≤ Ma1−p′

(
p′ − 1

)1−p′(1−γ)

∫∞

0
s−p

′(1−γ)e−sds

≤ Ma1−p′

(
p′ − 1

)1−p′(1−γ) Γ
(
1 − p′(1 − γ)) <∞.

(3.10)

Hence, t(d/dt)(J1−γ
a+ u)t = (Dγ

a+u)(t) ∈ X
p′

−1/p (and ϕ ∈ Lp) for some p > 1/γ .
An integration by parts in (3.8) yields

[(
J1−γ
a+ u
)
(t)
(
Jβ(1−α)
T− ϕ

)
(t)
]T

t=a
−
∫T

a

(
J1−γ
a+ u
)
(t)

d

dt

(
Jβ(1−α)
T− ϕ

)
(t)dt

≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
,

(3.11)

or

− u0

(
Jβ(1−α)
T− ϕ

)
(a+) −

∫T

a

(
J1−γ
a+ u
)
(t)

d

dt

(
Jβ(1−α)
T− ϕ

)
(t)dt

≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t

(3.12)

because (Jβ(1−α)
T− ϕ)(T) = 0 (see Lemma 3.1) and

(
J1−γ
a+ u
)
(a+) =

(
Dγ−1
a+ u
)
(a+) = u0. (3.13)
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Multiplying by t/t inside the integral in the left hand side of (3.12), we see that

L :=
∫T

a

(
J1−γ
a+ u
)
(t)
(
−t d
dt

)(
Jβ(1−α)
T− ϕ

)
(t)

dt

t

≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
.

(3.14)

It appears from Definition 2.7 that

L =
∫T

a

(
J1−γ
a+ u
)
(t)
(
D1−β(1−α)
T− ϕ

)
(t)

dt

t
, (3.15)

and from Lemma 2.11, we see that

L =
∫T

a

(
J1−γ
a+ u
)
(t)

[
ϕ(T)

Γ
(
β(1 − α))

(
log

T

t

)β(1−α)−1

− 1
Γ
(
β(1 − α))

∫T

t

(
log

s

t

)β(1−α)−1
ϕ′(s)ds

]
dt

t
.

(3.16)

Since ϕ(T) = 0 and

1
Γ
(
β(1 − α))

∫T

t

(
log

s

t

)β(1−α)−1
ϕ′(s)ds =

(
Jβ(1−α)
T− δϕ

)
(t), (3.17)

the last equality becomes

L = −
∫T

a

(
J1−γ
a+ u
)
(t)
(
Jβ(1−α)
T− δϕ

)
(t)

dt

t

≥
∫T

a

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
.

(3.18)

Note that δϕ ∈ Lp and by the same argument as the one used at the beginning of the proof

we may show that J1−γ
a+ u ∈ Xp′

−1/p since J1−γ
a+ u ∈ C1−γ,log[a, T].

Therefore, Lemma 2.12 again allows us to write

L = −
∫T

a

δϕ(t)
(
Jβ(1−α)
a+ J1−γ

a+ u
)
(t)

dt

t
, (3.19)

and by the semigroup property Lemma 2.10

L = −
∫T

a

δϕ(t)
(
J1−α
a+ u

)
(t)

dt

t
. (3.20)
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On the other hand,

∫T

a

δϕ(t)
(
J1−α
a+ u

)
(t)

dt

t
=

1
Γ(1 − α)

∫T

a

δϕ(t)
∫ t

a

(
log

t

s

)−α u(s)
s

ds
dt

t

≤ 1
Γ(1 − α)

∫T

a

∣
∣δϕ(t)

∣
∣
∫ t

a

(
log

t

s

)−α |u(s)|
s

ds
dt

t
.

(3.21)

As ϕ is nonincreasing, we have ϕ(s) ≥ ϕ(t) for all t ≥ s and 1/ϕ1/m(s) ≤ 1/ϕ1/m(t), m > 1.
Also, it is clear that

ϕ′(t) = 0, t ∈ [a, θT]. (3.22)

Therefore,

L ≤ 1
Γ(1 − α)

∫T

a

∣∣δϕ(t)
∣∣
∫ t

a

(
log

t

s

)−α |u(s)|ϕ1/m(s)
sϕ1/m(s)

ds
dt

t

≤ 1
Γ(1 − α)

∫T

θT

∣∣δϕ(t)
∣∣

ϕ1/m(t)

∫ t

a

(
log

t

s

)−α |u(s)|ϕ1/m(s)
s

ds
dt

t
.

(3.23)

Definition 2.4 allows us to write

L ≤
∫T

θT

∣∣δϕ(t)
∣∣

ϕ1/m(t)

(
J1−α
a+ |u|ϕ1/m

)
(t)

dt

t
. (3.24)

By the same argument as the one used at the beginning of the proof, we may show that
|u(t)|ϕ1/m(t) ∈ X

p′

−1/p (|u(t)|ϕ1/m(t) ≤ |u(t)|). Moreover, it is easy to see that δϕ(t)/ϕ1/m(t) ∈
Lp (for, otherwise, we consider ϕλ(t) with some sufficiently large λ). Thus, we can apply
Lemma 2.12 to get

L ≤
∫T

θT

|u(t)|ϕ1/m(t)

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)

(t)
dt

t
. (3.25)

Next, we multiply by (log(t/a))μ/m.(log(t/a))−μ/m inside the integral in the right-hand side
of (3.25):

L ≤
∫T

θT

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)

(t)|u(t)|ϕ1/m(t)

(
log(t/a)

)μ/m

(
log(t/a)

)μ/m
dt

t
. (3.26)

For μ ≥ 0, we have (log(t/a))−μ/m ≤ (log(θT/a))−μ/m (because −μ/m < 0 and t > θT). It
follows that

L ≤
(

log
θT

a

)−μ/m ∫T

θT

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)

(t)
(

log
t

a

)μ/m
|u(t)|ϕ1/m(t)

dt

t
. (3.27)
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By using the Young inequality (see Theorem 2.14), with m and m′ such that 1/m + 1/m′ = 1,
in the right-hand side of (3.27), we find

L ≤ 1
m

∫T

θT

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
+

(
log(θT/a)

)−μm′/m

m′

∫T

θT

(

J1−α
T−

∣
∣δϕ
∣
∣

ϕ1/m

)m′

(t)
dt

t

≤ 1
m

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
+

(
log(θT/a)

)−μm′/m

m′

∫T

θT

(

J1−α
T−

∣
∣δϕ
∣
∣

ϕ1/m

)m′

(t)
dt

t
.

(3.28)

Clearly, from (3.14) and (3.28), we see that

(
log(θT/a)

)−μm′/m

m′

∫T

θT

(

J1−α
T−

∣
∣δϕ
∣
∣

ϕ1/m

)m′

(t)
dt

t

≥
(

1 − 1
m

)∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
,

(3.29)

or

1
m′

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
≤
(
log(θT/a)

)−μm′/m

m′

∫T

θT

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)m′

(t)
dt

t
. (3.30)

Therefore, by Definition 2.5, we have

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t

≤
(
log(θT/a)

)−μm′/m

Γm′(1 − α)

∫T

θT

(∫T

t

(
log

s

t

)−α
∣∣δϕ(s)

∣∣

ϕ1/m(s)
ds

s

)m′
dt

t
.

(3.31)

The change of variable σT = t yields

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t

≤
(
log(θT/a)

)−μm′/m

Γm′(1 − α)

∫1

θ

(∫T

σT

(
log

s

σT

)−α ∣∣ϕ′(s)
∣∣

ϕ(s)1/m
ds

)m′
dσ

σ
.

(3.32)

Another change of variable r = s/T gives

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t

≤
(
log(θT/a)

)−μm′/m

Γm′(1 − α)

∫1

θ

(∫1

σ

(
log

r

σ

)−α ∣∣ϕ′(r)
∣∣

ϕ(r)1/m
dr

)m′
dσ

σ
.

(3.33)
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We may assume that the integral term in the right-hand side of (3.33) is convergent, that is,

1
Γm′(1 − α)

∫1

θ

(∫1

σ

(
ln
r

σ

)−α ∣∣ϕ′(r)
∣
∣

ϕ(r)1/m
dr

)m′

dσ ≤ C, (3.34)

for some positive constant C, for otherwise we consider ϕλ(r) with some sufficiently large λ.
Therefore

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
≤ C
(

log
θT

a

)−μm′/m

. (3.35)

If μ > 0, then

(
log

θT

a

)−μm′/m

−→ 0, (3.36)

as T → ∞. Finally, from (3.35), we obtain

lim
T→∞

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
= 0. (3.37)

We reach a contradiction since the solution is not supposed to be trivial.
In the case μ = 0 we have −μm′/m = 0 and the relation (3.35) ensures that

lim
T→∞

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
≤ C. (3.38)

Moreover, it is clear that

(
log

θT

a

)−μ/m ∫T

θT

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)

(t)
(

log
t

a

)μ/m
|u(t)|ϕ1/m(t)

dt

t

≤
(

log
θT

a

)−μ/m
⎡

⎣
∫T

θT

(

J1−α
T−

∣∣δϕ
∣∣

ϕ1/m

)m′

(t)
dt

t

⎤

⎦

1/m′[∫T

θT

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t

]1/m

.

(3.39)

This relation, together with (3.27) (relations (3.28) and (3.31) also are used without θ), implies
that

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
≤ K
[∫ t

θT

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t

]1/m

(3.40)
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for some positive constant K, with

lim
T→∞

∫T

θT

(
log

t

a

)μ
|u(t)|mϕ(t)dt

t
= 0 (3.41)

due to the convergence of the integral in (3.38). This is again a contradiction.
If μ < 0, we have (log(t/a))−μ/m ≤ (log(T/a))−μ/m (because −μ/m > 0 and t < T).

Then, the change of variables t = (T/a)σ and s = (T/a)r in (3.27) yields

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t

≤
(
log(T/a)

)1−μm′/m

Γm′(1 − α)

∫ ln T/ln(T/a)

ln θT/ln(T/a)

(∫ ln T/ ln(T/a)

σ

(
ln

(T/a)r

(T/a)σ

)−α ∣∣ϕ′(r)
∣
∣

ϕ1/m(r)
dr

)m′

dσ,

(3.42)

or

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t

≤
(
log(T/a)

)1−αm′−μm′/m

Γm′(1 − α)

∫ ln T/ln(T/a)

ln θT/ln(T/a)

(∫ ln T/ ln(T/a)

σ

(r − σ)−α
∣∣ϕ′(r)

∣∣

ϕ1/m(r)
dr

)m′

dσ.

(3.43)

The expression |ϕ′(r)|/ϕ1/m(r) may be assumed bounded (or else we use ϕλ(r) with a large
value of λ). Hence,

∫T

a

(
log

t

a

)μ
ϕ(t)|u(t)|mdt

t
≤ C
(

log
T

a

)−m′−μm′/m

(3.44)

for some positive constant C.

Although we are concerend here about nonexistence of solutions, using standard
techniques, one may show the existence of local solutions of Problem (1.1) with 1 < m <
(1 + μ)/(1 − γ). However, according to Theorem 3.2, such a solution cannot be continued for
all time inCγ

1−γ,log[a, b]. This is a phenomenon which occurs often in parabolic and hyperbolic
problems with sources of polynomial type. In the absence of strong dissipations, these sources
are the cause of blowup in finite time (of local solutions). For this reason, they are called
blowup terms.

4. Example

For our example, we need the following lemma.



14 Abstract and Applied Analysis

Lemma 4.1. The following result holds for the fractional derivative operator Dα,β
a+ :

(
Dα,β
a+

[(
log

s

a

)γ−1
])

(t) =
Γ
(
γ
)

Γ
(
γ − α)

(
log

t

a

)γ−α−1

, t > a; γ > 0, (4.1)

where 0 < α < 1 and 0 ≤ β ≤ 1.

Proof. We observe from Lemma 2.8 that

(
J(1−α)(1−β)
a+

(
log

s

a

)γ−1
)
(t) =

Γ
(
γ
)

Γ
(
(1 − α)(1 − β) + γ)

(
log

t

a

)γ+(1−α)(1−β)−1

. (4.2)

Therefore,

(
t
d

dt

)(
J(1−α)(1−β)
a+

(
log

s

a

)γ−1
)
(t)

=

[
γ + (1 − α)(1 − β) − 1

]
Γ
(
γ
)

Γ
(
(1 − α)(1 − β) + γ)

(
log

t

a

)γ+(1−α)(1−β)−2

,

(4.3)

which, in light of the definition of Dα,β
a+ , yields

(
Dα,β
a+

[(
log

s

a

)γ−1
])

(t)

=
Γ
(
γ
)

Γ
(
(1 − α)(1 − β) + γ − 1

)
(
Jβ(1−α)
a+

(
log

s

a

)γ+(1−α)(1−β)−2
)
(t).

(4.4)

From Lemma 2.8 again, we have

(
Dα,β
a+

[(
log

s

a

)γ−1
])

(t)

=
Γ
(
γ
)

Γ
(
β(1 − α) + γ + (1 − α)(1 − β) − 1

)
(

log
t

a

)β(1−α)+γ+(1−α)(1−β)−2

=
Γ
(
γ
)

Γ
(
γ − α)

(
log

t

a

)γ−α−1

.

(4.5)

The proof is complete.

Example 4.2. Consider the following differential equation of Hilfer-Hadamard-type fractional
derivative of order 0 < α < 1 and type 0 ≤ β ≤ 1:

(
Dα,β
a+ y
)
(t) = λ

(
log

t

a

)μ[
y(t)
]m (t > a > 0;m > 1) (4.6)
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with real λ, μ ∈ R+ (λ/= 0). Suppose that the solution has the following form:

y(t) = c
(

log
t

a

)ν
. (4.7)

Our aim next is to find the values of c and ν. By using Lemma 4.1 we have

(
Dα,β
a+

[
c
(

log
s

a

)ν])
(t) =

cΓ(ν + 1)
Γ(ν − α + 1)

(
log

t

a

)ν−α
. (4.8)

Therefore,

cΓ(ν + 1)
Γ(ν − α + 1)

(
log

t

a

)ν−α
= λ
(

log
t

a

)μ[
c

(
log

t

a

)ν]m
. (4.9)

It can be directly shown that ν = (α+μ)/(1−m) and c = [Γ((α + μ)/(1 −m) + 1)/λΓ((mα + μ)/
(1 −m) + 1)]1/(m−1). If (mα + μ)/(1 −m) > −1, that is, m > (1 + μ)/(1 − α), then (4.6) has the
exact solution:

y(t) =

[
Γ
((
α + μ

)
/(1 −m) + 1

)

λΓ
((
mα + μ

)
/(1 −m) + 1

)

]1/(m−1)(
log

t

a

)(α+μ)/(1−m)

. (4.10)

This solution satisfies the initial condition when (α + μ)/(1 −m) ≥ γ − 1 > −1. Note that there
is an overlap of the interval of existence in this example and the interval of nonexistence in
the previous theorem. This may be explained by the fact that this solution is in C1−γ,log[a, b]
but not in Cγ

1−γ,log[a, b].
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Variational iteration method and homotopy perturbation method are used to solve the fractional
Fredholm integrodifferential equations with constant coefficients. The obtained results indicate
that the method is efficient and also accurate.

1. Introduction

The topic of fractional calculus has attracted many scientists because of its several applica-
tions in many areas, such as physics, chemistry, and engineering. For a detail survey with
collections of applications in various fields, see, for example, [1–3].

Further, the fractional derivatives technique has been employed for solving linear
fractional differential equations including the fractional integrodifferential equations; in this
way, much of the efforts is devoted to searching for methods that generate accurate results,
see [4, 5]. In this work, we present two different methods, namely, homotopy perturbation
method and variational iteration method [6], for solving a fractional Fredholm integro-
differential equations with constant coefficients. There is a vast literature, and we only
mention the works of Liao which treat a homotopy method in [7, 8].

For the nonlinear equations with derivatives of integer order, many methods are used
to derive approximation solution [9–14]. However, for the fractional differential equation,
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there are some limited approaches, such as Laplace transform method [3], the Fourier
transform method [15], the iteration method [16], and the operational calculus method [17].

Recently, there has been considerable researches in fractional differential equations
due to their numerous applications in the area of physics and engineering [18], such as
phenomena in electromagnetic theory, acoustics, electrochemistry, and material science [3,
16, 18, 19]. Similarly, there is also growing interest in the integrodifferential equations which
are combination of differential and Fredholm-Volterra equations. In this work, we study
these kind of equations that have the fractional order usually difficult to solve analytically,
thus a numerical method is required, for example, the successive approximations, Adomian
decomposition, Chebyshev and Taylor collocation, Haar Wavelet, Tau and Walsh series
methods.

This note is devoted to the application of variational iteration method (VIM) and
homotopy perturbation method (HPM) for solving fractional Fredholm integrodifferential
equations with constant coefficients:

∞∑

k=0

PkD
α
∗y(t) = g(x) + λ

∫a

0
H(x, t)y(t)dt, a ≤ x, t ≤ b, (1.1)

under the initial-boundary conditions

Dα
∗y(a) = y(0), (1.2)

Dα
∗y(0) = y

′(a), (1.3)

where a is constant and 1 < α < 2 and Dα
∗ is the fractional derivative operator given in the

Caputo sense. For the physical understanding of the fractional integrodifferential equations,
see [20]. Further, we also note that fractional integrodifferential equations were associated
with a certain class of phase angles and suggested a new way for understanding of Riemann’s
conjecture, see [21].

Outline of this paper is as follows. Section 2 contains preliminaries on fractional
calculus. Section 3 is a short review of the homotopy method and Section 4 variational
iteration method. Sections 5 and 6 are devoted to VIM and HPM analysis, respectively.
Concluding remarks with suggestions for future work are listed in Section 7.

2. Description of the Fractional Calculus

In the following, we give the necessary notations and basic definitions and properties of
fractional calculus theory; for more details, see [3, 13, 16, 22].

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cα, α ∈ R if there exists a
real number (p > α), such that f(x) = xpf1(x), where f1(x) = C([0,∞)). Clearly, Cα ⊂ Cβ, if
β ≤ α.

Definition 2.2. A function f(x), x > 0, is said to be in space Cm
α , m ∈N, if f (m) ∈ Cα.
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Definition 2.3. The Riemann-Liouville fractional integral of order μ ≥ 0 for a function f ∈
Cα, (α ≥ 1) is defined as

Iμf(t) =
1

Γ
(
μ
)
∫ t

0
(t − τ)μ−1f(τ)dτ, μ > 0, t > 0, (2.1)

in particular I0f(t) = f(t).

Definition 2.4. The Caputo fractional derivative of f ∈ Cm
−1, m ∈N, is defined as

D
μ
c f(t) =

⎧
⎪⎨

⎪⎩

[
Im−μf (m)(t)

]
, m − 1 < μ ≤ m, m ∈N,

dm

dtm
f(t), μ = m.

(2.2)

Note that

(i) Iμtγ = (Γ(γ + 1)/Γ(γ + μ + 1))tγ+μ, μ > 0, γ > −1, t > 0,

(ii) Iμ CD
μ

0+f(t) = f(t) −
∑m−1

k=0 f
(k)(0+)(tk/k!), m − 1 < μ ≤ m, m ∈N,

(iii) CD
μ

0+f(t) = D
μ(f(t) −∑m−1

k=0 f
(k)(0+)(tk/k!)), m − 1 < μ ≤ m, m ∈N,

(iv)

DβIαf(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Iα−βf(t), if α > β,

f(t), if α = β,

Dβ−αf(t), if α < β,

(2.3)

(v) CD
β

0+D
mf(t) = Dβ+mf(t), m = 0, 1, 2, . . . , n − 1 < β < n.

Definition 2.5 (see [3, 16]). The Riemann-Liouville fractional integral operator of order ρ ≥ 0
for a function f ∈ Cμ, (μ ≥ −1) is defined as

Kρf(x) =
1

Γ
(
ρ
)
∫x

0
(x − t)ρ−1f(t)dt, ρ > 0, x > 0, K0f(x) = f(x), (2.4)

having the properties

KρKβf(x) = Kρ+βf(x),

Kρxβ =
Γ
(
β + 1

)

Γ
(
ρ + β + 1

)xα+β.
(2.5)
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According to the Caputo’s derivatives, we obtain the following expressions:

CDμC = 0, C = constant,

CDμtβ =

⎧
⎪⎨

⎪⎩

Γ
(
β + 1

)

Γ
(
α + β + 1

) tβ−α, β > α − 1,

0, β ≤ α − 1.

(2.6)

Lemma 2.6. Ifm − 1 < α ≤ m,m ∈N, f ∈ Cm
μ , μ ≥ −1, then the following two properties hold:

(1)DαKαf(t) = f(t), (2) (DαKα)f(t) = f(t) −
m−1∑

k=0

f (k)(0+)
tk

k!
. (2.7)

In fact, Kılıçman and Zhour introduced the Kronecker convolution product and
expanded to the Riemann-Liouville fractional integrals of matrices by using the Block Pulse
operational matrix as follows:

1
Γ(α)

∫ t

0
(t − t1)α−1φm(t1)dt1 	 Fαφm(t), (2.8)

where

Fα =
(
b

m

)α 1
Γ(α + 2)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 ξ2 ξ3 · · · ξm

0 1 ξ2 · · · ξm−1

0 0 1 · · · ξm−2

0 0 0
. . .

...

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.9)

see [23].
In our work, we consider Caputo fractional derivatives and apply the homotopy

method in order to derive an approximate solutions of the fractional integrodifferential
equations.

3. Homotopy Method

To illustrate the basic ideas of this method, we consider the following nonlinear differential
equation:

A(u) + f(r) = 0, r ∈ Ω, (3.1)
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with boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ, (3.2)

whereA is a general differential operator, B is a boundary operator, f(r) is a known analytical
function, and Γ is the boundary of the domain Ω, see [24].

In general, the operator A can be divided into two parts L and N, where L is linear,
while N is nonlinear. Equation (3.1), therefore, can be rewritten as follows:

L(u) +N(u) − f(r) = 0. (3.3)

By using the homotopy technique that was proposed by Liao in [7, 8], we construct a
homotopy of (3.1) v(r, p) : Ω × [0, 1] → R which satisfies

H(v, p) = (1 − p)[L(v) − L(u0)] + p
[
A(v) + f(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (3.4)

or

H(v, p) = L(v) − L(u0) + pL(u0) + p
[
N(v) − f(r)] = 0, (3.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation which satisfies
the boundary conditions. By using (3.4) and (3.5), we have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0.
(3.6)

The changing in the process of p from zero to unity is just that of v(r, p) from u0 to
u(r). In a topology, this is also

known deformation, further L(v) − L(u0) and A(v) − f(r) are homotopic.
Now, assume that the solution of (3.4) and (3.5) can be expressed as

v = v + pv1 + p2v2 + · · · . (3.7)

The approximate solution of (3.1), therefore, can be readily obtained:

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (3.8)

The convergence of the series of (3.8) has been proved in the [25, 26].
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4. The Variational Iteration Method

To illustrate the basic concepts of the VIM, we consider the following differential equation:

Lu +Nu = g(x), (4.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is an nonhomogenous term;
for more details, see [19].

According to the VIM, one construct a correction functional as follows:

un+1(x) = un(x) +
∫x

0
λ
[
Lun(s) +Nũn(s) − g(s)

]
ds, (4.2)

where λ is a general Lagrange multiplier, which can be identified optimally via the variational
theory, and the subscript n denotes the order of approximation, ũu is considered variation
[6, 27], that is, δũu = 0.

5. Analysis of VIM

To solve the fractional integrodifferential equation (1.1) by using the variational iteration
method, with boundary conditions (1.2), one can construct the following correction
functional:

yk+1(x) = yk(x) +
∫ t

0
μ

∞∑

k=0

PkD
α
∗y(s)ds − μg̃k(x) − λ

∫b

a

μH(x, s)ỹk(s)ds, (5.1)

where μ is a general Lagrange multiplier and g̃k(x) and ỹk(x) are considered as restricted
variations, that is, δg̃k(x) = 0 and δỹk(x) = 0.

Making the above correction functional stationary, the following conditions can be
obtained:

δyk+1(x) = δyk(x) +
∫ t

0

[ ∞∑

k=0

Pkμ(s)δDα
∗y(s) − δg̃k(x) − λ

∫b

a

H(x, s)μ(s)δỹk(s)ds

]

, (5.2)

having the boundary conditions as follows:

1 − μ′(s)|x=s = 0, μ(s)|x=s = 1. (5.3)

The Lagrange multipliers can be identified as follows:

μ(s) =
1
2
(s − x). (5.4)
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Substituting the value of μ from (5.4) into correction functional of (5.1) leads to the
following iteration formulae:

yk+1(x) = yk(x) +
μ

2Γ(α − 1)

∫x

0
(x − s)α−2(s − x)

×
[∫ t

0

∞∑

k=0

PkD
α
∗y(s)ds − g̃k(x) − λ

∫b

a

H(x, s)ỹk(s)

]

ds,

yk+1(x) = yk(x) −
μ(α − 1)

2Γ(α)

∫x

0
(x − s)α−1

×
[∫ t

0

∞∑

k=0

PkD
α
∗y(s)ds − g̃k(x) − λ

∫b

a

H(x, s)ỹk(s)

]

ds,

(5.5)

by applying formulae (2.4), we get

yk+1(x) = yk(x) − (α − 1)Kα

2Γ(α)

[∫ t

0
μ

∞∑

k=0

PkD
α
∗y(v)dv − μg̃k(x) − λ

∫b

a

μH(x, v)ỹk(v)

]

dv.

(5.6)

The initial approximation can be chosen in the following manner which satisfies initial
boundary conditions (1.2)-(1.3):

y0(x) = υ0 + υ1x, where υ1 = Dα
∗y(0), υ0 = Dα

∗y(a). (5.7)

We can obtain the following first-order approximation by substitution of (5.7) into
(5.6)

y1(x) = y0(x) − (α − 1)Kα

2Γ(α)

[∫ t

0
μ

N∑

k=0

PkD
α
∗y(v)dv − μg̃0(x) − λ

∫b

a

μH(x, v)ỹk(v)

]

dv. (5.8)

Substituting the constant value of υ0 and υ1 in the expression (5.8) results in the
approximation solution of (1.1)–(1.3).

6. Analysis of HPM

This section illustrates the basic of HPM for fractional Fredholm integrodifferential equations
with constant coefficients (1.1) with initial-boundary conditions (1.2).

In view of HPM [25, 26], construct the following homotopy for (1.1):

∞∑

k=0

PkD
α
∗y(x) = p

[ ∞∑

k=0

PkD
α
∗y(x) +

(

g(t) − λ
∫b

a

H(x, t)y(x)dx

)]

. (6.1)
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In view of basic assumption of HPM, solution of (1.1) can be expressed as a power
series in p:

y(x) = Dα
∗y0(x) + pDα

∗y1(x) + p2Dα
∗y2(x) + p3Dα

∗y3(x) + · · · . (6.2)

If we put p → 1 in (6.2), we get the approximate solution of (1.1):

y(x) = Dα
∗y0(x) +Dα

∗y1(x) +Dα
∗y2(x) +Dα

∗y3(x) + · · · . (6.3)

The convergence of series (6.3) has been proved in [28].
Now, we substitute (6.2) into (6.1); then equating the terms with identical power of p,

we obtain the following series of linear equations:

p0 :
∞∑

k=0

PkD
α
∗y0(t) = 0,

p1 :
∞∑

k=0

PkD
α
∗y1(t) =

∞∑

k=0

PkD
α
∗y0(t) − λ

∫b

a

H(x, t)y0(x)dx,

p2 :
∞∑

k=0

PkD
α
∗y2(t) =

∞∑

k=0

PkD
α
∗y1(t) + g(x) − λ

∫b

a

H(x, t)y1(x)dx,

p3 :
∞∑

k=0

PkD
α
∗y3(t) =

∞∑

k=0

PkD
α
∗y2(t) − λ

∫b

a

H(x, t)y2(x)dx,

p4 :
∞∑

k=0

PkD
α
∗y4(t) =

∞∑

k=0

PkD
α
∗y3(t) − λ

∫b

a

H(x, t)y3(x)dx,

(6.4)

with the initial-boundary conditions

Dα
∗y(a) = y(0), Dα

∗y(0) = y
′(a). (6.5)

We can also take the initial approximation in the following manner which satisfies
initial-boundary conditions (1.2)-(1.3):

y0(x) = υ0 + υ1x, where υ1 = Dα
∗y(0), υ0 = Dα

∗y(a). (6.6)

Note that (6.4) can be solved by applying the operator Kβ, which is the inverse of
operator Dα we approximate the series solution of HPM by the following n-term truncated
series [29]:

χn(x) = Dα
∗y0(x) +Dα

∗y1(x) +Dα
∗y2(x) +Dα

∗y3(x) + · · · +Dα
∗yn−1(x), (6.7)

which results, the approximate solutions of (1.2)-(1.3). For further analysis, the variational
iteration method, see [30] and the algorithm by the homotopy perturbation method, see [31].
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7. Conclusion

The proposed methods are used to solve fractional Fredholm integrodifferential equations
with constant coefficients. Comparison of the results obtained by the present method
with that obtained by other method reveals that the present method is very effective and
convenient. Unfortunately, the disadvantage of the second method is that the embedding
parameter p is quite casual, and often enough the approximations obtained by this method
will not be uniform. So, in our future work we expect to study this kind of equation by using
a combination of the variational iteration method and the homotopy perturbation method
which has shown reliable results in supplying analytical approximation that converges very
rapidly. However, we note that the papers [32, 33] suggest alternative ways for similar
problems.
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Some Caputo q-fractional difference equations are solved. The solutions are expressed by means
of a new introduced generalized type of q-Mittag-Leffler functions. The method of successive
approximation is used to obtain the solutions. The obtained q-version of Mittag-Leffler function
is thought as the q-analogue of the one introduced previously by Kilbas and Saigo (1995).

1. Introduction and Preliminaries

The concept of fractional calculus is not new. However, it has gained its popularity and
importance during the last three decades or so. This is due to its distinguished applications
in numerous diverse fields of science and engineering (see, e.g., [1–6] and the references
therein). The q-calculus is also not of recent appearance. It was initiated in the twenties of
the last century. For the basic concepts in q-calculus we refer the reader to [7]. Discrete and
q-fractional difference equations are discrete versions of fractional differential equations. An
extensive work has been done in discrete fractional dynamic equations and discrete fractional
variational calculus (see [8–12]). Some of the authors applied the delta analysis and some
applied nabla analysis. Since the domain of nabla operatos is more stable, the nabla approach
could be preferable. In this paper we apply the nabla approach in the quantum case with
0 < q < 1, but also the delta approach is possible [13]. During the last decade many authors
applied diverse methods, such as homotopy perturbation method, to derive approximate
analytical solutions of systems of fractional differential equations into Caputo and Riemann
(see [14–18]). In this paper, we apply a direct method to express the solution of a certain
linear Caputo q-fractional differential equation by means of a new introduced generalized
q-Mittag-Leffler function.
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Starting from the q-analogue of Cauchy formula [19], Al-Salam started the fitting of
the concept of q-fractional calculus. After that he [20, 21] and Agarwal [22] continued on
by studying certain q-fractional integrals and derivatives, where they proved the semigroup
properties for left and right (Riemann) type fractional integrals but without variable lower
limit and variable upper limit, respectively. Recently, the authors in [23] generalized the
notion of the (left) fractional q-integral and q-derivative by introducing variable lower limit
and proved the semigroup properties.

Very recently and after the appearance of time-scale calculus (see, e.g., [24]), some
authors started to pay attention and apply the techniques of time scale to discrete fractional
calculus (see [25–28]) benefitting from the results announced before in [29]. All of these
results are mainly about fractional calculus on the time scales Tq = {qn : n ∈ Z} ∪ {0} and hZ

[30]. As a contribution in this direction and being motivated by what is mentioned before,
in this paper we introduce the q-analogue of a generalized type Mittag-Leffler function used
before by Kilbas and Saigo in [31]. Such functions are obtained by solving linear q-Caputo
initial value problems. The results obtained in this paper generalize also the results of [32].
Indeed, the authors in [32] solved a linear Caputo q-fractional difference equation of the form

(
qC

α
ay

)
(x) = λy(x) + f(x), y(a) = b, 0 < α < 1, (1.1)

where the solution was expressed by means of discrete q-Mittag-Leffler functions. In this
paper, we solve an equation of the form

(
qC

α
ay

)
(x) = λ(x − a)βq y

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −α, λ ∈ R, b ∈ R,
(1.2)

where the solution is expressed by means of a more general discrete q-Mittag-Leffler functions
generalizing the ones obtained by (1.1), as (1.1) is obtained from (1.2) by setting β = 0. Finally,
we generalize to the higher-order case for any α > 0, where higher-order q-Mittag-Leffler
functions are obtained.

For the theory of q-calculus we refer the reader to the survey of [7], and for the basic
definitions and results for the q-fractional calculus we refer to [28]. Here we will summarize
some of those basics.

For 0 < q < 1, let Tq be the time scale:

Tq =
{
qn : n ∈ Z

} ∪ {0}, (1.3)

where Z is the set of integers. More generally, if α is a nonnegative real number, then we
define the time scale

T
α
q =

{
qn+α : n ∈ Z

} ∪ {0}, (1.4)

and we write T
0
q = Tq.



Abstract and Applied Analysis 3

For a function f : Tq → R, the nabla q-derivative of f is given by

∇qf(t) =
f(t) − f(qt)

(
1 − q)t , t ∈ Tq − {0}. (1.5)

The nabla q-integral of f is given by

∫ t

0
f(s)∇qs =

(
1 − q)t

∞∑

i=0

qif
(
tqi

)
, (1.6)

and for 0 ≤ a ∈ Tq,

∫ t

a

f(s)∇qs =
∫ t

0
f(s) ∇qs −

∫a

0
f(s) ∇qs. (1.7)

On the other hand

∫∞

t

f(s)∇qs =
(
1 − q)t

∞∑

i=1

q−if
(
tq−i

)
, (1.8)

and for 0 < b <∞ in Tq,

∫b

t

f(s)∇qs =
∫∞

t

f(s)∇qs −
∫∞

b

f(s)∇qs. (1.9)

By the fundamental theorem in q-calculus we have

∇q

∫ t

0
f(s)∇qs = f(t), (1.10)

and if f is continuous at 0, then

∫ t

0
∇qf(s)∇qs = f(t) − f(0). (1.11)

Also the following identity will be helpful:

∇q

∫ t

a

f(t, s)∇qs =
∫ t

a

∇qf(t, s) ∇qs + f
(
qt, t

)
. (1.12)
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Similarly the following identity will be useful as well:

∇q

∫b

t

f(t, s)∇qs =
∫b

qt

∇qf(t, s) ∇qs − f(t, t). (1.13)

The q-derivative in (1.12) and (1.13) is applied with respect to t.
From the theory of q-calculus and the theory of time scale more generally, the following

product rule is valid:

∇q

(
f(t)g(t)

)
= f

(
qt
)∇qg(t) +∇qf(t)g(t). (1.14)

The q-factorial function for n ∈ N is defined by

(t − s)nq =
n−1∏

i=0

(
t − qis

)
. (1.15)

When α is a nonpositive integer, the q-factorial function is defined by

(t − s)αq = tα
∞∏

i=0

(1 − (s/t))qi

(1 − (s/t))qi+α
. (1.16)

We summarize some of the properties of q-factorial functions, which can be found mainly in
[28], in the following lemma.

Lemma 1.1. One has the following.

(i) (t − s)β+γq = (t − s)βq(t − qβs)γq.

(ii) (at − as)βq = aβ(t − s)βq .
(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t − s)αq =
1 − qα
1 − q (t − s)α−1

q . (1.17)

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t − s)αq = −1 − qα
1 − q

(
t − qs)α−1

q , (1.18)

where α, γ, β ∈ R.
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Definition 1.2 (see [32]). Let α > 0. If α /∈ N, then the α-order Caputo (left) q-fractional
derivative of a function f is defined by

qC
α
af(t) � qI

(n−α)
a

∇n
qf(t) =

1
Γ(n − α)

∫ t

a

(
t − qs)n−α−1

q ∇n
qf(s)∇qs, (1.19)

where n = [α] + 1.
If α ∈ N, then qC

α
a
f(t) � ∇n

qf(t).

It is clear that qC
α
a

maps functions defined on Tq to functions defined on Tq, and that
bC

α
q maps functions defined on T1−α

q to functions defined on Tq.
The following identity which is useful to transform Caputo q-fractional difference

equations into q-fractional integrals, will be our key in solving the q-fractional linear type
equation by using successive approximation.

Proposition 1.3 ([32]). Assume that α > 0 and f is defined in suitable domains. Then

qI
α
a qC

α
a
f(t) = f(t) −

n−1∑

k=0

(t − a)kq
Γq(k + 1)

∇k
qf(a), (1.20)

and if 0 < α ≤ 1, then

qI
α
a qC

α
af(t) = f(t) − f(a). (1.21)

The following identity [23] is essential to solve linear q-fractional equations:

qI
α
a (x − a)μq =

Γq
(
μ + 1

)

Γq
(
α + μ + 1

) (x − a)μ+αq (0 < a < x < b), (1.22)

where α ∈ R
+ and μ ∈ (−1,∞). The q-analogue of Mittag-Leffler function with double index

(α, β) is introduced in [32]. It was defined as follows.

Definition 1.4 ([32]). For z, z0 ∈ C and �(α) > 0, the q-Mittag-Leffler function is defined by

qEα,β(λ, z − z0) =
∞∑

k=0

λk
(z − z0)αkq
Γq
(
αk + β

) . (1.23)

When β = 1, we simply use qEα(λ, z − z0) := qEα,1(λ, z − z0).

2. Main Results

The following is to be the q-analogue of the generalized Mittag-Leffler function introduced
by Kilbas and Saigo [31] (see also [3] page 48).
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Definition 2.1. For α, l, λ ∈ C are complex numbers andm ∈ R such that �(α) > 0, m > 0, a ≥ 0,
and α(jm+ l)/= −1,−2,−3, . . ., the generalized q-Mittag-Leffler function (of order 0) is defined
by

qEα,m,l(λ, x − a) = 1 +
∞∑

k=1

λkq−(k(k−1)/2)α(m−1)(αl+α)ck(x − a)αkmq , (2.1)

where

ck =
k−1∏

j=0

Γq
[
α
(
jm + l

)
+ 1

]

Γq
[
α
(
jm + l + 1

)
+ 1

] , k = 1, 2, 3, . . . , (2.2)

while the generalized q-Mittag-Leffler function (of order r), r = 0, 1, 2, 3, . . ., is defined by

qE
r
α,m,l

(λ, x − a) = 1 +
∞∑

k=1

λkq−kα(m−1)rq−(k(k−1)/2)α(m−1)(αl+α)ck
(
x − qra)αkmq . (2.3)

Note that qE
0
α,m,l

(λ, x − a) = qEα,m,l(λ, x − a).

Remark 2.2. In particular, if m = 1, then the generalized q-Mittag-Leffler function is reduced
to the q-Mittag-Leffler function, apart from a constant factor Γq(αl + 1). Namely,

qEα,1,l(λ, x − a) = Γq(αl + 1)qEα,αl+1(λ, x − a). (2.4)

This turns to be the q-analogue of the identity Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z) (see [3]
page 48).

Example 2.3. Consider the q-Caputo difference equation:

(
qC

α
a
y
)
(x) = λ(x − a)βqy

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −α, λ ∈ R, b ∈ R.
(2.5)

Applying Proposition 1.3 we have

y(x) = y(a) + λ qI
α
a

[
(x − a)βqy

(
q−βx

)]
. (2.6)

The method of successive applications implies that

ym(x) = y(a) + λ qI
α
a

[
(x − a)βqym−1

(
q−βx

)]
, m = 1, 2, 3, . . . , (2.7)
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where y0(x) = b. Then by the help of (1.22) we have

y1(x) = b + bλ
Γq
(
β + 1

)

Γq
(
β + α + 1

) (x − a)β+αq ,

y2(x) = b + bλ qI
α
a

[

(x − a)βq
{

1 + λ
Γq
(
β + 1

)

Γq
(
β + α + 1

)
(
q−βx − a

)β+α

q

}]

.

(2.8)

Then by (i) and (ii) of Lemma 1.1,

y2(x) = b + bλ qI
α
a

[

(x − a)βq + λ
Γq
(
β + 1

)

Γq
(
β + α + 1

)q−β(α+β)(x − a)2β+α
q

]

. (2.9)

Again by (1.22) we conclude that

y2(x) = b + bλ qI
α
a

[

(x − a)βq + λ
Γq
(
β + 1

)

Γq
(
β + α + 1

)q−β(α+β)(x − a)2β+α
q

]

. (2.10)

Then (1.22) leads to

y2(x) = b

[

1 + λ
Γq
(
β + 1

)

Γq
(
β + α + 1

) (x − a)β+αq + λ2 Γq
(
2β + α + 1

)

Γq
(
2β + 2α + 1

)q−β(α+β)(x − a)2β+2α
q

]

. (2.11)

Proceeding inductively, for each m = 1, 2, . . . we obtain

ym(x) = b

[

1 +
m∑

k=1

λkq−β(k(k−1)/2)(α+β)ck(x − a)k(α+β)q

]

, (2.12)

where

ck =
k−1∏

j=0

Γq
[
α
(
jm + l

)
+ 1

]

Γq
[
α
(
jm + l + 1

)
+ 1

] , m = 1 +
β

α
, l =

β

α
, k = 1, 2, 3, . . . . (2.13)

If we let m → ∞, then we obtain the solution

y(x) = b

[

1 +
∞∑

k=1

λkq−β(k(k−1)/2)(α+β)ck(x − a)k(α+β)q

]

. (2.14)

Now, by means of Definition 2.1, we can state the following.

Theorem 2.4. The solution of the q-Caputo difference equation (2.5) is given by

y(x) = b qEα,(1+(β/α)),β/α(λ, x − a). (2.15)
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Remark 2.5. (1) If in (2.5) β = 0, then in accordance with (2.4) and Example 9 in [32] we have

qEα,1,0(λ, x − a) = qEα,1(λ, x − a) = qEα(λ, x − a). (2.16)

(2) The solution of the q-Cauchy problem

(
qC

1/2
a
y
)
(x) = λ (x − a)βqy

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −1
2
, λ ∈ R, b ∈ R,

(2.17)

is given by

y(x) = b qE1/2,1+2β,2β(λ, x − a). (2.18)

For the sake of generalization to the higher-order case, we consider the fractional q-
initial value problem:

(
qC

α
a
y
)
(x) = λ(x − a)βqy

(
q−βx

)
, y(k)(a) = bk (bk ∈ R, k = 0, 1, . . . , n − 1), (2.19)

where

n − 1 < α < n, β > −α, λ ∈ R, b ∈ R. (2.20)

Theorem 2.6. The solution of the fractional q-initial value problem (2.19) is of the following form:

y(x) =
n−1∑

r=0

br
Γq(r + 1)

(x − a)rqqErα,((1+β)/α),((β+r)/α)(λ, x − a). (2.21)

Proof. The proof follows by the help of (1.20) and let Lemma 1.1 and by applying the
successive approximation with

y0(x) =
n−1∑

k=0

(t − a)kq
Γq(k + 1)

∇k
qf(a), (2.22)

Note that when 0 < α < 1, that is, n = 1, the solution of Example 2.3 is recovered.
Next, we solve a nonhomogenous versions of (2.5).

Lemma 2.7. Let r ∈ N, α > 0, and let f be defined on Tq. Then

qIaf
(
q−r t

)
= qrα

(
qIq−raf

)(
q−r t

) ∀t ∈ Tq. (2.23)
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In particular, if a = 0, then

qI0f
(
q−rt

)
= qrα

(
qI0f

)(
q−rt

) ∀t ∈ Tq. (2.24)

Proof. The proof can be achieved by making use of Theorem 1 in [28] for integration by
substitution (for details see [24]). Indeed,

qIaf
(
q−r t

)
=

1
Γq(α)

∫ t

a

(
t − qs)α−1

q f
(
q−rs

)∇qs

=
qr

Γq(α)

∫q−r t

q−ra

(
t − qqrs)α−1

q f(s)∇qs

=
qrα

Γq(α)

∫q−r t

q−ra

(
q−r t − qs)α−1

q f(s)∇qs

= qrα
(
qIq−raf

)(
q−r t

)
.

(2.25)

Consider the q-fractional initial value problem:

(
qC

α
0y

)
(x) = λxβy

(
q−βx

)
+ f(x), y(0) = b, (2.26)

where

0 < α < 1, β > −α, β ∈ N0, λ ∈ R, b ∈ R. (2.27)

If we apply the successive approximation as in Example 2.3 and use Lemma 2.7, then we can
state the following

Theorem 2.8. The solution of the initial value problem (2.26) is expressed by

y(x) =b qEα,(1+(β/α)),β/α(λ, x) +
∞∑

k=0

λk

Γq(αk + α)
q−αβ(k(k+1)/2)

∫x

0

(
x − qt)αk+αq f

(
q−kβt

)
∇qt.

(2.28)

Remark 2.9. If in (2.26) we set β = 0, then Example 9 in [32] is recovered for a = 0.

Definition 2.10. A function f : Tq → R is called periodic with period β ∈ N1 if β is the smallest
natural number such that f(qβt) = f(t), for all t ∈ Tq.

Consider the nonhomogeneous initial value problem:

(
qC

α
0y

)
(x) = λ(x − a)βqy

(
q−βx

)
+ f(x), y(a) = b, (2.29)

where

0 < α < 1, β > −α, β ∈ N0, λ ∈ R, b ∈ R. (2.30)
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If we apply the successive approximation as in Example 2.3, then we state the following.

Theorem 2.11. If in (2.29) either β = 0 or f is periodic with period dividing β, then the solution is
given by

y(x) =bqEα,(1+(β/α)),β/α(λ, x − a) +
∫x

a

(
x − qt)α−1

q qEα,α
(
λ, x − qαt)f(t)∇qt. (2.31)

Clearly, if β = 0, then the result in Example 9 in [32] is recovered as well.
For the sake of completeness, it would be interesting if the h-discrete fractional

analogue, or more generally the (q, h)-analogue of the general q-Mittag-Leffler functions
are obtained, possibly better, by applying nabla calculus (see [33–35]). However, this needs
preparations in the Caputo case and it might be very complicated.
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