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Advanced control theory fills a gap between the mathematical
control theory and modern control engineering practices.
Conceptually, advanced control theories can include any
theoretical problems related to the controller design. But
in this issue it may include model predictive control, slid-
ing mode control, robust control, real-time optimization,
and identification and estimation, which are not limited
to controller design. Advanced control technologies have
become ubiquitous in various engineering applications (e.g.,
chemical process control, robot control, air traffic control,
vehicle control, multiagent control, and networked control).
The development of mathematical methods is essential for
the applications of advanced control theories. Sometimes it
lacks effective methods to tackle the computational issue
(e.g., model predictive control of a fast process). Sometimes,
a new application requires a brand-new solver for applying
the advanced control theory (e.g., a new production line far
exceeding the usual speed). The main focus of this special
issue will be on the new research ideas and results for the
mathematical problems in advanced control theories.

A total number of 83 papers were submitted for this
special issue. Out of the submitted papers, 39 contributions
have been included in this special issue. The 39 contributions
consider several closely related and interesting topics.

The subjects in controller design/synthesis and system
analysis have occupied 24 contributions. These contributions
include, for example, adaptive control (see the work of C.

Hu and Y. Liu for the air-breathing hypersonic vehicles and
the work of W. Gai et al. for the neural network dynamic
inversion with prescribed performance in aircraft flight
control), H, control (see the work of A. Moutsopoulou et al.
for the active vibration control in intelligent structures and
the work of Z. H. Ismail and M. W. Dunnigan for the robust
technique for an autonomous underwater vehicle with region
tracking function), model predictive control (see the work of
H. Shen et al. for the vanadium redox flow battery modeled
by neural network and the work of H. Shi et al. for the two-
layered control of a continuous biodiesel transesterification
reactor), sliding model control (see the work of H. Pang
and X. Yang for robustifying the linear quadratic tracking
controller and the work of S. I. Serna-Garcés et al. for an active
postfilter based on two buck converters), networked control
(see the work of L. Qiu et al. for the stability under random
time delays and packet dropouts based on unified Markov
jump model), backstepping technique (see the work of J. Liu
et al. for output-feedback stabilization of stochastic nonlinear
systems), fuzzy logic control (see the work of X.-X. Zhang
et al. which presents a reference function based 3D design
methodology using support vector regression learning), and
neural network control (see the work of X. Li et al. which
is designed under small world neural network model and is
investigated in both linear and nonlinear controls).

Closely related to the controller design and synthesis
are the 9 contributions on the estimation problem. These
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contributions include, for example, time series prediction
(see the work of H. Huang et al. for forecasting the urban
traffic flow modeled by the fuzzy clustering and neural
network), the compressed sensing (see the two works of J.
Liu et al. for the direction of arrival estimation problem
in phased array radar system and for discussing splitting
matching pursuit method in reconstructing sparse signal),
Kalman filter (see the work of X. Yuan et al. for integrating the
cardinality balanced multitarget multi-Bernoulli filter with
the interacting multiple models algorithm), and robust filter
(see the work of Z. Chen and Q. Huang for the L,-L
filter design for stochastic systems with mixed delays and
nonlinear perturbations).

There are also 3 contributions on the fault diagno-
sis/detection/separation. These contributions can be seen as
the extensions of the estimation problem, in the context
of this special issue. For example, H. Zhu et al. propose a
method for broken rotor bars detection in the voltage-source-
inverter-fed squirrel-cage induction motors, and Y. Su et
al. introduce an improved kernel Fisher distinguish analysis
method for the nonlinear fault separation of redundancy
process variables.

The last 3 contributions are for the mathematical pro-
gramming (including the heuristic programming). For exam-
ple, Q. Wang et al. consider the wireless sensor networks
node localization based on the time of arrival; W. Shen et
al. apply dynamic programming algorithm to the parameter
matching analysis of hydraulic hybrid excavators; and Y.
Wang et al. propose a hybrid differential evolution algorithm
with multipopulation and apply it to solve a multiobjective
optimization model of a grinding and classification process.
Note that several other contributions mentioned above have
also considered optimizations.

In the above, some contributions are included in the
statistics but not mentioned, due to either more specific or
more compounded technicalities. We hope the readers of this
special issue will find it interesting and stimulating and expect
that the included papers will contribute to further advance
the area of advanced control.
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Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past
approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures,
particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear
quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a
recognizable advance in knowledge of active vibration control in intelligent structures.

1. Introduction

Modeling of an ideal system consisting of a beam with
piezoelectric layers was done using one-dimensional finite
elements with two degrees of freedom per node. Cubic and
quadratic Hermit polynomials were employed for the repre-
sentation of nodal rotations and vertical displacements. Sys-
tem differential equations are derived from Euler Bernoulli
theory [1, 2].

Setting up the problem in a two-port diagram (input-
output) was not a trivial task. The classic control problem was
transformed into a two-port problem. The goal of nominal
design was to keep error magnitude small, despite pertur-
bations and noise in measurements. Moreover, controller
size had to be contained so as to lower energy consumption
and maintain piezoelectric materials within operating limits
(£500 V). By transforming transfer functions to state space
equations and by using input and output equations, state
space matrices have been derived; these matrices are used for
finding the optimal controller according to the LQR and H,
control criterion.

Selection of the weights involved in the controller we
studied was done through optimization, while wind loading
and noise in measurements were appropriately modelled
for this particular problem. The obtained results were very

satisfactory; beam vibration is reduced even for realistic wind
measurements. Beam response results, with as well as without
control, were compared for all presented control strategies.

In this paper, we address the problem of vibrations
of intelligent structures. Stimuli may come from external
perturbations of the system, disturbances, or excitation that
may cause structural vibrations, such as wind loading or
earthquakes. An intelligent structure is expected to be able to
sense the vibration and counteract it in a controlled fashion,
so that vibration of the system can be reduced and contained.
To that end, a number of intelligent materials may be used
as actuators and sensors. Piezoelectric materials, memory
materials, and electrostrictive and magnetostrictive materials
are such materials. In this work, we focus on the use of
piezoelectric materials, given that they exhibit good sensing
and actuation properties.

2. Research on Intelligent Structures

The following paragraphs give a deep insight into the research
work done on the intelligent structures so far. Culshaw
discussed the concept of smart structure, its benefits, and
applications [3]. Rao and Sunar explained the use of piezo
materials as sensors and actuators in sensing vibrations in
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FIGURE 1: Smart beam.

their survey paper [4]. Hubbard and Baily have studied the
application of piezoelectric materials as sensor/actuator for
flexible structures [5]. Hanagud developed a Finite Element
Model (FEM) for a beam with many distributed piezoceramic
sensors/actuators [6].

Hwang and Park presented a new finite element (FE)
modeling technique for flexible beams [7]. Continuous time
and discrete time algorithms were proposed to control a
thin piezoelectric structure by Bona et al. [8]. Schiehlen and
Schonerstedt reported the optimal control designs for the first
few vibration modes of a cantilever beam using piezoelectric
sensors/actuators [9]. Choi have shown a design of position
tracking sliding mode control for a smart structure [10].
Distributed controllers for flexible structures can be seen in
Pourki [11].

A FEM approach was used by Benjeddou to model a sand-
wich beam with shear and extension piezoelectric elements
[12]. The finite element model employed the displacement
field of Zhang and Sun [13]. It was shown that the finite
element results agree quite well with the analytical results.
Raja et al. extended the finite element model of Benjeddou’s
research team to include a vibration control scheme [14].

3. Mathematical Modeling

A cantilever slender beam with rectangular cross-sections is
considered. Four pairs of piezoelectric patches are embedded
symmetrically at the top and the bottom surfaces of the beam,
as shown in Figure 1.

The beam is from graphite-epoxy T300-976 and the
piezoelectric patches are PZT G1195N. The top patches act
like sensors and the bottom like actuators. The resulting
composite beam is modelled by means of the classical
laminated technical theory of bending. Let us assume that the
mechanical properties of both the piezoelectric material and
the host beam are independent in time. The thermal effects
are considered to be negligible as well [15].

The beam has length L, width W, and thickness h. The
sensors and the actuators have width b and b, and thickness
hg and h,, respectively. The electromechanical parameters of
the beam of interest are given in Table 1.

Journal of Applied Mathematics

TABLE 1: Parameters of the composite beam.

Parameters Values
Beam length, L 0.3m
Beam width, W 0.04m
Beam thickness, h 0.0096 m
Beam density, p 1600 kg/m’

1.5 x 10" N/m?
254 x 1072 m/V
11.5x 10 Vm/N
1.5 x 10" N/m?
b, = b, = 0.04m
hg = h, = 0.0002m

Young’s modulus of the beam, E
Piezoelectric constant, d;,

Electric constant, &,

Young’s modulus of the piezoelectric element
Width of the piezoelectric element
Thickness of the piezoelectric element

In order to derive the basic equations for piezoelectric
sensors and actuators [1], we assume that

(i) the piezoelectric sensors actuators (S/A) are bonded
perfectly on the host beam;

(ii) the piezoelectric layers are much thinner than the
host beam;

(iil) the piezoelectric material is homogeneous, trans-
versely isotropic, and linearly elastic;

(iv) the piezoelectric S/A are transversely polarized [1, 3,
16].

3.1 Finite Element Formulation. We consider a beam element
of length L, which has two mechanical degrees of freedom
at each node: one translational w, (resp. w,) in direction
z and one rotational y, (resp., ¥,). The vector of nodal
displacements and rotations g, is defined as [17]

9, = [0, v, 0,9, ] - (Y

The beam element transverse deflection w(x,t) and the
beam element rotation y(x,t) of the beam are continuous
and they are interpolated within by Hermitian linear shape
functions H;" and H;" as follows [18, 19]:

4
w(x,t) = ZH:U (%) q; (),

i1

) (2)
v (x,t) = ZH:// (x) qi (t).

i=1

This classical finite element procedure leads to the
approximate discretized variational problem. For a finite
element, the discrete differential equations are obtained by
substituting the discretized expressions into the first variation
of the kinetic energy and strain energy [18, 20] to evaluate the
kinetic and strain energies. Integrating over spatial domains
and using the Hamiltons principle [20], the equation of
motion for a beam element is expressed in terms of nodal
variable g as follows:

Mg () +Dq (t) + Kq(t) = f,, () + f. (1), ©)

where M is the generalized mass matrix, D the viscous
damping matrix, K the generalized stiffness matrix, f,,
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the external loading vector, and f, the generalized control
force vector, produced by electromechanical coupling effects.
The independent variable g(t) is composed of transversal
deflections w, and rotations y; that is, [16, 18]

q@)=1:1, (4)

where 7 is the number of nodes used in analysis. Vectors
w and f,, are positive upwards. To transform to state-space
control representation, let (in the usual manner)

R

Furthermore, to express f,(t) as Bu(t), we write it as
fJu, where f the piezoelectric force is for a unit applied on
the corresponding actuator and u represents the voltages on
the actuators. Furthermore, d(t) = f,,(t) is the disturbance
vector [16, 18].

Then,

(@) I
w0 = | St e x

OanZn OZnXZn
+ [M_lfe* u (t) + M—l

= Ax () + Bu(t) + Gd (1) ©)

= Ax(t)+ [B G [28]

= Ax(t)+ B (t).

The previous description of the dynamical system will
be augmented with the output equation (displacements only
measured) [17] as follows:

T
]

y(@) =[x, () x5() -+ x,., ()] =Cx(2). (7)

In this formulation, u is n x 1 (at most, but can be smaller),
while d is 21 x 1. The units used are compatible for instance
m, rad, sec, and N [21, 22].

4. Linear Quadratic Regulator: LQR Control

It is well known [23, 24] that constant input disturbances can
be eliminated only if the controller has a zero at infinity (i.e., it
integrates). Another useful interpretation is that an integrator
is a disturbance estimator. Hence we do not expect a zero
steady-state error using an LQR controller.
The structure of LQR control with reduced order observer
is shown in Figure 2.
Here, d are the disturbances, n is the noise, and the
controller K defines,
K = lim K (¢), (8)

t— 00

d
Regulator LD
u Beam

I |

Controller

F1GURE 2: LQR controller with state estimator.

where
u(t)=-K()x(t) 9)

minimizes the weighted performance index as follows:

J= J:o (x" Qe () +u" () Ru(r))dt, (10)

and Q, and R are design weight matrices.
The controller K is given by relation

KA-KBR'B'K+Q+A"K =0, (11)

which is the solution of the Riccati equation.
The weight matrices Q and R are used in order to:

(i) normalize the state and control vector;

(ii) assess the relative influence of deflection from equi-
librium position and magnitude of control on the
determination of a global criterion. Matrices Q and
R are diagonal with positive diagonal inputs, so that

1

VO ()
1

V™ S ()

The value max(x;) sets the maximum desirable output
value y. The value max(y;) has similar significance for input
u.

i=12,...,m,

(12)
i=1,2,...,k

Matrix Q sets the weight for each state, while matrix R
holds the weight for each actuator’s voltage. The LQR problem
requires that the state be known [23].

5. Inputs

A typical wind load (Figure 3) Acting on the side of the
structure. The wind load is a real-life wind speed measure-
ment in relevance with time that took place in Estavromenos
of Heraklion, Crete. We transform the wind speed in wind
pressure.
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FIGURE 3: Wind load.

Loading corresponds to the wind excitation. The function
fn(t) has been obtained from the wind velocity record,
through the relation

Fu () = 2pC V2 (1), (13)

2
where V' = velocity, p = density, and C,, = 1.5.

Moreover, in all simulations, random noise has been
introduced to measurements at system output locations
within a probability interval of +1%. Due to small displace-
ments of system nodal points, noise amplitude is taken to be
small, of the order of 5x 10™°. On the other hand, the signal is
introduced at each node of the beam by a different percentage,
that percentage being lower at the first node due to the fact
that the beam end point is clamped.

6. Results of Application of LQR Control

The Q and R that were used are

R =0,0001 x Iy, (14)
(100 0 00 0 ]
000 0 00O
001 0 00 0
00 0 0 0 0 0 : 0,
Q=100000%| o 0 0 o 1 0 0
000 0 00 0
000 0 0 0 1
! 0957 : Ogyo
(15)

Since max(x;) = 0.00316228 and max(x;) = 100 (11), matrix
L is the design matrix. Its eigenvalues are chosen in such
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a way that the observer subsystem can be about two times
faster than the observed system. The selected values for our
simulation are

i 2.7423556 ]
—-0.430498
—-0.031873

—0.000051 + 0.0001993i
—0.000051 - 0.000199i
—0.00045 + 0.000053:
—0.00045 — 0.000053i

—0.00039 + 0.00001i
—-0.00039 - 0.000017
—-0.0004
—0.0004
L —0.0004

(16)

These values have been obtained by trial and error, given
the poor numerical properties of the system. To find these
values, we have used a robust pole computation algorithm
included in MATLAB [25, 26].

The controller [Klqr] is given by relation (11) which is the
solution of the Riccati equation, where A and B are respective
state and control matrices of the system and R and Q are
weight matrices of the performance criterion (regulator) (14)
and (15), respectively.

For the simulation, beam nodal displacements and rota-
tions with and without control are displayed in Figures 4 and
5, while Figure 6 presents actuator voltage values for control
of all beam nodes.

6.1. Discussion of the Results of the Linear Quadratic Regulator
(LQR). Using the linear quadratic controller criterion LQR,
beam vibration reduction is observed at all nodal points, for
both constant and sinusoidal mechanical input, as well as
for realistic wind loading. LQR control achieves reduction of
vibration but at the same time requires the entire system state
time history as well as an extensive sensor distribution.

We encounter the following difficulties:

(i) system disturbances are unknown and unpredictable;

(ii) the state vector is not measurable in its entirety, which
in turn necessitates the use of an observer. This setup
is problematic, as the observer has no information
on the disturbance, which results in erroneous esti-
mates. A way to circumvent this problem is the use
of an unknown input observer. Unfortunately, this
approach is not feasible, as one of the prerequisite
conditions is not met. This situation complicates the
problem, making the application of classic controllers
such as LQR difficult, since its performance is directly
related to the availability of the state vector, or at best
of a reliable estimator of the state vector.

For the reasons mentioned above, we will continue with
a discussion of more advanced control techniques for this
particular problem, such as the H,, control.
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x107°
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FIGURE 4: Displacement at all beam nodal points, with and without LQR control.

7. H, Control

nfinity

To relate the structures used in classical and H_, control, let
us look at Figure 7, in the frequency domain [16, 23, 24].

In this diagram, all inputs and outputs of interest are
included, along with their respective weighs W, where W,
W,,» W,,, and W, are the weighs for the disturbances, control,
noise, and outputs, respectively. The exogenous inputs are the
noise n and the disturbances d. K(s) is the controller, B, G, x,
y, C define at the relation (6, 7, 8), and F(s) is the transfer
function of our system.

To find the necessary transfer functions consider the
following:

Yrw = W,Jx =W, JFv
=W,JF (GW,d + Buy)
= W,JFGW,d + W, JFBuy,

u,, = W,ug,

5
x107° 2nd node
20 F b
E 10 -
0 f
0 OI2 OI.4 0I6 0.8 1
(s)
(b)
x107° Free end
0 0.2 OI.4 0I6 0.8 1
(s)
—— No control
— LQR
(d)
Y, =Cx+Wn
=CFv+W,n
= CF (GW,d + Buy) + W,n
= CFGW,d + CFBuy + W,n.
(17)
Combining all these gives
U, 0 0 w, d
Vew | = Wy]FGWd 0 Wy]FB n|. (18)

CEGW, W,

n

I_ynJ ‘ CFB Uk

Note that the plant transfer function matrix, F(s), is
deduced from the suitably reformulated plant equations as
follows:

x(t) = Ax(t) + Iv(t),
y(#) =1Ix(t),
where v(t) = Gd + Bu,.

(19)
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FIGURE 5: Angle of rotation at all beam nodal points, with and without LQR control.
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. o, The equivalent two-port diagram in the state space form
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is shown in Figure 8 for the close loop, and with more details
in Figure 9, with

z= yFw > w = na y_yna u_uK)

FIGURE 6: Control produced voltage at all beam nodal points with
LQR control.

(21)
Hence,

where z are the output variables to be controlled and w the
F(s) = (s - A)". (20)  exogenous inputs.
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—
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FIGURE 8: Two-port diagram.

FIGURE 9: Details of H_, structure.

Given that P has two inputs and two outputs, it is, as usual,
naturally partitioned as

[z(s)] B [Pzw (s) P, (s)] [w(s)] % b (s) [w(s)]
7)) T Pu® P ue]| =P ue]
(22)
Also,
u(s)=K(s)y(s). (23)
Using (18) the transfer function for P which is
0 0o w,
P(s)= | W,JFGW, 0 |W,JFB ] , (24)
CFGW,; W, | CFB

while the closed loop transfer function for M_, (s) is
-1
M, (8) = Py () + Py () K (5) (I = Py, () K (5)) Py, (5),
(25)
or
z=M_,w=F(PK)w. (26)

Equation (25) is the well known lower LFT for M_,,.
To express P in state space form, the natural partitioning

[P (®) Pu(s)
- [wa ) P, (s)] @7)

is used (where the packed form has been used), while the
corresponding form for the controller K is [27-29]

Ak | Bk

Ce | Dy (28)

K(s) = [
Equation (27) defines the following equations:

X (t) = Ax (t) + [B, B] [L:((tt))]

R R o= v e
Xg (t) = Agxg (£) + By (1),

u(t) = Cxxg (t) + Dgy (t).

To find the matrices involved, we break the feedback loop
and use the relevant equations.

Therefore the equations relating the inputs, outputs,
states, and input/output to the controller are

Xp = Axp + (Gd,, + Bu), Vi = Xp»

x, = A,x, +B,u, u, =C,x, +D,u,
Xyp = AypXyp + Boplye, Yrw = CypXyp + Dypyps
X, =A,x,+B,n, n, = C,x, + D,n,
Xy = Ayx,y+Gd, d, =Cyx;+ D,d,

Yn = CyF + My

u=MK.

o=l =]

From (30), we use d,,, n,, ka1 yp,, and take our initial state
space equation in the form of (6, 7, 8), as follows:

(30)

Ag; 0 0 0 GCy4
0 A, 0 O 0
x=|BCy O AyF 0 0 |x
0 0 0 A, O
0 0 0 0 Ay
GD,; 0 B
0 0 B,
31
+ 0 O lw+| 0 |u (31)
0 B, 0
B, 0 0
0 c, 0 0 0] D ]
z= x+0w+ | *lu,
DJ,FCF 0 CyF 00 0

y=[Cs 0 0 C, 0]x+[0 D,]w+ Ou.
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FIGURE 10: Bode diagrams of diagonal elements of weight matrices.

Therefore the matrices are

A 0 0 0 GC,
0 A, 0 0 0
0 0
A, 0

Ay =|BCp 0 Ay ,
0 0 O n
0 0 0 0 Ay
GD,; 0 B
0 0 B,
B,=| 0 0], B,=1]0{,
0 B, 0
B; 0 0
C. = 0 c, 0 00
1= DyCp 0 Cyp 0 0)°
Dy, =0, Dy, = [%u] ’
sz[CF 00 C, 0]» D21:[0 Dn]’ Dy, = 0.
(32)

71 Results with H,. Figure 10 presents the Bode diagrams
of diagonal elements of the above weight matrices. These

matrices have been obtained through a number of tests, to
ensure the feasibility of finding a controller H,.

The controller obtained by applying H_, control is 36
order. For this controller, y = 0.074. A plot of the maximum
singular value of the weighted closed loop system (beam plus
H,, controller) is given in Figure 11, where we can clearly note
that the value remains below y at all frequencies.

Figures 12, 13, and 14 further show the maximum singular
values of transfer functions of the unweighted closed loop
system (i.e., the initial one) that are of interest.

These figures show that the performance of the computed
controller is satisfactory [30] since:

(i) as shown in Figure 12, there is a significant improve-
ment in the effect of disturbance on error up to the
frequency of 1000 Hz;

(ii) as shown in Figure 13, there seems to be little effect of
noise on error for frequencies beyond 1000 Hz;

(iii) Figure 14 shows a satisfactory effect of the disturbance
on the size of the control scheme (the design could be
improved, if it were possible to reduce noise eftect for
frequencies of 1000 Hz).
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H,, control unweighted closed loop: max. singular value
noise to error
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FIGURE 11: Maximum singular value of the unweighted closed loop
system.

H,, control unweighted closed loop: max. singular value

disturbance to error
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FIGURE 12: Maximum singular value disturbance to error.

To validate the above findings, system response time
histories for the three input cases mentioned in this section
are presented below.

Using the mechanical input, we get the following result.

Figure 15 shows the displacement time history at all nodal
points of the beam, with and without control, while Figure 16
displays the angle of rotation time history at all beam nodal
points, with and without control. By employing the H_,
control, vibration reduction is achieved; we observe vibration
reduction of 90%. Figure 17 presents the time evolution of the
produced actuator voltage, which turns out to be lower than
the piezoelectric voltage limit value of 500 V.

7.2. Order Reduction of Controller H,,. The H_, controller
found is of order 36. The fact that controller order, which is
equal to the order of the system, is relatively higher than the
order of classical controllers such as PI and LQR has led a
number of researchers to develop order reduction algorithms.

9
H,, control unweighted closed loop: max. singular value
102 noise to error
10°
107 .
107 ;
107 F 1
107° .
T S AU S AN
10712 . . o e R - i
10~ ; ; ; ; ;
107 10° 10° 10* 10° 10° 10"
FIGURE 13: Maximum singular value noise to error.
H,, control unweighted closed loop: max. singular value
0 plots for control
10 T T T T T T

— dtou
— ntou

FIGURE 14: Maximum singular value plots for control.

The most widely used such algorithm, known as HIFOO, has
been implemented in a Matlab environment, and is the one
used in the following procedure [31].

The general problem is to compute a controller of reduced
rank/order n < 36 while retaining the performance of the H
criterion as well as the behaviour of a full order controller for
the given system [32, 33] as follows:

x(t) = Ax(t) + Bjw (t) + Byu (t),
z(t) =Cx(t)+ Djw(t) + Du(t), (33)
y(t) = Cyx (t) + Dyyw (t) + Dyu(t).
The state space equations for the controller K are
X (1) = Ag (t) + Bgy (1),
u(t) = Cg (t) + Dy (£).

(34)
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F1GURE 15: Displacement at all beam nodal points, with and without H_, control.

Let a(X) be the spectral abscissa of a matrix X, that is, the
maximum real part of its eigenvalues. Then, we require not
only that a(A ;) < 0, where A is the closed loop system
matrix, but that a(A;) < 0 as well. The feasible set of A,
that is the set of stable matrices, is not a convex set and has a
boundary that is not smooth [34, 35].

The HIFOO procedure has two phases: stability and
performance optimization [31, 36]. In the stability phase,
HIFOO attempts to minimize

max (o (Acp, €« (Act))) (35)

where ¢ is a positive parameter that will be described shortly,
until a controller is found for which this quantity is negative;
that is, the controller is stable and makes the closed loop
system stable. In case it is unable to find such a controller,
HIFOO terminates unsuccessfully.

In the performance optimization phase, HIFOO searches
for a local minimizer of

f(K)
_ ] oo, if max (a (A, a(Ag)))=0,
B max(“Tzw"oo, €|Kly), if else,
(36)
where
IKley = suplcit - 40 B+ Dl @)

The introduction of ¢ is motivated by the fact that the
main design objective is to attain closed loop system stability
and to minimize [T, ., by demonstrating that & should
be relatively small; the term ¢||K||.,, however, prevents the
controller H,, norm from becoming too large, in which

case the stability constraint by itself would not exist. Given
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FIGURE 16: Angle of rotation at all beam nodal points, with and without H_, control.
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FIGURE 17: Control produced voltage at all beam nodal points with H_, control.
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that it is preceded by the stability phase, the performance
optimization phase is initialized with a finite value of f(K).
Consequently, when it reaches a value of K for which f(K) =
00, that value is rejected, since an objective reduction is
sought at each iteration [31, 36].

7.3. Results Using Controller HIFOO. As mentioned before,
the HIFOO controller is implemented in Matlab by way of
appropriate routines. It is called in the following manner:

Kfoo = hifoo (plant, 2), (38)

where plant is the system description in the form of (33) and
n = 2 is the controller order.

The resulting controller is described in state space in
similar manner as H,; that is,

X (t) =Ag (1) + By (@),

u(t) = Cg (t) + Dy (t).

(39)

The controller state space equation is given by (39), where
controller matrices are equal to

A - [728.1 —5034
K= 1207.5 1408
5. _[ 2128 8lL6 1716 2810
K= |-1649 —637.2 —1348 -2207
1557 -916.7
c. | 1013 5923 (40)
K= | 517 2979 |
1443  -82.59

36.1 136.6 287.1 468.3
23.5 87.69 186.5 303
12.12 44.12 93.39 154.3
4.204 12.53 26.92 43.51

Dy =

For the purpose of comparison of HIFOO controller
performance to that of H,,, the beam free end response is
examined, for the mechanical input.

For the input in Figure 18, the beam free end response is
shown, initially with and then without the HIFOO controller,
while Figure 19 presents produced actuator voltage using the
HIFOO controller.

Using the HIFOO controller for an actual wind loading,
beam position control is effected with node displacements
of order of 107>, with lower produced voltage. We therefore
maintain H,, criterion performance with a lower order
controller. The maximum produced voltage for the HIFOO
controller is 7V; the respective value is 45V for the H_
controller. In other words, beam adjustment to its equilib-
rium position is achieved with a lower order controller that
requires lower voltage; see Figure 19.

8. Results

In the present work, the use of active control technology in
intelligent structures has been presented. The goal of control
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FIGURE 18: Beam free end displacement, with and without HIFOO
control.
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FIGURE 19: Stress at beam nodal points, using HIFOO.

is vibration reduction, while sustaining low steady state error,
short recovery time, and small maximum uplift; at the same
time, control energy must remain within operating limits.

The beam that was used was discretized using 1-
dimensional finite elements with two degrees of freedom per
node. Piezoelectric actuators were embedded in it with the
objective of reducing vibrations under deterministic as well
as stochastic loading conditions.

Initially, we examined the linear quadratic control crite-
rion using a reduced rank observer, which makes the simula-
tion more realistic. To find the observer, we employed a robust
pole location algorithm. By selecting appropriate weights,
beam vibration reduction was achieved for stochastic loading
cases. In all simulations, random noise has been introduced
in measurements, so that the system better approximate
reality, given that displacement measurement by means of
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piezoelectric sensors is not reliable. Next we applied more
advanced control techniques, such as the H criterion. The
H,, controller found is of order 36.

In order to reduce computational requirements of the
model, controller rank was reduced by means of non-
parametric and nonconvex optimization, using the HIFOO
controller. The controller exhibited good performance even
for a significantly smaller system degree.

A natural consequence of the proposed research inno-
vations is the acknowledgement of new scientific problems
that can be used as the basis for further research beyond the
scope of this work. The advantage of active control is the
fact that it allows taking into account in the computation the
worst case result of disturbances with uncertainty and system
noise. Moreover, the active control can effectively cope with
stronger input, permitting the design for a large frequency
bandwidth. Results are noteworthy; vibration reduction is
observed even for realistic wind loading, with piezoelectric
component voltage kept within tolerance.
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Nonlinear faults are difficultly separated for amounts of redundancy process variables in process industry. This paper introduces
an improved kernel fisher distinguish analysis method (KFDA). All the original process variables with faults are firstly optimally
classified in multi-KFDA (MKFDA) subspace to obtain fisher criterion values. Multikernel is used to consider different distributions
for variables. Then each variable is eliminated once from original sets, and new projection is computed with the same MKFDA
direction. From this, differences between new Fisher criterion values and the original ones are tested. If it changed obviously, the
effect of eliminated variable should be much important on faults called false nearest neighbors (FNN). The same test is applied to
the remaining variables in turn. Two nonlinear faults crossed in Tennessee Eastman process are separated with lower observation
variables for further study. Results show that the method in the paper can eliminate redundant and irrelevant nonlinear process
variables as well as enhancing the accuracy of classification.

1. Introduction

With developments of modern process industry, multivariate
monitor from sensors has showed their multicollinearity,
nonlinear correlative coupling, time delay, and redundancy.
It makes complexity increasing with exponent to fault separa-
tion and diagnosis, called “Curse of Dimension” [1, 2]. On the
other hand, right ratio of fault classification decreases with
multivariate and redundancy process variables. Therefore,
many attentions have been paid on two points of view that are
variable selection and dimension reduction [3, 4].

Among the study of variable selection, the existed meth-
ods can be broadly classified into three categories: random
search techniques, measure-based method, and intelligent
computation. In random search, each process variable is dir-
ectly deleted or involved in the classification model one time
in turn to search the most suitable input sets under a certain
criterion, such as forward selection, backward selection, and
stepwise that are simple and easily realized methods [5].

While it was studied by Masion and Gunst [6] that these
methods would result in mistaken results, variable set appears
multicollinearity. Measure-based method appears to select
variable with computing relevancy among all variables, as
well as that between variables and labels. The variables with
highest similar characteristic will be gathered in one kind.
According to different definition, K-L information measure,
minimum description length, and mutual information are
used [7-9]. Intelligent computation deepens to solve nonlin-
ear variable selection problem, such as neurnal network that
is once used to nonlinear model, while its selection criterion is
uncertain [10].

Dimension reduction is different from variable selection,
which mainly depends on transformation and information
extraction of original variable matrix. It projects original vari-
ables with a certain mapping to a new subspace and extracts
information in lower dimension, such as principal compon-
ent analysis (PCA) [11] and partial least squares (PLS) [12].
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FIGURE 1: The fault diagnosis with multivariate.

Original variables with linear-relative process variables are
linearly projected according to the maximum direction of
covariance matrix. Meanwhile, the maximum original infor-
mation can be kept as most as possible. Contribution chart
method is the way to calculate contribution of each variable to
certain fault with T2 statics and SPE [13, 14] for PCA. The
above linear methods have been extended to nonlinear ones
after kernel method presented [15-20], such as kernel princi-
pal component analysis (KPCA), kernel partial least squares
(KPLS), and kernel fisher discriminant analysis (KFDA). Ker-
nel method converts a linear classification learning algorithm
into nonlinear one, by mapping the original observations into
a higher-dimensional space. So that linear classifier in the
new space equals to a nonlinear classifier in the original space.

However, nonlinear information projected to the new fea-
ture space has higher dimension, and data matrix has lost
their original physical meaning in original sample space. If we
separated nonlinear faults crossed together in original space,
the dimension of classifier with kernel method would become
huge, while right ratio would decrease with redundancy and
multicollinearity variables.

The objective of this paper is to deepen dimension reduc-
tion method for the above problems with measure method in
variable selection called MKFDA-FNN. Nonlinear process
variables are projected in higher-dimension space with
MKFDA. Discriminant vector and its corresponding feature
vector with maximum separation are computed to cluster
original variables with highest similarity. With embed-
dimension increasing, false nearest neighbors (FNN) with
high similarity are able to be removed in turn. Thus, nonlinear
redundancy and multicollinearity process variables can be
removed from input sets to nonlinear classifier. Finally, we
give an actual fault separation problem in classical chemical
process Tennessee Eastman (TE) to further study.

2. Problem Description

In fault separation problem presented above, it equals to
screen original process variables related to certain faults as
most as possible. Multivariate data matrix considered initially
with normal and fault information is described in Figure 1,
where X, X,, ..., X,, are process variables with n-dimension,
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ZLZ0 Zl_} present time-delay variables of X, at differ-

. -1 -1
ent sample time, Z,;,2Z5,,...,

ables of X,, and Z;ll,Z;ZI, ... ,Z;PII present time-delay vari-
ables of X, at different sample-time. In this way, original data
matrix is composed of n-dimension process/control variables

and their delay variables in

Z;gl present time-delay vari-

X(prgemxt (K)

[x,(k—-1)  x,(k-2)
x (k=2 x (k=3

x; (k=1) ]
x; (k—-1-1)

sy (k=f) x (k= f-1) - x, (k= f-1+1)

k-1  x(k-2) X, (k—1)
x, (k-2) x,(k-3) x, (k—1-1)
x,(k=g) x(k—g-1) - x,(k-g-1+1) |
X (k=1) x,(k-2) x, (k-1)

x,(k-2)  x,(k-3) x, (k—1-1)

s, (k=h) x,(k—h=1) - x, (k=h—1+1)
(1)

where f, g, and h present maximum delay order of process/
control variables x,, x,, and x,, k presents current sample
time, and [ is sample length.

3. Multivariate Fault Separation
Based on MKFDA-FNN

To fault separation problem with nonlinear redundancy pro-
cess/control variables, an approach is proposed in Figure 2.
Correlated nonlinear variables are firstly projected to a
higher-dimension MKFDA subspace. Furthermore, in order
to find fairly useful variables, the importance of each input is
measured in subspace with distance measure inspired by
FNN. Accordingly, redundant variables are recognized. It
makes separation of faults crossed together easily.

3.1. False Nearest Neighbors. FNN is the feature selection
method on the basis of phase space reconstruction (PSR) in
high-dimension data space [21]. With embed-dimension
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increasing, movement locus becomes open, and false nearest
neighbors with high similarity are able to be removed in turn.
It restores the locus of chaos. Its algorithm is as follows.
In d-dimension phase space including original variables
and their time delay, each phase vector x(i) = {x(i), x(i + 1),
..,x(i + (d — 1)7)} has one nearest neighbors N (7). Their
2-norm distance is

R, () =R+ |xG+1d) - "N+ 1d)|. @

When d-dimension is increased to d + 1, the above phase
vector is changed as new one, noted as R, (i) in

Ry (i) =[x (@) - =™ @) (3)

If R;,, (i) was much bigger than R (i), it means the projec-
tion of two nonneighbor phase vector from higher dimension
to lower one. So the two neighbors are the false nearest
neighbors.

Note that

- “x (i+7d) - x™N (i + Td)"

R, (i)

a, (i,d) (4)

If a, (i, d) is larger than R, x"" (i) should be fault nearest
neighbor of x(i). Threshold R, is determined between inter-
val (10, 50). Once there appeared noise in process data, the fol-
lowing judge criterion should be involved. If R, (i)/R 4 > 2,
x™N (i) should be nearest fault neighbor of x(i), where R, is

N N
RA:%Z[x(i)_E]’ Yz%Zx(i). (5)
i=1 i=1

The distance measure between vectors can explain the
similarity of false nearest neighbors factually in (6). Assume
that there was a data space Q with d-dimension variable, and
one sample vector is A = (g1, G5 --->G;> - - -»q4)- We set vari-
able g; as zero, standing for vector A without variable g; that is
noted as B = (4,45, ---,0,...,q,) in Figure 3.

The similarity between A and B is

8=|A-B|". (6)

If distance measure is small, it shows that vectors A and B
have highly similarity. That is, the removed variable g; makes
little impact on nonlinear pattern, and process variable g; has
low interpreting ability. Otherwise, if it was much bigger, it
reveals that B much differs from A. Process variable g; is
important to interpreting of nonlinear pattern. B is false near-
est neighbors of A.

3.2. Kernel Fisher Discriminant Analysis. KFDA is most use-
ful to nonlinear classification problems [22]. Nonlinear dis-
criminant vector in original space is extracted to linear opti-
mal discriminate vector in high-dimension feature space H
with conventional fisher discriminant analysis (FDA). Since
dimension of H is much higher, it is hard to directly confirm
nonlinear mapping function from original space to the
feature space. Reproducing kernel-based method widely

94 9

B= (qlan,"‘»O;"‘)Qd)

qi
TA= (% 9> 9a)

FIGURE 3: Data space Q with d-dimension variable.

developed in machine learning (ML) can achieve this goal.
Nonlinear mapping is indirectly found according to k(x,y) =
CD(x)TCD(y) in Gram-space [23], where @ : R? > H.
Conventional kernel function can be selected as follows
[6].
(i) Polynomial kernel function K(x, x) = (x-x'+c)d, d=
1,2,..., N, cis constant.

(ii) Gaussian kernel function K(x,x') =
x'[|/26%)), & is the parameter of breadth.

(iii) Sigmoid kernel function K(x, x') = tanh(f(x, x')+6).

exp(—(Ilx -

Assume that original sample set was X = {x, x,,..., xy}
with d-dimension and N-samples, where X; is the sample of
ith type, N; = |X;|, and i = 1, 2. There exists nonlinear map-
ping function ® : RY — H. It transforms nonlinear original
sample space RY to linear classification in high-dimension
data space H; that is, ®(x) € H, x € R%. In space H, distance
scatter of intraclass and classes with training data is S, and S,
in (7) and (9), respectively,

S,=S,+S,, @)

S= Y (@@-m)(@E-m) i=L2
x€X;

S = (my —my) (m, — mz)T, 9)

where m, is the mean of ith type in feature space. KFDA is to
find a projection direction w, which meets the following two
properties: (1) data that has similar characteristic should be
gathered together as most as possible; (2) the ones with dif-
ferent characteristic should be gathered as far as possible. So a
key is to search projection direction w* and its corresponding
discriminant function g(x) = (w*)Tx — Yo Similarly with
linear FDA, the optimal projection direction w” is to search
vector w, which maximizes fisher criterion function (10),
where w” is optimal projection direction:

wTSbw

Ty (W) = . (10)

wiS, w

Since dimension of feature space H is usually high and ®
is indirect mapping function, discriminant vector is hard to
compute directly. Thus, each solution w is expressed as linear
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TABLE 1: Steps designed in this paper.

Inputs T = {(X5, 71)s Ky Y2)s o> (Ko Ya) X € R, 3, € {41, -1}, i = 1,2,...,N

Step 1 Initiate A € [0, 1] and compute u;,i = 1,2

Step 2 Select suitable multikernel function

Step 3 Compute the kernel mean vector between two kinds with k,; = Z;ﬁl (KX; - ui) (Kx§ - u,-)T

Step 4 Compute the kernel scatter matrix of intraclass k,, = Ak, + (1 - 1)k,

Step 5 Computea” = k' (0, —u,),y, = a’ (v, —u,)

Step 6 Get the optimal solution of (16)

Step 7 Place the inspected process variable as zero in original samples

Step 8 Project the new samples into the feature space

Step 9 Compute the contribution of one variable at one time with FNN in MKFDA

Step 10 Repeat the above course for the remaining variables

Outputs The distance measure & = [§,,0,, ...,98,] of each original variable is obtained

combination of samples in (11), according to kernel-based
method,

N
W= Zoc,-@ (x;) = ya, (11)
i=1

where & = (&), &y, ..., o) -

Moreover, nonlinear transformation function ®(x,),
D(x,), ..., D(xy) of samples can be projected to feature space
H with direction w in

wo(x)=a'y @ (x)
=o' (@(x),0(x,),.... 0 (xy)) © (x),

=o' (k(x1,%;) K (x5 %;) 5o K (x5 X)) 5

(12)

T
=a'k,,

From (11), for all x € R?, assume that k, = (k(x;,x),
k(xy,X), ..., k(x,,x))" and projection of mean vector m; with
direction w* in feature space H is

N;

wm; =o'y’ (NLZ;CD (le)> =a'u, (13)
l]:

where u; = ((1/N;) 3, @(x)®(x}), (1/N) T3, 0(x,0(x)),

O L
From (12) and (13), we have

wTSbw = «kaba,
(14)
wTSww = (kawa,

where k, = (u; - u)(w, - u)", k, = k, +k,,k, =
YOy — )y — )"

Since fisher criterion function is optimal solution of (15),
vector w can be resolved as « in the following fisher criterion
(16) [24]:

wTSbw

Jin ) = (e (15)
P

Tt (@) = aka,a' (16)

Furthermore, the solution of optimal vector ™ and y, can
be solved [25] with

a’ = k;l (u; - u,),

o) ) my @) )

o 2 2

Thus, the corresponding function of kernel fisher discri-
minant function is obtained as

g = (@) 'k, —y, (18)

3.3, Multikernel ~Fisher Discriminant Analysis. From
Section 3.2, the solution of maximizing (15) equals to the sol-
ution of maximizing (16). Assume that &* = k;l(u1 -u,)is
optimal solution to classification effect, whereas a™ is both
determined by kernel scatter matrix k, and difference of
kernel mean vector (u; —u,). In the condition of independent
and identically distributed, kernel mean of samples is inde-
pendent with number of samples. It indicates difference of
kernel mean vector (u; — u,) doing nothing with the un-
balance of samples. So &™ is only determined by kernel scatter
matrix k,, for intraclass. If distribution of different variables
differed, it should result in the contributions k,, , k,, ,...,k,
not in the similar interval. Besides that the solution of a™ is
not the optimal one. Hence, in order to avoid the influence
of different distribution for samples, we presented multi-
kernel fisher discriminant analysis method. It advances the
kernel criterion function k,, = (k,, +k,, ) into

k, = Ak, +(1-2A)k,,, (19)
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where A(A € [0, 1]) is the adjustable MATLAB parameter and
k,, andk,, arethekernel matrix computed with each suitable
kernel function from Section 3.2 (i)/(ii)/(iii).

In this way, the influence with different sample distribu-
tions is considered with the suitable kernel function.

The above algorithm in this paper can be chiefly described
in Table 1. In this way, the contribution of each original pro-
cess variable g; to the certain fault is measured.

4. Fault Separation of Tennessee Eastman with
Redundancy Variables

4.1. Tennessee Eastman Chemical Process. Tennessee Eastman
(TE) is a classical chemical process created by Eastman
Chemical Company in 1993 [26]. Its technological process is
shown in Figure 4. There are four reactants (A, C, D, and E)
and two products (G, H). Besides that, there is one inert mate-
rial B and byproduct E

In TE process, the dynamic TE model is composed of five
major units: a reactor, a separator, a stripper, a condenser, and
a compressor. Each unit can be expressed with some equa-
tions, in all of 148 algebraic equations and 30 differential
equations. So it becomes one of the most complex models and
is widely used to test study algorithm with control, system

monitor, fault diagnosis, and so forth. Here, we take Ten-
nessee Eastman as the study object to measure its fault sepa-
ration ability with our method.

4.2. Nonlinear Fault Separation of Redundancy Variables. In
TE process, there are 41 observed variables and 12 manipu-
lated variables from controller, some of which are nonlinear
redundancy variables. Moreover, there are 20 types of clas-
sical fault in TE process shown in Table 2. Since Fault9 and
Faultll are nonlinear overlapped together shown in Figure 5,
we take their fault separation as the study goal, meanwhile, 53
process variables must be screened for their multicollinearity
and nonlinear redundancy. Process data of TE is simulated at
one-minute sampling time in MATLAB software from
Downs [27]. All the measurements have Gaussian noise. A
total 0of 1000 samples are collected for training, where 800 data
are collected for Fault9 and 200 for Faultll. In addition, 835
samples are applied to test separation validity with 644 for
Fault9 and 171 for Faultll.

4.3. Results and Discussion. If we distinguished Fault9 and
Faultll, there are 53 variables to be considered in all. There-
fore, we compute the contribution of 53 variables with men-
tioned method to see the importance of each process variables
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on faults. Multikernel function is selected as Gaussian kernel
and polynomial kernel, each comprised of 50%. The contribu-
tions of each variable to the faults are computed with steps in
Section 3.3 that is shown in Figure 6 and Table 3. From large
to small, the proper importance of all the 53 process variables
is reordered as {Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20,
Vab.1l, Vab.2, Vab.12, Vab.8, Vab.19, Vab.5, Vab.22, Vab.6,
Vab.3, Vab.18, Vab.14, Vab.15, Vab.17, Vab.10, Vab.41, Vab.40,
Vab.27, Vab.23, Vab.29, Vab.31, Vab.26, Vab.33, Vab.25, Vab.32,
Vab.4, Vab.24, Vab.30, Vab.35, Vab.34, Vab.37, Vab.36, Vab.28,
Vab.39, Vab.38, Vab.1, Vab.53, Vab.52, Vab.51, Vab.50, Vab.49,
Vab.48, Vab.47, Vab.46, Vab.45, Vab.44, Vab.43, Vab.42}.

In the Following, the curves of the first two important
Vab.21 and Vab.13 in TE process are given in Figures 7(a) and
7(b) and Figures 8(a) and 8(b), respectively. It expresses the
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strong variation of process variables Vab.21 and Vab.13,
actually.

According to the sequence of each process variable, the
different feature sets are constructed as {Vab.21}, {Vab.2l,
Vab.13}, {Vab.21, Vab.13, Vab.9}, and so on. Nonlinear pattern
classification of Fault9 and Faultll is tested with support vec-
tor machine (SVM), which is widely used in pattern recog-
nition. The parameters of SVM are optimized with cross-
validation ¢ = 2035 and g = 1024. With the above variable
sets, the accuracy of fault separation between Fault9 and
Faultll is successively tested. The results are shown in Figure 9
and Table 4. It reveals that the separation accuracy becomes
lower when the considered variables increase.

From the above results, we conclude that (1) if all the 53
process variables were used to separate Fault9 and Fault 11,
right ratio is merely 72.12%. It indicates that not all of the vari-
ables are directly related to certain fault. Some redundancy or
irrelevant variables may decrease the classification accuracy
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7
TABLE 2: State distribution in TE process.

Fault Disturbance Type
1 A/C feed ratio, B composition constant Step
2 B composition, A/C ratio constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss-reduced availability Step
8 A, B, C feed composition Random
9 D feed temperature Random
10 C feed temperature Random
1 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16-20 Unknown Unknown

TaBLE 3: The contributions of 53 process variables to fault separa-
tion.

Process variable Contribution Process variable Contribution
Vab.21 2.8273 Vab.17 0.0000
Vab.13 2.1145 Vab.10 0.0000
Vab.9 1.2318 Vab.41 0.0000
Vab.16 1.1313 Vab.40 0.0000
Vab.7 0.2687 Vab.27 0.0000
Vab.20 0.1319 Vab.23 0.0000
Vab.11 0.0522 Vab.29 0.0000
Vab.2 0.0355 Vab.31 0.0000
Vab.12 0.0259 Vab.26 0.0000
Vab.8 0.0191 Vab.33 0.0000
Vab.19 0.0092 Vab.25 0.0000
Vab.5 0.0012 Vab.32 0.0000
Vab.22 0.0006 Vab.4 0.0000
Vab.6 0.0004 Vab.24 0.0000
Vab.3 0.0002 Vab.30 0.0000
Vab.18 0.0000 Vab.35 0.0000
Vab.14 0.0000 : :
Vab.15 0.0000 Vab.42 0.000

and must be eliminated. (2) If the feature were selected as the
first five process variables {Vab.21, Vab.13, Vab.9, Vab.16,
Vab.7}, the accuracy increases to the highest as 94.55%. It
means that the above five process variables are key to the fault
separation. (3) If the model should be simplified at most, the
process variable {Vab.21} is the best feature variable. We can
recognize Fault9 and Faultll according to the process chang-
ing of Vab.21.

On the other hand, Fault9 stands for the random distur-
bance to D feed temperature. Faultll is random disturbance to
reactor cooling water inlet temperature. While {Vab.21,



TABLE 4: The accuracy with different feature sets with testing data.

Feature

set Combination of variables Accuracy
Set; Vab.21 83.521%
Set, Vab.21, Vab.13 85.731%
Set, Vab.21, Vab.13, Vab.9 89.652%
Set, Vab.21, Vab.13, Vab.9, Vab.16 92.123%
Sets Vab.21, Vab.13, Vab.9, Vab.16, Vab.7 94.547%
Set, Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20 92.532%
Set., Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20, 721199

... Vab.42

Vab.13, Vab.9, Vab.16, Vab.7} are the reactor coolant tempera-
ture, product separation pressure, reactor temperature, strip-
per pressure, reactor pressure, respectively, it is easy to see
that the five selected variables are fairly relative to Fault9 and
Faultll. The simulation results keep pace with the reality.

5. Conclusions

Nonlinear redundancy and multicollinearity variables can
decrease the accuracy in classifier that must be eliminated.
For the problem, FNN in MKFDA subspace is studied in
the paper. Nonlinear variables are projected to a new linear
higher dimension subspace with single-kernel fisher discri-
ment analysis to get optimal classification with the intra-class
nearest and inter-class farthest as most as possible. Further-
more, conventional single-kernel KFDA is expanded to mul-
tikernel method to solve the influence of each process variable
with different distribution function. In order to reduce the
higher dimension emerging in multi-KFDA subspace, FNN is
composed to recognize the importance of each process vari-
ables on faults. According to simulation results in TE process,
original variables are reduced to 5 in this paper, and the accu-
racy of tested right ratio reaches to 94.55% compared with
tested right ratio 72.12% in the classifier between Fault9 and
Faultll.
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A method of solving optimal manoeuvre control of linear underactuated mechanical systems is presented. The nonintegrable
constraints present in such systems are handled by adding dummy actuators and then by applying Lagrange multipliers to reduce
their action to zero. The open- and closed-loop control schemes can be analyzed. The method, referred to as the constrained modal
space optimal control (CMSOC), is illustrated in the examples of gantry crane operations.

1. Introduction

Underactuated mechanical systems have fewer independent
actuators than degrees of freedom (DOFs) to be controlled
[1]. Typical nonlinear examples of such systems, usually with
only several DOFs, are rigid multilink robotic manipulators
with passive joints or any manipulator with flexible links
(described by at least one mode of vibration). Linear examples
include vibrating structures with continuously distributed
mass (i.e., with theoretically infinite number of DOFs to
describe them) such as masts, antennas, buildings, brides,
and car suspension, controlled by discrete actuators. This
paper presents a method of analyzing and simulating opti-
mal manoeuvres between two given configurations (often
referred to as point-to-point manoeuvres) for linear underac-
tuated systems. The method combines optimal control theory
with computational mechanics and the finite element (FE)
technique, in particular.

The number of DOFs equal to the number of actuators
will be referred to as actuated (after [1]), while all remain-
ing DOFs will be referred to as underactuated (however,
all DOFs are in fact controlled). The actuated and unac-
tuated DOFs must satisfy a number of constraints equal
to the number of unactuated DOFs and resulting from
the equations governing the motion of such systems. For
mechanical systems we assume that these constraints may be

nonintegrable (nonholonomic), meaning unactuated DOFs
cannot be explicitly eliminated. Many of the techniques
presented in the literature deal with underactuated problems
by applying the constraints to eliminate the unactuated DOFs
and then by solving the reduced fully actuated problems [2—
4]. These approaches are limited to particular problems where
the constraints can be simplified to a form making such
mathematical manipulations possible. The method presented
here is capable of dealing with any linear system, as it does
not require the elimination of unactuated DOFs. Instead,
the underactuated system is formulated as if it were fully
actuated by adding “dummy” (zero-valued) actuators to all
unactuated DOFs. The modal space is used in modelling
the system motions. The method can be considered as an
extension of the independent modal space control (IMSC;
e.g., see [5]) into the underactuated problems, therefore it
will be referred to as the constrained modal space optimal
control (CMSOC) method. The system constraints resulting
from underactuation are then determined by eliminating
these dummy actuators. The constraints are algebraic in
terms of controls but differential (nonintegrable) in terms of
the DOFs. The algebraic form of the constraints is used to
generate the so-called matrix of constraints, which is utilized
to handle the nonintegrable constraints with the help of time-
varying Lagrange multipliers. Pontryagin’s principle is used to
optimize the trajectory and actuation forces.
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This paper presents the CMSOC method in a general
form and then explains some details of the corresponding
numerical procedure in the examples of standard two or
three-DOF gantry crane operations. The method is verified
by recreating the closed-loop control of the two-DOF gantry
crane problem obtained in [1] via applying the classical
technique and the open-loop optimal control considered in

[3].

2. Problem Formulation

2.1. Dynamics of a General Underactuated System. The com-
putational model for the motion of a linear mechanical
system is represented by a standard form used in FE analysis:

Mq + Cq + Kq = BF, )

where q and F, are vectors of DOFs and activation forces,
respectively, and M, C, and K are constant mass, damp-
ing, and stiffness matrices, respectively. In particular, (1)
is suitable to model the dynamics of a range of actively
controlled structural members undergoing small amplitude
oscillations and finite translations. In underactuated systems
n, independent actuation forces are to control n > n, number
of DOFs. Matrix B of dimensions 7 x 7, assigns components
of vector F, to particular DOFs and obviously is not invertible
if n#n,. Clearly, the actuators via (1) control all DOFs of the
system. For the purpose of analysis the DOFs can be divided
into actuated (q,) and unactuated (q,) ones by rearranging
these equations as follows:

[Mua Mar [Qa ] [Caa Car :| [qa ] [Kuu Kur :| [qa ]
ol I N +
Mra Mrr q, Cm Crr q, Km Krr q,

(2a)

The bottom row represents the equations constraining the
actuated and unactuated DOFs in the following form:

M, .4, +Co4q, + K q, + M4, +Cq, +K,,q, =0. (3)

The system can formally be converted to a fully actuated one
by using (3) to explicitly determine vector q, in terms of q,
(i.e, q, = g(q,)), and then by substituting this vector to
the top row of (2a) to obtain F, = F,(q,,g(q,)). Unless
some matrices in (3) vanish, it is not generally possible, and
therefore these constraints are considered as nonholonomic.

The control task for vector F, in (1) is to manoeuvre the
system from an initial state to a final state described by the
following boundary conditions (point-to-point manoeuvre):

q(0) = qq» q(0) = qq»

a(ts) =g q(ts) = 4

It should be emphasised that no trajectory is specified in this
task. A particular trajectory satisfying (1) and (4) may be
determined if extra conditions are imposed on the system. We

(4)
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will identify such a trajectory by optimizing the performance
index as discussed in the next section. Note that this problem
is different from a typical trajectory tracking problem in
which instead of (4) the task is specified as the system output
in the form

y=h(q). (5a)

Several methods have been proposed to solve the inverse
problems of finding the input F,, for the output y as defined by
(1) and (5a), notably the servo-constraint approach [6-9] and
the flatness method [10, 11]. In particular, differentiating (5a)
with 7, outputs twice one obtains j = Hg + h, where the size
of matrix H is 1, x n; then square matrix HM "B is required
to be nonsingular to solve the problem. This condition does
not apply in the method presented here since our output is
given only in terms of (4), that is, the systens initial and final
configurations.

The set of (1) or (2a) is uncoupled when mapped into
modal space, where vector of DOFs q (size ») is transformed
to the equally sized vector of modal variables x = [#7, - - - r]n]T.
Similarly, vector F is related to an equally sized vector of
modal controls U = [u -+ un]T. These transformations are

q=on, (6a)

U= (®'B)F, = BE, (6b)

where B = ®”B is the transfer matrix of size n x n, between
vectors F, and U and mode shape matrix ® = [¢,---¢,]
relates vectors q and #. The M-normalized matrix @, consist-
ing of n modal shape vectors ¢, (each with n components),
satisfies the following orthogonality conditions:

o'M® =1, (7a)
oKD = Q, (7b)

where I is the unitary matrix and Q is the diagonal matrix
of ordered frequencies with the terms Q; = «. Each
mode shape vector @, and frequency w; are solutions to the
eigenvalues problem (K — wizM)(pi =0(@G = 1,...,n). The
above modal analysis (or operations defined by (6a)-(7b)) is
carried out routinely in the FE approach, even for problems
with a very large number of DOFs (large n).

The equations of motion (1) become uncoupled when
applying transformations (6a) and (6b) subject to orthogo-
nality conditions (7a) and (7b) and take the following form:

Iij + Afj + Qn = U, (8)

where for the Rayleigh damping (i.e., C = aM + K) the
diagonal terms of A are A; = 2w, = ¢ Ce, and where
G; = a/2w; + fw;/2 are the modal damping ratios. Note that
a rigid body translation, for which w; = 0, is also included in
the above equation.

A continuous system, or an FE model (1) of the system
described by n DOFs (where n may be a large number),
can be approximated by (8) with only n,, significant modes
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considered, where usually n1,,, < n. The number of significant
modes that should be sufficient to represent such a system is
generally problem related and depends mainly on its physical
characteristics, the spatial distribution, and frequency con-
tent of the loading [12].

In the system approximated by n1,,, modes (similarly as for
the system’s DOFs) one can consider n, modes as actuated
and n, = n,, — n, modes as unactuated. Then matrix @ will
be reduced to only 7, columns, and transfer matrix B in (6a)
and (6b) will be of dimensions #,, x n,.

In order to control all n,, modes this system can be
made artificially fully actuated by adding n, = n,, — n,
dummy actuation forces (zero valued) forming subvector Fy.
For the purpose of analysis vector F, in (1) is replaced by

the augmented force vector F; = [FaT FE]T containing n,
real actuation forces forming subvector F, and n, dummy
actuators forming subvector Fy. Then, in (1) and (6a) and
(6b), matrix B of dimensions n x n, is replaced by matrix
B’ of dimensions # x 1, (this matrix assigns the component
of F; to particular nodes). Consequently in (6b) matrix B
of dimensions n x n, is replaced by a square matrix B' of
dimensions n,, x n,, (n,, modes controlled by n,, actuators).
The dummy actuators Fy should be placed in such a way that
B’ is nonsingular.

In the inverse dynamics based control analysis, each
control U; can be obtained from (8) by substituting the
corresponding prescribed mode #;. Then, for known vector

U, the actuation forces F; should be determined by inverting
transformation (6b) in which matrix B’ (instead of B) is
now square and nonsingular (the dummy actuators were
added to the system only to ensure that this inversion is
possible). In the next step, after computing the inverse of
operation (6b), the dummy actuators will be eliminated by
giving them zero values. For that purpose the inverse matrix

(]§')71, representing the mapping from modal controls U =

T
[ ul | Uﬂ to actuation forces F, for any augmented system
of size n,,, X n,,, is partitioned as follows:

57\ ) B,|B, ][U,] [F.]_[F.
o7 o-r = [ {2 - [5] o

Square submatrix B, is of size 1, xn, and square submatrix A,
is of size n, x n,.. To be consistent with modes classifications

(actuated and unactuated), vectors U, = [y, ---unu]T and

Uy = [, unm]T are referred to as actuated and unac-
tuated modal controls, respectively. Given the null-valued
dummy force vector Fg = [0--- 017 (size n, x 1) the bottom
n, rows of operation (9) (lower partition) define constraints
on the system in terms of all modal controls, in the following
form:

AU=A,U,+A,U, =0. (10)

Matrix A = [A, | A,] (size n, x n,,) defines the system
constraints written algebraically in terms of modal controls.
Since (10) is homogeneous matrix A can be normalized such
that the diagonal terms corresponding to controls U, are set

to unity (i.e., A;; = 1). In this form A becomes independent
of the choice of dummy actuators, which reflects the fact that
these zero-force actuators were added somewhat arbitrarily
only to facilitate the elimination process, that is, to satisfy the
constraints in (9). Matrix A is discussed with more details in
(13, 14].

Real actuation force(s) may be obtained from the top
partition of operation (9) in terms of all modal controls in
vector U. They can also be obtained in terms of only actuated
modal controls in vector U, by applying n, constraints
(10) to eliminate unactuated modal controls U,. Thus, n,
components of actuator forces in vector F, can be obtained
in terms of n, actuated modal controls in vector U, from the
following operation:

F, = BU,. (1)

Square matrix B = B, - B,A_'A, (size n, x n,) is referred to
as the pseudotransfer matrix, and it relates actuated modal
controls to real actuator forces. Similar to the normalized
constraint matrix A, the pseudotransfer matrix B is indepen-
dent of the choice of dummy actuators.

2.2. Optimal Manoeuvres of Underactuated Systems. In linear
optimal control [15], the manoeuvre is optimal if, for a given
task, it minimizes the performance index:

] - % j (1" Qan) + (7" Quit) + (U'RU)) dt —> min,
(12)

where Qg, Q,, and R are matrices, with the diagonal terms
Qui» Qui» and R; (i = 1,...,m,), that are weights for
the systems potential energy, kinetic energy, and actuator
work, respectively. Note that ,, modal variables and modal
controls are included in (12); however, these modes are
not independent because of constraint (10), resulting from
underactuation. Such a problem can be solved by applying
Pontryagin’s principle. Here we use the procedure described
n [15]. Hamiltonian H for the constrained optimization
problem involving performance index (12), uncoupled equa-
tions of motion (8), and constraints (10) is defined in the
following form:

I PPV .
H =~ (0" Qqn + 1" Qi + U'RU) + Pyiy .
13

+P, (-Aij - Qn + U) + v AU.

Py and P, are standard costate vectors related to modal
position and velocity states (1 and #) of a system, respectively.
Vector vl = [y, --- v, | represents the set of time-dependent
Lagrange multipliers introduced to enforce constraints (10).
These multipliers play a similar role to, for example, that of
the multipliers used in the servo-constraint approach [6-9]



mentioned before. According to Pontryagins principle the
costate equations take the following form:

. oH ~

P, = o =Qun + QP,, (14a)
. oH ~
b, =5 = Quil—Pa+ AP, (14b)

The Hamiltonian is stationary with respect to modal control
if
OH

o T
5~ RU+P, +Av=0 (15)

Substituting (8) into (15) gives
P, = R (Lij + Aij + Qi) - A"v. (16)

Substituting (16) into (14b) yields

P, = Qi - R (17 +Aij + 04y
(17)
+ AR (Tij + Aip + Qi) + ATv - AATv.

Finally, substituting (17) into (14a) generates the following set
of optimality equations:

Rij + (20R-Q, -RA?) i+ (RQ* + Qq ) 1
(18)
—(ATv-AATv+ 0ATY) = 0.

Note that n,, optimality equations (18) contain #,, unknown
components in 7 and n, unknown components in v. There-
fore, additional n, constraint equations (10) are required in
order to obtain all the unknown modal variable functions
in vector 5 and Lagrange multiplier functions in vector v.
However, the constraints must be written in terms of 5 not
in terms of U (note the change in the constraints’ form from
algebraic to differential). The uncoupled equations of motion
(8) are substituted into algebraic constraints (10) to obtain

A (Iij+ A+ Qn) = 0. (19)

The number of n,, + n, ((18) and (19)) is equal the unknown
components in vectors 7 and v.

Boundary conditions (4) are mapped into modal space
by using the inverse of transformation (6a) or through the
relation = ®"Mq (obtained by additional substitution of
condition (7a)). These transformed boundary conditions are

17(0) = ® Mg, i1(0) = ®" Mgy,

20)
n(ty) = ©'Mqp,

1’1 (tf) = q)Tqu.

For fully actuated problems, the last term (A’¥ — AATv +
QA™Y) in optimality equations (18) vanishes because there
are no constraints or Lagrange multipliers needed to enforce
them. Therefore, a fully actuated problem involves only
n,, optimality equations (18) to be solved in terms of #,,
uncoupled modal variables in vector #.
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The solution to the combined set of (18), (19), and (20) can
be efficiently obtained using symbolic differential operator
D" = d"/dt". Substituting this operator into (19) and (20)
and rewriting in matrix notation give

=T
[%‘%} m =0 or E,Y=0, (21)

E=RD"+(2RQ-Q, -RA*) D’ + (RQ* + Q,),

where

E=A(ID’+AD+Q), E=A(ID’-AD+Q).

(22)

Matrix E;, contains submatrices E, E, and —E’. Vector

Y = [nT | vT]T contains all unknown modal variables and
Lagrange multipliers. Note that in a fully actuated case, matrix
E, in (21) consists only of submatrix E and vector Y = #.
The solution to a system described in form (21) involves
the roots r; (I = 1,...,4n,,) of the characteristic equation for
the determinant of E; [16], where operator D is replaced by

the auxiliary variable r rendering a 4n§,1 order polynomial.
This operation is written as

det EP|D_W =0. (23)
Generally, the 4n,, roots of the characteristic equation (23)
take the following form:

n=+aq+if (k=1,...,n,, I=1,....,4n,). (24)
The positive real numbers oy and 3, characterize the response
of the kth mode of motion. For nonzero, unique roots,
solution vector Y consists of n,, + n, components Y; that can

be written in terms of 4n,, independent elementary functions
related to the roots (24), in the form [16]:

V= 3 (e (el sin(Bt) + f cos (Ber)
k=1
+e (c,fj sin (Bit) + cfj cos (,Bkt)) ] , (25)

where j=1,...,n,, +n,.

Obviously, the frequency of kth mode controlled by the
actuators can be interpreted as w; = 3, and its rate of active
attenuation (or amplification) as ¢ = a/f. If multiple
roots and zero-valued roots are obtained from (23), then
solution functions (25) must be modified to mathematically
accommodate these situations. There are 4n,,(n,, + n,)
unknown integration constants c,ij, . ,c;:j contained in the
solution functions (25).

Integration constants c,ij, e c,fj are obtained by substi-
tuting the assumed form (25) into differential equations (18)
and (19) and using the method of undetermined coefficients
to generate n,, + n, sets of 4n,, linear algebraic equations
relating these constants. By replacing one set of 411, equations
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FIGURE 1: Gantry crane system.

with the set of 4n,, boundary conditions (20), the integration
constants can be solved simultaneously. All these symbolic
operations, including the determination of the roots (24)
and constants in (25), can be done automatically using the
MAPLE mathematical software.

For closed-loop control, asymptotically convergent solu-
tion functions are required such that the control task is met
over an infinite period of time (f; — ©0). The resulting
number of integration constants is reduced by half, as terms
involving positive exponential * in the solution form (25)
disappear (c,ij = c,fj =0).

To quantitatively measure the performance of closed-
loop control schemes settling time ¢} f * is defined as the time
needed for various variables to be reduced to within 3% of
their initial value (i.e., e % " 20,03 — jc% =3.5/a mm)

The above procedure was applied to actively suppress
vibrations of a spatial antenna mast in [13] and of plane frames
in [14], the cases with the number of DOFs much greater than
the number of significant modes included in the analysis (i.e.,
with n > n,,). In both cases only oscillating modes were
controlled. Here the application of the above methodology is
focused on various control schemes, which are demonstrated
in controlling the translational and oscillating modes of a
gantry crane.

3. Dynamics and Optimal Control of
the Gantry Crane System

The gantry crane problem is one of the simplest underactu-
ated mechanical systems involving two DOFs—cart transla-
tion and suspended load rotation—and a single actuator—a
cart-driving force (n,, = 2,n, = n, = 1).

The gantry crane model is shown in Figure 1. The model
includes the mass of the cart M, the mass of the suspended
load m, swing angle 0, gravitational acceleration g, horizontal
distance a from the cart’s initial position to the origin, and

length L of the massless rigid link connecting the cart and
load. The task is to manoeuvre the system from an initial
resting state at some nonzero horizontal distance (x = a,
0 = 0) to a final resting equilibrium state at the origin (x = 0,
0 = 0) by applying time-varying force F,. Any finite cart
translations are permitted, but swings of the suspended load
are assumed to be sufficiently small for a linearized model
to be valid. In modal space rigid body translation for such a
manoeuvre is easily separated from the oscillatory motion of
the suspended load. Dummy force F, is added to artificially
make the system fully actuated and formulate the augmented
gantry crane system.

This same gantry crane model was used in several
papers dealing with control or/and optimization. Notably, a
Lyapunov function was used in [1] to obtain an asymptotically
stable (closed-loop) control (linear and nonlinear) for atten-
uating disturbances (nonzero initial positions) in the system,
and optimal control by applying Pontryagin’s principle was
considered in [3]. Results for the linearized system are of
interest because they serve as a useful comparison for the con-
trols obtained in this paper. Similar problems of controlling
the plane motion of gantry cranes were presented in [10, 11]
using the concept of flatness. Various aspects of controlling
gantry cranes, 3D operations were considered in [9, 17-19].

The gantry crane system shown in Figure 1 and its
coordinate system are chosen to mimic those used in [1].
Matrices and vectors in the general equation of motion (1)
take the following forms:

M+m —-m 0 0
Mz[ —-m m]’ K= 0@]’
L
(1 r |11 (26)
B_[O], B_[O_],



To be consistent with the assumptions made in [I, 3] no
dissipative effects (i.e., friction, etc.) are considered (C = 0).

The initial and final conditions (consistent with [1]) take
the following forms:

q(0)=[a 0",
, (27)
q0) =q(tf) =q(tf) =[0 0] .
The modal analysis (n,,, = 2) gives
0 0
Q:[o (1+ﬂ)g]’ (282)
M/ L
1 \/T
O = M+m M]E/I]Vitnm) (28b)
0 Mm

The rigid body translational mode of motion is represented
in (28a) by the frequency w, = 0 and the second vibrating
mode (load swinging) is represented by the frequency w, =
V(A +m/M)(g/L).
The uncoupled modal equations of motion (8) become:
i =t iy + o1l = hy. (29)
The augmented system transfer matrix B’ = ®”B' is obtained

by the appropriate substitutions from (26) and (28b) into the
general partitioned form (9):

M \/Mm
VM +m M+m U — Fa — Fa (30)
m | Mm U, F, 0l
rem | \Mrm

Modal controls u; and u, are considered actuated and
unactuated, respectively. The (n, = 1) constraint equation is

obtained by normalizing the bottom row of matrix (]’§')_1 in
(30) to obtain

(M [u M
AU = [1— \/E] [u;] =u - \/;uz =0. (3

The constraint (31) may be applied to eliminate redundant
modal control u, from the top row operation of (30) to obtain
force F, as a function of independent modal control u,, giving

F,=BU, = (VM +m)u, (32)

where B = VM + m is the pseudotransfer matrix (since
n, = 1, this matrix has only one term). Cart-driving force F,
may be applied using open-loop control (as a known function
of time) or using closed-loop control through a set of gains
in full-state feedback. Both schemes will be analyzed and
simulated using the CMSOC method.
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The performance index (12) takes the following
form, consisting of the gantry crane system’s four states
(111> 12> 111> 11,) and two modal controls (u;, u,):

1 (%~ ~ ~
J= 3 J (Qdu’?f + Qunthy + Quunfy
0 (33)

+(§V22r']§ + ﬁlluf + ﬁzzlé) dt — min.

The n,, = 2 coupled optimality equations (18) take the
following forms:
Ryytiy = Quuifiy + Qanymy == 0, (34a)
ﬁzzﬁz + (21322(0; - 61/22) il + (ﬁzz“’;1 + adzz) UP)
(34b)

+\/g(ﬁ>+w§v):o,

where v is the Lagrange multiplier used to meet the n, =
1 constraint (31). The differential form (19) of constraint
equation (31) is written as

iy — J % (i, + w3m,) = 0. (35a)
In modal space, the boundary conditions (27) are
m (0) = aVM +m, m(t;) =0,

1, (0) =7, (0) =7, (0) = 0, (36a)

o (ty) = () = () = 0.
Equations (34a), (34b), and (35a) written according to form
(21) (with D" = d"/dt") yield

E 0 _1211 m
EY=1| 0 FE,|-Ey n|=0 (37)

Ell E21 0

v
where
E, =R, D" =Q,;,D* + Qa1
E, = §22D4 + (2§22w§ - 61/22) D’ + (ﬁzz“);1 + édzz) >
En = Eu = Dz) 8
BB =M (0 +a).

The characteristic equation of the system represented in (37)
is obtained through operation (23), giving the 8th order
polynomial equation:

det EP'DH

=2 )
= E,E; + E,Ey, Dor

= % (ﬁlﬂ'4 _évu"z"'adu)("z +w§)2 (39)
2

+rt (§22r4 + (2§22w§ - 6v22) r

+ (ﬁzzw;‘ + Qm)) =0.
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Eight roots may be obtained from the characteristic equation
(39), which are then substituted into an appropriate assumed
solution form (if the roots take the full complex form (24),
then the assumed function takes form (25)) to characterize
the three unknown solution functions (#,,#,,v). This leaves
twenty-four unknown integration constants to be determined
by substituting the appropriate solution form into the three
equations (34a), (34b), and (35a). By relating the coefficients
corresponding to each of the eight independent elementary
functions (i.e., in (25) each is in the form e®**F)")  eight
algebraic equations are obtained for each differential equation
in the set (34a),(34b) and (35a), resulting in a total of twenty-
four equations in terms of twenty-four unknown integration
constants c,’c However, these twenty-four equations are
linearly dependent. To obtain a unique solution, any one
set of eight algebraic equations (obtained from either (34a),
(34b), or (35a)) must be replaced with the eight boundary
conditions (36a).

The optimal actuation forces needed to drive the gantry
crane from an initially disturbed position (x = a, 0 = 0) to
the origin (x = 0, 8 = 0) will be derived for four cases using
the CMSOC method. These cases are as follows

(A) an open-loop control that minimizes actuation forces
for a fixed time interval as in [3];

(B) a closed-loop control that mimics the control pre-
sented in [1];

(C) a closed-loop control with response improved over
that presented in [1];

(D) aclosed-loop control of the fully actuated system (two
actuators).

For each case, the gantry crane’s physical parameters are
chosen to match those given in [1]; namely, M = m = 1kg,
L=1m,g=98m/s’,a=-5m,and w, = 4435,

As a final case, the CMSOC method is applied to a
modified three-DOF gantry crane, with an additional link-
mass hinge attached to the existing model in Figure 1 and
controlled by one or two actuators. This final case involves
two subcases.

(E1) A closed-loop control that manoeuvres a modified
gantry crane to the origin using the cart-driving force
as well as a torque applied to the first rigid link (two
actuators).

(E2) An open-loop control that manoeuvres the modified
gantry crane to the origin using only the cart-driving
force (one actuator) over a fixed time interval.

(A) Open-Loop Control of Gantry Crane Manoeuvre in a
Finite Time Interval. The first control manoeuvres the gantry
crane from a known initial position to the origin in a finite
time interval f; in an open-loop scheme. The performance
index is chosen to be consistent with that presented in [3],
corresponding to the weightings R,; = R,, = 1 in the general

form (33) with all other weightings null valued. Thus, the
optimal control minimizes

tf 1 tf ]
J= JO (uf + ug)dt = L F2dt — min. (40)

Performance index (40) minimizes the modal controls or
the actuation force over the finite manoeuvre time f ¢, which
is chosen as t; = 4s to represent again one of the
cases considered in [3]. The gantry crane’s characteristic
polynomial equation (39) is simplified to

(1 + %) (r* + w§)2r4 =0. (41)

,,,,,

.....

two imaginary roots rs g = —iw,. When written in form (24),
these roots correspond to 3, = w, ando; = 8, = a, = 0.
Because of the zero roots and repeating roots, the solution
functions take the following form:
Y, =+ it + ot + ot
iTajTait TGt T4,
(42)
+ (csj + c7jt) sin (wyt) + (CGJ- + csjt) cos (wyt) .

Each solution function (42) (j = 1,...,3) contains eight
unknown integration constants ¢; (k = 1,...,8), which are
determined through substitution and comparison of similar
terms in any two differential equations in the set (34a),
(34b), and (35a) and by substitution of the eight boundary
conditions (36a). With the integration constants determined,
the resulting solution functions are

Ny = —7.09 — 104t + 1.41¢% — 235¢°
(43)
+.0235 sin (4.43t) + .0151 cos (4.43t) ,

1, = 144 — .0719¢ + (.00451 — .0333t) sin (4.43t)
(44)
+ (~.144 + .0520¢) cos (4.43t) ,

v = —2.82 + 1.41t — .460 sin (4.43t) — .295 cos (4.43t) . (45)
Substituting (43) into (29) yields
u; = 2.82 - 1.41t — .460 sin (4.43t) — .295 cos (4.43t) . (46)

The Lagrange multiplier function v(t) (45), which represents
a “modal force” enforcing the modal constraints, is not used
in further analysis and is shown here only for completeness
of the solution.

Mapping modal variables #;, and #, ((43) and (44)) into
DOFs x and 0 via transformation (6a), the trajectories shown
in Figures 2(a) and 2(b) are obtained. Optimal force F,,
shown in Figure 2(c), is obtained by substituting modal
control u; (46) into transformation (32).

This phase of the solution was done automatically using
MAPLE. The solution procedure accepts any problem with
n,, modes (obtained from FE analysis for more complex
structures) controlled by n, < n,, actuators. The modal-to-
DOF transformations for the gantry crane are indicated in
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FIGURE 2: Histograms of (a) cart trajectory x, (b) swing angle 6, and (c) force F, (open loop).

Figures 2(a), 2(b), and 2(c). As shown, the open-loop control
is able to perform the task in exactly four seconds, with a
peak force of about 3.6 N and a maximum load swing angle of
about 0.28 rad (16°). The optimal force accelerates the gantry
crane over the first half of the manoeuvre (2 s) and decelerates
the cart over the last half with identical, but opposite and
mirrored, forces.

Similar plots for the closed-loop control presented in
[1] are shown in Figure 3. This control requires an effective
manoeuvre time of t}% = 6 s to reach the origin, a maximum
load rotation angle of 0.73 rad (42 deg), and a maximum force
of 15N. It should be noted that this relatively large rotation
angle is mentioned here (and other angles quoted in the
sequel) for the purpose of comparison only.

From Figure 2 and Figure 3, one can conclude that the
open-loop control performs the manoeuvre in a shorter
period of time (¢ § = 4s versus tjc% ~ 6s) with much
smaller peak force requirements (3.6 N versus 15N) and
much smaller angles of oscillation (16° versus 42°). Also, the
open-loop control brings the system to a complete stop after
4 s, while the closed-loop control produces overshoot and the
system takes longer to effectively come to rest.

Calculations show that if the finite manoeuvre time for
the open-loop control is extended (or shortened), the peak
force requirement and maximum swing angle are reduced (or
increased)—approximately proportional to ¢ *. For example,
if the open-loop control is modified to settle over the same
effective period of time as that of the closed-loop control (¢ =
6), the maximum force is reduced to approximately 1.6 N with
a maximum swing of about 7 deg.

The open-loop control can always provide a faster and
more efficient manoeuvre. However, it is possible only when
the initial positions and manoeuvre times are known in
advance. Closed-loop control is necessary if any initial con-
figuration (unknown explicitly) is treated as disturbance, and
its automatic reduction/removal is desired (the final position
is at rest). Case (B) demonstrates how the CMSOC method
is applied to analyze and simulate a closed-loop system that
approximately produces the same dynamic responses as given
in [1].

(B) Closed-Loop Control of Gantry Crane: Reproducing Con-
trol from [1]. A closed-loop control can perform the same task
as that of the open-loop control (case (A)); however it does so
automatically, without prior knowledge of initial conditions
involved. Any disturbance from its resting configuration at
the origin (x = 0, 8 = 0) is relayed through a set of constant
gains to generate the cart-driving force F, to attenuate this
disturbance.

In general, to simulate the closed-loop process analyti-
cally the manoeuvre time ¢, is infinite and all parameters
are driven asymptotically to the origin with increasing time.
For the gantry crane, this requires that all roots of the
characteristic equation (39) be nonzero complex numbers
in the left half of the complex plane (unlike the open-loop
system of case (A), which contained zero roots and purely
imaginary roots). It can be verified that the weightings Q,
and Q,, in the performance index (33) must be nonzero in
order to meet these criteria.

The gantry crane control as given in [1] is closely repro-
duced by choosing the weightings in the performance index
(33) equal to Q,;; = Q,pp = 0, Qyy = 45, Qg = 42,
and R, = Ry, = 1. The resulting characteristic polynomial
equation (39) has eight roots that take form (24), with real
and complex parts equal to

a, =0853,  f3, = 0.856,
(47)

a, = 0513,  f3, = 4.46.

Note that the first actively controlled mode of frequency w} =
0.8565~" (w, = 0 for uncontrolled system) is damped with the
ratio ¢f = 0.996, while the second mode of frequency wj =
4.4657" (w, = 4.43s™" for uncontrolled system) is damped
with the ratio ¢] = 0.115.

Similar to case (A), modal variables #, and 7, are
determined by substituting the parameters from (47) into
the assumed solution function (25) and then solving for the
unknown coeflicients by comparing similar terms in two of
the three optimality/constraint equations (34a), (34b) and
(35a), and substituting the boundary conditions (36a). Unlike
case (A), the closed-loop problem requires that only half
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FIGURE 3: Histograms of (a) cart trajectory, (b) swing angle, and (c) optimal force from [1].

as many integration constants must be solved because the
coefficients preceding exponential growth functions (e*) are
assumed to be null valued. This gives

n, = e " (=7.70sin (B,t) — 7.08 cos (B,t))
+e % (126 5sin (B,t) — .00564 cos (B,t))
17, = e ' (=.565sin (B,t) +.534 cos (B;t))
+e " (149 sin (B,t) — .534 cos (B,t))
u, = e " (-10.3sin (B,t) + 11.3 cos (B,t))
+e %" (=2.44sin (B,t) — .686 cos (B,t)) .
Using the appropriate transformations (see Figure 2) the
modal space variables (48) are mapped into the DOF space
variables. The resulting system trajectories and the optimal
force histogram are visually indistinguishable from those
shown in Figure 3.

The CMSOC method can also generate the closed-loop
gains from the assumed weighting coefficients to demonstrate

that the gains corresponding to the solution (48) are obtained
and compared with the gains used in [1].

In full-state feedback control the active force is a function
of all system states in the following form:

Fa = _qu - qu (49)
For the general CMSOC method, gains Gg = [g1a " gn, 4]
and G, = [g1, *** gu,] correspond to the observed

positions and velocities of all n,, DOFs of a system. For the
gantry crane, (49) takes the following form:

F, = =g14x — 2410 — g1, % — gZVLé' (50)

By substituting known DOF trajectories (x = (1/v2)(1, +
#,) and O = +2#,) and the known force function (F, =
V2u,) into (50) and grouping the terms related to the four
independent elementary solution functions (operations are
done in MAPLE automatically), one obtains:

ot (-14.6 - 5.85g,4 + 8.95g,, — .799g,4 + .0352g,,) sin (B, t)
+(16.0 - 4.63g,; — 1.06g,, + .7559,, — 1.33g,,) cos (f3;1)

(51)

ot (-3.45+.195g,4 + 1.56g,, + .211g,; + 3.26g,,) sin (B,t) | _ 0
+(=.970 — .374g,, + 1.06g;, — .755g,4 + 1.33g,,) cos (Byt)| ~

Each of the bracketed terms in (51) (containing the unknown
gains) must equal to zero for the equation to be true at any
time. This gives four equations in terms of four unknown
gains, which may be solved to obtain

Gy = [gm gzd] = [3-00 -732]’

G, = [g1, 9] =[3.66 —.924].

(52)

Though initial conditions were assumed in determining the
trajectories x and 0 and force F,, it can be verified that gains

(52) remain invariant towards any choice of these assumed
conditions.
The control gains used in [1] were

Gy = [g1a 9] = [3:0 71],
Gy = [g1a 9oa] = [3.69 —.87].

Comparing the gains (52) and (53) confirms that the CMSOC
method is able to closely reproduce the closed-loop control
in [1] by careful selection of the weighting parameters in
performance index (33). However, as shown next in case (C),

(53)
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TABLE 1: Weightings for five different performance indices in form
(33).

Index # édll édzz évll 61/22 Ru Rzz
PO 0.01 0.01 0 0 1 1
P1 6 0.01 0 0 1 1
P2 6 50 0 0 1 1
P3 6 50 4 0 1 1
P4 6 50 4 50 1 1

the performance of this closed-loop control may be improved
through better selection of these weighting parameters to
produce faster convergence without an increase in the
required peak actuation forces.

(C) Closed-Loop Control of Gantry Crane: Improving Perfor-
mance. Case (B) developed a control that closely reproduced
the control given in [1] by minimizing a performance index
that gave no weight (Q,,, = Q,, = 0) to states 7, and
7,, representing the gantry crane’s velocity. Consequently,
the control caused the gantry to gain too much speed and
then overshoot its target and produce large persistent load
swings. These problems are mitigated by a more careful
choice of the performance index weighting parameters in
(33). To demonstrate the effect these parameters have on the
gantry crane’s dynamics and to illustrate how they might be
meaningfully selected, several cases, labelled P1 to P5 (each
with different performance indices as listed in Table 1), are
considered.

Each case reflects a performance index which gives
significant weightings to an incrementally increasing number
of system states (of four possible states 7, #,, 7y, 1), while
holding the weighting on both modal controls (u;,u,) at
unity. Case PO gives none of the states a significant weighting,
case Pl gives a significant weighting to a single state (1),
case P2 gives significant weightings to two states (#,1,),
and so on until case P4 significantly weights all four states.
Table 1 summarizes how these weightings are chosen for
each case. Since the gantry crane’s asymptotic convergence
mathematically requires that weightings Q,,, and Q,, in
the index (33) are nonzero, a small value (0.01) is used
instead of zero in cases PO and PI to demonstrate how the
system behaves when these weightings are negligible. The
DOF trajectories (x and 6) and force histogram (F,) for the
manoeuvres minimizing the performance indices for cases
P0-P4 are presented in Table 2. The settling times t;% of the
DOFs are also listed for each case. All plots in Table 2 are
shown over the first 8 s of the manoeuvre period except for
PO (305s).

Note that the first modal variable #; primarily influences
the cart’s rigid body mode of motion, while the second modal
variable #, influences the suspended load rotation. In fact
there is a direct relationship between the angle of the load
rotation and the second modal variable (6 = \/5112) such
that this angular trajectory is directly affected by varying the
weights given to 7,(Q,,) and its derivative 7,(Q,,,) in the
performance index (33). Likewise, the speed at which the
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cart can be made to reach its target is affected through the
weightings given to #,(Qg,,) and its derivative 7,(Q,,,).

The performance index in case PO heavily weights the
modal controls ¢, and u, in comparison to modal variables
n; and 77, (100 times more) and neglects the modal velocities
7, and 7,. The resulting control requires a small peak
force (0.7 N), producing small maximum load swing angles
(0.06 rad or 3.4 deg), but requires a very long manoeuvre time

to converge to the origin (tif% ~ 440s). If the weightings R,

and R,, were increased even further relative to the weighting
Q1. the maximum force requirements and angular rotations
would become infinitesimal while the settling times would
approach infinity.

In case P1a significant weighting value is given to the first
modal variable 5, (Q,;; = 6), while other weightings remain
unchanged from case P0. This control greatly increases the
speed at which the cart reaches its target position at x = 0 (~
2's), but upon reaching this position the load undergoes large
swing angles (1.0 rad or 57 deg) that persist for a very long
time (tjf% =~ 4405).

The maximum force increases significantly (173 N) in
comparison to case PO because the rigid body cart motion
requires much larger accelerations during the initial 2s of
the manoeuvre in order to quickly attenuate #, due to its
significant weighting value.

Case P2 improves the load swing attenuation, which was
poorly dampened in case P1, by including a large weighting
value to the second modal variable #, (Qg,, = 50) (other
weightings remain the same as in the previous case). The
maximum load swing angle is reduced (0.8 rad or 46 deg)
and the load swinging motion is damped much more quickly
(~6.55s). The cart translation requires similar accelerations
and thus approximately the same maximum force (17Z.3 N) is
needed. By inspection, one can see that case P2 produces
similar behaviour to the control given in [1] shown in Figure 3
and likewise shares the problem of target overshoot and large
persistent load swings.

Case P3 reduces the tendency of the cart to overshoot
the target by also giving a significant weighting to the first
modal velocity 7, (Q,;, = 4). However, large persistent load
swings are still present, and so convergence is not significantly
improved over that produced in case P2. The maximum
required force (17.3 N) remains essentially unchanged, while
the load swing angles are reduced slightly (0.75 rad or 43 deg).

The performance index in case P4 includes a large weight
on the second modal velocity 7, (Q,,, = 50), while keeping
all other weightings unchanged from case P3. This produces
a control that reduces the magnitude of load swing angles
(0.45 rad or 25.8 deg) while attenuating the swinging motion
more quickly (tj[% =~ 4.2s). The gantry crane performs
the manoeuvre in essentially a single load swing cycle,
with similar initial cart accelerations and thus maximum
forces (173 N) as in previous cases. Case P4 produces faster
convergence then previous cases because, from an optimal
control perspective, it incorporates all of the gantry crane’s
states in the minimization by assigning all weightings in the
performance index (33) with significant numerical values.



Journal of Applied Mathematics

1

TaBLE 2: DOF responses and force histograms that optimize performance indices PO-P4.
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It is essential that the second modal velocity #, is given a
significant weighting value to yield fast convergence, because
the energy of the suspended load oscillates equally between
potential and kinetic energy. Since potential energy and
kinetic energy are proportional to the squares of displace-
ment and velocity, respectively, both of the corresponding
states #, and 7}, should carry a significant and approxi-
mately equal weight in the performance index (33). Without

weighting the load swing velocity state, the control focuses on
eliminating swing angles but not swing velocities. However,
when the load is near the bottom of its swing, its velocity is
near maximum (17, = V20 — max), while its displacement
is near minimum (1, = V20 — min). Therefore, the
optimal force derived without consideration for the load
swing velocity is unable to eliminate any significant portion of
the load swing energy when the load is near the bottom of its
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swing (0 — 0). Cases P2 and P3 failed to adequately weight
1,, resulting in larger, more persistent load swings than in case
P4.

The control produced in case P4 provides a significant
improvement over the control presented in [1], as it converges
more quickly to the origin, while reducing load swing
magnitudes, without any increase in the required maximum
forces. To complete the design of this closed-loop control, the
gains are obtained from (50) in a similar fashion as in case (B),
giving

Gy = [gu gzd] = [3-46 9-10])

Gv = [glv gZV] = [5'43 1'79]'

(54)

Note that the gains g;; and g, are somewhat close to the
gains for the control presented in [1] (53), but gains g,,; and
g, are substantially different.

(D) Closed-Loop Control of Gantry Crane: Fully Actuated
Control. The CMSOC method can also be applied to fully
actuated systems. To illustrate this, consider the same gantry
crane system, now with both actuators F, and F; acting as
real actuators (no dummy actuator). This situation may arise
practically when a person is employed to guide the suspended
load while the cart performs its translations.

Since the problem is fully actuated there, are no additional
constraints on the system motion and consequently no
Lagrange multipliers needed to enforce them. The optimal
forces can be solved by calculating the inverse dynamics
directly from (6b), which takes form (30) (except F,;#0),
written as

M Mm
F:E_1U=>[£‘;]= VM A M [Z;] (55)

M+m \VM+m

The optimality equations in the differential operator form (21)
become

E,Y = [E][] =0 = [% 1?2] [Z;] =0, (56

where

o4~
E, =R,D" -Q,;D" + Qu1>
= 4 = 2 = 2 (5 4 A (57)
E, =R,D" + (2R22w2 - szz) D™+ (Rzzwz + dez) .

With weightings chosen according to the performance index

in case P4 (Qyy, = 6, Qg = 50, Q,;; = 4, Q,5, = 50, and

R,, = R,, = 1), the roots of the characteristic equation (39)

for the system given by (56) (E,E,|,_,, = 0) take form (24)
with the following real and imaginary parts:
a, =362, B, =278,

(58)

o, =149,  f, = 0474
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For any fully actuated system, each modal variable #; is inde-
pendently controlled by a single modal control u;, resulting
in uncoupled solution functions of the following form:

n; = e (cl-1 sin (B;t) + ci2 cos (ﬂlt)) (59)

For the gantry crane (i = 1, 2) the four unknown integration
constants ¢ are obtained by substituting the four initial
conditions for #;(0) and #;(0) given by (36a). As in the
previous cases, the solved modal variables in form (59)
are mapped into the original coordinates to obtain the
DOF trajectories and optimal forces. Figure 4 shows the cart
trajectory x and the optimal forces on the cart and suspended
load F, and F;, respectively. The angular trajectory 0 of the
load is not shown because it remains zero (0 = 0) all the
time. Practically, this means that for the optimal manoeuvre
the person (actuator) guiding the suspended load must
simply act to prevent it from swinging. Fast convergence
(tj[% = 0.78s) to the origin is obtained; however the task
requires relatively large maximum forces (104 N) compared
to previous cases. The required actions of cart-driving force
F, and suspended load guiding force F, are identical, as the
whole gantry crane system moves as a single rigid body. If
smaller forces are desired, then a larger weight may be given
to the modal controls (R,,,R,,) in the performance index.
Note that only a 30 N maximum force would be required
to execute the manoeuvre in 1s by applying an open-loop
control scheme.

(E1) Closed-Loop Control of Modified Three-DOF Gantry
Crane (Two Actuators). To illustrate the application of the
CMSOC method to a problem of a higher dimension (n,,, =
3), the gantry crane is modified by adding an additional link
with an end load, as shown in Figure 5 (a case of a double-
pendulum gantry crane in 3D was presented in [19]). In
comparison to the previous cases considered the control task
is unchanged except that the oscillations of the additional
suspended load must also be damped. Consider the control
that uses two actuators (1, = 2)—the standard cart-driving
force F, and torque T, produced by a motor fixed to the cart
and applied to the first rigid link of length L, which supports
the mass m,. Dummy torque T to be used in formulating
the augmented system is applied to the second link of length
L, which carries mass m,. All other physical variables are the
same as in the original gantry crane model with the exception
of 0, and 0,, which denote the angles of links of lengths L, and
L,, respectively.

The standard matrices in the augmented system’s equa-
tion of motion (1) for this new model are

M+m; +m, —-m; —m, —m,

M=| -m-my, m+m, m, |,
—m, m, m,
0 0 0
g(m; +m,) 0
K =
L bl
1 gm
0 0 2
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FIGURE 5: Modified three-DOF gantry crane model.
Lo 0 following numerical values are adopted: M = m; = m, =
, 0 L _i lkg,Ll=L2=1m,a=—5m,andg=9.8m/sz.
B = L, {41 : The set of n,,, = 3 equations of motion (1) are uncoupled
0 0 — in modal space, with matrices of ordered frequencies Q and
L, mode shapes ¢ normalized according to (7a) and (7b), taking
(60) the following forms:
0 0 0 .577 577 577
The augmented system consists of DOF vector q = Q=10124 o0 ®=| 0 366 1.37|. (61)

[x L,6, L202]T and force vector F; = [F, T, Td]T. The 0 0 464 0o 1 -1
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As before, the first mode represents the rigid body mode
of motion (wf = 0), while the second and third modes,
with the squared frequencies @} = 12.43 (rad/s)” and w? =
46.37 (rad/s)*, represent the swinging modes of the rotating
link-masses. ,

Augmented force vector F, is related to modal control
vector U through the inverse of transformation (6b) which
is partitioned according to (9) to give

R 173 0 | 0 Uy F,
B'U=| -173 137| 366 ||u|=|T,|. (62
—577 789 =211 | | u, T,

The constraint equation (1, = 1) is obtained from the bottom
row of (62) (T; = 0) and normalized into the following form:

U
AU:[I -1.37 .366] u, | =0. (63)
Us

The n, = 2 actuation forces may be obtained directly from
the top two rows of (62) in terms of all modal controls, but
according to (11) these forces may be expressed in terms of
two independent modal controls (chosen as u; and u,) in the
following form:

- 173 0 |[u F,
BU, = [—2.73 2.73] [u;] - [Ta]' (64)

Selecting a performance index of form (12) gives three (n,, =
3) optimality equations in the form (18) that, with the
constraint equation (63), may be written according to (21) in
the following form:

E, 0 0 |E;][n
0 E, 0 |E n

E Y: 2 AZl 2 =0,

P 0 0 E;|E; ||Ms 0 (65)
Ey Ey E31‘ 0 v

where

E; = EiiD4 - (ZEiiwiz - ém‘) D’ + (Rii“’;l + 6dii)>
~ . (66)
Ej=A;(D’+w}) (i=1,...,3 j=1).

The parameters A j; in the equation above are the jth row and
ith column components of the constraint matrix A given by
(63). The selected weightings for the performance index are
Qi = 6, Qupy = Quzz = 50, Q1 = 4, Qypp = Q33 = 50, and
Ryy =Ry =Ry = 1.

The twelve (4n,,) roots of the characteristic equation
(23) are obtained in the complex form (24) and are used to
generate an assumed solution of form (25) for each unknown
modal variable (n,, = 3) and Lagrange multiplier (n, = 1).
Half of these roots generate exponential growth functions
that are eliminated by assuming their corresponding integra-
tion constants to be zero-valued. Then through the method
of undetermined coeflicients, four (n,, + #,) sets of six linear
algebraic equations are obtained. Replacing one set by the set
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of six initial conditions, the unknown integration constants
are obtained by solving the set of twenty-four equations (the
number of equations is 2n,,(n,, + 1,)).

The boundary conditions for this problem are the same
as those chosen for the original gantry crane, written in
(36a), with the additional condition that the initial and final
positions and velocities of the third modal variable #; are also
zero. In other words, the manoeuvre requires a horizontal cart

translation from a resting position at x = a = —5m with
both links hanging vertically to the same resting position at
the origin.

Figure 6 shows trajectories x, 0, and 0, of the three-DOF
gantry crane as well as required actuation forces F, and T,.

The manoeuvre, requiring a maximum force of 29 N and
a maximum torque of 18 Nm, is effectively completed after
t2% = 4s. The maximum load swing angle of the first link is
0.11rad (6.3°) and that of the second link is 0.48 rad (27.5 deg).

(E2) Open-Loop Control of Modified Three-DOF Gantry Crane
(One Actuator). In order to show the case where one actuator
controls three DOFs, the optimal manoeuvre for the modified
gantry crane using only a single actuator—cart-driving force
F,—is investigated for an open-loop scheme. Both of the
torque actuators T, and T, (Figure 5) are treated as dummy
actuators and so the inverse transformation, while identical
to (62), is repartitioned in the following form:

173 0| © U F, F,
B'U=| 173 137] 366 ||w,|=|T,|=]0
~.5774 .789‘—.211 U T, 0

(67)

The constraint equations (n, = 2) are obtained from the two
bottom rows of (67) and normalized into the following form:

Uy

u, | =o. (68)
u

el

0 1 1

According to (11) the single cart-driving force may be
expressed in terms of the independent modal control (chosen
as u;) in the following form:

BU, = [1.73] [4,] = [F,]. (69)

Note that matrix B is the same for all cases involving one
actuator. Choosing a performance index in form (12) gives
three (n,, = 3) optimality equations in form (18) that, with
constraint equation (68), may be written according to (21) in
the following form:

E, 0 0 Eu EIZ 0
0 E, 0 §21 ]Ezz M
EY=| 0 0 Ej;|E; E; |[1:]=0, (70)

%1 §21 §31 0 0 1
E, E,, E5;| 0 O 1%)
where
D 4 = 2 ~ 2 = 4 ~
E;=R;D" - (ZRiiwi - Qvii) D™+ (Riiwi + Qdii)>
(71)

= 2, 2 . .

E;j=A;(D+w]) (i=1,...,3,j=2).
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FIGURE 6: (a) Cart trajectory, (b) swing angles, and (c) force/torque for the modified gantry crane.
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FIGURE 7: (a) Cart trajectory, (b) swing angles, and (c) force for modified gantry crane (open loop).

The assumed weightings are R;; = R,, = R;; = 1 and
Qu = Quxn = Quzz = Quui = Quyy = Qa3 = 0 (only the
control effort is to be minimized). Consistent with the open-
loop control presented in case (A) the finite manoeuvre time
is chosentobef; = 4s.

The solution procedure is similar to previous examples.
Figure 7 shows trajectories x, 0;, and 6, as well as the required
cart-driving force F,. The manoeuvre requires a peak force
of 4.8 N and completes the task in exactly 4 s. The maximum
load swing angle of the first link is 0.19 rad (11°) and that of
the second link is 0.35 rad (20°).

4. Conclusions

The CMSOC methodology was presented as a means of
solving linear underactuated (or fully actuated) control prob-
lems. The gantry crane problem was selected to illustrate
in detail various operations required for different control
methodologies. As demonstrated the method can be applied
to open-loop control schemes as well as closed-loop (asymp-
totically convergent) control schemes. In the latter case the
weightings of the performance index can be translated to the
gains of the full-state feedback closed-loop controllers. The
operations would be identical for any similar problems with
larger numbers of modes and actuators.
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The delay-dependent exponential L,-L ., performance analysis and filter design are investigated for stochastic systems with mixed
delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-
dependent sufficient condition for the existence of the L,-L ., filter is established, by choosing an appropriate Lyapunov-Krasovskii
functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix
inequalities (LMIs). By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure
that the filter error system is exponentially stable with a prescribed L,-L ., performance y. Numerical examples are provided to

illustrate the effectiveness and significant improvement of the proposed method.

1. Introduction

Time delays are quite often encountered in various practical
engineering systems, and they are regarded as one of the main
sources causing instability and degrading performance of
control systems [1-3]. Over the past decades, numerous re-
sults and various approaches on delay systems have been re-
ported in the literatures. Many researchers have focused on
the stability analysis, stabilization, and filtering for time-delay
systems; see [4-9] and the references therein. Time delays are
usually classified into discrete delays and distributed delays.
In the existing literatures, discrete time-delay system [10-12],
distributed time-delay system [13, 14], and mixed (including
both discrete and distributed time delays) system [15-17] are
considered.

Since certain unavoidable stochastic perturbations are
widely existing in many engineering systems, stochastic sys-
tems have gained considerable research attention over the
past few years [18-20]. Stochastic dynamic modeling has
come to play an important role in many fields of science and

engineering. In the past years, many researchers have focused
on the problems of stability and stabilization of stochastic
time-delay systems. For instance, robust stabilization for a
class of large-scale stochastic systems was investigated in [21],
delay-dependent stability results for stochastic systems were
presented in [22-26], and H, state feedback control and H
dynamic output feedback control for uncertain stochastic
time-delay systems were investigated in [27, 28], respectively.

In the field of stochastic dynamic system with time delays,
the filtering problem, which is to estimate the unavailable
state of variables of a given control system, is also an import-
ant issue. Kalman filtering scheme is a well-known effective
way to deal with the filtering problem. However, it has some
limitations in practical applications due to the fact that it assu-
mes that the system and its disturbances are exactly known,
that is, stationary Gaussian noised with known statistics.
Under this view, recently, H , filtering, mixed H,/H, filter-
ing and L,-L_, filtering for stochastic time-delay systems
have been widely studied [8, 9, 29-38]. In H,/H_, filtering,
and L,-L, filtering problems, the external disturbances are



assumed to be bounded. In H,/H, filtering problem, it re-
quires that the filtering error systems satisfy not only a pre-
scribed H, disturbance attenuation level but also the H, per-
formance (minimum of the H, norm of transfer function of
the filter error systems), while in L,-L filtering problem, it
requires that the filtering error systems satisfy a prescribed
L,-L, disturbance attenuation level. H, filtering and mixed
H,/H_, filtering problems of nonlinear stochastic systems are
investigated in [30, 31]. In [32], a delay-independent robust
L,-L, filtering design approach for uncertain stochastic
time-delay system is investigated. It is well known that the
delay-independent results are generally more conservative
than the delay-dependent ones. Authors in [33-35] developed
delay-dependent filtering for stochastic time-delay systems.
Authors in [36] proposed a delay-dependent L,-L, filter
design approach for stochastic time-delay systems, based on
a delay partitioning technique presented in [37]. As the results
showed, delay-partitioning can reduce conservatism to some
extent. Authors in [38] investigated the problem of robust
L,-L, filtering for stochastic systems with both discrete and
distributed delays. Although the filtering problems for
stochastic systems with time delays have been well investi-
gated in the aforementioned literatures, most of them are
dealing with linear stochastic time-delay systems. To the
authors’ knowledge, the L,-L  filtering problems of stochas-
tic time-delay systems with nonlinear perturbation are still
insufficient. This motivates the authors to deal with the
L,-L, filtering problem of a class of nonlinear stochastic
time-delay systems.

This paper focuses on the problems of delay-dependent
L,-L, filtering for stochastic systems with mixed delays and
nonlinear perturbations. By Lyapunov-Krasovskii approach
based on the delay partitioning and integral partitioning tech-
nique, we first develop a delay-dependent sufficient condition
for L,-L, performance analysis. And then, an improved
delay-dependent sufficient condition is obtained for the exist-
ence of desired filter in the form of linear matrix inequalities
(LMIs). The L,-L ., performance analysis and filter design of
linear stochastic system with mixed delays are also investi-
gated. Finally, numerical examples are provided to show that
the proposed method is effective and less conservative than
some existing literatures.

Notations. Throughout this paper, X > 0 (X < 0) means that
the matrix X is positive definite (negative definite). R” de-
notes the n-dimensional Euclidean space; R"™" is the set of
all m x n real matrices; L, [0, 00) is the space of square-inte-
grable vector functions over [0, 00). The superscript “T” re-
presents the transpose; “*” denotes the symmetric terms in a
matrix; diag() denotes a block-diagonal matrix; A,,.() and
A min() denote the maximum eigenvalue and minimum eig-
envalue, respectively. sym(X) = X + XT; | - | denotes the
Euclidean vector norm; | - ||, stands for the usual L, [0, co)
norm. (Q, F, P) is a probability space with () the sample space,
F the o-algebra of subsets of Q, and P the probability mea-
sure on F. E{-} denotes the expectation operator with respect
to some probability measure P. 0 and I represent zero matrix
and identity matrix with appropriate dimensions, respec-
tively, unless we say otherwise.
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2. Problem Formulation

Consider the following stochastic systems with mixed delays
and nonlinear perturbations:

dx (t)

= [Ax B +Ax(t-h)

+A, Jt x(s)ds+A;f (x(t),x(t—h),t) +Avv(t):| dt
t-d
+g(x(t),x(t-h),t)dw(t),
dy (t)= [Cx B +Cix(t-h)+C, Jt x(s)ds+C,v (t)] dt,
t—d

z(t) = Lx(t),
x() =), Vtel-1,0],
W

where x(t) € R" is the state; y(t) € R™ is the measured out-
put; z(t) € RF is the signal to be estimated; v(f) € R7 is
the disturbance input which belongs to L, [0, 0c0), which is the
space of square-integrable vector functions; w(t) is a one-
dimensional Brownian motion defined on a complete groba—
bility space (Q, F, P) satistfying E{dw(t)} = 0 and E{dw"(t)} =
dt; ¢(t) is an initial function that is continuous on [-7, 0] with
T = max{h,d}. h and d are discrete and distributed constant
delays, respectively. f(-,-,-): R"xR"xR — R"isanonlinear
function, which satisfies

If oyt < |Ex| + B[, f(0,0,00=0, ()

where F; € R”" and F, € R™" are known constant matrices;
g~ ):R"xR" xR — R"is a nonlinear perturbance input
function, satisfying

lg (x, 5, t)|2 < |G1x|2 + |G2y|2, g(0,0,00=0, (3)

where G; € R™"and G, € R™" are known constant matrices.
For system (1), we are interested in constructing the fol-
lowing full-order linear filter:

Zf (t) = Cf.xf (t),

where x f(t) € R" is the filter state; A > By,and C 7 are filter
matrices to be determined.
Define

£ =[x"0, 0], et =z®)-z1). 6
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Then, the filtering error system can be written as

dE(t) = | AE(t) + A HE (t - h) + A H Ld £(s)ds

+Z37(E(t>,£<t—h>,t)+Zvv<t)]dt ©

+g9@& ), 5@ —h),t)dw(t)
e(t) = LE (1),

- Al
Al = [chl] >

where

— [A o
A5 a)
B,C A,

— A — A, O
P!
2 [chz =10 o
— A
sz[ ] H=1L, 0],

Bva nown )

FE®.ECE-h),t) = [f(x(t)’xo(t—h),t)],

GEWM.E(E-h),0) = [9(x(f)»x0(t—h),t)],

L=[L -Cf].

The objective of this paper is to design full-order L,-L
filter (4) for the stochastic time-delay system (1) such that the
filtering error system (6) satisfies the following two require-
ments:

(i) the filtering error system (6) with v(t) = 0 is expo-
nentially stable [39];

(ii) under the zero initial condition, the filtering error sys-
tem (6) is stochastically asymptotically stable and
achieves a prescribed L,-L  attenuation level y. The
filtering error e(t) satisfies

lle Ollg,, < ylIv©ll (8)

with ()l = sup, VE{e®P}, Iv®)ll, = /[, v (e)v(t)dt

for any nonzero v(t) € L,[0, 0o].

Before presenting the main results of this paper, we intro-
duce the following lemmas, which will be essential to our
derivation.

Lemma 1 (see [40]). For a given symmetrical matrix S =

511 le _ T _ ol . ..
(SITZ s, ) whereS,, = S,, and S,, = S,,, the linear matrix ine-

quality S < 0 is equivalent to

-1¢T
S <0, S22 = 812511512 <0,
or )
-1¢T
Sy, <0, Si1 = 8125581, < 0.

Lemma 2 (see [1]). For any positive symmetric matrix W €
R™", scalars 8, and &, satisfying 8, < 8,, a vector function
x:[6,,8,] — R, one has

5,
J x! (s) Wx (s)ds

1 5, T 5,
> W(L x(s)ds) W(L1 x(s)ds).

Lemma 3 (see [14]). For any positive symmetric matrix W €
R™", scalars a and b satisfyinga < b < 0, a vector function
x : [a,b] — R", one has

(10)

Lb J;;L Xl (s) Wx (s)dsdA

> cﬂzﬁ < J: JtiAx (s)ds d)t)TW( Lb J:Mx (s)ds d/\) .

(11)

3. Filtering Performance Analysis

In this section, a new delay-dependent condition of the
L,-L, filtering performance analysis for system (1) will be
presented. A Lyapunov-Krasovskii functional is constructed;
based on the idea of delay partitioning and integral partition-
ing, the conservatism will be reduced. For the convenience of
expression, assume that the filter matrices (A £ By and C f)
are known.

Theorem 4. Consider the stochastic time-delay system (1). For
given scalarsy > 0,h > 0,d > 0, p > 0, and € > 0 and integers
r, 2 1landr, > 1, there exists a linear filter (4) such that the
[filtering error system (6) is stochastically asymptotically stable
with a guaranteed L,-L . performance v, if there exist sym-
metrical positive definite matrices P € R*™*', Q, € R™",
R, € R™ (i =1,2,...,r)), W; € R™", and Z, € R™" (j =

1,2,...,1r,) and matrix M € R™" satisfying

(@, ®, ®, PA, PA, A H'M]
£ ®, 0 0 0 @
* O 0 0 )]
= ? —r 2 <o, (12
* * * —el 0 AJH M
« -1 AHM
L * * (D66 i
P<pl, (13)
_T
r- [P L ] >0, (14)
* y I



where

@, =PA+A P+H'QH-H'RH

_Z <21—1 )H

271,
+<d> ZH W,H + pH'G{G,H +eH"F| F,H,
&)

@), = H'RK + PAK, ,
®y; = PAK, +H'Z,

1 1

Zz="z -z, .. z
Zd[132 2r,— 172"
[ Q-Q ]
R, - R, R, 0 0
Q3 _Qz
* 0 0
_R3 _RZ
O, = . : >
er - er—l
* * R, -R,_, R,
L % 3 cee E3 622_‘
2 =-Q —R + PGng + SFzTFz’
7T,
DOy = KrlAlH M,
. 2m? 2m*
q)33 = d1ag (_Wl - ?Zl,—Wz - WZZ,. . "_Wr2

2
),
(2r,-1)d*> "

Oy = KA, H' M,
h 2n d 21, 2]
(D%:(r_) ZRI-+<E> ]Zl 5 z -M-M",
[In Onx(rl—l)n] >
r = [Onx(rl—l)n In] >
K, =[ 11

nxryn’

(15)

Proof. First, show the asymptotic stability of system (6) with
v(t) = 0. For simplicity of notations, rewrite the filtering error
system (6) as

dE@) =u@)dt +m(t)dw (1), (16)
where
u(t) = AE(t) + A\HE(t — h) + A,H Jt E(s)ds
t—d

FAFEDEE R0+ A (), a7

n(t)=g@&®),5t-h),1).
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Next, denote #(t)dt = d&(t), and choose the following
Lyapunov-Krasovskii functional:

V(&1)

et ((=1)/r)h
CLIORY

i=1 Jt=(@i/r)h

rzl h J—«i—l)/mh
+ J—
~Gi/r)h

&" (s) H'Q,HE (s) ds
j n' (s) H'R,Hr (s) ds dO
t+0

2og ~(G-D/r)d
£,
1

j £ (s) H"W, HE (s) ds o

j= Ty J=(j/r)d

B G-/ (0 e .
+ZJ J J n (s)H ZjHﬂ(s)dsdﬂdG.
=1 I-(jir)d 0 Jeep

(18)

Then, by It6 differential formula, the stochastic differential
along the trajectories of system (6) is

V(&,t) =LV (&)dt + 28 (t) P () dw (t),  (19)
where
V (§,t) = 28" (t) Pu (t) + trace (n" (t) Pr (1))

+ Z{T (t - %h) H'QH¢ (t - l;—lh>

1

-Zs (t—— )H QHE(t——h)
+ (%)Ef (t) H'R;Hn (¢)

;1T (s) HTR,-Hn (s)ds

T Jt((il)/rl)h
t

i=1 r =(@i/r)h
d 21,
+ (—) Y& () H'W,HE (¢)
2 j=1
((j-D)/ry)d

Y4
]:1 t=(j/ry)d

Op=

rzz J((jl)/rZ)d
i1 J=(j/r)d

j=1

&7 (s) H'W,HE (s) ds
=—n (®)H"Z;Hn ()

t
I 7" (t) H" Z,Hy (¢) ds do.
t+6

(20)
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By Lemma 2, we have

rlﬁ

t=((i-1)/r)h
j ;1T (s) HTRiHi/] (s)ds

n(s) ds)

T t=((i-1)/r)h
x H'RH J
t=(i/r))h

=_g<§<t—i;—llh)—§<t—%h)>
x H'R.H <«$ <t— %h) —E(t— rilh>>

(21)

Ty Jt=(ifr)h

) ( t~((i-1)/ry)h
Z;' Jt—(i/rl)h

i=

T
< -

1 (s) ds)

T

153 d
[§)

t=((j-1)/ry)d - -
J E (s)H W'ij(s)ds
t

(s) ds)

T t=((j=1)/r,)d
xH W;H J
t=(j/r,)d

By Lemma 3, we have

—(j/r)d

1 ct=((j-1)/r,)d
<- 4
Z (Jt(j/rz)d

j=1

=1
T
(22)

E(s) ds) .

2 =((j-1)/ry)d t T T
- j J 7" (&) H" Z,Hy (t) ds 6
t+0

j=17-(i/r)d

T =((-D/r)d ot
xH Z;H J J
~(j/r)d t+0

2/ 4 t=((j-1)/r))d
) (—E - ;
r t—(j/ry)d

d t=((j-1)/ry)d
xH'ZH( =) - J
r, t

n(s)ds dG)
T
(s) ds)

E(s) ds) .
(23)

_ 2 2 (rz
j:12j—1 d

=(j/r,)d
From (16), for any appropriately dimensioned matrix M, we
have

27" () H" M H [u (t) dt + 7 (t) dw () — 7 (t) dt] = 0.
(24)

On the other hand, (2) implies that there exists ¢ > 0 such
that

&' (t)eH"F] F,HE (t)
T T T —T— (25)
+& (t—h)eH F, F,HE(t—h)—¢f f=0,
where we take f for f(x(t),x(t — h),t), for simplicity of
notation.
Notice the fact of (3), and from (13), we have
trace (7TT (t) P (t))

<& (t)pH GIGHE (t) + £ (t — h) pH' GLG,HE (t — h).
(26)

Combine (20)-(26); then

LV (x,,t) <7 ()DL () + 24" (1) H MTHr (t) do (2)

2 2/ r((-D/r)d T (27)
<- L<T_2> (J ’ J q(s)dsd@)
m2i-1\d =(ifr>)d t+6 where
wy=[g, @ &0 fo 1" @eH],
A T 1 T oT 2 T T T
= o g (e- ) e (e 2n)u e e,
. ¢ . . t—(1/ry)d - t=((r,=1)/r,)d T T
& (1) = H €7 (s) H'ds j & () Hds --- J £ () H ds],
t—(1/ry)d t—(2/ry)d t—d (28)
@, ®, ®, PA, A H'M
. * O, 0 0 Dy
O=] x x Oy 0 D36
* *  —gl ZZHTM
* * * (O
Thus, By Schur complement lemma, it is easy to show that ® < 0
. implies @ < 0. Combined with (29), these imply that, for any
E{LV (§,1)} <E{{" () DL (1)} (29)  {(t) #0, we have E{LV(£,, 1)} < 0.



By Dynkin’s formula, there exists 8 > 0, such that

eP'EV (§,t) < EV (&,,0). (30)

Recalling the Lyapunov-Krasovskii functional in (18), notice
the fact that there always exists x > 0 satisfying

IO <«lE@)| (31)

for any —7 < t < 0 such that

EV (&,0) Zoc sup EJE (s)]", (32)

—7<s<0

where «, = malx(P) a, = hmax{[|Ql}, oy
(ch’[2r )max{|R,|l}, oy = (d°/2r,)max{[W;]}}, and a5 =
(kd® /6)max {I1Z )
On the other hand, from (18)
EV (&) 2 Apin (P)E[E )] (33)
From (32) and (33), it can be easily obtained that
ElE (59)]" < ae™ sup EE (), (34)

—7<s<0

where o = Zl 1 %/Apin(P) and @ is the initial condition of
filtering error system (6). Then by exponential stability defini-
tion of stochastic systems [39], the filtering error system (6)
with v(t) = 0 is exponentially stable in the sense of mean
square.

Now, we will establish the L,-L ., performance for the fil-
tering error system (6). To this end, we assume the zero initial
condition {(t) = 0 for t € [~1,0]. Under the initial condition,
it is easy to see that, for any t > 0,

Bl ={[ weal. o9
Define
J () =E{V (§.t)} - Lt v (s) v (s) ds. (36)

Then, for any nonzero v(t) € L,[0,00) and ¢ > 0, combined
with (29), (35)-(36), we have

J@t) = “ [LV (&s) v (s)v(s)]ds]»
(37)

t
< E“ 9T(s)®9(s)ds]>,
0

where 97(t) = [ () 5 NG, f vi(t) 1y (t)HT] ® <0
ensuring that J(t) < 0. Thus,

t

E{&7 (0) PE (0} < E{V (§,1)) < J V() v(s)ds.  (38)
0

Moreover, by Schur complement, (14) holds if and only if

L'L<yP. (39)
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It follows from (38) and (39) that

E{le )’} =E{&" 0T TE0} < yE{E" () PE (1)}
(40)

<y'E{V (1)} <y’ J'Ot vl (s) v (s) ds.

Therefore, if (12)-(14) hold, the filtering error system (6)
is mean-square exponentially stable with a prescribed L,-L
performance y under zero initial condition. This completes
the proof. O

In system (1), if A; = 0 and g(x(t), x(t — h),t) = Bx(t) +
Byx(t~h)+B, [ x(s)ds+B,u(t), then the linear stochastic
system with mixed delays can be written as

dx (f) = [Ax )+ Ax (- )
‘A, Jtd x(s)ds+ Avv(t)] dt
" [Bx (t) + Byx (t - h)
+B, rd x(s)ds+ B,y (t)] do (1),

dy(t)= [Cx ®+Cix(t-h)+C, J-t x(s)ds+C,v (t)] dt
t—d

z(t)=Lx(t),

x(t) =), Vtel[-1,0]

(41)

which is the same as the system in [38] with constant delays.
Thus, following the similar lines in Theorem 4, a sufficient
condition can be obtained guaranteeing that there exists a lin-
ear filter (4) such that the filtering error system is exponen-
tially stable and achieves a prescribed L,-L ., performance y.

Corollary 5. Consider the stochastic time-delay system (41).
For given scalarsy > 0, h > 0, and d > 0 and integers r; > 1
and r, > 1, there exists a linear filter (4) such that the corre-
sponding filtering error system is exponentially stable with a
guaranteed L,-L ., performance y, if there exist symmetrical
positive definite matrices P € R*™%, Q; € R™, R «
R (i = 1,2,...,1), W; e R™", and Z; € R™ (j =

1,2,...,1,) and matrix M € R"" satisfying (14) and

3, ©, O, PA, A H'M
+ @y 00 D6

D=| + * @y 0 D + ngBg <0, (42)
* * -1 ZTHTM
* * * Dy

where ®,, = ®,, — pH' GIG,H - eH' F| F,H, ®,, = ®,, -
K} (pGyG, + eFy Fy))K, , and By = [B B,K, B,K, B,



Journal of Applied Mathematics

4. Filter Design

In this section, we will focus on the design of L,-L , filter for
stochastic system (1). Based on Theorem 4, a delay-dependent
sufficient condition will be obtained in the forms of LMI,
which ensures that the filtering error system (6) is stochas-
tically asymptotically stable and achieves a prescribed L,-L .
performance .

Theorem 6. Consider the stochastic time-delay system (1). For
givenscalarsy > 0,h > 0,d > 0, p > 0, and € > 0 and integers
r1 = landr, > 1, there exists a linear filter (4) such that the
filtering error system (6) is stochastically asymptotically stable
with a prescribed L,-L ., performance v, if there exist symmet-
rical positive definite matrices X € R™", Y € R*", Q; € R™",
R, e R™" (i = 1,2,...,1), W; e R™" and Z; € R™" (j =
1,2,...,1r,) and matrices M € R™", Zf e R™, Bf e R,

and C € R™? satisfying

Y11 YIZ Y13 Y14 YIS Y16
£ @y 0 0 0 Yy

| x @ 00 Yy
Y= % % x -l 0 AZM <0, (43)
* * * * =] A?M
* * * * * Dge
X -pl Y
Y (1 B P) % <0, (44)
II, <1, (45)
Xy LT
A=|= Y—C? >0, (46)
* % yZI

where
Y, - |:Y111 Kf +fTYiTCT§§] ’
* Af+Af
Y, = [RIKI + (XAAI + chl)Kﬁ] ,
(YA, +B,C)) K,
XA, +B,C))K, +2]

_[(
i = [ (YA, +B,C,)K,,

Y}, = sym (XA+B,C)+Q, - R,

d 21 5} 2 - -
+<r—> ZVVj_ZﬁZj"'pGlGI"'SFlFl’
2 j=1 j=1 J
Y = XA, Y. - XAV+1§fCV
W7 YA, | P lvA, +BiC, |
ATM T 4T T AT
Y6 = [ 0 ] J Yo = K ALM, Y36 = K, Ay M.
n,n

(47)

In this case, the parameters of a desired filter in the form of
(4) can be taken as
17 T -15
Af:Hl Ale 1_.[2, Bf:Hl Bf’
. (48)
Cf = Cle HZ’

where I, and I1, are nonsingular matrices satisfying 0 < I1, =
M} <[,0<Y=ILIL'I],and X >Y > 0.

Proof. From (46), it can be seen that [ £ ] > 0,and X > Y >
0. For any positive definite and symmetric matrix Y, one can
always find nonsingular matrix I, € R™" and 0 < II, =
I} € R™, such that Y = IT, 11,11} .

Set
X 10,
pP= [HlT Hz]' (49)
Then X - I, II,'TT] = X -Y > 0,and P > 0.
Define
_ In On,n
me o ot 0
Then
_ I, 0
le[" J’f”]. (51)
On,n Hl HZ

Substitute A, = ILAL'I, B, = I,B;, C; =
C/IL'II{, and Y = IL,IL,'TI into (43), (44), and (46) and
then pre- and postmultiply (43) by diag{IT*, L L L L
I} and its transpose, respectively. Premultiply and postmul-
tiply (46) by diag{IT™”, I,} and its transpose, respectively.
Noticing that P = [ 1_)1? 11:2 ], using Schur complement Lemma,

one can obtain (12) and (14).
On the other hand, (44) implies

[}Y( ﬂ <p[(l) 2] (52)

Pre- and postmultiply (52) by II"" and 1", respectively.
Notice that Y = ITA™'TT”, one can obtain

X Hl] [I 0]
< . (53)
[HlT 11, Plo 1,
By (45), it is easy to see that
X I 10
) <eo 1) o

So, (13) is satisfied.

Therefore, by Theorem 4, the suitable filter parameters
can be constructed by (48), which ensures the filtering error
system (6) to be stochastically asymptotically stable with
L,-L, performance y. This completes the proof. O



Remark 7. When deriving the results in Theorem 6 based on
Theorem 4, considering dealing with the LMI (13), we give
a method to avoid nonlinear terms emerging. Using Matlab
LMI toolbox, one can solve linear matrix inequalities (43)-
(44) and (46). Then, by matrix diagonalization approach, one
can easily find that diagonally positive matrix I, and non-
singular matrix I1, satisfy [T, = I11Y"'II,. If the obtained
matrix IT, does not satistfy (45), one can take II, for II,/
max{eig(Il,)} and II, for +/max{eig(IL,)}IT,. Thus, the
desired filter parameters can be obtained by (48).

Following the similar method in Theorem 6, one can
obtain a result of filter design for linear stochastic time-delay
system (41).

Corollary 8. Consider the stochastic time-delay system (41).
For given scalarsy > 0, h > 0, and d > 0 and integers r; > 1
and r, > 1, there exists a linear filter (4) such that the corre-
sponding filtering error system is stochastically asymptotically
stable with a prescribed L,-L, performance vy, if there exist
symmetrical positive definite X € R™", Y € R™", Q; € R™",
R, e R™" (i = 1,2,...,1)), W; e R™", and Z; € R™" (j =
1,2,...,r,) and matrices M € R™", Kf e R™, Bf e R,

and C; € R™? satisfying (46) and

1

11 IIZ Y13 YIS YIG Y17

Dy 000 Y Yy
y-|* * P 0 3%6 Y7 | <o, (55)
* % % =1 AM Y
% % % * (O 0
* * * * * Y,

where
5 Y} Kf+ATY+CTB‘§]
1= -~ -~T >
T T
1 1 T T B'X B'Y
Y, =Yy, - pG, G, —€F| F, Y172[0 0 ]>

nn nn

Y,, =K. [B[X BlY|, Yy, =K[[BiX ByY],

Y, =[BIX BlY], Y= [_*X :?]
(56)

Remark 9. The results presented in Theorem 6 and
Corollary 8 can be easily extended to the systems with
only discrete or distributed delays and also to the robust
performance analysis for uncertain stochastic systems with
mixed delays.

5. Numerical Examples

Example 1. Consider the stochastic time-delay system (1)
with parameters

-15 0.5 -0.8 0.2
A‘[—1 —3]’ Al‘[o.z —0.5]’

02 0 0.1 0
AZ‘[O 0.2]’ A3‘[o 0.1]’
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TABLE 1: The upper bound of d,,, forh = 1 and y = 0.2.

Methods dmax
Theorem 6 (r, = 1,1, = 1) 7.481
Theorem 6 (r, = 2,1, = 2) 8.190
Theorem 6 (r, = 3,1, = 3) 8.317
Theorem 6 (r; = 5,1, = 5) 8.379
02 0 2 =05
Ay = [ 0 —0.2] ’ C= [—1.5 0.5 ] ’
0.15 0.1 0.5 -0.2
Ci= [—0.1 0.1] ’ G = [0.6 0 ]’
0.1 0.2 0.1 -0.2
C = [0.1 0.03] ’ L= [ 0 0.1 ]’
e=1, p=7.
(57)

Moreover, for the nonlinear functions, we let G, = G, =
0.1l and F, = F, = 0.1I. Given h = 1 and y = 0.2, from
Theorem 6, one can obtain the upper bound of time delay d,
which is listed in Table 1.

In the case of r; = 2 and r, = 2, the desired filter param-
eters can be obtained:

—-3.8749

—6.1460 2.2644 B -
’ =1 0.7066

A= 1.8868
f =] 0.6168 —4.5679 >

—-0.1266

co- -0.0568 0.0052
£~ 10.0202 0.0057|"
(58)

Example 2. Consider the stochastic time-delay system (36)-
(39) with parameters

Ao [—1.5 0.5]’ A, = [—0.8 0.2 ]

-1 -3 0.2 -05
4, = [062 0(.)2]’ A, = [062 —(()).2]’
N il B e
B, = [062 o(.)z]’ B, = [_(())'2 o(.)s]’ (59)
o B B e
e[ e[z
=[5 or]
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TABLE 2: The upper bound of h, ford = 1and y = 0.2.

Methods Apax
(38] 1.725
Corollary 8 (r, = 1,1, = 1) 3.755
Corollary 8 (r, = 2,1, = 1) 5.054

Corollary 8 (r, = 2,1, = 2) 5.111
Corollary 8 (r, = 3,1, = 3) 5.688
Corollary 8 (r, = 5,7, = 5) 5.920

Givend = land y = 0.2, from Corollary 8, one can obtain
the upper bound of time delay 4. Table 2 lists the results of
Corollary 8 and [38] with constant delays. It is easy to see that
the proposed filter design method in this paper is less con-
servative than [38].

From Corollary 8, in the case of 7, = 2 and r, = 2, the
desired filter parameters can be obtained:

—0.0000 —4.1570]

A= 10.1507 -11.1236
f = 1-0.0000 —2.5527 >

By= [ 6.0149 —6.1484

c. - 0.0000  0.0065
f = 1-0.0000 —0.0027|"
(60)

Remark 3. It can be seen from the results that the conserv-
atism can be reduced with the increase of partition integers.
However, it is necessary to point out that the less conserv-
atism is at the cost of a higher computational complexity.

6. Conclusions

In this paper, a new approach has been developed to inves-
tigate the problems of delay-dependent L,-L ., filter design
for stochastic system with mixed delays and nonlinear per-
turbations. Based on the idea of delay partitioning and
integral partitioning, using Lyapunov-Krasovskii functional
approach, a delay-dependent sufficient condition has been
established that ensures the filtering error system is exponen-
tially stable with L,-L_ performance y. By solving the LMIs,
one can get the desired filter gain matrices. The results also
depend on the partition integers with the increase of partition
integers, the conservatism can be decreased. Finally, numer-
ical examples are presented to demonstrate the effectiveness
of the proposed approach.
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Remarkable improvements in the asymptotic properties of discrete system zeros may be achieved by properly adjusted fractional-
order hold (FROH) circuit. This paper analyzes asymptotic properties of the limiting zeros, as the sampling period T tends to zero,
of the sampled-data models on the basis of the normal form representation of the continuous-time systems with FROH. Moreover,
when the relative degree of the continuous-time system is equal to one or two, an approximate expression of the limiting zeros for
the sampled-data system with FROH is also given as power series with respect to a sampling period up to the third-order term.
And, further, the corresponding stability conditions of the sampling zeros are discussed for fast sampling rates. The ideas of the
paper here provide a more accurate approximation for asymptotic zeros, and certain known achievements on asymptotic behavior
of limiting zeros are shown to be particular cases of the results presented.

1. Introduction

Zeros, along with poles, are fundamental characteristics of
linear time-invariant systems, and the stability of zeros is
one of the most important issues in the model matching and
adaptive control problems. When a continuous-time system
is discretized by the use of a sampler and a hold, the mapping
between the discrete-time poles and their continuous-time
counterparts is very simple; namely, stability of poles is
reserved. There is unfortunately no simple transformation
between the discrete-time zeros and their continuous-time
ones because the zeros of discrete-time systems depend
on sampling period T [1]. More precisely, it is generally
impossible to tranform a continuous-time system with zeros
in the left-half plane to a discrete-time system with zeros
inside the unit circle. That is to say, the stability of zeros is not
necessarily preserved except in special cases. Therefore, one
of the special cases (i.e., the limiting case) is that the sampling

period T tends to zero which has attracted considerable
attention from the engineering point of view.

Perhaps the first attempt to study discrete system zeros
was given by Astrdom and coworkers [1], who describe
the asymptotic behavior of the discrete-time zeros for fast
sampling rate when the original continuous-time plant is
discretized with zero-order hold (ZOH). In this case, the
discretized zeros are further called limiting zeros which are
composed of the intrinsic zeros and sampling zeros [2]. The
former ones have counterparts in the underlying continuous-
time system and go to unity [3] while the latter ones, which
have no continuous-time counterparts and are generated in
the sampling process, go toward roots of a certain polynomial
[4, 5] determined by relative degree of the continuous-time
system.

In much of discussion about the properties of discrete-
time zeros, ZOH has been mainly employed as a hold circuit
since it is used most commonly in practice [1, 3, 6-10].



Taking into account the fact that the type of hold circuit used
critically influences the position of zeros, it is an interesting
problem to investigate the zeros in the case of various holds.
Hagiwara et al. [4] have carried out a comparative study
and demonstrated that a first-order hold (FOH) provides
no advantage over ZOH as far as the stability of zeros of
the resulting discrete-time systems is concerned. Passino
and Antsaklis [11] have considered the fractional-order hold
(FROH) as an alternative to the ZOH and shown that it can
locate the zeros of discrete-time system inside the unit circle
by some examples while ZOH fails to do so. In the very
motivating work by Ishitobi [12], the properties of limiting
zeros with FROH have been analyzed, and the corresponding
pulse-transfer function has been also derived.

Moreover, Ishitobi has definitely presented the relation-
ship between the relative degree and discretized zeros behav-
ior when the continuous-time systems have the relative
degree up to five for sufficiently small sampling periods. Fur-
ther, Barcena et al. [13, 14] and Liang et al. [15, 16] have
extended Ishitobi’s results [12] from different angles and
methods by investigating the limiting zeros in the case of a
FROH. In addition, the limiting FROH zeros [12] have been
also extended by Blachuta [17], who describes the accuracy
of the asymptotic results for both the intrinsic and sampling
zeros in terms of Bernoulli numbers and parameters of
the continuous-time transfer function for sufficiently small
sampling periods T.

In FROH case, the intrinsic zeros are located inside (resp.,
outside) the unit circle for small sampling periods when the
corresponding continuous-time zeros lie strictly in the left-
half plane (resp., right). For sampling zeros, at least one of
the zeros lies strictly outside the unit circle if the relative
degree of a continuous-time transfer function is greater than
or equal to three [12, 18]. This fact indicates that even though
all the zeros of such a continuous-time system are stable, the
corresponding discrete-time system has at least one unstable
zero in the limiting case as the sampling period tends to
zero. Thus, attention is here focused on continuous-time
systems with relative degree less than or equal to two. More
specifically, the corresponding discrete-time plants have one
or two sampling zero(s) in the case of a FROH when the
relative degree of a continuous-time transfer function is one
or two. However, in these cases, the sampling zeros are located
just on the unit circle, that is, in the marginal case of the
stability. More importantly, it is a valuable research topic to
find the criteria which guarantee that stable discretized zeros
are obtained. Thus, the asymptotic behavior of the sampl-
ing zeros is an interesting issue as we explore the stability
properties of the sampling zeros by analyzing the asymptotic
properties as the sampling period tends to zero.

The objective of this paper is to analyze the improved
asymptotic properties of the limiting zeros for discrete-time
models by using a new kind of method. More precisely,
we give an approximate expression of limiting zeros for the
sampled-data system on the basis of the normal form repre-
sentation of continuous-time system with FROH as power
series with respect to a sampling period up to the third-order
term when the relative degree of the continuous-time system
is one or two. Our results include also the finding of how close
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limiting zeros are to the actual intrinsic and sampling ones,
irrespectively of whether they are stable or not. The approach
used could be referred to as an extension of that of [12, 17,
18], and one of the principal contribution in this paper, in
particular, would consequently propose an analytical method
to obtain the FROH zeros as stable as possible, or with
improved asymptotic properties even when unstable, for a
given continuous-time plant. Finally, we further discuss the
stability of the sampling zeros for sufficiently small sampling
periods, and some interesting examples are given to validate
the main results.

2. Sampled-Data Models with FROH

Consider an nth continuous-time system with relative degree
one or two described by a transfer function

G(s):KI;Eg, K#0, W
where
N(s)=s"+b, " +b, ,s" 7+ +by,
m=n-1 or n-2, 2)

D(s)=s"+a, ;5" " +a,," "+ +a,
The paper treats systems with relative degree one or two
because at least one of the limiting zeros is unstable when the
relative degree is greater than or equal to three though it is
slightly a limitation.

2.1. Case of Relative Degree One (m=n—1). The normal form
of (1) with the relative degree one, m = n — 1 is represented
with an input # and an output y [19, 20] as

& =—-dt+ Ku - w,

it = P+ &, )
y =5
where
T
n=[n - .0,
T T
w=cn c=[r n Tl
0 1 o 0 (4)
P = O 1 i = 0 i
by - b, , )

and the scalars d and r; (i = 0,...,n — 2) are obtained from
D(s)=Q(s)N(s) + R(s),
Q(s)=s+d, (5)

_ n-2 n-3
R(s) =1,58 “+1,35 ~+--+1
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FROH

2T

FIGURE 1: The signal reconstruction of a fractional-order hold with
B=-05.

where

d=a

n—1

- bi*l - bid,

-b

n-2>

(6)

= i=0,...,n-2.

When the FROH signal reconstruction method is consid-
ered, the input is described by
u(kT)-u((k-1)T) (t — KT),
T (7)
kT <t<(k+1)T, k=0,1,...,

v(t)=u(kT)+ B

where f3is a real design parameter and T is a sampling
period [11, 12, 18]. It is obvious that FROH is reduced to
ZOH for = 0 while it becomes the FOH for = 1. The
signal reconstruction of a FROH with 3 = —0.5 is shown in
Figure 1.

Suppose u(t) = v(t), and when a FROH is applied, we
have

a(t)zﬁ[u(kT)—uT((k—nT)

], i(t)=---=0. (8)
Furthermore, (3) leads to the derivatives of the output
y=-dE+Ku—-c'y, 9)
y = (d2 - ch) & —dKu + (dcT - cTP) 1+ Ku, (10)
y(s) _ (—d3 n deTq_CTPq)£+ (d2 _ ch) Ku
+ (dcTP —PP-dr + chcT) 1 — dKu, o
y(4) = {d4 -3d*c"q+2dc"Pq - "Pq + (ch)z} 4
+ (—d3 +2dc"q - cTPq) Ku
+ {d3cT —2dc"qc" + "Pqc” + dc" P

~'PP - 4P+ chcTP} n+ (d2 - ch) Ku
(12)

which are expressed by &, 5, and Ku. Further, the derivatives
of iy are also represented by &, , and Ku as

i1=Py+qs (13)
il = (Pq—qd)E+(P2 —ch)n+un, (14)

11(3) = (qu —qc'q-Pqd + qdz) &+ (Pq-qd)Ku
(15)
+ (P3 - chP - chT + chd) 1 + qKu.

Hence, by substituting (9)-(15) into the right-hand side of

(16)

and defining the state variables x; = |[ yk,qz]T, where the

subscript k denotes t = kT, the discrete-time state equations

are definitely obtained. It is easy to show that zeros of a

discrete-time system for a transfer function (1) are derived
from (16).

Now, by applying the explicit expressions of y, ¥,

(4)

, ), and nk,...,n;f), the zeros of (16) are analyzed as
follows:
4 i
T
Vi1 = i—'y](()+O(T5)
i=o b
_ (1 4T+ d* - Tyes T, 2dr,_, - 4’ - cTPqT3
2 6

+
24

(59

44* - Ar, , — 1+ dzﬁT3
24

d* - 3d*r,_, + 2dcTPq1’5_2 -c'P’q_,
" ) yx

+

2dr, ,—d>-c'p

24
d d2 V-
+ <|—ET + BBro_ @ﬁ} Kuy_,
2 6 24
T T
+ (—cTT + dCTCPTZ

T T p2 2\ T
+dc P-c'P +6(rn_2—d)c 73




+ (((d3 - Zdrn_z) R cTchT +dc’ p?

-PP-d*Tp+ rn_chP)

x(24)™") T4) . +0(T°),

=(qT+Pq_da2

e 6+ qd’ - Pqd T3) b

6 6

+ {(% + %>T2—Pq;da3} ki, - Pk,

P? _qc”
+<I+PT+T‘1CT2

6

3 Tp  paT T
+P qc P - Pqc’ +dqc T3)11k+O(T4).

The reason why the explicit expressions of yi, V..
,11,(3) are used is to obtain the approximate

y,(f) and 7, . ..
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andthescalarsd; (i = 0,1)andc; (i = 0,...,n—3) are obtained

from
D(s) =Q(s)N(s) +R(s),
Q(s) = s> +d,s +d,, (21)

(17) R(s) =38 >+ +¢p
where
dy=a,,-b,4—b,5d),
d=a,,-b,_, (22)
=a,—-b_,-b_d -bd,, i=0,...

C ,n—3.

When a FROH is used, the normal form (19) yields the
derivatives of the output

expansion of the limiting zeros for the discrete-time system

with the order T°.

2.2. Case of Relative Degree Two (m=n-2). The normal form

of (1) with the relative degree two, m = n — 2 is represented

[19, 20] as

E= [8 é]£+ [(1)] (Ku-w-dy, —dé&,),

i1=Pn+q,
y=[1 0]§,
where
T T
§=06 &1, n=[n - n.l
w=cn = ¢ g,
0 1 o) 0
P= o) 1 > q-= 0 >

_bo _bn—4 bn—3 1

j =Ku—-d -d§, - CT’1> (23)
¥ = (dod, — ") & + (d} —dy) &, - d, Ku
(24)
+ (dlcT - cTP) 1+ Ku,
(18) Yy = (d; - dod} +dyc’q- <" Pq) &,
+(—c"q+2dyd, - d}) &,
o (25)
+(d} - dy) Ku—d, Kt
+ {— (df - do) ' +d,P- cTPZ} 1
¥ = (dod; - dic"q +2c" qd, - 2d3d,
—'P’q+ dlcTPq) &
+(di - 3dyd; +2d,c"q
-c"Pq + d‘ll) &
\ . (26)
(19) + (—al1 +2dyd, — ¢ q) Ku
+ {chcT —2dyd,c" + d‘z’cT
- (df - do) 'P+d P
—'P’ly+(d} - dy) Kic.
Further, the derivatives of # are also represented as
1:’=P'1+q51> (27)
(20) it = Pqé, +q&, + P'r, (28)
11(3)=(qu—qdo)fl+(Pq—qd1)§2+un (29)
29

+ (P3 - ch) 1,
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’1(4) = (_quo +qdyd, + P3q - qCT‘l) &

+(-qd, + P’q - Pqd, +qd} ) &,
(30)
+(Pq - qd,) Ku + qKu

+ (—chT + qdlcT +Pt - chP) 1.

Hence, by substituting (23)-(30) into the right-hand side of
(16) and

. _ OZO:Z (i+1)
Vi1 = y . yk (31)

and defining the state variables x; = [y, Vi nZ]T, the
discrete-time state equations are obtained.

Now, by using the explicit expressions of y;, y,i, R y](cs)
andn,..., nff), the zeros of the discrete-time system (16) and

(31) are analyzed as follows:

—((2c"qd, - 2d3d, +dod; - dic'q
—dlcTPq + cTPZq)
x(120)7) T5> Vi

d} - d, T 4+ 2dyd, -di - c'q T
2 6 24

+d(2, - 3dyd? +2d,c"q - c"Pq+d} )y
120 k

N {(l N E)TZ— 4d, +dlﬁT3

2 6 24
5d; - 5d, + (di — d,) B
120

T
+2dod1—c q-diT5 Ku,
120

+ T

d d*—d
+ {—ETz + iT3 - —( ! O)ﬂT“} Kuy_,
6 24 120

T T_ T
dic -c'P
+ _C + L ’T3
2 6
dc'p- (df - do) - P2
24
+ ((chcT —2dyd,c" + dichlcTP2

T4

+

—(dj -dy)c"P-c"P?)

x(120)") T5} e +0(T°),

(32)

Ziy,(jﬂ) +0 (TS)

Vier1 = i

M-

Il
o

_ T
_ (—dOT+ —d°d12 €Ap2

T3

d2 —dyd® +d,c"q-c"Pq
+
6

+ ((cTqu —d,c"Pq-2c"qd,

+2dyd, — dyd; +dic’q)

x(24)™") T‘*) Yk

di - doTz + 2dyd, - di -c'q T

+(1—d1T+
6

+d§ - 3dyd? +2d,c"q - "Pq+d} "y
24 Yk

+ {<1+ l;)T— —3d1 ;dlﬁTz

Ad; - 4d, + (d} - d,) B

+ T?
24
T
+2dod1 - C q_d?sz Kuy
24
d
+ —[—;T+#/3T2
2 6

& -d
—( ! o 0) 'BTS} Kuy_,

dcl—c'p
. {T dhe <Py

d,c'P-cTP? - (df - do) !
6

+ T?



+ ((chcT - ZdOdlcT + dicT
- (df - do) dp-c'P+ dlcTPz)
><(24)_1) T4} .+ 0O (TS) ,
(33)

fiwr = Z 11(’)+O( %)

P’q - qdy 1

= (qT+ mT2 +
2 6

P’q - qc’q - Pqd, + qd,d, -
24 Yk

Pq- P’q-qd
+<gTz+ q-9d 5, Pa-qdy 4
2 6 24

~Pqd, +qd:
yPadi i) By,
24 24

+ K(—l + %)f + —Pq—qd1T4} Kuy
6 24 24

p? pP3 _qcl
+<I+PT+7T2+T(ICT3

—pal o Tp_ pacT
Pqc 2ZcP Pqc T4>nk+O(T5).

(34)

Similarly, the reason why the explicit expressions of y, .,

. y,(f ) and nk,...,nff) are used is to obtain the approxi-
mate expansion of the limiting zeros for the discrete-time
system with the order T° when the relative degree of con-
tinuous-time systems is two.

3. Main Results

In the following, a more accurate approximate model of the
sampled-data system is considered by neglecting the higher
order terms, and the approximate expression of the limiting
zeros is further calculated in this section.

3.1. Case of Relative Degree One (m=n—1). An approximate
expression of limiting zeros for the discrete-time system is
derived from (17) and (18). The first result is given by the
following theorem.

Theorem 1. The zeros of a discrete-time system corresponding
to the continuous-time transfer function (1) with FROH are
given for T <« 1 approximately by the roots of

{[_1 _B_ 3d+dp,
2 6
4(d -1 )+ (d-1,5)B_,

- T
24
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2dr, , - d® — c"Pq - 5¢"Pqp + 2c"qd -
24

+ (d —1’,,_2)[3 2

+E—%T T
2 6 24

B SCTPqﬁ - 2chd[3T3]>
24

p? 2P% + qc’'P
z) I+ PT + 7T2+%T3 =0.

(35)

Proof. The limiting zeros of the discrete-time system (16)
are equivalent to zeros in (17) and (18), which are given by
substituting y, = y;,; = 0 into (17) and (18) as follows:

KU,
H |=0, (36)
KU,

M,

where U,_;, H, and Uy are the z-transforms of u;_,, #;,
and wuy, respectively, and the matrix M, is defined by

T
my; My, Mg
M=|-z o 1|, (37)

my; M;, mg;
with

my, =Ty, +0(T),
)

d a*-r,_
1n= E"'—ﬁT—( nZ)ﬁTz,
2 6 24
T_ T T T 52
-cP P-cP
E1T2 T dc —c¢ T+ dc c T2
2 6
2\ T 3 T
. (”n—z -d )c . (d —2drn_2)c -
6 24
Tp. T Tp2 _ Tp3
+chc +dc' P cPT3
24
N —-d*p+ rn_chPT3
24 ’

(26 4)
d’ - ) (d2 - ”n—z)ﬂ )
+{ ot o ]»T

-d® +2dr, , - c"'Pq 7
24 ’
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q/3

m;, = ---T7+0(T*),
P2 _act
M32:(—z+l)I+PT+TqCT2
dac! — Pact + P° — acl'P
L2C 779 T 7A€ Ty o(1),
6
P d
m33=(g+%>T2 s o(T).
2 6 6
(38)
Thus, the zeros are derived from
|M,| = 0. (39)
From the relationship
100
M=M,|010], (40)
101

it is obvious that the condition |[M| =
to |[M;| =0

Expanding the result along the second row leads to the
following equation:

0 is equivalent

T
IM| = — (-2 + 1) |1z "3
32 Ms3
_ M Ty msz (41)
my; +my; M;,
—z|A|+(z-1)|A,|] =0
where
d_. d*-
|4,| = [1 G T2
2 6
+2d”n—2 -d’ —chqT3]
24
P? 2P +qc'P
z)I+PT+—T2+$T3
2 12
=A; xA,,
(42)
d d&-r_
|A,| = _E+_'8T_MT2
2 6 24
5T 2T
+( ¢ pgp - 2c qdﬁ)Ts]
24
P’ , 2P+ chP 3
2)I+PT + —T"+ ———T
2 12
=A xA,.
Then,
IM| = [(A,-A,)z-A,] x A, (43)

Hence, the approximate values of limiting zeros of the dis-
crete-time system are obtained as the roots of (35). O

Remark 2. Equation (35) implies that an approximation of the
sampling zero is expressed as

[—1—?+<;+?)T

(Fom ot

6 24

d® - "Pq - 5¢"Pqp + 2c¢"qd
24

2 —
+ B %T + —(d rn—Z)ﬁTz
2 6 24

. 2dr,_, -

Ta] , (44)

B SCTPqﬁ - ZCquﬁ 7

= 0’
24

and the approximate values of the intrinsic zeros are derived
from

2P +qc'P

T3 = 0. 45
5 (45)

P2
(1—z)I+PT+7T2+

Remark 3. Theorem 1is applicable to also the case of multiple
zeros of the continuous-time system (1) with FROH and fur-
ther gives approximate values with higher order of accuracy
than those of the previous result [17].

Remark 4. An insightful observation in Theorem1 is that
it has a form of a correction to the asymptotic result of
Ishitobi [12, 18] in the form of a power term of T. Similarly,
the following result (Theorem 6) both the intrinsic zeros and
sampling zeros is also clarified in a more precise manner
than Ishitobi’s result [12, 17, 18] when the relative degree of
continuous-time systems is two.

Remark 5. On the basis of the approach in [21], it is immedi-
ate to derive the asymptotic condition of the limiting zeros in
the case of a FROH with relative degree one:

i<} (1+5)- (¢ 4)

. Ad® —ar, 5+ (d°-r,,) B
24

+2drn_2 -4 - cTPqT3}

24
x[—z+1 2 dﬁ
2+ﬂ (2+ﬁ)

+ ﬁ (6rn—2 + 37"”,2,8 - ﬁdz)Tz
18(2 + )’




+ ((/3 (1014dpr, _, - 348d°
+348dr,, ,)
+ B (1188dB’r, , — 1026d°B
~1193d° )
+ B (36¢" PqpB + 36¢" Pq

+9cTPqﬁ2))

x(108(2 + ﬁ)‘*)fl) T

p? 2P +qc'P
x|(1-2z)I+PT+ ?T2+%T3 .

(46)

When the relative degree of continuous-time systems is one
and the continuous-time input is generated by a FROH,
further research is needed to establish connections between
(46) and (35) of Theorem 1 in this paper, wherein the idea
(35) has more decent effect than the literature [21] in terms
of techniques in studying the discrete system zeros.

3.2. Case of Relative Degree Two (m=n—2). Next, we present
asymptotic properties of limiting zeros of discrete-time con-
trol system in the case of a FROH as power series with respect
to a sampling period up to the third-order term when the
relative degree of the continuous-time system is two. An
approximate expression, in fact, of zeros of a discrete-time
system is derived from (32)—(34), and the other results of this
paper are given by the following Theorem.

Theorem 6. The zeros of a discrete-time system for the
continuous-time transfer function (1) with FROH are given
for T < 1 approximately by the roots of

{[1+/_3_<4d1+d1[3>T+ 5d§—5d0T2
2 6 24 120

+ﬁdf - Bd, T2 4 2dyd, — ¢, 5 - df 3| 22
120 120

+[3+/3_2d1+d1/3T
6 6

. 15d; - 5d, + 8fd: - 3pd, -
120

+ dod, 4 3 d_? + dod, B
40 120 30 180

72 80

+M—di—ﬁ)T3]z
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B, 5AB AdoP- 9B,
3 24 120

+9d? —4dyd, - 10c,,_3,BT3
720

p? p?

X (1—z)I+PT+7T2+?T3 =0.

(47)

Proof. Zeros of the discrete-time system (16) and (31), equiva-
lent to (32)-(34), are given by substituting y, = y,,,; = 0 into
(32)-(34) as follows:

Y,
KU, _
M2 I_}( ! = On’
KU,

(48)

where Y, is the z-transforms of y, and the matrix M, is
defined by

T
my; my, m1T3 My
m, m,, m,, m
M, = 21 My Mgy Moy | (49)
0O -z 0 1

my; my, M, my

with

d>-d
mn:l_%T 16 0T2
. ~d? +2dyd, - ¢, _; P
24
d d>-d
mu:—ET+iT2——( ! O>ﬁT3
24 120
T T _ T
ﬁf3=—°—T+—d1c ¢ Pro
6
o (di -dy)c" +d,c"P- ch2T3
24 ’
d
ml4=<l+é)T+<_i_;ﬂ>T2
26 6 24
2
+[df d0+(d1_d0)/3]T3,
24 120
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d; - d,

my =-z+1-d,T+ %Tz
+ ~d} +2dyd, — ¢, 5 40 (T4),
6
d d>-d
My, = Bpy AP Mﬁ +o(r"),
6 24
d,cT —cT'p
m; Y P L
2
d,c'pP-(d?*-d,)c" - c'p?
+ (4 - 0) T* +0(T%),

m24=<1+§)T+(_%_‘%B>Tz

+<d%—d0 N (dl_dO)ﬁ>T3+O(T4),

6 24

m,, = 372 Pa=9dips o(r"),
6

2
_ qpB, 4
my, == T +0(T"),
P2 P _act
My =(-z+1)I+PT+ ?T2+ TqCTS
+0(T"),
q 9B\ 4
=|=-+—=|T"+0(T").
My (6 24) (™)
(50)
Thus, the zeros are derived from
|M,| = 0. (51)
From the relationship
1000
— 0100
M=M 501 0] (52)
0101
it is obvious that the condition [M| = 0 is equivalent to

|M,| = 0.
Expanding the result along the third row leads to the
following equation:

T
. my, m%3 My
|M| =—(z+1)|my my my,

my; M, my,

T
my My, + My, My,
My My, + My, My
my; my, +my My

(53)

=T[-z |Zl| +(-z+1) 'KZH =0,

9
where
4, = 1ody di-dy
712 6 24
—C,_3 +2dyd, di 5
120
d2
X —z—1+éT——lT2
3 18 (54)
+d§ +3dyd, - 9¢, 5 -
270
P? p?
X (1—z)I+PT+7T2+—T3
=A; XA, xAy,
_ d d>-d
e ET—ﬁTH—( ! O)ﬁT3
6 24 120
13d?
X —z—2+3ilT+ ——1+@ T
4 80 10
(T 36\ )
240 960 12
2 P3 5

X

P
(1—z)I+PT+—T2+—T
2 6

=7, x Ay XA,

Equations (54) and (55) will be calculated in the appendix.
Then,

IM| = [(-8, x &, = Ay xAy)z+ A, x Ay x Ay (56)

Hence, the approximate values of the zeros of the discrete-
time system are obtained as the roots of (47). O

Remark 7. Equation (47) implies that the approximations of
the sampling zeros are expressed as

LB () S5 B
2 6 6 24 120
2 _ _ 73
+ doyd; — ¢, 5 —d] Ts] 2
120
N [3+‘8 B 2d, +d1ﬁT
6 6

. 15d2 - 5d, + 8f3d> — 3f3d,
120

0T2




10

dod
_d dydip

3
(G s dr
50 T120 30 7 180

72 80

+M—d§—ﬁ)T3]z

_B 5B, 4d,p - 9df/3Tz
3 24 120
. 9d; - 4dyd, f - 10c,_;3
720

T =0,
(57)

and the approximate values of the intrinsic zeros are derived
from

2 3
(1-z)I+PT+ %T2+%T3 =0. (58)

Remark 8. When FROH is implemented in practice, an
approximate fractional-order hold (AFROH) using ZOH
would be convenient practical solution. The basic idea of
AFROH is that, at each sampling interval, the output of
FROH is approximated by staircase waveforms that can be
generated by ZOH [15, 22] (see Figure 2). Therefore, an
asymptotic expression of the limiting zeros in AFROH case
is derived similarly.

In the particular case when the sampling period tends
to zero, it is immediate to obtain the following Corollary
although a similar result is also obtained by Ishitobi [12, 18].

Corollary 9. One has the following cases.

Case a. Assume that the relative degree of a continuous-time
system is one. If =1 < f (resp., B < —1), then the sampling
zero of the sampled-data model is stable (resp., unstable) in the
case of a FROH when the sampling period tends to zero.

Case b. Assume that the relative degree of a continuous-time
system is two. If =1 < 3 < 0 (resp., B < =1 or 3 > 0), then
the sampling zeros of the sampled-data model are stable (resp.,
unstable) in the case of a FROH when the sampling period tends
to zero.

Proof. One has the following cases.
Case a. For n —m = 1, we have from (35)

Al(z;ﬁ)=(—1—é>z+é. (59)

2 2

Simple straightforward calculation will verify that the root
of Ai(z;B) = 0is stable if -1 < f3 and is unstable if § <
—1. In addition, when 3 = —1, there remains the possibility

Journal of Applied Mathematics

AFROH

0 T 2T

FIGURE 2: Output of the approximate fractional-order hold with N =
2and = -0.5.

that the sampling zero corresponding to A,(z; 8), which
approaches z = —1, lies inside the open unit discas T — 0.

Case b. For n—m = 2, the polynomial A, (z; f8) is represented
from (47) as

Az(z;ﬁ):(%+§)z2+<%+§>z—’§. (60)

When we perform the bilinear transformation z = (0 +
1)/(w — 1) on the above equation, the polynomial is written
as

A, (zB) =30 +3(1+f)w-B=0. (61)

It is clear that the two roots of (61) lie in the open left half
of w-planeif —1 < 8 < 0, and at least one of them stays in the
closed right-half plane if 8 < -1 or 8 > 0. In particular, only
one of the sampling zeros approaches —1 at f = 0. Namely,
the stability of the sampling zeros is marginal, that is, in the
case of a ZOH [4, 23]. O]

Remark 10. When the FROH signal reconstruction device
is used, the parameter 8 which is the device adjustable gain
(generalised gain) is the major factor that decides the stability
properties of sampling zeros of sampled-data systems with
FROH. In other words, the appropriate 3 is determined to
obtain the FROH that provides sampling zeros as stable as
possible, or with improved stability properties even when
being unstable, for a given continuous-time plant.

Remark 11. If the relative degree of a continuous-time transfer
function is two and the sum of the zeros is less than or equal to
the sum of the poles, the limiting zeros of the sampled system
with FROH of -1 < f < 0 stay definitely inside the unit
circle while those with ZOH may lie outside or on the unit
circle. Therefore, the FROH with -1 < 8 < 0 will produce
all stable sampling zeros for a wider class of continuous-time
plants than that of the ZOH.

4. Simulation Examples

This section presents three interesting examples to show
the stability of sampling zeros with FROH by improved
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TABLE 1: Intrinsic zeros of the sampled-data system with relative
degree one.

1

TABLE 4: Sampling zero of the sampled-data system with relative
degree one.

T Approximate values (35) Exact values
0.01 0.980311498, 0.980310411,
0.980082836 0.980084008
0.02 0.961230229, 0.961222048,
0.960324437 0.960333962
0.05 0.907398436, 0.907292742,
0.901893230 0.902049060
01 0.827729968, 0.827130532,
0.806603365 0.807949540
0.2 0.697266611, 0.695230664,
0.617400056 0.629936753

T Approximate values (46) Approximate values (46)
B=-1/2 =1

0.01 0.3297 -0.3315

0.02 0.3262 -0.3297

0.05 0.3164 —-0.3246

0.1 0.3025 -0.3169

0.2 0.2841 —-0.3046

TaBLE 5: Sampling zero of the sampled-data system with relative
degree one and f3 = -2.

TABLE 2: Sampling zero of the sampled-data system with relative
degree one and § = -1/2.

T Approximate values (35) Exact values
0.01 0.329701686 0.329657909
0.02 0.326139088 0.325821314
0.05 0.316359822 0.314371422
0.1 0.302545156 0.294211129
0.2 0.283625731 0.248072696

TABLE 3: Sampling zero of the sampled-data system with relative
degree one and 3 = 1.

T Approximate values (35) Exact values
0.01 —-0.331507563 —0.331319933
0.02 —-0.329739729 —-0.329258964
0.05 —0.324624858 —0.322146285
0.1 —0.317193888 —0.307047943
0.2 —-0.306446658 —0.255131263

asymptotic properties. It has also shown that the stability of
zeros will be improved by using FROH instead of ZOH. Both
kinds of zeros are calculated by applying MATLAB, and in
the simulation figures (Figures 3, 4, 5, 6, 7, 8, and 9), the solid
line and dotted line indicate the exact values and approximate
values, respectively.

Example 1. Consider the following transfer function with the
relative degree one [21]:

(s+2)?

s(s+1)(s=2) (62)

G(s) =

The approximate values (35) and the exact values of zeros
of the sampled-data system for the transfer function (62)
are shown in Tables 1-4 and corresponding figures, where
the intrinsic zeros are shown in Table1 and the sampling
zero is respectively shown in Tables 2, 3, and 5 owing to
the difference of the parameter 3. Equation (35) gives good
approximation also for the case of a continuous-time transfer
function with FROH.

T Approximate values (35) Exact values
0.01 121.047619 120.640978703
0.02 60.80588235 60.607244462
0.05 24.85125858 24.530135132
0.1 13.10222222 12.387624318
0.2 7603157322 6.1116305864

When the continuous-time systems have relative degree
one, a discrete-time system corresponding to a continuous-
time transfer function (62) has two intrinsic zeros and one
sampling zero in the case of a FROH. In particular, the values
of the intrinsic zeros with FROH are approximately equal to
those with ZOH owing to the parameter f3 (see also Remark
13). Further, the stability of sampling zero with FROH
depends on the parameter 8. When -1 < f3 (resp., § < —1),
the sampling zero of the sampled-data model is stable (resp.,
unstable) in the case of a FROH for small sampling periods
(see Tables 2-4).

Case a (f = —1/2). See Table 2 and Figure 5.
Case b (f = 1). See Table 3 and Figure 6.

Case ¢ (3 = —2). See Table 5. From the foregoing analysis, it
is obvious that the limiting zeros of the sampled-data system
with FROH of -1 < f are located inside the unit circle. In
addition, (46) gives good approximation and the sampling
zero lies inside the unit circle for small sampling periods
at § = —1/2 and 3 = 1 (see Table 4). Furthermore, it can
be seen from the corresponding Tables 24 that (35) can offer
a more accurate approximation than that of (46) in terms of
the stable sampling zero of discrete-time model.

Example 2. Consider a transfer function with the relative
degree two

s+7
(s+1)(s+2)(s+3)

G(s) = (63)

On the basis of the results in [21, 24], the stability con-
dition of sampling zeros with ZOH is dissatisfied since d; =
a, — by = -1 < 0. However, the stability of the sampling zeros
will be preserved in the case of a FROH when -1 < 8 < 0.
The approximate values (47) and the exact values of zeros of
the sampled-data system for the transfer function (63) are
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0.85 |

Intrinsic zero

I
=
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0.65 - - -
0 0.05 0.1 0.15 0.2

Sampling period

FIGURE 3: Intrinsic zero of sampled-data model with relative degree
one.

0.8

Intrinsic zero

e
N
[

0.7 ¢

0 0.05 0.1 0.15 0.2
Sampling period

FIGURE 4: Intrinsic zero of sampled-data model with relative degree
one.

TABLE 6: Intrinsic zero of the sampled-data system with relative
degree two.

T Approximate values (47) Exact values
0.01 0.9324 0.932347819
0.02 0.8693 0.869400472
0.05 0.7041 0.704589951
0.1 0.4878 0.496541723
0.2 0.1227 0.244801539

shown in Tables 6-9, where the intrinsic zero is shown in
Table 6 and the sampling zeros are shown in Tables 7, 8, and
9. Equation (47) gives good approximation and the sampling
zeros lie inside the unit circle for small sampling periods with
FROH, while ZOH fails to do so.
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0.315 |
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0 0.02 0.04 0.06 0.08 0.1
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FIGURE 5: Sampling zero of sampled-data model with relative degree
oneand f=-1/2.
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=031
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-0.32

Sampling zero

-0.325

-0.33

-0.335 . . . .
0 0.02 0.04 0.06 0.08 0.1

Sampling period

FIGURE 6: Sampling zero of sampled-data model with relative degree
oneand f = 1.

Remark 12. From Examples 1 and 2, it can be obviously seen
that FROH is reduced to FOH for 8 = 1. The limiting zeros
for sufficiently small T' in the case of a FOH are stable with
relative degree one while it is unstable with relative degree
two. Thus, a FOH provides no advantage over ZOH and
FROH with the stability of the limiting zeros [4].

Remark 13. When the FROH signal reconstruction device is
used, the parameter 3, so called the device adjustable gain
(generalised gain), is also a factor which affects the intrinsic
zeros of sampled-data systems by numerically verifying in the
case of a FROH. More precisely, it only affects the distribution
of intrinsic zeros while the stability of intrinsic zeros is still
preserved for different values of 8. See also the literature
by De la Sen [25], who has similar conclusion by applying
different technique.

Next, we display the improvement of the asymptotic
properties of discrete system zeros with FROH through an
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TABLE 7: Sampling zeros of the sampled-data system with relative degree two and 8 = —1/2.

Exact values

T Approximate values (47)
0.01 —-0.501195886 — 0.3871729571'.,
—0.501195886 + 0.387172957i
0.02 —0.502623421 - 0.3866114761,
—0.502623421 + 0.386611476i
0.05 -0.507102272 — 0.3845953371'.,
—-0.507102272 + 0.384595337i
01 —0.516933208 — 0.3755775761,
—-0.516933208 + 0.375577576i
0.2 —-0.553360151 — 0.309177835i,

—-0.553360151 + 0.309177835i

—-0.501218099 - 0.386984162i,
—0.501218099 + 0.386984162i
—0.502596060 — 0.386768672i,
—-0.502596060 + 0.386768672i
—-0.506565882 — 0.3854113711,
—-0.506565882 + 0.385411371i
—0.512704082 — 0.3818084311,
—-0.512704082 + 0.381808431i
—-0.519378658 — 0.3715994691,
—0.519378658 + 0.371599469i

TABLE 8: Sampling zeros of the sampled-data system with relative
degree two and f3 = 1.

T Approximate values (47) Exact values

0.01  0.366015522, —1.370352295
0.02  0.365962901, —1.374613162
0.05  0.365635742, —1.386524631
0.1 0.364115478, —1.403715066
0.2 0.353215369, —1.422680342

0.366029257, —1.370288147
0.365977015, —1.374587969
0.365876959, —1.385974102
0.364513566, —1.401081359
0.369015125, —1.407272983

1.1

Intrinsic zero

0.1

0 0.05 0.1 0.15 0.2
Sampling period

FIGURE 7: Intrinsic zero of sampled-data model with relative degree
two.

example of an electronic circuit in the remainder of this
section.

Example 3. Consider an electric circuit shown in Figure 10
(15], where R; (i = 1,...,4) and C; (j = 1,...,3) represent
resistance and condenser, respectively.

The transfer function with the voltage e;(t) as an input
and with the voltage e (f) as an output is given by

s+b,
s +a,s2+a,s+a,
2 1 0

1 k
Do b _

G (S) = =
ZZ:O a,s*

, o (64)

0.644

0.642 R

0.64 R

o o
o o
) 153
>N ®

Sampling zero

0.634 |

0.632 5

0.63

0 0.02 0.04 0.06 0.08 0.1
Sampling period

FIGURE 8: Sampling zero of sampled-data model with relative degree
twoand f3 =-1/2.

b a a a
==, by=-2, Gy=-, ay=—, a,=->. (65
0=y, °= 1=, 2= (65)
It is easy to see that the relative degree of transfer function
(64) is two. Here, when the parameters are set as R; = R, =
1[kQ], R, = 5[kQ], R, = 13/70[kQ], and C, = C, =
C; = 1[uF], the corresponding discrete-time system with
ZOH has an unstable sampling zero for the sufficiently small
sampling periods according to the a, — b, < 0 [21, 24]. In
fact, the absolute value of the sampling zero of the discrete-
time system with ZOH is 1.006418 for T' = 0.001. The mag-
nitudes of limiting zeros of the corresponding discrete-time
system with FROH are shown in Figure 11 for the sampling
period T' = 0.001. All the limiting zeros stay inside the unit
circle for —1 < 3 < 0 (see also Figure 11). The stability condi-
tion can be achieved by means of a suitable choice of the

parameter f3 of the improving asymptotic properties.

Remark 14. From Example 3, it has been shown that the
limiting zeros of the sampled-data models with FROH can be
located inside the stability region by analyzing the improved
asymptotic properties while ZOH fails to do so. In addition,
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TABLE 9: Sampling zeros of the sampled-data system with relative degree two and 3 = -2.

T Approximate values (47) Exact values

0.01 —-0.497611941 + 1.9381850951'., —-0.497685781 + 1.938246055{,
—0.497611941 - 1.938185095i —0.497685781 — 1.938246055i

0.02 —0.495838288 + 1.940321092i, —0.495813965 + 1.9403396111,
—0.495838288 — 1.940321092i —0.495813965 — 1.940339611i

0.05 —-0.493521791 + 1.946037129i., —-0.492000028 + 1.946432145i.,
—0.493521791 - 1.946037129i —0.492000028 — 1.946432145i

0.1 —0.505847953 + 1.950474754i, —0.492189267 + 1.954872572i,
—0.505847953 — 1.950474754i —0.492189267 — 1.954872572i

0.2 —-0.627817319 + 1.9070101324, —0.510399647 + 1.9594172284,

—-0.627817319 — 1.907010132i

—0.510399647 — 1.959417228i

0.644

0.642

0.64 |

Sampling zero
o )
[} (o)}
N 0
(o)} e

0.634

0.632 ¥

0.63 . . . .
0 0.02 0.04 0.06 0.08 0.1

Sampling period

FIGURE 9: Sampling zero of sampled-data model with relative degree
twoand 3 =-1/2.

R,
E;(t) e e Ey(t)
T°

F1GUre 10: The electric circuit plant.

the limiting zeros with AFROH are also stable in some cases
due to the same advantages of the FROH and AFROH cases.

5. Conclusions

This paper has analyzed the improved asymptotic behavior
of limiting zeros for the discrete-time system by using Taylor
expansion and the FROH signal reconstruction device. When
the normal form representation of continuous-time system
with relative degree one or two is discretized, we have given
an approximate expression of limiting zeros as power series

Zeros magnitude

FIGURE 11: The magnitudes of zeros of the sampled-data models with
FROH for T = 0.001 s.

expansions with respect to a sampling period up to the third-
order term. Furthermore, the stability of the sampling zeros
is also discussed as the sampling period tends to zero. Finally,
it has been shown that FROH provides advantage over ZOH
with stability of the limiting zeros of sampled-data systems.
The idea of this paper is a further extension of the previous
results. For a future study, an extension of the approach to
multivariable systems is left.

Appendix
Calculation of (54) and (55). Denote

T
my; My +myy My
Ay =|my m,, +m,, ml.
1 21 22 24 23 |2
my; my, +my, My
(A1)
_ T
my; —mMy m%s
Ay =|my —my my
my; —my My

It is immediate to obtain the value of |A,| from [21].
Here, consider a matrix M, which is defined by neglect-
ing the higher order terms O(-) with respect to T in the
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matrix A, since the interests lie in the case of small sampling
periods T.
Multiplying M,, by

1 - T
L=|7 4 %25 (A2)
0, I,
where
d d>-d
¢, = 1 (B_diB +MT2 i
my\2 6 24
(A.3)
pr’ p_dip. (di-do)B ,
t=-1— my=C_-Z2r, L UPp
24my, 6 24 120
from the left-hand side leads to
— S
My —my; My,
LM =|m, 0 my |, (A4)
ﬁ41 onfl M43

where
3d 8d, — 13d>
mZI :_Z_2+_1T+¥T2
4 80
. 28dyd, - 3d; - 40c,_, -
960

>

T T 2T T T p2
_r_c dc " 9dic’ —4dyc —20c’ P ) (A.5)
8 480

— p? p’
My =(1-2)1+PT+ 7T2 + ?T3.
Noting here that

I v
0 =y X Myz —yy Xy,

3d 8d, — 134>
= —Z_2+_1T+¥T2
4 80

. 28dyd, - 3d; - 40c,_, -
960

P? P T(z-1
X [(l—z)I+PT+7T2+—T3] +MT3

6 24
3d 13d> d
=|-z-2+ T+ -2+ 21
4 80 10

240 960 12

p? p?
X [(l—z)I+PT+?T2+FT3].

(A.6)

15

Then,

|A,| = -my,6. (A7)

As a result, the calculation is completed.
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Floating wind turbine will suffer from more fatigue and ultimate loads compared with fixed-bottom installation due to its floating
foundation, while structural control offers a possible solution for direct load reduction. This paper deals with the modelling
and parameter tuning of a spar-type floating wind turbine with a tuned mass damper (TMD) installed in nacelle. First of all, a
mathematical model for the platform surge-heave-pitch motion and TMD-nacelle interaction is established based on D’Alembert’s
principle. Both intrinsic dynamics and external hydro and mooring effects are captured in the model, while tower flexibility
is also featured. Then, different parameter tuning methods are adopted to determine the TMD parameters for effective load
reduction. Finally, fully coupled nonlinear wind turbine simulations with different designs are conducted in different wind and
wave conditions. The results demonstrate that the design of TMD with small spring and damping coeflicients will achieve much
load reduction in the above rated condition. However, it will deteriorate system performance when the turbine is working in the
below rated or parked situations. In contrast, the design with large spring and damping constants will produce moderate load

reduction in all working conditions.

1. Introduction

With less space constraints and more consistent wind, off-
shore deep sea wind energy has attracted great worldwide
attention in recent years. Wind turbines in deep water are
usually installed at places where sea depth is between 60 m
and 900 m; thus, floating foundations are generally consid-
ered to be an economical and feasible way of deployment
[1]. Based on decades of experience from offshore oil and
gas industry, several different traditional floating platforms
have been proposed to support large wind turbines in deep
sea regions, including spar-buoy, tension leg, barge, and
semisubmersible [2]. One of the most promising concepts
is the spar-type supporting structure, based on which one
Norwegian company Statoil has developed the world first
experimental large floating offshore wind turbine in 2009.
Different from fixed-bottom wind turbines, the very first
challenge for floating windmills is the wave and wind induced
platform tilt motion, which will heavily increase the loads
on turbine structure due to high inertial and gravitational

forces [3]. According to [4], when comparing a barge-type
floating wind turbine with an onshore design, the sea-to-
land ratio of fatigue loads with respect to tower base bending
moments has reached 7. The ratio is still over 1.5 for the
OC3-Hywind spar, which may require extra reinforcement
or advanced control technique to improve wind turbine
reliability. Besides, soft foundation properties of floating wind
turbines will lead to low natural frequency platform motion,
so that commonly used blade pitch control strategy for fixed-
bottom wind turbines may cause negative damping of tower
bending and even large platform resonant motion [5]. These
problems have drawn a lot of attention from researchers on
improving the system design and control strategy of floating
wind turbines for load reduction.

One approach for vibration inhibition is to utilize struc-
tural vibration control devices. This method has been suc-
cessfully applied in civil engineering structures [6], such as
buildings and bridges, and thus is also expected to be a
promising solution for extending the fatigue life of floating
wind turbines. In [7], Murtagh et al. investigated the use of



a tuned mass damper (TMD) placed at the tower top for the
vibration mitigation due to the along-wind forced vibration
response of a simplified wind turbine. Following the same
installation idea, Colwell and Basu explored the structural
responses of fixed-bottom offshore wind turbines with tuned
liquid column dampers (TLCD) to control the vibrations [8].
Moreover, Li et al. performed an experimental study on an
offshore wind turbines with a ball vibration absorber fixed on
top of the nacelle [9]. However, these discussions are about
vibration mitigation of fixed-bottom wind turbines, while
their dynamics are quite different from that of floating ones.
Besides, these works are not based on the cutting edge high-
fidelity codes for wind turbine simulations, which cannot
capture the comprehensive coupled nonlinear dynamics of
wind turbines.

FAST (fatigue, aerodynamics, structures, and turbulence)
is one of the state-of-the-art aero-hydro-servo-elastic wind
turbine numerical simulators [10]. Based on FAST, Lackner
and Rotea implemented a new simulation tool, called FAST-
SC, for passive, semiactive, and active structural control
design of wind turbines [11]. Utilizing this code, Lackner and
Rotea presented more realistic simulation results with a TMD
installed in the nacelle of either a barge-type or a monopile
supported wind turbine, and a simple parametric study was
also performed to determine the optimal TMD parameters
[11]. Further, it was shown that more load reduction could
be achieved when introducing active structural control in
their following works [12, 13]. In order to perform a more
comprehensive parametric study of passive structural control
design, the authors in [14, 15] established a 3-DOF dynamic
model for different types of floating wind turbines based on
first principles. This limited DOF model has greatly facilitated
the parameter analysis and active control design, while the
coupling between surge and pitch motion, however, was not
captured, which can be ignored for the barge design but
might be an important mode for other platforms, such as spar
16, 17].

Motivated by the above-mentioned problems and
research potentials, this work focuses on modeling and
parameter analysis of a passive structural control design
for a spar-type floating wind turbine. The remainder of
this paper is organized as follows. Section 2 introduces
the OC3-Hywind floating wind turbine, and the coupled
surge-heave-pitch dynamic model with a TMD installed
in nacelle is established. Parameter estimation is also
performed for model validation. In Section 3, different
parameter tuning methods and performance indices are used
for TMD parameter determination. Section 4 presents the
nonlinear simulation results under different wind and wave
conditions. Advantages and limitations of this design with
different TMD parameters are also analyzed. At last, we draw
conclusions in Section 5.

2. Dynamic Modelling

In cooperation with Statoil, Jonkman from NREL has speci-
fied a detailed OC3-Hywind spar-type floating wind turbine
model, which is a combination of the data for the 5SMW
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TABLE 1: Properties of the OC3-Hywind model [16, 18].

Item

Value

Rating

Rotor configuration

Cut-in, rated, cut-out wind speed

5 MW
Upwind, 3 blades
3m/s, 11.4 m/s,

25m/s
Total draft below sea water level (SWL) 120m
Tower base above SWL 10m
Hub height above SWL 90m
Nacelle dimension (length, width, height) 14.2m,2.3m,3.5m
Platform diameter above taper 6.5m
Platform diameter below taper 9.4m
Rotor nacelle assembly (RNA) mass 350,000 kg
Tower mass 249,718 kg
Platform mass 7,466,000 kg
Number of mooring lines 3
Depth to fairleads below SWL 70 m
Baseline control in Region 3 S)izlll:‘nd constant

baseline wind turbine from NREL and the Hywind floating
platform from Statoil [16, 18]. Properties of the OC3-Hywind
model are shown in Table 1. According to [16], in order
to avoid resonant platform pitch motion, the conventional
controller in Region 3 is modified into a combination of
gain reduced gain-scheduled proportional-integral (GSPI)
collective blade pitch control and constant torque control,
which is used all through this work as the baseline.

The passive structural control strategy in this work is
to install one TMD in the nacelle, which is assumed to
move on an ideal nonfriction linear track along the fore-aft
direction. The stiffness and damping parameters of TMD can
be tuned, and they are regarded as constant in all simulations.
In order to investigate these parameters, optimize system
performance, or design an active controller, establishing one
dynamic mathematical model is usually helpful. Figure 1
shows a diagram of the OC3-Hywind surge-heave-pitch
motion with tower fore-aft bending and the TMD-nacelle
interaction. Definition of each term in this figure can be
found in Table 2. Before presenting the dynamic model, the
following premises and assumptions need to be listed.

(1) OC3-Hywind is treated as a multibody dynamic
system, and the motion of reference point P is chosen
for output analysis, which is in accordance with the
definition in [16]. Rigid bodies in the model include
the spar platform, tower, and rotor nacelle assembly
(RNA). Dynamics in rotor, generator, and gearbox are
not considered in this work.

(2) Based on the same assumption, the tower fore-aft
flexibility is represented as that in [13], where the
tower, for simplicity, is treated as a linear rigid rotating
beam hinged at tower bottom. It is also assumed that
the spring and damping coeflicients of this hinge are
constant.
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TABLE 2: Term descriptions in the model of OC3-Hywind surge-
heave-pitch motion.

Terms Descriptions
sg DOF of platform surge motion
hv DOF of platform have motion
p DOF of platform pitch motion
tmd DOF of TMD motion
t DOF of tower fore-aft bending
; Rotation angle of DOF i
; Displacement of DOF i
M { Generalized mass for DOF i with regard to DOF j
J4 Generalized inertia tensor for DOF i with regard to
i DOF j
F Generalized force for DOF i due to effect or DOF j
Tij Generalized torque for DOF i due to effect or DOF j
gr Gravitational effect
hdr Hydro effect
ctr Centripetal effect
moor Mooring lines effect
spr.damp Spring and damping effect of TMD
A Generalized added mass for DOF i with regard to
! DOF j
JX Inertia tensor for u with regard to point X
L, Length of part u
m, Mass of part u
ptfm Platform
twr Tower
rna Rotor nacelle assembly (RNA)
d Misalignment between RNA mass center and tower
centerline
jot Joint between platform and tower
D Equivalent damping coefficient for DOF i with
i regard to DOF j
K Equivalent spring coeflicient for DOF i with regard
! to DOF j
g Gravitational acceleration
CB Center of buoyancy
CG, Gravity center of part u

(3) In total, the model has five DOFs, that is, platform
surge, heave, pitch, tower fore-aft bending, and TMD
motion. The other DOFs, such as rotor yaw motion
and generator rotation, are not included.

(4) This model focuses on the system intrinsic coupled
dynamics with hydro and mooring loads, while the
loads from winds and incident waves have not yet
been considered in the modelling process.

Based on the above descriptions, we treat the overall sys-
tem dynamics as the motion of a rigid body with distributed
mass particles in the surge-heave-pitch plane, which can be
seen as the sum of a translation and a rotation about the
axis passing through P and perpendicular to this plane [19].

FIGURE 1: Diagram of the OC3-Hywind surge-pitch-heave motion
with tower fore-aft flexibility and passive structural control.

According to D’Alembert’s principle of inertial forces, the
following static equilibrium equations for system translation
and rotation about the reference point P

F-) ma; =0,

T—Zrixmiai:O,

)

hold. F and T denote vectors of external forces and
moments about P, while —) m;a; and - r; x ma; are
vector sums of inertial forces and torques about P. m; is
the mass of particle i, that is, platform, tower, RNA, and
TMD, and r; represents the position vector from P to
particle i. a; is the acceleration vector for mass particle i,
and it consists of the translational acceleration, normal, and
tangential rotational acceleration components.

When considering the tower translation and rotation
about tower bottom, the motion of tower fore-aft bending can
be described as

Z (r; x ma,) + La, = 77" + 17, ()

which is also based on D’Alemberts principle. m; denotes
the mass of tower, RNA, and TMD. I; is the equivalent
moment of inertia for tower and RNA about tower bottom,
and «, denotes the angular acceleration vector of tower pitch
motion. 7/ is the torque vector due to the spring-damping



FIGURE 2: Diagram for calibration of nacelle rotation angle.

effect between tower and platform. To be consistent with the
output of FAST simulator, the tower top displacement is also
calculated, which is given by

x; = sin (6, = 60,,) Ly (3)

where [, is the length of flexible tower. However, in the
system validation process, one problem is found which is that
there will exist huge misalignment between the responses
of FAST-SC and established model when the spring and
damping coefficients of TMD are in small scale. This is mainly
due to the inaccuracy of nacelle rotation angle when flexible
tower is modeled as a rigid rotating beam. When TMD has
tiny spring and damping constants, its acceleration will be
mainly contributed by gravity, so that inaccuracy of 6, will
lead to tremendous difference of TMD dynamics. Therefore,
the nacelle rotation angle should be calibrated in order to
produce more convincing dynamic responses. In FAST, the
tower flexibility is depicted by the predefined mode shapes @,
where tower top rotation angle is determined by the product
of tower top mode shape slope 0@ (h),,,/0h and tower top
displacement x,. Following similar calculation procedure,
the diagram for tower top rotation calibration is illustrated in

Figure 2, and the calibrated nacelle rotation angle 0, satisfies

~ 00 (h
0 = % h:Lmaxt O )
Next, the hydrodynamic loads are characterized. When
formulating the motion of object submerged in water, we
must also consider the added-mass effect, resulting from
its surrounding fluid [20]. It is summarized in [1] that
the hydrodynamic loads mainly include contributions from
hydrostatics (from water-plane area and buoyancy), radiation
(from outgoing waves generated by platform motion), and
diffraction (from incident waves). In accordance with this
analysis, the hydrodynamic load calculation in this work
follows a similar path. Firstly, hydrostatic load in this model
consists of buoyancy force and restoring load resulting
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from the effects of water-plane area and buoyancy, and
the restoring force and moment are set to be constantly
proportional to platform displacement and tilt angle which
have been specified in [16]. Secondly, the radiation loads
can be represented by nonlinear vicious drag, hydrodynamic
radiation damping, and the above mentioned added-mass
effects. Thirdly, incident wave loads are not considered here
since wind turbine is supposed to be located in still water in
design process.

Regarding the mooring system, FAST simulator uses
a quasistatic model to calculate the load of an individual
mooring line, which exhibits nonlinear behaviors due to both
mooring dynamics and the asymmetry of the three-point
mooring system. In the simulations of this work, the platform
displacement and tilt angle are usually not in big scale where
the mooring system load-displacement relationship does not
show strong nonlinearities in surge and pitch modes, so we
still choose the simple linear model to represent this effect.

In sum, except for added mass, the hydrodynamic loads
and mooring effect are modeled as

hdr-moor _ g - sg .2
F = -Dgx,, - Dgx

g yiya P
o B57 — K¥x,, - DPO, - KLO

sg P sgop’

hdr-moor hv . hv 0
Fyy = = Dy = Ky — F

0
moor T K buoy

2
Psg ;
-K, (xsg — L. oor SIN QP) ,

hdrmoor _  ~pA _ 1PA _ PEe _ L2 _ 158
T =-D,0,-K,0, - D x, - D x, — K x,

p psg psg p S8

(5)

D/, 51] ,and K/ denote equivalent damping and spring coef-
ficients for DOF i with regard to DOF j for the calculation
of hydro and mooring effects. F’ and F,?uoy represent
initial mooring line and buoyancy forces when there isno
platform displacement or rotation. It should be noted that
the mooring load for platform heave motion shows strong
nonlinear relationship with the surge and pitch modes; thus,
it is not simplified.

Based on the above analysis and equations, the nonlinear
dynamic model of OC3-Hywind surge-heave-pitch motion
can be established in the following implicit form:

sg P tmd gt .
MSg Oh I;g Mig ) Iig Ko
\'s m .

OS M}ﬁv Ihv th d I hv xhv
My My I MM 0 6,
g hv p tmd gt X
Mtrsnd Mtrﬁld Itmd thcé Lind tmd
ME MM oo oM™ L6

Fi'ldr-moor + Fsctr

F}%‘r, + F}tl\(firmoor + F}(l:‘t]r
_ gr hdr-moor ctr
TP +T P + TP

In this model, sg, hv, p, tmd, and t represent, respectively,
the enabled 5 DOFs, that is, platform surge, heave, pitch
motion about P, TMD translation, and tower rotation. On
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the left side, M/ and I/ denote generalized mass and gener-
alized inertial tensor for DOF i with regard to DOF j. On
the right side, gr, hdr, moor, ctr, spr, and damp describe
gravitational, hydro, centripetal, spring, and damping effects
in forces and moments. Expanded expressions of this model
for TMD platform installation are presented in the appendix,
and the detailed term descriptions are listed in Table 2.

The mass matrix on the left side of (6) exhibits the
system inertial property, that is, mass and inertia tensor,
and it also includes hydro added mass and acceleration
coupling terms. The terms on the right side of (6) are
external loads, which can be classified into several different
effects. Gravitational forces and moments are the first type of
loads, labeled as gr. The second effect, labeled as hdr-moor,
is the hydrodynamic and mooring loading, which consists
of hydrostatics, vicious drag, radiation damping, additional
linear damping, and mooring effects. The third type, which is
produced by D’Alembert’s principle, is the centripetal forces
and moments which originate from the rotation of platform,
tower, and TMD about the reference point P, and they are
labeled as ctr. Tower and platform interaction is the fourth
effect captured in this equation, and the bending moment is
described by a linear spring-damper between them. The final
consideration is the spring and damping effect in TMD, so it
is labeled as spr-damp.

After obtaining the OC3-Hywind dynamic model for its
surge-heave-pitch motion in still water, parameter identifi-
cation and validation should be performed to quantize the
unknown parameters and verify the correctness of the pro-
posed model. The parameter estimation is accomplished by
minimizing the output difference between FAST-SC and the
established model. Based on the estimation result, free decay
response comparison for the OC3-Hywind surge-pitch-heave
motion without TMD is illustrated in Figure 3, where two
results coincide well with each other. Then, in order to
further validate the established model, free decay response
comparisons are performed again with TMD installed in
nacelle. In practice, there exist space limitations for the
nacelle, so the TMD displacement should be restricted into
a certain range. According to the nacelle dimensions defined
in [21], the TMD displacement range is determined as +7 m
in this work. In FAST-SC, the TMD motion constraints were
modelled as stops, where there would be spring stiffness and
damping interaction between TMD and nacelle or platform
when its displacement exceeds the user defined constraints.
The stops effect in this work is characterized in the same
way. Figure 4 illustrates the free decay response comparison
results with TMD stops. As expected, the established model
still manages to capture the system dynamics including TMD
stop interactions. It is worth mentioning that the stops with
various spring and damping coefficients could have quite
different impacts on system dynamics, but further analysis of
stop parameters is not within the scope of this paper.

Based on the above analysis, the proposed model has cap-
tured most of the intrinsic dynamics for OC3-Hywind surge-
heave-pitch motion, including hydrodynamic and mooring
loads, tower flexibility, and TMD-nacelle interaction. Next
step is to tune TMD parameters for effective system load
reduction.
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FIGURE 3: Free decay response comparison between identified
model and FAST-SC numerical simulation for surge-pitch-heave
motion without TMD (5 initial platform pitch).
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3. Parameter Tuning

Optimal parameter tuning of the vibration absorber is an
important design consideration in passive structural con-
trol problems. The design aim in this work is to find the
optimal TMD coefficients for wind turbine load reduction.
The parameters to be determined include TMD spring
and damping coeflicients. TMD mass is not parametrically
studied in this work since it is usually determined by cost and
heavier mass will more likely produce better performance.
Specifically, in order to be consistent with [11], the mass is
chosen to be 20,000 kg, which takes about 3.33% of the weight
for tower-RNA structure.

In fact, the most convincing solution here is to try all
possible values of these parameters in FAST-SC. However,
this global searching process will take tens of thousands
of calls from FAST-SC, and it usually will take minutes to
run it for only one time. Therefore, exhaustive search is
almost impossible with ordinary computers, and appropriate
optimization methods are needed. Based on the established
model, in this section, three different methods are used for
this parameter tuning problem.

3.1. Frequency and Damping Analysis. In engineering appli-
cations, the natural frequency of TMD is usually tuned to
be near that of the target system; thus, it will effectively
dissipate the undesirable system vibration energy. In order
to systematically describe this phenomenon, Den Hartog
[22] analyzed the response of undamped main system with
TMD subjected to harmonic external forces and derived an
explicit expression to determine the optimal TMD natural
frequency and damping ratio for vibration inhibition. The
optimal solution is given by

_ N
ftmd_ 1+[4> Etmd_ \/8(1+[,{)’ (7)

where y denotes the mass ratio m,,4/m and f and & are
the natural frequency and damping ratio of target
system. f,.q and & 4 represent the optimal natural
frequency and damping ratio of TMD.

In order to adopt this method, eigenanalysis based on
model linearization result is performed first to obtain system
natural frequencies and damping ratios for the modes of
interest.

The eigenanalysis result has been presented in [23], where
natural frequencies of two most critical modes, that is,
platform pitch mode and first tower fore-aft bending mode,
are 0.4732Hz and 0.0342 Hz, and their damping ratios are
0.0087 and 0.1418.

However, in this analysis process, the nonlinearity of
TMD stops due to space constraints is not considered, which
has been shown to have strong influence on TMD load
reduction effectiveness according to the following nonlinear
FAST-SC simulation results. Therefore, a more thorough
method should be proposed to find the best combination of
these TMD parameters.
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TABLE 3: Performance indices.

Index Description

Standard deviation of tower top
displacement under its
equilibrium point

T =N [ (3, - %)t

Range of tower top

J> = max(x,,) - min(x;,) displacement

L X:0
Y': 3200 .
Z:0.08719

FIGURE 5: Surface plot subjected to performance index J;, with
TMD installed in nacelle.

3.2. Surface Plot. In the previous section, we have obtained a
mathematical model describing OC3-Hywind surge-heave-
pitch motion, which manages to capture most of the sys-
tem structural dynamics, hydro and mooring effects. More
importantly, the time for solving this dynamic equation
is less than 1s; thus, surface plotting, a global parameter
searching method, becomes a possible solution to determine
the optimal TMD parameters.

Next, we introduce the performance indices in Table 3
which are used in the optimization process. The tower top
fore-aft deflection is the best indicator of tower bottom bend-
ing moments, and the author in [14] used standard deviation
of tower top displacement as the performance index, which
is also adopted in this work as the first performance index J;.
Secondly, we also care about load reduction effectiveness of
the proposed method in extreme events; thus, the range of
tower top displacement in the free decay test is treated as
another evaluation index J,.

Based on these indices, exhaustive search is performed
where TMD spring and damping constants are regarded
as two coeflicients to be optimized. The parameter range
and interval are chosen when both time consumption and
accuracy are considered. The surface plots for different design
criteria are illustrated in Figures 5 and 6, and the optimization
results are listed in Table 4.

Although surface plotting could be regarded as a global
optimization method, which produces a relatively compre-
hensive evaluation of the performance index with possible
parameters, it is still computationally expensive, which will
take hours or days to finish one optimization process. Also,
there might exist better solution if the parameter interval is
not small enough. Therefore, more intelligent and efficient
optimization algorithms are demanded.
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FIGURE 6: Surface plot subjected to performance index J, with
TMD installed in nacelle.

TABLE 4: Parameter optimization result with TMD in nacelle (1,4
= 20,000 kg).

3 Ktmd Dtmd
Method Performance index (N/m) (N-s/m)
Den Hartog Tower bending mode
2] (Denl) 165571 12661
Den Hartog Platform pitch mode
2] (Den2) 865 915
Surface plot J, =0.0872m 0 3200
Surface plot J, =0.8389 m 1200 800
GA J; = 0.0871m 0 3130
GA J, = 0.7620 m 164231 20889

3.3. Genetic Algorithm. In the past few years, genetic algo-
rithm has been widely applied in a broad spectrum of real-
world systems [24-26]. This approach starts with randomly
generated population, and individuals with better fitness
will be selected as the basis of the next generation. The
improved population will keep evolving after inheritance,
mutation, selection, and crossover procedures until it meets
the final requirement. As a global optimization method,
genetic algorithm is based on stochastic variables and does
not require the derivatives of object function, which brings
the advantages of global evaluation and objective tolerance
when compared with other gradient based local optimization
methods. It usually helps to obtain a better result in optimiza-
tion problems with nonsmooth objective functions and thus
is suitable for the optimization problem in this work.

When implementing the algorithm, probability of the
roulette wheel uniform crossover is chosen as 0.6, and the
mutation probability 0.01 is used. Minimum number of
generations is set as 20. Optimization results are shown in
Table 4. It can be noticed that genetic algorithm gives a
better result with respect to J, since the surface plotting has
a limited searching range.

4. Simulation and Analysis

In this section, based on the optimization result, fully non-
linear simulations are performed in FAST-SC with all wind
turbine DOFs enabled. Each test runs for 630 seconds, and

TABLE 5: Percentage of load reduction with different TMD tuning
results compared with baseline.

Case Evaluation index ~ Denl Den2 A I,
DEL TwrBsMyt 6.35 0.66 0.52 6.00

DEL TwrBsMxt 32.18 14.2 11.44 28.37

DEL RootMycl 1.07 -0.18 0.10 0.85

10m/s DEL AnchlTen 0.93 3.01 1.21 0.93
95th TwrBsMyt -2.00 -4.04 -3.89 -2.00

95th TwrBsMxt 6.01 2.7 2.55 5.06
95th PtfmPitch -2.08 -1.96 -2.08 -2.08
95th PtfmRoll -1.67 0.21 0.13 -1.67

DEL TwrBsMyt 3.61 777 8.78 3.35

DEL TwrBsMxt 25.55 0.98 -3.94 21.24

DEL RootMycl 1.07 4.99 5.93 114

DEL AnchlTen 115 0.32 0.32 114
18m/s  95th TwrBsMyt -3.15 5.02 6.48 -3.25

95th TwrBsMxt 7.90 4.70 1.69 710
95th PtfmPitch -1.05 10.66 12.43 -1.04

95th PtfmRoll 6.55 15.54 14.32 6.58

RMS GenPwr —5.46 21.09 29.22 —5.41

DEL TwrBsMyt 1.47 —19.95 -16.25 1.22

DEL TwrBsMxt 0.14 0.51 0.42 0.18

DEL RootMycl 1.80 —45.71 -28.34 2.03

37 m/s DEL AnchlTen 1.33 1.83 0.96 0.78

95th TwrBsMyt -0.78 —4.88 -2.33 -0.77
95th TwrBsMxt 0.41 0.40 0.25 0.47
95th PtfmPitch 4.41 5.40 4.44 4.41
95th PtfmRoll -0.30 -0.63 -0.57 -0.30

the output data in the first 30s are not recorded, waiting for
generator torque and blade pitch motion to arrive at normal
operation state. The modified generator torque and blade
pitch controller from NREL will be used in the form of a
dynamic link library for all tests [16].

The wind and wave conditions in the experiment are
defined almost the same as in [12]. For wind condition, both
the above and below rated wind speeds are considered, and
mean value of turbulent wind is defined as 18 m/s and 10 m/s
separately. The turbulent wind file is generated by TurbSim,
where Kaimal spectra and the power law exponent of 0.14
are used according to the IEC61400-3 offshore wind turbine
design standard. The normal turbulence intensity is set as
15% (18 m/s case) and 18% (10 m/s case). Random seed in this
work is arbitrarily chosen as 231857312. In order to define the
wave condition, JONSWAP spectrum is utilized to generate
the stochastic wave inputs. The significant wave height is set
as 2.3m (10 m/s case) and 3.7 m (18 m/s case), and the peak
spectral period is defined as 14 s. Besides, the parked situation
is also considered assuming the turbine suffers extreme 50-
year storm, that is, 37 m/s turbulent wind with power law
exponent of 0.11 and 11% turbulence intensity. Wave height
and period are defined as 13.8 m and 19 s.

Percentage of load reduction with different TMD param-
eter choice is shown in Table 5. In order to measure the fatigue
and extreme loading, damage equivalent load (DEL) and the
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FiGURE 7: FAST-SC simulation results with 18 m/s turbulent wind
and 3.7 m significant height wave.

95th percentile of fore-aft and side-side tower base bending
moments (TwrBsMyt and TwrBsMxt) and flapwise bending
moment at the first blade root (RootMycl) are calculated,
together with the 95th percentile of platform pitch and roll
rotation angle. In the above rated situation, the root mean
square (RMS) of generated power is considered as another
index.

It can be seen from results that the design of TMD with
small spring and damping coefficients will achieve much load
reduction in the above rated condition, where one simulation
result is shown in Figure 7. However, it will deteriorate system
performance when the turbine is working in the below rated
or parked situations. In contrast, the design with large spring
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and damping constants will produce moderate load reduction
in all working conditions.

5. Conclusion

This work focuses on the modeling and parameter tuning
of a passive structural control design for the OC3-Hywind
floating wind turbine. Firstly, the coupled surge-heave-pitch
dynamic model with a TMD installed in nacelle is established
based on the D’Alembert’s principle. Parameter estimation
is also performed for model validation. Then, different
parameter tuning methods and performance indices are
used for TMD parameter determination. FAST-SC is used
for fully coupled nonlinear simulation with various wind
and wave conditions. The results show that the design of
TMD with small spring and damping coefficients will achieve
much load reduction in the above rated condition, but it
will deteriorate system performance when the turbine is
working in the below rated or parked situations. In contrast,
the design with large spring and damping constants will
produce moderate load reduction in all working conditions.
Therefore, inappropriate TMD design will not contribute to
wind turbine load reduction. Besides, only enabling TMD in
certain range of wind speed might be a possible solution for
this design. Further real experiments need to be conducted to
verify this idea. Future work will also consider the situation
when TMD is installed in the spar itself or other types of
platforms.

Appendix

Consider the following:
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This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR) learning. The
concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF), which enhance the
capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D
FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions
of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using
the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven
in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation

results have verified its effectiveness.

1. Introduction

Many industrial processes and systems are “distributed” in
space [1] and are usually called spatially distributed systems.
Recently, a novel three-dimensional fuzzy logic controller
(3D FLC) [2] has been developed for the control of such
systems. The 3D FLC employs a three-dimensional (3D) fuzzy
set [2], which is composed of the traditional fuzzy set plus a
third dimension for the spatial information, and carries out a
3D rule inference engine; thus, it has the inherent capability
to process spatiotemporal dynamic systems. The control
strategy of the 3D FLC is similar to how human operators or
experts control the temperature in a space domain. Actually,
it is a kind of spatiotemporal fuzzy control system with the
traditional model-free advantage.

Currently, most 3D FLC designs are based on expert
knowledge [2-5], which requires that the human knowledge
to the control solution must exist and be structured [6].
However, in many real-world applications, experts may have
problems structuring the knowledge. Sometimes, although
experts have the structured knowledge, they may sway
between extreme cases: offering too much knowledge in the
field of expertise or tending to hide their knowledge [6]. On

the contrast, data sets hidden with effective control rules are
usually available. The motivation of this study is to design a
3D FLC using spatiotemporal data information.

To date, few literatures are found to be focused on data-
based 3D FLC design methods. In [7], a table look-up scheme
was employed to design 3D FLC in terms of input-output
pairs. In [8], a fuzzy c-means algorithm (FCM) and gradient-
descent approach were used to design a data-based 3D FLC,
where FCM was used to learn the initial 3D fuzzy rule base
and then the gradient-descent approach was used to optimize
the parameters of MFs. In [9, 10], a clustering and linear
support vector regression based 3D FLC design method was
proposed, where the nearest neighborhood clustering was
used to construct the antecedent part of 3D fuzzy rules and
a linear support vector regression (SVR) was used to learn
the consequent parameters. These methods either yield lots of
fuzzy control rules (e.g. in [7]) or require additional algorithm
to reduce redundant 3D fuzzy sets or 3D fuzzy rules [8-
10]. As a complementary, Zhang et al. proposed a data-based
3D FLC design method using SVR learning [11], where the
learned support vectors and associated learning parameters
are directly used to design antecedent part and consequent
part of 3D fuzzy rules. The best advantage of this method is



that reasonable 3D fuzzy control rules are directly extracted
and constructed by SVR learning. The limitation of the design
is that Gaussian shape membership function (MF) is the only
choice for MF design.

In this study, we focus on a reference function based 3D
FLC design using SVR learning, which integrates the merits
of SVR learning and flexible MF choice. Utilizing the concept
of reference function, the 3D FLC can cope with more kinds
of MFs, for example, Symmetric triangle, Gaussian, Cauchy,
Laplace, Hyperbolic Secant, and Squared Sinc. A nonlinear
mathematical description of a reference function based 3D
FLC can be derived, and spatial fuzzy basis functions are
defined. Via relating spatial fuzzy basis functions of a 3D
FLC to kernel functions (KFs) of an SVR, an equivalence
relationship between a 3D FLC and an SVR is established.
Therefore, a 3D FLC can be constructed using the learned
results of an SVR. In addition, the universal approximation
capability of the proposed 3D fuzzy system is proven in terms
of the finite covering theorem.

The paper is organized as follows. Preliminaries about the
reference function, 3D MF generated by reference function,
and the nonlinear mapping of reference function based 3D
FLC are addressed in Section 2. In Section 3, the methodology
and design scheme of the reference function based 3D FLC
design using SVR learning are presented. Then, the finite
covering theorem is used to prove that the 3D FLC is a
universal approximator in Section 4. In Section 5, a catalytic
packed-bed reactor is presented as an example to illustrate the
proposed 3D FLC and validate its effectiveness. In Section 6,
conclusions are given.

2. Preliminaries

2.1. Reference Function

Definition of Reference Function (see [12, 13]). A function v :
R — [0, 1] is a reference function if and only if the following
two conditions hold:

(D) v(x) = v(-x),
(2) v(0) = 1.

Many functions may be reference functions. For instance,
Symmetric triangle, Gaussian, Cauchy, Laplace, Hyperbolic
Secant, and Squared Sinc as listed in Table 1 are reference
functions. The reference functions can be used to generate 3D
MFs, which provide a way for 3D FLC to access more kinds
of 3D MFs.

2.2. Reference Function Based 3D FLC

2.2.1. 3D MF Generated by Reference Function. A 3D MF is
an extension of a traditional MF by adding a third coordinate
for the spatial information. In detail, the 3D MF has three
coordinates: one is for the universe of discourse of the
variable, another one is for the spatial information, and the
third one is for the membership degree. If finite sensors are
used, the 3D MF can be considered as the assembly of the
traditional 2D MFs at each sensing location. In this way,
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TABLE 1: Reference functions.

Classification Mathematical expression

v(x) =max (1 —d|x|,0), d>0

Symmetric triangle

Gaussian u(x) = eid"z, d>0
1
Cauchy U(X) = m, d>0
Laplace vix)=e ™ d>o
2
Hyperbolic S t =—, d>0
yperbolic Secan v(x) g
.2 d
Squared Sinc v(x) = sn;z(xzx) d>0
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FIGURE 1: Gaussian MF distribution of spatial input variable x, (z) at
sensing location z = z,. B} (x,(z,)), B:(x,(2,)), and B;(x,(z,)) are
generated by the Gaussian type reference function f3, (x,(z,)).

we can generate a 3D MF by location transformation of a
reference function at each sensing location.

For example, we have a spatial input variable x,(z)
defined in a discrete spatial domain Z = {z,,2;,...,2,}. A
3D MF of x,(z) can be an assembly of the traditional 2D
MFs at each sensing location z = z; (j = 1,2,..., p). The
MF distribution of x,(z) at sensing location z = z; can
be shown in Figure 1, where f3,(x,(z,)) is a Gaussian type
reference function; [3% (x1(29)), [p’f (x1(21)),and ﬁf(xl(zl)) are
generated by location transformation of 3, (x, (z,)).

2.2.2. Reference Function Based 3D FLC as a Nonlinear
Mapping. The basic structure of a 3D FLC is composed of
3D fuzzifier, 3D rule inference, and defuzzifier. Due to its
unique 3D nature, some detailed operations of a 3D FLC
are different from a traditional one for spatial information
expression, processing, and compression. For their detailed
operations, one can refer to [2]. Once each component of
a reference function based 3D FLC is set, the nonlinear
mathematical description of the 3D FLC can be derived (see
Appendix A for a brief derivation). Assuming that we employ
3D singleton fuzzifier, 3D fuzzy rules as shown in (A.4) of
Appendix A, “product” t-norm and “weighted aggregation”
dimension reduction [3] in the 3D rule inference, singleton
fuzzy sets for the output variable, and “linear” defuzzifier [14],
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the reference function based 3D FLC can be mathematically
expressed as

N p s
ux) ="+ Y6y a8 (x(z))

=1 j=1 i=1

38 Ya 16 (5 (=) ).

=1 j=1 i=1

)

where x;(z;) denotes the input of the ith spatial input variable
Zj; ﬁf(xi(zj)) =

Bi(x;(z j)—Tf ;) denotes MF generated by the reference function

x;(z) from the sensing location z =

Bi(xi(z))); Tfj denotes a location parameter, that is, the
location transformation of the MF of xi(z]-) with respect to
Bi(x(z;)); a; denotes the spatial weight from thejth sensing

location; b° and b’ are constants; p denotes sensor number.
In (1), let

P s
= Y16 (x(2)): 2)
j=1 =1
then (1) can be rewritten as

N
u(x,)=b"+ Zbl‘{’l (x,). (3)

I=1

We define \I’l(xz) as a Spatial Fuzzy Basis Function (SFBF)
[11]. Each SFBF corresponds to a 3D fuzzy rule, and all the
SEBFs correspond to a 3D rule base. Mathematically, a 3D
FLC is a linear combination of all the SFBFs. Furthermore,
we rewrite (2) into (4)

¥ () = Yag (x(2). 0

where ¢ (x(z )N =TI lﬁ (x;(z; )

From (4) we can find that at each sensing location,
there exists a traditional FBF [15] gol(X(Zj)); in the whole
space domain, multiple traditional FBFs are assembled by the
spatial weights a,,...,a, into a SFBF ¥/(x,). All the spatial
information expression and processing as well as the fuzzy
linguistic expression and rule inference are integrated into
SFBFs.

Equation (1) (or (3)) shows that the reference function
based 3D FLC is a nonlinear mapping from the input space
x, € Q C R to the output space u(x,) € U ¢ R.In
particular, using (3) a reference function based 3D FLC can
be represented by a three-layer network structure as show in
Figure 2.

3. Reference Function Based 3D FLC Design
Using SVR Learning

3.1. Design Methodology. The design methodology can be
depicted by Figure 3. The SFBFs from a 3D FLC are input to

Layer 1

Layer 2 Layer 3

FIGURE 2: Three-layer network structure of a 3D FLC.

an SVR as the KFs, and the learned spatial support vectors
as leading spatiotemporal data points from the SVR are
imported for the design of a 3D fuzzy rule base. The design
theory will involve two crucial issues. The first one is whether
SFBFs from a 3D FLC can be used as KFs in an SVR. The
second one is what the relationship between a 3D FLC and an
SVR would be like on the basis of the first issue.

3.1.1. Spatial Fuzzy Basis Function as Mercer KF. When
relating the SFBFs with the KFs in an SVR, for instance,
SFBFs are regarded as KFs, the SVR and the 3D FLC will have
the same network structures and then have the same mathe-
matical expressions, which will be discussed in Section 3.1.2.
Generally speaking, a function satisfying Mercer theorem can
be used as a KF for an SVR [16]. In this study, we will prove
that an SFBF is a Mercer KF.

In (3), we rewrite ‘I’l(xz) into K(x,, Tl), which can be
further expressed as follows:

K(xar) = K(x -7) = ZaKJ( (2).7))-

K (x(2)1) = (x(5) =) = T 16, (s =) -,

(5)

where x_ € RP* is a spatial input, 7' € RP** is the location
transformation parameter of 3D MF in the Ith rule, and
K/ (x(zj), ‘rj.) and K(x,, 7') are translation invariant KFs [13].

In terms of [13], if the reference functions are positive
definite functions, then we do get a Mercer kernel. The
reference functions as listed in Table 1 are positive definite
functions. Using these reference functions to generate MF,
from [13], we can conclude that K’ (x(zj),‘rj») is a Mercer
kernel. Since the linear combination of KFs is still a KF [16],
we can derive that K(x,,7') is still a Mercer KF. Therefore,
SEBFs are Mercer KFs, which can be used as KFs for SVR
learning.
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FIGURE 3: Design methodology of reference function based 3D FLC design using SVR learning.
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FIGURE 4: Design scheme of reference function based 3D FLC using SVR learning.

3.1.2. Mathematical Equivalence of a Spatial SVR and a 3D
FLC. Once the SFBFs from the 3D FLC are employed as
the KFs for an SVR, an inherent equivalence relationship
will be built between the SVR and the 3D FLC (comparing
Figure 2 and Figure 10). By combining (1) and (B.7), we have
the following mathematical expressions:

N
u(x,)=b"+ Zbl‘{’l (x,)
I=1

(6)

~8'+ Y0 ag (x(2)

=1 =
N I
=b+ ) (o - o) K(x,,x,),
=1

where b° = b, I
!
K(x,, x,).
From (6), we can find that each spatial support vector xlz
and its associated learning parameter (o — «;) correspond to

(o — ), and ‘{’l(xz) = K(xz,rl) =

one 3D fuzzy rule, where xi is applied to set the center of the
—

3D MF of the 3D fuzzy set C, (i = 1,...,s) in the Ith rule,

that is, the location transformation of the 3D fuzzy set with

respect to reference function S(x,, 79, and (0 — o) is used

to set ' (the constant for the consequent set of the Ith rule in
3D FLQC).

3.2. Design Scheme. The design of a reference function based
3D FLC consists of five parts: data collection, KF generation,
SVR learning, 3D fuzzy rule construction, and 3D fuzzy
controller integration, as shown in Figure 4.

(1) Data Collection. A set of spatiotemporal data will be
collected. The data should contain effective control laws.
Essentially, the reference function based 3D FLC design is a
fuzzy modeling [17] that extracts fuzzy control rules from the
spatiotemporal data.

(2) KF Generation. Before SVR learning, KFs should be prop-
erly designed. In this step, via properly selecting reference
function, SFBFs from a 3D FLC will be formulated (as in (4))
to set KFs for SVR learning.

(3) SVR Learning. With proper KFs, the SVM learning
algorithm directly executes the spatiotemporal data set and
yields spatial support vectors x_, ..., x) and their associated
learning parameters o] — oy, ..., 0 — ot

(4) 3D Fuzzy Rule Construction. The spatial support vectors
and their associated learning parameters, as leading control
laws, are used to construct 3D fuzzy control rules. In detail,
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A— B

FIGURE 5: Sketch of a catalytic packed-bed reactor.

the spatial support vector xlz is employed to construct the
antecedent part of the /th rule; o —a; is employed to construct
the consequent part of the /th rule. The form of each 3D fuzzy
rule is shown as below

-
R :if x, is close to x. then u is close to (o) — ). (7)

It is shown that the result of the SVM learning can be easily
interpreted using structured linguistic knowledge. Finally, a
3D rule base with N rules is established.

(5) 3D Fuzzy Controller Integration. Once the 3D rule base is
established, a 3D FLC can be achieved by integrating other
components including 3D fuzzifier, 3D rule inference, and
defuzzifier. The detailed settings are given in Section 2.2.2.
Finally, we obtain a complete 3D FLC, which can be used as a
controller for a spatially distributed dynamic system.

4. Universal Approximation of
Reference Function Based 3D FLC

The reference function based 3D FLC design method is used
to construct a 3D FLC from spatiotemporal data hidden
with effective control laws. In other words, the 3D FLC aims
at approximating an unknown nonlinear control function.
In this study, we use the finite covering theorem to prove
that the 3D FLC is a universal approximator; that is, it
can approximate continuous control functions to arbitrary
accuracy.

The universal approximation capability of the reference
function based 3D FLC can be described by Theorem 1.

Theorem 1. Let g(x,) : RP** — R be a continuous function
defined on a compact Q). For each € > 0, there exists a reference
function based 3D FLC u(x,) such that

sup (Ju (x;) - g (x.)]) <& (8)

From (A.4), it is shown that R’ is an universal rule,
namely, for any spatial input x,, R’ will be fired. In (A.4), the

fired rule R’ will produce the constant b°. Let
F (xz) =u (xz) - bo
S

= ibl o[ 18 (x:(2) - 73)

i=1 (9)

1l
—
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FIGURE 6: Spatial-temporal data set: (a) spatial error e(z); (b)
spatial error in change Ae(z); (c) incremental output Au (z: spatial
dimension; k: serial number of input-output data).

F(x,) can be regarded as a 3D FLC generated by rule

—1 = N
base {RI,RZ,...,R }. Then, Theorem 1 can be restated as
Theorem 2 as follows.

Theorem 2. Under the condition of Theorem I, let g(x,) :
RP* — R be a continuous function defined on a compact Q.
For any constant b°, one has §(x,) = g(x,)+b". Foreache > 0,
there exists a reference function based 3D FLC F(x,) such that

e (JF(x,) -g(x)]) <& (10)
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F1GURE 9: Continued.
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FIGURE 9: Control performance comparisons. From left to right in (a)-(g): catalyst temperature varying with time and space, manipulated
input, and catalyst temperature at steady state.

Before the proof of Theorem 2, we first present some  The inference result of R is given by
preparation work.
When x, = X, € Q, the firing level of the fired rule R (I= . _ :
1,...,N)is D (u) = 0 if uy (x,) =0 or u#b, 12)
blM(Pl (x,) in other case,

P s
Hy! (x;) = Zajl_[ﬁi (}i (Zj) - Tilj)' (11) where u is the output variable of the 3D FLC, which is
=1 =l corresponding to the “u” of the consequent part of the fired
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rule. The composition result of all the fired rules is given as
follows:

N
D) =|JD (). 13)
=1

Based on the above preparation, Lemma 3 is presented as
follows.

Lemma 3. Under the condition of Theorem 1 there exists a
reference function based 3D FLC F(x,) such that

Dw)|u-g(x,)|<D(u)xe foreachueR.  (14)

Proof. Let a, € Q. As g(-) is continuous at a,, for each i =
L,...,sthere existsa §, > 0 such that

-l <8, = (L9 = lg(x) - g(a)] <e.

(15)
For each a, € ), set
O, ={x. |5 -d|<d, (=1...9}. (6

Then, O, is open on RP* and Q <€ |, q O, - As Q is
compact, there exists a finite subfamily O,1, Oz, ..., O such

that
<o, Jo. ] Jou (17)
We can construct a 3D FLC F(x,), defined by

P s
Q1B (xi(z)) - 7) x.€Ou

Uyt (x.) = j=1 "i=1

18
; veog W
(l=1)~-)N))
o)
bzz{g(xz) izzoa% (I=1,...,N). (19)

When x, = x, € Q, we have the following.

(1) If D(u) = 0, the lemma is trivial.
(2) If D(u) > 0, then D(u) = Uﬁl Dl(u) > 0; hence, there

exists a k € [1, N such that D*(«) > 0. Therefore, we
further have that the following.

(a) From DF(u) #0, it follows that Hgh (x,) #0; that
is, X, € Og. In terms of the continuity of g(-),
we have |g(x,) - g(a§)| <e.

(b) From D*(u)#0, it follows that D) =
bk‘uq,k (x,) #0,and then b*+0. We haveu = b* =

gal).

Hence, we have

+ 'g(aﬁ)—g(fzﬂ <0+e==e.
(20)
O

=g (&)l < |u-g(al)

In terms of Lemma 3, the proof of Theorem 2 can be given
as follows.

Proof of Theorem 2. Consider

oz < 2P =g (%)l
[FG) -9 ()l < =—5 50

- e+ Y D(u) -
- XDw)

(21)

5. Application

5.1. A Catalytic Packed-Bed Reactor. This designed 3D FLC is
applied to a catalytic packed-bed reactor [1, 4, 18] shown in
Figure 5, where a reaction of the form A — B takes place on
the catalyst. The reaction is endothermic and a jacket is used
to heat the reactor. A dimensionless model that describes this
nonlinear tubular chemical reactor is provided as follows:

o, . OT, 1 o°T,
ot 0z P, 0z
YT
_BTBCCAexp<1+Tr>+,BT (u-T,), (22
oC, 0C, 1 0°C, ( v T, )
A AL - - B.C e
ot | 0z P oz AP 1T
subject to the boundary conditions
oT, oC
z=0, PeTTr:_r’ PeC(CA_l):_A’
0z 0z (23)
e=1, oy Fa_
- %z 0 0z

where T,, C,, and u denote the dimensionless temperature,
the concentration of reactant A, and jacket temperature,
respectively; ¢ and z denote the dimensionless time and
space; P, and P, are the heat and mass Peclet numbers,
By is a dimensionless heat of reaction, B is a dimensionless
preexponential factor, y, is a dimensionless activation energy,
and f; is a dimensionless heat transfer coefficient. The values
of the process parameters are given as follows:

P;=50, Pc=50, Bec=0.00001, ”
By =10, fr=1562, 1y, =2214.

The control problem is to maintain a desired reaction rate via
tuning the jacket temperature to control catalyst temperature.
In this application, the reactor began to work at one steady
state; because of the requirement of operation conditions, the
reference value of temperature is increased by 8%. Thus, the
control objective is to make the temperature of reactor well
track the new reference value along the space domain.

5.2. Design of Reference Function Based 3D FLC

(1) Data Collection. The spatiotemporal data is collected from
the catalytic packed-bed reactor, which is controlled by
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an expert based 3D FLC [4]. Five point sensors are located
along the length of the reactor with Z = [00.40.60.81] for
collecting the spatial distribution of the temperature T,. Two
spatial inputs are error and error in change; that is, e* (Z, k) =
T (Z) — T(Z,k) and Ae*(Z) = e"(Z,k) — e"(Z,k - 1).
The detailed design of the expert based 3D FLC, including
3D fuzzifier, 3D rule inference, and defuzzifier, can refer
to [4]. The scaling factors for the spatial error, the spatial
error in change, and the incremental output are set as 0.5,
0.1, and 0.3, respectively. The sample period is 0.1s, and the
sampling duration is 6 s. Thus, we have 60 input-output data
pairs (shown in Figure 6), each of which is represented by
(le(2)i> Ne(2)), Auy), k= 1,...,60.

(2) KF Generation. The reference functions (Symmetric tri-
angle, Gaussian, Cauchy, Laplace, Hyperbolic Secant, and
Squared Sinc) as listed in Table 1 are employed, respectively, to
generate 3D MFs and then formulate SFBFs. SFBFs are used
for KFs in an SVR learning.

(3) SVR Learning. With the spatiotemporal data set as above,
the SVM learning algorithm is used for the support vector
learning. It should be noted that the SFBFs in (3) are taken
as the KFs. As a result, spatial support vectors are extracted
and their associated learning parameters are obtained. For
instance, when the Gaussian type reference function is used
for KF generation, eight support vectors were learned from 60
spatiotemporal data pairs when C = 1000, ¢ = 0.00005, and
d = 0.1, as shown in Figure 7, where the spatiotemporal input
data is decomposed into multiple two-dimensional graphical
representations over the space domain.

(4) 3D Fuzzy Rule Construction. In terms of the learned results
of the SVR in the previous step, we establish 3D fuzzy rules.
For instance, with the Gaussian type reference function, eight
3D fuzzy rules are constructed. The first four 3D fuzzy rules
are presented as follows.

Ry: if e(z) is close to [-0.0580 —0.0963
—-0.0988 —0.1000 —0.1005]" and Ae (z) is close
to [-0.0580 —0.0963 —0.0988 - 0.1000 —0.1005]',
then Au is close to —9.5172.

R,: if e(z) is close to [-0.0479  —0.0817
—0.0839 —0.0848 —0.0851]" and Ae(z) is close
to [0.0101 0.0146 0.0149 0.0152 0.0154]', then
Au is close to —298.9862.

Ry if e(z) is close to [-0.0414 —0.0714
-0.0731 -0.0735 —-0.0737]" and Ae(z) is close
to [0.0065 0.0104 0.0109 0.0113 0.0114]', then
Au is close to 249.2288.

R, if e(z) is close to [-0.0359  —0.0626
-0.0638 —0.0639 —0.0639]" and Ae(z) is close
to [0.0055 0.0087 0.0092 0.0096 0.0098]’, then
Au is close to 148.1335.

Journal of Applied Mathematics

The first four 3D fuzzy rules and their associated 3D MF
distributions can be depicted in Figure 8, which show the
inherent spatial nature of the 3D fuzzy control system.

(5) 3D Fuzzy Controller Integration. Based on the 3D fuzzy
rules established in step (4), we obtain a complete 3D FLC
by combining 3D fuzzifier, 3D rule inference, and defuzzifier.
The resultant 3D FLC will be used as a controller for the
catalytic packed-bed reactor.

5.3. Control Performance Validation. The designed reference
function based 3D FLC using SVR learning is validated on
the nonlinear catalytic packed-bed reactor. We employed
six kinds of reference functions, that is, Symmetric triangle,
Gaussian, Cauchy, Laplace, Hyperbolic Secant, and Squared
Sinc, and finally produced six 3D FLCs. With the reference
function based 3D FLC as the controller, the catalyst tem-
perature varying with time and space, manipulated input,
and the catalyst temperature at steady state are presented in
Figures 9(a)-9(f). The control performance is given in
Table 2, where steady-state error (SSE), integral of the abso-
lute error (IAE), and integral of time multiplied by absolute
error (ITAE) [2] are used as the performance criteria. In terms
of Figures 9(a)-9(f) and Table 2, we can find that different
reference functions will yield different control performance.
In this application, Gaussian, Cauchy, Hyperbolic Secant,
and Squared Sinc reference functions result in good control
performance, while Symmetric triangle and Laplace reference
functions lead to poor control performance. The results
illustrate that KF will influence the control performance; thus,
in the actual application, we should choose proper KF to
design a 3D FLC.

As a comparison, we do another control experiment; that
is, the expert knowledge-based 3D FLC from [4] is taken as
the controller. As for its detailed design including 3D MF, 3D
rule base, 3D inference, fuzzification, and defuzzification, one
can refer to [4]. The scaling factors for the spatial error, the
spatial error in change, and the incremental output are set
as 0.5, 0.1, and 0.3, respectively. The controlled profiles and
control performance are given in Figure 9(g) and Table 2,
respectively.

From Figure 9 and Table 2, we can find that with a
proper reference function, the reference function based 3D
FLC has nearly the same control performance as the expert
knowledge-based 3D FLC. It means that the proposed spatial
SVRlearning method can well extract the control laws hidden
in a spatiotemporal input-output dataset and formulate them
in the form of 3D fuzzy rules.

6. Conclusions

A reference function based 3D FLC design methodology
using SVR learning is proposed for spatially distributed
dynamic systems. Utilizing the concept of reference func-
tion, the 3D FLC can access more kinds of 3D MFs, such
as Symmetric triangle, Gaussian, Cauchy, Laplace, Hyper-
bolic Secant, and Squared Sinc. Based on the mathematical
expressions of reference function based 3D FLC, we define
spatial fuzzy basis functions and then find an equivalence
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TABLE 2: Performance comparisons.
Reference function based 3D FLC 3D fuzzy rules ISS (x107%) IAE (x107}) ITAE (x107})
Symmetric triangle reference function 7 103.4 16.163 65.457
Gaussian reference function 8 4.7 1.864 3.526
Cauchy reference function 8 4.7 1.881 3.537
Laplace reference function 7 108 16.525 67.408
Hyperbolic Secant reference function 28 4.8 1.918 3.567
Squared Sinc reference function 5 47 1.859 3.515
Expert-based 3D FLC 25 4.8 1.931 3.676

relationship between a 3D FLC and an SVR by connecting
spatial fuzzy basis functions in the 3D FLC to KFs in the
SVR. On the basis of the equivalence relationship, a 3D FLC
can be designed using the SVR learning; that is, the learned
spatial support vectors as the optimal leading data points can
be directly used for 3D fuzzy control rule generation. The
proposed reference function based 3D FLC design can be
carried out in five steps: data collection, KF generation, SVR
learning, 3D fuzzy rule construction, and 3D fuzzy controller
integration. Besides, the universal approximation capability
of the proposed 3D fuzzy system is discussed. Finally,
effectiveness of the proposed 3D FLC design methodology is
validated on a catalytic packed-bed reactor.

Appendices

A. Nonlinear Mapping Derivation of
a Reference Function Based 3D FLC

Let x, = (x,(2),...,x,(2)) be a spatial input vector. Then, the
3D MF of the ith spatial input x;(z) is given as

b = B (x;(2) = Bi (x:(2) - 7))

and the Gaussian type 2D MF of the ith spatial input x;(z) at
the sensing location z = z; is given as

g = B (% (2))) = B (% (2)) = i)

Via a 3D fuzzifier, the spatial input vector x, in the universe
of discourse X can be transformed into a spatial fuzzy input
Ay as below:

(A1)

(A.2)

Ax

)

z€Z x,(z)eX;

z Ui, (%, (2)5...,x,(2),2)

x,(2)€X;

[(x1(2),...,x,(2),2)

)

z€Z x,(z)eX;

z Hx, (xl (Z)’Z) Foeek Uy (xs (Z))Z)

x,(z)eX,

[(x1(2),...,x,(2),2),
(A.3)

where * denotes the t-norm operation.

Assume that 3D fuzzy rules are designed with the follow-
ing form:

R :if x; (z)is 6(1) and---and x, (2) is 63 then u is b°,

ﬁl sif x, (2) s Ell and---and x (z) is d then u is b,
(A.4)

—0

where C; is a universal 3D fuzzy set, whose MF at sensing
—

location z = z;is ﬁ?(xi(zj)) = 1; C, is a 3D fuzzy set, whose

MF at sensing location z = z; is ﬁg(x,»(zj)) :R — [0,1],i =

L,...,s; b’ and V' are constants.
Then, for each fired rule, a fuzzy relation is obtained as
below:

—I
R:C/x---xC,— b, 1=0,1,2,...,N. (A5)

A 3D rule inference integrates the spatial information pro-
cessing and the traditional inference and contains three main
operations: spatial information fusion, dimension reduction,
and traditional inference. Firstly, using the spatial informa-

tion fusion operation, we have a spatially distributed set W’
over the space domain with the grade of the MF derived as

i (2)

- ‘MZXo(él ><~--><d) (XZ, Z)

= {Supxl(z)eXl [#Xl (x1(2),2) * He (x1 (z),z)”
Foenk {Supxs(z)eXs

[, (5,2).2) # g (5, @).2) |}
= H.Bi (xi (2) - Tz‘l)’
i=1
(A.6)

where “product” is used for t-norm () and singleton fuzzifier
is used.
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Then, utilizing a weighted aggregation [3] dimension
reduction operation, a 2D set y is obtained. Consider the
following:

by = apy (21) + Gy (2) + - + Gy (Zp)
s (A7)

= 2] 1A (xi (=) - m3)-

=1 =1

Finally, traditional inference operation (Mamdani impli-
cation operation) and linear defuzzifier [14] are carried out
successively. We have the nonlinear mathematical expression
as follows:

u(x,) = b°+Zb’Za1Hw( ()

=1 j=1 i=1
(A.8)

S

-84 3V T[T (s (2) - %)

B. Mathematical Preliminaries of e-Support
Vector Regression

In this study, we focus on e-support vector regression (e-
SVR). Suppose that we have a training set D = {[x;, ;] €
R xR,i = 1,...,q} consisting of g pairs (x;, y,), (x5, ¥,),

" (xq, yq), where the inputs are s-dimensional vectors and
the labels are continuous values. In e-SVR, the goal is to find
a function f(x,w) so that for all training patterns x has a
maximum deviation e from the target values y; and has a
maximum margin. The e-insensitive loss function is defined
as follows:

if [y-fxw)|<e
(x, w)| —¢ otherwise.

(B.1)

To make the SVR nonlinear, we may map the input vector
x € R’ into the vector v of a high-dimensional feature
space, v = ©(x), where © represents a mapping R° — R/,
and formulate a linear regression problem in this feature
space, and then an optimization problem will be solved. The
optimization problem can also be solved in a dual space. By
introducing the Lagrange multipliers «; and «;", the primal
optimization problem can be formulated in its dual form as
follows:

max{——ZZ(Oc —06)(04 _“)<®(x (x]»

% i=1j=1

- szq: (of +a)+ Zq: (0 — o) )’i}
i=1 i=1

(B.2)
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X1
1 *
KGox) | (o —ay)
b
X
2 K(x, x2)
” u
(a; —«y) Z
x X =
s \_/ K(x, xN) (ary = an)
Layer 1 Layer 2 Layer 3
Layer 1: input x = (xy,..., X)
Layer 2: support vectors X xN and KFs K(x,xY),. .., K(x, xN)
Layer 3: outputu—z1 ) —a)K(x,x) +b
FIGURE 10: Three-layer network structure of an SVR.
subject to
9 9
Zaf :Z(xl, 0<a; <C, 0<;<C,i=1,...,q,
j=1 i=1
(B.3)

where the constant C is a design parameter chosen by the
user, which determines the tradeoff between the complexity
of f(x,w) and the approximate error.

Solving the dual quadratic programming problem, we can
find an optimal weight vector w and an optimal bias b of the
regression hypersurface given in (B.4):

w=3 (@ ~a)0(x).

(B.4)

b=1(i<y,~—<w-®(xi>>>).

9 \i3

Then, the best regression hypersurface is given by

f(xw) = i((x —a;){(®(x)-O(x;))+b
= (B.5)

= Z (o] =) (O (x)- O (x;)) +b.

ieSV

The training pattern x; with nonzero (e
support vector (SV).

To avoid a direct mapping Y(x), the kernel trick is
used. AKF K(x;, xj), which satisfies the Mercer’s theorem, is
introduced as below:

0(x;))-

K(x,-,xj) = <® (x

— ;) is called

(B.6)
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Using K(x;,x;), the SVR can be constructed which
operates in an infinite dimensional space. Then, the solution
of the SVR has the form

f(xw) = Z (e — ;) K(x, xi) +0b. (B.7)
iesv

Letx', x%, ..., &N represent support vectors. The solution
of the SVR can be described by a three-layer network
structure as shown in Figure 10.
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This paper presents a novel suboptimal digital tracker for a class of time-delay singular systems. First, some existing techniques
are utilized to obtain an equivalent regular time-delay system, which has a direct transmission term from input to output. The
equivalent regular time-delay system is important as it enables the optimal control theory to be conveniently combined with the
digital redesign approach. The linear quadratic performance index, specified in the continuous-time domain, can be discretized
into an equivalent decoupled discrete-time performance index using the newly developed extended delay-free model. Additionally,
although the extended delay-free model is large, its advantage is the elimination of all delay terms (which included a new extended
state vector), simplifying the proposed approach. As a result, the proposed approach can be applied to a class of time-delay singular
systems. An illustrative example demonstrates the effectiveness of the proposed design methodology.

1. Introduction

The singular systems naturally arise in describing large-scale
systems, and there are several examples occurring in power
and interconnected systems. In general, an interconnection
of state variable subsystems is conveniently described as a
singular system, even though an overall state space repre-
sentation may not even exist. Over the past decades, much
research into singular systems has solved many complex
problems concerning, for example, the stability [1-4], impul-
sive modes [5], controllability, observability [6], and the
sufficient and necessary conditions for the impulse control-
lability and observability of time-varying singular systems
[7-11]. However, the main purpose of such work is either
to stabilize the singular system or to prove its controllability
and observability. Here, the key note of this paper is about
tracking the issue.

This investigation considers a time-delay system. The
overwhelming majority of practical control systems are
described by continuous-time settings with input, output,
and state time delays. Those delays arise from inherent
physical phenomena and are commonly encountered in

various engineering systems. Several authors [12-15] have
studied the linear quadratic optimal analog controllers for the
analog system with input and state delays. Recently, robust
control and filtering for both continuous-time and discrete-
time nominal/uncertain systems with time delays have been
thoroughly studied by Mahmoud [16]. Despite much progress
in both analog control theory and digital control theory
over the last few decades, effective digital control of analog
plants with input and state delays (input-state delayed hybrid
control systems) is still being developed [17, 18].

The objective of this paper is to develop a novel observer-
based suboptimal digital tracker for a class of time-delay
singular systems. The developed digital tracker can make
the outputs of the digitally controlled time-delay singular
system track the desired reference signals. First, the time-
delay singular system is converted into a regular time-delay
system that contains a direct transmission term from input
to output. Then, for effective utilization of the well-developed
discrete-time optimal control theory for a regular time-delay
system, it is converted into a new extended discrete delay-
free model. The performance cost function is discretized
using the extended discrete delay-free model. When the



states of the continuous time-delay singular system are not
available for measurements, a suboptimal digital observer
for the original continuous time-delay singular system is
constructed by using the duality of the digital redesign
technique for the controller and the digital-to-analog model
conversion technique [19]. As a result, the proposed novel
observer-based suboptimal digital tracker is able to make the
output of the digitally controlled analog time-delay system
track the desired reference signals.

The rest of the paper is organized as follows. Section 2
presents the problem description and preliminary results.
Section 3 presents the novel optimal tracker and a novel
observer-based suboptimal tracker for the time-delay singu-
lar system and proposes a systematic design methodology for
designing a set of high-performance trackers for a class of
time-delay systems. Finally, an illustrative example is given
to demonstrate the effectiveness of the proposed approach.

2. Problem Description and Preliminaries

2.1. Problem Description. Consider the following continuous
time-delay singular system:

Ny
Ex,_(t) = Ax.(t) + Zgixc (t—7,)+ ZBqu (t - T,-,j) ,

i=1 =1

y.(t) =Cx, (t-1,), (1b)
where x,(t) € R" is the state vector, u,(t) € R™ is the control
input vector, and y,(t) € R’ is the output vector. E, A, A,,
B;, and C are known constant system matrices of appropriate
dimensions and E is a singular matrix. The corresponding
state time delay 7,;, i = 1,2,...,N;, input time delay 7; ;,
j =1,2,...,N,, and output time delay 7, are assumed to be
known.

The continuous time-delay singular system (la) and (1b)
may be in impulsive modes. Directly designing the controller
or observer for (1a) and (1b) is very difficult because impulsive
modes are uncontrollable. To solve this problem, the regular
pencil, the standard pencil, and the preliminary feedback
control methods are used to eliminate impulsive modes and
then obtain an equivalent regular time-delay system that can
be applied to the original continuous time-delay singular
system (la) and (Ib). The following section systematically
develops the design of the novel controller and observer using
the equivalent regular time-delay system.

2.2. Preliminaries. The regular pencil and standard pencil are
defined below.

Definition 1 (regular pencil [20]). Let E and A be two square
constant matrices. If det(sE — A) # 0, for all s, then (sE — A) is
called a regular pencil.

Definition 2 (standard pencil [21]). Let (sE,—A,,) be aregular
pencil. If there exists scalars « and S such thataE,,+ A, = I,
then (sE, — A,) is called a standard pencil.

Notably, for any regular pencil, (sE — A) can be
easily transformed into a standard pencil by multiplying
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(aE+BA) " to Eand A, respectively, where a and 8 are scalars
such that det(aE + SA) # 0. Therefore, the matrix coeflicients
of a standard pencil (sE,, — A,,) become

E, = (aE, + BA)'E, (2a)
A, = (aE + BA)A. (2b)

The modified system retains its state vector x.(¢) and the
matrices E, and A, have the following nice properties.

Lemma 3 (see [22]). Consider

(a) E,A, = A,E

other;

L E,» meaning that E, and A, commute each

(b) E, and A, have the same eigenspaces.

The above properties enable a singular system to be
decomposed into a reduced-order regular subsystem and a
nondynamic subsystem.

3. Main Results

3.1. Decomposition of Time-Delay Singular System. By (2a)
and (2b) the regular pencil (sE — A) can be transformed into
a standard pencil (sE, — A,). Notably since E, is a singular
matrix, which has at least one zero eigenvalue, 3 cannot be
equal to zero. Hence, multiplying (1a) by (xE+fA) ™" can yield
the following equation:

Ny N,
E % (t) = A,x,(t) + ZAn’ixc (t—7)+ ZBn,juc (t - Ti’j) ,
=

i=1

(3)
where
E, = (aE + BA)'E,
Kn,i = (aE + ﬁA)_lgi’ (4)
.
B, = (aE+ BA)"'B,.

Since «E, + fA,, = I, the pencil (sE, — A,) is a standard one,
and has the properties that are mentioned in Lemma 3. To
decompose system (3), the state x,(t) is converted into X ()

by

Xc (t) = M}c (t) > (5)
where the constant matrix M is a block modal matrix of
E, and determined by means of the extended matrix sign

function [23, 24]. The M matrix of state space transformation
is as follows.

Step 1. Find sign(E,,) using the extended matrix sign function
with an adequate w, where

EJn = (En - wIn) (En + wIn)_l' (6)

Step 2. Find sign+(En) = (1/2)[In+sign(En)] and sign_(En) =
(1/2)11, - sign(E,)]-
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Step 3. Construct the matrix M = [ind(sign*(E,))
ind(sign™(E,))], where ind(-) represents the collection of
linearly independent column vectors of (-).

Substituting (5) into (3) and multiplying by M~" on the
left yield
Ny
M'E,Mx, (t) = M"'A,Mx, () + Y M A, ,Mx, (t - 7,,)

i=1

N,
+ ZM_IBn,qu (t - Ti,j)
=1

= l (In - (xEn)EC (t)

B

Ny
+ Y M A, MX(t - 1,;)
i=1

N,
+ ZM_IBn,qu (t - Ti)j) .

=1
7)
If M~ A, ;M can be diagonalized, then (7) yields,
E, |0 |-
gom
-1 B
B(Ik—ocEl)‘ o)
|0 R0 0
o Unx — &
P 2 ®)
N —_—
LA O |2
;[ 0 Zz,;‘ ]xc(t Ts,i)
N =
2 Bl,'
+Z E ] uc(t_Ti’j),
j=1 172
where X.(t) = [x(t),X;()]" and M'E,M = block

diagonal {E,, E,}. E, is invertible with rank(E,) = deg{det
(SE, — A)} =k, [EL,EZ]T = M_an,j, and E, is a nilpotent
matrix with dimension (n—k) x (n—k). Since det(I,_,—aE,) =
1, it is invertible. Simplifying (8) by premultiplying the block

diagonal {EII, B, - ocfz)_l} on both sides, one has

L]0 7. Alo -
St Jro- [S =0
N,

Dy

N g
—5 t—1..),
gﬁu -

O |_
Zz,i ] Xc (t - Ts,i) 9)

where

3
— — 1
Al,i - El Al,i’
—_ -1
A21 = B(In—K - aEZ) A21’
— —1—
Bs;=E; By
-1
By, Al oE) B,
(10)

Remarkably, since
rank (E) — deg {det (sE — A)} = rank (Ef) , 1)

it is much easier to determine the number of the impulsive
mode using the above equation relating to (9).

For simplicity, only those singular systems that include at
least one impulsive mode are discussed. First, assume that the
singular system (9) has g; then, rank(E £) = q. By a previously
proposed method [12], the preliminary feedback gain Ky;
is found and K, is proven to eliminate the impulsive
modes. For the time-delay singular system (9), the proposed
method yields a similar result (Appendix A) to that previously
developed method [12] and the linear preliminary feedback
control is

U, (t — Ti,j) = - Kf,jfc,f )+ Ve (t - Ti,]’)

_ [omxk, Kf,j] X () +v, (t - Ti)j) .

The time-delay singular system (9) can be transformed into
(Appendix A)

(12)

N
Ex, (t) = AgX (8) + Y Ay %, (t- 1)

i=1

(13)
NZ
+ ZBk,ch (t - Ti)j> ,
j=1
where
I.| O
B = [ O|E; ]
NZ
A, ZIBSJKf ;
Ak = ! N, >
O |k~ ) By Ky, (14)
=1
- Al O
A — 1,i — ,
k1 [ O A2, ]
B .
Bk : = AS, >
J
By
in which
Ef = U_IEfU,
A=A,
—1
A11 - El Al 1>



(15)

and U is a modal matrix of Ef with dimension (n — k) x
(n — k) such that Uﬁlff U is in the Jordan block form. The
time-delay singular system in (13) is obtained by applying
the linear preliminary feedback control law u(t) from (12)
to the system that is given by (9). Equation (13) has the
q finite modes (where q = rank(Ef) = rank(Ef)) and
the k original finite modes.All of these finite modes are
guaranteed to be controllable. The next task is to decompose
the singular system into a reduced-order regular system
with (k + g) controllable finite modes and the nondynamic
equation with (n — k — ¢) infinite nondynamic ones. This
task can be accomplished by using previously outlined steps.
First, the regular form is transformed into a standard one by
multiplying (13) by (yE, +17A )", where y and 7 are arbitrary
scalars such that (yE; + nA,) is invertible. Therefore,

(VEx + ﬂAk)_lEk’A.Cc ()

= (VEx +1AL)  AGX (1)

N,
-1~
+ Z(VEk +nAR) AgX (t - 1) (16)

i=1

N,
+ ) (VE + WAk)_lBk,ch (t-7;)-

j=1
Let
%, (t) = MX,_(t), 17)

where the constant matrix M is determined by using the
extended matrix sign function. The procedure is the same as
that elucidated above for finding M, except that it operates on

(yE + nA.) " E,. Substituting (17) into (16) and multiplying
by M yield

Mﬁl()}Ek + ﬂAk)_lEkﬁkc (t)

—_ Ny
+ ZM (VE +nAy) A Mz, (t - 15;)

N,
+ ZM_I(VE]( + T’]Ak)ilBk’jVC (t — Ti,j)
j=1

— 11 _ —
=M lﬁ [In - Y(YEk + ’7Ak) lEk] MXC (t)

Ny
+ ZM_I(YEk +1Ay) A ME, (t-1,,)

i=1

Journal of Applied Mathematics

N,
+ ZM_I(YE]( + T]Ak) lBk’jVC (t - Ti,j)
j=1
1 Y - w3 ~
= E [In - }/M I(YEk + ﬂAk) lEkM] X (t)

N,
+ ZM_I(YEk +1Ay) A Mz, (t-1,)

i=1

N,
* ZM’I(VEk +1AL) B (t-75).

j=1
(18)
That is,
Ey| O ]L
T 'xc (t)
|: O Efk
1 _
- (Ik+q - yEsk) O
- |1 I ( — x. (1)
o = (Li-k-q =~ VEfx
ne (19)

where %.(t) = [0, 251", M\ (yE; + nA) ' EM =
block diagonal {Esk,ffk} = block diagonal {E, O(n—g-i}-
E isinvertible with rank(E) = deg{det(sE,—A )} = (q+k).
Efk is a null matrix and [Ei)j,ﬁj;k)j] = M '(yE, + nA)™"

By ;. In (19), M~ (yE, + nA;) "' A, ; is assumed to be able to
be diagonalized as block diagonal {A | ;, A, ;}. Then, (19) can
be rewritten as

%, (t) = % (Es',j - yIk+q) %, (t)

N, 1 N, 1
+ D Eg AR (t-7,) + ) Eg By v (t-7,5),
i1 j=1

(20a)
N, N,
0=5%;(t)+ Z’?Az,i’?f (t-7,)+ Zqﬁfk,jvc (t - T,-’j) ,
i1 =1 o)

and the time-delay singular system output (1b) can be rewrit-
ten as (Appendix B)

Ye (t) = Cxc (t - To)

- [C, G, [;Cf((ij))]
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= Ci X, (t - To) + C255f (t - To)

N,
= Clk‘s (t - To) - CZZBfk,jVC (t - Ti>f) ?
j=1

(21a)

where CMVM = [C; G,].

Finally, the time-delay singular system (la) and (1b) can
be decomposed as the equivalent regular time-delay system
as follows:

N
X (1) = AX (1) + ZAd,izs (t -

N,
Ty;) + ZBd,ch (t - Ti’j) ,
i=1 =1

(22a)
N,
Y. (1) =C X, (t-1,) - ZD]-VC (t - Ti)j) , (22b)
=1
where
1 /—-1
Ay =~ (Esk - VIk+q> >
- —-1
Ay = Eg Ay (23)
— 1=
Bd,j = Esk sk,j>
D] = CZBfk,j'

Following the transformation, the time-delay singular
system (la) and (Ib) can be converted into a regular system
(22a) and (22b) that contains a direct transmission term from
input to output and the impulsive mode can be eliminated by
means of the method [12]. In the next section, (22a) and (22b)
will be used to develop the new optimal tracker and observer
for a time-delay singular system (la) and (1b) with a series of
time-delays. The proposed approaches are more general and
applicable to actual systems.

3.2. Based on Digital Redesign and Optimal Control to
Discretize the Continuous Time-Delay Singular System
and Construct the Performance Index

3.2.1. Discretization of Continuous Time-Delay Singular Sys-
tem. Consider the continuous time-delay singular system
(22a) and (22b). To discretize (22a) and (22b), assume that
v, (t) is a piecewise constant input function:

v, (t) = vy (kT), kT <t<(k+1)T, (24)

where T is the sampling period. Let the state delay time be
given by 7,; = p;T + I}, where 0 < I; < T'and p; > O is an
integer, and let the input delay time be given by 7, ; = n,T +
0, where 0 < 0; < T'and ; > 0 is an integer. The time-
delay singular system (22a) and (22b), by both the Newton
extrapolation method and the Chebyshev quadrature method

[25, 26], becomes
X4 (k+1)T)

Nl
= Gy, (KT) + Y [G %, (KT - pT +T)

i=1

5
+GP%y (KT - pT)
+GO%, (KT~ pT ~T)]

NZ
+ Y [HOv (kT - ,T) + H v, (kT - 9,7 - T)],
j=1
(25)
where
G= eAsT
=0 _Tr 0, A%
G = 2 [Qi +Q ]Ad,i>
G =T[Q"-QY] 4y,
T (26)
~03) @ _ D17
Gi3 ) [Qi3 - Qi2 ]Ad,i’
HY =[G -1,] A'B
1 _ 1-y;] 4-1
H; = [G-G™]|A'B,,
in which
% _L
iz Bi = T
() -1
Qi1 = [G - In] (AST) > (27)

Q¥ = [ - (1-B)1,- BG] (A1),
Q¥ =20 - (1- BT, - iG] (a.1) "

Some terms in (25) may be combined because of the same
delay, so (25) can be reduced to

Ml
Rgo (k+1)T) = Gy, (KT) + Y G %y, (KT - iT)

i=1

(28)

_ M,
+Hvy (KT) + Y H vy (kT - jT).
=1
For the output (22b), the time-delay state x_(t — ,) for kT <

t — 17, < (k + 1)T must be evaluated. System (22a) and (22b)
can be rewritten as

% (t-1,) =M%z, (kT)

Ny t-1,

+ Z J- et g ai%as (A —15;)dA
i=1 °kT
N t7

+ Z J ’ eV, vy (A= 1,;) dA
Z , ,

= &, (t -1, — kT) %y, (KT)

N; _
+ Y [0 (t -7, — kT) %4 (KT = p,T +T)
i=1



6
+ 852) (t i kT) fds (kT - pzT)
+8Y (¢t -7, - kT)
<54, (KT = T -T) |
NZ
+ Z [(pE.O) (t-t,-kT)v, (kT - 11]-T)
=
+(p§1)(t—ro—kT)
X vd(kT—an—T)],
(29)
where
8, (t -1, — kT) = 77 kD,
5N (t -1, -kT) = [ @+ qP Ay
87 (t-1,-kT) =T [q" - 4] A,
8 (-~ kT) = 2[4 -4 A,
(P§'O) (t T~ kT)
nxm’ t - T < O-.
" [eA8, (t -1, - kT) - L] AV'By t-1, 20,
(P§1) (t T~ kT)
(6, (t -7, - KT) - 1,] A]'By , t—1,<0;
5, (t-1, —kT)[I -e Aa]A By, t-1,20;
(30)
in which
qz(l) [61 (t T~ kT) - In] (AST)_I’
(2) 1) t— Ty, — kT >
™ g1
ql [ql < T ﬁl n
- B8 t—To—kT] AT,
pove-n-kn) )

2
P (g

Rt - kT)] (A,T)"

Also, some terms in (29) may be combined as in (28), and (29)
may be rewritten as

X (t-1,) =

8, (t — 7, — kT) %, (KT)

Ml_
+.8; (t =7, - kT) %y, (KT = iT)

i=1
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+@,(t -1, - kT) vy (KT)

+Z<p] (t-

—kT)vy (kT - jT).

(32)

Then, the output (22b) can be rewritten as

ZDV( 7is)

= C,0, (t — 1, — kT) Xz, (KT)

Ye (t) Clxs (t

M, _
+ Y C,0; (t - 7, - KT) %4, (KT —iT)

i=1

+Cy@, (t =7, — kT) vy (KT) (33)

M,

+ ZC@]. (t

j=1

N,
=2 [DFva (kT = n,T)

j=1

Ty — kT) V4 (kT - ]T)

+ D§“vd (kT =n;T-T)],
where

1
HY,

D = D; (Bz;)de,j)_ j

J

-1
HY, (34)

(1) _ * T
DY = D7(By ;B,)
* T
D; = [D; O]".

Similarly, some terms in (33) can be combined, so (33) can
be rewritten as

ye () = C,8, (t = 7, — kT) %4, (KT)

M, _
+ ' C,0; (t - 7, - KT) %y (KT —iT)

i=1

+ Cl% (t-

(35)
— KT) vy (KT)

—kT)vy (KT - jT).

+ ch‘/’J (t-

Thus, the discretization of continuous time-delay singular
system (22a) and (22b) is carried out using (28) and (35).

3.2.2. Establishing Performance Index for Discrete Time-Delay
Singular System. The optimal state-feedback control law
minimizes the following performance cost function:

T

t
J= Lf [Clx -1,) - ZDV ( Ti,j)—r(t)
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N, N, T
xQ|Cx(t-1,) - ZDch (t - Ti,j) - (1) - ZDJ-VC (t - Ti)j) -r (t):l
j=1 j=1
+ vCT &) Rv.(t) ¢, xQ|Cx(t-1,)
(36) N
—ZD]»VE (t - T,-,j) -7 (t) ]
=1
where Q is the positive semidefinite matrix, R is the positive
definite matrix, r(f) € R? is the reference input vector, and
the final time t ; < 00. To discretize the cost function J, given v (£) R, (¢)
by (36), ty=NTis chosen and J can be rewritten as ¢ ¢
(37)
ML k)T _ Let r*(kT) € RY be the piecewise-constant reference input
J = Z LT Cix(t-1,) vector to be determined in terms of r(kT) for the tracking
k=0 purpose. Then, cost function (37) can be rewritten as [27]
N=1 ~(k+1)T B M,
=y LT 8o (£ = 7, — KT) Ky (KT) + 3.8, (¢ — 7, — KT) %y (KT = iT) + G, (¢ = 7, — KT) vy (KT)
k=0 i=1
T
M,
+Y @} (=7, —kT) vy (KT = jT) - 1" (kT)}
=
xQ [50 (t=7, - KT) Xy (KT) + Y 8; (t — 7, = KT) %4 (KT = iT) + @y, (t = 7, = KT) v (kT)
i=1
M2
+ @ (t =7, = kT) vy (KT = jT) = r* (KT) | +v; (KT) Ry, (KT) dt
=1
(38)

N-1
= Y & kT) R (kT -T) - &5 (KT = M,T) v} (KT =T) --- 5 (kT = M,T) "7 (kT) v} (kT)]
k=0

[ qu Qs - Qle My, - ]V[zM2 —-M; M, ]
Q31 Q- Qlel M511 e M51M2 _MGI My,
: :
Q3M1 Q2M11 QleMl M5M11 MSMIMZ _M6M1 M4Ml
T T T
x| My Mgy - M5M11 Ry - R21M2 -Mg, Ry
T T
MzM MSI]\%IZ ]\/151\/%1\/12 RzMZFI RzMZTM2 _M8M2 R4M2
_MTs _]VITel e _MTsM1 _]VTI81 o _]\;IsM2 R3T -M;
| M, My o My, Ry = Ry, -M; R

x [% 4o (KT) %y (kT =T) -+ Xgo (KT = M,T) vy (KT =T) -+ vy (kT = M,T) #* (kT) vy (kT)]",



where

(k+1)T _
Q= LT [(CI(SO (t-7,~ kT))T

x Q(C,8, (t -1, - kT)) } dt,
(k+1)T _
Qyij = J.kT [(Clai (t-7,~ kT))T

x Q(C,3; (t - 7, - kT)) | at,

Qs

J(ku)T [(CISO (t e kT))T
kT

x Q(Cy0, (t -1, -kT)) } dt,

(k+1)T B
M, = LT (/3 (t -7, - k1))

x Q(Cyy (t -7, — KT)) | dt,

(k+1)T _
My, = LT (€8 (t - 7, - k1))"

xQ(C,g; (t -7, - kT)) | dt,

M, = I:DT (3, (t -7, - k1)) Q] at,

(k)T B
M, = LT [(C8:(t -7, - k)"

x Q(Cygy (t -7, — KT)) | dt,
X (KT) = [X4 (KT) Xgo (KT =T) ---

The extended delay-free system that is equivalent to the
original time-delay singular system (28) and (35) is obtained
as

X, ((k+1)T) = G,X,; (kT) + H,v, (kT), (41a)

v (KT) = C, X, (KT). (41b)

We assume that the reference input r(t) is a step function with
a constant magnitude, r*((k + 1)T) = r*(kT). Designing a
system based on such a reference input can lead to predictable
time-response characteristics. Although our design method-
ology is based on a step function, it should be pointed out
that the resulting control system, if properly designed, enables
to give good time responses for any arbitrary reference input
r(t). Also, the reference input r* (kT) is entered in the last row
of X ;(kT) at the beginning of step k. As a result, the extended
new system does not have any time-delay terms and it can
be utilized to simplify the representation of the cost function
(38). Now, (38) can be rewritten as

%, (KT = M,T) v, (KT =T) ---
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(k+1)T _
MSij = JkT [(Cl(si (t T~ kT))T
x Q(C,@; (t-7,- k1)) | at,

M, = J(k+l)T [(Clgi (t _— kT))TQ] dt,
(k+1)T
M, = LT [Q(C\#; (t -7, - kT))] dt,

(k+1)T
M, = LT [(c#; (t-1, - kT))TQ] dt,

(k+1)T . T
R, = J [CEAGEST )
kT

x Q(C,; (t -7, ~ KT)) + R| dt,

(k+1)T . .
Ryjj = [(Cl% (t-1,-kT))
kT

x Q(C,g; (t-1,- k1)) | at,

(k+1)T
R, = J Qdt,
kT

(k+1)T . T
R, = (€7 (t-1,-kT))
kT

x Q(C,g; (t-7,-kT)) | dt.
(39)

Construct an extended virtual state vector:
vy (KT = M,T) r* (kT)]". (40)

Q M] [Xd (kT)

N-1
J=Y [XJ&T) v} (kT)][ ) (kT)], (42)
k=0 d

M" R
where
[ Q1 Q31 Q3Ml M, - M2M2 -M; ]

T
Q31 Q211 QZIMI M511

; .
QaMl QzM1 I QZM1 M, M5M1 1
T T T

M21 Msu M5M11 Ry Rlez —Mg; |’
P . : ;
M”ng Msm%fz MSM%MZ RzMZTl RZM%MZ _Mst
__M3 Mg, - _M6M1 -Mg, - _M8M2 Ry J
= T A,T T T T T
M = [Ml My - M4M1 Ry R4M2 M|,
R= [Rl]'
(43)
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Then, define a new virtual weighting matrix
Q=Q-MR'M" (44)
and a new virtual control input
S(kT) = R'M" X, (kT) + v, (kT). (45)

Substituting (44) and (45) into (42) results in a decoupled
performance index:

N-1
J=Y [X§(KT)QX,4 (KT) + ST (KT)RS(KT)].  (46)
k=0

Substituting (45) into the extended delay-free singular system
(41a) and (41b) yields

X, ((k+1)T)

=G,X,; (kT) + H,v, (kT)
(47)
=G, X, (kT) + H, [S(kT) - R'M" X, (kT)]

=G, X, (kT) + H,S (kT),

where G, =G, - H,R"'M".

Notably, the quadratic optimal control of the system that
is given by (41a) and (41b) with the performance index that is
given by (42) is equivalent to the quadratic optimal control of
the system that is given by (47) with the performance index
that is given by (46). The development of the desired optimal
virtual control vector S(kT) that minimizes the performance
index that is given by (46) can be described as follows.

3.3. Development of Optimal Tracker for Time-Delay Singular
System with States Available. Let the Hamilton function
depend on the cost function (46) [28]:

H, (kT) = [X} (KT) QX4 (KT) + S" (KT) RS (kT)]
(48)
+ AT ((k+ 1) T) [G, X, (KT) + H,S (KT)] ,

where A(kT) is a costate (Lagrange multiplier). Based on
the well-developed optimal control theory [29, 30], the state
equation is
X, ((k+1)T) =G,X, (kT) + H,S (kT), (49)
and the costate equation is
AKT) = GIA((k + 1) T) + QX4 (KT) (50)
with the stationary condition
0=H'A((k+1)T) + RS(KT), (51)
or

S(kT) = -RH A ((k+ 1) T), (52a)

9
and the boundary condition is
A(NT) = QX (NT). (52b)
Assume that A(kT) can be written as follows:
A(KT) = P (kT) X, (KT), (53)

where P(kT) is a real symmetric matrix of appropriate
dimension. So far, the original optimal tracking problem has
been transformed into an optimal regulator problem.

To derive the optimal regulator, (53) is substituted into
(50):

P (KT) X4 (kT)
=GIP((k+1)T) X, ((k+1)T) + QX, (kT), oY
and (52a), (52b), and (53) are substituted into (49):
Xy ((k+1)T) =G, X, (KT) + HRH A ((k+ 1) T)
=G, X, (kT) + HR'H'P((k+1)T) (55)
X X4 ((k+1)T)

or

Xy (k+ D)) = [T+ B.RHP((k+1)T)] 'G.Xy (KT).
(56)

Also, substituting (56) into (54) yields
P(KT) X4 (KT) = G P ((k + 1) T)
x[1+ ER'HP(k+)T)] " (57)
x G,X, (kT) + QX (KT)
or
{P&n) -GIP(k+1)T)
x[1+HR'HP(k+ 1)) G, -Q} X, (kT) = 0.
(58)
The above equation must hold for all X ;(kT). Hence,
P(kT)=Q+G.P((k+1)T)
o L (59)
x[I1+HR'HP((k+1)T)| G,

Equation (59) is called the Riccati equation. With reference
to (52a), (52b), and (53), when at k = N,

A(NT) =QX,(NT) = P(NT) X, (NT) (60)
or

P(NT) = Q. (61)
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From (59) and (61), all P(kT) for 0 < k < N can be obtained.
With reference to (53) and (56), the desired optimal virtual
control input that is given by (52a) now becomes

S(kT) = -R'H A ((k+ 1) T)
=-R'HP(k+1)T) X, ((k+1)T)
=-R'H'P((k+1)T)
x[1+HRHP(k+ 1)) G.X4 (KT) (62)
- RE[P (k+ )T+ BRAT]

x G,X, (kT)
- K (KT) X, (kT),

where K(kT) = RHT[P((k+1)T)+HR'H "G,
From (45), the original optimal controller v,(kT) is obtained
as follows:

v, (kT) = S(kT) — R"'M" X ; (kT) = -K (kT) X, (kT),
(63)

where K(kT) = K(kT) + R"'!M". Notice that if there are no
state and input time delays, the above development can be
reduced to that in [30]. Equation (63) can be represented in
the following form:

v, (KT)
= —K (kT) X4 (kT)
=-K; (kT)

x [, (kT) &5, kT -T) - & (kT - M,T)]"

— Ey(kT) [V (kT =T) - o1 (kT - M,T)]"

~ B, (kT)r* (kT),
(64)

where K(kT) = [K,(kT) Fy(kT) E4(kT)], in which

K, (kT) = [KY (k1) K kT) - KM (kT)],
(65)
Fy(kT) = [ (kT) - F{™ (k)] .

Here, the discrete optimal controller (64) for the continuous
time-delay system (22a) and (22b) has been completely
derived. Figure 1 presents the realization of the time-varying
piecewise-constant optimal controller (64) for the digitally
controlled continuous time-delay singular system.

3.4. Development of Observer-Based Suboptimal Tracker for
Time-Delay Singular System with States Unavailable. When
the states of a continuous time-delay system (22a) and (22b)
are not available for measurement, the continuous-time states
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can be constructed using the recently developed continuous
time-delay observers [28, 31, 32]. However, the developed
digital tracker (64) requires the extended discrete-time state
X,4(kT) in (41a) and (41b). Using the prediction-based digital
redesign [27], a new observer-based suboptimal tracker for
the time-delay singular system can be designed as follows.

According to the digitally redesigned observer [27] and
controller [27], the extended digitally redesigned observer
and controller can be represented as

X, ((k+1)T) = G, X4 (kT) + Hyv, (kT)
s (66a)
+ Ly [ya (T) - C, X, (KT)],
v, (KT) = =K (KT) X, (KT), (66b)
where X,(kT) € R? is the estimate of the extended state
X, (kT) € R? in (41a) and (41b),

G,=G,-L,C,G, (66¢)

H,=H,-L,CH,. (66d)

Additionally, G, = e and H, = [G, - IP]A\_IE, where
A = (1/T)In(G,) and B = A(G, - I)"'H,. To determine the
extended observer gain L, in (66a), the equivalent extended
continuous-time observer (41a) and (41b) and controller (64)
can be represented [19], on the basis of the analog observer
and controller, as

X () = AX, (t) + Bv. () + L. [. () -C.X. (0], (672)
v, (t) = -K.X,(t). (67b)

The algorithm for computing the analog system matrix A

in (67a) from the digital system matrix Ge in (4la) via the
geometric-series method [15] is as follows:

—~ 1 —~
A= fln (Ge)

T
f R? <(1+—>
or |o (R?)| -
-1
Ezﬁ[l —lﬁz] for n =
T L'?P 3
-1
EEIQ[I —iRZ] [I —Eﬁz] forn=3
T L'? 1 L

(67¢)

where R = [G, - L][G, + I,]™" and |o(c)| denotes the
absolute eigenspectrum of (o). Based on the dual concept
of the digital redesign, the analog observer gain L, in (67a)
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1

r*(kT) - vy (kT)
— EgkT) >~ Z.O.H 15|

Ny N,
Xgs(t) = AZgy(t) + ) AgiXas(t = T5;) + ) By valt = 7;) C,

%ds(t)

i=1 j=1

)
FO (k)

Xgs(KT)

FI1GURE 1: Digital redesign for time-delay singular system.

and the digitally redesigned observer gain L, in (66a) can be
represented, respectively, as

L.=P,C R, (68)

-1

L;=(G,-1,)A"'L[I1+C,(G,-1,)A'L.] , (69)
where P, is the positive-definite and symmetric solution of
the following Riccati equation:
AP, +P,A" - P,C'R'C,P, +C.QC, =0,  (70)
in which Q > 0 and R > 0 with appropriate dimensions.
Owing to the extended virtual state vector in (40), the
matrix G, in (4la) and (41b) and (67a), (67b), and (67¢) is
singular. The matrices A and B in (67a), (67b), and (67¢)
cannot be directly determined. To solve this problem, an
alternative is derived via the matrix sign function method
[23, 24] as follows.
Following the procedures shown in Section 3 [23, 24], the
transformed matrix is
_ _ _ -1
Gy =(G,-41,) (G, +41,) (71)
where G, € RP*P and {, is a radius of a circle from the origin

of the coordinates. Additionally, the associated matrix sign
functions are

- . -1
Sign (G, ) = Gb< 6;) , (72)
Sign” (G,) = 5 (1, ~Sign (G)), ~ 73a)
ign’ (Gy) = 5 (1, +5ign (Gy)), ~ (73b)

respectively. A fast and stable algorithm for computing the
matrix sign function [23, 24] is given as follows.

For the order of the desired convergence rate r = 2, one
has

QU+ =3[+ 1),
Q(0) =G, (74)
Jlim Q (1) = Sign (Gy), forl1=0,1,2,....

By [19, 20], a transformation matrix T,, can be found such
that

D
~
|

(75)

G -TCT = [ G ‘O(EZg)xg ]’
Ogupg)| G

m2

where G,,, is a nonsingular matrix and G,,,, is a singular
matrix whose eigenvalues are all null. Finally, the matrix A
is obtained by the following equation:

A=T, G, T, =T, i 0 fp1)
" 0 Gan "

3
where G,,, = (1/T)In(yG,,) = (3/T)In(yG,,) and
Gy, = VI 4> in which v is a large negative real constant. The

algorithm for finding In(+/ éml ) in (76a) can be found in (67¢)

[19]. If the matrix G,,, has any negative real eigenvalue, then
the principal third root of G,,, is not defined for arg(A;) #
[23, 24]. The first part Glnl in (76a) can be rewritten as

= 3 3= 3 3= . —(i
Glnl = Tln(wG"d) = ¥ln [( Gmlele)e (6/3)] , (76b)

(76a)

m
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where the matrix G, is rotated by a small positive real angle
6. The second part G, in (76a) is utilized to recover the
property In(0) = —co. Matrix B can be evaluated as

B=A4G,-1,) H,
=[@.-1,) A" 'R,

2 323 -1
:<T1p+£+AT+~-) H,.
2! 3!

(77)

Substituting (76a) and (76b) into the Riccati equation (70)
and solving it yield the observer gain matrices in (68) and
(69). Figure 2 presents the implementation of the observer-
based suboptimal tracker for the time-delay singular system.

4. An Illustrative Example

Consider a continuous time-delay singular system, described
in (1a) and (1b), with

1211 -3 -2
0221-3-3
1211 -3 =2
E= 1213 -5 -4}’ A=
0211 -2 -2
1000 -1 0
0.447 0 0 0 0.447 0
0 02236 -0.1118 0 -0.447 0
i 0 0 0.2236 0 0 0
1= 0 0 0 0.447 -0.8944 0 ?
0 0 0 0 0.447 0
0 0 0 0 —0.8944 0.447
T
B_lOOOO—l C_lOlOOO
17100 -110 0] 010100/
N, =N, =1, T, =0, T, =7,=05xT.

(78)

Let the sampling period T' = 0.01 (s) and apply the reference

[0.5sin(t) 0.5 cos(t)]T to the system. The
initial condition is x,(0) = (MVAM)[x[(0) #5(0)] =
[000000"%0=[0000"ad%,=[0 0]
Since 0 x E + A = I, and according to the definition
of the standard form, {E, A} is in standard form. If « = 0
and B = lareset, then E, = E, A, = A A, = A,
and B,, = B,. Since E, is singular, E, includes some zero
eigenvalues, and the bilinear transform must be performed
to find the similarity transformation matrix M of E,. Assume
w = 0.5; the algorithm that was described in Section 3 yields,

input r(t) =

0.3333 1.6 -2.4 0.16 0.9067 2.24

0 06 16 016 -1.76 -1.76

o= 1.3333 1.6 =34 0.16 0.9067 2.24
n 1.3333 1.6 -2.4 0.76 —-0.6933 0.64 |’

0 1.6 -24 0.16 124 2.24

13333 0 0 0 -1.3333 -1

Journal of Applied Mathematics

1220 -4 -2

0120 -2 -2

. = 2210 -4 -2

sign (E,,) = 2221 -6 -4/

0220 -3 -2

2000 -2 -1
1100 -1 -1
0100 0 -1
110-1-10
M=1111-1 -1 -1
010 0 -1 -1
100-10 0

(79)

Based on Section 3.1 and Appendices, the time-delay singular
system can be decomposed as follows:

ks (t) = Asgs (t) + Xd,l’fs (t - Ts,l) + Bd,lvc (t - Ti,l) >

(80a)
Ye (t) = ClkHS (t - To) - Dlvc (t - Ti,l) > (80b)
where
1 0 0 -0.5
A = 0 0.5 —-0.25 -0.5
sT10 0 05 0 |’
0 0 0 0.5
0.4472 0 0 -0.2236
i - 0 0.2236 —0.1118 -0.2236
a1~ 0 0 0.2236 0 i
0 0 0 0.2236
0.5 0.5 (81)
B, = -0.25 -0.25
41— 1 05 05 |’
0.5 -0.5
1010
Cr = [1 00 0] ?

0 2
D= g5 1]

and the other parameters are listed below:

100 0 00

010 0 00

— 001 0 0O

M= 000 1 10

0000501

000 1 0O

y = 2, n= -1,
0.4472 0 0 —0.2982
A= 0 0.1491 -0.0994 -0.1988

LI 0 0 0.1491 0 ’

0 0 0 0.1491
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N N
kT B ~ P 3 (KT)
X va(kT) O.H| | Xgs(t) = AXy,(t) + Z AgiXgs(t —15;) + Z By jva(t = 7; ;) EEEN O _)s Jd

T i=1 j=1 T

X (kT) = G,X4(kT = T) + Hyvy(kT = T) + Ly y4(kT)

X, (kT)

—K(kT)

FIGURE 2: Observer-based suboptimal tracker for the digitally redesigned time-delay singular system.

05 The time-delay singular system with states available

The performance
o

—-0.5 L

8 9 10

Time (s)

- =y (t): system
—— 1,(t): reference

The time-delay singular system with states available

The performance
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FIGURE 3: Output responses of time-delay singular system with states available by the new digital redesign approach.

Ay = —0.4472 0 ] Following the proposed method in Section 3, the schemes

’ 0 —0.4472 )" of Figures 1 and 2 are implemented. For simplification, the
numerical analysis is not presented and Figures 3 and 4 show
the results of the simulation.

Comparing with the offline observer/Kalman filter iden-
tification (OKID) method, the advantages of the proposed
approach can be shown in [33, 34]. Following [33, 34], let the
0 1 0] unknown system (80a) and (80b) be excited by the white-

0 -10]|"

[ 0.3333 0.6667
-0.3333 —0.1111
0.3333  0.3333 |’
| 03333 -0.3333

V=1 Ky = [ noise control force u(t) = [u,(t) uz(t)]T with a zero mean
and covariance diag[cov(u, (t)), cov(u,(t))] = diag [0.2 0.2].

(82)  The input-output sampled data is given in Figure 5.



14 Journal of Applied Mathematics
0.5 The time-delay singular system with states unavailable
g
B
£ 0 i
)
o
Q
=
-0.5 L \ )
0 1 8 9 10
- = Y,1(t): observer
-—= Y System
—— r(t): reference
) The time-delay singular system with states unavailable
g
E
£
2
L
E
Time (s)
—-— Y,(t): observer
-—-= Yg:system
—— 1,(t): reference
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FIGURE 5: System 1/0 data for identification.

The identified system (G, H, C) and observer gain (F) -0.2470 -0.2116
matrices for the unknown system (80a) and (80b) are given | —0.8808 -0.8879
as H =|-0.5713 -0.5007 |,

22.2478 21.6048
8.7538 —4.3746 8.9478 -0.5128 0 0 0
_ 10.2956  5.5361  1.4682  -3.6730 0
G =|-19.5769 9.2613 -19.7421  9.5377 0 R _ _ _
-0.0821 0.6656 -1.0711 -359.3919 0 C= 1.0867 -0.5871 0.7911 0.0579 0 R
0 0 0 0 ~112.9831 0.5676 —0.5710 —0.4333 —0.0488 0
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1.4216 -2.0615
0.7740  1.0579
F =] 0.5564 -0.8225
-0.0043 -0.0041
0 0

(83)

Then, the observer-based outputs by OKID compared with
the actual system outputs for the unknown system (80a) and
(80b) are shown in Figure 6.

To overcome the effect of modeling error, an improved
observer (69) with the high-gain property has been proposed
in this paper, where the observer gain matrices are given as

-0.3231 -0.5708 0.3103 -0.1051 0 -0.0628

La= 0.4008 -1.0446 -0.4013 -0.1646 0 0.1289

—-0.0833 -0.1119 6.4407 0 1.1006 0.1373
—-0.1585 -0.4047 10.2422 0 1.6436 0.3760

-16.6049 228.3244 0.0003 0.0124 0.0119 0 0 ]"
—25.8086 363.6177 0.0001 0.0191 0.0184 0 0
(84)

Then, the comparisons between the actual outputs and the
proposed method outputs for the unknown system (80a) and
(80b) are shown in Figure 7.

Obviously, the proposed method is better than OKID
method on the tracking error performance from Figures 6
and 7.

5. Conclusion

This paper presents a systematic methodology for developing
novel observer-based suboptimal digital trackers for a class
of time-delay singular systems. The time-delay property and
singular system have been attracting more attention in recent
years. The proposed controller and observer depend on
the concepts of optimal control and the digital redesign
with high-gain property to ensure effective tracking and
favorable state matching performance. In future works, we
will pay more attention to the online application and the real-
time implementation of fault tolerant control system with
performance optimization by using the proposed methods.

Appendices

A. Transformation of the Time-Delay
Singular Systems

The following steps yield the preliminary feedback gain K;
and prove that K ; can eliminate impulsive modes.
Let

()= VE (), (A1)

11— T, T
ONCREAON
andV = [?‘7] U is a modal matrix of E £ with dimension
(n— k) x (n - k) such that U~ Ef U is in the Jordan block

where X,(t) = [AT (®), xcf( )] = [x
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form. Substituting (A.1) into (9) and multiplying by V! yield
the following equation:

[IkO

— | X, (t
OEf]x()

Alo 1.
[ G0

N~

+; I Aol’i ;?2,1‘ ]525 (t_Ts,i)
Mg

+j; ﬁﬂuc(t—ri,j),

where Ef U EfU A=A, AI, =A, A, =U"A,U,
BS- = SJ, and ij = U'B .. Notably, Ef is in the
]ordan block form with d blocks of sizes Ui> U5 - - - » g» Where
Zi:l ¢; = column (row) number of E,. In (A.2), the state-
delay X (t—7;;) can be equal to W ;X (t), where W, is a block
diagonal {y, ;, ¥, ;}. Therefore, (A.2) can be rewritten as

[IkO
O|E,

(A.2)

] X, ()

O
N, X, (1)
I+ ZAz,i%,i
i=1

—_— N ~
A+ ZAl,ill]l,i

i=1

(0]

(A3)

N, e
.[Aq| O ]A 2 | B
= —‘— X. (1) + E =
[O Ay S LBy,

From (A.3), the fast subsystem is

N2

Ef%, ;(t) = AoX. ; (t)+ ) Byu, (t- Ti’j),
j=1

(A.4)
SO

N,
EjR (6) = R, (6) + ZB}’ Uej @), (A.5)
j=1

where E} = A;zlff, f?;)j = A;zlﬁf)j, and U ;(t) = u.(t - 7; ;).

Taking the Laplace transformation of the fast subsystem
(A.5), one obtains

X\C,f (S) = (SE; — In—k

N,
-1 D% ~ ¥
)Gmﬂmg%mmv
=

-1 ) N,
_%si(ﬁ;)t <Ef5e 7 (0)+ ZIB;J U, (s)> .
i= Jj=

(A.6)
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Taking the inverse Laplace transformation of the above
equation, one has

-1

Fop 0= = Y (B}) % 8" @)

(A7)

where 8(t) and 8®(¢) denote the delta function and the
ith derivative of the delta function, respectively. From the
above equation, the impulsive modes of the fast state are
induced from inconsistent initial conditions of the fast state
or discontinuous control input (or its derivatives). By [12],
determination of the preliminary feedback gain Ky; =
(kyjpkajoe o k”_k)j]mx(n—k)’ where k; ; is of dimension m x 1
for£ =1,2,...,(n - k), is summarized as follows.

(D) If y; = 1, where 1 < i < d, and its corresponding

Jordan block is a null matrix, then

kﬂl bt L] T O””Xl >

gt 42, T OmX1 i

(A.8)

k 20

Mty Tt ] mx1

(2) If y; > 1, where 1 < i < d, and its corresponding
Jordan block is not a null matrix, then

6 (?(#1"'142"'""*'}4;')1’]')
_ 6 (b(.‘"l+/"2+“‘+.“i)2’j
Pttt 1) T : i

k

5 (b

i +."‘2+"'+I'4i)m)j)

=0

(A.9)
k

Pty 42, mx1>

k =0

Py i mx1>
where

By, j
o | b2y

Bf g . >
b”’j (n—k)xm

2 (B By b

(A.10)
il,j> “i2,j> im,j]lxm’

K
I>

(=}

N 1fb§]—0
, 1fb51>0 E=1,2,...,m.
—1, lfb'f,]<0

>
—
D)
o
~.
~
1>
—
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Let

Uc,j () = u, (t - Ti,j) = - Kf,jfc,f () + Vc,j ()
— K% () + v(t- ‘r,-’j)
~ Ot K] 2 ) + v, (£ - 7,) -

(A.11)

Substituting (A.11) into (A.2) yields (13).

B. Output Transformation of the Time-Delay
Singular Systems

Equation (20b) can be decomposed as follows:

N,
—x
Ty;) + ZBS,J.VC (t - Ti,j) ,
j=1

Ny
0=%; () + YA, % (t-
i=1

(B.1a)
N,
0=3%, (t)+ZAzzxff T) + ZBf;V (t-7),
(B.Ib)

— ( B,

where xf(t) = [J—Uffftt] Bfk] = [Eﬁj} and nA,; =
block diagonal {A;, A, } is assumed. Based on (B.la) and
(B.1b), the following equations hold:

N;+1 Nz_*
Z Alzxfs (t sz) - ZBs,ch (t 1]) (B.2a)
j=1
N;+1 Nz_*
Z AyiXss (t-71,)= _ZBf,ch (t - Ti,j) > (B.2b)
i=1 j=1

wherei = kand A, = A, = I,
(21a),

yc (t) = Clkvs (t

7, = 0. Similarly, from
-7,)+ C,%¢ (t-7,)
_ ~ 1 [x(t-7,)
=C% (t-1,)+|[C, G| |27 "]
1x( ) [ 1 2] [xf,f(t_To)
)+C2xff(t 7,),
(B.3)

=C\ & (t-1,)+C, Xpo(t-

where C, = [61 52]. From (B.3) denotes the following
equation is satisfied:

N;+1 N;+1

Z Ve (t_Ti*) = z Clis (t_To _Ti*)
i=1 i=1

N;+1

+ Y Cxp(t-1,- 1)

i=1

N;+1

+ Z Ezk'f)f (t - T, _Ti*)

i=1
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N;+1

= Z Ci X, (t - Ts,i)
i=1

N+1N,

-G, Z ZA’LIE:].VC (t - T,-,j)

i=1 j=1

N;+1N,

-G, Z ZA;}I.E;’J-VC (t - T,-)j)

i=1 j=1

N, +1 _ o~
= Z C, X, (f—TS,i) - [Cl CZ]
i=1

NAN AL o 1[B
<228 e
N;+1

= Z C, %, (t—1,;)
i=1

N;+1N,
-G, Z;, Z;(ﬂAz,i)_IEfk,ch (t - Ti,j) >
i=1 j=
(B.4)

where 7 = 7,; — 7,. One of the terms 7, in (B.4) is set to
7, = 0 and (B.4) can be represented as

N
YO+ )y (t-1)
i=1
=G X (t - To) - Cz(’TA 2,k)71

Nz_ N,
X Y Bajve (t-1;) + Y C1% (¢ - 1,,)
j=1 i=1

N N,

- CZZZ(WAz,i)_IEfk,ch (t - Ti,j)

i=1j=1

N,
= Clxs (t - To) - CZ(I)_IZBfk,ch (t - Ti,j)
j=1

N
+ chfs (t - Ts,i)
i=1

N N, .
- CzZZ(’?Az,i)_ B ive (t - Ti,j) .
i=1j=1
(B.5)
From (B.5),
N,
y. ) =Cx,(t-1,) - CzZBfk,ch (t - T,-’j) . (B.6)

=
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Broken rotor bars fault detection in inverter-fed squirrel cage induction motors is still as difficult as the dynamics introduced
by the control system or the dynamically changing excitation (stator) frequency. This paper introduces a novel fault diagnosis
techniques using motor current signature analysis (MCSA) to solve the problems. Switching function concept and frequency
modulation theory are firstly used to model fault current signal. The competency of the amplitude of the sideband components
at frequencies (1 + 2s)f, as indices for broken bars recognition is subsequently studied in the controlled motor via open-
loop constant voltage/frequency control method. The proposed techniques are composed of five modules of anti-aliasing signal
acquisition, optimal-slip-estimation based on torque-speed characteristic curve of squirrel cage motor with different load types,
fault characteristic frequency determination, nonparametric spectrum estimation, and fault identification for achieving MCSA
efficiently. Experimental and simulation results obtained on 3 kW three-phase squirrel-cage induction motors show that the model

and the proposed techniques are effective and accurate.

1. Introduction

Squirrel-cage induction motors have dominated the field of
electromechanical energy conversion. They consume more
than 60% of the electrical energy produced and are present
in the main industrial applications [I, 2]. Although still
considered proverbially robust, all components of induction
machines are subject to increased stress, particularly when
operated in a controlled mode and with repeated load cycles
[3]. According to studies, broken rotor bars and cracked
end-ring faults in the rotor cage are responsible for about
5-10% of all breakdowns and incipient detection of these
events remains a key issue [4, 5]. The main reason why early
detection is important is that although broken rotor bars may
not cause immediate failure, there can be serious secondary
effects associated with their presence [6, 7]. If faults are
undetected, they may lead to potentially catastrophic failures.
Thus, health-monitoring techniques to prevent the induction
motor failures are of great concern in the industry and are
gaining an increasing attention.

Motor current signature analysis (MCSA) has been
successfully applied to detect broken-rotor bar faults by
investigating the sideband components around the supplied
current fundamental frequency (i.e., the line frequency) f

fo=(112s) f, )

where f, are the sideband frequencies associated with the
broken rotor bars and s is the per unit motor slip [4, 8, 9].
Some quantitative conclusion based on the left sideband
values (LSB) of the amplitude-frequency spectrum plot of a
motor phase current even recommends —50 dB~ —35dB of
the sideband harmonics as the threshold level for generating
a warning or alarm [10]. In addition, MCSA has been tested
in many industrial cases since the 1980s with good results [11-
16].

Even though numerous successful main-fed motor fault
detection methods are reported in the literature, bibliography
relative to inverter-fed motors on this topic seems to be poor.
With the increased emphasis on energy conservation and



lower cost, induction machines are supplied and controlled
by inverters, and the use of inverter drives increases day
by day. As a result, dynamic performance is excellent due
to all kinds of control methods and the next steps in drive
development are going to be driven by attempts to increase
reliability and reduce maintenance costs. By using the current
sensor feedback and microprocessing unit, the new tread for
low-cost protection applications seems to be drive-integrated
fault diagnosis systems without using any external hardware.
Thus, it becomes more demanding to detect faults by using
MCSA in these drives.

The introduction of voltage-source-inverter-fed (VSI-
fed) motors has produced significant changes in the field
of diagnosis and control, needing further research in order
to overcome various challenges. Contrary to the motor line
current taken directly from the main, the inverter-fed motor
line current includes remarkable noise (inherent floor noise
which reduces the possibility of true fault pattern recognition
using line current spectrum) due to the high-frequency
switching devices, EMI and EMC effects, and so forth. The
current signal for rotor fault diagnosis needs precise and high
resolution information, which means the diagnosis system
demands additional hardware such as a low-pass filter, high-
precision AD converter, and additional software. Moreover,
closed-loop control in IM drives introduces new difficulties
in broken rotor bar detection, as traditional fault indicators
tend to be masked by a control algorithm. Therefore, the
methods developed for an open-loop operation are not able
to produce adequate and reliable information on the extent of
the fault and have to be adapted [4,17, 18]. All these influences
complicate the utilization of frequency analysis methods.
VSI-fed motor faults have been analyzed, and the initial
results are given in the literature but further investigation is
still required.

The classic MCSA method works well under constant
load torque and with high-power motors, and it has mainly
been designed for fixed frequency supply, such as for
machines connected to the electrical grid. To obtain satis-
factory test results, in [7], recommendations are given from
the author’s experience. As stated in this paper, literally, “the
load on the motor should be sufficiently high to produce at
least 35% of rated full load rotor slip for a reliable single-test
broken bar analysis” and “if the motor to be tested is fed from
a variable-speed converter drive, the frequency of the drive
should be locked at the 50/60 Hz power supply frequency for
the test” Yet, difficulties emerge when inverted-fed motors are
applied to drive fans, pumps, or other mechanisms involving
speed control for energy-saving purpose. In these cases,
the excitation frequency will truly depend on the speed
reference and the load applied to the system. Therefore, unlike
the utility-driven case, the stator excitation frequency will
dynamically change and the position of the current harmon-
ics appearing on the stator-current spectrum due to electrical
faults is highly dependent on the mechanical motor load and
excitation frequency, which affects the slip frequency. As a
consequence, the conventional MCSA must be amended to
accommodate the new scenarios. Unfortunately, to the best
of our knowledge, in the published literatures there is no
research work on this subject.
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FIGURE 1: Schematic diagram of the PWM VSI-fed adjustable speed
drive.

In this context, following explicitly derivation from a
simplified fault signal model, a new online fault diagnosis
technique based on MCSA for inverter-fed squirrel-cage
induction motors is present. Compared with traditional
MCSA, the novelty of the proposed method is that broken
rotor bars fault in the controlled motor via open-loop con-
stant voltage/frequency control method could be identified
even if the motor operates at different excitation frequencies.
To do this, oversampling signal acquisition technique is used
to suppress significantly noise contained in the inverted-
fed motor line current, and fault-indicative frequencies with
variable excitation frequency are determined by torque-speed
characteristic curve of squirrel-cage motor with different
load types. To obtain satisfactory results, nonparametric
spectrum estimation algorithm and fault identification are
subsequently presented. Including this introductory section,
this paper is organized into six sections. Section 2 presents
a theoretical analysis model of stator current of inverter-fed
squirrel-cage motor, which is based on switching function
concept and modulation theory. A detailed description of
the harmonic components contained in current is given.
Section 3 elaborates the new broken rotor bars fault diagnosis
techniques. In Section 5, the proposed techniques are vali-
dated by laboratory tests; the method is applied to different
stator currents obtained from healthy and faulty machines.
Experimental and simulation results as well as the corre-
sponding analysis and discussion are presented in Section 4.
Finally, conclusions and recommendations are presented in
the last section.

2. Analytic Model of Stator Current Signature
for Squirrel-Cage Induction Motor with
Constant Volt-per-Hertz Control Technique

2.1. Analytic Model of Stator Current Signature for No-Fault
Squirrel-Cage Induction Motor. Switching function concept
is a powerful tool in understanding and optimizing the
performance of the converter [19, 20]. In [20], an analytical
approach for characterizing the current harmonics and inter-
harmonics of the VSI-fed ASD injected into the supply system
in steady is presented using the switching function concept,
applicable to PWM VSI that is studied in this paper. Figure 1
shows the schematic diagram of a typical PWM VSI-fed
adjustable speed drive, where S;;, Sy, and S;. represent the

1a’

rectifier converter current switching functions that correlate



Journal of Applied Mathematics

the three-phase AC source currents i;, iz’;’ and ié and the
inverter input DC current iy, S,,,, S, and S,,. represent the
inverter voltage switching functions that correlate inverter dc
input voltage and output phase voltages u,, u;, and u,, Z is the
impedance operator seen from the inverter output terminals
corresponding to the neutral point of induction motor.
In order to calculate and analyse the harmonic currents
generated by the VSI-fed ASD, an analytical model based
on the modulation theory and switching function concept is
proposed and expressed by (2)~(6). After obtaining the phase
currents of PWM VSI-fed motor, the harmonic components
of the current might be extracted by the use of a certain
spectrum analysis method as follows:

(i,’r iy li) = ig (Sia> Sit» Sic) » (2)
ig = (igs i i) (Suas St Suc) > (3)
Ug = (”;>”l’7r ”é) (Sia> Sit» Sic)l’ (4)
(4o > 1) = tg (Sia> Sur Suc) €
(iaripri) = —(”“’l;"’ te). (6)

As shown in Figure 1, for the two-level natural sampled
PWM with a triangular wave of carrier signal, the three-phase
voltage switching functions S,,, S,;, and S,,. can be expressed
as the following double Fourier series, as follows:
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For a hypothetical ideal motor supplied from a balanced
three-phase source of sinusoidal voltages and driving a
constant load, the following waveform of selected phase-a
stator current may be assumed by substituting (7) into (5)
and (6), where the commutation effect is ignored and proper
origin of coordination selected for convenience of analysis is
as follows:
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where M is amplitude modulation index, M = U,/U, < 1; w,
is frequency of the modulation waveform (reference) (rad/s),
w, = 27f; w, is frequency of the carrier signal (rad/s); N
ratio of the carrier frequency to the modulation frequency,
N = w./w, > 1; and J,, J, are Bessel functions of the first
kind with order 0 and order n, respectively.

2.2. Analytic Model of Stator Current Signature for Faulty
Squirrel-Cage Induction Motor. When broken rotor bar or
cracked end-ring faults develop in the rotor cage, the current,
torque, and speed of the motor are affected, typically, in a
periodic manner. In the case of periodic disturbances, all
three line currents i, i, and i, are simultaneously modulated
with the fundamental frequency f, of the fault-induced
oscillation of motor variables. If only amplitude modulation
and fundamental frequency f, are considered, current in
phase-a of the supply line may now be expressed as

ip =i, [1+acos(w,t)], 9)



where a denotes the modulation depth (modulation index)
and w, = 2nf, = 2sw, = 4msf,. The value of the modulation
index depends on the severity of the abnormality and motor
loads.

Substituting (8) in (9) yields
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indicating that the spectrum of stator current for inverter-fed
healthy squirrel-cage motor contains, apart from the funda-
mental f, equal to the inverter excitation (stator) frequency,
mNf, harmonics at the carrier frequency and multiples of the
carrier frequency and (Mm+n) f, harmonics in the sidebands
around each multiple of the carrier frequency. When a bar
breaks, a rotor asymmetry occurs. The result is that it induces
in the stator current additional frequency at f, = (1 + 2s) f,,
fo = (mN £ 2s)f,, and f,, = (mN + n £ 2s)f, around
harmonics frequency depicted above. The amplitude of fault-
indicative frequencies f, = (1 £ 2s)f,, f,; = (mN £ 2s)f,,
and f;, = (MmN + n + 2s) f, depends on faulty severity, loads
and excitation (stator) frequency, and the distance between
fp> fo1> and f, and corresponding harmonics frequency f,,
mNfs, (Mm + n)f, is equal to 2sf,. The amplitude of f,
and f,, can be considered negligible compared to that of f;;
as a result, f, = (1 = 2s)f, are adopted as fault-indicative
frequencies.

In practice, the current is modulated with respect to not
only the amplitude but also the phase, and the modulation
process is more complex than that described by (9), but
the derived equation (10) provides an adequate basis for
qualitative assessment of diagnostic media.
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3. Diagnosis Techniques of Broken
Rotor Bars for Squirrel-Cage Induction
Motor with Constant Voltage/Frequency
Control Method

3.1. Principles of Diagnosis. A motor diagnosis technique,
which contains the five processing modules illustrated in
Figure 2, is presented, based on model of squirrel-cage induc-
tion motor stator current signature depicted in Section 2.
The current flowing in single phase of the induction motor
is sensed by anti-aliasing signal acquisition module and
sent to spectrum estimation module, where the obtained
time-domain signal can be decomposed into components of
different frequency using Welch’s periodogram method. In
optimal-slip-estimation module, based on the real speed, the
inverter excitation frequency, and torque-speed characteristic
curve of squirrel-cage motor with different load types, the
motor slip is calculated and the consequent optimal slip esti-
mation value is transmitted to fault characteristic frequency
determination module, where characteristic frequencies of
broken rotor bars are calculated. Depending on whether the
characteristic frequencies of f, = (1 + 2s) f, could be found
in power spectrum obtained in spectrum estimation module,
the conclusion of failure or not could be drawn, this work is
done in fault identification module.

3.2. Method of Antialiasing Signal Acquisition. When carry-
ing out diagnostic analysis one of the key elements to obtain
good results is to properly choose acquisition parameters:
the sampling frequency and the number of samples. There
are two different constraints: analysis signal bandwidth and
frequency resolution for the spectrum analysis.

It must be considered, when capturing the stator current
signal, that the sampling frequency f, e plays an important
role. Generally, statistical bands of fault-indicative frequen-
cies can be ascertained from theory analysis and many MCSA
experiments [2, 8, 21-23]. Table 1 summarizes the range of
sideband frequencies in terms of faulty types. We see in
Table 1 that the spectral analysis of stator currents might
be done in low frequency range (typically between 0 and
2kHz) to focus on the significant phenomena [24], and
in the case of broken rotor bars fault, the fault-indicative
frequencies are under 400 Hz. Thus, taking into account the
Nyquist criterion, a very high sampling frequency value is not
mandatory in case that the motors are supplied by the ac grid.
Sampling frequencies of 2k or 5k samples/s (standard in data
acquisition devices) enable good resolution analysis.

In contrast, for the inverter-fed motors, sampling pro-
cedure is more demanding. As it is known, stator current
contains high-order frequency harmonics, in this case, due
to switching frequencies in modern inverter, typically above
10 kHz. Thus, aliasing may occur due to wrong sampling.
Antialiasing techniques have to be used in order to have a
correct current spectrum and prevent a false failure alert.

For decreasing alias to an acceptable level, it is common to
design a sharp-cutoff low-pass anti-aliasing filter and sample
the signal at a frequency lower than the dominant frequency
components such as the fundamental and the switching
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FIGURE 2: Schematic diagram of fault diagnosis.

TaBLE 1: Range of sideband frequencies in terms of faulty types.

Fault types Theoretical formula Range Frequencies
1
Air-gap eccentricity Jece = fs {1 tm <TS> Low, high 0~900 Hz
Broken rotor bars fo=1f [k ( - S) + s] Low 0~400 Hz
p
b .
Bearing failure fio = % . [1 + —~cosf3 High 0~2000 Hz
1-
Interturn short circuit fa = £ [ (1-9)=+ k] fan = £ {1 +mZ, <TS>} Low, high 0~1000 Hz

frequencies [25]. However, such sharp-cutoff analog filters
are difficult and expensive to implement, and if the system
is to operate with a variable sampling rate, adjustable filters
would be required. Furthermore, sharp-cutoff analog filters
generally have a highly nonlinear phase response, particularly
at the pass-band edge. In our proposed method, oversampling
as an alternative technique is used. The principle of over-
sampling is briefly reviewed as follows (see [26] for details). A
very simple anti-aliasing filter that has a gradual cutoff with
significant attenuation is firstly applied to prefilter the motor
stator phase-a current. Next, implement the A/D conversion
at a higher sampling rate. After that, downsampling the
obtained signal with a lower sampling frequency is imple-
mented using a digital low-pass filter.

As for the inverter supply, several harmonics could be
mixed up in case that low resolution of the band side was
chosen. In general, one can take the following steps to select
data acquisition parameters in order to achieve the correct
resolution needed.

(1) Definition of sampling frequency. For anti-aliasing
purpose, fompie has limitation as f.,,. = 2 f,, where
f. is the highest fault-indicative frequency.

(2) Selection of required frequency resolution Af.

(3) Specification of the number of samples N
f sample/ Af .

(4) Determination of sampling time T' =
NT..

N / f sample —

3.3. Calculation of Slip and Fault-Indicative Frequencies with
Variable Excitation Frequency. From Section 2, broken rotor
bars can be detected by monitoring the stator current spectral
components f, = (1 £ 2s) f,, where harmonic frequencies f;,
are a function of slip s and excitation frequency f,. In
case of broken rotor bars fault, excitation frequency f,
and the corresponding slip s must be firstly determined
in order to find harmonic frequenciesf,. The result of a
motor diagnosis using MCSA is incorrect if the detected
slip has an error [8, 27]. One of the most popular ways
to obtain the information of the slip frequency is to use
speed sensor. In our proposed method, slip s is calculated in
optimal-slip-estimation module, based on the real measured
speed and torque-speed characteristic curve of squirrel-cage
motor.

The torque-speed characteristic curve of different load
types is shown in Figure 3. Curves (1), (2) and (3) are inherent
characteristic curves of squirrel-cage motor corresponding
to different excitation frequency f,. For ease of analysis,
it is assumed that torque characteristic curves (1), (2) and
(3) intersect mechanical characteristic curve f; at nominal
operating point A and only excitation frequency f, < f is
considered (if f; > f;, motor operates at pointA ; of curve
(3)). In Figure 3, the value of slip s corresponding to point
Aiss, = (ny — n,)/ny,. The no-load speedes corresponding
to different excitation frequency can be expressed as n,, =
60f,/p and ny, = 60f,/p, where p denotes the number of
pole-pairs.
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FIGURE 3: Torque-speed characteristic curve of squirrel-cage motor
with different load types.

If motor works with constant torque load, the operate
point shifts from A to A, the slip s corresponding to A, is
equal to S_opstant = (Mga — 111) /1, Considering the congruent
relationship between Ang;n, A and Ang,n; A, we can deduce
the specific slip formula as follows: s . pqant = Se/ (f1/f5)-

If motor works with fans/pump load, the operating point
shifts from A to A, and the slip s corresponding to A, is equal

t0 Sgans/pump = (Moz = 1,)/ngy. Considering the similarity of
Angn,A to Ang,n, A, and relationship of T/T, = (n,/n,)*
between speed and torque of fans/pump, we can deduce the

specific slip formula as follows: Sg,n/pump/(1 =

[s./(1 = s)21/(fs/ f1)-

2 _
Sfans/pump) -

3.4. Nonparametric Spectrum Estimation Algorithms. MCSA
techniques include parametric and nonparametric spectrum
analysis of the motor current in general [28]. Among the
nonparametric algorithms, we use Welch’s periodogram algo-
rithms based on DFT to compute the power spectrum of the
phase-a motor current data.

Let iy[n] = {i[0],i[1],...,i[N — 1]} be a discrete time
signal, which is obtained by sampling the phase-a motor
current signal i(t) for a duration of sampling time T. To
reduce the variance of power spectrum estimate, the N-
point data sequence, iy[n] = {i[0],i[1],...,i[N — 1]}, is
first partitioned into K overlapping segments. The length of
each segment consists of Lsamples and these segments can be
overlapping on each other with (L — S) overlapping samples,
where S is the number of points to shift between segments.
Thereafter, the periodogram of each segment is calculated
and the obtained periodograms are then averaged to give the
power spectrum estimate.

The length of segment L is dependent on the required
resolution. In order to increase the quality of power spectrum
estimates, the signal segments can be windowed before calcu-
lating FFT. The proposed methods permit reduce the variance
of the estimate at the expense of a decreased frequency
resolution. However, it is difficult to trade off between the
frequency resolution and the estimate variance. It has been
noted that the use of 50% overlapping percentage among the
partitioned segments leads to efficient implementation of the
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fast Fourier transform (FFT) algorithm and in this case the
relationship between K and L of segment as follows K =
(N = L/2)/(L/2).

Algorithm 1.

Step 1. Subdividing N-point sampled data sequence, iy[n] =
{i[0],i[1],...i[N — 1]}, into K overlapping segments; the kth

segment data x[n + kS],0 <n<L-land0< k< K-1,is
as follows:
Segment 1: x[0], x[1],...,x[L — 1];
Segment 1: x[S], x[S+1],...,x[L+S—1];
Segment K: x[N — L], x[N - L+1],...,x[N - 1].

Step 2. Weighting kth segment, d[n] denote rectangular
window function:

x*[n] = dn]x[n+kS],

Step 3. Calculating power spectrum of the kth segment data:

X(N XN =

where X(f) = T Y5} &

segment data and U =
factor.

P*(f) = x(Nh @

ULT ULT

B [n]e 7T denote DFT of the kth

ZL_ d*[n] denote normalization

Step 4. Averaging all segments power spectrum:

PN =% 2 P (), 13)
k=0

4. Experiment Setup and Signal
Acquisition Methods

4.1. Experiment Setup. Schematic diagram of the experiment
setup is shown in Figure 4. This system can be used to sample
line current i, and line voltage u,, (if necessary, it can be
arranged to sample the other line currents i, and i, and
line voltages uy,. and u,,, too), and speed signals. The main
components of the experiment setup are as follows.

(1) Three-phase 3 kW SCIM (see Table 2 for details).

(2) Digital stroboscope coupled with the shaft of the
SCIM as angular-speed sensor to measure and record
the time variation of the speed.

(3) DC generator coupled with the SCIM to provide its
adjustable load.

(4) Mechanical coupling between SCIM and dc genera-
tor.

(5) Variable resistor bank as a variable load of the gen-
erator: the load of the generator and, consequently,
the induction motor can be adjusted by varying this
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FIGURE 4: Schematic diagram of the experiment.

Resistor bank

resistance and/or regulating the excitation current of
the generator by relevant variable resistor. The resis-
tance of this variable-resistor bank can be selected
step by step by a selector on the bank. In the operating
motor, a suitable position of the selector is selected
and consequently the induction motor is loaded.
By regulating the output voltage of the generator
inserted in the excitation current path, the load level
is regulated precisely.

(6) Induction-motor drive system type Simens440 with
rating values in accordance with that of the SCIM: this
drive has been mainly designed and built for open-
loop scalar controller in constant voltage/frequency
(CV/f) method.

(7) Three-phase change-over switch to exchange the
motor connections from the mains for the drive
output.

(8) Signal conditioning circuits: since the used DAQ card
accepts only voltage signals with maximum ampli-
tudes of £10V, the type and amplitude of the signals
are prepared before connection to the card. At the first
stage, TBC300LTP Hall-effect current transformer is
used to prepare the current signal and isolate it from
the power circuit. Secondary side current is then
converted to proportional voltage signals by current
shunts. Then, all signals are transmitted to the DAQ
card using a special shielded cable.

(9) PC equipped with a self-made data acquisition card
for sampling the electrical data at a certain adjustable
frequency and storing them in the memory.

Experiment setup to collect motor data and broken rotor
used in the tests are illustrated in Figure 5.

4.2. Signal Acquisition Requirements. The experiments
involved collecting the phase-a stator current and speed
data of the induction motor for different load conditions
and different excitation frequencies of 20Hz, 32Hz, 40Hz
and 50Hz, with three broken-rotor-bar fault and without
any fault. The load conditions of the motor are 25%,
50%, 75%, and 94% full load, respectively. These load

7
TaBLE 2: Induction motor technical data.

Parameter Value Unit
Nominal power 3.0 kw
Nominal voltage 380 \
Nominal current 6.8 A
Nominal frequency 50 Hz
Connection A
Number of poles 4
Rotor slots number 28

condition percentages are determined according to the
motor nameplate information given in Table 2.

Signal over-sampling method has been chosen in order
to avoid aliasing. The stator current of motor was sampled
with a frequency of 2kHz for main-fed and 40kHz for
inverter-fed case. In the inverter-fed case, software filters
have been implemented in order to avoid aliasing. More
specifically, an 8-order anti-aliasing digital butter-worth filter
was implemented and resampling of the signal has been done
at 2kHz. In our case, thirty seconds long data is acquired
from all two motors for each load condition at each frequency
mentioned above. Thus, the analyzed frequencies vary from
0 to 1kHz with a resolution of 0.03Hz. For the feature
extraction and discriminant analysis, starting with the first
sample, the acquired data is processed with a sliding window
size of 30,000 samples at a slide amount of 10,000, resulting
in 60 different data sets all together.

Figure 6 illustrates the intercept parts of 50 Hz stator
current signal from the (a) main-fed and (b) inverter-
fed healthy squirrel-cage motors. An expert inspection of
these waveforms reveals that the inverter-fed motor current
waveform is heavily contaminated by the noise-like additive
waveform due to PWM switching of the voltage source
inverter. If we were to use this motor current waveform
data to extract necessary features for fault detection and
classification, we need to preprocess the data.

5. Experimental Results

5.1. Experiment 1. A nominally healthy squirrel-cage motor
was firstly tested and the power spectrum of the stator
current centered on the fundamental component supplied by
(a) main and (b) inverter is shown in Figure 7. The results
confirm that the motor rotor is healthy since the sidebands f;,
are not present. Comparisons of Figures 7(a) and 7(b) shows
that a large amount of harmonic components is included in
Figure 7(b) and the inverter supply does affect the spectrumi-
dentifiability. Figure 8 indicates power spectrum of the stator
current around the fundamental component for (a) main-
fed and (b) inverter-fed fault squirrel-cage motors with three
broken bars and full load. The annotations appearing in the
figure denote the main sideband components around the sup-
ply frequency and corresponding amplitudes. Comparison of
Figures 7 and 8 indicates that sideband components appear,
which demonstrates the broken bars occurred. Although
more frequency information appears, one could still identify
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FIGURE 5: Experiment setup to collect motor data and broken rotor used in the tests.
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FIGURE 6: 50 Hz stator current signal from the (a) main-fed and (b) inverter-fed healthy squirrel-cage motor.
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FIGURE 7: Power spectrum of the stator current around the fundamental component for (a) main-fed and (b) inverter-fed healthy squirrel-cage

motor.
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motor.
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FIGURE 9: Power spectrum of the stator current around different excitation frequency of (a) 45 Hz, (b) 40 Hz, (c) 32 Hz, and (d) 20 Hz.

0 T T T
Faulty;
B 0t =947 r/min; f; = 32Hz |
< —20 _ n > Js
T 31.1Hz, ~43dB 32.9Hz, -45dB
B -0
é-‘ 60
E-
-80 L L L L L
26 28 30 32 34 36 38
Frequency (Hz)
(@
0 T
Faulty;

g 20} n = 1480 r/min; f, = 50Hz |
g 48.7Hz, -44dB 51.3Hz, —-44dB
B -40p ~ v
&
g
<

35 40 45 50 55 60 65

Frequency (Hz)

(c)

0 T T T
Faulty;

2 ot n=935r/min; f, =32Hz |
s 30.3Hz, -41dB 33.7Hz, -43dB
T 40t et
?
= -60

—-80 L L L L L

26 28 30 32 34 36 38
Frequency (Hz)
()
0 ' ' Fault'y; '

% ~20 473 Hz, —40dB n = 1460 r/min; f; = 50 Hz |
© 52.7Hz, -40dB
T a0t ™~ —
B
= -60

—80 L L L L L

35 40 45 50 55 60 65
Frequency (Hz)

(d)

FIGURE 10: Power spectrum of the stator current around (left) 25% and (right) 50% full loads. Top row: 32 Hz and bottom row: 50 Hz reference

frequency.

in Figure 8(b) broken rotor bars harmonics at 45Hz and
55Hz using our proposed method. Comparison of Figures
8(a) and 8(b) also indicates that, for the same level of damage
at the same load, the spectrum sidebands have the same
amplitude for different supply.

5.2. Experiment 2. The second experiment involved fault
squirrel-cage motor operating at different excitation fre-
quency of inverter with three broken basr and full load.

Figure 9 gives the power spectrum of the stator current
around the excitation frequencies of 45 Hz, 40 Hz, 32 Hz, and
20 Hz. As expected, the sideband components f;, = (1+2s) f,,
depending on excitation frequency and load are present.
Comparison of Figures 9(a), 9(b), 9(c), and 9(d) indicates that
the left sideband harmonic component (1 — 2s) f, varies from
(41Hz,—-36 dB) to (18 Hz,—42dB) and right harmonic (1 +
2s) f, from (49 Hz,—39 dB) to(22 Hz,—42 dB), when excitation
frequency varies from 45 Hz to 20 Hz. An expert inspection of
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these spectrums reveals that f, = (1+2s) f, are always located
around the excitation frequency and the distance from the
excitation frequency is 2sf,. It also can be seen from Figure 9
that the amplitude of left sideband harmonic component (1 -
2s) f, decreases with the excitation frequency, which is the
result that when excitation frequency decreases the output
voltage becomes lower and much smaller current is drawn by
motor.

5.3. Experiment 3. In Experiment 3, additional experiments
were performed with the faulty motor at different excitation
frequencies (32 Hz, 50 Hz) under two different loads (25%,
50%) to assess the performance of the proposed method over
the full range of motor loads. Using the proposed diagnosis
method, the collected phase current data of the fault motor
with three broken bars were analyzed. Figures 10(a) and 10(b)
show the results with 32 Hz excitation frequency at different
loads and it can be seen that the fault characteristic frequency
of broken rotor bars is exposed clearly. With the increase
of load, the components of characteristic frequency become
more and more significant, such as in Figure 10(a) of 25% load
and Figure 10(b) of 50% load. The similar results could be
received for fault motor with 50 Hz excitation frequency at
different loads; see Figure 10(c) of 25% load and Figure 10(d)
of 50% load.

6. Conclusion

Open-loop voltage-source-inverter-fed squirrel-cage motors
with constant voltage/frequency control method are widely
used to drive fans, pumps, or other mechanisms involving
speed control for energy-saving purpose. In these cases,
the motor operates steadily with different excitation fre-
quencies. Unlike the utility-driven case, the position of the
current harmonics appearing on the stator-current spec-
trum due to broken rotor bar faults is highly dependent
on the mechanical motor load and excitation frequency,
which affects the slip frequency. As a consequence, the
reliable identification and isolation of faults remains an open
issue.

In this paper, a simplified fault current signal model
is firstly established using switching function concept and
frequency modulation theory. It is demonstrated that the
inverter-fed motor current is heavily contaminated due to
PWM switching of the voltage source inverter. However,
the broken rotor bars fault characteristic frequency f, =
(1 £2s)f,, depending on faulty severity, loads, and excitation
frequency, is always located around the excitation frequency
and the distance from the excitation frequency is 2sf,. Novel
broken rotor bar fault diagnosis techniques using motor
current signature analysis (MCSA) for open-loop voltage-
source-inverter-fed squirrel-cage induction motors with con-
stant voltage/frequency control method are subsequently
proposed. Experimental results obtained on self-made 3 kW
three-phase squirrel-cage induction motors are discussed.
It is shown that experimental and simulation results are
consistent with those of the model revealed and the proposed
techniques are effective and accurate.

Journal of Applied Mathematics

The method described works well under constant load
torque, but some difficulties appear with regard to closed-
loop control-operated machines, when f; and s vary almost
simultaneously and it is impossible to employ the proposed
method to diagnose broken rotor bar fault. At the moment,
further research is carried out for the features, advantages,
limitations, and improvements of the proposed techniques.
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By integrating the cardinality balanced multitarget multi-Bernoulli (CBMeMBer) filter with the interacting multiple models (IMM)
algorithm, an MM-CBMeMBer filter is proposed in this paper for tracking multiple maneuvering targets in clutter. The sequential
Monte Carlo (SMC) method is used to implement the filter for generic multi-target models and the Gaussian mixture (GM)
method is used to implement the filter for linear-Gaussian multi-target models. Then, the extended Kalman (EK) and unscented
Kalman filtering approximations for the GM-MM-CBMeMBer filter to accommodate mildly nonlinear models are described briefly.
Simulation results are presented to show the effectiveness of the proposed filter.

1. Introduction

Recently, the random-finite-set-(RFS-) based multitarget
tracking approaches [1] have attracted extensive attention.
Although theoretically solid, the RFS-based approaches usu-
ally are involved with intractable computations. By introduc-
ing the finite-set statistics (FISST) [2], Mahler developed the
probability hypothesis density (PHD) [3] and cardinalized
PHD (CPHD) [4] filters, which have been shown to be a
computationally tractable alternative to full multitarget Bayes
filters in the RFS framework. The sequential Monte Carlo
(SMC) implementations for the PHD and CPHD filters were
devised by Zajic and Mahler [5], Sidenbladh [6], and Vo
et al. [7]. Vo et al. and Zhang et al. [8-10] devised the
Gaussian mixture (GM) implementations for the PHD and
CPHD filters under the linear-Gaussian assumption on target
dynamics, birth process, and sensor model. The PHD-based
approaches have been successfully used for many real-world
problems [11-13]. However, the SMC-PHD and SMC-CPHD
approaches require clustering to extract state estimates from
the particle population, which is expensive and unreliable
(14, 15].

In 2007, Mahler proposed the multitarget multi-Bernoulli
(MeMBer) [2] recursion, which is an approximation to the
full multitarget Bayes recursion using multi-Bernoulli RFSs

under low clutter density scenarios. In 2009, Vo et al. showed
that the MeMBer filter overestimates the number of targets
and proposed a cardinality-balanced MeMBer (CBMeMBer)
filter [16] to reduce the cardinality bias. Then, the SMC
and GM implementations for the MeMBer and CBMeMBer
filters were, respectively, proposed for generic and linear-
Gaussian dynamic and measurement models. The MeMBer
and CBMeMBer recursions propagate not the moments and
cardinality distributions which are propagated by the PHD
and CPHD filters but rather the approximate multitarget
multi-Bernoulli posterior density. Therefore, the key advan-
tage of the SMC-CBMeMBer filter over the SMC-PHD and
SMC-CPHD filters is that the multi-Bernoulli representation
of the posterior density allows reliable and inexpensive
extraction of state estimates. The CBMeMBer filter has been
applied for tracking multiple targets according to their audio
and visual information [17].

The original CBMeMBer filter does not consider the
target maneuvers. Maneuvering targets might switch between
different models of operation, so tracking using a single-
model CBMeMBer filter might fail since the filter does not
match the actual system dynamics. It is well known that
the interacting multiple models (IMM) approaches [18] have
been proven to be very effective and have better performance



than the single-model filters in tracking a single maneuvering
target without clutter. In the IMM approaches, a bank of
filters, each matched with a different target motion model,
operate in parallel. In general, there are three key steps
in the IMM estimators: (1) mixing the model-conditioned
estimates; (2) model-conditioned base-state estimation; (3)
deriving the overall state estimate by combining the estimates
from each model-conditioned base-state filters.

By integrating the CBMeMBer filter with the IMM algo-
rithm, an MM-CBMeMBer filter is proposed to address the
problem of tracking multiple maneuvering targets in clutter,
which is much more difficult than the problem of tracking a
single maneuvering target without clutter since the associa-
tion between the measurements and the targets is unknown.
The SMC method is used to implement the filter for generic
multitarget models while the GM method is used to imple-
ment the filter for linear-Gaussian multitarget models. Then,
the extended Kalman (EK) [19] and unscented Kalman (UK)
[20] filtering approximations for the GM-MM-CBMeMBer
filter to accommodate mildly nonlinear models are described
briefly. Nonlinear and linear-Gaussian examples of multiple
maneuvering targets tracking are, respectively, presented for
comparing the performance of the MM-CBMeMBer filter
with that of the single-model CBMeMBer filters, MM-PHD
filter [21-24], and MM-CPHD filter [25]. The simulation
results show that (1) the proposed filter can estimate the num-
ber and states of multiple maneuvering targets effectively,
whereas the performance of the single-model CBMeMBer
filters is rather poor; (2) under relatively low clutter density,
the SMC-MM-CBMeMBer filter outperforms the SMC-MM-
PHD and SMC-MM-CPHD filters; (3) the performance of the
GM-MM-CBMeMBer filter is similar to that of the GM-MM-
PHD filter and hence is inferior to that of GM-MM-CPHD
filter.

The rest of the paper is organized as follows. Section 2
describes the problem of multiple maneuvering targets track-
ing. In Section 3, the MM-CBMeMBer recursion is given. The
generic SMC implementation of the MM-CBMeMBer filter
is described in Section 4. The analytic GM implementation
of the MM-CBMeMBer filter for linear-Gaussian multitarget
models and its EK and UK extensions for nonlinear multi-
target models are, respectively, given in Section 5. Numerical
studies are shown in Section 6. The conclusions and the future
work are given in Section 7.

2. Problem Statement for Multiple
Maneuvering Targets Tracking

The multiple maneuvering targets appear and disappear
randomly against time over an observation region. At time
k, let x, € R" denote the kinematical state of a target and
1. € N the label of the model in effect, where N is the discrete
set of all model labels. The models follow a discrete Markov
chain with transition probability Ay, (. | m_y). Let y, =
(%, 1) € R" x N denote the augmented state vector, whose
transition is governed by the density

fklk—l (Yk | Yk—l) = fklk—l (Xk | Xk—l’”k) hklk—l (”k | nk—l)(’ )
1
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where fj -1 (X | Xy, 7) is the kinematical state transition
density conditioned on model .

The measurement originates either from target or from
random clutter (false alarm). Moreover, the target-generated
measurements are indistinguishable from the clutter. At time
k, let z, € R™ denote the measurement vector received by
a sensor. The single-measurement single-target likelihood is
described by the density conditioned on model #;,

9k (i 1 vi) = fugre (i | i mg) (2)

Attime k, let T} denote the number of the existing targets
and S; the number of the measurements. Then, multiple
augmented states and unlabelled sensor measurements can

T
‘and Z, =

be represented as finite sets Y = {(x,(f),nl(f))}i:1

§
{ZI(CS)}SL’ respectively. In addition, let Z,, = Z,,..., Z; denote

a sequence of the measurement sets available up to and
including time k.

3. MM-CBMeMBer Filter

A Bernoulli RFS Y} has probability 1 — ;. of being empty and
probability r, (0 < 1, < 1) of being a singleton whose only
element is distributed according to a probability density py.
The probability density of Y} is

l—rk,

e Pe (X 1) »

Y, =0,
Vi = {(x 1)} -

A multi-Bernoulli RFS Y, is a union of a fixed number
of independent Bernoulli RFSs Y,E’) i = 1,..., My, that is,

Y, = Uf\f’l‘ Y,Ei). Y, is thus completely described by the multi-
Bernoulli parameter set {(r,(ci), p,(j)

cardinality Zf\fﬁ r,(j) and the probability density [2]

2 (Y,) = { 3)

(X nk))}f\f’l‘ with the mean

M, ARG
) n P (X i)
ﬂ(Yk):l |(1_Tk]) Z II [
=1 1<iy # - iy, <M j=1 1-1

(4)

where | - | denotes the cardinality of a set.

Throughout this paper, we abbreviate a probability den-
sity of the form (4) by 7(Yy) = {(r?, p® (xp, m))} k.

Let pg i (Vx_) denote the probability that the maneuvering
target with augmented state y,_, survives at time k; let
Ppi(vi) denote the probability that the maneuvering target
with augmented state y, generates an observation at time k.
RFS modeling the multiple maneuvering targets state ) and
the sensor measurement Z, are, respectively, given by the
union

Y, = U Qo1 (Viet) | U T
Yi-1€Y%
(5)
Z = U Oy (Yk)] U K,
Vi€
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where I}, denotes the multi-Bernoulli RES of spontaneous
births; the Bernoulli RES Oy (yx—;) with 1 = pg(yi_1)
and pi(yx) = fik-1(Yk | Yx-1) is used to model the dynamic
behavior of y;_, € Y,_;; the Bernoulli RFS ®,(y;) with
1. = Ppi(yi) and pr(z;) = gi(z | yi) is used to model the
observation behavior of y, € Y;; the clutter is modeled as a
Poisson RFS K| with the intensity #;.(z;) = A ;. f. x(2), where
Acx and f, () are, respectively, the average clutter number
and the probability density of clutter spatial distribution at
time k.

Based on the above RFS models of the multiple maneu-
vering targets and the method of Mahler’s FISST, the MM-
CBMeMBer filter, which implicitly requires a finite number of
single-model CBMeMBer filters operate in parallel, is derived
by introducing the mixing and combination strategies in the
IMM approaches [18]. As the multiple-model approaches, the
MM-CBMeMBer filter does not need a maneuver detection
decision and undergoes a soft switching between the models.
One cycle of the recursive MM-CBMeMBer algorithm can be
described as follows.

(1) The Mixing and Prediction Stage. If at time k — 1, the pos-
terior density is a multi-Bernoulli of the form m;_,(Y,_; |

Zige) = {00 pP (%1, me))} i, then the mixed multi-

Bernoulli density is

e 1<Yk ppare 1) {(rk b (e 1>”k))}Mk L6
where

= ZP}& (Xpe—1> Mo 1)

My

P;(Ql (X 1> 111)

= Z P;(Ql (e | K> ey P;(Ql (X1 g1 ) -
My
7)
Since the models switching is only decided by the model tran-

sition probability and is independent of the target kinematical
state:

= thuﬂ (e | ”kfl)Pz(Ql (K15 1)

Mgy

(8)

is a combination of the previous model-dependent densities.
Finally, the mixed and predicted density is also a multi-
Bernoulli and is given by

Thelk-1 (Yi | Z1xa)

{(rl(D)klk g

u{(r% P

Ppk|k 1 (Xk’ ”k))}Mk 1

(Xk>”k))}Mrk>

€)

0 _ ) -, (p

. . M.
where {(r#}c, p;’ )k(xk, nk))}izi’k are the parameters of the multi-

Bernoulli RES of births at time k:

(i)
Tpklk-1

= ”;(cijlzzhuka (e | my)

My My
X <P1(<iz1 (1) > P (5 ”k71)> ,

Pg,)k|k4 (%> 1)

1
{

Z - (e | mey)

M1

X <fk|k—1 (% | 1) ’P;(Ql (1) Ps (- ”k1)>>

Zzhklk—l (e | miy)

My Mgy

-1
X <P1(21 (1) > P ("”k1)>> )

(10)
where (-, -) defines the integral inner product, that is,

(P, (

= J Pz((iz1 (%15 Me1) Psge (Keo1> M) Ay

SM1)s Psk (s ”k71)>
(11)

(2) The Update Stage. If at time k, the mixed and predicted
density is a multi-Bernoulli of the form rmy_; (Yy | Z14_y) =

My . .
{(r,i’l)k » pklk (X nk))}i::‘k , then the posterior density can
be approximated by a multi-Bernoulli as follows:

i My
m (Y | Zy) = {( i)k)PLk (Xk>”k))} |
(12)
U {(ruk (zi) » pug (%4 14 Zk))}zkgzk’
where
z(ci|)k_1 (~me)s P (5 ”k)>

Lk = Tkk-1

)
= Thlke1 2, <P

(@)
klk—1

(1) s Pog (5 ”k)> ’
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1 - pp (X 1)) P;(j)k,l (X 1)

p](j)k (X 1) =

klk-1

1- an <pl(ci|)k—1 ("nk)’PD,k (s

Mo (1= 10 ) it T (it ) > e (i L) Py (i)

”k)>

Uk (z) =

(1-

I(cl&c 1an <Pk|k () s pog (6 ”k)>)

(@)

Mger ) W , . !
% (Kk(zk) + Z rk|k71 an <pk|k71 ( nk) Ik (zk | ”k) pD,k( ”k)> > )

i=1

1- Thlk-1 an <p](<l|)k_1 (" ”k) > PDk (" nk)>

Mo 1 0 ) .
Zi:l{'k ' (f;(j)k_l/ (1 - r;(<l|)k_1)) P;(<1|)k_1 (X% 1) G (24 | Xpo 1) Ppi (%> 115)

Puk (X i3 2) =

(3) The Multitarget State Estimation. For the multi-Bernoulli
representation (Y, | Z;) = {(r,(c'),pl(c')(xk, ”k))}, ¥, the
extraction of multitarget number and state estimates are
straightforward since the probability r,(ci) indicates how likely
the ith hypothesized track is a true track, and the posterior
density p,(ci)(xk, n;) describes the distribution of the estimated
augmented state of the track. The state estimation proce-
dure for the MM-CBMeMBer filter [8] is summarized in
Algorithm 1.

4. SMC-MM-CBMeMBer Filter

In this section, a generic SMC implementation of the
proposed MM-CBMeMBer filter is presented for accom-
modating nonlinear dynamic and measurement models. In
this implementation, the samples or particles, which are
used to represent the multi-Bernoulli density of multiple
maneuvering targets, consists of the kinematical state and
model information with associated weights. One cycle of the
recursive SMC-MM-CBMeMBer algorithm can be described
as follows.

(1) The SMC Mixing and Prediction Stage. Suppose that at

time k — 1 the multi-Bernoulli posterior density 7,_; (Y,_; |
1k D = {(718)1’1)(1) (xk 1> Mg 1))}M"1 is given and each
pk 1(Xk Mey), 1= M, 1s composed of a set of

D GD Gl
weighted samples {w” i, M i}l

>

LY,
=(i) _ (1) (1) (i.0)
Prly (Xk—l’nk—l) = Z“’qu(Xk 1~ X p e — 1y 1)
(14)

where 8(x — x9) is Dirac delta function centered at x'.
Then, the mixed and predicted multi-Bernoulli density

_ M.

Tl Y | Zyg) = {(Ag)kuc 1’pPk|k 1(Xk’ ”k))},»::l U
M

{(?ﬁc, p;’;((xk, nk))}i:i’k can be computed as follows:

T (s (1= 1)) Zo (Pics () 05 i 1 om0) P (1))

(13)
L (i,0) (i,])
A0 ) ) ( (i.D) (zl))hklk 1( "pkik-1 | )
Tpkik-1= k- s wk 1Psk X202y ) —@7an @y
& (nPka I )
?{F’L = parameter given by birth model,

LY

~(i) (8] ()] ((®))]
Pp k-1 (X 1) = szklkl (X = Xpkk-1> % ~ Mpeji— 1)

19,
() (1) (1) (i.0)
P (% 1) Zwl 6( — X M — ”rlk)

(15)
where the particles x;, k)l 1’ ng,?l 41 corresponding to the sur-
viving maneuvering targets can be derived by sampling from
the proposal densities q,(c’)(- | X;_1, 1> Zy) and oc,((’)(- | 1)

Gh 0 il)
nPklkl K (ln ) I=1 L
) Gl) @] = bl
Xpglk-1 "~ ( | X 1 ki 1’Zk)
(16)
with the associated weights
= (1)
@y “pklk-1
Wpklk-1 = [0 ’
k-1 (I)(l’l)
1=1 “PPilk-1
(@i,1) @) @]) @@l (@,])
) fklk 1( Xppeor | %5 l’nPklk 1)P8k( Xye— 1’”k 1)
Pklk-1 — @) (G, @) (])
i ( Xp klk-1 | X~ nP,klk—l’Zk)

(&) (M) (@0)
hklk 1( Mpik-r | ) )

‘W
@ (@D ((8))] k-1
k (nP,klk—l | ”k—l)

17)

and the particles xr' ,?, n(r']i) corresponding to the new born
maneuvering targets can be derived by sampling from the

proposal densities b (- | ng, Z) and /3(’)

(i)
”rl,k ~ ﬁkl ©)

G .G i)
Xy ~ b ( |”rk’Zk)

I=1,..,LY  (8)
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(i)

fori=1,...,M,

T, =T, +1,
probability of model

output: X, = {A(’ }

given (Y}, | Z) = {(r} ,pk (xk,nk))}f\f’l‘; set Tk =0, Xk =@

if r,(:> > a given threshold (i.e. 0.5);

state estimation conditioned on model

il(cm = Z Pz((i>(”k) Jxkng)(kak)dxk Z J XkPk (Xp 1) A,
nk nk
X = [Xox™];
end;
end;

ALGORITHM 1: Multitarget state estimation procedure for the MM-CBMeMBer filter.

with the associated weights

= (i.0)

w0 = Wr
Tk ZL(& ol 1)
1=1 @rj
(19)
@) @D
LG Prk( rk’”rk)

(Ur,k - b}il)( (i.0) | ngllc’zk) (l)< gl?)

(2) The SMC Update Stage. Suppose that at time k the mixed
and predicted multi-Bernoulli density 7Ty, (Yy | Z14-1) =

~ Mgy . . e

{('ff(’l)k l’pklk (X))} is given and each p,(('l)]ﬁl(xk,nk),

i=1,..., Mgy, is composed of a set of weighted samples
(i1) (@i,1) (1 1) k|k 1

{wklk 1> Xile-1> M- 1}1 ’

0
Lk\k 1

(i,1) (@i,]) (@)
Z Wp_y ( X~ Xpe—1> e~ M- 1)

(20)

Pk|k 1 (X 1) =

Then, the multi-Bernoulli approximation of the updated
density T, (Yy | Z14) = {(.{Ll)k,’ﬁL (X ) Y2 k‘k " UA{(Fuk(ze)s

Pui(Xi> i3 24))}, ez, can be computed as follows:

0D G G
Wk— 1PDk( X - 1’nk|k—1)

1— k\k 1
=
1— ~(1)
Thk=1 Zi=1
JiYl

klk-1

IB(LI);c (X 1) = Z ‘U(Li,’;l()s (

I=1

Lk\k 1

>

(1 1) () ()
WOp e 1pDk(Xk|k > Melk— 1)

(1) (M) )
~ X1 e ~ Mg

M, ~(i) k\kl (i) (@i,1) (@i,1) (i,1)
_ _ & l(1 Vilie— l)rklk 121 wklk 19k (zk | Xklk—l’nklk—l)pD,k( Xlk—1° Mk 1)
Tuk (z) = Z 2 (21)
i=1 k\k 1, (D) (€M) (i,])
( k|k 121 O e lpDk(Xklk 1 Ml 1))
Mgy #0) b 6 @) D) W) D -
| 1 (z) + f:l K1 2i=1  @i-19k (zk | X1 P 1)PDk( X1 M= 1)
e \Zg >
i= ~(z) k|k 1, (i0) (M) ()
= Thlk— 121 Wy lk— lpDk(Xklk > Melk— 1)

(i)
Mygge—r Lt

Pux (X 5 24.)

le Z “’ (Zk)‘s( kalc)v”k nl(cllllc)l)
1= :
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where
= (1)
@) Wy
“Lk gc\k (i,])
-1 (i,
=1 @k
Gh Gl
CGl) G PDk( Kk l’nklk—l)
CLk = ket Ly G G Gh \
1
1= 200 @i 1PDk(Xk|k > M- 1)
~(ll)
(: ) D (2,) = Wy () (22)
k
M <Ly -
Zi:ilk 1 lk\lk 1 w(z ) (zk)
~(1)
< (i) Thik—1 w0l
Wk (z) = — 0 Wrelk—19k
Thlk-1

WGl @) D)
x (2 | X1 e 1)PDk(Xk|k k)

(3) The Resampling and Pruning Stage. It is the same as the
resampling and pruning stage of the SMC-CBMeMBer filter
[16].

(4) The SMC Multitarget State Estimation. Given the SMC
multi-Bernoulli posterior density

My

i (Yie | Zie) = {(71(;)’131(;) (% nk))}izl
L(i) (23)
it 05 = Y0 (5,5,

from the method described in Algorithm 1, the SMC multi-
target state estimation can be easily obtained as

LY
with £ = YxPo, i=1,..., T, (4
=1

%= {501

Note that the MCMC move step [26] can be introduced
for increasing the particle variety after the resample step
without affecting the validity of the SMC approximation.

5. GM-MM-CBMeMBer Filter and
Its EK and UK Extensions

An analytic solution to the MM-CBMeMBer recursion for
linear-Gaussian multiple maneuvering targets models is pre-
sented in this section. The resulting filter propagates the GM
multi-Bernoulli density against time. Some certain assump-
tions about the linear-Gaussian multiple maneuvering targets
models are firstly summarized below.

Journal of Applied Mathematics

(A) The dynamic and measurement models for the
augmented state of each maneuvering target have the form

Futier (o1 | X1y
= (x5 Fy ()Xo A () Qe () (A (m)")
X My (m | ) (25)
Ir (2 | X 1)
= A (2 H (m) %30 By () R () (B (m)")

where //(-; m, P) denotes the density of Gaussian distribution
with the mean m and covariance P; Fi(n;), Q(n;), and
A (ny.) are, respectively, the kinematical state transition, pro-
cess noise covariance, and process noise coefficient matrixes
conditioned on model n;; Hy(n.), Re(ng), and By () are,
respectively, the observation, observation noise covariance,
and observation noise coeflicient matrixes conditioned on
model ry.

(B) The probabilities of maneuvering target survival
and maneuvering target detection are independent of the
kinematical state:

= Psk (1) s
= Ppk () -

Psk (X 1> g1
(26)

Ppk (x5 7.)

(C) The birth model for the maneuvering targets is a
multi-Bernoulli with parameter set {(rr o prk(xk, nk))}l R
where Pr,k(kak)’ i=1,..., My, are GM of the form

ﬁ(rl)k (Xk’ ”k) = ﬁg)k (Xk | ”k) h(rl)k (”k)

]rik (nk)

= hi) () Z oy (m)

x A (x5 my U) v () Pr(lkj) (m))
(27)

where h) k(nk) is the distribution of model births and p p (xk |
n) is the distribution of the birth kinematical state glven
model . f(r’ )k(xk | 1) is GM of the form with the parameter

set 10 (), m) (), P (V4™

Accordmg to the above Assumptlons A, B,and C, a closed
form solution to the MM-CBMeMBer recursion, namely, the
GM-MM-CBMeMBer filter, can be derived by applying the

following two standard results for Gaussian functions:
J A (xFx',Q) ¥ (x'sm,P)dx' = ¥ (x;Fm,Q+ FPF"),
A (z; Hx, R) / (x; m, P)

= _/V(z; Hm,R + HPHT)/V (x; I;l, 13>,



Journal of Applied Mathematics

where
K = PHT(HPHT +R) ",

m=m +K (z- Hm), (29)

p= (I - KH)P.

One cycle of the recursive GM-MM-CBMeMBer algo-
rithm can be described as follows.

(1) The GM Mixing and Prediction Stage. Suppose that at
time k — 1 the multi- Bernoulli posterior density m,_; (Y, |

Zik) = {(_k o pk 1(Xk ) ) Mt g given and each

f,(jzl(xk,l,nk,l), i=1,...,M;_,,is composed of GM of the
form

Pk 1(Xk 1 M1)

]lit)l(”k )

Z @) (mey) (30)

i
x N (xk—1§ mklfl) (”k—l) > Pliijl) (”k—l)) .

Then, the mixed and predicted multi Bernoulli density

ﬁklk I(Yk | Zl:k—l) {(rPklk l)ppk|k 1(Xk>nk))} M U
{(_(rl )k, f(rl )k(xk, nk))}f\f{’k can be computed as follows:
]15’)1 (1)
7 —(l)
"pkik-1 = ;nz Z Py (g | )
k -1 :

X Psj (1) ‘D;(;ljl) (M) >
JO ()

ﬁg,)lqk 1 (X 1) = Z Z wéifk 1(”k>”k—1)

oy =1
x/V(x-m(i’j) (> Miey)
k> Pk k-1 k> k—1)»
(i,7)
PPka 1 (”k’”kfl))’

{(_(rl)k’ p(rl)k (Xp nk))}Mi = given by the birth model (27),
(31)

70 70

where
(l’]) _ F (i, )
mpy k-1 (M ) = Fy (”k)mk (Mer) s
(i,] T
= Fy () Pklfl) (1) (Fe (i)

+ A () Qe () (A ()"

(i,7)
Ppl,k]|k4 (nk’ nk—l)

(i,j
‘Dplk|k 1(”k’ My 1)

= (hklk—l (e | ey P (1) ‘D;(jljl) (nk—l))

],5’_) (1)

ZZ z i 1 (e I myey)

My My :

XPsy (M-y) (D;(;ljl) (1)

(32)

(2) The GM Update Stage. Suppose that at time k the mixed
and predicted multi-Bernoulli density 7y, (Yy | Z14-;) =

{(FI(cll)k 1’fz(<l|k 1 (X m))}is) s given and each ?;cll)k—l(xk’ ),

i=1,..., My, is composed of GM of the form

ﬁl(cll)k—l (%5 i)

]k\k 1 ()

Z o,gl,fl (33)

XN (xk;m,(jl’,ﬁl (),

(i:7)
Py (m0)).

Then, the multi-Bernoulli approximation of the updated

density (Y | Z14) = {70 PLx (0 mL " U ((uk(zo),
Pux (i M3 2i))}, ez, can be computed as follows:

JO ()
1=, Z g ;(cluf)l () o ()

k= k|k1

_ T (me) ol
(0=t ), B 5 O ) s )6

>

— 7O () )
i’&lzmzk‘“k @, (m) Po (me)

(”k;zk)

Tuk (z) =

2
i=1 _( i) ] (ny.) (, )
1 ( kllk 1 an Z & Ope-1 () PDk(”k))
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JO () )
| x (z) + Milrz(sz 1an Z g ;(fuf 1(”k)PDk(”k)@ (”k;zk)
k \Zk
— 7O () N
= 1- Vk|k 1 X 2t g kluf L () o ()
T () ) (0.j) )
5 (xm,) = Py Y (1= pog (m) @ L (m) A (x5m m (), Pkikj L (m)
Lk A% Tk ]klk l(nk) 1]) ’
1- an Z klk 1 (”k) PDk (nk)
Mk\k—ljl(cli;c—l(nk) “h “ ¢
— 1, 1,
Pux (X i 2.) = Z Z @ (”k;zk)/‘/(xk;mu,i (M zi), P o) (”k))
=1 =1
(34)
where (4) The GM Multitarget State Estimation. Given the GM

@ﬁf’j) (mszg) =N (Zk; Hy () m 1(<|1i) L (),
By () Ry (1) (B ()"
+Hy () Pkik)l (m) (Hy (”k))T)

(U (nk’zk)

—(l)
Kk .
- (ﬁ I(clli () Ppk(nk)@ (”k;lk)>

Tklk-1
Mygr T () 70
-1 )
x Z Z Z =(0) ‘Dklui y (M) Po
i=1 M j=1 1_rk|k—1
-1 (35)
x () @;(:]) (msze) | >

Ky (m) = P, (me) (B ()"
x (Hi () P (me) (i ()"
+By () R () (B (m))")
mfi? () = mi) | (m) + KG2 ()

X (Zk - Hy (ny) m,f{i)_l (”k)) ,

P(I e () = (I - Kf}i) () Hy (nk)) kikj)l () -

(3) The Pruning and Merging Stage. It is the same as the
pruning and merging stage of the GM-CBMeMBer filter [16].

multi-Bernoulli posterior density

T (Y | Z1g) = {(71(;)’51(5) (X ”k))}f’; with

. RO g g
P (1) = Z ‘D;(;’]) (nk)/V(xk;m,i"” (”k)>P1£l’J) (”k))
j=1

(36)

from the method described in Algorithm 1, the GM multitar-
get state estimation can be easily obtained as

J; ;((i) ()

X, = {ig)}zl with x(’) Z Z (D,(j’j) () m}(j’j) (m),
e j=1
i = 1, ceey Tk‘
(37)

Now turn to considering the extension of the GM-MM-
CBMeMBer filter to nonlinear dynamical and observation
models using the EK filtering approximation. Assumptions
B and C are still required, but the dynamic and observation
processes can be relaxed to the nonlinear models

Xk = Gk (Xk—l’wk (”k) ’"k)>
(38)

i = g (Xp Vi (1) s 1) 5

where a, (-, -, ) and u (-, -, 1) are known model-dependent
nonlinear functions, and wy(rn) and v (1) are model-
dependent process and observation noise vectors of known
statistics.

For the EK-GM-MM-CBMeMBer filter, the closed form
expressions for the mixing, prediction, and update of indi-
vidual Gaussian components are approximated by replacing
E (m), A (ny), H(ny), Bi(n) in the corresponding recur-
sive equations (30)-(35) of the GM-MM-CBMeMBer filter
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with the corresponding local linearization of the nonlinear
dynamical and observation models

oy, (xk—1> Wi (”k) > ”k)

EK _
Fk (nk) - an71 xk—lzik—l >
Wi (1,)=0
AFK (n) = 0ay. (X1, Wy (i) , 1)
k k aWk (nk) X =Ky
wi (. )=0
(5% () 1) (39)
ou, (x,,v, (1) ,n
HEK _ Ok Ko Vie (i) > 1y ’
e (m) 16) & X1 =K1
Vi (1m)=0
BEK( ) = Ouy (x4, vie (my) s 1) .
k k ovi.(ny.) Xp 1 =Xy
Vi(1)=0

Note that the unscented Kalman version for the GM-
MM-CBMeMBer filter can be derived by approximating the
mean and covariance of individual Gaussian components
with a set of sigma points and the unscented transform [20].
Because of the space limitation, the details of the UK-GM-
MM-CBMeMBer filter are not presented here.

6. Simulations

6.1. Nonlinear Example Using SMC Implementations. In this
nonlinear example, we evaluate the performance of the
proposed MM-CBMeMBer filter by benchmarking it against
the single-model CBMeMBer filters, the MM-PHD filter, and
the MM-CPHD filter using the SMC implementations.

Consider a two-dimensional scenario with an unknown
and time varying number of the maneuvering targets
observed over the region [-1000, 1000] x [-1000, 1000] (m)
for a period of N = 50 time steps. The sampling interval is
At =1 (s). Each of the targets may move at a nearly constant
velocity or execute a coordinated turn in the surveillance
period. Therefore, the model set designed for this example
can be composed of a constant velocity (CV) model and a
coordinated turn (CT) model with varying turn rate [27]. The
target kinematical state is X, = [X; Xp Ve Vi Sk]T, where
[xx yk]T and [x )'/k]T, respectively, represent the position
and the velocity in x and y coordinates and 9, represents the
turn rate. For the turn rate 9y, let the anticlockwise direction
be positive and the clockwise direction be negative.

The model-dependent dynamics for the individual
maneuvering target is given by the linear-Gaussian model

Freer (% | oo ) = A (X5 By () X1, Qi (1)) -
(40)

Let#n;, = 1 denote the CV model and n;. = 2 the CT model;
then

E (n,=1)= [FCV 0],

F(m,=2) = [FCT (%-1) 1] i

Q (41)
2
Qulm =1 = m=1[? o]
2
o1, (M =2)Q
=2) = 1w \"*k
Qe =2) [ Aoy, (g = 2)]
with
1 At 0 O
0100
Fev=10 0 1 at|’
00 01
r ) At sin 9, 1 - Atcos9_q ]
9 9
0 Atcos9_, 0 —Atsind_,
FCT (19](71) = . >
1 - Atcosd_, Atsin9;_,
= =
L0 Atsin9_, 0  Atcosd_,
(At AP ]
— — 0 0
4 2
AP
- A0 0
Q= 4 A3 |
o o A ar
4 2
3
0 o A ap
L 2 J
(42)

where o0,(1;,) is the level of the power spectral density of the
process noise for model 7. In this example, they are given
by o, = 1) = 0.1 (m/s?), op,(m = 2) =02 (m/s?),
0y =2) = 1x 1073 (rad/s%).

The Markovian model transition probability matrix is
taken as

0.8 0.2]

(Pagiy (gl )] = [0.2 08 (43)

At time k, the range p, and bearing ¢, measurements
of the targets are generated by a sensor located at [0 O]T.
The measurement noise is independent and identically dis-
tributed (IID) zero-mean Gaussian white noise with covari-
ance matrix R, = diag (O’ﬁ 0;), where diag(-) denotes the
diagonal matrix, and o, and o, are, respectively, standard
deviations (STDs) of the range and bearing measurements.

In this example, they are taken as g, = 10 (m) and
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0, = 0.01 (rad). The single-measurement single-target likeli-
hood density is

Ik (Zk | Yk) =N 2 Ve | Re |- (44)

The detection probability and the survival probability
are, respectively, taken as pp,(x;,7) = pp = 0.95 and
Psk(Xx_1-1_1) = ps = 0.95 in this example.

The clutter is modeled as a Poisson RFS with the intensity
k(z) = Ao fex(zi). In this example, we take A, = 20 and
Sfex(:) = %(-), where %(-) denotes the density of the uniform
distribution over the observation region.

Figure 1 shows the true trajectories for the maneuvering
targets and sensor location.

In Figure 1, “o” denotes the locations at which targets are
born and “0” denotes the locations at which targets die. Target
lisbornatlsand diesat 30 s. It first moves at a nearly constant
velocity from the first second to the 15th second and then
executes a coordinated turn in the anticlockwise direction
from the 16th second to the 30th second. Target 2 is born
at 1s and dies at 35s. It first executes a coordinated turn in
the anticlockwise direction from the first second to the 20th
second and then moves at a nearly constant velocity from the
21st second to the 35th second. Target 3 is born at 10 s and dies
at42s. It first executes a coordinated turn in the anticlockwise
direction from the 10th second to the 30th second and then
moves at a nearly constant velocity from the 31st second to the
42nd second. Target 4 is born at 20 s and dies at 50 s. It first
moves at a nearly constant velocity from the 20th second to
the 30th second and then executes a coordinated turn in the
clockwise direction from the 31st second to the 50th second.
The motions of the targets are summarized in Table 1.

The birth process is a multi-Bernoulli RFS with density
(Y = {(r&, pg)k(xk, nk))}le, where rglz = 0.04, rﬁl =
r) = 0.02, pi (% 1) = B (m) A (x5 mY,, PY)) with

m{) = [-600 0 800 0 0]",

m?) = [-650 0 -800 0 0]",

(45)
m{ = [400 0 -400 0 0]",
P} = PY) = P} = diag (400 400 400 400 0.01)
and the distribution of the model births
[h9, ()] = [0.5 0.5]. (46)

For the purpose of comparison, we estimate the num-
ber and states of the maneuvering targets using the pro-
posed SMC-MM-CBMeMBer filter, the CV model SMC-
CBMeMBer filter, the CT model SMC-CBMeMBer filter,
the SMC-MM-PHD filter, and the SMC-MM-CPHD filter,
respectively. At each time step in the SMC implementations
of the CBMeMBer-based filters, a maximum of L, = 1000
and minimum of L,;, = 300 particles per hypothesized
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FIGURE 1: The true trajectories for the maneuvering targets and
sensor location.

TaBLE 1: The motions of the targets.

Born Die

time time CV motion CT motion
Target 1 1s 30s 1s-15s 16 s-30 s, anticlockwise
Target2  1s 35s 21s-35s  1s-20s, anticlockwise
Target3 10s 425 31s-42s 10s-30s, anticlockwise
Target4 20s 50s 20s-30s 31s5-50s, clockwise

track are imposed, and pruning of hypothesized tracks is
performed with a threshold of 7}, .qo1q = 0-001. At each time
step in the SMC implementations of the PHD-based filters,
1000 particles are used to represent one target and K-means
method [14] is used to cluster the resampled particles to

extract the multitarget states. The proposal densities oc,(j)(nk |

1) ﬂ,(;)(nk), q,(c’)(xk | X,_1> M Z5), and bIE')(xk | n, Zy)
in (16) and (18) are, respectively, taken as hk|k,1(nk | 1e_q),
hﬁ)k(nk), Sieeer (X | Xg_1, 1) and ,/l/(xk;m(ri’)lc, PIE'])() We now
conduct 500 Monte Carlo (MC) simulation experiments
on the same clutter intensity and target trajectories, but
with independently generated clutter and target-generated
measurements in each trial.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 2, respectively.

Figures 2(a)-2(e) demonstrate that the target number
estimates from the SMC-MM-PHD, SMC-MM-CPHD, and
SMC-MM-CBMeMBer filters converge to the ground truth,
whereas the CV model SMC-CBMeMBer and CT model
SMC-CBMeMBer filters produce significant bias in esti-
mating the target number. This is because the SMC-MM-
PHD, SMC-MM-CPHD, and SMC-MM-CBMeMBer filters
can effectively capture the model switching property of the
maneuvering targets, so their performance is significantly
better than that of the two single-model SMC-CBMeMBer
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FIGURE 2: The 500 MC run averages of cardinality statistics versus time for the (a) CV model SMC-CBMeMBer filter, (b) CT model SMC-
CBMeMBer filter, (c¢) SMC-MM-PHD filter, (d) SMC-MM-CPHD filter, and (¢) SMC-MM-CBMeMBer filter.
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filters, which show poor adaptation to target maneuvers and
yield larger estimation errors.

Moreover, as plotted in Figures 2(c)-2(e), the STD of
the cardinality distribution from the SMC-MM-CBMeMBer
filter is lower than that of the SMC-MM-PHD filter, but larger
than that of SMC-MM-CPHD filter. In addition, the STDs
of the cardinality distributions from the three MM-based
filters increase in different degrees at the instances when
the maneuver occurs (i.e., 16 (s), 21 (s), and 31 (s)). The
STD plots of the SMC-MM-PHD and SMC-MM-CPHD
filters seem to fluctuate more obviously than the SMC-
MM-CBMeMBer filter. This phenomenon indicates that the
performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at the maneuver instances than that
of the SMC-MM-PHD and SMC-MM-CPHD filters.

The optimal subpattern assignment (OSPA) metric [28],
which can jointly capture differences in cardinality and indi-
vidual elements between two finite sets, is used to evaluate
the performance of the five methods. Given the actual and
estimated multitarget state sets X, = {xk }Tk1 and X, =

{)A(,(C }l > the OSPA metric of order p = 2 with cut-off ¢
between the two sets is defined by

OSPAY) (X1 Xy

< (;21%1} Ymin (e ! L)
1/2
+¢* (T = T) ) )

if T, < Tj and OSPAY) (X, X,,) = OSPAY) (X, X, ) if Ty >
Tk. ka denotes the set of permutationson {1, 2,..., Tk}. -1,
denotes the 2-norm. In this example, we take ¢ = 100 (m).

The MC averages of the OSPA metric for the target
position estimates, derived by the five methods, are shown in
Figure 3.

The OSPA metric is composed of two components each
separately accounting for “localization” and “cardinality”
errors. This results in high peaks in OSPA metric at the
instances where the estimated number is incorrect. Figure 3
shows that (1) both the single-model SMC-CBMeMBer filters
perform significantly worse than the other MM-based filters
because of the large cardinality errors produced by the two
filters as seen in Figures 2(a) and 2(b); (2) although the
SMC-MM-CPHD filter can estimate the target number most
accurately, the OSPA metric of the SMC-MM-CBMeMBer
filter is smaller than that of the SMC-MM-CPHD filter, which
is in turn smaller than that of the SMC-MM-PHD filter.
This phenomenon indicates that the SMC-MM-CBMeMBer
filter outperforms the SMC-MM-CPHD (and hence SMC-
MM-PHD) filter in jointly estimating the multitarget number
and states. A reason for this is that the additional errors
could be introduced in the clustering processes of the SMC-
MM-PHD and SMC-MM-CPHD filters to extract state esti-
mates from the particle population; (3) the OSPA plots of
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FIGURE 3: The 500 MC run averages of OSPA against time.

the three MM-based filters in Figure 3 fluctuate against time
due to the varying target number, the target maneuvers,
and clutter. However, increase of the OSPA from the SMC-
MM-CBMeMBer filter seems to be smallest at the maneuver
instances (i.e., 16 (s), 21 (s), and 31 (s)) among the three
MM-based methods. This phenomenon also indicates that
the performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at the maneuver instances than that of
the SMC-MM-PHD and SMC-MM-CPHD filters.

For comparing the overall performance of the three MM-
based filters, the 500 MC trial averages of the OSPA distance
(time-averaged over the duration of the scenario) for the
three MM-based filters are shown in Table 2 against the
clutter rate from A, = 20 to A, = 100. The result of
time-averaging can be viewed as a broad indication of filter
performance, although the average is likely to be scenario
dependent.

Table 2 shows that the OSPA distances of the three MM-
based filters increase with higher A ;. It reflects that the
performance of the three MM-based algorithms degrades by
different degrees as the A_; increases. Among the three MM-
based algorithms, the SMC-MM-PHD filter always works
the worst. The SMC-MM-CBMeMBer filter outperforms the
SMC-MM-CPHD filter when A is relatively lower (A ; <
60). However, as the A, increases, the OSPA distance of
SMC-MM-CBMeMBer filter increases more rapidly than that
of the SMC-MM-CPHD filter. Therefore, as A_; continues
to increase until it reaches A1, = 80, the OSPA distance of
SMC-MM-CBMeMBer filter is very close to that of the SMC-
MM-CPHD filter. When A is relatively higher (i.e., A.; =
80), the SMC-MM-CPHD filter outperforms the SMC-MM-
CBMeMBer filter. A possible reason for this is that, compared
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TaBLE 2: Time-averaged OSPA distance () in various A ;.
Aoy = 20 Aoy = 40 Aoy = 60 Ay = 80 Aoy = 100
SMC-MM-PHD filter 38.3 48.2 60.5 74.3 88.1
SMC-MM-CPHD filter 32.8 35.9 394 43.4 47.8
SMC-MM-CBMeMBer filter 25.6 31.3 374 432 48.9

with the SMC-MM-CBMeMBer filter, the advantage of the
target number estimate for the SMC-MM-CPHD filter is
more obvious as the A increases and it finally leads that the
OSPA distance of the SMC-MM-CPHD filter is smaller than
that of the SMC-MM-CBMeMBer filter when A is relatively
higher (i.e., A ; = 80).

6.2. Linear-Gaussian Example Using GM Implementations. In
this linear-Gaussian example, we evaluate the performance
of the proposed MM-CBMeMBer filter by benchmarking it
against the single-model CBMeMBer filters, the MM-PHD
filter, and the MM-CPHD filter using the GM implementa-
tions.

The simulation scenario and true trajectories for the
maneuvering targets are the same as those of Example
1. The target kinematical state now turns into X, =

[x XK Ve )'/k]T. The model set for this example is designed
as follows. Model n, = 1 is a CV model with linear-
Gaussian dynamics given by 4/ (x;; FeyXy_;» Uév,wQ); models
nm, = 2,3,4,5 are, respectively, CT models with turn rates
of 9 = /30, -m/30,7/20,7t/15 (rad/s) with linear-Gaussian
dynamics given by /' (x;; For(9)x_;, aéT)wQ). In this exam-
ple, oy, and o¢r,, are given by ocy, = 0.1 (m/s%), o¢ry, =
0.2 (m/s’).

The Markovian model transition probability matrix now
turns into

0.6 0.1 0.1 0.1 0.1
0.1 0.6 0.1 0.1 0.1
(e (g [ _y)] = [ 0.1 0.1 0.6 0.1 0.1f.  (48)
0.1 0.1 0.1 0.6 0.1
0.1 0.1 0.1 0.1 0.6

The x-position and y-position measurements z, =
T .
[x yk] of the maneuvering targets are generated by the
linear-Gaussian single-measurement single-target likelihood
density given by /¥ (z;; Hix,, R) with

1000
Hk:[o 01 0] (49)

and R, = diag (0)2( 0_}2})' In this example, they are taken as
o, = 0, = 8 (m), and the kinematical state independent
survival and detection probabilities are taken as pp () =

pD =0.95and ps’k(nk_l) = pS = 0.95.

The experiment settings of the clutter and birth model are

also the same as those of Example 1 except that the mg’)k, PIEf,)(,
i=1,2,3,and [h(r’)k(nk)] turn into
(1) T
m{!) = [-600 0 800 0],
m?) = [-650 0 -800 0]',
m® = [400 0 —400 0]", (50)

Pé,lk) - pr(’zk) - pg = diag (400 400 400 400),
[hg")k (nk)] =[02 0.2 02 0.2 02].

For the purpose of comparison, we estimate the number
and states of the maneuvering targets using the proposed
GM-MM-CBMeMBer filter, the CV model GM-CBMeMBer
filter, the CT model GM-CBMeMBer filter with turn rate
of 9 = /20 (rad/s), (this turn rate seems to be most
suitable for the scenario among the above four turn rates),
the GM-MM-PHD filter, and the GM-MM-CPHD filter,
respectively. At each time step in the GM implementations
of the CBMeMBer-based filters, pruning of hypothesized
tracks is performed with a threshold of 7y .g,0iq = 0.001. In
addition, the pruning and merging of Gaussian components
are performed for each hypothesized track using a weight
threshold of 107, a merging threshold of 4 (m), and a
maximum of J,, = 100 components, which are also used
in the GM implementations of the PHD-based filters.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 4, respectively.

Similar to the SMC implementations, Figures 4(a)-4(e)
demonstrate that the GM implementations of the three MM-
based filters are unbiased in the target number estimates,
whereas the GM implementations of the two single-model
GM-CBMeMBer filters are significantly biased. Moreover,
the GM-MM-CBMeMBer filter has a lower STD of the
estimated cardinality than the GM-MM-PHD filter but has a
larger STD than the GM-MM-CPHD filter. Again, The STD
plots of the GM-MM-PHD and GM-MM-CPHD filters seem
to fluctuate more obviously than the GM-MM-CBMeMBer
filter at the maneuver instances (i.e., 16 (s), 21 (s), and 31 (s)).

The MC averages of the OSPA metric for the target
position estimates, derived by the five methods, are shown in
Figure 5.

In contrast to the SMC case, Figure 5 shows that (1)
the rather poor performance of the two single-model GM-
CBMeMBer filters can be expected as the direct results of
their significant cardinality biase as seen in Figures 4(a) and
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TaBLE 3: Time-averaged OSPA distance (1) in various A .
Aoy = 20 Aoy = 40 Aoy = 60 Ay = 80 Aoy = 100
GM-MM-PHD filter 22.8 28.2 34.5 40.9 471
GM-MM-CPHD filter 20.0 24.8 30.3 36.1 41.9
GM-MM-CBMeMBer filter 22.6 277 341 40.6 46.7
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FIGURE 5: The 500 MC run averages of OSPA against time.

4(b); (2) the OSPA metric of the GM-MM-CBMeMBer filter
is similar to that of the GM-MM-PHD filter but is larger
than that of the GM-MM-CPHD filter. This is because that,
like the MM-CBMeMBer filter, the GM implementations
of the MM-PHD and MM-CPHD filters also allow state
estimates to be extracted from the posterior intensity in
a much more efficient and reliable manner than particle
clustering in the SMC-based approach. As a result, the GM-
MM-CPHD filter, which has the lowest STD of the estimated
cardinality, performs best among the three MM-based filters.
Although the GM-MM-CBMeMBer filter has a lower STD of
the estimated cardinality than the GM-MM-PHD filter, the
performance of the two filters is similar. A reason for this is
that the GM-MM-PHD filter may have more of an advantage
than the GM-MM-CBMeMBer filter in the relatively high
signal to noise ratio (SNR) of this scenario.

Although the GM-MM-CPHD filter outperforms the
proposed GM-MM-CBMeMBer filter, it can be only used
in the linear-Gaussian condition. In the nonlinear non-
Gaussian conditions, both the MM-CPHD filter and MM-
CBMeMBer filter must be implemented by the SMC method.
In this case, the GM-MM-CBMeMBer filter outperforms
the GM-MM-CPHD filter significantly, which is shown in
Section 6.1.

The 500 MC trial averages of the OSPA distance (time-
averaged over the duration of the scenario) for the three

MM-based filters are shown in Table 3 against the clutter rate
from A ; =20to A, = 100.

Similar to the SMC implementations, Table 3 shows that
the OSPA distances of the GM implementations of the three
MM-based filters increase with higher A_;. However, in
various A_j, the GM-MM-CPHD filter always has the best
performance among the three MM-based algorithms, and the
GM-MM-CBMeMBer filter has the similar performance with
the GM-MM-PHD filter.

7. Conclusions and Future Work

An MM-CBMeMBer filter, which is a multiple-model exten-
sion to the CBMeMBer filter, is proposed for tracking
multiple maneuvering targets in clutter. The SMC and GM
implementations of the proposed filter are, respectively,
presented for generic models and for linear-Gaussian models.
Then, the EK and UK filtering approximations for the GM-
MM-CBMeMBer filter in nonlinear condition are described
briefly. Simulation results show that (1) the proposed MM-
CBMeMBer filter significantly outperforms the single-model
CBMeMBer filters in tracking multiple maneuvering tar-
gets; (2) under relatively low clutter density, the SMC-
MM-CBMeMBer filter outperforms the SMC-MM-PHD and
SMC-MM-CPHD filters; (3) the performance of the GM-
MM-CBMeMBer filter is similar to that of the GM-MM-PHD
filter and hence is inferior to that of GM-MM-CPHD filter.

The future work is focused on the following three aspects.
First, the track labeling problem in the proposed approach
needs to be considered. Second, practical data need to be used
for the performance evaluation of the proposed approaches.
Third, the multiple-sensor versions of the CBMeMBer and
MM-CBMeMBer filters need to be proposed for improving
the performance of the single-sensor CBMeMBer and MM-
CBMeMBer filters.
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Mobile online social network (mOSN) is a burgeoning research area. However, most existing works referring to mOSNs deal with
static network structures and simply encode whether relationships among entities exist or not. In contrast, relationships in signed
mOSNs can be positive or negative and may be changed with time and locations. Applying certain global characteristics of social
balance, in this paper, we aim to infer the unknown relationships in dynamic signed mOSNs and formulate this sign inference
problem as a low-rank matrix estimation problem. Specifically, motivated by the Singular Value Thresholding (SVT) algorithm,
a compact dictionary is selected from the observed dataset. Based on this compact dictionary, the relationships in the dynamic
signed mOSNS are estimated via solving the formulated problem. Furthermore, the estimation accuracy is improved by employing

a dictionary self-updating mechanism.

1. Introduction

Over the past few years, a number of mobile applications
that allow users to enjoy networking have emerged. Corre-
spondingly, there has been a proliferation in mobile online
social networks (mOSNs). With the ubiquitous use of mobile
devices and a rapid shift of technology, it is worthy to
investigate the mOSNs from a privacy or security standpoint
[1, 2]. The related applications are also extensive such as
authentication and recommendation online. In this context,
researches about mobile online networks where two opposite
kinds of relationships can occur have become common;
people not only form links to indicate friendship, support, or
approval but signify disapproval or distrust of the opinions
of others. It is natural to model such networks as signed
networks, where the sign of a link weight can be either
positive or negative, representing the status of a relation-
ship. Analogous to traditional social networks analysis, the
relationships in signed mOSNs can be represented as a
graph, where nodes denote the objects (e.g., people or mobile
terminals) and signed edges denote the relationships or links
(e.g., a communication made between two people). The link
structure of the resulting graph can be exploited to detect

underlying groups of objects, predict missing links, and
handle many other tasks [3-17].

One of the most fundamental theories that are applicable
to signed social networks is social structural balance [5, 6, 16].
Structural balance corresponds to the possibility of exactly
dividing the signed graph into two adversary subcommu-
nities such that all edges within each subcommunity have
positive weights while all edges joining agents of different
communities have negative weights. Obviously, graphs of
nonnegative weights are a special case of structural balance,
in which one of the two subcommunities is empty. Since the
assumption that structural balance exists in a real signed net-
work might be too extreme, a concept called weak structural
balance further generalizes structural balance by discussing
the multiadversary-subcommunities partition of the signed
graph [7].

Structural balance and weak structural balance have been
shown to be valid to analyze signed networks. For instance,
the sign inference problem, which aims to infer the unknown
relationship between two objects, can be solved by mining
balance information of signed networks from local and global
perspectives [8-10, 12-17]. With the help of the result inferred,
it is possible to predict the relationships so that legitimate



participants can eliminate networking security vulnerabil-
ities. Nevertheless, most of these state-of-the-art methods
for sign inference problem are mainly considered from a
static point of view, and dynamic scenarios are rarely taken
into account. Therefore, it is necessary to establish a rational
dynamic network model to infer the sign of relationships.

Actually, there exist several inherent qualities of mOSNs
that are challenging to reliably sense the global states of
relationships for the large networks in practice [2]. First,
in contrast to traditional social networks, the observations
of relationships in mOSNs are closely associated with the
geographical environment, as well as the relative locations
and signal coverage of mobile terminals/network access
points. Due to these spatial constraints, such observations,
which seem linearly related to the global data of relationships
(i.e., linearly sampled from the global data), are bound to
miss a significant number of values. Consequently, they are
not sufficient to unambiguously infer the true status by the
traditional solutions of linear-inverse problem in general.
Second, in mOSNs different relations between entities may
appear at different times. Accordingly, observations of the
networks vary during a time period long enough. These
dynamic interactions over time essentially introduce time
dimension to the problem of mining, the potential rela-
tionship structures. Third, despite maintaining the dynamic
performance, the underlying relationships in reality always
display some “redundancy” attributed to the gradual/periodic
variation [3], the relative stability, and so forth. Owing
to the aforementioned characteristics of mOSNs, the mass
redundant data generated in variant scenarios will result in
resource challenge. Hence, although many observers collect
features for at least part of the networks, there are still serious
impediments to reliable large-scale or network-wide data
processing. After these aspects of mOSNs are learned, it is
reasonable to organize the entire relationship dataset in the
form of tensor coincident with its spatiotemporal structure.
Meanwhile, efficient relationship inference approaches asso-
ciated with the tensor model are required to overcome the
obstacles of this data processing.

The aim of this paper is to develop algorithms for the
sign inference in signed mOSNs in global and spatiotemporal
evolvement perspectives. In particular, we assume that the
signed mOSN possesses an underlying dynamic weakly
balanced complete network structure. Suppose that we are
given an incomplete networking observation tensor (or 3-
dimensional array), which consists of the adjacency matrices
corresponding to the snapshots of the underlying dynamic
weakly balanced complete network at times Ty, Ty +1, ..., T+
T - 1,T, + T. Then the sign inference task is to estimate the
sign patterns of all possible links in the dynamic complete
network at time T, + T. Utilizing the low-rank property
of the weak structural balance and the features extracted
from the observation tensor, we consider the inference via
the incomplete relationship data as an underdetermined
linear-inverse problem and develop an approach via a low-
rank matrix reconstruction to solve this problem. Moreover,
we regard the observation tensor as the training data set
and choose a dictionary from it to improve the validity
and efficiency of our inference approach. The dictionary
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selection method is designed by reducing the size of an
overcomplete feature set extracted from the training dataset.
Also, a dictionary self-updating mechanism is introduced to
improve accuracy of the inference.

Here are the key contributions we make in this paper.

(i) A dictionary selection approach based on group spar-
sity has been designed to generate a set containing
minimal sizes of features to increase computational
efficiency. Specifically, the observation tensor is con-
sidered to be the raw materials for feature extraction.

(ii) The sign inference problem referring to the weakly
balanced mOSNs is formulated as a low-rank matrix
reconstruction from the selected dictionary. Under
certain mild conditions, a low-rank matrix recon-
struction algorithm is applied to solve the sign infer-
ence problem, and it turns out to be much more accu-
rate and efficient than other inference methods in the
literature. A dictionary self-updating mechanism is
also introduced to adjust the dynamic characteristics
of the network and improve the sensing accuracy.

The rest of this paper is organized as follows. In Section 2,
we build the model of the dynamic signed network. Some
basics of balance theory are also reviewed for the sake of
integrality. In Section 3, we first extract the initial candidate
feature pool from the observation tensor and propose a
dictionary selection approach. Then we propose our low-rank
matrix reconstruction method to solve the sign inference
problem. The implementation details of the dictionary self-
updating procedure are also proposed. In Section 4, we con-
duct numerical experiments which demonstrate the validity
of our network model for sign inference and justify the
performance of our methods as well. Finally, we present our
conclusions in Section 5.

2. Background and Preliminaries

2.1. Dynamic Signed Network Structure. Formally, a dynamic
undirected signed network is represented as a dynamic graph
€ = (7, &), where 7 is the vertex set of size n and & is the
edge set varying over time. A network snapshot denoted by
8, = (7, &,, AV) presents the connections of & observed at
time . Here, &, is the subset of & and A® € {~1,0,1}"" is
the adjacency matrix of &, with the signed weights

1  ifiand j have positive relationship,

;i if i and j have negattive relationship,

0 if relationship between i and j is unknown.

@

Particularly, for each time t, a zero entry in A® is
treated as an unknown relationship based on the acknowl-
edgement that some potential attitudes exist between any
two entities, even if the relationship itself is not observed.
From this viewpoint, we can assume that there exists
an underlying dynamics complete signed network €, in
which only some partial relationships are observed at times
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_______

()

(b)

FIGURE 1: [llustration of the adjacency tensor, the cube units symbolize the data of relationships: (a) the adjacency tensor of the observed
network and (b) the adjacency tensor of the underlying complete network.

Ty, Ty +1,...,Ty + T — 1, respectively. Correspondingly, we
let of € {-1, 1} denote the three-dimensional tensor that
contains relationship information between all pairs of entities
in €. Thus, the observation tensor & consisting of a series of
network snapshots can be represented as

_‘ it .) .) Q)
o. .. = a(f) — <{‘Qiz,],t (l J t) € )

it = @ .
b Y 0, otherwise,

where Q is the index set of the observed entries. Let &,
be the orthogonal projection operator onto the span of
tensors vanishing outside Q) so that the (4, j, #)th component
of () is equal to X;;, when (i, j,t) € Q and zero

otherwise. Then we have QDQ(E) = ¢ (shown in Figure 1)

and P, (K(t)) = A" for each time slice ¢, where (), Q, = 0
and | J, Q, = Q.

While the above kind of signed networks is called homo-
geneous, that is, relationships of the networks are between
the same kinds of entities, a signed network can also be
heterogeneous. In a heterogeneous signed network, there can
be more than one kind of entities, and relationships between
same or different entities can be positive and negative, such as
YouTube with two kinds of entities—users and videos. More-
over, this three-dimensional network adjacency tensor can
increase dimensions (e.g., spatial dimension, etc.) to adapt
to a wider range of scenarios. In this paper, we mainly focus
our attention on three-dimensional homogeneous signed
networks.

2.2. Weak Structural Balance. Structural balance theory was
first formulated by Heider [18] in order to understand the
structure in a network of individuals whose mutual relation-
ships are characterized in terms of friendship and hostility.
Formally, a triad is considered balanced if the product of
the signs in the triad is positive; that is, it contains an
even number of negative edges. This is in agreement with
principles such as “a friend of my friend is more likely to be
my friend” and “an enemy of my friend is more likely to be my

enemy” [6]. The configurations of balanced and unbalanced
triads are shown in Figure 2. One possible weakness of this
theory is that the defined balance relationships might be
too strict. In this perspective, by extending the fundamental
beliefs in real networks, weak structural balance is proposed
as a way of eliminating the assumption that “the enemy of
my enemy is my friend” [7]. Equivalently, the case that “the
enemy of my enemy is my enemy” is permitted. Therefore,
the local structure of weak balance posits that only triads
with exactly two positive edges are implausible and that all
other kinds of triads should be permissible (also illustrated
in Figure 2).

The formal definition of weakly balanced networks is as
follows.

Definition 1 (weakly balanced networks [7]). A (possibly
incomplete) network is weakly balanced if and only if it is
possible to obtain a weakly balanced complete network by
filling the missing edges in its adjacency matrix. Furthermore,
in terms of patterns of global structure, a complete network
is weakly balanced if and only if the vertex set can be
divided into r clusters, » > 1, such that all the edges within
clusters are positive and all the edges between clusters are
negative.

There exists the literature discussing the approaches of
clustering and sign prediction with respect to signed net-
works. Ideas derived from local balance of signed networks
can be successfully used to yield algorithms for sign inference
[9,10]. Meanwhile, several works analyze the social interrela-
tions from global perspective of structural balance [8, 13-15,
17]. In particular, it is shown in [8] that the adjacency matrix
of weakly balanced networks has a “low-rank” structure, and
the sign prediction methods based on low-rank modeling
were proposed as well.

Theorem 2 (low-rank structure of signed networks [8]). The
adjacency matrix A € {1,-1Y"" of a complete r-weakly
balanced network has rank 1, if v < 2, and has rank r for all
r>2.
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FIGURE 2: Signed undirected connectivity configurations mentioned in Section 2.2: (i) (a) and (b) are balanced triads, (c) and (d) are

unbalanced triads, and (ii) (a), (b), and (d) are weakly balanced triads.

Actually, since the global viewpoint of weak balance
stated in Definition 1 obeys clustering characteristics pre-

sented in Theorem 2, for A, there exists an invertible matrix
P such that

where 1, on the primary diagonal is an n;-order square
matrix whose entries are all 1 (Z::1 n; = n) and the other

entries of PAP” are all —1. The n,-order square matrix
indicates the ith cluster.

Notation. For X € R™", let the mixed norm |X|,,

m |l

Z:’il [IX;.|l,; the soft-thresholding operator &.(-) : X
R™" Y € R™" is also defined obeying
0 if | X, <7
Y, = 4
" (1 S ) X;. otherwise, )
%1,

where X; and Y;. denote the ith row of X and Y, respectively
[15]. The invertible vectorization is denoted by vec(:)
Rmxn — Rmn‘

Let o?lllzlL(RmX”) be the class of convex functions with
Lipschitz gradient [19]. A continuous differentiable function
f(Y) belongs to cS’L’i(Rmx") for some 0 < u < L if for any
X, Y € R™" we have both of the following:

IVf (X) - VFf (V)| < LIX - Yl -
5
(Vf (X) - Vf (Y), X -Y) > ulX - Y|

3. Sign Inference via Dictionary Learning

In this section, we focus on a solution of the sign inference
to estimate connection statuses via dictionary learning. As
the preparation, we propose a large-scale dictionary selection
method to generate the dictionary for inferring. Assume that

we are given a (usually incomplete) network observation
tensor &/ sampled from an underlying dynamic weakly
balanced complete network € with the adjacency tensor <.
As the description in Section 1, it is reasonable to suppose that
most relationships between entities have their own stability in
along period of time in practice and subsequently the change
in the scale of each subcommunity is limited. Apparently,
this implies the strong dependence retained among the
observed data. Combining these assumptions with the low-
rank characteristic of weakly balanced complete networks, we
extract an initial feature pool from the observation tensor &
and propose a dictionary selection method to compress the
scale of the feature pool in Section 3.1. The corresponding
algorithm is presented, respectively, in Section 3.2. With the
trained dictionary, we propose our sign inference approach
and dictionary updating mechanism in Section 3.3, which
are also inspired by the low-rank characteristic of weakly
balanced complete networks.

The method we propose to handle the dictionary selec-
tion is motivated by the Singular Value Thresholding (SVT)
algorithm, which is a simple and efficient algorithm for
nuclear norm minimization problems proposed by Cai et
al. [20]. Our basic idea is to obtain the optimal solution of
the trace norm minimization problem by solving its dual
problem whose objective function can be shown to be con-
tinuously differentiable with Lipschitz continuous gradient.
Specifically, we prove that the optimal solution of the primary
problem can be readily obtained from the optimal solution
of the dual problem. We first provide a brief review of the
standard SV'T algorithm.

Considering the problem

. 1
min  7X]. + JIXI;
(6)

subject to P (X) = Py (M),

Cai et al. [20] give a theoretical analysis that, when 7 — o0,
the optimal solution of problem (6) converges to that of the
standard problem:

min X,
@)

subject to Py (X) = Py (M).
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Given that T > 0, the SVT algorithm operates as a linear
Bregman iteration scheme. Furthermore, by defining the
Lagrangian function of problem (6) as

SO = 7lXI. + SIXE + (Y20 M-X),  (8)

where Y is the Lagrangian dual variable, we can derive its dual
function as

fY) = inf (X,Y). (9)

Cai et al. show that SVT indeed optimizes the dual function
f(Y) via the gradient ascent method.

3.1. Large-Scale Dictionary Selection. We address how to
select the dictionary given an initial candidate feature pool
in this subsection. To this end, we first extract an initial
candidate feature pool from &/, which is sampled from &/.

— —(t
Since & consists of the adjacency matrices A (t =T, T, +
1,...,T, + T — 1), the matrix A? in o/ can retain the

information of A" more or less. Thus, we reserve the group
of AY with relatively higher sample rate to extract features.
We use singular value decomposition (SVD) to express each
A as a series of orthogonal bases in Hilbert space; that is,

Tt Tt
t B.® (. O\ ) 1(t
PRI S CNCTNCIC SN RS
r=1 r=1

()

where uf) and vﬁt) are singular vectors of A™ with eigenvalue

oﬁt), 1 < r < r,. Without loss of generality, we sort O'Y) > ogt) >
cee 2 aif) the singular values of A in descending order, and
set
t t
L, =r —arg max (of) > 0521). (11)
r=1,.,r;—1

Then, due to the low-rank property of the weakly balanced
complete adjacency matrix, we keep the group of Uit) cor-

responding to the L, largest aft) as the features. By this
procedure, we extract an initial candidate feature pool as
(UY:T, <t <Ty+T-1,1<r < L,}, where each matrix
Uf) € R™" denotes a feature. Equivalently, we can discuss
Q= {VCC(UY)) : Ty <t <Ty+T-1,1<r < L,}and formthe
matrix @ = [vec(U,), vec(U,),...,vec(Ug)] for convenience,
where vec(U;) = vec(Uﬁt)), 1<r<L,1<s<8=),L,
and Ty <t <Ty+T-1.

Due to massive data of the initial feature pool @, we
hope to find an optimal subset to form the dictionary ¥ =
[vec(U,), vec(U,),...,vec(Ug)] such that the set @ can be
well reconstructed by ¥ and the size of ¥ is as small as
possible. To achieve this goal, we select ¥ such that the
rest of the features in @ can be well reconstructed using
it. Analogous to the optimization problem in [21], the basic
problem is formulated as follows:

min 11X,
x (12)

subject to  OX = O,

where ® € RS (N = #%), X € R¥S, and |X||,, =

Zis=1 [IX..1l,. Apparently, [ X]|,, enforces the group sparsity on
the variable X and the optimal solution usually contains zero
rows. This means that not all features in @ are necessary to be
selected to reconstruct any data sample.

Motivated by SVT, we have the equivalent problem of (12)
as follows:

J
i X, + =X
min 1X1l,,1 2I| I

(13)
subject to  OX = O.
The Lagrangian function of problem (13) is defined as
L) = 1Kl + I+ (LO-0X),  (14)
and its dual function is
f) =ifZXY). (15)

We first examine the properties of the dual function f(Y) and
then show how to achieve the optimal solution of the problem
(13) from its dual optimum directly. As the mixed norm || X, ;
is not differentiable, it is difficult to optimize the dual function
f(Y) directly. However, we can obtain a useful property of the
dual function f(Y) as follows.

Theorem 3. For all T > 0, the dual function f(Y) is
continuously differentiable with Lipschitz continuous gradient

at most M. Furthermore, the primal optimal X of the problem
(13) is given by

X=2, (oY), (16)
when the dual optimal Y of the problem (13) is obtained.
The proof of Theorem 3 is based on the following results.

Lemma 4. Foreacht > 0andY € R™", one has
. 1
2, (Y) = argmint|X|,, + 5||x - Y|} (17)

As a matter of fact, considering the following optimiza-
tion problem:

. 1 2
minT |x| + E(x -y), (18)

it is easy to show that the unique solution admits a closed
form called the soft-thresholding operator, following a termi-
nology introduced by Donoho and Johnstone [22]; it can be
written that

0 if |x| <7,

y= <1 - |_T|> x otherwise. (19)
X

Thus, from a generalized view, one has Lemma 4.
Also, the following result can be deduced based on the
properties of Moreau-Yosida regularization [23].



Lemma 5. Forany X, Y € R™", one has

2. X) - 2. (D} < (2, X) -2, (Y),X-Y). (20)

It follows that 2 .(Y) is globally Lipschitz continuous with
modulus 1.

Proof of Theorem 3. Since

f(Y) = n;(fz (X,Y)
. 1
= igf (TXI, + S IXI + (¥, @ - 0X))

. L o2 T
_ ll)l(f(T"X"z)l + JIXI + (Y, @) - (07, x))

1 . (21)
= ir)%f <T||X||2,1 + EHX - (DTY“F>

1
+ (1,@) = o[
= g(Y) + (Y, ) - %"CDTYH;

and g(Y) is the Moreau-Yosida regularization of the mixed
norm | - |, using the well-known properties of Moreau-
Yosida regularization [23], we get the results that g(Y) is a
globally continuously differentiable convex function. More-
over, Vg(Y) = CD((DTY—QT((DTY)) and Vg(Y) is continuously
differentiable with Lipschitz continuous gradient p; that is, for
any Y., Y, € RN,

[v9 (Y)) - Vg (o)l < @7 (v, - )

< p|(Y, = Y,)|

(22)

where p = supy7; _; zegnss |®”Z| . Then the gradient of f(Y)
can be obtained as follows:

VF(Y)=Vg(Y)+® - d0TY
=0 (0'Y-2,(07Y))+0-00"Y (23
=0-07,(0"Y).
It follows that, forany Y, Y, € RNXS,
"sz (Yl) -Vf, (Yz)"p
= | -0z, (0"Y,) -0+ 0z, (0'Y,)|,
= o (2. (0Y,) - 2. (oY), (24)
< |oo” (Y, - 1,)|,

< M[[Y, = Yo s
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where the first inequality follows from (20) and M =
sup”Z"F:LZeRNxs||®®TZ||F. When the dual optimal Y is
obtained, by using the result of (21), we can get

X = arg m)én Z(X,Y)

= argmin <T||X||2)1 + %ux - @TY“;) (25)
=9, (0Y).
This concludes the proof. O

Since f(Y) is the dual function of the objective function
(13), f(Y) is concave. Let

q(Y)=-f(Y)
=~ (vl2: @V, 6)
+ %II% @Y% + (Y, ® - 0D, ((DY))) ,

which is convex. Thus, the following holds for any Y;,Y, €
RNXS:

(q(Y,)-q(Y,),Y, - Y,) =0 (27)

It is also easy to show that g(Y) belongs to the class
Sop®RY *$) and

Vq(Y)=-0(1-2,(0'Y)), (28)

where I € R is the identity matrix. Therefore, we can solve
problem (13) by minimizing the objective function g(Y); that
is,

ming (Y). (29)

Therefore, the dictionary ¥ is selected by the optimal solution
Y; that is, the ith column of ® is chosen to be the atom of ¥
if [Y;|l, # 0. The optimization algorithm is presented in the
next subsection.

3.2. Optimization Methods. In this subsection, we develop an
efficient optimization algorithm to solve the dual problem
(29). Because the objective function g(Y) is continuously
differentiable with Lipschitz continuous gradient, it is feasible
to utilize gradient-based optimization methods to achieve
the optimal solution for their simplicity and low complex-
ity within each iteration. However, classical gradient-based
methods for functions with Lipschitz continuous gradient
converge at a rate of O(1/N), where N is the number
of iterations during optimization [19]. In fact, this is too
slow especially when dealing with large-scale datasets. Note
that Nesterov showed in his work [24] that an accelerated
gradient algorithm can be constructed such that O(1 /N?),
the lower bound on the convergence rate for gradient-based
methods [25], is achieved when minimizing unconstrained
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smooth functions. With this consideration, in the following
we propose an accelerated thresholding algorithm to solve
these smooth convex optimization problems using Nesterov’s
method with an adaptive line search scheme [19, 26].

We recall Nesterov’s method with an adaptive line search
scheme as follows. Take the unconstrained smooth convex
minimization problem minyzq(y), for instance, where g(y)

belongs to J}&(R"), p > 0,and L < +00. Nesterov’s method

for this problem utilizes two sequences: {y;} and {s;}, y;,s; €
R". The searching point s; satisfies

s =yi+ B (yi—v1) (30)

where f3, is a tuning parameter. The approximate solution y,,,
can be computed as a gradient step of s; as

1
Yier =8 L—Vq (s1)> (31)
!

where 1/L, is the step size. Starting from an initial point y,,
s; and y;,; can be computed recursively according to (30)
and (31) and can arrive at the optimal solution y. Although
it has been shown that Nesterov’s method is a very powerful
optimization technique for class & }14 IL( R™) [19], how to choose
f; and 1/L; in each iteration is a critical issue in Nesterov’s
method. When they are set properly, the sequence {y;} can
converge to the optimal ¥ at a certain convergence rate.
As a well-known scheme for setting [3; and L;, Nesterov’s
constant scheme assumes f3; and L, to be constant [19], while
Nemirovski’s line search scheme requires L; to monotonically
increase, and f3; is independent of L; [27]. Both of the settings
result in slow convergence.

To overcome this drawback, an adaptive line search
scheme for Nesterov’s method is proposed in [26]. Under the
assumption that 7, the low bound of , is known in advance,
this scheme is built upon the estimate sequence [19] defined
as follows.

Definition 6 (estimate sequence [19]). A pair of sequences
{¢(y)} and {A; > 0} is called an estimate sequence of function

q(y) iflim; _, . A, = 0and ¢y(y) < (1 — A)q(y) + A,¢,(y), for
ally e R".

The estimate sequence defined in Definition 6 has the
following important property.

Theorem 7 (see [19]). Let {¢;(y)} and {A; > 0} be an estimate
sequence. For any sequence {y;}, q(y;)—q < A (¢y(¥)-G) — 0
ifq(y) < ¢ = minyc gy (y), where q is the optimal objective
function value.

We further specify the estimation sequence in [19]:

o) =+ Ly -vil’, (32)

7
where the sequences {y;}, {v;}, and {(Z)l} satisty
1 —
Vi = — (1= o) yyv; + fiogs; — ogVq (sy)),
Yi+1
Vi = (1= ay) yy + fioy,
G = (1— ) ¢ + g (s) (33)
2
o 2 oq(l-a)y
- oq(sf + A
Yi+1 Vi+1

X (g”vz - s1||2 +(Vq(s), v~ Sz))-

Then Algorithm 2 in [26] is proposed by modifying
Nemirovski’s line search scheme with the adaptive parameters
of this sequence, which satisfy Theorem 7.

Note that Theorem 3 indicates that the objective function
q(Y) satisfies the conditions of using Nesterov’s method with
an adaptive line search scheme. Therefore we directly extend
Algorithm 2 in [26] to the high-dimensional scenarios to
solve (29). The complete procedures are summarized in
Algorithm 1.

In Algorithm 1, the while loop from Step 4 to Step 13 is
designed to choose a proper step size to satisty Step 8. As the
Lipschitz gradient of g(Y) is M, L, is upper bounded by 2M
since Step 8 always holds when L; > M [27]. In Step 14, we
initialize L;,, = h(0)L;, where

1, 1<0<5,
h(0) = 34
© {0.8, 6> 5, (34)

and 0 > 1 due to the condition in Step 8 [26]. Apparently,
when 0 islarge, L;,, can be adjusted to avoid the step size 1/L;
becoming too small, which may slow down the convergence
rate.

3.3. Sign Inference and Dictionary Update Mechanism. This
subsection details how to use the dictionary to solve the sign
inference problem. Actually, this problem bears similarity to
the sign prediction problem in the static signed networks
or the unsigned networks varying periodically [3, 8, 11, 12].
In this paper, we intend to infer the unknown relationship
between a pair of entities i and j based on partial relationship
observations of the entire dynamic network at time T+ 1. We
expect to accomplish this task with the help of the dictionary
constructed by the relationship data for times T, through
T,+T—1. As aforementioned, there exists strong dependence
between the connection status at time T, + T and the history
relationship dataset in the dynamic network. We formulate
the sign inference problem as follows:

1
% = argmin_ [y — x| + Ixl, (35)

where V¥ is the dictionary and y is the invertible

AT*D  observed  at

ATty Because

vectorization of the matrix
time T, + T; that is, y = vec(

AT ¥, o T DyTetD) by using SVD and subsequently
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(D Input: f,ax_; =0.5,Y =Y, L, =Ly, Yy = A =1

(2) Output: Yy,

(3)forl=1,2,...,N do

(4) while true do

(5) compute o, € (0,1) as the root of Lo = (1 - o) y, + e,

_ (I-a )y
=(1- +tolh, =
Y = (L -)y + i B (y+ Loy) o,
(6) compute S, =Y, + B, (Y, - Y._,)
(7) compute Y,,; =S, — (1/L,) Vq(S))
. 2

®) if q(Yy,1) <q(S) - (1/2L) [Vq(8))] then

9) goto Step 14

(10) else

a1) L, =2L,

(12) end if

(13)  end while

S)-q(Y
a9 se 9-20, 27900 46
[Va (SOl
(15)  set w1 = (I—oA,
(16) end for
ALcoriTHM 1: Adaptive line search scheme for dictionary selection.
—(Ty+T . .

vec® ) = 3, 6T vec(UTD), we will estimate 4. Numerical Experiment
—(Ty+T,
A( o in the form of vector and transform the low-rank

matrix reconstruction problem into a traditional /;-norm
minimization problem in compressive sensing. We solve
(35) by applying backtracking-based adaptive orthogonal
matching pursuit (BAOMP) method, which incorporates
a simple backtracking technique to detect the previously
chosen atoms’ reliability and then deletes the unreliable

atoms at each iteration [28]. Then we force that af].TOJrT), the

element of the resulting matrix, is equal to 1 if ahorD

ij
To+T T
i(. *T) < 0, to ensure the elements coinciding

with the value setting of relationships.

Furthermore, assume that we are given a sequence input
samples Y = [y(TO+T))y(Tg+T+1)’ . >Y(T)]’ where y(t) -
vec(A), Ty + T < t < T, the task of the sign inference
becomes to reconstruct the complete adjacency matrices

> 1lor

equal to -1lifa

A" one by one. Since the A may contain some features
which are not included in dictionary, it is necessary to add
these features into the dictionary to increase the accuracy
of the inference. However, the inferred matrix is not the
original matrix exactly and consequently the unobserved
relationships are not really known. In contrast, the observed
adjacency matrix A" retains all existing relationships. For
this reason, we only use A to extract the features rather
than the optimal solution of (35). We apply the extracting
approach in Section 3.2 and add the complementary features
into the dictionary. Note that this operation will continuously
increase the scale of the dictionary while the samples keep
inputting for inference; the dictionary selection approach
proposed in Section 3.2 will be applied to compact the dictio-
nary once the size of the dictionary exceeds a predetermined
bound.

In this section, we perform experiments on synthetic net-
works and show that our low-rank model and dictionary
learning method outperform other methods on the task of
the sign inference for dynamic signed networks. To ensure
that our results are reliable, we conduct all experiments 20
times and average out the results from all of the trials.

To construct synthetic networks, we first consider a
weakly balanced complete network € whose adjacency tensor

— — —(t
is &. The slide of & at time ¢ is an adjacency matrix Al

in the form of (3). In addition, only a few patterns of K(t)
exist in &/. The observation tensor & is formed by sampling
some entries from /. Concretely, we let the adjacency tensor
d of € consist of 50 250 x 250 matrices of complete 4-
weakly balanced structure. For the network €, four clusters
are generated randomly. The size of each cluster is larger than
20 and the sum of the sizes is 250. We further assume that
only a part of network relationships is observed by uniform
sampling with probability p € (0, 1). It results in n* p entries

being randomly sampled from K(t), where p is the fraction
of observed entries. We choose a set of matrices whose lost
rates are from 0.05 to 0.55 and apply the approach proposed
in Section 3.2 to select the dictionary V.

With the dictionary ¥ and the given observed matrix A®
at time t > T, + T, the task of the sign inference is achieved
by solving (35). We use BAOMP to estimate the complete

matrix A" and compare the performance of our approach to
two state-of-the-art methods, alternating least square (ALS)
[29] and singular value projection (SVP) [30], for the sign
inference problem. Different from accuracy defined by the
relative error on the observed set in [8], we utilize the
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FIGURE 3: Accuracy of sign inference algorithms on synthetic datasets. In general, we can see that dictionary learning outperforms ALS and

SVP.

()

(b)

FIGURE 4: An example of the sign inference. (a) illustrates the original matrix. Given the matrix with 98% lost-rate, (b) is the result inferred
by dictionary learning method. The similarity of inferred matrix is 0.9347.

similarity between the inferred matrix and the original one
to indicate the accuracy of estimation. The definition of the

similarity is [(A", ADY|/IA" IR 5. We vary the lost-

rate of the original matrix A" from 0.5 to 0.999 and plot
the inference accuracy in Figure 3 (lost-rate: 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, and 0.999). Apparently,
dictionary learning outperforms ALS and SVP. To present our
result more clearly, we also use a visual expression in which
the white pixels represent 1 and the black pixels represent —1.
Figure 4 shows one example of the sign inference and we find
that relationships and the clusters can almost be accurately
estimated by our inference approach.

5. Conclusion

In this paper, we establish a low-rank tensor model for the
dynamic weakly balanced signed networks. With this model,
we first extract the feature pool and propose an approach to
extract the compact dictionary from pool. To improve the
performance of the selection approach, we derive the corre-
sponding dual problem and introduce an accelerated thresh-
olding algorithm to solve the dual problem. Consequently,
the optimal solution of the primary problem can be readily
obtained from optimizing the dual problem. In addition,
combined with the compact dictionary generation method,
the sign inference approach is provided for estimating
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missing relationships of the dynamic weakly balanced signed
networks at a certain time slice. Also, the approach is
endowed with the function of the dictionary updating if
relationship statuses change.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was jointly supported by National 973 Program
of China (no. 2013CB329204), National 863 Program of
China (no. 2011AA01A104), National Natural Science Foun-
dation of China (no. 61100206), Research Fund for Doctoral
Program of Higher Education of China (no. 20120005130001),
China, and Fund of State Key Laboratory of Information
Photonics and Optical Communications (Beijing University
of Posts and Telecommunications), China.

References

(1] C. Zhang, J. Sun, X. Zhu, and Y. Fang, “Privacy and security
for online social networks: challenges and opportunities,” IEEE
Network, vol. 24, no. 4, pp. 13-18, 2010.

[2] N.Jabeur, S. Zeadally, and B. Sayed, “Mobile social networking
applications,” Communications of the ACM, vol. 56, no. 3, pp.
71-79, 2013.

[3] D.M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link predic-
tion using matrix and tensor factorizations,” ACM Transactions
on Knowledge Discovery from Data, vol. 5, no. 2, article 10, 2011.

[4] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical
structure and the prediction of missing links in networks,
Nature, vol. 453, no. 7191, pp. 98-101, 2008.

[5] E. Harary, “On the notion of balance of a signed graph,” The
Michigan Mathematical Journal, vol. 2, no. 2, pp. 143-146, 1953.

[6] D. Cartwright and F. Harary, “Structural balance: a generaliza-
tion of Heider’s theory,” Psychological Review, vol. 63, no. 5, pp.
277-293, 1956.

[7] J. A. Davis, “Clustering and structural balance in graphs,’
Human Relations, vol. 20, no. 2, pp. 181-187, 1967.

[8] C.J.Hsieh, K. Y. Chiang, and I. S. Dhillon, “Low rank modeling

of signed networks,” in Proceedings of the Knowledge Discovery

and Data Mining Conference (KDD ’12), 2012.

J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting posi-

tive and negative links in online social networks,” in Proceedings

of the 19th International World Wide Web Conference (WWW

’10), pp. 641-650, April 2010.

[10] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon,

“Exploiting longer cycles for link prediction in signed net-

works,” in Proceedings of the 20th ACM Conference on Infor-

mation and Knowledge Management (CIKM ’I1), pp. 1157-1162,

October 2011.

D. Liben-Nowell and J. Kleinberg, “The link-prediction prob-

lem for social networks,” Journal of the American Society for

Information Science and Technology, vol. 58, no. 7, pp. 1019-1031,

2007.

[12] L. Li and T. Zhou, “Link prediction in complex networks: a

survey, Physica A, vol. 390, no. 6, pp. 1150-1170, 2011.

=

(11

Journal of Applied Mathematics

[13] M. Szell, R. Lambiotte, and S. Thurner, “Multirelational orga-
nization of large-scale social networks in an online world,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 107, no. 31, pp. 13636-13641, 2010.

[14] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “The slashdot
z0o: mining a social network with negative edges,” in Pro-
ceedings of the 18th International World Wide Web Conference
(WWW °09), pp. 741-750, ACM, 2009.

[15] J.Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks
in social media,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’10 ), pp. 1361-1370,
ACM, April 2010.

[16] J. A. Davis, “Structural balance, mechanical solidarity, and
interpersonal relations,” The American Journal of Sociology, vol.
68, no. 4, pp. 444-462,1963.

[17] A. Srinivasan, “Local balancing influences global structure
in social networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 108, no. 5, pp. 1751-
1752, 2011.

[18] E Heider, “Attitudes and cognitive organization,” The Journal of
Psychology, vol. 21, no. 1, pp. 107-112, 1946.

[19] Y. Nesterov, Introductory Lectures on Convex Optimization: A
Basic Course, Kluwer Academic, Boston, Mass, USA, 2003.

[20] J.-E Cai, E. J. Candes, and Z. Shen, “A singular value thresh-
olding algorithm for matrix completion,” SIAM Journal on
Optimization, vol. 20, no. 4, pp. 1956-1982, 2010.

[21] Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for
abnormal event detection,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR ’Il),
pp. 3449-3456, June 2011.

[22] D. L. Donoho and I. M. Johnstone, “Adapting to unknown
smoothness via wavelet shrinkage,” Journal of the American
Statistical Association, vol. 90, no. 432, pp. 1200-1224, 1995.

[23] J. B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and
Minimization Algorithms, vol. 2, Springer, Heidelberg, Ger-
many, 2nd edition, 1996.

[24] Y. Nesterov, “A method of solving a convex programming
problem with convergence rate O(l/kz),” Soviet Mathematics
Doklady, vol. 27, no. 2, pp. 372-376,1983.

[25] A. Nemirovsky and D. Yudin, Informational Complexity and
Efficient Methods for Solution of Convex Extremal Problems,
John Wiley & Sons, New York, NY, USA, 1983.

[26] J.Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,”
in Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD °09), pp.
547-555, July 2009.

[27] A. Nemirovski, “Efficient Methods in Convex Programming,’

Lecture Notes, 1994.

H. Huang and A. Makur, “Backtracking-based matching pursuit

method for sparse signal reconstruction,” IEEE Signal Processing

Letters, vol. 18, no. 7, pp. 391-394, 2011.

[29] Y. Koren, R. M. Bell, and C. Volinsky, “Matrixfactorization

techniques for recommender systems,” IEEE Computer, vol. 42,

no. 8, pp. 30-37 2009.

P.Jain, R. Meka, and I. Dhillon, “Guaranteed rank minimization

via singular value projection,” in Proceedings of the 24th Annual

Conference on Neural Information Processing Systems (NIPS ’10),

pp. 934-945, December 2010.

[28

[30



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 195824, 7 pages
http://dx.doi.org/10.1155/2013/195824

Research Article

Adaptive Correction Forecasting Approach for
Urban Traffic Flow Based on Fuzzy c-Mean Clustering

and Advanced Neural Network

He Huang,' Qifeng Tang,” and Zhen Liu'

! Shanghai Urban-Rural Construction and Transportation Development Institute, Shanghai 300032, China
2 Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing,

Ministry of Education, Shanghai 200240, China

Correspondence should be addressed to Qifeng Tang; tqf001@qq.com

Received 5 July 2013; Revised 8 October 2013; Accepted 9 October 2013

Academic Editor: Baocang Ding

Copyright © 2013 He Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Forecasting of urban traffic flow is important to intelligent transportation system (ITS) developments and implementations. The
precise forecasting of traffic flow will be pretty helpful to relax road traffic congestion. The accuracy of traditional single model
without correction mechanism is poor. Summarizing the existing prediction models and considering the characteristics of the
traffic itself, a traffic flow prediction model based on fuzzy c-mean clustering method (FCM) and advanced neural network (NN)
was proposed. FCM can improve the prediction accuracy and robustness of the model, while advanced NN can optimize the
generalization ability of the model. Besides these, the output value of the model is calibrated by the correction mechanism. The
experimental results show that the proposed method has better prediction accuracy and robustness than the other models.

1. Introduction

Real-time forecasting of traffic flow is an important issue in
advanced traffic management [1]. The traffic simulation is
correspondingly needed to make these forecasting models
reliable way, which aim to influence travel behavior, reduce
traffic congestion, improve mobility, and enhance air quality.
Traffic forecasting models can be used to provide urban traffic
control centers with an automated tool for anticipating the
congestion that may arise on road facilities and its expected
duration [2].

The urban traffic flow forecasting models rely on histor-
ical and current flow data. The problem of traffic flow fore-
casting belongs to a standard time series prediction task and
the purpose is to fetch the function which can relates future
values of traffic flow to previous and current measurement
of traffic flow [3]. A variety of forecasting techniques has
been applied to forecast the urban traffic flow. In [4], Danech-
Pajouh and Aron designed a layered statistical method with
a mathematical clustering technique to group the traffic flow
data and a separately tuned linear regression model for each
cluster. The ARIMA model, initially developed by Kim et

al., is one of the most popular approaches in traffic flow
forecasting [5-7]. However, the limitation of ARIMA models
is that their natural tendency, concentrated on the mean
values of the past series data, seems unable to capture the
rapid varying process changes underlying of traffic flow. The
artificial neural network (ANN) is widely applied in traffic
flow forecasting. Yin et al. [8] developed a fuzzy-neural model
(FNM) to predict traffic flow in an urban street network. The
empirical results showed that the FNM model provides more
accurate forecasting results than the BPNN model. These
researches are committed to improve the performance of
the algorithms. However, there are many factors which can
affect the traffic flow, the traditional single model can hardly
improve the prediction accuracy and no online correction
mechanism was considered. This motivates the paper.

In this paper, the traffic flow forecasting model has 3
techniques: first, the input data of the model is divided
into several categories according to FCM, and different
categories have different model. Second, a training model
based on a well-defined part-connected neural network (NN)
was proposed and the cooperative quantum-particle swarm
evolutionary algorithm (CQGAPSO) is used to train the



model. Last, the error between predicted value and real
value is used to compensate the output of the model. These
methods can improve the accuracy and generalization of the
forecasting model can also overcome the model mismatch.

This paper is organized as follows. The forecasting meth-
odology is introduced in Section 2. Cases of studying of urban
traffic flow forecasting are given in Section 3. Conclusions are
finally made in Section 4.

2. Forecasting Methodology

2.1. The Framework of the Proposed Method. According to the
change rule of traffic flow time series, there is an essential
linkage between the future and the previous flow [9]. Thus,
the previous traffic flow value can be used to forecast the
future flow. Set f(¢) as the traffic flow at time ¢, f(¢ — 1) as the
value at time ¢ — 1. In this paper, f(t), f(t—1),..., and f(t—s)
are the input values of the model at time t and f(f + p) is the
predicted value at time t + p. The input values are denoted as
x(i) and the predicted value is denoted y(i). The traffic flow
forecasting model is made to build the relationship between
y(i) and x(i). Therefore, once the relationship is obtained, the
model can be used to predict the future traffic flow based on
the real-time measured data in practice.

In the previous studies, the single prediction model
mentioned above was adopted to forecast the urban traffic
flow. However, it is not universally applicable for all the traffic
scenarios. Since the urban traffic system is an unstable system,
which exhibits significant variation in different periods, it is
necessary to establish different prediction models to forecast
the future traffic state accurately. According to the measured
data from the float car, Guo et al. [10] analyzed the degree
of traffic congestion on different days in a week. The results
showed that the traffic congestion of Monday is more serious
than the other days, especially in the morning peak hour,
and the most serious traffic congestion of evening peak hour
occurred in Friday. Moreover, the degree of traffic congestion
during commuting time on the weekend is less than the
degree on weekdays. It can be concluded that by observing
the traffic flow data, the travel modes and travel demand are
different on each day of a week, and the data characteristic
of the same day for every week is similar. Therefore, in
order to improve the accuracy of prediction for traffic flow
or travel speed on the road, it is necessary to classify the
traffic flow pattern and apply a suitable model to forecast
each pattern. This classification would guarantee that each
prediction model has a good performance in a particular
period. As urban traffic flow system is a complicated process
influenced by many factors, it is believed that using the
multimodel method to predict the traffic flow is appropriate.

From the analysis made above, in this paper, for the sake
of modeling, the historical traffic data should be divided into
seven classes corresponding to each day of a week. Besides,
considering the widely variation of traffic flow from morning
to night, especially in the rush hour, using a single model
to describe a complex nonlinear object usually results in low
accuracy and poor generalization. So we use FCM to process
the data and choose the reasonable clustering number by
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the experiments and use the approach based on multiple-
input-single-output three-layer feedforward neural network
with switches to model each cluster. Meanwhile, in order
to overcome the model mismatch, the adaptive correction
mechanism is added to our approach. The framework of the
proposed method is illustrated in Figure 1.

2.2. Fuzzy c-Means Clustering. The model of forecasting
traffic flow is a multiinput single-output system; the training
sample set can be expressed as D = {f;(t + p), [f;(t) f;(t -
Dy, it =8)] | s = L,2...m,i = 1,2,...,n}. Here,
n is the sample number of training set, m is the number
of input variables; [f;(¢)f;(t — 1),..., f;(t — s)] denotes
the ith input vector. Suppose D is divided into ¢ clusters
{D,,D,,...D_}; thus, ¢ submodels {M,, M,,...M_} should
be built for each D;, and the result of the FCM can be
expressed as membership matrix U = [u;jlio15 cj-10.0 =
{U; |'i = 1,2...c}. u;; denotes the degree of the element x;
in training sample set belonging to the ith cluster. The value
of u;; is between 0 and 1. The architecture of FCM method is
shown in Figure 2 [11, 12].

Clustering number c is a very important parameter. Here,
we do experiments to choose the appropriate clustering
number c. Let ¢ increase from 2 to a constant. Then, make
models separately based on FCM and calculate the mean
square error and the maximum error according to (1). Last,
we can obtain the best clustering number c.

Consider

" 0.5
1< 0
MSE=( =Y -5)2) ,
(fh;(” y’)> )

MAXE = max”, (|y; - 7).
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TaBLE 1: The result of the FCM.

Clustering number ¢ Monday 1 Wednesday 1 Sunday 1

MSE MAXE MSE MAXE MSE MAXE
1 14.0515 57.5568 14.2659 61.2561 14.1235 573078
2 13.3489 51.3476 14.0024 53.1487 13.2149 51.0947
3 10.0456 43.1834 13.4820 48.4621 9.8952 42.1001
4 11.8439 44.9576 11.2106 45.2548 11.7541 44.8259
5 13.2563 475963 13.5279 49.3247 13.1589 46.2985
Clustering number ¢ Monday 2 Wednesday 2 Sunday 2

MSE MAXE MSE MAXE MSE MAXE
1 15.1125 60.9547 14.3762 59.0143 14.4321 60.6465
2 14.5876 54.2154 14.1144 59.9821 14.2547 61.6435
3 11.5248 40.1257 13.5520 50.7234 13.6464 50.9542
4 12.5487 42.2037 11.3017 47.0984 12.3014 48.2549
5 13.6587 44.1023 13.6975 51.2459 13.4164 50.8216

2.3. The Forecasting Model Based on Neural Network with
Switches. In the architecture of FCM method, each model
needs a modeling tool. NN, SVM, and Kalman filtering are
always used to forecast the traffic flow. Here, we adopt an
advanced NN, the multiple-input-single-output three-layer
feedforward neural network with switches was proposed and
well defined in [13]. A multiple-input-single-output (MISO)
three-layer feedforward neural work with switches is shown
in Figure 3.

Various methods were proposed to train the NN with
switches [13-15]. In those methods, the population was
partitioned to parameters and structure population. The
parameters population was composed of the weight of the
links, while the structure population was composed of the
link switches. This model could eliminate some ill effects of
approximation ability caused by redundant structure of NN.

2.4. The Adaptive Correction Mechanism. The traffic flow is
the measurable variable, and the real-time data is used to
predict the future traffic flow [16]. For example, at current
time t, we can obtain the real value f(t) from the sensors and
the predicted value f(t) by forecasting the model. Here is an
errore = f(t) - f (t) because of the model mismatch. At time
k, the model should forecast the traffic flow at time k + p; the
error can be used to compensate the initial predicted value
f "(t+ p) according to (2). his the offline correction coefficient.
Consider

fl+p)=f'(t+p)+h-e )

The training set D can be used to fetch A; to fetch h is to
find the relationship between f(t)—f(t) and f(t+p)—f(t+p),
and here, t = 1,2...m, m is the sample number of training
set. h can be calculated by least square method (SLM).

When the model is forecasting the traffic flow online, the
correction coeflicient h should be refreshed in real time. For
example, at current time ¢, we can calculate Ah using a small
piece of historical data to obtain the relationship between
ft —i—p)— f(t —i—p)and f(t —i) - f(t - i). Here, i
is a small positive integer. The online correction coefficient
Ah can be obtained by SLM and (2) should be modified.

[0 Switches

FIGURE 3: The structure of three-layer feedforward NN with switch-
es.

Consider
ft+p)=f (k+p)+(h+Ah)-e. (3)
3. Experimental Results

In order to explain the effectiveness of the proposed method,
we choose the data gathered from Shanghai north-south
highway including from August to October. The historical
data on August and September is used to build the training
set, while the data on October is used to build the testing set.
There is a large difference of traffic flow every day in a week,
thus we build different models for every day. Here, we use
the first two Monday, Wednesday and Sunday on October to
verify the proposed model.
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TABLE 2: The result of adding the correction mechanism.
h+ Ab Monday 1 Wednesday 1 Sunday 1
MSE MAXE MSE MAXE MSE MAXE
h+Ah=0 10.0456 43.1843 11.2106 45.2548 9.8952 42.1001
-0.1<Ah<0.1 9.9758 42.1285 10.2654 44.1657 9.7561 40.6548
-02<Ah<02 15.2648 59.2154 16.2299 61.2147 14.3215 57.6519
-03<Ah<03 99.2154 70.2165 105.2647 85.2594 99.0147 69.2589
h+ Ab Monday 2 Wednesday 2 Sunday 2
MSE MAXE MSE MAXE MSE MAXE
h+Ah=0 11.5248 40.1257 11.3017 47.0984 12.3014 48.2549
-0.1<Ah<0.1 10.4529 38.2489 10.3594 46.2813 11.2497 47.9523
-02<Ah<02 16.5489 58.2146 17.2016 64.0525 16.2018 58.2687
-0.3<Ah<03 103.4269 88.2159 106.2184 86.3468 101.4512 98.1264
TABLE 3: The comparison of 3 different models.
Monday 1 Wednesday 1 Sunday 1
MSE MAXE MSE MAXE MSE MAXE
Model (a) 13.4956 46.7109 14.3495 48.3459 12.2304 46.0239
Model (b) 10.0456 43.1834 11.2106 45.2548 9.8952 42.1001
Model (c) 9.9758 42.1285 10.2654 44.1657 9.7561 40.6548
Monday 2 Wednesday 2 Sunday 2
MSE MAXE MSE MAXE MSE MAXE
Model (a) 15.2430 49.4545 14.4506 51.4539 16.1356 55.2341
Model (b) 11.5248 40.1257 11.3017 47.0984 12.3014 48.2549
Model (c) 10.4529 38.2489 10.3594 46.2813 11.2497 47.9523

The number of training sample is 2800 and the testing
sample number is 650. There is 2 minutes between each data.
Based on the experience, we choose 3 as the dimension of
input data. On request, we should predict the traffic flow after
10 minutes. Thus the width of the prediction p is 5. We totally
do 3 experiments: (1) the traditional single model; (2) the
multimodels based on FCM; (3) the multimodels based on
FCM and adaptive correction mechanism.

First, all the data should be filtered before modeling
and NN with switches is used as the modeling tool. Then
we should determine the Clustering number ¢ by FCM,
“CQGAPSO” algorithm is used to train the NN model and
the parameter of “CQGAPSO” algorithm is given in [17]. The
hidden nodes number is 6. The training accuracy is 1 x 107
and the iteration times of training the NN are 2000. The
experiments are implemented for 50 times. Table 1 gives the
result of FCM.

Form Table1, we can find MSE and MAXE get better
after an initial increase in growth of clustering number c.
However, if ¢ continues to grow, MSE and MAXE will get
worse. That is because with the increasing of the clustering
number, the generalization ability of the model gets poorer.
The best clustering number c is at the turning point. Then the
model should be added the adaptive correction mechanism.
In order to obtain an appropriate correction coeflicient, h
is a fixed number which is calculated offline while Ah is
a changed number which calculated online and we should
limit the scope of Ah. Table 2 gives the result of adding the
adaptive correction mechanism. From Table 2, we can find if

the adaptive correction mechanism parameter value is 0.1 <
Ah < 0.1, MSE and MAXE is the best. If the scope of Ah
is very wide, MSE and MAXE will get worse because the
compensation value is too large. Table 3 gives the comparison
of every approach. Model (a) is the traditional single model,
model (b) is the model (a) with FCM, model (c) is the
model (b) with the correction mechanism. We can find the
reasonable clustering number ¢ and correction mechanism
can improve the forecasting ability.

The Comparison of every approach is illustrated
in Figure 3. Figure 4(a) is the traditional single model,
Figure 4(b) is the model with FCM, Figure 4(c) is the model
with FCM and the correction mechanism. In Figure 4(a), the
predictive curve is smooth and cannot track exactly especially
at the peak value because the approximation capability of the
traditional single model is limited. In Figure 4(b), we can get
some submodels by FCM and multimodel can improve the
forecasting ability. Without the correction mechanism, the
model error cannot be corrected in real time. In Figure 4(c),
we use the correction mechanism and it compensates the
initial forecasting value with the model error value. From
Table 3 and Figure 4, we can find that the predictive accuracy
is better than model (a) and (b).

4. Conclusions

Aiming at solving the problem of forecasting urban traffic
flow, this paper proposes a forecasting model by the use of
FCM and correction mechanism. The experimental results
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FIGURE 4: the result of forecasting the traffic flow.

indicate that the proposed method can perform better than
other methods and show the application prospect.
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This paper deals with the problem of fault detection for linear uncertain time-delay systems. The proposed method for Luenberger
observers is developed for unknown input observers (UIOs), and a novel procedure for the design of residual based on UIOs
is presented. The design procedure is carried out based on the H,, model matching approach which minimizes the difference
between generated residuals by the optimal observer and those by the designed observer in the presence of uncertainties. The
optimal observer is designed for the ideal system and works so that the fault effect is maximized while the exogenous disturbances
and noise effects are minimized. This observer can give disturbance decoupling in the presence of noise and uncertainties for linear
uncertain time-delay systems. The developed method is applied to a numerical example, and the simulation results show that the

proposed approach is able to detect faults reliably in the presence of modeling errors, disturbances, and noise.

1. Introduction

Fault detection and isolation (FDI) is an essential and
challenging problem in many industrial applications. Among
the various reported methods, much attention has been paid
to model based approaches in the field of control engineering
in recent years. For example, fault detection problem for
discrete-time Markov jump systems and switched systems
is investigated in [1, 2], respectively. The problem of fault
reconstruction for a class of descriptor linear systems using
sliding mode observers is presented in [3]. The sliding mode
observers have been designed such that the actuator fault
can be reconstructed using output measurements. The data-
driven scheme for FDI is presented in [4] which exploits an
adaptive residual generator and a bank of isolation observers.
The designed scheme obtains observer parameters without
identification of complete process model.

However, model based approaches are based on some
idealized assumptions, one of which is that the mathematical
model of the plant is a faithful replica of the plant dynamics
[5]. As the mathematical model of a plant hardly represents its
complete behavior, due to the existence of model uncertainty,
noise, and unknown disturbances, it is essential to design a
fault diagnosis system to take these effects into consideration.
Motivated by the abovementioned issues, a robust fault detec-
tion scheme is exploited to design fault detection systems
so that high sensitivity to faults as well as low sensitivity
to uncertainties and perturbation can be obtained. Opti-
mization techniques are widely used to solve this problem.
One of the commonly used approaches to design such FDI
scheme is representing the design procedure by H,, and H_
performance indexes. The main advantage of this approach
is that it can be solved by linear matrix inequality (LMI) [6].
In [7, 8], a two-step FDI design methodology is presented.



In this methodology, the optimal fault detection filter (FDF)
has firstly been designed, neglecting the existence of model
uncertainty. Next, the FDF, which is used as residual gener-
ator, has been obtained via H,, model matching technique.
The same approach is used in [9]; however, different dynamics
is considered for the FDE.

Time delay is an inherent characteristic of many indus-
trial systems; therefore, robust FDI problem for LTT systems
with time delay received great attention over recent decades,
and numerous articles have been presented. One approach
is to solve the formulated design procedure using the eigen-
structure assignment approach in which the residual signal
is thoroughly decoupled from delay-free unknown input.
Then the effect of the unknown input is minimized using
H_, norm [10]. In the presence of uncertainty, the same
approach as delay-free case can be employed to obtain a
robust FDI system. Indeed, solving the H,, model matching
problem results in achieving an FDF which acts the same
as the optimal one [11-13]. Although the same approach is
considered in these references, solving procedures are com-
pletely different owing to the difference between the dynamic
of the filter and system. In [14], the problem of robust
FDF design for the class of linear systems has been inves-
tigated. The system is subjected to mixed neutral and dis-
crete time-varying delays and some nonlinear perturbations.
The Luenberger type observer has been utilized to design
FDF such that the residual signals effectively show fault
occurrence.

Another approach commonly used to robust FDI scheme
is to employ the unknown input observers (UIO), in which
the residual is designed to be sensitive to faults but insensitive
to unknown disturbances. Although the UIO has been widely
used in estimation problems in both time delay and delay-
free systems [15-18], there are few references that handle the
problem of designing robust FDI [19, 20]. In [20], a design
procedure has been proposed for delay-free systems so that
perturbations and exogenous signals have less effect on the
residual signal and the fault has a detectable effect on the
residual; however, the problem has not been presented in H,,
model matching technique. Motivated by this consideration,
a robust FDF design using UIO for uncertain systems with
time delay is presented and solved using H,, model matching
approach. In contrast to our previous work [18], we are
concerned to design a robust FDF for the case in which
the dynamic characteristic of fault signal is known. For
this purpose, a two-step design procedure is developed. In
the first step, the optimal fault detection based on UIO
is designed for the system without uncertainty. Next, the
UIO-based fault detection filter is approached to optimal
one in the sense of H,, norm. It is demonstrated through
simulation that the presented fault detection observer is
robust against uncertainty and sensitive enough to the
faults.

Notation. The notations used throughout the paper are
fairly standard. I and 0 represent identity matrix and zero
matrix; the superscript “I” stands for matrix transposition.
| - || refers to the Euclidean vector norm or the induced
matrix 2-norm. diag{-} represents a block diagonal matrix.
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The notation P > 0 means that P is real symmet-
ric and positive definite; the symbol * denotes the ele-
ments below the main diagonal of a symmetric block
matrix.

2. Problem Statement

Many different industrial systems such as mechanical, elec-
trical, meteorological, chemical, economic, and biological
systems include time delay. In many studies linearized model
of these systems around point of operation is considered.
However, there are always some discrepancies between the
real dynamics of the system and linearized model. These
differences arise from systems uncertainty, as a consequence
of neglecting dynamics, and changes in system parameters.
Therefore, the following linear uncertain system with additive
disturbances and time delay is considered to represent the
described model:

O =(A+AA D) x () + (A +AA (1)) x(t—T)
+(B+AB()u(t)+Ed({t)+F . f )+ Rn(t), (1)
y(t)=Cx(t)+F,f () + Dn(t),

where x(t) € R" is the state vector, y(t) € R? is the
output vector, u(f) € RY is the input vector, d(t) € R™
is an unknown scalar function representing the disturbance
that belongs to L7'(0, 00), f(t) € RS denotes the faults, and
n(t) € R’ represents the noise. Note that AA(t), AB(t), and
AA 4(t) are the norm bounded time-varying uncertainties of
the matrices A, B, and A ;, respectively, and 7 > 0 is a constant
delay. It is assumed that the characteristics of uncertainty
matrices belong to

Q, = {AA(®) | AA () = M,3, (1) Ny, Zf (D2, (1) < T},
Q, = {AB(t) | AB(t) = M3, (1) N,, 25 ()3, (1) < I},
Qs ={AA (B | AA, (1) = M3, () N3, 25 (1) 55 (1) < 1},

(2)

where M; and N; are predefined matrices. It is supposed that
all over the paper the dimensions of matrices are compatible
if they are not explicitly mentioned.

The dynamic characteristic of fault signal can be

described by [21]
0(t)=Agb(t), t>tp,

0 =0, telot],

0(ty) = 6o,
f#6)=Fo @),
where ¢ is the time when a fault occurs and Ay and Fy
are known matrices with appropriate dimensions. The initial

time, ¢, and initial state, 6, are supposed to be unknown.
The dynamic equation (3) represents any fault with known

3)



Journal of Applied Mathematics

dynamic characteristic and unknown amplitude and phase
[21].

Unknown input observer for the class of time-delay
system (1) is considered as [22]

z(t)=Fz+Gz(t—-1)+Hu(t) + K,y (t) + K,y (t - 1),

x)=z(O)+ Ly,
(4)

where X(t) is the estimated state vector. The dynamic of X(¢)
is governed by

X(t)=Ff+GR(t—71)+Hu(t)+ L,y (1)
)
+Lyy () +Lyy(t-1),

where F, G, H, and L, are the observer matrices and L, =

K,, - FL,,Ly =K,, - GL,.
The observer matrices will be designed such that the
disturbance and input are decoupled from the estimation
error defined by e(t) = x(¢) — X(¢). When UIO-based filter

defined by (4) is applied to the system described in (1), the
state estimation error will be

é(t) = Fe(t)+Ge(t— 1)+ ((I-L,C) A~ L,C~F)x(t)
+((I-L,C)A;-LsC-G)x(t-1)
+((I-L,C)B-H)u(t)
+(I-L,C)Ed(t)
+((I-L,C) F,Fy - L,F,Fy — L,F,FyA;) 0 (t)

— LyF,Fy0 (t - 7) + ((R— L,CR) — L,D) n(t)
~LyDn(t —7) - L,Di(t)
+(I-LiC)AA ) x(t)+ (I - L,C)AA, (t) x (t — 1)

+(I-L,C)AB({t)ul(t).
(6)

In the absence of uncertainties and faults, it is shown that

the observer, defined by (4), is UIO for the predefined system
by (1) if the following conditions are satisfied [22].

Condition 1:

é(t) = Fe(t) + Ge(t — 7)is asymptotically stable.  (7)

Condition 2:

F=(I-L,C)A-L,C. 8)

3

Condition 3:
G=(I-L,C)A;-L,C. 9)

Condition 4:
H=(I-L,C)B. (10)

Condition 5:
(I-L,C)E =0, (11)

where 0 denotes a null matrix with compatible dimension.
Using these relationships, and considering definitions in (12),
the state estimation error dynamic (6) is transformed to (13):

T=(I-L,C),
F=[(I-L,C)F.Fy~L,FFy— L F,FyAg —LyF,Fy],
R=[-L,D (I-L,C)R-L,D -L;D],

6=[6"w 0" ¢-D]",
i=[a" (@) ") nT(t—T)]T,
(12)
é(t)=Fe(t)+Ge(t-17)+FO+Rn
+TAA () x () + TAA, () x(t—7)  (13)
+TAB () u(t).

In order to use the UIO for fault detection purposes,
a residual signal should be defined. Difference between
measured output and estimated output is usually considered
as a residual signal. In current work, a more general form for
residual reference signal is considered as follows:

y)=Cx(t),
r=Vily®-y®)+V,(yt-1) -y -1)
=V,Ce(t) + V,Ce(t —1) + K, 0 (t) + K,n(t), (14)
K, = [ViF,Fy V,E,Fy),
K, =[0 V,D V,D].

The goal of robust fault detection problem is to mini-
mize the performance index defined in (15) for all classes
of model uncertainties belonging to ;. In general, this
performance index is minimized using H,, model match-

ing approach which minimizes the difference between the
residual signal (r(¢)) and reference residual signal (rf(t))



in the presence of the worst case disturbance signals. This
performance index has been minimized by the following
steps.

Step 1. The ideal residual signal generator system has been
designed for the system without uncertainty defined in
(16). The residual signal shows the maximum sensitivity to
the fault signal while it has the minimum sensitivity to
disturbance, noise, and unknown inputs.

Step 2. The residual signal generator system has been de-
signed such that the performance index (17) is minimized and
the overall system (19) is asymptotically stable:

IG

= min %
Jr (AAABAA,) € ' G - (15)
r

é(t)= Frep(t)+G'e;(t—1)+F 0() + R n(t),

ry(t) =V Cep (t) + V; Ces (t— 1) + K[ O () + Ky7 (),

(16)
J,,=  sup I, <Y 17)
° (AAABAA e, lwll,
where
) =r®) -1 1),
. (18)
w=[u" 8 daf 7],
C(t) = (K+AK)C(t)+ (Zfd+AZfd)((t—T)
+ (B, +AB, Jw (1), (19)

r.()=C{(t)+Cy{(t-1) + Dw (t),

where
T T T T
(W =[e" @) g x" )],
_[F oo N G o0 0
A=|0 F* o, A;=10 G* 0|,
00 A 0 0 Ay,
B 0 F 0 R [0 o TAA
B,=|0F oR|, AA={00 o0 |,
B K; E K, 00 AA
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[0 0 TAA, ~ TAB 0 0 0
AA;={00 o0 |, AB,=| 0 000,
00 AA AB 000

C,=[ViC -ViC 0], C, = [V,C -V;C 0],

D=[0 K,-K; 0 K,-K;],

K,=[F.Fy 0], K,=[0 R 0].

(20)

Furthermore, using (2) itis easy to see that AA, AA 4, AB,,
can be expressed by

™,

0 [z,m[00 N,
Ml

AZ = M5, ()N, =

™,

0 |Z,®[00 N,], ()
M2

AA,; = M,%, (t)N, =

™,
0 |, ([N, 00 0].
M3

AB, = M;%; ()N, =

Before developing theorems that are utilized in designed
procedure, the following lemmas, which are useful to prove
the theorems, are introduced.

Lemma 1 (see [22]). Condition 5 is solvable if and only if the
following relation holds:

rank (CE) =m, m < p. (22)

The general solution of condition 5 can be calculated by

L, =E(CE)" +Y [I - CE(CE)"]
(23)
=0, +Y0,,

whereY is an arbitrary matrix with an appropriate dimension.

Lemma 2. Suppose that M, N, and %(t) are compatible and
ST (1)2(t) < I; then there exists a scalar € > 0 such that the
following equation holds:

M3EN + (MEN)T <eMM™ + ¢ 'NTN. (24)

(a) Reference Model Selection (Step 1). Reference model selec-
tion is an important key to the design of robust fault detection
filter for linear uncertain time-delay systems. To this end,
the analogues procedure as that for fault detection in [6]
is extended for delay systems considering the UIO as the
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fault detection filter. According to (16), the reference residual
signal can be written as sum of two signals, r(f) and
r fé(t). The reference model should be chosen such that the
effect of exogenous signals on the reference residual signal is
minimized while the effect of fault signal is maximized. These
two tasks are described mathematically by

It (), <o
(25)

SOMIEE

where T'(-, -) is the transfer function between two signals. The
following two theorems provide conditions which ensure the

asymptotic stability of (16). They also provide the conditions
that increase the sensitivity of the residual signal from faults
and decrease the sensitivity of residual signal from noise.

Theorem 3. For given « > 0, if there exist symmetric positive
matrices P, Q, V", V', ®}, @3, and ®; such that the following
LMI holds:

PF* = P(A-0,CA) - ®;] (8,CA) - ©,C,

PG" =P(A;-0©,CA,) - ;] (0,CA,) - D;C,

PF* +F*"P+Q PG* PR C'v;"
Ty T
* —Q 0 C VZ < 0, (26)
* « -’ KT
* * * -1
where
(27)

PR =[-P(®,D) - ®} (8,D) P(R-©,CR) - ®} (¥,CR) - ®;D -®;D],

2

then the system (28) is asymptotically stable and
||T(rﬁ,ﬁ)||00 < a. Furthermore, the UIO matrices are obtained

from conditions 2to 5, and Y* = P"'®,, L, = P"'®,, L, =
P o,

ém(t)=Fem(t)+Glem(t-1)+R A(),
(28)
7 (t) = Vi Ce (t) + V; Cep (t — 1) + K7 (1)

Proof. Condition ||T(rfﬁ,71)||00 < « is equivalent to ]r/ﬁ :
[0 (6 = oA (@)())dt > 0. Now Consider the

T

K, = [0 VI*D Vz*D]>

Lyapunov-Krasovskii function which is defined as V(t) =
t
e%(t)Peﬁ(t) + J‘tir eJT%(s)Qefﬁ(s)ds. Then we have

J,. = ro (ris © rpm (0 =R ()7 () + V(1)) dt
° (29)
+V (0) -V (c0).

Assume rﬁ(t) =0fort € [-1,0]. Since V(00) > 0, it can
be concluded that

Tr < J:O (rim @m0 —a’n" (7A@ +V (1) dt. (30)

Taking derivative from V(t) and considering (28) yield

. eq (1) PF*+FTP+Q+C"V;Tv C pG* +CTV;Tv;C PR +C'V;TK; esq (t)
Jrs < L_ efm (t =) * c'v;yivie-Q VK5 erat=m ] (3
T n(t) s * -1+ KK} n(t)

m



Hence, & < 0 implies Jr., < 0. Using the Schur

complement theorem (26) is concluded from (31). Indeed, the
inequality (26), without considering (27), includes nonlinear
terms of PY", PL}, and PL; which lead the LMI to be
infeasible. To overcome this problem, define ®; = PY",
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®; = PL}, and ®; = PL3. Using conditions 2, 3 and (23) it
can be shown that (27) makes the LMI feasible. It completes
the proof. O

Theorem 4. For given 3 > 0, if there exists symmetric positive
matrices P, Q, V', V', @7, @3, and ®; such that the following
LMI holds:

PF* + F*TP - Q+2¢, (V]', V1) -PG* -PF c'v;T
* ~Q+2¢, (VS V) 0 cvy| 0, (32)
* * B'Fy Fo + 205 (K{,K])  KJ"
* * E3 _I
where
PF* = P(A-0,CA) - ©; (0,CA) - ©,C,
PG" =P(A;-0©,CA,) - ;] (0,CA,) - D;C,
. (33)
PF =[P (F,F, - ©,CF,Fy) - ®} (0,CF,Fy) - O;F,F, - P(¥,F,FsA,) - ¥} (V,F,FyAy) -®3F,F),
K; = [V{E,Fy V;E,Fy),
vi=vy"'C, V5 =Vv;"'C K} =V "R Fy Ky =V, Fy,  forn=1,2,...,
K;l = [K}} K,
® oy n n\Ty,n n\T'y,x Ty-+Tyn
@ (Vi Vie) = (Vi) Vie = (Vi) WC-C vy v, (34)
% n n\T p— T+ +T
P (V5, V) = (Vo) Voo = (V) V, € -C V)V,
* T Ty % T Ty -+T
¢ (K7, KY) = (KY) KY = (KY) Vy F, Fy = F F, Vi K,
then tlie system (35) is asymptotically stable, and e%(t)Pe fé(t) + _[:_T e%(s)Qe fé(s)ds. Then we have
IIT(rfé,f)II_ > f. Moreover, the UIO matrices are obtained
o * _ p-l _ pl _ ©0 —T
frg;n conditions 2 to 5, andY" = P~ ®,, L, = P7®,, L, = J (r% ()5 (0) - BT (®)
L T h (36)

¢p)=Fle () +Geq(t—1) +F (1),
(35)
rg () = Vl*Cefg ) + Vz*Cef@ (t-1)+K;0(1).

Proof. Condition ||T(rf?,7)||_ > f is equivalent to ], .
0T 50 - FF ©Fwnde >

Lyapunov-Krasovskii function which is defined as V(t) =

0. Now consider the

o[ oes® ] [-PFr—F P-Q+C"VTVIC
]rfé > . ef@_(t - T) *
o) *

xf () =V (£))dt =V (0) + V (c0).

Assume rfé(t) = 0 fort € [-1,0]. Since V(0c0) > 0, we
have

], Zjo (0 r - BT OF 0 -V ®)d. 67)

10

Taking derivative from V (t) and considering (35) yield

-PG* +C'v;Tv;C -PF +C'V;TK; eq5(t)
CTVZ*TVZ*C + Q CTVZ*TK;T efé_(t - T) ’ (38)
* ~-BEjFy+ K 'K} 6 (t)

[
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Hence, E > 0 implies J, 5> 0. & > 0 is equivalent to
PF* +F* P+Q-C"V;/TVC —PG* +C'V;TV;C -PF +C"VTK;
* -Q-c"v;vyc 'V Ky <0. (39)
. . BRI F, - K;TK;
Then, (39) can be written as
PF* + F* P+Q-2C"V; TV C -PG" + C"V;TV;C -PF +C'V;TK} viC
* -Q-2c"v;TvjcC c'v; Ky +[cTvyT vyt KT TV C | < 0. (40)
x x B*Fj Fy —2K; K} 1

Making use of Lemma 2 with & = 1, we have

Tv,+Tyr% T A Ty ,+T
-C'VoviC (V) V- (V) viCc-Cc Vv,V

1c?
% % T I %
-c'v;Tvyc < (Vi)' Vi - (Vi)' vie-CTV TV, (41)

K"K} < (K7)'K} - (K}) 'V, F,Fy - Fy Fy VK]

Applying Schur complement to (40) and changing variables
o, (V5 V), 9,(V),Vy), and ¢5(K[,KY), the LMI (32) is
obtained. To overcome the infeasibility of (33), the same
variables as those selected in Theorem 3 are used. It completes
the proof. O

Corollary 5. The system is asymptotically stable and satisfies
(16) if there exists symmetric positive matrices P, Q, V", V',
@7, ;, and O} such that the LMIs (26) and (32) hold.

Remark 6. 1t is desired to obtain a reference residual system
which has maximum sensitivity to the fault as well as the
minimum sensitivity to the exogenous signal. This aim can
be formulated by performance index defined by inf «/f3. To
this end, an iterative optimization method presented in [6] is

developed for the proposed structure. The procedures of this
method are as follows.

(1) Choose appropriate values of « and f3.

(2) Solve the LMI (26), and find a feasible solution for P,
Q V', Vy, @], @5, and @} matrices.

(3) Set VL = V;/"'C, VjL = V;"'C, K}y = V" 'F, F,
and K, = Vz*”_leFe. Then, solve (26) and (32) by
increasing  to find a feasible solution for P, Q, V/,
V), ®],®;,and @;.

(4) Increase f3 and decrease « and go to step 2. Continue

this procedure until the feasible solution cannot be
found for LMIs (26) and (32).

(b) Robust UIO Design (Step 2). As mentioned before, the
residual signal generator system is obtained by minimizing
(17). To this end, Theorem 8 is presented which guarantees
that the overall system (19) is asymptotically stable and
performance index (17) is minimized. Before presenting
Theorem 8, the following theorem is presented which helps
prove Theorem 8.

Theorem 7. For a given y > 0 and the system (37), if
there exist symmetric positive matrices P,Q and constants
&1, &, and &, such that the LMI (44) holds, then the system (37)
is asymptotically stable and |[v(t)|l, < yllu(®)ll,:

X =(A+AR) x () + (A +AA,) x(t-1)+ (B, + AB,)u(t), (42)
v(t)=Cx () +Cox (t— 1)+ Du(t), (43)

[PA+A"P+Q+¢'NI'N, PA, PB, C' PM, PM, PM, |

* -Q+¢&'NIN, 0 Ci 0 0 0

* # ~I+&'NIN; DT 0 0 0

* * * -1 0 0 0 <0. (44)

* * * * —81_11 0 0

* * * * * — T 0
L * * * * * * —& T




Proof. Define the following Lyapunov-Krasovskii function:

t

V(t)=xT(t>Px<t>+j L ()Qy(s)ds.  (45)

-1

The performance index [|[v(f)[l, < yllu(t)|l, can be written
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Assume y(t) = 0fort € [-7,0]. Since V(co) > 0, we have

J, < ro W v -yu Oue)+V©)d.  (47)

0

as
7, - J (" o) -y u" Ou®) +V®)dt
0 (46)
+V(0) -V (c0). Taking derivative from (45) and considering (37) yield
wl x® 1" P(A+AA) +(K+AK)TP+Q+CT61 P(A,+AA,)+C[C, P(B,+AB,)+C/D
],esj xt-1) * -Q+CLG, 0
PLu® . . 1+5'D
g (48)
X ()
x | x(t—1)|dt
u(t)

8 < 0 implies J, < 0.The E < 0 can be written as

PA+A"P+Q PA, PB,

* -Q 0
* * —yZI
C,
v|crl1[e, ¢ B (49)
DT

[ PAA + AA"P PAA, PAB,
+ * 0 0 < 0.
* * 0

Using Lemma 2, one can write the following inequality:

PAA+ AATP PAA,; PAB,

* 0 0
* * 0
PM, PM, PM,][&l 0 0
<o o o 0 &I 0
0 0 0 |[0 0 &I
o (50)
PM, PM, PM, N 0
x| 0 0 o0 | +|0 N o
0 o0 o0 | 0 o NI
gl 0 0] '[N, 0 o
x| 0 &I 0 0N, 0
0 0 &l 0 0 N3

Considering (49), (50) and using Schur complement (48)
lead to (44). It completes the proof. O

Theorem 8. Foragiveny > 0, if there exist symmetric positive
matrices P;, P,, P;, Q,, Q,, and Q;, matrices ®,, ©,, and O,
and constants €, €, and & such that LMI [s;] , <0 holds,
then the overall system (19) is asymptotically stable, and ], < y.
The observer matrices are calculated by considering (4), (5),
and conditions 2 to 5, and Y = P['®,, L, = P{'®,, and L, =
P;'®,. The LMI coefficients are defined as

T —
Sl,l = PIF + (PIF) + Q]’ 51,4 = PIG; 51,8 = PIF’

S0 =PIR, sy = CTV1T’ 