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Advanced control theory fills a gap between themathematical
control theory and modern control engineering practices.
Conceptually, advanced control theories can include any
theoretical problems related to the controller design. But
in this issue it may include model predictive control, slid-
ing mode control, robust control, real-time optimization,
and identification and estimation, which are not limited
to controller design. Advanced control technologies have
become ubiquitous in various engineering applications (e.g.,
chemical process control, robot control, air traffic control,
vehicle control, multiagent control, and networked control).
The development of mathematical methods is essential for
the applications of advanced control theories. Sometimes it
lacks effective methods to tackle the computational issue
(e.g., model predictive control of a fast process). Sometimes,
a new application requires a brand-new solver for applying
the advanced control theory (e.g., a new production line far
exceeding the usual speed). The main focus of this special
issue will be on the new research ideas and results for the
mathematical problems in advanced control theories.

A total number of 83 papers were submitted for this
special issue. Out of the submitted papers, 39 contributions
have been included in this special issue.The 39 contributions
consider several closely related and interesting topics.

The subjects in controller design/synthesis and system
analysis have occupied 24 contributions.These contributions
include, for example, adaptive control (see the work of C.

Hu and Y. Liu for the air-breathing hypersonic vehicles and
the work of W. Gai et al. for the neural network dynamic
inversion with prescribed performance in aircraft flight
control),𝐻

∞
control (see the work of A. Moutsopoulou et al.

for the active vibration control in intelligent structures and
the work of Z. H. Ismail and M. W. Dunnigan for the robust
technique for an autonomous underwater vehicle with region
tracking function), model predictive control (see the work of
H. Shen et al. for the vanadium redox flow battery modeled
by neural network and the work of H. Shi et al. for the two-
layered control of a continuous biodiesel transesterification
reactor), sliding model control (see the work of H. Pang
and X. Yang for robustifying the linear quadratic tracking
controller and thework of S. I. Serna-Garcés et al. for an active
postfilter based on two buck converters), networked control
(see the work of L. Qiu et al. for the stability under random
time delays and packet dropouts based on unified Markov
jump model), backstepping technique (see the work of J. Liu
et al. for output-feedback stabilization of stochastic nonlinear
systems), fuzzy logic control (see the work of X.-X. Zhang
et al. which presents a reference function based 3D design
methodology using support vector regression learning), and
neural network control (see the work of X. Li et al. which
is designed under small world neural network model and is
investigated in both linear and nonlinear controls).

Closely related to the controller design and synthesis
are the 9 contributions on the estimation problem. These
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contributions include, for example, time series prediction
(see the work of H. Huang et al. for forecasting the urban
traffic flow modeled by the fuzzy clustering and neural
network), the compressed sensing (see the two works of J.
Liu et al. for the direction of arrival estimation problem
in phased array radar system and for discussing splitting
matching pursuit method in reconstructing sparse signal),
Kalman filter (see the work of X. Yuan et al. for integrating the
cardinality balanced multitarget multi-Bernoulli filter with
the interacting multiple models algorithm), and robust filter
(see the work of Z. Chen and Q. Huang for the 𝐿

2
-𝐿
∞

filter design for stochastic systems with mixed delays and
nonlinear perturbations).

There are also 3 contributions on the fault diagno-
sis/detection/separation. These contributions can be seen as
the extensions of the estimation problem, in the context
of this special issue. For example, H. Zhu et al. propose a
method for broken rotor bars detection in the voltage-source-
inverter-fed squirrel-cage induction motors, and Y. Su et
al. introduce an improved kernel Fisher distinguish analysis
method for the nonlinear fault separation of redundancy
process variables.

The last 3 contributions are for the mathematical pro-
gramming (including the heuristic programming). For exam-
ple, Q. Wang et al. consider the wireless sensor networks
node localization based on the time of arrival; W. Shen et
al. apply dynamic programming algorithm to the parameter
matching analysis of hydraulic hybrid excavators; and Y.
Wang et al. propose a hybrid differential evolution algorithm
with multipopulation and apply it to solve a multiobjective
optimization model of a grinding and classification process.
Note that several other contributions mentioned above have
also considered optimizations.

In the above, some contributions are included in the
statistics but not mentioned, due to either more specific or
more compounded technicalities.We hope the readers of this
special issuewill find it interesting and stimulating and expect
that the included papers will contribute to further advance
the area of advanced control.
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Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past
approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures,
particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear
quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a
recognizable advance in knowledge of active vibration control in intelligent structures.

1. Introduction

Modeling of an ideal system consisting of a beam with
piezoelectric layers was done using one-dimensional finite
elements with two degrees of freedom per node. Cubic and
quadratic Hermit polynomials were employed for the repre-
sentation of nodal rotations and vertical displacements. Sys-
tem differential equations are derived from Euler Bernoulli
theory [1, 2].

Setting up the problem in a two-port diagram (input-
output) was not a trivial task.The classic control problemwas
transformed into a two-port problem. The goal of nominal
design was to keep error magnitude small, despite pertur-
bations and noise in measurements. Moreover, controller
size had to be contained so as to lower energy consumption
and maintain piezoelectric materials within operating limits
(±500V). By transforming transfer functions to state space
equations and by using input and output equations, state
space matrices have been derived; these matrices are used for
finding the optimal controller according to the LQR and𝐻

∞

control criterion.
Selection of the weights involved in the controller we

studied was done through optimization, while wind loading
and noise in measurements were appropriately modelled
for this particular problem. The obtained results were very

satisfactory; beam vibration is reduced even for realistic wind
measurements. Beam response results, with as well as without
control, were compared for all presented control strategies.

In this paper, we address the problem of vibrations
of intelligent structures. Stimuli may come from external
perturbations of the system, disturbances, or excitation that
may cause structural vibrations, such as wind loading or
earthquakes. An intelligent structure is expected to be able to
sense the vibration and counteract it in a controlled fashion,
so that vibration of the system can be reduced and contained.
To that end, a number of intelligent materials may be used
as actuators and sensors. Piezoelectric materials, memory
materials, and electrostrictive andmagnetostrictivematerials
are such materials. In this work, we focus on the use of
piezoelectric materials, given that they exhibit good sensing
and actuation properties.

2. Research on Intelligent Structures

The following paragraphs give a deep insight into the research
work done on the intelligent structures so far. Culshaw
discussed the concept of smart structure, its benefits, and
applications [3]. Rao and Sunar explained the use of piezo
materials as sensors and actuators in sensing vibrations in
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Figure 1: Smart beam.

their survey paper [4]. Hubbard and Baily have studied the
application of piezoelectric materials as sensor/actuator for
flexible structures [5]. Hanagud developed a Finite Element
Model (FEM) for a beamwithmany distributed piezoceramic
sensors/actuators [6].

Hwang and Park presented a new finite element (FE)
modeling technique for flexible beams [7]. Continuous time
and discrete time algorithms were proposed to control a
thin piezoelectric structure by Bona et al. [8]. Schiehlen and
Schonerstedt reported the optimal control designs for the first
few vibration modes of a cantilever beam using piezoelectric
sensors/actuators [9]. Choi have shown a design of position
tracking sliding mode control for a smart structure [10].
Distributed controllers for flexible structures can be seen in
Pourki [11].

A FEMapproachwas used byBenjeddou tomodel a sand-
wich beam with shear and extension piezoelectric elements
[12]. The finite element model employed the displacement
field of Zhang and Sun [13]. It was shown that the finite
element results agree quite well with the analytical results.
Raja et al. extended the finite element model of Benjeddou’s
research team to include a vibration control scheme [14].

3. Mathematical Modeling

A cantilever slender beam with rectangular cross-sections is
considered. Four pairs of piezoelectric patches are embedded
symmetrically at the top and the bottom surfaces of the beam,
as shown in Figure 1.

The beam is from graphite-epoxy T300–976 and the
piezoelectric patches are PZT G1195N. The top patches act
like sensors and the bottom like actuators. The resulting
composite beam is modelled by means of the classical
laminated technical theory of bending. Let us assume that the
mechanical properties of both the piezoelectric material and
the host beam are independent in time. The thermal effects
are considered to be negligible as well [15].

The beam has length 𝐿, width 𝑊, and thickness ℎ. The
sensors and the actuators have width 𝑏S and 𝑏A and thickness
ℎS and ℎA, respectively. The electromechanical parameters of
the beam of interest are given in Table 1.

Table 1: Parameters of the composite beam.

Parameters Values
Beam length, 𝐿 0.3m
Beam width,𝑊 0.04m
Beam thickness, ℎ 0.0096m
Beam density, 𝜌 1600 kg/m3

Young’s modulus of the beam, 𝐸 1.5 × 10
11 N/m2

Piezoelectric constant, 𝑑
31

254 × 10
−12m/V

Electric constant, 𝜉
33

11.5 × 10
−3 Vm/N

Young’s modulus of the piezoelectric element 1.5 × 10
11 N/m2

Width of the piezoelectric element 𝑏S = 𝑏A = 0.04m
Thickness of the piezoelectric element ℎS = ℎA = 0.0002m

In order to derive the basic equations for piezoelectric
sensors and actuators [1], we assume that

(i) the piezoelectric sensors actuators (S/A) are bonded
perfectly on the host beam;

(ii) the piezoelectric layers are much thinner than the
host beam;

(iii) the piezoelectric material is homogeneous, trans-
versely isotropic, and linearly elastic;

(iv) the piezoelectric S/A are transversely polarized [1, 3,
16].

3.1. Finite Element Formulation. We consider a beam element
of length 𝐿

𝑒
, which has two mechanical degrees of freedom

at each node: one translational 𝜔
1
(resp. 𝜔

2
) in direction

𝑧 and one rotational 𝜓
1
(resp., 𝜓

2
). The vector of nodal

displacements and rotations 𝑞
𝑒
is defined as [17]

𝑞
𝑟

𝑒
= [𝜔
1
, 𝜓
1
, 𝜔
2
, 𝜓
2
] . (1)

The beam element transverse deflection 𝜔(𝑥, 𝑡) and the
beam element rotation 𝜓(𝑥, 𝑡) of the beam are continuous
and they are interpolated within by Hermitian linear shape
functions𝐻𝜔

𝑖
and𝐻

𝜓

𝑖
as follows [18, 19]:

𝜔 (𝑥, 𝑡) =

4

∑

𝑖=1

𝐻
𝜔

𝑖
(𝑥) 𝑞
𝑖
(𝑡) ,

𝜓 (𝑥, 𝑡) =

4

∑

𝑖=1

𝐻
𝜓

𝑖
(𝑥) 𝑞
𝑖
(𝑡) .

(2)

This classical finite element procedure leads to the
approximate discretized variational problem. For a finite
element, the discrete differential equations are obtained by
substituting the discretized expressions into the first variation
of the kinetic energy and strain energy [18, 20] to evaluate the
kinetic and strain energies. Integrating over spatial domains
and using the Hamiltons principle [20], the equation of
motion for a beam element is expressed in terms of nodal
variable 𝑞 as follows:

𝑀 ̈𝑞 (𝑡) + 𝐷 ̇𝑞 (𝑡) + 𝐾𝑞 (𝑡) = 𝑓
𝑚
(𝑡) + 𝑓

𝑒
(𝑡) , (3)

where 𝑀 is the generalized mass matrix, 𝐷 the viscous
damping matrix, 𝐾 the generalized stiffness matrix, 𝑓

𝑚
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the external loading vector, and 𝑓
𝑒
the generalized control

force vector, produced by electromechanical coupling effects.
The independent variable 𝑞(𝑡) is composed of transversal
deflections 𝜔

1
and rotations 𝜓

1
; that is, [16, 18]

𝑞 (𝑡) =

[
[
[
[
[
[

[

𝜔
1

𝜓
1

...
𝜔
𝑛

𝜓
𝑛

]
]
]
]
]
]

]

, (4)

where 𝑛 is the number of nodes used in analysis. Vectors
𝜔 and 𝑓

𝑚
are positive upwards. To transform to state-space

control representation, let (in the usual manner)

̇𝑥 (𝑡) = [
𝑞 (𝑡)

̇𝑞 (𝑡)
] . (5)

Furthermore, to express 𝑓
𝑒
(𝑡) as 𝐵𝑢(𝑡), we write it as

𝑓
∗

𝑒
𝑢, where 𝑓∗

𝑒
the piezoelectric force is for a unit applied on

the corresponding actuator and 𝑢 represents the voltages on
the actuators. Furthermore, 𝑑(𝑡) = 𝑓

𝑚
(𝑡) is the disturbance

vector [16, 18].
Then,

̇𝑥 (𝑡) = [
𝑂
2𝑛×2𝑛

𝐼
2𝑛×2𝑛

−𝑀
−1

𝐾 −𝑀
−1

𝐷
]𝑥 (𝑡)

+ [
𝑂
2𝑛×2𝑛

𝑀
−1

𝑓
∗

𝑒

] 𝑢 (𝑡) + [
𝑂
2𝑛×2𝑛

𝑀
−1 ]

= 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐺𝑑 (𝑡)

= 𝐴𝑥 (𝑡) + [𝐵 𝐺] [
𝑢 (𝑡)

𝑑 (𝑡)
]

= 𝐴𝑥 (𝑡) + 𝐵𝑢̃ (𝑡) .

(6)

The previous description of the dynamical system will
be augmented with the output equation (displacements only
measured) [17] as follows:

𝑦 (𝑡) = [𝑥
1
(𝑡) 𝑥
3
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛−1
(𝑡)]
𝑇

= 𝐶𝑥 (𝑡) . (7)

In this formulation, 𝑢 is 𝑛 × 1 (at most, but can be smaller),
while d is 2𝑛 × 1. The units used are compatible for instance
m, rad, sec, and N [21, 22].

4. Linear Quadratic Regulator: LQR Control

It is well known [23, 24] that constant input disturbances can
be eliminated only if the controller has a zero at infinity (i.e., it
integrates). Another useful interpretation is that an integrator
is a disturbance estimator. Hence we do not expect a zero
steady-state error using an LQR controller.

The structure of LQR control with reduced order observer
is shown in Figure 2.

Here, 𝑑 are the disturbances, 𝑛 is the noise, and the
controller𝐾 defines,

𝐾 = lim
𝑡→∞

𝐾 (𝑡) , (8)

yu

w
H

F

M

N

Beam

Observer

G

Regulator

d

n

Controller

yn

−K

x̂ ∫

Figure 2: LQR controller with state estimator.

where

𝑢 (𝑡) = −𝐾 (𝑡) 𝑥 (𝑡) (9)

minimizes the weighted performance index as follows:

𝐽 = ∫

∞

0

(𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)) d𝑡, (10)

and 𝑄, and 𝑅 are design weight matrices.
The controller𝐾 is given by relation

𝐾𝐴 − 𝐾𝐵𝑅
−1

𝐵
𝑇

𝐾 + 𝑄 + 𝐴
𝑇

𝐾 = 0, (11)

which is the solution of the Riccati equation.
The weight matrices 𝑄 and 𝑅 are used in order to:

(i) normalize the state and control vector;
(ii) assess the relative influence of deflection from equi-

librium position and magnitude of control on the
determination of a global criterion. Matrices 𝑄 and
𝑅 are diagonal with positive diagonal inputs, so that

√𝑄
𝑖
=

1

max (𝑥
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑚,

√𝑅
𝑖
=

1

max (𝑢
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑘.

(12)

The value max(𝑥
𝑖
) sets the maximum desirable output

value 𝑦. The value max(𝑢
𝑖
) has similar significance for input

𝑢.
Matrix 𝑄 sets the weight for each state, while matrix 𝑅

holds theweight for each actuator’s voltage.TheLQRproblem
requires that the state be known [23].

5. Inputs

A typical wind load (Figure 3) Acting on the side of the
structure. The wind load is a real-life wind speed measure-
ment in relevance with time that took place in Estavromenos
of Heraklion, Crete. We transform the wind speed in wind
pressure.
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Figure 3: Wind load.

Loading corresponds to the wind excitation.The function
𝑓
𝑚
(𝑡) has been obtained from the wind velocity record,

through the relation

𝑓
𝑚
(𝑡) =

1

2
𝜌𝐶
𝑢
𝑉
2

(𝑡) , (13)

where 𝑉 = velocity, 𝜌 = density, and 𝐶
𝑢
= 1.5.

Moreover, in all simulations, random noise has been
introduced to measurements at system output locations
within a probability interval of ±1%. Due to small displace-
ments of system nodal points, noise amplitude is taken to be
small, of the order of 5×10−5. On the other hand, the signal is
introduced at each node of the beamby a different percentage,
that percentage being lower at the first node due to the fact
that the beam end point is clamped.

6. Results of Application of LQR Control

The 𝑄 and 𝑅 that were used are

𝑅 = 0, 0001 × 𝐼
4×4

, (14)

𝑄 = 100000 ×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0
...

0 0 0 0 0 0 0
...

0 0 1 0 0 0 0
...

0 0 0 0 0 0 0
... 0
7×9

0 0 0 0 1 0 0
...

0 0 0 0 0 0 0
...

0 0 0 0 0 0 1
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
... ⋅ ⋅ ⋅

0
9×7

... 0
9×9

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(15)

Since max(𝑥
𝑖
) = 0.00316228 and max(𝑢

𝑖
) = 100 (11), matrix

𝐿 is the design matrix. Its eigenvalues are chosen in such

a way that the observer subsystem can be about two times
faster than the observed system. The selected values for our
simulation are

𝜆
𝐿
= 10
7

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

2.7423556

−0.430498

−0.031873

−0.000051 + 0.0001993𝑖

−0.000051 − 0.000199𝑖

−0.00045 + 0.000053𝑖

−0.00045 − 0.000053𝑖

−0.00039 + 0.00001𝑖

−0.00039 − 0.00001𝑖

−0.0004

−0.0004

−0.0004

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (16)

These values have been obtained by trial and error, given
the poor numerical properties of the system. To find these
values, we have used a robust pole computation algorithm
included in MATLAB [25, 26].

The controller [Klqr] is given by relation (11) which is the
solution of the Riccati equation, where𝐴 and 𝐵 are respective
state and control matrices of the system and 𝑅 and 𝑄 are
weight matrices of the performance criterion (regulator) (14)
and (15), respectively.

For the simulation, beam nodal displacements and rota-
tions with and without control are displayed in Figures 4 and
5, while Figure 6 presents actuator voltage values for control
of all beam nodes.

6.1. Discussion of the Results of the Linear Quadratic Regulator
(LQR). Using the linear quadratic controller criterion LQR,
beam vibration reduction is observed at all nodal points, for
both constant and sinusoidal mechanical input, as well as
for realistic wind loading. LQR control achieves reduction of
vibration but at the same time requires the entire system state
time history as well as an extensive sensor distribution.

We encounter the following difficulties:

(i) system disturbances are unknown and unpredictable;

(ii) the state vector is notmeasurable in its entirety, which
in turn necessitates the use of an observer. This setup
is problematic, as the observer has no information
on the disturbance, which results in erroneous esti-
mates. A way to circumvent this problem is the use
of an unknown input observer. Unfortunately, this
approach is not feasible, as one of the prerequisite
conditions is not met. This situation complicates the
problem, making the application of classic controllers
such as LQR difficult, since its performance is directly
related to the availability of the state vector, or at best
of a reliable estimator of the state vector.

For the reasons mentioned above, we will continue with
a discussion of more advanced control techniques for this
particular problem, such as the𝐻

∞
control.
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Figure 4: Displacement at all beam nodal points, with and without LQR control.

7. 𝐻Infinity Control

To relate the structures used in classical and 𝐻
∞

control, let
us look at Figure 7, in the frequency domain [16, 23, 24].

In this diagram, all inputs and outputs of interest are
included, along with their respective weighs 𝑊, where 𝑊

𝑑
,

𝑊
𝑢
,𝑊
𝑛
, and𝑊

𝑦
are the weighs for the disturbances, control,

noise, and outputs, respectively.The exogenous inputs are the
noise 𝑛 and the disturbances 𝑑.𝐾(𝑠) is the controller, 𝐵, 𝐺, 𝑥,
𝑦, 𝐶 define at the relation (6, 7, 8), and 𝐹(𝑠) is the transfer
function of our system.

To find the necessary transfer functions consider the
following:

𝑦
𝐹𝑤

= 𝑊
𝑦
𝐽𝑥 = 𝑊

𝑦
𝐽𝐹V

= 𝑊
𝑦
𝐽𝐹 (𝐺𝑊

𝑑
𝑑 + 𝐵𝑢

𝐾
)

= 𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
𝑑 +𝑊

𝑦
𝐽𝐹𝐵𝑢
𝐾
,

𝑢
𝑤
= 𝑊
𝑢
𝑢
𝐾
,

𝑦
𝑛
= 𝐶𝑥 +𝑊

𝑛
𝑛

= 𝐶𝐹V +𝑊
𝑛
𝑛

= 𝐶𝐹 (𝐺𝑊
𝑑
𝑑 + 𝐵𝑢

𝐾
) + 𝑊

𝑛
𝑛

= 𝐶𝐹𝐺𝑊
𝑑
𝑑 + 𝐶𝐹𝐵𝑢

𝐾
+𝑊
𝑛
𝑛.

(17)

Combining all these gives

[

[

𝑢
𝑤

𝑦
𝐹𝑤

𝑦
𝑛

]

]

= [

[

0 0 𝑊
𝑢

𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
0 𝑊

𝑦
𝐽𝐹𝐵

𝐶𝐹𝐺𝑊
𝑑

𝑊
𝑛

𝐶𝐹𝐵

]

]

[

[

𝑑

𝑛

𝑢
𝐾

]

]

. (18)

Note that the plant transfer function matrix, 𝐹(𝑠), is
deduced from the suitably reformulated plant equations as
follows:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐼V (𝑡) ,

𝑦 (𝑡) = 𝐼𝑥 (𝑡) ,

(19)

where V(𝑡) = 𝐺𝑑 + 𝐵𝑢
𝑘
.
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Figure 5: Angle of rotation at all beam nodal points, with and without LQR control.
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LQR control.

Hence,

𝐹 (𝑠) = (𝑠𝐼 − 𝐴)
−1

. (20)
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Figure 7:𝐻Infinity control bloc diagram in the frequency domain.

The equivalent two-port diagram in the state space form
is shown in Figure 8 for the close loop, and with more details
in Figure 9, with

𝑧 = [
𝑢
𝑤

𝑦
𝐹𝑤

] , 𝑤 = [
𝑑

𝑛
] , 𝑦 = 𝑦

𝑛
, 𝑢 = 𝑢

𝐾
,

(21)

where 𝑧 are the output variables to be controlled and 𝑤 the
exogenous inputs.
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Given that𝑃has two inputs and two outputs, it is, as usual,
naturally partitioned as

[
𝑧 (𝑠)

𝑦 (𝑠)
] = [

𝑃
𝑧𝑤

(𝑠) 𝑃
𝑧𝑢
(𝑠)

𝑃
𝑦𝑤

(𝑠) 𝑃
𝑦𝑢

(𝑠)
] [

𝑤 (𝑠)

𝑢 (𝑠)
]

o𝜌
= 𝑃 (𝑠) [

𝑤 (𝑠)

𝑢 (𝑠)
] .

(22)

Also,

𝑢 (𝑠) = 𝐾 (𝑠) 𝑦 (𝑠) . (23)

Using (18) the transfer function for 𝑃 which is

𝑃 (𝑠) = [

[

0 0 𝑊
𝑢

𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
0 𝑊

𝑦
𝐽𝐹𝐵

𝐶𝐹𝐺𝑊
𝑑

𝑊
𝑛

𝐶𝐹𝐵

]

]

, (24)

while the closed loop transfer function for𝑀
𝑧𝑤
(𝑠) is

𝑀
𝑧𝑤

(𝑠) = 𝑃
𝑧𝑤

(𝑠) + 𝑃
𝑧𝑢
(𝑠) 𝐾 (𝑠) (𝐼 − 𝑃

𝑦𝑢
(𝑠) 𝐾 (𝑠))

−1

𝑃
𝑦𝑤

(𝑠) ,

(25)
or

𝑧 = 𝑀
𝑧𝑤
𝑤 = 𝐹

𝑙
(𝑃, 𝐾)𝑤. (26)

Equation (25) is the well known lower LFT for𝑀
𝑧𝑤
.

To express 𝑃 in state space form, the natural partitioning

𝑃 (𝑠) = [

[

𝐴 𝐵
1

𝐵
2

𝐶
1

𝐷
11

𝐷
12

𝐶
2

𝐷
21

𝐷
22

]

]

= [
𝑃
𝑧𝑤

(𝑠) 𝑃
𝑧𝑢
(𝑠)

𝑃
𝑦𝑤

(𝑠) 𝑃
𝑦𝑢

(𝑠)
] (27)

is used (where the packed form has been used), while the
corresponding form for the controller𝐾 is [27–29]

𝐾 (𝑠) = [
𝐴
𝐾

𝐵
𝐾

𝐶
𝐾

𝐷
𝐾

] . (28)

Equation (27) defines the following equations:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + [𝐵
1
𝐵
2
] [

𝑤 (𝑡)

𝑢 (𝑡)
] ,

[
𝑧 (𝑡)

𝑦 (𝑡)
] = [

𝐶
1

𝐶
2

] 𝑥 (𝑡) + [
𝐷
11

𝐷
12

𝐷
21

𝐷
22

] [
𝑤 (𝑡)

𝑢 (𝑡)
] ,

̇𝑥
𝐾
(𝑡) = 𝐴

𝐾
𝑥
𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
𝑥
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(29)

To find the matrices involved, we break the feedback loop
and use the relevant equations.

Therefore the equations relating the inputs, outputs,
states, and input/output to the controller are

̇𝑥
𝐹
= 𝐴𝑥
𝐹
+ (𝐺𝑑

𝑤
+ 𝐵𝑢) , 𝑦

𝐹
= 𝑥
𝐹
,

̇𝑥
𝑢
= 𝐴
𝑢
𝑥
𝑢
+ 𝐵
𝑢
𝑢, 𝑢

𝑤
= 𝐶
𝑢
𝑥
𝑢
+ 𝐷
𝑢
𝑢,

̇𝑥
𝑦𝐹

= 𝐴
𝑦𝐹
𝑥
𝑦𝐹

+ 𝐵
𝑦𝐹
𝐽𝑦
𝐹
, 𝑦

𝐹𝑤
= 𝐶
𝑦𝐹
𝑥
𝑦𝐹

+ 𝐷
𝑦𝐹
𝑦
𝐹
,

̇𝑥
𝑛
= 𝐴
𝑛
𝑥
𝑛
+ 𝐵
𝑛
𝑛, 𝑛

𝑤
= 𝐶
𝑛
𝑥
𝑛
+ 𝐷
𝑛
𝑛,

̇𝑥
𝑑
= 𝐴
𝑑
𝑥
𝑑
+ 𝐺𝑑, 𝑑

𝑤
= 𝐶
𝑑
𝑥
𝑑
+ 𝐷
𝑑
𝑑,

𝑦
𝑛
= 𝐶𝑦
𝐹
+ 𝑛
𝑤
,

𝑥 =

[
[
[
[
[

[

𝑥
𝐹

𝑥
𝑢

𝑦
𝐹𝑤

𝑥
𝑛

𝑥
𝑑

]
]
]
]
]

]

, 𝑦 = 𝑦
𝑛
,

𝑤 = [
𝑑

𝑛
] , 𝑧 = [

𝑢
𝑤

𝑦
𝐹𝑤

] , 𝑢 = 𝑢
𝐾
.

(30)

From (30), we use 𝑑
𝑤
, 𝑛
𝑤
𝜅𝛼𝜄 𝑦
𝐹𝑤

and take our initial state
space equation in the form of (6, 7, 8), as follows:

̇𝑥 =

[
[
[
[
[

[

𝐴
𝐺

0 0 0 𝐺𝐶
𝑑

0 𝐴
𝑢

0 0 0

𝐵𝐶
𝐹

0 𝐴
𝑦𝐹

0 0

0 0 0 𝐴
𝑛

0

0 0 0 0 𝐴
𝑑

]
]
]
]
]

]

𝑥

+

[
[
[
[
[

[

𝐺𝐷
𝑑

0

0 0

0 0

0 𝐵
𝑛

𝐵
𝑑

0

]
]
]
]
]

]

𝑤 +

[
[
[
[
[

[

𝐵

𝐵
𝑢

0

0

0

]
]
]
]
]

]

𝑢,

𝑧 = [
0 𝐶

𝑢
0 0 0

𝐷
𝑦𝐹
𝐶
𝐹

0 𝐶
𝑦𝐹

0 0
] 𝑥 + 0𝑤 + [

𝐷
𝑢

0
] 𝑢,

𝑦 = [𝐶
𝐹

0 0 𝐶
𝑛

0] 𝑥 + [0 𝐷
𝑛
] 𝑤 + 0𝑢.

(31)
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Figure 10: Bode diagrams of diagonal elements of weight matrices.

Therefore the matrices are

𝐴
1
=

[
[
[
[
[

[

𝐴
𝐹

0 0 0 𝐺𝐶
𝑑

0 𝐴
𝑢

0 0 0

𝐵𝐶
𝐹

0 𝐴
𝑦𝐹

0 0

0 0 0 𝐴
𝑛

0

0 0 0 0 𝐴
𝑑

]
]
]
]
]

]

,

𝐵
1
=

[
[
[
[
[

[

𝐺𝐷
𝑑

0

0 0

0 0

0 𝐵
𝑛

𝐵
𝑑

0

]
]
]
]
]

]

, 𝐵
2
=

[
[
[
[
[

[

𝐵

𝐵
𝑢

0

0

0

]
]
]
]
]

]

,

𝐶
1
= [

0 𝐶
𝑢

0 0 0

𝐷
𝑦𝐹
𝐶
𝐹

0 𝐶
𝑦𝐹

0 0
] ,

𝐷
11

= 0, 𝐷
12

= [
𝐷
𝑢

0
] ,

𝐶
2
= [𝐶
𝐹

0 0 𝐶
𝑛

0] , 𝐷
21

= [0 𝐷
𝑛
] , 𝐷

22
= 0.

(32)

7.1. Results with 𝐻
∞
. Figure 10 presents the Bode diagrams

of diagonal elements of the above weight matrices. These

matrices have been obtained through a number of tests, to
ensure the feasibility of finding a controller𝐻

∞
.

The controller obtained by applying 𝐻
∞

control is 36
order. For this controller, 𝛾 = 0.074. A plot of the maximum
singular value of the weighted closed loop system (beam plus
𝐻
∞
controller) is given in Figure 11, where we can clearly note

that the value remains below 𝛾 at all frequencies.
Figures 12, 13, and 14 further show themaximum singular

values of transfer functions of the unweighted closed loop
system (i.e., the initial one) that are of interest.

These figures show that the performance of the computed
controller is satisfactory [30] since:

(i) as shown in Figure 12, there is a significant improve-
ment in the effect of disturbance on error up to the
frequency of 1000Hz;

(ii) as shown in Figure 13, there seems to be little effect of
noise on error for frequencies beyond 1000Hz;

(iii) Figure 14 shows a satisfactory effect of the disturbance
on the size of the control scheme (the design could be
improved, if it were possible to reduce noise effect for
frequencies of 1000Hz).



Journal of Applied Mathematics 9

10
10

10
8

10
6

10
4

10
2

10
2

10
0

10
0

10
−2

10
−2

noise to error
H∞ control unweighted closed loop: max. singular value

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Figure 11: Maximum singular value of the unweighted closed loop
system.

OL
CL

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
10

10
8

10
6

10
4

10
2

10
0

10
−2

disturbance to error
H∞ control unweighted closed loop: max. singular value

Figure 12: Maximum singular value disturbance to error.

To validate the above findings, system response time
histories for the three input cases mentioned in this section
are presented below.

Using the mechanical input, we get the following result.
Figure 15 shows the displacement time history at all nodal

points of the beam, with and without control, while Figure 16
displays the angle of rotation time history at all beam nodal
points, with and without control. By employing the 𝐻

∞

control, vibration reduction is achieved; we observe vibration
reduction of 90%. Figure 17 presents the time evolution of the
produced actuator voltage, which turns out to be lower than
the piezoelectric voltage limit value of 500V.

7.2. Order Reduction of Controller 𝐻
∞
. The 𝐻

∞
controller

found is of order 36. The fact that controller order, which is
equal to the order of the system, is relatively higher than the
order of classical controllers such as PI and LQR has led a
number of researchers to develop order reduction algorithms.
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The most widely used such algorithm, known as HIFOO, has
been implemented in a Matlab environment, and is the one
used in the following procedure [31].

The general problem is to compute a controller of reduced
rank/order 𝑛 < 36while retaining the performance of the𝐻

∞

criterion as well as the behaviour of a full order controller for
the given system [32, 33] as follows:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
𝑤 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

11
𝑤 (𝑡) + 𝐷

12
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

21
𝑤 (𝑡) + 𝐷

22
𝑢 (𝑡) .

(33)

The state space equations for the controller𝐾 are

̇𝑥
𝐾
(𝑡) = 𝐴

𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(34)
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Figure 15: Displacement at all beam nodal points, with and without𝐻
∞
control.

Let 𝛼(𝑋) be the spectral abscissa of amatrix𝑋, that is, the
maximum real part of its eigenvalues. Then, we require not
only that 𝛼(𝐴CL) < 0, where 𝐴CL is the closed loop system
matrix, but that 𝛼(𝐴

𝑘
) < 0 as well. The feasible set of 𝐴

𝑘
,

that is the set of stable matrices, is not a convex set and has a
boundary that is not smooth [34, 35].

The HIFOO procedure has two phases: stability and
performance optimization [31, 36]. In the stability phase,
HIFOO attempts to minimize

max (𝛼 (𝐴CL, ∈ 𝛼 (𝐴CL))) , (35)

where 𝜀 is a positive parameter that will be described shortly,
until a controller is found for which this quantity is negative;
that is, the controller is stable and makes the closed loop
system stable. In case it is unable to find such a controller,
HIFOO terminates unsuccessfully.

In the performance optimization phase, HIFOO searches
for a local minimizer of

𝑓 (𝐾)

={
∞, if max (𝛼 (𝐴CL, 𝛼 (𝐴𝐾)))≥ 0,

max (󵄩󵄩󵄩󵄩𝑇𝑧𝑤
󵄩󵄩󵄩󵄩∞

, ∈ ‖𝐾‖
∞
) , if else,

(36)

where

‖Κ‖
∞

= sup
𝑅𝑠=0

󵄩󵄩󵄩󵄩󵄩
𝐶
𝑘
(𝑠𝐼 − 𝐴

𝑘
)
−1

𝐵
𝐾
+ 𝐷
𝐾

󵄩󵄩󵄩󵄩󵄩2
. (37)

The introduction of 𝜀 is motivated by the fact that the
main design objective is to attain closed loop system stability
and to minimize ‖𝑇

𝑧𝑤
‖
∞
, by demonstrating that 𝜀 should

be relatively small; the term 𝜀‖𝐾‖
∞
, however, prevents the

controller 𝐻
∞

norm from becoming too large, in which
case the stability constraint by itself would not exist. Given
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Figure 16: Angle of rotation at all beam nodal points, with and without𝐻
∞
control.
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that it is preceded by the stability phase, the performance
optimization phase is initialized with a finite value of 𝑓(𝐾).
Consequently, when it reaches a value of𝐾 for which 𝑓(𝐾) =

∞, that value is rejected, since an objective reduction is
sought at each iteration [31, 36].

7.3. Results Using Controller HIFOO. As mentioned before,
the HIFOO controller is implemented in Matlab by way of
appropriate routines. It is called in the following manner:

Kfoo = hifoo (plant, 2) , (38)

where plant is the system description in the form of (33) and
𝑛 = 2 is the controller order.

The resulting controller is described in state space in
similar manner as𝐻

∞
; that is,

̇𝑥
𝐾
(𝑡) = 𝐴

𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(39)

The controller state space equation is given by (39), where
controller matrices are equal to

𝐴
𝐾
= [

728.1 −5034

207.5 −1408
] ,

𝐵
𝐾
= [

212.8 811.6 1716 2810

−164.9 −637.2 −1348 −2207
] ,

𝐶
𝐾
=

[
[
[

[

1557

1013

517

144.3

−916.7

−592.3

−297.9

−82.59

]
]
]

]

,

𝐷
𝐾
=

[
[
[

[

36.1 136.6 287.1 468.3

23.5 87.69 186.5 303

12.12 44.12 93.39 154.3

4.204 12.53 26.92 43.51

]
]
]

]

.

(40)

For the purpose of comparison of HIFOO controller
performance to that of 𝐻

∞
, the beam free end response is

examined, for the mechanical input.
For the input in Figure 18, the beam free end response is

shown, initially with and then without the HIFOO controller,
while Figure 19 presents produced actuator voltage using the
HIFOO controller.

Using the HIFOO controller for an actual wind loading,
beam position control is effected with node displacements
of order of 10−5, with lower produced voltage. We therefore
maintain 𝐻

∞
criterion performance with a lower order

controller. The maximum produced voltage for the HIFOO
controller is 7 V; the respective value is 45V for the 𝐻

∞

controller. In other words, beam adjustment to its equilib-
rium position is achieved with a lower order controller that
requires lower voltage; see Figure 19.

8. Results

In the present work, the use of active control technology in
intelligent structures has been presented. The goal of control
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Figure 18: Beam free end displacement, with and without HIFOO
control.
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Figure 19: Stress at beam nodal points, using HIFOO.

is vibration reduction, while sustaining low steady state error,
short recovery time, and small maximum uplift; at the same
time, control energy must remain within operating limits.

The beam that was used was discretized using 1-
dimensional finite elements with two degrees of freedom per
node. Piezoelectric actuators were embedded in it with the
objective of reducing vibrations under deterministic as well
as stochastic loading conditions.

Initially, we examined the linear quadratic control crite-
rion using a reduced rank observer, which makes the simula-
tionmore realistic. Tofind the observer, we employed a robust
pole location algorithm. By selecting appropriate weights,
beam vibration reduction was achieved for stochastic loading
cases. In all simulations, random noise has been introduced
in measurements, so that the system better approximate
reality, given that displacement measurement by means of
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piezoelectric sensors is not reliable. Next we applied more
advanced control techniques, such as the 𝐻

∞
criterion. The

𝐻
∞

controller found is of order 36.
In order to reduce computational requirements of the

model, controller rank was reduced by means of non-
parametric and nonconvex optimization, using the HIFOO
controller. The controller exhibited good performance even
for a significantly smaller system degree.

A natural consequence of the proposed research inno-
vations is the acknowledgement of new scientific problems
that can be used as the basis for further research beyond the
scope of this work. The advantage of active control is the
fact that it allows taking into account in the computation the
worst case result of disturbances with uncertainty and system
noise. Moreover, the active control can effectively cope with
stronger input, permitting the design for a large frequency
bandwidth. Results are noteworthy; vibration reduction is
observed even for realistic wind loading, with piezoelectric
component voltage kept within tolerance.
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Nonlinear faults are difficultly separated for amounts of redundancy process variables in process industry. This paper introduces
an improved kernel fisher distinguish analysis method (KFDA). All the original process variables with faults are firstly optimally
classified inmulti-KFDA (MKFDA) subspace to obtain fisher criterion values.Multikernel is used to consider different distributions
for variables. Then each variable is eliminated once from original sets, and new projection is computed with the same MKFDA
direction. From this, differences between new Fisher criterion values and the original ones are tested. If it changed obviously, the
effect of eliminated variable should be much important on faults called false nearest neighbors (FNN). The same test is applied to
the remaining variables in turn. Two nonlinear faults crossed in Tennessee Eastman process are separated with lower observation
variables for further study. Results show that the method in the paper can eliminate redundant and irrelevant nonlinear process
variables as well as enhancing the accuracy of classification.

1. Introduction

With developments of modern process industry, multivariate
monitor from sensors has showed their multicollinearity,
nonlinear correlative coupling, time delay, and redundancy.
It makes complexity increasing with exponent to fault separa-
tion and diagnosis, called “Curse of Dimension” [1, 2]. On the
other hand, right ratio of fault classification decreases with
multivariate and redundancy process variables. Therefore,
many attentions have been paid on two points of view that are
variable selection and dimension reduction [3, 4].

Among the study of variable selection, the existed meth-
ods can be broadly classified into three categories: random
search techniques, measure-based method, and intelligent
computation. In random search, each process variable is dir-
ectly deleted or involved in the classification model one time
in turn to search the most suitable input sets under a certain
criterion, such as forward selection, backward selection, and
stepwise that are simple and easily realized methods [5].

While it was studied by Masion and Gunst [6] that these
methodswould result inmistaken results, variable set appears
multicollinearity. Measure-based method appears to select
variable with computing relevancy among all variables, as
well as that between variables and labels. The variables with
highest similar characteristic will be gathered in one kind.
According to different definition, K-L information measure,
minimum description length, and mutual information are
used [7–9]. Intelligent computation deepens to solve nonlin-
ear variable selection problem, such as neurnal network that
is once used to nonlinearmodel, while its selection criterion is
uncertain [10].

Dimension reduction is different from variable selection,
which mainly depends on transformation and information
extraction of original variablematrix. It projects original vari-
ables with a certain mapping to a new subspace and extracts
information in lower dimension, such as principal compon-
ent analysis (PCA) [11] and partial least squares (PLS) [12].
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Figure 1: The fault diagnosis with multivariate.

Original variables with linear-relative process variables are
linearly projected according to the maximum direction of
covariance matrix. Meanwhile, the maximum original infor-
mation can be kept as most as possible. Contribution chart
method is theway to calculate contribution of each variable to
certain fault with 𝑇

2 statics and SPE [13, 14] for PCA. The
above linear methods have been extended to nonlinear ones
after kernel method presented [15–20], such as kernel princi-
pal component analysis (KPCA), kernel partial least squares
(KPLS), and kernel fisher discriminant analysis (KFDA). Ker-
nel method converts a linear classification learning algorithm
into nonlinear one, bymapping the original observations into
a higher-dimensional space. So that linear classifier in the
new space equals to a nonlinear classifier in the original space.

However, nonlinear information projected to the new fea-
ture space has higher dimension, and data matrix has lost
their original physicalmeaning in original sample space. If we
separated nonlinear faults crossed together in original space,
the dimension of classifier with kernelmethodwould become
huge, while right ratio would decrease with redundancy and
multicollinearity variables.

The objective of this paper is to deepen dimension reduc-
tion method for the above problems with measure method in
variable selection called MKFDA-FNN. Nonlinear process
variables are projected in higher-dimension space with
MKFDA. Discriminant vector and its corresponding feature
vector with maximum separation are computed to cluster
original variables with highest similarity. With embed-
dimension increasing, false nearest neighbors (FNN) with
high similarity are able to be removed in turn.Thus, nonlinear
redundancy and multicollinearity process variables can be
removed from input sets to nonlinear classifier. Finally, we
give an actual fault separation problem in classical chemical
process Tennessee Eastman (TE) to further study.

2. Problem Description

In fault separation problem presented above, it equals to
screen original process variables related to certain faults as
most as possible.Multivariate datamatrix considered initially
with normal and fault information is described in Figure 1,
where𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
are process variables with 𝑛-dimension,

Nonlinear Fault
MKFDAor oror separationmapping

With FNN, compute the similarity between,
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Ψ(X) and Ψ(Xi) when each original variable places to zero

Figure 2: Nonlinear fault diagnosis with redundancy process
variables based on FNN in MKFDA subspace.
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where 𝑓, 𝑔, and ℎ present maximum delay order of process/
control variables 𝑥

1
, 𝑥
2
, and 𝑥

𝑛
, 𝑘 presents current sample

time, and 𝑙 is sample length.

3. Multivariate Fault Separation
Based on MKFDA-FNN

To fault separation problem with nonlinear redundancy pro-
cess/control variables, an approach is proposed in Figure 2.
Correlated nonlinear variables are firstly projected to a
higher-dimension MKFDA subspace. Furthermore, in order
to find fairly useful variables, the importance of each input is
measured in subspace with distance measure inspired by
FNN. Accordingly, redundant variables are recognized. It
makes separation of faults crossed together easily.

3.1. False Nearest Neighbors. FNN is the feature selection
method on the basis of phase space reconstruction (PSR) in
high-dimension data space [21]. With embed-dimension
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increasing, movement locus becomes open, and false nearest
neighbors with high similarity are able to be removed in turn.
It restores the locus of chaos. Its algorithm is as follows.

In 𝑑-dimension phase space including original variables
and their time delay, each phase vector 𝑥(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 𝜏),

. . . , 𝑥(𝑖 + (𝑑 − 1)𝜏)} has one nearest neighbors 𝑥𝑁𝑁(𝑖). Their
2-norm distance is

𝑅
2

𝑑+1
(𝑖) = 𝑅

2

𝑑
(𝑖) +

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑖 + 𝜏𝑑) − 𝑥

𝑁𝑁

(𝑖 + 𝜏𝑑)
󵄩󵄩󵄩󵄩󵄩
. (2)

When 𝑑-dimension is increased to 𝑑+ 1, the above phase
vector is changed as new one, noted as 𝑅

𝑑+1
(𝑖) in

𝑅
𝑑
(𝑖) =

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑖) − 𝑥

𝑁𝑁

(𝑖)
󵄩󵄩󵄩󵄩󵄩
. (3)

If𝑅
𝑑+1

(𝑖)wasmuch bigger than𝑅
𝑑
(𝑖), itmeans the projec-

tion of two nonneighbor phase vector fromhigher dimension
to lower one. So the two neighbors are the false nearest
neighbors.

Note that

𝑎
1
(𝑖, 𝑑) =

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑖 + 𝜏𝑑) − 𝑥
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(𝑖)

. (4)

If 𝑎
1
(𝑖, 𝑑) is larger than 𝑅

𝜏
, 𝑥𝑁𝑁(𝑖) should be fault nearest

neighbor of 𝑥(𝑖). Threshold 𝑅
𝜏
is determined between inter-

val (10, 50).Once there appeared noise in process data, the fol-
lowing judge criterion should be involved. If 𝑅

𝑑+1
(𝑖)/𝑅
𝐴
≥ 2,

𝑥
𝑁𝑁

(𝑖) should be nearest fault neighbor of 𝑥(𝑖), where 𝑅
𝐴
is

𝑅
𝐴
=

1

𝑁

𝑁

∑

𝑖=1

[𝑥 (𝑖) − 𝑥] , 𝑥 =
1

𝑁

𝑁

∑

𝑖=1

𝑥 (𝑖) . (5)

The distance measure between vectors can explain the
similarity of false nearest neighbors factually in (6). Assume
that there was a data space𝑄 with 𝑑-dimension variable, and
one sample vector is 𝐴 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑖
, . . . , 𝑞

𝑑
). We set vari-

able 𝑞
𝑖
as zero, standing for vector𝐴without variable 𝑞

𝑖
that is

noted as 𝐵 = (𝑞
1
, 𝑞
2
, . . . , 0, . . . , 𝑞

𝑑
) in Figure 3.

The similarity between 𝐴 and 𝐵 is

𝛿 = ‖𝐴 − 𝐵‖
2

. (6)

If distance measure is small, it shows that vectors𝐴 and 𝐵
have highly similarity. That is, the removed variable 𝑞

𝑖
makes

little impact on nonlinear pattern, and process variable 𝑞
𝑖
has

low interpreting ability. Otherwise, if it was much bigger, it
reveals that 𝐵 much differs from 𝐴. Process variable 𝑞

𝑖
is

important to interpreting of nonlinear pattern.𝐵 is false near-
est neighbors of 𝐴.

3.2. Kernel Fisher Discriminant Analysis. KFDA is most use-
ful to nonlinear classification problems [22]. Nonlinear dis-
criminant vector in original space is extracted to linear opti-
mal discriminate vector in high-dimension feature space 𝐻
with conventional fisher discriminant analysis (FDA). Since
dimension of𝐻 is much higher, it is hard to directly confirm
nonlinear mapping function from original space to the
feature space. Reproducing kernel-based method widely

qd
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q2

q3

B = (q1, q2, · · · , 0, · · · , qd)

A = (q1, q2, · · · , qi, · · · , qd)

Figure 3: Data space 𝑄 with 𝑑-dimension variable.

developed in machine learning (ML) can achieve this goal.
Nonlinear mapping is indirectly found according to 𝑘(x, y) =
Φ(x)𝑇Φ(y) in Gram-space [23], where Φ : R𝑑 → 𝐻.

Conventional kernel function can be selected as follows
[6].

(i) Polynomial kernel function𝐾(x, x󸀠) = (x ⋅x󸀠+𝑐)𝑑, 𝑑 =

1, 2, . . . , 𝑁, 𝑐 is constant.
(ii) Gaussian kernel function 𝐾(x, x󸀠) = exp(−(‖x −

x󸀠‖/2𝜎2)), 𝛿 is the parameter of breadth.
(iii) Sigmoid kernel function𝐾(x, x󸀠) = tanh(𝑓⟨x, x󸀠⟩+𝜃).

Assume that original sample set was𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}

with 𝑑-dimension and𝑁-samples, where 𝑋
𝑖
is the sample of

𝑖th type,𝑁
𝑖
= |𝑋
𝑖
|, and 𝑖 = 1, 2. There exists nonlinear map-

ping functionΦ : R𝑑 → 𝐻. It transforms nonlinear original
sample space R𝑑 to linear classification in high-dimension
data space𝐻; that is,Φ(x) ∈ 𝐻, 𝑥 ∈ R𝑑. In space𝐻, distance
scatter of intraclass and classes with training data is S

𝜔
and S
𝑏

in (7) and (9), respectively,

S
𝜔
= S
1
+ S
2
, (7)

S
𝑖
= ∑

𝑥∈𝑋𝑖

(Φ (x) −m
𝑖
) (Φ (x) −m

𝑖
)
𝑇

, 𝑖 = 1, 2, (8)

S
𝑏
= (m
1
−m
2
) (m
1
−m
2
)
𝑇

, (9)

wherem
𝑖
is the mean of 𝑖th type in feature space. KFDA is to

find a projection direction w, which meets the following two
properties: (1) data that has similar characteristic should be
gathered together as most as possible; (2) the ones with dif-
ferent characteristic should be gathered as far as possible. So a
key is to search projection directionw∗ and its corresponding
discriminant function 𝑔(x) = (w∗)𝑇x − y

0
. Similarly with

linear FDA, the optimal projection direction w∗ is to search
vector w, which maximizes fisher criterion function (10),
where w∗ is optimal projection direction:

𝐽
𝐻
(w) = w𝑇S

𝑏
w

w𝑇S
𝜔
w
. (10)

Since dimension of feature space𝐻 is usually high andΦ
is indirect mapping function, discriminant vector is hard to
compute directly. Thus, each solutionw is expressed as linear
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Table 1: Steps designed in this paper.

Inputs 𝑇 = {(x
1
, 𝑦
1
), (x
2
, 𝑦
2
), . . . , (x

𝑁
, 𝑦
𝑁
)}, x
𝑖
∈ R𝑑, 𝑦

𝑖
∈ {+1, −1}, 𝑖 = 1, 2, . . . , 𝑁

Step 1 Initiate 𝜆 ∈ [0, 1] and compute u
𝑖
, 𝑖 = 1, 2

Step 2 Select suitable multikernel function

Step 3 Compute the kernel mean vector between two kinds with k
𝑤𝑖

= ∑
𝑁𝑖

𝑗=1
(Kx𝑖
𝑗

− u
𝑖
) (Kx𝑖

𝑗

− u
𝑖
)

𝑇

Step 4 Compute the kernel scatter matrix of intraclass k
𝑤
= 𝜆k
𝑤1

+ (1 − 𝜆) k
𝑤2

Step 5 Compute 𝛼∗ = k−1
𝑤
(u
1
− u
2
), y
0
= 𝛼
𝑇

(u
1
− u
2
)

Step 6 Get the optimal solution of (16)
Step 7 Place the inspected process variable as zero in original samples
Step 8 Project the new samples into the feature space
Step 9 Compute the contribution of one variable at one time with FNN in MKFDA
Step 10 Repeat the above course for the remaining variables
Outputs The distance measure 𝛿 = [𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
] of each original variable is obtained

combination of samples in (11), according to kernel-based
method,

w =

𝑁

∑

𝑖=1

𝛼
𝑖
Φ(x
𝑖
) = 𝜓𝛼, (11)

where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁
)
𝑇.

Moreover, nonlinear transformation function Φ(x
1
),

Φ(x
2
), . . . , Φ(x

𝑁
) of samples can be projected to feature space

𝐻 with direction w in

w𝑇Φ(x
𝑖
) = 𝛼
𝑇

𝜓
𝑇

Φ (xi)

= 𝛼
𝑇

(Φ (x
1
) , Φ (x

2
) , . . . , Φ (x

𝑁
))
𝑇

Φ(x
𝑖
) ,

= 𝛼
𝑇

(𝑘 (x
1
, x
𝑖
) , 𝑘 (x

2
, x
𝑖
) , . . . , 𝑘 (x

𝑁
, x
𝑖
)) ,

= 𝛼
𝑇k
𝑥𝑖
,

(12)

From (11), for all x ∈ R𝑑, assume that k
𝑥

= (𝑘(x
1
, x),

𝑘(x
2
, x), . . . , 𝑘(x

2
, x))𝑇 and projection of mean vectorm

𝑖
with

direction w∗ in feature space𝐻 is

w∗m
𝑖
= 𝛼
𝑇

𝜓
𝑇

(
1

𝑁
𝑖

𝑁𝑖

∑

𝑗=1

Φ(x𝑖
𝑗
)) = 𝛼

𝑇u
𝑖
, (13)

where u
𝑖
= ((1/𝑁

𝑖
) ∑
𝑁𝑖

𝑗=1
Φ(x
1
)Φ(x𝑖
𝑗
), (1/𝑁

𝑖
) ∑
𝑁𝑖

𝑗=1
Φ(x
2
Φ(x𝑖
𝑗
),

. . . , )
𝑇.
From (12) and (13), we have

w𝑇S
𝑏
w = 𝛼

𝑇k
𝑏
𝛼,

w𝑇S
𝜔
w = 𝛼

𝑇k
𝜔
𝛼,

(14)

where k
𝑏
= (u
1
− u
2
)(u
1
− u
2
)
𝑇, k
𝑤

= k
𝑤1

+ k
𝑤2
, k
𝑤𝑖

=

∑
𝑁𝑖

𝑗=1
(k
𝑥
𝑖

𝑗

− u
𝑖
)(k
𝑥
𝑖

𝑗

− u
𝑖
)
𝑇.

Since fisher criterion function is optimal solution of (15),
vector w can be resolved as 𝛼 in the following fisher criterion
(16) [24]:

𝐽
𝐻
(w) = w𝑇S

𝑏
w

w𝑇S
𝑏
w
, (15)

𝐽
𝐻
(𝛼) =
𝛼
𝑇k
𝑏
𝛼

𝛼
𝑇k
𝑤
𝛼

. (16)

Furthermore, the solution of optimal vector𝛼∗ and y
0
can

be solved [25] with

𝛼
∗

= k−1
𝑤

(u
1
− u
2
) ,

y
0
=

(w∗)𝑇m
1
+ (w∗)𝑇m

2

2
=

(𝛼
∗

)
𝑇

(u
1
+ u
2
)

2
.

(17)

Thus, the corresponding function of kernel fisher discri-
minant function is obtained as

𝑔 (x) = (𝑎
∗

)
𝑇kx − y

0
. (18)

3.3. Multikernel Fisher Discriminant Analysis. From
Section 3.2, the solution of maximizing (15) equals to the sol-
ution of maximizing (16). Assume that 𝛼∗ = k−1

𝑤
(u
1
− u
2
) is

optimal solution to classification effect, whereas 𝛼∗ is both
determined by kernel scatter matrix k

𝑤
and difference of

kernel mean vector (u
1
−u
2
). In the condition of independent

and identically distributed, kernel mean of samples is inde-
pendent with number of samples. It indicates difference of
kernel mean vector (u

1
− u
2
) doing nothing with the un-

balance of samples. So𝛼∗ is only determined by kernel scatter
matrix k

𝑤
for intraclass. If distribution of different variables

differed, it should result in the contributions k
𝑤1
, k
𝑤2
, . . . , k

𝑤

not in the similar interval. Besides that the solution of 𝛼∗ is
not the optimal one. Hence, in order to avoid the influence
of different distribution for samples, we presented multi-
kernel fisher discriminant analysis method. It advances the
kernel criterion function k

𝑤
= (k
𝑤1

+ k
𝑤2
) into

k
𝑤
= 𝜆k
𝑤1

+ (1 − 𝜆) k
𝑤2
, (19)
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Figure 4: The technological process of Tennessee Eastman.

where 𝜆(𝜆 ∈ [0, 1]) is the adjustableMATLAB parameter and
k
𝑤1
and k
𝑤2
are the kernelmatrix computedwith each suitable

kernel function from Section 3.2 (i)/(ii)/(iii).
In this way, the influence with different sample distribu-

tions is considered with the suitable kernel function.
The above algorithm in this paper can be chiefly described

in Table 1. In this way, the contribution of each original pro-
cess variable 𝑞

𝑖
to the certain fault is measured.

4. Fault Separation of Tennessee Eastman with
Redundancy Variables

4.1. Tennessee EastmanChemical Process. Tennessee Eastman
(TE) is a classical chemical process created by Eastman
Chemical Company in 1993 [26]. Its technological process is
shown in Figure 4. There are four reactants (A, C, D, and E)
and two products (G,H). Besides that, there is one inertmate-
rial B and byproduct F.

In TE process, the dynamic TEmodel is composed of five
major units: a reactor, a separator, a stripper, a condenser, and
a compressor. Each unit can be expressed with some equa-
tions, in all of 148 algebraic equations and 30 differential
equations. So it becomes one of themost complexmodels and
is widely used to test study algorithm with control, system

monitor, fault diagnosis, and so forth. Here, we take Ten-
nessee Eastman as the study object to measure its fault sepa-
ration ability with our method.

4.2. Nonlinear Fault Separation of Redundancy Variables. In
TE process, there are 41 observed variables and 12 manipu-
lated variables from controller, some of which are nonlinear
redundancy variables. Moreover, there are 20 types of clas-
sical fault in TE process shown in Table 2. Since Fault9 and
Fault11 are nonlinear overlapped together shown in Figure 5,
we take their fault separation as the study goal, meanwhile, 53
process variables must be screened for their multicollinearity
and nonlinear redundancy. Process data of TE is simulated at
one-minute sampling time in MATLAB software from
Downs [27]. All the measurements have Gaussian noise. A
total of 1000 samples are collected for training,where 800 data
are collected for Fault9 and 200 for Fault11. In addition, 835
samples are applied to test separation validity with 644 for
Fault9 and 171 for Fault11.

4.3. Results and Discussion. If we distinguished Fault9 and
Fault11, there are 53 variables to be considered in all. There-
fore, we compute the contribution of 53 variables with men-
tionedmethod to see the importance of each process variables
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Figure 6: Contribution of all the 53 process variables to distinguish
Fault9 and Fault11.

on faults. Multikernel function is selected as Gaussian kernel
and polynomial kernel, each comprised of 50%.The contribu-
tions of each variable to the faults are computed with steps in
Section 3.3 that is shown in Figure 6 and Table 3. From large
to small, the proper importance of all the 53 process variables
is reordered as {Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20,
Vab.11, Vab.2, Vab.12, Vab.8, Vab.19, Vab.5, Vab.22, Vab.6,
Vab.3, Vab.18, Vab.14, Vab.15, Vab.17, Vab.10, Vab.41, Vab.40,
Vab.27,Vab.23,Vab.29,Vab.31,Vab.26,Vab.33,Vab.25,Vab.32,
Vab.4, Vab.24, Vab.30, Vab.35, Vab.34, Vab.37, Vab.36, Vab.28,
Vab.39, Vab.38, Vab.1, Vab.53, Vab.52, Vab.51, Vab.50, Vab.49,
Vab.48, Vab.47, Vab.46, Vab.45, Vab.44, Vab.43, Vab.42}.

In the Following, the curves of the first two important
Vab.21 and Vab.13 in TE process are given in Figures 7(a) and
7(b) and Figures 8(a) and 8(b), respectively. It expresses the
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Figure 7: The changing of process Vab.21 in actual TE.

strong variation of process variables Vab.21 and Vab.13,
actually.

According to the sequence of each process variable, the
different feature sets are constructed as {Vab.21}, {Vab.21,
Vab.13}, {Vab.21, Vab.13, Vab.9}, and so on. Nonlinear pattern
classification of Fault9 and Fault11 is tested with support vec-
tor machine (SVM), which is widely used in pattern recog-
nition. The parameters of SVM are optimized with cross-
validation 𝑐 = 2035 and 𝑔 = 1024. With the above variable
sets, the accuracy of fault separation between Fault9 and
Fault11 is successively tested.The results are shown in Figure 9
and Table 4. It reveals that the separation accuracy becomes
lower when the considered variables increase.

From the above results, we conclude that (1) if all the 53
process variables were used to separate Fault9 and Fault 11,
right ratio ismerely 72.12%. It indicates that not all of the vari-
ables are directly related to certain fault. Some redundancy or
irrelevant variables may decrease the classification accuracy
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Table 2: State distribution in TE process.

Fault Disturbance Type
1 A/C feed ratio, B composition constant Step
2 B composition, A/C ratio constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss-reduced availability Step
8 A, B, C feed composition Random
9 D feed temperature Random
10 C feed temperature Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16–20 Unknown Unknown

Table 3: The contributions of 53 process variables to fault separa-
tion.

Process variable Contribution Process variable Contribution
Vab.21 2.8273 Vab.17 0.0000
Vab.13 2.1145 Vab.10 0.0000
Vab.9 1.2318 Vab.41 0.0000
Vab.16 1.1313 Vab.40 0.0000
Vab.7 0.2687 Vab.27 0.0000
Vab.20 0.1319 Vab.23 0.0000
Vab.11 0.0522 Vab.29 0.0000
Vab.2 0.0355 Vab.31 0.0000
Vab.12 0.0259 Vab.26 0.0000
Vab.8 0.0191 Vab.33 0.0000
Vab.19 0.0092 Vab.25 0.0000
Vab.5 0.0012 Vab.32 0.0000
Vab.22 0.0006 Vab.4 0.0000
Vab.6 0.0004 Vab.24 0.0000
Vab.3 0.0002 Vab.30 0.0000
Vab.18 0.0000 Vab.35 0.0000

Vab.14 0.0000
...

...
Vab.15 0.0000 Vab.42 0.000

and must be eliminated. (2) If the feature were selected as the
first five process variables {Vab.21, Vab.13, Vab.9, Vab.16,
Vab.7}, the accuracy increases to the highest as 94.55%. It
means that the above five process variables are key to the fault
separation. (3) If the model should be simplified at most, the
process variable {Vab.21} is the best feature variable. We can
recognize Fault9 and Fault11 according to the process chang-
ing of Vab.21.

On the other hand, Fault9 stands for the random distur-
bance to𝐷 feed temperature. Fault11 is randomdisturbance to
reactor cooling water inlet temperature. While {Vab.21,
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Table 4: The accuracy with different feature sets with testing data.

Feature
set Combination of variables Accuracy

Set1 Vab.21 83.521%
Set2 Vab.21, Vab.13 85.731%
Set3 Vab.21, Vab.13, Vab.9 89.652%
Set4 Vab.21, Vab.13, Vab.9, Vab.16 92.123%
Set5 Vab.21, Vab.13, Vab.9, Vab.16, Vab.7 94.547%
Set6 Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20 92.532%
...

...
...

Set53
Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20,

. . . Vab.42 72.1199

Vab.13, Vab.9, Vab.16, Vab.7} are the reactor coolant tempera-
ture, product separation pressure, reactor temperature, strip-
per pressure, reactor pressure, respectively, it is easy to see
that the five selected variables are fairly relative to Fault9 and
Fault11. The simulation results keep pace with the reality.

5. Conclusions

Nonlinear redundancy and multicollinearity variables can
decrease the accuracy in classifier that must be eliminated.
For the problem, FNN in MKFDA subspace is studied in
the paper. Nonlinear variables are projected to a new linear
higher dimension subspace with single-kernel fisher discri-
ment analysis to get optimal classification with the intra-class
nearest and inter-class farthest as most as possible. Further-
more, conventional single-kernel KFDA is expanded to mul-
tikernelmethod to solve the influence of each process variable
with different distribution function. In order to reduce the
higher dimension emerging inmulti-KFDA subspace, FNN is
composed to recognize the importance of each process vari-
ables on faults. According to simulation results in TE process,
original variables are reduced to 5 in this paper, and the accu-
racy of tested right ratio reaches to 94.55% compared with
tested right ratio 72.12% in the classifier between Fault9 and
Fault11.
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A method of solving optimal manoeuvre control of linear underactuated mechanical systems is presented. The nonintegrable
constraints present in such systems are handled by adding dummy actuators and then by applying Lagrange multipliers to reduce
their action to zero.The open- and closed-loop control schemes can be analyzed.Themethod, referred to as the constrained modal
space optimal control (CMSOC), is illustrated in the examples of gantry crane operations.

1. Introduction

Underactuated mechanical systems have fewer independent
actuators than degrees of freedom (DOFs) to be controlled
[1]. Typical nonlinear examples of such systems, usually with
only several DOFs, are rigid multilink robotic manipulators
with passive joints or any manipulator with flexible links
(described by at least onemode of vibration). Linear examples
include vibrating structures with continuously distributed
mass (i.e., with theoretically infinite number of DOFs to
describe them) such as masts, antennas, buildings, brides,
and car suspension, controlled by discrete actuators. This
paper presents a method of analyzing and simulating opti-
mal manoeuvres between two given configurations (often
referred to as point-to-pointmanoeuvres) for linear underac-
tuated systems.Themethod combines optimal control theory
with computational mechanics and the finite element (FE)
technique, in particular.

The number of DOFs equal to the number of actuators
will be referred to as actuated (after [1]), while all remain-
ing DOFs will be referred to as underactuated (however,
all DOFs are in fact controlled). The actuated and unac-
tuated DOFs must satisfy a number of constraints equal
to the number of unactuated DOFs and resulting from
the equations governing the motion of such systems. For
mechanical systems we assume that these constraints may be

nonintegrable (nonholonomic), meaning unactuated DOFs
cannot be explicitly eliminated. Many of the techniques
presented in the literature deal with underactuated problems
by applying the constraints to eliminate the unactuatedDOFs
and then by solving the reduced fully actuated problems [2–
4].These approaches are limited to particular problemswhere
the constraints can be simplified to a form making such
mathematical manipulations possible.Themethod presented
here is capable of dealing with any linear system, as it does
not require the elimination of unactuated DOFs. Instead,
the underactuated system is formulated as if it were fully
actuated by adding “dummy” (zero-valued) actuators to all
unactuated DOFs. The modal space is used in modelling
the system motions. The method can be considered as an
extension of the independent modal space control (IMSC;
e.g., see [5]) into the underactuated problems, therefore it
will be referred to as the constrained modal space optimal
control (CMSOC) method. The system constraints resulting
from underactuation are then determined by eliminating
these dummy actuators. The constraints are algebraic in
terms of controls but differential (nonintegrable) in terms of
the DOFs. The algebraic form of the constraints is used to
generate the so-called matrix of constraints, which is utilized
to handle the nonintegrable constraints with the help of time-
varying Lagrangemultipliers. Pontryagin’s principle is used to
optimize the trajectory and actuation forces.
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This paper presents the CMSOC method in a general
form and then explains some details of the corresponding
numerical procedure in the examples of standard two or
three-DOF gantry crane operations. The method is verified
by recreating the closed-loop control of the two-DOF gantry
crane problem obtained in [1] via applying the classical
technique and the open-loop optimal control considered in
[3].

2. Problem Formulation

2.1. Dynamics of a General Underactuated System. The com-
putational model for the motion of a linear mechanical
system is represented by a standard form used in FE analysis:

M ̈q + C ̇q + Kq = BF
𝑎
, (1)

where q and F
𝑎
are vectors of DOFs and activation forces,

respectively, and M, C, and K are constant mass, damp-
ing, and stiffness matrices, respectively. In particular, (1)
is suitable to model the dynamics of a range of actively
controlled structural members undergoing small amplitude
oscillations and finite translations. In underactuated systems
𝑛
𝑎
independent actuation forces are to control 𝑛 > 𝑛

𝑎
number

of DOFs. Matrix B of dimensions 𝑛 × 𝑛
𝑎
assigns components

of vectorFa to particularDOFs and obviously is not invertible
if 𝑛 ̸= 𝑛

𝑎
. Clearly, the actuators via (1) control all DOFs of the

system. For the purpose of analysis the DOFs can be divided
into actuated (q

𝑎
) and unactuated (q

𝑟
) ones by rearranging

these equations as follows:

[
M
𝑎𝑎

M
𝑎𝑟

M
𝑟𝑎

M
𝑟𝑟

] [
̈q
𝑎

̈q
𝑟

] + [
C
𝑎𝑎

C
𝑎𝑟

C
𝑟𝑎

C
𝑟𝑟

] [
̇q
𝑎

̇q
𝑟

] + [
K
𝑎𝑎

K
𝑎𝑟

K
𝑟𝑎

K
𝑟𝑟

] [
q
𝑎

q
𝑟

]

= [
F
𝑎

0 ] .

(2a)

The bottom row represents the equations constraining the
actuated and unactuated DOFs in the following form:

M
𝑟𝑎

̈q
𝑎
+ C
𝑟𝑎

̇q
𝑎
+ K
𝑟𝑎
q
𝑎
+M
𝑟𝑟

̈q
𝑟
+ C
𝑟𝑟

̇q
𝑟
+ K
𝑟𝑟
q
𝑟
= 0. (3)

The system can formally be converted to a fully actuated one
by using (3) to explicitly determine vector q

𝑟
in terms of q

𝑎

(i.e, q
𝑟

= 𝑔(q
𝑎
)), and then by substituting this vector to

the top row of (2a) to obtain F
𝑎

= F
𝑎
(q
𝑎
, 𝑔(q
𝑎
)). Unless

some matrices in (3) vanish, it is not generally possible, and
therefore these constraints are considered as nonholonomic.

The control task for vector F
𝑎
in (1) is to manoeuvre the

system from an initial state to a final state described by the
following boundary conditions (point-to-point manoeuvre):

q (0) = q0, ̇q (0) = ̇q0,

q (𝑡
𝑓
) = qf , ̇q (𝑡

𝑓
) = ̇qf .

(4)

It should be emphasised that no trajectory is specified in this
task. A particular trajectory satisfying (1) and (4) may be
determined if extra conditions are imposed on the system.We

will identify such a trajectory by optimizing the performance
index as discussed in the next section. Note that this problem
is different from a typical trajectory tracking problem in
which instead of (4) the task is specified as the system output
in the form

y = h (q) . (5a)

Several methods have been proposed to solve the inverse
problems of finding the inputF

𝑎
for the output y as defined by

(1) and (5a), notably the servo-constraint approach [6–9] and
the flatness method [10, 11]. In particular, differentiating (5a)
with 𝑛

𝑎
outputs twice one obtains ̈y = H ̈q + h, where the size

of matrixH is 𝑛
𝑎
× 𝑛; then square matrixHM−1B is required

to be nonsingular to solve the problem. This condition does
not apply in the method presented here since our output is
given only in terms of (4), that is, the system’s initial and final
configurations.

The set of (1) or (2a) is uncoupled when mapped into
modal space, where vector of DOFs q (size 𝑛) is transformed
to the equally sized vector of modal variables 𝜂 = [𝜂

1
⋅ ⋅ ⋅ 𝜂
𝑛
]
𝑇.

Similarly, vector F is related to an equally sized vector of
modal controls U = [𝑢

1
⋅ ⋅ ⋅ 𝑢
𝑛
]
𝑇. These transformations are

q = Φ𝜂, (6a)

U = (Φ
𝑇B) F

𝑎
= B̂F
𝑎
, (6b)

where B̂ = Φ
𝑇B is the transfer matrix of size 𝑛 × 𝑛

𝑎
between

vectors F
𝑎
and U and mode shape matrix Φ = [𝜑

1
⋅ ⋅ ⋅𝜑
𝑛
]

relates vectors q and 𝜂.The𝑀-normalizedmatrixΦ, consist-
ing of 𝑛 modal shape vectors 𝜑

𝑖
(each with 𝑛 components),

satisfies the following orthogonality conditions:

Φ
𝑇MΦ = I, (7a)

Φ
𝑇KΦ = Ω, (7b)

where I is the unitary matrix and Ω is the diagonal matrix
of ordered frequencies with the terms Ω

𝑖𝑖
= 𝜔
2

𝑖
. Each

mode shape vector 𝜑
𝑖
and frequency 𝜔

𝑖
are solutions to the

eigenvalues problem (K − 𝜔
2

𝑖
M)𝜑
𝑖
= 0 (𝑖 = 1, . . . , 𝑛). The

above modal analysis (or operations defined by (6a)–(7b)) is
carried out routinely in the FE approach, even for problems
with a very large number of DOFs (large 𝑛).

The equations of motion (1) become uncoupled when
applying transformations (6a) and (6b) subject to orthogo-
nality conditions (7a) and (7b) and take the following form:

I ̈𝜂 + Δ ̇𝜂 +Ω𝜂 = U, (8)

where for the Rayleigh damping (i.e., C = 𝛼M + 𝛽K) the
diagonal terms of Δ are Δ

𝑖𝑖
= 2𝜍
𝑖
𝜔
𝑖
= 𝜑
𝑇

𝑖
C𝜑
𝑖
and where

𝜍
𝑖
= 𝛼/2𝜔

𝑖
+ 𝛽𝜔
𝑖
/2 are the modal damping ratios. Note that

a rigid body translation, for which 𝜔
𝑖
= 0, is also included in

the above equation.
A continuous system, or an FE model (1) of the system

described by 𝑛 DOFs (where 𝑛 may be a large number),
can be approximated by (8) with only 𝑛

𝑚
significant modes
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considered, where usually 𝑛
𝑚
≪ 𝑛. The number of significant

modes that should be sufficient to represent such a system is
generally problem related and depends mainly on its physical
characteristics, the spatial distribution, and frequency con-
tent of the loading [12].

In the system approximated by 𝑛
𝑚
modes (similarly as for

the system’s DOFs) one can consider 𝑛
𝑎
modes as actuated

and 𝑛
𝑟
= 𝑛
𝑚
− 𝑛
𝑎
modes as unactuated. Then matrix Φ will

be reduced to only 𝑛
𝑚
columns, and transfer matrix B̂ in (6a)

and (6b) will be of dimensions 𝑛
𝑚
× 𝑛
𝑎
.

In order to control all 𝑛
𝑚

modes this system can be
made artificially fully actuated by adding 𝑛

𝑟
= 𝑛
𝑚

− 𝑛
𝑎

dummy actuation forces (zero valued) forming subvector Fd.
For the purpose of analysis vector Fa in (1) is replaced by
the augmented force vector F

󸀠

a = [F𝑇a F𝑇d]
𝑇

containing 𝑛
𝑎

real actuation forces forming subvector Fa and 𝑛
𝑟
dummy

actuators forming subvector Fd. Then, in (1) and (6a) and
(6b), matrix B of dimensions 𝑛 × 𝑛

𝑎
is replaced by matrix

B󸀠 of dimensions 𝑛 × 𝑛
𝑚
(this matrix assigns the component

of F󸀠a to particular nodes). Consequently in (6b) matrix B̂
of dimensions 𝑛 × 𝑛

𝑎
is replaced by a square matrix B̂󸀠 of

dimensions 𝑛
𝑚
× 𝑛
𝑚
(𝑛
𝑚
modes controlled by 𝑛

𝑚
actuators).

The dummy actuators Fd should be placed in such a way that
B̂󸀠 is nonsingular.

In the inverse dynamics based control analysis, each
control U

𝑖
can be obtained from (8) by substituting the

corresponding prescribed mode 𝜂
𝑖
. Then, for known vector

U, the actuation forces F
󸀠

a should be determined by inverting
transformation (6b) in which matrix B̂󸀠 (instead of B̂) is
now square and nonsingular (the dummy actuators were
added to the system only to ensure that this inversion is
possible). In the next step, after computing the inverse of
operation (6b), the dummy actuators will be eliminated by
giving them zero values. For that purpose the inverse matrix
(B̂󸀠)−1, representing the mapping from modal controls U =

[ U𝑇a | U𝑇r ]
𝑇

to actuation forcesF󸀠
𝑎
for any augmented system

of size 𝑛
𝑚
× 𝑛
𝑚
, is partitioned as follows:

(B̂󸀠)
−1

U = F󸀠
𝑎
󳨐⇒ [

B̃a B̃r
Aa Ar

] [
Ua
Ur

] = [
Fa
Fd

] = [
Fa
0 ] . (9)

Square submatrix B̃a is of size 𝑛𝑎×𝑛𝑎 and square submatrixAr
is of size 𝑛

𝑟
× 𝑛
𝑟
. To be consistent with modes classifications

(actuated and unactuated), vectors Ua = [𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑛𝑎
]
𝑇 and

Ur = [𝑢
𝑛𝑎+1

⋅ ⋅ ⋅ 𝑢
𝑛𝑚
]
𝑇 are referred to as actuated and unac-

tuated modal controls, respectively. Given the null-valued
dummy force vector Fd = [0 ⋅ ⋅ ⋅ 0]

𝑇 (size 𝑛
𝑟
× 1) the bottom

𝑛
𝑟
rows of operation (9) (lower partition) define constraints

on the system in terms of all modal controls, in the following
form:

AU = A
𝑎
U
𝑎
+ A
𝑟
U
𝑟
= 0. (10)

Matrix A = [Aa | Ar] (size 𝑛
𝑟
× 𝑛
𝑚
) defines the system

constraints written algebraically in terms of modal controls.
Since (10) is homogeneous matrix A can be normalized such
that the diagonal terms corresponding to controls U

𝑎
are set

to unity (i.e., 𝐴
𝑖𝑖
= 1). In this form A becomes independent

of the choice of dummy actuators, which reflects the fact that
these zero-force actuators were added somewhat arbitrarily
only to facilitate the elimination process, that is, to satisfy the
constraints in (9). Matrix A is discussed with more details in
[13, 14].

Real actuation force(s) may be obtained from the top
partition of operation (9) in terms of all modal controls in
vectorU. They can also be obtained in terms of only actuated
modal controls in vector Ua by applying 𝑛

𝑟
constraints

(10) to eliminate unactuated modal controls Ur. Thus, 𝑛
𝑎

components of actuator forces in vector Fa can be obtained
in terms of 𝑛

𝑎
actuated modal controls in vector Ua from the

following operation:

Fa = BUa. (11)

Square matrix B = B̃a − B̃rA−1r Aa (size 𝑛𝑎 × 𝑛
𝑎
) is referred to

as the pseudotransfer matrix, and it relates actuated modal
controls to real actuator forces. Similar to the normalized
constraint matrixA, the pseudotransfer matrix B is indepen-
dent of the choice of dummy actuators.

2.2. Optimal Manoeuvres of Underactuated Systems. In linear
optimal control [15], the manoeuvre is optimal if, for a given
task, it minimizes the performance index:

𝐽 =
1

2
∫

𝑡𝑓

0

((𝜂
𝑇Q̂d𝜂) + ( ̇𝜂

𝑇Q̂k ̇𝜂) + (U𝑇R̂U)) 𝑑𝑡 󳨀→ min,

(12)

where Q̂d, Q̂k, and R̂ are matrices, with the diagonal terms
𝑄
𝑑𝑖𝑖
, 𝑄V𝑖𝑖, and 𝑅̂

𝑖𝑖
(𝑖 = 1, . . . , 𝑛

𝑚
), that are weights for

the system’s potential energy, kinetic energy, and actuator
work, respectively. Note that 𝑛

𝑚
modal variables and modal

controls are included in (12); however, these modes are
not independent because of constraint (10), resulting from
underactuation. Such a problem can be solved by applying
Pontryagin’s principle. Here we use the procedure described
in [15]. Hamiltonian 𝐻 for the constrained optimization
problem involving performance index (12), uncoupled equa-
tions of motion (8), and constraints (10) is defined in the
following form:

𝐻 = −
1

2
(𝜂
𝑇Q̂d𝜂 + ̇𝜂

𝑇Q̂k ̇𝜂 + U𝑇R̂U) + Pd ̇𝜂

+ Pk (−Δ ̇𝜂 −Ω𝜂 + U) + v𝑇AU.

(13)

Pd and Pk are standard costate vectors related to modal
position and velocity states (𝜂 and ̇𝜂) of a system, respectively.
Vector v𝑇 = [V

1
⋅ ⋅ ⋅ V
𝑛𝑟
] represents the set of time-dependent

Lagrange multipliers introduced to enforce constraints (10).
These multipliers play a similar role to, for example, that of
the multipliers used in the servo-constraint approach [6–9]
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mentioned before. According to Pontryagin’s principle the
costate equations take the following form:

̇Pd = −
𝜕𝐻

𝜕𝜂
= Q̂d𝜂 +ΩPk, (14a)

̇Pk = −
𝜕𝐻

𝜕 ̇𝜂
= Q̂k ̇𝜂 − Pd + ΔPk. (14b)

The Hamiltonian is stationary with respect to modal control
if

𝜕𝐻

𝜕U
= −R̂U + Pk + A𝑇v = 0. (15)

Substituting (8) into (15) gives

Pk = R̂ (I ̈𝜂 + Δ ̇𝜂 +Ω𝜂) − A𝑇k. (16)

Substituting (16) into (14b) yields

Pd = Q̂k ̇𝜂 − R̂ (I∴𝜂 +Δ ̈𝜂 +Ω ̇𝜂)

+ ΔR̂ (I ̈𝜂 + Δ ̇𝜂 +Ω𝜂) + A𝑇 ̇v − ΔA𝑇v.
(17)

Finally, substituting (17) into (14a) generates the following set
of optimality equations:

R̂ ̈̈𝜂 + (2ΩR̂ − Q̂k − R̂Δ2) ̈𝜂 + (R̂Ω2 + Q̂d) 𝜂

− (A𝑇 ̈v − ΔA𝑇 ̇v +ΩA𝑇v) = 0.
(18)

Note that 𝑛
𝑚
optimality equations (18) contain 𝑛

𝑚
unknown

components in 𝜂 and 𝑛
𝑟
unknown components in k. There-

fore, additional 𝑛
𝑟
constraint equations (10) are required in

order to obtain all the unknown modal variable functions
in vector 𝜂 and Lagrange multiplier functions in vector k.
However, the constraints must be written in terms of 𝜂 not
in terms of U (note the change in the constraints’ form from
algebraic to differential). The uncoupled equations of motion
(8) are substituted into algebraic constraints (10) to obtain

A (I ̈𝜂 + Δ ̇𝜂 +Ω𝜂) = 0. (19)

The number of 𝑛
𝑚
+ 𝑛
𝑟
((18) and (19)) is equal the unknown

components in vectors 𝜂 and k.
Boundary conditions (4) are mapped into modal space

by using the inverse of transformation (6a) or through the
relation 𝜂 = Φ

𝑇Mq (obtained by additional substitution of
condition (7a)). These transformed boundary conditions are

𝜂 (0) = Φ
𝑇Mq0, ̇𝜂 (0) = Φ

𝑇M ̇q0,

𝜂 (𝑡
𝑓
) = Φ

𝑇Mqf , ̇𝜂 (𝑡
𝑓
) = Φ

𝑇M ̇qf .
(20)

For fully actuated problems, the last term (A𝑇 ̈v − ΔA𝑇 ̇v +

ΩA𝑇v) in optimality equations (18) vanishes because there
are no constraints or Lagrange multipliers needed to enforce
them. Therefore, a fully actuated problem involves only
𝑛
𝑚

optimality equations (18) to be solved in terms of 𝑛
𝑚

uncoupled modal variables in vector 𝜂.

The solution to the combined set of (18), (19), and (20) can
be efficiently obtained using symbolic differential operator
𝐷
𝑛

= 𝑑
𝑛

/𝑑𝑡
𝑛. Substituting this operator into (19) and (20)

and rewriting in matrix notation give

[
E −Ê𝑇

Ẽ 0 ] [
𝜂

^] = 0 or EpY = 0, (21)

where

E = R̂𝐷4 + (2R̂Ω − Q̂v − R̂Δ2)𝐷2 + (R̂Ω2 + Q̂d) ,

Ê = A (I𝐷2 + Δ𝐷 +Ω) , Ẽ = A (I𝐷2 − Δ𝐷 +Ω) .

(22)

Matrix Ep contains submatrices E, Ẽ, and −Ê𝑇. Vector
Y = [𝜂

𝑇

| ^𝑇]
𝑇 contains all unknown modal variables and

Lagrangemultipliers.Note that in a fully actuated case,matrix
Ep in (21) consists only of submatrix E and vector Y = 𝜂.

The solution to a system described in form (21) involves
the roots 𝑟

𝑙
(𝑙 = 1, . . . , 4𝑛

𝑚
) of the characteristic equation for

the determinant of Ep [16], where operator 𝐷 is replaced by
the auxiliary variable 𝑟 rendering a 4𝑛

th
𝑚
order polynomial.

This operation is written as

detEp
󵄨󵄨󵄨󵄨󵄨𝐷→𝑟

= 0. (23)

Generally, the 4𝑛
𝑚
roots of the characteristic equation (23)

take the following form:

𝑟
𝑙
= ±𝛼
𝑘
± 𝑖𝛽
𝑘

(𝑘 = 1, . . . , 𝑛
𝑚
, 𝑙 = 1, . . . , 4𝑛

𝑚
) . (24)

Thepositive real numbers𝛼
𝑘
and𝛽
𝑘
characterize the response

of the 𝑘th mode of motion. For nonzero, unique roots,
solution vector Y consists of 𝑛

𝑚
+ 𝑛
𝑟
components 𝑌

𝑗
that can

be written in terms of 4𝑛
𝑚
independent elementary functions

related to the roots (24), in the form [16]:

𝑌
𝑗
=

𝑛𝑚

∑

𝑘=1

[𝑒
𝛼𝑘𝑡 (𝑐
1

𝑘𝑗
sin (𝛽

𝑘
𝑡) + 𝑐
2

𝑘𝑗
cos (𝛽

𝑘
𝑡))

+𝑒
−𝛼𝑘𝑡 (𝑐

3

𝑘𝑗
sin (𝛽

𝑘
𝑡) + 𝑐
4

𝑘𝑗
cos (𝛽

𝑘
𝑡)) ] ,

where 𝑗 = 1, . . . , 𝑛
𝑚
+ 𝑛
𝑟
.

(25)

Obviously, the frequency of 𝑘th mode controlled by the
actuators can be interpreted as 𝜔𝑎

𝑘
= 𝛽
𝑘
and its rate of active

attenuation (or amplification) as 𝜍
𝑎

𝑘
= 𝛼
𝑘
/𝛽
𝑘
. If multiple

roots and zero-valued roots are obtained from (23), then
solution functions (25) must be modified to mathematically
accommodate these situations. There are 4𝑛

𝑚
(𝑛
𝑚

+ 𝑛
𝑟
)

unknown integration constants 𝑐
1

𝑘𝑗
, . . . , 𝑐

4

𝑘𝑗
contained in the

solution functions (25).
Integration constants 𝑐

1

𝑘𝑗
, . . . , 𝑐

4

𝑘𝑗
are obtained by substi-

tuting the assumed form (25) into differential equations (18)
and (19) and using the method of undetermined coefficients
to generate 𝑛

𝑚
+ 𝑛
𝑟
sets of 4𝑛

𝑚
linear algebraic equations

relating these constants. By replacing one set of 4𝑛
𝑚
equations
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Figure 1: Gantry crane system.

with the set of 4𝑛
𝑚
boundary conditions (20), the integration

constants can be solved simultaneously. All these symbolic
operations, including the determination of the roots (24)
and constants in (25), can be done automatically using the
MAPLE mathematical software.

For closed-loop control, asymptotically convergent solu-
tion functions are required such that the control task is met
over an infinite period of time (𝑡

𝑓
→ ∞). The resulting

number of integration constants is reduced by half, as terms
involving positive exponential 𝑒𝛼𝑘𝑡 in the solution form (25)
disappear (𝑐1

𝑘𝑗
= 𝑐
2

𝑘𝑗
= 0).

To quantitatively measure the performance of closed-
loop control schemes settling time 𝑡3%

𝑓
is defined as the time

needed for various variables to be reduced to within 3% of
their initial value (i.e., 𝑒−𝛼

min
𝑘
𝑡
3%
𝑓 = 0.03 → 𝑡

3%
𝑓

= 3.5/𝛼
min
𝑘

).
The above procedure was applied to actively suppress

vibrations of a spatial antennamast in [13] andof plane frames
in [14], the cases with the number of DOFsmuch greater than
the number of significant modes included in the analysis (i.e.,
with 𝑛 ≫ 𝑛

𝑚
). In both cases only oscillating modes were

controlled. Here the application of the above methodology is
focused on various control schemes, which are demonstrated
in controlling the translational and oscillating modes of a
gantry crane.

3. Dynamics and Optimal Control of
the Gantry Crane System

The gantry crane problem is one of the simplest underactu-
ated mechanical systems involving two DOFs—cart transla-
tion and suspended load rotation—and a single actuator—a
cart-driving force (𝑛

𝑚
= 2, 𝑛

𝑎
= 𝑛
𝑟
= 1).

The gantry crane model is shown in Figure 1. The model
includes the mass of the cart 𝑀, the mass of the suspended
load𝑚, swing angle 𝜃, gravitational acceleration 𝑔, horizontal
distance 𝑎 from the cart’s initial position to the origin, and

length 𝐿 of the massless rigid link connecting the cart and
load. The task is to manoeuvre the system from an initial
resting state at some nonzero horizontal distance (𝑥 = 𝑎,
𝜃 = 0) to a final resting equilibrium state at the origin (𝑥 = 0,
𝜃 = 0) by applying time-varying force 𝐹

𝑎
. Any finite cart

translations are permitted, but swings of the suspended load
are assumed to be sufficiently small for a linearized model
to be valid. In modal space rigid body translation for such a
manoeuvre is easily separated from the oscillatory motion of
the suspended load. Dummy force 𝐹

𝑑
is added to artificially

make the system fully actuated and formulate the augmented
gantry crane system.

This same gantry crane model was used in several
papers dealing with control or/and optimization. Notably, a
Lyapunov functionwas used in [1] to obtain an asymptotically
stable (closed-loop) control (linear and nonlinear) for atten-
uating disturbances (nonzero initial positions) in the system,
and optimal control by applying Pontryagin’s principle was
considered in [3]. Results for the linearized system are of
interest because they serve as a useful comparison for the con-
trols obtained in this paper. Similar problems of controlling
the plane motion of gantry cranes were presented in [10, 11]
using the concept of flatness. Various aspects of controlling
gantry cranes, 3D operations were considered in [9, 17–19].

The gantry crane system shown in Figure 1 and its
coordinate system are chosen to mimic those used in [1].
Matrices and vectors in the general equation of motion (1)
take the following forms:

M = [
𝑀 + 𝑚 −𝑚

−𝑚 𝑚
] , K = [

0 0

0
𝑚𝑔

𝐿

] ,

B = [
1

0
] , B󸀠 = [

1 1

0 −1
] ,

q = [
𝑥

𝐿𝜃
] , F

󸀠

𝑎
= [

𝐹
𝑎

𝐹
𝑑

] .

(26)
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To be consistent with the assumptions made in [1, 3] no
dissipative effects (i.e., friction, etc.) are considered (C = 0).

The initial and final conditions (consistent with [1]) take
the following forms:

q (0) = [𝑎 0]
𝑇

,

̇q (0) = q (𝑡
𝑓
) = ̇q (𝑡

𝑓
) = [0 0]

𝑇

.

(27)

The modal analysis (𝑛
𝑚
= 2) gives

Ω = [

0 0

0 (1 +
𝑚

𝑀
)
𝑔

𝐿

] , (28a)

Φ =

[
[
[

[

1

√𝑀 +𝑚
√

𝑚

𝑀(𝑀 + 𝑚)

0 √
𝑀 +𝑚

𝑀𝑚

]
]
]

]

. (28b)

The rigid body translational mode of motion is represented
in (28a) by the frequency 𝜔

1
= 0 and the second vibrating

mode (load swinging) is represented by the frequency 𝜔
2
=

√(1 + 𝑚/𝑀)(𝑔/𝐿).
The uncoupled modal equations of motion (8) become:

̈𝜂
1
= 𝑢
1
, ̈𝜂

2
+ 𝜔
2

2
𝜂
2
= 𝑢
2
. (29)

The augmented system transfermatrix B̂󸀠 = Φ𝑇B󸀠 is obtained
by the appropriate substitutions from (26) and (28b) into the
general partitioned form (9):

[
[
[

[

𝑀

√𝑀 +𝑚

√
𝑀𝑚

𝑀+𝑚

𝑚

√𝑀 +𝑚

−√
𝑀𝑚

𝑀+𝑚

]
]
]

]

[
𝑢
1

𝑢
2

] = [
𝐹
𝑎

𝐹
𝑑

] = [
𝐹
𝑎

0
] . (30)

Modal controls 𝑢
1
and 𝑢

2
are considered actuated and

unactuated, respectively. The (𝑛
𝑟
= 1) constraint equation is

obtained by normalizing the bottom row of matrix (B̂󸀠)−1 in
(30) to obtain

AU = [1 − √
𝑀

𝑚
][

𝑢
1

𝑢
2

] = 𝑢
1
− √

𝑀

𝑚
𝑢
2
= 0. (31)

The constraint (31) may be applied to eliminate redundant
modal control 𝑢

2
from the top row operation of (30) to obtain

force𝐹
𝑎
as a function of independentmodal control𝑢

1
, giving

𝐹
𝑎
= BU
𝑎
= (√𝑀 +𝑚)𝑢

1
, (32)

where B = √𝑀 +𝑚 is the pseudotransfer matrix (since
𝑛
𝑎
= 1, this matrix has only one term). Cart-driving force 𝐹

𝑎

may be applied using open-loop control (as a known function
of time) or using closed-loop control through a set of gains
in full-state feedback. Both schemes will be analyzed and
simulated using the CMSOC method.

The performance index (12) takes the following
form, consisting of the gantry crane system’s four states
(𝜂
1
, 𝜂
2
, ̇𝜂
1
, ̇𝜂
2
) and two modal controls (𝑢

1
, 𝑢
2
):

𝐽 =
1

2
∫

𝑡𝑓

0

(𝑄
𝑑11

𝜂
2

1
+ 𝑄
𝑑22

𝜂
2

2
+ 𝑄V11 ̇𝜂

2

1

+𝑄V22 ̇𝜂
2

2
+ 𝑅̂
11
𝑢
2

1
+ 𝑅̂
22
𝑢
2

2
) 𝑑𝑡 󳨀→ min .

(33)

The 𝑛
𝑚

= 2 coupled optimality equations (18) take the
following forms:

𝑅̂
11

̈̈𝜂
1
− 𝑄V11 ̈𝜂

1
+ 𝑄
𝑑11

𝜂
1
− ̈] = 0, (34a)

𝑅̂
22

̈̈𝜂
2
+ (2𝑅̂

22
𝜔
2

2
− 𝑄V22) ̈𝜂

2
+ (𝑅̂
22
𝜔
4

2
+ 𝑄
𝑑22

) 𝜂
2

+ √
𝑀

𝑚
( ̈] + 𝜔

2

2
]) = 0,

(34b)

where ] is the Lagrange multiplier used to meet the 𝑛
𝑟

=

1 constraint (31). The differential form (19) of constraint
equation (31) is written as

̈𝜂
1
− √

𝑀

𝑚
( ̈𝜂
2
+ 𝜔
2

2
𝜂
2
) = 0. (35a)

In modal space, the boundary conditions (27) are

𝜂
1
(0) = 𝑎√𝑀 + 𝑚, 𝜂

1
(𝑡
𝑓
) = 0,

𝜂
2
(0) = ̇𝜂

1
(0) = ̇𝜂

2
(0) = 0,

𝜂
2
(𝑡
𝑓
) = ̇𝜂
1
(𝑡
𝑓
) = ̇𝜂
2
(𝑡
𝑓
) = 0.

(36a)

Equations (34a), (34b), and (35a) written according to form
(21) (with𝐷

𝑛

= 𝑑
𝑛

/𝑑𝑡
𝑛) yield

EpY = [

[

𝐸
1

0 −𝐸
11

0 𝐸
2

−𝐸
21

𝐸
11

𝐸
21

0

]

]

[

[

𝜂
1

𝜂
2

]
]

]

= 0, (37)

where
𝐸
1
= 𝑅̂
11
𝐷
4

− 𝑄V11𝐷
2

+ 𝑄
𝑑11

,

𝐸
2
= 𝑅̂
22
𝐷
4

+ (2𝑅̂
22
𝜔
2

2
− 𝑄V22)𝐷

2

+ (𝑅̂
22
𝜔
4

2
+ 𝑄
𝑑22

) ,

𝐸
11

= 𝐸
11

= 𝐷
2

,

𝐸
21

= 𝐸
21

= −√
𝑀

𝑚
(𝐷
2

+ 𝜔
2

2
) .

(38)

The characteristic equation of the system represented in (37)
is obtained through operation (23), giving the 8th order
polynomial equation:

detEp
󵄨󵄨󵄨󵄨󵄨𝐷→𝑟

= 𝐸
1
𝐸
2

21
+ 𝐸
2
𝐸
2

11

󵄨󵄨󵄨󵄨󵄨𝐷→𝑟

=
𝑀

𝑚
(𝑅̂
11
𝑟
4

− 𝑄V11𝑟
2

+ 𝑄
𝑑11

) (𝑟
2

+ 𝜔
2

2
)
2

+ 𝑟
4

(𝑅̂
22
𝑟
4

+ (2𝑅̂
22
𝜔
2

2
− 𝑄V22) 𝑟

2

+ (𝑅̂
22
𝜔
4

2
+ 𝑄
𝑑22

)) = 0.

(39)
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Eight roots may be obtained from the characteristic equation
(39), which are then substituted into an appropriate assumed
solution form (if the roots take the full complex form (24),
then the assumed function takes form (25)) to characterize
the three unknown solution functions (𝜂

1
, 𝜂
2
, ]). This leaves

twenty-four unknown integration constants to be determined
by substituting the appropriate solution form into the three
equations (34a), (34b), and (35a). By relating the coefficients
corresponding to each of the eight independent elementary
functions (i.e., in (25) each is in the form 𝑒

(±𝛼𝑖±𝛽𝑖)𝑡), eight
algebraic equations are obtained for each differential equation
in the set (34a),(34b) and (35a), resulting in a total of twenty-
four equations in terms of twenty-four unknown integration
constants 𝑐

𝑖

𝑘𝑗
. However, these twenty-four equations are

linearly dependent. To obtain a unique solution, any one
set of eight algebraic equations (obtained from either (34a),
(34b), or (35a)) must be replaced with the eight boundary
conditions (36a).

The optimal actuation forces needed to drive the gantry
crane from an initially disturbed position (𝑥 = 𝑎, 𝜃 = 0) to
the origin (𝑥 = 0, 𝜃 = 0) will be derived for four cases using
the CMSOC method. These cases are as follows

(A) an open-loop control that minimizes actuation forces
for a fixed time interval as in [3];

(B) a closed-loop control that mimics the control pre-
sented in [1];

(C) a closed-loop control with response improved over
that presented in [1];

(D) a closed-loop control of the fully actuated system (two
actuators).

For each case, the gantry crane’s physical parameters are
chosen to match those given in [1]; namely, 𝑀 = 𝑚 = 1 kg,
𝐿 = 1m, 𝑔 = 9.8m/s2, 𝑎 = −5m, and 𝜔

2
= 4.43 s−1.

As a final case, the CMSOC method is applied to a
modified three-DOF gantry crane, with an additional link-
mass hinge attached to the existing model in Figure 1 and
controlled by one or two actuators. This final case involves
two subcases.

(E1) A closed-loop control that manoeuvres a modified
gantry crane to the origin using the cart-driving force
as well as a torque applied to the first rigid link (two
actuators).

(E2) An open-loop control that manoeuvres the modified
gantry crane to the origin using only the cart-driving
force (one actuator) over a fixed time interval.

(A) Open-Loop Control of Gantry Crane Manoeuvre in a
Finite Time Interval.The first control manoeuvres the gantry
crane from a known initial position to the origin in a finite
time interval 𝑡

𝑓
in an open-loop scheme. The performance

index is chosen to be consistent with that presented in [3],
corresponding to the weightings 𝑅̂

11
= 𝑅̂
22

= 1 in the general

form (33) with all other weightings null valued. Thus, the
optimal control minimizes

𝐽 = ∫

𝑡𝑓

0

(𝑢
2

1
+ 𝑢
2

2
) 𝑑𝑡 =

1

𝑀
∫

𝑡𝑓

0

𝐹
2

𝑎
𝑑𝑡 󳨀→ min . (40)

Performance index (40) minimizes the modal controls or
the actuation force over the finite manoeuvre time 𝑡

𝑓
, which

is chosen as 𝑡
𝑓

= 4 s to represent again one of the
cases considered in [3]. The gantry crane’s characteristic
polynomial equation (39) is simplified to

(1 +
𝑀

𝑚
) (𝑟
2

+ 𝜔
2

2
)
2

𝑟
4

= 0. (41)

The roots of (41) are 𝑟
1,...,8

= 0, 0, 0, 0, ± 𝑖𝜔
2
, ± 𝑖𝜔
2
. There are

four zero roots 𝑟
1,...,4

= 0, two imaginary roots 𝑟
5,7

= 𝑖𝜔
2
, and

two imaginary roots 𝑟
6,8

= −𝑖𝜔
2
. When written in form (24),

these roots correspond to 𝛽
2
= 𝜔
2
and 𝛼

1
= 𝛽
1
= 𝛼
2
= 0.

Because of the zero roots and repeating roots, the solution
functions take the following form:

𝑌
𝑗
= 𝑐
1𝑗

+ 𝑐
2𝑗
𝑡 + 𝑐
3𝑗
𝑡
2

+ 𝑐
4𝑗
𝑡
3

+ (𝑐
5𝑗

+ 𝑐
7𝑗
𝑡) sin (𝜔

2
𝑡) + (𝑐

6𝑗
+ 𝑐
8𝑗
𝑡) cos (𝜔

2
𝑡) .

(42)

Each solution function (42) (𝑗 = 1, . . . , 3) contains eight
unknown integration constants 𝑐

𝑘𝑗
(𝑘 = 1, . . . , 8), which are

determined through substitution and comparison of similar
terms in any two differential equations in the set (34a),
(34b), and (35a) and by substitution of the eight boundary
conditions (36a). With the integration constants determined,
the resulting solution functions are

𝜂
1
= −7.09 − .104𝑡 + 1.41𝑡

2

− .235𝑡
3

+ .0235 sin (4.43𝑡) + .0151 cos (4.43𝑡) ,
(43)

𝜂
2
= .144 − .0719𝑡 + (.00451 − .0333𝑡) sin (4.43𝑡)

+ (−.144 + .0520𝑡) cos (4.43𝑡) ,
(44)

] = −2.82 + 1.41𝑡 − .460 sin (4.43𝑡) − .295 cos (4.43𝑡) . (45)

Substituting (43) into (29) yields

𝑢
1
= 2.82 − 1.41𝑡 − .460 sin (4.43𝑡) − .295 cos (4.43𝑡) . (46)

The Lagrange multiplier function V(𝑡) (45), which represents
a “modal force” enforcing the modal constraints, is not used
in further analysis and is shown here only for completeness
of the solution.

Mapping modal variables 𝜂
1
and 𝜂

2
((43) and (44)) into

DOFs 𝑥 and 𝜃 via transformation (6a), the trajectories shown
in Figures 2(a) and 2(b) are obtained. Optimal force 𝐹

𝑎
,

shown in Figure 2(c), is obtained by substituting modal
control 𝑢

1
(46) into transformation (32).

This phase of the solution was done automatically using
MAPLE. The solution procedure accepts any problem with
𝑛
𝑚

modes (obtained from FE analysis for more complex
structures) controlled by 𝑛

𝑎
≤ 𝑛
𝑚
actuators. The modal-to-

DOF transformations for the gantry crane are indicated in
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Figure 2: Histograms of (a) cart trajectory 𝑥, (b) swing angle 𝜃, and (c) force 𝐹
𝑎
(open loop).

Figures 2(a), 2(b), and 2(c). As shown, the open-loop control
is able to perform the task in exactly four seconds, with a
peak force of about 3.6N and amaximum load swing angle of
about 0.28 rad (16∘). The optimal force accelerates the gantry
crane over the first half of themanoeuvre (2 s) and decelerates
the cart over the last half with identical, but opposite and
mirrored, forces.

Similar plots for the closed-loop control presented in
[1] are shown in Figure 3. This control requires an effective
manoeuvre time of 𝑡3%

𝑓
≈ 6 s to reach the origin, a maximum

load rotation angle of 0.73 rad (42 deg), and amaximum force
of 15N. It should be noted that this relatively large rotation
angle is mentioned here (and other angles quoted in the
sequel) for the purpose of comparison only.

From Figure 2 and Figure 3, one can conclude that the
open-loop control performs the manoeuvre in a shorter
period of time (𝑡

𝑓
= 4 s versus 𝑡

3%
𝑓

≈ 6 s) with much
smaller peak force requirements (3.6N versus 15N) and
much smaller angles of oscillation (16∘ versus 42∘). Also, the
open-loop control brings the system to a complete stop after
4 s, while the closed-loop control produces overshoot and the
system takes longer to effectively come to rest.

Calculations show that if the finite manoeuvre time for
the open-loop control is extended (or shortened), the peak
force requirement andmaximum swing angle are reduced (or
increased)—approximately proportional to 𝑡

−2

𝑓
. For example,

if the open-loop control is modified to settle over the same
effective period of time as that of the closed-loop control (𝑡

𝑓
≈

6), themaximum force is reduced to approximately 1.6Nwith
a maximum swing of about 7 deg.

The open-loop control can always provide a faster and
more efficient manoeuvre. However, it is possible only when
the initial positions and manoeuvre times are known in
advance. Closed-loop control is necessary if any initial con-
figuration (unknown explicitly) is treated as disturbance, and
its automatic reduction/removal is desired (the final position
is at rest). Case (B) demonstrates how the CMSOC method
is applied to analyze and simulate a closed-loop system that
approximately produces the same dynamic responses as given
in [1].

(B) Closed-Loop Control of Gantry Crane: Reproducing Con-
trol from [1].A closed-loop control can perform the same task
as that of the open-loop control (case (A)); however it does so
automatically, without prior knowledge of initial conditions
involved. Any disturbance from its resting configuration at
the origin (𝑥 = 0, 𝜃 = 0) is relayed through a set of constant
gains to generate the cart-driving force 𝐹

𝑎
to attenuate this

disturbance.
In general, to simulate the closed-loop process analyti-

cally the manoeuvre time 𝑡
𝑓
is infinite and all parameters

are driven asymptotically to the origin with increasing time.
For the gantry crane, this requires that all roots of the
characteristic equation (39) be nonzero complex numbers
in the left half of the complex plane (unlike the open-loop
system of case (A), which contained zero roots and purely
imaginary roots). It can be verified that the weightings 𝑄

𝑑11

and 𝑄
𝑑22

in the performance index (33) must be nonzero in
order to meet these criteria.

The gantry crane control as given in [1] is closely repro-
duced by choosing the weightings in the performance index
(33) equal to 𝑄V11 = 𝑄V22 = 0, 𝑄

𝑑11
= 4.5, 𝑄

𝑑22
= 42,

and 𝑅̂
11

= 𝑅̂
22

= 1. The resulting characteristic polynomial
equation (39) has eight roots that take form (24), with real
and complex parts equal to

𝛼
1
= 0.853, 𝛽

1
= 0.856,

𝛼
2
= 0.513, 𝛽

2
= 4.46.

(47)

Note that the first actively controlledmode of frequency𝜔𝑎
1
=

0.856 s−1 (𝜔
1
= 0 for uncontrolled system) is dampedwith the

ratio 𝜍
𝑎

1
= 0.996, while the second mode of frequency 𝜔

𝑎

2
=

4.46 s−1 (𝜔
2
= 4.43 s−1 for uncontrolled system) is damped

with the ratio 𝜍
𝑎

1
= 0.115.

Similar to case (A), modal variables 𝜂
1
and 𝜂

2
are

determined by substituting the parameters from (47) into
the assumed solution function (25) and then solving for the
unknown coefficients by comparing similar terms in two of
the three optimality/constraint equations (34a), (34b) and
(35a), and substituting the boundary conditions (36a). Unlike
case (A), the closed-loop problem requires that only half
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Figure 3: Histograms of (a) cart trajectory, (b) swing angle, and (c) optimal force from [1].

as many integration constants must be solved because the
coefficients preceding exponential growth functions (𝑒𝛼𝑖𝑡) are
assumed to be null valued. This gives

𝜂
1
= 𝑒
−𝛼1𝑡 (−7.70 sin (𝛽

1
𝑡) − 7.08 cos (𝛽

1
𝑡))

+ 𝑒
−𝛼2𝑡 (.126 sin (𝛽

2
𝑡) − .00564 cos (𝛽

2
𝑡)) ,

𝜂
2
= 𝑒
−𝛼1𝑡 (−.565 sin (𝛽

1
𝑡) + .534 cos (𝛽

1
𝑡))

+ 𝑒
−𝛼2𝑡 (.149 sin (𝛽

2
𝑡) − .534 cos (𝛽

2
𝑡)) ,

𝑢
1
= 𝑒
−𝛼1𝑡 (−10.3 sin (𝛽

1
𝑡) + 11.3 cos (𝛽

1
𝑡))

+ 𝑒
−𝛼2𝑡 (−2.44 sin (𝛽

2
𝑡) − .686 cos (𝛽

2
𝑡)) .

(48)

Using the appropriate transformations (see Figure 2) the
modal space variables (48) are mapped into the DOF space
variables. The resulting system trajectories and the optimal
force histogram are visually indistinguishable from those
shown in Figure 3.

The CMSOC method can also generate the closed-loop
gains from the assumedweighting coefficients to demonstrate

that the gains corresponding to the solution (48) are obtained
and compared with the gains used in [1].

In full-state feedback control the active force is a function
of all system states in the following form:

Fa = −Gdq − Gv ̇q. (49)

For the general CMSOCmethod, gainsGd = [𝑔
1𝑑

⋅ ⋅ ⋅ 𝑔
𝑛𝑚𝑑

]

and Gv = [𝑔
1V ⋅ ⋅ ⋅ 𝑔

𝑛𝑚V] correspond to the observed
positions and velocities of all 𝑛

𝑚
DOFs of a system. For the

gantry crane, (49) takes the following form:

𝐹
𝑎
= −𝑔
1𝑑
𝑥 − 𝑔
2𝑑
𝐿𝜃 − 𝑔

1V ̇𝑥 − 𝑔
2V𝐿

̇𝜃. (50)

By substituting known DOF trajectories (𝑥 = (1/√2)(𝜂
1
+

𝜂
2
) and 𝜃 = √2𝜂

2
) and the known force function (𝐹

𝑎
=

√2𝑢
1
) into (50) and grouping the terms related to the four

independent elementary solution functions (operations are
done in MAPLE automatically), one obtains:

𝑒
−𝛼1𝑡 {

(−14.6 − 5.85𝑔
1𝑑

+ 8.95𝑔
1V − .799𝑔

2𝑑
+ .0352𝑔

2V) sin (𝛽
1
𝑡)

+ (16.0 − 4.63𝑔
1𝑑

− 1.06𝑔
1V + .755𝑔

2𝑑
− 1.33𝑔

2V) cos (𝛽1𝑡)
}

+ 𝑒
−𝛼2𝑡 {

(−3.45 + .195𝑔
1𝑑

+ 1.56𝑔
1V + .211𝑔

2𝑑
+ 3.26𝑔

2V) sin (𝛽
2
𝑡)

+ (−.970 − .374𝑔
1𝑑

+ 1.06𝑔
1V − .755𝑔

2𝑑
+ 1.33𝑔

2V) cos (𝛽2𝑡)
} = 0.

(51)

Each of the bracketed terms in (51) (containing the unknown
gains) must equal to zero for the equation to be true at any
time. This gives four equations in terms of four unknown
gains, which may be solved to obtain

Gd = [𝑔
1𝑑

𝑔
2𝑑
] = [3.00 .732] ,

Gv = [𝑔
1V 𝑔
2V] = [3.66 −.924] .

(52)

Though initial conditions were assumed in determining the
trajectories 𝑥 and 𝜃 and force 𝐹

𝑎
, it can be verified that gains

(52) remain invariant towards any choice of these assumed
conditions.

The control gains used in [1] were

G∗d = [𝑔
1𝑑

𝑔
2𝑑
] = [3.0 .71] ,

G∗k = [𝑔
1𝑑

𝑔
2𝑑
] = [3.69 −.87] .

(53)

Comparing the gains (52) and (53) confirms that the CMSOC
method is able to closely reproduce the closed-loop control
in [1] by careful selection of the weighting parameters in
performance index (33). However, as shown next in case (C),
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Table 1: Weightings for five different performance indices in form
(33).

Index # 𝑄
𝑑11

𝑄
𝑑22

𝑄V11 𝑄V22 𝑅̂
11

𝑅̂
22

P0 0.01 0.01 0 0 1 1
P1 6 0.01 0 0 1 1
P2 6 50 0 0 1 1
P3 6 50 4 0 1 1
P4 6 50 4 50 1 1

the performance of this closed-loop controlmay be improved
through better selection of these weighting parameters to
produce faster convergence without an increase in the
required peak actuation forces.

(C) Closed-Loop Control of Gantry Crane: Improving Perfor-
mance. Case (B) developed a control that closely reproduced
the control given in [1] by minimizing a performance index
that gave no weight (𝑄V11 = 𝑄V22 = 0) to states ̇𝜂

1
and

̇𝜂
2
, representing the gantry crane’s velocity. Consequently,

the control caused the gantry to gain too much speed and
then overshoot its target and produce large persistent load
swings. These problems are mitigated by a more careful
choice of the performance index weighting parameters in
(33). To demonstrate the effect these parameters have on the
gantry crane’s dynamics and to illustrate how they might be
meaningfully selected, several cases, labelled P1 to P5 (each
with different performance indices as listed in Table 1), are
considered.

Each case reflects a performance index which gives
significant weightings to an incrementally increasing number
of system states (of four possible states 𝜂

1
, 𝜂
2
, ̇𝜂
1
, ̇𝜂
2
), while

holding the weighting on both modal controls (𝑢
1
, 𝑢
2
) at

unity. Case P0 gives none of the states a significant weighting,
case P1 gives a significant weighting to a single state (𝜂

1
),

case P2 gives significant weightings to two states (𝜂
1
, 𝜂
2
),

and so on until case P4 significantly weights all four states.
Table 1 summarizes how these weightings are chosen for
each case. Since the gantry crane’s asymptotic convergence
mathematically requires that weightings 𝑄

𝑑11
and 𝑄

𝑑22
in

the index (33) are nonzero, a small value (0.01) is used
instead of zero in cases P0 and P1 to demonstrate how the
system behaves when these weightings are negligible. The
DOF trajectories (𝑥 and 𝜃) and force histogram (𝐹

𝑎
) for the

manoeuvres minimizing the performance indices for cases
P0–P4 are presented in Table 2. The settling times 𝑡3%

𝑓
of the

DOFs are also listed for each case. All plots in Table 2 are
shown over the first 8 s of the manoeuvre period except for
P0 (30 s).

Note that the first modal variable 𝜂
1
primarily influences

the cart’s rigid bodymode of motion, while the secondmodal
variable 𝜂

2
influences the suspended load rotation. In fact

there is a direct relationship between the angle of the load
rotation and the second modal variable (𝜃 = √2𝜂

2
) such

that this angular trajectory is directly affected by varying the
weights given to 𝜂

2
(𝑄
𝑑22

) and its derivative ̇𝜂
2
(𝑄V22) in the

performance index (33). Likewise, the speed at which the

cart can be made to reach its target is affected through the
weightings given to 𝜂

1
(𝑄
𝑑11

) and its derivative ̇𝜂
1
(𝑄V11).

The performance index in case P0 heavily weights the
modal controls 𝑢

1
and 𝑢

2
in comparison to modal variables

𝜂
1
and 𝜂
2
(100 times more) and neglects the modal velocities

̇𝜂
1
and ̇𝜂

2
. The resulting control requires a small peak

force (0.7N), producing small maximum load swing angles
(0.06 rad or 3.4 deg), but requires a very longmanoeuvre time
to converge to the origin (𝑡3%

𝑓
≈ 440 s). If the weightings 𝑅̂

11
,

and 𝑅̂
22
were increased even further relative to the weighting

𝑄
𝑑11

, themaximum force requirements and angular rotations
would become infinitesimal while the settling times would
approach infinity.

In case P1 a significant weighting value is given to the first
modal variable 𝜂

1
(𝑄
𝑑11

= 6), while other weightings remain
unchanged from case P0. This control greatly increases the
speed at which the cart reaches its target position at 𝑥 = 0 (∼
2 s), but upon reaching this position the load undergoes large
swing angles (1.0 rad or 57 deg) that persist for a very long
time (𝑡3%

𝑓
≈ 440 s).

The maximum force increases significantly (17.3N) in
comparison to case P0 because the rigid body cart motion
requires much larger accelerations during the initial 2 s of
the manoeuvre in order to quickly attenuate 𝜂

1
due to its

significant weighting value.
Case P2 improves the load swing attenuation, which was

poorly dampened in case P1, by including a large weighting
value to the second modal variable 𝜂

2
(𝑄
𝑑22

= 50) (other
weightings remain the same as in the previous case). The
maximum load swing angle is reduced (0.8 rad or 46 deg)
and the load swinging motion is damped much more quickly
(∼6.5 s). The cart translation requires similar accelerations
and thus approximately the same maximum force (17.3N) is
needed. By inspection, one can see that case P2 produces
similar behaviour to the control given in [1] shown in Figure 3
and likewise shares the problem of target overshoot and large
persistent load swings.

Case P3 reduces the tendency of the cart to overshoot
the target by also giving a significant weighting to the first
modal velocity ̇𝜂

1
(𝑄V11 = 4). However, large persistent load

swings are still present, and so convergence is not significantly
improved over that produced in case P2. The maximum
required force (17.3N) remains essentially unchanged, while
the load swing angles are reduced slightly (0.75 rad or 43 deg).

The performance index in case P4 includes a large weight
on the second modal velocity ̇𝜂

2
(𝑄V22 = 50), while keeping

all other weightings unchanged from case P3. This produces
a control that reduces the magnitude of load swing angles
(0.45 rad or 25.8 deg) while attenuating the swinging motion
more quickly (𝑡3%

𝑓
≈ 4.2 s). The gantry crane performs

the manoeuvre in essentially a single load swing cycle,
with similar initial cart accelerations and thus maximum
forces (17.3N) as in previous cases. Case P4 produces faster
convergence then previous cases because, from an optimal
control perspective, it incorporates all of the gantry crane’s
states in the minimization by assigning all weightings in the
performance index (33) with significant numerical values.
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Table 2: DOF responses and force histograms that optimize performance indices P0–P4.

Index # 𝑥 (m) 𝜃 (rad) 𝐹
𝑎
(N)

P0

0

−1

−2

−3

−4

−5

5 10 15 20 25 30

t

t
3%
f ≈ 20 s

5 10 15 20 25 30

t

0.06

0.04

0.02

0

−0.02

−0.04

t
3%
f ≈ 440 s

5 10 15 20 25 30

t

0.6

0.4

0.2

0

P1

0

−1

−2

−3

−4

−5

t

2 4 6 8

t
3%
f ≈ 135 s

t

2 4 6 8

0.5

0

−0.5

−1

1

t
3%
f ≈ 440 s t

2 4 6 8

15

10

5

0

P2

0

−1

−2

−3

−4

−5

t

2 4 6 8

t
3%
f ≈ 4 s

0.4

0.8

0

−0.4 t

2 4 6 8

t
3%
f ≈ 6.5 s

−5

15

10

5

0

t

2 4 6 8

P3

0

−1

−2

−3

−4

−5

t

2 4 6 8

t
3%
f ≈ 3.5 s

0.4

0

−0.4 t

2 4 6 8

t
3%
f ≈ 6.5 s

15

10

5

0

t

2 4 6 8

P4

0

−1

−2

−3

−4

−5

t

2 4 6 8

t
3%
f ≈ 3.5 s

0.4

0.2

0

t

2 4 6 8

t
3%
f ≈ 4.2 s

15

10

5

0

t

2 4 6 8

It is essential that the second modal velocity ̇𝜂
2
is given a

significant weighting value to yield fast convergence, because
the energy of the suspended load oscillates equally between
potential and kinetic energy. Since potential energy and
kinetic energy are proportional to the squares of displace-
ment and velocity, respectively, both of the corresponding
states 𝜂

2
and ̇𝜂

2
should carry a significant and approxi-

mately equal weight in the performance index (33). Without

weighting the load swing velocity state, the control focuses on
eliminating swing angles but not swing velocities. However,
when the load is near the bottom of its swing, its velocity is
near maximum ( ̇𝜂

2
= √2 ̇𝜃 → max), while its displacement

is near minimum (𝜂
2

= √2𝜃 → min). Therefore, the
optimal force derived without consideration for the load
swing velocity is unable to eliminate any significant portion of
the load swing energy when the load is near the bottom of its
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swing (𝜃 → 0). Cases P2 and P3 failed to adequately weight
̇𝜂
2
, resulting in larger,more persistent load swings than in case

P4.
The control produced in case P4 provides a significant

improvement over the control presented in [1], as it converges
more quickly to the origin, while reducing load swing
magnitudes, without any increase in the required maximum
forces. To complete the design of this closed-loop control, the
gains are obtained from (50) in a similar fashion as in case (B),
giving

Gd = [𝑔
1𝑑

𝑔
2𝑑
] = [3.46 9.10] ,

Gv = [𝑔
1V 𝑔
2V] = [5.43 1.79] .

(54)

Note that the gains 𝑔
1𝑑

and 𝑔
1V are somewhat close to the

gains for the control presented in [1] (53), but gains 𝑔
2𝑑

and
𝑔
2V are substantially different.

(D) Closed-Loop Control of Gantry Crane: Fully Actuated
Control. The CMSOC method can also be applied to fully
actuated systems. To illustrate this, consider the same gantry
crane system, now with both actuators 𝐹

𝑎
and 𝐹

𝑑
acting as

real actuators (no dummy actuator). This situation may arise
practically when a person is employed to guide the suspended
load while the cart performs its translations.

Since the problem is fully actuated there, are no additional
constraints on the system motion and consequently no
Lagrange multipliers needed to enforce them. The optimal
forces can be solved by calculating the inverse dynamics
directly from (6b), which takes form (30) (except 𝐹

𝑑
̸= 0),

written as

F=B̂−1U 󳨐⇒ [
𝐹
𝑎

𝐹
𝑑

] =

[
[
[

[

𝑀

√𝑀 +𝑚

√
𝑀𝑚

𝑀+𝑚

𝑚

√𝑀 +𝑚

−√
𝑀𝑚

𝑀+𝑚

]
]
]

]

[
𝑢
1

𝑢
2

] . (55)

Theoptimality equations in the differential operator form (21)
become

EpY = [E] [𝜂] = 0 󳨐⇒ [
𝐸
1

0

0 𝐸
2

] [
𝜂
1

𝜂
2

] = 0, (56)

where

𝐸
1
= 𝑅̂
11
𝐷
4

− 𝑄V11𝐷
2

+ 𝑄
𝑑11

,

𝐸
2
= 𝑅̂
22
𝐷
4

+ (2𝑅̂
22
𝜔
2

2
− 𝑄V22)𝐷

2

+ (𝑅̂
22
𝜔
4

2
+ 𝑄
𝑑22

) .

(57)

With weightings chosen according to the performance index
in case P4 (𝑄

𝑑11
= 6, 𝑄

𝑑22
= 50, 𝑄V11 = 4, 𝑄V22 = 50, and

𝑅̂
11

= 𝑅̂
22

= 1), the roots of the characteristic equation (39)
for the system given by (56) (𝐸

1
𝐸
2
|
𝐷→𝑟

= 0) take form (24)
with the following real and imaginary parts:

𝛼
1
= 3.62, 𝛽

1
= 2.78,

𝛼
2
= 1.49, 𝛽

2
= 0.474.

(58)

For any fully actuated system, each modal variable 𝜂
𝑖
is inde-

pendently controlled by a single modal control 𝑢
𝑖
, resulting

in uncoupled solution functions of the following form:

𝜂
𝑖
= 𝑒
𝛼𝑖𝑡 (𝑐
1

𝑖
sin (𝛽

𝑖
𝑡) + 𝑐
2

𝑖
cos (𝛽

𝑖
𝑡)) . (59)

For the gantry crane (𝑖 = 1, 2) the four unknown integration
constants 𝑐

1,2

𝑖
are obtained by substituting the four initial

conditions for 𝜂
𝑖
(0) and ̇𝜂

𝑖
(0) given by (36a). As in the

previous cases, the solved modal variables in form (59)
are mapped into the original coordinates to obtain the
DOF trajectories and optimal forces. Figure 4 shows the cart
trajectory 𝑥 and the optimal forces on the cart and suspended
load 𝐹

𝑎
and 𝐹

𝑑
, respectively. The angular trajectory 𝜃 of the

load is not shown because it remains zero (𝜃 = 0) all the
time. Practically, this means that for the optimal manoeuvre
the person (actuator) guiding the suspended load must
simply act to prevent it from swinging. Fast convergence
(𝑡3%
𝑓

= 0.78 s) to the origin is obtained; however the task
requires relatively large maximum forces (104N) compared
to previous cases. The required actions of cart-driving force
𝐹
𝑎
and suspended load guiding force 𝐹

𝑑
are identical, as the

whole gantry crane system moves as a single rigid body. If
smaller forces are desired, then a larger weight may be given
to the modal controls (𝑅̂

11
, 𝑅̂
22
) in the performance index.

Note that only a 30N maximum force would be required
to execute the manoeuvre in 1 s by applying an open-loop
control scheme.

(E1) Closed-Loop Control of Modified Three-DOF Gantry
Crane (Two Actuators). To illustrate the application of the
CMSOC method to a problem of a higher dimension (𝑛

𝑚
=

3), the gantry crane is modified by adding an additional link
with an end load, as shown in Figure 5 (a case of a double-
pendulum gantry crane in 3D was presented in [19]). In
comparison to the previous cases considered the control task
is unchanged except that the oscillations of the additional
suspended load must also be damped. Consider the control
that uses two actuators (𝑛

𝑎
= 2)—the standard cart-driving

force 𝐹
𝑎
and torque 𝑇

𝑎
, produced by a motor fixed to the cart

and applied to the first rigid link of length 𝐿
1
which supports

the mass 𝑚
1
. Dummy torque 𝑇

𝑑
to be used in formulating

the augmented system is applied to the second link of length
𝐿
2
which carries mass𝑚

2
. All other physical variables are the

same as in the original gantry cranemodel with the exception
of 𝜃
1
and 𝜃
2
, which denote the angles of links of lengths𝐿

1
and

𝐿
2
, respectively.
The standard matrices in the augmented system’s equa-

tion of motion (1) for this new model are

M = [

[

𝑀 +𝑚
1
+ 𝑚
2

−𝑚
1
− 𝑚
2

−𝑚
2

−𝑚
1
− 𝑚
2

𝑚
1
+ 𝑚
2

𝑚
2

−𝑚
2

𝑚
2

𝑚
2

]

]

,

K =

[
[
[
[
[

[

0 0 0

0
𝑔 (𝑚
1
+ 𝑚
2
)

𝐿
1

0

0 0
𝑔𝑚
2

𝐿
2

]
]
]
]
]

]

,
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Figure 4: Histograms of (a) cart trajectory and (b) forces for the fully actuated gantry crane.
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Figure 5: Modified three-DOF gantry crane model.

B󸀠 =
[
[
[
[

[

1 0 0

0
1

𝐿
1

−
1

𝐿
1

0 0
1

𝐿
2

]
]
]
]

]

.

(60)

The augmented system consists of DOF vector q =

[𝑥 𝐿
1
𝜃
1

𝐿
2
𝜃
2
]
𝑇 and force vector 𝐹

󸀠

𝑎
= [𝐹
𝑎

𝑇
𝑎

𝑇
𝑑
]
𝑇. The

following numerical values are adopted: 𝑀 = 𝑚
1
= 𝑚
2
=

1 kg, 𝐿
1
= 𝐿
2
= 1m, 𝑎 = −5m, and 𝑔 = 9.8m/s2.

The set of 𝑛
𝑚

= 3 equations of motion (1) are uncoupled
in modal space, with matrices of ordered frequencies Ω and
mode shapes 𝜑 normalized according to (7a) and (7b), taking
the following forms:

Ω = [

[

0 0 0

0 12.4 0

0 0 46.4

]

]

, Φ = [

[

.577 .577 .577

0 .366 1.37

0 1 −1

]

]

. (61)
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As before, the first mode represents the rigid body mode
of motion (𝜔2

1
= 0), while the second and third modes,

with the squared frequencies 𝜔2
2
= 12.43 (rad/s)2 and 𝜔

2

3
=

46.37 (rad/s)2, represent the swinging modes of the rotating
link-masses.

Augmented force vector 𝐹
󸀠

𝑎
is related to modal control

vector U through the inverse of transformation (6b) which
is partitioned according to (9) to give

B̂−1U = [

[

1.73 0 0

−1.73 1.37 .366

−.577 .789 −.211

]

]

[

[

𝑢
1

𝑢
2

𝑢
3

]

]

= [

[

𝐹
𝑎

𝑇
𝑎

𝑇
𝑑

]

]

. (62)

The constraint equation (𝑛
𝑟
= 1) is obtained from the bottom

row of (62) (𝑇
𝑑
= 0) and normalized into the following form:

AU = [1 −1.37 .366] [

[

𝑢
1

𝑢
2

𝑢
3

]

]

= 0. (63)

The 𝑛
𝑎
= 2 actuation forces may be obtained directly from

the top two rows of (62) in terms of all modal controls, but
according to (11) these forces may be expressed in terms of
two independent modal controls (chosen as 𝑢

1
and 𝑢
2
) in the

following form:

BUa = [
1.73 0

−2.73 2.73
] [

𝑢
1

𝑢
2

] = [
𝐹
𝑎

𝑇
𝑎

] . (64)

Selecting a performance index of form (12) gives three (𝑛
𝑚
=

3) optimality equations in the form (18) that, with the
constraint equation (63), may be written according to (21) in
the following form:

EpY =

[
[
[

[

𝐸
1

0 0 𝐸
11

0 𝐸
2

0 𝐸
21

0 0 𝐸
3

𝐸
31

𝐸
11

𝐸
21

𝐸
31

0

]
]
]

]

[
[
[

[

𝜂
1

𝜂
2

𝜂
3

]

]
]
]

]

= 0, (65)

where

𝐸
𝑖
= 𝑅̂
𝑖𝑖
𝐷
4

− (2𝑅̂
𝑖𝑖
𝜔
2

𝑖
− 𝑄V𝑖𝑖)𝐷

2

+ (𝑅̂
𝑖𝑖
𝜔
4

𝑖
+ 𝑄
𝑑𝑖𝑖
) ,

𝐸
𝑖𝑗
= 𝐴
𝑗𝑖
(𝐷
2

+ 𝜔
2

𝑖
) (𝑖 = 1, . . . , 3, 𝑗 = 1) .

(66)

The parameters𝐴
𝑗𝑖
in the equation above are the 𝑗th row and

𝑖th column components of the constraint matrix A given by
(63). The selected weightings for the performance index are
𝑄
𝑑11

= 6, 𝑄
𝑑22

= 𝑄
𝑑33

= 50, 𝑄V11 = 4, 𝑄V22 = 𝑄V33 = 50, and
𝑅
11

= 𝑅
22

= 𝑅
33

= 1.
The twelve (4𝑛

𝑚
) roots of the characteristic equation

(23) are obtained in the complex form (24) and are used to
generate an assumed solution of form (25) for each unknown
modal variable (𝑛

𝑚
= 3) and Lagrange multiplier (𝑛

𝑟
= 1).

Half of these roots generate exponential growth functions
that are eliminated by assuming their corresponding integra-
tion constants to be zero-valued. Then through the method
of undetermined coefficients, four (𝑛

𝑚
+ 𝑛
𝑟
) sets of six linear

algebraic equations are obtained. Replacing one set by the set

of six initial conditions, the unknown integration constants
are obtained by solving the set of twenty-four equations (the
number of equations is 2𝑛

𝑚
(𝑛
𝑚
+ 𝑛
𝑟
)).

The boundary conditions for this problem are the same
as those chosen for the original gantry crane, written in
(36a), with the additional condition that the initial and final
positions and velocities of the thirdmodal variable 𝜂

3
are also

zero. In otherwords, themanoeuvre requires a horizontal cart
translation from a resting position at 𝑥 = 𝑎 = −5m with
both links hanging vertically to the same resting position at
the origin.

Figure 6 shows trajectories 𝑥, 𝜃
1
, and 𝜃

2
of the three-DOF

gantry crane as well as required actuation forces 𝐹
𝑎
and 𝑇

𝑎
.

The manoeuvre, requiring a maximum force of 29N and
a maximum torque of 18Nm, is effectively completed after
𝑡
3%
eff = 4 s. The maximum load swing angle of the first link is
0.11 rad (6.3∘) and that of the second link is 0.48 rad (27.5 deg).

(E2) Open-Loop Control ofModifiedThree-DOFGantry Crane
(One Actuator). In order to show the case where one actuator
controls threeDOFs, the optimalmanoeuvre for themodified
gantry crane using only a single actuator—cart-driving force
𝐹
𝑎
—is investigated for an open-loop scheme. Both of the

torque actuators 𝑇
𝑎
and 𝑇

𝑑
(Figure 5) are treated as dummy

actuators and so the inverse transformation, while identical
to (62), is repartitioned in the following form:

B̂−1U = [

[

1.73 0 0

−1.73 1.37 .366

−.5774 .789 −.211

]

]

[

[

𝑢
1

𝑢
2

𝑢
3

]

]

= [

[

𝐹
𝑎

𝑇
𝑎

𝑇
𝑑

]

]

= [

[

𝐹
𝑎

0

0

]

]

.

(67)

The constraint equations (𝑛
𝑟
= 2) are obtained from the two

bottom rows of (67) and normalized into the following form:

AU = [
1 −1 0

0 1 1
][

[

𝑢
1

𝑢
2

𝑢
3

]

]

= 0. (68)

According to (11) the single cart-driving force may be
expressed in terms of the independentmodal control (chosen
as 𝑢
1
) in the following form:

BUa = [1.73] [𝑢
1
] = [𝐹

𝑎
] . (69)

Note that matrix B is the same for all cases involving one
actuator. Choosing a performance index in form (12) gives
three (𝑛

𝑚
= 3) optimality equations in form (18) that, with

constraint equation (68), may be written according to (21) in
the following form:

EpY =

[
[
[
[
[
[

[

𝐸
1

0 0 𝐸
11

𝐸
12

0 𝐸
2

0 𝐸
21

𝐸
22

0 0 𝐸
3

𝐸
31

𝐸
32

𝐸
11

𝐸
21

𝐸
31

0 0

𝐸
12

𝐸
22

𝐸
32

0 0

]
]
]
]
]
]

]

[
[
[
[
[

[

𝜂
1

𝜂
2

𝜂
3

]
1

]
2

]
]
]
]
]

]

= 0, (70)

where
𝐸
𝑖
= 𝑅̂
𝑖𝑖
𝐷
4

− (2𝑅̂
𝑖𝑖
𝜔
2

𝑖
− 𝑄V𝑖𝑖)𝐷

2

+ (𝑅̂
𝑖𝑖
𝜔
4

𝑖
+ 𝑄
𝑑𝑖𝑖
) ,

𝐸
𝑖𝑗
= 𝐴
𝑗𝑖
(𝐷
2

+ 𝜔
2

𝑖
) (𝑖 = 1, . . . , 3, 𝑗 = 2) .

(71)
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Figure 6: (a) Cart trajectory, (b) swing angles, and (c) force/torque for the modified gantry crane.
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Figure 7: (a) Cart trajectory, (b) swing angles, and (c) force for modified gantry crane (open loop).

The assumed weightings are 𝑅
11

= 𝑅
22

= 𝑅
33

= 1 and
𝑄
𝑑11

= 𝑄
𝑑22

= 𝑄
𝑑33

= 𝑄V11 = 𝑄V22 = 𝑄V33 = 0 (only the
control effort is to be minimized). Consistent with the open-
loop control presented in case (A) the finite manoeuvre time
is chosen to be 𝑡

𝑓
= 4 s.

The solution procedure is similar to previous examples.
Figure 7 shows trajectories𝑥, 𝜃

1
, and 𝜃

2
as well as the required

cart-driving force 𝐹
𝑎
. The manoeuvre requires a peak force

of 4.8N and completes the task in exactly 4 s. The maximum
load swing angle of the first link is 0.19 rad (11∘) and that of
the second link is 0.35 rad (20∘).

4. Conclusions

The CMSOC methodology was presented as a means of
solving linear underactuated (or fully actuated) control prob-
lems. The gantry crane problem was selected to illustrate
in detail various operations required for different control
methodologies. As demonstrated the method can be applied
to open-loop control schemes as well as closed-loop (asymp-
totically convergent) control schemes. In the latter case the
weightings of the performance index can be translated to the
gains of the full-state feedback closed-loop controllers. The
operations would be identical for any similar problems with
larger numbers of modes and actuators.
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The delay-dependent exponential 𝐿
2
-𝐿
∞
performance analysis and filter design are investigated for stochastic systems with mixed

delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-
dependent sufficient condition for the existence of the 𝐿

2
-𝐿
∞
filter is established, by choosing an appropriate Lyapunov-Krasovskii

functional and constructing a new integral inequality.The full-order filter design approaches are obtained in terms of linear matrix
inequalities (LMIs). By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure
that the filter error system is exponentially stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾. Numerical examples are provided to
illustrate the effectiveness and significant improvement of the proposed method.

1. Introduction

Time delays are quite often encountered in various practical
engineering systems, and they are regarded as one of themain
sources causing instability and degrading performance of
control systems [1–3]. Over the past decades, numerous re-
sults and various approaches on delay systems have been re-
ported in the literatures. Many researchers have focused on
the stability analysis, stabilization, and filtering for time-delay
systems; see [4–9] and the references therein. Time delays are
usually classified into discrete delays and distributed delays.
In the existing literatures, discrete time-delay system [10–12],
distributed time-delay system [13, 14], and mixed (including
both discrete and distributed time delays) system [15–17] are
considered.

Since certain unavoidable stochastic perturbations are
widely existing in many engineering systems, stochastic sys-
tems have gained considerable research attention over the
past few years [18–20]. Stochastic dynamic modeling has
come to play an important role in many fields of science and

engineering. In the past years, many researchers have focused
on the problems of stability and stabilization of stochastic
time-delay systems. For instance, robust stabilization for a
class of large-scale stochastic systems was investigated in [21],
delay-dependent stability results for stochastic systems were
presented in [22–26], and𝐻

∞
state feedback control and𝐻

∞

dynamic output feedback control for uncertain stochastic
time-delay systems were investigated in [27, 28], respectively.

In the field of stochastic dynamic systemwith time delays,
the filtering problem, which is to estimate the unavailable
state of variables of a given control system, is also an import-
ant issue. Kalman filtering scheme is a well-known effective
way to deal with the filtering problem. However, it has some
limitations in practical applications due to the fact that it assu-
mes that the system and its disturbances are exactly known,
that is, stationary Gaussian noised with known statistics.
Under this view, recently,𝐻

∞
filtering, mixed𝐻

2
/𝐻
∞

filter-
ing and 𝐿

2
-𝐿
∞

filtering for stochastic time-delay systems
have been widely studied [8, 9, 29–38]. In 𝐻

2
/𝐻
∞

filtering,
and 𝐿

2
-𝐿
∞

filtering problems, the external disturbances are
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assumed to be bounded. In 𝐻
2
/𝐻
∞

filtering problem, it re-
quires that the filtering error systems satisfy not only a pre-
scribed𝐻

∞
disturbance attenuation level but also the𝐻

2
per-

formance (minimum of the 𝐻
2
norm of transfer function of

the filter error systems), while in 𝐿
2
-𝐿
∞

filtering problem, it
requires that the filtering error systems satisfy a prescribed
𝐿
2
-𝐿
∞
disturbance attenuation level.𝐻

∞
filtering andmixed

𝐻
2
/𝐻
∞
filtering problems of nonlinear stochastic systems are

investigated in [30, 31]. In [32], a delay-independent robust
𝐿
2
-𝐿
∞

filtering design approach for uncertain stochastic
time-delay system is investigated. It is well known that the
delay-independent results are generally more conservative
than the delay-dependent ones. Authors in [33–35] developed
delay-dependent filtering for stochastic time-delay systems.
Authors in [36] proposed a delay-dependent 𝐿

2
-𝐿
∞

filter
design approach for stochastic time-delay systems, based on
a delay partitioning technique presented in [37]. As the results
showed, delay-partitioning can reduce conservatism to some
extent. Authors in [38] investigated the problem of robust
𝐿
2
-𝐿
∞
filtering for stochastic systems with both discrete and

distributed delays. Although the filtering problems for
stochastic systems with time delays have been well investi-
gated in the aforementioned literatures, most of them are
dealing with linear stochastic time-delay systems. To the
authors’ knowledge, the 𝐿

2
-𝐿
∞
filtering problems of stochas-

tic time-delay systems with nonlinear perturbation are still
insufficient. This motivates the authors to deal with the
𝐿
2
-𝐿
∞

filtering problem of a class of nonlinear stochastic
time-delay systems.

This paper focuses on the problems of delay-dependent
𝐿
2
-𝐿
∞
filtering for stochastic systems with mixed delays and

nonlinear perturbations. By Lyapunov-Krasovskii approach
based on the delay partitioning and integral partitioning tech-
nique, we first develop a delay-dependent sufficient condition
for 𝐿
2
-𝐿
∞

performance analysis. And then, an improved
delay-dependent sufficient condition is obtained for the exist-
ence of desired filter in the form of linear matrix inequalities
(LMIs). The 𝐿

2
-𝐿
∞
performance analysis and filter design of

linear stochastic system with mixed delays are also investi-
gated. Finally, numerical examples are provided to show that
the proposed method is effective and less conservative than
some existing literatures.

Notations. Throughout this paper, 𝑋 > 0 (𝑋 < 0)means that
the matrix 𝑋 is positive definite (negative definite). R𝑛 de-
notes the 𝑛-dimensional Euclidean space; R𝑚×𝑛 is the set of
all 𝑚 × 𝑛 real matrices; L

2
[0,∞) is the space of square-inte-

grable vector functions over [0,∞). The superscript “𝑇” re-
presents the transpose; “∗” denotes the symmetric terms in a
matrix; diag( ) denotes a block-diagonal matrix; 𝜆max( ) and
𝜆min( ) denote the maximum eigenvalue and minimum eig-
envalue, respectively. sym(𝑋) = 𝑋 + 𝑋

𝑇; | ⋅ | denotes the
Euclidean vector norm; ‖ ⋅ ‖

2
stands for the usual L

2
[0,∞)

norm. (Ω, F,P) is a probability spacewithΩ the sample space,
F the 𝜎-algebra of subsets of Ω, and P the probability mea-
sure on F. E{⋅} denotes the expectation operator with respect
to some probability measure P. 0 and I represent zero matrix
and identity matrix with appropriate dimensions, respec-
tively, unless we say otherwise.

2. Problem Formulation

Consider the following stochastic systems with mixed delays
and nonlinear perturbations:

𝑑𝑥 (𝑡)

= [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ)

+𝐴
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐴
3
𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡)] 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡) 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡)=[𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − ℎ) + 𝐶

2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐶VV (𝑡)] 𝑑𝑡,

𝑧 (𝑡) = 𝐿𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑦(𝑡) ∈ R𝑚 is the measured out-
put; 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated; V(𝑡) ∈ R𝑞 is
the disturbance input which belongs to L

2
[0,∞), which is the

space of square-integrable vector functions; 𝜔(𝑡) is a one-
dimensional Brownian motion defined on a complete proba-
bility space (Ω, F,P) satisfying E{𝑑𝜔(𝑡)} = 0 and E{𝑑𝜔2(𝑡)} =
𝑑𝑡;𝜑(𝑡) is an initial function that is continuous on [−𝜏, 0]with
𝜏 = max{ℎ, 𝑑}. ℎ and 𝑑 are discrete and distributed constant
delays, respectively. 𝑓(⋅, ⋅, ⋅):R𝑛 ×R𝑛 ×R → R𝑛 is a nonlinear
function, which satisfies

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑡)
󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝐹1𝑥

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐹2𝑦

󵄨󵄨󵄨󵄨

2

, 𝑓 (0, 0, 0) = 0, (2)

where 𝐹
1
∈ R𝑛×𝑛 and 𝐹

2
∈ R𝑛×𝑛 are known constant matrices;

𝑔(⋅, ⋅, ⋅): R𝑛 × R𝑛 × R → R𝑛 is a nonlinear perturbance input
function, satisfying

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑦, 𝑡)
󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝐺1𝑥

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐺2𝑦

󵄨󵄨󵄨󵄨

2

, 𝑔 (0, 0, 0) = 0, (3)

where𝐺
1
∈ R𝑛×𝑛 and𝐺

2
∈ R𝑛×𝑛 are known constantmatrices.

For system (1), we are interested in constructing the fol-
lowing full-order linear filter:

𝑑𝑥
𝑓
(𝑡) = 𝐴

𝑓
𝑥
𝑓
(𝑡) 𝑑𝑡 + 𝐵

𝑓
𝑑𝑦 (𝑡) ,

𝑧
𝑓
(𝑡) = 𝐶

𝑓
𝑥
𝑓
(𝑡) ,

(4)

where 𝑥
𝑓
(𝑡) ∈ R𝑛 is the filter state; 𝐴

𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
are filter

matrices to be determined.
Define

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

𝑓
(𝑡)]
𝑇

, 𝑒 (𝑡) = 𝑧 (𝑡) − 𝑧
𝑓
(𝑡) . (5)
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Then, the filtering error system can be written as

𝑑𝜉 (𝑡) = [𝐴𝜉 (𝑡) + 𝐴
1
𝐻𝜉 (𝑡 − ℎ) + 𝐴

2
𝐻∫

𝑡

𝑡−𝑑

𝜉 (𝑠) 𝑑𝑠

+𝐴
3
𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡) ] 𝑑𝑡

+ 𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) 𝑑𝜔 (𝑡)

𝑒 (𝑡) = 𝐿𝜉 (𝑡) ,

(6)

where

𝐴 = [
𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
1
= [

𝐴
1

𝐵
𝑓
𝐶
1

] ,

𝐴
2
= [

𝐴
2

𝐵
𝑓
𝐶
2

] , 𝐴
3
= [

𝐴
3
0

0 0
] ,

𝐴V = [
𝐴V
𝐵
𝑓
𝐶V
] , 𝐻 = [𝐼

𝑛
0
𝑛
] ,

𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) = [
𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡)

0
] ,

𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) = [
𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡)

0
] ,

𝐿 = [𝐿 −𝐶
𝑓
] .

(7)

The objective of this paper is to design full-order 𝐿
2
-𝐿
∞

filter (4) for the stochastic time-delay system (1) such that the
filtering error system (6) satisfies the following two require-
ments:

(i) the filtering error system (6) with V(𝑡) = 0 is expo-
nentially stable [39];

(ii) under the zero initial condition, the filtering error sys-
tem (6) is stochastically asymptotically stable and
achieves a prescribed 𝐿

2
-𝐿
∞

attenuation level 𝛾. The
filtering error 𝑒(𝑡) satisfies

‖𝑒 (𝑡)‖
𝐸∞

< 𝛾‖V (𝑡)‖
2
, (8)

with ‖𝑒(𝑡)‖
𝐸∞

= sup
𝑡
√E{|𝑒(𝑡)|2}, ‖V(𝑡)‖

2
= √∫

∞

0

V𝑇(𝑡)V(𝑡)𝑑𝑡
for any nonzero V(𝑡) ∈ L

2
[0,∞].

Before presenting the main results of this paper, we intro-
duce the following lemmas, which will be essential to our
derivation.

Lemma 1 (see [40]). For a given symmetrical matrix 𝑆 =

(
𝑆11 𝑆12

𝑆
𝑇

12
𝑆22

), where 𝑆
11
= 𝑆
𝑇

11
, and 𝑆

22
= 𝑆
𝑇

22
, the linear matrix ine-

quality 𝑆 < 0 is equivalent to

𝑆
11
< 0, 𝑆

22
− 𝑆
12
𝑆
−1

11
𝑆
𝑇

12
< 0,

or

𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

(9)

Lemma 2 (see [1]). For any positive symmetric matrix 𝑊 ∈

R𝑛×𝑛, scalars 𝛿
1
and 𝛿

2
satisfying 𝛿

1
< 𝛿
2
, a vector function

𝑥 : [𝛿
1
, 𝛿
2
] → R𝑛, one has

∫

𝛿2

𝛿1

𝑥
𝑇

(𝑠)𝑊𝑥 (𝑠) 𝑑𝑠

≥
1

(𝛿
2
− 𝛿
1
)
(∫

𝛿2

𝛿1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

𝛿2

𝛿1

𝑥 (𝑠) 𝑑𝑠) .

(10)

Lemma 3 (see [14]). For any positive symmetric matrix 𝑊 ∈

R𝑛×𝑛, scalars 𝑎 and 𝑏 satisfying 𝑎 < 𝑏 ≤ 0, a vector function
𝑥 : [𝑎, 𝑏] → R𝑛, one has

∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥
𝑇

(𝑠)𝑊𝑥 (𝑠) 𝑑𝑠 𝑑𝜆

≥
2

𝑎2 − 𝑏2
(∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥 (𝑠) 𝑑𝑠 𝑑𝜆)

𝑇

𝑊(∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥 (𝑠) 𝑑𝑠 𝑑𝜆) .

(11)

3. Filtering Performance Analysis

In this section, a new delay-dependent condition of the
𝐿
2
-𝐿
∞

filtering performance analysis for system (1) will be
presented. A Lyapunov-Krasovskii functional is constructed;
based on the idea of delay partitioning and integral partition-
ing, the conservatism will be reduced. For the convenience of
expression, assume that the filter matrices (𝐴

𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
)

are known.

Theorem 4. Consider the stochastic time-delay system (1). For
given scalars 𝛾 > 0, ℎ > 0, 𝑑 > 0, 𝜌 > 0, and 𝜀 > 0 and integers
𝑟
1
≥ 1 and 𝑟

2
≥ 1, there exists a linear filter (4) such that the

filtering error system (6) is stochastically asymptotically stable
with a guaranteed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist sym-
metrical positive definite matrices 𝑃 ∈ R2n×2n, 𝑄

𝑖
∈ Rn×n,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrix𝑀 ∈ R𝑛×𝑛 satisfying

Φ =

[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

𝑃𝐴
3
𝑃𝐴V 𝐴

𝑇

𝐻
𝑇

𝑀

∗ Φ
22

0 0 0 Φ
26

∗ ∗ Φ
33

0 0 Φ
36

∗ ∗ ∗ −𝜀𝐼 0 𝐴
𝑇

3
𝐻
𝑇

𝑀

∗ ∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝐻
𝑇

𝑀

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]
]

]

< 0, (12)

𝑃 ≤ 𝜌𝐼, (13)

Γ = [
𝑃 𝐿
𝑇

∗ 𝛾
2

𝐼
] > 0, (14)
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where

Φ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝐻
𝑇

𝑄
1
𝐻 −𝐻

𝑇

𝑅
1
𝐻

−

𝑟2

∑

𝑗=1

𝐻
𝑇

(
2

2𝑗 − 1
𝑍
𝑗
)𝐻

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝐻
𝑇

𝑊
𝑗
𝐻 + 𝜌𝐻

𝑇

𝐺
𝑇

1
𝐺
1
𝐻 + 𝜀𝐻

𝑇

𝐹
𝑇

1
𝐹
1
𝐻,

Φ
12
= 𝐻
𝑇

𝑅
1
𝐾 + 𝑃𝐴

1
𝐾
𝑟1
,

Φ
13
= 𝑃𝐴
2
𝐾
𝑟2
+ 𝐻
𝑇

Ζ,

𝑍 =
2𝑚

𝑑
[𝑍1

1

3
𝑍
2
⋅ ⋅ ⋅

1

2𝑟
2
− 1

𝑍
𝑟2
] ,

Φ
22
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
2
− 𝑄
1

−𝑅
2
− 𝑅
1

𝑅
2

⋅ ⋅ ⋅ 0 0

∗
𝑄
3
− 𝑄
2

−𝑅
3
− 𝑅
2

⋅ ⋅ ⋅ 0 0

...
... d

...
...

∗ ∗ ⋅ ⋅ ⋅
𝑄
𝑟1
− 𝑄
𝑟1−1

−𝑅
𝑟1
− 𝑅
𝑟1−1

𝑅
𝑟1

∗ ∗ ⋅ ⋅ ⋅ ∗ Φ
22

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
22
= −𝑄
𝑟1
− 𝑅
𝑟1
+ 𝜌𝐺
𝑇

2
𝐺
2
+ 𝜀𝐹
𝑇

2
𝐹
2
,

Φ
26
= 𝐾
𝑇

𝑟1

𝐴
𝑇

1
𝐻
𝑇

𝑀,

Φ
33
= diag(−𝑊

1
−
2𝑚
2

𝑑2
𝑍
1
, −𝑊
2
−
2𝑚
2

3𝑑2
𝑍
2
, . . . , −𝑊

𝑟2

−
2𝑚
2

(2𝑟
2
− 1) 𝑑2

𝑍
𝑟2
) ,

Φ
36
= 𝐾
𝑇

𝑟2

𝐴
𝑇

2
𝐻
𝑇

𝑀,

Φ
66
= (

ℎ

𝑟
1

)

2 𝑟1

∑

𝑖=1

𝑅
𝑖
+ (

𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

2𝑗 − 1

2
𝑍
𝑗
−𝑀 −𝑀

𝑇

,

𝐾 = [𝐼
𝑛
0
𝑛×(𝑟1−1)𝑛

] ,

𝐾
𝑟1
= [0
𝑛×(𝑟1−1)𝑛

𝐼
𝑛
] ,

𝐾
𝑟2
= [𝐼 𝐼 ⋅ ⋅ ⋅ 𝐼]

𝑛×𝑟2𝑛
.

(15)
Proof. First, show the asymptotic stability of system (6) with
V(𝑡) = 0. For simplicity of notations, rewrite the filtering error
system (6) as

𝑑𝜉 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝜔 (𝑡) , (16)
where

𝑢 (𝑡) := 𝐴𝜉 (𝑡) + 𝐴
1
𝐻𝜉 (𝑡 − ℎ) + 𝐴

2
𝐻∫

𝑡

𝑡−𝑑

𝜉 (𝑠) 𝑑𝑠

+ 𝐴
3
𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡) ,

𝜋 (𝑡) := 𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) .

(17)

Next, denote 𝜂(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), and choose the following
Lyapunov-Krasovskii functional:

𝑉 (𝜉
𝑡
, 𝑡)

= 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) +

𝑟1

∑

𝑖=1

∫

𝑡−((𝑖−1)/𝑟1)ℎ

𝑡−(𝑖/𝑟1)ℎ

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑄
𝑖
𝐻𝜉 (𝑠) 𝑑𝑠

+

𝑟1

∑

𝑖=1

ℎ

𝑟
1

∫

−((𝑖−1)/𝑟1)ℎ

−(𝑖/𝑟1)ℎ

∫

𝑡

𝑡+𝜃

𝜂
𝑇

(𝑠)𝐻
𝑇

𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+

𝑟2

∑

𝑗=1

𝑑

𝑟
2

∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠 𝑑𝜃

+

𝑟2

∑

𝑗=1

∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

0

𝜃

∫

𝑡

𝑡+𝛽

𝜂
𝑇

(𝑠)𝐻
𝑇

𝑍
𝑗
𝐻𝜂 (𝑠) 𝑑𝑠𝑑𝛽 𝑑𝜃.

(18)

Then, by Itô differential formula, the stochastic differential
along the trajectories of system (6) is

𝑑𝑉 (𝜉
𝑡
, 𝑡) = L𝑉 (𝜉

𝑡
) 𝑑𝑡 + 2𝜉 (𝑡) 𝑃𝜋 (𝑡) 𝑑𝜔 (𝑡) , (19)

where

L𝑉 (𝜉
𝑡
, 𝑡) = 2𝜉

𝑇

(𝑡) 𝑃𝑢 (𝑡) + trace (𝜋𝑇 (𝑡) 𝑃𝜋 (𝑡))

+

𝑟1

∑

𝑖=1

𝜉
𝑇

(𝑡 −
𝑖 − 1

𝑟
1

ℎ)𝐻
𝑇

𝑄
𝑖
𝐻𝜉(𝑡 −

𝑖 − 1

𝑟
1

ℎ)

−

𝑟1

∑

𝑖=1

𝜉
𝑇

(𝑡 −
𝑖

𝑟
1

ℎ)𝐻
𝑇

𝑄
𝑖
𝐻𝜉(𝑡 −

𝑖

𝑟
1

ℎ)

+ (
ℎ

𝑟
1

)

2 𝑟1

∑

𝑖=1

𝜂
𝑇

(𝑡)𝐻
𝑇

𝑅
𝑖
𝐻𝜂 (𝑡)

−

𝑟1

∑

𝑖=1

ℎ

𝑟
1

∫

𝑡−((𝑖−1)/𝑟1)ℎ

𝑡−(𝑖/𝑟1)ℎ

𝜂
𝑇

(𝑠)𝐻
𝑇

𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝜉
𝑇

(𝑡)𝐻
𝑇

𝑊
𝑖
𝐻𝜉 (𝑡)

−

𝑟2

∑

𝑗=1

𝑑

𝑟
2

∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

2𝑗 − 1

2
𝜂
𝑇

(𝑡)𝐻
𝑇

𝑍
𝑗
𝐻𝜂 (𝑡)

−

𝑟2

∑

𝑗=1

∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

𝑡

𝑡+𝜃

𝜂
𝑇

(𝑡)𝐻
𝑇

𝑍
𝑗
𝐻𝜂 (𝑡) 𝑑𝑠 𝑑𝜃.

(20)
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By Lemma 2, we have

−

𝑟1

∑

𝑖=1

ℎ

𝑟
1

∫

𝑡−((𝑖−1)/𝑟1)ℎ

𝑡−(𝑖/𝑟1)ℎ

𝜂
𝑇

(𝑠)𝐻
𝑇

𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠

≤ −

𝑟1

∑

𝑖=1

(∫

𝑡−((𝑖−1)/𝑟1)ℎ

𝑡−(𝑖/𝑟1)ℎ

𝜂 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇

𝑅
𝑖
𝐻(∫

𝑡−((𝑖−1)/𝑟1)ℎ

𝑡−(𝑖/𝑟1)ℎ

𝜂 (𝑠) 𝑑𝑠)

= −

𝑟1

∑

𝑖=1

(𝜉(𝑡 −
𝑖 − 1

𝑟
1

ℎ) − 𝜉(𝑡 −
𝑖

𝑟
1

ℎ))

𝑇

× 𝐻
𝑇

𝑅
𝑖
𝐻(𝜉(𝑡 −

𝑖 − 1

𝑟
1

ℎ) − 𝜉(𝑡 −
𝑖

𝑟
1

ℎ)) ,

(21)

−

𝑟2

∑

𝑗=1

𝑑

𝑟
2

∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠

≤ −

𝑟2

∑

𝑗=1

(∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇

𝑊
𝑗
𝐻(∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉 (𝑠) 𝑑𝑠) .

(22)

By Lemma 3, we have

−

𝑟2

∑

𝑗=1

∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

𝑡

𝑡+𝜃

𝜂
𝑇

(𝑡)𝐻
𝑇

𝑍
𝑗
𝐻𝜂 (𝑡) 𝑑𝑠 𝑑𝜃

≤ −

𝑟2

∑

𝑗=1

2

2𝑗 − 1
(
𝑟
2

𝑑
)

2

(∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

𝑡

𝑡+𝜃

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

× 𝐻
𝑇

𝑍
𝑗
𝐻(∫

−((𝑗−1)/𝑟2)𝑑

−(𝑗/𝑟2)𝑑

∫

𝑡

𝑡+𝜃

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃)

= −

𝑟2

∑

𝑗=1

2

2𝑗 − 1
(
𝑟
2

𝑑
)

2

(
𝑑

𝑟
2

𝜉 (𝑡) − ∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇

𝑍
𝑗
𝐻(

𝑑

𝑟
2

𝜉 (𝑡) − ∫

𝑡−((𝑗−1)/𝑟2)𝑑

𝑡−(𝑗/𝑟2)𝑑

𝜉 (𝑠) 𝑑𝑠) .

(23)

From (16), for any appropriately dimensioned matrix 𝑀, we
have

2𝜂
𝑇

(𝑡)𝐻
𝑇

𝑀
𝑇

𝐻[𝑢 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝜔 (𝑡) − 𝜂 (𝑡) 𝑑𝑡] = 0.

(24)

On the other hand, (2) implies that there exists 𝜀 > 0 such
that

𝜉
𝑇

(𝑡) 𝜀𝐻
𝑇

𝐹
𝑇

1
𝐹
1
𝐻𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡 − ℎ) 𝜀𝐻
𝑇

𝐹
𝑇

2
𝐹
2
𝐻𝜉 (𝑡 − ℎ) − 𝜀𝑓

𝑇

𝑓 ≥ 0,

(25)

where we take 𝑓 for 𝑓(𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑡), for simplicity of
notation.

Notice the fact of (3), and from (13), we have

trace (𝜋𝑇 (𝑡) 𝑃𝜋 (𝑡))

≤ 𝜉
𝑇

(𝑡) 𝜌𝐻
𝑇

𝐺
𝑇

1
𝐺
1
𝐻𝜉 (𝑡) + 𝜉

𝑇

(𝑡 − ℎ) 𝜌𝐻
𝑇

𝐺
𝑇

2
𝐺
2
𝐻𝜉 (𝑡 − ℎ) .

(26)

Combine (20)–(26); then

L𝑉 (𝑥
𝑡
, 𝑡) ≤ 𝜁

𝑇

(𝑡) Φ𝜁 (𝑡) + 2𝜂
𝑇

(𝑡)𝐻
𝑇

𝑀
𝑇

𝐻𝜋 (𝑡) 𝑑𝜔 (𝑡) ,

(27)

where

𝜁
𝑇

(𝑡) = [𝜉
𝑇

𝑝1
(𝑡) 𝜉
𝑇

𝑝2
(𝑡) 𝑓 (𝑡) 𝜂

𝑇

(𝑡)𝐻
𝑇

] ,

𝜉
𝑇

𝑝1
= [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 −
1

𝑟
1

ℎ)𝐻
𝑇

𝜉
𝑇

(𝑡 −
2

𝑟
1

ℎ)𝐻
𝑇

⋅ ⋅ ⋅ 𝜉
𝑇

(𝑡 − ℎ)𝐻
𝑇

] ,

𝜉
𝑇

𝑝2
(𝑡) = [∫

𝑡

𝑡−(1/𝑟2)𝑑

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑑𝑠 ∫

𝑡−(1/𝑟2)𝑑

𝑡−(2/𝑟2)𝑑

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑑𝑠 ⋅ ⋅ ⋅ ∫

𝑡−((𝑟2−1)/𝑟2)𝑑

𝑡−𝑑

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑑𝑠] ,

Φ =

[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

𝑃𝐴
3
𝐴
𝑇

𝐻
𝑇

𝑀

∗ Φ
22

0 0 Φ
26

∗ ∗ Φ
33

0 Φ
36

∗ ∗ ∗ −𝜀𝐼 𝐴
𝑇

3
𝐻
𝑇

𝑀

∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]

]

.

(28)

Thus,

E {L𝑉 (𝜉
𝑡
, 𝑡)} ≤ E {𝜁𝑇 (𝑡) Φ𝜁 (𝑡)} . (29)

By Schur complement lemma, it is easy to show thatΦ < 0

impliesΦ < 0. Combined with (29), these imply that, for any
𝜁(𝑡) ̸=0, we have E{L𝑉(𝜉

𝑡
, 𝑡)} < 0.
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By Dynkin’s formula, there exists 𝛽 > 0, such that

𝑒
𝛽𝑡E𝑉 (𝜉

𝑡
, 𝑡) ≤ E𝑉 (𝜉

0
, 0) . (30)

Recalling the Lyapunov-Krasovskii functional in (18), notice
the fact that there always exists 𝜅 > 0 satisfying

󵄨󵄨󵄨󵄨𝜂 (𝑡)
󵄨󵄨󵄨󵄨

2

≤ 𝜅
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨

2 (31)

for any −𝜏 ≤ 𝑡 ≤ 0 such that

E𝑉 (𝜉
0
, 0) ≤

5

∑

𝑖=1

𝛼
𝑖
sup
−𝜏≤𝑠≤0

E󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨

2

, (32)

where 𝛼
1

= 𝜆max(𝑃), 𝛼
2

= ℎmax
𝑖
{‖𝑄
𝑖
‖}, 𝛼
3

=

(𝜅ℎ
3

/2𝑟
1
)max
𝑖
{‖𝑅
𝑖
‖}, 𝛼
4
= (𝑑
3

/2𝑟
2
)max
𝑗
{‖𝑊
𝑗
‖}, and 𝛼

5
=

(𝜅𝑑
3

/6)max
𝑗
{‖𝑍
𝑗
‖}.

On the other hand, from (18)

E𝑉 (𝜉
𝑡
, 𝑡) ≥ 𝜆min (𝑃)E

󵄨󵄨󵄨󵄨𝜉 (𝑡)
󵄨󵄨󵄨󵄨

2

. (33)

From (32) and (33), it can be easily obtained that

E󵄨󵄨󵄨󵄨𝜉 (𝑡; 𝜑)
󵄨󵄨󵄨󵄨

2

≤ 𝛼𝑒
−𝛽𝑡 sup
−𝜏≤𝑠≤0

E󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨

2

, (34)

where 𝛼 = ∑
5

𝑖=1
𝛼
𝑖
/𝜆min(𝑃) and 𝜑 is the initial condition of

filtering error system (6).Thenby exponential stability defini-
tion of stochastic systems [39], the filtering error system (6)
with V(𝑡) = 0 is exponentially stable in the sense of mean
square.

Now, we will establish the 𝐿
2
-𝐿
∞
performance for the fil-

tering error system (6). To this end, we assume the zero initial
condition 𝜁(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Under the initial condition,
it is easy to see that, for any 𝑡 > 0,

E {𝑉 (𝜉
𝑡
, 𝑡)} = E{∫

𝑡

0

L𝑉 (𝜉
𝑠
, 𝑠) 𝑑𝑠} . (35)

Define

𝐽 (𝑡) = E {𝑉 (𝜉
𝑡
, 𝑡)} − ∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (36)

Then, for any nonzero V(𝑡) ∈ L
2
[0,∞) and 𝑡 > 0, combined

with (29), (35)-(36), we have

𝐽 (𝑡) = E{∫
𝑡

0

[L𝑉 (𝜉
𝑠
, 𝑠) − V𝑇 (𝑠) V (𝑠)] 𝑑𝑠}

≤ E{∫
𝑡

0

𝜗
𝑇

(𝑠) Φ𝜗 (𝑠) 𝑑𝑠} ,

(37)

where 𝜗𝑇(𝑡) = [𝜉
𝑇

𝑝1
(𝑡) 𝜉
𝑇

𝑝2
(𝑡) 𝑓

𝑇

V𝑇(𝑡) 𝜂
𝑇

(𝑡)𝐻
𝑇
]. Φ < 0

ensuring that 𝐽(𝑡) ≤ 0. Thus,

E {𝜉𝑇 (𝑡) 𝑃𝜉 (𝑡)} ≤ E {𝑉 (𝜉
𝑡
, 𝑡)} ≤ ∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (38)

Moreover, by Schur complement, (14) holds if and only if

𝐿
𝑇

𝐿 < 𝛾
2

𝑃. (39)

It follows from (38) and (39) that

E {|𝑒 (𝑡)|2} = E {𝜉𝑇 (𝑡) 𝐿𝑇𝐿𝜉 (𝑡)} < 𝛾
2E {𝜉𝑇 (𝑡) 𝑃𝜉 (𝑡)}

≤ 𝛾
2E {𝑉 (𝜉

𝑡
, 𝑡)} ≤ 𝛾

2

∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠.
(40)

Therefore, if (12)–(14) hold, the filtering error system (6)
is mean-square exponentially stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾 under zero initial condition. This completes
the proof.

In system (1), if 𝐴
3
= 0 and 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑡) = 𝐵𝑥(𝑡) +

𝐵
1
𝑥(𝑡 − ℎ) + 𝐵

2
∫
𝑡

𝑡−𝑑

𝑥(𝑠)𝑑𝑠 + 𝐵VV(𝑡), then the linear stochastic
system with mixed delays can be written as

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ)

+𝐴
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐴VV (𝑡)] 𝑑𝑡

+ [𝐵𝑥 (𝑡) + 𝐵
1
𝑥 (𝑡 − ℎ)

+𝐵
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐵VV (𝑡)] 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡)=[𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − ℎ) + 𝐶

2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐶VV (𝑡)] 𝑑𝑡,

𝑧 (𝑡) = 𝐿𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝜏, 0]

(41)

which is the same as the system in [38] with constant delays.
Thus, following the similar lines in Theorem 4, a sufficient
condition can be obtained guaranteeing that there exists a lin-
ear filter (4) such that the filtering error system is exponen-
tially stable and achieves a prescribed 𝐿

2
-𝐿
∞
performance 𝛾.

Corollary 5. Consider the stochastic time-delay system (41).
For given scalars 𝛾 > 0, ℎ > 0, and 𝑑 > 0 and integers 𝑟

1
≥ 1

and 𝑟
2
≥ 1, there exists a linear filter (4) such that the corre-

sponding filtering error system is exponentially stable with a
guaranteed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist symmetrical
positive definite matrices 𝑃 ∈ R2𝑛×2𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, 𝑅𝑇

𝑖
∈

R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟
1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrix𝑀 ∈ R𝑛×𝑛 satisfying (14) and

Φ̃ =

[
[
[
[
[
[

[

Φ̃
11

Φ
12

Φ
13

𝑃𝐴V 𝐴
𝑇

𝐻
𝑇

𝑀

∗ Φ̃
22

0 0 Φ
26

∗ ∗ Φ
33

0 Φ
36

∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝐻
𝑇

𝑀

∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]

]

+ 𝐵
𝑇

𝜉
𝑃𝐵
𝜉
< 0, (42)

where Φ̃
11

= Φ
11
− 𝜌𝐻
𝑇

𝐺
𝑇

1
𝐺
1
𝐻 − 𝜀𝐻

𝑇

𝐹
𝑇

1
𝐹
1
𝐻, Φ̃
22

= Φ
22
−

𝐾
𝑇

𝑟1

(𝜌𝐺
𝑇

2
𝐺
2
+ 𝜀𝐹
𝑇

2
𝐹
2
)𝐾
𝑟1
, and 𝐵

𝜉
= [𝐵 𝐵

1
𝐾
𝑟1

𝐵
2
𝐾
𝑟2

𝐵V].
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4. Filter Design

In this section, we will focus on the design of 𝐿
2
-𝐿
∞
filter for

stochastic system (1). Based onTheorem 4, a delay-dependent
sufficient condition will be obtained in the forms of LMI,
which ensures that the filtering error system (6) is stochas-
tically asymptotically stable and achieves a prescribed 𝐿

2
-𝐿
∞

performance 𝛾.

Theorem 6. Consider the stochastic time-delay system (1). For
given scalars 𝛾 > 0, ℎ > 0, 𝑑 > 0, 𝜌 > 0, and 𝜀 > 0 and integers
𝑟
1
≥ 1 and 𝑟

2
≥ 1, there exists a linear filter (4) such that the

filtering error system (6) is stochastically asymptotically stable
with a prescribed 𝐿

2
-𝐿
∞
performance 𝛾, if there exist symmet-

rical positive definite matrices𝑋 ∈ R𝑛×𝑛, 𝑌 ∈ R𝑛×𝑛, 𝑄
𝑖
∈ R𝑛×𝑛,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrices 𝑀 ∈ R𝑛×𝑛, 𝐴

𝑓
∈ R𝑛×𝑚, 𝐵

𝑓
∈ R𝑛×𝑛,

and 𝐶
𝑓
∈ R𝑛×𝑝 satisfying

Υ =

[
[
[
[
[
[
[

[

Υ
11

Υ
12

Υ
13

Υ
14

Υ
15

Υ
16

∗ Φ
22

0 0 0 Υ
26

∗ ∗ Φ
33

0 0 Υ
36

∗ ∗ ∗ −𝜀𝐼 0 𝐴
𝑇

3
𝑀

∗ ∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝑀

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]

]

< 0, (43)

[
𝑋 − 𝜌𝐼 𝑌

𝑌 (1 − 𝜌)𝑌
] < 0, (44)

Π
2
≤ 𝐼, (45)

Λ =
[
[

[

𝑋 𝑌 𝐿
𝑇

∗ 𝑌 −𝐶
𝑇

𝑓

∗ ∗ 𝛾
2

𝐼

]
]

]

> 0, (46)

where

Υ
11
= [

Υ
1

11
𝐴
𝑓
+ 𝐴
𝑇

𝑌 + 𝐶
𝑇

𝐵
𝑇

𝑓

∗ 𝐴
𝑓
+ 𝐴
𝑇

𝑓

] ,

Υ
12
= [

𝑅
1
𝐾
1
+ (𝑋𝐴

1
+ 𝐵
𝑓
𝐶
1
)𝐾
𝑟1

(𝑌𝐴
1
+ 𝐵
𝑓
𝐶
1
)𝐾
𝑟1

] ,

Υ
13
= [

(𝑋𝐴
2
+ 𝐵
𝑓
𝐶
2
)𝐾
𝑟2
+ 𝑍

(𝑌𝐴
2
+ 𝐵
𝑓
𝐶
2
)𝐾
𝑟2

] ,

Υ
1

11
= sym (𝑋𝐴 + 𝐵

𝑓
𝐶) + 𝑄

1
− 𝑅
1

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝑊
𝑗
−

𝑟2

∑

𝑗=1

2

2𝑗 − 1
𝑍
𝑗
+ 𝜌𝐺
𝑇

1
𝐺
1
+ 𝜀𝐹
𝑇

1
𝐹
1
,

Υ
14
= [

𝑋𝐴
3

𝑌𝐴
3

] , Υ
15
= [

𝑋𝐴V + 𝐵
𝑓
𝐶V

𝑌𝐴V + 𝐵
𝑓
𝐶V

] ,

Υ
16
= [

𝐴
𝑇

𝑀

0
𝑛,𝑛

] , Υ
26
= 𝐾
𝑇

𝑟1

𝐴
𝑇

1
𝑀, Υ

36
= 𝐾
𝑇

𝑟2

𝐴
𝑇

2
𝑀.

(47)

In this case, the parameters of a desired filter in the form of
(4) can be taken as

𝐴
𝑓
= Π
−1

1
𝐴
𝑓
Π
−𝑇

1
Π
2
, 𝐵

𝑓
= Π
−1

1
𝐵
𝑓
,

𝐶
𝑓
= 𝐶
𝑓
Π
−𝑇

1
Π
2
,

(48)

whereΠ
1
andΠ

2
are nonsingular matrices satisfying 0 < Π

2
=

Π
𝑇

2
≤ 𝐼, 0 < 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
, and 𝑋 > 𝑌 > 0.

Proof. From (46), it can be seen that [𝑋 𝑌
𝑌 𝑌

] > 0, and𝑋 > 𝑌 >

0. For any positive definite and symmetric matrix 𝑌, one can
always find nonsingular matrix Π

1
∈ R𝑛×𝑛 and 0 < Π

2
=

Π
𝑇

2
∈ R𝑛×𝑛, such that 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
.

Set

𝑃 = [
𝑋 Π

1

Π
𝑇

1
Π
2

] . (49)

Then𝑋 − Π
1
Π
−1

2
Π
𝑇

1
= 𝑋 − 𝑌 > 0, and 𝑃 > 0.

Define

Π = [
𝐼
𝑛

0
𝑛,𝑛

0
𝑛,𝑛

Π
−1

2
Π
𝑇

1

] . (50)

Then

Π
−1

= [
𝐼
𝑛

0
𝑛,𝑛

0
𝑛,𝑛

Π
−𝑇

1
Π
2

] . (51)

Substitute 𝐴
𝑓

= Π
1
𝐴
𝑓
Π
−1

2
Π
𝑇

1
, 𝐵
𝑓

= Π
1
𝐵
𝑓
, 𝐶
𝑓

=

𝐶
𝑓
Π
−1

2
Π
𝑇

1
, and 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
into (43), (44), and (46) and

then pre- and postmultiply (43) by diag{Π−𝑇, 𝐼
𝑟1𝑛
, 𝐼
𝑟2𝑛
, 𝐼
𝑛
, 𝐼
𝑛
,

𝐼
𝑛
} and its transpose, respectively. Premultiply and postmul-

tiply (46) by diag{Π−𝑇, 𝐼
𝑝
} and its transpose, respectively.

Noticing that𝑃 = [
𝑋 Π1

Π
𝑇

1
Π2

], using Schur complement Lemma,
one can obtain (12) and (14).

On the other hand, (44) implies

[
𝑋 𝑌

𝑌 𝑌
] < 𝜌 [

𝐼 0

0 𝑌
] . (52)

Pre- and postmultiply (52) by Π
−𝑇 and Π

−1, respectively.
Notice that 𝑌 = ΠΛ

−1

Π
𝑇, one can obtain

[
𝑋 Π

1

Π
𝑇

1
Π
2

] < 𝜌 [
𝐼 0

0 Π
2

] . (53)

By (45), it is easy to see that

[
𝑋 Π

1

Π
𝑇

1
Π
2

] < 𝜌 [
𝐼 0

0 𝐼
] . (54)

So, (13) is satisfied.
Therefore, by Theorem 4, the suitable filter parameters

can be constructed by (48), which ensures the filtering error
system (6) to be stochastically asymptotically stable with
𝐿
2
-𝐿
∞

performance 𝛾. This completes the proof.
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Remark 7. When deriving the results in Theorem 6 based on
Theorem 4, considering dealing with the LMI (13), we give
a method to avoid nonlinear terms emerging. Using Matlab
LMI toolbox, one can solve linear matrix inequalities (43)-
(44) and (46).Then, by matrix diagonalization approach, one
can easily find that diagonally positive matrix Π

2
and non-

singular matrix Π
1
satisfy Π

2
= Π
𝑇

1
𝑌
−1

Π
1
. If the obtained

matrix Π
2
does not satisfy (45), one can take Π

2
for Π

2
/

max{eig(Π
2
)} and Π

1
for √max{eig(Π

2
)}Π
1
. Thus, the

desired filter parameters can be obtained by (48).
Following the similar method in Theorem 6, one can

obtain a result of filter design for linear stochastic time-delay
system (41).

Corollary 8. Consider the stochastic time-delay system (41).
For given scalars 𝛾 > 0, ℎ > 0, and 𝑑 > 0 and integers 𝑟

1
≥ 1

and 𝑟
2
≥ 1, there exists a linear filter (4) such that the corre-

sponding filtering error system is stochastically asymptotically
stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist
symmetrical positive definite 𝑋 ∈ R𝑛×𝑛, 𝑌 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrices 𝑀 ∈ R𝑛×𝑛, 𝐴

𝑓
∈ R𝑛×𝑚, 𝐵

𝑓
∈ R𝑛×𝑛,

and 𝐶
𝑓
∈ R𝑛×𝑝 satisfying (46) and

Υ̃ =

[
[
[
[
[
[
[

[

Υ̃
11

Υ
12

Υ
13

Υ
15

Υ
16

Υ
17

∗ Φ̃
22

0 0 Υ
26

Υ
27

∗ ∗ Φ
33

0 Υ
36

Υ
37

∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝑀 Υ
47

∗ ∗ ∗ ∗ Φ
66

0

∗ ∗ ∗ ∗ ∗ Υ
77

]
]
]
]
]
]
]

]

< 0, (55)

where

Υ̃
11
= [

Υ̃
1

11
𝐴
𝑓
+ 𝐴
𝑇

𝑌 + 𝐶
𝑇

𝐵
𝑇

𝑓

∗ 𝐴
𝑓
+ 𝐴
𝑇

𝑓

] ,

Υ̃
1

11
= Υ
1

11
− 𝜌𝐺
𝑇

1
𝐺
1
− 𝜀𝐹
𝑇

1
𝐹
1
, Υ

17
= [

𝐵
𝑇

𝑋 𝐵
𝑇

𝑌

0
𝑛,𝑛

0
𝑛,𝑛

] ,

Υ
27
= 𝐾
𝑇

𝑟1

[𝐵
𝑇

1
𝑋 𝐵
𝑇

1
𝑌] , Υ

37
= 𝐾
𝑇

𝑟2

[𝐵
𝑇

2
𝑋 𝐵
𝑇

2
𝑌] ,

Υ
47
= [𝐵
𝑇

v𝑋 𝐵
𝑇

V𝑌] , Υ
77
= [

−𝑋 −𝑌

∗ −𝑌
] .

(56)

Remark 9. The results presented in Theorem 6 and
Corollary 8 can be easily extended to the systems with
only discrete or distributed delays and also to the robust
performance analysis for uncertain stochastic systems with
mixed delays.

5. Numerical Examples

Example 1. Consider the stochastic time-delay system (1)
with parameters

𝐴 = [
−1.5 0.5

−1 −3
] , 𝐴

1
= [

−0.8 0.2

0.2 −0.5
] ,

𝐴
2
= [

0.2 0

0 0.2
] , 𝐴

3
= [

0.1 0

0 0.1
] ,

Table 1: The upper bound of 𝑑max for ℎ = 1 and 𝛾 = 0.2.

Methods 𝑑max

Theorem 6 (𝑟
1
= 1, 𝑟

2
= 1) 7.481

Theorem 6 (𝑟
1
= 2, 𝑟

2
= 2) 8.190

Theorem 6 (𝑟
1
= 3, 𝑟

2
= 3) 8.317

Theorem 6 (𝑟
1
= 5, 𝑟

2
= 5) 8.379

𝐴V = [
0.2 0

0 −0.2
] , 𝐶 = [

2 −0.5

−1.5 0.5
] ,

𝐶
1
= [

0.15 0.1

−0.1 0.1
] , 𝐶

2
= [

0.5 −0.2

0.6 0
] ,

𝐶V = [
0.1 0.2

0.1 0.03
] , 𝐿 = [

0.1 −0.2

0 0.1
] ,

𝜀 = 1, 𝜌 = 7.

(57)

Moreover, for the nonlinear functions, we let 𝐺
1
= 𝐺
2
=

0.1𝐼 and 𝐹
1
= 𝐹
2
= 0.1𝐼. Given ℎ = 1 and 𝛾 = 0.2, from

Theorem 6, one can obtain the upper bound of time delay 𝑑,
which is listed in Table 1.

In the case of 𝑟
1
= 2 and 𝑟

2
= 2, the desired filter param-

eters can be obtained:

𝐴
𝑓
= [

−6.1460 2.2644

0.6168 −4.5679
] , 𝐵

𝑓
= [

−3.8749 1.8868

0.7066 −0.1266
] ,

𝐶
𝑓
= [

−0.0568 0.0052

0.0202 0.0057
] .

(58)

Example 2. Consider the stochastic time-delay system (36)–
(39) with parameters

𝐴 = [
−1.5 0.5

−1 −3
] , 𝐴

1
= [

−0.8 0.2

0.2 −0.5
] ,

𝐴
2
= [

0.2 0

0 0.2
] , 𝐴V = [

0.2 0

0 −0.2
] ,

𝐵 = [
−0.8 0.2

0.5 −0.5
] , 𝐵

1
= [

0.5 0.5

0.2 0.3
] ,

𝐵
2
= [

0.2 0

0 0.2
] , 𝐵V = [

−0.2 0

0 0.5
] ,

𝐶 = [
2 −0.5

−1.5 0.5
] , 𝐶

1
= [

0.15 0.1

−0.1 0.1
] ,

𝐶
2
= [

0.5 −0.2

0.6 0
] , 𝐶V = [

0.1 0.2

0.1 0.03
] ,

𝐿 = [
0.1 −0.2

0 0.1
] .

(59)
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Table 2: The upper bound of ℎmax for 𝑑 = 1 and 𝛾 = 0.2.

Methods ℎmax

[38] 1.725
Corollary 8 (𝑟

1
= 1, 𝑟

2
= 1) 3.755

Corollary 8 (𝑟
1
= 2, 𝑟

2
= 1) 5.054

Corollary 8 (𝑟
1
= 2, 𝑟

2
= 2) 5.111

Corollary 8 (𝑟
1
= 3, 𝑟

2
= 3) 5.688

Corollary 8 (𝑟
1
= 5, 𝑟

2
= 5) 5.920

Given𝑑 = 1 and 𝛾 = 0.2, fromCorollary 8, one can obtain
the upper bound of time delay ℎ. Table 2 lists the results of
Corollary 8 and [38] with constant delays. It is easy to see that
the proposed filter design method in this paper is less con-
servative than [38].

From Corollary 8, in the case of 𝑟
1
= 2 and 𝑟

2
= 2, the

desired filter parameters can be obtained:

𝐴
𝑓
= [

−0.0000 −4.1570

−0.0000 −2.5527
] , 𝐵

𝑓
=[

10.1507 −11.1236

6.0149 −6.1484
],

𝐶
𝑓
= [

0.0000 0.0065

−0.0000 −0.0027
] .

(60)

Remark 3. It can be seen from the results that the conserv-
atism can be reduced with the increase of partition integers.
However, it is necessary to point out that the less conserv-
atism is at the cost of a higher computational complexity.

6. Conclusions

In this paper, a new approach has been developed to inves-
tigate the problems of delay-dependent 𝐿

2
-𝐿
∞

filter design
for stochastic system with mixed delays and nonlinear per-
turbations. Based on the idea of delay partitioning and
integral partitioning, using Lyapunov-Krasovskii functional
approach, a delay-dependent sufficient condition has been
established that ensures the filtering error system is exponen-
tially stable with 𝐿

2
-𝐿
∞
performance 𝛾. By solving the LMIs,

one can get the desired filter gain matrices. The results also
depend on the partition integers with the increase of partition
integers, the conservatism can be decreased. Finally, numer-
ical examples are presented to demonstrate the effectiveness
of the proposed approach.
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Remarkable improvements in the asymptotic properties of discrete system zeros may be achieved by properly adjusted fractional-
order hold (FROH) circuit. This paper analyzes asymptotic properties of the limiting zeros, as the sampling period 𝑇 tends to zero,
of the sampled-data models on the basis of the normal form representation of the continuous-time systems with FROH. Moreover,
when the relative degree of the continuous-time system is equal to one or two, an approximate expression of the limiting zeros for
the sampled-data system with FROH is also given as power series with respect to a sampling period up to the third-order term.
And, further, the corresponding stability conditions of the sampling zeros are discussed for fast sampling rates. The ideas of the
paper here provide a more accurate approximation for asymptotic zeros, and certain known achievements on asymptotic behavior
of limiting zeros are shown to be particular cases of the results presented.

1. Introduction

Zeros, along with poles, are fundamental characteristics of
linear time-invariant systems, and the stability of zeros is
one of the most important issues in the model matching and
adaptive control problems. When a continuous-time system
is discretized by the use of a sampler and a hold, the mapping
between the discrete-time poles and their continuous-time
counterparts is very simple; namely, stability of poles is
reserved. There is unfortunately no simple transformation
between the discrete-time zeros and their continuous-time
ones because the zeros of discrete-time systems depend
on sampling period 𝑇 [1]. More precisely, it is generally
impossible to tranform a continuous-time system with zeros
in the left-half plane to a discrete-time system with zeros
inside the unit circle.That is to say, the stability of zeros is not
necessarily preserved except in special cases. Therefore, one
of the special cases (i.e., the limiting case) is that the sampling

period 𝑇 tends to zero which has attracted considerable
attention from the engineering point of view.

Perhaps the first attempt to study discrete system zeros
was given by Åström and coworkers [1], who describe
the asymptotic behavior of the discrete-time zeros for fast
sampling rate when the original continuous-time plant is
discretized with zero-order hold (ZOH). In this case, the
discretized zeros are further called limiting zeros which are
composed of the intrinsic zeros and sampling zeros [2]. The
former ones have counterparts in the underlying continuous-
time system and go to unity [3] while the latter ones, which
have no continuous-time counterparts and are generated in
the sampling process, go toward roots of a certain polynomial
[4, 5] determined by relative degree of the continuous-time
system.

In much of discussion about the properties of discrete-
time zeros, ZOH has been mainly employed as a hold circuit
since it is used most commonly in practice [1, 3, 6–10].
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Taking into account the fact that the type of hold circuit used
critically influences the position of zeros, it is an interesting
problem to investigate the zeros in the case of various holds.
Hagiwara et al. [4] have carried out a comparative study
and demonstrated that a first-order hold (FOH) provides
no advantage over ZOH as far as the stability of zeros of
the resulting discrete-time systems is concerned. Passino
and Antsaklis [11] have considered the fractional-order hold
(FROH) as an alternative to the ZOH and shown that it can
locate the zeros of discrete-time system inside the unit circle
by some examples while ZOH fails to do so. In the very
motivating work by Ishitobi [12], the properties of limiting
zeros with FROH have been analyzed, and the corresponding
pulse-transfer function has been also derived.

Moreover, Ishitobi has definitely presented the relation-
ship between the relative degree and discretized zeros behav-
ior when the continuous-time systems have the relative
degree up to five for sufficiently small sampling periods. Fur-
ther, Bàrcena et al. [13, 14] and Liang et al. [15, 16] have
extended Ishitobi’s results [12] from different angles and
methods by investigating the limiting zeros in the case of a
FROH. In addition, the limiting FROH zeros [12] have been
also extended by Blachuta [17], who describes the accuracy
of the asymptotic results for both the intrinsic and sampling
zeros in terms of Bernoulli numbers and parameters of
the continuous-time transfer function for sufficiently small
sampling periods 𝑇.

In FROH case, the intrinsic zeros are located inside (resp.,
outside) the unit circle for small sampling periods when the
corresponding continuous-time zeros lie strictly in the left-
half plane (resp., right). For sampling zeros, at least one of
the zeros lies strictly outside the unit circle if the relative
degree of a continuous-time transfer function is greater than
or equal to three [12, 18]. This fact indicates that even though
all the zeros of such a continuous-time system are stable, the
corresponding discrete-time system has at least one unstable
zero in the limiting case as the sampling period tends to
zero. Thus, attention is here focused on continuous-time
systems with relative degree less than or equal to two. More
specifically, the corresponding discrete-time plants have one
or two sampling zero(s) in the case of a FROH when the
relative degree of a continuous-time transfer function is one
or two.However, in these cases, the sampling zeros are located
just on the unit circle, that is, in the marginal case of the
stability. More importantly, it is a valuable research topic to
find the criteria which guarantee that stable discretized zeros
are obtained. Thus, the asymptotic behavior of the sampl-
ing zeros is an interesting issue as we explore the stability
properties of the sampling zeros by analyzing the asymptotic
properties as the sampling period tends to zero.

The objective of this paper is to analyze the improved
asymptotic properties of the limiting zeros for discrete-time
models by using a new kind of method. More precisely,
we give an approximate expression of limiting zeros for the
sampled-data system on the basis of the normal form repre-
sentation of continuous-time system with FROH as power
series with respect to a sampling period up to the third-order
term when the relative degree of the continuous-time system
is one or two. Our results include also the finding of how close

limiting zeros are to the actual intrinsic and sampling ones,
irrespectively of whether they are stable or not.The approach
used could be referred to as an extension of that of [12, 17,
18], and one of the principal contribution in this paper, in
particular, would consequently propose an analytical method
to obtain the FROH zeros as stable as possible, or with
improved asymptotic properties even when unstable, for a
given continuous-time plant. Finally, we further discuss the
stability of the sampling zeros for sufficiently small sampling
periods, and some interesting examples are given to validate
the main results.

2. Sampled-Data Models with FROH

Consider an 𝑛th continuous-time systemwith relative degree
one or two described by a transfer function

𝐺 (𝑠) = 𝐾
𝑁 (𝑠)

𝐷 (𝑠)
, 𝐾 ̸= 0, (1)

where

𝑁(𝑠) = 𝑠
𝑚

+ 𝑏
𝑚−1
𝑠
𝑚−1

+ 𝑏
𝑚−2
𝑠
𝑚−2

+ ⋅ ⋅ ⋅ + 𝑏
0
,

𝑚 = 𝑛 − 1 or 𝑛 − 2,

𝐷 (𝑠) = 𝑠
𝑛

+ 𝑎
𝑛−1
𝑠
𝑛−1

+ 𝑎
𝑛−2
𝑠
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑎
0
.

(2)

The paper treats systems with relative degree one or two
because at least one of the limiting zeros is unstable when the
relative degree is greater than or equal to three though it is
slightly a limitation.

2.1. Case of Relative Degree One (𝑚=𝑛−1). The normal form
of (1) with the relative degree one, 𝑚 = 𝑛 − 1 is represented
with an input 𝑢 and an output 𝑦 [19, 20] as

̇𝜉 = −𝑑𝜉 + 𝐾𝑢 − 𝜔,

̇𝜂 = 𝑃𝜂 + q𝜉,

𝑦 = 𝜉,

(3)

where

𝜂 = [𝜂
1
⋅ ⋅ ⋅ 𝜂
𝑛−1
]
𝑇

,

𝜔 = c𝑇𝜂, c = [𝑟
0
𝑟
1
⋅ ⋅ ⋅ 𝑟
𝑛−2
]
𝑇

,

𝑃 =

[
[
[

[

0 1 𝑂

d
𝑂 1

−𝑏
0
⋅ ⋅ ⋅ −𝑏

𝑛−2

]
]
]

]

, q =
[
[
[
[

[

0

...
0

1

]
]
]
]

]

,

(4)

and the scalars 𝑑 and 𝑟
𝑖
(𝑖 = 0, . . . , 𝑛 − 2) are obtained from

𝐷 (𝑠) = 𝑄 (𝑠)𝑁 (𝑠) + 𝑅 (𝑠) ,

𝑄 (𝑠) = 𝑠 + 𝑑,

𝑅 (𝑠) = 𝑟
𝑛−2
𝑠
𝑛−2

+ 𝑟
𝑛−3
𝑠
𝑛−3

+ ⋅ ⋅ ⋅ + 𝑟
0
,

(5)
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Figure 1: The signal reconstruction of a fractional-order hold with
𝛽 = −0.5.

where

𝑑 = 𝑎
𝑛−1
− 𝑏
𝑛−2
,

𝑟
𝑖
= 𝑎
𝑖
− 𝑏
𝑖−1
− 𝑏
𝑖
𝑑, 𝑖 = 0, . . . , 𝑛 − 2.

(6)

When the FROH signal reconstructionmethod is consid-
ered, the input is described by

V (𝑡) = 𝑢 (𝑘𝑇) + 𝛽 [
𝑢 (𝑘𝑇) − 𝑢 ((𝑘 − 1) 𝑇)

𝑇
] (𝑡 − 𝑘𝑇) ,

𝑘𝑇 ≤ 𝑡 < (𝑘 + 1) 𝑇, 𝑘 = 0, 1, . . . ,

(7)

where 𝛽 is a real design parameter and 𝑇 is a sampling
period [11, 12, 18]. It is obvious that FROH is reduced to
ZOH for 𝛽 = 0 while it becomes the FOH for 𝛽 = 1. The
signal reconstruction of a FROH with 𝛽 = −0.5 is shown in
Figure 1.

Suppose 𝑢(𝑡) = V(𝑡), and when a FROH is applied, we
have

̇𝑢 (𝑡) = 𝛽 [
𝑢 (𝑘𝑇) − 𝑢 ((𝑘 − 1) 𝑇)

𝑇
] , ̈𝑢 (𝑡) = ⋅ ⋅ ⋅ = 0. (8)

Furthermore, (3) leads to the derivatives of the output

̇𝑦 = −𝑑𝜉 + 𝐾𝑢 − c𝑇𝜂, (9)

̈𝑦 = (𝑑
2

− c𝑇q) 𝜉 − 𝑑𝐾𝑢 + (𝑑c𝑇 − c𝑇𝑃) 𝜂 + 𝐾 ̇𝑢, (10)

𝑦
(3)

= (−𝑑
3

+ 2𝑑c𝑇q − c𝑇𝑃q) 𝜉 + (𝑑2 − c𝑇q)𝐾𝑢

+ (𝑑c𝑇𝑃 − c𝑇𝑃2 − 𝑑2c𝑇 + c𝑇qc𝑇) 𝜂 − 𝑑𝐾 ̇𝑢,

(11)

𝑦
(4)

= {𝑑
4

− 3𝑑
2c𝑇q + 2𝑑c𝑇𝑃q − c𝑇𝑃2q + (c𝑇q)

2

} 𝜉

+ (−𝑑
3

+ 2𝑑c𝑇q − c𝑇𝑃q)𝐾𝑢

+ {𝑑
3c𝑇 − 2𝑑c𝑇qc𝑇 + c𝑇𝑃qc𝑇 + 𝑑c𝑇𝑃2

−c𝑇𝑃3 − 𝑑2c𝑇𝑃 + c𝑇qc𝑇𝑃} 𝜂 + (𝑑2 − c𝑇q)𝐾 ̇𝑢

(12)

which are expressed by 𝜉, 𝜂, and 𝐾𝑢. Further, the derivatives
of 𝜂 are also represented by 𝜉, 𝜂, and𝐾𝑢 as

̇𝜂 = 𝑃𝜂 + q𝜉, (13)

̈𝜂 = (𝑃q − q𝑑) 𝜉 + (𝑃2 − qc𝑇) 𝜂 + q𝐾𝑢, (14)

𝜂
(3)

= (𝑃
2q − qc𝑇q − 𝑃q𝑑 + q𝑑2) 𝜉 + (𝑃q − q𝑑)𝐾𝑢

+ (𝑃
3

− qc𝑇𝑃 − 𝑃qc𝑇 + qc𝑇𝑑) 𝜂 + q𝐾 ̇𝑢.

(15)

Hence, by substituting (9)–(15) into the right-hand side of

𝑦
𝑘+1

=

∞

∑

𝑖=0

𝑇
𝑖

𝑖!
𝑦
(𝑖)

𝑘
,

𝜂
𝑘+1

=

∞

∑

𝑖=0

𝑇
𝑖

𝑖!
𝜂
(𝑖)

𝑘

(16)

and defining the state variables 𝑥
𝑘
= [𝑦
𝑘
, 𝜂
𝑇

𝑘
]
𝑇, where the

subscript 𝑘 denotes 𝑡 = 𝑘𝑇, the discrete-time state equations
are definitely obtained. It is easy to show that zeros of a
discrete-time system for a transfer function (1) are derived
from (16).

Now, by applying the explicit expressions of 𝑦
𝑘
, ̇𝑦
𝑘
,

. . . , 𝑦
(4)

𝑘
and 𝜂

𝑘
, . . . , 𝜂

(3)

𝑘
, the zeros of (16) are analyzed as

follows:

𝑦
𝑘+1

=

4

∑

𝑖=0

𝑇
𝑖

𝑖!
𝑦
(𝑖)

𝑘
+ 𝑂 (𝑇

5

)

= (1 − 𝑑𝑇 +
𝑑
2

− 𝑟
𝑛−2

2
𝑇
2

+
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑃q
6

𝑇
3

+
𝑑
4

− 3𝑑
2

𝑟
𝑛−2
+ 2𝑑c𝑇𝑃q𝑟2

𝑛−2
− c𝑇𝑃2q

24
𝑇
4

)𝑦
𝑘

+ {(1 +
𝛽

2
)𝑇 − (

𝑑

2
+
𝑑𝛽

6
)𝑇
2

+
4𝑑
2

− 4𝑟
𝑛−2
− 𝑟
𝑛−2
𝛽 + 𝑑
2

𝛽

24
𝑇
3

+
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑃q
24

𝑇
4

}𝐾𝑢
𝑘

+ {−
𝛽

2
𝑇 +

𝑑𝛽

6
𝑇
2

−

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
3

}𝐾𝑢
𝑘−1

+ (−c𝑇𝑇 + 𝑑c
𝑇

− c𝑇𝑃
2

𝑇
2

+

𝑑c𝑇𝑃 − c𝑇𝑃2 + (𝑟
𝑛−2
− 𝑑
2

) c𝑇

6
𝑇
3
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+ (((𝑑
3

− 2𝑑𝑟
𝑛−2
) c𝑇 + c𝑇𝑃qc𝑇 + 𝑑c𝑇𝑃2

−c𝑇𝑃3 − 𝑑2c𝑇𝑃 + 𝑟
𝑛−2

c𝑇𝑃)

×(24)
−1

) 𝑇
4

) 𝜂
𝑘
+ 𝑂 (𝑇

5

) ,

(17)

𝜂
𝑘+1

=

3

∑

𝑖=0

𝑇
𝑖

𝑖!
𝜂
(𝑖)

𝑘
+ 𝑂 (𝑇

4

)

= (q𝑇 + 𝑃q − q𝑑
2

𝑇
2

+
𝑃
2q − 𝑟

𝑛−2
q + q𝑑2 − 𝑃q𝑑
6

𝑇
3

)𝑦
𝑘

+ {(
q
2
+
q𝛽
6
)𝑇
2
𝑃q − q𝑑
6

𝑇
3

}𝐾𝑢
𝑘
−
q𝛽
6
𝑇
2

𝐾𝑢
𝑘−1

+ (𝐼 + 𝑃𝑇 +
𝑃
2

− qc𝑇

2
𝑇
2

+
𝑃
3

− qc𝑇𝑃 − 𝑃qc𝑇 + 𝑑qc𝑇

6
𝑇
3

) 𝜂
𝑘
+ 𝑂 (𝑇

4

) .

(18)

The reason why the explicit expressions of 𝑦
𝑘
, ̇𝑦
𝑘
, . . . ,

𝑦
(4)

𝑘
and 𝜂

𝑘
, . . . , 𝜂

(3)

𝑘
are used is to obtain the approximate

expansion of the limiting zeros for the discrete-time system
with the order 𝑇3.

2.2. Case of Relative Degree Two (𝑚=𝑛−2). The normal form
of (1) with the relative degree two, 𝑚 = 𝑛 − 2 is represented
[19, 20] as

̇
𝜉 = [

0 1

0 0
] 𝜉 + [

0

1
] (𝐾𝑢 − 𝜔 − 𝑑

0
𝜉
1
− 𝑑
1
𝜉
2
) ,

̇𝜂 = 𝑃𝜂 + q𝜉
1
,

𝑦 = [1 0] 𝜉,

(19)

where

𝜉 = [𝜉
1
𝜉
2
]
𝑇

, 𝜂 = [𝜂
1
⋅ ⋅ ⋅ 𝜂
𝑛−2
]
𝑇

,

𝜔 = c𝑇𝜂, c = [c
0
c
1
⋅ ⋅ ⋅ c
𝑛−3
]
𝑇

,

𝑃 =

[
[
[

[

0 1 𝑂

d
𝑂 1

−𝑏
0
⋅ ⋅ ⋅ −𝑏

𝑛−4
−𝑏
𝑛−3

]
]
]

]

, q =
[
[
[
[

[

0

...
0

1

]
]
]
]

]

,

(20)

and the scalars𝑑
𝑖
(𝑖 = 0, 1) and c

𝑖
(𝑖 = 0, . . . , 𝑛−3) are obtained

from

𝐷 (𝑠) = 𝑄 (𝑠)𝑁 (𝑠) + 𝑅 (𝑠) ,

𝑄 (𝑠) = 𝑠
2

+ 𝑑
1
𝑠 + 𝑑
0
,

𝑅 (𝑠) = c
𝑛−3
𝑠
𝑛−3

+ ⋅ ⋅ ⋅ + c
0
,

(21)

where

𝑑
0
= 𝑎
𝑛−2
− 𝑏
𝑛−4
− 𝑏
𝑛−3
𝑑
1
,

𝑑
1
= 𝑎
𝑛−1
− 𝑏
𝑛−3
,

c
𝑖
= 𝑎
𝑖
− 𝑏
𝑖−2
− 𝑏
𝑖−1
𝑑
1
− 𝑏
𝑖
𝑑
0
, 𝑖 = 0, . . . , 𝑛 − 3.

(22)

When a FROH is used, the normal form (19) yields the
derivatives of the output

̈𝑦 = 𝐾𝑢 − 𝑑
0
𝜉
1
− 𝑑
1
𝜉
2
− c𝑇𝜂, (23)

𝑦
(3)

= (𝑑
0
𝑑
1
− c𝑇q) 𝜉

1
+ (𝑑
2

1
− 𝑑
0
) 𝜉
2
− 𝑑
1
𝐾𝑢

+ (𝑑
1
c𝑇 − c𝑇𝑃) 𝜂 + 𝐾 ̇𝑢,

(24)

𝑦
(4)

= (𝑑
2

0
− 𝑑
0
𝑑
2

1
+ 𝑑
1
c𝑇q − c𝑇𝑃q) 𝜉

1

+ (−c𝑇q + 2𝑑
0
𝑑
1
− 𝑑
3

1
) 𝜉
2

+ (𝑑
2

1
− 𝑑
0
)𝐾𝑢 − 𝑑

1
𝐾 ̇𝑢

+ {− (𝑑
2

1
− 𝑑
0
) c𝑇 + 𝑑

1
c𝑇𝑃 − c𝑇𝑃2} 𝜂,

(25)

𝑦
(5)

= (𝑑
0
𝑑
3

1
− 𝑑
2

1
c𝑇q + 2c𝑇q𝑑

0
− 2𝑑
2

0
𝑑
1

−c𝑇𝑃2q + 𝑑
1
c𝑇𝑃q) 𝜉

1

+ (𝑑
2

0
− 3𝑑
0
𝑑
2

1
+ 2𝑑
1
c𝑇q

−c𝑇𝑃q + 𝑑4
1
) 𝜉
2

+ (−𝑑
3

1
+ 2𝑑
0
𝑑
1
− c𝑇q)𝐾𝑢

+ {c𝑇qc𝑇 − 2𝑑
0
𝑑
1
c𝑇 + 𝑑3

1
c𝑇

− (𝑑
2

1
− 𝑑
0
) c𝑇𝑃 + 𝑑

1
c𝑇𝑃2

−c𝑇𝑃3} 𝜂 + (𝑑2
1
− 𝑑
0
)𝐾 ̇𝑢.

(26)

Further, the derivatives of 𝜂 are also represented as

̇𝜂 = 𝑃𝜂 + q𝜉
1
, (27)

̈𝜂 = 𝑃q𝜉
1
+ q𝜉
2
+ 𝑃
2

𝜂, (28)

𝜂
(3)

= (𝑃
2q − q𝑑

0
) 𝜉
1
+ (𝑃q − q𝑑

1
) 𝜉
2
+ q𝐾𝑢

+ (𝑃
3

− qc𝑇) 𝜂,
(29)



Journal of Applied Mathematics 5

𝜂
(4)

= (−𝑃q𝑑
0
+ q𝑑
0
𝑑
1
+ 𝑃
3q − qc𝑇q) 𝜉

1

+ (−q𝑑
0
+ 𝑃
2q − 𝑃q𝑑

1
+ q𝑑2
1
) 𝜉
2

+ (𝑃q − q𝑑
1
)𝐾𝑢 + q𝐾 ̇𝑢

+ (−𝑃qc𝑇 + q𝑑
1
c𝑇 + 𝑃4 − qc𝑇𝑃) 𝜂.

(30)

Hence, by substituting (23)–(30) into the right-hand side of
(16) and

̇𝑦
𝑘+1

=

∞

∑

𝑖=0

𝑇
𝑖

𝑖!
𝑦
(𝑖+1)

𝑘
(31)

and defining the state variables 𝑥
𝑘
= [𝑦

𝑘
, ̇𝑦
𝑘
, 𝜂
𝑇

𝑘
]
𝑇, the

discrete-time state equations are obtained.
Now, by using the explicit expressions of 𝑦

𝑘
, 𝑦
󸀠

𝑘
, . . . , 𝑦

(5)

𝑘

and 𝜂
𝑘
, . . . , 𝜂

(4)

𝑘
, the zeros of the discrete-time system (16) and

(31) are analyzed as follows:

𝑦
𝑘+1

=

5

∑

𝑖=0

𝑇
𝑖

𝑖!
𝑦
(𝑖)

𝑘
+ 𝑂 (𝑇

6

)

= (1 −
𝑑
0

2
𝑇
2

+
𝑑
0
𝑑
1
− c𝑇q
6

𝑇
3

+
𝑑
2

0
− 𝑑
0
𝑑
2

1
+ 𝑑
1
c𝑇q − c𝑇𝑃q

24
𝑇
4

− ((2c𝑇q𝑑
0
− 2𝑑
2

0
𝑑
1
+ 𝑑
0
𝑑
3

1
− 𝑑
2

1
c𝑇q

−𝑑
1
c𝑇𝑃q + c𝑇𝑃2q)

×(120)
−1

) 𝑇
5

)𝑦
𝑘

+ (𝑇 −
𝑑
1

2
𝑇
2

+
𝑑
2

1
− 𝑑
0

6
𝑇
3

+
2𝑑
0
𝑑
1
− 𝑑
3

1
− c𝑇q

24
𝑇
4

+
𝑑
2

0
− 3𝑑
0
𝑑
2

1
+ 2𝑑
1
c𝑇q − c𝑇𝑃q + 𝑑4

1

120
𝑇
5

) ̇𝑦
𝑘

+ {(
1

2
+
𝛽

6
)𝑇
2

−
4𝑑
1
+ 𝑑
1
𝛽

24
𝑇
3

+

5𝑑
2

1
− 5𝑑
0
+ (𝑑
2

1
− 𝑑
0
) 𝛽

120
𝑇
4

+
2𝑑
0
𝑑
1
− c𝑇q − 𝑑3

1

120
𝑇
5

}𝐾𝑢
𝑘

+ {−
𝛽

6
𝑇
2

+
𝑑
1
𝛽

24
𝑇
3

−

(𝑑
2

1
− 𝑑
0
) 𝛽

120
𝑇
4

}𝐾𝑢
𝑘−1

+ {−
c𝑇

2
𝑇
2

+
𝑑
1
c𝑇 − c𝑇𝑃
6

𝑇
3

+

𝑑
1
c𝑇𝑃 − (𝑑2

1
− 𝑑
0
) c𝑇 − c𝑇𝑃2

24
𝑇
4

+ ((c𝑇qc𝑇 − 2𝑑
0
𝑑
1
c𝑇 + 𝑑3

1
c𝑇𝑑
1
c𝑇𝑃2

− (𝑑
2

1
− 𝑑
0
) c𝑇𝑃 − c𝑇𝑃3)

×(120)
−1

) 𝑇
5

} 𝜂
𝑘
+ 𝑂 (𝑇

6

) ,

(32)

̇𝑦
𝑘+1

=

4

∑

𝑖=0

𝑇
𝑖

𝑖!
𝑦
(𝑖+1)

𝑘
+ 𝑂 (𝑇

5

)

= (−𝑑
0
𝑇 +

𝑑
0
𝑑
1
− c𝑇q
2

𝑇
2

+
𝑑
2

0
− 𝑑
0
𝑑
2

1
+ 𝑑
1
c𝑇q − c𝑇𝑃q

6
𝑇
3

+ ((c𝑇𝑃2q − 𝑑
1
c𝑇𝑃q − 2c𝑇q𝑑

0

+2𝑑
2

0
𝑑
1
− 𝑑
0
𝑑
3

1
+ 𝑑
2

1
c𝑇q)

×(24)
−1

) 𝑇
4

)𝑦
𝑘

+ (1 − 𝑑
1
𝑇 +

𝑑
2

1
− 𝑑
0

2
𝑇
2

+
2𝑑
0
𝑑
1
− 𝑑
3

1
− c𝑇q

6
𝑇
3

+
𝑑
2

0
− 3𝑑
0
𝑑
2

1
+ 2𝑑
1
c𝑇q − c𝑇𝑃q + 𝑑4

1

24
𝑇
4

) ̇𝑦
𝑘

+ {(1 +
𝛽

2
)𝑇 −

3𝑑
1
+ 𝑑
1
𝛽

6
𝑇
2

+

4𝑑
2

1
− 4𝑑
0
+ (𝑑
2

1
− 𝑑
0
) 𝛽

24
𝑇
3

+
2𝑑
0
𝑑
1
− c𝑇q − 𝑑3

1

24
𝑇
4

}𝐾𝑢
𝑘

+ {−
𝛽

2
𝑇 +

𝑑
1
𝛽

6
𝑇
2

−

(𝑑
2

1
− 𝑑
0
) 𝛽

24
𝑇
3

}𝐾𝑢
𝑘−1

+ {−c𝑇𝑇 + 𝑑1c
𝑇

− c𝑇𝑃
2

𝑇
2

+

𝑑
1
c𝑇𝑃 − c𝑇𝑃2 − (𝑑2

1
− 𝑑
0
) c𝑇

6
𝑇
3
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+ ((c𝑇qc𝑇 − 2𝑑
0
𝑑
1
c𝑇 + 𝑑3

1
c𝑇

− (𝑑
2

1
− 𝑑
0
) c𝑇𝑃 − c𝑇𝑃3 + 𝑑

1
c𝑇𝑃2)

×(24)
−1

) 𝑇
4

} 𝜂
𝑘
+ 𝑂 (𝑇

5

) ,

(33)

𝜂
𝑘+1

=

4

∑

𝑖=0

𝑇
𝑖

𝑖!
𝜂
(𝑖)

𝑘
+ 𝑂 (𝑇

5

)

= (q𝑇 + 𝑃q
2
𝑇
2

+
𝑃
2q − q𝑑

0

6
𝑇
3

+
𝑃
3q − qc𝑇q − 𝑃q𝑑

0
+ q𝑑
0
𝑑
1

24
𝑇
4

)𝑦
𝑘

+ (
q
2
𝑇
2

+
𝑃q − q𝑑

1

6
𝑇
3

+
𝑃
2q − q𝑑

0

24
𝑇
4

+
−𝑃q𝑑

1
+ q𝑑2
1

24
𝑇
4

) ̇𝑦
𝑘
−
q𝛽
24
𝑇
3

𝐾𝑢
𝑘−1

+ {(
q
6
+
q𝛽
24
)𝑇
3

+
𝑃q − q𝑑

1

24
𝑇
4

}𝐾𝑢
𝑘

+ (𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
𝑃
3

− qc𝑇

6
𝑇
3

+
𝑃
4

− 𝑃qc𝑇 − qc𝑇𝑃 − 𝑃qc𝑇

24
𝑇
4

) 𝜂
𝑘
+ 𝑂 (𝑇

5

) .

(34)

Similarly, the reason why the explicit expressions of 𝑦
𝑘
, ̇𝑦
𝑘
,

. . . , 𝑦
(5)

𝑘
and 𝜂

𝑘
, . . . , 𝜂

(4)

𝑘
are used is to obtain the approxi-

mate expansion of the limiting zeros for the discrete-time
system with the order 𝑇3 when the relative degree of con-
tinuous-time systems is two.

3. Main Results

In the following, a more accurate approximate model of the
sampled-data system is considered by neglecting the higher
order terms, and the approximate expression of the limiting
zeros is further calculated in this section.

3.1. Case of Relative Degree One (𝑚=𝑛−1). An approximate
expression of limiting zeros for the discrete-time system is
derived from (17) and (18). The first result is given by the
following theorem.

Theorem 1. The zeros of a discrete-time system corresponding
to the continuous-time transfer function (1) with FROH are
given for 𝑇 ≪ 1 approximately by the roots of

{[−1 −
𝛽

2
+
3𝑑 + 𝑑𝛽

6
𝑇

−

4 (𝑑
2

− 𝑟
𝑛−2
) + (𝑑

2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

−
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑃q − 5c𝑇𝑃q𝛽 + 2c𝑇q𝑑𝛽
24

𝑇
3

] 𝑧

+
𝛽

2
−
𝑑𝛽

6
𝑇 +

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

−
5c𝑇𝑃q𝛽 − 2c𝑇q𝑑𝛽

24
𝑇
3

}

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
2𝑃
3

+ qc𝑇𝑃
12

𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(35)

Proof. The limiting zeros of the discrete-time system (16)
are equivalent to zeros in (17) and (18), which are given by
substituting 𝑦

𝑘
= 𝑦
𝑘+1

= 0 into (17) and (18) as follows:

𝑀
1

[

[

𝐾𝑈
𝑘−1

𝐻

𝐾𝑈
𝑘

]

]

= 0
𝑛
, (36)

where 𝑈
𝑘−1

, 𝐻, and 𝑈
𝑘
are the 𝑧-transforms of 𝑢

𝑘−1
, 𝜂
𝑘
,

and 𝑢
𝑘
, respectively, and the matrix 𝑀

1
is defined by

𝑀
1
= [

[

𝑚
11

m𝑇
12
𝑚
13

−𝑧 0𝑇 1

m
31
𝑀
32

m
33

]

]

, (37)

with

𝑚
11
= 𝑇𝑚

11
+ 𝑂 (𝑇

4

) ,

m𝑇
12
= 𝑇m𝑇

12
+ 𝑂 (𝑇

5

) ,

𝑚
13
= 𝑇𝑚

13
+ 𝑂 (𝑇

5

) ,

𝑚
11
= −

𝛽

2
+
𝑑𝛽

6
𝑇 −

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

,

m𝑇
12
= −c𝑇 + 𝑑c

𝑇

− c𝑇𝑃
2

𝑇 +
𝑑c𝑇𝑃 − c𝑇𝑃2

6
𝑇
2

+

(𝑟
𝑛−2
− 𝑑
2

) c𝑇

6
𝑇
2

+

(𝑑
3

− 2𝑑𝑟
𝑛−2
) c𝑇

24
𝑇
3

+
c𝑇𝑃qc𝑇 + 𝑑c𝑇𝑃2 − c𝑇𝑃3

24
𝑇
3

+
−𝑑
2c𝑇𝑃 + 𝑟

𝑛−2
c𝑇𝑃

24
𝑇
3

,

𝑚
13
= (1 +

𝛽

2
) − (

𝑑

2
+
𝑑𝛽

6
)𝑇

+ {
𝑑
2

− 𝑟
𝑛−2

6
+

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
}𝑇
2

+
−𝑑
3

+ 2𝑑𝑟
𝑛−2
− c𝑇𝑃q

24
𝑇
3

,
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m
31
= −

q𝛽
6
𝑇
2

+ 𝑂 (𝑇
4

) ,

𝑀
32
= (−𝑧 + 1) 𝐼 + 𝑃𝑇 +

𝑃
2

− qc𝑇

2
𝑇
2

+
𝑑qc𝑇 − 𝑃qc𝑇 + 𝑃3 − qc𝑇𝑃

6
𝑇
3

+ 𝑂 (𝑇
4

) ,

m
33
= (

q
2
+
q𝛽
6
)𝑇
2

+
𝑃q − q𝑑
6

𝑇
3

+ 𝑂 (𝑇
4

) .

(38)

Thus, the zeros are derived from
󵄨󵄨󵄨󵄨𝑀1

󵄨󵄨󵄨󵄨 = 0. (39)

From the relationship

𝑀 = 𝑀
1

[

[

1 0 0

0 1 0

1 0 1

]

]

, (40)

it is obvious that the condition |𝑀| = 0 is equivalent
to |𝑀

1
| = 0.

Expanding the result along the second row leads to the
following equation:

|𝑀| = − (−𝑧 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m𝑇
12
𝑚
13

𝑀
32

m
33

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚
11
+ 𝑚
13

m𝑇
12

m
31
+m
33
𝑀
32

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑇 [−𝑧
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 + (𝑧 − 1)

󵄨󵄨󵄨󵄨𝐴2
󵄨󵄨󵄨󵄨] = 0,

(41)

where

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 = [1 −

𝑑

2
𝑇 +

𝑑
2

− 𝑟
𝑛−2

6
𝑇
2

+
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑝q
24

𝑇
3

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
2𝑃
3

+ qc𝑇𝑃
12

𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Δ
1
× Δ
2
,

󵄨󵄨󵄨󵄨𝐴2
󵄨󵄨󵄨󵄨 = [−

𝛽

2
+
𝑑𝛽

6
𝑇 −

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

+(
5c𝑇𝑝q𝛽 − 2c𝑇q𝑑𝛽

24
)𝑇
3

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
2𝑃
3

+ qc𝑇𝑃
12

𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Δ
1
× Δ
2
.

(42)

Then,

|𝑀| = [(Δ
1
− Δ
1
) 𝑧 − Δ

1
] × Δ
2
. (43)

Hence, the approximate values of limiting zeros of the dis-
crete-time system are obtained as the roots of (35).

Remark 2. Equation (35) implies that an approximation of the
sampling zero is expressed as

[−1 −
𝛽

2
+ (

𝑑

2
+
𝑑𝛽

6
)𝑇

− (
𝑑
2

− 𝑟
𝑛−2

6
+

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
)𝑇
2

+
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑃q − 5c𝑇𝑃q𝛽 + 2c𝑇q𝑑𝛽
24

𝑇
3

] 𝑧

+
𝛽

2
−
𝑑𝛽

6
𝑇 +

(𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

−
5c𝑇𝑃q𝛽 − 2c𝑇q𝑑𝛽

24
𝑇
3

= 0,

(44)

and the approximate values of the intrinsic zeros are derived
from

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
2𝑃
3

+ qc𝑇𝑃
12

𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (45)

Remark 3. Theorem 1 is applicable to also the case of multiple
zeros of the continuous-time system (1) with FROH and fur-
ther gives approximate values with higher order of accuracy
than those of the previous result [17].

Remark 4. An insightful observation in Theorem 1 is that
it has a form of a correction to the asymptotic result of
Ishitobi [12, 18] in the form of a power term of 𝑇. Similarly,
the following result (Theorem 6) both the intrinsic zeros and
sampling zeros is also clarified in a more precise manner
than Ishitobi’s result [12, 17, 18] when the relative degree of
continuous-time systems is two.

Remark 5. On the basis of the approach in [21], it is immedi-
ate to derive the asymptotic condition of the limiting zeros in
the case of a FROH with relative degree one:

󵄨󵄨󵄨󵄨𝑀1
󵄨󵄨󵄨󵄨 ≈ {(1 +

𝛽

2
) − (

𝑑

2
+
𝑑𝛽

6
)𝑇

+

4𝑑
2

− 4𝑟
𝑛−2
+ (𝑑
2

− 𝑟
𝑛−2
) 𝛽

24
𝑇
2

+
2𝑑𝑟
𝑛−2
− 𝑑
3

− c𝑇𝑃q
24

𝑇
3

}

× [−𝑧 + 1 −
2

2 + 𝛽
+

𝑑𝛽

3(2 + 𝛽)
2
𝑇

+

𝛽 (6𝑟
𝑛−2
+ 3𝑟
𝑛−2
𝛽 − 𝛽𝑑

2

)

18(2 + 𝛽)
3

𝑇
2
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+ ((𝛽 (1014𝑑𝛽𝑟
𝑛−2
− 348𝑑

3

+348𝑑𝑟
𝑛−2
)

+ 𝛽 (1188𝑑𝛽
2

𝑟
𝑛−2
− 1026𝑑

3

𝛽

−1193𝑑
3

𝛽
2

)

+ 𝛽 (36c𝑇𝑃q𝛽 + 36c𝑇𝑃q

+9c𝑇𝑃q𝛽2))

×(108(2 + 𝛽)
4

)
−1

)𝑇
3

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
2𝑃
3

+ qc𝑇𝑃
12

𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(46)

When the relative degree of continuous-time systems is one
and the continuous-time input is generated by a FROH,
further research is needed to establish connections between
(46) and (35) of Theorem 1 in this paper, wherein the idea
(35) has more decent effect than the literature [21] in terms
of techniques in studying the discrete system zeros.

3.2. Case of Relative Degree Two (𝑚=𝑛−2). Next, we present
asymptotic properties of limiting zeros of discrete-time con-
trol system in the case of a FROH as power series with respect
to a sampling period up to the third-order term when the
relative degree of the continuous-time system is two. An
approximate expression, in fact, of zeros of a discrete-time
system is derived from (32)−(34), and the other results of this
paper are given by the followingTheorem.

Theorem 6. The zeros of a discrete-time system for the
continuous-time transfer function (1) with FROH are given
for 𝑇 ≪ 1 approximately by the roots of

{[
1

2
+
𝛽

6
− (

4𝑑
1
+ 𝑑
1
𝛽

24
)𝑇 +

5𝑑
2

1
− 5𝑑
0

120
𝑇
2

+
𝛽𝑑
2

1
− 𝛽𝑑
0

120
𝑇
2

+
2𝑑
0
𝑑
1
− c
𝑛−3
− 𝑑
3

1

120
𝑇
3

] 𝑧
2

+ [
3 + 𝛽

6
−
2𝑑
1
+ 𝑑
1
𝛽

6
𝑇

+
15𝑑
2

1
− 5𝑑
0
+ 8𝛽𝑑

2

1
− 3𝛽𝑑

0

120
𝑇
2

+ (
𝑑
0
𝑑
1

40
+
c
𝑛−3

120
−
𝑑
3

1

30
+
𝑑
0
𝑑
1
𝛽

180

+
c
𝑛−3
𝛽

72
−
𝑑
3

1
𝛽

80
)𝑇
3

] 𝑧

−
𝛽

3
+
5𝑑
1
𝛽

24
𝑇 +

4𝑑
0
𝛽 − 9𝑑

2

1
𝛽

120
𝑇
2

+
9𝑑
3

1
− 4𝑑
0
𝑑
1
𝛽 − 10c

𝑛−3
𝛽

720
𝑇
3

}

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
𝑃
3

6
𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(47)

Proof. Zeros of the discrete-time system (16) and (31), equiva-
lent to (32)–(34), are given by substituting 𝑦

𝑘
= 𝑦
𝑘+1

= 0 into
(32)–(34) as follows:

𝑀
2

[
[
[

[

𝑌
𝑑

𝐾𝑈
𝑘−1

𝐻

𝐾𝑈
𝑘

]
]
]

]

= 0
𝑛
, (48)

where 𝑌
𝑑
is the 𝑧-transforms of ̇𝑦

𝑘
and the matrix 𝑀

2
is

defined by

𝑀
2
=

[
[
[

[

𝑚
11
𝑚
12

m𝑇
13
𝑚
14

𝑚
21
𝑚
22

m𝑇
23
𝑚
24

0 −𝑧 0𝑇 1

m
41

m
42
𝑀
43

m
44

]
]
]

]

, (49)

with

𝑚
11
= 𝑇𝑚

11
+ 𝑂 (𝑇

5

) ,

𝑚
12
= 𝑇𝑚

12
+ 𝑂 (𝑇

5

) ,

m𝑇
13
= 𝑇m𝑇

13
+ 𝑂 (𝑇

5

) ,

𝑚
14
= 𝑇𝑚

14
+ 𝑂 (𝑇

5

) ,

𝑚
11
= 1 −

𝑑
1

2
𝑇 +

𝑑
2

1
− 𝑑
0

6
𝑇
2

+
−𝑑
3

1
+ 2𝑑
0
𝑑
1
− c
𝑛−3

24
𝑇
3

,

𝑚
12
= −

𝛽

6
𝑇 +

𝑑
1
𝛽

24
𝑇
2

−

(𝑑
2

1
− 𝑑
0
) 𝛽

120
𝑇
3

m𝑇
13
= −

c𝑇

2
𝑇 +

𝑑
1
c𝑇 − c𝑇𝑃
6

𝑇
2

+

− (𝑑
2

1
− 𝑑
0
) c𝑇 + 𝑑

1
c𝑇𝑃 − c𝑇𝑃2

24
𝑇
3

,

𝑚
14
= (

1

2
+
𝛽

6
)𝑇 + (−

𝑑
1

6
−
𝑑
1
𝛽

24
)𝑇
2

+ [
𝑑
2

1
− 𝑑
0

24
+

(𝑑
2

1
− 𝑑
0
) 𝛽

120
]𝑇
3

,
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𝑚
21
= −𝑧 + 1 − 𝑑

1
𝑇 +

𝑑
2

1
− 𝑑
0

2
𝑇
2

+
−𝑑
3

1
+ 2𝑑
0
𝑑
1
− c
𝑛−3

6
𝑇
3

+ 𝑂 (𝑇
4

) ,

𝑚
22
= −

𝛽

2
𝑇 +

𝑑
1
𝛽

6
𝑇
2

−

(𝑑
2

1
− 𝑑
0
) 𝛽

24
𝑇
3

+ 𝑂 (𝑇
4

) ,

m𝑇
23
= −c𝑇𝑇 + 𝑑1c

𝑇

− c𝑇𝑃
2

𝑇
2

+

𝑑
1
c𝑇𝑃 − (𝑑2

1
− 𝑑
0
) c𝑇 − c𝑇𝑃2

6
𝑇
3

+ 𝑂 (𝑇
4

) ,

𝑚
24
= (1 +

𝛽

2
)𝑇 + (−

𝑑
1

2
−
𝑑
1
𝛽

6
)𝑇
2

+ (
𝑑
2

1
− 𝑑
0

6
+

(𝑑
2

1
− 𝑑
0
) 𝛽

24
)𝑇
3

+ 𝑂 (𝑇
4

) ,

m
41
=
q
2
𝑇
2

+
𝑃q − q𝑑

1

6
𝑇
3

+ 𝑂 (𝑇
4

) ,

m
42
= −

q𝛽
24
𝑇
3

+ 𝑂 (𝑇
4

) ,

𝑀
43
= (−𝑧 + 1) 𝐼 + 𝑃𝑇 +

𝑃
2

2
𝑇
2

+
𝑃
3

− qc𝑇

6
𝑇
3

+ 𝑂 (𝑇
4

) ,

m
44
= (

q
6
+
q𝛽
24
)𝑇
3

+ 𝑂 (𝑇
4

) .

(50)

Thus, the zeros are derived from
󵄨󵄨󵄨󵄨𝑀2

󵄨󵄨󵄨󵄨 = 0. (51)

From the relationship

𝑀 = 𝑀
2

[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

]
]
]

]

, (52)

it is obvious that the condition |𝑀| = 0 is equivalent to
|𝑀
2
| = 0.
Expanding the result along the third row leads to the

following equation:

󵄨󵄨󵄨󵄨󵄨
𝑀
󵄨󵄨󵄨󵄨󵄨
= − (−𝑧 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚
11

m𝑇
13
𝑚
14

𝑚
21

m𝑇
23
𝑚
24

m
41
𝑀
43

m
44

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚
11
𝑚
12
+ 𝑚
14

m𝑇
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𝑚
21
𝑚
22
+ 𝑚
24

m𝑇
23

m
41

m
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+m
44
𝑀
43

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑇 [−𝑧
󵄨󵄨󵄨󵄨󵄨
𝐴
1

󵄨󵄨󵄨󵄨󵄨
+ (−𝑧 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
2

󵄨󵄨󵄨󵄨󵄨
] = 0,

(53)

where

󵄨󵄨󵄨󵄨󵄨
𝐴
1

󵄨󵄨󵄨󵄨󵄨
= [

1
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+ 2𝑑
0
𝑑
1
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3

1

120
𝑇
3

]
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𝑑
1

3
𝑇 −

𝑑
2

1
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𝑇
2
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𝑑
3

1
+ 3𝑑
0
𝑑
1
− 9c
𝑛−3

270
𝑇
3

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
𝑃
3

6
𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Δ
1
× Δ
2
× Δ
3
,

(54)

󵄨󵄨󵄨󵄨󵄨
𝐴
2

󵄨󵄨󵄨󵄨󵄨
= (

𝛽
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1
𝛽

24
𝑇
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(𝑑
2

1
− 𝑑
0
) 𝛽

120
𝑇
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)
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3𝑑
1
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13𝑑
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1

80
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𝑑
0

10
)𝑇
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7𝑑
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𝑑
1

240
−
3𝑑
3

1
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−
c
𝑛−3

12
)𝑇
3

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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𝑃
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𝑇
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𝑃
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𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Δ
1
× Δ
2
× Δ
3
.

(55)

Equations (54) and (55) will be calculated in the appendix.
Then,

|𝑀| = [(−Δ
1
× Δ
2
− Δ
1
× Δ
2
) 𝑧 + Δ

1
× Δ
2
] × Δ
3
. (56)

Hence, the approximate values of the zeros of the discrete-
time system are obtained as the roots of (47).

Remark 7. Equation (47) implies that the approximations of
the sampling zeros are expressed as

[
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𝛽
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1
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120
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−
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𝛽

80
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1
𝛽
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𝛽
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= 0,

(57)

and the approximate values of the intrinsic zeros are derived
from

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑧) 𝐼 + 𝑃𝑇 +
𝑃
2

2
𝑇
2

+
𝑃
3

6
𝑇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (58)

Remark 8. When FROH is implemented in practice, an
approximate fractional-order hold (AFROH) using ZOH
would be convenient practical solution. The basic idea of
AFROH is that, at each sampling interval, the output of
FROH is approximated by staircase waveforms that can be
generated by ZOH [15, 22] (see Figure 2). Therefore, an
asymptotic expression of the limiting zeros in AFROH case
is derived similarly.

In the particular case when the sampling period tends
to zero, it is immediate to obtain the following Corollary
although a similar result is also obtained by Ishitobi [12, 18].

Corollary 9. One has the following cases.

Case a. Assume that the relative degree of a continuous-time
system is one. If −1 < 𝛽 (resp., 𝛽 < −1), then the sampling
zero of the sampled-data model is stable (resp., unstable) in the
case of a FROH when the sampling period tends to zero.

Case b. Assume that the relative degree of a continuous-time
system is two. If −1 < 𝛽 < 0 (resp., 𝛽 ≤ −1 or 𝛽 > 0), then
the sampling zeros of the sampled-data model are stable (resp.,
unstable) in the case of a FROHwhen the sampling period tends
to zero.

Proof. One has the following cases.

Case a. For 𝑛 − 𝑚 = 1, we have from (35)

𝐴
1
(𝑧; 𝛽) = (−1 −

𝛽

2
) 𝑧 +

𝛽

2
. (59)

Simple straightforward calculation will verify that the root
of 𝐴
1
(𝑧; 𝛽) = 0 is stable if −1 < 𝛽 and is unstable if 𝛽 ≤

−1. In addition, when 𝛽 = −1, there remains the possibility

T 2T

FROH
AFROH

0

Figure 2:Output of the approximate fractional-order holdwith𝑁 =

2 and 𝛽 = −0.5.

that the sampling zero corresponding to 𝐴
1
(𝑧; 𝛽), which

approaches 𝑧 = −1, lies inside the open unit disc as 𝑇 → 0.

Case b. For 𝑛−𝑚 = 2, the polynomial 𝐴
2
(𝑧; 𝛽) is represented

from (47) as

𝐴
2
(𝑧; 𝛽) = (

1

2
+
𝛽

6
) 𝑧
2

+ (
1

2
+
𝛽

6
) 𝑧 −

𝛽

3
. (60)

When we perform the bilinear transformation 𝑧 = (𝜔 +

1)/(𝜔 − 1) on the above equation, the polynomial is written
as

𝐴
2
(𝑧; 𝛽) = 3𝜔

2

+ 3 (1 + 𝛽) 𝜔 − 𝛽 = 0. (61)

It is clear that the two roots of (61) lie in the open left half
of 𝜔-plane if −1 < 𝛽 < 0, and at least one of them stays in the
closed right-half plane if 𝛽 ≤ −1 or 𝛽 ≥ 0. In particular, only
one of the sampling zeros approaches −1 at 𝛽 = 0. Namely,
the stability of the sampling zeros is marginal, that is, in the
case of a ZOH [4, 23].

Remark 10. When the FROH signal reconstruction device
is used, the parameter 𝛽 which is the device adjustable gain
(generalised gain) is themajor factor that decides the stability
properties of sampling zeros of sampled-data systems with
FROH. In other words, the appropriate 𝛽 is determined to
obtain the FROH that provides sampling zeros as stable as
possible, or with improved stability properties even when
being unstable, for a given continuous-time plant.

Remark 11. If the relative degree of a continuous-time transfer
function is two and the sumof the zeros is less than or equal to
the sum of the poles, the limiting zeros of the sampled system
with FROH of −1 < 𝛽 < 0 stay definitely inside the unit
circle while those with ZOH may lie outside or on the unit
circle. Therefore, the FROH with −1 < 𝛽 < 0 will produce
all stable sampling zeros for a wider class of continuous-time
plants than that of the ZOH.

4. Simulation Examples

This section presents three interesting examples to show
the stability of sampling zeros with FROH by improved
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Table 1: Intrinsic zeros of the sampled-data system with relative
degree one.

T Approximate values (35) Exact values

0.01 0.980311498,
0.980082836

0.980310411,
0.980084008

0.02 0.961230229,
0.960324437

0.961222048,
0.960333962

0.05 0.907398436,
0.901893230

0.907292742,
0.902049060

0.1 0.827729968,
0.806603365

0.827130532,
0.807949540

0.2 0.697266611,
0.617400056

0.695230664,
0.629936753

Table 2: Sampling zero of the sampled-data system with relative
degree one and 𝛽 = −1/2.

T Approximate values (35) Exact values
0.01 0.329701686 0.329657909
0.02 0.326139088 0.325821314
0.05 0.316359822 0.314371422
0.1 0.302545156 0.294211129
0.2 0.283625731 0.248072696

Table 3: Sampling zero of the sampled-data system with relative
degree one and 𝛽 = 1.

𝑇 Approximate values (35) Exact values
0.01 −0.331507563 −0.331319933
0.02 −0.329739729 −0.329258964
0.05 −0.324624858 −0.322146285
0.1 −0.317193888 −0.307047943
0.2 −0.306446658 −0.255131263

asymptotic properties. It has also shown that the stability of
zeros will be improved by using FROH instead of ZOH. Both
kinds of zeros are calculated by applying MATLAB, and in
the simulation figures (Figures 3, 4, 5, 6, 7, 8, and 9), the solid
line and dotted line indicate the exact values and approximate
values, respectively.

Example 1. Consider the following transfer function with the
relative degree one [21]:

𝐺 (𝑠) =
(𝑠 + 2)

2

𝑠 (𝑠 + 1) (𝑠 − 2)
. (62)

The approximate values (35) and the exact values of zeros
of the sampled-data system for the transfer function (62)
are shown in Tables 1–4 and corresponding figures, where
the intrinsic zeros are shown in Table 1 and the sampling
zero is respectively shown in Tables 2, 3, and 5 owing to
the difference of the parameter 𝛽. Equation (35) gives good
approximation also for the case of a continuous-time transfer
function with FROH.

Table 4: Sampling zero of the sampled-data system with relative
degree one.

T Approximate values (46) Approximate values (46)
𝛽 = −1/2 𝛽 = 1

0.01 0.3297 −0.3315
0.02 0.3262 −0.3297
0.05 0.3164 −0.3246
0.1 0.3025 −0.3169
0.2 0.2841 −0.3046

Table 5: Sampling zero of the sampled-data system with relative
degree one and 𝛽 = −2.

T Approximate values (35) Exact values
0.01 121.047619 120.640978703
0.02 60.80588235 60.607244462
0.05 24.85125858 24.530135132
0.1 13.10222222 12.387624318
0.2 7.603157322 6.1116305864

When the continuous-time systems have relative degree
one, a discrete-time system corresponding to a continuous-
time transfer function (62) has two intrinsic zeros and one
sampling zero in the case of a FROH. In particular, the values
of the intrinsic zeros with FROH are approximately equal to
those with ZOH owing to the parameter 𝛽 (see also Remark
13). Further, the stability of sampling zero with FROH
depends on the parameter 𝛽. When −1 < 𝛽 (resp., 𝛽 < −1),
the sampling zero of the sampled-data model is stable (resp.,
unstable) in the case of a FROH for small sampling periods
(see Tables 2–4).

Case a (𝛽 = −1/2). See Table 2 and Figure 5.

Case b (𝛽 = 1). See Table 3 and Figure 6.

Case c (𝛽 = −2). See Table 5. From the foregoing analysis, it
is obvious that the limiting zeros of the sampled-data system
with FROH of −1 < 𝛽 are located inside the unit circle. In
addition, (46) gives good approximation and the sampling
zero lies inside the unit circle for small sampling periods
at 𝛽 = −1/2 and 𝛽 = 1 (see Table 4). Furthermore, it can
be seen from the corresponding Tables 2–4 that (35) can offer
a more accurate approximation than that of (46) in terms of
the stable sampling zero of discrete-time model.

Example 2. Consider a transfer function with the relative
degree two

𝐺 (𝑠) =
𝑠 + 7

(𝑠 + 1) (𝑠 + 2) (𝑠 + 3)
. (63)

On the basis of the results in [21, 24], the stability con-
dition of sampling zeros with ZOH is dissatisfied since 𝑑

1
=

𝑎
2
− 𝑏
0
= −1 < 0. However, the stability of the sampling zeros

will be preserved in the case of a FROH when −1 < 𝛽 < 0.
The approximate values (47) and the exact values of zeros of
the sampled-data system for the transfer function (63) are
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Figure 3: Intrinsic zero of sampled-data model with relative degree
one.
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Figure 4: Intrinsic zero of sampled-data model with relative degree
one.

Table 6: Intrinsic zero of the sampled-data system with relative
degree two.

T Approximate values (47) Exact values
0.01 0.9324 0.932347819
0.02 0.8693 0.869400472
0.05 0.7041 0.704589951
0.1 0.4878 0.496541723
0.2 0.1227 0.244801539

shown in Tables 6–9, where the intrinsic zero is shown in
Table 6 and the sampling zeros are shown in Tables 7, 8, and
9. Equation (47) gives good approximation and the sampling
zeros lie inside the unit circle for small sampling periods with
FROH, while ZOH fails to do so.
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Figure 5: Sampling zero of sampled-datamodel with relative degree
one and 𝛽 = −1/2.
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Figure 6: Sampling zero of sampled-datamodel with relative degree
one and 𝛽 = 1.

Remark 12. From Examples 1 and 2, it can be obviously seen
that FROH is reduced to FOH for 𝛽 = 1. The limiting zeros
for sufficiently small 𝑇 in the case of a FOH are stable with
relative degree one while it is unstable with relative degree
two. Thus, a FOH provides no advantage over ZOH and
FROH with the stability of the limiting zeros [4].

Remark 13. When the FROH signal reconstruction device is
used, the parameter 𝛽, so called the device adjustable gain
(generalised gain), is also a factor which affects the intrinsic
zeros of sampled-data systems by numerically verifying in the
case of a FROH.More precisely, it only affects the distribution
of intrinsic zeros while the stability of intrinsic zeros is still
preserved for different values of 𝛽. See also the literature
by De la Sen [25], who has similar conclusion by applying
different technique.

Next, we display the improvement of the asymptotic
properties of discrete system zeros with FROH through an
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Table 7: Sampling zeros of the sampled-data system with relative degree two and 𝛽 = −1/2.

𝑇 Approximate values (47) Exact values

0.01 −0.501195886 − 0.387172957𝑖,
−0.501195886 + 0.387172957𝑖

−0.501218099 − 0.386984162𝑖,
−0.501218099 + 0.386984162𝑖

0.02 −0.502623421 − 0.386611476𝑖,
−0.502623421 + 0.386611476𝑖

−0.502596060 − 0.386768672𝑖,
−0.502596060 + 0.386768672𝑖

0.05 −0.507102272 − 0.384595337𝑖,
−0.507102272 + 0.384595337𝑖

−0.506565882 − 0.385411371𝑖,
−0.506565882 + 0.385411371𝑖

0.1 −0.516933208 − 0.375577576𝑖,
−0.516933208 + 0.375577576𝑖

−0.512704082 − 0.381808431𝑖,
−0.512704082 + 0.381808431𝑖

0.2 −0.553360151 − 0.309177835i,
−0.553360151 + 0.309177835𝑖

−0.519378658 − 0.371599469𝑖,
−0.519378658 + 0.371599469𝑖

Table 8: Sampling zeros of the sampled-data system with relative
degree two and 𝛽 = 1.

T Approximate values (47) Exact values
0.01 0.366015522, −1.370352295 0.366029257, −1.370288147
0.02 0.365962901, −1.374613162 0.365977015, −1.374587969
0.05 0.365635742, −1.386524631 0.365876959, −1.385974102
0.1 0.364115478, −1.403715066 0.364513566, −1.401081359
0.2 0.353215369, −1.422680342 0.369015125, −1.407272983
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Figure 7: Intrinsic zero of sampled-data model with relative degree
two.

example of an electronic circuit in the remainder of this
section.

Example 3. Consider an electric circuit shown in Figure 10
[15], where 𝑅

𝑖
(𝑖 = 1, . . . , 4) and 𝐶

𝑗
(𝑗 = 1, . . . , 3) represent

resistance and condenser, respectively.

The transfer function with the voltage 𝑒
𝑖
(𝑡) as an input

and with the voltage 𝑒
0
(𝑡) as an output is given by

𝐺 (𝑠) =
∑
1

𝑘=0
𝑏
𝑘
𝑠
𝑘

∑
3

ℓ=0
𝑎
ℓ
𝑠ℓ
= 𝐾

𝑠 + 𝑏
0

𝑠3 + 𝑎
2
𝑠2 + 𝑎

1
𝑠 + 𝑎
0

, (64)
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Figure 8: Sampling zero of sampled-datamodel with relative degree
two and 𝛽 = −1/2.

where

𝐾 =
𝑏
1

𝑎
3

, 𝑏
0
=
𝑏
0

𝑏
1

, 𝑎
0
=
𝑎
0

𝑎
3

, 𝑎
1
=
𝑎
1

𝑎
3

, 𝑎
2
=
𝑎
2

𝑎
3

. (65)

It is easy to see that the relative degree of transfer function
(64) is two. Here, when the parameters are set as 𝑅

1
= 𝑅
2
=

1 [kΩ], 𝑅
3
= 5 [kΩ], 𝑅

4
= 13/70 [kΩ], and 𝐶

1
= 𝐶
2
=

𝐶
3
= 1 [𝜇F], the corresponding discrete-time system with

ZOH has an unstable sampling zero for the sufficiently small
sampling periods according to the 𝑎

2
− 𝑏
0
< 0 [21, 24]. In

fact, the absolute value of the sampling zero of the discrete-
time system with ZOH is 1.006418 for 𝑇 = 0.001. The mag-
nitudes of limiting zeros of the corresponding discrete-time
system with FROH are shown in Figure 11 for the sampling
period 𝑇 = 0.001. All the limiting zeros stay inside the unit
circle for −1 < 𝛽 < 0 (see also Figure 11). The stability condi-
tion can be achieved by means of a suitable choice of the
parameter 𝛽 of the improving asymptotic properties.

Remark 14. From Example 3, it has been shown that the
limiting zeros of the sampled-data models with FROH can be
located inside the stability region by analyzing the improved
asymptotic properties while ZOH fails to do so. In addition,
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Table 9: Sampling zeros of the sampled-data system with relative degree two and 𝛽 = −2.

𝑇 Approximate values (47) Exact values

0.01 −0.497611941 + 1.938185095𝑖,
−0.497611941 − 1.938185095𝑖

−0.497685781 + 1.938246055𝑖,
−0.497685781 − 1.938246055𝑖

0.02 −0.495838288 + 1.940321092𝑖,
−0.495838288 − 1.940321092𝑖

−0.495813965 + 1.940339611𝑖,
−0.495813965 − 1.940339611𝑖

0.05 −0.493521791 + 1.946037129𝑖,
−0.493521791 − 1.946037129𝑖

−0.492000028 + 1.946432145𝑖,
−0.492000028 − 1.946432145𝑖

0.1 −0.505847953 + 1.950474754𝑖,
−0.505847953 − 1.950474754𝑖

−0.492189267 + 1.954872572𝑖,
−0.492189267 − 1.954872572𝑖

0.2 −0.627817319 + 1.907010132𝑖,
−0.627817319 − 1.907010132𝑖

−0.510399647 + 1.959417228𝑖,
−0.510399647 − 1.959417228𝑖
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Figure 9: Sampling zero of sampled-datamodel with relative degree
two and 𝛽 = −1/2.
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Figure 10: The electric circuit plant.

the limiting zeros with AFROH are also stable in some cases
due to the same advantages of the FROH and AFROH cases.

5. Conclusions

This paper has analyzed the improved asymptotic behavior
of limiting zeros for the discrete-time system by using Taylor
expansion and the FROH signal reconstruction device.When
the normal form representation of continuous-time system
with relative degree one or two is discretized, we have given
an approximate expression of limiting zeros as power series
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Figure 11:Themagnitudes of zeros of the sampled-datamodels with
FROH for 𝑇 = 0.001 s.

expansions with respect to a sampling period up to the third-
order term. Furthermore, the stability of the sampling zeros
is also discussed as the sampling period tends to zero. Finally,
it has been shown that FROH provides advantage over ZOH
with stability of the limiting zeros of sampled-data systems.
The idea of this paper is a further extension of the previous
results. For a future study, an extension of the approach to
multivariable systems is left.

Appendix

Calculation of (54) and (55). Denote
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It is immediate to obtain the value of |𝐴
1
| from [21].

Here, consider a matrix 𝑀
𝛼
which is defined by neglect-

ing the higher order terms 𝑂(⋅) with respect to 𝑇 in the
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since the interests lie in the case of small sampling
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from the left-hand side leads to
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Noting here that
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Then,
󵄨󵄨󵄨󵄨𝐴2
󵄨󵄨󵄨󵄨 = −𝑚12𝛿. (A.7)

As a result, the calculation is completed.
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Floating wind turbine will suffer from more fatigue and ultimate loads compared with fixed-bottom installation due to its floating
foundation, while structural control offers a possible solution for direct load reduction. This paper deals with the modelling
and parameter tuning of a spar-type floating wind turbine with a tuned mass damper (TMD) installed in nacelle. First of all, a
mathematical model for the platform surge-heave-pitch motion and TMD-nacelle interaction is established based on D’Alembert’s
principle. Both intrinsic dynamics and external hydro and mooring effects are captured in the model, while tower flexibility
is also featured. Then, different parameter tuning methods are adopted to determine the TMD parameters for effective load
reduction. Finally, fully coupled nonlinear wind turbine simulations with different designs are conducted in different wind and
wave conditions. The results demonstrate that the design of TMD with small spring and damping coefficients will achieve much
load reduction in the above rated condition. However, it will deteriorate system performance when the turbine is working in the
below rated or parked situations. In contrast, the design with large spring and damping constants will produce moderate load
reduction in all working conditions.

1. Introduction

With less space constraints and more consistent wind, off-
shore deep sea wind energy has attracted great worldwide
attention in recent years. Wind turbines in deep water are
usually installed at places where sea depth is between 60m
and 900m; thus, floating foundations are generally consid-
ered to be an economical and feasible way of deployment
[1]. Based on decades of experience from offshore oil and
gas industry, several different traditional floating platforms
have been proposed to support large wind turbines in deep
sea regions, including spar-buoy, tension leg, barge, and
semisubmersible [2]. One of the most promising concepts
is the spar-type supporting structure, based on which one
Norwegian company Statoil has developed the world first
experimental large floating offshore wind turbine in 2009.

Different from fixed-bottom wind turbines, the very first
challenge for floatingwindmills is thewave andwind induced
platform tilt motion, which will heavily increase the loads
on turbine structure due to high inertial and gravitational

forces [3]. According to [4], when comparing a barge-type
floating wind turbine with an onshore design, the sea-to-
land ratio of fatigue loads with respect to tower base bending
moments has reached 7. The ratio is still over 1.5 for the
OC3-Hywind spar, which may require extra reinforcement
or advanced control technique to improve wind turbine
reliability. Besides, soft foundation properties of floatingwind
turbines will lead to low natural frequency platform motion,
so that commonly used blade pitch control strategy for fixed-
bottom wind turbines may cause negative damping of tower
bending and even large platform resonant motion [5]. These
problems have drawn a lot of attention from researchers on
improving the system design and control strategy of floating
wind turbines for load reduction.

One approach for vibration inhibition is to utilize struc-
tural vibration control devices. This method has been suc-
cessfully applied in civil engineering structures [6], such as
buildings and bridges, and thus is also expected to be a
promising solution for extending the fatigue life of floating
wind turbines. In [7], Murtagh et al. investigated the use of
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a tuned mass damper (TMD) placed at the tower top for the
vibration mitigation due to the along-wind forced vibration
response of a simplified wind turbine. Following the same
installation idea, Colwell and Basu explored the structural
responses of fixed-bottom offshore wind turbines with tuned
liquid column dampers (TLCD) to control the vibrations [8].
Moreover, Li et al. performed an experimental study on an
offshore wind turbines with a ball vibration absorber fixed on
top of the nacelle [9]. However, these discussions are about
vibration mitigation of fixed-bottom wind turbines, while
their dynamics are quite different from that of floating ones.
Besides, these works are not based on the cutting edge high-
fidelity codes for wind turbine simulations, which cannot
capture the comprehensive coupled nonlinear dynamics of
wind turbines.

FAST (fatigue, aerodynamics, structures, and turbulence)
is one of the state-of-the-art aero-hydro-servo-elastic wind
turbine numerical simulators [10]. Based on FAST, Lackner
and Rotea implemented a new simulation tool, called FAST-
SC, for passive, semiactive, and active structural control
design of wind turbines [11]. Utilizing this code, Lackner and
Rotea presentedmore realistic simulation results with a TMD
installed in the nacelle of either a barge-type or a monopile
supported wind turbine, and a simple parametric study was
also performed to determine the optimal TMD parameters
[11]. Further, it was shown that more load reduction could
be achieved when introducing active structural control in
their following works [12, 13]. In order to perform a more
comprehensive parametric study of passive structural control
design, the authors in [14, 15] established a 3-DOF dynamic
model for different types of floating wind turbines based on
first principles.This limitedDOFmodel has greatly facilitated
the parameter analysis and active control design, while the
coupling between surge and pitch motion, however, was not
captured, which can be ignored for the barge design but
might be an importantmode for other platforms, such as spar
[16, 17].

Motivated by the above-mentioned problems and
research potentials, this work focuses on modeling and
parameter analysis of a passive structural control design
for a spar-type floating wind turbine. The remainder of
this paper is organized as follows. Section 2 introduces
the OC3-Hywind floating wind turbine, and the coupled
surge-heave-pitch dynamic model with a TMD installed
in nacelle is established. Parameter estimation is also
performed for model validation. In Section 3, different
parameter tuningmethods and performance indices are used
for TMD parameter determination. Section 4 presents the
nonlinear simulation results under different wind and wave
conditions. Advantages and limitations of this design with
different TMD parameters are also analyzed. At last, we draw
conclusions in Section 5.

2. Dynamic Modelling

In cooperation with Statoil, Jonkman from NREL has speci-
fied a detailed OC3-Hywind spar-type floating wind turbine
model, which is a combination of the data for the 5MW

Table 1: Properties of the OC3-Hywind model [16, 18].

Item Value
Rating 5MW
Rotor configuration Upwind, 3 blades

Cut-in, rated, cut-out wind speed 3m/s, 11.4m/s,
25m/s

Total draft below sea water level (SWL) 120m
Tower base above SWL 10m
Hub height above SWL 90m
Nacelle dimension (length, width, height) 14.2m, 2.3m, 3.5m
Platform diameter above taper 6.5m
Platform diameter below taper 9.4m
Rotor nacelle assembly (RNA) mass 350,000 kg
Tower mass 249,718 kg
Platform mass 7,466,000 kg
Number of mooring lines 3
Depth to fairleads below SWL 70m

Baseline control in Region 3 GSPI and constant
torque

baseline wind turbine from NREL and the Hywind floating
platform from Statoil [16, 18]. Properties of the OC3-Hywind
model are shown in Table 1. According to [16], in order
to avoid resonant platform pitch motion, the conventional
controller in Region 3 is modified into a combination of
gain reduced gain-scheduled proportional-integral (GSPI)
collective blade pitch control and constant torque control,
which is used all through this work as the baseline.

The passive structural control strategy in this work is
to install one TMD in the nacelle, which is assumed to
move on an ideal nonfriction linear track along the fore-aft
direction.The stiffness and damping parameters of TMD can
be tuned, and they are regarded as constant in all simulations.
In order to investigate these parameters, optimize system
performance, or design an active controller, establishing one
dynamic mathematical model is usually helpful. Figure 1
shows a diagram of the OC3-Hywind surge-heave-pitch
motion with tower fore-aft bending and the TMD-nacelle
interaction. Definition of each term in this figure can be
found in Table 2. Before presenting the dynamic model, the
following premises and assumptions need to be listed.

(1) OC3-Hywind is treated as a multibody dynamic
system, and themotion of reference point 𝑃 is chosen
for output analysis, which is in accordance with the
definition in [16]. Rigid bodies in the model include
the spar platform, tower, and rotor nacelle assembly
(RNA). Dynamics in rotor, generator, and gearbox are
not considered in this work.

(2) Based on the same assumption, the tower fore-aft
flexibility is represented as that in [13], where the
tower, for simplicity, is treated as a linear rigid rotating
beam hinged at tower bottom. It is also assumed that
the spring and damping coefficients of this hinge are
constant.
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Table 2: Term descriptions in the model of OC3-Hywind surge-
heave-pitch motion.

Terms Descriptions
sg DOF of platform surge motion
hv DOF of platform have motion
𝑝 DOF of platform pitch motion
tmd DOF of TMDmotion
𝑡 DOF of tower fore-aft bending
𝜃
𝑖

Rotation angle of DOF 𝑖
𝑥
𝑖

Displacement of DOF 𝑖
𝑀
𝑗

𝑖
Generalized mass for DOF 𝑖 with regard to DOF 𝑗

𝐼
𝑗

𝑖

Generalized inertia tensor for DOF 𝑖 with regard to
DOF 𝑗

𝐹
𝑗

𝑖
Generalized force for DOF 𝑖 due to effect or DOF 𝑗

𝜏
𝑗

𝑖
Generalized torque for DOF 𝑖 due to effect or DOF 𝑗

gr Gravitational effect
hdr Hydro effect
ctr Centripetal effect
moor Mooring lines effect
spr.damp Spring and damping effect of TMD

𝐴
𝑗

𝑖

Generalized added mass for DOF 𝑖 with regard to
DOF 𝑗

𝐽
𝑋

𝑢
Inertia tensor for 𝑢 with regard to point𝑋

𝐿
𝑢

Length of part 𝑢
𝑚
𝑢

Mass of part 𝑢
ptfm Platform
twr Tower
rna Rotor nacelle assembly (RNA)

𝑑
Misalignment between RNA mass center and tower
centerline

jot Joint between platform and tower

𝐷
𝑗

𝑖

Equivalent damping coefficient for DOF 𝑖 with
regard to DOF 𝑗

𝐾
𝑗

𝑖

Equivalent spring coefficient for DOF 𝑖 with regard
to DOF 𝑗

𝑔 Gravitational acceleration
CB Center of buoyancy
CG
𝑢

Gravity center of part 𝑢

(3) In total, the model has five DOFs, that is, platform
surge, heave, pitch, tower fore-aft bending, and TMD
motion. The other DOFs, such as rotor yaw motion
and generator rotation, are not included.

(4) This model focuses on the system intrinsic coupled
dynamics with hydro and mooring loads, while the
loads from winds and incident waves have not yet
been considered in the modelling process.

Based on the above descriptions, we treat the overall sys-
tem dynamics as the motion of a rigid body with distributed
mass particles in the surge-heave-pitch plane, which can be
seen as the sum of a translation and a rotation about the
axis passing through 𝑃 and perpendicular to this plane [19].

CB

Heave

Surge

Pitch

P

Ld

CGtwr

CGrna

L jot

L twr

Lrna

Lmoor

𝜃p

𝜃t

CGptfm

Figure 1: Diagram of the OC3-Hywind surge-pitch-heave motion
with tower fore-aft flexibility and passive structural control.

According to D’Alembert’s principle of inertial forces, the
following static equilibrium equations for system translation
and rotation about the reference point 𝑃

F −∑𝑚
𝑖
a
𝑖
= 0,

𝜏 −∑ r
𝑖
× 𝑚
𝑖
a
𝑖
= 0,

(1)

hold. F and 𝜏 denote vectors of external forces and
moments about 𝑃, while −∑𝑚

𝑖
a
𝑖
and −∑ r

𝑖
× 𝑚
𝑖
a
𝑖
are

vector sums of inertial forces and torques about 𝑃. 𝑚
𝑖
is

the mass of particle 𝑖, that is, platform, tower, RNA, and
TMD, and r

𝑖
represents the position vector from 𝑃 to

particle 𝑖. a
𝑖
is the acceleration vector for mass particle 𝑖,

and it consists of the translational acceleration, normal, and
tangential rotational acceleration components.

When considering the tower translation and rotation
about tower bottom, themotion of tower fore-aft bending can
be described as

∑(r
𝑖
× 𝑚
𝑖
a
𝑖
) + 𝐼
𝑡

𝑡
𝛼
𝑡
= 𝜏
𝑔𝑟

𝑡
+ 𝜏
𝑝

𝑡
, (2)

which is also based on D’Alembert’s principle. 𝑚
𝑖
denotes

the mass of tower, RNA, and TMD. 𝐼𝑡
𝑡
is the equivalent

moment of inertia for tower and RNA about tower bottom,
and 𝛼

𝑡
denotes the angular acceleration vector of tower pitch

motion. 𝜏𝑝
𝑡
is the torque vector due to the spring-damping
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Figure 2: Diagram for calibration of nacelle rotation angle.

effect between tower and platform. To be consistent with the
output of FAST simulator, the tower top displacement is also
calculated, which is given by

𝑥
𝑡
= sin (𝜃

𝑡
− 𝜃
𝑝
) 𝑙twr, (3)

where 𝑙twr is the length of flexible tower. However, in the
system validation process, one problem is found which is that
there will exist huge misalignment between the responses
of FAST-SC and established model when the spring and
damping coefficients of TMDare in small scale.This ismainly
due to the inaccuracy of nacelle rotation angle when flexible
tower is modeled as a rigid rotating beam. When TMD has
tiny spring and damping constants, its acceleration will be
mainly contributed by gravity, so that inaccuracy of 𝜃

𝑡
will

lead to tremendous difference of TMD dynamics. Therefore,
the nacelle rotation angle should be calibrated in order to
produce more convincing dynamic responses. In FAST, the
tower flexibility is depicted by the predefinedmode shapes Φ,
where tower top rotation angle is determined by the product
of tower top mode shape slope 𝜕Φ(ℎ)rna/𝜕ℎ and tower top
displacement 𝑥

𝑡
. Following similar calculation procedure,

the diagram for tower top rotation calibration is illustrated in
Figure 2, and the calibrated nacelle rotation angle 𝜃

𝑡
satisfies

𝜃
𝑡
=

𝜕Φ (ℎ)

𝜕ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ℎ=𝐿rna

𝑥
𝑡
+ 𝜃
𝑝
. (4)

Next, the hydrodynamic loads are characterized. When
formulating the motion of object submerged in water, we
must also consider the added-mass effect, resulting from
its surrounding fluid [20]. It is summarized in [1] that
the hydrodynamic loads mainly include contributions from
hydrostatics (fromwater-plane area and buoyancy), radiation
(from outgoing waves generated by platform motion), and
diffraction (from incident waves). In accordance with this
analysis, the hydrodynamic load calculation in this work
follows a similar path. Firstly, hydrostatic load in this model
consists of buoyancy force and restoring load resulting

from the effects of water-plane area and buoyancy, and
the restoring force and moment are set to be constantly
proportional to platform displacement and tilt angle which
have been specified in [16]. Secondly, the radiation loads
can be represented by nonlinear vicious drag, hydrodynamic
radiation damping, and the above mentioned added-mass
effects. Thirdly, incident wave loads are not considered here
since wind turbine is supposed to be located in still water in
design process.

Regarding the mooring system, FAST simulator uses
a quasistatic model to calculate the load of an individual
mooring line, which exhibits nonlinear behaviors due to both
mooring dynamics and the asymmetry of the three-point
mooring system. In the simulations of this work, the platform
displacement and tilt angle are usually not in big scale where
the mooring system load-displacement relationship does not
show strong nonlinearities in surge and pitch modes, so we
still choose the simple linear model to represent this effect.

In sum, except for added mass, the hydrodynamic loads
and mooring effect are modeled as

𝐹
hdr⋅moor
sg = −𝐷

sg
sg ̇𝑥sg − 𝐷

sg
sg ̇𝑥
2

sg − 𝐾
sg
sg𝑥sg − 𝐷

𝑝

sg
̇𝜃
𝑝
− 𝐾
𝑝

sg𝜃𝑝,

𝐹
hdr⋅moor
hv = − 𝐷

hv
hv ̇𝑥hv − 𝐾

hv
hv𝑥hv − 𝐹

0

moor + 𝐹
0

buoy

− 𝐾
𝑝⋅sg
hv (𝑥sg − 𝐿moor sin 𝜃𝑝)

2

,

𝜏
hdr⋅moor
𝑝

= −𝐷
𝑝

𝑝

̇𝜃
𝑝
− 𝐾
𝑝

𝑝
𝜃
𝑝
− 𝐷

sg
𝑝

̇𝑥sg − 𝐷
sg
𝑝

̇𝑥
2

sg − 𝐾
sg
𝑝
𝑥sg.

(5)

𝐷
𝑗

𝑖
, 𝐷𝑗
𝑖
, and 𝐾

𝑗

𝑖
denote equivalent damping and spring coef-

ficients for DOF 𝑖 with regard to DOF 𝑗 for the calculation
of hydro and mooring effects. 𝐹0moor and 𝐹

0

buoy represent
initial mooring line and buoyancy forces when there isno
platform displacement or rotation. It should be noted that
the mooring load for platform heave motion shows strong
nonlinear relationship with the surge and pitch modes; thus,
it is not simplified.

Based on the above analysis and equations, the nonlinear
dynamic model of OC3-Hywind surge-heave-pitch motion
can be established in the following implicit form:

[
[
[
[
[
[

[

𝑀
sg
sg 0 𝐼

𝑝

sg 𝑀
tmd
sg 𝐼

𝑡

sg
0 𝑀

hv
hv 𝐼

𝑝

hv 𝑀
tmd
hv 𝐼

𝑡

hv
𝑀

sg
𝑝

𝑀
hv
𝑝

𝐼
𝑝

𝑝
𝑀

tmd
𝑝

0

𝑀
sg
tmd 𝑀

hv
tmd 𝐼
𝑝

tmd 𝑀
tmd
tmd 𝐼

𝑡

tmd
𝑀

sg
𝑡

𝑀
hv
𝑡

0 𝑀
tmd
𝑡

𝐼
𝑡

𝑡

]
]
]
]
]
]

]

[
[
[
[
[

[

̈𝑥sg
̈𝑥hv
̈𝜃
𝑝

̈𝑥tmd
̈𝜃
𝑡

]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝐹
hdr⋅moor
sg + 𝐹

ctr
sg

𝐹
gr
hv + 𝐹

hdr⋅moor
hv + 𝐹

ctr
hv

𝜏
gr
𝑝
+ 𝜏

hdr⋅moor
𝑝

+ 𝜏
ctr
𝑝

𝐹
gr
tmd + 𝐹

spr⋅damp
tmd

𝜏
gr
𝑡
+ 𝜏
𝑝

𝑡
+ 𝜏

ctr
𝑡

]
]
]
]
]
]

]

.

(6)

In this model, sg, hv, 𝑝, tmd, and 𝑡 represent, respectively,
the enabled 5 DOFs, that is, platform surge, heave, pitch
motion about 𝑃, TMD translation, and tower rotation. On
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the left side, 𝑀𝑗
𝑖
and 𝐼

𝑗

𝑖
denote generalized mass and gener-

alized inertial tensor for DOF 𝑖 with regard to DOF 𝑗. On
the right side, gr, hdr, moor, ctr, spr, and damp describe
gravitational, hydro, centripetal, spring, and damping effects
in forces and moments. Expanded expressions of this model
for TMD platform installation are presented in the appendix,
and the detailed term descriptions are listed in Table 2.

The mass matrix on the left side of (6) exhibits the
system inertial property, that is, mass and inertia tensor,
and it also includes hydro added mass and acceleration
coupling terms. The terms on the right side of (6) are
external loads, which can be classified into several different
effects. Gravitational forces and moments are the first type of
loads, labeled as gr. The second effect, labeled as hdr⋅moor,
is the hydrodynamic and mooring loading, which consists
of hydrostatics, vicious drag, radiation damping, additional
linear damping, andmooring effects.The third type, which is
produced by D’Alembert’s principle, is the centripetal forces
and moments which originate from the rotation of platform,
tower, and TMD about the reference point 𝑃, and they are
labeled as ctr. Tower and platform interaction is the fourth
effect captured in this equation, and the bending moment is
described by a linear spring-damper between them.The final
consideration is the spring and damping effect in TMD, so it
is labeled as spr⋅damp.

After obtaining the OC3-Hywind dynamic model for its
surge-heave-pitch motion in still water, parameter identifi-
cation and validation should be performed to quantize the
unknown parameters and verify the correctness of the pro-
posed model. The parameter estimation is accomplished by
minimizing the output difference between FAST-SC and the
established model. Based on the estimation result, free decay
response comparison for theOC3-Hywind surge-pitch-heave
motion without TMD is illustrated in Figure 3, where two
results coincide well with each other. Then, in order to
further validate the established model, free decay response
comparisons are performed again with TMD installed in
nacelle. In practice, there exist space limitations for the
nacelle, so the TMD displacement should be restricted into
a certain range. According to the nacelle dimensions defined
in [21], the TMD displacement range is determined as ±7m
in this work. In FAST-SC, the TMDmotion constraints were
modelled as stops, where there would be spring stiffness and
damping interaction between TMD and nacelle or platform
when its displacement exceeds the user defined constraints.
The stops effect in this work is characterized in the same
way. Figure 4 illustrates the free decay response comparison
results with TMD stops. As expected, the established model
still manages to capture the system dynamics including TMD
stop interactions. It is worth mentioning that the stops with
various spring and damping coefficients could have quite
different impacts on system dynamics, but further analysis of
stop parameters is not within the scope of this paper.

Based on the above analysis, the proposedmodel has cap-
tured most of the intrinsic dynamics for OC3-Hywind surge-
heave-pitch motion, including hydrodynamic and mooring
loads, tower flexibility, and TMD-nacelle interaction. Next
step is to tune TMD parameters for effective system load
reduction.
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Figure 3: Free decay response comparison between identified
model and FAST-SC numerical simulation for surge-pitch-heave
motion without TMD (5∘ initial platform pitch).
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3. Parameter Tuning

Optimal parameter tuning of the vibration absorber is an
important design consideration in passive structural con-
trol problems. The design aim in this work is to find the
optimal TMD coefficients for wind turbine load reduction.
The parameters to be determined include TMD spring
and damping coefficients. TMD mass is not parametrically
studied in this work since it is usually determined by cost and
heavier mass will more likely produce better performance.
Specifically, in order to be consistent with [11], the mass is
chosen to be 20,000 kg, which takes about 3.33% of theweight
for tower-RNA structure.

In fact, the most convincing solution here is to try all
possible values of these parameters in FAST-SC. However,
this global searching process will take tens of thousands
of calls from FAST-SC, and it usually will take minutes to
run it for only one time. Therefore, exhaustive search is
almost impossible with ordinary computers, and appropriate
optimization methods are needed. Based on the established
model, in this section, three different methods are used for
this parameter tuning problem.

3.1. Frequency and Damping Analysis. In engineering appli-
cations, the natural frequency of TMD is usually tuned to
be near that of the target system; thus, it will effectively
dissipate the undesirable system vibration energy. In order
to systematically describe this phenomenon, Den Hartog
[22] analyzed the response of undamped main system with
TMD subjected to harmonic external forces and derived an
explicit expression to determine the optimal TMD natural
frequency and damping ratio for vibration inhibition. The
optimal solution is given by

𝑓tmd =
𝑓

1 + 𝜇
, 𝜉tmd = √

3𝜇

8 (1 + 𝜇)
, (7)

where 𝜇 denotes the mass ratio 𝑚tmd/𝑚 and 𝑓 and 𝜉 are
the natural frequency and damping ratio of target
system. 𝑓tmd and 𝜉tmd represent the optimal natural
frequency and damping ratio of TMD.

In order to adopt this method, eigenanalysis based on
model linearization result is performed first to obtain system
natural frequencies and damping ratios for the modes of
interest.

The eigenanalysis result has been presented in [23], where
natural frequencies of two most critical modes, that is,
platform pitch mode and first tower fore-aft bending mode,
are 0.4732Hz and 0.0342Hz, and their damping ratios are
0.0087 and 0.1418.

However, in this analysis process, the nonlinearity of
TMD stops due to space constraints is not considered, which
has been shown to have strong influence on TMD load
reduction effectiveness according to the following nonlinear
FAST-SC simulation results. Therefore, a more thorough
method should be proposed to find the best combination of
these TMD parameters.

Table 3: Performance indices.

Index Description

𝐽
1
= √(1/𝑇) ∫

𝑇

0

(𝑥
𝑡𝑡
− 𝑥
𝑡𝑡
)
2

𝑑𝑡

Standard deviation of tower top
displacement under its
equilibrium point

𝐽
2
= max(𝑥

𝑡𝑡
) −min(𝑥

𝑡𝑡
)

Range of tower top
displacement
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Figure 5: Surface plot subjected to performance index 𝐽
1
with

TMD installed in nacelle.

3.2. Surface Plot. In the previous section, we have obtained a
mathematical model describing OC3-Hywind surge-heave-
pitch motion, which manages to capture most of the sys-
tem structural dynamics, hydro and mooring effects. More
importantly, the time for solving this dynamic equation
is less than 1s; thus, surface plotting, a global parameter
searching method, becomes a possible solution to determine
the optimal TMD parameters.

Next, we introduce the performance indices in Table 3
which are used in the optimization process. The tower top
fore-aft deflection is the best indicator of tower bottom bend-
ing moments, and the author in [14] used standard deviation
of tower top displacement as the performance index, which
is also adopted in this work as the first performance index 𝐽

1
.

Secondly, we also care about load reduction effectiveness of
the proposed method in extreme events; thus, the range of
tower top displacement in the free decay test is treated as
another evaluation index 𝐽

2
.

Based on these indices, exhaustive search is performed
where TMD spring and damping constants are regarded
as two coefficients to be optimized. The parameter range
and interval are chosen when both time consumption and
accuracy are considered.The surface plots for different design
criteria are illustrated in Figures 5 and 6, and the optimization
results are listed in Table 4.

Although surface plotting could be regarded as a global
optimization method, which produces a relatively compre-
hensive evaluation of the performance index with possible
parameters, it is still computationally expensive, which will
take hours or days to finish one optimization process. Also,
there might exist better solution if the parameter interval is
not small enough. Therefore, more intelligent and efficient
optimization algorithms are demanded.
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Table 4: Parameter optimization result with TMD in nacelle (𝑚tmd
= 20,000 kg).

Method Performance index 𝐾tmd
(N/m)

𝐷tmd
(N⋅s/m)

Den Hartog
[22]

Tower bending mode
(Den1) 165571 12661

Den Hartog
[22]

Platform pitch mode
(Den2) 865 915

Surface plot 𝐽
1
= 0.0872m 0 3200

Surface plot 𝐽
2
= 0.8389m 1200 800

GA 𝐽
1
= 0.0871m 0 3130

GA 𝐽
2
= 0.7620m 164231 20889

3.3. Genetic Algorithm. In the past few years, genetic algo-
rithm has been widely applied in a broad spectrum of real-
world systems [24–26]. This approach starts with randomly
generated population, and individuals with better fitness
will be selected as the basis of the next generation. The
improved population will keep evolving after inheritance,
mutation, selection, and crossover procedures until it meets
the final requirement. As a global optimization method,
genetic algorithm is based on stochastic variables and does
not require the derivatives of object function, which brings
the advantages of global evaluation and objective tolerance
when compared with other gradient based local optimization
methods. It usually helps to obtain a better result in optimiza-
tion problems with nonsmooth objective functions and thus
is suitable for the optimization problem in this work.

When implementing the algorithm, probability of the
roulette wheel uniform crossover is chosen as 0.6, and the
mutation probability 0.01 is used. Minimum number of
generations is set as 20. Optimization results are shown in
Table 4. It can be noticed that genetic algorithm gives a
better result with respect to 𝐽

2
since the surface plotting has

a limited searching range.

4. Simulation and Analysis

In this section, based on the optimization result, fully non-
linear simulations are performed in FAST-SC with all wind
turbine DOFs enabled. Each test runs for 630 seconds, and

Table 5: Percentage of load reduction with different TMD tuning
results compared with baseline.

Case Evaluation index Den1 Den2 𝐽
1

𝐽
2

10m/s

DEL TwrBsMyt 6.35 0.66 0.52 6.00
DEL TwrBsMxt 32.18 14.2 11.44 28.37
DEL RootMyc1 1.07 −0.18 0.10 0.85
DEL Anch1Ten 0.93 3.01 1.21 0.93
95th TwrBsMyt −2.00 −4.04 −3.89 −2.00
95th TwrBsMxt 6.01 2.7 2.55 5.06
95th PtfmPitch −2.08 −1.96 −2.08 −2.08
95th PtfmRoll −1.67 0.21 0.13 −1.67

18m/s

DEL TwrBsMyt 3.61 7.77 8.78 3.35
DEL TwrBsMxt 25.55 0.98 −3.94 21.24
DEL RootMyc1 1.07 4.99 5.93 1.14
DEL Anch1Ten 1.15 0.32 0.32 1.14
95th TwrBsMyt −3.15 5.02 6.48 −3.25
95th TwrBsMxt 7.90 4.70 1.69 7.10
95th PtfmPitch −1.05 10.66 12.43 −1.04
95th PtfmRoll 6.55 15.54 14.32 6.58
RMS GenPwr −5.46 21.09 29.22 −5.41

37m/s

DEL TwrBsMyt 1.47 −19.95 −16.25 1.22
DEL TwrBsMxt 0.14 0.51 0.42 0.18
DEL RootMyc1 1.80 −45.71 −28.34 2.03
DEL Anch1Ten 1.33 1.83 0.96 0.78
95th TwrBsMyt −0.78 −4.88 −2.33 −0.77
95th TwrBsMxt 0.41 0.40 0.25 0.47
95th PtfmPitch 4.41 5.40 4.44 4.41
95th PtfmRoll −0.30 −0.63 −0.57 −0.30

the output data in the first 30s are not recorded, waiting for
generator torque and blade pitch motion to arrive at normal
operation state. The modified generator torque and blade
pitch controller from NREL will be used in the form of a
dynamic link library for all tests [16].

The wind and wave conditions in the experiment are
defined almost the same as in [12]. For wind condition, both
the above and below rated wind speeds are considered, and
mean value of turbulent wind is defined as 18m/s and 10m/s
separately. The turbulent wind file is generated by TurbSim,
where Kaimal spectra and the power law exponent of 0.14
are used according to the IEC61400-3 offshore wind turbine
design standard. The normal turbulence intensity is set as
15% (18m/s case) and 18% (10m/s case). Random seed in this
work is arbitrarily chosen as 231857312. In order to define the
wave condition, JONSWAP spectrum is utilized to generate
the stochastic wave inputs. The significant wave height is set
as 2.3m (10m/s case) and 3.7m (18m/s case), and the peak
spectral period is defined as 14 s. Besides, the parked situation
is also considered assuming the turbine suffers extreme 50-
year storm, that is, 37m/s turbulent wind with power law
exponent of 0.11 and 11% turbulence intensity. Wave height
and period are defined as 13.8m and 19 s.

Percentage of load reduction with different TMD param-
eter choice is shown inTable 5. In order tomeasure the fatigue
and extreme loading, damage equivalent load (DEL) and the
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Figure 7: FAST-SC simulation results with 18m/s turbulent wind
and 3.7m significant height wave.

95th percentile of fore-aft and side-side tower base bending
moments (TwrBsMyt and TwrBsMxt) and flapwise bending
moment at the first blade root (RootMyc1) are calculated,
together with the 95th percentile of platform pitch and roll
rotation angle. In the above rated situation, the root mean
square (RMS) of generated power is considered as another
index.

It can be seen from results that the design of TMD with
small spring and damping coefficients will achievemuch load
reduction in the above rated condition, where one simulation
result is shown in Figure 7. However, it will deteriorate system
performance when the turbine is working in the below rated
or parked situations. In contrast, the design with large spring

and damping constantswill producemoderate load reduction
in all working conditions.

5. Conclusion

This work focuses on the modeling and parameter tuning
of a passive structural control design for the OC3-Hywind
floating wind turbine. Firstly, the coupled surge-heave-pitch
dynamicmodel with a TMD installed in nacelle is established
based on the D’Alembert’s principle. Parameter estimation
is also performed for model validation. Then, different
parameter tuning methods and performance indices are
used for TMD parameter determination. FAST-SC is used
for fully coupled nonlinear simulation with various wind
and wave conditions. The results show that the design of
TMDwith small spring and damping coefficients will achieve
much load reduction in the above rated condition, but it
will deteriorate system performance when the turbine is
working in the below rated or parked situations. In contrast,
the design with large spring and damping constants will
produce moderate load reduction in all working conditions.
Therefore, inappropriate TMD design will not contribute to
wind turbine load reduction. Besides, only enabling TMD in
certain range of wind speed might be a possible solution for
this design. Further real experiments need to be conducted to
verify this idea. Future work will also consider the situation
when TMD is installed in the spar itself or other types of
platforms.

Appendix

Consider the following:

𝑀
sg
sg = 𝐴

sg
sg + 𝑚ptfm + 𝑚twr + 𝑚rna + 𝑚tmd,

𝐼
𝑝

sg = 𝐴
𝑝

sg + 𝑚twr (𝐿 twr + 𝐿 jot) cos 𝜃𝑝

− 𝑚ptfm𝐿ptfm cos 𝜃
𝑝
,

𝑀
tmd
sg = 𝑀

sg
tmd = 𝑚tmd cos (𝜃𝑝 + sin (𝜃

𝑡
− 𝜃
𝑝
) 𝐿 rnaΦ̇rna) ,

𝐼
𝑡

sg = 𝑚rna (𝐿 rna + 𝐿 jot) cos 𝜃𝑡 + 𝑚tmd𝐿 rna cos 𝜃𝑡,

𝑀
hv
hv = 𝐴

hv
hv + 𝑚ptfm + 𝑚twr + 𝑚rna + 𝑚tmd,

𝐼
𝑝

hv = − 𝑚twr (𝐿 twr + 𝐿 jot) sin 𝜃𝑝

+ 𝑚ptfm𝐿ptfm sin 𝜃
𝑝
,

𝑀
tmd
hv = 𝑀

hv
tmd = −𝑚tmd sin (𝜃𝑝 + sin (𝜃

𝑡
− 𝜃
𝑝
) 𝐿 rnaΦ̇rna) ,

𝐼
𝑡

hv =−𝑚rna (𝐿 rna+𝐿 jot) sin 𝜃𝑡−𝑚tmd𝐿 rna sin 𝜃𝑡,

𝑀
sg
𝑝
= 𝐴

sg
𝑝
+ 𝑚rna (𝐿 rna + 𝐿 jot) cos 𝜃𝑡

+ 𝑚twr (𝐿 twr + 𝐿 jot) cos 𝜃𝑝

−𝑚ptfm𝐿ptfm cos 𝜃
𝑝
+𝑚tmd (𝐿 rna+𝐿 jot)cos 𝜃𝑡,
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𝑀
hv
𝑝

= − 𝑚rna (𝐿 rna + 𝐿 jot) sin 𝜃𝑡

− 𝑚twr (𝐿 twr + 𝐿 jot) sin 𝜃𝑝

+𝑚ptfm𝐿ptfm sin 𝜃
𝑝
−𝑚tmd (𝐿 rna+𝐿 jot)sin 𝜃𝑡,

𝐼
𝑝

𝑝
= 𝐴
𝑝

𝑝
+ 𝐽

CGptfm
ptfm + 𝑚ptfm𝐿

2

ptfm + 𝐽
CGtwr
twr

+ 𝑚twr(𝐿 twr + 𝐿 jot)
2

+ 𝑚rna(𝐿 rna + 𝐿 jot)
2

+ 𝑚tmd(𝐿 rna + 𝐿 jot)
2

,

𝐼
𝑝

tmd = 0, 𝑀
tmd
tmd = 𝑚tmd,

𝐼
𝑡

tmd = 𝑀
tmd
𝑡

= 𝑚tmd𝐿 rna cos (sin (𝜃𝑡 − 𝜃
𝑝
) 𝐿 rnaΦ̇rna) ,

𝑀
sg
𝑡
= 𝑚rna𝐿 rna cos 𝜃𝑡 + 𝑚twr𝐿 twr cos 𝜃𝑝

+ 𝑚tmd𝐿 rna cos 𝜃𝑡,

𝑀
hv
𝑡

= − 𝑚rna𝐿 rna sin 𝜃𝑡 − 𝑚twr𝐿 twr sin 𝜃𝑝

− 𝑚tmd𝐿 rna sin 𝜃𝑡,

Φ̇rna =
𝜕Φ (ℎ)

𝜕ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ℎ=𝐿rna

,

𝐹
gr
hv = − (𝑚ptfm + 𝑚twr + 𝑚rna + 𝑚tmd) 𝑔,

𝜏
gr
𝑝
= 𝑚rna (𝐿 rna + 𝐿 jot) sin 𝜃𝑡

+ 𝑚twr𝑔 (𝐿 twr + 𝐿 jot) sin 𝜃𝑝

− 𝑚ptfm𝑔𝐿ptfm sin 𝜃
𝑝
− 𝑚rna𝑔𝐿𝑑 cos 𝜃𝑡

+𝑚tmd𝑔𝑥tmd cos 𝜃𝑡+𝑚tmd𝑔 (𝐿 rna+𝐿 jot)sin 𝜃𝑡,

𝐹
gr
tmd = 𝑚tmd𝑔 sin (𝜃𝑝 + sin (𝜃

𝑡
− 𝜃
𝑝
) 𝐿 rnaΦ̇rna) ,

𝜏
gr
𝑡
= 𝑚twr𝑔𝐿 twr sin 𝜃𝑝 + 𝑚rna𝑔𝐿 rna sin 𝜃𝑡

− 𝑚rna𝑔𝐿𝑑 cos 𝜃𝑡

+ 𝑚tmd𝑔𝑥tmd cos 𝜃𝑡 + 𝑚tmd𝑔𝐿 rna sin 𝜃𝑡,

𝐹
hdr.moor
sg = −𝐷

sg
sg ̇𝑥sg−𝐷

sg
sg ̇𝑥
2

sg−𝐾
sg
sg𝑥sg − 𝐷

𝑝

sg
̇𝜃
𝑝
−𝐾
𝑝

sg𝜃𝑝,

𝐹
hdr.moor
hv = − 𝐷

hv
hv ̇𝑥hv − 𝐾

hv
hv𝑥hv − 𝐹moor + 𝐹buoy

− 𝐾
𝑝.sg
hv (𝑥sg − 𝐿moor sin 𝜃𝑝)

2

,

𝜏
hdr.moor
𝑝

= −𝐷
𝑝

𝑝

̇𝜃
𝑝
− 𝐾
𝑝

𝑝
𝜃
𝑝
− 𝐷

sg
p ̇𝑥sg−𝐷

sg
𝑝

̇𝑥
2

sg − 𝐾
sg
𝑝
𝑥sg,

𝐹
ctr
sg = 𝑚twr

̇𝜃
2

𝑝
(𝐿 twr + 𝐿 jot) sin 𝜃𝑝

+ 𝑚rna
̇𝜃
2

𝑡
(𝐿 rna + 𝐿 jot) sin 𝜃𝑡

− 𝑚ptfm
̇𝜃
2

𝑝
𝐿ptfm sin 𝜃

𝑝

+ 𝑚tmd
̇𝜃
𝑡
( ̇𝜃
𝑡
(𝐿 rna + 𝐿 jot) − ̇𝑥tmd) sin 𝜃𝑡,

𝐹
ctr
hv = 𝑚twr

̇𝜃
2

𝑝
(𝐿 twr + 𝐿 jot) cos 𝜃𝑝

+ 𝑚rna
̇𝜃
2

𝑡
(𝐿 rna + 𝐿 jot) cos 𝜃𝑡

− 𝑚ptfm
̇𝜃
2

𝑝
𝐿ptfm cos 𝜃

𝑝

+ 𝑚tmd
̇𝜃
𝑡
( ̇𝜃
𝑡
(𝐿 rna + 𝐿 jot) − ̇𝑥tmd) cos 𝜃𝑡,

𝜏
ctr
𝑝

= 𝜏
ctr
𝑡

= −𝑚tmd
̇𝜃
𝑡
( ̇𝜃
𝑡
(𝐿 rna + 𝐿 jot) − ̇𝑥tmd) 𝑥tmd,

𝐹
spr.damp
tmd = −𝐷tmd ̇𝑥tmd − 𝐾tmd𝑥tmd,

𝜏
𝑝

𝑡
= 𝐷
𝑡
( ̇𝜃
𝑡
− ̇𝜃
𝑝
) + 𝐾
𝑡
(𝜃
𝑡
− 𝜃
𝑝
) .

(A.1)
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This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR) learning. The
concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF), which enhance the
capability of the 3DFLC to copewithmore kinds ofMFs.Thenonlinearmathematical expression of the reference function based 3D
FLC is derived, and spatial fuzzy basis functions are defined.Via relating spatial fuzzy basis functions of a 3DFLC to kernel functions
of an SVR, an equivalence relationship between a 3D FLC and an SVR is established.Therefore, a 3D FLC can be constructed using
the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven
in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation
results have verified its effectiveness.

1. Introduction

Many industrial processes and systems are “distributed” in
space [1] and are usually called spatially distributed systems.
Recently, a novel three-dimensional fuzzy logic controller
(3D FLC) [2] has been developed for the control of such
systems.The 3DFLC employs a three-dimensional (3D) fuzzy
set [2], which is composed of the traditional fuzzy set plus a
third dimension for the spatial information, and carries out a
3D rule inference engine; thus, it has the inherent capability
to process spatiotemporal dynamic systems. The control
strategy of the 3D FLC is similar to how human operators or
experts control the temperature in a space domain. Actually,
it is a kind of spatiotemporal fuzzy control system with the
traditional model-free advantage.

Currently, most 3D FLC designs are based on expert
knowledge [2–5], which requires that the human knowledge
to the control solution must exist and be structured [6].
However, in many real-world applications, experts may have
problems structuring the knowledge. Sometimes, although
experts have the structured knowledge, they may sway
between extreme cases: offering too much knowledge in the
field of expertise or tending to hide their knowledge [6]. On

the contrast, data sets hidden with effective control rules are
usually available. The motivation of this study is to design a
3D FLC using spatiotemporal data information.

To date, few literatures are found to be focused on data-
based 3D FLC designmethods. In [7], a table look-up scheme
was employed to design 3D FLC in terms of input-output
pairs. In [8], a fuzzy c-means algorithm (FCM) and gradient-
descent approach were used to design a data-based 3D FLC,
where FCM was used to learn the initial 3D fuzzy rule base
and then the gradient-descent approach was used to optimize
the parameters of MFs. In [9, 10], a clustering and linear
support vector regression based 3D FLC design method was
proposed, where the nearest neighborhood clustering was
used to construct the antecedent part of 3D fuzzy rules and
a linear support vector regression (SVR) was used to learn
the consequent parameters.Thesemethods either yield lots of
fuzzy control rules (e.g. in [7]) or require additional algorithm
to reduce redundant 3D fuzzy sets or 3D fuzzy rules [8–
10]. As a complementary, Zhang et al. proposed a data-based
3D FLC design method using SVR learning [11], where the
learned support vectors and associated learning parameters
are directly used to design antecedent part and consequent
part of 3D fuzzy rules. The best advantage of this method is
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that reasonable 3D fuzzy control rules are directly extracted
and constructed by SVR learning.The limitation of the design
is that Gaussian shape membership function (MF) is the only
choice for MF design.

In this study, we focus on a reference function based 3D
FLC design using SVR learning, which integrates the merits
of SVR learning and flexible MF choice. Utilizing the concept
of reference function, the 3D FLC can cope with more kinds
of MFs, for example, Symmetric triangle, Gaussian, Cauchy,
Laplace, Hyperbolic Secant, and Squared Sinc. A nonlinear
mathematical description of a reference function based 3D
FLC can be derived, and spatial fuzzy basis functions are
defined. Via relating spatial fuzzy basis functions of a 3D
FLC to kernel functions (KFs) of an SVR, an equivalence
relationship between a 3D FLC and an SVR is established.
Therefore, a 3D FLC can be constructed using the learned
results of an SVR. In addition, the universal approximation
capability of the proposed 3D fuzzy system is proven in terms
of the finite covering theorem.

The paper is organized as follows. Preliminaries about the
reference function, 3D MF generated by reference function,
and the nonlinear mapping of reference function based 3D
FLC are addressed in Section 2. In Section 3, themethodology
and design scheme of the reference function based 3D FLC
design using SVR learning are presented. Then, the finite
covering theorem is used to prove that the 3D FLC is a
universal approximator in Section 4. In Section 5, a catalytic
packed-bed reactor is presented as an example to illustrate the
proposed 3D FLC and validate its effectiveness. In Section 6,
conclusions are given.

2. Preliminaries

2.1. Reference Function

Definition of Reference Function (see [12, 13]). A function 𝜐 :

𝑅 → [0, 1] is a reference function if and only if the following
two conditions hold:

(1) 𝜐(𝑥) = 𝜐(−𝑥),
(2) 𝜐(0) = 1.

Many functions may be reference functions. For instance,
Symmetric triangle, Gaussian, Cauchy, Laplace, Hyperbolic
Secant, and Squared Sinc as listed in Table 1 are reference
functions.The reference functions can be used to generate 3D
MFs, which provide a way for 3D FLC to access more kinds
of 3D MFs.

2.2. Reference Function Based 3D FLC

2.2.1. 3D MF Generated by Reference Function. A 3D MF is
an extension of a traditional MF by adding a third coordinate
for the spatial information. In detail, the 3D MF has three
coordinates: one is for the universe of discourse of the
variable, another one is for the spatial information, and the
third one is for the membership degree. If finite sensors are
used, the 3D MF can be considered as the assembly of the
traditional 2D MFs at each sensing location. In this way,

Table 1: Reference functions.

Classification Mathematical expression
Symmetric triangle 𝜐(𝑥) = max (1 − 𝑑 |𝑥| , 0), 𝑑 > 0

Gaussian 𝜐(𝑥) = 𝑒
−𝑑𝑥
2

, 𝑑 > 0

Cauchy 𝜐(𝑥) =
1

1 + 𝑑𝑥2

, 𝑑 > 0

Laplace 𝜐(𝑥) = 𝑒
−𝑑|𝑥|, 𝑑 > 0

Hyperbolic Secant 𝜐(𝑥) =
2

𝑒𝑑𝑥 + 𝑒−𝑑𝑥
, 𝑑 > 0

Squared Sinc 𝜐(𝑥) =
sin2

(𝑑𝑥)

𝑑2𝑥2

, 𝑑 > 0
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we can generate a 3D MF by location transformation of a
reference function at each sensing location.

For example, we have a spatial input variable 𝑥
1
(𝑧)

defined in a discrete spatial domain 𝑍 = {𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑝
}. A

3D MF of 𝑥
1
(𝑧) can be an assembly of the traditional 2D

MFs at each sensing location 𝑧 = 𝑧
𝑗

(𝑗 = 1, 2, . . . , 𝑝). The
MF distribution of 𝑥

1
(𝑧) at sensing location 𝑧 = 𝑧

1
can

be shown in Figure 1, where 𝛽
1
(𝑥

1
(𝑧

1
)) is a Gaussian type

reference function;𝛽1

1
(𝑥

1
(𝑧

1
)), 𝛽

2

1
(𝑥

1
(𝑧

1
)), and𝛽

3

1
(𝑥

1
(𝑧

1
)) are

generated by location transformation of 𝛽
1
(𝑥

1
(𝑧

1
)).

2.2.2. Reference Function Based 3D FLC as a Nonlinear
Mapping. The basic structure of a 3D FLC is composed of
3D fuzzifier, 3D rule inference, and defuzzifier. Due to its
unique 3D nature, some detailed operations of a 3D FLC
are different from a traditional one for spatial information
expression, processing, and compression. For their detailed
operations, one can refer to [2]. Once each component of
a reference function based 3D FLC is set, the nonlinear
mathematical description of the 3D FLC can be derived (see
Appendix A for a brief derivation). Assuming that we employ
3D singleton fuzzifier, 3D fuzzy rules as shown in (A.4) of
Appendix A, “product” t-norm and “weighted aggregation”
dimension reduction [3] in the 3D rule inference, singleton
fuzzy sets for the output variable, and “linear” defuzzifier [14],
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the reference function based 3D FLC can be mathematically
expressed as

𝑢 (𝑥
𝑧
) = 𝑏

0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
))

= 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) ,

(1)

where 𝑥
𝑖
(𝑧

𝑗
) denotes the input of the 𝑖th spatial input variable

𝑥
𝑖
(𝑧) from the sensing location 𝑧 = 𝑧

𝑗
; 𝛽

𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
)) =

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
)−𝜏

𝑙

𝑖𝑗
)denotesMFgenerated by the reference function

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
)); 𝜏

𝑙

𝑖𝑗
denotes a location parameter, that is, the

location transformation of the MF of 𝑥
𝑖
(𝑧

𝑗
) with respect to

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
)); 𝑎

𝑗
denotes the spatial weight from the𝑗th sensing

location; 𝑏0 and 𝑏
𝑙 are constants; 𝑝 denotes sensor number.

In (1), let

Ψ
𝑙

(𝑥
𝑧
) =

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
)) ; (2)

then (1) can be rewritten as

𝑢 (𝑥
𝑧
) = 𝑏

0

+

𝑁

∑

𝑙=1

𝑏
𝑙

Ψ
𝑙

(𝑥
𝑧
) . (3)

We define Ψ
𝑙

(𝑥
𝑧
) as a Spatial Fuzzy Basis Function (SFBF)

[11]. Each SFBF corresponds to a 3D fuzzy rule, and all the
SFBFs correspond to a 3D rule base. Mathematically, a 3D
FLC is a linear combination of all the SFBFs. Furthermore,
we rewrite (2) into (4)

Ψ
𝑙

(𝑥
𝑧
) =

𝑝

∑

𝑗=1

𝑎
𝑗
𝜑
𝑙

(𝑥 (𝑧
𝑗
)) , (4)

where 𝜑
𝑙

(𝑥(𝑧
𝑗
)) = ∏

𝑠

𝑖=1
𝛽
𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
)).

From (4), we can find that, at each sensing location,
there exists a traditional FBF [15] 𝜑

𝑙

(𝑥(𝑧
𝑗
)); in the whole

space domain, multiple traditional FBFs are assembled by the
spatial weights 𝑎

1
, . . . , 𝑎

𝑝
into a SFBF Ψ

𝑙

(𝑥
𝑧
). All the spatial

information expression and processing as well as the fuzzy
linguistic expression and rule inference are integrated into
SFBFs.

Equation (1) (or (3)) shows that the reference function
based 3D FLC is a nonlinear mapping from the input space
𝑥
𝑧

∈ Ω ⊂ 𝑅
𝑝×𝑠 to the output space 𝑢(𝑥

𝑧
) ∈ 𝑈 ⊂ 𝑅. In

particular, using (3) a reference function based 3D FLC can
be represented by a three-layer network structure as show in
Figure 2.

3. Reference Function Based 3D FLC Design
Using SVR Learning

3.1. Design Methodology. The design methodology can be
depicted by Figure 3. The SFBFs from a 3D FLC are input to

...
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𝜓
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(xz)

...

Figure 2: Three-layer network structure of a 3D FLC.

an SVR as the KFs, and the learned spatial support vectors
as leading spatiotemporal data points from the SVR are
imported for the design of a 3D fuzzy rule base. The design
theory will involve two crucial issues.The first one is whether
SFBFs from a 3D FLC can be used as KFs in an SVR. The
second one is what the relationship between a 3D FLC and an
SVR would be like on the basis of the first issue.

3.1.1. Spatial Fuzzy Basis Function as Mercer KF. When
relating the SFBFs with the KFs in an SVR, for instance,
SFBFs are regarded as KFs, the SVR and the 3D FLCwill have
the same network structures and then have the same mathe-
matical expressions, which will be discussed in Section 3.1.2.
Generally speaking, a function satisfyingMercer theorem can
be used as a KF for an SVR [16]. In this study, we will prove
that an SFBF is a Mercer KF.

In (3), we rewrite Ψ
𝑙

(𝑥
𝑧
) into 𝐾(𝑥

𝑧
, 𝜏

𝑙

), which can be
further expressed as follows:

𝐾 (𝑥
𝑧
, 𝜏

𝑙

) = 𝐾 (𝑥
𝑧

− 𝜏
𝑙

) =

𝑝

∑

𝑗=1

𝑎
𝑗
𝐾
𝑗

(𝑥 (𝑧
𝑗
) , 𝜏

𝑙

𝑗
) ,

𝐾
𝑗

(𝑥 (𝑧
𝑗
) , 𝜏

𝑙

𝑗
) = 𝐾

𝑗

(𝑥 (𝑧
𝑗
) − 𝜏

𝑙

𝑗
) =

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) ,

(5)

where 𝑥
𝑧

∈ 𝑅
𝑝×𝑠 is a spatial input, 𝜏

𝑙

∈ 𝑅
𝑝×𝑠 is the location

transformation parameter of 3D MF in the 𝑙th rule, and
𝐾
𝑗

(𝑥(𝑧
𝑗
), 𝜏

𝑙

𝑗
) and 𝐾(𝑥

𝑧
, 𝜏

𝑙

) are translation invariant KFs [13].
In terms of [13], if the reference functions are positive

definite functions, then we do get a Mercer kernel. The
reference functions as listed in Table 1 are positive definite
functions. Using these reference functions to generate MF,
from [13], we can conclude that 𝐾

𝑗

(𝑥(𝑧
𝑗
), 𝜏

𝑙

𝑗
) is a Mercer

kernel. Since the linear combination of KFs is still a KF [16],
we can derive that 𝐾(𝑥

𝑧
, 𝜏

𝑙

) is still a Mercer KF. Therefore,
SFBFs are Mercer KFs, which can be used as KFs for SVR
learning.
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3.1.2. Mathematical Equivalence of a Spatial SVR and a 3D
FLC. Once the SFBFs from the 3D FLC are employed as
the KFs for an SVR, an inherent equivalence relationship
will be built between the SVR and the 3D FLC (comparing
Figure 2 and Figure 10). By combining (1) and (B.7), we have
the following mathematical expressions:

𝑢 (𝑥
𝑧
) = 𝑏

0

+

𝑁

∑

𝑙=1

𝑏
𝑙

Ψ
𝑙

(𝑥
𝑧
)

= 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗
𝜑
𝑙

(𝑥 (𝑧
𝑗
))

= 𝑏 +

𝑁

∑

𝑙=1

(𝛼
∗

𝑙
− 𝛼

𝑙
) 𝐾 (𝑥

𝑧
, 𝑥

𝑙

𝑧
) ,

(6)

where 𝑏
0

= 𝑏, 𝑏
𝑙

= (𝛼
∗

𝑙
− 𝛼

𝑙
), and Ψ

𝑙

(𝑥
𝑧
) = 𝐾(𝑥

𝑧
, 𝜏

𝑙

) =

𝐾(𝑥
𝑧
, 𝑥

𝑙

𝑧
).

From (6), we can find that each spatial support vector 𝑥
𝑙

𝑧

and its associated learning parameter (𝛼
∗

𝑙
− 𝛼

𝑙
) correspond to

one 3D fuzzy rule, where 𝑥
𝑙

𝑧
is applied to set the center of the

3D MF of the 3D fuzzy set 𝐶
𝑙

𝑖
(𝑖 = 1, . . . , 𝑠) in the 𝑙th rule,

that is, the location transformation of the 3D fuzzy set with
respect to reference function 𝛽(𝑥

𝑧
, 𝜏

𝑙

), and (𝛼
∗

𝑙
− 𝛼

𝑙
) is used

to set 𝑏
𝑙 (the constant for the consequent set of the 𝑙th rule in

3D FLC).

3.2. Design Scheme. The design of a reference function based
3D FLC consists of five parts: data collection, KF generation,
SVR learning, 3D fuzzy rule construction, and 3D fuzzy
controller integration, as shown in Figure 4.

(1) Data Collection. A set of spatiotemporal data will be
collected. The data should contain effective control laws.
Essentially, the reference function based 3D FLC design is a
fuzzy modeling [17] that extracts fuzzy control rules from the
spatiotemporal data.

(2) KF Generation. Before SVR learning, KFs should be prop-
erly designed. In this step, via properly selecting reference
function, SFBFs from a 3D FLC will be formulated (as in (4))
to set KFs for SVR learning.

(3) SVR Learning. With proper KFs, the SVM learning
algorithm directly executes the spatiotemporal data set and
yields spatial support vectors 𝑥

1

𝑧
, . . . , 𝑥

𝑁

𝑧
and their associated

learning parameters 𝛼
∗

1
− 𝛼

1
, . . . , 𝛼

∗

𝑁
− 𝛼

𝑁
.

(4) 3D Fuzzy Rule Construction. The spatial support vectors
and their associated learning parameters, as leading control
laws, are used to construct 3D fuzzy control rules. In detail,
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A → B

Figure 5: Sketch of a catalytic packed-bed reactor.

the spatial support vector 𝑥
𝑙

𝑧
is employed to construct the

antecedent part of the 𝑙th rule;𝛼∗
𝑙
−𝛼

𝑙
is employed to construct

the consequent part of the 𝑙th rule.The form of each 3D fuzzy
rule is shown as below

𝑅
𝑙

: if 𝑥
𝑧
is close to 𝑥

𝑙

𝑧
then 𝑢 is close to (𝛼

∗

𝑙
− 𝛼

𝑙
) . (7)

It is shown that the result of the SVM learning can be easily
interpreted using structured linguistic knowledge. Finally, a
3D rule base with 𝑁 rules is established.

(5) 3D Fuzzy Controller Integration. Once the 3D rule base is
established, a 3D FLC can be achieved by integrating other
components including 3D fuzzifier, 3D rule inference, and
defuzzifier. The detailed settings are given in Section 2.2.2.
Finally, we obtain a complete 3D FLC, which can be used as a
controller for a spatially distributed dynamic system.

4. Universal Approximation of
Reference Function Based 3D FLC

The reference function based 3D FLC design method is used
to construct a 3D FLC from spatiotemporal data hidden
with effective control laws. In other words, the 3D FLC aims
at approximating an unknown nonlinear control function.
In this study, we use the finite covering theorem to prove
that the 3D FLC is a universal approximator; that is, it
can approximate continuous control functions to arbitrary
accuracy.

The universal approximation capability of the reference
function based 3D FLC can be described byTheorem 1.

Theorem 1. Let 𝑔(𝑥
𝑧
) : 𝑅

𝑝×𝑠

→ 𝑅 be a continuous function
defined on a compact Ω. For each 𝜀 > 0, there exists a reference
function based 3D FLC 𝑢(𝑥

𝑧
) such that

sup
𝑥𝑧∈Ω

(
󵄨󵄨󵄨󵄨𝑢 (𝑥

𝑧
) − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨) < 𝜀. (8)

From (A.4), it is shown that 𝑅
0 is an universal rule,

namely, for any spatial input 𝑥
𝑧
, 𝑅

0 will be fired. In (A.4), the
fired rule 𝑅

0 will produce the constant 𝑏
0. Let

𝐹 (𝑥
𝑧
) = 𝑢 (𝑥

𝑧
) − 𝑏

0

=

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
)

=

𝑁

∑

𝑙=1

𝑏
𝑙

𝐾 (𝑥
𝑧
, 𝜏

𝑙

) .

(9)
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Figure 6: Spatial-temporal data set: (a) spatial error 𝑒(𝑧); (b)
spatial error in change Δ𝑒(𝑧); (c) incremental output Δ𝑢 (𝑧: spatial
dimension; 𝑘: serial number of input-output data).

𝐹(𝑥
𝑧
) can be regarded as a 3D FLC generated by rule

base {𝑅
1

, 𝑅
2

, . . . , 𝑅
𝑁

}. Then, Theorem 1 can be restated as
Theorem 2 as follows.

Theorem 2. Under the condition of Theorem 1, let 𝑔(𝑥
𝑧
) :

𝑅
𝑝×𝑠

→ 𝑅 be a continuous function defined on a compact Ω.
For any constant 𝑏

0, one has 𝑔(𝑥
𝑧
) = 𝑔(𝑥

𝑧
)+𝑏

0. For each 𝜀 > 0,
there exists a reference function based 3D FLC 𝐹(𝑥

𝑧
) such that

sup
𝑥𝑧∈Ω

(
󵄨󵄨󵄨󵄨𝐹 (𝑥

𝑧
) − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨) < 𝜀. (10)
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Figure 9: Continued.
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(f) Controlled by a reference function based 3D FLC with Squared Sinc reference function
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Figure 9: Control performance comparisons. From left to right in (a)–(g): catalyst temperature varying with time and space, manipulated
input, and catalyst temperature at steady state.

Before the proof of Theorem 2, we first present some
preparation work.

When 𝑥
𝑧

= 𝑥
𝑧

∈ Ω, the firing level of the fired rule𝑅
𝑙

(𝑙 =

1, . . . , 𝑁) is

𝜇
𝜑
𝑙 (𝑥

𝑧
) =

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) . (11)

The inference result of 𝑅
𝑙 is given by

𝐷
𝑙

(𝑢) = {
0 if 𝜇

𝜑
𝑙 (𝑥

𝑧
) = 0 or 𝑢 ̸= 𝑏

𝑙

,

𝑏
𝑙

𝜇
𝜑
𝑙 (𝑥

𝑧
) in other case,

(12)

where 𝑢 is the output variable of the 3D FLC, which is
corresponding to the “𝑢” of the consequent part of the fired
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rule. The composition result of all the fired rules is given as
follows:

𝐷 (𝑢) =

𝑁

⋃

𝑙=1

𝐷
𝑙

(𝑢) . (13)

Based on the above preparation, Lemma 3 is presented as
follows.

Lemma 3. Under the condition of Theorem 1 there exists a
reference function based 3D FLC 𝐹(𝑥

𝑧
) such that

𝐷 (𝑢)
󵄨󵄨󵄨󵄨𝑢 − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨 ≤ 𝐷 (𝑢) ∗ 𝜀 for each 𝑢 ∈ 𝑅. (14)

Proof. Let 𝑎
𝑧

∈ Ω. As 𝑔(⋅) is continuous at 𝑎
𝑧
, for each 𝑖 =

1, . . . , 𝑠 there exists a 𝛿
𝑖

𝑎𝑧

> 0 such that
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖

𝑧
− 𝑎

𝑖

𝑧

󵄨󵄨󵄨󵄨󵄨
≤ 𝛿

𝑖

𝑎𝑧

𝑖 = (1, . . . , 𝑠) ⇐⇒
󵄨󵄨󵄨󵄨𝑔 (𝑥

𝑧
) − 𝑔 (𝑎

𝑧
)
󵄨󵄨󵄨󵄨 ≤ 𝜀.

(15)

For each 𝑎
𝑧

∈ Ω, set

𝑂
𝑎𝑧

= {𝑥
𝑧

|
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖

𝑧
− 𝑎

𝑖

𝑧

󵄨󵄨󵄨󵄨󵄨
≤ 𝛿

𝑖

𝑎𝑧

(𝑖 = 1, . . . , 𝑠)} . (16)

Then, 𝑂
𝑎𝑧
is open on 𝑅

𝑝×𝑠 and Ω ⊆ ⋃
𝑎𝑧∈Ω

𝑂
𝑎𝑧
. As Ω is

compact, there exists a finite subfamily 𝑂
𝑎
1

𝑧

, 𝑂
𝑎
2

𝑧

, . . . , 𝑂
𝑎
𝑘

𝑧

such
that

Ω ⊆ 𝑂
𝑎
1

𝑧

⋃ 𝑂
𝑎
2

𝑧

⋃ ⋅ ⋅ ⋅ ⋃ 𝑂
𝑎
𝑘

𝑧

. (17)

We can construct a 3D FLC 𝐹(𝑥
𝑧
), defined by

𝜇
𝜑
𝑙 (𝑥

𝑧
) =

{{

{{

{

𝑝

∑

𝑗=1

𝑎
𝑙

𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) 𝑥

𝑧
∈ 𝑂

𝑎
𝑙

𝑧

0 𝑥
𝑧

∉ 𝑂
𝑎
𝑙

𝑧

(𝑙 = 1, . . . , 𝑁) ,

(18)

𝑏
𝑙

= {
𝑔 (𝑥

𝑧
) 𝑥

𝑧
∈ 𝑂

𝑎
𝑙

𝑧

0 𝑥
𝑧

∉ 𝑂
𝑎
𝑙

𝑧

(𝑙 = 1, . . . , 𝑁) . (19)

When 𝑥
𝑧

= 𝑥
𝑧

∈ Ω, we have the following.

(1) If 𝐷(𝑢) = 0, the lemma is trivial.
(2) If 𝐷(𝑢) > 0, then 𝐷(𝑢) = ⋃

𝑁

𝑙=1
𝐷
𝑙

(𝑢) > 0; hence, there
exists a 𝑘 ∈ [1, 𝑁] such that 𝐷

𝑘

(𝑢) > 0. Therefore, we
further have that the following.

(a) From 𝐷
𝑘

(𝑢) ̸= 0, it follows that 𝜇
𝜑
𝑘(𝑥

𝑧
) ̸= 0; that

is, 𝑥
𝑧

∈ 𝑂
𝑎
𝑘

𝑧

. In terms of the continuity of 𝑔(⋅),
we have |𝑔(𝑥

𝑧
) − 𝑔(𝑎

𝑘

𝑧
)| ≤ 𝜀.

(b) From 𝐷
𝑘

(𝑢) ̸= 0, it follows that 𝐷
𝑘

(𝑢) =

𝑏
𝑘

𝜇
𝜑
𝑘(𝑥

𝑧
) ̸= 0, and then 𝑏

𝑘

̸= 0.We have 𝑢 = 𝑏
𝑘

=

𝑔(𝑎
𝑘

𝑧
).

Hence, we have
󵄨󵄨󵄨󵄨𝑢 − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑔 (𝑎

𝑘

𝑧
)
󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑎

𝑘

𝑧
) − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨󵄨

< 0 + 𝜀 = 𝜀.

(20)

In terms of Lemma 3, the proof ofTheorem 2 can be given
as follows.

Proof of Theorem 2. Consider

󵄨󵄨󵄨󵄨𝐹 (𝑥
𝑧
) − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨 ≤

∑ 𝐷 (𝑢)
󵄨󵄨󵄨󵄨𝑢 − 𝑔 (𝑥

𝑧
)
󵄨󵄨󵄨󵄨

∑ 𝐷 (𝑢)

≤
𝜀 ∗ ∑ 𝐷 (𝑢)

∑ 𝐷 (𝑢)
≤ 𝜀.

(21)

5. Application

5.1. A Catalytic Packed-Bed Reactor. This designed 3D FLC is
applied to a catalytic packed-bed reactor [1, 4, 18] shown in
Figure 5, where a reaction of the form 𝐴 → 𝐵 takes place on
the catalyst. The reaction is endothermic and a jacket is used
to heat the reactor. A dimensionless model that describes this
nonlinear tubular chemical reactor is provided as follows:

𝜕𝑇
𝑟

𝜕𝑡
= −

𝜕𝑇
𝑟

𝜕𝑧
+

1

𝑃
𝑒𝑇

𝜕
2

𝑇
𝑟

𝜕𝑧2

− 𝐵
𝑇
𝐵
𝐶
𝐶
𝐴
exp(

𝛾
𝑟
𝑇
𝑟

1 + 𝑇
𝑟

) + 𝛽
𝑇

(𝑢 − 𝑇
𝑟
) ,

𝜕𝐶
𝐴

𝜕𝑡
= −

𝜕𝐶
𝐴

𝜕𝑧
+

1

𝑃
𝑒𝐶

𝜕
2

𝐶
𝐴

𝜕𝑧2
− 𝐵

𝐶
𝐶
𝐴
exp(

𝛾
𝑟
𝑇
𝑟

1 + 𝑇
𝑟

)

(22)

subject to the boundary conditions

𝑧 = 0, 𝑃
𝑒𝑇

𝑇
𝑟

=
𝜕𝑇

𝑟

𝜕𝑧
, 𝑃

𝑒𝐶
(𝐶

𝐴
− 1) =

𝜕𝐶
𝐴

𝜕𝑧
,

𝑧 = 1,
𝜕𝑇

𝑟

𝜕𝑧
= 0,

𝜕𝐶
𝐴

𝜕𝑧
= 0,

(23)

where 𝑇
𝑟
, 𝐶

𝐴
, and 𝑢 denote the dimensionless temperature,

the concentration of reactant 𝐴, and jacket temperature,
respectively; 𝑡 and 𝑧 denote the dimensionless time and
space; 𝑃

𝑒𝑇
and 𝑃

𝑒𝐶
are the heat and mass Peclet numbers,

𝐵
𝑇
is a dimensionless heat of reaction, 𝐵

𝐶
is a dimensionless

preexponential factor, 𝛾
𝑟
is a dimensionless activation energy,

and 𝛽
𝑇
is a dimensionless heat transfer coefficient.The values

of the process parameters are given as follows:

𝑃
𝑒𝑇

= 5.0, 𝑃
𝑒𝐶

= 5.0, 𝐵
𝐶

= 0.00001,

𝐵
𝑇

= 1.0, 𝛽
𝑇

= 15.62, 𝛾
𝑟

= 22.14.
(24)

The control problem is to maintain a desired reaction rate via
tuning the jacket temperature to control catalyst temperature.
In this application, the reactor began to work at one steady
state; because of the requirement of operation conditions, the
reference value of temperature is increased by 8%. Thus, the
control objective is to make the temperature of reactor well
track the new reference value along the space domain.

5.2. Design of Reference Function Based 3D FLC

(1) Data Collection. The spatiotemporal data is collected from
the catalytic packed-bed reactor, which is controlled by
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an expert based 3D FLC [4]. Five point sensors are located
along the length of the reactor with 𝑍 = [00.40.60.81] for
collecting the spatial distribution of the temperature 𝑇

𝑟
. Two

spatial inputs are error and error in change; that is, 𝑒∗(𝑍, 𝑘) =

𝑇
𝑠𝑑

(𝑍) − 𝑇
𝑠
(𝑍, 𝑘) and Δ𝑒

∗

(𝑍) = 𝑒
∗

(𝑍, 𝑘) − 𝑒
∗

(𝑍, 𝑘 − 1).
The detailed design of the expert based 3D FLC, including
3D fuzzifier, 3D rule inference, and defuzzifier, can refer
to [4]. The scaling factors for the spatial error, the spatial
error in change, and the incremental output are set as 0.5,
0.1, and 0.3, respectively. The sample period is 0.1 s, and the
sampling duration is 6 s. Thus, we have 60 input-output data
pairs (shown in Figure 6), each of which is represented by
([𝑒(𝑧)

𝑘
, Δ𝑒(𝑧)

𝑘
], Δ𝑢

𝑘
), 𝑘 = 1, . . . , 60.

(2)KF Generation. The reference functions (Symmetric tri-
angle, Gaussian, Cauchy, Laplace, Hyperbolic Secant, and
Squared Sinc) as listed inTable 1 are employed, respectively, to
generate 3D MFs and then formulate SFBFs. SFBFs are used
for KFs in an SVR learning.

(3) SVR Learning. With the spatiotemporal data set as above,
the SVM learning algorithm is used for the support vector
learning. It should be noted that the SFBFs in (3) are taken
as the KFs. As a result, spatial support vectors are extracted
and their associated learning parameters are obtained. For
instance, when the Gaussian type reference function is used
forKF generation, eight support vectors were learned from60
spatiotemporal data pairs when 𝐶 = 1000, 𝜀 = 0.00005, and
𝑑 = 0.1, as shown in Figure 7, where the spatiotemporal input
data is decomposed into multiple two-dimensional graphical
representations over the space domain.

(4) 3DFuzzy Rule Construction. In terms of the learned results
of the SVR in the previous step, we establish 3D fuzzy rules.
For instance, with the Gaussian type reference function, eight
3D fuzzy rules are constructed. The first four 3D fuzzy rules
are presented as follows.

𝑅
1
: if 𝑒(𝑧) is close to [−0.0580 −0.0963

−0.0988 − 0.1000 − 0.1005]
󸀠 and Δ𝑒 (𝑧) is close

to [−0.0580 −0.0963 −0.0988 − 0.1000 − 0.1005]
󸀠,

then Δ𝑢 is close to −9.5172.

𝑅
2
: if 𝑒(𝑧) is close to [−0.0479 −0.0817

−0.0839 − 0.0848 − 0.0851]
󸀠 and Δ𝑒(𝑧) is close

to [0.0101 0.0146 0.0149 0.0152 0.0154]
󸀠, then

Δ𝑢 is close to −298.9862.

𝑅
3
: if 𝑒(𝑧) is close to [−0.0414 −0.0714

−0.0731 − 0.0735 − 0.0737]
󸀠 and Δ𝑒(𝑧) is close

to [0.0065 0.0104 0.0109 0.0113 0.0114]
󸀠, then

Δ𝑢 is close to 249.2288.

𝑅
4
: if 𝑒(𝑧) is close to [−0.0359 −0.0626

−0.0638 − 0.0639 − 0.0639]
󸀠 and Δ𝑒(𝑧) is close

to [0.0055 0.0087 0.0092 0.0096 0.0098]
󸀠, then

Δ𝑢 is close to 148.1335.

The first four 3D fuzzy rules and their associated 3D MF
distributions can be depicted in Figure 8, which show the
inherent spatial nature of the 3D fuzzy control system.

(5) 3D Fuzzy Controller Integration. Based on the 3D fuzzy
rules established in step (4), we obtain a complete 3D FLC
by combining 3D fuzzifier, 3D rule inference, and defuzzifier.
The resultant 3D FLC will be used as a controller for the
catalytic packed-bed reactor.

5.3. Control Performance Validation. The designed reference
function based 3D FLC using SVR learning is validated on
the nonlinear catalytic packed-bed reactor. We employed
six kinds of reference functions, that is, Symmetric triangle,
Gaussian, Cauchy, Laplace, Hyperbolic Secant, and Squared
Sinc, and finally produced six 3D FLCs. With the reference
function based 3D FLC as the controller, the catalyst tem-
perature varying with time and space, manipulated input,
and the catalyst temperature at steady state are presented in
Figures 9(a)–9(f). The control performance is given in
Table 2, where steady-state error (SSE), integral of the abso-
lute error (IAE), and integral of time multiplied by absolute
error (ITAE) [2] are used as the performance criteria. In terms
of Figures 9(a)–9(f) and Table 2, we can find that different
reference functions will yield different control performance.
In this application, Gaussian, Cauchy, Hyperbolic Secant,
and Squared Sinc reference functions result in good control
performance, while Symmetric triangle andLaplace reference
functions lead to poor control performance. The results
illustrate thatKFwill influence the control performance; thus,
in the actual application, we should choose proper KF to
design a 3D FLC.

As a comparison, we do another control experiment; that
is, the expert knowledge-based 3D FLC from [4] is taken as
the controller. As for its detailed design including 3DMF, 3D
rule base, 3D inference, fuzzification, and defuzzification, one
can refer to [4]. The scaling factors for the spatial error, the
spatial error in change, and the incremental output are set
as 0.5, 0.1, and 0.3, respectively. The controlled profiles and
control performance are given in Figure 9(g) and Table 2,
respectively.

From Figure 9 and Table 2, we can find that with a
proper reference function, the reference function based 3D
FLC has nearly the same control performance as the expert
knowledge-based 3D FLC. It means that the proposed spatial
SVR learningmethod canwell extract the control laws hidden
in a spatiotemporal input–output dataset and formulate them
in the form of 3D fuzzy rules.

6. Conclusions

A reference function based 3D FLC design methodology
using SVR learning is proposed for spatially distributed
dynamic systems. Utilizing the concept of reference func-
tion, the 3D FLC can access more kinds of 3D MFs, such
as Symmetric triangle, Gaussian, Cauchy, Laplace, Hyper-
bolic Secant, and Squared Sinc. Based on the mathematical
expressions of reference function based 3D FLC, we define
spatial fuzzy basis functions and then find an equivalence
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Table 2: Performance comparisons.

Reference function based 3D FLC 3D fuzzy rules ISS (×10−3) IAE (×10−1) ITAE (×10−1)
Symmetric triangle reference function 7 103.4 16.163 65.457
Gaussian reference function 8 4.7 1.864 3.526
Cauchy reference function 8 4.7 1.881 3.537
Laplace reference function 7 108 16.525 67.408
Hyperbolic Secant reference function 28 4.8 1.918 3.567
Squared Sinc reference function 5 4.7 1.859 3.515
Expert-based 3D FLC 25 4.8 1.931 3.676

relationship between a 3D FLC and an SVR by connecting
spatial fuzzy basis functions in the 3D FLC to KFs in the
SVR. On the basis of the equivalence relationship, a 3D FLC
can be designed using the SVR learning; that is, the learned
spatial support vectors as the optimal leading data points can
be directly used for 3D fuzzy control rule generation. The
proposed reference function based 3D FLC design can be
carried out in five steps: data collection, KF generation, SVR
learning, 3D fuzzy rule construction, and 3D fuzzy controller
integration. Besides, the universal approximation capability
of the proposed 3D fuzzy system is discussed. Finally,
effectiveness of the proposed 3D FLC design methodology is
validated on a catalytic packed-bed reactor.

Appendices

A. Nonlinear Mapping Derivation of
a Reference Function Based 3D FLC

Let 𝑥
𝑧

= (𝑥
1
(𝑧), . . . , 𝑥

𝑠
(𝑧)) be a spatial input vector.Then, the

3D MF of the 𝑖th spatial input 𝑥
𝑖
(𝑧) is given as

𝜇
𝑖
= 𝛽

𝑙

𝑖
(𝑥

𝑖
(𝑧)) = 𝛽

𝑖
(𝑥

𝑖
(𝑧) − 𝜏

𝑙

𝑖
) (A.1)

and the Gaussian type 2D MF of the 𝑖th spatial input 𝑥
𝑖
(𝑧) at

the sensing location 𝑧 = 𝑧
𝑗
is given as

𝜇
𝑖𝑗

= 𝛽
𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
)) = 𝛽

𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) . (A.2)

Via a 3D fuzzifier, the spatial input vector 𝑥
𝑧
in the universe

of discourse 𝑋 can be transformed into a spatial fuzzy input
𝐴
𝑋
as below:

𝐴
𝑋

= ∑

𝑧∈𝑍

∑

𝑥1(𝑧)∈𝑋1

⋅ ⋅ ⋅ ∑

𝑥𝑠(𝑧)∈𝑋𝑠

𝜇
𝐴𝑋

(𝑥
1

(𝑧) , . . . , 𝑥
𝑠
(𝑧) , 𝑧)

/ (𝑥
1

(𝑧) , . . . , 𝑥
𝑠
(𝑧) , 𝑧)

= ∑

𝑧∈𝑍

∑

𝑥1(𝑧)∈𝑋1

⋅ ⋅ ⋅ ∑

𝑥𝑠(𝑧)∈𝑋𝑠

𝜇
𝑋1

(𝑥
1

(𝑧) , 𝑧) ∗ ⋅ ⋅ ⋅ ∗ 𝜇
𝑋𝑠

(𝑥
𝑠
(𝑧) , 𝑧)

/ (𝑥
1

(𝑧) , . . . , 𝑥
𝑠
(𝑧) , 𝑧) ,

(A.3)

where ∗ denotes the t-norm operation.

Assume that 3D fuzzy rules are designed with the follow-
ing form:

𝑅
0

: if 𝑥
1

(𝑧) is 𝐶
0

1
and ⋅ ⋅ ⋅ and 𝑥

𝑠
(𝑧) is 𝐶

0

𝑠
then 𝑢 is 𝑏

0

,

𝑅
𝑙

: if 𝑥
1

(𝑧) is 𝐶
𝑙

1
and ⋅ ⋅ ⋅ and 𝑥

𝑠
(𝑧) is 𝐶

𝑙

𝑠
then 𝑢 is 𝑏

𝑙

,

(A.4)

where 𝐶
0

𝑖
is a universal 3D fuzzy set, whose MF at sensing

location 𝑧 = 𝑧
𝑗
is 𝛽

0

𝑖
(𝑥

𝑖
(𝑧

𝑗
)) ≡ 1; 𝐶

𝑙

𝑖
is a 3D fuzzy set, whose

MF at sensing location 𝑧 = 𝑧
𝑗
is 𝛽

𝑙

𝑖
(𝑥

𝑖
(𝑧

𝑗
)) : 𝑅 → [0, 1], 𝑖 =

1, . . . , 𝑠; 𝑏
0 and 𝑏

𝑙 are constants.
Then, for each fired rule, a fuzzy relation is obtained as

below:

𝑅
𝑙

: 𝐶
𝑙

1
× ⋅ ⋅ ⋅ × 𝐶

𝑙

𝑠
󳨀→ 𝑏

𝑙

, 𝑙 = 0, 1, 2, . . . , 𝑁. (A.5)

A 3D rule inference integrates the spatial information pro-
cessing and the traditional inference and contains three main
operations: spatial information fusion, dimension reduction,
and traditional inference. Firstly, using the spatial informa-
tion fusion operation, we have a spatially distributed set 𝑊

𝑙

over the space domain with the grade of the MF derived as

𝜇
𝑊
𝑙 (𝑧)

= 𝜇
𝐴𝑋∘(𝐶

𝑙

1
×⋅⋅⋅×𝐶

𝑙

𝑠
)

(𝑥
𝑧
, 𝑧)

= sup
𝑥1(𝑧)∈𝑋1 ,...,𝑥𝑠(𝑧)∈𝑋𝑠

[𝜇
𝐴𝑋

(𝑥
𝑧
, 𝑧) ∗ 𝜇

𝐶

𝑙

1
×⋅⋅⋅×𝐶

𝑙

𝑠

(𝑥
𝑧
, 𝑧)]

= {sup
𝑥1(𝑧)∈𝑋1

[𝜇
𝑋1

(𝑥
1

(𝑧) , 𝑧) ∗ 𝜇
𝐶

𝑙

1

(𝑥
1

(𝑧) , 𝑧)]}

∗ ⋅ ⋅ ⋅ ∗ {sup
𝑥𝑠(𝑧)∈𝑋𝑠

[𝜇
𝑋𝑠

(𝑥
𝑠
(𝑧) , 𝑧) ∗ 𝜇

𝐶

𝑙

𝑠

(𝑥
𝑠
(𝑧) , 𝑧)]}

=

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧) − 𝜏

𝑙

𝑖
) ,

(A.6)

where “product” is used for t-norm (∗) and singleton fuzzifier
is used.
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Then, utilizing a weighted aggregation [3] dimension
reduction operation, a 2D set 𝜒

𝑙 is obtained. Consider the
following:

𝜇
𝜒
𝑙 = 𝑎

1
𝜇
𝑊
𝑙 (𝑧

1
) + 𝑎

2
𝜇
𝑊
𝑙 (𝑧

2
) + ⋅ ⋅ ⋅ + 𝑎

𝑝
𝜇
𝑊
𝑙 (𝑧

𝑝
)

=

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) .

(A.7)

Finally, traditional inference operation (Mamdani impli-
cation operation) and linear defuzzifier [14] are carried out
successively. We have the nonlinear mathematical expression
as follows:

𝑢 (𝑥
𝑧
) = 𝑏

0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝
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𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝜇
𝐶

𝑙

𝑖

(𝑥
𝑖
(𝑧

𝑗
))

= 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖
(𝑥

𝑖
(𝑧

𝑗
) − 𝜏

𝑙

𝑖𝑗
) .

(A.8)

B. Mathematical Preliminaries of 𝜀-Support
Vector Regression

In this study, we focus on 𝜀-support vector regression (𝜀-
SVR). Suppose that we have a training set 𝐷 = {[𝑥

𝑖
, 𝑦

𝑖
] ∈

𝑅
𝑠

× 𝑅, 𝑖 = 1, . . . , 𝑞} consisting of 𝑞 pairs (𝑥
1
, 𝑦

1
), (𝑥

2
, 𝑦

2
),

. . ., (𝑥
𝑞
, 𝑦

𝑞
), where the inputs are 𝑠-dimensional vectors and

the labels are continuous values. In 𝜀-SVR, the goal is to find
a function 𝑓(𝑥, 𝑤) so that for all training patterns 𝑥 has a
maximum deviation 𝜀 from the target values 𝑦

𝑖
and has a

maximum margin. The 𝜀-insensitive loss function is defined
as follows:

󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥, 𝑤)
󵄨󵄨󵄨󵄨𝜀

= {
0 if 󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥, 𝑤)

󵄨󵄨󵄨󵄨 ≤ 𝜀

󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥, 𝑤)
󵄨󵄨󵄨󵄨 − 𝜀 otherwise.

(B.1)

Tomake the SVR nonlinear, wemaymap the input vector
𝑥 ∈ 𝑅

𝑠 into the vector V of a high-dimensional feature
space, V = Θ(𝑥), where Θ represents a mapping 𝑅

𝑠

→ 𝑅
𝑓,

and formulate a linear regression problem in this feature
space, and then an optimization problem will be solved. The
optimization problem can also be solved in a dual space. By
introducing the Lagrange multipliers 𝛼

𝑖
and 𝛼

∗

𝑖
, the primal

optimization problem can be formulated in its dual form as
follows:

max
𝛼𝑖 ,𝛼
∗

𝑖

{

{

{

−
1

2

𝑞

∑

𝑖=1

𝑞

∑

𝑗=1

(𝛼
∗

𝑖
− 𝛼

𝑖
) (𝛼

∗

𝑗
− 𝛼

𝑗
) ⟨Θ (𝑥

𝑖
) ⋅ Θ (𝑥

𝑗
)⟩

− 𝜀

𝑞

∑

𝑖=1

(𝛼
∗

𝑖
+ 𝛼

𝑖
) +

𝑞

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼

𝑖
) 𝑦

𝑖

}

}

}

(B.2)

...

Layer 1 Layer 2 Layer 3

...

x1

x2

xs

(𝛼
∗
1 − 𝛼1)

(𝛼
∗
2 − 𝛼2)

(𝛼
∗
N − 𝛼N)

b

u
∑

Layer 1: input  

Layer 3: output u = ∑
N

l=1(𝛼∗
i − 𝛼i)

Layer 2: support vectors

K(x, x
1
)

K(x, x
2
)

K(x, x
N
)

K(x, x
i
) + b

x = (x1, . . . , xs)

x
1
, . . . , x

N and KFs K(x, x
1
), . . . , K(x, x

N
)

Figure 10: Three-layer network structure of an SVR.

subject to

𝑞

∑

𝑗=1

𝛼
∗

𝑖
=

𝑞

∑

𝑖=1

𝛼
𝑖
, 0 ≤ 𝛼

∗

𝑖
≤ 𝐶, 0 ≤ 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, . . . , 𝑞,

(B.3)

where the constant 𝐶 is a design parameter chosen by the
user, which determines the tradeoff between the complexity
of 𝑓(𝑥, 𝑤) and the approximate error.

Solving the dual quadratic programming problem,we can
find an optimal weight vector 𝑤 and an optimal bias 𝑏 of the
regression hypersurface given in (B.4):

𝑤 =

𝑞

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼

𝑖
) Θ (𝑥

𝑖
) ,

𝑏 =
1

𝑞
(

𝑞

∑

𝑖=1

(𝑦
𝑖
− ⟨𝑤 ⋅ Θ (𝑥

𝑖
)⟩)) .

(B.4)

Then, the best regression hypersurface is given by

𝑓 (𝑥, 𝑤) =

𝑞

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼

𝑖
) ⟨Θ (𝑥) ⋅ Θ (𝑥

𝑖
)⟩ + 𝑏

= ∑

𝑖∈SV
(𝛼

∗

𝑖
− 𝛼

𝑖
) ⟨Θ (𝑥) ⋅ Θ (𝑥

𝑖
)⟩ + 𝑏.

(B.5)

The training pattern 𝑥
𝑖
with nonzero (𝛼

∗

𝑖
− 𝛼

𝑖
) is called

support vector (SV).
To avoid a direct mapping Υ(𝑥), the kernel trick is

used. AKF 𝐾(𝑥
𝑖
, 𝑥

𝑗
), which satisfies the Mercer’s theorem, is

introduced as below:

𝐾 (𝑥
𝑖
, 𝑥

𝑗
) = ⟨Θ (𝑥

𝑖
) ⋅ Θ (𝑥

𝑗
)⟩ . (B.6)
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Using 𝐾(𝑥
𝑖
, 𝑥

𝑗
), the SVR can be constructed which

operates in an infinite dimensional space. Then, the solution
of the SVR has the form

𝑓 (𝑥, 𝑤) = ∑

𝑖∈SV
(𝛼

∗

𝑖
− 𝛼

𝑖
) 𝐾 (𝑥, 𝑥

𝑖

) + 𝑏. (B.7)

Let 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁 represent support vectors.The solution

of the SVR can be described by a three-layer network
structure as shown in Figure 10.
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This paper presents a novel suboptimal digital tracker for a class of time-delay singular systems. First, some existing techniques
are utilized to obtain an equivalent regular time-delay system, which has a direct transmission term from input to output. The
equivalent regular time-delay system is important as it enables the optimal control theory to be conveniently combined with the
digital redesign approach. The linear quadratic performance index, specified in the continuous-time domain, can be discretized
into an equivalent decoupled discrete-time performance index using the newly developed extended delay-free model. Additionally,
although the extended delay-free model is large, its advantage is the elimination of all delay terms (which included a new extended
state vector), simplifying the proposed approach. As a result, the proposed approach can be applied to a class of time-delay singular
systems. An illustrative example demonstrates the effectiveness of the proposed design methodology.

1. Introduction

The singular systems naturally arise in describing large-scale
systems, and there are several examples occurring in power
and interconnected systems. In general, an interconnection
of state variable subsystems is conveniently described as a
singular system, even though an overall state space repre-
sentation may not even exist. Over the past decades, much
research into singular systems has solved many complex
problems concerning, for example, the stability [1–4], impul-
sive modes [5], controllability, observability [6], and the
sufficient and necessary conditions for the impulse control-
lability and observability of time-varying singular systems
[7–11]. However, the main purpose of such work is either
to stabilize the singular system or to prove its controllability
and observability. Here, the key note of this paper is about
tracking the issue.

This investigation considers a time-delay system. The
overwhelming majority of practical control systems are
described by continuous-time settings with input, output,
and state time delays. Those delays arise from inherent
physical phenomena and are commonly encountered in

various engineering systems. Several authors [12–15] have
studied the linear quadratic optimal analog controllers for the
analog system with input and state delays. Recently, robust
control and filtering for both continuous-time and discrete-
time nominal/uncertain systems with time delays have been
thoroughly studied byMahmoud [16]. Despitemuch progress
in both analog control theory and digital control theory
over the last few decades, effective digital control of analog
plants with input and state delays (input-state delayed hybrid
control systems) is still being developed [17, 18].

The objective of this paper is to develop a novel observer-
based suboptimal digital tracker for a class of time-delay
singular systems. The developed digital tracker can make
the outputs of the digitally controlled time-delay singular
system track the desired reference signals. First, the time-
delay singular system is converted into a regular time-delay
system that contains a direct transmission term from input
to output.Then, for effective utilization of the well-developed
discrete-time optimal control theory for a regular time-delay
system, it is converted into a new extended discrete delay-
free model. The performance cost function is discretized
using the extended discrete delay-free model. When the



2 Journal of Applied Mathematics

states of the continuous time-delay singular system are not
available for measurements, a suboptimal digital observer
for the original continuous time-delay singular system is
constructed by using the duality of the digital redesign
technique for the controller and the digital-to-analog model
conversion technique [19]. As a result, the proposed novel
observer-based suboptimal digital tracker is able to make the
output of the digitally controlled analog time-delay system
track the desired reference signals.

The rest of the paper is organized as follows. Section 2
presents the problem description and preliminary results.
Section 3 presents the novel optimal tracker and a novel
observer-based suboptimal tracker for the time-delay singu-
lar system and proposes a systematic designmethodology for
designing a set of high-performance trackers for a class of
time-delay systems. Finally, an illustrative example is given
to demonstrate the effectiveness of the proposed approach.

2. Problem Description and Preliminaries

2.1. Problem Description. Consider the following continuous
time-delay singular system:

𝐸 ̇𝑥
𝑐
(𝑡) = 𝐴𝑥

𝑐
(𝑡) +

𝑁1

∑

𝑖=1

𝐴
𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐵
𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(1a)

𝑦
𝑐
(𝑡) = 𝐶𝑥

𝑐
(𝑡 − 𝜏

𝑜
) , (1b)

where 𝑥
𝑐
(𝑡) ∈ R𝑛 is the state vector, 𝑢

𝑐
(𝑡) ∈ R𝑚 is the control

input vector, and 𝑦
𝑐
(𝑡) ∈ R𝑝 is the output vector. 𝐸, 𝐴, 𝐴

𝑖
,

𝐵
𝑗
, and 𝐶 are known constant systemmatrices of appropriate

dimensions and 𝐸 is a singular matrix. The corresponding
state time delay 𝜏

𝑠,𝑖
, 𝑖 = 1, 2, . . . , 𝑁

1
, input time delay 𝜏

𝑖,𝑗
,

𝑗 = 1, 2, . . . , 𝑁
2
, and output time delay 𝜏

𝑜
are assumed to be

known.
The continuous time-delay singular system (1a) and (1b)

may be in impulsive modes. Directly designing the controller
or observer for (1a) and (1b) is very difficult because impulsive
modes are uncontrollable. To solve this problem, the regular
pencil, the standard pencil, and the preliminary feedback
control methods are used to eliminate impulsive modes and
then obtain an equivalent regular time-delay system that can
be applied to the original continuous time-delay singular
system (1a) and (1b). The following section systematically
develops the design of the novel controller and observer using
the equivalent regular time-delay system.

2.2. Preliminaries. The regular pencil and standard pencil are
defined below.

Definition 1 (regular pencil [20]). Let 𝐸 and 𝐴 be two square
constant matrices. If det(𝑠𝐸−𝐴) ̸= 0, for all 𝑠, then (𝑠𝐸−𝐴) is
called a regular pencil.

Definition 2 (standard pencil [21]). Let (𝑠𝐸
𝑛
−𝐴

𝑛
) be a regular

pencil. If there exists scalars𝛼 and𝛽 such that𝛼𝐸
𝑛
+𝛽𝐴

𝑛
= 𝐼

𝑛
,

then (𝑠𝐸
𝑛
− 𝐴

𝑛
) is called a standard pencil.

Notably, for any regular pencil, (𝑠𝐸 − 𝐴) can be
easily transformed into a standard pencil by multiplying

(𝛼𝐸+𝛽𝐴)
−1 to𝐸 and𝐴, respectively, where𝛼 and𝛽 are scalars

such that det(𝛼𝐸 + 𝛽𝐴) ̸= 0. Therefore, the matrix coefficients
of a standard pencil (𝑠𝐸

𝑛
− 𝐴

𝑛
) become

𝐸
𝑛
= (𝛼𝐸

𝑟
+ 𝛽𝐴)

−1

𝐸, (2a)

𝐴
𝑛
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐴. (2b)

The modified system retains its state vector 𝑥
𝑐
(𝑡) and the

matrices 𝐸
𝑛
and 𝐴

𝑛
have the following nice properties.

Lemma 3 (see [22]). Consider

(a) 𝐸
𝑛
𝐴
𝑛
= 𝐴

𝑛
𝐸
𝑛
, meaning that𝐸

𝑛
and𝐴

𝑛
commute each

other;
(b) 𝐸

𝑛
and 𝐴

𝑛
have the same eigenspaces.

The above properties enable a singular system to be
decomposed into a reduced-order regular subsystem and a
nondynamic subsystem.

3. Main Results

3.1. Decomposition of Time-Delay Singular System. By (2a)
and (2b) the regular pencil (𝑠𝐸 − 𝐴) can be transformed into
a standard pencil (𝑠𝐸

𝑛
− 𝐴

𝑛
). Notably since 𝐸

𝑛
is a singular

matrix, which has at least one zero eigenvalue, 𝛽 cannot be
equal to zero.Hence,multiplying (1a) by (𝛼𝐸+𝛽𝐴)−1 can yield
the following equation:

𝐸
𝑛
̇𝑥
𝑐
(𝑡) = 𝐴

𝑛
𝑥
𝑐
(𝑡) +

𝑁1

∑

𝑖=1

𝐴
𝑛,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(3)

where
𝐸
𝑛
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐸,

𝐴
𝑛,𝑖
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐴
𝑖
,

𝐵
𝑛,𝑗
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐵
𝑗
.

(4)

Since 𝛼𝐸
𝑛
+𝛽𝐴

𝑛
= 𝐼

𝑛
, the pencil (𝑠𝐸

𝑛
−𝐴

𝑛
) is a standard one,

and has the properties that are mentioned in Lemma 3. To
decompose system (3), the state 𝑥

𝑐
(𝑡) is converted into 𝑥

𝑐
(𝑡)

by

𝑥
𝑐
(𝑡) = 𝑀𝑥

𝑐
(𝑡) , (5)

where the constant matrix 𝑀 is a block modal matrix of
𝐸
𝑛
and determined by means of the extended matrix sign

function [23, 24].The𝑀matrix of state space transformation
is as follows.

Step 1. Find sign(𝐸
𝑛
) using the extendedmatrix sign function

with an adequate 𝜔, where

𝐸
𝑛
= (𝐸

𝑛
− 𝜔𝐼

𝑛
) (𝐸

𝑛
+ 𝜔𝐼

𝑛
)
−1

. (6)

Step 2. Find sign+(𝐸
𝑛
) = (1/2)[𝐼

𝑛
+sign(𝐸

𝑛
)] and sign−(𝐸

𝑛
) =

(1/2)[𝐼
𝑛
− sign(𝐸

𝑛
)].
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Step 3. Construct the matrix 𝑀 = [ind(sign+(𝐸
𝑛
))

ind(sign−(𝐸
𝑛
))], where ind(⋅) represents the collection of

linearly independent column vectors of (⋅).

Substituting (5) into (3) and multiplying by 𝑀−1 on the
left yield

𝑀
−1

𝐸
𝑛
𝑀 ̇𝑥

𝑐
(𝑡) = 𝑀

−1

𝐴
𝑛
𝑀𝑥

𝑐
(𝑡) +

𝑁1

∑

𝑖=1

𝑀
−1

𝐴
𝑛,𝑖
𝑀𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝑀
−1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=
1

𝛽
(𝐼
𝑛
− 𝛼𝐸

𝑛
) 𝑥

𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

𝑀
−1

𝐴
𝑛,𝑖
𝑀𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝑀
−1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(7)

If𝑀−1

𝐴
𝑛,𝑖
𝑀 can be diagonalized, then (7) yields,

[
𝐸
1
𝑂

𝐸
2

] ̇𝑥
𝑐
(𝑡)

=

[
[
[

[

1

𝛽
(𝐼
𝑘
− 𝛼𝐸

1
) 𝑂

𝑂
1

𝛽
(𝐼
𝑛−𝜅
− 𝛼𝐸

2
)

]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

[
𝐵
1,𝑗

𝐵
2,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(8)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑠
(𝑡), 𝑥

𝑇

𝑓
(𝑡)]

𝑇 and 𝑀
−1

𝐸
𝑛
𝑀 = block

diagonal {𝐸
1
, 𝐸

2
}. 𝐸

1
is invertible with rank(𝐸

1
) = deg{det

(𝑠𝐸
𝑟
− 𝐴)} ≜ 𝑘, [𝐵𝑇

1,𝑗
, 𝐵

𝑇

2,𝑗
]
𝑇

= 𝑀
−1

𝐵
𝑛,𝑗
, and 𝐸

2
is a nilpotent

matrix with dimension (𝑛−𝑘)×(𝑛−𝑘). Since det(𝐼
𝑛−𝑘
−𝛼𝐸

2
) =

1, it is invertible. Simplifying (8) by premultiplying the block
diagonal {𝐸−1

1
, 𝛽(𝐼

𝑛−𝑘
− 𝛼𝐸

2
)
−1

} on both sides, one has

[
𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] ̇𝑥
𝑐
(𝑡) = [

𝐴
𝑠
𝑂

𝑂 𝐼
𝑛−𝜅

] 𝑥
𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(9)

where
𝐸
𝑓
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐸
2
,

𝐴
𝑠
=
1

𝛽
(𝐸

−1

1
− 𝛼𝐼

𝜅
) ,

𝐴
1,𝑖
= 𝐸

−1

1
𝐴
1,𝑖
,

𝐴
2,𝑖
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐴
2,𝑖
,

𝐵
𝑠,𝑗
= 𝐸

−1

1
𝐵
1,𝑗
,

𝐵
𝑓,𝑗
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐵
2,𝑗
.

(10)
Remarkably, since

rank (𝐸) − deg {det (𝑠𝐸 − 𝐴)} = rank (𝐸
𝑓
) , (11)

it is much easier to determine the number of the impulsive
mode using the above equation relating to (9).

For simplicity, only those singular systems that include at
least one impulsivemode are discussed. First, assume that the
singular system (9) has 𝑞; then, rank(𝐸

𝑓
) = 𝑞. By a previously

proposed method [12], the preliminary feedback gain 𝐾
𝑓,𝑗

is found and 𝐾
𝑓,𝑗

is proven to eliminate the impulsive
modes. For the time-delay singular system (9), the proposed
method yields a similar result (AppendixA) to that previously
developed method [12] and the linear preliminary feedback
control is

𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) = − 𝐾

𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= − [𝑂
𝑚×𝑘
, 𝐾

𝑓,𝑗
] 𝑥

𝑐
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(12)

The time-delay singular system (9) can be transformed into
(Appendix A)

𝐸
𝑘

̇𝑥̂
𝑐
(𝑡) = 𝐴

𝑘
𝑥
𝑐
(𝑡) +

𝑁1

∑

𝑖=1

𝐴
𝑘,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(13)

where

𝐸
𝑘
= [

𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] ,

𝐴
𝑘
=

[
[
[
[
[
[

[

𝐴
𝑠

−

𝑁2

∑

𝑗=1

𝐵
𝑠,𝑗
𝐾
𝑓,𝑗

𝑂 𝐼
𝑛−𝑘
−

𝑁2

∑

𝑗=1

𝐵
𝑓,𝑗
𝐾
𝑓,𝑗

]
]
]
]
]
]

]

,

𝐴
𝑘,𝑖
= [

𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

] ,

𝐵
𝑘,𝑗
= [

𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] ,

(14)

in which
𝐸
𝑓
= 𝑈

−1

𝐸
𝑓
𝑈,

𝐴
𝑠
= 𝐴

𝑠
,

𝐴
1,𝑖
= 𝐸

−1

1
𝐴
1,𝑖
,
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𝐴
2,𝑖
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐴
2,𝑖
,

𝐵
𝑠,𝑗
= 𝐵

𝑠,𝑗
,

𝐵
𝑓,𝑗
= 𝑈

−1

𝐵
𝑓,𝑗
,

(15)

and 𝑈 is a modal matrix of 𝐸
𝑓
with dimension (𝑛 − 𝑘) ×

(𝑛 − 𝑘) such that 𝑈−1

𝐸
𝑓
𝑈 is in the Jordan block form. The

time-delay singular system in (13) is obtained by applying
the linear preliminary feedback control law 𝑢(𝑡) from (12)
to the system that is given by (9). Equation (13) has the
𝑞 finite modes (where 𝑞 = rank(𝐸

𝑓
) = rank(𝐸

𝑓
)) and

the 𝑘 original finite modes.All of these finite modes are
guaranteed to be controllable. The next task is to decompose
the singular system into a reduced-order regular system
with (𝑘 + 𝑞) controllable finite modes and the nondynamic
equation with (𝑛 − 𝑘 − 𝑞) infinite nondynamic ones. This
task can be accomplished by using previously outlined steps.
First, the regular form is transformed into a standard one by
multiplying (13) by (𝛾𝐸

𝑘
+𝜂𝐴

𝑘
)
−1, where 𝛾 and 𝜂 are arbitrary

scalars such that (𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
) is invertible. Therefore,

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘

̇𝑥̂
𝑐
(𝑡)

= (𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘
𝑥
𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(16)

Let

𝑥
𝑐
(𝑡) = 𝑀̃𝑥

𝑐
(𝑡) , (17)

where the constant matrix 𝑀̃ is determined by using the
extended matrix sign function. The procedure is the same as
that elucidated above for finding𝑀, except that it operates on
(𝛾𝐸

𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
. Substituting (17) into (16) and multiplying

by 𝑀̃−1 yield

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
𝑀̃ ̇𝑥̃

𝑐
(𝑡)

= 𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘
𝑀̃𝑥

𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
𝑀̃𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= 𝑀̃
−1
1

𝜂
[𝐼
𝑛
− 𝛾(𝛾𝐸

𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
] 𝑀̃𝑥

𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
𝑀̃𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=
1

𝜂
[𝐼
𝑛
− 𝛾𝑀̃

−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
𝑀̃] 𝑥

𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
𝑀̃𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(18)

That is,

[
𝐸
𝑠𝑘

𝑂

𝑂 𝐸
𝑓𝑘

] ̇𝑥̃
𝑐
(𝑡)

=

[
[
[

[

1

𝜂
(𝐼
𝑘+𝑞
− 𝛾𝐸

𝑠𝑘
) 𝑂

𝑂
1

𝜂
(𝐼
𝑛−𝑘−𝑞

− 𝛾𝐸
𝑓𝑘
)

]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

[
Λ

1,𝑖
𝑂

𝑂 Λ
2,𝑖

] 𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

[
𝐵
𝑠𝑘,𝑗

𝐵
𝑓𝑘,𝑗

] V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(19)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑠
(𝑡), 𝑥

𝑇

𝑓
(𝑡)]

𝑇, 𝑀̃−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
𝑀̃ =

block diagonal {𝐸
𝑠𝑘
, 𝐸

𝑓𝑘
} = block diagonal {𝐸

𝑠𝑘
, 𝑂

(𝑛−𝑞−𝑘)
}.

𝐸
𝑠𝑘
is invertiblewith rank(𝐸

𝑠𝑘
) = deg{det(𝑠𝐸

𝑘
−𝐴

𝑘
)} = (𝑞+𝑘).

𝐸
𝑓𝑘

is a null matrix and [𝐵𝑇
𝑠𝑘,𝑗
, 𝐵

𝑇

𝑓𝑘,𝑗
]

𝑇

= 𝑀̃
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
. In (19), 𝑀̃−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖

is assumed to be able to
be diagonalized as block diagonal {Λ

1,𝑖
, Λ

2,𝑖
}. Then, (19) can

be rewritten as

̇𝑥̃
𝑠
(𝑡) =

1

𝜂
(𝐸

−1

𝑠𝑘
− 𝛾𝐼

𝑘+𝑞
) 𝑥

𝑠
(𝑡)

+

𝑁1

∑

𝑖=1

𝐸
−1

𝑠𝑘
Λ

1,𝑖
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐸
−1

𝑠𝑘
𝐵
𝑠𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(20a)

0 = 𝑥
𝑓
(𝑡) +

𝑁1

∑

𝑖=1

𝜂Λ
2,𝑖
𝑥
𝑓
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝜂𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(20b)

and the time-delay singular system output (1b) can be rewrit-
ten as (Appendix B)

𝑦
𝑐
(𝑡) = 𝐶𝑥

𝑐
(𝑡 − 𝜏

𝑜
)

= [𝐶
1
𝐶
2
] [
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

𝑥
𝑓
(𝑡 − 𝜏

𝑜
)
]
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= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓
(𝑡 − 𝜏

𝑜
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐶

2

𝑁2

∑

𝑗=1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(21a)

where 𝐶𝑀𝑉𝑀̃ = [𝐶
1
𝐶
2
].

Finally, the time-delay singular system (1a) and (1b) can
be decomposed as the equivalent regular time-delay system
as follows:

̇𝑥̃
𝑠
(𝑡) = 𝐴

𝑠
𝑥
𝑠
(𝑡) +

𝑁1

∑

𝑖=1

𝐴
𝑑,𝑖
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐵
𝑑,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(22a)

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (22b)

where
𝐴
𝑠
=
1

𝜂
(𝐸

−1

𝑠𝑘
− 𝛾𝐼

𝑘+𝑞
) ,

𝐴
𝑑,𝑖
= 𝐸

−1

𝑠𝑘
Λ

1,𝑖
,

𝐵
𝑑,𝑗
= 𝐸

−1

𝑠𝑘
𝐵
𝑠𝑘,𝑗
,

𝐷
𝑗
= 𝐶

2
𝐵
𝑓𝑘,𝑗
.

(23)

Following the transformation, the time-delay singular
system (1a) and (1b) can be converted into a regular system
(22a) and (22b) that contains a direct transmission term from
input to output and the impulsive mode can be eliminated by
means of themethod [12]. In the next section, (22a) and (22b)
will be used to develop the new optimal tracker and observer
for a time-delay singular system (1a) and (1b) with a series of
time-delays. The proposed approaches are more general and
applicable to actual systems.

3.2. Based on Digital Redesign and Optimal Control to
Discretize the Continuous Time-Delay Singular System
and Construct the Performance Index

3.2.1. Discretization of Continuous Time-Delay Singular Sys-
tem. Consider the continuous time-delay singular system
(22a) and (22b). To discretize (22a) and (22b), assume that
V
𝑐
(𝑡) is a piecewise constant input function:

V
𝑐
(𝑡) = V

𝑑
(𝑘𝑇) , 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1) 𝑇, (24)

where 𝑇 is the sampling period. Let the state delay time be
given by 𝜏

𝑠,𝑖
= 𝜌

𝑖
𝑇 + Γ

𝑖
, where 0 ≤ Γ

𝑖
< 𝑇 and 𝜌

𝑖
≥ 0 is an

integer, and let the input delay time be given by 𝜏
𝑖,𝑗
= 𝜂

𝑗
𝑇 +

𝜎
𝑗
, where 0 ≤ 𝜎

𝑗
< 𝑇 and 𝜂

𝑗
≥ 0 is an integer. The time-

delay singular system (22a) and (22b), by both the Newton
extrapolationmethod and theChebyshev quadraturemethod
[25, 26], becomes
𝑥
𝑑𝑠
((𝑘 + 1) 𝑇)

= 𝐺𝑥
𝑑𝑠
(𝑘𝑇) +

𝑁1

∑

𝑖=1

[𝐺
(1)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 + 𝑇)

+ 𝐺
(2)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇)

+𝐺
(3)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 − 𝑇)]

+

𝑁2

∑

𝑗=1

[𝐻
(0)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇) + 𝐻

(1)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇)] ,

(25)

where

𝐺 = 𝑒
𝐴𝑠𝑇,

𝐺
(1)

𝑖
=
𝑇

2
[𝑄

(2)

𝑖
+ 𝑄

(3)

𝑖
]𝐴

𝑑,𝑖
,

𝐺
(2)

𝑖
= 𝑇 [𝑄

(1)

𝑖
− 𝑄

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝐺
(3)

𝑖
=
𝑇

2
[𝑄

(3)

𝑖
− 𝑄

(2)

𝑖
]𝐴

𝑑,𝑖
,

𝐻
(0)

𝑗
= [𝐺

1−𝛾𝑗 − 𝐼
𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
,

𝐻
(1)

𝑗
= [𝐺 − 𝐺

1−𝛾𝑗] 𝐴
−1

𝑠
𝐵
𝑑,𝑗
,

(26)

in which

𝛾
𝑗
=

𝜎
𝑗

𝑇
, 𝛽

𝑖
=
Γ
𝑖

𝑇
,

𝑄
(1)

𝑖
= [𝐺 − 𝐼

𝑛
] (𝐴

𝑠
𝑇)

−1

,

𝑄
(2)

𝑖
= [𝑄

(1)

𝑖
− (1 − 𝛽

𝑖
) 𝐼

𝑛
− 𝛽

𝑖
𝐺] (𝐴

𝑠
𝑇)

−1

,

𝑄
(3)

𝑖
= [2𝑄

(2)

𝑖
− (1 − 𝛽

𝑖
)
2

𝐼
𝑛
− 𝛽

2

𝑖
𝐺] (𝐴

𝑠
𝑇)

−1

.

(27)

Some terms in (25) may be combined because of the same
delay, so (25) can be reduced to

𝑥
𝑑𝑠
((𝑘 + 1) 𝑇) = 𝐺𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀1

∑

𝑖=1

𝐺
𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐻V
𝑑
(𝑘𝑇) +

𝑀2

∑

𝑗=1

𝐻
𝑗
V
𝑑
(𝑘𝑇 − 𝑗𝑇) .

(28)

For the output (22b), the time-delay state 𝑥
𝑐
(𝑡 − 𝜏

𝑜
) for 𝑘𝑇 ≤

𝑡 − 𝜏
𝑜
< (𝑘 + 1)𝑇 must be evaluated. System (22a) and (22b)

can be rewritten as

𝑥
𝑠
(𝑡 − 𝜏

𝑜
) = 𝑒

𝐴𝑠(𝑡−𝜏𝑜−𝑘𝑇)𝑥
𝑑𝑠
(𝑘𝑇)

+

𝑁1

∑

𝑖=1

∫

𝑡−𝜏𝑜

𝑘𝑇

𝑒
𝐴𝑠(𝑡−𝜏𝑜−𝜆)𝐴

𝑑,𝑖
𝑥
𝑑𝑠
(𝜆 − 𝜏

𝑠,𝑖
) 𝑑𝜆

+

𝑁2

∑

𝑗=1

∫

𝑡−𝜏𝑜

𝑘𝑇

𝑒
𝐴𝑠(𝑡−𝜏𝑜−𝜆)𝐵

𝑑,𝑗
V
𝑑
(𝜆 − 𝜏

𝑖,𝑗
) 𝑑𝜆

= 𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑁1

∑

𝑖=1

[𝛿
(1)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 + 𝑇)
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+ 𝛿
(2)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇)

+ 𝛿
(3)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

× 𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 − 𝑇) ]

+

𝑁2

∑

𝑗=1

[𝜑
(0)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇)

+ 𝜑
(1)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

× V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇) ] ,

(29)

where

𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) = 𝑒

𝐴𝑠(𝑡−𝜏𝑜−𝑘𝑇),

𝛿
(1)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) =

𝑇

2
[𝑞

(2)

𝑖
+ 𝑞

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝛿
(2)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) = 𝑇 [𝑞

(1)

𝑖
− 𝑞

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝛿
(3)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) =

𝑇

2
[𝑞

(3)

𝑖
− 𝑞

(2)

𝑖
] 𝐴

𝑑,𝑖
,

𝜑
(0)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

= {
𝑂
𝑛×𝑚
, 𝑡 − 𝜏

𝑜
< 𝜎

𝑗
,

[𝑒
−𝐴𝑠𝜎𝑗𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
≥ 𝜎

𝑗
,

𝜑
(1)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

= {
[𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
< 𝜎

𝑗

𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) [𝐼

𝑛
− 𝑒

−𝐴𝑠𝜎𝑗] 𝐴
−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
≥ 𝜎

𝑗
,

(30)

in which

𝑞
(1)

𝑖
= [𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] (𝐴

𝑠
𝑇)

−1

,

𝑞
(2)

𝑖
= [𝑞

(1)

𝑖
− (

𝑡 − 𝜏
𝑜
− 𝑘𝑇

𝑇
− 𝛽

𝑖
) 𝐼

𝑛

−𝛽
𝑖
𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)] (𝐴

𝑠
𝑇)

−1

,

𝑞
(3)

𝑖
= [2𝑞

(2)

𝑖
− (

𝑡 − 𝜏
𝑜
− 𝑘𝑇

𝑇
− 𝛽

𝑖
)

2

𝐼
𝑛

+𝛽
2

𝑖
𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)] (𝐴

𝑠
𝑇)

−1

.

(31)

Also, some terms in (29)may be combined as in (28), and (29)
may be rewritten as

𝑥
𝑠
(𝑡 − 𝜏

𝑜
) = 𝛿

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝜑
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀2

∑

𝑗=1

𝜑
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) .

(32)

Then, the output (22b) can be rewritten as

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= 𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀1

∑

𝑖=1

𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐶
1
𝜑
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀2

∑

𝑗=1

𝐶
1
𝜑
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇)

−

𝑁2

∑

𝑗=1

[𝐷
(0)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇)

+𝐷
(1)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇)] ,

(33)

where

𝐷
(0)

𝑗
= 𝐷

∗

𝑗
(𝐵

𝑇

𝑑,𝑗
𝐵
𝑑,𝑗
)
−1

𝐻
(0)

𝑗
,

𝐷
(1)

𝑗
= 𝐷

∗

𝑗
(𝐵

𝑇

𝑑,𝑗
𝐵
𝑑,𝑗
)
−1

𝐻
(1)

𝑗
,

𝐷
∗

𝑗
= [𝐷

𝑗
𝑂]

𝑇

.

(34)

Similarly, some terms in (33) can be combined, so (33) can
be rewritten as

𝑦
𝑐
(𝑡) = 𝐶

1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀1

∑

𝑖=1

𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀2

∑

𝑗=1

𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) .

(35)

Thus, the discretization of continuous time-delay singular
system (22a) and (22b) is carried out using (28) and (35).

3.2.2. Establishing Performance Index for Discrete Time-Delay
Singular System. The optimal state-feedback control law
minimizes the following performance cost function:

𝐽 = ∫

𝑡𝑓

0

{{

{{

{

[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

𝑇
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× 𝑄[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

+ V𝑇
𝑐
(𝑡) 𝑅V

𝑐
(𝑡)

}}

}}

}

,

(36)

where 𝑄 is the positive semidefinite matrix, 𝑅 is the positive
definite matrix, 𝑟(𝑡) ∈ R𝑞 is the reference input vector, and
the final time 𝑡

𝑓
< ∞. To discretize the cost function 𝐽, given

by (36), 𝑡
𝑓
= 𝑁𝑇 is chosen and 𝐽 can be rewritten as

𝐽 =

𝑁−1

∑

𝑘=0

∫

(𝑘+1)𝑇

𝑘𝑇

{{

{{

{

[
[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

−

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

𝑇

× 𝑄[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

−

𝑁2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡) ]

]

+ V𝑇
𝑐
(𝑡) 𝑅V

𝑐
(𝑡)

}}

}}

}

.

(37)

Let 𝑟∗(𝑘𝑇) ∈ R𝑞 be the piecewise-constant reference input
vector to be determined in terms of 𝑟(𝑘𝑇) for the tracking
purpose. Then, cost function (37) can be rewritten as [27]

𝐽 =

𝑁−1

∑

𝑘=0

∫

(𝑘+1)𝑇

𝑘𝑇

{

{

{

[

[

𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇) + 𝜑

∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀2

∑

𝑗=1

𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) − 𝑟

∗

(𝑘𝑇)]

]

𝑇

× 𝑄[𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇) + 𝜑

∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀2

∑

𝑗=1

𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) − 𝑟

∗

(𝑘𝑇)]

]

+ V𝑇
𝑑
(𝑘𝑇) 𝑅V

𝑑
(𝑘𝑇) 𝑑𝑡

}

}

}

= ⋅ ⋅ ⋅

=

𝑁−1

∑

𝑘=0

[𝑥
𝑇

𝑑𝑠
(𝑘𝑇) 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V𝑇

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V𝑇

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗𝑇

(𝑘𝑇) V𝑇
𝑑
(𝑘𝑇)]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
1

𝑄
31

⋅ ⋅ ⋅ 𝑄
3𝑀1

𝑀
21

⋅ ⋅ ⋅ 𝑀
2𝑀2

−𝑀
3

𝑀
1

𝑄
𝑇

31
𝑄
211

⋅ ⋅ ⋅ 𝑄
21𝑀1

𝑀
511

⋅ ⋅ ⋅ 𝑀
51𝑀2

−𝑀
61

𝑀
41

...
... d

...
... d

...
...

...
𝑄
𝑇

3𝑀1

𝑄
2𝑀11

⋅ ⋅ ⋅ 𝑄
2𝑀1𝑀1

𝑀
5𝑀11

⋅ ⋅ ⋅ 𝑀
5𝑀1𝑀2

−𝑀
6𝑀1

𝑀
4𝑀1

𝑀
𝑇

21
𝑀

𝑇

511
⋅ ⋅ ⋅ 𝑀

𝑇

5𝑀11
𝑅
211

⋅ ⋅ ⋅ 𝑅
21𝑀2

−𝑀
81

𝑅
41

...
... d

...
... d

... ⋅ ⋅ ⋅
...

𝑀
𝑇

2𝑀2

𝑀
𝑇

51𝑀2

⋅ ⋅ ⋅ 𝑀
𝑇

5𝑀1𝑀2

𝑅
2𝑀21

⋅ ⋅ ⋅ 𝑅
2𝑀2𝑀2

−𝑀
8𝑀2

𝑅
4𝑀2

−𝑀
𝑇

3
−𝑀

𝑇

61
⋅ ⋅ ⋅ −𝑀

𝑇

6𝑀1

−𝑀
𝑇

81
⋅ ⋅ ⋅ −𝑀

𝑇

8𝑀2

𝑅
3

−𝑀
7

𝑀
𝑇

1
𝑀

𝑇

41
⋅ ⋅ ⋅ 𝑀

𝑇

4𝑀1

𝑅
𝑇

41
⋅ ⋅ ⋅ 𝑅

𝑇

4𝑀2

−𝑀
𝑇

7
𝑅
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

× [𝑥
𝑑𝑠
(𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗

(𝑘𝑇) V
𝑑
(𝑘𝑇)]

𝑇

,

(38)
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where

𝑄
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑄
2𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑄
3𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
2𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

×𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
3
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑀
4𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
5𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
6𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑀
7
= ∫

(𝑘+1)𝑇

𝑘𝑇

[𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))] 𝑑𝑡,

𝑀
8𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑅
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) + 𝑅] 𝑑𝑡,

𝑅
2𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑅
3
= ∫

(𝑘+1)𝑇

𝑘𝑇

𝑄𝑑𝑡,

𝑅
4𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡.

(39)

Construct an extended virtual state vector:

𝑋
𝑑
(𝑘𝑇) = [𝑥

𝑑𝑠
(𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗

(𝑘𝑇)]
𝑇

. (40)

The extended delay-free system that is equivalent to the
original time-delay singular system (28) and (35) is obtained
as

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
V
𝑑
(𝑘𝑇) , (41a)

𝑦
𝑑
(𝑘𝑇) = 𝐶

𝑒
𝑋
𝑑
(𝑘𝑇) . (41b)

We assume that the reference input 𝑟(𝑡) is a step functionwith
a constant magnitude, 𝑟∗((𝑘 + 1)𝑇) = 𝑟∗(𝑘𝑇). Designing a
systembased on such a reference input can lead to predictable
time-response characteristics. Although our design method-
ology is based on a step function, it should be pointed out
that the resulting control system, if properly designed, enables
to give good time responses for any arbitrary reference input
𝑟(𝑡). Also, the reference input 𝑟∗(𝑘𝑇) is entered in the last row
of𝑋

𝑑
(𝑘𝑇) at the beginning of step 𝑘. As a result, the extended

new system does not have any time-delay terms and it can
be utilized to simplify the representation of the cost function
(38). Now, (38) can be rewritten as

𝐽 =

𝑁−1

∑

𝑘=0

[𝑋
𝑇

𝑑
(𝑘𝑇) V𝑇

𝑑
(𝑘𝑇)] [

𝑄 𝑀̂

𝑀̂
𝑇

𝑅̂
] [
𝑋
𝑑
(𝑘𝑇)

V
𝑑
(𝑘𝑇)

] , (42)

where

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
1

𝑄
31

⋅ ⋅ ⋅ 𝑄
3𝑀1

𝑀
21

⋅ ⋅ ⋅ 𝑀
2𝑀2

−𝑀
3

𝑄
𝑇

31
𝑄
211

⋅ ⋅ ⋅ 𝑄
21𝑀1

𝑀
511

⋅ ⋅ ⋅ 𝑀
51𝑀2

−𝑀
61

...
... d

...
... d

...
...

𝑄
𝑇

3𝑀1
𝑄
2𝑀11

⋅ ⋅ ⋅ 𝑄
2𝑀1𝑀1

𝑀
5𝑀11

⋅ ⋅ ⋅ 𝑀
5𝑀1𝑀2

−𝑀
6𝑀1

𝑀
𝑇

21
𝑀

𝑇

511
⋅ ⋅ ⋅ 𝑀

𝑇

5𝑀11
𝑅
211

⋅ ⋅ ⋅ 𝑅
21𝑀2

−𝑀
81

...
... d

...
... d

...
...

𝑀
𝑇

2𝑀2
𝑀

𝑇

51𝑀2
⋅ ⋅ ⋅ 𝑀

𝑇

5𝑀1𝑀2
𝑅
2𝑀21

⋅ ⋅ ⋅ 𝑅
2𝑀2𝑀2

−𝑀
8𝑀2

−𝑀
𝑇

3
−𝑀

𝑇

61
⋅ ⋅ ⋅ −𝑀

𝑇

6𝑀1
−𝑀

𝑇

81
⋅ ⋅ ⋅ −𝑀

𝑇

8𝑀2
𝑅
3

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀̂ = [𝑀
𝑇

1
𝑀

𝑇

41
⋅ ⋅ ⋅ 𝑀

𝑇

4𝑀1

𝑅
𝑇

41
⋅ ⋅ ⋅ 𝑅

𝑇

4𝑀2

−𝑀
𝑇

7
]
𝑇

,

𝑅̂ = [𝑅
1
] .

(43)
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Then, define a new virtual weighting matrix

𝑄 = 𝑄 − 𝑀̂𝑅̂
−1

𝑀̂
𝑇 (44)

and a new virtual control input

𝑆 (𝑘𝑇) = 𝑅̂
−1

𝑀̂
𝑇

𝑋
𝑑
(𝑘𝑇) + V

𝑑
(𝑘𝑇) . (45)

Substituting (44) and (45) into (42) results in a decoupled
performance index:

𝐽 =

𝑁−1

∑

𝑘=0

[𝑋
𝑇

𝑑
(𝑘𝑇)𝑄𝑋

𝑑
(𝑘𝑇) + 𝑆

𝑇

(𝑘𝑇) 𝑅̂𝑆 (𝑘𝑇)] . (46)

Substituting (45) into the extended delay-free singular system
(41a) and (41b) yields

𝑋
𝑑
((𝑘 + 1) 𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
V
𝑑
(𝑘𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
[𝑆 (𝑘𝑇) − 𝑅̂

−1

𝑀̂
𝑇

𝑋
𝑑
(𝑘𝑇)]

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
𝑆 (𝑘𝑇) ,

(47)

where 𝐺
𝑒
= 𝐺

𝑒
− 𝐻̂

𝑒
𝑅̂
−1

𝑀̂
𝑇.

Notably, the quadratic optimal control of the system that
is given by (41a) and (41b) with the performance index that is
given by (42) is equivalent to the quadratic optimal control of
the system that is given by (47) with the performance index
that is given by (46). The development of the desired optimal
virtual control vector 𝑆(𝑘𝑇) that minimizes the performance
index that is given by (46) can be described as follows.

3.3. Development of Optimal Tracker for Time-Delay Singular
System with States Available. Let the Hamilton function
depend on the cost function (46) [28]:

𝐻
𝑓
(𝑘𝑇) = [𝑋

𝑇

𝑑
(𝑘𝑇)𝑄𝑋

𝑑
(𝑘𝑇) + 𝑆

𝑇

(𝑘𝑇) 𝑅̂𝑆 (𝑘𝑇)]

+ 𝜆
𝑇

((𝑘 + 1) 𝑇) [𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
𝑆 (𝑘𝑇)] ,

(48)

where 𝜆(𝑘𝑇) is a costate (Lagrange multiplier). Based on
the well-developed optimal control theory [29, 30], the state
equation is

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
𝑆 (𝑘𝑇) , (49)

and the costate equation is

𝜆 (𝑘𝑇) = 𝐺
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇) (50)

with the stationary condition

0 = 𝐻̂
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) + 𝑅̂𝑆 (𝑘𝑇) , (51)

or

𝑆 (𝑘𝑇) = −𝑅̂
−1

𝐻̂
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) , (52a)

and the boundary condition is

𝜆 (𝑁𝑇) = 𝑄𝑋
𝑑
(𝑁𝑇) . (52b)

Assume that 𝜆(𝑘𝑇) can be written as follows:

𝜆 (𝑘𝑇) = 𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) , (53)

where 𝑃(𝑘𝑇) is a real symmetric matrix of appropriate
dimension. So far, the original optimal tracking problem has
been transformed into an optimal regulator problem.

To derive the optimal regulator, (53) is substituted into
(50):

𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇)

= 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)𝑋

𝑑
((𝑘 + 1) 𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇) ,

(54)

and (52a), (52b), and (53) are substituted into (49):

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× 𝑋
𝑑
((𝑘 + 1) 𝑇)

(55)

or

𝑋
𝑑
((𝑘 + 1) 𝑇) = [𝐼 + 𝐻̂

𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) .

(56)

Also, substituting (56) into (54) yields

𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) = 𝐺

𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

× 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇)

(57)

or

{𝑃 (𝑘𝑇) − 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
− 𝑄}𝑋

𝑑
(𝑘𝑇) = 0.

(58)

The above equation must hold for all𝑋
𝑑
(𝑘𝑇). Hence,

𝑃 (𝑘𝑇) = 𝑄 + 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
.

(59)

Equation (59) is called the Riccati equation. With reference
to (52a), (52b), and (53), when at 𝑘 = 𝑁,

𝜆 (𝑁𝑇) = 𝑄𝑋
𝑑
(𝑁𝑇) = 𝑃 (𝑁𝑇)𝑋

𝑑
(𝑁𝑇) (60)

or

𝑃 (𝑁𝑇) = 𝑄. (61)
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From (59) and (61), all 𝑃(𝑘𝑇) for 0 ≤ 𝑘 ≤ 𝑁 can be obtained.
With reference to (53) and (56), the desired optimal virtual
control input that is given by (52a) now becomes

𝑆 (𝑘𝑇) = −𝑅̂
−1

𝐻̂
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇)

= −𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)𝑋

𝑑
((𝑘 + 1) 𝑇)

= −𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
𝑋
𝑑
(𝑘𝑇)

= −𝑅̂
−1

𝐻̂
𝑇

𝑒
[𝑃

−1

((𝑘 + 1) 𝑇) + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
]
−1

× 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇)

= −𝐾 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) ,

(62)

where 𝐾(𝑘𝑇) = 𝑅̂
−1

𝐻̂
𝑇

𝑒
[𝑃

−1

((𝑘 + 1)𝑇) + 𝐻̂
𝑒
𝑅̂
−1

𝐻̂
𝑇

𝑒
]
−1

𝐺
𝑒
.

From (45), the original optimal controller V
𝑑
(𝑘𝑇) is obtained

as follows:

V
𝑑
(𝑘𝑇) = 𝑆 (𝑘𝑇) − 𝑅̂

−1

𝑀̂
𝑇

𝑋
𝑑
(𝑘𝑇) = −𝐾̂ (𝑘𝑇)𝑋

𝑑
(𝑘𝑇) ,

(63)

where 𝐾̂(𝑘𝑇) = 𝐾(𝑘𝑇) + 𝑅̂−1𝑀̂𝑇. Notice that if there are no
state and input time delays, the above development can be
reduced to that in [30]. Equation (63) can be represented in
the following form:

V
𝑑
(𝑘𝑇)

= −𝐾̂ (𝑘𝑇)𝑋
𝑑
(𝑘𝑇)

= −𝐾
𝑑
(𝑘𝑇)

× [𝑥
𝑇

𝑑𝑠
(𝑘𝑇) 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇)]

𝑇

− 𝐹
𝑑
(𝑘𝑇) [V𝑇

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V𝑇

𝑑
(𝑘𝑇 −𝑀

2
𝑇)]

𝑇

− 𝐸
𝑑
(𝑘𝑇) 𝑟

∗

(𝑘𝑇) ,

(64)

where 𝐾̂(𝑘𝑇) = [𝐾
𝑑
(𝑘𝑇) 𝐹

𝑑
(𝑘𝑇) 𝐸

𝑑
(𝑘𝑇)], in which

𝐾
𝑑
(𝑘𝑇) = [𝐾

(0)

𝑑
(𝑘𝑇) 𝐾

(1)

𝑑
(𝑘𝑇) ⋅ ⋅ ⋅ 𝐾

(𝑀1)

𝑑
(𝑘𝑇)] ,

𝐹
𝑑
(𝑘𝑇) = [𝐹

(1)

𝑑
(𝑘𝑇) ⋅ ⋅ ⋅ 𝐹

(𝑀2)

𝑑
(𝑘𝑇)] .

(65)

Here, the discrete optimal controller (64) for the continuous
time-delay system (22a) and (22b) has been completely
derived. Figure 1 presents the realization of the time-varying
piecewise-constant optimal controller (64) for the digitally
controlled continuous time-delay singular system.

3.4. Development of Observer-Based Suboptimal Tracker for
Time-Delay Singular System with States Unavailable. When
the states of a continuous time-delay system (22a) and (22b)
are not available formeasurement, the continuous-time states

can be constructed using the recently developed continuous
time-delay observers [28, 31, 32]. However, the developed
digital tracker (64) requires the extended discrete-time state
Χ
𝑑
(𝑘𝑇) in (41a) and (41b). Using the prediction-based digital

redesign [27], a new observer-based suboptimal tracker for
the time-delay singular system can be designed as follows.

According to the digitally redesigned observer [27] and
controller [27], the extended digitally redesigned observer
and controller can be represented as

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑜
𝑋
𝑑
(𝑘𝑇) + 𝐻̂

𝑜
V
𝑑
(𝑘𝑇)

+ 𝐿
𝑑
[𝑦

𝑑
(𝑘𝑇) − 𝐶

𝑒
𝑋
𝑑
(𝑘𝑇)] ,

(66a)

V
𝑑
(𝑘𝑇) = −𝐾̂ (𝑘𝑇)𝑋

𝑑
(𝑘𝑇) , (66b)

where Χ̂
𝑑
(𝑘𝑇) ∈ R𝑝 is the estimate of the extended state

Χ
𝑑
(𝑘𝑇) ∈ R𝑝 in (41a) and (41b),

𝐺
𝑜
= 𝐺

𝑒
− 𝐿

𝑑
𝐶
𝑒
𝐺
𝑒
, (66c)

𝐻̂
𝑜
= 𝐻̂

𝑒
− 𝐿

𝑑
𝐶
𝑒
𝐻̂
𝑒
. (66d)

Additionally, 𝐺
𝑒
= 𝑒

̂
𝐴𝑇 and 𝐻̂

𝑒
= [𝐺

𝑒
− 𝐼

𝑝
]𝐴

−1

𝐵, where
𝐴 = (1/𝑇) ln(𝐺

𝑒
) and 𝐵 = 𝐴(𝐺

𝑒
− 𝐼)

−1

𝐻̂
𝑒
. To determine the

extended observer gain 𝐿
𝑑
in (66a), the equivalent extended

continuous-time observer (41a) and (41b) and controller (64)
can be represented [19], on the basis of the analog observer
and controller, as

̇̂
𝑋
𝑐
(𝑡) = 𝐴𝑋

𝑐
(𝑡) + 𝐵V

𝑐
(𝑡) + 𝐿

𝑐
[𝑦

𝑐
(𝑡) − 𝐶

𝑒
𝑋
𝑐
(𝑡)] , (67a)

V
𝑐
(𝑡) = −𝐾̂

𝑐
𝑋
𝑐
(𝑡) . (67b)

The algorithm for computing the analog system matrix 𝐴
in (67a) from the digital system matrix 𝐺

𝑒
in (41a) via the

geometric-series method [15] is as follows:

𝐴 =
1

𝑇
ln (𝐺

𝑒
)

=
2

𝑇
{𝑅̂ +

1

3
𝑅̂
3

+ ⋅ ⋅ ⋅ +
1

𝑛
𝑅̂
𝑛

[𝐼
𝑝
−

1

(1 + 2/𝑛)
𝑅̂
2

]

−1

}

for 󵄨󵄨󵄨󵄨󵄨𝜎 (𝑅̂
2

)
󵄨󵄨󵄨󵄨󵄨
< (1 +

2

𝑛
)

≅
2

𝑇
𝑅̂[𝐼

𝑝
−
1

3
𝑅̂
2

]

−1

for 𝑛 = 1

≅
2

𝑇
𝑅̂ [𝐼

𝑝
−
4

15
𝑅̂
2

] [𝐼
𝑝
−
3

5
𝑅̂
2

]

−1

for 𝑛 = 3

≅ ⋅ ⋅ ⋅ ,

(67c)

where 𝑅̂ = [𝐺
𝑒
− 𝐼

𝑝
][𝐺

𝑒
+ 𝐼

𝑝
]
−1 and |𝜎(∘)| denotes the

absolute eigenspectrum of (∘). Based on the dual concept
of the digital redesign, the analog observer gain 𝐿

𝑐
in (67a)
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Figure 1: Digital redesign for time-delay singular system.

and the digitally redesigned observer gain 𝐿
𝑑
in (66a) can be

represented, respectively, as

𝐿
𝑐
= 𝑃

𝑜𝑏
𝐶
𝑇

𝑒
𝑅
−1

, (68)

𝐿
𝑑
= (𝐺

𝑒
− 𝐼

𝑝
)𝐴

−1

𝐿
𝑐
[𝐼 + 𝐶

𝑒
(𝐺

𝑒
− 𝐼

𝑝
)𝐴

−1

𝐿
𝑐
]
−1

, (69)

where 𝑃
𝑜𝑏
is the positive-definite and symmetric solution of

the following Riccati equation:

𝐴𝑃
𝑜𝑏
+ 𝑃

𝑜𝑏
𝐴
𝑇

− 𝑃
𝑜𝑏
𝐶
𝑇

𝑒
𝑅
−1

𝐶
𝑒
𝑃
𝑜𝑏
+ 𝐶

𝑇

𝑒
𝑄𝐶

𝑒
= 0, (70)

in which 𝑄 ≥ 0 and 𝑅 > 0 with appropriate dimensions.
Owing to the extended virtual state vector in (40), the

matrix 𝐺
𝑒
in (41a) and (41b) and (67a), (67b), and (67c) is

singular. The matrices 𝐴 and 𝐵 in (67a), (67b), and (67c)
cannot be directly determined. To solve this problem, an
alternative is derived via the matrix sign function method
[23, 24] as follows.

Following the procedures shown in Section 3 [23, 24], the
transformed matrix is

𝐺
𝑏
= (𝐺

𝑒
− 𝜁

2
𝐼
𝑝
) (𝐺

𝑒
+ 𝜁

2
𝐼
𝑝
)
−1

, (71)

where𝐺
𝑒
∈ R𝑝×𝑝 and 𝜁

2
is a radius of a circle from the origin

of the coordinates. Additionally, the associated matrix sign
functions are

Sign (𝐺
𝑏
) = 𝐺

𝑏
(
2
√𝐺

2

𝑏
)

−1

, (72)

Sign− (𝐺
𝑏
) =

1

2
(𝐼
𝑝
− Sign (𝐺

𝑏
)) , (73a)

Sign+ (𝐺
𝑏
) =

1

2
(𝐼
𝑝
+ Sign (𝐺

𝑏
)) , (73b)

respectively. A fast and stable algorithm for computing the
matrix sign function [23, 24] is given as follows.

For the order of the desired convergence rate 𝑟 = 2, one
has

𝑄 (𝑙 + 1) =
1

2
[𝑄 (𝑙) + 𝑄

−1

(𝑙)] ,

𝑄 (0) = 𝐺
𝑏
,

lim
𝑙→∞

𝑄 (𝑙) = Sign (𝐺
𝑏
) , for 𝑙 = 0, 1, 2, . . . .

(74)

By [19, 20], a transformation matrix 𝑇
𝑚
can be found such

that

𝐺
𝑚
= 𝑇

−1

𝑚
𝐺
𝑒
𝑇
𝑚
= [

𝐺
𝑚1

0
(𝑝−𝑔)×𝑔

0
𝑔×(𝑝−𝑔)

𝐺
𝑚2

] , (75)

where 𝐺
𝑚1

is a nonsingular matrix and 𝐺
𝑚2

is a singular
matrix whose eigenvalues are all null. Finally, the matrix 𝐴
is obtained by the following equation:

𝐴 = 𝑇
𝑚
𝐺ln𝑇

−1

𝑚
= 𝑇

𝑚
[
𝐺ln 1 0

0 𝐺ln 2
]𝑇

−1

𝑚
, (76a)

where 𝐺ln 1 = (1/𝑇) ln ( 3√𝐺
𝑚1
)

3

= (3/𝑇) ln( 3√𝐺
𝑚1
) and

𝐺ln 2 = ]𝐼
𝑔
, in which ] is a large negative real constant. The

algorithm for finding ln( 3√𝐺
𝑚1
) in (76a) can be found in (67c)

[19]. If the matrix 𝐺
𝑚1

has any negative real eigenvalue, then
the principal third root of 𝐺

𝑚1
is not defined for arg(𝜆

𝑖
) ̸=𝜋

[23, 24]. The first part 𝐺ln 1 in (76a) can be rewritten as

𝐺ln 1 =
3

𝑇
ln( 3√𝐺

𝑚1
) =

3

𝑇
ln [( 3√𝐺

𝑚1
𝑒𝑖𝜃) 𝑒

−(𝑖𝜃/3)

] , (76b)
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where the matrix 𝐺
𝑚1

is rotated by a small positive real angle
𝜃. The second part 𝐺ln 2 in (76a) is utilized to recover the
property ln(0) = −∞. Matrix 𝐵 can be evaluated as

𝐵 = 𝐴(𝐺
𝑒
− 𝐼

𝑝
)
−1

𝐻̂
𝑒

= [(𝐺
𝑒
− 𝐼

𝑝
)𝐴

−1

]
−1

𝐻̂
𝑒

= (𝑇𝐼
𝑝
+
𝐴𝑇

2

2!
+
𝐴
2

𝑇
3

3!
+ ⋅ ⋅ ⋅ )

−1

𝐻̂
𝑒
.

(77)

Substituting (76a) and (76b) into the Riccati equation (70)
and solving it yield the observer gain matrices in (68) and
(69). Figure 2 presents the implementation of the observer-
based suboptimal tracker for the time-delay singular system.

4. An Illustrative Example

Consider a continuous time-delay singular system, described
in (1a) and (1b), with

𝐸 =

[
[
[
[
[
[
[

[

1 2 1 1 −3 −2

0 2 2 1 −3 −3

1 2 1 1 −3 −2

1 2 1 3 −5 −4

0 2 1 1 −2 −2

1 0 0 0 −1 0

]
]
]
]
]
]
]

]

, 𝐴 = 𝐼
6
,

𝐴
1
=

[
[
[
[
[
[
[

[

0.447 0 0 0 0.447 0

0 0.2236 −0.1118 0 −0.447 0

0 0 0.2236 0 0 0

0 0 0 0.447 −0.8944 0

0 0 0 0 0.447 0

0 0 0 0 −0.8944 0.447

]
]
]
]
]
]
]

]

,

𝐵
1
= [
1 0 0 0 0 −1

0 0 −1 1 0 0
]

𝑇

, 𝐶 = [
1 0 1 0 0 0

0 1 0 1 0 0
] ,

𝑁
1
= 𝑁

2
= 1, 𝜏

𝑠1
= 0, 𝜏

𝑖1
= 𝜏

𝑜
= 0.5 × 𝑇.

(78)

Let the sampling period 𝑇 = 0.01 (s) and apply the reference
input 𝑟(𝑡) = [0.5 sin(𝑡) 0.5 cos(𝑡)]𝑇 to the system. The
initial condition is 𝑥

𝑐
(0) = (𝑀𝑉𝑀̃)[𝑥

𝑇

𝑠
(0) 𝑥

𝑇

𝑓
(0)]

𝑇

=

[0 0 0 0 0 0]
𝑇, 𝑥

𝑠
(0) = [0 0 0 0]

𝑇, and 𝑥
𝑓
= [0 0]

𝑇.
Since 0 × 𝐸 + 𝐴 = 𝐼

6
, and according to the definition

of the standard form, {𝐸, 𝐴} is in standard form. If 𝛼 = 0

and 𝛽 = 1 are set, then 𝐸
𝑛
= 𝐸, 𝐴

𝑛
= 𝐴, 𝐴

𝑛,1
= 𝐴

1
,

and 𝐵
𝑛,1
= 𝐵

1
. Since 𝐸

𝑛
is singular, 𝐸

𝑛
includes some zero

eigenvalues, and the bilinear transform must be performed
to find the similarity transformationmatrix𝑀 of 𝐸

𝑛
. Assume

𝜔 = 0.5; the algorithm that was described in Section 3 yields,

𝐸
𝑛
=

[
[
[
[
[
[
[

[

0.3333 1.6 −2.4 0.16 0.9067 2.24

0 0.6 1.6 0.16 −1.76 −1.76

1.3333 1.6 −3.4 0.16 0.9067 2.24

1.3333 1.6 −2.4 0.76 −0.6933 0.64

0 1.6 −2.4 0.16 1.24 2.24

1.3333 0 0 0 −1.3333 −1

]
]
]
]
]
]
]

]

,

sign (𝐸
𝑛
) =

[
[
[
[
[
[
[

[

1 2 2 0 −4 −2

0 1 2 0 −2 −2

2 2 1 0 −4 −2

2 2 2 1 −6 −4

0 2 2 0 −3 −2

2 0 0 0 −2 −1

]
]
]
]
]
]
]

]

,

𝑀 =

[
[
[
[
[
[
[

[

1 1 0 0 −1 −1

0 1 0 0 0 −1

1 1 0 −1 −1 0

1 1 1 −1 −1 −1

0 1 0 0 −1 −1

1 0 0 −1 0 0

]
]
]
]
]
]
]

]

.

(79)

Based on Section 3.1 and Appendices, the time-delay singular
system can be decomposed as follows:

̇𝑥̃
𝑠
(𝑡) = 𝐴

𝑠
𝑥
𝑠
(𝑡) + 𝐴

𝑑,1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,1
) + 𝐵

𝑑,1
V
𝑐
(𝑡 − 𝜏

𝑖,1
) ,

(80a)

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐷

1
V
𝑐
(𝑡 − 𝜏

𝑖,1
) , (80b)

where

𝐴
𝑠
=

[
[
[

[

1 0 0 −0.5

0 0.5 −0.25 −0.5

0 0 0.5 0

0 0 0 0.5

]
]
]

]

,

𝐴
𝑑,1
=

[
[
[

[

0.4472 0 0 −0.2236

0 0.2236 −0.1118 −0.2236

0 0 0.2236 0

0 0 0 0.2236

]
]
]

]

,

𝐵
𝑑,1
=

[
[
[

[

0.5 0.5

−0.25 −0.25

0.5 0.5

0.5 −0.5

]
]
]

]

,

𝐶
1
= [
1 0 1 0

1 0 0 0
] ,

𝐷
1
= [

0 2

0.5 1.5
] ,

(81)

and the other parameters are listed below:

𝑀̃ =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0.5 0 1

0 0 0 1 0 0

]
]
]
]
]
]
]

]

,

𝛾 = 2, 𝜂 = −1,

Λ
1,1
=

[
[
[

[

0.4472 0 0 −0.2982

0 0.1491 −0.0994 −0.1988

0 0 0.1491 0

0 0 0 0.1491

]
]
]

]

,
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Figure 2: Observer-based suboptimal tracker for the digitally redesigned time-delay singular system.
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Figure 3: Output responses of time-delay singular system with states available by the new digital redesign approach.

Λ
2,1
= [
−0.4472 0

0 −0.4472
] ,

𝐵
𝑠𝑘,1

=

[
[
[

[

0.3333 0.6667

−0.3333 −0.1111

0.3333 0.3333

0.3333 −0.3333

]
]
]

]

,

𝑉 = 𝐼
6
, 𝐾

𝑓,1
= [
0 1 0

0 −1 0
] .

(82)

Following the proposed method in Section 3, the schemes
of Figures 1 and 2 are implemented. For simplification, the
numerical analysis is not presented and Figures 3 and 4 show
the results of the simulation.

Comparing with the offline observer/Kalman filter iden-
tification (OKID) method, the advantages of the proposed
approach can be shown in [33, 34]. Following [33, 34], let the
unknown system (80a) and (80b) be excited by the white-
noise control force 𝑢(𝑡) = [𝑢

1
(𝑡) 𝑢

2
(𝑡)]

𝑇 with a zero mean
and covariance diag[cov(𝑢

1
(𝑡)), cov(𝑢

2
(𝑡))] = diag [0.2 0.2].

The input-output sampled data is given in Figure 5.
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Figure 4: Output responses of time-delay singular system with states unavailable by new observer-based suboptimal approach.
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The identified system (𝐺, 𝐻̂, 𝐶) and observer gain (𝐹)
matrices for the unknown system (80a) and (80b) are given
as

𝐺 =

[
[
[

[

8.7538 −4.3746 8.9478 −0.5128 0

10.2956 5.5361 1.4682 −3.6730 0

−19.5769 9.2613 −19.7421 9.5377 0

−0.0821 0.6656 −1.0711 −359.3919 0

0 0 0 0 −112.9831

]
]
]

]

,

𝐻̂ =

[
[
[
[
[

[

−0.2470 −0.2116

−0.8808 −0.8879

−0.5713 −0.5007

22.2478 21.6048

0 0

]
]
]
]
]

]

,

𝐶 = [
−1.0867 −0.5871 0.7911 −0.0579 0

0.5676 −0.5710 −0.4333 −0.0488 0
] ,
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between the system output 𝑦
𝑠2
(𝑘𝑇) and its observer-based output 𝑦okid2(𝑘𝑇) by OKID.
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𝐹 =

[
[
[
[
[

[

1.4216 −2.0615

0.7740 1.0579

0.5564 −0.8225

−0.0043 −0.0041

0 0

]
]
]
]
]

]

.

(83)

Then, the observer-based outputs by OKID compared with
the actual system outputs for the unknown system (80a) and
(80b) are shown in Figure 6.

To overcome the effect of modeling error, an improved
observer (69) with the high-gain property has been proposed
in this paper, where the observer gain matrices are given as

𝐿
𝑑
= [

−0.3231 −0.5708 0.3103 −0.1051 0 −0.0628

0.4008 −1.0446 −0.4013 −0.1646 0 0.1289

−0.0833 −0.1119 6.4407 0 1.1006 0.1373

−0.1585 −0.4047 10.2422 0 1.6436 0.3760

−16.6049 228.3244 0.0003 0.0124 0.0119 0 0

−25.8086 363.6177 0.0001 0.0191 0.0184 0 0
]

𝑇

.

(84)

Then, the comparisons between the actual outputs and the
proposed method outputs for the unknown system (80a) and
(80b) are shown in Figure 7.

Obviously, the proposed method is better than OKID
method on the tracking error performance from Figures 6
and 7.

5. Conclusion

This paper presents a systematic methodology for developing
novel observer-based suboptimal digital trackers for a class
of time-delay singular systems. The time-delay property and
singular system have been attracting more attention in recent
years. The proposed controller and observer depend on
the concepts of optimal control and the digital redesign
with high-gain property to ensure effective tracking and
favorable state matching performance. In future works, we
will paymore attention to the online application and the real-
time implementation of fault tolerant control system with
performance optimization by using the proposed methods.

Appendices

A. Transformation of the Time-Delay
Singular Systems

The following steps yield the preliminary feedback gain 𝐾
𝑓,𝑗

and prove that𝐾
𝑓,𝑗

can eliminate impulsive modes.
Let

𝑥
𝑐
(𝑡) = 𝑉𝑥

𝑐
(𝑡) , (A.1)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑐,𝑠
(𝑡), 𝑥

𝑇

𝑐,𝑓
(𝑡)]

𝑇

= [𝑥
𝑇

𝑐,𝑠
(𝑡), (𝑈

−1

𝑥
𝑐,𝑓
(𝑡))

𝑇

]

𝑇

and 𝑉 = [ 𝐼𝑘 𝑂

𝑂 𝑈
]. 𝑈 is a modal matrix of 𝐸

𝑓
with dimension

(𝑛 − 𝑘) × (𝑛 − 𝑘) such that 𝑈−1

𝐸
𝑓
𝑈 is in the Jordan block

form. Substituting (A.1) into (9) andmultiplying by𝑉−1 yield
the following equation:

[
𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] ̇𝑥̂
𝑐
(𝑡)

= [
𝐴
𝑠
𝑂

𝑂 𝐼
𝑛−𝑘

] 𝑥
𝑐
(𝑡)

+

𝑁1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(A.2)

where 𝐸
𝑓
= 𝑈

−1

𝐸
𝑓
𝑈, 𝐴

𝑠
= 𝐴

𝑠
, 𝐴

1,𝑖
= 𝐴

1,𝑖
, 𝐴

2,𝑖
= 𝑈

−1

𝐴
2,𝑖
𝑈,

𝐵
𝑠,𝑗

= 𝐵
𝑠,𝑗
, and 𝐵

𝑓,𝑗
= 𝑈

−1

𝐵
𝑓,𝑗
. Notably, 𝐸

𝑓
is in the

Jordan block form with 𝑑 blocks of sizes 𝜇
1
, 𝜇

2
, . . . , 𝜇

𝑑
, where

∑
𝑑

𝑖=1
𝜇
𝑖
= column (row) number of 𝐸

𝑓
. In (A.2), the state-

delay 𝑥
𝑐
(𝑡−𝜏

𝑠,𝑖
) can be equal to𝑊

𝑠,𝑖
𝑥
𝑐
(𝑡), where𝑊

𝑠,𝑖
is a block

diagonal {𝜓
1,𝑖
, 𝜓

2,𝑖
}. Therefore, (A.2) can be rewritten as

[
𝐼
𝑘
𝑂

O 𝐸
𝑓

] ̇𝑥̂
𝑐
(𝑡)

=

[
[
[
[
[

[

𝐴
𝑠
+

𝑁1

∑

𝑖=1

⌣

𝐴
1,𝑖
𝜓
1,𝑖

𝑂

𝑂 𝐼 +

𝑁1

∑

𝑖=1

⌣

𝐴
2,𝑖
𝜓
2,𝑖

]
]
]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

≜ [
𝐴
𝑠1

𝑂

𝑂 𝐴
𝑠2

] 𝑥
𝑐
(𝑡) +

𝑁2

∑

𝑗=1

[
𝐵

𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(A.3)

From (A.3), the fast subsystem is

𝐸
𝑓

̇𝑥̂
𝑐,𝑓
(𝑡) = 𝐴

𝑠2
𝑥
𝑐,𝑓
(𝑡) +

𝑁2

∑

𝑗=1

𝐵
𝑓,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (A.4)

so

𝐸
∗

𝑓

̇𝑥̂
𝑐,𝑓
(𝑡) = 𝑥

𝑐,𝑓
(𝑡) +

𝑁2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑡) , (A.5)

where 𝐸∗
𝑓
= 𝐴

−1

𝑠2
𝐸
𝑓
, 𝐵∗

𝑓,𝑗
= 𝐴

−1

𝑠2
𝐵
𝑓,𝑗
, and 𝑈

𝑐,𝑗
(𝑡) = 𝑢

𝑐
(𝑡 − 𝜏

𝑖,𝑗
).

Taking the Laplace transformation of the fast subsystem
(A.5), one obtains

𝑋
𝑐,𝑓
(𝑠) = (𝑠𝐸

∗

𝑓
− 𝐼

𝑛−𝑘
)
−1

(𝐸
∗

𝑓
𝑥
𝑐,𝑓
(0) +

𝑁2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑠))

= −

𝑙−1

∑

𝑖=0

𝑠
𝑖

(𝐸
∗

𝑓
)
𝑖

(𝐸
∗

𝑓
𝑥
𝑐,𝑓
(0) +

𝑁2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑠)) .

(A.6)



Journal of Applied Mathematics 17

Taking the inverse Laplace transformation of the above
equation, one has

𝑥
𝑐,𝑓
(𝑡) = −

𝑙−1

∑

𝑖=1

(𝐸
∗

𝑓
)
𝑖

𝑥
𝑐,𝑓
(0) 𝛿

(𝑖−1)

(𝑡)

−

𝑙−1

∑

𝑖=0

𝑁2

∑

𝑗=1

(𝐸
∗

𝑓
)
𝑖

𝐵
∗

𝑓,𝑗
𝑈
(𝑖)

𝑐,𝑗
(𝑡) ,

(A.7)

where 𝛿(𝑡) and 𝛿(𝑖)(𝑡) denote the delta function and the
𝑖th derivative of the delta function, respectively. From the
above equation, the impulsive modes of the fast state are
induced from inconsistent initial conditions of the fast state
or discontinuous control input (or its derivatives). By [12],
determination of the preliminary feedback gain 𝐾

𝑓,𝑗
=

[𝑘
1,𝑗
, 𝑘

2,𝑗
, . . . , 𝑘

𝑛−𝑘,𝑗
]
𝑚×(𝑛−𝑘)

, where 𝑘
𝜉,𝑗

is of dimension 𝑚 × 1
for 𝜉 = 1, 2, . . . , (𝑛 − 𝑘), is summarized as follows.

(1) If 𝜇
𝑖
≥ 1, where 1 ≤ 𝑖 ≤ 𝑑, and its corresponding

Jordan block is a null matrix, then

𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+1,𝑗

= 𝑂
𝑚×1
,

𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+2,𝑗

= 𝑂
𝑚×1
,

...
𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+𝜇𝑖 ,𝑗

= 𝑂
𝑚×1
.

(A.8)

(2) If 𝜇
𝑖
> 1, where 1 ≤ 𝑖 ≤ 𝑑, and its corresponding

Jordan block is not a null matrix, then

𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+1,𝑗

=

[
[
[
[
[

[

𝛿 (𝑏̂
(𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖)1,𝑗

)

𝛿 (𝑏̂
(𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖)2,𝑗

)

...
𝛿 (𝑏̂

(𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖)𝑚,𝑗
)

]
]
]
]
]

]

,

𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+2,𝑗

= 𝑂
𝑚×1
,

...

𝑘
𝜇1+𝜇2+⋅⋅⋅+𝜇𝑖−1+𝜇𝑖 ,𝑗

= 𝑂
𝑚×1
,

(A.9)

where

𝐵
∗

𝑓,𝑗
≜

[
[
[
[
[

[

𝑏̂
(𝑘+1),𝑗

𝑏̂
(𝑘+2),𝑗

...
𝑏̂
𝑛,𝑗

]
]
]
]
]

](𝑛−𝑘)×𝑚

,

𝑏̂
𝑖,𝑗
≜ [𝑏̂

𝑖1,𝑗
, 𝑏̂
𝑖2,𝑗
, . . . , 𝑏̂

𝑖𝑚,𝑗
]
1×𝑚

,

𝛿 (𝑏̂
𝑖𝜉,𝑗
) ≜

{{

{{

{

0, if 𝑏̂
𝑖𝜉,𝑗
= 0,

1, if 𝑏̂
𝑖𝜉,𝑗
> 0,

−1, if 𝑏̂
𝑖𝜉,𝑗
< 0,

𝜉 = 1, 2, . . . , 𝑚.

(A.10)

Let

𝑈
𝑐,𝑗
(𝑡) = 𝑢

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) = − 𝐾

𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + 𝑉

𝑐,𝑗
(𝑡)

= − 𝐾
𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + V (𝑡 − 𝜏

𝑖,𝑗
)

= − [𝑂
𝑚×𝑘
, 𝐾

𝑓,𝑗
] 𝑥

𝑐
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(A.11)

Substituting (A.11) into (A.2) yields (13).

B. Output Transformation of the Time-Delay
Singular Systems

Equation (20b) can be decomposed as follows:

0 = 𝑥
𝑓,𝑠
(𝑡) +

𝑁1

∑

𝑖=1

Δ
1,𝑖
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐵
∗

𝑠,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(B.1a)

0 = 𝑥
𝑓,𝑓
(𝑡) +

𝑁1

∑

𝑖=1

Δ
2,𝑖
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(B.1b)

where 𝑥
𝑓
(𝑡) = [

𝑥𝑓,𝑠(𝑡)

𝑥𝑓,𝑓(𝑡)
], 𝐵

𝑓𝑘,𝑗
= [

𝐵

∗

𝑠,𝑗

𝐵

∗

𝑓,𝑗

], and 𝜂Λ
2,𝑖

=

block diagonal {Δ
1,𝑖
, Δ

2,𝑖
} is assumed. Based on (B.1a) and

(B.1b), the following equations hold:
𝑁1+1

∑

𝑖=1

Δ
1,𝑖
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑠,𝑖
) = −

𝑁2

∑

𝑗=1

𝐵
∗

𝑠,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (B.2a)

𝑁1+1

∑

𝑖=1

Δ
2,𝑖
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑠,𝑖
) = −

𝑁2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (B.2b)

where 𝑖 = 𝑘 and Δ
1,𝑘
= Δ

1,𝑘
= 𝐼, 𝜏

𝑠,𝑘
= 0. Similarly, from

(21a),
𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓
(𝑡 − 𝜏

𝑜
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + [𝐶

1
𝐶
2
] [
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑜
)

𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑜
)
]

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

1
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑜
) ,

(B.3)

where 𝐶
2
= [𝐶

1
𝐶
2
]. From (B.3) denotes the following

equation is satisfied:
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=
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(B.4)

where 𝜏∗
𝑖
= 𝜏

𝑠,𝑖
− 𝜏

𝑜
. One of the terms 𝜏∗

𝑖
in (B.4) is set to
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= 0 and (B.4) can be represented as
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From (B.5),
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Broken rotor bars fault detection in inverter-fed squirrel cage induction motors is still as difficult as the dynamics introduced
by the control system or the dynamically changing excitation (stator) frequency. This paper introduces a novel fault diagnosis
techniques using motor current signature analysis (MCSA) to solve the problems. Switching function concept and frequency
modulation theory are firstly used to model fault current signal. The competency of the amplitude of the sideband components
at frequencies (1 ± 2𝑠)𝑓

𝑠
as indices for broken bars recognition is subsequently studied in the controlled motor via open-

loop constant voltage/frequency control method. The proposed techniques are composed of five modules of anti-aliasing signal
acquisition, optimal-slip-estimation based on torque-speed characteristic curve of squirrel cage motor with different load types,
fault characteristic frequency determination, nonparametric spectrum estimation, and fault identification for achieving MCSA
efficiently. Experimental and simulation results obtained on 3 kW three-phase squirrel-cage induction motors show that the model
and the proposed techniques are effective and accurate.

1. Introduction

Squirrel-cage induction motors have dominated the field of
electromechanical energy conversion. They consume more
than 60% of the electrical energy produced and are present
in the main industrial applications [1, 2]. Although still
considered proverbially robust, all components of induction
machines are subject to increased stress, particularly when
operated in a controlled mode and with repeated load cycles
[3]. According to studies, broken rotor bars and cracked
end-ring faults in the rotor cage are responsible for about
5–10% of all breakdowns and incipient detection of these
events remains a key issue [4, 5]. The main reason why early
detection is important is that although broken rotor bars may
not cause immediate failure, there can be serious secondary
effects associated with their presence [6, 7]. If faults are
undetected, theymay lead to potentially catastrophic failures.
Thus, health-monitoring techniques to prevent the induction
motor failures are of great concern in the industry and are
gaining an increasing attention.

Motor current signature analysis (MCSA) has been
successfully applied to detect broken-rotor bar faults by
investigating the sideband components around the supplied
current fundamental frequency (i.e., the line frequency) 𝑓

𝑓
𝑏
= (1 ± 2𝑠) 𝑓, (1)

where 𝑓
𝑏
are the sideband frequencies associated with the

broken rotor bars and 𝑠 is the per unit motor slip [4, 8, 9].
Some quantitative conclusion based on the left sideband
values (LSB) of the amplitude-frequency spectrum plot of a
motor phase current even recommends −50 dB∼ −35 dB of
the sideband harmonics as the threshold level for generating
a warning or alarm [10]. In addition, MCSA has been tested
inmany industrial cases since the 1980s with good results [11–
16].

Even though numerous successful main-fed motor fault
detectionmethods are reported in the literature, bibliography
relative to inverter-fed motors on this topic seems to be poor.
With the increased emphasis on energy conservation and
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lower cost, induction machines are supplied and controlled
by inverters, and the use of inverter drives increases day
by day. As a result, dynamic performance is excellent due
to all kinds of control methods and the next steps in drive
development are going to be driven by attempts to increase
reliability and reducemaintenance costs. By using the current
sensor feedback and microprocessing unit, the new tread for
low-cost protection applications seems to be drive-integrated
fault diagnosis systems without using any external hardware.
Thus, it becomes more demanding to detect faults by using
MCSA in these drives.

The introduction of voltage-source-inverter-fed (VSI-
fed) motors has produced significant changes in the field
of diagnosis and control, needing further research in order
to overcome various challenges. Contrary to the motor line
current taken directly from the main, the inverter-fed motor
line current includes remarkable noise (inherent floor noise
which reduces the possibility of true fault pattern recognition
using line current spectrum) due to the high-frequency
switching devices, EMI and EMC effects, and so forth. The
current signal for rotor fault diagnosis needs precise and high
resolution information, which means the diagnosis system
demands additional hardware such as a low-pass filter, high-
precision AD converter, and additional software. Moreover,
closed-loop control in IM drives introduces new difficulties
in broken rotor bar detection, as traditional fault indicators
tend to be masked by a control algorithm. Therefore, the
methods developed for an open-loop operation are not able
to produce adequate and reliable information on the extent of
the fault and have to be adapted [4, 17, 18]. All these influences
complicate the utilization of frequency analysis methods.
VSI-fed motor faults have been analyzed, and the initial
results are given in the literature but further investigation is
still required.

The classic MCSA method works well under constant
load torque and with high-power motors, and it has mainly
been designed for fixed frequency supply, such as for
machines connected to the electrical grid. To obtain satis-
factory test results, in [7], recommendations are given from
the author’s experience. As stated in this paper, literally, “the
load on the motor should be sufficiently high to produce at
least 35% of rated full load rotor slip for a reliable single-test
broken bar analysis.” and “if themotor to be tested is fed from
a variable-speed converter drive, the frequency of the drive
should be locked at the 50/60 Hz power supply frequency for
the test.” Yet, difficulties emergewhen inverted-fedmotors are
applied to drive fans, pumps, or other mechanisms involving
speed control for energy-saving purpose. In these cases,
the excitation frequency will truly depend on the speed
reference and the load applied to the system.Therefore, unlike
the utility-driven case, the stator excitation frequency will
dynamically change and the position of the current harmon-
ics appearing on the stator-current spectrum due to electrical
faults is highly dependent on the mechanical motor load and
excitation frequency, which affects the slip frequency. As a
consequence, the conventional MCSA must be amended to
accommodate the new scenarios. Unfortunately, to the best
of our knowledge, in the published literatures there is no
research work on this subject.
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Figure 1: Schematic diagram of the PWMVSI-fed adjustable speed
drive.

In this context, following explicitly derivation from a
simplified fault signal model, a new online fault diagnosis
technique based on MCSA for inverter-fed squirrel-cage
induction motors is present. Compared with traditional
MCSA, the novelty of the proposed method is that broken
rotor bars fault in the controlled motor via open-loop con-
stant voltage/frequency control method could be identified
even if the motor operates at different excitation frequencies.
To do this, oversampling signal acquisition technique is used
to suppress significantly noise contained in the inverted-
fed motor line current, and fault-indicative frequencies with
variable excitation frequency are determined by torque-speed
characteristic curve of squirrel-cage motor with different
load types. To obtain satisfactory results, nonparametric
spectrum estimation algorithm and fault identification are
subsequently presented. Including this introductory section,
this paper is organized into six sections. Section 2 presents
a theoretical analysis model of stator current of inverter-fed
squirrel-cage motor, which is based on switching function
concept and modulation theory. A detailed description of
the harmonic components contained in current is given.
Section 3 elaborates the new broken rotor bars fault diagnosis
techniques. In Section 5, the proposed techniques are vali-
dated by laboratory tests; the method is applied to different
stator currents obtained from healthy and faulty machines.
Experimental and simulation results as well as the corre-
sponding analysis and discussion are presented in Section 4.
Finally, conclusions and recommendations are presented in
the last section.

2. Analytic Model of Stator Current Signature
for Squirrel-Cage Induction Motor with
Constant Volt-per-Hertz Control Technique

2.1. Analytic Model of Stator Current Signature for No-Fault
Squirrel-Cage Induction Motor. Switching function concept
is a powerful tool in understanding and optimizing the
performance of the converter [19, 20]. In [20], an analytical
approach for characterizing the current harmonics and inter-
harmonics of theVSI-fedASD injected into the supply system
in steady is presented using the switching function concept,
applicable to PWM VSI that is studied in this paper. Figure 1
shows the schematic diagram of a typical PWM VSI-fed
adjustable speed drive, where 𝑆

𝑖𝑎
, 𝑆
𝑖𝑏
, and 𝑆

𝑖𝑐
represent the

rectifier converter current switching functions that correlate
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the three-phase AC source currents 𝑖
󸀠

𝑎
, 𝑖󸀠
𝑏
, and 𝑖

󸀠

𝑐
and the

inverter input DC current 𝑖
𝑑
, 𝑆
𝑢𝑎
, 𝑆
𝑢𝑏
, and 𝑆

𝑢𝑐
represent the

inverter voltage switching functions that correlate inverter dc
input voltage and output phase voltages 𝑢

𝑎
, 𝑢
𝑏
and 𝑢
𝑐
,𝑍 is the

impedance operator seen from the inverter output terminals
corresponding to the neutral point of induction motor.
In order to calculate and analyse the harmonic currents
generated by the VSI-fed ASD, an analytical model based
on the modulation theory and switching function concept is
proposed and expressed by (2)∼(6). After obtaining the phase
currents of PWM VSI-fed motor, the harmonic components
of the current might be extracted by the use of a certain
spectrum analysis method as follows:

(𝑖
󸀠

𝑎
, 𝑖
󸀠

𝑏
, 𝑖
󸀠

𝑐
) = 𝑖
𝑑
(𝑆
𝑖𝑎
, 𝑆
𝑖𝑏
, 𝑆
𝑖𝑐
) , (2)

𝑖
𝑑
= (𝑖
𝑎
, 𝑖
𝑏
, 𝑖
𝑐
) (𝑆
𝑢𝑎
, 𝑆
𝑢𝑏
, 𝑆
𝑢𝑐
)
󸀠

, (3)

𝑢
𝑑
= (𝑢
󸀠

𝑎
, 𝑢
󸀠

𝑏
, 𝑢
󸀠

𝑐
) (𝑆
𝑖𝑎
, 𝑆
𝑖𝑏
, 𝑆
𝑖𝑐
)
󸀠

, (4)

(𝑢
𝑎
, 𝑢
𝑏
, 𝑢
𝑐
) = 𝑢
𝑑
(𝑆
𝑢𝑎
, 𝑆
𝑢𝑏
, 𝑆
𝑢𝑐
) , (5)

(𝑖
𝑎
, 𝑖
𝑏
, 𝑖
𝑐
) =

(𝑢
𝑎
, 𝑢
𝑏
, 𝑢
𝑐
)

𝑍
. (6)

As shown in Figure 1, for the two-level natural sampled
PWMwith a triangular wave of carrier signal, the three-phase
voltage switching functions 𝑆

𝑢𝑎
, 𝑆
𝑢𝑏
and 𝑆
𝑢𝑐
can be expressed

as the following double Fourier series, as follows:
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2
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2
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∞
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2
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2
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2

𝜋

∞

∑

𝑚=1

∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
sin [

(𝑚 + 𝑛) 𝜋

2
]

× sin (𝑚𝜔
𝑐
𝑡 + 𝑛𝜔

𝑠
𝑡) ,

𝑆
𝑢𝑏

(𝑡) =
𝑀

2
sin(𝜔

𝑠
𝑡 −

2𝜋

3
) +

2

𝜋

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
)

⋅ sin(
𝑚𝜋

2
) ⋅ sin (𝑚𝜔

𝑐
𝑡)

+
2

𝜋

∞

∑

𝑚=1

∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
sin [

(𝑚 + 𝑛) 𝜋

2
]

× sin [𝑚𝜔
𝑐
𝑡 + 𝑛 (𝜔

𝑠
𝑡 −

2𝜋

3
)] ,

𝑆
𝑢𝑐

(𝑡) =
𝑀

2
sin(𝜔

𝑠
𝑡 +

2𝜋

3
) +

2

𝜋

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
)

⋅ sin(
𝑚𝜋

2
) ⋅ sin (𝑚𝜔

𝑐
𝑡)

+
2

𝜋

∞

∑

𝑚=1

∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
sin [

(𝑚 + 𝑛) 𝜋

2
]

× sin [𝑚𝜔
𝑐
𝑡 + 𝑛 (𝜔

𝑠
𝑡 +

2𝜋

3
)] .

(7)

For a hypothetical ideal motor supplied from a balanced
three-phase source of sinusoidal voltages and driving a
constant load, the following waveform of selected phase-a
stator current may be assumed by substituting (7) into (5)
and (6), where the commutation effect is ignored and proper
origin of coordination selected for convenience of analysis is
as follows:

𝑖
𝑎
=

𝑀𝐸
𝑑

2
󵄨󵄨󵄨󵄨𝑍 (𝜔
𝑠
)
󵄨󵄨󵄨󵄨

cos [𝜔
𝑠
𝑡 − 𝜑 (𝑍 (𝜔

𝑠
))]

+
2𝐸
𝑑

𝜋
󵄨󵄨󵄨󵄨𝑍 (𝑚𝑁𝜔

𝑠
)
󵄨󵄨󵄨󵄨

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
) sin(

𝑚𝜋

2
)

× cos [𝑚𝑁𝜔
𝑠
𝑡 − 𝜑 (𝑍 (𝑚𝑁𝜔

𝑠
))]

+
2𝐸
𝑑

𝜋
󵄨󵄨󵄨󵄨𝑍 ((𝑚𝑁 + 𝑛) 𝜔

𝑠
)
󵄨󵄨󵄨󵄨

∞

∑

𝑚=1

±∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚

. sin [
(𝑚 + 𝑛) 𝜋

2
] ⋅ cos [ (𝑚𝑁 + 𝑛) 𝜔

𝑠
𝑡

−𝜑 (𝑍 ((𝑚𝑁 + 𝑛) 𝜔
𝑠
))]

= 𝐼
1
cos (𝜔

𝑠
𝑡 − 𝜑
1
) + 𝐼
2

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
) sin(

𝑚𝜋

2
)

× cos (𝑚𝑁𝜔
𝑠
𝑡 − 𝜑
2
)

+ 𝐼
3

∞

∑

𝑚=1

±∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
⋅ sin [

(𝑚 + 𝑛) 𝜋

2
]

× cos [(𝑚𝑁 + 𝑛) 𝜔
𝑠
𝑡 − 𝜑
3
] ,

(8)

where𝑀 is amplitude modulation index,𝑀 = 𝑈
𝑠
/𝑈
𝑐
≤ 1; 𝜔

𝑠

is frequency of the modulation waveform (reference) (rad/s),
𝜔
𝑠

= 2𝜋𝑓
𝑠
; 𝜔
𝑐
is frequency of the carrier signal (rad/s); 𝑁

ratio of the carrier frequency to the modulation frequency,
𝑁 = 𝜔

𝑐
/𝜔
𝑠
≥ 1; and 𝐽

0
, 𝐽
𝑛
are Bessel functions of the first

kind with order 0 and order 𝑛, respectively.

2.2. Analytic Model of Stator Current Signature for Faulty
Squirrel-Cage Induction Motor. When broken rotor bar or
cracked end-ring faults develop in the rotor cage, the current,
torque, and speed of the motor are affected, typically, in a
periodic manner. In the case of periodic disturbances, all
three line currents 𝑖

𝑎
, 𝑖
𝑏
, and 𝑖

𝑐
are simultaneously modulated

with the fundamental frequency 𝑓
𝑜
of the fault-induced

oscillation of motor variables. If only amplitude modulation
and fundamental frequency 𝑓

𝑜
are considered, current in

phase-a of the supply line may now be expressed as

𝑖
𝑓
= 𝑖
𝑎
[1 + 𝑎 cos (𝜔

𝑜
𝑡)] , (9)
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where 𝑎 denotes the modulation depth (modulation index)
and 𝜔

𝑜
= 2𝜋𝑓

𝑜
= 2𝑠𝜔

𝑠
= 4𝜋𝑠𝑓

𝑠
. The value of the modulation

index depends on the severity of the abnormality and motor
loads.

Substituting (8) in (9) yields

𝑖
𝑓
= 𝐼
1
cos (2𝜋𝑓

𝑠
𝑡 − 𝜑
1
) + 𝐼
2

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
) sin(

𝑚𝜋

2
)

× cos (2𝜋𝑚𝑁𝑓
𝑠
𝑡 − 𝜑
2
)

+ 𝐼
3

∞

∑

𝑚=1

±∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
⋅ sin [

(𝑚 + 𝑛) 𝜋

2
]

× cos [2𝜋 (𝑚𝑁 + 𝑛) 𝑓
𝑠
𝑡 − 𝜑
3
]

+ 𝑎𝐼
1
{cos [2𝜋 (1 + 2𝑠) 𝑓

𝑠
𝑡 − 𝜑
1
]

+ cos [2𝜋 (1 − 2𝑠) 𝑓
𝑠
𝑡 − 𝜑
1
]}

+ 𝑎𝐼
2

∞

∑

𝑚=1

𝐽
0
(
𝑚𝑀𝜋

2
) ⋅ sin(

𝑚𝜋

2
)

⋅ {cos [2𝜋 (𝑚𝑁 + 2𝑠) 𝑓
𝑠
𝑡 − 𝜑
2
]

+ cos [2𝜋 (𝑚𝑁 − 2𝑠) 𝑓
𝑠
𝑡 − 𝜑
3
]}

+ 𝑎𝐼
3

∞

∑

𝑚=1

±∞

∑

𝑛=±1

𝐽
𝑛
(𝑚𝑀𝜋/2)

𝑚
⋅ sin [

(𝑚 + 𝑛) 𝜋

2
]

⋅ {cos [2𝜋 (𝑚𝑁 + 𝑛 + 2𝑠) 𝑓
𝑠
𝑡 − 𝜑
3
]

+ cos [2𝜋 (𝑚𝑁 + 𝑛 − 2𝑠) 𝑓
𝑠
𝑡 − 𝜑
3
]} ,

(10)

indicating that the spectrum of stator current for inverter-fed
healthy squirrel-cage motor contains, apart from the funda-
mental 𝑓

𝑠
equal to the inverter excitation (stator) frequency,

𝑚𝑁𝑓
𝑠
harmonics at the carrier frequency andmultiples of the

carrier frequency and (𝑀𝑚+𝑛)𝑓
𝑠
harmonics in the sidebands

around each multiple of the carrier frequency. When a bar
breaks, a rotor asymmetry occurs.The result is that it induces
in the stator current additional frequency at 𝑓

𝑏
= (1 ± 2𝑠)𝑓

𝑠
,

𝑓
𝑏1

= (𝑚𝑁 ± 2𝑠)𝑓
𝑠
, and 𝑓

𝑏2
= (𝑚𝑁 + 𝑛 ± 2𝑠)𝑓

𝑠
around

harmonics frequency depicted above.The amplitude of fault-
indicative frequencies 𝑓

𝑏
= (1 ± 2𝑠)𝑓

𝑠
, 𝑓
𝑏1

= (𝑚𝑁 ± 2𝑠)𝑓
𝑠
,

and 𝑓
𝑏2

= (𝑚𝑁 + 𝑛 ± 2𝑠)𝑓
𝑠
depends on faulty severity, loads

and excitation (stator) frequency, and the distance between
𝑓
𝑏
, 𝑓
𝑏1
, and 𝑓

𝑏2
and corresponding harmonics frequency 𝑓

𝑠
,

𝑚𝑁𝑓𝑠, (𝑀𝑚 + 𝑛)𝑓
𝑠
is equal to 2𝑠𝑓

𝑠
. The amplitude of 𝑓

𝑏1

and 𝑓
𝑏2
can be considered negligible compared to that of𝑓

𝑏
;

as a result, 𝑓
𝑏

= (1 ± 2𝑠)𝑓
𝑠
are adopted as fault-indicative

frequencies.
In practice, the current is modulated with respect to not

only the amplitude but also the phase, and the modulation
process is more complex than that described by (9), but
the derived equation (10) provides an adequate basis for
qualitative assessment of diagnostic media.

3. Diagnosis Techniques of Broken
Rotor Bars for Squirrel-Cage Induction
Motor with Constant Voltage/Frequency
Control Method

3.1. Principles of Diagnosis. A motor diagnosis technique,
which contains the five processing modules illustrated in
Figure 2, is presented, based onmodel of squirrel-cage induc-
tion motor stator current signature depicted in Section 2.
The current flowing in single phase of the induction motor
is sensed by anti-aliasing signal acquisition module and
sent to spectrum estimation module, where the obtained
time-domain signal can be decomposed into components of
different frequency using Welch’s periodogram method. In
optimal-slip-estimation module, based on the real speed, the
inverter excitation frequency, and torque-speed characteristic
curve of squirrel-cage motor with different load types, the
motor slip is calculated and the consequent optimal slip esti-
mation value is transmitted to fault characteristic frequency
determination module, where characteristic frequencies of
broken rotor bars are calculated. Depending on whether the
characteristic frequencies of 𝑓

𝑏
= (1 ± 2𝑠)𝑓

𝑠
could be found

in power spectrum obtained in spectrum estimationmodule,
the conclusion of failure or not could be drawn, this work is
done in fault identification module.

3.2. Method of Antialiasing Signal Acquisition. When carry-
ing out diagnostic analysis one of the key elements to obtain
good results is to properly choose acquisition parameters:
the sampling frequency and the number of samples. There
are two different constraints: analysis signal bandwidth and
frequency resolution for the spectrum analysis.

It must be considered, when capturing the stator current
signal, that the sampling frequency𝑓sample plays an important
role. Generally, statistical bands of fault-indicative frequen-
cies can be ascertained from theory analysis andmanyMCSA
experiments [2, 8, 21–23]. Table 1 summarizes the range of
sideband frequencies in terms of faulty types. We see in
Table 1 that the spectral analysis of stator currents might
be done in low frequency range (typically between 0 and
2 kHz) to focus on the significant phenomena [24], and
in the case of broken rotor bars fault, the fault-indicative
frequencies are under 400Hz. Thus, taking into account the
Nyquist criterion, a very high sampling frequency value is not
mandatory in case that themotors are supplied by the ac grid.
Sampling frequencies of 2k or 5k samples/s (standard in data
acquisition devices) enable good resolution analysis.

In contrast, for the inverter-fed motors, sampling pro-
cedure is more demanding. As it is known, stator current
contains high-order frequency harmonics, in this case, due
to switching frequencies in modern inverter, typically above
10 kHz. Thus, aliasing may occur due to wrong sampling.
Antialiasing techniques have to be used in order to have a
correct current spectrum and prevent a false failure alert.

For decreasing alias to an acceptable level, it is common to
design a sharp-cutoff low-pass anti-aliasing filter and sample
the signal at a frequency lower than the dominant frequency
components such as the fundamental and the switching
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Figure 2: Schematic diagram of fault diagnosis.

Table 1: Range of sideband frequencies in terms of faulty types.

Fault types Theoretical formula Range Frequencies

Air-gap eccentricity 𝑓ecc = 𝑓
𝑠
[1 ± 𝑚(

1 − 𝑠

𝑝
)] Low, high 0∼900Hz

Broken rotor bars 𝑓
𝑏
= 𝑓
𝑠
[𝑘(

1 − 𝑠

𝑝
) ± 𝑠] Low 0∼400Hz

Bearing failure 𝑓
𝑖,𝑜

=
𝑛
𝑏

2
𝑓
𝑟
[1 ±

𝑏
𝑑

𝑝
𝑑

cos𝛽] High 0∼2000Hz

Interturn short circuit 𝑓stl = 𝑓
𝑠
[
𝑚

𝑝
(1 − 𝑠) ± 𝑘] , 𝑓sth = 𝑓

𝑠
[1 ± 𝑚𝑍

2
(
1 − 𝑠

𝑝
)] Low, high 0∼1000Hz

frequencies [25]. However, such sharp-cutoff analog filters
are difficult and expensive to implement, and if the system
is to operate with a variable sampling rate, adjustable filters
would be required. Furthermore, sharp-cutoff analog filters
generally have a highly nonlinear phase response, particularly
at the pass-band edge. In our proposedmethod, oversampling
as an alternative technique is used. The principle of over-
sampling is briefly reviewed as follows (see [26] for details). A
very simple anti-aliasing filter that has a gradual cutoff with
significant attenuation is firstly applied to prefilter the motor
stator phase-a current. Next, implement the A/D conversion
at a higher sampling rate. After that, downsampling the
obtained signal with a lower sampling frequency is imple-
mented using a digital low-pass filter.

As for the inverter supply, several harmonics could be
mixed up in case that low resolution of the band side was
chosen. In general, one can take the following steps to select
data acquisition parameters in order to achieve the correct
resolution needed.

(1) Definition of sampling frequency. For anti-aliasing
purpose, 𝑓sample has limitation as 𝑓sample ⩾ 2𝑓

𝑐
, where

𝑓
𝑐
is the highest fault-indicative frequency.

(2) Selection of required frequency resolution Δ𝑓.
(3) Specification of the number of samples 𝑁 =

𝑓sample/Δ𝑓.
(4) Determination of sampling time 𝑇 = 𝑁/𝑓sample =

𝑁𝑇
𝑠
.

3.3. Calculation of Slip and Fault-Indicative Frequencies with
Variable Excitation Frequency. From Section 2, broken rotor
bars can be detected bymonitoring the stator current spectral
components 𝑓

𝑏
= (1 ± 2𝑠)𝑓

𝑠
, where harmonic frequencies𝑓

𝑏

are a function of slip 𝑠 and excitation frequency 𝑓
𝑠
. In

case of broken rotor bars fault, excitation frequency 𝑓
𝑠

and the corresponding slip 𝑠 must be firstly determined
in order to find harmonic frequencies𝑓

𝑏
. The result of a

motor diagnosis using MCSA is incorrect if the detected
slip has an error [8, 27]. One of the most popular ways
to obtain the information of the slip frequency is to use
speed sensor. In our proposed method, slip 𝑠 is calculated in
optimal-slip-estimation module, based on the real measured
speed and torque-speed characteristic curve of squirrel-cage
motor.

The torque-speed characteristic curve of different load
types is shown in Figure 3. Curves (1), (2) and (3) are inherent
characteristic curves of squirrel-cage motor corresponding
to different excitation frequency 𝑓

𝑠
. For ease of analysis,

it is assumed that torque characteristic curves (1), (2) and
(3) intersect mechanical characteristic curve𝑓

1
at nominal

operating point 𝐴 and only excitation frequency 𝑓
𝑠
< 𝑓
1
is

considered (if 𝑓
𝑠
> 𝑓
1
, motor operates at point𝐴

3
of curve

(3)). In Figure 3, the value of slip 𝑠 corresponding to point
𝐴 is 𝑠
𝑒
= (𝑛
01

− 𝑛
𝑒
)/𝑛
01
. The no-load speedes corresponding

to different excitation frequency can be expressed as 𝑛
01

=

60𝑓
1
/𝑝 and 𝑛

02
= 60𝑓

𝑠
/𝑝, where 𝑝 denotes the number of

pole-pairs.
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𝛼 = 0: constant torch load
𝛼 = 1: load proportional to speed

𝛼 = 2: fans/pump loadA3
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(1) f1

(2) fs < f1

Figure 3: Torque-speed characteristic curve of squirrel-cage motor
with different load types.

If motor works with constant torque load, the operate
point shifts from 𝐴 to 𝐴

1
, the slip 𝑠 corresponding to 𝐴

1
is

equal to 𝑠constant = (𝑛
02

− 𝑛
1
)/𝑛
02
. Considering the congruent

relationship between Δ𝑛
01
𝑛
𝑒
𝐴 and Δ𝑛

02
𝑛
1
𝐴
1
, we can deduce

the specific slip formula as follows: 𝑠constant = 𝑠
𝑒
/(𝑓
1
/𝑓
𝑠
).

If motor works with fans/pump load, the operating point
shifts from𝐴 to𝐴

2
and the slip 𝑠 corresponding to𝐴

2
is equal

to 𝑠fans/pump = (𝑛
02

− 𝑛
2
)/𝑛
02
. Considering the similarity of

Δ𝑛
01
𝑛
𝑒
𝐴 to Δ𝑛

02
𝑛
1
𝐴
1
and relationship of 𝑇/𝑇

𝑒
= (𝑛
2
/𝑛
𝑒
)
2

between speed and torque of fans/pump, we can deduce the
specific slip formula as follows: 𝑠fans/pump/(1 − 𝑠fans/pump)

2

=

[𝑠
𝑒
/(1 − 𝑠

𝑒
)
2

]/(𝑓
𝑠
/𝑓
1
).

3.4. Nonparametric Spectrum Estimation Algorithms. MCSA
techniques include parametric and nonparametric spectrum
analysis of the motor current in general [28]. Among the
nonparametric algorithms, we useWelch’s periodogram algo-
rithms based on DFT to compute the power spectrum of the
phase-a motor current data.

Let 𝑖
𝑁
[𝑛] = {𝑖[0], 𝑖[1], . . . , 𝑖[𝑁 − 1]} be a discrete time

signal, which is obtained by sampling the phase-a motor
current signal 𝑖(𝑡) for a duration of sampling time 𝑇. To
reduce the variance of power spectrum estimate, the 𝑁-
point data sequence, 𝑖

𝑁
[𝑛] = {𝑖[0], 𝑖[1], . . . , 𝑖[𝑁 − 1]}, is

first partitioned into 𝐾 overlapping segments. The length of
each segment consists of 𝐿samples and these segments can be
overlapping on each other with (𝐿 − 𝑆) overlapping samples,
where 𝑆 is the number of points to shift between segments.
Thereafter, the periodogram of each segment is calculated
and the obtained periodograms are then averaged to give the
power spectrum estimate.

The length of segment 𝐿 is dependent on the required
resolution. In order to increase the quality of power spectrum
estimates, the signal segments can be windowed before calcu-
lating FFT.Theproposedmethods permit reduce the variance
of the estimate at the expense of a decreased frequency
resolution. However, it is difficult to trade off between the
frequency resolution and the estimate variance. It has been
noted that the use of 50% overlapping percentage among the
partitioned segments leads to efficient implementation of the

fast Fourier transform (FFT) algorithm and in this case the
relationship between 𝐾 and 𝐿 of segment as follows 𝐾 =

(𝑁 − 𝐿/2)/(𝐿/2).

Algorithm 1.

Step 1. Subdividing 𝑁-point sampled data sequence, 𝑖
𝑁
[𝑛] =

{𝑖[0], 𝑖[1], . . . 𝑖[𝑁 − 1]}, into 𝐾 overlapping segments; the 𝑘th
segment data 𝑥[𝑛 + 𝑘𝑆], 0 ⩽ 𝑛 ⩽ 𝐿 − 1 and 0 ⩽ 𝑘 ⩽ 𝐾 − 1, is
as follows:

Segment 1: 𝑥[0], 𝑥[1], . . . , 𝑥[𝐿 − 1];
Segment 1: 𝑥[𝑆], 𝑥[𝑆 + 1], . . . , 𝑥[𝐿 + 𝑆 − 1];
...
Segment𝐾: 𝑥[𝑁 − 𝐿], 𝑥[𝑁 − 𝐿 + 1], . . . , 𝑥[𝑁 − 1].

Step 2. Weighting 𝑘th segment, 𝑑[𝑛] denote rectangular
window function:

𝑥
𝑘

[𝑛] = 𝑑 [𝑛] 𝑥 [𝑛 + 𝑘𝑆] , 0 ⩽ 𝑛 ⩽ 𝐿 − 1, 0 ⩽ 𝑘 ⩽ 𝐾 − 1.

(11)

Step 3. Calculating power spectrum of the 𝑘th segment data:

𝑃
𝑘

(𝑓) =
1

ULT
𝑋(𝑓) [𝑋 (𝑓)]

∗

=
1

ULT
󵄨󵄨󵄨󵄨𝑋 (𝑓)

󵄨󵄨󵄨󵄨

2

, (12)

where 𝑋(𝑓) = 𝑇∑
𝐿−1

𝑛=0
𝑥
(𝑘)

[𝑛]𝑒
−𝑗2𝜋𝑓𝑛𝑇denote DFT of the 𝑘th

segment data and 𝑈 = 𝑇∑
𝐿−1

𝑛=0
𝑑
2

[𝑛] denote normalization
factor.

Step 4. Averaging all segments power spectrum:

𝑃̃ (𝑓) =
1

𝐾

𝐾−1

∑

𝑘=0

𝑃
𝑘

(𝑓) . (13)

4. Experiment Setup and Signal
Acquisition Methods

4.1. Experiment Setup. Schematic diagram of the experiment
setup is shown in Figure 4.This system can be used to sample
line current 𝑖

𝑎
and line voltage 𝑢

𝑎𝑏
(if necessary, it can be

arranged to sample the other line currents 𝑖
𝑏
and 𝑖
𝑐
and

line voltages 𝑢
𝑏𝑐
and 𝑢

𝑐𝑎
, too), and speed signals. The main

components of the experiment setup are as follows.

(1) Three-phase 3 kW SCIM (see Table 2 for details).
(2) Digital stroboscope coupled with the shaft of the

SCIM as angular-speed sensor to measure and record
the time variation of the speed.

(3) DC generator coupled with the SCIM to provide its
adjustable load.

(4) Mechanical coupling between SCIM and dc genera-
tor.

(5) Variable resistor bank as a variable load of the gen-
erator: the load of the generator and, consequently,
the induction motor can be adjusted by varying this
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Figure 4: Schematic diagram of the experiment.

resistance and/or regulating the excitation current of
the generator by relevant variable resistor. The resis-
tance of this variable-resistor bank can be selected
step by step by a selector on the bank. In the operating
motor, a suitable position of the selector is selected
and consequently the induction motor is loaded.
By regulating the output voltage of the generator
inserted in the excitation current path, the load level
is regulated precisely.

(6) Induction-motor drive system type Simens440 with
rating values in accordancewith that of the SCIM: this
drive has been mainly designed and built for open-
loop scalar controller in constant voltage/frequency
(CV/𝑓) method.

(7) Three-phase change-over switch to exchange the
motor connections from the mains for the drive
output.

(8) Signal conditioning circuits: since the used DAQ card
accepts only voltage signals with maximum ampli-
tudes of ±10V, the type and amplitude of the signals
are prepared before connection to the card. At the first
stage, TBC300LTP Hall-effect current transformer is
used to prepare the current signal and isolate it from
the power circuit. Secondary side current is then
converted to proportional voltage signals by current
shunts. Then, all signals are transmitted to the DAQ
card using a special shielded cable.

(9) PC equipped with a self-made data acquisition card
for sampling the electrical data at a certain adjustable
frequency and storing them in the memory.

Experiment setup to collect motor data and broken rotor
used in the tests are illustrated in Figure 5.

4.2. Signal Acquisition Requirements. The experiments
involved collecting the phase-a stator current and speed
data of the induction motor for different load conditions
and different excitation frequencies of 20Hz, 32Hz, 40Hz
and 50Hz, with three broken-rotor-bar fault and without
any fault. The load conditions of the motor are 25%,
50%, 75%, and 94% full load, respectively. These load

Table 2: Induction motor technical data.

Parameter Value Unit
Nominal power 3.0 kW
Nominal voltage 380 V
Nominal current 6.8 A
Nominal frequency 50 Hz
Connection Δ

Number of poles 4
Rotor slots number 28

condition percentages are determined according to the
motor nameplate information given in Table 2.

Signal over-sampling method has been chosen in order
to avoid aliasing. The stator current of motor was sampled
with a frequency of 2 kHz for main-fed and 40 kHz for
inverter-fed case. In the inverter-fed case, software filters
have been implemented in order to avoid aliasing. More
specifically, an 8-order anti-aliasing digital butter-worth filter
was implemented and resampling of the signal has been done
at 2 kHz. In our case, thirty seconds long data is acquired
from all twomotors for each load condition at each frequency
mentioned above. Thus, the analyzed frequencies vary from
0 to 1 kHz with a resolution of 0.03Hz. For the feature
extraction and discriminant analysis, starting with the first
sample, the acquired data is processed with a sliding window
size of 30,000 samples at a slide amount of 10,000, resulting
in 60 different data sets all together.

Figure 6 illustrates the intercept parts of 50Hz stator
current signal from the (a) main-fed and (b) inverter-
fed healthy squirrel-cage motors. An expert inspection of
these waveforms reveals that the inverter-fed motor current
waveform is heavily contaminated by the noise-like additive
waveform due to PWM switching of the voltage source
inverter. If we were to use this motor current waveform
data to extract necessary features for fault detection and
classification, we need to preprocess the data.

5. Experimental Results

5.1. Experiment 1. A nominally healthy squirrel-cage motor
was firstly tested and the power spectrum of the stator
current centered on the fundamental component supplied by
(a) main and (b) inverter is shown in Figure 7. The results
confirm that themotor rotor is healthy since the sidebands𝑓

𝑏

are not present. Comparisons of Figures 7(a) and 7(b) shows
that a large amount of harmonic components is included in
Figure 7(b) and the inverter supply does affect the spectrumi-
dentifiability. Figure 8 indicates power spectrum of the stator
current around the fundamental component for (a) main-
fed and (b) inverter-fed fault squirrel-cage motors with three
broken bars and full load. The annotations appearing in the
figure denote themain sideband components around the sup-
ply frequency and corresponding amplitudes. Comparison of
Figures 7 and 8 indicates that sideband components appear,
which demonstrates the broken bars occurred. Although
more frequency information appears, one could still identify
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Figure 5: Experiment setup to collect motor data and broken rotor used in the tests.
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Figure 6: 50Hz stator current signal from the (a) main-fed and (b) inverter-fed healthy squirrel-cage motor.
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Figure 7: Power spectrumof the stator current around the fundamental component for (a)main-fed and (b) inverter-fed healthy squirrel-cage
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Figure 9: Power spectrum of the stator current around different excitation frequency of (a) 45Hz, (b) 40Hz, (c) 32Hz, and (d) 20Hz.
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Figure 10: Power spectrum of the stator current around (left) 25% and (right) 50% full loads. Top row: 32Hz and bottom row: 50Hz reference
frequency.

in Figure 8(b) broken rotor bars harmonics at 45Hz and
55Hz using our proposed method. Comparison of Figures
8(a) and 8(b) also indicates that, for the same level of damage
at the same load, the spectrum sidebands have the same
amplitude for different supply.

5.2. Experiment 2. The second experiment involved fault
squirrel-cage motor operating at different excitation fre-
quency of inverter with three broken basr and full load.

Figure 9 gives the power spectrum of the stator current
around the excitation frequencies of 45Hz, 40Hz, 32Hz, and
20Hz. As expected, the sideband components𝑓

𝑏
= (1±2𝑠)𝑓

𝑠
,

depending on excitation frequency and load are present.
Comparison of Figures 9(a), 9(b), 9(c), and 9(d) indicates that
the left sideband harmonic component (1 − 2𝑠)𝑓

𝑠
varies from

(41Hz,−36 dB) to (18Hz,−42 dB) and right harmonic (1 +

2𝑠)𝑓
𝑠
from (49Hz,−39 dB) to(22Hz,−42 dB), when excitation

frequency varies from45Hz to 20Hz.An expert inspection of
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these spectrums reveals that𝑓
𝑏
= (1±2𝑠)𝑓

𝑠
are always located

around the excitation frequency and the distance from the
excitation frequency is 2𝑠𝑓

𝑠
. It also can be seen from Figure 9

that the amplitude of left sideband harmonic component (1−
2𝑠)𝑓
𝑠
decreases with the excitation frequency, which is the

result that when excitation frequency decreases the output
voltage becomes lower andmuch smaller current is drawn by
motor.

5.3. Experiment 3. In Experiment 3, additional experiments
were performed with the faulty motor at different excitation
frequencies (32Hz, 50Hz) under two different loads (25%,
50%) to assess the performance of the proposed method over
the full range of motor loads. Using the proposed diagnosis
method, the collected phase current data of the fault motor
with three broken bars were analyzed. Figures 10(a) and 10(b)
show the results with 32Hz excitation frequency at different
loads and it can be seen that the fault characteristic frequency
of broken rotor bars is exposed clearly. With the increase
of load, the components of characteristic frequency become
more andmore significant, such as in Figure 10(a) of 25% load
and Figure 10(b) of 50% load. The similar results could be
received for fault motor with 50Hz excitation frequency at
different loads; see Figure 10(c) of 25% load and Figure 10(d)
of 50% load.

6. Conclusion

Open-loop voltage-source-inverter-fed squirrel-cage motors
with constant voltage/frequency control method are widely
used to drive fans, pumps, or other mechanisms involving
speed control for energy-saving purpose. In these cases,
the motor operates steadily with different excitation fre-
quencies. Unlike the utility-driven case, the position of the
current harmonics appearing on the stator-current spec-
trum due to broken rotor bar faults is highly dependent
on the mechanical motor load and excitation frequency,
which affects the slip frequency. As a consequence, the
reliable identification and isolation of faults remains an open
issue.

In this paper, a simplified fault current signal model
is firstly established using switching function concept and
frequency modulation theory. It is demonstrated that the
inverter-fed motor current is heavily contaminated due to
PWM switching of the voltage source inverter. However,
the broken rotor bars fault characteristic frequency 𝑓

𝑏
=

(1 ± 2𝑠)𝑓
𝑠
, depending on faulty severity, loads, and excitation

frequency, is always located around the excitation frequency
and the distance from the excitation frequency is 2𝑠𝑓

𝑠
. Novel

broken rotor bar fault diagnosis techniques using motor
current signature analysis (MCSA) for open-loop voltage-
source-inverter-fed squirrel-cage inductionmotors with con-
stant voltage/frequency control method are subsequently
proposed. Experimental results obtained on self-made 3 kW
three-phase squirrel-cage induction motors are discussed.
It is shown that experimental and simulation results are
consistent with those of the model revealed and the proposed
techniques are effective and accurate.

The method described works well under constant load
torque, but some difficulties appear with regard to closed-
loop control-operated machines, when 𝑓

𝑠
and 𝑠 vary almost

simultaneously and it is impossible to employ the proposed
method to diagnose broken rotor bar fault. At the moment,
further research is carried out for the features, advantages,
limitations, and improvements of the proposed techniques.
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By integrating the cardinality balancedmultitargetmulti-Bernoulli (CBMeMBer) filter with the interactingmultiplemodels (IMM)
algorithm, an MM-CBMeMBer filter is proposed in this paper for tracking multiple maneuvering targets in clutter. The sequential
Monte Carlo (SMC) method is used to implement the filter for generic multi-target models and the Gaussian mixture (GM)
method is used to implement the filter for linear-Gaussian multi-target models. Then, the extended Kalman (EK) and unscented
Kalmanfiltering approximations for theGM-MM-CBMeMBer filter to accommodatemildly nonlinearmodels are described briefly.
Simulation results are presented to show the effectiveness of the proposed filter.

1. Introduction

Recently, the random-finite-set-(RFS-) based multitarget
tracking approaches [1] have attracted extensive attention.
Although theoretically solid, the RFS-based approaches usu-
ally are involved with intractable computations. By introduc-
ing the finite-set statistics (FISST) [2], Mahler developed the
probability hypothesis density (PHD) [3] and cardinalized
PHD (CPHD) [4] filters, which have been shown to be a
computationally tractable alternative to full multitarget Bayes
filters in the RFS framework. The sequential Monte Carlo
(SMC) implementations for the PHD and CPHD filters were
devised by Zajic and Mahler [5], Sidenbladh [6], and Vo
et al. [7]. Vo et al. and Zhang et al. [8–10] devised the
Gaussian mixture (GM) implementations for the PHD and
CPHDfilters under the linear-Gaussian assumption on target
dynamics, birth process, and sensor model. The PHD-based
approaches have been successfully used for many real-world
problems [11–13]. However, the SMC-PHD and SMC-CPHD
approaches require clustering to extract state estimates from
the particle population, which is expensive and unreliable
[14, 15].

In 2007,Mahler proposed themultitargetmulti-Bernoulli
(MeMBer) [2] recursion, which is an approximation to the
full multitarget Bayes recursion using multi-Bernoulli RFSs

under low clutter density scenarios. In 2009, Vo et al. showed
that the MeMBer filter overestimates the number of targets
and proposed a cardinality-balanced MeMBer (CBMeMBer)
filter [16] to reduce the cardinality bias. Then, the SMC
and GM implementations for the MeMBer and CBMeMBer
filters were, respectively, proposed for generic and linear-
Gaussian dynamic and measurement models. The MeMBer
and CBMeMBer recursions propagate not the moments and
cardinality distributions which are propagated by the PHD
and CPHD filters but rather the approximate multitarget
multi-Bernoulli posterior density. Therefore, the key advan-
tage of the SMC-CBMeMBer filter over the SMC-PHD and
SMC-CPHD filters is that the multi-Bernoulli representation
of the posterior density allows reliable and inexpensive
extraction of state estimates. The CBMeMBer filter has been
applied for tracking multiple targets according to their audio
and visual information [17].

The original CBMeMBer filter does not consider the
targetmaneuvers.Maneuvering targetsmight switch between
different models of operation, so tracking using a single-
model CBMeMBer filter might fail since the filter does not
match the actual system dynamics. It is well known that
the interacting multiple models (IMM) approaches [18] have
been proven to be very effective and have better performance
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than the single-model filters in tracking a singlemaneuvering
target without clutter. In the IMM approaches, a bank of
filters, each matched with a different target motion model,
operate in parallel. In general, there are three key steps
in the IMM estimators: (1) mixing the model-conditioned
estimates; (2) model-conditioned base-state estimation; (3)
deriving the overall state estimate by combining the estimates
from each model-conditioned base-state filters.

By integrating the CBMeMBer filter with the IMM algo-
rithm, an MM-CBMeMBer filter is proposed to address the
problem of tracking multiple maneuvering targets in clutter,
which is much more difficult than the problem of tracking a
single maneuvering target without clutter since the associa-
tion between the measurements and the targets is unknown.
The SMC method is used to implement the filter for generic
multitarget models while the GM method is used to imple-
ment the filter for linear-Gaussian multitarget models. Then,
the extended Kalman (EK) [19] and unscented Kalman (UK)
[20] filtering approximations for the GM-MM-CBMeMBer
filter to accommodate mildly nonlinear models are described
briefly. Nonlinear and linear-Gaussian examples of multiple
maneuvering targets tracking are, respectively, presented for
comparing the performance of the MM-CBMeMBer filter
with that of the single-model CBMeMBer filters, MM-PHD
filter [21–24], and MM-CPHD filter [25]. The simulation
results show that (1) the proposed filter can estimate the num-
ber and states of multiple maneuvering targets effectively,
whereas the performance of the single-model CBMeMBer
filters is rather poor; (2) under relatively low clutter density,
the SMC-MM-CBMeMBer filter outperforms the SMC-MM-
PHDand SMC-MM-CPHDfilters; (3) the performance of the
GM-MM-CBMeMBer filter is similar to that of theGM-MM-
PHD filter and hence is inferior to that of GM-MM-CPHD
filter.

The rest of the paper is organized as follows. Section 2
describes the problem ofmultiple maneuvering targets track-
ing. In Section 3, theMM-CBMeMBer recursion is given.The
generic SMC implementation of the MM-CBMeMBer filter
is described in Section 4. The analytic GM implementation
of the MM-CBMeMBer filter for linear-Gaussian multitarget
models and its EK and UK extensions for nonlinear multi-
target models are, respectively, given in Section 5. Numerical
studies are shown in Section 6.The conclusions and the future
work are given in Section 7.

2. Problem Statement for Multiple
Maneuvering Targets Tracking

The multiple maneuvering targets appear and disappear
randomly against time over an observation region. At time
𝑘, let x

𝑘
∈ R𝑛 denote the kinematical state of a target and

𝑛
𝑘
∈ N the label of the model in effect, whereN is the discrete

set of all model labels. The models follow a discrete Markov
chain with transition probability ℎ

𝑘|𝑘−1
(𝑛
𝑘
| 𝑛

𝑘−1
). Let y

𝑘
=

(x
𝑘
, 𝑛
𝑘
) ∈ R𝑛 × N denote the augmented state vector, whose

transition is governed by the density

𝑓
𝑘|𝑘−1

(y
𝑘
| y
𝑘−1
) = 𝑓

𝑘|𝑘−1
(x
𝑘
| x
𝑘−1
, 𝑛
𝑘
) ℎ

𝑘|𝑘−1
(𝑛
𝑘
| 𝑛
𝑘−1
) ,

(1)

where 𝑓
𝑘|𝑘−1

(x
𝑘
| x

𝑘−1
, 𝑛
𝑘
) is the kinematical state transition

density conditioned on model 𝑛
𝑘
.

The measurement originates either from target or from
random clutter (false alarm). Moreover, the target-generated
measurements are indistinguishable from the clutter. At time
𝑘, let z

𝑘
∈ R𝑚 denote the measurement vector received by

a sensor. The single-measurement single-target likelihood is
described by the density conditioned on model 𝑛

𝑘

𝑔
𝑘
(z
𝑘
| y
𝑘
) = 𝑓

𝑘|𝑘
(z
𝑘
| x
𝑘
, 𝑛
𝑘
) . (2)

At time 𝑘, let 𝑇
𝑘
denote the number of the existing targets

and 𝑆
𝑘
the number of the measurements. Then, multiple

augmented states and unlabelled sensor measurements can
be represented as finite sets 𝑌

𝑘
= {(x(𝑖)

𝑘
, 𝑛
(𝑖)

𝑘
)}
𝑇𝑘

𝑖=1
and 𝑍

𝑘
=

{z(𝑠)
𝑘
}
𝑆𝑘

𝑠=1
, respectively. In addition, let𝑍

1:𝑘
≜ 𝑍

1
, . . . , 𝑍

𝑘
denote

a sequence of the measurement sets available up to and
including time 𝑘.

3. MM-CBMeMBer Filter

A Bernoulli RFS 𝑌
𝑘
has probability 1 − 𝑟

𝑘
of being empty and

probability 𝑟
𝑘
(0 ≤ 𝑟

𝑘
≤ 1) of being a singleton whose only

element is distributed according to a probability density 𝑝
𝑘
.

The probability density of 𝑌
𝑘
is

𝜋 (𝑌
𝑘
) = {

1 − 𝑟
𝑘
, 𝑌

𝑘
= 0,

𝑟
𝑘
𝑝
𝑘
(x
𝑘
, 𝑛
𝑘
) , 𝑌

𝑘
= {(x

𝑘
, 𝑛
𝑘
)} .

(3)

A multi-Bernoulli RFS 𝑌
𝑘
is a union of a fixed number

of independent Bernoulli RFSs 𝑌(𝑖)
𝑘
, 𝑖 = 1, . . . , 𝑀

𝑘
, that is,

𝑌
𝑘
= ⋃

𝑀𝑘

𝑖=1
𝑌
(𝑖)

𝑘
. 𝑌
𝑘
is thus completely described by the multi-

Bernoulli parameter set {(𝑟(𝑖)
𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘

𝑖=1
with the mean

cardinality∑𝑀𝑘
𝑖=1
𝑟
(𝑖)

𝑘
and the probability density [2]

𝜋 (𝑌
𝑘
) =

𝑀𝑘

∏

𝑗=1

(1 − 𝑟
(𝑗)

𝑘
) ∑

1≤𝑖1 ̸= ⋅⋅⋅ ̸= 𝑖|𝑌
𝑘
|≤𝑀𝑘

|𝑌𝑘|

∏

𝑗=1

𝑟
(𝑖𝑗)

𝑘
𝑝
(𝑖𝑗)

𝑘
(x
𝑘
, 𝑛
𝑘
)

1 − 𝑟
(𝑖𝑗)

𝑘

,

(4)

where | ⋅ | denotes the cardinality of a set.
Throughout this paper, we abbreviate a probability den-

sity of the form (4) by 𝜋(𝑌
𝑘
) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘

𝑖=1
.

Let𝑝
𝑆,𝑘
(y
𝑘−1
)denote the probability that themaneuvering

target with augmented state y
𝑘−1

survives at time 𝑘; let
𝑝
𝐷,𝑘
(y
𝑘
) denote the probability that the maneuvering target

with augmented state y
𝑘
generates an observation at time 𝑘.

RFS modeling the multiple maneuvering targets state 𝑌
𝑘
and

the sensor measurement 𝑍
𝑘
are, respectively, given by the

union

𝑌
𝑘
= [

[

⋃

y𝑘−1∈𝑌𝑘−1
Ω
𝑘|𝑘−1

(y
𝑘−1
)]

]

∪ Γ
𝑘
,

𝑍
𝑘
= [ ⋃

y𝑘∈𝑌𝑘
Θ
𝑘
(y
𝑘
)] ∪ 𝐾

𝑘
,

(5)
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where Γ
𝑘
denotes the multi-Bernoulli RFS of spontaneous

births; the Bernoulli RFS Ω
𝑘|𝑘−1

(y
𝑘−1
) with 𝑟

𝑘
= 𝑝

𝑆,𝑘
(y
𝑘−1
)

and 𝑝
𝑘
(y
𝑘
) = 𝑓

𝑘|𝑘−1
(y
𝑘
| y

𝑘−1
) is used to model the dynamic

behavior of y
𝑘−1

∈ 𝑌
𝑘−1

; the Bernoulli RFS Θ
𝑘
(y
𝑘
) with

𝑟
𝑘
= 𝑝

𝐷,𝑘
(y
𝑘
) and 𝑝

𝑘
(z
𝑘
) = 𝑔

𝑘
(z
𝑘
| y

𝑘
) is used to model the

observation behavior of y
𝑘
∈ 𝑌

𝑘
; the clutter is modeled as a

PoissonRFS𝐾
𝑘
with the intensity 𝜅

𝑘
(z
𝑘
) = 𝜆

𝑐,𝑘
𝑓
𝑐,𝑘
(z
𝑘
), where

𝜆
𝑐,𝑘

and 𝑓
𝑐,𝑘
(⋅) are, respectively, the average clutter number

and the probability density of clutter spatial distribution at
time 𝑘.

Based on the above RFS models of the multiple maneu-
vering targets and the method of Mahler’s FISST, the MM-
CBMeMBer filter, which implicitly requires a finite number of
single-model CBMeMBer filters operate in parallel, is derived
by introducing the mixing and combination strategies in the
IMMapproaches [18]. As themultiple-model approaches, the
MM-CBMeMBer filter does not need a maneuver detection
decision and undergoes a soft switching between the models.
One cycle of the recursiveMM-CBMeMBer algorithm can be
described as follows.

(1) The Mixing and Prediction Stage. If at time 𝑘 − 1, the pos-
terior density is a multi-Bernoulli of the form 𝜋

𝑘−1
(𝑌
𝑘−1

|

𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
))}
𝑀𝑘−1

𝑖=1
, then the mixed multi-

Bernoulli density is

⌣

𝜋
𝑘−1
(
⌣

𝑌
𝑘−1

| 𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘
))}

𝑀𝑘−1

𝑖=1

, (6)

where

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘
) = ∑

𝑛𝑘−1

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘
, 𝑛
𝑘−1
)

= ∑

𝑛𝑘−1

𝑝
(𝑖)

𝑘−1
(𝑛
𝑘
| x
𝑘−1
, 𝑛
𝑘−1
) 𝑝

(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
) .

(7)

Since themodels switching is only decided by themodel tran-
sition probability and is independent of the target kinematical
state:

= ∑

𝑛𝑘−1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
) 𝑝

(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
) (8)

is a combination of the previous model-dependent densities.
Finally, the mixed and predicted density is also a multi-
Bernoulli and is given by

𝜋
𝑘|𝑘−1

(𝑌
𝑘
| 𝑍

1:𝑘−1
)

= {(𝑟
(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}

𝑀𝑘−1

𝑖=1

∪ {(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀Γ,𝑘

𝑖=1

,

(9)

where {(𝑟(𝑖)
Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀Γ,𝑘

𝑖=1

are the parameters of themulti-
Bernoulli RFS of births at time 𝑘:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1

= 𝑟
(𝑖)

𝑘−1
∑

𝑛𝑘

∑

𝑛𝑘−1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)

× ⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛

𝑘−1
) , 𝑝

𝑆,𝑘
(⋅, 𝑛

𝑘−1
)⟩ ,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
)

= (∑

𝑛𝑘−1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)

× ⟨𝑓
𝑘|𝑘−1

(x
𝑘
| ⋅, 𝑛

𝑘
) , 𝑝

(𝑖)

𝑘−1
(⋅, 𝑛

𝑘−1
) 𝑝

𝑆,𝑘
(⋅, 𝑛

𝑘−1
)⟩)

× (∑

𝑛𝑘

∑

𝑛𝑘−1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)

× ⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛

𝑘−1
) , 𝑝

𝑆,𝑘
(⋅, 𝑛

𝑘−1
)⟩)

−1

,

(10)

where ⟨⋅, ⋅⟩ defines the integral inner product, that is,

⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛

𝑘−1
) , 𝑝

𝑆,𝑘
(⋅, 𝑛

𝑘−1
)⟩

= ∫𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
) 𝑝

𝑆,𝑘
(x
𝑘−1
, 𝑛
𝑘−1
) 𝑑x

𝑘−1
.

(11)

(2) The Update Stage. If at time 𝑘, the mixed and predicted
density is a multi-Bernoulli of the form 𝜋

𝑘|𝑘−1
(𝑌
𝑘
| 𝑍

1:𝑘−1
) =

{(𝑟
(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘|𝑘−1

𝑖=1

, then the posterior density can
be approximated by a multi-Bernoulli as follows:

𝜋
𝑘
(𝑌
𝑘
| 𝑍

𝑘
) ≈ {(𝑟

(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀𝑘|𝑘−1

𝑖=1

∪ {(𝑟
𝑈,𝑘
(z
𝑘
) , 𝑝

𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
))}z𝑘∈𝑍𝑘

,

(12)

where

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

,
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𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
) =

(1 − 𝑝
𝐷,𝑘
(x
𝑘
, 𝑛
𝑘
)) 𝑝

(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
)

1 − ∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

,

𝑟
𝑈,𝑘
(z
𝑘
) = (

𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑔

𝑘
(z
𝑘
| ⋅, 𝑛

𝑘
) 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩)

2
)

×(𝜅
𝑘
(z
𝑘
) +

𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑔

𝑘
(z
𝑘
| ⋅, 𝑛

𝑘
) 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

)

−1

,

𝑝
𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
) =

∑
𝑀𝑘|𝑘−1

𝑖=1
(𝑟
(𝑖)

𝑘|𝑘−1
/ (1 − 𝑟

(𝑖)

𝑘|𝑘−1
)) 𝑝

(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
) 𝑔

𝑘
(z
𝑘
| x
𝑘
, 𝑛
𝑘
) 𝑝

𝐷,𝑘
(x
𝑘
, 𝑛
𝑘
)

∑
𝑀𝑘|𝑘−1

𝑖=1
(𝑟
(𝑖)

𝑘|𝑘−1
/ (1 − 𝑟

(𝑖)

𝑘|𝑘−1
))∑

𝑛𝑘

⟨𝑝
(𝑖)

𝑘|𝑘−1
(⋅, 𝑛

𝑘
) , 𝑔

𝑘
(z
𝑘
| ⋅, 𝑛

𝑘
) 𝑝

𝐷,𝑘
(⋅, 𝑛

𝑘
)⟩

.

(13)

(3) The Multitarget State Estimation. For the multi-Bernoulli
representation 𝜋

𝑘
(𝑌
𝑘
| 𝑍

𝑘
) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘

𝑖=1
, the

extraction of multitarget number and state estimates are
straightforward since the probability 𝑟(𝑖)

𝑘
indicates how likely

the 𝑖th hypothesized track is a true track, and the posterior
density 𝑝(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
) describes the distribution of the estimated

augmented state of the track. The state estimation proce-
dure for the MM-CBMeMBer filter [8] is summarized in
Algorithm 1.

4. SMC-MM-CBMeMBer Filter

In this section, a generic SMC implementation of the
proposed MM-CBMeMBer filter is presented for accom-
modating nonlinear dynamic and measurement models. In
this implementation, the samples or particles, which are
used to represent the multi-Bernoulli density of multiple
maneuvering targets, consists of the kinematical state and
model information with associated weights. One cycle of the
recursive SMC-MM-CBMeMBer algorithm can be described
as follows.

(1) The SMC Mixing and Prediction Stage. Suppose that at
time 𝑘 − 1 the multi-Bernoulli posterior density 𝜋̃

𝑘−1
(𝑌
𝑘−1

|

𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
))}
𝑀𝑘−1

𝑖=1
is given and each

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
), 𝑖 = 1, . . . ,𝑀

𝑘−1
, is composed of a set of

weighted samples {𝜔(𝑖,𝑙)
𝑘−1
, x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
}
𝐿
(𝑖)

𝑘−1

𝑙=1
,

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
) =

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘−1
𝛿 (x

𝑘−1
− x(𝑖,𝑙)

𝑘−1
, 𝑛
𝑘−1

− 𝑛
(𝑖,𝑙)

𝑘−1
) ,

(14)

where 𝛿(x − x(𝑐)) is Dirac delta function centered at x(𝑐).
Then, the mixed and predicted multi-Bernoulli density
𝜋̃
𝑘|𝑘−1

(𝑌
𝑘

| 𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘−1

𝑖=1

∪

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀Γ,𝑘

𝑖=1

can be computed as follows:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1
= 𝑟

(𝑖)

𝑘−1

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘−1
𝑝
𝑆,𝑘
(x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
)

ℎ
𝑘|𝑘−1

(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

𝛼
(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

,

𝑟
(𝑖)

Γ,𝑘
= parameter given by birth model,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
) =

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
𝛿 (x

𝑘
− x(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

𝑃,𝑘|𝑘−1
) ,

𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
) =

𝐿
(𝑖)

Γ,𝑘

∑

𝑙=1

𝜔
(𝑖,𝑙)

Γ,𝑘
𝛿 (x

𝑘
− x(𝑖,𝑙)

Γ,𝑘
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

Γ,𝑘
) ,

(15)

where the particles x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

, 𝑛(𝑖,𝑙)
𝑃,𝑘|𝑘−1

corresponding to the sur-
viving maneuvering targets can be derived by sampling from
the proposal densities 𝑞(𝑖)

𝑘
(⋅ | x

𝑘−1
, 𝑛
𝑘
, 𝑍

𝑘
) and 𝛼(𝑖)

𝑘
(⋅ | 𝑛

𝑘−1
)

𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
∼ 𝛼

(𝑖)

𝑘
(⋅ | 𝑛

(𝑖,𝑙)

𝑘−1
)

x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

∼ 𝑞
(𝑖)

𝑘
(⋅ | x(𝑖,𝑙)

𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑍

𝑘
)

𝑙 = 1, . . . , 𝐿
(𝑖)

𝑘−1

(16)
with the associated weights

𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
=

̆𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1

∑
𝐿
(𝑖)

𝑘−1

𝑙=1
̆𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1

,

̆𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
=

𝑓
𝑘|𝑘−1

(x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

| x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
) 𝑝

𝑆,𝑘
(x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
)

𝑞
(𝑖)

𝑘
(x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

| x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑍

𝑘
)

⋅

ℎ
(𝑖)

𝑘|𝑘−1
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

𝛼
(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

⋅ 𝜔
(𝑖,𝑙)

𝑘−1

(17)

and the particles x(𝑖,𝑙)
Γ,𝑘

, 𝑛(𝑖,𝑙)
Γ,𝑘

corresponding to the new born
maneuvering targets can be derived by sampling from the
proposal densities 𝑏(𝑖)

𝑘
(⋅ | 𝑛

𝑘
, 𝑍

𝑘
) and 𝛽(𝑖)

𝑘
(⋅)

𝑛
(𝑖,𝑙)

Γ,𝑘
∼ 𝛽

(𝑖)

𝑘
(⋅)

x(𝑖,𝑙)
Γ,𝑘

∼ 𝑏
(𝑖)

𝑘
(⋅ | 𝑛

(𝑖,𝑙)

Γ,𝑘
, 𝑍

𝑘
)

𝑙 = 1, . . . , 𝐿
(𝑖)

Γ,𝑘
(18)
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given 𝜋
𝑘
(𝑌
𝑘
| 𝑍

𝑘
) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀𝑘

𝑖=1
; set 𝑇̂

𝑘
= 0,𝑋

𝑘
= ⌀

for 𝑖 = 1, . . . ,𝑀
𝑘
,

if 𝑟(𝑖)
𝑘
> a given threshold (i.e. 0.5);

𝑇̂
𝑘
= 𝑇̂

𝑘
+ 1,

x̂(̂𝑇𝑘)
𝑘

= ∑

𝑛𝑘

probability of model 𝑛𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑝
(𝑖)

𝑘
(𝑛
𝑘
) ⋅

state estimation conditioned on model 𝑛𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ x
𝑘
𝑝
(𝑖)

𝑘
(x
𝑘
|𝑛
𝑘
)𝑑x

𝑘
= ∑

𝑛𝑘

∫ x
𝑘
𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
)𝑑x

𝑘
,

𝑋
𝑘
:= [𝑋

𝑘
, x̂(̂𝑇𝑘)
𝑘
];

end;
end;

output:𝑋
𝑘
= {x̂(𝑖)

𝑘
}
̂
𝑇𝑘

𝑖=1

Algorithm 1: Multitarget state estimation procedure for the MM-CBMeMBer filter.

with the associated weights

𝜔
(𝑖,𝑙)

Γ,𝑘
=

̆𝜔
(𝑖,𝑙)

Γ,𝑘

∑
𝐿
(𝑖)

Γ,𝑘

𝑙=1
̆𝜔
(𝑖,𝑙)

Γ,𝑘

,

̆𝜔
(𝑖,𝑙)

Γ,𝑘
=

𝑝
(𝑖)

Γ,𝑘
(x(𝑖,𝑙)
Γ,𝑘
, 𝑛
(𝑖,𝑙)

Γ,𝑘
)

𝑏
(𝑖)

𝑘
(x(𝑖,𝑙)
Γ,𝑘

| 𝑛
(𝑖,𝑙)

Γ,𝑘
, 𝑍

𝑘
) 𝛽

(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

Γ,𝑘
)

.

(19)

(2) The SMC Update Stage. Suppose that at time 𝑘 the mixed
and predicted multi-Bernoulli density 𝜋̃

𝑘|𝑘−1
(𝑌
𝑘
| 𝑍

1:𝑘−1
) =

{(𝑟
(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘|𝑘−1

𝑖=1
is given and each 𝑝(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
),

𝑖 = 1, . . . ,𝑀
𝑘|𝑘−1

, is composed of a set of weighted samples

{𝜔
(𝑖,𝑙)

𝑘|𝑘−1
, x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
}
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
,

𝑝
(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
) =

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝛿 (x

𝑘
− x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) .

(20)

Then, the multi-Bernoulli approximation of the updated
density 𝜋̃

𝑘
(𝑌
𝑘
| 𝑍

1:𝑘
) ≈ {(𝑟

(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘|𝑘−1

𝑖=1
∪ {(𝑟

𝑈,𝑘
(z
𝑘
),

𝑝
𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
))}z𝑘∈𝑍𝑘 can be computed as follows:

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

,

𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
) =

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝐿,𝑘
𝛿 (x

𝑘
− x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) ,

𝑟
𝑈,𝑘
(z
𝑘
) = (

𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔
𝑘
(z
𝑘
| x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝

𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
))

2
)

×(𝜅
𝑘
(z
𝑘
) +

𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔
𝑘
(z
𝑘
| x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝

𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

)

−1

,

𝑝
𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
) =

𝑀𝑘|𝑘−1

∑

𝑖=1

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑈,𝑘
(z
𝑘
) 𝛿 (x

𝑘
− x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) ,

(21)
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where

𝜔
(𝑖,𝑙)

𝐿,𝑘
=

̆𝜔
(𝑖,𝑙)

𝐿,𝑘

∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
̆𝜔
(𝑖,𝑙)

𝐿,𝑘

,

̆𝜔
(𝑖,𝑙)

𝐿,𝑘
= 𝜔

(𝑖,𝑙)

𝑘|𝑘−1

1 − 𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − ∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝
𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

,

𝜔
(𝑖,𝑙)

𝑈,𝑘
(z
𝑘
) =

̆𝜔
(𝑖,𝑙)

𝑈,𝑘
(z
𝑘
)

∑
𝑀𝑘|𝑘−1

𝑖=1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
̆𝜔
(𝑖,𝑙)

𝑈,𝑘
(z
𝑘
)

,

̆𝜔
(𝑖,𝑙)

𝑈,𝑘
(z
𝑘
) =

𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔
𝑘

× (z
𝑘
| x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝

𝐷,𝑘
(x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) .

(22)

(3) The Resampling and Pruning Stage. It is the same as the
resampling and pruning stage of the SMC-CBMeMBer filter
[16].

(4) The SMC Multitarget State Estimation. Given the SMC
multi-Bernoulli posterior density

𝜋̃
𝑘
(𝑌
𝑘
| 𝑍

1:𝑘
) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀𝑘

𝑖=1

with 𝑝(𝑖)
𝑘
(x
𝑘
, 𝑛
𝑘
) =

𝐿
(𝑖)

𝑘

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘
𝛿 (x

𝑘
− x(𝑖,𝑙)

𝑘
, 𝑛
𝑘
− 𝑛

(𝑖,𝑙)

𝑘
) ,

(23)

from the method described in Algorithm 1, the SMC multi-
target state estimation can be easily obtained as

𝑋
𝑘
= {x̂(𝑖)

𝑘
}

̂
𝑇𝑘

𝑖=1

with x̂(𝑖)
𝑘
=

𝐿
(𝑖)

𝑘

∑

𝑙=1

x(𝑖,𝑙)
𝑘
𝜔
(𝑖,𝑙)

𝑘
, 𝑖 = 1, . . . , 𝑇̂

𝑘
. (24)

Note that the MCMC move step [26] can be introduced
for increasing the particle variety after the resample step
without affecting the validity of the SMC approximation.

5. GM-MM-CBMeMBer Filter and
Its EK and UK Extensions

An analytic solution to the MM-CBMeMBer recursion for
linear-Gaussian multiple maneuvering targets models is pre-
sented in this section. The resulting filter propagates the GM
multi-Bernoulli density against time. Some certain assump-
tions about the linear-Gaussianmultiplemaneuvering targets
models are firstly summarized below.

(A) The dynamic and measurement models for the
augmented state of each maneuvering target have the form

𝑓
𝑘|𝑘−1

(x
𝑘
, 𝑛
𝑘
| x
𝑘−1
, 𝑛
𝑘−1
)

=N (x
𝑘
; 𝐹
𝑘
(𝑛
𝑘
) x
𝑘−1
, Α

𝑘
(𝑛
𝑘
) 𝑄

𝑘
(𝑛
𝑘
) (Α

𝑘
(𝑛
𝑘
))
𝑇

)

× ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
) ,

𝑔
𝑘
(z
𝑘
| x
𝑘
, 𝑛
𝑘
)

=N (z
𝑘
; 𝐻

𝑘
(𝑛
𝑘
) x
𝑘
, Β
𝑘
(𝑛
𝑘
) 𝑅

𝑘
(𝑛
𝑘
) (Β

𝑘
(𝑛
𝑘
))
𝑇

) ,

(25)

whereN(⋅;m, 𝑃) denotes the density ofGaussian distribution
with the mean m and covariance 𝑃; 𝐹

𝑘
(𝑛
𝑘
), 𝑄

𝑘
(𝑛
𝑘
), and

Α
𝑘
(𝑛
𝑘
) are, respectively, the kinematical state transition, pro-

cess noise covariance, and process noise coefficient matrixes
conditioned on model 𝑛

𝑘
; 𝐻

𝑘
(𝑛
𝑘
), 𝑅

𝑘
(𝑛
𝑘
), and Β

𝑘
(𝑛
𝑘
) are,

respectively, the observation, observation noise covariance,
and observation noise coefficient matrixes conditioned on
model 𝑛

𝑘
.

(B) The probabilities of maneuvering target survival
and maneuvering target detection are independent of the
kinematical state:

𝑝
𝑆,𝑘
(x
𝑘−1
, 𝑛
𝑘−1
) = 𝑝

𝑆,𝑘
(𝑛
𝑘−1
) ,

𝑝
𝐷,𝑘
(x
𝑘
, 𝑛
𝑘
) = 𝑝

𝐷,𝑘
(𝑛
𝑘
) .

(26)

(C) The birth model for the maneuvering targets is a
multi-Bernoulli with parameter set {(𝑟(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀Γ,𝑘

𝑖=1
,

where 𝑝(𝑖)
Γ,𝑘
(x
𝑘
, 𝑛
𝑘
), 𝑖 = 1, . . . ,𝑀

Γ,𝑘
, are GM of the form

𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
) = 𝑝

(𝑖)

Γ,𝑘
(x
𝑘
| 𝑛
𝑘
) ℎ

(𝑖)

Γ,𝑘
(𝑛
𝑘
)

= ℎ
(𝑖)

Γ,𝑘
(𝑛
𝑘
)

𝐽
(𝑖)

Γ,𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

Γ,𝑘
(𝑛
𝑘
)

×N (x
𝑘
;m(𝑖,𝑗)

Γ,𝑘
(𝑛
𝑘
) , 𝑃

(𝑖,𝑗)

Γ,𝑘
(𝑛
𝑘
)) ,

(27)

where ℎ(𝑖)
Γ,𝑘
(𝑛
𝑘
) is the distribution ofmodel births and𝑝(𝑖)

Γ,𝑘
(x
𝑘
|

𝑛
𝑘
) is the distribution of the birth kinematical state given

model 𝑛
𝑘
. 𝑝

(𝑖)

Γ,𝑘
(x
𝑘
| 𝑛
𝑘
) is GM of the form with the parameter

set {𝜛(𝑖,𝑗)
Γ,𝑘
(𝑛
𝑘
),m(𝑖,𝑗)

Γ,𝑘
(𝑛
𝑘
), 𝑃

(𝑖,𝑗)

Γ,𝑘
(𝑛
𝑘
)}
𝐽
(𝑖)

Γ,𝑘
(𝑛𝑘)

𝑗=1
.

According to the above Assumptions A, B, andC, a closed
form solution to the MM-CBMeMBer recursion, namely, the
GM-MM-CBMeMBer filter, can be derived by applying the
following two standard results for Gaussian functions:

∫N (x; 𝐹x󸀠, 𝑄)N (x󸀠;m, 𝑃) 𝑑x󸀠 =N (x; 𝐹m, 𝑄 + 𝐹𝑃𝐹𝑇) ,

N (z; 𝐻x, 𝑅)N (x;m, 𝑃)

=N (z; 𝐻m, 𝑅 + 𝐻𝑃𝐻𝑇

)N(x; ⌣m,
⌣

𝑃) ,

(28)
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where

𝐾 = 𝑃𝐻
𝑇

(𝐻𝑃𝐻
𝑇

+ 𝑅)
−1

,

⌣m= m + 𝐾 (z − 𝐻m) ,
⌣

𝑃= (𝐼 − 𝐾𝐻)𝑃.

(29)

One cycle of the recursive GM-MM-CBMeMBer algo-
rithm can be described as follows.

(1) The GM Mixing and Prediction Stage. Suppose that at
time 𝑘 − 1 the multi-Bernoulli posterior density 𝜋

𝑘−1
(𝑌
𝑘−1

|

𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
))}
𝑀𝑘−1

𝑖=1
is given and each

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
), 𝑖 = 1, . . . ,𝑀

𝑘−1
, is composed of GM of the

form

𝑝
(𝑖)

𝑘−1
(x
𝑘−1
, 𝑛
𝑘−1
)

=

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
)

×N (x
𝑘−1
;m(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
) , 𝑃

(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
)) .

(30)

Then, the mixed and predicted multi-Bernoulli density
𝜋
𝑘|𝑘−1

(𝑌
𝑘

| 𝑍
1:𝑘−1

) = {(𝑟
(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘−1

𝑖=1
∪

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀Γ,𝑘

𝑖=1
can be computed as follows:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1
= 𝑟

(𝑖)

𝑘−1
∑

𝑛𝑘

∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)

× 𝑝
𝑆,𝑘
(𝑛
𝑘−1
) 𝜛

(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
) ,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
) = ∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
)

×N (x
𝑘
;m(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
) ,

𝑃
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
)) ,

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀Γ,𝑘

𝑖=1

= given by the birthmodel (27) ,
(31)

where

m(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
) = 𝐹

𝑘
(𝑛
𝑘
)m(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
) ,

𝑃
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
) = 𝐹

𝑘
(𝑛
𝑘
) 𝑃

(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
) (𝐹

𝑘
(𝑛
𝑘
))
𝑇

+ Α
𝑘
(𝑛
𝑘
) 𝑄

𝑘
(𝑛
𝑘
) (Α

𝑘
(𝑛
𝑘
))
𝑇

,

𝜛
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛
𝑘
, 𝑛
𝑘−1
)

= (ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
) 𝑝

𝑆,𝑘
(𝑛
𝑘−1
) 𝜛

(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
))

× (∑

𝑛𝑘

∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)

×𝑝
𝑆,𝑘
(𝑛
𝑘−1
) 𝜛

(𝑖,𝑗)

𝑘−1
(𝑛
𝑘−1
))

−1

.

(32)

(2) The GM Update Stage. Suppose that at time 𝑘 the mixed
and predicted multi-Bernoulli density 𝜋

𝑘|𝑘−1
(𝑌
𝑘
| 𝑍

1:𝑘−1
) =

{(𝑟
(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘|𝑘−1

𝑖=1
is given and each 𝑝(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
),

𝑖 = 1, . . . ,𝑀
𝑘|𝑘−1

, is composed of GM of the form

𝑝
(𝑖)

𝑘|𝑘−1
(x
𝑘
, 𝑛
𝑘
)

=

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
)

×N (x
𝑘
;m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) , 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
)) .

(33)

Then, the multi-Bernoulli approximation of the updated
density 𝜋

𝑘
(𝑌
𝑘
| 𝑍

1:𝑘
) ≈ {(𝑟

(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
))}
𝑀𝑘|𝑘−1

𝑖=1
∪ {(𝑟

𝑈,𝑘
(z
𝑘
),

𝑝
𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
))}z𝑘∈𝑍𝑘 can be computed as follows:

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)

,

𝑟
𝑈,𝑘
(z
𝑘
) = (

𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷, 𝑘
(𝑛
𝑘
)Q

(𝑖,𝑗)

𝑘
(𝑛
𝑘
; z
𝑘
)

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
))

2
)
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×(𝜅
𝑘
(z
𝑘
) +

𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)Q

(𝑖,𝑗)

𝑘
(𝑛
𝑘
; z
𝑘
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)

)

−1

𝑝
(𝑖)

𝐿,𝑘
(x
𝑘
, 𝑛
𝑘
) =

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
(1 − 𝑝

𝐷,𝑘
(𝑛
𝑘
)) 𝜛

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
)N (x

𝑘
;m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) , 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
))

1 − ∑
𝑛𝑘

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)

,

𝑝
𝑈,𝑘
(x
𝑘
, 𝑛
𝑘
; z
𝑘
) =

𝑀𝑘|𝑘−1

∑

𝑖=1

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
; z
𝑘
)N (x

𝑘
;m(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
; z
𝑘
) , 𝑃

(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
)) ,

(34)

where

Q
(𝑖,𝑗)

𝑘
(𝑛
𝑘
; z
𝑘
) =N (z

𝑘
; 𝐻

𝑘
(𝑛
𝑘
) m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) ,

Β
𝑘
(𝑛
𝑘
) 𝑅

𝑘
(𝑛
𝑘
) (Β

𝑘
(𝑛
𝑘
))
𝑇

+𝐻
𝑘
(𝑛
𝑘
) 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) (𝐻

𝑘
(𝑛
𝑘
))
𝑇

)

𝜛
(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
; z
𝑘
)

= (

𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘
(𝑛
𝑘
)Q

(𝑖,𝑗)

𝑘
(𝑛
𝑘
; z
𝑘
))

×(

𝑀𝑘|𝑘−1

∑

𝑖=1

∑

𝑛𝑘

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) 𝑝

𝐷,𝑘

× (𝑛
𝑘
)Q

(𝑖,𝑗)

𝑘
(𝑛
𝑘
; z
𝑘
))

−1

,

𝐾
(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
) = 𝑃
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𝑘
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𝑘
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𝑘
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𝑘
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𝑘
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𝑘
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𝑘
; z
𝑘
) = m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) + 𝐾

(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
)

× (z
𝑘
− 𝐻

𝑘
(𝑛
𝑘
)m(𝑖,𝑗)
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(𝑛
𝑘
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𝑃
(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
) = (𝐼 − 𝐾

(𝑖,𝑗)

𝑈,𝑘
(𝑛
𝑘
)𝐻

𝑘
(𝑛
𝑘
)) 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛
𝑘
) .

(35)

(3) The Pruning and Merging Stage. It is the same as the
pruning andmerging stage of the GM-CBMeMBer filter [16].

(4) The GM Multitarget State Estimation. Given the GM
multi-Bernoulli posterior density

𝜋
𝑘
(𝑌
𝑘
| 𝑍

1:𝑘
) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
))}

𝑀𝑘

𝑖=1

with

𝑝
(𝑖)

𝑘
(x
𝑘
, 𝑛
𝑘
) =

𝐽
(𝑖)

𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘
(𝑛
𝑘
)N (x

𝑘
;m(𝑖,𝑗)

𝑘
(𝑛
𝑘
) , 𝑃

(𝑖,𝑗)

𝑘
(𝑛
𝑘
))

(36)

from the method described in Algorithm 1, the GMmultitar-
get state estimation can be easily obtained as

𝑋
𝑘
= {x̂(𝑖)

𝑘
}

̂
𝑇𝑘

𝑖=1

with x̂(𝑖)
𝑘
= ∑

𝑛𝑘

𝐽
(𝑖)

𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘
(𝑛
𝑘
)m(𝑖,𝑗)

𝑘
(𝑛
𝑘
) ,

𝑖 = 1, . . . , 𝑇̂
𝑘
.

(37)

Now turn to considering the extension of the GM-MM-
CBMeMBer filter to nonlinear dynamical and observation
models using the EK filtering approximation. Assumptions
B and C are still required, but the dynamic and observation
processes can be relaxed to the nonlinear models

x
𝑘
= 𝑎

𝑘
(x
𝑘−1
,w

𝑘
(𝑛
𝑘
) , 𝑛

𝑘
) ,

z
𝑘
= 𝑢

𝑘
(x
𝑘
, v
𝑘
(𝑛
𝑘
) , 𝑛

𝑘
) ,

(38)

where 𝑎
𝑘
(⋅, ⋅, 𝑛

𝑘
) and 𝑢

𝑘
(⋅, ⋅, 𝑛

𝑘
) are known model-dependent

nonlinear functions, and w
𝑘
(𝑛
𝑘
) and v

𝑘
(𝑛
𝑘
) are model-

dependent process and observation noise vectors of known
statistics.

For the EK-GM-MM-CBMeMBer filter, the closed form
expressions for the mixing, prediction, and update of indi-
vidual Gaussian components are approximated by replacing
𝐹
𝑘
(𝑛
𝑘
), Α

𝑘
(𝑛
𝑘
), 𝐻

𝑘
(𝑛
𝑘
), Β

𝑘
(𝑛
𝑘
) in the corresponding recur-

sive equations (30)–(35) of the GM-MM-CBMeMBer filter
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with the corresponding local linearization of the nonlinear
dynamical and observation models

𝐹
EK
𝑘
(𝑛
𝑘
) =

𝜕𝑎
𝑘
(x
𝑘−1
,w
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𝑘
)
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𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x𝑘−1=x̂𝑘−1
w𝑘(𝑛𝑘)=0

,

Α
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𝑘
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𝑘
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x𝑘−1=x̂𝑘|𝑘−1
v𝑘(𝑛𝑘)=0

,

Β
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𝑘
(𝑛
𝑘
) =

𝜕𝑢
𝑘
(x
𝑘
, v
𝑘
(𝑛
𝑘
) , 𝑛
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𝜕v
𝑘
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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v𝑘(𝑛𝑘)=0

.

(39)

Note that the unscented Kalman version for the GM-
MM-CBMeMBer filter can be derived by approximating the
mean and covariance of individual Gaussian components
with a set of sigma points and the unscented transform [20].
Because of the space limitation, the details of the UK-GM-
MM-CBMeMBer filter are not presented here.

6. Simulations

6.1. Nonlinear Example Using SMC Implementations. In this
nonlinear example, we evaluate the performance of the
proposed MM-CBMeMBer filter by benchmarking it against
the single-model CBMeMBer filters, theMM-PHD filter, and
the MM-CPHD filter using the SMC implementations.

Consider a two-dimensional scenario with an unknown
and time varying number of the maneuvering targets
observed over the region [−1000, 1000] × [−1000, 1000] (m)
for a period of 𝑁 = 50 time steps. The sampling interval is
Δ𝑡 = 1 (s). Each of the targets may move at a nearly constant
velocity or execute a coordinated turn in the surveillance
period. Therefore, the model set designed for this example
can be composed of a constant velocity (CV) model and a
coordinated turn (CT)model with varying turn rate [27].The
target kinematical state is x

𝑘
= [𝑥

𝑘
̇𝑥
𝑘
𝑦
𝑘

̇𝑦
𝑘
𝜗
𝑘
]
𝑇, where

[𝑥
𝑘
𝑦
𝑘
]
𝑇 and [ ̇𝑥

𝑘
̇𝑦
𝑘
]
𝑇, respectively, represent the position

and the velocity in 𝑥 and 𝑦 coordinates and 𝜗
𝑘
represents the

turn rate. For the turn rate 𝜗
𝑘
, let the anticlockwise direction

be positive and the clockwise direction be negative.
The model-dependent dynamics for the individual

maneuvering target is given by the linear-Gaussian model

𝑓
𝑘|𝑘−1

(x
𝑘
| x
𝑘−1
, 𝑛
𝑘
) =N (x

𝑘
; 𝐹
𝑘
(𝑛
𝑘
) x
𝑘−1
, 𝑄

𝑘
(𝑛
𝑘
)) .

(40)

Let 𝑛
𝑘
= 1denote theCVmodel and 𝑛

𝑘
= 2 theCTmodel;

then

𝐹
𝑘
(𝑛
𝑘
= 1) = [

𝐹CV
0
] ,

𝐹
𝑘
(𝑛
𝑘
= 2) = [

𝐹CT (𝜗𝑘−1)
1
] ,

𝑄
𝑘
(𝑛
𝑘
= 1) = 𝜎

2

𝑤
(𝑛
𝑘
= 1) [

𝑄

0
] ,

𝑄
𝑘
(𝑛
𝑘
= 2) = [

𝜎
2

1,𝑤
(𝑛
𝑘
= 2)𝑄

Δ𝑡
2

𝜎
2

2,𝑤
(𝑛
𝑘
= 2)

]

(41)

with

𝐹CV =
[
[
[

[

1 Δ𝑡 0 0

0 1 0 0

0 0 1 Δ𝑡

0 0 0 1

]
]
]

]

,

𝐹CT (𝜗𝑘−1) =

[
[
[
[
[
[
[
[
[

[

1
Δ𝑡 sin 𝜗

𝑘−1

𝜗
𝑘−1

0 −
1 − Δ𝑡 cos 𝜗

𝑘−1

𝜗
𝑘−1

0 Δ𝑡 cos 𝜗
𝑘−1

0 −Δ𝑡 sin 𝜗
𝑘−1

0
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𝑘−1

𝜗
𝑘−1

1
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𝑘−1

𝜗
𝑘−1

0 Δ𝑡 sin 𝜗
𝑘−1

0 Δ𝑡 cos 𝜗
𝑘−1

]
]
]
]
]
]
]
]
]

]

,

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[

[

Δ𝑡
4

4

Δ𝑡
3

2
0 0

Δ𝑡
3

2
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2

0 0
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]
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]
]
]
]
]
]

]

,

(42)

where 𝜎
𝑤
(𝑛
𝑘
) is the level of the power spectral density of the

process noise for model 𝑛
𝑘
. In this example, they are given

by 𝜎
𝑤
(𝑛
𝑘
= 1) = 0.1 (m/s2), 𝜎

1,𝑤
(𝑛
𝑘
= 2) = 0.2 (m/s2),

𝜎
2,𝑤
(𝑛
𝑘
= 2) = 1 × 10

−3 (rad/s2).
The Markovian model transition probability matrix is

taken as

[ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)] = [

0.8 0.2

0.2 0.8
] . (43)

At time 𝑘, the range 𝜌
𝑘
and bearing 𝜑

𝑘
measurements

of the targets are generated by a sensor located at [0 0]
𝑇.

The measurement noise is independent and identically dis-
tributed (IID) zero-mean Gaussian white noise with covari-
ance matrix 𝑅

𝑘
= diag (𝜎2

𝜌
𝜎
2

𝜑
), where diag(⋅) denotes the

diagonal matrix, and 𝜎
𝜌
and 𝜎

𝜑
are, respectively, standard

deviations (STDs) of the range and bearing measurements.
In this example, they are taken as 𝜎

𝜌
= 10 (m) and
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𝜎
𝜑
= 0.01 (rad). The single-measurement single-target likeli-

hood density is

𝑔
𝑘
(z
𝑘
| y
𝑘
) =N(z

𝑘
;
[
[

[

√𝑥
2

𝑘
+ 𝑦

2

𝑘

arctan
𝑦
𝑘

𝑥
𝑘

]
]

]

, 𝑅
𝑘
). (44)

The detection probability and the survival probability
are, respectively, taken as 𝑝

𝐷,𝑘
(x
𝑘
, 𝑛
𝑘
) = 𝑝

𝐷
= 0.95 and

𝑝
𝑆,𝑘
(x
𝑘−1
, 𝑛
𝑘−1
) = 𝑝

𝑆
= 0.95 in this example.

The clutter is modeled as a Poisson RFS with the intensity
𝜅
𝑘
(z
𝑘
) = 𝜆

𝑐,𝑘
𝑓
𝑐,𝑘
(z
𝑘
). In this example, we take 𝜆

𝑐,𝑘
= 20 and

𝑓
𝑐,𝑘
(⋅) = U(⋅), whereU(⋅) denotes the density of the uniform

distribution over the observation region.
Figure 1 shows the true trajectories for the maneuvering

targets and sensor location.
In Figure 1, “∘” denotes the locations at which targets are

born and “◻” denotes the locations atwhich targets die. Target
1 is born at 1 s anddies at 30 s. It firstmoves at a nearly constant
velocity from the first second to the 15th second and then
executes a coordinated turn in the anticlockwise direction
from the 16th second to the 30th second. Target 2 is born
at 1 s and dies at 35 s. It first executes a coordinated turn in
the anticlockwise direction from the first second to the 20th
second and then moves at a nearly constant velocity from the
21st second to the 35th second. Target 3 is born at 10 s and dies
at 42 s. It first executes a coordinated turn in the anticlockwise
direction from the 10th second to the 30th second and then
moves at a nearly constant velocity from the 31st second to the
42nd second. Target 4 is born at 20 s and dies at 50 s. It first
moves at a nearly constant velocity from the 20th second to
the 30th second and then executes a coordinated turn in the
clockwise direction from the 31st second to the 50th second.
The motions of the targets are summarized in Table 1.

The birth process is a multi-Bernoulli RFS with density
𝜋
Γ,𝑘
(𝑌
𝑘
) = {(𝑟

(𝑖)

Γ,𝑘
, 𝑝
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𝑘
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𝑘
))}
3

𝑖=1
, where 𝑟(1)

Γ,𝑘
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Γ,𝑘
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𝑟
(3)

Γ,𝑘
= 0.02, 𝑝(𝑖)

Γ,𝑘
(x
𝑘
, 𝑛
𝑘
) = ℎ

(𝑖)

Γ,𝑘
(𝑛
𝑘
)N(x

𝑘
;m(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
) with

m(1)

Γ,𝑘
= [−600 0 800 0 0]

𝑇

,

m(2)

Γ,𝑘
= [−650 0 −800 0 0]

𝑇

,

m(3)

Γ,𝑘
= [400 0 −400 0 0]

𝑇

,

𝑃
(1)

Γ,𝑘
= 𝑃

(2)

Γ,𝑘
= 𝑃

(3)

Γ,𝑘
= diag (400 400 400 400 0.01)

(45)

and the distribution of the model births

[ℎ
(𝑖)

Γ,𝑘
(𝑛
𝑘
)] = [0.5 0.5] . (46)

For the purpose of comparison, we estimate the num-
ber and states of the maneuvering targets using the pro-
posed SMC-MM-CBMeMBer filter, the CV model SMC-
CBMeMBer filter, the CT model SMC-CBMeMBer filter,
the SMC-MM-PHD filter, and the SMC-MM-CPHD filter,
respectively. At each time step in the SMC implementations
of the CBMeMBer-based filters, a maximum of 𝐿max = 1000
and minimum of 𝐿min = 300 particles per hypothesized
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Figure 1: The true trajectories for the maneuvering targets and
sensor location.

Table 1: The motions of the targets.

Born
time

Die
time CV motion CT motion

Target 1 1 s 30 s 1 s–15 s 16 s–30 s, anticlockwise
Target 2 1 s 35 s 21 s–35 s 1 s–20 s, anticlockwise
Target 3 10 s 42 s 31 s–42 s 10 s–30 s, anticlockwise
Target 4 20 s 50 s 20 s–30 s 31 s–50 s, clockwise

track are imposed, and pruning of hypothesized tracks is
performed with a threshold of 𝑟threshold = 0.001. At each time
step in the SMC implementations of the PHD-based filters,
1000 particles are used to represent one target and 𝐾-means
method [14] is used to cluster the resampled particles to
extract the multitarget states. The proposal densities 𝛼(𝑖)

𝑘
(𝑛
𝑘
|

𝑛
𝑘−1
), 𝛽(𝑖)

𝑘
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| x
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, 𝑛
𝑘
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𝑘
), and 𝑏(𝑖)

𝑘
(x
𝑘
| 𝑛

𝑘
, 𝑍

𝑘
)

in (16) and (18) are, respectively, taken as ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛

𝑘−1
),

ℎ
(𝑖)

Γ,𝑘
(𝑛
𝑘
), 𝑓

𝑘|𝑘−1
(x
𝑘
| x

𝑘−1
, 𝑛
𝑘
) and N(x

𝑘
;m(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
). We now

conduct 500 Monte Carlo (MC) simulation experiments
on the same clutter intensity and target trajectories, but
with independently generated clutter and target-generated
measurements in each trial.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 2, respectively.

Figures 2(a)–2(e) demonstrate that the target number
estimates from the SMC-MM-PHD, SMC-MM-CPHD, and
SMC-MM-CBMeMBer filters converge to the ground truth,
whereas the CV model SMC-CBMeMBer and CT model
SMC-CBMeMBer filters produce significant bias in esti-
mating the target number. This is because the SMC-MM-
PHD, SMC-MM-CPHD, and SMC-MM-CBMeMBer filters
can effectively capture the model switching property of the
maneuvering targets, so their performance is significantly
better than that of the two single-model SMC-CBMeMBer
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Figure 2: The 500 MC run averages of cardinality statistics versus time for the (a) CV model SMC-CBMeMBer filter, (b) CT model SMC-
CBMeMBer filter, (c) SMC-MM-PHD filter, (d) SMC-MM-CPHD filter, and (e) SMC-MM-CBMeMBer filter.



12 Journal of Applied Mathematics

filters, which show poor adaptation to target maneuvers and
yield larger estimation errors.

Moreover, as plotted in Figures 2(c)–2(e), the STD of
the cardinality distribution from the SMC-MM-CBMeMBer
filter is lower than that of the SMC-MM-PHDfilter, but larger
than that of SMC-MM-CPHD filter. In addition, the STDs
of the cardinality distributions from the three MM-based
filters increase in different degrees at the instances when
the maneuver occurs (i.e., 16 (s), 21 (s), and 31 (s)). The
STD plots of the SMC-MM-PHD and SMC-MM-CPHD
filters seem to fluctuate more obviously than the SMC-
MM-CBMeMBer filter. This phenomenon indicates that the
performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at the maneuver instances than that
of the SMC-MM-PHD and SMC-MM-CPHD filters.

The optimal subpattern assignment (OSPA) metric [28],
which can jointly capture differences in cardinality and indi-
vidual elements between two finite sets, is used to evaluate
the performance of the five methods. Given the actual and
estimated multitarget state sets 𝑋

𝑘
= {x(𝑖)

𝑘
}
𝑇𝑘

𝑖=1
and 𝑋

𝑘
=

{x̂(𝑖)
𝑘
}
̂
𝑇𝑘

𝑖=1
, the OSPA metric of order 𝑝 = 2 with cut-off 𝑐

between the two sets is defined by

OSPA(𝑐)
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(𝑋

𝑘
, 𝑋

𝑘
)

= (
1

𝑇̂
𝑘

(min
𝜋∈Π
𝑇̂
𝑘

𝑇𝑘

∑

𝑖=1

min (𝑐, 󵄩󵄩󵄩󵄩󵄩x
(𝑖)

𝑘
− x̂(𝜋(𝑖))

𝑘

󵄩󵄩󵄩󵄩󵄩2
)
2

+𝑐
2

(𝑇̂
𝑘
− 𝑇

𝑘
)))

1/2
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if 𝑇
𝑘
≤ 𝑇̂

𝑘
and OSPA(𝑐)

2,𝑘
(𝑋

𝑘
, 𝑋

𝑘
) = OSPA(𝑐)

2,𝑘
(𝑋

𝑘
, 𝑋

𝑘
) if 𝑇

𝑘
>

𝑇̂
𝑘
.Π̂

𝑇𝑘

denotes the set of permutations on {1, 2, . . . , 𝑇̂
𝑘
}. ‖ ⋅ ‖

2

denotes the 2-norm. In this example, we take 𝑐 = 100 (m).
The MC averages of the OSPA metric for the target

position estimates, derived by the five methods, are shown in
Figure 3.

The OSPA metric is composed of two components each
separately accounting for “localization” and “cardinality”
errors. This results in high peaks in OSPA metric at the
instances where the estimated number is incorrect. Figure 3
shows that (1) both the single-model SMC-CBMeMBer filters
perform significantly worse than the other MM-based filters
because of the large cardinality errors produced by the two
filters as seen in Figures 2(a) and 2(b); (2) although the
SMC-MM-CPHD filter can estimate the target number most
accurately, the OSPA metric of the SMC-MM-CBMeMBer
filter is smaller than that of the SMC-MM-CPHDfilter, which
is in turn smaller than that of the SMC-MM-PHD filter.
This phenomenon indicates that the SMC-MM-CBMeMBer
filter outperforms the SMC-MM-CPHD (and hence SMC-
MM-PHD) filter in jointly estimating themultitarget number
and states. A reason for this is that the additional errors
could be introduced in the clustering processes of the SMC-
MM-PHD and SMC-MM-CPHD filters to extract state esti-
mates from the particle population; (3) the OSPA plots of

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Time (s)

CV model SMC-CBMeMBer
CT model SMC-CBMeMBer
SMC-MM-PHD
SMC-MM-CPHD
SMC-MM-CBMeMBer

O
SP

A
 m

et
ric

 (c
=
1
0
0
,p

=
2

)
Figure 3: The 500 MC run averages of OSPA against time.

the three MM-based filters in Figure 3 fluctuate against time
due to the varying target number, the target maneuvers,
and clutter. However, increase of the OSPA from the SMC-
MM-CBMeMBer filter seems to be smallest at the maneuver
instances (i.e., 16 (s), 21 (s), and 31 (s)) among the three
MM-based methods. This phenomenon also indicates that
the performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at themaneuver instances than that of
the SMC-MM-PHD and SMC-MM-CPHD filters.

For comparing the overall performance of the threeMM-
based filters, the 500 MC trial averages of the OSPA distance
(time-averaged over the duration of the scenario) for the
three MM-based filters are shown in Table 2 against the
clutter rate from 𝜆

𝑐,𝑘
= 20 to 𝜆

𝑐,𝑘
= 100. The result of

time-averaging can be viewed as a broad indication of filter
performance, although the average is likely to be scenario
dependent.

Table 2 shows that the OSPA distances of the three MM-
based filters increase with higher 𝜆

𝑐,𝑘
. It reflects that the

performance of the three MM-based algorithms degrades by
different degrees as the 𝜆

𝑐,𝑘
increases. Among the three MM-

based algorithms, the SMC-MM-PHD filter always works
the worst. The SMC-MM-CBMeMBer filter outperforms the
SMC-MM-CPHD filter when 𝜆

𝑐,𝑘
is relatively lower (𝜆

𝑐,𝑘
≤

60). However, as the 𝜆
𝑐,𝑘

increases, the OSPA distance of
SMC-MM-CBMeMBer filter increasesmore rapidly than that
of the SMC-MM-CPHD filter. Therefore, as 𝜆

𝑐,𝑘
continues

to increase until it reaches 𝜆
𝑐,𝑘
= 80, the OSPA distance of

SMC-MM-CBMeMBer filter is very close to that of the SMC-
MM-CPHD filter. When 𝜆

𝑐,𝑘
is relatively higher (i.e., 𝜆

𝑐,𝑘
=

80), the SMC-MM-CPHD filter outperforms the SMC-MM-
CBMeMBer filter. A possible reason for this is that, compared
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Table 2: Time-averaged OSPA distance (𝑚) in various 𝜆
𝑐,𝑘
.

𝜆
𝑐,𝑘
= 20 𝜆

𝑐,𝑘
= 40 𝜆

𝑐,𝑘
= 60 𝜆

𝑐,𝑘
= 80 𝜆

𝑐,𝑘
= 100

SMC-MM-PHD filter 38.3 48.2 60.5 74.3 88.1
SMC-MM-CPHD filter 32.8 35.9 39.4 43.4 47.8
SMC-MM-CBMeMBer filter 25.6 31.3 37.4 43.2 48.9

with the SMC-MM-CBMeMBer filter, the advantage of the
target number estimate for the SMC-MM-CPHD filter is
more obvious as the 𝜆

𝑐,𝑘
increases and it finally leads that the

OSPA distance of the SMC-MM-CPHD filter is smaller than
that of the SMC-MM-CBMeMBer filter when 𝜆

𝑐,𝑘
is relatively

higher (i.e., 𝜆
𝑐,𝑘
= 80).

6.2. Linear-Gaussian Example Using GM Implementations. In
this linear-Gaussian example, we evaluate the performance
of the proposed MM-CBMeMBer filter by benchmarking it
against the single-model CBMeMBer filters, the MM-PHD
filter, and the MM-CPHD filter using the GM implementa-
tions.

The simulation scenario and true trajectories for the
maneuvering targets are the same as those of Example
1. The target kinematical state now turns into x

𝑘
=

[𝑥
𝑘

̇𝑥
𝑘
𝑦
𝑘

̇𝑦
𝑘
]
𝑇. The model set for this example is designed

as follows. Model 𝑛
𝑘
= 1 is a CV model with linear-

Gaussian dynamics given byN(x
𝑘
; 𝐹CVx𝑘−1, 𝜎2CV,𝑤𝑄); models

𝑛
𝑘
= 2, 3, 4, 5 are, respectively, CT models with turn rates

of 𝜗 = 𝜋/30, −𝜋/30, 𝜋/20, 𝜋/15 (rad/s) with linear-Gaussian
dynamics given by N(x

𝑘
; 𝐹CT(𝜗)x𝑘−1, 𝜎2CT,𝑤𝑄). In this exam-

ple, 𝜎CV,𝑤 and 𝜎CT,𝑤 are given by 𝜎CV,𝑤 = 0.1 (m/s
2), 𝜎CT,𝑤 =

0.2 (m/s2).
The Markovian model transition probability matrix now

turns into

[ℎ
𝑘|𝑘−1

(𝑛
𝑘
| 𝑛
𝑘−1
)] =

[
[
[
[
[

[

0.6 0.1 0.1 0.1 0.1

0.1 0.6 0.1 0.1 0.1

0.1 0.1 0.6 0.1 0.1

0.1 0.1 0.1 0.6 0.1

0.1 0.1 0.1 0.1 0.6

]
]
]
]
]

]

. (48)

The 𝑥-position and 𝑦-position measurements z
𝑘

=

[𝑥
𝑘
𝑦
𝑘
]
𝑇 of the maneuvering targets are generated by the

linear-Gaussian single-measurement single-target likelihood
density given byN(z

𝑘
; 𝐻

𝑘
x
𝑘
, 𝑅
𝑘
) with

𝐻
𝑘
= [

1 0 0 0

0 0 1 0
] (49)

and 𝑅
𝑘
= diag (𝜎2

𝑥
𝜎
2

𝑦
). In this example, they are taken as

𝜎
𝑥
= 𝜎

𝑦
= 8 (m), and the kinematical state independent

survival and detection probabilities are taken as 𝑝
𝐷,𝑘
(𝑛
𝑘
) =

𝑝
𝐷
= 0.95 and 𝑝

𝑆,𝑘
(𝑛
𝑘−1
) = 𝑝

𝑆
= 0.95.

The experiment settings of the clutter and birthmodel are
also the same as those of Example 1 except that them(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
,

𝑖 = 1, 2, 3, and [ℎ(𝑖)
Γ,𝑘
(𝑛
𝑘
)] turn into

m(1)

Γ,𝑘
= [−600 0 800 0]

𝑇

,

m(2)

Γ,𝑘
= [−650 0 −800 0]

𝑇

,

m(3)

Γ,𝑘
= [400 0 −400 0]

𝑇

,

𝑃
(1)

Γ,𝑘
= 𝑃

(2)

Γ,𝑘
= 𝑃

(3)

Γ,𝑘
= diag (400 400 400 400) ,

[ℎ
(𝑖)

Γ,𝑘
(𝑛
𝑘
)] = [0.2 0.2 0.2 0.2 0.2] .

(50)

For the purpose of comparison, we estimate the number
and states of the maneuvering targets using the proposed
GM-MM-CBMeMBer filter, the CV model GM-CBMeMBer
filter, the CT model GM-CBMeMBer filter with turn rate
of 𝜗 = 𝜋/20 (rad/s), (this turn rate seems to be most
suitable for the scenario among the above four turn rates),
the GM-MM-PHD filter, and the GM-MM-CPHD filter,
respectively. At each time step in the GM implementations
of the CBMeMBer-based filters, pruning of hypothesized
tracks is performed with a threshold of 𝑟threshold = 0.001. In
addition, the pruning and merging of Gaussian components
are performed for each hypothesized track using a weight
threshold of 10−5, a merging threshold of 4 (m), and a
maximum of 𝐽max = 100 components, which are also used
in the GM implementations of the PHD-based filters.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 4, respectively.

Similar to the SMC implementations, Figures 4(a)–4(e)
demonstrate that the GM implementations of the three MM-
based filters are unbiased in the target number estimates,
whereas the GM implementations of the two single-model
GM-CBMeMBer filters are significantly biased. Moreover,
the GM-MM-CBMeMBer filter has a lower STD of the
estimated cardinality than the GM-MM-PHD filter but has a
larger STD than the GM-MM-CPHD filter. Again, The STD
plots of the GM-MM-PHD andGM-MM-CPHD filters seem
to fluctuate more obviously than the GM-MM-CBMeMBer
filter at the maneuver instances (i.e., 16 (s), 21 (s), and 31 (s)).

The MC averages of the OSPA metric for the target
position estimates, derived by the five methods, are shown in
Figure 5.

In contrast to the SMC case, Figure 5 shows that (1)
the rather poor performance of the two single-model GM-
CBMeMBer filters can be expected as the direct results of
their significant cardinality biase as seen in Figures 4(a) and
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Figure 4: The 500 MC run averages of cardinality statistics versus time for the (a) CV model GM-CBMeMBer filter, (b) CT model GM-
CBMeMBer filter, (c) GM-MM-PHD filter, (d) GM-MM-CPHD filter, and (e) GM-MM-CBMeMBer filter.
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Table 3: Time-averaged OSPA distance (𝑚) in various 𝜆
𝑐,𝑘
.

𝜆
𝑐,𝑘
= 20 𝜆

𝑐,𝑘
= 40 𝜆

𝑐,𝑘
= 60 𝜆

𝑐,𝑘
= 80 𝜆

𝑐,𝑘
= 100

GM-MM-PHD filter 22.8 28.2 34.5 40.9 47.1
GM-MM-CPHD filter 20.0 24.8 30.3 36.1 41.9
GM-MM-CBMeMBer filter 22.6 27.7 34.1 40.6 46.7
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Figure 5: The 500MC run averages of OSPA against time.

4(b); (2) the OSPA metric of the GM-MM-CBMeMBer filter
is similar to that of the GM-MM-PHD filter but is larger
than that of the GM-MM-CPHD filter. This is because that,
like the MM-CBMeMBer filter, the GM implementations
of the MM-PHD and MM-CPHD filters also allow state
estimates to be extracted from the posterior intensity in
a much more efficient and reliable manner than particle
clustering in the SMC-based approach. As a result, the GM-
MM-CPHD filter, which has the lowest STD of the estimated
cardinality, performs best among the three MM-based filters.
Although the GM-MM-CBMeMBer filter has a lower STD of
the estimated cardinality than the GM-MM-PHD filter, the
performance of the two filters is similar. A reason for this is
that the GM-MM-PHD filter may have more of an advantage
than the GM-MM-CBMeMBer filter in the relatively high
signal to noise ratio (SNR) of this scenario.

Although the GM-MM-CPHD filter outperforms the
proposed GM-MM-CBMeMBer filter, it can be only used
in the linear-Gaussian condition. In the nonlinear non-
Gaussian conditions, both the MM-CPHD filter and MM-
CBMeMBer filter must be implemented by the SMCmethod.
In this case, the GM-MM-CBMeMBer filter outperforms
the GM-MM-CPHD filter significantly, which is shown in
Section 6.1.

The 500 MC trial averages of the OSPA distance (time-
averaged over the duration of the scenario) for the three

MM-based filters are shown in Table 3 against the clutter rate
from 𝜆

𝑐,𝑘
= 20 to 𝜆

𝑐,𝑘
= 100.

Similar to the SMC implementations, Table 3 shows that
the OSPA distances of the GM implementations of the three
MM-based filters increase with higher 𝜆

𝑐,𝑘
. However, in

various 𝜆
𝑐,𝑘
, the GM-MM-CPHD filter always has the best

performance among the threeMM-based algorithms, and the
GM-MM-CBMeMBer filter has the similar performancewith
the GM-MM-PHD filter.

7. Conclusions and Future Work

AnMM-CBMeMBer filter, which is a multiple-model exten-
sion to the CBMeMBer filter, is proposed for tracking
multiple maneuvering targets in clutter. The SMC and GM
implementations of the proposed filter are, respectively,
presented for genericmodels and for linear-Gaussianmodels.
Then, the EK and UK filtering approximations for the GM-
MM-CBMeMBer filter in nonlinear condition are described
briefly. Simulation results show that (1) the proposed MM-
CBMeMBer filter significantly outperforms the single-model
CBMeMBer filters in tracking multiple maneuvering tar-
gets; (2) under relatively low clutter density, the SMC-
MM-CBMeMBer filter outperforms the SMC-MM-PHD and
SMC-MM-CPHD filters; (3) the performance of the GM-
MM-CBMeMBer filter is similar to that of theGM-MM-PHD
filter and hence is inferior to that of GM-MM-CPHD filter.

The future work is focused on the following three aspects.
First, the track labeling problem in the proposed approach
needs to be considered. Second, practical data need to be used
for the performance evaluation of the proposed approaches.
Third, the multiple-sensor versions of the CBMeMBer and
MM-CBMeMBer filters need to be proposed for improving
the performance of the single-sensor CBMeMBer and MM-
CBMeMBer filters.
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Mobile online social network (mOSN) is a burgeoning research area. However, most existing works referring to mOSNs deal with
static network structures and simply encode whether relationships among entities exist or not. In contrast, relationships in signed
mOSNs can be positive or negative and may be changed with time and locations. Applying certain global characteristics of social
balance, in this paper, we aim to infer the unknown relationships in dynamic signed mOSNs and formulate this sign inference
problem as a low-rank matrix estimation problem. Specifically, motivated by the Singular Value Thresholding (SVT) algorithm,
a compact dictionary is selected from the observed dataset. Based on this compact dictionary, the relationships in the dynamic
signed mOSNs are estimated via solving the formulated problem. Furthermore, the estimation accuracy is improved by employing
a dictionary self-updating mechanism.

1. Introduction

Over the past few years, a number of mobile applications
that allow users to enjoy networking have emerged. Corre-
spondingly, there has been a proliferation in mobile online
social networks (mOSNs). With the ubiquitous use of mobile
devices and a rapid shift of technology, it is worthy to
investigate the mOSNs from a privacy or security standpoint
[1, 2]. The related applications are also extensive such as
authentication and recommendation online. In this context,
researches about mobile online networks where two opposite
kinds of relationships can occur have become common;
people not only form links to indicate friendship, support, or
approval but signify disapproval or distrust of the opinions
of others. It is natural to model such networks as signed
networks, where the sign of a link weight can be either
positive or negative, representing the status of a relation-
ship. Analogous to traditional social networks analysis, the
relationships in signed mOSNs can be represented as a
graph, where nodes denote the objects (e.g., people or mobile
terminals) and signed edges denote the relationships or links
(e.g., a communication made between two people). The link
structure of the resulting graph can be exploited to detect

underlying groups of objects, predict missing links, and
handle many other tasks [3–17].

One of the most fundamental theories that are applicable
to signed social networks is social structural balance [5, 6, 16].
Structural balance corresponds to the possibility of exactly
dividing the signed graph into two adversary subcommu-
nities such that all edges within each subcommunity have
positive weights while all edges joining agents of different
communities have negative weights. Obviously, graphs of
nonnegative weights are a special case of structural balance,
in which one of the two subcommunities is empty. Since the
assumption that structural balance exists in a real signed net-
work might be too extreme, a concept called weak structural
balance further generalizes structural balance by discussing
the multiadversary-subcommunities partition of the signed
graph [7].

Structural balance and weak structural balance have been
shown to be valid to analyze signed networks. For instance,
the sign inference problem, which aims to infer the unknown
relationship between two objects, can be solved by mining
balance information of signed networks from local and global
perspectives [8–10, 12–17].With the help of the result inferred,
it is possible to predict the relationships so that legitimate
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participants can eliminate networking security vulnerabil-
ities. Nevertheless, most of these state-of-the-art methods
for sign inference problem are mainly considered from a
static point of view, and dynamic scenarios are rarely taken
into account. Therefore, it is necessary to establish a rational
dynamic network model to infer the sign of relationships.

Actually, there exist several inherent qualities of mOSNs
that are challenging to reliably sense the global states of
relationships for the large networks in practice [2]. First,
in contrast to traditional social networks, the observations
of relationships in mOSNs are closely associated with the
geographical environment, as well as the relative locations
and signal coverage of mobile terminals/network access
points. Due to these spatial constraints, such observations,
which seem linearly related to the global data of relationships
(i.e., linearly sampled from the global data), are bound to
miss a significant number of values. Consequently, they are
not sufficient to unambiguously infer the true status by the
traditional solutions of linear-inverse problem in general.
Second, in mOSNs different relations between entities may
appear at different times. Accordingly, observations of the
networks vary during a time period long enough. These
dynamic interactions over time essentially introduce time
dimension to the problem of mining, the potential rela-
tionship structures. Third, despite maintaining the dynamic
performance, the underlying relationships in reality always
display some “redundancy” attributed to the gradual/periodic
variation [3], the relative stability, and so forth. Owing
to the aforementioned characteristics of mOSNs, the mass
redundant data generated in variant scenarios will result in
resource challenge. Hence, although many observers collect
features for at least part of the networks, there are still serious
impediments to reliable large-scale or network-wide data
processing. After these aspects of mOSNs are learned, it is
reasonable to organize the entire relationship dataset in the
form of tensor coincident with its spatiotemporal structure.
Meanwhile, efficient relationship inference approaches asso-
ciated with the tensor model are required to overcome the
obstacles of this data processing.

The aim of this paper is to develop algorithms for the
sign inference in signedmOSNs in global and spatiotemporal
evolvement perspectives. In particular, we assume that the
signed mOSN possesses an underlying dynamic weakly
balanced complete network structure. Suppose that we are
given an incomplete networking observation tensor (or 3-
dimensional array), which consists of the adjacency matrices
corresponding to the snapshots of the underlying dynamic
weakly balanced complete network at times𝑇

0
, 𝑇
0
+1, . . . , 𝑇

0
+

𝑇 − 1, 𝑇
0
+ 𝑇. Then the sign inference task is to estimate the

sign patterns of all possible links in the dynamic complete
network at time 𝑇

0
+ 𝑇. Utilizing the low-rank property

of the weak structural balance and the features extracted
from the observation tensor, we consider the inference via
the incomplete relationship data as an underdetermined
linear-inverse problem and develop an approach via a low-
rank matrix reconstruction to solve this problem. Moreover,
we regard the observation tensor as the training data set
and choose a dictionary from it to improve the validity
and efficiency of our inference approach. The dictionary

selection method is designed by reducing the size of an
overcomplete feature set extracted from the training dataset.
Also, a dictionary self-updating mechanism is introduced to
improve accuracy of the inference.

Here are the key contributions we make in this paper.

(i) A dictionary selection approach based on group spar-
sity has been designed to generate a set containing
minimal sizes of features to increase computational
efficiency. Specifically, the observation tensor is con-
sidered to be the raw materials for feature extraction.

(ii) The sign inference problem referring to the weakly
balanced mOSNs is formulated as a low-rank matrix
reconstruction from the selected dictionary. Under
certain mild conditions, a low-rank matrix recon-
struction algorithm is applied to solve the sign infer-
ence problem, and it turns out to bemuchmore accu-
rate and efficient than other inference methods in the
literature. A dictionary self-updating mechanism is
also introduced to adjust the dynamic characteristics
of the network and improve the sensing accuracy.

The rest of this paper is organized as follows. In Section 2,
we build the model of the dynamic signed network. Some
basics of balance theory are also reviewed for the sake of
integrality. In Section 3, we first extract the initial candidate
feature pool from the observation tensor and propose a
dictionary selection approach.Thenwe propose our low-rank
matrix reconstruction method to solve the sign inference
problem. The implementation details of the dictionary self-
updating procedure are also proposed. In Section 4, we con-
duct numerical experiments which demonstrate the validity
of our network model for sign inference and justify the
performance of our methods as well. Finally, we present our
conclusions in Section 5.

2. Background and Preliminaries

2.1. Dynamic Signed Network Structure. Formally, a dynamic
undirected signed network is represented as a dynamic graph
G = (V,E), where V is the vertex set of size 𝑛 and E is the
edge set varying over time. A network snapshot denoted by
S
𝑡
= (V,E

𝑡
,A(𝑡)) presents the connections ofG observed at

time 𝑡. Here, E
𝑡
is the subset of E and A(𝑡) ∈ {−1, 0, 1}

𝑛×𝑛 is
the adjacency matrix of S

𝑡
with the signed weights

𝑎
(𝑡)

𝑖𝑗
=

{{

{{

{

1 if 𝑖 and 𝑗 have positive relationship,
−1 if 𝑖 and 𝑗 have negattive relationship,
0 if relationship between 𝑖 and 𝑗 is unknown.

(1)

Particularly, for each time 𝑡, a zero entry in A(𝑡) is
treated as an unknown relationship based on the acknowl-
edgement that some potential attitudes exist between any
two entities, even if the relationship itself is not observed.
From this viewpoint, we can assume that there exists
an underlying dynamics complete signed network G, in
which only some partial relationships are observed at times
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Figure 1: Illustration of the adjacency tensor, the cube units symbolize the data of relationships: (a) the adjacency tensor of the observed
network and (b) the adjacency tensor of the underlying complete network.

𝑇
0
, 𝑇
0
+ 1, . . . , 𝑇

0
+ 𝑇 − 1, respectively. Correspondingly, we

letA ∈ {−1, 1}
𝑛×𝑛×𝑇denote the three-dimensional tensor that

contains relationship information between all pairs of entities
inG. Thus, the observation tensorA consisting of a series of
network snapshots can be represented as

A
𝑖,𝑗,𝑡

= 𝑎
(𝑡)

𝑖𝑗
= {

A
𝑖,𝑗,𝑡

, (𝑖, 𝑗, 𝑡) ∈ Ω,

0, otherwise,
(2)

where Ω is the index set of the observed entries. Let P
Ω

be the orthogonal projection operator onto the span of
tensors vanishing outside Ω so that the (𝑖, 𝑗, 𝑡)th component
of P
Ω
(X) is equal to X

𝑖,𝑗,𝑡
when (𝑖, 𝑗, 𝑡) ∈ Ω and zero

otherwise. Then we have P
Ω
(A) = A (shown in Figure 1)

and P
Ω𝑡
(A(𝑡)) = A(𝑡) for each time slice 𝑡, where ⋂

𝑡
Ω
𝑡
= 0

and⋃
𝑡
Ω
𝑡
= Ω.

While the above kind of signed networks is called homo-
geneous, that is, relationships of the networks are between
the same kinds of entities, a signed network can also be
heterogeneous. In a heterogeneous signed network, there can
be more than one kind of entities, and relationships between
same or different entities can be positive and negative, such as
YouTube with two kinds of entities—users and videos. More-
over, this three-dimensional network adjacency tensor can
increase dimensions (e.g., spatial dimension, etc.) to adapt
to a wider range of scenarios. In this paper, we mainly focus
our attention on three-dimensional homogeneous signed
networks.

2.2. Weak Structural Balance. Structural balance theory was
first formulated by Heider [18] in order to understand the
structure in a network of individuals whose mutual relation-
ships are characterized in terms of friendship and hostility.
Formally, a triad is considered balanced if the product of
the signs in the triad is positive; that is, it contains an
even number of negative edges. This is in agreement with
principles such as “a friend of my friend is more likely to be
my friend” and “an enemy ofmy friend ismore likely to bemy

enemy” [6]. The configurations of balanced and unbalanced
triads are shown in Figure 2. One possible weakness of this
theory is that the defined balance relationships might be
too strict. In this perspective, by extending the fundamental
beliefs in real networks, weak structural balance is proposed
as a way of eliminating the assumption that “the enemy of
my enemy is my friend” [7]. Equivalently, the case that “the
enemy of my enemy is my enemy” is permitted. Therefore,
the local structure of weak balance posits that only triads
with exactly two positive edges are implausible and that all
other kinds of triads should be permissible (also illustrated
in Figure 2).

The formal definition of weakly balanced networks is as
follows.

Definition 1 (weakly balanced networks [7]). A (possibly
incomplete) network is weakly balanced if and only if it is
possible to obtain a weakly balanced complete network by
filling themissing edges in its adjacencymatrix. Furthermore,
in terms of patterns of global structure, a complete network
is weakly balanced if and only if the vertex set can be
divided into 𝑟 clusters, 𝑟 ≥ 1, such that all the edges within
clusters are positive and all the edges between clusters are
negative.

There exists the literature discussing the approaches of
clustering and sign prediction with respect to signed net-
works. Ideas derived from local balance of signed networks
can be successfully used to yield algorithms for sign inference
[9, 10]. Meanwhile, several works analyze the social interrela-
tions from global perspective of structural balance [8, 13–15,
17]. In particular, it is shown in [8] that the adjacency matrix
of weakly balanced networks has a “low-rank” structure, and
the sign prediction methods based on low-rank modeling
were proposed as well.

Theorem 2 (low-rank structure of signed networks [8]). The
adjacency matrix A ∈ {1, −1}

𝑛×𝑛 of a complete 𝑟-weakly
balanced network has rank 1, if 𝑟 ≤ 2, and has rank 𝑟 for all
𝑟 > 2.
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Figure 2: Signed undirected connectivity configurations mentioned in Section 2.2: (i) (a) and (b) are balanced triads, (c) and (d) are
unbalanced triads, and (ii) (a), (b), and (d) are weakly balanced triads.

Actually, since the global viewpoint of weak balance
stated in Definition 1 obeys clustering characteristics pre-
sented in Theorem 2, for A, there exists an invertible matrix
P such that

PAP𝑇 = (

1
𝑛1

1
𝑛2

−1

1
𝑛3

−1 d
1
𝑛𝑟

), (3)

where 1
𝑛𝑖

on the primary diagonal is an 𝑛
𝑖
-order square

matrix whose entries are all 1 (∑𝑟
𝑖=1

𝑛
𝑖
= 𝑛) and the other

entries of PAP𝑇 are all −1. The 𝑛
𝑖
-order square matrix

indicates the 𝑖th cluster.

Notation. For X ∈ 𝑅
𝑚×𝑛, let the mixed norm ‖X‖

2,1
=

∑
𝑚

𝑖=1
‖X
𝑖⋅
‖
2
; the soft-thresholding operator D

𝜏
(⋅) : X ∈

𝑅
𝑚×𝑛

󳨃→ Y ∈ 𝑅
𝑚×𝑛 is also defined obeying

Y
𝑖⋅
=

{{

{{

{

0 if 󵄩󵄩󵄩󵄩X𝑖⋅
󵄩󵄩󵄩󵄩2

≤ 𝜏,

(1 −
𝜏

󵄩󵄩󵄩󵄩X𝑖⋅
󵄩󵄩󵄩󵄩2

)X
𝑖⋅

otherwise, (4)

where X
𝑖⋅
and Y

𝑖⋅
denote the 𝑖th row of X and Y, respectively

[15]. The invertible vectorization is denoted by vec(⋅) :

𝑅
𝑚×𝑛

󳨃→ 𝑅
𝑚𝑛.

Let S1,1
𝜇,𝐿

(𝑅
𝑚×𝑛

) be the class of convex functions with
Lipschitz gradient [19]. A continuous differentiable function
𝑓(Y) belongs to S1,1

𝜇,𝐿
(𝑅
𝑚×𝑛

) for some 0 ≤ 𝜇 ≤ 𝐿 if for any
X,Y ∈ 𝑅

𝑚×𝑛 we have both of the following:
󵄩󵄩󵄩󵄩∇𝑓 (X) − ∇𝑓 (Y)󵄩󵄩󵄩󵄩𝐹 ≤ 𝐿‖X − Y‖

𝐹
,

⟨∇𝑓 (X) − ∇𝑓 (Y) ,X − Y⟩ ≥ 𝜇‖X − Y‖2
𝐹
.

(5)

3. Sign Inference via Dictionary Learning

In this section, we focus on a solution of the sign inference
to estimate connection statuses via dictionary learning. As
the preparation, we propose a large-scale dictionary selection
method to generate the dictionary for inferring. Assume that

we are given a (usually incomplete) network observation
tensor A sampled from an underlying dynamic weakly
balanced complete network G with the adjacency tensor A.
As the description in Section 1, it is reasonable to suppose that
most relationships between entities have their own stability in
a long period of time in practice and subsequently the change
in the scale of each subcommunity is limited. Apparently,
this implies the strong dependence retained among the
observed data. Combining these assumptions with the low-
rank characteristic of weakly balanced complete networks, we
extract an initial feature pool from the observation tensorA
and propose a dictionary selection method to compress the
scale of the feature pool in Section 3.1. The corresponding
algorithm is presented, respectively, in Section 3.2. With the
trained dictionary, we propose our sign inference approach
and dictionary updating mechanism in Section 3.3, which
are also inspired by the low-rank characteristic of weakly
balanced complete networks.

The method we propose to handle the dictionary selec-
tion is motivated by the Singular Value Thresholding (SVT)
algorithm, which is a simple and efficient algorithm for
nuclear norm minimization problems proposed by Cai et
al. [20]. Our basic idea is to obtain the optimal solution of
the trace norm minimization problem by solving its dual
problem whose objective function can be shown to be con-
tinuously differentiable with Lipschitz continuous gradient.
Specifically, we prove that the optimal solution of the primary
problem can be readily obtained from the optimal solution
of the dual problem. We first provide a brief review of the
standard SVT algorithm.

Considering the problem

min
X

𝜏‖X‖
∗
+
1

2
‖X‖2
𝐹

subject to P
Ω
(X) = P

Ω
(M) ,

(6)

Cai et al. [20] give a theoretical analysis that, when 𝜏 → ∞,
the optimal solution of problem (6) converges to that of the
standard problem:

min
X

‖X‖
∗

subject to P
Ω
(X) = P

Ω
(M) .

(7)
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Given that 𝜏 > 0, the SVT algorithm operates as a linear
Bregman iteration scheme. Furthermore, by defining the
Lagrangian function of problem (6) as

L (X,Y) = 𝜏‖X‖
∗
+
1

2
‖X‖2
𝐹
+ ⟨Y,P

Ω
(M − X)⟩ , (8)

whereY is the Lagrangian dual variable, we can derive its dual
function as

𝑓 (Y) = inf
X
L (X,Y) . (9)

Cai et al. show that SVT indeed optimizes the dual function
𝑓(Y) via the gradient ascent method.

3.1. Large-Scale Dictionary Selection. We address how to
select the dictionary given an initial candidate feature pool
in this subsection. To this end, we first extract an initial
candidate feature pool from A, which is sampled from A.
SinceA consists of the adjacency matrices A(𝑡) (𝑡 = 𝑇

0
, 𝑇
0
+

1, . . . , 𝑇
0
+ 𝑇 − 1), the matrix A(𝑡) in A can retain the

information of A(𝑡) more or less. Thus, we reserve the group
of A(𝑡) with relatively higher sample rate to extract features.
We use singular value decomposition (SVD) to express each
A(𝑡) as a series of orthogonal bases in Hilbert space; that is,

A(𝑡) =
𝑟𝑡

∑

𝑟=1

𝜎
(𝑡)

𝑟
u(𝑡)
𝑟
(k(𝑡)
𝑟
)
𝑇

=

𝑟𝑡

∑

𝑟=1

𝜎
(𝑡)

𝑟
U(𝑡)
𝑟
, (10)

where u(𝑡)
𝑟
and k(𝑡)
𝑟

are singular vectors ofA(𝑡) with eigenvalue
𝜎
(𝑡)

𝑟
, 1 ≤ 𝑟 ≤ 𝑟

𝑡
.Without loss of generality, we sort𝜎(𝑡)

1
≥ 𝜎
(𝑡)

2
≥

⋅ ⋅ ⋅ ≥ 𝜎
(𝑡)

𝑟𝑡

the singular values of A(𝑡) in descending order, and
set

𝐿
𝑡
= 𝑟
𝑡
− arg max
𝑟=1,...,𝑟𝑡−1

(𝜎
(𝑡)

𝑟
≥ 𝜎
(𝑡)

𝑟+1
) . (11)

Then, due to the low-rank property of the weakly balanced
complete adjacency matrix, we keep the group of U(𝑡)

𝑟
cor-

responding to the 𝐿
𝑡
largest 𝜎

(𝑡)

𝑟
as the features. By this

procedure, we extract an initial candidate feature pool as
{U(𝑡)
𝑟

: 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+ 𝑇 − 1, 1 ≤ 𝑟 ≤ 𝐿

𝑡
}, where each matrix

U(𝑡)
𝑟

∈ 𝑅
𝑛×𝑛 denotes a feature. Equivalently, we can discuss

Q = {vec(U(𝑡)
𝑟
) : 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+𝑇−1, 1 ≤ 𝑟 ≤ 𝐿

𝑡
} and form the

matrix Φ = [vec(U
1
), vec(U

2
), . . . , vec(U

𝑆
)] for convenience,

where vec(U
𝑠
) = vec(U(𝑡)

𝑟
), 1 ≤ 𝑟 ≤ 𝐿

𝑡
, 1 ≤ 𝑠 ≤ 𝑆 = ∑

𝑡
𝐿
𝑡
,

and 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+ 𝑇 − 1.

Due to massive data of the initial feature pool Φ, we
hope to find an optimal subset to form the dictionary Ψ =

[vec(U
1
), vec(U

2
), . . . , vec(U

𝐾
)] such that the set Φ can be

well reconstructed by Ψ and the size of Ψ is as small as
possible. To achieve this goal, we select Ψ such that the
rest of the features in Φ can be well reconstructed using
it. Analogous to the optimization problem in [21], the basic
problem is formulated as follows:

min
X

‖X‖
2,1

subject to ΦX = Φ,

(12)

where Φ ∈ 𝑅
𝑁×𝑆

(𝑁 = 𝑛
2

), X ∈ 𝑅
𝑆×𝑆, and ‖X‖

2,1
=

∑
𝑆

𝑖=1
‖X
𝑖⋅
‖
2
. Apparently, ‖X‖

2,1
enforces the group sparsity on

the variable X and the optimal solution usually contains zero
rows.This means that not all features inΦ are necessary to be
selected to reconstruct any data sample.

Motivated by SVT, we have the equivalent problem of (12)
as follows:

min
X

‖X‖
2,1

+
1

2
‖X‖2
𝐹

subject to ΦX = Φ.

(13)

The Lagrangian function of problem (13) is defined as

L (X,Y) = 𝜏‖X‖
2,1

+
1

2
‖X‖2
𝐹
+ ⟨Y, Φ − ΦX⟩ , (14)

and its dual function is

𝑓 (Y) = inf
X
L (X,Y) . (15)

We first examine the properties of the dual function𝑓(Y) and
then showhow to achieve the optimal solution of the problem
(13) from its dual optimumdirectly. As themixed norm ‖X‖

2,1

is not differentiable, it is difficult to optimize the dual function
𝑓(Y) directly. However, we can obtain a useful property of the
dual function𝑓(Y) as follows.

Theorem 3. For all 𝜏 ≥ 0, the dual function 𝑓(Y) is
continuously differentiable with Lipschitz continuous gradient
at most𝑀. Furthermore, the primal optimal X̂ of the problem
(13) is given by

X̂ = D
𝜏
(ΦŶ) , (16)

when the dual optimal Ŷ of the problem (13) is obtained.

The proof of Theorem 3 is based on the following results.

Lemma 4. For each 𝜏 ≥ 0 and Y ∈ 𝑅
𝑚×𝑛, one has

D
𝜏
(Y) = argmin

X
𝜏‖X‖
2,1

+
1

2
‖X − Y‖2

𝐹
. (17)

As a matter of fact, considering the following optimiza-
tion problem:

min
𝑥∈𝑅

𝜏 |𝑥| +
1

2
(𝑥 − 𝑦)

2

, (18)

it is easy to show that the unique solution admits a closed
form called the soft-thresholding operator, following a termi-
nology introduced by Donoho and Johnstone [22]; it can be
written that

𝑦 =

{

{

{

0 if |𝑥| ≤ 𝜏,

(1 −
𝜏

|𝑥|
) 𝑥 otherwise.

(19)

Thus, from a generalized view, one has Lemma 4.
Also, the following result can be deduced based on the

properties of Moreau-Yosida regularization [23].



6 Journal of Applied Mathematics

Lemma 5. For any X,Y ∈ 𝑅
𝑚×𝑛, one has

󵄩󵄩󵄩󵄩D𝜏 (X) −D
𝜏
(Y)󵄩󵄩󵄩󵄩
2

𝐹
≤ ⟨D
𝜏
(X) −D

𝜏
(Y) ,X − Y⟩ . (20)

It follows that D
𝜏
(Y) is globally Lipschitz continuous with

modulus 1.

Proof of Theorem 3. Since

𝑓 (Y) = inf
X
L (X,Y)

= inf
X

(𝜏‖X‖
2,1

+
1

2
‖X‖2
𝐹
+ ⟨Y, Φ − ΦX⟩)

= inf
X

(𝜏‖X‖
2,1

+
1

2
‖X‖2
𝐹
+ ⟨Y, Φ⟩ − ⟨Φ

𝑇Y,X⟩)

= inf
X

(𝜏‖X‖
2,1

+
1

2

󵄩󵄩󵄩󵄩󵄩
X − Φ

𝑇Y󵄩󵄩󵄩󵄩󵄩
2

𝐹

)

+ ⟨Y, Φ⟩ −
1

2

󵄩󵄩󵄩󵄩󵄩
Φ
𝑇Y󵄩󵄩󵄩󵄩󵄩
2

𝐹

= 𝑔 (Y) + ⟨Y, Φ⟩ −
1

2

󵄩󵄩󵄩󵄩󵄩
Φ
𝑇Y󵄩󵄩󵄩󵄩󵄩
2

𝐹

(21)

and 𝑔(Y) is the Moreau-Yosida regularization of the mixed
norm ‖ ⋅ ‖

2,1
, using the well-known properties of Moreau-

Yosida regularization [23], we get the results that 𝑔(Y) is a
globally continuously differentiable convex function. More-
over,∇𝑔(Y) = Φ(Φ

𝑇Y−D
𝜏
(Φ
𝑇Y)) and∇𝑔(Y) is continuously

differentiablewith Lipschitz continuous gradient𝜌; that is, for
any Y

1
,Y
2
∈ 𝑅
𝑁×𝑆,

󵄩󵄩󵄩󵄩∇𝑔 (Y
1
) − ∇𝑔 (Y

2
)
󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩󵄩
Φ
𝑇

(Y
1
− Y
2
)
󵄩󵄩󵄩󵄩󵄩𝐹

≤ 𝜌
󵄩󵄩󵄩󵄩(Y1 − Y

2
)
󵄩󵄩󵄩󵄩𝐹
,

(22)

where𝜌 = sup
‖Z‖𝐹=1,Z∈𝑅𝑁×𝑆‖Φ

𝑇Z‖
𝐹
.Then the gradient of𝑓(Y)

can be obtained as follows:

∇𝑓 (Y) = ∇𝑔 (Y) + Φ − ΦΦ
𝑇Y

= Φ(Φ
𝑇Y −D

𝜏
(Φ
𝑇Y)) + Φ − ΦΦ

𝑇Y

= Φ − ΦD
𝜏
(Φ
𝑇Y) .

(23)

It follows that, for any Y
1
,Y
2
∈ 𝑅
𝑁×𝑆,

󵄩󵄩󵄩󵄩∇𝑓2 (Y1) − ∇𝑓
2
(Y
2
)
󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩
Φ − ΦD

𝜏
(Φ
𝑇Y
1
) − Φ + ΦD

𝜏
(Φ
𝑇Y
2
)
󵄩󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩
Φ (D

𝜏
(Φ
𝑇Y
1
) −D

𝜏
(Φ
𝑇Y
2
))
󵄩󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩󵄩
ΦΦ
𝑇

(Y
1
− Y
2
)
󵄩󵄩󵄩󵄩󵄩𝐹

≤ 𝑀
󵄩󵄩󵄩󵄩Y1 − Y

2

󵄩󵄩󵄩󵄩𝐹
,

(24)

where the first inequality follows from (20) and 𝑀 =

sup
‖Z‖𝐹=1,Z∈𝑅𝑁×𝑆‖ΦΦ

𝑇Z‖
𝐹
. When the dual optimal Ŷ is

obtained, by using the result of (21), we can get

X̂ = argmin
X

L (X,Y)

= argmin
X

(𝜏‖X‖
2,1

+
1

2

󵄩󵄩󵄩󵄩󵄩
X − Φ

𝑇Y󵄩󵄩󵄩󵄩󵄩
2

𝐹

)

= D
𝜏
(ΦŶ) .

(25)

This concludes the proof.

Since 𝑓(Y) is the dual function of the objective function
(13), 𝑓(Y) is concave. Let

𝑞 (Y) = −𝑓 (Y)

= − (𝜏
󵄩󵄩󵄩󵄩D𝜏 (ΦY)󵄩󵄩󵄩󵄩2,1

+
1

2

󵄩󵄩󵄩󵄩D𝜏 (ΦY)󵄩󵄩󵄩󵄩
2

𝐹
+ ⟨Y, Φ − ΦD

𝜏
(ΦY)⟩) ,

(26)

which is convex. Thus, the following holds for any Y
1
,Y
2
∈

𝑅
𝑁×𝑆:

⟨𝑞 (Y
1
) − 𝑞 (Y

2
) ,Y
1
− Y
2
⟩ ≥ 0. (27)

It is also easy to show that 𝑞(Y) belongs to the class
S1,1
0,𝑀

(𝑅
𝑁×𝑆

) and

∇𝑞 (Y) = −Φ (I −D
𝜏
(Φ
𝑇Ŷ)) , (28)

where I ∈ 𝑅
𝑆×𝑆 is the identity matrix. Therefore, we can solve

problem (13) by minimizing the objective function 𝑞(Y); that
is,

min
Y

𝑞 (Y) . (29)

Therefore, the dictionaryΨ is selected by the optimal solution
Ŷ; that is, the 𝑖th column of Φ is chosen to be the atom of Ψ
if ‖Ŷ
𝑖⋅
‖
2

̸= 0. The optimization algorithm is presented in the
next subsection.

3.2. OptimizationMethods. In this subsection, we develop an
efficient optimization algorithm to solve the dual problem
(29). Because the objective function 𝑞(Y) is continuously
differentiable with Lipschitz continuous gradient, it is feasible
to utilize gradient-based optimization methods to achieve
the optimal solution for their simplicity and low complex-
ity within each iteration. However, classical gradient-based
methods for functions with Lipschitz continuous gradient
converge at a rate of 𝑂(1/𝑁), where 𝑁 is the number
of iterations during optimization [19]. In fact, this is too
slow especially when dealing with large-scale datasets. Note
that Nesterov showed in his work [24] that an accelerated
gradient algorithm can be constructed such that 𝑂(1/𝑁2),
the lower bound on the convergence rate for gradient-based
methods [25], is achieved when minimizing unconstrained
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smooth functions. With this consideration, in the following
we propose an accelerated thresholding algorithm to solve
these smooth convex optimization problems using Nesterov’s
method with an adaptive line search scheme [19, 26].

We recall Nesterov’s method with an adaptive line search
scheme as follows. Take the unconstrained smooth convex
minimization problem miny∈𝑅𝑛𝑞(y), for instance, where 𝑞(y)
belongs to S1,1

𝜇,𝐿
(𝑅
𝑛

), 𝜇 ≥ 0, and 𝐿 < +∞. Nesterov’s method
for this problem utilizes two sequences: {y

𝑙
} and {s

𝑙
}, y
𝑙
, s
𝑙
∈

𝑅
𝑛. The searching point s

𝑙
satisfies

s
𝑙
= y
𝑙
+ 𝛽
𝑙
(y
𝑙
− y
𝑙−1

) , (30)

where 𝛽
𝑙
is a tuning parameter.The approximate solution y

𝑙+1

can be computed as a gradient step of s
𝑙
as

y
𝑙+1

= s
𝑙
−

1

𝐿
𝑙

∇𝑞 (s
𝑙
) , (31)

where 1/𝐿
𝑙
is the step size. Starting from an initial point y

0
,

s
𝑙
and y

𝑙+1
can be computed recursively according to (30)

and (31) and can arrive at the optimal solution ŷ. Although
it has been shown that Nesterov’s method is a very powerful
optimization technique for classS1,1

𝜇,𝐿
(𝑅
𝑛

) [19], how to choose
𝛽
𝑙
and 1/𝐿

𝑙
in each iteration is a critical issue in Nesterov’s

method. When they are set properly, the sequence {y
𝑙
} can

converge to the optimal ŷ at a certain convergence rate.
As a well-known scheme for setting 𝛽

𝑙
and 𝐿

𝑙
, Nesterov’s

constant scheme assumes 𝛽
𝑙
and 𝐿

𝑙
to be constant [19], while

Nemirovski’s line search scheme requires 𝐿
𝑙
tomonotonically

increase, and 𝛽
𝑙
is independent of 𝐿

𝑙
[27]. Both of the settings

result in slow convergence.
To overcome this drawback, an adaptive line search

scheme for Nesterov’s method is proposed in [26]. Under the
assumption that 𝜇, the low bound of 𝜇, is known in advance,
this scheme is built upon the estimate sequence [19] defined
as follows.

Definition 6 (estimate sequence [19]). A pair of sequences
{𝜙
𝑙
(y)} and {𝜆

𝑙
≥ 0} is called an estimate sequence of function

𝑞(y) if lim
𝑘→∞

𝜆
𝑘
= 0 and 𝜙

𝑙
(y) ≤ (1 − 𝜆

𝑙
)𝑞(y) + 𝜆

𝑙
𝜙
𝑜
(y), for

all y ∈ 𝑅
𝑛.

The estimate sequence defined in Definition 6 has the
following important property.

Theorem 7 (see [19]). Let {𝜙
𝑙
(y)} and {𝜆

𝑘
≥ 0} be an estimate

sequence. For any sequence {y
𝑙
}, 𝑞(y

𝑙
)−𝑞 ≤ 𝜆

𝑘
(𝜙
0
(ŷ)−𝑞) → 0

if 𝑞(y
𝑙
) ≤ 𝜙
𝑘
≡ miny∈𝑅𝑛𝜙𝑘(y), where 𝑞 is the optimal objective

function value.

We further specify the estimation sequence in [19]:

𝜙
𝑙
(y) = 𝜙

𝑙
+
𝛾
𝑙

2

󵄩󵄩󵄩󵄩y − k
𝑙

󵄩󵄩󵄩󵄩

2

, (32)

where the sequences {𝛾
𝑙
}, {k
𝑙
}, and {𝜙

𝑙
} satisfy

k
𝑙+1

=
1

𝛾
𝑙+1

((1 − 𝛼
𝑙
) 𝛾
𝑙
k
𝑙
+ 𝜇𝛼
𝑙
s
𝑙
− 𝛼
𝑙
∇𝑞 (s
𝑙
)) ,

𝛾
𝑙+1

= (1 − 𝛼
𝑙
) 𝛾
𝑙
+ 𝜇𝛼
𝑙,

𝜙
𝑙+1

= (1 − 𝛼
𝑙
) 𝜙
𝑙
+ 𝛼
𝑙
𝑞 (s
𝑙
)

−
𝛼
2

𝑙

2𝛾
𝑙+1

󵄩󵄩󵄩󵄩∇𝑞 (s𝑙)
󵄩󵄩󵄩󵄩

2

+
𝛼
𝑙
(1 − 𝛼

𝑙
) 𝛾
𝑙

𝛾
𝑙+1

× (
𝜇

2

󵄩󵄩󵄩󵄩k𝑙 − s
𝑙

󵄩󵄩󵄩󵄩

2

+ ⟨∇𝑞 (s
𝑙
) , k
𝑙
− s
𝑙
⟩) .

(33)

Then Algorithm 2 in [26] is proposed by modifying
Nemirovski’s line search schemewith the adaptive parameters
of this sequence, which satisfy Theorem 7.

Note thatTheorem 3 indicates that the objective function
𝑞(Y) satisfies the conditions of using Nesterov’s method with
an adaptive line search scheme. Therefore we directly extend
Algorithm 2 in [26] to the high-dimensional scenarios to
solve (29). The complete procedures are summarized in
Algorithm 1.

In Algorithm 1, the while loop from Step 4 to Step 13 is
designed to choose a proper step size to satisfy Step 8. As the
Lipschitz gradient of 𝑞(Y) is 𝑀, 𝐿

𝑙
is upper bounded by 2𝑀

since Step 8 always holds when 𝐿
𝑙
≥ 𝑀 [27]. In Step 14, we

initialize 𝐿
𝑙+1

= ℎ(𝜃)𝐿
𝑙
, where

ℎ (𝜃) = {
1, 1 ≤ 𝜃 ≤ 5,

0.8, 𝜃 > 5,
(34)

and 𝜃 > 1 due to the condition in Step 8 [26]. Apparently,
when 𝜃 is large, 𝐿

𝑙+1
can be adjusted to avoid the step size 1/𝐿

𝑙

becoming too small, which may slow down the convergence
rate.

3.3. Sign Inference and Dictionary Update Mechanism. This
subsection details how to use the dictionary to solve the sign
inference problem. Actually, this problem bears similarity to
the sign prediction problem in the static signed networks
or the unsigned networks varying periodically [3, 8, 11, 12].
In this paper, we intend to infer the unknown relationship
between a pair of entities 𝑖 and 𝑗 based on partial relationship
observations of the entire dynamic network at time𝑇

0
+𝑇.We

expect to accomplish this task with the help of the dictionary
constructed by the relationship data for times 𝑇

0
through

𝑇
0
+𝑇−1. As aforementioned, there exists strong dependence

between the connection status at time 𝑇
0
+ 𝑇 and the history

relationship dataset in the dynamic network. We formulate
the sign inference problem as follows:

x̂ = argminx
1

2

󵄩󵄩󵄩󵄩y − Ψx󵄩󵄩󵄩󵄩
2

2
+ ‖x‖
1
, (35)

where Ψ is the dictionary and y is the invertible
vectorization of the matrix A(𝑇0+𝑇) observed at
time 𝑇

0
+ 𝑇; that is, y = vec(A(𝑇0+𝑇)). Because

A(𝑇0+𝑇) = ∑
𝑟
𝜎
(𝑇0+𝑇)

𝑟
U(𝑇0+𝑇)
𝑟

by using SVD and subsequently
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(1) Input: 𝜇, 𝛼
−1

= 0.5, Y
−1

= Y
0
, 𝐿
−1

= 𝐿
0
, 𝛾
0
≥ 𝜇, 𝜆

0
= 1

(2)Output: Y
𝑁

(3) for 𝑙 = 1, 2, . . . , 𝑁 do
(4) while true do
(5) compute 𝛼

𝑘
∈ (0, 1) as the root of 𝐿

𝑙
𝛼
2

𝑙
= (1 − 𝛼

𝑙
) 𝛾
𝑙
+ 𝛼
𝑙
𝜇,

𝛾
𝑙+1

= (1 − 𝛼
𝑙
) 𝛾
𝑙
+ 𝛼
𝑙
𝜇, 𝛽
𝑙
=

(1 − 𝛼
𝑙−1

) 𝛾
𝑙

(𝛾
𝑙
+ 𝐿
𝑙
𝛼
𝑙
) 𝛼
𝑙−1

;

(6) compute S
𝑙
= Y
𝑙
+ 𝛽
𝑙
(Y
𝑙
− Y
𝑙−1

)

(7) compute Y
𝑙+1

= S
𝑙
− (1/𝐿

𝑙
) ∇𝑞 (S

𝑙
)

(8) if 𝑞 (Y
𝑙+1

) ≤ 𝑞 (S
𝑙
) − (1/2𝐿

𝑙
)
󵄩󵄩󵄩󵄩∇𝑞 (S𝑙)

󵄩󵄩󵄩󵄩

2

𝐹
then

(9) goto Step 14

(10) else
(11) 𝐿

𝑙
= 2𝐿
𝑙

(12) end if
(13) end while

(14) set 𝜃 = 2𝐿
𝑙

𝑞 (S
𝑙
) − 𝑞 (Y

𝑙+1
)

󵄩󵄩󵄩󵄩∇𝑞 (S𝑙)
󵄩󵄩󵄩󵄩

2

𝐹

, 𝐿
𝑙+1

= ℎ (𝜃) 𝐿
𝑙

(15) set 𝜆
𝑙+1

= (1 − 𝛼
𝑙
)𝜆
𝑙

(16) end for

Algorithm 1: Adaptive line search scheme for dictionary selection.

vec(A(𝑇0+𝑇)) = ∑
𝑟
𝜎
(𝑇0+𝑇)

𝑟
vec(U(𝑇0+𝑇)

𝑟
), we will estimate

A(𝑇0+𝑇) in the form of vector and transform the low-rank
matrix reconstruction problem into a traditional 𝑙

1
-norm

minimization problem in compressive sensing. We solve
(35) by applying backtracking-based adaptive orthogonal
matching pursuit (BAOMP) method, which incorporates
a simple backtracking technique to detect the previously
chosen atoms’ reliability and then deletes the unreliable
atoms at each iteration [28]. Then we force that 𝑎(𝑇0+𝑇)

𝑖𝑗
, the

element of the resulting matrix, is equal to 1 if 𝑎(𝑇0+𝑇)
𝑖𝑗

> 1 or
equal to −1 if 𝑎(𝑇0+𝑇)

𝑖𝑗
≤ 0, to ensure the elements coinciding

with the value setting of relationships.
Furthermore, assume that we are given a sequence input

samples Y = [y(𝑇0+𝑇), y(𝑇0+𝑇+1), . . . , y(̃𝑇)], where y(𝑡) =

vec(A(𝑡)), 𝑇
0
+ 𝑇 ≤ 𝑡 ≤ 𝑇̃, the task of the sign inference

becomes to reconstruct the complete adjacency matrices
A(𝑡) one by one. Since the A(𝑡) may contain some features
which are not included in dictionary, it is necessary to add
these features into the dictionary to increase the accuracy
of the inference. However, the inferred matrix is not the
original matrix exactly and consequently the unobserved
relationships are not really known. In contrast, the observed
adjacency matrix A(𝑡) retains all existing relationships. For
this reason, we only use A(𝑡) to extract the features rather
than the optimal solution of (35). We apply the extracting
approach in Section 3.2 and add the complementary features
into the dictionary. Note that this operation will continuously
increase the scale of the dictionary while the samples keep
inputting for inference; the dictionary selection approach
proposed in Section 3.2 will be applied to compact the dictio-
nary once the size of the dictionary exceeds a predetermined
bound.

4. Numerical Experiment

In this section, we perform experiments on synthetic net-
works and show that our low-rank model and dictionary
learning method outperform other methods on the task of
the sign inference for dynamic signed networks. To ensure
that our results are reliable, we conduct all experiments 20
times and average out the results from all of the trials.

To construct synthetic networks, we first consider a
weakly balanced complete networkGwhose adjacency tensor
is A. The slide of A at time 𝑡 is an adjacency matrix A(𝑡)

in the form of (3). In addition, only a few patterns of A(𝑡)

exist in A. The observation tensor A is formed by sampling
some entries fromA. Concretely, we let the adjacency tensor
A of G consist of 50 250 × 250 matrices of complete 4-
weakly balanced structure. For the network G, four clusters
are generated randomly.The size of each cluster is larger than
20 and the sum of the sizes is 250. We further assume that
only a part of network relationships is observed by uniform
sampling with probability 𝑝 ∈ (0, 1). It results in 𝑛

2

𝑝 entries
being randomly sampled from A(𝑡), where 𝑝 is the fraction
of observed entries. We choose a set of matrices whose lost
rates are from 0.05 to 0.55 and apply the approach proposed
in Section 3.2 to select the dictionary Ψ.

With the dictionaryΨ and the given observedmatrixA(𝑡)
at time 𝑡 ≥ 𝑇

0
+ 𝑇, the task of the sign inference is achieved

by solving (35). We use BAOMP to estimate the complete
matrixA(𝑡) and compare the performance of our approach to
two state-of-the-art methods, alternating least square (ALS)
[29] and singular value projection (SVP) [30], for the sign
inference problem. Different from accuracy defined by the
relative error on the observed set in [8], we utilize the
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Figure 3: Accuracy of sign inference algorithms on synthetic datasets. In general, we can see that dictionary learning outperforms ALS and
SVP.

(a) (b)

Figure 4: An example of the sign inference. (a) illustrates the original matrix. Given the matrix with 98% lost-rate, (b) is the result inferred
by dictionary learning method. The similarity of inferred matrix is 0.9347.

similarity between the inferred matrix and the original one
to indicate the accuracy of estimation. The definition of the
similarity is |⟨A(𝑡), Â(𝑡)⟩|/‖A(𝑡)‖

𝐹
‖Â(𝑡)‖

𝐹
. We vary the lost-

rate of the original matrix A(𝑡) from 0.5 to 0.999 and plot
the inference accuracy in Figure 3 (lost-rate: 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, and 0.999). Apparently,
dictionary learning outperformsALS and SVP. To present our
result more clearly, we also use a visual expression in which
the white pixels represent 1 and the black pixels represent −1.
Figure 4 shows one example of the sign inference and we find
that relationships and the clusters can almost be accurately
estimated by our inference approach.

5. Conclusion

In this paper, we establish a low-rank tensor model for the
dynamic weakly balanced signed networks. With this model,
we first extract the feature pool and propose an approach to
extract the compact dictionary from pool. To improve the
performance of the selection approach, we derive the corre-
sponding dual problem and introduce an accelerated thresh-
olding algorithm to solve the dual problem. Consequently,
the optimal solution of the primary problem can be readily
obtained from optimizing the dual problem. In addition,
combined with the compact dictionary generation method,
the sign inference approach is provided for estimating
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missing relationships of the dynamic weakly balanced signed
networks at a certain time slice. Also, the approach is
endowed with the function of the dictionary updating if
relationship statuses change.
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Forecasting of urban traffic flow is important to intelligent transportation system (ITS) developments and implementations. The
precise forecasting of traffic flow will be pretty helpful to relax road traffic congestion. The accuracy of traditional single model
without correction mechanism is poor. Summarizing the existing prediction models and considering the characteristics of the
traffic itself, a traffic flow prediction model based on fuzzy 𝑐-mean clustering method (FCM) and advanced neural network (NN)
was proposed. FCM can improve the prediction accuracy and robustness of the model, while advanced NN can optimize the
generalization ability of the model. Besides these, the output value of the model is calibrated by the correction mechanism. The
experimental results show that the proposed method has better prediction accuracy and robustness than the other models.

1. Introduction

Real-time forecasting of traffic flow is an important issue in
advanced traffic management [1]. The traffic simulation is
correspondingly needed to make these forecasting models
reliable way, which aim to influence travel behavior, reduce
traffic congestion, improve mobility, and enhance air quality.
Traffic forecastingmodels can be used to provide urban traffic
control centers with an automated tool for anticipating the
congestion that may arise on road facilities and its expected
duration [2].

The urban traffic flow forecasting models rely on histor-
ical and current flow data. The problem of traffic flow fore-
casting belongs to a standard time series prediction task and
the purpose is to fetch the function which can relates future
values of traffic flow to previous and current measurement
of traffic flow [3]. A variety of forecasting techniques has
been applied to forecast the urban traffic flow. In [4], Danech-
Pajouh and Aron designed a layered statistical method with
a mathematical clustering technique to group the traffic flow
data and a separately tuned linear regression model for each
cluster. The ARIMA model, initially developed by Kim et

al., is one of the most popular approaches in traffic flow
forecasting [5–7]. However, the limitation of ARIMAmodels
is that their natural tendency, concentrated on the mean
values of the past series data, seems unable to capture the
rapid varying process changes underlying of traffic flow. The
artificial neural network (ANN) is widely applied in traffic
flow forecasting. Yin et al. [8] developed a fuzzy-neuralmodel
(FNM) to predict traffic flow in an urban street network. The
empirical results showed that the FNMmodel provides more
accurate forecasting results than the BPNN model. These
researches are committed to improve the performance of
the algorithms. However, there are many factors which can
affect the traffic flow, the traditional single model can hardly
improve the prediction accuracy and no online correction
mechanism was considered. This motivates the paper.

In this paper, the traffic flow forecasting model has 3
techniques: first, the input data of the model is divided
into several categories according to FCM, and different
categories have different model. Second, a training model
based on awell-defined part-connected neural network (NN)
was proposed and the cooperative quantum-particle swarm
evolutionary algorithm (CQGAPSO) is used to train the
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model. Last, the error between predicted value and real
value is used to compensate the output of the model. These
methods can improve the accuracy and generalization of the
forecasting model can also overcome the model mismatch.

This paper is organized as follows. The forecasting meth-
odology is introduced in Section 2. Cases of studying of urban
traffic flow forecasting are given in Section 3. Conclusions are
finally made in Section 4.

2. Forecasting Methodology

2.1.The Framework of the ProposedMethod. According to the
change rule of traffic flow time series, there is an essential
linkage between the future and the previous flow [9]. Thus,
the previous traffic flow value can be used to forecast the
future flow. Set 𝑓(𝑡) as the traffic flow at time 𝑡, 𝑓(𝑡−1) as the
value at time 𝑡−1. In this paper,𝑓(𝑡),𝑓(𝑡−1), . . ., and𝑓(𝑡−𝑠)
are the input values of the model at time 𝑡 and 𝑓(𝑡 + 𝑝) is the
predicted value at time 𝑡 + 𝑝. The input values are denoted as
𝑥(𝑖) and the predicted value is denoted 𝑦(𝑖). The traffic flow
forecasting model is made to build the relationship between
𝑦(𝑖) and 𝑥(𝑖).Therefore, once the relationship is obtained, the
model can be used to predict the future traffic flow based on
the real-time measured data in practice.

In the previous studies, the single prediction model
mentioned above was adopted to forecast the urban traffic
flow. However, it is not universally applicable for all the traffic
scenarios. Since the urban traffic system is an unstable system,
which exhibits significant variation in different periods, it is
necessary to establish different prediction models to forecast
the future traffic state accurately. According to the measured
data from the float car, Guo et al. [10] analyzed the degree
of traffic congestion on different days in a week. The results
showed that the traffic congestion of Monday is more serious
than the other days, especially in the morning peak hour,
and the most serious traffic congestion of evening peak hour
occurred in Friday. Moreover, the degree of traffic congestion
during commuting time on the weekend is less than the
degree on weekdays. It can be concluded that by observing
the traffic flow data, the travel modes and travel demand are
different on each day of a week, and the data characteristic
of the same day for every week is similar. Therefore, in
order to improve the accuracy of prediction for traffic flow
or travel speed on the road, it is necessary to classify the
traffic flow pattern and apply a suitable model to forecast
each pattern. This classification would guarantee that each
prediction model has a good performance in a particular
period. As urban traffic flow system is a complicated process
influenced by many factors, it is believed that using the
multimodel method to predict the traffic flow is appropriate.

From the analysis made above, in this paper, for the sake
of modeling, the historical traffic data should be divided into
seven classes corresponding to each day of a week. Besides,
considering the widely variation of traffic flow frommorning
to night, especially in the rush hour, using a single model
to describe a complex nonlinear object usually results in low
accuracy and poor generalization. So we use FCM to process
the data and choose the reasonable clustering number by
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the experiments and use the approach based on multiple-
input-single-output three-layer feedforward neural network
with switches to model each cluster. Meanwhile, in order
to overcome the model mismatch, the adaptive correction
mechanism is added to our approach. The framework of the
proposed method is illustrated in Figure 1.

2.2. Fuzzy 𝑐-Means Clustering. The model of forecasting
traffic flow is a multiinput single-output system; the training
sample set can be expressed as 𝐷 = {𝑓
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is between 0 and 1. The architecture of FCM method is

shown in Figure 2 [11, 12].
Clustering number 𝑐 is a very important parameter. Here,

we do experiments to choose the appropriate clustering
number 𝑐. Let 𝑐 increase from 2 to a constant. Then, make
models separately based on FCM and calculate the mean
square error and the maximum error according to (1). Last,
we can obtain the best clustering number 𝑐.

Consider
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Table 1: The result of the FCM.

Clustering number 𝑐 Monday 1 Wednesday 1 Sunday 1
MSE MAXE MSE MAXE MSE MAXE

1 14.0515 57.5568 14.2659 61.2561 14.1235 57.3078
2 13.3489 51.3476 14.0024 53.1487 13.2149 51.0947
3 10.0456 43.1834 13.4820 48.4621 9.8952 42.1001
4 11.8439 44.9576 11.2106 45.2548 11.7541 44.8259
5 13.2563 47.5963 13.5279 49.3247 13.1589 46.2985

Clustering number 𝑐 Monday 2 Wednesday 2 Sunday 2
MSE MAXE MSE MAXE MSE MAXE

1 15.1125 60.9547 14.3762 59.0143 14.4321 60.6465
2 14.5876 54.2154 14.1144 59.9821 14.2547 61.6435
3 11.5248 40.1257 13.5520 50.7234 13.6464 50.9542
4 12.5487 42.2037 11.3017 47.0984 12.3014 48.2549
5 13.6587 44.1023 13.6975 51.2459 13.4164 50.8216

2.3. The Forecasting Model Based on Neural Network with
Switches. In the architecture of FCM method, each model
needs a modeling tool. NN, SVM, and Kalman filtering are
always used to forecast the traffic flow. Here, we adopt an
advanced NN, the multiple-input-single-output three-layer
feedforward neural network with switches was proposed and
well defined in [13]. A multiple-input-single-output (MISO)
three-layer feedforward neural work with switches is shown
in Figure 3.

Various methods were proposed to train the NN with
switches [13–15]. In those methods, the population was
partitioned to parameters and structure population. The
parameters population was composed of the weight of the
links, while the structure population was composed of the
link switches. This model could eliminate some ill effects of
approximation ability caused by redundant structure of NN.

2.4. The Adaptive Correction Mechanism. The traffic flow is
the measurable variable, and the real-time data is used to
predict the future traffic flow [16]. For example, at current
time 𝑡, we can obtain the real value 𝑓(𝑡) from the sensors and
the predicted value 𝑓(𝑡) by forecasting the model. Here is an
error 𝑒 = 𝑓(𝑡) −𝑓(𝑡) because of the model mismatch. At time
𝑘, the model should forecast the traffic flow at time 𝑘 + 𝑝; the
error can be used to compensate the initial predicted value
𝑓
󸀠

(𝑡+𝑝) according to (2).ℎ is the offline correction coefficient.
Consider

𝑓 (𝑡 + 𝑝) = 𝑓
󸀠

(𝑡 + 𝑝) + ℎ ⋅ 𝑒. (2)

The training set 𝐷 can be used to fetch ℎ; to fetch ℎ is to
find the relationship between𝑓(𝑡)−𝑓(𝑡) and𝑓(𝑡+𝑝)−𝑓(𝑡+𝑝),
and here, 𝑡 = 1, 2 . . . 𝑚, 𝑚 is the sample number of training
set. ℎ can be calculated by least square method (SLM).

When the model is forecasting the traffic flow online, the
correction coefficient ℎ should be refreshed in real time. For
example, at current time 𝑡, we can calculate Δℎ using a small
piece of historical data to obtain the relationship between
𝑓(𝑡 − 𝑖 − 𝑝) − 𝑓(𝑡 − 𝑖 − 𝑝) and 𝑓(𝑡 − 𝑖) − 𝑓(𝑡 − 𝑖). Here, 𝑖
is a small positive integer. The online correction coefficient
Δℎ can be obtained by SLM and (2) should be modified.
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Figure 3:The structure of three-layer feedforward NNwith switch-
es.

Consider

𝑓 (𝑡 + 𝑝) = 𝑓
󸀠

(𝑘 + 𝑝) + (ℎ + Δℎ) ⋅ 𝑒. (3)

3. Experimental Results

In order to explain the effectiveness of the proposed method,
we choose the data gathered from Shanghai north-south
highway including from August to October. The historical
data on August and September is used to build the training
set, while the data on October is used to build the testing set.
There is a large difference of traffic flow every day in a week,
thus we build different models for every day. Here, we use
the first two Monday, Wednesday and Sunday on October to
verify the proposed model.
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Table 2: The result of adding the correction mechanism.

ℎ + Δℎ
Monday 1 Wednesday 1 Sunday 1

MSE MAXE MSE MAXE MSE MAXE
ℎ + Δℎ = 0 10.0456 43.1843 11.2106 45.2548 9.8952 42.1001
−0.1 ≤ Δℎ ≤ 0.1 9.9758 42.1285 10.2654 44.1657 9.7561 40.6548
−0.2 ≤ Δℎ ≤ 0.2 15.2648 59.2154 16.2299 61.2147 14.3215 57.6519
−0.3 ≤ Δℎ ≤ 0.3 99.2154 70.2165 105.2647 85.2594 99.0147 69.2589

ℎ + Δℎ
Monday 2 Wednesday 2 Sunday 2

MSE MAXE MSE MAXE MSE MAXE
ℎ + Δℎ = 0 11.5248 40.1257 11.3017 47.0984 12.3014 48.2549
−0.1 ≤ Δℎ ≤ 0.1 10.4529 38.2489 10.3594 46.2813 11.2497 47.9523
−0.2 ≤ Δℎ ≤ 0.2 16.5489 58.2146 17.2016 64.0525 16.2018 58.2687
−0.3 ≤ Δℎ ≤ 0.3 103.4269 88.2159 106.2184 86.3468 101.4512 98.1264

Table 3: The comparison of 3 different models.

Monday 1 Wednesday 1 Sunday 1
MSE MAXE MSE MAXE MSE MAXE

Model (a) 13.4956 46.7109 14.3495 48.3459 12.2304 46.0239
Model (b) 10.0456 43.1834 11.2106 45.2548 9.8952 42.1001
Model (c) 9.9758 42.1285 10.2654 44.1657 9.7561 40.6548

Monday 2 Wednesday 2 Sunday 2
MSE MAXE MSE MAXE MSE MAXE

Model (a) 15.2430 49.4545 14.4506 51.4539 16.1356 55.2341
Model (b) 11.5248 40.1257 11.3017 47.0984 12.3014 48.2549
Model (c) 10.4529 38.2489 10.3594 46.2813 11.2497 47.9523

The number of training sample is 2800 and the testing
sample number is 650. There is 2 minutes between each data.
Based on the experience, we choose 3 as the dimension of
input data. On request, we should predict the traffic flow after
10 minutes.Thus the width of the prediction 𝑝 is 5. We totally
do 3 experiments: (1) the traditional single model; (2) the
multimodels based on FCM; (3) the multimodels based on
FCM and adaptive correction mechanism.

First, all the data should be filtered before modeling
and NN with switches is used as the modeling tool. Then
we should determine the Clustering number 𝑐 by FCM,
“CQGAPSO” algorithm is used to train the NN model and
the parameter of “CQGAPSO” algorithm is given in [17].The
hidden nodes number is 6. The training accuracy is 1 × 10−5
and the iteration times of training the NN are 2000. The
experiments are implemented for 50 times. Table 1 gives the
result of FCM.

Form Table 1, we can find MSE and MAXE get better
after an initial increase in growth of clustering number 𝑐.
However, if 𝑐 continues to grow, MSE and MAXE will get
worse. That is because with the increasing of the clustering
number, the generalization ability of the model gets poorer.
The best clustering number 𝑐 is at the turning point.Then the
model should be added the adaptive correction mechanism.
In order to obtain an appropriate correction coefficient, ℎ
is a fixed number which is calculated offline while Δℎ is
a changed number which calculated online and we should
limit the scope of Δℎ. Table 2 gives the result of adding the
adaptive correction mechanism. From Table 2, we can find if

the adaptive correctionmechanism parameter value is −0.1 ≤
Δℎ ≤ 0.1, MSE and MAXE is the best. If the scope of Δℎ
is very wide, MSE and MAXE will get worse because the
compensation value is too large. Table 3 gives the comparison
of every approach. Model (a) is the traditional single model,
model (b) is the model (a) with FCM, model (c) is the
model (b) with the correction mechanism. We can find the
reasonable clustering number 𝑐 and correction mechanism
can improve the forecasting ability.

The Comparison of every approach is illustrated
in Figure 3. Figure 4(a) is the traditional single model,
Figure 4(b) is the model with FCM, Figure 4(c) is the model
with FCM and the correction mechanism. In Figure 4(a), the
predictive curve is smooth and cannot track exactly especially
at the peak value because the approximation capability of the
traditional single model is limited. In Figure 4(b), we can get
some submodels by FCM and multimodel can improve the
forecasting ability. Without the correction mechanism, the
model error cannot be corrected in real time. In Figure 4(c),
we use the correction mechanism and it compensates the
initial forecasting value with the model error value. From
Table 3 and Figure 4, we can find that the predictive accuracy
is better than model (a) and (b).

4. Conclusions

Aiming at solving the problem of forecasting urban traffic
flow, this paper proposes a forecasting model by the use of
FCM and correction mechanism. The experimental results
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Figure 4: Continued.
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Figure 4: the result of forecasting the traffic flow.

indicate that the proposed method can perform better than
other methods and show the application prospect.
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This paper deals with the problem of fault detection for linear uncertain time-delay systems.The proposed method for Luenberger
observers is developed for unknown input observers (UIOs), and a novel procedure for the design of residual based on UIOs
is presented. The design procedure is carried out based on the 𝐻

∞
model matching approach which minimizes the difference

between generated residuals by the optimal observer and those by the designed observer in the presence of uncertainties. The
optimal observer is designed for the ideal system and works so that the fault effect is maximized while the exogenous disturbances
and noise effects are minimized.This observer can give disturbance decoupling in the presence of noise and uncertainties for linear
uncertain time-delay systems. The developed method is applied to a numerical example, and the simulation results show that the
proposed approach is able to detect faults reliably in the presence of modeling errors, disturbances, and noise.

1. Introduction

Fault detection and isolation (FDI) is an essential and
challenging problem inmany industrial applications. Among
the various reported methods, much attention has been paid
to model based approaches in the field of control engineering
in recent years. For example, fault detection problem for
discrete-time Markov jump systems and switched systems
is investigated in [1, 2], respectively. The problem of fault
reconstruction for a class of descriptor linear systems using
sliding mode observers is presented in [3]. The sliding mode
observers have been designed such that the actuator fault
can be reconstructed using output measurements. The data-
driven scheme for FDI is presented in [4] which exploits an
adaptive residual generator and a bank of isolation observers.
The designed scheme obtains observer parameters without
identification of complete process model.

However, model based approaches are based on some
idealized assumptions, one of which is that the mathematical
model of the plant is a faithful replica of the plant dynamics
[5]. As themathematicalmodel of a plant hardly represents its
complete behavior, due to the existence of model uncertainty,
noise, and unknown disturbances, it is essential to design a
fault diagnosis system to take these effects into consideration.
Motivated by the abovementioned issues, a robust fault detec-
tion scheme is exploited to design fault detection systems
so that high sensitivity to faults as well as low sensitivity
to uncertainties and perturbation can be obtained. Opti-
mization techniques are widely used to solve this problem.
One of the commonly used approaches to design such FDI
scheme is representing the design procedure by 𝐻

∞
and 𝐻

−

performance indexes. The main advantage of this approach
is that it can be solved by linear matrix inequality (LMI) [6].
In [7, 8], a two-step FDI design methodology is presented.
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In this methodology, the optimal fault detection filter (FDF)
has firstly been designed, neglecting the existence of model
uncertainty. Next, the FDF, which is used as residual gener-
ator, has been obtained via 𝐻

∞
model matching technique.

The same approach is used in [9]; however, different dynamics
is considered for the FDF.

Time delay is an inherent characteristic of many indus-
trial systems; therefore, robust FDI problem for LTI systems
with time delay received great attention over recent decades,
and numerous articles have been presented. One approach
is to solve the formulated design procedure using the eigen-
structure assignment approach in which the residual signal
is thoroughly decoupled from delay-free unknown input.
Then the effect of the unknown input is minimized using
𝐻
∞

norm [10]. In the presence of uncertainty, the same
approach as delay-free case can be employed to obtain a
robust FDI system. Indeed, solving the 𝐻

∞
model matching

problem results in achieving an FDF which acts the same
as the optimal one [11–13]. Although the same approach is
considered in these references, solving procedures are com-
pletely different owing to the difference between the dynamic
of the filter and system. In [14], the problem of robust
FDF design for the class of linear systems has been inves-
tigated. The system is subjected to mixed neutral and dis-
crete time-varying delays and some nonlinear perturbations.
The Luenberger type observer has been utilized to design
FDF such that the residual signals effectively show fault
occurrence.

Another approach commonly used to robust FDI scheme
is to employ the unknown input observers (UIO), in which
the residual is designed to be sensitive to faults but insensitive
to unknown disturbances. Although theUIO has beenwidely
used in estimation problems in both time delay and delay-
free systems [15–18], there are few references that handle the
problem of designing robust FDI [19, 20]. In [20], a design
procedure has been proposed for delay-free systems so that
perturbations and exogenous signals have less effect on the
residual signal and the fault has a detectable effect on the
residual; however, the problem has not been presented in𝐻

∞

model matching technique. Motivated by this consideration,
a robust FDF design using UIO for uncertain systems with
time delay is presented and solved using𝐻

∞
model matching

approach. In contrast to our previous work [18], we are
concerned to design a robust FDF for the case in which
the dynamic characteristic of fault signal is known. For
this purpose, a two-step design procedure is developed. In
the first step, the optimal fault detection based on UIO
is designed for the system without uncertainty. Next, the
UIO-based fault detection filter is approached to optimal
one in the sense of 𝐻

∞
norm. It is demonstrated through

simulation that the presented fault detection observer is
robust against uncertainty and sensitive enough to the
faults.

Notation. The notations used throughout the paper are
fairly standard. I and 0 represent identity matrix and zero
matrix; the superscript “𝑇” stands for matrix transposition.
‖ ⋅ ‖ refers to the Euclidean vector norm or the induced
matrix 2-norm. diag{⋅} represents a block diagonal matrix.

The notation 𝑃 > 0 means that 𝑃 is real symmet-
ric and positive definite; the symbol ∗ denotes the ele-
ments below the main diagonal of a symmetric block
matrix.

2. Problem Statement

Many different industrial systems such as mechanical, elec-
trical, meteorological, chemical, economic, and biological
systems include time delay. In many studies linearized model
of these systems around point of operation is considered.
However, there are always some discrepancies between the
real dynamics of the system and linearized model. These
differences arise from systems uncertainty, as a consequence
of neglecting dynamics, and changes in system parameters.
Therefore, the following linear uncertain systemwith additive
disturbances and time delay is considered to represent the
described model:

̇𝑥 (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡)) 𝑥 (𝑡 − 𝜏)

+ (𝐵 + Δ𝐵 (𝑡)) 𝑢 (𝑡) + 𝐸𝑑 (𝑡) + 𝐹
𝑥
𝑓 (𝑡) + 𝑅𝑛 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹
𝑦
𝑓 (𝑡) + 𝐷𝑛 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑝 is the
output vector, 𝑢(𝑡) ∈ R𝑞 is the input vector, 𝑑(𝑡) ∈ R𝑚

is an unknown scalar function representing the disturbance
that belongs to 𝐿

𝑚

2
(0,∞), 𝑓(𝑡) ∈ R𝑓 denotes the faults, and

𝑛(𝑡) ∈ R𝑟 represents the noise. Note that Δ𝐴(𝑡), Δ𝐵(𝑡), and
Δ𝐴
𝑑
(𝑡) are the norm bounded time-varying uncertainties of

thematrices𝐴,𝐵, and𝐴
𝑑
, respectively, and 𝜏 ≥ 0 is a constant

delay. It is assumed that the characteristics of uncertainty
matrices belong to

Ω
1
= {Δ𝐴 (𝑡) | Δ𝐴 (𝑡) = 𝑀

1
Σ
1
(𝑡)𝑁
1
, Σ
𝑇

1
(𝑡) Σ
1
(𝑡) ≤ 𝐼} ,

Ω
2
= {Δ𝐵 (𝑡) | Δ𝐵 (𝑡) = 𝑀

2
Σ
2
(𝑡)𝑁
2
, Σ
𝑇

2
(𝑡) Σ
2
(𝑡) ≤ 𝐼} ,

Ω
3
= {Δ𝐴

𝑑
(𝑡) | Δ𝐴

𝑑
(𝑡) = 𝑀

3
Σ
3
(𝑡)𝑁
3
, Σ
𝑇

3
(𝑡) Σ
3
(𝑡) ≤ 𝐼} ,

(2)

where𝑀
𝑖
and𝑁

𝑖
are predefined matrices. It is supposed that

all over the paper the dimensions of matrices are compatible
if they are not explicitly mentioned.

The dynamic characteristic of fault signal can be
described by [21]

̇𝜃 (𝑡) = 𝐴
𝜃
𝜃 (𝑡) , 𝑡 ≥ 𝑡

𝑓
,

𝜃 (𝑡) = 0, 𝑡 ∈ [0, 𝑡
𝑓
] ,

𝜃 (𝑡
𝑓
) = 𝜃
0
,

𝑓 (𝑡) = 𝐹
𝜃
𝜃 (𝑡) ,

(3)

where 𝑡
𝑓
is the time when a fault occurs and 𝐴

𝜃
and 𝐹

𝜃

are known matrices with appropriate dimensions. The initial
time, 𝑡

𝑓
, and initial state, 𝜃

0
, are supposed to be unknown.

The dynamic equation (3) represents any fault with known
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dynamic characteristic and unknown amplitude and phase
[21].

Unknown input observer for the class of time-delay
system (1) is considered as [22]

̇𝑧 (𝑡) = 𝐹𝑧 + 𝐺𝑧 (𝑡 − 𝜏) + 𝐻𝑢 (𝑡) + 𝐾
1𝑧
𝑦 (𝑡) + 𝐾

2𝑧
𝑦 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝑧 (𝑡) + 𝐿
1
𝑦 (𝑡) ,

(4)

where 𝑥(𝑡) is the estimated state vector. The dynamic of 𝑥(𝑡)
is governed by

̇𝑥̂ (𝑡) = 𝐹𝑥 + 𝐺𝑥 (𝑡 − 𝜏) + 𝐻𝑢 (𝑡) + 𝐿
1

̇𝑦 (𝑡)

+ 𝐿
2
𝑦 (𝑡) + 𝐿

3
𝑦 (𝑡 − 𝜏) ,

(5)

where 𝐹, 𝐺, 𝐻, and 𝐿
1
are the observer matrices and 𝐿

2
=

𝐾
1𝑧

− 𝐹𝐿
1
, 𝐿
3
= 𝐾
2𝑧

− 𝐺𝐿
1
.

The observer matrices will be designed such that the
disturbance and input are decoupled from the estimation
error defined by 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡). When UIO-based filter
defined by (4) is applied to the system described in (1), the
state estimation error will be

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) + ((𝐼 − 𝐿
1
𝐶)𝐴 − 𝐿

2
𝐶 − 𝐹) 𝑥 (𝑡)

+ ((𝐼 − 𝐿
1
𝐶)𝐴
𝑑
− 𝐿
3
𝐶 − 𝐺) 𝑥 (𝑡 − 𝜏)

+ ((𝐼 − 𝐿
1
𝐶)𝐵 − 𝐻) 𝑢 (𝑡)

+ (𝐼 − 𝐿
1
𝐶)𝐸𝑑 (𝑡)

+ ((𝐼 − 𝐿
1
𝐶)𝐹
𝑥
𝐹
𝜃
− 𝐿
2
𝐹
𝑦
𝐹
𝜃
− 𝐿
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) 𝜃 (𝑡)

− 𝐿
3
𝐹
𝑦
𝐹
𝜃
𝜃 (𝑡 − 𝜏) + ((𝑅 − 𝐿

1
𝐶𝑅) − 𝐿

2
𝐷) 𝑛 (𝑡)

− 𝐿
3
𝐷𝑛 (𝑡 − 𝜏) − 𝐿

1
𝐷 ̇𝑛 (𝑡)

+ (𝐼 − 𝐿
1
𝐶)Δ𝐴 (𝑡) 𝑥 (𝑡) + (𝐼 − 𝐿

1
𝐶)Δ𝐴

𝑑
(𝑡) 𝑥 (𝑡 − 𝜏)

+ (𝐼 − 𝐿
1
𝐶)Δ𝐵 (𝑡) 𝑢 (𝑡) .

(6)

In the absence of uncertainties and faults, it is shown that
the observer, defined by (4), is UIO for the predefined system
by (1) if the following conditions are satisfied [22].

Condition 1:

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) is asymptotically stable. (7)

Condition 2:

𝐹 = (𝐼 − 𝐿
1
𝐶)𝐴 − 𝐿

2
𝐶. (8)

Condition 3:

𝐺 = (𝐼 − 𝐿
1
𝐶)𝐴
𝑑
− 𝐿
3
𝐶. (9)

Condition 4:

𝐻 = (𝐼 − 𝐿
1
𝐶)𝐵. (10)

Condition 5:

(𝐼 − 𝐿
1
𝐶)𝐸 = 0, (11)

where 0 denotes a null matrix with compatible dimension.
Using these relationships, and considering definitions in (12),
the state estimation error dynamic (6) is transformed to (13):

𝑇 = (𝐼 − 𝐿
1
𝐶) ,

𝐹 = [(𝐼 − 𝐿
1
𝐶)𝐹
𝑥
𝐹
𝜃
− 𝐿
2
𝐹
𝑦
𝐹
𝜃
− 𝐿
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃

−𝐿
3
𝐹
𝑦
𝐹
𝜃
] ,

𝑅 = [−𝐿
1
𝐷 (𝐼 − 𝐿

1
𝐶)𝑅 − 𝐿

2
𝐷 −𝐿

3
𝐷] ,

𝜃 = [𝜃
𝑇

(𝑡) 𝜃
𝑇

(𝑡 − 𝜏)]
𝑇

,

𝑛 = [ ̇𝑛
𝑇

(𝑡) 𝑛
𝑇

(𝑡) 𝑛
𝑇

(𝑡 − 𝜏)]
𝑇

,

(12)

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) + 𝐹 𝜃 + 𝑅 𝑛

+ 𝑇Δ𝐴 (𝑡) 𝑥 (𝑡) + 𝑇Δ𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏)

+ 𝑇Δ𝐵 (𝑡) 𝑢 (𝑡) .

(13)

In order to use the UIO for fault detection purposes,
a residual signal should be defined. Difference between
measured output and estimated output is usually considered
as a residual signal. In current work, a more general form for
residual reference signal is considered as follows:

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑟 (𝑡) = 𝑉
1
(𝑦 (𝑡) − 𝑦 (𝑡)) + 𝑉

2
(𝑦 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏))

= 𝑉
1
𝐶𝑒 (𝑡) + 𝑉

2
𝐶𝑒 (𝑡 − 𝜏) + 𝐾

1
𝜃 (𝑡) + 𝐾

2
𝑛 (𝑡) ,

𝐾
1
= [𝑉
1
𝐹
𝑦
𝐹
𝜃

𝑉
2
𝐹
𝑦
𝐹
𝜃
] ,

𝐾
2
= [0 𝑉

1
𝐷 𝑉
2
𝐷] .

(14)

The goal of robust fault detection problem is to mini-
mize the performance index defined in (15) for all classes
of model uncertainties belonging to Ω

𝑖
. In general, this

performance index is minimized using 𝐻
∞

model match-
ing approach which minimizes the difference between the
residual signal (𝑟(𝑡)) and reference residual signal (𝑟

𝑓
(𝑡))
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in the presence of the worst case disturbance signals. This
performance index has been minimized by the following
steps.

Step 1. The ideal residual signal generator system has been
designed for the system without uncertainty defined in
(16). The residual signal shows the maximum sensitivity to
the fault signal while it has the minimum sensitivity to
disturbance, noise, and unknown inputs.

Step 2. The residual signal generator system has been de-
signed such that the performance index (17) isminimized and
the overall system (19) is asymptotically stable:

𝐽
𝑟
= min
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

󵄩󵄩󵄩󵄩𝐺𝑟[𝑑 𝑛]
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐺
𝑟𝑓

󵄩󵄩󵄩󵄩󵄩󵄩∞

, (15)

̇𝑒
𝑓
(𝑡) = 𝐹

∗

𝑒
𝑓
(𝑡) + 𝐺

∗

𝑒
𝑓
(𝑡 − 𝜏) + 𝐹

∗

𝜃 (𝑡) + 𝑅
∗

𝑛 (𝑡) ,

𝑟
𝑓
(𝑡) = 𝑉

∗

1
𝐶𝑒
𝑓
(𝑡) + 𝑉

∗

2
𝐶𝑒
𝑓
(𝑡 − 𝜏) + 𝐾

∗

1
𝜃 (𝑡) + 𝐾

∗

2
𝑛 (𝑡) ,

(16)

𝐽
𝑟𝑒
= sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖

󵄩󵄩󵄩󵄩𝑟𝑒
󵄩󵄩󵄩󵄩2

‖𝜔‖
2

< 𝛾, (17)

where

𝑟
𝑒
(𝑡) = 𝑟 (𝑡) − 𝑟

𝑓
(𝑡) ,

𝜔 = [𝑢
𝑇

𝜃
𝑇

𝑑
𝑇

𝑛
𝑇]
𝑇

,

(18)

̇𝜁 (𝑡) = (𝐴 + Δ𝐴) 𝜁 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
) 𝜁 (𝑡 − 𝜏)

+ (𝐵
𝜔1

+ Δ𝐵
𝜔1
) 𝜔 (𝑡) ,

𝑟
𝑒
(𝑡) = 𝐶

1
𝜁 (𝑡) + 𝐶

2
𝜁 (𝑡 − 𝜏) + 𝐷𝜔 (𝑡) ,

(19)

where

𝜁 (𝑡) = [𝑒
𝑇

(𝑡) 𝑒
𝑇

𝑓
(𝑡) 𝑥
𝑇

(𝑡)]
𝑇

,

𝐴 = [

[

𝐹 0 0
0 𝐹
∗ 0

0 0 𝐴

]

]

, 𝐴
𝑑
= [

[

𝐺 0 0
0 𝐺
∗ 0

0 0 𝐴
𝑑

]

]

,

𝐵
𝜔1

= [

[

0 𝐹 0 𝑅

0 𝐹
∗ 0 𝑅

∗

𝐵 𝐾
3

𝐸 𝐾
4

]

]

, Δ𝐴 = [

[

0 0 𝑇Δ𝐴

0 0 0
0 0 Δ𝐴

]

]

,

Δ𝐴
𝑑
= [

[

0 0 𝑇Δ𝐴
𝑑

0 0 0
0 0 Δ𝐴

𝑑

]

]

, Δ𝐵
𝜔1

= [

[

𝑇Δ𝐵 0 0 0
0 0 0 0
Δ𝐵 0 0 0

]

]

,

𝐶
1
= [𝑉
1
𝐶 −𝑉

∗

1
𝐶 0] , 𝐶

2
= [𝑉
2
𝐶 −𝑉

∗

2
𝐶 0] ,

𝐷 = [0 𝐾
1
− 𝐾
∗

1
0 𝐾
2
− 𝐾
∗

2
] ,

𝐾
3
= [𝐹
𝑥
𝐹
𝜃

0] , 𝐾
4
= [0 𝑅 0] .

(20)

Furthermore, using (2) it is easy to see thatΔ𝐴,Δ𝐴
𝑑
,Δ𝐵
𝜔1

can be expressed by

Δ𝐴 = 𝑀̃
1
Σ
1
(𝑡) 𝑁̃
1
= [

[

𝑇𝑀
1

0
𝑀
1

]

]

Σ
1
(𝑡) [0 0 𝑁

1
] ,

Δ𝐴
𝑑
= 𝑀̃
2
Σ
2
(𝑡) 𝑁̃
2
= [

[

𝑇𝑀
2

0
𝑀
2

]

]

Σ
2
(𝑡) [0 0 𝑁

2
] ,

Δ𝐵
𝜔1

= 𝑀̃
3
Σ
3
(𝑡) 𝑁̃
3
= [

[

𝑇𝑀
3

0
𝑀
3

]

]

Σ
3
(𝑡) [𝑁

3
0 0 0] .

(21)

Before developing theorems that are utilized in designed
procedure, the following lemmas, which are useful to prove
the theorems, are introduced.

Lemma 1 (see [22]). Condition 5 is solvable if and only if the
following relation holds:

rank (𝐶𝐸) = 𝑚, 𝑚 ≤ 𝑝. (22)

The general solution of condition 5 can be calculated by

𝐿
1
= 𝐸(𝐶𝐸)

+

+ 𝑌 [𝐼 − 𝐶𝐸(𝐶𝐸)
+

]

= Θ
1
+ 𝑌Θ
2
,

(23)

where𝑌 is an arbitrary matrix with an appropriate dimension.

Lemma 2. Suppose that M, N, and Σ(𝑡) are compatible and
Σ
𝑇

(𝑡)Σ(𝑡) ≤ 𝐼; then there exists a scalar 𝜀 > 0 such that the
following equation holds:

𝑀Σ𝑁 + (𝑀Σ𝑁)
𝑇

≤ 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁. (24)

(a) Reference Model Selection (Step 1). Reference model selec-
tion is an important key to the design of robust fault detection
filter for linear uncertain time-delay systems. To this end,
the analogues procedure as that for fault detection in [6]
is extended for delay systems considering the UIO as the
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fault detection filter. According to (16), the reference residual
signal can be written as sum of two signals, 𝑟

𝑓𝑛
(𝑡) and

𝑟
𝑓𝜃
(𝑡). The reference model should be chosen such that the

effect of exogenous signals on the reference residual signal is
minimized while the effect of fault signal is maximized.These
two tasks are described mathematically by

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑟
𝑓𝑛
, 𝑛)

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝛼,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑟
𝑓𝑓

, 𝑓)
󵄩󵄩󵄩󵄩󵄩󵄩−

≥ 𝛽,

(25)

where 𝑇(⋅, ⋅) is the transfer function between two signals.The
following two theorems provide conditions which ensure the

asymptotic stability of (16). They also provide the conditions
that increase the sensitivity of the residual signal from faults
and decrease the sensitivity of residual signal from noise.

Theorem 3. For given 𝛼 > 0, if there exist symmetric positive
matrices 𝑃,𝑄,𝑉∗

1
,𝑉∗
2
,Φ∗
1
,Φ∗
2
, andΦ

∗

3
such that the following

LMI holds:

[
[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 + 𝑄 𝑃𝐺
∗

𝑃𝑅
∗

𝐶
𝑇

𝑉
∗

1

𝑇

∗ −𝑄 0 𝐶
𝑇

𝑉
∗

2

𝑇

∗ ∗ −𝛼
2

𝐼 𝐾
∗𝑇

2

∗ ∗ ∗ −𝐼

]
]
]

]

< 0, (26)

where

𝑃𝐹
∗

= 𝑃 (𝐴 − Θ
1
𝐶𝐴) − Φ

∗

1
(Θ
2
𝐶𝐴) − Φ

∗

2
𝐶,

𝑃𝐺
∗

= 𝑃 (𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
∗

1
(Θ
2
𝐶𝐴
𝑑
) − Φ
∗

3
𝐶,

𝑃𝑅
∗

= [−𝑃 (Θ
1
𝐷) − Φ

∗

1
(Θ
2
𝐷) 𝑃 (𝑅 − Θ

1
𝐶𝑅) − Φ

∗

1
(Ψ
2
𝐶𝑅) − Φ

∗

2
𝐷 −Φ

∗

3
𝐷] ,

𝐾
∗

2
= [0 𝑉

∗

1
𝐷 𝑉
∗

2
𝐷] ,

(27)

then the system (28) is asymptotically stable and
‖𝑇(𝑟
𝑓𝑛
, 𝑛)‖
∞

≤ 𝛼. Furthermore, the UIOmatrices are obtained
from conditions 2 to 5, and 𝑌

∗

= 𝑃
−1

Φ
1
, 𝐿
2
= 𝑃
−1

Φ
2
, 𝐿
3
=

𝑃
−1

Φ
3
,

̇𝑒
𝑓𝑛

(𝑡) = 𝐹
∗

𝑒
𝑓𝑛

(𝑡) + 𝐺
∗

𝑒
𝑓𝑛

(𝑡 − 𝜏) + 𝑅
∗

𝑛 (𝑡) ,

𝑟
𝑓𝑛

(𝑡) = 𝑉
∗

1
𝐶𝑒
𝑓𝑛

(𝑡) + 𝑉
∗

2
𝐶𝑒
𝑓𝑛

(𝑡 − 𝜏) + 𝐾
∗

2
𝑛 (𝑡) .

(28)

Proof. Condition ‖𝑇(𝑟
𝑓𝑛

, 𝑛)‖
∞

≤ 𝛼 is equivalent to 𝐽
𝑟𝑓𝑛

:

∫
∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡)𝑟
𝑓𝑛
(𝑡) − 𝛼

2

𝑛
𝑇

(𝑡)𝑛(𝑡))𝑑𝑡 ≥ 0. Now Consider the

Lyapunov-Krasovskii function which is defined as 𝑉(𝑡) =

𝑒
𝑇

𝑓𝑛
(𝑡)𝑃𝑒
𝑓𝑛
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
𝑇

𝑓𝑛
(𝑠)𝑄𝑒
𝑓𝑛
(𝑠)𝑑𝑠. Then we have

𝐽
𝑟𝑓𝑛

= ∫

∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡) 𝑟
𝑓𝑛

(𝑡) − 𝛼
2

𝑛
𝑇

(𝑡) 𝑛 (𝑡) + 𝑉 (𝑡)) 𝑑𝑡

+ 𝑉 (0) − 𝑉 (∞) .

(29)

Assume 𝑟
𝑓𝑛
(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since 𝑉(∞) > 0, it can

be concluded that

𝐽
𝑟𝑓𝑛

≤ ∫

∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡) 𝑟
𝑓𝑛

(𝑡) − 𝛼
2

𝑛
𝑇

(𝑡) 𝑛 (𝑡) + 𝑉 (𝑡)) 𝑑𝑡. (30)

Taking derivative from 𝑉(𝑡) and considering (28) yield

𝐽
𝑟𝑓𝑛

≤ ∫

𝑡

𝑡−𝜏

[

[

𝑒
𝑓𝑛

(𝑡)

𝑒
𝑓𝑛

(𝑡 − 𝜏)

𝑛 (𝑡)

]

]

𝑇

[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 + 𝑄 + 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 𝑃𝑅

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

2

∗ 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 − 𝑄 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

2

∗ ∗ −𝛼
2

𝐼 + 𝐾
∗𝑇

2
𝐾
∗

2

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

[

[

𝑒
𝑓𝑛

(𝑡)

𝑒
𝑓𝑛

(𝑡 − 𝜏)

𝑛 (𝑡)

]

]

. (31)
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Hence, Ξ < 0 implies 𝐽
𝑟𝑓𝑛

< 0. Using the Schur
complement theorem (26) is concluded from (31). Indeed, the
inequality (26), without considering (27), includes nonlinear
terms of 𝑃𝑌

∗, 𝑃𝐿
∗

2
, and 𝑃𝐿

∗

3
which lead the LMI to be

infeasible. To overcome this problem, define Φ
∗

1
= 𝑃𝑌

∗,

Φ
∗

2
= 𝑃𝐿
∗

2
, and Φ

∗

3
= 𝑃𝐿
∗

3
. Using conditions 2, 3 and (23) it

can be shown that (27) makes the LMI feasible. It completes
the proof.

Theorem 4. For given 𝛽 > 0, if there exists symmetric positive
matrices 𝑃, 𝑄, 𝑉∗

1
, 𝑉∗
2
,Φ∗
1
,Φ∗
2
, andΦ

∗

3
such that the following

LMI holds:

[
[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 − 𝑄 + 2𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
) −𝑃𝐺

∗

−𝑃𝐹
∗

𝐶
𝑇

𝑉
∗𝑇

1

∗ −𝑄 + 2𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
) 0 𝐶

𝑇

𝑉
∗𝑇

2

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
+ 2𝜑
3
(𝐾
∗

1
, 𝐾
𝑛

1
) 𝐾

∗𝑇

1

∗ ∗ ∗ −𝐼

]
]
]

]

< 0, (32)

where

𝑃𝐹
∗

= 𝑃 (𝐴 − Θ
1
𝐶𝐴) − Φ

∗

1
(Θ
2
𝐶𝐴) − Φ

∗

2
𝐶,

𝑃𝐺
∗

= 𝑃 (𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
∗

1
(Θ
2
𝐶𝐴
𝑑
) − Φ
∗

3
𝐶,

𝑃𝐹
∗

= [𝑃 (𝐹
𝑥
𝐹
𝜃
− Θ
1
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
∗

1
(Θ
2
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
∗

2
𝐹
𝑦
𝐹
𝜃
− 𝑃 (Ψ

1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) − Φ
∗

1
(Ψ
2
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) −Φ

∗

3
𝐹
𝑦
𝐹
𝜃
] ,

𝐾
∗

1
= [𝑉
∗

1
𝐹
𝑦
𝐹
𝜃

𝑉
∗

2
𝐹
𝑦
𝐹
𝜃
] ,

(33)

𝑉
𝑛

1𝑐
= 𝑉
∗

1

𝑛−1

𝐶, 𝑉
𝑛

2𝑐
= 𝑉
∗

2

𝑛−1

𝐶, 𝐾
𝑛

11
= 𝑉
∗

1

𝑛−1

𝐹
𝑦
𝐹
𝜃
, 𝐾
𝑛

12
= 𝑉
∗

2

𝑛−1

𝐹
𝑦
𝐹
𝜃
, 𝑓𝑜𝑟 𝑛 = 1, 2, . . . ,

𝐾
𝑛

1
= [𝐾
𝑛

11
𝐾
𝑛

12
] ,

𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
) = (𝑉

𝑛

1𝑐
)
𝑇

𝑉
𝑛

1𝑐
− (𝑉
𝑛

1𝑐
)
𝑇

𝑉
∗

1
𝐶 − 𝐶

𝑇

𝑉
∗

1

𝑇

𝑉
𝑛

1𝑐
,

𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
) = (𝑉

𝑛

2𝑐
)
𝑇

𝑉
𝑛

2𝑐
− (𝑉
𝑛

2𝑐
)
𝑇

𝑉
∗

2
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

2
𝑉
𝑛

2𝑐
,

𝜑
3
(𝐾
∗

1
, 𝐾
𝑛

1
) = (𝐾

𝑛

1
)
𝑇

𝐾
𝑛

1
− (𝐾
𝑛

1
)
𝑇

𝑉
∗

1
𝐹
𝑦
𝐹
𝜃
− 𝐹
𝑇

𝜃
𝐹
𝑇

𝑦
𝑉
∗𝑇

1
𝐾
𝑛

1
,

(34)

then the system (35) is asymptotically stable, and
‖𝑇(𝑟
𝑓𝜃
, 𝑓)‖
−

≥ 𝛽. Moreover, the UIO matrices are obtained
from conditions 2 to 5, and 𝑌

∗

= 𝑃
−1

Φ
1
, 𝐿
2
= 𝑃
−1

Φ
2
, 𝐿
3
=

𝑃
−1

Φ
3
,

̇𝑒
𝑓𝜃

(𝑡) = 𝐹
∗

𝑒
𝑓 𝜃

(𝑡) + 𝐺
∗

𝑒
𝑓𝜃

(𝑡 − 𝜏) + 𝐹
∗

𝜃 (𝑡) ,

𝑟
𝑓𝜃

(𝑡) = 𝑉
∗

1
𝐶𝑒
𝑓𝜃

(𝑡) + 𝑉
∗

2
𝐶𝑒
𝑓𝜃

(𝑡 − 𝜏) + 𝐾
∗

2
𝜃 (𝑡) .

(35)

Proof. Condition ‖𝑇(𝑟
𝑓𝑓

, 𝑓)‖
−

≥ 𝛽 is equivalent to 𝐽
𝑟
𝑓𝑓

:

∫
∞

0

(𝑟
𝑇

𝑓𝜃

(𝑡)𝑟
𝑓𝜃
(𝑡) − 𝛽

2

𝑓
𝑇

(𝑡)𝑓(𝑡))𝑑𝑡 ≥ 0. Now consider the
Lyapunov-Krasovskii function which is defined as 𝑉(𝑡) =

𝑒
𝑇

𝑓𝜃

(𝑡)𝑃𝑒
𝑓𝜃
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
𝑇

𝑓𝜃

(𝑠)𝑄𝑒
𝑓𝜃
(𝑠)𝑑𝑠. Then we have

𝐽
𝑟
𝑓𝜃

= ∫

∞

0

(𝑟
𝑇

𝑓𝜃
(𝑡) 𝑟
𝑓𝜃

(𝑡) − 𝛽
2

𝑓
𝑇

(𝑡)

×𝑓 (𝑡) − 𝑉 (𝑡)) 𝑑𝑡 − 𝑉 (0) + 𝑉 (∞) .

(36)

Assume 𝑟
𝑓𝜃
(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since 𝑉(∞) > 0, we

have

𝐽
𝑟
𝑓𝜃

≥ ∫

∞

0

(𝑟
𝑇

𝑓𝜃
(𝑡) 𝑟
𝑓𝜃

(𝑡) − 𝛽
2

𝑓
𝑇

(𝑡) 𝑓 (𝑡) − 𝑉 (𝑡)) 𝑑𝑡. (37)

Taking derivative from 𝑉(𝑡) and considering (35) yield

𝐽
𝑟
𝑓𝜃

> ∫

𝑡

𝑡−𝜏

[
[

[

𝑒
𝑓𝜃

(𝑡)

𝑒
𝑓𝜃

(𝑡 − 𝜏)

𝜃 (𝑡)

]
]

]

𝑇

[
[

[

−𝑃𝐹
∗

− 𝐹
∗
𝑇

𝑃 − 𝑄 + 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 + 𝑄 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ −𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
+ 𝐾
∗

1

𝑇

𝐾
∗

1

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

[
[

[

𝑒
𝑓𝜃

(𝑡)

𝑒
𝑓𝜃

(𝑡 − 𝜏)

𝜃 (𝑡)

]
]

]

. (38)
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Hence, Ξ > 0 implies 𝐽
𝑟
𝑓𝜃

> 0. Ξ > 0 is equivalent to

[
[

[

𝑃𝐹
∗

+ 𝐹
∗
𝑇

𝑃 + 𝑄 − 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ −𝑄 − 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
− 𝐾
∗𝑇

1
𝐾
∗

1

]
]

]

< 0. (39)

Then, (39) can be written as

[
[

[

𝑃𝐹
∗

+ 𝐹
∗
𝑇

𝑃 + 𝑄 − 2𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ −𝑄 − 2𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
− 2𝐾
∗𝑇

1
𝐾
∗

1

]
]

]

+ [𝐶
𝑇

𝑉
∗𝑇

1
𝐶
𝑇

𝑉
∗𝑇

2
𝐾
∗𝑇

1
] 𝐼 [

[

𝑉
∗

1
𝐶

𝑉
∗

2
𝐶

𝐾
∗

1

]

]

< 0. (40)

Making use of Lemma 2 with 𝜀 = 1, we have

−𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 ≤ (𝑉

𝑛

1𝑐
)
𝑇

𝑉
𝑛

1𝑐
− (𝑉
𝑛

1𝑐
)
𝑇

𝑉
∗

1
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

1
𝑉
𝑛

1𝑐
,

−𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 ≤ (𝑉

𝑛

2𝑐
)
𝑇

𝑉
𝑛

2𝑐
− (𝑉
𝑛

2𝑐
)
𝑇

𝑉
∗

2
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

2
𝑉
𝑛

2𝑐
,

−𝐾
∗𝑇

1
𝐾
∗

1
≤ (𝐾
𝑛

1
)
𝑇

𝐾
𝑛

1
− (𝐾
𝑛

1
)
𝑇

𝑉
∗

1
𝐹
𝑦
𝐹
𝜃
− 𝐹
𝑇

𝜃
𝐹
𝑇

𝑦
𝑉
∗𝑇

1
𝐾
𝑛

1
.

(41)

Applying Schur complement to (40) and changing variables
𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
), 𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
), and 𝜑

3
(𝐾
∗

1
, 𝐾
𝑛

1
), the LMI (32) is

obtained. To overcome the infeasibility of (33), the same
variables as those selected inTheorem 3 are used. It completes
the proof.

Corollary 5. The system is asymptotically stable and satisfies
(16) if there exists symmetric positive matrices 𝑃, 𝑄, 𝑉∗

1
, 𝑉∗
2
,

Φ
∗

1
, Φ∗
2
, and Φ

∗

3
such that the LMIs (26) and (32) hold.

Remark 6. It is desired to obtain a reference residual system
which has maximum sensitivity to the fault as well as the
minimum sensitivity to the exogenous signal. This aim can
be formulated by performance index defined by inf 𝛼/𝛽. To
this end, an iterative optimization method presented in [6] is

developed for the proposed structure. The procedures of this
method are as follows.

(1) Choose appropriate values of 𝛼 and 𝛽.
(2) Solve the LMI (26), and find a feasible solution for 𝑃,

𝑄, 𝑉∗
1
, 𝑉∗
2
, Φ∗
1
, Φ∗
2
, and Φ

∗

3
matrices.

(3) Set 𝑉𝑛
1𝑐

= 𝑉
∗𝑛−1

1
𝐶, 𝑉𝑛
2𝑐

= 𝑉
∗𝑛−1

2
𝐶, 𝐾𝑛
11

= 𝑉
∗

1

𝑛−1

𝐹
𝑦
𝐹
𝜃
,

and 𝐾
𝑛

12
= 𝑉
∗𝑛−1

2
𝐹
𝑦
𝐹
𝜃
. Then, solve (26) and (32) by

increasing 𝑛 to find a feasible solution for 𝑃, Q, 𝑉∗
1
,

𝑉
∗

2
, Φ∗
1
,Φ∗
2
, and Φ

∗

3
.

(4) Increase 𝛽 and decrease 𝛼 and go to step 2. Continue
this procedure until the feasible solution cannot be
found for LMIs (26) and (32).

(b) Robust UIO Design (Step 2). As mentioned before, the
residual signal generator system is obtained by minimizing
(17). To this end, Theorem 8 is presented which guarantees
that the overall system (19) is asymptotically stable and
performance index (17) is minimized. Before presenting
Theorem 8, the following theorem is presented which helps
proveTheorem 8.
Theorem 7. For a given 𝛾 > 0 and the system (37), if
there exist symmetric positive matrices 𝑃,𝑄 and constants
𝜀
1
, 𝜀
2
, 𝑎𝑛𝑑 𝜀

3
such that the LMI (44) holds, then the system (37)

is asymptotically stable and ‖𝜐(𝑡)‖
2
≤ 𝛾‖𝑢(𝑡)‖

2
:

̇𝜒 (𝑡) = (𝐴 + Δ𝐴)𝜒 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
) 𝜒 (𝑡 − 𝜏) + (𝐵

𝑢
+ Δ𝐵
𝑢
) 𝑢 (𝑡) , (42)

𝜐 (𝑡) = 𝐶
1
𝜒 (𝑡) + 𝐶

2
𝜒 (𝑡 − 𝜏) + 𝐷𝑢 (𝑡) , (43)

[
[
[
[
[
[
[
[
[
[

[

𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄 + 𝜀
−1

1
𝑁̃
𝑇

1
𝑁̃
1

𝑃𝐴
𝑑

𝑃𝐵
𝑢

𝐶
𝑇

1
𝑃𝑀̃
1

𝑃𝑀̃
2

𝑃𝑀̃
3

∗ −𝑄 + 𝜀
−1

2
𝑁̃
𝑇

2
𝑁̃
2

0 𝐶
𝑇

2
0 0 0

∗ ∗ −𝛾
2

𝐼 + 𝜀
−1

3
𝑁̃
𝑇

3
𝑁̃
3

𝐷
𝑇 0 0 0

∗ ∗ ∗ −𝐼 0 0 0
∗ ∗ ∗ ∗ −𝜀

−1

1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
−1

2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
−1

3
𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0. (44)
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Proof. Define the following Lyapunov-Krasovskii function:

𝑉 (𝑡) = 𝜒
𝑇

(𝑡) 𝑃𝜒 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜒
𝑇

(𝑠) 𝑄𝜒 (𝑠) 𝑑𝑠. (45)

The performance index ‖𝜐(𝑡)‖
2
≤ 𝛾‖𝑢(𝑡)‖

2
can be written

as
𝐽
𝜐
= ∫

∞

0

(𝜐
𝑇

(𝑡) 𝜐 (𝑡) − 𝛾
2

𝑢
𝑇

(𝑡) 𝑢 (𝑡) + 𝑉 (𝑡)) 𝑑𝑡

+ 𝑉 (0) − 𝑉 (∞) .

(46)

Assume 𝜒(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since𝑉(∞) > 0, we have

𝐽
𝜐
≤ ∫

∞

0

(𝜐
𝑇

(𝑡) 𝜐 (𝑡) − 𝛾
2

𝑢
𝑇

(𝑡) 𝑢 (𝑡) + 𝑉 (𝑡)) 𝑑𝑡. (47)

Taking derivative from (45) and considering (37) yield

𝐽
𝑟𝑒
≤ ∫

∞

0

[

[

𝜒 (𝑡)

𝜒 (𝑡 − 𝜏)

𝑢 (𝑡)

]

]

𝑇

[
[

[

𝑃 (𝐴 + Δ𝐴) + (𝐴 + Δ𝐴)
𝑇

𝑃 + 𝑄 + 𝐶
𝑇

1
𝐶
1

𝑃 (𝐴
𝑑
+ Δ𝐴
𝑑
) + 𝐶
𝑇

1
𝐶
2

𝑃 (𝐵
𝑢
+ Δ𝐵
𝑢
) + 𝐶
𝑇

1
𝐷

∗ −𝑄 + 𝐶
𝑇

2
𝐶
2

0
∗ ∗ −𝛾

2

𝐼 + 𝐷
𝑇

𝐷

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

× [

[

𝜒 (𝑡)

𝜒 (𝑡 − 𝜏)

𝑢 (𝑡)

]

]

𝑑𝑡.

(48)

Ξ < 0 implies 𝐽
𝑟𝑒
< 0. The Ξ < 0 can be written as

[

[

𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄 𝑃𝐴
𝑑

𝑃𝐵
𝑢

∗ −𝑄 0
∗ ∗ −𝛾

2

𝐼

]

]

+ [

[

𝐶
𝑇

1

𝐶
𝑇

2

𝐷
𝑇

]

]

𝐼 [𝐶
1

𝐶
2

𝐷]

+ [

[

𝑃Δ𝐴 + Δ𝐴
𝑇

𝑃 𝑃Δ𝐴
𝑑

𝑃Δ𝐵
𝑢

∗ 0 0
∗ ∗ 0

]

]

< 0.

(49)

Using Lemma 2, one can write the following inequality:

[

[

𝑃Δ𝐴 + Δ𝐴
𝑇

𝑃 𝑃Δ𝐴
𝑑

𝑃Δ𝐵
𝑢

∗ 0 0
∗ ∗ 0

]

]

≤ [

[

𝑃𝑀̃
1

𝑃𝑀̃
2

𝑃𝑀̃
3

0 0 0
0 0 0

]

]

[

[

𝜀
1
𝐼 0 0
0 𝜀
2
𝐼 0

0 0 𝜀
3
𝐼

]

]

×[

[

𝑃𝑀̃
1

𝑃𝑀̃
2

𝑃𝑀̃
3

0 0 0
0 0 0

]

]

𝑇

+ [

[

𝑁̃
𝑇

1
0 0

0 𝑁̃
𝑇

2
0

0 0 𝑁̃
𝑇

3

]

]

× [

[

𝜀
1
𝐼 0 0
0 𝜀
2
𝐼 0

0 0 𝜀
3
𝐼

]

]

−1

[

[

𝑁̃
1

0 0
0 𝑁̃
2

0
0 0 𝑁̃

3

]

]

.

(50)

Considering (49), (50) and using Schur complement (48)
lead to (44). It completes the proof.

Theorem8. For a given 𝛾 > 0, if there exist symmetric positive
matrices 𝑃

1
, 𝑃
2
, 𝑃
3
, 𝑄
1
, 𝑄
2
, and 𝑄

3
, matrices Φ1, Φ2, and Φ3,

and constants 𝜀
1
, 𝜀
2
, and 𝜀

3
such that LMI [𝑠

𝑖𝑗
]
14×14

< 0 holds,
then the overall system (19) is asymptotically stable, and 𝐽

𝑟𝑒
< 𝛾.

The observer matrices are calculated by considering (4), (5),
and conditions 2 to 5, and 𝑌 = 𝑃

−1

1
Φ
1
, 𝐿
2
= 𝑃
−1

1
Φ
2
, and 𝐿

3
=

𝑃
−1

1
Φ
3
. The LMI coefficients are defined as

𝑠
1,1

= 𝑃
1
𝐹 + (𝑃

1
𝐹)
𝑇

+ 𝑄
1
, 𝑠
1,4

= 𝑃
1
𝐺, 𝑠

1,8
= 𝑃
1
𝐹,

𝑠
1,10

= 𝑃
1
𝑅, 𝑠

1,11
= 𝐶
𝑇

𝑉
𝑇

1
, 𝑠
1,12

= 𝑃
1
(𝑇𝑀
1
) ,

𝑠
1,13

= 𝑃
1
(𝑇𝑀
2
) , 𝑠

1,14
= 𝑃
1
(𝑇𝑀
3
) ,

𝑠
2,2

= 𝑃
2
𝐹
∗

+ (𝑃
2
𝐹
∗

)
𝑇

+ 𝑄
2
, 𝑠
2,5

= 𝑃
2
𝐺
∗

, 𝑠
2,8

= 𝑃
2
𝐹
∗

,

𝑠
2,10

= 𝑃
2
𝑅
∗

, 𝑠
2,11

= −𝐶
𝑇

𝑉
∗

1

𝑇

,

𝑠
3,3

= 𝑃
3
𝐴 + (𝑃

3
𝐴)
𝑇

+ 𝑄
3
+ 𝜀
−1

1
𝑁
𝑇

1
𝑁
1
, 𝑠
3,6

= 𝑃
3
𝐴
𝑑
,

𝑠
3,7

= 𝑃
3
𝐵, 𝑠

3,8
= 𝑃
3
𝐾
3
, 𝑠
3,9

= 𝑃
3
𝐸, 𝑠

3,10
= 𝑃
3
𝐾
4
,

𝑠
3,12

= 𝑃
3
(𝑀
1
) , 𝑠

3,13
= 𝑃
3
(𝑀
2
) , 𝑠

3,14
= 𝑃
3
(𝑀
3
) ,

𝑠
4,4

= −𝑄
1
, 𝑠
4,11

= 𝐶
𝑇

𝑉
𝑇

2
,

𝑠
5,5

= −𝑄
2
, 𝑠
5,11

= 𝐶
𝑇

𝑉
∗

2

𝑇

, 𝑠
6,6

= −𝑄
3
+ 𝜀
−1

2
𝑁
𝑇

2
𝑁
2
,

𝑠
7,7

= −𝛾𝐼 + 𝜀
−1

3
𝑁
𝑇

3
𝑁
3
, 𝑠
8,8

= −𝛾𝐼, 𝑠
8,11

= 𝐾
𝑇

1
− 𝐾
∗

1

𝑇

,

𝑠
9,9

= −𝛾𝐼, 𝑠
10,10,

= −𝛾𝐼, 𝑠
10,11

= 𝐾
𝑇

2
− 𝐾
∗

2

𝑇

,

𝑠
11,11

= −𝐼, 𝑠
12,12

= −𝜀
−1

1
𝐼,
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𝑠
13,13

= −𝜀
−1

2
𝐼, 𝑠
14,14

= −𝜀
−1

3
𝐼,

otherwise 𝑠
𝑖,𝑗

= 0,
(51)

where

𝑃
1
𝑇 = 𝑃

1
(𝐼 − Θ

1
𝐶) − Φ

1
(Θ
2
𝐶) ,

𝑃
1
𝐹 = 𝑃

1
(𝐴 − Θ

1
𝐶𝐴) − Φ

1
(Θ
2
𝐶𝐴) − Φ

2
𝐶,

𝑃
1
𝐺 = 𝑃

1
(𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
1
(Θ
2
𝐶𝐴
𝑑
) − Φ
3
𝐶,

𝑃
1
𝐹 = [𝑃

1
(𝐹
𝑥
𝐹
𝜃
− Θ1𝐶𝐹𝑥𝐹𝜃) − Φ

1
(Θ
2
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
2
𝐹
𝑦
𝐹
𝜃
− 𝑃
1
(Θ
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) − Φ
1
(Θ
2
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) −Φ

3
𝐹
𝑦
𝐹
𝜃
] ,

𝑃
1
𝑅 = [𝑃

1
(𝑅 − Θ

1
𝐶𝑅) − Φ

1
(Θ
2
𝐶𝑅) − Φ

2
𝐷 −Φ

3
𝐷 −𝑃

1
(Θ
1
𝐷) − Φ

1
(Θ
2
𝐷)] .

(52)

Proof. In Theorem 7 assume that 𝑃 = diag(𝑃
1

𝑃
2

𝑃
3
) and

𝑄 = diag(𝑄
1

𝑄
2

𝑄
3
). Then, using system dynamic (19) it is

straight forward to see that 𝑠
𝑖𝑗
are the same as (37). Without

considering (52), the inequality (51) includes nonlinear terms
of 𝑃𝑌, 𝑃𝐿

2
, and 𝑃𝐿

3
which lead the LMI to be infeasible. To

overcome this problem, define Φ
1
= 𝑃
1
𝑌, Φ
2
= 𝑃
1
𝐿
2
, and

Φ
3
= 𝑃
1
𝐿
3
. Using conditions 2, 3 and (23) it can be seen that

(52) makes the obtained LMI feasible. It completes the proof.

Remark 9. It should be noted that the present work differs
from [18] in the following perspectives.

(a) The results in [18] are obtained without considering
dynamic characteristic for fault; however, the current
results are achieved by considering dynamic char-
acteristic that is modeled by (3). Hence, the design
procedure in [18] is not applicable for the current case.

(b) The residual signal 𝑟(𝑡) is constructed based on
(14) which uses both estimation error and delay
in estimation error; however, the residual signal in
[18] is constructed using estimation error. Since two
design parameters 𝑉

1
and 𝑉

2
appear in the LMIs, the

obtained LMIs are more flexible.

Remark 10. After designing the FDI system, residual eval-
uation methods and appropriate level of threshold should
be selected to take a decision about the occurrence of fault.
According to (13) and (14), the residual signal for fault-free
system 𝑟

0

(𝑡) satisfies the following equation:

󵄩󵄩󵄩󵄩󵄩
𝑟
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩𝑟𝑛 (𝑡) + 𝑟

𝑢
(𝑡)

󵄩󵄩󵄩󵄩2

≤
󵄩󵄩󵄩󵄩𝑟𝑛 (𝑡)

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝑟𝑢 (𝑡)

󵄩󵄩󵄩󵄩2
≤ 𝐽th,𝑛 + 𝐽th,𝑢,

(53)

where

𝐽th,𝑛 = sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

󵄩󵄩󵄩󵄩𝑟𝑛 (𝑡)
󵄩󵄩󵄩󵄩2
,

𝐽th,𝑢 = sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

󵄩󵄩󵄩󵄩𝑟𝑢 (𝑡)
󵄩󵄩󵄩󵄩2
.

(54)

𝐽th,𝑛 can be computed offline, and under the assumption that
𝑛 ∈ 𝐿

2
we have sup

(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖

‖𝑟
𝑛
(𝑡)‖
2

= 𝑀
𝑛
. Since the

signal 𝑢 is supposed to be known online, the value of 𝐽th,𝑢
can be determined online by 𝐽th,𝑢 = 𝛾

𝑢
‖𝑢(𝑡)‖

2
, where 𝛾

𝑢
=

sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖

(‖𝑟
𝑢
(𝑡)‖
2
)/(‖𝑢(𝑡)‖

2
). 𝛾
𝑢
can be computed by

Theorem 7. Therefore, the threshold value can be evaluated
by

𝐽th = 𝑀
𝑛
+ 𝛾
𝑢
‖𝑢(𝑡)‖

2
. (55)

Since values of (53) and (54) increase by passing the time and,
consequently, needmorememory in real application, one can
use root-mean-square (RMS) norm of 𝑟(𝑡), defined in (56), to
detect the fault signals:

‖𝑟 (𝑡)‖
𝑇

2
= ∫

𝑡2

𝑡1

𝑟
𝑇

(𝑡) 𝑟 (𝑡) 𝑑𝑡, 𝑇 = 𝑡
2
− 𝑡
1
, (56)

where T is designed parameter.

3. Simulation Results

The main objective of this section is to investigate the
effectiveness of the designed UIO. To this end, a numerical
example is used and simulation results are presented. Con-
sider a system which is defined by (1) with the following
matrices:

𝐴 = [

[

−3.8 1.5 −0.5

0.5 −3 1

−0.3 0.7 −2.4

]

]

, 𝐴
𝑑
= [

[

0.4 0.1 −0.2

0.1 −0.8 0.2

0.7 −0.1 0.5

]

]

,

𝐵 = [

[

0.1

0.2

−0.4

]

]

, 𝐹
𝑥
= [

[

0.6

−0.5

0.4

]

]

, 𝐸 = [

[

−0.4

0.1

−0.3

]

]

,

𝐶 = [

[

1 0 0

0 1 0

0 0 1

]

]

, 𝐹
𝑦
= [

[

0.2

0.8

−1.2

]

]

, 𝑅 = [

[

0.1

0.2

−0.4

]

]

,

𝐷 = [

[

0.9

0.2

0.7

]

]

.

(57)
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Uncertainties are also defined by the following matrices
in (2):

𝑀
1
= [

[

0.1

0.2

0.1

]

]

, 𝑀
2
= [

[

0.1

0

−0.1

]

]

, 𝑀
3
= [

[

−0.1

0.2

0.1

]

]

,

𝑁
1
= [0 0.1 0.3] ,

𝑁
2
= [0.1 0 0] ,

𝑁
3
= 0.1.

(58)

The dynamic characteristic of fault is considered as

𝐴
𝜃
= 0, 𝐹

𝜃
= 1. (59)

The first step to design the fault detection system is to
solve the LMIs (26) and (32) in Theorems 3 and 4. The
Yalmip LMI toolbox is used to solve the LMIs. To start the
iterative optimization method presented in Remark 6, the
initial values 𝛼int = 3 and 𝛽int = 0 are selected. Using this
procedure, the following results are obtained:

𝑉
∗

1
= [

[

−0.0994 −0.0532 0.2714

−0.0532 −5.4751 1.3859

0.2714 1.3859 −0.7651

]

]

,

𝑉
∗

2
= [

[

−0.6315 −0.8304 0.1871

−0.8304 0.6711 0.5971

0.1871 0.5971 −0.5845

]

]

,

Φ
∗

1 = [

[

662.5 −250.8 −2628.5

−250.8 3855.7 −281.2

−2628.5 −281.2 2055.8

]

]

,

Φ
∗

2
= [

[

984.8 −1453.4 −842.7

−1453.4 2292 1253.8

−842.7 1253.8 733.6

]

]

,

Φ
∗

3 = [

[

−4.7395 13.0831 0.7977

13.0831 −8.5691 −14.9116

0.7977 −14.9116 −3.0645

]

]

,

𝛼 = 2.4, 𝛽 = 1.

(60)

Using these values, the LMI (51) is solved and the observer
dynamic matrices are obtained as follows:

𝐹 = [

[

−3.6557 −3.3806 2.9608

−0.3878 −1.4059 0.3008

−2.4404 −3.2245 1.9455

]

]

,

𝐺 = [

[

−0.0559 −0.7284 −0.1686

−0.0153 −0.1629 −0.0350

−0.0445 −0.557 −0.1273

]

]

,

𝐻 = [

[

0.6878

0.1535

0.5328

]

]

,
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Figure 1: An abrupt fault occurs at 𝑡 = 5.

𝐿
1
= [

[

0.0372 −1.1695 0.8939

−0.2145 0.7355 0.1978

−0.7462 −0.9036 1.6937

]

]

,

𝐾
1𝑧

= [

[

−0.7701 −0.1957 0.9507

−0.1730 −0.0567 0.2159

−0.5857 −0.1278 0.7254

]

]

,

𝐾
2𝑧

= [

[

0.2122 −0.3395 −0.7167

0.0496 −0.0777 −0.1591

0.1603 −0.2648 −0.5534

]

]

.

(61)

To verify the sensitivity of designed UIO, an abrupt fault,
shown in Figure 1, occurs in the 4 seconds elapsed from
running of the system. The step disturbance signal exerted
to the system between 3 to 7 seconds. The noise signal is
assumed to be white Gaussian noise with power 0.0005, and
the uncertainty Σ

𝑖
(𝑡) is considered sinusoidal signal. The

residual signals are shown in Figure 2. It can be seen that the
residual signals change when the fault occurs; however, the
residual signals do not show any sensitivity to the exerted dis-
turbance. The value of threshold 𝐽th is presented in Figure 3.
This figure indicates that the fault is detected rapidly and
the difference between threshold and norm of faulty residual
signal is high enough to detect the occurrence of fault in the
system.

The RMS of residual signals (56) has been depicted
in Figure 4. It can be seen that the RMS of faulty signals
suddenly changes in contrast to RMS of fault-free signals.
Therefore, the occurrence of fault can be effectively realized.

4. Conclusions

In this paper, a novel UIO-based residual generator is
developed for robust fault detection purposes.The developed
method is applicable to a variety of linear uncertain time-
delay systems. The proposed approach is able to decouple
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Figure 2: Residual signals of UIO fault detection filter.
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Figure 3: Euclidean norm of residual fault-free and faulty signals
and 𝐽th.

thoroughly exogenous disturbances whileminimizing uncer-
tainties and noise effects.The fault effect is also maximized at
the same time. To this end, first, the optimal fault detection
filter is designed for system without considering uncertain-
ties.Then, the fault detection filter is designed so that the𝐻

∞

norm between the fault detection filter and the optimal one is
minimized. Superiority of the proposed approach has been
verified through a numerical example. Simulation results
show that the proposed approach is able to detect dynamic
faults. As a future work, one can extend this approach to non-
linear systems and descriptor system. Moreover, developing
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RMS norm of residual signal (50)
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Figure 4: Detecting occurrence of fault using RMS norm of ‖𝑟(𝑡)‖𝑇
2
.

the data framework for designing unknown input observer
for time-delay system is an interesting area.
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An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The
aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on
prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is
compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed method
is applied to the aircraft attitude tracking control system. The nonlinear simulation demonstrates that this method can guarantee
the stability and tracking performance in the transient and steady behavior.

1. Introduction

Flight control design for aircraft continues to be one of
the most important problems in the world of automatic
control.Theproblem is driven by the nonlinear and uncertain
nature of aircraft dynamics. Traditionally, the solution to this
problem is to design the linear controller using linearized
aircraft models at multiple trimmed conditions. And this
procedure is time consuming and expensive.

Control of aircraft by dynamic model inversion is well
known and has been applied to the control of high angle
of attack fighter aircraft [1, 2]. The primary drawback of
dynamic inversion for aircraft flight control is the need
for high-fidelity nonlinear model which must be inverted
in real time. However, it is difficult to obtain the exact
aircraft dynamic model in practice. The neural network
augmented model inversion in the attitude angular loop is
implemented to compensate themodel inversion error, and it
uses proportional-derivative desired dynamics to design the
attitude control system for the helicopter [3] and tilt-rotor
aircraft [4].

The asymptotic tracking can be achieved using this
method.However, the transient behavior of the output signals
could be oscillatory when the tracking error magnitude is

decreased by increasing the adaption rate. Several solutions
[5–8] have been proposed to overcome this problem. These
methods guarantee the convergence of tracking error, but
the required tracking error upper bounds can’t be accurately
computed. A new adaptive control method with prescribed
performance is presented in [9], and this method guarantees
the transient state tracking error in the prespecified per-
formance bound. And this method is used to improve the
performance of the planar two-link articulated manipulator
[10, 11] and the 6-DOF PUMA 560 arm [12].

It is very important for aircraft to track the attitude com-
mand with a desired transient and steady performance, when
the aircraft finishes the special flight tasks, such as automated
aerial refueling [13, 14] and transition flight control [15, 16].

In this paper, we will investigate the aircraft attitude
control problem of guaranteeing transient and steady per-
formance in the adaptive compensation control system. By
employing the prescribed performance bounds proposed in
[9], we propose a new adaptive neural network dynamic
inversion method. With certain transformation method, a
new transformed error system is obtained through consid-
ering the prescribed performance bound into the original
attitude control system. An adaptive dynamic inversion con-
troller is designed for the transformed system. It is ensured
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that the tracking error is guaranteed inside the prescribed
error bound as long as the transformed error system is stable.

The paper is organized as follows: the problem and the
control configuration are introduced in Section 2. Section 3
presents the adaptive neural network dynamic inversion
with prescribed performance design, stability analysis, model
error analysis, and neural network structure. And the simula-
tions are described in Section 4. Finally, this paper concludes
in Section 5.

2. Aircraft Nonlinear Attitude Angle Model

The aircraft nonlinear attitude dynamic model can be pre-
sented as

̇𝜙 = 𝑝 + (𝑟 cos𝜙 + 𝑞 sin𝜙) tan 𝜃,

̇𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙,

̇𝜓 =
(𝑟 cos𝜙 + 𝑞 sin𝜙)

cos 𝜃
,

(1)

̇𝑝 = (𝑐
1
𝑟 + 𝑐

2
𝑝) 𝑞 + 𝑐

3
𝐿 + 𝑐

4
𝑁,

̇𝑞 = 𝑐
5
𝑝𝑟 − 𝑐

6
(𝑝

2

− 𝑟
2

) + 𝑐
7
𝑀,

̇𝑟 = (𝑐
8
𝑝 − 𝑐

2
𝑟) 𝑞 + 𝑐

4
𝐿 + 𝑐

9
𝑁,

(2)

where 𝜙, 𝜃, and 𝜓 are the roll, pitch, and yaw attitude angles.
𝑝, 𝑞, and 𝑟 are the roll, pitch, and yaw angular rates. 𝑐

1
, . . . , 𝑐

9

can be found in [17]. 𝐿,𝑀, and𝑁 are the roll, pitch, and yaw
moments, which can be described as

𝐿 =
𝜌
𝑎
𝑉

2

𝑆𝑏𝐶
𝑙

2
,

𝑀 =
𝜌
𝑎
𝑉

2

𝑆𝑐𝐶
𝑚

2
,

𝑁 =
𝜌
𝑎
𝑉

2

𝑆𝑏𝐶
𝑛

2
,

(3)

where 𝜌
𝑎
is the air density, 𝑆 is the wing reference area, 𝑏 is

the wing span, 𝑉 is the flight velocity, and 𝑐 is the wing mean
geometric chord.𝐶

𝑙
,𝐶

𝑚
, and𝐶

𝑛
are the rolling, pitching, and

yawing moment coefficients described as

𝐶
𝑙
= 𝐶

𝑙𝛽
𝛽 + 𝐶

𝑙𝑝
𝑝 + 𝐶

𝑙𝑟
𝑟 + 𝐶

𝑙𝛿𝑎
𝛿
𝑎
+ 𝐶

𝑙𝛿𝑟
𝛿
𝑟
,

𝐶
𝑚
= 𝐶

𝑚,𝛼=0
+ 𝐶

𝑚𝛼
𝛼 + 𝐶

𝑚𝑞
𝑞 + 𝐶

𝑚 ̇𝛼
̇𝛼 + 𝐶

𝑚𝛿𝑒
𝛿
𝑒
,

𝐶
𝑛
= 𝐶

𝑛𝛽
𝛽 + 𝐶

𝑛𝑝
𝑝 + 𝐶

𝑛𝑟
𝑟 + 𝐶

𝑛𝛿𝑎
𝛿
𝑎
+ 𝐶

𝑛𝛿𝑟
𝛿
𝑟
,

(4)

where 𝐶
(∗)

is the aerodynamic derivatives. 𝛼 and 𝛽 are the
angles of attack and sideslip. 𝛿

𝑎
, 𝛿

𝑒
, and 𝛿

𝑟
are the aileron, ele-

vator, and rudder deflections, which are the control actuators
of the aircraft. 𝑝, 𝑞, 𝑟, and ̇𝛼 are defined by

𝑝 = 𝑝𝑏/ (2𝑉) , 𝑟 = 𝑟𝑏/ (2𝑉)

𝑞 = 𝑞𝑐/ (2𝑉) , ̇𝛼 = ̇𝛼𝑐/ (2𝑉)

(5)

and ̇𝛼 is the derivative of the angle of attack.

Substituting (3)-(4) into (2), and (2) can be rewritten in
the affine nonlinear form as

[

[

̇𝑝

̇𝑞

̇𝑟

]

]

= [

[

𝑓
𝑝

𝑓
𝑞

𝑓
𝑟

]

]

+ 𝐺
𝑢

[

[

𝛿
𝑎

𝛿
𝑒

𝛿
𝑟

]

]

, (6)

where 𝑓
𝑞
, 𝑓

𝑞
, 𝑓

𝑟
, and 𝐺

𝑢
are

𝑓
𝑝
= (𝑐

1
𝑟 + 𝑐

2
𝑝) 𝑞 + 𝑐

3
𝑀

0

𝑥
+ 𝑐

4
𝑀

0

𝑧
,

𝑓
𝑞
= 𝑐

5
𝑝𝑟 − 𝑐

6
(𝑝

2

− 𝑟
2

) + 𝑐
7
𝑀

0

𝑦
,

𝑓
𝑟
= (𝑐

8
𝑝 − 𝑐

2
𝑟) 𝑞 + 𝑐

4
𝑀

0

𝑥
+ 𝑐

9
𝑀

0

𝑧
,

(7)

𝐺
𝑢
=
𝜌
𝑎
𝑉

2

𝑆

2

[

[

𝑐
3

0 𝑐
4

0 𝑐
7

0

𝑐
4

0 𝑐
9

]

]

[

[

𝑏𝐶
𝑙𝛿𝑎

0 𝑏𝐶
𝑙𝛿𝑟

0 𝑐𝐶
𝑚𝛿𝑒

0

𝑏𝐶
𝑛𝛿𝑎

0 𝑏𝐶
𝑛𝛿𝑟

]

]

, (8)

and

𝑀
0

𝑥
=

𝜌
𝑎
𝑉

2

𝑆𝑏 (𝐶
𝑙𝛽
𝛽 + 𝐶

𝑙𝑝
𝑝 + 𝐶

𝑙𝑟
𝑟)

2
,

𝑀
0

𝑦
=

𝜌
𝑎
𝑉

2

𝑆𝑐 (𝐶
𝑚,𝛼=0

+ 𝐶
𝑚𝛼

𝛼 + 𝐶
𝑚𝑞
𝑞 + 𝐶

𝑚 ̇𝛼
̇𝛼)

2
,

𝑀
0

𝑧
=

𝜌
𝑎
𝑉

2

𝑆𝑏 (𝐶
𝑛𝛽
𝛽 + 𝐶

𝑛𝑝
𝑝 + 𝐶

𝑛𝑟
𝑟)

2
.

(9)

According to (1), we can derive the second derivatives of
attitude angles as follows:

[ ̈𝜙, ̈𝜃, ̈𝜓]
𝑇

= 𝐿 (𝜙, 𝜃) [ ̇𝑝, ̇𝑞, ̇𝑟]
𝑇

+ 𝑔 (𝜙, 𝜃, 𝜓, ̇𝜙, ̇𝜃, ̇𝜓) , (10)

where

𝐿 (𝜙, 𝜃) = [

[

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙sec𝜃 cos𝜙sec𝜃

]

]

, (11)

𝑔 (𝜙, 𝜃, 𝜓, ̇𝜙, ̇𝜃, ̇𝜓) = [

[

̇𝜃 ̇𝜓sec𝜃 + ̇𝜙 ̇𝜃 tan 𝜃
− ̇𝜙 ̇𝜓 cos 𝜃

̇𝜙 ̇𝜃sec𝜃 + ̇𝜃 ̇𝜓 tan 𝜃
]

]

. (12)

Substituting (6) into (10), we obtain

[ ̈𝜙, ̈𝜃, ̈𝜓]
𝑇

= 𝐿 (𝜙, 𝜃) [𝑓
𝑝
, 𝑓

𝑞
, 𝑓

𝑟
]
𝑇

+ 𝑔 (𝜙, 𝜃, 𝜓, ̇𝜙, ̇𝜃, ̇𝜓)

+ 𝐿 (𝜙, 𝜃) 𝐺
𝑢
[𝛿

𝑎
, 𝛿

𝑒
, 𝛿

𝑟
]
𝑇

.

(13)

3. Prescribed Performance-Based Adaptive
Neural Network Dynamic Inversion Design

The aircraft attitude model shown in (13) can be represented
in the following shorthand notation:

̈𝑥 = 𝑓 (𝑥, ̇𝑥) + 𝑔 (𝑥) 𝑢, (14)
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Figure 1: Adaptive neural network dynamic inversion with prescribed performance architecture.

where the controlled state 𝑥 = [𝜙, 𝜃, 𝜓]
𝑇 and the control vec-

tor 𝑢 = [𝛿
𝑎
, 𝛿

𝑒
, 𝛿

𝑟
]
𝑇.𝑓(𝑥, ̇𝑥) and𝑔(𝑥) are nonlinear functions.

The state tracking error is defined as

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥
𝑑
(𝑡) , (15)

where 𝑥
𝑑
(𝑡) is the desired state vector.

The proposed control architecture of the aircraft attitude
control system is shown in Figure 1.

3.1. Dynamic Inversion. This section will show a brief intro-
duction of dynamic inversion. And the readers could derive
much more details from the reference [2].

We seek to linearize a nonlinear system through com-
puting dynamic inversion to cancel the nonlinearities in the
system.The aircraft dynamics are shown in (14). The number
of control inputs and controlled states must be the same; that
is to say, the nonlinear function 𝑔(𝑥) is invertible. Then, the
control input can be calculated by

𝑢
𝑐
= 𝑔

−1

(𝑥) (𝑢
𝑚
− 𝑓 (𝑥, ̇𝑥)) , (16)

where 𝑢
𝑚
is the desired response of ̈𝑥. Replacing the 𝑢 in the

right of (14) by the 𝑢
𝑐
from (16), we derive

̈𝑥 = 𝑢
𝑚

(17)

and any nonlinearities in 𝑓(𝑥, ̇𝑥) and 𝑔(𝑥) are cancelled.
The achieved system dynamics will match the chosen

desired dynamics when there are no errors between the
design model and real object. However, the model error is
inevitable. So a new method is proposed to compensate the
model error and guarantee the system performances in the
transient and steady behavior.

3.2. Performance Function and Error Transformation

Definition 1 (see [9]). A smooth function 𝜌 : R
+
→ R

+
can

be called a performance function if the following conditions
are satisfied:

𝜌 (𝑡) > 0, ̇𝜌 (𝑡) < 0,

lim
𝑡→∞

𝜌 (𝑡) = 𝜌
∞

> 0.
(18)

For example, a performance function is

𝜌 (𝑡) = (𝜌
0
− 𝜌

∞
) 𝑒

−𝑙𝑡

+ 𝜌
∞
, (19)

where 𝜌
0
, 𝜌

∞
and 𝑙 are positive constants, 𝜌

0
is the initial

tracking error 𝑒(𝑡), and 𝜌
∞

is the maximum allowable track-
ing error 𝑒(𝑡) at the steady state. The decrement of tracking
error 𝑒(𝑡) will decrease when the parameter 𝑙 decreases. And
we can derive the first and second derivatives of 𝜌(𝑡) as
follows:

̇𝜌 (𝑡) = −𝑙 (𝜌
0
− 𝜌

∞
) 𝑒

−𝑙𝑡

,

̈𝜌 (𝑡) = 𝑙
2

(𝜌
0
− 𝜌

∞
) 𝑒

−𝑙𝑡

.

(20)

Then by satisfying the following condition:

−𝛿𝜌 (𝑡) < 𝑒 (𝑡) < 𝛿𝜌 (𝑡) , ∀𝑡 ≥ 0, (21)

where 0 ≤ 𝛿, and 𝛿 ≤ 1 are prescribed scalars; the objective
of guaranteeing transient and steady performance can be
derived.

Remark 2. According to (21), −𝛿𝜌(0) and 𝛿𝜌(0) are the lower
bound of the negative overshoot and upper bound of the
positive overshoot of 𝑒(𝑡), respectively. And a lower bound of
the convergence speed of 𝑒(𝑡) is introduced by the decreasing
rate of 𝜌(𝑡).

Remark 3. By changing the parameters of performance func-
tion 𝜌(𝑡) and the positive prescribed scalars 𝛿, and 𝛿, the
maximum overshoot and convergence rate of 𝑒(𝑡) can be
modified.

To transform the original system with the constrained
tracking error performance (in (21)) into an equivalent
constrained one, an error transformation is introduced. And
the error transformation is defined as

𝑒 (𝑡) = 𝜌 (𝑡) 𝑆 (𝜀) , (22)
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where 𝜀 is the transformed error and a smooth and strictly
increasing function 𝑆 has the following properties:

−𝛿 < 𝑆 (𝜀) < 𝛿, (23)

lim
𝜀→−∞

𝑆 (𝜀) = −𝛿, lim
𝜀→+∞

𝑆 (𝜀) = 𝛿, (24)

𝑆 (0) = 0. (25)

According to the first property in (23) and 𝜌(𝑡) > 0, we
have

−𝛿𝜌 (𝑡) < 𝜌 (𝑡) 𝑆 (𝜀) < 𝛿𝜌 (𝑡) . (26)

According to (19), we obtain

−𝛿𝜌 (𝑡) < 𝑒 (𝑡) < 𝛿𝜌 (𝑡) . (27)

In addition, from the third property in (25),
lim

𝑡→∞
𝑒(𝑡) = 0 can be achieved if lim

𝑡→∞
𝜀(𝑡) = 0 is sat-

isfied.
Then (22) can be described as

𝜀 (𝑡) = 𝑆
−1

(
𝑒 (𝑡)

𝜌 (𝑡)
) . (28)

Lemma 4 (see [9]). Consider system in (14), the transient
and steady state tracking error behavior bounds described by
the performance function 𝜌(𝑡) and the error transformation
equation (22). The following results hold.

(a) The system in (14) is invariant under the error transfor-
mation equation (22).

(b) Stabilization of the transformed system using (28) is
sufficient to guarantee the prescribed performance.

In what follows, an adaptive neural network dynamic
inversion method is proposed to stabilize the transformed
system using (28).

3.3. Controller Design and Stability Analysis

Assumption 5. The desired states 𝑥
𝑑
(𝑡) are known bounded

time functions, with known bounded derivatives.

Assumption 6. The states 𝑥(𝑡) of the nonlinear system in (14)
are available for measurement.

We define the following error function 𝐸
𝑖
(𝑡), which

describes the dynamics of the new error system using the
error transformation equation (28).

𝐸
𝑖
(𝑡) = ̇𝜀

𝑖
(𝑡) + 𝜂

𝑖
𝜀
𝑖
(𝑡) , 𝑖 = 𝑝, 𝑞, 𝑟, (29)

where 𝜂
𝑖
, 𝑖 = 𝑝, 𝑞, and 𝑟 are positive constants to be chosen.

We define

𝜆 (𝑡) =
𝑒 (𝑡)

𝜌 (𝑡)
. (30)

The derivative of (28) is

̇𝜀 =
𝜕𝑆

−1

𝜕𝜆

̇𝜆, (31)

where

̇𝜆 =
̇𝑒 (𝑡)

𝜌 (𝑡)
−
𝑒 (𝑡) ̇𝜌 (𝑡)

𝜌2
(𝑡)

. (32)

And the second derivative of (28) is

̈𝜀 =

𝜕 (𝜕𝑆
−1

/𝜕𝜆)

𝜕𝜆
(

̇𝑒 (𝑡)

𝜌 (𝑡)
−
𝑒 (𝑡) ̇𝜌 (𝑡)

𝜌2
(𝑡)

)

2

+
𝜕𝑆

−1

𝜕𝜆
[

̈𝑒 (𝑡)

𝜌 (𝑡)
−
2 ̇𝑒 (𝑡) ̇𝜌 (𝑡)

𝜌2
(𝑡)

−
𝑒 (𝑡) ̈𝜌 (𝑡)

𝜌2
(𝑡)

+
2 ̇𝑒 (𝑡) ̇𝜌

2

(𝑡)

𝜌3
(𝑡)

] .

(33)

Then we compute the time derivative of 𝐸
𝑝
(𝑡) for the roll

error as

̇𝐸
𝑝
(𝑡) = ̈𝜀

𝑝
(𝑡) + 𝜂

𝑝
̇𝜀
𝑝
(𝑡) . (34)

And the pitch and yaw errors are derived by the similar
method.

Substituting (30)–(33) into (34), we obtain

̇𝐸
𝑝
=

𝜕𝑆
𝑝

−1

𝜕𝜆
𝑝

1

𝜌
𝑝
(𝑡)

̈𝑒
𝑝
(𝑡) + 𝐸

𝑀

𝑝
, (35)

where

𝐸
𝑀

𝑝
=

𝜕 (𝜕𝑆
−1

𝑝
/𝜕𝜆

𝑝
)

𝜕𝜆
𝑝

(

̇𝑒
𝑝
(𝑡)

𝜌
𝑝
(𝑡)

−

𝑒
𝑝
(𝑡) ̇𝜌

𝑝
(𝑡)

𝜌2

𝑝
(𝑡)

)

2

+ 𝜂
𝑝

𝜕𝑆
𝑝

−1

𝜕𝜆
𝑝

̇𝜆
𝑝
−

𝜕𝑆
𝑝

−1

𝜕𝜆
𝑝

× [

2 ̇𝑒
𝑝
(𝑡) ̇𝜌

𝑝
(𝑡)

𝜌2

𝑝
(𝑡)

+

𝑒
𝑝
(𝑡) ̈𝜌

𝑝
(𝑡)

𝜌2

𝑝
(𝑡)

−

2 ̇𝑒
𝑝
(𝑡) ̇𝜌

2

𝑝
(𝑡)

𝜌3

𝑝
(𝑡)

] .

(36)

Then we can derive

̇𝐸 = 𝐸
𝑅
̈𝑒 (𝑡) + 𝐸

𝑀
, (37)

where ̇𝐸 = [ ̇𝐸
𝑝
, ̇𝐸

𝑞
, ̇𝐸

𝑟
]
𝑇, ̈𝑒(𝑡) = [ ̈𝑒

𝑝
(𝑡), ̈𝑒

𝑞
(𝑡), ̈𝑒

𝑟
(𝑡)]

𝑇, 𝐸
𝑀

=

[𝐸
𝑀

𝑝
, 𝐸

𝑀

𝑞
, 𝐸

𝑀

𝑟
]
𝑇, and 𝐸

𝑅
is

𝐸
𝑅
=
[
[

[

𝐸
𝑅

𝑝

𝐸
𝑅

𝑞

𝐸
𝑅

𝑟

]
]

]

, (38)
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where 𝐸
𝑅

𝑝
= (𝜕𝑆

𝑝

−1

/𝜕𝜆
𝑝
)/𝜌

𝑝
(𝑡), 𝐸𝑅

𝑞
= (𝜕𝑆

𝑞

−1

/𝜕𝜆
𝑞
)/𝜌

𝑞
(𝑡),

𝐸
𝑅

𝑟
= (𝜕𝑆

𝑟

−1

/𝜕𝜆
𝑟
)/𝜌

𝑟
(𝑡), and ̈𝑒

𝑝
(𝑡), ̈𝑒

𝑞
(𝑡), ̈𝑒

𝑟
(𝑡), are

̈𝑒
𝑝
(𝑡) = ̈𝜙 − ̈𝜙

𝑑
,

̈𝑒
𝑞
(𝑡) = ̈𝜃 − ̈𝜃

𝑑
,

̈𝑒
𝑟
(𝑡) = ̈𝜓 − ̈𝜓

𝑑
.

(39)

To simplify the controller design progress, we linearize (2)
in an equilibrium point which is the steady wings-level flight
state.

[ ̇𝑝, ̇𝑞, ̇𝑟]
𝑇

= 𝐴
𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, 𝛽

0
+ Δ𝛽, 𝑝

0

+Δ𝑝, 𝑞
0
+ Δ𝑞, 𝑟

0
+ Δ𝑟]

𝑇

+ 𝐵
𝜔
[𝛿

𝑎0
+ Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, 𝛿

𝑟0
+ Δ𝛿

𝑟
]
𝑇

,

(40)

where the𝐴
𝜔
and 𝐵

𝜔
are the appropriate dimension constant

matrixes, 𝛽
0

= 𝑝
0

= 𝑞
0

= 𝑟
0

= 𝛿
𝑎0

= 𝛿
𝑟0

= 0. And
𝑉

0
, 𝛼

0
, and 𝛿

𝑒0
are the flight velocity, angle of attack and

elevator deflection in some equilibrium point, respectively.
The symbol Δ represents the small perturbation from the
equilibrium value.

According to (2), (13), (14), and (40), we can obtain

̈𝑥 = 𝐹 (𝑥) + 𝐺 (𝑥) Δ𝑢 + 𝜒, (41)

where Δ𝑢 = [Δ𝛿
𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]
𝑇, and

𝐹 (𝑥) = [𝐹
𝑝
, 𝐹

𝑞
, 𝐹

𝑟
]
𝑇

= 𝑔 (𝜙, 𝜃, 𝜓, ̇𝜙, ̇𝜃, ̇𝜓)

+ 𝐿 (𝜙, 𝜃) 𝐴
𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

,

𝐺 (𝑥) = [𝐺
𝑝
, 𝐺

𝑞
, 𝐺

𝑟
]
𝑇

= 𝐿 (𝜙, 𝜃) 𝐵
𝜔

𝜒 = [𝜒
𝑝
, 𝜒

𝑞
, 𝜒

𝑟
]
𝑇

,

(42)

where 𝜒 is the model error which will be analyzed in
Section 3.4.

The formula ̈𝑥 = 𝐹(𝑥) + 𝐺(𝑥)Δ𝑢 in (41) is named
as the design model in some equilibrium point, which is
different from the real nonlinear model in (14). And the
difference between the designmodel and the nonlinearmodel
is represented by the symbol 𝜒, which will be compensated by
the adaptive neural network.

Because there are three channels in the attitude control
and the form of each channel is the same, consider the
following Theorem 7 for the roll channel. And the pitch and
yaw channels are similar.

Theorem 7. Considering Assumption 5, Assumption 6, and
the nonlinear system in (14), all the signals are bounded, and
the tracking error 𝑒(𝑡) satisfies the performance described by
the performance function 𝜌(𝑡), if the control input of system
satisfies the following formula.

The control input of roll channel is

𝑢
𝑝
= 𝛿

𝑎
= 𝐺

−1

𝑝
[−𝐹

𝑝
− (𝐸

𝑅

𝑝
)
−1

(𝐸
𝑀

𝑝
+ 𝑘

𝑝
𝐸

𝑝
) + ̈𝜙

𝑑
− 𝑢

𝑎𝑑

𝑝
] .

(43)

The adaptive signal of roll channel is

𝑢
𝑎𝑑

𝑝
= 𝑤

𝑇

𝑝
𝑔

𝑝
. (44)

The neural network weight update law of roll channel is

̇̃𝑤
𝑝
= {

𝛾
𝑝
(𝑔

𝑝
(𝐸

𝑝
)
𝑇

𝐸
𝑅

𝑝
+ 𝜎

𝑝
𝑤

𝑝
) ,

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩
> 𝜁

𝑝
,

0
󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩
≤ 𝜁

𝑝
,

𝜁
𝑝
=

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
+ √(

󵄩󵄩󵄩󵄩󵄩
𝐸𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
)
2

+ 𝑘
𝑝
𝜎
𝑝
(𝑤max

𝑝
)
2

2𝑘
𝑝

,

(45)

where the vector 𝑔
𝑝
is a set of basis functions to approximate

the uncertainty and the neural network weight vector 𝑤
𝑝
is

the set of coefficients of each basis function in the roll channel.
The adaptation gain 𝛾

𝑝
determines the learning rate of neural

network. The 𝜎
𝑝
is a modification term to limit the growth of

the neural network weights.The constant 𝑘
𝑝
is positive. And the

positive constant ℎ
𝑝
is the neural network approximate error

which is bounded. The neural network weight error is

𝑤
𝑝
= 𝑤

𝑝
− 𝑤

∗

𝑝
, (46)

where the 𝑤∗

𝑝
is the true value of the neural network weight in

the roll channel.

Proof. A suitable Lyapunov function of roll channel will be

𝑉
𝑝
=

{{{

{{{

{

1

2
(𝐸

𝑝
)
𝑇

𝐸
𝑝
+

1

2𝛾
𝑝

(𝑤
𝑝
)
𝑇

𝑤
𝑝
,

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩
> 𝜁

𝑝
,

1

2
(𝐸

𝑝0
)
𝑇

𝐸
𝑝0

+
1

2𝛾
𝑝

(𝑤
𝑝
)
𝑇

𝑤
𝑝
,

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩
≤ 𝜁

𝑝
,

(47)

where ‖𝐸
𝑝0
‖ = 𝜁

𝑝
and 𝜁

𝑝
is to be defined later.

Firstly, if ‖𝐸
𝑝
‖ > 𝜁

𝑝
is satisfied, then the time derivative of

(47) is given by

𝑉
𝑝
= (𝐸

𝑝
)
𝑇

̇𝐸
𝑝
+

1

𝛾
𝑝

(𝑤
𝑝
)
𝑇

̇̃𝑤
𝑝
. (48)

Substituting (37) into (48), we derive

𝑉
𝑝
= (𝐸

𝑝
)
𝑇

[𝐸
𝑀

𝑝
+ 𝐸

𝑅

𝑝
( ̈𝜙 − ̈𝜙

𝑑
)] +

1

𝛾
𝑝

(𝑤
𝑝
)
𝑇

̇̃𝑤
𝑝
. (49)

Considering (41)-(42) and (49), we have

𝑉
𝑝
= (𝐸

𝑝
)
𝑇

[𝐸
𝑀

𝑝
+ 𝐸

𝑅

𝑝
(𝐹

𝑝
+ 𝐺

𝑝
𝑢
𝑝
+ 𝜒

𝑝
− ̈𝜙

𝑑
)]

+
1

𝛾
𝑝

(𝑤
𝑝
)
𝑇

̇̃𝑤
𝑝
.

(50)
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Let the control input 𝑢
𝑝
satisfy (43), then (50) can be

described as

𝑉
𝑝
= (𝐸

𝑝
)
𝑇

[−𝑘
𝑝
𝐸

𝑝
+ 𝐸

𝑅

𝑝
(𝜒

𝑝
− 𝑢

𝑎𝑑

𝑝
)] +

1

𝛾
𝑝

(𝑤
𝑝
)
𝑇

̇̃𝑤
𝑝
. (51)

Substituting (44)–(46) into (51), we obtain

𝑉
𝑝
= −𝑘

𝑝
(𝐸

𝑝
)
𝑇

𝐸
𝑝
+ (𝐸

𝑝
)
𝑇

𝐸
𝑅

𝑝

× (𝜒
𝑝
− (𝑤

∗

𝑝
)
𝑇

𝑔
𝑝
) + 𝜎

𝑝
(𝑤

𝑝
)
𝑇

𝑤
𝑝
.

(52)

By using the norms of the terms on the right side of (52),
we obtain the following inequality:

𝑉
𝑝
≤ −𝑘

𝑝

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝑝
− (𝑤

∗

𝑝
)
𝑇

𝑔
𝑝

󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝜎

𝑝

󵄩󵄩󵄩󵄩󵄩
𝑤

𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑤

𝑝

󵄩󵄩󵄩󵄩󵄩
.

(53)

In addition, the approximate error of neural network is
bounded, so the following equation is satisfied:

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝑝
− (𝑤

∗

𝑝
)
𝑇

𝑔
𝑝

󵄩󵄩󵄩󵄩󵄩󵄩
≤ ℎ

𝑝
. (54)

The maximum weight of ideal neural network in the roll
channel is 𝑤max

𝑝
, so we have

󵄩󵄩󵄩󵄩󵄩
𝑤

∗

𝑝

󵄩󵄩󵄩󵄩󵄩
≤ 𝑤

max
𝑝

. (55)

Substituting (46) and (54)-(55) into (53), we get

𝑉
𝑝
≤ −𝑘

𝑝

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
+ 𝜎

𝑝
(𝑤

max
𝑝

󵄩󵄩󵄩󵄩󵄩
𝑤

𝑝

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑤

𝑝

󵄩󵄩󵄩󵄩󵄩

2

) .

(56)

Considering (56), we obtain

𝑉
𝑝
≤ −𝑘

𝑝

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝

− 𝜎
𝑝
(
󵄩󵄩󵄩󵄩󵄩
𝑤

𝑝

󵄩󵄩󵄩󵄩󵄩
−

𝑤
max
𝑝

2
)

2

+ 𝜎
𝑝
(

𝑤
max
𝑝

2
)

2

.

(57)

If the system is stable, then 𝑉
𝑝

< 0. And (57) can be
transformed to the following formula:

𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
− 𝜎

𝑝
(

𝑤
max
𝑝

2
)

2

> 0. (58)

Then we can derive

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑝

󵄩󵄩󵄩󵄩󵄩
>

󵄩󵄩󵄩󵄩󵄩
𝐸

𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
+ √(

󵄩󵄩󵄩󵄩󵄩
𝐸𝑅

𝑝

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑝
)
2

+ 𝑘
𝑝
𝜎
𝑝
(𝑤max

𝑝
)
2

2𝑘
𝑝

= 𝜁
𝑝
.
(59)

Next, if ‖𝐸
𝑝
‖ ≤ 𝜁

𝑝
is satisfied, then the time derivative of

(47) is derived by

𝑉
𝑝
=

1

𝛾
𝑝

(𝑤
𝑝
)
𝑇

̇̃𝑤
𝑝
. (60)

Here the weight update law is ̇𝑤
𝑝

= ̇̃𝑤
𝑝

= 0, and
𝑉

𝑝
= 0. Therefore, the system is stable, and all the signals

are bounded. Considering Lemma 4, the tracking error 𝑒(𝑡)
satisfied the performance described by the performance
function 𝜌(𝑡).

This completes the proof.

3.4. Analysis of the Model Error. According to (2)–(5), the
moment model is nonlinear, complicated, and must be
continuously varyingwith the flight condition. For simplicity,
the linear model of (40) in an equilibrium point is used to
replace the nonlinear model of (2).

We define the model error Λ = [Λ
𝑝
, Λ

𝑞
, Λ

𝑟
]
𝑇, which

is the error between the linear model Equation (40) and the
nonlinear model equation (6). And the Λ is

Λ = [𝑓
𝑝
, 𝑓

𝑞
, 𝑓

𝑟
]
𝑇

− 𝐴
𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

+ 𝐺
𝑢
[𝛿

𝑎
, 𝛿

𝑒
, 𝛿

𝑟
]
𝑇

− 𝐵
𝜔
[Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]
𝑇

.

(61)

Then (6) can be rewritten as

[ ̇𝑝, ̇𝑞, ̇𝑟]
𝑇

= 𝐴
𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

+ 𝐵
𝜔
[Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]
𝑇

− Λ.

(62)

Substituting (62) into (10), we have

̈𝑥 = 𝐹 (𝑥) + 𝐺 (𝑥) Δ𝑢 − 𝐿 (𝜙, 𝜃) Λ. (63)

Comparing (63) to (41), we obtain

𝜒 = −𝐿 (𝜙, 𝜃) Λ. (64)

Therefore, the model error mainly depends on the differ-
ent equilibrium points, attitude angles, actuator deflections,
and so on.

3.5. Neural Network Structure. The first step in determining
the appropriate network structure is identifying the network
inputs. Based on the analysis ofmodel error sources described
in Section 3.3, there are three main categories of inputs: the
attitude angles, attitude angle rates, and actuator deflections.

A Sigma-Pi neural network [18] is used to compensate the
model error 𝜒, and the basis function of the pitch channel 𝑔

𝑞

is

𝑔
𝑞
= kron (kron (𝐶

1𝑞
, 𝐶

2𝑞
) , 𝐶

3𝑞
) , (65)

where kron(⋅, ⋅) represents the Kronecker products and is
defined as follows:

𝐶
1𝑞

= [1, 𝜃, 𝜃
2

]

𝑇

, 𝐶
2𝑞

= [1, 𝑞]
𝑇

, 𝐶
3𝑞

= [1, 𝛿
𝑒
, 𝛿

2

𝑒
]

𝑇

,

(66)
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Figure 2: Neural network structure.

where 𝜃, 𝑞, 𝛿
𝑐
and 𝛿

𝑒
are normalized variables between −1 and

1. The normalization function is

𝑦 = 𝑓 (𝑥) =
2

1 + 𝑒−0.1𝑥
− 1, (67)

where 𝑥 is the input parameter and 𝑦 is the output parameter.
And a general description of the neural network is shown

in Figure 2.
And the basis function of roll channel 𝑔

𝑝
and the basis

function of yaw channel𝑔
𝑟
can be derived similarly as follows:

𝑔
𝑘
= kron (kron (kron (kron (𝐶

1
, 𝐶

2
) , 𝐶

3
) , 𝐶

4
) , 𝐶

𝑘
) , (68)

where 𝑘 = 𝑝, 𝑟. Then 𝐶
𝑖
, 𝑖 = 1, 2, 3, 4, 𝑘 is

𝐶
1
= [1, 𝜙, 𝜙

2

]

𝑇

, 𝐶
2
= [1, 𝑝]

𝑇

, 𝐶
3
= [1, 𝑟]

𝑇

,

𝐶
4
= [1, 𝜓, 𝜓

2

]
𝑇

, 𝐶
𝑝
= [1, 𝛿

𝑎
, 𝛿

2

𝑎
]

𝑇

, 𝐶
𝑟
= [1, 𝛿

𝑟
, 𝛿

2

𝑟
]

𝑇

.

(69)

4. Simulation Results

In this section, we consider the attitude angles control
problem for a fixed-wing aircraft, and the initial flight state
is the wings-level flight. Then the attitude angles commands
in three channels will be tracked, respectively.

In the following simulation, the initial flight height and
velocity are 6000mand 190m/s, and the initial attitude angles
and angular rates including 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, and 𝑟 are zeros. In
addition, all the initial actuator deflections are zeros.

The error transformation function [19] in the simulation
is described as

𝑆 (𝜀) =
𝛿𝑒

(𝜀+𝑦)

− 𝛿𝑒
−(𝜀+𝑦)

𝑒(𝜀+𝑦) + 𝑒−(𝜀+𝑦)

, (70)

where 𝑦 = ln(𝛿/𝛿)/2. It can be shown that 𝑆(𝜀) satisfies the
properties in (23)–(25).

The attitude angles commands of three channels are
transformed into the desired attitude angles commands

𝜙g
𝜔
2
𝜙

− −
1/s

2𝜉𝜙𝜔𝜙

1/s

𝜔
2
𝜙

̈𝜙d

̇𝜙d

𝜙d

Figure 3: Command filter.

Table 1: Performance parameters.

𝜌
𝜙

0
−12∘

𝜌
𝜓

0
−8∘

𝜌
𝜃

0
−10∘

𝜌
𝜙

∞
−0.3∘

𝜌
𝜓

∞
−0.2∘

𝜌
𝜃

∞
−0.2∘

𝑙
𝜙

0.7 𝑙
𝜓

0.7 𝑙
𝜃

0.7
𝛿

𝜙
0.6 𝛿

𝜓
0.5 𝛿

𝜃
0.6

𝛿
𝜙

1 𝛿
𝜓

1 𝛿
𝜃

1

Table 2: Controller parameters.

𝑘
𝑝

10 𝑘
𝑟

10 𝑘
𝑞

10
𝛾
𝑝

200 𝛾
𝑟

200 𝛾
𝑞

50
𝜎

𝑝
0.1 𝜎

𝑟
0.1 𝜎

𝑞
0.3

through the command filters. And the structure of command
filter for the roll channel is shown in Figure 3. In addition, the
desired attitude angles commands for yaw and pitch channels
can be obtained by the similar command filters.

The command filter parameters are set as 𝜉
𝑖
= 1, 𝜔

𝑖
= 2.5,

and 𝑖 = 𝜙, 𝜓, 𝜃.
Design the control inputs with prescribed performance

for three channels through the procedures in Section 3.2.The
performance and controller parameters are shown in Tables 1
and 2.

Remark 8. For the performance function 𝜌(𝑡), 𝜌
0
is derived

by subtracting the attitude command from the initial attitude
angle. 𝜌

∞
is the allowable attitude tracking error at the steady

state. And the decrement of tracking error 𝑒(𝑡) will decrease
when the parameter 𝑙 decreases.

Remark 9. For the controller parameters, the adaptation gain
𝛾 will improve the attitude tracking performance, especially,
when there are much larger model errors. The 𝜎

𝑝
is a

modification term to limit the growth of the neural network
weights; therefore, it is small. The transient performance
of attitude tracking error can be improved by increasing
the parameter 𝑘; however, the increase will increase the
magnitude of the control input. Then a compromise must be
reached.
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Figure 4: Responses of the attitude angles.
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Figure 5: Tracking errors of the attitude angles.

The design model I is derived at the trimmed flight
condition of 6000m and 190m/s, and the model error is
small.

The aircraft tracks the attitude angles commands from the
initial flight state. And the attitude angles tracking responses
and tracking errors are shown in Figures 4 and 5.

The two methods have achieved the attitude angles com-
mand tracking. Figure 4 shows the better attitude responses
are achieved by the proposed method compared to the

method in [20]. And the coupling among different channels
is smaller when the proposed method is used. For example,
the roll angle response has a less change when the aircraft
tracks the yaw command. In Figure 5, the attitude angles
tracking errors satisfy the prescribed performance bound
with the proposed method in the dynamic and steady state.
Themain reason is that the method in [20] does not consider
the performance bound defined by the performance function
𝜌(𝑡) in the design process.
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Figure 6: Responses of the Attitude angles with model error.
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Figure 7: Tracking errors of the attitude angles with model error.
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Figure 8: Deflections of the control actuators in two design models.
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Figure 9: The outputs of neural network in three channels.
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In the real flight control system, there must be the model
error. In order to verify that the similar tracking performance
is also achieved when there is the large model error, we have
conducted the following simulation study.

The flight condition is the same, and the initial flight
height and velocity are 6000m and 190m/s. However, the
design model II used to design the attitude angles controllers
is derived at the trimmed flight condition of 4000m and
150m/s. Apparently, the model error is large.

And the attitude angles tracking responses and tracking
errors are shown in Figures 6 and 7.

Figures 6 and 7 show the attitude angles tracking errors
still satisfy the prescribed performance bound, although the
model error is large in this situation. In addition, Figures
6 and 7 show the track performance is similar when the
different design models are used.

The control actuators deflections for three channels are
compared in Figure 8 when the two design models are used.

Figure 8 shows the deflections of the control actuators
using the design model II increase to derive the desired
attitude angles tracking performance. In addition, the outputs
of neural network in three channels are shown in Figure 9.

Figure 9 shows the outputs of neural network using the
design model II are larger than the one using the design
model I. The main reason is that the model error is larger
when the design model II is used, and the larger outputs of
neural network are used to compensate the largemodel error.

5. Conclusion

In this paper, an adaptive neural network dynamic inver-
sion with prescribed performance method is proposed for
aircraft attitude control. By incorporating the adaptive neural
network dynamic inversion with the prescribed performance
concept, the proposed method guarantees the system track-
ing error satisfies the prescribed performance bound in the
transient and steady behavior. The nonlinear simulation of
the aircraft also verifies the effectiveness of the proposed
approach.

Further investigation is needed for the situations in the
presence of the external wind disturbance and unmodeled
dynamics. And, these design parameters in this method
should be decreased and optimized to achieve a real appli-
cation.
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This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy
management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper
consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are
all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between
the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes
the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural
network is introduced to calculate the reference power of battery. Super capacitor (SC) is controlled to regulate the DC bus voltage.
The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

1. Introduction

Faced with shortage of oil, rising of the petroleum price
and the increasing pollution of the environment, people all
over the world are searching for solutions to energy crises.
Since the end of the twentieth century, great attention has
been paid to renewable energy sources [1]. Wind energy
and solar energy are both sustainable and nonpolluting
sources and they are potentially to be alternative sources
over traditional energy [2]. Utilizing renewable energy
sources like the sun and wind, hybrid renewable energy
system is becoming popular in economic and environmental
ways.

However, the power of wind generator and solar panels
is fluctuant and discontinuous, so it is highly necessary to
add storage system to a single energy or hybrid energy
supply to smooth the electrical power. Researches are being
studied all over the world to solve the energy management
problem of a DC microgrid with hybrid power generators,
especially with renewable energy power generators. Kalantar
andMousavi [3] studied the dynamic behavior of stand-alone

hybrid power generation system with battery storage, using
a supervisory controller based on programming to balance
the energy within the system. Chen et al. [4] designed and
implemented an energy management system (EMS) with
fuzzy control for a DC microgrid system. Ko et al. [5] pro-
posed a fuzzy controller and utilized sliding mode nonlinear
control to keep a hybrid power system robust. Zhang et
al. [6–8] investigated the problem of robust static output
feedback (SOF) control and step tracking control problem
for discrete-time nonlinear systems. Yin et al. [9–11] pro-
posed a method of fault diagnosis scheme with parameters
directly identified from the process data and compared the
results of this data-driven method with process monitoring
method.

Lithium ion batteries possess high energy density, relative
high power density, long life span, and environmental friend-
liness and thus have been used in a wide range of areas [12].
Other types of batteries do not have the above advantages at
the same time. For example, lead-acid batteries have much
lower energy density than lithium ion batteries and often
need to be in float charging state.The favorable characteristics
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of lithium ion battery are very beneficial for hybrid energy
system to improve its energy capacity. Yet the transient power
frequency and fluctuating output voltage of the generating
system may pose great pressure on the battery, which may
reduce its lifetime span and worsen its performance. Besides,
the relatively low power density makes it difficult for battery
alone to meet the rapid changing of power generated by
the nonstable renewable energy. Therefore, another auxiliary
storage unit, along with battery storage system, may improve
the system performance in prolonging the life span of lithium
ion battery and providing more smoothed power flow for the
loads.

Recently, super capacitors are being researched for many
good qualities, such as considerably higher power densi-
ties than those of batteries and tremendous higher energy
density than that of regular capacitors [13]. The high power
density of SC is suitable for smoothing and the difference
between the rapid changing generated power and the load
demands caused by the power fluctuation. Besides, since
their operation does not employ a chemical reaction, SCs
are much more robust than batteries, which provide a long
cycle life that is at least 500 times more than that of standard
batteries [14]. For the listed reasons above, we can come to
the conclusion that battery system with super capacity as
auxiliary storage unit is beneficial for a hybrid power system
to provide high quality power andmeet the loads demands. In
Kamel’s research, ultracapacitor based energy storage system
is developed to smooth the output power of wind turbine and
enhance MG’s performance in islanding mode [15]. Erdinc
added ultracapacitor to hybrid vehicular power system to
improve the efficiency and dynamic response of a vehicular
system [16].

Due to the different characteristics of the renewable
energy and the storage system, an energy management
strategy is proposed in this paper to reduce the difference
between the generated power and the power demanded
by loads. Wavelet transform is applied to decompose the
different power into smoothed component and high fluc-
tuation component. The two components are suitable for
battery and SC to compensate, respectively, according to their
different features. What is more, to prevent the battery from
overcharge and deep discharge, neural network algorithm is
employed after the wavelet transform. The battery is mainly
in charge of compensatingmost of the difference between the
generated power and the demanded power, while the SC is
mainly responsible for stabilizing the voltage on the DC bus
of the whole system, which indirectly compensates the rest of
the power difference.

This paper describes a standalone hybrid renewable
energy power generation system with hybrid storage system
consisting of lithium ion battery and SC, using a wavelet
neural network based control strategy. The contents are
organized as follows. Section 2 illustrates the modeling of the
system components, respectively, including wind power gen-
erator, PV generator, lithium ion battery, and SC. Section 3
elaborates the wavelet neural network control strategy for the
energy management system. The test results and discussion
are given in Section 4.

2. System Description and
Components Modeling

The proposed hybrid system consists of a wind turbine, a
PV panel and a lithium ion battery, and SC based energy
storage system.All the components are connected to a voltage
uniformed DC bus with converters as is shown in Figure 1.

2.1. Wind Turbine Modeling. We assume a wind turbine
driven by a permanent synchronous generator (PMSG) in
this study.The rated output power and ratedwind speed of the
wind turbine are 600Wand 13m/s.The startingwind speed is
3m/s, and themaximumwind speed is 18m/s.Themaximum
output power is 800W. The model of wind turbine is built
in Matlab/Simulink software. According to the aerodynamic
theory, the output power of thewind turbine can be expressed
as

𝑃
𝑚
= 0.5𝜌𝜋𝑅

2

𝑉
2

𝑤
𝐶
𝑝
(𝜆, 𝛽) , (1)

where 𝑃
𝑚
is the output power extracted from wind turbine

generator. 𝜌, 𝑅, and 𝑉
𝑤
represent the air density, the blade

radium, and the wind speed, respectively. 𝐶
𝑝
is the power

coefficient, which can be expressed as a function of tip speed
ratio 𝜆 and the blade pitch angle 𝛽 as follows:

𝐶
𝑝
(𝜆, 𝛽) = 0.73 (

151

𝜆
− 0.58𝛽 − 0.002𝛽

2.14

− 13.2) 𝑒
−18.4/𝜆

.

(2)

in which

𝜆 =
1

(1/ (𝜆 − 0.02𝛽) − 0.003/ (𝛽3 + 1))
. (3)

A 13m/s turbulent wind is generated from Bladed/FAST
software and plotted inMatlab, shown in Figure 2.The output
power of the wind turbine under MPPT control is shown in
Figure 3.

2.2. PV Array Modeling. PV array is built by several PV cells
connecting in series and parallel. The short-circuit current of
each PV cell is calculated by the following equation:

𝐼sc = 𝐼sc0(
𝐺

𝐺
0

)

𝛼

, (4)

where 𝐼sc and 𝐼sc0 represent the short-circuit currents under
standard and normal solar radiation 𝐺 and 𝐺

0
and 𝛼 reflects

all the nonlinear effects.
The open-circuit voltage of the PV cell is

𝑉oc =
𝑉oc0

1 + 𝛽 ln (𝐺/𝐺
0
)
⋅ (

𝑇
0

𝑇
)

𝛾

, (5)

where 𝑉oc and 𝑉oc0 represent the open-circuit voltage under
standard and normal solar radiation 𝐺 and 𝐺

0
and 𝑇 is the

temperature of PV cell. 𝛽 is a specific technology-related
coefficient of PV cell and 𝛾 reflects the nonlinear effects of
temperature.
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0 10 20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

Time (s)

Tu
rb

ul
en

t w
in

d 
(m

/s
)

Figure 2: Turbulent wind of 13m/s from Bladed/FAST software.
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Figure 3: The output power of the 600W wind turbine with
turbulent wind of 13m/s.

The maximum output power from the PV array with 𝑁
𝑠

PV cells connected in series and 𝑁
𝑝
series groups in parallel

can be written as

𝑃max = 𝑁
𝑝
⋅ 𝑁
𝑠
⋅
𝑉oc0/𝑛𝑘𝑇𝑞 − ln (𝑉oc/𝑛𝑘𝑇𝑞 + 0.72)

1 + 𝑉oc0/𝑛𝑘𝑇𝑞

⋅ (1 −
𝑅
𝑠

𝑉oc/𝐼sc
) ⋅ 𝑉oc ⋅ 𝐼sc.

(6)
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Figure 4: The maximum output power of PV array.

The maximum output power from PV array is shown in
Figure 4.

Since the power of wind turbine and PV array are both
obtained, the total generated power can be calculated by
adding them together. In addition, we assume that the load
demand is constant 1 kW. So the power difference between
the generated power and the demanded power by the loads
Δ𝑃 is

Δ𝑃 = 𝑃WP + 𝑃PV − 𝑃
𝐿
, (7)

in which 𝑃WP, 𝑃PV, and 𝑃
𝐿
are wind turbine output power, PV

array output power, and load demanded power, respectively.
Variation of Δ𝑃 over time in this paper is shown in Figure 5.

2.3. Energy Storage System. As is mentioned before, the
power generated from the renewable energy includes many
sharp and transient variations, which makes it hard to meet
the relatively smoothed load power demand. Therefore, it
is necessary to compensate the gap between the generated
power and the demanded power. In this scheme, the power
that generated by the renewable energies and power that
is demanded by the load are coordinated by the energy
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Figure 5: Variation of Δ𝑃.

storage systemwhich is composed of lithium ion battery bank
and super capacitor (SC). Battery has high energy density,
whereas it has relatively slow charging and discharging speed.
On the other hand, super capacitor has the advantage of quick
charge, large power density, and long cycle life [17]. SC in
a hybrid energy storage system can quickly respond to the
power smoothing instructions and better complete power
smoothing tasks [18]. Based on the above characteristics, a
modified coordinated control strategy, by which the total
generated power can be smoothed and the loads demand can
be met as well, is proposed and elaborated in the following
chapters.

(1) Lithium Ion Battery Bank Modeling. The battery module
from theMatlab/Simulation software is adopted in this paper.
This model allows users to apply parameters based on battery
type and nominal values. The battery bank in this paper
consists of four batteries connected in parallel, each of which
is of 24Vnominal voltage and 5Ah rated capacity.Thatmakes
the total capacity of the battery bank 20Ah. The parameters
of the lithium ion battery are listed in Table 1.

(2) Super Capacitor Modeling. A classical equivalent model
for SC is shown in Figure 6, which consists of a capacitance
(𝐶), an equivalent series resistance (𝑅

𝑆
) representing the

charging and discharging resistance, and an equivalent par-
allel resistance (𝑅

𝑃
) representing the self-discharging losses

[19]. Instead of using the common RC equivalent circuit, a
modified electrical equivalent circuit for super capacity, as is
shown in Figure 7, is applied in this paper. The RC branch
in the modified equivalent circuit composed of 𝑅

𝑆
and 𝐶

1
is

called the “fast branch” and is used to represent the immediate
behavior of the SC in the time range of seconds. The RC
branch comprising 𝑅

2
and 𝐶

2
is called the “slow branch” and

this RCbranch presents the internal energy distribution at the
end of charge or discharge [20].

3. System Control Strategy

In this section, a wavelet transform and neural network based
control strategy is introduced to manage the system energy.
The advantage of wavelet analysis, as opposed to conventional
techniques, is that wavelet transform decomposes a signal
into a series of short duration waves or local basis functions
(wavelets) on the time axis which allows the analysis of

RS

RP

+

−

VSC C

Figure 6: Classical equivalent model for SC.
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+

−

VSC C1 C2

R2

Figure 7: Modified equivalent model for SC.

Table 1: Lithium ion battery bank parameters.

Parameter Value
Nominal voltage 24V
Rated capacity 20Ah (4∗ 5Ah)
Maximum capacity 20Ah (4∗ 5Ah)
Fully charged voltage 27.9357V
Nominal discharge current 8.6957A
Internal resistance 12mΩ (48/4mΩ)

local phenomena in signals consisting of many transients
[21]. In this case, we apply a three-level Haar wavelet. The
original signal for wavelet transform is Δ𝑃, the difference
between the total generated power 𝑃WP + 𝑃PV and the load
demand 𝑃

𝐿
. Then Δ𝑃 is decomposed into approximation

component Δ𝑃
𝑎
and detailed component Δ𝑃

𝑑
by wavelet

transform. According to the different respond speed and
power density characteristics of the two types of storage
devices mentioned above, the majority of Δ𝑃

𝑎
, which is the

smoothed component of the total difference, is convenient to
bemet by battery, while the detailed partΔ𝑃

𝑑
, which contains

a lot of high frequency components, is suitable for super
capacity to compensate. The decomposition is illustrated in
Figure 8.

However, if we assignΔ𝑃
𝑎
to be the exact reference power

of battery directly, it is highly possible that the batteries
would reach out their acceptable SOC limit, which would
cause some certain damages to the batteries and reduce its
lifetime.Therefore, neural network is introduced to maintain
the SOC of batteries within a reasonable range, so that
they can function in good condition. In this paper, adaptive
linear (ADALINE) neural network is applied to obtain the
reference power of battery storage system. Figure 9 shows
the general neural network model. 𝑝

1
, 𝑝
2
are the inputs

of network controller; 𝑊
1
and 𝑊

2
are the corresponding
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Figure 8: Decomposition of power difference Δ𝑃 using Haar wavelet transform.
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Figure 9: Model of a simple ADALINE neural network.

weight of the two inputs parameters; 𝑏 represents bias and
𝑛 represents the net input; 𝑎 is the output of the network
controller. In this case, the inputs of the neural network are
Δ𝑃
𝑎
—the approximation component of the total different Δ𝑃

after wavelet transformation, and the SOC of the battery. By
utilizing the input parameters, the neural network controller
determines the reference power for battery.The first half data
of Δ𝑃

𝑎
is used to train the perception. The target value of

battery SOC is set as 0.7. If the SOC of battery is around
the desired value, then the reference power for battery is
Δ𝑃
𝑎
. However, if the SOC is more/less than the desired

value, the reference power is more/less than Δ𝑃
𝑎
, in order

to decrease/increase the SOC to the target. This way, the
battery would be protected from being overcharged or deep
discharged.

The whole configuration of the wavelet neural network
controller is illustrated in Figure 10.This scheme is composed
of a battery bank and a super capacity using two bidirectional
DC/DC converters, respectively, for power tracking and
voltage regulation. The reference power for the battery is
obtained by the wavelet neural network elaborated above.
A PI controller is then followed to track the battery’s actual
power and the system response can be achieved by generating
PWM switching signals to DC/DC converters. Besides, the
DC bus voltage is regulated by controlling the bidirectional
DC/DC converter coupled with SC.

4. Simulation Results

We set the learning step of the neural network 0.008 and
the mean square error 0.005. The network is trained using
the first half of operation data according to the principles
mentioned in Section 3. The output power of battery is
demonstrated in Figure 11. It is obvious that the variation of
battery output power is similar to Δ𝑃

𝑎
the approximation

component of power difference after wavelet transform. As
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we can see, the changes of the battery power possess less sharp
transition part than the original power difference Δ𝑃 shown
in Figure 5. This protects the battery from being damaged by
extremely fast charging and discharging operation.

The variation of battery SOC is demonstrated in
Figure 12. The SOC is sustained near 0.7 as we designed in
the neural network controller.
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Figure 14: The variation of DC bus voltage.

Figure 13 shows the output power of super capacitor,
which resembles the detailed part of the power difference
after wavelet transform.

The variation of the DC bus voltage is shown in Figure 14.
The voltage is sustained within a reasonable limit by gen-
erating proper PWM signals to super capacitor, which is
important for the loads connected on the DC bus. As is
illustrated in the figure, the voltage of the DC bus maintained
at the point of 48V after a short fluctuation at the beginning.

The simulation results show that the proposed method
effectively keeps the microgrid operating under stable state
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with power fluctuation injected in it bymaking full use of two
different storage units. The salient features of the proposed
method include: (1) effective in dealing with modeling
uncertainties; (2) structurally simple and computationally
inexpensive; and (3) the design parameters can be readily
determined, whichmakes it much easier than tuning conven-
tional PID controller.

5. Conclusion

This paper proposes a wavelet transform and neural network
based energy management system for hybrid power system.
The hybrid power system consists of wind power subsystem,
solar power subsystem, and an energy storage system. The
wind turbine and PV array are all controlled under MPPT to
obtain maximum electrical power.The energy storage system
includes lithium ion battery bank and super capacitor which
are controlled under the proposed energy management sys-
tem. In the proposed control strategy, wavelet is in charge
of decomposing and then reconfiguring the power difference
between generated power and consumed power by loads.
The approximation part is compensated by battery bank.
In consideration of sustaining its SOC within an acceptable
limit, neural network controller is introduced. Then the
voltage of system DC bus is maintained by rapidly charging
and discharging the super capacitor.

The simulation results demonstrate that the proposed
strategy is capable of compensating the variation power
difference caused by the renewable energy and the loads,
as well as maintaining the DC voltage stable. Furthermore,
the SOC of batteries is within the recommended range, thus
protecting them frombeing damaged by overcharge and deep
discharge. Since the modeling of the system is complex and
difficult, future work will be more focused on data-driven
controller design for microgrid.
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The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality
and quantity objectives concerned. Its natural formulation is a constrainedmultiobjective optimization problem of complex expres-
sion since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential
evolution (DE) algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to
be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally
partitionedmulti-populationmechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex
method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process.
Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly
and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective
optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal
solution (TOPSIS), the satisfactory solution is obtained by using a decision-making method for multiple attributes.

1. Introduction

Grinding-classification is an important prerequisite process
for most mineral processing plants. The grinding process
reduces the particle size of raw ores and is usually followed by
classification to separate them into different sizes. Grinding-
classification operation is required to produce pulp with
suitable concentration and fineness for flotation. The pulp
quality will directly influence the subsequent flotation effi-
ciency and recovery of valuable metals from tailings. In order
to improve economic efficiency and energy consumption, the
process optimization objectives include product quality and
output yields. Under certain mineral source conditions, the
objectives are decided by a series of operation variables such
as the solid flow of feed ore to ball mill, the steel ball filling
rate, and the flow rates of water added to the first and the

second classifier recycles. To solve the optimization model
of products’ output and quality in the grinding-classification
process is of great significance to improve the technical
and economic specifications, and it has been a continuous
endeavor of the scientists and engineers [1–3].

Grinding-classification is an energy-intensive process
influenced bymany interacting factorswithmutual restraints.
The goals of grinding-classification optimization problem
are decided by multiple constrained input control variables
of nonlinear relationships. So, the optimization model of
grinding-classification operation is a complex constrained
multiobjective optimization problem (CMOP). Generally,
constrained multiobjective problems are so difficult to be
solved that the constraint handling techniques and multi-
objective optimization methods need to be combined for
optimization.
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Multiobjective optimization problems (MOPs), in the
case of traditional optimization methods, are often handled
by aggregating multiple objectives into a single scalar objec-
tive through weighting factors. MOPs have a set of equally
good (nondominating) solutions instead of a single one,
called a Pareto optimum which was introduced by Edge-
worth in 1881 [4] and later generalized by Pareto in 1896
[5]. The practical MOPs are often implicated in series of
equations, functions, or procedures with complicated con-
straints. Therefore, the evolutionary algorithms are attractive
approaches for low requirements onmathematical expression
[6]. Since the mid 1980s, there has been a growing interest
in solving MOPs using evolutionary approaches [7–10].
One of the most successful evolutionary algorithms for the
optimization of continuous space functions is the differential
evolution (DE) [11]. DE is simple and efficiently converges to
the global optimum in most cases [12, 13]. Its efficiency has
been proven [14] in many application fields such as pattern
recognition [15] and mechanical engineering [16].

There have been many improvements for DE to solve
MOPs. Abbass [17] firstly provided a Pareto DE (PDE) algo-
rithm for MOPs in which DE was employed to create new
solutions, and only the nondominated solutions were kept as
the basis for the next generation. Madavan [18] developed a
Pareto differential evolution approach (PDEA) in which new
solutions were created by DE and kept in an auxiliary popu-
lation. Xue et al. [19] introduced multiobjective differential
evolution (MODE) and used Pareto-based ranking assign-
ment and crowding distancemetric, but in a differentmanner
from PDEA. Robic and Filipi [20], also adopting Pareto-
based ranking assignment and crowding distance metric,
developed a DE for multiobjective optimization (DEMO)
with a different population update strategy and achieved
good results. Huang et al. [21] extended the self-adaptive DE
(SADE) to solve MOPs by a so called multiobjective self-
adaptive DE (MOSADE). They further extended MOSADE
by using objectivewise learning strategies [22]. Adeyemo and
Otieno [23] provided multiobjective differential evolution
algorithm (MDEA). In MDEA, a new solution was generated
by DE variant and compared with target solution. If it
dominates the target solution, then it was added to the new
population; otherwise, a target solution was added.

On the other hand, single-objective constrained opti-
mization problems have been studied intensively in the past
years [24–28]. Different constraint handling techniques have
been proposed to solve constrained optimization problems.
Michalewicz and Schoenauer [29] divided constraints han-
dling methods used in evolutionary algorithms into four
categories: preserving feasibility of solutions, penalty func-
tions, separating the feasible and infeasible solutions, and
hybrid methods. The differences among these methods are
how to deal with the infeasible individuals throughout the
search phases. Currently, the penalty functionmethod ismost
widely used, and this algorithm strongly depends on the
choice of the penalty parameter.

Although the multiobjective optimization and the con-
straint handling problem have received lots of contribution,
respectively, the CMOPs are still difficult to be solved in
practice. Coello and Christiansen [30] proposed a simple

approach to solve CMOPs by ignoring any solution that vio-
lates any of the assigned constraints. Deb et al. [8] proposed
a constrained multiobjective algorithm based on the concept
of constrained domination, which is also known as superi-
ority of the feasible solution. Woldesenbet et al. [31] intro-
duced a constraint handling technique based on adaptive
penalty functions and distance measures by extending the
corresponding version for the single-objective constrained
optimization.

In the MOP of grinding and classification process, the
definitions of Pareto solutions, Pareto frontier, and Pareto
dominance are in consistency with the classic definitions.
Clearly, the Pareto frontier is amapping of the Pareto-optimal
solutions to the objective space. In the minimization sense,
general constrained MOPs can be formulated as follows

min 𝐹 (𝑋) = min [𝑓
1
(𝑋) , 𝑓

2
(𝑋) , . . . , 𝑓

𝑟
(𝑋)] ,

s.t. 𝑔
𝑖
(𝑋) ≤ 0 (𝑖 = 1, 2, . . . , 𝑝) ,

ℎ
𝑗
(𝑋) = 0 (𝑗 = 𝑝 + 1, . . . , 𝑞) ,

𝑥
𝑘
∈ [𝑥
𝑘min, 𝑥𝑘max] (𝑘 = 1, 2, . . . , 𝑛) ,

(1)

where 𝐹(𝑋) is the objective vector, 𝑋 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 is

a parameter vector, 𝑔
𝑖
(𝑋) is the 𝑖th inequality constraint,

and ℎ
𝑗
(𝑋) is the 𝑗th equality constraint. 𝑥

𝑘min and 𝑥
𝑘max

are, respectively, the lower and upper bounds of the decision
variable 𝑥

𝑘
.

In this paper, based on the specific industrial background
of continuous bauxite grinding-classification operation, a
new hybrid DE algorithm is proposed to solve complex con-
strained multiobjective optimization problems. Firstly, a
hybrid DE algorithm for MOPs with simplex method (SM-
DEMO) is designed to overcome the problems of global
performance degradation and being trapped in local opti-
mum. Then, for the MOPs with complicated constraints, the
proposed algorithm is formed by combining SM-DEMO and
functional partitioned multi-population. In this method, the
construction of penalty functions is not required, and the
meaningful infeasible solutions are fully utilized.

The remainder of the paper is structured as follows.
Section 2 describes the SM-DEMO algorithm for uncon-
strained cases. The proposed algorithm of multipopulation
for constrained MOPs is given in Section 3 with verification
of performance by benchmark testing results. Section 4
describes the model of products’ output and quality in the
grinding-classification process in detail and the application
of the proposed algorithm in the optimizationmodel. Finally,
the conclusions based on the present study are drawn in
Section 5.

2. SM-DEMO Algorithm for
Unconstrained MOPs

In order to efficiently solve multiobjective optimization
problem and find the approximately complete and nearop-
timal Pareto frontier, we proposed a hybrid DE algorithm
for unconstrained multiobjective optimization with simplex
method.

The differential evolution, with initialization, crossover,
and selection as in usual genetic algorithms, uses a pertur-
bation of two members as the mutation operator to produce
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a new individual.Themutation operator of the DE algorithm
is described as follows.

Considering each target individual 𝑥𝐺
𝑖
, in the 𝐺th gener-

ation of size𝑁𝑝, a mutant individual 𝑥𝐺+1
𝑖

is defined by

𝑥
𝐺+1

𝑖
= 𝑥
𝐺

𝑟3
+ 𝐹 (𝑥

𝐺

𝑟1
− 𝑥
𝐺

𝑟2
) , (2)

where indexes 𝑟
1
, 𝑟
2
, and 𝑟

3
represent mutually different

integers that are different from 𝑖 and that are randomly
generated over [1,𝑁𝑝], and 𝐹 is the scaling factor.

The simplex method, proposed by Spendley, Hext, and
Himsworth and later refined by Nelder andMead (NM) [32],
is a derivative-free line-search method that is particularly
designed for traditional unconstrained minimization scenar-
ios. Clearly, NM method can be deemed as a direct line-
search method of the steepest descent kind. The ingredients
of the replacement process consist of four basic operations:
reflection, expansion, contraction, and shrinkage. Through
these operations, the simplex can improve itself and approxi-
mate to a local optimum point sequentially. Furthermore, the
simplex can vary its shape, size, and orientation to adapt itself
to the local contour of the objective function.

2.1. Main Strategy of SM-DEMO. The SM-DEMO algorithm
is improved by the following three points compared with DE.

2.1.1. Modified Selection Operation. After traditional DE evo-
lution, the individual 𝑢𝐺+1

𝑖𝑗
may violate the boundary con-

straints 𝑥max
𝑖𝑗

and 𝑥
min
𝑖𝑗

. 𝑢𝐺+1
𝑖𝑗

is replaced by new individual
𝑤
𝐺+1

𝑖𝑗
being adjusted as follows:

𝑤
𝐺+1

𝑖𝑗

=

{{

{{

{

𝑥
max
𝑖𝑗

+ rand () ∗ (𝑥max
𝑖𝑗

− 𝑢
𝐺+1

𝑖𝑗
) , if (𝑢𝐺+1

𝑖𝑗
> 𝑥

max
𝑖𝑗

) ,

𝑥
min
𝑖𝑗

+ rand () ∗ (𝑥min
𝑖𝑗

− 𝑢
𝐺+1

𝑖𝑗
) , if (𝑢𝐺+1

𝑖𝑗
< 𝑥

min
𝑖𝑗

) ,

𝑢
𝐺+1

𝑖𝑗
, otherwise.

(3)

The new population is combined with the existing parent
population to form a new set 𝑀𝑔 of bigger size than 𝑁𝑝.
A nondominated ranking of 𝑀𝑔 is performed, and the 𝑁𝑝
best individuals are selected. This approach allows a global
nondomination checking between both the parent and the
new generation rather than only in the new generation as
is done in other approaches, whereas it requires additional
computational cost in sorting the combined.

2.1.2. Nondominated Ranking Based on Euclidean Distance.
The solutions within each nondominated frontier that reside
in the less crowded region in the frontier are assigned a higher
rank, as the NSGA-II algorithm [8] developed by Deb et al.
indicated. The crowding distance of the 𝑖th solution in its
frontier (marked with solid circles) is the average side length
of the cuboids (shown with a dashed box in Figure 1(a)).
The crowding-distance computation requires sorting the
population according to each objective function value in
ascending order of magnitude. As shown in Figure 1, 𝐴 and
𝐶 are two solutions near 𝐵 in the same rank, and 𝜎

0
(𝐵) is the

crowding distance of the𝐵th solution, traditionally calculated
as follows:

𝜎
0
(𝐵) =

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝐴) − 𝑓

𝑗
(𝐶)

󵄨󵄨󵄨󵄨󵄨
, (4)

where 𝑓
𝑗
(𝐴), 𝑓

𝑗
(𝐶) are the objective vectors. For each

objective function, the boundary solutions (solutions with
the smallest and the largest function values) are assigned an
infinite distance value.

A crowding-distance metric is used to estimate the
density of solutions surrounding a particular solution in the
population and is obtained from the average distance of the
two solutions on either side of the solution along each of the
objectives. As shown in Figure 1,𝐴,𝐵,𝐶 are the individuals of
the generation on the same frontier, and we easily know that
the density in Figure 1(a) is better than that in Figure 1(b). If
we use (4) to calculate the crowding distance of 𝐶, we only
know that in Figure 1(a) it is better than in Figure 1(b); the
crowding distance of𝐶 in Figures 1(a) and 1(c) is equal, which
is against the knowledge.

To distinguish the mentioned situations, we propose
an improved crowding-distance metric based on Euclidean
distance. 𝑀 is the center point of the line 𝐴𝐵, 𝑓

𝑗
is the 𝑗th

objective vector, and the crowding distance 𝜎(𝐵) is defined as
follows:

𝜎 (𝐵) = |𝐴𝐶| − |𝐵𝑀|

= √

𝑛

∑

𝑗=1

[𝑓
𝑗
(𝐴) − 𝑓

𝑗
(𝐶)]
2

− √

𝑛

∑

𝑗=1

{𝑓
𝑗
(𝐵) −

[𝑓
𝑗
(𝐴) + 𝑓

𝑗
(𝐶)]

2
}

2

.

(5)

The crowded-comparison operator guides the selection
process at the various stages of the algorithm toward a
uniformly distributed Pareto-optimal frontier. To carry out
the comparison, we assume that every individual in the
population has two attributes: (1) nondomination rank 𝑖rank
and (2) crowding distance 𝑖distance. Then, a partial order is
defined as 𝑖 ≺ 𝑗. If 𝑖 ≺ 𝑗, that is, between two solutions
with different nondomination ranks, we prefer the solution
with the lower (better) rank, namely, 𝑖rank ≺ 𝑗rank. Otherwise,
if both solutions belong to the same frontier, that is, 𝑖rank =

𝑗rank, then we prefer the solution that is located in a lesser
crowded region, that is, 𝑖distance ≻ 𝑗distance.

2.1.3. Simplex Method for Local Search. The simplex method
for local search is mixed in the evolution process to enhance
the searching strategy in the optimization process. The goal
of integrating NM simplex method [32] and DE is to enrich
the population diversity and avoid being trapped in local
minimum. We apply NM simplex method operator to the
present population when the number of iterations is greater
than a particular value (like 𝐺max/2). The individuals that
achieved the single extreme value in each objective function
aremarked as the initial vertex points of simplexmethod.The
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Figure 1: Crowding-distance diagram.

present population is updated according to simplex method
until the terminal conditions are satisfied.

The computation steps of the algorithm are included in
Section 3.2.

2.2. Evaluation Criteria. Unlike the single-objective opti-
mization, it is more complicated for solution quality eval-
uation in the case of multiobjective optimization. Many of
the suggested methods can be summarized in two types.
One is to evaluate the convergence degree by computing the
proximity between the solution frontier and the actual Pareto
frontier. The other is to evaluate the distribution degree of
the solutions in objective space by computing the distances
among the individuals. Here, we choose both methods to
evaluate the performance of the SM-DEMO algorithm.

(1) Convergence Evaluation. Deb et al. [8] proposed this
method in 2002. It is described as follows:

𝛾 =
1

𝑄
(

𝑄

∑

𝑖=1

min 󵄩󵄩󵄩󵄩𝑃
∗

− 𝑃FT
󵄩󵄩󵄩󵄩) , (6)

where 𝛾 is the extent of convergence to a known of Pareto-
optimal set, 𝑃∗ is the obtained nondomination Pareto fron-
tier, 𝑃FT is the real nondomination Pareto frontier, ‖𝑃∗ −𝑃FT‖
is the Euclidean distance of 𝑃∗ with 𝑃FT, and𝑄 is the number
of obtained solutions.

(2) Distribution Degree Evaluation.Thenonuniformity in the
distribution is measured by SP as follows:

SP = √ 1

(𝑄 − 1)

𝑄

∑

𝑖=1

(𝑑 − 𝑑
𝑖
)
2

, (7)

where 𝑑
𝑖
is the Euclidean distance among consecutive solu-

tions in the obtained nondominated set of solutions and
parameter 𝑑 is the average distance.

2.3. Experimental Studies. Four well-known benchmark test
functions [33] are used here to compare the performance of
SM-DEMO with NSGA-II, DEMO/Parent. These four prob-
lems are called ZDT2, ZDT3, ZDT4, and ZDT6; each has two
objective functions. We describe them in Table 1.
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Table 1: Test problems.

Test problems Objective functions
min𝐹(𝑋) = min[𝑓

1
(𝑋), 𝑓

2
(𝑋)]

Range of variable

ZDT2
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(𝑋)(1 − (

𝑓
1

𝑔(𝑋)
)

2

) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

𝑛 − 1

𝑛 = 30

0 ≤ 𝑥
𝑖
≤ 1

ZDT3
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(1 − √(

𝑓
1

𝑔
) − (

𝑓
1

𝑔
) sin (10𝜋𝑓

1
)) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

𝑛 − 1

𝑛 = 30

0 ≤ 𝑥
𝑖
≤ 1

ZDT4
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(1 − √(

𝑓
1

𝑔
)) ,

𝑔 (𝑋) = 1 + 10 (𝑛 − 1) +

𝑛

∑

𝑖=2

(𝑥
2

𝑖
− 10 cos (4𝜋𝑥

𝑖
))

𝑛 = 10

0 ≤ 𝑥
1
≤ 1

−5 ≤ 𝑥
𝑖
≤ 5, 𝑖 = 2, . . . , 𝑛

ZDT6
𝑓
1
(𝑋) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
) , 𝑓
2
(𝑋) = 𝑔(1 − (

𝑓
1

𝑔
)

2

) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

(𝑛 − 1)
0.25

𝑛 = 10

0 ≤ 𝑥
𝑖
≤ 1

Table 2: The performance results of the each algorithm on the test function.

Test function Algorithm 𝛾 SP

ZDT2
DEMO/Parent 0.005120 ± 0.000312 0.000630 ± 0.000010

NSGA-2 0.007120 ± 0.000413 0.000540 ± 0.000940

SM-DEMO 0.004013 ± 0.000230 0.000423 ± 0.000011

ZDT3
DEMO/Parent 0.009704 ± 0.000027 0.007512 ± 0.000165

NSGA-2 0.014067 ± 0.000059 0.006540 ± 0.000124

SM-DEMO 0.004704 ± 0.000003 0.004450 ± 0.000153

ZDT4
DEMO/Parent 2.009704 ± 0.901164 0.011031 ± 0.001104

NSGA-2 3.144067 ± 2.100740 0.010122 ± 0.000072

SM-DEMO 0.874001 ± 0.014323 0.008721 ± 0.000159

ZDT6
DEMO/Parent 0.649704 ± 0.004912 0.104520 ± 0.015486

NSGA-2 1.014067 ± 0.010421 0.007942 ± 0.000105

SM-DEMO 0.007750 ± 0.000083 0.002014 ± 0.000117

The simulation is carried out under the environment of
Intel Pentium 4, CPU 3.06GHz, 512MB memory, Windows
XP Professional, Matlab7.1. Initialization parameters are set
as follows: population size𝑁𝑝 = 100, scaling factor 𝐹 = 0.8,
cross rate 𝐶

𝑅
= 0.6, maximum evolution generation 𝐺max =

250, and number of SM evolution iterations 𝐺SM = 100.
All of the three algorithms are real coded, with equal

population size and equal maximum evolution generation.
Each algorithm independently runs 20 times for each test
function. Because we cannot get the real Pareto-optimal set,
wewill take 60 Pareto-optimal solutions obtained by the three
algorithms as a true Pareto-optimal solution set.

We evaluated the algorithms based on the two perfor-
mance indexes 𝛾 and SP. Table 2 shows themean and variance
of 𝛾 and SP using three algorithms: SM-DEMO, NSGA-
II, and DEMO/Parent. We can learn from Table 2, for the
ZDT2 function, that all of the three algorithms have a good

performance, while the SM-DEMO is slightly better than the
other two algorithms. In terms of convergences, for ZDT3,
ZDT4 and ZDT6, which are more complex than ZDT2, SM-
DEMO is significantly better thanDEMO/Parent andNSGA-
II.

Figure 2 shows a random running of SM-DEMO algo-
rithm. It is clear that SM-DEMO algorithm can produce a
good approximation and a uniform distribution.

3. Proposed Hybrid Algorithm for CMOP

The space of constrained multiobjective optimization prob-
lem can be divided into the feasible solution space and the
infeasible solution space, as shown in Figure 3, where 𝑆 is
the search space, Ω is the feasible solution space, and 𝑍 is
the infeasible solution space. 𝑥

𝑖
(𝑖 = 1, 2, 3, 4) is the feasible

solution, and 𝑦
𝑖
(𝑖 = 1, 2, 3, 4) is the infeasible solution.
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Figure 2: SM-DEMO simulation curve.

Assume that 𝑥∗ is the global optimal solution and 𝑦
1
is

the closest one to 𝑥∗. If the infeasible population 𝑦
1
is not

excluded by the evolution algorithm, it is permitted to explore
boundary regions from new directions, where the optimum
is likely to be found.

3.1. General Idea of the Proposed Algorithm. Researchers
have gradually realized the merit of infeasible solutions in
searching for the global optimum in the feasible region. Some
infeasible solutions with better performance are allowed to be
saved. Farmani et al. [34] formulated a method to ensure that
infeasible solutions with a slight violation become feasible in
evolution. Based on the constraints processing approach of
multiobjective optimization problems, the proposed hybrid
DE algorithm avoids constructing penalty function and
deleting meaningful infeasible solutions directly.

Here, the proposed algorithm will produce multiple
groups of functional partitions, which include an evolution-
ary population 𝑃𝑔 of size 𝑁𝑝, an intermediate population
𝑀𝑔 to save feasible individuals, an intermediate population
𝑆𝑔 to save infeasible individuals, a population 𝑃𝑓 to save the
optimal feasible solution found in the search process and a
population 𝑃𝑐 to save the optimal infeasible solution. The
relationship of multi-population is shown in Figure 4.

With the description of (1), equality constraints are always
transformed into inequality constraints as |ℎ

𝑗
(𝑋)| − 𝛿 ≤ 0,

where 𝑗 = 𝑝 + 1, . . . , 𝑞 and 𝛿 is a positive tolerance value.
To evaluate the infeasible solution, the degree of constraint
violation of individual 𝑋 on the 𝑗th constraint is calculated
as follows:

𝑉
𝑖
(𝑋) = {

max {0, 𝑔
𝑖
(𝑋)} (𝑖 = 1, 2, . . . , 𝑝) ,

max {0, 󵄨󵄨󵄨󵄨󵄨ℎ𝑗 (𝑋)
󵄨󵄨󵄨󵄨󵄨
− 𝛿} (𝑗 = 𝑝 + 1, . . . , 𝑞) .

(8)
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The final constraint violation of each individual in the
population can be obtained by calculating the mean of the
normalized constraint violations.

In order to take advantage of the infeasible solutions
with better performance, we proposed the following adaptive
differential mutation operator to generate individual varia-
tion learning from the mutation operators in DE/rand-to-
best/1/bin, according to rules defined by Price et al. [11].
Considering each individual vector 𝑥𝐺

𝑖
, a mutant individual

𝑥
𝐺+1

𝑖
is defined by

𝑥
𝐺+1

𝑖

= {
𝑥
𝐺

𝑖
+ 𝐹
1
⋅ (𝑥
𝐺

𝑓1
− 𝑥
𝐺

𝑟1
)+ 𝐹
2
⋅ (𝑥
𝐺

𝑓2
− 𝑥
𝐺

𝑟2
) , 𝑅

𝐶
≥ rand ( ) ,

𝑥
𝐺

𝑖
+ 𝐹
1
⋅ (𝑦
𝐺

𝑖
− 𝑥
𝐺

𝑟1
)+ 𝐹
2
⋅ (𝑥
𝐺

𝑓1
− 𝑥
𝐺

𝑟2
) , 𝑅

𝐶
< rand ( ) ,

(9)

where 𝑟
1
and 𝑟
2
represent different integers and also different

from 𝑖, randomly generated over [1,𝑁𝑝]; 𝐹 is the scaling
factor; 𝑥𝐺

𝑓𝑖
(𝑖 = 1, 2, . . . , 𝑛) is randomly generated from 𝑃𝑓,

𝑦
𝐺

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is randomly generated from 𝑃𝑐; and 𝑅

𝐶
is

the mutation factor as follows:

𝑅
𝐶
= 𝑅𝑐
0
⋅
𝛾
𝐺

+ const
𝛾𝐺−1 + const

, (10)

where 𝑅𝑐
0
is the initial value of the variability factor, const is

a small constant, to ensure that the fractional is meaningful,
and 𝛾𝐺 is defined as follows:

𝛾
𝐺

=
the number of infeasible solutions in 𝑃𝑔

𝑁𝑝
. (11)

3.2. Framework of the Proposed Algorithm. The proposed
algorithm is described as follows.

Step 1 (initialization). Generate the population 𝑃𝑔, 𝑃𝑓, and
𝑃𝑐 of size 𝑁𝑝, 𝑁𝑃

1
, and 𝑁𝑃

2
. Set the value of 𝐶

𝑅
(crossover

probability),𝐺max (the number of function evaluations),𝐺SM
(the iterative number of evolution by NM simplex method),
𝑔 = 1 (the current generation number), and positive control
parameter for scaling the difference vectors 𝐹

1
, 𝐹
2
. Randomly

generate the parent population 𝑃𝑔 from the decision space.
Set the 𝑃𝑓, and 𝑃𝑐, and let the intermediate populations 𝑆𝑔
and𝑀𝑔 be empty.

Step 2 (DE reproduction). By (3) and (9) for mutation,
crossover, and selection, an offspring 𝑆𝑔 is created. Judge the
constraints of all individuals in 𝑃𝑔. In accordance with (8),
we first calculate constraint violation degree 𝑉

𝑖
(𝑋) of all of

the individuals. If 𝑉
𝑖
(𝑋) = 0, the solution is feasible and

preserved to the intermediate set 𝑀𝑔; if 𝑉
𝑖
(𝑋) > 0, the

solution is infeasible and preserved to the intermediate set 𝑆𝑔.

Step 3 (simplex method). Apply NM simplex method oper-
ator to the present population if 𝑔 ≥ 𝐺max/2. Update
the present population 𝑀𝑔 when the number of iterations
exceeds maximum iterations.

Step 4 (𝑃𝑓 construction). Rank chromosomes in 𝑀𝑔 based
on (5), and generate the elitist population 𝑃𝑓 (the size is𝑁𝑝)
from the ranked population𝑀𝑔.

Step 5 (𝑃𝑐 construction). Add the chromosomes in 𝑆𝑔 with
slight constraint violations to the 𝑃𝑐.

Step 6 (mixing the population). Combine 𝑆𝑔with the existing
parent population to form a new set𝑀𝑔. Remove the dupli-
cate individuals in𝑀𝑔 and the existing parent population.

Step 7 (evolution). Randomly choose chromosomes from
𝑃𝑐, 𝑃𝑔, and 𝑃𝑓. Use the adaptive differential mutation and
uniform discrete crossover to obtain the offspring population
𝑃𝑔 + 1.

Step 8 (termination). If the stopping criterion ismet, stop and
output the best solution; else, go to Step 2.

3.3. Experimental Study. In this section, we choose three
problems CTP, TNK, and BNH, as shown in Table 3, to test
the proposed method, and compare the method with the
current CNSGA-II [35].
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Table 3: Test functions.

Test
function

Objective function
min𝐹(𝑋) = min[𝑓

1
(𝑋), 𝑓

2
(𝑋)]

Constraints Range of
variable

CTP

𝑓
1
(𝑋) = 𝑥

1
,

𝑓
2
(𝑋) = exp(−

𝑓
1
(𝑋)

𝑐 (𝑋)
)

×{41 +

5

∑

𝑖=2

[𝑥
𝑖

2

− 10 cos (2𝜋𝑥
𝑖
)]}

𝑔
1
(𝑋) = cos (𝜃) (𝑓

2
(𝑋) − 𝑒) − sin (𝜃) 𝑓

1
(𝑋) ,

𝑔
2
(𝑋) = 𝑎

󵄨󵄨󵄨󵄨sin {𝑏𝜋 [sin (𝜃) (𝑓2 (𝑋) − 𝑒)
+ cos (𝜃) 𝑓

1
(𝑋)]
𝑐

}
󵄨󵄨󵄨󵄨󵄨

𝑑

,

𝑔
1
(𝑋) ≥ 𝑔

2
(𝑋)

0 ≤ 𝑥
1
≤ 1

−5 ≤ 𝑥
𝑖
≤ 5

𝑖 = 2, 3, 4, 5

BNH
𝑓
1
(𝑋) = 4𝑥

1

2

+ 4𝑥
2

2

,

𝑓
2
(𝑋) = (𝑥

1
− 5)
2

+ (𝑥
2
− 5)
2

𝑔
1
(𝑋) = (𝑥

1
− 5)
2

+ 𝑥
2

2

− 25,

𝑔
2
(𝑋) = −(𝑥

1
− 8)
2

+ (𝑥
2
+ 3) + 7.7,

𝑔
1
(𝑋) ≤ 0, 𝑔

2
(𝑋) ≤ 0

0 ≤ 𝑥
1
≤ 5

0 ≤ 𝑥
2
≤ 3

TNK
𝑓
1
(𝑋) = 𝑥

1
,

𝑓
2
(𝑋) = 𝑥

2

𝑔
1
(𝑋) = −𝑥

1

2

− 𝑥
2

2

+ 1

+0.1 cos(16 arctan(𝑥1
𝑥
2

)) ,

𝑔
2
(𝑋) = (𝑥

1
− 0.5)

2

+ (𝑥
2
− 0.5) ,

𝑔
1
(𝑋) ≤ 0, 𝑔

2
(𝑋) − 0.5 ≤ 0

0 ≤ 𝑥
𝑖
≤ 𝜋

𝑖 = 1, 2
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Figure 5: CTP solution space.

For CTP problem, there are the six parameters 𝜃, 𝑎, 𝑏, 𝑐,
𝑑, and 𝑒 that must be chosen in a way so that a portion of
the unconstrained Pareto-optimal region is infeasible. Each
constraint is an implicit non-linear function of decision
variables. Thus, it may be difficult to find a number of
solutions on a non-linear constraint boundary. We take two
sets of values for six parameters in CTP problem, which are
determined as (1) CTP1: 𝜃 = 0.1𝜋, 𝑎 = 40, 𝑏 = 0.5, 𝑐 = 1,
𝑑 = 2, and 𝑒 = −2; (2) CTP2: 𝜃 = −0.2𝜋, 𝑎 = 0.2, 𝑏 = 10,
𝑐 = 1, 𝑑 = 6, and 𝑒 = 1. The Pareto frontiers, the feasible
solution spaces, and the infeasible solution spaces are shown
in Figure 5.

The parameters are initialized as follows.The size of pop-
ulation 𝑃𝑔 is𝑁𝑝 = 200, size of 𝑃𝑓 is𝑁𝑃

1
= 150, size of 𝑃𝑐 is

𝑁𝑃
2
= 10, scaling factors 𝐹

1
and 𝐹

2
are randomly generated

within [0.5, 1], cross rate is 𝐶
𝑅
= 0.6, maximum evolution

generation is 𝐺max = 300, and number of SM evolution
iterations is 𝐺SM = 100. All of the proposed algorithms
and CNSGA-II are real coded with equal population size and
equal maximum evolution generation. Each algorithm runs
20 times independently for each test function.

Figure 6 shows the result of a random running of the
proposed algorithm and NSGA-II, the smooth curve “—”
represents the Pareto frontier, and “X” stands for the solution
achieved by the proposed algorithm or NSGA-II.

It is obvious that the proposed algorithm returns a
better approximation to the true Pareto-optimal frontie and
a distribution of higher uniformity. We also evaluated the
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Table 4: The comparison of performance.

Test function Algorithm 𝛾 SP

CTP1 CNSGA-Π 0.021317 ± 0.000323 0.873321 ± 0.08725

The proposed 0.009836 ± 0.000410 0.567933 ± 0.01845

CTP2 CNSGA-Π 0.011120 ± 0.000753 0.78314 ± 0.02843

The proposed 0.007013 ± 0.000554 0.296543 ± 0.00453

BNH CNSGA-Π 0.014947 ± 0.000632 0.336941 ± 0.00917

The proposed 0.013766 ± 0.000043 0.209321 ± 0.00561

TNK CNSGA-Π 0.013235 ± 0.000740 0.464542 ± 0.00730

The proposed 0.006435 ± 0.000017 0.224560 ± 0.00159
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water
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First

classifier
recycle First-

overflow Spiral classifier 2#
Second-stage 

to flotationSpiral classifier 1# Second classifier recycle
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stage
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Figure 7: Flow diagram of the grinding and classification process.

algorithms based on the two criterions 𝛾 and SP, as shown
in Table 4. It can be observed from the data in Table 4
that the proposed algorithm performs significantly better
than the classical CNSGA-II algorithm in convergence and
distribution uniformity.The simulation results show that this
algorithm can accurately converge to global Pareto solutions
and can maintain diversity of population.

4. Optimization of Grinding and
Classification Process

4.1. Bauxite Grinding and Classification Process. Thegrinding
and classification process is the key preparation for the
bauxite mineral processing. Here, we consider a bauxite
grinding process in a certain mineral company with single
grinding and two-stage classification, as shown in Figure 7.

The process consists in a grinding ball mill and two
spiral classifiers. First classifier recycle will be put back to
the ball mill for regrinding, and the first-stage overflow
will be put into second spiral classifier after being mixed
with water; the second classifier recycle will be prepared for
Bayer production as the rough concentrate, and the second-
stage overflow will be sent to the next flotation process.
The production objectives are composed of the production
yields, technically represented by the solid flow of feed ore
since the process is nonstorable, and the mineral processing
quality, represented by percentage of the small-size fractions
of mineral particles in the second-stage overflows.
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Table 5: Notations for the model of the grinding and classification
process.

Notation Description

𝑝
𝑖

Particle percentage of the 𝑖th size fraction in
the ball mill overflow

𝑓
𝑗

Particle percentage of the 𝑖th size fraction in
the Feed ore

𝐶 Rate of the first classifier recycle
𝐸𝑎
𝑖 The efficiency of the first spiral classifier

𝜏 Themean residence time
𝑃
1 The internal concentration in ball mill
𝑀MF The solid flow of feed ore
𝑊
1 The water addition of the first classifier recycle

𝑊
2 The classifier water addition

𝑏
𝑖𝑗 The breakage distribution function
𝑆
𝑖 The breakage rate function
𝑑
𝑖 The particle with the 𝑖th size

𝛼𝑐
𝑖

The particle percentage of the 𝑖th size in the
first classifier overflow

𝑑
𝑜 The unit size of the particle
𝑃
2 First-stage overflow
𝜙
𝐵 Ball filling rate

𝐴
𝑐
, 𝐵
𝑐

Parameters of the first-stage classifier overflow
size fraction distribution

𝐸𝑎
𝑖 The efficiency of the first spiral classifier

𝑑
50𝑐

The particle size fraction after correction
separation

𝑚 The separation accuracy
𝑘 The intermix index

𝐸𝑎
󸀠

min, 𝑑
󸀠

50𝑐
, 𝑚
󸀠

, 𝑘
󸀠 The corresponding key parameters to the
efficiency of the second spiral classifier

𝑎, 𝛼, 𝜇, Λ
Four key parameters to control the breakage
rate function

𝑑min, 𝑑max Theminimum and maximum particle sizes
𝐴MF, 𝐵MF Parameters of feed ore size fraction distribution

𝐹(𝑖)
The cumulative particle percentage less than
the 𝑖th size fraction in feed ore

𝛼𝑐
󸀠

𝑖

The particle percentage of the 𝑖th size fraction
in the second classifier overflow

𝐸𝑎
󸀠

𝑖
The efficiency of the second spiral classifier

4.2. Predictive Model of the Grinding and Classification Pro-
cess. Here, we establish the mathematical predictive model
of each unit process in the bauxite grinding and classification
process. The notations of the indexes, decision variables, and
parameters are listed in Table 5. These notations will be used
for the model of the grinding and classification process.

4.2.1. Ball Mill Circuit Model. Here, 𝑝
𝑖
is the particle per-

centage of 𝑖th size fraction in the ball mill overflow, 𝑓
𝑗
is the

particle percentage of 𝑖th size fraction in feed ore, rate of the
first classifier recycle 𝐶 is known, and 𝐸𝑎

𝑖
is the efficiency of

the first spiral classifier. According to a technical report of
field investigation and study, we have that

𝑝
𝑖
(1 + 𝐶) =

𝑑
𝑖𝑖
𝑓
𝑖
+ ∑
𝑖−1

𝑗=1,𝑖>1
𝑑
𝑖𝑗
[𝐸𝑎
𝑖
𝑝
𝑗
(1 + 𝐶) + 𝑓

𝑗
]

1 − 𝑑
𝑖𝑖
𝐸𝑎
𝑖

,

𝑑
𝑖𝑗
=

{{{

{{{

{

𝑒
𝑗
, 𝑖 = 𝑗,

𝑖−1

∑

𝑘=𝑗

𝑐
𝑖𝑘
𝑐
𝑗𝑘
(𝑒
𝑘
− 𝑒
𝑖
) , 𝑖 > 𝑗,

𝑐
𝑖𝑗
=

{{{{{{{{

{{{{{{{{

{

−

𝑗−1

∑

𝑘=𝑖

𝑐
𝑖𝑘
𝑐
𝑗𝑘
, 𝑖 < 𝑗,

1, 𝑖 = 𝑗,

1

𝑆
𝑖
− 𝑆
𝑗

𝑖−1

∑

𝑘=𝑗

𝑆
𝑘
𝑏
𝑖𝑘
𝑐
𝑘𝑗
, 𝑖 > 𝑗,

𝑒
𝑗
=

1

(1 + 0.5 ⋅ 𝜏𝑆
𝑗
) (1 + 0.25 ⋅ 𝜏𝑆

𝑗
)
2
, 𝜏 =

8𝑃
1

𝑀MF
, (12)

where 𝜏 is the mean residence time of minerals, 𝑃
1
is the

internal concentration in ball mill, and

𝑃
1
=

𝑀MF (1 + 𝐶)

𝑀MF (1 + 𝐶) +𝑊1 + 0.3 (𝑊1 +𝑊2)
, (13)

where𝑀MF (𝑡/ℎ) is the solid flow of feed ore,𝑊
1
is the water

addition of the first classifier recycle, and𝑊
2
is the classifier

water addition. 𝑏
𝑖𝑗
is the breakage distribution function; 𝑆

𝑖

is the breakage rate function, and it satisfied the following
equation:

𝑆
𝑖
=

(𝑎(𝑑
𝑖
/𝑑
𝑜
)
𝛼

)

(1 + (𝑑
𝑖
/𝜇)
Λ

)

, (14)

where 𝑑
𝑖
is the particle with the 𝑖th size, 𝑑

𝑜
it is a unit, when

per millimeter is a unit, 𝑑
𝑜
= 1, 𝑑

𝑖
= 𝑖 (mm), and 𝑎, 𝛼, 𝜇,

and Λ are four key parameters to control the breakage rate
function.

In a concrete grinding and classification process, the ball
mill size is fixed, and the speed of ball mill is constant.
Through data acquisition and testing of grinding and clas-
sification steady-state loop, the regression model between 𝑎,
𝛼, 𝜇, Λ and condition variables, size fraction distribution
can be established. The input variables are ball filling rate
𝜙
𝐵
, solid flow of feed ore 𝑀MF, water addition of the first

classifier recycle𝑊
1
, and parameters of feed ore size fraction

distribution 𝐴MF, 𝐵MF. The regression model is

[𝑎 𝛼 𝜇 Λ]
𝑇

=
[
[

[

𝑥
11

⋅ ⋅ ⋅ 𝑥
1𝑗

... d
...

𝑥
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑖𝑗

]
]

]

⋅ [𝑊
1
𝜙
𝐵
𝐴MF 𝐵MF 𝑀MF]

𝑇

.

(15)

The value of 𝑥
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, . . . , 5) can be

obtained by the experimental data regression, 𝐴MF, 𝐵MF can
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be obtained from feed ore size fraction distribution, and 𝐹(𝑖)
is the cumulative particle percentage less than the 𝑖th size
fraction in feed ore, and it is represented as follows:

𝐹 (𝑖) = 1 − exp (−𝐴MF𝑑
𝐵MF
𝑖

) . (16)

4.2.2. Spiral Classifier Model. 𝛼𝑐
𝑖
is the particle percentage

of the 𝑖th size fraction in the first classifier overflow, and 𝑝
𝑖

is the particle percentage of the 𝑖th size fraction in ball mill
overflow. The spiral classifier model is as follows:

𝛼𝑐
𝑖
=

𝑝
𝑖
× (1 − 𝐸𝑎

𝑖
)

∑
𝑖=1

(𝑝
𝑖
× (1 − 𝐸𝑎

𝑖
))
× 100%, (17)

where 𝐸𝑎
𝑖
is the efficiency of the first spiral classifier and the

mechanism formula of 𝐸𝑎
𝑖
is shown as follows:

𝐸𝑎
𝑖
= 1 − exp [−0.693(

𝑑
𝑖
− 𝑑min

𝑑
50𝑐

− 𝑑min
)

𝑚

]

+ 𝐸𝑎min ⋅ [1 − (
𝑑
𝑖
− 𝑑min
𝑑max

)]

𝑘

,

(18)

where 𝑑
𝑖
is the particle with the 𝑖th size, 𝑑min and 𝑑max

represent maximum and minimum particle sizes, 𝑑
50𝑐

is
the particle size fraction after correction separation, 𝑚 is
separation accuracy, and 𝑘 is intermix index.

Through data acquisition and testing of grinding and
classification steady-state loop, the regressionmodel between
classification parameters and condition variables, size frac-
tion distribution can be established. The input variables
include the solid flow of feed ore 𝑀MF, the classifier water
addition 𝑊

2
, and the parameters of ball mill overflow size

fraction distribution 𝐴MF, 𝐵MF. The regression model is
shown as follows:

[𝐸𝑎min 𝑑
50𝑐

𝑚 𝑘]
𝑇

=
[
[

[

𝑦
11

⋅ ⋅ ⋅ 𝑦
1𝑗

... d
...

𝑦
𝑖1

⋅ ⋅ ⋅ 𝑦
𝑖𝑗

]
]

]

⋅ [𝑀MF 𝑊
2
𝐴MP 𝐵MP]

𝑇

,

(19)

where the value of 𝑦
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3, 4) can be

obtained by data regression.
The first-stage overflow 𝑃

2
calculation formula is as

follows:

𝑃
2
=

𝑀MF
(𝑀MF +𝑊1 +𝑊2)

. (20)

Similarly, we can get the second spiral classifier model as
follows:

𝛼𝑐
󸀠

𝑖
=

𝛼𝑐
𝑖
× (1 − 𝐸𝑎

󸀠

𝑖
)

∑
𝑖
(𝛼𝑐
𝑖
× (1 − 𝐸𝑎󸀠))

× 100%, (21)

where 𝛼𝑐󸀠
𝑖
is the particle percentage of the 𝑖th size fraction in

the second classifier overflow, 𝛼𝑐
𝑖
is the particle percentage

of the 𝑖th size fraction in the first classifier overflow, and

𝐸𝑎
󸀠

𝑖
is the efficiency of the second spiral classifier. The spiral

classifier model is as follows:

𝐸𝑎
󸀠

𝑖
= 1 − exp[

[

−0.693(
𝑑
󸀠

𝑖
− 𝑑
󸀠

min
𝑑
󸀠

50𝑐
− 𝑑
󸀠

min
)

𝑚
󸀠

]

]

+ 𝐸𝑎
󸀠

min ⋅ [1 − (
𝑑
󸀠

𝑖
− 𝑑
󸀠

min
𝑑󸀠max

)]

𝑘
󸀠

,

(22)

where, 𝐸𝑎󸀠min, 𝑑
󸀠

50𝑐
, 𝑚󸀠, and 𝑘

󸀠 are key parameters to the
efficiency of the second spiral classifier. Through data acqui-
sition and testing of grinding and classification steady-state
loop, the regression model between classification parameters
and condition variables, size fraction distribution can be
established. The input variables include solid flow of feed
ore𝑀MF and parameters of the first-stage classifier overflow
size fraction distribution 𝐴

𝑐
, 𝐵
𝑐
, which are solved by similar

equation to (20). The regression model is shown as follows:

[𝐸𝑎
󸀠

min 𝑑
󸀠

50𝑐
𝑚
󸀠

𝑘
󸀠

]
𝑇

=

[
[
[

[

𝑦
󸀠

11
⋅ ⋅ ⋅ 𝑦
󸀠

1𝑗

... d
...

𝑦
󸀠

𝑖1
⋅ ⋅ ⋅ 𝑦

󸀠

𝑖𝑗

]
]
]

]

⋅ [𝑀MF 𝐴
𝑐
𝐵
𝑐
]
𝑇

,

(23)

where the value of𝑦󸀠
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3) can be obtained

by experimental data regression.

4.3. Optimization Model of Grinding and Classification Pro-
cess. Two objective functions in the process are identified:
one is tomaximize output𝑓

1
(𝑋), and the other is tomaximize

the small-size fractions (less than 0.075mm fractions) in the
second-stage overflow 𝑓

2
(𝑋). It is also necessary to ensure

that the grinding productmeets all of other technical require-
ments and the least disturbance in the following flotation
circuit. As the constraints, the feed load of the grinding circuit
𝑀MF, the steel ball filling rate 𝜙

𝐵
, the first and the second

overflows 𝑃
1
and 𝑃

2
, and the particle percentage of fine size

fraction in the first and the second classifier overflows 𝛼𝑐
−0.075

and 𝛼𝑐󸀠
−0.075

should be within the user specified bounds.
The operation variables are the solid flow of feed ore

𝑀MF, water addition of the first classifier recycle 𝑊
1
, ball

filling rate 𝜙
𝐵
, and water addition of the second classifier𝑊

2
.

Based on all of the above, grinding and classification process
multiobjective optimization model is as follows:

max 𝐹 = max [𝑓
1
(𝑋) , 𝑓

2
(𝑋)] ,

𝑓
1
(𝑋) = 𝑀MF,

𝑓
2
(𝑋) = 𝛼𝑐

󸀠

−0.075

= 𝑓 (𝑀MF,𝑊1,𝑊2, 𝜙𝐵) ,

s.t. 𝑀MFmin ≤ 𝑀MF ≤ 𝑀MFmax,
𝜙
𝐵min ≤ 𝜙𝐵 ≤ 𝜙𝐵max,
𝑃
1min ≤ 𝑃1 ≤ 𝑃1max,
𝑃
2min ≤ 𝑃2 ≤ 𝑃2max,
𝛼𝑐
−0.075

≥ 𝛼𝑐min,

𝛼𝑐
󸀠

−0.075
≥ 𝛼𝑐
󸀠

min.

(24)
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Table 6: The optimization results calculated by the proposed algo-
rithm.

Number 𝑓
1
(𝑋) (t/h) 𝑓

2
(𝑋) (%)

1 92.972 90.814
2 91.810 91.900
3 92.360 90.923
4 90.620 93.460
5 91.310 92.494
6 90.170 93.800
7 89.390 95.200
8 89.480 94.932
9 91.530 92.400
10 89.298 95.763
11 89.824 94.549
12 89.800 94.395
13 89.710 94.618
14 91.170 92.800
15 91.880 91.840
16 92.190 91.281
17 89.870 94.090
18 91.000 93.285
19 91.960 91.520
20 91.124 93.221

85

87

89

91

93

95

97

74.000 79.000 84.000 94.000

Optimization results
The raw data 

f1(x)

f
2
(x
)

(%
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Figure 8: The comparison chart between optimization results and
industrial data.

In (24), 𝑓(𝑀MF,𝑊1,𝑊2, 𝜙𝐵) implicates the model of
grinding and classification represented by (12)–(23). The
proposed algorithm is applied to solve the problem, and the
optimization results are shown in Table 6.

With the practical process data from a grinding circuit
of a mineral plant, the simulation of this hybrid intelligent
method adopted the same parameters on the variation in
fresh slurry feed velocity, density, particle size distribution,
and cyclone feed operating configurations.

The comparison of production data and optimization
results in Table 6 is shown in Figure 8, where “X” repre-
sents the proposed algorithm optimization results and “I”
represents the original data collected from the field without
optimization of raw data. According to the objectives, the
data point closer to the upper right edge is more beneficial.
Obviously, the proposed optimization result is far better
than the original data, indicating the effectiveness of the
optimization approach.

4.4. TOPSIS Method for Solution Selection. The resolution of
amultiobjective optimization problemdoes not endwhen the
Pareto-optimal set is found. In practical operational prob-
lems, a single solution must be selected. TOPSIS [36] is a
useful technique in dealing with multiattribute or multicrite-
ria decision-making (MADM/MCDM) problems in the real
world. The standard TOPSIS method attempts to choose
alternatives that simultaneously have the shortest distance
from the positive-ideal solution and the farthest distance
from the negative-ideal solution. According to the TOPSIS
method, the relative closeness coefficient is calculated, and
the best solution in Table 6 is the solution number 10 as
𝑓
1
(𝑋) = 89.298 (𝑡/ℎ) and 𝑓

2
(𝑋) = 95.763 (%). The

corresponding decision variables are 𝑀MF = 89.298 (𝑡/ℎ),
𝜙
𝐵
= 32%,𝑊

1
= 75.127 (𝑡/ℎ), and𝑊

2
= 16.296 (𝑡/ℎ).

5. Conclusions

Promoted by the requirements of engineering optimization
in complex practical processes of grinding and classification,
we proposed a hybrid multiobjective differential evolution
algorithm with a few beneficial features integrated. Firstly, an
archiving mechanism for infeasible solutions is established
with functional partitioned multi-population, which aims to
direct the population to approach or land in the feasible
region from different directions during evolution. Secondly,
we propose an infeasible constraint violations function to
select infeasible population with better performance, so
that they are allowed to be saved and to participate in
the subsequent evolution. Thirdly, a nondominating ranking
strategy is designed to improve the crowding-distance sorting
and return uniform distribution of Pareto solutions. Finally,
the simplex method is inserted in the differential evolution
process to purposefully enrich the diversity without excessive
computation cost. The advantage of the proposed algorithm
is the exemption from constructing penalty function and
the preservation of meaningful infeasible solutions directly.
Simulation results on benchmarks indicate that the proposed
algorithm can converge quickly and effectively to the true
Pareto frontier with better distribution.

Based on the investigated information about grinding cir-
cuit process, we established a multiobjective optimal model
with equations frommechanism knowledge, parameters rec-
ognized by data regression, and constraints of technical
requirements. The nonlinear multiobjective optimization
model is too complicated to be solved by traditional gradient-
based algorithms.The proposed hybrid differential evolution
algorithm is applied and tested to achieve a Pareto solution
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set. It is proven to be valuable for operation decision making
in the industrial process and showed superiority to the oper-
ation carried out in the production. In fact, many operating
parameters in complex processes are highly coupled and
conflicting with each other. The optimal operation of the
entire production process is very difficult to obtain bymanual
calculation; let alone the fluctuation situation of process
conditions. The application case indicates that the proposed
method has good performance and is helpful to inspire
further research on evolutionary methods for engineering
optimization.
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A control strategy of permanent magnet synchronous motors (PMSMs), which is different from the traditional vector control
(VC) and direct torque control (DTC), is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model
and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor.
Secondly, the stator current orientation is used to build the controlmodel instead of rotor flux orientation.Then, the discrete current
control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on
the experiment platform of PMSM.The control precision is also verified through the experiment.

1. Introduction

The permanent magnet synchronous motors (PMSMs) have
become the popular AC motors and are used in various
situations for their advantages of high efficiency, power
factor, small size, and avoidance of exciting current. As servo
motors, PMSMs are usually controlled with two methods,
that is, vector control (VC) by flux orientation and direct
torque control (DTC).

VC was put forward in 1971 for asynchronous motor by
German engineer Blaschke [1], which was used in PMSM
soon afterwards. Generally, the theory is to keep the d compo-
nent of stator current being 0 in rotor flux reference frame and
the torque will be proportionate to the q component of stator
current which leads the constant rotor flux by 90∘. It is good
at torque responding and speed accuracy, but the decoupling
of flux and torque needs more focus to design regulator for
both. The robustness will be vulnerable [2].

DTC is proposed by Professor Depenbrock in 1985 [3],
which is used to directly control the flux and torque by select-
ing proper voltage vector.This method avoids the decoupling
and is simpler than VC, but the torque ripple cannot be
avoided which will weaken the dynamic characteristic [4, 5].

Both methods are based on rotor flux which needs to
be tested by an observer or to be controlled with other

variables [6, 7].This paper proposes a strategy based on stator
current frame and uses the discrete stator current to control
the motor. By using this strategy, the motor will run step
by step, and it not only reflects the simply structure and
large capacity of PMSM but also provides the advantages of
stepping motor such as digital control, discrete operation,
and nonaccumulating error. The proposed strategy is a novel
control method on PMSMs with simple control structure as
compared with the above two classical methods. The wide
application prospects and the deep research of it will promote
the development of drive technology.

2. Discretization of Circular Rotating
Magnetic Field

2.1. Stator Model of PMSM. In PMSM, distributed winding,
which is used in normal AC motor, is often coiled as shown
in Figure 1. Figure 1 shows two structures of 2-pole, 24-slot
single-layer 3-phase motor stator winding.

Despite the differences of poles number, slots number,
and the coiling form of the 3-phase AC motor, the physical
model of stator can be described as in Figure 1 for the
symmetry of the magnetic circuit and the magnetomotive
force (MMF) generated by powered winding. Figure 2 shows
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Figure 2: Simplified stator model of synchronic motor.

the distances of 2𝜏 about a pair of magnetic poles equivalent
to 360∘ of electrical angle. Every stator of 3-phase AC motor
can be analyzed with this model.

2.2. Circular Rotating Magnetic Field. When powering the
stator model with the 3-phase current as (1), setting the
positive direction from 𝑎 to 𝑥, 𝑏 to 𝑦, and 𝑐 to 𝑧, the 3-phase
MMF is generated which can be considered as sinusoidal
distribution in the stator when excluding space harmonics.
Then the MMF can be expressed as (2):

𝑖
𝑎
= 𝐼
𝑚
cos𝜔𝑡,

𝑖
𝑏
= 𝐼
𝑚
cos (𝜔𝑡 − 120∘) ,

𝑖
𝑐
= 𝐼
𝑚
cos (𝜔𝑡 + 120∘) ,

(1)

F
𝑎
(𝑡) = 0.5F

𝑎
(𝑒
𝑗𝜔𝑡

+ 𝑒
−𝑗𝜔𝑡

) ,

F
𝑏
(𝑡) = 0.5F

𝑏
(𝑒
𝑗𝜔𝑡

𝑒
−𝑗120

∘

+ 𝑒
−𝑗𝜔𝑡

𝑒
𝑗120
∘

) ,

F
𝑐
(𝑡) = 0.5F

𝑐
(𝑒
𝑗𝜔𝑡

𝑒
𝑗120
∘

+ 𝑒
−𝑗𝜔𝑡

𝑒
−𝑗120

∘

) .

(2)

F
𝑎
is an MMF vector generated by the maximum current

ofAphase, the direction ofwhich is assumed as the horizontal
axis of static frame. F

𝑎
(𝑡) is determined by 𝑖

𝑎
varied with time

𝑡. F
𝑏
and F

𝑐
are similar to F

𝑎
, which lead F

𝑎
by 120∘ and 240∘,

respectively; F
𝑏
(𝑡) and F

𝑐
(𝑡) are with the same meaning of

F
𝑎
(𝑡).
The composite MMF in the air gap will be expressed as

ΣF (𝑡) = F
𝑎
(𝑡) + F

𝑏
(𝑡) + F

𝑐
(𝑡) = 1.5F

𝑎
𝑒
𝑗𝜔𝑡

. (3)

It is a rotating MMF vector, of which the amplitude is 1.5
times of each phase. The electric angle of the MMF rotating
in the space corresponds to that of the current changing in
the winding, which is

𝜃 = 𝜔𝑡. (4)

When the current changes by a cycle, the rotating MMF
goes 2𝜏 distances in the air gap. The revolution per second is

𝑛
1
=

𝑓

𝑝
𝜏

, (5)

Where 𝑓 is the frequency of the stator current and 𝑝
𝜏
is the

number of pole pairs of the motor.



Journal of Applied Mathematics 3

O

ΣF(2)

ΣF(0)

ΣF(5)
ΣF(4)

ΣF(3)

ΣF(1)

1
a
,Re

Figure 3: Stepping MMF of three-phase winding as 𝑏
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= 6.

2.3. Discrete Magnetic Field and Positioning Torque. The
MMF F

𝑠
generated by stator is to drive the rotor MMF F

𝑟

to rotate synchronously.The electromagnetic toque 𝑇
𝑒
can be

described in terms of F
𝑠
and F

𝑟
:

𝑇
𝑒
∝
󵄨󵄨󵄨󵄨F𝑟 × F

𝑠

󵄨󵄨󵄨󵄨 = F
𝑟
F
𝑠
sin 𝜃. (6)

The 𝜃 is the angle form F
𝑟
to F
𝑠
. If F
𝑠
stops rotating at some

position and F
𝑟
coincides with it, 𝜃 = 0, the electromagnetic

toque will be equal to zero, which will be a positioning point.
If the motor is powered with the currents described in

𝑖
𝑎
(𝑘) = 𝐼

𝑚
cos 2𝜋

𝑏
𝐻

𝑘,

𝑖
𝑏
(𝑘) = 𝐼

𝑚
cos(2𝜋

𝑏
𝐻

𝑘 − 120
∘

) ,

𝑖
𝑐
(𝑘) = 𝐼

𝑚
cos(2𝜋

𝑏
𝐻

𝑘 + 120
∘

) ,

(7)

where 𝑏
𝐻
is the number of pulse distributor’s beats per cycle,

the composite MMF will stop at some point as the pulse
number 𝑘 which is a positive integer not to change. When
the next pulse emits, 𝑘 = 𝑘 + 1, the composite MMF will go
forward with a little angle just like a step. Then, the rotating
MMF in the last section is discretized into stepping MMF [8]
expressed in

ΣF (𝑘) = 1.5F
𝑎
𝑒
𝑗(2𝜋/𝑏𝐻)𝑘. (8)

An example as 𝑏
𝐻
= 6 will illustrate the stepping MMF

graphically.
Each MMF will generate a positioning point, and the

torque driving the rotor MMF to approach this point is
defined as positioning torque. Here, the angle is calculated
by electric angle; the actual step number 𝑏 per revolution and
the stepping angle 𝛼 are expressed as the following formula
with the number of pole pairs 𝑝

𝜏
:

𝑏 = 𝑝
𝜏
𝑏
𝐻
,

𝛼 =
360
∘

𝑏
=
360
∘

𝑝
𝜏
𝑏
𝐻

.

(9)
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Figure 4: Vector diagram of stator current orientation.

The stepping angle is determined by 𝑝
𝜏
and 𝑏

𝐻
. If one

wants to increase the stepping number per revolution, it
is better to increase 𝑏

𝐻
, since the number of pole pairs is

constrained by motor structure.

3. PMSM Model for Step Motion

3.1. Motor Model by Stator Current Orientation. Make the
angular speed of the rotating frame equal to that of stator
current vector in general frame of PMSM which is shown in
Figure 4 based on the 𝛼-𝛽 static frame. The rotating frame is
built by i

𝑠
, the horizontal axis coinciding with i

𝑠
is named 𝑑-

axis, and the vertical axis orthogonal to 𝑑-axis is 𝑞-axis.Then,
general frame becomes the 𝑑-𝑞 frame orientated by stator
current [9]. In the figure, the angle from 𝜓

𝑟
to i
𝑠
is assumed

as 𝜀, and 𝜃
𝑠
and 𝜃

𝑟
represent the angle form 𝛼-axis to i

𝑠
and

𝜓
𝑟
, respectively. 𝜔 is the angular speed of the rotating frame.
The two components of i

𝑠
in the frame, named 𝑖

𝑠𝑑
and 𝑖
𝑠𝑞
,

are expressed as

𝑖
𝑠𝑑
= 𝑖
𝑠
=
󵄨󵄨󵄨󵄨i𝑠
󵄨󵄨󵄨󵄨 ,

𝑖
𝑠𝑞
= 0.

(10)

According to the mathematical expression of PMSM on
rotating frame, the flux function can be rewritten as the
following equation:

𝜓
𝑠𝑑
= 𝐿
𝑑
𝑖
𝑠𝑑
+ 𝜓
𝑟𝑑
= 𝐿
𝑑
𝑖
𝑠
+ 𝜓
𝑟𝑑
,

𝜓
𝑠𝑞
= 𝐿
𝑞
𝑖
𝑠𝑞
+ 𝜓
𝑟𝑞
= 𝜓
𝑟𝑞
,

(11)

where 𝜓
𝑠𝑑

and 𝜓
𝑠𝑞

are 𝑑-𝑞 components of stator flux in
rotating frame, 𝜓

𝑟𝑑
and 𝜓

𝑟𝑞
are 𝑑-𝑞 components of rotor

flux, and 𝐿
𝑑
and 𝐿

𝑞
are 𝑑-𝑞 components of stator self-

inductance. The torque function can be expressed as the
following formula with (10) and (11):

𝑇
𝑒
= 𝑝
𝜏

󵄨󵄨󵄨󵄨𝜓𝑠 × i
𝑠

󵄨󵄨󵄨󵄨

= 𝑝
𝜏
𝜓
𝑠𝑑
𝑖
𝑠𝑞
− 𝑝
𝜏
𝜓
𝑠𝑞
𝑖
𝑠𝑑

= −𝑝
𝜏
𝜓
𝑟𝑞
𝑖
𝑠
.

(12)

Substituting sin(−𝜀) = 𝜓
𝑟𝑞
/𝜓
𝑟
into (12), the electromag-

netic torque function can be rewritten as
𝑇
𝑒
= 𝑝
𝜏
𝑖
𝑠
𝜓
𝑟
sin 𝜀. (13)
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𝜀 is also defined as torque angle; when it is greater than
zero, with 𝜓

𝑟
being drawn by i

𝑠
, the electromagnetic torque is

positive.

3.2. Structure of the Control System. Unlike the VC and DTC,
in this controlmethod,magnitude and phase of stator current
are regulated dynamically for best torque responding, instead
of keeping the amplitude of stator current and rotor flux
or maintaining the angle 𝜀 between the current and the
flux equal to 90∘. Because the rotor flux is unchanged, the
regulable variables of the control system are no other than
the magnitude of stator current |𝑖

𝑠
| and the angle 𝜀.

The structure ofmotor control system can be simplified as
shown in Figure 5 which includes an inner loop and an outer
loop.

The outer loop is the only one closed loop to control
the speed or position. In the loop, the input is the rotor
angle frequency difference or angle difference of preset and
feedback, and the output is preset current vector including
the magnitude and the rotation angle. To regulate the two
variables, we give the motor the maximum current for
maximum torque to start or brake and supply the rated
current and adjust the 𝜀 to change the electromagnetic torque
when the motor operates steadily.

The inner loop is current loop, in which the three-phase
stator current is transformed into current vector on𝑑-𝑝 frame
and the vector is compared with the preset current vector
from the previous regulator. The difference of the current
vector is to select the voltage vector for inverter control. It can
use themethod of direct current control (DCC) in [10], which
follows the synchronized on-off principle.The current vector
at every time interval is predicted for two possible cases as the
following formula:

i
𝛼,𝛽

(𝑘 + 1) = i
𝛼,𝛽

(𝑘) (1 − (𝑇/𝑇
𝑠
))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

i0(𝛼,𝛽)(𝑘+1)

+ (𝑇/𝐿
𝑠
) u
𝛼,𝛽

(𝑘)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

i𝑢(𝛼,𝛽)(𝑘+1)

,

(14)

where i
0
is the radial naturally decreased current vector, i

𝑢

is the applied current vector generated by constant voltage
during the sampling interval, and the subscripts 𝛼 and
𝛽 represent the vector components of static frame. The
voltage vector u at instant 𝑘 can take the following value by
decomposing on static 𝛼-𝛽 frame:

𝑢
𝛼,𝛽

(𝑘) = 𝑈DC [
𝐾
𝑈𝛼
(𝑘)

𝐾
𝑈𝛽
(𝑘)

]

= 𝑈DC
[
[
[

[

2

3
−
1

3
−
1

3

0
1

√3

−
1

√3

]
]
]

]

[

[

𝑠
𝑇1

𝑠
𝑇2

𝑠
𝑇3

]

]

.

(15)

𝑈DC is the DC-link voltage. 𝑠
𝑇1
, 𝑠
𝑇2
, and 𝑠

𝑇3
denote the

states (0 or 1) of upper transistors in the inverter, which
include six effective vectors (100, 110, 010, 011, 001, 101) and
two zero vectors (000, 111). After calculating 𝑖

0
, the six voltage

vector closest to the direction of the error between 𝑖∗
𝑠
and 𝑖
𝑠
is

chosen. Figure 6 shows the particular case of selecting upper
transistors 010.

3.3. Discrete Current Control. When the stator is powered
with the discrete current as (7), the stator current vector i

𝑠

has 𝑏
𝐻
positioning points at the stator circle shaping a regular

polygon MMF shown in Figure 3, for example,

i
𝑠
=
3

2
𝐼
𝑚
𝑒
𝑗(2𝜋/𝑏𝐻)𝑘. (16)

The angle between the two adjacent current vectors is
defined as stepping angle just like the step motor, which is

𝜃
𝑏
=
2𝜋

𝑏
𝐻

. (17)

Therefore, the torque of PMSM can be written as

𝑇
𝑒
= 𝑇max sin (𝑘𝜃𝑏 − 𝑝𝑛𝛼) , (18)

where 𝛼 is the mechanical angle of rotating and 𝑝
𝑛
is the

number of pole pairs.
This torque is also called reposition torque, impelling the

rotor to run forward to catch upwith the stator.Therefore, the
stopping point of the stator current vector is the very positing
point achieving incremental movement of amotor. Take 𝑏

𝐻
=

12 and 𝑇
𝑍
= 0 (motor idling), for example, so the discrete

current vector and the position are shown in Figure 7.
The proposed strategy of PMSM is called discrete current

control, in which the main control variable is the torque
angle between stator current vector and rotor flux vector,
and the amplitude of stator current is the rating (except for
starting and braking which is the maximum). It is different
from VC and DTC, and the latter is to control the angle of
flux of stator and rotor keeping the stator flux constant. The
proposed strategy is more suitable for positioning because of
the characteristic of positioning torque generated by discrete
current and stepping motion, and the control process is also
easier than the two classical methods.

4. Discrete Current Control of PMSM

To describe the proposed control strategy, two errors gener-
ated in the operation must be declared.

(1) Static angle error: generated by load torque. It needs
an electromagnetic torque to balance, so the torque
angle cannot be decreased to zero which become an
error for the control.

(2) Dynamic angle error: the following process of rotor is
not synchronous with stator current vector. The rotor
will lag behind the vector when driving or go beyond
the positioning point when braking. But the dynamic
error will be disappeared when the rotor stops.

4.1. Pointing Control. Pointing control is a typical discrete
controlmethod, controlling themotor tomove a step forward
every time. Only when the transient process of the first step
is completely terminated, the second step begins.
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The one-step torque 𝑇
𝑏
should be greater than static load

torque, so that the static angle error can be less than a stepping
angle. The dynamic angle error, for example, should be less
than 150∘ to keep the operation not losing its step when 𝑏

𝐻
=

12. The angle of one step is 𝑘𝜃
𝑏
; the minimum one is 𝜃

𝑏
and

the maximum one must be less than the dynamic angle error.
The greater the stepping angle, the more serious the

oscillation phenomenon near the positing point, which needs
to be avoided if possible. The simulation result is shown in
Figure 8. The motor is triggered by the step pulse every 0.4
seconds with the rise time of 0.025 s and the overshoot of
about 32%. The rotor stopped at the given point after the
second oscillation.

The oscillation of pointing control is produced by Δ𝜃 =

𝑘𝜃
𝑏
− 𝑝
𝑛
𝛼, and 𝜔 is not equal to zero at the same time, and

the torque near the positing point will be so small. These
problems can be solved with “bang-bang control” of optimal
time and maximum torque.

(1) The time-optimal method is to brake at a proper time
to remove the overshoot. As shown in Figure 9, the
preset current vector angle is 𝜃

𝑠
= −𝜃
𝑏
= 30
∘; then

the rotor accelerated for 𝜀 which is equal to 𝜃
𝑏
when

𝑡 = 0. When 𝑡 = 0.018 s, the vector was back to 0∘
and 𝜀 < 0, and the motor began to decelerate. When
𝑡 = 0.026 s, 𝜃

𝑠
= 𝑘𝜃
𝑏
= 𝜃
𝑟
= 𝑝
𝑛
𝛼, and𝜔 = 0, the vector

was set at 𝜃
𝑠
= 30
∘ again and the rotor stopped at the

0
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2

𝜀

x

B

+

Figure 7: Positioning star diagram.
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Figure 8: Position and speed curve under point control.

positioning point. In the process, the transient time is
0.031s, which decreases to its 1/6.

(2) Maximum torque control is to give the maximum
torque at the accelerating stage and brake with the
maximum negative torque when the position is vicin-
ity to the stator current vector. The maximum torque
is generated as 𝜀 = 90

∘. In the simulation shown
as Figure 10, transforming time of the vector is at
𝑡
1
= 0.010 s and 𝑡

2
= 0.017 s. Before 𝑡

1
, let 𝑘 = 3

and after it 𝑘 = −2, and at 𝑡
2
, make 𝑘 = 1 to keep

the rotor stable. In this control, the transient time is
only 0.027 s, which decreases to 1/8 of the original
time.
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4.2. Constant Frequency Control. Some motors need a con-
stant frequency control method, which is only to change the
step number in a constant frequency and to keep it not losing
its steps.The angle frequency ofmotor𝜔

𝑟
will follow the given

frequency 𝜔
𝑠
by 𝜀 which must be less than 180∘. After a bit

oscillations, the rotor will reach the state of 𝜔
𝑟
= 𝜔
𝑠
, while

the given frequency has a maximum critical value named
jumping frequency, which is defined as the highest frequency
so that the motor does not lose its step. If 𝜔

𝑠
is more than

the jumping frequency, 𝜔
𝑟
cannot catch up with 𝜔

𝑠
and the

position of rotor will lag behind the stator current vector,
which will lead to a serious fault.

In the positioning control of this method, the motor
responses will oscillate in starting and braking time. These
oscillations can be eliminated by optimal controls as which is
used in pointing control. The response curves generated by
this method will be shown in the experiment in Section 5.

4.3. Up-Down Frequency Control. It needs more time to
accelerate or decelerate for the large-capacity motor, because
the rotor could store more kinetic energy. If only give the
motor a step change in constant frequency, the dynamic angle
error may be over the maximum and lead to steps losing.

Toque sensor

Inertia wheel

PMSM

DC generator

Gear box

Figure 11: Experiment platform.

Control unit

Power amplifier

Figure 12: Digital driving controller.

It is necessary to preset an increment or decrement frequency
of the motor to accelerate or decelerate.

The highest frequency is limited by the electromagnetic
torque which is a function of angle frequency. A frequency
of stator current vector, which is less than the jumping
frequency, is given to accelerate at 𝑡 = 0(+). Then the
frequency increases gradually and the time interval of every
step decreases. The 𝜀 had better to be control in the range of
90
∘

± 𝜃
𝑏
to maintain the maximum torque and not to lose its

step.
Generally, to obtain a better result of control, this control

is designed with closed loop to get an optimal up frequency
curve. Moreover, the curve of frequency will be designed as
two, three, or five segments according to the travel length.The
experiment of three-segment curve is shown in Section 5.

5. Experiments

The experiments are based on a device of PMSM, which
includesmotor and transmission platform and digital driving
controller. The platform is shown in Figure 11. The PMSM is
of the type of M205B produced by KOLLMONGEN in US
with rated power of 1.6 kW, rated voltage of 230V, continuous
rated current of 5.3 A, continuous torque of 4.47Nm, and
maximum revolution of 3600 rpm. The load is a DC gen-
erator with 1.1 kW rated power and the transmission ratio
is 1 : 1 of the gear box. The connecting mechanism between
the two motors is with toque sensor, harmonic reducer,
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Figure 14: Experiment curve of pointing control.

and inertia wheel. The application of PMSM can be well
approximated by these devices.

The digital driving controller is composed of control
unit and power amplifier shown in Figure 12. The kernel of
control part is a TMS320F240 chip of DSP produced by TI
and around it are the peripheral circuit and A/D circuit.
The main part of power amplifier is PM15RSH120, which is

a intelligent power module (IPM) produced by Mitsubishi.
Beside the IPM, the accessory circuit includes trigger signal
driver circuit, special power supply module of JS158, position
detecting circuit, current sampling circuit, and protection
circuit.

The structure diagram of the control system is shown in
Figure 13.
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5.1. Control Curve. In the experiment, the motor is with 2
pairs of pole and the electric angle is 720∘ per revolution. We
divided the cycle of stator current into 12 parts and the electric
angle will be 30∘ per step. The number of positioning point
will be 12 × 2 per revolution and every step is corresponded
to 15∘.

5.1.1. Pointing Control. The stator current vector is given as
formula (7). When 𝑡 = 0, 𝑘 = 0 and the motor stays at the
initial position. When 𝑡 = 0.6 s, let 𝑘 = 1; the vector will
lead the rotor flux by a stepping angle that is equal to 30∘
and the rotor will follow the vector by the reposition torque.

The current change of A phase is shown in Figure 14(a) and
the responded curve of position and speed is in Figures 14(b)
and 14(c).

5.1.2. Constant Frequency Control. In order to watch the
control process, this experiment uses a frequency of 0.5Hz.
From Figure 15, the rotor position is following the stator
current vector closely and the positioning performance is
obvious in the discrete control.

5.1.3. Up-Down Frequency Control. Three-segment-speed
curve of motor is used in rapid positioning, which only
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Table 1: Experiment data of position precision incensementmotion.

Given step 1 12 24 100 500 1000
Pulse number 181 2052 4224 17002 85452 170702
Rotating angle 15.9∘ 180.35∘ 371.25∘ 1494∘ 7510.4∘ 62464.02∘

Actual step 1.1 12.02 12.7 99.6 500.7 1000.2

Table 2: Experiment data of operating 160 revolutions.

No. 1 2 3 4 5
Distance (pulse
number) 655202 655365 655369 655406 655485

Time (s) 5.78 5.80 5.60 5.69 5.72
Error (pulses
number) 158 5 9 46 125

includes accelerating, constant speed, and decelerating. The
experiment curve is shown in Figure 16(a) and the position-
ing accuracy is limited below a stepping angle. The current-
following curve is shown in Figure 16(b), in which the actual
current curve is moved down a division of oscilloscope for
watching clearly.

5.2. Analyses. Analyzing the error of stepping control of
PMSM, we can gain the precision of it used in positioning.
The steady error is less than one stepping angle which is 15∘
here. If we use the pulses of rotary encoder, of which 360∘
is corresponded to 4096 pulses, to stand for the absolute
position, we can get a table of precision.

When driving the motor to run 160 revolutions, the
emitting pulses and the operation time are shown in Tables
1 and 2.

If use open loop control method and let the speed
follow the three-segment curve, when the rotor moves 160
revolutions, then the number of pulses is 655360, and we get
the result recorded in Table 2.

It is proved that the discrete current vector method of
PMSM has more advantages than existing methods. Firstly,
the structure is simply just using single loop. Secondly,
the control method with discrete MMF can generate the
larger torque to start or drive the high inertia loads. Thirdly,
positioning precision is determined by the stepping angle
that can get higher accuracy. Moreover, the reliability and
robustness of thismethod are better than those of the original
driver which needs to often change its parameter especially
for high inertia loads.

6. Conclusion

In this paper, a stepping control method of PMSM is pre-
sented. In the method, the circle of rotating MMF is dis-
cretized to regular polygon, and in this case, the positioning
on stator current orientation has been discussed with the
mechanism model of PMSM. The three methods of control
are simulated and tested in experiment, which is available
with a general DSP controller.

Although good performance is achieved, the method
needs deeper studies in theory and applications, such as cur-
rent responding, harmony wave analysis of discrete current,
and influence of the method to grid. Our further works in
this area will be oriented to implementation of this method
in transmission technology of valve and artillery in order
to improve the performance and efficiency and simplify
structure.
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The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder
position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder
system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium
equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID
control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy
logic rules, and defuzzification.The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain
theorem. Experiments for targets position of 250mm, 300mm, and 350mm were done and the results showed that the absolute
error of the position control is less than 0.25mm. And comparative experiment between fuzzy PID and classical PID verified the
advantage of the proposed algorithm.

1. Introduction

In 1956, Shearer [1] first developed the pneumatic servo con-
trol system, using the high temperature and high pressure gas
(500∘C, 20∼30MPa) from the aerospace craft andmissile pro-
pulsion as the working media. This pneumatic servo control
system was successfully applied in the position, orientation,
and stable flying control for aerospace crafts and missiles.
In the subsequent period of time, efforts are contributed to
investigate the pneumatic servo technology parallel with the
hydraulic servo technique. But the early study made slow
progress and there were few achievements that could be used,
because of the difficulty in mathematic system models and
lack of powerful analysis and calculating tools.

With the development of computer technology andmod-
ern control technique, the pneumatic servo control problem
was revisited by scholars. Scavanda et al. [2] and Liu and
Bobrow [3] broadened the linear model to several working
points adopting the state-space method. But the influence of
nonlinear factors such as mechanical friction is neglected.
Baoren [4], Yunbo [5], and Guoliang et al. [6, 7] identified the
system model based on experimental data, which can reflect
the pneumatic system characteristics more accurately than
the former methods. But it is not suitable for cases such as

long cylinder journey, large parametric variation, or heavy
friction. Lee et al. [8] established a nonlinear model for pneu-
matic system and verified the model with experiments. Still,
the model is complicated and requires rigid application con-
ditions.

In this paper, we investigated a proportional valve-
controlled cylinder system and developed a position control
method. Firstly, nonlinear mathematic model of the cylinder
is established in Section 1. Then Section 2 gives the math-
ematic model of the whole pneumatic cylinder system. In
Section 3, we designed a fuzzy PID controller for the pro-
posed pneumatic position system, including all the detailed
information. Experiments for different positions and com-
parison with classical PID were carried out, which are deeply
discussed in Section 4. Finally, Section 5 summaries themain
contribution and meaning of our work.

2. NonLinear Mathematic Model of Cylinder

The dynamic characteristics of cylinder are mainly described
by three equations: the pressure differential equation of
cylinder, pressure-flow equation of proportional valve and
moment equilibrium equation of cylinder.



2 Journal of Applied Mathematics

The flowing state of air inside the pneumatic system is
extremely complicated. To simplify the system mathematical
model, we use the following hypothesis.

(1) The working media (here refers to air) in the system
is taken as ideal gas.

(2) The flowing state while the air runs through the valve
port or other chokes is taken as the isentropic and
adiabatic process.

(3) The lumped parameter model is adopted, ignoring
the influences on the system from the distributed
resistance in the air tube and flexibility of the pipeline.

(4) The air pressure and temperature inside the same
chamber are equal everywhere.

(5) There is no leakage of the cylinder, both inside and
outside.

(6) The pressures of air source and atmosphere are
constant.

2.1. PressureDifferential Equation of the Cylinder. Wesuppose
that the flowing air inside the thermodynamic system has no
energy exchange with the outside and the pressure changes
slightly, during the fast inflating process from air source to
cylinder chamber. And then, this flowing process can be
taken as the isentropic and adiabatic process. According to
the energy equation of adiabatic inflating process from con-
stant pressure air source to limited volume, there are four
kinds of energy changing processes inside the volume during
the movement [9].

(1) The air will bring in or take out the energy 𝑞
𝑚
𝑒 itself

during flowing in or out of the volume. Defining the
internal energy of unit mass gas as 𝑢, kinetic energy
as V2/2 and static energy as 𝑔𝑧, we get

𝑞
𝑚
𝑒 = 𝑞
𝑚
(
𝑢 + V2

2 + 𝑔𝑧
) . (1)

(2) The flowingwork between the volume and the outside
during the air runs in and out of the chamber is
Δ𝑊
𝑓

= 𝑞
𝑚
𝑝V, where 𝑝 is the air pressure and V

denotes the air specific volume.
(3) The thermoexchange between the chamber and the

outside is Δ𝑄.
(4) The work from the chamber to the outside during the

piston movement is Δ𝑊 = 𝑝Δ𝑉.

If we ignore the leakage of cylinder and valve, according
to the energy conservation principle, the total internal energy
𝐸 of the chamber is

d𝐸
1

d𝑡
= 𝑞
𝑚1
𝑒
1
+ 𝑞
𝑚1
𝑝
1
V
1
+
d𝑄
1
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,
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2
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2
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𝑚2
𝑝
2
V
2
+
d𝑄
2

d𝑡
−
d𝑊
𝑠2

d𝑡
.

(2)

Supposing that the gas is ideal air and disregarding the
kinetic energy and static energy of the air, we can get

𝑞
𝑚
𝑒 + 𝑞
𝑚
𝑝V = 𝑞

𝑚
(𝑢 + 𝑝V) = 𝑞

𝑚
ℎ, (3)

where ℎ is the specific enthalpy of air, ℎ = 𝐶
𝑝
𝑇
𝑠
, 𝐶
𝑝
is the

constant-pressure specific heat, and 𝑇
𝑠
is the air temperature

at the valve port.
As is well known, the internal energy of air is 𝐸 = 𝑚𝐶V𝑇,

where 𝐶V is the constant-volume specific heat. According to
the ideal air state equations, we have 𝑚𝑇 = 𝑝V/𝑅, where 𝑅 is
the gas constant, with the value of 287.1 j/(kg∗k) and𝑅 = 𝐶

𝑝
−

𝐶V.
Substituting the above equations by formula (2), we can

get
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(4)

Generally, the rate of heat exchange d𝑄/d𝑡 is determined
by the temperature difference between the inside and outside
of the cylinder and the coefficient of heat conduction of the
cylinder block.

2.2. Pressure-Flow Equation of Proportional Valve. In the pro-
portional valve-controlled cylinder system, the air mass flow
running into and out of the cylinder chamber is controlled
by the port area of the proportional valve. And the air mass
flow 𝑄

𝑚
running through the valve port is determined by

the effective port area of the valve 𝐴
𝑒
and the upstream and

downstream air pressure 𝑃
𝑢
and 𝑃

𝑑
, that is,
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=
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(5)

where 𝐴
𝑒
is the effective port area of the valve, m2; 𝑇

𝑢

represents the stagnation temperature of the orifice upstream,
𝐾; 𝑄
𝑚
denotes the air mass flow running through the valve

port, Kg/s.

2.3. Force Equilibrium Equation of Cylinder. We can obtain
the kinetic equilibrium between the cylinder and load by the
force analysis for the system

𝐴
1
𝑝
1
− 𝐴
2
𝑝
2
= 𝑚

d2𝑦
d𝑡2

+ 𝑏
d𝑦
d𝑡

+ 𝐹
𝐿
+ 𝐹
𝑒
sign (𝑒) , (6)

where 𝐴
1
and 𝐴

2
are the pressure working areas inside the

two chambers of the cylinder, respectively;𝑚means themass
load; 𝑏 is the viscous damping coefficient between the piston
and load; 𝐹

𝐿
denotes the external load; 𝐹

𝑒
represents the Cou-

lomb friction and 𝑒 is the displacement deviation.
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Figure 1: Cylinder position servo control diagram.

Combining the Coulomb friction and external load as 𝐹
and linearizing the force equilibrium equation, we can get

𝐴
1
𝑝
1
− 𝐴
2
𝑝
2
= 𝑚𝑠
2

𝑦 + 𝑏𝑠𝑒 + 𝐹. (7)

3. Mathematic Model of the Pneumatic
Position Servo System

From the above dynamic characteristics basical equations, it
is clear that the system is nonlinear. Sowe linearize the system
near the cylinder equilibrium point based on the linear sys-
tem theory.

Generally, the spool opening area of proportional servo
valve can be taken as the linear function of the controlling
voltage; that is, the spool displacement is directly propor-
tional to the controlling signal:

𝐴
𝑒
= 𝑘
𝑎
𝑢, (8)

where 𝑘
𝑎
is the voltage proportional coefficient.

Linearizing the flow equation of the proportional valve
and applying the Laplace transform, we can get

𝑄
𝑚1

= 𝐾
𝑞1
𝑢 − 𝐾

𝑝1
𝑝
1
,

𝑄
𝑚2

= 𝐾
𝑞2
𝑢 − 𝐾

𝑝2
𝑝
2
,

(9)

where 𝐾
𝑞1

and 𝐾
𝑞2

are the flow gains at the working point
of the controlling valves for the cylinder chambers, 𝐾

𝑞
=

𝜕𝑞
𝑚
/𝜕𝑈;𝐾

𝑝1
and𝐾

𝑝2
are the flow pressure coefficients of the

controlling valves for the cylinder chambers,𝐾
𝑃
= 𝜕𝑞
𝑚
/𝜕𝑝.

Linearizing the pressure differential equations of the
cylinder chambers (2) and applying the Laplace transform,
we can get

𝑝
1
=
𝑘𝑅𝑇𝑞
𝑚1

𝑉
𝑘1

1

𝑠
−
𝑘𝑝
𝑘1
𝐴
1

𝑉
𝑘1

𝑒,

𝑝
2
=
𝑘𝑅𝑇𝑞
𝑚2

𝑉
𝑘2

1

𝑠
−
𝑘𝑝
𝑘2
𝐴
2

𝑉
𝑘2

𝑒.

(10)

The force equilibrium equation (6) can be transformed as

𝐴
1
𝑝
1
− 𝐴
2
𝑝
2
= 𝑚𝑠
2

𝑦 + 𝑏𝑠𝑦 + 𝑓𝑒. (11)

From the above analysis, the cylinder position servo con-
trol diagram can be drawn as Figure 1.

If 0 ≤ 𝑢 < 5, then

𝑝
1
=

𝑘𝑅𝑇𝐾
𝑞1
𝑢

𝑉
𝑘1
𝑠 + 𝑘𝑅𝑇𝐾

𝑝1

−
𝑘𝑝
𝑘1
𝐴
1
𝑒𝑠

𝑉
𝑘1
𝑠 + 𝑘𝑅𝑇𝐾

𝑝1

,

𝑝
2
= −

𝑘𝑝
𝑘2
𝐴
2
𝑒𝑠

𝑉
𝑘2
𝑠 + 𝑘𝑅𝑇𝐾

𝑝2

.

(12)

Substituting the above equations into (11) produces

𝑒 =

(𝑉
𝑘2
𝑠 + 𝑘𝑅𝑇𝐾

𝑝2
)𝐴
1
𝑘𝑅𝑇𝐾

𝑞1
𝑢

𝐶
, (13)

where

𝐶 = 𝑚𝑉
𝑘1
𝑉
𝑘2
𝑠
4

+ (𝑚𝑉
𝑘1
𝑘𝑅𝑇𝐾

𝑝2
+ 𝑚𝑉
𝑘2
𝑘𝑅𝑇𝐾

𝑝1
+ 𝑏𝑉
𝑘1
𝑉
𝑘2
) 𝑠
3

+ (𝑚𝑘
2

𝑅
2

𝑇
2

𝐾
𝑝2
𝐾
𝑝1

+ 𝑏𝑉
𝑘1
𝑘𝑅𝑇𝐾

𝑝2
+ 𝑏𝑉
𝑘2
𝑘𝑅𝑇𝐾

𝑝1
) 𝑠
2

+ (𝑓𝑉
𝑘1
𝑉
𝑘2
+ 𝑘𝑝
𝑘1
𝐴
2

1
𝑉
𝑘2
+ 𝑘𝑝
𝑘2
𝐴
2

2
𝑉
𝑘1
) 𝑠
2

+ (𝑏𝑘
2

𝑅
2

𝑇
2

𝐾
𝑝1
𝐾
𝑝2

+ 𝑓𝑉
𝑘1
𝑘𝑅𝑇𝐾

𝑝2
+ 𝑓𝑉
𝑘2
𝑘𝑅𝑇𝐾

𝑝1
) 𝑠

+ (𝑘
2

𝑝
𝑘1
𝐴
2

1
𝑅𝑇𝐾
𝑝2

+ 𝑘
2

𝑝
𝑘2
𝐴
2

2
𝑅𝑇𝐾
𝑝1
) 𝑠.

(14)

4. Fuzzy PID Control Algorithm

PID algorithm is the most used and useful control technique
in mechatronics system. But the classical PID algorithm has
its inherent shortcomings in practice because of the fixed
parameters. For example, the fixed parameters cannot take
into account the dynamic features and control requirements
in both transient process and stable period. It often fails to
achieve the ideal integrated control quality. So, in practice,
PID algorithm is usually combined with other parameter
adjusting methods, such as fuzzy logic and artificial neuro
network.
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Figure 2: Fuzzy PID control principle.

We integrate the classical PID algorithm and fuzzy logic,
using fuzzy logic to adjust the PID control parameters accord-
ing to the deviation and its gradient between the output and
target. Thus we can control the cylinder position precisely.
The basical control principle is shown in Figure 2.

4.1. FuzzyVariables andTheirDomain. ThePIDcontrol input
is

𝑒 (𝑡) = 𝑟 (𝑡) − 𝑦 (𝑡) . (15)

And the output of the control module can be written as

𝑢 (𝑡) = 𝐾
𝑃
𝑒 (𝑡) + 𝐾

𝐼
∫ 𝑒 (𝑡) d𝑡 + 𝐾

𝐷

d𝑒 (𝑡)
d𝑡

. (16)

The deviation 𝑒(dis
0
− dis) between the target position

dis
0
and the actual displacement dis of the cylinder and its

gradient 𝑒𝑐(d𝑒/d𝑡) are the input variables for fuzzy logic. And
the variationsΔ𝐾

𝑃
,Δ𝐾
𝐼
, andΔ𝐾

𝐷
of PID control parameters

𝐾
𝑃
,𝐾
𝐼
, and𝐾

𝐷
are the output variables of the fuzzy logic.The

cylinder position deviation 𝑒 and its gradient 𝑒𝑐 are sampled
and calculated in real time. And the output variables Δ𝐾

𝑃
,

Δ𝐾
𝐼
, andΔ𝐾

𝐷
are extracted from the fuzzymatrix table based

on the fuzzy rules and reasoning.The PID control parameters
are adjusted using Δ𝐾

𝑃
, Δ𝐾
𝐼
, and Δ𝐾

𝐷
, in order to realize

the real-time dynamic control of the cylinder displacement.
According to the cylinder position control requirement, the
domain of the displacement deviation 𝑒 is set as (−0.5, 0.5),
and the domain of the 𝑒𝑐 is (−0.1, 0.1). The domains of Δ𝐾

𝑃
,

Δ𝐾
𝐼
, and Δ𝐾

𝐷
for PID parameters are (−1.2, 1.2), (−0.1, 0.1),

and (−0.05, 0.05), respectively.

4.2. Fuzzy Logic Rules. The triangle membership function is
adopted, and the membership function for Δ𝐾

𝑃
is shown

in Figure 3. The fuzzy logic rules are deduced, as listed in
Tables 1, 2, and 3. In these tables, NB, NM, NS, ZO, PS,
PM, PB represent negative big, negative medium, negative
small, zero, positive small, positive medium, and positive big,
respectively.

0 0.4 0.8 1.2 
0

0.2

0.4

0.6

0.8

1 NB NM NS ZO PS PM PB

−1.2 −0.8 −0.4

Figure 3: Membership function for Δ𝐾
𝑃
.

Table 1: Fuzzy logic rule for Δ𝐾
𝑃
.

𝑒𝑐
𝑒

NB NM NS ZO PS PM PB
NB PB PB PB PM PS PS ZO
NM PB PB PM PM PS ZO NS
NS PB PM PM PS PS ZO NS
ZO PM PM PB PS PS ZO NM
PS PM PS PS ZO ZO NS NM
PM PS PS ZO ZO NS NM NB
PB PS ZO ZO NM NS NB NB

Table 2: Fuzzy logic rule for Δ𝐾
𝐼
.

𝑒𝑐
𝑒

NB NM NS ZO PS PM PB
NB NB NB NM NM NS NS ZO
NM NB NM NM NS NS ZO ZO
NS NB NM NS ZO ZO PS PS
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PS PM PB
PM ZO ZO PS PS PM PM PB
PB ZO ZO PS PM PM PM PB

Using the above fuzzy logic rules, the PID control param-
eters can be adjusted as

𝐾
𝑃(𝑛+1)

= 𝐾
𝑃𝑛

+ Δ𝐾
𝑃
,

𝐾
𝐼(𝑛+1)

= 𝐾
𝐼𝑛
+ Δ𝐾
𝐼
,

𝐾
𝐷(𝑛+1)

= 𝐾
𝐷𝑛

+ Δ𝐾
𝐷
.

(17)
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Table 3: Fuzzy logic rule for Δ𝐾
𝐷
.

ec e
NB NM NS ZO PS PM PB

NB PS NS NB NB NM NM PS
NM PS NB NB NM NM NS ZO
NS ZO NS NM NM NS NS ZO
ZO ZO NS NS NS NS ZO NS
PS ZO PM PS ZO ZO PS ZO
PM PS PB PS PS PB PB PS
PB PB PM PM PS PB PS PS

Define
𝑅
𝑙
= (𝑒 and 𝑒𝑐) 󳨀→ 𝐾

𝑃

= ∫
𝑒×𝑒𝑐×𝐾𝑃

𝑢 (𝑒) Λ𝑢 (𝑒𝑐) Λ𝑢 (𝐾
𝑃𝑛
)

2
,

𝑅
𝑚
= (𝑒 and 𝑒𝑐) 󳨀→ 𝐾

𝐼

= ∫
𝑒×𝑒𝑐×𝐾𝐼

𝑢 (𝑒) Λ𝑢 (𝑒𝑐) Λ𝑢 (𝐾
𝐼𝑛
)

2
,

𝑅
𝑛
= (𝑒 and 𝑒𝑐) 󳨀→ 𝐾

𝐷

= ∫
𝑒×𝑒𝑐×𝐾𝐷

𝑢 (𝑒) Λ𝑢 (𝑒𝑐) Λ𝑢 (𝐾
𝐷𝑛
)

2
,

(18)

where 𝑙, 𝑚, 𝑛 = 1, 2, 3, . . . , 25.
Then the fuzzy relations of𝐾

𝑃
, 𝐾
𝐼
, and𝐾

𝐷
are

𝑅
𝐾𝑃

=

25

⋃

𝑙=1

𝑅
𝑙
,

𝑅
𝐾𝐼

=

25

⋃

𝑚=1

𝑅
𝑚
,

𝑅
𝐾𝐷

=

25

⋃

𝑛=1

𝑅
𝑛
.

(19)

4.3. Defuzzification. The outputs of the fuzzy logic rules are
also fuzzy set. In practical digital control system, the parame-
ters must be defuzzified, that is, converting the fuzzy set into
exact values according to an appropriate algorithm.

We use conventional gravity center method to realize the
defuzzification:

𝑦
∗

=

∫
𝑌

𝑦𝑢
𝑐
(𝑦) d𝑦

∫
𝑌

𝑢
𝑐
(𝑦) d𝑦

, (20)

where 𝑦∗ is the center of the covered region by membership
function 𝑢

𝑐
(𝑦) of fuzzy set 𝐶.

It is obvious that the calculating process needs certain
time, which makes it difficult to be used in real-time control
system. So, the calculating process is executed off-line in
advance. Then the produced defuzzification decision tables
are stored in the memory of the controller. In this way, the
instantaneity of the control process can be enhanced.
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Fuzzy 
PI+

+

+

Fuzzy 
D

r(nT)
e(nT)

u(nT) y(nT)

ec(nT)

−1

−

Figure 4: Discrete-time Fuzzy PID controller.

4.4. Stability Analysis. Chen and Ying [10] theoretically
proved the stability of nonlinear fuzzy PI controller, based on
their previous work on fuzzy control theory [11]. After that,
they continued to investigate the stability of nonlinear fuzzy
PI + 𝐷 controller [12]. Their work offers a quite convenient
and practicalmethod to explore the stability of similar control
algorithms.

As described in Section 2, the target cylinder system can
be taken as a classical second order system. To interpret the
stability of the proposed nonlinear system, we need to recon-
sider the fuzzy PID control principle shown in Figure 2,
which can be rearranged as Figure 4 in discrete-time form,
where𝑇 is the sampling period,𝑇 > 0.This diagramexpresses
the same meaning as Figure 2 and shows the simplified
structure as a figure in [12].

The stability of the fuzzy PI controller and the fuzzy PD
controller has been analyzed in [10, 13], respectively, accord-
ing to the small gain theorem [14]. In our case, if we discon-
nect the fuzzy 𝐷 control component from Figure 4, we have
the fuzzy PI control system, whose stability is completely
proved in [10]. The stability conditions are as follows.

Theorem 1. A sufficient condition for the nonlinear fuzzy PI
control system to be globally bounded-input and bounded-
output (BIBO) stable is that

(1) the given nonlinear system has a bounded norm (gain)
‖𝑁‖ < ∞;

(2) the parameters of the fuzzy PI controller 𝐾
𝑃
, 𝐾
𝐼
, and

𝐾
𝑢𝑃𝐼

satisfy

𝐾
𝑢𝑃𝐼

(𝛾𝐾
𝑃
+ 𝐾
𝐼
) 𝐿

𝑇 (2𝐿 − 𝐾
𝑀
)

‖𝑁‖ < 1, (21)

where 𝐿 is the domain boundary of fuzzy logic parameters,
𝛾 = max{1, 𝑇} and 𝐾

𝑀
= max{𝐾

𝑃
𝑀
𝑃
, 𝐾
𝐼
𝑀
𝑐
}, with 𝑀

𝑃
=

sup
𝑛≥0

|𝑒(𝑛𝑇)| and𝑀
𝑐
= sup

𝑛≥0
|𝑒𝑐(𝑛𝑇)| ≤ (2/𝑇)𝑀

𝑃
.

In the same way, by disconnecting the fuzzy PI controller
from Figure 4, we reduce the fuzzy PID control system to a
simple fuzzy 𝐷 controller. This fuzzy 𝐷 control system is a
special or simplified case of the fuzzy PD control system stud-
ied in [13], and hence its stability condition can be derived
from that obtained in [13] by removing the fuzzy 𝑃 controller
or just setting the output of fuzzy 𝑃 component as zero. The
stability conditions can be derived as follows.
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Figure 5: Equivalent closed-loop control system for the fuzzy PID controller.

Theorem 2. A sufficient condition for the fuzzy 𝐷 control
system to be BIBO stable is that the given process has a bounded
norm (gain) ‖𝑁‖ < ∞ and the parameters of the fuzzy𝐷 con-
troller 𝐾

𝐷
and 𝐾

𝑢𝐷
satisfy

𝛾𝐾
𝐷
𝐾
𝑢𝐷

2𝑇 (𝐿 − 𝐾
𝐷
(𝑀
𝐷
+ |𝑟|))

‖𝑁‖ < 1, (22)

where 𝛾 = max{1, 𝐿}.

Till now, we are sure that the fuzzy PI controller and
fuzzy 𝐷 controller are stable according to Theorems 1 and 2,
respectively. Then, we need to verify that the combined fuzzy
PID controller is stable.

Again, the Fuzzy PID controller shown in Figure 2 can be
redrawn as Figure 5. The fuzzy PID control systems shown
in Figures 2, 4, and 5 are the same thing but in different
forms, just for analysis convenience. In Figure 5(a), let the
system model be denoted by 𝑆

1
and the fuzzy PID controller

together be denoted by 𝑆
2
, resulting in the new structure in

Figure 5(b). Then, as discussed in [10, 13], we can obtain a
sufficient condition for the BIBO stability of the overall fuzzy
PID equivalent closed-loop control system from the bounds:

󵄩󵄩󵄩󵄩𝑆1 (𝑢PID)
󵄩󵄩󵄩󵄩 ≤ 𝑀

1
+ 𝐿
1

󵄩󵄩󵄩󵄩𝑢PID
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
2
([

𝑦

𝑒
])

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
2
+ 𝐿
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
𝑦

𝑒
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

(23)

where𝑀
1
,𝑀
2
, 𝐿
1
, 𝐿
2
are constants, and 𝐿

1
𝐿
2
< 1.

5. Experiments and Analysis

5.1. Experimental System Design. The experimental system is
composed of pneumatic servo control actuating mechanism,
feedback units, loading module, and controller. The pneu-
matic servo control actuating mechanism is symmetrical cyl-
inder system controlled by proportional flow valve.The feed-
back units include displacement transducer and the pressure

Displacement
transducer

Flow proportional
valve

Pressure
transducer

Main
cylinder

Viscous cylinder

Elastic load

Pressure
proportional
valve

Force cylinder

Mass load

Fore
transducer

A/D IPC D/A

Figure 6: Pneumatic servo control system principle.

transducer for the cylinder chambers. The whole controller
for the system includes industrial personal computer (shorted
as IPC), A/D, and D/A board cards for data acquisition and
output.The experimental system schematic diagram is shown
in Figure 6 and the experimental platform is shown in
Figure 7. The instruments used in the experiment are listed
in Table 4.

The control software was developed based on MATLAB
and LabVIEW. All the fuzzy logic and PID control algorithms
were realized in MATLAB simulink toolbox and then com-
piled into real-time control program using RTW technique.
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Table 4: Experimental instruments.

Name Model Specification Brand
Main cylinder CA2WL40-500 Φ32mm, range: 500mm SMC
Flow proportional valve MPYE-5-1/8-010B Max flow: 700 L/min, response: 3ms, lag: 0.3% Festo
Pressure proportional valve MPPE-5-1/8-010B Max flow: 820 L/min, response: 3ms, lag: 0.3% Festo

Displacement transducer MTS-500 Range: 500mm, resolution: 5 us, repeatability:
±0.001% FS MTS

Pressure transducer JYB-KO-HVG Accuracy: 0.25% FS, range: 0-1Mpa, response: 30ms,
nonlinearity: ±0.2% FS, repeatability: ±0.1% FS Kunlun Coast

Force transducer BK-1 Range: 1500N, accuracy: 0.05% FS, nonlinearity:
0.05% FS, repeatability: 0.05% FS Kunlun Coast

Figure 7: Experimental system.

RTW is an important supplementary functional module
for MATLAB graphic modeling and simulation module
Simulink. Optimized, portable, and personalized codes can
be directly generated from Simulink model with RTW tools.
According to the specific target preparation, the generated
codes can be compiled into program for a different rapid
prototype real-time environment. RTW ensures us to focus
on the model establishment and system design and release
from the boring programming work.This kind of developing
pattern is very suitable for laboratory experimental system
design.

RTW technique has the following features: (1) it supports
continuous, discrete, and hybrid time system, including con-
ditioned executing system and nonvirtual system; (2) RTW
seamlessly integrates the Run-Time Monitor with the real-
time target, which provides an excellent signal monitor and
parameters adjusting interface.The flow diagram of real-time
control program developing using RTW technique is shown
in Figure 8.

LabWindows/CVI is adopted to create the control pro-
gram frame and user interface, shown in Figure 9.

5.2. Target Position Control Experiments. On the experimen-
tal platform, we set the target position of the cylinder as
250mm, 300mm, and 350mm, respectively. And the control
results are shown in Figures 10, 11, and 12.

The rising times of the three experiments are 2.65 s, 4.3 s,
and 3.2 s, respectively, which indicates that long displacement

Real-time test 
environment

Model and 
simulation

Generate 
C codes

Analysis in 
MATLAB

Monitor and 
adjustment

Figure 8: Working flow with RTW.

Table 5: Control errors of cylinder position (mm).

Initial Target AE RE
100 250 0.2441 0.20%
100 300 0.20 0.07%
100 350 0.2441 0.09%
AE represents absolute error and RE denotes relative error.

does not mean long corresponding time. During the motion,
the proposed fuzzy PID controller can adjust the control
parameters and change the behavior of the system to achieve
the best performance. Also, the overshoots in Figures 10, 11,
and 12 are 0.49mm, 0.04mm, and 0mm, respectively. Con-
sulting the stable errors listed in Table 5, we can see that when
the displacement becomes longer, the systemhysteresis shows
greater influence on the final error. To be more frank, long
displacement has no overshoot but big negative error, while
short displacement has big overshoot and positive error.

From the experimental data, three significant features can
be drawn as follows.

(1) Dynamic quality: the proposed method has fuzzy
logic virtues in the earlier stage of control that can
actuate the cylinder to approximate the target posi-
tion rapidly. And during the late stages of control, it
has virtues of PID algorithm, which means that the
PIDparameters are adjusted to execute the cylinder to
quickly reach the target position without overshoot.

(2) Stable quality: the analysis of stable error is listed in
Table 5. From the error analysis, it can be seen that
the proposed theoretical model, control method, and
experimental system can guarantee that the absolute
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Figure 9: LabVIEW control program diagram.
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Figure 10: Response of target position 250mm.

control error is around 0.24mm. In addition, the
error is independent of the target position.The robust
of the control method is quite well.

(3) No creeping phenomenon: when the cylinder runs
with quite low speed or stops in the middle, there will
be creeping phenomenon because of the air pressure
in both the chambers and friction. From the response
data in Figures 10, 11, and 12, it can be concluded that
the proposed method can control the cylinder to stay
at any position without creeping phenomenon.

5.3. Compared with Classical PID. To show the advantages
of the proposed cylinder position servo control method, an
experiment was done to compare the classical PID controller
and the developed one in this paper, with the target position
300mm.

0 1 2 3 4 5 6
100

150

200

250

300

350

Time t (s)

Cy
lin

de
r d

isp
la

ce
m

en
td

(m
m

)

Figure 11: Response of target position 300mm.

The stable state data and error data are shown in Figures 13
and 14. From the above two comparing data curves, it can be
seen that the classical PID controller can achieve the destina-
tion, but has bigger error, error range, and overshoot, which
are 0.78mm, 0.25mm, and 0.78mm, respectively. However,
the proposed fuzzy PID controller has relative smaller error,
error range, and overshoot, which are 0.20mm, 0.24mm, and
0.04mm, respectively.

6. Conclusions

(1) The nonlinear mathematical models of cylinder and
its valve-control pneumatic system, that is, pressure
differential equation, pressure-flow equation, and
moment equilibrium equation, are proposed.

(2) The cylinder position servo controller based on the
mathematical models and fuzzy PID algorithm is
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Figure 13: Stable data of comparing experiment.

established and proved to be stable under specified
conditions.

(3) Experimental results show that the absolute control
error is less than 0.25mmand the proposed fuzzy PID
controller has better performance than classical PID.
The dynamic and stable qualities of the controller are
quite well.
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In order to meet the energy saving requirement of the excavator, hybrid excavators are becoming the hot spot for researchers. The
initial problem is to match the parameter of each component, because the system is tending to be more complicated due to the
introduction of the accumulator. In this paper, firstly, a new architecture is presented which is hydraulic hybrid excavator based on
common pressure rail combined switched function (HHES). Secondly, the general principle of dynamic programming algorithm
(DPA) is explained.Then, the method by using DPA for parameter matching of HHES is described in detail. Furthermore, the DPA
is translated into the M language for simulation. Finally, the calculation results are analyzed, and the optimal matching group is
obtained.

1. Introduction

The demand for fuel efficient and low-emission hydraulic
excavators has been increased due to the growing energy cri-
sis and environmental deterioration recently.The appearance
of hybrid excavator has the immense potential for reducing
the fuel consumption, because it can eliminate the throttling
loss theoretically and recover the braking or gravitational
potential energy. Nevertheless, the system tends to be more
complicated by introducing the hydraulic accumulator, which
is used as another power source. The power flow is also
changed due to the new power source and the recovery
energy; hence, different parameters of the system units can
result in different fuel consumption rate. It is important for
improving the system efficiency and reducing the fuel rate of
the hydraulic hybrid excavator by investigating the parameter
matching method, which is also a good way to cut down the
rated engine power and cost.

The parameter matching of power transmission system
makes the parameters of the components in the system
adjust to the working conditions by choosing the param-
eters of the components appropriately in the premise that

the system working correctly can guarantee the system in
optimal working condition, and then the overall efficiency
of the system is improved; the purpose of energy saving is
reached [1–4]. Static matching is the main way in existing
matching methods. In this method, the maximum values
in the working process of all actuators are used to choose
the parameters of components. However, the working char-
acteristics of frequent and large-scale power changes when
the excavator works, to some extent, lead to oversize of
components. However, the excavator has characteristic that
multiple actuators of the excavator act at the same time,
so the working conditions and system dynamics under the
condition of composite actions have to be considered tomake
various components work in high efficiency and reduce the
fuel consumption of the engine. In the existing optimization
algorithms, the Dynamic Programming Algorithm (DPA)
can solve the optimizing problems of any complex systems
in theory, so it has been widely used, but DPA algorithm is
mainly used to solve the optimal trajectory of controlled vari-
ables to provide reference for designing suboptimal controller
[5–9]. One of the earliest researchers in this regard is Filipi
et al. [10], who proposed a design optimization process in
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two stages for a parallel hybrid medium truck. Then, Cross
used this algorithm to extend the application in parameter
matching [11]. In this work, the Hydraulic Hybrid Excavator
based on CPR combined switched function (HHES) is inves-
tigated. CPR means Common Pressure Rail which is similar
with the electric grid. It is divided into two lines including
high and low pressure pipelines. All of the hydraulic actuators
are connected with the two lines in parallel; it means that it is
convenient to arrange the hydraulic components.Moreover, it
not only eliminates the throttling loss in the theory aspect, but
can also recover the braking or gravitational potential energy.
Hence, applying this structure on the hydraulic excavator is
a promising hydraulic architecture in the aspect of saving
energy. However, because HHES is a new system, there are
only a few relevant research papers published on parameter
matching. In this paper, the optimal control principle based
on DPA is first introduced to the parameters optimization
matching research of HHES. The minimized engine fuel
consumption in typical working condition is treated as the
optimization goal. Considering the influence of the factors
such as the efficiency of components and system dynamics,
the minimum fuel consumption of various components
parameters matching mode will be excavated most possibly
by choosing a group of optimal parameters, and the method
in this paper can guarantee that the fuel consumption of
the different components parameters can be compared fairly
without considering the influence of control method.

2. Basic Principle

2.1. Dynamic Program Algorithm Principle. DPA algorithm is
an effective computing method combined with sorting deci-
sion method and optimization principle. In 1953, American
mathematician Robert Bellman proposed the optimization
principle in his writing “An optimal policy has the property
that, whatever the initial state and optimal first decision may
be, the remaining decisions constitute an optimal policy with
regard to the state resulting from the first decision” [12].
According to this theory, the sorting decision can be applied
in a complicated system, and “optimization procedure” is
used at each level so as to achieve the overall optimization
goal.

Now, the basic principle of sorting decision is simply
illustrated by Figure 1. For Figure 1, numbers close to the
connecting lines between two points are the distance of two

points. The red lines in Figure 1 show the trajectory between
𝐴 and 𝐵:

𝐽
∗

𝐴𝐵
= 𝐽

𝐴𝐷
+ 𝐽

∗

𝐷𝐵
, (1)

where 𝐽
𝐴𝐷

constitutes the initial control and 𝐽∗
𝐷𝐵

represents
the shortest distance from 𝐷 to 𝐵. So we can calculate every
possible route and compare to get the shortest distance.
However, if the number of the points is large, it tends to be
impossible to get the suitable result through the calculation
process:

𝐽
∗

𝐷𝐵
= min (𝐽

𝐷𝐸𝐵
, 𝐽

𝐷𝐹𝐵
, 𝐽

𝐷𝐺𝐵
, 𝐽

𝐷𝐸𝐵
, 𝐽

𝐷𝐸𝐹𝐵
, 𝐽

𝐷𝐺𝐹𝐵
) , (2)

so we can get 𝐽∗
𝐴𝐵
= 18.

The application of optimization algorithm can reduce the
number of trajectories to be considered, as shown in Figure 1.
Taking the reverse calculation from point 𝐵 as an example, if
optimal path passes state point𝐶, the optimal path between𝐶
and𝐵 is from the above node to𝐵 (the required time is 2+5 =
7) instead of the path from the below node to 𝐵 (the required
time is 6 + 6 = 12), then the minimum cost and optimal
path from this point to terminal point are determined. By
repeating the calculation process to all stated points, the
minimum costs and optimal paths for all state points can be
calculated, and the optimal path of the whole process can be
obtained until the calculation of point 𝐴 is finished. Because
of the iteration method used in DPA, the main application
background is for discrete system. For continuous system, it
should be converted into discrete system, and the optimal
solution can be solved after discretization.

For a given system, the system dynamics can be described
as

𝑋
𝑘
= 𝑓 (𝑋

𝑘
, 𝑢

𝑘
, 𝑑

𝑘
) , (3)

where 𝑋 is the state vector, 𝑢 is the control vector, 𝑑 is the
disturbance vector, and the subscript 𝑘 is the time instant.
Generally, to simplify the problem, the system dynamics can
be described in a discrete domain; in other words, differential
equations are replaced by difference equations:

𝑋
𝑘+1
= 𝑋

𝑘
+ 𝑓 (𝑋

𝑘
, 𝑢

𝑘
, 𝑑

𝑘
) . (4)

Generalizing the principle of optimal control to discrete time
systems results in [11],

𝐶
∗

𝑘𝑁
(𝑋

𝑘
, 𝑢

𝑘
) = 𝐽

𝑘,𝑘+1
(𝑋

𝑘
, 𝑢

𝑘
, 𝑑

𝑘
) + 𝐽

∗

𝑘+1,𝑁
(𝑋 (𝑘 + 1)) , (5)

where 𝐶∗

𝑘𝑁
is the minimum cost of operation from k to N for

a specific state 𝑥(𝑘) and control 𝑢(𝑘). The minimum cost of
operation for all combinations of control is calculated from

𝐽
∗

𝑘𝑁
(𝑋

𝑘
) = min

𝑢(𝑘)

[𝐶
∗

𝑘𝑁
(𝑋

𝑘
, 𝑢

𝑘
)] . (6)

2.2. Hydraulic Hybrid Excavator Based on CPR Combined
Switched Function. In CPR, the constant pressure variable
pump and hydraulic accumulator constitute the high pressure
line, and the low pressure line is connecting the oil tank
directly. Multiple different loads connect in parallel between
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Figure 2: Hydraulic hybrid excavator based on CPR combined
switched function.

the two lines. The rotating loads can be controlled by
regulating the displacement of hydraulic pump/motor, while
the linear loads are actuated by hydraulic transformer because
the hydraulic cylinders are hard to change displacement
normally [13–17]. Since the system includes secondary com-
ponents and accumulators, energy can be recovered when
the actuator brakes or falls and then is stored in the accu-
mulator. Hence, the excavator possesses two kinds of power
source. The low fuel consumption can be obtained by using
adopted appropriate control strategy. In this configuration,
the former three fixed displacement motors, which are used
for swinging and driving, respectively, should be replaced
by three hydraulic pump/motors [18, 19]. However, the key
component is not popular and expensive. We propose a new
architecture which uses on-off valves to switch the hydraulic
transformer control, and Figure 2 shows the schematic. The
reason for this modification is the working condition of
excavators, because the travel part and the arm cylinder or
the bucket cylinder are not working at the same time. So
the fixed displacement motors which are used for traveling
in the original nonhybrid excavator can remain. There are
travel 1 and arm cylinder in Group 1, and Group 2 includes
travel 2 and bucket cylinder. Moreover, two sets of valves,
in which there are four on-off valves, are used to switch the
hydraulic transformer control motor or cylinder. Hence, not
only the energy-saving characteristic is remained, but also
the cost can be reduced because of the manipulation of the
fixed displacement motor instead of variable displacement
pump/motor. Furthermore, it is easier tomodify based on the
existing manufacture process.

3. Application of DPA for Hydraulic
Hybrid Excavators

The purpose of this paper is to calculate the component
parameter configuration that minimizes the fuel consump-
tion in typical working condition of the excavator by DPA
algorithm, and a 5 ton LS-control prototype is used as
research object, and the existing components in proto-
type should be changed as less as possible to reduce the
reform cost. The main components of the entire hydraulic

Table 1: Parameter names and their ranges.

Parameter name Unit Range
Hydraulic accumulator 𝑉

0
Volume (L) 10; 16; 25; 40

Precharge pressure 𝑃
0

Pressure (bar) 50; 100; 150; 200; 250
Swing pump/motor 𝑉

2
Volume (L) 28; 40; 71

system include constant pressure variable pump, hydraulic
accumulator, and hydraulic transformer, and the actuators
contain boom hydraulic cylinder, bucket hydraulic cylinder,
arm hydraulic cylinder, swing motor, and travel motors. By
using switch control principle, the actuators except for the
quantitative swing motor are reserved, and the quantitative
swing motor is replaced by variable pump/motor. Because
of the limitation of current technical level, the hydraulic
transformers have not been applied widely, and the displace-
ment of hydraulic transformer is not a choice. In addition,
the main pump of original system also has the function of
electronically controlling variables, so it has been in use.
Thus, Table 1 shows that the components parameters need to
be optimized matching in the entire system.

Installation space of a 5-ton excavator is limited, so
the optional maximum volume of the hydraulic accumu-
lator is determined as 40 L. The decision of swing motor
mainly refers to the existing parameters of the hydraulic
pump/motor. We need to know the relevant data of cir-
culatory working condition when using DPA algorithm. In
addition, we need to determine the state and controlled
variables of the system, and the dynamic state equation also
needs to be established.

3.1. Working Cycle. The standard working cycle is used for
calculation. This cycle represents an excavator digging a load
of dirt, rotating and releasing the load into a truck or onto
a pile, and then returning to its initial position. It should
be noticed that the travel part is not considered in this
paper. This process is divided into four parts. Figure 3 shows
the velocity of each actuator, respectively [20]. During the
beginning part, the boom cylinder and the swing keep the
position basically, but the arm cylinder and bucket cylinder
move out to dig. Then, the boom cylinder extends, and the
swing rotates to lift the dirt and prepare for dumping. Next,
the bucket cylinder retracts to dump the dirt. Finally, the
swing rotates back, and the boom cylinder retracts to go back
to the initial status.

3.2. State Variables and Controls of the System. The critical
state variables of the system can be selected by (7), andTable 2
shows the symbol and the meaning

𝑋 = [𝑛eng, 𝑛𝑠, 𝑝1 bm, 𝑝2 bm, 𝑝1 𝐴
, 𝑝

2 𝐴
, 𝑝

1 bk, 𝑝2 bk, 𝑝ℎ,

Vbm, V𝐴, Vbk] .
(7)

According to the DPA principle, if all the state variables
in the state matrix we establish are unknown, then it is
difficult to realize the optimization process because the calcu-
lation amount will increase rapidly [11]. Hence, according to
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Figure 3: The velocity of the actuator during the working cycle.

Table 2: Meanings of the state variables.

Symbol Meaning Unit
𝑛eng Engine speed rpm
𝑛
2

Swing speed rpm
𝑝
1 bm Boom cylinder bore side Pa
𝑝
1 𝐴

Arm cylinder bore side Pa
𝑝
1 bk Bucket cylinder bore side Pa
𝑝
ℎ

Pressure of high pressure pipe line in CPR Pa
Vbm Boom cylinder speed m/s
V
𝐴

Arm cylinder speed m/s
Vbk Bucket cylinder speed m/s

the known working conditions, state variables can be divided
into two categories, namely, state variables decided by work-
ing conditions and the optimal state trajectory calculated by
DPA algorithm. Because there is no coupling relationship
between the engine of HHE and the key state variables in
system, the rotating speed of engine and the pressure of high
pressure pipe line are selected to be the state variables for
optimization. Some state variables are limited by working
condition requirements; other state variables, such as the
pressure between two chambers of actuators and the resultant
torques (or resultant forces) of actuators calculated by the
pressure between two chambers, can also be regarded as
known in the calculation process

𝑋 = [𝑛eng, 𝑝ℎ] . (8)

In addition, the critical control of the system is

𝐶 = [𝑢
1
, 𝛽

1
, 𝛽

2
, 𝛿

1
, 𝛿

2
, 𝛿

3
] . (9)

The controls can also be divided into two parts: one is being
decided by the working cycle, and the other is the optimizing
trajectory. In order to finish the working cycle, the torque
and force requirement should be met. For instance, 𝛽

2
would

be decided during each step after the state variable 𝑝
ℎ
is

confirmed by the next equation:

𝛽
2
=

2𝜋

𝑝
ℎ
⋅ 𝑉

2

(𝑀
𝑟
+ sign (𝑛

2
) ⋅
󵄨󵄨󵄨󵄨𝑀𝑙

󵄨󵄨󵄨󵄨) , (10)

where𝑀
𝑟
is the requirement torque of the swing and𝑀

𝑙
is

the torque loss.
Hence, the free controls are chosen as

𝑋 = [𝑢
1
, 𝛽

1
] . (11)

3.3. Discretization of the System. After the state and con-
trolled variables are determined, we need to ensure the
scope of the state and controlled variables and perform the
mesh generation. The rotating speed range of the engine is
determined by the inherent curve of the original engine,
and the maximum value of the high pressure pipe line is
defined by the allowable maximum pressure 350 bar of the
components. The interval of the engine rotating speed is
100 rpm, and the interval of the pressure in high pressure pipe
line is 5Mpa, both the range of the controlled variables 𝜇

1
, 𝛽

1

being from 0 to 100. The grids are shown in Figure 4 [21].
Generally speaking, the more dense grids, the more

accurate results, but the calculated amount will be greatly
increased. The purpose of this paper is to obtain minimum
fuel consumption in the same cycle. Dynamic performances
of the variable displacement mechanism in pump have not
been considered, so it ismore reasonable to choose the similar
time interval with the variable displacement mechanism,
since the frequency of the variable displacement mechanism
is 5Hz, and dt is chosen as 0.2 s.

3.4. Optimizing Object. The fewest fuel consumption rate of
the engine is the optimization objective for the hydraulic
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Figure 4: Discretization of the system.

hybrid excavator deterministic dynamic programming sim-
ulation

𝐽
𝑐
=

𝑁

∑

𝑘=1

𝑚
𝑓
(𝑘) ⋅ Δ𝑡 =

𝑁

∑

𝑘=1

𝐹 (𝑀eng, 𝑛𝑒) ⋅ Δ𝑡. (12)

Due to the big difference among the different components,
especially for the excavator which is used widely, we consider
the cost combined with the object of optimal fuel consump-
tion by using weight factor method,

𝐹 (𝑉
0
, 𝑉

2
, 𝑝

0
, 𝑝max) = 𝛼1 ⋅

𝐽
𝑐
− 𝐽min

𝐽max − 𝐽min
+ 𝛼

2
⋅
𝐶
𝑐
− 𝐶min

𝐶max − 𝐶min
,

(13)

where 𝐶 represents the additional cost for different compo-
nents.

3.5. Equations of System Dynamics

3.5.1. Engine Dynamics. The engine dynamics is a compli-
cated process. It is difficult to state the detailed procedure
by using mathematical analysis, especially, how to model
a model is not the object of this work. Hence, one effective
method which is based on the experience data is adopted. It
means that the main torque types such as friction torque and
loss are obtained from the lookup table which is calculated
from the exact speed and torque. For theHHEC, the only load
torque of the engine is the torque of the main pump and the
friction torque

̇𝑛eng =
1

𝐽eng
[𝑢

1
⋅ 𝑀

𝑊𝑂𝑇
−𝑀

𝑝
−𝑀loss −𝑀𝑓

] , (14)

where 𝑀
𝑝
= ((𝑝

ℎ
⋅ 𝑉

1
)/(2 ⋅ 𝜋))𝛽

1
is the torque of the main

pump, 𝑀
𝑊𝑂𝑇

represents the maximum torque for different
engine speed,𝑀loss is the loss torque which is a lookup table
by using the experimental dates, and 𝑀

𝑓
is the friction

torque.

A discrete difference equation is required by using DPA,
so the continuous differential equations are approximated as

Δ𝑛eng

=
Δ𝑡

𝐽eng
[𝑢

1
⋅ 𝑀

𝑊𝑂𝑇
−
𝑝
ℎ
⋅ 𝑉

1

2 ⋅ 𝜋
𝛽
1
−𝑓

𝑀loss
(𝑛eng, 𝑝ℎ, 𝛽1)−𝑀𝑓

] .

(15)

3.5.2. Pressure of the High Pressure Pipe. The pressure build-
up equation describes the change of pressure in the system
with respect to time.

Because all of the high pressure sides of components
in CPR are connected together, every component flow rate
should be considered to calculate the pressure change.
In detail, the high pressure pipe contains a main pump,
hydraulic accumulator, and the actuators which are depicted
in Figure 5.Thedirection of the flow rate is defined by positive
if coming from the component to the high pressure pipe
and negative for the opposite direction. Then, the pressure
is calculated by the following equation, and it is noticed that
again travel motors are omitted in the part:

̇𝑝h =
𝑄
1
− ∑

3

𝑖=1
𝑄HT 𝑖

− 𝑄
2
+ ∑

3

𝑖=1
𝑄
𝐴2 𝑖
− 𝑄

𝐿

(1/𝛽
𝑒
) [∑

3

𝑖=1
𝑉
𝑖 𝑎
+𝑉

𝑚 𝑎
+∑

3

𝑖=1
𝐴

𝑖1
⋅ (𝐻

𝑖 sk − 𝑙𝑖)]+𝐶accu
,

(16)

where 𝑖 represents the index of each actuator, such as bucket,
arm, and boom cylinders;∑3

𝑖=1
𝑉
𝑖 𝑎

is the total capacity which
includes each 𝐴 port of the HTs, every cylinder volume of
the rod side, and the pipe line volume; the initial volume of
the motor/pump is represented as 𝑉

𝑚 𝑎
;𝐻

𝑖 sk is the stroke of
each cylinder and 𝑙

𝑖
is the displacement of every cylinder;𝑄

𝑝

represents the output flow rate of the main pump; 𝑄
𝐴2 𝑖

is
the flow rate of the rod side of each cylinder; 𝑄

2
is the flow

rate which goes into the motor/pump and𝑄
𝐿
is the total flow

rate of leakage. 𝑄HT 𝑖
is the flow rate that goes into the HT,

respectively.
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Figure 5: Schematic of the PHP.

Also, in the previous equation 𝐶accu is defined as the
capacity of the accumulator which is the function [22]

𝐶accu =
𝑉
𝑎

𝑘
(

𝑃pre

𝑃
ℎ

𝑘+1

)

1/𝑘

. (17)

Again, the discrete difference equation is as follows:

Δ𝑝
ℎ
=

Δ𝑡 ⋅ (𝑄
𝑝
− ∑

3

𝑖=1
𝑄HT 𝑖

− 𝑄
2
+ ∑

3

𝑖=1
𝑄
𝐴2 𝑖
− 𝑄

𝐿
)

(1/𝛽
𝑒
)[∑

3

𝑖=1
𝑉
𝑖 𝑎
+𝑉

𝑚 𝑎
+∑

3

𝑖=1
𝐴

𝑖1
⋅ (𝐻

𝑖 sk − 𝑙𝑖)]+𝐶accu
,

(18)

where 𝑄
𝐴2 𝑖

is confirmed by the working cycle which equals
the velocity times to the area of the rod side for each cylinder.
However, the way to calculate 𝑄HT 𝑖

should be pointed out.
The SHT of boom cylinder is chosen to show the process.The
method for the other two HTs is the same.

The boom cylinder is controlled by regulating the port
plate angle of the HT in HHEC. Firstly, we define the
transformer ratio, and the next equation is [23]

𝜆 =
𝑝
𝐵

𝑝
𝐴

= (− sin 𝛼
2
⋅ sin 𝛿 −

𝑝
𝑇

𝑝
𝐴

⋅ sin
𝛾

2
⋅ sin(𝛿 + 𝛼

2
+
𝛾

2
))

× (sin
𝛽

2
⋅ sin(𝛿 − 𝛼

2
−
𝛽

2
))

−1

=
𝐹net bm + 𝑝ℎ ⋅ 𝐴2

𝑝
ℎ
⋅ 𝐴

1

,

(19)

where 𝐹net bm = 𝑝1 bm ⋅ 𝐴1 bm − 𝑝2 bm ⋅ 𝐴2 bm means the net
force of the boom cylinder because all of the pressure and the
area are known according to the cycle data.

Moreover, the flow rate of 𝐴 and 𝐵 can be obtained by

𝑄HT bm = 𝑞𝐴 =
𝜔HT ⋅ 𝑉HT
2𝜋

⋅ sin 𝛼
2
⋅ sin 𝛿 + 𝐿

𝑖𝑚
(𝑝

𝐴
− 𝑝

𝐵
)

+ 𝐿
𝑖𝑚
(𝑝

𝐴
− 𝑝

𝑇
) + 𝐿

𝑒𝑚
𝑝
𝐴
,

𝑄
𝐴1 bm = 𝑞𝐵 =

𝜔HT ⋅ 𝑉HT
2𝜋

⋅ sin
𝛽

2
⋅ sin(𝛿 − 𝛼

2
−
𝛽

2
)

− 𝐿
𝑖𝑚
(𝑝

𝐵
− 𝑝

𝐴
) − 𝐿

𝑖𝑚
(𝑝

𝐵
− 𝑝

𝑇
) − 𝐿

𝑒𝑚
𝑝
𝐵
.

(20)

After considering the leakage coefficient in total,

𝑄
𝐴1 bm

𝑄
𝐻𝑇 bm

=
𝑞
𝐵

𝑞
𝐴

=
sin (𝛿 − (𝛼/2) − (𝛽/2))

sin 𝛿
= −𝜆, (21)

where𝑄
𝐴1 bm equals the velocity times to the area of the bore

side for boom cylinder, and it is also the known data.

3.6. Programming. Figure 6 shows thewhole flow chart of the
program [21]. The program can be divided into three loops,
in which the inner is the control loop and the middle is the
state loop; the outside ones are the district layers which are
divided by district time dt. Then, every state in per layer
should be calculated by using all of the controls through the
dynamic equations. During the calculation, the control values
result in the result which exceeds the state domain that should
be abandoned, and the calculation should go on by using
the next control values. For those accepted controls, the fuel
consumption for that state and the controls should be added.
After comparing all the controls in that state, the minimum
one is stored. The middle loop includes the same cycle for
each state.

Figure 7 shows the process in detail.𝑁 represents the step.
The calculation begins from the end. In fact, the dynamic
programming is one type of iterative algorithms. It begins
from the end; hence, the initial value must be given. In this
work, the initial value 𝐽 and 𝑢 are set to 0. Some states are
unavailable, which are represented by red rectangles. The
black cycles represent the minimum fuel consumption values
corresponding to those states, respectively. And the blue
triangle means the optimal value in the step. All of the fuel
consumption values (matrix 𝐽) in each step should be used as
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the initial value for calculating in the next step. For example,
the matrix 𝐽

1
is used for 𝑁 − 1 step. It should be noticed

that when calculating the new state by using the controls, the
values may not fit well in the mesh grid. Hence, the bilinear
interpolation algorithm is introduced to calculate the fuel
consumption for 𝐽

𝑥𝑦
[24]:

𝐽
𝑥𝑦
= [𝐽 (𝑝

𝑚
, 𝑛

𝑚−1
) − 𝐽 (𝑝

𝑚
, 𝑛

𝑚−1
)] ⋅ 𝑝

𝑥

+ [𝐽 (𝑝
𝑚−1
, 𝑛

𝑚
) − 𝐽 (𝑝

𝑚−1
, 𝑛

𝑚−1
)] ⋅ 𝑛

𝑦

+ [𝐽 (𝑝
𝑚
, 𝑛

𝑚
) + 𝐽 (𝑝

𝑚−1
, 𝑛

𝑚−1
) − 𝐽 (𝑝

𝑚
, 𝑛

𝑚−1
)

−𝐽 (𝑝
𝑚−1
, 𝑛

𝑚
)]

⋅ 𝑝
𝑥
⋅ 𝑛

𝑦
+ 𝐽 (𝑝

𝑚−1
, 𝑛

𝑚−1
) ,

(22)

where 𝐽(𝑝
𝑚
, 𝑛

𝑚−1
)𝐽(𝑝

𝑚−1
, 𝑛

𝑚−1
), 𝐽(𝑝

𝑚
, 𝑛

𝑚
), and 𝐽(𝑝

𝑚−1
, 𝑛

𝑚
)

are the fuel consumption which are coming from the former
results.

4. Simulation Results

There are 60 combinations of the three parameters in total.
Hence, the simulation runs 60 times for each group of
parameters. It takes about 5 hours once by using a single core
computer. In order to eliminate the influence of the initial
state, 5 cycles are input into the simulation, but only the
middle three are used to compare the fuel consumption.

Figure 8 shows the relationship among 𝑉
0
, 𝑉

2
, and 𝑃

0
.

It can be found the general tendency, with the increment
of 𝑉

0
, the fuel consumption decreases. However, the fuel

consumption reduces slowly after 𝑉
0
approaches 40 L. 𝑉

2
is

not independent from the other parameters, but it is coupled
with 𝑉

0
and 𝑝

0
. In general, the fuel consumption reduces

with the increment of 𝑉
2
, and it shows the similar tendency

with 𝑉
0
; that is the fuel consumption reduces slowly after

𝑉
0
approaches 40 L. Furthermore, the precharge pressure is

a key variable to impact the fuel consumption. The optimal
pressure value locates from 100 bar to 150 bar normally
according to the simulation results.

In order to state it in detail, different fuel consumption
values corresponding to different precharge pressure values of
the 16 L accumulator are plotted in Figure 9, which shows that
the minimum fuel consumption appears in 150 bar. All of the
simulation results show the similar trend. This is because the
energy storage reaches the maximum around this pressure
level

𝐸 = − ∫

𝑉𝑓

𝑉𝑖

𝑝𝑑𝑉 =
𝑝
0
𝑉
0

𝑛 − 1
[(
𝑉

𝑉
0

)

1−𝑛

− 1]

=
𝑝
0
𝑉
0

𝑛 − 1
[(
𝑝
0

𝑝
)

(1−𝑛)/𝑛

− 1] .

(23)

To get the precharge pressure which results in the maximum
energy, the derivation of E is calculated as follows:

𝑑𝐸

𝑑𝑝
0

=
𝑉
0

𝑛 − 1
[
1

𝑛
(
𝑝
0

𝑝
)

(1−𝑛)/𝑛

− 1] = 0, (24)

𝑝

𝑝
0

= 𝑛
𝑛/(𝑛−1)

. (25)

It means that if the maximum pressure and the parameter
𝑛 are decided, then the optimal precharge pressure can be
obtained from (25). Hence, the same accumulator under the
optimal precharge pressure can store the maximum energy,
and then the fuel consumption can be reduced.

In general, large components have low fuel consump-
tion under the same condition. Because in this algorithm,
the minimum engine fuel consumption is taken as the
optimizing objective, so every state pursues the highest
efficiency. However, for key components, such as the axial
piston type component, the efficiency gets lower with the
pressure increasing, then when we want to achieve the same
torque, large components can reach the purpose of efficiency
improvement in smaller pressure conditions; however, we
need to take into account the price growth of complete
machine. After the comprehensive comparison, a set of
parameters we choose are 𝑉

2
= 40mL/r, 𝑃

0
= 15Mpa, and

𝑉
0
= 16 L.
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5. Conclusion

Optimal parametermatching results forHHESwere analyzed
with the aim of reducing the fuel consumption and modi-
fication cost. Firstly, a new architecture HHES is presented
which not only keeps the advantages of the hydraulic hybrid
excavator but also reduces the modification cost. Then, the
DPA was applied in the matching process successfully. The
results show that the fuel consumption reduces with the
increment of the 𝑉

0
. And the similar tendency is obtained

for the swing pump/motor. However, it is coupled with 𝑉
0

and 𝑝
0
. The precharge pressure shows the independent rela-

tionship for the fuel consumption among other parameters.
The optimal value is located around 10∼15Mpa under the
conditions that themaximumpressure is 35Mpa and 𝑛 is 1.25.
By combining the cost factor, the optimal group is obtained
which is 𝑉

2
= 40mL/r, 𝑃

0
= 15Mpa, and 𝑉

0
= 16 L. The

future work will focus on the optimal trajectory of the state
variable based on the dynamic programming result firstly.
Then, design the suboptimal control strategy according to the
optimal trajectory and test it in the real excavator.
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The vanadium redox flow battery (VRB) is a nonlinear system with unknown dynamics and disturbances. The flowrate of the elec-
trolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the
safety and performance of VRB.This paper presents a neural network predictive control scheme to enhance the overall performance
of the battery. A radial basis function (RBF) network is employed to approximate the dynamics of the VRB system. The genetic
algorithm (GA) is used to obtain the optimum initial values of the RBF network parameters.The gradient descent algorithm is used
to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show
that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the
discharge and decrease the power consumed during the charge.

1. Introduction

Because of the energy crisis, utilization of renewable energy
sources such as wind and solar energy for electric power sup-
ply has received more and more attention in recent years.
However, the intermittent nature of most renewable energy
makes it highly dependent on reliable and economical energy
storage systems. All-vanadium redox flow battery (VRB) is a
promising candidate for the storage of renewable energy.
Compared with other redox batteries such as zinc bromine
battery and lead acid battery, VRB has many attractive fea-
tures, including long cycle life, high energy conversion effi-
ciency, flexible design, and low cost [1]. Moreover, the pro-
blem of electrolytes cross-contamination is avoided by using
the same element in both half cells.The potential applications
of VRB include load leveling, uninterruptible power supply
(UPS), and renewable energy storage [2]. Thus, it has good
application and development prospects.

The flowrate of the electrolyte is an important control
mechanism in the operation of a vanadium redox flowbattery

system. At low flowrates, the electrolyte is provided insuf-
ficiently for the chemical reaction and stagnant regions can
form in the electrode. The higher electrolyte flowrate will in-
crease the VRB performance. But on the other hand, if the
flowrate is too high, there is a risk of leakage, and the pump
consumption will increase, which will reduce the system effi-
ciency [3, 4]. In order to enhance system efficiency, the opti-
mal electrolyte flow rate should be determined.

Until recently, most researches are focused on the key
materials of VRB, and there is little information available in
the literature about the optimization of the electrolyte flow-
rate. An optimal strategy of electrolyte flowrate is proposed
in [3] to improve the system efficiency and keep the high
capacity simultaneously. At the beginning of the charge/
discharge process, VRB operates at the lower flowrate, and
then increases to higher flowrate when the voltage increases/
decrease to certain value. Energy efficiency, system efficiency,
and capacity at different operating modes are compared and
the optimal electrolyte flowrate is determined. Amultiphysics
model of the VRB is proposed in [5]. The battery power is
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represented during the charge/discharge as a function of flow
rate, states of charge (SOC), and the stack current. The opti-
mal flow rates are obtained by maximizing the power deliv-
ered during the discharge and minimizing the power con-
sumed during the charge. However, these optimal strategies
suffer from a serious drawback in the form of deterioration in
the performance when the system is operated under wide
range operating conditions or subjected to disturbance. To
overcome these drawbacks, controllers based on robust con-
trol techniques must have been used.

Model predictive control (MPC) is an application of opti-
mal control theory. In model predictive control, process
model is utilized to predict the future response of a plant. An
optimal control sequence is determined by solving a finite
horizon optimization problem online at each sampling in-
stant and the first control in this sequence is applied to the
plant [6]. Because of its ability to handle the multivariable/
nonlinear nature of the dynamics, constraints, and optimality
in an integrated fashion [7], MPC technology can now be
found in a wide variety of application areas including chemi-
cals, food processing, automotive, and aerospace applications
[8]. The performance of model predictive controller relies
upon the accuracy of the model on which it is based. How-
ever, the VRB suffers aging, reactant crossover, and load dis-
turbance that cause no well-known effects on the system dy-
namics; it is difficult to establish accurate mathematical
model. Moreover, the mathematical model is too complex for
online optimization, and a simpler model is therefore re-
quired. An attractive approach to tackle these problems is to
use neural networks as nonlinear models of the dynamic be-
havior of the process [9]. This is because multilayer networks
have a capability to learn and uniformly approximate nonlin-
ear functions to a prospected accuracy [10].

In this paper, a nonlinear model predictive control
scheme is proposed to maximize the power delivered by the
battery during the discharge and minimize the power con-
sumed during the charge.

2. VRB System Process Description

TheVRB system consisted of two key elements: the cell stack,
where electrochemical reaction occurred and the tanks of
electrolytes, where energy is stored. The electrolytes were
pumped from the tanks to the stack by a circulation system.
A schematic diagram of a vanadium redox flow batter is given
in Figure 1.

The main electrode reactions for the VRB are as follows:

cathode : V3+ + e− 󴀘󴀯 V2+ (1)

anode : VO2+ + H
2
O 󴀘󴀯 VO+

2
+ e− + 2H+ (2)

A multiphysics model of a VRB system with 19 cells is
introduced in [11], which is composed of the electrochemical
model and the mechanical model.
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Figure 1: A schematic diagram of a vanadium redox flow battery.

2.1. Electrochemical Model. The equilibrium potential of the
individual cells can be approximated using the Nernst equa-
tion (assuming unit activity coefficients) as follows:

𝐸cell = 𝐸
0

+
𝑅𝑇

𝐹
ln(

𝐶V2+𝐶V5+𝐶
2

H+

𝐶V3+𝐶V4+
) , (3)

where 𝐸
0 is the standard potential; 𝑇 is the cell temperature;

𝐶
𝑖
is the molar concentration of species 𝑖 in the cells. For sim-

plicity, they assuming that the concentration inside the cell
and tank is uniform and the time delay of electrolyte flow is
negligible, the concentration inside the cell and tank is given
by [12]

𝑑𝐶
𝑖

𝑑𝑡
=

𝑏𝐼 (𝑡)

𝑉cell𝐹
+

𝑄 (𝑡)

𝑉cell
(𝐶tank𝑖 − 𝐶

𝑖
) ,

𝑑𝐶tank𝑖
𝑑𝑡

=
1

𝑉tank
(−𝑉cell

𝑑𝐶
𝑖

𝑑𝑡
+

𝑏𝐼 (𝑡)

𝐹
) ,

(4)

where 𝐶tank𝑖 is the concentration inside the tank, 𝑉cell is the
volume of the cell, 𝑉tank is the volume of the tank, 𝐼(𝑡) is the
current, 𝑄(𝑡) is the electrolyte flowrate, and 𝑏 is a sign factor
that depends on the considered vanadium species 𝑖 (−1 for
V2+ and V5+ ions and 1 for V3+ and V4+ ions).

The H+ quantity in the catholyte increases by 1M (after
the migration) when 1M of vanadium V5+ is produced. So,
the H+ concentration in the catholyte at any state of charge is

𝐶H+ = 𝐶H+ ,discharged + 𝐶VO+
2

, (5)

where 𝐶H+,discharged is the protons concentration when the
electrolyte is completely discharged.
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Assuming that each individual cell composing the stack
has the same charging characteristics, the equilibrium voltage
𝑈eq of stack can be written as follows:

𝑈eq = 𝐸cell ⋅ 𝑁cell, (6)

where 𝑁cell is the number of cells.
The stack voltage 𝑈stack is decreased when current flows

through the stack because of several types of internal losses,
such as activation, concentration, and Ohmic losses. But
these internal losses are difficult to measure; here, we replace
them with equivalent resistance 𝑅eq, ch/disch:

𝑈loss = 𝜂act + 𝜂conc + 𝜂ohm = 𝐼 ⋅ 𝑅eq, ch/disch. (7)

So stack voltage 𝑈stack is given by

𝑈stack = 𝑈eq − 𝑈loss. (8)

Then the power of stack can be calculated as

𝑃stake = 𝑈stack ⋅ 𝐼. (9)

2.2. Mechanical Model. The circulation system pumps the
electrolytes from the tanks through the stack and back in the
tanks.The power consumed by pumps is expressed as follows:

𝑃mech = 2

(Δ𝑃pipes + Δ𝑃stack)𝑄 (𝑡)

𝜂pump
, (10)

where 𝜂pumps is the pump efficiency, Δ𝑃pipes is the pressure
drop in the pipes which can be obtained from the extended
Bernoulli equation. The pressure drop in the stack Δ𝑃stack is
proportional to the flowrate 𝑄(𝑡):

Δ𝑃stack = 𝑄 (𝑡) 𝑅̃, (11)

where 𝑅̃ is the hydraulic resistance obtained from FEM sim-
ulations [13].

2.3. Battery Power. In practice, 𝑃mech is provided from the
external power source during the charge and from the stack
during the discharge [5]. By convention, the stack current is
defined as positive during the discharge and negative during
the charge. Thus, the battery power 𝑃VRB is given by

𝑃VRB = 𝑃stake − 𝑃mech. (12)

3. Design of Nonlinear Model
Predictive Controllers

The schematic of the neural network predictive control
(NNPC) system developed in this research is shown in
Figure 2. The main steps of the NNPC algorithm are listed as
follows.

(1) Measure the input and output of the VRB system.
(2) Use the previous calculated control inputs and the

neural network identifier to compute the cost func-
tion.

yp

yu

u
∗

Optimizer NN model

VRB
system

Figure 2: Schematics of the NNPC system.

(3) Use the optimization algorithm to calculate a new
control vector.

(4) Repeat steps (2) and (3) till the desired optimal result
is achieved.

(5) Apply the first element of the control vector to the
VRB system.

(6) Update the parameters of the NN with the new train-
ing set.

(7) Repeat steps (1)–(6) for each time step.

3.1. Predictive Model Based on RBF Neural Network. Accord-
ing to previous section, the battery power can be expressed as
follows

𝑃VRB = 𝑔 (𝑄, 𝐼, 𝑇, 𝑡) . (13)

Suppose the stack current and temperature keep constant for
a certain amount of time. So, there is only one control vari-
able: the flowrate𝑄. The following NARXmodel can be used
to represent the VRB system:

𝑦 (𝑡) = 𝑓 (𝑦 (𝑡 − 1) , 𝑦 (𝑡 − 2) , 𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2)) , (14)

where 𝑦 is the battery power, 𝑢 is the flowrate, and 𝑓(⋅) is an
unknown nonlinear function that needs to be identified. Ra-
dial basis function (RBF) networks having one hidden layer
were proven to be universal approximator [14]. Because of the
advantages of easy design and good generalization, a RBFnet-
work is used to identify the nonlinear function𝑓(⋅) in this pa-
per. The structure of the RBF network is shown in Figure 3.

A Gaussian function is used as the activation function. So
at the hidden layer, the output of RBF unit 𝑖 is

𝜑
𝑖
(𝑥) = exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑐
𝑖

󵄩󵄩󵄩󵄩

2

2𝜎
2

𝑖

) (𝑖 = 1, 2, . . . , 5) , (15)

where 𝑥(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)]
𝑇 is the

input of RBF network. 𝑐
𝑖
and 𝜎
𝑖
are the center andwidth of the

𝑖th unit, respectively.



4 Journal of Applied Mathematics

x1

x2

x3

x4

w1

w2

w3

w4

w5

𝜑

𝜑

𝜑

𝜑

𝜑

Σ

yp

Input layer
with 4nodes

Hidden layer
with 5nodes

Output layer
with 1node

Figure 3: The structure of the RBF network.

The network output is calculated by

𝑦 =

5

∑

𝑖=1

𝑤
𝑖
𝜑
𝑖
(𝑥) , (16)

where 𝑤
𝑖
is the weight value on the connection between RBF

unit 𝑖 and network output. The one-step ahead prediction is
given by

𝑦 (𝑡 + 1) = 𝑓
𝑁𝑁

(𝑦 (𝑡) , 𝑦 (𝑡 − 1) , 𝑢 (𝑡) , 𝑢 (𝑡 − 1)) . (17)

The 𝑗-step ahead prediction of the system’s output is calcu-
lated by feeding back themodel outputs (instead of the future
system’s outputs which do not exist) to the input nodes of the
network [15].

Consider the following:

𝑦 (𝑡 + 𝑗) = 𝑓
𝑁𝑁

(𝑦 (𝑡 + 𝑗 − 1) , 𝑦 (𝑡 + 𝑗 − 2) ,

𝑢 (𝑡 + 𝑗 − 1) , 𝑢 (𝑡 + 𝑗 − 2)) .

(18)

The computational burden of the optimization problem
showed in next subsection increases with the complexity of
RBF network structure. In order to simplify the RBF network
structure and simultaneously ensure the approximation accu-
racy, in this study, genetic algorithm (GA) is adopted to ob-
tain the optimum initial values of the RBF network parame-
ters before training the RBF network. These parameters in-
clude the output weights, the centers, and widths of the hid-
den unit.

3.2. The Objective Function Optimization Algorithm. There
are different forms of the objective function under different
control requirements. In this study, our purpose is to maxi-
mize the power delivered by the battery during the discharge

and minimize the power consumed during the charge while
ensuring the control signal is smooth. Noticing that the bat-
tery power is positive during the discharge and negative dur-
ing the charge, the objective function is given as follows:

min 𝐽(𝑡) = −

𝑛

∑

𝑗=1

𝑦 (𝑡 + 𝑗) +
1

2

𝑚

∑

𝑖=1

𝜆Δ𝑢
2

(𝑡 + 𝑖 − 1) (19)

subject to constraints

𝑢min ≤ 𝑢 (𝑡 + 𝑖 − 1) ≤ 𝑢max (𝑖 = 1, 2, . . . , 𝑚) ,

𝑦min ≤ 𝑦 (𝑡 + 𝑗) ≤ 𝑦max (𝑗 = 1, 2, . . . , 𝑛) ,

(20)

where Δ𝑢(𝑡 + 𝑖 − 1) = 𝑢(𝑡 + 𝑖 − 1) − 𝑢(𝑡 + 𝑖 − 2), 𝜆 > 0 is weight
coefficient, and 𝑛 and 𝑚 are the predictive horizon and con-
trol horizon, respectively. The vector of the control variables
is obtained from the minimization of the objective function
over the specified horizon.The control vector is available only
within the control horizon andmaintains constant afterward,
that is, 𝑢(𝑡+𝑖) = 𝑢(𝑡+𝑚−1) for 𝑖 = 𝑚, . . . , 𝑛−1. Only the first
element of the optimized control sequence is implemented on
the process.

Since the function 𝜑 is nonlinear, an analytical solution of
the objective function is not possible. Stochastic optimization
algorithms such as genetic algorithm and simulated anneal-
ing suffer from the drawback of slow convergence, which
make them not suitable for online control. Since the objective
function surface is simple, the gradient based method is an
appropriate choice. Based on the gradient based method, for
a given iterative step 𝑖, the control vector can be calculated as
follows:

𝑢
𝑘

(𝑡 + 𝑖 − 1) = 𝑢
𝑘−1

(𝑡 + 𝑖 − 1) + Δ𝑢
𝑘

(𝑡 + 𝑖 − 1)

(𝑖 = 1, 2, . . . , 𝑚) ,

Δ𝑢
𝑘

(𝑡 + 𝑖 − 1) = −𝜂
𝜕𝐽

𝜕𝑢 (𝑡 + 𝑖 − 1)
+ 𝛼Δ𝑢

𝑘−1

(𝑡 + 𝑖 − 1) ,

(21)

where 𝜂 is the learning rate and 𝛼Δ𝑢
𝑘−1

(𝑡+ 𝑖−1) is referred to
as the additional momentum term. The initial value of 𝑢(𝑡 +

𝑖 − 1) in the iteration at each sampling period is defined as

𝑢
0

(𝑡 + 𝑖 − 1) = 𝑢 (𝑡 − 1) . (22)

Constraints on control sequence can be handled as follows:
when any one of the 𝑢(𝑡+𝑖) reaches its limit, this control input
is then set to be equal to its limit [16].

The derivative of the objective function at time 𝑡 + ℎ − 1,

ℎ = 1, 2, . . . , 𝑚 can be written as follows:

𝜕𝐽

𝜕𝑢 (𝑡 + ℎ − 1)
= −

𝑛

∑

𝑗=1

𝜕𝑦 (𝑡 + 𝑗)

𝜕𝑢 (𝑡 + ℎ − 1)

+

𝑚

∑

𝑖=0

𝜆Δ𝑢 (𝑡 + 𝑖)
𝜕Δ𝑢 (𝑡 + 𝑖)

𝜕𝑢 (𝑡 + ℎ − 1)
.

(23)
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Table 1: The characteristics of the VRB stack.

Name Value
Number of cells 𝑁cells 19
𝑅charge 0.037Ω

𝑅discharge 0.039Ω

Electrolyte vanadium concentration 2mol/L
Initial 𝐻+ concentration 5mol/L
Tank size 𝑉tk 83 L
Flow resistance 𝑅̃ 14186843 Pa/m3

Cell temperature 𝑇 298K
Standard potential 𝐸0 1.255V

The partial derivative can be calculated by the chain rule:

𝜕𝑦 (𝑡 + 𝑗)

𝜕𝑢 (𝑡 + ℎ − 1)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜕𝑓
𝑁𝑁

𝜕𝑥
3

, 𝑗 = ℎ,

𝜕𝑓
𝑁𝑁

𝜕𝑥
1

𝜕𝑥
1

𝜕𝑢 (𝑡 + ℎ − 1)

+
𝜕𝑓
𝑁𝑁

𝜕𝑥
4

, 𝑗 = ℎ + 1,

𝜕𝑓
𝑁𝑁

𝜕𝑥
1

𝜕𝑥
1

𝜕𝑢 (𝑡 + ℎ − 1)

+
𝜕𝑓
𝑁𝑁

𝜕𝑥
2

𝜕𝑥
2

𝜕𝑢 (𝑡 + ℎ − 1)
, ℎ + 2 ≤ 𝑗 ≤ 𝑛,

(24)

where 𝑥(𝑡 + 𝑗) = [𝑦(𝑡 + 𝑗 − 1), 𝑦(𝑡 + 𝑗 − 2), 𝑢(𝑡 + 𝑗 − 1),

𝑢(𝑡 + 𝑗 − 2)]
𝑇 is the input vector at time 𝑡 + 𝑗:

𝜕𝑓
𝑁𝑁

𝜕𝑥
𝑙

=

5

∑

𝑖=1

𝑤
𝑖
exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑐
𝑖

󵄩󵄩󵄩󵄩

2

2𝜎
2

𝑖

)
𝑐
𝑖𝑙
− 𝑥
𝑙

𝜎
2

𝑖

, 𝑙 = 1, 2, 3, 4,

(25)

where 𝑥
𝑙
represents the network input vector of 𝑦 and 𝑢.

𝜕Δ𝑢(𝑡 + 𝑖)/𝜕𝑢(𝑡 + ℎ − 1) can be given by

𝜕Δ𝑢 (𝑡 + 𝑖 − 1)

𝜕𝑢 (𝑡 + ℎ − 1)
=

{{

{{

{

1, 𝑖 = ℎ,

−1, 𝑖 = ℎ + 1,

0, else.
(26)

4. Simulation

To investigate the performance of the proposed controller, a
19 cells, 2.5 kW, 6 kWh VRB is simulated. Its main character-
istics are listed in Table 1 [5].

4.1. Identification. In order to reduce the online computing
time, the RBF network was trained offline before being ap-
plied to online control. The multiphysics model developed in
Section 2 was used for train data generation. An input-output
data set to train the RBF network was obtained by randomly
changing the manipulated variable, 𝑄, within the range of
0.05–0.7 and normalized between −1 and +1. The sampling
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Figure 4: Physical model and RBFmodel outputs for battery power
during the discharge at 100A.

time is set as 5 s. 1026 samples were used for the training,
while 513 samples were used for validation. The initial values
of the RBF network parameters were optimized by GA. After
the optimum initial values were obtained, the Levenberg-
Marquardt algorithmwas used as training algorithm to adjust
the network parameters. Rootmean square error (RMSE)was
employed to evaluate the accuracy of RBF network model.
The training was terminated after 500 iterations; the obtained
value of RMSE is 1.6591. Figure 4 shows the validation results.
From the results of Figure 4, it can be observed that the RBF
network can accurately represent the VRB dynamics.

The RBF network trained offline works well when there
are no disturbances. However, it can not accurately represent
the VRB dynamics when VRB system is subjected to uncer-
tainty. So, the RBF network requires to train online to adapt
with the change in the process. Newest 100 samples were used
for training.

4.2. Control Results. Normally, in a charge-discharge cycle,
the battery is charged at constant current, the battery SoC in-
creases from 2.5% (discharged) to 97.5%, and then it is dis-
charged at constant current until it reached its initial SoC [11].
The predictive horizon and the control horizons for NMPC
are chosen as 4 and 1, respectively. The parameter 𝜆 is set to
10000.The lower limit and upper limit of flowrate are 0.05 L/s
and 2 L/s, respectively. In normal working condition, the bat-
tery is charged/discharged at constant current. Assuming at
𝑡 = 5000 s, a disturbance on generator speed causes the charge
current to change from 100A to 95A, and at 𝑡 = 12000 s,
a load disturbance causes the discharge current to change
from 100A to 110A. Figure 5 shows the battery power during
a charge-discharge cycle when influenced by a series of step
changes in stack current.The corresponding optimal flowrate
that is shown in Figures 6 and 7 shows the comparison of bat-
tery power during a charge-discharge cycle at different flow-
rate. Comparedwith the battery power at𝑄 = 0.3, the average
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Figure 5: Battery power during a charge-discharge cycle.
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Figure 6: Optimal flowrate during a charge-discharge cycle.

power consumed during the charge at optimal flowrate
decreased by 10.80W, and the average power delivered by the
battery during the discharge increased by 10.62W.

5. Conclusions

The electrolyte flowrate of VRB system was optimized online
using model predictive control based on artificial neural net-
works. An RBF network is built to predict the future battery
power. In order to reduce the computational burden of the
optimization problem, the hidden layer nodes were chosen as
5. The RBF network model was found to be valid for wide
flowrate variation with random load disturbances. The gra-
dient descent algorithm method is used to realize the opti-
mization procedure. Simulation result at different flowrate
indicates that the proposed controller can enhance the output
power of battery during the discharge and reduce the operat-
ing cost during the charge. Future works will focus on control
strategy for VRB and wind farm combined system.
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Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding.
By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based
BacktrackingOrthogonalMatching Pursuit (TBOMP) algorithm is presentedwith the idea of the treemodel inwavelet domain.The
algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of
signal sparsity.Thus, the atom selection process will be more structural and the search space can be narrowed. Moreover, according
to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each
iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms,
simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.

1. Introduction

Compressive sensing (CS) [1, 2] aims to recover sparse or
compressible signal with low amount of information and high
probability. It breaks the traditional rule of Nyquist sampling
theorem, which states that a signal’s information is preserved
if it is uniformly sampled at a rate at least two times faster than
its Fourier bandwidth. By this state-of-the-art signal com-
pression and processing theory, the signal sampling fre-
quency, the cost of processing time, data storage, and trans-
mission can be greatly reduced.

For a given orthogonal basis Ψ = {𝜓
1
, . . . , 𝜓

𝑁
}, the signal

𝑥 ∈ 𝑅
𝑁×1 can be represented in terms of the coefficient vector

𝛼 as

𝑥 =

𝑁

∑

𝑘=1

𝜓
𝑘
𝛼
𝑘
= Ψ𝛼. (1)

The corresponding inverse transformation is 𝛼 = Ψ
𝐻

𝑥,
ΨΨ
𝐻

= Ψ
𝐻

Ψ = 𝐼, and Ψ ∈ 𝐶
𝑁×𝑁. Here, 𝐼 is the identity

matrix. We say that 𝑥 is𝐾-sparse under the orthogonal basis
Ψ if only𝐾 ≪ 𝑁 coefficients 𝛼

𝑘
of 𝑥 are nonzero.

Usually, the signal is not sparse but its coefficient can be
considered to be sparse or compressible after some transfor-
mations, such as the wavelet transformation.

Suppose that a matrix Φ represents the𝑀×𝑁measure-
mentmatrix.Then𝛼 is accomplished by collecting ameasure-
ment vector 𝑦 of dimension 𝑀 with 𝑀 ≪ 𝑁. 𝑦 can be
expressed as 𝑦 = Φ𝛼. Then, (1) becomes

𝑦 = Φ𝛼 = ΦΨ
𝐻

𝑥. (2)

Φ is called as the CS measurement matrix and its columns
are called atoms. The matrix Φ is rank deficient and hence
loses information in general. The CS reconstruction problem
wishes to recover the coefficient vector 𝛼 from the set of 𝑀
linear measurements 𝑦. Since 𝑀 < 𝑁, the reconstruction of
𝛼 from 𝑦 is generally ill-posed.

The two major algorithmic approaches to sparse recov-
ery are methods based on (𝑙

1
) minimization and iterative
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methods (matching pursuits). We now briefly describe these
methods, as follows.

1.1. (𝑙
1
) Minimization. The sparse recovery of this approach

can be stated as the problem of finding the sparsest signal 𝛼 =

Ψ
𝐻

𝑥 with the given measurements 𝑦:

(𝑙
0
) : min 󵄩󵄩󵄩󵄩󵄩Ψ

𝐻

𝑥
󵄩󵄩󵄩󵄩󵄩𝑙0

s.t. 𝑦 = ΦΨ
𝐻

𝑥.

(3)

Donoho and his associates advocated the principle that
for some measurement matrices Φ, the highly nonconvex
combinatorial optimization problem (𝑙

0
) should be equiva-

lent to its convex relaxation:

(𝑙
1
) : min 󵄩󵄩󵄩󵄩󵄩Ψ

𝐻

𝑥
󵄩󵄩󵄩󵄩󵄩𝑙1

s.t. 𝑦 = ΦΨ
𝐻

𝑥.

(4)

Reference [3] showed that if the measurement matrix sat-
isfies the restricted isometry property (RIP), then a𝐾-sparse
signal can be recovered exactly; that is,

(1 − 𝛿
𝐾
) ‖𝑥‖
2

2
≤ ‖Φ𝑥‖

2

2
≤ (1 + 𝛿

𝐾
) ‖𝑥‖
2

2
. (5)

𝛿
𝐾
is called as the Restricted Isometry Constant of Φ. It has

been shown that (𝑙
1
) minimization can recover a sparse signal

exactly under various conditions on restricted isometry con-
stants, see [4, 5]. Then, the convex problem (𝑙

1
) can be solved

using method of convex and even linear programming.

1.2. Orthogonal Matching Pursuit (OMP). An alternative
approach to sparse recovery is via iterative algorithms, which
find the support of the𝐾-sparse signal 𝛼 progressively. Once
𝑆 = supp(𝛼) is found correctly, it is easy to compute the signal
𝛼 from its measurements 𝑦 as 𝛼 = (Φ

𝑆
)
−1

𝑦, whereΦ
𝑆
denotes

the measurement matrixΦ restricted to columns indexed by
𝑆.

A basic iterative algorithm is Orthogonal Matching Pur-
suit (OMP) [6]. OMP recovers the support of 𝛼, one index at
a time, in 𝑛 steps. Under a hypothetical assumption that is an
isometry, that is, the columns ofΦ are orthogonal, the signal
𝛼 can be exactly recovered from its measurements 𝑦 as 𝛼 =

Φ
∗

𝑦.
The problem is that the 𝑀 × 𝑁 matrix Φ is never an

isometry in the interesting range where the number of mea-
surements𝑀 is smaller than the ambient dimension𝑁. Even
though the matrix is not an isometry, one can still use the
notion of coherence in recovery of sparse signals. In that
setting, greedy algorithms are used with incoherent dictio-
naries to recover such signals, see [7, 8]. In our setting, for the
commonly used random matrices, one expects the columns
to be approximately orthogonal, and the observation vector
𝛼 = Φ

∗

𝑦 to be a good approximation to the original signal 𝛼.
Tropp and Gilbert [6] analyzed the performance of OMP

for Gaussian measurement matrices Φ; a similar result holds
for general sub-gaussianmatrices.They proved that, for every

fixed 𝐾-sparse 𝑁-dimensional signal 𝛼 and a random Gaus-
sian measurement matrix Φ, OMP recovers (the support of)
𝛼 from the measurements 𝑦 correctly with high probability,
provided the number of measurements is𝑀 ∼ 𝐾 log𝑁.

The (𝑙
1
)-minimization method has the strongest known

guarantees of sparse recovery. Once the measurement matrix
Φ satisfies the Restricted Isometry Condition, this method
works correctly for all sparse signals 𝛼. (𝑙

1
)-minimization is

based on linear programming, which has its advantages and
disadvantages. One thinks of linear programming as a black
box and any development of fast solvers will reduce the run-
ning time of the sparse recovery method. On the other hand,
it is not very clear what this running time is, as there is no
strongly polynomial time algorithm in linear programming
yet. All known solvers take time polynomial not only in the
dimension of the program 𝑁 but also on certain condition
numbers of the program. While for some classes of random
matrices the expected running time of linear programming
solvers can be bounded, estimating condition numbers is
hard for specific matrices. For example, there is no result yet
showing that the Restricted Isometry Condition implies that
the condition numbers of the corresponding linear program
is polynomial in𝑁.

OMP is quite fast, both theoretically and experimentally.
It makes 𝑛 iterations, where each iteration amounts to a mul-
tiplication by a𝑁×𝑀matrixΦ∗ (computing the observation
vector 𝛼) and solving a least squares problem in dimensions
at most𝑀×𝑛. This yields strongly polynomial running time.
In practice, OMP is observed to perform faster and is easier to
implement than (𝑙

1
)-minimization. For more details, see [6].

OMP is quite transparent; at each iteration, it selects a new
coordinate from the support of the signal 𝛼 in a very specific
and natural way. In contrast, the known (𝑙

1
)-minimization

solvers, such as the simplex method and interior point meth-
ods, compute a path toward the solution. However, the geom-
etry of (𝑙

1
) is clear, whereas the analysis of greedy algorithms

can be difficult simply because they are iterative.
On the other hand, OMP has weaker guarantees of exact

recovery. Unlike (𝑙
1
)-minimization, the guarantees of OMP

are nonuniform: for each fixed sparse signal 𝛼 and not for all
signals, the algorithm performs correctly with high probabil-
ity. Rauhut has shown that uniform guarantees for OMP are
impossible for natural random measurement matrices [9].

Moreover, OMP’s condition on measurement matrices
given in [6] is more restrictive than the Restricted Isometry
Condition. In particular, it is not known whether OMP suc-
ceeds in the important class of partial Fourier measurement
matrices.

These open problems about OMP, first stated in [6] and
often reverberated in the Compressed Sensing community,
motivated the recentworks on themodifiedOMPalgorithms,
such as the model-based Compressive Sensing [10], Tree-
Based Orthogonal Matching Pursuit [11], Compressive Sam-
pling Matching Pursuit (CoSaMP) [12], Regularized Orthog-
onal Matching Pursuit (ROMP) [13], and Backtracking-
BasedMatching Pursuit (BAOMP) [14]. ROMP and CoSaMP
require the sparsity level as an input parameter. However,
in the most practical applications, this information may not
be known before reconstruction. Although the sparsity level
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is not required for the OMP and BAOMP, they do not use
the characteristics of the sparse representation, such as the
tree structure of wavelet transform. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm is presented based on the tree model in wavelet
domain. Our algorithm converts the wavelet tree structure to
the corresponding relations of candidate atoms without the
prior information of signal sparsity level. Also, combing with
the backtracking algorithm, the unreliable atoms can be
deleted. Compared with OMP, ROMP, and BAOMP algo-
rithms, the atom selection process will be more traceable,
normalizable, and structural.

2. Tree-Based Backtracking Orthogonal
Matching Pursuit (TBOMP) Algorithm

In this section, we will first review the wavelet tree structure.
Second, the proposed TBOMP algorithmwill be presented in
detail.

2.1. Wavelet Tree Structure. Consider a signal 𝑥 of length𝑁 =

2
𝐿, after 𝐿-level wavelet transformations, the set of 𝐾-tree
sparse signals is defined as

Γ
𝑘
=

{

{

{

𝑥 = 𝜐
𝐿
] +
1

∑

𝑖=𝐿

2
𝐿−𝑖

∑

𝑗=1

𝜔
𝑖,𝑗
𝜓
𝑖,𝑗

: 𝜔|
Ω
𝐶 = 0, |Ω| = 𝐾

}

}

}

, (6)

where ] is the scaling function and𝜓
𝑖,𝑗
is the wavelet function

at scale 𝑖 and offset 𝑗. The wavelet transform consists of the
scale coefficient 𝜐

𝐿
and wavelet coefficients 𝜔

𝑖,𝑗
at scale 𝑖, 1 ≤

𝑖 ≤ 𝐿, and position 𝑗, with 1 ≤ 𝑗 ≤ 2
𝐿−𝑖.

Suppose that 𝛼 = [𝜐
𝐿
, 𝜔
𝐿,0

, 𝜔
𝐿−1,0

, 𝜔
𝐿−1,1

, 𝜔
𝐿−2,0

, . . . ]
𝑇 is

the vector of the scaling and wavelet coefficients of 𝑥with the
maximum decomposition level 𝐿. Also, it is a set of wavelet
coefficients Ω forms a connected subtree [10]. The set Ω

defines a subspace of signals whose support is contained in
Ω, which means that all wavelet coefficients outside Ω are
approximately zero. The nested structure of wavelet coef-
ficients creates a parent/child relationship between wavelet
coefficients at different scales. We say that 𝜔

𝑖+1,⌊𝑗/2⌋
(⌊⋅⌋

denotes rounded down) is the parent of 𝜔
𝑖,𝑗
. Also, 𝜔

𝑖−1,2𝑗
and

𝜔
𝑖−1,2𝑗+1

are the children of 𝜔
𝑖,𝑗
. These relations can be

expressed graphically by the wavelet coefficient tree in Fig-
ure 2(a).The relationship between the parent and child nodes
is that the index value of the parent node in a level is 1/2 times
the index of the child node.

A kind of tree structure (greedy tree) was proposed in
[15]. For the greedy tree, if a coefficient is significant then
its child and all of its grandchildren are likely significant
[11]. Figure 1 depicts two cases of greedy tree approximation.
The number of each node is the wavelet coefficient modulus.
Nodes not labeled depict zeros. In the first case, the wavelet
coefficients decay monotonically along the tree branches
toward the leaves. Suppose that the wavelet treeΩ containing
𝑃 wavelet coefficients; that is, |Ω| = 𝑃. The 𝑃-term greedy
tree approximation (here, we assume that 𝑃 = 4) can be pro-
ceeded in three steps: (1) find the𝑝,𝑝 ≤ 4 largest wavelet coef-
ficient terms; (2) form the smallest connected rooted subtree

that contains all of these 𝑝 coefficients; and then (3) increase
𝑝 until |Ω| = 4.

Initializing 𝑝 = 2, two coefficients 10 and 8 will be found
and will form a minimum, connected subtree Ω. Gradually
increase 𝑝 until 𝑝 = 4, the greedy tree approximation forms
the connected rooted subtree Ω, 10-8-4-3, with 4 nodes that
maximize the sum of the wavelet coefficients in the subtree.
This process was shown in Figure 1(a), the error is small.
Another case was shown in Figure 1(b), when the wavelet
coefficients do not decay monotonically along the tree
branches toward the leaves, an isolated significant coefficient
away from the root will be selected, either of its all ancestor
coefficients. These ancestor coefficients may be very small,
which will increase the approximation error. For example,
initializing 𝑝 = 2, then two coefficients 10 and 8 will be found
and the resulted subtree is 10-0-0-8 with 𝑝 = |Ω| = 4. Obvi-
ously, the error is large.

We can see that the process of greedy tree approximation
is simple, but when the tree includes isolated large coefficients
far from the tree root, the approximation error will be
increased. Thus, backtracking is imposed to deleting the
wrong nodes selected by the greedy tree. This will be illus-
trated in the Section 2.2.

2.2. Tree-Based Backtracking Orthogonal Matching Pursuit
(TBOMP) Algorithm. Our proposed Tree-based Backtrack-
ing Orthogonal Matching Pursuit (TBOMP) is as follows.

Algorithm 1 (TBOMP).

Symbol Description

𝜔—wavelet high frequency coefficient vector;
𝜔̂—reconstruction wavelet high frequency coefficient
vector;
𝐴—measurement matrix, 𝑦 = 𝐴𝜔;
𝑎
𝑖
—the 𝑖th column vector of 𝐴, 1 ≤ 𝑖 ≤ 𝑁;

𝜇
1
, 𝜇
2
—parameters of thresholds, 𝜇

1
, 𝜇
2
∈ [0, 1];

Λ
𝑛
—index set,Λ denotes the index set of all columns

{𝑎
𝑖
} of matrix 𝐴;

𝑛max—number of maximum iterations allowed;
Γ
𝑛
—atom-deleting set in the 𝑛th iteration;

𝐶
𝑛
—candidate set of the root atoms in the 𝑛th

iteration;
𝐹
𝑛
—family set that consists of the subtrees corre-

sponding to the root nodes in 𝐶
𝑛
.

Initialization. 𝑟
0
= 𝑦 (initial residual), Λ

0
= 0, Γ

0
= 0, and

𝐶
0
= 0.

Loop

(1) Initial selection: select the candidate set𝐶
𝑛
with abso-

lute values of correlations satisfying:
󵄨󵄨󵄨󵄨󵄨
⟨𝑟
𝑛−1

, 𝑎
𝐶𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
≥ 𝜇
1
⋅max
𝑖∈Λ 𝑛

󵄨󵄨󵄨󵄨⟨𝑟𝑛−1, 𝑎𝑖⟩
󵄨󵄨󵄨󵄨 ,

Λ
𝑛
= Λ \ Λ

𝑛−1
.

(7)
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Figure 1: Greedy tree search.
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(a) Wavelet tree structure
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2
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(b) Process of tree nodes selection in the
TBOMP

Figure 2: Wavelet tree structure.

(2) According to the 2-times relationship of wavelet tree
node indices, find thewavelet tree rooted at each node
in 𝐶
𝑛
. Then the family set 𝐹

𝑛
consists of the atoms

indexed by 𝐶
𝑛
and all of their families can be found.

For example, assume that 𝐶
𝑛
= {𝑐
1

𝑛
, 𝑐
2

𝑛
, . . . , 𝑐

𝑄

𝑛
}, then

the wavelet subtrees rooted at 𝑐1
𝑛
, 𝑐
2

𝑛
, . . . , 𝑐

𝑄

𝑛
will be

found, respectively, in this step.The index sets of these
𝑄 trees are denoted as 𝐹1

𝑛
, 𝐹
2

𝑛
, . . . , 𝐹

𝑄

𝑛
.

(3) Compute 𝜔̂𝑛
𝐹
𝑞

𝑛

= (𝐴
𝐻

𝐹
𝑞

𝑛

𝐴
𝐹
𝑞

𝑛
)
−1

𝐴
𝐻

𝐹
𝑞

𝑛

𝑦, 1 ≤ 𝑞 ≤ 𝑄.

(4) Find 𝐹
𝑞

𝑛
such that 𝜔𝑛

𝐹
𝑞

𝑛

minimizing the residual as fol-
lows:

𝑞 = arg min
1≤𝑞≤𝑄

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝐴

𝐹
𝑞

𝑛
𝜔̂
𝑛

𝐹
𝑞

𝑛

󵄩󵄩󵄩󵄩󵄩2
. (8)

(5) Select atom deleting index set Γ
𝑛
satisfying

󵄨󵄨󵄨󵄨󵄨󵄨
𝜔̂
𝑛

Λ 𝑛−1∪𝐹
𝑞

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜇
2
⋅max

󵄨󵄨󵄨󵄨󵄨󵄨
𝜔̂
𝑛

𝐹
𝑞

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
. (9)

(6) SetΛ
𝑛
= {Λ
𝑛−1

∪𝐹
𝑞

𝑛
} \Γ
𝑛
, 𝑎
{𝑖:𝑖∈Λ 𝑛}

= 0, and update the
residual as follows:

𝑟
𝑛
= 𝑦 − 𝐴

Λ 𝑛
𝜔̂
𝑛

Λ 𝑛

. (10)

(7) If ‖𝑟
𝑛
‖
2
< 𝜀or if 𝑛 = 𝑛max, quit the iteration; otherwise,

set 𝑛 = 𝑛 + 1, go to step 1.

End Loop.

Output. the estimated support set Λ
𝑛
and the nonzero values

𝜔̂
Λ 𝑛

= (𝐴
𝐻

Λ 𝑛

𝐴
Λ 𝑛
)
−1

𝐴
𝐻

Λ 𝑛

𝑦.
As seen in the above algorithm, we combined the charac-

teristics of tree structure and the BAOMP algorithm. In the
first step, TBOMP selects candidate set𝐶

𝑛
whose correlations

between the columns of Φ
Λ 𝑛

and the residual 𝑟
𝑛−1

are not
smaller than 𝜇

1
⋅max
𝑖∈Λ 𝑛

|⟨𝑟
𝑛−1

, 𝑎
𝑖
⟩|,Λ
𝑛
= Λ\Λ

𝑛−1
. Here, the

constant 𝜇
1
is used to adaptively decide how many atoms are

chosen at each time.Then the atoms corresponding to the ele-
ments of 𝐶

𝑛
are set as the root nodes of subtrees. As we men-

tioned in Section 2.1, due to the 2-times relationship between
the indices of parent and child nodes, the subtree of each atom
corresponding to an index in 𝐶

𝑛
can be found to form the

family set𝐹𝑞
𝑛
, which consists of the indices of the family atoms

in the 𝑞th subtree. In the third step, least square method is
applied to obtain the reconstruction wavelet high frequency
coefficients 𝜔̂𝑛

𝐹
𝑞

𝑛

corresponding to the atoms indexed by 𝐹
𝑞

𝑛
.

Then the optimal subtree indexed by 𝐹
𝑞

𝑛
will be selected

according to step (4). In this step, theremay exist insignificant
atoms in 𝑎

𝐹
𝑞

𝑛

. This is because that we only simply applied the
2-times relationship discipline in the searching processing of
subtrees. Thus, the backtracking deleting method is intro-
duced in the algorithm to identify the true support set of 𝐹𝑞

𝑛
.

The backtracking deleting set Γ
𝑛
consists of the indices cor-

responding to all the reconstructed coefficients satisfying (9).
Then, the index set is updated byΛ

𝑛
= {Λ
𝑛−1

∪𝐹
𝑞

𝑛
} \Γ
𝑛
at this

iteration. According to the atoms corresponding to the
indices in the set Λ

𝑛
, the reconstruction coefficients 𝜔̂𝑛

Λ 𝑛

can
be computed. Finally, update the residual by (10) and go to the
next iteration. If ‖𝑟

𝑛
‖
2
< 𝜀 or 𝑛 = 𝑛max, quit the iteration.

In the TBOMP, the process of tree nodes selection was
shown in Figure 2; the first step of the algorithm is to select
candidate set 𝐶

𝑛
by (7). For example, suppose that 𝐶

1
=

{𝜔
𝐿,0

, 𝜔
𝐿−2,3

} was chosen at the first iteration. The nodes of
subtreeB rooted at𝜔

𝐿,0
and the family nodes rooted at𝜔

𝐿−2,3

are the significant coefficients needed to be found. According
to the 2-times relationship of wavelet tree node indices and
Figure 2(b), 𝜔

𝐿−1,0
and 𝜔

𝐿−2,0
are the child and grandchild

nodes of 𝜔
𝐿,0
. Thus, subtree A rooted at the node 𝜔

𝐿,0
will

be found in the first iteration.
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Figure 3: Reconstruction signal by TBOMP algorithm.
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Figure 4: Reconstruction of TBOMP algorithm.

Nowwe assume that the subtreeA is the optimal tree cor-
responding to𝜔

𝐿,0
. At the end of this iteration, the backtrack-

ing algorithm will remove the node 𝜔
𝐿−2,0

according to step 5
of the TBOMP algorithm described above. In the remaining
iteration, node 𝜔

𝐿−2,1
will be choosen as the child node

of 𝜔
𝐿−1,0

. Ultimately, subtree B will be found accurately.
Analogously, the searching process of the subtree rooted at
the node 𝜔

𝐿−2,3
is the same, and it can be proceeded simul-

taneously.
These characteristics of tree structure provide a new way

for the study of reconstruction algorithm. Thanks to the tree
structure of wavelet coefficients, when the signal is sparsely
represented by the wavelet transform, it also provides a clew
for the selection of atoms in the reconstruction algorithm.
This will greatly improve the reliability of the atom selection.

The coefficients of wavelet decomposition include low-
frequency coefficients and high-frequency coefficients (scal-
ing coefficients and wavelet coefficients in 𝛼).Themore levels
of wavelet decomposition, the less low-frequency coefficients,
and more important information is reserved in the high-
frequency coefficients. Compared with the high-frequency
coefficients, the number of low-frequency coefficients are
much less if the decomposition level is big enough. Since
the low-frequency coefficients play an important role in the
wavelet reconstruction, in our proposed algorithm, only the
high-frequency coefficients are measured by measurement

matrix. For the reconstruction, we combine the reconstructed
high-frequency coefficients 𝜔̂ and the unprocessed low-
frequency coefficients. Then the inverse wavelet transform is
applied to obtain a reconstructed 𝑥 of the original signal 𝑥.

3. Simulation Results

In this section, several experiments will be given for the
TBOMPalgorithm. In the first experiment, the original signal
𝑥 is a one-dimensional blocks signal with length 𝑁 = 256.
It was recovered from 𝑀 = 64 measurements by using the
Gaussian random measurement matrix. The wavelet decom-
position level is 4 and the wavelet function is Db1. Figure 3
shows the reconstruction result of 7th iterations by using the
TBOMP algorithm.

In the first iteration of the TBOMP algorithm, according
to the parent-child relations of wavelet tree, some unreliable
atoms will be chosen, which leads to a wrong reconstruction
result. Asmarked by the cycles in Figure 4(a).Then according
to the backtracking deleting method, the wrong selected
atoms can be deleted. After the second and the third itera-
tions, some atoms are still not found. After the 7th iteration,
the reconstruction result (Figure 3(c)) with TBOMP algo-
rithm is exactly same as the original wavelet coefficients
shown in Figure 3(b).
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(f) A zoom-in view of Figure 5(e)

0 500 1000 1500 2000

−4

−5

−3

−2

−1

0

1

2

3
SNR = 34.8215

Original
Recovery

(g) Original and Reconstruction signals of
Heavysine signal by OMP

1200 1300 1400 1500 1600

Original
Recovery

1700

−2

−1.5

−2.5

−1

−0.5

0

0.5

1

1.5
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Figure 5: Reconstruction results of Doppler and HeavySine signal by TBOMP and OMP algorithms.

Similar results can be obtained for other signals. Recon-
struction results of Doppler and Heavysine signals by using
our TBOMP algorithm are shown in Figure 5. Here, we com-
pared our reconstruction results with the classical OMP algo-
rithm,𝑀/𝑁 = 1/4.

In the next experiment, wewill compare theTBOMPwith
some popular algorithms such as OMP, ROMP, and BAOMP.
Here, only the high frequency coefficients are measured; the
low-frequency coefficients will not be processed [16]. The
wavelet function is choosen as the “sym8” in MATLAB. The
decomposition level is 5 for these four algorithms. Define
SNR = 20 log

10
(std(𝑥)/std(𝑥 − 𝑥)), where std denotes

the standard deviation. Because of the randomness of the
sensing matrix, numerical result at each time is different.
Hereafter, we use the same sensing matrix in one experiment
for these four algorithms.

We use the Bumps signal of length𝑁 = 2048 and change
the values of𝑀 simultaneously in order to guarantee the same
experiment condition. After 5 layers of wavelet decomposi-
tions, there are 64 low-pass coefficients in the 5th decom-
position layer and total 1984 high-pass coefficients in the 5
decomposition layers. In order to obtain a fair comparison,
in the Figure 6, the measurements number used in these four
algorithms is 500 − 64 = 436. For sake of simplicity, when
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Figure 6: Comparison signal of TBOMP and BAOMP in time domain.
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Figure 7: SNR comparison for different values of𝑀.

we mention that𝑀measurements in the TBOMP, we means
that𝑀 is the sum of the low-pass coefficient number and the
measurement number of the high-pass coefficients.

When 𝑀 = 500, the compression ratio is about 1/4.
The reconstruction results of Bumps signal of TBOMP and
BAOMP are shown Figure 6. The SNR of TBOMP is about
1.8 dB higher than the BAOMP.

Since ROMP requires the sparsity level 𝐾 to be known
for exact recovery, in the experiments, the best sparsity value
𝐾 of the wavelet coefficients can be estimated according to
repeated experiments and then used in the simulations. Fig-
ure 7 shows the SNR comparison results for different values
of𝑀. The values of𝑀 are selected as 200, 500, 800, 1100, and
1400, respectively. For each𝑀, we conduct the experiment 10
independent trials and calculate the average SNR. It is obvi-
ously that the reconstruction result of TBOMP algorithm is
superior to others.

4. Conclusion

Sparse reconstruction algorithm is one of the three core
problems (signal sparse representation, measurement matrix
design, and reconstruction algorithm design) of CS. The
existed sparse reconstruction algorithms such as ROMP and

CoSaMP algorithms employ the sparsity 𝐾 as the prior
knowledge for exact recovery, which hasmany limitations for
the realistic applications. However, although the sparsity level
are not required for OMP and BAOMP algorithms, they do
not use the characteristics of special sparse basis to improve
the performance of the algorithms. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm was proposed based on the tree model in wavelet
domain. Our algorithm can convert the wavelet tree struc-
tures to the corresponding relations of candidate atoms with-
out any prior information of signal sparsity level. Moreover,
the unreliable atoms can be deleted according to the back-
tracking algorithm. Compared with other compressive sens-
ing algorithms (OMP, ROMP, andBAOMP), the signal recon-
struction results of TBOMPoutperform the abovementioned
CS algorithms.
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A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to
accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a
robust technique is presented for an Autonomous Underwater Vehicle (AUV) with region tracking function. Within this control
scheme, nonlinear𝐻

∞
and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the

proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the
AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities
and it leads to uniform ultimate boundedness of the region tracking error.

1. Introduction

A valuable robotic system for the ocean environment is
known as an Autonomous Underwater Vehicle (AUV). It
has been used for many years in the oil and gas industry
to obtain detailed maps of the ocean floor as well as to
supervise pipeline activities [1]. The ongoing research on
AUVs has given attention to the improvement of navigation
and tracking control schemes. The conventional control
methodologies are not the most suitable choice and they
cannot guarantee the required tracking performance since
an underwater vehicle exhibits inherent highly nonlinear
system dynamics, imprecise hydrodynamic coefficients, and
external disturbances. On the other hand, sliding mode
control, due to its robustness against modelling inaccuracies
and external disturbances, has been demonstrated to be
a very attractive approach to cope with these problems
[2–6]. However, a well-known drawback of conventional
sliding mode controllers is the chattering effect. Therefore,
to overcome the undesired effects of the control chattering,
the authors in [7, 8] proposed a saturation function rather
than a sign function. This substitution can minimize or,
when desired, even completely eliminate chattering, but the

trajectory tracking error is uniformly ultimately bounded
(UUB), which in fact means that a steady-state error will
always remain. In order to enhance the tracking performance
inside the boundary layer, some adaptive strategy should be
used for uncertainty/disturbance compensation.

Recently, a nonlinear 𝐻
∞

optimal control scheme was
adopted for an underwater robotic system as an external
tracking control loop and a disturbance observer was used
as an internal disturbance compensation loop [9, 10]. The
resultant control obtained by combining these two controls
is then derived. A brief review of 𝐻

∞
optimality control has

been presented in [11]. Moreover, the disturbance observer
[12] is chosen, so that the 𝐿

2
-gain conditions of the nonlinear

𝐻
∞

optimal control are relaxed, the magnitude of extended
disturbances is reduced, and the robustness of the resulting
control is improved without increasing the control input
beyond that of the nonlinear 𝐻

∞
optimal control alone.

By using this control, the underwater robotic system can
successfully follow the given trajectories, even when uncer-
tainties and disturbances exist. An adaptive region tracking
control was presented in [13] for an AUV where a region is
used rather than a point due to minimizing the control effort
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Figure 1: An illustration of an underwater robotic system which
performs tracking task in a spherical region.

to track the region. Note that the total potential energy of
the desired region is a summation of the potential energy
associated with each region. Inspired from [13], some related
research works such as in [14, 15] have been carried out to
ensure that the marine robotic systems can cope with the
underwater conditions and missions.

In this paper, a nonlinear𝐻
∞
optimal control with region

tracking function is proposed for an underwater vehicle. The
proposed dynamic region control, where it is formulated
in task space, aims to reduce the energy consumed by
vehicle thrusters. Within the region function formulation,
the controller activates and sends commands to the thrusters
only when the AUV is outside the desired region, and hence
it significantly reduces energy consumption. However, the
disturbances such as ocean currents may pull the underwater
vehicle out of its desired region. This is likely to occur when
the AUV navigates near to the boundary as illustrated in
Figure 1. Hence, a nonlinear𝐻

∞
optimal control is proposed

in this paper to counteract this problem. The performance
of conventional region tracking control and region function
adopted with nonlinear 𝐻

∞
optimal control law can be

observed with respect to the existence of unidirectional and
bounded ocean current. The rest of the paper is organized
as follows: Section 2 describes the kinematic and dynamic
properties of anAUV. In Section 3, the nonlinear𝐻

∞
optimal

control with region function formulation is briefly explained.
The stability analysis using a Lyapunov-like function is also
given in this section. In Section 4, numerical simulation
results are provided to demonstrate the performance of the
proposed control. Finally, the paper is concluded with some
remarks in Section 5.

2. Kinematic and Dynamic Model of an AUV

2.1. Kinematic Model. The relationship between inertial and
body-fixed vehicle velocity can be described using the Jaco-
bian matrix 𝐽(𝜂

2
) in the following form:

[

̇𝜂
1

̇𝜂
2

] = [

𝐽
1
(𝜂
2
) 0
3×3

0
3×3

𝐽
2
(𝜂
2
)
] [

V
1

V
2

] ⇐⇒ ̇𝜂 = 𝐽 (𝜂
2
) V, (1)

where 𝜂
1

= [𝑥 𝑦 𝑧]
𝑇

∈ R3 and 𝜂
2

= [𝜙 𝜃 𝜓]
𝑇

∈

R3 denote the position and the orientation of the vehicle,

respectively, expressed in the inertial fixed frame. 𝐽
1
and 𝐽
2

are the transformation matrices expressed in terms of the
Euler angles. The linear and angular velocity vectors, V

1
=

[𝑢 V 𝑤]
𝑇

∈ R3 and V
2
= [𝑝 𝑞 𝑟]

𝑇

∈ R3, respectively, are
described in terms of the body-fixed frame.

2.2. DynamicModel. Let the velocity state vector with respect
to the body-fixed frame be defined by V ∈ R6; and the
underwater vehicle dynamic equation can be expressed in
closed form as [16]

𝑀 ̇V + 𝐶 (V) V + 𝑔 (𝜂) + 𝐹ext = 𝜏, (2)

where 𝑀 and 𝐶(V) represent the inertia matrix and the
Coriolis and centripetal forces matrix including the effects
of added mass and hydrodynamic damping by body motion
and 𝑔(𝜂) is the restoring force. 𝐹ext contains the effects of
external disturbances and the effects of added mass and
hydrodynamic damping by body motion in static water. The
dynamic (2) preserves the following properties [16, 17].

Property 1. The inertia matrix 𝑀 is symmetric and positive
definite such that𝑀 = 𝑀

𝑇

> 0 and 𝛾𝐼 ≤ 𝑀 ≤ Υ𝐼.

Property 2. 𝐶(V) is the skew-symmetric matrix such that
𝐶(V) = −𝐶

𝑇

(V).
In the Property 1, 𝛾 and Υ denote the minimum and

maximum eigenvalues of the inertia matrix, respectively. The
matrix 𝐼 is the identity matrix that has suitable dimension.

3. Nonlinear 𝐻
∞

Optimal Control Law with
Region Formulation

In the region-based control framework, the desired moving
target is specified by a region at the desired trajectory. A
robust nonlinear 𝐻

∞
optimal control for AUV proposed in

this paper is formulated as follows.
First, the vehicle needs to converge into a region with

specific shape. The objective function for this region is
defined by the following:

𝑓 (𝛿𝜂
𝐵
) ≤ 0, (3)

where 𝛿𝜂
𝐵
= 𝐵(𝜂 − 𝜂

𝑑
) ∈ R6 are the continuous first partial

derivatives of the dynamic region; 𝜂
𝑑
(𝑡) is the time-varying

reference point inside the geometric shape and 𝐵(𝑡) is a time-
varying and nonsingular scaling factor. It is assumed that
𝜂
𝑑
(𝑡) and 𝐵(𝑡) are bounded functions of time. To achieve

the scaling formation, that is, if the scaling factor increases,
then the size of a desired region also increases, a nonsingular
matrix is defined as follows:

𝐵 = [
𝐵
1

0

0 𝐵
2

] , (4)

where 𝐵
1
is the scaling matrix of 𝜂

1
and 𝐵

2
is the scaling

matrix of 𝜂
2
. This function is useful when the AUV needs

to adapt the moving region, depending on the situation and
environment.
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The corresponding potential energy function for the
desired region described in (3) can be specified as

𝑃 (𝛿𝜂
𝐵
) =

{

{

{

0, 𝑓 (𝛿𝜂
𝐵
) ≤ 0

𝑘
𝑝

2
𝑓
2

(𝛿𝜂
𝐵
) , 𝑓 (𝛿𝜂

𝐵
) > 0,

(5)

such that

𝑃 (𝛿𝜂
𝐵
) =

𝑘
𝑝

2
[max (0, 𝑓 (𝛿𝜂

𝐵
))]
2

, (6)

where 𝑘
𝑝
is a positive scalar. Differentiating (6) with respect

to 𝛿𝜂
𝐵
gives

(
𝜕𝑃 (𝛿𝜂

𝐵
)

𝜕𝜂
𝐵

)

𝑇

= 𝑘
𝑝
max (0, 𝑓 (𝛿𝜂

𝐵
)) (

𝜕𝑓 (𝛿𝜂
𝐵
)

𝜕𝜂
𝐵

)

𝑇

. (7)

Now, let (7) be represented as the region error 𝑒
𝐵
in the

following form:

𝑒
𝐵
= max (0, 𝑓 (𝛿𝜂

𝐵
)) (

𝜕𝑓 (𝛿𝜂
𝐵
)

𝜕𝜂
𝐵

)

𝑇

. (8)

If 𝐵 is set to an identity matrix, then a useful vector V
𝑟
is

defined as

V
𝑟
= 𝐽
−1

̇𝜂
𝑑
− 𝛼𝐽
−1

𝑒
𝐵
− 𝛽𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡, (9)

where 𝛼 and 𝛽 are arbitrary positive constants. The matrix
𝐽
−1 represents the inverse of the Jacobian matrix. From
the arguments of trigonometric functions, this matrix is
bounded. Based on the structure of (8) and (9) and the
subsequent stability analysis, a filtered tracking error vector
for an underwater vehicle is defined as

𝑟 (𝑡) = V − 𝐽
−1

̇𝜂
𝑑
+ 𝛼𝐽
−1

𝑒
𝐵
+ 𝛽𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡. (10)

From the definition of 𝑟 in (10), the control law for an AUV
can be proposed in the following form:

𝜏 = −𝐾V𝑟 + 𝑀̂ ̇V
𝑟
+ 𝐶 (V) V

𝑟
+ 𝑔 (𝜂) , (11)

where 𝐾V = 𝐾 + (1/𝜅
2

)𝐼; 𝐾 and 𝐼 are the positive definite
matrix and identity matrix, respectively. 𝑀̂, 𝐶(V), and 𝑔(𝜂)

are the nominal matrices and vectors of 𝑀, 𝐶(V), and 𝑔(𝜂),
respectively. The derivative of V

𝑟
in (9) is given as

̇V
𝑟
= ̇𝐽
−1

̇𝜂
𝑑
+ 𝐽
−1

̈𝜂
𝑑
− 𝛼 ̇𝐽
−1

𝑒
𝐵
− 𝛼𝐽
−1 ̇𝑒̃
𝐵

− 𝛽 ̇𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡 − 𝛽𝐽

−1

𝑒
𝐵
,

(12)

where ̇𝜂
𝑑
(𝑡), ̈𝜂
𝑑
(𝑡), and ̇𝐽

−1

(𝑡) are all assumed to be bounded
functions of time. Substituting (11) into (2) produces a closed-
loop dynamic equation for 𝑟(𝑡) as follows:

𝑀 ̇𝑟 + 𝐶 (V) 𝑟 + 𝐾V𝑟 − 𝜔 = 0, (13)

where 𝜔 is the extended disturbance vector which is defined
in the following form:

𝜔 = 𝑀̃ ̇V
𝑟
+ 𝐶 (V) V

𝑟
+ 𝑔 (𝜂) − 𝐹ext, (14)

where (̃⋅) = (̂⋅) − (⋅) denotes the parameter estimation error.
The modeling error acts as a disturbance in (14) when the
AUV is in motion. Note that 𝜅 is the 𝐿

2
gain for disturbance

attenuation satisfying the following condition:

∫

𝑇

0

𝑧
𝑇

𝑧 𝑑𝑡 = ∫

𝑇

0

𝜔
𝑇

𝜔𝑑𝑡, (15)

where 𝑧
𝑇

𝑧 is defined as the weighted sum of the quadratic
forms of the error states and the control input. Since nonlin-
ear𝐻
∞
optimal control scheme is based on feedback tracking

errors, 𝑧𝑇𝑧 can be approximated up to magnitude of these
errors.

Remark 1. Equation (13) can be represented in state space
such that the nonlinear𝐻

∞
optimality satisfies [18]

∫

𝑇

0

{𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑅𝑢} 𝑑𝑡 = 𝜅
2

∫

𝑇

0

𝜔
𝑇

𝜔𝑑𝑡 (16)

with 𝛼
2

> 2𝛽. 𝑥 and 𝑢 in (16) denote the state and input
variables, respectively. Meanwhile, the matrices 𝑄 and 𝑅 are
state weighting and input weighting matrices, respectively,
and they are determined by inverse optimal problem with
respect to specific 𝐿

2
attenuation gain, 𝜅.

Theorem 2. Let the filtered tracking error vector 𝑟 be upper
bounded as the following form:

‖𝑟‖ ≤ √
Υ

𝛾

𝜅
2

√2𝑘
𝑚
𝜅2 + 1

‖𝜔‖
∞
, (17)

where 𝑘
𝑚
is scalar constant and ‖𝜔‖

∞
denotes an infinity norm

of𝜔 for a given time interval.Then, the control law (11) above is
continuous and the closed-loop system is uniformly ultimately
bounded (u.u.b) as defined in [11].

Proof. The following nonnegative function is introduced to
analyze the stability of the proposed control law:

𝑉 =
1

2
𝑟
𝑇

𝑀𝑟. (18)

Differentiating 𝑉 with respect to time and utilizing (10) and
(14), a closed-loop dynamic (13) yields

𝑉 = −𝑟
𝑇

𝐶 (V) 𝑟 − 𝑟
𝑇

𝐾V𝑟 + 𝑟
𝑇

𝜔. (19)

Simplifying (19) leads to

𝑉 = −𝑟
𝑇

𝐾V𝑟 + 𝑟
𝑇

𝜔

= −𝑟
𝑇

(𝐾 + (
1

𝜅2
) 𝐼) 𝑟 + 𝑟

𝑇

𝜔

= −𝑟
𝑇

(𝐾 + (
1

2𝜅2
) 𝐼) 𝑟

−
𝜅
2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜅2
𝑟 − 𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
𝜅
2

2
‖𝜔‖
2

∞
,

(20)
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Figure 2: The desired lawnmower trajectory where “×” marks the
initial position of the AUV.

where Property 2 is used. Let 𝑘
𝑚
be the minimum diagonal

element of gain matrix𝐾 utilizing the worst case disturbance
[11] to yield the following inequality:

𝑉 ≤ −(𝑘
𝑚
+

1

2𝜅2
) ‖𝑟‖
2

+
𝜅
2

2
‖𝜔‖
2

∞
. (21)

From (21), it is necessary to choose sufficiently large value
of 𝑘
𝑚

to ensure the negative definiteness of 𝑉. Therefore,
implying the results and terminology of [19], the ultimate
boundedness of ‖𝑟‖ can be obtained as in (17).

Remark 3. It is assumed that the norm of extended distur-
bance which includes tracking errors is not deviated largely,
when a control input (11) is used in (2). Thus, the control
gain can be changed according to (17), so that the satisfactory
performance of proposed control law with region function
formulation can be achieved.

4. Simulation Results

In this section, simulation studies are carried out to assess the
effectiveness of the proposed nonlinear 𝐻

∞
optimal control

law with region function formulation for an underwater
vehicle. The performance of conventional tracking control
and the proposed technique is observed concerning two
cases: the first case is the conventional region tracking
control and the second case is where the region function is
adoptedwith nonlinear𝐻

∞
optimal control law. Both control

laws are observed with respect to the existence of random
disturbances and bounded ocean current. The ODIN AUV
[20, 21] that is known as a near-spherical omnidirectional
vehicle equipped with four horizontal thrusters and four
vertical thrusters is chosen as the Autonomous Underwater

−0.5

−1
−1.5

2
0

−2

−4

−6

−8

−10

6
4

2

0

−2

−4

y-axis position (m)

z
-a

xi
s p

os
iti

on
 (m

)

x-axis p
ositio

n (m
)

Figure 3:Three-dimensional view for conventional region tracking
control.

Table 1: Simulation result: vehicle forces for four vertical thrusters
(N).

Set-point tracking
control

Nonlinear𝐻
∞
optimal

controller
Thrusters 1 45.20 42.20
Thrusters 2 71.38 66.80
Thrusters 3 45.38 42.78
Thrusters 4 66.96 65.69
Total input 116.97 111.30

Vehicle model in these numerical simulations. The following
inequality function is defined as

𝑓 (𝛿𝜂
𝐵
) = 𝑠
𝑥
(𝑥 − 𝑥

0
)
2

+ 𝑠
𝑦
(𝑦 − 𝑦

0
)
2

+ 𝑠
𝑧
(𝑧 − 𝑧

0
)
2

+ 𝑠
𝜙
(𝜙 − 𝜙

0
)
2

+ 𝑠
𝜃
(𝜃 − 𝜃

0
)
2

+ 𝑠
𝜓
(𝜓 − 𝜓

0
)
2

≤ 𝜅
2

𝑟
,

(22)

where the element of {𝑠
𝑥
, 𝑠
𝑦
, 𝑠
𝑧
, 𝑠
𝜙
, 𝑠
𝜃
, 𝑠
𝜓
} is the component of

the time-varying scaling matrix 𝐵 and 𝜅
𝑟
is a scalar tolerance.

In these simulations, the matrix 𝐵 is defined as the identity
matrix and 𝜅

𝑟
is set to 0.25. Note that (22) can also be

represented as the root mean square error for all axes. In
Table 1, the norm values of required forces for four vertical
thrusters are presented. The total control input is included to
signify the overall energy needed for the system tomaintain at
depth −1.2 meter. Notice that when the proposed controller is
utilized, the energy requirement is reduced as compared with
set-point tracking method.

The underwater vehicle is required to track a predefined
trajectory as illustrated in Figure 2 where the green (cross-
section) path is the horizontal basis position initialized
at the position [1.5 0 −1.2]

𝑇 m. Moreover, the vehicle is
initialized at the same position 𝜂

1
(0) = [1.5 0 −1.2]

𝑇 m
while its attitude is kept constant during simulation and the
initial values are 𝜂

2
(0) = [0 0 0]

𝑇 degrees. FromFigures 3, 4,
5, and 6, it has been shown that the proposed control scheme
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Figure 4: Planar view for conventional region tracking control.
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Figure 5: Three-dimensional view for the nonlinear 𝐻
∞

optimal
control law with region function formulation.

exhibited a more robust tracking performance than the
conventional region control, when parameter uncertainties,
current effects, and disturbances exist. In Figure 4, the acute
fluctuations in the early stages of the simulation were mainly
caused by parameter uncertainties in the restoring force
and moment. However, as long as the AUV is inside the
desired region, the control input is turned off, and when the
disturbances pull the vehicle out, the control input is applied
to navigate the AUV back into the region.

5. Conclusion

A new nonlinear 𝐻
∞

optimal control law with region
function formulation for a hovering underwater vehicle with
four horizontal and four vertical thrusters has been presented
in this paper. Two cases have been considered: the first case is
the conventional region tracking control and the second case
is where the region function is adopted with the nonlinear
𝐻
∞

optimal control law. Both control laws are observed
with respect to the existence of unidirectional and bounded
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Figure 6: Planar view for nonlinear 𝐻
∞

optimal control law with
region function formulation.

ocean currents. Although the underwater disturbances exist
during task execution, the AUV is still able to track a desired
moving region. A Lyapunov-like function has been proposed
for stability analysis. Simulation results have been presented
to demonstrate the performance of the proposed controller.

Appendix

An omnidirectional intelligent navigator (ODIN) is a near-
spherical AUV designed in the University of Hawaii. The
dynamic model of ODIN is given by [20, 21]

[𝑀RB +𝑀A] ̇V + [𝐶RB (V) + 𝐶A (V)] V + 𝐷 (V) V + 𝑔 (𝜂) = 𝜏,

(A.1)

where the subscripts RB and A represent the rigid body and
added mass terms of the relevant parameters, respectively.
The numerical values for the matrices of the vehicle dynamic
equation (A.1) are given as

𝑀RB =

[
[
[
[
[
[
[

[

𝑚

0

0

0

𝑚𝑧
𝐺

0

0

𝑚

0

−𝑚𝑧
𝐺

0

0

0

0

𝑚

0

0

0

0

−𝑚𝑧
𝐺

0

𝐼
𝑥𝑥

0

0

𝑚𝑧
𝐺

0

0

0

𝐼
𝑦𝑦

0

0

0

0

0

0

𝐼
𝑧𝑧

]
]
]
]
]
]
]

]

,

(A.2)

where 𝐼
𝑥𝑥

= 𝐼
𝑦𝑦

= 𝐼
𝑧𝑧

= 𝐼 = (8/15)𝜋𝜌V𝑟
5

ODIN are the
moments of inertia about the principle axes.
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Consider

𝑀A =

[
[
[
[
[
[
[

[

𝑋
𝑢𝑑

0

0

0

0

0

0

𝑌V𝑑
0

0

0

0

0

0

𝑍
𝑤𝑑

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

]
]
]
]
]
]
]

]

,

𝐶RB (V) =

[
[
[
[
[
[
[

[

0

0

0

−𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

−𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
1

0

0

0

−𝑚 (𝑢
2
− 𝑧
𝐺
𝑢
4
)

𝑚 (𝑢
1
+ 𝑧
𝐺
𝑢
5
)

0

𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
3

𝑚(𝑢
2
− 𝑧
𝐺
𝑢
4
)

0

−𝐼𝑢
6

𝐼𝑢
5

𝑚𝑢
3

𝑚𝑧
𝐺
𝑢
6

−𝑚 (𝑢
1
+ 𝑧
𝐺
𝑢
5
)

𝐼𝑢
6

0

−𝐼𝑢
4

−𝑚𝑢
2

𝑚𝑢
1

0

−𝐼𝑢
5

𝐼𝑢
4

0

]
]
]
]
]
]
]

]

,

𝐶A (V) =

[
[
[
[
[
[
[

[

0

0

0

0

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

0

−𝑚𝑢
1

0

0

0

−𝑚𝑢
2

𝑚𝑢
1

0

0

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

0

−𝑚𝑢
1

0

0

0

−𝑚𝑢
2

𝑚𝑢
1

0

0

0

0

]
]
]
]
]
]
]

]

,

𝐷 (V) =

[
[
[
[
[
[
[

[

−𝑑
𝑡1

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

0

0

0

0

0

0

−𝑑
𝑡1

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

0

0

0

0

0

0

−𝑑
𝑡1

󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨

0

0

0

0

0

0

−𝑑
𝑟1

󵄨󵄨󵄨󵄨𝑢4
󵄨󵄨󵄨󵄨 − 𝑑
𝑟2

0

0

0

0

0

0

−𝑑
𝑟1

󵄨󵄨󵄨󵄨𝑢5
󵄨󵄨󵄨󵄨 − 𝑑
𝑟2

0

0

0

0

0

0

−𝑑
𝑟1

󵄨󵄨󵄨󵄨𝑢6
󵄨󵄨󵄨󵄨 − 𝑑
𝑟2

]
]
]
]
]
]
]

]

,

𝑔 (𝜂) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝑚𝑔 −
4

3
𝜋𝑟
3

𝜌𝑔) sin (𝜃)

− (𝑚𝑔 −
4

3
𝜋𝑟
3

𝜌𝑔) cos (𝜃) sin (𝜙)

− (𝑚𝑔 −
4

3
𝜋𝑟
3

𝜌𝑔) cos (𝜃) cos (𝜙)

𝑧
𝐺
𝑚𝑔 cos (𝜃) sin (𝜙)
𝑧
𝐺
𝑚𝑔 sin (𝜃)

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(A.3)

Provided that 𝑟ODIN = 0.31m is the radius of ODIN, 𝑚 =

125.0 kg is the mass of ODIN, 𝑧
𝐺

= 0.05m is the distance
of the center of gravity from the geometric center, 𝜌V =

965 kg/m3 is the average density of the ODIN AUV, 𝜌 =

1000 kg/m3 is the density of fresh water, and 𝑔 = 9.81m/s2.
The hydrodynamic derivatives are given by 𝑋

𝑢𝑑
= 𝑌V𝑑 =

𝑍
𝑤𝑑

= (2/3)𝜋𝜌𝑟
3

ODIN, the translational quadratic damping
factor 𝑑

𝑡1
= −248N(s/m)

2, the angular quadratic damping
factor 𝑑

𝑟1
= −280Ns2/m, and the angular linear damping

factor 𝑑
𝑟2

= −230Ns2/m.
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The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated
as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The
optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control
parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop
control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix,
without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with
the original system dynamics. Simulation results of 2-link robotmanipulator are presented to show the effectiveness of the proposed
method.

1. Introduction

Trajectory tracking problem is the most significant and fun-
damental task in control of robotic manipulator. Motivated
by requirements such as a high degree of automation and fast
speed operation from industry, various control methods are
used such as PID control, adaptive control, variable structure
control, neural networks control, and fuzzy control [1–5].

In the past two decades, the optimal control schemes
for manipulator arms have been actively researched because
the optimal motions that minimize energy consumption,
error trajectories, ormotion time yield high productivity, effi-
ciency, smooth motion, durability of machine parts, and so
forth [6–11]. Various types of methods have been developed
to solve the robotic manipulator optimal control schemes.

By the application of the optimal control theory, Pon-
tryagin’s maximum principle leads to a two-point boundary
value problem. Although this theory and its solutions are
rigorous, it has been used to solve equations for the motions
of 2-link or at most 3-link planar manipulators due to the
complexity and the nonlinearity of themanipulator dynamics
[6]. Approximation methods have been studied to obtain
the solutions for three or more DOF spatial manipulators.
However, the solutions obtained have not been proved to be

optimal. These approximation methods are roughly divided
into two groups depending on whether or not they utilize
gradients [11]. Recently, the applications of intelligent control
techniques (such as fuzzy control or neural network control)
with optimal algorithm to the motion control of robot
manipulators have received considerable attention [12–17].
But sometimes these methods take quite a long time to find
a coefficient that satisfies the requirement of the controlling
task. In addition, lack of theoretical analysis and stability
security makes industrialists wary of using the results in real
industrial environments.

This paper is concerned with the nonlinear optimal
feedback control of robot manipulator trajectory tracking.
The energy consumption and error trajectories are mini-
mized as performance index in the optimal control problem.
An optimal open loop control is first obtained by using a
time scaling transform [18] and the control parameterization
technique [19].Then, we derive the formof the optimal closed
loop control law, which involves a feedback gain matrix,
for the optimal control problem. The optimal feedback gain
matrix is required to satisfy a Riccati-like matrix differential
equation. Then, the third order 𝐵-spline function, which
has been proved to be very efficient for solving optimal
approximation and optimal control problems, is employed
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Figure 1: Two-link (RR) robot manipulator.

to construct the components of the feedback gain matrix.
By virtue of the relationship between the optimal open loop
control and the optimal closed loop control along the optimal
trajectory, a practical computational method is presented
for finding an approximate optimal feedback gain matrix,
without having to solve an optimal control problem involving
the complex Riccati-like matrix differential equation coupled
with the original system dynamics [20].

2. Robot Manipulators Dynamics

2.1. Models of Robot Dynamics. Consider the dynamic equa-
tion of a robot manipulator

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞) = 𝑢 (𝑡) , (1)

where 𝑞, ̇𝑞, ̈𝑞 ∈ R𝑛 are the vectors of the generalized joint
coordinates, velocity, and acceleration;𝑀(𝑞) ∈ R𝑛×𝑛 denotes
a symmetric positive definite inertia matrix; 𝐶(𝑞, ̇𝑞) ∈ R𝑛×𝑛

stands for the Coriolis and centrifugal torques; 𝑔(𝑞) ∈ R𝑛

models the gravity forces; and 𝑢(𝑡) ∈ R𝑛 is the torque input.
Some useful properties of robot dynamic are as follows.

Property 1. Matrix𝑀(𝑞) is symmetric and positive definite.

Property 2. Matrix 𝑀(𝑞) − 2𝐶(𝑞, ̇𝑞) is skew symmetric and
satisfies that

̇𝑞
𝑇

[𝑀 (𝑞) − 2𝐶 (𝑞, ̇𝑞)] ̇𝑞 = 0. (2)

Property 3. The robot dynamics are passive in open loop,
from torque input to velocity output, with the Hamiltonian
as its storage function. If viscous friction was considered, the
energy dissipates and the system is strictly passive.

The two-link revolute (RR) robotmanipulator is shown in
Figure 1. The masses of both links and actuators are denoted
by𝑚
1
and𝑚

2
with 𝐼

1
and 𝐼
2
asmassmoment of inertia. 𝑎

1
and

𝑎
2
denote the length; 𝑢

1
and 𝑢

2
are joints torques. The joints

positions of the two links are defined by 𝜃
1
and 𝜃
2
.

The dynamic equations of 2-link RR robot are written in
state space form as

̇𝑥 = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢 (𝑡) , (3)

where 𝑥 = [𝑞𝑇, ̇𝑞𝑇]𝑇 is the system state, 𝑞 = [𝜃
1
, 𝜃
2
]
𝑇, and

𝑓 (𝑥) = [
̇𝑞

−𝑀
−1

(𝑞) (𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞))
] ,

𝐵 (𝑥) = [
0

𝑀
−1

(𝑞)
] ,

(4)

where

𝑀(𝑞) = [
𝑐
11
𝑐
12

𝑐
21
𝑐
22

] ,

𝑐
11
= (𝑚
1
+ 𝑚
2
) 𝑎
2

1
+ 𝑚
2
𝑎
2

2
+ 2𝑚
2
𝑎
1
𝑎
2
cos 𝜃
2
,

𝑐
12
= 𝑐
21
= 𝑚
2
𝑎
2

2
+ 𝑚
2
𝑎
1
𝑎
2
cos 𝜃
2
,

𝑐
22
= 𝑚
2
𝑎
2

2
,

𝐶 (𝑞, ̇𝑞) ̇𝑞 = [
−𝑚
2
𝑎
1
𝑎
2
(2 ̇𝜃
1

̇𝜃
2
+ ̇𝜃
2

2
) sin 𝜃

2

𝑚
2
𝑎
1
𝑎
2

̇𝜃
2

1
sin 𝜃
2

] ,

𝑔 (𝑞) = [
(𝑚
1
+ 𝑚
2
) 𝑔𝑎
1
cos 𝜃
1
+ 𝑚
2
𝑔𝑎
2
cos (𝜃

1
+ 𝜃
2
)

𝑚
2
𝑔𝑎
2
cos (𝜃

1
+ 𝜃
2
)

] .

(5)

Define

𝑁(𝑞, ̇𝑞) = 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞) = [
𝑁
1
(𝑞, ̇𝑞)

𝑁
2
(𝑞, ̇𝑞)

] ,

𝑀
−1

(𝑞) = [
𝑀
11
𝑀
12

𝑀
21
𝑀
22

] ;

(6)

then,

𝑓 (𝑥) =

[
[
[
[

[

𝜃
2

̇𝜃
2

Θ ̇𝜃
1

Ξ𝜃
1

]
]
]
]

]

, 𝐵 (𝑥) =

[
[
[
[

[

0 0

0 0

𝑀
11
𝑀
12

𝑀
21
𝑀
22

]
]
]
]

]

; (7)

here

Θ =
𝑀
22
(−𝑁
2
(𝑞, ̇𝑞)) + 𝑀

12
(−𝑁
1
(𝑞, ̇𝑞))

𝑥
1
(𝑡)

,

Ξ =
𝑀
22
(−𝑁
2
(𝑞, ̇𝑞)) + 𝑀

11
(−𝑁
1
(𝑞, ̇𝑞))

𝑥
2
(𝑡)

.

(8)

2.2. Problem Statement. The purpose of control is to deter-
mine an optimal closed loop control signal so that the
robot manipulator tracks the desired trajectory withminimal
energy consumption, The optimal control problem can be
formulated as follows.

Given system (3), find a closed loop control 𝑢(𝑡) ∈ R𝑛

such that the cost function

𝐽 = 𝛼
1
Φ
0
(𝑥 (𝑇)) + 𝛼

2
∫

𝑇

0

𝑢
𝑇

𝑅𝑢𝑑𝑡 (9)

isminimized, whereΦ
0
(𝑥(𝑇)) = (𝑥(𝑇) − 𝑥

𝑑
)
𝑇

𝑄(𝑥(𝑇)−𝑥
𝑑
),𝑇

is the free terminal time,𝑥
𝑑
is the desired trajectory,𝛼

1
and𝛼
2
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are the weighting parameters, and 𝑄 ∈ R2𝑛×2𝑛 and 𝑅 ∈ R𝑛×𝑛

are symmetric positive semidefinite and symmetric positive
definite weighting matrices, respectively.

We refer to the above problem as problem (𝑃). This
optimal close loop control problem is very difficult to be
solved directly. In this paper, we derive the form of the
optimal closed loop control law after obtaining an optimal
open loop control by using a time scaling transform and the
control parameterization technique.Then the difficulty of the
problem is transformed to find a feedback gain matrix which
is involved in the optimal closed loop control law. A practical
computational method is presented in [20] for finding an
approximate optimal feedback gain matrix, without having
to solve an optimal control problem involving the complex
Riccati-like matrix differential equation coupled with the
original system dynamics.

3. Parametric Approach to
the Optimal Controller Design

By using a time scaling transform and the control param-
eterization technique, the above problem is solved as an
optimal open loop control problem firstly. An optimal open
loop control and the corresponding optimal trajectory will be
provided.

Let the time horizon [0, 𝑇] be partitioned into 𝑝 subinter-
vals as follows:

0 = 𝑡
0
≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑝
= 𝑇. (10)

The switching times 𝑡
𝑖
, 1 ≤ 𝑖 ≤ 𝑝, are regarded as decision

variables. Employing the time scaling transform introduced
in [19] to map these switching times into a set of fixed time
points 𝜃

𝑖
= 𝑖/𝑝, 𝑖 = 1, . . . , 𝑝, on a new time horizon [0, 1].

Then the following differential equation is achieved:

𝑑𝑡 (𝑠)

𝑑𝑠
= V𝑝 (𝑠) , 𝑠 ∈ [0, 1] , (11)

where

V𝑝 (𝑠) =
𝑝

∑

𝑖=1

𝜉
𝑖
𝜒
[𝜃𝑖−1 ,𝜃𝑖]

(𝑠) , (12)

where 𝜒
𝐼
(𝑠) denotes the indicator function of 𝐼 defined by

𝜒
𝐼
(𝑠) = {

1, 𝑠 ∈ 𝐼,

0, elsewhere,
(13)

and 𝜉
𝑖
≥ 0,∑

𝑝

𝑖=1
𝜉
𝑖
= 𝑇.

For 𝑠 ∈ [𝜃
𝑙−1
, 𝜃
𝑙
], we have

𝑡 (𝑠) =

𝑙−1

∑

𝑖=1

𝜉
𝑖
+ 𝜉
𝑙
(𝑠 − 𝜃

𝑙−1
) 𝑝, (14)

where 𝑙 = 1, . . . , 𝑝. Clearly,

𝑡 (1) =

𝑝

∑

𝑖=1

𝜉
𝑖
= 𝑇. (15)

Then after the time scaling transform, system (3) can be
converted into the following form:

𝑥 (𝑠) = V𝑝 (𝑠) [𝑓 (𝑥 (𝑠)) + 𝐵 (𝑥 (𝑠) , 𝑠) 𝑢̃ (𝑠)] , (16)

where 𝑥(𝑠) = [𝑥(𝑠)𝑇, 𝑡(𝑠)]
𝑇

, 𝑥(𝑠) = 𝑥(𝑡(𝑠)), and 𝑢̃(𝑠) = 𝑢(𝑡(𝑠)).
Now we apply the control parameterization technique to

approximate the control 𝑢̃(𝑠) as follows:

𝑢̃
𝑝

𝑖
(𝑠) =

𝑝+1

∑

𝑘=−1

𝜎
𝑖

𝑘
Ω((

1

𝑝
) 𝑠 − 𝑘) , 𝑖 = 1, . . . , 𝑛, (17)

where

Ω (𝜅) =

{{{{

{{{{

{

0, |𝜅| > 2,

−
1

6
|𝜅|
3

+ 𝜅
2

− 2 |𝜅| +
4

3
, 1 ≤ |𝜅| ≤ 2,

1

2
|𝜅|
3

− 𝜅
2

+
2

3
, |𝜅| < 2,

(18)

is the cubic spline basis function.
Define 𝜎𝑖 = [𝜎

𝑖

−1
, . . . , 𝜎

𝑖

𝑝+1
]
𝑇, 𝑖 = 1, . . . , 𝑛, and 𝜎 =

[(𝜎
1

)
𝑇

, . . . , (𝜎
𝑛

)
𝑇

]

𝑇

; letΠ denote the set containing all𝜎.Then
𝑢̃
𝑝

(𝑠) = [𝑢̃
𝑝

1
(𝑠), . . . , 𝑢̃

𝑝

𝑛
(𝑠)]
𝑇 is determined uniquely by the

switching vector 𝜎 ∈ Π. Thus, it can be written as 𝑢̃𝑝(⋅ | 𝜎).
Now the optimal parameterization selection problem, which
is an approximation of problem (𝑃), can be stated as follows.

Problem (𝑄). Given system (16), find a combined vector
(𝜎, 𝜉), such that the cost function

𝐽 (𝜎) = 𝛼
1
Φ̂
0
(𝑥 (1 | 𝜎))

+ 𝛼
2
∫

1

0

V𝑝 (𝑠 | 𝜉) 𝑢̃𝑝(𝑠 | 𝜎)𝑇𝑅𝑢̃𝑝 (𝑠 | 𝜎) 𝑑𝑠
(19)

is minimized, where Φ̂
0
(𝑥(1 | 𝜎)) = (𝑥(1 | 𝜎) − 𝑥

𝑑
)
𝑇

𝑆(𝑥(1 |

𝜎) − 𝑥
𝑑
) and 𝑥

𝑑
is the desired trajectory.

Now problem (𝑃) is approximated by a sequence of
optimal parameter selection problems, each of which can
be viewed as a mathematical programming problem and
hence can be solved by existing gradient-based optimization
methods. Here, our controls are approximated in terms of
cubic spline basis functions, and thus they are smooth.
problem (𝑄) can be solved easily by the use of the optimal
control software package MISER 3.3 [21].

Suppose that (𝑢̃𝑝∗, 𝑥∗) is the optimal solution of problem
(𝑄).Then it follows that the optimal solution to problem (𝑃) is
(𝑢
∗

, 𝑥
∗

, 𝑇
∗

), where 𝑢∗ is the optimal open loop control, 𝑥∗ is
the corresponding optimal state vector, and 𝑇∗ is the optimal
terminal time. For the computation of the optimal closed loop
control problem, we have the following theorem.

Theorem1. Theoptimal closed loop control 𝑢∗ for problem (𝑃)
is given by

𝑢
∗

(𝑡) =
1

2𝛼
2

𝑅
−1

𝐵
𝑇

𝐾 (𝑡) 𝑓 (𝑥
∗

(𝑡) , 𝑡) , (20)
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Figure 2: Position tracking of the end joint.

where 𝑥∗ is the optimal state and 𝐾(𝑡) is the solution of the
following Riccati-like differential equation

(𝐾 + 𝐾𝐹 + 𝐹
𝑇

𝐾 +
1

2
𝐾𝐹𝐵𝑅

−1

𝐵
𝑇

𝐾)𝑓 + 𝐾𝐷 = 0, (21)

where

𝐹 =
𝜕𝑓

𝜕𝑥
, 𝐷 =

𝜕𝑓

𝜕𝑡
,

𝐾 (𝑇) 𝑓 (𝑥 (𝑇) , 𝑇) = 𝛼
1

𝜕Φ
0
(𝑥 (𝑇))

𝜕𝑥 (𝑇)
= 2𝛼
1
(𝑥 (𝑇) − 𝑥

𝑑
) 𝑆.

(22)

The proof is similar to that given forTheorem 3.1 in [22].
Details can refer to this literature.

Problem (𝑅). Subject to the dynamical system (1), with 𝑢
given by Theorem 1, find a 𝐾(𝑡) such that the cost function
(17) also with 𝑢 is minimized.

By Theorem 1, although the form of the optimal closed
loop control law is given, the matrix function 𝐾(𝑡) is still
required to be obtained. The solving process involves solving
a new optimal control problem denoted as follow. Using the
method proposed in [20], problem (𝑅) could be solved well.

In [15], an alternative approach was proposed to con-
struct an approximate optimalmatrix function𝐾∗(𝑡)without
having to solve this complicated optimal control problem
(𝑅). The basic idea is explained as follows. Suppose that 𝑢∗
is an optimal open loop control of problem (𝑃) and that
𝑥
∗ is the corresponding optimal state. We now consider

problem (𝑃) with 𝑥 = 𝑥
∗, that is, along the optimal open

loop path, and our task is to find a 𝐾∗(𝑡) such that ̆𝑢
∗

=

(1/2𝛼
2
)𝑅
−1

𝐵
𝑇

𝐾
∗

(𝑡)𝑓(𝑥
∗

(𝑡), 𝑡) best approximates the control
𝑢
∗ in the mean square sense. Then ̆𝑢

∗ can be regarded as a
good approximate optimal feedback control for problem (𝑃).

The calculation steps of solving𝐾∗(𝑡) are as follows.

Step 1. The time horizon [0, 𝑇∗] is partitioned into 𝑝 equal
subintervals:

0 = 𝑡
0
≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑝
≤ 𝑡
𝑝+1

= 𝑇
∗

. (23)

Step 2. Let

[𝐾(𝑡)
𝑖,𝑗
] ≈

𝑝+1

∑

𝑘=−1

(𝑐
𝑖,𝑗,𝑘
)Ω((

𝑇
∗

𝑝
) 𝑡 − 𝑘) , (24)

where 𝑐
𝑖,𝑗,𝑘
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = −1, 0, . . . , 𝑝 + 1, are

real constant coefficients that are to be determined. 𝑝 is the
number of equality subintervals on [0, 𝑇∗], and 𝑝 + 3 is
the total number of cubic spline basis functions used in the
approximation of each [𝐾(𝑡)

𝑖,𝑗
].

Step 3. Let

Υ (𝐾) = ∫

𝑇
∗

0

󵄩󵄩󵄩󵄩𝑢
∗

(𝑡) − ̆𝑢(𝑡)
󵄩󵄩󵄩󵄩 𝑑𝑡,

(25)

where

̆𝑢(𝑡) =
1

2𝛼
2

𝑅
−1

𝐵
𝑇

𝐾 (𝑡) 𝑓 (𝑥
∗

(𝑡) , 𝑡) . (26)

Step 4. Find coefficients 𝑐
𝑖,𝑗,𝑘

such that the cost function (25)
is minimized. These optimal coefficients can be obtained by
solving the following optimality conditions:

Λ =
𝜕Υ (𝐾)

𝜕𝑐
𝑖,𝑗,𝑘

= 0. (27)

We can see that these are linear equations and hence are easy
to solve.

4. Simulation

In this section, the simulations of the nonlinear optimal
control for the 2-link RR-robot manipulator are performed
to show the efficiency of the proposed method.

Assuming that the friction is negligible, two-link robot
manipulators is simulated with following parameters:

𝑚
1
= 1Kg,

𝑚
2
= 1Kg,

𝑎
1
= 1m,

𝑎
2
= 1m,

𝑔 = 9.8m/s2,

𝑥
0
= [1, 1]

𝑇

,

̇𝑥
0
= [1, 1]

𝑇

.

(28)



Journal of Applied Mathematics 5

0 2 4 6 8 10

0

2

4

Time (s)

Ve
lo

ci
ty

 tr
ac

ki
ng

of
x

-a
xi

s

−2

(a)

0 2 4 6 8 10

0

1

2

Time (s)

Ve
lo

ci
ty

 tr
ac

ki
ng

of
y

-a
xi

s

−1

(b)

Figure 3: Velocity tracking of the end joint.
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Figure 4: The control inputs of the end joint.

The control objective is to track the desired trajectory
given by

𝑞
1𝑑
= 1 + 0.2 cos (𝜋𝑡) ,

𝑞
2𝑑
= 1 + 0.2 sin (𝜋𝑡) .

(29)

The evolution of tracking errors are as follows

𝑒 = [𝑒
1
𝑒
2
]
𝑇

= [𝑞
1
− 𝑞
1𝑑

𝑞
2
− 𝑞
2𝑑
]
𝑇

. (30)

In the simulation, the time horizon [0, 𝑇] is partitioned
into 20 subintervals. 𝛼

1
= 3, 𝛼

2
= 1, and 𝑆 and 𝑅 are

unit matrices of proper dimension. We first use the time
scaling transform and the control parameterization method
to construct the corresponding approximated problem (𝑄).
Then, MISER 3.3 is utilized to solve it, giving rise to an
optimal open loop control and the corresponding optimal
trajectory. Then the feedback gain matrix 𝐾∗(𝑡) is obtained
by the above calculation steps.

Simulation results are shown in Figures 2 to 4. The
position tracking and the velocity tracking of the end joint
are shown in Figures 2 and 3, and the control input of the end
joint is shown in Figure 4.

5. Conclusions

A parametric approach to trajectory tracking control of robot
manipulators is studied in this paper, in which an optimal
open loop control is obtained firstly by using the control
parametrization method and the time scaling transform.
Then, we obtained the form of the optimal closed loop
control law, where the feedback gain matrix is required
to satisfy a Riccati-like matrix differential equation, and a
practical method was proposed to calculate the feedback gain
matrix.The simulation results demonstrate the validity of the
proposed method.
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The ball-on-plate balancing system has a camera that captures the ball position and a plate whose inclination angles are limited.This
paper proposes a PID controller design method for the ball and plate system based on the generalized Kalman-Yakubovich-Popov
lemma. The design method has two features: first, the structure of the controller called I-PD prevents large input signals against
major changes in the reference signal; second, a low-pass filter is introduced into the feedback loop to reduce the influence of the
measurement noise produced by the camera. Both simulations and experiments are used to evaluate the effectiveness of the design
method.

1. Introduction

The ball and plate [1] is an unstable underactuated nonlinear
system that has double integrators at the origin and that has
two control inputs against four degrees of freedom (DOF). A
camera located above the plate captures the position of the
ball, and two motors manipulate the inclination angles of the
plate to keep the ball on the plate.The ball and plate system is
an extension of the ball and beam system [2] from one to two
dimensions. The system has demonstrated various controller
designmethods for positioning and trajectory tracking of the
ball: proportional integral derivative (PID) control [3], fuzzy
control [4], neural network control [3, 5], and model predic-
tive control [6]. In particular, PID control has the benefits
of simple implementation and fewer hardware requirements,
and it has been applied in many successful designs [7].
Because PID control enables us a limited performance,
optimizing the parameters in a PID controller satisfying
design specifications is an important subject for study. In the
controller design of the ball and plate, it requires to consider
limitation of the inclination angles with good transient and
steady-state responses. Although proportional and derivative
controllers are required to improve transient responses, a
jump in the reference signal generates a large input signal

that reaches the limitation angle that degrades the transient
responses [8]. In addition, ball position data from the camera
include measurement noise that also degrades the steady-
state responses.

To overcome the above issues, this paper proposes a
PID controller design method for the ball and plate system
by open-loop shaping based on the generalized Kalman-
Yakubovich-Popov (GKYP) lemma [9].TheGKYP lemma is a
generalization of the standard KYP lemma [10], which estab-
lishes the equivalence between a frequency domain inequality
(FDI) for a transfer function and a linear matrix inequality
(LMI) associatedwith its state-space realization.The standard
KYP lemma is available for the infinite frequency range
while the generalized one can limit the frequency range to
be (semi) finite. By introducing the GKYP lemma to PID
controller design, design specifications by FDIs in the finite
frequency ranges for the open-loop transfer function result
in LMIs [9]. The GKYP lemma gives a systematic open-
loop shaping design method through optimization to realize
desirable transient and steady-state responses. In this visual
feedback system, we introduce a low-pass filter. Since the
filter gives freedom in optimization, it allows better steady-
state responses and reduces the influence of themeasurement
noise. To prevent large input signals fromP andD controllers,
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Figure 1: 2D Ball Balancer.

we adopt the I-PD (integral-proportional derivative) struc-
ture, whose design is still in the framework of the GKYP
lemma, because the open-loop transfer functions of PID and
I-PD structures are fundamentally the same.

The paper is organized as follows. The description of the
ball and plate system, including its modeling and the mea-
surement noise, is presented in Section 2. The GKYP lemma
based I-PD controller design method with a low-pass filter
is provided in Section 3. The design of the I-PD controller is
described in Section 4. Simulation and experimental results
are presented in Sections 5 and 6, respectively. Finally, in
Section 7, we present our conclusions.

The notation used is standard. For a matrix 𝑀, the
transpose and complex conjugate transpose are denoted by
𝑀
⊤ and 𝑀∗, respectively. For a Hermitian matrix 𝑀, 𝑀 ≻

(⪰) 0 and 𝑀 ≺ (⪯) 0 denote positive (semi) definiteness
and negative (semi) definiteness, respectively.The symbolH

𝑛

stands for the set of 𝑛 × 𝑛 Hermitian matrices. The subscript
𝑛 is omitted if 𝑛 = 2. The real and imaginary parts of 𝑀
are denoted by R(𝑀) and I(𝑀). For matrices Φ and 𝑃,
Φ⊗𝑃 denotes the Kronecker product.L{𝑥(𝑡)} represents the
Laplace transform of a signal 𝑥(𝑡).

2. Ball and Plate System

The ball and plate, a QUANSER 2D Ball Balancer, is shown
in Figure 1. The system consists of a plate, a ball, an overhead
camera, and two servo units. The plate is allowed to swivel
in both the 𝑋- and 𝑌-directions. The overhead CMOS
digital camera, a Point Grey Research Inc. FFMV-03M2C-CS,
measures the position of the ball. The two servo units located
under the plate are QUANSER SRV02 devices, each of which
has a peak time of approximately 200 ([ms]) and an overshoot
of approximately 5%. Each of the devices is connected to a
side of the plate through a two DOF gimbal. The sampling
time of the control system and the frame rate provided by
the camera are 1 ([ms]) and 60 ([fps]), respectively. Thus the
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Figure 2: The ball and plate system.

image information is renewed approximately every 17 ([ms]).
There is a constant time delay of less than 60 ([ms]) between
themeasurement of the ball position and themanipulation of
the servo units in the visual feedback system.

2.1. Modeling. The𝑋-direction of the ball and plate system is
illustrated in Figure 2. We assume that the ball is completely
symmetric and homogeneous and does not slip on the plate
and that all frictions are neglected. The plate rotates in the
𝑋𝑌-Cartesian coordinates with the origin at the center of the
plate. The equations of motion are

(𝑚
𝑏
+
𝐼
𝑏

𝑟
2

𝑏

) ̈𝑥
𝑏
− 𝑚
𝑏
(𝑥
𝑏
̇𝛼
2

+ 𝑦
𝑏
̇𝛼 ̇𝛽) + 𝑚

𝑏
𝑔 sin𝛼 = 0,

(𝑚
𝑏
+
𝐼
𝑏

𝑟
2

𝑏

) ̈𝑦
𝑏
− 𝑚
𝑏
(𝑦
𝑏

̇𝛽
2

+ 𝑥
𝑏
̇𝛼 ̇𝛽) + 𝑚

𝑏
𝑔 sin𝛽 = 0,

(1)

where (𝑥
𝑏
, 𝑦
𝑏
) is the position of the ball on the plate, 𝛼 and

𝛽 are the inclination angles of the plate to the 𝑋- and 𝑌-axis,
respectively, 𝑚

𝑏
is the mass of the ball, 𝑟

𝑏
is the radius of the

ball, 𝑔 is the gravitational acceleration, and 𝐼
𝑏
is the inertia of

the ball. In Figure 2, 𝜃
𝑥
represents the angle of the load gear.

The relationship between 𝛼 and 𝜃
𝑥
is as follows:

sin𝛼 =
2 sin 𝜃

𝑥
𝑟arm

𝐿 tbl
, (2)

where 𝐿 tbl is the length of the side of the plate and 𝑟arm is the
length between the joint and the center of the load gear. The
relationship of 𝛽 and 𝜃

𝑦
is the same as (2), since both gear

systems have the same hardware and the plate is symmetrical.
The numerical values of the constant parameters in the
equations of motion and (2) are shown in Table 1. Since 𝜃

𝑥

and 𝜃
𝑦
are limited as

−30 [
∘

] ≤ {𝜃
𝑥
, 𝜃
𝑦
} ≤ 30 [

∘

] , (3)

from (2), the working ranges of 𝛼 and 𝛽 are

−5.3 [
∘

] ≤ {𝛼, 𝛽} ≤ 5.3 [
∘

] . (4)

If the angular velocities ̇𝛼 and ̇𝛽 are relatively low, the
approximations

̇𝛼 ̇𝛽 = 0, ̇𝛼
2

= 0, ̇𝛽
2

= 0 (5)
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Table 1: Parameters of the ball and plate system.

Parameters Numerical values
𝑚
𝑏

0.0252 [kg]
𝑟
𝑏

0.0170 [m]
𝑔 9.81 [m/s2]
𝐼
𝑏

2.89 × 10
−6 [kg⋅m]

𝐿 tbl 0.275 [m]
𝑟arm 0.0254 [m]

are often used. Linearizing the equations of motion at 𝜃
𝑥
= 0

and 𝜃
𝑦
= 0, we have

(𝑚
𝑏
+
𝐼
𝑏

𝑟
2

𝑏

) ̈𝑥
𝑏
+
2𝑚
𝑏
𝑔𝑟arm
𝐿 tbl

𝜃
𝑥
= 0,

(𝑚
𝑏
+
𝐼
𝑏

𝑟
2

𝑏

) ̈𝑦
𝑏
+
2𝑚
𝑏
𝑔𝑟arm
𝐿 tbl

𝜃
𝑦
= 0.

(6)

Since the axes are independent of each other, we can focus
on one axis, for example, the𝑋-axis. For the input 𝜃

𝑥
and the

output 𝑥
𝑏
, the transfer function is given by

𝑃 (𝑠) =
𝑋
𝑏
(𝑠)

Θ
𝑥
(𝑠)

=

𝐾bap

𝑠2
, (7)

where𝑋
𝑏
(𝑠) = L{𝑥

𝑏
(𝑡)}, Θ

𝑥
(𝑠) = L{𝜃

𝑥
(𝑡)}, and

𝐾bap = −
2𝑚
𝑏
𝑔𝑟arm𝑟

2

𝑏

𝐿 tbl (𝑚𝑏𝑟
2

𝑏
+ 𝐼
𝑏
)
. (8)

2.2. Measurement Noise. In this visual feedback system, there
is inevitable noise from the camera. To examine the noise
level and frequencies, we observed the error signal between
a fixed ball position and a measurement signal. The results
are shown in Figure 3, where the upper part represents a time
history of the error signal including noise and the lower part
represents the fast Fourier transform (FFT) analysis of the
error signal. The noise level in the error signals is relatively
high at frequencies over 20 ([rad/s]).

3. I-PD Control by GKYP Lemma

This section describes an I-PD controller design method
based on the GKYP lemma. The feedback control system is
shown in Figure 4, where a filter is introduced into the control
system.

3.1. Low-Pass Filter. In the previous section, we showed that
themeasurement noise degrades the control performance. To
reduce the influence of the noise, a low-pass filter is available
in the controller design. According to the noise properties
that we observed, it is sufficient to introduce a first-order low-
pass filter into the output of the measurement, such that

𝐹 (𝑠) =
𝜇

𝑠 + 𝜇
, (9)

where 𝜇 ([rad/s]) is the cut-off frequency.
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Figure 4: Feedback control system of the ball and plate.

3.2. I-PD Controller. In the standard PID control, major
changes in the reference signals cause large input signals to
be generated by the proportional and derivative actions in the
controller that saturate the actuator. Indeed, it is difficult to
tune the parameters in the PID controller (Figure 4) such that
the actuator in this visual feedback system is not saturated.
The control system with the I-PD controller (Figure 4) has
a structure whose inner loop includes the proportional and
derivative actions [7, 8]. In this structure, the integral action
alone acts on the error signal and prevents large signals being
input to the actuator. The control input 𝑢 can be written as

𝑢 = −𝐾
𝑝
𝑦 +

𝐾
𝑖

𝑠
(𝑟 − 𝑦) −

𝐾
𝑑
𝑠

𝜏𝑠 + 1
𝑦, (10)

where 𝜏(> 0) is the parameter to approximate the differen-
tiator by a proper transfer function.𝐾

𝑝
,𝐾
𝑖
, and𝐾

𝑑
represent

the proportional, integral, and derivative gains, respectively.
The open-loop transfer function is

𝐿 (𝑠) = 𝐹 (𝑠) 𝑃 (𝑠)𝐾 (𝑠) , (11)

where

𝐾 (𝑠) = 𝐾
𝑝
+
𝐾
𝑖

𝑠
+

𝐾
𝑑
𝑠

𝜏𝑠 + 1
= 𝐾
𝑝
(1 +

1

𝑇
𝑖
𝑠
+

𝑇
𝑑
𝑠

𝜏𝑠 + 1
) . (12)

𝑇
𝑖
and 𝑇

𝑑
are the integral time and derivative time, respec-

tively. It should be noted that the open-loop transfer function
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of the I-PD structure is the same as that of the standard
PID structure. To tune the parameters in the I-PD controller,
we employ an open-loop shaping that realizes a desirable
frequency response of the closed-loop system.

3.3. Generalized KYP Lemma. It is known that design spec-
ifications for an open-loop transfer function can be reduced
to LMIs through the GKYP lemma [9]. We briefly review this
lemma in the case of continuous-time systems.

The design specification consists of a frequency range and
a desired property in that range. The frequency range can be
represented by

Λ (Φ,Ψ) := {𝑠 ∈ C | 𝜎 (𝑠, Φ) = 0, 𝜎 (𝑠, Ψ) ≥ 0} , (13)

where Φ,Ψ ∈ H,

𝜎 (𝑠, Φ) := [𝑠
∗

1]Φ[
𝑠

1
] = 0. (14)

The equality constraint in (13) distinguishes between
continuous-time and discrete-time specifications. Since we
address continuous-time systems in this paper, we use Φ
such that

Φ := [
0 1

1 0
] . (15)

The inequality constraint 𝜎(𝑠, Ψ) ≥ 0 in (13) sets a frequency
rangeΩ. For example, a low frequency range is written as

Ω = {𝜔 | 𝜔 ≤ 𝜛
𝑙
} = {𝜔 | 𝜎 (𝑗𝜔, Ψ) ≥ 0} , (16)

where

Ψ = [
0 −𝑗

𝑗 2𝜛
𝑙

] . (17)

Table 2 presents a summary of the choice of Ψ versus a type
of the frequency range Ω, where 𝜛

ℓ
, 𝜛
ℎ
, 𝜛
1
, and 𝜛

2
are real

positive numbers, and 𝜛
𝑐
:= (𝜛
1
+ 𝜛
2
)/2. On the other hand,

the desired property in a specific frequency range can be
represented by

[𝐿 (𝑗𝜔) 𝐼]Π [
𝐿
∗

(𝑗𝜔)

𝐼
] ≺ 0, (18)

where

Π = [
Π
11

Π
12

Π
21

Π
22

] ∈ H
𝑚+𝑝

, Π
11
∈ H
𝑝
, Π ⪰ 0, (19)

𝑚 and 𝑝 are the input and output numbers of 𝐿(𝑠), respec-
tively. For SISO systems, consider the requirement that 𝐿(𝑗𝜔)
in a frequency range is on the half plane under a straight line.
That is, 𝐿(𝑗𝜔) is under the straight line, such that

𝑎R [𝐿 (𝑗𝜔)] + 𝑏I [𝐿 (𝑗𝜔)] < 𝑐, (20)

that is equivalent to (18) with

Π = [
0 𝑎 − 𝑗𝑏

𝑎 + 𝑗𝑏 −2𝑐
] ∈ H

2
. (21)

Table 2: Relation between Ψ andΩ for continuous time.

Ψ Ω

[
0 −𝑗

𝑗 2𝜛
ℓ

] 𝜔 ≤ 𝜛
ℓ
(low)

[
−1 𝑗𝜛

𝑐

−𝑗𝜛
𝑐
𝜛
1
𝜛
2

] 𝜛
1
≤ 𝜔 ≤ 𝜛

2
(middle)

[
0 𝑗

−𝑗 −2𝜛
ℎ

] 𝜛
ℎ
≤ 𝜔 (high)

This requirement is designed to reduce sensitivity in a low
frequency range. Another requirement is that 𝐿(𝑗𝜔) in a
frequency range is in the interior of the circle of radius 𝑟with
the center at 𝑐. That is, 𝐿(𝑗𝜔) is in the circle such that

󵄨󵄨󵄨󵄨𝐿 (𝑗𝜔) − 𝑐
󵄨󵄨󵄨󵄨

2

< 𝑟
2

, (22)

which is equivalent to (18) with

Π = [
1 −𝑐

∗

−𝑐 |𝑐|
2

− 𝑟
2] ∈ H

2
. (23)

This requirement is designed to guarantee robustness in a
high frequency range. Under these preparations, the gener-
alized KYP lemma [9] is expressed as follows.

Lemma 1. Let 𝐿(𝑠) be 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. Λ(Φ,Ψ) in (13) and
Π in (18) are given. Assume that det(𝑠𝐼 − 𝐴) ̸= 0 for all 𝑠 ∈ Λ.
Then the finite frequency condition

[𝐿 (𝑠) 𝐼]Π [
𝐿
∗

(𝑠)

𝐼
] ≺ 0, ∀𝑠 ∈ Λ (Φ,Ψ) (24)

holds if and only if there exist Hermitianmatrices𝑃 and𝑄 such
that the matrix inequality condition

[
[
[

[

Γ [
𝐵

𝐷
]Π
11

Π
11
[
𝐵

𝐷
]

∗

−Π
11

]
]
]

]

≺ 0 (25)

is satisfied where

Γ := [
𝐴 𝐼

𝐶 0
] (Φ
⊤

⊗ 𝑃 + Ψ
⊤

⊗ 𝑄) [
𝐴 𝐼

𝐶 0
]

⊤

+ [

[

0 𝐵Π
12

Π
∗

12
𝐵
⊤

𝐷Π
12
+ Π
∗

12
𝐷
⊤

+ Π
22

]

]

.

(26)

Equation (25) is affine with respect to 𝐵,𝐷, 𝑃,𝑄, andΠ
22
.

In the case where 𝐵 and𝐷 have affine design parameters, (25)
is an LMI.

4. Control System Design

4.1. Filter Design. Considering the control performance and
the noise level, we set the cut-off frequency in (9) as 𝜇 =

20 ([rad/s]). We examine the effectiveness of this filter in
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Figure 5: Time history and FFT analysis result of measurement
signal with low-pass filter.

the same experimental setup as given in Section 2.2. Figure 5
shows the spectral analysis results of the measurement and
filtered signals, which are represented by the dotted and solid
curves, respectively. From these results, it can be seen that the
noise at frequencies over 20 ([rad/s]) has been reduced.

4.2. State-Space Realization of Open-Loop Transfer Function.
To obtain an LMI based on the GKYP lemma, a state-space
realization of 𝐿(𝑠) is required to be affine with respect to a
set of the design parameters 𝜌 = (𝐾

𝑝
, 𝐾
𝑖
, 𝐾
𝑑
). If we fix 𝜏 in

𝐾(𝑠) at 1.0×10−2, the design parameters appear affinely in the
numerator of𝐾(𝑠). Indeed, the controllable canonical form of
𝐾(𝑠) is written as

[
𝐴
𝑘
𝐵
𝑘
(𝜌)

𝐶
𝑘
𝐷
𝑘
(𝜌)

] =

[
[
[
[
[
[

[

0 0
𝐾
𝑖

𝜏

1 −
1

𝜏
𝐾
𝑖
−
𝐾
𝑑

𝜏2

0 1 𝐾
𝑝
+
𝐾
𝑑

𝜏

]
]
]
]
]
]

]

. (27)

Realizations of 𝑃(𝑠) and 𝐹(𝑠) are also written as

[
𝐴
𝑝

𝐵
𝑝

𝐶
𝑝
𝐷
𝑝

] = [

[

0 1 0

0 0 𝐾bap
1 0 0

]

]

, (28)

[
𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] = [
−𝜇 1

𝜇 0
] , (29)

respectively. By combining these realizations (27)–(29), we
obtain a realization of 𝐿(𝑠) as

𝐿 (𝑠) = [
𝐴 𝐵 (𝜌)

𝐶 𝐷 (𝜌)
] , (30)

where

𝐴 = [

[

𝐴
𝑘

0 0

𝐶
𝑘
𝐵
𝑝

𝐴
𝑝

0

𝐶
𝑘
𝐷
𝑝
𝐵
𝑓
𝐶
𝑝
𝐵
𝑓
𝐴
𝑓

]

]

, 𝐵 = [

[

𝐵
𝑘
(𝜌)

𝐷
𝑘
(𝜌) 𝐵
𝑝

𝐷
𝑘
(𝜌)𝐷
𝑝
𝐵
𝑓

]

]

,

𝐶 = [𝐶
𝑘
𝐷
𝑝
𝐵
𝑓
𝐶
𝑝
𝐵
𝑓
𝐶
𝑓
] , 𝐷 = 𝐷

𝑘
(𝜌)𝐷
𝑝
𝐷
𝑓
.

(31)

Consequently, the state-space realization of 𝐿(𝑠) is affine with
respect to 𝜌.

4.3. Specifications. To shape the Nyquist plot of 𝐿(𝑠), we
require the following FDI specifications:

−2R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] > 𝛾
ℓ
,
∀

𝜔 ≤ 0.8, (32)

I [𝐿 (𝑗𝜔)] < 𝛾
𝑚
, 2.5 ≤

∀

𝜔 ≤ 2.8, (33)

󵄨󵄨󵄨󵄨𝐿 (𝑗𝜔)
󵄨󵄨󵄨󵄨 < 𝛾ℎ,

∀

𝜔 ≥ 10. (34)

Specification (32) with a large 𝛾
ℓ
(> 0) ensures sensitivity

reduction in the low frequency range by making the gain of
𝐿(𝑠) high. Specification (33) requires the Nyquist plot to be
outside a circle with its center at the point −1 + 𝑗0 so that
a certain stability margin is guaranteed. Specification (34)
with a small 𝛾

ℎ
ensures robustness against the unmodeled

dynamics that typically exists in the high frequency range.
In addition to the above basic specifications, we also

require the following FDIs that improve the property of
trajectory tracking

4R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] < 𝛾
1
,
∀

𝜔 ≥ 0.3, (35)

4R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] > 𝛾
2
,
∀

𝜔 ≥ 0.3. (36)

Since the integral action aloneworks on the error between the
output and the reference signals, the property of trajectory
tracking depends directly on the integrator. Here we focus
on the corner angular frequency 𝜔

𝐼
by the integral action

in the I-PD controller which is given by 𝜔
𝐼
= 1/𝑇

𝑖
, where

𝑇
𝑖
= 𝐾
𝑝
/𝐾
𝑖
. We have a strong integral action, and the error is

corrected quickly when the corner angular frequency is high,
while too high a corner angular frequency causes overshoot
and hunting. Thus we impose restrictions for the phase of
the I-PD controller. It should be noted that the phase at
lower frequencies is about −90 ([deg]) while the phase at
the corner angular frequency is about 0 [deg]. If we find the
frequency at a specific phase from −90 ([deg]) to 0 ([deg]),
the corner angular frequency is greater than that frequency.
Specifications (35) and (36) restrict the phase of the I-PD
controller as well as the open-loop transfer function so that
the corner angular frequency is greater than the frequency at
the lowest point in the frequency range 0.3 ([rad/s]).

4.4. I-PD Controller Design. We design an I-PD controller by
maximizing 𝛾

ℓ
subject to Specifications (32)–(36) where

(𝛾
𝑚
, 𝛾
ℎ
, 𝛾
1
, 𝛾
2
) = (−1, 0.5, 1, −100) . (37)
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That is, the optimization problem is

max
𝐾𝑖 ,𝐾𝑝,𝐾𝑑 ,𝛾ℓ

𝛾
ℓ

subject to (19)–(36) and (37) .

(38)

Each of the design Specifications (32)–(36) is reduced to an
LMI condition through Lemma 1 with the realization (30).
The Specification (32) is modified to 𝜀 ≤ ∀𝜔 ≤ 0.8, where 𝜀 =
1.0 × 10

−4 because 𝐿(𝑠) includes the origin poles that prevent
us from taking 𝜔 = 0. Then the LMI optimization problem
is to maximize 𝛾

ℓ
subject to all these LMI conditions where

𝐾
𝑖
, 𝐾
𝑝
, and 𝐾

𝑑
are the common decision variables, while

𝑃
1
, . . . , 𝑃

5
and 𝑄

1
, . . . , 𝑄

5
appear in the LMIs as independent

decision variables. It should be noted that 𝛾
ℓ
appears alone in

Π
22
in the LMI condition (25) corresponding to (36). In this

sense, 𝛾
ℓ
is also an independent decision variable. It should

also be noted that 𝑃 and 𝑄 in (25) appear in each of the LMI
conditions as the independent decision variables.

To solve this LMI optimization problem, we use YALMIP
R20120806 [11], an LMI parser, and SPDT3 version 4.0 [12],
an LMI solver, on MATLAB R2011b. The resulting optimal
parameters in the I-PD controller and 𝛾

ℓ
are

(𝐾
𝑝
, 𝐾
𝑖
, 𝐾
𝑑
, 𝛾
ℓ
) = (9.2859, 10.7806, 4.138, 11.9464) .

(39)

The Nyquist plots are shown in Figures 6 and 7 where 𝐿(𝑗𝜔)
satisfies the design specifications given in Section 4.3. Since 𝛾

ℓ

is maximized, sensitivity is reduced in the frequency range.
The Bode plots of 𝐹(𝑠)𝑃(𝑠), 𝐿(𝑠), and 𝐾(𝑠) are shown in
Figure 8 where the corner angular frequency 𝜔

𝐼
of the I-PD

controller is larger than 0.3 ([rad/s]).

5. Simulation Results

The I-PD controller whose design is described in the previous
section was evaluated by a simulation of the step response. To
compare the response with that of a standard PID controller,
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we used the PID controller whose gain parameters are the
same as those of the I-PD controller. Since both feedback
systems have the same open-loop transfer function, their
feedback properties must be the same, provided that each
input signal does not saturate. The simulation results of the
step response are shown in Figure 9 where the upper and
lower parts are the output and input signals, respectively.
The solid curves represent the responses given by the I-PD
controller while the dashed curves represent those by the PID
controller. One can see that the input signal given by the PID
controller is saturated, while that by the I-PD controller is not
saturated and satisfies the limitation (3). The output signal
given by the I-PD controller settles down to the desired value
without any overshoot.

It should be noted that the gain parameters in the
designed controller are not tuned with the I-PD structure.
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In our experience, it is difficult not to saturate the input
limitation for the PID structure using any design method.

6. Experimental Results

This section evaluates the I-PD controller whose design
is given in Section 4 through an experiment of the step
response. The PID controller used in Section 4 was also
evaluated for comparison. The results of trajectory tracking
control by the I-PD controller were also evaluated.

6.1. Step Response Experiment. The results of the step
response experiment are shown in Figure 10 where the
description of the figure is the same as that of Figure 9. In this
experiment, the influence of the time delay appeared and the
input signals were slightly larger than those obtained in the
simulations. The rise and settling time results are, however,
almost the same as those obtained in the simulation.

6.2. Trajectory Tracking Experiments. We tested two kinds
of trajectories for tracking control, a square and a circular
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trajectory. The side of the square trajectory was 0.1 ([m]),
and the radius of the circular trajectory was 0.05 ([m]). The
results are shown in Figure 11 where the left part shows a
trajectory of the square trajectory tracking control, and the
right part shows a trajectory of the circular trajectory tracking
control. The time histories of the ball and input angles are
shown in Figures 12 and 13. In the square trajectory tracking
control experiment, the responses were similar to those in
the step response experiment except for a slight vibration.
Such vibration phenomena are noticeable in the responses
of circular trajectory tracking control, in particular, the case
when the input signal is relatively small. The reason for these
phenomena could be the friction of the ball against the plate
or a backlash of the gear system.

7. Conclusions

This paper applied the GKYP lemma to an open-loop
transfer function including an I-PD controller and a noise
reduction filter for the ball and plate system.Themultiple FDI
specifications for the finite frequency ranges were satisfied
by a solution of the LMI optimization problem. The solution
includes the optimal parameters in the I-PD controller. The
first-order low-pass filter reduced the noise in the high fre-
quency range and improved the steady-state response. Both
simulations and experiments evaluated the effectiveness of
the designmethod by comparing the standard PID controller.

The PI-D (proportional integral-derivative) control sys-
tem, which moved the derivative controller to the inner
feedback loop, also has the same open-loop transfer function
as the standard PID controller. Thus the approach in this
paper can also be applied to the PI-D controller.
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[7] K. J. Åstrőm and T. Hägglund, Advanced PID Control, Instru-
mentation Systems, 2005.

[8] Q. Li and Z. Kemin, Introduction to Feedback Control, Prentice
Hall, 2009.

[9] T. Iwasaki and S. Hara, “Generalized KYP lemma: unified
frequency domain inequalities with design applications,” IEEE
Transactions on Automatic Control, vol. 50, no. 1, pp. 41–59,
2005.

[10] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Sys-
tems & Control Letters, vol. 28, no. 1, pp. 7–10, 1996.
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This paper addresses the problem of tracking a reference trajectory asymptotically given by a linear time-varying exosystem for
a class of uncertain nonlinear MIMO systems based on the robust optimal sliding-mode control. The nonlinear MIMO system
is transformed into a linear one by the input-output linearization technique, and at the same time the input-output decoupling is
realized.Thus, the tracking error equation is established in a linear form, and the original nonlinear tracking problem is transformed
into an optimal linear quadratic regulator (LQR) tracking problem. A LQR tracking controller (LQRTC) is designed for the
corresponding nominal system, and the integral sliding-mode strategy is used to robustify the LQRTC. As a result, the original
system exhibits global robustness to the uncertainties, and the tracking dynamics is the same as that of LQRTC for the nominal
system. So a robust optimal sliding-mode tracking controller (ROSMTC) is realized.Theproposed controller is applied to a two-link
robot system, and simulation results show its effectiveness and superiority.

1. Introduction

Trajectory tracking control for multiple-input multiple-
output (MIMO) nonlinear systems has attached much atten-
tion during the past decades [1, 2]. Compared with single-
input single-output (SISO) systems, the optimal tracking
control for MIMO systems is much more difficult and
complex because the output variables are more than one
and usually coupled. Many real nonlinear plants have MIMO
structures, such as robots, electricmotors, and aerocrafts.The
key to solve MIMO problem is to introduce the decoupling
technology, and several control schemes for decoupling have
been quite mature, such as the cascade decoupling based
on classical control theory [3], the linear state feedback
decoupling based on modern control theory [4], the linear
output feedback decoupling [5], the stable-state feedback
decoupling, and the dynamic precompensate [6, 7]. In recent
years, adaptive decoupling theory, fuzzy decoupling theory
and neural network decoupling theory have also made great
achievements [8–11]. But there are some difficulties when
these schemes are applied in practical applications; for exam-
ple, the decoupling control system based on classical control

theory often leads to a physically unrealizable problem, while
the decoupling control system based on the modern control
theory often leads to complex calculations and its realization
is very difficult. As a branch of exact linearization, the
input-output linearization is an effective way to decouple
MIMO systems [12]. It could be achieved by exact input-
output transformation and feedback, and any higher-order
nonlinear terms are not neglected. Additionally, it could be
employed to stabilize systems in a large scale. What’s more,
it could avoid complicated calculations in dealing with the
tracking problem for nonlinear MIMO systems, and it is easy
to achieve.

As is well known, optimal control is one of the most
important branches in modern control theory and LQRTC
has been used and developed well in linear MIMO sys-
tems. However, there would be several problems in applying
LQRTC to uncertain nonlinear systems.The optimal LQRTC
for nonlinear systems often leads to a nonlinear two-point
boundary-value (TPBV) problem and the analytical solution
generally does not exist except in some simple cases [13].
Additionally, the optimal controller design is usually based
on the precisemathematicalmodels. If the system is subject to
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some uncertainties, such as parameter variations, unmodeled
dynamics, and external disturbances, the performance crite-
rion which is optimized based on the nominal system would
deviate from the optimal value or even the system becomes
unstable.

Sliding-mode control (SMC) is an effective robust con-
trol approach for uncertain nonlinear systems [14, 15]. Its
outstanding advantage is that the sliding motion exhibits
complete robustness to system uncertainties [16, 17]. How-
ever, during the reaching phase, the SMC system is sensitive
to uncertainties. Therefore, various methods have been sug-
gested by minimizing or even removing the reaching phase,
such as time-varying sliding mode and integral sliding mode
(ISM). Time-varying sliding-mode surfaces that can remove
the reaching phase were studied in [18] for the SISO system.
And for a class of uncertain MIMO nonlinear systems, three
types of time-varying sliding-mode control were proposed
in [19]. Another effective method to remove the reaching
phase and obtain a global robustness is the ISM, which was
proposed by Lee [20] for linear systems. Recently, the ISM
control research has obtained many results, for example, the
optimal and robust control for linear state-delay systems was
proposed in [21], the LMI-based ISM control of mismatched
uncertain systems was considered in [22]. Compared with
the time-varying sliding mode, the ISM is simpler and easier
to implement, especially for MIMO systems. How to make
an optimal controller or tracking controller have the global
robustness of ISM is a valuable subject. For the optimal
control problem, [20] studied the problem for linear systems.
Reference [23] proposed a higher order sliding-mode control
methodology based on ISM for a class of nonlinear SISO
systems. Reference [24] presented an ISM surface for a class of
nonlinear uncertain systems based on the exact linearization.
Reference [25] studied the global robust optimal sliding-
mode control based on ISM for class of MIMO nonlinear
systems, with the nonlinear LQR problem solved by the
sensitivity approach. But with system-order increasing, the
complexity for calculating optimal solution increases rapidly.
For the optimal tracking control problem, [26] studied the
optimal sliding-mode output tracking control for linear
uncertain systems with the reference signal given by a linear
time-varying exosystem. Reference [27] proposed an optimal
output tracking controller for nonlinear systems based on
successive approximation approach, without uncertainties
considered. Reference [28] studied the optimal sliding-mode
control by combining ISM with optimal control and applied
it to quaternion-based spacecraft attitude tracking maneu-
vres with external disturbances and an uncertainty inertia
matrix. The control Lyapunov function (CLF) approach and
Lyapunov optimizing control (LOC) methods were used to
solve the nonlinear optimal control problems, respectively,
and the desired reference was given by some known trajec-
tories.

The optimal tracking problem for nonlinear MIMO
systems with reference signals generated by a time-varying
exosystem is more challenging because of the complexity
of nonlinear, the difficulty of the optimal solution, the
inevitability of uncertainties, the coupling problem, and so
on.

In this paper, the input-output linearization is employed
to linearize and decouple the original MIMO system. Based
on the decoupled system and the exosystem, an error
equation is constructed. Therefore, the optimal tracking
problem of original system is transferred into an optimal
state regulation problem about the linear error system, and
the TPBV problem is avoided. Based on optimal control
law, an ISM surface is constructed, which can remove the
reaching phase of SMC and guarantee the global sliding
mode. To reduce chattering, the reaching law is used to
design the optimal sliding-mode tracking control law. As a
result, not only the optimal performance can be obtained but
also the global robustness to uncertainties is guaranteed. The
proposed algorithm is applied to a two-link robot system, and
simulation results show its effectiveness.

2. Problem Formulation

Consider a class of uncertain affine nonlinearMIMO systems
as follows:

̇𝑥 = 𝑓 (𝑥) + Δ𝑓 (𝑥) + 𝐺 (𝑥) 𝑢 + 𝑑 (𝑥, 𝑡) ,

𝑦 = ℎ (𝑥) ,

(1)

where 𝑥 ∈ 𝑅𝑛 is the system state vector, 𝑢 ∈ 𝑅𝑚 is the
control input vector, and 𝑦 ∈ 𝑅𝑚 is the system output vector.
𝐺(𝑥) = [𝑔

1
(𝑥), . . . , 𝑔

𝑚
(𝑥)], 𝑓(𝑥), and 𝑔

𝑖
(𝑥) are sufficiently

smooth vector fields on a domain𝐷 ⊂ 𝑅𝑛. ℎ(𝑥) is a measured
sufficiently smooth output function vector and ℎ(𝑥) =
[ℎ
1
, . . . , ℎ

𝑚
]
T. Δ𝑓(𝑥) and 𝑑(𝑥, 𝑡) are unknown function vec-

tors representing the system uncertainties, including system
parameter variations, unmodeled dynamics, and external
disturbances.

The reference signal 𝑦(𝑡) is given by the following exosys-
tem:

̇𝑧 (𝑡) = 𝐹 (𝑡) 𝑧 (𝑡) , 𝑧 (𝑡
0
) = 𝑧
0
,

𝑦 (𝑡) = 𝐻 (𝑡) 𝑧 (𝑡) ,

(2)

where 𝑧 ∈ 𝑅𝑝 is the state vector and 𝑦 ∈ 𝑅𝑚 is the
output vector. 𝐹(𝑡) and 𝐻(𝑡) are time-varying matrices with
appropriate dimensions. Suppose that the pair [𝐹(𝑡),𝐻(𝑡)] is
observable.

Our objective is to design a ROSMTC so that the output
𝑦 of system (1) can track the exosystem’s output 𝑦 asymptoti-
cally, some given performance criterion is minimized and the
system can exhibit global robustness to uncertainties.

Ignoring the uncertainties, the nominal system of uncer-
tain affine nonlinear system (1) is

̇𝑥 = 𝑓 (𝑥) + 𝐺 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) .

(3)

Assumption 1. Equation (3) has the relative degree vector
{𝑟
1
, . . . , 𝑟

𝑚
} and 𝑟 = 𝑟

1
+ ⋅ ⋅ ⋅ + 𝑟

𝑚
= 𝑛.

Assumption 2. The reference trajectory 𝑦(𝑡) and its deriva-
tions 𝑦(𝑖)(𝑡) (𝑖 = 1, . . . , 𝑛) can be obtained online, and they
are bounded to all 𝑡 ≥ 0.
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The nominal system (3) is a coupling nonlinear MIMO
system. In the next part, exact linearization will be employed
to transform the nonlinear system into a linear one and
achieve decoupling between the inputs and outputs. Further-
more, the original tracking problem will be transformed into
a robust optimal regulation problem for linear system.

3. Input-Output Linearization and
Problem Transformation

Considering system (3) and differentiating 𝑦 = ℎ(𝑥), we have

𝑦
(𝑘)

𝑖
= 𝐿
𝑘

𝑓
ℎ
𝑖
(𝑥) , 0 ≤ 𝑘 ≤ 𝑟

𝑖
− 1,

𝑦
(𝑟𝑖)

𝑖
= 𝐿
𝑟𝑖

𝑓
ℎ
𝑖
(𝑥) +

𝑚

∑

𝑗=1

𝐿
𝑔𝑗
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑥) 𝑢
𝑗
.

(4)

Define

𝑀(𝑥) =

[
[
[

[

𝐿
𝑔1
𝐿
𝑟1−1

𝑓
ℎ
1
(𝑥) ⋅ ⋅ ⋅ 𝐿

𝑔𝑚
𝐿
𝑟1−1

𝑓
ℎ
1
(𝑥)

... ⋅ ⋅ ⋅
...

𝐿
𝑔1
𝐿
𝑟𝑚−1

𝑓
ℎ
𝑚
(𝑥) ⋅ ⋅ ⋅ 𝐿

𝑔𝑚
𝐿
𝑟𝑚−1

𝑓
ℎ
𝑚
(𝑥)

]
]
]

]

. (5)

And𝑀(𝑥) is nonsingular in some domain for all 𝑥 ∈ 𝑋
0
.

According to Assumption 1, (4) can be written as

[
[
[

[

𝑦
(𝑟1)

1

...
𝑦
(𝑟𝑚)

𝑚

]
]
]

]

=

[
[
[

[

𝐿
𝑟1

𝑓
ℎ
1
(𝑥)

...
𝐿
𝑟𝑚

𝑓
ℎ
𝑚
(𝑥)

]
]
]

]

+𝑀(𝑥)
[
[

[

𝑢
1

...
𝑢
𝑚

]
]

]

. (6)

Choose the control law in the form of

𝑢 = −𝑀
−1

(𝑥)

[
[
[

[

𝐿
𝑟1

𝑓
ℎ
1
(𝑥)

...
𝐿
𝑟𝑚

𝑓
ℎ
𝑚
(𝑥)

]
]
]

]

+𝑀
−1

(𝑥) V; (7)

then the input-output dynamic equation can be described as

[
[
[

[

𝑦
(𝑟1)

1

...
𝑦
(𝑟𝑚)

𝑚

]
]
]

]

=
[
[

[

V
1

...
V
𝑚

]
]

]

. (8)

As can be seen, the output 𝑦
𝑖
= ℎ
𝑖
(𝑥) is only related to

the input V
𝑖
, which means the input-output decoupling has

been realized. Noting that the relative degree of system (1) is
𝑟 = 𝑟
1
+⋅ ⋅ ⋅+𝑟

𝑚
= 𝑛, so the decoupling process is equivalent to

the input-output linearization process. In the following part,
the results above will be applied to uncertain affine nonlinear
system (1) to structure a tracking error equation.

Considering system (1) and differentiating 𝑦 = ℎ(𝑥), we
have

𝑦
(𝑘)

𝑖
= 𝐿
𝑘

𝑓
ℎ
𝑖
(𝑥) , 0 ≤ 𝑘 ≤ 𝑟

𝑖
− 1,

𝑦
(𝑟𝑖)

𝑖
= 𝐿
𝑟𝑖

𝑓
ℎ
𝑖
(𝑥) + 𝐿

Δ𝑓
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑥)

+

𝑚

∑

𝑗=1

𝐿
𝑔𝑗
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑥) 𝑢
𝑗
+ 𝐿
𝑑
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
.

(9)

Define 𝜂𝑗
𝑖
= 𝐿
𝑗

𝑓
ℎ
𝑖
(𝑥), 𝑖 = 1, . . . , 𝑚, and 𝑗 = 0, 1, . . . , 𝛾

𝑖−1
and

choose the following nonlinear state transformation:

𝜉 = [𝜂
0

1
, . . . , 𝜂

𝑟1−1

1
, . . . , 𝜂

0

𝑚
, . . . , 𝜂

𝑟𝑚−1

𝑚
]
T
. (10)

Define the tracking error as

𝑒 = [ℎ
1
(𝑥) − 𝑦

1
, . . . , 𝐿

(𝑟1−1)

𝑓
ℎ
1
(𝑥) − 𝑦

(𝑟1−1)

1
, . . . ,

ℎ
𝑚
(𝑥) − 𝑦

𝑚
, . . . , 𝐿

(𝑟𝑚−1)

𝑓
ℎ
𝑚
(𝑥) − 𝑦

(𝑟𝑚−1)

𝑚
]

T

= [𝜉
1
− 𝑦
1
, . . . , 𝐿

(𝑟1−1)

𝑓
ℎ
1
(𝑥) − 𝑦

(𝑟1−1)

1
, . . . ,

ℎ
𝑚
(𝑥) − 𝑦

𝑚
, . . . , 𝐿

(𝑟𝑚−1)

𝑓
ℎ
𝑚
(𝑥) − 𝑦

(𝑟𝑚−1)

𝑚
]

T

= [𝑒
1
, . . . , 𝑒

(𝑟1−1)

1
, ⋅ ⋅ ⋅ , 𝑒

𝑚
, . . . , 𝑒

(𝑟𝑚−1)

𝑚
]
T
.

(11)

Define 𝑌̃ = [𝑦𝑟1
1
, . . . , 𝑦

𝑟𝑚

𝑚
]
T
∈ 𝑅
𝑚 and choose the control law

in the form of
𝑢 = 𝑀

−1

(𝑥) [−𝑏 (𝑥) + 𝑌̃ + V] , (12)

where 𝑏(𝑥) = [𝐿𝛾1
𝑓
ℎ
1
⋅ ⋅ ⋅ 𝐿
𝛾𝑚

𝑓
ℎ
𝑚]

T
.

So the tracking error equation can be written as
̇𝑒 = 𝐴𝑒 + Δ𝐴 + 𝐵V + Δ𝐵, (13)

where 𝑒 ∈ 𝑅𝑛 is the system tracking error vector and V ∈ 𝑅𝑚

is a new control input of the transformed system. 𝐴, Δ𝐴,
𝐵, and Δ𝐵 are corresponding constant matrices and defined,
respectively, as follows:

𝐴 = diag (𝐴
1
, . . . , 𝐴

𝑚
) ,

𝐵 = diag (𝐵
1
, . . . , 𝐵

𝑚
) ,

Δ𝐴 = [Δ𝐴
1
, . . . , Δ𝐴

𝑚
]
T
,

Δ𝐵 = [Δ𝐵
1
, . . . , Δ𝐵

𝑚
]
T
,

𝐴
𝑖
=

[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0

]
]
]
]
]
]

]𝑟𝑖×𝑟𝑖

, 𝐵
𝑖
=

[
[
[
[
[
[

[

0

0

...
0

1

]
]
]
]
]
]

]𝑟𝑖×1

,

Δ𝐴
𝑖
=

[
[
[
[
[
[

[

0

0

...
0

𝐿
Δ𝑓
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑥)

]
]
]
]
]
]

]
𝑟𝑖×1

,

Δ𝐵
𝑖
=

[
[
[
[
[
[

[

0

0

...
0

𝐿
𝑑
𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑥)

]
]
]
]
]
]

]
𝑟𝑖×1

,

(14)
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where Δ𝐴 and Δ𝐵 represent uncertainties of the transformed
system. Obviously, Δ𝐴 and Δ𝐵 satisfy the matching con-
ditions; that is, there exist unknown continuous function
vectors Δ𝐴(∈ 𝑅𝑚) and Δ𝐵(∈ 𝑅𝑚) which satisfy

Δ𝐴 = 𝐵Δ𝐴, Δ𝐵 = 𝐵Δ𝐵. (15)

Assumption 3. There exist known constants 𝑎
𝑚
and 𝑏
𝑚
such

that
󵄩󵄩󵄩󵄩󵄩
Δ𝐴
󵄩󵄩󵄩󵄩󵄩1
≤ 𝑎
𝑚
,

󵄩󵄩󵄩󵄩󵄩
Δ𝐵
󵄩󵄩󵄩󵄩󵄩1
≤ 𝑑
𝑚
, (16)

where ‖ ⋅ ‖
1
denotes the 1-norm.

After exact linearization and decoupling, the optimal
tracking problem of original system (1) is transferred into a
robust optimal regulation problem about the error system
(13). In the next part, the ROSMTC will be designed for
system (13).

4. Design of Robust Optimal Sliding-Mode
Tracking Controller (ROSMTC)

4.1. Optimal Tracking Control of Nominal System. Ignoring
the uncertainties of system (13), the corresponding nominal
system is

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝐵V (𝑡) . (17)

For (17), let V = V
0
and V
0
can minimize the quadratic perfor-

mance index as follows:

𝐽
𝑁
=
1

2
∫

∞

0

[𝑒
T
(𝑡) 𝑄𝑒 (𝑡) + VT

0
(𝑡) 𝑅V

0
(𝑡)] d𝑡, (18)

where 𝑄 ∈ 𝑅𝑛×𝑛 is a symmetric semipositive definite matrix
and 𝑅 ∈ 𝑅𝑚×𝑚 is a positive definite matrix.

According to optimal control theory, the optimal feed-
back control law can be described as

V
0
(𝑡) = −𝑅

−1

𝐵
T
𝑃𝑒 (𝑡) , (19)

where 𝑃 is the solution of matrix Riccati equation as follows:

𝑃𝐴 + 𝐴
T
𝑃 − 𝑃𝐵𝑅

−1

𝐵
T
𝑃 + 𝑄 = 0. (20)

So the closed-loop system dynamics is

̇𝑒 (𝑡) = (𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝑡) . (21)

According to optimal control theory, the closed-loop sys-
tem is asymptotically stable. However, if the control law (19)
is applied to uncertain system (13), the state trajectory will
deviate from the optimal trajectory and even the system will
become unstable. Next we will adopt ISM control technique
to robustify the optimal control law; to achieve the goal that
the state trajectory of uncertain system (13) is the same as that
of the optimal trajectory of the nominal system (17).

4.2. The Robust Optimal Sliding Surface. Considering the
uncertain system (13), we define an integral sliding surface
in the form of

𝑠 (𝑒, 𝑡) = 𝐺𝑒 (𝑡) − 𝐺∫

𝑡

0

(𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝜏) d𝜏 − 𝐺𝑒 (0) ,

(22)

where 𝐺 ∈ 𝑅𝑚×𝑛 which satisfies that 𝐺𝐵 is nonsingular and
𝑒(0) is the initial state vector. Differentiating (22) with respect
to 𝑡 and considering (13), we obtain

̇𝑠 (𝑒, 𝑡) = 𝐺 ̇𝑒 (𝑡) − 𝐺 (𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝑡)

= 𝐺 [𝐴𝑒 (𝑡) + Δ𝐴 + 𝐵V (𝑡) + Δ𝐵]

− 𝐺(𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝑡)

= 𝐺𝐵V (𝑡) + 𝐺Δ𝐴 + 𝐺Δ𝐵 + 𝐺𝐵𝑅−1𝐵
T
𝑃𝑒 (𝑡) .

(23)

Let ̇𝑠(𝑡) = 0; then the equivalent control becomes

Veq (𝑡) = −(𝐺𝐵)
−1

[𝐺Δ𝐴 + 𝐺Δ𝐵 + 𝐺𝐵𝑅
−1

𝐵
T
𝑃𝑒 (𝑡)] . (24)

Substituting (24) into (13) and considering (15), the sliding-
mode dynamics is

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + Δ𝐴 + 𝐵Veq (𝑡) + Δ𝐵

= 𝐴𝑒 (𝑡) + Δ𝐴 − 𝐵(𝐺𝐵)
−1

× [𝐺Δ𝐴 + 𝐺Δ𝐵 + 𝐺𝐵𝑅
−1

𝐵
T
𝑃𝑒 (𝑡)] + Δ𝐵

= 𝐴𝑒 (𝑡) + Δ𝐴 − Δ𝐴 − Δ𝐵

− 𝐺
−1

𝐺𝐵𝑅
−1

𝐵
T
𝑃𝑒 (𝑡) + Δ𝐵

= (𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝑡) .

(25)

Comparing (25) with (21), we can see that the sliding
mode of uncertain linear system (13) is the same as opti-
mal dynamics of (17); therefore, the sliding mode is also
asymptotically stable, and the sliding motion guarantees
the controlled system global robustness to the uncertainties
which satisfy the matching condition. We call (22) a global
robust optimal sliding surface.

4.3. The Control Law. For uncertain system (13), we propose
the control law as follows:

V (𝑡) = V
𝑐
(𝑡) + V

𝑑
(𝑡) ,

V
𝑐
(𝑡) = −𝑅

−1

𝐵
T
𝑃𝑒 (𝑡) ,

V
𝑑
(𝑡) = −(𝐺𝐵)

−1

[𝑘𝑠 + 𝜀 sgn (𝑠)] ,

(26)

where sgn(𝑠) = [sgn(𝑠
1
), . . . , sgn(𝑠

𝑚
)]
T and 𝑘 and 𝜀 are appr-

opriate positive constants, respectively. V
𝑐
(𝑡), used to stabilize



Journal of Applied Mathematics 5

and optimize the nominal system, is the continuous part
of the control law. V

𝑑
(𝑡) is the discontinuous part, which

provides complete compensation for uncertainties of system
(13).

Theorem 4. Consider uncertain system (13) with Assumption
3. Let the input V(𝑡) and the sliding surface be given by (26)
and (22), respectively. The control law can force the system
trajectories to reach the sliding surface in finite time and
maintain it thereafter if 𝜀 ≥ (𝑎

𝑚
+ 𝑑
𝑚
)‖𝐺𝐵‖

1
.

Proof. Utilizing 𝑉 = (1/2)𝑠T𝑠 as a Lyapunov function candi-
date and considering Assumption 3, we obtain

𝑉 = 𝑠
T
̇𝑠

= 𝑠
T
[𝐺 ̇𝑒 (𝑡) − 𝐺 (𝐴 − 𝐵𝑅

−1

𝐵
T
𝑃) 𝑒 (𝑡)]

= 𝑠
T
{𝐺 [𝐴𝑒 (𝑡) + Δ𝐴 + 𝐵V (𝑡) + Δ𝐵]

−𝐺(𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑒 (𝑡)}

= 𝑠
T
{𝐺Δ𝐴 + 𝐺𝐵 [ − 𝑅

−1

𝐵
T
𝑃𝑒 (𝑡) − (𝐺𝐵)

−1

× (𝑘𝑠 + 𝜀 sgn (𝑠)) + 𝐺Δ𝐵]

−𝐺𝐵𝑅
−1

𝐵
T
𝑃𝑒 (𝑡) }

= 𝑠
T
{𝐺Δ𝐴 + 𝐺Δ𝐵 − [𝑘𝑠 + 𝜀 sgn (𝑠)]}

= −𝑘‖𝑠‖
2

2
− 𝜀‖𝑠‖

1
+ 𝑠

T
(𝐺Δ𝐴 + 𝐺Δ𝐵) ,

(27)

where ‖ ⋅ ‖
2
denotes the 2-norm. As 𝑠T(𝐺Δ𝐴+𝐺Δ𝐵) is a scalar

quantity considering (15) and Assumption 3, we get

𝑠
T
(𝐺Δ𝐴 + 𝐺Δ𝐵) ≤

󵄩󵄩󵄩󵄩󵄩
𝑠
T
(𝐺Δ𝐴 + 𝐺Δ𝐵)

󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
𝑠
T
(𝐺𝐵Δ𝐴 + 𝐺𝐵Δ𝐵)

󵄩󵄩󵄩󵄩󵄩1

≤ ‖𝑠‖
1
⋅
󵄩󵄩󵄩󵄩󵄩
𝐺𝐵
󵄩󵄩󵄩󵄩󵄩1
⋅ (
󵄩󵄩󵄩󵄩󵄩
Δ𝐴
󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
Δ𝐵
󵄩󵄩󵄩󵄩󵄩1
)

≤ ‖𝑠‖
1
⋅
󵄩󵄩󵄩󵄩󵄩
𝐺𝐵
󵄩󵄩󵄩󵄩󵄩1
⋅ (𝑎
𝑚
+ 𝑑
𝑚
) .

(28)

Thus,

𝑉 = 𝑠
T
̇𝑠 ≤ −𝑘‖𝑠‖

2

2
− 𝜀‖𝑠‖

1

+ (𝑎
𝑚
+ 𝑑
𝑚
) ⋅
󵄩󵄩󵄩󵄩󵄩
𝐺𝐵
󵄩󵄩󵄩󵄩󵄩1
⋅ ‖𝑠‖
1
.

(29)

So, if

𝜀 ≥ (𝑎
𝑚
+ 𝑑
𝑚
)
󵄩󵄩󵄩󵄩󵄩
𝐺𝐵
󵄩󵄩󵄩󵄩󵄩1
, (30)

then

𝑉 = 𝑠
T
̇𝑠 ≤ −𝑘‖𝑠‖

2

2

− [𝜀 − (𝑎
𝑚
+ 𝑑
𝑚
)
󵄩󵄩󵄩󵄩󵄩
𝐺𝐵
󵄩󵄩󵄩󵄩󵄩1
] ‖𝑠‖
1
< 0.

(31)
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Figure 1: The structure of two-link robot manipulator.

This implies that the trajectories of uncertain system (13)
will be globally driven onto the specified sliding surface 𝑠 =
0 in finite time despite of the uncertainties. The proof is
completed.

From (22), we have 𝑠(0) = 0; that is, the initial condition
is on the sliding surface. According to Theorem 4, uncertain
system (13) achieves global sliding mode with the integral
sliding surface (22) and the control law (26). So the system
designed is globally robust and optimal.

5. Application to a Two-Link
Robot Manipulator

Trajectory tracking of multilink robot manipulator has
received a great deal of attention in recent years. But it
is rather difficult to perform excellent tracking because
multijoint robot manipulator is a complex system with high
nonlinearity, coupling, and time-varying dynamic behavior.
To verify the effectiveness and superiority of the proposed
method, we apply it to a two-link robot manipulator in
comparison with conventional LQRTC.

Consider a two-link robotmanipulator shown in Figure 1.
In this figure, 𝐿

1
and 𝐿

2
denote the machine arms, 𝜏

1
and

𝜏
2
denote the driving torque, 𝑞

1
and 𝑞

2
present the angular

displacement of the two joints, respectively, and 𝐴 − 𝐵 is
the tracking trajectory described by (𝑥

𝑑
, 𝑦
𝑑
). The dynamic

equation is given by [29]

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) + d (𝑡) = 𝜏, (32)

where 𝑞 = [𝑞
1
𝑞
2
]
T is the joint-displacement vector, 𝜏 =

[𝜏
1
, 𝜏
2
]
T is the applied joint-torque vector, and d(𝑡) represents

system uncertainties.𝑀(𝑞), 𝐶(𝑞, ̇𝑞), 𝐺(𝑞), and 𝑔 are defined
as follows:

𝑀(𝑞) = [
0.1 + 0.01 cos (𝑞

2
) 0.01 sin (𝑞

2
)

0.01 sin (𝑞
2
) 0.1

] ,

𝐶 (𝑞, ̇𝑞) = [
−0.005 sin (𝑞

2
) ̇𝑞
2
0.005 cos (𝑞

2
) ̇𝑞
2

0.005 cos (𝑞
2
) ̇𝑞
2

0
] ,
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𝐺 (𝑞) = [
0.01𝑔 cos (𝑞

1
+ 𝑞
2
)

0.01𝑔 cos (𝑞
1
+ 𝑞
2
)
] , 𝑔 = 9.8,

d (𝑡) =
{{{{

{{{{

{

[
0

0
] , 𝑡 < 5 s,

[
sin (0.5𝜋𝑡)
10 sin (3𝜋𝑡)

] , 𝑡 ≥ 5 s.

(33)

Suppose the reference signal is given by the following
exosystem:

̇𝑧 (𝑡) = [
−1 4

−5 −1
] 𝑧 (𝑡) ,

𝑦 (𝑡) = [
1 1

5 5
] 𝑧 (𝑡) .

(34)

Our objective is to design an robust optimal tracking
controller, such that the 𝑞

1
, 𝑞
2
, ̇𝑞
1
, and ̇𝑞

2
can track 𝑦

1
, 𝑦
2
, ̇𝑦̃
1
,

and ̇𝑦̃
2
, respectively. Therefore, a certain given performance

criterion can be minimized and the system can exhibit
robustness to uncertainties.

Choose a state vector as follows:

𝜉 = [𝜉
1
𝜉
2
𝜉
3
𝜉
4
]
T
= [𝑞
1
̇𝑞
1
𝑞
2
̇𝑞
2
]
T
. (35)

Define 𝑒 = 𝜉 − 𝑦 = [𝑞
1
− 𝑦
1
, ̇𝑞
1
− ̇𝑦̃
1
, 𝑞
2
− 𝑦
2
, 𝑞
2
− ̇𝑦̃
2
]
T

and let the control law

𝜏 = 𝑀(𝑞) [
V
1
+ ̈𝑦̃
1

V
2
+ ̈𝑦̃
2

] + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) . (36)

So the error state dynamic of the robot manipulator can
be written as

̇𝑒 =

[
[
[

[

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

]
]
]

]

𝑒

+

[
[
[

[

0 0

1 0

0 0

0 1

]
]
]

]

V −
[
[
[

[

0 0

1 1

0 1

1 1

]
]
]

]

𝑀
−1

(𝑞) d (𝑡) .

(37)

Thequadratic performance index is chosen as (18) and the
weighting matrices are

𝑄 =

[
[
[

[

100 1.5 1.5 1.5

1.5 1 1 1

1.5 1 1 1

1.5 1 1 1

]
]
]

]

,

𝑅 = [
0.02 0.01

0.01 0.01
] .

(38)

In order to show the efficiency and the advantage of the
proposed approach, a conventional optimal LQRTC for the
nominal system and a ROSMTC for the uncertain system

0 1 2 3 4 5 6 7 8
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0.05

0.1
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0.2

0.25
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0.35

LQRTC for nominal system
LQRTC for uncertain system
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t

e 1
Figure 2: The tracking error 𝑒

1
(𝑡) of position 𝑞

1
for link 1.
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Figure 3: The tracking error 𝑒
2
(𝑡) of velocity ̇𝑞

1
for link 1.

are designed, respectively. For ROSMTC, the sliding-mode
surface is chosen in the form of (22) and the control law is
chosen in the form of (26) with the designed parameters as
follows:

𝐺 = [
0 1.5 0 0

0 0 0 1.5
] , 𝑘 = 5, 𝜀 = 1.6. (39)

With the initial state vectors [𝑞
10
̇𝑞
10
𝑞
20
̇𝑞
20
]
T
=

[0.5 0 0.5 0]
T and [𝑧

10
𝑧
20
]
T
= [0.1 0.1]

T, the simulation
results are shown in Figures 2–9.
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Figures 2, 3, 4, and 5 show the system responses in the
following three cases: LQRTC for system (32) with d(𝑡) = 0,
LQRTC for system (32) with the given d(𝑡), and ROSMTC
for system (32) with the given d(𝑡). It can be seen from
Figure 2 that when the system is subject to uncertainties,
the response of the system with LQRTC deviates from the
optimal trajectory, however, the response of the system with
ROSMTC is almost the same as that of the nominal system
with LQRTC.

The output tracking curves are shown in Figures 6, 7,
8, and 9. It can be seen that, without external disturbance,
the controlled system could track the exosystem output by

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Exosystem output
System output by LQRTC
System output by ROSMTC

q
1

0 1 2 3 4 5 6 7 8
t

Figure 6: The tracking response curve of the position 𝑞
1
for link 1.
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System output by RLQRTC
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−1

−0.5

0

0.5

q
2

0 1 2 3 4 5 6 7 8
t

Figure 7: The tracking response curve of the velocity ̇𝑞
1
for link 1.

both controllers at about 𝑡 = 0.7 s. However, when the
external disturbance influences the system at 𝑡 = 5 s,
the output trajectory of LQRTC deviates from the desired
trajectory while the tracking performance of ROSMTC is
almost not affected. Thus, the ROSMTC provides better
features than conventional LQRTC in terms of robustness to
system uncertainties.

6. Conclusions

A robust optimal tracking control for a class of affine non-
linear MIMO systems with the reference signal given by an
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Figure 9: The tracking response curve of the velocity ̇𝑞
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for link 2.

exosystem has been studied. A linear tracking error equation,
with the input and output decoupled, has been established
based on the input-output linearization technique. And the
nonlinear optimal tracking problem was transformed into a
linear LQRTC problem. Moreover, SMC has been used to
robustify the LQRTC and a global ROSMTC was realized.
That is, the tracking dynamics exhibits global robustness to
the uncertainties and the given quadratic performance index
can be minimized. The proposed controller was applied to a
two-link robot system and simulation results show that good
tracking performance can be achieved and global robustness
to the uncertainties can be achieved.
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Consensus algorithm for networked dynamic systems is an important research problem for data fusion in sensor networks. In
this paper, the distributed filter with consensus strategies known as Kalman consensus filter and information consensus filter is
investigated for state estimation of distributed sensor networks. Firstly, an in-depth comparison analysis betweenKalman consensus
filter and information consensus filter is given, and the result shows that the information consensus filter performs better than
the Kalman consensus filter. Secondly, a novel optimization process to update the consensus weights is proposed based on the
information consensus filter. Finally, some numerical simulations are given, and the experiment results show that the proposed
method achieves better performance than the existing consensus filter strategies.

1. Introduction

In recent years, there has been a surge of interests in the area
of distributed sensor networks.The advantages of distributed
sensor networks lie in their low processing power, cheap
memory, scalable sensing features, and fault tolerance capa-
bilities.

One of the most basic problems for distributed sensor
networks is to develop distributed algorithms [1] for the state
estimation of a process of interest.When a process is observed
by a group of sensors organized in a network, the goal of
each sensor node is to obtain the accurate state estimation
for the process. Kalman filtering has been proved to be an
effective algorithm for state estimation of dynamic processes
[2, 3]. Because of this, most papers focusing on distributed
estimation propose different mechanisms by combining the
Kalman filter with a consensus filter in order to ensure that
the estimates asymptotically converge to the same value,
schemes which will be henceforth called consensus based
distributed filtering algorithms. Based on the idea mentioned
above, a scheme for distributed Kalman filtering (DKF) was
proposed in [4] based on reaching an average-consensus [5,
6], and in [7]Olfati-Saber proposed a scalable and distributed
Kalman filtering algorithm based on reaching a dynamic
average consensus [8]. Olfati-Saber’s algorithm [7] has been

further developed by other researchers [9] with similar algo-
rithms. However, methods based on such kind of algorithms
produce relatively weak performances. According to [10],
the performance is compared with the collective estimation
error of 𝑛 noncooperative local Kalman filters, which is a
trivial base performance level for distributed estimation in
sensor networks. To solve this, Olfati-Saber developed the
Kalman consensus filter (KCF) in [11], where a consensus
filter runs directly on the estimator state space variables.
In addition, a formal derivation followed by optimality and
stability analysis of KCF in discrete-time has been elaborated
in [10]. However, in distributed implementations, there is a
correlation between local estimates [12] in KCF. In general
distributed networks, it is not possible to exactly determine
this correlation [13] and it results in nonoptimal local esti-
mates.Other techniques to accomplish distributed estimation
for dynamic systems that rely on the inverse covariance filter
or information filter have been around formany years [14, 15].
An information consensus filter (ICF) is presented in [16] that
applies consensus filters to an information filter.This method
does not exactly solve the problem of correlation between
local estimates but it gives insight into the statistical effects
of the correlation and is working much well in distributed
sensor networks. Based on the ICF, we focus on designing the
consensus weights to improve its performance.
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In this paper, we firstly describe the existing distributed
filter with consensus strategies. Then we make an in-depth
comparison between the KCF and the ICF. Based on the
ICF, we propose the consensus weights optimization for
better performance of the system and refer this method as
weights optimized information consensus filter (WO-ICF). We
show experimentally that the proposed method achieves the
best performance and it is closest to the optimal centralized
performance.

The structure of this paper is organized as follows. In
Section 2, the background knowledge on Kalman filter and
the centralized information filter are provided. In Section 3,
the consensus strategies are discussed. In Section 4, Kalman
consensus filter is presented. In Section 5 we discuss the
information consensus filter, and an ICF based weights opti-
mization method is proposed. Simulation results and perfor-
mance comparisons between the KCF and ICF algorithm are
provided in Section 6. In Section 7, wemake a brief summary.

2. Kalman Filter: Information Form

2.1. Kalman Filter. Consider a dynamic process with the line-
ar time-varying model as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘)𝑤 (𝑘) ;

𝑥 (0) ∈ 𝑁 (𝑥 (0) , 𝑃
0
) ,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 and 𝑤(𝑘) ∈ 𝑅

𝑚 are the state and input noise
of the process at time 𝑘 ∈ {0, 1, 2 . . .}, respectively; 𝑥(0) is the
initial state with a Gaussian distribution; 𝐴(𝑘) is the model
matrix, 𝐵(𝑘) is the state noise matrix. We are interested in
tracking the state of this target by the use of a sensor network
with 𝑛 sensors and the communication topology 𝐺 = (𝑉; 𝐸).

The observations at sensor 𝑖 and time 𝑘 are

𝑧
𝑖
(𝑘) = 𝐻

𝑖
(𝑘) 𝑥 (𝑘) + V

𝑖
(𝑘) , (2)

where 𝑧
𝑖
(𝑘) ∈ 𝑅

𝑝𝑖 with ∑
𝑛

𝑖=1
𝑝
𝑖
= 𝑝, 𝐻

𝑖
(𝑘) ∈ 𝑅

𝑝𝑖×𝑛 is the
local observation matrix for sensor 𝑖, and V

𝑖
(𝑘) is the local

observation noise. We refer to 𝑧
𝑖
(𝑘) as sensor data. Assume

that 𝑤(𝑘) and V
𝑖
(𝑘) are zero mean white Gaussian noise with

the following statistics:

𝐸 [𝑤 (𝑘)𝑤(𝑙)
𝑇

] = 𝑄 (𝑘) 𝛿
𝑘𝑙
,

𝐸 [V
𝑖
(𝑘) V
𝑖
(𝑙)
𝑇

] = 𝑅
𝑖
(𝑘) 𝛿
𝑘𝑙
,

(3)

where 𝛿
𝑟𝑠

= 1 if 𝑟 = 𝑠 and 𝛿
𝑟𝑠

= 0, otherwise. We stack the
observations at all 𝑛 sensors in the sensor network to get the
global observation model as follows.

Let the global observation vector z(𝑘) ∈ 𝑅
𝑝, the global

observation matrix𝐻(𝑘) ∈ 𝑅
𝑝×𝑛, and the global observation

noise vector V(𝑘) ∈ 𝑅
𝑛 be

z (𝑘) = [𝑧
1
(𝑘) , 𝑧
2
(𝑘) , . . . , 𝑧

𝑛
(𝑘)]
𝑇

,

𝐻 (𝑘) = [𝐻
1
(𝑘) ,𝐻

2
(𝑘) , . . . , 𝐻

𝑛
(𝑘)]
𝑇

,

V (𝑘) = [V
1
(𝑘) , V
2
(𝑘) , . . . , V

𝑛
(𝑘)]
𝑇

.

(4)

Then the global observation model is given by

z (𝑘) = 𝐻 (𝑘) 𝑥 (𝑘) + V (𝑘) . (5)

Since observation noises of different sensors are mutually
independent, we can combine 𝑅

𝑖
(𝑘) into one global observa-

tion noise covariance matrix 𝑅(𝑘) as

𝑅 (𝑘) = block diag [𝑅
𝑖
(𝑘) , . . . , 𝑅

𝑛
(𝑘)] . (6)

Given the collective information 𝑍(𝑘) = {z(0), z(1), . . . ,
z(𝑘)}, the estimation of the state of the process can be
expressed as

𝑥 (𝑘) := 𝑥 (𝑘 | 𝑍 (𝑘)) = 𝐸 [𝑥 (𝑘) | 𝑍 (𝑘)] ,

𝑥 (𝑘) := 𝑥 (𝑘 | 𝑍 (𝑘 − 1)) = 𝐸 [𝑥 (𝑘) | 𝑍 (𝑘 − 1)] .

(7)

We refer to 𝑥(𝑘) and 𝑥(𝑘) as estimate and prior estimate
(or prediction) of the state 𝑥(𝑘), respectively. Then, the error
covariance matrices associated with the estimates 𝑥(𝑘) and
𝑥(𝑘) are given by

𝑀(𝑘) :=𝐸 [(𝑥 (𝑘) − 𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥 (𝑘))
𝑇

]=𝐸 [𝜂 (𝑘) 𝜂(𝑘)
𝑇

] ,

𝑃 (𝑘) :=𝐸 [(𝑥 (𝑘) − 𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥 (𝑘))
𝑇

]=𝐸 [𝜂 (𝑘) 𝜂(𝑘)
𝑇

] ,

(8)

where 𝜂(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) and 𝜂(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) denote the
estimate errors and 𝑃(0) = 𝑃

0
. Then, the Kalman filter is a

linear estimator in the form

𝑥 (𝑘) = 𝑥 (𝑘) + 𝐾 (𝑘) (z (𝑘) − 𝐻 (𝑘) 𝑥 (𝑘)) (9)

with the Kalman gain𝐾(𝑘).

Remark 1. Throughout this paper, due to the importance of
the node indices, we adopt a notation that is free of the time-
index 𝑘 and call it an index-free notation to represent all
estimators [10]. The index-free form of the above estimator
can be written as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) . (10)

We also use the update operation {⋅
+

} defined in [10] to
rewrite the sensing model of node 𝑖 of the sensor network as

𝑥
+

= 𝐴𝑥 + 𝐵𝑤, 𝑧
𝑖
= 𝐻
𝑖
𝑥 + V
𝑖
. (11)

Then, we get the index-free recursive equations of a cen-
tralized Kalman filter (CKF) for system (11):

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) ,

𝐾 = 𝑃𝐻
𝑇

(𝑅 + 𝐻𝑃𝐻
𝑇

)
−1

,

𝑀 = 𝑃 − 𝑃𝐻
𝑇

(𝑅 + 𝐻𝑃𝐻
𝑇

)
−1

𝐻𝑃,

𝑃
+

= 𝐴𝑀𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

,

𝑥
+

= 𝐴𝑥.

(12)
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2.2. Information Form: Centralized Information Filter. Using
the matrix inversion lemma

(𝐼 + 𝐴𝐵𝐶
−1

𝐵
𝑇

)
−1

𝐴 = (𝐴
−1

+ 𝐵𝐶
−1

𝐵
𝑇

)
−1

= 𝐴 − 𝐴𝐵(𝐵
𝑇

𝐴𝐵 + 𝐶)
−1

𝐵
𝑇

𝐴.

(13)

By use of the identity 𝐵𝑇𝐴𝐵𝐶−1 = [(𝐵
𝑇

𝐴𝐵 + 𝐶)𝐶
−1

− 𝐼], we
have

(𝐼 + 𝐴𝐵𝐶
−1

𝐵
𝑇

)
−1

𝐴𝐵𝐶
−1

= (𝐴
−1

+ 𝐵𝐶
−1

𝐵
𝑇

)
−1

𝐵𝐶
−1

= 𝐴𝐵 (𝐵
𝑇

𝐴𝐵 + 𝐶)
−1

.

(14)

From (14), we have

𝐾 = 𝑃𝐻
𝑇

(𝑅 + 𝐻𝑃𝐻
𝑇

)
−1

= (𝑃
−1

+ 𝐻
𝑇

𝑅
−1

𝐻)
−1

𝐻
𝑇

𝑅
−1

.

(15)

Using the matrix inversion lemma

(𝐴 + 𝐵𝐶𝐷)
−1

= 𝐴
−1

− 𝐴
−1

𝐵(𝐶
−1

+ 𝐷𝐴
−1

𝐵)
−1

𝐷𝐴
−1

, (16)

we have

(𝑃
−1

+ 𝐻
𝑇

𝑅
−1

𝐻)
−1

= 𝑃 − 𝑃𝐻
𝑇

(𝑅 + 𝐻𝑃𝐻
𝑇

)
−1

𝐻𝑃 = 𝑀.

(17)

Then we can rewrite (15) as

𝐾 = 𝑀𝐻
𝑇

𝑅
−1

. (18)

Based on the above derivation, the recursive equations of
the Kalman filter can be rewritten as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) ,

𝐾 = 𝑀𝐻
𝑇

𝑅
−1

,

𝑀 = (𝑃
−1

+ 𝐻
𝑇

𝑅
−1

𝐻)
−1

,

𝑃
+

= 𝐴𝑀𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

,

𝑥
+

= 𝐴𝑥.

(19)

From (19), the estimate 𝑥 can be expressed as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) = 𝑥 +𝑀𝐻
𝑇

𝑅
−1

(z − 𝐻𝑥)

= 𝑥 +𝑀(𝐻
𝑇

𝑅
−1z − 𝐻

𝑇

𝑅
−1

𝐻𝑥) .

(20)

Now we define the 𝑛-dimensional global observation
variables as

𝑦 = 𝐻
𝑇

𝑅
−1z, 𝑆 = 𝐻

𝑇

𝑅
−1

𝐻 (21)

and the 𝑛-dimensional local observation variables at sensor 𝑖
as

𝑦
𝑖
= 𝐻
𝑇

𝑖
𝑅
−1

𝑖
𝑧
𝑖
, 𝑆

𝑖
= 𝐻
𝑇

𝑖
𝑅
−1

𝑖
𝐻
𝑖
. (22)

When the observations are distributed among the sen-
sors, the KF can be implemented by collecting all the sensor
observations at a central location, or with observation fusion
by realizing that the global observation variables in (21), it can
be written as

y = 𝐻
𝑇

𝑅
−1z = 𝐻

𝑇

1
𝑅
−1

1
z
1
+ ⋅ ⋅ ⋅ + 𝐻

𝑇

𝑁
𝑅
−1

𝑁
z
𝑁
=

𝑁

∑

𝑖=1

𝑦
𝑖
. (23)

Similarly,

𝑆 = 𝐻
𝑇

𝑅
−1

𝐻 = 𝐻
𝑇

1
𝑅
−1

1
𝐻
1
+ ⋅ ⋅ ⋅ + 𝐻

𝑇

𝑁
𝑅
−1

𝑁
𝐻
𝑁
=

𝑁

∑

𝑖=1

𝑆
𝑖
. (24)

Recall (20) where the estimate 𝑥 could be written as

𝑥 = 𝑥 +𝑀(y − 𝑆𝑥) . (25)

Multiplication on the left by𝑀−1 yields a variation of (25) as

𝑀
−1

𝑥 = 𝑀
−1

𝑥 + y − 𝑆𝑥 = (𝑃
−1

+ 𝑆) 𝑥 + y − 𝑆𝑥 = 𝑃
−1

𝑥 + y.
(26)

Let the inverse of 𝑀 and 𝑃 be the information matrices,
𝐼 and 𝐼. Let 𝑖̂ and 𝑖 be the information vectors. We have the
following relations:

𝐼 = 𝑀
−1

, 𝐼 = 𝑃
−1

,

𝑖̂ = 𝑀
−1

𝑥, 𝑖 = 𝑃
−1

𝑥.

(27)

Then (26) can be rewritten as

𝑖̂ = 𝑖 + y, (28)

and the update of predicted estimate 𝑥 can be expressed as

𝑥
+

= 𝐴𝑥 = 𝐴 (𝑀𝐼) 𝑥 = 𝐴𝑀(𝐼𝑥) = 𝐴𝐼
−1

𝑖̂, (29)

and we have

𝑖
+

= (𝑃
−1

𝑥)
+

= 𝐼
+

𝐴𝐼
−1

𝑖̂. (30)

Now we get the following simpler form of the filter in (19)
and call it centralized information filter (CIF):

𝐼 = 𝐼 + 𝑆, 𝑖̂ = 𝑖 + y,

𝐼
+

= (𝐴𝐼
−1

𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

)
−1

, 𝑖
+

= 𝐼
+

𝐴𝐼
−1

𝑖̂,

(31)

where (31) is the filter step and prediction step (or update
step) of the CIF, respectively.

3. Consensus Strategy

Consensus strategy defines a set of rules for a team of agents
to agree on specific consensus states. With these rules each
agent exchanges information with its neighboring agents
and finally reaches an agreement (or consensus) concerning
the consensus state over time [17, 18]. Furthermore, average
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consensus occurswhen the final consensus state is the average
of the initial values.

Consider a team of 𝑛 agents to agree on specific consensus
states, and at any discrete-time instant 𝜏, the communication
topology between 𝑛 agents can be described by the graph
𝐺[𝜏] = (𝑉, 𝐸[𝜏]), the graph 𝐺 is undirected, 𝑉 = {1, 2, . . . , 𝑛}

is the vertex set, and 𝐸[𝜏] ⊆ 𝑉 ×𝑉 is the edge set. In the con-
sensus algorithm, each agent in the networkmaintains a local
copy of the consensus state 𝜁

𝑖
∈ 𝑅
𝑛 and updates this value

using its neighbors’ consensus states according to the rule:

𝜁
𝑖
[𝜏 + 1] = 𝜁

𝑖
[𝜏] +

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
[𝜏] (𝜁
𝑗
[𝜏] − 𝜁

𝑖
[𝜏]) , (32)

where 𝜏 indicates the consensus filter iteration step. To
choose the weights 𝛽

𝑖𝑗
[𝜏], we can use the Maximum-degree

weights or the Metropolis weights [19]. Here we use the latter
which preserves the averaging in consensus filters and can
be computed by

𝛽
𝑖𝑗
[𝜏] =

{{{{

{{{{

{

(1 +max {𝑑
𝑖
[𝜏] , 𝑑

𝑗
[𝜏]})
−1

if (𝑖, 𝑗) ∈ 𝐸 [𝜏],

1 − ∑

(𝑖,𝑙)∈𝐸[𝜏]

𝛽
𝑖𝑙
[𝜏] if 𝑖 = 𝑗,

0 otherwise,
(33)

where 𝑑
𝑖
[𝜏] is the degree of agent 𝑖 in the graph 𝐺[𝜏].

Arrange the local consensus states into the vector 𝜁[𝜏] =

[𝜁
𝑇

1
[𝜏], . . . , 𝜁

𝑇

𝑛
[𝜏]]
𝑇, and define the matrix (𝐵[𝜏])

𝑖𝑗
= 𝛽
𝑖𝑗
[𝜏]

for 𝑖 ̸= 𝑗; otherwise (𝐵[𝜏])
𝑖𝑖
= 1 − ∑

(𝑖,𝑙)∈𝐸[𝜏]
𝛽
𝑖𝑙
[𝜏], and we can

rewrite the update in (32) as

𝜁 [𝜏 + 1] = (𝐵 [𝜏] ⊗ 𝐼) 𝜁 [𝜏] , (34)

where 𝐼 is the appropriate size identity matrix and ⊗ denotes
the matrix Kronecker product.

The 𝑖𝑗th element of 𝐵[𝜏] in (34) satisfies the following
four conditions: (1) (𝐵[𝜏])

𝑖𝑗
≥ 0, (2) ∑

𝑖
(𝐵[𝜏])

𝑖𝑗
= 1, (3)

∑
𝑗
(𝐵[𝜏])

𝑖𝑗
= 1, (4) and each nonzero entry is both uniformly

upper and lower bounded. Based on these conditions, we
have the following results [20] for average consensus.

Lemma 2. Under switching interaction topologies, if there
exists a finite𝑇 ≥ 0 that for every interval [𝜏, 𝜏+𝑇] the union of
the interaction graph across interval is strongly connected, then
consensus protocol (34) achieves average consensus asymptoti-
cally; that is, 𝜁

𝑖
[𝜏] → (1/𝑛)∑

𝑛

𝑖=1
𝜁
𝑖
[0] as 𝜏 → ∞.

Remark 3. In order to calculate the metropolis weights in
(33), we assume undirected communication throughout this
paper. Therefore, if the graph 𝐺[𝜏] is connected, the matrix
𝐵[𝜏] is a doubly stochastic matrix, and the four conditions
on 𝐵[𝜏] are satisfied. This implies that average consensus is
achieved asymptotically as long as every graph is connected
[21].

4. Distributed Kalman Filter:
Consensus on Estimate

In this section, we discuss an alternative approach to dis-
tribute the Kalman filtering that relies on communicating
state estimates between neighboring nodes and refer to it as
Kalman consensus filter (KCF). Before presenting the KCF
algorithm, we first need to discuss a more primitive DKF
algorithm called local Kalman filter (LKF) which forms the
basis of the KCF.

4.1. Local Kalman Filter. In local Kalman filtering, let 𝑁
𝑖
=

{𝑗 : (𝑖, 𝑗) ∈ 𝐸} be the set of neighbors of node 𝑖 on
graph𝐺. Each node 𝑖 of the sensor network communicates its
measurement 𝑧

𝑖
, covariance information 𝑅

𝑖
, and observation

matrix 𝐻
𝑖
with its neighbors 𝑁

𝑖
. For node 𝑖, we assume that

the information flow from nonneighboring nodes to node
𝑖 is prohibited if there is no nodes except for its neighbors
𝑁
𝑖
exist. Therefore, node 𝑖 can use a central Kalman filter

that only utilizes the observation vectors and observation
matrices of the nodes in 𝐽

𝑖
= 𝑁
𝑖
∪ {𝑖} [11]. This leads to

the following primitive DKF algorithmwith no consensus on
state estimation.

LKF Iterations. Assume that node 𝑖 only receives information
from its neighbors. Then, we have the iterations of node 𝑖 in
local Kalman filtering as

𝑦
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑇

𝑗
𝑅
−1

𝑗
𝑧
𝑗
= ∑

𝑗∈𝐽𝑖

𝑦
𝑗
,

𝑆
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑇

𝑗
𝑅
−1

𝑗
𝐻
𝑗
= ∑

𝑗∈𝐽𝑖

𝑆
𝑗
,

𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥) ,

𝑀
𝑖
= (𝑃
𝑖

−1

+ 𝑆
𝑖

)
−1

,

𝑃
𝑖

+

= 𝐴𝑀
𝑖
𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

,

𝑥
𝑖

+

= 𝐴𝑥
𝑖
,

(35)

where 𝑦
𝑖 and 𝑆

𝑖 are local aggregate information vector and
matrix, respectively and node 𝑖 locally computes both 𝑦

𝑖 and
𝑆
𝑖.

4.2. Kalman Consensus Filter. We now present the Kalman
consensus filter (KCF).The KCF uses consensus strategy (32)
on the state estimate in a distributedKalmanfilter, where each
node maintains a local Kalman filter. Corresponding to (32),
let 𝜁
𝑖
[𝜏] = 𝑥

𝑖
be the prior estimate at time 𝜏 and 𝜁

𝑖
[𝜏+1] = 𝑥

𝑖

𝑐

be fused prior estimate; each node fuses the prior estimates
from its neighbors according to the rule:

𝑥
𝑖

𝑐

= 𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] (𝑥

𝑗
− 𝑥
𝑖
) . (36)
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Initialization (for node 𝑖):
𝑥
𝑖
= 𝑥(0) 𝑃

𝑖
= 𝑃
0

𝜏 = 1 𝜏
𝑝
= 𝜏 + 𝑇

𝑝

Loop {Local iteration on node 𝑖}
(1) Consensus update

𝑥
𝑖

𝑐

= 𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑥
𝑗
− 𝑥
𝑖
)

𝑦
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇

𝑅
𝑗

−1

𝑧
𝑗

𝑆
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇

𝑅
𝑗

−1

𝐻
𝑗

𝜏 ← 𝜏 + 1

(2) If new observations are taken then the Kalman consensus state estimate are computed
𝑥
𝑖
= 𝑥
𝑖

𝑐

+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖

𝑐

) = 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖

) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑥
𝑗
− 𝑥
𝑖
)

𝑀
𝑖
= (𝑃
𝑖

−1

+ 𝑆
𝑖

)
−1

(3) If time for a predication step (i.e., 𝜏 = 𝜏
𝑝
) then prediction step

𝑃
𝑖

+

= 𝐴𝑀
𝑖
𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

𝑥
𝑖

+

= 𝐴𝑥
𝑖

𝜏
𝑝
= 𝜏 + 𝑇

𝑝

End loop

Algorithm 1: Kalman consensus filter.

Using the fused prior estimate 𝑥
𝑖

𝑐, the filter estimate at node
𝑖 could be implemented by

𝑥
𝑖
= 𝑥
𝑖

𝑐

+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖

𝑐

)

= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖

) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] (𝑥

𝑗
− 𝑥
𝑖
) .

(37)

The local KCF is summarized in Algorithm 1, where 𝜏 is
the time index for the consensus strategy and 𝑇

𝑝
∈ 𝑍
+ is

the time interval between prediction updates. One-time step
𝑘 − 1 → 𝑘 is equivalent to 𝑇

𝑝
time steps of the consensus

time index 𝜏 → 𝜏+ 1; that is, for each node, the information
exchanges between neighboring nodes occurred faster than
the prediction update step.The three steps in KCF prediction,
local filter estimate, and consensus update are not necessarily
sequential.

The last term in (37) is the correction of filter estimate
𝑥
𝑖
compared to the standard Kalman estimator. Intuitively,

adding the consensus term in (37) will force local estimators
to reach a consensus regarding state estimates. The structure
of node 𝑖 in the KCF algorithm is shown in Figure 1.

In [11], the author proposed the following Kalman con-
sensus estimator which is in the form of

𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖
) + 𝐶
𝑖
∑

𝑗∈𝑁𝑖

(𝑥
𝑗
− 𝑥
𝑖
) , (38)

where𝐶
𝑖
is named consensus gain of node 𝑖.The choice of the

consensus gain 𝐶
𝑖
is free. A poor choice of 𝐶

𝑖
leads to either

the lack of consensus on estimates (e.g., setting 𝐶
𝑖
= 0, for

all 𝑖) or the lack of stability of the error dynamics of the filter.
One possible choice is to let

𝐶
𝑖
= 𝛾𝑃
𝑖
= 𝜀

𝑃
𝑖

1 +
󵄩󵄩󵄩󵄩𝑃𝑖

󵄩󵄩󵄩󵄩𝐹

, (39)

where 𝜀 > 0 is a relative small constant and ‖ ⋅ ‖
𝐹
denotes the

Frobenius norm of a matrix. The derivation of the optimal

zj

zi

Consensus
strategy

Kalman
filter

x
c
j

xj

xi

x̂i

Node i

Figure 1: The algorithm structure of node 𝑖 in the KCF.

Kalman consensus filter can be found in [10], where we can
also find that the computational complexity of updating the
error covariance𝑃

𝑖

+

= 𝐴𝑀
𝑖
𝐴
𝑇

+𝐵𝑄𝐵
𝑇 of the optimalKalman

consensus filter is not scalable in 𝑛. To obtain a suboptimal
approximation of theKCFwhich is distributed and scalable in
𝑛, wemake an assumption that the consensus gains𝐶

𝑖
= 𝑂(𝜀)

are of the order of 𝜀. Then we get the stable suboptimal KCF
summarized in Algorithm 2.

5. Distributed Filter: Consensus on
Information Matrix

The KCF discussed previously applies consensus strategy on
the prior estimate to the Kalman filter and improves the state
estimate of KF. However, the error covariance matrix 𝑀

𝑖

is not improved because each node in KCF only fuses the
prior estimates from its neighbors but neglects the helpful
information about the error covariance matrix. In the next
section, we adopt an information matrix weighted consensus
strategy to improve the consensus based distributed Kalman
filter algorithm in the estimation fusion of sensor networks.
We refer to this method as information consensus filter (ICF)
[16]. Before presenting the ICF algorithm, we need to discuss
amore primitiveDKF algorithm called local information filter
(LIF) which forms the basis of the ICF.
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Initialization:
𝑥
𝑖
= 𝑥(0), 𝑃

𝑖
= 𝑃
0
, and message𝑚

𝑗
= {𝑦
𝑗
, 𝑆
𝑗
, 𝑥
𝑗
}

While new data exists do
(1) Compute local observation vector and matrix of node 𝑖:

𝑦
𝑖
= 𝐻
𝑖

𝑇

𝑅
𝑖

−1

𝑧
𝑖

𝑆
𝑖
= 𝐻
𝑖

𝑇

𝑅
𝑖

−1

𝐻
𝑖

(2) Broadcast message𝑚
𝑖
= {𝑦
𝑖
, 𝑆
𝑖
, 𝑥
𝑖
} to neighbors.

(3) Receive messages from all neighbors.
(4) Compute the local aggregate information vector and matrix:

𝑦
𝑖

= ∑

𝑗∈𝐽𝑖

𝑦
𝑗

𝑆
𝑖

== ∑

𝑗∈𝐽𝑖

𝑆
𝑗

(5) Compute the Kalman consensus state estimate
𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖
) + 𝛾𝑃

𝑖
∑

𝑗∈𝑁𝑖

(𝑥
𝑗
− 𝑥
𝑖
)

𝑀
𝑖
= (𝑃
𝑖

−1

+ 𝑆
𝑖

)
−1

𝛾 =
𝜀

1 +
󵄩󵄩󵄩󵄩𝑃𝑖

󵄩󵄩󵄩󵄩

, ‖𝑋‖ = tr(𝑋𝑇𝑋)
1/2

(6) Update the state of the Kalman consensus filter:
𝑃
𝑖

+

= 𝐴𝑀
𝑖
𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

𝑥
𝑖

+

= 𝐴𝑥
𝑖

EndWhile

Algorithm 2: Suboptimal Kalman consensus filter: DKFAlgorithmwith an estimator that has a rigorously derived consensus term (message
passing during one time cycle for node).

5.1. Local Information Filter. To distribute the estimation
of the global state vector, 𝑥 in CIF, we implement local
information filter (LIF) at each sensor 𝑖, which is based on
the sensor model (11) and can be derived from local Kalman
filter (LKF) in (35) after we use its information form. Each
LIF computes local objects (matrices and vectors) which are
then fused (if required) by exchanging information among
the neighbors. In LIF, there is no centralized knowledge of
the estimation of the global state that exists in CIF; however,
it can be obtain by fusing the local state vector.

Let the inverses of 𝑀
𝑖
and 𝑃

𝑖
be the local information

matrices, 𝐼
𝑖
and 𝐼
𝑖
. Let 𝑖̂
𝑖
and 𝑖
𝑖
be the local information vector.

We have the following relations:

𝐼
𝑖
= 𝑀
𝑖

−1

, 𝐼
𝑖
= 𝑃
𝑖

−1

,

𝑖̂
𝑖
= 𝑀
𝑖

−1

𝑥
𝑖
, 𝑖

𝑖
= 𝑃
𝑖

−1

𝑥
𝑖
.

(40)

Thenwe get the following simpler formof the filter in (35).

LIF Iterations. The local information filtering iterations for
node 𝑖 are in the form

𝐼
𝑖
= 𝐼
𝑖
+ 𝑆
𝑖

, 𝑖̂
𝑖
= 𝑖
𝑖
+ 𝑦
𝑖

,

𝐼
𝑖

+

= (𝐴𝐼
−1

𝑖
𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

)
−1

, 𝑖
𝑖

+

= 𝐼
𝑖

+

𝐴𝐼
−1

𝑖
𝑖̂
𝑖
.

(41)

5.2. Information Consensus Filter. We now present the infor-
mation consensus filter (ICF). The ICF uses consensus strat-
egy (32) on both the information state and the information
matrix in a distributed Kalman filter, where each node
maintains a local information filter. Recalling (32), let 𝑖

𝑖

𝑐 be
the fused local information vector and 𝐼

𝑖

𝑐 the fused local

information matrix; each node fuses the local information
from its neighbors according to the rule:

𝑖
𝑖

𝑐

= 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] (𝑖
𝑗
− 𝑖
𝑖
) ,

𝐼
𝑖

𝑐

= 𝐼
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] (𝐼
𝑗
− 𝐼
𝑖
) .

(42)

Using the fused local information vector and matrix, 𝑖
𝑖

𝑐

and 𝐼
𝑖

𝑐, the local ICF is summarized in Algorithm 3.

5.3. Local Information Filter. Now we make a comparison
between ICF and KCF based on the state estimate 𝑥

𝑖
and the

error covariance matrix𝑀
𝑖
. Let 𝛽

𝑖𝑖
[𝜏] = 1 − ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏]; we

can rewrite (42) as

𝑖
𝑖

𝑐

= 𝛽
𝑖𝑖
[𝜏] 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] 𝑖
𝑗
,

𝐼
𝑖

𝑐

= 𝛽
𝑖𝑖
[𝜏] 𝐼
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] 𝐼
𝑗
.

(43)

Then we have

𝑥
𝑖

𝑐

= (𝐼
𝑖

𝑐

)
−1

𝑖
𝑖

𝑐

= (𝐼
𝑖

𝑐

)
−1

[

[

𝛽
𝑖𝑖
[𝜏] 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] 𝑖
𝑗

]

]

= 𝑊
𝑖𝑖
𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝑊
𝑖𝑗
𝑥
𝑗
.

(44)

Here we use 𝑖
𝑖
= 𝐼
𝑖
𝑥
𝑖
, 𝑖 ∈ 𝐽

𝑖
and 𝑊

𝑖𝑙
= 𝛽
𝑖𝑙
[𝜏](𝐼
𝑖

𝑐

)
−1

𝐼
𝑙
, 𝑙 ∈ 𝐽

𝑖
.

Then we finally get

𝑥
𝑖
= 𝑥
𝑖

𝑐

+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑥
𝑖

𝑐

)

= 𝑊
𝑖𝑖
𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖

− 𝑆
𝑖

𝑊
𝑖𝑖
𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖

) ∑

𝑗∈𝑁𝑖

𝑊
𝑖𝑗
𝑥
𝑗
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Initialization (for node 𝑖):
𝑖
𝑖
= 𝑖(0) 𝐼

𝑖
= 𝐼(0)

𝜏 = 1 𝜏
𝑝
= 𝜏 + 𝑇

𝑝

Loop {Local iteration on node 𝑖}
(1) Consensus update

𝑖
𝑖

𝑐

= 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑖
𝑗
− 𝑖
𝑖
)

𝐼
𝑖

𝑐

= 𝐼
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝐼
𝑗
− 𝐼
𝑖
)

𝑦
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇

𝑅
𝑗

−1

𝑧
𝑗

𝑆
𝑖

= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇

𝑅
𝑗

−1

𝐻
𝑗

𝜏 ← 𝜏 + 1

(2) If new observations are taken then the information consensus estimate are computed
𝑖̂
𝑖
= 𝑖
𝑖

𝑐

+ 𝑦
𝑖

= 𝑖
𝑖
+ 𝑦
𝑖

+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑖
𝑗
− 𝑖
𝑖
)

𝐼
𝑖
= 𝐼
𝑖

𝑐

+ 𝑆
𝑖

= 𝐼
𝑖
+ 𝑆
𝑖

+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝐼
𝑗
− 𝐼
𝑖
)

(3) If time for a predication step (i.e., 𝜏 = 𝜏
𝑝
) then prediction step

𝐼
𝑖

+

= (𝐴𝐼
−1

𝑖
𝐴
𝑇

+ 𝐵𝑄𝐵
𝑇

)
−1

𝑖
𝑖

+

= 𝐼
𝑖

+

𝐴𝐼
−1

𝑖
𝑖̂
𝑖

𝜏
𝑝
= 𝜏 + 𝑇

𝑝

End Loop

Algorithm 3: Information consensus filter.

= ((𝐼
𝑖

𝑐

)
−1

𝐼
𝑖
) 𝑥
𝑖
+𝑀
𝑖
[𝑦
𝑖

− 𝑆
𝑖

((𝐼
𝑖

𝑐

)
−1

𝐼
𝑖
) 𝑥
𝑖
]

+ (𝐼 −𝑀
𝑖
𝑆
𝑖

) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] [(𝐼

𝑖

𝑐

)
−1

𝐼
𝑗
𝑥
𝑗
− (𝐼
𝑖

𝑐

)
−1

𝐼
𝑖
𝑥
𝑖
] ,

𝑀
𝑖
= (𝐼
𝑖
)
−1

= [

[

𝐼
𝑖
+ 𝑆
𝑖

+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏] (𝐼
𝑗
− 𝐼
𝑖
)]

]

−1

,

(45)
where the error covariance matrix𝑀

𝑖
has been improved by

a consensus term compared with 𝑀
𝑖
= (𝐼
𝑖
)
−1

= [𝐼
𝑖
+ 𝑆
𝑖

]
−1

in KCF, and the state estimate 𝑥
𝑖
is also corrected by a factor

((𝐼
𝑖

𝑐

)
−1

𝐼
𝑖
) compared with the 𝑥

𝑖
in KCF.

5.4. The Optimization of Consensus Weights in ICF. The
weights 𝛽

𝑖𝑗
[𝜏] are important parameters of ICF and we can

use the metropolis weights or the maximum-degree weights
to determine it. In fact, the more reasonable approach is to
choose differentweights according to the fused local informa-
tion 𝐼
𝑖
and 𝑖
𝑖
. Here, a nice scheme to optimize the consensus

weights is proposed base on the following objective function:

𝐹
𝑖
= 𝛼
1

𝑖

tr ((𝐼
𝑖

𝑐

)
−1

)

tr ((𝐼
𝑖
)
−1

)

+ 𝛼
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑖

𝑐

− 𝑖
𝑐

𝑖,𝑎V
󵄩󵄩󵄩󵄩󵄩

2

+ ∑
𝑗∈𝑁𝑖

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗
− 𝑖
𝑐

𝑖,𝑎V
󵄩󵄩󵄩󵄩󵄩

2

∑
𝑗∈𝐽𝑖

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗
− 𝑖
𝑖,𝑎V

󵄩󵄩󵄩󵄩󵄩

2
,

(46)

where

𝑖
𝑐

𝑖,𝑎V =
1

1 + 𝑑
𝑖

(𝑖
𝑐

𝑖
+ ∑

𝑗∈𝑁𝑖

𝑖
𝑗
) ,

𝑖
𝑖,𝑎V =

1

1 + 𝑑
𝑖

(𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝑖
𝑗
) ,

(47)

𝛼
1

𝑖
, 𝛼2
𝑖
are the weight coefficients, and 𝛼

1

𝑖
+ 𝛼
2

𝑖
= 1 (0 < 𝛼

1

𝑖
<

1, 0 < 𝛼
2

𝑖
< 1).

The first term in the objective function 𝐹
𝑖
is used to assess

the prior estimate error covariance of node 𝑖 after fusing the
local information of its neighbors, and the second term is
used to assess the consensus of the fused local information
vector in node 𝑖 and the prior estimates of its neighbors.
Base on the objective function 𝐹

𝑖
, the consensus weights

optimization problem can be described as

𝛽
∗

𝑖
= arg min

𝛽𝑖

𝐹
𝑖

s.t. 𝛽
𝑖𝑗
≥ 0, (𝑖, 𝑗) ∈ 𝐸 [𝜏]

𝛽
𝑖𝑗
= 0, (𝑖, 𝑗) ∉ 𝐸 [𝜏]

󵄩󵄩󵄩󵄩𝛽𝑖
󵄩󵄩󵄩󵄩1

= 1,

(48)

where 𝛽
𝑖

= [𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑛
]. To solve the optimization

problem (48),we only need the local information of node 𝑖

and that of its neighbors. We refer to this method as weights
optimized information consensus filter (WO-ICF).

6. Numerical Simulations

Let the linear system under consideration be represented by
a second-order discrete time-varying model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤, (49)
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Figure 2: A sensor network with 20 nodes and 51 links.

where𝐴 = 𝐼
2
+𝛿𝐴
0
+(𝛿
2

/2)𝐴
2

0
+(𝛿
3

/6)𝐴
3

0
with𝐴

0
= 2 [
0 1

1 0
],

𝛿 = 0.015 and 𝐵 = 𝛿𝐵
0
with 𝐵

0
= 𝐼
2
, 𝑄 = 25𝐼

2
. The initial

conditions are 𝑥
0
= [15, −10], 𝑃

0
= 20𝐼

2
. A sensor network

with 20 randomly located nodes is used in this experiment
(see Figure 2). The local observation matrix for sensor 𝑖 is
𝐻
𝑖
= [
0 1

1 0
], and the local observation noise covariance is

𝑅
𝑖
= 100𝐼

2
for 𝑖 ≤ 10 otherwise 𝑅

𝑖
= 3000𝐼

2
.

Define the averaged estimation error 𝐸(𝑘) and the aver-
aged consistency estimation error 𝐷(𝑘) as the algorithm
performance metrics, which can be computed as follows:

𝐸 (𝑘) = √
1

𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖
(𝑘) − 𝑥 (𝑘))

𝑇

(𝑥
𝑖
(𝑘) − 𝑥 (𝑘)),

𝐷 (𝑘) = √
1

𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖
(𝑘) − 𝑥

𝑎V (𝑘))
𝑇

(𝑥
𝑖
(𝑘) − 𝑥

𝑎V (𝑘)),

(50)

where 𝑥
𝑎V(𝑘) = (1/𝑛)∑

𝑛

𝑖=1
𝑥
𝑖
(𝑘) is the averaged estimation of

state.
Figure 3 demonstrates the averaged estimation error

using different algorithms. We can see that the ICF and
the WO-ICF behave in a similar manner (with comparable
performances), and the averaged estimation accuracy in
ICF and WO-ICF is improved compared to KCF. After 50
iterations, their performances are very close to CKF; this is
because the average consensus is achieved after constantly
information exchanging, fusing, and filtering.

Figure 4 shows that our WO-ICF performs significantly
better than both KCF and ICF, it was the fastest converged,
and the consistency of estimates between different nodes in
WO-ICF was improved by optimizing the consensus weights.

Figure 5 demonstrates the comparisons of different algo-
rithms on the traces of the averaged estimation covariance
matrices tr((1/𝑛)∑𝑛

𝑖=1
𝑀
𝑖
(𝑘)). A quick look at Figure 5 reveals

that both ICF and our WO-ICF perform significantly better
than KCF, of which the reason is that the information
matrix weighted consensus strategy is adopted. Furthermore,
by optimizing the consensus weights, the error covariance
matrix𝑀

𝑖
is improved significantly compared to ICF.
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Figure 3: The averaged estimation errors of different algorithms.
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Figure 4: The averaged consistency estimation errors of different
algorithms.

7. Conclusions

In this paper, a description about the existing distributed Fil-
ter with consensus strategies is presented, including Kalman
consensus filter (KCF) and information consensus filter
(ICF). In addition, an in-depth comparison between the KCF
and the ICF is made. Based on the ICF, the weights optimized
information consensus filter (WO-ICF) is proposed to opti-
mize the consensus weights. Simulation shows that both ICF
andWO-ICFperformbetter thanKCF; they improve not only
the state estimate but also the error covariance matrix, and
the proposedWO-ICF achieves better consistency estimation
performance than ICF. Compared with the existing consen-
sus filter, our WO-ICF achieves the best performance and is
closest to the optimal centralized performance.
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Figure 5:The traces of the averaged estimation covariance matrices
of different algorithms.
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This paper proposes an active postfilter based on two Buck converters, connected in parallel, operating in complementary
interleaving. In such a configuration the ripple in the load current could be virtually eliminated to improve the power quality
in comparison with classical Point-Of-Load (POL) regulators based on a single Buck converter. The postfilter is designed to
isolate the load from the main Buck regulator, leading to the proposed three-converter structure named BuckPS. The correct
operation of the postfilter is ensured by means of a sliding-mode controller. Finally, the proposed solution significantly reduces
the current harmonics injected into the load, and at the same time, it improves the overall electrical efficiency. Such characteristics
are demonstrated by means of analytical results and illustrated using numerical results.

1. Introduction

The power supplies designed for computers and communi-
cations systems must provide sharp requirements: low volt-
age, high current, and load voltage ripples. Such conditions
are imposed to ensure a high performance of the micro-
processors, DSP, ASIC, or memory devices [1, 2]. Since
the Buck converter provides output voltages lower than its
input voltage [3], it is widely adopted in power architectures
designed for this kind of electronic equipment [4], named
Point-of-Load (POL) regulators. However, the quality of the
current and voltage signals generated by a Buck converter is
affected by the load, source, or parameters variation, which
changes the ripple magnitudes among other problems [5, 6].

Several solutions have been proposed in the literature
to improve the quality of the current and voltage generated
by a Buck-based POL regulator. In [7], the ripple of a POL
converter is reduced by means of a L-C output filter with
two stages, which is classically regulated using a controller
with two feedback points: the first point sensing the capacitor
voltage of the first L-C stage and second point sensing the

capacitor voltage of the second L-C stage, that is, the load
voltage. In such a solution, the authors demonstrate that
a controller with a single feedback point could be used to
stabilize the POL converter, but it requires adjusting one L-C
filter to cancel out the zeros of the other L-C filter. In any case,
the ripple magnitudes depend on the load impedance, which
could change depending on the application conditions.

In [8] the performance of Buck-based POL with different
current controllers is analyzed, taking into account the band-
width of the voltage loop and changes in the input voltage.
But such a solution does not analyze the ripple behavior with
load variations.

A different approach was presented in [9], where a digital
controller is used to reduce the load current ripple in a non-
isolated POL converter. Such a solution is based on peak
current and average current controllers implemented in an
FPGA. This controller scheme requires an A/D converter,
which increases the system cost in comparison with analog
implementations. In the same way, [10] proposes a self-
oscillating digital modulator to change instantaneously the
dutycycle of the PWM signal driving the converter switch.
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Figure 1: Typical structure of a Buck converter (BuckS).

Thus, it is possible to achieve a sampling frequency of the
output voltage, required in the control loop, higher than the
switching frequency of the power converter. In this way, a
short time response is achieved in the compensation of load
variations. But such a solution does not introduce current or
voltage ripples analyses.

In [11] a method to design the output filter of a low-
voltage/high-current synchronous Buck converter using per-
formance boundary curves is proposed. Such curves con-
strain the regions in the space of parameters to ensure an
acceptable output voltage ripple. But, similar to the previous
solutions, the load and source changes that affect the ripple
magnitudes are not analyzed.

The previous solutions address the current and voltage
ripple limitations by means of passive filters, which are
impossible to be modified in operation time. Hence, such
solutions are sensible to changes in the load impedance,
source voltage, and tolerances of the electronic component
parameters. Therefore, this paper proposes a POL based on
a synchronous Buck converter operating in cascade with an
active postfilter, providing an almost ripple-free current to
the load.The postfilter is composed of two parallel-connected
Buck converters operating in complementary interleaving
[12], and it is regulated using a sliding-mode controller to
ensure its correct operation.The proposed POL compensates
changes in the load impedance, source voltage, and electronic
component parameters. Moreover, the proposed solution
improves the electrical efficiency of classical Buck-based
POL.

The paper structure is as follows: Section 2 analyzes the
Buck converter, introduces the postfilter, and analyzes the
proposed POL solution.Then, Section 3 presents the sliding-
mode current controller designed to reduce the current and
voltage ripples injected to the load. Section 4 illustrates the
solution benefits in a realistic scenario bymeans of numerical
results. Finally, conclusions close the work.

2. POL Regulator Based on a Postfilter

The proposed step-down POL regulator is based on the
classical Buck topology, named BuckS, shown in Figure 1. In
such a topology the output voltage ripple directly depends
on the output capacitance, which is typically implemented
using a large capacitor [13]. Using the classical approach
given in [3], the output voltage ripple Δ𝑉

𝑜
in the Buck

converter is given in (1), which depends on the inductor peak
current ripple Δ𝐼

𝐿
. In (1), 𝑇 represents the switching period,

𝐶 the output capacitance, 𝑅Loss the aggregated parasitic

resistances of the inductor 𝐿 and the MOSFETs [14], and 𝐷
the converter duty cycle, while 𝐼

𝑜
and𝑉

𝑜
represent the steady-

state load current and voltage, respectively. Since the POL
converters must provide reduced voltage ripples to the load
[1, 2, 4], Δ𝑉

𝑜
can be reduced by increasing 𝐶 and 𝐿 or by

reducing 𝑇 (increasing the switching frequency 𝐹sw) and the
parasitic losses 𝑅Loss. Instead, this paper proposes to use a
dc/dc converter to reduce the effective Δ𝐼

𝐿
that reaches the

capacitor 𝐶 to achieve the required small Δ𝑉
𝑜
condition

Δ𝑉
𝑜
=
Δ𝐼
𝐿
⋅ 𝑇

8 ⋅ 𝐶
,

Δ𝐼
𝐿
=
(𝑉
𝑜
+ 𝑅Loss ⋅ 𝐼𝑜)𝐷

󸀠

⋅ 𝑇

2 ⋅ 𝐿
.

(1)

Moreover, from the small ripple approximation and volt-
second and change balances [3], the steady-state induction
current 𝐼

𝐿
, which is equal to the steady-state load current

𝐼
𝑜
, and the voltage conversion ratio are given in (2). In such

equations 𝑅 represents the load impedance at the desired
operation condition and 𝑉

𝑔
represents the power source

voltage

𝐼
𝐿
=
𝑉
𝑜

𝑅
,

𝑉
𝑜

𝑉
𝑔

=
𝐷

1 + 𝑅Loss/𝑅
.

(2)

Finally, the efficiency 𝜂 of the BuckS POL regulator is
given in (3). Such efficiency is reduced when the load current
increases since the impedance 𝑅 is reduced. Therefore, the
solution proposed in this paper is also intended to improve
the overall electrical efficiency. Consider

𝜂 =
1

1 + 𝑅Loss/𝑅
. (3)

In the following subsections the proposed postfilter and
POL regulator are introduced, contrasting their performance
with the classical BuckS solution.

2.1. Postfilter Based on Parallel Buck Converters. Figure 2
presents the proposed postfilter consisting of two Buck
converters, operating in complementary interleaving, where
the output capacitor is common for both Buck branches.
The postfilter main MOSFETs (𝑆

1𝑈
and 𝑆
1𝐿
) are complemen-

tary activated to generate complementarily inductor current
waveforms on 𝐿

1
and 𝐿

2
. Such a condition produces the

cancelation of the inductor current ripples to provide an
almost ripple-free current to the output capacitor 𝐶, and
based on (1), a small voltage ripple is imposed on the load.
It must be pointed out that the secondaryMOSFETs (𝑆

2𝑈
and

𝑆
2𝐿
) are also complementarily activated with respect to the

main MOSFET of each branch.
To ensure the cancelation of the inductor current ripples,

both Buck branches must operate in continuous conduction
mode (CCM); otherwise if a branch current is zero (in
discontinuous conduction mode (DCM)), the other branch
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Figure 2: Buck converter in interleaved topology.

ripple is propagated to the output capacitor. From (1), and
considering the scheme of Figure 2, where 𝑅Loss1 and 𝑅Loss2
represent the parasitic resistances in each branch, the CCM
on both branches is achieved when the condition given in
(4) is fulfilled. Such an expression takes into account the
complementary activation of 𝑆

1𝑈
and 𝑆

1𝐿
; therefore the first

branch has a duty cycle 𝐷 while the second branch has a
complementary duty cycle𝐷󸀠 = 1 − 𝐷. Consider

𝑉
𝑜

𝑉
𝑔

=
𝐷

1 + 𝑅Loss1/𝑅
=

𝐷
󸀠

1 + 𝑅Loss2/𝑅
. (4)

Solving (4) for𝐷, relation (5) is obtained

𝐷 =
𝑅 + 𝑅Loss1

𝑅Loss1 + 2𝑅 + 𝑅Loss2
. (5)

Therefore, the symmetrical interleaved Buck converter
must be operated at the duty cycle 𝐷 given in (5) to achieve
the desired reduction of the output voltage ripple. Moreover,
such a duty cycle imposes the voltage conversion ratio given
in

𝑉
𝑜

𝑉
𝑔

=
𝐷𝑅Loss2 + 𝑅Loss1 (1 − 𝐷)

𝑅Loss2 + (𝑅Loss1𝑅Loss2/𝑅) + 𝑅Loss1
. (6)

In a practical implementation the inductors 𝐿
1
and

𝐿
2
and the MOSFETs could be selected to have similar

values and construction characteristics: 𝐿
1
= 𝐿
2
= 𝐿
𝑓
and

𝑅Loss1 = 𝑅Loss2 = 𝑅𝐿𝑓. Such a condition is useful to simplify
the postfilter design and control since both branches must
process the same power. On the basis of such a practical
consideration, the required duty cycle given in (5) becomes
𝐷 = 0.5, while the voltage conversion ratio provided by the
postfilter becomes

𝑉
𝑜

𝑉
𝑔

=
1

2 + (𝑅
𝐿𝑓
/𝑅)

. (7)

Moreover, the steady-state currents in each inductor are
equal as given in (8), while the steady-state load current is the
sum of such currents, that is, the double of a branch current:

𝐼
𝐿1
= 𝐼
𝐿2
=

𝑉
𝑔

2 (2𝑅 + 𝑅
𝐿𝑓
)

. (8)
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Figure 3: Inductors currents waveform.

In addition, the current ripples in both braches have the
same magnitude, while the current ripple injected into the
load is near to zero since the postfilter branches operate in
complementary mode, which generates opposite slopes for
both inductors current as illustrated in Figure 3, where Δ𝐼

𝐿1

and Δ𝐼
𝐿2

represent the ripple magnitudes for each branch.
Therefore, since the current ripple reaching the postfilter
output capacitor (𝐶 in Figure 2) is near to zero, the output
voltage ripple is also near to zero.

To ensure a correct ripple cancelation in the postfilter it is
required that both branches exhibit the same average current
with opposite instantaneous slopes, and at the same time, it is
required that both branches operate inCCM. Such conditions
must be ensured despite the load current magnitude or the
aging of the components. But, from (5) and (7), it is noted
that in all cases the duty cycle and voltage conversion ratio
are fixed. Therefore, classical control paradigms based on
fixed-frequency drivers, such as the PWM, are not suitable
to regulate the postfilter: classical controllers, such as PI,
PID, or leadlag, change the duty cycle (using a PWM [3, 15])
to compensate the system perturbations, but because the
postfilter requires a fixed duty cycle, it is not possible to
regulate it using such type of controllers. For this reason it
is necessary to adopt another control paradigm that provides
an additional freedom degree. In such a way, this paper
proposes to regulate the postfilter using the sliding-mode
technique to dynamically change the switching frequency,
which according to (1) is given by 𝑓 = (𝑉

𝑜
+ 𝑅Loss ⋅ 𝐼𝑜)𝐷

󸀠

/(2 ⋅

𝐿 ⋅ Δ𝐼
𝐿
), to ensure that both branches operate with a fixed

maximum difference between their currents, which ensures
that both branches exhibit the same duty cycle, average
current, and ripple magnitude for any system condition.
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Finally, since the postfilter was designed using synchronous
Buck converters, the CCM operation is granted.

2.2. POL Converter. The main drawback of the postfilter is
evident from (5), (6), and (7): the voltage conversion ratio
is constant. Therefore, an additional Buck converter is used
to regulate the load voltage. Figure 4 presents the proposed
POL topology, named BuckPS, obtained from the cascade
connection of a Buck converter (interacting with the source)
with the postfilter (interacting with the load), where the Buck
converter must be independently controlled to regulate the
load voltage. Hence, such a Buck converter can be controller
using classical approaches based on PWM drivers and PI or
PID controllers.

To provide a design criterion, which also ensures a fair
comparison with the classical POL based on a Buck converter
(BuckS), the inductors of both the postfilter and the Buck
converter are considered to be equal; thus 𝐿 = 𝐿

1
= 𝐿
2
= 𝐿
𝑓

and𝑅
𝐿
= 𝑅
𝐿1
= 𝑅
𝐿2
= 𝑅
𝐿𝑓
.Then, the voltage conversion ratio

of BuckPS is given in (9), where𝐷PS represents the duty cycle
of the Buck converter. Such an equation puts in evidence that
the Buck converter could be independently controlled using
a classical PWM-based technique:

𝑉
𝑜

𝑉
𝑔

=
2𝐷PS𝑅

4𝑅 + 3𝑅
𝐿

. (9)

Moreover, the inductor current of the BuckPS first stage,
that is, the Buck converter, and the output current are given in
(10). Contrasting such results with the BuckS characteristics
given in (2), it is recognized that the BuckPS requires three
inductors instead of one, but such devices must support the
half of the current imposed on the BuckS inductor:

𝐼
𝐿
=

𝐷PS𝑉𝑔

4𝑅 + 3𝑅
𝐿

,

𝐼
𝑜
=

2𝐷PS𝑉𝑔

4𝑅 + 3𝑅
𝐿

.

(10)

An additional condition of the BuckPS solution is
extracted from (9): the voltage conversion ratio is always
lower than 0.5. This condition is illustrated in Figure 5
considering four cases for 𝑅

𝐿
/𝑅 = {0%, 10%, 25%, 35%}. In

such an example, for 𝑅
𝐿
/𝑅 = 10%, a𝑉

𝑜
/𝑉
𝑔
= 0.25 is obtained

by operating the BuckPS at 𝐷PS = 0.5375, while in a BuckS
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Figure 5: Conversion ratio of BuckPS and BuckS.

𝐷S = 0.275 is required to achieve the same voltage conversion
ratio. In general, from (2) and (9) it is concluded that the
BuckPS always provides lower output voltage than the BuckS
for a given duty cycle. Such a condition is also verified in
Figure 5. Hence, lower POL voltages can be achieved with the
BuckPS by avoiding duty cycle saturations imposed by turn-
ON and turn-OFF times of the MOSFETs, which limit the
minimum operative duty cycle.

Then, the efficiency of the BuckPS is obtained from (9)
and (10):

𝜂BuckPS =
4𝑅

(4𝑅 + 3𝑅
𝐿
)
. (11)

Such an expression shows an efficiency improvement over
BuckS (3). Such a condition is because the BuckPS generates
currents in each of the three inductors equal to half of the
inductor current in the BuckS. Therefore, since the power
losses depend on the square of the current, the losses in the
BuckPS are lower. To illustrate such an aspect, the resistance
relation 𝑘

𝑟
given in (12) and the efficiency factor 𝛼 given

in (13) have been defined. In particular, 𝛼 > 1 implies an
improved efficiency of BuckPS over BuckS, while 𝛼 < 1
implies a reduced efficiency of BuckPS in comparison with
BuckS. Consider

𝑘
𝑟
=
𝑅
𝐿

𝑅
, (12)

𝛼 =
𝜂BuckPS
𝜂BuckS

=
4 + 4𝑘

𝑟

4 + 3𝑘
𝑟

. (13)

Since 𝑘
𝑟
> 0 for real values of 𝑅 and 𝑅

𝐿
, 𝛼 > 1 is

always granted in (13), which demonstrates that the proposed
BuckPS solution is more efficient than the classical BuckS
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Table 1: Resistance relation and improvement efficiency factor with
commercial elements.

Load (A) 𝑅
𝐿
(mΩ) 𝑘

𝑟
(%) 𝛼 − 1 (%) Cost ($US)

5 18 + 49 10.15 30.45 2.36 6.20 3.80
20 8.0 + 9.5 10.61 31.82 2.46 6.42 4.07
40 5.0 + 2.3 8.85 26.55 2.07 5.53 5.68
60 3.5 + 3.0 11.82 35.52 2.71 7.01 6.07

implementation. Figure 6 presents the efficiency improve-
ment factor 𝛼 − 1, which quantifies the relative efficiency
improvement of BuckPS over BuckS, for different values of
the resistance relation 𝑘

𝑟
. Such numerical results illustrate the

improved efficiency of the BuckPS solution.
Table 1 shows values of the efficiency improvement factor

considering commercial elements [16]. The calculations were
made for load currents equal to 5A, 20A, 40A, and 60A,
with a ripple current of 10%. Moreover, 𝑅

𝐿
is calculated by

adding the inductor resistance and the ON-resistance of the
MOSFETs. Then, 𝑘

𝑟
and 𝛼 − 1 have two values: the left value

corresponds to a load voltage𝑉
𝑜
= 3.3V, while the right value

corresponds to 𝑉
𝑜
= 1.1V. In the first case, the efficiency

improvement is near to 2.4%, while in the second case the
efficiency improvement is between 5% and 7.5%. Therefore,
for modern microprocessors requiring very low operation
voltages, the proposed BuckPS could provide a significant
improvement in the electrical efficiency.

3. Sliding-Mode Current Control

The sliding-mode control technique has been extensively
used in the literature to regulate power converters due
to its robustness and speed [17]. Moreover, sliding-mode
controllers have been also used to regulate active filters to
improve power quality in AC environments [18]. In the same

IL1
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+

−

S(x)
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u1U = 0
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−H +H

u1U(t)

Figure 7: Logic scheme of sliding-mode controller.

way, this paper proposes to design a sliding-mode controller
to regulate the postfilter, this with aim of ensuring the correct
behavior of the system in any operation condition.

The controller design requires a state-space model of the
POL converter. In such a way, the state-space system that
describes the BuckPS dynamic behavior, depending on 𝑢

𝐵

(driving signal of the first Buck converter) and 𝑢
1𝑈

(driving
signal of the postfilter), is given in (14). Such a system
considers the states vector 𝑥 = [𝑖

𝐿
𝑖
𝐿1
𝑖
𝐿2
V
𝐶1
V
𝐶2
]
𝑇 and follows

the nomenclature defined in Figure 4. Consider

̇𝑖
𝐿
= −
𝑅
𝐿
𝑖
𝐿

𝐿
−
V
𝐶1

𝐿
+

𝑉
𝑔
𝑢
𝐵

𝐿
,

̇𝑖
𝐿1
= −
𝑅
𝐿1
𝑖
𝐿1

𝐿
1

+
V
𝐶1
𝑢
1𝑈

𝐿
1

−
V
𝐶2

𝐿
1

,

̇𝑖
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= −
𝑅
𝐿2
𝑖
𝐿2

𝐿
2

+
V
𝐶1
𝑢
1𝑈

𝐿
2

−
V
𝐶2

𝐿
2

,

̇V
𝐶1
=
𝑖
𝐿

𝐶
1

−
𝑖
𝐿1
𝑢
1𝑈

𝐶
1

−
𝑖
𝐿2
𝑢
1𝑈

𝐶
1

,

̇V
𝐶2
=
𝑖
𝐿1

𝐶
2

+
𝑖
𝐿2

𝐶
2

−
V
𝐶2

(𝑅𝐶
2
)
.

(14)

In (14) 𝑢
1𝑈
= 1 − 𝑢

1𝑈
, where 𝑢

1𝑈
= 1 means that

MOSFET 𝑆
1𝑈

is turned ON and MOSFET 𝑆
1𝐿

is turned OFF,
while 𝑢

1𝑈
= 0 means that MOSFET 𝑆

1𝑈
is turned OFF and

MOSFET 𝑆
1𝐿

is turned ON.
Following the same approach proposed in [19], a sliding-

mode controller was designed to regulate both postfilter
inductor currents. The adopted sliding surface, given in (15),
is intended to guarantee the same current in both postfilter
branches:

𝑆 (𝑥) = 𝑖
𝐿1
− 𝑖
𝐿2
= 0. (15)

But to design a practical realization, the surface must
be constrained into a hysteretic band ±𝐻(𝑡), where the
MOSFET commutation is determined by (16): when the
difference between the indictor currents is smaller than the
lower boundary of the hysteretic band −𝐻(𝑡), 𝑢

1𝑈
must be

turned ON (set to 1); while if the difference between the
inductor currents is larger than the upper boundary of the
hysteretic band +𝐻(𝑡), 𝑢

1𝑈
must be turned OFF (set to 0).

Therefore,𝐻(𝑡) defines the steady-state value of the currents
ripple. Moreover such surface 𝑆(𝑥) = 0 imposes the same
average value for both currents, which guarantee the correct
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operation of the postfilter. Figure 7 presents the logic scheme
for both the sliding surface and the hysteretic comparator:

𝑖
𝐿1
− 𝑖
𝐿2
< −𝐻 (𝑡) , 𝑢

1𝑈
set to 1,

𝑖
𝐿1
− 𝑖
𝐿2
> +𝐻 (𝑡) , 𝑢

1𝑈
set to 0.

(16)

The necessary and sufficient conditions for surface reach-
ability are given in [20]

lim
𝑆→0

−

𝑑𝑆 (𝑥)

𝑑𝑡
> 0 𝑢

1𝑈
= 1,

lim
𝑆→0

+

𝑑𝑆 (𝑥)

𝑑𝑡
< 0 𝑢

1𝑈
= 0.

(17)

The time derivative of the sliding surface, given in (18), is
obtained from (15). Then, by introducing the relation (18) in
(17) and replacing also the second and third rows of (14) in
(17), the expressions for surface reachability given in (19) are
obtained

𝑑𝑆 (𝑥)

𝑑𝑡
=
𝑑𝑖
𝐿1

𝑑𝑡
−
𝑑𝑖
𝐿2

𝑑𝑡
, (18)

lim
𝑆→0

−

𝑑𝑆 (𝑥)

𝑑𝑡
= V
𝐶2
(
1

𝐿
2

−
1

𝐿
1

) + (
𝑅
𝐿2

𝐿
2

𝑖
𝐿2
−
𝑅
𝐿1

𝐿
1

𝑖
𝐿1
)

+
V
𝐶1

𝐿
1

> 0,

lim
𝑆→0

+

𝑑𝑆 (𝑥)

𝑑𝑡
= V
𝐶2
(
1

𝐿
2

−
1

𝐿
1

) + (
𝑅
𝐿2

𝐿
2

𝑖
𝐿2
−
𝑅
𝐿1

𝐿
1

𝑖
𝐿1
)

−
V
𝐶1

𝐿
1

< 0.

(19)

Since for a practical implementation the postfilter induc-
tors are selected equally, 𝐿

𝑓
= 𝐿
1
= 𝐿
2
and 𝑅

𝐿𝑓
= 𝑅
𝐿1
= 𝑅
𝐿2
,

relation (19) is simplified as in (20). In such an expression it
is evident that both inequalities are fulfilled, this is because
inductors are always positive (𝐿

𝑓
> 0) and Buck converters

provide output voltages with the same polarity of the input
voltage (V

𝐶1
> 0). Therefore, the surface reachability of the

postfilter controller is always granted

lim
𝑆→0

−

𝑑𝑆 (𝑥)

𝑑𝑡
=
V
𝐶1

𝐿
𝑓

> 0,

lim
𝑆→0

+

𝑑𝑆 (𝑥)

𝑑𝑡
= −

V
𝐶1

𝐿
𝑓

< 0.

(20)

The other important aspect in terms of control concerns
the local stability, which is verified by using the equivalent
control condition given in (21) [19], where 𝑢eq represents
an equivalent continuous control input that constrains the
system evolution into the sliding surface

𝑑𝑆 (𝑥)

𝑑𝑡
= 0, 0 < 𝑢eq < 1. (21)

From (18) and the second and third rows of (14), in which
the control input 𝑢

1𝑈
has been replaced by the equivalent

continuous variable 𝑢eq, the condition given in (21) can be
rewritten as in

0 < 𝑢eq =
𝑅
𝐿1
𝐿
2
𝑖
𝐿1
− 𝑅
𝐿2
𝐿
1
𝑖
𝐿2
+ (𝐿
2
− 𝐿
1
) V
𝐶2
+ 𝐿
1
V
𝐶1

(𝐿
1
+ 𝐿
2
) V
𝐶1

< 1.

(22)

Taking into account that the inductors are selected
equally, then (22) becomes

0 < 𝑅
𝐿𝑓
𝐿
𝑓
(𝑖
𝐿1
− 𝑖
𝐿2
) + 𝐿
𝑓
V
𝐶1
< 2𝐿
𝑓
V
𝐶1
. (23)

Therefore, the difference between the inductor currents
must satisfy (24) to guarantee local stability

−
V
𝐶1

𝑅
𝐿𝑓

< 𝑖
𝐿1
− 𝑖
𝐿2
<

V
𝐶1

𝑅
𝐿𝑓

󳨐⇒
󵄨󵄨󵄨󵄨𝑖𝐿1 − 𝑖𝐿2

󵄨󵄨󵄨󵄨 <
V
𝐶1

𝑅
𝐿𝑓

. (24)

To ensure that relation (24) is fulfilled in any condition,
the maximum magnitude of the inductors current difference
must be constrained as in

max 󵄨󵄨󵄨󵄨𝑖𝐿1 − 𝑖𝐿2
󵄨󵄨󵄨󵄨 = Δmax <

V
𝐶1

𝑅
𝐿𝑓

. (25)

From the second and third rows of (14) with 𝑢
1𝑈
= 1 and

𝑢
1𝑈
= 0, the ripple magnitudes of both postfilter currents,

as defined in Figure 3, are given in (26). It is noted that
the maximum difference between the inductor currents is
constrained by the sum of such ripple magnitudes as in (27):

Δ𝑖
𝐿1
=
𝑇

4𝐿
𝑓

(−𝑅
𝐿𝑓
𝑖
𝐿1
+ V
𝐶1
− V
𝐶2
) ,

Δ𝑖
𝐿2
= −

𝑇

4𝐿
𝑓

(−𝑅
𝐿𝑓
𝑖
𝐿2
− V
𝐶2
) ,

(26)

Δmax = Δ𝑖𝐿1 + Δ𝑖𝐿2,

Δmax =
𝑇

4𝐿
𝑓

(−𝑅
𝐿𝑓
(𝑖
𝐿1
− 𝑖
𝐿2
) + V
𝐶1
) .

(27)

Since the maximum difference between the inductor
currents ismax |𝑖

𝐿1
−𝑖
𝐿2
| = Δmax, the second row of (27)must

consider 𝑖
𝐿1
−𝑖
𝐿2
= Δmax.Therefore, themaximum difference

between the inductor currents is given by

Δmax =
V
𝐶1

(4𝐿
𝑓
/𝑇) + 𝑅

𝐿𝑓

. (28)

The local stability condition of the sliding-mode con-
troller given in (25) is rewritten as in

V
𝐶1

(4𝐿
𝑓
/𝑇) + 𝑅

𝐿𝑓

<
V
𝐶1

𝑅
𝐿𝑓

. (29)

Such an inequality leads to the condition given in (30),
which is fulfilled for any operating condition since both the
inductance and period are positive quantities. Hence, relation
(30) confirms the local stability of the proposed sliding-mode
controller:

4𝐿
𝑓

𝑇
> 0. (30)
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Figure 8: Practical implementation of the proposed Core 2 Duo
POL regulator.

Therefore, since surface reachability is granted by (20)
and the local stability is granted by (30), the proposed sliding-
mode controller always drives the postfilter, from any initial
condition, to operate within the space |𝑖

𝐿1
− 𝑖
𝐿2
| < 𝐻,

which ensures the same average current for both branches
and a maximum current difference constrained to 𝐻. Such
characteristics ensure a correct operation of the postfilter.

4. Numerical Results

A realistic application was considered to illustrate the opera-
tion and advantages of the proposed POL structure by means
of numerical results. The example considers a POL regulator
designed to supply an Intel Core 2 Duo processor [21, 22],
which requires a regulated 1.1 V with 1% voltage ripple and
60A. Then, the POL converter was designed to provide a
maximum voltage ripple equal to 11mV with a constant
current ripple equal to 10% of the maximum load current
(6A). Moreover, the switching frequency was selected equal
to 100 kHz for the single Buck converters and near to 100 kHz
for the postfilter. Therefore, the inductors were calculated to
ensure such current ripple and switching frequencies; hence
all the inductors were selected equal to 1.5 𝜇H. Similarly,
the capacitors were calculated to fulfill the desired voltage
ripple hence all the capacitors we selected equal to 280𝜇F.
Moreover, from the last row of Table 1 the parasitic resistance
for the single Buck converter and each postfilter branches is
extracted, which for all the inductors andMOSFETs are equal
to 6.5mΩ. Finally, the application considers a 12V battery as
the main power source.

Figure 8 shows the practical implementation of the pro-
posed POL regulator to supply the Core 2 Duo processor.
Such a scheme shows the two control systems required:
the sliding-mode controller to regulate the postfilter, named
SMC, and a PID controller acting on the Buck converter to
regulate the load voltage.

Figure 9 shows the postfilter operation in two conditions:
start-up and load transient. The former one considers the
start-up of the POL converter, where the voltage and currents
of all the capacitors and inductors are zero.The postfilter time
simulation (top-left) shows the satisfactory current ripple

cancelation, where the output current Io is almost ripple
free. It must be pointed out that in such a figure Io is
presented divided by 2 to be in the same scale of the postfilter
inductor currents. In addition, the figure also presents, in
black traces, the maximum limits of the inductors current
difference, which is in agreement with the current ripple
condition imposed by the application (6A). From such a
behavior it is noted that, in the start-up condition, the sliding-
mode controller successfully guarantees the correct postfilter
operation: both inductor currents have the same average
current and the same current ripple, which produces a fixed
duty cycle equal to 0.5 to ensure the ripple cancelation.

Thepostfilter phase plane for the start-up operation is also
presented at the bottom-left figure, where it is confirmed that
the system is into the sliding surface for any steady-state or
transient condition.

The same behavior is achieved for a step-down load
transient, in which time simulation is presented in the figure
at top-right, where a 10% load perturbation was introduced.
Similar to the start-up case, in this transient condition the
postfilter provides an almost ripple-free load current, while
the system is always within the sliding surface (depicted at the
bottom-right).Therefore, the simulation in Figure 9 confirms
the correct operation of the postfilter and the stability of the
sliding-mode controller predicted in (20) and (30) for any
operation condition.

Another component to design in the proposed POL
solution concerns the load voltage regulator, named PID in
Figure 8. To design such a controller, the postfilter is modeled
to operate in closed loop with the sliding-mode controller,
where both inductor currents are equal and the duty cycle
of the prefilter is 0.5. Therefore, the statespace (14) can be
simplified as given in (31), where the single control variable
is 𝑢
𝐵
:

̇𝑖
𝐿
= −
𝑅
𝐿
𝑖
𝐿

𝐿
−
V
𝐶1

𝐿
+

𝑉
𝑔
𝑢
𝐵

𝐿
,

̇𝑖
𝐿𝑓
= −

𝑅
𝐿𝑓
𝑖
𝐿𝑓

𝐿
𝑓

+
V
𝐶1

(2𝐿
𝑓
)

−
V
𝐶2

𝐿
𝑓

,

̇V
𝐶1
=
𝑖
𝐿

𝐶
1

−

𝑖
𝐿𝑓

𝐶
1

,

̇V
𝐶2
=

2𝑖
𝐿𝑓

𝐶
2

−
V
𝐶2

(𝑅𝐶
2
)
.

(31)

Then, using the PWM-based averaging technique
described in [3, 23], the state-space system in (31) was
linearized by replacing 𝑢

𝐵
with the duty cycle of the Buck

converter. Such a system was used to design the PID
controller in agreement with the following criteria: closed
loop bandwidth equal to 6 kHz, phase margin higher than
60∘, and gain margin higher than 6 dB. The design of the
controller was performed in SISOTOOL from MATLAB,
obtaining the expression given in

PID (𝑠) = 1200
(1 + 3.1 × 10

−5

𝑠)
2

𝑠
.

(32)
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Figure 9: Postfilter simulation: start-up and load transient conditions.

To illustrate the improvement of the proposed POL, a
BuckS POL was also designed and simulated. Figure 10 com-
pares the BuckS and BuckPS output voltage ripples, obtaining
magnitudes of 3.1% and 0.032%, respectively. Such results put
in evidence the large reduction in the voltage ripple provided
by the proposed solution, which avoids the requirement
of electrolytic capacitances. Similarly, Figure 11 shows the
power spectral density (PSD) of the output voltage harmonics
for both the BuckS and BuckPS, where a large harmonic
component at 100 kHz produced by the BuckS is observed,
while the BuckPS exhibits a much attenuated component due
to the complementary inductor currents of the postfilter. The
simulation also shows that the BuckPS produces a different
PSD due to the contribution of both inductor currents, which
results in a new harmonic component at 143 kHz. In any case,
those results confirm the improvement in the power quality
provided to the load by the proposed solution.

To show the overall system performance, Figure 12 shows
the dynamic behavior of the BuckPSunder a load transient. In
such a case, the PID controller must regulate the load voltage

while the sliding-mode controller regulates the postfilter.The
simulation considers a load current perturbation equal to 10%
of the steady-state value (from60A to 66A).The results show
the satisfactory compensation of the load voltage provided
by the PID controller given in (32). Similarly, Figure 12 also
shows the satisfactory regulation of the postfilter inductor
currents. Such a correct operation of the sliding-mode con-
troller is also evident from the system evolution reported in
the bottom figure, where the system is always constrained
with the sliding surface 𝑆(𝑥) for any operation condition.

Itmust be point out that amore complex controller for the
Buck converter, such a high-order lead-lag structure, could be
used to improve the output voltage dynamics.

5. Conclusions

This paper has presented a POL converter based on the
cascade connection of an interleaved postfilter with a Buck
converter. This solution, named BuckPS, has the aim of
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improving the quality of the power provided to the load, by
reducing the output voltage ripple. Moreover, the BuckPS
provides an improved efficiency (between the 2.5% and
7.5%) over a classical POL based on a single Buck con-
verter, named BuckS. Similarly, since the BuckPS strongly
reduces the output current ripple, its output capacitor could
be significantly smaller in comparison with the classical
BuckS implementation. This characteristic allows designing
the BuckPS without using electrolytic capacitances, which
improves the system reliability.
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Figure 12: Dynamic behavior of the BuckPS output voltage.

Despite the advantages of the BuckPS structure, it
requires more elements and its regulation strategy is more
complex in comparison with the BuckS, which could lead to
a more costly device. In any case, the elements required by
the BuckPS have lower ratings, therefore lower cost, which
is especially important for the output capacitor: in BuckS
structures a large electrolytic capacitor is required, which
increases the system size and cost. Therefore, a comparison
between the cost and size of BuckS and BuckPS solutions
depends on the specific application conditions.

To illustrate the benefits of the proposed solution, a
practical application based on real load requirements was
analyzed and simulated. The numerical results of such an
example confirm the correctness of the POL converter and
the stability of the sliding-mode controller. In the same way,
the simulation also puts in evidence the improvement of the
proposed BuckPS regulator over a classical BuckS solution.

Finally, this paper describes an analog implementation
of the POL controllers. Therefore, a future research may be
focused on the digital implementation of the POL control
system to provide a more flexible and industrial oriented
solution. In such a further work, one of the open problems
concerns the fast acquisition of the postfilter currents since
the sampling circuit could filter such high-frequency signals.
Similarly, the time-delay effect generated by the acquisition
and processing circuits could introduce errors in the sliding-
mode comparator, degrading the controller accuracy and
stability.
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The chaotic time series can be expanded to the multidimensional space by phase space reconstruction, in order to reconstruct the
dynamic characteristics of the original system. It is difficult to obtain complete phase space for chaotic time series, as a result
of the inconsistency of phase space reconstruction. This paper presents an idea of subspace approximation. The chaotic time
series prediction based on the phase space reconstruction can be considered as the subspace approximation problem in different
neighborhood at different time. The common static neural network approximation is suitable for a trained neighborhood, but
it cannot ensure its generalization performance in other untrained neighborhood. The subspace approximation of neural network
based on the nonlinear extended Kalman filtering (EKF) is a dynamic evolution approximation from one neighborhood to another.
Therefore, in view of incomplete phase space, due to the chaos phase space reconstruction, we put forward subspace adaptive
evolution approximation method based on nonlinear Kalman filtering. This method is verified by multiple sets of wind speed
prediction experiments in Wulong city, and the results demonstrate that it possesses higher chaotic prediction accuracy.

1. Introduction

In recent years, industrial disasters and accidents occurred
frequently, the meteorological and hydrological conditions
were complicated and changeable, and financial markets fluc-
tuated drastically. These phenomena often contain chaotic
characteristics [1, 2], and prediction [3] for these phenomena
is imminent. For a long time, there was no scientific tool
for handling this issue, because the changing mechanisms
of characteristics in these phenomena were not understood
very well. Hence, aiming at the chaotic characteristics, some
scholars worked with structures and made a lot of new
researches on the prediction of chaotic time series [4–8].

To study and deal with the measurement data of chaotic
system, Kennel et al. presented the reconstruction method
of phase space system. Two parameters, the embedding
dimension 𝑚 and delay time 𝜏, needed to be determined
before the phase space reconstruction [9, 10]. At present,
time delay selection methods that are commonly used in
the chaotic short-term prediction mainly include autocor-
relation method [11], mutual information method [12], and

singular value fraction method [13]. Calculating methods of
embedding dimension mainly include saturated correlation
dimension [14], false nearest neighbors method [15], and
Cao’s method [16]. Hu and Chen put forward the C-C
method [17], which can simultaneously estimate the delay
time 𝜏 and embedding dimension 𝑚 with the correlation
integral. Autocorrelation method extracts only linear cor-
relation degree between time series, which is hard to be
applied to high-dimensional chaos system and nonlinear
dynamical system. Mutual information method, which can
determine the optimal delay time by calculating the first
minimal value of mutual information function, is a nonlinear
analysis method, but it cannot avoid massive calculation and
cannot satisfy the requirement of complicated space division.
It is difficult to determine the threshold of the singular value,
because the singular value fraction method is largely affected
by noise. When the embedded dimension with the saturated
correlation dimension is calculated, the main question is
to choose the different neighborhood radius. The radius
selection has certain randomness, and the result will be in
large deviationwith improper choice, because of the influence
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of noise in the data and excessive concentration of the data.
The determination of threshold has very strong subjectivity
when we use false nearest neighbors method to determine
the embedding dimension. There is no objective standard
to determine the threshold value, especially for the experi-
mental data, which may get a wrong result. Cao’s method,
an improved false nearest neighbors method, can effectively
distinguish random signals and deterministic signals, and
embedding dimension can be obtained through a less amount
of data. C-C method is based on the statistical theory, so 𝑚

cannot be precisely determined.
Researches have showed that different phase space recon-

struction methods get different 𝑚 and 𝜏. Moreover, the
same chaotic time series with the same kind of method
in different times may get different 𝑚 and 𝜏. There is no
phase space reconstruction that can obtain complete and
independent phase space. After phase space reconstruction,
prediction model is often established through the functional
approximation method.

The prediction model based on phase space reconstruc-
tion has been used to adopt the functional approximation
method based on the neural network [18–21], which has
strong nonlinear fitting capability and can approximate any
complex nonlinear relationships. However, since neural net-
work is only suitable for approximation of a deterministic
system, it is difficult to guarantee the time-varying system
performance and ensure its generalization performance in
other untrained neighborhood. Meanwhile, the prediction
effect of neural network is not good, because the chaotic time
series is a complex nonlinear uncertain system.

In this study, we introduce Kalman filtering to neural
network model [22], inspired by Kalman iteration and Bucy
and Sunahara’s nonlinear extended Kalman filtering theory
[23]. The subspace approximation of neural network based
on the nonlinear extended Kalman filtering (EKF) has a
function which is dynamic evolution approximation from
one neighborhood to another. Therefore, we can constitute a
phase space by choosing a kind of phase space reconstruction
method, and the space may be incomplete, not separate, and
can be seen as a subspace of the ideal phase space. On this
basis, we put forward adaptive neural network model based
on nonlinear Kalman filtering and finally realize the subspace
approximation of dynamic evolution system. In addition, we
simulate wind speed series inWulong city using the proposed
method. By comparing with BP neural network prediction
model, the results show that our method possesses higher
prediction accuracy.

The paper is organized as follows. Section 2 discusses
about the subspace approximation of phase space reconstruc-
tion. In Section 3, we describe the neural network model
based on nonlinear Kalman filtering. Section 4 uses practical
examples and series tests to verify the proposed method,
while Section 5 contains the conclusions of the present work.

2. Subspace Approximation of
Phase Space Reconstruction

Reconstructing phase space by chaos theory needs to identify
the chaos of time series. Single variable time series can

be reconstructed into a phase space by Takens’ embedding
theorem in phase space reconstruction [24, 25]; that is,
the original dynamical system can be restored in the
sense of topological equivalence as long as the embedding
dimension is sufficiently high. For the observed time series
𝑥(1), 𝑥(2), . . . , 𝑥(𝑡), after time delay reconstruction by Takens
embedding theorem, it will receive a set of space vector

X (𝑡) = {𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)} ,

𝑡 = 1, 2, . . .𝑀, 𝑀 = 𝑁 − (𝑚 − 1) 𝜏.

(1)

After phase space reconstruction, the data space is

[
[
[
[

[

𝑥 (1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑡)

𝑥 (1 + 𝜏) 𝑥 (2 + 𝜏) ⋅ ⋅ ⋅ 𝑥 (𝑡 + 𝜏)

...
... d

...
𝑥 (1 + (𝑚 − 1) 𝜏) 𝑥 (2+(𝑚 − 1) 𝜏) ⋅ ⋅ ⋅ 𝑥 (𝑡+(𝑚 − 1) 𝜏)

]
]
]
]

]

.

(2)

Accordingly, we acquire

𝑓 : R𝑚 󳨀→ R, (3)

where 𝑓 is a single-valued function. Then, we have

𝑥 (𝑡 + 𝑚𝜏) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)) . (4)

However, it cannot be really obtained as the data are often
limited. Hence, 𝑓 : R𝑚 → R can only be constituted by lim-
ited measurement data, making 𝑓 sufficiently approximate to
𝑓, consequently we can get a nonlinear prediction model.

This paper employs the neural network to predict chaotic
series.However, the neural network cannot readily handle the
inconsistency of the phase space reconstruction because of
uncertain nonlinear chaotic time series. Therefore, it is cru-
cial to adaptively construct subspace to approximate chaotic
series through the incomplete phase space. The feature of
adaptive subspace approximation is that it can add new data
in real time and forget old data in the process of training.
Consequently, weights and thresholds of the neural network
are continuously modified to realize the dynamic evolution
modeling.

3. Neural Network Model Based on
Nonlinear Kalman Filtering

Kalman filtering has good adaptability. It can dynamically
update and forecast the system information in real time with
limited data. However, it cannot be readily used for com-
plicated nonlinear model. Meanwhile, the extended Kalman
filtering (EKF) is a kind of effective method to handle
nonlinear filtering.

The mathematical model of EKF is as follows:

X
𝑘+1

= 𝑓 (X
𝑘
, 𝑘) + Γ (X

𝑘
, 𝑘)W

𝑘

Z
𝑘
= ℎ (X

𝑘
, 𝑘) + V

𝑘
,

(5)
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whereW
𝑘
andV

𝑘
are independent, zero mean, and Gaussian

random processes with covariance matricesQ and R, respec-
tively. The statistical properties are as follows:

𝑝 (𝑤) ∼ 𝑁 (0,Q) , 𝑝 (V) ∼ 𝑁 (0,R) . (6)

EKF spreads nonlinear functions 𝑓(⋅) and ℎ(⋅) to Tay-
lor series around filtering value X̂

𝑘
and predicted value

X̂−
𝑘
, respectively, only retaining the first-order information.

Hence, the linearization model of the nonlinear system
is obtained, and then we can obtain the EKF formula in
nonlinear system by basic equations of Kalman filtering.

Given a forward network with 𝑁 layers, the numbers
of neurons in each layer are 𝑆

𝑘
(𝑘 = 1, 2, . . . , 𝑁). Suppose

that input layer is the first layer and output layer is the 𝑁th
layer. The weights of the 𝑘th layer neurons are 𝑊

𝑘

𝑖𝑗
(𝑖 =

1, 2, . . . , 𝑆
𝑘−1

; 𝑗 = 1, 2, . . . , 𝑆
𝑘
). In order to convert the

calculation of connection weights 𝑊
𝑘

𝑖𝑗
in the above problem

into filter recursive estimation form, we let all of the network
weights constitute the state vector

W = [𝑊
1

11
⋅ ⋅ ⋅𝑊
1

𝑆1𝑆2

𝑊
2

11
⋅ ⋅ ⋅𝑊
2

𝑆2𝑆3

⋅ ⋅ ⋅𝑊
𝑁−1

11
𝑊
𝑁−1

𝑆𝑁−1𝑆𝑁

]
𝑇

, (7)

where state vectorW consists of all of the weights according
to the linear array, and its dimension is as follows:

𝑁
𝑊

=

𝑁−1

∑

𝑖=1

𝑆
𝑖
𝑆
𝑖+1

. (8)

Then the state equation and measurement equation of the
system can be expressed as

W
𝑘
= W
𝑘−1

, (9)

Y
𝑒𝑘

= ℎ (W
𝑘
,X
𝑘
) + V
𝑘
= Y
𝑟𝑘

+ V
𝑘
, (10)

where Y
𝑒𝑘
is the expected output, X

𝑘
is the input vector, and

Y
𝑟𝑘
is the actual output.
The measurement noise V

𝑘
is assumed to be additive,

white, and Gaussian, with zero mean and with covariance
matrix defined by

𝐸 (V
𝑘
) = 0, 𝐸 (V

𝑘
V𝑇
𝑘
) = R

𝑘
. (11)

Suppose that the output of the 𝑗th node for the 𝑙th layer in the
𝑘th iteration is

𝑂
𝑙

𝑗𝑘
= 𝐹
𝑙

𝑗
(𝑊
𝑙

𝑗𝑘
, 𝑂
𝑙−1

𝑘
) . (12)

From (10) and (12), we have

Y
𝑒𝑘

= ℎ (W
𝑘
,X
𝑘
) + V
𝑘

= 𝐹
𝑁

(𝑊
𝑁

𝑘
, 𝐹
𝑁−1

(𝑊
𝑁−1

𝑘
⋅ ⋅ ⋅ 𝐹
2

(𝑊
2

𝑘
,X
𝑘
))) + V

𝑘
,

Y
𝑒𝑘

= ℎ (Ŵ−
𝑘
,X
𝑘
) +

𝜕ℎ

𝜕𝑊

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨W𝑘=Ŵ−𝑘
(W
𝑘
− Ŵ−
𝑘
) + V
𝑘
.

(13)

Table 1: Extended Kalman filtering neural network algorithm.

Extended Kalman filtering neural network

(1) Initialization
𝜃̂
0
= 𝐸 (𝜃

0
) = [Ŵ

0
, b̂
0
]
𝑇

P
0
= 𝐸 [(𝜃

0
− 𝜃̂
0
) (𝜃
0
− 𝜃̂
0
)
𝑇

]

(2) Time update (forecast) 𝜃̂

−

𝑘
= 𝜃̂
𝑘−1

P−
𝑘
= P
𝑘−1

+Q
𝑘−1

(3) Measurement update
(correct)

K
𝑘
= P−
𝑘
H
𝑘

𝑇

(H
𝑘
P−
𝑘
H
𝑘

𝑇

+ R
𝑘
)
−1

𝜃̂
𝑘
= 𝜃̂
−

𝑘
+ K
𝑘
[Y
𝑒𝑘

− ℎ (𝜃̂
−

𝑘
,X
𝑘
)]

P
𝑘
= (I − K

𝑘
H
𝑘
)P−
𝑘

Q
𝑘−1

and R
𝑘
are process noise covariance and measurement noise covari-

ance, respectively, H
𝑘
is the Jacobian matrix of observable model, ̂𝜃

−

𝑘
is the

optimal predictive value for step 𝑘 according to step 𝑘 − 1, and ̂𝜃
𝑘
is the

optimal filter estimate for step 𝑘.

Assume that
𝜕ℎ

𝜕𝑊

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨W𝑘=Ŵ−𝑘
= H
𝑘
, ℎ (Ŵ−

𝑘
,X
𝑘
) −

𝜕ℎ

𝜕𝑊

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨W𝑘=Ŵ−𝑘
Ŵ−
𝑘
= C
𝑘
.

(14)

Accordingly, the measurement equation may also be
expressed as

Y
𝑒𝑘

= H
𝑘
W
𝑘
+ C
𝑘
+ V
𝑘
. (15)

The Jacobian matrix of the function ℎ(⋅) is described by

H
𝑘
=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕ℎ
1

𝜕𝑤
1

𝜕ℎ
1

𝜕𝑤
2

⋅ ⋅ ⋅
𝜕ℎ
1

𝜕𝑤
𝑛

𝜕ℎ
2

𝜕𝑤
1

𝜕ℎ
2

𝜕𝑤
2

⋅ ⋅ ⋅
𝜕ℎ
2

𝜕𝑤
𝑛

...
... d

...
𝜕ℎ
𝑛

𝜕𝑤
1

𝜕ℎ
𝑛

𝜕𝑤
2

⋅ ⋅ ⋅
𝜕ℎ
𝑛

𝜕𝑤
𝑛

]
]
]
]
]
]
]
]
]
]
]

]

. (16)

Similarly, all thresholds of the network constitute the state
vector

b = [𝑏
1

1
⋅ ⋅ ⋅ 𝑏
1

𝑆2

𝑏
2

1
⋅ ⋅ ⋅ 𝑏
2

𝑆3

⋅ ⋅ ⋅ 𝑏
𝑁−1

1
⋅ ⋅ ⋅ 𝑏
𝑁−1

𝑆𝑁

]
𝑇

, (17)

where the dimension is

𝑁
𝑏
=

𝑁−1

∑

𝑖=1

𝑆
𝑖+1

. (18)

Suppose thatW and b are both state variable; that is, the state
vector composed of weights and thresholds is described by

𝜃 = [W, b]𝑇

= [𝑊
1

11
⋅ ⋅ ⋅𝑊
1

𝑆1𝑆2

𝑏
1

1
⋅ ⋅ ⋅ 𝑏
1

𝑆2

𝑊
2

11
⋅ ⋅ ⋅𝑊
2

𝑆2𝑆3

𝑏
2

1

⋅ ⋅ ⋅ 𝑏
2

𝑆3

⋅ ⋅ ⋅𝑊
𝑁−1

11
𝑊
𝑁−1

𝑆𝑁−1𝑆𝑁

𝑏
𝑁−1

1
⋅ ⋅ ⋅ 𝑏
𝑁−1

𝑆𝑁

]
𝑇

.

(19)

Kalman filtering algorithm on training weights and thresh-
olds of the neural network is as in Table 1.
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Table 2: Comparison among phase space reconstruction methods.

Parameter Method
Autocorrelation Mutual information False nearest neighbors Cao C-C

𝜏 1 12 — — 5
𝑚 — — 4 3 5
“—” means nothing.

Table 3: Parameters of the same phase space reconstruction during different time periods.

Parameter
Interval

𝑇
1

(𝑘 = 1, 2, . . . , 600)

𝑇
2

(𝑘 = 601, 602, . . . , 1200)

𝑇
3

(𝑘 = 1201, . . . , 1800)

𝑇
4

(𝑘 = 1801, . . . , 2400)

𝑇
5

(𝑘 = 2401, . . . , 3000)

𝜏 5 3 4 4 5
𝑚 5 5 4 9 10

Table 4: Comparison among phase space reconstruction methods.

Parameter Method
Autocorrelation Mutual information False nearest neighbors Cao C-C

𝜏 1 12 — — 3
m — — 3 7 4

Table 5: Various combinations on two forecasting methods.

Model Combination Parameter Forecasting
a1 Autocorrelation + false nearest neighbors 𝜏 = 1,𝑚 = 3 BPNN
b1 Autocorrelation + false nearest neighbors 𝜏 = 1,𝑚 = 3 EKFNN
a2 Mutual information + false nearest neighbors 𝜏 = 12,𝑚 = 3 BPNN
b2 Mutual information + false nearest neighbors 𝜏 = 12,𝑚 = 3 EKFNN
a3 Autocorrelation + Cao 𝜏 = 1,𝑚 = 7 BPNN
b3 Autocorrelation + Cao 𝜏 = 1,𝑚 = 7 EKFNN
a4 Mutual information + Cao 𝜏 = 12,𝑚 = 7 BPNN
b4 Mutual information + Cao 𝜏 = 12,𝑚 = 7 EKFNN
a5 C-C 𝜏 = 3,𝑚 = 4 BPNN
b5 C-C 𝜏 = 3,𝑚 = 4 EKFNN

4. Simulation Examples

4.1. Determining of Embedding Dimension and Delay Time.
One of the most popular chaos logistic mapper is selected as
the study object. Logistic equation is

𝑥
𝑛+1

= 𝛼𝑥
𝑛
(1 − 𝑥

𝑛
) , 𝛼 ∈ [0, 4] . (20)

The related time series are produced according to (20).
It is a chaotic system when 𝛼 = 4. Assume that initial value
of series is 0.1, and 4000 points are calculated. The first 1000
points are eliminated as transition phenomenon, leaving the
remaining 3000 points to reconstruct phase space. Before
the phase space reconstruction, we determine the embedding
dimension𝑚 and delay time 𝜏. A comparison among several
methods is present in Table 2.

Obviously, the optimal embedding dimension and delay
time are generally different by different methods of phase
space reconstruction.

In order to verify the fact that data at different time will
obtain different embedding dimension 𝑚 and delay time 𝜏

with the same phase space reconstruction method, we have
the following experiment.

The remaining 3000 points (𝑘 = 1, 2, . . . , 3000) are
divided into five parts, with time intervals 𝑇

1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, and

𝑇
5
, respectively. Embedding dimension and delay time are

present in Table 3 by C-C method.
Apparently, the data during different time periods will

acquire different embedding dimension and delay time by
using the same phase space reconstruction method.

4.2. Wind Speed Chaotic Series Forecasting Simulation. Anal-
ysis about the chaotic characteristics of wind speed in the
process of wind power generation has been presented in a
related article [26]. We record one of the wind speed data
every 10 minutes, and 150 groups of wind speed data in
Wulong city are used to simulate experiments in our study.
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We obtain the corresponding𝑚 and 𝜏 by different phase space
reconstruction methods, as shown in Table 4.

Various combinations are present in Table 5.
Wind speed prediction [27, 28] of chaotic time series

about neural network model usually extracts phase space
reference points as the BP neural network training samples
on the basis of phase space reconstruction. We establish the
neural network model based on nonlinear Kalman filtering,
including two parts: predict wind speed and constantly
modify weights and thresholds of the neural network by
Kalman recursion. In this paper, BPNN model in the same
structure is employed to forecast wind speed time series, in
order to illustrate the validity of EKFNN on predicting the
chaotic time series. The same 150 groups of wind speed data
are used to simulate experiments. The predicted curves and
error curves are shown in Figures 1, 2, 3, 4, and 5.

Comparisons among several models in four indices are
present in Table 6.

We list 12 groups, a total of 2 hours of wind speed
forecasting results in two methods, under the same phase

Table 6: Different wind speed model index.

Model Error
MAE MRE MSE SSE

a1 0.8482 0.1076 1.3786 206.7967
b1 0.3365 0.0416 0.1919 28.7834
a2 1.2279 0.1674 2.9614 444.2152
b2 0.6190 0.0759 0.6209 93.1357
a3 0.5106 0.0656 0.4089 61.3361
b3 0.3783 0.0458 0.2654 39.8130
a4 2.4005 0.3079 8.4766 1.2715𝑒 + 003

b4 0.0852 0.0110 0.0177 2.6584
a5 0.8952 0.1173 1.7970 269.5495
b5 0.2867 0.0357 0.1359 20.3850
MAE, MRE, MSE, and SSE are Mean Absolute Error, Mean Relative Error,
Mean Square Error, and Sum of Squared Error, respectively.

space reconstruction. Compare the prediction performance
in the next 10min, 20min, 30min, and up to, 120min.
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Table 7: Observed wind speed data and predicted data.

Time (min) Observed value
(m/s)

Predicted value
(m/s)

Relative error
(%)

Predicted value
(m/s)

Relative error
(%)

a1 b1

10 10.4900 10.0801 3.9561 10.5101 0.1823
20 10.3700 9.9783 3.7762 10.4011 0.2630
30 10.6900 10.1024 5.4902 10.4621 2.1476
40 10.2100 10.8802 6.5374 10.6202 4.0235
50 10.3000 9.1424 11.2402 10.1531 1.4947
60 9.8000 10.3508 5.6401 10.2210 4.2446
70 9.3000 8.6881 6.5810 9.6032 3.2585
80 9.4900 8.1883 13.7201 9.3163 1.8295
90 10.1100 9.6013 5.0321 9.7631 3.4282
100 9.2100 10.4726 13.7200 10.0300 8.9132
110 8.5500 7.2082 15.6903 8.8621 3.6533
120 9.0000 7.0824 21.3101 8.5470 5.0347

a2 b2

10 10.4900 9.6930 7.5977 10.4785 0.1095
20 10.3700 10.4006 0.2955 10.4249 0.5292
30 10.6900 10.0489 5.9968 10.4992 1.7845
40 10.2100 10.5699 3.5250 10.3357 1.2311
50 10.3000 10.2559 0.4285 10.2518 0.4675
60 9.8000 10.1445 3.5151 10.1132 3.1960
70 9.3000 9.2583 0.4488 10.0703 8.2826
80 9.4900 9.8944 4.2609 9.9547 4.8963
90 10.1100 10.6937 5.7739 9.7503 3.5580
100 9.2100 11.4420 24.2351 9.5212 3.3787
110 8.5500 11.8315 38.3804 9.1823 7.3954
120 9.0000 11.2543 25.0475 9.3012 3.3463

a3 b3

10 10.4900 10.9775 4.6468 10.7194 2.1870
20 10.3700 10.4931 1.1872 10.4277 0.5567
30 10.6900 10.3878 2.8269 10.4168 2.5559
40 10.2100 13.7393 34.5672 10.1893 0.2032
50 10.3000 9.8085 4.7716 10.2918 0.0793
60 9.8000 12.1826 24.3126 10.0993 3.0540
70 9.3000 9.7924 5.2943 9.8370 5.7739
80 9.4900 9.3521 1.4529 9.6689 1.8855
90 10.1100 14.5803 44.2168 9.7772 3.2920
100 9.2100 14.6095 58.6264 9.5805 4.0233
110 8.5500 8.6425 0.0821 9.3442 9.2884
120 9.0000 9.7379 8.1988 9.3314 3.6817

a4 b4

10 10.4900 8.9295 14.8759 10.1137 3.5868
20 10.3700 9.2037 11.2466 9.7344 6.1296
30 10.6900 8.6494 19.0887 10.3308 3.3597
40 10.2100 8.5516 16.2426 9.9803 2.2501
50 10.3000 9.3038 9.6717 10.5685 2.6064
60 9.8000 8.7467 10.7479 10.1183 3.2477
70 9.3000 8.7126 6.3161 9.7779 5.1391
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Table 7: Continued.

Time (min) Observed value
(m/s)

Predicted value
(m/s)

Relative error
(%)

Predicted value
(m/s)

Relative error
(%)

80 9.4900 8.6188 9.1802 9.8413 3.7021

90 10.1100 9.4713 6.3176 10.9886 8.6901

100 9.2100 9.3204 1.1992 8.8816 3.5657

110 8.5500 9.5029 11.1452 8.2497 3.5118

120 9.0000 9.6909 7.6768 8.8558 1.6017
a5 b5

10 10.4900 10.1227 3.5017 10.4227 0.6412

20 10.3700 10.5150 1.3985 10.4890 1.1473

30 10.6900 10.3714 2.9805 10.6268 0.5909

40 10.2100 10.1625 0.4652 10.5638 3.4649

50 10.3000 10.5236 2.1705 10.4778 1.7260

60 9.8000 10.5366 7.5159 10.1741 3.8174

70 9.3000 9.8748 6.1807 9.8224 5.6174

80 9.4900 9.4500 0.4217 9.6744 1.9432

90 10.1100 9.7279 3.7794 9.8950 2.1267

100 9.2100 8.9728 2.5755 9.6195 4.4458

110 8.5500 9.3838 9.7519 9.2464 8.1455

120 9.0000 9.3328 3.6973 9.0710 0.7889

Comparisons among several prediction results in two
methods are present in Table 7.

Figures 1–5 show that relative error of wind speed pre-
diction by EKF neural network is much smaller than that
by BP neural network, through observing the future wind
speed prediction of 150 groups. As can be seen in Table 6,
the prediction effects are largely different by different kinds
of phase space reconstruction methods. Four performance
indices, which are Mean Absolute Error (MAE), Mean Rel-
ative Error (MRE), Mean Square Error (MSE), and Sum of
Squared Error (SSE), of EKF neural network, are also far less
than those of corresponding general neural network.

Apparently, EKF neural network can solve the inconsis-
tency problem of phase space reconstruction and approxi-
mate chaotic time series well through subspace. The neural
networkmodel based on EKFhas outstanding adaptability, so
it can predict the wind speed chaotic time series with higher
precision, compared with BP neural network.

Furthermore, we can conclude that in Table 7, prediction
accuracy of EKF neural network is higher than that of BP
neural network, by comparing the prediction performance
of wind speed in the next 10min, 20min, 30min, and
up to, 120min. It demonstrates that EKF neural network
model, which has better dynamic adaptability, can better the
prediction of wind speed time series with nonlinear chaotic
characteristics. Therefore, the proposed phase space recon-
struction method of the adaptive evolution approximation in
this paper is an effective approach.

5. Conclusion and Further Work

The phase space reconstruction cannot meet characteristics
of the completeness and independence, and the results with
different reconstruction methods are obviously inconsistent.
The reconstructed phase space is a subspace of the ideal space.
If a subspace approximation can make the real-time dynamic
evolution, then the initial constructed phase space, for which
the evolution is adaptive subspace approximation, can finally
approximate to the ideal phase space much better.

In this paper, neural network model based on nonlinear
Kalman filter is established, by dynamic adaptivity of nonlin-
earKalmanfilter.Themodelwill add new samples in real time
and gradually eliminate previous data, as a moving samples
window, and the evolution of the training sample continually
updates weights and thresholds of the neural network. As a
result, adaptive subspace approximation is implemented by
reconstructed incomplete phase space.

The optimized plan, which combines the nonlinear
Kalman filter with neural network, sufficiently utilizes the
nonlinear approximation capability of neural network and
dynamic adaptive ability of real-time update correction of
nonlinear Kalman filter. Consequently, it can realize subspace
adaptive evolution approximation and solve the inconsis-
tency problem of phase space reconstruction. Therefore, it is
a nice direction in research into chaotic prediction. Future
research can be performed in a number of areas. It provides a
good technical support in studying problems of meteorology,
hydrology, and finance fields.
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A novel two-layer predictive control scheme for a continuous biodiesel transesterification reactor is presented. Based on a validated
mechanistic model, the least squares (LS) algorithm is used to identify the finite step response (FSR) process model adapted in
the controller. The two-layer predictive control method achieves the steady-state optimal setpoints and resolves the multivariable
dynamic control problems synchronously. Simulation results show that the two-layer predictive control strategy leads to a significant
improvement of control performance in terms of the optimal set-points tracking and disturbances rejection, as compared to
conventional PID controller within a multiloop framework.

1. Introduction

With the depletion of fossil fuels and global environmen-
tal degradation, the development of alternative fuels from
renewable resources has received considerable attention.
Biodiesel has become the foremost alternative fuel to those
refined from petroleum products. It can be produced from
renewable sources, such as vegetable and animal oils, as well
as from wastes, such as used cooking oil. Transesterification
is the primary method of converting these oils to biodiesel
[1–3]. A block diagram for a biodiesel production process by
transesterification is shown in Figure 1.

A modern transesterification plant is continuous instead
of batch. A continuous biodiesel production leads to better
heat economization, better product purity from phase sepa-
ration by removing only the portion of the layer furthest from
the interface, better recovery of excess methanol in order to
save on methanol cost and regulatory issues, minimal oper-
ator interference in adjusting plant parameters, and lower
capital costs per unit of biodiesel produced. The same tech-
nology can also be applied to other biofuels production [4–
6].

Biodiesel transesterification reactor is the most cru-
cial operation unit to be controlled because any drift in
standard operating condition may lead to significant changes
in process variable and production quality specification [4–
7].These reactors have complicated dynamics and heat trans-
fer characteristics. Moreover, they are inherently concerned
with nonlinearity which arises from fluctuations of reactant
concentration, reactant temperature, coolant temperature,
and instrumentationnoise or complexmicrobial interactions.
The complicated nonlinear, multivariable, and coupling in
nature are the fundamental control problems involved in
biodiesel reactor [8, 9].

Recently, a number of reports have appeared on the
controller design and dynamic optimization in continuous
and batch biodiesel reactors.Mjalli et al. developed a rigorous
mechanistic model of a continuous biodiesel reactor and pro-
posed a multimodel adaptive control strategy which realized
the set-point tracking and disturbance rejection [4]. Ho et al.
further adopted adaptive generalized predictive control strat-
egy to handle multivariable problems of a biodiesel reactor
[8]. Wali et al. proposed an artificial intelligence technique
to design online genetic-ANFIS temperature control based
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Figure 1: Biodiesel production by transesterification.

on LabVIEW for a novel continuous microwave biodiesel
reactor [10]. Benavides and Diwekar realized the optimal
control of a batch biodiesel reactor involved optimization of
the concentration based on maximum principle [11].

This work considers the advanced control strategy of
biodiesel continuous transesterification reactor. Model pre-
dictive control (MPC) is one of the most popular advanced
control strategies. It is a class of model-based control algo-
rithm, which has become a complex standard process indus-
try solving complicated constrained multivariable control
problems, and widely used in the chemical and petrochem-
ical processes [12]. The main technical characteristics of
MPC, include using mathematical models and history input
and output data to predict future output, combined with
the established control objectives, to calculate the optimal
feedback rate. Compared with the traditional multiloop
PID controllers, MPC takes into account simultaneously
the effects of all manipulated variables to all controlled
variables. Usually successfully put into operation, MPC can
significantly reduce the standard deviation of the controlled
variable and then through the card edge operations, improve
the overall efficiency of the control system.

In recent years, there has been an integrated steady-
state optimization of the two-layer predictive control strategy
in MPC industry technology [13–15]. Two-layer predictive
control is divided into upper steady-state optimization (SSO)
layer and lower dynamic control layer. SSO can achieve real

time optimization (RTO) objectives tracking asymptotically,
independently complete local economic optimization of the
corresponding MPC procedure. Specifically, the upper SSO
uses steady-state gain of MPC dynamic mathematical model
as the mathematical model and searches the optimum value
within the constraints space of MPC. Part steady-state values
of the operating or output variables will be in the position of
“card edge”. The calculation results of the SSO layer will be as
the set- points to the lower MPC layer.

Although two-layer predictive control strategy has been
widely used in many applications of chemical reactors,
hardly any work was done on the biodiesel transesterifica-
tion reactor. In this paper, a two-layer predictive control
strategy is designed, tested, and simulated on a continuous
biodiesel transesterification reactor. The scheme can amplify
the advantages of both technologies in terms of process
stability, and optimal and improved performances. Section 2
discusses the transesterification mechanism, which uses a
validatedmechanisticmodel ofMjalli et al. [4].Then the two-
layer predictive control strategy is developed in Section 3.
Section 4 gives the control system design based on two-
layer predictive control theory. Section 5 discusses model
identification results and the performances of the control
strategy.

2. Mathematical Models

The modeling of transesterification reactors starts with
understanding the complex reaction kinetic mechanism.The
stoichiometry of vegetable oil methanolysis reaction requires
three mol of methanol (A) and one mol of triglyceride (TG)
to give three mol of fatty acid methyl ester (E) and one mol of
glycerol (G) [16].Theoverall reaction scheme for this reaction
is

TG + 3A ←→ 3E + G. (1)

The methanolysis, in turn, consists of three consecutive
reversible reactions, where a mole of fatty acid methyl ester
is released in each step, and monoglycerides (MG) and
diglycerides (DG) are intermediate products. The stepwise
reactions are

CHOCO CHOCO
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The stepwise reactions can be termed as pseudo-homo-
geneous catalyzed reactions, following second-order kinetics.
The second-order kineticmodel can be explained through the
following set of differential equations [17]:

𝑑𝐶TG
𝑑𝑡

= −𝑘
󸀠

1
𝐶TG𝐶A + 𝑘
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2
𝐶DG𝐶E,

𝑑𝐶DG
𝑑𝑡

= 𝑘
󸀠

1
𝐶TG𝐶A − 𝑘

󸀠

2
𝐶DG𝐶E − 𝑘

󸀠

3
𝐶DG𝐶A + 𝑘

󸀠

4
𝐶MG𝐶E,

𝑑𝐶MG
𝑑𝑡

= 𝑘
󸀠

3
𝐶DG𝐶A − 𝑘

󸀠

4
𝐶MG𝐶E − 𝑘

󸀠

5
𝐶MG𝐶A + 𝑘

󸀠

6
𝐶GL𝐶E,

𝑑𝐶E
𝑑𝑡

= 𝑘
󸀠

1
𝐶TG𝐶A − 𝑘

󸀠

2
𝐶DG𝐶E + 𝑘

󸀠

3
𝐶DG𝐶A − 𝑘

󸀠

4
𝐶MG𝐶E

+ 𝑘
󸀠

5
𝐶MG𝐶A − 𝑘

󸀠

6
𝐶GL𝐶E,

𝑑𝐶A
𝑑𝑡

= −
𝑑𝐶E
𝑑𝑡

,

𝑑𝐶GL
𝑑𝑡

= 𝑘
󸀠

5
𝐶MG𝐶A − 𝑘

󸀠

6
𝐶GL𝐶E,

(3)

where 𝐶TG, 𝐶DG, 𝐶MG, 𝐶E, 𝐶A, and 𝐶GL are concentrations
of triglyceride, diglyceride, monoglyceride, methyl ester,
methanol, and glycerol, respectively. 𝑘󸀠

1
, 𝑘󸀠

3
, and 𝑘

󸀠

5
are the

effective rate constants for the forward reactions, and 𝑘󸀠

2
, 𝑘󸀠

4
,

and 𝑘󸀠

6
are the effective rate constants for the reverse reactions.

The previously selected kinetic model can be formulated
in terms of a general reaction equation

𝑟
𝑗
= 𝑘

󸀠

𝑗
[𝐶

𝑖
]
2

. (4)

The catalyst concentration remained constant because the
sidereactions that consume the catalyst were supposed to
be negligible. Therefore, each effective rate constant includes
the catalyst concentration (𝐶cat) and the corresponding rate
constant for the catalyzed reaction [18]:

𝑘
󸀠

𝑗
= 𝑘

𝑗
𝐶cat. (5)

The temperature influence on the reaction rate was
studied from the Arrhenius equation (6) that shows the
temperature dependency of the reaction rate constant

𝑘
𝑗
= 𝑘

0
𝑒

(−𝐸𝑎/𝑅𝑇)

, (6)

where 𝑘
0
is a constant called the preexponential factor, 𝐸

𝑎
is

the activation energy of the reaction, and𝑅 is the gas constant.
In order to realize the optimization and control of

continuous biodiesel production process, the model used in
the paper on the basis of the second-order kinetic model
jointing the material and energy balance equations as well
as the dynamic equation of the coolant temperature. The
material balance for each component is expressed as follows
[4]:
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Figure 2: Framework of two-layer predictive control of industrial
processes.

The reactor energy balance is expressed as
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) − (𝑈𝐴

𝐻
Δ𝑇) .

(8)

The coolant fluid energy balance is expressed as

𝑑𝑇
𝐶

𝑑𝑡
=

𝐹
𝐶0

𝑉
𝐶

(𝑇
𝐶0
− 𝑇

𝐶
) +

𝑈𝐴
𝐻
Δ𝑇

𝜌
𝐶
𝑉

𝐶
𝐶

𝑃𝐶

. (9)

The function equation of heat transfer coefficient is approxi-
mately expressed as

𝑈 = 𝛼𝐹
𝐶

𝛽

𝑁
𝛾

= 735.5𝐹
1.095

𝐶
𝑁

0.405

. (10)

3. Theory of Two-Layer Predictive Control

In modern process industries, the MPC controller is part of
a multilevel hierarchy of optimization and control functions.
Typically it is three-layer structure; that is, an RTO block is
at the top layer, a MPC block is at the middle, and a PID
block is at the bottom [19]. Therefore, under this multilevel
hierarchy control system structure, the primary task of the
MPC is to dynamic track the computational target calculated
by the RTO. RTO layer should be optimized for the whole
device.

Reference [20] proposed the framework of two-layer
predictive control shown in Figure 2. SSO is added between
RTO and MPC. Left branch, the SSO layer is used for
recalculating the results of RTO layer, make the output
steady-state target be located in the steady state gain matrix
column space, so as tomeet the compatibility and consistency
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conditions of steady state solution. Right branch, the role of
SSO is to conduct local optimization to further improve the
MPC steady-state performance, which can effectively resolve
the nonparty system setpoints in the given problem.

Mathematical description of the two-layer predictive con-
trol include establishing steady-state mathematical model,
steady-state target calculation, and a dynamic controller
design [21].

3.1. Establish Steady-State Mathematical Model. Assume an
MIMO plant with 𝑚 control input and 𝑝 controlled output
and the coefficients of the corresponding step responsemodel
between control input 𝑢

𝑗
and output 𝑦

𝑖
are given; the model

vector is

𝑎
𝑖𝑗
(𝑡) = [𝑎

𝑖𝑗
(1) , . . . , 𝑎

𝑖𝑗
(𝑁)]

𝑇

, (11)

where 𝑖 = 1, . . . , 𝑝; 𝑗 = 1, . . . , 𝑚.𝑁 in (11) denotes modeling
horizon of step response model. Thus, a multistep predictive
model can be obtained:

𝑦 (𝑘 + 1) = 𝑦 (𝑘) + 𝐴
1
Δ𝑢 (𝑘) , (12)

where

𝑦 (𝑘 + 1) =
[
[

[

𝑦
1
(𝑘 + 1)

...
𝑦

𝑝
(𝑘 + 1)

]
]

]

; 𝑦 (𝑘) =
[
[

[

𝑦
1
(𝑘)

...
𝑦

𝑝
(𝑘)

]
]

]

;

Δ𝑢 (𝑘) =
[
[

[

Δ𝑢
1
(𝑘)

...
Δ𝑢

𝑚
(𝑘)

]
]

]

; 𝐴
1
=
[
[

[

𝑎
11
(1) ⋅ ⋅ ⋅ 𝑎

1𝑚
(1)

...
...

...
𝑎

𝑝1
(1) ⋅ ⋅ ⋅ 𝑎

𝑝𝑚
(1)

]
]

]

.

(13)

Under the control increment Δ𝑢(𝑘), . . . , Δ𝑢(𝑘 + 𝑀 − 1)

action, the output predictive value of the system is

𝑦 (𝑘 + 1) = 𝑦 (𝑘) + 𝐴
1
Δ𝑢 (𝑘) ,

𝑦 (𝑘 + 2) = 𝑦 (𝑘) + 𝐴
2
Δ𝑢 (𝑘) + 𝐴

1
Δ𝑢 (𝑘 + 1) ,

...

𝑦 (𝑘 + 𝑁) = 𝑦 (𝑘) + 𝐴
𝑁
Δ𝑢 (𝑘) + ⋅ ⋅ ⋅

+ 𝐴
𝑁−𝑀+1

Δ𝑢 (𝑘 +𝑀 − 1) ,

(14)

abbreviated as

𝜕𝑦 (𝑘) = 𝐴Δ𝑢
𝑀
(𝑘) , (15)

where

𝜕𝑦 (𝑘) =
[
[

[

𝑦 (𝑘 + 1) − 𝑦 (𝑘)

...
𝑦 (𝑘 + 𝑁) − 𝑦 (𝑘)

]
]

]

,

Δ𝑢
𝑀
(𝑘) =

[
[

[

Δ𝑢 (𝑘)

...
Δ𝑢 (𝑘 +𝑀 − 1)

]
]

]

,

𝐴 =

[
[
[
[
[
[
[

[

𝐴
1

0

... d
𝐴

𝑀
⋅ ⋅ ⋅ 𝐴

1

...
...

𝐴
𝑁

⋅ ⋅ ⋅ 𝐴
𝑁−𝑀+1

]
]
]
]
]
]
]

]

.

(16)

The system can be written at the steady-state time

Δ𝑦 (∞) = 𝐴
𝑁
Δ𝑢 (∞) , (17)

where Δ𝑦(∞)=[Δ𝑦
1
(∞), Δ𝑦

2
(∞), . . . , Δ𝑦

𝑝
(∞)]

𝑇, Δ𝑢(∞) =

[Δ𝑢
1
(∞), Δ𝑢

2
(∞), . . . , Δ𝑢

𝑚
(∞)]

𝑇 are the steady-state output
increment and input increment, respectively, and 𝐴

𝑁
is the

steady-state step response coefficients matrix

𝐴
𝑁
=
[
[

[

𝑎
11
(𝑁) ⋅ ⋅ ⋅ 𝑎

1𝑚
(𝑁)

...
...

...
𝑎

𝑝1
(𝑁) ⋅ ⋅ ⋅ 𝑎

𝑝𝑚
(𝑁)

]
]

]

. (18)

To meet the requirements of steady-state target calcula-
tion, model (17) can also be written as

Δ𝑦
∞
(𝑘) = 𝐴

𝑁
Δ𝑢

∞
(𝑘) . (19)

3.2. Steady-State Target Calculation

3.2.1. Basic Problem Description. Steady-state target calcula-
tion is to maximize economic benefits for the purpose of
self-optimization under MPC existing configuration mode
according to the process conditions. According to the pro-
duction process characteristics and objectives, the basic
problem of steady-state target calculation is the optimization
process, which controlled input as cost variables, controlled
output as steady-state variables. A commondescription of the
objective function is as follows [21]:

min
Δ𝑢∞(𝑘),Δ𝑦∞(𝑘)

𝐽 = 𝛼
𝑇

Δ𝑢
∞
(𝑘) + 𝛽

𝑇

Δ𝑦
∞
(𝑘) . (20)

Since Δ𝑢
∞
and Δ𝑦

∞
are linearly related, the input output

variation of objective function can be unified to control the
input change. The formula (20) can be unified as

min
Δ𝑢∞(𝑘)

𝐽 = 𝑐
𝑇

Δ𝑢
∞
(𝑘) , (21)

where 𝑐𝑇

= [𝑐
1
, . . . , 𝑐

𝑚
] is the cost coefficient vector, con-

structed by the normalized benefit, or cost of each input var-
iable. Δ𝑢

∞
(𝑘) = [Δ𝑢

1

∞
, . . . , Δ𝑢

𝑚

∞
]
𝑇 is the steady-state change

value of every input at time 𝑘.
Given the steady-state constraints of input and output

variables, global-optimization problem of steady-state target
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calculation can be described as the following linear program
(LP) problem:

min
Δ𝑢∞(𝑘)

𝐽 = 𝑐
𝑇

Δ𝑢
∞
(𝑘)

s.t. Δ𝑦
∞
(𝑘) = 𝐺

𝑢
Δ𝑢

∞
(𝑘) + 𝐺

𝑓
Δ𝑓

∞
(𝑘) + 𝑒,

𝑢min ≤ 𝑢∞
(𝑘) + Δ𝑢

∞
(𝑘) ≤ 𝑢max,

𝑦min ≤ 𝑦∞
(𝑘) + Δ𝑦

∞
(𝑘) ≤ 𝑦max,

(22)

where 𝐺
𝑢
, 𝐺

𝑓
are the steady-state gain matrices of control

input and disturbance variables; and 𝑒 is the model bias.
𝑢min, 𝑢max are low limit and upper limit of steady-state input
variables 𝑦min, 𝑦max are low limit and upper limit of steady
state output variables.

The global-optimization problem of steady-state target
calculation can be described as the following quadratic
program (QP) problem:

min
Δ𝑢∞(𝑘)

𝐽 = 𝑐
𝑇

(Δ𝑢
∞
(𝑘) −Maxprofit)2

s.t. Δ𝑦
∞
(𝑘) = 𝐺

𝑢
Δ𝑢

∞
(𝑘) + 𝐺

𝑓
Δ𝑓

∞
(𝑘) + 𝑒,

𝑢min ≤ 𝑢∞
(𝑘) + Δ𝑢

∞
(𝑘) ≤ 𝑢max,

𝑦min ≤ 𝑦∞
(𝑘) + Δ𝑦

∞
(𝑘) ≤ 𝑦max,

(23)

where Maxprofit is the potential maximum economic profit.

3.2.2. Feasibility Judgment and Soft Constraint Adjustment.
Mathematically, optimization feasibility is the existence prob-
lem of the optimal solution. Feasibility of steady-state target
calculation means that optimal steady state of input-output
should meet their operating constraints; if feasible solution
does not exist, the optimization calculation has no solution.
The solving process is as follows: first, judge the existence of
space domain formed by the constraints and if there is in
it for optimization, if does not exist, then through the soft
constraints adjustment to obtain the feasible space domain,
and then to solve.

Soft constraints adjustment is an effective way to solve
infeasible optimization [22, 23]. By relaxing the output
constraints within the hard constraints, increasing the opti-
mization problem feasible region that feasible solution to be
optimized. Hard constraints refer to unalterable constraints
limited by the actual industrial process.

Engineering standards of the priority strategy of soft
constraints adjustment are the following: give priority tomeet
the highly important operating constraints, and allow less

important operating constraints to be violated appropriately
under the premise of satisfying the engineering constraints.

Considering the following constraints (24), constituted by
steady-state model input constraints and output constraints
containing slack variables, the priority rank is “𝑁”, where

Δ𝑦
∞
(𝑘) = 𝐺

𝑢
Δ𝑢

∞
(𝑘) + 𝐺

𝑓
Δ𝑓

∞
(𝑘) + 𝑒,

𝑢
𝐿𝐿
≤ 𝑢

∞
(𝑘) + Δ𝑢

∞
(𝑘) ≤ 𝑢

𝐻𝐿
,

𝑦
𝑗

𝐿𝐿
− 𝜀

𝑗

2
≤ 𝑦

∞
(𝑘) + Δ𝑦

∞
(𝑘) ≤ 𝑦

𝑗

𝐻𝐿
+ 𝜀

𝑗

1
,

𝜀
𝑗

1
≥ 0, 𝜀

𝑗

2
≥ 0,

𝜀
𝑗

1
≤ 𝑦

𝐻𝐻𝐿
− 𝑦

𝐻𝐿
,

𝜀
𝑗

2
≤ 𝑦

𝐿𝐿
− 𝑦

𝐿𝐿𝐿
,

𝑗 = 1, . . . , 𝑁.

(24)

The algorithm steps of feasibility judgment and soft con-
straint adjustment based on the priority strategy are as
follows.

Step 1. Initialization: according to the characteristics of the
output variables and process conditions, set the upper and
lower output constraints priority ranks, the same priority
rank setting adjustments according to actual situation con-
straint weights.

Step 2. According to the priority ranks, judge the feasibility
and adjust the soft constraints in accordance with the ranks
from large to small. Under a larger priority rank if cannot
find a feasible solution, the constraints of the rank will be
relaxed to hard constraints, and then consider less priority
rank constraints, until we find a feasible solution.

Step 3. Then the steady-state target calculation entered the
stage of economy optimization or target tracking.

For Step 2, constraints of the highest priority rank𝑁 are
adjusted first by solving the following optimization problem:

min
𝜀
𝑁

𝐽 = (𝑊
𝑁

)
𝑇

𝜀
𝑁

, (𝑊
𝑁

)
𝑇

= [𝑊
𝑁

1
, . . . ,𝑊

𝑁

2×𝑛𝑁

]

s.t. Θ
𝑁

𝑍
𝑁

= 𝑏
𝑁

,

Ω
𝑁

𝑍
𝑁

≤ Ψ
𝑁

,

(25)

where

𝑍
𝑁

= [𝑋
𝑇

1
, 𝑋

𝑇

2
, (𝑋

1

3
)

𝑇

, . . . , (𝑋
𝑁

3
)

𝑇

, (𝑋
1

4
)

𝑇

, . . . ,

(𝑋
𝑁

4
)

𝑇

, (𝜀
𝑁

1
)

𝑇

, (𝜀
𝑁

2
)

𝑇

, (𝜀
𝑁

1
)

𝑇

, (𝜀
𝑁

2
)

𝑇

]

𝑇

,

Ω
𝑁

= block-diag (−𝐼
𝑚
, −𝐼

𝑚
, −𝐼

𝑛1
, . . . , −𝐼

𝑛𝑁
,

−𝐼
𝑛1
, . . . , −𝐼

𝑛𝑁
, −𝐼

𝑛𝑁
, −𝐼

𝑛𝑁
, 𝐼

𝑛𝑁
, 𝐼

𝑛𝑁
) ,
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Ψ
𝑁

= [(0
𝑚×1

)
𝑇

, (0
𝑚×1

)
𝑇

, (0
𝑛1×1

)
𝑇

, . . . , (0
𝑛𝑁×1

)
𝑇

,

(0
𝑛1×1

)
𝑇

, . . . , (0
𝑛𝑁×1

)
𝑇

, (0
𝑛𝑁×1

)
𝑇

, (0
𝑛𝑁×1

)
𝑇

,

(𝑦
𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
)

𝑇

, (𝑦
𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
)

𝑇

]

𝑇

,

𝑏
𝑁

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑢
𝐻𝐿

− 𝑢
𝐿𝐿

𝐺
1

𝑢
𝑢

∞
(𝑘) − 𝐺

1

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

1

𝐻𝐿
− 𝑦

1

∞
(𝑘) − 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

∞
(𝑘) − 𝐺

𝑁

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

𝑁

𝐻𝐿
− 𝑦

𝑁

∞
(𝑘) − 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

𝑁

𝐺
1

𝑢
𝑢

𝐻𝐿
− 𝐺

1

𝑢
𝑈

∞
(𝑘) + 𝑌

1

∞
(𝑘) + 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

1

𝐿𝐿
+ 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

𝐻𝐿
− 𝐺

𝑁

𝑢
𝑈

∞
(𝑘) + 𝑦

𝑁

∞
(𝑘) + 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

𝑁

𝐿𝐿
+ 𝑒

𝑁

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Θ
𝑁

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐼
𝑚

𝐼
𝑚

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

𝐺
1

𝑢
0 0 ⋅ ⋅ ⋅ 0 𝐼

𝑛1
0 0 0 0 0 0

...
... 0 ⋅ ⋅ ⋅ 0 0 d 0 0 0 0 0

𝐺
𝑁

𝑢
0 0 ⋅ ⋅ ⋅ 0 0 0 𝐼

𝑛𝑁
−𝐼

𝑛𝑁
0 0 0

0 𝐺
1

𝑢
𝐼
𝑛1

0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

...
... 0 d 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

0 𝐺
𝑁

𝑢
0 0 𝐼

𝑛𝑁
0 ⋅ ⋅ ⋅ 0 0 −𝐼

𝑛𝑁
0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝐼
𝑛𝑁

0 −𝐼
𝑛𝑁

0

0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 𝐼
𝑛𝑁

0 −𝐼
𝑛𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(26)

Solving (25) may appear in three different cases, respectively:
if (25) is feasible, and the optimum solution is 𝜀𝑁

= 0, subject
to 𝐽 = 0, that is, no need for soft constraints adjustment,
directly solve the original problem (22); if (25) is feasible, but
𝜀

𝑁

̸= 0, just need to relax constraints of priority ranks𝑁, and
further optimization solution; if (25) is infeasible, not get a
feasible solution to soft constraints adjustment of the priority
rank𝑁, relaxing the constraints of the priority rank𝑁 to hard
constraints; that is,

𝜀
𝑁

1
= 𝑦

𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
,

𝜀
𝑁

2
= 𝑦

𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
.

(27)

Go to the procedure of judging rank𝑁 − 1 constraints

min
𝜀
𝑁−1

𝐽 = (𝑊
𝑁−1

)
𝑇

𝜀
𝑁−1

, (𝑊
𝑁−1

)
𝑇

= [𝑊
𝑁−1

1
, . . . ,𝑊

𝑁−1

2×𝑛𝑁−1

]

s.t. Θ
𝑁−1

𝑍
𝑁−1

= 𝑏
𝑁−1

,

Ω
𝑁−1

𝑍
𝑁−1

≤ Ψ
𝑁−1

.

(28)

For (28), the matrix form is the same with priority rank 𝑁,
only in the corresponding position of 𝜀𝑁−1 to replace 𝜀𝑁, 𝑏𝑁−1

matrix is adjusted

𝑏
𝑁−1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑢
𝐻𝐿

− 𝑢
𝐿𝐿

𝐺
1

𝑢
𝑢

∞
(𝑘) − 𝐺

1

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

1

𝐻𝐿
− 𝑦

1

∞
(𝑘) − 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

∞
(𝑘) − 𝐺

𝑁

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

𝑁

𝐻𝐿
− 𝑦

𝑁

∞
(𝑘) − 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

𝑁

+ (𝑦
𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
)

𝑇

𝐺
1

𝑢
𝑢

𝐻𝐿
− 𝐺

1

𝑢
𝑢

∞
(𝑘) + 𝑦

1

∞
(𝑘) + 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

1

𝐿𝐿
+ 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

𝐻𝐿
− 𝐺

𝑁

𝑢
𝑢

∞
(𝑘) + 𝑦

𝑁

∞
(𝑘) + 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

𝑁

𝐿𝐿
+ 𝑒

𝑁

+ (𝑦
𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
)

𝑇

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (29)
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𝑁−1 rank and𝑁 rank are the same for the soft constraints
adjustment processing, until the end of constraint adjustment
of the priority rank 1. If all ranks of constraints are relaxed to
the hard constrain and a feasible solution still can’t be found,
then the original problem of soft constraints adjustment is
infeasible and needs to be redesigned.

3.3. Dynamic Controller Design. In engineering applications,
dynamic matrix control (DMC) algorithm is one of the most
widely used MPC algorithms based on the step response
model of the plant. This paper adopts DMC and steady-state
target calculation integration strategy.

The difference is that the general DMC algorithms have
no requirements on the steady-state position of the control
input, and they only require the controlled output as close as
possible to arrive at its set point. However, the integration
strategy DMC requires both input and output variables to
approach their steady-state targets (u

𝑠
, y

𝑠
) as far as possible.

The algorithm has three basic characteristics: predictive
model, receding horizon optimization, and feedback correc-
tion [24].

3.3.1. Predictive Model. Based on system process step re-
sponse model, at the current time 𝑘, the future 𝑃-step
prediction output can be written as follows:

ỹ
𝑃𝑀

(𝑘) = ỹ
𝑃0
(𝑘) + AΔu

𝑀
(𝑘) , (30)

where 𝑃 denotes the prediction horizon, 𝑀 is the con-
trol horizon, A is the prediction matrix composed by the
corresponding step response coefficients, ỹ

𝑃0
is the initial

output prediction value when control action starting from
the present time does not change, Δu

𝑀
(𝑘) is the prediction

incremental in𝑀 control horizon, and ỹ
𝑃𝑀
(𝑘) is the future𝑃-

step prediction output under 𝑀-step control action change.
Among them

ỹ
𝑃𝑀

(𝑘) =
[
[

[

𝑦
1,𝑃𝑀

(𝑘)

...
𝑦

𝑝,𝑃𝑀
(𝑘)

]
]

]

, ỹ
𝑃0
(𝑘) =

[
[

[

𝑦
1,𝑃0

(𝑘)

...
𝑦

𝑝,𝑃0
(𝑘)

]
]

]

,

Δu
𝑀
(𝑘) =

[
[

[

Δ𝑢
1,𝑀

(𝑘)

...
Δ𝑢

𝑚,𝑀
(𝑘)

]
]

]

, A =
[
[

[

𝐴
11

⋅ ⋅ ⋅ 𝐴
1𝑚

... d
...

𝐴
𝑝1

⋅ ⋅ ⋅ 𝐴
𝑝𝑚

]
]

]

.

(31)

3.3.2. Receding Horizon Optimization. In the receding hori-
zon optimization process, control increment can be obtained
in every execution cycle by minimizing the following perfor-
mance index:

min
Δu𝑀(𝑘)

𝐽 (𝑘) =
󵄩󵄩󵄩󵄩w (𝑘) − ỹ

𝑃𝑀
(𝑘)

󵄩󵄩󵄩󵄩

2

Q + ‖𝜀 (𝑘)‖
2

S

+
󵄩󵄩󵄩󵄩u𝑀

(𝑘) − u
∞

󵄩󵄩󵄩󵄩

2

T +
󵄩󵄩󵄩󵄩Δu𝑀

(𝑘)
󵄩󵄩󵄩󵄩

2

R.

(32)

Subject to the model
ỹ

𝑃𝑀
(𝑘) = ỹ

𝑃0
(𝑘) + AΔu

𝑀
(𝑘) . (33)

Subject to bound constraints
ymin − 𝜀 ≤ ỹ

𝑃𝑀
(𝑘) ≤ ymax + 𝜀,

umin ≤ u
𝑀
≤ umax,

Δumin ≤ Δu𝑀
(𝑘) ≤ Δumax,

(34)

where 𝜀 denotes the slack variables, guaranteeing the feasibil-
ity of theDMCoptimization, and𝑤(𝑘) = [𝑤

1
(𝑘), . . . , 𝑤

𝑝
(𝑘)]

𝑇

is the setpoint of controlled output obtained from upper SSO
layer. Q, R are the weight coefficient matrix

Q = block-diag (𝑄
1
, . . . , 𝑄

𝑝
) ,

Q
𝑖
= diag (𝑞

𝑖
(1) , . . . , 𝑞

𝑖
(𝑃)) , 𝑖 = 1, . . . , 𝑝,

R = block-diag (𝑅
1
, . . . 𝑅

𝑚
) ,

R
𝑗
= diag (𝑟

𝑖
(1) , . . . , 𝑟

𝑖
(𝑀)) , 𝑗 = 1, . . . , 𝑚.

(35)

Through the necessary conditions of extreme value
𝜕𝐽/𝜕Δ𝑢

𝑀
(𝑘) = 0, the optimal increment of control input can

be obtained:

Δu
𝑀
(𝑘) = (A𝑇QA + R)

−1

A𝑇Q [w (𝑘) − ỹ
𝑃0
(𝑘)] . (36)

The instant increment can be calculated as follows:

Δu (𝑘) = LD [w (𝑘) − ỹ
𝑃0
(𝑘)] , (37)

whereD = (A𝑇QA +R)−1A𝑇Q; remark the operation of only
the first element with

𝐿 = [

[

1 0 ⋅ ⋅ ⋅ 0 0

d
0 1 0 ⋅ ⋅ ⋅ 0

]

]

. (38)

3.3.3. Feedback Correction. The difference between the pro-
cess sample values by the present moment 𝑘 and prediction
values of (30) is

𝑒 (𝑘 + 1) =
[
[

[

𝑒
1
(𝑘 + 1)

...
𝑒

𝑝
(𝑘 + 1)

]
]

]

=
[
[

[

𝑦
1
(𝑘 + 1) − 𝑦

1,1
(𝑘 + 1 | 𝑘)

...
𝑦

𝑝
(𝑘 + 1) − 𝑦

𝑝,1
(𝑘 + 1 | 𝑘)

]
]

]

,

(39)

where 𝑦
𝑖,1
(𝑘+1 | 𝑘) is the first element of 𝑦

𝑖,𝑃𝑀
(𝑘+1 | 𝑘), and

the corrected output prediction value can be obtained using
the error vector; that is,

ỹcor (𝑘 + 1) = ỹ
𝑁1
(𝑘) +H𝑒 (𝑘 + 1) , (40)

where ỹ
𝑁1
(𝑘) = ỹ

𝑁0
(𝑘) + A

𝑁
Δu, ỹ

𝑁0
(𝑘) is the future

𝑁 moment initial prediction value when all of the input
remained unchanged at the time 𝑘; ỹ

𝑁1
(𝑘) is the future

𝑁 moment output prediction value under one-step control
input action; 𝐻 is the error correct matrix. Then using a
shift matrix 𝑆, next time the initial prediction value can be
obtained, which is

𝑦
𝑁0
(𝑘 + 1) = 𝑆𝑦cor (𝑘 + 1) , (41)
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Figure 3: Two-layer predictive framework of biodiesel process.

where

𝑆 =

[
[
[
[
[

[

0 1 0

0 1

d d
0 1

0 1

]
]
]
]
]

]𝑁∗𝑁

. (42)

4. Control System Design

In the biodiesel reactor control, multiloops are necessary
to stabilize the plant. One loop is needed to maintain the
set point of specifying the product purity, and another loop
is needed to ensure an optimal yield of biodiesel and to
minimize the generation of unwanted by-products even in
the presence of disturbances.

To achieve these goals, the control loop configurations
analysis is meaningful. Based on the analysis of Mjalli et
al. [4], the favorable pairings are as follows: the biodiesel
concentration (𝐶

𝐸
) is maintained by manipulating reactant

flow rate (𝐹
𝑜
), the reactor temperature (𝑇) is maintained

by manipulating coolant flow rate (𝐹
𝑐
), respectively, and the

effect of stirred rotational speed on the reactor output is
insignificant, and it would be regarded as one of disturbances
to the control system. The relative gain array (RGA) shows
that there are some interactions among the controlled and
manipulated variables which make two-layer predictive con-
troller better qualified.

Consequently, the two-layer predictive controller is
designed to handle a 2 × 2 system of inputs and outputs. The
controlled output variables include biodiesel concentration
(𝐶

𝐸
) and reactor temperature (𝑇); the manipulated variables

include reactant flow rate (𝐹
𝑜
) and coolant flow rate (𝐹

𝑐
). It

is very important for a reactor to handle the disturbances
in the feed concentration and initial temperatures, as these
disturbances heavily change the system performance.

The design of the control loop based on the two-layer
predictive control strategy for the biodiesel reactor is shown
in Figure 3. The SSO layer searches the optimal output set-
points 𝐶

𝐸𝑠𝑠
and 𝑇

𝑠𝑠
according to the economic optimization

goal of the actual production process. The MPC layer selects
the real-time control actions Δ𝑢 to complete the dynamic
tracking control.

5. Simulation Results and Analysis

5.1. Model Identification. For the two-layer predictive control
scheme to be successful, process modeling plays a key role
in capturing the varying dynamics of the system. Section 4
shows that the biodiesel process is a two-input two-output
multivariable process. The process nonlinear model was pro-
grammed and simulated in Matlab as a function. Simulation
results show system is open stable process.

Firstly, generalized binary noise (GBN) signal is selected
as the excitation signal. GBN signals switch between 𝑎 and −𝑎
according to the following rules:

𝑃 [𝑢 (𝑡) = −𝑢 (𝑡 − 1)] = 𝑝
𝑠𝑤
,

𝑃 [𝑢 (𝑡) = 𝑢 (𝑡 − 1)] = 1 − 𝑝
𝑠𝑤
,

(43)

where 𝑝
𝑠𝑤

is transition probability; 𝑇min is defined as the
sampling time of the signal held constant; 𝑇

𝑠𝑤
is time interval

of twice conversion. The average conversion time and power
spectrum are, respectively,

𝐸𝑇
𝑠𝑤
=
𝑇min
𝑝

𝑠𝑤

,

Φ
𝑢
(𝜔) =

(1 − 𝑞
2

) 𝑇min

1 − 2𝑞 cos𝑇min𝜔 + 𝑞
2
, 𝑞 = 1 − 2𝑝

𝑠𝑤
.

(44)

Next, least squares (LS) identification method is used to
estimate the process model parameters. Suppose an MIMO
plant with 𝑚 input 𝑝 output, for the 𝑖th output of the finite
impulse response (FIR) model, is described as

𝑦
𝑖
(𝑘) =

𝑚

∑

𝑗=1

𝑁

∑

𝑙=1

ℎ
𝑖𝑗𝑙
𝑢

𝑗
(𝑘 − 𝑙) . (45)

Consider experimental tests of collecting input sequence

𝑢
1
(1) 𝑢

1
(2) ⋅ ⋅ ⋅ 𝑢

1
(𝐿)

...
...

𝑢
𝑚
(1) 𝑢

𝑚
(2) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝐿)

(46)

and output sequence

𝑦
1
(1) 𝑦

1
(2) ⋅ ⋅ ⋅ 𝑦

1
(𝐿)

...
...

𝑦
𝑝
(1) 𝑦

𝑝
(2) ⋅ ⋅ ⋅ 𝑦

𝑝
(𝐿) .

(47)
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Figure 4: Biodiesel concentration prediction result and relative error under reactor flow rate 𝐹
𝑜
action.
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Figure 5: Reactor temperature prediction result and relative error under reactor flow rate 𝐹
𝑜
action.

Consider matching between data and models; the intro-
duction of residuals for each output can be independently
expressed as follows:

𝑦
𝑖
(𝑘) = 𝜑 (𝑘) 𝜃

𝑖
+ 𝑒 (𝑘) . (48)

Matrix form is written as

𝑦
𝑖
= Φ𝜃

𝑖
+ 𝑒, (49)

where

𝑦
𝑖
=

[
[
[
[

[

𝑦
𝑖
(𝑁 + 1)

𝑦
𝑖
(𝑁 + 2)

...
𝑦

𝑖
(𝐿)

]
]
]
]

]

, 𝑒 =

[
[
[
[

[

𝑒 (𝑁 + 1)

𝑒 (𝑁 + 2)

...
𝑒 (𝐿)

]
]
]
]

]

,

Φ =

[
[
[
[

[

𝑢
1
(𝑁) 𝑢

1
(𝑁 − 1) ⋅ ⋅ ⋅ 𝑢

1
(1) 𝑢

𝑚
(𝑁) 𝑢

𝑚
(𝑁 − 1) ⋅ ⋅ ⋅ 𝑢

𝑚
(1)

𝑢
1
(𝑁 + 1) 𝑢

1
(𝑁) ⋅ ⋅ ⋅ 𝑢

1
(2) 𝑢

𝑚
(𝑁 + 1) 𝑢

𝑚
(𝑁) ⋅ ⋅ ⋅ 𝑢

𝑚
(2)

...
...

... ⋅ ⋅ ⋅
...

...
...

𝑢
1
(𝐿 − 1) 𝑢

1
(𝐿 − 2) 𝑢

1
(𝐿 − 𝑁) 𝑢

𝑚
(𝐿 − 1) 𝑢

𝑚
(𝐿 − 2) 𝑢

𝑚
(𝐿 − 𝑁)

]
]
]
]

]

.

(50)

Minimize the squared residuals

min 𝐽 = 𝑒𝑇

𝑒 = [𝑦 − Φ𝜃]
𝑇

[𝑦 − Φ𝜃] . (51)

Obtain the optimal estimate

𝜃 = [Φ
𝑇

Φ]
−1

Φ
𝑇

𝑦. (52)

For themodel predictive controller design, the FIRmodel
of system identification needs to be further converted into
finite step response (FSR) model. The relationship between
FSR coefficients and FIR coefficients is as follows:

𝑔
𝑗
=

𝑗

∑

𝑖=1

ℎ
𝑗
. (53)
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Figure 6: Biodiesel concentration prediction result and relative
error under reactor flow rate 𝐹

𝑐
action.

Coefficients matrix of FSR is

𝐺
𝑢

𝑙
=

[
[
[
[

[

𝑠
11𝑙

𝑠
12𝑙

⋅ ⋅ ⋅ 𝑠
1𝑚𝑙

𝑠
21𝑙

𝑠
22𝑙

⋅ ⋅ ⋅ 𝑠
2𝑚𝑙

...
... d

...
𝑠
𝑝1𝑙

𝑠
𝑝2𝑙

⋅ ⋅ ⋅ 𝑠
𝑝𝑚𝑙

]
]
]
]

]

. (54)

Finally, (11)–(19) are used to create a steady-state mathe-
matical model of two-layer prediction control. The concrete
simulation process is as follows.

In the work, GBN as the excitation signal was added to
the model input to produce output data. The parameters of
GBN signal applied to the first input are 𝑇

𝑠𝑤
= 65, 𝑎𝑚𝑝 = 0.1

the parameters of GBN applied to the second input are 𝑇
𝑠𝑤
=

65, 𝑎𝑚𝑝 = 0.005, both the conversion probabilities are taken
to be 𝑃

𝑠𝑤
= 1/𝑇

𝑠𝑤
. Simulation time 𝑡 = 2000 s, and sample

time equals 2 s, under each input excitation, corresponding
to two sets of output data each set of data capacity is 1000.
Among them, the former 500 data as model identification,
the remaining data are used as model validations, and FSR
model length value is taken as 200.

Under the action of two inputs, reactant flow rate 𝐹
𝑜

and coolant flow rate 𝐹
𝑐
, respectively, predicted value, actual

value, and the relative error of two outputs biodiesel concen-
tration 𝐶

𝐸
and reactor temperature 𝑇 were shown in Figures

4, 5, 6, and 7. Figures 4–7 show that relative error is small
enough, and the model can describe 𝐶

𝐸
and 𝑇 change trends

under 𝐹
𝑜
and 𝐹

𝑐
.

Figures 8 and 9 give the two output step response curves
under two input 𝐹

𝑜
, 𝐹

𝑐
action, respectively, further shows the

multiple-input multiple-output system is open-loop stable
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Figure 7: Reactor temperature prediction result and relative error
under reactor flow rate 𝐹

𝑐
action.
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Figure 8: Step response curve of biodiesel concentration and reactor
temperature, respectively, under 𝐹

𝑜
action.

and the step response model has been identified successfully.
The FSRmodel will be utilized to represent the actual process
in latter optimization and controller design.

5.2. Dynamic Simulation. To validate the effectiveness and
immunity in two-layer predictive control, the models ob-
tained in Section 5.1 are used in the simulations.
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Figure 9: Step response curve of biodiesel concentration and reactor
temperature, respectively, under 𝐹

𝑐
action.

The reaction rate constants come from [18] under the
common industrial conditions of 6 : 1 methanol/oil mole
ratio, 1.0 wt% catalyst KOH, and 600 rpm stirrer rotational
speed. These kinetics parameters can be considered as con-
stants. The initial operating conditions refer to the literature
[4] the validated data. According to these parameters and
reaction conditions, the simulation of biodiesel transesteri-
fication reactor can be carried out.

The economic optimization method described in (22)
is adopted as SSO whose main parameters are selected as
follows: the cost coefficients of control input in steady-state
optimization are set to [1; −1], the input 𝐹

𝑜
is constrained

between 0 and 0.2m3/s, the input 𝐹
𝑐
is constrained between

0 and 0.1m3/s, and the output 𝐶
𝐸
is constrained between

3.0536 kmol/m3 and 3.196 kmol/m3, the output 𝑇 is con-
strained between 337.77 K and 338.25 K.

The parameters of the dynamic control layer adopted the
unconstrained DMC algorithm: the modeling time domain
𝑁 = 200, prediction horizon 𝑃 = 200, control horizon𝑀 =

20. The weight coefficient values of weight matrix 𝑄 and 𝑅
equal to 10 and 1000, respectively.

Conventional PID controller has also been designed in
this simulation for comparison of performance to two-layer
predictive controller.The parameters of PID controller for𝐶

𝐸

with 𝐹
𝑜
control loop are 𝑘𝑝 = −6𝑒−5, 𝑘𝑖 = −0.05, and 𝑘𝑑 = 0;

the parameters for 𝑇 with 𝐹
𝑐
control loop are 𝑘𝑝 = −0.02,

𝑘𝑖 = −0.001, and 𝑘𝑑 = 0. The simulations of general PID
controller and two-layer predictive controller are compared
to validate the performance of the latter algorithm, whose
results are shown in Figures 10 and 11.

As Figures 10 and 11 show, the two-layer predictive
controller starts running at the time 𝑡 = 0. The results of
steady state optimization are

𝑦
𝑠𝑠
= [3.196, 337.77] , 𝑢

𝑠𝑠
= [0.073, 0.0062] . (55)
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Figure 10: Biodiesel concentration and controller moves of two-
layer predictive controller and PID controller.

The optimized values as the setpoints were send to the
lower layer DMC. In the beginning, the closed loop response
of the two-layer predictive controller was a little sluggish
in bringing the biodiesel concentration back the optimum
steady-state values, this is because that the algorithm enter
the constraint adjustment stage based on the priority strategy
which adjusting the upper limit and lower limit to be handled.
About At the time 𝑡 = 400, the response gradually becomes
stable. It can be seen that the two-layer predictive controller
preceded the PID controller in terms of the ability to attain
lower overshoot, smaller oscillation, and faster response time.

Considering the actual application, the control input is
also an important indicator of good or bad controller. From
Figures 10 and 11, the two-layer predictive controller hasmuch
more stable controller moves than does PID that meets the
practical implementation constrains.
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Figure 11: Reactor temperature and controller moves of two-layer
predictive controller and PID controller.

To challenge the stability of two-layer predictive con-
troller, some disturbances were exerted alone and at the same
time.The chosen disturbance variables include coolant input
temperature (𝑇

𝑐0
), feed temperature (𝑇

0
), triglyceride initial

concentration (𝐶TG0
), and stirrer rotational speed (𝑁). After

the system has attained the steady state, The nominal values
of 𝑇

𝑐0
, 𝑇

0
were increased 3K, respectively, and 𝐶TG0

,𝑁 were
increased 5%, respectively, at the time 𝑡 = 1000 s. Figures
12 and 13 show the biodiesel concentration and reactor
temperature profiles when these disturbance variables were
introduced.

Figures 12 and 13 showed satisfactory rejection of all
disturbances. Two-layer predictive controller was able to
bring back the controlled variables to their setpoints in less
than 1000 s, and overshoot was within the acceptable range.
For the biodiesel concentration loop, the initial concentration
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Figure 12: Biodiesel concentration and controller moves of four
individual disturbance variables effects.

𝐶TG0
has the highest effect, with an overshoot of less than

0.01 kmol/m3. For the reactor temperature loop, the feed
temperature 𝑇

0
has the largest effect, with an overshoot of

less than 0.33 K. For the two loops, the stirrer rotational speed
almost has no effect on the controlled variables.

6. Conclusions

Biodiesel transesterification reactor control has become very
important in recent years due to the difficulty in controlling
the complex and highly nonlinear dynamic behavior. In
this paper, a novel two-layer predictive control scheme for
a continuous biodiesel transesterification reactor has been
proposed. The SSO layer achieved optimal output setpoints
according to the local economic optimization goal of the
actual production process, and the MPC layer realized the
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Figure 13: Reactor temperature and controller moves of four
individual disturbance variables effects.

dynamic tracking control.Themain aim was to optimize and
control the biodiesel concentration and reactor temperature
in order to obtain the product of the highest quality at the
lower cost. With steady-state optimum target calculation and
DMCalgorithm implement, the performance of the two-layer
predictive controller was superior to that of a conventional
PID controller. The two-layer predictive control is not only
stable but also tracks set points more efficiently with minimal
overshoots and shorter settling times. Moreover, it exhibits
good disturbance rejection characteristics.
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Regarding the tracking of moving target in the large-scale fixed scene, a new routing algorithm of LAODV in the principle of
TOA localization is proposed. Then, the participation field of the fixed node based on the node location information is properly
controlled, while the routing request area is reduced through combination of AODV and LAR during transmission of the location
information. Simulation results show that the proposed algorithm renders satisfactory performance in terms of average delay
reduction from end to end, packet loss rate, and routing overhead. As a result, the delay and system overhead during localization
could be minimized.

1. Introduction

LBS service is developing along with rapid economic growth
and great market potential. Also, wireless localization tech-
nology is one of the favorite research topics in recent years,
where the position of the event or the node position is crucial
for detection of sensor node [1, 2]. Normally, the wireless
localization can be realized through satellite technology or
ground technology [3]. Due to constraints of the node, such
as the limited electric energy, huge quantity, and specific
application environments, it is difficult to obtain the node
coordinate with artificial measurement or allocation. Thus,
implementation of expensive satellite wireless localization
seems infeasible [4]. As for the ground wireless localization
technology, the target localization is realized through mul-
tipoint coordination, the advantages of which include the
distributed feature, low complexity, high precision, and good
generality. The TOA-based (Time of Arrival) localization
technology has been widely applied in the ground wireless
localization [5–7]. Also, the moving node will send the
location package to the neighboring node periodically, while
the fixed node will respond back to the moving node once
received.Therefore, there are alot of fixed nodes participating
in the localization process, which will generate heavy com-
munication overhead and reduced localization bandwidth.

There is a high demand for low-cost high-precision loca-
lization scheme in various fields, such as industrial field,
safety production management, security, and training. In

the security monitoring, the current patrol system could be
totally replaced, and the real-time position and route of the
security personnel are clearly visible, so that prompt action
of emergency can be taken. Moreover, the “virtual fence” is
set up based on the geographic location of the visitors and
the authorized condition to track the visitor. Then, entrance
permission to particular region is conditionally issued. With
increasing coalmine accidents, safety production situation is
highly desired, as the administrative staff can monitor the
location and situation of each miner remotely through the
electronic tag wear by the miner or equipped on the delivery
vehicles [8]. Furthermore, in the training of firemen, the
training personnel in the building can be located and tracked
through the allocated node in each floor. Such specific subject
simulation can significantly improve the training quality and
effectiveness.

In this paper, the TOA-based distance measurement
method is proposed to localize the moving node. During
the distancemeasurement and localization, limited nodes are
chosen, so that the localization delay and system overhead
could be reduced. During data transmission, the location
information of the node is applied to restrict the routing
request region through combination of AODV (Ad hoc On-
Demand Distance Vector Routing) with LAR (Location-
Aided Routing). As a result, the transmit time of the RREQ
(Route Request) package is reduced along with improved
system transmission performance, which is verified by sim-
ulation study with NS2 emulator.
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Figure 1: Round trip travel time.

2. TOA Localization Algorithm

TOA [9] refers to the time for the signal to travel from the
sending node to the receiving node. Given signal transmis-
sion speed, by measuring the signal transmission time to
calculate the distance between two nodes. In this paper, by
measuring RTOF (Roundtrip-Time Of Flight) to calculate
the distance between two nodes, as shown in Figure 1 the
equation for the distance between two nodes is

𝑑 =
[(𝑇
3
− 𝑇
0
) + (𝑇

2
− 𝑇
1
)] × 𝑉

2
, (1)

where𝑇
0
is themomentwhen the sending node sends signals,

𝑇
1
is the moment when the receiving node receives signals,
𝑇
2
is the moment when the receiving node sends response

signals, 𝑇
3
is the moment when the sending node receives

response signals, and 𝑑 is the distance between the sending
node and receiving node.

In the large-scale fixed field, the moving node is required
for localization, while the fixed node is the one with known
information. The neighboring nodes are those within the
radius of sensor node communication. The distance from
the moving node to the fixed one can be obtained with
TOA distance measurement method, as described earlier.
When the distance from the moving node to at least three
fixed nodes is known, the location of moving node can be
calculated with trilateration [10].

3. AODV Protocol

AODV is the routing protocol based on the distance vector
algorithm, which integrates the target serial number of
DSDV and the on-demand routing discovery in DSR [11].
This protocol mainly includes routing discovery and routing
maintenance, where the former is only requested upon need
to save the routing overdue.

When the source node communicating with other nodes
fails to reach the routing of destination node, it requires the
grouping of RREQ. After other nodes receive this RREQ,
whether such information exists or not is checked. Then, the
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Figure 2: Node location distribution.

information should be abandoned when necessary. Other-
wise, it should record the RREQ in this routing table and
broadcast this RREQ continuously until some central node
reaches the routing of destination node, or the routing request
grouping reaches the destination node.

4. LAODV Algorithm

In this paper, localization of the moving node is desired,
while the fixed one provides assistance. First, the moving
node broadcasts a data package with location information
of the moving nodes to the neighboring node periodically.
Then, the distance between this node and the moving one
should be calculated once the fixed nodes receive it within
the broadcasting range, and decision of whether response
information back to themoving nodes should be sent ismade.
In this algorithm, only four fixed nodes near to the moving
node participate, so that the quantity of the involved nodes is
limited. Therefore, the average delay and system overhead of
the localization are minimized.

In AODV protocol, the node requests for the routing of
the destination node through broadcasting RREQ message
gradually. Such a flooding routing method will unfortunately
generate substantial RREQ message, resulting in a tremen-
dous signal conflict and protocol overhead. The proposed
protocol will add the thought of LAR protocol [12], which
will transfer the data package selectively during the process
of routing discovery within the appointed routing area.

As shown in Figure 2, node S is the moving node, D is
the gateway, others are fixed nodes, and their location coor-
dinates are known. Each fixed node broadcasts its location
information to the whole network, after other fixed nodes
receive it, record information to their location information
table, so that each fixed node has the position information
of the other nodes. The moving node S broadcasts a location
package, including the location coordinate of S calculated in
the last moment. After the fixed nodes receive this package
within the broadcasting scope, it can calculate the distance
between the node and other fixed nodes with the moving
node S. Through comparison, to judge whether the node is
one of the four nodes closest to the moving node S, if it
is, just send a response information, including the location
coordinates of fixed nodes. In this case, only nodes A, B, P,
and M send response information.
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Moving node S gets the location coordinates of A, B,
P, and M which are (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
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), (𝑥
3
, 𝑦
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), and (𝑥
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respectively through the response information, and through
the TOA-based distance measurement method can get the
distances between them and the moving node S as 𝑑

1
, 𝑑
2
, 𝑑
3
,

and 𝑑
4
, respectively. Given the coordinate of themoving node

S by (𝑥, 𝑦), the following equation can calculate the location
coordinate of the moving node:
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(2)

Meanwhile, the source node S sends its location coordi-
nate to the destination node D. As the routing information
of D is not reachable, node S will send RREQ to seek for the
routing to D with its location information included in RREQ.
At first, a rectangular request regionwith two apexes of nodes
S and D is determined. When node P out of the region
receives the request package, decision of whether it is within
the request region will be made, and the invalid grouping
could be abandoned according to the location information.
Then, node M within the region will transfer the grouping in
the request regionwith its own location information included
in the RREQ package. The new request region is established
by the source node and destination node, until the node
within the region reaches the radio-frequency scope of node
D and the routing discovery is successful. Hence, the source
node could send its own location coordinate information to
the gateway according to this new route.

5. The Specific Process of Algorithm

(1) Each fixed nodes broadcasts a location package inclu-
ding its location information to the whole network.
After other fixed node receive it, record information
to their location information table.

(2) The moving node broadcasts a location package, inc-
luding the location coordinate calculated in the last
moment.

(3) After fixed nodes receive the package, calculate the
distance between the node and other fixed nodes with
the moving node.

(4) To determine whether the node is one of the four
nodes closest to the moving node, if it is, just send a
response information.

(5) Given four fixed node coordinates, and through the
TOA-based distance measurement method can get
the distances between them and the moving node,
again through the trilateration it can calculate the
moving node coordinate.
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Figure 3: NS2 simulation flow chart.

6. Simulation and Analysis

6.1. Principle of NS2. In this study, the NS2 network emulator
is adopted for performance verification [13]. NS2 simulation
process in general is shown in Figure 3.

6.2. The Simulation Scene Set. As shown in Figure 4, a recta-
ngular simulation field of 1000m ∗ 1000m with 33 nodes
is assumed, 26 of which are fixed nodes and the others are
moving nodes. The distance of the adjacent fixed nodes is
150m, and four nodes form the square grid. The highest
movement speed of the node is 13m/s, and the simulation
time is set as 200 seconds. The CBR data flow will be esta-
blished from every moving node to the gateway, and the data
package of 512 bytes will be sent with a speed of 4 packet/s.
More simulation parameters are illustrated in Table 1.

After simulation scene has been setted, writing TCL
script simulation is carried out on the protocol. After the
simulation will be get trace and nam files, the trace file is a
data storage, nam file is the whole process of simulation of
dynamic demonstration. In order to analyze a large amount
of data of the trace file, we need to write the gawk program for
the extraction and processing of effective data (calculate the
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Figure 4: Simulation scene and node distribution.

Table 1: Parameter setting for simulation environment.

Parameter Parameter value
channelType Channel/wireless channel
phyType Phy/wirelessPhy
macType Mac/802 11
ifqType Queue/drop tail/PriQueue
llType LL
antType Antenna/omni antenna
businessType CBR
nodeQuantity 33

average end-to-end delay, Package loss probability, etc.). In
the end, using gnuplot drawing tools will be extracting data
into two-dimensional graphics which can be more intuitive
to analyze the protocol performance.

6.3. Analysis of Location Delay and System Overhead. In
this paper, average localization delay refers to the average
time for the moving node to send localization package until
receiving response package, the system overhead refers to the
proportion between the fixed nodes send response package
number and the moving nodes send localization package
number. Figures 5 and 6 show that the average localization
delay of the algorithm is 0.00021, the system overhead is 4.8,
while the AODV and system overhead are 0.00033 and 7.7,
respectively. Obviously, the new algorithm is advantageous
in terms of localization delay and system overhead. This is
mainly because the quantity of the fixed nodes participating
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Figure 5: Average localization delay.
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Figure 6: System overhead during location process.

in location is limited, and the relative distance from the fixed
nodes to the moving nodes is short.

6.4. Performance Analysis of Data Transmission. In this
paper, the performance index, including the average end-
to-end delay of the network, the packet loss probability and
routing overhead, is evaluated.
(1) Average End-to-End Delay. The average time for the
moving node to send the data package until the gateway
receives the data package successfully, which is related to
smoothness of the network. The smaller the delay is, the
smoother the network will be. The unit is second.

Figure 7 compares the average end-to-end delay of
LAODV and AODV. Clearly, the delay of the LAODV
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protocol is smaller than that of the AODV protocol, as the
location information of the node is added into the improved
protocol.Through the calculation of the routing request area,
it improves the seeking efficiency of the node for routing.
When the flexible routing is interrupted due to the moving
node, it will establish a new routing towards the destination
node rapidly through the discovery mechanism of LAODV.
Then, the seeking time for the route could be reduced, and
the smoothness of the data transmission in the network is
guaranteed.

(2) Package Loss Probability. The proportion of the total lost
data grouping is against the sent data grouping in the net-
work. Then, the successful data transmission proportion in
the whole network can be known, as well as the proportion of
the lost data package during the transmission process due to
the link failure. This parameter is related to the efficiency of
the data transmission.

Figure 8 shows comparison of the packet loss probability
between the two protocols. It can be seen that the packet
loss probability decreases gradually after the routes are
established, and the packet loss probability of LAODV is
smaller than that of AODV.

(3) Routing Overhead. The proportion between the total
number of bytes and total message bytes of all the messages
controlled by the route (including RREQ, RREPs and RERR
messages). As for the grouping transmitted by various routes,
a single bounce will trigger a message transmission. The
routing overhead is mainly used for balancing the efficiency
of the routing protocol. The smaller the routing overhead is,
the narrower bandwidth is needed to reach the destination
node.

Figure 9 shows the comparison of the routing overhead
for two protocols. The routing overhead of LAODV is obvi-
ously smaller than that of AODV, as LAODV sets the routing
request region utilizing the node location information.Then,
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Figure 9: Routing overhead.

the quantity of the transferred RREQ is smaller than that with
AODV protocol, and the redundant routing request informa-
tion is reduced. As a result, the routing overhead decreases
accordingly.

7. Conclusion

In this paper, an approach for tracking the moving target
and transmitting the location information in the large-scale
fixed scene is developed. During the localization process, the
quantity of fixed nodes participating in location is limited, so
that the network overhead is reduced and the bandwidth of
the system location by taking advantage of the location infor-
mation of the located nodes is optimized. During the process
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of uploading the location information ofmoving nodes to the
gateway, the quantity of request package transferred during
the routing discovery with the node location information is
also properly controlled. The effectiveness of the algorithm
has been verified by the simulation results.

References

[1] C. Savarese, J. M. Rabaey, and J. Beutel, “Locationing in distri-
buted ad-hoc wireless sensor networks,” in Proceedings of the
IEEE Interntional Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’01), vol. 4, pp. 2037–2040, IEEE, May 2001.

[2] F. Viani, P. Rocca, G.Oliveri, D. Trinchero, andA.Massa, “Loca-
lization, tracking, and imaging of targets in wireless sensor
networks: an invited review,”Radio Science, vol. 46, no. 5, Article
ID RS5002, 2011.

[3] P. Keikhosrokiani, N.Mustaffa, N. Zakaria et al., “Wireless posi-
tioning techniques and location-based services: a literature
review,” inMultimedia andUbiquitous Engineering, pp. 785–797,
Springer, Amsterdam, The Netherlands, 2013.

[4] W. Chen, “Cooperative limiting localization schemes for wire-
less sensor networks,” in Proceedings of the 1st International
Conference on Innovative Computing, Information and Control
(ICICIC ’06), vol. 2, pp. 425–428, IEEE, September 2006.

[5] J. Shen, A. F. Molisch, and J. Salmi, “Accurate passive location
estimation using TOA measurements,” IEEE Transactions on
Wireless Communications, vol. 11, no. 6, pp. 2182–2192, 2012.

[6] J. He, S. Li, K. Pahlavan et al., “A realtime testbed for perfor-
mance evaluation of indoor TOA location system,” in Proceed-
ings of the IEEE International Conference on Communications
(ICC ’12), pp. 482–486, IEEE, 2012.

[7] H. Jhi, J. Chen, C. Lin, and C. Huang, “A factor-graph-based
TOA location estimator,” IEEE Transactions onWireless Comm-
unications, vol. 11, no. 5, pp. 1764–1773, 2012.

[8] S. Jiping, “Personnel position monitoring technology and sys-
tem in underground mine,” Coal Science and Technology, vol.
38, no. 11, pp. 1–4, 2010.

[9] A. Harter, A. Hopper, P. Steggles, A. Ward, and P.Webster, “The
anatomy of a context-aware application,”Wireless Networks, vol.
8, no. 2-3, pp. 187–197, 2002.

[10] F. Izquierdo, M. Ciurana, F. Barceló, J. Paradells, and E. Zola,
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The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential
optimal control problems.We derive a posteriori error estimates in 𝐿

2

(𝐽; 𝐿
2

(Ω))-norm and 𝐿
2

(𝐽;𝐻
1

(Ω))-norm for both the control
and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for
semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the
mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.

1. Introduction

With the advances of scientific computing, optimal control
problems are now widely used in multidisciplinary appli-
cations such as physical, biological, medicine, engineering
design, finance, fluidmechanics, and socioeconomic systems.
As a result, more and more people will benefit greatly by
learning to solve the optimal control problems numerically.
Realizing such growing needs, books and papers on optimal
control put more weight on numerical methods.

In modeling a wide range of problems for physical, eco-
nomic, and social processes, optimal control problems
described by integrodifferential equations play an important
role. Parabolic integrodifferential optimal control problems
are very important model in engineering numerical sim-
ulation, for example, biology mechanics, nuclear reaction
dynamics, heat conduction in materials with memory, visco-
elasticity, and so forth. Finite element approximation of
optimal control problems has a very important status in the
numerical methods for these problems. The finite element
approximation of optimal control problem by piecewise con-
stant functions was well investigated by Falk [1] and Geveci
[2].The finite elementmethods for semilinear elliptic optimal
control problems were discussed by Casas et al. in [3]. In [4],

the author studied the finite element discretization for a class
of quadratic boundary optimal control problems governed
by nonlinear elliptic equations and obtained a posteriori
error estimates for the coupled state and control approxima-
tion. Many introductions about the numerical computation
method for optimal control problems can be found in [5–8].

As one of important kinds of optimal control prob-
lems, parabolic integrodifferential optimal control problem
is widely used in scientific and engineering computing. The
literature in this aspect was huge, see; for example, [9].
In [10], Brunner and Yan analyzed finite element Galerkin
discretization for a class of optimal control problems gov-
erned by integral equations and integrodifferential equations
and derived a priori error estimates and a posteriori error
estimators for the approximation solutions.

Adaptive finite element method is the most important
method to boost accuracy of the finite element discretization.
It ensures a higher density of nodes in certain area of the
given domain, where the solution is discontinuous or more
difficult to approximate, using an a posteriori error indicator.
A posteriori error estimates are computable quantities in
terms of the discrete solution and they measure the actual
discrete errors without the knowledge of exact solutions.
They are essential in designing algorithms for mesh which
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equidistribute the computational effort and optimize the
computation. The literature in this was huge. In [11], the
authors presented an a posteriori error analysis for finite
element approximation of distributed convex elliptic optimal
control problems. They derived a posteriori error estimates
for the coupled state and control approximations. Such
estimates can be used to construct reliable adaptive finite
element approximation schemes for control problems. In [12],
Verfürth gave a general framework for deriving a posteri-
ori error estimates for approximate solutions of nonlinear
elliptic equations. He obtained a posteriori error estimates,
which can easily be computed from the given data of the
problem and the computed numerical solution and which
give global upper and local lower bounds on the error of
the numerical solution. Some of techniques directly relevant
to our work can be found in [11, 12]. Recently, in [13–16],
we derived a priori error estimates and a posteriori error
estimates for optimal control problems using mixed finite
element methods. Although a posteriori error estimates of
finite element approximation were widely used in numerical
simulations, they have not yet been utilized in nonlinear
parabolic integrodifferential optimal control problem.

In this paper, we adopt the standard notation 𝑊
𝑚,𝑝

(Ω)

for Sobolev spaces on Ω with a norm ‖ ⋅ ‖
𝑚,𝑝

given by
‖V‖𝑝

𝑚,𝑝
= ∑

|𝛼|≤𝑚
‖𝐷

𝛼V‖𝑝
𝐿
𝑝
(Ω)

and a seminorm | ⋅ |
𝑚,𝑝

given by
|V|𝑝

𝑚,𝑝
= ∑

|𝛼|=𝑚
‖𝐷

𝛼V‖𝑝
𝐿
𝑝
(Ω)

. We set 𝑊
𝑚,𝑝

0
(Ω) = {V ∈

𝑊
𝑚,𝑝

(Ω) : V|
𝜕Ω

= 0}. For 𝑝 = 2, we denote 𝐻
𝑚

(Ω) =

𝑊
𝑚,2

(Ω), 𝐻𝑚

0
(Ω) = 𝑊

𝑚,2

0
(Ω), and ‖ ⋅ ‖

𝑚
= ‖ ⋅ ‖

𝑚,2
, ‖ ⋅ ‖ =

‖ ⋅ ‖
0,2
. We denote by 𝐿

𝑠

(0, 𝑇;𝑊
𝑚,𝑝

(Ω)) the Banach space of
all 𝐿

𝑠 integrable functions from 𝐽 to 𝑊
𝑚,𝑝

(Ω) with norm

‖V‖
𝐿
𝑠
(𝐽;𝑊
𝑚,𝑝

(Ω))
= (∫

𝑇

0

‖V‖𝑠
𝑊
𝑚,𝑝

(Ω)
𝑑𝑡)

1/𝑠

for 𝑠 ∈ [1,∞), and the
standard modification for 𝑠 = ∞. The details can be found in
[9].

In this paper, we derive a posteriori error estimates for
a class of semilinear parabolic integrodifferential optimal
control problems. To the best of our knowledge in the
context of semilinear parabolic integrodifferential optimal
control problems, these estimates are new. We consider the
following semilinear parabolic integrodifferential optimal
control problems:

min
𝑢(𝑡)∈𝐾⊂𝑈

{∫

𝑇

0

(
1

2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
0

󵄩󵄩󵄩󵄩

2

+
𝛼

2
‖𝑢‖

2

)𝑑𝑡} (1)

subject to the state equation

𝑦
𝑡
− div (𝐴∇𝑦 (𝑥, 𝑡))

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦 (𝑥, 𝜏)) 𝑑𝜏 + 𝜙 (𝑦)

= 𝑓 + 𝐵𝑢, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(2)

where the bounded open set Ω ⊂ R2 is 2 regular convex
polygon with boundary 𝜕Ω, 𝐽 = (0, 𝑇], 𝑓 ∈ 𝐿

2

(Ω), 𝜓 =

𝜓(𝑥, 𝑡, 𝜏) = 𝜓
𝑖,𝑗
(𝑥, 𝑡, 𝜏)

2×2
∈ 𝐶

∞

(0, 𝑇; 𝐿
2

(Ω))
2×2, 𝑦

0
∈ 𝐻

1

(Ω),
𝛼 is a positive constant, and 𝐵 is a continuous linear operator
from 𝐾 to 𝐿

2

(Ω). For any 𝑅 > 0, the function 𝜙(⋅) ∈

𝑊
2,∞

(−𝑅, 𝑅), 𝜙󸀠

(𝑦) ∈ 𝐿
2

(Ω) for any 𝑦 ∈ 𝐿
2

(𝐽;𝐻
1

0
(Ω)), and

𝜙
󸀠

(𝑦) ≥ 0. We assume that the coefficient matrix 𝐴(𝑥) =

(𝑎
𝑖,𝑗
(𝑥))

2×2
∈ (𝑊

1,∞

(Ω))
2×2 is a symmetric positive definite

matrix and there is a constant 𝑐 > 0 satisfying for any vector
X ∈ R2, X𝑡

𝐴X ≥ 𝑐‖X‖
2

R2 . Here, 𝐾 denotes the admissible set
of the control variable defined by

𝐾 = {𝑢 (𝑥, 𝑡) ∈ 𝑈 = 𝐿
2

(𝐽; 𝐿
2

(Ω)) : 𝑢 (𝑥, 𝑡) ≥ 0, 𝑡 ∈ 𝐽} .

(3)

Assume that there are constants 𝑐 and 𝐶, such that for all 𝑡
and 𝜏 in [0, 𝑇]:

𝑎 (𝑧, 𝑧) ≥ 𝑐‖𝑧‖
2

1,Ω
, ∀𝑧 ∈ 𝑉, (4)

|𝑎 (𝑧, 𝑤)| ≤ 𝐶‖𝑧‖
1,Ω

⋅ ‖𝑤‖
1,Ω

, ∀𝑧, 𝑤 ∈ 𝑉, (5)
󵄨󵄨󵄨󵄨𝜓 (𝑡, 𝜏; 𝑧, 𝑤)

󵄨󵄨󵄨󵄨 ≤ 𝐶‖𝑧‖
1,Ω

⋅ ‖𝑤‖
1,Ω

, ∀𝑧, 𝑤 ∈ 𝑉. (6)

The plan of this paper is as follows. In the next section,
we present the finite element discretization for semilinear
parabolic integrodifferential optimal control problems. A
posteriori error estimates are established for the optimal
control problems in Section 3. In Section 4, we introduce
an adaptive algorithm to guide the mesh refinement. In
Section 5, a numerical example is given to demonstrate our
theoretical results. Finally, we analyze the conclusion and
future work in Section 6.

2. Finite Elements for Integrodifferential
Optimal Control

We will now describe the finite element discretization
of semilinear parabolic integrodifferential optimal control
problems (1)-(2). Let 𝑉 = 𝐻

1

0
(Ω) and 𝑊 = 𝐿

2

(Ω). Let

𝑎 (𝑦, 𝑤) = ∫
Ω

(𝐴∇𝑦) ⋅ ∇𝑤, ∀𝑦, 𝑤 ∈ 𝑉,

𝜓 (𝑡, 𝜏; 𝑧, 𝑤) = (𝜓 (𝑡, 𝜏) ∇𝑧, ∇𝑤) , ∀𝑧, 𝑤 ∈ 𝑉 × 𝑉,

(𝑢, V) = ∫
Ω

𝑢V, ∀ (𝑢, V) ∈ 𝑊 × 𝑊,

(𝑓
1
, 𝑓

2
) = ∫

Ω

𝑓
1
𝑓
2
, ∀ (𝑓

1
, 𝑓

2
) ∈ 𝑊 × 𝑊.

(7)

Then, the semilinear parabolic integrodifferential optimal
control problems (1)-(2) can be restated as

min
𝑢(𝑡)∈𝐾

{∫

𝑇

0

(
1

2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
0

󵄩󵄩󵄩󵄩

2

+
𝛼

2
‖𝑢‖

2

)𝑑𝑡} (8)
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subject to

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏 + (𝜙 (𝑦) , 𝑤)

= (𝑓 + 𝐵𝑢, 𝑤) , ∀𝑤 ∈ 𝑉, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(9)

where the inner product in 𝐿
2

(Ω) or 𝐿
2

(Ω)
2 is indicated by

(⋅, ⋅). From Yanik and Fairweather [17], we know that the
above weak form has at least one solution in 𝑦 ∈ 𝑊(0, 𝑇) =

{𝑤 ∈ 𝐿
2

(0, 𝑇;𝐻
1

(Ω)), 𝑤
󸀠

𝑡
∈ 𝐿

2

(0, 𝑇;𝐻
−1

(Ω))}.
It is well known (see, e.g., [11]) that the optimal control

problem has a solution (𝑦, 𝑢), and if a pair (𝑦, 𝑢) is the
solution of (8)-(9), then there is a costate 𝑝 ∈ 𝑉 such that
triplet (𝑦, 𝑝, 𝑢) satisfies the following optimality conditions:

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏 + (𝜙 (𝑦) , 𝑤)

= (𝑓 + 𝐵𝑢, 𝑤) , ∀𝑤 ∈ 𝑉,

(10)

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω, (11)

− (𝑝
𝑡
, 𝑤) + 𝑎 (𝑞, 𝑝) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝜏)) 𝑑𝜏 + (𝜙
󸀠

(𝑦) 𝑝, 𝑞)

= (𝑦 − 𝑦
0
, 𝑞) , ∀𝑞 ∈ 𝑉,

(12)

𝑝 (𝑥, 𝑇) = 0, 𝑥 ∈ Ω, (13)

∫

𝑇

0

(𝛼𝑢 + 𝐵
∗

𝑝, V − 𝑢)
𝑈
𝑑𝑡 ≥ 0, ∀V ∈ 𝐾, (14)

where 𝐵
∗ is the adjoint operator of 𝐵. In the rest of the

paper, we will simply write the product as (⋅, ⋅) whenever no
confusion should be caused.

Let us consider the finite element approximation of the
optimal control problem (8)-(9). Again here we consider
only 𝑛-simplex elements and conforming finite elements.

Let Tℎ be regular partition of Ω. Associated with Tℎ is
a finite dimensional subspace 𝑉

ℎ
of 𝐶(Ω), such that 𝜒|

𝜏
are

polynomials of 𝑚-order (𝑚 ≥ 1) for all 𝜒 ∈ 𝑉
ℎ
and 𝜏 ∈ Tℎ.

It is easy to see that 𝑉
ℎ

⊂ 𝑉. Let ℎ
𝜏
denote the maximum

diameter of the element 𝜏 inTℎ, ℎ = max
𝜏∈Tℎ{ℎ𝜏

}.
Due to the limited regularity of the optimal control 𝑢 in

general, there will be no advantage in considering higher-
order finite element spaces for the control. So, we only
consider the piecewise constant finite element space for the
approximation of the control, though higher-order finite
element spaces will be used to approximate the state and
the costate. Let 𝑃

0
(𝜏) denote all the 0-order polynomial over

𝜏. Therefore, we take 𝐾
ℎ

= {𝑢 ∈ 𝐾 : 𝑢(𝑥, 𝑡)|
𝜏

∈

𝑃
0
(𝜏)}. In addition,𝐶 or 𝑐 denotes a general positive constant

independent of ℎ.

By the definition of finite element subspace, the finite
element discretization of (8)-(9) is as follows: compute
(𝑦

ℎ
, 𝑢

ℎ
) ∈ 𝑉

ℎ
× 𝐾

ℎ
such that

min
𝑢ℎ∈𝐾ℎ

{∫

𝑇

0

(
1

2

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦

0

󵄩󵄩󵄩󵄩

2

+
𝛼

2

󵄩󵄩󵄩󵄩𝑢ℎ

󵄩󵄩󵄩󵄩

2

)𝑑𝑡} (15)

(𝑦
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
, 𝑤

ℎ
) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

(16)

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , 𝑥 ∈ Ω, (17)

where 𝑤
ℎ
∈ 𝑉

ℎ
, 𝑦ℎ

0
∈ 𝑉

ℎ
is an approximation of 𝑦

0
.

Again, it follows that the optimal control problems (15)–
(17) have a solution (𝑦

ℎ
, 𝑢

ℎ
), and if a pair (𝑦

ℎ
, 𝑢

ℎ
) is the

solution of (15)–(17), then there is a costate 𝑝
ℎ

∈ 𝑉
ℎ

such that triplet (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) satisfies the following optimality

conditions:

(𝑦
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
, 𝑤

ℎ
) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

(18)

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , 𝑥 ∈ Ω, (19)

− (𝑝
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
, 𝑝

ℎ
(𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
, 𝑞

ℎ
) = (𝑦

ℎ
− 𝑦

0
, 𝑞

ℎ
) ,

(20)

𝑝
ℎ
(𝑥, 𝑇) = 0, 𝑥 ∈ Ω, (21)

∫

𝑇

0

(𝛼𝑢
ℎ
+ 𝐵

∗

𝑝
ℎ
, V

ℎ
− 𝑢

ℎ
) 𝑑𝑡 ≥ 0, (22)

where 𝑤
ℎ
, 𝑞

ℎ
∈ 𝑉

ℎ
, and V

ℎ
∈ 𝐾

ℎ
.

In the rest of the paper, we will use some intermediate
variables. For any control function 𝑢

ℎ
∈ 𝐾, we first define

the state solution (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) satisfying

(𝑦
𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝑢
ℎ
) (𝜏) , 𝑤) 𝑑𝜏

+ (𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤) ,

(23)

∀𝑤 ∈ 𝑉, 𝑦 (𝑢
ℎ
) (𝑥, 0) = 𝑦

0
(𝑥) , 𝑥 ∈ Ω, (24)

− (𝑝
𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 (𝑢

ℎ
)) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝑢
ℎ
) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦 (𝑢
ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞)

(25)

= (𝑦 (𝑢
ℎ
) − 𝑦

0
, 𝑞) , ∀𝑞 ∈ 𝑉, 𝑝 (𝑢

ℎ
) (𝑥, 𝑇) = 0, 𝑥 ∈ Ω.

(26)

Now, we restate the following well-known estimates in
[9].
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Lemma 1. Let 𝜋̂
ℎ
be the Clément-type interpolation operator

defined in [9]. Then for any V ∈ 𝐻
1

(Ω) and all element 𝜏,
󵄩󵄩󵄩󵄩V − 𝜋̂

ℎ
V󵄩󵄩󵄩󵄩𝐿2(𝜏) + ℎ

𝜏

󵄩󵄩󵄩󵄩∇ (V − 𝜋̂
ℎ
V)󵄩󵄩󵄩󵄩𝐿2(𝜏)

≤ 𝐶ℎ
𝜏

∑

𝜏
󸀠
∩𝜏 ̸= 0

|V|
𝐿
2
(𝜏
󸀠
)
,

󵄩󵄩󵄩󵄩V − 𝜋̂
ℎ
V󵄩󵄩󵄩󵄩𝐿2(𝑙) ≤ 𝐶ℎ

1/2

𝑙
∑

𝑙⊂𝜏
󸀠

|∇V|
𝐿
2
(𝜏
󸀠
)
,

(27)

where 𝑙 is the edge of the element.

For 𝜑 ∈ 𝑊
ℎ
, we will write

𝜙 (𝜑) − 𝜙 (𝜌) = −𝜙
󸀠

(𝜑) (𝜌 − 𝜑)

= −𝜙
󸀠

(𝜌) (𝜌 − 𝜑) + 𝜙
󸀠󸀠

(𝜑) (𝜌 − 𝜑)
2

,

(28)

where

𝜙
󸀠

(𝜑) = ∫

1

0

𝜙
󸀠

(𝜑 + 𝑠 (𝜌 − 𝜑)) 𝑑𝑠,

𝜙
󸀠󸀠

(𝜑) = ∫

1

0

(1 − 𝑠) 𝜙
󸀠󸀠

(𝜌 + 𝑠 (𝜑 − 𝜌)) 𝑑𝑠

(29)

are bounded functions in Ω [12].

3. A Posteriori Error Estimates

In this section, we will obtain a posteriori error estimates
for semilinear parabolic integrodifferential optimal control
problems. Firstly, we estimate the error ‖𝑢 − 𝑢

ℎ
‖
𝐿
2
(𝐽;𝐿
2
(Ω))

.
For given 𝑢 ∈ 𝐾, let𝑀 be the inverse operator of the state

equation (10), such that 𝑦(𝑢) = 𝑀𝐵𝑢 is the solution of the
state equation (10). Similarly, for given 𝑢

ℎ
∈ 𝐾

ℎ
, 𝑦

ℎ
(𝑢

ℎ
) =

𝑀
ℎ
𝐵𝑢

ℎ
is the solution of the discrete state equation (16). Let

𝑆 (𝑢) =
1

2

󵄩󵄩󵄩󵄩𝑀𝐵𝑢 − 𝑦
0

󵄩󵄩󵄩󵄩

2

+
𝛼

2
‖𝑢‖

2

,

𝑆
ℎ
(𝑢

ℎ
) =

1

2

󵄩󵄩󵄩󵄩𝑀ℎ
𝐵𝑢

ℎ
− 𝑦

0

󵄩󵄩󵄩󵄩

2

+
𝛼

2

󵄩󵄩󵄩󵄩𝑢ℎ

󵄩󵄩󵄩󵄩

2

.

(30)

It is clear that 𝑆 and 𝑆
ℎ
are well defined and continuous on 𝐾

and 𝐾
ℎ
. Also the functional 𝑆

ℎ
can be naturally extended on

𝐾. Then (8) and (15) can be represented as

min
𝑢∈𝐾

{𝑆 (𝑢)} , (31)

min
𝑢ℎ∈𝐾ℎ

{𝑆
ℎ
(𝑢

ℎ
)} . (32)

It can be shown that

(𝑆
󸀠

(𝑢) , V) = (𝛼𝑢 + 𝐵
∗

𝑝, V) ,

(𝑆
󸀠

(𝑢
ℎ
) , V) = (𝛼𝑢

ℎ
+ 𝐵

∗

𝑝 (𝑢
ℎ
) , V) ,

(𝑆
󸀠

ℎ
(𝑢

ℎ
) , V) = (𝛼𝑢

ℎ
+ 𝐵

∗

𝑝
ℎ
, V) ,

(33)

where 𝑝(𝑢
ℎ
) is the solution of (23)–(25).

In many applications, 𝑆(⋅) is uniformly convex near
the solution 𝑢 (see, e.g., [18]). The convexity of 𝑆(⋅) is
closely related to the second-order sufficient conditions of
the control problems, which was assumed in many studies
on numerical methods of the problems. If 𝑆(⋅) is uniformly
convex, then there is a 𝑐 > 0, such that

∫

𝑇

0

(𝑆
󸀠

(𝑢) − 𝑆
󸀠

(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡 ≥ 𝑐

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

, (34)

where 𝑢 and 𝑢
ℎ
are the solutions of (31) and (32), respectively.

We will assume the above inequality throughout this paper.
Let 𝑝(𝑢

ℎ
) be the solution of (23)–(25); we establish the

following error estimate.

Theorem 2. Let 𝑢 and 𝑢
ℎ
be the solutions of (31) and (32),

respectively. Assume that 𝐾
ℎ

⊂ 𝐾. In addition, assume that
(𝑆

󸀠

ℎ
(𝑢

ℎ
))|

𝜏
∈ 𝐻

𝑠

(𝜏), for all 𝜏 ∈ T
ℎ
, (𝑠 = 0, 1), and there is a

V
ℎ
∈ 𝐾

ℎ
such that

󵄨󵄨󵄨󵄨󵄨
(𝑆

󸀠

ℎ
(𝑢

ℎ
) , V

ℎ
− 𝑢)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 ∑

𝜏∈Tℎ

ℎ
𝜏

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

ℎ
(𝑢

ℎ
)
󵄩󵄩󵄩󵄩󵄩𝐻𝑠(𝜏)

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩

𝑠

𝐿
2
(𝜏)

.

(35)

Then, one has

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ 𝐶𝜂
2

1
+ 𝐶

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

, (36)

where

𝜂
2

1
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏

󵄩󵄩󵄩󵄩𝛼𝑢
ℎ
+ 𝐵

∗

𝑝
ℎ

󵄩󵄩󵄩󵄩

1+𝑠

𝐻
𝑠
(𝜏)

𝑑𝑡. (37)

Proof. It follows from (31) and (32) that

∫

𝑇

0

(𝑆
󸀠

(𝑢) , 𝑢 − V) ≤ 0, ∀V ∈ 𝐾, (38)

∫

𝑇

0

(𝑆
󸀠

ℎ
(𝑢

ℎ
) , 𝑢

ℎ
− V

ℎ
) ≤ 0, ∀V

ℎ
∈ 𝐾

ℎ
⊂ 𝐾. (39)

Then it follows from (35), (39), and the Schwartz inequality,
that

𝑐
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ ∫

𝑇

0

(𝑆
󸀠

(𝑢) − 𝑆
󸀠

(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡

≤ −∫

𝑇

0

(𝑆
󸀠

(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡

= ∫

𝑇

0

{(𝑆
󸀠

ℎ
(𝑢

ℎ
) , 𝑢

ℎ
− 𝑢)

+ (𝑆
󸀠

ℎ
(𝑢

ℎ
) − 𝑆

󸀠

(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
)} 𝑑𝑡
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≤ ∫

𝑇

0

{(𝑆
󸀠

ℎ
(𝑢

ℎ
) , V

ℎ
− 𝑢)

+ (𝑆
󸀠

ℎ
(𝑢

ℎ
) − 𝑆

󸀠

(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
)} 𝑑𝑡

≤ 𝐶∫

𝑇

0

{

{

{

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

ℎ
(𝑢

ℎ
)
󵄩󵄩󵄩󵄩󵄩

1+𝑠

𝐻
𝑠
(𝜏)

+
󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

ℎ
(𝑢

ℎ
) − 𝑆

󸀠

(𝑢
ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

}

}

}

𝑑𝑡

+
𝑐

2

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

.

(40)

It is not difficult to show that

𝑆
󸀠

ℎ
(𝑢

ℎ
) = 𝛼𝑢

ℎ
+ 𝐵

∗

𝑝
ℎ
, 𝑆

󸀠

(𝑢
ℎ
) = 𝛼𝑢

ℎ
+ 𝐵

∗

𝑝 (𝑢
ℎ
) ,

(41)

where 𝑝(𝑢
ℎ
) is defined in (23)–(26). Thanks to (11), it is easy

to derive

∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

ℎ
(𝑢

ℎ
) − 𝑆

󸀠

(𝑢
ℎ
)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

𝑑𝑡

= ∫

𝑇

0

󵄩󵄩󵄩󵄩𝐵
∗

(𝑝
ℎ
− 𝑝 (𝑢

ℎ
))
󵄩󵄩󵄩󵄩𝐿2(Ω)

𝑑𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝑝ℎ

− 𝑝 (𝑢
ℎ
)
󵄩󵄩󵄩󵄩𝐿2(𝐽;𝐿2(Ω))

≤ 𝐶
󵄩󵄩󵄩󵄩𝑝ℎ

− 𝑝 (𝑢
ℎ
)
󵄩󵄩󵄩󵄩𝐿2(𝐽;𝐻1(Ω))

.

(42)

Then, by the estimates (40) and (42), we can prove the
requested result (36).

Now, we estimate the error ‖𝑦(𝑢
ℎ
) − 𝑦

ℎ
‖
𝐿
2
(𝐽;𝐻
1
(Ω))

.

Theorem 3. Let (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) and (𝑦

ℎ
, 𝑝

ℎ
) be the solutions of

(23)–(26) and (18)–(22), respectively. Then

󵄩󵄩󵄩󵄩𝑦 (𝑢
ℎ
) − 𝑦

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

4

∑

𝑖=2

𝜂
2

𝑖
, (43)

where

𝜂
2

2
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑓 + 𝐵𝑢
ℎ
− 𝑦

ℎ𝑡
+ div (𝐴∇𝑦

ℎ
)

+ ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) 𝑑𝜏

−𝜙 (𝑦
ℎ
) )

2

𝑑𝑡,

𝜂
2

3
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

𝜂
2

4
=

󵄩󵄩󵄩󵄩𝑦ℎ
(𝑥, 0) − 𝑦

0
(𝑥)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

,

(44)

where 𝑙 is a face of an element 𝜏, ℎ
𝑙
is the size of face 𝑙, and

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛] is the 𝐴-normal derivative jump over the interior

face 𝑙, defined by

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛]

𝑙
= (𝐴∇𝑦

ℎ
|
𝜏
1

𝑙

− 𝐴∇𝑦
ℎ
|
𝜏
2

𝑙

) ⋅ 𝑛, (45)

where 𝑛 is the unit normal vector on 𝑙 = 𝜏
1

𝑙
∩ 𝜏

2

𝑙
outwards 𝜏1

𝑙
.

For convenience, one defines [(𝐴∇𝑦
ℎ
) ⋅ 𝑛]

𝑙
= 0 when 𝑙 ⊂ 𝜕Ω.

Proof. Let 𝑒𝑦
𝐼
be the Clément-type interpolator of 𝑒𝑦 defined

in Lemma 1. It follows from (18) and (23) that we have

((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑤

ℎ
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑤

ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑉

ℎ
.

(46)

Let 𝑒𝑦 = 𝑦
ℎ
− 𝑦(𝑢

ℎ
); by using (46), then we obtain

((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦

) + 𝑎 (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦

)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦

) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦

)

= ((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦

− 𝑒
𝑦

𝐼
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦

− 𝑒
𝑦

𝐼
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦

− 𝑒
𝑦

𝐼
)

= (𝑦
ℎ𝑡
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
) + 𝑎 (𝑦

ℎ
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑒

𝑦

− 𝑒
𝑦

𝐼
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑒

𝑦

− 𝑒
𝑦

𝐼
) − (𝑓 + 𝐵𝑢

ℎ
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
)

= ∑

𝜏

∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+ 𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
)
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+ ∑

𝜏

∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏] (𝑒

𝑦

− 𝑒
𝑦

𝐼
)] .

(47)

Then, we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

0,Ω
+ 𝑐

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω

≤ ((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦

) + 𝑎 (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦

)

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦

)

≤ ∑

𝜏

∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
) − ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
, 𝑒

𝑦

− 𝑒
𝑦

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛 + ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

× (𝑒
𝑦

− 𝑒
𝑦

𝐼
)

− ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦

) 𝑑𝜏.

(48)

By integrating time from 0 to 𝑡 in the above inequality,
combining (6) and the Schwartz inequality, we have

1

2

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

0,Ω
+ 𝑐∫

𝑡

0

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦(𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑡

0

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
)

2

𝑑𝜏

+ ∫

𝑡

0

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+ ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

2

𝑑𝜏

+ 𝛿∫

𝑡

0

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

+ 𝐶∫

𝑡

0

∫
𝜏

󵄩󵄩󵄩󵄩(𝑦ℎ
− 𝑦 (𝑢

ℎ
)) (𝑠)

󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝑠 𝑑𝜏

+
󵄩󵄩󵄩󵄩𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

.

(49)

Since 𝛿 is small enough, then from (49) and the Gronwall
inequality, we have

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑡

0

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+ 𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
)

2

𝑑𝜏

+ 𝐶∫

𝑡

0

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛 + ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏))

⋅𝑛 𝑑𝜏]

2

𝑑𝜏 +
󵄩󵄩󵄩󵄩𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

.

(50)

So, by using the inequality (50) we obtain

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

4

∑

𝑖=2

𝜂
2

𝑖
. (51)

This completes the proof.

Analogous to Theorem 3, we can prove the following
estimates.

Theorem 4. Let (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) and (𝑦

ℎ
, 𝑝

ℎ
) be the solutions of

(23)–(26) and (18)–(22), respectively. Then

󵄩󵄩󵄩󵄩𝑝 (𝑢
ℎ
) − 𝑝

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=2

𝜂
2

𝑖
, (52)

where

𝜂
2

5
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗

∇𝑝
ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

−𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
)

2

𝑑𝜏 𝑑𝑡,

𝜂
2

6
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+∫

𝑡

0

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

(53)

where 𝜂
2
–𝜂

4
are defined in Theorem 3, 𝑙 is a face of an element

𝜏, and [(𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛] is the 𝐴-normal derivative jump over the

interior face 𝑙, defined by

[(𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛]

𝑙
= (𝐴

∗

∇𝑝
ℎ
|
𝜏
1

𝑙

− 𝐴
∗

∇𝑝
ℎ
|
𝜏
2

𝑙

) ⋅ 𝑛, (54)
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where 𝑛 is the unit normal vector on 𝑙 = 𝜏
1

𝑙
∩ 𝜏

2

𝑙
outwards 𝜏1

𝑙
.

For convenience, one defines [(𝐴∇𝑝
ℎ
) ⋅ 𝑛]

𝑙
= 0 when 𝑙 ⊂ 𝜕Ω.

Proof. Let 𝑒𝑝 = 𝑝(𝑢
ℎ
) − 𝑝

ℎ
, and let 𝑒𝑝

𝐼
= 𝜋̂

ℎ
𝑒
𝑝, where 𝜋̂

ℎ
is the

Clément-type interpolator defined in Lemma 1. Then, from
(20) and (25), we obtain

− (𝑞
ℎ
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
− 𝜙

󸀠

(𝑦 (𝑢
ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞

ℎ
)

= (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑉

ℎ
.

(55)

Namely,

− (𝑞
ℎ
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑞

ℎ
)

= (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑞

ℎ
)

− ((𝜙
󸀠

(𝑦
ℎ
) − 𝜙

󸀠

(𝑦 (𝑢
ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑞

ℎ
) .

(56)

By using (56), we obtain

− (𝑒
𝑝

, (𝑝
ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

, 𝑝
ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝

(𝑡) , (𝑝
ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

)

= − (𝑒
𝑝

− 𝑒
𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

− 𝑒
𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝

− 𝑒
𝑝

𝐼
) (𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

− 𝑒
𝑝

𝐼
)

− (𝑒
𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝

𝐼
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

𝐼
)

= − (𝑒
𝑝

− 𝑒
𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

− 𝑒
𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝

− 𝑒
𝑝

𝐼
) (𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

− 𝑒
𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙
󸀠

(𝑦
ℎ
) − 𝜙

󸀠

(𝑦 (𝑢
ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

= − (𝑒
𝑝

− 𝑒
𝑝

𝐼
, 𝑝

ℎ𝑡
) + 𝑎 (𝑒

𝑝

− 𝑒
𝑝

𝐼
, 𝑝

ℎ
)

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝

− 𝑒
𝑝

𝐼
) (𝑡) , 𝑝

ℎ
) (𝜏) 𝑑𝜏

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
) , 𝑒

𝑝

− 𝑒
𝑝

𝐼
)

+ (𝑒
𝑝

− 𝑒
𝑝

𝐼
, 𝑝

𝑡
(𝑢

ℎ
)) − 𝑎 (𝑒

𝑝

− 𝑒
𝑝

𝐼
, 𝑝 (𝑢

ℎ
))

− ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝

− 𝑒
𝑝

𝐼
) (𝑡) , 𝑝 (𝑢

ℎ
) (𝜏)) 𝑑𝜏

− (𝜙
󸀠

(𝑦
ℎ
) (𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

− 𝑒
𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙
󸀠

(𝑦
ℎ
) − 𝜙

󸀠

(𝑦 (𝑢
ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

= ∑

𝜏

∫
𝜏

( − 𝑦
ℎ
+ 𝑦

0
− 𝑝

ℎ𝑡
− div (𝐴

∗

∇𝑝
ℎ
)

−∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏 + 𝜙

󸀠

(𝑦
ℎ
) 𝑝

ℎ
)

× (𝑒
𝑝

− 𝑒
𝑝

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

((𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛 + ∫

𝑡

0

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏)

× (𝑒
𝑝

− 𝑒
𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙
󸀠

(𝑦
ℎ
) − 𝜙

󸀠

(𝑦 (𝑢
ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

) .

(57)

Then, we have

−
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

0,Ω
+ 𝑐

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω

≤ − (𝑒
𝑝

, (𝑝
ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

, 𝑝
ℎ
− 𝑝 (𝑢

ℎ
))

+ (𝜙
󸀠

(𝑦
ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

)

≤ ∑

𝜏

∫
𝜏

( − 𝑦
ℎ
+ 𝑦

0
− 𝑝

ℎ𝑡
− div (𝐴

∗

∇𝑝
ℎ
)

− ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

+𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
) (𝑒

𝑝

− 𝑒
𝑝

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

( (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏)

× (𝑒
𝑝

− 𝑒
𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙
󸀠

(𝑦
ℎ
) − 𝜙

󸀠

(𝑦 (𝑢
ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

)

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝

(𝑡) , (𝑝
ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏.

(58)
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By integrating time from 𝑡 to 𝑇 in the above inequality,
combining (6) and the Schwartz inequality, we have

1

2

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

0,Ω
+ 𝑐∫

𝑇

𝑡

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗

∇𝑝
ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

− 𝜙
󸀠

(𝑦
ℎ
)𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+ 𝛿∫

𝑇

𝑡

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

+ 𝐶∫

𝑇

𝑡

∫
𝜏

󵄩󵄩󵄩󵄩(𝑝ℎ
− 𝑝 (𝑢

ℎ
)) (𝑠)

󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝑠 𝑑𝜏

+ 𝐶∫

𝑇

𝑡

∫
𝜏

󵄩󵄩󵄩󵄩𝑦ℎ
− 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

0,Ω
𝑑𝜏.

(59)

Since 𝛿 is small enough, then from (59) and the Gronwall
inequality, we have

∫

𝑇

𝑡

󵄩󵄩󵄩󵄩𝑝ℎ
− 𝑝 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗

∇𝑝
ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

−𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+
󵄩󵄩󵄩󵄩𝑦 (𝑢

ℎ
) − 𝑦

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗

∇𝑝
ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

−𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+
󵄩󵄩󵄩󵄩𝑦 (𝑢

ℎ
) − 𝑦

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

.

(60)

Finally, combine inequality (60) andTheorem 3 to obtain

󵄩󵄩󵄩󵄩𝑝 (𝑢
ℎ
) − 𝑝

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=2

𝜂
2

𝑖
. (61)

This completes the proof.

Hence, we combineTheorems 2–4 to conclude.

Theorem 5. Let (𝑦, 𝑝, 𝑢) and (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) be the solutions of

(10)–(14) and (18)–(22), respectively. Then
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

+
󵄩󵄩󵄩󵄩𝑦 − 𝑦

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

+
󵄩󵄩󵄩󵄩𝑝 − 𝑝

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=1

𝜂
2

𝑖
,

(62)

where 𝜂
1
–𝜂

6
are defined in Theorems 2–4, respectively.

Proof. From (10)–(14) and (23)–(26), we obtain the error
equations

(𝑦
𝑡
− 𝑦

𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦 − 𝑦 (𝑢
ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦) − 𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝐵 (𝑢 − 𝑢

ℎ
) , 𝑤) ,

− (𝑝
𝑡
− 𝑝

𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 − 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝 − 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦) 𝑝 − 𝜙
󸀠

(𝑦 (𝑢
ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞) = (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑞)

(63)

for all 𝑤 ∈ 𝑉 and 𝑞 ∈ 𝑉. Thus, it follows from (63) that

(𝑦
𝑡
− 𝑦

𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦 − 𝑦 (𝑢
ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦) − 𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝐵 (𝑢 − 𝑢

ℎ
) , 𝑤) ,
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− (𝑝
𝑡
− 𝑝

𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 − 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝 − 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦 (𝑢
ℎ
)) (𝑝 − 𝑝 (𝑢

ℎ
)) , 𝑞)

= (𝑦 − 𝑦 (𝑢
ℎ
) , 𝑞) + (𝜙

󸀠󸀠

(𝑦 (𝑢
ℎ
)) (𝑦 (𝑢

ℎ
) − 𝑦) 𝑝, 𝑞) .

(64)

By using the stability results in [17, 19], then we can prove that

󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢
ℎ
)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

,

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
ℎ
)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

ℎ
)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐽;𝐿
2
(Ω))

.

(65)

Finally, combiningTheorems 2–4 and (65) leads to (62).

4. An Adaptive Algorithm

In this section, we introduce an adaptive algorithm to guide
the mesh refinement process. A posteriori error estimates
which have been derived in Section 3 are used as an error
indicator to guide the mesh refinement in adaptive finite
element method.

Now, we discuss the adaptive mesh refinement strategy.
The general idea is to refine the mesh such that the error
indicator like 𝜂 is equally distributed over the computational
mesh. Assume that an a posteriori error estimator 𝜂 has the
form of 𝜂2

= ∑
𝜏𝑖

𝜂
2

𝜏𝑖

, where 𝜏
𝑖
is the finite elements. At each

iteration, an average quantity of all 𝜂2

𝜏𝑖

is calculated, and each
𝜂
2

𝜏𝑖

is then compared with this quantity. The element 𝜏
𝑖
is to

be refined if 𝜂2

𝜏𝑖

is larger than this quantity. As 𝜂
2

𝜏𝑖

represents
the total approximation error over 𝜏

𝑖
, this strategymakes sure

that higher density of nodes is distributed over the area where
the error is higher.

Based on this principle, we define an adaptive algo-
rithm of the semilinear parabolic integrodifferential optimal
control problems (1)-(2) as follows: starting from initial
triangulations T

ℎ0
of Ω, we construct a sequence of refined

triangulation T
ℎ𝑗

as follows. Given T
ℎ𝑗
, we compute the

solutions (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) of the system (18)–(22) and their error

estimator as follows:

𝜂
2

𝜏
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏

󵄩󵄩󵄩󵄩𝛼𝑢
ℎ
+ 𝐵

∗

𝑝
ℎ

󵄩󵄩󵄩󵄩

1+𝑠

𝐻
𝑠
(𝜏)

𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑓 + 𝐵𝑢
ℎ
− 𝑦

ℎ𝑡
+ div (𝐴∇𝑦

ℎ
)

+ ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) 𝑑𝜏

−𝜙 (𝑦
ℎ
) )

2

𝑑𝜏 𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

((𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡

+
󵄩󵄩󵄩󵄩𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗

∇𝑝
ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝
ℎ
(𝜏)) 𝑑𝜏

−𝜙
󸀠

(𝑦
ℎ
) 𝑝

ℎ
)𝑑𝜏 𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗

∇𝑝
ℎ
) ⋅ 𝑛

+ ∫

𝑡

0

((𝜓
∗

(𝑡, 𝜏) ∇𝑝
ℎ
(𝜏))

⋅𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

𝐸
𝑗
= ∑

𝜏∈Tℎ

𝜂
2

𝜏
.

(66)

Then, we adopt the following mesh refinement strategy:
all the triangles 𝜏 ∈ T

ℎ𝑗
satisfying 𝜂

2

𝜏
≥ 𝜌𝐸

𝑗
/𝑛 are divided

into four new triangles in T
ℎ𝑗+1

by joining the midpoints of
the edges, where 𝑛 is the number of the elements ofT

ℎ𝑗
and 𝜌

is a given constant. In order tomaintain the new triangulation
T

ℎ𝑗+1
to be regular and conformal, some additional triangles

need to be divided into two or four new triangles depending
on whether they have one or more neighbors which have
been refined.Then, we obtain the newmeshT

ℎ𝑗+1
.The above

procedure will continue until 𝐸
𝑗

≤ tol, where tol is a given
tolerance error.

5. Numerical Example

In this section, we will give a numerical example to illustrate
our theoretical results. Our numerical example is the follow-
ing semilinear parabolic integrodifferential optimal control
problem:

min
𝑢(𝑡)∈𝐾

{∫

1

0

(
1

2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
0

󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑢
0

󵄩󵄩󵄩󵄩

2

)𝑑𝑡}

𝑦
𝑡
− div (∇𝑦 (𝑥, 𝑡)) − ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦 (𝑥, 𝜏)) 𝑑𝜏

+ 𝜙 (𝑦) = 𝑓 + 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,
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𝑦 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 0, 𝑥 ∈ Ω,

− 𝑝
𝑡
− div (∇𝑝 (𝑥, 𝑡)) − ∫

1

𝑡

div (𝜓
∗

(𝜏, 𝑡) ∇𝑝 (𝑥, 𝜏)) 𝑑𝜏

+ 𝜙
󸀠

(𝑦) 𝑝 = 𝑦 − 𝑦
0
, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

𝑝 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑝 (𝑥, 1) = 0, 𝑥 ∈ Ω.

(67)

In this example, we choose the domainΩ = [0, 1]× [0, 1].
Let Ω be partitioned into T

ℎ
as described Section 2. For the

constrained optimization problem:

min
𝑢∈𝐾⊂𝑈

∫

1

0

𝑆 (𝑢) 𝑑𝑡, (68)

where 𝑆(𝑢) = (1/2)‖𝑦 − 𝑦
0
‖
2

+ (1/2)‖𝑢 − 𝑢
0
‖
2 is a convex

functional on 𝑈 and 𝐾 = {𝑢 ∈ 𝑈 : 𝑢 ≥ 0 a.e. in Ω × 𝐽};
the iterative scheme reads (𝑛 = 0, 1, 2, . . .)

𝑏 (𝑢
𝑛+1/2

, V) = 𝑏 (𝑢
𝑛
, V) − 𝜌

𝑛
(𝑆

󸀠

(𝑢
𝑛
) , V) , ∀V ∈ 𝑈,

𝑢
𝑛+1

= 𝑃
𝑏

𝐾
(𝑢

𝑛+1/2
) ,

(69)

where 𝑏(⋅, ⋅) is a symmetric and positive definite bilinear
form such that there exist constants 𝑐

0
and 𝑐

1
satisfying

|𝑏 (𝑢, V)| ≤ 𝑐
1
‖𝑢‖

𝑈
‖V‖

𝑈
, ∀𝑢, V ∈ 𝑈,

𝑏 (𝑢, 𝑢) ≥ 𝑐
0
‖𝑢‖

2

𝑈
,

(70)

and the projection operator 𝑃
𝑏

𝐾
𝑈 → 𝐾 is defined: for given

𝑤 ∈ 𝑈 find 𝑃
𝑏

𝐾
𝑤 ∈ 𝐾 such that

𝑏 (𝑃
𝑏

𝐾
𝑤 − 𝑤, 𝑃

𝑏

𝐾
𝑤 − 𝑤) = min

𝑢∈𝐾

𝑏 (𝑢 − 𝑤, 𝑢 − 𝑤) . (71)

The bilinear form 𝑏(⋅, ⋅) provides suitable preconditioning
for the projection algorithm. An application of (69) to the
discretized semilinear parabolic integrodifferential optimal
control problem yields the following algorithm:

𝑏 (𝑢
𝑛+1/2

, V
ℎ
) = 𝑏 (𝑢

𝑛
, V

ℎ
) − 𝜌

𝑛
(𝑢

𝑛
+ 𝑝

𝑛
, V

ℎ
) , ∀V

ℎ
∈ 𝐾

ℎ
,

∫

1

0

((𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏

+ (𝜙 (𝑦) , 𝑤) ) 𝑑𝑡 = ∫

1

0

(𝑓 + 𝑢, 𝑤) 𝑑𝑡, ∀𝑤 ∈ 𝑉,

∫

1

0

(− (𝑝
𝑡
, 𝑞) + 𝑎 (𝑞, 𝑝) + ∫

1

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝜏)) 𝑑𝜏

+ (𝜙
󸀠

(𝑦) 𝑝, 𝑞) ) 𝑑𝑡 = ∫

1

0

(𝑦 − 𝑦
0
, 𝑞) 𝑑𝑡, ∀𝑞 ∈ 𝑉,

𝑢
𝑛+1

= 𝑃
𝑏

𝐾
(𝑢

𝑛+1/2
) , 𝑢

𝑛+1/2
, 𝑢

𝑛
∈ 𝐾

ℎ
.

(72)

Themain computational effort is to solve the state and costate
equations and to compute the projection 𝑃

𝑏

𝐾
𝑢
𝑛+1/2

. In this
paper, we use a fast algebraicmultigrid solver to solve the state
and costate equations. Then, it is clear that the key to saving
computing time is how to compute 𝑃

𝑏

𝐾
𝑢
𝑛+1/2

efficiently. For
the piecewise constant elements, 𝐾

ℎ
= {𝑢

ℎ
: 𝑢

ℎ
≥ 0} and

𝑏(𝑢, V) = (𝑢, V)
𝑈
; then

𝑃
𝑏

𝐾
𝑢
𝑛+1/2

|
𝜏
= max (0, avg (𝑢

𝑛+1/2
) |

𝜏
) , (73)

where avg(𝑢
𝑛+1/2

)|
𝜏
is the average of 𝑢

𝑛+1/2
over 𝜏.

In solving our discretized optimal control problem, we
use the preconditioned projection gradient method with
𝑏(𝑢, V) = (𝑢, V)

𝑈
and a fixed step size 𝜌 = 0.9. We now briefly

describe the solution algorithm to be used for solving the
numerical example in this section as follows.

(1) Solve the discretized optimization problem with the
projection gradient method on the current meshes
and calculate the error estimators 𝜂

𝑖
.

(2) Adjust themeshes using the estimators andupdate the
solution on new meshes, as described.

Now, we give a numerical example to illustrate our
theoretical results.

Example 1. Let 𝜓(𝑡, 𝜏) = 1, 𝜙(𝑦) = 𝑦
5. We choose the state

function by

𝑦 (𝑥
1
, 𝑥

2
) = 2 sin𝜋𝑥

1
sin𝜋𝑥

2
sin𝜋𝑡. (74)

The function 𝑓 is given by 𝑓(𝑥) = 𝑦
𝑡
− div(∇𝑦(𝑥, 𝑡)) −

∫
𝑡

0

div(∇𝑦(𝑥, 𝜏))𝑑𝜏+𝑦
5

−𝑢.The costate function can be chosen
as

𝑝 (𝑥
1
, 𝑥

2
) = sin𝜋𝑥

1
sin𝜋𝑥

2
sin𝜋𝑡. (75)

The function 𝑦
0
is given by 𝑦

0
(𝑥) = 𝑦 + 𝑝

𝑡
+ div(∇𝑝(𝑥, 𝑡)) +

∫
1

𝑡

div(∇𝑝(𝑥, 𝜏))𝑑𝜏 − 5𝑦
4

𝑝. We assume that

𝜆 = {
0.8, 𝑥

1
+ 𝑥

2
> 1.0,

0.3, 𝑥
1
+ 𝑥

2
≤ 1.0,

𝑢
0
(𝑥

1
, 𝑥

2
) = 1 − sin 𝜋𝑥

1

2
− sin 𝜋𝑥

2

2
+ 𝜆.

(76)

Thus, the control function is given by

𝑢 (𝑥
1
, 𝑥

2
) = max (𝑢

0
− 𝑝, 0) . (77)

In this example, the control function 𝑢 has a strong
discontinuity introduced by 𝑢

0
. The control function 𝑢 is

discretized by piecewise constant functions, whereas the
state 𝑦 and the costate𝑝were approximated by piecewise lin-
ear functions. In Table 1, numerical results of 𝑢, 𝑦, and 𝑝 on
uniform and adaptive meshes are presented. It can be found
that the adaptive meshes generated using our error indicators
can save substantial computational work, in comparison with
the uniform meshes. On the other hand, for the discontinu-
ous control variable 𝑢, the accuracy has become better from
the uniform meshes to the adaptive meshes in Table 1.
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Table 1: Numerical results on uniform and adaptive meshes.

On uniform mesh On adaptive mesh
𝑢 𝑦 𝑝 𝑢 𝑦 𝑝

Nodes 8097 8097 8097 1102 1969 1969
Sides 23968 23968 23968 3143 5744 5744
Elements 15872 15872 15872 2042 3776 3776
Dofs 15872 15872 15872 2042 3776 3776
Total 𝐿2 error 4.312𝑒 − 03 5.457𝑒 − 3 2.869𝑒 − 3 4.018𝑒 − 03 5.365𝑒 − 3 2.768𝑒 − 3

6. Conclusion and Future Works

In this paper, we discuss the semi-discrete finite element
methods of the semilinear parabolic integrodifferential opti-
mal control problems (1)-(2).We have established a posteriori
error estimates for each the state, the costate, and the
control approximation. The posteriori error estimates for
those problems by finite element methods seem to be new.

In our future work, we will use the mixed finite element
method to deal with nonlinear parabolic integrodifferential
optimal control problems. Furthermore, we will consider a
posteriori error estimates and superconvergence of mixed
finite element solution for nonlinear parabolic integrodiffer-
ential optimal control problems.
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The switching signal design for exponential stability with𝐻
∞
performance of uncertain switched linear discrete-time systems with

interval time-varying delay is considered. Systems with norm-bounded parameter uncertainties are considered. By taking a new
Lyapunov-Krasovskii (LK) function, sufficient conditions for the existence of a class of stabilizing switching laws are derived in
terms of linear matrix inequalities (LMIs) to guarantee the considered switched time-delay system to be exponentially stable. The
resulting stability criteria are of fewer matrix variables and are less conservative than some existing ones. In addition, numerical
examples are illustrated to show the main improvement.

1. Introduction

Switched system is represented as the family of subsystems
with switching rule which is concerned with various envi-
ronmental factors and different controllers. During the last
decades, there has been increasing interest in the stability
analysis and control design for the switched systems (see,
e.g., [1–6]). The design of switching signal is one of the
three basic problems in stability analysis and the design
of switched systems [2, 3]. Switching signal included time-
driven switching and state-driven switching. In the first case,
time-driven switching depends on time, and many effective
methods have been developed such as dwell time method [7,
8], average dwell time method [9, 10], and mode-dependent
average dwell time method [11, 12]. In the case of state-driven
switching, a switching action takes place when the system
state hits a switching surface, and the study of the stability
is based on a number of methods, including piecewise
Lyapunov function [13] and convex combination [14].

On the other hand, time delay is one of the insta-
bility sources for dynamical systems and is a common
phenomenon in many industrial and engineering systems.
During the last two decades, much attention has been paid
to the problem of stability analysis and controller synthesis
for time-delay systems (see, e.g., [15–18]). A switched system
with time-delay individual subsystems is called a switched

time-delay system [19–28]. Switched time-delay systems have
various applications in practical engineering systems, such as
power systems and power electronics [1, 21]. Many important
results on the dynamical behavior have been reported for
switched time-delay system [8–12].

Recently, increasing attention has been devoted to the
problem of delay-dependent stability of switched delay sys-
tems [22–26]. In [23–25], a switching signal design tech-
nique is proposed to guarantee the asymptotic stability of
switched systems with interval time-varying delay. Based on
a discrete LK functional, in [26] a switching rule for the
asymptotic stability and stabilization for a class of discrete-
time switched systems with interval time-varying delays
is designed via linear matrix inequalities. However, the
term ∑𝑘−𝑑𝑚

𝑠=𝑘+1−𝑑(𝑘)
𝑥
𝑇

(𝑠)𝑄𝑥(𝑠) = ∑
𝑘−𝑑𝑚

𝑠=𝑘+1−𝑑𝑀

𝑥
𝑇

(𝑠)𝑄𝑥(𝑠) −

∑
𝑘−𝑑(𝑘)

𝑠=𝑘+1−𝑑𝑀

𝑥
𝑇

(𝑠)𝑄𝑥(𝑠) is estimated as ∑𝑘−𝑑𝑚
𝑠=𝑘+1−𝑑𝑀

𝑥
𝑇

(𝑠)𝑄𝑥(𝑠)

for any 0 < 𝑑
𝑚
≤ 𝑑(𝑘) ≤ 𝑑

𝑀
, 𝑄 = 𝑄𝑇 > 0, which may

lead to considerable conservativeness. Following the work,
free weighting matrix and additional nonnegative inequality
approaches have been used to improve the conservative-
ness for the obtained results in [27]. However, many free
weightingmatrices were introduced, whichmade the stability
result complicated. 𝐻

∞
concept was proposed to reduce the

effect of the disturbance input on the regulated output to

http://dx.doi.org/10.1155/2013/416292
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within a prescribed level. In [29],𝐻
∞
controls were proposed

for uncertain discrete switched systems under arbitrary
switching signal. In [30], a switching signal design for 𝐻

∞

performance of uncertain discrete switched systems with
interval delay and linear fractional perturbations is consid-
ered. Nevertheless, the criteria still leave some room for
improvement in accuracy as well as complexity due to the
method used and offer motivation for further investigation.

Motivated by the above literatures, in this paper, by using
an improved discrete LK function combined with LMIs tech-
nique, a new switching signal design approach is developed
to guarantee the 𝐻

∞
performance for uncertain discrete

switched systems with interval time-varying delay to be
exponentially stable. Numerical examples are given to show
the effectiveness of the proposed method which can be easily
solved by using MATLAB LMI control toolbox.

The remaining part of the paper is organized as follows.
In Section 2, some preliminaries are introduced. In Section 3,
the main results for uncertain switched linear discrete-time
systems with interval time-varying delay are presented to be
exponential stability. In Section 4, some numerical examples
are given to illustrate the effectiveness and the merit of the
proposed method. The last section concludes the work.

Notations. We use standard notations throughout the paper.
𝜆min(𝑀)(𝜆max(𝑀)) stands for the minimal (maximum)
eigenvalue of𝑀. 𝑀𝑇 is the transpose of the matrix𝑀. The
relation𝑀 > 𝑁 (𝑀 < 𝑁) means that the matrix𝑀 − 𝑁 is
positive (negative) definite. ‖𝑥‖ denotes the Euclidian-norm
of the vector 𝑥 ∈ 𝑅𝑛. 𝑅𝑛 represents the 𝑛-dimensional real
Euclidean space. 𝑅𝑛×𝑚 is the set of all real 𝑛 × 𝑚 matrices.
diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. In symmetric
block matrices or long matrix expressions, we use an asterisk
“∗” to represent a term that is induced by symmetry. 𝐼denotes
the identity matrix.

2. Problem Description and Preliminaries

Consider the following uncertain linear discrete-time
switched time-delay system:

𝑥 (𝑘 + 1) = [𝐴
𝜎
+ Δ𝐴
𝜎
(𝑘)] 𝑥 (𝑘)

+ [𝐴
𝑑𝜎
+ Δ𝐴
𝑑𝜎
(𝑘)] 𝑥 (𝑘 − 𝑑 (𝑘))

+ [𝐵
𝜎
+ Δ𝐵
𝜎
(𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = [𝐶
𝜎
+ Δ𝐶
𝜎
(𝑘)] 𝑥 (𝑘)

+ [𝐶
𝑑𝜎
+ Δ𝐶
𝑑𝜎
(𝑘)] 𝑥 (𝑘 − 𝑑 (𝑘))

+ [𝐷
𝜎
+ Δ𝐷
𝜎
(𝑘)] 𝑤 (𝑘) ,

𝑥 (𝑙) = 𝜙 (𝑙) , 𝑙 = 𝑘
0
− 𝑑
𝑀
, . . . , 𝑘

0
,

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛 denotes the system state vector. 𝑦(𝑘) ∈ 𝑅𝑚
is the measured output. 𝑤(𝑘) ∈ 𝑅𝑝 is the disturbance input
which belongs to 𝑙

2
[0,∞). 𝜙(𝑙) ∈ 𝑅𝑛 is a vector-valued initial

function. The switching signal 𝜎 : 𝑍 → ℧ = {1, 2, . . . , 𝑁}

is a piecewise constant function. 𝜎 = 𝑖 means that the 𝑖th

subsystem is activated.𝑁 is the number of subsystems of the
switched system.The systemmatrices𝐴

𝑖
,𝐴
𝑑𝑖
,𝐵
𝑖
,𝐶
𝑖
,𝐶
𝑑𝑖
, and

𝐷
𝑖
are a set of known real matrices with appropriate dimen-

sions. Δ𝐴
𝑖
(𝑘), Δ𝐴

𝑑𝑖
(𝑘), Δ𝐵

𝑖
(𝑘), Δ𝐶

𝑖
(𝑘), Δ𝐶

𝑑𝑖
(𝑘), and Δ𝐷

𝑖
(𝑘)

are real-valued unknownmatrices representing time-varying
parameter uncertainties, and are assumed to be of the form

[
Δ𝐴
𝑖
(𝑘) Δ𝐴

𝑑𝑖
(𝑘) Δ𝐵

𝑖
(𝑘)

Δ𝐶
𝑖
(𝑘) Δ𝐶

𝑑𝑖
(𝑘) Δ𝐷

𝑖
(𝑘)
] = [

𝑀
1𝑖

𝑀
2𝑖

]

Δ
1𝑖
(𝑘) [𝑁

1𝑖
𝑁
2𝑖
𝑁
3𝑖
] ,

(2)

where 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑁
1𝑖
, 𝑁
2𝑖
, and 𝑁

3𝑖
are known real constant

matrices and Δ
1𝑖
(𝑘) : 𝑁 → 𝑅

𝑙1×𝑙2 is unknown time-varying
matrix function satisfying

Δ
𝑇

1𝑖
(𝑘) Δ
1𝑖
(𝑘) ≤ 𝐼. (3)

The parameter uncertainties Δ𝐴
𝑖
(𝑘), Δ𝐴

𝑑𝑖
(𝑘), Δ𝐵

𝑖
(𝑘),

Δ𝐶
𝑖
(𝑘), Δ𝐶

𝑑𝑖
(𝑘), and Δ𝐷

𝑖
(𝑘) are said to be admissible if both

(2) and (3) hold.
For given finite positive integer 𝑑

𝑚
and 𝑑

𝑀
, time-varying

delay 𝑑(𝑘) satisfying

0 < 𝑑
𝑚
≤ 𝑑 (𝑘) ≤ 𝑑

𝑀
, ∀𝑘 ∈ 𝑁

+

. (4)

Now we present the following definitions and lemmas
that are useful in deriving the principal contribution of this
paper.

Definition 1 (see [20]). The system (1) is said to be exponen-
tially stable if there exist a switching function𝜎(⋅) and positive
number 𝑐 such that any solution 𝑥(𝑘, 𝜙) of the system satisfies

‖𝑥 (𝑘)‖ ≤ 𝑐𝜆
𝑘−𝑘0
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝑠
, ∀𝑘 ≥ 𝑘

0
, (5)

for any initial conditions (𝑘
0
, 𝜙) ∈ 𝑅

+

× 𝐶
𝑛. 𝑐 > 0 is the decay

coefficient, 0 < 𝜆 ≤ 1 is the decay rate, and ‖𝜙‖
𝑠
= sup{‖𝜙(𝑙)‖,

𝑙 = 𝑘
0
− 𝑑
𝑀
, 𝑘
0
− 𝑑
𝑀
+ 1, . . . , 𝑘

0
}.

Definition 2 (see [26]). The system of matrices {𝐿
𝑖
} (𝑖 ∈ ℧) is

said to be strictly complete if, for every 𝑥 ∈ 𝑅𝑛 \ {0}, there is
𝑖 ∈ ℧ such that 𝑥𝑇𝐿

𝑖
𝑥 < 0.

It is easy to see that the system of matrices {𝐿
𝑖
} (𝑖 ∈ ℧) is

strictly complete if and only if⋃𝑁
𝑖=1
Ω
𝑖
= 𝑅
𝑛

\ {0}, whereΩ
𝑖
=

{𝑥 ∈ 𝑅
𝑛

: 𝑥
𝑇

𝐿
𝑖
𝑥 < 0} (𝑖 ∈ ℧).

Lemma 3 (see [31]). The system of matrices {𝐿
𝑖
} (𝑖 ∈ ℧) is

strictly complete if there exist 𝛼
𝑖
≥ 0, ∑𝑁

𝑖=1
𝛼
𝑖
= 1 such that

∑
𝑁

𝑖=1
𝛼
𝑖
𝐿
𝑖
< 0. If𝑁 = 2; then the above condition is also neces-

sary for the strict completeness.

Lemma 4 (see [17]). For any matrix 𝑅 = 𝑅𝑇 > 0 integers
𝑎 ≤ 𝑏, if vector function 𝜉(𝑘) : {−𝑏, −𝑏 + 1, . . . , −𝑎} → 𝑅

𝑛,
then

(𝑎 − 𝑏)

𝑘−𝑎−1

∑

𝑠=𝑘−𝑏

𝑧
𝑇

(𝑠) 𝑅𝑧 (𝑠) ≤ 𝜉
𝑇

(𝑘) [
−𝑅 𝑅

∗ −𝑅
] 𝜉 (𝑘) , (6)
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where
𝑧 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘 − 𝑎) 𝑥
𝑇

(𝑘 − 𝑏)] .

(7)

Lemma 5 (see [32], Schur’s complement). Let𝑀, 𝑃, and 𝑄
be given matrices such that 𝑄 > 0. Then

[
𝑃 𝑀

∗ −𝑄
] < 0 ⇐⇒ 𝑃 +𝑀𝑄

−1

𝑀
𝑇

< 0. (8)

The objective of this paper is to design a reasonable
switching rule for discrete-time switched system (1) with
time-varying delay satisfying (4) to guarantee that the system
while be exponentially stable.

3. Main Result

In this section, we will divide the whole state space 𝑅𝑛 into
𝑁 subregions and then define a particular quadratic function
in each sub region. Via an appropriate designed switching
rule, the particular quadratic function in each sub region will
decrease along the system trajectory with the corresponding
subsystem.Consequently, thewhole switched system remains
exponentially stable.

Firstly, we will introduce the switching regions and the
corresponding switching law. Given 𝑃 > 0 and 𝑈 > 0, define
the domains by

Ω
𝑖
(𝑃, 𝑈, 𝐴

𝑖
) = {𝑥 (𝑘) ∈ 𝑅

𝑛

: 𝑥
𝑇

(𝑘) 𝑌
𝑖
𝑥 (𝑘) < 0} , (9)

where 𝑌
𝑖
= 𝐴
𝑇

𝑖
𝑃𝐴
𝑖
− 𝑈, 𝑖 ∈ ℧.

From the similar proof of [26, 27], it can be easily obtained
that

𝑁

⋃

𝑖=1

Ω
𝑖
= 𝑅
𝑛

\ {0} . (10)

Construct the following switching region:

Ω
1
= Ω
1
, Ω

2
= Ω
2
\ Ω
1
, Ω

3
= Ω
3
\ Ω
1
\ Ω
2
, . . . ,

Ω
𝑁
= Ω
𝑁
\ Ω
1
\ ⋅ ⋅ ⋅ \ Ω

𝑁−1
.

(11)

We can obtain⋃𝑁
𝑖=1
Ω
𝑖
= 𝑅
𝑛

\ {0} andΩ
𝑖
∩Ω
𝑗
= 𝜙, for all 𝑖 ̸= 𝑗,

where 𝜙 is an empty set.
After dividing thewhole state space𝑅𝑛 into𝑁 sub regions,

we construct the switching signal as follows:

𝜎 (𝑥 (𝑘)) = 𝑖, ∀𝑥 (𝑘) ∈ Ω
𝑖
(𝑖 ∈ ℧) . (12)

In order to discuss robust stability of system (1), first, we
consider the following nominal system without parametric
uncertainties:
𝑥 (𝑘 + 1) = 𝐴

𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑖
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑖
𝑤 (𝑘) .

(13)

The following theorem gives a sufficient condition for the
existence of an admissible reasonable switching rule for sys-
tem (13) with disturbance input 𝑤(𝑘) = 0 to be exponentially
stable.

Theorem 6. For some constants 𝛾 ∈ (0, 1] and 0 ≤ 𝛼
𝑖
≤ 1, 𝑖 ∈

℧, ∑𝑁
𝑖=1
𝛼
𝑖
= 1, if there exist positive definite symmetric matri-

ces 𝑃,𝑈,𝑄
𝑗
, 𝑅
𝑗
, 𝑗 = 1, 2, 3, such that the following LMIs hold:

Ξ =

[
[
[
[
[

[

𝜙
11
𝜙
12
𝜙
13
0 𝜙
15

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
25

∗ ∗ 𝜙
33
0 0

∗ ∗ ∗ 𝜙
44
0

∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]

]

< 0, (14)

𝑁

∑

𝑖=1

𝛼
𝑖
𝐴
𝑇

𝑖
𝑃𝐴
𝑖
< 𝑈, (15)

then the system (13) with time-varying delay satisfying (4) and
𝑤(𝑘) = 0 is globally exponentially stable with convergence rate
𝜆 = √𝛾 by the switching signal designed by (12).

Here

𝜙
11
= 𝑈 − 𝛾𝑃 + 𝑄

1
+ 𝑄
3
−
𝛾
𝑑𝑚

𝑑
𝑚

(𝑅
1
+ 𝑅
3
)

𝜙
12
= 𝐴
𝑇

𝑖
𝑃𝐵
𝑖
, 𝜙

13
=
𝛾
𝑑𝑚

𝑑
𝑚

(𝑅
1
+ 𝑅
3
) ,

𝜙
15
= (𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

,

𝜙
22
= 𝐵
𝑇

𝑖
𝑃𝐵
𝑖
− 𝛾
𝑑𝑀𝑄
3
−
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

(2𝑅
2
+ 𝑅
3
) ,

𝜙
23
=
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

(𝑅
2
+ 𝑅
3
) ,

𝜙
24
=
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

𝑅
2
,

𝜙
25
= 𝐵
𝑇

𝑖
𝑊
𝑇

,

𝜙
33
= 𝛾
𝑑𝑚 (𝑄
2
− 𝑄
1
) −
𝛾
𝑑𝑚

𝑑
𝑚

(𝑅
1
+ 𝑅
3
)

−
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

(𝑅
2
+ 𝑅
3
) ,

𝜙
44
= − 𝛾

𝑑𝑀𝑄
2
−
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

𝑅
2
,

𝑊 = (𝑑
𝑀
− 𝑑
𝑚
) 𝑅
2
+ 𝑑
𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
3
.

(16)

Proof. Consider the following LK function for system (1):

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) . (17)
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Here

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘) , (18)

𝑉
2
(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝑑𝑚

𝛾
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠)

+

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑𝑀

𝛾
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠)

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) ,

(19)

𝑉
3
(𝑘) =

−1

∑

𝜃=−𝑑𝑚

𝑘−1

∑

𝑠=𝑘+𝜃

𝛾
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
1
𝑧 (𝑠)

+

−𝑑𝑚−1

∑

𝜃=−𝑑𝑀

𝑘−1

∑

𝑠=𝑘+𝜃

𝛾
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠)

+

−1

∑

𝜃=−𝑑(𝑘)

𝑘−1

∑

𝑠=𝑘+𝜃

𝛾
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
3
𝑧 (𝑠) ,

(20)

where 𝑃,𝑄
𝑗
, 𝑅
𝑗
, 𝑗 = 1, 2, 3 are positive definite symmetric

matrices and 𝛾 ∈ (0, 1].
Now, we will show the decay estimation of 𝑉(𝑘) in (17)

along the state trajectory of system (1). To this end, define

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘) =

3

∑

𝑗=1

Δ̃𝑉
𝑗
(𝑘) . (21)

Here

Δ̃𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) (𝐴
𝑇

𝑖
𝑃𝐴
𝑖
− 𝛾𝑃) 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑖
𝑃𝐵
𝑖
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐵
𝑇

𝑖
𝑃𝐵
𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) ,

(22)

Δ̃𝑉
2
(𝑘) = 𝑥

𝑇

(𝑘) (𝑄
1
+ 𝑄
3
) 𝑥 (𝑘)

− 𝛾
𝑑𝑚𝑥
𝑇

(𝑘 − 𝑑
𝑚
) (𝑄
1
− 𝑄
2
) 𝑥 (𝑘 − 𝑑

𝑚
)

− 𝛾
𝜏(𝑘)

𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
3
𝑥 (𝑘 − 𝑑 (𝑘))

− 𝛾
𝑑𝑀𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑄
2
𝑥 (𝑘 − 𝑑

𝑀
)

≤ 𝑥
𝑇

(𝑘) (𝑄
1
+ 𝑄
3
) 𝑥 (𝑘)

− 𝛾
𝑑𝑀𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
3
𝑥 (𝑘 − 𝑑 (𝑘))

− 𝛾
𝑑𝑚𝑥
𝑇

(𝑘 − 𝑑
𝑚
) (𝑄
1
− 𝑄
2
) 𝑥 (𝑘 − 𝑑

𝑚
)

− 𝛾
𝑑𝑀𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑄
2
𝑥 (𝑘 − 𝑑

𝑀
) ,

(23)

Δ̃𝑉
3
(𝑘) = 𝑧

𝑇

(𝑘) ((𝑑
𝑀
− 𝑑
𝑚
) 𝑅
2
+ 𝑑
𝑚
𝑅
1
+ 𝑑 (𝑘) 𝑅

3
) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝑑𝑚

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
1
𝑧 (𝑠)

−

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑𝑀

{𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠)}

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
3
𝑧 (𝑠) ,

(24)

while

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
3
𝑧 (𝑠)

= −

𝑘−1

∑

𝑠=𝑘−𝑑𝑚

{𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
3
𝑧 (𝑠)}

−

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
3
𝑧 (𝑠) ,

−

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑𝑀

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠)

= −

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑(𝑘)

{𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠)}

−

𝑘−𝑑(𝑘)−1

∑

𝑠=𝑘−𝑑𝑀

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠) .

(25)

So (24) could be

Δ̃𝑉
3
(𝑘) ≤ 𝑧

𝑇

(𝑘) ((𝑑
𝑀
− 𝑑
𝑚
) 𝑅
2
+ 𝑑
𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
3
) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝑑𝑚

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
) 𝑧 (𝑠)

−

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
2
+ 𝑅
3
) 𝑧 (𝑠)

−

𝑘−𝑑(𝑘)−1

∑

𝑠=𝑘−𝑑𝑀

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠) .

(26)
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From Lemma 4, we have

−

𝑘−1

∑

𝑠=𝑘−𝑑𝑚

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
) 𝑧 (𝑠)

≤
𝛾
𝑑𝑚

𝑑
𝑚

𝜉
𝑇

1
(𝑘) [
−𝑅
1
− 𝑅
3
𝑅
1
+ 𝑅
3

∗ −𝑅
1
− 𝑅
3

] 𝜉
1
(𝑘) ,

−

𝑘−𝑑𝑚−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
2
+ 𝑅
3
) 𝑧 (𝑠)

≤
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

𝜉
𝑇

2
(𝑘) [
−𝑅
2
− 𝑅
3
𝑅
2
+ 𝑅
3

∗ −𝑅
2
− 𝑅
3

] 𝜉
2
(𝑘) ,

−

𝑘−𝑑(𝑘)−1

∑

𝑠=𝑘−𝑑𝑀

𝛾
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
2
𝑧 (𝑠)

≤
𝛾
𝑑𝑀

𝑑
𝑀
− 𝑑
𝑚

𝜉
𝑇

3
(𝑘) [
−𝑅
2
𝑅
2

∗ −𝑅
2

] 𝜉
3
(𝑘) ,

(27)

where

𝜉
𝑇

1
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑
𝑚
)] ,

𝜉
𝑇

2
(𝑘) = [𝑥

𝑇

(𝑘 − 𝑑
𝑚
) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))] ,

𝜉
𝑇

3
(𝑘) = [𝑥

𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
)] .

(28)

Combining (21)–(27), it yields

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘)

≤ 𝜉
𝑇

(𝑘)

×

[
[
[

[

𝜙
11
+ 𝐴
𝑇

𝑖
𝑊𝐴
𝑖
𝜙
12
+ 𝐴
𝑇

𝑖
𝑊𝐴
𝑖
𝜙
13
0

∗ 𝜙
22
+ 𝐵
𝑇

𝑖
𝑊𝐵
𝑖
𝜙
23
𝜙
24

∗ ∗ 𝜙
33
0

∗ ∗ ∗ 𝜙
44

]
]
]

]

𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑌
𝑖
𝑥 (𝑘) ,

(29)

where

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑚
) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
)] .

(30)

By Lemma 3 and condition (15), we know that the system of
matrices 𝑌

𝑖
= 𝐴
𝑇

𝑖
𝑃𝐴
𝑖
− 𝑈, 𝑖 ∈ ℧ is strictly complete, and the

sets Ω
𝑖
andΩ

𝑖
by (5) and (6) are well defined such that

𝑁

⋃

𝑖=1

Ω
𝑖
= 𝑅
𝑛

\ {0} ,

𝑁

⋃

𝑖=1

Ω
𝑖
= 𝑅
𝑛

\ {0} ,

Ω
𝑖
∩ Ω
𝑗
= Φ, 𝑖 ̸= 𝑗.

(31)

Therefore, for any 𝑥(𝑘) ∈ 𝑅𝑛, 𝑘 > 0, there always exists an
𝑖 ∈ {1, 2, . . . , 𝑁} such that 𝑥(𝑘) ∈ Ω

𝑖
. Choosing the switching

rule (12), by Schur’s complement of [32] with condition (14),
leads to

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘) ≤ 0 ⇐⇒ 𝑉(𝑘) ≤ 𝛾
𝑘

𝑉 (0) . (32)

By the systemLK function (17), there always exist two positive
constants 𝑐

1
, 𝑐
2
such that

𝑐
1
‖𝑥(𝑘)‖

2

≤ 𝑉 (𝑘) , 𝑉 (0) ≤ 𝑐
2
‖𝑥(0)‖

2

𝑠
. (33)

Here

𝑐
1
= 𝜆min (𝑃) ,

𝑐
2
= 𝜆max (𝑃) +

3

∑

𝑗=1

(𝜆max (𝑄𝑗) + 𝜆max (𝑅𝑗)) .
(34)

From (32) and (33), one obtains

‖𝑥 (𝑘)‖ ≤ √
𝑐
2

𝑐
1

𝛾
𝑘/2

‖𝑥(0)‖
𝑠
. (35)

By Definition 1, we know that the system (1) is exponen-
tially stable with decay rate 𝜆 = √𝛾. This completes the
proof.

In order to determine the exponentially stability with
𝐻
∞

performance 𝜅 of system (1), we need to introduce the
following definition.

Definition 7 (see [30]). Consider system (1) with the switch-
ing signal in (12) and the following conditions.

(i) With 𝑤(𝑘) = 0, the system (1) is exponentially stable
with convergence rate 0 < 𝛾 < 1.

(ii) With zero initial conditions, the signals𝑤(𝑘) and𝑦(𝑘)
are bounded by

∞

∑

𝑘=0

𝛾
−2𝑘

𝑦
𝑇

(𝑘) 𝑦 (𝑘) ≤ 𝜅
2

∞

∑

𝑘=0

𝛾
−2𝑘

𝑤
𝑇

(𝑘) 𝑤 (𝑘) , (36)

for all 𝑤 ∈ 𝐿
2
(𝛾, 0,∞), 𝑤 ̸= 0 for constants 𝜅 > 0

and 0 < 𝛾 < 1. In the above conditions, the system
(1) is exponentially stabilizable with𝐻

∞
performance

𝜅 and convergence rate 𝛾 by switching signal in
(12).

Theorem 8. For some constants 𝛾 ∈ (0, 1] and 0 ≤ 𝛼
𝑖
≤ 1,

∑
𝑁

𝑖=1
𝛼
𝑖
= 1 (𝑖 ∈ ℧), if there exist positive definite symmetric
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matrices 𝑃,𝑈,𝑄
𝑗
, 𝑅
𝑗
(𝑗 = 1, 2, 3) such that (15) and the

following LMIs hold:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
11
𝜙
12
𝜙
13
0 𝜙
15
𝐶
𝑇

𝑖
𝜙
15

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
25
𝐶
𝑇

𝑑𝑖
𝜙
25

∗ ∗ 𝜙
33
0 0 0 0

∗ ∗ ∗ 𝜙
44
0 0 0

∗ ∗ ∗ ∗ 𝜙
55
𝐷
𝑇

𝑖
𝐵
𝑇

𝑖
𝑊
𝑇

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (37)

then the system (13) with time-varying delay satisfying (4) is
globally exponentially stable with convergence rate 𝜆 = √𝛾 and
𝐻
∞

performance 𝜅 by the switching signal designed by (12).

Here

𝜙
15
= 𝐴
𝑇

𝑖
𝑃𝐵
𝑖
,

𝜙
25
= 𝐴
𝑇

𝑑𝑖
𝑃𝐵
𝑖
,

𝜙
55
= 𝐵
𝑇

𝑖
𝑃𝐵
𝑖
− 𝜅
2

.

(38)

Proof. The proof is similar to that of Theorem 6. From
Theorem 6, one can easily obtain

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝜅
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤ 𝜂
𝑇

1
(𝑘)

[
[
[
[
[

[

𝜙
11
𝜙
12
𝜙
13
0 𝜙
15

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
25

∗ ∗ 𝜙
33
0 0

∗ ∗ ∗ 𝜙
44
0

∗ ∗ ∗ ∗ 𝜙
55

]
]
]
]
]

]

𝜂
1
(𝑘)

+ 𝑦
𝑇

(𝑘) 𝑦 (𝑘) + 𝑧
𝑇

(𝑘)𝑊𝑧 (𝑘) ,

(39)

where

𝜂
𝑇

1
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑚
) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑤
𝑇

(𝑘)] . (40)

Combining (37) and (15), by Schur’s complement, we have

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝜅
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) ≤ 0. (41)

By Definition 7, the system (13) with time-varying delay sat-
isfying (4) is globally exponentially stable with convergence
rate 𝜆 = √𝛾 and 𝐻∞ performance 𝜅 by the switching signal
designed by (12).

Now, we extend Theorems 6 and 8 to obtain the corre-
sponding results for uncertain switched systems (1). Set

𝑝 (𝑘, 𝑖) = Δ
𝑖
(𝑘) (𝑁

1𝑖
𝑥 (𝑘) + 𝑁

2𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑁

3𝑖
𝑤 (𝑘)) .

(42)

Combining (3), we have

𝑝
𝑇

(𝑘) 𝑝 (𝑘) ≤ (𝑁
1𝑖
𝑥(𝑘) + 𝑁

2𝑖
𝑥(𝑘 − 𝑑 (𝑘)) + 𝑁

3𝑖
𝑤(𝑘))

𝑇

× (𝑁
1𝑖
𝑥 (𝑘) + 𝑁

2𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑁

3𝑖
𝑤 (𝑘)) .

(43)

Then, for any 𝜀 > 0, the following inequalities hold:

𝜀(𝑁
1𝑖
𝑥(𝑘) + 𝑁

2𝑖
𝑥(𝑘 − 𝑑 (𝑘)) + 𝑁

3𝑖
𝑤(𝑘))

𝑇

× ((𝑁
1𝑖
𝑥 (𝑘) + 𝑁

2𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑁

3𝑖
𝑤 (𝑘))

− 𝜀𝑝
𝑇

(𝑘, 𝑖) 𝑝 (𝑘, 𝑖) ≥ 0.

(44)

By (2), the system (1) using (42) can be expressed as
follows:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐵
𝑖
𝑤 (𝑘) +𝑀

1𝑖
𝑝 (𝑘, 𝑖) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐷
𝑖
𝑤 (𝑘) +𝑀

2𝑖
𝑝 (𝑘, 𝑖) .

(45)

The following theorem provides the robust exponential sta-
bility conditions for uncertain switched systems (45) with
𝑤(𝑘) = 0.

Theorem 9. For some constants 𝛾 ∈ (0, 1] and 0 ≤ 𝛼
𝑖
≤ 1,

𝑖 ∈ ℧, ∑
𝑁

𝑖=1
𝛼
𝑖
= 1, if there exist positive definite symmetric

matrices 𝑃,𝑈,𝑄
𝑗
, 𝑅
𝑗
(𝑗 = 1, 2, 3) such that (15) and the

following LMIs hold:

[
[
[
[
[
[
[

[

𝜙
11
𝜙
12
0 0 𝜙

16
𝜙
15

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
26

𝜙
25

∗ ∗ 𝜙
33
0 0 0

∗ ∗ ∗ 𝜙
44
0 0

∗ ∗ ∗ ∗ 𝜙
66
𝑀
𝑇

1𝑖
𝑊
𝑇

∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]

]

< 0, (46)
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then the system (45)with time-varying delay satisfying (4) and
𝑤(𝑘) = 0 is globally exponentially stable with convergence rate
𝜆 = √𝛾 by the switching signal designed by (12).

Here

𝜙
11
= 𝜙
11
+ 𝜀𝑁
𝑇

1𝑖
𝑁
1𝑖
, 𝜙

12
= 𝜙
12
+ 𝜀𝑁
𝑇

1𝑖
𝑁
2𝑖
,

𝜙
16
= 𝐴
𝑇

𝑖
𝑃𝑀
1𝑖
, 𝜙

22
= 𝜙
22
+ 𝜀𝑁
𝑇

2𝑖
𝑁
2𝑖
,

𝜙
26
= 𝐴
𝑇

𝑑𝑖
𝑃𝑀
1𝑖
, 𝜙

66
= 𝑀
𝑇

1𝑖
𝑃𝑀
1𝑖
− 𝜀.

(47)

Proof. The result is carried out using the techniques
employed for proving Theorem 6. Combining (44) with
𝑤(𝑘) = 0, one can obtain the following

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘)

≤ 𝑧
𝑇

(𝑘)𝑊𝑧 (𝑘)

+ 𝜂
𝑇

2
(𝑘)

[
[
[
[
[

[

𝜙
11
𝜙
12
0 0 𝜙

16

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
26

∗ ∗ 𝜙
33
0 0

∗ ∗ ∗ 𝜙
44
0

∗ ∗ ∗ ∗ 𝜙
66

]
]
]
]
]

]

𝜂
𝑇

2
(𝑘) ,

(48)

where

𝜂
𝑇

2
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑝
𝑇

(𝑘, 𝑖)] . (49)

From (46) and (15), by Schur Complement, we have𝑉(𝑘+1)−
𝛾𝑉(𝑘) ≤ 0.

Now, we are going to analyze the𝐻
∞
performance for the

uncertain system (1). The main result is given as follows.

Theorem 10. For some constants 𝛾 ∈ (0, 1] and 0 ≤ 𝛼
𝑖
≤ 1,

𝑖 ∈ ℧, ∑𝑁
𝑖=1
𝛼
𝑖
= 1, if there exist positive definite symmetric

matrices 𝑃,𝑈,𝑄
𝑗
, 𝑅
𝑗
(𝑗 = 1, 2, 3) such that (15) and the

following LMIs hold

[
[
[
[
[
[
[
[
[
[
[

[

𝜙
11
𝜙
12
𝜙
13
0 𝜙
15
𝜙
16
𝐶
𝑇

𝑖
𝜙
15

∗ 𝜙
22
𝜙
23
𝜙
24
𝜙
25
𝜙
26
𝐶
𝑇

𝑑𝑖
𝜙
25

∗ ∗ 𝜙
33
0 0 0 0 0

∗ ∗ ∗ 𝜙
44
0 0 0 0

∗ ∗ ∗ ∗ 𝜙
55
𝜙
56
𝐷
𝑇

𝑖
𝜙
58

∗ ∗ ∗ ∗ ∗ 𝜙
66
𝑀
𝑇

2𝑖
𝜙
68

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑊

]
]
]
]
]
]
]
]
]
]
]

]

< 0, (50)

then the system (1) with time-varying delay satisfying (4) is
globally exponentially stable with convergence rate 𝜆 = √𝛾 and
𝐻
∞

performance 𝜅 by the switching signal designed by (12).
Here

𝜙
15
= 𝜙
15
+ 𝜀𝑁
𝑇

1𝑖
𝑁
3𝑖
, 𝜙

25
= 𝜙
25
+ 𝜀𝑁
𝑇

2𝑖
𝑁
3𝑖
,

𝜙
58
= 𝐵
𝑇

𝑖
𝑊
𝑇

, 𝜙
55
= 𝜙
55
+ 𝜀𝑁
𝑇

3𝑖
𝑁
3𝑖
,

𝜙
56
= 𝐵
𝑇

𝑖
𝑃𝑀
1𝑖
, 𝜙

68
= 𝑀
𝑇

1𝑖
𝑊
𝑇

.

(51)

Proof. The result is carried out using the techniques
employed for provingTheorems 6, 8, and 9.There exists mat-
rix Θ satisfying

𝑉 (𝑘 + 1) − 𝛾𝑉 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝜅
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤ 𝜂
𝑇

3
(𝑘)Θ𝜂

𝑇

3
(𝑘) + 𝑧

𝑇

(𝑘)𝑊𝑧 (𝑘) + 𝑦
𝑇

(𝑘) 𝑦 (𝑘) ,

(52)

where

𝜂
𝑇

3
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑚
) 𝑥
𝑇

(𝑘 − 𝑑
𝑀
) 𝑤
𝑇

(𝑘) 𝑝
𝑇

(𝑘, 𝑖)] . (53)

Combining (50) and (15), by Schur Complement, we have
𝑉(𝑘 + 1) − 𝛾𝑉(𝑘) + 𝑦

𝑇

(𝑘)𝑦(𝑘) − 𝜅
2

𝑤
𝑇

(𝑘)𝑤(𝑘) ≤ 0.

4. Examples

In this section, we consider some numerical examples in
[26, 27] to show that the proposed theorem in this paper
provides less conservativeness with comparison to some
existing results.

Example 1 (see [27]). Consider system (13) with𝑤(𝑘) = 0 and
the following parameters:

𝐴
1
= [
0.54 1.02

−0.17 −0.31
] , 𝐴

𝑑1
= [
0.18 0.36

−0.06 −0.12
] ,

𝐴
2
= [
−0.01 −0.06

0.01 0.04
] , 𝐴

𝑑2
= [
0.11 0.18

−0.03 −0.04
] .

(54)
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Figure 1: The switching regions.

Table 1: Allowable delay upper bound for different decay rate with
𝑑
𝑚
= 1, 𝛼

1
= 𝛼
2
= 0.5.

𝜆 = 0.8 𝜆 = 1

[26] — 𝑑
𝑀
= 2

[27] 𝑑
𝑀
= 8 𝑑

𝑀
= 182

Theorem 6 𝑑
𝑀
= 10 𝑑

𝑀
= ∞

Assume the minimum delay bound 𝑑
𝑚
= 1. By Theorem 6,

via solving LMIs (14) and (15) with 𝜆 = 0.8 and 𝛼
1
= 𝛼
2
= 0.5,

we have 𝑑
𝑀
= 10 and

𝑃 = [
13.2019 30.1428

∗ 72.992
] , 𝑈 = [

0.4493 1.1242

∗ 3.098
] .

(55)

From (9) and (11), one can obtain the switching regions

Ω
1
= {[𝑥

1
𝑥
2
]
𝑇

∈ 𝑅 : −0.0244𝑥
2

1
− 0.5572𝑥

1
𝑥
2

−1.4106𝑥
2

2
< 0} , Ω

2
= 𝑅
2

\ Ω
1
.

(56)

The switching regions Ω
1
and Ω

2
of the system are shown in

Figure 1. Select the switching signal by

𝜎 (𝑥 (𝑘)) = 𝑖, 𝑥 (𝑘) ∈ Ω
𝑖
, 𝑖 = 1, 2. (57)

With the initial condition 𝜙(𝜃) = [1 − 1]𝑇, 𝜃 = −10, −9, . . . , 0,
and 𝑑(𝑘) = 10, the state responses of system are shown in
Figure 2.

In order to show the improvement of our results over
other recent results, some comparisons are made in Table 1.
FromTable 1, one can see that the results of this paper provide
a larger allowable upper bound for time delay to guarantee the
asymptotical or exponentially stability of system (1) with (54)
by switching signal in (12).

0 5 10 15 20 25

0
0.2
0.4
0.6
0.8

1

−0.6

−0.8

−1

−0.2

−0.4

k

x1(k)

x2(k)

Figure 2: The state response.

Example 2 (see [27]). Consider system (13) with 𝑤(𝑘) = 0
and the following parameters:

𝐴
1
= [
1.01 0.1

0 0.1
] , 𝐴

𝑑1
= [
−0.1 0

−0.1 −0.1
] ,

𝐴
2
= [
0.1 0

0.1 1.02
] , 𝐴

𝑑2
= [
0.12 0

0.11 0.11
] .

(58)

Let 𝛼
1
= 𝛼
2
= 0.5, the minimum delay bound 𝑑

𝑚
= 1, and

decay rate 𝜆 = 1.The delay upper bound obtained by [27] is 3.
However, our result obtained by the application ofTheorem 6
could be infinite to guarantee the asymptotic stability of
system (13) with (58) by switching signal in (12). The switch-
ing regions can be designed in the same way as in Example 1.

Example 3. Consider the discrete-time switched system (13)
with 𝑤(𝑘) = 0 and the following parameters:

𝐴
1
= [
1.21 0.1

0 0.1
] , 𝐴

𝑑1
= [
−0.1 0

−0.1 −0.1
] ,

𝐴
2
= [
0.1 0

0.1 1.02
] , 𝐴

𝑑2
= [
0.12 0

0.11 0.11
] .

(59)

One can easily find that both the above subsystems are
unstable.The state responses of the two subsystems are shown
in Figures 3 and 4. Let 𝑑

𝑚
= 1. By Theorem 6, via solving

LMIs (14) and (15) with 𝜆 = 1 and 𝛼
1
= 𝛼
2
= 0.5, we have

𝑑
𝑀
= 5 and

𝑃 = 1.0𝑒 + 003 ∗ [
3.5486 0.1556

∗ 0.5634
] ,

𝑈 = 1.0𝑒 + 003 ∗ [
2.6204 0.2602

∗ 0.3184
] .

(60)
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Figure 3: State responses of the subsystems 1.

From (9) and (11), one can obtain the switching regions

Ω
1

𝑖
= {[𝑥

1
𝑥
2
]
𝑇

∈ 𝑅 : 2.5751𝑥
2

1
+ 0.376𝑥

1
𝑥
2

−0.2741𝑥
2

2
< 0} , Ω

2
= 𝑅
2

\ Ω
1
.

(61)

Select the switching signal by

𝜎 (𝑥 (𝑘)) = 𝑖, 𝑥 (𝑘) ∈ Ω
𝑖
, 𝑖 = 1, 2. (62)

With time-varying delay 𝑑(𝑘) = 5 and the initial condi-
tion 𝜙(𝜃) = [1 −1]𝑇, 𝜃 = −5, −4, . . . , 0. The state responses
of system are shown in Figure 5. It can be seen from Figure 5
that the designed switching law is effective although all
subsystems are unstable. However, with the same parameters
and 𝑑

𝑀
= 5, the results in [27] cannot find any feasible solu-

tion to guarantee the asymptotic stability of system (13) with
(59).

Example 4. Consider system (45) with the following param-
eters:

𝐴
1
= [
1 0.01

0 0
] , 𝐴

𝑑1
= [
0 0.1

0 −0.1
] ,

𝐵
1
= [
0.1 0

0 0.1
] , 𝐶

1
= [
0.01 0

0 0.08
] ,

𝐶
𝑑1
= [
0.02 0

0 0.01
] , 𝐷

1
= [
0.1 0.1

0 0.2
] ,

𝐴
2
= [
1 0.01

0.01 1.01
] , 𝐴

𝑑2
= [
0.1 0

0.1 0.1
] ,
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Figure 4: State responses of the subsystems 2.
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Figure 5: State responses of the switched systems 2.

𝐵
2
= [
0.2 0

0.1 0.1
] , 𝐶

2
= [
0.03 0

0 0.05
] ,

𝐶
𝑑2
= [
0.02 0

0 0.02
] , 𝐷

2
= [
0.2 0

0 0.1
] ,

𝑀
2
= [
0.1 0

0 0.05
] ,𝑁
2
= [
0.01 0

0 0.02
] ,

𝑀
1
= 𝐵
1
, 𝑁

1
= 𝐶
𝑑1
, 𝑁

3
= 0.1 × 𝐵

1
.

(63)

For a given 𝑑
𝑚
= 1, 𝛾 = 0.98, 𝜅 = 1.53, and 𝛼

1
= 𝛼
2
= 0.5. We

compute the upper delay bound 𝑑
𝑀
= 23 such that the uncer-

tain system is exponential stability by applying Theorem 10.
However, with the same parameters and 𝑑

𝑀
= 23, the

results in [30] cannot find any feasible solution to guarantee
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the exponentially stable with 𝐻
∞

performance 𝜅 = 1.53 of
system (45). Via solving LMIs (50) and (15), we have

𝑃 = [
0.6836 0.0942

∗ 0.6615
] , 𝑈 = [

0.3424 0.0067

0.0067 0.3387
] . (64)

From (9) and (11), one can obtain the switching regions

Ω
1
= {[𝑥

1
𝑥
2
]
𝑇

∈ 𝑅 : 0.3413𝑥
2

1
+ 0.0002𝑥

1
𝑥
2

−0.3386𝑥
2

2
< 0} , Ω

2
= 𝑅
2

\ Ω
1
.

(65)

Select the switching signal by 𝜎(𝑥(𝑘)) = 𝑖, 𝑥(𝑘) ∈ Ω
𝑖
, 𝑖 = 1, 2.

On the other side, by setting the upper delay bound 𝑑
𝑀
= 3,

we have the𝐻
∞

performance 𝜅 = 0.275.

5. Conclusions

By using improved discrete LK function combinedwith LMIs
technique, in this paper, we propose new criteria for the expo-
nential stability with𝐻

∞
performance of uncertain switched

linear discrete-time systems with interval time-varying delay.
If there is a feasible solution for the proposed LMIs conditions
under some given upper bounds of delay, the switching law
can be designed and the exponential stability of the systems
can be achieved. Finally, the obtained results are shown
to be less conservative than previous ones via the numerical
examples.
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This paper investigates the stability analysis problem for a class of discrete-time networked control systems (NCSs) with random
time delays and packet dropouts based on unified Markov jump model. The random time delays and packet dropouts existed in
feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a
newMarkovian jump linear system (MJLS) withMarkov delays. Sufficient conditions of the stochastic stability for NCSs is obtained
by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented
based on linear matrix inequality (LMI) technique. A numerical example is given to illustrate the effectiveness of the proposed
method.

1. Introduction

Networked control systems (NCSs) are a type of closed-
loop systems, in which the control loops are closed through
communication networks. Compared with the traditional
control systems, the use of the communication networks
bring many advantages such as low cost, reduced weight, and
simple installation andmaintenance as well as high efficiency,
flexibility, and reliability. Consequently, NCSs are applied
in a broad range such as manufacturing plants, vehicles,
aircrafts, spacecrafts, and remote surgery [1]. However, the
communication networks in control loops also present some
constraints such as time delays and packet dropouts due
to limited bandwidth; quantization errors caused by hybrid
nature of NCSs; variable sampling or transmission intervals
due to multiple nodes; clock asynchronization among local
and remote nodes; network security and safety and network
security due to shared communication networks [2, 3]. It
is generally known that any of these networked-induced
communication imperfections and constraints can degrade
closed-loop performance or, even worse, can harm closed-
loop stability of NCSs.Therefore, it is important to know how
these effects influence the stability properties. Recently, some

important results of NCSs have been reported in the existing
literature for instance, the discussions of packet dropouts [4–
13], time delays [14–24], quantization [25], distributed syn-
chronization [26], communication constraints [27], stability
and controller design [28–33], both data quantizations and
packet losses [34], both time delays and packet dropouts [35–
44], and output feedback control problem [19, 45, 46].

In NCSs, time delays and packet dropouts are two
important issues. To study these issues, many efforts have
been made for NCSs with time delays [14–24] and packet
dropouts [4–13]; for more details review, please refer to the
literature therein. However, both time delays and packet
dropouts exist in NCSs by the insertion of communication
network in the feedback control loop. Xie andXia [35] studied
the robust fault tolerant controller design for NCSs with
fast varying delay and packet dropout. Zhang and Yu [36]
presented a switched system model to describe the NCSs
with both delay and packet dropout, and the state feedback
stabilizing controllers are designed by augmenting technique.
Yu and Shi [37] addressed the two-mode-dependent state
feedback controller design in NCSs with time delays and
packet dropouts by augmenting the state variable approach.
Dong et al. [38] studied the robust 𝐻

∞
filtering problem
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for a class of uncertain nonlinear networked systems with
both stochastic time-varying communication delays and
packet dropouts. Jiang et al. [39] introduced the design of
observer-based controller for NCSs with network induced
delay and packet dropout. Li et al. [40] considered the
observer-based fault detection problem for NCSs with long
time delays and packet dropout by modeling the observers
system as an uncertain switched system. Li et al. [41] studied
the guaranteed const control of NCSs with the S-C packet
dropouts and time delays. Wang and Yang [42] considered
the problem of 𝐻

∞
controller design for NCSs with time

delay and packet dropout by applying the linear estimation-
based time delay and packet dropout compensation method.
Liu et al. [43] investigated the receding horizon 𝐻

∞
control

problem for a class NCSs with random delay and packet
disordering by using the receding optimization principle. Qiu
et al. [44] considered the state feedback control problem
of NCS with both time delays and packet dropouts. In [19,
45, 46], the output feedback control problem of NCSs were
investigated. To the best of the authors’ knowledge, up to
now, little attention has been paid to the study of NCSs with
random time delays and packet dropouts based on Markov
jump unified model, which motivates our investigation.

In this paper, we address the unified model and stability
analysis problem of NCSs with the random time delays
and packet dropouts under a Markovian jump linear system
(MJLS) framework. The feedback communication link ran-
dom time delays and packet dropouts are modeled by two
independentMarkov chains, the resulting closed-loop system
is modeled as a newMJLS with Markov delays. Then, we give
stability analysis and output feedback controller designwhich
are for discrete-time NCSs with both time delays and packet
dropouts by the Lyapunov stability theory and linear matrix
inequality method.

Notations. In the sequel, if not explicit, matrices are assumed
to have appropriate dimensions.R𝑛 andR𝑛×𝑚 denote, respec-
tively, the 𝑛 dimensional Euclidean space and the set of all
𝑛×𝑚 realmatrices.The notations𝐴 > 0 and𝐴 < 0 are used to
denote the positive and negative definite matrix, respectively.
diag(𝐴

1
, . . . , 𝐴

𝑛
) refers to a 𝑛 × 𝑛 diagonal matrix with 𝐴

𝑖

as its 𝑖th diagonal entry. 𝐼 and 0 denote the identity matrix
and zero matrix with appropriate dimensions, respectively.
The superscript 𝑇 denotes the transpose for vectors or
matrices.E[⋅]denotes themathematical expectation operator.
The symbol ∗ denotes blocks that are readily inferred by
symmetry.

2. Problem Description

The framework of the system over a network medium is
depicted in Figure 1. Considering the same assumption in
[14], the sensor, the controller, and the actuator are time-
driven and are connected over a network medium. Under
the assumption, it is known that the controller updates at the
instant 𝑘 will always use the most recent data; otherwise, it
will maintain the old data. In the NCS as Figure 1, network

Actuator

𝜏(k)

y(k)

u(k)

S

y(k)
Controller

SensorPlant

Network

Figure 1: The structure of the NCS with random delays and/or
packet dropouts.

induced time delays and packet dropouts exist in the feedback
communication link.

The discrete-time plant with a time-varying controller is
described as

𝑥
𝑝
(𝑘 + 1) = 𝐴𝑥

𝑝
(𝑘) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥
𝑝
(𝑘) ,

(1)

where 𝑥
𝑝
(𝑘) ∈ R𝑛 is the system state, 𝑢(𝑘) ∈ R𝑚 is the control

input, and 𝑦(𝑘) ∈ R𝑝 is measurable output. 𝐴, 𝐵, and 𝐶 are
known real constant matrices with appropriate dimensions.
Random time delays and packet dropouts exist in link from
sensor-to-controller (S-C), as shown in Figure 1. Here, 𝜏(𝑘)
represents the bounded random S-C time delays. One way to
model the delays 𝜏(𝑘) is using the finite state Markov chain as
shown in [17–19]. The main advantage of the Markov model
is that the dependencies between the delays are taken into
account since the current time delays in real networks are
usually relatedwith the previous delays [17]. In this paper 𝜏(𝑘)
is modeled as a homogeneous Markov chain that take values
in 𝑆
2
= {0, 1, . . . , 𝑠

2
}. 𝑆 denotes the network switches between

the S-C. 𝛼(𝑘) (𝛼(𝑘) = 0, 1) denotes the states of 𝑆. When 𝑆

is in state 𝛼(𝑘) = 0, the packet is received successfully and
the 𝑦(𝑘) = 𝑦(𝑘 − 𝜏(𝑘)). Whereas when 𝑆 is in state 𝛼(𝑘) = 1,
the packet is lost and the switch output is held at the previous
value 𝑦(𝑘) = 𝑦(𝑘 − 1). The behavior of the S-C time delays
and packet dropouts can be modeled as

𝑦 (𝑘) = (1 − 𝛼 (𝑘)) 𝑦 (𝑘 − 𝜏 (𝑘)) + 𝛼 (𝑘) 𝑦 (𝑘 − 1) , (2)

where

𝛼 (𝑘) = {
0, if 𝑆 is closed and the packet is received,
1, if 𝑆 is open and the packet is lost.

(3)

Considering the mode-dependent output feedback con-
troller:

𝑢 (𝑘) = 𝐾 (𝛼 (𝑘) , 𝜏 (𝑘)) 𝑦 (𝑘) , (4)

where𝐾(𝛼(𝑘), 𝜏(𝑘)) is the output feedback controller gain.
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Let 𝑥(𝑘) = [𝑥
𝑝
(𝑘)
𝑇

𝑦(𝑘 − 1)
𝑇

]
𝑇

be the augmented state
vector. Under the control (4), the closed-loop system of (1) is

𝑥 (𝑘 + 1) = 𝐴 (𝛼 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝛼 (𝑘))𝐻𝑥 (𝑘 − 𝜏 (𝑘)) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝜏max, −𝜏max + 1, . . . , 0,
(5)

where 𝐴(𝛼(𝑘)) = [
𝐴 𝛼(𝑘)𝐵𝐾(𝛼(𝑘),𝜏(𝑘))

0 𝛼(𝑘)𝐼
], 𝐵(𝛼(𝑘)) =

[
(1−𝛼(𝑘))𝐵𝐾(𝛼(𝑘),𝜏(𝑘))𝐶

(1−𝛼(𝑘))𝐶
], 𝐻 = [𝐼 0], 𝜏max = max{𝜏(𝑘)},

and 𝜑(𝑘) is the initial condition of 𝑥(𝑘).
In system (5), {𝛼(𝑘), 𝑘 ∈ Z} and {𝜏(𝑘), 𝑘 ∈ Z} are

two independent discrete-time homogeneousMarkov chains
taking value in a finite set 𝑆

1
= {0, 1} and 𝑆

2
= {0, 1, . . . , 𝑠

2
}

with transition probabilities:

Pr {𝛼 (𝑘 + 1) = 𝑗 | 𝛼 (𝑘) = 𝑖} = 𝜋
𝑖𝑗
, 𝜋

𝑖
= Pr (𝜋

0
= 𝑖) ,

Pr {𝜏 (𝑘 + 1) = 𝑛 | 𝜏 (𝑘) = 𝑚} = 𝜆
𝑚𝑛
,

𝜆
𝑚
= Pr (𝜆

0
= 𝑚) ,

(6)

where 𝜋
𝑖𝑗
≥ 0 and 𝜆

𝑚𝑛
≥ 0 for all 𝑖, 𝑗 ∈ 𝑆

1
,𝑚, 𝑛 ∈ 𝑆

2
and

1

∑

𝑗=0

𝜋
𝑖𝑗
= 1,

𝑠2

∑

𝑛=0

𝜆
𝑚𝑛

= 1. (7)

For 𝛼(𝑘) = 𝑖, 𝑖 ∈ 𝑆
1
, when 𝛼(𝑘) in mode 𝑖 = 0 and

𝑖 = 1, the 𝛼(𝑘) in (5) take value 𝛼(𝑘) = 0 and 𝛼(𝑘) =

1, respectively. 𝐴(𝛼(𝑘)) and 𝐵(𝛼(𝑘)) are known constant
matrices of appropriate dimensions.

Remark 1. The closed-loop system (5) is a MJLS with two
Markov chains, which describe the behavior of the S-C
time delays and packet dropouts, respectively. This enables
us to analyze and synthesize such NCSs by applying MJLS
theory. Note that modeling the S-C time delays and packet
dropouts simultaneously in NCSs based on unified Markov
jump model has not been done in the literature.

Definition 2 (see [19]). The system in (5) is stochastically
stable if for every finite 𝑥

0
= 𝑥(0), initial mode 𝛼

0
= 𝛼(0) ∈

𝑆
1
, and 𝜏

0
= 𝜏(0) ∈ 𝑆

2
, there exists a finite W > 0 such that

the following holds:

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2

| 𝑥
0
, 𝛼
0
, 𝜏
0
} < 𝑥

𝑇

0
W𝑥
0
. (8)

3. Main Results

By applying a new Lyapunov functional, sufficient condi-
tions for the stochastic stability and synthesis of the mode-
dependent output feedback controller design for system (5)
will be established in this section.

Theorem 3. For system (5), given random but bounded scalar
𝜏(𝑘) ∈ [𝜏min 𝜏max], if for each mode 𝑖 ∈ 𝑆

1
, 𝑚 ∈ 𝑆

2
, there

exist matrices 𝑃
𝑖,𝑚

> 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, and

𝑅
2
> 0 such that the following matrix inequalities:

[
[
[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

∗ −𝑃
𝑖,𝑚

0 0

∗ ∗ −𝑅
1

0

∗ ∗ ∗ −𝑅
2

]
]
]

]

< 0, (9)

where

Ξ
1
=

[
[
[

[

Π
𝑖,𝑚

𝐻
𝑇

𝑅
1

0 0

𝑅
1
𝐻 −𝑄

3
− 2𝑅
1
− 2𝑅
2

𝑅
2

𝑅
1
+ 𝑅
2

0 𝑅
2

−𝑄
2
− 𝑅
2

0

0 𝑅
1
+ 𝑅
2

0 −𝑄
1
− 𝑅
1
− 𝑅
2

]
]
]

]

,

Ξ
2
= [𝑃
𝑖,𝑚
𝐴
𝑖
𝑃
𝑖,𝑚
𝐵
𝑖
0 0]
𝑇

,

Ξ
3
= [𝜏max𝑅1𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝑅1𝐻𝐵

𝑖
0 0]
𝑇

,

Ξ
4
= [𝜏𝑅

2
𝐻(𝐴
𝑖
− 𝐼) 𝜏𝑅

2
𝐻𝐵
𝑖
0 0]
𝑇

,

𝜏 = 𝜏max − 𝜏min,

𝑃
𝑖,𝑚

=

1

∑

𝑗=0

𝑠2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
𝑃
𝑗,𝑛
,

Π
𝑖,𝑚

= −𝑃
𝑖,𝑚

+ 𝐻
𝑇

(𝑄
1
+ 𝑄
2
)𝐻

+ (𝜏max − 𝜏min + 1)𝐻
𝑇

𝑄
3
𝐻 −𝐻

𝑇

𝑅
1
𝐻,

𝐴
𝑖
= [

𝐴 𝑖𝐵𝐾 (𝑖, 𝑚)

0 𝑖𝐼
] ,

𝐵
𝑖
= [

(1 − 𝑖) 𝐵𝐾 (𝑖, 𝑚)𝐶

(1 − 𝑖) 𝐶
] ,

(10)

and𝐻 is defined in (5).
Hold for all 𝑖, 𝑗 ∈ 𝑆

1
and 𝑚, 𝑛 ∈ 𝑆

2
; then system (5) is

stochastically stable.

Proof. For the closed-loop system (5), stochastic Lyapunov
functional is constructed as follows:

𝑉 (𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘)) =

4

∑

𝜌=1

𝑉
𝜌
(𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))

=

4

∑

𝜌=1

𝑉
𝜌
,

(11)

where

𝑉
1
= 𝑥(𝑘)

𝑇

𝑃 (𝛼 (𝑘) , 𝜏 (𝑘)) 𝑥 (𝑘) ,

𝑉
2
=

𝑘−1

∑

𝑙=𝑘−𝜏max

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
1
𝐻𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝜏min

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
2
𝐻𝑥 (𝑙) ,

𝑉
3
=

−𝜏min+1

∑

𝜃=−𝜏max+2

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

+

𝑘−1

∑

𝑙=𝑘−𝜏(𝑘)

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙) ,



4 Journal of Applied Mathematics

𝑉
4
=

0

∑

𝜃=−𝜏max+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝜏max𝛿(𝑙)
𝑇

𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+

−𝜏min

∑

𝜃=−𝜏max+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

(𝜏max − 𝜏min)

× 𝛿(𝑙)
𝑇

𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙) ,

(12)

and 𝛿(𝑙) = 𝑥(𝑙 + 1) − 𝑥(𝑙). In the following when 𝛼(𝑘) = 𝑖 and
𝜏(𝑘) = 𝑚, we will write 𝑃(𝛼(𝑘), 𝜏(𝑘)), 𝐾(𝛼(𝑘), 𝜏(𝑘)), 𝐴(𝛼(𝑘))
and 𝐵(𝛼(𝑘)) as 𝑃

𝑖,𝑚
,𝐾
𝑖,𝑚
, 𝐴
𝑖
, and 𝐵

𝑖
, respectively. We denote:

Δ𝑉 (𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))

=

4

∑

𝜌=1

Δ𝑉
𝜌

=

4

∑

𝜌=1

[𝑉
𝜌
(𝑥 (𝑘 + 1) , 𝛼 (𝑘 + 1) , 𝜏 (𝑘 + 1) | 𝑥 (𝑘) ,

𝛼 (𝑘) , 𝜏 (𝑘)) −𝑉
𝜌
(𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))] .

(13)

Let 𝜉(𝑘) = [𝑥(𝑘)
𝑇

(𝐻𝑥(𝑘 − 𝑚))
𝑇

(𝐻𝑥(𝑘 − 𝜏min))
𝑇

(𝐻𝑥(𝑘 − 𝜏max))
𝑇

]
𝑇

. Then, along the solution of system (5) we
have

E [Δ𝑉
1
] = 𝑥(𝑘 + 1)

𝑇[

[

1

∑

𝑗=0

𝑠2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
𝑃
𝑗,𝑛

]

]

× 𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃
𝑖,𝑚
𝑥 (𝑘)

= 𝜉
𝑇

(𝑘)

[
[
[
[
[
[

[

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

0

0

]
]
]
]
]
]

]

𝑃
𝑖,𝑚

[𝐴
𝑖
𝐵
𝑖
0 0] 𝜉 (𝑘)

− 𝑥
𝑇

(𝑘) 𝑃
𝑖,𝑚
𝑥 (𝑘) ,

(14)

where 𝑃
𝑖,𝑚

is defined inTheorem 3.
We have
E [Δ𝑉

2
] = 𝑥
𝑇

(𝑘)𝐻
𝑇

(𝑄
1
+ 𝑄
2
)𝐻𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝜏max)𝐻
𝑇

𝑄
1
𝐻𝑥 (𝑘 − 𝜏max)

− 𝑥
𝑇

(𝑘 − 𝜏min)𝐻
𝑇

𝑄
2
𝐻𝑥 (𝑘 − 𝜏min) ,

(15)

E [Δ𝑉
3
] = (𝜏max − 𝜏min + 1) 𝑥(𝑘)

𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘)

−

𝑘−𝜏min

∑

𝜃=𝑘−𝜏max+1

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

+ (

𝑘−1

∑

𝑙=𝑘−𝑛+1

−

𝑘−1

∑

𝑙=𝑘−𝑚+1

)𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

− 𝑥(𝑘 − 𝑚)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘 − 𝑚) .

(16)

Note that

𝑘−1

∑

𝑙=𝑘−𝑛+1

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

= [

[

𝑘−1

∑

𝑙=𝑘−𝜏min+1

+

𝑘−𝜏min

∑

𝑙=𝑘−𝑛+1

]

]

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

≤ [

[

𝑘−1

∑

𝑙=𝑘−𝑚+1

+

𝑘−𝜏min

∑

𝑙=𝑘−𝜏max+1

]

]

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙) .

(17)

By combining (16) and (17), we have

E [Δ𝑉
3
] ≤ (𝜏max − 𝜏min + 1) 𝑥(𝑘)

𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘)

− 𝑥(𝑘 − 𝑚)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘 − 𝑚) ,

(18)

E [Δ𝑉
4
] = 𝜏
2

max𝛿
𝑇

(𝑘)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑘)

−

𝑘−1

∑

𝑙=𝑘−𝜏max

𝜏max𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+ (𝜏max − 𝜏min)
2

𝛿
𝑇

(𝑘)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑘)

−

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏max

(𝜏max − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙) .

(19)

By Jensen’s inequality, we can get

𝑘−1

∑

𝑙=𝑘−𝜏max

𝜏max𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

= (

𝑘−𝜏𝑘−1

∑

𝑙=𝑘−𝜏max

+

𝑘−1

∑

𝑙=𝑘−𝜏𝑘

)(𝜏max − 𝜏𝑘 + 𝜏𝑘)

× 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

≥ (𝜏max − 𝜏𝑘)

𝑘−𝜏𝑘−1

∑

𝑙=𝑘−𝜏max

𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+ 𝜏
𝑘

𝑘−1

∑

𝑙=𝑘−𝜏𝑘

𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

≥ (

𝑘−𝜏𝑘−1

∑

𝑙=𝑘−𝜏max

𝛿 (𝑙))

𝑇

𝐻
𝑇

𝑅
1
𝐻(

𝑘−𝜏𝑘−1

∑

𝑙=𝑘−𝜏max

𝛿 (𝑙))

+ (

𝑘−1

∑

𝑙=𝑘−𝜏𝑘

𝛿 (𝑙))

𝑇

𝐻
𝑇

𝑅
1
𝐻(

𝑘−1

∑

𝑙=𝑘−𝜏𝑘

𝛿 (𝑙))
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≥ (𝑥 (𝑘 − 𝜏max) − 𝑥 (𝑘 − 𝜏𝑘))
𝑇

𝐻
𝑇

𝑅
1
𝐻

× (𝑥 (𝑘 − 𝜏max) − 𝑥 (𝑘 − 𝜏𝑘))

+ (𝑥 (𝑘 − 𝜏
𝑘
) − 𝑥 (𝑘))

𝑇

𝐻
𝑇

𝑅
1
𝐻(𝑥 (𝑘 − 𝜏

𝑘
) − 𝑥 (𝑘))

≥ 𝜉(𝑘)
𝑇

{{{

{{{

{

[
[
[

[

𝐻
𝑇

𝑅
1
𝐻 −𝐻

𝑇

𝑅
1
0 0

−𝑅
1
𝐻 2𝑅

1
0 −𝑅

1

0 0 0 0

0 −𝑅
1

0 𝑅
1

]
]
]

]

}}}

}}}

}

𝜉 (𝑘) .

(20)

Similarly, we have

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏max

(𝜏max − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙)

= (

𝑘−𝜏𝑘−1

∑

𝑙=𝑘−𝜏max

+

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏𝑘

)

× (𝜏max − 𝜏𝑘 + 𝜏𝑘 − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙)

≥ 𝜉(𝑘)
𝑇

{{{

{{{

{

[
[
[

[

0 0 0 0

0 2𝑅
2
−𝑅
2
−𝑅
2

0 −𝑅
2

𝑅
2

0

0 −𝑅
2

0 𝑅
2

]
]
]

]

}}}

}}}

}

𝜉 (𝑘) .

(21)

By combining (19), (20), and (21), we have

E [Δ𝑉
4
] ≤ 𝜉(𝑘)

𝑇

{{{{

{{{{

{

[
[
[
[

[

𝜏max(𝐻 (𝐴
𝑖
− 𝐼))
𝑇

𝜏max(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]

]

× 𝑅
1
[𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]

+

[
[
[
[

[

𝜏(𝐻(𝐴
𝑖
− 𝐼))
𝑇

𝜏(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]

]

× 𝑅
2
[𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]

+

[
[
[

[

−𝐻
𝑇

𝑅
1
𝐻 𝐻

𝑇

𝑅
1
0 0

𝑅
1
𝐻 −2𝑅

1
0 𝑅
1

0 0 0 0

0 𝑅
1

0 −𝑅
1

]
]
]

]

+

[
[
[

[

0 0 0 0

0 −2𝑅
2

𝑅
2

𝑅
2

0 𝑅
2

−𝑅
2

0

0 𝑅
2

0 −𝑅
2

]
]
]

]

}}}}

}}}}

}

𝜉 (𝑘) ,

(22)

where 𝜏 is defined inTheorem 3.
By combining (14), (15), (18), and (22), we have

E [Δ𝑉] ≤ 𝜉
𝑇

(𝑘)

{{{{{{

{{{{{{

{

[
[
[

[

Π
𝑖,𝑚

𝐻
𝑇

𝑅
1

0 0

𝑅
1
𝐻 −𝑄

3
− 2𝑅
1
− 2𝑅
2

𝑅
2

𝑅
1
+ 𝑅
2

0 𝑅
2

−𝑄
2
− 𝑅
2

0

0 𝑅
1
+ 𝑅
2

0 −𝑄
1
− 𝑅
1
− 𝑅
2

]
]
]

]

+

[
[
[
[
[
[

[

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

0

0

]
]
]
]
]
]

]

𝑃
𝑖,𝑚

[𝐴
𝑖
𝐵
𝑖
0 0] +

[
[
[
[
[
[

[

𝜏max(𝐻 (𝐴
𝑖
− 𝐼))
𝑇

𝜏max(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]
]
]

]

𝑅
1
[𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]

+

[
[
[
[
[
[

[

𝜏(𝐻(𝐴
𝑖
− 𝐼))
𝑇

𝜏(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]
]
]

]

𝑅
2
[𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]

}}}}}}

}}}}}}

}

𝜉 (𝑘)

= 𝜉
𝑇

(𝑘)Θ
𝑖,𝑚
𝜉 (𝑘) ,

(23)

where Π
𝑖,𝑚

and 𝜏 are defined inTheorem 3.
By Schur complement and from (9), we have Θ

𝑖,𝑚
< 0.

Therefore,

E [Δ𝑉] ≤ −𝜆min (−Θ𝑖,𝑚) 𝜉(𝑘)
𝑇

𝜉 (𝑘) ≤ −𝜂𝑥(𝑘)
𝑇

𝑥 (𝑘) , (24)

where 𝜆min(−Θ𝑖,𝑚) denotes the minimal eigenvalue of −Θ
𝑖,𝑚

and 𝜂 = inf{𝜆min(−Θ𝑖,𝑚)}. From (24), it is seen that for any
𝑡 > 0

E [𝑉 (𝑥 (𝑘 + 1) , 𝛼 (𝑘 + 1) , 𝜏 (𝑘 + 1))]

− E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] ≤ −𝜂

𝑡

∑

𝑘=0

𝐸 [𝑥(𝑘)
𝑇

𝑥 (𝑘)] .
(25)
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Furthermore
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇

𝑥 (𝑘)] ≤
1

𝜂

E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] . (26)

By taking limit as 𝑡 → ∞, we have

∞

∑

𝑘=0

E [𝑥(𝑘)
𝑇

𝑥 (𝑘)] ≤
1

𝜂

E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] < ∞. (27)

According to Definition 2, the closed-loop system (5) is
stochastically stable. This completes the proof.

Theorem 3 gives the sufficient conditions for the stochas-
tic stability of system (5). However, it should be noted that
the conditions (9) are no more LMI conditions. To handle
this, the equivalent LMI conditions are given in Theorem 4
by Cone Complementarity Linearization (CCL) algorithm.

Theorem 4. Consider system (5) with random but bounded
scalar 𝜏(𝑘) ∈ [𝜏min 𝜏max].There exists an output feedback con-
troller (4) such the resulting closed-loop system is stochastically
stable if for each mode 𝑖 ∈ 𝑆

1
, 𝑚 ∈ 𝑆

2
, there exist matrices

𝑃
𝑖,𝑚

> 0, 𝑋
𝑖,𝑚

> 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, 𝑅

2
> 0,

𝑈
1
> 0, 𝑈

2
> 0, and 𝐾

𝑖,𝑚
such that

[
[
[

[

Ξ
1

Ξ̂
2

Ξ̂
3

Ξ̂
4

∗ −𝑋
𝑗,𝑛

0 0

∗ ∗ −𝑈
1

0

∗ ∗ ∗ −𝑈
2

]
]
]

]

< 0, (28)

𝑃
𝑖,𝑚
𝑋
𝑖,𝑚

= 𝐼, 𝑅
1
𝑈
1
= 𝐼, 𝑅

2
𝑈
2
= 𝐼, (29)

where

Ξ̂
2
= [L
𝑖,𝑚
𝐴
𝑖
L
𝑖,𝑚
𝐵
𝑖
0 0]
𝑇

,

Ξ̂
3
= [𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]
𝑇

,

Ξ̂
4
= [𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]
𝑇

,

𝑋
𝑗,𝑛

= diag {𝑋
0,0
, 𝑋
0,1
, . . . , 𝑋

0,𝑠2
, 𝑋
1,0
, 𝑋
1,1
, . . . , 𝑋

1,𝑠2
} ,

(L
𝑖,𝑚
𝐴
𝑖
)
𝑇

= [√𝜋
𝑖0
𝜆
𝑚0

𝐴
𝑇

𝑖
√𝜋
𝑖0
𝜆
𝑚1

𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖0
𝜆
𝑚𝑠2

𝐴
𝑇

𝑖
√𝜋
𝑖1
𝜆
𝑚0

𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖1
𝜆
𝑚𝑠2

𝐴
𝑇

𝑖
] ,

(L
𝑖,𝑚
𝐵
𝑖
)
𝑇

= [√𝜋
𝑖0
𝜆
𝑚0

𝐵
𝑇

𝑖
√𝜋
𝑖0
𝜆
𝑚1

𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖0
𝜆
𝑚𝑠2

𝐵
𝑇

𝑖
√𝜋
𝑖1
𝜆
𝑚0

𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖1
𝜆
𝑚𝑠2

𝐵
𝑇

𝑖
] ,

𝐴
𝑖
= [

𝐴 0

0 𝑖𝐼
] + [

𝑖𝐵

0
]𝐾
𝑖,𝑚

[0 𝐼] ,

𝐴
𝑖
− 𝐼 = [

𝐴 − 𝐼 0

0 (𝑖 − 1) 𝐼
] + [

𝑖𝐵

0
]𝐾
𝑖,𝑚

[0 𝐼] ,

𝐵
𝑖
= [

0

(1 − 𝑖) 𝐶
] + [

(1 − 𝑖) 𝐵

0
]𝐾
𝑖,𝑚
𝐶,

𝐻 (𝐴
𝑖
− 𝐼) = [𝐴 − 𝐼 0] + 𝑖𝐵𝐾

𝑖,𝑚
[0 𝐼] ,

𝐻𝐵
𝑖
= (1 − 𝑖) 𝐵𝐾

𝑖,𝑚
𝐶.

(30)

Ξ
1
and 𝜏 are defined inTheorem 3. Moreover, if (28) (29) have

solutions, the controller gain is given by 𝐾
𝑖,𝑚
.

Proof. By Schur complement, (28) is equivalent to

[
[
[

[

Ξ
1

Ξ̂
2

Ξ̂
3

Ξ̂
4

∗ −𝑃
−1

𝑗,𝑛
0 0

∗ ∗ −𝑅
−1

1
0

∗ ∗ ∗ −𝑅
−1

2

]
]
]

]

< 0. (31)

Let 𝑃−1
𝑗,𝑛

= 𝑋
𝑗,𝑛
, 𝑅−1
1

= 𝑈
1
, and 𝑅−1

2
= 𝑈
2
; we can obtain (28),

(29). This completes the proof.

The conditions state in Theorem 4 are a set of LMIs
with some matrix inverse constraints. Although they are

nonconvex, which prevents us from solving them using
the existing convex optimization tool, we can use the con
complementary linearization to algorithm transform this
problem into the nonlinear minimization problem with LMI
constraints as follows:

min Trace(
2

∑

𝑠=1

𝑅
𝑠
𝑈
𝑠
+

1

∑

𝑖=0

𝑠2

∑

𝑚=0

𝑃
𝑖,𝑚
𝑋
𝑖,𝑚
)

s ⋅ t

{{{{{

{{{{{

{

(i) LMI (28)

(ii) [𝑅𝑠 𝐼

𝐼 𝑈
𝑠

] > 0, 𝑠 ∈ {1, 2} ,

(iii) [𝑃𝑖,𝑚 𝐼

𝐼 𝑋
𝑖,𝑚

] > 0, 𝑖 ∈ 𝑆
1
, 𝑚 ∈ 𝑆

2

.

(32)
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The above nonlinear minimization problem can be solved by
an iterative algorithm presented in the following.

Algorithm 5. Step 1. Find a feasible solution satisfying LMIs
(i), (ii), and (iii) in (32); set as (𝑅0

1
, 𝑈
0

1
, 𝑅
0

2
, 𝑈
0

2
, 𝑃
0

𝑖,𝑚
, 𝑋
0

𝑖,𝑚
, 𝐾
0

)

and 𝑘 = 0.

Step 2. Solve the following LMI optimization problem
for variables (𝑅

1
, 𝑈
1
, 𝑅
2
, 𝑈
2
, 𝑃
𝑖,𝑚
, 𝑋
𝑖,𝑚
, 𝐾). Minimize trace

{∑
2

𝑠=1
(𝑅
𝑘

𝑠
𝑈
𝑠
+𝑅
𝑠
𝑈
𝑘

𝑠
)+∑
1

𝑖=0
∑
𝑠2

𝑚=0
(𝑃
𝑘

𝑖,𝑚
𝑋
𝑖,𝑚
+𝑃
𝑖,𝑚
𝑋
𝑘

𝑖,𝑚
)}, subject

to LMIs (32). Set𝑅𝑘+1
1

= 𝑅
1
,𝑈𝑘+1
1

= 𝑈
1
,𝑅𝑘+1
2

= 𝑅
2
,𝑈𝑘+1
2

= 𝑈
2
,

𝑃
𝑘+1

𝑖,𝑚
= 𝑃
𝑖,𝑚
,𝑋𝑘+1
𝑖,𝑚

= 𝑋
𝑖,𝑚
, and𝐾𝑘+1 = 𝐾.

Step 3. If (31) is satisfied, then exit the iteration. If (31) is not
satisfied, let 𝑘 = 𝑘 + 1, and then return to Step 2.

4. Numerical Example

To illustrate the effectiveness of the proposed method, we
apply the results in Section 3 to a classical angular positioning
system [43] in Figure 2, where 𝜃 is the angular position of
the antenna, 𝜃

𝑟
is the angular position of the moving object,

and the angular velocity of the antenna ̇𝜃 is measurable. The
control problem is to use the input voltage to the motor to
rotate the antenna so that it always points in the direction of
a moving object in the plant. The output feedback controller
is designed for the following values of the matrices 𝐴, 𝐵, and
𝐶:

𝐴 = [
1 0.0995

0 0.99
] ,

𝐵 = [
0.0039

0.0783
] ,

𝐶 = [
1.4 0.8

−0.2 0.4
] .

(33)

The stochastic jumping parameter 𝛼(𝑘) ∈ {0, 1} and the
random delays involved in system (5) are 𝜏(𝑘) ∈ {0, 1, 2}; the
transition probability matrices 𝜋 and 𝜆 are taken by

𝜋 = [
0.4 0.6

0.55 0.45
] , 𝜆 = [

[

0.36 0.54 0.1

0.26 0.52 0.22

0.18 0.62 0.2

]

]

. (34)

Figures 3 and 4 show part of the simulation of the
stochastic jumping parameter 𝛼(𝑘) and S-C delay 𝜏(𝑘) gov-
erned by their corresponding transition probability matrices,
respectively.

The initial value 𝑥(0) = [−0.4 0.6]
𝑇. By Theorem 4, we

can obtain the gain matrices 𝐾
𝑖,𝑚

of controller (4) which are
constructed as

𝐾
0,0

= [−1.1356 −1.6672] ,

𝐾
0,1

= [−0.2870 −0.4926] ,

𝐾
0,2

= [−0.2898 −0.4909] ,

Target object
Goal: 𝜃 ≅ 𝜃r

Antenna
Motor

Actuator Sensor 𝜃𝜃r

𝜏(k)

y(k)

u(k) Network

S
y(k)

Controller

𝜃u

Figure 2: The angular positioning system.
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Figure 3: Values of 𝛼(𝑘).

𝐾
1,0

= [−0.2886 −0.4900] ,

𝐾
1,1

= [−0.2857 −0.4909] ,

𝐾
1,2

= [−0.2829 −0.4805] .

(35)

The state trajectories and the delay output trajectories are
shown in Figures 5 and 6, where four curves represent
state trajectories and the delay output trajectories under the
controller gains𝐾

𝑖,𝑚
. Figures 5 and 6 indicate that system (5)

is stochastically stable. In contrast with the proposedmethod,
the controller gain𝐾dlqr of a standard linear-quadratic regula-
tor for nominal discrete-time systems designed by MATLAB
command dlqr is

𝐾dlqr = [0.9332 1.6804] . (36)

The eigenvalues of 𝐴 + 𝐵𝐾
lqr are 1.1686 and 0.9567. Hence,

𝐾
lqr cannot stabilize the system in this case. The proposed

controller works much better for networked control system
than the contrastive dlqr method.
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Figure 4: S-C random delays 𝜏(𝑘).
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5. Conclusion

The stability analysis problem for NCSs with random time
delays and packet dropouts is investigated in this paper. The
random time delays and packet dropouts existed in feed-
back communication link are modeled by two independent
Markov chains. Then the resulting closed-loop system is
modeled as a MJLS with Markov delays. Sufficient condi-
tions on stochastic stability and stabilization are obtained
by the Lyapunov stability theory and LMI method. The
CCL algorithm is employed to obtain the mode-dependent
output feedback controller. Finally, an example is presented
to illustrate the effectiveness of the approach. Although the
NCSs with random time delays and packet dropouts on only
sensor to controller link are considered in this paper, the
method of unified modeling and the Lyapunov functional
constructing can be extended to the NCSs with the random
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Figure 6: The trajectories of delay output 𝑦(𝑘).

time delays and packet dropouts existing in both the sensor
to controller and controller to actuator.

Acknowledgments

The research is supported by the National Natural Science
Foundation of China (Grant no. 61203184) and the Natural
Science Foundation of SZU (Grant no. 201207).

References

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent
results in networked control systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 138–172, 2007.

[2] M. C. F. Donkers, W. P. M. H. Heemels, N. van de Wouw,
and L. Hetel, “Stability analysis of networked control systems
using a switched linear systems approach,” IEEE Transactions
on Automatic Control, vol. 56, no. 9, pp. 2101–2115, 2011.

[3] L. X. Zhang, H. J. Gao, and O. Kaynak, “Network-induced
constraints in networked control systems—a survey,” IEEE
Transactions on Automatic Control, vol. 9, no. 1, pp. 403–416,
2013.

[4] J. Xiong and J. Lam, “Stabilization of linear systems over
networks with bounded packet loss,” Automatica, vol. 43, no.
1, pp. 80–87, 2007.

[5] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust 𝐻
∞

control for networked systemswith randompacket losses,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 4,
pp. 916–924, 2007.

[6] W.-A. Zhang and L. Yu, “Output feedback stabilization of
networked control systems with packet dropouts,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 9, pp. 1705–1710, 2007.

[7] T. Jia, Y. Niu, and X. Wang, “𝐻
∞
control for networked systems

with data packet dropout,” International Journal of Control,
Automation and Systems, vol. 8, no. 2, pp. 198–203, 2010.



Journal of Applied Mathematics 9

[8] J. Wu and T. Chen, “Design of networked control systems with
packet dropouts,” IEEE Transactions on Automatic Control, vol.
52, no. 7, pp. 1314–1319, 2007.

[9] B. Xue, S. Li, and Q. Zhu, “Moving horizon state estimation for
networked control systemwithmultiple packet dropouts,” IEEE
Transactions onAutomatic Control, vol. 57, no. 9, pp. 2360–2366,
2012.

[10] Q. Lu, L. Zhang, M. Basin, and H. Tian, “Analysis and synthesis
for networked control systems with uncertain rate of packet
losses,” Journal of the Franklin Institute, vol. 349, no. 7, pp. 2500–
2514, 2012.

[11] B. Ding, “Stabilization of linear systems over networks with
bounded packet loss and its use in model predictive control,”
Automatica, vol. 47, no. 11, pp. 2526–2533, 2011.
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For the nonminimum phase behavior of the air-breathing hypersonic vehicle model caused by elevator-to-lift coupling, a nonlinear
adaptive equivalent controlmethod based on interconnection subsystems is proposed. In the altitude loop, the backstepping strategy
is applied, where the virtual control inputs about flight-path angle and attack angle are designed step by step. In order to avoid the
inaccurately direct cancelation of elevator-to-lift coupling when aerodynamic parameters are uncertain, the real control inputs,
that is, elevator deflection and canard deflection, are linearly converted into the equivalent control inputs which are designed
independently.The reformulation of the altitude-flight-path angle dynamics and the attack angle-pitch rate dynamics is constructed
into interconnection subsystems with input-to-state stability via small-gain theorem. For the velocity loop, the dynamic inversion
controller is designed. The adaptive approach is used to identify the uncertain aerodynamic parameters. Simulation of the flexible
hypersonic vehicle demonstrates effectiveness of the proposed method.

1. Introduction

Hypersonic vehicles have a promising prospect in both
military and commercial applications as its flight speed can
be more than 5 times of the speed of sound. However, since
the model of hypersonic vehicle is nonlinear, multivariable,
uncertain, and coupling [1], it is unstable and extremely sensi-
tive to changes in flight condition and parameters.This brings
a great challenge to controller design [2]. At present, most
researches focus ondealingwith nonlinearity anduncertainty
of hypersonic vehicles. For example, linear control methods
are attempted according to linearized hypersonic vehicle
models, such as pole placement techniques [3], LQR method
[4], linear output feedback control [5], and LPV control [6].
In addition, nonlinear control strategies are widely used as
well, such as feedback linearization approach [7], sliding
control [8, 9], and backstepping technique [10]. For uncer-
tainty of hypersonic vehicles, besides adaptive approaches
[11], robust strategies are common tools, for example, 𝜇-
synthesis,𝐻

∞
control [12], stochastic robustness control [13],

and nonlinear disturbance observer-based robust control

[14]. Although these methods are proven to be effective, they
do not usually consider the coupling problems existing in
hypersonic vehicles. These problems lead to more difficulties
in the flight controller design. In an air-breathing hypersonic
vehicle, it is known that there are structural dynamics, flexible
effect, elevator-to-lift coupling, and the coupling between
thrust and pitch moment, where elevator-to-lift coupling is
not neglectable, and it will generate unstable zero dynamics
exponentially, that is, the nonminimum phase behavior in
pitch rate model, if the controller is designed directly by the
inversion.

With regard to the elevator-to-lift coupling problem,
some strategies have been tried. The basic method usually
ignores this coupling, and then the nonminimum phase can
be removed from the model during the controller design [2],
where this coupling is only regarded as unmodeled dynamics.
However, this manner cannot ensure the stability of the
control system. The other common approach is to offset the
influence of the coupling. For example, a canard is adopted
to cancel the influence of elevator on lift, and an adaptive
robust controller based on nonlinear sequential loop-closure
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approach is developed [15, 16]. Nevertheless, the changes of
the uncertain parameters are not considered. This may result
in the inaccurate cancellation, which means elevator and lift
are not decoupled completely. Simultaneously, this approach
has an adverse influence on the pitch rate dynamics since
its inputs also consist of elevator and canard. In addition,
for thermal protection problem resulted from the canard,
only the elevator is taken as aerodynamic control surface
in reference [17]. The system model is transformed into
the interconnection of systems in feedback and feedforward
forms to eliminate the nonminimum phase. But the robust-
ness with regard to uncertainty of the hypersonic vehicle
model is not addressed totally.

From the analysis, we know that adding canard control
surface is an effective and simple way to suppress the non-
minimumphase behavior, even though the strict cancellation
of the elevator-to-lift coupling cannot be realized actually.
In this paper, the flexible air-breathing hypersonic vehicle
model is considered. For the tracking requirement of altitude
and velocity, a nonlinear adaptive equivalent control method
based on interconnection subsystems is proposed by incorpo-
rating canard. Firstly, in the altitude loop, the virtual control
inputs about flight-path angle and attack angle are designed
step by step according to the backstepping strategy. Secondly,
the terms about the real control inputs, that is, the elevator
and canard deflection in the flight-path angle dynamics
and the pitch rate dynamics, are linearly converted into the
equivalent control inputs instead of direct cancelation of
the elevator-to-lift coupling. By designing the new inputs
independently, the altitude control loop is reformulated. And
the adaptive technique is used to identify the uncertain aero-
dynamic parameters. Then the interconnection subsystems
including the altitude-flight-path angle dynamics and the
attack angle-pitch rate dynamics are constructed. Via the
small-gain method, the system is proven to be input-to-state
stable. In the velocity loop, the adaptive dynamic inversion
controller is designed. Simulation results show the power of
our approach.

In Section 2, the air-breathing hypersonic vehicle model
is presented.The nonlinear adaptive equivalent control based
on interconnection subsystems is introduced in Section 3.
Section 4 presents the simulation. The conclusion is drawn
in Section 5.

2. Air-Breathing Hypersonic Vehicle Model

In this study, the flexible air-breathing hypersonic vehicle
model [18] is considered. This model is composed of five
rigid-body states, that is, velocity 𝑉, altitude ℎ, flight-path
angle 𝛾, attack angel 𝛼, pitch rate 𝑞, and six flexible states,
that is, 𝜂

1
, ̇𝜂

1
, 𝜂

2
, ̇𝜂

2
, ̇𝜂

3
, and ̇𝜂

3
. The equations of motion are

written as

𝑉 =
𝑇 cos𝛼 − 𝐷

𝑚
− 𝑔 sin 𝛾,

ℎ̇ = 𝑉 sin 𝛾,

̇𝛾 =
𝑇 sin𝛼 + 𝐿

𝑚𝑉
−
𝑔 cos 𝛾
𝑉

,

̇𝛼 = 𝑄 − ̇𝛾,

̇𝑄 =
𝑀

𝐼
𝑦𝑦

,

̈𝜂
𝑖
= −2𝜍

𝑚
𝜔

𝑚,𝑖
̇𝜂
𝑖
− 𝜔

2

𝑚,𝑖
𝜂

𝑖
+ 𝑁

𝑖
; 𝑖 = 1, 2, 3,

(1)

where 𝑚, 𝐼
𝑦𝑦
, 𝑔 represent mass of the aircraft, moment of

inertia, gravitational acceleration; damping ratio and natural
frequency of the flexible motion are denoted by 𝜍

𝑚
and 𝜔

𝑚,𝑖
,

respectively; 𝑇, 𝐷, 𝐿, and 𝑁
𝑖
and 𝑀 are thrust, drag, lift,

generalized forces and moment

𝐿 = 𝑞𝑆𝐶
𝐿
,

𝑇 = 𝑞 (𝐶
𝑇,𝜙
𝜙 + 𝐶

𝑇
) ,

𝐷 = 𝑞𝑆𝐶
𝐷
,

𝑀 = 𝑧
𝑇
𝑇 + 𝑞𝑆𝑐𝐶

𝑀
,

𝑁
𝑖
= 𝑞𝐶

𝑁𝑖
.

(2)

The aerodynamic parameters in the above formulation are
described as follows:

𝐶
𝐿
= 𝐶

𝛼

𝐿
𝛼 + 𝐶

𝛿𝑒

𝐿
𝛿

𝑒
+ 𝐶

𝛿𝑐

𝐿
𝛿

𝑐
+ 𝐶

0

𝐿
+ 𝐶

Δ𝜏1

𝐿
Δ𝜏

1
+ 𝐶

Δ𝜏2

𝐿
Δ𝜏

2
,

𝐶
𝑀
= 𝐶

𝛼

𝑀
𝛼 + 𝐶

𝛿𝑒

𝑀
𝛿

𝑒
+ 𝐶

𝛿𝑐

𝑀
𝛿

𝑐
+ 𝐶

0

𝑀
+ 𝐶

Δ𝜏1

𝑀
Δ𝜏

1
+ 𝐶

Δ𝜏2

𝑀
Δ𝜏

2
,

𝐶
𝑁𝑖
= 𝐶

𝛼

𝑁𝑖

𝛼 + 𝐶
𝛿𝑒

𝑁𝑖

𝛿
𝑒
+ 𝐶

𝛿𝑐

𝑁𝑖

𝛿
𝑐
+ 𝐶

0

𝑁𝑖

+ 𝐶
Δ𝜏1

𝑁𝑖

Δ𝜏
1
+ 𝐶

Δ𝜏2

𝑁𝑖

Δ𝜏
2
,

𝐶
𝐷
= 𝐶

(𝛼+Δ𝜏1)
2

𝐷
(𝛼 + Δ𝜏

1
)

2

+ 𝐶
(𝛼+Δ𝜏1)

𝐷
(𝛼 + Δ𝜏

1
) + 𝐶

Δ𝜏2

𝐷
Δ𝜏

2

+ 𝐶
𝛿
2

𝑒

𝐷
𝛿

2

𝑒
+ 𝐶

𝛿𝑒

𝐷
𝛿

𝑒
+ 𝐶

𝛼𝛿𝑒

𝐷
𝛼𝛿

𝑒
+ 𝐶

𝛿𝑐
2

𝐷
𝛿

2

𝑐

+ 𝐶
𝛿𝑐

𝐷
𝛿

𝑐
+ 𝐶

𝛼𝛿𝑐

𝐷
𝛼𝛿

𝑐
+ 𝐶

0

𝐷
,

𝐶
𝑇,𝜙

= 𝐶
𝛼

𝑇,𝜙
𝛼 + 𝐶

𝛼𝑀
−2

∞

𝑇,𝜙
𝛼𝑀

−2

∞
+ 𝐶

𝑀
−2

∞

𝑇,𝜙
𝑀

−2

∞
+ 𝐶

0

𝑇,𝜙

+ 𝐶
𝛼Δ𝜏1

𝑇,𝜙
𝛼Δ𝜏

1
+ 𝐶

Δ𝜏
2

1

𝑇,𝜙
Δ𝜏

2

1
+ 𝐶

Δ𝜏1

𝑇,𝜙
Δ𝜏

1
,

𝐶
𝑇
= 𝐶

𝛼

𝑇
𝛼 + 𝐶

𝑀
−2

∞

𝑇
𝑀

−2

∞
+ 𝐶

𝐴𝑑

𝑇
𝐴

𝑑
+ 𝐶

Δ𝜏1

𝑇
Δ𝜏

1
+ 𝐶

0

𝑇
,

(3)

where the control inputs are fuel-to-air ratio 𝜙, eleva-
tor deflection 𝛿

𝑒
, and canard deflection 𝛿

𝑐
; 𝑞, 𝑆, 𝑧

𝑇
, 𝑐, 𝑀

∞

denote dynamic pressure, reference area, thrustmoment arm,
mean aerodynamic chord, and Mach number; Δ𝜏

1
and Δ𝜏

2

are the forebody turn angle and the aftbody vertex angle
which are linear mapping of elastic states 𝜂

𝑖
.

In (3), the elevator-to-lift coupling orients from that 𝐶
𝐿

includes the term of 𝛿
𝑒
, which leads to the nonminimum

phase behavior. If 𝛿
𝑒
is designed by the dynamic inversion

directly, the pitch rate dynamics will become a hyperbolic
saddle equilibrium. This unstable zero dynamic brings great
difficulties to the controller design.



Journal of Applied Mathematics 3

3. Nonlinear Adaptive Equivalent
Controllers Design

In order to track the altitude and velocity command signals
ℎref and 𝑉ref, two controllers will be designed independently
for the altitude loop and the velocity loop. During the
controller design, the flexible motion is viewed as external
perturbation, and its influence on aerodynamic model (3) is
neglected.

3.1. Altitude Controller. In the altitude loop, the controller is
designed according to the backstepping approach. Then the
virtual control inputs about flight-path angle and attack angle
are determined, respectively.

For the altitude dynamics, let ℎ̃ = ℎ − ℎref; then its error
dynamics is written in the following:

̇
ℎ̃ = 𝑉 sin 𝛾 − ℎ̇ref ≈ 𝑉𝛾 − ℎ̇ref. (4)

So the flight-path angle command 𝛾
𝑑
is designed into the

following equation:

𝛾
𝑑
=
−𝑘̃

ℎ
ℎ̃ + ℎ̇ref

𝑉
, (5)

where 𝑘̃
ℎ
> 0 is the design parameter for ℎ̃.

Let 𝛾 = 𝛾 − 𝛾
𝑑
; the error dynamic of flight-path angle is

presented as follows:

̇𝛾̃ =
𝑇 sin𝛼 + 𝐿

𝑚𝑉
−
𝑔 cos 𝛾
𝑉

− ̇𝛾
𝑑
. (6)

Here, the thrust is described as the function about the attack
angle. Define 𝑇 = ∇𝑇𝛼 + 𝑇

0
, where ∇𝑇 = 𝑞(𝐶

𝛼𝑀
−2

∞

𝑇,𝜙
𝑀

−2

∞
𝜙 +

𝐶
𝛼

𝑇,𝜙
𝜙 + 𝐶

𝛼

𝑇
) and 𝑇

0
= 𝑞(𝐶

𝑀
−2

∞

𝑇,𝜙
𝜙𝑀

−2

∞
+ 𝐶

0

𝑇,𝜙
𝜙 + 𝐶

𝑀
−2

∞

𝑇
𝑀

−2

∞
+

𝐶
𝐴𝑑

𝑇
𝐴

𝑑
+ 𝐶

0

𝑇
). As the variation range of the attack angle is

small, (6) will be expanded around the final expectation 𝛼∗.
To handle the nonminimum phase problem, the MIMO

equivalent method is applied in this paper, which is different
from the previous research results [17]. The terms about the
elevator and canard deflection are linearly equivalent to the
control input vector U = [𝑈

1
, 𝑈

2
]. The error model of the

flight-path angle (6) can be rewritten as

̇
𝛾̃ =

∇𝑇𝛼 sin𝛼 + 𝑇0 sin𝛼 + 𝑞𝑆𝐶
𝛼

𝐿
𝛼

𝑚𝑉

+ 𝑞𝑆

𝐶
𝛿𝑒

𝐿
𝛿𝑒

𝑚𝑉

+ 𝑞𝑆

𝐶
𝛿𝐶

𝐿
𝛿𝐶

𝑚𝑉

+

𝑞𝑆𝐶
0

𝐿
− 𝑚𝑔 cos 𝛾 − 𝑚𝑉 ̇𝛾𝑑

𝑚𝑉

=

∇𝑇 sin𝛼
∗

+ ∇𝑇𝛼
∗ cos𝛼

∗
+ 𝑇0 cos𝛼

∗
+ 𝑞𝑆𝐶

𝛼

𝐿

𝑚𝑉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶1

𝛼 + 𝑞𝑆

𝐶
𝛿𝑒

𝐿
𝛿𝑒 + 𝐶

𝛿𝑐

𝐿
𝛿𝑐

𝑚𝑉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈1

+

𝑞𝑆𝐶
0

𝐿
− 𝑚𝑔 sin 𝛾 − 𝑚𝑉 ̇𝛾𝑑

𝑚𝑉

+

𝑇0 sin𝛼
∗

−(∇𝑇𝛼
∗ cos𝛼

∗
+ 𝑇0 cos𝛼

∗
) 𝛼
∗

𝑚𝑉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛽1

= 𝐶1𝛼 + 𝑈1 + 𝛽1,

(7)

where 𝐶
1
and 𝛽

1
are the terms containing the uncertain

aerodynamic parameters. They can be expressed as the
following equations:

𝐶
1
= 𝜃

𝑇

1
𝜉

1
,

𝛽
1
= 𝜃

𝑇

1
𝜉

2
−
𝑔 cos 𝛾
𝑉

− ̇𝛾
𝑑
,

𝑈
1
= 𝜃

𝑇

2
𝜉

3
.

(8)

𝜃
1
, 𝜃

2
are vectors of the uncertain parameters

𝜃
1
= [𝐶

𝛼

𝑇,𝜙
; 𝐶

𝛼

𝑇
; 𝐶

𝛼𝑀
−2

∞

𝑇,𝜙
; 𝐶

𝑀
−2

∞

𝑇,𝜙
; 𝐶

0

𝑇,𝜙
; 𝐶

𝑀
−2

∞

𝑇
; 𝐶

𝐴𝑑

𝑇
; 𝐶

0

𝑇
; 𝐶

𝛼

𝐿
; 𝐶

0

𝐿
] ,

𝜃
2
= [𝐶

𝛿𝑒

𝐿
; 𝐶

𝛿𝑐

𝐿
] ,

(9)

and 𝜉
1
, 𝑖 = 1 . . . 3 are regressors

𝜉
1
=

𝑞

𝑚𝑉
[(sin𝛼∗

+ 𝛼
∗ cos𝛼∗

) 𝜙; (sin𝛼∗

+ 𝛼
∗ cos𝛼∗

) ;

(sin𝛼∗

+ 𝛼
∗ cos𝛼∗

)𝑀
−2

∞
𝜙; cos𝛼∗

𝑀
−2

∞
𝜙;

cos𝛼∗

𝜙; cos𝛼∗

𝑀
−2

∞
; cos𝛼∗

𝐴
𝑑
; cos𝛼∗

; 𝑆; 0] ,

𝜉
2

=
𝑞

𝑚𝑉
[−𝛼

∗2 cos𝛼∗

𝜙; −𝛼
∗2 cos𝛼∗

; −𝛼
∗2 cos𝛼∗

𝑀
−2

∞
𝜙;

(sin𝛼∗

− 𝛼
∗ cos𝛼∗

)𝑀
−2

∞
𝜙; (sin𝛼∗

− 𝛼
∗ cos𝛼∗

)𝜙;

(sin𝛼∗

− 𝛼
∗ cos𝛼∗

)𝑀
−2

∞
; (sin𝛼∗

− 𝛼
∗ cos𝛼∗

)𝐴
𝑑
;

(sin𝛼∗

− 𝛼
∗ cos𝛼∗

) ; 0; 𝑆] ,

𝜉
3
=
𝑞𝑆

𝑚𝑉
[𝛿

𝑒
; 𝛿

𝑐
] .

(10)

Therefore the dynamics (7) is reformulated as

̇𝛾̃ = 𝜃
𝑇

1
𝜉

1
𝛼 + 𝜃

𝑇

2
𝜉

3
+ 𝜃

𝑇

1
𝜉

2
−
𝑔 cos 𝛾
𝑉

− ̇𝛾
𝑑
. (11)

Then the virtual command of the attack angle is chosen as
𝛼

𝑑
= 𝛼

∗

− 𝛾.
Let 𝛼̃ = 𝛼 − 𝛼

𝑑
; the error dynamic of the attack angle is

formulated as

̇𝛼̃ = 𝑄 − ̇𝛾 − ̇𝛼
𝑑
= 𝑄 − ̇𝛾

𝑑
. (12)

A new variable𝑍 is defined as𝑍 = 𝑄− ̇𝛾
𝑑
+𝑘

𝛼̃
𝛼̃, where 𝑘

𝛼̃
> 0

is a design parameter for 𝛼̃. Then (12) is rewritten as

̇𝛼̃ = 𝑍 − 𝑘
𝛼̃
𝛼̃. (13)
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Using the equivalent control method, the time derivative of𝑍
can be formulated with the new input𝑈

2
. It includes the pitch

rate dynamics

̇𝑍 =
𝑧

𝑇
𝑇 + 𝑞𝑆𝑐𝐶

𝑀

𝐼
𝑦𝑦

+ 𝑘
𝛼̃

̇𝛼̃

= 𝑞𝑆𝑐
𝐶

𝛿𝑒

𝑀
𝛿

𝑒
+ 𝐶

𝛿𝑐

𝑀
𝛿

𝑐

𝐼
𝑦𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈2

+
𝑧

𝑇
∇𝑇 + 𝑞𝑆𝑐𝐶

𝛼

𝑀

𝐼
𝑦𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶2

𝛼

+
𝑧

𝑇
𝑇

0
+ 𝑞𝑆𝑐𝐶

0

𝑀

𝐼
𝑦𝑦

+ 𝑘
𝛼̃

̇𝛼̃ − ̈𝛾
𝑑

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛽2

= 𝐶
2
𝛼 + 𝑈

2
+ 𝛽

2
,

(14)

where 𝐶
2
and 𝛽

2
are similar terms containing the uncertain

parameters. They can also be presented by the vectors of the
uncertain parameters and the regressors

𝐶
2
= 𝜃

𝑇

3
𝜉

4
,

𝛽
2
= 𝜃

𝑇

3
𝜉

5
+ 𝑘

𝛼̃

̇𝛼̃ − ̈𝛾
𝑑
,

𝑈
2
= 𝜃

𝑇

4
𝜉

6
,

(15)

where

𝜃
3
= [𝐶

𝛼

𝑇,𝜙
; 𝐶

𝛼

𝑇
; 𝐶

𝛼𝑀
−2

∞

𝑇,𝜙
; 𝐶

𝑀
−2

∞

𝑇,𝜙
; 𝐶

0

𝑇,𝜙
; 𝐶

𝑀
−2

∞

𝑇
; 𝐶

𝐴𝑑

𝑇
; 𝐶

0

𝑇
; 𝐶

𝛼

𝑀
; 𝐶

0

𝑀
] ,

𝜃
4
= [𝐶

𝛿𝑒

𝑀
; 𝐶

𝛿𝑐

𝑀
] ,

𝜉
4
=

𝑞

𝐼
𝑦𝑦

[𝑧
𝑇
𝜙; 𝑧

𝑇
; 𝑧

𝑇
𝑀

−2

∞
𝜙; 0; 0; 0; 0; 0; 𝑆𝑐; 0] ,

𝜉
5
=

𝑞

𝐼
𝑦𝑦

[0; 0; 0; 𝑧
𝑇
𝑀

−2

∞
𝜙; 𝑧

𝑇
𝜙; 𝑧

𝑇
𝑀

−2

∞
; 𝑧

𝑇
𝐴

𝑑
; 𝑧

𝑇
; 0; 𝑆𝑐] ,

𝜉
6
=
𝑞𝑆𝑐

𝐼
𝑦𝑦

[𝛿
𝑒
; 𝛿

𝑐
] .

(16)

So (14) can be reformulated as

̇𝑍 = 𝜃
𝑇

3
𝜉

4
𝛼 + 𝜃

𝑇

4
𝜉

6
+ 𝜃

𝑇

3
𝜉

5
+ 𝑘

𝛼̃

̇𝛼̃ − ̈𝛾
𝑑
. (17)

Due to the uncertainty of the aerodynamic parameters, 𝜃
𝑖
,

𝑖 = 1, . . . , 4 will change with flight of hypersonic vehicles.
Therefore it is necessary to estimate their values by the
adaptive technique. Let 𝜃

𝑖
, 𝜃

𝑖
be the estimate vector and the

estimate error vector of 𝜃
𝑖
, where 𝜃

𝑖
= 𝜃

𝑖
− 𝜃

𝑖
, 𝑖 = 1, . . . , 4.

Assumption 1. The aerodynamic parameters 𝜃
𝑖
, 𝑖 = 1, . . . , 4

are bounded; they lie in a compact convex set.

In order to guarantee tracking performance of hyper-
sonic vehicles, the equivalent control inputs 𝑈

1
and 𝑈

2
are

designed, respectively, by replacing the uncertain parameter
vector 𝜃

𝑖
with its estimate vector and estimate error vector

𝑈̂
1
= 𝜃

𝑇

2
𝜉

3
= −𝜃

𝑇

1
𝜉

1
𝛼

∗

− (𝜃
𝑇

1
𝜉

2
−
𝑔 cos 𝛾
𝑉

− ̇𝛾
𝑑
)

+ (𝜃
𝑇

1
𝜉

1
− 𝑘

𝛾
) 𝛾 − 𝑉ℎ̃,

𝑈̂
2
= 𝜃

𝑇

4
𝜉

6
= ̈𝛾

𝑑
− (𝜃

𝑇

3
𝜉

5
+ 𝑘

𝛼̃

̇𝛼̃) − 𝜃
𝑇

3
𝜉

4
𝛼

∗

− 𝑘
𝑍
𝑍 − (𝜃

𝑇

3
𝜉

4
+ 1) 𝛼̃,

(18)

where 𝑘
𝛾
> 0, 𝑘

𝑍
> 0 are the design parameters for 𝛾 and 𝑍.

Let 𝛿 = [𝛿
𝑒
, 𝛿

𝑐
]. There is U = 𝐵𝛿 according to

(7) and (14). 𝐵 is a coefficient matrix and is equal to
[(𝑞𝑆/𝑚𝑉)𝜃

𝑇

2
; (𝑞𝑆𝑐/𝐼

𝑦𝑦
)𝜃

𝑇

4
].The real inputs of the altitude loop

can be obtained as follows:

[
𝛿

𝑒

𝛿
𝑐

] = 𝐵
−1

[
𝑈̂

1

𝑈̂
2

] . (19)

Combining (18), the state error dynamics about the
altitude loop is transformed into the following equations:

̇
ℎ̃ ≈ −𝑘̃

ℎ
ℎ̃ + 𝑉𝛾,

̇𝛾̃ = −𝑘
𝛾
𝛾 − 𝑉ℎ̃ + 𝑦

𝛼̃
+ 𝜃

𝑇

1
𝜉

1
𝛼 + 𝜃

𝑇

1
𝜉

2
+ 𝜃

𝑇

2
𝜉

3
,

̇𝛼̃ = 𝑍 − 𝑘
𝛼̃
𝛼̃,

̇𝑍 = −𝑘
𝑍
𝑍 − 𝛼̃ + 𝑦

𝛾
+ 𝜃

𝑇

3
𝜉

4
𝛼 + 𝜃

𝑇

3
𝜉

5
+ 𝜃

𝑇

4
𝜉

6
,

(20)

where 𝑦
𝛼̃
= 𝜃

𝑇

1
𝜉

1
𝛼̃, 𝑦

𝛾
= −𝜃

𝑇

3
𝜉

4
𝛾.

For ensuring the stability of the altitude loop, the new
formulation (20) is divided into the altitude-flight-path angle
subsystem and the attack angle-pitch rate subsystem. As
illustrated in Figure 1, these two subsystems constitute a
structure of interconnection. It is seen that 𝑦

𝛼̃
and 𝑦

𝛾
act

as the input and output of the altitude-flight-path angle
subsystem and 𝑦

𝛾
, 𝑦

𝛼̃
are the input and output of the attack

angle-pitch rate subsystem, respectively.
For the above interconnection subsystems, input-to-state

stability will be analyzed via small gain theorem. Firstly, the
definition of the asymptotic 𝐿

∞
norm ‖ ⋅ ‖

𝑎
is given [19]

‖𝜆‖
𝑎
:= lim

𝑡 → ∞

sup |𝜆| . (21)

Then, define 𝜓
1
= √ℎ̃2 + 𝛾2, and choose the Lyapunov func-

tion candidate of the altitude-flight-path angle subsystem as

𝑊
1
=
1

2
(ℎ̃

2

+ 𝛾
2

) +
1

2
𝜃

𝑇

1
𝜏

−1

1
𝜃

1
+
1

2
𝜃

𝑇

2
𝜏

−1

2
𝜃

2
. (22)

Its time derivative is

𝑊
1
= ℎ̃

̇
ℎ̃ + 𝛾 ̇𝛾̃ − 𝜃

𝑇

1
𝜏

−1

1

̇
𝜃̂

1
− 𝜃

𝑇

2
𝜏

−1

2

̇
𝜃̂

2

= −𝑘̃
ℎ
ℎ̃

2

− 𝑘
𝛾
𝛾

2

+ 𝛾𝑦
𝛼̃
+ 𝜃

𝑇

1
𝜏

−1

1
{𝜏

1
𝛾 (𝜉

1
𝛼 + 𝜉

2
) −

̇
𝜃̂

1
}

+ 𝜃
𝑇

2
𝜏

−1

2
(𝜏

2
𝛾𝜉

3
−
̇
𝜃̂

2
) .

(23)
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Figure 1: Interconnection subsystem structure.

The adaptive laws of 𝜃
1
, 𝜃

2
are designed as

̇
𝜃̂

1
= 𝜏

1
𝛾 (𝜉

1
𝛼 + 𝜉

2
) ,

̇
𝜃̂

2
= 𝜏

2
𝛾𝜉

3
,

(24)

where 𝜏
1
and 𝜏

2
are the adaptive parameters.

By (24), (23) becomes

𝑊
1
≤ −min {𝑘̃

ℎ
, 𝑘

𝛾
}
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦𝛼̃

󵄨󵄨󵄨󵄨 .
(25)

As a consequence, it satisfies 𝑊
1
which is negative definite

when |𝜓
1
| ≥ |𝑦

𝛼̃
|/min{𝑘̃

ℎ
, 𝑘

𝛾
}. Then 𝑊

1
is a input-to-state

stable Lyapunov function. According to the lemma in [19],
we know that ‖𝜓

1
‖

𝑎
≤ ‖𝑦

𝛼̃
‖

𝑎
/min{𝑘̃

ℎ
, 𝑘

𝛾
}. As 𝑦

𝛾
= −𝜃

𝑇

3
𝜉

4
𝛾,

the following formulation is obtained:

󵄩󵄩󵄩󵄩󵄩
𝑦

𝛾

󵄩󵄩󵄩󵄩󵄩𝑎

=
󵄩󵄩󵄩󵄩󵄩
−𝜃

𝑇

3
𝜉

4
𝛾
󵄩󵄩󵄩󵄩󵄩𝑎

≤ 𝜃
𝑇

3
𝜉

4

󵄩󵄩󵄩󵄩𝜓1

󵄩󵄩󵄩󵄩𝑎
≤

𝜃
𝑇

3
𝜉

4

min {𝑘̃
ℎ
, 𝑘

𝛾
}

󵄩󵄩󵄩󵄩𝑦𝛼̃

󵄩󵄩󵄩󵄩𝑎
.

(26)

For the attack angle-pitch rate subsystem, 𝜓
2
= √𝛼̃2 + 𝑍2

is defined, and the following Lyapunov function candidate is
chosen:

𝑊
2
=
1

2
(𝛼̃

2

+ 𝑍
2

) +
1

2
𝜃

𝑇

3
𝜏

−1

3
𝜃

3
+
1

2
𝜃

𝑇

4
𝜏

−1

4
𝜃

4
. (27)

Its time derivative is

𝑊
2
= 𝛼̃ ̇𝛼̃ + 𝑍 ̇𝑍 − 𝜃

𝑇

3
𝜏

−1

3

̇
𝜃̂

3
− 𝜃

𝑇

4
𝜏

−1

4

̇
𝜃̂

4

= −𝑘
𝛼̃
𝛼̃

2

+ 𝑘
𝑍
𝑍

2

+ 𝑍𝑦
𝛾
+ 𝜃

𝑇

3
𝜏

−1

3
{𝜏

3
𝑍 (𝜉

4
𝛼 + 𝜉

5
) −

̇
𝜃̂

3
}

+ 𝜃
𝑇

4
𝜏

−1

4
(𝜏

4
𝑍𝜉

6
−
̇
𝜃̂

4
) ,

(28)

where the adaptive laws of 𝜃
3
, 𝜃

4
are determined as

̇
𝜃̂

3
= 𝜏

3
𝑍 (𝜉

4
𝛼 + 𝜉

5
) ,

̇
𝜃̂

4
= 𝜏

4
𝑍𝜉

6
.

(29)

Substituting (29) in (28), we can acquire

𝑊
2
≤ −min {𝑘

𝛼̃
, 𝑘

𝑍
}
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦

𝛾

󵄨󵄨󵄨󵄨󵄨
. (30)

When |𝜓
2
| ≥ |𝑦

𝛾
|/min{𝑘

𝛼̃
, 𝑘

𝑍
}, 𝑊

2
≤ 0. Similarly, ‖𝜓

2
‖

𝑎
≤

‖𝑦
𝛾
‖

𝑎

/min{𝑘
𝛼̃
, 𝑘

𝑍
} can be obtained, and𝑊

2
is input-to-state

stable as well. Because 𝑦
𝛼̃
= 𝜃

𝑇

1
𝜉

1
𝛼̃, there is

󵄩󵄩󵄩󵄩𝑦𝛼̃

󵄩󵄩󵄩󵄩𝑎
=
󵄩󵄩󵄩󵄩󵄩
𝜃

𝑇

1
𝜉

1
𝛼̃
󵄩󵄩󵄩󵄩󵄩𝑎

≤ 𝜃
𝑇

1
𝜉

1

󵄩󵄩󵄩󵄩𝜓2

󵄩󵄩󵄩󵄩𝑎
≤

𝜃
𝑇

1
𝜉

1

min {𝑘
𝛼̃
, 𝑘

𝑍
}

󵄩󵄩󵄩󵄩󵄩
𝑦

𝛾

󵄩󵄩󵄩󵄩󵄩𝑎

. (31)

The interconnection formulation (20) is input-to-state stable
according to small-gain theorem if we choose proper design
parameters to make the following equation holds

𝜃
𝑇

3
𝜉

4

min {𝑘̃
ℎ
, 𝑘

𝛾
}

⋅
𝜃

𝑇

1
𝜉

1

min {𝑘
𝛼̃
, 𝑘

𝑍
}
< 1. (32)

Therefore the tracking errors and estimate errors of the
altitude loop can converge to a small neighborhood of origin.

3.2. Velocity Controller. Since velocity is controlled by 𝜙

directly, the adaptive dynamic inversion method is used. Let
𝑉̃ = 𝑉 − 𝑉ref; the error dynamics of velocity is written as

̃̇𝑉 =
𝑇 cos𝛼 − 𝐷

𝑚
− 𝑔 sin 𝛾 − 𝑉ref

=

𝑞 (𝐶
𝑇,𝜙
𝜙 + 𝐶

𝑇
) cos𝛼 − 𝑞𝑆𝐶

𝐷

𝑚
− 𝑔 sin 𝛾 − 𝑉ref.

(33)

For existence of uncertain parameters, the following vectors
and repressors are defined

𝜃
5
= [𝐶

(𝛼+Δ𝜏1)

𝐷
; 𝐶

(𝛼+Δ𝜏1)
2

𝐷
; 𝐶

𝛿
2

𝑒

𝐷
; 𝐶

𝛿𝑒

𝐷
; 𝐶

𝛿𝑐
2

𝐷
; 𝐶

𝛿𝑐

𝐷
;

𝐶
𝛼𝛿𝑒

𝐷
; 𝐶

𝛼𝛿𝑐

𝐷
; 𝐶

0

𝐷
; 𝐶

𝐴𝑑

𝑇
; 𝐶

𝛼

𝑇
; 𝐶

𝑀
−2

∞

𝑇
; 𝐶

0

𝑇
] ,

𝜃
6
= [𝐶

𝛼

𝑇,𝜙
; 𝐶

𝛼𝑀
−2

∞

𝑇,𝜙
; 𝐶

𝑀
−2

∞

𝑇,𝜙
; 𝐶

0

𝑇,𝜙
] ,

𝜉
7
= 𝑞 [𝑆𝛼; 𝑆𝛼

2

; 𝑆𝛿
2

𝑒
; 𝑆𝛿

𝑒
; 𝑆𝛿

2

𝑐
; 𝑆𝛿

𝑐
; 𝑆𝛼𝛿

𝑒
; 𝑆𝛼𝛿

𝑐
; 𝑆;

−𝐴
𝑑
cos𝛼; −𝛼 cos𝛼; −𝑀−2

∞
cos𝛼; − cos𝛼] ,

𝜉
8
= 𝑞 cos𝛼 [𝛼; 𝛼𝑀−2

∞
;𝑀

−2

∞
; 1] .

(34)

Consequently,

̃̇𝑉 =
𝜃

𝑇

6
𝜉

8
𝜙 − 𝜃

𝑇

5
𝜉

7

𝑚
− 𝑔 sin 𝛾 − 𝑉ref. (35)

Then the control input 𝜙 is designed as

𝜙 =
−𝑚𝑘Ṽ𝑉̃ + 𝑚𝑉ref + 𝑚𝑔 sin 𝛾 + 𝜃

𝑇

5
𝜉

7

𝜃
𝑇

6
𝜉

8

, (36)

where 𝑘Ṽ > 0 is a design parameter.
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Figure 2: Continued.
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Figure 2: Climbing maneuver with longitudinal acceleration for case one.

Determine the Lyapunov function candidate as

𝑊
3
=
1

2
𝑚𝑉̃

2

+
1

2
𝜃

𝑇

5
𝜏

−1

5
𝜃

5
+
1

2
𝜃

𝑇

6
𝜏

−1

6
𝜃

6
. (37)

Its time derivative is

𝑊
3
= 𝑉̃ (𝜃

𝑇

6
𝜉

8
𝜙 − 𝜃

𝑇

5
𝜉

7
− 𝑚𝑔 sin 𝛾 − 𝑚𝑉ref)

− 𝜃
𝑇

5
𝜏

−1

5

̇
𝜃̂

5
− 𝜃

𝑇

6
𝜏

−1

6

̇
𝜃̂

6

= 𝑉̃ (𝜃
𝑇

6
𝜉

8
𝜙 − 𝑚𝑘Ṽ𝑉̃ − 𝜃

𝑇

5
𝜉

7
) − 𝜃

𝑇

5
𝜏

−1

5

̇
𝜃̂

5
− 𝜃

𝑇

6
𝜏

−1

6

̇
𝜃̂

6

= − 𝑚𝑘Ṽ𝑉̃
2

− 𝜃
𝑇

5
𝜏

−1

5
(𝜏

5
𝑉̃𝜉

7
+
̇
𝜃̂

5
) + 𝜃

𝑇

6
𝜏

−1

6
(𝜏

6
𝜙𝜉

8
−
̇
𝜃̂

6
) .

(38)

The adaptive laws of 𝜃
5
, 𝜃

6
are obtained in the following:

̇
𝜃̂

5
= −𝜏

5
𝑉̃𝜉

7
,

̇
𝜃̂

6
= 𝜏

6
𝜙𝜉

8
.

(39)

Thus (38) becomes 𝑊
3
= −𝑚𝑘Ṽ𝑉̃

2

< 0; that is, when 𝑡 →

∞, the tracking errors and estimate errors of the velocity
subsystem can converge to zero finally.

Therefore the accurate tracking performance and the
stability of altitude and velocity can be guarranteed by the
proposed method.

4. Numerical Simulation

The feasibility of the proposed method is verified based on
a flexible model (1)–(3). The initial trim conditions are ℎ =

85000ft, 𝑉 = 7846ft/s, 𝛼 = 0.0174 rad, 𝛾 = 0 rad, 𝑞 =

0 rad/s, 𝜂
1
= 0.4588ft⋅sulg, 𝜂

2
= −0.08726ft⋅sulg, and 𝜂

3
=

−0.03671ft⋅sulg. Two cases are studied here.
Case one is a climbing maneuver with longitudinal accel-

eration, and the expected equilibrium is 𝛼∗

= 0.0219 rad.

The increments of altitude and velocity are 2000 ft, and
100 ft/s respectively. Case two is a descending maneuver with
velocity reducing gradually, and its corresponding equilib-
rium is 𝛼∗

= 0.0158 rad. The decreasing of altitude is 1000 ft
and that of velocity is 100 ft/s.

For these two cases, The corresponding reference com-
mands are generated by filtering step reference commands
with a second-order profiler with 𝜔 = 0.1 rad/s and 𝜉 = 0.9.

The simulation results of case one are shown in Figure 2.
The simulation results of case two are shown in Figure 3.
From Figures 2(a), 2(b), 3(a), and 3(b), it is seen that

the controller can provide stable and accurate tracking of
the reference trajectories for the two cases, and the tracking
errors of altitude and velocity remain remarkably small.
Figures 2(c), 2(d), 3(c), and 3(d) show that both the signals
of the flight-path angle and the attack angle can also follow
the change of virtual control commands closely.

For the flexible dynamics, its effect on aerodynamic
model is neglected, and its motion is taken as external
perturbation during the control design. That means that
the forebody turn angle Δ𝜏

1
and the aftbody vertex angle

Δ𝜏
2
are equal to zero in model (3) when the controller is

designed. Simultaneously, the second-order equation about
flexible states 𝜂

𝑖
and ̇𝜂

𝑖
is not considered. From Figures 2(e)

and 3(e), we can know that the flexible states can converge to
stable states ultimately although the flexible dynamics is not
taken into account directly. This denotes that our controller
has the strong robustness, and it is suitable to control the
flexible hypersonic vehicle.

Moreover, the variation ranges of the control inputs that
is, fuel-to-air ratio, elevator deflection, and canard deflection
are bounded according to Figures 2(f), 2(g), 2(h), 3(f), 3(g),
and 3(h).

In summary, the nonminimum phase behavior is sup-
pressed successfully, and the excellent closed-loop behavior
of air-breathing hypersonic vehicle can be obtained by the
proposed controller for the cases of maneuver of altitude and
velocity.
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Figure 3: Continued.
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Figure 3: Descending maneuver with velocity reducing gradually for case two.

5. Conclusion

For the flexible air-breathing hypersonic vehicle with canard
control surface, the controller is designed based on the
nonlinear adaptive equivalent control strategy under inter-
connected structure. The equivalent control inputs are intro-
duced and designed to replace the terms about elevator and
canard in the flight-path angle dynamics and the pitch-
rate dynamics for eliminating the nonminimum phase. The
uncertain aerodynamic parameters are identified online by
the adaptive method. And input-to-state stability of the
interconnection subsystems is guaranteed by small-gain the-
orem. Similarly, the adaptive dynamic inversion approach is
adopted in the velocity loop. With our approach, the stable
and accurate tracking of the hypersonic vehicle model with
nonminimum phase can be realized.
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This paper studies the stability for nonlinear stochastic discrete-time systems. First of all, several definitions on stability are
introduced, such as stability, asymptotical stability, and pth moment exponential stability. Moreover, using the method of the
Lyapunov functionals, some efficient criteria for stochastic stability are obtained. Some examples are presented to illustrate the
effectiveness of the proposed theoretical results.

1. Introduction

Stability is the first of all the considered problems in the
system analysis and synthesis of modern control theory,
which plays an essential role in dealing with infinite-horizon
linear-quadratic regulator, 𝐻

2
/𝐻
∞

robust optimal control,
and other control problems; see [1–5]. In 1892, Lyapunov
introduced the concept of stability of dynamic systems
and created a very powerful tool known as the Lyapunov
method in the study of stability. It can be found that
the Lyapunov method has been developed and applied to
investigate stochastic stability of the Itô-type systems, and
many important classical results on deterministic differential
equations have been generalized to the stochastic Itô systems;
we refer the reader to Arnold [6], Friedman [7], Has’minskii
[8], Kushner [9], Kolmanovskii and Myshkis [10], Ladde and
Lakshmikantham [11], Mohammed [12], and Mao [13].

Compared with the plenty of fruits of the continuous-
time Itô systems, few results have been obtained on the
stability of discrete-time nonlinear stochastic systems:

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡) , 𝑤 (𝑡) , 𝑡) . (1)

In [14], the mean square stability of the discrete-time
time-varying Markov jump system

𝑥 (𝑡 + 1) = [𝐴
0
(𝑡, 𝜂
𝑡
) +

𝑟

∑

𝑘=1

𝐴
𝑘
(𝑡, 𝜂
𝑡
) 𝑤
𝑘
(𝑡)] 𝑥 (𝑡) (2)

was studied. Nevertheless [15], based on the exact observ-
ability assumption, extensively researched the mean square
stability of the following linear discrete-time time-invariant
system with multiplicative noise:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡) 𝑤 (𝑡) , (3)

where the Classical LyapunovTheorem was extended. Refer-
ence [16] considered the 𝑝th mean stability of the following
difference equations

𝑥 (𝑡 + 1) = 𝐴 (𝑡, 𝜔) 𝑥 (𝑡) , 𝑡 = 0, 1, 2, . . . ,

𝑥 (𝑡 + 1) = 𝐴 (𝑡, 𝜔) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 = 0, 1, 2, . . . ,

(4)

with random coefficients. For the nonlinear stochastic differ-
ence equation

𝑥 (𝑡 + 1) =

𝑡+ℎ

∑

𝑗=0

𝑎
𝑗
𝑥 (𝑡 − 𝑗) +

𝑡+ℎ

∑

𝑗=0

𝜎
𝑗
𝑥 (𝑡 − 𝑗) 𝜉 (𝑡)

+ 𝑔 (𝑡, 𝑥 (−ℎ) , . . . , 𝑥 (𝑡)) ,

(5)

its stability in probability was investigated in [17]. It is not
difficult to find that, different from the continuous-time Itô
systems, up to now, there lacks the systematic theory on
stability of nonlinear discrete-time stochastic systems. The
aim of this paper is to develop a parallel theory for stability of
general nonlinear stochastic discrete-time systems, and some
sufficient criteria for various stabilities are given.
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Different from the Itô systems, most sufficient criteria are
presented viaL𝑉(𝑥) ≤ 0 orL𝑉(𝑥) < 0 together with other
assumptions on the Lyapunov function 𝑉(𝑥), whereL is the
so-called infinitesimal generator associated with the given
Itô system. In discrete-time stochastic systems, most stability
criteria are given via 𝐸[Δ𝑉(𝑥(𝑡))] ≤ 0 or 𝐸[Δ𝑉(𝑥(𝑡))] < 0,
where 𝐸 represents the mathematical expectation. So general
discrete stochastic stability is more difficult to be tested due
to the appearance of the mathematical expectation 𝐸.

The organization of this paper is as follows. Section 2
presents some stability definitions. Section 3 is devoted to
developing some efficient criteria for various stabilities.
Section 4 contains three examples provided to show the
efficiency of the proposed results. Finally, we end this paper
by Section 5 with a brief conclusion.

For convenience, we adopt the following notations:

𝐴
𝑇: the transpose of the matrix 𝐴;

𝐴 ≥ 0 (𝐴 > 0): 𝐴 is a positive semidefinite (positive
definite) matrix;
𝐷
𝑟
:= {𝑥 ∈ 𝑅

𝑛

: |𝑥| < 𝑟} for 𝑟 > 0;
𝐶
2

(𝑈): the class of functions𝑉(𝑥) twice continuously
differential with respect to 𝑥 ∈ 𝑈;
𝑍
+

:= {0, 1, 2, . . .};
𝑃{𝐵}: the probability of event 𝐵;
a.s.: almost surely, or with probability 1;
𝐼
𝐵
: the indicator function of a set 𝐵; that is, 𝐼

𝐵
(𝑥) = 1

if 𝑥 ∈ 𝐵 or otherwise 0;
𝑎 ∧ 𝑏: the minimum of 𝑎 and 𝑏.

2. Definitions of Stability

We will investigate various types of stabilities in probability
for the 𝑛-dimensional stochastic discrete-time system

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡) , 𝑤 (𝑡) , 𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
, (6)

where 𝑥
0
∈ 𝑅
𝑛 is a constant vector. For any given initial

value 𝑥(𝑡
0
) = 𝑥

0
∈ 𝑅
𝑛, (6) has a unique solution that is

denoted by 𝑥(𝑡; 𝑡
0
, 𝑥
0
) or 𝑥(𝑡; 𝑡

0
, 𝑥
0
) = 𝑥(𝑡) simply. 𝑤(𝑡) is a

one-dimensional stochastic process defined on the complete
probability space (Ω, 𝐹, 𝑃). We assume that 𝑓(0, 𝑤(𝑡), 𝑡) ≡ 0
for all 𝑡 ∈ 𝐼 := { 𝑡

0
+𝑘 : 𝑘 ∈ 𝑍

+

}, so (6) has the solution 𝑥(𝑡) ≡
0 corresponding to the initial value 𝑥(𝑡

0
) = 0. This solution is

called the trivial solution or the equilibrium position.

Definition 1. The trivial solution of (6) is said to be stochas-
tically stable or stable in probability if, for every 𝜀 > 0 and
ℎ > 0, there exists 𝛿 = 𝛿(𝜀, ℎ, 𝑡

0
) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
, (7)

when |𝑥
0
| < 𝛿. Otherwise, it is said to be stochastically

unstable.
If the previous 𝛿 is independent of 𝑡

0
, that is, 𝛿 = 𝛿(𝜀, ℎ) >

0, then the trivial solution of (6) is said to be stochastically
uniformly stable in probability.

Definition 2. The trivial solution of (6) is said to be stochasti-
cally asymptotically stable in probability if it is stochastically
stable, and for every 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀, 𝑡

0
) > 0, such

that

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀, (8)

when |𝑥
0
| < 𝛿.

Definition 3. The trivial solution of (6) is said to be stochas-
tically uniformly asymptotically stable in probability if it is
stochastically uniformly stable in probability, and for every
𝜀 > 0, ℎ > 0, there exist 𝛿 = 𝛿(𝜀, ℎ) > 0 and a 𝑇(𝜀) > 0, such
that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) , when 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛿.

(9)

Definition 4. The trivial solution of (6) is said to be stochas-
tically asymptotically stable in the large in probability if it is
stochastically stable, and for all 𝑥

0
∈ 𝑅
𝑛,

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} = 1. (10)

Definition 5. The trivial solution of (6) is said to be uniformly
bounded if, for every 𝛼 > 0 and 𝑡

0
∈ 𝑍
+, there exists 𝛽 =

𝛽(𝛼) > 0, such that

|𝑥 (𝑡)| < 𝛽, a.s., (11)

when |𝑥
0
| < 𝛼 and 𝑡 ≥ 𝑡

0
.

Definition 6. The trivial solution of (6) is said to be stochas-
tically uniformly asymptotically stable in the large in proba-
bility if the following are satisfied:

(i) it is stochastically uniformly stable;
(ii) it is uniformly bounded;
(iii) for any 𝛼 > 0, ℎ > 0, and 𝜀 > 0, there exists 𝑇(𝜀, 𝛼) >

0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀, 𝛼) ,

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛼. (12)

Definition 7. The trivial solution of (6) is said to be 𝑝th
moment exponentially stable if there exist positive constants
𝜆 and 𝐶, such that

𝐸|𝑥 (𝑡)|
𝑝

≤ 𝐶
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

𝑒
−𝜆(𝑡−𝑡0), (13)

where 𝑝 > 0, 𝑡 ≥ 𝑡
0
, and 𝑥

0
∈ 𝑅
𝑛. When 𝑝 = 2, it is usually

said to be exponentially stable in mean square.
Below, we consider such a continuous function

𝑉 (𝑥) : 𝑅
𝑛

󳨀→ 𝑅, (14)

with 𝑉(0) = 0, and write

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) − 𝑉 (𝑥 (𝑡)) . (15)
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Definition 8 (see [13]). A continuous function𝜑 : [0, +∞) →

[0, +∞) is said to belong to class 𝐾 if it is strictly increasing
and 𝜑(0) = 0.

Definition 9 (see [13]). A continuous function 𝑉(𝑥) defined
on𝐷
𝑟
is said to be positive definite (in the sense of Lyapunov)

if 𝑉(0) = 0 and, for some 𝜑 ∈ 𝐾,

𝑉 (𝑥) ≥ 𝜑 (|𝑥|) . (16)

A continuous function 𝑉(𝑥) defined on 𝐷
𝑟
is said to

be negative definite (in the sense of Lyapunov) if −𝑉(𝑥) is
positive definite.

Definition 10 (see [13]). A function𝑉(𝑥) defined on𝐷
𝑟
is said

to be radially unbounded if

lim
|𝑥|→∞

inf 𝑉 (𝑥) = ∞. (17)

Definition 11. A function 𝑉(𝑥) defined on 𝐷
𝑟
is said to have

infinite small upper bound if there exists 𝜑 ∈ 𝐾 such that

|𝑉 (𝑥)| ≤ 𝜑 (|𝑥|) . (18)

3. Main Results

In this section, we state our main results in this paper. By
using the method of the Lyapunov functionals, some efficient
criteria for the stability are obtained.

Theorem 12. If there exists a positive definite function 𝑉(𝑥) ∈
𝐶
2

(𝐷
𝑟
), such that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, (19)

for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the trivial solution of (6) is stochastically

stable in probability.

Proof. By the definition of 𝑉(𝑥), we obtain that 𝑉(0) = 0 and
that there exists a function 𝜑 ∈ 𝐾, such that

𝑉 (𝑥) ≥ 𝜑 (|𝑥|) , ∀𝑥 ∈ 𝐷
𝑟
. (20)

For any 𝜀 ∈ (0, 1) and ℎ > 0, without loss of generality, we
assume that ℎ < 𝑟. Because 𝑉(𝑥) is continuous, we can find
that 𝛿 = 𝛿(𝜀, ℎ, 𝑡

0
) > 0, such that

𝑉 (𝑥) ≤ 𝜀𝜑 (ℎ) , ∀𝑥 ∈ 𝐷
𝛿
. (21)

It is obvious that 𝛿 < ℎ. We fix the initial value 𝑥
0
∈ 𝐷
𝛿

arbitrarily. Let 𝜇 be the first exit time of 𝑥(𝑡) from𝐷
ℎ
; that is,

𝜇 = inf {𝑡 ≥ 𝑡
0
: 𝑥 (𝑡) ∉ 𝐷

ℎ
} . (22)

Let 𝜏 = 𝜇 ∧ 𝑡, for any 𝑡 ≥ 𝑡
0
, we have

𝑉 (𝑥 (𝜇 ∧ 𝑡)) − 𝑉 (𝑥
0
) = 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (𝜏 − 1))

+ 𝑉 (𝑥 (𝜏 − 1)) − 𝑉 (𝑥 (𝜏 − 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑥 (𝑡
0
+ 1)) − 𝑉 (𝑥

0
)

=

𝜏−1

∑

𝑡=𝑡0

Δ𝑉 (𝑥 (𝑡)) .

(23)

Taking the expectation on both sides, it is easy to see that

𝐸𝑉 (𝑥 (𝜇 ∧ 𝑡)) ≤ 𝑉 (𝑥
0
) . (24)

If 𝜇 ≤ 𝑡 and we note that |𝑥(𝜇 ∧ 𝑡)| = |𝑥(𝜇)| = ℎ, then

𝜑 (ℎ) 𝑃 {𝜇 ≤ 𝑡} ≤ 𝐸 [𝐼
{𝜇≤𝑡}

𝑉 (𝑥 (𝜇))] ≤ 𝐸𝑉 (𝑥 (𝜇 ∧ 𝑡)) .

(25)

From (21) and (24), we achieve that

𝑃 {𝜇 ≤ 𝑡} ≤ 𝜀. (26)

Letting 𝑡 → +∞, then 𝑃{𝜇 < ∞} ≤ 𝜀; that is,

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
. (27)

Therefore, the trivial solution of (6) is stochastically
stable.

Theorem 13. If there exists a positive definite and infinite small
upper bounded function 𝑉(𝑥), such that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, (28)

then the trivial solution of (6) is stochastically uniformly stable
in probability.

Proof. By the assumptions, there exist 𝜑 ∈ 𝐾 and𝜓 ∈ 𝐾, such
that

𝜑 (|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜓 (|𝑥|) , ∀𝑥 ∈ 𝐷
𝑟
. (29)

Let 𝜀 ∈ (0, 1) and ℎ > 0 be arbitrary. Without loss of
generality, we may assume that ℎ < 𝑟. We define

𝜓 (𝛿) = 𝜑
ℎ
(𝜀) . (30)

Because of 𝜑 ∈ 𝐾, we can obtain 𝛿 = 𝜓−1(𝜑
ℎ
(𝜀)), and it

has nothing to do with 𝑡
0
.

Similar to the proof of Theorem 12, Theorem 13 is estab-
lished.

Remark 14. We note that 𝐸[Δ𝑉(𝑥(𝑡))] ≤ 0 in Theorems 12-13
corresponds toL𝑉(𝑥) ≤ 0 in the Itô systems. InTheorem 13,
𝑉(⋅) is not only a positive function, but it is also an infinite
small upper bounded function; this is because Theorem 13 is
stronger thanTheorem 12.

Theorem 15. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite function 𝑉(𝑥) ∈ 𝐶

2

(𝐷
𝑟
), such that 𝐸[Δ𝑉(𝑥(𝑡)] ≤

−𝐸𝜑(|𝑥(𝑡)|) for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the trivial solution of (6)

is stochastically asymptotically stable in probability.

Proof. From Theorem 12, we have that the trivial solution of
(6) is stochastically stable. Fix 𝜀 ∈ (0, 1) arbitrarily; then there
is 𝛿
0
= 𝛿
0
(𝜀, 𝑡
0
) > 0, such that

𝑃{|𝑥 (𝑡)| <
𝑟

2
} ≥ 1 −

𝜀

4
, (31)

when 𝑥
0
∈ 𝐷
𝛿0
.
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Fix 𝑥
0
∈ 𝐷
𝛿0
arbitrarily. By the assumptions on function

𝑉(𝑥), we know that 𝑉(0) = 0 and that there exist two func-
tions 𝜑

1
, 𝜑 ∈ 𝐾, such that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) , ∀𝑥 ∈ 𝐷
𝑟
.

(32)

Let 0 < 𝛽 < |𝑥
0
| arbitrarily, and choose 0 < 𝛼 < 𝛽, 0 <

𝜂 < 𝛼 sufficiently small; because of 𝑉(𝑥) being continuous,
we can find that 0 < 𝛿 = 𝛿(𝜀, 𝑡

0
) < 𝛿
0
, such that

𝑉 (𝑥) ≤
𝜀

4
𝜑 (𝜂) , ∀𝑥 ∈ 𝐷

𝛿
. (33)

Define the stopping times

𝜇
𝛼
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≤ 𝛼} ,

𝜇
𝑟
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥

𝑟

2
} .

(34)

Choose 𝜃 sufficiently large, such that

𝑃 {𝜇
𝛼
< 𝜃} ≥ 1 −

𝜀

2
. (35)

Let 𝜏 = 𝜇
𝛼
∧ 𝜇
𝑟
∧ 𝑡, for any 𝑡 ≥ 𝑡

0
, we have

0 ≤ 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥
0
) = 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (𝜏 − 1))

+ 𝑉 (𝑥 (𝜏 − 1)) − 𝑉 (𝑥 (𝜏 − 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑥 (𝑡
0
+ 1)) − 𝑉 (𝑥

0
)

=

𝜏−1

∑

𝑡=𝑡0

Δ𝑉 (𝑥 (𝑡)) .

(36)

Taking the expectation on both sides, we can derive that

0 ≤ 𝐸𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥
0
) − 𝜑 (𝛼) (𝜏 − 𝑡

0
) . (37)

Hence,

𝑉 (𝑥
0
)

𝜑 (𝛼)
≥ 𝐸 (𝜇

𝛼
∧ 𝜇
𝑟
∧ 𝑡 − 𝑡

0
)

= 𝐸 (𝜏 − 𝑡
0
) ≥ (𝑡 − 𝑡

0
) 𝑃 {𝜇

𝛼
∧ 𝜇
𝑟
≥ 𝑡} .

(38)

This means that

𝑃 {𝜇
𝛼
∧ 𝜇
𝑟
< ∞} = 1. (39)

By (31), 𝑃{𝜇
𝑟
< ∞} ≤ 𝜀/4. So

𝑃 {𝜇
𝛼
< ∞} +

𝜀

4
≥ 𝑃 {𝜇

𝛼
< ∞} + 𝑃 {𝜇

𝑟
< ∞}

≤ 𝑃 {𝜇
𝛼
∧ 𝜇
𝑟
< ∞} = 1,

(40)

which implies that

1 −
𝜀

4
≤ 𝑃 {𝜇

𝛼
< ∞} . (41)

Hence,

𝑃 {𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃} ≥ 𝑃 ({𝜇

𝛼
< 𝜃} ∩ {𝜇

𝑟
= ∞})

≥ 𝑃 {𝜇
𝛼
< 𝜃} − 𝑃 {𝜇

𝑟
< ∞} ≥ 1 −

3

4
𝜀.

(42)

Define the two stopping times

𝜎 = {
𝜇
𝛼

if 𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃,

∞ otherwise,

𝜇
𝛽
= inf {𝑡 > 𝜎 : |𝑥 (𝑡)| ≥ 𝛽} .

(43)

Similar to the proof of (24), we can show that, for 𝑡 ≥ 𝜃,

𝐸𝑉 (𝑥 (𝜎 ∧ 𝑡)) ≥ 𝐸𝑉 (𝑥 (𝜇
𝛽
∧ 𝑡)) . (44)

If 𝜇
𝛼
≥ 𝜇
𝑟
∧ 𝜃, then we note that |𝑥(𝜇

𝛽
∧ 𝑡)| = |𝑥(𝜎 ∧ 𝑡)| =

|𝑥(𝑡)| = 𝜂, then

𝐸 [𝐼
{𝜇𝛼<𝜇𝑟∧𝜃}

𝑉 (𝑥 (𝜇
𝛼
))] ≥ 𝐸 [𝐼

{𝜇𝛼<𝜇𝑟∧𝜃}
𝑉(𝑥 (𝜇

𝛽
∧ 𝑡))] .

(45)

By (31) and {𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃} ⊃ {𝜇

𝛽
≤ 𝑡}, we have

𝜑
1
(𝜂) 𝑃 {𝜇

𝛽
≤ 𝑡} ≤ 𝐸 [𝐼

{𝜇𝛽∧𝑡}
𝑉(𝑥 (𝜇

𝛽
∧ 𝑡))]

≤ 𝐸𝑉 (𝑥 (𝜇
𝛽
∧ 𝑡)) .

(46)

Together with (33), we get

𝜀

4
≥ 𝑃 {𝜇

𝛽
≤ 𝑡} . (47)

Letting 𝑡 → ∞, we obtain

𝜀

4
≥ 𝑃 {𝜇

𝛽
< ∞} . (48)

By (42), it follows that

1 − 𝜀 ≤ 𝑃 {𝜇
𝛼
< 𝜇
ℎ
∧ 𝜃} − 𝑃 {𝜇

𝛽
< ∞}

≤ 𝑃 {𝜎 < ∞, 𝜇
𝛽
= ∞} .

(49)

This means that

𝑃{ lim
𝑡→∞

sup |𝑥 (𝑡)| ≤ 𝛽} ≥ 1 − 𝜀. (50)

Since 𝛽 is arbitrary, then we have

𝑃{ lim
𝑡→+∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀. (51)

Theorem 16. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite, infinite small upper bounded function𝑉(𝑥), such that
𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all 𝑥(𝑡) ∈ 𝐷

𝑟
, then the trivial

solution of (6) is stochastically uniformly asymptotically stable
in probability.
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Proof. By the assumptions, there exist 𝜑
1
, 𝜑
2
, and 𝜑 ∈ 𝐾, such

that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜑

2
(|𝑥|) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) .

(52)

FromTheorem 13, we know that the trivial solution of (6)
is stochastically uniformly stable. Therefore, for every 𝜀 > 0
and ℎ > 0, there exists 𝛿 = 𝛿(𝜀, ℎ) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
,
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛿. (53)

According to Definition 3 we only need to show that, for
every 𝜀 > 0 and ℎ > 0, there exist 𝛿 = 𝛿(𝜀, ℎ) > 0 and𝑇(𝜀) > 0,
such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) , whenever 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛿.

(54)

We use a contradiction argument; take 𝑇(𝜀) = 𝜑
2
(𝛿
0
)/

𝜑(𝛿(𝜀, ℎ)); suppose, for any 𝜏, that 𝑡
0
≤ 𝜏 ≤ 𝑡

0
+𝑇(𝜀), such that

|𝑥(𝜏)| ≥ 𝛿(𝜀, ℎ). By 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝜑(|𝑥(𝑡)|), we can show
that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝜑 (|𝑥 (𝑡)|) ≤ −𝜑 (𝛿 (𝜀, ℎ)) . (55)

So
𝜏−1

∑

𝑡=𝑡0

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤

𝜏−1

∑

𝑡=𝑡0

−𝜑 (𝛿 (𝜀, ℎ))

= −𝜑 (𝛿 (𝜀, 𝑟)) (𝜏 − 𝑡
0
) .

(56)

That is,

𝐸𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥
0
) ≤ −𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
) . (57)

Thus,

𝐸𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥
0
) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
)

≤ 𝜑
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡0)

< 𝜑
2
(𝛿
0
) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
) ,

(58)

whenever 𝑡
0
≤ 𝜏 ≤ 𝑡

0
+ 𝑇(𝜀).

Especially, if 𝜏 = 𝑡
0
+ 𝑇(𝜀), it follows that

𝐸𝑉 (𝑥 (𝑡
0
+ 𝑇 (𝜀))) < 𝜑

2
(𝛿
0
) − 𝜑 (𝛿 (𝜀, ℎ)) 𝑇 (𝜀) = 0. (59)

This contradicts the positive definite property of 𝑉(𝑥).
Then, we can prove that there exists 𝑡

1
∈ [𝑡
0
, 𝑡
0
+ 𝑇(𝜀)], such

that
󵄨󵄨󵄨󵄨𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 < 𝛿 (𝜀, ℎ) . (60)

According to Definition 3, we have

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
1
. (61)

Therefore,

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) . (62)

The proof is complete.

Remark 17. By comparing Theorems 12–15, we know that
𝐸[Δ𝑉(𝑥(𝑡))] ≤ −𝐸𝜑(|𝑥(𝑡)|) guarantees the system to be
stochastically asymptotically stable. The difference between
Theorems 15 and 16 is that 𝑉(𝑥) is additionally required to
have an infinite small upper bound in Theorem 16, which
ensures the trivial solution of (6) to be stochastically uni-
formly asymptotically stable in probability.

Theorem 18. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite radially unbounded function 𝑉(𝑥) ∈ 𝐶

2

(𝐷
𝑟
), such

that 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the

trivial solution of (6) is stochastically asymptotically stable in
the large.

Proof. ByTheorem 12, we know that the trivial solution of (6)
is stochastically stable.

Let 𝜀 ∈ (0, 1) be arbitrary, and fix any 𝑥
0
. Since 𝑉(𝑥) is

radially unbounded, then we can choose 𝑟 > |𝑥
0
| sufficiently

large, such that

inf
|𝑥|≥𝑟,𝑡≥𝑡0

𝑉 (𝑥) ≥
4𝑉 (𝑥

0
)

𝜀
. (63)

Define the stopping time

𝜇
𝑟
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑟} . (64)

Similar to the proof of (24), we can obtain that, for any
𝑡 ≥ 𝑡
0
,

𝑉 (𝑥
0
) ≥ 𝐸𝑉 (𝑥 (𝜇

𝑟
∧ 𝑡)) . (65)

From (63), we have

𝑉 (𝑥
0
) ≥ 𝐸𝑉 (𝑥 (𝜇

𝑟
∧ 𝑡)) ≥

4𝑉 (𝑥
0
)

𝜀
𝑃 {𝜇
𝑟
≤ 𝑡} . (66)

Together with (65), it yields that

𝑃 {𝜇
𝑟
≤ 𝑡} ≤

𝜀

4
. (67)

Let 𝑡 → ∞; we have 𝑃{𝜇
𝑟
< ∞} ≤ 𝜀/4. That is to say,

𝑃 {|𝑥 (𝑡)| ≤ 𝑟} ≥ 1 −
𝜀

4
, ∀𝑡 ≥ 𝑡

0
. (68)

In the sameway as that of the proof ofTheorem 15, we can
show that

𝑃{ lim
𝑡→+∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀. (69)

This immediately implies that 𝑃{lim
𝑡→+∞

𝑥(𝑡) = 0} = 1.
The proof is complete.

Theorem 19. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite, infinite small upper bound and radially unbounded
function 𝑉(𝑥), such that 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all
𝑥(𝑡) ∈ 𝐷

𝑟
, then the trivial solution of (6) is stochastically

uniformly asymptotically stable in the large in probability.
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Proof. Under the conditions ofTheorem 19, there exist 𝜑
1
, 𝜑
2
,

and 𝜑 ∈ 𝐾, such that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜑

2
(|𝑥|) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) .

(70)

ByTheorem 13, we know that the trivial solution of (6) is
stochastically uniformly stable.

In the following, we first verify that the trivial solution of
(6) is uniformly bounded. Actually, for any 𝛼 > 0, 𝑡

0
≥ 0, due

to 𝜑
1
, 𝜑
2
∈ 𝐾, there exists 𝛽 = 𝛽(𝛼), such that

𝜑
1
(𝛽) = 𝜑

2
(𝛼) , that is, 𝛽 = 𝜑−1

1
(𝜑
2
(𝛼)) . (71)

It is easy to show that

𝐸𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥
0
) =

𝑡−1

∑

𝑡=𝑡0

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, 𝑡 ≥ 𝑡
0
. (72)

When |𝑥
0
| < 𝛼, we have

𝜑
1
(|𝑥 (𝑡)|) ≤ 𝐸𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥

0
)

≤ 𝜑
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) < 𝜑2 (𝛼)

= 𝜑
1
(𝛽) .

(73)

Because of 𝜑
1
being strictly increasing, so |𝑥(𝑡)| < 𝛽, a.s.,

𝑡 ≥ 𝑡
0
.This implies that the trivial solution of (6) is uniformly

bounded.
We further show that, for every 𝛼 > 0, 𝜀 > 0, and ℎ > 0,

there exists 𝑇(𝜀, 𝛼) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀,

∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀, 𝛼) , whenever 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛼.

(74)

As previously stated the trivial solution of (6) is stochas-
tically uniformly stable. Therefore, for every 𝜀 > 0 and ℎ > 0,
there exists 𝛿 = 𝛿(𝜀, ℎ) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
,
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛿. (75)

The rest is similar to the proof of Theorem 16 and is thus
omitted.

Remark 20. Theorems 18 and 19 are stronger versions of
Theorems 15 and 16, respectively, where 𝑉(𝑥) is additionally
required to be a radially unbounded function that is used to
prove the stability in the large.

In what follows, we will discuss the 𝑝th moment expo-
nential stability for (6).

Theorem 21. Suppose that there exist a function 𝑉(𝑥) ∈

𝐶
2

(𝐷
𝑟
) and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
, such that

𝑐
1
|𝑥|
𝑝

≤ 𝑉 (𝑥) ≤ 𝑐
2
|𝑥|
𝑝

,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝑐
3
𝐸𝑉 (𝑥 (𝑡)) .

(76)

Then

𝐸|𝑥 (𝑡)|
𝑝

≤
𝑐
2

𝑐
1

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

𝑒
−𝑐3(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, ∀𝑥
0
∈ 𝑅
𝑛

. (77)

That is, the trivial solution of (6) is 𝑝th moment exponen-
tially stable.

Proof. Define the stopping time

𝜇
𝑛
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑛} , 𝑛 ≥

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 . (78)

It is easy to see that 𝜇
𝑛
→ ∞ as 𝑛 → ∞ almost surely.

By 𝐸[Δ𝑉(𝑥(𝑡))] ≤ −𝑐
3
𝐸𝑉(𝑥(𝑡)), we can derive that

𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))] − 𝑉 (𝑥

0
)

= 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))

− 𝑒
𝑐3(𝑡∧−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

− 𝑒
𝑐3(𝑡∧𝜏𝑛−2−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 2))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3(𝑡0+1−𝑡0)𝑉 (𝑥 (𝑡

0
+ 1))] − 𝑉 (𝑥

0
)

= 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))

− 𝑉 (𝑥 (𝑡 ∧ 𝜇
𝑛
− 1))

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

− 𝑒
𝑐3(𝑡∧𝜇𝑛−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3𝑉 (𝑥 (𝑡

0
+ 1)) ] − 𝑉 (𝑥

0
)

= 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝐸 [Δ𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))]

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1)) (1 −

1

𝑒𝑐3
)

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3𝐸 [Δ𝑉 (𝑥 (𝑡

0
))] + 𝑒

𝑐3𝑉 (𝑥
0
) (1 −

1

𝑒𝑐3
)

≤ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0) (−𝑐

3
+ 1 −

1

𝑒𝑐3
)𝐸𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3 (−𝑐
3
+ 1 −

1

𝑒𝑐3
)𝑉 (𝑥

0
) ≤ 0.

(79)

By 𝑐
1
|𝑥|
𝑝

≤ 𝑉(𝑥) ≤ 𝑐
2
|𝑥|
𝑝, we have that

𝑐
1
𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝐸

󵄨󵄨󵄨󵄨𝑥 (𝑡 ∧ 𝜇𝑛)
󵄨󵄨󵄨󵄨

𝑝

≤ 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))]

≤ 𝑉 (𝑥
0
) ≤ 𝑐
2

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

.

(80)

Letting 𝑛 → ∞, then

𝑐
1
𝑒
𝑐3(𝑡−𝑡0)𝐸|𝑥 (𝑡)|

𝑝

≤ 𝑐
2

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

, (81)

which implies (77).
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As a corollary, Theorem 21 yields a sufficient criterion for
the exponential stability in mean square sense.

Corollary 22. Suppose that there exist a function 𝑉(𝑥) ∈

𝐶
2

(𝐷
𝑟
) and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
, such that

𝑐
1
|𝑥|
2

≤ 𝑉 (𝑥) ≤ 𝑐
2
|𝑥|
2

,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝑐
3
𝐸|𝑥 (𝑡)|

2

.

(82)

Then the trivial solution of (6) is exponentially stable in mean
square.

4. Illustrative Examples

In this section, we present three simple examples to illustrate
applications of the stability results developed in this paper.We
will let 𝑤(𝑡) be a one-dimensional stochastic process defined
on the complete probability space (Ω, 𝐹, 𝑃), such that𝐸𝑤(𝑡) =
0 and 𝐸[𝑤(𝑡)𝑤(𝑠)] = 𝛿

𝑠𝑡
, where 𝛿

𝑠𝑡
is the Kronecker delta.

Example 1. Consider the following equation:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡) 𝑤 (𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
, (83)

where 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices. Assume that there is a
symmetric positive definite matrix 𝑃, such that

𝐴
𝑇

𝑃𝐴 + 𝐵
𝑇

𝑃𝐵 − 𝑃 ≤ 0. (84)

Now, define the stochastic Lyapunov function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥.
It is obvious that

𝐸 [Δ𝑉 (𝑥 (𝑡))] = 𝐸 [𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃𝐴 + 𝐵
𝑇

𝑃𝐵 − 𝑃) 𝑥 (𝑡)] ≤ 0.

(85)

ByTheorem 12, we conclude that the trivial solution 𝑥 ≡ 0 of
(83) is stochastically stable in probability.

Example 2. Consider the following stochastic difference
equation:

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑥 (𝑡) 𝑤 (𝑡)

= [𝐴 (𝑡) + 𝐵 (𝑡) 𝑤 (𝑡)] 𝑥 (𝑡)

= 𝐻 (𝑡, 𝑤 (𝑡)) 𝑥 (𝑡) ,

(86)

where 𝐴(𝑡), 𝐵(𝑡), and 𝐻(𝑡, 𝑤(𝑡)) = 𝐴(𝑡) + 𝐵(𝑡)𝑤(𝑡) = (ℎ
𝑖,𝑗
(𝑡,

𝑤(𝑡))) are all 2 × 2 matrix-valued functions defined on 𝑡 =
𝑡
0
, 𝑡
0
+ 1, and 𝑡

0
+ 2, . . . , 𝑥(𝑡

0
) = 𝑥
0
∈ 𝑅
𝑛. Assume that

max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2}

}

}

<
1

2
, (87)

for all 𝑥(𝑡) ∈ 𝑅2.

We define the Lyapunov function 𝑉(𝑥) = max
𝑖=1,2

{|𝑥
𝑖
|
2

}.
It is positive definite and radially unbounded. Moreover,

𝐸𝑉 (𝑥 (𝑡 + 1)) = max
𝑖=1,2

𝐸

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

∑

𝑗=1

ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡)) 𝑥

𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

}

}

≤ max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2}

}

}

≤ max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2}

}

}

×max
𝑗=1,2

𝐸{2
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

}

< max
𝑗=1,2

𝐸 {
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

} = 𝐸𝑉 (𝑥 (𝑡)) .

(88)

That is, 𝐸[Δ𝑉(𝑥(𝑡))] < 0. By Theorem 18, the trivial solution
is stochastically asymptotically stable in the large.

Example 3. Consider a one-dimensional linear stochastic
difference equation

𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡) 𝑤 (𝑡) , (89)

where 𝑎, 𝑏 are all constants, and 𝑎2 < 𝑏2/4. We assume that
there exist positive constants 𝑝 and 𝑐 < 1, such that 5𝑏2 <
4(1 − 𝑐)𝑝.

We define the Lyapunov function 𝑉(𝑥) = 𝑝𝑥2; then

𝐸 [Δ𝑉 (𝑥 (𝑡))] = (
5𝑏
2

4
− 𝑝)𝐸𝑥

2

(𝑡) < −𝑐𝑝𝐸𝑥
2

(𝑡) . (90)

ByCorollary 22, the trivial solution is exponentially stable
in mean square.

5. Conclusions

This paper has discussed the stability in probability for
stochastic discrete-time systems. Using the method of Lya-
punov functionals, some efficient criteria for the stability
are obtained. Some results of the stability [13] for stochastic
differential equations are generalized to stochastic discrete-
time systems.There are some interesting problems such as the
almost sure exponential stability and the stochastic nonlinear
𝐻
∞

control that merit further study.
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This paper investigates the problem of output-feedback stabilization for a class of stochastic nonlinear systems in which the
nonlinear terms depend on unmeasurable states besides measurable output. We extend linear growth conditions to power growth
conditions and reduce the control effort. By using backstepping technique, choosing a high-gain parameter, an output-feedback
controller is designed to ensure the closed-loop system to be globally asymptotically stable in probability, and the inverse optimal
stabilization in probability is achieved. The efficiency of the output-feedback controller is demonstrated by a simulation example.

1. Introduction

The design of output-feedback controller for stochastic non-
linear systems has achieved remarkable research develop-
ment, because output feedback control is more suitable for
practical engineering systems; for example, see [1–12] and
references therein. In recent years such research hotspot has
mainly focused on a class of special nonlinear stochastic
systems in which the nonlinear vector terms depend on
the unmeasurable states besides the measurable output; for
example, see [13–17] and references therein. The work of [13]
discussed the output-feedback controller design by introduc-
ing a stability concept named globally asymptotically stable
in probability. Based on the purpose of reducing the amount
of control, [14] considered the output-feedback stabilization
problem.

However, in [13–17], the nonlinear vector terms satisfy
the linear growth conditions strictly, which greatly narrows
the scope of application of the research results. Naturally,
one may ask about an interesting and challenging problem:
can we further relax the linear growth conditions? To our
knowledge, the existing research results on this problem
are as in [18–20]. In [18], authors discussed the output-
feedback stabilization problem by introducing a rescaling
transformation under more relaxed growth conditions. On

the basis of [18], the work of [19] and [20] further considered
the output-feedback controller design problem for high-
order stochastic nonlinear systems. However, for [18–20], the
observer gain 𝐾 is usually larger than 1, and the choice can
lead to a controller design which needs larger control effort.
So another challenging problem is proposed that is whether
the assumption 𝐾 > 1 can be removed.

In this paper, we investigate the output-feedback stabi-
lization problem for a class of stochastic nonlinear systems
satisfying power growth conditions. Inspired by [13, 14],
we find the maximum value interval of observer gain for
the desired controller by using backstepping technique. For
this interval, the designed output-feedback controller ensures
that the equilibrium at the origin is globally asymptotically
stable in probability and the inverse optimal stabilization
in probability is achieved. The main contributions of this
paper are characterized as follows. (i) We extend the linear
growth conditions to the power growth conditions. (ii) The
assumption of𝐾 > 1 in [18–20] is removed so that we can get
less control effort.

The paper is organized as follows. Section 2 provides
some preliminary results. In Section 3, the problem to be
investigated is presented. In Sections 4 and 5, an output-
feedback controller is designed and analysed. In Section 6,
the inverse optimal stabilization in probability is achieved.
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Section 7 provides a simulation example. Section 8 concludes
this paper.

2. Notations and Preliminary Results

Throughout this paper, the following notations will be used.
𝑅 denotes the set of all real numbers; 𝑅

+
denotes the set of all

nonnegative real numbers;𝑅𝑛 denotes the real 𝑛-dimensional
space; 𝑅𝑛×𝑟 denotes the real 𝑛 × 𝑟 matrix space; Tr(⋅) denotes
the trace for squarematrix𝑋; |𝑋| denotes the Euclidean norm
of a vector 𝑋, and ‖𝑋‖ is the Frobenius norm of matrix
𝑋 defined by ‖𝑋‖ = (∑

𝑛

𝑖=1
∑
𝑟

𝑗=1
𝑥
2

𝑖𝑗
)
1/2; for a given vector

𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝑥
[𝑖]

denotes (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇; 𝐶𝑖 denotes the

set of all function with continuous 𝑖th partial derivatives;
𝐶
2,1

(𝑅
𝑛

× 𝑅
+
, 𝑅
+
) is the family of all nonnegative functions

𝑉(𝑥, 𝑡) on 𝑅
𝑛

× 𝑅
+
, which are 𝐶

2 in 𝑥 and 𝐶
1 in 𝑡; 𝐾 denotes

the set of all functions: 𝑅+ → 𝑅
+, which are continuous,

strictly increasing, and vanish at zero; 𝐾
∞

denotes the set of
all functionswhich are of class𝐾 and unbounded;𝐾𝐿denotes
the set of all functions 𝛽(𝑠, 𝑡): 𝑅

+
×𝑅
+

→ 𝑅
+
, which are of𝐾

for each fixed 𝑡 and decrease to zero as 𝑡 → ∞ for each fixed
𝑠.

Lemma 1. The inequality (|𝑥| + |𝑦|)
𝑝

≤ 2
𝑝−1

(|𝑥|
𝑝

+ |𝑦|
𝑝

) is
established for any 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, 𝑝 ≥ 1, 𝑝 ∈ 𝑍.

Proof. For an assumption of 𝛼 = (𝑎
1
, 𝑎
2
) = (|𝑥|, |𝑦|), 𝛽 =

(𝑏
1
, 𝑏
2
) = (1, 1), inspired by Holder inequality [21], we can get

|𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 ≤ (|𝑥|
𝑝

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑝

)
1/𝑝

2
1−1/𝑝 (1)

and further get

(|𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)
𝑝

≤ 2
𝑝−1

(|𝑥|
𝑝

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑝

) . (2)

Then the proof is completed.

Consider the following stochastic system:

𝑑𝑥 = 𝑓 (𝑥, 𝑢) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝜔, ∀𝑥
0
∈ 𝑅
𝑛

, (3)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛 is the state of the system. 𝑢 ∈ 𝑅

𝑚

is the control input of the system. 𝜔 is an 𝑟-dimensional
standard Wiener process defined on a probability space
{Ω, 𝐹, 𝑃}. The nonlinear functions 𝑓 : 𝑅

𝑚+𝑛

→ 𝑅
𝑛 and 𝑔 :

𝑅
𝑛

→ 𝑅
𝑛×𝑟 are locally Lipschitz with 𝑓(0) = 0, 𝑔(0) = 0. For

any given 𝑉 ∈ 𝐶
2

(𝑅
𝑛

; 𝑅) associated with stochastic system
(3), the differential operator 𝐿 is defined as follows:

𝐿𝑉 (𝑥) =
𝜕𝑉

𝜕𝑥
𝑓 (𝑥) +

1

2
Tr(𝑔

𝑇

(𝑥)
𝜕
2

𝑉

𝜕𝑥2
𝑔 (𝑥)) . (4)

In order to discuss the stability of stochastic nonlinear
systems, we introduce the following stability notion.

Definition 2 (see [22]). For the stochastic nonlinear system
(3) with 𝑓(0, 𝑢) = 0, 𝑔(0) = 0, the equilibrium 𝑥(𝑡) = 0

of (3) is said to be globally asymptotically stable (GAS) in
probability if, for any 𝜀 > 0, there exists a class 𝐾𝐿 function
𝛽(⋅, ⋅) such that 𝑃{|𝑥(𝑡)| < 𝛽(|𝑥

0
|, 𝑡)} ≥ 1 − 𝜀, ∀𝑡 ≥ 0,

𝑥
0
∈ 𝑅
𝑛

\ {0}.

The following lemmas give some sufficient conditions
ensuring global asymptotical stability in probability.

Lemma 3 (see [23]). For system (3), if there exist 𝑉(𝑥) ∈ 𝐶
2,

class 𝐾
∞

functions 𝛼
1
, 𝛼
2
, and a class 𝐾 function 𝛼

3
such that

𝛼
1
(|𝑥|) ≤ 𝑉(𝑥) ≤ 𝛼

2
(|𝑥|), 𝐿𝑉(𝑥) ≤ −𝛼

3
(|𝑥|), then there exists

an almost surely unique solution to system (3) on [0,∞), and
the equilibrium 𝑥(𝑡) = 0 is globally asymptotically stable in
probability.

Lemma 4 (see [24]). Consider the following control law:

𝑢 = 𝛼 (𝑥) = −𝑅
−1

2
(𝐿
𝜑2
𝑉)
𝑇
ℓ𝛾 (

󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨

2
, (5)

where 𝛾(⋅) is a class 𝐾
∞

function, ℓ𝛾(𝑠) = 𝑠( ̇𝛾)
−1

(𝑠) −

𝛾(( ̇𝛾)
−1

(𝑠)), and 𝑅
2
(𝑥) is a matrix valued function such that

𝑅
2
(𝑥) = 𝑅

𝑇

2
(𝑥) > 0. If the control law (5) to be ensures system

(3) globally asymptotically stable in probability, then the control
law

𝑢
∗

= 𝛽
∗

(𝑥)

= −
𝜃

2
𝑅
−1

2
(𝐿
𝜑2
𝑉)
𝑇
ℓ𝛾 (

󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨

2
, 𝜃 ≥ 2,

(6)

solves the problemof inverse optimal stabilization in probability
for system (3) by minimizing the cost functional

𝐽 (𝑢) = 𝐸{∫

∞

0

[𝑙 (𝑥) + 𝜃
2

𝛾 (
2

𝜃

󵄨󵄨󵄨󵄨󵄨
𝑅
2
(𝑥)
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨
)] 𝑑𝜏} , (7)

where 𝑙(𝑥) is a positive definite radially unbounded function
satisfying

𝑙 (𝑥) = 2𝜃 [ℓ𝛾 (
󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨
) −

1

2
Tr{𝜑

𝑇

1

𝜕
2

𝑉

𝜕𝑥2
𝜑
1
}]

+ 𝜃 (𝜃 − 2) ℓ𝛾 (
󵄨󵄨󵄨󵄨󵄨
𝐿
𝜑2
𝑉𝑅
−1/2

2

󵄨󵄨󵄨󵄨󵄨
) .

(8)

3. Problem Formulation

Consider the following stochastic nonlinear systems:

𝑑𝑥
𝑖
= 𝑥
𝑖+1

𝑑𝑡 + 𝜑
𝑖
(𝑥) 𝑑𝜔, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑢𝑑𝑡 + 𝜑

𝑛
(𝑥) 𝑑𝜔,

𝑦 = 𝑥
1
,

(9)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛, 𝑢 ∈ 𝑅, and 𝑦 ∈ 𝑅 are the
states, the control input, and the measurable output of the
system, 𝜔 ∈ 𝑅

𝑟 is defined as in (3), and 𝑥
2
, . . . , 𝑥

𝑛
are the

unmeasurable states. 𝜑
𝑖
: 𝑅
𝑛

→ 𝑅
𝑟, 𝑖 = 1, . . . , 𝑛, are locally

Lipschitz with 𝜑
𝑖
(0) = 0 and satisfy the following power

growth conditions.

Assumption 5. For each 1 ≤ 𝑖 ≤ 𝑛, there exists the known
positive constant 𝑑 ≥ 0 such that |𝜑

𝑖
(x)| ≤ 𝑑(|𝑥

1
|
𝑝

+ |𝑥
2
|
𝑝

+

⋅ ⋅ ⋅ + |𝑥
𝑖
|
𝑝

), where 𝑝 is any positive integer.
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Remark 6. Assumption 5 can be simplified into linear growth
conditions when 𝑝 = 1. Therefore, linear growth conditions
as a special case are included in Assumption 5. This paper
extends previous work and gets a new result.

The objective of this paper is to design a smooth output-
feedback controller for system (9), such that the closed-
loop system is globally asymptotically stable in probability
at the origin and achieves the design of the inverse optimal
stabilization in probability.

4. Output-Feedback Controller Design

Since 𝑥
2
, . . . , 𝑥

𝑛
are unmeasured, the following observer is

introduced:

̇𝑥̂
𝑖
= 𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
(𝑥
1
− 𝑥
1
) , 𝑖 = 1, . . . , 𝑛 − 1,

̇𝑥̂
𝑛
= 𝑢 + 𝐾

𝑛

ℎ
𝑛
(𝑥
1
− 𝑥
1
) ,

(10)

where 𝑥
𝑖
is the estimated value of 𝑥

𝑖
, 𝐾 ∈ 𝑅

+
is the observer

gain to be determined, and ℎ
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are chosen

such that matrix 𝐴 = (

−ℎ1

... 𝐼𝑛−1
−ℎ𝑛 0⋅⋅⋅0

) is asymptotically stable;

thus there exists a positive definite matrix 𝑃 satisfying𝐴
𝑇

𝑃+

𝑃𝐴 = −𝐼. Let 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, where 𝑥

𝑖
= (𝑥
𝑖
− 𝑥
𝑖
)/𝐾
𝑖−1 for

each 𝑖 = 1, . . . , 𝑛. By (9) and (10), we can get error system

𝑑𝑥 = 𝐾𝐴𝑥𝑑𝑡 + Φ (𝑥) 𝑑𝜔, (11)

where Φ(𝑥) = (𝜑
1
(𝑥), 𝜑
2
(𝑥)/𝐾, . . . , 𝜑

𝑛
(𝑥)/𝐾

𝑛−1

)
𝑇.

Now we give the backstepping controller design proce-
dure.

Step 0. Choosing the zeroth Lyapunov function 𝑉
0
(𝑥) = (𝑛 +

1)𝑥
𝑇

𝑃𝑥, applying 2𝑎𝑏 ≤ 2(𝑎
2

+ 𝑏
2

), (𝑎 + 𝑏)
2

≤ 2(𝑎
2

+ 𝑏
2

),
∑
𝑛

𝑖=1
|𝑎
𝑖
|
2

≤ (∑
𝑛

𝑖=1
|𝑎
𝑖
|)
2, (∑
𝑛

𝑖=1
𝑎
𝑖
)
2

≤ 𝑛∑
𝑛

𝑖=1
𝑎
2

𝑖
, Lemma 1,

Assumption 5, and (4), we can get

𝐿𝑉
0
= − (𝑛 + 1)𝐾|𝑥|

2

+ (𝑛 + 1)Tr (Φ𝑇 (𝑥) 𝑃Φ (𝑥))

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑖
(𝑥)

𝐾𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑖
(𝑥)

𝐾𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

2

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛

∑

𝑖=1

1

𝐾𝑖−1
)

2

× (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

𝑝

+

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

𝑝

𝐾
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

𝑝

𝐾𝑛−1
)

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ 2
2𝑝−1

𝑛𝑑
∗

× (

𝑛

∑

𝑖=1

(
𝑥
𝑝

𝑖

𝐾𝑖−1
)

2

+

𝑛

∑

𝑖=1

(𝐾
(𝑖−1)𝑝−(𝑖−1)

𝑥
𝑝

𝑖
)
2

)

≤ − ((𝑛 + 1) 𝑛𝐾 − 2
2𝑝−1

𝑛𝑑
∗

𝑛

∑

𝑖=1

(𝐾
(𝑖−1)𝑝−(𝑖−1)

)
2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(𝑥
2𝑝

1
+

𝑥
2𝑝

2

𝐾2
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) ,

(12)

where

𝑑
∗

= (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛

∑

𝑖=1

1

𝐾𝑖−1
)

2

=

(𝑛 + 1) ‖𝑃‖ 𝑑
2

(∑
𝑛−1

𝑖=0
(𝑖 + 1)𝐾

𝑖

+ ∑
2𝑛−2

𝑖=𝑛
(2𝑛 − 𝑖 − 1)𝐾

𝑖

)

𝐾2𝑛−2

(13)

and ‖𝑥‖
∞

= max
𝑖
|𝑥
𝑖
|.

We introduce a series of coordinate changes as follows:

𝑤
1
= 𝑥
1
,

𝑤
𝑖
= 𝑥
𝑖
− 𝛽
𝑖−1

(𝑥
[𝑖−1]

) ,

(14)

where 𝛽
𝑖−1

(𝑥
[𝑖−1]

) (𝑖 = 2, . . . , 𝑛) is the virtual control law to
be designed.

Step 1. Constructing the 1st Lyapunov function

𝑉
1
(x̃, 𝑤
1
) = 𝑉
0
(x̃) + 1

𝑝 + 1
𝑤
𝑝+1

1
, (15)

using (3), (10), (12)–(15), and Young’s inequality [22], we can
obtain

𝐿𝑉
1
≤ − ((𝑛 + 1) 𝑛𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 2

2𝑝−1

𝑛𝑑
∗

𝑤
2𝑝

1

+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

2

𝐾2
+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1
+ 𝐾𝑥
2

1
+

𝐾

4
ℎ
2

1
𝑤
2𝑝

1
.

(16)

Applying (14) and Lemma 1, choosing 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, we can

get

2
2𝑝−1

𝑛𝑑
∗

𝑤
2

1
≤

𝐾

2
𝑤
2

1
,

2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

2

𝐾2
≤ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝛽
2𝑝

1
,

(17)
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which one substitutes in (16) to obtain

𝐿𝑉
1
≤ − ((𝑛 + 1) 𝑛𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 2

2𝑝−1

𝑛𝑑
∗

𝑤
2

1

+ 4
2𝑃−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝛽
2𝑝

1

+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1
+ 𝐾𝑥
2

1
+

𝐾

4
ℎ
2

1
𝑤
2𝑝

1

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 4

2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

1
+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1

+ 𝐾(
1

2
+

ℎ
2

1

4
)𝑤
2𝑝

1

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) − 𝑛𝐾𝑤

2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗V2𝑝
1 √

𝑤
2𝑝

1
⋅ ⋅ ⋅ 𝑤
2𝑝

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑝

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) − 𝑛𝐾𝑤

2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗V2𝑝
1

√(2𝑝𝑤
2𝑝

1
)
2

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2

= − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
,

(18)

by choosing the 1st virtual control law

𝛽
1
= −𝐾V

1
𝑤
𝑝

1
,

V
1
=

1

2
+

ℎ
2

1

4
+ 𝑛.

(19)

Step 2. Using (10), (14), and (18), we can get

𝑑𝑤
2
= (𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
)) 𝑑𝑡

= (𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾
2

ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1

+𝐾V
1
𝑝𝑤
𝑝−1

1
(𝑤
2
+ 𝛽
1
)) 𝑑𝑡.

(20)

Constructing the 2nd Lyapunov function

𝑉
2
(𝑥, 𝑤
[2]

) = 𝑉
1
(𝑥, 𝑤
1
) +

1

𝐾2
⋅

1

𝑝 + 1
𝑤
𝑝+1

2
, (21)

applying (14), (18)–(21), 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, Lemma 1, and Young’s

inequality [20], we obtain

𝐿𝑉
2
≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

3

𝐾4

+
1

𝐾2
𝑤
𝑝

2
(𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾
2

ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1

+𝐾V
1
𝑝𝑤
𝑝−1

1
𝑤
2
− 𝐾
2V2
1
𝑝𝑤
2𝑝−1

1
)

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞
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+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

3

𝐾4
+

1

𝐾2
𝑤
𝑝

2
𝑥
3

+ 𝑤
𝑝

2
ℎ
2
𝑥
1
+ 𝑤
𝑝

2
ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1
+

1

𝐾
𝑤
𝑝+1

2
V
1
𝑝𝑤
𝑝−1

1

− V2
1
𝑝𝑤
2𝑝−1

1
𝑤
𝑝

2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾4
𝑤
2𝑝

3
+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾4
𝛽
2𝑝

2
+

1

𝐾2
𝑤
𝑝

2
𝑤
3

+
1

𝐾2
𝑤
𝑝

2
𝛽
2
+ (𝑤
𝑝

2
(ℎ
2
+ ℎ
1
V
1
𝑝𝑤
𝑝−1

1
)) 𝑥
1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+

1

𝐾
𝑤
𝑝+1

2
V
1
𝑝𝑤
𝑝−1

1

− V2
1
𝑝𝑤
2𝑝−1

1
𝑤
𝑝

2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾4
𝑤
2𝑝

3
+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾4
𝛽
2𝑝

2
+

1

𝐾2
𝑤
𝑝

2
𝑤
3

+
1

𝐾2
𝑤
𝑝

2
𝛽
2
+ (𝑤
𝑝

2
(ℎ
2
+ ℎ
1
V
1
𝑝𝑤
𝑝−1

1
)) 𝑥
1

+ (
1

4𝑛𝑑∗
− 1)𝑤

2𝑝

2
+ 𝑤
2𝑝

1
+

1

4
𝑤
2

2
+

1

𝐾
𝑤
2𝑝+2

2
;

(22)

then we can get the 2nd virtual control law

𝛽
2
(𝑥
[2]

) = −𝐾
2V
2
𝑤
𝑝

2
,

V
2
=

ℎ
2

2

4
+
V2
1
ℎ
2

1

4
+
V4
1

4
+ V
1
+ 1 + 𝑛 − 1,

(23)

which satisfies

𝐿𝑉
2
≤ − (((𝑛 + 1) 𝑛 − 2)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− ((𝑛 − 1)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

−
1

𝐾2
((𝑛 − 4

𝑝−1

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
2

)𝑤
2𝑝

2

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾4
𝑤
2𝑝

3
+

1

𝐾2
𝑤
𝑝

2
𝑤
3
.

(24)

Step 𝑖 (𝑖 = 3, . . . , 𝑛 − 1). Suppose at (𝑖 − 1)th, that there are a
set of virtual control laws 𝛽

1
(𝑥
1
), . . . , 𝛽

𝑖−1
(𝑥
[𝑖−1]

): as follows

𝛽
1
(𝑥
1
) = − 𝐾V

1
𝑤
𝑝

1
,

𝛽
2
(𝑥
[2]

) = − 𝐾
2V
2
𝑤
𝑝

2
,

...

𝛽
𝑖−1

(𝑥
[𝑖−1]

) = − 𝐾
𝑖−1V
𝑖−1

𝑤
𝑝

𝑖−1
,

V
1
=

1

2
+

ℎ
2

1

4
+ 𝑛,

V
2
=

ℎ
2

2

4
+
V2
1
ℎ
2

1

4
+
V4
1

4
+ V
1
+ 1 + 𝑛 − 1,

...

V
𝑖−1

=
1

4
(ℎ
𝑖−1

+ V
𝑖−2

ℎ
𝑖−2

+ V
𝑖−2

V
𝑖−3

ℎ
𝑖−3

+ ⋅ ⋅ ⋅ + V
𝑖−2

V
𝑖−3

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+ V
𝑖−2

+ 1 + 𝑛 − (𝑖 − 2) ,

(25)

with V
𝑗

> 0 (𝑗 = 1, . . . , 𝑖 − 1) being independent of 𝐾 such
that the 𝑖th Lyapunov function

𝑉
𝑖−1

(𝑥, 𝑤
[𝑖−1]

) = 𝑉
0
(𝑥) +

1

𝑝 + 1

𝑖−1

∑

𝑗=1

1

𝐾𝑗
𝑤
𝑝+1

𝑗
(26)

satisfies

𝐿𝑉
𝑖−1

≤ − ( ((𝑛 + 1) 𝑛 − (𝑖 − 1))𝐾 − 2
2𝑝−1

𝑛𝑑
∗

×(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+1

𝐾2𝑖
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)
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−

𝑖−1

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑖
+

1

𝐾2(𝑖−2)
𝑤
𝑝

𝑖−1
𝑤
𝑖
. (27)

In the sequel, we will prove that (27) still holds for

𝑉
𝑖
(𝑥, 𝑤
[𝑖]
) = 𝑉
𝑖−1

(𝑥, 𝑤
[𝑖−1]

) +
1

𝑝 + 1
⋅

1

𝐾𝑖
𝑤
𝑝+1

𝑖
. (28)

Using (14) and (25), a direct calculation leads to

𝑑𝑧
𝑖
= (𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
𝑥
𝑖
+ 𝐾ℎ
𝑖−1

𝑝𝑤
𝑝−1

𝑖−1
(𝑥
𝑖
+ 𝐾
𝑖−1

ℎ
𝑖−1

𝑥
1
)

+ 𝐾
2V
𝑖−1

V
𝑖−2

𝑝𝑤
𝑝−1

𝑖−2
(𝑥
𝑖−1

+ 𝐾
𝑖−2

ℎ
𝑖−2

𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝐾
𝑖−1V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
)) 𝑑𝑡.

(29)

Using 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, Lemma 1, Young’s inequality [22], (14),

(27), (28), and (29), we obtain

𝐿𝑉
𝑖
≤ − ( ((𝑛 + 1) 𝑛 − (𝑖 − 1))𝐾 − 2

2𝑝−1

𝑛𝑑
∗

× (

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖−1

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 2
2𝑝−1

𝑛𝑑
∗

1

𝐾2𝑖
𝑥
2𝑝

𝑖+1
+

1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑖
𝑥
𝑖+1

+
1

𝐾𝑖
𝑤
𝑝

𝑖

× (𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
𝑥
𝑖
+ 𝐾V
𝑖−1

𝑝𝑤
𝑝−1

𝑖−1
(𝑥
𝑖
+ 𝐾
𝑖−1

ℎ
𝑖−1

𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝐾
𝑖−1V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
))

≤ − (((𝑛 + 1) 𝑛 − 𝑖)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)𝑗

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2𝑖
𝑤
2𝑝

𝑖+1
+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2𝑖
𝛽
2𝑝

𝑖

+
1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝑤
𝑖+1

+
1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝛽
𝑖

+
1

𝐾2𝑖−3
𝑤
2𝑝

𝑖
(
1

4
(ℎ
𝑖
+ V
𝑖−1

ℎ
𝑖−1

+ V
𝑖−1

V
𝑖−2

ℎ
𝑖−2

+ ⋅ ⋅ ⋅ + V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+V
𝑖−1

+1) ,

(30)

then we can choose the 𝑖th smooth virtual control law

𝛽
𝑖
(𝑥
[𝑖]
) = −𝐾

𝑖V
𝑖
𝑤
𝑝

𝑖
,

V
𝑖
=

1

4
(ℎ
𝑖
+ V
𝑖−1

ℎ
𝑖−1

+ V
𝑖−1

V
𝑖−2

ℎ
𝑖−2

+ ⋅ ⋅ ⋅ + V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+ V
𝑖−1

+ 1 + 𝑛 − (𝑖 − 1)

(31)

and get

𝐿𝑉
𝑖
≤ − (((𝑛 + 1) 𝑛 − 𝑖)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)𝑗

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2𝑖
𝑤
2𝑝

𝑖+1
+

1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝑤
𝑖+1

.

(32)

Step 𝑛. Using repeatedly the previous arguments, at the 𝑛−1th
step, we can get

𝐿𝑉
𝑛−1

≤ − ( ((𝑛 + 1) 𝑛 − (𝑛 − 1))𝐾 − 2
2𝑝−1

𝑛𝑑
∗

×(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

−

𝑛−1

∑

𝑗=1

1

𝐾2𝑗−2

× ((𝑛 − 4
(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗

1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑛
+

1

𝐾2(𝑖−2)
𝑤
𝑝

𝑛−1
𝑤
𝑛
,

(33)

where

𝑉
𝑛−1

(𝑥, 𝑤
[𝑛−1]

) = 𝑉
𝑛−2

(𝑥, 𝑤
[𝑛−2]

) +
1

𝐾𝑛−1
⋅

1

𝑝 + 1
𝑤
2𝑝

𝑛
.

(34)

At the end of the recursive procedure, choosing the controller

𝑢 (𝑥
[𝑛]

) = −𝐾
𝑛V
𝑛
𝑤
𝑝

𝑛
, (35)
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where V
𝑛

> 0 satisfies (25) and is independent of 𝐾, we can
get

𝐿𝑉
𝑛
≤ − (𝑛

2

𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

−

𝑛−1

∑

𝑗=1

1

𝐾2𝑗−2

× ((𝑛 − 4
(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

−
1

𝐾2𝑛−5
𝑤
2𝑝

𝑛
,

(36)

where

𝑉
𝑛
(𝑥, 𝑤
[𝑛]

) = (𝑛 + 1) 𝑥
𝑇

𝑃𝑥 +
1

𝑝 + 1

𝑛

∑

𝑗=1

1

𝐾𝑗
𝑤
𝑝+1

𝑗
. (37)

Remark 7. The item (𝑥
2𝑝

1
+ 𝑥
2𝑝

2
/𝐾
2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑝

𝑛
/𝐾
2𝑛−2

) is
canceled at step 𝑛 − 1. By the following analysis, we obtain
the maximum value interval of 𝐾 to ensure the system to be
globally asymptotically stable in probability at the origin.

5. Performance Analysis

Next, we give the main result in this paper.

Theorem 8. If Assumption 5 holds for stochastic nonlinear
system (9) under the controllers (10) and (35), then there always
exists a constant 𝐾∗ ≥ 0, such that for any 𝐾 > 𝐾

∗,
(1) the closed-loop system has an almost surely unique

solution on [0,∞) for any 𝑥
0
;

(2) the equilibrium at the origin of the closed-loop system
is globally asymptotically stable in probability.

Proof. Using 𝐾 ≥ 0, (18), (23), and (31), obviously, if

𝐾 > max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
2

𝑛 − 4𝑝−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, . . . ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(38)

holds, then conclusions (1) and (2) follow from (36), (37), and
Lemma 3. In the following, we analyze (38). From (13), (25),
and (31), it is easy to find that 𝑑∗ depends on 𝐾. Substituting
(13) into (38) leads to

𝐾 >
2
4𝑝−1

𝑝𝑛V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)
⋅
(𝑛 + 1) ‖𝑃‖ 𝑑

2

𝐾2𝑛−2

⋅ (

𝑛−1

∑

𝑖=0

(𝑖 + 1)𝐾
𝑖

+

2𝑛−2

∑

𝑖=𝑛

(2𝑛 − 𝑖 − 1)𝐾
𝑖

) ;

(39)

equivalently,

𝐾
2𝑛−1

>
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)
⋅ 2
4𝑝−1

⋅ 𝑝 ⋅ V2𝑝
𝑛

⋅ (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛−1

∑

𝑖=0

(𝑖 + 1)𝐾
𝑖

+

2𝑛−2

∑

𝑖=𝑛

(2𝑛 − 𝑖 − 1)𝐾
𝑖

) ,

(40)

which is equivalent to

𝐾
2𝑛−1

+

2𝑛−2

∑

𝑖=0

𝑎
𝑖
𝐾
𝑖

> 0 (41)

with the real numbers

𝑎
0
= − Δ,

𝑎
1
= − 2Δ,

...

𝑎
𝑛−1

= − 𝑛Δ,

𝑎
𝑛
= − (𝑛 − 1) Δ,

𝑎
𝑛+1

= − (𝑛 − 2) Δ,

...

𝑎
2𝑛−2

= − Δ − (𝑛 + 1) ‖𝑃‖
2

, Δ = 2
4𝑝−1

𝑝𝑛 (𝑛 + 1) 𝑑
2V2𝑝
𝑛−1

.

(42)

According to the factorization theorem of real coefficient
polynomial, (41) can be further expressed as

(𝐾 − 𝐾
1
)
𝑚1

⋅ ⋅ ⋅ (𝐾 − 𝐾
𝑟
)
𝑚𝑟

(𝐾
2

+ 𝑝
1
𝐾 + 𝑞

1
)
𝑛1

⋅ ⋅ ⋅ (𝐾
2

+ 𝑝
𝑠
𝐾 + 𝑞

𝑠
)
𝑛𝑠

> 0,

(43)

where 𝑚
𝑖
, 𝑛
𝑗
are positive integers with ∑

𝑟

𝑖=1
𝑚
𝑖
+ 2∑
𝑠

𝑗=1
𝑛
𝑗
=

2𝑛 − 1, 𝐾
𝑖
, 𝑖 ≤ 𝑟, are different real numbers, and (𝑝

𝑗
, 𝑞
𝑗
),

𝑗 ≥ 𝑠, satisfy 𝑝
2

𝑗
− 4𝑞
𝑗

< 0 for all 𝑗 = 1, . . . , 𝑠. Obviously,
𝐾
2

+ 𝑝
𝑗
𝐾 + 𝐾

𝑗
> 0 for all 𝑗 = 1, . . . , 𝑠. Now, we divide into

two cases to discuss the choice of 𝐾
𝑖
. (1) If there is at least

one positive number for 𝐾
1
, . . . , 𝐾

𝑟
under the condition of

appropriate value of 𝑝, one chooses 𝐾
∗

= max
1≤𝑖≤𝑟

{𝐾
𝑖
}. (2)

Otherwise, 𝐾∗ = 0. Thus there always exists 𝐾
∗

≥ 0, such
that for any 𝐾 > 𝐾

∗, (38) holds.

6. Inverse Optimal Controller Design

In this section we will design the inverse optimal controller
on the basis of Theorem 8 to meet specific performance
indicators besides achieving control objectives.
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Theorem 9. The control law

𝑢
∗

= −𝜃𝐾
𝑛V
𝑛
𝑤
𝑝

𝑛
, 𝜃 ≥ 2, (44)

solves the problemof inverse optimal stabilization in probability
for (9) by minimizing the cost function

𝐽 (𝑢) = 𝐸{∫

∞

0

[𝑙 (𝑥, 𝑥) +
1

𝐾2(𝑛−1)

V−1
𝑛

(𝑥)

𝐾𝑛
𝑢
2

]𝑑𝑟} , (45)

where 𝜑
1
(𝑥, 𝑥) = (Φ

𝑇

(𝑥), 0, . . . , 0)
𝑇, 𝜑
2
(𝑥, 𝑥) = (0, . . . , 0, 1)

𝑇,
𝑉 = 𝑉

𝑛
.

Proof. Equations (10) and (11) can be represented as

(
𝑑𝑥

𝑑𝑥
) = 𝜑

1
(𝑥, 𝑥) 𝑑𝜔 + 𝜑

2
(𝑥, 𝑥) 𝑢 𝑑𝑡, (46)

where 𝜑
1
, 𝜑
2
are identified in Theorem 9. Choosing 𝛾(𝑟) =

(1/2𝐾
2(𝑛−1)

)𝑟
2, we can get (𝛾󸀠)−1(𝑟) = 𝐾

2(𝑛−1)

𝑟 and ℓ𝛾(𝑟) =

(1/2)𝐾
2(𝑛−1)

𝑟
2. Applying Lemma 4, we get

𝑢 = 𝛽 (𝑥) = −𝑅
−1

2
(𝑥)

1

𝐾2(𝑛−1)
𝑤
𝑝

𝑛

1

2
𝐾
2(𝑛−1)

= −
1

2
𝑅
−1

2
(𝑥)𝑤
𝑝

𝑛
.

(47)

According to Theorem 8 and Lemma 4, the inverse optimal
controller can be designed as follows:

𝑢
∗

= 𝛽
∗

(𝑥) = −
𝜃

2
𝑅
−1

2
(𝑥)

1

𝐾2(𝑛−1)
𝑤
𝑝

𝑛
𝐾
2(𝑛−1)

= −
𝜃

2
𝑅
−1

2
(𝑥)𝑤
𝑝

𝑛
= 𝜃𝛽 (𝑥) = 𝜃𝑢, 𝜃 ≥ 2,

(48)

where 𝑅
2
(𝑥) = 1/2𝐾

𝑛V
𝑛
.

7. Simulation Examples

In this section, for a numerical example, we design the
output-feedback controller by using two methods, where
one method is introduced in this paper and the other is
introducted in [19, 20].

Consider the following stochastic system:

𝑑𝑥
1
= 𝑥
2
𝑑𝑡 +

1

10
𝑥
3

1
sin𝑥
2
𝑑𝜔,

𝑑𝑥
2
= 𝑢𝑑𝑡 +

1

10
(𝑥
3

1
+ 𝑥
3

2
) 𝑑𝜔,

𝑦 = 𝑥
1
,

(49)

where
󵄨󵄨󵄨󵄨𝜑1 (x)

󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

10
𝑥
3

1
sin𝑥
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

10

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

3

,

󵄨󵄨󵄨󵄨𝜑2 (x)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

10
(𝑥
3

1
+ 𝑥
3

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

10
(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

3

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

3

) .

(50)
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Figure 1: The responses of the closed-loop systems (49)∼(53).
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Figure 2:The responses of the closed-loop systems (49)∼(53) when
adopting the method in [19, 20].

With the notation of Assumption 5, one can take 𝑝 = 3, 𝑐 =

1/10.
In line with designmethod discussed in Section 4, we can

design the observer states as follows:
̇𝑥̂
1
= 𝑥
2
+ 𝐾 (𝑦 − 𝑥

1
) ,

̇𝑥̂
2
= 𝑢 + 𝐾

2

(𝑦 − 𝑥
1
) .

(51)

According to the design procedure in Section 4, we construct
the controller as follows:

𝛽
1
(𝑥
1
) = −𝐾V

1
𝑤
3

1
, V
1
= 2.75,

𝑢 = −𝐾
2V
2
𝑤
3

2
, V
2
= 8.27,

(52)

where 𝐾 will be chosen later, ℎ
1

= ℎ
2

= 1, and 𝑑
∗

=

(1/12) × 10
−4

‖𝑃‖(1 + 1/𝐾)
2, ‖𝑃‖ = ((15 + 5√5)/8)

1/2. With
Theorem 8, one gets 𝐾 > 42.35. According to the design
procedure in Section 6, we choose 𝜃 = 2 and construct the
inverse optimal controller as follows:

𝑢
∗

= −2𝐾
2V
2
𝑤
3

2
. (53)

In simulation, we choose the initial values 𝑥
1
(0) = 0.02,

𝑥
2
(0) = 0.01, 𝑥

1
(0) = 0.01, 𝑥

2
(0) = −0.01, and 𝐾 =

50. Figure 1 shows the responses of the closed-loop system
(49)∼(53), which demonstrate the effectiveness of the control
scheme.

If the method in [19, 20] is adopted for the same systems,
Figure 2 gives the corresponding responses of the systems
(here the controller design theory of [19, 20] is not tackled
details, and the interested readers can consult the relevant
literature).

Remark 10. By comparing the two figures, we can observe
that the value of the control of Figure 1 is far less thanFigure 2.
In other words, our method requires less control effort to
ensure the closed-loop system to be globally asymptotically
stable in probability, and it demonstrates the advantage of this
method clearly.

8. Concluding and Outlook

In this paper, we have studied the output-feedback sta-
bilization for a class of stochastic nonlinear systems. We
have given a design of the output-feedback controller so
as to make the equilibrium at the origin of the closed-
loop system globally asymptotically stable in probability by
using the backstepping design technique and choosing a
high-gain parameter, and the inverse optimal stabilization in
probability is achieved. Our main contribution is extending
the linear growth conditions to the more general power
growth conditions so as to enable the result to bemore general
and to have a broader field of use.

There are two problems to be investigated.
(1) By extending the value of 𝑝 in Assumption 5 from

positive integers to the rationales, it can further
weaken the conditions of the system (5). For this
system, output-feedback problem deserves further
research.
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(2) Another is to extend stochastic nonlinear systems in
this paper to delay systems and study the design of
controller.
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Being difficult to attain the precise mathematical models, traditional control methods such as proportional integral (PI) and
proportional integral differentiation (PID) cannot meet the demands for real time and robustness when applied in some nonlinear
systems.The neural network controller is a good replacement to overcome these shortcomings. However, the performance of neural
network controller is directly determined by neural network model. In this paper, a new neural network model is constructed with
a structure topology between the regular and random connection modes based on complex network, which simulates the brain
neural network as far as possible, to design a better neural network controller. Then, a new controller is designed under small-
world neural network model and is investigated in both linear and nonlinear systems control. The simulation results show that
the new controller basing on small-world network model can improve the control precision by 30% in the case of system with
random disturbance. Besides the good performance of the new controller in tracking square wave signals, which is demonstrated
by the experiment results of direct drive electro-hydraulic actuation position control system, it works well on anti-interference
performance.

1. Introduction

Aswe know, neural network is an adaptive function estimator
needless to know the determined math relationship between
input and output, and it also has good adaptability and
learning ability.These featuresmake it very suitable to be used
as intelligent controller for complex systems.Many researches
show that the neural network controller is especially suitable
for those uncertain or nonlinear control objects, which make
it have a wide application prospect in the field of intel-
ligent control. Obviously, the constructed neural network
model directly determines the quality of the neural network
controller; in short, the architecture design is critical for
neural network model. At present, the structures of artificial
neural network model are often designed as feedback, feed
forward, single neuron, multilayer, and so on. As such, it is
an important problem worthy of discussion whether these
structures of neural network models are optimal and if they

are able to reflect the real human brain neural network
structure or not.

Recent researches have shown that the structure topology
and function of human brain neural network are closely
related to each other; the connection mode of brain neural
network structure topology offers the possibility for different
brain areas to mutual collaboration [1–6]. This collaboration
is mainly due to the large number of neurons in human brain,
whichmeans that the simple structure topology and function
of a single neuron are multiplied by the large number of
neurons. All those neurons connecting with each other by
nerve fibers according to a certain kind of connection mode
can make up highly complex human brain neural network.
Unfortunately, the existing artificial neural network models
are simple simulation of the biological neural network in
structure topology and function. The common connection
modes of artificial neural network can be divided into feed
forward, feedback, single layer, multilayer, and so forth, all
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of which can be regarded as regular structure topology. In
the past few decades, lots of researches have been carried
out regarding artificial neural network with regular structure
topology [7–10]. Although the bioneurological studies have
shown that neural network inherently has random features on
structure topology, the research of artificial neural network
with random structure topology is relatively rarely reported.
Consequently, it is essential to design a neural networkmodel
with stochastic characteristic structure, which will not only
help in obtaining an optimal network performance, but also
be a more realistic reflection of the structural features of the
brain neural network.

At present, there are two typical methods to reflect
the random features of neural network: one is to adopt
random connection weight between the neurons of neural
network; the other is to use random neuron activation
function [11]. But neither of the methods mentioned above
can really reveal the random features on neural network
structure topology. New achievements of complex network
have provided a newmethod for constructing neural network
model with random feature structure. Watts and Strogatz
researched on the structure topology of many realistic com-
plex networks and defined the intermediate network between
completely regular and random networks as small-world
network (referred to as W-S model) [12]. Many studies on
complex network have shown that the realistic networks, such
as disease transmission network, social network, food chain
network, metabolic network, and so forth, are all small-world
network on structure topology [13–18]. Meanwhile, scholars
discovered that biological neural networks are also small-
world network [19–23]. All of these small-world networks
have random characteristics in structure. Obviously, if the
structure topology of artificial neural network is built as a
small-world one, it will really reflect the structure topology
of the biological neural network. Erkaymaz et al. and Simard
et al. rewired the links of multilayer feed forward neural
network to build a small-world neural network model [24,
25]. However, in the construction process, it is apparent
that the unchanging number of rewiring means a lack of
randomness on structure topology, which is not consistent
with W-S model. Therefore, it is necessary to rebuild a
new neural network model, which relies on the rewiring
probability. As self-learning is an important characteristic
of artificial neural network, control application can be used
to assess the performance of multilayer feed forward small-
world neural network model. Since the new controller does
not require a precisemathematical model, it can be applied to
the electrohydraulic actuation system, with the help of which
we may probe the features of small-world neural network
model as well as its controller.

In this paper, firstly, the multilayer feed forward small-
world neural network model is built up according to the W-
S model. Secondly, the mathematical model of small-world
neural network is briefly described. Finally, a new controller
with a small-world neural network model is designed for
system control, which will not only explore the control
performance of small-world neural network, but also com-
pare control precision and anti-interference of small-world
neural network with those of regular neural network. The

performance of the controller is also verified by experiment
on electrohydraulic actuation system.

2. Model Construction

In the multilayer feed forward neural network model, the 𝑖th
neuron of the 𝑙th layer V𝑙

𝑖
only connects with its neighbor

neurons, which belong to neuron sets 𝑉𝑙−1 and 𝑉𝑙+1. All of
these links are feed forward, and there are no links between
neurons of the same layer. As the links of each neuron are
similar, this network structure topology can be regarded as
regularity [26, 27]. Assuming that the number of neurons in
each layer is 𝑛

𝑙
, and the number of layers of neural network

is 𝐿 (including the input layer and output layer), the regular
network structure topology is shown in Figure 1(a) when
rewiring probability 𝑝 = 0. The operating mode of regular
network is that input signals pass through the hidden layers,
and transfer forwardly layer by layer, until they reach the
output layer.

Referring to the construction process of W-S model,
a multilayer feed forward small-world neural network is
built up in the literature [24]. In the construction process,
the regular links of multilayer feed forward neural network
are reconnected, but as a result of the determinate number
of links and the network construction different from W-S
model, the rewiring probability 𝑝 is not used to reconstruct
the network. Thus it cannot fully reflect the construction
ideology ofW-Smodel. Taking into account that the rewiring
probability 𝑝 has a direct impact on the generated network
structure and characteristics, this paper proposes an algo-
rithm to construct the multilayer feed forward small-world
neural network model according to the rewiring probability
𝑝, and the process of algorithm is described as follows.

(1) Generate the same number of neurons in each layer,
and connect neighbor neurons with feed forward
links.Thus the multilayer feed forward regular neural
network model is built, as shown in Figure 1(a), and
the connection mode of this model is regular.

(2) With rewiring probability 𝑝, disconnect the links
from neuron 𝑖 of the 𝑙th layer to neuron 𝑗 of the
(𝑙+1)th layer in regular network; then randomly select
neuron 𝑗󸀠 ahead the (𝑙 + 1)th layer to rewire; the new
long links are not reconnection or self-loop. Clearly, if
the links of the (𝐿 − 1)th layer disconnect, they could
not generate new long links. Therefore, the last two
layers cannot be rewired.

(3) Repeat (2), until all the links are rewired besides those
of the last two layers.

Figure 1(a) shows that when 𝑝 = 0, the connection mode
of neural network model is completely regular, in which each
neuron maintains the same number of links with adjacent
neurons and this neural network model is commonly used.
When 𝑝 = 1, as shown in Figure 1(c), all original links in the
regular neural network model (except for the last two layers)
are rewired into links with completely random features under
disordered structure topology, forming a completely random
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Figure 1: Process of construction multilayer feed forward small-world neural network.

neural network model. If 0 < 𝑝 < 1 (e.g., 𝑝 = 0.05), long
cross-layer links will be generated by rewiring probability 𝑝,
and this structure topology is between completely regular and
random, as shown in Figure 1(b). Obviously, this connection
structure topology is an intermediate form from regular to
random, which is in consistent with the ideology of W-S
model. Therefore, this model is defined as multilayer feed
forward small-world neural network model, and the smaller
𝑝 is, the fewer there exist the long links in the new network
model.

3. Network Model

In order to describe multilayer feed forward small-world
neural network model distinctly, graph theory is utilized.
Each neuron in multilayer feed forward small-world neural
network model can be seen as a node in the graph. The links
within all neurons are edges of the graph. The node set of
small-world neural network model can be defined as

𝑉 = {𝑉
𝑙

| 𝑙 = 1, 2, . . . , 𝐿} , (1)

Where 𝑉𝑙 = {V𝑙
𝑖
| 𝑖 = 1, 2, . . . , 𝑛

𝑙
} is the node subset of the 𝑙th

layer, 𝐿 is the total layer number of the neural networkmodel,
V𝑙
𝑖
is the 𝑖th node of the 𝑙th layer, and 𝑛

𝑙
is the node number of

each layer.
Suppose the connection matrix of the neural network

model is

W = {W1, . . . ,Wl
, . . . ,W𝐿−1} , (2)

whereW𝑙 (𝑙 = 1, 2, . . . , 𝐿 − 1) is the connection submatrix of
the 𝑙th layer, and w𝑙

𝑖
is the connection vector of 𝑉𝑙 → V𝑙+1

𝑖
:

w𝑙
𝑖
= (𝑤
𝑙

1𝑖
, 𝑤
𝑙

2𝑖
, . . . , 𝑤

𝑙

𝑛𝑙𝑖
)
𝑇

,

W𝑙 = (w𝑙
1
,w𝑙
2
, . . . ,w𝑙

𝑛𝑙

) ,

(3)

where 𝑖 = 1, 2, . . . , 𝑛
𝑙
, and𝑤𝑙

𝑖𝑗
∈ R is the connection weight of

V𝑙
𝑖
→ V𝑙+1
𝑗

; if neuron 𝑖 of the 𝑙th layer connects with neuron 𝑗

of the (𝑙 + 1)th layer, 𝑤𝑙
𝑖𝑗

̸= 0, contrariwise, 𝑤𝑙
𝑖𝑗
= 0. Therefore,

the regular neural network model connection matrix can be
expressed as

𝑉
1

𝑉
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑉
𝐿−1

𝑉
𝐿

W =

𝑉
1

𝑉
2

...
𝑉
𝐿−1

𝑉
𝐿

[
[
[
[
[
[

[

0 W1 0 ⋅ ⋅ ⋅ 0 0

0 0 W2 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 0 W𝐿−1
0 0 0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]

]

.
(4)

As for the multilayer small-world neural network model,
due to the rewiring, the connection matrix even becomes

𝑉
1

𝑉
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑉
𝐿−1

𝑉
𝐿

W =

𝑉
1

𝑉
2

...
𝑉
𝐿−1

𝑉
𝐿

[
[
[
[
[
[
[
[
[

[

0 W1
󸀠

𝐵
1

1
⋅ ⋅ ⋅ 𝐵
𝐿−3

1
𝐵
𝐿−2

1

0 0 W2
󸀠

⋅ ⋅ ⋅ 𝐵
𝐿−4

2
𝐵
𝐿−3

2

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 0 W𝐿−1󸀠

0 0 0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]
]
]

]

.
(5)

As the reconnections of the last two layers in the neural
networkmodel do not exist (W𝐿−1󸀠 = W𝐿−1,W𝑙󸀠 = (𝑤𝑙󸀠

𝑖𝑗
)
𝑛𝑙×𝑛𝑙

)
is the reconnection matrix ofW𝑙, the elements of this matrix
can be deformed into the following equation:

𝑤
𝑙󸀠

𝑖𝑗
= {

𝑤
𝑙

𝑖𝑗
, rand

𝑖𝑗
≥ 𝑝

0, rand
𝑖𝑗
< 𝑝,

(6)

where rand
𝑖𝑗
, which is generated at the 𝑖th row and the

𝑗th column in the matrix, is a random number between 0
and 1. B𝑙󸀠

𝑙
= (𝑏
𝑙𝑙󸀠

𝑛1𝑛2

)
𝑛𝑙×𝑛𝑙

is the reconnection submatrix of
𝑉
𝑙

→ 𝑉
𝑙󸀠, 𝑙 ∈ {1, 2, . . . , 𝐿 − 2}, 𝑙󸀠 ∈ {3, 4, . . . , 𝐿}, 𝑛

1
, 𝑛
2
∈

{1, 2, . . . , 𝑛
𝑙
}.

From the connection matrix W, it can be seen that the
neurons of the 𝑙th layer connect the (𝑙 + 1)th layer’s neurons
with the probability (1 − 𝑝) and connect the neurons of
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the layer following the (𝑙 + 1)th layer with the probability
𝑝. If the number of network layers and neurons is large and
the rewiring probability 𝑝 is small, the connection matrix
will be a sparse matrix. In short, the neurons of the 𝑙th layer
connect not only with the neurons of the (𝑙 − 1)th layer in
multilayer feed forward small-world neural network model;
they also connect with the neurons of the 1 ∼ (𝑙 − 2)th layers
in accordance with rewiring probability 𝑝.

4. Control Simulation

Because of the strong ability in adaptive learning, neural
network is usually used to design intelligent controller for
complex industrial system. In addition, neural network can
fully approximate any complex nonlinear system. Its iden-
tifier can also distinguish the characteristics of uncertain
systems with high precision [28, 29]. In order to establish
effective control for linear and nonlinear systems, this paper
designs a controller which consists of two kinds of neural
network model to obtain good performance. The controller
structure is given in Figure 2. As shown in Figure 2, NNI
identifies the controlled system online, 𝑒

1
is the error between

the reference input and the controlled system output, 𝑒
2
is

the error between the identification output and the controlled
system output, and 𝑒(𝑡) is the error between the system
input and the controlled system output. In NNI, the gradient
information of 𝑒

2
is used to adjust the weight coefficient.

In Figure 2, NNI is an online identifier of the con-
trolled system with regular structure topology and SNNC
is the neural network controller with small-world structure
topology. So the principle of small-world neural network
control system can be described as follows: NNI identifies
the controlled system online, by the use of identification
result, then SNNC adjusts the weight coefficients using the
identification result and outputs the control variable 𝑢(𝑡), and
then 𝑢(𝑡) is applied to the controlled system and finally make
the system output track the setting input to realize adaptive
control.

Select the following linear differential system as a con-
trolled system:

𝑦 (𝑘) = 0.33𝑦 (𝑘 − 1) + 0.132𝑦 (𝑘 − 2)

+ 0.5𝑢 (𝑘 − 1) + 0.038𝑢 (𝑘 − 2) .

(7)

SNNC network structure topology is selected as 3-6-6-
1 (the number of input neurons is 3, the first and second
hidden neurons are 6, and the output neuron is 1), NNI
network structure topology is 3-6-1, the network weights and
the thresholds are initialized to the range [−1, 1], incremental
weight updating strategy is used in Back-Propagation algo-
rithm, and set learning rate 𝜂 = 0.1, inertia coefficient 𝛼 =

0.9, the control period number is 400, and the error criterion
function is defined as follows:

𝐽 (𝑘) =

{{{

{{{

{

1

2
[𝑦(𝑘) − 𝑟(𝑘)]

2

, SNNC,

1

2
[𝑦(𝑘) − 𝑦(𝑘)]

2

, NNI.
(8)

r(t) e(t) u(t) Controlled
system

y(t)

NNI

+

+

+

−

−

−

SNNC

e1

e2

ŷ(t)

Figure 2: Controller with small-world neural network model.
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Figure 3: Linear system (𝑝 = 0).

Select the input signal 𝑟(𝑘) as

𝑟
1
(𝑘) = 0.2 sin 2𝜋𝑘

26
+ 0.3 sin 𝜋𝑘

15
+ 0.3 sin 𝜋𝑘

75
+ V
1
(𝑘) ,

𝑟
2
(𝑘) = 0.3 sin 2𝜋𝑘

50
+ 0.2 sin 2𝜋𝑘

100
+ V
2
(𝑘) ,

(9)

where,

V
1
(𝑘) =

{{

{{

{

0.5, 50 ≤ 𝑘 ≤ 150,

−0.5, 150 ≤ 𝑘 ≤ 250,

0.1 × rand () , others,

V
2
(𝑘) = 0.05 × rand () .

(10)

In the equation, rand() is a random number in the range
of [−1, 1]. In Figure 3, the input and output curve, the error
curve are given when 𝑝 = 0 and Figure 4 shows the same
curves when 𝑝 = 0.1.
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Figure 4: Linear system (𝑝 = 0.1).

From the figures, we can see that when constant dis-
turbance is added (50 ≤ 𝑘 ≤ 150, 150 ≤ 𝑘 ≤ 250),
neural network control systems all have better ability of self-
adapting both 𝑝 = 0 and 𝑝 = 0.1, regardless of the rewiring
probability. The neural network controller can adapt to the
impact of constant disturbance through self-learning and
adjusting connectionweights so quickly that the output of the
controlled system catches up with the input signal fast, and it
can obtain a smaller error.When adding random disturbance
to the input signal, especially within 250 ≤ 𝑘 ≤ 400, the
control error of 𝑝 = 0 is bigger than that of 𝑝 = 0.1 at least by
30%, whichmeans that through rewiring, small-world neural
network control system has good anti-interference capability.

Select the following nonlinear system as a controlled
system:

𝑦 (𝑘) =
1.2𝑦 (𝑘 − 1)

[2.5 + 𝑦2 (𝑘 − 1)]
+ 𝑢
3

(𝑘 − 1) . (11)

Figures 5 and 6 are given as the input signal and output
curve, the error curve when 𝑝 = 0, 𝑝 = 0.1. Those diagrams
also show that the error is largest when 𝑝 = 0. If the input is
added with random disturbance, the error is relatively small
when 𝑝 = 0.1. So small-world neural network control system
has a better ability to suppress random disturbances. When
the disturbance is a constant, the result is the same for linear
system.

5. Experiment on Electrohydraulic
Actuation System

Presently, the valve-controlled hydraulic servo systems have
been applied widely. This kind of system has the features
of large output power, fast response, and high accuracy.
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Figure 5: Nonlinear system (𝑝 = 0).
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Figure 6: Nonlinear system (𝑝 = 0.1).

However, it also has some shortcomings, such as low relia-
bility, low efficiency, high requirements for oil cleanness, high
manufacturing precision for electrohydraulic servo valve, and
so on. In order to improve this situation, in recent years, the
direct drive electrohydraulic servo system has been widely
investigated. A swash plate mechanism is used to control
the flow of hydraulic pump in direct drive electrohydraulic
servo system.The change of the oblique angle of swash plate,
which is regulated by the speed of the direct current motor,
may help direct drive variable displacement electrohydraulic
position servo control system to change its output flow
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Figure 7: Schematic of direct drive variable displacement electrohy-
draulic actuation position servo control system (including hydraulic
loading system).

and consequently serve to control the position of hydraulic
actuator. Because of the high efficiency, easy operation, and
big output force of this kind of system, it has been applied
in many industry fields, such as electrohydraulic actuation
system, precision forgingmachines,marine steering gear, and
injection molding machines [30–34]. Due to existing nonlin-
ear factors, it is difficult to establish the accurate mathemat-
ical model of this system. Figure 7 shows the schematic of
direct drive variable displacement electrohydraulic actuation
position control system. As shown in Figure 7, the hydraulic
loading system is used to simulate the external load, and the
control platform can control the hydraulic loading system
to output different force value. The control objective of this
electrohydraulic actuation system is to accurately track the
given position signal, in which tracking performance, fast
response, high accuracy, and good anti-interference must be
taken into account. Therefore, the control strategy of this
system is very important, and the small-world neural network
controller is adopted to control this system given that it does
not need accurate mathematical model.

Hardware configuration of electrohydraulic actuation
system is listed in Table 1.

Firstly, in the case of no external load applied on direct
drive variable displacement electrohydraulic actuation posi-
tion system, the system is controlled to track square wave
signal using small-world neural network. Figure 8 shows the
tracking result of 1Hz square wave signal with peak value of
200mm, where the curve of input signal is marked A, and
output is marked B. The following diagrams are similar. As
shown in the figure, after 2 cycles of learning, the system
output signal can track the target displacement, the response

Table 1: Hardware list of electro-hydraulic actuation system.

Name Type Specification
Brushless DC
motor BLF Three phases 300W

Displacement
sensor LVDT ±400mm

Angular
displacement
sensor

RVDT ±30∘

Swash plate
hydraulic pump

Displacement
pump

Swash plate angle: ±20∘
Maximum displacement:
84mL/r

Hydraulic cylinder Single-acting
hydraulic cylinder

Stroke: 800mm
Internal diameter: 50mm
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Figure 8: Track control of 1Hz square wave (no load).

time is about 0.2 s, and the steady state error is less than
0.2mm.

This result shows that the use of small-world neural net-
work control strategy for position control obtains satisfactory
control precision and response speed in the case of noload.
The structure topology of small-world neural network used
in control test is the same as the simulation test.

Figure 9 shows the track control result by the use of
small-world neural network control strategy under 10000N
external load. The hydraulic cylinder is controlled to track
2Hz, peak value of 200mm square wave signal. The result
shows that the system has rapid response, about 0.25 s.
The steady-state error is slightly larger, at about 2mm. It
indicates that the influence of external load will be further
weakened by small-world neural network controller. Since
the electrohydraulic actuation control systemcan also achieve
fast tracking square wave signal, it can obtain satisfactory
control accuracy under 10000N external load.

The load under actual situation usually appears quickly
and unexpectedly. In order to testify whether the small-world
neural network control strategy performs well or not, we
simulate the step response control in the case of impact load
5000N. The result is shown in Figure 10.

As shown in the figure, at 3.7 s, the impact load 5000N
is added, and after about 0.25 s, the electrohydraulic actua-
tion system can correct the error caused by the change of
external load. The steady state error can be controlled within
0.2mm or less. It shows that the small-world neural network
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Figure 9: Track control of 2Hz square wave (10000N load).
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Figure 10: Step control curve (impact load 5000N).

controller has a better ability to suppress the impact of inter-
ference.The digital simulation results are basically consistent
with the experimental results under external interference.

6. Conclusions

In this paper, a multilayer feed forward neural network
model is proposed through reconnecting the regular links
which relies heavily on the rewiring probability, and then
a controller based on small-world neural network model is
designed to control linear and nonlinear systems. Simulation
results show that the regular and the small-world network all
have better control performance under constant disturbance.
But when adding random disturbance, the small-world neu-
ral network control system is superior to the corresponding
regular neural network control system in control accuracy. So
themultilayer small-world neural network control systemhas
good anti-interference features. Furthermore, nomatter there
is load or not, the small-world neural network controller for
direct drive electrohydraulic actuation position control sys-
tem can obtain faster response, better control precision, and
an ability of anti-interference, which means that small-world
neural network can be used to develop intelligent controller
for industrial systems. However, it still needs further study
on how to obtain the optimal rewiring probability to make
the best of the controller’s performance.
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A novel method named as coherent column replacement method is proposed to reduce the coherence of a partially deterministic
sensing matrix, which is comprised of highly coherent columns and random Gaussian columns. The proposed method is to
replace the highly coherent columns with random Gaussian columns to obtain a new sensing matrix. The measurement vector is
changed accordingly. It is proved that the original sparse signal could be reconstructed well from the newly changed measurement
vector based on the new sensing matrix with large probability. This method is then extended to a more practical condition when
highly coherent columns and incoherent columns are considered, for example, the direction of arrival (DOA) estimation problem
in phased array radar system using compressed sensing. Numerical simulations show that the proposed method succeeds in
identifyingmultiple targets in a sparse radar scene, where the compressed sensingmethod based on the original sensingmatrix fails.
The proposed method also obtains more precise estimation of DOA using one snapshot compared with the traditional estimation
methods such as Capon, APES, and GLRT, based on hundreds of snapshots.

1. Introduction

Compressed sensing has received considerable attention
recently and has been applied successfully in diverse fields, for
example, image processing [1], video technology [2], wireless
communication [3], and radar systems [4–10]. The central
goal of compressed sensing is to capture attributes of a signal
using very few measurements. In most work to date, this
broader objective is exemplified by the important special
case in which a 𝐾-sparse vector 𝑥 ∈ 𝑅

𝑁 (with 𝑁 large)
is to be reconstructed from a small number 𝑀 of linear
measurements with 𝐾 < 𝑀 < 𝑁. The two fundamental
questions in compressed sensing are how to construct suitable
sensing matricesΦ and how to recover 𝑥 from 𝑦 efficiently.

In early work of compressed sensing, the entries of
the sensing matrix are generated by an i.i.d Gaussian or
Bernoulli process or from random Fourier ensembles [11–
13]. The role of random measurement provides the worst
case performance guarantees in the context of an adver-
sarial signal/error model. Random sensing matrices are

easy to construct and are 2𝐾-RIP with high probability
[13].

With the application area of compressed sensing extended
towider fields, the randomsensingmatrix is replaced bymore
structured sensing matrix. Most of the recent compressed
sensing work related to sensing matrix construction focuses
on the construction of structured matrices which often
exhibit a considerable structure [14]. This largely follows
from efforts to model the way the samples are acquired
in practice, which leads to sensing matrices that inherent
their structure from the real world. However, most of the
structured sensingmatrices based on the practical acquisition
equipment do not satisfy the RIP property, which guarantees
the perfect reconstruction of the original sparse signal with
large probability.

In this paper, we are considering changing the original
sensing matrix into a random Gaussian matrix or a matrix
with low coherence via some software-based algorithm in
the reconstruction side. Firstly, a novel method, named as
coherent column replacement method, is proposed to reduce
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the coherence of a partially deterministic sensing matrix.The
proposedmethod is to replace the highly coherent columns in
the original sensingmatrixΦwith randomGaussian columns
to obtain a new sensing matrix Φ

󸀠. The measurement vector
𝑦 is changed accordingly. It is proved that the original sparse
signal 𝑥 could be reconstructed well from the newly changed
measurement vector 𝑦󸀠 based on the new sensing matrix Φ

󸀠

with large probability.
The proposed column replacement method is then

extended to a more practical condition when highly coherent
columns and incoherent columns are considered, for exam-
ple, the direction of arrival (DOA) estimation problem in
phased array radar system. The applications of compressed
sensing to radar systems are investigated in [4–10]. In [4], it
is demonstrated that the compressed sensing method could
eliminate the need for match filter at the receiver and has the
potential to reduce the required sampling rate. In the context
of groundpenetrating radar (GPR), [5] presents a compressed
sensing based data acquisition and imaging algorithm. By
exploiting the sparsity of targets in the spatial space, the
proposed algorithm could generate sharper target space
images with much less compressed sensing measurements
than the standard back projection methods. Also the sparsity
of targets in the time-frequency plane is exploited for radar
in [6, 7]. In [8], compressed sensing is used to identify
targets in a passive radar system. There are plenty of work
concerning compressed sensing based phased array radar in
recent years [9, 15, 16]. In [9], the author puts focus on the
generalization of the radar signal model for compressed sens-
ing and does not provide realizable procedures. In [15], the
authors address the narrow-band source localization problem
for arbitrary arrays with known geometry in the presence
of arbitrary noise of unknown spatial spectral density. In
[16], the authors present a source localization method based
on a sparse representation of sensor measurements with
an overcomplete basis composed of samples from the array
manifold.

Most of the present work for compressed sensing radar
systems concentrates in designing the transmitted wave to
implement a sensing matrix Φ with low coherence [10].
However, in phased array radar system, the steering matrix is
deterministic and cannot be changed in practice. Therefore,
it is required to develop a novel compressed sensing method
which brings a little change to the existing hardware system
of the phased array radar.

In the proposed method developed for compressed sens-
ing based phased array radar system, a hybrid system is
built with a bottom subsystem and a top subsystem for
reconstruction.The bottom subsystem consists of a hardware
specific sensing matrix Φ, an acquired measurement vector
𝑦, and the original signal 𝑥. The original sensing matrix Φ

and measurement vector 𝑦 are input to the software-based
top subsystem, where a new sensing matrix Φ

󸀠 and a new
measurement vector 𝑦󸀠 are generated. Since the new sensing
matrixΦ󸀠 is with low coherence, the original signal𝑥 could be
reconstructed from the newmeasurement vector 𝑦󸀠 perfectly
with large probability. There are three key points to be aware
of with this compressed sensing based approach for phased
array radar system as follows. (1) There is no requirement

for the transmitted signal; it could be either “incoherent” or
“coherent.” (2) This approach does not use a matched filter.
(3) The beamforming procedure is omitted in the proposed
compressed phased array radar system.

The rest of the sections are organized as follows: the pro-
posed coherent column replacementmethod is introduced in
Section 2. In Section 3, the proposed method is extended to
solve the DOA estimation problem in phased array radar sys-
tem. Firstly, the signal model for DOA estimation in phased
array radar system is represented in a standard compressed
sensing form in Section 3.1, where the sparse radar scene is
abstracted as a sparse signal. In Section 3.2, the proposed
method is then used to generate a new sensing matrix
with low coherence, based on which the original sparse
signal could be reconstructed well with large probability. The
simulation results are listed in Section 4, and the paper is
summarized in Section 5.

2. The Proposed Coherent Column
Replacement Method

Recent work related with structured sensingmatrix construc-
tion tries to change the existing hardware system to generate
a new sensing matrix satisfying the RIP property. In this
paper, we are exploring the possibility of changing the sensing
matrix and measurement vector in the reconstruction side
while not changing the hardware system.

It is assumed that the original sensing matrix Φ is
a partially deterministic matrix which is comprised of
highly coherent columns and random Gaussian columns,
and this could be extended to a more practical condition
when highly coherent columns and incoherent columns
are considered. For the original sensing matrix Φ, its
highly coherent columns and random Gaussian columns
are denoted by 𝜑

𝑗
, 𝑗 = 1, . . . , 𝑁

𝑐
and 𝜓

𝑗
, 𝑗 = 1, . . . , 𝑁

𝑟
,

respectively. 𝑁
𝑐
is the number of highly coherent columns,

and 𝑁
𝑟
is the number of random Gaussian columns with

𝑁
𝑐

+ 𝑁
𝑟

= 𝑁. Without loss of generality, the highly
coherent columns are put at the leftmost of the sensing
matrix, while the random Gaussian columns are put next
to them as Φ = [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁𝑐
, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁𝑟
]. Accord-

ingly, the signal 𝑥 could be divided into two groups, 𝑥 =

[𝑥
𝑐
; 𝑥
𝑟
]
𝑇

= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁𝑐

, 𝑥
𝑟,1

, 𝑥
𝑟,2

, . . . , 𝑥
𝑟,𝑁𝑟

]
𝑇, where

𝑥
𝑐

= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁𝑐

]
𝑇 and 𝑥

𝑟
= [𝑥
𝑟,1

, 𝑥
𝑟,2

, . . . , 𝑥
𝑟,𝑁𝑟

]
𝑇

correspond to the highly coherent columns and random
Gaussian columns respectively. It is assumed that the value
of each element of 𝑥

𝑐
, {𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁𝑐

}, is chosen as either
one or zero.

The sensing matrix Φ is changed into a random Gaus-
sian matrix Φ

󸀠 through replacing the highly coherent
columns [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁𝑐
] with random Gaussian columns

[𝜑
󸀠

1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁𝑐

]. The resulting new sensing matrix Φ
󸀠 could

be represented as Φ󸀠 = [𝜑
󸀠

1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁𝑐

, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁𝑟
].

Lemma 1. Given the standard model in compressed sensing
𝑦 = Φ𝑥 + 𝑒, where 𝑒 denotes the measurement noise,
and given the sensing matrix Φ

󸀠 defined above, the 𝐾-sparse
signal 𝑥 could be reconstructed from the new measurement
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vector 𝑦
󸀠

= Φ
󸀠

𝑥 + 𝑒 perfectly with large probability. The new
measurement vector𝑦󸀠 could be calculated via (1) provided that
part of the signal 𝑥, 𝑥

𝑐
= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁𝑐

]
𝑇 is known:

𝑦
󸀠

= 𝑦 + 𝑥
𝑐,1

(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
− 𝜑
2
)

+ ⋅ ⋅ ⋅ + 𝑥
𝑐,𝑁𝑐

(𝜑
󸀠

𝑁𝑐

− 𝜑
𝑁𝑐

) .

(1)

Proof. Obviously, the new sensing matrix Φ
󸀠 is a Gaussian

random matrix and satisfies the RIP property. We could
reconstruct 𝑥 perfectly from the new measurement vector
𝑦
󸀠

= Φ
󸀠

𝑥 + 𝑒 with large probability.
The equation 𝑦

󸀠

= Φ
󸀠

𝑥+𝑒 could be expanded in columns:

𝑦
󸀠

= Φ
󸀠

𝑥

= 𝑥
𝑐,1

𝜑
󸀠

1
+ 𝑥
𝑐,2

𝜑
󸀠

2
+ ⋅ ⋅ ⋅ + 𝑥

𝑐,𝑁𝑐
𝜑
󸀠

𝑁𝑐

+ 𝑥
𝑟,1

𝜓
1
+ 𝑥
𝑟,2

𝜓
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟,𝑁𝑟
𝜓
𝑁𝑟

+ 𝑒.

(2)

Similarly, the equation 𝑦 = Φ𝑥 + 𝑒 could be expanded as in

𝑦 = Φ𝑥

= 𝑥
𝑐,1

𝜑
1
+ 𝑥
𝑐,2

𝜑
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑐,𝑁𝑐
𝜑
𝑁𝑐

+ 𝑥
𝑟,1

𝜓
1
+ 𝑥
𝑟,2

𝜓
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟,𝑁𝑟
𝜓
𝑁𝑟

+ 𝑒.

(3)

Equation (3) subtracts (2), resulting in

𝑦
󸀠

− 𝑦 = 𝑥
𝑐,1

(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
− 𝜑
2
)

+ ⋅ ⋅ ⋅ + 𝑥
𝑐,𝑁𝑐

(𝜑
󸀠

𝑁𝑐

− 𝜑
𝑁𝑐

) .

(4)

So we can obtain the new measurement vector 𝑦
󸀠 based on

the original measurement vector 𝑦 and the error between the
highly coherent columns and random columns:

𝑦
󸀠

= 𝑦 + 𝑥
𝑐,1

(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
− 𝜑
2
)

+ ⋅ ⋅ ⋅ + 𝑥
𝑐,𝑁𝑐

(𝜑
󸀠

𝑁𝑐

− 𝜑
𝑁𝑐

) .

(5)

This ends the proof.

However, in reality the original signal 𝑥 is unknown,
and it is difficult to obtain the exact value of 𝑥

𝑐
(𝑥
𝑐

=

[𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁𝑐

]
𝑇) in advance. If the number of highly

coherent columns is small (e.g. 𝑁
𝑐

≤ 10), we could list all
the configurations of 𝑥

𝑐
with each element’s value chosen

as one or zero. Based on each configuration, we could
obtain a candidate signal using a reconstruction algorithm.
The error between the true measurement and the estimate
measurement based on each candidate signal is calculated
and then normalized. The candidate signal with the smallest
error is the one closest to the original sparse signal and is what
we pursuit. The detailed procedure is listed in Algorithm 2.

Algorithm 2. The coherent column replacement method for
a partially deterministic sensing matrix is as follows.

(1) The sensingmatrixΦ is changed into a randomGaus-
sian matrix Φ

󸀠 through replacing the highly coher-
ent columns [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁𝑐
] with random Gaussian

columns [𝜑󸀠
1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁𝑐

].
(2) List all the configurations of 𝑥

𝑐
with each element’s

value chosen as one or zero. The total number of
configurations 𝐶𝑁 equals 2

𝑁𝑐 . The 𝑖th configuration
could be represented as 𝜆

𝑖

(𝑥
𝑖

𝑐,1
, 𝑥
𝑖

𝑐,2
, . . . , 𝑥

𝑖

𝑐,𝑁𝑐

), 𝑖 =

1, . . . , 𝐶𝑁 and is abbreviated as 𝜆𝑖 for briefness.
(3) For the 𝑖th configuration 𝜆

𝑖, 𝑖 = 1, . . . , 𝐶𝑁, calculate
the new measurement vector 𝑦󸀠,𝑖 via (5) and obtain a
candidate signal 𝑥𝑖 using a reconstruction algorithm
as

𝑥
𝑖

= Reconstruct (𝑦󸀠,𝑖, Φ󸀠) . (6)

(4) For the 𝑖th candidate signal 𝑥
𝑖, 𝑖 = 1, . . . , 𝐶𝑁,

calculate ERR𝑖, which is defined as the normalized
error between the truemeasurement and the estimate
measurement based on 𝑥

𝑖,

ERR𝑖 =
󵄩󵄩󵄩󵄩󵄩
𝑦 − (Φ𝑥

𝑖

)
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2

, (7)

where ‖ ⋅ ‖ denotes the 𝑙
2
-norm.

(5) Find the smallest one in {ERR𝑖, 𝑖 = 1, . . . , 𝐶𝑁} and
define it as ERRmin. The candidate signal correspond-
ing to ERRmin is what we pursuit and is defined as
𝑥
estimate.

In the above algorithm, “Reconstruct” in (6) refers to
any available reconstruction algorithm and the basis pursuit
denoising (BPDN) method [14] is chosen as the reconstruc-
tion algorithm here.

3. Compressed Sensing Based DOA Estimation
in Phased Array Radar System

In this section, the proposed column replacement method is
extended to solve the DOA estimation problem in phased
array radar system. Firstly, the signal model for DOA
estimation in phased array radar system is represented in
a standard compressed sensing form in Section 3.1, where
the sparse radar scene is abstracted as a sparse signal. In
Section 3.2, the proposed method is then used to generate a
new sensing matrix with low coherence, based on which the
original sparse signal could be reconstructed well with large
probability.

3.1. Signal Model for DOA Estimation and Sparse Represen-
tation. Assume a phased array radar system consisting of
half-wavelength spaced uniform linear arrays (ULA). Targets
may appear at directions represented by DOA angles. The
task of signal processing is to estimate the directions to the
targets and the corresponding complex amplitudes (DOA
estimation, see [17]). We assume that the other parameters
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like range and Doppler frequency have been isolated before
by appropriate processing.

The ULA of the phased array radar system consists of 𝑀
antennas, which are used to emit the transmitted signal 𝑠(𝑡).
The 𝑀 × 1 received complex vector of array observations is
defined as 𝐹(𝑡) = [𝑓

1
(𝑡), . . . , 𝑓

𝑀
(𝑡)]
𝑇. Assuming a hypothet-

ical target located at a DOA angle of 𝜃 in the far field, the
received complex vector of array observations can be written
as

𝐹 (𝑡) = 𝛽 (𝜃) 𝑠 (𝑡) 𝑎 (𝜃) + 𝐸 (𝑡) , (8)

where 𝛽(𝜃) is the reflection coefficient of the hypothetical
target, and 𝐸(𝑡) is a 𝑀 × 1 complex Gaussian noise vector.
𝑎(𝜃) is the𝑀 × 1 steering vector, which is defined as

𝑎 (𝜃) = [1𝑒
𝑗(2𝜋 𝑑 sin 𝜃/𝜆)

, . . . , 𝑒
𝑗(𝑀−1)(2𝜋 𝑑 sin 𝜃/𝜆)

]
𝑇

, (9)

where 𝑑 is the distance between the elements of the arrays,
and 𝜆 denotes wavelength.

Assuming 𝐷 targets are observed with reflection coeffi-
cients {𝛽

𝑖
}
𝐷

𝑖=1
and DOA angles {𝜃

𝑖
}
𝐷

𝑖=1
, the 𝑀 × 1 received

complex vector of array observations can be written as

𝐹
𝑀

(𝑡) =

𝐷

∑

𝑖=1

𝛽 (𝜃
𝑖
) 𝑠 (𝑡) 𝑎 (𝜃

𝑖
) + 𝐸
𝑀

(𝑡) , (10)

where 𝐸
𝑀
(𝑡) is a 𝑀 × 1 complex Gaussian noise vector.

Equation (10) could be rewritten as

𝐹
𝑀

(𝑡) = 𝐴 (𝜃) 𝑆 (𝑡, 𝜃) + 𝐸
𝑀

(𝑡) , (11)

where 𝐴(𝜃) = [𝑎(𝜃
1
), 𝑎(𝜃
2
), . . . , 𝑎(𝜃

𝐷
)] is a 𝑀 × 𝐷 steering

matrix, and 𝑆(𝑡, 𝜃) = 𝑠(𝑡)[𝛽(𝜃
1
), 𝛽(𝜃
2
), . . . , 𝛽(𝜃

𝐷
)]
𝑇 denotes a

𝐷 × 1 reflection vector.
Since the radar scene is generally in practice sparse,

compressed sensing is a valid candidate for estimating the
DOA angles for multiple targets. To do so, the DOA angle
plane is divided into 𝑁 fine grids, each cell generally with
the same size Δ𝜃. The 𝑖th grid represents the DOA angle
of 𝜃
0
+ (𝑖 − 1)Δ𝜃, where 𝜃

0
is the initial angle of the DOA

plane. Each cell has a unique mathematical representation as
well as physical explanation: for example, if a target’s DOA
angle occupies the 𝑖th grid, its contribution could be uniquely
written as 𝑠(𝑡)𝛽(𝜃

0
+(𝑖−1)Δ𝜃) ⃗𝑎(𝜃

0
+(𝑖−1)Δ𝜃). Now, the DOA

estimation problem is recast as the search for the grid cells in
which the targets lie.

As the system has no knowledge of the numbers and
locations of the targets, the information of all the grids in
the DOA plane should be considered. Therefore, the steering
matrix and reflection vector in (11) are extended to obtain the
𝑀 × 𝑁 extended steering matrix Φ and the 𝑁 × 1 extended
reflection vector 𝑥, which are defined as Φ = [𝑎(𝜃

0
), 𝑎(𝜃
0
+

Δ𝜃), . . . , 𝑎(𝜃
0

+ (𝑖 − 1)Δ𝜃)𝑎(𝜃
0

+ (𝑁 − 1)Δ𝜃)] and 𝑥 =

𝑠(𝑡)[𝛽(𝜃
0
)𝛽(𝜃
0
+Δ𝜃), . . . , 𝛽(𝜃

0
+(𝑖−1)Δ𝜃)𝛽(𝜃

0
+(𝑁−1)Δ𝜃)]

𝑇.
Since small numbers of grids are occupied by the targets,
𝑥 is a sparse vector with the 𝑖th element defined as 𝑥(𝑖) =

𝑠(𝑡)𝛽(𝜃
0
+ (𝑖 − 1)Δ𝜃) if the 𝑖th grid is occupied by the target;

otherwise, 𝑥(𝑖) = 0. As a result, the 𝑀 × 1 received complex
vector of array observations 𝑦 could be written as follows:

𝑦 = Φ𝑥 + 𝑒, (12)

where 𝑒 is a 𝑀 × 1 complex Gaussian noise vector. Though
in (12) the radar vectors and matrices are complex valued in
contrary to the original compressed sensing environment, it
is easy to transfer it to real variables according to [9, 18].

Discussion. In [10, 19], it is assumed that the discretized step
is small enough so that each target falls on some specific
grid point. However, no matter how finely the parameter
space is gridded, the sources may not lie in the center of the
grid cells, and consequently there is a mismatch between the
assumed and the actual bases for sparsity. The sensitivity of
compressed sensing to mismatch between the assumed and
the actual sparsity bases is studied in [20]. The effect of basis
mismatch is analyzed on the best 𝑘-term approximation error,
and some achievable bounds for the 𝑙

1
error of the best 𝑘-term

approximation are provided.The readers can refer to [20] for
a detailed analysis on the influence of the griding operations
on the estimation performance.

3.2. DOA Estimation Based on the Column Replacement
Method. The proposed column replacement method is then
extended to solve the DOA estimation problem in phased
array radar system where the sensing matrix is comprised of
highly coherent columns and incoherent columns. In order to
distinguish the highly coherent columns from the incoherent
columns, the coherence of the sensing matrix is adopted,
which is defined in [21, 22] as follows.

Definition 3. For the sensing matrix Φ, its coherence is
defined as the largest absolute and normalized inner product
between different columns in Φ. Formally, this reads

𝜇 {Φ} = max
1≤𝑖,𝑗≤𝑁, 𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
Φ
𝑇

𝑖
Φ
𝑗

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩Φ𝑖

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗

󵄩󵄩󵄩󵄩󵄩

. (13)

The coherence provides a measure of the worst similarity
between the sensing matrix columns.

A different way to understand the coherence is by consid-
ering the Gram matrix 𝐺 which is defined as

𝐺 =
̃
Φ𝑇Φ̃, (14)

wherẽΦ𝑇 is the normalized sensingmatrix obtained from the
original sensing matrix with each column normalized. The
off-diagonal entries in 𝐺 are the inner products that appear
in (13). The coherence is the off-diagonal entry 𝑔

𝑖,𝑗
with the

largest magnitude.
In the proposedmethod, theGrammatrix𝐺 is firstly built

via (14), and a threshold 𝑇 is then set properly to distinguish
the highly coherent columns from the incoherent columns as
follows. For each off-diagonal entry {𝑔

𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 =

1, . . . , 𝑁}, if 𝑔
𝑖,𝑗
is larger than𝑇, the columns 𝑖 and 𝑗 are added

to the set of highly coherent columns.The remaining columns
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that do not belong to the set of highly coherent columns form
the set of incoherent columns.

The set of highly coherent columns and the set of
incoherent columns are denoted by 𝛼

𝑗
, 𝑗 = 1, . . . , 𝑁

ℎ𝑐
and

𝛽
𝑗
, 𝑗 = 1, . . . , 𝑁

𝑖𝑐
, respectively. 𝑁

ℎ𝑐
is the number of highly

coherent columns, and 𝑁
𝑖𝑐

is the number of incoherent
columns with 𝑁

ℎ𝑐
+ 𝑁
𝑖𝑐

= 𝑁. Without loss of generality, the
highly coherent columns are put at the leftmost of the sensing
matrix, while the incoherent columns are put next to them
as Φ = [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑁ℎ𝑐
, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁𝑖𝑐
]. Accordingly, the

signal 𝑥 could be divided into two groups, 𝑥 = [𝑥
ℎ𝑐
; 𝑥
𝑖𝑐
]
𝑇

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁ℎ𝑐

, 𝑥
𝑖𝑐,1

, 𝑥
𝑖𝑐,2

, . . . , 𝑥
𝑖𝑐,𝑁𝑖𝑐

]
𝑇, where 𝑥

ℎ𝑐
=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁ℎ𝑐

]
𝑇 and 𝑥

𝑖𝑐
= [𝑥

𝑖𝑐,1
, 𝑥
𝑖𝑐,2

, . . . , 𝑥
𝑖𝑐,𝑁𝑖𝑐

]
𝑇

correspond to the highly coherent columns and incoherent
columns respectively. It is assumed that the value of each
element of 𝑥

ℎ𝑐
, {𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁ℎ𝑐

} is chosen as either one
or zero.

The sensing matrix Φ is changed into a new matrix Φ
󸀠

through replacing the highly coherent columns [𝛼
1
, 𝛼
2
, . . . ,

𝛼
𝑁ℎ𝑐

] with random Gaussian columns [𝛼󸀠
1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁ℎ𝑐

]. The
resulted new sensing matrixΦ

󸀠 could be represented asΦ󸀠 =
[𝛼
󸀠

1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁ℎ𝑐

, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁𝑖𝑐
].

Theorem 4 (see [23]). Let 𝑥 be a 𝐾-sparse signal, and write
𝑦 = Φ𝑥 + 𝑒, where 𝑒 ∼ 𝑁(0; 𝜎

2

𝐼). Suppose that

𝐾 <
1

3𝜇 (Φ)
, (15)

and consider the BPDN optimization problem (16) with 𝜆 =

√16𝜎2 log𝑀:

𝑥 = argmin
𝑥∈𝑅
𝑁

‖𝑥‖
1
+ 𝜆

󵄩󵄩󵄩󵄩𝑦 − Φ𝑥
󵄩󵄩󵄩󵄩2
. (16)

Then, with probability on the order of 1 − 1/𝑀
2, the solution 𝑥

of (16) is unique, and its error is bounded by

‖𝑥 − 𝑥‖
2
≤ 𝐶𝜎√𝐾 log𝑀, (17)

and its support is a subset of the true 𝐾-element support of 𝑥.

Lemma 5. Given the standard model in compressed sensing
𝑦 = Φ𝑥 + 𝑒 and given the sensing matrix Φ

󸀠 defined
above, the 𝐾-sparse signal 𝑥 could be reconstructed from the
new measurement vector 𝑦

󸀠

= Φ
󸀠

𝑥 + 𝑒 perfectly using the
BPDN optimization method with probability on the order
of 1 − 1/𝑀

2. The new measurement vector 𝑦
󸀠 could be

calculated via (18) provided that part of the signal 𝑥, 𝑥
ℎ𝑐

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁ℎ𝑐

]
𝑇 is known:

𝑦
󸀠

= 𝑦 + 𝑥
ℎ𝑐,1

(𝛼
󸀠

1
− 𝛼
1
) + 𝑥
ℎ𝑐,2

(𝛼
󸀠

2
− 𝛼
2
)

+ ⋅ ⋅ ⋅ + 𝑥
ℎ𝑐,𝑁ℎ𝑐

(𝛼
󸀠

𝑁ℎ𝑐

− 𝛼
𝑁ℎ𝑐

) .

(18)

Proof. The threshold 𝑇 is set to distinguish the highly coher-
ent columns from the incoherent columns. In theory, the
threshold 𝑇 could be designed as small as possible to obtain

a very small coherence 𝜇(Φ). As a consequence, the new
sensing matrixΦ

󸀠 satisfies (15) properly with set threshold 𝑇.
We could reconstruct 𝑥 perfectly from the newmeasurement
vector 𝑦

󸀠

= Φ
󸀠

𝑥 + 𝑒 using the BPDN optimization method
with probability on the order of 1 − 1/𝑀

2 according to
Theorem 4.The deviation of (18) is similar to that of (1). This
ends the proof.

However, in reality the original signal 𝑥 is unknown,
and it is difficult to obtain the exact value of 𝑥

ℎ𝑐
(𝑥
ℎ𝑐

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁ℎ𝑐

]
𝑇) in advance. If the number of highly

coherent columns is small (e.g., 𝑁
ℎ𝑐

≤ 10), we could
list all the configurations of 𝑥

ℎ𝑐
with each element’s value

chosen as one or zero. Based on each configuration, we could
obtain a candidate signal using a reconstruction algorithm.
The error between the true measurement and the estimate
measurement based on each candidate signal is calculated
and then normalized. The candidate signal with the smallest
error is the one closest to the original sparse signal and is what
we pursuit. The detailed procedure is listed in Algorithm 6.

Algorithm 6. The coherent column replacement method for
a deterministic sensing matrix is as follows.

(1) The Gram matrix 𝐺 is firstly built via (14), and
a threshold 𝑇 is then set properly to distinguish
the highly coherent columns from the incoherent
columns as follows. For each off-diagonal entry
{𝑔
𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁}, if 𝑔

𝑖,𝑗
is larger than

𝑇, the columns 𝑖 and 𝑗 are added to the set of highly
coherent columns. The remaining columns that do
not belong to the set of highly coherent columns form
the set of incoherent columns.

(2) The sensing matrix Φ is changed into a new sens-
ing matrix Φ

󸀠 through replacing the highly coher-
ent columns [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑁ℎ𝑐
] with random Gaussian

columns [𝛼󸀠
1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁ℎ𝑐

].

Steps (3)–(6) are the same as steps (2)–( 5) inAlgorithm 2.

4. Simulation Results and Analysis

In this section, a simple example is firstly carried out to
verify the performance of the proposed column replacement
algorithm for a partially deterministic sensing matrix. The
proposed method is then extended to cope with the DOA
estimation problem in phased array radar system.

4.1. A Simple Example. In this section, a simple example is
used to evaluate the performance of the proposed algorithm.
The original sensing matrix Φ is a 20 × 30 matrix with
5(𝑁
𝑐
) highly coherent columns, which are put at the leftmost

of it, and 25(𝑁
𝑟
) random Gaussian columns. The original

signal 𝑥 is shown in Figure 1, which shows that its nonzero
entries are in indexes {1, 3, 5, 11, 17, 20, 27}. Since the highly
coherent columns are put at the leftmost of Φ, the true
value of 𝑥

𝑐
is 𝑥
𝑐

= {𝑥
𝑐,1

= 1, 𝑥
𝑐,2

= 0, 𝑥
𝑐,3

=

1, 𝑥
𝑐,4

= 0, 𝑥
𝑐,5

= 1} (abbreviated as 10101). In the proposed
method, each element of 𝑥

𝑐
, {𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,5

} is chosen as
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Figure 1: The original signal 𝑥.
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Figure 2: Reconstruction error based on configurations of 𝑥
𝑐
in one

trial.

one or zero, resulting in totally 2
5

= 32 configurations as
{00000, 00001, 00010, . . . , 11111}. The reconstruction error
obtained based on each configuration in one trial is shown
in Figure 2, which shows that the configuration number
with the smallest reconstruction error is 21 (10101 in binary
format). This matches the true 𝑥

𝑐
exactly. The whole recon-

structed signal corresponding to configuration 21 is shown
in Figure 3. Moreover, five hundredMonte Carlo simulations
are carried out, and the average reconstruction error is shown
in Figure 4, which shows that the configuration 21 is with the
smallest average reconstruction error 0.06868.

4.2. DOA Estimation Based on the Proposed Column Replace-
ment Method. In this section, a synthetic example about
DOA estimation based on the phased array radar system is
provided. A hybrid system is built which consists of a bottom
subsystem and a top subsystem. The bottom subsystem is
built based on the specific hardware structure of the phased
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Figure 3: Reconstructed signal corresponding to the configuration
with the smallest reconstruction error.
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Figure 4: Average reconstruction error based on configurations of
𝑥
𝑐
.

array system, which consists of half-wavelength spaced uni-
form linear arrays (ULA). The number of transmit/receive
antennas is 20. The antennas transmit independent orthogo-
nal quadrature phase shift keyed (QPSK) waveforms, and the
carrier frequency is 8.62GHz. The SNR of the measurement
noise is set to a fixed value (20 dB). The range of the
DOA plane is [0

∘

, 90
∘

], which is divided into 30 cells with
the initial angle (𝜃

0
) and angle interval (Δ𝜃) equaling 0

∘

and 3
∘, respectively. A maximum of 𝐿 = 512 snapshots

are considered at the receive node. Targets may appear at
directions represented by DOA angles. The task of signal
processing is to estimate the directions to the targets and
the corresponding complex amplitudes (DOA estimation; see
[17]).

In the proposed method, the Gram matrix 𝐺 of the
original sensing matrix Φ is built via (14). In the next, we
will set the threshold 𝑇 to distinguish the highly coherent
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Figure 5: Histogram of the absolute off-diagonal entries of 𝐺 based
on the original sensing matrix.

columns from the incoherent columns. In theory, the thresh-
old 𝑇 is designed as small as possible to obtain a very small
coherence 𝜇(Φ), which guarantees the perfect reconstruction
of the 𝐾-sparse signal 𝑥. However, small 𝑇 will result in
a large number of highly coherent columns, leading to a
huge number of configurations of 𝑥

ℎ𝑐
. This will increase the

computing time dramatically. While the restrict selection of
𝑇 is true from a worst-case standpoint, it turns out that
the coherence as defined previously does not do justice to
the actual behavior of sparse representations and pursuit
algorithms’ performance. Thus, if we relax our expectations
and allow a small fraction of failed reconstructions, then
values substantially beyond the above bound are still leading
to successful compressed sensing [24]. In this simulation
example, the threshold 𝑇 is set as 0.6, resulting in 10 highly
coherent columns and 20 incoherent columns.

A new sensing matrix Φ
󸀠 is then generated, based on

which a new Grammatrix 𝐺
󸀠 is built. Figures 5 and 6 present

the histograms of the absolute off-diagonal entries of 𝐺 and
𝐺
󸀠 respectively. As can be seen, there is a shift towards the

origin of the histogram after using the proposedmethod.The
tail representing the higher values in Figure 5 disappears in
Figure 6. Therefore the coherence of the new sensing matrix
Φ
󸀠 is far less than that of the original sensing matrixΦ.
Firstly, the performance of the proposed column replace-

mentmethod is compared to the compressed sensingmethod
using the original sensing matrix (abbreviated as standard
compressed sensing) and other three commonly used esti-
mation methods, the Capon, APES, and GLRT method, in
one trial. Figure 7 shows the original scene, the modulus
of the reflection coefficients 𝛽

𝑘
, as functions of the DOA.

Figures 8, 9, 10, 11, and 12 correspond to the DOA estimates
obtained via the standard compressed sensing method, the
proposed method, Capon, APES, and GLRT, respectively.
The proposed method and the standard compressed sensing
method use one snapshot only, and the other three methods
use 512 snapshots each. One can see that the presence of
the four targets is clearly evident via the proposed method
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0

50

100

150

Figure 6: Histogram of the absolute off-diagonal entries of𝐺󸀠 based
on the new sensing matrix, using a fixed threshold 𝑡 = 0.6.

Table 1: Performance comparison.

Average
reconstruction error

Average RMSE
of DOA angles

(degree)
Standard compressed
sensing 0.64 2.5

The proposed
algorithm 0.04 0.01

(Figure 9), while the standard compressed sensing method
fails in identifying the targets (Figure 8). Secondly, five
hundredMonteCarlo simulations are carried out, and in each
trial four targets are located randomly within the DOA range
of [0∘, 90∘], and the corresponding reflection coefficients are
set as {𝛽

𝑘
= 1, 𝑘 = 1, . . . , 4}.The performance of the proposed

method is compared to the standard compressed sensing
method via the average reconstruction error and the average
root mean square error (RMSE) [25] of the estimated DOA
angles of all four targets. The results in Table 1 show that
the proposed method is with less reconstruction error and
RMSE.This shows that the proposedmethod outperforms the
standard compressed sensing with more accurate estimated
DOA angles.

5. Conclusion

In this paper, the coherent column replacement method is
proposed to reduce the coherence of a partially determin-
istic sensing matrix, which is comprised of highly coherent
columns and random Gaussian columns. The proposed
method is then extended to a more practical condition when
highly coherent columns and incoherent columns are consid-
ered, for example, the direction of arrival (DOA) estimation
problem in phased array radar system using compressed
sensing. Numerical simulations show that the proposed
method obtains more precise estimation of DOA using one
snapshot compared with the traditional estimation methods
such as Capon, APES, and GLRT, based on hundreds of
snapshots.
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Figure 7: The original scene.
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Figure 8: DOA estimation using the standard compressed sensing
method.
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Figure 9: DOA estimation using the proposed coherent column
replacement method.
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Figure 10: DOA estimation using Capon.
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Figure 11: DOA estimation using APES.
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Figure 12: DOA estimation using GLRT.
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In this paper, a novel method named as splitting matching pursuit (SMP) is proposed to reconstruct𝐾-sparse signal in compressed
sensing.The proposedmethod selects𝐹𝑙 (𝐹𝑙 > 2𝐾) largest components of the correlation vector 𝑐, which are divided into𝐹 split sets
with equal length 𝑙.The searching area is thus expanded to incorporatemore candidate components, which increases the probability
of finding the true components at one iteration. The proposed method does not require the sparsity level 𝐾 to be known in prior.
The Merging, Estimation and Pruning steps are carried out for each split set independently, which makes it especially suitable for
parallel computation. The proposed SMP method is then extended to more practical condition, e.g. the direction of arrival (DOA)
estimation problem in phased array radar systemusing compressed sensing. Numerical simulations show that the proposedmethod
succeeds in identifying multiple targets in a sparse radar scene, outperforming other OMP-type methods. The proposed method
also obtains more precise estimation of DOA angle using one snapshot compared with the traditional estimation methods such as
Capon, APES (amplitude and phase estimation) and GLRT (generalized likelihood ratio test) based on hundreds of snapshots.

1. Introduction

The standard noiseless model in compressed sensing is

𝑦 = Φ𝑥, (1)

where 𝑥 ∈ R𝑁 is a 𝐾-sparse signal (𝐾 ≪ 𝑁), 𝑦 ∈ R𝑀 is a
measurement of 𝑥, and Φ is an 𝑀 × 𝑁 sensing matrix. The
compressed sensing recovery problem is defined as follows:
given 𝑦 and Φ, find a signal 𝑥 within the class of interest
satisfies (1) exactly. The compressed sensing recovery process
consists of a search for the sparsest signal 𝑥 that yields the
measurement 𝑦. By defining the 𝑙

0
“norm” of a vector ‖𝑤‖

0
as

the number of nonzero entries in𝑤, the simplest way to pose
a recovery algorithm is using the optimization

𝑥 = arg min
𝑦=Φ𝑤

‖𝑤‖
0
. (2)

Solutions to (2) therefore lead to algorithms for recovering
𝐾-sparse signals from 𝑀 linear measurements. In general,

the minimization of (2) is NP-hard. An alternative to the 𝑙
0

“norm” used in (2) is to use the 𝑙
1
“norm”, defined as ‖𝑤‖

1
=

∑
𝑁

𝑛=1
|𝑤(𝑛)|. The resulting adaptation of (2), known as basis

pursuit (BP) [1], is formally defined as

𝑥 = arg min
𝑦=Φ𝑤

‖𝑤‖
1
. (3)

Since the 𝑙
1
“norm” is convex, (3) can be seen as a convex

relaxation of (2). The optimization (3) can be modified to
allow for noise in the measurements 𝑦 = Φ𝑥 + 𝑒, where
𝑒 denotes an 𝑀 × 1 measurement noise vector. We simply
change the constraint on the solution to

𝑥 = arg min
‖𝑦−Φ𝑤‖

2
≤𝜖

‖𝑤‖
1
, (4)

where 𝜖 > ‖𝑒‖
2
is an appropriately chosen bound on

the noise magnitude. This modified optimization is known
as basis pursuit with inequality constraints (BPIC) and is
a quadratic program with polynomial complexity solvers
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[2]. The Lagrangian relaxation of this quadratic program is
written as

𝑥 = arg min ‖𝑤‖
1
+ 𝜆

󵄩󵄩󵄩󵄩𝑦 − Φ𝑤
󵄩󵄩󵄩󵄩2 (5)

and is known as basis pursuit denoising (BPDN). There exist
many efficient solvers to find BP, BPIC, and BPDN solutions;
for an overview, see [3]. Unfortunately, the complexity of the
linear programming algorithms for solving (3)∼(5) is highly
impractical for large-scale applications.

An alternative approach to sparse signal recovery is based
on the idea of iterative greedy pursuit. The basic greedy algo-
rithm is thematching pursuit (MP) [4].OMP [5] is a variation
of MP method, which adds a least-squares minimization
step to MP method to obtain the best approximation over
the chosen atoms. Unlike MP and OMP choosing just one
atom at each time, ROMP, StOMP, SP, CoSaMP, and BAOMP
methods choose several atoms at each iteration. Furthermore,
regularized OMP (ROMP) [6], subspace pursuit (SP) [7],
compressive sampling matching pursuit (CoSaMP) [8], and
backtracking-basedmatching pursuit (BAOMP) [9]methods
also use a two-step selection technique to carefully choose
the atoms. While SP and CoSaMP have offered comparable
theoretical reconstruction quality to the linear programming
methods along with low reconstruction complexity, they
require the sparsity level to be known for exact recovery.
As an improvement, the BAOMP algorithm achieves the
blind sparse signal reconstruction without requiring the
sparsity level 𝐾. However, the BAOMP algorithm adopts
two parameters (atom-adding constant 𝜇

1
and atom-deleting

constant𝜇
2
) which are relatedwith sparsity level and required

to be tuned online.
In this paper, a novelmethod named as splittingmatching

pursuit (SMP) is proposed to reconstruct sparse signal in
compressed sensing.The SP/CoSaMPalgorithmassumes that
the true indices in the support set of the original signal
correspond to the large components of the correlation vector
and choose 𝐾/2𝐾 largest components at each iteration.
However, in practice some true indices may correspond to
a set of small components. The proposed method selects 𝐹𝑙
(𝐹𝑙 > 2𝐾) largest components of the correlation vector, which
expands the searching area and increases the probability
of finding the true components at one iteration. The 𝐹𝑙

candidate components are divided into 𝐹 split sets with
equal length 𝑙. The proposed method does not require the
sparsity level𝐾 to be known in prior. Different from BAOMP
algorithm which adopts two tuning parameters related with
sparsity level, the proposed algorithm uses two parameters
𝐹 and 𝑙 which are preset and determined by 𝑁 and 𝑀. The
candidate components are divided into 𝐹 split sets, which
could be processed simultaneously and suitable for parallel
computation.

The proposed SMP method is then extended to more
practical condition, for example, the direction of arrival
(DOA) estimation problem in phased-array radar system
using compressed sensing. Numerical simulations show that
the proposedmethod succeeds in identifyingmultiple targets
in a sparse radar scene, outperforming other OMP-type
methods. The proposed method also obtains more precise

estimation of DOA angle using one snapshot compared
with the traditional estimation methods such as Capon
[10], APES [11], and GLRT [12] based on hundreds of
snapshots.

The rest of the sections are organized as follows. The
proposed SMP method is introduced in Section 2. The
simulation results are listed in Section 3, and the paper is
summarized in Section 4.

2. The Splitting Matching Pursuit Method

The most difficult part of signal reconstruction is to identify
the locations of 𝐾 largest components in the target signal.
The SP/CoSaMP algorithm assumes that the true indices
in the support set of the original signal correspond to
the large components of the correlation vector and choose
𝐾/2𝐾 largest components at each iteration. However, in
practice some true indices may correspond to a set of small
components. The proposed SMP selects 𝐹𝑙 (𝐹𝑙 > 2𝐾) largest
components of the correlation vector, which expands the
searching area and increases the probability of finding the
true components at one iteration. In the following, a short
introduction of the proposed method is given in Section 2.1,
and the detailed algorithm is introduced in Section 2.2.
The convergency analysis, parameters setting, complexity
analysis, and convergency speed analysis of the proposed
method are provided in Sections 2.3 to 2.6, respectively.

2.1. Brief Introduction to Splitting Matching Pursuit Method.
A schematic diagram of the proposed algorithm is depicted
in Figure 1. At the beginning of each iteration, the proposed
method selects 𝐹𝑙 (𝐹𝑙 > 2𝐾) largest components of the
correlation vector, which are divided into 𝐹 split sets with
equal length 𝑙. Each split set is merged with the estimated
support set from the previous iteration, resulting in a
sequence of merged split sets. The proposed algorithm then
approximates the target signal on each merged split set
to obtain a sequence of split estimates using least-square
algorithm. A set of pruned split sets are then built by
retaining only the 𝑙 largest magnitude entries in the split
estimates. The obtained pruned split sets are then combined
to a final merged set, which contains as much as possible
true components. An interim estimate is then calculated
based on the final merged set using least-square algorithm.
An estimated support set is obtained by retaining 𝑙 indices
corresponding to the largest magnitude entries in the interim
estimate, based on which a final estimate is generated. The
iterations repeat if the 𝑙

2
norm (magnitude) of the calculated

residual is less than a threshold 𝑇.

2.2. Detailed Procedures of Splitting Matching Pursuit Method.
Thedetailed procedure of the SMPmethod is listed as follows.
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Figure 1: Description of reconstruction procedures of the SMP method.

Algorithm 1 (the SMP method).
Input. Sensing matrix Φ, measurement vector 𝑦, parameters
𝐹 and 𝑙, and threshold 𝑇 to halt the iterations.

Output. The estimated signal 𝑥out.
Initialization

(1) 𝑎0 = 0, where 𝑎
0 indicates the initial estimated

support set and 0 denotes empty set. 𝑎 is the estimated
support set with length 𝑙.

(2) 𝑟0 = 𝑦, where 𝑟0 denotes the initial residual.
(3) 𝑐0 = Φ

∗

𝑟
0, where 𝑐

0 denotes the initial correlation
vector and Φ

∗ denotes the transpose of matrixΦ.

Iteration. At the 𝑘th iteration, go through the following steps.

(1) Splitting. Locate the 𝐹𝑙 largest components of the
correlation vector at the (𝑘−1)th iteration, and divide
them into 𝐹 split sets as

𝐼
𝑘

𝑗
= 𝑐
𝑘−1

(𝑗−1)𝑙+1:𝑗𝑙
, 𝑗 = 1, . . . , 𝐹, (6)

where 𝐼𝑘
𝑗
denotes the 𝑗th split set at the 𝑘th iteration,

and 𝑐
𝑘−1 denotes the correlation vector at the (𝑘−1)th

iteration. Furthermore, 𝑐𝑘−1
(𝑗−1)𝑙+1:𝑗𝑙

denotes the ((𝑗 −

1)𝑙 + 1)th largest magnitude entry to the (𝑗𝑙)th largest
magnitude entry of 𝑐𝑘−1, 𝑗 = 1, . . . , 𝐹.

(2) Support Merging. Each newly identified split set is
united with the estimated support set from the previ-
ous iteration, resulting in a sequence of merged split
sets as

𝐽
𝑘

𝑗
= 𝐼
𝑘

𝑗
∪ 𝑎
𝑘−1

, 𝑗 = 1, . . . , 𝐹, (7)

where 𝐽
𝑘

𝑗
denotes the 𝑗th merged split set at the 𝑘th

iteration, and 𝑎
𝑘−1 denotes the estimated support set

at the (𝑘 − 1)th iteration.
(3) Estimation. The proposed algorithm then solves a

least square problem to approximate the nonzero

entries of the target signal on each merged split set
(𝐽𝑘
𝑗
, 𝑗 = 1, . . . , 𝐹) and sets other entries as zero,

resulting in a sequence of split estimates as

𝑏
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨𝐽𝑘
𝑗

= (Φ
𝐽
𝑘

𝑗

)

†

𝑦,

𝑏
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨(𝐽𝑘
𝑗
)

𝑐 = 0, 𝑗 = 1, . . . , 𝐹,

(8)

where 𝑏
𝑘

𝑗
denotes the 𝑗th split estimate of the target

signal at the 𝑘th iteration. The vector 𝑏
𝑘

𝑗
|
𝐽
𝑘

𝑗

is com-
posed of the entries of 𝑏

𝑘

𝑗
indexed by 𝑖 ∈ 𝐽

𝑘

𝑗
, and

𝑏
𝑘

𝑗
|
(𝐽
𝑘

𝑗
)
𝑐 is composed of the entries of 𝑏𝑘

𝑗
indexed by

𝑖 ∈ (𝐽
𝑘

𝑗
)
𝑐. † indicates pseudoinverse operation. The

matrix Φ
𝐽
𝑘

𝑗

consists of the columns of Φ with indices
𝑖 ∈ 𝐽
𝑘

𝑗
.

(4) Pruning. Obtain a sequence of pruned split sets via
retaining only the largest 𝑙 indices corresponding to
the largest magnitude entries in 𝑏

𝑘

𝑗
|
𝐽
𝑘

𝑗

, 𝑗 = 1, . . . , 𝐹,
for example,

𝐻
𝑘

𝑗
= {indices of 𝑙 largest magnitude entries in 𝑏

𝑘

𝑗
|
𝐽
𝑘

𝑗

} ,

𝑗 = 1, . . . , 𝐹,

(9)

where 𝐻𝑘
𝑗
denotes the 𝑗th pruned split set at the 𝑘th

iteration.

(5) Split Sets Merging. The pruned split sets are merged to
form a final merged set, 𝐺𝑘, as

𝐺
𝑘

= union {𝐻
𝑘

1
, 𝐻
𝑘

2
, . . . , 𝐻

𝑘

𝐹
} . (10)
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(6) Estimation. An interim estimate of the original signal
is calculated based on the final merged set 𝐺𝑘 using
least-square algorithm as

𝑞
𝑘
󵄨󵄨󵄨󵄨󵄨𝐺𝑘

= (𝐺
𝑘

)
†

𝑦,

𝑞
𝑘
󵄨󵄨󵄨󵄨󵄨(𝐺𝑘)
𝑐 = 0,

(11)

where 𝑞𝑘 denotes the interim estimate of the original
signal at the 𝑘th iteration. The vector 𝑞

𝑘

|
𝐺
𝑘 is com-

posed of the entries of 𝑞𝑘 indexed by 𝑖 ∈ 𝐺
𝑘, and

𝑞
𝑘

|
(𝐺
𝑘
)
𝑐 is composed of the entries of 𝑞𝑘 indexed by

𝑖 ∈ (𝐺
𝑘

)
𝑐.

(7) Pruning. Obtain the estimated support set by retain-
ing 𝑙 indices corresponding to the largest magnitude
entries in the vector 𝑞𝑘|

𝐺
𝑘 , as

𝑎
𝑘

= {indices of 𝑙 largest magnitude entries in 𝑞
𝑘
󵄨󵄨󵄨󵄨󵄨𝐺𝑘

} ,

(12)

where 𝑎𝑘 denotes the estimated support set at the 𝑘th
iteration.

(8) Estimation. Obtain the final estimate at each iteration,
based on 𝑎

𝑘 using least-square algorithm as

𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨𝑎𝑘
= (Φ
𝑎
𝑘)
†

𝑦,

𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨(𝑎𝑘)
𝑐 = 0,

(13)

where 𝑥
𝑘

𝐹
denotes the final estimate at the 𝑘th itera-

tion. The vector 𝑥𝑘
𝐹
|
𝑎
𝑘 is composed of the entries of

𝑥
𝑘

𝐹
indexed by 𝑖 ∈ 𝑎

𝑘, and 𝑥
𝑘

𝐹
|
(𝑎
𝑘
)
𝑐 is composed of the

entries of 𝑥𝑘
𝐹
indexed by 𝑖 ∈ (𝑎

𝑘

)
𝑐. The matrix Φ

𝑎
𝑘

consists of the columns of Φ with indices 𝑖 ∈ 𝑎
𝑘.

(9) Residual calculation:

𝑟
𝑘

= 𝑦 − (Φ
𝑎
𝑘) 𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨𝑎𝑘
, (14)

where 𝑟𝑘 denotes the residual at the 𝑘th iteration.
(10) If ‖𝑟𝑘‖

2
> 𝑇, perform the correlation calculation 𝑐

𝑘

=

Φ
∗

𝑟
𝑘, and then go to step (1) of the (𝑘+1)th iteration;

otherwise, set 𝑥out = 𝑥
𝑘

𝐹
and quit the iteration.

2.3. Convergency Analysis. Here, we will discuss the conver-
gency of the proposed SMP method.

Theorem 2 (Theorem 2.1 in [8]). Let 𝑥 ∈ R𝑁 be a 𝐾-sparse
signal, and let its corresponding measurement be 𝑦 = Φ𝑥 +

𝑒 ∈ R𝑀. If the sampling matrix satisfies the restricted isometry
property (RIP) with constant

𝛿
4𝐾

< 0.1, (15)

then the signal approximation 𝑥
𝑘 is 𝐾-sparse and

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩2
≤ 0.5

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩2

+ 10V. (16)

In particular,

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩2

≤ 2
−𝑘

‖𝑥‖
2
+ 20V, (17)

where V denotes the unrecoverable energy in the signal.

Proposition 3. Let 𝑥 ∈ R𝑁 be a 𝐾-sparse signal, and let its
corresponding measurement be 𝑦 = Φ𝑥 + 𝑒 ∈ R𝑀. If the
sampling matrix satisfies the RIP with constant

𝛿
𝐹𝑙

< 0.1, (18)

then the proposed SMP algorithm is guaranteed to recover 𝑥
from 𝑦 via a finite number of iterations.

Proof. The proving process is very similar to that of
Theorem 2 (Theorem 2.1 in [8]). The CoSaMP algorithm
selects the 2𝐾 largest components of the correlation vector
at each iteration, while the proposed SMP method selects
the 𝐹𝑙 largest components of the correlation vector. We can
obtain the similar results through replacing 2𝐾with 𝐹𝑙 in the
derivation process in [8].

2.4. Parameters Setting. Here, we will discuss how to set
values of the number of split sets 𝐹 and the length of the split
set 𝑙.

Proposition 4. Note that 𝐹𝑙 < 4𝐾 guarantees 𝛿
𝐹𝑙

< 0.1 if
𝛿
4𝐾

< 0.1.

Proof. Considering the monotonicity of 𝛿
𝐾
: for any two

integers𝐾 ≤ 𝐾
󸀠, 𝛿
𝐾
≤ 𝛿
󸀠

𝐾
according to Lemma 1 in [7]. So we

have 𝛿
𝐹𝑙

< 𝛿
4𝐾

provided that 𝐹𝑙 < 4𝐾.

Proposition 5. Step (7) in Algorithm 1 guarantees 𝐾 ≤ 𝑙.

Proof. As the estimated support set, 𝑎𝑘 contains at least 𝐾
elements, resulting in𝐾 ≤ 𝑙.

According to Propositions 3∼5, in order to guarantee a
perfect recovery of the 𝐾-sparse vector 𝑥 from 𝑦 via a finite
number of iterations, we have 𝐹𝑙 < 4𝐾 ≤ 4𝑙, resulting in
𝐹 < 4. Since 𝐹 is set large enough to expand the searching
area, 𝐹 is set as 3 in the proposed method. We then have
𝑙 < (4/3)𝐾 according to 𝐹𝑙 < 4𝐾. Propositions 3∼5 are based
onTheorem 2, which has a rigid setting for 𝛿

4𝐾
. We can relax

the range of 𝑙 to [𝐾, 2𝐾). As a result, we need not know the
exact value of 𝐾 and can select an integer randomly from
[𝐾, 2𝐾) based on an estimated value of𝐾.

2.5. Complexity Analysis. The process of complexity analysis
is similar to that of [7]. In each iteration, the correlationmax-
imization procedure requires 𝑀𝑁 computations in general,
while the cost of computing the projections is of the order
of 𝑂(𝐹(2𝑠)

2

𝑀 + (2𝐹𝑠)
2

𝑀), which could be approximated as
𝑂(𝑠
2

𝑀) when 𝐹 is chosen as a small value (e.g. 3 in the
simulation setup). As a result, the total cost of computing is
of the order of 𝑂(𝑀𝑁 + 𝑠

2

𝑀), which is comparable to the
SP/CoSaMP algorithm.
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2.6. Convergence Speed Analysis. Here, we will discuss the
convergence speed of the proposed SMP method.

Theorem6 (Theorem 8 in [7]). Thenumber of iterations (𝑛SP
𝑖𝑡
)

of the SP algorithm is upper bounded by

𝑛
SP
𝑖𝑡

≤
1.5𝐾

− log (𝑐
𝐾
)
, (19)

where 𝑐
𝐾
= 2𝛿
3𝐾
(1 + 𝛿

3𝐾
)/(1 − 𝛿

3𝐾
)
3.

Proposition 7. The number of iterations (𝑛SMP
𝑖𝑡

) of the SMP
algorithm is upper bounded by

𝑛
SMP
𝑖𝑡

<
𝑛
SP
𝑖𝑡

𝐹
. (20)

Proof. The SP algorithm selects the 𝐾 largest components
of the correlation vector at each iteration, while the pro-
posed SMP method selects the 𝐹𝑙 (𝐹𝑙 ≥ 𝐹𝐾 according to
Proposition 5) largest components of the correlation vector.
The searching area is thus expanded to at least 𝐹 times of
that of SP algorithm. The probability of finding the true
components at one iteration is increased to at least 𝐹 times
of that of SP algorithm. As a result, the number of iterations
is decreased to 1/𝐹 of that of the SP algorithm by average
according toTheorem 6.

3. Simulation Results and Analysis

In this section, a simple example is firstly carried out to
verify the performance of the proposed SMP method in
reconstructing zero-one binary and Gaussian signals. The
proposed method is then extended to cope with the DOA
estimation problem in phased-array radar system.

3.1. A Simple Example. The simulations are carried out to
compare the accuracy of different reconstruction algorithms
empirically. The proposed SMP algorithm is compared with
some popular greedy algorithms (including OMP, ROMP,
StOMP, SP, CoSaMP, and BAOMP algorithms) and the
convex optimization algorithm (BP method).

In the simulation setup, a signal sparsity level𝐾 is chosen
such that 𝐾 ≤ 𝑀/2 given the length of the original signal 𝑁
(𝑁 = 256) and the length of themeasurement vector𝑀 (𝑀 =

128). An 𝑀 × 𝑁 sampling matrix Φ is randomly generated
from the standard i.i.d. Gaussian ensemble. A support set 𝑆
of size 𝐾 is selected uniformly at random, and the original
sparse signal vector 𝑥 is chosen as either Gaussian signal or
zero-one signal [7]. The estimate of the original signal, 𝑥,
is computed based on the measurement vector 𝑦 generated
through 𝑦 = Φ𝑥. In the experiments, OMP uses𝐾 iterations,
StOMP and BP methods use the default settings (OMP,
StOMP, and BP tools use SparseLab [13]), and ROMP and SP
methods use the parameters given in [6, 7], respectively. The
proposed SMPmethod use𝐹 = 3, 𝑙 = 84, 𝑛max = 𝑀, 𝜀 = 10

−5,
as the input parameters.

The signal sparsity level 𝐾 is varied from 0 to 𝑀/2.
For each fixed 𝐾, five hundred Monte Carlo simulations
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Figure 2: Zero-one signal.
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Figure 3: Gaussian signal.

are carried out for each algorithm. The reconstruction is
considered to be exact when the 𝑙

2
norm of the difference

between the original signal 𝑥 and the reconstructed one 𝑥 is
smaller than 10

−5, that is, ‖𝑥 − 𝑥‖
2
< 10
−5. The frequency of

exact reconstruction (𝜉) is used to evaluate the reconstruction
performance of the different methods, which is defined as

𝜉 =
𝛼

𝑁MC
, (21)

where 𝛼 denotes the number of exact reconstructions for
each algorithm given a fixed 𝐾, and 𝑁MC denotes the
number of Monte Carlo simulations. The frequency of exact
reconstruction is also adopted by the SP method to evaluate
the reconstruction performance [7].

Figures 2 and 3 show the reconstruction results for
binary zero-one andGaussian sparse signals, respectively.We
only present the results of the SP algorithm since the SP
and CoSaMP algorithms are almost the same with different
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deviation process, and both obtain the same simulation
results. As can be seen in Figure 2, for binary zero-one sparse
signal which is a difficult case for OMP-type methods, the
performance of the proposed SMP method is much better
than all other OMP-type methods and comparable to the BP
minimization method. Of particular interest is the sparsity
level at which the recovery rate drops below 100%, that is,
the critical sparsity defined in [7]. It could be seen from
Figure 2 that the proposed method is with the largest critical
sparsity (39), which exceeds that of the BP method (36). For
theGaussian sparse signal, as shown in Figure 3, the proposed
method also gives the comparable performance to the BP
method.

3.2. DOA Estimation Based on Splitting Matching Pursuit
Method. In this section, the proposed SMP method is
extended to solve the DOA estimation problem in phased-
array radar system. The signal model for DOA estimation
in phased-array radar system is represented in a standard
compressed sensing form in Section 3.2.1, where the sparse
radar scene is abstracted as a sparse signal. And the simula-
tion results are shown in Section 3.2.2, which shows that the
proposed method succeeds in identifying multiple targets in
a sparse radar scene.

3.2.1. Signal Model for DOA Estimation and Sparse Represen-
tation. Assume that a phased-array radar system consists of
half wavelength spaced uniform linear arrays (ULAs). Targets
may appear at directions represented by DOA angles. The
task of signal processing is to estimate the directions to the
targets and the corresponding complex amplitudes (DOA
estimation, see [14]). We assume that the other parameters
like range and Doppler frequency have been isolated before
by appropriate processing.

The ULA of the phased-array radar system consists of𝑀
antennas, which are used to emit the transmitted signal 𝑠(𝑡).
The 𝑀 × 1 received complex vector of array observations is
defined as 𝑓(𝑡) = [𝑓

1
(𝑡), . . . , 𝑓

𝑀
(𝑡)]
𝑇. Assuming a hypothet-

ical target located at a DOA angle of 𝜃 in the far field, the
received complex vector of array observations can be written
as

𝑓 (𝑡) = 𝛽 (𝜃) 𝑠 (𝑡) 𝑎 (𝜃) + 𝑛 (𝑡) , (22)

where 𝛽(𝜃) is the reflection coefficient of the hypothetical
target, and 𝑛(𝑡) is an 𝑀 × 1 complex Gaussian noise vector.
𝑎(𝜃) is the𝑀× 1 steering vector, which is defined as

𝑎 (𝜃) = [1𝑒
𝑗(2𝜋𝑑 sin 𝜃/𝜆)

, . . . , 𝑒
𝑗(𝑀−1)(2𝜋𝑑 sin 𝜃/𝜆)

]
𝑇

, (23)

where𝑑 is the distance between the elements of the arrays and
𝜆 denotes wavelength.

Assuming 𝐷 targets are observed with reflection coeffi-
cients {𝛽

𝑖
}
𝐷

𝑖=1
and DOA angles {𝜃

𝑖
}
𝐷

𝑖=1
, the 𝑀 × 1 received

complex vector of array observations can be written as

𝛼 (𝑡) =

𝐷

∑

𝑖=1

𝛽 (𝜃
𝑖
) 𝑠 (𝑡) 𝑎 (𝜃

𝑖
) + 𝛾 (𝑡) , (24)

where 𝛾(𝑡) is an 𝑀 × 1 complex Gaussian noise vector.
Equation (24) could be rewritten as

𝛼 (𝑡) = 𝐴 (𝜃) 𝑆 (𝑡, 𝜃) 𝛾 (𝑡) , (25)

where 𝐴(𝜃) = [𝑎(𝜃
1
)𝑎(𝜃
2
) ⋅ ⋅ ⋅ 𝑎(𝜃

𝐷
)] is an 𝑀 × 𝐷 steering

matrix, and 𝑆(𝑡, 𝜃) = 𝑠(𝑡)[𝛽(𝜃
1
)𝛽(𝜃
2
) ⋅ ⋅ ⋅ 𝛽(𝜃

𝐷
)]
𝑇 denotes a

𝐷 × 1 reflection vector.
Since the radar scene is generally in practice sparse,

compressed sensing is a valid candidate for estimating the
DOA angles for multiple targets. To do so, the DOA angle
plane is divided into 𝑁 fine grids, each cell generally with
the same size Δ𝜃. The 𝑖th grid represents the DOA angle
of 𝜃
0
+ (𝑖 − 1)Δ𝜃, where 𝜃

0
is the initial angle of the DOA

plane. The steering matrix and reflection vector in (25) are
extended to obtain the 𝑀 × 𝑁 extended steering matrix Φ

and the𝑁×1 extended reflection vector 𝑥, which are defined
asΦ = [𝑎(𝜃

0
)𝑎(𝜃
0
+Δ𝜃) ⋅ ⋅ ⋅ 𝑎(𝜃

0
+(𝑖−1)Δ𝜃)𝑎(𝜃

0
+(𝑁−1)Δ𝜃)]

and 𝑥 = 𝑠(𝑡)[𝛽(𝜃
0
)𝛽(𝜃
0
+ Δ𝜃) ⋅ ⋅ ⋅ 𝛽(𝜃

0
+ (𝑖 − 1)Δ𝜃)𝛽(𝜃

0
+

(𝑁 − 1)Δ𝜃)]
𝑇. Since small number of grids are occupied by

the targets, 𝑥 is a sparse vector with the 𝑖th element defined
as 𝑥(𝑖) = 𝑠(𝑡)𝛽(𝜃

0
+ (𝑖 − 1)Δ𝜃) if the 𝑖th grid is occupied by

the target; otherwise, 𝑥(𝑖) = 0. As a result, the𝑀×1 received
complex vector of array observations 𝑦 could be written as

𝑦 = Φ𝑥 + 𝑒, (26)

where 𝑒 is an 𝑀 × 1 complex Gaussian noise vector. Though
in (26) the radar vectors and matrices are complex valued in
contrary to the original compressed sensing environment, it
is easy to transfer it to real variables according to [15, 16].

Discussion. In [17, 18], it is assumed that the discretized step
is small enough so that each target falls on some specific
grid point. However, no matter how finely the parameter
space is gridded, the sources may not lie in the center of the
grid cells, and consequently there is mismatch between the
assumed and the actual bases for sparsity. The sensitivity of
compressed sensing to mismatch between the assumed and
the actual sparsity bases is studied in [19]. The effect of basis
mismatch is analyzed on the best 𝑘-term approximation error,
and some achievable bounds for the 𝑙

1
error of the best 𝑘-term

approximation are provided. The readers can refer to [19] for
a detailed analysis on the influence of the griding operations
on the estimation performance.

3.2.2. Simulation Results. In this section, an example about
DOA estimation is provided based on the phased-array radar
system, which consists of half wavelength spaced uniform
linear arrays (ULAs). The number of transmit/receive anten-
nas is 20. The antennas transmit independent orthogonal
quadrature phase shift keyed (QPSK) waveforms and the
carrier frequency is 8.62GHz. The SNR of the measurement
noise is set to a fixed value (20 dB). The range of the
DOA plane is [0

∘

, 90
∘

], which is divided into 30 cells with
the initial angle (𝜃

0
) and angle interval (Δ𝜃) equaling 0

∘

and 3
∘, respectively. A maximum of 𝐿 = 512 snapshots

are considered at the receive node. Targets may appear at
directions represented by DOA angles.
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Table 1: Performance comparison.

Average reconstruction
error

Average RMSE of DOA
angles (degree)

SMP 0.04 0.05
OMP 0.2 0.19
ROMP 0.24 0.23
StOMP 0.23 0.25
SP/CoSaMP 0.15 0.13
BAOMP 0.17 0.16
BPDN 0.09 0.07
Capon 0.38 1.1
APES 0.35 0.54
GLRT 0.27 0.17

The proposed SMPmethod is compared to several popu-
lar greedy algorithms, for example, the OMP, ROMP, StOMP,
SP, CoSaMP and BAOMP algorithms, and the convex opti-
mization algorithm, BPDN method. The proposed method
is further compared to three commonly used methods in
DOA estimation, for example, the Capon, APES, and GLRT
methods. The compressed sensing based methods (the SMP
method, the greedy algorithms, and the BPDN method)
use one snapshot only, and the Capon, APES, and GLRT
methods use 512 snapshots each. Five hundred Monte Carlo
simulations are carried out, and in each trial four targets
locate randomly within the DOA range of [0∘, 90∘], and the
corresponding reflection coefficients are set as {𝛽

𝑘
= 1, 𝑘 =

1, . . . , 4}.
The average reconstruction error is adopted to evaluate

the reconstruction performance of the methods, which is
defined as

𝜒average =

𝑁MC

∑

𝑖=1

𝜒
𝑖

𝑁MC
, (27)

where 𝜒
𝑖 denotes the reconstruction error at the 𝑖th Monte

Carlo simulation, which is defined as

𝜒
𝑖

=

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖

estimate − 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑥
𝑖
󵄩󵄩󵄩󵄩2

, (28)

where 𝑥𝑖 and 𝑥
𝑖

estimate represent the true and estimated signal
representing the sparse radar scene at the 𝑖th Monte Carlo
simulation, respectively. The average root mean square error
(RMSE) is also adopted to evaluate the DOA estimation
performance of the methods, which is defined in [20].

The results in Table 1 show that the proposed SMP
method is with the smallest average reconstruction error and
average RMSE.The proposedmethod succeeds in identifying
multiple targets in a sparse radar scene, outperforming other
OMP-type methods. It also obtains more precise estimation
of DOA angle using one snapshot compared with the tradi-
tional estimation methods such as Capon, APES, and GLRT
based on 512 snapshots.

4. Conclusion

We have presented a novel SMP method for sparse signal
reconstruction in compressed sensing.The proposedmethod
expands the searching area and increases the probability of
finding the true components at one iteration. It also does
not require the sparsity level 𝐾 to be known in prior. The
proposed method is then extended to more practical condi-
tion, for example, the direction of arrival (DOA) estimation
problem in phased-array radar system using compressed
sensing. Numerical simulations show that the proposed
method succeeds in identifying multiple targets in a sparse
radar scene, outperforming other OMP-type methods. The
proposed method also obtains more precise estimation of
DOA angle using one snapshot comparedwith the traditional
estimation methods such as Capon, APES, and GLRT based
on hundreds of snapshots.
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