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We study in this paper the trends of the evolution of different infections using a SIR flow (first-order ODE system), completed by a
differential inclusion, a geodesic motion in a gyroscopic field of forces, and a stochastic SIR perturbation of the flow (Itô ODE
system). We are interested in mathematical analysis, bringing new results on studied evolutionary models: infection flow together
with a differential inclusion, bounds of evolution, dual description of disease evolution, log-optimal and rapid path, epidemic wind
(geometric dynamics), stochastic equations of evolution, and stochastic connectivity. We hope that the paper will be a guideline
for strategizing optimal sociopolitical countermeasures to mitigate infectious diseases.

1. Introduction

All topics in this paper are based on dynamics induced by
flows and differential inclusions, dynamical systems of
geometric origin, nonholonomic dynamical systems, and
stochastic differential equations. 'eir combination reflects
the mathematical complexity of the studied problems.

'e mathematical literature that helped us to do this
study is classified as follows: stochastic modeling of geo-
metric structures [1–4], infectious disease flow [5–7], dif-
ferential inclusions [8], geometric dynamics on Riemannian
manifolds [9, 10], nonholonomic optimization [11, 12], and
nonholonomic spaces [13].

'e original results can be summarized by properties of
infectious disease flow, Maple simulations for COVID-19 in
Romania, infectious disease differential inclusion, bounds of
disease evolution, dual description of disease evolution,
epidemic wind generated by the flow and the geometry of the
space, and computation of optimal striking time for sto-
chastic connectivity.

'e Maple simulations for COVID-19, with Romanian
data, are more suggestive than what could be done according

to the model related to the works [3, 5–7]. Our results on the
asymptotic behavior of infectious disease flow and bounds of
disease evolution via extremum problems are finer than
those presented by M. W. Hirsch, S. Smale, R. L. Devaney in
their book [6], Chapter 11. 'e Pfaff evolution, the epidemic
wind, and finding the optimal striking time for stochastic
connectivity via an extremum problem are totally original
ideas, suggested by our recent papers. Particularly, the Pfaff
evolution underlines that we can study the infectious disease
system like a Carnot group.

Although the epidemic differential inclusion and epi-
demic wind appear to have been created ad hoc, it explains
the pandemic spread in the sense that any two points on the
globe can be joined by an epidemic trajectory. 'is is not
true if we stop with the explanations only at the epidemic
flow. 'e same idea is underlined by stochastic connectivity.

1.1. Disease Infection Data. 'e evolution of disease infec-
tions in each region has been modeled recently via a sto-
chastic susceptible-infected-recovered (SSIR) model [3, 5–7]
with the following data:
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Evolution parameter: t is the daily-time parameter.
States: (1) S(t) denotes the total susceptible population
at time t; (2) I(t) denotes the number of active in-
fections at time t; (3) R(t) denotes the total number of
recoveries and deaths at time t; (4)
dS(t), dI(t), and dR(t) denote the change in the states
at time t; (5) dWt is an incremental Wiener process
(Brownian motion), which models the randomness in
the evolution.
Constant parameters: (1) β (measured by
[β] � (people × time)− 1) is a constant denoting the
growth rate, which factors the rise in the number of
infections, due to interactions between susceptible and
infected populations. 'is parameter is a lumped
constant which is meant to account for (a) the pop-
ulation size, (b) reproduction number of infectious
diseases, and (c) exposure factor (which depends on
mobility, precautionary measures, etc.); (2) c (mea-
sured by [c] � (time)− 1) is the rate of outcomes, that is,
the rate at which the infections are neutralized, which
may be due to recovery or death. It is assumed that
recovered persons would not spread the infections
again (at least for a window of a month); (3) σ is a
parameter used to model the randomness in the evo-
lution, which may cause local deviations from the
typical (exponential) trends; (4) Ptotal is the population
of the region, and S0 and I0 are the initial number of
susceptible individuals and active infections.

2. Infectious Disease Flow

'e susceptible-infected-recovered (SIR) model, with three
different states, was selected [3,5 –7] to describe the evo-
lution of different infections in a region of the world. OnR3

+,
the infectious disease Cauchy problem is

_S(t) � − βS(t)I(t),

_I(t) � (βS(t) − c)I(t),

_R(t) � cI(t),

S(0) � S0,

I(0) � I0,

R(0) � R0,

S0 + I0 + R0 � Ptotal.

(1)

Since the initial differential system is equivalent to the
symmetric system

dS

− βS
�

dI

βS − c
�
dR

c
, (2)

automatically two first integrals Se(β/c)R � c1 and S + I + R �

c2 appear, and hence the general solution is Se(β/c)R � c1, S +

I + R � c2 (spiral curve in a plane). In other words, the
infectious disease nonlinear differential system is com-
partmental and proves the mass conservation property
[5–7]. 'e family of field surfaces has the general equation
ϕ(Se(β/c)R, S + I + R) � c, where ϕ(c1, c2) is an arbitrary C1

function. 'e vortex lines of a SIR vector field are plane
curves.

Given an initial condition S(0), I(0), R(0) summing to
Ptotal, it follows c1 � S0e

(β/c)R0 and c2 � Ptotal � S0 + I0 + R0.
Also, the previous differential system has a straight line of
equilibrium points I � 0, S + R � Ptotal (particularly,
S � 0, I � 0, R � Ptotal and S � (c/β), I � 0, R � Ptotal − (c/β)

are two equilibrium points). 'e general theory shows that a
nonisolated equilibrium point can be stable but not as-
ymptotically stable.

2.1. Open Problems

(1) Investigate whether there are monomial connections
∇ on R3

++ of components

Γkij � c
k
ij x

1
􏼐 􏼑

a1
x
2

􏼐 􏼑
a2

x
3

􏼐 􏼑
a3

, c
k
ij > 0, x

i ∈ R++, ai ∈ R,

(3)

so that the SIR vector field is convex with respect to
∇.

(2) Convolution is a very powerful technique in appli-
cations. Transforming the usual product into a
convolution (product), let us replace the initial
Cauchy problem with a convolution problem

_S(t) � − βS(t)∗ I(t),

_I(t) � (βS(t) − c)∗ I(t),

_R(t) � cI(t),

S(0) � S0,

I(0) � I0,

R(0) � R0,

S0 + I0 + R0 � Ptotal,

(4)

where the convolution (product) is defined by
(f∗g)(t) � 􏽒

t

0 f(τ)g(t − τ)dτ. Applying the Laplace
transform, study the solution of this convolution problem.

2.2. Maple Simulations for COVID-19. We denote
S � x, I � y, R � z, t � daysassume values β � 7.5 × 10− 3

and c � 0.06 (hypothetical data used for research purpose).
Romanian media, 06.05.2020: Ptotal �Romania pop-
ulation� 19,410 million; x0� quarantined + nonquarantined
� 19,389; y0� infected� 13,837; z0� recovered 5.454 +
deceased 858� 6,312 (real data normalized by 1,000).

'e graph t, x(t) admits a limit point x � x

� limt⟶∞x(t)≥ 0; the graph t, y(t) has a maximum point
and a limit point y � y � limt⟶∞y(t) � 0.'e graph t, z(t)

has a limit point z � z � limt⟶∞z(t)≥ 0. Of course,
x + z � Ptotal. See Figures 1–3 .

(i) with(DEtools):
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phaseportrait([D(x)(t) � − 7.5∗ 10(− 3) ∗ x(t)∗y

(t), (D(y))(t) � (7.5∗ 10(− 3) ∗ x(t) − 0.6e − 1)∗
y(t), (D(t))(t) � 0.6e − 1∗y(t)], [x(t), y(t), z(t)],
t� 0 .. 100, [[x (0)� 19.389, y(0)� 13.837, z(0)�

6.312]], stepsize� 0.5e − 1, scene� [t, x(t)],
linecolour� sin((1/2)∗ t∗Pi), method� classical
[foreuler]);

(ii) phaseportrait([D(x)(t) � − 7.5 ∗ 10(− 3) ∗x(t)∗y

(t), (D(y))(t) � (7.5∗ 10(− 3) ∗ x(t) − 0.6e − 1)∗
y(t), (D(t)) (t) � 0.6e − 1∗y(t)], [x(t), y(t), z(t)],
t� 0, ..., 100, [[x(0)� 19.389, y(0)� 13.837, z(0)�

6.312]], stepsize� 0.5e − 1, scene� [t, y(t)],
linecolour� sin((1/2)∗ t∗Pi)), method� classical
[foreuler]);

(iii) phaseportrait([D(x)(t) � − 7.5∗ 10(− 3) ∗ x(t)∗y

(t), (D(y))(t) � (7.5∗ 10(− 3) ∗ x(t) − 0.6e − 1)∗
y(t), (D(t))(t) � 0.6e − 1∗y (t)], [x(t), y(t), z(t)],
t� 0, ..., 100, [[x(0)� 19.389, y(0)� 13.837, z(0)�

6.312]], stepsize� 0.5e − 1, scene� [t, z(t)],
linecolour� sin((1/2)∗ t∗Pi)), method� classical
[foreuler]).

Remark 1. Let us animate the surface Se(β/c)R � c1 with
respect to the parameter a � (β/c) (Figure 4).

(i) with(plots);
(ii) animate(plot3d,

[x∗ exp(a∗ z), x � 1, . . . , 10, z � 1, . . . , 10],
a � 0.125, . . . , 1).

2.3. Parametrization by S. It would be more natural to
parameterize the previous general solution by “rawmaterial”
S; namely,

S � S,

I �
c

β
ln c2S( 􏼁 − S,

R � −
c

β
ln c1S( 􏼁,

(5)

where c1S< 1< c2S and (c/β)ln(c2/c1) � Ptotal. If the social
constants β, c and the state S are so that I> 0, then there are
infections; otherwise, there are not. So, trying to influence
the transmission constants β, c we can limit the number of
infections. In fact, the state I exists, if and only if S1 ≤ S≤ S2
and then I(S1) � I(S2) � 0.

If we start with the equilibrium points
S0 � Ptotal, I0 � 0, andR0 � 0, we find

I �
c

β
ln

S

S0
􏼠 􏼡 + S0 − S,

R � −
c

β
ln

S

S0
􏼠 􏼡, S< S0.

(6)

'e more interesting case holds for S0 > (c/β). 'en, the
ODE for S(t) becomes

_S(t) � βS(t)
2

− βS0S(t) − cS(t)ln
S(t)

S0
􏼠 􏼡, (7)

or changing the variable as S(t) � S0u(t),

_u(t) � βS0 u(t)
2

− u(t)􏼐 􏼑 − cu(t)ln u(t), u(t)< 1. (8)

'e solution of this ODE is written in the form

t + c � 􏽚
du

βS0 u
2

− u􏼐 􏼑 − cu ln u
. (9)

'e denominator of the integrand has three roots
0, u0, and 1. Using the qualitative approximation

t + c � k 􏽚
du

u u − u0( 􏼁(u − 1)
, u0 < u< 1, (10)

we find the implicit solution

u
1/u0(1 − u)

1/ 1− u0( )

u − u0( 􏼁
1/u0 1− u0( )

� ce
t/k

. (11)

'e constant c is determined from the initial condition
u(0) � 1 − ε. 'e initial condition u(0) � 1 would give us
the equilibrium point u(t) ≡ 1.

Let us observe that u(t)⟶ u0 for t⟶∞. Hence, the
final state I � 0, S � S1 appears for t⟶∞.

We fix β � 1, c � 3, S0 � 5. From the graphs S, I(S) and
(S, F(S) � S2 − 5S − 3S ln(S/5)), in Figure 5, we can read the
following: when S is decreasing from S0 to S1, the function I

is increasing from 0 to a maximum for S � β/c and then
decreasing again to 0. In other words, when the epidemic
goes out, that is, I � 0 again, and the variable S stops at
S1 > 0, then we talk about an uncontaminated population.

2

4

6

8

10

12

14

16

18

x 
(t)

20 40 60 80 1000
t

Figure 1: Susceptible population evolution t, x(t).
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Maple simulation (Figure 5):

(i) plot([3∗ ln((1/5)∗ x) + 5 − x, x2 − 5∗x − 3∗x∗
ln((1/5)∗x)], x� 0.. 6, color� [”red”, ”green”]).

2.4. Asymptotic Behavior of Infectious Disease Flow

Theorem 1. For positive initial conditions (S0, I0, R0), the
limit value S + I � limt⟶∞(S(t) + I(t)) exists and is
Ptotal − R.

Proof. Suppose S(t)≤ (c/β).
Because S(t) is monotonically decreasing

( _S(t) � − βS(t)I(t) ≤ 0) and nonnegative, it has a limit
S � limt⟶∞S(t), with 0≤ S≤ (c/β).

Since I(t) is monotonically decreasing
( _I(t) � (βS(t) − c)I(t)≤ 0) and nonnegative, it has a limit
I � limt⟶∞I(t), with I≥ 0.

On the other hand, R(t) is monotonically increasing
( _R(t) � cI(t)≥ 0) and nonnegative. But S(t) + I(t) + R(t) �

Ptotal shows that R(t) has a limit R≥ 0. For t large enough, we
have S(t) ≈ S, I(t) ≈ I, andR(t) ≈ R. 'en, the differential

20 40 60 80 1000
t

2

4

6

8

10

12

14

16

18

y (
t)

Figure 2: Active infection evolution t, y(t).

20 40 60 80 1000
t

10

15

20

25

30

35

z (
t)

Figure 3: Number of recoveries and deaths’ evolution t, z(t).
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system consisting of the first equation and third equation
converges to the linear system corresponding to the linear-
ization at the point (S, I); that is,

_S � − βI(S(t) − S) − βS(I(t) − I),

_R(t) � cI(I(t) − I).
(12)

'e matrix of this linear system has the eigenvalues λ1 �

− βI< 0 and λ2 � cI> 0. Consequently, (S, I) render this
system unstable, and then the trajectory S(t), I(t), R(t)

diverges. 'is contradicts S(t) + I(t) + R(t) � Ptotal.
Suppose S(t)> (c/β). Similarly, it follows the existence

of (S, I, R), satisfying (c/β)≤ S, I≥ 0, and R≥ 0. □

Theorem 2. For the infectious disease flow, one has
I � limt⟶∞I(t) � 0 (see equilibrium point).

Proof. We use the second differential equation
dI(t)/I(t) � (d/dt)ln I(t) � βS(t) − c. Let S be the prim-
itive of function S(t). Since 􏽒

b

0 βS(t) − cdt � ln(I(b)/I(0)),
we find β(S(b) − S(0)) − cb � ln(I(b)/I(0)). At limit,
when b⟶∞, we must have I � I(∞) � 0 (see equilib-
rium point). □

Remark 2. Let S, I, and R be the primitives of functions
S(t), I(t), and R(t). 'en, S(t) + I(t) + R(t) � tPtotal.

Theorem 3. Let S, I, and R be the primitives of functions
S(t), I(t), and R(t). For positive initial conditions
(S0, I0, R0), the limit values

S � lim
t⟶∞

S(t),

I � lim
t⟶∞

I(t),

R � lim
t⟶∞

R(t)

(13)

are related by

− β(I − I(0)) � ln
S

S(0)
,

R − R(0) � c(I − I(0)).

(14)

Proof. Let us consider the first differential equation

dS(t)

S(t)
�

d
dt

ln S(t) � − βI(t)dt. (15)

It follows − β􏽒
∞
0 I(t)dt � ln(S/S(0)), and hence

− β(I − I(0)) � ln(S/S(0)).
Integrating the third differential equation, we find

R − R(0) � c(I − I(0)). (16)

Since (S, I, R) represent the evolution of disease infec-
tions, the initial conditions S0 ≥ 0, I0 ≥ 0, R0 ≥ 0, and
S0 + I0 + R0 � Ptotal are perfectly suited for biological ap-
plications. Suppose these initial conditions. 'e monotony
of the state functions S(t), I(t), R(t) is described by the
signum of derivatives: either _S≤ 0, _I> 0, _R≥ 0 which show
that S(t) is decreasing and I(t) and R(t) are increasing
∀t> 0 or _S≤ 0, _I≤ 0, _R≥ 0 which show that S(t), I(t) are
decreasing and R(t) is increasing ∀t> 0. □

2.5. Covering All the Manifold by a Differential Inclusion.
As any flow, the infectious disease flow does not cover all the
manifold R3

+, and so there are pairs of points that cannot be
joined by a flow trajectory. 'e natural question arises: what
mathematical construction allows us to cover all the
manifold?

'e infectious disease vector field X � I(− βS, βS − c, c)

determines an orthogonal distribution generated by two
linearly independent vector fields Y � (βS − c, βS, 0) and
Z � (0, − c, βS − c), orthogonal to X.

'e three vector fields X, Y, Z determine the differential
inclusion
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d
dt

S

I

R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ X, Sp Y, Z{ }􏼈 􏼉, (17)

which can be used to understand and suitably interpret the
spreading of the disease, in the sense that any two points on
R3

+ can be joined by a piecewise solution of the differential
inclusion.

3. Bounds of Disease Evolution

Let us select the best values of state variables when we evolve
along the solution of the disease flow. 'e aim is to manage
correctly a pandemic since the values of certain parameters
can be chosen subject to some conditions expressing their
ranges and interrelationships. 'e choice determines the
values of a number of other variables on which the desir-
ability of the end result depends, such as cost, weight, speed,
bandwidth, and reliability.

3.1. Extrema Constrained by Equalities. A basic problem we
discuss at the beginning of this paper is as follows: “find
maxf(S, I, R) � I subject to Se(β/c)R � c1, S + I + R � c2.”

'e constraints satisfy the condition of nondegenerate
constraint qualification.

To solve this problem, we attach the Lagrange function

F � I + λ Se
(β/c)R

− c1􏼐 􏼑 + μ S + I + R − c2( 􏼁. (18)

Since

dF � dI + λ e
(β/c)RdS + S

β
c

e
(β/c)RdR􏼠 􏼡 + μ(dS + dI + dR),

(19)

the critical points of the function F are given by the algebraic
system

zF

zS
� λe

(β/c)R
+ μ � 0,

zF

zI
� 1 + μ � 0,

zF

zR
� λS

β
c

e
(β/c)R

+ μ � 0,

Se
(β/c)R

� c1,

S + I + R � c2.

(20)

It follows the critical points

S �
c

β
,

R � −
c

β
ln λ,

I � c2 −
c

β
−

c

β
ln λ,

λ �
c

βc1
,

μ � − 1.

(21)

On the other hand,

d2F � λ 2
β
c

e
(β/c)RdSdR + S

β
c

􏼠 􏼡

2

e
(β/c)RdR

2⎛⎝ ⎞⎠. (22)

'e associated matrix

0 λ
β
c

e
(β/c)R

λ
β
c

e
(β/c)R λS

β
c

􏼠 􏼡

2

e
(β/c)R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

with respect to dS, dR{ }, is negative definite. 'e function F

is concave. Hence, all critical points are maximum points.
'e maximum value of objective function I is

Imax � c2 −
c

β
−

c

β
ln λ. (24)

'e introduction of Lagrange multipliers λ, μ as addi-
tional variables looks artificial but it makes it possible to
apply to the constrained-extremum problem the same first-
order condition used in the free-extremum problem (but for
more complex function F). Note also that λ, μ have a certain
specific meaning: if the solution is regarded as

S
∗

c1, c2( 􏼁, I
∗

c1, c2( 􏼁, R
∗

c1, c2( 􏼁, λ∗ c1, c2( 􏼁, μ∗ c1, c2( 􏼁,

(25)

then the marginal variations are

z

zc1
I S
∗

c1, c2( 􏼁, I
∗

c1, c2( 􏼁, R
∗

c1, c2( 􏼁( 􏼁 � λ∗ c1, c2( 􏼁,

z

zc2
I S
∗

c1, c2( 􏼁, I
∗

c1, c2( 􏼁, R
∗

c1, c2( 􏼁( 􏼁 � μ∗ c1, c2( 􏼁.

(26)

Maple Simulations: we denote S � x, I � y, R � z. Let us
find the extrema of some functions constrained by the spiral
curve.

(i) with (optimization);
'e Minimize command automatically selects the
most appropriate solver.
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(ii) Minimize(x, x∗ exp(z) � 1, x + y + z � 2, assu-
me� nonnegative); 0.158594339562640796, [x �

HFloat(0.1585943395626408), y � HFloat(0.0), z

� HFloat(1.8414056604373585)]

(iii) Minimize(y, x∗ exp(z) � 10, x + y + z � 50,
assume� nonnegative); 39.9999999999999858,

[x � HFloat(10.0), y � HFloat(39.9999999999999
86), z � HFloat(0.0)]

(iv) Minimize(z, x∗ exp(z) � 10, x + y + z � 50,
assume� nonnegative); 0., [x � HFloat(1.0), y

� HFloat(0.9999999999999998), z � HFloat(0.0)]

(v) Minimize(y, x∗ exp(z) � a, x + y + z � b, assu-
me� nonnegative); 0., [a � HFloat(1.1097167
915216666), b � HFloat(1.2345190270116868), x �

HFloat(0.5722702360103161), y � HFloat(0.0), z

� HFloat(0.6622487910013707)]

(vi) Minimize(y, x∗ exp(10∗ z) � a, x + y + z � b,
assume� nonnegative); 0., [a � HFloat(1.4613
527630961411), b � HFloat(1.458647134440591),

x � HFloat(1.4584481765262327) , y � HFloat
(0.0), z � HFloat(1.989579143 5813165e − 4)]

(vii) Minimize(x2 + y2 + z2, x∗ exp(10∗ z) � 1, x + y

+z � 2, assume� nonnegative); 1.9941556847397
1461, [x � HFloat0.9413968463983702y � HFloat
1.052564103608946, z � HFloat0.00603904999268
35095]

3.2. Extrema Constrained by Field Lines. To simplify, we use
standard notations in mathematics S � x1, I � x2, R � x3.
'en, infectious disease Cauchy problem on R3

+ is written

_x
1
(t) � − βx

1
(t)x

2
(t),

_x
2
(t) � βx

1
(t) − c􏼐 􏼑x

2
(t),

_x
3
(t) � cx

2
(t),

x
1
(0) � x

1
0,

x
2
(0) � x

2
0,

x
3
(0) � x

3
0,

x
1
0 + x

2
0 + x

3
0 � Ptotal.

(27)

To find bounds of significant functions connected to this
flow, we use the technique of optimization of an objective
function constrained by a field line
x � xt, x0, t ∈ 0,∞, x0 � x1

0, x2
0, x3

0.
Let us start with finding the maximum for the total

susceptible population x1(t): findmaxf(x1, x2, x3) � x1-
with the restrictionx � x(t, x0).

Since the component x1(t) is a decreasing function, the
maximum is reached at the starting point x0.

Let us show that we do not have constrained critical
points that produce an extremum. We set the critical point
condition 〈∇f, X〉 � 0. In this case, ∇f � (1, 0, 0) and
hence − βx1(t)x2(t) � 0.

We eliminate x2 � 0, since this condition leads to an
equilibrium point of the dynamical system. Also, the

solution x1 � 0 is not convenient. Indeed, a critical point of
the form x � (x1 � 0, x2 > 0, x3 ≥ 0) cancels the expression
Hessf(X, X)(x) + 〈∇f, DXX〉(x) whose sign at the point
x would decide the property of extremum:
〈∇f, DXX〉(x) ≡ 0, that is, βx1x2 − β2(x1)2 + βcx1 ≡ 0.

Since €x1(t) � βx1(t)x2(t)(βx2(t) − x1(t) + c), the
function x1(t) is convex on the subset
βx2(t) − x1(t) + c≥ 0.

Proposition 1. Be maximum of the total susceptible pop-
ulation is reached at the starting point x0.

Let us find now the maximum for the number of active
infections x2(t): determine maxf(x1, x2, x3) � x2 con-
strained by x � x(t, x0).

We set the critical point condition 〈∇f, X〉 � 0. In this
case, ∇f � (0, 1, 0). It follows the relation
βx1(t) − cx2(t) � 0. 'e convenient solution (critical point)
is x � (x1 � (c/β)≥ 0, x2 > 0, x3 ≥ 0).

'e sufficient condition Hessf(X, X)(x) + 〈∇f,

DXX〉(x)< 0 is equivalent to 〈∇f, DXX〉(x)< 0 or
− β2x1x2 + (βx1 − c)2 < 0.

Theorem 4. Suppose that on an evolution field line there
exists a point x satisfying

β2

c2 − 1􏼠 􏼡

2

<
β3

c
3x

2
. (28)

'en, the number of active infections has an upper
bound at this point.

To find the minimum for the number of recoveries and
deaths x3(t), we use the problem: determine
minf(x1, x2, x3) � x3 constrained by x � x(t, x0).

Since the function x3(t) is increasing, the minimum is
reached at the starting point x0.

Let us show that we do not have constrained critical
points that produce an extremum. We set the critical point
condition 〈∇f, X〉 � 0. In this case, ∇f � (0, 0, 1). It follows
the relation cx2(t) � 0. We have no convenient solution
(critical point) since x2 � 0 leads to an equilibrium point of
the dynamical system.

On the subset x1 ≥ (c/β), the function x3(t) is convex.
Indeed, we have €x3(t) � c(βx1(t) − c)x2(t).

Proposition 2. Be minimum number of recoveries and
deaths is reached at the starting point x0.

4. Dual Description of Disease Evolution

A vector field determines a flow (collinearity condition) and
a Pfaff equation (orthogonality condition) [9]. By duality, the
nonlinear ODEs in infectious disease flow are transformed
into an infectious disease Pfaff equation

ω � − βSIdS +(βS − c)IdI + cIdR � 0. (29)
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Since ω∧dω � βcI2dS∧dI∧dR, this Pfaff equation is
noncompletely integrable (it represents a nonholonomic
surface, i.e., a collection of integral curves). 'e integral
curves are orthogonal to infectious disease field lines. Since
any two points in R3

+ are joined by an integral curve of this
Pfaff equation, the dual evolution of infectious disease shows
that all parts of the world will be infected.

Simplifying by I, we obtain an equivalent infectious
disease Pfaff equation

βSdS − (βS − c)dI − cdR � 0. (30)

'e normal vector field to this distribution is
N � (βS, − (βS − c), − c). Two independent vector fields
tangent to the distribution are

X �
z

zS
+
βS

c

z

zR
,

Y �
z

zI
−

βS − c

c
􏼠 􏼡

z

zR
.

(31)

It follows

[X, Y] � Z � −
β
c

z

zR
,

[X, Z] � 0,

[Y, Z] � 0,

(32)

and hence the vector fields X, Y, Z determine a Carnot group
(in a future paper we shall study the infectious disease system
like a Carnot group).

Proposition 3. For t ∈ [0, b], one has

βS
2
(b) + 2cR(b)≥ βS

2
(0) + 2cR(0). (33)

Proof. For t ∈ [0, b], we consider the curve
c(t) � S(t), I(t), R(t). Integrating the Pfaff form and
selecting I(t) in a convenient way, it follows

β
2

S
2
(b) − S

2
(0)􏼐 􏼑 + c(R(b) − R(0)) � 􏽚

c(t)
(βS − c)dI � 􏽚

b

0
βS(t) − c _I(t)dt

� 􏽚
b

0
βS(t) − c

2
I(t)dt≥ 0.

(34)

□

4.1. Log-Optimal and Rapid Path. To find bounds of sig-
nificant functions for disease distribution, we can use the
technique of optimization of an objective function with
nonholonomic constraints [11, 12]. One of these functions is
the “volume” (SIR product) of disease states.

To find bounds for the function g(S, I, R) � ln|SIR|

(logarithm of “volume”), we use the problem “determine
maxg(S, I, R) constrained by the Pfaff equation of
evolution.”

'e critical point condition is

η �
dS

S
+
dI

I
+
dR

R
+ λ(− βSIdS +(βSI − cI)dI + cIdR) ≡ 0.

(35)
It follows

λ(βSI) �
1
S
,

λ(βSI − cI) � −
1
I
,

λ(cI) � −
1
R

,

(36)

or

λ �
1

S
2
I

� −
1

(βS − c)I
2 � −

1
cRI

. (37)

Consequently, the critical point set is described by

(βS − c)I � S
2
,

S
2

� cR,

S + I + R � Ptotal,

(38)

that is,

S �
1
2

βI +

����������

β2I − 4c􏼐 􏼑I

􏽱

􏼒 􏼓,

R �
β
c

S − 1􏼠 􏼡I,

S + I + R � Ptotal,

(39)

subject to the condition β2I − 4c≥ 0. 'is algebraic system
has a solution since the curve\

S �
1
2

βI +

����������

β2I − 4c􏼐 􏼑I

􏽱

􏼒 􏼓,

I � I,

R �
β
c

S − 1􏼠 􏼡I,

(40)

is transversal to the plane S + I + R � Ptotal. Indeed, the
tangent vector to the curve has the components

8 Complexity



T:
zS

zI
�
1
2

β +
β2I − 2c

����������
β2I − 4c􏼐 􏼑I

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

zI

zI
� 1,

zR

zI
�
β
c

S − 1

(41)

the normal vector to the plane has the components
N � (1, 1, 1), and the scalar product 〈T, N〉 is different from
zero.

5. Epidemic Wind

'e geometric data of the world [9, 10] change the epidemic
flow into an epidemic wind. 'is is a new idea that we are
adding to the spread of infections.

So far, predictive mathematical models for epidemics
were treated as flows. Now, we add a more complex idea,
namely, to look at the evolution of an epidemic as a wind
created ad hoc by the epidemic flow and the “geometry of the
world.” 'ese are fundamental to understand the course of
the epidemics and to plan effective control strategies for
answering the question: how can we explain an exponen-
tially growing number of patients all over the world who
were diagnosed with COVID-19?

'e time has come for us to treat the epidemics like
winds (geometric dynamics and geodesic motion in a gy-
roscopic field of forces) [9, 10], producing chaotic dynamics.
'e geometric dynamics is generated by primordial data:
flow and geometry of the space.

'e infectious disease autonomous flow on R3
+ is

_S(t) � − βS(t)I(t),

_I(t) � (βS(t) − c)I(t),

_R(t) � cI(t).

(42)

On the Riemannian manifold (R3
+, δij), the flow and the

metric determine the least squares autonomous Lagrangian

2L � ( _S(t) + βS(t)I(t))
2

+( _I(t) − (βS(t) − c)I(t))
2

+( _R(t) − cI(t))
2
.

(43)

We attach an integral action

C(S(·), I(·), R(·)) � 􏽚
t1

t0

L(S(t), I(t), R(t), _S(t), _I(t), _R(t))dt.

(44)

A geometric dynamics [9, 10] appears, described by the
Euler-Lagrange ODEs

zL

zS
−
d
dt

zL

z _S
� 0,

zL

zI
−
d
dt

zL

z _I
� 0,

zL

zR
−
d
dt

zL

z _R
� 0.

(45)

Explicitly, the epidemic wind is described by the second-
order differential system

βI(t)( _S(t) − _I(t)) + 2β(S(t) − c)I(t)
2

−
d
dt

( _S(t) + βS(t)I(t)) � 0,

βS(t)( _S(t) − _I(t)) + c _I(t) − c _R(t) + 2β2S(t)
2
I(t)

2
− βcS(t)I(t) + c

2
I(t)

−
d
dt

( _I(t) − βS(t)I(t) + cI(t)) � 0,

d
dt

( _R(t) − cI(t)) � 0.

(46)

Adding all three ODEs, we obtain an ODE whose last
term is − (€S(t) + €I(t) + €R(t)). Furthermore, the last second-
order ODE is equivalent to the first-order ODE

_R(t) − cI(t) � c1. (47)

Theorem 5. Be geometric dynamics (wind) represented by
previous second-order ODEs is decomposable into the infec-
tious disease flow and transversal to flow spiral trajectories.

Proof. We give the proof in generic coordinates. 'e subset
of solutions corresponding to the initial values
x(t0) � x0, _x(t0) � X(x(t0)) are solutions reducible to so-
lutions of the infectious disease flow. 'e subset of solutions
corresponding to the initial values x(t0) � x0, _x

(t0) � W≠ λX(x(t0)), λ> 0, are transversal to the solutions
of the infectious disease flow. 'e converse is also true.

Based on the existence and uniqueness theorem, each
solution x � x(t) of any second-order prolongation of the
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first-order ODE system has the property: _x(t0) � X(x(t0))

implies _x(t) � X(x(t)), ∀t ∈ I.
In generic coordinates, the attached Hamiltonian to the

wind is

H �
1
2

〈 _x − X(x), _x + X(x)〉 �
1
2
‖ _x‖

2
− f(x), (48)

where f(x) � (1/2)‖X(x)‖2 (kinetic energy). 'e maximal
solutions of infectious disease wind are split into three
categories of curves: (1) curves characterized by H � 0 (flow
trajectories); (2) curves satisfying H � const> 0; (3) curves
characterized by H � const< 0. 'e transversal curves in
category (2) can have the images throughout, but the curves
in category (3) have the images only in the set f(x)≥ − H.

'e solutions of infectious disease wind are highly
sensitive to initial conditions. In other words, small dif-
ferences in initial conditions, such as those due to rounding
errors in numerical computation, can yield widely diverging
outcomes for infectious disease wind, rendering long-term
prediction of its behavior impossible in general. A single
field line and an infinity of transverse curves start from a
fixed point.

In a flow, the starting point is fixed, but the endpoint is
the one that results. In geometric dynamics, the initial
conditions are in the form of point-direction point-endpoint
'e solution we find optimizes the objective function of the
smallest squares (the best approximation of flow in the sense
of a convenient Riemannian metric). Small disturbances of
the initial direction or of the endpoint can produce dramatic
changes in the solution, which highlight the complexity of
the problem. □

Remark 3. In our sense, any wind is strongly dependent on
the Riemannian manifold M, gij(x). 'e best selection of

the Riemannian manifold adapted to infectious disease wind
is after constant curvature: (1) curvature 0, Euclidean
manifoldR3, gij(x) � δij, used in the previous explanations;
(2) curvature − 1, hyperbolic manifold
(H3, gij(x) � (δij/x32)); (2) curvature 1, sphere
S3 � x � (x1, x2, x3, x4) ∈ R4|‖x‖2 � 1􏽮 􏽯, with the metric
induced by the Euclidean metric on R4.

6. Stochastic Connectivity

Stochastic differential equations are widely used to model
epidemic infections, molecular dynamics, biophysical dy-
namics, climate dynamics, engineering systems, and so on,
under random fluctuations.

Let us write the flow in Pfaff terminology and let us
replace the parameter β by a control u(t). We use
Wa(t), t≥ 0, a � 1, 2, 3, as independent Wiener processes.
Starting from the (nonlinear control system) infectious
disease Cauchy problem

dS(t) � − u(t)S(t)I(t)dt,

dI(t) � (u(t)S(t) − c)I(t)dt,

dR(t) � cI(t)dt,

S(0) � S0,

I(0) � I0,

R(0) � R0,

S0 + I0 + R0 � Ptotal,

(49)

on R3
+, a stochastic perturbation is defined by stochastic

differential equation system,

dS(t) � − u(t)S(t)I(t)dt + σ1a(t, S(t), I(t), R(t), u(t))dW
a
(t),

dI(t) � (u(t)S(t) − c)I(t)dt + σ2a(t, S(t), I(t), R(t), u(t))dW
a
(t),

dR(t) � cI(t)dt − σ3a(t, S(t), I(t), R(t), u(t))dW
a
(t),

S(0) � S0,

I(0) � I0,

R(0) � R0,

S0 + I0 + R0 � Ptotal,

(50)

where the functions u(t)S(t)I(t), u(t)S(t)

I(t) − cI(t), cI(t) are drift coefficients and
σi

a(t, S(t), I(t), R(t), u(t)), i � 1, 2, 3; a � 1, . . . , d, are dif-
fusion coefficients.

If S0 + I0 + R0 � Ptotal and σ1a + σ2a � σ3a, then the sto-
chastic perturbation satisfies dS(t) + dI(t) + dR(t) � 0; that
is, we have again a first integral S(t) + I(t) + R(t) � Ptotal.

Suppose that the control u(t) is piecewise smooth and
has values in a bounded and closed set U � [δ, m] ⊂ (0,∞),
where m will be selected at the end of this section by an
extremum problem, determining the optimal striking time.

'e set of such controls, denoted by U, is called the set of
admissible controls.

We explore how stochastic noise can be used to find
connectivity properties generated by the underlying deter-
ministic infectious disease dynamics and randomness.

Definition 1. A strong solution c(t) � (S(t), I(t), R(t)) of
this stochastic differential system with the initial condition
(S0, I0, R0) is an adapted continuous process, such that, for
all t≥ 0, it satisfies the stochastic integral system
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S(t) − S0 � − 􏽚
t

0
u(s)S(s)I(s)ds + 􏽚

t

0
σ1a(s, S(s), I(s), R(s), u(s))dW

a
(s),

I(t) − I0 � 􏽚
t

0
u(s)S(s) − cI(s)ds + 􏽚

t

0
σ2a(s, S(s), I(s), R(s), u(s))dW

a
(s),

R(t) − R0 � 􏽚
t

0
cI(s)ds − 􏽚

t

0
σ3a(s, S(s), I(s), R(s), u(s))dW

a
(s), a.s.

(51)

However, there is a number of subtle points involved:
first, the existence of the integrals requires some degree of
regularity on c(t) � (S(t), I(t), R(t)) and on the functions
u(t), σ � (σi

a) (matrix); in particular, it must be the case that,
for all t≥ 0, with probability one, 􏽒

t

0 ‖σ(s)‖2ds<∞.
Second, the solution is required to exist for all t<∞with

probability one.
Properties of Itô integral are that, for all G, H ∈ L2(0, T),

we have

E 􏽚
T

0
GdW􏼠 􏼡 � 0,

E 􏽚
T

0
GdW􏼠 􏼡

2
⎛⎝ ⎞⎠ � E 􏽚

T

0
G
2dt􏼠 􏼡,

E 􏽚
T

0
GdW􏼠 􏼡 􏽚

T

0
HdW􏼠 􏼡􏼠 􏼡 � E 􏽚

T

0
GHdt􏼠 􏼡.

(52)

Definition 2. A weak solution c(t) � (S(t), I(t), R(t)) of the
SDE with the initial condition (S0, I0, R0) is a continuous
stochastic process defined on some probability space

(Ω,F, P), such that, for some Wiener processes Wa(t) and
some admissible filtrationF, the process c(t) is adapted and
satisfies the associated stochastic integral system.

'e drift coefficients are uniformly Lipschitz functions.
'e basic result, due to Itô, is that, for uniformly Lipschitz
functions σ, the SDE has strong solutions and that, for each
initial value c(0) � (S(0), I(0), R(0)), the solution is unique.

Without loss of generality, we consider that the am-
plitudes of error are constants; that is,
σi

a(t, S(t), I(t), R(t), u(t)) � σi
a.

Definition 3. Let u(t) � u(S(t), I(t), R(t)) be a feedback
bounded control. A stochastic process
c(t) � (S(t), I(t), R(t)), which satisfies the SDE system, is
called an admissible stochastic process.

Theorem 6. Let P � (SP, IP, RP) and Q � (SQ, IQ, RQ) be
two points in the set [0, 1]3 ⊂ R3

+. Denote D(Q, r) as the
Euclidean sphere of radius r, centered at Q. Ben, for any ε> 0
and r> 0, there exists a striking time t<∞ and an admissible
stochastic process c(t), satisfying the boundary conditions

(S(0), I(0), R(0)) � SP, IP, RP( 􏼁, (E[S(t)],E[I(t)],E[R(t)]) � SQ, IQ, RQ􏼐 􏼑, (53)

such that

P(c(t) ∈ D(Q, r))≥ 1 − ε. (54)

Proof. We start with the nonnegative random variable
‖c(t) − Q‖2. Markov inequality shows that

P ‖c(t) − Q‖
2 ≥ r

2
􏼐 􏼑≤

1
r
2 E ‖c(t) − Q‖

2
􏽨 􏽩, (55)

or, equivalently,

P ‖c(t) − Q‖
2 ≤ r

2
􏼐 􏼑≥ 1 −

1
r
2 E ‖c(t) − Q‖

2
􏽨 􏽩. (56)

'e stochastic integral variant of the previous SDE
system is

S(t) � − 􏽚
t

0
u(s)S(s)I(s)ds + σ1aW

a
(t) + SP,

I(t) � 􏽚
t

0
(u(s)S(s) − c) I(s)ds + σ2aW

a
(t) + IP,

R(t) � 􏽚
t

0
cI(s)ds − σ3aW

a
(t) + RP.

(57)

It is well-known that the expectation E has the properties

E W
a
(t)􏼂 􏼃 � 0,

E W
a
(t)( 􏼁

2
􏽨 􏽩 � t

E W
a
(t)W

b
(t)􏽨 􏽩 � 0, a≠ b.

(58)

If two random variables X, Y: Ω⟶ R are independent,
then E[XY] � E[X]E[Y], provided that E[|X|]<∞ and
E[|Y|]<∞.

'e boundary conditions produce
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E[S(t)] � SQ⇒ 􏽚
t

0
E[− u(s)S(s)I(s)]ds + SP � SQ,

E[I(t)] � IQ⇒ 􏽚
t

0
E[(u(s)S(s) − c) I(s)]ds + IP � IQ,

E[R(t)] � RQ⇒ 􏽚
t

0
E[cI(s)]ds + RP � RQ.

(59)

Moreover, SP + IP + RP � 1 implies SQ + IQ + RQ � 1.
We use the advantages of Itô integral and the inde-

pendence of Wiener processes Wa(t). We find

E ‖c(t) − Q‖
2

􏽨 􏽩 � E S(t) − SQ􏼐 􏼑
2

􏼔 􏼕 + E I(t) − IQ􏼐 􏼑
2

􏼔 􏼕 + E R(t) − RQ􏼐 􏼑
2

􏼔 􏼕

� E − 􏽚
t

0
u(s)S(s)I(s)ds + σ1aW

a
(t) + SP − SQ􏼠 􏼡

2
⎡⎣ ⎤⎦

+ E 􏽚
t

0
(u(s)S(s) − c)I(s)ds + σ2aW

a
(t) + IP − IQ􏼠 􏼡

2
⎡⎣ ⎤⎦

+ E 􏽚
t

0
cI(s)ds − σ3aW

a
(t) + RP − RQ􏼠 􏼡

2
⎡⎣ ⎤⎦

� E 􏽚
t

0
u(s)S(s)I(s)ds 􏽚

t

0
u(s)S(s)I(s)u(s)ds + σ1aW

a
(t)􏼐 􏼑

2
+ SP − SQ􏼐 􏼑

2
􏼢

− 2 􏽚
t

0
u(s)S(s)I(s)ds􏼠 􏼡σ1aW

a
(t) − 2 􏽚

t

0
u(s)S(s)I(s)ds􏼠 􏼡 SP − SQ􏼐 􏼑 + 2σ1aW

a
(t) SP − SQ􏼐 􏼑􏼣

+ E􏽚
t

0
(u(s)S(s) − c)I(s)ds 􏽚

t

0
(u(s)S(s) − c)I(s)ds

+ σ2aW
a
(t)􏼐 􏼑

2
+ IP − IQ􏼐 􏼑

2
+ 2 􏽚

t

0
(u(s)S(s) − c)I(s)ds􏼠 􏼡σ2aW

a
(t)

+ 2 􏽚
t

0
(u(s)S(s) − c)I(s)ds􏼠 􏼡 IP − IQ􏼐 􏼑 + 2σ2aW

a
(t) IP − IQ􏼐 􏼑

+ E 􏽚
t

0
cI(s)ds 􏽚

t

0
cI(s)ds + σ3aW

a
(t)􏼐 􏼑

2
+ RP − RQ􏼐 􏼑

2
􏼢

− 2 􏽚
t

0
cI(s)ds􏼠 􏼡σ3aW

a
(t) − 2 􏽚

t

0
cI(s)ds􏼠 􏼡 RP − RQ􏼐 􏼑 + 2σ3aW

a
(t) RP − RQ􏼐 􏼑􏼣.

(60)

'is last expression is reduced to

E 􏽚
t

0
u(s)S(s)I(s)ds 􏽚

t

0
u(s)S(s)I(s)ds􏼢 􏼣 + t 􏽘

a

σ1aσ
1
a − SP − SQ􏼐 􏼑

2

+ E 􏽚
t

0
(u(s)S(s) − c)I(s)ds 􏽚

t

0
(u(s)S(s) − c)I(s)ds􏼢 􏼣 + t 􏽘

a

σ2aσ
2
a − IP − IQ􏼐 􏼑

2

+ E 􏽚
t

0
cI(s)ds 􏽚

t

0
cI(s)ds􏼢 􏼣 + t 􏽘

a

σ3aσ
3
a − RP − RQ􏼐 􏼑

2

� E 􏽚
t

0
u(s)S(s)I(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦ + E 􏽚

t

0
(u(s)S(s) − c)I(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦

+ E 􏽚
t

0
cI(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦ + tδij 􏽘

a

σi
aσ

j
a − ‖P − Q‖

2
.

(61)
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On the other hand, the Cauchy-Schwarz inequalities

􏽚
t

0
u(s)S(s)I(s)ds􏼠 􏼡

2

≤ t 􏽚
t

0
(u(s)S(s)I(s))

2ds,

􏽚
t

0
(u(s)S(s) − c)I(s)ds􏼠 􏼡

2

≤ t 􏽚
t

0
(u(s)S(s) − c)

2
I
2
(s)ds,

􏽚
t

0
cI(s)ds􏼠 􏼡

2

≤ t 􏽚
t

0
(cI(s))

2ds,

(62)

the properties of expectation, and the condition u(t)≤m

produce the estimations

E 􏽚
t

0
u(s)S(s)I(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦≤m

2
S
2
QI

2
Qt

2
,

E 􏽚
t

0
(u(s)S(s) − c)I(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦≤ mSQ − c􏼐 􏼑

2
I
2
Qt

2
,

E 􏽚
t

0
cI(s)ds􏼠 􏼡

2
⎡⎣ ⎤⎦≤ c

2
I
2
Qt

2
.

(63)

Denoting

k
2
1 � m

2
S
2
QI

2
Q,

k
2
2 � mSQ − c􏼐 􏼑

2
I
2
Q,

k
2
3 � c

2
I
2
Q,

‖σ‖
2

� δij 􏽘
a

σi
aσ

j
a,

(64)

we find

E ‖c(t) − Q‖
2

􏽨 􏽩≤ k
2
1 + k

2
2 + k

2
3􏼐 􏼑t

2
+‖σ‖

2
t − ‖P − Q‖

2
.

(65)

For any ϵ> 0 and r> 0, the equation

k
2
1 + k

2
2 + k

2
3􏼐 􏼑t

2
+‖σ‖

2
t − ‖P − Q‖

2
− εr2 � 0, (66)

has a strictly positive solution

t+ �
− ‖σ‖

2
+

��������������������

‖σ‖
4

+ 4 k
2
1 + k

2
2 + k

2
3􏼐 􏼑Λ2

􏽱

2 k
2
1 + k

2
2 + k

2
3􏼐 􏼑

, (67)

where Λ2 � ‖P − Q‖2 + εr2.
Denote ‖σ‖ � c, k2

1 � m2a2, and k2
2 � (mS − g)2b2. Using

Maple routines, we find t+e � extremamt+:

(i) extrema-
((− c2 + sqrt(c4 + (4∗ (m2 ∗ a2 + (S∗m − g)2

∗ b2 + k32))∗A))/(2∗ (m2 ∗ a2 +

(S∗m − g)2 ∗ b2 + k32)), , m)

Answer:

1
2

− c
2

+

�����������������������������������������������������

S
2
b
2
c
4

+ 4AS
2
b
2
k32 + 4Aa

2
b
2
g
2

+ a
2
c
4

+ 4Aa
2
k32􏼐 􏼑/ S

2
b
2

+ a
2

􏼐 􏼑􏼐 􏼑

􏽱

􏼒 􏼓 S
2
b
2

+ a
2

􏼐 􏼑

S
2
b
2
k32 + a

2
b
2
g
2

+ a
2
k32

. (68)

For this optimal solution t+e, we can write

E c t+e( 􏼁 − Q
����

����
2

􏼔 􏼕≤ εr2⇔1 −
1
r
2 E c t+e( 􏼁 − Q

����
����
2

􏼔 􏼕≥ 1 − ε,

(69)

that is, P(c(t+e) ∈ D(Q, r))≥ 1 − ε. □

'e previous theorem confirms that almost sure any two
points in the “world” are joined by a stochastic curve. So,
contamination can get anywhere from anywhere.

7. Conclusions

'e most difficult thing for an epidemiological model is to
predict human behavior. Infected population size estimation
is a common problem in any epidemic analysis and it is the

most important aspect for planning appropriate care and
prevention policies. We underline that a model, even
complex, is a simplification of reality, since a lot of other
variables are still not completely known. An interactive
approach with Maple can clarify some of these issues.

'e flow models and even differential inclusion models
are varied, often confusing to interpret, and are not crystal
balls, especially because the ideal data are not yet available.
But they are a large part of what government leaders use to
make decisions, influencing how resources are allocated to
health care facilities and how social distancing orders are
issued to the public.

'e three points of view in this paper, infectious disease
flow, infectious disease wind, and stochastic connectivity,
can input the biology of the virus and give positive answers
to the following questions: how does it spread, how quickly
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does it infect, how quickly does it lead to symptoms, and how
quickly does it replicate to a level where it can jump from
person to person?

'e infectious disease wind is determined by the flow
and by the geometry of space (created by nature or by human
activities, conscious or not). All (the flow, the geometry, and
the least squares technique) generate gyroscopic forces that
lead to spiraling (uncontrolled) evolutions. 'e Riemannian
structure can generate also chaos in geometric dynamics
(sensitive dependence on initial conditions, and three or
more dimensions). 'e experts in the fields of surveillance,
epidemiology, and prevention of communicable disease
spread, infection preventionists, must understand that in-
fectious diseases modeled as wind and stochastic modeling
of geometric structures are responsible for reading the in-
fectious disease disasters.
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In this study, one method of using antennas based on fractals to cover few kinds of public protection and disaster relief (PPDR)
communications was presented. Dedicated antenna forms, necessary for antenna design by 5G implementation, were enhanced
to suit the requirements of specific applications. Employing fractal-shaped antennas have allowed us to accomplish all these
actions, which request compact, conformal, and broadband high performance devices. Antennas derived from Koch’s curve
fractals are studied. In order to implement PPDR communications in 5G technology, frequency bandwidths of importance
have been carefully selected and properly included in the antenna developments under MATLAB environment. Important
information necessary for antenna designers, such as 360 degrees directivity at various frequencies, the impedance (resistance
and reactance) along the bandwidth of interest, as well as voltage standing wave ratio (VSWR) along the bandwidth of interest
for dipole, one-iteration, and two-iteration Koch’s curves, respectively, have been obtained. -e characteristic of directivity at
selected frequencies is also highlighted. In order to maximize antenna parameters, this study has successfully proposed using
fractal antennas, objects that use self-similarity property of fractals for optimum operation in several frequency ranges. For the
studied antennas, we have obtained the following results regarding the maximum gains in dBi (which is the unit of the ratio
between the gains of the antenna compared to the gain of an isotropic antenna). For the dipole antennas, the gains are 2.73 dBi
and 4.76 dBi at 460MHz and 770MHz, respectively. -e gains for one-iteration fractal Koch antenna are 6.91 dBi and 4.51 dBi
at 460MHz and 770MHz, respectively, and finally, for two-iteration fractal Koch antenna, the gains are 4.91 dBi and 3.28 dBi at
460MHz and 770MHz, respectively. Moreover, the impedance along the bandwidth is approximately 360 Ohms for two-
iteration fractal Koch antenna, 180 Ohms for one-iteration fractal Koch antenna, and 140 Ohms for dipole
antenna, respectively.

1. Introduction

Today, the modern society needs more and more infor-
mation. Apparently, individual customers, also the gov-
ernment, have a fabulous appetite for information
repositories. Whether we talk about access to entertainment

information or to PPDR (public protection and disaster
relief ) information, links to information sources are not
allowed, from the customer’s point of view, to have delays or
inability to access them. At this moment, each of us has a
smart communications terminal through which we access
applications to facilitate our daily activities.
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In this context, being an important part of the trans-
ceiver, the antennas must have a suitable design to function
accordingly.

-e IT&C environment has begun some time ago to
develop programs for most of the actions that a person can
take daily. -us, the possibility of parallelization of activities
was born. Moreover, social media applications have devel-
oped impressively over the last decade due to the fact that
they have allowed people to be interconnected and to share
with each other various information. Profile studies have
shown that a user of 4G technology performs double in-
formation traffic compared to a user of another type of
communication [1].

In the state of the art, a comparison between the results
obtained by us in this study and the other authors from the
scientific specialized literature is welcomed. -us, size,
shape, and gain are generally better or closer than [2, 3], as
also highlighted in more depth at a thorough literature
reviewmade on this occasion in the next chapters, references
cited in text where the exact comparisons are being made.
Our values can be found in the results chapter.

Nowadays, mobile operators have developed infra-
structures that allow for the sudden development of the
IT&C environment. For this reason, customers are showing
today an increasing need for denser networks, greater ca-
pacity for high mobility, ubiquitous coverage, low latency,
massive number of affiliated devices, and low energy con-
sumption, indices that begin to be decisive when it comes to
value for money.

-us, in order to optimize the production costs, in this
document, it is proposed to design a fractal-shaped antenna
that can be used for communications in different frequency
bands.

Geometric shapes such as Sierpinski’s triangle, Koch’s
curve, or Cantor’s set can easily define antennas or antenna
networks that facilitate communications across multiple
frequency ranges if properly sized.

-e study describes the objectives of 5G communica-
tions, the principles of fractal geometry, and how these ir-
regular shapes can help the future of communications.

-e work is organized in six chapters. In the intro-
duction, the motivation for developing fractal-shaped an-
tenna in the telecommunication domain is given.-e second
chapter talks about the emerging need for 5G technology
and all the strict requirements that must be followed in order
to allow for a multitude of connected devices to interact in a
fast and reliable way. Furthermore, the third chapter in-
troduces the fractal theory and gives few necessary equa-
tions. -e fourth chapter is devoted to fractals antennas,
from description of Koch’s curve with governing equations,
to enumerating the advantages of fractal-shaped antennas
and then moving to fractal antennas design.

In the fifth chapter, the results obtained using our de-
veloped MATLAB programs are presented, in specific fre-
quency bandwidth carefully chosen in order to implement
PPDR communications in 5G technology. -erefore, the
reader is given an overview of important information
necessary for antenna designers, such as 360 degrees di-
rectivity at various frequencies, the impedance along the

bandwidth of interest, as well as voltage standing wave ratio
(VSWR) along the bandwidth of interest for dipole, one-
iteration, and two-iteration Koch’s curves, respectively. -e
characteristic of directivity at selected frequencies is also
highlighted. -e study concludes in the sixth chapter.

2. The Emerging Need for 5G

One desired issue to implement in 5G would be beam-
forming, the method that should point the end user
equipment. Obviously, the cost for 5G infrastructure would
increase because of the huge number of connected devices,
fact which is contrary to actual generation of communica-
tions, as today, networks use little power to work.

Suddenly, massive MIMO concept became a backup
solution to increase the bandwidth but not for a long time
because of the high probability of occurrence of interference.
So, a good antenna design is needed to avoid this
phenomenon.

Microseconds latencies represent one major challenge
for 5G. -is facility emerged from the rush in which the
society is at the moment. Some contemporary processors
offer possibilities to achieve this objective, but the laws of
physics are the ones that limit the transfers. So, the sender
and the receiver should be close enough to accomplish this,
and the topology should include a big number of hardware
devices.

As for the bandwidths to be used, few intervals are
suggested:

(i) 452.5–457.5MHz
(ii) 462.5–467.5MHz
(iii) 753–758MHz
(iv) 788–791MHz

-e use of each frequency range implies the emergence
of specific behaviors regarding the propagation of electro-
magnetic waves. Some of the most important phenomena to
study are reflection and scattering, free space path loss,
diffraction, or material penetration [1].

In order to offer communications for a large number of
customers, it is recommended to have intelligent receivers,
able to distinguish between signals intended for them, for
others or noises. -is would become a challenge for DSP or
SDR programmers to develop the optimum software.

5G technology should be adopted even by the PPDR
communications in order to improve their response time in
case of an emergency [4].

Combined with fractal design techniques, the new
technology should cover almost all the needs of the clients
from PPDR area.

3. Fractals Theory

In 1977, the Swedish mathematician of French origins,
Benoit Mandelbrot (1924–2010), published “Fractal Ge-
ometry of Nature,” in order to offer a new way of describing
the shape of objects such as coastlines and clouds [5].
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Self-similarity is the most important property of fractals,
and it implies that the fractal object must have an identical
look at each iteration (most of the natural objects are self-
similar). Due to the fact that a fractal object cannot be an
input for an Euclidean formula, the fractal dimension must
be introduced. -is notion has a rational value, and it is
strictly bigger than topological dimension.

According to Hausdorff, the fractal dimension is pro-
portional to the minimum number of spheres, of given
radius required to cover the measured object. Today, cubes
are more reliable to use image processing [6, 7].

For a curve of length 1, N(s)� 1, cubes of side s are
needed. Following this example, for an area N(s)� 1/s2,
cubes of side s are required, and for a volume, N(s)� 1/s3,
cubes of side s are required.

Considering d, s from R, and N(s)� f(d)∗sd, a set of
functions, such that N(s) is the number of spheres (balls) of s
diameter (cubes of s side), is needed to cover the given set X.
-en, there is a unique real value d�DH, called the
Hausdorff dimension of X, so that [7, 8]

d>DH ⇒ N(s)⟶ 0. (1)

-us, the Hausdorff dimension is described by

N(s)∗ sDH. (2)

-e size of an object describes how it occupies space and
how it can be measured (quantitatively). It is expressed in a
rational number. We can easily calculate the geometric size
of an object [9]. Generally, it is calculated using the
Hausdorff dimension DH.

It starts from the formula written above, more precisely

N(s) � f(d)
∗
s

DH , (3)

where N(s) is the number of cubes (or sphere), s is the length
of cube’s side (or spheres diameter), and DH is the object’s
geometric dimension, respectively.

Fractal dimension formula: allow N(X, s) to indicate the
minimum series of identical figures (balls, spheres let us say)
of radius s, necessary to include in the set X. -en, the
theoretical fractal dimension is exactly given as

d(X) � lim
s⟶0

sup
logN(X, s)

log(1/s)
. (4)

Observation 1: the coherent definition of fractal di-
mension we demonstrate here would essentially be
proven if the superior limit in (4) could be superseded
by a straightforward limit. No, this is not an extravagant
exigency, and the “lim sup” solicitation is necessary, as
there are simple sets for which the limit as s⟶0 is
nonexistent [8].
In concluding this topic, we specify that there are some
very good methods for fast calculation of the fractal
dimension, among which we list the one called the box-
counting method.
Observation 2: on the engineering expectation side, the
practical box-counting dimension could replace the

theoretical Hausdorff–Besicovitch dimension, being
given by the box-counting method, facile to calculate.
However, the aspect of fractal dimension calculus being
nonetheless beyond the purpose of the current study,
we will stop here with the details related to this topic.
Fractals used for antenna design are artificial ones like
Minkowski’s loop, Koch’s curve, Sierpinski’s carpet,
and Sierpinski’s gasket

4. Fractals Antennas

As we can affirm now, one of the advantages of fractal object
is that it has an infinite measure of length, fitting in a finite
measure of volume. Like it is known, radiation frequency is
distinct for each individual electromagnetic transmitter and
depends on electrical length of geometric structure. -at is
why, it was considered that utilizing the property of fractal
geometry, we may increase the electrical length of an an-
tenna (in direct connection with the wavelength, respec-
tively), maintaining the identical antenna volume. We rely
on mathematical observation at our disposal, namely, that
we have many possibilities available to attempt as a design of
same fractal antenna [10].

4.1. Fractal Geometry. Certain fractals portray replica of the
entire structure at reduced scales. -is property is mathe-
matically named self-similarity, and it is helpful to project
multiband antennas. Koch’s snowflake is one of the par-
ticularly familiar self-similar fractals. Some other fractals fill
the space, as is the case of space-packing curves, which
makes them attractive in the design of little antennas. Koch’s
curve is one example of a space-packing curve, which has
been utilized to build little antennas [11].

4.1.1. Koch’s Curve. -e initiator or, more precisely, the
initial curve is a straight line. Specifically, in this case, the law
of transformation requires that the straight line be divided
into three equal parts that the central part be removed and in
its place, an equilateral triangle without a base be placed
(Figure 1).

At each iteration, each independent right is considered,
and the transformation law is applied to it. In this case, the 4
segments each become a “new” initiator, and the support of 4

Figure 1: Koch curve construction based on Koch generator,
orders 0, 1, and 2.
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“images” shrunk and is placed according to the same rule.
Let us not forget that our mind must take the essence of the
process and continue it to infinity because only after infinity
of many steps, we obtain what is called the Koch fractal. -is
curve is of infinite length and has its own dimension between
1 and 2. It is a “strange” geometric object for the thinking of a
person, unused to work with abstract things. It is a con-
tinuous curve, indivisible at no point, which exceeds the
“nature” of a line, but does not reach the quality of being
surface [11].

-e proper fractal dimension: the characteristic of this
Koch curve is fractal dimension: df� ln(4)/ln(3)� 1.26185. . ..

A more concrete explanation is that to construct this
curve, one starts by drawing a straight line (the blue segment
in the figure). -en, divide this segment into three equal
parts, and the middle segment is replaced by the two sides of
an equilateral triangle of the same length as the length of the
segment that is removed (the two red segments in the middle
of the figure) [9]. Now repeat, take each of the four resulting
segments, divide them into 3 equal parts, and replace each of
the middle segments in two sides of an equilateral triangle
(the red segments at the bottom of the figure).

In Figure 1, the Koch curve construction based on a
specific generator is presented, namely, orders 0, 1, and 2.

-e Koch curve is the limit of a curve obtained by
applying this construction an infinite number of times. As
proof, this construction even produces a “limit” that is the
current curve, for example, the continuous image of a
compact interval.

-e first iteration for the Koch curve consists the fact
that 4 copies of the original right segment are taken, each
multiplied by r� 1/3. Two segments must be rotated by 60°,
one clockwise and one in reverse.

In Figure 2, the Koch curve construction, based on a
specific generator, is presented. Obviously, the length ob-
tained is 4/3.

Niels Fabian Helge von Koch (1870–1924) constructed this
curve in 1904 as an example of a nondifferentiable curve, which
is a continuous curve that has no tangents at any point. Karl
Weierstrass demonstrated the first existence of such a curve in
1872.-e length of the intermediate curve at the nth iteration of
the construction is (4/3)̂n, where n� 0 denotes the original
length of the right segment. However, the length of the Koch
curve is infinite. Moreover, the length of the curve between any
2 points of the curve is also infinite, with a copy of the Koch
curve between any 2 of its points [12, 13].

4.2. Advantages of Fractal-Shaped Antennas. -e telecom-
munications branch considers the antennas as a separate
element of radio communications and therefore needs
special attention not only in the design phase but also in the
maintenance phase.

As the world becomes more and more dependent on
cellular devices, there has been an increasing demand in
antennas that are compact, conformal, and broadband [10].
A popular method of achieving these characteristics in an
antenna is by exploiting the property of fractals.

In order to maximize antenna’s length, this study sug-
gests using fractal antennas, objects that use self-similarity
property of fractals for optimum operation in several fre-
quency ranges.

Among the advantages of fractal-shaped antennas, we
can mention the following:

(i) Very compact emplacement (a wire can be bended
as a fractal, and so at the end of the process, on the
same surface will fit a larger length of wire)

(ii) Higher input resistance because of increase in
length or perimeter [4]

(iii) Low side-lobe levels and wide bandwidth
(iv) Capable to implement beam-forming techniques

due to fractals recursivity [10]

According to a public document from National Au-
thority forManagement and Regulation in Communications
of Romania (ANCOM) (page 49) [14], PPDR communi-
cations would use few bandwidths to specific links. So, why
do not the systems use only one antenna for all bandwidths?
-is can be the possibility to develop a self-reconfigurable
system.

4.3. Fractal Antennas Design. -e support of fractals ge-
ometry in antenna design engineering has led to a novel
recently acquainted domain like fractal-electrodynamics,
which has greatly influenced antenna theory. Traditional
antenna design has been based on Euclidean geometries, but
novel designs have come from modern fractal antenna
engineering.

Fractal antennas get the benefit of geometries that cannot
be acquired by classical Euclidean developments to provide
accurately what consumers want.

60°

60°

(1, 0)(0, 0)

Figure 2: Koch curve construction based on the generator, orders 1
and 2 and length� 4/3.
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First of the significant profit of fractal antenna is that we
can obtain more than one single resonant band. As we said
before, the fractal concept can be used to reduce antenna
dimensions, such as in the case of the Koch dipole, Koch
monopole, Koch loop, and Minkowski loop, for example.

-e relationship that describes the radiated power for a
multielement antenna is the following [13]:

E · E
∗ ∼ 􏽘

N

n�1
Ane

iϕn⎛⎝ ⎞⎠ · 􏽘

N

m�1
Ane

iϕm⎛⎝ ⎞⎠

∗

� 􏽘
n,m

AnA
∗
m( 􏼁e

i ϕn−ϕm( ),

(5)

where An defines the strength and orientation for each el-
ement, and ϕn has a connection with fractal’s elements
spatial distribution. We mention that every one of the el-
ements concurs at the calculus of the entire radiated power
density at a time-determined moment, through a vectorial
amplitude and known phase, evidently.

A difference between antenna arrays and fractal antenna
is that the order of classic antennas makes them be resonant
just along one bandwidth, and fractal’s disorder (made by
fractal’s elements) makes fractal-shaped antenna be resonant
along many bandwidths (iteration 0 can be viewed as a
classic antenna, and starting with a new iteration, a new
bandwidth can be obtained).

Several applications can be developed based on fractal-
shaped antennas due to their compact size and multiband
resonance. Applications such as radars, personal cell phones,
the ones from UWB branch, or 5G PPDR devices can benefit
such an element which can have as a starting point any
dedicated antenna (log-periodic, monopole, dipole, and
patch).

5. Results

In order to implement PPDR communications in 5G
technology, few bandwidths were suggested by ANCOM in
Romania [14]: 452.5–457.5MHz, 462.5–467.5MHz,
753–758MHz, and 788–791MHz.

5.1. Antennas Derived from Koch’s Curve Fractals. From this
point of view, we designed in MATLAB R2018b a center-fed
fractal-shaped antenna (Koch’s curve format) to observe
how well does this kind of solution fits in a 5G commu-
nication in comparison with a dipole.

By default, MATLAB generates the dipole with a length
of onemeter each side and 0.1 meters width. By adjusting the
dimensions according to the desired bandwidths, we obtain
a length of 0.75 meters each side and a width of 0.0583
meters. After making the first iteration, we observe that the
antenna should be fatten in order to obtain a wider band-
width [13]. -us, the length obtained is 0.7 meters for one
side and the width is 0.07 meters. Achieving the second
iteration, it can be observed that no fatten is needed. So, the
length would be the same, 0.7 meters for each side, and the
width would also remain 0.0583 meters.

Figure 3 presents the dipole antenna’s element, as
simulated.

In Figures 4–6, the 360 degrees directivity (for dipole,
one-iteration Koch’s curve and two-iteration Koch’s curve),
at frequency value of 460MHz and frequency value of
770MHz, are shown in detail.

-e resonant frequency can be determined using fractal
dimension by dividing c (3 · 108 m/s) to 4 multiplied by the
effective length of fractal [10].

Figures 7 and 8 display the three-dimensional radiation
pattern and phase of the dipole at 460MHz and 770MHz,
respectively, in a color-coded fashion.

It can be observed in Figure 9 that the impedance is
almost 50 Ohms along the bandwidths of interest [15].

In Figure 10, the fractal Koch antenna (iteration 1) is
represented, while further on, Figure 11 depicts the Fractal
Koch antenna (iteration 2).

In Figure 5, one-iteration fractal Koch antenna 360
degrees directivity is graphically represented for the two
frequencies of interest, 460 and 770MHz, respectively.

Figures 12 and 13 show the color-coded three-dimen-
sional representation of one-iteration fractal Koch antenna
radiation pattern and phase at 460MHz and 770MHz, re-
spectively [16, 17].

It can be observed in Figure 14 that the impedance has
zero imaginary component, so the antenna is resonant along
the bandwidths of interest.

Figures 15 and 16 show the color-coded three-dimen-
sional representation of two iterations: fractal Koch antenna
radiation pattern and phase at 460MHz and 770MHz,
respectively.

Figure 17 shows that along two of the bandwidths of
interest, the antenna might not be resonant, but it still re-
mains suitable for the two others.
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Figure 3: Dipole antenna.
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In Figures 9, 14, and 17, the impedance, measured inOhms
(on the y-axis), is graphically represented along the band of
interest versus frequency, measured in GHz [17], for the an-
tenna with dipole, with one-iteration, and with two-iteration of
Koch’s curve.-e graphics aremarked with two distinct colors,
resistance (blue) and reactance (red), to distinguish them.

Values for impedance, from Figures 9, 14, and 17, show
that the dipole and the one-iteration Koch’s curve antennas
are suitable for using in the desired bandwidths, and the two-

iteration Koch’s curve may work poorly in the first part of
the chosen spectrum, but it will certainly work properly in
the second half.

-e VSWR, Figure 18, it can be observed that most of the
power to be delivered to the antennas is actually radiated by
the antennas. For the first couple of bandwidths, the dipole
and the two-iteration fractal are the most suitable, whereas
for the second couple of bandwidths, the antenna from
Figure 10 is better.
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Figure 4: Dipole’s 360 degrees directivity (more precisely, for dipole at 460MHz left and right at 770MHz).
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Figure 5: One-iteration fractal Koch antenna 360 degrees directivity (more precisely, one-iteration Koch’s curve at 460MHz left and right at
770MHz).
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In Figure 18, the magnitude, measured in dB (on the y-
axis), is graphically represented along the band of interest
versus frequency, measured in MHz for the antenna with
dipole (iteration 0), with one-iteration, and with two-iter-
ation of Koch’s curve. -e graphics are marked with three
distinct colors for dipole (blue), one-iteration (brown), and
two-iteration (olive) to distinguish them.

-e VSWR values, from Figure 18, show that most of the
power to be delivered to the antennas is actually radiated by

the antennas. For the first couple of bandwidths, the dipole
and the two-iteration fractal are the most suitable, whereas
for the second couple of bandwidths, the resulting antenna is
much better [2, 18, 19].

In Figure 19, the return loss for dipole and Koch’s curve
antennas have been evaluated, where the magnitude, mea-
sured in dB (on the y-axis), is graphically represented versus
frequency, measured in MHz [20]. -e graphics are marked
with three distinct colors for dipole (blue), one-iteration
(brown), and two-iteration (olive) to distinguish them.

In Figure 20, a comparison between dipole and Koch’s
curves antennas (one-iteration and two-iteration) is shown.
Also, the graphics are marked with three distinct colors,
blue, brown, and olive for dipole, one-iteration, and two-
iteration, respectively.

We would like at this point to give a summary of the
quantitative results we have obtained in our study. By
performing the three-dimensional physical simulations of
the artefacts developed, we have obtained the following
numerical values for the directivity with maximum values of
2.73 dBi and 4.76 dBi for the dipole at 460MHz and
770MHz, respectively. At the same frequencies, the antenna
radiation patterns revealed at 460MHzmaximum directivity
values of 6.91 dBi for one-iteration fractal Koch antenna and
4.91 dBi for two-iteration fractal Koch antenna, while at
770MHz, those values were 4.51 dBi for one-iteration fractal
Koch antennas and 3.28 dBi for two-iteration fractal Koch
antenna, respectively. -erefore, we can observe that the
directivity drops by 29% for one-iteration antenna at
460MHz and by approximately 27% at the higher frequency
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Figure 6: Two-iteration fractal Koch antenna 360 degrees directivity (more precisely, two-iteration Koch’s curve at 460MHz left and right at
770MHz).
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Figure 12: One-iteration fractal Koch antenna radiation pattern
and phase at 460MHz.
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of 770MHz. Moreover, both one-iteration and two-iteration
fractal Koch antennas exhibit higher maximum directivities
than dipole antennas at both frequencies studied.

-e VSWR investigation produced the highest value of
approximately 12 dB at 625MHz for two-iteration fractal
Koch antenna. Moreover, maximum return loss magnitudes

of approximately 8.8 dB for two-iteration Koch antenna and
of 6 dB for dipole antenna are obtained at 460MHz. Finally,
the impedance along the bandwidth is approximately 360
Ohms for two-iteration fractal Koch antenna, 180 Ohms for
one-iteration fractal Koch antenna, and 140 Ohms for dipole
antenna, respectively.
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Figure 17: Two-iteration fractal Koch antenna impedance along the bandwidth.
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6. Conclusions

Dedicated wideband antennas can be used as starting point
for fractal-shaped antennas to obtain new advantages such as
compact size, multiband resonance, and providing more
communication links to a single device.

One problem for the emergent technology, 5G, is the
antenna because it has to transfer a huge quantity of in-
formation without filtering a little slice. -is can be very
challenging when a large number of users and protocols to
follow are taken into account.

Only one antenna can cover technologies such as 2G, 3G,
4G, ZigBee, WLAN, and WiMax if properly designed, and it
would be a shame to forget these kinds of networks when 5G
would appear on the market.

Because of the need for speed, in order to improve the
response times, the PPDR agencies will adopt the 5G
technology as soon as possible.

In this study, two ways of using fractal-based antennas to
cover few kinds of PPDR communications are presented.

-e fractal shape suggested is a Koch’s curve fractal-
shaped antenna, which was based on a dipole. -is kind of
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antenna covers frequencies between 350MHz and 800MHz
with few limitations.

All results were obtained using MATLAB R2018b
software development. For the studied antennas, we have
obtained the following results regarding the maximum gains
in dBi (which is the unit of the ratio between the gains of the
antenna compared to the gain of an isotropic antenna). For
the dipole antennas, the gains are 2.73 dBi and 4.76 dBi at
460MHz and 770MHz, respectively. -e gains for one-it-
eration fractal Koch antenna are 6.91 dBi and 4.51 dBi at
460MHz and 770MHz, respectively, and finally, for two-
iteration fractal Koch antenna, the gains are 4.91 dBi and
3.28 dBi at 460MHz and 770MHz, respectively. Moreover,
the impedance along the bandwidth is approximately 360
Ohms for two-iteration fractal Koch antenna, 180 Ohms for
one-iteration fractal Koch antenna, and 140 Ohms for dipole
antenna, respectively.

Signal intelligence, electronic warfare, or tactical com-
munications can be one of those applications because
properties such as wideband frequency range or compact
size are desired for the ones who develop solutions for this
branch.

-erefore, objectives raised for antenna design by 5G
implementation can be accomplished by enhancing dedi-
cated antenna forms. -ese actions can be done using
fractal-shaped antennas. Much more, in the future, we in-
tend to use an original two or three-iteration binary bionic
fractal tree as the pattern in antenna to design 5th generation
(5G) antennas, derived from the rules of nominal microstrip
monopole antenna but together with the resonant con-
nection device [21], integrated in the benefit of familiar
fractal Koch geometry.
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)is paper presents the problem of robust and nonfragile stabilization of nonlinear systems described by multivariable
Hammerstein models.)e objective is focused on the design of a nonfragile feedback controller such that the resulting closed-loop
system is globally asymptotically stable with robust H∞ disturbance attenuation in spite of controller gain variations. First, the
parameters of linear and nonlinear blocks characterizing the multivariable Hammerstein model structure are separately estimated
by using a subspace identification algorithm. Second, approximate inverse nonlinear functions of polynomial form are proposed
to deal with nonbijective invertible nonlinearities. )ereafter, the Takagi–Sugeno model representation is used to decompose the
composition of the static nonlinearities and their approximate inverses in series with the linear subspace dynamic submodel into
linear fuzzy parts. Besides, sufficient stability conditions for the robust and nonfragile controller synthesis based on quadratic
Lyapunov function, H∞ criterion, and linear matrix inequality approach are provided. Finally, a numerical example based on twin
rotor multi-input multi-output system is considered to demonstrate the effectiveness.

1. Introduction

)e nonlinear modeling of real-world processes, which are
complex in nature, remains a challenging problem. How-
ever, much research works remain to be done for realization
on nonlinear mathematical models that accurately represent
these processes [1–4]. One way to cope with this difficulty is
to use the block-oriented nonlinear models [5–7], which
represent a combination of static nonlinear components and
linear dynamic submodels. )ese models are popular in
nonlinear modeling because of their advantages to be quite
simple to understand and easy to use [8], for instance, the
Hammerstein model (a static nonlinear component followed
by a linear submodel), Wiener model (a linear submodel
followed by a static nonlinear component), and Hammer-
stein–Wiener model (a linear submodel sandwiched by two
static nonlinearities or vice versa). In particular, the simplest
model structure of them is the Hammerstein model, which
has been extensively used for modeling electrical generators
[9], chemical processes [10], and biological processes [11]
and is also used in signal processing applications [12].

Over the past decades, various parametric subspace
identification methods have been very successful for the
modeling of multivariable Hammerstein models. )ese
methods include the iterative identification approach
[13, 14], the overparameterization method [15], the blind
approach [16], the instrumental variables method [17], the
stochastic approach [18], and the least square support vector
machines [19]. Most of them are based on the numerical
subspace state-space system identification algorithm [20],
the canonical variate analysis approach [21], and the mul-
tivariable output error state-space (MOESP) algorithm
[10, 22].

From a control point of view, the conventional control
scheme of a Hammerstein model has introduced the inverse
of the nonlinear block into the appropriate place. )is leads
to reject the nonlinearity effect in the controller design [23].
Hence, the nonlinear control strategy problem is converted
into a new linear one; also, any standard linear controller for
a linear dynamic submodel can be applied. It should be a
strong assumption that this nonlinearity is supposed to be
exactly invertible [24–26]. In contrast, the performance of
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this strategy becomes limited when the nonlinear compo-
nent function is not bijective. In this view, many algorithms
and approximations are used in the literature to determine
the corresponding nonlinearity inverse. One may refer to
latest research works based on polynomial form approxi-
mation [23, 27, 28], Bernstein–Bezier neural network [29],
De Boor algorithm [30], and rational B-spline model ap-
proximation [31].

On the other hand, many studies have been devoted
to the robust and nonfragile controller design problem
for complex systems. Indeed, it is clear that relatively
small perturbations in controller gain parameters can
result in instability of the controlled system [32, 33].
Hence, it is necessary that any controller should be able
to tolerate some bounded uncertainty in its parameters
[3, 34, 35]. For instance, a nonfragile controller for
uncertain nonlinear networked control systems was
proposed in [36]. In [37], a nonfragile robust controller
was investigated for uncertain large-scale systems. Lee
et al. [38] proposed a nonfragile fuzzy H∞ controller for
nonlinear systems described in Takagi–Sugeno (T-S)
fuzzy model, and so on. To our best knowledge, the
nonfragile control problem for Hammerstein models has
not been treated yet.

In this framework, we use the MOESP subspace iden-
tification algorithm, which mainly involves two aspects: (i)
determining the order of the system and obtaining the
structure of the estimated state-space model and (ii) iden-
tifying the mathematical model’s unknown parameters from
the available input-output data [10]. Afterwards, we propose
a new control strategy for multivariable Hammerstein model
including approximate inverse nonlinearities of polynomial
form. Using then the T-S fuzzy model representation
[1, 2, 34, 39], the composed nonlinear functions of the
considered static nonlinearities and their approximate in-
verses in series with the linear dynamic submodel are
decomposed into linear fuzzy parts. )e resulting model is
finally obtained by interpolating the constructed linear fuzzy
parts through nonlinear fuzzy membership functions
[2, 4, 35, 40]. In this regard, a nonfragile H∞ feedback
controller is designed subject to controller gain variations
guaranteeing both the stability and disturbance attenuation
of the controlled nonlinear system.

)emain contributions of this paper are listed as follows:

(i) A modified subspace-based algorithm is used to
identify nonlinear systems described by multivari-
able Hammerstein models.

(ii) Compared with the existing results using the normal
nonlinearity inversion method, we derive a new
control strategy based on approximate inverse
nonlinear functions of polynomial form. Further-
more, we appeal the T-S fuzzy model representation
to decompose the existing nonlinearities and fa-
cilitate the controller synthesis.

(iii) From a control point of view, we develop a robust
and nonfragile H∞ controller with variation in the
control law that guarantees both the asymptotic

stability and disturbance attenuation of the con-
trolled nonlinear system and its identified multi-
variable Hammerstein model.

(iv) Besides, sufficient controller design conditions in
terms of linear matrix inequalities (LMIs) are
established, which can be efficiently solved by
convex optimization techniques.

Following the introduction, this paper is organized as
follows. )e subspace identification method for multi-
variable Hammerstein model is presented in Section 2.
Section 3 is reserved to the stability analysis and non-
fragile H∞ control synthesis. A numerical example based
on twin rotor multi-input multi-output system (TRMS)
is considered in Section 4 to demonstrate the
effectiveness.

2. MOESP Algorithm-Based
Subspace Identification

We consider the multi-input multi-output (MIMO) Ham-
merstein model configuration, as depicted in Figure 1. As
mentioned obviously, the model’s structure consists of
m-static nonlinearities fi(·) followed by a linear dynamic
submodel.

More precisely, each nonlinear component fi(·), for
i � 1, 2, . . . , m, is characterized by the following form:

vi,k � fi ui,k􏼐 􏼑 � λi1ui,k + λi2u
2
i,k + · · · + λiυu

υ
i,k, (1)

and the linear dynamic submodel is described by the fol-
lowing state-space representation:

xk+1 � Axk + B1Vk + B2wk,

Yk � Cxk + DVk + εk,
􏼨 (2)

where xk ∈ Rn is the state vector,
Vk � v1,k v2,k . . . vm,k( 􏼁

⊥ is the unmeasurable output,
wk ∈ Rn is the external disturbance vector, εk ∈ Rq is the
measurement noise vector, uk � u1,k u2,k . . . um,k( 􏼁

⊥ is
the input vector, Yk � y1,k y2,k . . . yq,k􏼐 􏼑

⊥
is the output

vector, and the notation (⊥) denotes the transposed element.
A ∈ Rn×n, B1 � B11 B12 . . . B1m( 􏼁 ∈ Rn×m, B2 ∈ Rn×n,
C ∈ Rq×n, and D � D1 D2 . . . Dm( 􏼁 ∈ Rq×m are unknown
state-space matrices.

By substituting (1) into (2), we obtain the following
open-loop model:

xk+1 � Axk + B
λ
1Uk + B2wk,

Yk � Cxk + D
λ
Uk + εk,

⎧⎨

⎩ (3)

where Uk � U1,k U2,k . . . Um,k( 􏼁
⊥, Ui,k � ui,k u2

i,k􏼐 . . .uυ
i,k)⊥,

Bλ
1 � (Bλ

11Bλ
12 . . .Bλ

1m), Dλ � (Dλ
1 Dλ

2 . . . Dλ
m ), Bλ

1i � B1iλ
vec
i ,

Dλ
i � Diλ

vec
i , and λveci � λi1 λi2 . . . λiυ( 􏼁, for i � 1,2, . . . ,m.

In order to estimate the system order and determine the
unknown elements, as are presented in system (3), we use
the MOESP algorithm, which is basically defined by the
following steps:
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(i) Step 1: for sake of simplicity and feasibility, we
assume that ‖λveci ‖2 � 1 and λi1 � 1, for
i � 1, 2, . . . , m [23, 28, 41].

(ii) Step 2: we determine the estimates 􏽢A, 􏽢B
λ
1, 􏽢B2, 􏽢C, and

􏽢D
λ of matrices A, Bλ

1, B2, C, and Dλ directly from the
available input-output data.

(iii) Step 3: we compute a matrix estimate 􏽢Θi of Θi,
which is defined as

Θi ≜
B
λ
1i

D
λ
i

⎛⎝ ⎞⎠ �
B1i

Di

􏼠 􏼡λveci , (4)

by solving the following optimization problem:

􏽢B1i,
􏽢Di,

􏽢λ
vec
i􏼐 􏼑 � arg min

B1i ,Di,λ
vec
i

􏽢Θi −
B1i

Di

􏼠 􏼡λveci

���������

���������

2

2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(5)

(iv) Step 4: based on the singular value decomposition
(SVD) theorem, as is detailed in [42], we calculate
the partition of 􏽢Θi as follows:

􏽢Θi � U1 U2􏼂 􏼃
Σ1 0

0 Σ2
􏼢 􏼣

V
⊥
1

V
⊥
2

⎡⎣ ⎤⎦, (6)

where U1, V1, and Σ1 are specific matrices of ap-
propriate dimensions.

(v) Step 5: we compute finally the estimates 􏽢B1i, 􏽢Di, and
􏽢λ
vec
i so that the following system of equations is
satisfied:

􏽢B1i

􏽢Di

⎡⎣ ⎤⎦ � U1Σ1,

􏽢λ
vec
i � V1, for i � 1, 2, . . . , m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

3. Nonfragile H‘ Control Scheme Design

In this section, we discuss sufficient conditions that guar-
antee the global asymptotic stability in closed loop of the
following system:

xk+1 � Axk + B1Vk + B2wk,

zk � Czxk + D1Vk + D2wk,
􏼨 (8)

where Cz ∈ Rp×n is the output matrix of the controlled
output vector zk ∈ Rp, D1 ∈ Rp×m, and D2 ∈ Rp×n.

In what follows, we assume that the m-nonlinearities:

vi,k � fi ui,k􏼐 􏼑 � ui,k + λi2u
2
i,k + · · · + λiυu

υ
i,k, (9)

are not bijective and approximated of the following form:

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 � βi1􏽢vi,k + βi2􏽢v

2
i,k + · · · + βiυ􏽢v

υ
i,k + hot.

(10)
where (hot) denotes the higher order terms. As the non-
linearities (9) and (10) are in series, we may write

vi,k � ψi 􏽢vi,k􏼐 􏼑 � fi f
−1
i,app 􏽢vi,k􏼐 􏼑􏼐 􏼑. (11)

In addition, the parameters βij are determined by solving
􏽢vi(+∞) � vi(+∞), for i � 1, 2, . . . , m. An example of cal-
culation for the order υ � 3 is detailed in Appendix A.

With the above approximation, system (8) is trans-
formed as follows:

xk+1 � Axk + B
ρ
1

􏽢Vk + B2wk,

zk � Czxk + D
ρ
1

􏽢Vk + D2wk,

⎧⎨

⎩ (12)

where B
ρ
1 � B

ρ1
11 B

ρ2
12 . . . B

ρm

1m( 􏼁, D
ρ
1 � D

ρ1
11 D

ρ2
12 . . . D

ρm

1m( 􏼁,
B
ρi

1i � B1iρi,k(􏽢vi,k), D
ρi

1i � D1iρi,k(􏽢vi,k), for i � 1,2, . . . ,m, ρi,k

(􏽢vi,k)�
ψi(􏽢vi,k)/􏽢vi,k if 􏽢vi,k≠0
1else􏼨 , and 􏽢Vk � 􏽢v1,k 􏽢v2,k . . . 􏽢vm,k( 􏼁

⊥.

Using then the polytopic transformation method, the
m−nonlinearities ρi(􏽢vi,k) are decomposed as follows:

ρi,k 􏽢vi,k􏼐 􏼑 � H
1
i 􏽢vi,k􏼐 􏼑σi + H

2
i 􏽢vi,k􏼐 􏼑σi, (13)

with

H
1
i 􏽢vi,k􏼐 􏼑 �

ρi,k 􏽢vi,k􏼐 􏼑 − σi

σi − σi

, (14)

H
2
i 􏽢vi,k􏼐 􏼑 � 1 − H

1
i 􏽢vi,k􏼐 􏼑, (15)

where σi and σi are the maximum and minimum of ρi(􏽢vi,k),
respectively.

For the convenience of notations, we define
H

j
i � H

j
i (􏽢vi,k), wi � wi(􏽢vj,k), and hi � hi(􏽢vj,k).

)ereafter, we construct the following fuzzy subsystems:

rule 1: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑 and . . . 􏽢vm,k isH

1
m􏼐 􏼑,

thenxk+1 � Axk + 􏽥B11
􏽢Vk + B2wk, zk

� Czxk + 􏽥D11
􏽢Vk + D2wk,

(16)

rule 2: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑 and . . . 􏽢vm,k isH

2
m􏼐 􏼑,

thenxk+1 � Axk + 􏽥B12
􏽢Vk + B2wk, zk � Czxk + 􏽥D12

􏽢Vk + D2wk,

⋮
(17)

u1

u2

um

v1

v2

vm

y1

y2

yq

Linear
dynamic
submodel

f1 (-)

f2 (-)

fm (-)

... ... ... ...

Figure 1: Multivariable Hammerstein model configuration.
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rule ς � 2m
: if 􏽢v1,k isH

2
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑

and . . . 􏽢vm,k isH
2
m􏼐 􏼑,

then xk+1 � Axk + 􏽥B1ς
􏽢Vk + B2wk, zk

� Czxk + 􏽥D1ς
􏽢Vk + D2wk,

(18)

where 􏽥B11 � B
ρ1
11 B

ρ2
12 . . . B

ρm

1m􏼐 􏼑, 􏽥D11 � D
ρ1
11 D

ρ2
12 . . .􏼐

D
ρm

1m), 􏽥B12 � B
ρ1
11 B

ρ2
12 . . . B

ρm

1m)􏼐 , 􏽥D12 � D
ρ1
11 D

ρ2
12 . . .􏼐 D

ρm

1m),
􏽥B1ς � B

ρ1
11B

ρ2
12. . .B

ρm

1m)( , 􏽥D1ς � D
ρ1
11D

ρ2
12. . .D

ρm

1m)( , B
ρi

1i � σiB1i,
B
ρi

1i � σiB1i, D
ρi

1i � σiD1i, and D
ρi

1i � σiD1i, for i � 1, 2, . . . , m.
As a consequence, the final system is inferred as follows:

xk+1 � 􏽘

ς

i�1
hi Axk + 􏽥B1i

􏽢Vk + B2wk􏼐 􏼑,

zk � 􏽘

ς

i�1
hi Czxk + 􏽥D1i

􏽢Vk + D2wk􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where the nonlinear weighting functions are
hi � wi/􏽐

ς
i�1 wi, such that 0≤ hi ≤ 1 and 􏽐

ς
i�1 hi � 1, and

w1 � H
1
1H

1
2 . . . H

1
m,

w2 � H
1
1H

1
2 . . . H

2
m,

⋮

wς � H
2
1H

2
2 . . . H

2
m.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

For stabilizing system (19) in closed loop, we assume that
each subsystem (A, 􏽥B1i) is fully controllable and measurable.
)en, we use the nonfragile control law:

􏽣Vk � −Kxk, (21)

with the uncertainty:

K � K + ΔK � I + μϕk( 􏼁K, (22)

where K ∈ Rm×n is the nominal controller, μ> 0 is a scalar to
be assigned, I ∈ Rm×m denotes the identity matrix, and
ϕk ∈ Rm×m, such that ϕ⊥k ϕk ≤ I.

Substituting (21) into (19), we obtain the final controlled
system:

xk+1 � 􏽘

ς

i�1
hi Gixk + B2wk( 􏼁,

zk � 􏽘

ς

i�1
hi Fixk + D2wk( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where Gi � Gi + ΔGi, Fi � Fi + ΔFi, Gi � A − 􏽥B1iK,
ΔGi � −μ􏽥B1iϕkK, Fi � Cz − 􏽥D1iK, and ΔFi � −μ 􏽥D1iϕkK.

)e closed-loop system (23) is globally asymptotically
stable with decay rate α and achieves a prescribed attenu-
ation level c if

Tzw

����
����∞ � sup

‖w‖2 ≠ 0

‖z‖2

‖w‖2
< c. (24)

As a consequence, we announce the following theorem.

Theorem 1. 1e equilibrium (x � 0Rn ) of the closed-loop
system (23) is quadratically and globally asymptotically stable
with decay rate α satisfying the control performance objective
(24) if there exist positive scalars μ, τ1, τ2, δ12 � τ−1

1 + τ−1
2 , and

β ∈][0, 1[, a common symmetric positive definite matrix
X ∈ Rn×n, and M ∈ Rm×n verifying the following LMI
formulation:

minimize
X,M,c

β

subject to :

−βX ∗ ∗ ∗ ∗
0 −c

2
I ∗ ∗ ∗

AX − 􏽥B1iM B2 −ℓ33,i ∗ ∗
CzX − 􏽥D1iM D2 0 −ℓ44,i ∗

M 0 0 0 −δ−1
12I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(25)

for i � 1, 2, . . . , ς, where ℓ33,i � X − τ1μ2􏽥B1i
􏽥B
⊥
1i and

ℓ44,i � I − τ2μ2 􏽥D1i
􏽥D
⊥
1i.

)en, the feedback gain K, as is shown in (22), is cal-
culated by using the following relation:

K � MX
− 1

. (26)

Proof. )e controlled system (23) is globally asymptotically
stable with decay rate α if there exist a discrete-time qua-
dratic Lyapunov function VLyap(xk) � x⊥k Pxk > 0 and a
positive scalar 0< α< 1 such that

ΔVLyap xk( 􏼁≤ α2 − 1􏼐 􏼑VLyap xk( 􏼁, (27)

where ΔVLyap(xk) � VLyap(xk+1) − VLyap(xk) and P ∈ Rn×n

is a symmetric positive definite matrix. By considering (27)
in (24), we may write

ΔVLyap xk( 􏼁 − α2 − 1􏼐 􏼑VLyap xk( 􏼁 + z
⊥
k zk − c

2
w
⊥
k wk < 0.

(28)

By, respectively, substituting the dynamics of xk+1 and zk

into (28), it becomes

􏽘

ς

i�1
hi

xk

wk

􏼠 􏼡

⊥

Γi
xk

wk

􏼠 􏼡< 0, (29)

where Γi �
G
⊥
i PGi − α2P + F

⊥
i Fi ∗

B
⊥
2 PGi + D

⊥
2 D2 B

⊥
2 PB2 + D

⊥
2 D2 − c

2
I

􏼠 􏼡

and the symbol (∗ ) represents the transposed element in
the symmetric position.

As the nonlinear functions hi ∈ [0, 1], matrix inequality
(29) is equivalent to Γi < 0, for i � 1, 2, . . . , ς. Using the Schur
Complement, as is presented in Appendix B, we get

−α2P ∗ ∗ ∗

0 −c
2
I ∗ ∗

PGi PB2 −P ∗

Fi D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0. (30)
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Denoting X � P− 1, M � KX, and β � α2 and, respec-
tively, premultiplying and postmultiplying (30) by positive
definite matrix diag(X, I, X, I) yields

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X ∗

FiX D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0. (31)

As the above matrix inequality contains certain terms
Ψi,k and uncertain ones ΔΨi,k, (31) can be transformed as
follows:

Ψi,k + ΔΨi,k < 0, (32)

with

Ψi,k �

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X ∗

FiX D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (33)

ΔΨi,k �

0 0 ∗ ∗
0 0 0 0

−μ􏽥B1iϕkM 0 0 0
−μ 􏽥D1iϕkM 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

We notice that there are antidiagonal terms in ΔΨi,k.
However, we use the Separation Lemma, as is defined in
Appendix C, to transform them into diagonal terms as
follows:

Δψi,k ≤

δ12M
⊥

M 0 0 0

0 0 0 0

0 0 τ1μ
2􏽥B1i

􏽥B
⊥
1i 0

0 0 0 τ2μ
2 􏽥D1i

􏽥D
⊥
1i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where τ1, τ2, and δ12 � τ−1
1 + τ−1

2 are positive scalars to be
assigned.

Referring to relations (33) and (35), we obtain

−βX + δ12M
⊥

M ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X + τ1μ
2􏽥B1i

􏽥B
⊥
1i ∗

FiX D2 0 −I + τ2μ
2 􏽥D1i

􏽥D
⊥
1i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (36)

After some manipulations, we get the LMI formulation
(25). □

Remark 1. Consider system (19) with no uncertainty, i.e.,
ΔK � 0. )en, the origin of the closed-loop system (26) is
globally asymptotically stable if [27]

minimize
X,R,c

β

subject to:

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

AX − 􏽥B1iM B2 −X ∗

CzX − 􏽥D1iM D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0, for i � 1, 2, . . . , ς.

(37)

In the following, a numerical example is provided to
demonstrate the validity and the effectiveness of the pro-
posed control scheme.

4. Application to a TRMS

)e objective of this simulation study is to stabilize the
controlled TRMS and its identified multivariable

Complexity 5



Hammerstein model at the origin, as an asymptotically
stable equilibrium point. More precisely, its system be-
haviour resembles that of a helicopter, as is seen in
Figure 2. It consists of two rotors (main and tail), which
are situated on a beam together with a counterbalance.
)e inputs of the open-loop system are the voltages u1(V)

and u2(V) applied, respectively, to the main and tail
rotors. )e first output is called pitch angle y1(rad) when
the main rotor is free to rotate in the horizontal plane. )e
second output is called yaw angle y2(rad) when the tail
rotor is free to rotate in the vertical plane.

)e studied system is described by the following
continuous-time nonlinear equations [43]:

I1€ψ � M1 − MFG − MBψ − MG,

I2
€ϕ � M2 − MBϕ − MR,

⎧⎨

⎩ (38)

where M1 � a1η21 + b1η1, MFG � Mg sin(ψ), MBψ � B1ψ _ψ,

MG � KgyM1
_ϕ cos(ψ) − Kgx

_ϕ2 sin(2ψ), M2 � a2η22 + b2η2,
MBϕ � B1ϕ

_ϕ, _η1 � −T10/T11η1 + k1/T11u1, _η2 � −T20/
T21η2 + k2/T21u2, MR � kcη11 + T0s/1 + Tps, and s is the
Laplace variable. All parameters are defined in Appendix D.

4.1. Identification Result. From an identification point of
view, we assume that the input-output data are available.
)en, we consider that the sampling period is T � 0.1 s and
the inputs are u1,k � 2.5 sin(0.6πkT) and
u2,k � 2 sin(0.8πkT). Figures 3 and 4 depict the responses of
the true (solid line) and estimated (dashed line) outputs of
the open-loop system.

It is then clear that the nonlinear TRMS is accurately
identified by 2-input 2-output Hammerstein state-space
model, which is described by

xk+1 � Axk + B1Vk + B2wk,

Yk � Cxk + DVk + εk,

v1,k � u1,k + 0.0381u
2
1,k − 0.0457u

3
1,k,

v2,k � u2,k + 0.0237u
2
2,k − 0.0118u

3
2,k,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

where

xk �

x1,k

x2,k

x3,k

x4,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Vk �

v1,k

v2,k

􏼠 􏼡, Yk �
y1,k

y2,k

􏼠 􏼡, wk ∈ R
4
, εk ∈ R

2
,

A �

0.9709 −0.3380 0.1232 0.0306

0.1179 0.9745 0.0093 −0.0109

−0.0375 0.0087 0.9974 −0.0798

0.0109 −0.0226 0.0270 0.8693

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B1 �

0.0111 0.0547

−0.0131 −0.0027

0.2172 0.3044

0.0865 0.0520

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

−0.2292 0.5655 7.7293 0.2978

1.4445 0.2131 −5.6435 0.0878

−0.4621 −0.0928 −2.4361 0.1226

−0.2324 0.0914 9.9696 −0.7869

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C �
−0.0853 0.2915 −0.1147 0.0093

0.0121 −0.1440 −0.3784 −0.1127
􏼠 􏼡,

D �
−0.0326 0.0063

0.0284 −0.0713
􏼠 􏼡.

(40)

Free beam

Main rotor

Counterbalance
beam

Tail rotor

-αv

αh

Figure 2: TRMS [43].
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4.2. Control Results. From a control point of view, we as-
sume that the inverse functions ui,k � f−1

i,app(􏽢vi,k), for
i � 1, 2{ }, are approximated as follows:

u1,k � 􏽢v1,k − 0.0381􏽢v
2
1,k + 0.1219􏽢v

3
1,k + hot,

u2,k � 􏽢v2,k − 0.0237􏽢v
2
2,k + 0.0592􏽢v

3
2,k + hot.

⎧⎪⎨

⎪⎩
(41)

Choosing the scalars σ1 � 0.4, σ1 � 1.7, σ2 � 0.3, and
σ2 � 2, Figure 5 depicts the evolution of nonlinearities
vi,k � ψi(􏽢vi,k), for i � 1, 2{ }. )is leads to obtain, for the
control scheme, the bounded control signals
􏽢v1,k ∈ −5.87, 5.73􏼂 􏼃 and 􏽢v2,k ∈ −2.33, 2.24􏼂 􏼃.

Afterwards, we assume that the controlled output zk is
expressed by

zk � Czxk + D1Vk + D2wk, (42)

where zk �
z1,k

z2,k
􏼠 􏼡, Cz � C, D1 � D, and D2

�
1 0 0 0
0 0 1 0􏼠 􏼡.

By considering the pairs (σ1, σ2), (σ1, σ2), (σ1, σ2), and
(σ1, σ2), we construct the following fuzzy subsystems:

rule 1: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B11
􏽢Vk + B2wk, zk

� Czxk + 􏽥D11
􏽢Vk + D2wk,

(43)

rule 2: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B12
􏽢Vk + B2wk, zk

� Czxk + 􏽥D12
􏽢Vk + D2wk,

(44)

rule 3: if 􏽢v1,k isH
2
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B13
􏽢Vk + B2wk, zk

� Czxk + 􏽥D13
􏽢Vk + D2wk,

(45)

rule 4: if 􏽢v1,k isH
2
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B14
􏽢Vk + B2wk, zk

� Czxk + 􏽥D14
􏽢Vk + D2wk,

(46)

where

􏽥B11 �

0.0187 0.1094

−0.0223 −0.0054

0.3692 0.6088

0.1470 0.1040

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 􏽥B12 �

0.0187 0.0164

−0.0223 −0.0008

0.3692 0.0913

0.1470 0.0156

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽥B13 �

0.0044 0.1094

−0.0052 −0.0054

0.0869 0.6088

0.0346 0.1040

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 􏽥B14 �

0.0044 0.0164

−0.0052 −0.0008

0.0869 0.0913

0.0346 0.0156

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽥D11 �
−0.0554 0.0126

0.0483 −0.1426
⎛⎝ ⎞⎠, 􏽥D12 �

−0.0554 0.0019

0.0483 −0.0214
⎛⎝ ⎞⎠,

􏽥D13 �
−0.0130 0.0126

0.0114 −0.1426
⎛⎝ ⎞⎠, 􏽥D14 �

−0.0130 0.0019

0.0114 −0.0214
⎛⎝ ⎞⎠.

(47)

As the pairs (A, 􏽥B1i), for i � 1, 2, 3, 4{ }, are controllable,
the resulting fuzzy system can be described as follows:

xk+1 � 􏽘
4

i�1
hi Axk + 􏽥B1i

􏽢Vk + B2wk􏼐 􏼑,

zk � 􏽘
4

i�1
hi Czxk + 􏽥D1i

􏽢Vk + D2wk􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(48)

where the nonlinear weighting functions hi � wi/􏽐
4
i�1 wi are

depicted in Figure 6.
Using the LMI formulation (25) with μ � 0.85 and

c � 0.7, we obtain α � 0.794, β � 0.63, and

10 20 30 40 50 60 70 80 90 1000
kT iterations

–8

–6

–4

–2

0

2

4

6

8

Real output
Estimated output

Figure 3: Response of the pitch angle of the open-loop system.

kT iterations
20 30 4010 50 60 70 80 90 1000

Real output
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P �

6.4497 0.8651 −0.2691 0.1327

0.8651 4.7781 −0.3205 0.1191

−0.2691 −0.3205 5.0222 0.4860

0.1327 0.1191 0.4860 4.9015

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K �
−0.5072 −0.2251 2.3094 1.4059

0.5327 −0.0653 1.4641 −0.4069
􏼠 􏼡.

(49)

Hence, by considering the nonfragile control law (21)
subject to the uncertainty (22) with

ϕk �
0.5 sin(πk) 0

0 0.5 cos(πk)
􏼠 􏼡, the inferred controlled

system can be described as follows:

xk+1 � 􏽘
4

i�1
hi Gixk + B2wk( 􏼁,

zk � 􏽘
4

i�1
hi Fixk + D2wk( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

where Gi � Gi + ΔGi, Fi � Fi + ΔFi, ΔGi � −μ􏽥B1iϕkK,
ΔFi � −μ 􏽥D1iϕkK, for i ∈ 1, 2, 3, 4{ }, and

G1 �

0.9221 −0.3266 −0.0802 0.0488
0.1095 0.9691 0.0686 0.0182

−0.1745 0.1316 −0.7467 −0.3512
0.0301 0.0173 −0.4649 0.7049

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G2 �

0.9716 −0.3327 0.0560 0.0110
0.1070 0.9694 0.0619 0.0201
0.1011 0.0978 0.0110 −0.5618
0.0772 0.0115 −0.3354 0.6689

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G3 �

0.9149 −0.3299 −0.0471 0.0689
0.1181 0.9730 0.0293 −0.0057

−0.3177 0.0680 −0.0946 0.0458
−0.0269 −0.0080 −0.2052 0.8630

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G4 �

0.9644 −0.3359 0.0890 0.0311
0.1157 0.9733 0.0226 −0.0039

−0.0421 0.0342 0.6631 −0.1648
0.0201 −0.0138 −0.0757 0.8270

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(51)

F1 �
−0.1201 0.2798 −0.0052 0.0923
0.1125 −0.1425 −0.2811 −0.2386

􏼠 􏼡,

F2 �
−0.1144 0.2791 0.0105 0.0880
0.0480 −0.1345 −0.4586 −0.1893

􏼠 􏼡,

F3 �
−0.0986 0.2894 −0.1030 0.0328
0.0938 −0.1508 −0.1959 −0.1867

􏼠 􏼡,

F4 �
−0.0929 0.2887 −0.0874 0.0284
0.0293 −0.1428 −0.3733 −0.1374

􏼠 􏼡.

(52)

Figures 7–10 show the simulation results of applying the
designed nonfragile H∞ controller to the TRMS (dashed line)
and its identified Hammerstein model (solid line) with null

initial conditions and the exogenous disturbance signal
wk � rand 0 rand 0( 􏼁

⊥, where (rand) is a uniform number
with a uniform distribution on the interval [0, 0.01], which is
added by w+

k � −0.15 if 50≤ kT≤ 100 and 0 otherwise.
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u1 (system)
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Figure 7: Control signal u1(V).
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Figure 8: Control signal u2(V).
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Figure 9: Response of the pitch angle of the closed-loop system.
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)e obtained results indicate that the designed robust
and nonfragile H∞ controller shows good results. However,
the responses of the pitch and yaw angles of the controlled
nonlinear system and its identified Hammerstein model can
rapidly achieve the origin despite the presence of external
disturbances and uncertainty in the control law.

5. Conclusion

In this paper, a nonfragile H∞ feedback controller was
designed for nonlinear systems described as multivariable
Hammerstein model with separate nonlinearities. )e pa-
rameters of the linear and nonlinear blocks characterizing
the multivariable Hammerstein model structure were sep-
arately estimated using the MOESP identification algorithm.
Unlike the normal control scheme, the inverses of the static
nonlinearities were supposed not bijective and approxi-
mated by polynomial functions. )e T-S fuzzy representa-
tion was used to simplify the nonlinear system description
and reject the nonlinearity effect in the controller design.
Based on the quadratic Lyapunov function and H∞ crite-
rion, robust H∞ was then proposed to robustly stabilize the
controlled nonlinear system and its identified Hammerstein
model and guarantee the attenuation of disturbance effect in
spite of controller gain variations. A TRMS was considered
to illustrate the validity and the effectiveness of the designed
stabilization scheme.

Appendix

A. Calculation of βij Scalars

)e calculation of βi,j scalars are presented for υ � 3. )en,
we have

vi,k � fi ui,k􏼐 􏼑 � ui,k + λi2u
2
i,k + λi3u

3
i,k,

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 � βi1􏽢vi,k + βi2􏽢v

2
i,k + βi3􏽢v

3
i,k + hot.

⎧⎪⎨

⎪⎩

(A.1)

Substituting the above quantities, we get

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 ≈ βi1 ui,k + λi2u

2
i,k + λi3u

3
i,k􏼐 􏼑

+ βi2 ui,k + λi2u
2
i,k + λi3u

3
i,k􏼐 􏼑

2
+ βi3 ui,k + λi2u

2
i,k + λi3u

3
i,k􏼐 􏼑

3
.

(A.2)

)en, we eliminate the powers higher than 3 of ui,k. So,
we get

ui,k � βi1ui,k + βi1 + βi2λi2( 􏼁u
2
i,k

+ βi1λi3 + 2βi2λi2 + βi3( 􏼁u
3
i,k + hot.

(A.3)

We obtain finally βi1 � 1, βi2 � −λi2, and βi3 � 2λ2i2 − λi3.

B. Schur Complement

For matrices M, L, and Q with appropriate dimensions, the

matrix inequality M ∗
L Q

􏼠 􏼡< 0 is equal to (i) Q< 0, M −

L⊥Q− 1L< 0 and (ii) M< 0, Q − LM− 1L⊥ < 0 where M and Q

are invertible and symmetric.

C. Separation Lemma

For matrices A and B with appropriate dimensions and
positive scalars τ, one has A⊥B + B⊥A≤ τA⊥A + τ− 1B⊥B.

D. TRMS Parameters

TRMS parameters are shown in Table 1.
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Figure 10: Response of the yaw angle of the closed-loop system.

Table 1: TRMS parameters.

Symbol Definition
u1, u2 Input signals
ψ Pitch angle of the beam
ϕ Yaw angle of the beam
I1, I2 Moment of inertia of vertical (horizontal) rotor
MFG Gravity momentum
MBψ , MBϕ Friction momentum forces
MG Gyroscopic momentum
ai, bi Static parameters of motor i, i � 1, 2{ }

Mg Gravity momentum
B1ψ , B1ϕ Friction momentums
Kgy, Kgx Gyroscopic momentums
kii Motor i gain
Ti1, Ti0 Motor i denominator
MR Cross reaction momentum approximation
kc Cross reaction momentum gain
Tp Cross reaction momentum
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Hydromechanical continuously variable transmission (HMCVT) is capable of bearing large torque and has wide transmission
range, which is suitable for high-power tractors. Dynamic characteristics could influence the tractor life, especially in a high-power
tractor. Wet clutch is the crucial component in the HMCVT, which could smooth and soft power transmission. *erefore, it is
important to study the dynamic characteristics and implement the wet clutch test of HMCVT. In this paper, AMESim is used to
establish virtual models of gearbox, pump-controlled hydraulic motor system, and shifting hydraulic system. *en, a simulation
study of tractor operation under working condition is carried out. *e internal and external meshing forces of the planetary row
are analyzed. Finally, the wet clutch engagement process of HMCVT in the high-power tractor is tested to verify the oil pressure.
*e simulation results show that the values of internal and external meshing force become larger as the throttle opening increases.
At the moment of shifting change, the meshing forces of the planetary gear have great impact.*e clutch test shows that the trend
of the oil filling curve obtained from the bench test is similar to that obtained from the theoretical curve, which verifies the
simulation results.

1. Introduction

*emain function of the tractor is to be used in conjunction
with various traction and driving machines to complete
agricultural field operations, earthwork engineering opera-
tions, transportation operations, and stationary operations
[1]. *e transmission performance of the gearbox will have
an important impact on the tractor and its transmission
system. *e hydromechanical continuously variable trans-
mission (HMCVT) has attracted extensive attention in re-
cent years [2–5]. In order to meet the requirements of
tractors working under multiple working conditions, at
present, high-power tractor gearboxes are set with more
gears. *e increase of gears in gearboxes not only makes its

structure complex and error prone to operate, but also the
dynamic characteristics of the tractor are difficult to guar-
antee [6].

Scholars have carried out a lot of research on HMCVT.
*e German company ZF [7] produced the S-Matic series
of hydraulic mechanical transmissions, which used dual-
row planetary row confluence to output power for the first
time. *e Japanese Company Komatsu [8] successfully
developed a stepless speed change device suitable for
construction machinery and applied it to the D155AX-3
bulldozer and WA380-3 loader. In recent years, various
well-known gearbox manufacturers have launched
HMCVT with independent intellectual property rights,
such as John Deere, Caterpillar of the United States, and
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Valtra of Finland [9]. *e typical HMCVTmodel is shown
in Figure 1.

Regarding mechanical characteristic analysis for
HMCVT, Xia et al. [10] proposed an optimized design
method for the selection of the structural parameters of
the PCHMCVT to ensure competent overall performance.
Zheng and Sun [11] used AMESim to establish a physical
model of an HMCVT and simulated and analyzed the
speed regulation characteristics, output torque charac-
teristics, and acceleration characteristics of the pure hy-
draulic section of it. Zhang [12] and He et al. [13] have,
respectively, optimized the design of the hydraulic me-
chanical stepless gearbox. Li et al. [14] analyzed the
working principle of HMCVT and successfully developed
a hydraulic mechanical stepless gearbox suitable for high-
power tractors for both water and drought. Zhai et al. [15]
introduced a two-stage planetary row device for the final
transmission of a wheeled tractor, which is compact in
structure, reliable in operation, and easy to install. Wang
et al. [16] proposed a new type of compound planetary row
transmission new hydraulic mechanical continuously
variable transmission scheme based on the traditional
single-row planetary and double planetary row. Guo et al.
[17] established the conditions for synchronous shifting of
multistage HMCVT and verified the high efficiency
characteristics of it. Wang et al. [18] used the basic
principles of dynamics to establish a tractor dynamic
model and verified its good dynamic characteristics under
ploughing condition. Xiao et al. [19, 20] studied the dy-
namic characteristics of the hydraulic circuit in HMCVT,
and a fast system identification method was proposed.
Cheng et al. [21–26] improved the genetic algorithm to
implement the HMCVT parameter optimization, and the
new proposed model can improve the HMCVT trans-
mission efficiently and flexibly.

From the analysis above, we can see that scholars’ re-
search onHMCVTis focused on the structure characteristics
or the shifting strategy, but there is little research on the
dynamic characteristics and clutch engagement. In this
paper, the HMCVT scheme and simulation model was
proposed, the dynamic meshing forces were calculated, and
the wet clutch engagement characteristics were tested for a
high-power tractor.

2. Modeling

2.1. Gearbox Dynamic Model. *is paper puts forward the
HMCVT scheme, which is shown in Figure 2. *is
transmission scheme is a constant-ratio split-moment
converging speed type. *e engine power is divided into
two power transmissions through the fixed-axis gear pair
i1 or i2i3 (i2i3 works in forward gear) and the hydraulic
power distribution gear pair ip. One power is transmitted
to the common sun gear shafts of planetary rows K1 and
K2 through the variable displacement pump-fix dis-
placement motor, which is a hydraulic flow, and the other
power is transmitted to the planet carrier K1 and the ring
gear K2 through the fixed shaft gear pair (the planet carrier
of K1 and the gear ring of K2 are firmly connected), which

is the mechanical flow. *e hydraulic flow and mechanical
flow converge in the planetary rows K1 and K2, and then
the combined flow force is transmitted to the ring gear of
K1 or planet carrier K2. Finally, by separately controlling
the engagement of wet clutches C1, C2, and C3, the power
can be transmitted to the output shaft. In this process,
stepless speed regulation can be realized in each section by
controlling the displacement ratio of the variable pump.

AMESim has been widely used in aerospace, vehicles,
construction machinery, ships, and other multidisci-
plinary fields and has become a platform for modeling and
simulation of complex systems such as liquid, mechanical,
electrical, electromagnetic, thermal analysis, and control.
AMESim software is more and more widely used in
modeling, simulation, and analysis of complex systems.
AMESim is applied to the modeling process of HMCVT in
this paper.

*e planetary gear mechanism model is shown in
Figure 3(a), and its mathematical model is shown as follows
[27]:

v1a � −
Rad1 + Rad2

Rad1
· vca −

Rad2
Rad1

· v2a,

v0 �
Rad2 · v2b − Rad1 · v1a

Rad2 − Rad1
+ vca,

T2b � facteff ×
Rad2
Rad1

× T1b − T1a( 􏼁 + T2b,

Tca � T1b − T1a( 􏼁 + T2b − T2b( 􏼁 + Tcb,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where v1a is the rotational speed of Port 1A, vca is the ro-
tational speed of Port 2A, v2b is the rotational speed of Port
4B, v0 is the rotational speed of the carrier, Rad1 is the
number of the sun gear, Rad2 is the number of the ring gear,
T2a and T2b are the input and output torque of the ring gear,
and Tca and Tcb are the input and output torque of the
carrier.

*e variable pump model (PU003 C) is selected from
the Hydraulic library, as shown in Figure 3(b). *e
opening range of the variable pump model is −1≤ swash
≤1. When turning forward, port 3 is the oil outlet; when
turning backward, port 3 is the oil inlet. *e mathematical
model of a variable pump is shown as follows:

qp �
e · vp · swash

1000
,

Tp �
pAP − pBP( 􏼁 · e · swash

20 · π
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where qp is the flow of the variable pump, e is the dis-
placement of the pump, swash is the throttle opening of the
pump, Tp is the shaft torque of the pump, and pAP and pBP
are the inlet and outlet oil pressure.

*e quantitative motor model (M0001C) is selected
from the Hydraulic library, and the mathematical model is
shown as follows:
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qm �
e · vm

1000
,

Tm �
pAm − pBm( 􏼁 · e · swash

20 · π
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where qm is the flow of motor, vm is the motor speed, Tm is
the torque of the motor, and pAm and pBm are the inlet and
outlet oil pressure of the motor.

Based on the models of various parts, like the wet clutch,
the oil circuit, the corresponding signal control elements,
and the torque output elements, the simulation model of the
shifting hydraulic system could be obtained, as shown in
Figure 3(c).

According to the gearbox model, hydrostatic circuit,
shifting system model, and tractor model, the simulation
model of HMCVT is obtained, as shown in Figure 4.

3. Simulation Analysis of Tractor under
Working Conditions

Figure 5 and Table 1 show the change of the internal and
external meshing forces of the planetary row under working
condition.

As can be seen from Figures 5(a) and 5(b), the internal
and external meshing forces of the planetary row both have
great impacts at the moment of the engine throttle opening
change. *e maximum and minimum values of internal
meshing force are 3.33×106N and 2.00×107N, respectively.
*e maximum and minimum values of external meshing
force are 2.20×107N and 7.33×106N, respectively.

*ey all become larger as the throttle opening increases.
At the moment of shifting change, the internal and external
meshing forces of the planetary gear have great impact at
2.5s–3.5 s.*en, themagnitudes of themeshing force change
decrease, and the trend tends to be stable.

Pein

Paus

K4K1

K2 K3

KR KV

P1 P2 P3

Figure 1: *e HMCVT S-Matic.

Pump
In

ip

i1

PTO

C1 C3

i2
i3 i5

i7 K1 K2
i6

i4

C2 C0
Out

Motor

Figure 2: HMCVT scheme.
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4. Clutch Engagement Characteristic
Test of HMCVT

4.1. Power Drive Module. DEUTZ TCD2013L062V engine
was selected for the test.*e accelerator control system of it is a
dual-sensor control loop system, which is mainly composed of
displacement sensor, current sensor, accelerator pedal, and
stepping motor. *e test sent an electric signal of speed ad-
justment to the engine by changing the pedal angle of the
accelerator pedal. After the ECU got the control signal and then
the stepper motor could be controlled by output current, the
throttle opening can be changed.

*e engine throttle opening was collected by displacement
sensors, and ECU output current was collected by current
sensors. *e signals were compared with the original value in
the input controller and realized the rapid adjustment of the
engine speed controller according to the control algorithm.

*is HMCVT test bench selected and designed the ac-
celerator pedal according to the engine type and ECU, as is
shown in Figure 6.

*e bolt adjusting device was installed on the accelerator
pedal, and the length of it was related to the change of the

position of the accelerator pedal. *e corresponding scale
line was drawn on the bolt in direct proportion to the speed
of the engine.

4.2. HMCVT Load Module. *e dynamometer loaded the
gearbox by outputting different quantities and can simulate
the working state of the vehicle in different working con-
ditions.*e test bench selected the Lanlin DW250 (Figure 7)
type eddy current dynamometer to match the rotation speed
and power of the engine.

4.3. Oil Pressure Sensor. *e JM-801 pressure sensor with a
ceramic core was selected for the test bench. When the
pressure was applied to the ceramic membrane, the surface
of the membrane will undergo subtle deformation.

*e resistance was printed on the back of the ceramic
diaphragm, and the Wheatstone bridge can be formed. *e
Wheatstone bridge will generate a voltage signal due to
voltage sensitive effect. *e signal is proportional to the
pressure and excitation current.*e oil pressure value of C0,
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Nm

Nm

Nm

Nm

rev/min

rev/min

rev/min

rev/min
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rev/min

4
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3

2

1

(a)

L/min
3

4 2

1

bar

L/min bar

Nm
rev/min Null

(b)

(c)

Figure 3: *e model of the HMCVT component. (a) Planet gear. (b) Variable pump. (c) Shifting hydraulic system.
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C1, C2, and lubrication main oil line in the platform can be
read directly through the pressure indicator table (Figure 8).

4.4. Test Bench. *e overall structure diagram of the test
bench is shown in Figure 9. *e test bench was mainly
composed of diesel engine, speed rising transmission, and
support device. In the test bench, the diesel engine was used
as the power source.

4.5. Clutch Oil Filling Test. *e structure of C0, C1, and C2
was basically the same, and this paper took C0 as an example

to carry out the bench test research on oil filling process. Test
steps were as follows.

First, the engine was started to adjust the accelerator
pedal and stabilize the output speed of the engine to
1295 r/min.

Secondly, the engagement button of C0 was pressed in
the measurement platform. *e oil pressure of the main oil
relief valve was set at 2.8MPa.

After receiving the electrical signal, the proportional
directional valve of C0 pumped the filtered oil from the tank
and sent to the clutch. *e oil filling process of C0 is shown
in Figure 10.

K1K2

C0

C2C1C3

Engine

i2
i3

i7 i5

ip

C0C2C1C3

i4

Tractor

Vehicle load Speed km/h

Speed input

i6

Figure 4: *e simulation model of HMCVT.
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Figure 5: Meshing force of the planet gear. (a) Internal meshing force and (b) external meshing force.

Table 1: Internal and external meshing force in working condition.

Working condition
External meshing force (N) Internal meshing force (N)

Maximum Minimum Maximum Minimum
— 2.20×107 7.33×106 2.00×107 3.33×106
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4.5.1. 0-a Section. *is section was mainly to eliminate the
gap between the friction plates. *e oil pressure raised from
0MPa to 0.03MPa rapidly. *e slope of the variation of the
curve in this section is 0.6.

4.5.2. a-b Section. *e slope of the variation of the curve in
this section is 0.52. At this stage, the piston compressed the
spring under the action of the oil pressure, and the oil
pressure increased with compression of the return spring.
*e oil pressure pf C0 rose slowly from 0.03MPa to

0.42MPa. *e variation of oil pressure was related to the
torque transferred by the clutch and piston stroke.

4.5.3. b-c Section. *e slope of the variation of the curve in
this section is 7.8. In this stage, the oil pressure of C0 rose
rapidly from 0.42MPa to 2.8MPa, which was set by the relief
valve in order to ensure the torque.

4.5.4. c-d Section. *is section was the pressure holding
stage. *e oil pressure of C0 was maintained at 2.8MPa.

Bolt speed
adjusting

device

Figure 6: Accelerator pedal of the engine.

Figure 7: Eddy current dynamometer.

Figure 8: Oil pressure gauge.
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4.6. Test Discussion. *e oil filling process can be divided
according to the slope of the oil pressure change in each
section.*e oil filling time was short at 0–0.5 s, and the range
of oil pressure change is 0.03MPa.*is section was the stage
of rapid oil filling.

*e oil filling duration of 0.05–0.8 s was 0.75 s, ac-
counting for 68% of the total oil filling time. And, the
variation range of oil pressure was 0.39MPa, accounting for
14% of the set oil filling pressure. *erefore, this stage was
the slow booster stage.

*e oil filling duration of 0.8–1.1 s was 0.3 s, accounting
for 27% of the total oil filling time. And, the variation range
of oil pressure was 2.38MPa, accounting for 85% of the set
oil filling pressure. In a short time, the oil pressure showed a
step rise. *erefore, the stage was the step booster stage.

During 1.1–1.4 s, the oil filling pressure reached the set
value of 2.8MPa and remained as such. *erefore, the stage
was the pressure holding stage.

According to analysis, the oil filling curve obtained from
the test bench had a similar trend to the theoretical curve. It
verified the oil filling characteristics of the wet clutch and
proved the accuracy of the HMCVT test bench.

5. Conclusions

In this paper, the dynamic characteristics of HMCVT were
analyzed. *e wet clutch engagement characteristics were
tested. *e analysis could be reference for the design of a
high-power tractor. *e conclusions can be made as follows:

(1) *e values of internal and external meshing force
become larger as the throttle opening increases.

(2) At the moment of shifting change, the meshing
forces of the planetary gear have great impact.

(3) *e magnitudes of the meshing force change de-
crease, and the trend tends to be stable after shifting
change.

(4) *e clutch test shows that the trend of oil filling is
similar to the theoretical curve. *e simulation
model is reliable.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Figure 9: *e HMCVT test bench.
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Chaotic systems with hidden multiscroll attractors have received much attention in recent years. However, most parts of hidden
multiscroll attractors previously reported were repeated by the same type of attractor, and the composite of different types of
attractors appeared rarely. In this paper, a memristor-based chaotic system, which can generate composite attractors with one up
to six scrolls, is proposed. 4ese composite attractors have different forms, similar to the Chua’s double scroll and jerk double
scroll. 4rough theoretical analysis, we find that the new system has no fixed point; that is to say, all of the composite multiscroll
attractors are hidden attractors. Additionally, some complicated dynamic behaviors including various hidden coexisting
attractors, extreme multistability, and transient transition are explored. Moreover, hardware circuit using discrete components is
implemented, and its experimental results supported the numerical simulations results.

1. Introduction

Recently, much effort has been devoted to the analysis of
various chaotic systems owing to its potential applications
[1–4]. To our knowledge, chaotic attractors are categorized
as either self-excited attractors [5–7] or hidden attractors
[8–11]. It should be particularly pointed out that hidden
attractors have neither homoclinic nor heteroclinic orbits;
thus, the Shil’nikov theorem [12] cannot be utilized to
verify the existence of chaos, so that hidden chaotic systems
attract great attention of scholars, and increasing number
of researchers begin to study the rich dynamic behaviors of
them.

As is known to all, multiscroll chaotic systems have
aroused extensive interests for their much complicated
dynamical properties than single-scroll ones. So, it is a more
desirable task to explore the hidden multiscroll chaotic
system, and there have been emerging related literatures on
this topic. In 2016, Jafari et al. presented a novel no-equi-
librium chaotic system with multiscroll hidden chaotic sea

by introducing a sine function into a 3D chaotic system [13].
In the same year, Hu et al. constructed two simple 3D chaotic
systems without equilibrium based on an improved Sprott A
system by adding a nonlinear function, from which hidden
multiscroll attractors can be obtained [14]. Later, a new class
of PWL dynamical system without equilibrium whose
hidden chaotic attractors can display grid multiscroll has
been introduced [15]. Deng and Wang proposed a multi-
scroll hidden chaotic system that has only two stable node-
foci equilibrium points [16]. Hong et al. investigated a novel
method for designing multidirection multibutterfly chaotic
attractors (MDMBCA) without reconstructing nonlinear
functions [17]. Furthermore, some memristive chaotic
systems, which can generate hiddenmultiscroll or multiwing
chaotic attractors, are reported [18, 19]. However, all of the
hiddenmultiscroll attractors discussed above are of the same
type attractor repeated in unidirectional or multidirection
ones. Are there hidden multiscroll attractors, which are
composed of different attractors? We are surprised that the
answer is positive.
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If an attractor is compounded from two or more different
single-scroll attractors, which is called composite attractor, its
dynamic characteristics are more complicated.4e composite
attractor has been already discovered in some self-excited
chaotic systems. For example, Cang et al. proposed a Lorenz-
like system with composite structure by controlling system
parameters [20]. Zhang et al. reported an autonomous-sys-
tem-based approach for creating composite chaotic attractors
from a class of generalized Lorenz systems via switching
control [21]. And then, Xiong et al. constructed a chaotic
system, which can generate composite four-scroll attractor by
adding a symbolic function into a 3D jerk system [22].
However, although the complexity of dynamic behavior of
these chaotic systems, which can produce composite attrac-
tors, has increased, the operationmethods and state equations
have also been correspondingly complicated, and the circuit
experiment is difficult to realize. Besides, these composite
multiscroll chaotic attractors mentioned above are limited to
self-excited attractors, and the hidden composite multiscroll
attractors have not been reported up to now. It is obvious that
designing a simple chaotic system, which can generate hidden
composite multiscroll attractors, is a meaningful task.

Based on these considerations, we introduce a quadratic
flux-controlled memristor into the 3D jerk chaotic system to
construct a memristor-based hidden composite multiscroll
chaotic system, which can produce composite one- to six-
scroll hidden attractors through changing only one system
parameter. It is pointed out that the composite six-scroll
hidden attractor is composed of a Chua’s double-scroll
attractor and two jerk double-scroll attractors. Compared
with [22], this new memristor-based hyperchaotic system
has more complex dynamic behaviors including hyper-
chaotic composite multiscroll hidden attractors and extreme
multistability phenomenon. 4ese composite multiscroll
attractors break the previous pattern of the same single-
scroll attractor that appeared repeatedly and has not been
reported in previous literature.

4e rest of this paper is organized as follows. In Section
2, the mathematical model of the proposed memristive
hyperchaotic system and its typical attractor are presented.
In Section 3, complex hidden dynamic behaviors of this new
system including controllable multiscroll hidden chaotic or
hyperchaotic attractors, coexistence of hidden attractors,
extreme multistability, and transient transition behavior are
described. In Section 4, the corresponding circuit imple-
mentation and experiment results are presented. 4e con-
clusion is presented in the last section.

2. Memristive Hyperchaotic System and Its
Typical Attractors

In 2016, Kengne et al. performed a simple 3D autonomous
jerk system with cubic nonlinearity [23], which is described
as

_x � y,

_y � az,

_z � x − by − z − x
3
,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x, y, z are state variables, and a, b are positive tunable
parameters. In order to construct a memristor-based
hyperchaotic system, a quadratic flux-controlled memristor
model [24] described in equation (2) is added into system
(1):

_u � v,

i � (m + nu)v,
􏼨 (2)

where u, v and i denote the internal state of the memristor,
the input of the memristor, and the output of the memristor
model, respectively. 4e m, n are two real parameters of the
memristor model. So, we constructed a 4D memristor-based
chaotic system, which can generate composite multiscroll
hidden attractors, and it is described as

_x � y + z,

_y � az − sgn(z) + p,

_z � 2x − by − z − kW(u)y − x
3
,

_u � cy,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

in which x, y, z are state variables, a, b, c, k are real pa-
rameters, W (u)� (m+ nu) is the memductance function,
and p is positive control parameter. From a dissipative
perspective, the divergence of the new system (3) can easily
be obtained as follows:

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _u

zu
� −1, (4)

at any given point (x, y, z, u) of the state space. Consequently,
the general condition of dissipativity related to the existence
of attractive sets in our model is satisfied. 4e equilibrium
points of system (3) can be obtained by solving the following
equations: _x � _y � _z � _u � 0. It is obvious that the equations
have no real solutions when parameter p is positive. 4at is
to say, system (3) has no equilibrium, and it belongs to
hidden chaotic system.

When fixing the control parameters a� 3.5, b� 0.8,
m� 0.1, n� 0.3, p � 0.01, k� 0.2, c� 0.01 and selecting the
initial conditions as (0.1, 0.1, 0.1, 0.1), a composite six-scroll
hidden chaotic attractor and its Poincaré map on y� 0
section as well as power spectrum are displayed in
Figures 1(a)–1(c). As is depicted in Figure 1(a), the six-scroll
attractor is composed of a Chua’s double-scroll attractor and
two jerk double-scroll attractors, and the two small jerk
double-scroll attractors are inside the large Chua’s double-
scroll attractor, respectively. It is surprising that the com-
posite six-scroll hidden chaotic attractors have never
appeared before as far as we know.

3. Dynamic Analysis and
Numerical Investigations

In this section, multifarious complicated dynamic behaviors
including controllable multiscroll hidden attractors, coex-
isting of hidden chaotic or hyperchaotic attractors, extreme
multistability, and transient transition behaviors of pro-
posed system (3) are investigated in detail by means of
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Lyapunov exponent spectra, bifurcation diagrams, phase
portraits, and time series. Note that all numerical simula-
tions are carried out on MATLAB software, and the first
20000 points are discarded in the phase portraits.

3.1. Controllable Multiscroll Hidden Chaotic or Hyperchaotic
Attractors. One interesting phenomenon is that the newly
proposed system (3) can generate composite one- to six-
scroll hidden attractors by changing only one system pa-
rameter. Fixing the control parameters b� 0.8, m� 0.1,
n� 0.3, k� 0.2, c� 0.01, p � 0.01 and changing the param-
eter a in the interval of [1.3, 5] with the initial conditions (0.1,
0.1, 0.1, 0.1), the corresponding bifurcation diagram is drawn
in Figure 2(a). Additionally, using the famous Wolf method
[25], the corresponding Lyapunov exponent spectrum
proves the complexity of system (3) as depicted in
Figure 2(b).

In reference to Figure 2(b), system (3) undergoes chaotic
and hyperchaotic routes as follows: chaotic
(1.3≤ a< 1.5)⟶ hyperchaotic (1.5≤ a< 2.65)⟶ chaotic
(2.56≤ a< 3.06)⟶ hyperchaotic (3.06≤ a< 3.42)⟶ cha-
otic (3.42≤ a< 5). What surprised us is that system (3)
generates composite one- to six-scrolls- hidden attractors
when selecting appropriate parameters, and these attractors
may exhibit either a symmetric or asymmetric structure. It is
rare to see such attractors in an asymmetric system. Some
typical hidden chaotic or hyperchaotic attractors with

different values of parameter a are shown in Figures 3(a)–
3(l). Note that Figures 3(a) and 3(b) display a pair of
asymmetric single-scroll hidden chaotic attractors at a� 1.38
and 2.92. Figures 3(c) and 3(d) show a pair of symmetric
double-scroll hidden hyperchaotic attractors at a� 2.3 and
2.55, and the corresponding Lyapunov exponents are (0.213,
0.179, 0, −1.381) and (0.255, 0.209, 0, −1.444), respectively.
Figures 3(e) and 3(f) exhibit two different double-scroll
hidden chaotic attractors at a� 2.946 and 5. And a pair of
asymmetric composite 3-scroll hidden chaotic and hyper-
chaotic attractors are drawn in Figures 3(g) and 3(h) with
a� 2.974 and 3.117. Furthermore, a pair of symmetric
composite 4-scroll hidden chaotic and hyperchaotic
attractors, a composite 5-scroll hidden chaotic attractor, and
a composite 6-scroll hidden hyperchaotic attractor are
presented in Figures 3(i) and 3(l) with a� 3.03, 3.076, 3.055,
and 3.125, respectively. To explain more intuitively and
clearly, the different types of attractors with different values
of parameter a are listed in Table 1. Consequently, the
unusual controllable multiscroll hidden chaotic or hyper-
chaotic attractors of system (3) are innovative.

3.2. Coexistence of Hidden Attractors. Nowadays, attractor
coexisting is one of the common nonlinear dynamic phe-
nomena, which is a chaotic system performing more than
one concurrent attractor for a given set of system parameters
under the different initial conditions [26–32]. In this section,
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corresponding power spectrum.
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Figure 2: Dynamic behavior with increasing the parameter a in the interval of [1.3, 5]. (a) Bifurcation diagrams of x. (b) Lyapunov exponent
spectrum.

–1.5
–1.8 –1.6 –1.4 –1.2 –0.8–1

x

0.5

–0.5

–1

0

z

(a)

x

0.5

0.5

1

1

–0.5

–0.5
–1.5

1.5 2

–1

0

0

z

(b)

0.5

1

1

–0.5

–1

0

x
0.8 1.2 1.4 1.6 1.8

z

(c)

–1.8 –1.6 –1.4 –1.2 –0.8–1
x

0.5

1

–0.5

1.5

–1

0
z

(d)

x

–1.5
210–2 –1

0.5

1

–0.5

1.5

–1

0z

(e)

x
1 2 30–2

–2
–3 –1

–1

2

1

0z

(f )

x
210–2

–2
–1

0.5

1

–0.5

–1.5

–1

0

z

(g)

x
0.5 1–0.5–2 –1–1.5 0

0.5

1

–0.5

1.5

–1

0
z

(h)

x
210–2

–2
–1

–1.5

0.5

1

–0.5

1.5

–1

0
z

(i)

Figure 3: Continued.
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the coexistence of hidden attractors with some specific
parameters setting and initial conditions in system (3) is
discussed. By selecting the control parameters as b� 0.8,
m� 0.1, n� 0.3, k� 0.2, c� 0.01, p � 0.01, the coexisting
bifurcation diagram of the state variable xwith respect to the
parameter a is described in Figure 4(a). Figure 4(b) displays
the Lyapunov exponent spectrum under the initial condi-
tions (−0.1, −0.1, −0.1, −0.1), which is in accordance with the
Lyapunov exponent spectrum under the initial conditions
(0.1, 0.1, 0.1, 0.1) in Figure 2(b). Various composite mul-
tiscroll chaotic or hyperchaotic hidden coexisting attractors
are shown in Figure 5; they are including symmetric
attractors and asymmetric attractors coexisting, odd number
of attractors, and even number of attractors coexisting. 4e
more detailed information is displayed in Table 2. All in all, it
is informative and rare that so many composite multiscroll
attractors coexist, which injects new blood into the field of
chaos coexisting.

3.3. Extreme Multistability Relying on Memristor Initial
Condition. In this subsection, we further studied the ex-
treme multistability phenomenon [33–38] in system (3). To
reveal extreme multistability phenomenon relying on

memristor initial condition, the typical parameters a� 3.05,
b� 0.8, c� 0.01, m� 0.1, n� 0.3, k� 0.2, p � 0.01 and initial
conditions x (0)� 0.1, y (0)� 0.1, z (0)� 0.1 are fixed. When
the memristor initial condition u (0) is increased gradually
from −4.8 to 10, the bifurcation diagram of the state variable
x and the Lyapunov exponent spectrum are plotted in
Figures 6(a) and 6(b), respectively. As can be seen from
Figure 6, the system has extremely rich dynamic
characteristics.

To explain the coexistence of infinite number of
attractors in system (2) more intuitively, several special
values of u are selected as shown in Table 3 and the phase
diagrams of the infinite coexisting attractors as shown in
Figure 7.

Specially, when setting a� 20, b� 0.8, m� 0.1, n� 0.3,
k� 0.2, c� 0.01, p � 0.01 and initial conditions x (0)� 0.1, y
(0)� 0.1, z (0)� 0.1, and change the memristor initial con-
dition u (0) in the region of [0, 8], the bifurcation diagram is
plotted in Figure 8. In light of Figure 8, it is clear that the
system goes through reverse period doubling bifurcation
route from chaos to periodic. In order to illustrate this
phenomenon of extreme multistability, there are seven types
of hidden attractors, which are presented in Figure 9. In fact,
more different types of hidden attractors can be obtained
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Figure 3: Some typical phase portraits with different parameter a. (a, b) A pair of asymmetric single-scroll chaotic attractors. (b) A pair of
asymmetric single-scroll chaotic attractors. (c, d) A pair of symmetric double-scroll chaotic attractors. (e, f ) Two different double-scroll
chaotic attractors. (g, h) Two different composite 3-scroll chaotic attractors. (i, j) A pair of symmetric composite 4-scroll chaotic and
hyperchaotic attractors. (k) A composite 5-scroll chaotic attractor. (l) A composite 6-scroll hyperchaotic attractor.

Table 1: Composite one- to six-scroll attractors of system (3) with variation of parameter a.

Parameter a LES Chaotic or hyperchaotic 4e number of scrolls of hidden attractor Diagrams
1.38 (+, 0, −, −) Chaotic Single-scroll Figure 3(a)
2.92 (+, 0, −, −) Chaotic Single-scroll Figure 3(b)
2.3 (+, +, 0, −) Hyperchaotic Double-scroll Figure 3(c)
2.55 (+, +, 0, −) Hyperchaotic Double-scroll Figure 3(d)
2.946 (+, 0, −, −) Chaotic Double-scroll Figure 3(e)
5 (+, 0, −, −) Chaotic Double-scroll Figure 3(f )
2.974 (+, 0, −, −) Chaotic 3-scroll Figure 3(g)
3.117 (+, +, 0, −) Hyperchaotic 3-scroll Figure 3(h)
3.03 (+, 0, −, −) Chaotic 4-scroll Figure 3(i)
3.076 (+, +, 0, −) Hyperchaotic 4-scroll Figure 3(j)
3.055 (+, 0, −, −) Chaotic 5-scroll Figure 3(k)
3.125 (+, +, 0, −) Hyperchaotic 6-scroll Figure 3(l)
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Figure 5: 4e coexisting chaotic or hyperchaotic hidden attractors with different values of parameter a.
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under the different initial conditions. In general, Figures 7–9
intuitively reveal the coexisting infinitely many hidden
hyperchaotic attractors, which indicates that system (3)
possesses hidden extreme multistability indeed.

3.4. Transient Transition Behavior. In system exhibiting
transient transition, the orbit is from one state (chaotic,
periodic) to another state (chaotic, periodic) for a finite time
interval before settling into a final state. Transient chaos with
boundary crisis is often encountered in nonlinear dynamic
systems [22, 39–43]. For the sake of verifying transient
transition behavior in system (3), the system parameters are
considered as a� 3.115, b� 0.8, m� 0.1, n� 0.3, k� 0.2,
c� 0.01, p � 0.01, while the initial conditions are selected as
(0.1, 0.1, 0.1, 0.1) and the time is t� 1000 s, and a phase
diagram of six scrolls and the corresponding time-domain

waveform with state variables x and z are shown in
Figures 10(a)–10(c). Figure 11 displays three different phase
diagrams with different simulation time and the Lyapunov
exponent spectrum with increased time. From the Lyapunov
exponent spectrum in Figure 11(d), it is clearly seen that
there are two Lyapunov exponents greater than zero at
t� 80 s; that is to say, system (3) transitions from chaotic to
hyperchaotic in the time of t� 80 s.

4. Circuit Implementation and
Experiment Results

Circuit implementation provides an alternative approach to
explore the novel no-equilibrium memristive hyperchaotic
system (3), and it is the key to the chaos application. In this
part, a suitable electrical circuit is designed and a hardware

Table 2: 4e coexisting multiscroll attractors of system (3) with different values of parameter a.

Parameter a Chaotic or hyperchaotic Coexisting attractors Diagrams
1.38 Chaotic A single scroll and a double-scroll Figure 5(a)
2.3 Hyperchaotic Two symmetric double-scroll Figure 5(b)
2.92 Chaotic Two symmetric single-scroll Figure 5(c)
2.974 Chaotic A 3-scroll and a single-scroll Figure 5(d)
3.055 Chaotic A 5-scroll and a 3-scroll Figure 5(e)
3.095 Hyperchaotic A 3-scroll and a double-scroll Figure 5(f )
3.105 Hyperchaotic A 5-scroll and a double-scroll Figure 5(g)
3.117 Hyperchaotic A 3-scroll and a 4-scroll Figure 5(h)
3.125 Hyperchaotic A 6-scroll and a double-scroll Figure 5(i)
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Figure 6: Bifurcation diagram and the Lyapunov exponent spectrum with respect to the initial conditions u (0) in region of [−4.8, 10].

Table 3: Extreme multistability behaviors of system (3).

Initial conditions Types of coexisting multiple
attractors Diagrams

(0.1, 0.1, 0.1, −1.76); (0.1, 0.1, 0.1, 0.8); (0.1, 0.1, 0.1, 0.14); (0.1, 0.1,
0.1, 0.59)

Two single scroll and two double-
scroll

Figure 7(a) red, green, cyan,
magenta.

(0.1, 0.1, 0.1, −4.3); (0.1, 0.1, 0.1, 0.4); (0.1, 0.1, 0.1, 7.2) 4ree double-scroll Figure 7(b) magenta, green, cyan.
(0.1, 0.1, 0.1, 0.23); (0.1, 0.1, 0.1, 0.37) Two 3-scroll Figure 7(c) magenta, green.
(0.1, 0.1, 0.1, −0.18); (0.1, 0.1, 0.1,−0.1) Two 4-scroll Figure 7(d) magenta, green.
(0.1, 0.1, 0.1, −1.29); (0.1, 0.1, 0.1, − 0.42) Two 5-scroll Figure 7(e) magenta, green.
(0.1, 0.1, 0.1, −3.4); (0.1, 0.1, 0.1, −1.8) Two 6-scroll Figure 7(f ) magenta, green.

Complexity 7



1.5

1

1 2

–1

–1.5
–2 –1

0.5

0

0

–0.5

x

z

(a)

1

1

2

3

2 3–2

–2

–3
–3

–1

–1

0

0z

x

(b)

1 2–2 –1 0

1.5

–1.5

1

–1

0.5

0

–0.5

z

x

(c)

1.5

–1.5

1

1

2

–1

–2
–2 –1

0.5

0

0

–0.5
z

x

(d)

z

x

1.5

–1.5
1

1

2

–1

–2 –1

0.5

0

0

–0.5

(e)

1

1

2

2–2
–2

–1

–1

0

0z

x

(f )

Figure 7: 4e coexistence of infinite number of attractors on x–z plane with different initial condition u (0).
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circuit is implemented to verify the theoretical results ob-
tained previously. 4e circuit diagram of the proposed
system (3) is provided in Figure 12, and the circuits in the
dashed box are constructed for the symbolic function circuit
and memristor equivalent circuit.

4e operational amplifiers of Figure 12 are LF353, whose
supply voltages are ±15V. And multipliers A1, A2, A3 are
AD633 with output coefficient of 0.1. Based on system (3),
select the system parameters as a� 3.5, b� 0.8, m� 0.1,
n� 0.3, k� 0.2, c� 0.01, p � 0.01 and let c � c0 t, where
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Figure 10: 4e transient transition behaviors of system (3). (a) A phase diagram of six-scroll hidden chaotic attractors. (b) Time-domain
waveform of the variable (x). (c) Time-domain waveform of the variable z.
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Complexity 9



c0 �10000 is the time-scale transformation factor and system
(3) can be rewritten by

_x � 10000y + 10000z,

_y � 35000z − 10000sign(z) + 100,

_z � 20000x − 8000y − 10000z − 2000W(u)y − 10000x
3
,

_v � 100y,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where W(u)� (m+ nu). Considering Kirchhoff’s law, the
circuit equation of system (3) can be written as

dvx

dt
�

1
R1C1

􏼠 􏼡vy −
1

R2C1
􏼠 􏼡vz,

dvy

dt
�

1
R3C2

􏼠 􏼡vy −
1

R4C2
􏼠 􏼡sign vz( 􏼁 +

1
R5C2

􏼠 􏼡V1,

dvz

dt
�

1
R6C3

􏼠 􏼡vx −
1

R7C3
􏼠 􏼡vy −

1
R8C3

􏼠 􏼡vz −
1

RmC3
􏼠 􏼡vy −

1
10RnC3

􏼠 􏼡vuvy −
1

100R9C3
􏼠 􏼡v

3
x,

dvu

dt
�

1
R10Cu

􏼠 􏼡vy.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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Figure 12: Circuit implementation of system (3).

Figure 13: 4e hardware circuit test setup to realize system (3).
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Here, vx, vy, vz and vu are the voltages on capacitors C1, C2,
C3 and Cu, respectively, and the capacitors
C1 �C2 �C3 �Cu � 10 nF, V1 � −1V. Comparing equation
(5) with equation (6) and keeping the corresponding co-
efficients equal, one gets R1 �R2 �R4 �R8 �10 kΩ,
R3 � 2.86 kΩ, R5 �R10 �10MΩ, R6 � 5 kΩ, R7 �12.5 kΩ,
R9 �100Ω, Rm � 500 kΩ, Rn � 16.7 kΩ. 4en, according to
the circuit diagram in Figure 12, some off-the-shelf discrete
components are used on the breadboard to build the
hardware circuit as shown in Figure 13 and the parameters
in the circuit are set as above. We can see a composite six-
scroll chaotic attractor as shown in Figure 14(a) by using
digital oscilloscope, which is well consistent with the phase
diagram simulated with MATLAB in Figure 1(a). Lastly,
keeping the values of R1, R2, R4, R5, R6, R7, R8, R9, Rm and Rn
unchanged, and adjusting the values of R3 to appropriate
resistance, other composite multiscroll attractors can be
obtained from this hardware circuit as shown in
Figures 14(b)–14(f ), which also agree with the results of
MATLAB simulation aforementioned. All of what is dis-
cussed above demonstrates the effectiveness and feasibility
of system (3).

5. Conclusion

In this paper, a memristor-based chaotic system with abun-
dant dynamic behaviors is reported. Compared with other
memristor-based chaotic systems, the new system can display
composite one- to six-scroll hidden attractors by changing
only one system parameter. And the composite multiscroll
attractors are composed of different types of attractors. For
example, a composite six-scroll attractor is composed of a

Chua’s double-scroll attractor and two jerk double-scroll
attractors. 4e coexistence of symmetric and asymmetric
attractors with different numbers of scrolls also reflects the
particularity of the system. Furthermore, extreme multi-
stability phenomenon and chaotic transient transition are
investigated in the system. Finally, the feasibility of the
proposed chaotic system is verified by hardware circuit, and
the results match very well with the numerical simulations.
Due to the fact that such a new chaotic system constructed in
this paper has complex dynamic properties, it could be utilized
advantageously in chaos-based engineering applications in-
cluding image encryption, random bit generation, and chaos-
based secure communication, and for future investigation.
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(a) (b) (c)

(d) (e) (f )

Figure 14: 4e screenshots of the digital oscilloscope of the different composite multiscroll attractors with different R3. (a) Composite 6-
scroll with R3 � 2.86 kΩ; (b) composite 4-scroll with R3 � 3.3 kΩ; (c) double-scroll with R3 � 0.5 kΩ; (d) double-scroll with R3 � 4.348 kΩ;
(e) composite 3-scroll with R3 � 3.362 kΩ; (f ) single-scroll with R3 � 0.263 kΩ.
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In this article, a behavioral study of three-dimensional (3D) squeezing flow of nanofluids withmagnetic effect in a rotating channel
has been performed. Using Navier–Stokes equations along with suitable similarity transformations, a nonlinear coupled ordinary
differential system has been derived which models the 3D squeezing flow of nanofluids with lower permeable stretching porous
wall where the channel is also rotating.�e base fluid in the channel is considered to be water that contains different nanoparticles
including silicon, copper, silver, gold, and platinum. �e homotopy perturbation method (HPM) is employed for the solution of
highly nonlinear coupled system. For validation purpose, system of equations is also solved through the Runge–Kutta–Fehlberg
(RK45) scheme and results are compared with homotopy solutions, and excellent agreement has been found between analytical
and numerical results. Also, validation has been performed by finding average residual error of the coupled system. Furthermore,
the effects of various parameters such as nanoparticle volume fraction, suction parameter, characteristic parameter of the flow,
magnetic parameter, rotation parameter, and different types of nanoparticles are studied graphically.

1. Introduction

Fluids exhibiting good thermal conductivity properties
are a major requirement of many industrial applications
involving heat transfer equipment. Typical examples are
those of vehicular cooling systems, refrigerants, building
services, and conventional industrial processing systems,
such as petro-chemical, textile, paper, and food processing
plants, to name a few [1–3]. To reduce costs and be energy
efficient, the research and industrial community has
continuously worked to develop and utilize fluids bearing
high thermal conductivity. �e concept of nanofluids was
introduced in [4] which utilized suspended metallic

nanoparticles (with a typical size of 100 Å) in conventional
heat transfer fluids such as water or engine oil. Since
metallic solids reflect heat conductivity of orders greater
than conventional heat transfer fluids, this engineered
form of fluids was received quite well by the industrial and
research community. A comparison can be made on the
basis of silver, 429W/(m K); water, 0.613W/(m K); and
engine oil, 0.145W/(m K) at 300 k; and liquid sodium,
89.44W/(m K) at 371 k. Moreover, since the surface area
to volume ratio is inversely proportional to the radius of a
particle, suspended metals of nanometer scales would give
better heat conductivity as compared to micrometer-sized
particles.
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Since the convective heat transfer coefficient is derived
from continuity, momentum, and energy equations, its
behaviour is significantly dependent on the velocity and
temperature profile of the nanofluid’s base fluid [1, 5].
Moreover, the heat andmomentum transfer mechanisms are
essentially the same and hence can be comparable on the
basis of analogies. For instance, Reynold’s analogy is ap-
plicable towards turbulent flows, Prandtl’s analogy for
laminar flows, von Korman’s analogy for both laminar and
turbulent flows with a buffer layer in between, and Chil-
ton–Colburn analogy for transport independent flows [6].
�e velocity is also dependent on the concentration of
nanoparticles in a nanofluid such that a higher concentra-
tion may result in a flattening of the velocity profile [7].
Studies have also shown that the velocity profile is not
uniform. For instance, near-wall velocity profile measure-
ments have shown increased velocity gradient, with no slip,
relative to the equivalent base fluid [8]. As such, the in-
vestigation of the velocity profile under different boundary
conditions and flow models is of particular interest to the
research community.

With this, a considerable volume of literature started to
address the behaviour of nanofluids in context of different
boundary conditions (convective [9], porous medium
[10, 11]), characterization parameters of different fluids and
suspended metals (Cu/Cu-TiO2 [12, 13], Cu-H2O/Cu-Ker-
osene [14]), and thermodynamic [15, 16] and magnetohy-
drodynamic [17–19] properties using analytical and/or
numerical approaches. A comprehensive review of these
aspects in general is presented in [1, 3, 20].

�e study of squeezing flows that is normal to two
parallel plates is an important problem in the area of fluid
dynamics, having applications in hydraulic machinery,
electric motors, food industry, bioengineering, and au-
tomobile engines, amongst others. �e mechanics of these
studies in context of turbulent, laminar, and transitional
flows, and different non-Newtonian fluid models (e.g.,
power law [21], grade 2/3 [22], and Casson [23, 24]) have
proved to be a significant challenge to the research
community due to the involved nonlinearities. �e
squeezing flow response in context of parallel plates ap-
pears in [13, 25, 26], parallel moving plates are given in
[27–29], orthogonal moving plates are discussed in [10],
moving surface in [30], stretching surface in [31–33], and
stretching cylinders are given in [34]. Likewise, the re-
sponse to Casson flow is discussed in [16, 19, 32, 34],
Hiemenz flow in [35], and bioconvection flows in [19, 36].
�e studies have also been extended to nanofluids
[1, 17, 25, 36, 37]. In [38], Naz et al. solved analytically the
problem of variable thermophysical features of the three-
dimensional flow of a non-Newtonian yield manifesting
liquid with heat and mass transport in the presence of
gyrotactic microorganisms over a nonlinear stretched
surface. �ey utilized the boundary-layer theory to de-
velop the governing partial differential equations. �ey
concluded that the mounting values of the fluid parameter
and magnetic parameter retard the fluid flow. Moreover
[39], Ahmed et al. investigated analytically the problem of
Jeffery–Hamel flow for second-grade fluid between two

nonparallel walls having a source or a sink at the cusp.
Soret and Dufour effects are incorporated in the energy
and concentration equations. For solution purposes, the
authors used the homotopy analysis method (HAM).
Variations in temperature and concentration profiles for
varying in grained physical parameters in the flow model
are discussed graphically. Also, Nusselt number and the
skin friction coefficient along with Sherwood number are
extracted numerically and analytically. In [40], Khan et al.
investigated viscous incompressible fluid between two
nonparallel plane walls, known as Jeffery–Hamel flow,
under the influence of thermal radiation. �ey used the
similarity technique to solve for the governing equations.
Moreover, the same problem is solved numerically and a
comparison between the two methods is conducted that
yields a great result. �ey presented the rates of heat and
mass transfer. Furthermore, the effects of the investigated
parameters on the flow and heat transfer are discussed and
analyzed. Additionally [41], Khan et al. studied analyti-
cally by employing similarity technique along with
Runge–Kutta and homotopy analysis algorithms the
unsteady magnetohydrodynamics flow with heat gener-
ation/absorption of H2O saturated by tiny nanosized
particles with various shapes over a thin slit. �ey found
out that as the magnetic field increases, the nanofluid
temperature increases and the motion decreases. In ad-
dition [42], Khan et al. investigated the flow of nanofluid
over a curved Riga surface; they studied the impact of the
freezing temperature and the diameter of the nano-
particles on the flow field and the heat transfer. �ey
found out that the nanofluid velocity dropped by in-
creasing the flow parameters c and S, and an abrupt
decrement occurred at the surface of the Riga sheet. Also
[43], Naz et al. investigated the entropy analysis of 3D flow
of Maxwell nanofluid containing gyrotactic microor-
ganism in the presence of homogeneous-heterogeneous
reactions with improved heat conduction and mass dif-
fusion models over a stretched surface. �ey found out
that entropy generation increases for higher values of
radiation parameter and Brinkman number, whereas the
Bejan number is reduced for the higher values of radiation
and magnetic parameters.

From a numerical perspective, the various behaviours
are explained on the basis of solutions over discrete points
distributed throughout the problem domain. Solutions for
remaining points are obtained by means of interpolation.
For reasons of performance and accuracy, these points
appear amidst regular geometries. In context of simpler
domains, reduced number of dimensions is sufficient for
such studies. However, by considering richer intricacies of
involved physics, the simplified problem domain is com-
promised, giving failed predictions. In such situations,
studies on the basis of 3D domain models, even for simpler
geometry configurations, are imperative. �e common ap-
proach in terms of nanofluids is the fourth-order Run-
ge–Kutta family of integration methods [44, 45]. �e same is
also true from an analytical perspective that takes into ac-
count simplified assumptions. �e usual approach for
boundary value problems is the usage of perturbation
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techniques. However, due to assumptions of small or large
parameters, this is not sufficient. In this regard, a seminal
work that combined these perturbation techniques with
homotopy was proposed as the homotopy perturbation
method (HPM) in [46–49]. Since its introduction, the
method has been applied to different nonlinear equations
[50–56]. Specifically, in the case of nanofluids, the method
has been applied in [57–60]. Other approximation tech-
niques that have been used for the case of fluid dynamics
include the homotopy analysis method (HAM) [61] and
optimal homotopy asymptotic method (OHAM) [62].

In this article, we provide a comprehensive description of
the three-dimensional squeezing flow of nanofluids, con-
sidering a geometry involving a rotating channel. �e flow is
characterised on the basis of water as base fluid and different
suspended nanoparticles. �e study is performed on the basis
of Navier–Stokes equations using similarity transforms. Both
analytical and numerical solutions are obtained using the
homotopy perturbation method and Runge–Kutta–Fehlberg
scheme. Furthermore, validation of results has been per-
formed by finding the average residual error of the coupled
system. After validation, we present characterization of dif-
ferent configurations of nanofluids using parameters such as
volume fraction, suction, flow, magnetism, and rotation.

In the remaining part of the paper, Section 2 includes
mathematical formulation of the problem. Section 3 presents
the basic theory of numerical approach. Section 4 comprises
the results and discussion. Finally, conclusion is presented in
Section 5.

2. Mathematical Formulation

We consider a 3D rotating incompressible and electrically
conducting viscous nanofluid flow between two infinite
horizontal plates. �e lower plate is positioned at y � 0 and is
stretched with a velocity U0(t) � ax/(1 − ct) in x, where a is
the stretching rate of the lower plate, and c is a characteristic
constant. �e upper plate is at a variable distance
h(t) �

����������
]f(1 − ct)/a

􏽱
. �e fluid is squeezed with a velocity

vh � dh/dt in negative y-axis.�e angular velocityΩ between
the fluid and channel around y isΩ � ω􏽢J/(1 − ct), where J is
the flux. �e lower plate intakes the flow with a velocity
− V0/(1 − ct). A magnetic field with density B0/

�����
1 − c

􏽰
is

applied along the y-axis. �e system is rotating along the
y-axis (see Figure 1). �ese are then introduced to obtain
similarity solutions by reducing the governing equations into
a system of ordinary differential equations. �e governing
relation for continuity and momentum of nanofluid flow in
the rotating frame of reference is given as follows:

∇ · V � 0, (1)

ρnf
zV

zt
+(V · ∇)V + 2Ω × V􏼢 􏼣 � ∇ · T + J × B, (2)

where T is the Cauchy stress tensor, J is the magnetic flux,
and B is the current density. �e abovementioned governing
equations can also be described by the following set of
Navier–Stokes equations:
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(3)

where ρnf is the nanofluid density, vnf � μnf /ρnf is the
nanofluid kinematic viscosity, σ is the electrical conduc-
tivity, B0 is the magnetic field, and c is a characteristic
parameter representing inverse time, and ct< 1. �e con-
stants for the model are given as

μnf �
μf

(1 − ϕ)
2.5,

ρnf � (1 − ϕ)ρf + ϕρs,

(4)

where μf is the fluid fraction viscosity, ϕ is the nanoparticle
volume fraction, and ρf and ρs are the densities of the fluid
and of solid fractions. �e thermophysical properties of
different materials are given in Table 1 for reference. �e
boundary conditions at y � 0 are given as

y = 0

x, u

y, v

B0

U0 (t)

Vh (t)

Ω

z, w

y = h (t)

Figure 1: Geometry for the problem. A nanofluid is squeezed
between two infinite horizontal parallel plates. �e lower plate is at
position y � 0 and stretched with a velocity U0(t), while the upper
plate is at a variable height of h(t). By movement of the upper plate
in negative y-axis, the nanofluid is squeezed at a velocity of vh(t).Ω
represents the angular velocity, while B0 is the magnetic field
density applied along y.
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u(x, y, t) � U0 �
ax

1 − ct
,

v(x, y, t) � −
V0

1 − ct
,

w(x, y, t) � 0.

(5)

While for y � h(t), are given as

u(x, y, t) � 0,

v(x, y, t) � Vh �
dh

dt
�

− c

2

��������
]f

a(1 − ct)

􏽳

,

w(x, y, t) � 0,

(6)

where a is the stretching rate of the lower plate. �e gov-
erning equations subject to similarity transformation in
order to give ordinary differential equations in terms of a
stream function ψ are given as

ψ �

�����
a]f

1 − ct

􏽳

xf(η),

η �
y

h(t)
,

u �
zψ
zy

� U0f′(η),

v � −
zψ
zx

� −

�����
a]f

1 − ct

􏽳

f(η),

w � U0g(η).

(7)

Substitution of these similarity transforms to the gov-
erning Navier–Stokes equations, we have

z
3
f

zη3
+
]f

]nf
f

z
2
f

zη2
−

zf

zη
􏼠 􏼡

2

− β
zf

zη
+ 0.5η

z
2
f

zη2
􏼠 􏼡⎛⎝

− 2Ωg −
ρf

ρnf
M

2zf

zη
􏼡 �

(1 − ct)
2]f

ρnfa
2
x]nf

zp

zx
,

−
z
2
f

zη2
+
]f

]nf
− f

zf

zη
+ 0.5β f + η

zf

zη
􏼠 􏼡􏼠 􏼡 �

1 − ct

ρnfa]nf
zp η,

z
2
g

zη2
+
]f

]nf
f

zg

zη
−

zf

zη
g − β g + 0.5η

zg

zη
􏼠 􏼡 + 2Ω

zf

zη
􏼠 􏼡

−
μf

μnf
M

2
g � 0,

(8)

where β � c/a is the characteristic parameter of the flow,
Ω � w/a is the rotation parameter, M2 � σB2

0/ρfa is the
magnetic parameter, and prime denotes differentiation with
respect to η. To squeeze the flow, we take β> 0 for which the
upper plates move downward with a velocity of Vh < 0,
whereas for β< 0, the upper plate moves upwards with
respect to the plane y � 0. β � 0 corresponds to a steady
state. To reduce the number of independent variables as well
as retain the similarity solution, the above are simplified by
cross-differentiation, giving us

f
iv

− 1 − ϕ +
ϕρs

ρf

􏼠 􏼡(1 − ϕ)
2.5

× f′f″ − ff
‴

+ 2Ωg′􏼒

+ 0.5β 3f″ + ηf
‴

􏼒 􏼓􏼓 − (1 − ϕ)
2.5

M
2
f″ � 0,

g″ + 1 − ϕ +
ϕρs

ρf

􏼠 􏼡(1 − ϕ)
2.5

× fg′ − f′g − β g + 0.5ηg′( 􏼁(

+ 2Ωf′􏼁 − (1 − ϕ)
2.5

M
2
g � 0.

(9)

Moreover, the transformed boundary conditions take
the form:

f(0) � w0,

f′(0) � 1,

g(0) � 0,

f(1) � 0.5β,

f′(1) � 0,

g(1) � 0,

(10)

where w0 � V0/ah is the suction parameter. For this problem,
the physical quantity of interest is the skin friction coefficient
Cf along the wall at the lower and upper walls, defined as

Table 1: �ermophysical property for the base fluid, along with
other nanoparticles.

Material ρ(kg/m3)

Water, H2O 997.1
Silver, Ag 10500
Copper oxide, CuO 6320
Silicon, Si 2330
Gold, Au 19300
Aluminium oxide, Al2O3 3970
Copper, Cu 8933
Platinum, Pt 21450
Titanium dioxide, TiO2 4250
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Cf,lower �
μnf(zu/zy)y�0

ρnfU
2
0

,

Cf,upper �
μnf(zu/zy)y�h(t)

ρnfU
2
0

.

(11)

Substituting stream function to the abovementioned, we
obtain

Cf,lower � Cf,lowerRex �
f″(0)

1 − ϕ + ϕρs/ρf􏼐 􏼑(1 − ϕ)
2.5,

Cf,upper � Cf,upperRex �
f″(1)

1 − ϕ + ϕρs/ρf􏼐 􏼑(1 − ϕ)
2.5,

(12)

where Rex � ρfU0h/μf is the local Reynolds number.

3. Basic Theory of Homotopy
Perturbation Method

�e basic theory of HPM can be exhibited using the fol-
lowing differential equation:

L(f) + N(f) − g(r) � 0, r ∈ Ω,

B f,
df

dn
􏼠 􏼡 � 0, r ∈ Υ,

(13)

where Υ is the boundary of the domainΩ, and f is unknown
and g(r) is a known function. L, N, B are linear, nonlinear,
and boundary operators, respectively. We construct a
homotopy θ(r, p): Ω × [0, 1]⟶ R which satisfies

Ψ(θ, q) � (1 − q) L(θ) − L f0( 􏼁􏼂 􏼃 + q[L(θ) + N(θ) − g(r)] � 0,

r ∈ Ω,

(14)

where q ∈ [0, 1] is an embedding parameter, and f0 is the
initial guess of (13) that satisfies the boundary conditions.
From (14), we have

Ψ(θ, 0) � L(θ) − L f0( 􏼁 � 0,

Ψ(θ, 1) � L(θ) + N(θ) − g(r) � 0.
(15)

�us, as q varies from 0 to 1, the solution θ(r, q) ap-
proaches from f0(r) to 􏽥f(r). To obtain an approximate so-
lution, we expand θ(r, q) in a Taylor series about q as follows:

θ(r, q) � θ0 + 􏽘
∞

k�1
θkq

k
. (16)

Setting q � 1, the approximate solution of (13) would be

􏽥U � lim
q⟶1

θ(r, q) � 􏽘

∞

k�1
θk. (17)

Substituting equation (17) in equation (13) will give

R(x) � L[ 􏽥U(x)] + N[ 􏽥U(x)] − g(x). (18)

If R is approaching zero, 􏽥U will then approach towards
the exact solution.

4. Results and Discussion

In this article, an unsteady three-dimensional squeezing flow
of electrically conducting nanofluid between two infinite
horizontal planes in a rotating channel is considered. �e
composition of the nanofluid is made on the basis of dif-
ferent nanoparticles, including Silicon (Si), Copper (Cu),
Silver (Ag), Gold (Au), and Platinum (Pt). �ese nanofluids
with silicon composition are used for observing the effect of
various parameters on the velocity profile. �ese parameters
include the nanoparticle volume fraction ϕ, suction pa-
rameter w0, characteristic parameter of the flow β, rotation
parameter Ω, and magnetic parameter M. �e formulated
boundary value system described in Section 2 for these
parameters is solved using HPM, which is then compared
with numerical solutions obtained using the Run-
ge–Kutta–Fehlberg method for validation purposes. A
graphical representation for this validation is given in
Figure 2, showing good agreement.

A detailed analysis of this validation is performed
through residual errors, for ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1,
and M � 1 in Tables 2 and 3 for both the HPM and RK45
methods individually. Validation with a variation of β � 2 is
given in Tables 4 and 5. In both cases, the results fromHPM-
based solution are consistent and in good agreement with
the numerical results. A comparative analysis on the basis of
β � (1, 2) using both HPM and RK45 is given in Table 6.�e
effect of the skin friction coefficient at both lower and upper
walls is also given in Table 7.

After validation of the solutions, the behaviour response
of nanofluids against various parameters is investigated. In
all these investigations, 0< η< 0.5 corresponds to the lower
half, while 0.5< η< 1 represents the upper half of the
channel.

�e effect of nanoparticle volume fraction ϕ on normal,
axial, and transverse velocity components is given in
Figure 3. Here, the static parameters are w0 � 0.5, β � 1,
Ω � 1, and M � 0.5, while the variational parameter
ϕε[0, 1]. �e general observation is that ϕ increases with
respect to normal velocity. �e axial velocity profile in-
creases with an increase in the nanoparticle volume fraction
in the lower half of the channel, while it decreases in the
upper half. �e transverse velocity decreases in the vicinity
of lower surface, (0< η< 0.25), when the nanoparticle
volume fraction increases. But other than that, an opposite
trend has been observed in the rest of the channel
(0.25< η< 1). �ese behaviours are justified because vis-
cosity increases by increasing the nanomaterial volume
fraction; as a result, the enhanced frictional force leads to the
flow resistance.

�e response of suction parameter (w0) on the velocity
profile is given in Figure 4, where it can be observed that the
observable range of w0 is at a maximum in the lower
channel. �e overall trend is similar to an exponential in-
crease in this region. However, w0 gets confined rapidly
around the midpoint as η and w0 approach 1. In the case of
the axial velocity, it stands at maximum close to the lower
wall at η � 0 and at the midpoint close to the upper wall at
η � 1. In other cases, it decreases significantly as w0
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increases. �is results in a reverse flow due to discharge of a
large amount of fluid particles in the vicinity of the lower
wall, while on the upper wall, it becomes much more no-
ticeable. In the case of the traverse component of velocity
profile, there is almost no change as the maximum range of
the velocity profile stands at 0.002. In this case, the velocity is
nonexistent at both walls. In all these cases, the static pa-
rameters are ϕ � 0.9, β � 1, Ω � 1, and M � 0.5, while the
variable parameter w0ε[0, 1].

�e effect of magnetic parameter M on the velocity
profile is shown in Figure 5. Here, the static parameters are
ϕ � 0.2, w0 � 0.5, β � 1, and Ω � 1, while the variable pa-
rameters are Mε[0, 0.6]. In these cases, the normal velocity
presents a tailed parabolic behaviour, as M is increased,
where in the region in vicinity of lower plate shows an
increased flow, but a decreased flow a little before the
channel midpoint. �e axial velocity component also has

dual behaviour, where it decreases with an increase in M in
the lower channel, while showing an increasing behaviour in
the upper channel. In the transverse component, the velocity
component is zero at both the upper and lower walls,
whereas at the center of the channel, the maximum range for
different M stands at 0.04. But in general, a positive
transverse velocity component is only observable if M> 0.5.
�e reason behind these behaviours is that application of
magnetic field to an electrically conducting fluid gives rise to
a resistive type force called the Lorentz force. �is force has
the tendency to slow down the motion of the fluid.

�e effect of characteristic parameter β on the velocity
profile, while the static parameters are ϕ � 0.9, w0 � 0.5,
Ω � 1, and M � 0.5 and while β varies in the interval
[− 2.5, 2.5], is presented in Figures 6 and 7. Positive values of
β representing movement of the upper plate towards the
lower plate, all three velocity components, demonstrate an

Table 2: Homotopy-based solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1, andM � 1.

η fHPM gHPM Abs error equation (1) Abs error equation (2) Average Abs error

0. 0.5 0 8.306 × 10− 8 2.504 × 10− 9 4.278 × 10− 8

0.05 0.545121 0.0000417402 4.570 × 10− 8 2.524 × 10− 9 2.411 × 10− 8

0.10 0.580987 0.0000553098 1.937 × 10− 8 1.525 × 10− 9 1.045 × 10− 8

0.15 0.60835 0.0000468996 1.493 × 10− 9 4.431 × 10− 11 7.686 × 10− 10

0.20 0.627961 0.0000221747 9.986 × 10− 9 1.509 × 10− 9 5.748 × 10− 9

0.25 0.640574 − 0.0000137254 1.662 × 10− 8 2.844 × 10− 9 9.735 × 10− 9

0.30 0.646938 − 0.0000561855 1.962 × 10− 8 3.778 × 10− 9 1.170 × 10− 8

0.35 0.647805 − 0.000101115 1.990 × 10− 8 4.223 × 10− 9 1.206 × 10− 8

0.40 0.643925 − 0.000144946 1.817 × 10− 8 4.170 × 10− 9 1.117 × 10− 8

0.45 0.636048 − 0.000184635 1.500 × 10− 8 3.672 × 10− 9 9.341 × 10− 9

0.50 0.624925 − 0.000217661 1.088 × 10− 8 2.828 × 10− 9 6.859 × 10− 9

0.55 0.611304 − 0.000242025 6.239 × 10− 9 1.763 × 10− 9 4.001 × 10− 9

0.60 0.595936 − 0.00025625 1.448 × 10− 9 6.138 × 10− 10 1.031 × 10− 9

0.65 0.57957 − 0.000259381 3.111 × 10− 9 4.837 × 10− 10 1.797 × 10− 9

0.70 0.562955 − 0.000250985 7.086 × 10− 9 1.408 × 10− 9 4.247 × 10− 9

0.75 0.546841 − 0.000231151 1.014 × 10− 8 2.061 × 10− 9 6.105 × 10− 9

0.80 0.531976 − 0.000200489 1.199 × 10− 8 2.375 × 10− 9 7.187 × 10− 9

0.85 0.519111 − 0.000160129 1.239 × 10− 8 2.313 × 10− 9 7.352 × 10− 9

0.90 0.508993 − 0.000111724 1.114 × 10− 8 1.873 × 10− 9 6.508 × 10− 9

0.95 0.502373 − 0.0000574492 8.143 × 10− 9 1.083 × 10− 9 4.613 × 10− 9

1. 0.5 2.7 × 10− 21 3.371 × 10− 9 1.180 × 10− 19 1.685 × 10− 9

0.2 0.4 0.6 1.00.0 0.8
η

0.50

0.55

0.60

0.65
f (

η)

HPM Sol
RK45 Sol

(a)

–0.00025

–0.00020

–0.00015

–0.00010

–0.00005

0.00000

0.00005

g (
η)

0.60.4 1.00.0 0.2 0.8
η

HPM Sol
RK45 Sol

(b)

Figure 2: Comparison of analytical and numerical solutions. (a) Comparison of f(η). (b) Comparison of g(η).
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increase (see Figure 6). On the contrary, the inverse
movement is represented by the negative β values; all ve-
locity components record a decrease as β is decreased (see
Figure 7).

Effect of rotational parameterΩ on the velocity profile is
depicted in Figure 8. For Ω, the normal velocity decreases as
Ω is increased. �e axial velocity shows a dual behaviour. In
the lower part of the channel, there is a small decrease in the
velocity as Ω is increased, whereas in the upper part of the
channel, there is a small increase as Ω is increased. An
inverse dual behaviour to the axial component is reflected in

the transverse component. Here, there is small increase in
velocity asΩ is increased in the lower quarter of the channel,
whereas in the remaining three quarters, there is a major
reversal of velocity as Ω is increased. Here, the static pa-
rameters are ϕ � 0.2, w0 � 0.5, β � 1, and M � 0.5, while the
variational parameter is Ω � [3, 12]. �e transverse velocity
component shows a similar behaviour in the case of in-
creased nanoparticle volume fraction ϕ and the rotation
parameter Ω. Magnitudes of these velocities are found to
decease within the rotating channel with augmentation. One
of the forces encountered in fluid flow with a rotating

Table 4: Homotopy-based solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 2, andM � 1.

η fHPM gHPM Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 4.793 × 10− 8 1.700 × 10− 8 3.247 × 10− 8

0.05 0.548747 0.00021484 4.773 × 10− 8 1.224 × 10− 8 2.998 × 10− 8

0.10 0.594991 0.000396569 4.876 × 10− 8 5.672 × 10− 9 2.721 × 10− 8

0.15 0.638731 0.000546947 4.997 × 10− 8 1.859 × 10− 9 2.591 × 10− 8

0.20 0.67997 0.000667732 5.049 × 10− 8 9.659 × 10− 9 3.007 × 10− 8

0.25 0.718709 0.000760677 4.966 × 10− 8 1.716 × 10− 8 3.341 × 10− 8

0.30 0.754949 0.000827534 4.701 × 10− 8 2.394 × 10− 8 3.548 × 10− 8

0.35 0.78869 0.00087005 4.224 × 10− 8 2.967 × 10− 8 3.595 × 10− 8

0.40 0.819934 0.000889971 3.521 × 10− 8 3.413 × 10− 8 3.467 × 10− 8

0.45 0.84868 0.000889042 2.596 × 10− 8 3.719 × 10− 8 3.157 × 10− 8

0.50 0.874928 0.000869003 1.467 × 10− 8 3.882 × 10− 8 2.674 × 10− 8

0.55 0.89868 0.000831597 1.677 × 10− 9 3.905 × 10− 8 2.036 × 10− 8

0.60 0.919934 0.00077856 1.255 × 10− 8 3.795 × 10− 8 2.525 × 10− 8

0.65 0.938691 0.000711631 2.741 × 10− 8 3.565 × 10− 8 3.153 × 10− 8

0.70 0.95495 0.000632547 4.219 × 10− 8 3.233 × 10− 8 3.726 × 10− 8

0.75 0.96871 0.000543044 5.605 × 10− 8 2.815 × 10− 8 4.210 × 10− 8

0.80 0.979971 0.000444857 6.805 × 10− 8 2.329 × 10− 8 4.567 × 10− 8

0.85 0.988732 0.000339724 7.716 × 10− 8 1.793 × 10− 8 4.755 × 10− 8

0.90 0.994991 0.000229378 8.228 × 10− 8 1.221 × 10− 8 4.724 × 10− 8

0.95 0.998747 0.000115558 8.220 × 10− 8 6.221 × 10− 9 4.421 × 10− 8

1. 1. 1.1 × 10− 18 7.567 × 10− 8 3.715 × 10− 20 3.783 × 10− 8

Table 3: RK45 solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 1, andM � 1.

η fRK45 gRK45 Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 4.353 × 10− 4 1.868 × 10− 8 2.176 × 10− 4

0.05 0.545121 0.0000417403 2.140 × 10− 4 5.805 × 10− 9 1.070 × 10− 4

0.10 0.580987 0.0000553099 9.222 × 10− 5 8.619 × 10− 10 4.611 × 10− 5

0.15 0.60835 0.0000468997 3.185 × 10− 5 5.766 × 10− 10 1.592 × 10− 5

0.20 0.627961 0.0000221748 6.477 × 10− 6 7.509 × 10− 10 3.239 × 10− 6

0.25 0.640574 − 0.0000137252 1.205 × 10− 6 6.336 × 10− 10 6.032 × 10− 7

0.30 0.646938 − 0.0000561853 1.634 × 10− 6 5.402 × 10− 10 8.173 × 10− 7

0.35 0.647805 − 0.000101115 3.276 × 10− 7 5.064 × 10− 10 1.640 × 10− 7

0.40 0.643925 − 0.000144946 4.547 × 10− 7 4.915 × 10− 10 2.276 × 10− 7

0.45 0.636048 − 0.000184635 3.610 × 10− 7 4.672 × 10− 10 1.807 × 10− 7

0.50 0.624925 − 0.000217661 1.067 × 10− 7 4.345 × 10− 10 5.361 × 10− 8

0.55 0.611304 − 0.000242025 3.463 × 10− 7 4.088 × 10− 10 1.733 × 10− 7

0.60 0.595936 − 0.000256249 1.062 × 10− 7 3.986 × 10− 10 5.332 × 10− 8

0.65 0.57957 − 0.000259381 3.624 × 10− 7 3.962 × 10− 10 1.814 × 10− 7

0.70 0.562955 − 0.000250985 4.570 × 10− 7 3.857 × 10− 10 2.287 × 10− 7

0.75 0.546841 − 0.000231151 3.247 × 10− 7 3.646 × 10− 10 1.625 × 10− 7

0.80 0.531976 − 0.000200489 1.631 × 10− 6 3.611 × 10− 10 8.160 × 10− 7

0.85 0.519111 − 0.000160129 1.203 × 10− 6 4.189 × 10− 10 6.019 × 10− 7

0.90 0.508993 − 0.000111724 6.485 × 10− 6 5.075 × 10− 10 3.243 × 10− 6

0.95 0.502373 − 0.0000574492 3.188 × 10− 5 3.023 × 10− 10 1.594 × 10− 5

1. 0.5 2.9 × 10− 12 9.233 × 10− 5 1.233 × 10− 9 4.616 × 10− 5
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channel is the Coriolis force which acts in a direction
perpendicular to the rotational axis and the velocity of the
body in the rotating frame. �is is due to the fact that the
rotation of the channel leads to resist the flow.

�e behaviour of velocity profiles against different
nanofluid composition is given in Figure 9. In general, the
nanofluids having greater density of nanoparticles per unit
area are affecting the velocity profiles significantly, where
larger densities showed a decrease in normal velocity as

compared to smaller densities. For a similar volume fraction
of ϕ � 0.2, Si-based nanoparticles with ρ � 2330 kg/m3, i.e.
the minimummost in the chosen group, reflected maximum
normal velocity. In contrast, Pt having ρ � 21450 kg/m3 as
the highest density in the chosen group showed the mini-
mum normal velocity. In the case of axial component, there
is a dual behaviour, with high densities having a lower
velocity in lower channel, and an increased velocity in the
upper channel. However, the variation in velocity with

Table 6: Similarity between HPM and RK45 solutions when ϕ � 0.9, w0 � 0.5, Ω � 1, andM � 1.

β � 1 β � 2
η |fHPM − fRK45| |gHPM − gRK45| System similarity |fHPM − fRK45| |gHPM − gRK45| System similarity

0. 0 0 0 0 0 0
0.05 2.412 × 10− 10 1.637 × 10− 11 1.288 × 10− 10 3.539 × 10− 11 4.298 × 10− 10 7.606 × 10− 21

0.10 4.490 × 10− 10 5.474 × 10− 11 2.519 × 10− 10 5.962 × 10− 11 8.905 × 10− 10 2.654 × 10− 20

0.15 1.175 × 10− 9 9.915 × 10− 11 6.374 × 10− 10 7.397 × 10− 11 1.365 × 10− 9 5.050 × 10− 20

0.20 1.683 × 10− 9 1.420 × 10− 10 9.128 × 10− 10 7.972 × 10− 11 1.835 × 10− 9 7.316 × 10− 20

0.25 1.953 × 10− 9 1.790 × 10− 10 1.066 × 10− 9 7.861 × 10− 11 2.281 × 10− 9 8.968 × 10− 20

0.30 2.024 × 10− 9 2.074 × 10− 10 1.116 × 10− 9 7.257 × 10− 11 2.684 × 10− 9 9.741 × 10− 20

0.35 1.936 × 10− 9 2.250 × 10− 10 1.080 × 10− 9 6.328 × 10− 11 3.028 × 10− 9 9.583 × 10− 20

0.40 1.720 × 10− 9 2.310 × 10− 10 9.757 × 10− 10 5.206 × 10− 11 3.298 × 10− 9 8.587 × 10− 20

0.45 1.404 × 10− 9 2.257 × 10− 10 8.151 × 10− 10 3.989 × 10− 11 3.483 × 10− 9 6.948 × 10− 20

0.50 1.019 × 10− 9 2.103 × 10− 10 6.151 × 10− 10 2.755 × 10− 11 3.575 × 10− 9 4.926 × 10− 20

0.55 5.990 × 10− 10 1.871 × 10− 10 3.930 × 10− 10 1.572 × 10− 11 3.571 × 10− 9 2.807 × 10− 20

0.60 1.741 × 10− 10 1.588 × 10− 10 1.664 × 10− 10 4.997 × 10− 12 3.469 × 10− 9 8.670 × 10− 21

0.65 2.241 × 10− 10 1.282 × 10− 10 1.761 × 10− 10 4.088 × 10− 12 3.274 × 10− 9 6.693 × 10− 21

0.70 5.655 × 10− 10 9.813 × 10− 11 3.318 × 10− 10 1.099 × 10− 11 2.989 × 10− 9 1.643 × 10− 20

0.75 8.180 × 10− 10 7.073 × 10− 11 4.443 × 10− 10 1.492 × 10− 11 2.624 × 10− 9 1.958 × 10− 20

0.80 9.476 × 10− 10 4.764 × 10− 11 4.976 × 10− 10 1.452 × 10− 11 2.188 × 10− 9 1.589 × 10− 20

0.85 9.231 × 10− 10 2.953 × 10− 11 4.763 × 10− 10 8.116 × 10− 12 1.695 × 10− 9 6.881 × 10− 21

0.90 7.216 × 10− 10 1.600 × 10− 11 3.688 × 10− 10 4.466 × 10− 12 1.157 × 10− 9 2.585 × 10− 21

0.95 3.203 × 10− 10 5.652 × 10− 12 1.630 × 10− 10 1.623 × 10− 11 5.881 × 10− 10 4.773 × 10− 21

1. 3.622 × 10− 10 2.910 × 10− 12 1.825 × 10− 10 1.214 × 10− 13 1.263 × 10− 14 7.673 × 10− 28

Table 5: RK45 solution along with residual errors when ϕ � 0.9, w0 � 0.5, Ω � 1, β � 2, andM � 1.

η fRK45 gRK45 Error equation (1) Error equation (2) Average Abs error

0. 0.5 0 1.501 × 10− 6 5.984 × 10− 10 7.510 × 10− 7

0.05 0.548747 0.00021484 3.007 × 10− 7 2.663 × 10− 10 1.504 × 10− 7

0.10 0.594991 0.00039657 1.054 × 10− 7 7.585 × 10− 11 5.276 × 10− 8

0.15 0.638731 0.000546948 1.480 × 10− 7 4.817 × 10− 12 7.401 × 10− 8

0.20 0.67997 0.000667734 7.506 × 10− 8 2.357 × 10− 11 3.754 × 10− 8

0.25 0.718709 0.000760679 6.392 × 10− 9 1.921 × 10− 11 3.205 × 10− 9

0.30 0.754949 0.000827536 2.043 × 10− 8 1.337 × 10− 11 1.022 × 10− 8

0.35 0.78869 0.000870053 1.291 × 10− 8 1.253 × 10− 11 6.464 × 10− 9

0.40 0.819934 0.000889974 4.944 × 10− 9 1.454 × 10− 11 2.479 × 10− 9

0.45 0.84868 0.000889045 1.240 × 10− 8 1.537 × 10− 11 6.208 × 10− 9

0.50 0.874928 0.000869007 3.028 × 10− 9 1.366 × 10− 11 1.521 × 10− 9

0.55 0.89868 0.0008316 1.297 × 10− 8 1.152 × 10− 11 6.493 × 10− 9

0.60 0.919934 0.000778563 1.521 × 10− 8 1.208 × 10− 11 7.613 × 10− 9

0.65 0.938691 0.000711634 1.173 × 10− 8 1.533 × 10− 11 5.876 × 10− 9

0.70 0.95495 0.00063255 5.443 × 10− 8 1.557 × 10− 11 2.722 × 10− 8

0.75 0.96871 0.000543046 3.789 × 10− 8 5.230 × 10− 12 1.895 × 10− 8

0.80 0.979971 0.00044486 2.157 × 10− 7 8.678 × 10− 12 1.078 × 10− 7

0.85 0.988732 0.000339725 1.037 × 10− 6 3.236 × 10− 11 5.186 × 10− 7

0.90 0.994991 0.00022938 2.969 × 10− 6 3.052 × 10− 10 1.484 × 10− 6

0.95 0.998747 0.000115559 6.834 × 10− 6 1.212 × 10− 9 3.417 × 10− 6

1. 1. 1.2 × 10− 14 1.380 × 10− 5 3.545 × 10− 9 6.906 × 10− 6
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Figure 3: Continued.

Table 7: Skin friction coefficient for various values of parameters at lower and upper walls.

ϕ w0 M β Ω Cf,lower Cf,upper

0.9 0.5 0.5 1.0 1.0 − 0.00574602 0.00286874
0.6 − 22.3924 10.7677
0.3 − 7.4334 3.28618
0.0 − 4.48572 1.80803
0.9 0.0 − 143.722 − 143.706

0.1 − 229.876 − 57.5714
0.2 − 316.041 28.5537
0.3 − 402.217 114.67
0.6 − 660.81 372.963
0.9 − 919.501 631.173

0.2 0.5 0.0 − 5.96224 2.56784
1.0 − 6.06434 2.54659
2.0 − 6.36118 2.48844
4.0 − 7.40657 2.33973
6.0 − 8.64416 2.39013

0.9 0.5 − 574.602 286.874
1.5 − 359.247 71.5441
2.0 − 143.847 − 143.831
2.5 71.5972 − 359.25

− 1.0 − 1435.58 1147.75
− 1.5 − 1650.71 1362.85
− 2.0 − 1865.79 1577.92
− 2.5 − 2080.84 1792.93

0.2 1.0 0.5 − 5.9823 2.56287
1.0 − 5.98791 2.56244
3.0 − 6.04779 2.55783
5.0 − 6.16755 2.54862
7.0 − 6.3472 2.5348
9.0 − 6.58672 2.51637
12.0 − 7.05828 2.4801

Complexity 9



–0.03

–0.02

–0.01

0.00

g (
η)

0.60.4 1.00.0 0.2 0.8
η

ϕ = 0.0
ϕ = 0.3

ϕ = 0.6
ϕ = 0.9

(c)

Figure 3: Effect of nanoparticle volume fraction ϕ on the velocity profile when w0 � 0.5, β � 1, Ω � 1, andM � 0.5. (a) Normal component
of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 4: Effect of suction parameter w0 on the velocity profile when ϕ � 0.9, β � 1, Ω � 1, andM � 0.5. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 5: Effect of magnetic parameter M on the velocity profile when ϕ � 0.2, w0 � 0.5, β � 1, andΩ � 1. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 6: Continued.
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Figure 6: Effect of positive values of characteristic parameter β on the velocity profile when ϕ � 0.9, w0 � 0.5, Ω � 1, and M � 0.5.
(a) Normal component of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 7: Effect of negative values of characteristic parameter β on the velocity profile when ϕ � 0.9, w0 � 0.5, Ω � 1, and M � 0.5.
(a) Normal component of velocity. (b) Axial component of velocity. (c) Transverse component of velocity.
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Figure 8: Effect of rotational parameter Ω on the velocity profile when ϕ � 0.2, w0 � 0.5, β � 1, and M � 0.5. (a) Normal component of
velocity. (b) Axial component of velocity. (c) Transverse component of velocity.

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

f (
η)

0.60.4 1.00.0 0.2 0.8
η

Si
Cu
Ag

AuNP
Pt

(a)

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

f ′
(η

)

0.2 0.80.60.4 1.00.0
η

Si
Cu
Ag

AuNP
Pt

(b)

Figure 9: Continued.
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respect to different densities is quite small. In the transverse
case, nanofluids with high densities show larger velocity
profile in the lower quarter of the channel, whereas a weak
reverse and decreasing flow in the remaining of the channel.

5. Conclusion

In this article, an unsteady electrically conducting 3D
squeezing flow of nanofluid in a rotating channel on a lower
permeable stretching wall is considered. In this study, water
is taken as base fluid along with five different types of
nanoparticles, including silicon (Si), copper (Cu), silver
(Ag), gold (Au), and platinum (Pt), being analyzed in the
simulations. Important physical parameters are considered
here; the nanoparticle volume fraction (ϕ), the suction
parameter (w0), the characteristic parameter of the flow (β),
the rotation parameter (Ω), and the magnetic parameter
(M). Resulting boundary value system is solved through the
HPM and Runge–Kutta–Fehlberg method (RK45). Analysis
reveals that the motion of the upper plate significantly effects
the velocity profile in the channel. Also, large values of
nanoparticle volume fraction reduce the effects of rotation
parameter Ω and magnetic parameter M.

Nomenclature

β: Characteristic parameter of the flow
Ω: Rotation parameter
M2: Magnetic parameter
w0: Suction parameter
Rex: Local Reynolds number
σ: Electrical conductivity
ρ: Density
μ: Dynamic viscosity
η: A scaled boundary-layer coordinate
]: Kinematic viscosity
c: Characteristic constant parameter
ω: Constant angular velocity
ϕ: Nanoparticle volume fraction

a: Lower plate stretching rate
B: External uniform magnetic field
B0: Constant magnetic flux density
Cf: Skin friction coefficient
f, g: Self-similar velocities
h(t): Upper plane distance
J: Magnetic flux
f: Fluid phase
s: Solid phase
nf: Nanofluid.
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)is paper deals with the effects of an amplitude-modulated (AM) excitation on the nonlinear dynamics of reactions between four
molecules. )e computation of the fixed points of the autonomous nonlinear chemical system has been made in detail using the
Cardan’s method. Hopf bifurcation has been also successfully checked. Routes to chaos have been investigated through bi-
furcations structures, Lyapunov exponent, phase portraits, and Poincaré section. )e effects of the control force on chaotic
motions have been strongly analyzed, and the control efficiency is found in the cases g � 0 (unmodulated case) and g≠ 0 with
Ω � ω and Ω/w≠p/q; p and q are simple positive integers. Vibrational resonance (VR), hysteresis, and coexistence of several
attractors have been studied in detail based on the relationship between the frequencies of the AM force. Results of analytical
investigations are validated and complemented by numerical simulations.

1. Introduction

Nonlinear dynamics is a multidisciplinary field that covers
not only mathematics but also engineering, physics,
chemistry, and biology. A monograph, authored by Strogatz
[1], would be the first place to start if one is interested in
learning about this topic. In the past decade, the study of
complex dynamics and chemistry of oscillating reaction
under the influence of external perturbation received much
attention and various results such as period-doubling bi-
furcation leading to chaotic motion, quasiperiodic route to

chaos, coexistence of multiple attractors, hysteresis, and
vibrational resonance have been obtained [2–12]. )e
chemical oscillating reactions in a continuously stirred tank
reactor (CSTR) is one of the first biochemical oscillations
discovered. For considerable theoretical progress on the
nature of chemical oscillation, the only known chemical
oscillators were either biological in origin, like the glycolytic
and oxidase-peroxidase systems; either discovered acci-
dentally, like the Bray and BZ reactions; or variants of those
reactions [2–12]. In these chemical oscillations, various
dynamics behaviors are studied by many researchers. For
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instance, nonequilibrium phenomena such as oscillations,
bistability, complex oscillations, and quasichaotic behavior
of the reaction are revealed by these studies. One of the main
challenges has been to predict and to control these phe-
nomena in nonlinear chemical oscillations for potential
applications (see [2–15]). )e study of these oscillations has
been made with a periodically external excitation or a
parametric excitation [11, 12]. Moreover, the study of these
oscillations is more advantageous for systems with the AM
(amplitude modulation) [14]. However, some new dy-
namical phenomena including controllable frequency can be
also presented. Binous and Bellagi [2] present the solution of
four problems drawn from the chemical and biochemical
engineering field of study. )ese problems illustrate various
important aspects of nonlinear dynamics such as limit cy-
cles, quasiperiodic and chaotic behaviors, time series and
phase portraits, power spectra, the time-delay reconstruc-
tion diagrams, Hopf bifurcation, bifurcation diagrams, and
steady state multiplicity. Among a large number of exam-
ples, they have selected the following case studies because it
illustrates the basic nonlinear dynamics concepts: the gly-
colytic oscillator model first suggested by Selkov in 1968 in
order to elucidate the mechanism that living cells use to
obtain energy from sugar breakdown; the oregonator model
derived by Field, Koros, and Noyes in the early 1970s, which
elucidates the famous oscillatory behavior observed in the
Belousov-Zhabotinsky (BZ) reaction; the steady state mul-
tiplicity in a biochemical reactor for both the Monod and
substrate inhibition kinetics; and the three-variable auto-
catalator, first proposed by Peng, Scott, and Showalter in
1990. Guruparan et al. [3] considered Brusselator chemical
system driven by an amplitude-modulated (AM) force and
studied numerically the dynamics of Brusselator chemical
system driven by an amplitude-modulated force with widely
different frequencies. )ey showed the occurrence of hys-
teresis and vibrational resonance and the coexistence of
several period-Torbits, bifurcations of them, routes to chaos,
and quasiperiodic and chaotic orbits. )ey have charac-
terized periodic orbits, quasiperiodic orbits, chaotic orbits,
hysteresis, and vibrational resonance using bifurcation di-
agram, maximal Lyapunov exponent, phase portrait,
Poincaré map, and resonance plots. Shabunin et al. [5]
introduced the lattice limit cycle (LLC) model as a minimal
mean-field scheme which can model reactive dynamics on
lattices (low-dimensional supports) producing nonlinear
limit cycle oscillations. )ey have found that, under the
influence of an external periodic force, the dynamics of the
LLC may be drastically modified. Synchronization phe-
nomena, bifurcations, and transitions to chaos are also
observed as a function of the excitation force. Taking ad-
vantage of the drastic change in the dynamics due to the
periodic forcing, they found that it is possible to modify the
output/product or the production rate of a chemical reaction
at will, simply by applying a periodic force to it, without the
need to change the support properties or the experimental
conditions. Blekhman and Landa [6] considered resonances
caused by a biharmonical external force with two different
frequencies (the so-called vibrational resonances) using a
bistable oscillator described by a Duffing equation as an

example. It is shown that, in the case of a weakly damped
oscillator, these resonances are conjugate; they occur as
either the low and high frequency is varied. In addition, the
resonances occur as the amplitude of the high-frequency
excitation is varied. It is also shown that the high-frequency
action induces the change in the number of stable steady
states; these bifurcations are also conjugate and are the cause
of the seeming resonance in an overdamped oscillator. Roy-
Layinde et al. [7] examined the phenomenon of vibrational
resonance (VR) and analyzed in a biharmonically driven
two-fluid plasma model with nonlinear dissipation. )ey
derived analytically an equation for the slow oscillations of
the system in themes of the parameters of the fast signal
using the method of direct separation of motion. )e
presence of a high-frequency externally applied electric field
is found to significantly modify the systems dynamics and,
consequently, induce VR. )ey have identified the origin of
the VR in the plasma model, not only from the effective
plasma potential but also from the contributions of the
effective nonlinear dissipation. Besides several dynamical
changes, including multiple symmetry-breaking bifurca-
tions, attractor escapes, and reversed period-doubling bi-
furcations, numerical simulations also revealed the
occurrence of single and double resonances induced by
symmetry-breaking bifurcations. Landa and McClintock [8]
considered the effect of a high-frequency force on the re-
sponse of a bistable system to a low-frequency signal for both
the overdamped and weakly damped cases.)ey have shown
that the response can be optimized by an appropriate choice
of vibration amplitude. )is vibrational resonance displays
many analogies to the well-known phenomenon of sto-
chastic resonance, but with the vibrational force filling the
role usually played by noise. Jeevarathinam et al. [9] ana-
lyzed the vibrational resonance in the Duffing oscillator
system in the presence of a gamma-distributed time-delayed
feedback and an integrative time-delayed (uniformly dis-
tributed time delays over a finite interval) feedback. Par-
ticularly, applying a theoretical procedure, they obtain an
expression for the response amplitude at the low frequency
of the driving biharmonic force. For both double-well po-
tential and single-well potential cases, they are able to
identify the regions in parameter space where either two
resonances, a single resonance, or no resonance occur.
)eoretically predicted values of the response amplitude and
the values of a control parameter at which resonance occurs
are in good agreement with their numerical simulation. )e
analysis shows a strong influence of both types of time-
delayed feedback on vibrational resonance. In the present
paper, we seek hysteresis, vibrational resonance, and chaos
in the system of reactions between four molecules when it is
subjected to an external amplitude modulation excitation.
More precisely, after an in-depth analysis of the fixed points
and of the Hopf bifurcation for the autonomous system, the
effects of the modulated amplitude force on the dynamics of
the chemical reaction considered have been studied in detail
and the efficiency of the control force was analyzed. )e
paper is structured as follows: Section 2 gives the mathe-
matical modeling of chemical model, while Section 3 ana-
lyses the fixed points and their stability and the possibility to
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obtain the Hopf bifurcation. In Section 4, in-depth details of
the bifurcation and the route to chaos when the system is
under the periodically external excitation are presented.
Section 5 deals with vibrational resonance, bifurcation, route
to chaos, bistability, coexistence of attractors, and hysteresis
for Ω≫ω. Section 6 analyses the effect of AM excitation
when Ω � ω and Ω/w≠p/q, where p and q are simple
positive integers. Finally, the conclusion of the research is
given in Section 7.

2. Chemical Model and Its
Mathematical Equations

In this work, we consider the autonomous system of reac-
tions between four molecules as in [5, 16]:

2X + 2Y⟶
k1 3Y + S, X + S⟶

k2 2Y, Y + S⟶
k3 2S. (1)

X, Y, and S are molecules of the types X and Y and empty
lattice sites, respectively, while k1, k2, and k3 are kinetic
constants of the corresponding reactions. )e complex
oscillatory dynamics and the formation of spatial patterns
observed experimentally have been predicted with great
success by reactive multimolecular patterns [5, 12, 16–21].
Indeed, at the beginning of the 80 years, experimentally,
“vacation models” were written by reactive quadrimolecular
stages. In these models, increasing the number of vacant sites
results in an increase in autocatalytic behavior, which results
in oscillatory behavior. )e reactions between nitrogen
monoxide and carbon monoxide (NO+CO), nitrogen
monoxide and ammonia (NO+NH3), and nitrogen mon-
oxide and dihydrogen (NO+H2), which all use the platinum
surface Pt as catalyst, are well-known models of vacancies
[18]. In each of these reactions, an autocatalytic behavior
linked to vacant sites is observed, and this explains, amongst
other nonlinear phenomena, the ”surface explosion” phe-
nomena observed frequently in heterogeneous catalysis
representing narrow peaks of the product concentrations at
regular temporal intervals [5, 12, 16–21].

In the mean-field approach, the kinetic equations for the
evolution of the relative concentrations of the molecules (x,
y) and of empty sites (S) can be written as follows [5, 16]:

dx

dt
� − 2k1x

2
y
2

+ k2xs, (2)

dy

dt
� k1x

2
y
2

− k3ys, (3)

ds

dt
� 2k1x

2
y
2

− k2xs + k3ys. (4)

It is easily shown that a condition of conservation is
fulfilled:

dx

dt
+
dy

dt
+
ds

dt
� 0, (5)

and hence, x + y + s � cste. By choosing this constant equal
to 1, we have x + y + s � 1 , and putting it in equation (3),
the system is reduced to the following system:

dx

dt
� − 2k1x

2
y
2

+ k2x(1 − x − y), (6)

dy

dt
� k1x

2
y
2

− k3y(1 − x − y). (7)

)e complex dynamic behaviors of this system under the
action of a sinusoidal force have been studied in-depth
[5, 16]. Recently, the importance of the amplitude modu-
lated force has been proven for the control of complex
dynamics of certain systems such as mechanical and elec-
trical systems [14, 15] and biochemical and chemical systems
[3, 11–13]. In this work, we consider the dynamics of
molecules in the chemical reaction under the external
amplitude-modulated excitation, which can be described by
a system of two differential equations of order 1. So we
modify the original model (7) of the LLC oscillator by adding
an amplitude modulation force to the right themes of the
first equation. So, we have

dx

dt
� − 2k1x

2
y
2

+ k2x(1 − x − y)

+ F + 2G cosΩ0t( 􏼁sinw0t,

(8)

dy

dt
� k1x

2
y
2

− k3y(1 − x − y), (9)

where F is the amplitude of unmodulated force, G is the
degree of modulation, and w0 and Ω0 are the frequencies of
the AMF.

Using the time rescaling τ � k1t and notation
_x � dx/dτ, we reduce the system (8) as follows:

_x � − 2x
2
y
2

+ αx(1 − x − y)

+ (f + 2g cosΩτ)sinωτ
(10)

_y � x
2
y
2

− βy(1 − x − y), (11)

with α � k2/k1 > 0; β � k3/k1 > 0, f � F/k1, g � G/k1,

Ω � Ω0/k1, andw � w0/k1.

3. Equilibrium Points and Its Stability Analysis

We consider the system (10) in the absence of the excitation
AM and we seek the fixed points. Indeed, we have

− 2x
2
y
2

+ αx(1 − x − y) � 0, (12)

x
2
y
2

− βy(1 − x − y) � 0. (13)

)e resolution of the system formed by these two
equations comes down to that of the following equation:

4β2

α2
y
4

− βy 1 −
2β
α

y − y􏼠 􏼡 � 0. (14)

)e fixed points of the autonomous system are E0(0, 0)

and E∗(x∗, y∗) whose coordinates (x∗, y∗) are obtained
after solving the following equation:
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4β2

α2
y
3

− β 1 −
2β
α

y − y􏼠 􏼡 � 0. (15)

To solve equation (15), we set p � ((α/2) + (α2/4β)) and
q � − α2/4β.

So, we have

y
3

+ py + q � 0. (16)

By taking the Cardan technique [11], the resolution of
equation (16) amounts to looking for the roots of a trinome.
If ∆ is the discriminant of this trinomial, we have

D � 27Δ � 4p
3

+ 27q
2
. (17)

Here, α> 0 and β> 0 so p3 > 0 and q2 > 0 and then
D> 0.

Equation (16) has only one real solution, which is
T � ((− q ±

��
Δ

√
)/2). So, we have E3 � (x3, y3), where

x3 �

��������

β2

α
(1 − δ)

3

􏽳

+

��������

β2

α
(1 + δ)

3

􏽳

,

y3 �

��������

α2

8β
(1 − δ)

3

􏽳

+

��������

α2

8β
(1 − δ)

3

􏽳

,

(18)

with

δ �

�����������

(α + 2β)
3

27αβ
+ 1

􏽳

(19)

On the contrary, by combining the equations of the
system (12), we have x + y � 1.

)us, we have E1(0, 1) and E2 � (1, 0).
In total, the autonomous system admits exactly four

fixed points E0(0, 0) (trivial), E1(0, 1) (semitrivial), E2(1, 0)

(semitrivial), and E3(x3, y3) (nontrivial).
)e study of the stability of each fixed point is made by

searching the Jacobian of the autonomous system associated.
)e Jacobian of the autonomous system associated with each
fixed point E0(0, 0) or E∗(x∗, y∗) is as follows:

J �
− 4x
∗
y
∗2

+ α 1 − x
∗

− y
∗

( 􏼁 − αx
∗

− 4x
∗2

y
∗

− αx
∗

2x
∗
y
∗2

+ βy
∗ 2x

∗2
y
∗

− β 1 − x
∗

− y
∗

( 􏼁 + βy
∗

⎛⎝ ⎞⎠. (20)

For E0(0, 0), the eigenvalues of the Jacobian J are λ1 � α
and λ2 � − β , which are reals and have opposite signs
because α> 0 and β> 0. Hence, E0 is a saddle point. )en,
the two eigenvalues of the Jacobian J associated with E1(0, 1)

are λ1 � 0 and λ2 � β > 0 , and therefore, E1 is the
unrobust point. On the contrary, for E2(1, 0) , the eigen-
values are λ1 � 0 and λ2 � − α < 0 , and therefore, E2 is a
robust point. Finally, for E3(x3, y3), the characteristic
equation giving the eigenvalues of J is

λ2 + σ1λ + σ2 � 0, (21)

with σ1 � − (a1 + a2) and σ2 � a1a4 − a2a3, where

a1 � − 4x3y
2
3 + α 1 − 2x3 − y3( 􏼁,

a2 � − 4x
2
3y3 − αx3,

a3 � 2x3y
2
3 + βy3,

a4 � 2x
2
3y3 − β 1 − x3 − 2y3( 􏼁.

(22)

If σ21 � 4σ2 , then equation (21) has only one solution,
and the fixed point E3 is a center. For σ21 > 4σ2, the ei-
genvalues are

λ1 �
− σ1 −

�������

σ21 − 4σ2
􏽱

2
,

λ2 �
− σ1 +

�������

σ21 − 4σ2
􏽱

2
.

(23)

In this case, the equilibrium point E3 is a node. If
σ21 < 4σ2, then

λ1 �
− σ1 − i

�������

σ21 + 4σ2
􏽱

2
,

λ2 �
− σ1 + i

��������

− σ21 + 4σ2
􏽱

2
,

(24)

and E3 is either a focus or a center. By virtue of the
Routh–Hurwitz criterion [22, 23], the fixed point E3 is stable
if and only if σ1 > 0 and σ2 > 0 if not the fixed point is
unstable. We now look for the Hopf bifurcation assuming
that λ � iw (w > 0). Let us insert λ in equation (21), and we
have

− w
2

+ iσ1w + σ2 � 0, (25)

with w �
��σ2

√ and σ1 � a1 + a4 � 0.
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Assuming β fixed and taking α as a bifurcation pa-
rameter, differentiating both sides of the characteristic
equation (21) associated to E3 with respect to αH, we obtain

dλ
dα

� −
1
2
dσ1
dα

−
1
2λ

dσ2
dα

, (26)

Re

dλ
dα

􏼠 􏼡 � −
1
2
dσ1
dα

, (27)

where α � αH and λ � iw. )us, if for α � αH, σ1 � 0 , and
Re(dλ/dα)≠ 0, then α � αH is a Hopf bifurcation value for
the equilibrium point system E3. In short, we have the
following )eorem 1.

Theorem 1. If β is fixed, system (8) in absence of the AM
force has a Hopf bifurcation at equilibrium point E3(x3, y3)

when α passes through the critical value αH, which verifies
simultaneously the following relations (16 and 17):

α − β −
1
2
α

α2(1 − δ)

β
􏼢 􏼣

1/3

+ β
α2(1 − δ)

β
􏼢 􏼣

1/3

− 2α
β2(1 − δ)

α
􏼢 􏼣

1/3

+ β
β2(1 − δ)

α
􏼢 􏼣

1/3

−
α2(1 − δ)

β
􏼢 􏼣

2/3 β2(1 − δ)

α
􏼢 􏼣

1/3

+
α2(1 − δ)

β
􏼢 􏼣

1/3 β2(1 − δ)

α
􏼢 􏼣

2/3

−
1
2
α

α2(1 + δ)

β
􏼢 􏼣

1/3

+ β
α2(1 + δ)

β
􏼢 􏼣

1/3

− 2
α2(1 − δ)

β
􏼢 􏼣

1/3 β2(1 − δ)

α
􏼢 􏼣

1/3 α2(1 + δ)

β
􏼢 􏼣

1/3

+
β2(1 − δ)

α
􏼢 􏼣

2/3 α2(1 + δ)

β
􏼢 􏼣

1/3

−
β2(1 − δ)

α
􏼢 􏼣

1/3 α2(1 + δ)

β
􏼢 􏼣

2/3

− 2α
β2(1 + δ)

α
􏼢 􏼣

1/3

+ β
β2(1 + δ)

α
􏼢 􏼣

1/3

−
α2(1 − δ)

β
􏼢 􏼣

2/3 β2(1 + δ)

α
􏼢 􏼣

1/3

+ 2
α2(1 − δ)

β
􏼢 􏼣

1/3 β2(1 − δ)

α
􏼢 􏼣

1/3 β2(1 + δ)

α
􏼢 􏼣

1/3

− 2
α2(1 − δ)

β
􏼢 􏼣

1/3 α2(1 − δ)

β
􏼢 􏼣

1/3 β2(1 + δ)

α
􏼢 􏼣

1/3

+ 2
α2(1 + δ)

β
􏼢 􏼣

1/3 β2(1 − δ)

α
􏼢 􏼣

1/3 β2(1 + δ)

α
􏼢 􏼣

1/3

−
α2(1 + δ)

β
􏼢 􏼣

2/3 β2(1 + δ)

α
􏼢 􏼣

1/3

+
β2(1 + δ)

α
􏼢 􏼣

2/3 α2(1 − δ)

β
􏼢 􏼣

1/3

+
β2(1 + δ)

α
􏼢 􏼣

2/3 α2(1 + δ)

β
􏼢 􏼣

1/3

� 0,

(28)

− 4y
2
3 + 4x3y3 − 2α + β􏼐 􏼑

dx3

dα
+ 2x

2
3 − 8x3y3 − α + 2β􏼐 􏼑

dy3

dα
− 2x3 − y3 + 1≠ 0. (29)

To support this theorem, we represent the real part of the
eigenvalues associated with the equilibrium point E3(x3, y3)

in the case where the eigenvalues are complex as a function
of α for fixed values of β. Figure 1 shows the critical values
αH ≈ 0.00845, αH ≈ 0.0237, αH ≈ 0.059, αH ≈ 0.0875 of α
corresponding to the Hopf bifurcation points H1, H2, H3
and H4 respectively. By a simple calculation, we show that
each of these values verifies simultaneously (28) and (29). It
should also be noted that the critical value αH for the Hopf
bifurcation increases with β. At the moment of its birth,
through Hopf bifurcation of the point E3(x3, y3), the os-
cillations have infinitesimally small amplitude and near-
harmonic shape (see Figure 2).

4. Bifurcation and Route to Chaos for g= 0

Before studying the influence of the AM excitation on the
dynamics of the system, let us analyze the effect of each

parameter α, β, and f on the dynamics of the unmodulated
system. Indeed, we represent the bifurcation diagram, the
Lyapunov exponent, the phase space, and the Poincaré
section taking as control parameters f and β. In the remains
of this work, we take ω � 0.0481, α> 0, O> 0, x (0)� 0.5, and
y (0)� 0.5. From all results of the simulations carried out in
the case of the unmodulated system (g� 0), we note that the
chemical reaction studied can present a very rich dynamic
such as periodic, multiperiodic, quasiperiodic, and chaotic
oscillations. In addition, we observe phenomena such as
hysteresis, multistability, coexistence of periodic, multi-
periodic, quasiperiodic, and chaotic attractors (see
Figures 3–6). All these phenomena prove that very complex
dynamics can be observed in the nonlinear chemical reac-
tion studied. )us, Figure 3 represents the bifurcation di-
agram and corresponding Lyapunov exponents for the
system when f varies in the domain 0≤ f≤ 0.003, the other
parameters being fixed. From this figure, it emerges that the
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chemical oscillations are quasiperiodic, multiperiodic, and
chaotic. When we compare the dynamics of the system when
f increases from 0 to 0.003 (blue color) to that is obtained
when f decreases from 0.003 to 0 (red color), we note apart
from chemical oscillations of the same nature which are
observed on a large domain that the system presents the
coexistence of the attractors of period 6Twith quasiperiodic
attractors for 0.0011162< f< 0.001131, attractors of period
5T with quasiperiodic attractors for 0.001521<
f< 0.00156103 and 0.001598≤ f< 0.0017485, attractors of
period 5T with attractors of period 10T for 0.00156103<
f< 0.001598, and attractors of period 5T with chaotic
attractors for 0.00298< f≤ 0.003. )e chaotic behavior of
chemical oscillations predicted by the bifurcation diagram
and its corresponding Lyapunov exponent (Figure 3) is
confirmed by the phase space (Figure 4(a)) and the corre-
sponding Poincaré section (Figure 4(b)) obtained for
f � 0.0025. For f� 0.00165 and with two different initial

conditions, we have plotted the phase space and the cor-
responding Poincaré section in Figure 5. We clearly note
through this figure the coexistence of the quasiperiodic
attractors (Figures 5(a) and 5(b)) with the attractors of
period 5T (Figures 5(c) and 5(d)) thus justifying this phe-
nomenon. To understand the influence of the nonlinear
parameters α and β on the nature of the oscillations of the
chemical reaction considered, we consider now β as the
bifurcation parameter. )us, Figure 6 shows the effect of the
parameter α on the bifurcation diagram when β varies be-
tween 0.03 and 0.1. As it can be seen in this figure, the
chaotic, periodic, multiperiodic, and quasiperiodic behav-
iors also depend on β. We take note that chaotic oscillations
can only exist when 0.02≤ α< 0.05, and outside this domain,
the chemical oscillations are periodic. It should be noted that
the numerical simulations have shown that α and β have
almost the same effects on the chemical dynamics of the
studied reaction.
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5. Effect of AM Force on the System with Ω≫ω

5.1. Vibrational Resonance and Amplitude Response. In a
nonlinear dynamical system driven by a biharmonic force
consisting of a low-frequencyω and a high-frequencyΩwith
Ωω, when the amplitude g of the high-frequency force is
varied, the amplitude response at the low-frequency ω ex-
hibits a resonance. )is high-frequency force-induced res-
onance is called vibrational resonance [3, 6–9]. To determine
the VR, we use the amplitude of the response at the fre-
quency ω of the signal. Indeed, using the fourth-order
Runge–Kutta algorithm, with time step size, we numerically
integrate the system (10) of the chemical reaction under
consideration. )us, the numerical solution x(τ) allows to
calculate the amplitude response Q through the following
formula:

Q �

�������

Q
2
s + Q

2
c

􏽱

f
, (30)

where

Qs �
2

nπ
􏽚

nT

0
x(τ)sinwτdτ,

Qc �
2

nπ
􏽚

nT

0
x(τ)coswτdτ,

(31)

with T � 2π/ω the response period and n� 500.
We compute Q with a low-frequency force only, a high-

frequency only, and with both forces.
For f � 0, Q is determined as

�������
Q2

s + Q2
c

􏽰
, Qs and Qc and

representing the Fourier coefficients of the output signal at
the frequency 2πT and Q the amplitude of the response to
this same frequency. Indeed, forΩ� 80ω with ω being small,
the different results are shown in Figures 7–9. Figures 7(a)
and 7(b) represent the variation in Q depending, respec-
tively, on f for g � 0 and g for f� 0 when ω� 0.0481. From
Figure 7(a), we note the presence of several peaks, and while
f� 0, we have a single maximum for which g � 0.003301 and
Q� 0.00092802. When g varies from 0 to 0.05 with f 6� 0
and Ω� 80ω, the VR appears and we observe that its per-
sistence, its form, its maximum amplitude, and the value of g

at the resonance depends not only on f and ω but also on
nonlinear parameters α and β of the nonlinear chemical
action considered. Indeed, a multiresonance appears for
ω< 0.06 (see Figure 8(a)) and disappears when
0.06≤ω< 0.09. For 0.09≤ω≤ 0.1, the VR becomes a double
resonance with two different Qmax (see Figure 8(b)) and
disappears again when 0.1<ω≤ 0.14 and then reappears in
the form of a monoresonance when ω> 0.14 (see
Figure 8(c)). Finally, we note that when g varies from 0 to
0.05, the maximum amplitude Qmax decreases when the
frequency ω increases.

Figure 9 shows when g varies from 0 to 0.05, Ω � 80ω
with ω � 0.16, and the influence of the parameters f, α, are β
(Figures 9(a)–9(c), respectively) is shown on the VR. From
Figure 9(a), we note that the maximum value of the am-
plitude of the response decreases when f increases and we
obtain a double resonance when f� 0.0011. Figure 9(b)
shows that the parameter α also influences the vibrational
resonance. Finally, we notice through Figure 9(c) that VR
exists when 0.06< β< 0.08 and that the parameter β also has
the same effects on VR as in the case of α. In conclusion, the
birth and the disappearance of the vibrational resonance in
the chemical reaction studied can be strongly controlled not
only by the AM force but also by the parameters α and β of
the chemical reaction.

5.2. Hysteresis, Coexistence of Attractors, and Multistability.
In this section, we analyze the effect of g on chemical dy-
namics when Ω≫ω by looking the hysteresis and coexis-
tence of attractors phenomena. For this, we represent the
bifurcation diagram by varying g with Ω � 80ω (Figure 10).

When we compare the dynamics of the system when g

increases from 0 to 0.1 (blue color, Figure 10(a)) to that
obtained when g decreases from 0.1 to 0 (red color,
Figure 10(b)), we note that the chemical oscillations of the
same kind are observed but with amplitudes that outside x
different especially for multiperiodical oscillations. )is
difference in amplitude noted shows that the chemical os-
cillations do not follow the same path as going back and
forth when we increase g from 0 to 0.1 and when we decrease
it from 0.1 to 0: this phenomenon is called hysteresis. )ere
also needs to be a domain where multiperiodic attractors
coexist with attractors of period 2T and attractors of period
4T on the one hand and also the coexistence on the other
hand of the chaotic attractors with the attractors of period 4T
and multiperiodic attractors. )e phenomena of hysteresis
and coexistence of attractors are very visible in Figure 10
(confirmed by Figure 11) and show multistable behaviors
and hysteresis in the system. )us, for Ω � 80ω, the
chemical oscillations become more complex for the reaction
considered. Figure 12 shows the effect of β on the chemical
oscillations and the two phenomena obtained. We deduce
that when the parameter β ∈ [0, 0.06], the chemical oscil-
lations are not chaotic and there is coexistence of periodic
attractors and the presence of hysteresis.

)e chemical oscillations become very varied, and we
note periodic, multiperiodic, quasiperiodic, and chaotic
behaviors with the presence and persistence of hysteresis and
the coexistence of multiple attractors when β ∈ [0.06, 0.7].
Finally, for β> 0.7, we observe a total dominance of chaotic
oscillations and the disappearance of the hysteresis phe-
nomenon.)e parameters α and f have similar effects to that
of β reason for which we decided not to represent the figures
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translating these effects. We notice that the parameter g and
the frequencies of the AM force have a very important effect
on the dynamics of the system as well as on the phenomena
of hysteresis and coexistence of attractors.

More precisely, g can be used to reduce the domains
where the oscillations are quasiperiodic, the domains of
coexistence of attractors, and to make disappear completely
hysteresis.

6. Effect of AM Force in the System with ω=Ω

Here, the effect of the AM force is analyzed in the case ω�Ω.
For this reason, we chose g as the bifurcation parameter, and
the results obtained are shown in Figure 13. From the
analysis of Figure 13, it appears that the variation in α can
make disappear chaotic and quasiperiodic oscillations but
preserves the phenomena of hysteresis and coexistence of
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Figure 7: (a) Variation in numerically computed Q against the control parameter f with ω � 0.0481, α� 0.0413, β� 0.0667, and g � 0; (b)
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attractors. In addition, the simulations (the figures of which
are not shown here) have shown that the parameters β and f
reduce the two phenomena and also act on the chemical
oscillations of the model studied. Figure 14 represents the
Poincaré section of nonlinear chemical reaction and shows

the 3T-periodic, 4T-periodic, and chaotic oscillations as also
obtained in Figure 13. Finally, we look for the effect of the
AM force when the frequencies of the amplitude modulation
force are not resonant and such that their relationship to
each other is irrational.
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For this, we take ω� 0.0481 and Ω� (
�
5

√
− 1)/2; we also

seek the dynamics of the system by constructing the bi-
furcation diagram considering g as control parameter.
Figures 15 and 16, respectively, represent the effects of β and

f on the bifurcation diagram. When we analyze these figures,
we note the same remarks as the case where ω�Ω except
that here each of the parameters β and f can be used to
reduce or even eliminate the chaotic chemical oscillations.
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Figure 13: Effect of parameter α on bifurcation diagram of nonlinear chemical reaction with Ω�ω� 0.0481, f� 0.002, and β� 0.04: (a)
α� 0.03; (b) α� 0.028; (c) α� 0.02. Bifurcation diagrams and its corresponding Lyapunov exponent are obtained by scanning the parameter
g upwards (blue) and downwards (red).
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7. Conclusions

In this work, we have studied the influence of an amplitude-
modulated force on the chemical oscillations of reactions
between fourmolecules.We have looked for fixed points and
their natures when the system is autonomous. It appears that
the autonomous system admits exactly four fixed points.)e
nature of the nontrivial fixed point depends of parameters α
and β, and Hopf bifurcation is obtained for these two pa-
rameters for the nontrivial equilibrium point. )e dynamics
of the chemical system considered has been widely analyzed
in the unmodulated case, and periodic, multiperiodic,
quasiperiodic, and chaotic chemical oscillations have been
obtained. Domains of existence of hysteresis, of coexistence
of quasiperiodic attractors with attractors of period 5T and
attractors of period 6T, and of coexistence of multiperiodic
attractors with chaotic attractors have been obtained. From
the simulations made, it should be noted that, for certain
values of the nonlinear parameters α and β, the complex
dynamics can be controlled and even reduced to a periodic
oscillation. For g 6� 0 and for Ω ω, complex phenomena
such as vibrational resonance (VR), hysteresis, and coex-
istence of attractors appear and are very remarkable and can
be well controlled either by the AM force or by the pa-
rameters α and β. )e domains of existence of these different
phenomena are less important when Ω�ω. When the fre-
quencies of the amplitude modulation force are not resonant
and are such that their relationship to each other is irra-
tional, the multiperiodic attractors when they exist are of
period≥ 4T and their domains of existence are more im-
portant. Finally, our work confirmed the chaotic oscillation
and the Hopf bifurcation obtained in [5] and proved that the
appearance of VR, hysteresis, multistability, and coexistence
of various attractors in the chemical reaction is considered.
)e presence of VR shows that the amplitude of oscillations
of concentrations can be explored, while the hysteresis
phenomenon indicates that the amplitude of oscillations of
concentrations will not be able to follow the same path of

evolution when the control parameter increases or decreases
following the same path. )e multistability and the coex-
istence of attractors obtained reveal that the stable or un-
stable nature of the chemical oscillations and of the chemical
attractors in the same domain of the parameters is con-
sidered. )e use of the amplitude modulated force has
shown that the various complex phenomena obtained can be
controlled.
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Medical research has shown that overeating betel nut can be addictive and can damage health. More serious cases may cause
mouth cancer and other diseases. Even worse, people’s behavior habit of chewing betel nut may influence each other through
social interaction with direct or indirect ways, such as face-to-face communication, Facebook, Twitter, microblog, and WeChat,
which leads to the spreading phenomenon of betel nut addiction. In order to investigate the dynamic spreading characteristics of
betel nut addiction, a PMSR (Potential-Mild-Severe-Recovered) betel nut addiction spreading model is presented on scale-free
networks. /e basic reproductive number R0 and equilibria are derived. /eoretical results indicate that the basic reproductive
number R0 is significantly dependent on the topology of the underlying networks, and some influence parameters./e existence of
equilibria is determined by the basic reproductive number R0. Furthermore, we prove that if R0 < 1 the addiction-elimination
equilibrium is globally asymptotically stable. If R0 > 1, the betel nut addiction spreading is permanent, and the addiction-
prevailing equilibrium is globally attractive. Finally, numerical simulations confirm the theoretical analysis results.

1. Introduction

/e habit of chewing betel nut is common in many places
around the world [1–8]. It is worth noting that overeating
betel nut can be addictive and is harmful to health [8, 9]. It is
found that betel nut affects the health of the nervous, gas-
trointestinal, metabolic, respiratory, and reproductive sys-
tems. More serious cases may cause mouth cancer and other
diseases. Betel nut is classified in the first category of car-
cinogens by the International Agency for Research on
Cancer [9–11]. Even worse, people’s behavior habit of
chewing betel nut may influence each other through social
contact, which leads to the spreading phenomenon of betel
nut addiction. /e widespread spread of betel nut addiction,
in turn, exacerbates the damage to people’s health and even
the whole society.

It is very important to control the spreading phenom-
enon of betel nut addiction. In recent years, the research on

betel nut addiction has attracted the attention of many
scholars and researchers. Murphy et al. confirmed that the
formation of the “chewing betel nut” habit could be due to
exposure to and influence by betel nut chewers through
statistical analysis [12]. As indicated in [13], the cultural
differences can affect the spreading of betel nut addiction in
society. Ghani et al. identified the factors which influence the
development of betel nut addiction. /ey also proposed the
health policies to prevent addiction [14]. Moss et al. [15]
showed that the critical factors of addiction were contact
with addicts and the self-prevention consciousness. Many
researchers studied the addictiveness and harmfulness of the
“chewing betel nut” habit [16–19], but few focused on the
spreading dynamics of betel nut addiction. /ere are some
studies in social information and disease spreading dy-
namics [20–25]. Liu et al. studied the spreading dynamics of
cyber violence [26]. Barabási and Albert studied the impact
of neighboring infection on the computer virus spread [27].

Hindawi
Complexity
Volume 2020, Article ID 3457068, 13 pages
https://doi.org/10.1155/2020/3457068

mailto:taohust2008@163.com
https://orcid.org/0000-0001-7431-9493
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3457068


/ese studies can give some help for the analysis of the
spreading dynamics of betel nut addiction. /rough the
study of addiction spreading dynamics, we can compre-
hensively and systematically learn about the addiction
spreading mechanism and influence factors, which is helpful
to control the spread of betel nut addiction. Meanwhile,
some researchers found that the scale-free property is an
important property of social networks [28–32]. Obviously,
the spread of betel nut addiction is based on social networks.
So, based on scale-free networks, we study the spreading
dynamics of betel nut addiction in the paper. Apparently, the
marketing strategy of betel nut has a great influence on sales,
and at the same time, it affects the spreading of betel nut
addiction. Taking into account the influence of betel nut
advertising campaigns and the heterogeneity of underlying
spreading networks, we present a new comprehensively
PMSR (Potential-Mild-Severe-Recovered) betel nut addic-
tion spreading model.

/e rest of the paper is as follows. In Section 2, the PMSR
betel nut addiction spreading model is proposed and de-
scribed. In Section 3, the basic reproductive number and
equilibriums are derived at first. /en, we analyze the
globally asymptotic stability of addiction-elimination
equilibrium, the permanence of the addiction spreading, and
the global attractivity of addiction-prevailing equilibrium.
Section 4 presents the results of our numerical simulation.
Finally, we conclude the paper in Section 5.

2. Model Formulation

We present a new comprehensively PMSR (Potential-Mild-
Severe-Recovered) betel nut addiction spreading model. /e
model has the spread sketch in Figure 1. In the model, nodes
are used to stand for individuals, and edges are used to stand
for the relationships between individuals. /e whole pop-
ulation is divided into four distinct classes, namely, potential
individuals (P), mild addicts (M), severe addicts (S), and
recovered individuals (R). P nodes refer to the people who do
not have addictive behavior of chewing betel nut; M nodes
refer to the people who have mild addiction of the “chewing
betel nut” habit; S nodes refer to the people who have severe
addiction of the “chewing betel nut” habit; and R nodes refer
to the people who get rid of the addiction.

In the spreading process of betel nut addiction, these
states are subjected to the following rules:

(1) If a potential individual is influenced by amild addict
with direct or indirect ways, such as face-to-face
communication, Facebook, Twitter, microblog, and
WeChat, then he or she will convert into a mild
addict with probability ρ1. Similarly, if a potential
individual is influenced by a severe addict with direct
or indirect ways, then he or she will convert into a
mild addict with probability ρ2.

(2) /e parameter α is defined as an influence parameter
of betel nut advertisements. In real life, the mar-
keting strategy of betel nut will influence people to
try to purchase betel nut.

(3) A mild addict may convert into a severe addict with
probability φ or get rid of the addiction with
probability w1.

(4) /e severe addict may get rid of the addiction with
probability w2.

(5) Considering the relapse of addiction, a recovered
individual may convert into a mild addict with
probability f.

(6) Here, we assume that the immigration rate equals the
emigration rate, and the rate constant is μ.

We define Pk(t), Mk(t), Sk(t), and Rk(t) as the relative
densities of potential individuals, mild addicts, severe ad-
dicts, and recovered individuals nodes of degree k at time t,
respectively. According to the above description and as-
sumption, we can get the PMSR model as follows:

dPk(t)

dt
� μ − kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) − μPk(t),

dMk(t)

dt
� kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) + fRk(t)

− φ + μ + w1( 􏼁Mk(t),

dSk(t)

dt
� φMk(t) − w2 + μ( 􏼁Sk(t),

dRk(t)

dt
� ω2Sk(t) + w1Mk(t) − (f + μ)Rk(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where θ1(t) and θ2(t) denote the probability of a contact
pointing to a mild addict and a severe addict, respectively,
and

θ1(t) �
1

〈k〉
􏽘

∞

k�1
kH(k)Mk(t), (2)

θ2(t) �
1

〈k〉
􏽘

∞

k�1
kH(k)Sk(t). (3)

Here, 〈k〉 � 􏽐kkH(k) represents the average degree
values of the network and H(k) represents the degree
distribution. M(t) � 􏽐kH(k)Mk(t) is the density of all the
mild addicts and S(t) � 􏽐kH(k)Sk(t) is the density of all the
severe addicts.

P M S R

f

αkρ1θ1

αkρ2θ2

μ

μP μM μS μR

w2

w1

ϕ

Figure 1: /e flow diagram of the PMSR model.
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According to the normalization conditions, we have

Pk(t) + Mk(t) + Sk(t) + Rk(t) � 1. (4)

Obviously, the initial values for system (1) are as follows:

Pk(0)> 0,

Mk(0)≥ 0,

Sk(0)≥ 0,

Ck(0)≥ 0, k � 1, 2, ..., n.

(5)

/en, we obtain that

Pk(t)> 0,

Mk(t)≥ 0,

Sk(t)≥ 0,

Ck(t)≥ 0, k � 1, 2, ..., n and t≥ 0.

(6)

3. Stability Analysis of the Model

In this section, we analyze the dynamic properties of the
PMSR betel nut addiction spreading model.

Theorem 1. According to system (1), the basic reproductive
number is defined as follows:

R0 �
α(f + μ) ρ1 μ + w2( 􏼁 + ρ2φ􏼂 􏼃

w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃μ
. (7)

7ere always exists an addiction-elimination equilibrium
E0(1, 0, 0, 0), and if R0 > 1, system (1) has a unique addiction-
prevailing equilibrium E+(P∗k , M∗k , S∗k , R∗k ).

Proof. It can be easy to find that system (1) satisfies
Rk(t) � 1 − Pk(t) − Mk(t) − Sk(t). According to system (1),
we can get

dPk(t)

dt
� μ − kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) − μPk(t),

dMk(t)

dt
� kα ρ1θ1 + ρ2θ2( 􏼁Pk(t)

+f 1 − Pk(t) − Mk(t) − Sk(t)( 􏼁 − φ + μ + w1( 􏼁Mk(t),

dSk(t)

dt
� φMk(t) − (d + μ)Sk(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Obviously, there is an addiction-elimination equilibrium
E0(1, 0, 0, 0) in system (1). It is easy to verify that system (8)
satisfies the conditions (A1) − (A5) in [33]. By using the next
generation matrix method [33], system (8) can get

dx

dt
� Z(x) − V(x), (9)

where

x � Pk, Mk, Sk( 􏼁
T
,

Z(x) �

− kα ρ1θ1(t) + ρ2θ2(t)( 􏼁Pk(t)

kα ρ1θ1(t) + ρ2θ2(t)( 􏼁Pk(t)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V(x) �

μPk(t)

w1 + μ + φ( 􏼁Mk(t) − fCk(t)

w2 + μ( 􏼁Sk(t) − φMk(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(10)

At the addiction-elimination equilibrium E0, the Jaco-
bian matrices of Z(x) and V(x) can get

Z � JZ E0( 􏼁

�

0 Z12 Z13

0 Z22 Z23

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V � JV E0( 􏼁

�

V11 0 0

V21 V22 V23

0 V32 V33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(11)

where

Z12 �
− αρ1
〈k〉

1

2

⋮

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1P(1) 2P(2) · · · nP(n)􏼂 􏼃,

Z13 �
− αρ2
〈k〉

1

2

⋮

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1P(1) 2P(2) · · · nP(n)􏼂 􏼃,

Z22 �
αρ1
〈k〉

1

2

⋮

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1P(1) 2P(2) · · · nP(n)􏼂 􏼃,

Z23 �
αρ2
〈k〉

1

2

⋮

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1P(1) 2P(2) · · · nP(n)􏼂 􏼃.

(12)
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Here,

V11 � μI,

V21 � fI,

V22 � w1 + μ + φ + f( 􏼁I,

V23 � fI,

V32 � − φI,

V33 � w2 + μ( 􏼁I,

(13)

where I is the identity matrix. So, we can get the basic
reproductive number:

R0 � ρ ZV
− 1

􏼐 􏼑

�
〈k2〉
〈k〉

α(f + μ) ρ1 μ + w2( 􏼁 + ρ2φ􏼂 􏼃

w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃μ
,

(14)

where 〈k2〉 � 􏽐kk2P(k).
Next, it is clear that system (1) has an equilibrium

E0 � (1, 0, 0, 0){ }k. To get the addiction-prevailing equilib-
rium E∗(P∗k , M∗k , S∗k , R∗k ), system (1) satisfies

dPk(t)

dt
� 0,

dMk(t)

dt
� 0,

dSk(t)

dt
� 0,

dRk(t)

dt
� 0.

(15)

So, we can know

μ − kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) − μPk(t) � 0,

kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) + fRk(t) − φ + μ + w1( 􏼁Mk(t) � 0,

φMk(t) − w2 + μ( 􏼁Sk(t) � 0,

w2Sk(t) + w1Mk(t) − (f + μ)Rk(t) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

According to the above equations, we get

Pk �
μ w1 w2 + μ( 􏼁 +(f + μ) w2 + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃

kα ρ1θ1 + ρ2θ2( 􏼁 w2 + μ( 􏼁(f + μ)
Mk,

Sk �
φ

w2 + μ
Mk,

Rk �
w2 + μ( 􏼁w1 + φw2

w2 + μ( 􏼁(f + μ)
Mk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

By using the normalization condition
P∗k (t) + M∗k (t) + S ∗k (t) + R∗k (t) � 1, we get

P
∗
k �

μ w1 w2 + μ( 􏼁 +(f + μ) w2 + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃

ka ρ1θ
∗
1 + ρ2θ

∗
2( 􏼁 w2 + μ( 􏼁(f + μ)

M
∗
k ,

M
∗
k �

(f + μ)w1 w2 + μ( 􏼁 + μ (f + μ) w2 + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃

w2 + μ( 􏼁(f + μ) w1 + μ + φ( 􏼁
,

S
∗
k �

φ
w2 + μ

M
∗
k ,

R
∗
k �

w2 + μ( 􏼁w1 + φw2

w2 + μ( 􏼁(f + μ)
M
∗
k .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

And, for θ∗1 � 1/〈k〉 􏽐
∞
k�1 kP(k)M∗k (t), θ∗2 � 1/〈k〉

􏽐
∞
k�1 kP(k)S ∗k (t), we get

θ∗1 �
w2 + μ

φ
θ ∗2 ,

θ∗2 �
φ

w2 + μ
θ ∗1 .

(19)

By substituting the second equation of system (16) into
equation (2), we get

θ ∗1 �
1

〈k〉
􏽘

∞

k�1
kP(k)M

∗
k (t)

�
1

〈k〉
􏽘

∞

k�1
kP(k)

kα ρ1θ
∗
1 + ρ2θ

∗
2( 􏼁 w2 + μ( 􏼁(f + μ)

kα ρ1θ
∗
1 + ρ2θ

∗
2 + μ( 􏼁􏼂 􏼃 w2 + μ( 􏼁(f + μ) + φ(f + μ)􏼂 􏼃

�
1

〈k〉
􏽘

∞

k�1
k
2
P(k)

kα(f + μ) w2 + μ( 􏼁 ρ1 w2 + μ( 􏼁 + ρ2φ􏼂 􏼃θ∗1
kα w2 + μ( 􏼁(f + μ) ρ1 w2 + μ( 􏼁 + ρ2φ􏼂 􏼃θ∗1 + Ak

� f θ ∗1( 􏼁,

(20)
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where

Ak � μ w2 + μ( 􏼁(f + μ) w2 + μ( 􏼁 + φ + kαφ􏼂 􏼃

+ kαφ(f + μ) w2 + μ( 􏼁ρ1 + φρ2􏼂 􏼃θ ∗1 .
(21)

Obviously, θ∗1 � 0 satisfies system (20). System (20) has a
unique nontrivial solution provided that

df θ ∗1( 􏼁

dθ∗1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Θ∗1 �0
> 1, f(1)≤ 1. (22)

So, we get

R0 �
〈k2〉
〈k〉

α(f + μ) ρ1 μ + w2( 􏼁 + ρ2φ􏼂 􏼃

w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃μ
> 1.

(23)

/us, a unique nontrivial solution exists if and only if
R0 > 1 According to equation (17), we know

0<P
∞
k < 1,

0<M
∞
k < 1,

0< S
∞
k < 1,

0<R
∞
k < 1.

(24)

/erefore, the addiction-prevailing equilibrium
E∗(P∗k , M∗k , S∗k , R∗k ) is well defined. /en, when R0 > 1,
there is a unique positive equilibrium E∗(P∗k , M∗k , S ∗k , R∗k ).
/e proof is completed.

Remark 1. /e basic reproductive number R0 is obtained by
equation (23), which depends on the fluctuations of the
degree distribution 〈k2〉/〈k〉 and some model parameters.
When the heterogeneity of the degree distribution 〈k2〉/〈k〉

is larger, the basic reproductive number R0 is greater, i.e., the
larger heterogeneity of the degree distribution can promote
the spreading of betel nut addiction. Obviously, as the in-
fluence parameter α of betel nut advertisements increases,
the basic reproductive number R0 increases.

Theorem 2. If R0 < 1, the addiction-elimination equilibrium
E0 is globally asymptotically stable. If R0 > 1, the addiction
spreading phenomenon is persistent, i.e., there exists a con-
stant η> 0, such that

lim
t⟶∞

inf(M(t) + S(t)) � lim
t⟶∞

inf 􏽘
k

H(k) Mk(t)(

+ Sk(t)􏼁≥ η.

(25)

Proof. For the addiction-elimination equilibrium, system
(8) has the Jacobian matrix as follows:

J �

A11 · · · A1n

⋮ ⋱ ⋮

An1 · · · Ann

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (26)

where

A11 �

αρ1P1 − w1 + μ + φ( 􏼁 αρ2P1 f

φ − w2 + μ( 􏼁 0

w1 w2 − (f + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A1n �

αρ1Pn αρ2Pn 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

An1 �

nαρ1Pn nαρ2Pn 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Ann �

nαρ1Pn − w1 + μ + φ( 􏼁 nαρ2Pn f

φ − w2 + μ( 􏼁 0

w1 w2 − (f + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(27)

So, the characteristic polynomial of the addiction-
elimination equilibrium is

λ + w1 + μ + φ( 􏼁
n− 1 λ + w2 + μ( 􏼁

n− 1 λ2 + pλ + q􏼐 􏼑

· (λ + f + μ)
n− 1

� 0,
(28)

where

p � w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁

+(f + μ) w1 + μ( 􏼁 + μ w2 + μ + φ( 􏼁

− ρ1 f + μ + w2 + μ( 􏼁 + ρ2φα􏼂 􏼃 􏽘

n

i�1
iPi − fw1,

q � w1 + μ + φ( 􏼁 w2 + μ( 􏼁(f + μ) + fφw2

− α(f + μ) ρ1 w2 + μ( 􏼁 + ρ2φ􏼂 􏼃 􏽘

n

i�1
iPi − fw1 w2 + μ( 􏼁.

(29)

When R0 < 1, we can get

R0 �
〈k2〉
〈k〉

α(f + μ) ρ1 μ + w2( 􏼁 + ρ2φ􏼂 􏼃

w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃μ
< 1.

(30)

It also means

w2 + μ( 􏼁 w1 + f + μ( 􏼁 + φ w2 + f + μ( 􏼁􏼂 􏼃μ

> α(f + μ) ρ1 μ + w2( 􏼁 + ρ2φ􏼂 􏼃 􏽘

n

i�1
iPi.

(31)

In other words, we get p> 0 and q> 0. According to the
above proof, the real eigenvalues λ of matrix J are all negative
when R0 < 1. Furthermore, if and only if R0 > 1, there is a
unique positive eigen value λ of matrix J. By using the
Perron–Frobenius theorem, the maximal real part of all
eigenvalues of λ is positive only if R0 > 1. /rough the
theorem of Lajmanovich and York [34], we can get the
results. /e proof is completed.
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Lemma 1 (see [35]). If a> 0, b> 0 and dx(t)/dt≥ b − ax,
when t≥ 0 and x(0)≥ 0, we have limt⟶∞infx(t)≥ b/a; if
a> 0, b> 0 and dx(t)/dt≤ b − ax, when t≥ 0 and x(0)≥ 0,
we have limt⟶∞supx(t)≤ b/a.

Next, the global attractivity of the addiction-prevailing
equilibrium is discussed. 7e main result is given in the
following theorem.

Theorem 3. Suppose that (Pk(t), Mk(t), Sk(t)) is a solution
of system (8) satisfying initial conditions Mk(t)> 0 or
Sk(t)> 0. If R0 > 1, then

lim
t⟶∞

Pk(t), Mk(t), Sk(t)( 􏼁 � P
∗
k (t), M

∗
k (t), S

∗
k (t)( 􏼁,

(32)

where (P∗k (t), M∗k (t), S∗k (t)) is the addiction-prevailing
equilibrium of system (8) for k � 1, 2, . . . , n.

Proof. In the course of the proving, we followed themethods
of reference [35]. In the following, we suppose that k is an
integer between 1 and n. According to /eorem 2, there
exists a positive constant 0< τ < 1/3 and a large enough
constant T> 0 such that Mk(t)≥ τ and Sk(t)≥ τ for t>T.
/erefore, θ1(t)> τ, θ2(t)> τ for t>T. Substituting this into
the first equation of system (8), it is easy to get

dPk(t)

dt
� μ − kα ρ1θ1 + ρ2θ2( 􏼁Pk(t) − μPk(t)

≤ μ − kα ρ1 + ρ2( 􏼁τ + μ􏼂 􏼃Pk(t), t>T.

(33)

From Lemma 1, according to the standard comparison
theorem of differential equation theory, for any given
positive constant 0< τ1 < k(ρ1 + ρ2)τ/(μ + ka(ρ1 + ρ2)τ),
there exists t1 >T, such that Pk(t)≤X

(1)
k − τ1 for t> t1,

where

X
(1)
k �

μ
μ + kα ρ1 + ρ2( 􏼁τ

+ 2τ1 < 1. (34)

From system (8), it is easy to obtain

dMk

dt
� kα ρ1θ1 + ρ2θ2( 􏼁 + f􏼂 􏼃 1 − Mk(t)( 􏼁

− w1 + μ + φ( 􏼁Mk(t), t> t1.

(35)

So, the constant 0< τ2 <min 1/2, w1 + μ+􏼈

φ/2[kα(ρ1 + ρ2)τ + w1 + μ + φ + f]}, there exists t2 > t1, so
Mk(t)≤Y

(1)
k − τ2 for t> t2, where

Y
(1)
k �

2k ρ1 + ρ2( 􏼁τ + f

2k ρ1 + ρ2( 􏼁τ + f + w1 + μ + φ
+ 2τ2 < 1. (36)

From system (8), it is easy to obtain

dSk(t)

dt

·

≤φ 1 − Sk(t)( 􏼁 − w2 + μ( 􏼁Sk(t), t> t2.
(37)

/us, for constant 0< τ3 <min 1/3, τ2, w2 +􏼈

μ/2(φ + w2 + μ)}, there exists t3 > t2, so Sk(t)≤Z
(1)
k − τ3 for

t> t3, where

Z
(1)
k �

φ
φ + w2 + μ

+ 2τ3 < 1. (38)

/en, replacing Mk(t)≤Y
(1)
k − τ2 and Sk(t)≤Z

(1)
k − τ3

into the first equation of system (8), we get

dPk(t)
·

dt
� μ − kα ρ1θ1(t) + ρ2θ2(t)( 􏼁Pk(t) − μPk(t)

≥ μ − kα ρ1 + ρ2( 􏼁τ + μ􏼂 􏼃Pk(t), t>T.

(39)

/us, for constant
0< τ4 <min 1/4, μ/2[kα(ρ1 + ρ2)τ + μ]􏼈 􏼉, there exists t4 > t3,
such that Pk(t)≥x

(1)
k + τ4 for t> t4, where

x
(1)
k �

μ
αk ρ1 + ρ2( 􏼁τ + μ

− 2τ4 > 0. (40)

/en, substituting θ1(t)> τ, θ2(t)> τ into system (8), it
follows that

dMk(t)

dt

·

≥ kα ρ1 + ρ2( 􏼁τx
(1)
k − w1 + μ + φ( 􏼁Mk(t) + fτ, t> t4.

(41)

Hence, for constant 0< τ5 <min 1/5, kα{

(ρ1 + ρ2)τx
(1)
k + fτ/2(w1 + μ + φ)}, there exists t5 > t4, such

that Mk(t)≥y
(1)
k + τ5 for t> t5, where

y
(1)
k �

kα ρ1 + ρ2( 􏼁τx
(1)
k + fτ

w1 + μ + φ
− 2τ5 > 0. (42)

/erefore,

dSk

·

(t)

dt
≥φy

(1)
k − w2 + μ( 􏼁Sk(t), t> t5.

(43)

Hence, for constant 0< τ6 <min 1/6, τ5,􏼈

φy
(1)
k /2(w2 + μ)}, there exists t6 > t5, such that Sk(t)≥ z

(1)
k +

τ6 for t> t6, where

z
(1)
k �

φy
(1)
k

w2 + μ
− 2τ6 > 0. (44)

Because τ is a small positive constant, we can get

0< x
(1)
k <Pk <X

(1)
k < 1,

0<y
(1)
k <Mk <Y

(1)
k < 1,

0< z
(1)
k < Sk <Z

(1)
k < 1.

(45)

Let

q
(j)

� 􏽘
n

i�1
Pi y

(j)
i + z

(j)
i􏼐 􏼑,

Q
(j)

� 􏽘
n

i�1
Pi Y

(j)
i + Z

(j)
i􏼐 􏼑,

j � 1, 2, . . . , n.

(46)
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From the above discussion, we have

0< q
(1) ≤ ρ1θ1 + ρ2θ2( 􏼁≤Q

(1) < ρ1 + ρ2, t> t6. (47)

And, we substitute Mk(t)≥y
(1)
k + τ5, Sk(t)≥ z

(1)
k + τ6 into

system (8), we can get

dPk

·

(t)

dt
≤ μ − kαq

(1)
+ μ􏼐 􏼑Pk(t), t> t6.

(48)

Consequently, for constant 0< τ7 <min 1/7, τ6􏼈 􏼉, there
exists t7 > t6, such that

Pk(t)≤X
(2)
k ≜ min X

(1)
k − τ1,

μ
μ + kαq

(1)
+ τ7

⎧⎨

⎩

⎫⎬

⎭, t> t7.

(49)

/us,

dMk

·

(t)

dt
≤ kαQ

(1)
X

(2)
k − w1 + φ + μ( 􏼁Mk(t)

+ f 1 − Mk(t) − x
(1)
k − z

(1)
k􏼐 􏼑

≤ kαQ
(1)

X
(2)
k − w1 + φ + μ( 􏼁Mk(t)

+ f 1 − x
(1)
k − z

(1)
k􏼐 􏼑, t> t7.

(50)

Consequently, for constant 0< τ8 <min 1/8, τ7􏼈 􏼉, there
exists t8 > t7, such that

Mk(t)≤Y
(2)
k ≜ min Y

(1)
k􏼚

− τ2,
kQ

(1)
X

(2)
k + f 1 − x

(1)
k − z

(1)
k􏼐 􏼑

w1 + φ + μ + f
+ τ8

⎫⎬

⎭, t> t8.

(51)

As a result, it follows that

dSk

·

(t)

dt
≤φM

(2)
k − w2 + μ( 􏼁Sk(t), t> t9.

(52)

/erefore, for constant 0< τ9 <min 1/9, tτ8􏼈 􏼉, we can get

Sk(t)≤Z
(2)
k ≜ min Z

(1)
k − τ3,

φY
(2)
k

w2 + μ
+ τ9􏼨 􏼩, t> t9.

(53)

Substituting Mk(t)≤Y
(2)
k , Sk(t)≤Z

(2)
k and ρ1θ1 +

ρ2θ2 ≤Q(2) into system (8), where

dPk

·

(t)

dt
≥ μ − kαQ

(2)
+ μ􏼐 􏼑Pk(t), t> t9.

(54)

Hence, for constant 0< τ10 <min 1/10, t{

τ9n, qμ/2(kαQ(2) + μ)}, there exists t10 > t9, such that
Pk(t)≥x

(2)
k + τ10 for t> t10, where

x
(2)
k � max x

(1)
k + τ4,

μ
μ + kαQ

(2)
− 2τ10

⎧⎨

⎩

⎫⎬

⎭. (55)

/us,

dMk

·

(t)

dt
≥ kαq

(1)
x

(2)
k − φ + w1 + μ( 􏼁Mk(t)

+ f 1 − Mk(t) − x
(1)
k − z

(1)
k􏼐 􏼑, t> t10.

(56)

So, for constant 0< τ11 <min 1/11, tτ10n, qkαq(1)􏼈

x
(2)
k + f(1 − x

(1)
k − z

(1)
k )/2(w1 + φ + μ + f)}, there exists

t11 > t10, and Mk(t)≥y
(2)
k + τ11 for t> t11, where

y
(2)
k � max y

(1)
k + τ5,

kαq
(1)

x
(2)
k + f 1 − x

(1)
k − z

(1)
k􏼐 􏼑

w + f + φ + μ
− 2τ11

⎧⎨

⎩

⎫⎬

⎭.

(57)

Similarly,

dSk

·

(t)

dt
≥φy

(2)
k − w2 + μ( 􏼁Sk(t), t> t11.

(58)

/erefore, for constant 0< τ12 <min 1/12, tτ11n, q􏼈

φy
(2)
k /2(w2 + μ)}, there exists t12 > t11, and Sk(t)≥ z

(2)
k + τ12

for t> t12, where

z
(2)
k � max z

(1)
k + τ6,

φy
(2)
k

w2 + μ
− 2τ12􏼨 􏼩. (59)

According to the above discussion and analyses, we can
obtain six sequences: X

(l)
k􏽮 􏽯, Y

(l)
k􏽮 􏽯, Z

(l)
k􏽮 􏽯, x

(l)
k􏽮 􏽯, y

(l)
k􏽮 􏽯, and

z
(l)
k􏽮 􏽯. We can find that the first three sequences are

monotonically increasing, and the last three sequences are
strictly monotonically decreasing, and there is a sufficiently
large positive integer H such that, for l≥H,

X
(l)
k �

μ
μ + kαq

(l− 1)
+ τ6l− 5,

Y
(l)
k �

kαQ
(l− 1)

X
(l)
k + f 1 − x

(l− 1)
k − z

(l− 1)
k􏼐 􏼑

w1 + φ + f + μ
+ τ6l− 4,

Z
(l)
k �

φY
(l)
k

w2 + μ
+ τ6l− 3,

x
(l)
k �

μ
μ + kαQ

(l)
− 2τ6l− 2,

y
(l)
k �

kαq
(l− 1)

x
(l)
k + f 1 − X

(h)
k − Z

(h)
k􏼐 􏼑

w1 + φ + f + μ
− 2τ6l− 1,

z
(l)
k �

φy
(l)
k

w2 + μ
− 2τ6l− 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

It is easy to find that
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x
(l)
k ≤Pk(t)≤X

(l)
k ,

y
(l)
k ≤Mk(t)≤Y

(l)
k ,

z
(l)
k ≤ Sk(t)≤Z

(l)
k ,

t> t6l.

(61)

Since the sequential limits of system (60) exist, let
liml⟶∞Ω

(l)
k � Ωk, where Ω(l)

k ∈ X
(l)
k , Y

(l)
k , Z

(l)
k ,􏽮

x
(l)
k , y

(l)
k , z

(l)
k , Q

(l)
k , q

(l)
k } and Ωk ∈ Xk, Yk, Zk, xk, yk, zk,􏼈

Qk, qk}.
Since 0< τl < 1/l, it has τl⟶ 0 as l⟶∞. Supposing

l⟶∞, it follows from (61) that

Xk �
μ

kαq + μ
,

Yk �
kαQXk + f 1 − xk − zk( 􏼁

w1 + f + μ + φ
,

Zk �
φ

w2 + μ
Yk,

xk �
μ

kαQ + μ
,

yk �
kαqxk + f 1 − Xk − Zk( 􏼁

w1 + f + μ + φ
,

zk �
φ

w2 + μ
yk,

(62)

where

q � 􏽘
n

i�1
Pi yi + zi( 􏼁,

Q � 􏽘
n

i�1
Pi Yi + Zi( 􏼁.

(63)

Furthermore,

Yk �
kQα w2 + μ( 􏼁 w2 + μ( 􏼁(kαQμ + f(kαq + μ)) + φf(kαq + μ) − (kαq + μ) f w2 + μ( 􏼁 w2 + μ( 􏼁 + φkαq( 􏼁 + fφ􏼂 􏼃􏼈 􏼉

(kαq + μ)(kαQ + μ) w1 + f + μ + φ( 􏼁 w2 + μ( 􏼁 w2 + μ( 􏼁􏼈 􏼉
,

yk �
kqα w2 + μ( 􏼁 w2 + μ( 􏼁(kαqμ + f(kαQ + μ)) + φf(kαQ + μ)􏼈 􏼉 − (kαQ + μ) f w2 + μ( 􏼁 w2 + μ( 􏼁 + φkαQ( 􏼁 + fφ􏼂 􏼃

(kαq + μ)(kαQ + μ) w1 + f + μ + φ( 􏼁 w2 + μ( 􏼁 w2 + μ( 􏼁
.

(64)

Substituting (62) and (64) into Q and q, respectively, we
obtain

1 �
φ + w2 + μ

w2 + μ
􏽘

n

i�1
iPi

kα w2 + μ( 􏼁 w2 + μ( 􏼁(kαQμ + f(kαq + μ)) + φf(kαq + μ)􏼂 􏼃 − (kαq + μ) f w2 + μ( 􏼁 w2 + μ( 􏼁 + φkαq( 􏼁 + fφ􏼂 􏼃􏼈 􏼉

(kαq + μ)(kαQ + μ) w1 + f + μ + φ( 􏼁 w2 + μ( 􏼁 w2 + μ( 􏼁
􏼩􏼨 ,

1 �
φ + w2 + μ

w2 + μ
􏽘

n

i�1
iPi

kα w2 + μ( 􏼁 w2 + μ( 􏼁(kαqμ + f(kαQ + μ)) + φf(kαQ + μ)􏼂 􏼃 − (kαQ + μ) f w2 + μ( 􏼁 w2 + μ( 􏼁 + φkαQ( 􏼁 + fφ􏼂 􏼃􏼈 􏼉

(kαq + μ)(kαQ + μ) w1 + f + μ + φ( 􏼁 w2 + μ( 􏼁 w2 + μ( 􏼁
􏼩􏼨

(65)
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From the above two equations, we can get

(Q − q)
φ + w2 + μ

w2 + μ
􏽘

n

i�1
iPi

[(kaq + μ) − (kaQ + μ)] f w2 + μ( 􏼁 w2 + μ( 􏼁 + φkaQ( 􏼁 + fφ􏼂 􏼃

(kaq + μ)(kaQ + μ) w1 + f + μ + φ( 􏼁 w2 + μ( 􏼁 w2 + μ( 􏼁
􏼩􏼨 ≡ 0. (66)

It is clear that Q � q. So, 􏽐
n
i�1 Pi[(Yi − yi) +

(Zi − zi)] � 0, which is equivalent to Yi � yi and Zi � zi for
1≤ i≤ n. /en, from systems (61) and (62), it can be con-
cluded that

lim
t⟶∞

Pk(t) � Xk � xk,

lim
t⟶∞

Mk(t) � Yk � yk,

lim
t⟶∞

Rk(t) � Zk � zk.

(67)
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Figure 2: /e influence of parameters ρ1 and ρ2 on R0.
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Finally, Q � q is substituted into system (64). For system
(62), we can get Xk � P∗k , Yk � M∗k , and Zk � R∗k . /is
proof is completed.

4. Numerical Simulations

/is section illustrates the analytical results through nu-
merical simulations. Based on scale-free network, we have

H(k) � ck− 3 in system (1), and the parameter c satisfies
􏽐

n
k�1 ck− 3 � 1, n � 1000.
In Figure 2, the parameters are chosen as μ � 0.3,

α � 0.2, φ � 0.3, w2 � 0.5, w1 � 0.3, and f � 0.6. We can see
that the larger the ρ1 and ρ2, the larger the R0, i.e., long time
contact with mild addicts and severe addicts both can in-
crease the spreading speed of betel nut addiction. /is also
means that if people’s health knowledge is improved, the
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Figure 5: /e prevalence of M100 and S100 versus t to different α with R0 < 1.
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probability of people chewing betel nut is reduced. /e
spreading of betel nut addiction will be weakened.

In Figure 3, we choose μ � 0.3, α � 0.2, φ � 0.4, w2 � 0.4,
w1 � 0.3, f � 0.6, ρ1 � 0.4, and ρ2 � 0.4, thus the basic re-
productive number R0 � 0.8090< 1. We can see that there is
almost no spreading of betel nut addiction when R0 < 1,
which means that betel nut addiction will eventually dis-
appear. It also suggests that the addiction-elimination
equilibrium E0 is globally asymptotically stable when R0 < 1.
/is also means that restricting the marketing strategy of
betel nut and controlling the recurrence rate of betel nut
addiction will weaken the spreading of betel nut addiction.

In Figure 4, we choose μ � 0.3, α � 0.5, φ � 0.4, w2 � 0.3,
w1 � 0.3, f � 0.6, ρ1 � 0.7, and ρ2 � 0.7, thus the basic re-
productive number R0 � 3.7163> 1. We can see that the
number of mild addicts and severe addicts will maintain at a
positive constant, i.e., the spreading phenomenon of betel
nut addiction is permanent on the scale-free networks when
R0 > 1.

In Figure 5, we choose μ � 0.4, φ � 0.6, w2 � 0.6,
w1 � 0.4, f � 0.2, ρ1 � 0.2, and ρ2 � 0.2, thus the basic re-
productive number R0 < 1. We can see that the corre-
sponding M100 and S100 decrease significantly as the
parameter α decreases, i.e., a smaller parameter α can
weaken the spreading phenomenon of betel nut addiction.
/is also means that the marketing strategies of betel nut
merchants have a great influence on the spreading of betel
nut addiction.

In Figure 6, we choose μ � 0.3, φ � 0.4, w2 � 0.3,
w1 � 0.3, f � 0.6, ρ1 � 0.7, and ρ2 � 0.7, thus the basic re-
productive number R0 > 1. Figure 6 describes the change of

the mild addicts M100 and severe addicts S100 with different
rate α. We can see that when R0 > 1, M100 and S100 both grow
to positive constants with the increasing of parameter α. /is
figure shows that a larger α can lead to the larger value of
betel nut addiction spreading level. It means that restricting
the marketing strategies of betel nut plays a vital role in
controlling the spread of betel nut addiction.

5. Conclusions

In this paper, a new comprehensively PMSR betel nut
addiction spreading model has been proposed. By the
mean-field theory, we have obtained the basic reproduction
number R0 addiction-elimination equilibrium E0, and
addiction-prevailing equilibrium E+ If R0 < 1, the addic-
tion-elimination equilibrium E0 is globally asymptotically
stable, i.e., betel nut addiction spreading behavior will
eventually disappear. If R0 > 1, the spreading dynamical
behavior of betel nut addiction is persistent and globally
asymptotically stable. Moreover, we found that the larger
the parameters ρ1 and ρ2, the larger the basic reproductive
number R0, i.e., long-term and frequent contact with mild
addicts and severe addicts can increase the spreading
phenomenon of betel nut addiction. Furthermore, a larger
α can increase the spread speed and range of betel nut
addiction. /erefore, controlling the spread of betel nut
addiction requires restricting the marketing strategies
adopted by betel nut merchants and widely publicizing the
harmfulness of chewing betel nut. /e research results have
important guiding significance in controlling the spreading
of betel nut addiction.
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,e aim of this work is to present a virological model for cancer therapy that includes the innate immune response and saturation
effect.,e presented model combines both the evolution of a logistic growing tumor and time delay which stands for the period of
the viral lytic cycle. We use the delay differential equation in order to model this time which also means the time needed for the
infected tumor cells to produce new virions after viral entry. We show that the delayed model has four equilibria which are the
desired outcome therapy equilibrium, the complete failure therapy equilibrium, the partial success therapy free-immune
equilibrium when the innate immune response has not been established, and the partial success therapy equilibrium with immune
response. Furthermore, the stability analysis of equilibria and the Hopf bifurcation are properly exhibited.

1. Introduction

Combination therapy approaches have shown a serious
promise to deal with cancers that are resistant to traditional
therapeutic procedures. Oncolytic virotherapy, also called
the selective therapy, is a developable technique that adopts
replication competent viruses as a new treatment to destroy
cancer cells without causing damage to normal cells [1–4].
Different researches have investigated combination strat-
egies with oncolytic virotherapy and chemotherapeutic
drugs in order to optimize both the effect of the added
therapy and the viral oncolysis [5, 6]. Many mathematical
models of viral infection and immune response have been
established in order to study the behavior as well as the
dynamics of the cancer cells. According to Phan and Tian
[7], the dynamics of the system, when they considered a
composed ODE’s dimensional model, is ruled by the viral
burst size and some parameters in relation to the innate
immune response. ,ey have shown that getting the im-
mune response involved in the system makes the oncolytic
virotherapy more difficult by establishing more equilibria
when the viral burst size is lower than a critical value,

whereas the model has the same behavior like in the case
when the immune response is excluded when the viral burst
size is big. In 2018, Kim et al. [8] proposed a delayed
mathematical model with two controls to describe cancer
viral therapy dynamics and to reduce total tumor cell
numbers as well as the costs of two therapies. ,ey per-
formed the stability analysis and the existence of Hopf
bifurcation. ,ey also inspected the optimal oncolytic
immunotherapy treatment with respect to the time delay.
However, it is important to notice that either these works
did not incorporate the nonlinear relationship between
viral dose and infection rate or they did not consider the
survival probability of the infected cells during the latent
period not to mention the absorbtion rate of the virus.
Recently, Hattaf [9] proposed a virological model that
incorporates the general infection rate for the two types of
transmission, humoral immunity, and three time delays.
He found that the entire behavior of the presented model is
determined and ruled by the basic reproduction number
and the reproduction number for humoral immunity. ,e
study investigated the dynamical behaviors of the model
including Hopf bifurcation and stability switches.
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Based on the above and the model for oncolytic viro-
therapy [10], we propose the following model:

dx(t)

dt
� rx(t) 1 −

x(t) + y(t)

K
􏼠 􏼡 −

βx(t)v(t)

1 + αv(t)
􏼠 􏼡,

dy(t)

dt
�
βx(t − τ)v(t − τ)e

− mτ

1 + αv(t − τ)
− δy(t) − py(t)z(t),

dv(t)

dt
� Nδy(t) −

nβx(t)v(t)

1 + αv(t)
− μv(t) − qv(t)z(t),

dz(t)

dt
� cy(t)z(z) − bz(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x(t), y(t), and v(t) have the same meaning as in [10]
which are, respectively, the quantities of uninfected tumor
cells, damaged tumor cells, and oncolytic virus. On the other
hand, z(t) denotes the concentration of the innate immune
cells at time t. ,e tumor grows logistically at a rate r and K

is the maximal carrying capacity of tumor cells.,e infection
rate in the oncoviral therapy model [7] has been modeled by
a bilinear incidence which is not reasonable in case of a high
concentration of oncolytic virus. ,erefore, it is very rea-
sonable to model the infection rate by a saturated incidence
of the form (βxv)/(1 + αv), where β and α are positive
constants which, respectively, describe the infection process
and the saturation effect. ,e parameters δ and μ represent,
respectively, the death rate of the damaged tumor cells and
the virus clearance rate while n describes the absorbtion rate
of the virus in the extracellular tissue, whereas N is the
number of new viruses which appear after a disruption-lysis
of a damaged tumor cell. ,e constants p and q stand for the
immune killing rate of damaged cells and viruses, respec-
tively, while b represents the immune clearance rate and c is
the incitement rate of the innate immune system. Ultimately,
the delay τ expresses the time of latent period while the
quantity e− mτ exemplifies the probability of getting through
from time t − τ to time t, where m is the death rate for
unproductive-damaged cells.

Our purpose in this work is to extend our model in [10]
by introducing the role of the innate immune response in

oncolytic virotherapy. Additionally, the model studied in [7]
is a special case of system (1) when the time period of the
lytic cycle and saturation effect are not considered, that is,
τ � 0 and α � 0. Otherwise, this paper is organized as fol-
lows. In Section 2, we give some preliminary results and we
discuss the conditions of the existence of equilibria. Section 3
deals with stability analysis and provides conditions under
which the system undergoes the Hopf bifurcation. Finally,
Section 4 is devoted to discussion and conclusion.

2. Positiveness, Boundedness, and Equilibria

In this section, we prove the positivity and the boundedness
of solutions of model (1).

Let C � C([− τ, 0], IR4) be the Banach space of con-
tinuous functions mapping the interval [− τ, 0] into IR4 with
the topology of the uniform convergence. According to the
fundamental theory of functional differential equations [11],
model (1) has a unique solution (x(t), y(t), v(t), z(t)) with
respect to initial values (x0, y0, v0, z0) ∈ C. Additionally, we
also assume that the initial values satisfy the following bi-
ological conditions:

x0(θ) ≥ 0,

y0(θ) ≥ 0,

v0(θ) ≥ 0,

z0(θ) ≥ 0,

θ ∈ [− τ, 0].

(2)

Theorem 1. Each solution of model (1) starting from initial
condition (2) remains positive and bounded for all t≥ 0.

Proof. From the first and the fourth equations of (1), we get

x(t) � x(0)e
􏽒

t

0
r(1− x(s)+y(s)/K)− βv(s)/1+αv(s)ds

,

z(t) � z(0)e
− bt+􏽒

t

0
cy(s)ds

,

(3)

which leads to x(t)≥ 0 and z(t)≥ 0 for all t≥ 0. From the
second and third equations of (1), we have

y(t) � y(0)e
− δt− 􏽒

t

0
pz(s)ds

+ e
− mτ− δt− 􏽒

t

0
pz(s)ds

􏽚
t

0

βx(s − τ)v(s − τ)

1 + αv(s − τ)
e
δs+􏽒

s

0
pz(u)duds,

v(t) � v(0)e
− 􏽒

t

0
nβx(s)/1+αv(s)+qz(s)ds

+ Nδ􏽚
t

0
y(u)e

μu− 􏽒
t

u
nβx(s)/1+αv(s)+qz(s)dsdu􏼠 􏼡e

− μt
.

(4)
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Clearly, y(t)≥ 0 and v(t)≥ 0 for t ∈ [0, τ]. ,is proce-
dure can be repeated on the interval [ητ, (η + 1)τ] for all
η ∈ IN. ,en, y(t) ≥ 0 and v(t)≥ 0 for all t≥ 0.

,rough the first equation of (1), we have

dx(t)

dt
≤ rx(t) 1 −

x(t)

K
􏼠 􏼡. (5)

Applying the comparison principle, we get

lim sup
t⟶+∞

x(t)≤K. (6)

,erefore, x(t) is bounded. Let

T(t) � x(t − τ)e
− mτ

+ y(t) +
p

c
z(t). (7)

For t> τ, we have

dT(t)

dt
� rx(t − τ) 1 −

x(t − τ) + y(t − τ)

K
􏼠 􏼡e

− mτ

− δy(t) −
pb

c
z(t)

≤ rK 1 −
x(t − τ)

K
􏼠 􏼡e

− mτ
− δy(t) −

pb

c
z(t)

≤ rKe
− mτ

− ρT(t),

(8)

where ρ � min r, δ, b{ }. Consequently,

T(t)≤ c, (9)

where c � max T(0), rKe− mτ/ρ􏼈 􏼉. ,is implies that T(t) is
bounded on (τ, +∞). According to the continuity of T(t) on
[0, τ], we concluded that T(t) is also bounded on [0, τ].
,erefore, y(t) and z(t) are bounded for all t≥ 0.

By the third equation of (1) and the boundedness of y(t),
we find

lim sup
t⟶+∞

v(t)≤
rKNδe

− mτ

μρ
. (10)

,en, v(t) is bounded. ,is completes the proof.
Next, we discuss the existence of equilibria of model (1).

Denote

R0 �
NKβ

nβK + μ
e

− mτ
�
1
δ

×
Nδ

nβK + μ
× Kβ × e

− mτ
, (11)

where 1/δ is the average life expectancy of the infected tumor
cells, (Nδ)/(nβK + μ) is the viral quantity generated from
one infected cell during its survival period, K the number of
uninfected tumor cells at the beginning of the infection, and
e− mτ is the probability of surviving from time t − τ to time t.
,erefore,R0 is the basic reproduction number of model (1)
which biologically describes the average number of the
newly infected tumor cells generated from one infected cell
at the beginning of the infection.

In absence of the innate immune response, system (1)
reduced to the model in [10]. ,en, (1) always has two
equilibria E0(0, 0, 0, 0) and E1(K, 0, 0, 0) ifR0 ≤ 1. However,

model (1) has another equilibrium E2(x2, y2, v2, 0) ifR0 > 1,
where

x2 �
μr + Kδ N − ne

mτ
( 􏼁(rα − β) +

��
Δ

√

2r N − ne
mτ

( 􏼁 βe
− mτ

+ αδ( 􏼁
,

y2 �
rx2 K − x2( 􏼁

rx2 + Kδe
mτ ,

v2 �
δ N − ne

mτ
( 􏼁

μ
y2,

(12)

with Δ � [Kδ(N − nemτ) (β − rα) − μr]2 + 4μδKremτ(N−

nemτ)(βe− mτ + δα).
In presence of the innate immune response, we have

x �
(crKα − brα − Kcβ)v + r(cK − b)

rc(1 + αv)
≔ φ1(v),

y �
b

c
,

z �
bδ N − ne

mτ
( 􏼁 − μcv

qcv + nbpe
mτ ≔ φ2(v),

βxv

1 + αv
�

b

c
e

mτ
(δ + pz).

(13)

Since z≥ 0, we have v≤ δb(N − nemτ)/μc. ,is indicates
that there is no biological equilibrium when
v> δb(N − nemτ)/μc. Let F be a function defined on the
closed interval [0, δb(N − nemτ)/μc] as follows:

F(v) �
βφ1(v)v

1 + αv
−

b

c
e

mτ δ + pφ2(v)( 􏼁. (14)

Clearly, F(0) � − b(δ + pφ2(0))emτ < 0 and

F′(v) �
β(cK − b)

c(1 + αv)
2 −

b

c
pe

mτφ2′ (v). (15)

Since φ2′(v) � − bc(μnpemτ + qδ(N − nemτ))/(qcv+

nbpemτ)2, we have F′(v)> 0.
When the innate immune response has not been

established, we have cy2 − b≤ 0. ,en, we define the re-
production number for the innate immune response as
follows:

R
Z
1 �

cy2

b
, (16)

where 1/b is the average life expectancy of innate immune
cells, c is the rate of immune response activation, and y2 is
the number of infected tumor cells at the steady state E2.
Hence,RZ

1 describes the average number of innate immune
cells activated by the infected tumor cells.

IfRZ
1 < 1, then y2 < b/c, v2 < δb(N − nemτ)/μc, and F(δb

(N − nemτ)/μc)< (δb/c)(βx2(N − nemτ)/μ(1 + αv2)−

emτ) � 0. ,en, there is no equilibrium when RZ
1 < 1.
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If RZ
1 > 1, then y2 > b/c, v2 > δb(N − nemτ)/μc, and F

(δb(N − nemτ)/μc)> δb/c(βx2(N − nemτ)/μ (1 + αv2) − emτ)

� 0. ,erefore, model (1) has a unique equilibrium with
immune response E3(x3, y3, v3, z3), where v3 ∈ (0, δb(N−

nemτ)/μc), x3 � (crKα − brα − Kcβ)v3 + r(cK − b)/rc(1+

αv3), y3 � b/c, and z3 � bδ(N − nemτ) − μcv3/ qcv3+ nbpemτ .
By rearranging the above discussions, we have the fol-

lowing theorem. □

Theorem 2.

(i) IfR0 ≤ 1, then model (1) has uniquely two equilibria
that are the desired outcome therapy equilibrium
E0(0, 0, 0, 0) and the complete failure therapy
equilibrium E1(K, 0, 0, 0)

(ii) IfR0 > 1, then model (1) has a unique partial success
therapy equilibrium without immune response

E2(x2, y2, v2, 0) besides E0 and E1, where x2 � μr +

Kδ(N − nemτ)(rα − β) +
��
Δ

√
/2r (N − nemτ)(βe− mτ

+αδ), y2 � rx2(K − x2)/rx2 + Kδemτ, and v2 �

δ(N − nemτ)/μy2

(iii) IfRZ
1 > 1, then model (1) has a unique partial success

therapy equilibrium with immune response E3(x3,

y3, v3, z3) besides E0, E1, and E2, where v3 ∈ (0, δb

(N − nemτ)/μc), x3 � (crKα − brα − Kcβ)v3 + r

(cK − b)/rc(1 + αv3), y3 � b/c, and z3 � bδ(N−

nemτ) − μcv3/qcv3 + nbpemτ.

3. Model Analysis and Stability

To understand the dynamics of the proposed model, we first
analyze the local asymptotic stability of equilibria. Let
E(x, y, v, z) be an arbitrary equilibrium of model (1). Hence,
the characteristic equation at E is given by

r 1 −
2x + y

K
􏼒 􏼓 −

βv

1 + αv
− λ −

rx

K
−

βx

(1 + αv)
2 0

βv

1 + αv
e

− (m+λ)τ
− δ − pz − λ

βx

(1 + αv)
2e

− (m+λ)τ
− py

−
nβv

1 + αv
Nδ −

nβx

(1 + αv)
2 − μ − qz − λ − qv

0 cz 0 cy − b − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (17)

Theorem 3. Be desired outcome therapy equilibrium
E0(0, 0, 0, 0) is unstable.

Proof. It is not hard to see that at E0(0, 0, 0, 0), equation (17)
becomes

(r − λ)(δ + λ)(μ + λ)(b + λ) � 0. (18)

Since λ � r> 0 is a positive root of the above equation,
we deduce that E0 is unstable. □

Theorem 4. If R0 < 1, then the complete failure therapy
equilibrium E1 is locally asymptotically stable and unstable if
R0 > 1.

Proof. At E1, (17) can be written as follows:

(r + λ)(b + λ) λ2 +(nβK + μ + δ)λ􏽨

+ δ(nβK + μ) 1 − R0e
− λτ

􏼐 􏼑􏽩 � 0.
(19)

Obviously, λ1 � − r and λ2 � − b are two negative roots of
equation (19). ,en, we consider the following transcen-
dental equation:

λ2 +(nβK + μ + δ)λ + δ(nβK + μ) 1 − R0e
− λτ

􏼐 􏼑 � 0.

(20)
For τ � 0 and R0 < 1, we have δ(nβK + μ)(1 − R0)> 0.

,us, the entire roots of (20) have negative real parts.

Afterward, we set iψ(ψ > 0) to be a purely imaginary root of
(20). ,en,

− ψ2
+ δ(nβK + μ) � δ(nβK + μ)R0cos(ψτ),

(nβK + μ + δ)ψ � − δ(nβK + μ)R0sin(ψτ),

⎧⎪⎨

⎪⎩
(21)

which leads to

ψ4
+ δ2 +(nβK + μ)

2
􏽨 􏽩ψ2

+ δ2(nβK + μ)
2 1 − R

2
0􏼐 􏼑 � 0.

(22)

Denote S � ψ2. ,en, the previous equation becomes

S
2

+ δ2 +(nβK + μ)
2

􏽨 􏽩S + δ2(nβK + μ)
2 1 − R

2
0􏼐 􏼑 � 0,

(23)

which has no positive root whenR0 < 1.,is implies that E1
is locally asymptotically stable if R0 < 1. In fact, (23) having
no positive roots implies that equation (20) does not exhibit
any stability switch [12]. ,is means that the stability of E1
for τ � 0 is the same as that for τ ≥ 0, implying that E1 is
asymptotically stable for all τ ≥ 0

For R0 > 1, we consider the following function:

f(λ) � λ2 +(nβK + μ + δ)λ + δ(nβK + μ) 1 − R0e
− λτ

􏼐 􏼑. (24)

We have f(0) � δ(nβK + μ)(1 − R0)< 0 and limλ⟶+∞
f(λ) � +∞. ,en, the equation f(λ) � 0 has at least one
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positive root when R0 > 1. ,is implies that the charac-
teristic equation (19) has at least one positive eigenvalue
when R0 > 1. ,erefore, the complete failure therapy
equilibrium E1 becomes unstable as long as R0 > 1.

,e following result investigates the global stability of the
complete failure therapy equilibrium E1 when R0 ≤ 1. □

Theorem 5. If R0 ≤ 1, then the complete failure therapy
equilibrium E1 is globally asymptotically stable for all τ ≥ 0.

Proof. We consider the following functional:

V(t) � e
mτ

y(t) +
e

mτ

N
v(t) + 􏽚

t

t− τ

βx(s)v(s)

1 + αv(s)
ds +

pe
mτ

c
z.

(25)

Taking the derivative of V along t of the solutions of (1)
delivers

dV

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(1)
� 1 −

ne
mτ

N
􏼠 􏼡

βxv

1 + αv
−
μe

mτ

N
v −

q

N
+

pb

c
􏼠 􏼡ze

mτ
.

(26)

Seeing that limsupt⟶∞x(t)≤K, we deduce that each
ω-limit point satisfies x(t)≤K. Hence, it is sufficient to take
solutions for which x(t)≤K. ,us,

dV

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(1)
≤

e
mτ

N
(nβK + μ) R0 − 1( 􏼁v −

q

N
+

pb

c
􏼠 􏼡ze

mτ
. (27)

,en, dV/dt|(1) ≤ 0 when R0 ≤ 1. Moreover, it is easy to
prove that the largest invariant subset of (x, y, v, z) | dV/􏼈

dt � 0} is the singleton E1􏼈 􏼉. From LaSalle’s invariance
principle [13], we conclude that E1 is globally asymptotically
stable as long as R0 ≤ 1. □

Next, we study the stability of E2. In this case, (4)
becomes

cy2 − b − λ( 􏼁 λ3 + a1λ
2

+ a2λ + a3 + b1λ + b2( 􏼁e
− λτ

􏽨 􏽩 � 0,

(28)

where

a1 � μ + δ +
rx2

K
+

nβx2

1 + αv2( 􏼁
2,

a2 � δμ +(μ + δ)
rx2

K
+

nδβx2

1 + αv2( 􏼁
2 +

rnβx
2
2

K 1 + αv2( 􏼁
2 −

nβ2x2v2

1 + αv2( 􏼁
3,

a3 �
rμδx2

K
+

rnβδx
2
2

K 1 + αv2( 􏼁
2 −

nβ2δx2v2

1 + αv2( 􏼁
3,

b1 �
βx2

1 + αv2

rv2

K
−

Nδ
1 + αv2

􏼠 􏼡e
− mτ

,

b2 �
βx2

1 + αv2

rμv2

K
+

Nβδv2

1 + αv2( 􏼁
2 −

Nδrx2

K 1 + αv2( 􏼁
⎛⎝ ⎞⎠e

− mτ
.

(29)

Clearly, λ1 � cy2 − b is a root of (28). If RZ
1 > 1, then

λ1 > 0 and E2 is unstable. However, λ1 < 0 if RZ
1 < 1. In this

case, we study the roots of the following equation:

λ3 + a1λ
2

+ a2λ + a3 + b1λ + b2( 􏼁e
− λτ

� 0. (30)

,e general form of this transcendental characteristic
equation was investigated by Beretta and Kuang in [14].

For τ � 0, (30) becomes

λ3 + a1λ
2

+ a2 + b1( 􏼁λ + a3 + b2 � 0. (31)

Since a1 > 0 and a3 + b2 � (N − n)β2 δx2v2/(1 + αv2)
3+

rμ(αδ + β)x2v2/K(1 + αv2)> 0, we deduce by applying the
Routh–Hurwitz criterion that E2 is locally asymptotically
stable if a1(a2 + b1) − (a3 + b2)> 0.

Let iϑ(ϑ> 0) be a root of (30). ,en,

a1ϑ
2

− a3 � b1ϑsin(ϑτ) + b2cos(ϑτ),

− ϑ3 + a2ϑ � − b1ϑcos(ϑτ) + b2sin(ϑτ).

⎧⎨

⎩ (32)

Hence,

ϑ6 + a
2
1 − 2a2􏼐 􏼑ϑ4 + a

2
2 − 2a1a3 − b

2
1􏼐 􏼑ϑ2 + a

2
3 − b

2
2 � 0,

(33)

which reduces to

g(S) ≔ S
3

+ q2S
2

+ q1S + q0 � 0, (34)

where S � ϑ2, q2 � a2
1 − 2a2, q1 � a2

2 − 2a1a3 − b21, and
q0 � a2

3 − b22. By an analogical discussion as in [10], let Δ �

q22 − 3q1 and S∗ �
��
Δ

√
− q2/3. Hence, we consider the fol-

lowing assertions:

(i1) q0 ≥ 0 and Δ≤ 0
(i2) q0 ≥ 0, Δ> 0, and S∗ ≤ 0
(i3) q0 ≥ 0, Δ> 0, and g(S∗)> 0

,erefore, we have the following result.

Theorem 6. Assume R0 > 1.

(1) If RZ
1 < 1, a1(a2 + b1) − (a3 + b2)> 0, and one of the

conditions (i1)–(i3) holds, then the partial success
therapy equilibrium without immune response E2 is
locally asymptotically stable for any time delay τ ≥ 0

(2) If RZ
1 > 1, then E2 is unstable.

Assume that equation (34) has positive roots. Without
loss of generality, we assume that (34) has three positive
solutions named S1, S2, and S3 which are ordered as
follows: S1 <S2 <S3. It follows that equation (33) admits
three positive solutions that are

ϑ1 �
���
S1

􏽰
,

ϑ2 �
���
S2

􏽰
and ϑ3 �

���

S3

􏽱

.
(35)
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By (32), we get

τj

k �
1
ϑj

arccos
b2 a1ϑ

2
j − a3􏼐 􏼑 + b1ϑ

2
j ϑ2j − a2􏼐 􏼑

b
2
2 + b

2
1ϑ

2
j

⎛⎝ ⎞⎠ +
2kπ
ϑj

,

(36)

where j � 1, 2, 3 and k ∈ IN. ,erefore, ± iϑj is a pair of
purely imaginary roots of (30) with τ � τj

k. Let

τ0 � τj0
0 � min

j∈ 1,2,3{ }
τj
0􏽮 􏽯 , ϑ0 � ϑj0

. (37)

We set λ(τ) � ς(τ) + iϑ(τ) to be the root of equation (30)
satisfying ς(τj

k) � 0 and ϑ(τj

k) � ϑj. Differentiating (30) with
respect to τ, we get

dλ
dτ

􏼠 􏼡

− 1

�
3λ2 + 2a1λ + a2 + b1e

− λτ

λ b1λ + b2( 􏼁e
− λτ −

τ
λ
. (38)

Bus,

Re
dλ
dτ

􏼠 􏼡

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τj

k

�
3ϑ4j + 2 a

2
1 − 2a2􏼐 􏼑ϑ2j + a

2
2 − 2a1a3 − b

2
1

b
2
1ϑ

2
j + b

2
2

,

�
g′ ϑ2j􏼐 􏼑

b
2
1ϑ

2
j + b

2
2
.

(39)

It is not difficult to find out that g′(ϑ2j)≠ 0 for all
j � 1, 2, 3. ,en, the transversality condition holds and we
get the following result.

Theorem 7. Assume RZ
1 < 1<R0 and a1(a2 + b1) − (a3 +

b2)> 0 hold.
If either q0 < 0 or q0 ≥ 0, Δ> 0, S∗ > 0, and g(S∗)≤ 0,

then E2 is locally asymptotically stable for all τ ∈ [0, τ0) and
becomes unstable when τ > τ0. Moreover, model (1) undergoes
a Hopf bifurcation at E2 when τ � τj

k, for j � 1, 2, 3 and
k ∈ IN.

Remark 1. ,eorem 7 shows that the delay τ can cause the
partial success therapy equilibrium without immune re-
sponse E2 to gain or lose its stability. In addition, periodic
solutions appear when the value of this delay is equal to a
critical value.

Finally, we discuss the stability of the partial success
therapy equilibrium with immune response E3 when
RZ

1 > 1. In this case, (17) becomes

λ4 + c3λ
3

+ c2λ
2

+ c1λ + c0 + d2λ
2

+ d1λ + d0􏼐 􏼑e
− λτ

� 0,

(40)

where

c3 � μ + δ +(p + q)z3 +
rx3

K
+

nβx3

1 + αv3( 􏼁
2,

c2 � bpz3 + μ + δ +(p + q)z3 +
nβx3

1 + αv3( 􏼁
2

⎛⎝ ⎞⎠
rx3

K
+ δ + pz3( 􏼁 μ + qz3 +

nβx3

1 + αv3( 􏼁
2

⎛⎝ ⎞⎠ −
nβ2x3v3

1 + αv3( 􏼁
3,

c1 � bpz3 μ + qz3( 􏼁 +
nβx3

1 + αv3( 􏼁
2

⎛⎝ ⎞⎠ +
rx3

K
bpz3 + δ + pz3( 􏼁 μ + qz3 +

nβx3

1 + αv3( 􏼁
2

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ −
nβ2x3v3

1 + αv3( 􏼁
3 δ + pz3( 􏼁,

c0 � bpz3
rx3

K
μ + qz3 +

nβx3

1 + αv3( 􏼁
2

⎛⎝ ⎞⎠ −
nβ2x3v3

1 + αv3( 􏼁
3

⎡⎢⎢⎣ ⎤⎥⎥⎦,

d2 �
βx3

1 + αv3

rv3

K
−

Nδ
1 + αv3

􏼠 􏼡e
− mτ

,

d1 �
βNδx3

1 + αv3( 􏼁
2

βv3

1 + αv3
−

rx3

K
􏼠 􏼡 +

βx3v3

1 + αv3

r

K
μ + qz3( 􏼁 +

qcz3

1 + αv3
􏼠 􏼡⎡⎣ ⎤⎦e

− mτ
,

d0 �
βqcx3v3z3

1 + αv3( 􏼁
2

rx3

K
−

βv3

1 + αv3
􏼠 􏼡e

− mτ
.

(41)
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,e above equation is the same as that analyzed by Hattaf
in [9]. ,en, let iϕ(ϕ> 0) be a root of (41). We have

ϕ4 − c2ϕ
2

+ c0 � d2ϕ
2

− d0􏼐 􏼑cos(ϕτ) − b1ϕsin(ϕτ),

− c3ϕ
3

+ c1ϕ � − d1ϕcos(ϕτ) − d2ϕ
2

− d0􏼐 􏼑sin(ϕτ),

⎧⎪⎨

⎪⎩

(42)

which can be reduced to

ϕ8 + c
2
3 − 2c2􏼐 􏼑ϕ6 + c

2
2 − d

2
2 + 2c0 − 2c1c3􏼐 􏼑ϕ4

+ c
2
1 − d

2
1 − 2c0c2 + 2d0d2􏼐 􏼑ϕ2 + c

2
0 − d

2
0 � 0.

(43)

Let u � ϕ2. ,en, (43) becomes

h(u) ≔ u
4

+ p3u
3

+ p2u
2

+ p1u + p0 � 0, (44)

where p3 � c23 − 2c2, p2 � c22 − d2
2 + 2c0 − 2c1c3, p1 � c21−

d2
1 − 2c0c2 + 2d0d2, and p0 � c20 − d2

0. Clearly, if p0 < 0,
equation (44) admits at least one positive root. Additionally,
we have

h′(u) � 4u
3

+ 3p3u
2

+ 2p2u + p1 � 0. (45)

According to Cardano’s formula, the cubic roots of (45)
can be written as follows:

u1 �

��������

−
Q

2
+

��
Δ

􏽰
3

􏽲

+

��������

−
Q

2
+

��
Δ

􏽰
3

􏽲

−
p3

4
,

u2 � j

��������

−
Q

2
+

��
Δ

􏽰
3

􏽲

+ j
2

��������

−
Q

2
−

��
Δ

􏽰
3

􏽲

−
p3

4
,

u3 � j
2

��������

−
Q

2
+

��
Δ

􏽰
3

􏽲

+ j

��������

−
Q

2
−

��
Δ

􏽰
3

􏽲

−
p3

4
,

(46)

where

P �
8p2 − 3p

2
3

16
,

Q �
p
3
3 − 4p3p2 + 8p1

32
,

Δ �
P

3
􏼠 􏼡

3

+
Q

2
􏼠 􏼡

2

,

j � −
1
2

+ i

�
3

√

2
.

(47)

Hence, we discuss the existence of real positive roots of
(44).

(i) When Δ> 0, (44) has only a real root u1 and the
other two roots are conjugate complex numbers.
,us,

h′(u) � 4 u − u1( 􏼁 u
2

− 2Re u2( 􏼁z + u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑. (48)

It follows that h admits a unique strict global
minimum at u � u1, and it is because
u2 − 2Re(u2)z + |u2|

2 > 0 for all u ∈ IR.
(ii) When Δ � 0, all roots are real with u1 � 3Q/P −

p3/4 and u2 � u3 � 3Q/2P − p3/4. Hence,

h′(u) � 4 u − u1( 􏼁 u − u2( 􏼁
2
. (49)

,us, h reaches its strict global minimum at u � u1.
We conclude that if p0 ≥ 0 and Δ≥ 0, then equation
(44) has a positive root if and only if u1 > 0 and
h(u1)≤ 0.

(iii) When Δ< 0, the entire roots are real and distinct. In
this case, we have

h′(u) � 4 u − u1( 􏼁 u − u2( 􏼁 u − u3( 􏼁. (50)

By analogical reasoning, we deduce that if p0 ≥ 0 and
Δ< 0, then equation (44) has positive root if and
only if there exists at least one u∗ ∈ u1, u2, u3􏼈 􏼉

verifying u∗ > 0 and h(u∗)≤ 0.
A summary of the above analysis leads to the fol-
lowing lemma.

Lemma 1

(i) If p0 < 0, then equation (44) has at least one positive
root

(ii) If p0 ≥ 0 and Δ< 0, then equation (44) has a positive
root if and only if u1 ≥ 0 and h(u1)≤ 0

(iii) If p0 ≥ 0 and Δ< 0, then equation (44) has a positive
root if and only if there exists at least one
u∗ ∈ u1, u2, u3􏼈 􏼉 verifying u∗ > 0 and h(u∗)≤ 0.

Based on Lemma 1, we set the following conditions:

(H1)p0 < 0
(H2)p0 ≥ 0, Δ≥ 0, u1 > 0, and h(u1)≤ 0
(H3)p0 ≥ 0, Δ< 0, and there exists at least one
u∗ ∈ u1, u2, u3􏼈 􏼉 verifying u∗ > 0 and h(u∗)≤ 0,

If conditions (H1)–(H3) are not fulfilled, then equation
(44) has no positive solutions. ,us, equation (40) has no
purely imaginary roots. Consequently, the partial success
therapy equilibrium with immune response
E3(x3, y3, v3, z3) is locally asymptotically stable for all τ ≥ 0.
In this case, the presence of Hopf bifurcation is not
achievable.

Next, we assume that one of the conditions (H1)–(H3) is
fulfilled; then equation (44) admits at least one positive
solution. Let d ∈ 1, 2, 3, 4{ } be the number of positive roots of
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(44). Denote these d positive roots by uk.,en, equation (43)
has d positive solutions ϕk �

��
uk

√ , k � 1, 2, . . . , d. ,erefore,
from (42), we obtain

τk
η �

1
ϕk

arccos
ϕ4

k − c2ϕ
2
k + c0􏼐 􏼑 b2ϕ

2
k − b0􏼐 􏼑 + b1ϕ

2
k c3ϕ

4
k − c1􏼐 􏼑

b1ϕ
2
k + b2ϕ

2
k − b0􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠

+
2ηπ
ϕk

,

(51)

where k � 1, 2, . . . , d and η ∈ IN. We deduce that ± iϕk is a
pair of purely imaginary roots of (40) with τ � τk

η. Define

τ0 � τk0
0 � mink∈ 1,2,...,d{ } τk

0􏽮 􏽯 , ϕ0 � ϕk0
. (52)

We set λ(τ) � ς(τ) + iϕ(τ) to be the root of equation
(40) such that ς(τk

η) � 0 and ϕ(τk
η) � ϕk. Considering ς as a

function of τ and differentiating both sides of (40) with
respect to τ lead to

dλ
dτ

􏼠 􏼡

− 1

�
4λ3 + 3c3λ

2
+ 2c2λ + c1 + 2d2λ + d1( 􏼁e

− λτ

λ d2λ
2

+ d1λ + d0􏼐 􏼑e
− λτ −

τ
λ
.

(53)

,is implies that

Re
dλ
dτ

􏼠 􏼡

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τk
η

�
4ϕ6k + 3p3ϕ

4
k + 2p2ϕ

2
k + p1

b1ϕ
2
k + b2ϕ

2
k − b0􏼐 􏼑

2 , �
h′ ϕ2k􏼐 􏼑

b
2
1ϕ

2
k + b

2
2
.

(54)

Since sign d(Reλ)/dτ | τ�τk
η

􏼚 􏼛 � sign Re(dλ/dτ)− 1 | τ�τk
η

􏼚 􏼛,
we obtain

sign d(Reλ)/dτ | τ�τk
η

􏼚 􏼛

� sign h′ uk( 􏼁􏼈 􏼉 � sign 4ϕ6k + 3p3ϕ
4
k + 2p2ϕ

2
k + p1􏽮 􏽯.

(55)

Therefore, based on the above analysis, we claim the
following result.

Theorem 8.
Assume that RZ

1 > 1.

(i) If conditions (H1)–(H3) are not fulfilled, then the
partial success therapy equilibrium with immune
response E3 is locally asymptotically stable for all
τ ≥ 0.

(ii) If one of the conditions (H1)–(H3) is fulfilled, then the
partial success therapy equilibrium with immune
response E3 is locally asymptotically stable for any
time delay τ ∈ [0, τ0) and becomes unstable when
τ > τ0. Furthermore, if h′(ϕ20)≠ 0, then the trans-
versality condition holds and model (1) undergoes a
Hopf bifurcation at E3 when τ � τ0.

Based on Lemma 4.3 in [9], we easily deduce the fol-
lowing theorem.

Theorem 9.
Assume that RZ

1 > 1.

(i) If equation (44) admits only one positive and simple
root u1, then E3 is locally asymptotically stable for
τ ∈ [0, τ10) and becomes unstable for τ > τ10. Fur-
thermore, a Hopf bifurcation appears when τ � τ1η,
η ∈ IN.

(ii) If equation (44) admits only two positive and simple
roots u1, u2 which are ordered as u2 < u1, then there
exist a finite number of intervals such that if the delay
τ is fixed in these intervals, the equilibrium E3 is
locally asymptotically stable, while unstable if τ not
belonging to ones. In this case, E3 switches from
stability to instability.

(iii) If equation (44) admits at least three positive and
simple roots, then there exists a least one stability
switch.

Remark 2. ,eorems 8 and 9 show that when the delay τ is
considered, the partial success equilibrium with immune
response E3 can lose or gain its stability and rich dynamical
behaviors occur including Hopf bifurcation and stability
switches.

4. Discussion and Conclusion

In this paper, we have proposed and analyzed a viro-
logical model for cancer therapy with effects of satura-
tion, innate immune response, and delay that biologically
represents the time needed for infected tumor cells to
produce new virions after viral entry. We first proved the
positivity and the boundedness of solutions and discussed
the existence of equilibria by means of two threshold
parameters that are the basic reproduction number
denoted by R0 and the reproduction number for innate
immune response labeled by RZ

1 which represents the
average number of innate immune cells activated by
damaged tumor cells. More accurately, the proposed
model has uniquely (i) two equilibria, the desired out-
come therapy equilibrium E0 and the complete failure
therapy equilibrium E1 if R0 ≤ 1; (ii) three equilibria: E0,
E1, and the partial success therapy equilibrium without
immune response E2 if RZ

1 ≤ 1<R0; and (iii) four
equilibria: E0, E1, E2, and the partial success therapy
equilibrium with immune response E3 ifR

Z
1 > 1. We have

demonstrated that E0 is always unstable and E1 is globally
asymptotically stable if R0 ≤ 1 and becomes unstable if
R0 > 1. Additionally, the stability of E2 and E3, Hopf
bifurcation, and stability switches are analyzed rigor-
ously. Furthermore, our model generalizes those in
[7, 10] and our analytical results show that the delay in
infection with oncolytic viruses can lead to the loss or
stability of both equilibria E2 and E3.
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Many mathematicians have been interested in the study of recursive sequences. Among them, a class of “chaotic” sequences are
named “meta-Fibonacci sequences.”+e main example of meta-Fibonacci sequence was introduced by Hofstadter, and it is called
the Q-sequence. Recently, Alkan–Fox–Aybar and the author studied the pattern induced by the connection between the Q-
sequence and other known sequences. Here, we continue this program by studying a “Mertens’ version” of the Hofstadter
sequence, defined (for x> 0) by x↦􏽐n≤xμ(n)Q(n), where µ(n) is the Möbius function. In particular, as we shall see, this function
encodes many interesting properties which relate prime numbers to “meta-sequences”.

1. Introduction

+e set of the integer sequences, denoted by Z∞, is in the
main stream of the mathematical studies. For example, the
problems associated with the set of prime numbers are
central topics in mathematics and in many recent applica-
tions (including modern cryptography) are based on these
sequences. Another very famous numerical sequence is the
sequence of Fibonacci numbers (Fn)n≥ 0 defined by the
recurrence Fn+2 � Fn + Fn+1 (for n≥ 2), with initial values
F0 � 0 andF1 � 1. +e Fibonacci sequence is a binary re-
currence; i.e., each term is the sum of the two preceding
ones. Binary means order 2, so for an order k sequence, we
need to know the previous k terms (in some combinations).

+ere are classes of sequences which are not linear (like
the Fibonacci sequence). For instance, the sequence (an)n≥ 0
defined by the quadratic recurrence an+1 � a2

n + c, with an �

0 (where c is a given complex number), is a standard example
of fractal sequence (connected to Mandelbrot’s set). How-
ever, besides being nonlinear, it still has order 1.

Probably the first class of recursive sequences without a
fixed order, was proposed, in 1979, by Hofstadter and Gödel
[1]. In fact, they defined (Q(n))n≥1 by the self-recurrence
relation as follows:

Q(n) � Q(n − Q(n − 1)) + Q(n − Q(n − 2)), (1)

with initial values Q(1) � Q(2) � 1. +e term “self-recur-
rence” is the key point here. Because we must first know the
value of max Q(n − 1), Q(n − 2){ } in order to calculate the
value of Q(n), the prefix “meta” means that this kind of
sequence transcends, in some sense (maybe because of the
nonexistence of a fixed order), the usual examples (i.e., it is
“beyond” the standard recurrent sequences). +e first terms
of Q(n) are

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, . . . , (2)

and the graph of Q(n) in the interval [1; 1, 500, 000] is
plotted in Figure 1.

At first glance, the “self-definition” of Q(n) appears to be
a very strange definition. Paradoxically, so far, we do not
know even if Q(n) exists for all positive integers n (this is
confirmed for n< 12 · 109) [2]).

Many mathematicians worked on conditional results
related to the Hofstadter sequence (i.e., Q(n)) under the
assumption of its well definition. For example, Golomb [3]
was the first to prove that lim

n⟶∞
Q(n)/n � 1/2, provided that

this limit exists. A much weaker version of this result would
be enough to ensure that the Hofstadter sequence is well
defined. In fact, it suffices that Q(n)≤ n + 1, for all n≥ 1 (the
limit says that Q(n) grows as n/2).

By knowing the growth of Q(n), namely, Q(n) ≈ n/2,
Pinn [4] developed the study of generations by paying
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attention to the Q-graph. For him, these generations are the
intervals [a, b] such that the partial graph
(x, Q(x)): x ∈ [a, b]{ } contains a complete “sausages” pat-
tern as in Figure 1.

In 2017, Alkan et al. [5] made a very interesting discovery
by studying the sequence H(n): � C(n) − Q(n)(named by
them as Hofstadter chaotic heart sequence, see its “heart
fractal-like structure” in Figure 2), where C(n) is the Hof-
stadter–Conway $10,000 sequence is defined by the fol-
lowing recurrence:

C(n) � C(C(n − 1)) + C(n − C(n − 1)), (3)

with initial values C(1) � C(2) � 1 (in contrast with Q(n),
and it was proved that this sequence is well defined on Z>0).

Furthermore, we recall the Möbius function μ(n) which
is defined by

μ(n) �

1, ifn � 1,

(−1)
N

, ifn is a product ofN distinct primes,

0, ifN has one ormore repeated prime factors.

⎧⎪⎪⎨

⎪⎪⎩

(4)

A few values of this function are

1, −1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1, 0, −1, 0, −1, 0, . . . .

(5)

+is function plays an important role in number theory
and combinatorics (mainly due its unpredictable behavior).
Its accumulation (or summation) function denoted by M(x)

(and called the Mertens function) is defined by M(x): �

􏽐n≤xμ(n) (here the sum is taken over all positive integers
smaller or equal to x).

+e Mertens function slowly grows in positive and
negative directions both on the average and in peak value,
oscillating in an apparently chaotic manner passing through
zero when n has the following values:

2, 39, 40, 58, 65, 93, 101,

145, 149, 150, 159, 160,

163, 164, 166, 214, 231, . . . .

(6)

We point out the stronger relation between M(x) and
some important number theoretic statements:

(i) +e Prime Number theorem (which says that
π(x)logx/xtends to 1 as x⟶∞) is equivalent to
M(x) � o(x) (here π(x) is the prime counting
function, namely, the number of prime numbers
belonging to [1, x])

(ii) +e Riemann Hypothesis is equivalent to
M(x) � O(x(1/2)+ε), for all ε> 0 (see [6, +eorem
14.25]), where, as usual, O and o are the standard
Big-O and Little-o Landau notations

Recall that, we say f(x) � O(g(x)) if there exists a
positive constant C, such that |f(x)|≤C|g(x)| for all suf-
ficiently large x (the same meaning as f≪g and f(x) �

o(g(x)) if limx⟶∞f(x)/g(x) � 0). Also, we denote f ∼ g,
if f(x)/g(x) tends to 1 as x⟶∞(f and g are said to be
asymptotically equivalent).

In the same spirit than by Alkan et al. [5], in a very recent
paper, the author of [7] studied the relationship between the
functions Q(n) and μ(n), by defining B(n): �

Q(n) − nμ(n). In this paper, we continue this program by
introducing and analyzing the accumulation function of
μ(n)Q(n) which gives relations between meta-Fibonacci
sequences, prime factorization, and random walks.

+roughout the paper, we shall use the familiar notation
[a, b] � a, a + 1, . . . , b{ }, for integers a< b.

2. Hofstadter–Mertens Function

Here, we intend to consider the behavior of the accumu-
lation function of μ(n)Q(n), denoted by MQ(x), which we
call Hofstadter–Mertens function and it is defined as follows.

Definition 1. Let MQ(x) � 􏽐n≤xμ(n)Q(n), where Q(n)

denotes the nth term of Hofstadter sequence and μ(n) is the
Möbius function.

A few values of the sequence (MQ(n))n≥1 are

700 000

500 000

300 000

100 000

Q (n)

0 350 000 700 000 1050 000 1400 000
n

Figure 1: Hofstadter Q-sequence for (n) from 1 to 1,500,000.
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Figure 2: H(n) � C(n) − Q(n) for n from 1 to 1,500,000.
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1, 0, −2, −2,

− 5, −1, −6, −6, −6, 0, −6, −6,

− 14, −6, 4, 4, −6, −6, −17, . . . .

(7)

We note the apparently chaotic behavior of MQ(x)

which passes through zero (i.e., MQ(x)≤ 0 and
MQ(x + 1)> 0) when x takes the following integer values:

2, 10, 16, 22, 28, 36, 41, 66, 69, 102, 130, 137, 169, 240, 250, 257, 262, 265, . . . .

(8)

Also, its structure seems to be chaotic and its shape
seems to be as a growing “electrocardiogram” (see Figure 3).

Now, we shall split our study into four points: growth,
generational structure, pseudo-periodicity, and statistical
viewpoint.

In all what follows, we shall suppose that Q(n) is well
defined and that Q(n)/n tends to 1/2 as n⟶∞. We shall
quote this as “Hypothesis (H).”

2.1.Growth. It is almost unnecessary to stress that one of the
first properties to study in the direction of a better com-
prehension of the behavior of a “chaotic” function is its
growth (for large time). In fact, the structure of such a
function is strongly reflected in its growth properties. For
this reason, this section will be devoted to this kind of study.

By the Hypothesis (H) (in particular, Q(n) � O(n))
together with the fact that |μ(n)| ∈ 0, 1{ }, we deduce that

MQ(x) � O x
2

􏼐 􏼑. (9)

However, this upper bound can be sharpened with the
aid of some analytic number theory facts. For example, we
know that M(x) � o(x) and by Hypothesis (H), we can
write Q(n) � (n/2)(1 + o(1)).+is allows us to invoke a very
useful formula due to Abel which makes an interplay be-
tween a discrete sum and an integral (continuous sum).

2.2. Abel’s Summation Formula. Let (an)n be a sequence of
real numbers, and define its partial sum A(x): � 􏽐n≤xan.
For a real number x> 1, let f be a continuously differen-
tiable function on [1, x]. +en,

􏽘
n≤x

anf(n) � A(x)f(x) − 􏽚
x

1
A(t)f′(t)dt. (10)

Before applying the previous formula, observe that
MQ(x) can be rewritten as

MQ(x) �
1
2

􏽘
n≤x

nμ(n)(1 + o(1)) �
1
2

􏽘
n≤x

nμ(n) + 􏽘
n≤ x

o(n)⎛⎝ ⎞⎠.

(11)

Note that, by the properties of Landau’s symbols,
􏽐n≤xo(n) � o(􏽐n≤xn) � o(x2) and now, in order to obtain
an estimate to 􏽐n≤xnμ(n), we are in the position to apply
Abel’s Summation Formula with the choice of an: � μ(n)

and f(t) � t. +us,

􏽘
n≤ x

nμ(n) � xM(x) − 􏽚
x

1
M(t)dt. (12)

By the prime number theorem, we have M(x) � o(x)

and then

􏽘
n≤ x

nμ(n) � o x
2

􏼐 􏼑 − 􏽚
x

1
o(t)dt. (13)

Again, by the properties of Landau’s symbols, we have
􏽒

x

1 o(t)dt � o(􏽒
x

1 tdt) � o(x2) and so we arrive at the fol-
lowing fact.

Fact 1. It holds that

MQ(x) � o x
2

􏼐 􏼑. (14)

We remark that since the Riemann Hypothesis (RH) is
equivalent to M(x) � O(x(1/2)+ε), then, by proceeding along
the same lines as before, we deduce the following fact.

Fact 2. By assuming that the Riemann Hypothesis is true,
then, for all ε> 0, it holds that

MQ(x) � O x
(3/2)+ε

􏼐 􏼑. (15)

Remark 1. Note that in Figure 4, the bound x(3/2) (red
colored) seems to be very huge as compared to |MQ(x)|.
However, we point out that a similar feeling happens by
plotting a similar graphic to M(x) and x(1/2). In fact, this
leads to the “very probable” conjecture raised by Mertens:
|M(x)|<

��
x

√
, for all x> 0. However, this conjecture was

proved to be false (see [8]) for some (nonexplicit) counter
examples of astronomical order about 101040 .

2.3. Generational Structure. +e growth behavior of the
graphical structure of MQ(n) brings a complex fractal-like
structure. In fact, these kinds of patterns are commonly
called “generational structure” of a meta-Fibonacci sequence
(for more information about these structures for other meta-
Fibonacci sequences, we refer the reader to [9–11]). In our
case, these “generations” are the repeated “zigzag” pattern.
More precisely, with Pinn’s terminology, it is possible to
partition the set of positive integers as

Z>0 � ∪
g≥0

G(g), (16)

x

M
Q

(x
)

60 000

45 000

30 000

–30 000

15 000

–15 000

0
1000 2000 3000 4000 5000

Figure 3: MQ(x) � 􏽐n<xμ(n)Q(n) for x ∈ [1; 5, 000].
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where G(g) is a finite interval of natural numbers which is
known as the gth generation of the sequence. In our case,
each generation G(g) � [x0(g), x1(g)]will be in such a way
that (see Figure 5)

(i) MQ(x0(g))< 0
(ii) x1(g) � min t> x0(g) + 1: MQ(t)< 0􏽮 􏽯

In an extensive empirical/heuristical study (see Figure 6),
we were not able to find a pattern for x0(g) and x1(g). +e
main reason may lie in the chaotic behavior of μ(n) (related
to random walks, for example).However, it is possible to
deduce that x1(g) − x0(g) can be made arbitrarily large.
+at is, we have the following fact.

Fact 3. For all positive integers N, there is an interval G(g)

with length strictly larger than N.
In the next section, we shall see that a kind of periodicity

of MQ(x) is responsible for the veracity of this fact.
We point out that most of these findings are empirical

observations, since virtually speaking, nothing has been
proved rigorously about the Q-sequence, so far (as previ-
ously mentioned).

2.4. Pseudo-Periodicity. A function f: R⟶ R is said to be
periodic if there exists a positive integer T such that
f(x + T) � f(x), for all x ∈ R (in other words, the func-
tion repeats its values in regular intervals or periods). +e
most important examples of periodic functions are the
trigonometric functions, which repeat over intervals of 2π
radians. Periodic functions are used throughout science to
describe oscillations, waves, and other phenomena that
exhibit periodicity. Any function that is not periodic is called
aperiodic.

Clearly, the Hofstadter–Mertens function is aperiodic.
However, we can define another kind of periodicity.

Definition 2. A function f: R⟶ R is said to be meta-
periodic if for any positive integer T, there exist infinitely
many positive values of x, such that f(x + T) � f(x). Let
T be a positive integer, and let p1 <p1 < , . . . , <pT be the
first T prime numbers. We have that the congruence
system

x ≡ − 1 modp
2
1􏼐 􏼑,

x ≡ − 2 modp
2
2􏼐 􏼑,

⋮
x ≡ − T modp

2
T􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

has infinitely many solutions in x (in a residue class modulo
(p1p2, . . . , pT)2), say (nk)k≥ 0, by the Chinese remainder
theorem. Clearly, for a particular solution x � n0, we have
that p2

i | n0 + i and so μ(n0 + i) � 0, for all i ∈ [1, T]. +us,
one has μ(n0) � · · · � μ(n0 + T) � 0. In particular, we have

MQ nk + T( 􏼁 � MQ nk( 􏼁, (18)

for all k ≥ 0. +us, we have the following fact.

Fact 4. +e Hofstadter–Mertens function is meta-periodic.
For instance, for some values of T, we have the following:

(i) For T � 2, we have the family of solutions
n ≡ 7(mod 36)

(ii) For T � 3, we have the family of solutions
n ≡ 547(mod 900)

(iii) For T � 5, we have the family of solutions
n ≡ 1308247(mod 5336100)
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Figure 4: Graph of MQ(n) (black colored), for n from 1 to 25,000
between the bounds ±x(3/2)(red color dashed line).

MQ(x)

x0(g) x1(g) – 1 x1(g) x

Figure 5: Graph of MQ(x) (gray colored) and the disposal of
endpoints of a generation (interval generation in black color).
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Figure 6: MQ(n) for n from 1 to 6000 with its first 101 “gener-
ations” separated by vertical lines.
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2.5. Statistical Viewpoint. Now, we wish to study the be-
havior of MQ(x) in a statistical vein. For this, our method
will be based on a process that appeared in OEIS A283360
(see also its Link section) for the behavior that keeps the
main characteristic ofQ-sequence with deviations of noise in
generations. Here, we define q(n) as the remainder after
division of 􏽐

n
k�1 MQ(k) by n. So, for n ∈ [1, 20], q(n) attains

the following values:

0, 1, 2, 1, 2, 3, 6, 3, 0, 3, 0, 9, 12, 11, 5, 13, 11, 9, 15, 3. (19)

Now, we define q∗(n) � |q(n + 1) − q(n)| and Figure 7
is the scatter plot of MQ(n) and q∗(n) for n from 1 to 10000.

Figure 8 shows the evaluation (in a statistical viewpoint)
of the standard deviation (SD),mean (arithmetic mean), and
median of values of MQ(n) in the interval [1, m], for
2 ≤ m ≤ 5000.

3. Hofstadter–Mertens Function×Riemann
Zeta Function

We close this study by comparing MQ(x) and the Riemann
zeta function ζ(s) � 􏽐n≥11/ns (forR(s)> 1). We know that
ζ(s) converges for all R(s)> 1 and admits an analytic
continuation (via Abel Summation Formula) for R(s)≥ 1
except for a simple pole at s � 1, with residue 1 (in fact,
Riemann extended this continuation for all complex planes
but s � 1).

+e zeta function is only one example of the called
Dirichlet series which, for an arithmetic function
f: N⟶ R, is defined by

D(f, s) :� 􏽘
n≥1

f(n)

n
s . (20)

Many properties of prime numbers are encoded by
Dirichlet’s series and its Euler’s product. For example, for the
Riemann zeta function, we have

ζ(s) � 􏽙
p

1 − p
− s

( 􏼁
− 1

, (21)

where the product is taken over all prime numbers. We
know the huge importance of primes in mathematics and
even in real life (as in cryptography). So, among the attempts
made in this direction, we were able to provide the following
fact.

Fact 5. We have that

􏽘
n≥ 1

μ(n)Q(n)

n
s �

1
ζ(s)

􏽘
n≥ 1

ψ(n)

n
s , (22)

where

ψ(n) ∼
(−1)

ω(n)

2
ϕ(n)

n
􏽙
p|n

p. (23)

Here, as usual, ω(n) denotes the number of distinct
prime factors of n and φ(n) � # k ∈ [1, n] : gcd(k, n) � 1􏼈 􏼉

is the Euler totient function.

In order to prove this fact, we recall the Dirichlet con-
volution between two Dirichlet’s series.

Definition 3. Let f and g be arithmetic functions; then, the
Dirichlet convolution of f and g, denoted by f∗g is defined
by

f
∗
g(n) :� 􏽙

d|n

f(d)g
n

d
􏼒 􏼓. (24)

Awell-known fact is that D(f, s) · D(g, s) � D(f∗g, s).
+us, let us considerf(n) � 1 (for all n), i.e., D(f, s) �

ζ(s) and then,

D(μ(n) Q(n), s) · ζ(s) � D μ(n) Q(n)
∗1, s( 􏼁 � 􏽘

n≥ 1

ψ(n)

n
s ,

(25)

where ψ(n) � (μ(n)Q(n)∗1)(n) � 􏽐d|nμ(n)Q(n) . Since,
by Hypothesis (H), Q(n)) ∼ n/2 , then ψ(n) ∼
(1/2)􏽐d|ndμ(d). Note that

􏽘
d|n

dμ(d) � (−1)
ω(n)ϕ(rad(n)), (26)

where rad(n) � 􏽐p|np (where p is a prime) is called the
radical of n (the proof of (26) follows from the fact that the
left-hand side and the right-hand side, in formula (26),
represent arithmetic multiplicative functions and so it is
enough to compare themwhen n is a prime power). Now, we
use ϕ(rad(n))/rad(n) � ϕ(n)/nto conclude Fact 5.

4. Conclusion

In this paper, we continue the fruitful program started by
Hofstadter, Golomb, Pinn, Alkan, Fox, and Aybar (among
others) to study the behavior of meta-Fibonacci sequences,
mainly the Q-sequence. Here, we studied the sequence

MQ(n)

q∗(n)
n

9000
6000

–6000

3000

–3000

–12 000
–9000

0
500 1000 1500 2000

Figure 7: +e scatter plot of MQ(n) (red colored) and q∗(n) (black
colored) for n from 1 to 2,000.

15 000
10 000

5000
0

–5000

Mean
Median

1000 3000 5000 7000
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n

Figure 8: Standard deviation, mean, and median of MQ(n).
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MQ(n) which is defined as the accumulation function of the
product between the Q-sequence and the Möbius function
(we call MQ(n) as Hofstadter–Mertens function). +e se-
quence MQ(n) is studied with emphasis on its chaotic be-
havior. We split the text into four parts. We started by
growing properties of MQ(n) and its relation with the
Riemann hypothesis (here, we used some analytic tools).
+en, we present some data regarding its “generational
structures” together with some other facts. In the third part,
we worked on the pattern repetition of MQ(x) by showing
that it satisfies a kind of “meta-periodicity.” We finish by
mentioning some statistical viewpoints of the Hof-
stadter–Mertens function, such as its mean, median, and
standard deviation (in a large scale). In the final section, we
still present some theories of Dirichlet series related to
μ(n)Q(n) which could have some theoretical interest in
detection of primes or problems related to the Riemann zeta
function.
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)is paper investigates the analytical, semianalytical, and numerical solutions of the (2 + 1)–dimensional integrable
Schwarz–Korteweg–de Vries (SKdV) equation. )e extended simplest equation method, the sech-tanh method, the Adomian
decomposition method, and cubic spline scheme are employed to obtain distinct formulas of solitary waves that are employed to
calculate the initial and boundary conditions. Consequently, the numerical solutions of this model can be investigated. Moreover,
their stability properties are also analyzed. )e solutions obtained by means of these techniques are compared to unravel relations
between them and their characteristics illustrated under the suitable choice of the parameter values.

1. Introduction

)e Korteweg–de Vries (KdV) equation is a seminal model
in fluid mechanics. )is model was introduced by Boussi-
nesq in 1877 and reintroduced by Diederik Korteweg and
Gustav de Vries in 1895. )e KdV has the following formula
[1–9]:

Qt + Uxxx − 6UUx � 0, (1)

where U � U(x, t) characterizes the weakly nonlinear
shallow water waves. Equation (1) can be written in many
distinct forms and combined with other models. One of
them is the Schwarz–Korteweg–de Vries (SKdV) equation
given by

Qt + Qx

Qxx

Qx

􏼠 􏼡 −
1
2

Qxx

Qx

􏼠 􏼡

2
⎡⎣ ⎤⎦ � 0, (2)

where Q � Q(x, t) is the unknown function. )e SKdV
was derived by Krichever and Novikov [10] and Weiss
[11, 12].

In this paper, we study the (2 + 1)-dimensional inte-
grable generalization of SKdV as follows:

Ut +
1
4
Uxxy −

UxUxy

2U
−
UxxUy

4U
+
U2

xUy

2U2 −
Ux

8
􏽚

U2
x

U2􏼠 􏼡
y

dx � 0.

(3)

Equation (3) was derived by Toda and Yu [13]. Using the
following transformation on equation (3),

U � Sx,

S � e
F

,

Fx � U,

Ft � R,

(4)
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where S � S(x, t),F � F(x, t),U � U(x, t), and
R � R(x, t) are the unknown functions, we obtain

4U2Rx − 4UUxR + U2Uxxy − UUxxUy − 3UUxUxy + 3U2
xUy − U4Uy � 0,

Ut − Rx � 0.

⎧⎨

⎩ (5)

)is equation is obtained from the study by Bruzón et al.
[14–16]. Using the Miura transform [17–19] on equation (5)
as

Bx �
Uxx

4U
−
3U2

x

8U2 −
U2

8
,

By � −
R

U
,

(6)

we obtain [20, 21]

4Bxt + Bxxxy + 8BxyBx + 4ByBxx � 0. (7)

If we adopt the wave transformation

B(x, y, t) � B(Z),

Z � ρx + δy + ct,
(8)

then we convert equation (7) into an ordinary differential
equation (NLODE).)e integration of the obtained NLODE
with zero constant of integration leads to

4cB′ + ρ2δB‴ + 6ρδB′2 � 0. (9)

If we consider the substitutionB′ � F, then it results in

4cF + ρ2δF″ + 6ρδF2
� 0. (10)

Having these ideas in mind, this paper is organized as
follows: Section 2 presents the two methods and derives the
solutions of the SKdV equation. Section 5 represents the
solutions for several numerical values of the parameters.
Additionally, their stability and properties are also discussed.
Finally, Section 6 summarises the main conclusions.

2. Explicit Solutions

In this section, we apply two analytical techniques for de-
riving the solutions of the (2 + 1)-dimensional integrable
SKdV model. We adopt the extended simplest equation
method and the sech-tanh method to obtain various distinct
formulas of solitary wave solutions of equation (3). For
further details about the two methods, see [22–26].

2.1. Extended Simplest Equation. According to the homo-
geneous balance rule between the highest derivative and the
nonlinear term in equation (9), we obtain n � 2. )us, the
general solution of equation (10) is given by

F(Z) � 􏽘
n

i�− n

aiC(Z)
i

� a2C(Z)
2

+ a1C(Z) +
a− 2

C(Z)2
+

a− 1

C(Z)
+ a0,

(11)

where ai(i � − 2, . . . , 2) are arbitrary constants. Additionally,
C(Z) satisfies the following ordinary differential equation:

C′(Z) � α + λC(Z) + μC(Z)
2
, (12)

where β, α, and μ are the arbitrary constants. Substituting
equations (11) and (12) into (9) and collecting all terms of
Ci(Z) (i � − 4, − 3, . . . , 3, 4), we get a system of algebraic
equations. Solving this system, we obtain two families of
solutions.

Family 1

a0⟶
1
6

− 2αμρ − λ2ρ􏼐 􏼑,

a1⟶ 0,

a2⟶ 0,

a− 1⟶ − αλρ,

a− 2⟶ − α2ρ,

c⟶
1
4

δλ2ρ2 − 4αδμρ2􏼐 􏼑.

(13)

Family 2

a0⟶
1
6

− 2αμρ − λ2ρ􏼐 􏼑,

a1⟶ − λμρ,

a2⟶ − μ2ρ,

a− 1⟶ 0,

a− 2⟶ 0,

c⟶
1
4

δλ2ρ2 − 4αδμρ2􏼐 􏼑.

(14)

From these two families, the solitary wave solutions of
equation (7) can be obtained.

According to Family 1, we have the following
expressions.
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2.1.1. When λ � 0. For αμ> 0, we obtain

F1(x, y, t) � −
αμρ
3

−
λ2ρ
6

− αμρ cot2
1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− λρ
���
αμ

√
cot

1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓,

(15)

F2(x, y, t) � −
αμρ
3

−
λ2ρ
6

− αμρ tan2
1
4

���αμ√ δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− λρ
���
αμ

√
tan

1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓.

(16)

For αμ< 0, we obtain

F3(x, y, t) � αμρ coth2
1
4

����
− αμ

√
(ρ(4x − 4αδμρt) + 4δy)∓

log(ϑ)

2
􏼠 􏼡 −

αμρ
3

, (17)

F4(x, y, t) � αμρ tanh2
1
4

����
− αμ

√
(ρ(4x − 4αδμρt) + 4δy)∓

log(ϑ)

2
􏼠 􏼡 −

αμρ
3

. (18)

When 4αμ> λ2, we obtain

F5(x, y, t) � −
αμρ
3

−
4α2μ2ρ

λ −

��������

4αμ − λ2
􏽱

tan (1/8)

��������

4αμ − λ2
􏽱

ρ δρt λ2 − 4αμ􏼐 􏼑 + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓􏼒 􏼓
2

−
λ2ρ
6

+
2αλμρ

λ −

�������

4αμ − λ2
􏽱

tan (1/8)

�������

4αμ − λ2
􏽱

ρ δρt λ2 − 4αμ􏼐 􏼑 + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

,

(19)

F6(x, y, t) � −
αμρ
3

−
4α2μ2ρ

λ −

��������

4αμ − λ2
􏽱

cot (1/8)

��������

4αμ − λ2
􏽱

ρ δρt λ2 − 4αμ􏼐 􏼑 + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓􏼒 􏼓
2

−
λ2ρ
6

+
2αλμρ

λ −

�������

4αμ − λ2
􏽱

cot (1/8)

�������

4αμ − λ2
􏽱

ρ δρt λ2 − 4αμ􏼐 􏼑 + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

.

(20)
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According to Family 2, we have the following
expressions.

2.1.2. When λ � 0. For αμ> 0, we obtain

F7(x, y, t) � −
αμρ
3

−
λ2ρ
6

− αμρ tan2
1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− λρ ���αμ√ tan
1
4

���αμ√ δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓,

(21)

F8(x, y, t) � −
αμρ
3

−
λ2ρ
6

− αμρ cot2
1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− λρ
���
αμ

√
cot

1
4

���
αμ

√
δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓.

(22)

For αμ< 0, we obtain

F9(x, y, t) � αμρ tanh2
1
4

����
− αμ

√
(ρ(4x − 4αδμρt) + 4δy)∓

log(ϑ)

2
􏼠 􏼡 −

αμρ
3

, (23)

F10(x, y, t) � αμρ coth2
1
4

����
− αμ

√
(ρ(4x − 4αδμρt) + 4δy)∓

log(ϑ)

2
􏼠 􏼡 −

αμρ
3

. (24)

When α � 0: For λ> 0, we get

F11(x, y, t) � −
λ2μ2ρ exp (1/2)λ ρ δλ2ρt + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼐 􏼑

6 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ − 1􏼐 􏼑
2

−
2λ2μρe(1/4)λρ δλ2ρt+4x( )+δλy+λϑ

3 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ − 1􏼐 􏼑
2

−
λ2ρ

6 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ − 1􏼐 􏼑
2.

(25)

For λ< 0, we obtain

F12(x, y, t) � −
μ4ρ exp (1/2)λ ρ δλ2ρt + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼐 􏼑

μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2

−
λ2ρ

6 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2

−
λ2μ2ρ exp (1/2)λ ρ δλ2ρt + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼐 􏼑

6 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2

+
λμ2ρe1/4λρ δλ2ρt+4x( )+δλy+λϑ

μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2

−
λ2μρe(1/4)λρ δλ2ρt+4x( )+δλy+λϑ

3 μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2

+
λμ3ρ exp 1/2λ ρ δλ2ρt + 4x􏼐 􏼑 + 4δy + 4ϑ􏼐 􏼑􏼐 􏼑

μe(1/4)δλ3ρ2t+λρx+δλy+λϑ + 1􏼐 􏼑
2 .

(26)

When 4αμ> λ2, we obtain

F13(x, y, t) �
2αμρ
3

−
λ2ρ
6

+
1
4
λ2ρsec2

1
8

�������

4αμ − λ2
􏽱

δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− αμρsec2
1
8

�������

4αμ − λ2
􏽱

δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓,

(27)

F14(x, y, t) �
2αμρ
3

−
λ2ρ
6

+
1
4
λ2ρcsc2

1
8

�������

4αμ − λ2
􏽱

δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓

− αμρcsc2
1
8

�������

4αμ − λ2
􏽱

δρ2t λ2 − 4αμ􏼐 􏼑 + 4ρx + 4δy + 4ϑ􏼐 􏼑􏼒 􏼓.

(28)

2.2. Sech-Tanh Method. )e general solution of equation
(10) according to the sech-tanh method and calculated value
of balance is given by

F(Z) � 􏽘
n

i�1
sechi− 1

(Z) aisech(Z) + bi tanh(Z)( 􏼁 + a0

� sech(Z) a2 sech(Z) + b2 tanh(Z)( 􏼁

+ a1sech(Z) + a0 + b1 tanh(Z),

(29)

where a0, a1, a2, b1, and b2 are the arbitrary constants.
Substituting equation (29) into (10) and collecting all terms
of sech(Z), sech2(Z), sech3(Z), tanh (Z), tanh(Z)sec h2

(Z), and tanh(ξ)sech(Z), we obtain a system of algebraic
equations. Solving this system, we obtain
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a0⟶
2

�
c

√

3
�
δ

√ ,

a1⟶ 0,

a2⟶ −

�
c

√

�
δ

√ ,

b1⟶ 0,

b2⟶ 0,

ρ⟶ −

�
c

√

�
δ

√ , where (c> 0, δ > 0).

(30)

Consequently, the explicit solution of equation (7) is
given by

F15(x, y, t) �

�
c

√
2 − 3sech2(ct + ρx + δy)􏼐 􏼑

3
�
δ

√ . (31)

3. Stability Investigation

We now examine the stability property for (2 + 1)-di-
mensional integrable SKdV model with the Miura trans-
formation by means of an Hamiltonian system. )e
momentum H in the Hamiltonian system is given by

H �
1
2

􏽚
J

− J
B

2
(Z)dZ, (32)

whereB(Z) is the solution of the model. Consequently, the
condition for stability of the solutions can be formulated as

zH

zc
> 0, (33)

where c is the wave velocity. )e momentum in the
Hamiltonian system for equations (18) and (31) are given,
respectively, by

H �
1
c

3200c − sech2(10c + 26) − sech2(10c + 34) + sech2(26 − 10c) + sech2(34 − 10c)􏼐 − 4 log e
52

− 1􏼐 􏼑􏼐

× sinh(10c) + 1 + e
52

􏼐 􏼑cosh(10c)􏼑 − 4 log e
68

− 1􏼐 􏼑sinh(10c) + 1 + e
68

􏼐 􏼑cosh(10c)􏼐 􏼑 + 4 log 1 + e
52

􏼐 􏼑cosh(10c)􏼐

− e
52

− 1􏼐 􏼑sinh(10c)􏼑 + 4 log 1 + e
68

􏼐 􏼑cosh(10c) − e
68

− 1􏼐 􏼑sinh(10c)􏼐 􏼑􏼑,

(34)

H �
1
72

4 100c + log e
7− 5c

+ e
5c

􏼐 􏼑 + log e
23− 5c

+ e
5c

􏼐 􏼑 − log e
− 5c

+ e
5c+7

􏼐 􏼑 − log e
− 5c

+ e
5c+23

􏼐 􏼑􏼐 􏼑􏼐

− sech2 5c +
7
2

􏼒 􏼓 − sech2 5c +
23
2

􏼒 􏼓 + sech2
7
2

− 5c􏼒 􏼓 + sech2
23
2

− 5c􏼒 􏼓􏼓.

(35)

And thus,

zH

zc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�72
� 2.37146 × 10− 298 > 0, (36)

zH

zc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�9
� 5.55556> 0. (37)

We conclude that this solution is stable on the interval
x ∈ [− 5, 5], t ∈ [− 5, 5]. )is result shows the ability of the
solutions for their application. Using the same steps, we can
check the stability property of all other obtained solutions.

4. Semianalytical and Numerical Solutions

)is section applies semianalytical and numerical schemes
for deriving the solutions of the (2 + 1)-dimensional inte-
grable SKdV model. )e Adomian decomposition method
and cubic b-spline schemes are employed to the method to
investigate the accuracy of the obtained analytical solutions.
Also, this study aims to give a comparison between both
used analytical schemes. For further details about the two
methods, see [27–30].

4.1. Adomian DecompositionMethod. Applying this scheme
gives equation (10) in the following form:

􏽘
∞

j�0
Fj(Z) � F(0) + F′(0)Z −

4c

ρ2δ
L

− 1
􏽘
∞

j�0
Fj(Z)⎛⎝ ⎞⎠ −

6
ρ
L

− 1
􏽘
∞

j�0
Aj

⎛⎝ ⎞⎠.

(38)

)us, with respect to equation (18) and the following
conditions α � − 1, a0 � 4, a− 1 � 0, a− 2 � − 3, c � 72, δ � 2,

λ � 0, μ � 4, and ρ � 3, we obtain

F0 � − 2,

F1 � 12Z2
,

F2 � − 8Z4
,

F3 � 8Z4
−
16Z6

3
.

(39)

Consequently, the semianalytical solution of equation
(10) is written in the following form:
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F � −
16Z6

3
+ 12Z2

− 2 + · · · . (40)

However, with respect to equation (31) and the following
conditions a0 � 1, a1 � 0, a2 � − (3/2), b1 � 0, b2 � 0, c � 9,

δ � 4, and ρ � − (3/2), we obtain

F0 � −
1
2
,

F1 �
3Z2

2
,

F2 � − Z
4
,

F3 �
13Z6

30
−
Z4

2
.

(41)

Consequently, the semianalytical solution of equation
(10) is written in the following form:

F �
13Z6

30
−
3Z4

2
+
3Z2

2
−
1
2

+ · · · . (42)

4.2. Cubic B-Spline Scheme. Employing the cubic B-spline
scheme to evaluate the numerical solutions of equation (10).
Using same initial and boundary conditions with respect to
the obtained solutions (18) and (31), yields

5. Discussion

)is section illustrates several of the results for F(x, y, t)

to highlight the properties of the (2 + 1)-dimensional
integrable SKdV model with Miura transformation. In the

5
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t

x

(a)

–4 –2 2 4
x

τ4 (x, t)
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–8

(b)
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0

2

4

x

–0.1 0.0 0.1 0.2–0.2
t

(c)

Figure 1: Solitary wave in three different forms of equation (18).
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follow-up, we fix the value of y to characterize these
solutions and the interpretation is based on three different
types of representations (three- and two-dimensional
charts and contour plot). In the following steps, the
physical interpretation of the represented figures is
discussed:

(i) Figure 1 shows the bright solitary for (18) in the
three-dimensional plot (a) to illustrate the per-
spective view of the solution, the two-dimensional
plot (b) to present the wave propagation pattern of

the wave along x- axis, and the contour plot (c) to
explain the overhead view of the solution when α �

− 1, a0 � 4, a− 1 � 0, a− 2 � − 3, c � 72,δ � 2,λ � 0,μ � 4,

andρ � 3
(ii) Figure 2 shows the dark solitary for (31) in the

three-dimensional plot (a) to illustrate the per-
spective view of the solution, the two-dimensional
plot (b) to present the wave propagation pattern of
the wave along the x-axis, and the contour plot (c)
to explain the overhead view of the solution when

5

5

0

0

–5

–5

t

x

(a)

1

1

1

1

–4 –2 2 4
x

τ15 (x, t)

(b)

–0.1 0.0 0.1 0.2–0.2
t

0.0

0.5

1.0

1.5

2.0

x

(c)

Figure 2: Solitary wave in three different forms of equation (31).
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a0 � 1, a1 � 0, a2 � − (3/2), b1 � 0, b2 � 0, c � 9, δ �

4, and ρ � − (3/2)

(iii) Figure 3 illustrates the exact and semianalytical
obtained solutions, respectively, by the extended
simplest equation method and Adomian decom-
position method

(iv) Figure 4 illustrates the exact and semianalytical ob-
tained solutions, respectively, by the sech-tanh ex-
pansionmethod andAdomian decompositionmethod

(v) Figure 5 illustrates the exact and numerical ob-
tained solutions, respectively, via the sech-tanh
expansion method and cubic B-spline scheme
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Figure 3: Exact and numerical solutions of equation (10) according to the obtained analytical solution via the extended simplest equation
method.
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(vi) Figure 6 illustrates the exact and numerical ob-
tained solutions, respectively, via the sech-tanh
expansion method and cubic B-spline scheme

Now, we shall show the accuracy of our obtained
solution and explain the comparison between the
two employed analytical schemes:
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Figure 4: Exact and numerical solutions of equation (10) according to the obtained analytical solution via the sech-tanh expansion method.
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(vii) Tables 1 and 2 show calculated values of the exact,
semianalytical, and numerical solutions with dif-
ferent values of Z. )ese values show the accuracy
of the obtained analytical solutions via the sech-
tanh expansionmethod over the obtained analytical

solutions via the extended simplest equation
method where the absolute values of error in the
sech-tanh method is smaller that those obtained by
the extended simplest equation method. Figure 7
explains the absolute value of error in 1 and 2.
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Figure 5: Exact and numerical solutions of equation (10) according to the obtained analytical solution via the extended simplest equationmethod.
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Figure 6: Exact and numerical solutions of equation (10) according to the obtained analytical solution via the sech-tanh expansion method.

Table 1: Exact, semianalytical, and absolute values of error with different values of Z with respect to the obtained solution via extended
simplest equation method (18) and sech-tanh method (31) via the Adomian decomposition method.

Ext. Sim Eq. method Sech-tanh method Absolute error
Value of 3 Exact Approximate Exact Approximate First scheme Second scheme
0.001 1.99998 1.99999 0.499999 0.499999 1.19999E− 05 4.99711×10− 13

0.002 1.9999 1.99995 0.499994 0.499994 0.000047999 7.99988×10− 12

0.003 1.99978 1.99989 0.499987 0.499987 0.000107995 4.05003×10− 11

0.004 1.99962 1.99981 0.499976 0.499976 0.000191984 1.28001×10− 10

0.005 1.9994 1.9997 0.499963 0.499963 0.00029996 3.12502×10− 10

0.006 1.99914 1.99957 0.499946 0.499946 0.000431917 6.48006×10− 10

0.007 1.99882 1.99941 0.499927 0.499927 0.000587846 1.20052×10− 9

0.008 1.99846 1.99923 0.499904 0.499904 0.000767738 2.04804×10− 9

0.009 1.99806 1.99903 0.499879 0.499879 0.00097158 3.28057×10− 9

0.01 1.9976 1.9988 0.49985 0.49985 0.00119936 5.00013×10− 9
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6. Conclusion

In this paper, the extended simplest equation and sech-
tanh expansion methods have been successfully imple-
mented on the (2 + 1)-dimensional integrable SKdV
model with Miura transform. Moreover, the stability
properties of the solutions have also been tackled. )e
Adomian decomposition method and cubic B-spline
scheme have also employed to investigate the semi-
analytical and numerical solutions, and the two show the
accuracy of the obtained analytical solutions. )e rigor of
the obtained solutions that have been obtained by the
sech-tanh expansion method has been discussed. )e
solutions were represented by allowing a physical inter-
pretation and better interpretation of their properties. In
summary, this paper studied the SKdV and found relevant
solutions that provide new interpretations of the real-
world phenomena.
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A novel four-dimensional energy, economic, and environmental (3E) under energy reduction constraints chaotic system is proposed.
-e acquisition of environmental quality data is the key to this paper. During the course of the study, we used Bayesian estimation
algorithm to calibrate the environmental quality. Based on the official data, the Levenberg–Marquardt backpropagation neural network
method was optimized by genetic algorithm to effectively identify the parameters in the 3E system. -e research results show that
although increasing energy reduction inputs can improve environmental quality, the effect on energy intensity and overall stability of the
system is not obvious. When polluting input in the ecological environment system affects its maximum capacity, the environmental
system collapses (i.e., the ecological system can no longer purify the environment through the self-circulation process and will eventually
die out). -erefore, it is necessary to correctly grasp the ecological environment protection and the relationship between economic
developments and explore synergies to promote ecological priorities and green development new ideas.

1. Introduction

In the context of the rapid development of the global
economy, China has become one of the largest economy
groups; however, there are obvious contradictions between
rapid economic growth with energy use and the protection
of the environment. -ere are mutual influences and mutual
checks and balances among energy systems, economic
systems, and environmental systems. -erefore, to achieve
coordinated development of energy, economic, and envi-
ronmental system has become an important part of
achieving development goals of the region. Economy-en-
ergy-environment system has come into being 3E system,
which is used for analyzing the comprehensive development
level of economy, energy, and environment for a region, thus
using the result data to judge the degree of coordination
among economy, energy, and environment and make a new
plan.

New elements have been continuously created as the
evolution of 3E systems has not followed the linear mech-
anism, which has made the world even more diversified and

complicated. -us, it is fair to say that the nonlinear evo-
lution model has become the prerequisite that has gradually
enriched and complicated the 3E system. It is the new el-
ements coming from the nonlinear mechanism that has
supported the evolution and complicated the elements.
Accordingly, the information that follows suits has con-
tinued to increase and accumulate, which has ensured the
sustainable development. -e complicated nonlinear
mechanism generally lies in the elements outside and inside
of the environment system, which has stabilized the
structure, organization, and the conditioning mechanism for
the system, to stimulate and confine the revolution of the
whole system.

Presently, we have seen massive research on nonlinear
model’s complexity. For instance, Zhao et al. believe that
there are many species in the environmental system; there
are complex relationships among species, such as parasitism,
symbiosis, and natural enemies. -ere are direct or indirect
connections among all species, which constitute a complex
ecological network. Because the environmental system has
the characteristics of nonlinearity, self-organization,
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nonnegotiability, dynamics, openness, multilevel, self-sim-
ilarity, and so on, it is a typical complex system, and it is a
large system with many elements, levels, and complex re-
lationships. If we want to solve the current environmental
problems facing mankind, we must apply complexity theory
to environmental problems making the structure of envi-
ronmental system more reasonable and the balance of en-
vironment, economy, and society rebuilt [1]. Fang believes
that structural complexity is one of the most fundamental
problems of dynamic complexity of ecosystems. -e de-
velopment and application of dynamic system theory are
helpful to understand the complexity of ecosystem. It is
pointed out that structural complexity and dynamic com-
plexity are interrelated. Simple dynamic models of ecosys-
tem show that simple structural systems can produce very
complex and unpredictable dynamic behavior in some cases.
However, the ecosystems with complex structures may not
necessarily produce complex dynamic behaviors [2]. De-
velopment and application of the dynamics system would
help enhance the understanding of 3E system’s complexity.
-e research would also help indicate that complexity be-
tween structure and dynamics are interrelated. -e 3E
system’s simple dynamic model indicated that simple
structure system would generate complicated and unpre-
dictable dynamic behavior. However, the complied eco-
system would not necessarily lead to complicated dynamic
behavior [3]. We can make basic judgment on current re-
searches on 3E system’s internal connectivity and interaction
frommultiple perspectives. Some of the researches are based
on the samples from the time series and applied from
cointegration and causal tests, discussing the relationship
between energy and economy. Scholars all around the world
have consensus about the interaction of the two, believing
that consumption of energy and economic growth has been
highly correlated for the long time and yet exhibits notable
regional difference [4, 5]. Regarding the relationship be-
tween energy and environment, some scholars believe that
increase in energy output and consumption are the main
culprit behind the degradation of environment [6, 7]. It is
worth noting that most of the researches on the topic are
based on Kuznets curve, while the conclusions that follow
suit are divergent. On the one hand, the supporters aim to
figure out the internal motivations [8–10] that form the EKC
from the perspective of economic growth, trade, and poli-
cies. -ey have come to the roughly similar conclusion: the
quality of environment would be improved in tandem with
economic development following its degradation. On the
other hand, the skeptics of the EKC believe that the rela-
tionship between economy and environment could include
U-shape, N-shape, or synchronous curves [11–13].

Some other researches are based on the comprehensive
discussion regarding the 3E system. However, the scholars
have chosen different research timing and methods, mainly
including measurement and evaluation of the 3E system’s
coordination [14], application of dynamic CGE model [15],
the endogenous growth model [16], and the relationships
and correlations among outputs of 3E based on the analysis
of the econometric model [17]. Current literature has basic
consensus of the conclusion regarding the coordination

analysis of the 3E system, believing that China’s coordina-
tion remains at a lower level. Meanwhile, Wei et al. have
included demographic system into their researches, leading
to a dynamically open yet more complicated system, in order
to build up multipurpose planning and an integrated model
reflecting a check-and-balance relationship [18]. -e re-
search comes with a novel angel.

Currently, environmental protection still falls behind social
and economic development. Pollutions caused by multistages,
multifields, and multitypes have been continually mounting,
yet the environmental carrying capacity has (nearly) reached its
limit. Hence, the worsening environmental problems have not
been radically resolved. In the process of handling the issues,
people have been gradually aware that improvement of the
environmental quality hinges on well-managed resources, re-
solved environmental problems, and control of pollutants’
emission. Good environmental quality is related to the sus-
tainable development of the economy and society. It is an
important breakthrough to adjust the economic structure and
achieve economic growth. It is conducive to promoting eco-
nomic competition and promoting the development of green
development and environmental industries. Accordingly,
various scholars have embarked on research on energy re-
duction. For instance, Löschel and Otto have built up a dy-
namic balance model to study the relationships among the
variables including carbon dioxide emission, energy con-
sumption, speed of technological innovation, and economic
development. His conclusion suggests that decision-makers
prudently design the carbon dioxide emission cut policies [19].
Erdmenger and his team detailed the measures for Germany to
reach its CO2 emission target by 40% and carbon emission cut
by 224 mnMT [20]. Xu and his team adopt the AIM and CGE
models to evaluate sulfur dioxide control’s impact on the
pollutant and CO2 emission cut locally.-ey believe that China
could enjoy the benefits from carbon emission via control over
sulfur dioxide emission [21]. Cullende and Allood found
through research that efficiency is a very important role in
carbon emission reduction. -e scale of the energy flow is an
important indicator to evaluate potential return from the ef-
ficiency. Estimating the global energy flow’s scale and com-
plexity could bring about the maximum energy efficiency
return [22]. Prasad studied the impact of renewable energy
policies in 39 states on CO2 reduction. -ey discovered that,
after 19 states’ introduction of Fund for the Public Interest, or
something similar to “carbon tax,” CO2 emission has seen
notable and stable decline [23]. Fang established a three-di-
mensional system for energy conservation and emission re-
duction and obtained energy-saving attractions. Meanwhile,
they evaluate the performance of energy saving and emission
cut [24–27]; more research is needed [28, 29].

In recent years, BP neural network has attracted more and
more attention in the field of artificial intelligence. Many
nonlinear methods have been proposed to predict the trend of
energy and economy, such as BP neural network [30–34]. BP
neural network has unique advantages in economic fields such
as economic analysis [35–38] and time series prediction. If the
computation amount allows, any number of many-to-many
mappings can be fitted with a smaller fitting error. -e strong
coupling relationship among the factors in the prediction system
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is an interwoven and interactive relationship, which can be
expressed by the connection weights and thresholds between
nodes in each layer. Compared with the traditional multiple
regression prediction method, this expression has better fitting
ability and precision. BP neural network has strong nonlinear
function approximation ability and has been widely used in time
series analysis and financial forecasting. BP neural network has
the ability to fit the function and determine the weights and
thresholds between neurons through learning process [39].
-erefore, we depended on the official statistics and measured
data of the China Statistical Yearbook to predict the future trend
of 3E.

In the process of enhancing environment governance, we
have seenmore complicated environmental issues for which it is
more difficult to find solutions. With that, we see even more
difficulties and complexity for the various projects to further
strengthen environment governance and environmental quality
improvement. Presently, industrialization, urbanization, and
modernization have propelled energy demand at a growth stage.
Ongoing consumption increase in fossil fuels with high pollution
and high carbon emission has impeded the sustainable devel-
opment for the environment. -erefore, we need to fully realize
the dynamic complexity of the 3E system and the lag of en-
vironmental protection, in order to reduce the damage more
effectively and rationally to the ecological environment system
and make the economy sustainable.

With the rapid development of environmental protec-
tion, the gradual improvement of social-environmental
awareness, and the increasing competition in the industry,
the environmental governance network is a complex
adaptive system formed by the game and interest coordi-
nation and self-organization under the market operation
mechanism. -erefore, the research on 3E systems needs to
pay more attention to the complexity brought by multi-
system interaction. In general, 3E is increasingly showing the
dynamic complexity of the system. -erefore, it is necessary
to study how the three systems of the main body establish an
effective coordination strategy mechanism and study the
environmental governance network and economy based on
such microbehavior and game characteristics. Develop a
macrointegrated structure and a mechanism for the for-
mation of good performance, in particular, the emergence of
the overall structure and performance of 3E systems and the
systematic analysis between environmental and economic
systems. In the meantime, judging from the current research
that concerns the impact of environmental governance and
environmental governance system engineering and diving
deeply into current study, we believe that the following
aspects need to be enhanced and perfected. Study the fol-
lowing issues: First, based on the research foundation of the
relationship of the dual systems, we need to integrate the 3E
into the system analysis, by developing theoretical analyses
based on the multiple systems’ coordination and develop-
ment angles. Secondly, we need to study the evaluation
pattern of the 3E’s complexity. -irdly, the official data are
used to identify the 3E system parameters and the evolution
of the 3E system analyzed. It is under such current situation
that the 3E system’s variation pattern would be of signifi-
cance to the system’s sustainable development.

-is study makes a series of significant contributions to
the research of the 3E’s complexity:

First, this study considers the inclusion of energy re-
duction constraints on the 3E system proposed and gets a
new four-dimensional system, which is more in line with
the actual situation and the current development needs.
Second, this study deviates from the leading research on
energy-economy-environment systems research that fo-
cuses primarily on environmental impact analysis [40],
global environmental development [41], eco-industrial
systems planning [42, 43], dynamic assessment of urban
economy-resource-environment systems [44], and eco-
nomic and environmentally sustainable development
[45]. Here, through the stability analysis of dynamic 3E
system by system complexity theory, the gap in meth-
odology commonly used in 3E system research is bridged.
-e results provide a practical policy prescription for
effective pollution control.
-ird, based on the official data, the Levenberg-Mar-
quardt backpropagation neural network method was
optimized by genetic algorithm to effectively identify
the parameters in the 3E system, which is more con-
ducive to better research on the interaction between
various elements of the 3E system.

-is paper is organized as follows. In Section 2, we con-
struct a 3E system with energy-constrained constraints and
theoretically analyze the system through the theory of com-
plexity and use numerical simulation to demonstrate the
various dynamic behaviors of the four-dimensional system. In
Section 3, the genetic algorithm is used to optimize the LM-BP
neural network method to identify and confirm the system
parameters of the four-dimensional system. In Section 4, an in-
depth analysis of the changes in key parameters of the system is
carried out to study the stability and dynamic complexity of the
system. Finally, the main conclusions of this study are given.

2. Model Construct and Theoretical Analysis

2.1.ModelConstruct. In the paper, we consider the inclusion
of energy reduction constraints on the 3E system proposed
by Zhao et al. [1] and get a new four-dimensional system,
which is more in line with the actual situation and the
current development needs. Energy, economy, and envi-
ronment (3E) system containing energy reduction con-
straints is given in the following form:

_x � a1x
y

M − 1
􏼒 􏼓 − a2y + a3z + a4w,

_y � − b1x + b2y
1 − y

F
􏼒 􏼓 + b3z

1 − z

E
􏼒 􏼓 − b4w,

_z � c1x
x

N − 1
􏼒 􏼓 − c2y − c3z − c4w,

_w � d1x − d2y + d3z
1 − z

H
􏼒 􏼓 + d4w

y

P − 1
􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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where x(t), y(t), z(t), are w(t), respectively, the level of
energy conservation and emission reduction, pollution
emission, economic growth (GDP), and environmental
quality in period t, ai, bi, ci, di (i � 1, 2, 3, 4), M, F, E, N, H,
and P are normal numbers, t ∈ I, and I is an economic cycle.
(Table 1)

In system (1), _x represents the change level of energy
saving and emission reduction in t period; _y represents the
level of change in pollution emissions in t period; _z rep-
resents the growth level of economic growth in the t period;
_w represents the change level of environmental quality in t

period. When the impact of pollution exceeds the maximum
capacity of the ecological environment (that _w> 0), it means
that the ecological environment is deteriorating. In this case,
the ecosystem cannot rely on self-regulation to repair.
-erefore, when this situation continues, the ecological
environment will eventually be sold out; when _w≤ 0, it
means that the environmental quality has reached a dynamic
balance or gradually improved, and only under this con-
dition can the ecological environment be the basis of human
social development [46–48].

By system (1), energy intensity can be launched; the form
of energy intensity is as follows:

energy intensity �
A economic cycle energy consumption

GDPwithin an economic cycle
.

(2)

Next, we will analyze the dynamics of 3E system con-
taining energy reduction constraints. By calculation, the
Jacobian matrix of the system (1) can be obtained as follows:

J �

y

M
− 1􏼒 􏼓a1

xa1

M
− a2 a3 a4

− b1
(F − 2y)b2

F

(E − 2z)b3

E
− b4

−
(N − 2x)c1

N
− c2 − c3 − c4

d1 − d2 +
wd4

P

(H − 2z)d3

H

y

P − 1
− 1􏼒 􏼓d4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

-e six real equilibrium points of the 3E system (1) are,
respectively, O(0, 0, 0, 0), S1(x1, y1, z1, w1),
S2(x2, y2, z2, w2), S3(x3, y3, z3, w3), S4(x4, y4, z4, w4), and
S5(x5, y5, z5, w5). -e Jacobian matrix of system (1) at
equilibrium point O(0, 0, 0, 0) is of the following form:

J0 �

− a1 − a2 a3 a4

− b1 b2 b3 − b4

− c1 − c2 − c3 − c4

d1 − d2 d3 − d4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

So the characteristic polynomial of J(O) is as follows:

f(λ) � λ4 + Aλ3 + Bλ2 + Cλ + D � 0, (5)

where

A � a1 − b2 + c3 + d4,

B � a3c1 − a2b1 + b3c2 − b2c3 − a4d1 + b4d2 + c4d3 − b2d4 + c3d4 + a1 c3 + d4 − b2( 􏼁,

C � a1b3c2 − a1b2c3 + a4b2d1 − a4c3d1 − a4b1d2 + a1b4d2 + b4c3d2 − b3c4d2

+ a4c1d3 + b4c2d3 + a1c4d3 − b2c4d3 − a1b2d4 + b3c2d4 + a1c3d4 − b2c3d4

+ a3 c4d1 + c1d4 − b2c1 − b1c2( 􏼁 − a2 b3c1 − b4d1 + b1 c3 + d4( 􏼁( 􏼁,

D � a2b4c3d1 − a2b3c4d1 + a1b4c3d2 − a1b3c4d2 − a2b4c1d3 + a1b4c2d3 − a2b1c4d3 − a1b2c4d3

− a4 b3c2d1 − b2c3d1 + b3c1d2 + b1c3d2 + b2c1d3 + b1c2d3( 􏼁 − a2b3c1d4 + a1b3c2d4

− a2b1c3d4 − a1b2c3d4 + a3 b4c2d1 − b2c4d1 + b4c1d2 + b1c4d2 − b2c1d4 − b1c2d4( 􏼁.

(6)

System (1) is a very complex dynamic system, when ai, bi,
ci, di, M, F, E, N, H, and P values are different, system (1)
performance is complex, and dynamic behavior is also
different. In this study, we set the following:a1 � 0.09,
a2 � 0.025, a3 � 0.012, a4 � 0.165, b1 � 0.422, b2 � 0.2,
b3 � 0.8, b4 � 0.4, c1 � 0.035, c2 � 0.008, c3 � 0.075,
c4 � 0.078, d1 � 0.121, d2 � 0.035, d3 � 0.0145, d4 � 0.775,
M � 0.9, F � 1.6, E � 2.95, N � 0.35, H � 1.25, and P � 2.4.

By calculation, four eigenvalues of the Jacobian matrix
J(O) are λ1 � 0.2236, λ2 � − 0.7845, and
λ3,4 � − 0.0895 ± 0.0706i. Because λi < 1(i � 1, 2, 3, 4), we
know that the equilibrium O(0, 0, 0, 0) is unstable.

Let c2 be any value, so we can obtain the following
characteristic equation:

f(λ) � λ4 + 0.74λ3 + 0.8c2 − 0.0683( 􏼁λ2

+ 0.6927c2 − 0.0297( 􏼁λ − 0.0026 + 0.036c2 � 0.

(7)

Let p1 � 0.74, p2 � 0.8c2 − 0.0683,
p3 � 0.6927c2 − 0.0297, and p4 � 0.036c2 − 0.0026.
According to the Routh-Hurwitz criterion, we can obtain the
following conditions: p1 � 0.74> 0, p1p2 − p3 > 0, and
p1p2p3 − p4p

2
1 − p2

3 > 0. By calculation, when
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0< c2 < 0.0575, that equilibrium point O(0, 0, 0, 0) is
unstable.

Now, bring the parameter values set above to system (1).
By calculation, we get the equilibrium points:
S1(− 1.4149, 0.534, 3.7951, − 0.5030), S2(1.35, 0.5868,

1.4901, 0.2367), S3(1.0838, 0.6617, 0.7819, 0.2),
S4(0.8185, 2.5042, 0.7327, − 0.4697), and
S5(1.2523, 2.5109, 2.2876, − 1.0085). A similar approach
shows the eigenvalue of the equilibrium point S1:
λ1 � − 0.7309, λ2 � − 0.4548, and λ3,4 � 0.2696 ± 0.2758i; the
eigenvalue of the equilibrium point S2:λ1 � − 0.0314,
λ2 � 0.0665, and λ3,4 � − 0.0783 ± 0.1974i; the eigenvalue of
the equilibrium point S3:λ1 � − 0.5057, λ2 � − 0.0189, and
λ3,4 � 0.2068 ± 0.3074i; the eigenvalue of the equilibrium
point S4:λ1 � 0.0232, λ2 � 0.1221, and
λ3,4 � − 0.1191 ± 0.0801i; the eigenvalue of the equilibrium
point S5: λ1 � − 0.3009, λ2 � 0.1127, and
λ3,4 � 0.0519 ± 0.1578i. At the equilibrium point
S1(− 1.4149, 0.534, 3.7951, − 0.5030) 3.7951, − 0.5030), x(t) is
negative and energy intensity is about 0.14. Environmental
quality w(t) has reached dynamic equilibrium or gradually
improved, which is an ideal state:

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _w

zw
� − 1 +

y

M
􏼒 􏼓a1 +

(F − 2y)b2

F

− c3 + − 1 +
y

P
􏼒 􏼓d4

� b2 − a1 − c3 − d4 + y
a1

M
−
2b2

F
+

d4

P
􏼠 􏼡.

(8)

When (a1/M) − (2b2/F) + (d4/P) � 0 and
b2 − a1 − c3 − d4 < 0, system (1) is dissipative.

2.2. System Simulation Analysis. Numerical simulation
analysis of the system allows us to more intuitively see the
complex dynamic behavior of the system, which plays a very
important role in the evolution and stability of the research
system. Next, we will carry out dynamic simulation analysis
of the 3E system under the energy reduction constraint and
select the initial value of the system [0.015, 0.758, 1.83, 1.5].

As can be seen from Figure 1, the evolution trajectory of
the system (1) enters an irregular chaotic state, and the shape
of the three-dimensional attractor diagram composed of
different parameters is also different.

In addition, Figure 2 gives system (1) mixed phase di-
agram of a two-dimensional plane in different sections. It
can be seen from Figure 2 that the irregular evolution
trajectories of system (1) under different cross sections are
not the same, which also shows that the chaotic motion is
irregular and disordered. -e generation of mixed behavior
in the 3E system will have a great impact on the stability of
the system and also cause problems in the normal operation
of the system. -e time series diagram of system (1) (x(t),
y(t), z(t), and w(t)) is given in Figure 3.

Figure 4 shows bifurcation diagram and corresponding
Lyapunov exponential diagram of the variable
c2 ∈ [0.006, 0.014] change of the four-dimensional system
(1). From Figure 4, we find that the four-dimensional system
(1) has very complex dynamic behavior. As we all know, the
Lyapunov exponential is generally used to determine
whether the system is stable. If the maximum Lyapunov
exponent of the system is greater than 0, it can be explained
that the system produces mixed chaotic behavior, which is a
full manifestation of unstable evolution. In this study, the
degree of complexity of the four-dimensional 3E systems
under the constraints of energy reduction is self-evident. If
the maximum Lyapunov exponent of the system is greater

Table 1: -e specific meanings of each parameter are explained.

Parameter Explanation (t ∈ I, I is an economic cycle)
a1 -e development coefficient of energy saving and emission reduction x(t)

a2 -e inhibition coefficient of pollution emission y(t) on energy saving and emission reduction x(t)

a3 -e influence coefficient of z(t) input of economic growth on energy saving and emission reduction x(t)

a4 -e influence coefficient of w(t) input of environmental quality on energy saving and emission reduction x(t)

b1 -e influence coefficient of the development of energy saving and emission reduction x(t) on pollution emission y(t)

b2 -e development rate elasticity coefficient of pollution emission y(t)

b3 -e influence coefficient of economic growth z(t) on pollution emission y(t)

b4 -e inhibition coefficient of environmental quality w(t) on pollution emission y(t)

c1 -e influence coefficient of the development of energy saving and emission reduction x(t) on economic growth
c2 -e influence coefficient of pollution emission y(t) on economic growth z(t)

c3 -e restraint factor of investment in energy saving and emission reduction x(t) on economic growth z(t)

c4 -e restraint factor of investment in improving environmental quality w(t) on economic growth z(t)

d1
-e influence coefficient of the development of energy saving and emission reduction x(t) on the improvement of

environmental quality w(t)

d2 -e inhibition coefficient of pollution emission y(t) on environmental quality w(t)

d3 -e influence coefficient of economic growth z(t)’s investment on improving environmental quality w(t)

d4 -e speed coefficient of ecological environment self-repair without external intervention
M -e peak value of the impact of pollution emission y(t) on energy saving and emission reduction x(t)

F -e peak value of pollution emission y(t) in an economic cycle
E -e peak value of economic growth z(t) in an economic cycle
N -e peak value of the impact of energy saving and emission reduction x(t) on economic growth z(t) in an economic cycle
H -e peak value of the impact of economic growth z(t) on environmental quality w(t) in an economic cycle
P -e maximum amount of pollution that can be contained by the ecological environment
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than or equal to zero, we can determine the occurrence of
bifurcation in the four-dimensional system. Behavior is
more likely to develop into a chaotic trend.

Impact of initial state on the evolution trend of the
complex four-dimensional dynamical system (1): Figure 5
shows the sensitive dependence of complex four-dimensional
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Figure 1: -ree-dimensional spatial chaotic attractor phase diagram of system (1).
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system (1) on initial conditions. -e sensitivity of system
(when losing stability) with (x, y, z, w) � (0.015, 0.758,

1.83.1.5), (x1, y, z, w) � (0.014, 0.758, 1.83.1.5), and
(x2, y, z, w) � (0.016, 0.758, 1.83.1.5) and a small change in
the initial conditions may cause a large change in the whole
four-dimensional system, which indicates that the system is
sensitive to the initial state. From Figure 5, we can also know
that the initial values vary greatly in the trajectories of the
deviated system (1). Although the initial states are indistin-
guishable, the initial values will be quickly established after
several iterations, which is also an important symbol of
chaotic motion.

3. System Parameter Identification

3.1. Data Gathering. On the basis of complex interactions, a
four-dimensional dynamic system that integrates, restricts,
and promotes energy conservation, energy, economy, and
environment is established. In this study, the determination of
the parameters of the four-dimensional dynamic system is of
great significance to the actual research. Because the envi-
ronment, energy intensity, and economic growth are affected
by the changes of these variables, based on the official statistics
and measured data of the China Statistical Yearbook, genetic
optimization of the optimized LM-BP neural networkmethod
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is used to obtain the actual parameters of the four-dimen-
sional system, to further analyze the evolutionary relationship
between energy consumption, energy, economic growth, and
the environment of the 3E system.

In this paper, we mainly use the calculation method of
energy reduction that is now common in the world to
calculate the amount of skill emission reduction [18]. -e
principal component analysis method based on the co-
variance matrix is used to calculate the environmental
quality index [1] to represent the data of the environmental
change. Data on energy consumption and economic growth
are mainly derived from China’s official statistical yearbook.
In addition, in order to make the environmental quality
index positive during the research process, we also use the
logarithmic logic model for data standardization. All the
data in Table 2 is a standardized process based on the 1999
data. -e final data is as follows.

3.2. Model Validation. -e LM-BP neural network method
optimized by genetic algorithm has a good application in the
parameter identification of nonlinear systems [1], and it has
good identification accuracy, which makes this method
widely used in nonidentification of linear system parame-
ters. After system (1) is discretized, the difference equation of
the following form is obtained:

x(k + 1) � x(k) + T a1x(k)
y

M − 1
􏼒 􏼓 − a2y + a3z + a4w􏼔 􏼕,

y(k + 1) � y(k) + T − b1x + b2y
1 − y

F
􏼒 􏼓 + b3z

1 − z

E
􏼒 􏼓 − b4w􏼔 􏼕,

z(k + 1) � z(k) + T c1x
x

N − 1
􏼒 􏼓 − c2y − c3z − c4w􏼔 􏼕,

w(k + 1) � w(k) + T d1x − d2y + d3z
1 − z

H
􏼒 􏼓 + d4w

y

P − 1
􏼒 􏼓􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In this study, we used the former n − 1 group of data as
the input data of the LM-BP neural network optimized by
the genetic algorithm and the post n − 1 data as the output
data of the LM-BP neural network optimized by the genetic
algorithm. In addition, the data needs to be normalized in
xi � (xi − xmin)/(xmax − xmin) form. All other parameters
will be set to random number and the identified error
control 10− 6. Finally, the identified system parametersare as
shown in Table 3.

-e data of 1980 is selected as the initial value of system
[0.00000085, 0.658, 1.73, 1.1211], and the true validity of the
identification parameters is further verified. -e evolution
trajectory of the system is shown in Figures 6 and 7. It can be
seen from the phase diagram of the evolutionary trajectory
of the system that the evolution trajectory of the system is
multicycle and can always be in a stable mode. -is explains
the true effectiveness of the system from the side, which is
also in line with the real situation.

4. System Parameter Analysis

In order to fully understand the stability of the above four-
dimensional system (1), as well as the changes and impacts of
energy intensity, how to effectively reduce energy intensity,
stabilize economic development, improve the quality of
ecological environment, and seek for high-quality, sus-
tainable development models and strategies, and suggestions
for the coordinated development of energy, economy, and
environment, therefore, it is necessary to conduct an in-
depth analysis of some key parameters of the four-dimen-
sional system (1).

In Figures 8(a) and 8(b), we can find that although
increasing the investment in energy saving and emission
reduction can effectively improve the environmental quality,
the effect on reducing energy intensity is not obvious. Over
time, the amplitudes of the evolutionary fluctuations of
energy intensity and environmental quality oscillate around
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Figure 5: System (1) sensitivity analysis.

Table 2: Statistics on energy reduction, energy consumption, GDP,
and environment in China.

Year x y z w

2000 1.9626 1.0455 1.1085 0.9837
2001 3.6786 1.1066 1.2228 0.9595
2002 2.2791 1.2064 1.3482 0.9347
2003 1.2699 1.4020 1.5283 0.8747
2004 2.3033 1.6382 1.8062 0.7741
2005 1.9352 1.8594 2.0813 0.7242
2006 2.0778 2.0380 2.4509 0.6403
2007 3.9437 2.2156 3.0307 0.5455
2008 6.5583 2.2808 3.5976 0.4752
2009 3.2830 2.3912 3.8997 0.4061
2010 3.3307 2.5656 4.6020 0.3693
2011 3.6871 2.7534 5.4243 0.3565
2012 4.0130 2.8608 6.0326 0.3210
2013 3.9274 2.9659 6.6068 0.2817
2014 4.2167 3.0292 7.2151 0.2575
2015 4.2893 3.0583 7.6813 0.2322
2016 4.5925 3.1004 8.2872 0.2159
2017 4.6121 3.1942 9.2297 0.2147
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a certain value. In a relatively short period of time, the
improvement of environmental quality is also very obvious,
but in the long run, the environment is still deteriorating

with the decline in the discount rate of energy-saving and
emission-reduction inputs. -e oscillating amplitude of
energy intensity will decrease significantly with the increase
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Figure 6: -ree-dimensional spatial phase diagram of system (1) with identified parameters.
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of energy-saving and emission-reduction input, but there is
no obvious effect on the peak energy intensity. -erefore, it
is not obvious that the effect of reducing the energy intensity
and improving the stability of environmental quality by
simply increasing the investment in energy saving and
emission reduction is not obvious.

From Figures 9(a) and 9(b), we can find that when the
peak value of pollution emissions F � 0.5816, the evolution
trajectories of energy intensity and environmental quality
show fluctuations around a certain central value over time.
-is phenomenon will be very unfavorable to the im-
provement of environmental quality in controlling pollution
emissions (i.e., the inability to effectively reflect the energy
reduction policies); when F � 0.4816, with the passage of
time, energy intensity and environmental quality are still
fluctuating up and down at a certain central value but will
gradually shrink with the magnitude of evolutionary fluc-
tuations, and the maximum peak of energy intensity is also
significantly smaller than before. It also has a significant
impact on the evolution of environmental quality. In the
long run, the central value of the shock is decreasing, the
amplitude of the shock is decreasing, and eventually it tends
to be stable. After the pollution emission peak is lowered
again F � 0.3816, the energy intensity and environmental
quality evolve to a stable value at a relatively fast rate, and the
peak value of the energy intensity and the center value of the
oscillation are reduced again before comparison. -erefore,
it can be better explained that effective control of the peak
arrival time of pollution emissions can be used as an im-
portant decision for pollution emission control and energy
intensity reduction.

From Figure 9(b), we can also find that the advance of
the peak of pollution emissions makes the environmental
system take the risk ahead, and the threat level is greatly
increased. -e reason for this phenomenon is that the peak
of pollution discharge exceeds the self-purification speed of
the natural environment system during the self-circulation
process, so that the accumulation of pollutants in the eco-
logical environment system reaches the maximum capacity,
and the self-purification ability of the environmental system

is weakened. In a relatively short period of time, the eco-
logical environment system is extremely deteriorated.
-erefore, how to effectively and reasonably control the peak
of pollution emission is very important for controlling the
stability of 3E system and improving the environmental
quality.

By comparing Figure 10(a), it can be found that, in the
short term, the environmental capacity of the ecosystem has
no significant effect on the stability of the evolution of the 3E
system. As the environmental capacity decreases, over time,
the evolution of environmental quality shows an upward
trend of fluctuations and fluctuations around a certain
central value; when the capacity of the ecosystem falls to the
limit (i.e., the pollution effect exceeds the ecological envi-
ronment), the system collapses (i.e., the ecological envi-
ronment disappears, and the ecosystem can no longer rely
on self-regulation to repair the ecological environment). As a
result, this situation continues and the ecological environ-
ment is eventually sold out. It is confirmed that the eco-
logical environment system has a certain bearing capacity,
and the effect that the ecosystem will not be in operation or
self-purification after the limit value can be exceeded is not
significant.

From Figure 10(b), we can find that the effect of simply
increasing the economic investment in the environment to
improve the environmental quality is not obvious, it does
not increase the economic investment as expected, and the
environment can be effectively improved. From the evolu-
tionary trajectory of the system, it can be seen that the
evolutionary trajectory of the system revolves around central
value fluctuation and oscillation amplitude over time. -is
phenomenon shows that the effects of economic input in the
process of environmental governance are not significant
enough. -erefore, in order to improve the quality of the
ecological environment and promote the rapid development
of the economy, we need more measures to use more means
and technologies to promote stable economic growth and
management of the ecological environment. It is necessary
to correctly grasp the ecological environment protection and
the relationship between economic developments, explore
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Figure 8: -e parameters a3 on the influence of system (1).
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synergies to promote ecological priorities and green de-
velopment new ideas, and ultimately achieve a “win-win”
environment and economy.

5. Conclusion

In this study, the energy, economic, and environmental (3E)
four-dimensional system model of energy conservation
constraints was first established. -e Bayesian estimation
method is used to correct the environmental quality vari-
ables to obtain the environmental quality data needed for the
research. In addition, based on the Chinese statistical
yearbook data, the Levenberg–Marquardt BP neural net-
work method optimized by genetic algorithm is used to
energy, economy, and environment under energy conser-
vation constraints. -e parameters in the four-dimensional
system model are effectively identified. Finally, the system
science analysis theory and complex system dynamics theory
are used to analyze the stability and complex dynamics of the

model and explore the influence of some key parameters in
the four-dimensional system on the evolution stability of the
system. -e main conclusions are as follows:

(1) Although increasing the investment in energy re-
duction can effectively improve the environmental
quality; in a relatively short period of time, the
improvement of environmental quality is also very
obvious, but in the long run, the environment is still
deteriorating with the decline in the discount rate of
energy reduction inputs.

(2) It can be better explained that effective control of the
peak arrival time of pollution emissions can be used
as an important decision for pollution emission
control and energy intensity reduction; therefore,
how to effectively and reasonably control the peak of
pollution emissions is of great significance for
controlling the stability of energy, economy, and
environment system under the constraint of energy
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reduction, regulating energy intensity, and im-
proving environmental quality and sustainable
development.

(3) As the environmental capacity decreases, over time,
the evolution of environmental quality shows an
upward trend of fluctuations and fluctuations
around a certain central value; when the capacity of
the ecosystem falls to the limit, the system collapses.
In order to improve the quality of the ecological
environment and promote the rapid development of
the economy, we need more measures to use more
means and technologies to promote stable economic
growth and management of the ecological
environment.

-erefore, it is necessary to correctly grasp the ecological
environment protection and the relationship between eco-
nomic developments and explore synergies to promote
ecological priorities and green development new ideas.
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With the help of the auxiliary function method, we solved the improved Boussinesq (IBq) equation with fluid dynamic damping
and the modified IBq (IMBq) equation with Stokes damping, and we obtained their three types of travelling wave exact solutions,
which is an extension service of the numerical simulation and the existence of a solution. From the waveform diagram of IBq
equation with hydrodynamic damping, it can be seen that when the propagation velocity of kink wave changes, the amplitude also
changes significantly, and it is also found that the kink isolated waveform is significantly asymmetric due to the increase of
damping coefficient v, which may be of some value in explaining some physical phenomena. In addition, the symbolic computing
software maple makes our computing work easier.

1. Introduction

-ere are various kinds of nonlinear phenomena in nature,
most of which can be described by nonlinear evolution
equations. It is well known that the Boussinesq (Bq)
equation, which describes the propagation model of long
wave in shallow water, is one of them and has the following
two basic forms:

utt − uxx + δuxxxx � u
2

􏼐 􏼑
xx

, (1)

utt − uxx − uxxtt � u
2

􏼐 􏼑
xx

, (2)

where u represents displacement and subscripts x and t
represent partial derivatives concerning x and t, respectively.
Equations (1) and (2) were first deduced by Boussinesq [1, 2].
If the coefficient δ of the fourth derivative of (1) is greater
than zero, (1) is linearly stable and can be used to describe
the transverse vibration of small nonlinear elastic beam,

which is called the “good” Bq equation [3]. When δ is less
than zero, it is called the “bad” Bq equation because of its
linear instability [4]. Equation (2) is also an important model
to approximate the propagation of long waves in shallow
water, which is called the IBq equation.-e exact solution of
Bq equation can be obtained by [5–7]. Makhankov derived
the IBq equation from the fluid dynamics equations of the
plasma, which had a modified equation called IMBq
equation [8], as shown in (3). In recent years, there have
been many papers on the dynamics of solitons in plasma
[9–12].

utt − uxx − uxxtt � u
3

􏼐 􏼑
xx

. (3)

Equations (2) and (3) differ only in terms of nonlinear
forces. Equation (2) can also be used to describe the kinetic
and thermodynamic properties of anharmonic monatomic
and diatomic chains [13]. In literature [14], lattice soliton
dynamics of a single atomic chain under damping and
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external forces are studied. -e IBq equation with hydro-
dynamic damping term and the IMBq equation with Stokes
damping term are obtained, respectively, under the condi-
tions of the third and fourth anharmonic potentials. -e IBq
equation with hydrodynamical damping term is shown in
(3), and the IMBq equation with Stokes damping term is
shown in (4). Arévalo et al. [14] obtained the solitary wave
solution of (4) with bell-shaped shape through numerical
simulation. Naranmandula [15] also obtained an equation
similar to (4) when studying the propagation of one-di-
mensional longitudinal wave in nonlinear microstructural
solid and simulated the influence of microstructural effect on
the evolution of kinked isolated wave by finite difference
method:

utt − uxx − uxxtt − vuxxt � u
2

􏼐 􏼑
xx

, (4)

utt − uxx − uxxtt + vut � u
3

􏼐 􏼑
xx

. (5)

In 2012, Wang and Xu studied the global existence of
small amplitude solutions of the Cauchy problem of (4) in
Sobolev space [16]. In 2013, Wang and Xu studied the global
existence of small amplitude solutions of the Cauchy
problem of (5) in Sobolev space [17]. In 2015, Chen gives
sufficient conditions of the blow-up of the solution of the
Cauchy problem of (5) in Sobolev space [18]. In order to
better grasp the model represented by (4) and (5), it is
necessary to obtain their exact travelling wave solutions.
With the development of computer technology, many
scholars interested in nonlinear science have studied the
exact solutions of nonlinear evolution equations and used
different methods to solve different equations, such as the
Riccati-Bernoulli sub-ODE method [19], the Exp-function
method [20], the modified Exp-functionmethod [21, 22], the
Exp (−ϕ)-expansion method [23], the tanh-coth method
[24–26], the homogeneous balance method [27], the im-
provement of (G′/G)-expansion method [28–30], the formal
linearization method [31], the first integral method [32],
(1/G′)-expansion and modified Kudryashov methods [33],
and the (G′/G)-expansion method [34–38].

-rough searching the whole network, we find that there
aremany articles on Bq equation and alsomany articles on the
existence of solutions to Cauchy problems of (4) and (5). In
this paper, by means of the extended (G′/G)-expansion
method, some exact travelling wave solutions of (4) and (5)
are obtained, and some individual solutions are briefly pre-
sented and discussed, especially kink soliton solutions
assigned to parameters. In the case of an extended (G′/G)-
expansion, the integral constants of the equation should not
be set directly to zero, which may result in the loss of arbitrary
constants in the final expression [38, 39]. Although there is no
uniform solution for all nonlinear partial differential equa-
tions, different methods may not yield different solutions [40]
because these solutions may only be expressed differently or
they may be different particular solutions belonging to the
same general solution. In addition, some of the different
approaches are equivalent [41, 42].

2. Summary of the Extended (G9/G)-
Expansion Method

Consider a generalized nonlinear evolution equation

P u, ux, ut, utt, uxt, uxx, . . .( 􏼁 � 0, (6)

where u is an unsolved function, and it has two independent
variables, x and t.

-e steps of the extended (G′/G)-expansion method to
solve (6) are listed as follows:

(i) Step 1. Under the transformation,

u(x, t) � U(ξ), ξ � x − ct. (7)

We translate (6) to the ordinary differential equation
(ODE)

P U, −cU′, U′, c
2
U″, −cU″, U″, . . .􏼐 􏼑 � 0. (8)

(i) Step 2. If the form of (8) allows, we can integrate it
once but do not set the integral constant to zero,
which will help simplify the following calculation.
-e travelling wave solution of (8) is proposed as
follows:

U(ξ) � 􏽘
m

i�0
ai

G′
G

􏼠 􏼡

i

+ 􏽘

m

i�1
bi

G′
G

􏼠 􏼡

− i

, (9)

where ai and bi(i � 1, 2, . . . , m) are undetermined constants.
G is a function of ξ. In combination with the form of (9), the
highest derivative term and the nonlinear term in (8) are
balanced by the homogeneous equilibrium principle, and the
value of the positive integer m in (9) can be obtained. -e G

appearing in (8) is the solution of the second-order dif-
ferential equation

G″ + λG′ + μG � 0, (10)

where λ and μ will be determined later.

(iii) Step 3. Substitute (9) and (7) into (8), use the or-
dinary differential (10) concerning (G′/G) to com-
bine the same power terms of (G′/G), and then set
the coefficients of all powers of (G′/G) to zero; we
get a nonlinear algebraic system of equations
concerning the unknowns ai, bi, λ, μ, and c.

(iv) Step 4. Using the computational software Maple
programming, we can solve the algebraic equations
in step 3. By substituting the obtained results into
(9) and using the general solutions of (10) in dif-
ferent situations, multiple exact solutions of dif-
ferent types of (6) can be obtained.

-e general solutions of (10) are given as

2 Complexity



G′
G

􏼠 􏼡 �

������

λ2 − 4μ
􏽱

2

C1sinh
������

λ2 − 4μ
􏽱

/2􏼒 􏼓ξ􏼒 􏼓 + C2cosh
������

λ2 − 4μ
􏽱

/2􏼒 􏼓ξ􏼒 􏼓

C1cosh
������

λ2 − 4μ
􏽱

/2􏼒 􏼓ξ􏼒 􏼓 + C2sinh
������

λ2 − 4μ
􏽱

/2􏼒 􏼓ξ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

λ
2
, λ2 − 4μ> 0,

������

4μ − λ2
􏽱

2

−C1 sin
������

4μ − λ2
􏽱

/2􏼒 􏼓ξ􏼒 􏼓 + C2 cos
������

4μ − λ2
􏽱

/2􏼒 􏼓ξ􏼒 􏼓

C1 cos
������

4μ − λ2
􏽱

/2􏼒 􏼓ξ􏼒 􏼓 + C2 sin
������

4μ − λ2
􏽱

/2􏼒 􏼓ξ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

λ
2
, λ2 − 4μ< 0,

C2

C1 + C2ξ
−
λ
2
, λ2 − 4μ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

-ese results can further be written in some more
simplified forms depending upon the conditions on the ratio
of C1 and C2 as

G′
G

􏼠 􏼡 �

������

λ2 − 4μ
􏽱

2
tanh

������

λ2 − 4μ
􏽱

2
ξ + ξ0⎛⎜⎜⎝ ⎞⎟⎟⎠ −

λ
2
, λ2 − 4μ> 0, tanh ξ0( 􏼁 �

C2

C1
,

C2

C1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1,

������

λ2 − 4μ
􏽱

2
coth

������

λ2 − 4μ
􏽱

2
ξ + ξ0⎛⎜⎜⎝ ⎞⎟⎟⎠ −

λ
2
, λ2 − 4μ> 0, coth ξ0( 􏼁 �

C2

C1
,

C2

C1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> 1,

������

4μ − λ2
􏽱

2
cot

������

4μ − λ2
􏽱

2
ξ + ξ0⎛⎜⎜⎝ ⎞⎟⎟⎠ −

λ
2
, λ2 − 4μ< 0, cot ξ0( 􏼁 �

C2

C1
,

C2

C1 + C2ξ
−
λ
2
, λ2 − 4μ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

3. Exact Solutions of (3) and (4)

3.1. 'e IBq Equation with Hydrodynamical Damping

utt − uxx − uxxtt − vuxxt � u
2

􏼐 􏼑
xx

, (13)

where v is the damping constant of internal friction (we call
this type of friction hydrodynamical).

We apply (7) to (13), we integrate once concerning ξ, we
set the integration constant to M, and then we can convert
(12) to nonlinear ODE:

c
2

− 1􏼐 􏼑U′ − c
2
U
‴

+ cvU″ − 2UU′ � M. (14)

At equilibrium, the highest nonlinear term in (14), and
the highest derivative term in (14), we get m equal to 2.
-erefore, the exact solution of (14) in the form of (9) can be
written as follows:

U(ξ) � a0 + a1
G′
G

+ a1
G′
G

􏼠 􏼡

2

+ b1
G

G′
+ b2

G

G′
􏼒 􏼓

2
. (15)

Substitute (15) into (14), use the ordinary differential (10)
concerning (G′/G) to combine the same power terms of
(G′/G), and then let the coefficients be equal to zero; we get a
nonlinear algebraic system of equations concerning the
unknowns a0, a1, a2, b1, b2, c, andM:
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G

G′
􏼒 􏼓

5
: −24c

2μ3b2 − 4μb
2
2 � 0,

G

G′
􏼒 􏼓

4
: −6c

2μ3b1 − 54c
2μ2λb2 + 6cμ2vb2 − 6μb1b2 − 4λb

2
2 � 0,

G

G′
􏼒 􏼓

3
: −12c

2μ2λb1 − 38c
2μλ2b2 − 40c

2μ2b2 + 2cμ2vb1 + 10cμvλb2 + 2c
2μb2 − 4μa0b2 − 2μb

2
1 − 6λb1b2 − 2μb2 − 4b

2
2 � 0,

G

G′
􏼒 􏼓

2
: −7c

2μλ2b1 − 8c
2λ3b2 − 8c

2μ2b1 − 52c
2μλb2 + 3cμvλb1

+ 4cvλ2b2 + c
2μb1 + 2c

2λb2 + 8cμvb2 − 2μa0b1 − 2μa1b2 − 4λa0b2 − 2λb
2
1 − μb1 − 2λb2 − 6b1b2 � 0,

G

G′
: − c

2λ3b1 − 8c
2μλb1 − 14c

2λ2b2 + cvλ2b1 − 16c
2μb2 + c

2λb1

+ 2cμvb1 + 6cvλb2 + 2c
2
b2 − 2λa0b1 − 2λa1b2 − λb1 − 4a0b2 − 2b

2
1 − 2b2 � 0,

G

G′
􏼒 􏼓

0
: b1c

2
− 2a0b1 + 2a2b1μ + cva1λμ − c

2
b1λ

2
− 2c

2μb1 − 6c
2λb2

+ 2c
2
a1μ

2
− c

2μa1 + 2a0a1μ + 2cvb2 + μa1 + c
2
a1λ

2μ + 6c
2
a2λμ

2
− 2a1b2 + cvb1λ + 2cva2μ

2
− b1 − M � 0,

G′
G

: 14c
2μλ2a2 + c

2λ3a1 + 16c
2μ2a2 + 8c

2μλa1 + 6cμvλa2 + cvλ2a1 − 2c
2μa2

− c
2λa1 + 2cμva1 + 4μa0a2 + 2μa

2
1 + 2λa0a1 + 2λa2b1 + 2μa2 + λa1 � 0,

G′
G

􏼠 􏼡

2

: 8c
2λ3a2 + 52c

2μλa2 + 7c
2λ2a1 + 4cvλ2a2 + 8c

2μa1 − 2c
2λa2 + 8cμva2

+ 3cvλa1 − c
2
a1 + 6μa1a2 + 4λa0a2 + 2λa

2
1 + 2λa2 + 2a0a1 + 2a2b1 + a1 � 0,

G′
G

􏼠 􏼡

3

: 38c
2λ2a2 + 40c

2μa2 + 12c
2λa1 + 10cvλa2 − 2c

2
a2 + 2cva1 + 4μa

2
2 + 6λa1a2 + 4a0a2 + 2a

2
1 + 2a2 � 0,

G′
G

􏼠 􏼡

4

: 54c
2λa2 + 6c

2
a1 + 6cva2 + 4λa

2
2 + 6a1a2 � 0,

G′
G

􏼠 􏼡

5

: 24c
2
a2 + 4a

2
2 � 0.

(16)
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Using symbolic computation software maple, the solu-
tion of this system is obtained as follows:

a0 �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑
,

a1 �
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
,

a2 �
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
,

b1 �
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
,

b2 �
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

M � −
4
125

cμv
1050c2λ6 + 2700c2μλ4 − 1050cvλ5 + 1200c2μ2λ2 − 825c2λ4 − 5220cμvλ3 + 120v2λ4 − 150c2μλ2

− 2640cμ2vλ − 225cvλ3 − 225c2λ2 − 990cμvλ − 120μ2v2 + 44v2λ2 + 4μv2 + 4v2
􏼠 􏼡

λ2 14λ2 + 8μ + 3􏼐 􏼑
.

(18)

Substituting the values from (17) and using the general
solutions of (10) in different situations, multiple exact so-
lutions of different types of (13) can be obtained.

(i) Case 1. When λ2 − 4μ> 0, the solution of the hy-
perbolic form of equation (13) is as follows:

U1(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

−1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

−2

,

(19)
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where ξ � x − ct, η1 � (1/2)

������

λ2 − 4μ
􏽱

, and C1 andC2 are free
constants.

In particular, if C1 ≠ 0 andC2 � 0, then U1(ξ) becomes

U1(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1tanh η1ξ( 􏼁􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ( 􏼁􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ( 􏼁􏼢 􏼣

−1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ( 􏼁􏼢 􏼣

−2

.

(20)

Again using (12), the general solutions for U1(ξ) in
simplified forms are written as

U11(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1tanh η1ξ + ξ0( 􏼁􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ + ξ0( 􏼁􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 tanh η1ξ + ξ0( 􏼁􏼢 􏼣

− 2

,

(21)
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when |C2/C1|< 1 and tanh(ξ0) � C2/C1;

U12(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1coth η1ξ + ξ0( 􏼁􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 coth η1ξ + ξ0( 􏼁􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 coth η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η1 coth η1ξ + ξ0( 􏼁􏼢 􏼣

− 2

,

(22)

when |C2/C1|> 1 and coth(ξ0) � C2/C1.

(ii) Case 2. When λ2 − 4μ< 0, the solution of the trig-
onometric form of (13) is as follows:

U2(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 2

,

(23)
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where ξ � x − ct, η2 � (1/2)

������

4μ − λ2
􏽱

, and C1 andC2 are free
constants.

(iii) Case 3. When λ2 − 4μ � 0, the solution to (13), in
rational functional form, is as follows:

U3(ξ) �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑

+
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

+
2
25

v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

2

+
4
25

μv 210cλ3 + 120cμλ + 6vλ2 + 45cλ + 6μv + v􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

− 1

+
2
25

μ2v 210cλ3 + 120cμλ + 12vλ2 + 45cλ + 12μv + 2v􏼐 􏼑

λ2 14λ2 + 8μ + 3􏼐 􏼑
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

− 2

,

(24)

where ξ � x − ct and C1, C2 are free constants.

3.2. 'e IMBq Equation with Stokes Damping

utt − uxx − uxxtt + vut � u
3

􏼐 􏼑
xx

, (25)

where v is a nonnegative number. We apply (7) to (25), we
integrate it once concerning ξ, we set the constant toM, and
then we can convert (25) to the nonlinear ODE:

c
2

− 1􏼐 􏼑U′ − c
2
U
‴

− cvU − 3U
2
U′ � M. (26)

At equilibrium, the highest nonlinear term U2U′ in (26),
and the highest derivative term U‴ in (26), we getm equal to
1. -erefore, the exact solution of (26) in the form of (9) can
be written as follows:

U(ξ) � a0 + a1

G′
G

+ b1
G

G′
. (27)

Substitute (27) into (26), use the ordinary differential
(10) concerning (G′/G) to combine the same power terms of
(G′/G), and then let the coefficients be equal to zero; we get a
nonlinear algebraic system of equations concerning the
unknowns a0, a1, b1, c, andM:

G

G′
⎛⎝ ⎞⎠

5

: − 24c
2μ3b2 − 4μb

2
2 � 0,

G

G′
⎛⎝ ⎞⎠

4

: − 6c
2μ3b1 − 54c

2μ2λb2 + 6cμ2vb2 − 6μb1b2 − 4λb
2
2 � 0,

G

G′
⎛⎝ ⎞⎠

3

: − 12c
2μ2λb1 − 38c

2μλ2b2 − 40c
2μ2b2 + 2cμ2vb1 + 10cμvλb2 + 2c

2μb2 − 4μa0b2 − 2μb
2
1 − 6λb1b2 − 2μb2 − 4b

2
2 � 0,

G

G′
⎛⎝ ⎞⎠

2

: − 7c
2μλ2b1 − 8c

2λ3b2 − 8c
2μ2b1 − 52c

2μλb2 + 3cμvλb1 + 4cvλ2b2 + c
2μb1 + 2c

2λb2 + 8cμvb2

− 2μa0b1 − 2μa1b2 − 4λa0b2 − 2λb
2
1 − μb1 − 2λb2 − 6b1b2 � 0,
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G

G′
: − c

2λ3b1 − 8c
2μλb1 − 14c

2λ2b2 + cvλ2b1 − 16c
2μb2 + c

2λb1 + 2cμvb1 + 6cvλb2 + 2c
2
b2 − 2λa0b1 − 2λa1b2

− λb1 − 4a0b2 − 2b
2
1 − 2b2 � 0,

G

G′
􏼒 􏼓

0
: b1c

2
− 2a0b1 + 2a2b1μ + cva1λμ − c

2
b1λ

2
− 2c

2μb1 − 6c
2λb2 + 2c

2
a1μ

2
− c

2μa1 + 2a0a1μ + 2cvb2

+ μa1 + c
2
a1λ

2μ + 6c
2
a2λμ

2
− 2a1b2 + cvb1λ + 2cva2μ

2
− b1 − M � 0,

G′
G

: 14c
2μλ2a2 + c

2λ3a1 + 16c
2μ2a2 + 8c

2μλa1 + 6cμvλa2 + cvλ2a1 − 2c
2μa2 − c

2λa1 + 2cμva1

+ 4μa0a2 + 2μa
2
1 + 2λa0a1 + 2λa2b1 + 2μa2 + λa1 � 0,

G′
G

􏼠 􏼡

2

: 8c
2λ3a2 + 52c

2μλa2 + 7c
2λ2a1 + 4cvλ2a2 + 8c

2μa1 − 2c
2λa2 + 8cμva2 + 3cvλa1 − c

2
a1 + 6μa1a2

+ 4λa0a2 + 2λa
2
1 + 2λa2 + 2a0a1 + 2a2b1 + a1 � 0,

G′
G

􏼠 􏼡

3

: 38c
2λ2a2 + 40c

2μa2 + 12c
2λa1 + 10cvλa2 − 2c

2
a2 + 2cva1 + 4μa

2
2 + 6λa1a2 + 4a0a2 + 2a

2
1 + 2a2 � 0,

G′
G

􏼠 􏼡

4

: 54c
2λa2 + 6c

2
a1 + 6cva2 + 4λa

2
2 + 6a1a2 � 0,

G′
G

􏼠 􏼡

5

: 24c
2
a2 + 4a

2
2 � 0.

(28)

Using symbolic computation software maple, the solu-
tion of this system is obtained as follows:

Case 1: a0 � −I, a1 � 0, b1 � −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
􏼨 􏼩,

(29)

Case 2: a0 � I, a1 � 0, b1 � −
Icv + M

c2λ2 + 2c2μ − c2 − 2
􏼨 􏼩, (30)

where I is the imaginary unit. Substituting the values from
(29) and using the general solutions of (10) in different
situations, multiple exact solutions of different types of (25)
can be obtained.

(i) Case 1. When λ2 − 4μ> 0, the solution to (25), in
hyperbolic functional form, is as follows:

U1(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 1

, (31)

where ξ � x − ct, η1 � (1/2)

������

λ2 − 4μ
􏽱

, and C1, C2 are free
constants.

In particular, if C1 ≠ 0 andC2 � 0, then U1(ξ) becomes

U1(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1tanh η1ξ( 􏼁􏼢 􏼣

− 1

.

(32)

Again using (12), the general solutions for U1(ξ) in
simplified forms are written as

U11(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1tanh η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

,

(33)

when |C2/C1|< 1 and tanh(ξ0) � C2/C1;

U12(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1coth η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

,

(34)

when |C2/C1|> 1 and coth(ξ0) � C2/C1.
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(ii) Case 2. When λ2 − 4μ< 0, the solution to (25), in
trigonometric functional form, is as follows:

U2(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 1

, (35)

where ξ � x − ct, η2 � (1/2)

������

4μ − λ2
􏽱

, and C1, C2 are free
constants.

(iii) Case 3. When λ2 − 4μ � 0, the solution to (25), in
rational functional form, is as follows:

U3(ξ) � −I −
−Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

− 1

,

(36)

where ξ � x − ct and C1, C2 are arbitrary constants.
Substituting the values from (30) and using the general

solutions of (10) in different situations, multiple exact so-
lutions of different types of (25) can be obtained.

(i) Case 1. When λ2 − 4μ> 0, the solution to (25), in
hyperbolic functional form, is as follows:

U1(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1
C1sinh η1ξ( 􏼁 + C2cosh η1ξ( 􏼁

C1cosh η1ξ( 􏼁 + C2sinh η1ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 1

, (37)

where ξ � x − ct, η1 � (1/2)

������

λ2 − 4μ
􏽱

, and C1, C2 are free
constants.

In particular, if C1 ≠ 0 andC2 � 0, then U1(ξ) becomes

U1(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1tanh η1ξ( 􏼁􏼢 􏼣

− 1

.

(38)

Again using (12), the general solutions for U1(ξ) in
simplified forms are written as

U11(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1tanh η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

,

(39)

when |C2/C1|< 1 and tanh(ξ0) � C2/C1;

U12(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η1coth η1ξ + ξ0( 􏼁􏼢 􏼣

− 1

,

(40)

when |C2/C1|> 1 and coth(ξ0) � C2/C1.

(ii) Case 2. When λ2 − 4μ< 0, the solution to (25), in
trigonometric functional form, is as follows:

U2(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+ η2
−C1 sin η2ξ( 􏼁 + C2 cos η2ξ( 􏼁

C1 cos η2ξ( 􏼁 + C2 sin η2ξ( 􏼁
􏼠 􏼡􏼢 􏼣

− 1

, (41)

where ξ � x − ct, η2 � (1/2)

������

4μ − λ2
􏽱

, and C1, C2 are arbi-
trary constants.

(iii) Case 3. When λ2 − 4μ � 0, the solution to (25), in
rational functional form, is as follows:

U3(ξ) � I −
Icv + M

c2λ2 + 2c2μ − c2 − 2
−
λ
2

+
C2

C1 + C2ξ
􏼢 􏼣

− 1

,

(42)

where ξ � x − ct and C1, C2 are free constants.

4. Discussion

In [14], the damped IBq (14) is derived and the local
waveform of its numerical solution is obtained. -e local
two-dimensional display of the numerical solution is a bell-
shaped waveform, similar to the local figure of the two-
dimensional figure obtained by taking time as a constant in
Figure 1. Figure 1 is a three-dimensional diagram of the
trigonometric solution (23). It is well known that numerical
solutions may miss some solutions of the equation, as shown
in Figure 2, which is a kinked type of isolated wave and is not
mentioned in [14]. As can be seen from Figure 2, when we
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change the value of wave velocity c and increase gradually,
the propagation direction of kinked isolated wave follows the
change, and the amplitude of waveform increases gradually.
Mathematically, the value of c can be used to modulate the
kinked isolated waveform represented by this equation.

In [15], the authors deduce a damped equation similar to
(14) and use a numerical method (finite difference method)
to find a kinked isolated wave.-e equation derived in [15] is
(43), and it is also concluded that when the dissipation
coefficient β1 is much larger than the dispersion coefficient
β2, the kinked isolated wave will have asymmetric
characteristics:

utt − uxx + uxxxx − β2uxxtt − β1uxxt � u
2

􏼐 􏼑
xx

. (43)

Using (7), we apply the travelling wave transformation to
(13) and (43), integrate once, and then assume that β1 � v

and β2 � 1 + c− 2; we get the same (14). -e waveform of the
kinked isolated wave obtained from (14) varies with the
damping coefficient v, as shown in Figure 3. As can be seen
from Figure 3, with the increase of v, the precise kink solitary
wave solution waveform obtained by the extended (G′/G)-
expansion also shows the asymmetric characteristics of
waveform and becomes more and more obvious. It is shown
that the exact solution is helpful to verify the numerical
solution.

It can be seen from solution (17) of the algebraic system
of (14) that a0, a1, a2, b1, and b2 are expressed by other pa-
rameters. When we want to find an expression for wave
velocity c, we can also find a solution in the following form.
-e difference is that, in the expression for solution (17), the
wave velocity is arbitrary, and here the coefficient a2 is
arbitrary:

0.6

0.4

0.2
u

0

–0.2

–0.4

–400 –200 0 200 400 400 200 0 –200 –400
t x

Figure 1: 3D graph of solution (23) when λ �
�
2

√
, μ � 1.5, c � 1, v � 0.001, andC1 � C2 � 1.

–0.48
–0.49
–0.50
–0.51
–0.52
–0.53
–0.54
–0.55
–0.56
–0.57

–40
–40–20

–200 020 2040 40t x

u

Solution (18) red: c = 0.1, blue: c = 0.3, and yellow: c = 0.5

Figure 2: 3D graph of solution (19) when λ �
�
2

√
, μ � 0.3, v � 0.1, andC2 � 0.

Complexity 11



c � −
1
30

−350λ4a2 − 200μλ2a2 + 24v2λ2 + 24μv2 − 75λ2a2 + 4v2

14λ2 + 8μ + 3􏼐 􏼑vλ
,

a0 �
1
150

180v2λ4 + 324μv2λ2 + 144μ2v2 + 54v2λ2 − 1050λ4 + 48μv2 − 600μλ2 + 4v2 − 225λ2􏽨 􏽩

λ2 14λ2 + 8μ + 3􏼐 􏼑
,

a1 �
4
25

v2 6λ2 + 6μ + 1􏼐 􏼑

λ 14λ2 + 8μ + 3􏼐 􏼑
,

b2 � μ2a2

b1 � −
2
25

−350λ4a2 − 200μλ2a2 + 12v2λ2 + 12μv2 − 75λ2a2 + 2v2􏼐 􏼑μ

14λ2 + 8μ + 3􏼐 􏼑λ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)

When we use solution (44), the arbitrary constantM also
contains an expression for a2, which is too long to display
here. For solutions (29) and (30) of the second algebraic
system, the expressions are simple, and the expressions of
arbitrary constants M and wave velocity c can be easily
solved from them.

In the extended (G′/G)-expansion method, when the
coefficients bi(i � 1, 2, . . . , m) are set to 0, it is reduced to the
(G′/G)-expansion method, which is the same idea as the
simplest equation method reduced to the tanh method [43].
We think superficially that the extended (G′/G)-expansion

method fuses the solutions of two Ricatti equations in a
certain form. In other words, the extended (G′/G)-expansion
method decomposes the solutions of nonlinear partial dif-
ferential equation into the solutions of two Ricatti equations.
A brief explanation is given as follows.

If G � G(ξ) is the solution of the second-order differ-
ential equation

G″ + λG′ + μG � 0, (45)

we can get

0–20 20 40–40
x

1

2

3

4

5

6

7

8

Solution (18) red: v = 1, blue: v = 5, and green: v = 10

Figure 3: -e two-dimensional representation of solution (19) when λ �
�
2

√
, μ � 0.3, c � 0.1, t � 10, andC2 � 0.
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G′(ξ)

G(ξ)
􏼠 􏼡

′
�

G″(ξ)G(ξ) − G′(ξ)( 􏼁
2

G2(ξ)
� −

G′
G

􏼠 􏼡

2

− λ
G′
G

􏼠 􏼡 − μ,

(46)

G(ξ)

G′(ξ)
􏼠 􏼡

′
�

G′(ξ)( 􏼁
2

− G(ξ)G″(ξ)

(G′(ξ))2
� 1 +

G λG′ + μG( 􏼁

G′( 􏼁
2

� 1 + λ
G

G′
􏼒 􏼓 + μ

G

G′
􏼒 􏼓

2
.

(47)

It can be seen from (46) and (47) that when G satisfies
(45), (G′/G) and (G/G′) each satisfy a generalized Ricatti
equation, and the derivative results of (G′/G) and (G/G′) can
be converted into the polynomial form of (G′/G) or (G/G′),
which is the basis for collecting coefficients to obtain an
algebraic system of equations.

5. Conclusion

With the help of the auxiliary function method, we solved
two damped generalized IBq equations and we obtained
their three types of travelling wave exact solutions, which is
an extension work of the numerical solution and the exis-
tence of a solution. From the waveform of solution (19), it
can be seen that the waveform of the kink wave can be
modulated by changing the value of c. It is found that, for the
hydrodynamic damping IBq equation, the varying damping
coefficient v makes the waveform of the kinked isolated wave
represented by (19) appear obviously asymmetric, which is
consistent with the conclusion obtained by numerical
method in [15]. In addition, the role of maple in our work
should not be overlooked to make our computing work
easier.
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[14] E. Arévalo, Y. Gaididei, and F. G. Mertens, “Soliton dynamics
in damped and forced Boussinesq equations,” 'e European
Physical Journal B, vol. 27, no. 1, pp. 63–74, 2002.

[15] S. S. Naranmandula, “-e evolution of bell and Kink isolated
waves in microstructured solids,” Chinese Journal of 'eo-
retical and Applied Mechanics, vol. 44, no. 1, pp. 117–122,
2012.

[16] S. Wang and H. Xu, “On the asymptotic behavior of solution
for the generalized IBq equation with hydrodynamical
damped term,” Journal of Differential Equations, vol. 252,
no. 7, pp. 4243–4258, 2012.

[17] S. Wang and H. Xu, “On the asymptotic behavior of solution
for the generalized IBq equation with Stokes damped term,”
Zeitschrift für angewandte Mathematik und Physik, vol. 64,
no. 3, pp. 719–731, 2013.

Complexity 13



[18] X. Y. Chen, “Global existence of solution of cauchy problem
for a generalized IMBq equation with weak damping,” Acta
Mathematica Scientia, vol. 35, no. 1, pp. 68–82, 2015.

[19] M. A. E. Abdelrahman and O. Moaaz, “New exact solutions to
the dual-core optical fibers,” Indian Journal of Physics, vol. 94,
no. 5, pp. 705–711, 2020.

[20] J. Manafian and M. Lakestani, “Optical solitons with Biswas-
Milovic equation for Kerr law nonlinearity,” European
Physical Journal Plus, vol. 130, no. 4, pp. 1–12, 2015.

[21] M. Shakeel, M. A. Iqbaol, Q. Din, Q. M. Hassan, and K. Ayub,
“New exact solutions for coupled nonlinear system of ion
sound and Langmuir waves,” Indian Journal of Physics,
vol. 96, no. 5, pp. 885–894, 2020.

[22] M. Jahani and J. Manafian, “Improvement of the Exp-function
method for solving the BBM equation with time-dependent
coefficients,” European Physical Journal Plus, vol. 131, no. 3,
pp. 1–12, 2016.

[23] M. G. Hafez, M. N. Alam, and M. A. Akbar, “Traveling wave
solutions for some important coupled nonlinear physical
models via the coupled Higgs equation and the Maccari
system,” Journal of King Saud University—Science, vol. 27,
no. 2, pp. 105–112, 2015.

[24] N. H. Abdel-All, M. A.-A. Abdel-Razek, and A.-A. K. Seddeek,
“Expanding the tanh-function method for solving nonlinear
equations,” Applied Mathematics, vol. 2, no. 9, pp. 1096–1104,
2011.

[25] M. A. Akbar, N. H. M. Ali, and S. T. Mohyud-Din, “As-
sessment of the further improved (G′/G)-expansion method
and the extended tanh-method in probing exact solutions of
nonlinear PDEs,” Springer Plus, vol. 2, no. 1, pp. 2–9, 2013.
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