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FxLMS (Filtered-x Least Mean Square) algorithm is widely used in the field of AVC (active vibration control) for its good
convergence and strong adaptability. However, the convergence rate and steady-state error are mutually restricted for the fixed
step FxLMS algorithm. Increasing step size μ to accelerate the convergence rate will result in larger steady-state error and even
cause control divergence. In this paper, a new DVSFxLMS (error signal Differential term feedback Variable Step size FxLMS)
algorithm is proposed by establishing nonlinear function between μ and error signal, while using differential term of the error
signal as the feedback control function. Subsequently, a DVSFxLMS controller is designed to carry out the AVC simulation and
experiments on cantilever beam with PSA (piezoelectric stack actuator). Simulation and experimental results show that the
proposed DVSFxLMS algorithm has faster convergence rate and smaller steady-state error than the traditional FxLMS algorithm,
which also has strong antinoise ability and adaptive control ability to quickly track the variable external disturbance.

1. Introduction

Adaptive filter technology has wide range applications in the
field of digital signal processing. Compared with a con-
ventional filter, an adaptive filter can adjust characteristics of
the filter online according to adaptive filter technology, and
obtain the best performance filter by finding the appropriate
weight coefficients [1]. +e adaptive filter is often divided
into two separate parts: one part is a digital filter and the
other part is an adaptive algorithm. +e digital filter adjusts
weight coefficients through the adaptive algorithm to im-
prove its signal processing performance. +e schematic
diagram of adaptive filtering is shown in Figure 1.

When applying adaptive filtering technology to the field
of AVC, a FIR (finite impulse response) filter is usually used
as a feedforward controller, called the adaptive controller.
+e weight coefficients of the adaptive controller are ad-
justed according to the adaptive algorithm that usually is
LMS algorithm, so that the mean square value of the vi-
bration response measured by sensor converges to the
minimum direction. +e developed FxLMS vibration con-
trol algorithm has advantages of good convergence and

strong adaptability, and does not depend on the accurate
model of controlled structure, which has become one of the
hotspots of AVC algorithm research [2–5]. However, in the
FxLMS control algorithm, the convergence rate and steady-
state error of LMS algorithm are greatly affected by the step
size μ. Generally, the larger the step size, the faster the
convergence rate, but the steady-state error will also in-
crease; reducing step size can reduce the steady-state error,
thereby improving the convergence accuracy, but a smaller
step size will significantly reduce the convergence and
tracking rate of LMS algorithm [6].+erefore, the traditional
fixed step LMS algorithm contradicts the adjustment of step
size in terms of convergence rate, tracking rate, and con-
vergence accuracy. In order to solve this contradiction, it is
necessary to adjust the step size μ of LMS algorithm in real
time during control process, which is called the variable step
size LMS algorithm [7–9]. Gitlin et al. [10] proposed to
reduce step size with the increase in number of the algorithm
iterations, so as to achieve the purpose of variable step size,
but this adjustment rule is only applicable to the time-in-
variant systems. Qin and Ouyang [11] proposed a variable
step size SVSLMS (Sigmoid function Variable Step size LMS)
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algorithm based on the sigmoid function. By establishing the
nonlinear relationship between the step size and error signal,
which effectively compensated for the shortcomings in [10].
However, with continuous convergence of the SVSLMS
algorithm, the step size changes more and more drastically,
which greatly affects the steady-state performance of the
SVSLMS algorithm. Gao and Xie [12] proposed a simpler
variable step size algorithm μ(n) � β(1 − exp(−α|e(n)2|)),
which overcomes the shortcomings of the sigmoid function
in steady-state step adjustment process and also achieves
faster convergence rate and smaller steady-state error.
However, the current step size of this algorithm is only
related to the current error signal, ignoring the effect of
previous iteration error signal on the current step size, so it
has a certain negative impact on the steady-state error and
the convergence rate [13–15]. At the same time, under low
SNR (signal noise ratio) environment, the convergence effect
of this algorithm is not very ideal, which greatly restricts its
application range [16]. In addition, most of the existing
variable step size LMS algorithms are mainly used in the
fields of system identification [17, 18] and active noise
control [19, 20], which are different from their application in
the active control of structural vibration [21, 22]. In the field
of AVC, the system may be interfered by strong external
noise, which makes the algorithm generate larger step size
and output too large control signals, causing system insta-
bility or even damage. +erefore, when the variable step size
FxLMS algorithm is applied to the active control of struc-
tural vibration, the robustness to noise interference needs to
be considered [23].

In this study, a new variable step size FxLMS algorithm is
developed which is called DVSFxLMS algorithm, by
establishing nonlinear function between the step size μ and
the error signal, while the differential term of the error signal
|e(n) − e(n − 1)| is adopted as feedback control function in
original algorithm, so that the current step size of the
proposed algorithm is related to error signal rate. At the
same time, the correlation value of the error signal
|e(n)e(n − 1)| is used instead of the square of the error signal
|e(n)|2 to adjust step size. Subsequently, the DVSFxLMS
controller is designed to actively control the vibration re-
sponse of cantilever beam with PSA. +e AVC simulation
and experiments of piezoelectric cantilever beam under
harmonic excitation and harmonic excitation with

superimposed noise are carried out, and the adaptability of
the DVSFxLMS algorithm is also studied. Simulation and
experimental results show that compared with the tradi-
tional fixed step FxLMS algorithm, the proposed
DVSFxLMS algorithm has faster convergence rate, smaller
steady-state error, which also has strong antinoise ability and
adaptive control ability to quickly track the variable external
disturbances. +e block diagram of the proposed research is
shown in Figure 2.

2. Design of DVSFxLMS Controller

+e LMS algorithm proposed by Widrow and Hoff [24] in
1960 is widely used in the fields of system identification [25],
signal processing [26], and adaptive control [27] because of
its advantages such as small calculation, easy implementa-
tion, and great stability. +e LMS algorithm based on the
steepest descent method can be summarized as the following
iterative process:

e(n) � d(n) − 􏽢XT
(n)W(n),

W(n + 1) � W(n) + 2μ(n)e(n)􏽢X(n),

⎧⎨

⎩ (1)

where 􏽢X(n) is the filter input signal vector of length L;W(n)

is the N weight coefficients of the filter at time n; μ is the step
size, which determines the steady-state performance and
convergence rate of the LMS algorithm. +e convergence
condition of the LMS algorithm is

0< μ<
1

λmax
, (2)

where λmax is the maximum eigenvalue of the autocorre-
lation matrix of 􏽢X(n).

+e variable step size algorithm can solve the contra-
diction between step size, convergence rate, and conver-
gence accuracy in the traditional fixed step LMS algorithm.
+e principle of the variable step size LMS algorithm is to use
a larger step size to obtain a faster convergence rate at the
initial stage of the convergence or the system changes
suddenly; when the algorithm converges to steady state, a
smaller step size is used to reduce the steady-state error. At
the same time, the calculation amount of the algorithm
should be as small as possible, and the parameters that need
to be adjusted should be as few as possible to enhance the
practicality of the algorithm. +erefore, based on the al-
gorithm in [13], and combining the advantages of the al-
gorithm in [16], while a feedback control function inversely
proportional to the differential term of error signal Δe(n) �

|e(n) − e(n − 1)| is introduced, a new variable step size LMS
algorithm is proposed in this paper:

Δe(n) � |e(n) − e(n − 1)|,

α(n) � p
e(n)

e(n − 1)
􏼠 􏼡

2

,

μ(n) � β 1 − exp −α(n)
e(n)e(n − 1)

Δe

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼠 􏼡􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Digital
filter

x (n) y (n) e (n)+
–

d (n)

Adaptive
algorithm

Figure 1:+e schematic diagram of adaptive filtering where x(n) is
the input signal of adaptive filter; y(n) and d(n) are the output
signal and the desired signal of the filter; e(n) is the error signal.
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+e proposed algorithm contains two parameters p and
β. Among them, the parameter p> 0, which controls the
shape of the variable step size function; the parameter β> 0,
which controls the value range of the variable step size
function. From equation (2), 0< μ(n)< 1/λmax; therefore,
β< 1/λmax. Compared with the original algorithm, equation
(3) considers the difference term of the error signal, which
reflects the correlation between the step size and the error
signal rate. At the same time, the correlation value of the
error signal |e(n)e(n − 1)| is used instead of the square of the
error signal |e(n)|2 to adjust step size, which can further
improve the antinoise ability of the variable step size al-
gorithm [16].

+e DVSFxLMS vibration control algorithm thus con-
structed takes the vibration response of the controlled
structure caused by external disturbance as starting point,
and requires the control signal to drive the actuator to
generate control force or moment on the controlled
structure, so that the control response will cancel out the
response caused by external disturbances at observation
points, so as to achieve the purpose of eliminating or re-
ducing the vibration level of the controlled structure. Fig-
ure 3 shows the structural diagram of the DVSFxLMS
controller.

In Figure 3, d(n) is the structural vibration response at
time n when no control signal is applied. +e channel H(z)

from actuator to sensor is called the control channel, and
􏽢H(z) is the model obtained from the offline identification of
the control channel. 􏽢y(n) is the structural vibration response
caused by the control signal y(n) through the control
channel model 􏽢H(z). e(n) is the structural vibration re-
sponse error signal.

In summary, the iterative process of the DVSFxLMS
vibration control algorithm is obtained as follows:

y(n) � 􏽢XT
(n)W(n),

e(n) � d(n) − 􏽢y(n),

Δe(n) � |e(n) − e(n − 1)|,

α(n) � p
e(n)

e(n − 1)
􏼠 􏼡

2

,

μ(n) � β 1 − exp −α(n)
e(n)e(n − 1)

Δe

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡􏼠 􏼡,

W(n + 1) � W(n) + 2μ(n)e(n)􏽢X(n).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Proposed DVSFxLMS algorithm

DVSFxLMS controller

AVC simulation of DVSFxLMS controller

AVC experiment verification of 
DVSFxLMS controller

AVC experiment under
harmonic excitation

AVC experiment under harmonic
excitation with superimposed noise

AVC experiment under
variable external excitation

Piezoelectric cantilever beam

Offline identification of
control channel

Figure 2: +e block diagram of the proposed research.
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+
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Figure 3: +e structural diagram of the DVSFxLMS controller.
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3. AVC Simulation of DVSFxLMS Algorithm

3.1. Piezoelectric Cantilever Beam. In the current simulation,
an aluminum alloy cantilever beam is controlled structure,
and its dimension is 900mm× 20mm× 5mm. As shown in
Figure 4, based on the maximum modal strain energy cri-
terion, the PSA is installed at the root of the cantilever beam
to establish vibration control simulation system, in which
the observation point A is at the tip of the cantilever beam.

+e dimension of PSA is 170mm × 20mm × 37mm,
and its total weight is 190 g. +e piezoelectric stack used
therein is PI™ PICMA® P-840.60, and the parameters of
this piezoelectric stack are shown in Table 1 [28]. +e PSA
is glued to controlled structure through epoxy resin to
realize the axial actuation of the piezoelectric stack into a
pair of actuating bending moments on the controlled
structure.

3.2. Offline Identification of Control Channel. Figure 5 shows
the schematic diagram of the control channel offline iden-
tification. Applying the excitation signal x(n) to the unknown
control channel, then generating an output response d(n),
and applying the same excitation signal to the adaptive filter,
the filter output is y(n). +en d(n) and y(n) are subtracted to
get the identification error signal e(n). +e LMS algorithm
adjusts the weight coefficients of the filter according to the
error signal, and finally makes the output y(n) of the filter
close to the output response d(n) of the control channel. At
this time, the characteristic of the adaptive filter can be used as
an estimate of the control channel.

After the input and output data are obtained, the least
square method is used to identify the FIR model for control
channel. Whether the results of the model identification
meet the needs can be qualitatively evaluated from following
two requirements: firstly, comparing the frequency response
function of the experimental model and the identification
model, which requires the amplitude and phase as consistent
as possible; secondly, the iterative curves of weight coeffi-
cient are required to smoothly converge during the iden-
tification process, and the identification error gradually
decreases. If the above requirements are not met, it is
necessary to readjust the step size or the order of the FIR
model in LMS identification algorithm.

In the control channel offline identification experiment,
28–32Hz narrow-band random signal is input to the control
channel, the output signal of control channel is measured by
the acceleration sensor A, and the step size is set to 5E – 9;
then, a 1500 order FIR filter model is obtained by the LMS
algorithm identification.+e identification results are shown
in Figure 6. It can be seen from the figure that the frequency
response function of the control channel model obtained by
offline identification is in good agreement with the exper-
imental curve, and the weight coefficients of the adaptive
filter converge smoothly, while the MSE (mean square error)
of the identification model gradually approaches zero, which
indicates that the FIR filter model identified in the control
frequency band can truly reflect the dynamic characteristics
of the control channel.

3.3. Simulation ofDVSFxLMSControlAlgorithm. In order to
verify the effectiveness of the proposed DVSFxLMS control
algorithm (DVSFxLMS in legends), the traditional fixed step
FxLMS control algorithm (fixed FxLMS in legends) is used
as a comparison group to compare and study its vibration
suppression effect in the active control of piezoelectric
cantilever beam harmonic vibration. +e control channel
model is obtained by offline identification process in Section
3.2. +e simulation results are shown in Figure 7. It can be
seen from Figure 7 that the DVSFxLMS control algorithm
has better vibration suppression performance, compared
with the FxLMS control algorithm, it has faster convergence
rate and smaller steady-state error.

4. AVC Experiment Verification of
DVSFxLMS Algorithm

+e AVC experimental diagram of the piezoelectric canti-
lever beam is shown in Figure 8. +e external excitation
signal is generated by the Quanser real-time system, and the
external excitation signal passes through the output board
and amplified by the power amplifier (MB YE5872A), and
then input into the electromagnetic exciter (MB Dynamics)
to excite the cantilever beam. Structural vibration response is
collected by the acceleration sensor (PCB 333B30, sensi-
tivity: 100mV/g), enters the DVSFxLMS controller through
the acceleration signal conditioner (PCB 482C) and Quanser
input board, then the control voltage calculated by the
DVSFxLMS controller passes through Quanser output

900

50

20

PSA A

Figure 4:+e dimension of the piezoelectric cantilever beam (unit:
mm).

Table 1: Parameters of piezoelectric stack.

Parameter Value
Length×width× height 12mm× 12mm× 122mm
Maximum dynamic displacement 90 μm
Maximum output force 1000N
Maximum operation voltage 100V
Elastic compliance coefficient 16.1× 10−12m2/N
Piezoelectric charge coefficient 4×10−10 C/N

LMS
algorithm

Random noise x (n)

H (z)
y (n)

e (n)
+

–

d (n)
Control
channel

H (z)

Figure 5: Schematic diagram of the control channel offline
identification.
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board, which is amplified by the power amplifier (PA-V-M4)
and drive the PSA to control the cantilever beam, thereby
achieving active control of the cantilever beam vibration
response. +e setup of AVC experiment using PSA is shown
in Figure 9.

4.1. AVC Experiment under Harmonic Excitation. +e ex-
ternal excitation is selected near the natural frequency of the
second-order bending mode of the cantilever beam, which is
30Hz, and the control channel model is obtained by offline
identification process described in Section 3.2. After the
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Figure 6: Offline identification results of control channel: (a) comparison of frequency response functions; (b) adaptive filter weight
coefficient iteration curves; (c) MSE of the identification model.
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vibration response of the cantilever beam reaches steady
state, the controller is turned on at 10 s, and the experiment
lasts for 50 s. Among them, the adaptive filter order of the
traditional fixed step FxLMS controller is set to 32, and the
step size in the adaptive algorithm is adjusted to 2E− 6.
Meanwhile, the adaptive filter order of the DVSFxLMS
controller is set to 32, and the step size parameters are
adjusted to β� 5E− 6 and p � 100. +e superiority of the
DVSFxLMS control algorithm proposed over the traditional
fixed step FxLMS control algorithm is compared and
studied.

+e experimental results are shown in Figure 10. From
Figures 10(a) and 10(c), it can be seen that the convergence
time of the fixed step FxLMS controller is 19.5 s. After the
structural vibration reaches steady state, the peak acceler-
ation at the tip of the cantilever beam is decreased by 93.7%.
At the same time, the convergence time of the DVSFxLMS
controller designed is 8.1 s, and the control effect reaches
95.1%, which is better than fixed step FxLMS controller. As
shown in Figure 10(b), at the initial period, the output
voltage of the DVSFxLMS controller is higher than that of
the fixed step FxLMS controller, and then quickly reaches
the optimal value to ensure high level of the vibration
suppression performance. Figure 10(d) shows the iterative
curves of the adaptive filter weight coefficients of the

DVSFxLMS controller, and the filter weight coefficients
converge quickly and smoothly. In summary, compared
with the fixed step FxLMS control algorithm, the
DVSFxLMS control algorithm proposed has the charac-
teristics of fast convergence rate and good steady-state vi-
bration suppression performance, which effectively solve the
constraints of the convergence rate, steady-state error and
step size of the fixed step FxLMS control algorithm.

4.2. AVC Experiment under Harmonic Excitation with
Superimposed Noise. In order to verify the ability of the
DVSFxLMS control algorithm proposed to resist noise in-
terference, this section conducts experimental research on
AVC under the harmonic excitation with superimposed
noise.

Excitation signal consists of 30 Hz sine signal super-
imposed 28–32Hz zero-mean Gaussian white noise, and
the variance of the superimposed noise σ2 is set to 1, 0.25,
and 0.01, respectively. +e controller parameter settings
are the same as described in Section 4.1. Turn on the
controller at 10 s, and the experiment lasts for 50 s. +e
experimental results of AVC under the harmonic exci-
tation with superimposed noise are shown in Figures 11
and 12.

PSA A
Piezoelectric cantilever beam Acceleration

signal
conditioner

Input board

Quanser
real-time

system
Output boardPower amplifier

Electromagnetic
exciter

Power
amplifier

Signal
generator

Control
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Figure 8: AVC experimental diagram of the piezoelectric cantilever beam.
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Zoom in

Figure 9: +e setup of AVC experiment using PSA.
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It can be seen from Figure 11 that under the harmonic
excitation with superimposed noise, the DVSFxLMS con-
troller can all converge to steady state in about 8 s. During
the steady state, the DVSFxLMS controller can also

adaptively adjust the filter parameters according to the
changes of the error signal to suppress vibration response of
the controlled structure, which shows the ability to resist
noise interference.
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Figure 10: Comparison of experimental results of the DVSFxLMS controller: (a) acceleration response at point A; (b) output voltage;
(c) peak acceleration response at point A; (d) adaptive filter weight coefficient iteration curves of the DVSFxLMS controller.
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+e acceleration response PSD (power spectral density)
contrast at point A in the open/closed loop state of the
control system is shown in Figure 12. Under the harmonic
excitation of superimposed noise signals with variances of 1,
0.25, and 0.01, the DVSFxLMS controller can effectively
reduce vibration level of the controlled structure. +e lower
the variance of the superimposed noise, the better effect of
the active structural vibration control. Finally, the peak value
of the PSD spectrum is decreased by 21.5 dB, 24.9 dB, and

30.5 dB, and the RMS (root mean square) of the acceleration
response is decreased by 89.5%, 92.2%, and 95.5%, respec-
tively, which verifies that the proposed DVSFxLMS control
algorithm has strong antinoise ability.

4.3. AVC Experiment under Variable External Excitation.
In order to investigate the adaptability of the DVSFxLMS
control algorithm to variable external disturbance, this
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Figure 12: Acceleration response PSD contrast at point A (open/closed loop). (a) σ2 �1, (b) σ2 � 0.25, and (c) σ2 � 0.01.
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Figure 13: Adaptive control experimental results of the DVSFxLMS controller: (a) acceleration response at point A; (b) output voltage;
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section conducts an adaptive control experiment on the
changes of the excitation signal amplitude, phase, and fre-
quency. +e control system starts to use 30Hz sine signal as
the excitation, and the controller is turned on at 10 s. After
vibration response of the structure is attenuated and sta-
bilized, the excitation signal amplitude increases to 1.5 times
of the original amplitude at 40 s, the phase of excitation
signal changes π/4 at 70 s, and the frequency of excitation
signal increases by 5% at 100 s; that is, it becomes 31.5Hz.
+e experiment time lasts for 150 s, and the controller pa-
rameters are consistent with Section 4.1.

Figure 13(a) shows the acceleration response at point A,
and Figure 13(b) shows the output voltage of the DVSFxLMS
controller. It can be seen that after the controller is turned
on, the structural vibration response quickly decays to steady
state. When the excitation signal amplitude, phase, or fre-
quency changes, the structural vibration response rapidly
increases. +en, the DVSFxLMS controller adjusts the
output voltage according to the changes of the structural
vibration response, and drives the PSA to generate actuating
bending moment, so that the structural vibration response
quickly decays to steady state again. +e adjustment process
takes 9.3 s, 5.1 s, and 13.4 s, respectively, which realizes the
adaptive control of the structural vibration response when
the external excitation changes. It can be seen from
Figure 13(c) that when the excitation signal parameters
change, the DVSFxLMS controller can quickly adjusts the
weight coefficients of the adaptive filter according to the
DVSFxLMS algorithm to reach steady state, which ensures
good vibration suppression performance. +e experimental
results of adaptive vibration control show that the
DVSFxLMS control algorithm proposed has fast tracking
rate and strong adaptive control ability to variable external
disturbance.

5. Conclusion

In the present study, a new variable step size FxLMS al-
gorithm (DVSFxLMS algorithm) is proposed by establishing
nonlinear function between the step size μ and the error
signal, while using the difference term of error signal
Δe(n) � |e(n) − e(n − 1)| into the original algorithm as a
feedback control function. At the same time, the correlation
value of the error signal |e(n)e(n − 1)| is used instead of the
square of the error signal |e(n)|2 to adjust step size. Sub-
sequently, DVSFxLMS controller is designed, and PSA is
used to conduct AVC simulation and experiments on a
cantilever beam. Results show that the proposed DVSFxLMS
control algorithm can effectively suppress the vibration
response of the cantilever beam. +e control effect of single
frequency harmonic excitation is 95.1%, and the conver-
gence time is 8.1 s, while that of the fixed step FxLMS
controller is 19.5 s. Compared with the traditional fixed step
FxLMS control algorithm, the convergence rate is faster, and
the steady-state vibration suppression performance is better.
+e DVSFxLMS controller can still achieve good control
effects under the harmonic excitation with superimposed
noise. +e vibration response of the cantilever beam con-
verges to steady state in about 8 s. Under the harmonic

excitation of superimposed noise signals with variances of 1,
0.25, and 0.01, the peak value of the PSD spectrum of the
acceleration response at observation point is decreased by
21.5 dB, 24.9 dB, and 30.5 dB, and the RMS is reduced by
89.5%, 92.2%, and 95.5%, respectively, which shows that the
DVSFxLMS control algorithm has strong antinoise ability.
When the amplitude, phase, or frequency of the excitation
signal changes, the DVSFxLMS controller can adjust the
control voltage accordingly, quickly suppress the structural
vibration response in about 8 s, and achieve good control
effect, which indicates that the proposed DVSFxLMS control
algorithm has strong adaptive control ability to quickly track
the variable external disturbance.

A new DVSFxLMS control algorithm is proposed in this
paper, and the DVSFxLMS controller is designed to effec-
tively suppress the vibration response of the piezoelectric
cantilever beam. Considering that the physical character-
istics and system characteristics of the controlled structure
used in this paper are relatively stable, and therefore, a
reliable identification result is obtained by using the offline
identification strategy of control channel based on the LMS
algorithm. In order to further improve the practicability and
applicability of the algorithm proposed, and make it also
suitable for time-varying structures, an adaptive controller
with online identification function of control channel can be
studied based on the variable step size LMS algorithm [3, 29].
In addition, when faced with large and complex controlled
structures, the single-channel controller has certain limi-
tations. +e multichannel FxLMS controller can be designed
based on the variable step size LMS algorithm [30, 31], while
considering the control channel coupling phenomenon to
further optimize the structure of variable step size FxLMS
controller to be applied to actual engineering structures.
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)e fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating machinery (RM) have critical
importance for early diagnosis to prevent severe damage of infrastructure in industrial environments. Importantly, valuable
industrial equipment needs continuous monitoring to enhance the safety, reliability, and availability and to decrease the cost of
maintenance of modern industrial systems and applications. However, induction motor (IM) has been extensively used in several
industrial processes because it is cheap, reliable, and robust. Rolling bearings are considered to be the main component of IM.
Undoubtedly, any failure of this basic component can lead to a serious breakdown of IM and for whole industrial system. )us,
many current methods based on different techniques are employed as a fault prognosis and diagnosis of rolling elements bearing
of IM. Moreover, these techniques include signal/image processing, intelligent diagnostics, data fusion, data mining, and expert
systems for time and frequency as well as time-frequency domains. Artificial intelligence (AI) techniques have proven their
significance in every field of digital technology. Industrial machines, automation, and processes are the net frontiers of AI
adaptation. )ere are quite developed literatures that have been approaching the issues using signals and data processing
techniques. However, the key contribution of this work is to present an extensive review of CM and FDD of the IM, especially for
rolling elements bearings, based on artificial intelligent (AI) methods. )is study highlights the advantages and performance
limitations of each method. Finally, challenges and future trends are also highlighted.

1. Introduction

Many industries have adopted several measures in their
drive to optimize the reliability, availability, and safety to
reduce the maintenance cost of modern industrial systems
and applications, which are vital to process [1, 2]. )us,
condition-based maintenance (CBM) has gained a signifi-
cant role in an industrial world [3, 4]. However, CBM is

applied in order to achieve early maintenance decisions
through CM collected data [5]. Moreover, condition
monitoring (CM) and fault detection and diagnosis (FDD)
of rotating machinery (RM) [6, 7] have recently gained huge
attention [8, 9]. )erefore, CM and FDD become the most
important and critical aspects of industrial life (i.e., system
design and maintenance) [10]. )e main aim of CM and
FDD is to follow up the machinery health and the remaining
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useful life (RUL) in modern industrial machinery [11, 12].
However, predictive health monitoring (PHM) methods are
important to guarantee the required health state of the
machinery [13, 14]. )us, CM and FDD help to ensure the
health state of the machinery [15, 16]. Figure 1 shows the
main components of a typical CBM [17]. CM methods are
categorized into two groups, invasive and noninvasive
methods. On the one hand, invasive CM is considered to be
simple and basic technique. On the other hand, it is hard to
implement. To overcome this challenge, noninvasive CM
methods are highly used nowadays [18].

As key components of industrial systems and appli-
cations [19–21], rotating machinery, such as motor,
gearbox, wind turbines, generator, and engine, is vital
equipment in modern industrial applications [22]. )ese
important machines have to run efficiently, accurately, and
safely [23]. Due to the criticality and importance of this
issue, several analysis and studies were published during
the past years where many different approaches have been
investigated to improve the CM and FDD for rotating
machinery [24, 25]. Conventionally, the traditional CM
and FDD methods (such as model and signal as well as
data-based methods) [26–29] need to extract the diag-
nosable information manually from the raw data [30].
Following that, pattern recognition models were devel-
oped using the features vector in the classification process
[31]. )is scenario requires much experience knowledge
and complex feature extraction methods [32, 33]. To ad-
dress this issue, artificial intelligent (AI) methods and
techniques for CM and FDD of RM [34–39] are widely
employed and applied nowadays [40, 41].

Induction motor (IM) [42–49] is vital in industrial
processes and applications [50, 51]. Moreover, IM is ex-
tensively used, for example, in mining machines, automotive
applications, pumps, blowers, fans, chemical machines, lifts,
compressors, vacuums, conveyors cranes, and engines
[52–59]. Figure 2 summarizes applications of the IM.

All parts of IM (stator, bearing, bar, and rotor) are af-
fected by stress, aging, vibration, long operating time,
continuously monitoring, and electrodynamic forces
[60–62]. )us, any failure of any part of IM may cause a
serious breakdown of the machine, which increases the
maintenance cost and leads to heavy losses [63, 64]. Figure 3
shows IM faults and their percentage.

Rolling bearings [66] were considered to be the main
component of rotating machinery [67]. However, bearings
are used in several mechanical and electrical applications,
including IM, turbines, medical devices, cars and trucks,
engines, automobile industry, and aerospace [68]. Im-
portantly, any failure of this basic component can lead to a
serious breakdown of rotating machines [69]. Rolling
bearing faults could be categorized by two main factors,
location of the fault and nature of the fault. For location
category, five main faults occurred including, imbalance
shaft faults, ball faults, inner race faults, outer race faults,
and cage faults. For nature category, two main faults are
considered, including cyclic faults and noncyclic faults
[70, 71].

CM and FDD of bearing element bearings of RM are
widely used to follow up the operation condition of the
machine [72–74]. However, the main task of CM and FDD
is to diagnose faults and failures [75, 76]. As a result, any
failure may cause a serious breakdown, which increases the
maintenance cost and leads to heavy losses [77]. Recently,
various methodologies of CM and FDD of IM have been
discussed. Moreover, several data and model-based
techniques have been introduced including signal pro-
cessing-based techniques [78, 79], image processing based
techniques [80–83], intelligent techniques [84, 85], data
fusion techniques [86–90], data mining techniques
[91–96], and expert system techniques [97–99]. All those
techniques have used specific analyses to develop the FDD
methodology to arrive at efficient and accurate results
[100, 101]. As shown in Figure 4, the analyses used in those
studies include chemical analysis, electrical analysis, and
mechanical analysis, in more details, temperature analysis
[102–107], vibration analysis [108–112], noise analysis
[113, 114], radio-frequency (RF) analysis [115–118], in-
frared analysis [119–124], current and voltage analysis
[125, 126], electromagnetic field analysis [127–129], oil
analysis [110, 130–132], pressure analysis [133–137], ul-
trasound analysis [138–140], and sound and acoustic
emission analysis [141, 142]. Figure 5 shows a general
block diagram of a noninvasive FDD for rotating ma-
chinery. As an example, preprocessing stage includes data
denoising and filtering. However, most electrical and
mechanical signals are nonlinear and nonstationary sig-
nals. )us, denoising techniques have been extensively
studied nowadays. However, wavelet transform (WT),
continuous wavelet transform (CWT), discrete wavelet
transform (DWT), Kalman filtering, Wiener filtering,
Empirical mode decomposition (EMD), variational mode
decomposition (VMD), and singular value decomposition
(SVD) are some common denoising techniques [143].
Table 1 shows a comparison between various CM analysis
techniques.

)emain objective of this work is to review the CM and
FDD of the IM, especially for rolling elements bearings,
based on artificial intelligent (AI) methods. )e study also
points out the advantages and drawbacks of each method.
Finally, research challenges and possible future trends
directions in this field are also presented in this article.

)e rest of the paper has been organized as follows.
Firstly, background and general introduction are dis-
cussed in Section 2. Secondly, AI for CM and FDD for

Condition-based
maintenance

Fault prognosisFault detection and
diagnosis

Condition
monitoring

Figure 1: )e main components of CBM.
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rolling bearings are presented in Section 3. Finally,
challenges and future trends are discussed in Section 4.

2. Background and General Introduction

Nowadays, the need for earlier detection of faults for IM is
crucial. However, in order to increase the reliability of IM,
AI has been used to measure the accuracy at the incipient
stage of CM and FDD for IM [144]. Figure 6 shows all most
AI methods used in CM and FDD. A variety of AI studies of
CM and FDD for IM have been recently reported. In [145],
an intelligent FDD of RM (i.e., automotive engine) frame-
work is introduced. )erefore, in the feature extraction
stage, ensemble empirical mode decomposition (EEMD) is
implemented followed by intrinsic mode functions (IMF)
decomposition. )e correlation coefficient (CC) along with
singular value decomposition (SVD) is employed to elimi-
nate the redundant IMF and to obtain fault features. To add a
new layer of improvement, five single classifiers based on the
probabilistic committee machine (PCM) and Bayesian
learning machine are trained and used in the classification
stage.

Furthermore, (1) the single probabilistic classifiers, (2)
the single probabilistic and Bayesian machines, (3) pairwise-
coupled, and (4) two classifiers without pairwise-coupling
strategy are used for further comparison of classification. As
a result, the proposed probabilistic committee machine
method showed the superiority of diagnosing faults. In
[146], an online feature condition monitoring approach
based on unsupervised feature learning (dictionary learning)
under different operational conditions using vibration and
acoustic emission signals is introduced. )is work also
presents dictionary distance and signal fidelity driven
methods and techniques for anomaly detection are also
described. Moreover, time-propagated characteristics are
used along with sparse approximation of signals received

from vibration and acoustic emissions. Importantly, the
results of three case studies, i.e., the approximation accuracy,
overall computational overhead, and the adaptation rate, are
presented. As a result, under normal variation condition, the
learned features change slowly in comparison with high-
speed variation when a fault appears. In [147], an FDD
system of IM designed on multiscale entropy and support
vector machine (SVM) in combination with mutual infor-
mation algorithm is proposed. )e aim is to retrieve the
required entropy feature; techniques like vibration signals,
sample entropy, and multiscale entropy are applied. Im-
portantly, a support vector machine classifier is used for the
entropy feature vector. Furthermore, classification results
showed that these SVM based entropy techniques could
effectively diagnose various motor faults (i.e., bearing faults,
stator faults, and rotor faults). In [148], a multiclass FDD
approach of IM using wavelet and Hilbert transforms is
introduced. Moreover, for a feature extraction stage, Hilbert
transform (HT) and continuous wavelet transform (CWT)
are applied as advance signal processing techniques to re-
trieve features and characteristics from radial vibration
signals and to detect rotor, bearing, and stator faults. Im-
portantly, three classifiers are employed in this research: the
neural network (multilayer perceptron), neural network
(radial basis function), and support vector machines. As a
result, in this study, the performance of SVM is found to be
the best compared with NN classifiers, i.e., MLP and RBF
classifiers. In [149], a compound FDD approach for IM at
variable operating conditions using the SVM classifier is
introduced. Moreover, radial vibration and stator currents
are used. Four motor conditions are extracted and classified,
including healthy induction motor, misalignment, unbal-
anced rotor, and bearing fault. Kernel-nonlinear SVM along
with Gaussian radial basis function is employed. As a result,
SVM bootstrap based technique with features data fusion
has an ability of classifying multiple and single faults for
different operating conditions of the IM with good accuracy
(84.8–100%). In [150], vibration and current monitoring
based approach for both electrical and mechanical faults’
prediction under various operating conditions for IM is
proposed. Moreover, nine mechanical and electrical faults
are detected and classified using amulticlass SVM algorithm.
In the feature extraction stage, time domain of vibration and
current signals is used to seek statistical features. Impor-
tantly, MSVM is trained using the radial basis function
(RBF) kernel. As a result, for the vibration signal and
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mechanical faults, the MSVM showed an ability of pre-
dicting all faults, but it could not predict current signals
based on electrical faults. However, the SVM is better than
MSVM for electrical faults diagnosis.

Recently, deep learning [151–153] is extensively used in
CM and FDD for IM. In [154], an automatic FDD approach
of IM uses deep learning techniques to combine the feature
extraction process with the classification process. Moreover,
deep belief networks (DBN) are modelled for vibration
signals to retrieve key features. Moreover, the restricted
Boltzmann machine (RBM) is used to build and train the
DBN using a layer-by-layer pretraining algorithm. Impor-
tantly, the proposed approach could detect the fault directly
from frequency distribution without needing traditional
feature extraction methods. Furthermore, to elevate the
classification accuracy and reduce training error, the pro-
posed approach could learn multiple layers of representation
and model high-dimensional data. In [155], an unsupervised
feature learning sparse autoencoder-based deep neural
network approach for induction motor faults classification is
proposed. Moreover, the proposed approach detected and

classified multiple faults, three-rotor faults (bowed, unbal-
anced, and rotor bars), defective bearing, and stator winding
fault. Features obtained from a sparse autoencoder are used
to train a neural network classifier. Importantly, the method
called “dropout” is used to prevent the training process from
overfitting. As a result, SAE-based DNN approach showed
good results in terms of feature learning capability and
classification accuracy of FDD for IM. To avoid complex
sensor data problems, deep learning technique is recently
used. In [156], deep learning for infrared thermal (IRT)
images is introduced to detect various machine conditions.
Moreover, convolutional neural networks (NNs) are
employed. )e accuracy of this method is at least 6.67%
better compared with normal approaches. Importantly, it
can be used for online FDD and CM when the access is very
difficult such as in offshore wind turbines. Table 2 sum-
marizes AI studies of CM and FDD for IM.

)e bearing is a critical component in IM. )us, robust
and intelligent CM and FDD methods are highly needed to
enhance detection, diagnosis, monitoring, and prognosis
capabilities.

3. AI in CM and FDD of Rolling Element
Bearings for IM

Bearing faults are considered to be a majority of faults in
IM [164–166]. In [167], four classification methods for
intelligent CM and FDD of rolling bearings are proposed.
Moreover, accuracy, time consumption, intelligibility, and
maintaining ability of intelligent methods like SVM based
particle swarm optimization (PSO-SVM), K-Nearest
Neighbor algorithm (KNN), a rule-based method (RBM)
based on the MLEM2 algorithm and probabilistic neural
network (PNN) are discussed. As a result, PSO-SVM
ranked the first in terms of accuracy followed by the RBM,
but PSO-SVM and RBM required more programming
efforts. Furthermore, the RBM showed the best in terms of
interpretation and reduction. In [168], an adaptive
method for the health monitoring of rotating bearings
using the vibration signal is introduced. )e proposed
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Figure 4: CM and FDD techniques of IM.
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method applies the empirical mode decomposition–self-
organizing map (EMD–SOM) to find a confidence value
(CV) and to find the degradation of the fault. As a result,
SOM based technique showed a high ability for online
condition monitoring, especially for limited computing
resources cases.

3.1. Bayesian Network. Bayesian network [169, 170] is a
probabilistic statistical model, which uses a directed acyclic
graph (DAG) to seek conditional dependencies. )is model
shows a direct representation of causal relations between
variables. Currently, the Bayesian network is extensively
used [171] in several applications, such as feature extraction

Table 1: Comparison between various CM analysis techniques for bearings of IM.

)e technique Advantages Drawbacks Fault

Temperature and infrared analysis (i) Basic method
(ii) Noninvasive

(i) Expensive sensor is
required
(ii) It cannot be used as early
FDD

(i) Mechanical and
electrical faults

Vibration and noise analysis (i) Reliable and standard method
(ii) It can be used as early FDD

(i) Sensitive to the noise
(ii) Expensive sensor is
required
(iii) Intrusive

(i) Mechanical
faults

Chemical and oil analysis
(i) Fault estimation and location
capabilities
(ii) High performance for bearing FDD

(i) Expensive
(ii) Applicable for big size
machines

(i) Mechanical
faults

Sound and acoustic emission analysis

(i) It could be used as reliable and remote
CM
(ii) It is easily implemented
(iii) Fault estimation and location
capabilities
(iv) Signal to noise ratio is high
(v) It deals with high frequency range

(i) Sensitive to the noise
(ii) Expensive sensor is
required
(iii) Intrusive

(i) Mechanical
faults

Current, voltage, and electromagnetic
field analysis

(i) Inexpensive
(ii) Nonintrusive

(i) Sensitive to the noise
(ii) It cannot be used as early
FDD

(i) Mechanical and
electrical faults

Ultrasound analysis

(i) Effective in low speed bearings
(ii) It deals with low and middle
frequency ranges
(iii) High signal to noise ratio

(i) Expensive sensor is
required
(ii) Intrusive

(i) Mechanical and
electrical faults
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Table 2: AI studies of CM and FDD for IM.

Reference Analysis type Feature extraction Classification Highlights

[145] Vibration

Ensemble empirical mode
decomposition (EEMD) and
correlation coefficient (CC) along
with singular value decomposition
(SVD)

(1) )e single probabilistic
classifiers
(2) )e single probabilistic and
Bayesian machines
(3) Pairwise-coupled
(4) Two classifiers without
pairwise-coupling

(i) It diagnoses multiple and single
faults
(ii) )ere is simultaneous fault
diagnosis
(iii) )e accuracy for a single fault is
92.62% and for simultaneous faults is
85.73%

[146]
Vibration and
acoustic
emission

Unsupervised feature Dictionary learning

(i) )ere is online monitoring
(ii) )ere are different operational
conditions
(iii))ere are good computational costs

[147] Vibration Multiscale entropy SVM (i) It diagnoses multiple faults
(ii) )e average accuracy is 96.25%

[148] Vibration
Hilbert transform (HT) and
continuous wavelet transform
(CWT)

Neural network (multilayer
perceptron), neural network
(radial basis function), and
support vector machines

(i) )ere is multiclass FDD
(ii) SVM is found to be the best (with
SVM 99.71%) compared to NN
classifiers

[149] Vibration and
current

SVM bootstrap based technique
with features data fusion

Kernel-nonlinear SVM along
with Gaussian radial basis
function

(i) SVM multiclassification scheme is
presented
(ii) It diagnoses multiple faults
(iii) )ere are different operational
conditions
(iv) )e average accuracy is 99.4%

[150] Vibration and
current Statistical features analysis SVM and multiclass SVM

(i) It diagnoses multiple faults
(ii) )ere is electrical and mechanical
faults’ prediction
(iii) )ere are different operational
conditions
(iv) MSVM showed an ability of
predicting all mechanical faults
(v) SVM is better than MSVM for
electrical faults diagnosis
(vi) )e average accuracy is 93.28%

[154] Vibration Deep learning Deep belief networks (DBN)

(i) )ere is automatic FDD
(ii) )e proposed approach could
detect the fault directly from frequency
distribution without needing
traditional feature extraction methods
(iii) It learns multiple layers of
representation and models high-
dimensional data
(iii) )e average accuracy is 99.00%

[155] Vibration Deep learning Sparse autoencoder

(i) It diagnoses multiple faults
(ii) It prevents training process
overfitting
(iii) )e average accuracy is 97.61%

[156]
Infrared
thermal (IRT)
images

Deep learning Convolutional neural networks

(i) )ere is online monitoring
(ii) )ere are different operational
conditions
(iii) )e average accuracy is 95%

[157] Stator current Deep learning Deep neural network

(i) IM bearings monitoring tool based
on deep learning is proposed
(ii) Different load conditions 25%, 50%,
75%, and 100% are tested
(iii) Deep neural network showed better
classification accuracy than shallow
neural network (SNN) and principle
component analysis (PCA)
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and classification machine learning algorithms, data mining
and data processing, speech processing, bioinformatics,
error-control codes, medical applications, industrial diag-
nosis, and wireless sensor networks [172–174]. As a ML
algorithm for FDD of IM fault, the Bayesian network is
applied. In [175], different operating conditions of bearing
FDD approach based on acoustic signal are proposed. De-
cision tree (dimensionality reduction) is applied to extract
descriptive statistical features vector in the feature extraction
stage. Next, Bayes classifier is used in the classification stage.

In [170], the diagnosis approach of bearing faults in rotary
machinery based on the nonnative Bayesian approach using
vibration signals is introduced. In detail, EMD is utilized to
split up vibration signals into IMFs, and then the correlation
coefficient is used to pick the appropriate IMFs. Shannon
energy entropy of IMFs is used to seek useful statistical
properties and features. Finally, a nonnative Bayesian
classifier (NNBC) is employed to find independence among
features. Furthermore, in order to compare classification
results, backpropagation neural networks, normal naive

Table 2: Continued.

Reference Analysis type Feature extraction Classification Highlights

[158] Vibration Kurtogram and deep learning
Recurrent NN, long-/short-
term memory, and gated
recurrent unit

(i) FDD method based on kurtogram
and deep learning is proposed
(ii) Computational time, computing
resources and number of layers, is small
(iii) Misclassification occurred
(iv) )e average accuracy is 98%

[159] Vibration Neural networks Transfer learning

(i) Bearing FDD approach based on
transfer learning with neural networks
is proposed
(ii) Different working conditions are
analysed
(iii) Training time comparing with NN
is reduced
(iii) It deals with massive data
(iv) Transfer learning improved the
classification accuracies
(v) )e total classification accuracy is
improved by 10.4 %

[160] Acoustic
emission

Transfer learning-based
convolutional neural network Transfer learning

(i) Bearing FDD acoustic spectral
imaging and transfer learning under
variable speed conditions and
different rotational speeds is proposed
(ii) Two-dimensional acoustic
frequency spectral imaging with a
transfer learning is discussed
(iii) )e proposed method achieved an
average accuracy of 94.67%

[161] Vibration

Long-/short-term memory
recurrent neural network and
feature-transfer learning (joint
distribution adaptation)

Grey wolf optimization
algorithm

(i) Bearing FDD based on adaptive deep
transfer learning is proposed
(ii) Massive labeled fault data is
collected and analysed
(iii) )e proposed method achieved an
average accuracy of 99.4 %

[162] Vibration Multiscale deep intraclass
adaptation network Multiple scale feature learner

(i) Bearing FDD is based on multiscale
deep intraclass transfer learning
(ii) Different working conditions are
analysed
(iii) )e proposed method achieved an
average accuracy of 99 %

[163] Vibration Hybrid deep signal processing
approach Autoencoder

(i) Deep learning with time
synchronous resampling mechanism is
proposed
(ii) )e proposed method dealt with
shift variant properties, periodic inputs,
and misclassification challenges
(iii) )e proposed method achieved an
average accuracy of 99 %
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Bayesian classifiers, and kernel naive Bayesian classifiers are
employed. Importantly, in this research study, the NNB
classifier showed superiority compared with the other
classifiers, including neural network and normal NB.

3.2. Support Vector Machine. )e support vector machine
(SVM) [176, 177] uses supervised machine learning models
along with statistical and predictive methods for classifi-
cation and regression analysis. SVM is being used to solve
big data and multidomain classification problems in the
modern industrial environment [178]. SVM is also used as
CM and FDD method for IM. Subsequently, in [179], a
bearing fault detection scheme using vibration signals of IM
is proposed. SVM and continuous wavelet transform (CWT)
are used together. As a result, for using SVM with CWT, the
proposed scheme is simple to implement, very fast, and high
accurate. Using another ANN based techniques requires the
cumbersome process of trial and error to obtain an optimal
solution. Nevertheless, using a hybrid CWT-SVM technique
gives promising results (fast and efficient). In [180], an FDD
approach for bearings of IM based on Stockwell transform
and SVM is introduced. Moreover, in the feature extraction
stage, Stockwell transform technique is used for stator
current signals to retrieve features in time and frequency
domains. )en, Fisher score ranking is employed to select
high-ranking features. Importantly, in the classification and
location of faults stages, SVM is used. Following this,
comparing the results with another classifier is also applied.
Notably, the efficiency achieved using ANN equalled 77.78%
whereas the efficiency achieved using SVM classifier
equalled 91.667%. In [181], a multi-FDD method for rolling
element bearing employing orthogonal supervised linear
local tangent space alignment (OSLLTSA) and least square
SVM (LS-SVM) is proposed. Furthermore, vibration signals
are analysed and crumbled using EMD. In addition,
autoregressive (AR) coefficients and instantaneous ampli-
tude Shannon entropy are applied to seek the statistical
features for intrinsic mode functions (IMFs). After that, the
OSLLTSA technique is applied for dimension minimization
to obtain a low-dimensional fault features vector. Impor-
tantly, LS-SVM is employed using features vector as an
input. Moreover, the LS-SVM components are selected
based on enhanced particle swarm optimization (EPSO). As
a result, in this study, LS-SVM based OSLLTSA technique
gave good results for small sample size problem. In [182],
prediction method for machine condition based on wavelet
and SVM using vibration signals is proposed. In order to
enhance the modeling process, wavelet transform along with
SVM is applied. Moreover, SVM-WT degradation-predic-
tion model is employed to reduce irregular characteristics
and the complexity of the vibration signal. Importantly, to
compare the results, the neural network (NN) approach is
also employed. As a result of this research study, WT-SVM
model showed the best results compared with the NN and
single SVM models. In [183], an FDD approach for rolling
element bearings involving the use of enhanced multiscale
fuzzy entropy (IMFE), local mean decomposition (LMD),
Laplacian score (LS), and improved SVM based binary tree

(ISVM-BT) is proposed. Moreover, the local mean de-
composition is applied to decompose the complicated vi-
bration signal into a series of product functions (PFs).
Particularly, the improved multiscale fuzzy entropy is used
to assess the complexity and similarity of the signal. Im-
portantly, the obtained feature is fed to the ISVM-BT
classifier. Interestingly, IMFE-ISVMmethod showed a stable
and high performance for analysis of samples of discrete and
small time units in series. In [184], a hierarchical fuzzy
entropy and binary tree SVM technique for FDD of rolling
bearing are introduced. For instance, a hierarchical fuzzy
entropy method is applied as a feature retrieval process. To
get the fault feature vector by ordering the scale factors, the
Laplacian score (LS) method can also be used. Importantly,
the obtained feature vector is fed to an improved SVM based
binary tree (ISVM-BT) classifier. )e proposed ISVM-BT
based on hierarchical fuzzy entropy approach showed a good
performance for diagnosis of diverse conditions and se-
verities of rolling element bearings.

3.3. Artificial Neural Network (ANN). Recently, artificial
neural networks (ANN) [185, 186] have gained great at-
tention in industrial applications [187, 188]. Moreover, NN
is used as data processing and classification. Correspond-
ingly, AI self-adaptive FDD system inspired from genetic
algorithm (GA) and nearest neighbor (NN) is presented in
[189]. Infrared thermography (IRT) is used to diagnose
various conditions of roller element bearings. In feature
extraction stage to find approximation coefficients, a 2-di-
mensional discrete wavelet transform (2D-DWT) along with
Shannon entropy is used. Moreover, GA and nearest
neighbor are applied to find the histograms of chosen co-
efficients to be fed as an input to the feature space selection
method. Cost-effectiveness, noncontact, and non-
intrusiveness are the main advantages of applying this
method. Multilayer perceptron (MLP) [190] is a multiple
layer fee-forward neural network which uses supervised
learning. Authors in [125] present an FDD bearing fault
identification approach based on ANN for IM. Moreover, in
the proposed pattern identification approach, two current
sensors are used. )us, a multilayer perceptron (MLP) with
one and two hidden layers is employed. As a result, two
hidden layers of MLP are not suitable for bearing fault
identification. Two hidden layers MLP showed compara-
tively low accuracy and indicate higher computational costs
compared with one hidden layer MLP.

In [191], an intelligent online approach employing
empirical mode decomposition and ANN based technique
for automatic FDD of rolling bearings using vibration sig-
nals are proposed. Moreover, the feature retrieval method is
based on EMD energy entropy.)emost significant intrinsic
mode functions (IMFs) are selected by applying a mathe-
matical analysis. )en, the picked features are given an input
to the ANN to classify bearings defects. Importantly, the
proposed EMD-ANN approach could effectively detect the
intensity of the bearing defect and assess the bearing per-
formance degradation. Because of this, the proposed ap-
proach could be considered as an expert diagnosis and
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prognosis system. In [192], a fault discovery for roller
bearings and gearboxes neural networks using multiple
sensors and convolutional is introduced. )e key contri-
bution of this work is to achieve robust diagnosis accuracy
by applying data fusion and CNN techniques. Moreover,
features are extracted automatically without applying any
manual feature extraction/selection processes. As a result,
the CNN-data fusion technique showed posing superior
diagnosis performance as compared with manual feature
extraction techniques.

3.4. Combined ANN and SVM. In order to achieve high
diagnostic performance, combined ANN and SVM CM and
FDD techniques have been proposed [193]. In more details,
according to [194], an FDD approach of rolling element
bearings employing statistical feature extraction method
using vibration signals is proposed. Here, statistical features
are obtained using advanced signal processing tools and
central limit theory. Importantly, the output feature vector
(statistical feature vector) is fed as an input vector to a
classifier which categorizes different types of faults by using
ANN and SVM. As a result, in this study, the authors argued
that ANN and SVM could not offer an analytical guarantee
for the accuracy of FDD classifier. Furthermore, in [195], an
FDD method of ball bearings using both ANN and SVM is
introduced. Moreover, features of vibration signals are re-
trieved in time domain using statistical techniques. Fol-
lowing this, ANN and SVM are applied in the classification
stage. )e key findings of this work are that the accuracy of
FDD classifiers based on SVM is comparatively higher than
the ANN based classifiers in context of detection and pre-
diction of faults in combined bearing components. In [196],
an FDD of ball bearings using the vibration signal is pro-
posed. Correspondingly, multiscale permutation entropy
and wavelet based on ANN approach are introduced.
Moreover, a multiscale permutation entropy method is
applied to seek the best wavelet for a feature selection
process. For the classification stage in this approach, two
artificial intelligence techniques, ANN and SVM, are
employed. As a result of this research study, both ANN and
SVM, along with permutation entropy, give identical clas-
sification results.

3.5. Neuro-Fuzzy. Neuro-fuzzy is also used as an FDD
technique [197]. Yet, in [198], an enhanced real-time FDD
scheme for bearing CM based on a neuro-fuzzy (NF)
classifier using vibration signals is proposed. Firstly, two
signal processing techniques are implemented for the signals
from both time and frequency domains, and the time do-
main includes wavelet-spectrum reference functions and
kurtosis ratio reference functions. Secondly, an adaptive NF
classifier is developed. Importantly, by considering the fu-
ture states, the integrated NF based model showed the ability
of enhancing diagnostic reliability.

3.6. Deep Neural Network. Recently, deep neural networks
[199–203] are highly used in CM and FDD of rotating

machinery. Consequently, in [204], a hierarchical diagnosis
network (HDN) approach which uses deep learning (DL)
technique for FDD of rolling element bearings and uses
vibration signals is proposed. Furthermore, HDN is used to
obtain deep belief networks (DBN) for the hierarchical layer
discovery of the proposed method. Importantly, a two-layer
HDN is employed as a two-level diagnosis using the wavelet
packet energy feature. )e faults are diagnosed at the first
layer, while the intensity or severity of the faults is measured
at the second layer of HDN. As a comparison process,
backpropagation neuron networks (BPNNs) and SVM are
both applied to validate the effectiveness of applying HDN-
based technique. As a result, HDN shows a very promising
result for fault location classification and fault severity
identification. In [205], an improved deep fusion method is
developed for FDD of IM using vibration data. Moreover, in
order to improve and enhance the training of machine
learning, a deep autoencoder is built with both contractive
autoencoder (CAE) and denoising autoencoder (DAE).
)en, locality-preserving projection (LPP) is employed to
obtain the deep features vector and to enhance learning
capabilities by adding a new layer of learning enhancements.
Furthermore, for the training of smart fault detection and
diagnosis, the deep fusion features are fed to the neural
network-based classifier (softmax). Importantly, as a result
of this approach, the proposed method showed more ef-
fectiveness and robustness compared with standard CNN. In
[206], an innovative DL approach based on deep autoen-
coder feature learning is introduced as an FDD of rotating
machinery using vibration signals. In this study, feature
learning is enhanced using the loss function of deep
autoencoder based on the maximum correntropy. After that,
the artificial fish swarm algorithm is utilized to get the best
optimization values of the deep autoencoder signal features.
As a result, the authors summarized their conclusions by
stating that the proposed method shows effectiveness and
robustness compared with other learning methods. In [207],
an FDD health state identification approach of rotating
machinery components by means of a stacked denoising
autoencoder (SDA) using vibration signals is proposed.
Furthermore, SDA model is made of training and testing
groups. Next, the transmitting rule of greedy training is used
to build a deep hierarchical structure via layer-by-layer
scenario. In order to obtain a better robustness and high-
order characteristics, sparsity representation along with data
destruction is employed. As a result, the SDA-based health
state identification approach showed promising results,
especially for signals with ambient noise and working
condition fluctuations. Authors in [208] proposed a deep
learning FDD approach using acoustic emission for rolling
element bearing which is introduced. Moreover, a short-
time Fourier transform (STFT) is used as a preprocessing
stage. )en, a simple spectrum matrix is used for optimizing
DL networks, large memory storage retrieval (LAMSTAR)
neural network specifically. Key advantages of this approach
are that it deals with different working conditions, solving
the big data and manual feature extraction problems. In
[209], a hierarchical adaptive deep convolution neural
network approach evolving from an enhanced algorithm for
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bearing FDD and severity determination using vibration
signals is proposed. Moreover, hierarchical learning rate-
adaptive deep CNN (ADCNN) is applied to deal with big
data and to use as a feature extraction method for diag-
nosable information from several mass samples. In addition,
a two-layer ADCNN is developed; fault patterns are diag-
nosed from first layer, while second layer evaluates the fault
size. )e proposed automatic feature extraction model
showed very accurate results compared with the benchmark
methods used for fault diagnosis, such as traditional
DCNNs. In [210], a deep-learning-based hybrid feature
model for bearing FDD approach using vibration signals is
proposed. Moreover, the proposed approach can deal with
several working conditions, multiple faults, and fault se-
verity. In order to achieve an effective and accurate diag-
nosis, multiple severities faults, a hybrid technique includes
sparse stacked autoencoder (SAE) and deep neural networks
(DNNs) are applied. )e main advantage of applying this
hybrid technique is the ability of extracting more diag-
nosable vibration information with multiple crack sizes. As a
result, the proposed approach showed that it can produce
better results in diagnosing bearing multiple severities de-
fects than SVM and backpropagation neural networks
(BPNNs). In [211], an FDD approach for gearbox and
bearing systems based on deep statistical feature learning
using vibration signal analysis is introduced. Furthermore,
time domain analysis and frequency domain analysis as well
as time-frequency domain analysis are applied to obtain
features vector from vibration signals. As a deep statistical
feature learning tool, Gaussian-Bernoulli and Boltzmann
machines (GRBMs) methods are used to build a Gaussian-
Bernoulli deep Boltzmann machine (GDBM). )e proposed
approach showed good classification performances (95.17%
for the gearbox and 91.75% for the bearing system). Im-
portantly, compared with SVM classifier, GRBM based on
deep learning model showed ability of posing the best fault
classification rate. In [212], an intelligent FDD of bearings
and gearboxes based on deep neural networks tool with
massive vibration data is introduced. Moreover, the pro-
posed method is applied in different health conditions
among different operating conditions. To overcome the
deficiencies of the traditional shallow smart FDD methods
(i.e., ANN), deep neural networks (DNNs) are employed to
seek the useful diagnostic data from the vibration signals and
to approximate complex nonlinear functions. Importantly,
this work also highlights the superiority diagnosis accuracy
method and comparative analysis with the traditional ap-
proaches. In [213], an FDD for rolling bearings approach
based on improved convolutional deep belief network using
a vibration signal is proposed. Moreover, to enhance the
feature learning ability, convolutional deep belief network
(CDBN) model is employed along with Gaussian visible
units. Consequently, exponential moving average (EMA)
technique is used to further elevate the performance of
overall system. Importantly, the proposed CDBN based
method is more robust and effective than the normal shallow
methods.

In [214], a multimodal deep SVM classification
(MDSVC) approach with homologous features FDD using

vibration signals is introduced. In this approach, time and
frequency, as well as wavelet modalities, are separated first.
For each modality, to learn the patterns and different rep-
resentations for different features, Gaussian-Bernoulli deep
Boltzmann machine (GDBM) is used. Finally, an SVM
classifier is also employed to combine GDBMs with different
sensory system to obtain the improved version of MDSVC
method. Importantly, compared with representative deep
and traditional shallow learning methods, the suggested data
aggregation with a DL-based method achieved the best
classification rate. In [215], a feature learning model for CM
and FDD of the bearing based on convolutional neural
networks using vibration signals is proposed. Moreover, the
end-to-end machine learning system is developed. Impor-
tantly, compared with a classical approach (i.e., random
forest classifier), the overall accuracy is six times better than
the classical approaches. In [216], a deep neural network
FDD approach which uses vibration signals for analysis is
presented for rolling bearing. Moreover, time domain,
frequency domain, and time-frequency domain techniques
are applied to obtain the feature vector. In this research
study, three deep neural network models are employed as a
fault conditionmonitoring of rolling bearing, including deep
Boltzmann machines, deep belief networks, and stacked
autoencoders. Importantly, the classification accuracy for
those techniques is highly reliable (achieved more than
99%). In [217], deep learning enabled FDD approach using
time-frequency image analysis of rolling element bearings is
proposed. Moreover, deep neural network, image repre-
sentation, and time-frequency (TF) analysis techniques are
used together. )e vibration data is mapped into time-
frequency domain in order to draw relevant image repre-
sentations. Short-time Fourier transform, wavelet transform,
and Hilbert-Huang transforms are used as feature extraction
methods. Importantly, a deep convolutional neural network
(CNN) is applied in the classification stage. Furthermore, the
proposed CNN architecture based approach showed high
fault detection ability for noisy environments and with less
learnable parameters. In [218], a new deep residual learning-
based fault diagnosis method for the rolling bearing in
rotating machinery using vibration signals is proposed. )e
main contribution of this research study is to improve the
information flow throughout the deep neural network.
Moreover, CNN is adopted in feature extraction and 1D
convolutional layers are employed to obtain the feature
vector. In addition, basic neural network, deep neural
networks, stacked autoencoders, convolutional neural net-
work, and deep convolutional neural networks are also
employed for comparisons. As a result, the proposed ap-
proach could be effectively trained with a high classification
accuracy. In [219], a new CNN based on the LeNet-5 FDD
method is proposed for bearings using vibration signals. In
this method, the vibration signal is decomposed into two-
dimensional images; thus, the features are extracted from the
converted image. As a result, the proposed method showed
potentiality in the data-driven fault diagnosis field. However,
the prediction accuracy was about 99 %.

Table 3 summarizes AI algorithms used in FDD of IM
[193, 220–227].
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As a result of this study, it can be showed that both DL
and ML algorithms can be used as an intelligent diag-
nostic method of bearings for IM. Conventional ML
algorithms manually extract the features, where DL al-
gorithms learn the feature directly from input data. So,
human expertise and prior knowledge are not required
[228]. Table 4 shows a comparison between DL and ML

algorithms for bearings CM and FDD. Importantly, for
small datasets, conventional ML algorithms show better
accuracy results than DL algorithms, whereas, for big
datasets, DL algorithms show better accuracy results than
conventional ML algorithms. According to [144], as a
classification accuracy between SVM, KNN, and CNN,
the classification accuracy was 81.96, 86.25, and 82.70,
respectively, for small dataset, and 83.04, 87.85, and
89.26, respectively, for big dataset.

4. Challenges and Future Trends

Intelligent CM and FDDmethod is considered to be as a key
factor of fault diagnosis development [43, 229]. However,
this field still faces many challenges [35, 230, 231]. )is
section summarizes the challenges and the future trends of
AI methods in CM and FDD of rolling element bearings for
IM [232–235]:

(i) Dealing with all operating conditions, sensitivity
to the noise, and working environment (indoor/
outdoor) should be taken in a high consideration
when CM and FDD method is built and
developed.

(ii) Benefit from all strength points for each AI al-
gorithm is crucial for building a hybrid intelligent,
online, low cost, nonintrusive, and large scale CM
and FDD for industrial machinery.

(iii) Developing highly accurate sensors with cost-ef-
fective, fast, wireless, and energy-efficient charac-
teristics is highly required.

(iv) In order to increase diagnostic performance,
knowledge-based intelligent systems should be
further investigated.

(v) Automatic, online, continuous, and wireless di-
agnosis approach with better detection capabilities
based on IoT, expert systems, and AI may be
employed.

(vi) Compound faults and fault severity detection and
diagnosis approaches should be explored.

(vii) CM and FDD of multimotor systems have to be
proposed.

(viii) Integrated and comprehensive CM and FDD
system to deal with all faults of IM and to deter-
mine the damage level and severity should be
proposed.

(ix) Industrial Internet of things (IIoT) technologies a
long with AI should be used to develop high
performance CM and FDD methods.

(x) Big data problem is how to pick useful diagnostic
information from big data obtained by different
sensors quickly.

(xi) Data from different sensors should be used to
develop an effective heterogeneous methodology.

(xii) In order to achieve high availability of IM and to
reduce maintenance cost, fault-tolerant FDD and

Table 3: AI algorithms used in CM and FDD of IM.

)e method Highlights

Random forest

(i) )e small number of training samples is
required
(ii) )ere is low computational cost
(iii) )ere is good performance for high-
dimensional data

Bayesian
network

(i) )ere is high classification speed
(ii) It is useful if the prior knowledge is reliable
(iii) )ere is low storage need
(iv) It is computationally expensive
(v) )ere is prior beliefs’ problem

KNN

(i) )ere is low classification speed
(ii) It is simple and easy to apply
(iii) )ere is poor performance for high-
dimensional data
(iii) It is memory-intensive
(iv) It is noise sensitive
(v) It is computationally expensive

SVM

(i) )ere is good performance for high-
dimensional data
(ii) )ere are low storage needs
(iii) )ere is high classification speed
(iv) It is not efficient for big data
(v) It is noise sensitive
(vi) It has good accuracy

ANN

(i) )ere is fault tolerance
(ii) )ere is high classification speed
(iii) )ere is parallelism
(iv) )ere is hidden training problem
(v) It is efficient for big data
(vi) It is computationally expensive
(vii) )ere is black box behavior problem

Neuro-fuzzy

(i) )ere is good performance for high-
dimensional data
(ii) It has good diagnosis accuracy
(iii) )ere is robustness
(iv) )ere is parallelism
(v) It is efficient for big data
(vi) )ere is black box behavior problem
(vii) It has self-learning capability

DNN

(i) )ere is good classification speed
(ii) )ere are automatic fault diagnosis and
detection
(iii) )ere is good accuracy
(iv) )ere is parallelism
(v) It has complex and deep architecture
(vi) It is feature extraction free
(vii) It is computationally expensive
(viii) )ere are massive parallel computations
(ix) It is efficient for big data
(x) )ere is long time training problem
(xi) A large number of training samples are
required
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prognostic techniques have to be further
investigated.

5. Conclusions

Importantly, enhancing the reliability, availability, and
safety to reduce maintenance cost of modern industrial
systems and applications is crucial. )us, following up the
health of the machinery such as induction motor (IM) is
vital. )e bearing is a critical component in IM. )erefore,
robust and intelligent condition monitoring (CM) and fault
detection and diagnosis (FDD) methods are highly needed
to enhance detection, diagnosis, monitoring, and prognosis
capabilities. In this paper, a general descriptive review of
intelligent diagnostics methods of rolling element bearings
for IM is presented. )e advantages and limitations of each
method are highlighted. Finally, challenges and future trends
are also discussed.
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Planetary gearboxes are widely used in mechanical transmission systems due to their large transmission ratio and high
transmission efficiency. In a planetary gearbox, the sun gear is usually set to float to balance the sharing of loads among planet
gears. However, this floating set will result in the variation of pressure angle, overlap ratio, and meshing phase in the meshing
progress and when gear faults occur, the variation will be enlarged. In the previous studies, these parameters were reduced to
constant. To study the influence of the dynamic parameters on the vibration response of planetary gearboxes under different
operating conditions, a new lumped-parameter model containing the time-varying pressure angle (TVPA), time-varying overlap
ratio (TVOR), and time-varying meshing phase (TVMP) is established. Based on this model, the vibration response mechanism of
the sun gear is analyzed. Moreover, the comparison with the previous model is made and the rule of phase modulation caused by
these dynamic parameters is revealed. By comparing the dynamic responses under different loads and rotation speeds, the phase
modulation is studied in detail. Finally, the sun gear fault is introduced, and the phase modulation is analyzed in different fault
degrees. +is study can provide theoretical reference for the condition monitoring and fault diagnosis of planetary gearbox based
on vibration analysis.

1. Introduction

Nowadays, planetary gearbox is widely used in various
mechanical systems, such as automobiles, helicopters, wind
turbines, and robots for its advantages of large transmission
ratio, high transmission efficiency, and compact structure
[1]. Compared with the fixed shaft gearbox, planetary
gearbox has more complex mechanical structure and gear
movement, especially the time-varying vibration transfer
paths, which leads to unnecessary modulation and asym-
metric frequency sidebands in addition to a lot of noise in its
vibration response [2–5]. Hence, for planetary gearboxes,
the vibration suppression, noise reduction, and fault diag-
nosis become extremely difficult [6]. To effectively solve
these problems, it is necessary to build a planetary gearbox
model and study the mechanism of vibration.

With the development of high-speed and heavy power
rotating machinery, numerous researches on gear material

selection [7], gear contact analysis [8], and gear models,
including uncertain model [9–11] and deterministic model,
have been conducted for the studies of vibrationmechanism.
In 1994, Kahraman [12] proposed a nonlinear dynamic
model. Later, Inalpolat and Kahraman [13, 14] introduced
manufacturing error and time-varyingmeshing stiffness into
the model and studied the modulation sidebands of plan-
etary gears. Zhai et al. [15] considered the installation error
of the carrier and analyzed the dynamic characteristics in
different error directions. Lin et al. [16] and Parker et al. [17]
studied the natural frequencies and vibration modes and
gave the mathematical expression for each mode. Combined
with FEM, Concli et al. [18] proposed a lumped-parameter
model with 18 degrees of freedom to study the frequency
characteristics of the planetary gear system. Noticing that the
multisource vibration components in the vibration signals
were affected by the vibration transfer paths, a dynamic
model containing time-varying vibration transfer paths was
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developed [19–21]. But all of these models are single state. In
light load transmission, teeth separation and back-side tooth
contact may occur. +erefore, Yang et al. [22] and Shi et al.
[23] proposed a two-state model by introducing gear
backlash to research meshing state and vibration charac-
teristics of the system. Zhang et al. [24] proposed a dynamic
model with a multiclearance coupling to analyze the vi-
bration characteristics. Zhao et al. [25] developed a non-
linear dynamic model containing time-varying meshing
stiffness, damping, static transmission error, and backlash.
In a planetary gearbox, the sun gear is usually set to float to
balance the load sharing among the planetary gears. Singh
[26] provided a physical explanation for the basic mecha-
nism causing the unequal load sharing phenomenon in both
floating and nonfloating systems. Kahraman [12] predicted
the dynamic load sharing factor and analyzed the influence
of manufacturing errors, assembly changes, and key design
parameters on it. When gear failure occurs, the vibration
response of the planetary gearbox will also change. Li et al.
[27] analyzed the frequency components of planetary
gearbox in the healthy and fault states and explained the
asymmetry of frequency sidebands. Parra and Vicuña [28]
studied the frequency contents of planetary gearbox vi-
bration signal via comparing phenomenological model with
lumped-parameter model under nonfault and different fault
conditions. Feng and Zuo [29] added the gear fault into the
model to analyze the amplitude modulation and frequency
modulation spectrum characteristics of the vibration signal.
For early fault detection, Liu et al. [30] proposed a resultant
vibration signal model and analyzed the faulty features of a
signal stage planetary gearbox under nonstationary load
conditions. Chen and Shao [31] analyzed the influence of
tooth root crack at different positions and inclination angles
on the dynamic response of the planetary gear system.
Parker et al. [32,33] pointed out that the meshing phase had
an important influence on the static and dynamic response
of planetary gearbox and gave the meshing phase rela-
tionship among planet gears, sun gear, and ring gear. Later,
Peng et al. [34, 35] applied meshing phase information to
diagnose fault of planetary gearbox.

However, due to the sun gear floating set, bearing elastic
deformation, and gear faults, the pressure angle and overlap
ratio of the meshing gears will continually change in the
operating process, and these variations are rarely considered
in the previous established model. To study the influence of
time-varying pressure angle and overlap ratio on the vi-
bration response, a dynamicmodel with a floating sun gear is
established. In this model, the TVPA, TVOR, and TVMP
were considered as well as the vibration transfer path and
time-varying meshing stiffness. Based on this model, the
vibration response mechanism of the sun gear is analyzed.
And then by adding typical sun gear fault, the influences of
the fault on TVPA, TVOR, TVMP, and dynamic response
are investigated. By comparing with the previous model
under different operating conditions, the phase modulation
rule is also analyzed.

+e rest of this paper is organized as follows. Section 2
establishes the dynamic model of the planetary gearbox. In
Section 3, the variation rule and phase modulation rule of

time-varying pressure angle and overlap ratio under dif-
ferent working conditions and different fault severity are
analyzed based on the proposed dynamic model. And the
conclusions are given in Section 4.

2. Dynamic Model of the Planetary Gearbox

2.1. Parameter Definition. +e dynamic model of the gearbox
in this study is a 2K-H planetary gear model which is displayed
in Figure 1. +is model contains a sun gear (s), n identical
planet gears (pi, i � 1, 2, . . . n), a ring gear (r), and a carrier
(c). +e carrier serves as power input component and the sun
gear is connected to the output shaft. All gear bodies are
regarded as rigid and each element has one rotational and two
translational degrees of freedom [12]. +e coordinate systems
used in this model are illustrated in Figure 2. +e absolute
coordinate system XOY is fixed on the ring gear, and the ro-
tating frame of reference u, v{ } is attached to the carrier. +e
translational displacements of the sun gear, the carrier, and the
ring gear are denoted as xj, yj, j � s, c, r, respectively. +e
translational displacements of planet gears are defined as τpi

,
ηpi

, i � 1, 2, . . . n, respectively. And all these translational dis-
placements are measured with respect to the coordinate {u, v}.
+e basis coordinate u, v{ } rotates at the speed of Ωc together
with the carrier. And the rotational coordinate can be expressed
as uj � rj × θj, j � s, c, r, p1, . . . , pn, where rj is the base circle
radius of the sun gear, the ring gear, planet gears, and the radius
of the circle passing through the planet centers for the carrier,
and θj is the component rotation angle. In the model, cir-
cumferential planet locations are specified by the fixed angleφpi

,
where φpi

is measured relative to rotating basis vector u so that
φp1

� 0. +e mass of elements is denoted as mj, the inertia
moment is Ij, and the number of teeth is zj (j � s, c, r,
p1, . . . , pn). +e supporting stiffness and damping of each
element are denoted as kj and cj. +e gears interact with each
other through the mesh stiffness of kspi

and krpi
(kspi

for s-pi

mesh and krpi
for r-pi mesh) andmesh damping of cspi

and crpi

(cspi
for s-pi mesh and crpi

for r-pi mesh) on themeshing action
plane [12]. To simplify the model, the torsional stiffness of the
shafts is neglected and the housing is regarded as rigid [25]. To
reduce the asymmetry of load distribution on the planets, the
sun gear is set to elastic float. +e methodology followed in this
study is displayed in the flow chart shown in Figure 3.

+ere will be contacting deflection on meshed teeth
when the gearbox operates. +e deflection of s-pmesh and r-
p mesh can be expressed as [13]

ξspi
� xs sinψspi

− ys cosψspi
− τi sin αspi

− ηi cos αspi

+ us + upi
− espi

,

(1a)

ξrpi
� xr sinψrpi

− yr cosψrpi
+ τi sin αrpi

− ηi cos αrpi

+ ur − upi
− erpi

.

(1b)

+e relative deflection along τi and ηi between the carrier
and planet can be expressed as [13]
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Figure 1: +e structure diagram of a 2K-H planetary gear model.
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ξcpix
� xc cosφpi

+ yc sinφpi
− τpi

, (1c)

ξcpiy
� xc sinφpi

− yc cosφpi
− ηpi

+ uc. (1d)

where espi
and erpi

represent the transmission error of s-pi

and r-pi, respectively. ψspi
� αspi

+ φpi
and ψrpi

� αrpi
− φpi

,
withαspi

and αrpi
denoting the pressure angle of s-pi and r-pi,

respectively. Because of the vibration of the floating sun gear
and planet gears during the rotation of the gearbox, the
pressure angles αspi

and αrpi
are time-varying. And the

TVPA of s-pi and r-pi can be deduced from geometry as
follows [36]:

αspi
� cos− 1 rs + rpi��������������������

xs − xpi
􏼐 􏼑

2
+ ys − ypi

􏼐 􏼑
2

􏽱 , (2a)

αrpi
� cos− 1 rr − rpi���������������������

xr − xpi
􏼐 􏼑

2
+ yr − ypi

􏼐 􏼑
2

􏽱 , (2b)

where xs and ys represent the location of the sun gear center
and xr and yr denote the location of the ring gear. All these
coordinates are measured in the absolute coordinate.

xpi
and ypi

are the location of the planet gear center in the
absolute coordinate which can be calculated as follows [36]:

xpi
� xc + τpi

+ rc􏼐 􏼑cos θ + φpi
􏼐 􏼑 − ηpi

sin θ + φpi
􏼐 􏼑, (3a)

ypi
� yc + τpi

+ rc􏼐 􏼑sin θ + φpi
􏼐 􏼑 + ηpi

cos θ + φpi
􏼐 􏼑, (3b)

where xc and yc are the position of the carrier in the absolute
coordinate. τpi

and ηpi
are the location of pi in the coordinate

τpi
, ηpi

􏽮 􏽯. θ represents the rotation angle of the carrier.
And as shown in Figure 4, the variation of the meshing

phase at the pitch point can be deduced as follows

βstart � cos− 1rs d × cos α
ras

, (4)

d1 �

������

r2as − r2s

􏽱

+
�������
r2ap − r2p

􏽱
− rs + rp􏼐 􏼑tan α, (5)

rend �

�������������������
������

r2as − r2s

􏽱

− d1􏼒 􏼓
2

+ r2s

􏽳

, (6)

βend � cos− 1rs d × cos α
rend

, (7)

cevolve_cycle � tan βstart( 􏼁 − βstart􏼈 􏼉 − tan βstart( 􏼁 − βend􏼈 􏼉, (8)

cvaryevolve spi
� tan αspi

􏼐 􏼑 − αspi
􏽮 􏽯 − (tan α) − α{ },

(9a)

cvaryevolve rpi
� tan αrpi

􏼐 􏼑 − αrpi
􏽮 􏽯 − (tan α) − α{ },

(9b)

δspi
� 2π

cvaryevolve_spi

cevolve_cycle
, (10a)

δrpi
� 2π

cvaryevolve_rpi

cevolve_cycle
. (10b)

Herein d1 describes the length of the actual line of
mesh. βstart stands for the pressure angle of addendum
circle of the sun gear and βend is the pressure angle for s-
pi at the mesh separation point as shown in Figure 4.
ren d is the radius of the circle for the sun gear where the
mesh separation point is located. cevolve_cycle denotes the
evolving angle of the meshing tooth surface.
cvaryevolve spi

and cvaryevolve rpi
represent the variations of

evolving angle relative to the evolving angle in the
reference circle. δspi

and δrpi
are the variations of

meshing phase of s-pi and r-pi relative to the standard
meshing phase whose value is 2πfm (fm is the meshing
frequency).

+erefore, the actual meshing phase is (δspi
+ 2πfm)

for s-pi mesh, and the actual meshing phase is
(δrpi

+ 2πfm) for r-pi mesh. α is the standard pressure
angle of reference circle. For the gear with a reference
circle pressure angle of 20° is most widely used in
standard gears, the value of α is set to 20°. For conjugate
tooth profile, although their tooth profile shape is
different in unit time, they change the same meshing
phase.

For the mating gears, the meshing stiffness is not
always the standard value in the progress of rotation. It
changes periodically as shown in Figure 5. In one mesh
cycle, when the mating gears are just coming into mesh,

Due to the
sun gear
floating

set, bearing
elastic

deformation
and gear

faults

Time-varying
meshing
stiffness

Time-varying
vibration

transfer path

Dynamic
equilibrium
equations

Response at
sensor

position

Time-varying
mesh phase

Time-varying
pressure angle

Time-varying
overlap ratio

Figure 3: Flow chart of the methodology.
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they are in the state of double-tooth mesh (for external-
external mesh) or the most teeth mesh (for internal-
external mesh) and become single-tooth mesh or the
fewest teeth mesh near the pitch point. When the
meshing teeth are going to be separated, they come into
double-tooth mesh or the most teeth mesh again. +e
proportion of the double-tooth mesh or the most teeth
mesh in a whole mesh cycle is determined by contact
overlap ratio. However, the contact overlap ratio is also
time-varying, which can be defined as follows [36]

εspi
�

������
r2as − r2s

􏽰
+

��������
r2api

− r2pi

􏽱
− rs + rp􏼐 􏼑tan αspi

pb

,

(11a)

εrpi
�

��������
r2api

− r2pi

􏽱
−

������
r2ar − r2r

􏽰
+ rs + rp􏼐 􏼑 sin αrpi

/ cos αspi
􏼐 􏼑

pb

,

(11b)
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Sun
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Sun
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Sun
rs

αspi
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Figure 4: +e meshing progress of the sun and planet gears. (a) +e moment of meshing start. (b) +e moment of meshing finish. (c) +e
meshing progress with the sun gear bounce.
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Figure 5: Meshing progress of one mesh cycle for the (a) external-external gear mesh and (b) internal-external gear mesh.
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where pb is the base pitch. ras, rapi
, and rar are the addendum

radii of the sun gear, planet gear, and ring gear, respectively.
αspi

and αrpi
are the time-varying pressure angle of s-pi and r-

pi.
+e proportion of the mesh in which the maximum

number of teeth participate can be expressed as follows:

λspi
� εspi

− ⌊εspi
⌋, (12a)

λrpi
� εrpi

− ⌊εrpi
⌋. (12b)

In 12(a) and 12(b), ⌊ · ⌋ is defined as the rounding
function.

+erefore, the time-varying meshing stiffness can be
expressed as

kspi
(t) �

Γ, mod θ × zr + φpi
× zs + δspi

, 2π􏼐 􏼑 ∈ 2π∗λspi
, 2π εspi

− λspi
􏼐 􏼑􏽨 􏽩,

1.8Γ, mod θ × zr + φpi
× zs + δspi

, 2π􏼐 􏼑 ∈ 0, 2π∗λspi
􏽨 􏽩,

⎧⎪⎨

⎪⎩
(13a)

krpi
(t) �

Λ, mod θ × zr + φpi
× zr + ρ + δrpi

, 2π􏼐 􏼑 ∈ 2π∗λrpi
, 2π εrpi

− λrpi
􏼐 􏼑􏽨 􏽩,

1.8Λ, mod θ × zr + φpi
× zr + ρ + δrpi

, 2π􏼐 􏼑 ∈ 0, 2π∗λrpi
􏽨 􏽩.

⎧⎪⎨

⎪⎩
(13b)

In 13(a) and 13(b), mod(·) is defined as the remainder
function. Γ is the meshing stiffness constant corresponding
to the single-tooth mesh area of s-pi and 1.8Γ is the internal-
external mesh corresponding to the double-tooth mesh area
of s-pi. θ stands for the rotation angle of the carrier. Because
of the vibration of gears and the TVPA, θ is not simply a
linear function of time. In this model, it is calculated by
numerical integral. φpi

is the circumferential location angle
of the planet gear. A mesh cycle can be divided into single-
tooth mesh and double-tooth mesh, and the whole mesh
cycle is regarded as 2π radian. +e ring gear is fixed, when
the carrier rotates θ radian, the meshing phase variation of
meshed gears is ×zr, and the initial phase of meshed gears is
φpi

× zs which is caused by the location angle of planets. +e
initial meshing phase of s-p1 is zero. δspi

is the variation of
meshing phase relative to the theoretical meshing phase
whose value is θ × zr + φpi

× zs for s-pi mesh and θ × zr +

φpi
× zr + ρ for r-pi mesh. ρ is the initial meshing phase

difference of s-pi and r-pi. For different planet gears, ρ has
the same value. Hence, when the carrier rotates θ radian, the
meshing phase of s-pi mesh is θ × zr + φpi

× zs + δspi
, and the

r-pi mesh is θ × zr + φpi
× zr + ρ + δrpi

. As shown in Figure
6, the meshing stiffness mutates at the moment that the
meshing teeth divorce. +is is just because of the TVPA and
the TVOR.

In the actual measurement, the sensor is generally
arranged on the shell of the gearbox and its position is
fixed. However, due to the rotation of the carrier, the
meshing points of these gears periodically approach and
then move away from the sensor, which will affect the
energy of vibration signals collected by the sensor.
+erefore, to simulate this pass-through effect of plan-
etary gears, the Hanning window can be used as a
weighting function which can be described as [13]

w �
1
2

−
1
2
cos

2πnt

Tc

􏼠 􏼡. (14)

For planet pi, the weight function can be written as
follows [13]:

wpi
� σpi

× w t −
φpi

Tc

2π
􏼠 􏼡, (15)

σpi
�

1, mod t, Tc( 􏼁 ∈
Tc

n
(i − 1),

Tc

n
i􏼢 􏼣,

0, mod t, Tc( 􏼁 ∉
Tc

n
(i − 1),

Tc

n
i􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where Tc denotes the rotation cycle of the carrier andmod(·)

is defined as the remainder function.
+e amplitude of vibration signal received by the sensor

is calculated by the weight function when the meshing point
is located in the action region. Outside the action area, the
vibration energy of themeshing point has a great attenuation
in the process of transferring to the sensor, so the vibration
of the meshing point from the position outside the action
region can be ignored. +erefore, the total acceleration
measured by the sensor can be determined as follows [13]:

a � 􏽘
n

i�1
Sspi

wpi
aspi

+ Srpi
wpi

arpi
􏼐 􏼑, (17)

where Sspi
and Srpi

are the attenuation coefficient of the
energy during the transmission from the meshing point to
the sensor. Because the transmission path for the external-
external mesh is longer than that of the internal-external
mesh, the value of Sspi

should be smaller than Srpi
. In this

model, they are set as Sspi
� 0.4 and Srpi

� 0.7, respectively.

2.2. Dynamic Equations. Based on the above parameter
definitions, the dynamic equilibrium equations can be listed
out.

For the carrier, the dynamic equations can be expressed
as
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mc €xc + kcxc + cc _xc − 􏽘
n

i�1
kpi

τpi
+ cpi

_τpi
􏼐 􏼑cosφpi

− 􏽘
n

i�1
kpi

ηpi
+ cpi

_ηpi
􏼐 􏼑sinφpi

� 0,

(18a)

mc €yc + kcyc + cc _yc − 􏽘
n

i�1
kpi

τpi
+ cpi

_τpi
􏼐 􏼑sinφpi

+ 􏽘
n

i�1
kpi

ηpi
+ cpi

_ηpi
􏼐 􏼑cosφpi

� 0,

(18b)

Ic

r2c
€uc + 􏽘

n

i�1
kpi

ηpi
+ cpi

_ηpi
􏼐 􏼑 �

Tc

rc

, (18c)

where Tc is the input torque.
And the dynamic equations of the sun gear, ring gear,

and planetary gears can be given referring to [37].

3. Numerical Simulation

3.1. Ideal Pressure Angle, Overlap Ratio, and Meshing Phase.
+e basic parameters used in this model are shown in Ta-
ble 1.+e input speed of the carrier is 100 rpm, and the input
toque is 2500Nm. +e supporting stiffness of the sun gear,
ring gear, carrier, and planet gears are set up as 5E7N/m,
1E8N/m, 1E8N/m, and 2E9N/m, respectively. +e meshing
stiffness constants Γ and Λ are 4.5E8N/m and 5E8N/m,
respectively. All the gears are standard in this model. +e
transmission errors of s-pi and r-pi pairs are neglected. +e
dynamic differential equations of the model are solved by the
numerical integration algorithm. Because the three planets
can be seen as the same, the vibration responses of them are
also the same except for the location angle difference.
+erefore, in this study, we just consider the mesh of s-p1.

Keeping the pressure angle, overlap ratio constant, and the
meshing phase theoretical, the meshing stiffness of s-pi and r-pi

is shown in Figure 7. Because the pressure angle and overlap ratio
are constant, the cycle ofmeshing stiffness and phase differenceφ
between the sun gear and planet gear is also constant with the
value of 120°. For the same planet pi, the phase difference ρ
between s-pi and r-pi is also constant. Figure 8 displays the

meshing force of s-p1, and it contains four times of carrier
rotational frequency, meshing frequency, and its double fre-
quency. Because of the planet location angle and the number of
teeth of the ring gear, the spectrum is asymmetric and the
amplitude ofmeshing frequency is suppressed to some extent [2].

3.2.Time-VaryingPressureAngle,OverlapRatio, andMeshing
Phase. When the TVPA, TVOR, and TVMP are introduced
into the model, the dynamic response will change. Because
of the floating set, the sun gear presents a triangular motion
due to the meshing force of s-pi which is shown in Figure 9,
and the center track of the sun gear is shown in Figure 10. If
the sun gear and planet gears have only rotational freedom
and do not consider the effect of manufacturing errors, the
deflection of ξsp1

, ξsp2
, and ξsp3

will have the same value
during the rotation. However, the meshing stiffness of ksp1

,
ksp2

, and ksp3
is different. As a result, the sun gear is subject to

unbalanced meshing forces Fi from the three planet gears
which can be decomposed into Fix, Fiy, and M as shown in
Figure 9(a), and the resultant force is in the same direction as
F1. +erefore, the sun gear will generate a translational
motion trend along the direction of F1 to cause the resultant
force of the meshing force F1, F2, and F3 to be zero. When
the meshing phase of s-pi changes φ radian, the force of the
sun gear is shown in Figure 9(b) and the sun gear will
generate a translational motion trend along the direction of
F2. By the same token, when the meshing phase of s-pi

changes another φ radian, just like Figure 9(c), the sun gear
will generate a translational motion trend along the direction
of F3. +is combination of translational and rotational
motion of the sun gear presents a motion similar to triangle.
And the triangular motion of the sun gear causes that the
pressure angle and overlap ratio change in a nearly sinu-
soidal way whose period is the meshing cycle. And there are
six turning points in one cycle which are caused by the six
obvious mutations of meshing stiffness between the sun gear
and three planets in one mesh cycle as shown in Figure 11.
Comparing Figures 7 and 11, it can be seen that when the
stiffness value changes suddenly at the critical point of
meshing, the meshing pressure angle also changes suddenly.
Correspondingly, there are also six turning points in one
cycle of TVOR as shown in Figure 12. +e meshing stiffness
of s-p1 is shown in Figure 6. Because of the TVPA and

×108

M
es

h 
sti

ffn
es

s (
N

/m
)

4

5

6

7

8

0.496 0.498 0.5 0.502 0.504 0.506 0.5080.494 0.51
Time (s)

Figure 6: Meshing stiffness of s-p1 mesh.
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TVOR, the value of meshing stiffness result in small fluc-
tuations on the basis of theoretical value which can be easily
observed at the alternation between single-tooth and double-
tooth mesh in Figure 6. Figure 13 shows the spectrum of
meshing force of s-p1 in which the meshing frequency and
its multiplication can be easily observed. And we can also see
that there are more frequency components in the conditions
of TVPA and TVOR than that in the constant conditions.
+is is because TVPA causes the variation of meshing phase
as shown in Figure 14. +e variation of meshing phase gives
rise to phase modulation that produces the additional

frequency components. But the variation value is small and
its influence on meshing force spectrum reflected in the
amplitude and there are more sharp points in the time-
varying condition.

3.3. Comparison of Dynamic Response in Different Operating
Conditions. To investigate the influence of operating con-
ditions on TVPA and TVMP, the simulation is conducted in
different input speeds and torques.

With other conditions unchanged and the input torques
being 1500Nm, 2000Nm, and 2500Nm, the TVPA and
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Table 1: Basic parameters of the model.

Parameters name Sun gear Ring gear Planet gear +e carrier
Number 1 1 3 1
Number of teeth 10 62 26 —
Mass (kg) 0.28 3.64 0.34 2
Gear module (mm) 2.25 2.25 2.25 —
Standard pressure angle (°) 20 20 20 —
Inertia moment (kg·m2) 2.10E − 04 5.05E − 04 2.90E − 04 4.93E − 03
Fault feature frequency (Hz) 31 5 7.95 —
Rotation frequency (Hz) 12 0 2.31 1.67
Meshing frequency (Hz) 103.33 103.33 103.33 103.33
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TVMP of s-p1 mesh are shown in Figures 15 and 16, re-
spectively. With the increases of input torque, the range of
variation for both of them is also increased. But the period
and the form of sine is unchanged, which is nearly inde-
pendent of the input torque. Also, there are six turning
points in one cycle and the moment of them is almost
unaffected by the different input torques. In different input
torques, the pressure angle and meshing phase variation
have the same amplitude modulation frequency. Figure 17 is

the spectrum of the force for s-p1 mesh in different input
torques. It is clear that with the increase of input torques, the
meshing force is also increased. However, due to the in-
creases of meshing phase variation, the frequency offset will
also increase, so there will be a different frequency offset in
both sides of meshing frequency. In order to study the
influence of phase modulation on the vibration response, the
signal energy shown in Figure 18 is calculated (19999
sampling points).
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+e simulation numbers corresponding to the oper-
ation conditions are shown in Table 2. For both constant
and TVPA conditions, it is calculated under the constant
rotation speed and different input torques. And for the
same simulation number, both of them are calculated in
the same rotation speed and input torque whose energy
difference is presented in Figure 19. It is obvious that as
the torque increases, the signal energy is also increased
linearly. +is is because with the increase of torque, the
amplitude of meshing vibration will also increase sig-
nificantly which leads to the increase of signal energy.

However, the signal energy of constant pressure angle is
larger than that of TVPA. Due to the phase modulation
generated by TVPA, the amplitude of some vibrations is
suppressed which makes the energy of the signal reduce.
As shown in Figure 19, when the torque exceeds 2000 N/
m, the suppression of signal vibration by phase modu-
lation will be reduced. +erefore, it can conclude that the
suppression of signal vibration by phase modulation does
not always increase with the increase of torque.

With change in the input speed and the input torque
being constant (input torque� 2500Nm), the variations of
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TVPA and TVMP are shown in Figures 20 and 21. On
account of the speed changes, the meshing frequency also
changes. From Figures 20 and 21, it can be seen that the
input speed influences both the amplitude and the period.
However, the variation cycle of pressure angle equaling the
meshing cycle is unchanged. And the higher the speed, the

higher the variation frequency and amplitude modulation
frequency will be. +e energy variation of the vibration
signal in different speeds is shown in Figure 22. +e signal
energy for both conditions of constant and TVPA is cal-
culated in the same range of the carrier rotation angle to
ensure the comparability of signal energy at different
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Table 2: Operating conditions.

Number of operations 1 2 3 4 5 6
Input torque (Nm) 1250 1500 1750 2000 2250 2500
Input speed (rpm) 100 100 100 100 100 100
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Figure 19: Signal energy difference between constant and time-varying conditions of s-p1 mesh in different input torques.
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rotating speeds. +e simulation numbers corresponding to
the operation conditions are shown in Table 3. In Figure 22,
for both of the constant and TVPA conditions, it is cal-
culated under the constant input torque and different input

speeds. And for the same simulation number, both of them
are calculated in the same rotation speed and input torque
whose energy difference is shown in Figure 23. From Fig-
ure 22, it can be observed that the energy in both conditions
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increases linearly with the speed increasing which is because
the amplitude of meshing vibration increases significantly.
And at the same speed, the energy difference between the
two is small except for some special speeds. +erefore, the
speed variation mainly affects the phase varying period.

3.4.BeResponse of the Systemwith SunGear Fault. To study
the dynamic response of the system when a gear fault occurs,
a sun gear fault is taken as an example and introduced into
the model. And the fault is expressed by the attenuation of
the meshing stiffness. Set the input speed 100 rpm and the
input torque 2500Nm. +e vibration signal modulates the
rotation frequency of the carrier and fault characteristic
frequency of the sun gear. +e envelope spectrum of the
meshing force for s-p1 in a constant pressure angle is shown
in Figure 24.+e rotation frequency of carrier (1.667Hz) and
the fault characteristic frequency (30.83Hz) of the sun gear
can be clearly seen. And Figure 25 shows the comparison of
meshing force spectrum for s-p1 in conditions of constant
pressure angle and TVPA. Due to the influence of TVPA,
some frequency components in the vibration signal are
strengthened and some are weakened. +erefore, the

amplitude of themeshing force is not always higher than that
of the constant condition, and more frequency components
appear. And the response of the system under different fault
severity is compared. +e meshing phase variation is shown
in Figure 26. +e more serious the fault severity is, the
greater variation of the meshing phase will be when the fault
gear tooth is meshing. +e variation of meshing phase is
affected not only by the fault severity but also by the relative
motion between the sun gear and the planet which has been
explained in Section 3.2 based on Figure 8. +erefore, the
value of the meshing phase variation is not the same when
the fault gear tooth and the three planets mesh, respectively,
under the same fault severity. Hence the change of meshing
phase will affect the phase modulation in the vibration signal
and the meshing stiffness can be presented in Figure 27. It
can be seen that the more serious the fault severity is, the
greater the mutation value is, and so is the meshing stiffness.
From the meshing force spectrum which is shown in Fig-
ure 28, it can be concluded that with the increase of fault
severity, the influence of TVPA is also strengthened. +e
amplitude of meshing force is different under various fault
severity.

Table 3: Operating conditions.

Number of operations 1 2 3 4 5 6
Input torque (Nm) 2500 2500 2500 2500 2500 2500
Input speed (rpm) 100 200 300 400 500 600
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4. Conclusions

+is paper studies the vibration mechanism of the sun
gear when it is set to float in a planetary gearbox and
introduces time-varying pressure angle, time-varying
overlap ratio, and time-varying meshing phase to in-
vestigate the influence of these dynamic parameters on
the vibration response of the system under different
operating conditions. Subjected to the action of the
meshing force, the sun gear presents a triangular
movement in the mesh progress. And through ana-
lyzing the characteristics of the dynamic responses
based on the proposed planetary gearbox model, the
conclusions can be obtained:

(1) +e time-varying pressure angle and overlap ratio
vary with an approximate sine function at the
period of meshing cycle, which results in more
frequency components in the vibration response.
Due to the floating set and bearing deflection, the
pressure angle, overlap ratio, and meshing phase
also change with time, which causes the meshing
stiffness leading to mutation during the mesh
progress.

(2) +e meshing phase changes with the operating loads
and rotation speeds. +e rotation speed mainly af-
fects the phase modulation period. When the load
increases, the meshing phase variation will increase
accordingly. Hence the phase modulation amplitude
is mainly affected by the operating loads.

(3) Both the amplitude modulation and phase modu-
lation are affected by gear faults. And when a gear
fault occurs, the fault characteristic frequency will be
modulated in the meshing force spectrum. +e
variation of time-varying pressure angle, overlap
ratio, and meshing phase will increase with the fault
severity.

Considering that the variation of meshing phase affects
themeshing stiffness which is amain factor of gear vibration,
in the future work, we will study the effect of meshing

stiffness on the meshing vibration waveform to reveal the
vibration mechanism, and then combine with fault feature
extraction algorithm to conduct planetary gearbox fault
diagnosis.
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