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In the article titled “Introducing a Chaotic Component in
the Control System of Soil Respiration” [1], the corre-
sponding author’s e-mail address has been corrected as
shown above.

In addition, Tables 1 and 2 were omitted in error, which
correspond to Figures 4–6.

In Section 3.2 (Control Complexity of the System),
the following sentence should be revised to reflect the
above: “We further examined the variability of Q10

values, as seen in Figures 4 and 5” to “We further ex-
amined the variability of Q10 values with T and WCs,
utilizing four exponential functions, as seen in Table 1
and Figures 4–5.”

In Section 4 (Treating the Control Complexity), the
following sentence should also be revised from “Overall, the
nonlinear chaotic system is simplified and can be further
developed” to “)e model performance and corresponding
weathering parameters are shown in Table 2.”
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Table 1: Four coupling functions of (Ta, WCs) were employed in the analyses of Q10 with Ta and WCs, with the fitted parameters and the
statistics in model performance.

Models R2 RMSE F-stat p value
Q10 � 0.0186WCs − 0.0028Ts + 1.389 0.134 0.502 1.47 0.254
Q10 � 1.4151e0.0101WCs− 0.0016TS 0.133 0.503 1.45 0.259
Q10 � 1.3258e(− 0.002Ts+0.0175)WCS 0.136 0.502 1.49 0.250
Q10 � 1.4151e0.0101WCs− 0.0016TS 0.120 0.506 1.30 0.297
Note: n� 21; Ta: air temperature 10 cm above the soil surface; WCs: soil volumetric water content at 5 cm depth; F-stat: F-statistic vs. constant model; error
degrees of freedom� 18.

Table 2: Performance of equation (3) with weathering parameters after rainfall.

Rainfall (time) λ μ R2 RMSE
∼1mm
3 days after 1.2972 0.2688 0.91 0.12
4 days after 0.0740 0.0543 0.86 0.10
7 days after 1.1437 0.2840 0.90 0.09

0.6–3.6mm
5 days after 1.1321 0.2575 0.95 0.07
9 days after 1.1922 −0.0797 0.93 0.11

∼1.7mm
1 day after 0.9915 0.1741 0.90 0.10
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In this paper, the Adomian decomposition method (ADM) is applied to solve the fractional-order system with line equilibrium.
-e dynamics of the system is analyzed by means of the Lyapunov exponent spectrum, bifurcations, chaotic attractor, and largest
Lyapunov exponent diagram. At the same time, through the Lyapunov exponent spectrum and bifurcation graph of the system
under the change of the initial value, the influence of fractional order q on the system state can be observed. -at is, integer-order
systems do not have the phenomenon of attractors coexistence, while fractional-order systems have it.

1. Introduction

-ree hundred years ago, fractional-order calculation was
proposed as a classical mathematical problem. Fractional
calculation has no practical background and has not been
applied in engineering. -erefore, researchers and scientists
are not interested in fractional research. Recently, it have
been found that many engineering and physical systems,
electronic systems, etc. exhibit their own fractional-order
characteristics, and the fractional order can more accurately
reflect natural phenomena, such as material memory and
damping characteristics [1–4]. In recent years, with the
deepening and perfection of chaotic theory research, frac-
tional-order chaotic systems have become a hot topic in the
field. In particular, the complexity of fractional-order cha-
otic systems is not only related to the parameters of the
system itself, but also related to the fractional order of the
system. Many scholars have proposed several fractional-
order chaotic systems based on integer-order chaotic sys-
tems: fractional-order Lorenz system [5], factional-order

Lorenz hyperchaotic system [6], four-wing fractional-order
chaotic system [7], and so on [8, 9].

In the numerical calculation of fractional chaotic sys-
tems, namely, discretization of fractional chaotic systems,
many scholars have made some achievements based on
frequency-domain method (FDM) [10], Adomian decom-
position method (ADM) [5–7, 9, 11], and
Adams–Bashforth–Moulton (ABM) algorithm [12, 13].
Among them, FDM uses high-dimensional system close to
fractional-order system through Laplace change, but the
error is relatively large [14]. ABM is the most commonly
used method, but its operation speed is slow. ADM scheme,
on the other hand, has more accuracy and requires less
computational resources compared with ABM algorithm
[5–7, 9]. Reference [15] shows that fractional-order chaotic
systems show more complex chaotic behaviors than integer-
order chaotic systems, which can be seen from complexity,
Lyapunov index, bifurcation diagram, and other aspects.
When the system order is smaller, the system is more
complicated [9, 16].
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On the other hand, hot research on chaotic systems
mainly focuses on chaos control [17–20], Lyapunov expo-
nent calculation and analysis [21, 22], and doubling and
growth of attractors [23, 24], and chaotic systems with
hidden attractors are also hot research topics, because such
systems are extremely prone to multistable phenomenon,
which is a common phenomenon in nature. Hidden
attractors originate from several types of dynamical systems;
the dynamical systems with one stable equilibrium [25], a
line or plane equilibrium [26, 27], or no equilibrium [28] can
all have hidden attractors. Hidden attractors are even found
in some special chaotic systems, which have both unstable
and stable equilibria. However, the fractional-order chaotic
system with hidden attractor, which can be easily obtained
by combining the hidden attractor with fractional-order
systems, is rarely studied [29]. -e system has high com-
plexity, so it plays an important role in the field of com-
munication encryption.

In this paper, we propose a new fractional-order chaotic
system with line equilibrium. Discretization of the proposed
system is performed using Adomian decomposition scheme.
-e rest of the paper is organized as follows. In Section 2, the
equilibrium point and dynamic analysis of the integer-order
chaotic equilibrium point system are presented. In Section 3,
the fractional-order chaotic system is numerically calculated
and simulated by Adomian decomposition method. In
Section 4, the bifurcation diagram, phase diagrams, and
Lyapunov exponents spectrum are employed to analyze the
dynamics of the system. In Section 5, complexity of frac-
tional-order chaotic system is analyzed. Finally, the obtained
results are summarized in Section 6.

2. Integer-Order Chaotic System with
Line Equilibrium

2.1. Analysis of EquilibriumPoints of Systems. Reference [29]
proposes a class of T chaotic systems defined by

_x � a(y − x),

_y � cx − axz,

_z � xy − bz.

⎧⎪⎪⎨

⎪⎪⎩
(1)

A 3D integer-order chaotic system is defined by

_x � yz − ax,

_y � cx − axz,

_z � xy − bz,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where, a, b, and c are system (2) parameters and x, y, and z
are three state variables of system (2). When parameters
a � 5, b � 2, and c � 34, the system has two equilibrium
points: E1((c

��
ab

√
)/a2,

��
ab

√
, (c/a)), E2(− (c

��
ab

√
/a2), −

��
ab

√
,

(c/a)), and E3(0, h, 0). -e eigenvalues at E1 and E2 are

λ11 � − 6.0739, λ12 � − 0.4631 + 21.3673, and λ13 � 0;
E3(0, h, 0) is the line equilibrium point; and h is any real
number. -e Jacobian matrix linearized under equilibrium
E3 is as follows:

J �

− a 0 h

c 0 0

h 0 − b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

-e characteristic equation of matrix is

λ3 +(a + b)λ2 + ab − h
2

 λ � 0. (4)

-e eigenvalue at the line equilibrium point E3 is as
follows:

λ1 � 0,

λ2 � −
(a + b)

2
−

������������

(a − b)
2

+ 4h
2



2
,

λ3 � −
(a + b)

2
+

������������

(a − b)
2

+ 4h
2



2
.

(5)

Case 1. If h2 < ab, then

λ3 � − ((a + b)/2) + (

������������

(a − b)2 + 4h2


/2)< 0; according to
Routh–Hurwitz criterion, the equilibrium E3 is stable.

Case 2. If h2 < ab, then

λ3 � − ((a + b)/2) + (

������������

(a − b)2 + 4h2


/2)> 0; according to
Routh–Hurwitz criterion, the equilibrium E3 is unstable.

Case 3. If h2 � ab, then

λ3 � − ((a + b)/2) + (

������������

(a − b)2 + 4h2


/2) � 0; according to
Routh–Hurwitz criterion, we obtain that the equilibrium E3
is critical stable.

When a � 5, b � 2, and c � 34, using ODE45 function in
MATLAB software to simulate (2), the chaotic attractor is
shown in Figure 1. -e orbits marked by the blue and red
colors emerge form initial (1, 2, 3) and (1, 2, − 1), and the red
attractor is periodic.-e blue attractors are shown in chaotic
states.

2.2.DynamicsAnalysis of theChaotic System. Fix a � 5, b � 2,
and c � 34; initial values of state variables [x0, y0, z0] � [1,
2, z0]; let the z0 vary from − 15 to 15 with step size of 0.01.
Bifurcation diagram and Lyapunov exponents spectrum
of system (2) are shown in Figure 2. As can be seen from
the bifurcation diagram of the system in Figure 2(a),
when z0 ∈ [− 15, − 0.6], the system is in a periodic state and

2 Complexity



stable at (0, 0, 0). When z0 ∈ (− 0.6, 15], the system is in a
chaos state. When z0 ∈ [− 15, − 0.6], the maximum Lya-
punov exponent is equal to 0. When z0 ∈ (− 0.6, 15], the
largest Lyapunov exponent is positive, as shown in
Figure 2(b).

Fix a � 5, b � 2, and c � 34; initial values of state variables
[x0, y0, z0]� [1, 2, z0]; let the z(0) vary from − 15 to 15 with
step size of 0.3 and y(0) vary from − 20 to 20 with step size
of 0.4. In the z(0) − y(0) plane, the chaos diagram of the
largest LEs is calculated and shown in Figure 3. In Figure 3
the chaotic region is green (labeled “C”) and the periodic

region is red (labeled “P”). We can see from Figure 3 that
the system state is mainly affected by the initial condition
z0.

3. Solution of Fractional Chaotic System
Based on Adomian Decomposition

System (2) can generate complex chaotic attractors with line
equilibrium point, and it has three typical parameter sets.
Change the above system equations to the following frac-
tional-order form:

–20

–15

–10

–5

0

5

10

15

20

y

–10 –5 10 15–15 0 5
x

(a)

–2

0

2

4

6

8

10

12

14

z

–10 –5 0 5 10 15–15
x

(b)

–10 0–20 2010
y

–2

0

2

4

6

8

10

12

14

z

(c)
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where x1, y1, z1 are the values of systems (3). hs � t − t0 is
iteration step size. Γ(·) is Gamma function.-e corresponding
variables are assigned to the corresponding value; let
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When a � 5, b � 2, and c � 34, system (5) has stable
equilibrium with line (0, h, 0). -e analytical solution of the
system can be obtained according to (14). UsingMATLAB to
simulate (14), the chaotic attractor is shown in Figure 4. -e
orbits marked by the blue and red colors emerge form initial
(1, 2, 3) and (1, 2, − 1), and the red attractor is periodic. -e
blue attractors are shown in chaotic states.

4. Dynamical Analysis

Based on the ADM solution of the fractional-order chaotic
system, we focus on the analysis of the influence of pa-
rameters on the system. In this paper, the system bifurcation
diagram and Lyapunov exponent are used to analyze the
dynamic system. -e bifurcation diagram is obtained by
using the maximum value of state variables. In this section,
the influence of three parameters on the system is studied.

4.1. Dynamics with z(0) Varying. Fix a� 5, b� 2, c� 34, and
q� 0.8; initial values of state variables [x0, y0, z0]� [1, 2, z0];
let the z0 vary from − 15 to 15 with step size of 0.01. Bi-
furcation diagram and Lyapunov exponents spectrum of the
system (5) are shown in Figure 5. As can be seen from the
bifurcation diagram of the system in Figure 5(a), when
z0 ∈ [− 15, − 0.7], the system is in a periodic state and stable
at (0, 0, 0). When z0 ∈ (− 0.7, 15], the system is in a chaos
state. When z0 ∈ [− 15, − 0.7], the largest Lyapunov expo-
nents is equal to 0. When z0 ∈ (− 0.7, 15], the largest Lya-
punov exponents is positive, as shown in Figure 5(b).

4.2. Dynamics with q Varying. Fix a� 5, b� 2, and c� 34; let
the derivative order q vary from 0.6 to 1 with step size of
0.002 and the initial values of state variables [x0, y0, z0]� [1,
2, 3]. It can be seen from Figure 6(a) that, under the variation
of derivative order q, the system chaos and periodic variation
are repeated and crossed and are not a process from period
to chaos directly. At the same time, Figure 6 shows that the
system is chaotic over the interval
q ∈ [0.678, 0.824)∩ [0.876, 1]. However, q ∈ [0.876, 1] also
has a periodic window. It can be seen clearly that the
maximum Lyapunov exponent decreases with the increase
of derivative order q ∈ [0.678, 0.824]. In this case, the
minimum order for chaos is q� 0.678. -e maximum
Lyapunov exponent value at this point (q� 0.678) is the
largest. With the change of parameter q, the bifurcation

diagram of the system is consistent with the Lyapunov
exponent spectrum of the system.

For further research, influence of coexistence of attractors
in fractional derivative q system. In this paper, the phase di-
agram is used to introduce. It is found that a� 5, b� 2, and
c� 34. -e integer-order system (q� 1) is different from the
fractional-order system (q� 0.98).-e attractors of the integer-
order system are almost the same, while the attractors of the
fractional-order system coexist. As shown in Figure 7, the red
initial values are [1, 2, 3]. -e blue initial values are [1, 2, 20].

4.3. Dynamics with a and b Varying. -e fractional chaotic
system (5) has three system parameters besides the fractional
derivative q. In this paper, the dynamic properties of the
system parameters with a and b varying are analyzed. Firstly,
bifurcation diagrams of the fractional-order system with a ∈
[3, 10] is investigated as shown in Figure 8(a), where the step
size of a is 0.05, q� 0.8, b� 2, and the initial conditional is
[x0, y0, z0]� [1, 2, 3]. Obviously, it can be seen that
a ∈ [3.3, 4.1]∪ [4.3, 4.7]∪ [8.4, 8.5] is in a periodic state;
phase diagrams of the systems with different a values are
shown in Figure 9. Other regions are in chaotic state with
periodic windows.

Secondly, bifurcation diagrams of the fractional-order
system (5) with b ∈ [0, 6] is investigated as shown in
Figure 8(b), where the step size of b is 0.05, a� 5, and the
initial conditional is [x0, y0, z0]� [1, 2, 3]. Obviously, it can be
seen that b ∈ [3.16, 3.38]∪ [3.92, 6] is in a periodic state, and
other regions are in chaotic state with periodic windows.

QR decomposition method [6, 15] is effective in cal-
culating the LEs, and its computational process is shown by

qr JmJm− 1, . . . , J2J1  � qr JmJm− 1, . . . , J2 J1Q0(  

� qr JmJm− 1, . . . , J3 J2Q1(   × R1 

� qr JmJm− 1, . . . , J4 J3Q2(   × R2R1 

� . . .

� qr JmJm− 1, . . . , Ji+1 JiQi− 1(  

× Ri− 1Ri− 2, . . . ,R1 

� Qm RmRm− 1, . . . ,R1  � QmR.

(15)

Here, qr( ) represents QR decomposition function, m is the
maximum iteration number, and J is the Jacobian matrix of

6 Complexity



the given discrete formula as presented in (14). LCEs are
calculated by

λk �
1
mh

ln Ri(k, k)


. (16)

Here, k� 1, 2, n (system dimension); n is the maximum
number of iterations; and h is the iteration time step.
According to the above basic formula, make n� 4, n� 7000,
and h� 0.01, and use MATLAB to draw the Lyapunov ex-
ponent under parameter changes.

Fix b� 2, q� 0.8; initial conditional is [x0, y0, z0]� [1, 2, 3];
and let a vary. Lyapunov exponents spectrum of system (5) is
shown in Figure 10(a), which is consistent with the bifurcation
diagram; namely, a ∈ [3.3, 4.1]∪ [4.3, 4.7]∪ [8.4, 8.5]; the
largest Lyapunov exponent of the system is equal to 0 (not
positive), and the maximum Lyapunov exponent in other
regions is greater than 0 (positive).

Fix a� 5, q� 0.8; initial conditional is [x0, y0, z0]� [1, 2, 3];
and let b vary. Lyapunov exponents spectrum of system (5) is
shown in Figure 10(b), which is consistent with the bifurcation

diagram; namely, b ∈ [3.16, 3.38]∪ [3.92, 6]; the largest Lya-
punov exponent of the system is less than 0 (the phase diagram
is a collection point), and themaximum Lyapunov exponent in
other regions is greater than 0 (positive).

5. Complexity Analysis of the Fractional-
Order System

5.1. Completeness Calculation. By calculating the energy
distribution in the Fourier transform domain and com-
bining it with the Shannon entropy, spectral entropy is
obtained [31]. C0 complexity [32] is mainly to decompose
the time series into regular and irregular parts and to test the
proportion of irregular parts in the sequence. In practical
applications, the chaos diagram of SE and C0 complexity can
provide a basis to select parameter better.

Sample entropy (SampEn) [16] measures the complexity of
time series by measuring the probability of generating new
patterns in signals. -e greater the probability of generation,
the greater the value of the complexity of the sequence.
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Figure 4: Phase diagrams in different projections of fractional-order chaotic systems from initial values (1, 2, 3), red, and (1, 2, − 1). (a) Phase
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In general, for the specific calculation method of sample
entropy of time series {x(n)} composed ofN data, the specific
steps are as follows:

(i) S1: according to the serial number to form a one-
dimensional m vector sequence, Xm(1), . . . ,

Xm(N − m + 1)}, where Xm(1) � x(i), x(i + 1),{

. . . , x(i + m − 1)}, 1≤ i≤N − m + 1. -ese vectors
are m consecutive x values starting from point 1.

(ii) S2: define the distance between Xm(i) and Xm(j) as
d[Xm(i) Xm(j)], as the difference between the
maximum absolute values of the corresponding
elements.

(iii) S3: define the criterion of similarity r. Count the
number of d[Xm(i), Xm(j)]< r(1≤ j≤N − m,

1≤ i≤N − m), and its ratio to total distanceN − m is
denoted as Bm

i (r) � Bi/(N − m − 1).

12

10

8

6

4

2

0

–2

x

–15 –10 –5 0 5 10 15
z (0)

(a)

–10 –5 0 5 10 15–15
z (0)

–25

–20

–15

–10

–5

0

5

Ly
ap

un
ov

 ex
po

ne
nt

s

LE1
LE2
LE3

(b)

Figure 5: Bifurcation diagram and Lyapunov exponents spectrum of the fractional-order chaotic system (5) with initial conditional [x0, y0,
z0]� [1, 2, z0]. (a) Bifurcation diagram. (b) Lyapunov exponents (LEs).

15

10

5

0

–5

x

0.6 0.7 0.8 0.9 1
q

(a)

0.7 0.8 0.9 10.6
q

LE1
LE2
LE3

–60

–50

–40

–30

–20

–10

0

10

Ly
ap

un
ov

 ex
po

ne
nt

s

(b)

Figure 6: Bifurcation diagram and Lyapunov exponents spectrum of system (11) with a� 5, b� 2, and c� 34. (a) Bifurcation diagram. (b)
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(iv) S4: the average value of Bm
i (r) can be calculated as

B
m

(r) �
1

N − m


N− m

i�1
B

m
i (r). (17)

(v) S5: similarly, change m to m+ 1 and repeat step one
with step three; get Am(r).

(vi) S6: theoretically, the SampEn complexity can be
calculated by

SampEn(m, r) � lim
N⟶∞

− ln
A

m
(r)

B
m

(r)
 . (18)

5.2. Complexity Analysis. Fix a� 5, b� 2, c� 34; let q change
from 0.6 to 1; step size is 0.002; and the initial value of state
variables [x0, y0, z0]� [1, 2, 3]. -e complexity of the system
is shown in Figure 11(a). We can see that the complexity
decreases with the increase of q, and the change of com-
plexity is consistent with the change of Lyapunov exponent
in Figure 6(b).

Fixed b� 2, q� 0.8; initial conditional is [x0, y0, z0]� [1, 2,
3]; and let a vary. -e complexity of the system is shown in
Figure 11(b).-e change of complexity is consistent with the
change of Lyapunov exponent in Figure 10(a).

Fix a� 2, q� 0.8; initial conditional is [x0, y0, z0]� [1, 2,
3]; and let b vary. -e complexity of the system is shown in
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Figure 7: Phase diagrams in different projections of chaotic systems from initial values (1, 2, 20) and (1, 2, 3). (a) Phase diagrams in integer-
order system (2). (b) Phase diagrams in fractional-order system (5).
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Figure 11(c).-e change of complexity is consistent with the
change of Lyapunov exponent in Figure 10(b).

Complexity is consistent with Lyapunov exponent, but
Figure 11 also shows that sample entropy complexity is
small; SE complexity is not obvious when some bifurcation
points change; C0 complexity is accurate; and C0 complexity
is faster than Lyapunov exponent, consumes less resources,
and provides a good idea for analysis of chaotic systems.

Fix a� 5, b� 2, and c� 34; initial values of state variables
[x0, y0, z0]� [1, 2, z0]; let the z(0) vary from 0 to 25 with step

size of 0.2 and q vary from 0.6 to 1 with step size of 0.004.-e
C0 complexity in the z(0)-q plane is shown in Figure 12. It
can be seen that, in the fractional-order region, the system
complexity under the change of z(0) is more complex than
that of the integer order.

-e complexity of the system is calculated by the time
sequence of a certain state variable. Compared with Lyapunov
exponent calculation, the calculation of complexity is faster and
saves resources, but there are also some errors in complexity,
especially when SE complexity is in a periodic state.
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Figure 11: Complexity of the system with parameter varying. (a) q varying. (b) a varying. (c) b varying.
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6. Conclusion

In this paper, the accurate approximate solution for the
fractional-order system with line equilibrium is obtained
based on the Adomian decomposition method. Dynamical
behaviors of the systems are analyzed using the chaotic
attractor, bifurcation diagram, Lyapunov exponent spec-
trum, and largest Lyapunov exponent diagram. Chaotic
range and periodic windows are determined. Both the
system parameter and the fractional order can be taken as
bifurcation parameters, which shows that the fractional-
order system has more complex and abundant dynamics
than its integral-order counterpart. Besides, integer-order
systems do not have the phenomenon of attractors coex-
istence, while fractional-order systems have it, so fractional-
order systems have better effects when applied to com-
munication security systems.
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'e solution multiplicity of natural ventilation in buildings is very important to personnel safety and ventilation design. In this
paper, a four-zone model of buoyancy ventilation in typical underground building is proposed. 'e underground structure is
divided to four zones, a differential equation is established in each zone, and therefore, there are four differential equations in the
underground structure. By solving and analyzing the equilibrium points and characteristic roots of the differential equations, we
analyze the stability of three scenarios and obtain the criterions to determine the stability and existence of solutions for two
scenarios. According to these criterions, the multiple steady states of buoyancy ventilation in any four-zone underground
buildings for different stack height ratios and the strength ratios of the heat sources can be obtained. 'ese criteria can be used to
design buoyancy ventilation or natural exhaust ventilation systems in underground buildings. Compared with the two-zone
model in (Liu et al. 2020), the results of the proposed four-zone model are more consistent with CFD results in (Liu et al. 2018). In
addition, the results of proposed four-zone model are more specific and more detailed in the unstable equilibrium point interval.
We find that the unstable equilibrium point interval is divided into two different subintervals corresponding to the saddle point of
index 2 and the saddle focal equilibrium point of index 2, respectively. Finally, the phase portraits and vector field diagrams for the
two scenarios are given.

1. Introduction

Nonlinear characteristics exist in systems with various re-
search directions, such as neural network [1–3], chaotic
circuit [4–12], and information security [13–15]. Building
natural ventilation also has nonlinear characteristics. 'e
solution multiplicity of natural ventilation in buildings is
very important to personnel safety and ventilation design
[16]. In the last decade, the multisolution problem of natural
ventilation in buildings has attracted wide attention. Many
papers have been published on the problem of multiple
solutions to building natural ventilation [17–23]. 'ese
studies can be divided into three categories according to the
number of building zones and vents. 'e first kind research
is about the solution multiplicity of single-zone and double-
opening buildings under the combined effect of wind
pressure and thermal pressure [19, 24–27]. For example,
Heiselberg et al. [24] studied the multiple steady-state

properties of single-zone and double-opening buildings
under the action of wind pressure and buoyancy through a
salt water experiment and CFD simulation; Lishman and
Woods [25] reported solution multiplicity in both inclined
tunnels and two-story aboveground buildings, and the study
focused on the confrontation of wind pressure and buoyancy
in a single-story building; Yuan and Glicksman [19, 26]
researched the effects of different initial conditions on the
generation of multiple steady states in single-zone buildings
under the combined action of wind pressure and buoyancy;
Pulat and Ersan [27] found that different turbulence pa-
rameters may produce multiple solutions through CFD
simulation. 'e second kind research is about the solution
multiplicity of single-zone and multiple opening buildings
[28, 29]. For example, Durrani et al. [28] researched the
multiple solutions in a typical aboveground building with
one zone and three openings by CFD simulations; through
theoretical analysis, Chen and Li [29] researched the

Hindawi
Complexity
Volume 2020, Article ID 8658797, 24 pages
https://doi.org/10.1155/2020/8658797

mailto:yuxingwang@hnu.edu.cn
https://orcid.org/0000-0002-8955-2332
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8658797


buoyancy ventilation of a single-zone building with three
horizontal openings. 'e third kind research is about the
solution multiplicity of two-zone buildings [30–33]. For
example, Yang et al. [30, 31] analyzed in detail multiple
steady states in a two-zone building by theoretical analyses
and CFD simulations; Li et al. [32] studied the buoyancy
ventilation in a two-story building with two heat sources and
three openings by establishing a mathematical model of
nonlinear ordinary differential equation; Yang et al. [33]
analyzed the smoke exhaust spread of the three entrance
tunnel in the fire scenarios and obtained six possible
equilibrium states.

Recently, there are some reports on the multiplicity of
ventilation solutions of underground structures [34, 35]. 'e
study of the multiplicity of solutions for the natural venti-
lation of underground buildings is different from that of
overground buildings. Because the underground buildings are
not exposed to the outdoor environment, it is mainly thermal
pressure ventilation (or buoyancy ventilation) rather than
wind pressure ventilation which exist in the under structure.
Liu et al. [34] investigated the formation process of multiple
steady states in an underground building with two tunnel
connecting to the outdoor environment. 'e heights of two
tunnels are same, and one heat source is located in the corner
of the buried space. Using the CFD method reproduces the
two steady states of the buoyancy ventilation in the under-
ground building. In 2020, Liu et al. [35] made nonlinear
dynamic analysis of solution multiplicity of buoyancy ven-
tilation in a typical underground structure. 'ey gave a de-
scription of mathematical model of second-order nonlinear
differential equation to underground structure with two zones
and two tunnel connecting to the outdoor environment. Two
heat sources are located in the two zones, respectively, and the
heights of the two tunnels are not necessarily the same. By
solving the equilibrium points and characteristic roots of the
second order differential equation, the solution multiplicity
can be determined when the strength ratio of two heat sources
and height ratio of two tunnels were changed. However, in the
literatures [34, 35], the underground structure has only two
zones.'e deeply burred room and tunnel were treated as one
zone, which is just a very simple model. In the real under-
ground structure, the deeply burred room and tunnel are
different in temperature, mass flow rate, and air density. So,
the deeply burred room and tunnel should not be treated as
one zone if a more accurate model is needed. In this paper, we
propose a newmodel, where the buried rooms and tunnels are
treated as different zones. 'us, the underground structure
consists of four zones, two zones for two tunnels, and two
zones for deeply burred room. In this paper, the nomen-
clature of every variables and constants are shown in ab-
breviation section.

2. Proposed New Mathematical Model
and Analysis

In order to study the nonlinear dynamics of typical deep-
buried underground buildings with two openings, we first
established the mathematical mode. Some assumptions were
made: (i) each zone is well mixed; (ii) thermal mass is 1; (iii)

E1> 0; (iv) the mass flow impedance coefficient of the ge-
ometry is constant. Because the driving force is from thermal
pressure, as illustrated in Figure 1, we divide the building
into four zones: we can assume the heat source in the left side
as positive, and the heat source of the right side could be
either negative or positive, such that we could discuss the
scenarios of two heat sources (the heat source in the left and
right sides both are positive and the heat source in the left
side is positive, the heat source in the right side is negative)
and the scenario of one heat source.

2.1. Description of Mathematical Model. 'e proposed new
schematics of underground structure is shown as Figure 1,
which contains four zones, zone 1 and zone 2 for deeply burred
room and zone 3 and zone 4 for two tunnels.'e heights of two
tunnels are H1 and H2 respectively, the Ti, qi (i� 1∼4) denote
the temperature, and mass flow rate of four zones, respectively.
Heat sources E1 and E2 are located in zone 1 and zone 2. As
shown in Figure 1, two realizations are considered: for reali-
zation 1, the air flow enters from zone 1 to zone 2; for real-
ization 2, the air flow enters from zone 2 to zone 1.

For realization 1, the heat gain of the internal thermal
mass should be equal to the heat released by the heat sources
minus the heat loss through airflows. 'erefore, we can
obtain the heat balance equations of the four zones shown in
the following equations:

M1Cp

dT1

dt
� − q1CP T1 − T3(  + E1, (1)

M2Cp

dT2

dt
� − q2CP T2 − T1(  + E2, (2)

M3Cp

dT3

dt
� − q3CP T3 − Ta( , (3)

M4Cp

dT4

dt
� − q4CP T4 − T2( . (4)

According to the flow loop method, the total pressure
loss at ventilation vents on the flow loop is balanced by sum
of the buoyancy pressure [35]. 'e pressure balance equa-
tion can be obtained as follows:

−
T1 − Ta

Ta

ρagH1 +
T2 − Ta

Ta

ρagH2

� S1q
2
1 + S2q

2
2 + S3q

2
3 + S4q

2
4.

(5)

According to the conservation of mass, we can obtain

q1 � q2 � q3 � q4. (6)

Combining equations (5) and (6), mass flow rate can be
obtained as follows:

q1 � q2 � q3 � q4 � q

�

��������������������������������������
− T1 − Ta( /Ta( ρagH1 + T2 − Ta( /Ta( ρagH2

S1 + S2 + S3 + S4



.

(7)
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For realization 2, similarly, we can obtain the heat
balance equations of the four zones as follows:

M1Cp

dT1

dt
� − q1CP T1 − T2(  + E1, (8)

M2Cp

dT2

dt
� − q2CP T2 − T4(  + E2, (9)

M3Cp

dT3

dt
� − q3CP T3 − T1( , (10)

M4Cp

dT4

dt
� − q4CP T4 − Ta( . (11)

Based on the flow loop method, the total pressure loss at
ventilation vents on the flow loop is balanced by sum of the
buoyancy pressure, and we can obtain the pressure balance
equation as follows:
T1 − Ta

Ta

ρagH1 −
T2 − Ta

Ta

ρagH2 � S1q
2
1 + S2q

2
2 + S3q

2
3 + S4q

2
4.

(12)

According to the conservation of mass, we can obtain
following equations about air flow rate:

q1 � q2 � q3 � q4 � q. (13)

By combining equations (11) and (12), we can obtain

q1 � q2 � q3 � q4

�

�������������������������������������
T1 − Ta( /Ta( ρagH1 − T2 − Ta( /Ta( ρagH2

S1 + S2 + S3 + S4



.

(14)

2.2. Transformation of Variables and Parameters in Differ-
ential Equations. Assuming k� E2/E1, ΔT1 �T1 − Ta,
ΔT2 �T2 − Ta, ΔT3 �T3 − Ta, ΔT4 �T4 − Ta,
n �

�����������������������
(ρagH1/(S1 + S2 + S3 + S4))


, α�H2/H1, M1 �M2 �M,

M3 �M4 �M/ξ, and τ � t/(MCp), we can obtain simplified
nonlinear differential equations.

For realization 1, according to equations (1)∼(4), (7) and
above assumptions about variables and parameters, the
simplified differential equations can be obtained as follows:

f1 �
dΔT1

dτ
� − n

����������
αΔT2 − ΔT1


ΔT1 − ΔT3(  + E1, (15)

f2 �
dΔT2

dτ
� − n

����������
αΔT2 − ΔT1


ΔT2 − ΔT1(  + E2, (16)

f3 �
dΔT3

dτ
� − ξn

����������
αΔT2 − ΔT1


ΔT3, (17)

f4 �
dΔT4

dτ
� − ξn

����������
αΔT2 − ΔT1


ΔT4 − ΔT2( . (18)

For realization 2, according to equations (8)∼(11) and
(14) and above assumptions about variables and parameters,
the simplified differential equations can be obtained as
follows:

f1 �
dΔT1

dτ
� − n

����������
ΔT1 − αΔT2


ΔT1 − ΔT2(  + E1, (19)

f2 �
dΔT2

dτ
� − n

����������
ΔT1 − αΔT2


ΔT2 − ΔT4(  + E2, (20)

f3 �
dΔT3

dτ
� − ξn

����������
ΔT1 − αΔT2


ΔT3 − ΔT1( , (21)

f4 �
dΔT4

dτ
� − ξn

����������
ΔT1 − αΔT2


ΔT4. (22)

2.3. Nonlinear Dynamic Analysis. We can assume the heat
source in the left side as positive and the heat source of the
right side could be either negative or positive, such that we
could discuss the scenarios of two heat sources (the heat
source in the left and right sides both are positive and the
heat source in the left side is positive, the heat source in
the right side is negative) and the scenario of one heat
source.

2.3.1. Stability Analysis for Scenario 1 (k Is Fixed and α Is
Control Parameter). Here, two conditions k> 0 (the heat
source in the left and right sides both are positive) and k< 0
(the heat source in the left side is positive, and the heat
source in the right side is negative) are discussed at the same
time. We should solve equilibrium points and characteristic
roots before stability analysis:

(1) Analysis of Equilibrium Points and Characteristic Roots
for Realization 1. 'e steady state solutions (equilibrium
points) of realization 1 equations (15)∼(18) are denoted as
(ΔT01,ΔT02,ΔT03,ΔT04). In order to solve the equilibrium
points, we can make that the right sides of equations
(15)∼(18) equal to zero; and the following equations hold:

H1

H2

T1, zone1, q1 T2, zone 2, q2
E1 E2

Realization 1 Realization 2
T 3

, z
on

e 3
, q

3

T 4
, z

on
e 4

, q
4

Figure 1: Proposed schematics of four-zone underground
structure.
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− n
����������
αΔT2 − ΔT1


ΔT1 − ΔT3(  + E1 � 0, (23)

− n
����������
αΔT2 − ΔT1


ΔT2 − ΔT1(  + E2 � 0, (24)

− ξn
����������
αΔT2 − ΔT1


ΔT3 � 0, (25)

− ξn
����������
αΔT2 − ΔT1


ΔT4 − ΔT2(  � 0. (26)

By solving equations (23)∼(26), we can obtain the
equilibrium points as follows:

ΔT01 �
E1

n2/3 − E1 + E1α + E2α( 
1/3 �

E2/3
1

n2/3(αk − 1 + α)1/3
,

(27)

ΔT02 � ΔT04 � (1 + k)ΔT01

�
(1 + k)E1

n2/3 − E1 + E1α + E2α( 
1/3 �

(1 + k)E2/3
1

n2/3(αk − 1 + α)1/3
,

(28)

ΔT03 � 0. (29)

According to the characteristic determinant equal to 0, the
solution of the differential equation can be discussed. 'e
characteristic determinant equation is shown as follows. 'e
expression of characteristic determinant is that

|J(Q) − λE| �

zf1

zΔT1
− λ

zf1

zΔT2

zf1

zΔT3

zf1

zΔT4

zf2

zΔT1

zf2

zΔT2
− λ

zf2

zΔT3

zf2

zΔT4

zf3

zΔT1

zf3

zΔT2

zf3

zΔT3
− λ

zf3

zΔT4

zf4

zΔT1

zf4

zΔT2

zf4

zΔT3

zf4

zΔT4
− λ





� 0.

(30)

Combining equations (15)∼(18), we can obtain the fol-
lowing expression:

n ΔT01 − ΔT03( 

2A
− nA − λ −

nα ΔT01 − ΔT03( 

2A
nA 0

n ΔT02 − ΔT01( 

2A
+ nA −

nα ΔT02 − ΔT01( 

2A
− nA − λ 0 0

ξnΔT03

2A
−
ξnαΔT03

2A
− ξnA − λ 0

ξn ΔT04 − ΔT02( 

2A
−
ξnα ΔT04 − ΔT02( 

2A
+ ξnA 0 − ξnA − λ





� 0, (31)

where J(Q) is the Jacobian matrix of equilibrium point Q, λ
is the characteristic root, E is the identity matrix, and

A �
������������
αΔT02 − ΔT01


�

(αk − 1 + α)1/3E1/3
1

n1/3 , (32)

B � ΔT01 − ΔT03 �
E2/3
1

n2/3(αk − 1 + α)1/3
, (33)

C � ΔT02 − ΔT01 �
kE2/3

1

n2/3(αk − 1 + α)1/3
. (34)

Combining equations (31)∼(34), we can obtain char-
acteristic roots as follows:

λ1 � λ2 � − ξnA � − ξn
������������
αΔT02 − ΔT01



� − ξn
2/3

E
1/3
1 (αk − 1 + α)

1/3
.

(35)

Assuming k� E2/E1, α�H2/H1, to ensure that a real
solution exists for equations (27) and (28), we have

αk − 1 + α> 0. (36)

Two other characteristic roots can be obtained according
to a quadratic formula:

λ3,4 �
− b ±

�������
b2 − 4ac

√

2a

�
− (n(αC − B)/2A) − 2nA ±

������������������������������������������������

[(n(αC − B)/2A) + 2nA]2 − 4n2 (α(B + C)/2) + A2 − (B/2)[ ]



2
,

(37)
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where
a � 1;

b �
n(αC − B)

2A
+ 2nA �

n2/3E1/3
1 (5αk − 5 + 4α)

2(αk − 1 + α)2/3
,

c � n2 α(B + C)

2
+ A

2
−

B

2
  �

3E2/3
1 (αk − 1 + α)2/3n4/3

2
> 0,

Δ � b2 − 4ac �
n4/3E2/3

1 (5αk − 5 + 4α)2

4(αk − 1 + α)4/3
− 6E

2/3
1 (αk − 1 + α)

2/3
n
4/3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

For convenience, the characteristic roots are set as fol-
lows: the real root are ci (i� 1,2,3,4); the complex roots are
σi+ jωi (i� 1,2,3,4). It is easy to know that λ1,2 are always real
number, λ1 � c1 � λ2 � c2.

If the discriminantΔ is greater than 0, both characteristic
roots are real number, namely, λ3 � c3 and λ4 � c4. From
equations (37) and (38), we can know that when Δ> 0, the
following expression holds:

n
4/3

E
2/3
1 (5αk − 5 + 4α)

2 > 24n
4/3

E
2/3
1 (αk − 1 + α)

2
. (39)

It is clear that

|5αk − 5 + 4α| > |2
�
6

√
(αk − 1 + α)|. (40)

When the discriminant Δ is less than 0, conjugate
complex roots exist, namely, λ3,4 � σ3,4± jω3,4. From equa-
tions (37) and (38), we can know that when Δ< 0, the
following expression holds:

|5αk − 5 + 4α| < |2
�
6

√
(αk − 1 + α)|. (41)

(2) Stability Analysis for Realization 1 (k Is Fixed and α Is
Control Parameter)

(1) No equilibrium point exists in realization 1
If no equilibrium point exists in realization 1, from
equation (36), it is known that the following ex-
pression is satisfied:

αk − 1 + α< 0. (42)

'erefore from expression (42), when k< − 1, it is
clear that α> (1/(k + 1)) and when k> − 1, we know
that 0< α< (1/(k + 1)).

(2) A stable equilibrium point exists in realization 1
(2.1) Assuming there are all negative real charac-
teristic roots
In this case, λ1, λ2, λ3, and λ4 are all less than 0, and
the system has a stable solution.
We know that owing to αk − 1 + α> 0, from equation
(35), it is clear that λ1 and λ2 are always less than 0. To
make λ3,4< 0, according to Vieta theorem, we know
that λ3 + λ4 � − b and λ3λ4 � c. From equation (38), it

is known that always c> 0, and owing to
αk − 1 + α> 0, from equation (38), if 5αk − 5 + 4α> 0,
we have − b< 0, then λ3,4< 0. In this case, the absolute
value sign in equation (40) can be removed; there-
fore, the following expression (43) can be obtained:

5αk − 5 + 4α> 2
�
6

√
(αk − 1 + α). (43)

From expression (43), we can obtain the following
expression:

α[k(5 − 2
�
6

√
) + 4 − 2

�
6

√
]> 5 − 2

�
6

√
. (44)

In summary, if there are all negative real characteristic
roots, the system is stable when the following in-
equalities are satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5> 0,

α[k(5 − 2
�
6

√
) + 4 − 2

�
6

√
]> 5 − 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(45)

(2.2) Assuming two negative real roots and two con-
jugate complex roots
In this case, the four characteristic roots behave as
λ1 � c1 � λ2 � c2, λ3,4 � σ3,4± jω3,4, where λ1 and λ2 are
two negative real roots and λ3, λ4 are two conjugate
complex roots. When λ1, λ2, σ3, and σ4 are all less than
0, the system has a stable solution.
From equation (37), we know σ3,4 � − b/2. Owing to
λ1,2< 0, to make σ3,4< 0, we need − b< 0, and from
equation (38), we can obtain 5αk+ 4α − 5>0.
In this case, the absolute value sign in expression (41)
can be removed; therefore, the following expression can
be obtained:

5αk − 5 + 4α< 2
�
6

√
(αk − 1 + α). (46)

From (46), we can obtain that

α[k(5 − 2
�
6

√
) + 4 − 2

�
6

√
]< 5 − 2

�
6

√
. (47)

In summary, λ1, λ2, σ3, and σ4 are all less than 0, the
system is stable when the following inequalities are
satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5> 0,

α[k(5 − 2
�
6

√
) + 4 − 2

�
6

√
]< 5 − 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(48)
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Combining expressions (45) and (48), a stable equi-
librium point exists in realization 1, when the following
expression is satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5> 0.
 (49)

Case 1: when k> − 4/5, it is easy to know that 5k+ 4> 0
and k+ 1> 0, then expression (49) can be simplified to

α>
1

k + 1
,

α>
5

5k + 4
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(50)

From 5k+ 4> 0 and k+ 1> 0, it is clear that
(1/(k + 1)) − (5/(5k + 4))< 0 and 0< (1/(k + 1))<
(5/(5k + 4)),
'erefore, from expression (49), it can be known that,
when k> − (4/5), α> (5/(5k + 4))

Case 2: when − 1< k< − (4/5), it is easy to know that
5k+ 4< 0 and k+ 1> 0.
Expression (49) can be simplified to

α>
1

k + 1
,

α<
5

5k + 4
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(51)

Owing to 5k+ 4< 0 and k+ 1> 0, it is clear that
(5/(5k + 4))< 0 and (1/(k + 1))> 0. 'erefore, when
− 1< k< − (4/5), α does not exist.
Case 3: when k< − 1, it is easy to know that 5k+ 4< 0
and k+ 1< 0.
Expression (49) can be simplified to

α<
1

k + 1
,

α<
5

5k + 4
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(52)

Owing to 5k+ 4< 0 and k+ 1< 0, it is clear that
(1/(k + 1)) − (5/(5k + 4))< 0. 'us we can obtain
that (5/(5k + 4))< (1/(k + 1))< 0. 'erefore, when
k< − 1, α does not exist.
In conclusion, we can obtain following several cases:
Case 1: k> − (4/5) and α> (5/(5k + 4))

Case 2: − 1< k< − (4/5) and α does not exist
Case 3: k< − 1 and α does not exist

(3) An unstable equilibrium point exists in realization 1
(3.1) Assuming characteristic roots are all real and at
least one is a positive

As long as one characteristic root is greater than 0,
the equilibrium point of the system is unstable.
Owing to αk − 1 + α> 0, λ1 and λ2 are always less than
0 and only λ3 or λ4 is greater than 0. According to
Vieta theorem, λ3 + λ4 � − b and λ3λ4 � c; it is known
that c> 0, and owing to αk − 1 + α> 0, from equation
(38), if 5αk − 5 + 4α< 0, we can obtain − b> 0, then
λ3,4> 0.
In this case, the number in the left absolute value sign
of expression (40) is less than zero, right absolute
value sign of equation (40) is greater than zero, the
absolute value signs are removed, and expression
(40) can be transformed as follows:

5 − 4α − 5αk> 2
�
6

√
(αk − 1 + α). (53)

From expression (53), we can obtain

α[k(2
�
6

√
+ 5) + 2

�
6

√
+ 4]< 5 + 2

�
6

√
. (54)

In summary, λ1 and λ2 are less than 0 and λ3 and λ4 are
greater than 0. 'e system equilibrium point is un-
stable, and it is the saddle point of index 2, when the
following inequalities are satisfied:

αk + α − 1> 0,

5αk + 4α − 5< 0,

α[k(2
�
6

√
+ 5) + 2

�
6

√
+ 4]< 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(55)

Firstly, we consider the coefficient of α on the left side of
third equation in expression (55) is greater than 0,
namely, k(2

�
6

√
+ 5) + 2

�
6

√
+ 4> 0, we can obtain

k> ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)).

'en, we consider the coefficient of α on the left side of
the third equation in expression (55) is less than 0,
namely, k(2

�
6

√
+ 5) + 2

�
6

√
+ 4< 0, we can obtain

k< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)).

It is easy to know that − 1< ((− 2
�
6

√
−

4)/(2
�
6

√
+ 5))< − (4/5). We discuss following several

cases:
Case 1: when ((− 2

�
6

√
− 4)/(2

�
6

√
+ 5))< k< − (4/5),

owing to − 1< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5))< − (4/5), it is

easy to know that 5k + 4< 0, k + 1> 0 and
k(2

�
6

√
+ 5) + 2

�
6

√
+ 4> 0. Expression (55) is simpli-

fied as

α>
1

k + 1
,

α>
5

5k + 4
,

α<
5 + 2

�
6

√

k(2
�
6

√
+ 5) + 2

�
6

√
+ 4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)
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From 5k + 4< 0, k + 1> 0, k(2
�
6

√
+ 5) + 2

�
6

√
+ 4> 0, it

is clear that (1/(k + 1)) − ((5 + 2
�
6

√
)/(k(2

�
6

√
+ 5) +

2
�
6

√
+ 4))< 0 and (5/(5k + 4)) − (1/(k + 1))< 0. So we

have 0< (1/(k + 1))< ((5 + 2
�
6

√
)/(k(2

�
6

√
+ 5)+

2
�
6

√
+ 4)) and (5/(5k + 4))< 0.

'erefore, when ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5))< k< −

(4/5), it can be obtained that (1/(k + 1))< α< ((2
�
6

√
+

5)/(k(2
�
6

√
+ 5) + 2

�
6

√
+ 4)).

Case 2: when − (4/5)< k, owing to
− 1< ((− 2

�
6

√
− 4)/(2

�
6

√
+ 5))< − (4/5), it is easy to

know that 5k+ 4> 0, k+ 1> 0 and k(2
�
6

√
+

5) + 2
�
6

√
+ 4> 0. Expression (55) can be simplified to

α>
1

k + 1
,

α<
5

5k + 4
,

α<
5 + 2

�
6

√

k(2
�
6

√
+ 5) + 2

�
6

√
+ 4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

From 5k +4>0, k +1>0, k(2
�
6

√
+5) +2

�
6

√
+4>0, it is

clear that (5/(5k +4)) − ((5+2
�
6

√
)/(k(2

�
6

√
+5) +2�

6
√

+4))>0 and ((5+2
�
6

√
)/(k(2

�
6

√
+5) +2

�
6

√
+4))

− (1/(k +1))>0. So we have 0<(1/(k +1))<((5+2�
6

√
)/(k(2

�
6

√
+5) +2

�
6

√
+4))<(5/(5k +4)). 'erefore,

when − (4/5)<k, we have (1/(k +1))<α<((2
�
6

√
+5)/

(k(2
�
6

√
+5) +2

�
6

√
+4)).

Case 3: when − 1< k< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)), owing

to − 1< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5))< − (4/5), it is easy to

know that 5k + 4< 0, k + 1> 0, and k(2
�
6

√
+ 5)+

2
�
6

√
+ 4< 0.

Expression (55) can be simplified to

α>
1

k + 1
,

α>
5

5k + 4
,

α>
5 + 2

�
6

√

k(2
�
6

√
+ 5) + 2

�
6

√
+ 4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

From 5k + 4< 0, k + 1> 0, k(2
�
6

√
+ 5) + 2

�
6

√
+ 4< 0, it

is easy to know that ((5 + 2
�
6

√
)/(k(2

�
6

√
+

5) + 2
�
6

√
+ 4)) − (5/(5k + 4))< 0, so we have ((5+

2
�
6

√
)/(k(2

�
6

√
+ 5) + 2

�
6

√
+ 4))< (5/(5k + 4))< 0 and

0< (1/(k + 1))

'erefore, when − 1< k< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)), we

can obtain that (1/(k + 1))< α.

Case 4: when k< − 1, owing to
− 1< ((− 2

�
6

√
− 4)/(2

�
6

√
+ 5))< − (4/5), it is easy to

know that 5k + 4< 0, k + 1< 0, and k(2
�
6

√
+

5) + 2
�
6

√
+ 4< 0. Equation (55) can be simplified to

α<
1

k + 1
,

α>
5

5k + 4
,

α>
5 + 2

�
6

√

k(2
�
6

√
+ 5) + 2

�
6

√
+ 4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

From 5k + 4< 0, k + 1< 0 and k(2
�
6

√
+

5) + 2
�
6

√
+ 4< 0, it is clear that ((5 + 2

�
6

√
)/(k(2

�
6

√
+

5) + 2
�
6

√
+ 4)) − (5/(5k + 4))< 0 and (1/(k + 1))−

((5 + 2
�
6

√
)/ (k(2

�
6

√
+ 5) + 2

�
6

√
+ 4))< 0, so we have

(1/(k + 1))< ((5 + 2
�
6

√
)/(k(2

�
6

√
+ 5) + 2

�
6

√
+ 4))<

(5/(5k + 4))< 0. 'erefore, when k< − 1, α does not
exist.
From what has been discussed above, we can obtain
following relation between k and α:
Case 1: ((− 2

�
6

√
− 4)/(2

�
6

√
+ 5))< k< − (4/5) and

(1/(k + 1))< α< ((2
�
6

√
+ 5)/(k(2

�
6

√
+ 5) + 2

�
6

√
+ 4))

Case 2: − (4/5)< k and (1/(k + 1))< α< ((2
�
6

√
+ 5)/

(k(2
�
6

√
+ 5) + 2

�
6

√
+ 4))

Case 3: − 1< k< ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)) and

(1/(k + 1))< α
Case 4: k< − 1 and α does not exist.
(3.2) Assuming two negative real roots and two con-
jugate complex roots
In this case, the four characteristic roots behave as
λ1 � c1 � λ2 � c2, λ3,4 � σ3,4± jω3,4, where λ1 and λ2 are
two negative real roots and λ3 and λ4 are two conjugate
complex roots.
Owing to λ1 and λ2 are always less than 0, when σ3,4 is
greater than 0, the equilibrium point of the system is
unstable and it is the saddle-focus point of index 2.
From (37), we know σ3,4 � − b/2. To make σ3,4> 0, we
need − b> 0, and from equation (38), we can obtain
5αk+ 4α − 5< 0.
In this case, the absolute value sign in Expression (41)
can be removed; therefore, the following expression can
be obtained:

5 − 5αk − 4α< 2
�
6

√
(αk − 1 + α). (60)

From expression (60), we can obtain that

α[k(5 + 2
�
6

√
) + 4 + 2

�
6

√
]> 2

�
6

√
+ 5. (61)
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In summary, λ1 and λ2 are less than 0, σ3 and σ4 are
greater than 0, the system equilibrium point is unstable,
and it is the saddle-focus point of index 2, when the
following inequalities are satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5< 0,

α[k(5 + 2
�
6

√
) + 4 + 2

�
6

√
]> 2

�
6

√
+ 5.

⎧⎪⎪⎨

⎪⎪⎩
(62)

According to above discussion, we can obtain the
following several cases:
Case 1: ((− 4 − 2

�
6

√
)/(5 + 2

�
6

√
))< k< − (4/5) and

α> ((5 + 2
�
6

√
)/(k(5 + 2

�
6

√
) + 4 + 2

�
6

√
))

Case 2: − (4/5)< k and ((5 + 2
�
6

√
)/(k(5 + 2

�
6

√
) + 4 +

2
�
6

√
))< α< (5/(5k + 4))

Case 3: − 1< k< ((− 4 − 2
�
6

√
)/(5 + 2

�
6

√
)) and α does

not exist
Case 4: k< − 1 and α does not exist

If k and α satisfy the above relation, the system equi-
librium point is the saddle-focus point of index 2, which is
unstable.

(3) Analysis of Equilibrium Points and Characteristic Roots
for Realization 2. 'e steady state solution (equilibrium
points) of realization 2, equations (19)∼(22), is denoted as
(ΔT01,ΔT02,ΔT03,ΔT04). In order to solve the equilibrium
points, we can make that the right sides of equations
(19)∼(22) equal to zero; the following equations hold:

− n
����������
ΔT1 − αΔT2


ΔT1 − ΔT2(  + E1 � 0, (63)

− n
����������
ΔT1 − αΔT2


ΔT2 − ΔT4(  + E2 � 0, (64)

− ξn
����������
ΔT1 − αΔT2


ΔT3 − ΔT1(  � 0, (65)

− ξn
����������
ΔT1 − αΔT2


ΔT4 � 0. (66)

By solving equations (63)∼(66), we can obtain the
equilibrium points as follows:

ΔT02 �
E2

n2/3 E2 + E1 − E1αk( 
1/3 �

kE2/3
1

n2/3(k + 1 − αk)1/3
,

(67)

ΔT01 � ΔT03 �
1 + k

k
ΔT02 �

(1 + k)E1

n2/3 E2 + E1 − E1αk( 
1/3

�
(1 + k)E2/3

1

n2/3(k + 1 − αk)1/3
,

(68)

ΔT04 � 0. (69)

According to the characteristic determinant equal to 0,
the solution of the differential equation can be discussed.'e
characteristic determinant equation is that

|J(Q) − λE| �

zf1

zΔT1
− λ

zf1

zΔT2

zf1

zΔT3

zf1

zΔT4

zf2

zΔT1

zf2

zΔT2
− λ

zf2

zΔT3

zf2

zΔT4

zf3

zΔT1

zf3

zΔT2

zf3

zΔT3
− λ

zf3

zΔT4

zf4

zΔT1

zf4

zΔT2

zf4

zΔT3

zf4

zΔT4
− λ





� 0.

(70)

Combining equations (19)∼(22), we can obtain the
following expression as follows:

−
n ΔT01 − ΔT02( 

2A
− nA − λ

nα ΔT01 − ΔT02( 

2A
+ nA 0 0

−
n ΔT02 − ΔT04( 

2A

nα ΔT02 − ΔT04( 

2A
− nA − λ 0 nA

−
ξn ΔT03 − ΔT01( 

2A
+ ξnA

ξnα ΔT03 − ΔT01( 

2A
− ξnA − λ 0

−
ξnΔT04

2A

ξnαΔT04

2A
0 − ξnA − λ





� 0, (71)

A �
������������
ΔT01 − αΔT02


�

(k + 1 − αk)1/3E1/3
1

n1/3 , (72)

B � ΔT01 − ΔT02 �
E2/3
1

n2/3(k + 1 − αk)1/3
, (73)

C � ΔT02 − ΔT04 �
kE2/3

1

n2/3(k + 1 − αk)1/3
, (74)
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Combining equations (71)∼(74), we can obtain char-
acteristic roots as follows:

λ1 � λ2 � − ξnA � − ξn
������������
ΔT01 − αΔT02



� − ξn
2/3

E
1/3
1 (k + 1 − αk)

1/3
.

(75)

To ensure that a real solution exists for equations (67)
and (68), we have

k + 1 − αk> 0. (76)

Two other characteristic roots can be obtained according
to the quadratic formula:

λ3,4 �
− b ±

�������
b2 − 4ac

√

2a

�
− (n(B − αC)/2A) − 2nA ±

������������������������������������������������

[(n(B − αC)/2A) + 2nA]2 − 4n2 ((B + C)/2) + A2 − (αC/2)[ ]



2
,

(77)

where
a � 1,

b �
n(B − αC)

2A
+ 2nA �

n2/3E1/3
1 (4k + 5 − 5αk)

2(k + 1 − αk)2/3
,

c � n2 (B + C)

2
+ A

2
−
αC

2
  �

3n4/3E2/3
1 (k + 1 − αk)2/3

2
,

Δ � b2 − 4ac �
n4/3E2/3

1 (4k + 5 − 5αk)2

4(k + 1 − αk)4/3
− 6n

4/3
E
2/3
1 (k + 1 − αk)

2/3
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

'erefore, it is easy to know that λ1,2 are always a real
number, λ1 � c1 � λ2 � c2. If the discriminant Δ is greater
than 0, both characteristic roots are real number:λ3 � c3,
λ4 � c4. From equations (77) and (78), we can know that
when Δ> 0, the following expression holds:

n
4/3

E
2/3
1 (4k + 5 − 5αk)

2 > 24n
4/3

E
2/3
1 (k + 1 − αk)

2
. (79)

It is clear that

|4k + 5 − 5αk| > |2
�
6

√
(k + 1 − αk)|. (80)

When the discriminant Δ is less than 0, conjugate
complex roots exist, namely, λ3,4 � σ3,4± jω3,4. From equa-
tions (77) and (78), we can know that when Δ< 0, the
following expression holds:

|4k + 5 − 5αk|<|2
�
6

√
(k + 1 − αk)|. (81)

(4) Stability Analysis for Realization 2 (k Is Fixed and α Is
Control Parameter)

(1) No equilibrium point exists in realization 2
If no equilibrium point exists in realization 2, from
equations (67)∼(68), it is known that the following
expression is satisfied:

k + 1 − αk< 0. (82)

'erefore, from equation (82), when k< − 1, it is clear
that 0< α< ((k + 1)/k) and when − 1< k< 0, we know
that α does not exist, or when 0< k, we know that
α> ((k + 1)/k).

(2) A stable equilibrium point exists in realization 2
(2.1) Assuming there are all negative real charac-
teristic roots
In this case, λ1, λ2, λ3, and λ4 are all less than 0, and
the system has a stable solution. We know that,
owing to k+ 1 − αk> 0, from equation (75), it is clear
that λ1 and λ2 are always less than 0. To make λ3,4< 0,
according to Vieta theorem, we know that
λ3 + λ4 � − b and λ3λ4 � c. From equation (78), it is
known that always c> 0, and owing to k+ 1 − αk> 0,
from equation (78), if 4k+ 5 − 5αk> 0, we have
− b< 0, then λ3,4< 0. In this case, the absolute value
sign in equation (80) can be removed; therefore, the
following expression can be obtained:

4k + 5 − 5αk> 2
�
6

√
(k + 1 − αk). (83)

From expression (83), we can obtain the following
expression:

αk(5 − 2
�
6

√
)< k(4 − 2

�
6

√
) + 5 − 2

�
6

√
. (84)

In summary, if there are all negative real characteristic
roots, the system is stable when the following in-
equalities are satisfied:

αk< k + 1,

5αk< 4k + 5,

αk(5 − 2
�
6

√
)< k(4 − 2

�
6

√
) + 5 − 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(85)

(2.2) Assuming two real roots and two conjugate
complex roots
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In this case, the four characteristic roots behave as
λ1 � c1 � λ2 � c2 and λ3,4 � σ3,4± jω3,4, where λ1 and λ2
are two negative real roots and λ3 and λ4 are two
conjugate complex roots. When λ1, λ2, σ3, and σ4 are all
less than 0, the system has a stable solution.
From equation (77), we know σ3,4 � − b/2. Owing to
λ1,2< 0, to make σ3,4< 0, we have − b< 0, from equation
(78), we can obtain 4k+ 5 − 5αk> 0.
In this case, the absolute value sign in expression (81)
can be removed; therefore, the following expression
(86) can be obtained:

4k + 5 − 5αk< 2
�
6

√
(k + 1 − αk). (86)

From expression (86), we can obtain that

αk(5 − 2
�
6

√
)> k(4 − .2

�
6

√
) + 5 − 2

�
6

√
. (87)

In summary, the system is stable when the following
inequalities are satisfied:

αk< k + 1,

5αk< 4k + 5,

αk(5 − 2
�
6

√
)> k(4 − .2

�
6

√
) + 5 − 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(88)

Combining expressions (85) and (88), a stable equi-
librium point exists in realization 2, and the following
equations are satisfied:

αk< k + 1,

5αk< 4k + 5.
 (89)

Case 1: when k> 0, expression (89) can be simplified to

α<
k + 1

k
,

α<
4k + 5
5k

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(90)

When k> 0, it is easy to know that ((4k + 5)/5k)> 0 and
((k + 1)/k)> 0, and it is clear that ((k + 1)/k) − ((4k +

5)/5k)> 0 and 0< ((4k + 5)/5k)< ((k + 1)/k). 'ere-
fore, from expression (90), when k> 0, we know that
0< α< ((4k + 5)/5k).
Case 2: when k< 0, expression (89) can be simplified to

α>
k + 1

k
,

α>
4k + 5
5k

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(91)

It is clear that ((k + 1)/k) − ((4k + 5)/5k)> 0 and
((4k + 5)/5k)< ((k + 1)/k). Owing to α> 0, when
− 1< k< 0, it clear that ((k + 1)/k)< 0. 'erefore,
from expression (91), when − 1< k< 0, we know that
α> 0.
When k< − 1, it clear that ((k + 1)/k)> 0. 'erefore,
from expression (91), when k< − 1, we know that
α> ((k + 1)/k).
In conclusion, we can obtain following several cases:
Case 1: k> 0 and 0< α< ((4k + 5)/5k)

Case 2: − 1< k< 0 and α> 0
Case 3: k< − 1 and α> ((k + 1)/k)

(3) An unstable equilibrium point exists in realization 1
(3.1)Assuming characteristic roots are all real and at
least one is a positive
As long as one characteristic root is greater than 0,
the equilibrium point of the system is unstable.
Owing to k+ 1 − αk> 0, λ1 and λ2 are always less than
0 and only λ3 or λ4 are greater than 0. According to
Vieta theorem, it is known that c> 0, and owing to
k+ 1 − αk> 0, from equation (78), if 4k+ 5 − 5αk< 0,
we have − b> 0, then λ3,4> 0.
In this case, the number in the left absolute value sign
of expression (80) is less than zero, right absolute
value sign of expression (80) is greater than zero, and
the absolute value signs are removed; expression (92)
can be derived as follows:

5αk − 5 − 4k> 2
�
6

√
(k + 1 − αk). (92)

From expression (92), we can obtain

αk(5 + 2
�
6

√
)> k(4 + 2

�
6

√
) + 5 + 2

�
6

√
. (93)

In summary, λ1 and λ2 are less than 0 and λ3 and λ4
greater than 0. 'e system equilibrium point is the
saddle point of index 2, when the following inequalities
are satisfied:

αk< k + 1,

5αk> 4k + 5,

αk(5 + 2
�
6

√
)> k(4 + 2

�
6

√
) + 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(94)

It is easy to know that for any k, ((k(4 + 2
�
6

√
) + 5 +

2
�
6

√
)/k(5 + 2

�
6

√
)) − ((k + 1)/k)< 0 and ((4k+

5)/5k) − ((k(4 + 2
�
6

√
) + 5 + 2

�
6

√
)/k(5 + 2

�
6

√
))< 0,

so we have ((4k + 5)/5k)< ((k(4 + 2
�
6

√
) + 5+

2
�
6

√
)/k(5 + 2

�
6

√
))< ((k + 1)/k).We discuss following

several cases:
Case 1: when k> 0, expression (94) is simplified as
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α<
k + 1

k
,

α>
4k + 5
5k

,

α>
k(4 + 2

�
6

√
) + 5 + 2

�
6

√

k(5 + 2
�
6

√
)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(95)

'erefore, when k> 0, we have ((k(4+

2.
�
6

√
) + 5 + 2

�
6

√
)/k(5 + 2

�
6

√
))< α< ((1 + k) /k).

Case 2: when k< 0, expression (94) is simplified as

α>
k + 1

k
,

α<
4k + 5
5k

,

α<
k(4 + 2

�
6

√
) + 5 + 2

�
6

√

k(5 + 2
�
6

√
)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(96)

'erefore, when k< 0, α does not exist.
In conclusion, we can obtain following several cases:
Case 1: k> 0 and ((k(4 + 2

�
6

√
) + 5+ 2

�
6

√
)/k

(5 + 2
�
6

√
)) < α< ((1 + k)/k)

Case 2: k< 0 and α does not exist
If k and α satisfy above relation, the system equilibrium
point is the saddle point of index 2, which is unstable.
(3.2) Assuming two negative real roots and two con-
jugate complex roots
In this case, the four characteristic roots behave as
λ1 � c1 � λ2 � c2 and λ3,4 � σ3,4± jω3,4, where λ1 and λ2
are two negative real roots and λ3 and λ4 are two
conjugate complex roots.
Owing to λ1 and λ2 are always less than 0, when σ3 and
σ4 are greater than 0, the equilibrium point of the
system is unstable and it is the saddle-focus point of
index 2. From (77), we know σ3,4 � − b/2. To make
σ3,4> 0, we have − b> 0. From equation (78), it is known
that 4α − 5 + 5αk< 0.
In this case, the absolute value sign in expression (81)
can be removed; therefore, the following expression
(97) can be obtained:

5αk − 5 − 4k< 2
�
6

√
(k + 1 − αk). (97)

From expression (97), we can obtain that

αk(5 + 2
�
6

√
)< k(4 + 2

�
6

√
) + 5 + 2

�
6

√
. (98)

In summary, λ1 and λ2 are less than 0 and σ3 and σ4 are
greater than 0; the system equilibrium point is unstable
and it is the saddle-focus point of index 2 when the
following inequalities are satisfied:

αk< k + 1,

5αk> 4k + 5,

αk(5 + 2
�
6

√
)< k(4 + 2

�
6

√
) + 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(99)

By referring the classification results of expression (94),
we can obtain the following several cases:
Case 1: k> 0 and ((4k + 5)/5k)< α< ((k(4 + 2.

�
6

√
) +

5 + 2
�
6

√
)/k(5 + 2

�
6

√
))

Case 2: k< 0 and α does not exist
If k and α satisfy above relation, the system equilibrium
point is the saddle-focus point of index 2, which is
unstable.

In brief, for the scenario of the heat source in the left and
right sides both are positive (k> 0), from the above dis-
cussion, we can form a criterion shown in Table 1 to de-
termine the stability of the system shown in Figure 1 when K
is fixed, α is the control parameter, and k> 0. According to
the values of α in Table 1, we can know whether there is an
equilibrium point and the equilibrium point is stable or not.

We compared Table 1 with the part k>0 of Table 1 in [35].
From these two tables, we can know that the results (whether the
equilibrium point is stable or not) are roughly the same as those
of [35]. However, our results aremore specific andmore detailed
when the equilibrium points are unstable. In the unstable
equilibrium point interval corresponding [35], we obtain two
different subintervals corresponding to the saddle point of index
2 and the saddle focal equilibrium point of index 2, respectively.
'is is because our model has four characteristic roots and only
two in [35]. 'e brief description is as follows. 'e equilibrium
point is unstable in realization 1, when α is in the interval of
((1/(1 + k)), (5/(5k + 4))), and this interval can be divided
into two parts, namely, α ∈ ((1/(k + 1)), ((5 + 2

�
6

√
)/

(k(5 + 2
�
6

√
) + 4 + 2

�
6

√
))), where the unstable equilibrium

point is the saddle point of index 2 and α ∈ (((5 + 2
�
6

√
)/

(k(5 + 2
�
6

√
) + 4 + 2

�
6

√
)), (5/(5k + 4))), where the unstable

equilibrium point is the saddle-focus point of index 2. 'e
equilibrium point is unstable in realization 2, when α is in the
interval of (((4k + 5)/5k), ((k + 1)/k)), and we divide this
interval into two parts, namely, α ∈ (((4k + 5)/5k),

((k(4 + 2
�
6

√
) + 5 + 2

�
6

√
)/k(5 + 2

�
6

√
))), where the unstable

equilibrium point is the saddle point of index 2 and
α ∈ (((k(4 + 2

�
6

√
) + 5 + 2

�
6

√
)/(k(5 + 2

�
6

√
))), ((k + 1)/k)),

where the unstable equilibrium point the saddle-focus point of
index 2.
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For the scenario of the heat source in the left is positive
and the right is negative (k< 0), from the above discussion,
we can form a criterion as shown in Table 2 to determine the
stability of the system shown in Figure 1 when K is fixed, α is
the control parameter, and k< 0. According to the values of
α in Table 2, we can know whether there is an equilibrium
point and the equilibrium point is stable or not.

We compared Table 2 with the part k< 0 of Table 1 in
[35]. From these two tables, we can know the results
(whether the equilibrium point is stable or not) are roughly
the same as those in [35]. However, similarly, our results are
more specific andmore detailed when the equilibrium points
are unstable. In the unstable equilibrium interval corre-
sponding to literature [35], we obtain two different subin-
tervals corresponding to the saddle point of index 2 and the
saddle focal equilibrium point of index 2, respectively.'is is
because our model has four characteristic roots and only two
in [35].

2.3.2. Stability Analysis for Scenario 2 (α Is Fixed and k Is
Control Parameter)

(1) Stability Analysis for Realization 1 (α Is Fixed and k Is
Control Parameter). In this scenario, the characteristic
equation is the same as that of scenario 1.

(1) No equilibrium point exists in realization 1
In point (1) of Section 2.3.1, we already know that no
equilibrium point exists in realization 1, when the
following inequalities (equation (42) in Section 2.3.1)
are satisfied:

αk − 1 + α< 0. (100)

'erefore, from expression (98), when α> 0, it is
clear that k< ((1 − α)/α).

(2) A stable equilibrium point exists in realization 1
In point (2) of Section 2.3.1, we already know that the
system was stable, when the following inequalities
(expression (49) in Section 2.3.1) are satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5> 0.
 (101)

Taking out the coefficient k of expression (101), we can
obtain expression (102):

kα> 1 − α,

5kα> 5 − 4α.
 (102)

Owing to α> 0, expression (102) are simplified as

k>
1 − α
α

,

k>
5 − 4α
5α

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(103)

Owing to α> 0, it is clear that ((5 − 4α)/5α) − ((1 −

α)/α)> 0 and ((5 − 4α)/5α)> ((1 − α)/α); therefore,
from expression (101), when α> 0, we know that
((5 − 4α)/5α)< k.

(3) An unstable equilibrium point exists in realization 1
(3.1) Assuming characteristic roots are all real and at
least one is a positive
In point (3.1) of Section 2.3.1, we already know that
the equilibrium point of the system is unstable and it
is the saddle point of index 2, when the following
inequalities (expression (55) in Section 2.3.1) are
satisfied:

αk + α − 1> 0,

5αk + 4α − 5< 0,

α[k(2
�
6

√
+ 5) + 2

�
6

√
+ 4]< 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(104)

Taking out the coefficient k of expression (104), we can
obtain the following expression:

kα> 1 − α,

5kα< 5 − 4α,

(5 + 2
�
6

√
)kα< 5 + 2

�
6

√
− α(4 + 2

�
6

√
).

⎧⎪⎪⎨

⎪⎪⎩
(105)

Owing to α> 0, expression (105) is simplified:

Table 1: Criterion for scenario 1 ((k is fixed, α is control parameter, and k> 0).

k α Realization 1 Realization 2

(0, +∞)

(0, (1/(k + 1))) No Stable
((1/(k + 1)), ((5 + 2

�
6

√
)/(k(5 + 2

�
6

√
) + 4 + 2

�
6

√
))) Saddle point of index 2 Stable

(((5 + 2
�
6

√
)/(k(5 + 2

�
6

√
) + 4 + 2

�
6

√
)), (5/(5k + 4))) Saddle-focus point of index 2 Stable

((5/(5k + 4)), ((4k + 5)/5k)) Stable Stable
(((4k + 5)/5k), ((k(4 + 2

�
6

√
) + 5 + 2

�
6

√
)/k(5 + 2

�
6

√
))) Stable Saddle-focus point of index 2

(((k(4 + 2
�
6

√
) + 5 + 2

�
6

√
)/k(5 + 2

�
6

√
)), ((k + 1)/k)) Stable Saddle point of index 2

(((k + 1)/k), +∞) Stable No
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k>
1 − α
α

,

k<
5 − 4α
5α

,

k<
5 + 2

�
6

√
− α(4 + 2

�
6

√
)

(5 + 2
�
6

√
)α

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(106)

It is easy to know that, for any α> 0, ((1 − α)/α) − ((5 +

2
�
6

√
− α(4 + 2

�
6

√
))/(α(5 + 2

�
6

√
)))< 0 and ((5+

2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
))− ((5 − 4α)/5α)< 0,

so we have ((1 − α)/α)< ((5 + 2
�
6

√
− α(4+

2
�
6

√
))/α(5 + 2

�
6

√
))< ((5 − 4α)/5α). 'erefore, from

expression (106), it can be known that, when α> 0, we
know that ((1 − α)/α)< k< ((5 + 2

�
6

√
− α(4+

2
�
6

√
))/α(5 + 2

�
6

√
)).

If α and k satisfy above relation, the system equilibrium
point is the saddle point of index 2, which is unstable.
(3.2) Assuming two negative real roots and two con-
jugate complex roots
In point (3.2) of Section 2.3.1, we already know that the
equilibrium point of the system is unstable and it is the
saddle-focus point of index 2, when the following in-
equalities (expression (62) in Section 2.3.1) are satisfied:

α(k + 1) − 1> 0,

α(5k + 4) − 5< 0,

α[k(5 + 2
�
6

√
) + 4 + 2

�
6

√
]> 2

�
6

√
+ 5.

⎧⎪⎪⎨

⎪⎪⎩
(107)

Taking out the coefficient k of expression (107), we can
obtain the following expression:

kα> 1 − α,

5kα< 5 − 4α,

(5 + 2
�
6

√
)kα> 5 + 2

�
6

√
− α(4 + 2

�
6

√
).

⎧⎪⎪⎨

⎪⎪⎩
(108)

Owing to α> 0, expression (108) is simplified:

k>
1 − α
α

,

k<
5 − 4α
5α

,

k>
5 + 2

�
6

√
− α(4 + 2

�
6

√
)

(5 + 2
�
6

√
)α

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(109)

By referring the solution procedure of expression (104),
we can obtain the following result. When α> 0, we
know that ((5 + 2

�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
))<

k< ((5 − 4α)/5α).
If α and k satisfy the above relation, the system equi-
librium point is the saddle-focus point of index 2,
which is unstable.

(2) Stability Analysis for Realization 2 (α Is Fixed, k Is Control
Parameter)

(1) No equilibrium point exists in realization 2
In point (1) of (4) of Section 2.3.1, we already know
that no equilibrium point exists in realization 2,
when the following inequalities (expression (82) in
Section 2.3.1) are satisfied:

k + 1 − αk< 0. (110)

'erefore, from expression (110), when 0< α< 1, it is
clear that k< (1/(α − 1)) and when α> 1, we know
that k> (1/(α − 1)).

(2) A stable equilibrium point exists in realization 2
In point (2) of (4) of Section 2.3.1, we already know
that the system was stable, when the following in-
equalities (expression (89) in (4) of Section 2.3.1) are
satisfied:

αk< k + 1,

5αk< 4k + 5.
 (111)

Taking out the coefficient k of expression (111), we
can obtain the following expression:

Table 2: Criterion for scenario 1 (k is fixed, α is control parameter and k< 0).

k α Realization 1 Realization 2

(− (4/5), 0)

(0, (1/(k + 1))) No Stable
((1/(k + 1)), ((2

�
6

√
+ 5)/(k(2

�
6

√
+ 5) + 2

�
6

√
+ 4))) Saddle point of index 2 Stable

(((2
�
6

√
+ 5)/(k(2

�
6

√
+ 5) + 2

�
6

√
+ 4)), (5/(5k + 4))) Saddle-focus point of index 2 Stable

((5/(5k + 4)), +∞) Stable Stable

(((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)), − (4/5))

(0, (1/(k + 1))) No Stable
((1/(k + 1)), ((5 + 2

�
6

√
)/(k(5 + 2

�
6

√
) + 4 + 2

�
6

√
))) Saddle point of index 2 Stable

(((5 + 2
�
6

√
)/(k(5 + 2

�
6

√
) + 4 + 2

�
6

√
)), +∞) Saddle-focus point of index 2 Stable

(− 1, ((− 2
�
6

√
− 4)/(2

�
6

√
+ 5)))

(0, (1/(k + 1))) No Stable
((1/(k + 1)), +∞) Saddle point of index 2 Stable

(− ∞, − 1)
(0, ((1 + k)/k)) No No

(((1 + k)/k), +∞) No Stable
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k(α − 1)< 1,

k(5α − 4)< 5.
 (112)

Case 1: when α> 1, it is easy to know that α − 1> 0 and
5α − 4> 0, and then expression (112) can be simplified
to

k<
1

α − 1
,

k<
5

5α − 4
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(113)

From α − 1> 0 and 5α − 4> 0, it is clear that
(5/(5α − 4)) − (1/(α − 1))< 0 and 0< (5/(5α−

4))< (1/(α − 1)). 'erefore, from expression (113),
when α> 1, we know that k< (− 5/(4 − 5α)).
Case 2: when (4/5)< α< 1, it is easy to know that
α − 1< 0 and 5α − 4> 0; then expression (112) can be
simplified to

k>
1

α − 1
,

k<
5

5α − 4
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(114)

From α − 1< 0 and 5α − 4> 0, it is clear that
(5/(5α − 4)) − (1/(α − 1))> 0, (1/(α − 1))< 0 and
0< (5/(5α − 4)). 'erefore, from expression (112),
when (4/5)< α< 1, we know that (1/(α − 1))<
k< (5/(5α − 4)).
Case 3: when 0< α< (4/5), it is easy to know that
α − 1< 0 and 5α − 4< 0, then expression (112) can be
simplified to

k>
1

α − 1
,

k>
5

5α − 4
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(115)

From α − 1< 0 and 5α − 4< 0, it is clear that
(5/(5α − 4)) − (1/(α − 1))< 0 and (5/(5α − 4))<
(1/(α − 1))< 0, 'erefore, from expression (115),
when 0< α< (4/5), we know that (1/(α − 1))< k. In
conclusion, we can obtain following several cases:
Case 1: α> 1 and k< (− 5/(4 − 5α))

Case 2: (4/5)< α< 1 and (1/(α − 1))< k<
(5/(5α − 4))

Case 3: 0< α< (4/5) and (1/(α − 1))< k

(3) An unstable equilibrium point exists in realization 2

(3.1) Assuming characteristic roots are all real and at
least one is a positive
In point (3.1) of Section 2.3.1, we already know that
the equilibrium point of the system is unstable and it
is the saddle point of index 2, when the following
inequalities (expression (94) in Section 2.3.1) are
satisfied:

αk< k + 1,

5αk> 4k + 5,

αk(5 + 2
�
6

√
)> k(4 + 2

�
6

√
) + 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(116)

Taking out the coefficient k of expression (116), we can
obtain the following expression:

k(1 − α) + 1> 0,

k(4 − 5α) + 5< 0,

k[α(5 + 2
�
6

√
) +(− 2

�
6

√
− 4)]> 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(117)

Firstly, we consider the coefficient of k on the left side of
third inequality in expression (117) is greater than 0,
namely, α(5 + 2

�
6

√
) + (− 2

�
6

√
− 4)> 0, and we can

obtain α> ((4 + 2
�
6

√
)/(5 + 2

�
6

√
)). 'en, we consider

the coefficient of α on the left side of third inequality in
(117) is less than 0, namely, α(5 + 2

�
6

√
) +

(− 2
�
6

√
− 4)< 0, and we can obtain α< ((4+

2
�
6

√
)/(5 + 2

�
6

√
)). It is easy to know that

0< (4/5)< ((4 + 2
�
6

√
)/(5 + 2

�
6

√
))< 1. We discuss

following several cases:
Case 1: when ((4 + 2

�
6

√
)/(5 + 2

�
6

√
))< α< 1, owing to

0< (4/5)< ((4 + 2
�
6

√
)/(5 + 2

�
6

√
))< 1, it is easy to

know that 4 − 5α< 0, 1 − α> 0, and α(5+

2
�
6

√
) + (− 2

�
6

√
− 4)> 0; equation (117) is simplified as

k>
− 1
1 − α

,

k>
− 5

4 − 5α
,

k>
5 + 2

�
6

√

α(5 + 2
�
6

√
) − 4 − 2

�
6

√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(118)

From 4 − 5α< 0, 1 − α> 0, and α(5 + 2
�
6

√
) + (− 2

�
6

√

− 4)> 0, it is clear that (− 1/(1 − α))− (− 5/(4 − 5α))< 0,
(− 5/(4 − 5α)) − ((5 + 2

�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))

< 0, and (− 1/(1 − α))< (− 5/(4 − 5α))< ((5 + 2
�
6

√
)/

(α(5 + 2
�
6

√
) − 4 − 2

�
6

√
)). 'erefore, when ((4 + 2�

6
√

)/(5 + 2
�
6

√
))< α< 1, we know that k> ((5 + 2

�
6

√
)/

(α(5 + 2
�
6

√
) − 4 − 2

�
6

√
)).

Case 2: when α> 1, owing to 0< (4/5)< ((4 + 2
�
6

√
)/

(5 + 2
�
6

√
))< 1, it is easy to know that 4 − 5α< 0,
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1 − α< 0, and α(5 + 2
�
6

√
) + (− 2

�
6

√
− 4)> 0; expres-

sion (117) is simplified as

k<
− 1
1 − α

,

k>
− 5

4 − 5α
,

k>
5 + 2

�
6

√

α(5 + 2
�
6

√
) − 4 − 2

�
6

√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(119)

From 4 − 5α< 0, 1 − α< 0, and α(5 + 2
�
6

√
) + (− 2

�
6

√

− 4)> 0, it is clear that (− 5/(4 − 5α)) − ((5 + 2
�
6

√
)/(α

(5 + 2
�
6

√
) − 4 − 2

�
6

√
))< 0, ((5 + 2

�
6

√
)/ (α(5 + 2

�
6

√
)

− 4 − 2
�
6

√
)) − (− 1/(1 − α))< 0, and (− 5/(4 − 5α))<

((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4− 2

�
6

√
)) < (− 1/(1 − α)).

'erefore, when α> 1, we know that ((5 + 2
�
6

√
)/

(α(5 + 2
�
6

√
) − 4 − 2

�
6

√
)) < k< (− 1/(1 − α)).

Case 3: when (4/5)< α< ((4 + 2
�
6

√
)/(5 + 2

�
6

√
)), ow-

ing to 0< (4/5)< ((4 + 2
�
6

√
)/(5 + 2

�
6

√
))< 1, it is easy

to know that 4 − 5α< 0, 1 − α> 0, and
α(5 + 2

�
6

√
) + (− 2

�
6

√
− 4)< 0; expression (117) are

simplified as

k>
− 1
1 − α

,

k>
− 5

4 − 5α
,

k<
5 + 2

�
6

√

α(5 + 2
�
6

√
) − 4 − 2

�
6

√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(120)

From 4 − 5α< 0, 1 − α> 0, and α(5 + 2
�
6

√
) +

(− 2
�
6

√
− 4)< 0, it is clear that ((5 + 2

�
6

√
)/

(α(5 + 2
�
6

√
) − 4 − 2

�
6

√
)) − (− 1/(1 − α)) < 0, (− 1/(1−

α)) − (− 5/(4 − 5α))< 0 0< (− 5/(4 − 5α)), and
((5 + 2

�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))< (− 1/(1 − α))

< 0. 'erefore, when (4/5)< α< ((4 + 2
�
6

√
)/

(5 + 2
�
6

√
)), we know that k does not exist.

Case 4: when 0< α< (4/5), owing to 0< (4/5)<
((4 + 2

�
6

√
)/(5 + 2

�
6

√
))< 1, it is easy to know that

4 − 5α> 0, 1 − α> 0, and α(5 + 2
�
6

√
) + (− 2

�
6

√
− 4)< 0;

expression (117) is simplified as

k>
− 1
1 − α

,

k<
− 5

4 − 5α
,

k<
5 + 2

�
6

√

α(5 + 2
�
6

√
) − 4 − 2

�
6

√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(121)

From 4 − 5α> 0, 1 − α> 0, and α(5 + 2
�
6

√
) + (− 2

�
6

√

− 4)< 0, it is clear that (− 5/(4 − 5α)) − ((5 + 2
�
6

√
)/

(α(5 + 2
�
6

√
) − 4 − 2

�
6

√
))< 0, ((5 + 2

�
6

√
)/(α(5 + 2�

6
√

) − 4 − 2
�
6

√
)) − (− 1/(1 − α))< 0, and (− 5/(4−

5α))< ((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))< (− 1/(1

− α))< 0. 'erefore, when 0< α< (4/5), we know that k
does not exist.
From what has been discussed above, we can obtain
following relations between α and k.
Case 1: ((4 + 2

�
6

√
)/(5 + 2

�
6

√
))< α< 1 and k> ((5+

2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))

Case 2: α> 1 and ((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 −

2
�
6

√
))< k< (− 1/(1 − α))

Case 3: 0< α< (4/5) and k does not exist.
Case 4: (4/5)< α< ((4 + 2

�
6

√
)/(5 + 2

�
6

√
)) and k does

not exist.
If α and k satisfy above relation, the system equilibrium
point is the saddle point of index 2, which is unstable.
(3.2) Assuming two negative real roots and two con-
jugate complex roots
In point (3.2) of Section 2.3.1, we already know that
the equilibrium point of the system is unstable and it is
the saddle-focus point of index 2, when the following
inequalities (expression (96) in Section 2.3.1) are
satisfied:

αk< k + 1,

5αk> 4k + 5,

αk(5 + 2
�
6

√
)< k(4 + 2

�
6

√
) + 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(122)

Taking out the coefficient k of expression (122), we can
obtain the following expression:

k(1 − α) + 1> 0,

k(4 − 5α) + 5< 0,

k[α(5 + 2
�
6

√
) +(− 2

�
6

√
− 4)]< 5 + 2

�
6

√
.

⎧⎪⎪⎨

⎪⎪⎩
(123)

By referring the classification results of expression
(117), we can obtain the following several cases:
Case 1:((4 + 2

�
6

√
)/(5 + 2

�
6

√
))< α< 1 and (− 5/(4 −

5α))< k< ((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))

Case 2: α> 1 and (− 5/(4 − 5α))< k< ((5 + 2�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))

Case 3: 0< α< (4/5) and k does not exist
Case 4: (4/5)< α< ((4 + 2

�
6

√
)/(5 + 2

�
6

√
)) and

k> (− 5/(4 − 5α))

If k and α satisfy above relation, the system equilibrium
point is the saddle-focus point of index 2, which is
unstable.
In brief, for the scenario 2, α can be discussed
in the following sections: 0< α< (4/5), (4/5)< α<
((4 + 2

�
6

√
)/(5 + 2

�
6

√
)), and ((4 + 2

�
6

√
)/(5 + 2

�
6

√
))

< α< 1 and 1< α.

From the above discussion, we can form a criterion
shown in Table 3 to determine the stability of the system
shown in Figure 1; when α is fixed, k is the control pa-
rameter. According to the values of k in Table 3, we can know
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whether there is an equilibrium point and the equilibrium
point is stable or not.

We compared Table 3 with Table 2 in [35]. From these
two tables, we can know the results (whether the equilibrium
point is stable or not) are roughly the same as those in [35].
However, our results are more specific and more detailed
when the equilibrium points are unstable. In the unstable
equilibrium point interval corresponding to [35], we can
obtain two different subintervals corresponding to the
saddle point of index 2 and the saddle focal equilibrium
point of index 2, respectively. 'is is because our model has
four characteristic roots and only two in [35].

2.3.3. Stability Analysis for Scenario 3 (One Heat Sink and
One Heat Source). For realization 1, the heat at the bottom
releases to the right side. 'erefore, we can obtain following
equations:

f1 �
dΔT1

dτ
� − n

����������
αΔT2 − ΔT1


ΔT1 − ΔT3( , (124)

f2 �
dΔT2

dτ
� − n

����������
αΔT2 − ΔT1


ΔT2 − ΔT1(  + E1, (125)

f3 �
dΔT3

dτ
� − ξn

����������
αΔT2 − ΔT1


ΔT3, (126)

f4 �
dΔT4

dτ
� − ξn

����������
αΔT2 − ΔT1


ΔT4 − ΔT2( . (127)

For realization 2, the heat at the bottom releases to zone
1. 'erefore,

f1 �
dΔT1

dτ
� − n

����������
ΔT1 − αΔT2


ΔT1 − ΔT2(  + E1, (128)

f2 �
dΔT2

dτ
� − n

����������
ΔT1 − αΔT2


ΔT2 − ΔT4( , (129)

Table 3: Criterion for scenario 2 (α is fixed and k is control parameter).

α k Realization 1 Realization 2

(0, (4/5))

(− ∞, (− 1/(1 − α))) No No
((− 1/(1 − α)), ((5 − 2

�
6

√
)/(α(5 − 2

�
6

√
) + (2

�
6

√
− 4)))) No Stable

(((5 − 2
�
6

√
)/(α(5 − 2

�
6

√
) + (2

�
6

√
− 4))), ((1 − α)/α)) No Stable

(((1 − α)/α), ((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)))

Saddle point of index
2 Stable

(((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)), ((5 − 4α)/5α))

Saddle-focus point of
index 2 Stable

(((5 − 4α)/5α), +∞) Stable Stable

((4/5), ((4 + 2
�
6

√
)/(5 + 2

�
6

√
)))

(− ∞, (− 1/(1 − α))) No No
((− 1/(1 − α)), ((1 − α)/α)) No Stable

(((1 − α)/α), ((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)))

Saddle point of index
2 Stable

(((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)), ((5 − 4α)/5α))

Saddle-focus point of
index 2 Stable

(((5 − 4α)/5α), ((4 − 5α)/− 5)) Stable Stable

((− 5/(4 − 5α)), +∞) Stable Saddle-focus point of
index 2

(((4 + 2
�
6

√
)/(5 + 2

�
6

√
)), 1)

(− ∞, (− 1/(1 − α))) No No
((− 1/(1 − α)), ((1 − α)/α)) No Stable

(((1 − α)/α), ((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)))

Saddle point of index
2 Stable

(((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)), ((5 − 4α)/5α))

Saddle-focus point of
index 2 Stable

(((5 − 4α)/5α), (− 5/(4 − 5α))) Stable Stable

((− 5/(4 − 5α)), ((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))) Stable Saddle-focus point of

index 2

(((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
)), +∞) Stable Saddle point of index

2

(1, +∞)

(− ∞, ((1 − α)/α)) No Stable

(((1 − α)/α), ((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)))

Saddle point of index
2 Stable

(((5 + 2
�
6

√
− α(4 + 2

�
6

√
))/α(5 + 2

�
6

√
)), ((5 − 4α)/5α))

Saddle-focus point of
index 2 Stable

(((5 − 4α)/5α), (− 5/(4 − 5α))) Stable Stable

((− 5/(4 − 5α)), ((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
))) Stable Saddle-focus point of

index 2

(((5 + 2
�
6

√
)/(α(5 + 2

�
6

√
) − 4 − 2

�
6

√
)), (− 1/(1 − α))) Stable Saddle point of index

2
((− 1/(1 − α)), +∞) Stable No
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f3 �
dΔT3

dτ
� − ξn

����������
ΔT1 − αΔT2


ΔT3 − ΔT1( , (130)

f4 �
dΔT4

dτ
� − ξn

����������
ΔT1 − αΔT2


ΔT4. (131)

(1) Stability Analysis for Realization 1. 'e steady state so-
lution (equilibrium points) of realization 1 with equations
(124)∼(127) is denoted as (ΔT01,ΔT02,ΔT03,ΔT04); in order
to solve the equilibrium points, we can make that the right
sides of equations (124)∼(127) equal to zero; the following
equations hold:

− n
����������
αΔT2 − ΔT1


ΔT1 − ΔT3(  � 0, (132)

− n
����������
αΔT2 − ΔT1


ΔT2 − ΔT1(  + E1 � 0, (133)

− ξn
����������
αΔT2 − ΔT1


ΔT3 � 0, (134)

− ξn
����������
αΔT2 − ΔT1


ΔT4 − ΔT2(  � 0. (135)

By solving equations (132)∼(135), we can obtain the
value of equilibrium points as follows:

ΔT01 � ΔT03 � 0, (136)

ΔT02 � ΔT04 �
E2/3
1

n2/3α1/3
. (137)

According to the characteristic determinant equal to 0,
the solution of the differential equation can be discussed.'e
characteristic determinant equation is that

|J(Q) − λE| �

zf1

zΔT1
− λ

zf1

zΔT2

zf1

zΔT3

zf1

zΔT4

zf2

zΔT1

zf2

zΔT2
− λ

zf2

zΔT3

zf2

zΔT4

zf3

zΔT1

zf3

zΔT2

zf3

zΔT3
− λ

zf3

zΔT4

zf4

zΔT1

zf4

zΔT2

zf4

zΔT3

zf4

zΔT4
− λ





� 0.

(138)

Combining equations (124)∼(127), we can obtain the
following expression:

n ΔT01 − ΔT03( 

2A
− nA − λ −

nα ΔT01 − ΔT03( 

2A
nA 0

n ΔT02 − ΔT01( 

2A
+ nA −

nα ΔT02 − ΔT01( 

2A
− nA − λ 0 0

ξnΔT03

2A
−
ξnαΔT03

2A
− ξnA − λ 0

ξn ΔT04 − ΔT02( 

2A
−
ξnα ΔT04 − ΔT02( 

2A
+ ξnA 0 − ξnA − λ





� 0, (139)

A �
������������
αΔT02 − ΔT01


�
α1/3E1/3

1
n1/3 , (140)

B � ΔT01 − ΔT03 � 0, (141)

C � ΔT02 − ΔT01 �
E2/3
1

n2/3α1/3
. (142)

Combining equations (139)∼(142), we can obtain
characteristic root as follows:

λ1 � λ2 � − ξnA � − ξn
������������
αΔT02 − ΔT01


� − ξn

2/3
E
1/3
1 α1/3.

(143)

Two other eigenvalues can be obtained according to the
quadratic formula:

λ3,4 �
− b ±

�������
b2 − 4ac

√

2a
�

− (nαC/2A) − 2nA ±
��������������������������������

[(nαC/2A) + 2nA]2 − 4n2 (αC/2) + A2[ ]



2
, (144)
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where

a � 1,

b �
nαC

2A
+ 2nA �

3n2/3E1/3
1 α1/3

2
,

c � n2 αC

2
+ A

2
  �

3E2/3
1 α2/3n4/3

2
,

Δ � b2 − 4ac �
9n4/3E2/3

1 α2/3

4
− 6E

2/3
1 α2/3n4/3

� −
15n4/3E2/3

1 α2/3

4
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(145)

It is easy to know that λ1,2 are always real number
λ1 � c1 � λ2 � c2. Owing to α> 0, E1> 0, and n> 0, from
equation (143), it is clear that λ1,2 are always less than 0.
From equation (145), we know that Δ< 0. Since the dis-
criminantΔ< 0, we know that λ3 and λ4 are always conjugate
complex numbers λ3,4 � σ3,4± jω3,4. Hence, the stability re-
lated with λ3,4 is determined by the real part σ3,4. Owing to
α> 0, E1> 0, n> 0, from equations (144) and (145), we know
that σ3,4 � − b< 0. As a result, λ1, λ2, and σ3,4 are negative. It is
clear that the equilibrium point is stable in realization 1.

(2) Stability Analysis for Realization 2. 'e steady state
solution (equilibrium points) of realization 2 with equations
(127)∼(130) is denoted as (ΔT01,ΔT02,ΔT03,ΔT04). In order
to solve the equilibrium points, we can make that the right
sides of equations (127)∼(130) equal to zero; the following
equations hold:

− n
����������
ΔT1 − αΔT2


ΔT1 − ΔT2(  + E1 � 0, (146)

− n
����������
ΔT1 − αΔT2


ΔT2 − ΔT4(  � 0, (147)

− ξn
����������
ΔT1 − αΔT2


ΔT3 − ΔT1(  � 0, (148)

− ξn
����������
ΔT1 − αΔT2


ΔT4 � 0. (149)

By solving equations (146)∼(149), we can obtain the
value of equilibrium point as follows:

ΔT01 � ΔT03 �
E2/3
1

n2/3 , (150)

ΔT02 � ΔT04 � 0. (151)

According to the characteristic determinant equal to 0,
the solution of the differential equation can be discussed.'e
characteristic determinant equation is that

|J(Q) − λE| �

zf1

zΔT1
− λ

zf1

zΔT2

zf1

zΔT3

zf1

zΔT4

zf2

zΔT1

zf2

zΔT2
− λ

zf2

zΔT3

zf2

zΔT4

zf3

zΔT1

zf3

zΔT2

zf3

zΔT3
− λ

zf3

zΔT4

zf4

zΔT1

zf4

zΔT2

zf4

zΔT3

zf4

zΔT4
− λ





� 0.

(152)

Combining equations (128)∼(131), we can obtain the
following expression:

−
n ΔT01 − ΔT02( 

2A
− nA − λ

nα ΔT01 − ΔT02( 

2A
+ nA 0 0

−
n ΔT02 − ΔT04( 

2A

nα ΔT02 − ΔT04( 

2A
− nA − λ 0 nA

−
ξn ΔT03 − ΔT01( 

2A
+ ξnA

ξnα ΔT03 − ΔT01( 

2A
− ξnA − λ 0

−
ξnΔT04

2A

ξnαΔT04

2A
0 − ξnA − λ





� 0, (153)

A �
������������
ΔT01 − αΔT02


�

E1/3
1

n1/3 , (154)

B � ΔT01 − ΔT02 �
E2/3
1

n2/3 , (155)

C � ΔT02 − ΔT04 � 0. (156)
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Combining equations (153)∼(156), we can obtain
characteristic roots as follows:

λ1 � λ2 � − ξnA � − ξn
������������
ΔT01 − αΔT02


� − ξn

2/3
E
1/3
1 .

(157)

Two other eigenvalues can be obtained according to the
quadratic formula:

λ3,4 �
− b ±

�������
b2 − 4ac

√

2a
�

− (nB/2A) − 2nA ±
�����������������������������

[(nB/2A) + 2nA]2 − 4n2 (B/2) + A2[ ]



2
, (158)

where
a � 1,

b �
nB

2A
+ 2nA �

5n2/3E1/3
1

2
,

c � n2
B

2
+ A

2
  �

3n4/3E2/3
1

2
,

Δ � b2 − 4ac �
25n4/3E2/3

1
4

− 6n
4/3

E
2/3
1 �

n4/3E2/3
1

4
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(159)

It is easy to know that λ1,2 are always real number
λ1 � c1 � λ2 � c2. Owing to E1> 0 and n> 0, from equation
(157), we know that λ1,2 are always less than 0; from equation
(159), we know that Δ> 0, and thus λ3 and λ4 are always real
numbers λ3 � c3 and λ4 � c4. Combining equations (158) and
(159), we can obtain that λ3 � − n2/3E1/3

1 and
λ4 � − ((3n2/3E1/3

1 )/2). Owing to E1> 0 and n> 0, we can
know that λ3 and λ4 are less than 0. In conclusion, four
eigenvalues λ1, λ2, λ3, and λ4 are less than 0, and it is clear
that the equilibrium point is stable in realization 2.

In brief, for the scenario 3 of one heat source at the
bottom of the building, because the heat can enter either the
left or the right side, two steady states always exist for this
scenario. 'e parameter α will not affect the stability and
existence of solution of buoyancy ventilation of this building
configuration.

3. Model Validation

Reference [35] showed the comparison results with [34],
which is the literature studying the structure of one heat
source at the bottom with two adiabatic tunnels. In order to
verify the validity and accuracy of our model, similarly, we
compared the scenario 3 results with those of [34]. 'e
outdoor temperature is 288K, the air density 1.225 kg/m3,Cp
1.0 kJ/(kg·K), heat source 1 kW, H1 5.5m, H2 5.5m, S1+2+3+4
37.2933 kg− 1/m− 1, and gravity acceleration g 9.81m/s2.

'e comparison in temperature difference between the
proposed model and the validated results from [34] is il-
lustrated in Figure 2(a).'e comparison in flow rate between
the proposed model and the validated results from [34] is
illustrated in Figure 2(b). In [35], we know the maximum

relative error for the temperature difference is 13.2% and the
maximum relative error for the flow rate is 15.9%, when the
strength of the local heat source is 100W. While in our
results, the maximum relative error for the temperature
difference is 2.16% and the maximum relative error for the
flow rate is 3.23%. 'ese show that our results are closer to
the CFD simulation results in [34] than in [35], which means
that the proposed 4-zone model in our paper is more rea-
sonable than 2-zone model in [35].

Referring to method of [35], we rectify our model and
obtain the rectified results of temperature and flow rate.
Here, we give rectified results in zone 2 for the realization 1.
Tunnel H1 on the left remains unchanged to 5.5m, and
tunnel H2 on the right is subtracted from room height. In
order to compare with [34, 35], the height of the room is
0.5m, so after adjustment,H2 � 5m. After improvement, the
maximum relative error of flow rate is 1.0% and the max-
imum relative error of temperature is 1.58% when our re-
sults are compared with the ones in [34]. While in [35], the
maximum relative error of flow rate is 12.31% and the
maximum relative error of temperature is 10.39%.'erefore,
the results of the model we proposed are closer to the CFD
results of [34].

4. Representation of Phase Portraits

We compare the formation process of the system from
different initial conditions to the steady state under different
control parameter a by means of the vector field and phase
portrait. Based on the analysis of stability of equilibrium
points for scenario 1, we fix control parameter k to 10 and
four typical values of α are selected, which are 0.05, 0.5, 1,
and 2.Wemake phase portrait and vector field for scenario 1
(k> 0) through MATLAB, and the results are shown in
Figure 3. Figure 3(a) denotes the phase portrait and vector
field for k� 10 and α� 0.05 of realization 2; Figure 3(b)
denotes phase portrait and vector field for k� 10 and α� 0.5,
where the red point and blue point denote the equilibrium
point of realization 1 and realization 2, respectively.
Figures 3(c) and 3(d) display the vector field and phase
portrait of realization 1 and realization 2, respectively, when
the control parameter α is equal to 1. 'e red dot in
Figure 3(c) represents the stable equilibrium point of real-
ization 1, and the initial condition around the equilibrium
point converges to stable equilibrium point. 'e blue dot in
Figure 3(d) represents the unstable equilibrium point of
realization 2, and the initial condition around the unstable
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Figure 2: Modeled results validation. (a) Temperature comparison between the four-zone model and previous CFD results. (b) Mass flow
rates comparison between the four-zone model and previous CFD results (S1 indicates status1/realization 1; 1, 2, etc. indicates zone serial
number).
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Figure 3: Continued.
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equilibrium point forms the periodic motion. Figure 3(e)
denotes the phase portrait and vector field for k� 10 and
α� 2 of realization 1. In Figure 3(e), there is only one stable
equilibrium point of realization 1, and all different initial
states converge to the same steady state.

Based on the analysis of stability of equilibrium points
for scenario 1, we fix control parameter k to − 0.5, and three
typical values of α are selected, which are 1, 3, and 10. We
make phase portrait and vector field for scenario 1 (k< 0),
and the results are shown in Figure 4. Figure 4(a) denotes the

ΔT
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(e)

Figure 3: Phase portrait and vector field for scenario 1 (k> 0): (a) k� 10 and α� 0.05 of realization 2; (b) k� 10 and α� 0. 5, where the red
point and blue point denote the equilibrium point of realization 1 and realization 2, respectively; (c) k� 10 and α� 1 of realization 1; (d)
k� 10 and α� 1 of realization 2; (e) k� 10 and α� 2 of realization 1.
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Figure 4: Phase portrait and vector field for scenario 1 (k< 0). (a) k� − 0.5 and α� 1 of realization 2; (b) k� − 0.5 and α� 3, where the red dot
indicates the equilibrium point of realization 1 and the blue dot represents the equilibrium point of realization 2; (c) k� − 0.5 and α� 10,
where the red dot indicates the equilibrium point of realization 1 and the blue dot represents the equilibrium point of realization 2.
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Figure 5: Phase portrait and vector field for scenario 2. (a) α� 2 and k� − 1 of realization 2; (b) α� 2 and k� − 0.35 of realization 1; (c) α� 2 and
k� − 0.35 of realization 2; (d) α� 2 and k� 0.5, where the red dot indicates the equilibrium point of realization 1 and the blue dot represents the
equilibrium point of realization 2; (e) α� 2 and k� 0.85 of realization 1; (f) α� 2 and k� 0.85 of realization 2; (g) α� 2 and k� 2 of realization 1.
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phase portrait and vector field for k� − 0.5 and α� 1 of
realization 2. In Figure 4(a), only one stable equilibrium
point appeared, and all different initial states converge to the
same steady state. Figure 4(b) denotes the phase portrait and
vector field for k� − 0.5 and α� 3. In Figure 4(b), the red dot
represents the unstable equilibrium point of realization 1,
and the initial condition around the unstable equilibrium
point converges to periodic motion. And, the blue dot
represents stable equilibrium point of realization 2, and the
initial conditions around the stable equilibrium point
converge to the equilibrium point. Figure 4(c) denotes phase
portrait and vector field for k� − 0.5, α� 10. 'e red dot and
blue dot in Figure 4(c) represent the stable equilibrium point
of realization 1 and realization 2, respectively. 'e initial
condition around the red dot converges to the stable
equilibrium point of realization 1, and the initial condition
around the blue dot converges to the equilibrium point of
realization 2.

Based on the analysis of stability of equilibrium points
for scenario 2, we fixed control parameter α to 2, and five
typical values of k were selected, which were − 1, − 0.35, 0.5,
0.85, and 2. We make phase portrait and vector field for
scenario 2, and the results are shown in Figure 5. In
Figure 5(a), only one stable equilibrium point of realization 2
appeared, when k is equal to − 1, and all different initial states
converge to the same steady state. Figures 5(b) and 5(c)
display the vector field and phase portrait of realization 1
and realization 2, respectively, when the control parameter k
is equal to − 0.35. 'e red dot in Figure 5(b) represents the
unstable equilibrium point of realization 1, and the initial
condition around the unstable equilibrium point forms the
periodic motion. 'e blue dot in Figure 5(c) represents the
stable equilibrium point of realization 2, and the initial
condition around the equilibrium point converges to stable
equilibrium point. Figure 5(d) denotes the phase portrait
and vector field for α� 2 and k� 0.5, where the red dot
indicates the equilibrium point of realization 1 and the blue
dot represents the equilibrium point of realization 2.
Figures 5(e) and 5(f ) display the vector field and phase
portrait of realization 1 and realization 2, respectively, when
the control parameter k is equal to 0.85. 'e red dot in
Figure 5(e) represents the stable equilibrium point of re-
alization 1, and the initial condition around the equilibrium
point converges to stable equilibrium point. 'e blue dot in
Figure 5(f ) represents the unstable equilibrium point of
realization 2, and the initial condition around the unstable
equilibrium point forms the periodic motion. In Figure 5(g),
there is only one stable equilibrium point of realization 1,
and all different initial states converge to the same steady
state.

5. Conclusions

Nonlinear dynamical analysis was performed to study the
buoyancy ventilation of a typical four-zone underground
building. A new model with four zones that described the
buoyancy ventilation of the underground buildings was
proposed and validated by results from the previous studies.
'e new model contained four nonlinear ordinary

differential equations. 'e criteria for the stability and ex-
istence of equilibrium points were derivedmathematically in
detail about three different scenarios. 'e criterion for
scenario 1 (k was fixed and control α) is summarized in
Tables 1 and 2, which correspond k> 0 and k< 0, respec-
tively; the criterion for scenario 2 (α was fixed and control κ)
is summarized in Table 3. Two stable equilibrium points
existed in scenario 3 (one heat source at the bottom of the
building and control α). Finally, the phase portraits and
vector field diagrams obtained by applying the fourth-order
Runge–Kutta method are given.

Nomenclature

q1∼q4: Mass flow rate at zones 1∼4 (kg/s)
T1∼T4: Air temperature at zones 1∼4 (K)
Ta: Outdoor air temperature (K)
S1∼S4: Coefficient of mass flow impedance at zones

1∼4
M1∼M4: 'ermal mass at zones 1∼4 (kg)
E1: Total heat gain at zone 1 (kW)
E2: Total heat gain at zone 2 (kW)
Cp: Specific heat of air (kJ/(kg·K))
t: Time (s)
ξ: Mass ratio between zones 1 or 2 and

zones 3 or 4
g: Gravitational acceleration (m/s2)
H1: Height of zone 3 (left tunnel) (m)
H2: Height of zone 4 (right tunnel) (m)
k: Heat ratio between two zones E2/E1
ΔT1∼ΔT4: Temperature difference between indoor and

outdoor air at zones 1∼4 (°C)
α: Height ratio between two zones H2/H1
ΔT10∼ΔT40: Temperature difference between indoor and

outdoor air at zones 1∼4 in steady state (°C)
ρ0: Ambient air density (kg/m3)
J(Q): Jacobian matrix of equilibrium point Q
λ: Eigenvalue of coefficient matrix.
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Chaos theory has been proved to be of great significance in a series of critical applications although, until now, its applications in
analyzing soil respiration have not been addressed. 1is study aims to introduce a chaotic component in the control system of soil
respiration and explain control complexity of this nonlinear chaotic system. 1is also presents a theoretical framework for better
understanding chaotic components of soil respiration in arid land. A concept model of processes and mechanisms associated with
subterranean CO2 evolution are developed, and dynamics of the chaotic system is characterized as an extended Riccati equation.
Controls of soil respiration and kinetics of the chaotic system are interpreted and as a first attempt, control complexity of this
nonlinear chaotic system is tackled by introducing a period-regulator in partitioning components of soil respiration.

1. Introduction

Chaos is a kind of external, complex, and seemingly irregular
motion in the deterministic system due to randomness [1].
1e sensitivity of the chaotic system to the initial value
makes the input changes of the chaotic system be reflected in
the output rapidly, so the chaos theory provides a more
realistic nonlinear modeling method [2]. Chaos theory has
been proved to be of great significance in a series of critical
applications [3–6]. 1e basic idea of chaos theory with
complex nonlinear dynamics originated in the early 20th
century, formed in the 1960s, and developed more in the
1970s–1980s [7–10]. Chaos is a complex nonlinear dynamic

behavior.1is theory reveals the unity of order and disorder,
certainty, and randomness. It is regarded as the third most
creative revolution in the field of science in the 20th century
after relativity and quantum mechanics.

Because the chaos system can produce “unpredictable”
pseudo-random orbits, many research studies focus on the
related algorithms and performance analysis of constructing
pseudo-random number generators utilizing chaos systems.
For continuous chaotic systems, many chaotic pseudo-
random sequences have been proved to have excellent
statistical properties. However, until now, applications of
chaos theory in analyzing soil respiration have not been
addressed. It is necessary to introduce a chaotic component
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in the control system of soil respiration and explain control
complexity of this nonlinear chaotic system. In previous
studies, we have found that soil respiration (Rs) estimate in
arid regions should not have neglected the contribution of
abiotic exchange [11]. Neglecting the contribution of in-
organic component has resulted in overestimates of soil
respiration in arid regions, which partly explains the truth of
the well-known missing CO2 sink [12]. 1e inorganic
component of soil respiration (Rio) is therefore necessary to
be taken into account for a more reliable estimate of soil
respiration in arid regions [11, 12]. 1is study will further
reanalyze the concept, kinetics, and data of Rio and show that
it is a chaotic component of soil respiration in arid regions.

Objectives of this study are (1) to show that Rio is a
chaotic component of soil respiration in arid land and
present a theoretical framework for a better understanding
of this chaotic component, (2) to interpret the chaotic
system on controls of soil respiration and kinetics of the
chaotic system, and (3) to reduce the control complexity of
this nonlinear chaotic system by introducing a period
regulator.

2. Theory and Kinetics

2.1.AConceptModel. We hypothesize that the underground
CO2 assignment in arid and semiarid regions has been
regulated by a hidden loop in groundwater cycle. In brief,
groundwater discharge and recharge have regulated the
components of soil respiration. Based on this hypothesis,
subsurface CO2 transportation, dissolution, sequestration,
and other reassignment processes in the soil-groundwater
system are largely driven by precipitation, evaporation, ir-
rigation, dew deposition, etc. 1ese are hydrologic processes
associated with the chaotic component Rioof soil respiration.
Such processes regulate the storage and turnover rates of
inorganic carbon and its dissolvable part in the profile of
soils [11]. In arid regions with saline and sodic soils, apart
from precipitation in the form of rain or snow, dew and fog
also play a vital role in providing an essential source of water
for soil [13]. CO2 in soil can react with dew and then dissolve
carbonate or even migrate into saline aquifer [14, 15].

Influenced by the hidden loop, soil respiration in arid
regions is no longer a definite system. It becomes a nonlinear
chaotic system. In order to describe the nonlinear chaotic
system, the conceptual framework of known and unknown
processes associated with the hidden loop in groundwater
cycle, along with the possible mechanisms, is shown in
Figure 1.

2.2. Kinetics of the Control System. 1e hypothesized hidden
loop can explain particularity of CO2 assignment in arid and
semiarid regions. Differential, difference, and dynamic
equations are used for modeling many problems arising in
engineering and natural sciences [16, 17]. 1is suggests us to
develop a differential equation to describe the hypothetical
system kinetics. Since the absorbed CO2 is hypothetically
dissolved in saline aquifers, we characterized the dynamics
of CO2 concentration in the groundwater-soil system in

[18, 19] as a simple form of Riccati equation. Analytic so-
lutions of the equation under some necessary and sufficient
conditions were also presented.

However, there are still considerable uncertainties and
difficulties in fully understanding the underlining mecha-
nisms and critical factors driving such a hidden loop. One
major challenge is how to characterize the structure of the
soil-groundwater system [15]. It is natural to conjecture that
the underlining groundwater cycling processes associated
with subsurface CO2 sequestration in different layers should
be different. 1e whole story is shown in Figure 2.

3. Chaos and Control Complexity

3.1. Further Evidence for Being Chaotic. In previous publi-
cations, it was demonstrated that the variations of Rio
originate from the physical forcing of abiotic factors such as
soil salinity (EC), alkalinity (pH), temperature (Ts), and
water content (WCs) and their linear relationships with its
daily mean intensity appear to be valid within a seasonal
cycle as a whole. However, in diurnal cycles, taking into
account the complicated and undetermined processes as-
sociated with the chaotic component Rio, the soil respiration
system in arid land is a nonlinear chaotic system. Variability
in the data of Rio presents further evidence for Rio being
chaotic. Before the chaos theory was proposed, scientists had
thought that there are only two kinds of phenomena—the
phenomena which act strictly according to a rule and the
phenomena which happen stochastically [20]. As seen in
Figure 3, we construct a constant vector for the period
control (CVPC) in variation of Rio (Figure 3(a)), but en-
vironmental controls of Rio are seen to interact
(Figures 3(c)–3(f)). Practical variability of Rio looks sto-
chastic (Figure 3(b)). CVPC for hourly variations of Rio in
diurnal cycles is an exponent-sine coupled normalization
transformation of time sequence (TSN), as follows:

CVPC � e
sin(TSN)

,

TSN �
π(x − min(x))

12(max(x) − min(x))
, x � [1, 2, . . . , 24].

(1)

3.2. Control Complexity of the System. Since soil respiration
in arid land is a nonlinear chaotic system, the resulted
control complexity is naturally reconciled [21]. A well-
known index to characterize the control complexity is
temperature sensitivities (i.e., Q10) of Rs. Analyses on data
collected from previous studies revealed diel turbulence in
Q10 values even if excluding the negative Rs data. On the
basis of utilizing the basic and reanalyzed data collected
from [21], we found that the variability of Q10 values is far
from certain. All the Q10 values used in the analysis were
calculated utilizing the simple model of Rs (the derivative
of the exponential chemical reaction-temperature equa-
tion originally developed by Van’t Hoff) [18, 19, 21], and
for consistence, the negative values of Rs were not in-
cluded in calculations of Q10. Controls of T on Q10 at each
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site were, respectively, analyzed in linear regressions for a
between-ecosystem comparison. Results from these an-
alyses were further compared with the analyses of the

variation of Q10 with T. Using Q10 values from both sites,
the effects of WCs on theQ10 of Rs to Ts and theQ10 of Rs to
Ta were analyzed in quadratic regressions. In order to

Precipitation Evaporation Irrigation

Temporal adhesion and storage

Leaching Reaction

Unknown reassignment

Unknown reassignment

Unknown cycling

Transportation
Dissolution

Sequestration

Dew deposition

Figure 1: Story of the hidden loop in the nonlinear chaotic system, including known and unknown parts.

Atmosphere

Accumulation

Evapotranspiration
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Vapor condenses

Release
Decomposition

SoilGathering

Absorption

Dissolution

Sequestration
Percolating

Recharging

Discharging

Mineralization

Ventilation

Groundwater

Figure 2: Hypothetical system kinetics of the hidden loop: (1) three carbon pools (the atmosphere, soil and groundwater) are connected
through carbon cycles and water cycles, along with the underlining processes associated with CO2 sinks (green solid circles) and sources
(blue solid circles); (2) the inorganic CO2 change beyond the red rectangle (if excluding influences of groundwater) are driven by
evapotranspiration and vapor condenses, while the inorganic CO2 assignment and ventilation within the red rectangle are largely driven by
groundwater recharging/discharging.
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further test the role of WCs in determining Q10, four
coupling models were employed to analyze coupling effects
of TandWCs on Q10. 1e front two models were established
under the hypothesis that the influences of WCs and T on
Q10 were mutually independent. 1e first model hypothe-
sized that the influences of WCs and T were linearly in-
dependent; the second model hypothesized that the
influences of WCs and T were exponentially independent.
1e latter two models were established under the hypothesis
that the influences of WCs and T on Q10 were not mutually
independent. 1e third model hypothesized that Q10 was
dominantly determined byWCs and T linearly interacted on
the responses of the Q10 to WCs; the fourth model hy-
pothesized that Q10 was dominantly determined by T and
WCs linearly interacted on the responses of Q10 to T. De-
scriptive statistics were used to calculate the R-squared
values (R), root mean squared error (RMSE), and F-statistics
vs. constant model and p values of the data from each set of
reduplicates. 1e data analysis was processed using MAT-
LAB (Mathworks, Natick, MA, USA), and the statistical
analyses were synchronously conducted.

We further examined the variability of Q10 values, as
seen in Figures 4 and 5.

4. Treating the Control Complexity

Taking into account negative Rs data in arid regions is
strongly necessary to reduce uncertainties in the current
global/regional carbon balance and in the predictions of
future feedbacks in the coupled carbon-climate system
([15, 22–28]). Further modeling approach is advantageous to
understand CO2 footprints ([29–35]). For the convenience
of statement, we describe the “doubly average” diurnal
dynamics of Rio (being averaged among diverse soil sites and
meanwhile averaged from different days) by the linear
combination of TS, WCs, and CVPC. Let α1, α2, and α3 be
regression coefficients (termed as “parent parameters,” in-
variable within each special soil site), respectively, and let ε
be the residual; then, we have

Rio � α1Ts + α2WSs + α3CVPC + ε, (2)

where CVPC for the hourly scale variations of Rio can be
easily extended to daily or larger scales.

Utilizing the data in Figure 3 as inputs of equation (2)
for a practical simulation, performance of treating the
control complexity is shown in Figure 6. According to
performance of the model on the third day (a1, b1), the
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fifth day (a2, b2), the seventh day (a3, b3), and the eighth
day (a4, b4) after 1 mm diurnal precipitation, the bias in
the simulations by using equation (2) exists within a
measuring period. However, this is according to per-
formance of the model on the fifth day (c1, d1), the ninth
day (c2, d2) after a 5-day continuous precipitation of

0.6~3.6 mm, and the first day after a precipitation of
1.7mm (c3, d3). 1e model can even describe the vari-
ability of Rio on the days after a continuous precipitation
and the day right after small-size rainfall. 1e model
becomes invalid in the simulation on the first day after
~9.9 mm rainfall (c4, d4), when the intensity of Rio is
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Figure 4: Diel turbulence in temperature sensitivities (Q10) with soil temperature (Ts) and water content (WCs).
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changing too fast. Overall, the nonlinear chaotic system is
simplified and can be further developed.

Due to potential overlap in environmental, temporal,
and spatial components of ecological data, partitioning the
variations among pure environmental controls, pure spatial
controls, pure temporal controls, pure spatial component of
environmental controls, pure temporal component of en-
vironmental controls, pure combined spatial and temporal
component controls, combined temporal and spatial com-
ponents of environmental controls, and unexplained com-
ponent should be included in multivariate analysis of the
chaotic system.1e whole story of control complexity of this
nonlinear chaotic system is therefore worthy of further
investigation.

In reference [19], we have presented more details on the
variations of the determining processes of Rio of soil res-
piration and characterize the dynamic of CO2 concentration
in the soil-groundwater system as an input-output balance
equation, as follows:

C(nT + T) − C(nT) �
V1q + rn(  · T − 

nT+T

nT
V1 · C(s) + rnpnds

V
,

(3)

where C(t) is CO2 concentration in a considered gas room
V1 in the soil-groundwater system and q is the CO2 con-
centration in the atmosphere. For the nth time interval [nT,
(n+ 1)T], rn is the average ratio between the input and
output of CO2.

Suppose that the input of CO2 into the soil-groundwater
system was finally dissolved in the groundwater of volume V.
Let D(t) be the amount of DIC at t and the growth rate of DIC
is r. As hypothesized in Section 2, the determining processes of
Rio are driven by groundwater discharge (outflow) and re-
charge (inflow), with volume Q. Provide that outflow= inflow
and assume that outflow after the inflow is uniformly mixed
with the groundwater unitV. As seen in reference [18], the
quality conversation law implies that
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D(t + Δt) − D(t) � QpΔt + 
t+Δt

t
rD(t) − Q

D(t)

V + Q
dt.

(4)

Finally, considering the restricting effect of current DIC,
which is characterized as R − λD(t), equation (4) can be
further improved as [18]

D(t + Δt) − D(t) � QpΔt + 
t+Δt

t
r(R − λD(t))D(t)

− Q
D(t)

V + Q
dt.

(5)

1enext research priority is to analyze the characteristics
of bifurcation and chaos in the inherent spatial and temporal
variations of Rio by using Feigenbaum graphs [36] and
further develop equations (2), (3), and (5). Based on this
study, the natural increase of CO2 is the third determining
process of Rio besides the input and output of CO2, which
involves organic components of soil respiration. 1is pro-
cess, along with the input and output of CO2, determine the
increase rate r of the difference between the subterranean
and surficial CO2 concentration and also determine the
density of Rio.

5. Conclusion

For a better understanding of how soil CO2 fluxes change with
space and time, it is necessary to introduce Rio as a nonlinear
chaotic component of soil respiration in arid land. Ecology is a
study not how things but how things change with space and
time, and hence, it is also necessary to interpret the control
complexity of this chaotic component. In the assessment of
the importance of organic and inorganic factors influencing
Rio, inherent spatial and temporal variations in ecological data
should be taken into account whenever possible. A next
research priority is to analyze the characteristics of bifurcation
and the chaos difference between the subterranean and
surficial CO2 concentration and further understand the whole
story of the control complexity of Rio.
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Stochastic neural network has the characteristics of good global convergence and fast gradient-based learning ability. It can be
applied to multidimensional nonlinear systems, but its generalization ability is poor. In this paper, combined with rule base,
through the PCA method, an improved multimodal variable-structure random-vector neural network algorithm (MM-P-
VSRVNN) is proposed for coagulant dosing, which is a key production process in water purification process. Ensuring for
qualified water, how to control coagulation dosage effectively, obtain valid production cost, and increase more profits is a focus in
the water treatment plan. Different with the normal neural networkmode, PCA is used to optimize hidden-layer nodes and update
the neural network structure at every computation. +is method rectifies coagulant dosage effectively while keeping valid
coagulation performance. By the way, the MM-P-VSRVNN algorithm can decrease computation time and avoid overfitting
learning ability. Finally, the method is proved feasible through the experiment and analyzed by the simulation result.

1. Introduction

In water purification process, one important point is co-
agulant dosing. +e effect of coagulation is to make dosage
mixed with colloidal particles and tiny suspended solids in
raw water, subsided in live embodiment of the amorphous
substance in the coagulation and sedimentation tank. Co-
agulant dosing is a complex, physical, and chemical process
with time-varied, delay, and nonlinear characteristics. In
addition, there are still many actual factors, such as pH value,
turbidity, water flow rate, and coagulation dosage that affect
coagulation performance. In many references about coag-
ulant dosing, most water plants take two methods, namely,
manual dosing and automatic dosing. Manual dosing mostly
depends on workers’ experience that is an obvious open-
loop control method. It is difficult to save cost effectively.
+e second is automatic dosing; its control method is related
with actual waterworks technology. +ere is still no uniform
control method. Currently, PID control and feedforward
control are commonly used, but some water plants still work

in manual dosing. Take a water plant in Changsha as an
example. Its coagulation effect takes about 90 minutes of
delay, and the turbidity after coagulation, named turbidity
before filtration, is generally about 5NTU or less. And the
most important thing is that the water plants are still in
manual dosing that needs more workers to work by turns.
+e above being concerned, how to complete coagulant
dosing automatically is a hot problem. At present, the au-
tomatic control of coagulant dosing mainly adopts a single-
factor closed-loop method, which needs to change the
method from traditional PID control to intelligent control
for complex control objects [1, 2]. Researchers take some
predictors to finish coagulant dosing with different
manufacturing techniques. Some people try to find a
mathematical model of coagulant dosing, as shown in [3–7].
In [3], based on the iterative feedback tuning (IFT), com-
bined with Smith predictive control, a data-driven direct
control method is proposed that need not understand the
actual time-delay object model. It can initialize the controller
and take online self-tuning. In [4], after studying coagulant
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dosing process in water plants, a feedforward and feedback
control method combined with the generalized predictive
control (GPC) and PID is proposed for dosing. In [5], a two-
stage control structure is designed for dosage target calcu-
lation and dynamic optimization of the coagulant dosing
system. +e model predictive control (MPC), a bounder
control method, requires less information of the controlled
object and proves its validity by simulation. In [6], this paper
focuses on analyzing the structure and principle of coagulant
dosing and uses predictive autodisturbance rejection control
(PADRC) to design an online self-tuning dosing controller.
In [7], a multimodal control strategy is proposed based on
artificial intelligence, which simulates actual operation
without any manual control and ensures the effect of co-
agulant dosing. Coagulant dosage mainly depends on the
accuracy of the computation outcome of the system's
mathematical mode. So, modeling accurately is the most
difficult to realize the target here.

With the development of the artificial neural network
(ANN), it provides another data-driven solution without any
mathematical model for such a nonlinear system. Com-
monly used ANN also includes the radial basis function
(RGF) neural network, backpropagation (BP) neural net-
work, cerebella model control articulation (CMCA) neural
network, and self-organizing neural network. Some people
have applied these types of feedforward neural networks in
coagulant dosing, as shown in [8–11]. In [8], a predictive
control strategy is proposed for coagulant dosing in
wastewater treatment process, an adaptive neural network
model is established to analyze the relationship between
dosage and detergency, and it is optimized by the gradient
descent method. In [9], a RBF neural network predictor with
a feedforward compensation is proposed. For a single-input
and single-output system, a nonlinear autoregressive
moving average model is built up and predicted for coag-
ulant dosing. In [10] after analyzing the characters of raw
water and finding out related factors of coagulant dosing, a
feedforward controller is designed combined with the
CMAC neural network and fuzzy algorithm, and offline
modeling is finished in order to realize online optimization
and predict coagulant dosage. In [11], a neural network and
an adaptive fuzzy model are established to simulate the
coagulant dosing process. Finally, simulation is proved valid.
Take the neural network model is feasible that has a lower
request, self-learning ability, and generalization ability. +is
method can be applied to complex industry process without
building an accurate mathematical model [12]. However,
those mentioned gradient-learning algorithms have an ob-
vious problem: overfitting ability and local optimum. So, it is
little difficult to design a specific neural network structure
which is invariant with lower flexibility.

For improving the neural network, currently, random-
vector neural networks have been developed rapidly in re-
cent years because of their learning speed and generalization
ability better than traditional neural network algorithms
[13, 14]. In many applications, random-vector neural net-
works are also used in nonlinear complex systems and
verified effectively [15–18]. As we know, water purification
itself is a nonlinear complex industrial process; for the

dynamic mechanism of coagulant dosing is complex, the
internal state is unclear. If we need to find the functional
relationship between input and output factors about coag-
ulant dosing, it is very hard to do well in setting up a
mathematical model. In this paper, we select a water plant in
Changsha as the target and analyze its coagulant dosing
process and related factors. Considering the difficulty of
building up the neural network model, we propose a vari-
able-structure random-vector neural network (VS-RVNN)
model for online learning for optimization of coagulant
dosage.

2. Analysis and Modeling for Coagulation
Dosing Process

2.1. Analysis for Coagulation Dosing Process. +e water
purification process mainly includes drug administration,
coagulation-sedimentation, filtration, and chlorine disin-
fection. Each subprocess is independent and related to each
other. +e coagulation process is composed of data sampler,
controller, coagulation-sedimentation tank, and execution
equipment. Taking a water plant in Changsha as an example,
its process is shown in Figure 1.

When raw water passes through the water pump room,
its turbidity and flow velocity are measured before the co-
agulation tank. In addition, after the coagulant and running
water are mixed in an appropriate proportion, the mixture
enters the coagulation tank by the dosing pump and per-
forms coagulation reaction with raw water. +e coagulant
dosing will take effects after about 90 minutes, meaning a
long-delay process. At the outlet of the tank, turbidity is
measured one more time and judged whether its values
reach set values or not. +e key point is that necessary data
are sampled by equipment, computed by the controller, and
an optimum coagulant for dosing pump operation is ob-
tained. Pump adjusts its speed and opening to optimize
online coagulant dosage. As we know, coagulant dosing
process is complicated, varied, and nonlinear, with long
delay. It cannot find the direct relationship between input
and output information. So, it is not easy to establish a
correct mathematical model.

2.2. Modeling and Control for Coagulant Dosing Process.
+ere are three common modeling methods at current,
namely, mechanism model, knowledge-based model, and
data-driven model. Firstly, the mechanism model depends
too much on the system internal mechanism. However, a
system becomes more nonlinear and strong coupling than
before; its interior mechanism is complicated and cannot be
shown obviously and clearly by formula. Secondly, the
knowledge-based model mostly relies on limited expert
knowledge with poor adaptability. Lastly, the data-driven
model need not know what system’s inner state is; however,
it still can predict and give a reasonable decision by a lot of
data analyses and intelligent deduction. After analyzing the
three methods, establishing a data-driven model has become
one powerful method for a complex system in recent years.
Neural network model (NNM) is one of them that can deal
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with inaccurate and complicated information of the complex
system [19–21]. In the paper, coagulant dosing process is just
such a type without analyzing its mechanism, collecting
insufficient and inaccurate expert knowledge. However,
coagulant dosing process runs independently; its necessary
parameters can be measured and monitored. Taking a water
plant in Changsha as an example, water supply varies in
different seasons and at different times of a day. Especially at
rush hour, water supply must increase sharply. +en, co-
agulant dosage will be predicted appropriately in advance.
Furthermore, there are two main problems about the target
water plant at current. One is that it still takes simple manual

dosing.+e other problem is that system delay is a little long,
and working condition is changeable. So, only one simple
NNM cannot work useful with abrupt events. +rough local
investigation, we gather related data and get to a conclusion:
turbidity, flow velocity, working pumps affect coagulation
obviously. Other parameters such as pH and water tem-
perature also affect coagulation slowly. How to control
coagulant dosage is a concerned topic. It satisfies turbidity
while decreasing production cost as much as possible. To
sum up, aiming at the actual object, a nonlinear autore-
gressive multimode (NARM) is set up as follows:

Y(t) �

f1 x1(t), . . . , x1 t − p1( , . . . , xk(t), . . . , xk t − pk( , Y(t − 1), . . . , Y(t − q)( , whenmodal � 1,

...

fi x1(t), . . . , x1 t − p1( , . . . , xk(t), . . . , xk t − pk( , Y(t − 1), . . . , Y(t − q)( , whenmodal � i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where historical data are also concerned. A multimodal
function is provided in formula (1). xi(t), . . . , xi(t − pi) is
the input data set, Y(t) is the output, pi, q is the lag step
(i � 1, . . . , k), and f1(.), . . . , fi(.) are different respective
nonlinear relations between input parameters and output
parameters at different modes. Combining with NARM, for
solving the above two problems concerned in this paper, we
design a multimodal control scheme, as shown in Figure 2.

In the control scheme, rule base (RB) just contains a lot
of dosing parameters and several modal decision rules. +e
most important focus is the variable-structure random-
weight neural network (VS-RVNN). It can build up variable-
structure NN which can optimize its model and online-
compute the optimum dosage. RB will provide suitable
operational parameters for the dosing pump. All data will be
stored in a database after one computation is completed.
According to the analysis for related factors of coagulant
dosing in this part, RB will make a decision by systems’
operating state, select the most suitable mode, and rectify
existed rules. +e neural network controller updates the
target value and training data set, varies the computation
model, calculates optimum dosage, and keeps continuous
cycle operation.+e whole control method mainly combines
RB and VS-RVNN and designs a MM-P-VSRVNN algo-
rithm. +e design is figured out in Figures 3 and 4.

In Figure 3, about RB, we set multiple modes and design
a mode switcher. +rough the main influencing factors
which have been defined, a series of decision rules are
constructed and categorized into the designed mode. +ese
rules are also the criterion of judgement for the switching
mode. Furthermore, in each mode, there are some typical
control rules about water pump control parameters. +e
selected control rule will be connected to the ANN controller
as a guideline for further optimization.

In Figure 4, we design an initial NNM which has an
initial value of hidden-layer nodes in the leftmost. When
real-time data are sampled, NNM judges working mode
once again and takes a new computation after retraining the
neural network with the corresponding training data, and
the hidden-layer nodes decrease from L to Ki by PCA
(whenmode � i, i � 1, . . . , n), and the structure of the
neural network is updated for real-time computation. +is
means NNM will have n-type structures after the PCA
dimension.

Notation: here, NNM, proposed in Figure 4, has a
variable structure. Because the number of hidden-layer
nodes is always a key point for modeling, here, NNM is not
fixed when we perform principal component analysis (PCA)
for hidden-layer nodes. So, NNM has a variable structure at
each computation. +is method can effectively solve the
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Figure 1: Schematic diagram of coagulation process.
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problem of overfitting and robustness of neural networks
and improve the computational speed and generalization
ability.

3. MM-P-VSRVNN Algorithm

Combining with Section 2.2, the whole algorithm mainly
includes two parts, namely, modal switching and dimen-
sionality reduction by PCA. +e prediction algorithm is
executed by the MM-P-VSRVNN. It takes two stages: offline
modeling and online optimization.

Here, the whole algorithm steps are as follows:
Before computation, we choose a multimodal data set

for training samples: Z � (xk
i , yk

i ) | xk
i ∈ RM, yk

i ∈ RN,

i � 1, . . . , M |whenmode � k}. And each mode has its in-
dependent data subset Zi |whenmode � i  in it.

(i) Step 1: sample real-time data, and judge the working
mode by RB. For example, if mode � i, it gives a
decision for NNM and switches to the ith control
strategy.

(ii) Step 2: build up a VS-RVNNwith a random layer (L
nodes) and an output layer (N nodes). +e initial
value of L is set to 60. +e random layer can be
constructed by the hidden layer and input layer.

(iii) Step 3: take the corresponding data subset of
training samples for NNM. +en, the functional of
the random layer is defined as x1, . . . ,

xN | θ1, . . . , θN} when mode� k.
+en, the function of the random layer is defined as

gj xi, θj  � φj ωjxi + bj , 1≤ j≤ L, (2)

where ωj � (ωj1,ωj2, . . . ,ωjn) is the input weight
of the jth hidden-layer node, bj is the threshold
value of the jth hidden-layer node, θj � ωωj

j is the
random-weight vector of the hidden-layer nodes,
and xi(i � 1, 2, . . . , N) is the input to the network.

(iv) Step 4: set the training target, and start to train the
NNM with the given data subset.

(v) Step 5: let Gh � gj(xi, θj). Repeat to run step 4 until
training meets the given target. Otherwise, it re-
starts at step 2 and computes once again.

(vi) Step 6: construct a random-layer training matrix
G � [G1, . . . , GH]T. Each column of G represents a
random-layer output node, and each row repre-
sents a training sample output.

(vii) Step 7: perform weighted difference to training
matrix G, and remove its nonlinear or multimodal
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Figure 3: +e diagram of rule base (RB).
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characteristics. Next, continue to standardize G.
+en, the standardized matrix is G, and find its
correlation coefficient matrix S, which meets its
mean value per column which is 0 and standard
deviation which is 1:

S �

r11 r12 .. r1l

r21 r22 .. r2l

.. .. .. ..

rl1 rl2 .. rll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i � 1, . . . , l), (3)

where rij represents the correlation coefficient
between variable i and variable j. After that, the
eigenvalue decomposition of S is done, eigenvalues
λ1, . . . , λL  and eigenvectors of S are computed,
and these eigenvalues are sorted by size.

(viii) Step 8: calculate the contribution rate of each ei-
genvalue, and sort all eigenvalues to sum up the
components’ added contribution rate one by one
and compute whether it is over 95 percent or not. If

it is, then count the d number of major compo-
nents and construct a transfer matrix:

p �

p11 p12 .. p1L

p21 p22 .. p2L

.. .. .. ..

pk1 pk2 .. pkL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

when mode � i, (4)

which is based on its corresponding d eigenvectors,
and the random-layer matrix G is met and satisfies
the equality G � GP.

(ix) Step 9: input the latest collected samples into NNM,
and calculate the function value of each output-
layer node fl �  βjgj(xi, θj), 1≤ l≤N. All neces-
sary data are stored.

(x) Step 10: compare the predicted outcome with the
dosage value in the RB, correct control parameters
of pumps online, and finish dosing.

(xi) Step 11: update the training sample set.

...
...
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Figure 4: +e diagram of a multimodal neural network.
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(xii) Step 12: wait for the next sampling, and repeat the
work from steps 1 to 11.
Notation: compared with the traditional RVNN,
RS-RVNN can perform mode switching and train
the original neural network with the corresponding
data set and system’s control state. +e output
matrix of the hidden layer is obtained through
multiple training times and can be reduced di-
mensionally by PCA. +e neural network structure
can be optimized under different modalities to
ensure the system’s continuous stability. Further-
more, the neural network controller implements
dynamic optimization of the variable structure
every time. Network training is performed during
mode switching, and it enhances the flexibility of
the controller.

4. Experiment Results and Discussion

In this paper, we analyze the actual water purification
process of Changsha’s water plant. +is plant was built up as
a two-phase project, which mainly has two storage tanks,
alum tanks, coagulation tanks, and pump workshop for
capacity expansion. And now, one of them is working. +e
water purification process with related parameters is shown
timely and stored in the system database. Its coagulant
dosing system is shown in Figure 5.

+rough these data provided by applied instruments and
electromechanical equipment, we choose the important
factors related to coagulation efficiency: turbidity before
filtration (NTU), turbidity of raw water (NTU), discharge of
water (m3/h), water temperature (°C), frequency (Hz), pH,
pump stroke (percent), target turbidity (NTU), historical
data of turbidity (NTU), water flow rate (m3/h), and co-
agulant dosing (m3/h). +ese are prepared for building up a
NNM. Two of them, target turbidity (NTU) and prediction
value of coagulant dosing (m3/h), are output targets of the
NNM. From parts 2 and 3, the number of hidden-layer
nodes cannot be determined. In our NNM, we set an initial
value (60) for hidden-layer nodes, which can be decreased by
PCA. +en, the structure of the NNM is optimized, and the
prediction for coagulant dosage is obtained. A new NNM is
named P-VSRVNN.

Coagulant dosing process contains 3 working modes. In
this experiment, we select 1000 groups of data. Among
them, 960-group data are divided into 3 subsets for training
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Figure 5: +e diagram of the dosage system.

Table 1: Dimension reduction for NNM by PCA (40 groups).

Data set (group) Modal Hidden-layer nodes after PCA
1 1 8
2 1 8
3 1 8
4 1 7
5 2 8
6 2 8
7 2 8
8 2 8
9 1 8
10 1 8
11 1 8
12 1 7
13 1 7
14 1 7
15 1 8
16 1 8
17 1 7
18 1 8
19 3 7
20 3 8
21 1 8
22 1 8
23 1 8
24 1 8
25 1 8
26 1 8
27 1 7
28 1 9
29 1 8
30 3 8
31 3 7
32 2 7
33 2 9
34 1 8
35 1 8
36 1 8
37 1 8
38 1 8
39 1 9
40 1 8

6 Complexity



Table 2: +e first eight principal components’ eigenvalue and variance contribution by PCA in one computation.

Principal components Eigenvalue Variance contribution (percent) Accumulated variance contribution (percent)
1 20.1607660138651 33.6012766897752 33.6012766897752
2 14.1382412479112 23.5637354131853 57.1650121029605
3 9.55968664322995 15.9328110720499 73.0978231750104
4 5.33738215800062 8.89563693000104 81.9934601050114
5 4.28516886114769 7.14194810191281 89.1354082069243
6 1.83532313856500 3.05887189760834 92.1942801045326
7 1.24409369821930 2.62008336345786 94.2677696015648
8 0.895336966029005 1.49222827671501 95.7599978782798

5 10 15 20 25 30 35 400
Test data (40 groups)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D
os

in
g 

(m
3 /h

)

Actual dosing
Predictive dosing through MM−P−VSRVNN

Figure 6: Prediction and actual value of coagulant dosage.
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different working modes. And each subset includes 320-
group data.+e remaining data are also divided into 3 types
for testing. A new group of data is obtained by hourly
sampling, which includes connected information working
mode. We need to set up different NNMs for each different
training set. +e whole experiment includes such works as
follows.+e whole control model mentioned in the paper is
called MM-P-VSRVNN.

(1) As NARM is described, building a valid optimized
VSRVNN is a key work. It mainly computes node

contribution about 95 percent, retains the corresponding
nodes, and avoids overfitting learning. VSRVNN is con-
structed offline with updated training set by PCA, which
reduces 60 original hidden-layer nodes to ki when it works in
the ith mode. 40 groups of dimension reduction for the
testing set are listed in Table 1.

Table 1 shows us that the structure of the VSRVNN is
variable at different modes. Even at the same mode, opti-
mized result may not be the same. +e value of k is changed
from 7 to 9, and 8 is the majority. Taking one computation as
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Figure 8: Prediction output for dosing with four different algorithms.
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Figure 9: Prediction output for turbidity before filtration with four different algorithms.
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an example, the first eight principal components’ analysis
outcomes are shown in Table 2.

+e first eight principal components’ effects are added to
more than 95 percent, which are displayed on the VSRVNN.
Because its training set changes after one computation, the
optimized result is also varied but still meets 95 percent node
contribution. (2) For checking the validity of the VSRVNN,
we program an algorithm named MM-P-VSRVNN. And
contrasting its predicted results to actual values, the total 40
points are shown in Figures 6 and 7.

Two parameters are compared in separated figures. Real
line labeled as “•” symbol is the actual dosage, and the other
line labeled as “∘” is the predicted dosage. In this test,
predicted dosage varies around the actual value and remains
consistent with its tendency. Average predicted dosage is

reduced about 0.4165 percent in Figure 6; meanwhile, av-
erage predicted turbidity increases about 0.5 percent in
Figure 7. +e simulation result is acceptable for enterprise.
To them, it alreadymeets needs of water purification process,
reduces total coagulant dosage and saves manufacturing cost
to a certain extent. (3) A further test is to analyze the
performance of the MM-P-VSRVNN in contrast with other
three similar algorithms. Other similar algorithms are sin-
gle-modal random-vector neural network (SM-RVNN),
SM-RVNN after dimension reduction (SM-P-RVNN), and
multimodal random-vector neural network (MM-RVNN).
All predictive results are in contrast, visually, as shown in
Figures 8 and 9.

On the contrary, all the algorithms are in contrast with
their statistical parameters, separately named root mean

Table 3: Statistics result comparison among four algorithms for predictive turbidity before filtration.

Predictive turbidity MM-P-VSRVNN MM-RVNN SM-P-RVNN SM-RVNN
Mean value (NTU) 5.026066 5.0387364 5.0339242 5.0571979
RMSE 0.0546 0.0735 0.0773 0.0968
MAE 0.1918 0.2303 0.2365 0.2817
SD 0.0480 0.0653 0.0670 0.0781

Table 4: Statistics result comparison among four algorithms for predictive dosage before filtration.

Predictive dosage MM-P-VSRVNN MM-RVNN SM-P-RVNN SM-RVNN
Mean value (m3/h) 0.09853900 0.10123137 0.10128999 0.10019643
RMSE 0.0013 0.0016 0.0020 0.0063
MAE 0.0396 0.0587 0.0650 0.0645
SD 0.0251 0.0273 0.0282 0.0276
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Figure 10: RMSE for predicted dosage by different algorithms when hidden-layer nodes varied from 1 to 20.

Complexity 9



square error (RMSE), mean absolute error (MAE), and
standard deviation (SD). +e statistical results are computed
by different methods and shown in Tables 3 and 4.

+ese four aforementioned algorithms used the same
data set and original mode. In Figure 6, the method provided
in this paper has better result accuracy and tendency. It
proves that, after quantitative computation, MM-P-
VSRVNN can optimize the neural network mode and
classify the operating mode that led to a better prediction.

(4) For improving the generalization ability of the MM-
P-VSRVNN, NNM takes a new computation once a new
group of data is measured. +en, NNM is optimized again
because hidden-layer nodes vary. Now, for a further check,
the next experiment changes the hidden-layer node number
from 1 to 20 and computes RMSE for different algorithms.
And these results are compared with those provided by the
MM-P-VSRVNN in Figures 10 and 11.

In Figures 10 and 11, MM-P-VSRVNN provided in the
paper has lower RMSE and better generalization ability,
which can avoid the overfitting problem when the neural
network is operating.

Notation: with all the experiments, as we know, the number
of hidden-layer nodes takes a new update when a new com-
putation occurs, computation mode is optimized, and the
system provides a suitable result. By the way, this computation
for RMSE is also operated until hidden-layer nodes increased to
300 one by one, but we found the operating time is too long,
and the contrast result is indistinct. +erefore, considering the
known information, we set the maximum number as 20.

5. Conclusion

+is paper aims at coagulant dosing in water purification
process for a water plant in Changsha. After analyzing the
actual process and previous control modes, we put up a NNM
and applied a new MM-P-VSRVNN algorithm for dosage
prediction. +is NNM is optimized by the MM-P-VSRVNN
algorithm and gives an appropriate control result to perform a
new dynamic dosing. At last, we also perform a series of ex-
periments with the designed NNM and its algorithm to prove
the practicability.+e algorithm provides an improvedmethod,
and the coagulant dosing control realizes automatically.

Data Availability

All the data used to support the findings of this study are
included within the article.

Conflicts of Interest

+e authors declare no conflicts of interest.

Acknowledgments

+is study was funded by the Natural Science Foundation of
Hunan Province (Grant no. 2018JJ3891).

References
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In this paper, the security analysis of a color image encryption algorithm based on Hopfield chaotic neural network is given. -e
original chaotic image encryption algorithm includes permutation encryption and diffusion encryption. -e result of crypt-
analysis shows that the chaotic sequences generated by this algorithm are independent of plaintext image, and there exist
equivalent permutation key and equivalent diffusion key.-erefore, according to chosen-plaintext attack, the equivalent diffusion
key and the equivalent permutation key can be obtained by choosing two special plaintext images and the corresponding ci-
phertext images, respectively, and the plaintext image is further recovered from the ciphertext image. -eoretical analysis and
numerical simulation experiment results verify the effectiveness of the analytical method. Finally, some improved suggestions for
the original encryption algorithm are proposed to promote the security.

1. Introduction

With the rapid development of network technology, the
security and privacy protection problems of multimedia
information have become a hot subject. In order to promote
the security of information transmission, scholars have
proposed a large amount of image encryption algorithms
based on different mechanisms and theories, such as chaotic
map [1–13], neural network [14], DNA [15–18], and so on.
-e security performance of the image encryption algo-
rithms mainly depends on statistical test indicators, such as
key space, histogram, key sensitivity analysis, information
entropy, differential attack, and so on. However, statistical
test indicator is an essential condition and not a sufficient
condition for measuring security presented in [19]; more-
over, some of them are proven to be insecure due to their
inherent pitfalls [20–30]. -erefore, it is necessary to per-
form cryptanalysis in order to improve the security of the
image encryption algorithms.

In recent years, many image encryption algorithms have
been cryptanalyzed by the researchers. For example, in [20],
the cryptanalysis of an image encryption cryptosystem based
on binary bit planes extraction and multiple chaotic maps

(IEC-BPMC) proposed in [1] is given; it is pointed out that
IEC-BPMC is insecure against chosen-plaintext attack. In
[21], the security analysis of an image chaotic encryption
algorithm based on Latin cubes and bit cubes presented in
[2] is proposed; it is reported that the generation of Latin
cubes is independent of plain image, while in the diffusion
stage, when any one bit in the plain image changes, the
corresponding number of bits in the cipher image follows
the change with obvious regularity. According to chosen-
plaintext attack, only a maximum of 2.5 ×

�����
w × h

3
√

+ 6
plaintext images are needed to crack the ciphertext images of
size w × h resolution. In [22], according to chosen-cipher-
text attack, the security analysis for a self-synchronization
and closed-loop feedback-based chaotic stream cipher
proposed in [3] is given; it has shown that, under the
condition that only one unknown key needs to be deci-
phered while the remaining keys are all known, most secret
keys can be deciphered accurately. In addition, the attack
complexity of the proposed method is lower than that of the
exhaustive attack. In [23], the security performance for an
8D self-synchronous and feedback-based chaotic stream
cipher with low 8 bits of state variables for encryption
proposed in [4] is analysed, according to known-plaintext
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attack and divide-and-conquer attack, 49 secret keys can be
obtained, and an improved chaotic stream cipher is pro-
posed for improving the ability to resist divide-and-conquer
attack and chosen-ciphertext attack. According to chosen-
plaintext attack, in [24], the security analysis of an image
encryption algorithm based on 3D bit matrix permutation
presented in [5] is given and proposes some improved
suggestions in order to enhance security performance. -e
cryptanalysis of the image encryption algorithm proposed in
[7] is presented in [25]; it is reported that the equivalent
secret keys can be obtained by utilizing chosen-plaintext
attack and further recover the original plaintext image from
the ciphertext image. In [26], the security analysis of an
image encryption algorithm based on improved hyper-
chaotic sequence presented in [8] is given; it is shown that
only 1-pair known plaintext-ciphertext image can crack the
original encryption algorithm by using known-plaintext
attack. In [27], the cryptanalysis of an image encryption
algorithm with one round diffusion structure proposed in
[9] is reported to find that the original encryption algorithm
has equivalent secret keys, so that it can be deciphered by
known-plaintext and chosen-plaintext attack. In [28], it is
pointed out that permutation-only encryption structure
presented in [10] is insecure against known-plaintext attack
and chosen-plaintext attack, respectively; for given image of
size MN, the original encryption algorithm is cracked by
only using logL(MN) plaintext-ciphertext images. -e
image encryption algorithm based on DNA encoding and
spatiotemporal chaos is proposed in [15]; nevertheless, it is
broken in [29] by using chosen-plaintext attack and chosen-
ciphertext attack with lower computation complexity and
data complexity, respectively. In [30], the security analysis of
an image encryption algorithm based on 2D Henon-Sine
map and DNA proposed in [17] is given; it is found that
cipher image can be cracked by utilizing chosen-plaintext
attack without known keys, and its attack complexity is
O(18).

In 2019, a color image encryption algorithm based on
Hopfield chaotic neural network (CIEA-HCNN) is given in
[14]. CIEA-HCNN adopts permutation encryption-diffu-
sion encryption structure; in the permutation encryption
phase, firstly, the parameters of Arnold cat map are gen-
erated by chaotic sequence and then Arnold cat map is used
to scramble the pixel positions of plaintext image. In the
diffusion encryption stage, diffusion matrix is generated by
utilizing Hopfield chaotic neural network, and then bitwise
XOR operation is performed by using diffusion matrix on
the scrambled image to obtain the ciphertext image. Some
statistical test results are proposed in CIEA-HCNN, and it is
claimed that the encryption algorithm has a higher security
performance against various attacks. However, CIEA-
HCNN has the following inherent defects from the view of
cryptanalysis:

(1) -e chaotic sequences generated by key-streams are
independent of plaintext image; for given secret key
parameters and the size of the plaintext image, the
chaotic sequences remain unchanged regardless of
the plaintext image.

(2) -e diffusion encryption structure is too simple,
there is no ciphertext feedback mechanism, and
there exists equivalent diffusion key. According to
chosen-plaintext attack, the equivalent diffusion key
is broken by choosing one special plaintext image
and its corresponding ciphertext image without
known keys.

(3) -e permutation encryption structure is a permu-
tation-only encryption process. After deciphering
the diffusion encryption structure, the original en-
cryption algorithm becomes a permutation-only
encryption structure; in [28], it is pointed out that
permutation-only is insecure and cannot resist
chosen-plaintext attack and known-plaintext attack.
Moreover, parameters of Arnold cat map generated
by chaotic sequence depend solely on the secret keys,
and the position (0, 0) is always mapped into itself in
Arnold cat map.

According to the above shortcomings, one obtains that
CIEA-HCNN is insecure, and it is vulnerable to chosen-
plaintext attack or known-plaintext attack. An attacker can
successfully crack the original encryption algorithm by using
the equivalent diffusion key and the equivalent permutation
key without knowing the secret keys.

-e rest of the paper is organized as follows. Section 2
briefly introduces CIEA-HCNN under study. Section 3
analyses the security performance of CIEA-HCNN by using
chosen-plaintext attack. Section 4 gives the numerical
simulation experiments and the suggestions for improve-
ment. Section 5 concludes the paper.

2. Chaotic Encryption Algorithm under Study

In this section, Hopfield chaotic neural network and Staged
composite chaotic map proposed in [14] are first given, and
then CIEA-HCNN is introduced in detail.

2.1. Hopfield Chaotic Neural Network. In 1982, American
physicist Hopfield first proposed Hopfield chaotic neural
network given in [31]. It is a fully connected neural network,
mainly used providing model of simulation humanmemory.
Simultaneously, Hopfield chaotic neural network is also a
feedback neural network, and the output signal of each
neuron in the network is usually fed back to itself by using
other neurons. -e iterative equation of Hopfield chaotic
neural network is given by

x � −xi + 
3

i�1
wijvi , (1)

vi � tan h xi(  �
exi − e− xi

exi + e−xi

, (2)

w �

2 −1 0
1.7 1.71 1.1

−2.5 −2.9 0.56

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)
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where state variable xi ∈ [0, 1], i � 1, 2, 3, j � 1, 2, 3, v de-
notes a hyperbolic tangent function, and w represents a
weight matrix.

2.2. Staged Composite Chaotic Map. Staged composite
chaotic map is a novel phased chaotic map which combines
Logistic map with Tent map, given by

xn+1 �

16μxn 0.5 − μxn( , 0≤xn < 0.25( ,

16μ 0.5 − xn(  0.5 − μ 0.5 − xn( ( , 0.25≤xn < 0.5( ,

16μ xn − 0.5(  0.5 − μ xn − 0.5( ( , 0.5≤xn < 0.75( ,

16μ 1 − xn(  0.5 − μ 1 − xn( ( , 0.75≤xn < 1( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where control parameter μ ∈ [0, 2], state variable xn ∈ [0, 1],
n � 0, 1, 2, . . .. -e system is chaotic defined by equation (4)
when μ ∈ (0.33, 2].

2.3. Description of CIEA-HCNN. In [14], CIEA-HCNN
consists of secret keys selection, chaotic sequences genera-
tion, permutation encryption, and diffusion encryption, as
shown in Figure 1, where x1′, x2′, μ1, μ2, m0, mr, mg, mb are
secret key parameters, X, Y, Z, Ware chaotic sequences
generated by Staged composite chaotic map, α and β are
parameters of Arnold cat map, T is a permutation matrix,
H1, H2, H3 are sequences generated by Hopfield chaotic
neural network, D is a diffusion matrix, P is a color plaintext
image, S is a temporary permutation encryption image of P,
S′ is a permutation encryption image of P, C′ is a diffusion
encryption image of S′, and C is a ciphertext image cor-
responding to the plaintext image P; the detailed encryption
principles of CIEA-HCNN are presented as follows:

(1) Choose secret key parameters. CIEA-HCNN in-
cludes eight secret key parameters
x1′, x2′, μ1, μ2, m0, mr, mg, mb, where x1′, x2′, μ1, μ2 are
initial values and control parameters of Staged
composite chaotic map and m0, mr, mg, mb are it-
erative numbers of Staged composite chaotic map.

(2) Generate chaotic sequences X, Y, Z, W. From
equation (4), iterate Staged composite chaotic map
m0 times; one gets the chaotic sequence
X � x1, x2, . . . , xm0

 . Simultaneously, one obtains

three chaotic sequences Y � y1, y2, . . . , ymr
 ,

Z � z1, z2, . . . , zmg
 , and W � w1, w2, . . . , wmb

 .

Actually, only four state variables xm0
, ymr

, zmg
, wmb

are used in the following encryption process.
(3) Encrypt image by the chaotic encryption algorithm.

-e encryption object of CIEA-HCNN is a color
plaintext image of size M × N × 3 denoted by
P � P(i, j, k) 

M,N,3
i�1,j�1,k�1, where P ∈ 0, 1, . . . , 255{ }

[14], and hereinafter referred to as the plaintext
image. -e ciphertext image of P is represented by
C � C(i, j, k) 

M,N,3
i�1,j�1,k�1, where C ∈ 0, 1, . . . , 255{ }.

Besides, the plaintext image P has Red, Green, and
Blue channels; for the sake of convenience of

expression, one simplifies the three channels to R, G,
and B channels. -e steps for CIEA-HCNN are
shown as follows:

Step 1: Permutation Encryption. First, F transform
xm0

of the chaotic sequence X; one obtains control
parameters α andβ of Arnold cat map, given by

α � floor mod xm0
× 224, N  ,

β � floor mod mod xm0
× 248, 224 , N  ,

⎧⎪⎨

⎪⎩
(5)

where N is the width of the plaintext image P, mod
represents a modular operation, and floor rounds a
real number to the nearest integer.

In Figure 1, scramble R, G, B channels of P by utilizing
Arnold cat map, respectively, and get the corre-
sponding temporary permutation encryption image
denoted by S � S(i, j, k) 

M,N,3
i�1,j�1,k�1; the iterative equa-

tion of Arnold cat map is defined as

xn+1

yn+1
  �

1 α

β αβ + 1
 

xn+1

yn+1
 modN, (6)

where (xn, yn) and (xn+1, yn+1) represent the before
and after coordinate of permutation encryption
through using Arnold cat map; moreover, the default
number of Arnold cat map iterations is set as 1 [14].
According to Figure 1 and equation (6), one gets

T �
1 α

β αβ + 1
  �

a b

δ ε
 . (7)

Finally, scan R, G, B three channels of S in a raster order
from left to right and up to down; one obtains the
permutation encryption image S′ � S′(k, l) 

3,MN

k�1,l�1
with the size of 3 × MN, given by

S′(k, l) �

S′(1, 1) S′(1, 2) · · · S′(1, MN)

S′(2, 1) S′(2, 2) · · · S′(2, MN)

S′(3, 1) S′(3, 2) · · · S′(3, MN)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Step 2: Diffusion Encryption. First, set the chaotic se-
quences ymr

, zmg
, and wmb

as the initial values of
Hopfield chaotic neural network, substitute them into
equations (1)-(2), iterate MN times, and get three
sequences defined by H1(l)MN

l�1 , H2(l)MN
l�1 , H3(l)MN

l�1 . Let
H � H(k, l){ }

3,MN
k�1,l�1 be equal to H1(l)MN

l�1 , H2(l)MN
l�1 ,

H3(l)MN
l�1 }, such that

H(k, l) �

H(1, 1) H(1, 2) · · · H(1, MN)

H(2, 1) H(2, 2) · · · H(2, MN)

H(3, 1) H(3, 2) · · · H(3, MN)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)
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-en, H(k, l) is quantified to obtain the diffusion
matrix D � D(k, l){ }

3,MN
k�1,l�1 given by

D(k, l) � mod round (abs(H(k, l))((

−floor(H(k, l))) × 1014), 256),
(10)

where round denotes a round-off function and abs is an
absolute value function.
In Figure 1, perform bitwise XOR operation on the
permutation encryption image S′ by utilizing diffusion
matrix D, and then get the temporary ciphertext image
C′ � C′(k, l) 

3,MN

k�1,l�1 defined as

C′(k, l) � D(k, l)⊕ S′(k, l), (11)

where notation ⊕ denotes a bitwise XOR operation.
Finally, convert the temporary ciphertext image C′
into the ciphertext image C.

(4) Decrypt image by using chaotic decryption algo-
rithm. Decryption is the inverse process of en-
cryption. First, convert the ciphertext image C into
the temporary ciphertext image C′, then perform
bitwise XOR operation by using C′ and the diffusion
matrix D, and get the permutation encryption image
S′. Second, transform S′ into the temporary per-
mutation encryption image S. Finally, implement
anti-scramble encryption for S by means of Arnold
cat map, and further recover the plaintext image P

from the encrypted image C.

3. Cryptanalysis

3.1. Preliminary Analysis of CIEA-HCNN. According to
Kerckhoff’s assumptions [32], one gets that the cryptosystem
is open and its security depends solely on the secret keys
rather than the cryptosystem itself; that is, the attacker
knows everything about the cryptosystem except for the

secret keys. If the cryptosystem cannot resist various attacks,
it is insecure. -ere are generally four common attack types
for cryptanalysis given in Table 1 from the hardest to the
easiest types. In Table 1, ciphertext-only attack is the hardest
type, and chosen-ciphertext attack is the easiest type. -e
adversary reveals secret keys or the equivalent keys to break
the cryptosystem by using the four common attack types
listed in Table 1.

According to Figure 1, one obtains that CIEA-HCNN
adopts permutation encryption-diffusion encryption struc-
ture. First, the diffusion encryption structure of CIEA-HCNN
is too simple, and the diffusion matrix D is independent of
plaintext image or ciphertext image. -erefore, one gets that
CIEA-HCNN has the equivalent diffusion key. According to
chosen-plaintext attack, the equivalent diffusion key can be
broken by just selecting one pure plaintext image and the
corresponding ciphertext image.

After cracking the equivalent diffusion key, CIEA-
HCNN is simplified to a permutation-only encryption al-
gorithm. In [28], it is pointed out that permutation-only
encryption algorithm is insecure. For given secret key pa-
rameters and the size of the plaintext image, the generated
chaotic sequences remain unchanged which are unrelated to
the plaintext image and the corresponding ciphertext image;
therefore, the values of α and β in Arnold cat map are fixed,
and further the permutation matrix T also remains un-
changed. Indeed, the permutation matrix T is the equivalent
permutation key of CIEA-HCNN. An attacker can break the
permutation-only encryption algorithm by using the per-
mutation matrix T. In addition, the position (0, 0) is always
mapped into itself in Arnold cat map.

According to the above analysis, one gets that the se-
curity performance of CIEA-HCNN depends only on the
diffusion matrix D and the permutation matrix T; indeed, it
means that the equivalent diffusion key and the equivalent
permutation key exist in CIEA-HCNN. -e adversary can
reveal the equivalent keys by using chosen-plaintext attack
and further successfully break the original encryption al-
gorithm. -erefore, the problem of cracking secret key
parameters x1′, x2′, μ1, μ2, m0, mr, mg, mb in the original en-
cryption algorithm can be solved by chosen-plaintext attack

Plaintext image P Permutation
encryption

Diffusion
encryption

Staged composited chaotic mapping

Ciphertext image C

Hopfield chaotic neural networkF transform

Secret key parameters
x′1, x′2, μ1, μ2, m0, mr, mg, mb

X, Y, Z, W

Diffusion matrix

H1 H2 H3

D

S′

Permutation matrix

T

C′

α β

Figure 1: Block diagram of CIEA-HCNN.
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and transforming it into solving the equivalent diffusion key
and the equivalent permutation key. Moreover, according to
Figure 1, one obtains the simplified block diagram of CIEA-
HCNN, as shown in Figure 2. In Figure 2, ET denotes the
equivalent permutation key, and ED represents the equivalent
diffusion key.

3.2. CrackingCIEA-HCNNbyUsingChosen-Plaintext Attack.
-e basic method of cracking the permutation encryption
and the diffusion encryption structure shown in Figure 2 is
that, according to chosen-plaintext attack, one adopts di-
vide-and-conquer strategy to separate the permutation
encryption from the diffusion encryption through choosing
the plaintext that would be useful for breaking, on this basis,
and further deciphering the equivalent permutation key ET

and the equivalent diffusion key ED, respectively. -e de-
tailed procedures of cracking the equivalent permutation key
ET and the equivalent diffusion key ED are presented as
follows.

3.2.1. Deciphering the Equivalent Diffusion Key ED.
According to chosen-plaintext attack, choose a full zero
image denoted by P1 � P1(i, j, k) 

M,N,3
i�1,j�1,k�1, and get the

corresponding ciphertext image defined as
C1 � C1(i, j, k) 

M,N,3
i�1,j�1,k�1. Next, using the obtained P1 and

C1 as known conditions, one further gets the corresponding
equivalent diffusion key ED.

-e specific approaches for cracking the equivalent
diffusion key ED are given as follows.

Step 1. Choose a full zero plaintext image as P1,
according to chosen-plaintext attack, and get its cor-
responding ciphertext image as C1. From Figure 1, one
obtains the temporary ciphertext image
C1′ � C1′(k, l) 

3,MN

k�1,l�1 corresponding to C1.
Step 2. According to equation (11) and Figure 2, one has

C1′(k, l) � S1′(k, l)⊕ED(k, l). (12)

Since all pixels of P1 are zero, after performing the
permutation encryption operation for P1,
S1(i, j, k) 

M,N,3
i�1,j�1,k�1 � S1′(k, l) 

3,MN

k�1,l�1 � 0 holds.

Step 3. From equations (11)-(12) with
S1′(k, l) 

3,MN

k�1,l�1 � 0, one obtains the equivalent diffusion
key ED defined as

ED(k, l) � C1′(k, l). (13)

3.2.2. Deciphering the Equivalent Permutation Key ET.
After breaking the equivalent diffusion key ED, the
original permutation encryption-diffusion encryption
structure is simplified to permutation-only encryption
structure. Besides, since the original image chaotic en-
cryption algorithm adopts the same permutation matrix
to the three channels of the plaintext image, the work
of deciphering the equivalent permutation key ET sets
the R channel of the plaintext image as an example
as follows. First, choose a plaintext image defined as
P2 � P2(i, j, k) 

M,N,3
i�1,j�1,k�1, and suppose the pixels of co-

ordinates (i1, j1) and (i2, j2) in R channel are P2(i1, j1, 1) �

ζ ≠ 0 and P2(i2, j2, 1) � λ≠ 0, respectively. Moreover,
(i1, j1)≠ (1, 1), (i2, j2)≠ (1, 1) and ζ ≠ λ, others are full
zero, and let all pixels of G channel and B channel be full
zero. One obtains the corresponding ciphertext image
described by C2 � C2(i, j, k) 

M,N,3
i�1,j�1,k�1. -en using the

obtained P2 and C2 as known conditions, one further gets
the corresponding equivalent permutation key ET. Note
that the equivalent permutation key ET is not affected by
the number of Arnold cat map iterations.

-e specific steps for cracking the equivalent permuta-
tion key ET are presented as follows.

Step 1. According to chosen-plaintext attack, choose
one plaintext image as P2, and get its ciphertext image
defined as C2. -en, the temporary ciphertext image as
C2′ � C2′(k, l) 

3,MN

k�1,l�1 is obtained by using the ciphertext
image C2.

Table 1: Four common attack types for cryptanalysis.

Attack types Available resource
Ciphertext-only attack -e attacker only knows the ciphertext
Known-plaintext attack -e attacker knows any given plaintext and also knows the corresponding ciphertext

Chosen-plaintext attack -e attacker can obtain access to the encryption machinery, choose the plaintext that would be
useful for deciphering, and also know the corresponding ciphertext

Chosen-ciphertext attack -e attacker can obtain access to the decryption machinery, choose the ciphertext that would be
useful for deciphering, and also know the corresponding plaintext

Plaintext image P Permutation
 encryption

Diffusion
encryption

Ciphertext image
C

Equivalent
diffusion key

ED
S′

Equivalent 
permutation key

ET
C′

Figure 2: Simplified block diagram of CIEA-HCNN.
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Step 2. Substitute C2′(k, l) 
3,MN

k�1,l�1 and ED(k, l){ }
3,MN
k�1,l�1

with equation (11); the permutation encryption image
denoted as S2′ � S2′(k, l) 

3,MN

k�1,l�1 is described by

S2′(k, l) � ED(k, l)⊕C2′(k, l). (14)

Step 3. Convert the permutation encryption image S2′ of
size 3 × MN into the temporary permutation en-
cryption image S2 � S2(i, j, k) 

M,N,3
i�1,j�1,k�1 of size

M × N × 3, and then compare S2(: , : , 1) with
P2(: , : , 1) one by one; one gets

P2 i1, j1, 1(  � S2 m1, n1, 1(  � ζ,

P2 i2, j2, 1(  � S2 m2, n2, 1(  � λ.
 (15)

According to equations (6)-(7), one obtains
m1 − 1

n1 − 1
  � ET

i1 − 1

j1 − 1
 modN �

a b

δ ε
 

i1 − 1

j1 − 1
 modN,

(16)

m2 − 1
n2 − 1

  � ET
i2 − 1
j2 − 1

 modN �
a b

δ ε
 

i2 − 1
j2 − 1

 modN.

(17)

From equations (16)-(17), one sees that (i1, j1), (i2, j2),
(m1, n1), and (m2, n2) are given, and only the equivalent
permutation key ET is unknown; therefore, one can solve
the equation by combining equations (16)-(17), defined
as

a �
m1 − 1(  − b × j1 − 1( 

i1 − 1( 
 modN,

b �
m2 − 1(  × i1 − 1(  − m1 − 1(  × i2 − 1( 

j2 − 1(  × i1 − 1(  − j1 − 1(  × i2 − 1( 
 modN,

δ �
n1 − 1(  − ε × j1 − 1( 

i1 − 1( 
 modN,

ε �
n2 − 1(  × i1 − 1(  − n1 − 1(  × i2 − 1( 

j2 − 1(  × i1 − 1(  − j1 − 1(  × i2 − 1( 
 modN.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

According to equation (18), one obtains the equivalent
permutation key ET by adopting one special plaintext image
and the corresponding ciphertext image.

For the sake of understanding the above analysis, take
the plaintext image P3 � P3(i, j, k) 

4,4,3
i�1,j�1,k�1 of size 4 × 4 ×

3 as an example, given by

P3(:, :, 1) �

0 0 0 0

0 1 2 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P3(:, :, 2) �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P3(:, :, 3) �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

After performing the permutation-only encryption on
P3, one gets the temporary permutation encryption image
denoted by S3 � S3(i, j, k) 

4,4,3
i�1,j�1,k�1, such that

S3(:, :, 1) �

0 0 0 0

0 2 0 0

0 0 0 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S3(:, :, 2) �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S3(:, :, 3) �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

According to equations (19)-(20), one has

i1, j1(  � (2, 2),

i2, j2(  � (2, 3),

m1, n1(  � (4, 3),

m2, n2(  � (2, 2).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

-en substituting equation (21) into equation (18),
according to N � 4, one obtains a � 1, b � 2, δ � 3, ε � 3 and
further gets the equivalent permutation key ET, defined as

ET �
1 2

3 3
 mod4. (22)
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3.2.3. Recover the Plaintext Image by Using the Equivalent
Diffusion Key ED and the Equivalent Permutation Key ET.
First, convert the ciphertext image C into the temporary
ciphertext image C′. According to equation (11) and the
equivalent diffusion key ED, the permutation encryption
image denoted by S′ can be obtained from the temporary
ciphertext image C′. Second, convert the permutation en-
cryption image S′ into the temporary permutation en-
cryption image denoted by S. Finally, recover the plaintext
image defined by P from the ciphertext image C by utilizing
the equivalent permutation key ET.

According to the above security analysis, the process of
cracking CIEA-HCNN by adopting chosen-plaintext attack
is described in Algorithm 1.

4. The Numerical Simulation Experiments for
Breaking CIEA-HCNN

In the numerical simulation experiments, color images
Lena, Baboon, and Pepper are taken as three examples,
where the size of the image is 512 × 512. -e secret keys
are set as x1′ � 0.6, x2′ � 0.7, μ1 � 1.46, μ2 � 1.5, m0 � 1740,
mr � 150, mg � 160, and mb � 180. -e numerical sim-
ulation experiments are operated under MATLAB
R2017a running on desktop computer with Intel (R) Core
(TM) i7-7700 CPU 3.6 GHz, 16 G memory RAM, and
1 TB hard drive; the operation system is Microsoft
Windows 7.

4.1. =e Experiments for Breaking CIEA-HCNN by Using
Chosen-Plaintext Attack. First, according to the analysis in
Section 3.2.1, choose a full zero plaintext image of size 512 ×

512 denoted by P1 and get the corresponding ciphertext
image C1, as shown in Figures 3(a) and 3(b). Based on
equation (12), P1 and C1, one obtains the equivalent dif-
fusion key ED given by

ED �

14 22 235 32 251... 8 204 43 90 27

113 92 79 61 173... 179 198 197 13 26

221 55 122 95 18... 41 72 103 88 166

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3×262144

.

(23)

Second, according to Section 3.2.1, construct a color
image of size 512 × 512 defined by P2, let the pixels of the
coordinates (2, 2) and (2, 3) be 1 and 2 in the R channel of
the plaintext image P2, other pixels are set as 0, and all pixels
of the G and B channels are defined as 0, as shown in
Figure 4(a). According to chosen-plaintext attack, one can
get the corresponding ciphertext image of P2 denoted by
C2, as shown in Figure 4(b). Recover the permutation
encryption image represented by S2′ from the ciphertext
image C2 by using the equivalent diffusion key ED, and
then convert the permutation encryption image into the
temporary permutation encryption image S2, as shown in
Figure 4(c). Based on equation (15), and comparing P2 with
S2, one gets

P2(2, 2, 1) � S2 m1, n1, 1(  � 1,

P2(2, 3, 1) � S2 m2, n2, 1(  � 2.
 (24)

According to equations (16)-(18), one obtains the
equivalent permutation key ET defined as

ET �
1 162

275 7
 mod(512). (25)

Finally, according to Section 3.2.3, the plaintext images
of Lena, Baboon, and Pepper with the size of 512 × 512 are
recovered by using the equivalent diffusion key ED and the
equivalent permutation key ET; moreover, in order to verify
that the recovered plaintext image is equal to the original
plaintext image, performing the bitwise XOR operation on
them, one gets a full zero image. -e breaking results on
CIEA-HCNN with RGB color Lena, Baboon, and Pepper are
shown in Figure 5.

4.2. Attack Complexity Analysis. -e attack complexity
consists of time complexity and data complexity. On the aspect
of time complexity, according to chosen-plaintext attack, the
cracking time of CIEA-HCNN is 11.164 seconds for the color
image with the size of 512 × 512, and the encryption time is
5.813 seconds. Moreover, on the aspect of data complexity,
given the same size of color image, the data complexity of
breaking CIEA-HCNN is O(1). -erefore, the experimental
results verify that the attack method is both effective and ef-
ficient, meanwhile having lower attack complexity.

4.3. Suggestions for Improvement. According to the security
defects of CIEA-HCNN, the suggestions for improvement
are given as follows:

(1) In the permutation encryption structure, one can
construct the combination of parameters of Arnold
cat map and the characters of plaintext image such as
all pixels sum and average and hash value of the
plaintext information. One adopts multiple-round
permutation encryption based on the encryption
efficiency. Simultaneously, one suggests that using
different permutation matrix performs the scram-
bling operation on the three R, G, B channels of the
color image, respectively. Moreover, after the per-
mutation encryption, exchange the pixel of coordi-
nate (0, 0) to the other random pixel to improve the
security of the original permutation encryption.

(2) In the diffusion encryption structure, one could add
some nonlinear diffusion encryption structure and
ciphertext feedback mechanism to enhance the
combination of plaintext, keys, and ciphertext and
further promote the security of the original en-
cryption algorithm.

(3) One suggests that multiple-round encryption algo-
rithm is proposed to improve the security based on
the higher efficiency.
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Input: P1, P2, C

Output: Recover the plaintext image P from the given ciphertext image C

(1) C1 � Encryption(P1)

(2) According to equation (11), ED � C1
(3) C2 � Encryption(P2)

(4) According to equation (11) and ED, S2′ � bitxor(C2, ED)

(5) S2← S2′
(6) for i � 1 to M do
(7) for j � 1 to N do
(8) for k � 1 to 1 do
(9) [m1, n1] � find(S2(: , : , 1) �� 1)

(10) [m2, n2] � find(S2(: , : , 1) �� 2)

(11) end for
(12) end for
(13) end for
(14) b � mod((m2 − m1), N); a � mod((m1 − 1 − b), N)

(15) ε � mod((n2 − n1), N); δ � mod((n1 − 1 − ε), N)

(16) ET � a b; δ ε 

(17) S′ � bitxor(C′, ED); S← S′
(18) P � (ET)− 1(S)

(19) return P

ALGORITHM 1: Cracking CIEA-HCNN by using chosen-plaintext attack.

(a) (b)

Figure 3: Zero plaintext imageP1 and its corresponding ciphertext imageC1. (a) Zero plaintext imageP1. (b) Its corresponding ciphertext imageC1.

(a) (b) (c)

Figure 4: Plaintext image P2, the corresponding ciphertext image C2, and the temporary permutation encryption image S2. (a) Plaintext
image P2. (b) -e corresponding ciphertext image C2. (c) -e temporary permutation encryption image S2.
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5. Conclusions

In this paper, the security analysis of a color image en-
cryption algorithm based on Hopfield chaotic neural net-
work called CIEA-HCNN is given. CIEA-HCNN adopts
permutation encryption-diffusion encryption structure;
from the view of cryptanalysis, it has the equivalent keys due
to the inherent defects. -erefore, one can obtain the
equivalent permutation key and the equivalent diffusion key
by utilizing the chosen-plaintext attack and further crack
CIEA-HCNN. -eoretical analysis and numerical simula-
tion experiment results verify the effectiveness of the
deciphering method; as for the color image of size M × N,
the data complexity is O(1). Finally, some suggestions are
proposed to improve the security of chaotic encryption
algorithm. -e reported results may help the designers of
chaotic cryptography realize the importance of the essential

structure of a color image encryption algorithm based on
Hopfield chaotic neural network.
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Memristor is a kind of passive nonlinear element, which is widely used in nonlinear systems, especially chaotic systems, because
of its nanometer size, nonvolatile property, and good nonlinear characteristics. Compared with general chaotic systems,
chaotic systems based on memristors have richer dynamic characteristics. However, the current research mainly focuses on the
binary and continuous chaotic systems based on memristors, and studies on the tri-valued and multi-valued memristor chaotic
systems are relative scarce. For this reason, a mathematical model of tri-valued memristor is proposed, and the circuit
characteristics of the model are studied. Furthermore, based on this model, a new chaotic system is designed and analyzed.+is
innovation enriches the types of chaotic systems and lays the foundation for the application of tri-valued and multi-valued
memristors in nonlinear systems.

1. Introduction

In 1971, Chua postulated the concept of memristor
according to themathematical relationship between charge q
and flux φ(dφ � M dq) and called it the fourth basic circuit
element [1]. In 2008, the Hewlett-Packard Lab realized a
practical memristor device, which set off an upsurge of
research studies on memristor models and their applications
[2]. Memristors are widely used in microelectronics, neural
network, nonvolatile storage, application and simulation of
spontaneous behavior, hard switching, and dynamic storage
[3–5]. One of themost typical applications of memristor is to
construct a chaotic system. Compared with the general
chaotic systems, chaotic oscillators constructed with
memristors have more complex and special dynamic
characteristics, wider range of parameters, and are extremely
sensitive to the initial values. Especially, when appropriate
parameters of the memristive chaotic system are given,
hidden attractors and coexisting attractors will be behaved
[6–8]. In recent years, chaotic oscillators based on mem-
ristors are widely used in confidential communication, file
encryption, and artificial intelligence [9–11].

At present, the research on memristive chaotic systems
mainly focuses on the binary and continuous memristors. In
2015, Ma introduced memristor into a four-wing chaotic
system and finally obtained line equilibriums by adding a
cross product term [12]. Kengne introduced a novel
memristor-based oscillator, which was obtained from
Shinriki’s circuit by substituting the nonlinear positive
conductance with a first-order memristive diode bridge [13].
In 2016, Wu used a memristor to replace the resistor in a
parallel RC network and designed a simpler memristor-
based Venturi oscillator [14]. By leading memristors into a
multiwing chaotic system, Zhou obtained the multiwing
hyperchaotic attractor and verified its dynamic character-
istics by numerical simulation [15]. In 2017, Wang built a
multiscroll chaotic system based on a multisegment mem-
ristor [16]. Hu designed two image encryption algorithms
based on the chaotic sequences generated by a three-di-
mensional chaotic circuit based on memristor [17]. In 2018,
Fonzin replaced the diode in the original TCMNL (Tam-
asevicius et al. (1997) oscillator) circuit with a memristor and
implemented the hardware of the circuit [18]. In 2019, Min
built a hyperchaotic system based on the memristor, which
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has symmetric coexisting attractors and exhibits complex
system characteristics. +e correctness of the system was
verified by hardware circuit experiments [19]. In 2020,Wang
proposed a new hyperchaotic circuit by introducing
memristor feedback into a simple Lorenz-like chaotic sys-
tem. By further analyses, infinite equilibrium points, mul-
tiple stability, and symmetric coexisting attractors are found
[20].

Nevertheless, compared with the continuous and binary
memristors, tri-valued and multi-valued memristors have
advantages of carrying more information. Constructing a
chaotic system based on tri-valued memristors will generate
new attractors, expand chaotic types, and broaden ideas for
chaotic systems design. Consequently, it is of great signif-
icance and application value to propose a tri-valued
memristor model and use the model to devise a chaotic
system with good performance.

+is paper is organized as follows. A specific mathe-
matical model of a voltage-controlled tri-valued memristor
is proposed and studied in Section 2. In Section 3, on the
basis of the Lü system, a chaotic system with the proposed
voltage-controlled tri-valuedmemristor is constructed. And,
the basic characteristics of the system are analyzed in detail,
including dissipative analysis, equilibrium point and sta-
bility analyses, and influences of system parameters and
initial values on dynamic characteristics, etc. Conclusions
are drawn in Section 4.

2. Voltage-Controlled Tri-Valued Memristor
and its Characteristic Analysis

2.1. Mathematical Model of a Voltage-Controlled Tri-Valued
Memristor. Different from binary and continuous mem-
ristors, this paper presents a mathematical model of a
voltage-controlled tri-valued memristor, whose q − φ rela-
tionship is given as follows:

q � −1.5 + 2.5φ + 4|φ + 1| − 2.5|φ − 1|. (1)

According to the mathematical definition of memristors
and the derivative of equation (1), the relationship between
the memconductance and flux of the tri-valued memristor is
given by

dq

dφ
� G(φ) � [2.5 + 4sgn(φ + 1) − 2.5sgn(φ − 1)]

�

1, φ< −1,

9, −1≤φ≤ 1,

4, φ> 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where G(φ) denotes memconductance, sgn(x) represents
the symbolic function; when x> 0, sgn(x) � 1 and when
x≤ 0, sgn(x) � −1. +e equation (2) shows that the mag-
nitude of the flux φ affects the resistance state of the tri-
valued memristor, which means that when the flux φ takes
different values, the memristor is in three different mem-
conductances. +e flux-charge relationship described by

equation (1) and the flux- memconductance relationship
described by equation (2) are shown in Figure 1.

Figure 1(a) indicates that the q − φ relationship of the
proposed memristor is described by a three-segment linear
curve that passes through the origin, and each slope of the
curve corresponds to the instantaneous conductance value
of the memristor. Figure 1(b) intuitively depicts the effect of
flux φ on the memconductance of the proposed memristor.

2.2. Circuit Characteristics of the Voltage-Controlled Tri-
ValuedMemristor. To study the circuit characteristics of the
voltage-controlled tri-valued memristor, a sinusoidal signal
v(t) � v0 sin(2πft) is applied to this model. According to
the mathematical definition of the flux φ, the expression of
φ(t) can be shown as

φ(t) − φ(0) � 

t

0

v(τ)dτ � 

t

0

v0 sin(2πfτ)dτ

� −
v0
2πf

cos(2πft) +
v0
2πf

.

(3)

From equation (3), the φ(t) can be written as

φ(t) � φ(0) −
v0

2πf
cos(2πft) +

v0

2πf
. (4)

It can be seen from equation (4) that the magnitude of
the flux φ is not only related to the initial value φ(0) but also
to the amplitude v0 and the frequency f of the input voltage,
and the change interval of φ(t) can be obtained as
[φ(0),φ(0) + (v0/πf)]. +en, combined with equation (2),
we can conclude the specific relationship between φ(t) and
the resistance state of the tri-valued memristor in Table 1,
which manifests the initial value φ(0), the amplitude v0, and
the frequency f of the input voltage are the main factors
affecting the change of the resistance state of the proposed
memristor. In Section 2.2.1, the influence of these three
factors on the characteristics of the tri-valued memristor will
be studied in detail.

2.2.1. Influence of Different φ(0) Values on the Character-
istics of Voltage-Controlled Tri-Valued Memristor.
Table 1 indicates that, when the input amplitude v0 and
frequency f are fixed, the initial flux φ(0) affects the resis-
tance state of the tri-valued memristor. Let v0 � 2V and
f� 0.159Hz, then φ(t) belongs to the [φ(0),φ(0) + 4] so
when φ(0) takes different values, the resistance states and
hysteresis curves of the tri-valued memristor are different as
shown in Figure 2, and these three curves correspond to
Case3, Case5, and Case6 in Table 1. +ese results indicate
that, when φ(0) increases gradually, the tri-valued mem-
ristor changes from a tri-valued state to a binary state and
finally to a single state.

2.2.2. Influence of Different v0 Values on the Characteristics of
Voltage-Controlled Tri-Valued Memristor. Let φ(0) � −1.5,
f� 0.159Hz, then we can obtain the range of φ(t) as [−1.5,
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2v0 −1.5]. +en, adjusting the input voltage amplitude v0 to
0.2V, 1.2 V, and 3V, which corresponds to Case1, Case2,
and Case3 in Table 1 respectively, we can finally obtain the
v-i hysteresis curves with different shapes as shown in
Figure 3.

+e experimental results in Figure 3 illustrate that, when
φ(0) and f are definite, as the increase of v0, the tri-valued
memristor changes from single state to binary state and from
binary state to tri-valued, the area of hysteresis curve also
increases accordingly.

2.2.3. Influence of Different f Values on the Characteristics of
Voltage-Controlled Tri-Valued Memristor. Let φ(0) � −1.5,
v0 � 2V, then the range of φ(t) is [−1.5, 0.637/f− 1.5]. When

the input voltage frequency f is adjusted to 0.1Hz, 1Hz, and
1.5Hz (corresponding to Case3, Case2, and Case1 in Table 1,
respectively), hysteresis curves at different input frequencies
can be obtained, as shown in Figure 4, which shows that,
when the frequency of the input signal increases, the tri-
valued memristor changes from tri-valued memristor state to
binary memristor state and finally to single memristor state,
which is consistent with the theoretical derivation in Table 1.

2.2.4. Influence of Different Input Signals on the Charac-
teristics of Tri-Valued Memristor. +e above three influ-
encing factors are all discussed under the condition of
sinusoidal signal as the input. In this section, the circuit
characteristics under different kinds of input signals are

Table 1: Relationship between the number of resistance states of tri valued memristors and φ(t).

Cases Value range of φ(t) Number of resistance states
Case1 φ(0)< −1,φ(0) + v0/πf< −1 1
Case2 φ(0)< −1, −1<φ(0) + v0/πf< 1 2
Case3 φ(0)< − 1,φ(0) + v0/πf> 1 3
Case4 −1<φ(0)< 1, −1<φ(0) + v0/πf< 1 1
Case5 −1<φ(0)< 1,φ(0) + v0/πf> 1 2
Case6 φ(0)> 1,φ(0) + v0/πf> 1 1
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Figure 1: Characteristic curves of voltage-controlled tri-valued memristor model: (a) φ − q curve; (b) φ − G curve.
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studied. By applying sine, square, and triangular waves with
amplitude of 4V and frequency of 0.159Hz to the tri-valued
memristor model, respectively, and let φ(0) � −1.5, the
hysteresis curves of the three input signals can be obtained,
respectively, as shown in Figure 5.

From the above simulation results, it can be concluded
that when the periodic signal of any zero DC component acts
on the tri-valued memristor, its input and output responses
can be represented as a hysteresis curve across the origin in
the v-i plane, and all of these curves have three value
characteristics.

3. Chaotic System Based on a Voltage-
Controlled Tri-Valued Memristor

In 2001, Professor Lü proposed the famous Lü system [21],
which can realize the conversion between Lorenz system
[22] and Chen system [23]. In this paper, by adding a
voltage-controlled tri-valued memristor model to the Lü
system, a chaotic system based on a tri-valued memristor is
generated as follows:

_x � a(y − x),

_y � cy − xz,

_z � xy − bz − dG(w),

_w � z,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where a, b, c, and d are system parameters, all of them are
real constants, and G(w) represents the memconductance of
the voltage-controlled tri-valued memristor shown in
equation (2); here, the variable w is selected as a dimen-
sionless mathematical representation of the flux φ. When the
parameters are set as a� 40, b� 5, c� 24.4, and d� 50 and
initial value [x0, y0, z0, w0] � [0.01, 0.01, 0.01, 0.01], the
phase diagrams of the system are as shown in Figure 6. +e
corresponding Lyapunov exponent values are calculated as
LE1 � 4.2486, LE2 � 0.0025, LE3 � −0.004, and LE4 � −24.8471
by the Jacobi method. Figure 7 shows the Poincare mappings
obtained when the cross planes are selected as x� −10 and
z� 50, which are dense points with hierarchical structures.
All the above results indicate that the system can be working
as a chaotic oscillator under appropriate parameters and
initial values.

3.1. Dissipative Analysis. From the perspective of the dis-
sipation of the chaotic system, to generate chaotic attractors,
it is necessary for the system to be dissipative. So, we cal-
culate the dissipativity of the system as follows:

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _w

zw
� −a + c − b. (6)

Setting a� 40, b� 5, c� 24.4, and d� 50, we can get
∇V � −20.6< 0, implying that all trajectories are ultimately
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Figure 3: v-i curve of the tri-valued memristor at different amplitudes: (a) v0 � 0.2 V, (b) v0 � 1.2V, and (c) v0 � 3V.
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confined to a specific subset of zero volume and the system
satisfies the conditions for chaos.

3.2. Equilibrium Point and Stability Analysis. Let _x � _y �
_z � _w � 0 in equation (5), because all the system pa-
rameters a, b, c, and d are not nonzero, so we can obtain

x � 0, y � 0, z � 0, and G(w) � 0. But, as we know from the
mathematical definition of the tri-valued memristor in
equations (1) and (2), G(w) is not equal to zero, so we can
draw the conclusion that the chaotic system based on the
novel tri-valued memristor has no equilibrium point, and
the attractors generated by the system are hidden
attractors.
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3.3. Influence of System Parameters and Initial Values on
Dynamic Characteristics

3.3.1. Influence of Parameter c on System Dynamics.
Given [x0, y0, z0, w0] � [0.01, 0.01, 0.01, 0.01], a� 40, b� 5,
and d� 50, the Lyapunov exponent spectrum and the bi-
furcation diagram of the system with respect to the pa-
rameter c can be obtained as shown in Figures 8 and 9.
Table 2 presents the states of the system when the parameter
c is in different intervals. And, Figure 10 shows the attractor
phase diagrams of the system on the x-z plane when c takes
different values.

3.3.2. Influence of the Initial Value on the System. Chaos is
extremely sensitive to initial values, and different initial
values will eventually produce different trajectories. It is
necessary to estimate the impact of initial conditions on
system (5) for fixed sets of parameter values. +e sensitivity
of the sequences can be analyzed by measuring the corre-
lation of the two sequences, which is defined by

Co �
E Xt − μX(  Yt − μY(  

σXσY

, (7)

where Xt and Yt are two sequences generated by the system
(5) with slight changes in its initial value, μ and σ are the
mean value and standard deviation, and E[·] is the expec-
tation function [24]. +e closer the correlation value is to 0,
the higher the sensitivity of the system is, and the greater the
influence of the initial value on the system is.

In this paper, we slightly change each variable in the
initial value [x0, y0, z0, w0] with a 10−8 difference. Con-
cretely taking the x0 case as an example, let x0′ � x0 + 10− 8,
then we can obtain a different sequence pair (X1, X2) under
initial values [x0, y0, z0, w0] � [0.01, 0.01, 0.01, 0.01] and
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Table 2: Under different system parameters c, the system is in
different states.

Range of system parameter c System state
[28.9, 29.2] [31, 33] Period-1 state
[28.1, 28.5] Period-2 state
[24, 27.5] Chaotic state
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[x0′, y0, z0, w0] � [0.01 + 10− 8, 0.01, 0.01, 0.01]. In the same
way, we can get the other sequence pairs (Y1, Y2), (Z1, Z2),
and (W1, W2) generated by applying a tiny change to y0, z0,
and w0 in the initial value. Table 3 shows the correlation
results in each case. As can be seen, the correlation values of
each sequence pair are extremely close to 0. To further il-
lustrate the system’s sensitivity to initial states, the timing
diagrams of the sequence pairs (X1, X2), (Y1, Y2), and
(Z1, Z2) under x0 − x0′ case are shown in Figure 11 as an
example, which intuitively demonstrate the differences be-
tween the two output sequences generated by the system
under tiny different initial conditions. So, we can conclude
the system is extremely sensitive to the initial values.

4. Conclusion

In this paper, a voltage-controlled tri-valued memristor is
proposed for the first time. To demonstrate its unique
characteristics, the circuit characteristics, parameters
properties, and influence factors on its properties have been

studied in detail. And, then a novel chaotic system is suc-
cessfully built based on the Lü system; by introducing the tri-
valued memristor to the system, the maximum Lyapunov
exponent has been improved. In addition, some conven-
tional analyses like the influences of parameters and initial
values on the system are considered. +is study shows that
the tri-valued memristor is suitable for building chaotic
systems, which will enrich the types of nonlinear system,
widen the application of tri-valued memristor, and lay a
foundation for the subsequent application of tri-valued and
multi-valued memristors.
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Figure 10: Influence of parameter c on the attractors of the x-z plane: (a) c� 29, period-1, (b) c� 28.1, period-2, and (c) c� 24.4, chaotic state.

Table 3: Correlation values of different sequences under tiny different initial values.

Initial values Correlation of X1, X2 Correlation of Y1, Y2 Correlation of Z1, Z2
x0 − x0′ case −0.0743 −0.0220 −0.0348
y0 − y0′ case 0.0084 −0.0002 −0.0799
z0 − z0′ case 0.0909 0.0475 0.0731
w0 − w0′ case 0.1278 0.1042 −0.1441
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Figure 11: +e timing diagrams of different sequence pairs of under [x0, y0, z0, w0] and [x0′, y0, z0, w0]: (a) (X1, X2), (b) (Y1, Y2), and (c)
(Z1, Z2).
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In this paper, a method for determining the initial value of the hidden attractors in the Chua system is studied. *e initial value of
the hidden attractors can be calculated quickly and accurately by the proposed method, and the hidden attractors can be found by
numerical simulation. *en, the initial values of the hidden attractors are set accurately by digital signal processor (DSP), so as to
the circuit realization of the chaotic system with hidden attractors is performed. *e results show that the numerical simulation
results of Matlab are consistent with the experimental results of DSP.

1. Introduction

In the last three decades, chaos has been widely used in
neural networks [1–5], electronic circuits [6], image pro-
cessing [7–10], random number generators [11], system
synchronization [12–14], and secure communication
[15–18] because of its characteristics of aperiodic, contin-
uous broadband, noise-like, and unpredictable for a long
time. Since Lorenz puts forward the first chaotic system in
the study of atmospheric motion [19], the research and
exploration of the chaotic system composed of ordinary
differential equations have attracted researchers’ great at-
tention, and many new chaotic systems with complex dy-
namic attractors, such as multiscroll attractors [20] and
coexistence attractors [21–23] have been constantly
produced.

Because the domain of attraction of the hidden attractor
does not intersect with any small neighbourhood of the
equilibrium point, there is no general method to predict the
existence of the hidden attractor, so it is of great theoretical
and practical significance to study the hidden attractor in the
field of machinery and so on [24, 25]. In 2011, Leonov et al.
proposed a locating algorithm for hidden attractors [26] and
used the algorithm to find hidden attractors of the Chua

system. Since then, the research on hidden attractors has
attracted extensive interest of scholars. In 2012, Leonov et al.
used the algorithm to find the hidden attractor in the Chua
system with hyperbolic tangent function as nonlinear
function [27]. In 2014, Zhao et al. used the algorithm to find
the hidden attractor in a generalized autonomous Pol-
Duffing system [28]. In the same year, Li et al. found the twin
hidden attractors in the Chua system [29]. In 2017, Zhao
et al. found the hidden attractor in a modified Chua system
[30]. In the same year, Kuznetsov et al. also found coexis-
tence limit cycle and symmetric hidden attractors in the
Chua system [31]. Stankevich et al. analysed the scenario of
the birth of the hidden attractor from its attractor basin in
the Chua system [32]. *ese attractors are different from the
classical Lorenz attractors, Chua attractors, and Chen
attractors. *ey are not near the equilibrium point and
cannot be calculated by traditional methods. Leonov et al.
proposed an algorithm to determine the initial value of the
hidden attractors and found the hidden attractors.

In 2016, Bao et al. designed the chaotic circuit of the
chaotic system and found the hidden attractor of the system
by PSIM simulation [33]. In [34], a three-dimensional au-
tonomous chaotic circuit is designed, and the hidden
attractor of the system is found by PSpice simulation. In
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[35], a 5-Dmemristor chaotic circuit is designed.*e hidden
multiscroll attractors and hidden multiwing attractors are
found by PSpice simulation. In [36], a 5D extreme multi-
stable chaotic circuit is designed, and the hidden attractor of
the system is found by PSpice simulation. In [37], a four-
dimensional chaotic circuit is designed, and the coexistence
hidden attractor of the system is found by PSpice simulation.
In [38], a new chaotic circuit is designed by introducing the
cosh function into the system in [37], and the coexistence
hidden attractor of the system is found by PSpice simulation.
In [39], by introducing a memristor to improve Fitz-
hugh–Nagumo circuit, a new memristor chaotic circuit is
designed, and the hidden attractor is found by PSIM sim-
ulation. However, the hidden attractor is studied by circuit
simulation software, but the initial state of the experimental
circuit is random, so the initial value of the hidden attractor
cannot be set accurately.

In this paper, we study the method to determine the
initial value of the hidden attractors in the Chua system. Its
initial value of the hidden attractors can be set accurately by
DSP, and the circuit realization of the chaotic system with
hidden attractors is performed. *e results show that the
numerical simulation results of Matlab are consistent with
the experimental results of DSP.

*e rest of this work is organized as follows. Section 2
describes initial value determining algorithm for the Chua
system with hidden attractors. Section 3 calculates initial
values of hidden attractors and finds its hidden attractors.
*e Chua system with hidden attractors is implemented by
DSP in Section 4. Finally, we conclude in Section 5.

2. Initial Value Determining Algorithm for
Hidden Attractors

According to the initial value determining algorithm for the
chaotic system with hidden attractors in [26], the Chua
system with hidden attractors is

dx

dt
� a(y − x) − af(x),

dy

dt
� x − y + z,

dz

dt
� − by − cz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where f(x)�mx+ 0.5(n –m) (|x+ 1| − |x − 1|), x, y, and z are
system variables, and a, b, c, m, and n are system constants.

Now, system (1) is rewritten as lure system:
dx

dt
� Px + qψ r

∗
x(  , x ∈ R

3
, (2)

where P �

− a(1 + m) a 0
1 − 1 1
0 − b − c

⎛⎜⎝ ⎞⎟⎠, q �

− a

0
0

⎛⎜⎝ ⎞⎟⎠, r �

1
0
0

⎛⎜⎝ ⎞⎟⎠,

and ψ(σ) � 0.5(n − m)(|σ + 1| − |σ − 1|).
Let k be the coefficient of harmonic linearization, and ε

be an infinitesimal number, and equation (2) can be re-
written as

dx

dt
� P0x + qεδ r

∗
x( , (3)

where P0 �

− a(1 + m + k) a 0
1 − 1 1
0 − b − c

⎛⎜⎝ ⎞⎟⎠, λP0
1,2 � ± iω0,

λP0
3 � − d< 0, and δ(σ) � ψ(σ) − kσ.

Using nonsingular linear transformation x� Sy, equa-
tion (3) can be transformed as

dy

dt
� Hx + eεϕ u

∗
y( , (4)

where H �

0 − ω0 0
ω0 0 0
0 0 − d

⎛⎜⎝ ⎞⎟⎠, e �

e1
e2
1

⎛⎜⎝ ⎞⎟⎠, and u �

1
0

− h

⎛⎜⎝ ⎞⎟⎠.

*e transfer function of equation (4) can be expressed as

WH(p) �
− e1p + e2ω0

p2 + ω2
0

+
h

p + d
. (5)

*e transfer functions of system (3) can be expressed as

WP0
(p) � r

∗
P0 − pI( 

− 1
q, (6)

where p is complex variables, ω0 is the initial frequency,
which can be calculated by ImWH(ω0)50, and k is the
harmonic linearization coefficient, which can be calculated
by k� –(ReWHiω0)–1. From the equivalence of the transfer
functions of systems (3) and (4), it can be concluded:

k �
− a(m + mc + c) + ω2

0 − b − c( 

a(1 + c)
 ,

d �
ω2
0 − b + 1 + a + c + c2

(1 + c)
 ,

h �
a c + b − (1 + c)d + d2( 

ω2
0 + d2( 

,

e1 �
a c + b − (1 + c)d − ω2

0( 

ω2
0 + d2( 

,

e2 �
a (1 + c − d)ω2

0 + d(c + b)( 

ω0 ω2
0 + d2( ( 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

System (3) is transformed by nonsingular linear trans-
formation, and it can be concluded:

H � S− 1P0S,

e � S− 1q,

u∗ � r∗S.

⎧⎪⎪⎨

⎪⎪⎩
(8)

Let S �

s11 s12 s13
s21 s22 s23
s31 s32 s33

⎛⎜⎝ ⎞⎟⎠. We can obtain s11 � 1, s12 � 0,

s13 � − h, s21 � m + k + 1, s22 � − (ω0/a), s23 � − (h(a(m+

k + 1) − d))/a, s31 � (a(m + k) − ω2
0)/a, s32 � − (a(c + b)

(m + k) + ab − cω2
0)/aω0, and s33 � h((a(m + k)(d − 1)+

d(1 + a − d))/a).
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For the infinitesimal number ε, the initial value of (4) is

y(0) �

y1(0)

y2(0)

y3(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

g0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

From equation (9), the relationship between the initial
values of equations (3) and (4) can be obtained:

x(0) � Sy(0) � S

x1(0)

x2(0)

x3(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

g0s11

g0s21

g0s31

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

In this way, the initial value of system (1) is

x(0) � g0,

y(0) � − g0(m + k + 1),

z(0) � g0
a(m + k) − ω2

0
a

,

(11)

where the description function of a0 can be calculated as

Φ(g) � 
2π/ω0

0
δ1 cosω0t( g, sinω0t( g, 0( cosω0t

+ δ2 cosω0t( g, sinω0t( g, 0( sinω0tdt,

(12)

and the description function satisfies Φ(g0) � 0 and
b1(dΦ(g)/dg)|g�g0

≠ 0.

3. Numerical Simulation

According to the algorithm in [26], the initial values are
x0� [5.9, 0.3720, − 8.4291] and x00� [− 5.9, − 0.3720, 8.4291].
Based on the calculated initial value, the phase diagram is
shown in Figure 1, and the attractor basin is shown in Figure 2.

From Figure 1, it can be seen that the hidden attractor
can be found according to the initial value calculated by the
algorithm in [26]. From Figure 2, the blue centre region is
stable equilibrium, the red region is period-1 limit cycle, and
the cyan region is divergent.

4. DSP Implementation of Chua System with
Hidden Attractors

*e realization of the chaotic system by hardware circuit is
the most common method to verify the design of new
chaotic system, including analog circuit and digital circuit.
Analog circuit mainly adopts discrete components [13] and
integrates circuit (IC) [40–42] design method, while digital
circuit mainly adopts FPGA [43] and DSP [44–46]. It is
difficult to design and debug chaotic circuit with discrete
components, and the circuit is bulky. When using IC to
design the chaotic oscillator, the chip area is greatly reduced,
but the design of IC requires high chip technology, and the
number of wings or scrolls of the attractor is difficult to
control. Because the analog circuit cannot accurately set the
initial state of the system and cannot reach the calculated
initial value of the hidden attractors. FPGA and DSP have

high-speed data processing capability and can realize various
processing algorithms through software programming
[47, 48], which can conveniently realize the nonlinear
characteristics of the chaotic system with hidden attractors.

4.1. Implementation of the Chaotic System. In this part, the
chaotic system with hidden attractors is implemented on
DSP platform.*e block diagram of the working principle is
shown in Figure 3. In the experiments, the Texas Instrument
DSP device TMS320F28335 is employed. It is a 32 bit DSP
running at 150MHz with floating point operations. Such a
high-speed clock rate is considered to be sufficient. In order
to observe the phase diagrams of the attractor on the os-
cilloscope, the digital chaotic sequences generated on DSP
are converted into analog signals. DAC8552, a 16 bit digital-
to-analog converter with dual channels, is adopted. It
connects DSP through SPI (serial peripheral interface).

*e flowchart of the programming is shown in Figure 4. In
the program, in order to reduce the effect of finite computing
precision in digital circuits, all data types are defined as long
double. After initializing DSP, we set the initial conditions,
including initial values of state variables, and the system pa-
rameters. Iterative computation is started according to the
initial values [x0, y0, z0]. To keep the iteration not being affected
by data processing, it is necessary to push the results of each
iteration into the stack. Data processing includes two steps.
Firstly, an appropriate positive number is added to all data to
make sure all data is greater than zero. Secondly, all data is
rescaled and truncated to make the output adapting the 16 bit
digital-to-analog converter.

4.2. Runge–Kutta4 (RK4) Algorithm. According to the re-
quired iterative equation in Figure 4, we use the RK4 al-
gorithm to realize the iterative equation of the Chua system
with hidden attractors. RK4 is a derivative of Runge–Kutta
basic model, which is used to solve ordinary differential
equations with high accuracy, and mostly has proved itself
superior to other solutions. RK4 algorithm is expressed as

yi+1 � yi +
h

6
k1 + 2k2 + 2k3 + k4( ,

k1 � f xi, yi( ,

k2 � f xi +
h

2
, yi +

h

2
k1 ,

k3 � f xi +
h

2
, yi +

h

2
k2 ,

k4 � f xi + h, yi + hk3( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

According to the values of h, xi, and yi and calculating the
values of k1, k2, k3, and k4, we can attain the value of yi+1.
*ree equations of system (1) are substituted into equation
(13), and the three state variables (x, y, z) of system (1) are
solved, respectively:
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Figure 4: Flowchart for DSP implementation of the Chua system with hidden attractors.

Figure 5: Hardware part of DSP implementation.
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Figure 6: Hidden attractors by DSP implementation for a� 8.4562; b� 12.0732; c� 0.0052; m� –1.1468; n� –0.1768: (a) x-y plane; (b) x-z
plane; (c) y-z plane.
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Figure 7: Continued.
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Kx1 � a − xi − mxi − 0.5 (n − m) xi + 1


 − xi − 1


  + yi ,

Ky1 � xi − yi + zi,

Kz1 � − byi − czi,

Kx2 � a − xi + mxi + 0.5(n − m) xi + 1


 − xi − 1


  + 0.5hKx1  + yi + 0.5hKy1  ,

Ky2 � xi + 0.5hKx1(  − yi + 0.5hKy1  + zi + 0.5hKz1( ,

Kz2 � − b yi + 0.5hKy1  − c zi + 0.5hKz1( ,

Kx3 � a − xi + mxi + 0.5(n − m) xi + 1


 − xi − 1


  + 0.5hKx2  + yi + 0.5hKy2  ,

Ky3 � xi + 0.5hKx2(  − yi + 0.5hKy2  + zi + 0.5hKz2( ,

Kz3 � − b yi + 0.5hKy2  − c zi + 0.5hKz2( ,

Kx4 � a − xi + mxi + 0.5(n − m) xi + 1


 − xi − 1


  + 0.5hKx3  + yi + 0.5hKy3  ,

Ky4 � xi + 0.5hKx3(  − yi + 0.5hKy3  + zi + 0.5hKz3( ,

Kz4 � − b yi + 0.5hKy3  − c zi + 0.5hKz3( ,

xi+1 � xi +
h(k11 + 2k12 + 2k13 + k14)

6
,

yi+1 � yi +
h(k21 + 2k22 + 2k23 + k24)

6
,

zi+1 � zi +
h(k31 + 2k32 + 2k33 + k34)

6
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

2

1 80.0mV 2 398mV ∿

1

400ms

(c)

Figure 7: Hidden attractors by DSP implementation; initial values: (5.9 0.3720–8.4291) (magenta) and (–5.9 –0.3720 8.4291) (green): (a) x-y
plane; (b) x-z plane; (c) y-z plane.
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4.3. Circuit Implementation Using DSP. We set h� 0.001,
initial values x0 � [5.9 0.3720–8.4291] and x00 � [5.9 0.3720
8.4291], when a� 8.4562, b� 12.0732, c� 0.0052,
m� –1.1468, and n� –0.1768. *e system is realized by the
DSP platform. Figure 5 shows the hardware part of DSP.
Phase diagrams of the system are captured randomly by the
oscilloscope, as shown in Figure 6. When a� 8.4, b� 12.1,
c� 0.005, m� –1.1, and n� 0.1, its phase diagrams is shown
in Figure 7. It indicates that the Chua system with hidden
attractors is realized successfully on the DSP platform.

From Figures 5–7, it is observed that the DSP circuit can
generate two hidden attractors.

5. Conclusions

In this paper, we calculate the initial values of the Chua
system with hidden attractors, find its hidden attractors, and
obtain its phase diagram and attractor basin. Since the
analog circuit cannot accurately set its initial state and
cannot achieve the calculated initial value of the hidden
attractor, this paper uses DSP to realize the chaos system
with hidden attractors. *e results show that the numerical
simulation is consistent with the experimental results of
DSP, which provides a practical method for the circuit
implementation of the chaotic system with hidden attrac-
tors. In the next work, we will study the hidden attractor
applied to secure communication.
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+is paper investigates the bipartite consensus problem of heterogeneous multiagent systems with diverse input delays. Based on
the systems composed of first-order and second-order agents, the novel control protocols are designed. Using frequency-domain
analysis and matrix theory, the corresponding upper bounds of the allowable delays are obtained under the undirected topology
and directed topology, respectively. Finally, simulation examples are given to verify the theoretical analysis.

1. Introduction

Multiagent systems and its cooperative control [1] are widely
used in many practical systems such as unmanned aerial
vehicles (UAV) [2], monitoring and security [3], sensor
network [4], and delay system [5–11].

It is noteworthy that most of the problems about the
consensus of multiagent systems are focused on cooperative
network. In fact, cooperative and competitive relationships
exist extensively in both natural and engineered network
systems, such as opinion dynamics in social networks [12]
and biological systems [13]. +e bipartite consensus was
firstly proposed in [14], which defined a signed graph the
edges with positive and negative weights to describe the
cooperative and competitive relations between agents. Bi-
partite consensus can be used for formation control [15],
obstacle avoidance of wheeled robots [16], and nano-
quadcopters formation [17].

+ere are many factors that affect the stability of agents.
+e time delay problem is one of the important problems
that affect the consensus of a multiagent system. +e bi-
partite consensus problem of second-order multiagent
systems with fixed time delays was studied in [18]. Based on

the second-order multiagent systems, Tian et al. [19] dis-
cussed the bipartite consensus problem of the system under
different disturbances. +e bipartite consensus with arbi-
trary finite communication delay was discussed in [20]. Most
of the above work use undirected graphs as communication
networks. Compared with undirected graphs [21], directed
graphs [22–25] are more versatile and cost effective when the
edge weights can be arbitrary between two agents.

+is paper pays attention to bipartite consensus of
heterogeneous MAS [26–28] with diverse input delays. As
far as we know, there are few studies on this aspect, which is
the motivation of this work. +e theoretical analysis and
simulation are presented under undirected topology and
directed topology. +e upper bounds of the allowable delays
are given.

+e rest of this article is structured as follows. Section 2
introduces some concepts and basic lemmas of graph theory.
In Section 3, the bipartite consensus analysis of heteroge-
neous multiagent systems with multiple input delays under
undirected and directed topologies is presented. In Section 4,
two numerical examples are given to illustrate the validity of
theoretical analysis. Finally, Section 5 draws some
conclusions.
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2. Preliminaries and Problem Formulation

2.1. Preliminaries. In this section, the concepts and lemmas
of some preliminary diagrams are introduced.We consider a
heterogeneous multiagent system with n agents. +e con-
nection between agents is represented by an undirected
graph or directed graph G � (V, ε, A), where
V � ζ1, ζ2, . . . , ζn  represents the set of nodes, ε⊆V × V

represents the set of edges, and A � [aij] ∈ Rn×n represents
the adjacency matrix of G. As the multiagent system of
cooperation and competition is studied in this paper, the
value can be either positive or negative. Here, we choose
aii ≠ 0 for all i ∈ 1, 2, . . . , n{ }. If aij ≠ 0, nodes ζj and ζ i have
information exchange; then, node ζj is said to be the
neighbor of node ζ i. +e set of neighbors of node ζ i is
denoted by Ni � ζj |(ζj, ζ i) ∈ ε . Graph G is strongly
connected if there is a path between any two nodes in graph
G. +e Laplacian matrix of G is defined as Ls � C − A, where
C � diag 

n
j�1 |a1j|, 

n
j�1 |a2j|, . . . , 

n
j�1 |anj| . +erefore, the

elements of Laplacian matrix Ls are

Ls �


ζ i∈Ni

aij



, j � i,

− aij, j≠ i.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Assumption 1 (see [29]). j∈Nl
|aij| � 0,∀i ∈ Ni, and

j∈Ni
|aij| � 0,∀i ∈ Nl.

Lemma 1 (see [30]). For Assumption 1, Laplace’s matrix Ls

has at least two roots of zero. Give the time-delay system

_y(t) � 
N

i�1
Aiy t − τi( , (2)

where y(t) ∈ Rn,Ai ∈ Rn×n, τi ∈ R, and N is a positive integer.

Taking the Laplace transform, we can get the charac-
teristic equation:

det sI − 
N

i�1
Aiy t − τi( ⎛⎝ ⎞⎠ � 0. (3)

Lemma 2 (see [30]). According to the characteristic equation
of Lemma 1, if it has only two zero roots and the rest of its
roots are on the left half-plane of the complex plane, then it
has limt⟶∞y(t) � α + βt, where α ∈ Rn and β ∈ Rn are
constant vectors.

Lemma 3 (see [31]). Let h(λ) � arctan(δμ(λ)/μ(λ)), where
δ > 0. When λ> 0, μ(λ)> 0 increases monotonically; then,
h(λ) decreases monotonically.

Lemma 4 (see [31]). y/(1 + y2)< arctan(y) holds for y> 0.

Lemma 5 (see [30]). If m> 0, then the inequality
y/(1 + y2)< arctan(y) + m holds for y> 0. If
− (π/2)<m< 0, then there exists y0 > 0, such that the in-
equality y/(1 + y2)< arctan(y) + m holds for y>y0.

Lemma 6 (see [32]). If and only if the connected graph G has
a globally accessible node, Laplace’s matrix Ls has a simple
root 0.@e corresponding right eigenvector is 1n � [1, . . . , 1]T,
that is, L1n � 0.

2.2. Problem Formulation. In this section, we will consider a
heterogeneous multiagent system composed of agents,
where m agents are second-order agents and n-m agents are
first-order agents. +e information transmission of each
agent in the heterogeneous system is represented by G, and
each agent represents a node.

Suppose the input delay of each agent in the system is not
consistent.+e dynamics of each second-order agent is given
as follows:

_xi(t) � vi(t),

_vi(t) � ui t − Ti(  i � 1, 2, . . . , m,
 (4)

where xi, vi, ui ∈ R represent the position, velocity, and
control input of the second-order agent i, respectively. Ti > 0
represents the input delay. +e dynamics of each first-order
agent is given as follows:

_xl � ul t − Tl(  l � m + 1, m + 2, . . . , n, (5)

where xl, ul ∈ R represent the position and control input of
the first-order agent l, respectively. Tl > 0 represents the
input delay.

+e bipartite consensus means all agents converge to a
value which is the same for all in modulus but not in sign
through distributed protocols. Similar to [33], the bipartite
consensus protocols for the second-order agents are given by

ui � k1 
j∈Ni∪Nl

aij



 sgn aij xj − xi 

+ k2 
j∈Ni∪Nl

aij



 sgn aij vj − vi  i � 1, 2, . . . , m,

(6)

where k1, k2 > 0.
Based on the dynamic neighbor estimation rule in

[31, 34–36], an estimated speed is added to the first-order
agent. +e bipartite consensus protocols are given by

_ul � vl + k2 
j∈Ni∪Nl

alj



 sgn alj xj − xl 

_vl � k1 
j∈Ni∪Nl

alj



 sgn alj xj − xl  l � m + 1, m + 2, . . . , n,

(7)

where k1, k2 > 0.
+e main purpose of this paper is to study the bipartite

consensus protocol for heterogeneous multiagents with
diverse input delays under the undirected topology and
directed topology, respectively.

3. Main Results

3.1. Bipartite Consensus under Undirected Topology. We will
consider the bipartite consensus of heterogeneous multi-
agent systems with diverse input delays under undirected

2 Complexity



topology in this section. +is paper uses neighborhood es-
timation rules to estimate the speed of first-order agents.
Using the dynamic change of the position of the agent around
the first-order agents, the estimated velocity is substituted for
its actual velocity. Based on the heterogeneous system with
both cooperative and competitive relations, the second-order
agent control protocol is designed as follows:

_xi(t) � vi(t),

_vi(t) � k1 
j∈Ni∪Nl

aij



 sgn aij xj t − τi(  − xi t − τi(  

+ k2 
j∈Ni∪Nl

aij



 sgn aij vj t − τi(  − vi t − τi(  ,

i � 1, 2, . . . , m,

(8)

and the first-order agent control protocol is designed as
follows:

_xl(t) � vl t − τl(  + k2 
j∈Ni∪Nl

alj



 sgn alj xj t − τl(  − xl t − τl(  ,

_vl(t) � k1 
j∈Ni∪Nl

alj



 sgn alj xj(t) − xl(t) ,

l � m + 1, m + 2, . . . , n,

(9)

where sgn(·) is the sign function, k1 > 0 and k2 > 0 are the
control gains, Ni and Nl represent the neighborhood of the
agent i and l, and τi and τl represent the input delay of the
agent i and l.

Lemma 7. For the heterogeneous multiagent systems (8) and
(9), if and only if the Laplacian matrix Ls has at least one zero
eigenvalue, the real parts of the rest of eigenvalues are positive,
and satisfy the condition of inequality (10), and the systems
can achieve bipartite consensus.

λi

��������
k2
1 + ω2

cik
2
2



ω2
ci

< 1, (10)

where λi is the eigenvalue of Ls and ωci satisfies ωci �

arctan(ωcik2/k1).

Proof. Take the Laplace transform on (8) and (9); then, we
can obtain

sXi(s) � Vi(s),

sVi(s) � k1 
j∈Ni∪Nl

aij



 sgn aij Xj(s) − Xi(s) e
− τis

+ k2 
j∈Ni∪Nl

aij



 sgn aij Vj(s) − Vi(s) e
− τis,

i � 1,2, · · · ,m,

(11)

sXl(s) � Vl(s)e
− τls + k2 

j∈Ni∪Nl

alj



 sgn alj Xj(s) − Xl(s) e
− τls,

sVl(s) � k1 
j∈Ni∪Nl

alj



 sgn alj Xj(s) − Xl(s) ,

l � m +1,m +2, . . . ,n.

(12)
From (11) and (12), we can obtain

s
2
X(s) � − k1 + k2s( X(s)Lse

− τs
, (13)

where X(s) � [X1(s), X2(s), . . . , Xn(s)]T is the Laplace
transform of x(t) � [x1(t), x2(t), . . . , xn(t)]T. +us, the
characteristic equation of (8) and (9) is given by

det s
2
I + k1 + k2s( Lse

− τs
  � 0. (14)

Because the topology is undirected connected, 0 is a
simple root ofmatrix Ls, and the rest of the roots are positive.
Hence, rank(Ls) � n − 1. Let λi, i � 1, 2, . . . , n be the ei-
genvalue of Ls. Assume λ1 � 0, λi > 0, i � 2, 3, . . . , n, then
(14) is equal to

s
2


i�2,...,n

s
2

+ λi k1 + k2s( e
− τs

  � 0. (15)

So, the equation has two roots of zero. Analyze the rest of
the roots of the equation. For

s
2

+ λi k1 + k2s( e
− τs

� 0, i � 2, 3, . . . , n, (16)

let f(s) � 1 + gi(jω) � 0. Equation (16) can be written as
1 + λi(k1 + k2s)e

− τs/s2 � 0, where gi(jω) � λi(k1 + k2s)

e− τs/s2. Based on the Nyquist criterion, if and only if the
curve gi(jω) does not include the point (− 1, j0), the
characteristic root of equation (16) is located on the left half-
plane of the complex plane. +en,

gi(jω) �
λi

��������

k2
1 + ω2k2

2



ω2 e
− j ωτ+π− arctan ωk2/k1( )( ). (17)

+en,

gi(jω)


 �
λi




��������
k2
1 + ω2

cik
2
2



ω2
ci

,

arg gi(jω)(  � − ωτ + arctan ωk2/k1( ,

(18)

where arg(·) represents the phase. We know that when
ω ∈ (0, +∞), |gi(jω)| is monotonically decreasing. When
curve gi(jω) crosses the real axis for the first time, ωci

satisfies − ωτ + arctan(ωk2/k1) � 0. +erefore,

gi(jω)


 �
λi




��������
k2
1 + ω2

cik
2
2



ω2
ci

< 1. (19)

In other words, (10) is true. +erefore, except for the two
zero roots, all the characteristic roots of (14) are located in
the left half-plane. Based on Lemma 2, it is true that
limt⟶∞x(t) � α + βt, where α � [α1, α2, . . . , αn]T ∈ Rn and
β � [β1, β2, · · · , βn]T ∈ Rn are constant vectors. From the
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control protocols (8) and (9), it is true that limt⟶∞v(t) � β,
where v(t) � [v1(t), v2(t), . . . , vn(t)]T. For (8),

k1 
j∈Ni∪Nl

aij



 αj − αi  + k1(t − τ) + k2( 


j∈Ni∪Nl

aij



 βj − βi  � 0, i � 1, 2, . . . , m.
(20)

And (20) is also true for any t, and we have


j∈Ni∪Nl

aij



 αj − αi  � 0, i � 1, 2, . . . , m. (21)


j∈Ni∪Nl

aij



 βj − βi  � 0, i � 1, 2, . . . , m. (22)

For (9),


j∈Ni∪Nl

alj



 αj − αl  + t 
j∈Ni∪Nl

alj



 βj − βl  � 0,

l � m + 1, m + 2, . . . , n.

(23)

And (23) is also true for any t, and we have


j∈Ni∪Nl

alj



 αj − αl  � 0, l � m + 1, m + 2, . . . , n, (24)


j∈Ni∪Nl

alj



 βj − βl  � 0, l � m + 1, m + 2, . . . , n. (25)

From (21) and (24), it is true that Lα � 0. From (22) and
(25), it is true that Lβ � 0. Because rank(L) � n − 1 and
L[1, . . . , 1]T � 0. According to Lemma 6, we have
α � a[1, . . . , 1]T, β � b[1, . . . , 1]T. □

Theorem 1. For the heterogeneous multiagent systems
(8) and (9) under undirected communication topology,
the systems can achieve bipartite consensus if the largest
input delay satisfies τmax < τ∗, where τ∗ � arctan

(k2/k1

���������������������������

(λ2maxk
2
2 +

��������������

λ4maxk
4
2 + 4λ2maxk

2
1



/2)



)/

���������������������������

(λ2maxk
2
2 +

��������������

λ4maxk
4
2 + 4λ2maxk

2
1



/2)



, and λmax is the maxi-

mum eigenvalue of Ls.

Proof. For Lemma 7, we can get ωciτ � arctan(ωcik2/k1).
Namely,

τ �
arctan ωcik2/k1( 

ωci

. (26)

Taking the derivative of τ with respect to ωci for equation
(24), we can obtain

dτ
dωci

�
1
ω2

ci

ηωci

1 + ηωci( 
2 − arctan ηωci( ⎛⎝ ⎞⎠, (27)

where η � k2/k1. According to Lemma 4, τ decreases as ωci

increases.
+en,

ωci >

�����������������

λ2i k2
2 +

����������

λ4i k4
2 + λ2i k2

1



2




.
(28)

From (26), (28), and Lemma 3, we can obtain

τ∗ <
arctan k2/k1( 

���������������������������

λ2maxk
2
2 +

��������������

λ4maxk
4
2 + 4λ2maxk

2
1



 /2


 

���������������������������

λ2maxk
2
2 +

��������������

λ4maxk
4
2 + 4λ2maxk

2
1



 /2
 ,

(29)

where λmax is the maximum eigenvalue of Ls. □

3.2. Bipartite Consensus under Directed Topology. We will
study the bipartite consensus of heterogeneous multiagent
systems with diverse input delays under directed topology in
this section. +e control protocols are designed as follows:

_xi(t) � vi(t),

_vi(t) � k1 
j∈Ni

aij



 sgn aij xj t − τi(  − xi t − τi(   + k1 
j∈Nl

aij



sgn aij xj t − τi( 

+ k2 
j∈Ni

aij



 sgn aij vj t − τi(  − vi t − τi(   + k2 
j∈Nl

aij



sgn aij vj t − τi( , i � 1, 2, . . . , m,

(30)

_xl(t) � vl t − τl(  + k2 
j∈Nl

alj



 sgn alj xj t − τl(  − xl t − τl(  

+ k2 
j∈Ni

alj



sgn alj xj t − τl( ,

_vl(t) � k1 
j∈Nl

alj



 sgn alj xj(t) − xl(t)  + k1 
j∈Ni

alj



sgn alj xj(t), l � m + 1, m + 2, . . . , n,

(31)

where k1 > 0, k2 > 0 are the control gains, Ni and Nl rep-
resent the neighborhood of the agent i and l, and τi and τl

represent the input delay of the agent i and l.

Lemma 8. For the heterogeneous multiagent systems (30)
and (31), if and only if the Laplacian matrix Ls has at least
two zero eigenvalues, the real parts of the rest of eigenvalues
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are positive, and satisfy the condition of inequality (32), and
the systems can achieve bipartite consensus:

λi

��������
k2
1 + ω2

cik
2
2



ω2
ci

< 1, (32)

where λi is the eigenvalue of Ls, and ωci satisfies

ωciτ � arctan
ωcik2

k1
  + arctan

Im λi( 

Re λi( 
 . (33)

Proof. +e Laplace transform of (30) and (31):

sXi(s) � Vi(s),

sVi(s) � k1 
j∈Ni

aij



 sgn aij Xj(s) − Xi(s) e
− τis + k1 

j∈Nl

aij



 sgn aij Xj(s) e
− τis

+ k2 
j∈Ni

aij



 sgn aij Vj(s) − Vi(s) e
− τis + k2 

j∈Nl

aij



 sgn aij Xj(s) e
− τis, i � 1, 2, . . . , m,

(34)

sXl(s) � V(s)e
− τls + k2 

j∈Nl

alj



 sgn alj Xj(s) − Xl(s) e
− τls

+ k2 
j∈Ni

alj



sgn alj Xj(s)e
− τls,

sVl(s) � k1 
j∈Nl

alj



 sgn alj Xj(s) − Xl(s)  + k1 
j∈Ni

alj



sgn alj Vj(s), l � m + 1, m + 2, . . . , n.

(35)

From Assumption 1, (34), and (35),

s
2
X(s) � − k1 + k2s( X(s)Lse

− τs
. (36)

+en, the characteristic root of systems (31) and (32) is

det s
2
I + k1 + k2s( Lse

− τs
  � 0. (37)

Let λi, i � 1, 2, . . . , n be the eigenvalue of Ls. Assume λ1 �

λ2 � 0, λi > 0, i � 3, 4, . . . , n; then, (37) is equal to

s
4


i�3,...,n

s
2

+ λi k1 + k2s( e
− τs

  � 0. (38)

Obviously, we know that the equation has four zero
roots, and then we can analyze the rest of the characteristic
roots of the equation. For

s
2

+ λi k1 + k2s( e
− τs

� 0, i � 3, 4, . . . , n, (39)

let h(s) � 1 + gi(jω) � 0. +erefore, equation (39) can be
written as 1 + λi(k1 + k2s)e− τs/s2 � 0, where gi(jω) � λi

(k1 + k2s)e− τs/s2. Based on Nyquist’s criterion, if and only if
curve gi(jω) does not include point (− 1, j0), the charac-
teristic root of equation (39) is located on the left half-plane
of the complex plane. +en,

gi(jω) �
λi




��������
k21 + ω2

cik
2
2



ω2
ci

· e
− j ωτ+π− arctan ωk2/k1( )− arctan Im λi( )/Re λi( )( )( ).

(40)

+erefore,

gi(jω)


 �
λi




��������

k2
1 + ω2

cik
2
2



ω2
ci

,

arg gi(jω)(  � − ωτ + arctan
ωk2

k1
  + arctan

Im λi( 

Re λi( 
 ,

(41)

where arg(·) represents the phase. And it can be seen that
|gi(jω)| monotonically decreases for ω ∈ (0, +∞). When
curve |gi(jω)| crosses the real axis for the first time, ωci

satisfies
− ωτ + arctan(ωk2/k1) + arctan(Im(λi)/Re(λi)) � 0.

In addition, if the characteristic root of (37) falls on the
left half-plane, there is

gi(jω)


 �
λi




��������
k2
1 + ω2

cik
2
2



ω2
ci

< 1. (42)

In other words,

λi




��������
k2
1 + ω2

cik
2
2



ω2
ci

< 1. (43)

+erefore, except for the four zero roots, all the char-
acteristic roots of (37) are located in the left half-plane.
According to Lemma 6 and +eorem 1, we can get α �

a[1, . . . , 1]T and β � b[1, . . . , 1]T. □

Theorem 2. For the heterogeneous multiagent systems (30)
and (31) under directed communication topology, the systems
can achieve bipartite consensus if the largest input delay
satisfies τmax < τ∗ � min(τa, τb), where τa � arctan(k2/k1����������������������������

|λ|2maxk
2
2 +

����������������

|λ|4maxk
4
2 + 4|λ|2maxk

2
1



/2


) + θmax/
��������

|λ|2maxk
2
2+



����������������

|λ|4maxk
4
2 + 4|λ|2maxk

2
1



/2.

θmax � arctan(Im(λi)/Re(λi)), |λ|max is the maximum
modulus of λi,τb � arctan(ωmaxk2/k1) − θmax/ωmax, ωmax �

max3≤i≤n ωci , ωci is the root of equation,
1/ωci(ηωci/1 + (ηωci)

2)− arctan(ηωci) − arctan(Im(λi)/
Re(λi)) � 0, and η � k2/k1.
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Proof. From (33), we can obtain

τ �
arctan ωcik2/k1(  + arctan Im λi( /Re λi( ( 

ωci

. (44)

Taking the derivative of τ with respect to ωci for equation
(44), we can obtain

dτ/dωci � (1/ω2
ci)(ηωci/1 + (ηωci)

2 − arctan(ηωci) −

arctan(Im(λi)/Re(λi))), where η � k2/k1.
According to Lemma 5, if m � arctan(Im(λi)/

Re(λi))> 0, then ωci > 0 and dτ/dωci < 0. According to (32),

we can obtain ωci >
�����������������������

|λi|
2k2

2 +

�������������

|λi|
4k4

2 + |λi|
2k2

1



/2


.

+en, using Lemma 8, we have. τ � arctank2/k1������������������������

|λi|
2k2

2 +

��������������

|λi|
4k4

2 + 4|λi|
2k2

1



/2


 + arctan(Im(λi)/Re(λi))/
�������

|λi|
2k2

2+

 ��������������

|λi|
4k4

2 + 4|λi|
2k2

1



/2.
According to Lemma 5, if − π/2<m �

arctan(Im(λi)/Re(λi))< 0, then there exists ωci > 0, when
ωci > ωci and dτ/dωci < 0. ωci is the root of

1
ωci

ηωci/1+ ηωci( 
2

  − arctan ηωci(  − arctan Im λi( /Re λi( (  � 0,

(45)

where η � k2/k1.
Similarly, using Lemma 8, we have τ � arctan

(ωcik2/k1) + arctan(Im(λi)/Re(λi))/ωci.

In conclusion, according to Lemma 3, the maximum
allowable upper bound of the system is τ∗ � min(τa, τb),
where

τa �

arctan k2/k1( 

����������������������������

|λ|2maxk
2
2 +

����������������

|λ|4maxk
4
2 + 4|λ|2maxk

2
1



/2


  + θmax
���������������������������

|λ|2maxk
2
2 +

����������������

|λ|4maxk
4
2 + 4|λ|2maxk

2
1



/2
 ,

τb �
arctan ωmaxk2/k1(  − θmax

ωmax
,

(46)
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Figure 1: Undirected topology of a multiagent system.
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Figure 2: τ1 � 0.5, τ2 � 0.4, τ3 � 0.3, τ4 � 0.2, and τ5 � 0.1. (a) Position trajectories of all agents. (b) Velocity trajectories of all agents.
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Figure 3: τ1 � 0.4, τ2 � 0.3, τ3 � 0.4, τ4 � 0.3, and τ5 � 0.6. (a) Position trajectories of all agents. (b) Velocity trajectories of all agents.
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Figure 5: τ1 � 0.17, τ2 � 0.16, τ3 � 0.15, τ4 � 0.14, τ5 � 0.13, and τ6 � 0.12. (a) Position trajectories of all agents. (b) Velocity trajectories of
all agents.
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θmax � arctan(Im(λi)/Re(λi)), ωmax � max3≤i≤n ωci , ωci

is the root of equation 1/ωci(ηωci/1 + (ηωci)
2)− arctan

(ηωci) − arctan(Im(λi)/Re(λi)) � 0, and η � k2/k1. □

4. Numerical Examples and Simulations

Example 1. We will test and verify the results obtained by a
multiagent system with five agents in this section. +e initial
conditions are randomly set and the topology is shown in
Figure 1. +e maximum eigenvalue of Ls is λmax � 4.0445.
k1 � 0.45 and k2 � 0.3. According to +eorem 1, we obtain
τ∗ < 0.5057. Let τ1 � 0.5, τ2 � 0.4, τ3 � 0.3, τ4 � 0.2,

and τ5 � 0.1. It is clear that bipartite consensus can be
achieved when the input delays are below the upper bound
of the allowable delay (see Figure 2). Let
τ1 � 0.4, τ2 � 0.3, τ3 � 0.4, τ4 � 0.3, and τ5 � 0.6. +e bi-
partite consensus cannot be achieved when one of input
delays exceeds the upper bound of the allowable delay (see
Figure 3).

Example 2. We will test and verify the results obtained by a
multiagent system with six agents in this section. +e initial
conditions are randomly set and the topology is shown in
Figure 4. +e maximum eigenvalue of Ls is
λmax � 7.9101 + 1.3498i. Let k1 � 1 and k2 � 1.According to
+eorem 2, we obtain τ∗ < 0.2. When τ1 � 0.17, τ2 � 0.16,

τ3 � 0.15, τ4 � 0.14, τ5 � 0.13, and τ6 � 0.12, bipartite con-
sensus can be achieved (see Figure 5). When τ1 � 0.22, τ2 �

0.14, τ3 � 0.15, τ4 � 0.16, τ5 � 0.15, and τ6 � 0.14, bipartite
consensus cannot be achieved (see Figure 6).

5. Conclusions

Different from the previous work, we consider bipartite
consensus of heterogeneous multiagent systems with diverse
input delays. Based on the matrix theory and the frequency
domain theory, the maximum input delay for the systems to
achieve bipartite consensus is obtained. +e future work will
extend the existing work to time-varying input delays.
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,is paper mainly investigates the projection synchronization of complex chaotic systems with both uncertainty and disturbance.
Using the linear feedback method and the uncertainty and disturbance estimation- (UDE-) based control method, the projection
synchronization of such systems is realized by two steps. In the first step, a linear feedback controller is designed to control the
nominal complex chaotic systems to achieve projection synchronization. An UDE-based controller is proposed to estimate the
whole of uncertainty and disturbance in the second step. Finally, numerical simulations verify the feasibility and effectiveness of
the control method.

1. Introduction

,e chaotic synchronization phenomenon that caused a
great sensation in academia was firstly proposed by Pecora
and Carroll in early 1990 [1]. ,ey achieved chaotic syn-
chronization of two identical systems with different initial
conditions in electronic experiments. Until now, many types
of chaotic synchronization have been discovered, such as
complete synchronization, phase synchronization, lag syn-
chronization, antisynchronization, and projection syn-
chronization, and many other important results have been
obtained (see references [2–8]). Especially, projective syn-
chronization has received much attention due to its faster
communication and proportionality between the dynamical
systems. In case of projective synchronization, the master
and the slave system can be synchronized up to a scaling
factor and the scaling factor is a constant transformation
between the driving and the response variables that can
further increase the security of secure communication and
the transmission speed of communication. It has potential
application prospects in the field of chaotic secure
communication.

Many control methods about chaotic projection syn-
chronization have been reported [9–29]. However, most
controllers are complicated in structure and difficult in
design. Due to the complexity of structure, many control
methods are not suitable for projective synchronization
control of complex chaotic systems. Among these, the linear
feedback controller, because of its simple structure, easy
design, and good control effect, was used to realize the
projection synchronization of given complex chaotic system.
Moreover, in the simulation experiment, it is also proved
that the linear feedback controller has a good experimental
effect.

We note that most of the literature on solving the control
problems of chaotic systems with external perturbations is
generally complex and difficult to implement. Moreover,
when designing the controller, the method to deal with the
external disturbance is just simply to cancel the disturbance
term from the formula of the controller, and it is not rig-
orous in nonlinear system control theory. In fact, in the field
of nonlinear system control, the UDE-based controller can
deal with many structured and unstructured robust control
problems and has been applied to the engineering field in
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some literatures [30–32]. In the simulation experiment, we
have noticed that the UDE control method, which is
composed of filters with appropriate bandwidth, has an ideal
processing effect on the external disturbance of the system
which is finally used by us.

,e main contribution of this paper is to design a
physical controller, which is simple in form, to realize the
projection synchronization of a complex chaotic system. A
linear feedback UDE-based control method is proposed by
combining the linear feedback controller and the UED-
based controller in two steps. A linear feedback control
controller is designed for the nominal complex chaotic
system in the first step. In the second step, an UDE-based
controller is proposed to estimate the whole of uncertainty
and disturbance. In the end, two complex chaotic systems
with numerical simulations are used to verify the validity
and effectiveness of the proposed theoretical results.

2. Preliminary

Consider the following controlled chaotic system:
_X � F(X) + B

∗
U
∗
, (1)

where X ∈ Rn is the state, F(X) � (F1(X), · · · , Fn(X))T is a
continuous vector function, B∗ ∈ Rn×l, and U∗ � (U∗1 , · · · ,

U∗l )T is the controller to be designed, l≥ 1.
Let system (1) be the master system; then, the slave

system is given as follows:
_Y � F(Y), (2)

where Y ∈ Rn is the state and F(Y) � (F1(Y), · · · , Fn(Y))T is
a continuous vector function.

Let e � X − αY, where α � Diag(α1, · · · , αn), and the
error system is shown as follows:

_e � F(X) − αF(X) + B
∗
U
∗
, (3)

where e ∈ Rn is the state vector.

Definition 1. Consider the controlled error system (3). If
limt⟶∞‖e(t)‖ � 0, then the master system (1) and the slave
system (2) are called to achieve projection synchronization.

According to the results in [17], a lemma is introduced as
follows.

Remark 1. ,e projection synchronization of system (1) is
achieved if and only it is divided into the following two
subsystems:

_Wm � A(Z)Wm, (4)

_Z � H Z, Wm( , (5)

where Wm ∈ Rs, Z ∈ Rn−s, s≥ 1, A(Z) ∈ Rs×s is a matrix with
constants and variable Z, and H(Z, Wm) is nonlinear
continuous function.

An algorithm was also proposed in [17], by which we can
solve the solutions of the projection synchronization and
choose the variables Wm and Z.

2.1. Linear Feedback Control-Like Method for Chaos Projec-
tion Synchronization. Note that the subsystem
_Wm � A(Z)Wm is a linear system with respect to variable

Wm if the variable Z is considered a constant. ,us, the
linear feedback control method is very suitable to be adopted
to solve the projective synchronization problem of a given
nominal complex chaotic system (i.e., there is no both
uncertainty and disturbance). We briefly introduce the
linear control method next.

Lemma 1. Consider the following controlled system:
_Wm � A(Z)Wm + B1U, (6)

where Wm, Z, A(Z) are given in equations (4) and (5) and
B1 ∈ Rs×r; then, the linear feedback controller is designed as
follows:

U � K(Z)Wm, (7)

where K(Z) satisfies the matrix (A(Z) + B1K(Z)) which is
Hurwitz no matter what Z is.

2.2.UDE-BasedControlMethod. It is well known that model
uncertainty and external disturbance are inevitable in actual
control problem, and the UDE-based control method [32] is
an effective tool to deal with that problem.

Consider the following system:
_x � f(x) + ud + bu, (8)

where x ∈ Rn is the state, ud � Δf(x) + d(t) is the whole of
model uncertainty and external disturbance, b ∈ Rn×k is a
constant matrix, k≥ 1, and u ∈ Rk is the controller to be
designed.

,e stable linear reference model is given as
_xm � Amxm + BmC, (9)

where xm ∈ Rn is the reference state, Am ∈ Rn×n is the
Hurwitz matrix, Bm ∈ Rn×k, and C ∈ Rk×1 is a piecewise
continuous and uniformly bounded command to the
system.

Lemma 2 (see [32]). Consider system (8). If the designed
filter gf(t) satisfies the following condition:

ud � ud − ud⟶ 0, (10)

where ud � ( _x − f(x) − bu)∗gf(t), then the UDE-based
controller u is designed as

u � b
+

−f(x) + ℓ−1 1
1 − Gf(s)

 ∗ Amx + BmC − Ke(  

− b
+ ℓ−1 sGf(s)

1 − Gf(s)
 ∗x(t) ,

(11)

where ℓ−1 denotes the inverse Laplace transform operator,
b+ � (bTb)−1bT, ∗ is the convolution operator, and
Gf(s) � ℓ[gf(t)].
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Remark 2. According to the existing result in [32], the
following two filters are often used. One is the first-order
low-pass filter:

Gf(s) �
1

τs + 1
. (12)

,e other is the secondary filter:

Gf(s) �
as + c − w2

0
s2 + as + c

, (13)

where w0 � 4π, a � 10w0, and c � 100w0.

3. Main Results

In this section, the UDE-based linear feedback control
method is proposed in two steps. In the first step, the linear
feedback control method is proposed for the nominal sys-
tem. ,e UDE-based control method is given in the second
step.

3.1. Linear Feedback Control Method for Projection
Synchronization. Consider the following nominal system:

_X � F(X) + BU, (14)

where X ∈ Rn is the state vector, F(X) � (F1(X),

· · · , Fn(X))T is a continuous function, B ∈ Rn×r, r≥ 1 , U �

(U1, · · · , Ur)
T is the linear feedback controller to be

designed, and (F(X), B) is assumed to be controllable.
If the projection synchronization of system (14) exists,

then it can be divided into the following two subsystems:
_Wm � A(Z)Wm + B1U, (15)

_Z � H Z, Wm( , (16)

where Wm, Z, A(Z), H(Z, Wm) are given in equations (4)
and (5), respectively, B1 ∈ Rs×r is given in equation (6), and
(A(Z), B1) is also controllable.

,e corresponding slave system is presented as follows:
_Ws � A(Z)Ws, (17)

where H(Z, Wm) is given in equation (15), Wm ∈ Rr,
Z ∈ Rn− r, and A(Z) is a constant matrix.

Let e � Wm − βWS be the error state, where the scalar
|β|≠ 0, 1, and the error system is obtained as follows:

_e � A(Z)e + B1U. (18)

Theorem 1 Consider error system (18). If (A(Z), B1) is
controllable no matter what Z is, then the linear feedback
controller U is designed as follows:

U � K(Z)e, (19)

where K(Z) satisfies the matrix (A(Z) + B1K(Z)) which is
Hurwitz no matter what Z is; then, error system (18) is
globally asymptotically stable. Aat is, the master system (15)

and the slave system (17) achieve the projection
synchronization.

Proof. Since the matrix (A(Z) + B1K(Z)) is Hurwitz no
matter what Z is, error system (18) is globally asymptotically
stable; therefore, the master system (15) and the slave system
(17) achieve the projection synchronization. □

3.2. UDE-Based Control Method for Projection
Synchronization. In this section, the UDE controller is
proposed to cancel the uncertainty and disturbance of the
complex chaotic system.

Consider the following controlled master system:
_Wm � A(Z)Wm + B1V + Ud, (20)

where Wm, Z, A(Z), H(Z, Wm) are given in equations (4)
and (5), respectively, B1 ∈ Rs×r is given in equation (6),
(A(Z), B1) is controllable, Ud � ΔA(Z) + D(t), ΔA(Z)

represents the uncertainty and D(t) represents the distur-
bance, and V is the controller to be designed, in which

V � U + uude. (21)

,e corresponding salve system is
_Ws � A(Z)Ws. (22)

Let e � Wm − βWs be the error state vector, where
|β|≠ 0, 1; then, the corresponding error system is shown as
follows:

_e � A(Z)e + ud + B1V. (23)

,e controller V is designed in two steps:

Step one: according to ,eorem 1, the linear feedback
controller U is designed for the nominal system.
Step two: the controller uude is proposed according to
the following theorem.

Theorem 2 Consider error system (23). If the designed filter
gf(t) satisfies the following condition:

ud � ud − ud⟶ 0, (24)

where ud � ( _e − A(Z, e) − B1uude)∗gf(t), then the UDE-
based controller u is designed as

uude � B
+
1 ℓ−1 Gf

1 − Gf(s)
 ∗A(Z, e) − ℓ−1 sGf(s)

1 − Gf(s)
 ∗ e(t) ,

(25)

where A(Z, e) � (A(Z) + B1K(Z))e, B+
1 � (BT

1 B)−1BT
1 , ℓ

−1 is
the inverse Laplace transform, ∗ is the convolution sign, and
Gf(s) � ℓ[gf(t)].

Proof. Substituting V in (21) into system (23) results in
_e � A(Z)e + ud + B1V � A(Z) + B1K(Z)( e + Buude − ud.

(26)

According to condition (24), it leads to
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B1uude � −ud. (27)

,us,
_e � A(z) + BV + ud � A(Z, e) + ud (28)

is globally asymptotically stable, which completes the
proof. □

4. IllustrativeExamplewithNumericalSimulation

In this section, one example with numerical simulations is
used to demonstrate the effectiveness and validity of the
proposed results.

Consider the following complex Lorenz system:

_x1 � 10 x1 − x2( ,

_x2 � 110x1 − x1x3 − x2,

_x3 � −2x3 +
1
2

x1x2 + x1x2( ,

(29)

where x1 � xr
1 + jxi

1, x2 � xr
2 + jxi

2 are complex variables, x3
is a real variable, j2 � −1 represents imaginary unit, and x1
and x2 are complex conjugate variables of x1, x2,
respectively.

Separating the real and imaginary parts of complex
variables x1, x2 in system (29), i.e., setting
X1 � xr

1, X2 � xi
1, X3 � xr

2, X4 � xi
2, and X5 � x3 repre-

senting x5, a new real-variable system is shown as follows:

_X1 � 10 X3 − X1( ,

_X2 � 10 X4 − X2( ,

_X3 � 110X1 − X1X5 − X3,

_X4 � 110X2 − X2X5 − X4,

_X5 � −2X5 + X1X3 + X2X4.

(30)

4.1. Ae Existence of Projection Synchronization of the Com-
plex Lorenz System. According to the results in [17], for
system (30), the results are obtained as follows:

F1(αX) − α1F1(αX) � 10 α3 − α1( X3 ≡ 0,

F2(αX) − α2F2(αX) � 10 α4 − α2( X4 ≡ 0,

F3(αX) − α3F3(αX) � α1 − α1α5( X1 − α3 − α1α5( X3 ≡ 0,

F4(αX) − α4F4(αX) � α2 − α2α5( X2 − α4 − α2α5( X4 ≡ 0,

F5(αX) − α5F5(αX) � α5 − α1α3( X5 − α1α3 − α2α4( X1X3 ≡ 0.

(31)
It results in
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α1 � α3, (32)

α2 � α4, (33)

α1 � α1α5,
α3 � α1α5,

(34)

α2 � α2α5,
α4 � α2α5,

(35)

α5 � α1α3,
α1α3 � α2α4.

(36)

It is easy to obtain that α � Diag(β, β, β, β, 1) is the one
solution of equations (32)–(35), where |β|≠ 1 is a nonzero
scalar.

,us, themaster system (30) is divided into the following
two subsystems:

_Wm � A(Z)Wm, (37)

_Z � H Z, Wm( , (38)

where

Wm �

X1

⋮

X4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Z � X5,

A(Z) �

−10 0 10 0

0 −10 0 10

110 − Z 0 −1 0

0 110 − Z 0 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(39)

H Z, Wm(  � −2Z + Wm1Wm3 + Wm2Wm4. (40)
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Figure 3: ,e phase portrait of master subsystem and the slave subsystem.
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Figure 5: ,e phase portrait of master subsystem and the slave subsystem.
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4.2. Ae UDE-Based Linear Feedback Controller Design.
,eUDE-based linear feedback controller is designed by the
following two steps.

Step one:

_Wm � A(Z)Wm + B1U. (41)

Wm, Z, A(Z) are given in equations (38) and (39),
respectively, and

B1 �

1 0

0 1

0 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

,en, the corresponding slave system is given as
follows:

_Ws � A(Z)Ws. (43)

A(Z), Z are given in equations (38) and (39),
respectively.
Let e � Wm − βWs, where β � 2, and the uncontrolled
error system is given as follows:

_e1 � 10 e3 − e1( ,

_e2 � 10 e4 − e2( ,

_e3 � 110 − X5( e1 − e3,

_e4 � 110 − X5( e2 − e4.

(44)
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Figure 6: e1, e2 are asymptotically stable.
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Figure 7: e3, e4 are asymptotically stable.
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Figure 8: ,e phase portrait of master subsystem and the slave
subsystem.
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Figure 9: ,e phase portrait of master subsystem and the slave subsystem.
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Figure 10: ,e phase portrait of master subsystem and the slave subsystem.
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Figure 11: ,e phase portrait of master subsystem and the slave subsystem.
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Figure 12: ud1 tends to ud1.
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Figure 13: ud2 tends to ud2.
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Note that if e1 � 0 and e2 � 0, the following system:

_e3 � −e3,

_e4 � −e4,
(45)

is globally asymptotically stable.
,us, (A(Z), B1) is controllable. According to ,eo-
rem 1, the linear feedback controller U is obtained as
follows:

U � K(Z)e �
−10e3

−10e4
 . (46)

Numerical simulation is given, and the initial values of
the master-slave systems of given complex Lorenz
system are chosen as follows: X1(0) � 0.1, X2(0) �

0.2, X3(0) � 0.3, X4(0) � −0.3, X5(0) � 1.1, Y1(0) � −

1, Y2(0) � −1, Y3(0) � −1, Y4(0) � −1.
From Figures 1 and 2, we observed that under linear
feedback control, the error system between the master
system and slave system is globally asymptotically
stable. ,rough the observation of Figures 3–5, it is
found that the master system and slave system achieve
the projection synchronization. ,at is, the controlled
master system and slave system have the same phase
portrait, but the axis is different.

Step two: consider the following master system with
both model uncertainty and external disturbance:

_Wm � A(Z)Wm + B1V + Ud, (47)

where A(Z) is given in equation (39), H(Z, Wm) is
presented in equation (40), B1 is given in equation (42),
and Ud is the whole of model uncertainty and external
disturbance.

,e salve system is
_Ws � A(Z)Ws, (48)

where A(Z) is given in equation (39).
Let e � Wm − βWs; then, the error system is shown as

follows:

_e � A(Z)e + Ud + B1V, (49)

where

V � U + uude, (50)

where U is given in equation (46).
According to ,eorem 2, the UDE-based controller uude

is designed as follows:

uude �
uude1

uude2

⎛⎝ ⎞⎠ �

ℓ−1 Gf

1 − Gf(s)
 ∗ −10e1(  −

sGf(s)

1 − Gf(s)
 ∗ e1 

ℓ−1 Gf

1 − Gf(s)
 ∗ −10e2(  −

sGf(s)

1 − Gf(s)
 ∗ e2 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)
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Figure 14: e1, e2 are asymptotically stable.
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Figure 15: e3, e4 are asymptotically stable.

Complexity 9



where ℓ−1 is the inverse Laplace transform, ∗ is the con-
volution sign, Gf(s) � ℓ[gf(t)], and the design of the filter
gf(t) is given in Lemma 2.

Numerical simulation results are given with the following
conditions: X1(0) � 0.1, X2(0) � 0.2, X3(0) � 0.3, X4(0) �

−0.3, X5(0) � 1.1, Y1(0) � −1, Y2(0) � −1, Y3(0) � −1,

Y4(0) � −1, β � 2.
Case 1:

Ud �
0.1X1X2 + 100

0.2X3X4 + 400
 . (52)

Case 2:

Ud �
0.1X1X2 + 0.1 sin(t)

0.2X3X4 + 0.3 sin(t)
 . (53)

It can be seen from Figures 6–9 that the error system is
asymptotically stable. ,rough the observation of
Figures 10–13, it is found that the master system and slave
system achieve the projection synchronization. ,at is, the
controlled master system and slave system have the same
phase portrait, but the axis is different. Figure 14 shows that
ud1 tends to ud1, and Figure 15 shows that ud2 tends to ud2.
Similarly, we found that ud1 tends to ud1 and ud2 tends to ud2
from Figures 16 and 17.
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Figure 17: ud2 tends to ud2.
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Figure 16: ud1 tends to ud1.
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5. Conclusion

In conclusion, the projective synchronization of a class of
complex chaotic systems with both uncertainty and distur-
bance has been solved. First, the linear feedback control
method is proposed for the nominal system (without uncer-
tainty and disturbance), and projection synchronization of
such system has been realized. ,en, the UDE-based linear
feedback control method is presented by two steps, by which
the projection synchronization of the complex chaotic systems
with both uncertainty and disturbance has been completed.
Finally, an experimental simulation example has been used to
verify the feasibility and effectiveness of the obtained results.
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Vehicle platoon has been demonstrated to be a promising driving pattern for its prominent advantages in enhancing traffic safety,
improving highway capacity, and increasing fuel economy as well as reducing carbon emissions. However, the uncertain driving
resistance and saturated actuator output decay the control performance and may even lead to the instability of a vehicle platoon.
+erefore, a distributed adaptive slidingmode control algorithm for vehicle platoon with uncertain driving resistance and actuator
saturation is proposed in this paper. First of all, sliding mode control technique, together with the coupled sliding surface (CSS)
method, is adopted to design the vehicle platoon control algorithm and an adaptive updating law is proposed to estimate the
unknown driving resistance coefficients. +en, for the problem of actuator saturation, an antiwindup compensation-based
approach is utilized to attenuate the integral windup of the adaptive platoon control laws in the case of actuator saturation. In
addition, considering the chattering problem inherent in sliding mode control, a sigmoid-like function sgn(·) is deployed to
weaken the influence of chattering, which is expected to enhance the driving comfortableness. Both theoretical analysis and
numerical simulation verify the feasibility and effectiveness of the proposed vehicle platoon algorithm.

1. Introduction

In recent years, the automated highway system (AHS) has
gained considerable attentions from governments, auto-
mobile manufactures, and academia because of the in-
creasing traffic congestion problem in large cities [1–3]. As
an effective measure to relieve congestions, platoon control
[4, 5], which requires vehicles to move in a string with
predefined intervehicle distance and with the same velocity,
has demonstrated its unique advantage in enhancing traffic
safety, improving highway capacity, increasing fuel econ-
omy, and reducing carbon emissions [6–8].

During the past few years, many achievements have been
developed for vehicle platoon control, such as backstepping
approach [9], information consensus approach [10, 11],
adaptive sliding mode approach [12], etc. However, most of
the above works treat the vehicle platoon control problem in

a simplified fashion without considering the driving resis-
tance inherent in the vehicle dynamics. As a matter of fact,
driving resistance, which includes rolling resistance, air
resistance, and grade resistance [13], has significant influ-
ence on vehicle platoon such as degrading the controller
performance and leading to the instability of a vehicle string
[14]. In addition, driving resistance is virtually influenced by
many factors such as vehicle mass, motorcycle type, and road
and weather conditions [15, 16], some of which may even
vary with the driving conditions [17]. +erefore, it is a great
challenge in obtaining the driving resistance parameters in
an accurate way.

For the problem of unknown driving resistance in ve-
hicle dynamics, Altmannshofer and Endisch [18] proposed a
robust parameter estimation algorithm for identifying the
vehicle driving resistance. Tannoury et al. [16] designed a
nonlinear observer for the estimation of tire radius and
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rolling resistance to compensate for the unknown param-
eters. Guo et al. [14] deployed a quadratic function to
represent the unknown and time-varying coefficients of
driving resistance. However, as for the unknown driving
resistance in vehicle platoon control, existing literatures
mainly treat it as time-varying external disturbance without
explicitly obtaining its true value [12]. In [9], the uncertain
driving resistance in vehicle dynamics is modeled as an
unknown time-varying disturbance and an adaptive method
is adopted to estimate this value. Similarly, the uncertain
driving resistance is described as a bounded disturbance and
also estimated by adaptive approach in [14]. In [13], the
vehicle resistance, which is relevant to vehicle mass, weather
conditions, deadweight, motorcycle type, etc., is analyzed
and the vehicle platoon model is established.

On the other hand, the mechanical constraints, espe-
cially the actuator saturation [19], are important concern in
vehicle dynamics. +e actuator saturation of vehicle,
whether it is the servo motor for an electric vehicle or engine
for a gasoline vehicle, has been proved to be the source of
performance degradation in vehicle driving procedure [20],
which therefore deserves further investigation in vehicle
platoon control. However, to the best of our knowledge,
literatures that specifically address this issue seem very few.
As a ubiquitous phenomenon in mechanical systems, ac-
tuator saturation, which is usually referred to as input
saturation, has been intensively investigated in various
control domains. In [20], by explicitly considering the ac-
tuator saturation, a novel robust adaptive control law is
proposed to ensure the stability of the closed-loop system for
high-speed train. In [21], the Nussbaum function is intro-
duced to compensate for the nonlinear term arising from
input saturation. In [22], a saturated adaptive robust control
strategy, by adding an anti-windup block, is designed for
vehicle active suspension systems, which is beneficial for the
stability and performance preservation in the presence of
saturation. In [23], an adaptive coordinated control algo-
rithm of multiple high-speed trains with input saturation is
proposed, where an antiwindup compensation block is used
to optimize the control algorithm such that it is more re-
silient to input saturation. In [24], a smooth function tanh(·)

is introduced to handle the “actuator saturation” problem in
vehicle platoon such that the control input can always be
below the maximum inputs. +erefore, the above work
provides fruitful inspirations for the actuator saturation
problem of vehicle platoon.

In this paper, we are trying to investigate the vehicle-
platoon problem with uncertain driving resistance and ac-
tuator saturation via adaptive sliding mode control ap-
proach. Firstly, coupled sliding surface (CSS) is deployed to
link interconnected vehicles and an adaptive control method
is adopted to identify and estimate the variations of resis-
tance coefficients. After that, a distributed adaptive sliding
mode control algorithm for vehicle platoon with uncertain
driving resistance is proposed. +en, an antiwindup com-
pensation based approach is utilized to attenuate the integral
windup of the adaptive platoon control laws in case of
actuator saturation. Moreover, the chattering phenomena
inherent in sliding mode control are relieved by using a

sigmoid-like function. Finally, various numerical simula-
tions are performed to demonstrate the feasibility and ef-
fectiveness of the proposed control algorithm.

+e rest of this paper is organized as follows. In Section
2, the vehicle dynamic model and the problems considered
in this paper are described. In Section 3, the adaptive sliding
mode controller is designed to realize the vehicle platoon in
the presence of uncertain driving resistance and actuator
saturation. Simulations are performed in Section 4 to
demonstrate the feasibility and effectiveness of our algo-
rithm. Concluding remarks are given in Section 5.

2. Vehicle Dynamics and Problem Formulation

Assume a vehicle platoon, which consists of a string of
autonomous vehicles, includes a leader vehicle and n fol-
lowers. As is shown in Figure 1, each follower regulates its
motion according to the received information (e.g., position,
velocity, and acceleration) from its front and back vehicles
via wireless communication technique.

2.1.VehicleDynamics. Consider a vehicle platoon moving in
a string with the following longitudinal dynamics:

_ri(t) � vi(t),

Mi _vi(t) � Fi(t) − fi,

i � 1, 2, . . . , n,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where Mi is the mass of the ith vehicle, ri(t) and vi(t) denote
the ith vehicle’s position and velocity, respectively, and Fi(t),
which is taken as the control input, represents the traction or
braking force of the ith vehicle. In addition, fi denotes its
driving resistance.

Generally, fi is influenced by the rolling resistance fr,
air resistance fw, and grade resistance fg, etc. [25], which
can be described as

fi � fr + fw + fg. (2)

+e explicit form of fr, fw, and fg can be written as
follows:

(i) Rolling resistance fr:

fr � Wk, (3)

where W is the normal load and k is the rolling re-
sistance coefficient following such experience values as

k � 0.0076 + 0.000056v, (4)

where v is the velocity of vehicle.
(ii) Air resistance fw:

fw �
1
2

CDAρv
2
, (5)

where CD is the coefficient of air resistance, A is
windward area of vehicle, and ρ is the air density.
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(iii) Grade resistance fg:
If the vehicle is running on the hill, the component
of gravity along the slope is defined as the grade
resistance

fg � G sin α, (6)

where G and α are, respectively, the gravity and road-
grade.

As k, CD, and ρ are uncertain values and heterogeneous
with respect to different vehicles, therefore, fi is time-
varying in different driving speed and road conditions. To
facilitate the research, we write fi as

fi � A(t) + B(t)vi + C(t)v
2
i , (7)

where A(t), B(t), C(t), describing the uncertainty of driving
resistance, are unknown and time-varying values.

In order to simplify the protocol design and stability
analysis, we rewrite (1) as

_ri(t) � vi(t),

_vi(t) � Fi(t) − ai(t) − bi(t)vi(t) − ci(t)vi(t)2,
 (8)

where ui(t): � (Fi(t)/Mi) denotes the acceleration or de-
celeration of vehicle i (it is designed as the control input in
this paper) and ai(t): � (Ai(t)/Mi), bi(t): � (Bi(t)/Mi),
ci(t): � (Ci(t)/Mi) are the vehicle driving resistance co-
efficients by considering the influence of vehicle mass Mi.

2.2. Problem Formulation. Generally speaking, the main
purpose of vehicle platoon is to enhance the highway ca-
pacity and relieve traffic congestion by maintaining the
desired safety distance between two consecutive vehicles and
reaching the velocity consensus among vehicles [4].

In particular, the time-varying driving resistance will
inevitably influence the vehicle dynamics and decay the
vehicle platoon performance. +erefore, one needs to spe-
cifically design the distributed control input ui(t) for a single
vehicle such that the vehicle platoon is achieved under the
disturbance of time-varying driving resistance.

In addition, due to the physical and mechanical limi-
tations of actuators, the control input ui(t) for vehicles will
be under some constraints. +e control input ui(t) with
saturation is given in the following form:

ui(t) � sat umin, ui(t), umax( 

�

umin, if ui(t)< umin,

ui(t), if umin ≤ ui(t)≤ umax,

umax, if ui(t)> umax,

⎧⎪⎪⎨

⎪⎪⎩

(9)

where umin and umax are known constants, which represent
the bounds of the control force.

Based on above description, the main control objective
of this paper can be concluded as follows:

(1) +e vehicle platoon is achieved such that the fol-
lower’s velocity can converge to the velocity of the
leader and each vehicle can maintain a safe
intervehicle distance to avoid collision with each
other

(2) +e unknown time-varying coefficients ai(t), bi(t),
and ci(t) can be estimated such that the vehicle
platoon is achieved by handling the parameter un-
certainties via an adaptive control approach

(3) When the control input exceeds the maximum
output of the vehicle actuator (servo motor for an
electric vehicle or engine for a gasoline vehicle), the
proposed algorithm can regulate the actuator output
autonomously such that the actuator life as well as
the vehicle platoon performance is guaranteed

3. Distributed Adaptive Sliding Mode Control
Algorithm for Vehicle Platoon

Firstly, the position tracking error for the ith vehicle is
defined as

ei � ri− 1 − ri(  − d, (10)

where d> 0 is a constant value, representing the required
distance between two consecutive vehicles.

We also denote the velocity error by
vi � vi− 1 − vi. (11)

Here, the following assumptions are made for facilitating
the control protocol design and theoretical analysis.

Assumption 1. ai(t), bi(t), and ci(t) are bounded variables;
i.e., ai(t)≤ a+

i , bi(t)≤ b+
i , and ci(t)≤ c+

i .

3.1.VehiclePlatoonControlAlgorithmwithUncertainDriving
Resistance. We first consider the case of vehicle platoon with
uncertain driving resistance. For the dynamics of vehicles
with error ei, the control objective is to make ei converge to
zero and to guarantee string stability.

Hence, sliding mode control technique is employed to
develop the vehicle platoon controller; we choose each
sliding surface as

ni � _ei + αiei, (12)

where αi > 0 is a positive constant.

rL r1 r2 rn – 1 rn
d d d

Figure 1: Topological structure of vehicle platoon.
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+e solution of (12) is

ei(t) �
ni

αi

+ exp − αit( ei(0) −
ni

αi

exp − αi t − t0( ( . (13)

From (13), one can see that when t⟶∞,
ei⟶ (ni/αi). As αi is a positive constant, ei⇔ ni. Fur-
thermore, combined with (12), we have _ei⟶ 0 when
ni⟶ 0.

Taking the time derivative of (12), one obtains
_ni � €ei + αi _ei � €ri− 1 − €ri(  + αi _ei. (14)

It is worth noting that (14) only describes the charac-
teristic of a single vehicle. In order to describe the stability of
the whole platoon, we adopt the coupled sliding surface
(CSS) [7] of the ith vehicle for the control of the whole
platoon system

Ni � βini − ni+1, (15)

where βi > 0(i � 1, 2, . . . , n) is a weighting factor.
Since ni+1 does not exist for the last vehicle (i.e., i � n), we

set ni+1 � 0. +en, we have N1: � [n1, n2, . . . , nn]T and
N2: � [N1, N2, . . . , Nn]T; the relationship between N1 and
N2 can be described as

N2 � BN1, (16)

where

B �

β1 − 1 0 · · · 0

0 β2 − 1 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · − 1

0 0 0 · · · βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

with βi > 0(i � 1, 2, . . . , n) being the parameters to be
designed.

In order to illustrate the same convergence ofN1 andN2,
the following lemma is given.

Lemma 1 (see [7]). Equivalence of the convergence of the CSS
and each sliding surface toward zero: N2 becomes zero if and
only if N1 becomes zero at the same time.

+erefore, the problem of making ni and ei converge to
zero is converted into making Ni converge to zero. +e time
derivative of Ni in (15) can be written as

_Ni � βi _ni − _ni+1

� βi €ri− 1 − €ri + αi _ei(  − €ri − €ri+1 + αi+1€ei+1( 

� − βi + 1(  ui − ai − bivi − civ
2
i  + Di,

(18)

where Di � βi €ri− 1 + €ri+1 + αiβi _ei − αi+1 _ei+1.
Accordingly, the novel adaptive platoon control law for

the ith vehicle is designed as

ui �
k1

βi + 1
Ni +

1
βi + 1

Di + sgn Ni(  a
+
i + b

+

i vi + c
+
i v

2
i ,

(19)

where k1 is a positive parameter that needs to be designed
and a+

i , b
+

i , and c+
i are the estimated values of unknown

constant coefficients a+
i , b+

i , and c+
i .

+e adaptive estimation law for unknown coefficients is
determined by

_a
+

i � λ1 βi + 1( Ni,

_b
+

i � λ2 βi + 1( Ni vi


,

_c
+

i � λ3 βi + 1( Niv
2
i ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

where λ1, λ2, λ3 > 0 are positive constants.
Particularly, when i � n, we know Nn � βnnn from the

definition of (15); the time derivative of Nn can be described as
_Nn � βn _nn

� βn €rn− 1 − €rn + αn _en( 

� − βn un − an − bnvn − cnv
2
n  + Dn,

(21)

where Dn � βn(€rn− 1 + αn _en) for i � n.
+e adaptive platoon control law for the nth vehicle is

therefore formulated as

un �
k2

βn

Nn +
1
βn

Dn + sgn Nn(  a
+
n + b

+

n vn + c
+
nv

2
n , (22)

where k2 is a positive parameter that needs to be designed.
+us, the coefficients adaptation law can be designed as

_a
+

n � λ1βnNn,

_b
+

n � λ2βnNn vn


,

_c
+

n � λ3βnNnv2n.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

+en, the following theorem, which guarantees the
stability of each vehicle and string stability of the whole
vehicle platoon, can be obtained.

Theorem 1. Consider a vehicle platoon described by (8), the
proposed control algorithm of vehicle platoons (19) and (22)
and the adaptive control law of coefficients (20) and (23) can
ensure that the sliding surfaces Ni and ni and the distance
error ei converge to zero.

Proof. First, we define the estimation error of coefficients a+
i ,

b
+

i , and c+
i as

a+
i � a+

i − a+
i ,

b
+

i � b
+

i − b+
i ,

c+
i � c+

i − c+
i .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

Choose the following Lyapunov function candidates:

V � 
n

i�1
Vi, (25)

where

Vi �
1
2
N

2
i +

1
2λ1

a
+
i 2 +

1
2λ2

b
+

i 2 +
1
2λ3

c
+
i 2. (26)
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+en, the time derivative of Vi can be calculated as

_Vi � Ni
_Ni +

1
λ1

a
+
i

_a
+

i +
1
λ2

b
+

i
_b

+

i +
1
λ3

c
+
i

_c
+

i . (27)

Because a+
i , b+

i , and c+
i are constants, we know _a

+

i � _a
+

i ,_b
+

i �
_b

+

i , and _c
+

i � _c
+

i according to (24). Combining (18) and
(20) with (27) yields

_Vi � − k1N
2
i − βi + 1( Ni a

+
i − ai(  + b

+

i − bi vi + c
+
i − ci( v

2
i 

+ βi + 1( Ni a
+
i + b

+

i vi + c
+
i v

2
i .

(28)

According to Young’s inequality [14], we have
ai ≤ a+

i ,

bivi ≤ b+
i vi


,

civ
2
i ≤ c+

i v2i .

⎧⎪⎪⎨

⎪⎪⎩
(29)

Substituting (29) into (28) gives
_Vi ≤ − k1N

2
i − βi + 1( Ni a

+
i − a

+
i(  + b

+

i − b
+
i vi + c

+
i − c

+
i( v

2
i 

+ βi + 1( Ni a
+
i + b

+

i vi + c
+
i v

2
i 

≤ − k1N
2
i .

(30)

+us,

_V≤ − k1 

n

i�1
N

2
i ≤ 0. (31)

From (30) and (31), we know that _Vi and _V are negative
semidefinite; therefore, Vi and V are not monotonic in-
creasing and boundedness. In addition, we can also obtain
that Ni is boundedness and _Ni is boundedness.

Taking the derivative of (30) and (31), we have
€Vi ≤ − (k1/2)Ni

_Ni, €V≤ (k1/2) 
n
i�1 Ni

_Ni. As €Vi and €V are

boundedness, _Vi and _V are uniformly continuous.
According to the Barbalat lemma, we know that
limt⟶∞

_Vi � 0 and limt⟶∞
_V � 0. Since k1 is positive,

limt⟶∞Ni � 0 for all i. +is implies that N2, N1, and ei in
Lemma 1 converge to zero. □

Remark 1. Cconstrued sliding surface (12) facilitates the
control design and stability analysis. Open-loop dynamics
(12) contains ei and _ei; the closed-loop dynamics _ni will
contain system dynamics (8) and the control input ui. In-
spired by the adaptive technique, the control inputs (19) and
(22) and the adaptive laws (19) and (23) can be designed by
choosing the suitable Lyapunov function.

Remark 2. +e main objective of the designed controller is
to make Ni, a+

i , b
+

i , and c+
i converge to zero; thus the

Lyapunov function Vi is chosen as (26). +e principle of
controller design is to make _Vi ≤ 0.

3.2.VehiclePlatoonControlAlgorithmwithUncertainDriving
Resistance andActuator Saturation. In practice, the actuator
saturation of vehicles has proved to be a source of perfor-
mance degradation [26]. To handle this problem, an anti-
windup compensation block is used to modify the control
input such that it is more resilient to actuator saturation. An
antiwindup compensator is used to generate a signal ϕi(t)

for each vehicle as the output of a differential equation:
_ϕi(t) � − χiϕi(t) + βi + 1(  ui0(t) − ui(t)( ,

_ϕn(t) � − χnϕn(t) + βn un0(t) − un(t)( .

⎧⎨

⎩ (32)

Let δi(t) � Ni(t) − ϕi(t). We have the following error
dynamic system:

_δi(t) � − βi + 1(  ui(t) − ai − bivi − civ
2
i(  − βi + 1(  ui0(t) − ui(t)(  + Di + χiϕi(t),

_δn(t) � − βn un(t) − an − bnvn − cnv2n(  − βn un0(t) − un(t)(  + Dn + χnϕn(t).

⎧⎨

⎩ (33)

By considering explicitly the actuator saturation of ve-
hicles, the modified adaptive control input ui(t) for each
vehicle can be written as

ui(t) � sat umin, ui0(t), umax( , (34)

ui0(t) �
k1

βi + 1
δi +

1
βi + 1

Di −
1

βi + 1
χiϕi(t)

+ sgn δi(  a
+
i + b

+

i vi + c
+
i v

2
i .

(35)

+e adaptive estimation laws for unknown coefficients
are determined by

_a
+

i � λ1 βi + 1( δi,

_b
+

i � λ2 βi + 1( δi vi


,

_c
+

i � λ3 βi + 1( δiv
2
i .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(36)

+e adaptive platoon control law of the nth vehicle is
therefore formulated as

un0(t) �
kn

βn

δn +
1
βn

Dn −
1
βn

χnϕn(t) + sgn δn(  a
+
n + b

+

nvn + c
+
nv

2
n .

(37)

+e coefficients adaptation law is designed as
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_a
+

n � λ1βnδn,

_b
+

n � λ2βnδn vn


,

_c
+

n � λ3βnδnv2n.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(38)

+e signal ϕi(t) is used for attenuating the integral
windup of the adaptive coordinated control laws in case of
actuator saturation. When actuator saturation happens,
there will be a rise of error ϕi(t), and meanwhile the signal
Ni will also increase, which in turn ensures that no sudden
rise will happen to the newly defined tracking error δi(t).
When the actuator saturation stops, the term
ui0(t) − ui(t) � 0, and the signal ϕi(t) will converge to
zero.

In addition, for the signal ϕi(t), we have the following
theorem.

Theorem 2. For the signal ϕi(t), there exists a positive ϖi

such that, for any t> 0, it holds that

ϕi(t)


≤
ui0(t) − ui(t)(  βi + 1( 

χi




+ ϖi. (39)

Proof. From (32), we can obtain that

ϕi(t) � ϕi(0)e
− χit +

ui0(t) − ui(t)(  βi + 1( 

χi

e
− χit 

t

0
e

− χiϖdϖ

� ϕi(0)e
− χit +

ui0(t) − ui(t)(  βi + 1( 

χi

1 − e
− χit ,

(40)

which implies that |ϕi(t)|≤ |(ui0(t) − ui(t))(βi + 1)/χi| as
t⟶∞. +us, there exists a positive scaler ϖi, such that, for
any t> 0, it holds that |ϕi(t)|≤ |(ui0(t) − ui(t))(βi + 1)/χi|;
i.e., ϕi(t) is bounded.

+e following theorem will provide our result on the
vehicle platoon with actuator saturation. □

Theorem 3. Consider a vehicle platoon described by (8), the
proposed control algorithm of vehicle platoon (35) and (37)
and the adaptive control law of coefficients (36) and (38) can
ensure the desired distances between two consecutive vehicles.
=en, we have the following results:

(1) When the saturation does not occur, i.e., ui − ui0 � 0,
all the results in =eorems 1 and 2 will hold
automatically.

(2) When the saturation occurs, i.e., ui − ui0 ≠ 0, the
modified δi(t) will converge to zero, and Ni will also
converge to zero by adjusting variable χi in=eorem 2.
=is implies that N2, N1, and ei in Lemma 1 converge
to zero.

Proof. For the case that the actuator is not saturated,
ui − ui0 � 0, the results in +eorem 1 hold automatically.

When saturation occurs, for the error dynamic (33) of
the vehicles movement with control input (35) and (37),
construct the following Lyapunov-like function
candidate:

V � 
n

i�1
Vi, (41)

where

Vi �
1
2
δ2i +

1
2λ1

a
+
i 2 +

1
2λ2

b
+

i 2 +
1
2λ3

c
+
i 2. (42)

+en, the time derivative of Vi can be calculated as

_Vi � δi
_δi +

1
λ1

a
+
i

_a
+

i +
1
λ2

b
+

i
_b

+

i +
1
λ3

c
+
i

_c
+

i . (43)

Because a+
i , b+

i , and c+
i are constants, we know that

_a
+

i � _a
+

i ,
_b

+

i �
_b

+

i , and _c
+

i � _c
+

i according to (24). +erefore,
_Vi ≤ − k1δ

2
i − βi + 1( δi a

+
i − a

+
i(  + b

+

i − b
+
i vi + c

+
i − c

+
i( v

2
i 

+ βi + 1( δi a
+
i + b

+

i vi + c
+
i v

2
i 

≤ − k1δ
2
i .

(44)

+us,

_V≤ − k1 

n

i�1
δ2i ≤ 0. (45)

Using the same analysis method as in +eorem 1, it can
be shown that δi will converge to zero eventually. From
+eorem 2, we know that variable χi can be adjusted, and
ϕi(t) can also be adjusted to an arbitrarily small value.
+erefore, we have Ni ≈ δi. Combining +eorem 2 and
equations (12) and (15), we know that ni and ei will converge
to zero eventually. □

3.3. Reduction of Chattering. It is well known that the sliding
mode control has inherently the phenomena of chattering,
which is detrimental for the system performance [27]. In this
paper, a sigmoid-like function (δi/(|δi + ς|)) is used to re-
place the sgn(·) function, where ς is a small positive
constant.

+en, the control input ui(t) of the ith vehicle can be
rewritten as

ui(t) � sat umin, ui0(t), umax( , (46)

where ui0(t) is the calculated control input. It is determined
by
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ui0(t) �
k1

βi + 1
δi +

1
βi + 1

Di −
1

βi + 1
χiϕi(t) +

δi

δi


 + ς

a
+
i + b

+

i vi + c
+
i v

2
i .

(47)

+e adaptive estimation law of ith vehicle for unknown
coefficients is determined by

_a
+

i �
λ1 βi + 1( δ2i

δi


 + ς

,

_b
+

i �
λ2 βi + 1( δ2i vi




δi


 + ς

,

_c
+

i �
λ3 βi + 1( δ2i v2i

δi


 + ς

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Similar to the previous case, un0(t) of the nth vehicle can
be described as

ui0(t) �
k1

βn

δn +
1
βn

Dn −
1
βn

χnϕn(t) +
δn

δn


 + ς

a
+
n + b

+

n vn + c
+
n v

2
n .

(49)

+e adaptive estimation law of the nth vehicle for un-
known coefficients is determined by

_a
+

n �
λ1βnδ

2
n

δn


 + ς

,

_b
+

n �
λ2βnδ

2
n vn




δn


 + ς

,

_c
+

n �
λ3βnδ

2
nv2n

δn


 + ς

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

4. Numerical Simulations

To verify the feasibility and effectiveness of the proposed
platoon control algorithm, numerical simulations are per-
formed with 8 vehicles (1 leader and 7 followers).

4.1. Simulation Setup. Without loss of generality, we sup-
pose the vehicle platoon drives in various driving conditions,
such as acceleration, cruising, and braking. In addition, we
also consider the influence of time-varying driving resistance
as a disturbance on the vehicle velocity in the form of sine
wave.

+erefore, the desired velocity of the leading vehicle is
specifically designed as

vL(t) � 20 sin
π
200

t , if t< 100,

vL(t) � 20, if 100≤ t< 150,

vL(t) � 20 + 3 sin
π
10

t , if 150≤ t< 170,

vL(t) � 20, if 170≤ t< 230,

vL(t) � 20 + 3 sin
π
10

t , if 230≤ t< 250,

vL(t) � 20, if 250≤ t< 320,

vL(t) � 20 + 3 sin
π
10

t , if 320≤ t< 340,

vL(t) � 20, if 340≤ t< 400,

vL(t) � 20 sin
π
200

t , if 400≤ t< 500,

vL(t) � 0, if 500≤ t< 520.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

Inspired by our previous work on adaptive control for
vehicle platoon [24], the variation of driving resistance
coefficients ai, bi, ci is assumed to be determined by
ai � a1(1 + sin(t)), bi � b1(1 + cos(3t)), ci � c1(1 + cos
(4t)), respectively. It should be pointed out that ai, bi, ci are
time-varying and bounded, so they can model the uncer-
tainty and external noise of the vehicle.+e other parameters
such as a1, b1, c1, initial states of vehicles, and control
parameters are listed in Tables 1 and 2.

4.2. Simulation Results. To better illustrate the effectiveness
of the proposed vehicle platoon control algorithm, three
simulation cases are performed.

Case 1. Platoon with uncertain driving resistance.
In this case, we only consider the influence of uncertain

driving resistance for vehicle platoon, where (19), (20), (22),
and (23) are applied to the vehicle.

Figure 2(a) shows the vehicle velocities and velocity errors
(between followers and leader) in the simulation, from which
one can clearly see that the velocity of followers will approach
the leader’s velocity and the velocity errors will decline to an
extremely small value around zero. Figure 2(b) gives the
position curves of all vehicles in the platoon, from which we
can see that vehicles will not collide during the whole driving
cycle. Figure 2(c) also demonstrates that all vehicles will keep
a given distance (about 10m) under the proposed platoon
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Table 1: Initial states of each vehicle and initial estimated values of driving resistance coefficients.

Vehicle Leader V1 V2 V3 V4 V5 V6 V7
v (0) 0 0 0 0 0 0 0 0
_v (0) 0 0 0 0 0 0 0 0
r (0) 68 63 46 38 30 21 8 0
a+(0) 0 0.8 0.9 0.85 0.85 0.8 0.85 0.8
b

+
(0) 0 0.004 0.004 0.0045 0.004 0.0045 0.004 0.0045

c+(0) 0 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016
a1 0 0.3 0.4 0.4 0.4 0.5 0.4 0.5
b1 0 0.004 0.003 0.005 0.004 0.005 0.004 0.005
c1 0 0.00018 0.00016 0.00014 0.00017 0.00015 0.00017 0.00015

Table 2: Control parameters of vehicles.
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Figure 2: +e simulation results of each vehicle with uncertain driving resistance: (a) the velocity curves; (b) the position curves; (c) the
distances curves between two neighbor vehicles; (d) the control input curves.
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algorithms (19) and (22). Figure 2(d) shows the control input
(acceleration or deceleration) of all followers, from which we
can see that the control input decreases sharply from 400m/s2
to 20m/s2 within about 0.03 s. +en, the control input will
converge to a relatively steady state (around 20m/s2 and
− 20m/s2). However, such control input is infeasible in
practical applications, as it exceeds the maximum output of
vehicle actuator and causes the phenomena of actuator sat-
uration. +erefore, we will consider the problem of actuator
saturation in Case 2.

Case 2. Platoon with actuator saturation.
In this case, the control laws (34), (35), and (37) and

coefficients adaptive laws (36) and (38) are applied to the
vehicle platoon. We set the initial values of signal ϕi as ϕi � 0

and _ϕi � 0 for i � 1, 2, . . . , n. +e parameter of χi is chosen as
χi � 100 for i � 1, 2, . . . , n.

Figure 3(a) shows the vehicle velocities and velocity
errors (between followers and leader) by considering the
influence of actuator saturation in the simulation. Compared
with Figure 2(a), the control algorithms (34), (35), and (37)
can also guarantee the performance of vehicle velocities and
velocity errors. From Figures 3(b) and 3(c), we can also see
that the proposed algorithms (34), (35), and (37) can
maintain a desired intervehicle distance with their neighbors
to ensure driving safety. Figure 3(d) gives the control input
of all followers; it is obvious that the input (acceleration or
deceleration) can be limited to 2m/s by adopting the pro-
posed control algorithms (34), (35), and (37), which satisfies
the maximum output of vehicle actuators.
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Figure 3: +e simulation results of each vehicle with uncertain driving resistance and actuator saturation: (a) the velocity curves; (b) the
position curves; (c) the distances curves between two neighbor vehicles; (d) the control input curves.
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However, it triggers the chattering phenomenon, which
may deteriorate the vehicle actuator and lead to the driving
uncomfortableness for passengers.

To avoid chattering in practical implementation, the
modified control algorithms (47) and (49) are proposed and
simulations are performed in Case 3.

Case 3. Platoon with reduced chattering
In this case, the control laws (47) and (49) and coeffi-

cients adaptive laws (48) and (50) are applied to the vehicle
platoon. +e sigmoid-like function (δi/(|δi + ς|)) is used to
replace the sgn(·), where

ς � 1∗ 10− 5
. (52)

Figure 4(a) shows the vehicle velocities and velocity
errors (between followers and leader). Compared with
Figure 3(a), the amendment control algorithms (47) and (49)
have not greatly influenced the performance of vehicle ve-
locities and velocity errors. From Figures 4(b) and 4(c), one
can see that the proposed amendment algorithms (47) and
(49) can also maintain a desired intervehicle distance with
their neighbors, which ensures the driving safety of vehicle
platoon. Figure 4(d) illustrates the control input of all fol-
lowers; it is obvious that influence of chatting is significantly

0 100 200 300 400 500
–5

0

5

10

15

20

25

150 155 160 165 170
16

18

20

22

24

t (s)

v (
m

 ∗
 s–1

)

vL
v1
v2
v3

v4
v5
v6
v7

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30
0

50
100
150
200

r (
m

)

0 100 200 300 400 500
t (s)

rL
r1
r2
r3

r4
r5
r6
r7

(b)

4

6

8

10

12

14

16

18

 

 

0 5 10 155

10

15

20  

r (
m

)

0 100 200 300 400 500
t (s)

rL-r1
r1-r2
r2-r3
r3-r4

r4-r5
r5-r6
r6-r7

(c)

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2
u 

(m
 ∗

 s–1
)

0 100 200 300 400 500
t (s)

u1
u2
u3
u4

u5
u6
u7

(d)

Figure 4: +e simulation results of each vehicle with uncertain driving resistance, actuator saturation, and reduced chattering: (a) the
velocity curves; (b) the position curves; (c) the distances curves between two neighbor vehicles; (d) the control input curves.
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weakened compared with Figure 3(d). +erefore, better
vehicle platoon performance can be obtained and the driving
comfortableness can be enhanced.

Remark 3. In Case 1, we only consider the influence of
uncertain driving resistance for vehicle platoon, where (19),
(20), (22), and (23) are applied to the vehicle. However, it
exceeds the maximum output of vehicle actuator and causes
the phenomena of actuator saturation. +erefore, we con-
sider the problem of actuator saturation in Case 2. And the
control laws (34), (35), and (37) and coefficients adaptive
laws (36) and (38) are applied to the vehicle platoon.
However, it triggers the chattering phenomenon in simu-
lation, whichmay deteriorate the vehicle actuator and lead to
the driving uncomfortableness for passengers. To avoid
chattering in practical implementation, the modified control
algorithm (47), (49) is proposed and simulations are per-
formed in Case 3. Finally, better vehicle platoon perfor-
mance is obtained and the driving comfortableness is
enhanced.

5. Conclusions

In this paper, we discuss the distributed adaptive control
problem for vehicle platoon with uncertain driving resis-
tance and actuator saturation. Coupled sliding surface (CSS)
is deployed to link interconnected vehicles and an adaptive
control method is adopted to estimate the variations of
resistance coefficients. An antiwindup compensation based
approach is utilized to attenuate the integral windup of the
adaptive platoon control laws in case of actuator saturation.
+eoretical results are verified via numerical simulations,
which demonstrate that the proposed control algorithm can
make every vehicle keep the desired distance with the
preceding vehicle and all followers’ velocity will gradually
converge to the velocity of the leader even in the presence of
uncertain driving resistance coefficients and actuator
saturation.
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A signal denoising method using improved wavelet threshold function is presented for microchip electrophoresis based on
capacitively coupled contactless conductivity detection (ME-C4D) device. )e evaluation results of denoising effect for the ME-
C4D simulation signal show that using Daubechies 5 (db5) wavelet at a decomposition level 4 can produce the best performance.
Furthermore, the denoising effect is compared with, as well as proved to be superior to, the existing techniques, such as
Savitzky–Golay, Fast Fourier Transform, and soft threshold method. )is method has been successfully applied to the self-
developedME-C4D equipment. After executing this method, the noise is cleanly removed, and the signal peak shape and peak area
are well maintained.

1. Introduction

Microfluidic technology, especially microchip electropho-
resis based on capacitively coupled contactless conductivity
detection (ME-C4D) [1–3], has become a very important and
promising branch of miniaturized total chemical analysis
systems (μ-TAS) [4–6]. Because of its advantages of little
samples and reagents consumption, fast analysis speed, high
separation efficiency, and convenient miniaturization,
microfluidic technology has been widely used in different
fields, such as biomedicine [7, 8], food inspection [9], en-
vironmental monitoring [10], clinical application [11], and
so on.

)e ME-C4D device analyzes the ion composition in
solution by detecting the change of electrical conductivity
based on the coupling capacitance between the electrode and
insulation layer of the chip [12–15]. )erefore, it can ef-
fectively avoid some troubles of electrochemical contact
detect method, such as electrode scaling, electrolysis bubble,
electric field interference, and so on [13–16]. But the ME-
C4D device has poor anti-electromagnetic interference
ability and low sensitivity [17–19]. )e inherent noise of the
system and the structure of the microfluidic chip will cause
the ME-C4D signal to be disturbed, thus affecting the

analysis of the detection results and reducing its accuracy.
)erefore, finding an appropriate method for signal
denoising is an extremely important processing step before
analysis and diagnosis.

)e traditional signal denoising methods mainly include
Fourier transform and curve fitting method. )e Fourier
transform is simple and easy to implement, but it is difficult
to solve the noise filtering of nonstationary signals. )e
curve fitting method has high accuracy, but there are dif-
ficulties in selecting fitting points. )e wavelet transform
(WT), that developed rapidly from the 1980s, can fully
highlight the characteristics of some aspects of problem,
which has been widely used in capillary electrophoresis (CE)
signal denoising [20, 21]. Furthermore, the wavelet threshold
denoising developed from WT has better performance [22].
)e denoising effect of this method mainly depends on the
selection of threshold function. Some traditional threshold
functions such as hard threshold and soft threshold are
widely used for signal denoising due to the simple structure
and good efficiency. For example, Liu uses hard threshold
function to denoise microchip CE signal sampled from a
home-built laser-induced fluorescence detection system
[19]. Zhang et al. improve the soft threshold function to
enhance the electrochemiluminescence CE signal denoising
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effect [22]. )e above WT methods can achieve excellent
denoising effect, but paid less attention to the maintenance
of wave peak area, which is a very important feature for
analyzing the ME-C4D signal, and can reflect the content of
the ion component to be detected [23]. )erefore, they are
not very suitable for the ME-C4D signal.

)e objective of this work is to develop an effective
denoising method with minimal impact on the signal peak
shape and area for improving the performance of the ME-
C4D device. We have improved the wavelet threshold
function according to the ME-C4D signal characteristics.
Evaluation of denoising effect for the ME-C4D simulation
signal has been done by selecting various wavelets and
different decomposition levels, and it was found that db5
wavelet at level 4 is the optimal solution. Furthermore, the
proposed method has been successfully applied to the self-
developed ME-C4D equipment for signal denoising.

2. Materials and Methods

2.1. Chemicals. Potassium chloride, sodium chloride, lith-
ium chloride sample solution, and MES-His buffer solution
were of analytical grade, purchased from Sinopharm
Chemical Reagent Co., Ltd. All chemicals were degassed
ultrasonically for 5 minutes before being used and filtered
with a 0.22 μm pore water microfiltration membrane.

2.2. Apparatus. A self-developed ME-C4D equipment used
in the experiment described is shown in Figure 1. )e
microchip (cross-shaped structure; the chip separation
channel length is 50mm, 50 μm in width, and 25 μm in
depth) was placed on the testing table of the detector. Under
a given high-voltage electric field, the directional migration
of the microchannel solution will occur. When the ions flow
through the detector at the end of the channel, the induced
current signal will be converted to a voltage signal and finally
displayed on the computer after a series of processing steps.
Among them, the control of voltage, sample injection time,
and signal waveform can be controlled by the computer. )e
monitoring software on the PC terminal was self-developed.

2.3. Noise Sources. )e analysis channel in the microfluidic
chip is micron level, and the noncontact conductance de-
tection is completed based on capacitive coupling principle.
)erefore, the detected ME-C4D signal is very weak and will
be disturbed by a lot of noise. In order to eliminate noise
effectively, it is necessary to analyze the cause of noise and
take corresponding measures to deal with it according to
different noise sources.

According to the ME-C4D signal detection principle and
experimental results, the interference and noise of the so-
lution electrical conductivity signal mainly come from two
sources. One is the inherent noise of the system, such as the
external noise signal from the detection circuit caused by the
action of electricity, magnetism, etc., which can be directly
filtered through the hardware in the microfluidic chip de-
tection device. )e other is high-frequency noise, which is
caused by the fast acquisition rate, microchip, detect circuits,

environmental disturbances, and so on [24]. It is difficult to
filter by optimizing the hardware design of the ME-C4D
equipment. )e threshold method based on wavelet trans-
form has a good denoising performance. )erefore, this
paper studies the appropriate denoising method based on
wavelet transform.

2.4. Wavelet (resholding Denoising (eory. It is assumed
that the ME-C4D signal with noise which is collected by
microchip electrophoresis analysis device can be expressed
as

f(i) � s(i) + n(i), i � 0, 1, 2, . . . , N − 1, (1)

where f(i) is the ME-C4D signal with noise, s(i) is a pure
ME-C4D signal, and the noise signal is represented by n(i).
Because it is very difficult to recover s(i) directly from the
noisy signal f(i) , the useful signal and noise can be sep-
arated by processing the corresponding wavelet decompo-
sition coefficients according to the different characteristics of
it’s in the wavelet transform. In practical applications, the
useful signals are usually in the low frequency band, while
the noise signals are usually in the high-frequency band.
According to this characteristic, we can firstly decompose
the signal by wavelet transform. As an example, three-level
decomposition is shown in Figure 2. )e noise-containing
signal is decomposed into a low-frequency coefficient (CA1)
and a high-frequency coefficient (CD1). CA1 can be further
decomposed to form a new low-frequency coefficient (CA2)
and a new high-frequency coefficient (CD2). With the in-
crease of the decomposition level, the wavelet coefficient
amplitude of the useful signal is basically unchanged, while
the amplitude of wavelet coefficient of noise is rapidly at-
tenuated to zero [25].)erefore, the wavelet coefficients after
decomposition can be processed by selecting appropriate
threshold function, and then the signal can be reconstructed
to achieve the effect of denoising.

2.5. Denoising by Improved(reshold Function. )e wavelet
coefficients of the ME-C4D signal have strong correlation at
different decomposition levels, while the wavelet coefficients
of the noise are weak or irrelevant [26], which is suitable for
the denoising range of wavelet transform. )e ME-C4D

Microchip 

ME-C4D equipment 

PC 

Equipment PC
terminal

Figure 1: Self-developed ME-C4D equipment.
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signal denoising procedure by wavelet transform is as
follows:

(1) A suitable wavelet basis function similar to the
original ME-C4D signal is selected and the number
of decomposition layers is determined. )e J layer
wavelet decomposition of the noiseME-C4D signal is
carried out by using Mallet algorithm, and the
high-frequency coefficient components and low-
frequency coefficient components of different de-
composition scales are obtained.

(2) Select the threshold and use a threshold function to
quantify the high-frequency wavelet coefficients
from layer 1 to layer J.

(3) )e low-frequency coefficients of layer J and the
high-frequency coefficients of layer 1 to layer J
processed by threshold function are inversely
transformed to obtain the denoised ME-C4D signal.

)e denoising effect mainly depends on the selection
threshold and the design of threshold function in step (2). In
this work, the classical fixed threshold is adopted, and its
expression is

λ � σ
�����

2lgN



, (2)

where λ is the threshold, N is the length of the ME-C4D
signal, and σ represents the standard deviation of the noise
signal. σ is used to measure the strength of the noise signal,
and σ � median(wjk)/0.6745, where median(·) means the
return median function.

)ere are two classical types of threshold functions for
wavelet denoising, that is, hard and soft threshold. )e soft
threshold function is more representative. It can be defined
as

wjk �

wjk − λ, wjk ≥ λ,

0, wjk



< λ,

wjk + λ, wjk ≤ − λ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

wherewjk is the wavelet coefficient of the original signal after
wavelet transform, w

∧
jk is the estimated wavelet coefficient

after quantification, and λ is the threshold.)e soft threshold
function graph is depicted in Figure 3.

It can be seen from Figure 3 that the soft threshold
function has a good continuity, which overcomes the
shortcomings of discontinuity in the hard threshold

function and solves the problem that some oscillations will
occur in the reconstructed signal. However, there is a
constant deviation between original and estimated value of
the wavelet coefficient. It is bound to make the reconstructed
signal produce distortion and reduce the accuracy. In ad-
dition, the wavelet denoising principle illustrates that the
smaller wavelet coefficients are also composed of useful
signals and noises [27]. However, according to equation (3),
if the wavelet coefficients with absolute values smaller than
the threshold are set to zero, some useful signal information
will be lost and thus the signal-to-noise ratio (SNR) will be
reduced.

In order to overcome the above defects of soft threshold
function and improve the denoising effect, a new threshold
function should meet the following requirements:

(1) )e function is continuous at the threshold points.
(2) )e constant deviation between the original and

quantized wavelet coefficients is reduced as much as
possible. However, if the deviation is reduced to zero,
it will become a hard threshold function, which
cannot achieve the improvement effect [25].

(3) Retain some useful signal information in smaller
wavelet coefficients to reduce signal distortion.

Based on the three above requirements, this paper in-
troduces nonlinear function and variable parameters and
proposes an improved threshold function:

wjk �
wjk + sign wjk  · −λ + aλ3 , wjk



≥ λ,

aw3
jk, wjk



< λ,

⎧⎪⎨

⎪⎩
(4)

where a is a variable parameter less than 1/λ2. )e improved
threshold function has continuity and overcome the defect
of constant deviation of soft threshold function. By multi-
plying a with the smaller wavelet coefficient wjk, the removal
ratio of noise signal can be controlled by adjusting the value
of a. By this mean, the useful signal information in the small
wavelet coefficients can be retained flexibly, so the denoised
signal is closer to the original one. )ese properties of this
improved threshold function and the corresponding proof
are presented as follows:

(1) Continuity analysis is

0 wjk

wjkˆ

λ–λ

Figure 3: Soft threshold function graph.

S

CA1 CD1

CA2 

CA3 

CD2

CD3

Figure 2: Signal three-level wavelet decomposition diagram.
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lim
wjk⟶ −λ−

wjk � lim
wjk⟶ −λ+

wjk � −aλ3, (5)

lim
wjk⟶ λ−

wjk � lim
wjk⟶ λ+

wjk � aλ3. (6)

)e threshold function is continuous at threshold λ
and −λ. )erefore, the threshold function is con-
tinuous over the whole real number field.

(2) Progressive analysis is

lim
wjk⟶ +∞

wjk

wjk

� lim
wjk⟶ +∞

1 +
aλ3 − λ

wjk

  � 1, (7)

lim
wjk⟶ −∞

wjk

wjk

� lim
wjk⟶ −∞

1 +
λ − aλ3

wjk

  � 1. (8)

When wjk⟶∞, wjk takes wjk � wjk as the asymptote
and approaches wjk infinitely, so as to reduce the deviation
between the original and the threshold quantized wavelet
coefficients as much as possible.

)e comparison between hard, soft, and improved
function is shown in Figure 4. When a is 0, the improved
threshold function is equivalent to the traditional soft
threshold function, and when a⟶ 1/λ2, the estimated
value w

∧
jk is closer to the original wavelet coefficient wjk. )e

parameters can be adjusted freely to denoising different
signals. )erefore, the improved threshold function was
significantly better than the soft threshold function at
adaptive ability and flexibility.

3. Results and Discussion

3.1. Denoising of the ME-C4D Simulation Signal. )e ME-
C4D signal has some peaks, generally represented as
Gaussian peaks, reflecting the characteristic spectral lines of
a particular substance. When analyzing the substance
composition, the obtained peaks’ spectra are compared with
the characteristic spectral line of some substances. )en, the
detected peaks’ spectra can indicate which components are
contained in the mixture [28].

Due to the lack of standard testing equipment, the
simulation means are often used in the research of μ-TAS
signal denoising [22, 29]. When the effectiveness is verified
by simulation, the method is applied to the self-developed
instrument. Based on the simulation model to capillary
electrophoresis signal [29], and according to the charac-
teristics of actual ME-C4D signal, a mathematical model of
simulation signal was established as follows:

I �
A1����
2πσ1

 e
− t− t1( )

2/2σ21( 
+

A2����
2πσ2

 e
− t− t2( )

2/2σ22( 

+
AR�����
2πσR

 e
− t− tR( )

2/2σ2
R( 

+ I0,

(9)

where I is the simulation ME-C4D signal, AR is the area of
the peak, tR represents the central peak position, σR rep-
resents the half peak width, and I0 is used to adjust the
position of the baseline.

As the Gaussian white noise is close to the noise in the
actual ME-C4D signal, a certain proportion of Gaussian
white noise was added to an ideal signal. )e mathematical
model can be expressed as follows:

f � I + β · noise, (10)

where noise is Gaussian white noise signal, and β is the
proportional coefficient. )e ideal and noisy signals are
simulated and shown in Figure 5.

3.1.1. Evaluation of Denoising Effect. In order to intuitively
compare the denoising effect of different methods on ME-
C4D simulation signals, the following two evaluation indexes
were introduced:

(1) Signal-to-noise ratio (SNR) is

SNR � 10log


N
i�1 f2(i)


N
i�1 [f(i) − f(i)]2

(dB). (11)

(2) Root mean square error (RMSE) is

RMSE �

����������������

1
n



N

i�1
[f(i) − f(i)]

2




, (12)

where f(i) is the original signal, f(i) is the reconstructed
signal after denoising, n is the sampling points, and N is the
signal length. )e above two equations indicate that the
larger SNR is, the smaller RMSE is, and the better signal
denoising effect is.

Improved threshold function
Hard threshold function

So� threshold function

0 wjk

wjkˆ

Figure 4: Improved threshold function graph.
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3.1.2. Selection of Wavelet Basis and Decomposition Level.
Using different wavelet basis functions to denoise the same
type of signal will produce different effects. Generally,
wavelet bases should have the following characteristics:
linear phase, short support, higher vanishing distance, etc.
[30]. However, few wavelet bases can have these charac-
teristics at the same time. In this paper, several common
wavelet bases were selected for denoising experiments. )e
comparative analysis of common wavelet bases character-
istics is shown in Table 1.

In order to select the optimal wavelet basis and obtain
the best denoising effect, three different wavelet bases of
db1∼db9, sym1∼sym9, and coif1∼coif5 were evaluated in
this paper, and the improved threshold function was used to
denoise the signal containing noise. )e SNR and RMSE
curves of the denoised signals are shown in Figure 6.

After denoising with db5 wavelet basis, the SNR is the
largest, and the RMSE is the smallest, so the denoising effect
is the best (Figure 6). )erefore, db5 wavelet basis was used
in the following experiments.

In the process of signal denoising by wavelet transform,
the selection of appropriate decomposition layers is also
very important problem. On the one hand, the larger the
number of decomposition layers, the greater the difference
between noise and signal performance, and the easier it is
to separate. On the other hand, too many layers will make
the reconstructed signal more distorted, which will affect
the denoising effect to a certain extent. )erefore, it is
necessary to deal with this contradiction strictly when
selecting the level of decomposition for getting better
denoising effect.

On the premise of selecting db5wavelet basis, the denoising
effect of simulated ME-C4D signal under different decompo-
sition layers is depicted in Figure 7. It shows that the 4-layer
decomposition can get a good signal denoising effect.

3.1.3. Comparison with Other Denoising Methods. In order
to verify the denoising effect of the proposed method,

different methods were used to carry out the simulation
experiment for the ME-C4D signal with different SNR
Gaussian white noise. )e SNR and RMSE comparison data
for the denoise signal are shown in Table 2.

)e denoising method presented in this paper has the
highest SNR and the lowest RMSE; the denoising effect was
significantly better than other methods (Table 2, shown in
boldface).

Figure 8 shows the denoising results by the Savitz-
ky–Golay, Fast Fourier Transform, soft threshold method,
and the proposed method, respectively. By analyzing the
waveform after denoising, it can be seen that the Savitz-
ky–Golay and Fast Fourier Transform were used to denoise
the signal, the noise is still apparent (Figures 8(a) and 8(b)).
)e ME-C4D signal after denoising by the soft threshold
method the signal baseline is smooth, but part of the
characteristic signal information is lost (Figure 8(c)). After
denoising with the proposed method, the noise is basically
removed, the baseline is smooth, the characteristic signal is
well retained, and the reconstructed signal after denoising is
closer to the original signal (Figure 8(d)). )erefore, the
proposed method has more advantages over the above
methods for ME-C4D signal denoising.

3.2. Application. After theoretical analysis and simulation
verification, the proposed method was applied to denoising
for the actual signal, which was detected by self-developed
ME-C4D and delivered to PC terminal.

)e buffer solution of 10mMMES-His (pH 6.15) and the
target sample solution of 0.1mM were introduced to the
corresponding position of the microchip and then placed on
the detection table of the self-developed equipment. Set the
excitation signal source parameter f� 200 kHz, Vpp� 60V,
high voltage injection 1 s; the collected ME-C4D signals are
shown in Figure 9.

)e transverse axis is the number of sampling points;
every 10 sampling points represent the time of 1 s. )e
longitudinal coordinate represents the amplitude, and the
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Figure 5: Simulation ME-C4D signal and its noisy signal. (a) Simulation ideal signal. (b) Simulation noisy signal.
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three wave peaks represent K+,Na+, Li+. It is clear that the
ME-C4D signal is interfered by a certain degree of noise.

Since the above signal is acquired from the device and
the noise is not artificially added, we cannot obtain the
original ideal noise-free signal; thus, the evaluation indexes
SNR and RMSE cannot be used to quantitatively analyze the

denoising effect [31]. For the actual collected ME-C4D
signal, what is really valuable is the peak, especially the peak
area or peak height, which reflects the component content of
the substance to be measured. )erefore, the peak area or
peak height can be used as the evaluation index for denoising
effect. Because the peak area can be obtained by multiplying

Table 1: Common wavelet bases characteristics.

Basis dbN symN coifN
Symmetry Approximate symmetry Approximate symmetry Approximate symmetry
Orthogonality Have Have Have
Compact support Have Have Have
Support length 2N− 1 2N− 1 6N− 1
Filter length 2N 2N 6N
Vanishing moments N N 2N

SN
R

80

79

78

77

76

75

74

73
1 2 3 4 5 6 7 8 9

db/sym/coif N

db
sym
coif

(a)

RM
SE

0.016

0.015

0.014

0.013

0.012

0.011
1 2 3 4 5 6 7 8 9

db/sym/coif N

db
sym
coif

(b)

Figure 6: SNR and RMSE after denoising with different wavelet bases. (a) SNR after denoising with different wavelet bases. (b) RMSE after
denoising with different wavelet bases.
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Figure 7: SNR and RMSE after denoising at different decomposition levels.
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the peak height and the half width, the peak area distortion is
used only as the evaluation index to quantitatively analyze
the denoising processing effect of the ME-C4D signal. )e
lower the peak area error is, the lower the distortion is, and
the better the denoising effect is.

ΔA �
Ad − Ao( 

Ad




× 100, (13)

where A is the peak area of ME-C4D signal; subscripts d and
o represent before and after signal processing, respectively.

Table 2: Comparison results of simulation signal denoising with different methods.

Parameter Savitzky–Golay Fast Fourier transform Soft threshold method Proposed method SNR of noisy signal (dB)
SNR 54.6092 59.2802 65.1503 71.4715 21RMSE 0.0392 0.0310 0.0231 0.0169
SNR 64.0419 70.9654 74.6367 78.6393 25RMSE 0.0245 0.0173 0.0144 0.0118
SNR 72.1866 76.0289 80.9725 85.7153 29RMSE 0.0163 0.0134 0.0105 0.0083
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Figure 8: )e results of simulation signal denoising of 29 dB by different methods. (a) Savitzky–Golay. (b) Fast Fourier Transform. (c) Soft
threshold method. (d) )e proposed method.
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Generally speaking, the peak area distortion degree kept
within 5% belongs to the normal range.

For peaks with symmetrical shape and no baseline drift,
the peak height is the vertical distance from the peak top to
the baseline at the bottom of the peak, and the half peak
width is the width at 1/2 the peak height. However, when the
peak shape is asymmetrical and there is a baseline drift, the
calculation of peak area by the above method will produce a
large error. )erefore, this paper uses the following method
to calculate the peak area.

)e schematic diagram for calculating the peak area is
shown in Figure 10. Firstly, the baseline AB is determined
by the first derivative method. A threshold value is set,
when the first derivative is greater than the threshold, it is
determined as the starting point of the peak. When the
first derivative changes from positive to negative, it is
judged as the apex of the peak. After the apex is

determined, if the absolute value of the first derivative
value of the signal is less than the threshold, it is defined as
the end point of the peak. )en, a line perpendicular to the
x-axis is drawn from the apex E of the peak. )is line
intersects the baseline AB at point G, and the length of EG
is the peak height (hEG). Finally, a line parallel to the x-axis
and through the midpoint of the EG is drawn. )is line
intersects the wave peak at two points, F and H, and the
length of FH is half width of the peak (σFH). So, the peak
area can be calculated as

A � hEG × σFH. (14)

)e improved threshold function denoising method is
adopted to denoise the signal in Figure 9, and the results are
shown in Figure 11(d). In order to fully verify the effec-
tiveness of the improved threshold function method for
denoising the ME-C4D signal, the denoising results of
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Figure 9: Detection signal with concentrations of 0.1mM.
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Figure 10: Schematic diagram of peak area calculation method.

8 Complexity



Savitzky–Golay method, Fast Fourier Transform method,
and traditional soft threshold method are used for com-
parative analysis. )e denoising effect is shown in
Figures 11(a)–11(c). )e peak area distortion degrees after
denoising of each method are calculated according to (13)
and (14), as shown in Table 3.

It can be seen from the data in Table 3 that after
Savitzky–Golay and Fast Fourier Transform are used to
denoise the ME-C4D signal, the peak area distortion of the
third peak of the signal is greater than 5%, and
Figures 11(a) and 11(b) are showing that there is still some
noise left in the reconstructed signal after denoising,
which has a certain impact on the accuracy of the ME-C4D
signal analysis. When using soft threshold function to
denoise, the baseline is smooth and the noise is basically
removed, but the area distortion of the first peak and the
third peak are 10.9102% and 12.5462%, respectively,
which greatly affects the determination of the content of
the measured substance. Obviously, the new proposed
method can remove the noise well, the denoised signal is
smooth, and the peak areas of the three peaks remain
basically unchanged. All these above suggest that the

improved threshold function method in this paper is
effective and superior to the existing methods.

4. Concluding Remarks

In this work, a method of ME-C4D signal denoising based on
an improved threshold function of wavelet transform is pro-
posed. )e simulation experiment results suggest that the
proposed method in this paper is superior to Savitzky–Golay,
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Figure 11: Effect of different methods on signal denoising with concentration of 0.1mM. (a) Savitzky–Golay. (b) Fast Fourier transform. (c)
Soft threshold method. (d) Proposed method.

Table 3: Peak area distortion after denoising by different methods.

Denoising method
Peak area distortion

First peak
(%)

Second peak
(%)

)ird peak
(%)

Savitzky–Golay 0.2532 0.7758 7.4411
Fast Fourier
transform 0.3032 0.4154 6.2670

Soft threshold
method 10.9106 3.6005 12.5462

Proposed method 1.4160 0.8991 3.9441
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Fast Fourier Transform, and soft threshold method. )e study
on the denoising of the actual detection signals of samples with
concentrations of 0.1mMproves that the proposedmethod has
excellent denoising effect and powerful peak area preservation
ability.)erefore, this method has important practical value for
signal denoising of ME-C4D. Furthermore, the improved
threshold function method has some limitations, such as the
value of the variable parameter a is manually selected by our
experience. It is expected that an algorithm will be designed in
the future to realize parameter optimization.

Abbreviation

ME-
C4D:

Microchip electrophoresis based on capacitively
coupled contactless conductivity detection.
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Based on the step function and signum function, a chaotic system which can generate multiscroll chaotic attractors with ar-
rangement of saddle-shapes is proposed and the stability of its equilibrium points is analyzed. /e under mechanism for the
generation of multiscroll chaotic attractors and the reason for the arrangement of saddle shapes and being symmetric about y-axis
are presented, and the rule for controlling the number of scroll chaotic attractors with saddle shapes is designed. Based on the core
chips including Altera Cyclone IV EP4CE10F17C8 Field Programmable Gate Array and Digital to Analog Converter chip
AD9767, the peripheral circuit and the Verilog Hardware Description Language program for realization of the proposed
multiscroll chaotic system is constructed and some experimental results are presented for confirmation./e research result shows
that the occupation of multipliers and Phase-Locked Loops in Field Programmable Gate Array is zero.

1. Introduction

Since the advent of the Lorenz chaotic system in 1976, the
proposal, analysis, control, and synchronization of chaotic
systems and their applications and the corresponding ed-
ucational research have become a hot topic [1–22]. In
particular, the multiscroll chaotic system has more complex
dynamics than the single-scroll or two-scroll chaotic system
so that it has been caused widespread concern and in-depth
research. /erefore, designing the chaotic system which can
generate multiple chaotic attractors is still significant. It can
not only provide the good candidate for chaos application
but also enrich the content of nonlinear circuit. So far,
according to the shape of chaotic attractors in the phase
plane, the types of multiple chaotic attractors mainly include
multiscroll chaotic attractors [1–7, 16–18], multifolded torus
chaotic attractors [8, 9], multiwing chaotic attractors
[10–14, 19], and multi-star chaotic attractors [15]. For ex-
ample, based on Chua’s circuit and using a sinusoidal

function, a chaotic system which is capable of generating
multiscroll chaotic attractors was proposed and verified by
using the hardware circuit with the universal trigonometric
converter AD639 in [1]. Ozoguz et al. designed the chaotic
system which can generate multiscroll chaotic attractors by
using the inverse tangent function and designed the cor-
responding hardware experimental circuit with nonlinear
transconductance [2]. Yu designed a chaotic system that can
generate chaotic attractors of multiple vortexes by using a
triangular wave function [3]. Lu and Chen summarized the
methods of generating chaotic systems with multiple vortex-
coil chaotic attractors and the applications of such systems
[4]. Yu et al. designed a chaotic system that can generate
multifolded torus chaotic attractors with multiple piecewise
functions and gave the system parameter design rules when
generating multifolded torus chaotic attractors [8]. In the
case of multiwing chaotic attractors, Luo et al. designed a
multiwing chaotic system by using signum functions and the
corresponding hardware circuit experiment [10]. Zhang and
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Yu [11] designed a class of fractional-order multiwing
chaotic system. A chaotic system which has capable of
generating multiscroll, multiring, multistar, and multiflower
chaotic attractors is proposed [15]. /e above research re-
sults greatly enrich the content of nonlinear circuits and
present a foundation for the application of multichaotic
attractors.

In addition, with the rise of digital chaotic secure
communication, chaotic systems are widely realized by
Digital Signal Processor [23, 24], Field Programmable Gate
Array [25–27], Advanced RISC Machine [28, 29], Arduino
[30, 31], and other digital chips. For example, He et al.
implemented a fractional-order Lorenz hyperchaotic system
by using Digital Signal Processor [23]. Tlelo-Cuautle et al.
implemented a multiscroll chaotic generator by designing
Verilog Hardware Description Language program in Field
Programmable Gate Array [27]. Lin et al. applied Advanced
RISC Machine to design chaotic maps and realize their real-
time secret video communication [29]. Pano-Azucena et al.
implemented multidimensional multiscroll chaotic systems
and realized chaotic secure communication in Arduino [30].
/e above research results lay a solid foundation for digital
chaotic secure communication. However, as indicated in
references [32, 33], compared with Digital Signal Processor,
Advanced RISC Machine, and Arduino, it has more ad-
vantageous to implement the chaotic system by using Field
Programmable Gate Array since it has high flexibility and
high computational efficiency. Hence, Field Programmable
Gate Array attracts people’s attention to implement non-
linear dynamics of systems, especially chaotic or hyper-
chaotic systems, including chaotic cellular neural network
system [34], image chaotic communication [35], secure
color image encryption algorithm based on chaotic signals
[36], fractional order chaotic system [37], and a wireless
hyperchaotic communication system [38].

In this paper, based on the step function and the signum
function, a multiscroll chaotic system which is capable of
generating multiscroll chaotic attractors with arrangement
of saddle shape in the phase plane is proposed. /e under
mechanism of the occurrence of multiscroll chaotic
attractors and the reason for the arrangement of saddle
shapes are analyzed. Based on the Altera Cyclone IV
EP4CE10F17C8 Field Programmable Gate Array and Digital
to Analog Converter chip AD9767, the peripheral circuit and
Verilog Hardware Description Language program are
designed to realize the multiscroll chaotic system for
confirmation.

2. Mathematical Model of Multiscroll
Chaotic System

/emathematical model of the proposed multiscroll chaotic
system is as follows:

_x � 128(y − x),

_y � sign(x)(16 − 128z + f(z)),

_z � − dz + 16|8x − f(x) + f(− x)|,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where

f(x) � 
m

j�1
ε x − bj ,

f(z) � 
n

l�1
alε z − cl( ,

(2)

ε x − bj  �
1, x≥ bj,

0, x< bj,
 (3)

ε z − cl(  �
1, z≥ cl,

0, z< cl,
 (4)

sign(x) �

1, x> 0,

0, x � 0,

− 1, x< 0.

⎧⎪⎨

⎪⎩
(5)

where x, y, and z are system variables; al, bj, cl, d,m, and n are
system parameters, bj, cl, and d are positive numbers, and
bj+1 > bj and cl+1 > cl. Note that (3) and (4) are the definitions
of step functions and (5) is the definition of signum function.

Whenm� 1, n� 1, a1 � 16, b1 � 0.125, d� 64, and c1 � 0.2
are selected and the initial value being (x0, y0, z0)� (0.25,
0.125, 0.25), the numerical simulation results from Matlab
software are presented in Figures 1(a) and 1(b). Figure 1(a) is
the phase diagram of the system in the y-z plane, and
Figure 1(b) is the Poincaré map on x� y plane. In addition,
due to the fact that the classical method for the LEs com-
putation were designed for smooth systems only [39], here
the improved and effective method was proposed by Danca
in 2015 [40], which can be used to calculate the Lyapunov
exponents of discontinuous system, is applied to obtain the
Lyapunov exponents of the proposed system and the results
are LE1 � 9.1141, LE2 � 0, and LE3 � − 51.1867. /erefore, the
system is a chaotic system. At the same time, it can be seen
from Figure 1(a) that the system has six-scroll chaotic
attractors. Among them, four-scroll chaotic attractors are
arranged in a row, and the other two are in obliquely above.
Obviously, the arrangement of these six-scroll chaotic
attractors seems a saddle shape and symmetric about y-axis.

3. Equilibrium Point and Its Stability Analysis

Considering the case of m� 1 and n� 1, equation (1) can be
written as follows:

_x � 128(y − x),

_y � sign(x) 16 − 128z + a1ε z − c1( ( ,

_z � − dz + 16 8x − ε x − b1(  + ε − x − b1( 


.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Let the left derivative term of equation (6) be zero, and
the equilibrium point of system (6) can be obtained as
follows:

y − x � 0,

sign(x) 16 − 128z + a1ε z − c1( (  � 0,

− dz + 16 8x − ε x − b1(  + ε − x − b1( 


 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(7)

Note that, for the third formula in equation 7, when d is
positive, z must satisfy z≥ 0 to make the system have
equilibrium points.
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Let (X, Y, Z) be the equilibrium point of system (6), and
according to the second formula in equation (7), we can
obtain X� 0 or

Z �

0.125 +
a1

128
, when z≥ c1,

0.125, when z< c1.

⎧⎪⎪⎨

⎪⎪⎩
(8)

If X� 0, then (X, Y, Z)� (0, 0, 0).
If X is not equal to zero, the equilibrium point of system

(6) is

(X, Y, Z) �

±0.0625 dZ + 1
8

,
±0.0625 dZ + 1

8
, Z ,

whenx≥ b1,

±0.0625 dZ

8
,
±0.0625 dZ

8
, Z ,

when − b1 <x< b1 , x≠ 0,

±0.0625 dZ − 1
8

,
±0.0625 dZ − 1

8
, Z ,

whenx≤ − b1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

/erefore, the system may have 13 equilibrium points.
However, when selecting a1 � 16, b1 � 0.125, d� 64, and

c1 � 0.2 and substituting them into equation (9), it is found
that system (6) only has the following seven equilibrium
points:

(X, Y, Z) �

S1 � (0.25, 0.25, 0.25),

S2 � (0.1875, 0.1875, 0.125),

S3 � (0.0625, 0.0625, 0.125),

S4 � (− 0.0625, − 0.0625, 0.125),

S5 � (− 0.1875, − 0.1875, 0.125),

S6 � (− 0.25, − 0.25, 0.25),

S7 � (0, 0, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

/e stability of system (6) under the above equilibrium
points can be determined by calculating the eigenvalue of its
Jacobian matrix at the corresponding equilibrium points.
/e Jacobian matrix is

Jac �

− 128 128 0

2δ(x) 16 − 128z + a1ε z − c1( (  0 sign(x) − 128 + a1δ z − c1( ( 

g(x) 0 − d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)
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Figure 1: Numerical simulation results underm� 1 and n� 1. (a) y-z phase diagram shows six-scroll chaotic attractors; (b) Poincaré map on
x� y plane shows its chaotic operation.
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where δ (x) is the impulse function, when x� 0, δ (x)� inf
(inf is positive infinity) and when x≠ 0, δ (x)� 0. Besides,

g(x) � 16sign 8x − ε x − b1(  + ε − x − b1( (  8 − δ x − b1( (

− δ − x − b1( .

(12)

After substituting S7 � (0, 0, 0) and the above parameters
into equation (11), we can obtain

Jac7 �

− 128 128 0

inf 0 0

0 0 − 64

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

Obviously, there is a positive infinity element in the
matrix Jac7, and its eigenvalues cannot be calculated.
However, the characteristic equation of the matrix can be
derived, and its result is

(λ + 64) λ2 + 128λ − 128inf  � 0. (14)

/erefore, its eigenvalues are λ1 � − 64, λ2 � − 64+

(4096 + 128inf)0.5, and λ3 � − 64 − (4096 + 128inf)0.5.
S7 � (0, 0, 0) is unstable so that the system trajectory will be
exponentially away from this equilibrium point.

Additionally, the eigenvalues at the other six equilibrium
points S1–S6 are λ1 � − 202.644, λ2 � 5.322 + 101.59i, and
λ3 � 5.322 − 101.59i. /erefore, these six equilibrium points
are all index − 2 saddle-focus equilibrium points. In other
means, around these six equilibrium points, the system
trajectory spirals from one equilibrium point to another, and
finally the six scroll chaotic attractors are formed. /us, the
step function and the signum function are all indispensable
for generating multiscroll chaotic attractors.

In particular, among these six equilibrium points, in the
y-z plane, there are four equilibrium points (S2, S3, S4, and
S5) whose Z values are all equal to 0.125 so that these four
equilibrium points are arranged in a row./e Z values of the
other two equilibrium points (S1 and S6) are equal to 0.25.
Combined with the Y values of the two equilibrium points, it
can be seen that these two equilibrium points are located
obliquely above the equilibrium points S2 and S5, respec-
tively. /erefore, the arrangement of these six-scroll chaotic
attractor eventually presents a saddle shape and be sym-
metric about y-axis.

4. The under Mechanism for Generation of
Multiscroll Chaotic Attractors

From the above numerical simulation from Matlab software
and theoretical analysis, it can be seen that when m� 1 and
n� 1 are selected, the system will generate six-scroll chaotic
attractors. If the appropriate values are selected form, n, and
other parameters, the number of scrolls for chaotic attractors
should be C1m+C2n+C3, where C1, C2, and C3 are
parameters.

Assume that a1 � 16, b1 � 0.125, d� 64, and c1 � 0.2 are
unchanged. When n� 1, m� 2, and b2 � 0.25, the numerical
simulation results of the system are shown in Figure 2(a).
Obviously, the system has eight-scroll chaotic attractors.

When m� 1, n� 2, a2 � 32, and c2 � 0.3, the numerical
simulation results of the system are shown in Figure 2(b).
Obviously, the system still has eight-scroll chaotic attractors,
but its arrangement is different from that of Figure 2(a).

When m� 2, b2� 0.25, n� 2, a2� 32, and c2� 0.3, the nu-
merical simulation results of the system are shown in Figure 2(c).
Obviously, the system now has ten-scroll chaotic attractors.

According to the above numerical simulation results, the
following formula can be obtained:

2C1 + C2 + C3 � 8,

C1 + 2C2 + C3 � 8,

2C1 + 2C2 + C3 � 10.

⎧⎪⎪⎨

⎪⎪⎩
(15)

/erefore, one can obtain that C1 � 2, C2 � 2, and C3 � 2
so that this chaotic system can generate 2m+ 2n+ 2 scroll
chaotic attractors, where m can control the saddle in the
saddle shape. /e larger m is, the wider the saddle is; n can
control the saddle bridge in the saddle shape; the larger the n
is, the higher the saddle bridge is.

5. FPGA Implementation of Saddle-Shaped
Multiscroll Chaotic System

/e Altera Cyclone IV EP4CE10F17C8 Field Programmable
Gate Array is used. In addition, in order to observe the
output waveform and compare it with the numerical sim-
ulation results, the Digital to Analog Converter chip AD9767
(14-bit) is used to convert the Field Programmable Gate
Array calculation result into analog output and connect it to
the oscilloscope GDS 3254 for observation.

When designing the program, by considering the chaotic
region of the proposed multiscroll chaotic system, the res-
olution, and the Digital to Analog Converter chip AD9767
(14-bit), the fixed-point data format 32Q26 is used, in which
the highest 1 bit is the sign bit, the next highest 5 bits are the
integer bits, and the remaining 26 bits are the decimal places.

To calculate equation (1), first discretize equation (1) as
follows:

xk+1 � xk + Δt × 128 yk − xk( ,

yk+1 � yk + Δt × sign xk(  16 − 128zk + f zk( ( ( ,

zk+1 � zk + Δt × − dzk + 16 8xk − f xk(  + f − xk( 


 ,

⎧⎪⎪⎨

⎪⎪⎩

(16)

where Δt is a discrete step and is equal to 1/512.

f xk(  � 
m

j�1
ε xk − bj ,

f zk(  � 

n

l�1
alε zk − cl( .

(17)

Assuming that Vk � (xk, yk, zk, wk)
T, equation (16) can be

expressed as follows:

Vk+1 � Vk + Δt × G Vk( . (18)

Here, the second-order Runge–Kutta algorithmwith two
calculation steps is used for calculation. /e first step is to
update the data in half-step calculations:
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Vk+0.5 � Vk +
Δt
2

× G Vk( . (19)

/e second step is to calculate the update data withVk+0.5
and obtain Vk+1:

Vk+1 � Vk + Δt × G Vk+0.5( . (20)

After successfully designed by Verilog Hardware De-
scription Language, the program is burned into the Field
Programmable Gate Array through Universal Serial Bus
Blaster, then the program will be converted into a hardware
list, and the corresponding digital circuit will be formed in
the Field Programmable Gate Array to realize the operation.
/e Register Transfer Level Viewer in the Quartus II is
shown in Figure 3. Note that the “clock” and “rst1” in
Figure 3 are the clock and reset signals of the Field Pro-
grammable Gate Array, respectively, “clock1,” “clock2,”
“wreset1,” and “wreset2” are the clock and reset signals of the
Digital to Analog Converter chip, respectively, “ouput_en” is
the output enable terminal and is active high, “x [13..0],” “y
[13..0],” and “z [13..0]” are the digital outputs of x, y, and z at

the time of each step,“dac_CH1 [13..0]” and “dac_CH2
[13..0]” output “y [13..0]” and “z [13..0]” to the Digital to
Analog Converter chip AD9767 for digital-to-analog con-
version, respectively.

/e experimental results are shown in Figure 4.
Figure 4(a) shows the experimental results of the y-z phase
diagram under m� 1 and n� 1, and Figure 4(b) shows the
experimental results of the y-z phase diagram under m� 2
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Figure 2: Numerical simulation results of saddle-shaped multiscroll chaotic attractors: (a) eight-scroll chaotic attractors form� 2 and n� 1;
(b) eight-scroll chaotic attractors for m� 1 and n� 2; (c) ten-scroll chaotic attractors for m� 2 and n� 2.
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z [13..0]
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Figure 3: Register transfer level viewer when field programmable
gate array implements the multiscroll chaotic system.
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and n� 1, Figure 4(c) shows the experimental results of the
y-z phase diagram under m� 1 and n� 2, and Figure 4(d)
shows the experimental results of the y-z phase diagram
under m� 2 and n� 2. Comparing Figure 4 with the cor-
responding graphs in Figures 1 and 2, the results of these two
sides are consistent, which indicates the feasibility and ef-
fectiveness of using FPGA to realize the multiscroll chaotic
system which is capable of generating saddle-shaped mul-
tiscroll chaotic attractors.

Also, in the Quartus II interface, the resources occupied
by these multiscroll chaotic systems that can generate
saddle-shaped multiscroll chaotic attractors when using the

Altera Cyclone IV EP4CE10F17C8 Field Programmable
Gate Array design program are 20% of the logic cells, 19% of
pins, and 24% of memory bits. Particularly, due to the fact
that the proposed multiscroll chaotic system is a piecewise
linear system, and the coefficients are equal to 2N where N is
the nature number so that the multiplication in the system
can be realized by shift bit in Verilog HDL program which
leads to 0% of multipliers being used. Additionally, the clock
signal for the Field Programmable Gate Array equals the
clock1 and clock2 signals for the Digital to Analog Converter
chip so that it is no need to use Phase-Locked Loops in
Verilog HDL programwhich leads to 0% of PLLs being used.

(a) (b)

(c) (d)

Figure 4: Experimental results of multiscroll chaotic systems: (a) six-scroll chaotic attractors for m� 1 and n� 1; (b) eight-scroll chaotic
attractors for m� 2 and n� 1; (c) eight-scroll chaotic attractors for m� 1 and n� 2; (d) ten-scroll chaotic attractors for m� 2 and n� 2.
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6. Conclusion

/eoretical analysis, numerical simulation, and Field Pro-
grammable Gate Array experiments show that the reason for
the proposed multiscroll chaotic system, which can produce
saddle-shapes 2m+ 2n+ 2 scroll chaotic attractors, is that the
system has 2m+ 2n+ 2 index − 2 saddle-focus equilibrium
points and the arrangement of the index − 2 saddle-focus
equilibrium points in y-z plane is saddle shaped. Moreover,
by selecting m and n, the number of scrolls of chaotic
attractors and their arrangement shape can be controlled. In
addition, the Verilog Hardware Description Language
program that implements this multiscroll chaotic system is
designed with the core device Altera Cyclone IV
EP4CE10F17C8 Field Programmable Gate Array and Digital
to Analog Converter chip AD9767, and the results from the
Quartus II show that the multiplier and Phase-Locked Loops
occupying the Field Programmable Gate Array’s resources
are both zero. /erefore, compared with other multiscroll
chaotic systems that must be implemented by multipliers or
Phase-Locked Loops in Field Programmable Gate Array, the
proposed multiscroll chaotic system occupies less Field
Programmable Gate Array resources.
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[2] S. Özoğuz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos
generator using nonlinear transconductor,” Electronics Let-
ters, vol. 38, no. 14, pp. 685-686, 2002.

[3] S.-M. Yu, “Circuit implementation for generating three-di-
mensional multi-scroll chaotic attractors via triangular wave
series,” Acta Physica Sinica, vol. 54, no. 4, pp. 1500–1509,
2005.
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Faculté des Sciences Economiques et Gestion, BP 5683 Dakar Fann, Senegal

Correspondence should be addressed to Ndolane Sene; ndolanesene@yahoo.fr

Received 26 April 2020; Revised 31 May 2020; Accepted 8 June 2020; Published 29 June 2020

Guest Editor: Karthikeyan Rajagopal

Copyright © 2020 Mamadou Diouf and Ndolane Sene. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Numerical discretization for the fractional differential equations is applied to the chaotic financial model described by the Caputo
derivative. -e graphical representations to support the numerical discretization are presented. We profit by analyzing the impact
generated by the variations of the saving rate, the per investment cost, and the elasticity of demands in the dynamics of the
solutions obtained with our numerical scheme. Notably, we use bifurcation diagrams to quantify the impact of the saving rate, the
per investment cost, and the elasticity of demands, as well as the Lyapunov exponent to characterize the existence of chaos for the
chosen value of the fractional order.-e chaos observed depends strongly on these previously mentioned parameters.We finish by
proposing a suitable control to synchronize the drive system and the response fractional financial model, using Lyapunov direct
methods. -e stability analysis of the equilibrium points of the chaotic financial model has been presented.

1. Introduction

-e debate related to the savings and saving rate, the in-
vestment and the investment rate, and demands and the
elasticity of demands continues to aliment the literature
reviews and researches in economics, finance, and mathe-
matics. We make discussions related to these parameters in
the economy and finance before going further. In macro-
economic literature, the determinants of the savings are not
the same as those of investments. Savings depend mainly on
income and wealth, while investment depends on profit-
ability and risky [1]. However, although savings and in-
vestment result from two independent decisions, they are
necessarily the same in a closed economy [2, 3]. Savings are
not necessarily used for domestic investment. -ey can be
invested in the exterior of a country. In the case of capital
mobility, the savings of each country will go to the part of the
world which offers the highest rate of return [4]. Hence, an
increase in national savings will mainly affect a large current

account surplus or simply reduce the deficit rather than an
increase in domestic investment and economic growth. In
classical macroeconomics, the growth of production de-
pends first on investment, which in turn depends on the
savings rate. In this case, the interaction between demand
and supplying funds determines the level of investment.
Note that the investment demand is a negative function
according to the real interest rate. -e savings are a positive
function according to the interest rate. As a result, a shift to
the right of the investment demand function will generate an
increase in investment rates and an increase in the equi-
librium of investment and savings. -e investigations be-
tween the investment and the savings are reported in many
papers; in Turgot [5] and in Benston and Smith [6], savings
are considered as automatically devoted to the financing of
investment.

Following the literature, the savings can be considered
as a source of instability for demand. -e Keynesian and
Neo-Keynesian and their macroeconomic models,
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contrary to the neoclassical ones, attribute a passive role
to savings. According to Keynesian and Neo-Keynesian,
economic growth is explained by the investments. For
them, the savings stop economic growth because it gen-
erates a demand deficit. -us the investment is privileged
to reduce the demand deficit and induce economic growth
and more savings. In [7], Keynes emphasizes the links
between the amount of investment and the volume of
employment. In [8], Domar considers the growth model,
where he explains that maintaining full employment re-
quires growth in investment. All Keynesian and Neo-
Keynesian theoretical models highlight the impact of
savings in the process of economic growth and, in par-
ticular, the link it maintains with investment and demand.
-e investigations were related to the empirical devel-
opments on the savings and investment rate. In these
directions, Feldstein and Stock in [9] prove empirically
the holders of capital prefer to keep savings in their
country to protect themselves against currency risk and
political risk. -us, the national savings stay in their
country, and the domestic investment increases. Obsefeld
in [10] stipulates in a base empirical study that, for a large
open economy like that of the United States, domestic
savings and investment could go together, even if the
international capital market worked perfectly. However, it
is not justified to consider a strong correlation between
savings and investment, implying low capital mobility as
announced by Feldstein and Stock in [9]. For more em-
pirical investigations, see Tobin in [11], Dramani et Laye
in [12], Esso et Keho in [13], Dries and Pepermans [14],
and so forth. At last, the elasticity of demand measures the
reaction of buyers to the changes in market conditions. It
permits analyzing the variation in the demand with
greater precision [15]. -us, the elasticity of demand is a
concept that measures the degree of sensitivity of demand
to price (price elasticity) or income (“income elasticity”)
variations. Among the determinants of demand, we can
cite price, income, product quality, and tastes, or
preferences.

We note in the literature many discussions related to the
concepts of savings, saving rate, investment, investment rate,
investment of demand, and the elasticity of demand, per-
mitting opening the door for new applications. In this paper,
we focus on these concepts in the context of the financial
model taking into account all these concepts. We mainly
focus on the chaotic financial model in the context of
fractional calculus.We propose a new numerical scheme and
depict the solutions according to this numerical scheme and
analyze as well the impact of the saving rate, the per in-
vestment cost, and the elasticity of demands. -ere exist
investigations related to the fractional financial models. In
[16], Shahiri et al. propose the stability and the synchro-
nization of the fractional financial chaotic model. In [17],
Xin and Li introduce a new fractional for order financial
chaotic model, propose the numerical schemes using
Adam’s Bashford method, and illustrate their results with
graphical representations. In [18], Chen et al. present the
financial 3D chaotic model and introduce the financial 4D
chaotic model and propose feedback control to stabilize the

chaotic model. In [19], Gao and Ma present the Hopf bi-
furcation of the chaotic financial model with time delay. In
[20], Kumar and Kumar present a new financial chaotic
model and also propose the stability analysis of the intro-
duced model using the Lyapunov direct method. In [21], Xu
and He investigate the synchronization of the fractional 3D
financial model using an active control method. In [22],
Wang et al. propose the fractional financial chaotic model
with a different order of the fractional derivative. For many
other investigations on chaotic systems, refer to [23–25].

Our motivation and novelty are to propose a new nu-
merical scheme based on the solution of the fractional
differential equations. Our numerical schemes will open new
doors in numerical methods in fractional calculus and in
finance, where the mathematical models are preferred to
analyze the behavior of the financial markets.-is new paper
contributes to the applications of fractional derivatives in
finance and economics. Note that there exist many appli-
cations of fractional derivatives [26–29] in physics
[27, 30, 31], science and engineering [27, 32], mathematical
modeling [27, 33], and others fields [26, 34–36]. -e context
of the fractional derivative is considered in our paper be-
cause the memory effect of the dynamical systems is taken
into account, which is important for economics and fi-
nancial models.

In Part 2, we recall the fractional tools. In Part 3, we
present the fractional financial chaotic model. In Part 4, we
give the qualitative properties like the existence and the
uniqueness of the solution of the proposed model. In Part 5,
we introduce our new numerical discretization. In Part 6, we
give numerical simulations and interpretations. In Part 7, we
propose synchronization investigations. In Part 8, we finish
with concluding remarks.

2. Basic Fractional Calculus Operators

We recall the tools related to the fractional calculus. We
address in this section the fractional Caputo derivative, the
fractional Riemann-Liouville derivative, and their associated
integral. We give the following definitions.

Definition 1 (see [27, 29]). Consider the function
x: [0, +∞[⟶ R; the fractional derivative in sense of
Riemann-Liouville, of order α, is represented by the
relationship

D
α
x(t) �

1
Γ(1 − α)

d
dt


t

0
x(s)(t − s)

− αds, (1)

with the relation
dx(t)

dt
� lim

h⟶0

x(t + h) − x(t)

h
, (2)

where t> 0 and the order α ∈ (0, 1) and Γ(. . .) is the gamma
Euler function.

Definition 2 (see [27, 29]). Consider the function
x: [0, +∞[⟶ R; the fractional derivative in sense of
Caputo, of order α, is represented by the relationship
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D
α
c x(t) �

1
Γ(1 − α)


t

0

dx

ds
(t − s)

− αds, (3)

with the relation
dx(t)

dt
� lim

h⟶0

x(t + h) − x(t)

h
, (4)

where t> 0 and the order α ∈ (0, 1) and Γ(. . .) is the gamma
Euler function.

Definition 3 (see [27, 29]). -e Riemann-Liouville fractional
integral is represented as the following form for the function
x: [0, +∞[⟶ R:

I
α
x( (t) �

1
Γ(α)


t

0
(t − s)

α− 1
x(s)ds, (5)

where the function Γ(. . .) represents the Gamma Euler
function with the order α> 0.

3. Fractional Financial Chaotic Model

In this section, we present the chaotic model used in finance
and economy in the context of fractional time order de-
rivative. -e chaotic financial model considered in our
works can be represented with the integer-order derivative
as the following form:

ztx � z + yx − ax, (6)

zty � 1 − by − x
2
, (7)

ztz � − x − cz, (8)

with the initial conditions defined by the following
equations:

x(0) � x0,

y(0) � y0,

z(0) � z0,

(9)

where the variable x represents the interest rate, y denotes
the investment demand, and the variable z denotes the price
exponent. -e parameter a means the saving rate; the pa-
rameter b represents the per investment cost; the parameter c

indicates the elasticity of demands. -e generalization of the
dynamical system described by equations (6)–(8) can be
done using the fractional-order derivative due to the
memory effect. In other words, the deterministic of the
dynamical systems is, in general, well modeled by the
fractional-order derivative. -erefore, in this paper, we
consider the fractional-order derivative to model the chaotic
financial model. -e chaotic model is known to be very
sensitive to the initial condition; this point will be focused
more on an understanding of the financial market. In other
words, to understand more precisely the evolutions of the
interest rate, the investment demand, and the price expo-
nent, the following equations represent the fractional fi-
nancial chaotic model considered in this paper:

D
α
c x � z + yx − ax, (10)

D
α
c y � 1 − by − x

2
, (11)

D
α
c z � − x − cz. (12)

Wemake the following assumptions related to the initial
conditions:

x(0) � x0,

y(0) � y0,

z(0) � z0.

(13)

4. Qualitative Properties of the
Fractional Model

In this section, we prove that the fractional financial chaotic
model represented by equations (10)–(12) has unique so-
lution. We consider the following function:

ϕ(t, x) � z + yx − ax. (14)

-e Lipschitz continuous condition and the Lipchitz
constant are provided in the following reasoning. We as-
sume that x, y, and z are all bounded. We have

ϕ t, x1(  − ϕ t, x2( 
����

���� � z + yx1 − ax1 − z − yx2 + ax2
����

����

≤ ‖y‖ x1 − x2
����

���� + a x1 − x2
����

����

≤ [a + ϵ] x1 − x2
����

����,

(15)

where, according to the assumptions, we have ‖y‖≤ ϵ.
Using the function ϕ, we construct a Picard’s operator

using the fractional integral; we have the following equation:

Δx � x(0) + I
αϕ(t, x). (16)

We prove that the operator Δ is bounded. We adopt the
following reasoning. We apply the Euclidean norm; that is,

‖Δx − x(0)‖ � I
αϕ(t, x)

����
����

≤ ‖ϕ‖I
α
(1)

≤
Tα

Γ(α + 1)
 ‖ϕ‖.

(17)

Equation (15) proves ϕ is Lipschitz continuous, which
implies, in particular, that the function ϕ is bounded; that is,
‖ϕ‖≤ ϵ1. By substituting in equation (17), we obtain the
equation defined by

‖Δx − x(0)‖≤
Tα

Γ(α + 1)
 ϵ1. (18)

We now provided a condition under which the operator
Δ is a contraction. We adopt the following procedure to
provide this condition:
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Δx1 − Δx2
����

���� � I
α ϕ t, x1(  − ϕ t, x2(  

����
����

≤ I
α ϕ t, x1(  − ϕ t, x2( 
����

����

≤ ϕ t, x1(  − ϕ t, x2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 [a + ϵ] x1 − x2

����
����.

(19)

-at is, Picard’s operator is a contraction when the
relation is defined by

Tα

Γ(α + 1)
≤

1
a + ϵ

, (20)

which in turn implies that, under Banach fixed theorem,
the solution of the fractional differential equation de-
scribed by equation (10) exists and is unique. -e
uniqueness of the solution can be established using the
following reasoning. We suppose two different solutions
x1 and x2 for the fractional differential equation defined by
equation (10). We suppose the following relationship is
held:

x1(t) � x1(0) + I
αϕ t, x1( , (21)

x2(t) � x2(0) + I
αϕ t, x1( . (22)

-e difference between equations (21) and (22) yields

x1(t) − x2(t) � I
α ϕ t, x1(  − ϕ t, x2(  . (23)

Applying the norm to equation (23), we get the following
relationships:

x1 − x2
����

���� � I
α ϕ t, x1(  − ϕ t, x2(  

����
����

≤ I
α ϕ t, x1(  − ϕ t, x2( 
����

����

≤ ϕ t, x1(  − ϕ t, x2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 [a + ϵ] x1 − x2

����
����.

(24)

From them, we have the following equation:

x1 − x2
����

���� 1 −
Tα

Γ(α + 1)
 [a + ϵ] ≤ 0. (25)

-at implies ‖x1 − x2‖≤ 0. Furthermore, we know by
definition of the Euclidean norm ‖x1 − x2‖≥ 0. -us, we
conclude that the following equation is held; that is,

x1 � x2. (26)

-e solution of equation (10) is unique. We conclude
that the first equation of the financial chaotic model has a
solution and this solution is unique.

In the second step, we consider the following function in
our procedure:

φ(t, y) � 1 − by − x
2
. (27)

We adopt the previous procedure by providing the
Lipschitz continuous condition and the Lipschitz constant
for the function φ. We assume that x, y, and z are bounded.
We have the following relation:

φ t, y1(  − φ t, y2( 
����

���� � 1 − by1 − x
2

− 1 + by2 + x
2����
����

≤ b y1 − y2
����

����.

(28)

Using the function φ, we construct a Picard’s operator
using the fractional integral; we have the following equation:

Ωy � y(0) + I
αφ(t, y). (29)

We prove the operator Ω is bounded. We adopt the
following reasoning. We apply the Euclidean norm; that is,

‖Ωy − y(0)‖ � I
αφ(t, y)

����
����

≤ ‖φ‖I
α
(1)

≤
Tα

Γ(α + 1)
 ‖φ‖.

(30)

Equation (28) proves φ is Lipchitz continuous, which
implies, in particular, that the function φ is bounded, that is,
‖φ‖≤ ϵ2. Replacing into equation (30), we obtain the
equation defined by

‖Ωy − y(0)‖≤
Tα

Γ(α + 1)
 ϵ2. (31)

We now provided a condition under which the operator
Ω is a contraction. We adopt the following procedure to
provide this condition:

Ωy1 − Ωy2
����

���� � I
α φ t, y1(  − φ t, y2(  

����
����

≤ I
α φ t, y1(  − φ t, y2( 
����

����

≤ φ t, y1(  − φ t, y2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 b y1 − y2

����
����.

(32)

-at is, Picard’s operator Ω is a contraction when the
relation defined by

Tα

Γ(α + 1)
≤
1
b
, (33)

is held, which in turn implies that, under Banach fixed
theorem, the solution of the fractional differential equation
described by equation (11) exists and is unique. -e
uniqueness of the solution can be established using the
following reasoning. We suppose different solutions y1 and
y2 for the fractional differential equation defined by equa-
tion (11). -at is, the following relationships are held:

y1(t) � y1(0) + I
αφ t, y1( , (34)

y2(t) � y2(0) + I
αφ t, y1( . (35)
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-e difference between equations (34) and (35) yields

y1(t) − y2(t) � I
α φ t, y1(  − φ t, y2(  . (36)

Applying the norm to equation (36), we get the following
relationships:

y1 − y2
����

���� � I
α φ t, y1(  − φ t, y2(  

����
����

≤ I
α φ t, y1(  − φ t, y2( 
����

����

≤ φ t, y1(  − φ t, y2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 b y1 − y2

����
����.

(37)

From them, we have the following equation:

y1 − y2
����

���� 1 −
Tα

Γ(α + 1)
 b ≤ 0. (38)

-at implies ‖y1 − y2‖≤ 0. Furthermore, we know by the
definition of the Euclidean norm ‖y1 − y2‖≥ 0. -us, we
obtain the following equation:

y1 � y2. (39)

-en the solution of equation (11) is unique. We con-
clude that the second equation of the financial chaotic model
has one solution.

In the third step, we consider the following function in
our reasoning:

ψ(t, y) � − x − cz. (40)

We adopt the same reasoning as in the first and the
second steps. We assume that x, y, and z are bounded. We
have the following relation:

ψ t, z1(  − ψ t, z2( 
����

���� � − x − cz1 + x + cz2
����

����

≤ c z1 − z2
����

����.
(41)

Using the function ψ, we construct a Picard’s operator
using the fractional integral; we have the following equation:

Λz � z(0) + I
αψ(t, z). (42)

We prove the operator Λ is bounded. We adopt the
following reasoning. We apply the Euclidean norm; that is,

‖Λz − z(0)‖ � I
αψ(t, z)

����
����

≤ ‖ψ‖I
α
(1)

≤
Tα

Γ(α + 1)
 ‖ψ‖.

(43)

Equation (41) proves ψ is Lipschitz continuous, which
implies, in particular, that the function ψ is bounded, that is,
‖ψ‖≤ ϵ3. Replacing into equation (43), we obtain the
equation defined by

‖Λz − z(0)‖≤
Tα

Γ(α + 1)
 ϵ3. (44)

We now provide a condition under which the operatorΛ
is a contraction. We adopt the following procedure to
provide this condition:

Λz1 − Λz2
����

���� � I
α ψ t, z1(  − φ t, y2(  

����
����

≤ I
α ψ t, z1(  − ψ t, y2( 
����

����

≤ ψ t, z1(  − ψ t, y2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 c z1 − z2

����
����.

(45)

-at is, Picard’s operator Λ is a contraction when the
relation defined by

Tα

Γ(α + 1)
≤
1
c
, (46)

is held, which in turn implies that, under Banach fixed
theorem, the solution of the fractional differential equation
described by equation (12) exists and is unique. -e
uniqueness of the solution can be established using the
following reasoning. We suppose different solutions z1 and
z2 for the fractional differential equation defined by equation
(12). -at is, the following relationships are held:

z1(t) � z1(0) + I
αψ t, z1( , (47)

z2(t) � z2(0) + I
αψ t, z1( . (48)

-e difference between equations (47) and (48) yields

z1(t) − z2(t) � I
α ψ t, z1(  − ψ t, z2(  . (49)

Applying the norm to equation (49), we get the following
relationships:

z1 − z2
����

���� � I
α ψ t, z1(  − ψ t, z2(  

����
����

≤ I
α ψ t, z1(  − ψ t, z2( 
����

����

≤ ψ t, z1(  − ψ t, z2( 
����

����I
α
(1)

≤
Tα

Γ(α + 1)
 c z1 − z2

����
����.

(50)

From them, we have the following equation:

z1 − z2
����

���� 1 −
Tα

Γ(α + 1)
 c ≤ 0. (51)

-at implies ‖z1 − z2‖≤ 0. Furthermore, we know by the
definition of the Euclidean norm ‖z1 − z2‖≥ 0. -us, we
conclude the following equation:

z1 � z2. (52)

-at is, the solution of the fractional differential equation
(12) is unique. We conclude that the third equation of the
financial chaotic model has one solution.
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5. Discretization Procedures for the Financial
Chaotic Model

In this section, we propose the numerical discretization of
the chaotic financial equation with implicit numerical dis-
cretization in the context of fractional calculus. -e method
exposed in this section uses Picard’s operator previously
defined in this paper. -e following relationships give the
solutions of the equations of the fractional financial chaotic
model (10)–(13) using the Riemann-Liouville integral:

x(t) � x(0) + I
αϕ(t, x), (53)

y(t) � y(0) + I
αφ(t, y), (54)

z(t) � z(0) + I
αψ(t, z). (55)

-e standard discretization at (tn) in the context of the
Caputo derivative is described in the following procedure. In
the first step, equations (53)–(55) are written in the following
form:

x tn(  � x(0) + I
αϕ tn, x( ,

y tn(  � y(0) + I
αφ tn, y( ,

z tn(  � z(0) + I
αψ tn, z( .

(56)

-e explicit representations when we translate the
Riemann-Liouville integral are given by the following forms:

x tn(  � x(0) +
1
Γ(α)



n

j�0


tj+1

tj

tn − s( 
α− 1ϕ(s, x(s)), (57)

y tn(  � y(0) +
1
Γ(α)



n− 1

j�0


tj+1

tj

tn − s( 
α− 1φ(s, tyn(s)),

(58)

z tn(  � z(0) +
1
Γ(α)



n− 1

j�0


tj+1

tj

tn − s( 
α− 1ψ(s, z(s)). (59)

We consider the grid tn � t0 + nh, where h represents a
constant step size. Using implicit discretizations of the in-
tegral parts of the above equations (57) and (58), we arrive at
the following discretizations:

x tn(  � x(0) + h
α

b
(α)

n φ(0) + 
n

j�0
b

(α)
n− jϕ tj, xj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

y tn(  � y(0) + h
α

b
(α)

n φ(0) + 

n

j�0
b

(α)
n− jφ tj, yj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

z tn(  � z(0) + h
α

b
(α)

n φ(0) + 
n

j�0
b

(α)
n− jψ tj, zj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(60)

where the discretization parameters reported in the litera-
ture are given by

b
(α)

n �
(n − 1)α − nα(n − α − 1)

Γ(2 + α)
, (61)

and, for n � 1, 2, . . .,

b
(α)
0 �

1
Γ(2 + α)

,

b
(α)
n �

(n − 1)α+1 − 2nα+1 +(n + 1)α+1

Γ(2 + α)
.

(62)

Let x(tn), y(tn), and z(tn) be the numerical approxi-
mations and let xn, yn, and zn be the exact solutions. -en
residual functions as reported in the literature of fractional
calculus for the implicit numerical discretization are given
by the functions

x tn(  − xn


 � O h

min α+1,2{ }
 ,

y tn(  − yn


 � O h

min α+1,2{ }
 ,

z tn(  − zn


 � O h

min α+1,2{ }
 .

(63)

From them, the convergence of the implicit discretiza-
tion of equations (10)–(12) is obtained when h converges to
0. -e stability of the numerical discretizations reported in
this paper is ensured by the Lipschitz continuous condition
of the functions ϕ, φ, and ψ. -e numerical discretizations of
the functions ϕ, φ, and ψ are represented by the equations

ϕ tj, xj  � z
j

+ y
j
x

j
− ax

j
,

φ tj, yj  � 1 − by
j

− x
j

 
2
,

ψ tj, zj  � − x
j

− cz
j
.

(64)

6. Numerical Simulations and Discussions

In this section, we simulate the new discretization proposed
in the previous section. We fix the following initial condi-
tions: x(0) � 1, y(0) � 2, and z(0) � 0.9. In the first sim-
ulation in Figure 1, we consider a � 0.9, b � 0.2, c � 1.5, and
the order α � 0.95. We represent the behavior of the frac-
tional chaotic model in three dimensions. -e considered
step size is given by h � 0.01 and T � 1000[s].

In Figure 2, we observe the behavior of the solution of the
financial chaotic model with respect to the directions x

and z.
In Figure 3, we observe the behavior of the solution of the

financial chaotic model with respect to the directions x

and y.
We analyze the impact of the saving amount a. We

represent the dynamics of the fractional financial chaotic
model in the following figures with the different values of the
saving rate a � 0.1 seen in Figures 4–6 and a � 0.2 seen in
Figures 7–9. We notice we have chaotic behaviors when a

increases and is approximatively between 0.2 and 1. But we
note high chaotic behaviors when the saving amount is less
than approximatively 0.1. -e value of the interest rate can
explain the high chaotic behaviors. Note that the savings rate
measures, for example, the amount of income of households,
businesses, and government savings. To be more precise, the
savings rate indicates a nation’s health as it shows trends in
savings, which lead to investments. -e recessions and
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Figure 3: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 4: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 1: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 2: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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with α � 0.95.
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Figure 6: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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economic shocks impact the saving rate, and in these
conditions, we note periods of high economic uncertainty.
-us, people defer current spending to prepare for an un-
certain economic future. In our context, when the saving
amount is less than approximatively 0.1, we are in periods of
recessions, and the chaotic behavior is high. -e future of
economic growth becomes difficult to predict. Changes in
market interest can also influence the saving rate and thus
influence the high chaotic dynamic when the saving amount
is less than approximatively 0.1.

We analyze the impact of the per investment cost b. We
depict, for more understanding in the following
Figures 10–15, the behaviors of the dynamics of the frac-
tional financial chaotic model with b � 0.25 in Figure 10 and
b � 0.4 in Figure 13. We note the chaotic dynamic is con-
served between approximatively 0.2 and 0.3, but when the
per investment cost exceeds 0.4, the chaotic behavior is
displayed. All investments carry costs, real costs, and not
merely the opportunity costs of an investor choosing to
forego one asset in favor of another. -ere exist different
types of investment costs; thus, different investments carry
different types of costs: expensive ratio, marketing costs, and
others. More chaotic behaviors are observed in (0, 0.3)

because in practice when the cost in the investment is not
high, it is better for the investors. A high investment cost rate
does not generate profit for the investors.

We finish by analyzing the impact of the elasticity of
demands c. We represent in Figures 16–21 the behavior of
the dynamics of the fractional financial chaotic model with
c � 1 in Figure 16 and c � 2 in Figure 19.We note the chaotic
dynamic is conserved between approximately 0 and 2. Still,
when the elasticity of demands exceeds 2, the chaotic be-
haviors are displayed, and the solutions of the financial
model become stable and describe cycle. Note that elasticity
is the degree to which the desire for something changes as its
price rises. When c � 0, we are in case of perfectly inelastic
demand, and c � 1 corresponds to unitary elasticity demand,
while c< 1 corresponds to relatively inelastic demand. We
remark for high elasticity with c< 2; the chaotic behaviors
are very high too.-us the predictions are complicated to be
done. But when the elasticity of demands exceeds 2, then the
chaotic behaviors are displayed, and the behaviors can be
predicted easily in this case. -is phenomenon is not cur-
rently in the financial market and is not reasonable in
practice.

7. Synchronization of Fractional Chaotic
Financial Model

In this section, we study the synchronization of the fractional
financial model. -e objective of synchronization consists of
making two chaotic financial models oscillate in the same
way. To arrive at our end, we consider two models: the
driving system and the response system. All of them are
constructed using the fractional financial chaotic model
described by equations (10)–(12). Our objective will be to
synchronize the driving and the response model using a
controller. -erefore a nonlinear fractional system that gives
signals between the driving system and the response system
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Figure 7: Dynamic behavior of fractional financial chaotic model
with α � 0.95.

1.50.5–1 32.5–0.5 20–1.5 1
y

z

–1.5

–1

–0.5

0

0.5

1

1.5

Figure 8: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 9: Dynamic behavior of fractional financial chaotic model
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Figure 10: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 11: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 12: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 13: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 14: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 15: Dynamic behavior of fractional financial chaotic model
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Figure 16: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 17: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 18: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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Figure 19: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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0.8 10 1.20.2 1.8 21.60.4 1.40.6
x

0

0.5

1

1.5

2

2.5

3

y

Figure 21: Dynamic behavior of fractional financial chaotic model
with α � 0.95.
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should be designed. Consider the driving fractional chaotic
financial model provided by

D
α
c x1 � x3 + x2x1 − ax1,

D
α
c x2 � 1 − bx2 − x

2
1,

D
α
c x3 � − x1 − cx3.

(65)

Consider the response fractional chaotic financial model
given by

D
α
c y1 � y3 + y2y1 − ay1 + u1,

D
α
c y2 � 1 − by2 − y

2
1 + u2,

D
α
c y3 � − y1 − cy3 + u3,

(66)

where the control u � (u1, u2, u3). We define the synchro-
nization error described by the following forms:

e1 � y1 − x1,

e2 � y2 − x2,

e3 � y3 − x3.

(67)

In this section, we provide a condition under which the
control u exists such that limt⟶+∞ ‖e‖ � limt⟶+∞
‖y − x‖ � 0, where e � (e1, e2, e3), x � (x1, x2, x3), and
y � (y1, y2, y3). We use the Lyapunov direct method to
prove this statement. -e following equation represents the
fractional synchronization error system:

D
α
c e1 � e3 − ae1 + x1e1 + y2e1 + u1, (68)

D
α
c e1 � e3 − ae1 + x1e1 + y2e1 + u1, (69)

D
α
c e3 � − e1 − ce3 + u3. (70)

We suppose the control design u given by u � (− x1e1 −

y2e1, e1x1 + e1y1, 0) and we choose the Lyapunov function
defined by

V e1, e2, e3(  � e
2
1 + e

2
2 + e

2
3. (71)

-e main idea is to utilize the stability condition applied
to quadratic function given the relationship
DαeTe≤ eTDαe [35, 37]. -e Caputo derivative along the
trajectories of equations (68)–(70) is given by the following
calculations:

D
κ
t V≤ e1D

α,ρ
c e1 + e2D

α
c e2 + e3D

α
c e3

≤ e1 e3 − ae1  + e2 − be2  + e3 − e1 − ce3 

≤ − ae
2
1 − be

2
2 − ce

2
3

≤ − [a + b + c]‖e‖
2
.

(72)

-us, under the supposed control, the trivial equi-
librium of fractional synchronization error system is
globally asymptotically stable, which in turn implies
limt⟶+∞ ‖e‖ � limt⟶+∞ ‖y − x‖ � 0. Finally, the signal
feedback control u synchronizes the financial chaotic
system (10)–(12).
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Figure 22: Bifurcation diagram with the variation of the pa-
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8. Stability Analysis, Bifurcation Diagram, and
Lyapunov Exponent

In this section, we analyze the dynamic behaviors of the
fractional financial chaotic model, the stability analysis, the
bifurcation diagram, and the Lyapunov exponent, explicitly.
-e stability analysis of the equilibrium points studies the
asymptotic behavior of the solutions around the equilibrium
point. -e bifurcation concept will help us to quantify the
sensitivity of the fractional financial model when one of the
parameters of the model varies into a specific interval. At
last, the Lyapunov exponent characterizes the existence of
chaotic behavior. Note that when the Lyapunov exponent is
large and positive, then we detect the presence of high chaos.
Inmore simple terms, the Lyapunov exponent represents the
average exponential ratio of the convergence between ad-
jacent orbits of the nonlinear systems in the phase space.

In this section, we begin the investigations with the local
stability analysis in the context of the fractional-order de-
rivative.-e classical method used to study the local stability
with the Jacobian matrix is not the same as the method used
in fractional context. In fractional context, we use the
Matignon criterion [38]. -e equilibrium point x∗ for the
fractional differential equation Dα

t x � Ax is said to be locally
stable if only the following relationship is held [38]:

|arg(λ(A))|>
απ
2

. (73)

-e procedure in the local stability in the fractional
context is presented in [39]. -e method consists of cal-
culating the Jacobian matrix in the context of integer-order
derivative, calculating the characteristic polynomial with the
standard method, and calculating the eigenvalues with the
algebraic method, and we finish by testing all eigenvalues
satisfying Matignon criterion (equation (73)) including the
fractional order. First of all, the equilibrium points of the
fractional financial equations (10)–(12) are obtained after
solving the equations

0 � z + yx − ax,

0 � 1 − by − x
2
,

0 � − x − cz,

(74)

and we obtain the following equilibrium points after
calculations:

E0 � 0,
1
b
, 0 ,

E1 �

����������

− b + c − abc

c



,
ac + 1

c
, −

����������

− b + c − abc

c3



⎛⎝ ⎞⎠,

E2 � −

����������

− b + c − abc

c



,
ac + 1

c
,

����������

− b + c − abc

c3



⎛⎝ ⎞⎠.

(75)

For simplification, we directly take the values of the
parameters used in the fractional financial chaotic model in
Section 6. We continue by considering the following values

a � 0.9, b � 0.2, and c � 1.5; thus E0 � (0, 5, 0). -e Jacobian
matrix at the point E0 is given by

J �

4.1 0 1

0 − 0.2 0

− 1 0 − 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (76)

-e characteristic polynomial of the Jacobian matrix is
represented after calculation in the following form:

P(λ) � − λ3 + 2.4λ2 + 5.67λ + 1.03. (77)

-e eigenvalues of the Jacobian matrix are given by
λ1 � − 1.3, λ2 � − 0.2, and λ3 � 3.9. We remark that
|arg(λ1)| � π/> απ/2, |arg(λ2)| � π > απ/2, and |arg(λ3)| �

0< απ/2. -us, using the Matignon criterion in equation
(73), we conclude that the equilibrium point E0 is unstable.

We continue with the second equilibrium point
E1 � (0.8, 1.6, − 0.6). -e Jacobian matrix at the point E1 is
given by

J �

0.7 0.8 1

− 1.6 − 0.2 0

− 1 0 − 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (78)

-e characteristic polynomial of the Jacobian matrix is
represented after calculation in the following form:

P(λ) � − λ3 − λ2 − 1.39λ − 1.91. (79)

-e eigenvalues of the Jacobian matrix are given by
λ1 � − 1.1860, λ2 � 0.0929 − 1.2657i, and λ3 � 0.0929+

1.2657i. We remark that arg(λ1) � π/> απ/2, arg(λ2) �

274π/180> απ/2, and arg(λ3) � 86π/180> απ/2 when
α< 0.96. -us, using the Matignon criterion in equation
(73), we conclude that the equilibrium point E1 is locally
stable if the order satisfies α< 0.96. -e condition α< 0.96
justifies our choice related to α � 0.95. We finish by the
equilibrium point E2 � (− 0.8, 1.6, 0.6). -e Jacobian matrix
at the point E2 is given by

J �

0.7 − 0.8 1

1.6 − 0.2 0

− 1 0 − 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (80)

After checking, we remark that the rest of the calcula-
tions do not change. -us the characteristic polynomial of
the Jacobian matrix is given in the following form:

P(λ) � − λ3 − λ2 − 1.39λ − 1.91. (81)

-e eigenvalues of the Jacobian matrix are given by λ1 �

− 1.1860, λ2 � 0.0929 − 1.2657i, and λ3 � 0.0929 + 1.2657i.
We remark that |arg(λ1)| � π/> απ/2, |arg(λ2)| � 274π/
180> απ/2., and |arg(λ3)| � 86π/180> απ/2 when α< 0.96.
-us, using the Matignon criterion in equation (73), we
conclude that the equilibrium point E2 is locally stable if the
order satisfies α< 0.96. -e condition α< 0.96 justifies our
choice related to α � 0.95 also.

To confirm the investigation in Section 6, we discuss the
impact of the parameters using the bifurcation diagrams.
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In the first case, we suppose the saving amount a � 0.9, the
elasticity of demands c � 1.5, and all other conditions in
Section 6 are maintained. Still, we consider the per in-
vestment cost varies into the interval b ∈ [0.1, 0.3]. -e
bifurcation diagram due to the variation of the per invest-
ment cost can be observed in Figure 22.-at confirms as well
the explanations in Section 6.

We continue with the bifurcation diagram obtained with
the variation of the saving amount a. We fix the elasticity of
demands c � 1.5 and the per investment cost b � 0.2; we
consider the saving amount varies into the interval
a ∈ [0.1, 1]. -e bifurcation diagram due to the variation of
the saving amount can be observed in Figure 23. -at
confirms as well the explanations in Section 6.

We finish with the bifurcation diagram obtained with the
variation of the elasticity of demands. We fix the saving
amount a � 0.9 and the per investment cost c � 0.2; we
consider the elasticity of demands varies into the interval
c ∈ [1, 2]. -e bifurcation diagram due to the variation of the
elasticity of demands can be observed in Figure 24. -at
confirms as well the explanations in Section 6.

In conclusion, we note very complex bifurcation gen-
erated by the variation of the parameters of the fractional
financial chaotic system. In finance and economics, the
complex bifurcation means we are in the context of reces-
sions; in other words, we notice a significant decline in
economic activities, and we particularly notice the increase
in unemployment. -e recession represents an economic
situation during which the economy contracts. During this
phase, all economic indicators are slowing down.-is period
is generally accompanied by a fall in salary and a fall in
household purchasing power, thus causing a sharp drop in
household consumption. In general, the predictions are very
complicated to be made as can be observed with the diagram
bifurcation in Figure 24.

At last, we finish with the Lyapunov exponent, whose
role is to detect the existence of chaos. We give a brief
investigation because the investigations related to the Lya-
punov exponent for the fractional financial chaotic model
can be found in [40]. We remind that, for the fractional-
order α � 0.95 and with a � 0.9, b � 0.2, and c � 1.5, the
maximum Lyapunov exponent at t � 110 is given by
LEmax � 0.0420; the algorithm for getting the Lyapunov
exponent in the context of fractional-order derivative can be
found in [41]. Note that the numerical method used in [41]
should be replaced by our numerical schemes proposed in
this paper. We observe that the Lyapunov exponent given by
LEmax � 0.0420 is positive, which proves the existence of
chaos as described in Section 6. We conclude that our in-
vestigations in Section 6 are confirmed by the maximal value
of the Lyapunov exponent.-e existence of chaos at α � 0.95
can also justify our choice related to the value of the frac-
tional derivative.

9. Conclusion

A numerical method for the financial chaotic model has been
discussed in the context of the fractional calculus. -e impact
of the saving amount, the per investment cost, and the

elasticity of demands in the behaviors of the solution of the
fractional financial chaotic model has been analyzed as well.
-e economical interpretations have been proposed for more
understanding of the importance of these present investi-
gations. For more understanding of the chaotic behavior of
the chaotic financial model, the stability analysis of the
equilibrium points, the bifurcation theory to analyze the
impact of the parameters of the financial model carefully, and
the Lyapunov exponent to detect the existence of the chaos
have been discussed in this paper. For future work, it will be
very interesting to study what will happen when the quadratic
function x2 is replaced by quadric function x4 and what will
be the maximal value of the Lyapunov exponent when chaos
is detected. -is problem is stated in the literature, but many
questions are not solved. -is paper supports the applications
of fractional calculus in economics and finance. Future in-
vestigations can be developed in these directions.
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In this paper, a microwave frequency comb (MFC) is generated from a semiconductor laser subject to optical injection from a
commercial small form-factor pluggable (SFP) optical module which is modulated by an arbitrary periodic signal. A sinusoidal
signal or square wave signal is employed as the arbitrary periodic signal instead of the electric pulse signal adopted in the former
references. When the frequency of the modulated signal is 1 GHz, theMFC with a maximal bandwidth of 15GHz can be obtained.
In addition, taking a sinusoidal signal as an example, the influence of the injection optical power to the slave laser and the
modulation frequency of the optical module on the generation of the MFC is analyzed in detail. Finally, the results of MFC
generated with a square wave signal injection are presented..e experimental results of this paper provide an important reference
for the practical applications of MFC.

1. Introduction

With the external disturbances such as external optical
injection, optical feedback, or opto-electric feedback, a
semiconductor laser can produce some nonlinear dynamic
phenomena, including period one oscillation [1, 2], period-
doubling oscillation, quasiperiod oscillation, and chaos
[3–8]. In addition, a semiconductor laser can also generate
microwave frequency comb (MFC) under the external op-
tical injection. MFC is widely used in frequency measure-
ment, radar detection, frequency conversion, radio-over-
fiber (RoF) transmission system, and other fields due to the
advantages of multiple continuous microwave signals,
flexible and adjustable comb line spacing, wide frequency
range, and high comb spacing precision [2, 9–11]..erefore,
generation of stable and high-quality MFC has become a
research hotspot.

Some methods of generating MFC have been reported
up to now. .e MFC signal with a bandwidth of 3GHz was

generated by using the subharmonic frequency locked state
generated by the opto-electric feedback of semiconductor
laser [12]. But the comb spacing of the frequency comb was
not strictly equal. Moreover, the noise of noncomb com-
ponent was obvious. By injecting the regular optical pulse
generated by opto-electric feedback of semiconductor laser
into the other semiconductor lasers, the MFC signal was
generated with an amplitude of ±5 dB and bandwidth of
20GHz [13, 14]. However, the signal was unstable, and the
comb line spacing was small. By adopting the nonlinear
effect of STM tunnel junction, the generation of the MFC
signal with up to 200 harmonics was realized. .e central
frequency of the highest harmonic is 14.85GHz. Yet there
are some disadvantages such as difficult to tune the comb
spacing and large phase noise [15–17]. In addition, the
numerical simulations and experiments have been presented
for the generation of tunable MFC signal by semiconductor
laser subject to optical injection, in which the master laser is
modulated by a periodic electric pulse signal [18–20].
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In this paper, a tunable MFC signal is obtained by using
an external optical injection semiconductor laser. .e
master laser is a commercial SFP optical module modulated
by a periodic electronic signal not just a periodic electric
pulse signal used in [20]. .e modulation signal in
this experiment is the sinusoidal signal produced by a
RF signal generator or the square wave signal produced by a
bit-error-rate tester (BERT). As the master laser, in order to
reduce the cost and the complexity of the setup, we use a
commercial optical module which is cheap, simple, and easy
to be modulated.

2. Experimental Setup

.e experimental setup of the tunable MFC produced by a
semiconductor laser subject to the optical injection from a
SFP optical module modulated by a sinusoidal signal is
presented in Figure 1. .e master laser is a 2.5Gb/s small
form-factor pluggable (SFP, Finisar) optical module, yet the
slave laser is a distributed feedback (DFB) semiconductor
laser without a build-in optical isolator. .e optical power
and central wavelength of the slave laser are controlled by
the current source circuit and the temperature control
circuit, respectively. .e SFP module generates an optical
signal that changes with the modulation of a sinusoidal
signal from a RF signal generator (SG, IFR 2042, 5.4GHz).
After being amplified by erbium-doped fiber amplifier
(EDFA), the light enters the variable optical attenuator
(VOA) to adjust the injected optical power. A polarization
controller (PC) is adopted to adjust the polarization state.
.en, the light enters the slave laser through the optical
circulator (OC) to generate a new optical signal utilizing
nonlinear interaction. A 50 : 50 optical coupler is adopted to
divide light into two beams. One beam enters a photode-
tector (PD, Picometrix, PT-40D/AC) with a bandwidth of
40GHz to convert the optical signal into electrical signal.
.e output electrical signal is gathered by the electrical
spectrum analyzer (ESA, Rohde & Schwarz, FSEK20,
40GHz). .e other beam enters the optical spectrum ana-
lyzer (OSA, Anritsu, MS9710C) to analyze the optical
spectrum.

.e frequency range of the sinusoidal signal generated
from the signal generator is changed from 0.5GHz to
5.4GHz in this experiment. .e SFP is an optical module
that meets the dense wavelength division multiplexing
(DWDM) wavelength requirements. .e actual output
wavelength is 1549.76 nm. In order to adjust the injected
optical power for a large range, the EDFA is necessary. .e
output power of the SFP is small, but the power can be
amplified to 11.3 dBm by EDFA working under the auto-
matic power control (APC). .e VOA is employed to adjust
the optical power injecting into the slave laser with an initial
attenuation coefficient of 11 dB. .e bias voltage of the
photodetector with a transimpedance amplifier is +4V, yet
the voltage for the transimpedance amplifier is +3.3V. For
this experiment, the optimal MFC signal is obtained by
adjusting the frequency of the sinusoidal signal from the
signal generator, the PC, and the VOA.

3. Effect of the Injection Optical Power on MFC

.e initial frequency of the signal generator is 1GHz with an
amplitude of +0.7V. .e attenuation coefficient of the VOA
is between 11 dB and 25 dB with an attenuation step of 1 dB.
When the attenuator coefficient is 11 dB, the obtained MFC
is shown in Figure 2(a)..e comb line spacing of the MFC is
equal to the frequency of the modulation signal, which is
1GHz. .e bandwidth of MFC can be determined by the
electrical spectrum analyzer as follows. Firstly, the function
of electrical spectrum analyzer to find the peak value is used
to directly locate the component with the highest power for
the frequency comb. .e frequency of the component is
3GHz, and the power is −27.95 dBm, which is the third
comb line of the MFC. In this paper, the bandwidth for the
MFC is defined as 10 dB [20], that is, the maximum power
value minus 10 dBm. .en, the MFC component within this
range is the bandwidth. Accordingly, an isoline with a power
of −27.95 dBm is drawn to determine the upper bound.
Secondly, an isoline with the power of −37.95 dBm is drawn
to determine the lower bound. It can be seen from
Figure 2(a) that there are 15 comb line components between
the two power contour lines..erefore, the bandwidth of the
MFC is 15GHz. .e peak power difference for each comb
line is small. Hence, the MFC signal quality is good. Al-
though there is a frequency component greater than 15GHz,
the signal power is lower than −37.95 dBm, which is not
considered in the bandwidth.

.e MFC signal is shown in Figure 2(b) when the at-
tenuation coefficient of the VOA is set to 20 dB. .e fre-
quency of the modulation signal is 1GHz; hence, the
frequency of the generated MFC signal is an integral mul-
tiple of 1GHz, that is, from 1GHz and 2GHz to 11GHz.
Except these frequencies, noise appears. It can be seen that
there is a lot of noise at the bottom of some frequency comb
lines. .e frequency comb with the high frequency part is
almost submerged by noise..e signal quality is not as good,
as shown in Figure 2(a), but the MFC with a wide spectrum

SG

SFP VOA PC

EDFA

3
1

OC

2

SL

50:50
ESA

PD

OSA

Figure 1: Experimental setup. SFP: small form-factor pluggable;
EDFA: erbium-doped fiber amplifier; VOA: variable optical at-
tenuator; PC: polarization controller; OC: optical circulator; SL:
slave laser; PD: photodetector; ESA: electrical spectrum analyzer;
OSA: optical spectrum analyzer; SG: signal generator.

2 Complexity



can still be obtained. According to the above method of
bandwidth determination, it can be concluded that the
bandwidth of the MFC is 11GHz for this case.

For this experiment, we also measured the optical
spectrum of the optical signal generated from SL after optical
injection. Figure 2(c) is the optical spectrum when the at-
tenuation coefficient of the VOA is 11 dB. Curve A is the
optical spectra of the optical signal generated from SL after
optical injection, while curve B denotes the optical spectra of
the SFP module. It can be seen that the central wavelength of
the optical signal generated from SL after optical is equal to
that of the SFP module. .at is to say, when the central
wavelength of themaster laser and the slave laser is equal, the
MFC can be obtained. Figure 2(d) is the optical spectrum of
the VOA when the attenuation coefficient is 20 dB. It can be
seen that the optical spectrum hardly changes with the
increasing attenuation coefficient.

.e injection optical power from the SFP module de-
creases gradually by adjusting the attenuation of VOA. .e
bandwidth of the MFC changes with the attenuation coef-
ficient, as shown in Figure 3. When the attenuation coef-
ficient is from 11 dB to 13 dB or from 24 dB to 25 dB, the
bandwidth of the MFC does not change. When the atten-
uation coefficient is from 14 dB to 24 dB, the MFC band-
width presents a general decreasing trend with the
increasing attenuation coefficient. .erefore, the bandwidth
of the MFC generated in this experiment generally decreases
with the decrease in the output power of the SFPmodule, but
the overall fluctuation is not big.

4. Effect of Modulation Frequency on MFC

During this section, the attenuation coefficient of VOA is
maintained at 11dB. Figure 4(a) shows the generated MFC
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Figure 2: Electrical spectrum of the MFC when the modulation signal frequency is 1GHz and the attenuator coefficient of VOA is 11 dB (a)
and 20 dB (b). .e optical spectrum when the attenuator coefficient of VOA is 11 dB (c) and 20 dB (d) For (c) and (d), curve A denotes the
optical spectrum of the optical signal generated from SL with the injection from SFP module. Curve B denotes the optical spectrum of the
SFP module.
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when the modulation frequency from the signal generator is
0.5GHz. It can be seen that the comb line spacing of theMFC is
equal to the frequency of the modulation signal, i.e., 0.5GHz.
Compared with the result of 1GHz modulation frequency in
Figure 2(a), when the modulation frequency is 0.5GHz, the
power of the low-frequency base part increases, so the quality of
the obtained MFC decreases. .e bandwidth for the MFC
shown in Figure 4(a) is 7GHz. .e obtained MFC is shown in
Figure 4(b) when the output frequency of the signal generator
is 3.5GHz. .e comb line spacing is 3.5GHz, which equals to
the sinusoidal signal modulation frequency. However, the
frequency comb of the high frequency part disappears. As
shown in Figure 4(b), the MFC whose overall base is flat is
better than the result presented in Figure 4(a). .e bandwidth
for the MFC shown in Figure 4(b) is 14GHz.

.e relationship between the bandwidth of the MFC and
the modulation frequency is displayed in Figure 5. With the

increasing modulation frequency, the bandwidth of MFC is
generally increasing. When the modulation frequency is
between 1GHz and 2GHz, the bandwidth decreases slightly.
.e quality of the MFC is not very good. Generally speaking,
when the range of the modulation frequency is from 2.5GHz
to 5GHz, the bandwidth begins to increase. Moreover, not
only the noise is relatively small and the comb line is clean
but also the power distribution of each comb line is relatively
uniform.

5. MFC Generated with Square Wave
Signal Modulation

In order to illustrate that a MFC signal can be generated
from a semiconductor laser subject to optical injection from
a SFP module modulated by arbitrary periodic signal, a
square wave signal is employed as the modulated signal.
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Figure 3: Influence of the output optical power of the SFP optical module on the MFC. .e X-axis is represented by the attenuation
coefficient of the VOA.
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Figure 4: Generated MFC when the modulation frequency is 0.5GHz (a) and 3.5 GHz (b).
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Figure 5: Effect of modulation frequency on MFC.
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Figure 6: Results of the MFC generated by the square wave signal modulation. (a) and (c) are the 0.5GHz and 1GHz square wave signals,
respectively. (b) and (d) are the generated MFC with the modulation of 0.5GHz and 1GHz square wave signals, respectively.
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During this experiment, a bit-error-rate tester (BERT,
Anritsu, MP1632A, 3.2Gb/s) is utilized to generate a square
wave signal. By the way, a bit-error-rate tester is generally
arranged to generate the pseudorandom bit sequence. .e
specific setting is to utilize the pattern setting function in the
pattern editor menu of the BERT. .e data output from the
pulse pattern generator (PPG) of the BERT is the square
wave signal when the running mode is selected as pro-
grammable pattern (PRGM) and set the pattern type as
periodic 0 and 1..e time-domain waveform is displayed on
a real-time digital oscilloscope (OSC, Tektronix, TDS7404B,
4GHz, 20GS/s).

.e square wave signal generated by the BERT is
employed to modulate the SFP module. Figure 6(a) presents
the square wave signal with the output frequency of 0.5GHz.
Figure 6(b) displays the corresponding MFC signal gener-
ated by slave laser with the optical injection from SFP
module with the modulation of the square wave signal. For
this case, the bandwidth of MFC signal is 6 GHz. Comparing
the MFC obtained this time with that obtained from the
sinusoidal signal with the modulation frequency of 0.5GHz,
the bandwidth is 6GHz and 7GHz, respectively. Not only
the difference of the bandwidth is not big but also the main
characteristics of the base noise distribution, comb line, and
comb line power distribution of the MFC are similar.

When the frequency of the square wave signal is 1 GHz,
the results of the oscilloscope and the electronic spectra are
shown in Figures 6(c) and 6(d), respectively. .e comb line
spacing of the MFC signal increases from 0.5GHz to 1GHz
when the square wave signal is 1 GHz. .e number of the
comb lines decreases, and the power of comb lines com-
ponent within the bandwidth increases. Hence, the MFC
signal quality generally improves. When the frequency of
modulation signal is 1GHz, the bandwidth of the MFC
signal obtained with the square wave signal and the sinu-
soidal signal is 15GHz and 14GHz, respectively. .e results
of the two MFC signals on the electronic spectrum analyzer
are approximately the same. .is is a strong proof of the
argument put forward in this paper; that is, the MFC can be
generated from a semiconductor laser with optical injection
from a modulated SFP module by arbitrary periodic signal.

Other waveforms, such as triangle-wave signal or peri-
odic pulse signal, can also be adopted as the modulated
signal, which can be generated by arbitrary waveform
generator (AWG) with high bandwidth. At present, we have
no such high-bandwidth AWG in our laboratory. In future,
we will conduct some experiments to generate MFC with the
modulation signal produced by AWG.

6. Conclusions

In this paper, a sinusoidal signal or square wave signal is
employed as a periodic signal to modulate the SFPmodule in
order to realize the generation of the microwave frequency
comb signal from the semiconductor laser with the injection
from the SFP module. .e proposed setup can generate
stable microwave frequency comb signal in the range of
6GHz–16GHz. .e results of this paper provide a useful

reference for the practical application of the microwave
frequency comb signal.
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In this paper, we develop a new method to measure the nonlinear interactions between nonstationary time series based on the
detrended cross-correlation coefficient analysis. We describe how a nonlinear interaction may be obtained by eliminating the
influence of other variables on two simultaneous time series. By applying two artificially generated signals, we show that the new
method is working reliably for determining the cross-correlation behavior of two signals. We also illustrate the application of this
method in finance and aeroengine systems. .ese analyses suggest that the proposed measure, derived from the detrended cross-
correlation coefficient analysis, may be used to remove the influence of other variables on the cross-correlation between two
simultaneous time series.

1. Introduction

.ere are numerous real-world systems where the output
signals are nonstationary and exhibit complex self-corre-
lation or cross-correlation over a broad range of time scales.
.e output signals can be characterized by power-law
correlations. One method, which has proved to be quite
useful to detect the degree of interrelation between two
stationary variables, is Pearson’s correlation coefficient [1]:

r �
〈(X − 〈X〉) · (Y − 〈Y〉)〉

σX · σY

, (1)

where 〈X〉 is the arithmetic average of X and σX is its
standard deviation and likewise for Y. Proposition of
Pearson’s correlation coefficient (PCC) has achieved great
success in multivariate analysis, such as the principal
component analysis [2], random matrix theory [3], and
singular value decomposition [4].

Nevertheless, in real-world systems, nonlinear and
nonstationary characteristics are present. .erefore, PCC
may not be suitable to describe the interrelation between two
variables that are nonlinear and nonstationary. For dealing
with the drawbacks of PCC, the detrended cross-correlation

analysis (DCCA) method and the DCCA coefficient are
proposed by Stanley and Podobnik [5, 6]. .e advantage of
the DCCA method is that it allows the detection of cross-
correlations between noisy signals with embedded poly-
nomial trends, which can mask the true cross-correlations in
the fluctuations of signals. .e DCCA method is widely
applied to measure the cross-correlations in different fields,
such as social sciences [7], biology [8], climatology [9],
geophysics [10, 11], transportation [12, 13], seismic signals
[11, 14], economics [15–20], and aeroengine dynamics
[21–24].

Recently, multifractal analysis is one of the major in-
terests for researchers from interdisciplinary domains to
uncover the scaling properties and understand the hidden
information. Among these researchers, many of them ap-
plied the multifractal analysis to meteorology [25–27],
electroencephalography [28], and economics [29–31]. Later,
as some researchers thought of extending the research of
multifractal analysis to the detrended cross-correlations
between time series, the multifractal detrended cross-cor-
relation analysis (MFDXA) was proposed [32–34].

.e cross-correlation between two variables may be
influenced by other variables. Hence, we have to be alert to
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the possibilities of spurious correlation while investigating
the cross-correlation. .en, the methods of partial corre-
lation and partial correlation coefficient are therefore pro-
posed to measure the degree of association between two
random variables [35, 36]. .e linear effect may be removed
using the partial correlation coefficient (partial CC):

rXY,ξ �
〈 X′ − 〈X′〉(  · Y′ − 〈Y′〉( 〉

σX′ · σY′
�

rXY − rXξ · rYξ�����������������
1 − r2

Xξ  · 1 − r2
Yξ 

 ,

(2)

where X′ � X − LX(ξ) and LX(ξ) � c0 + c1ξ to minimize the
mean E(X − LX(ξ))2 and likewise for Y′. If n additional
variables are to be accounted for, say ξ1, ξ2, . . . , ξn, the nth-
order partial CC can be computed by [36]

rXY.12···n �
rXY.12···n− 1 − rXn.12···n− 1rYn.12···n− 1�������������������������
1 − r2Xn.12···n− 1(  1 − r2Yn.12···n− 1( 

 .
(3)

Lately, the detrended partial cross-correlation analysis
and multifractal detrended partial cross-correlation analysis
(MFDPXA) which can measure cross-correlations between
nonlinear time series influenced by common external forces
is proposed [37, 38].

In order to remove the spurious correlation and improve
the estimation performance for quantifying the intrinsic
interactions between two nonstationary time series, this
paper proposes the method of nth-order multifractal
detrended partial cross-correlation analysis by incorporating
the partial correlation coefficient with the multifractal
detrended cross-correlation analysis.

.e rest of the paper is organized as follows. In the next
section, we introduce the multifractal DCCA coefficient
method and propose the method of nth-order multifractal
detrended partial cross-correlation analysis. In Section 3, we
show the data results for the randomly generated dataset and
stock and engine dataset by the proposed methods. Finally,
we draw some conclusions in Section 4.

2. Methodologies

2.1. Multifractal Detrended Partial Cross-Correlation
Analysis. For the sake of clarity, we begin with a summary of
the multifractal DCCA coefficient algorithm. For two series
ri(t)  and rj(t)  with equal length N, where t � 1, 2, . . . ,

N, the computational procedure of the multifractal DCCA
coefficient is as follows:

Step 1: construct the profile of each series by elimi-
nating the mean value:

Ri(t) � 
t

k�1
ri(k) − 〈ri〉( ,

Rj(t) � 
t

k�1
rj(k) − 〈rj〉 ,

t � 1, 2, . . . , N,

(4)

where 〈ri〉 and 〈rj〉 are the average values of ri(t) 

and rj(t) , respectively.
Step 2: divide the profiles Ri(k)  and Rj(k)  into
Ns � int(N/s)) nonoverlapping units of equal length s.
Considering that N is usually not a multiple of the time
scale s, we repeat the same procedure by starting from
the opposite end of the sequence in order to take the
whole series into account. .us, we obtain 2Ns seg-
ments of equal length s. In this paper, we follow the
previous literature practice and set 10≤ s≤N/4.
Step 3: for each segment v(v � 1, 2, . . . , Ns,

Ns + 1, . . . , 2Ns), the local trends R
v

i (k)  and R
v

j(k) 

are estimated on the basis of a least-squares fit of the
sequences Ri(k)  and Rj(k) , respectively. .e cor-
responding detrended covariance for v � 1, 2, . . . , Ns is

f
2
DCCA(s, v) �

1
s



s

t�1
R

(v− 1)s+t
i (t) − R

v

i (t)  R
(v− 1)s+t
j (t) − R

v

j(t) ,

(5)

and for v � Ns + 1, Ns + 2, . . . , 2Ns is

f
2
DCCA(s, v) �

1
s



s

t�1
R

N− v− Ns( )s+t

i (t) − R
v

i (t) 

· R
N− v− Ns( )s+t

j (t) − R
v

j(t) ,

(6)

where R
v

i (k)  and R
v

j(k)  are the fitting polynomials
in the segment v.
Step 4: calculate the average of multifractal detrended
covariance fluctuation function F

q

DCCA(s, v) over all
segments:

F
q

DCCA(s, v) �
1

2Ns



2Ns

v�1
f
2
DCCA(s, v) 

q/2⎧⎨

⎩

⎫⎬

⎭

1/q

. (7)

Generally, q can take any real value, except zero. For
q � 0, the equation becomes

F0(s) � exp
1

2Ns



Ns

m�1
lnF(s, m)⎛⎝ ⎞⎠. (8)

For q � 2, F
q

DCCA(s, v) is equal to the detrended cross-
correlation fluctuation function F2

DCCA(s).
Step 5: estimate the multifractal DCCA coefficient:

ρq
ij(s) �

F
q

DCCA(s)

F
q

DFA ri(t){ }
(s)F

q

DFA rj(t) 
(s)

. (9)

2 Complexity



For q � 2, the standard DCCA coefficient ρij(s) is
retrieved.
Step 6: compute the multifractal detrended partial
cross-correlation coefficient between X and Y by
eliminating the influence of the controlling variable ξ1
on X and Y analogous to the generalization of the
correlation coefficient to partial correlation coefficient:

ρq
XY,1 �

ρq

XY − ρq

X1ρ
q

Y1��������������������

1 − ρq
X1( 

2
  1 − ρq

Y1( 
2

 

 , (10)

named the first-order multifractal detrended partial
cross-correlation coefficient (first-order MFDPCC
coefficient), where X, Y are random variables, ξ1 is the
controlling variable, and ρq

XY, ρq
X1, ρ

q
Y1 represent the

mean of MFDCCA coefficients for X and Y, X and ξ1,
and Y and ξ1, respectively.

For q � 2, the first-order detrended partial cross-cor-
relation coefficient (first-order DPCC coefficient) is
retrieved.

2.2. &e nth-Order Multifractal Detrended Partial Cross-
Correlation Analysis and n-Controlling-Variables Detrended
Partial Cross-CorrelationCoefficient. Considering the cross-
correlation between X and Y affected by more than one
variable in complex systems, we define the second-order
multifractal detrended partial cross-correlation coefficient
(second-order MFDPCC coefficient) by using the partial
correlation method [36]:

ρq
XY,12 �

ρq

XY,1 − ρq

X2,1ρ
q

Y2,1���������������������

1 − ρq
X1( 

2
  1 − ρq

Y2,1 
2

 

 ,
(11)

where X, Y are random variables, controlling variables ξ1, ξ2
are not related to each other, and ρXY.1, ρX2.1, and ρY2.1 are
first-order MFDPCC coefficients.

Generally, the nth-order multifractal detrended partial
cross-correlation coefficient (nth-order MFDPCC coeffi-
cient) is as follows:

ρq

XY,12···n �
ρq

XY,12···n− 1 − ρq
Xn,12···n− 1ρ

q
Yn,12···n− 1�������������������������������

1 − ρq
Xn,12···n− 1 

2
  1 − ρq

Yn,12···n− 1 
2

 

 ,

(12)

where ρq
XY.12···n− 1, ρ

q
Xn.12···n− 1, and ρq

Yn.12···n− 1 are (n − 1) th-
order MFDPCC coefficients and controlling variables
ξ1, ξ2, . . . , ξn are not related to each other. For q � 2, the nth-
order detrended partial cross-correlation coefficient (nth-
order DPCC coefficient) is retrieved.

In general, the nth-order partial cross-correlation is
necessary when these controlling variables ξ1, ξ2, . . . , ξn are
not related to each other. Nevertheless, in real-world sys-
tems, the variables ξ1, ξ2, . . . , ξn generated by large number
of interacting units are cross-correlated..erefore, we define
the n-controlling-variables multifractal detrended partial

cross-correlation coefficient (n-variables MFDPCC) by
equation (12) for related controlling variables ξ1, ξ2, . . . , ξn.
Note that when the controlling variables ξ1, ξ2, . . . , ξn are not
related to each other, the n-variables MFDPCC is equivalent
to the nth-order MFDPCC.

3. Data and Analysis

3.1. Two-Component ARFIMA Process. In order to test the
robustness of the proposed n-controlling-variables
MFDPCC coefficient method, power-law cross-correlated
time series ui  and vi  are generated by using the two-
component ARFIMA stochastic process in this section
[18, 39, 40]. In this model, the series is defined by

ui � WUi +(1 − W)Vi  + εi,

vi � WVi +(1 − W)Ui  + εi,

Ui � 
∞

j�1
aj ρ1( ui− j,

Vi � 
∞

j�1
aj ρ2( vi− j,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where aj(ρ) � Γ(j − ρ)/Γ(− ρ)Γ(i + j) (0< ρ< 0.5) is
weight, W is a free parameter to control the coupling
strength between ui  and vi  (0.5 ≤W ≤ 1), and εi and εi

are independent and identically distributed (i.i.d.)
Gaussian variables with 〈εi〉 � 〈εi〉 � 0 and 〈εi

2〉 � 〈εi
2〉 �

1 [18, 39]. For different values of W, the different coupling
strength between the variables ui  and vi  is 1 − W. In this
section, the two-component ARFIMA series ui  and vi 

with parameter ρ1 � ρ2 � 0.3 and W � 0.5, denoted by X

and Y, are employed to detect the interactions between two
time series. .en, the effect of white noise sequence ξ1 on
the cross-correlation of the two series X and Y is tested to
investigate the validity of the n-controlling-variables
MFDPCC coefficient analysis mentioned in this paper. For
this purpose, we study the difference between the mean of
the MFDCCA coefficient and the n-controlling-variables
MFDPCC coefficient for any parameter q by using the
influence degree function I(n, q). .e influence degree
function is defined as

I(n, q) � ρq
XY,12···n − ρq

XY


. (14)

We calculate the influence degree function I(n, q) of the
synthetical signals using the proposed first-order MFDPCC
coefficient and present the influence degree function I(1, q)

vs. parameter q in Figure 1. .e results of the influence
degree values of different q are just about nil, which indicates
that there is hardly any effect of white noise sequence on
cross-correlation of the two series X and Y.

3.2. Stock Market. To further exemplify the potential utility
of the n-controlling-variables MFDPCC coefficient method
for analyzing real-world data, we study daily closing prices of
fifteen stock markets including the São Paulo Index (IBOV),
the Dow Jones Index (DJI), the NASDAQ Index (IXIC), the
Standard & Poor 500 Composite Stock Price Index (SPX),
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the FTSE Global Equity Index Series (FISE), the French CAC
40 (FCHI), German DAX Index (GDAXI), Nikkei 255 Index
(N255), Korea Composite Index (KS11), Hang Seng Index
(HSI), Australian Standard & Poor’s 200 (AS51), Mumbai
Index (SENSEX), Russian Index (RTS), Shanghai Composite
Index (SSEC), and Shenzhen Composite Index (SZI).
Datasets are from January 04, 1993, to January 03, 2019.

Figure 2 shows themean ofDCCA coefficients for the stock
series. .e mean of DCCA coefficient between DJI and SPX is
0.97, which performs relevantly different from other DCCA
coefficients. It indicates the close cross-correlation between the
American stock markets. .e next largest DCCA coefficient
ρ � 0.92 is obtained by SSEC and SZI, which indicates the close
cross-correlation in Chinese mainland stock markets.

.e mean of DCCA coefficients between SZI and stock
markets in developed countries (GDAXI, N225, KS11, and
AS51) is less than 0.3. It shows that SZI has a weak rela-
tionship with stock markets in developed countries. .e
mean of DCCA coefficients between SZI and HSI is in an
intermediate state, which indicates the existence of cross-
correlation in Chinese stock markets.

Next, we analyze the effect of the other thirteen stock
markets on cross-correlation characteristics between SSEC
and SZI, by applying the influence degree of first-order
DPCC coefficient. For the effect on cross-correlation
characteristics between the SSEC and SZI, the largest in-
fluence degree I� 0.05 is obtained by HSI, which shows the
information exchange between the Chinese stock market, as
seen in Figure 3. .e next largest I� 0.04 is acquired by
SENSEX, which indicates the association between the stock
markets in developing countries (Indian and Chinese stock
markets). .e I values of other stock time series are less than
0.1, which indicates little information exchange between the
Chinese mainland stock market and other stock markets.
.e influence degree values of 13 stock markets for first-
order MFDPCC coefficient with q � 1, 2, . . . , 10 are also
demonstrated in the upper left of Figure 3.

During the analysis, we observe the effect of HSI on
cross-correlation characteristics between SSEC and SZI from
influence degree function I(1, q) that decreases as the scale q
increases. And this infers the change of multifractal cross-
correlation.

In order to capture the change of multifractal cross-
correlation between two nonstationary time series
influenced by common external forces, multifractal
detrended partial cross-correlation analysis (MFDPXA) is
employed [38]. We also investigate the multifractal be-
havior between the bivariate time series through
MFDPXA method for comparison. .e result shows that
both the corresponding spectra fxy(α) and fxy,z(α) are
wide, but the latter is narrower than the former, which is
presented in Figure 4.

Here, we perform cross-correlation analysis using
MFDPXA method and give the multifractal spectrum for
SZI and SSEC time series in which HSI shows significant
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Figure 2: .e mean of DCCA coefficients between the stock series.

Parameter

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

In
flu

en
ce

 d
eg

re
e

0

0.02

0.04

0.06

0.08

0.1

In
flu

en
ce

 d
eg

re
e

q = 1
q = 2
q = 3
q = 4
q = 5

q = 6
q = 7
q = 8
q = 9
q = 10

IB
O

V

D
JI

IX
IC

SP
X

FI
SE

FC
H

I

G
D

A
XI

N
22

5

KS
11 H
SI

A
S5

1

SE
N

SE
X

RT
S

Parameter

IB
O

V
D

JI
IX

IC
SP

X
FI

SE
FC

H
I

G
D

A
XI

N
22

5
KS

11 H
SI

A
S5

1
SE

N
SE

X
RT

S

Figure 3: .e influence degree of the first-order detrended partial
cross-correlation in stock market and the influence degree of the
first-order multifractal detrended partial cross-correlation coeffi-
cient in stock market (inset).
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influence on multifractal spectrum, as seen in Figure 4. We
compare the obtained influence degrees with the afore-
mentioned method and infer that the HSI has significant
influence on SZI and SSEC time series. .ese similar results
imply that the partial cross-correlation method is quite
efficient in eliminating external common influence factor.

Applied to scalar variables, the first-order MFDPCC will
detect the intrinsic interactions by removing the correlations
of controlling variables. When variables are time series, this
application is equivalent to removal of zero delay correla-
tions, whereas delayed correlations are not considered
[36, 37, 40, 41]..erefore, we investigate the delayed effect of
variable ξ1 on the correlation between variables X and Y.
Because the two variables X and Y in question may
themselves be correlated at nonzero delays, we write the
multifractal detrended partial cross-correlation between X

and Y, given ξ1, as a function of two time delays:

ρq

XY τ1( ),1 τ2( )
�

ρq

XY τ1( )
− ρq

X1 τ2( )
ρq

Y τ1( )1 τ2( )
��������������������������������

1 − ρq

X1 τ2( )
 

2
  1 − ρq

Y τ1( )1 τ2( )
 

2
 

 ,

(15)

where τ1 is the delay between variables X and Y and τ2 is the
delay between variables X and ξ1.

In this section, we estimate the delayed effect of HSI on
the correlation between SSEC and SZI by using the time
delay influence degree I(q, τ1, τ2) � |ρq

XY(τ1),1(τ2) − ρq
XY|.

Figure 5 shows the time delay influence degree for q � 2..e
effect of τ1 on influence degree is weaker than that of τ2 on
influence degree.

We now analyze the 2-controlling-variables effect of the
other thirteen stock markets on cross-correlation charac-
teristics between SSEC and SZI, by giving a set of two
controlling variables. In Figure 6, we illustrate the com-
parative relation of the influence degree of 2-controlling-
variables DPCC coefficients for 13 × 13 elements by the
matrix diagram.

We note that the structure of the matrix is symmetrical
and that element at the intersection of row i and column j
represents the influence of controlling variables ξi, ξj on the
cross-correlation of SSEC and SZI, where the 2-controlling-
variables ξi, ξj(i, j � 1, 2, . . . , 13) are the stock time series
from IBOV, DJI, IXIC, SPX, FISE, FCHI, GDAXI, N255,
KS11, HSI, AS51, SENSEX, and RTS. .erefore, we analyze
the top left corner of the matrix. It can be seen that the
largest element is the intersection of row 2 and column 10,
i.e., SENSEX and HSI, which indicates the association be-
tween the Indian and Chinese stock markets. .is is con-
sistent with our result of first-order MFDPCC coefficient
method.

Concerning the influence degree I(2, q) of the 2-con-
trolling-variables MFDPCC, we demonstrate 5 cases (HSI
and SENSEX, HSI and RTS, SENSEX and KS11, FCHI and
N255, and IXIC and FISE) for q � 1, 2, . . . , 10 in Figure 7.
.e largest influence degree is the case SENSEX and HSI,
which is consistent with the 2-controlling-variables DPCC
method.

3.3. Aeroengine Time Series. Previous research studies show
that the aeroengine gas path parameters such as low-
pressure rotor speed (N1), high-pressure rotor speed (N2),
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obtained through MFDPXA, where x, y, and z denote the SSEC, SZI, and HSI.
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and fuel flow (WF) play an important role in understanding
the aeroengine system [21, 42]. .e mean of DCCA co-
efficients for the aeroengine time series is shown in Fig-
ure 8, where the average DCCA coefficient between N1 and
N2 is 0.85, which shows the close cross-correlation between
N1 and N2.

We here investigate the partial correlation between N1
and N2 given a set of eight controlling variables, including
WF, exhaust gas temperature (EGT), N2 tracked vibration
channel B (N2TB), inlet air pressure (P2), outlet temperature
of high-pressure compressor (T3), outlet temperature of
low-pressure compressor (T2.5), and other temperatures
(T2 and T2.95).

In Figure 9, we plot the influence degree of first-order
DPCC coefficient, investigating the effect of the other eight
controlling variables on cross-correlation characteristics
between N1 and N2. .e largest influence degree I� 0.51,
obtained by T3, shows the information exchange between
the outlet temperature of high-pressure compressor and the
rotor speed system. .e next largest I� 0.22 is acquired by

WF, which indicates the association between the fuel flow
system and rotor speed system.

.e result of the influence degree I(1, q) for eight aer-
oengine parameters applying by first-order MFDPCC co-
efficient with q � 1, 2, . . . , 10 is also demonstrated in the
upper left of Figure 9. .e effect of T3 on cross-correlation
characteristics, observed from influence degree function
I(1, q), decreases as the scale q increases. It indicates that the
multifractal cross-correlation differs across values of q.

Further, we apply the MFDPXA method on afore-
mentioned N1 and N2 time series considering the T3 as
common influencing factor. It is observed from Figure 10
that the corresponding spectra fxy(α) and fxy,z(α) are wide
which shows the strength of multifractal behavior in ana-
lyzed time series. We observe that the width of singularity
spectrum fxy,z(α) is narrower, and this implies the strength
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of multifractal nature is weak in analyzed bivariate time
series.

Here, we estimate the delayed effect of T3 on the cor-
relation between N1 and N2 by using the time delay in-
fluence degree I(q, τ1, τ2). Figure 11 shows the time delay
influence degree for q � 2. It is obvious that the time delay
influence degree gradually increases and then declines as a
single-peak curve when τ2 remains constant. As τ2 increases,

the peak value of time delay influence degree shifts
rightward.

.e next observation concerns the influence degree of
2-controlling-variables DPCC coefficient in the aeroengine
system. We now analyze the influence of two controlling
parameters on the cross-correlation between N1 and N2.
In Figure 12, we illustrate the comparative relation of
the influence degree of 2-controlling-variables DPCC
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coefficient for aeroengine system. It can be seen that the
larger elements in the symmetrical matrix are located at
row 3 or column 6, which denote T3 has a greater impact on
the correlation between N1 and N2.

Concerning the influence degree I(2, q) of the 2-con-
trolling-variables MFDPCC, we demonstrate 7 cases (T3 and
WF, T3 and N2TB, T3 and T2, T3 and T2.5, T2.95 and
N2TB, T2.95 and P2, and T2.95 and T2) for q � 1, 2, . . . , 10
in Figure 13. Larger influence degrees exist in the cases with
the presence of T3 (T3 and WF, T3 and N2TB, T3 and T2,
and T3 and T2.5), which is consistent with the 2-controlling-
variables DPCC method, as seen in Figure 12.

For the aeroengine, the parameters N1 and N2 are
chosen to indicate the engine thrust which depends on the
throttle lever angle. Hence, the cross-correlation between
them is strong..e temperature and pressure parameters are
linked with many factors, including the compressor power,
combustion efficiency, throttle lever angle, etc. .erefore,
the dynamic interaction of these three groups makes the
aeroengine function. .ese results estimate the influence of
temperature and pressure parameters on the cross-corre-
lation between N1 and N2.

4. Conclusion

In this paper, we propose the nth-order multifractal
detrended partial cross-correlation analysis method and the
n-controlling-variables multifractal detrended partial cross-
correlation analysis method for understanding the inter-
actions between two nonstationary time series. For com-
paring these new methods with classical measures, we
introduce the influence degree function. We then apply the
n-controlling-variables multifractal detrended partial cross-
correlation analysis of stock markets and aeroengine per-
formance parameters and measure the influence degree
function of the partial cross-correlation in a dynamic system.

To understand the numerous real-world systems where
the output signals exhibit complex cross-correlation, both
cross-correlation and partial correlation are subjects of in-
vestigation. .e information of n-variables MFDPCC helps
people to research information exchange in complex sys-
tems. .is paper gives two examples, stock markets and
aeroengine systems. For stock time series, our results in-
dicate that, concerning closing index values, there is little
information exchange between the Chinese stock markets
and the American-European stock markets, whereas the
SSEC, SZI, and HSI, by first-order MFDPCC method and 2-
controlling-variables MFDPCC, show frequent and abun-
dant information exchange in Chinese stock markets. For
aeroengine performance parameters, our results show that
there is some information exchange between the engine
rotor system and the aeroengine parameters, such as the
outlet temperature of the high-pressure compressor and the
fuel flow.

We believe that the MFDPCC method can be used to
detect the intrinsic interactions among multiple dynamical
systems, and therefore it can be widely applied to many
research fields such as the aeroengine health monitoring
systems and the investment portfolio where the covariance is
employed to explore the interaction of assets income.

.e multifractal detrended partial cross-correlation
analysis is used to delete the possible indirect correlation, but
it may also delete valuable information. .is problem
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required further investigation, both experimental and the-
oretical. Hence, the results of this paper should be con-
sidered as preliminary results on the multifractal detrended
partial cross-correlation analysis. .erefore, we hope that
this study will be extended to analyze the filtered
information.

Data Availability

.e stock market data used to support the findings of this
study are available from the corresponding author upon
request. .e aeroengine data used to support the findings of
this study have not been made available because of com-
mercial secrets.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.e financial support from the funds of the MOE (Ministry
of Education in China) Project of Humanities and Social
Sciences under grant no. 19YJC910001 and the Fundamental
Research Funds for the Central Universities under grant no.
3122014K013 is gratefully acknowledged.

References

[1] K. Pearson, “Note on regression and inheritance in the case of
two parents,” Proceedings of the Royal Society, vol. 58,
pp. 240–242, 1895.

[2] K. Pearson, “On lines and planes of closest fit to systems of
points in space,” &e London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, vol. 2, no. 11,
pp. 559–572, 1901.

[3] E. P. Wigner, “Characteristic vectors of bordered matrices
with infinite dimensions,”&e Annals of Mathematics, vol. 62,
no. 3, pp. 548–564, 1955.

[4] G. Golub and W. Kahan, “Calculating the singular values and
pseudo-inverse of a matrix,” Journal of the Society for In-
dustrial and AppliedMathematics Series B Numerical Analysis,
vol. 2, no. 2, pp. 205–224, 1965.

[5] B. Podobnik and H. E. Stanley, “Detrended cross-correlation
analysis: a new method for analyzing two nonstationary time
series,” Physical Review Letters, vol. 100, Article ID 084102,
2008.

[6] G. F. Zebende, “DCCA cross-correlation coefficient: quanti-
fying level of cross-correlation,” Physica A: Statistical Me-
chanics and Its Applications, vol. 390, no. 4, pp. 614–618, 2011.

[7] A. Machado Filho, M. F. da Silva, and G. F. Zebende, “Au-
tocorrelation and cross-correlation in time series of homicide
and attempted homicide,” Physica A: Statistical Mechanics
and Its Applications, vol. 400, pp. 12–19, 2014.

[8] C. Xue, P. Shang, and W. Jing, “Multifractal detrended cross-
correlation analysis of BVP model time series,” Nonlinear
Dynamics, vol. 69, no. 1-2, pp. 263–273, 2012.

[9] R. T. Vassoler and G. F. Zebende, “DCCA cross-correlation
coefficient apply in time series of air temperature and air
relative humidity,” Physica A: Statistical Mechanics and Its
Applications, vol. 391, no. 7, pp. 2438–2443, 2012.

[10] S. Shadkhoo and G. R. Jafari, “Multifractal detrended cross-
correlation analysis of temporal and spatial seismic data,”&e
European Physical Journal B, vol. 72, no. 4, pp. 679–683, 2009.

[11] E. B. S. Marinho, A. M. Y. R. Sousa, and R. F. S. Andrade,
“Using detrended cross-correlation analysis in geophysical
data,” Physica A: Statistical Mechanics and Its Applications,
vol. 392, no. 9, pp. 2195–2201, 2013.

[12] K. Dong, P. Shang, and A. Lin, “Chaotic SVD method for
minimizing the effect of seasonal trends in detrended cross-
correlation analysis,” DCDIS Series B: Applications & Algo-
rithms, vol. 18, pp. 261–277, 2011.

[13] X. Zhao, P. Shang, A. Lin, and G. Chen, “Multifractal Fourier
detrended cross-correlation analysis of traffic signals,” Physica
A: Statistical Mechanics and Its Applications, vol. 390, no. 21-
22, pp. 3670–3678, 2011.

[14] R. A. Ribeiro, M. V. M. Mata, L. S. Lucena, U. L. Fulco, and
G. Corso, “Spatial analysis of oil reservoirs using detrended
fluctuation analysis of geophysical data,” Nonlinear Processes
in Geophysics, vol. 21, no. 5, pp. 1043–1049, 2014.

[15] Q. Fan and D. Li, “Multifractal cross-correlation analysis in
electricity spot market,” Physica A: Statistical Mechanics and
Its Applications, vol. 429, pp. 17–27, 2015.

[16] X. Zhao, P. Shang, and W. Shi, “Multifractal cross-correlation
spectra analysis on Chinese stock markets,” Physica A: Statistical
Mechanics and Its Applications, vol. 402, pp. 84–92, 2014.

[17] B. Podobnik, D. Horvatic, A. M. Petersen, and H. E. Stanley,
“Cross-correlations between volume change and price
change,” Proceedings of the National Academy of Sciences,
vol. 106, no. 52, pp. 22079–22084, 2009.

[18] B. Podobnik, Z. Q. Jiang, W. X. Zhou, and H. E. Stanley,
“Statistical tests for power-law cross-correlated processes,”
Physical Review E, vol. 84, p. 66118, 2011.

[19] I. Gvozdanovic, B. Podobnik, D. Wang, and H. Eugene
Stanley, “1/f behavior in cross-correlations between absolute
returns in a US market,” Physica A, vol. 391, pp. 2860–2866,
2012.

[20] X. Y. Qian, Y. M. Liu, Z. Q. Jiang, B. Podobnik, W. X. Zhou,
and H. E. Stanley, “Detrended partial cross-correlation
analysis of two time series influenced by common external
forces,” Physical Review E, vol. 91, Article ID 062816, 2015.

[21] K. Dong, Y. Gao, and C. Zhu, “Aero engine data correlation by
means of detrended fluctuation analysis,” International Re-
view of Aerospace Engineering, vol. 5, pp. 251–255, 2012.

[22] K. Dong, J. Fan, and Y. Gao, “Cross-correlations and struc-
tures of aero-engine gas path system based on dcca coefficient
and rooted tree,” Fluctuation and Noise Letters, vol. 14,
p. 1550014, 2015.

[23] K. Dong, Y. Gao, and L. Jing, “Correlation tests of the engine
performance parameter by using the detrended cross-corre-
lation coefficient,” Journal of the Korean Physical Society,
vol. 66, pp. 539–543, 2015.

[24] K. Dong, Y. Gao, and N. Wang, “EMD method for mini-
mizing the effect of seasonal trends in detrended cross-cor-
relation analysis,” Mathematical Problems in Engineering,
vol. 2013, Article ID 493893, 7 pages, 2013.

[25] P. Baranowski, J. Krzyszczak, C. Slawinski et al., “Multifractal
analysis of meteorological time series to assess climate im-
pacts,” Climate Research, vol. 65, pp. 39–52, 2015.

[26] N. Kalamaras, K. Philippopoulos, D. Deligiorgi, C. G. Tzanis,
and G. Karvounis, “Multifractal scaling properties of daily air
temperature time series,” Chaos, Solitons and Fractals, vol. 98,
pp. 38–43, 2017.

Complexity 9



[27] J. Ei, J. Zhang, X. Liu, and F. Li, “Multi-fractal scaling
comparison of the air temperature and the surface temper-
ature over China,” Physica A, vol. 462, pp. 783–792, 2016.

[28] S. Debdeep, R. Rinku, and M. Manjunatha, “Epilepsy and
seizure characterisation by multifractal analysis of EEG
subbands,” Biomedical Signal Processing, vol. 41, pp. 264–270,
2018.

[29] S. Bayraci, “Testing for multi-fractality and efficiency in se-
lected sovereign bond markets: a multi-fractal detrended
moving average (MF-DMA) analysis,” International Journal
of Computational Economics and Econometrics, vol. 8,
pp. 95–120, 2018.

[30] Z. Jiang, W. Xie, W. Zhou, and D. Sornette, “Multifractal
analysis of financial markets: a review,” Reports on Progress in
Physics, vol. 82, no. 12, p. 125901, 2019.

[31] C. Yao, C. Liu, and W. Ju, “Multifractal analysis of the WTI
crude oil market, US stock market and EPU,” Physica A,
vol. 550, p. 124096, 2020.

[32] W. Zhou, “Multifractal detrended cross-correlation analysis
for two nonstationary signals,” Physical Review E, vol. 77,
Article ID 066211, 2008.

[33] C. Tzanis, I. Koutsogiannis, K. Philippopoulos, and
N. Kalamaras, “Multifractal detrended cross-correlation
analysis of global methane and temperature,” Remote Sensing,
vol. 12, p. 557, 2020.

[34] C. Zhang, Z. Ni, and L. Ni, “Multifractal detrended cross-
correlation analysis between PM2.5 and meteorological fac-
tors,” Physica A, vol. 438, pp. 114–123, 2015.

[35] K. Pearson, “On some novel properties of partial and multiple
correlation coefficients in a universe of manifold character-
istics,” Biometrika, vol. 11, pp. 231–1238, 1916.

[36] S. Eran, D. Rotem, and A. Moshe, “Partial cross-correlation
analysis resolves ambiguity in the encoding of multiple
movement features,” Journal of Neurophysiology, vol. 95,
pp. 1966–1975, 2006.

[37] N. Zhang, A. Lin, and P. Yang, “Detrended moving average
partial cross-correlation analysis on financial time series,”
Physica A, vol. 542, p. 122960, 2020.

[38] H. Sri Sai, M. Pal, and P. Manimaran, “Multifractal detrended
partial cross-correlation analysis on Asian markets,” Physica
A, vol. 531, Article ID 121778, 2019.

[39] B. Podobnik, D. Horvatic, A. L. Ng, H. E. Stanley, and
P. C. Ivanov, “Modeling long-range cross-correlations in two-
component ARFIMA and FIARCH processes,” Physica A,
vol. 387, pp. 3954–3959, 2008.

[40] K. Dong, L. Long, H. Zhang, and X. Su, “.e Lempel-Ziv
measure based pedigree map to detect and evaluate corre-
lation between aero-engine gas path system variables,”
Physica A, vol. 525, pp. 1080–1087, 2019.

[41] Y. Song, C. Kube, J. Zhang, and X. Li, “Higher-order spatial
correlation coefficients of ultrasonic backscattering signals
using partial cross-correlation analysis,” &e Journal of the
Acoustical Society of America, vol. 147, pp. 757–768, 2020.

[42] K. Dong, H. Zhang, and Y. Gao, “Dynamical mechanism in
aero-engine gas path system using minimum spanning tree
and detrended cross-correlation analysis,” Physica A, vol. 465,
pp. 363–369, 2017.

10 Complexity



Research Article
Stabilization of a Class of Complex Chaotic Systems by the
Dynamic Feedback Control

Zhi Liu1 and Rongwei Guo 2

1School of InformationEngineering,KeyLaboratory ofTCMDataCloudService inUniversities of Shandong (ShandongManagementUniversity),
Shandong Management University, Jinan 250357, China
2School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Correspondence should be addressed to Rongwei Guo; rongwei_guo@163.com

Received 21 April 2020; Accepted 12 May 2020; Published 30 May 2020

Guest Editor: Chun-Lai Li

Copyright © 2020 Zhi Liu and Rongwei Guo. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e stabilization problem of the complex chaotic system is investigated in this paper. First, a systematic method is proposed, by
which a given complex chaotic system can be transformed into its equivalent real chaotic system. )en, both simple and physical
controller is designed for the corresponding real chaotic system by the dynamic feedback control method, thereby the controller
for the original complex chaotic system is obtained. Especially, for some complex system, the controller is obtained by the linear
feedback control method. Finally, two illustrative examples with numerical simulations are used to verify the validity and ef-
fectiveness of the theoretical results.

1. Introduction

It is well known that the first chaotic system was proposed
by Lorenz in 1963. From then on, many works have been
done about both theoretical results and applications, see
Refs. [1–15] and the references therein. Complex chaotic
system whose state variables belong to complex space is
another important type of chaotic dynamical system, which
has been widely investigated in both theorem and appli-
cations and has become a hot topic in recent years, for
details see Refs. [16–24]. Especially, the encryption effect is
better due to the fact that the complex chaotic system is
composed of real and imaginary numbers. Since the dy-
namic behavior of the complex system is more complicated
than that of the real chaotic system, the control problems of
such system is very difficult. Many researchers usually
adopted this strategy; they firstly transfer the complex
chaotic system into its corresponding real chaotic system
by separating the real parts and imaginary parts of the
complex state variables and then they investigate the
control method of the real chaotic system. Ultimately, the
control problems of such complex system were realized.

However, on one hand, there is lack of a systematic method
in the first step, i.e., for a specific complex chaotic system, a
specific method is applied to transform it into its equivalent
real chaotic system. How to find a systematic method by
which the complex chaotic system can be transformed into
its equivalent real chaotic system is not only important in
theory but also significant in applications; thus, it stimu-
lates our work in this paper.

On the other hand, most of the controllers designed in
the aforementioned existing results are complicated;
thereby, they are hard to be performed in real applications.
As a matter of fact, how to design a both simple and physical
controller to realize the control problems of the complex
chaotic systems is also important both in theory and ap-
plications. Among the existing methods, the dynamic
feedback control method and the linear feedback control
method are widely applied, and thus these two methods are
adopted by this study.

Motivated by the above conclusions, the stabilization
problem of the complex chaotic system is studied by the
dynamic feedback control method. )e main contributions
of this paper are given as follows:

Hindawi
Complexity
Volume 2020, Article ID 4938149, 10 pages
https://doi.org/10.1155/2020/4938149

mailto:rongwei_guo@163.com
https://orcid.org/0000-0002-2393-0767
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4938149


(1) A systematic method is proposed, which can be used
to transform a given complex chaotic system into its
equivalent real chaotic system

(2) Both simple and physical controller is designed for
the original complex chaotic system is obtained by
the dynamic feedback control method and the linear
feedback control method, respectively, and numer-
ical simulations are performed to verify the above
theoretical results

Before ending this section, we present some notations
used in this paper. Rn is the n dimensional Euclidean space,
Cn is the n dimensional complex space, In denotes the n × n

identity matrix,Mm×n denotes the set of m × n real matrices,
⊗ is the Kronecker product, and ∝ is the semitensor
product (STP), i.e., let Mm×n ∈Mm×n, Np×q ∈Np×q, and t �

lcm n, p  be the least common multiple of n and p. )e STP
of M and N is defined as

M∝N � M⊗ It/n(  N⊗ It/p  ∈Mmt/n×qt/p, (1)

where

M⊗N �

M11N M12N · · · M1nN

⋮ ⋮ ⋮ ⋮

Mm1N Mm2N · · · MmnN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈Mmp×np.

(2)

Re(·) and Im(·) represent the real part and the imaginary
part of (·), respectively, and i is the imaginary unit, i.e.,
i2 � − 1.

2. Preliminary

Consider the following controlled chaotic system:
_w � G(w) + bv, (3)

where w ∈ Rn is the state, G(w) ∈ Rn is continuous function
with G(0) � 0, b ∈ Rn×r is a constant matrix, and v ∈ Rr is
the controller to be designed.

Lemma 1 (see [18]). Consider system (3). If (G(w), b) can be
stabilized, then the designed controller v is of the following
form:

v � K(t)w, (4)

where K � k(t)bT, and the feedback gain k(t) is updated by
the following equation:

_k(t) � − ‖w‖
2
. (5)

3. Problem Formulation

Consider the following controlled complex chaotic system:
_p � f(p) + bu, (6)

where

p �
z

x

⎛⎝ ⎞⎠,

z �

z1

z2

⋮

zm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

x �

xm+1

xm+2

⋮

xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

z ∈ Cm and x ∈ Rn− m are the state, m≥ 1,

f(p) � f(x, z, z) �
M(x)z + H(i)x

N(z, z, x)
 , (8)

where z is the conjugate of z, M(x) ∈ Rm×m,
H(i) ∈ Cm×(n− m) is a complex constant matrix, and
N(x, z, z) ∈ Rn− m, b ∈ Rn×r, u ∈ Cr is the designed con-
troller, i.e.,

H(i) �

h1(i)

h2(i)

⋮

hm(i)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b �
b1 0

0 b2
 ,

(9)

where hj(i) ∈ Cn− m, j � 1, . . . , m, b1 ∈ Rm×s,
b2 ∈ R(n− m)×(r− s), 1≤ s≤ r,

u �
uz

ux

 ,

uz �

u1

u2

⋮

uk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ux �

uk+1

uk+2

⋮

ur

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(10)

that is, uz ∈ Ck, ux ∈ Rr− k, and 1≤ k< r.

Remark 1. )e complex chaotic system of equation (6) is
very common, which covers a lot of complex chaotic sys-
tems, such as complex Lorenz system and complex hyper-
chaotic Lorenz system.

2 Complexity



)e goal of this paper is to investigate the stabilization of
system (6), i.e., how to design a controller u to guarantee

lim
t⟶∞

p(t) � 0. (11)

4. Main Results

4.1. A Systematic Method which is Used to Transform a
Complex System into its Equivalent Real System. In this
section, a systematic method proposed, by which a complex
system can be transformed into its equivalent real system.

Theorem 1. Consider the complex chaotic system (6). Its
equivalent real system is described as the following form:

_y � F(y) + BU, (12)

where y ∈ Rm+n is the state, F(y) ∈ Rm+n is continuous
function with F(0) � 0, B ∈ R(m+n)×(k+r) is a constant matrix,
and U ∈ Rk+r is the controller to be designed.

Proof. Let zj � y2j− 1 + y2j × i, j � 1, . . . , m, and
y2m+l � xm+l, 1≤ l≤ n − m; then, the equivalent real system
(12) is obtained, i.e.,

y �
yz

yx

 ,

yz �

y1

y2

⋮

y2m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

yx �

y2m+1

y2m+2

⋮

ym+n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F(y) �

F1(y)

F2(y)

⋮

Fm+n(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F1(y)

F2(y)

⋮

F2m(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� M
∗
(x) × yz + H

∗
× yx,

M
∗
(x) � M(x)⊗ I2,

H
∗

�

Re h1(i)( 

Im h1(i)( 

⋮
Re hm(i)( 

Im hm(i)( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �
B1 0
0 b2

 ,

B1 � b1 ⊗ I2,

U �
Uz

Ux

 ,

Uz �

Re u1( 

Im u1( 

⋮
Re uk( 

Im uk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U2 � ux.

(13)

□

Remark 2. Since the complex chaotic system (6) is equiv-
alent to the corresponding real system (12). )us, the sta-
bilization problem of system (12) is investigated and the
controller U is designed. Moreover, the controller u of
system (6) is obtained by

u � 1 i( ∝U �

U1 + U2 × i

U3 + U4 × i

⋮

U2r− 1 + U2r × i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

Remark 3. For a given general controlled complex chaotic
system of the following form:

_z � f(z) + bu, (15)

where z ∈ Cn is the state, f(z) ∈ Cn is continuous function
with f(0) � 0, and b ∈ Rn×r and u ∈ Cr are the designed
controller, r≥ 1.

By )eorem 1, its equivalent real system is obtained as
follows:

_y � F(y) + BU, (16)

where y ∈ R2n is the state, F(y) ∈ R2n is continuous
function with F(0) � 0, B ∈ R2n×2r is a constant matrix, and
U ∈ R2r is the controller to be designed, i.e.,
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y �

Re z1( 

Im z1( 

⋮

Re zn( 

Im zn( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F(y) �

Re f1(z)( 

Im f1(z)( 

⋮

Re fn(z)( 

Im fn(z)( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B � b⊗ I2,

U �

Re u1( 

Im u1( 

⋮

Re ur( 

Im ur( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

If the complex chaotic system in which there exist model
uncertainty and external disturbance, we present the fol-
lowing result.

Corollary 1. Consider the following complex chaotic system
with both model uncertainty and external disturbance:

_p � f(p) + ud + bu, (18)

where p, f(p), b, and u are given in equations (7)–(10),
respectively,

ud � Δf(p) + d(t) �

ud1

ud2

⋮

udn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

where Δf(p) ∈ Cn stands for the model uncertainty and
d(t) ∈ Rn is the external disturbance. Its equivalent real
system is described as the following form:

_y � F(y) + BU + UD, (20)

where y, F(y), B, and U are the same as those in 7eorem 1,
and

UD �

Re ud1( 

Im ud1( 

⋮

Re udn( 

Im udn( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

4.2. Stabilization of the Complex Chaotic System. In this
section, the stabilization of the complex chaotic system is
investigated by the dynamic feedback control method and
the linear feedback control method, respectively, and the
conclusions are presented.

Theorem 2. Consider system (12). If (F(y), B) can be sta-
bilized, then the controller U is designed of the following form:

U � K(t)y, (22)

where K � k(t)BT, and k(t) is updated by
_k(t) � − ‖y‖

2
. (23)

Remark 4. According to equation (14), the controller u for
system (6) is obtained; thus, the stabilization of system (6) is
realized.

If system (12) has some special structure, the stabiliza-
tion problem of such system can be realized by the linear
feedback control method, and the result is proposed.

Theorem 3. Consider system (12) of the following form:

y �
Y

X
 ,

F(y) �
A(X)Y

G(X, Y)
 ,

B �
BY

0
 ,

(24)

i.e.,
_Y � A(X)Y + BYU,

_X � G(X, Y),
(25)

with
_X � G(X, 0), (26)

is globally asymptotically stable. If (F(y), B) is controllable,
then the designed controller U is of the following form:

U � K(X)Y, (27)

where K(X) meets the matrix BYK(X) + A(X) is Hurwitz
whatever X is.

Proof. Since (F(y), B) is controllable, thus (A(X), BY) is
also controllable whatever X is. According to the pole as-
signment theory, the controller U given in (27) is as
requested, which completes the proof. □

5. Illustrative Examples with
Numerical Simulations

In this section, we shall take two complex chaotic systems for
example to show how to apply the obtained theoretical
results, and then numerical simulations are performed to

4 Complexity



verify the effectiveness and the validity of the aforemen-
tioned theoretical results.

Example 1. )e controlled complex Lorenz chaotic system
[25], which is presented as follows:

_p � f(p) + bu, (28)

where

p �
z

x
 ,

z �
z1

z2
 ,

x � x3,

(29)

i.e., m � 2, n � 3, and

f(p) � f(x, z, z) �

M(x)z + H(i)x

N(x, z, z)

⎛⎝ ⎞⎠,

b �
b1 0

0 b2

⎛⎝ ⎞⎠ � b1 �

0

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M(x) �
− 10 10

110 − x3 − 1
⎛⎝ ⎞⎠,

H(i) � 0,

N(x, z, z) � − 2x3 +
1

2 z1z2 + z1z2( 
.

(30)

According to )eorem 1, the equivalent real system is
obtained as follows:

_y � F(y) + BU, (31)

where

y �
yz

yx

 ,

yz �

y1

y2

y3

y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

yx � y5,

F(y) �

F1(y)

F2(y)

⋮

F5(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F1(y)

F2(y)

F3(y)

F4(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� M(x)⊗ I2 × yz

�

− 10 0 10 0
0 − 10 0 10

110 − y5 0 − 1 0
0 110 − y5 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y1

y2

y3

y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B � B1 � b1⊗I2 �

0 0
0 0
1 0
0 1
0 0
0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U � Uz �
U1

U2
 ,

(32)

i.e.,
_y1 � − 10y1 + 10y3,

_y2 � − 10y2 + 10y4,

_y3 � 110 − y5( y1 − y3 + U1,

_y4 � 110 − y5( y2 − y4 + U2,

_y5 � − 2y5 + y1y3 + y2y4.

(33)

Note that if y3 � y4 � 0, then the following subsystem
_y1 � − 10y1,

_y2 � − 10y2,

_y5 � − 2y5,

(34)

is globally asymptotically stable; thus, (F(y), B) can be
stabilized.

According to )eorem 2, the controller U is designed as
follows:

U � K(t)y � k(t)
0 0 1 0 0

0 0 0 1 0
 y � k(t)

y3

y4
  �

k(t)y3

k(t)y4
 ,

(35)

where K � k(t)BT and _k(t) � − ‖y‖2. )us,

u � 1 i( ∝U � 1 i( ∝
k(t)y3

k(t)y4
  � k(t)z2. (36)

Numerical simulation is carried out with the initial
conditions: y(0) � [− 5, 3, − 2, − 6, 7], k(0) � − 1. Figure 1
shows y1, y2, andy3 are asymptotically stable, and Fig-
ure 2 shows y4 andy5 are asymptotically stable, which
implies the z(t) and x(t) are stabilized. Figure 3 shows the
feedback gain k(t) approaches to constant.
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According to )eorem 3, the controller U is designed as
follows:

U � K(X)Y �
0 0 (X − 110) 0

0 0 0 (X − 110)
 Y �

(X − 110)Y1

(X − 110)Y2
 ,

(37)

where

Y �

Y1

Y2

Y3

Y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

y1

y2

y3

y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

X � y5.

(38)

)us,

u � 1 i( ∝U � 1 i( ∝
x3 − 110( y1

x3 − 110( y2
  � x3 − 110( z1.

(39)

Numerical simulation is carried out with the initial
conditions: y(0) � [− 5, 3, − 2, − 6, 7]. Figure 4 shows
y1, y2, andy3 are asymptotically stable, and Figure 5 shows
y4 andy5 are asymptotically stable, which implies the z(t)

and x(t) are stabilized.

Example 2. )e controlled complex hyperchaotic Lorenz
system [26], which is presented as follows:

_p � f(p) + bu, (40)

where

y 1
, y

2, 
y 3

5 10 15 20 25 30 35 40 45 500
Time (t)

–35

–30

–25

–20

–15

–10

–5

0

5

y1
y2
y3

Figure 1: y1, y2, andy3 are asymptotically stable.
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Figure 2: y4 andy5 are asymptotically stable.
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–100

–80

–60

–40

–20

0
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(t)

Figure 3: k(t) approaches to constant.
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p �
z

x
 ,

z �
z1

z2
 ,

x �
x3

x4
 ,

(41)

that is, m � 2, n � 4, and

f(p) � f(x, z, z) �
M(x)z + H(i)x

N(x, z, z)

⎛⎝ ⎞⎠,

b �

b1 0

0 b2

⎛⎝ ⎞⎠ � b1 �

0

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M(x) �

− 14 14

45 − x3 − 1
⎛⎝ ⎞⎠,

H(i) �

0 1 + i

0 0
⎛⎝ ⎞⎠,

N(x, z, z) �

− 5x3 +
1

2 z1z2 + z1z2( 

− 5.5x4 +
1

2 z1z2 + z1z2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(42)

According to )eorem 1, the equivalent real system is
obtained as follows:

_y � F(y) + BU, (43)

where

5 10 15 20 25 30 35 40 45 500
Time (t)

y1
y2
y3

y 1
, y

2, 
y 3
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Figure 4: y1, y2, andy3 are asymptotically stable.
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Figure 5: y4 andy5 are asymptotically stable.
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Figure 6: y1, y2, andy3 are asymptotically stable.
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Figure 7: y4, y5, andy6 are asymptotically stable.
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Figure 8: k(t) tends to constant.
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y �
yz

yx

 ,

yz �

y1

y2

y3

y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

yx �
y5

y6
 ,

F(y) �

F1(y)

F2(y)

⋮

F6(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H
∗

�

0 1

0 1

0 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F1(y)

F2(y)

F3(y)

F4(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� M(x)⊗ I2 × yz + H

∗
× yx

�

− 14 0 14 0

0 − 14 0 14

45 − y5 0 − 1 0

0 45 − y5 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y1

y2

y3

y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

0 1

0 1

0 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y5

y6
 

�

− 14 y1 − y3(  + y5

− 14 y2 − y4(  + y6

45 − y5( y1 − y3

45 − y5( y2 − y4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B � B1 � b1⊗I2 �

0 0

0 0

1 0

0 1

0 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U � Uz �
U1

U2
 ,

(44)

i.e.,
_y1 � − 14 y1 − y3(  + y5,

_y2 � − 14 y2 − y4(  + y6,

_y3 � 45 − y5( y1 − y3 + U1,

_y4 � 45 − y5( y2 − y4 + U2,

_y5 � − 5y5 + y1y3 + y2y4,

_y6 � − 5.5y6 + y1y3 + y2y4.

(45)

Notice that if y3 � y4 � 0, then the following system
_y1 � − 14y1,

_y2 � − 14y2,

_y5 � − 5y5,

_y6 � − 5.5y6,

(46)

is globally asymptotically stable; thus, (F(y), B) can be
stabilized.

According to )eorem 2, the controller U is designed as
follows:

U � K(t)y � k(t)
0 0 1 0 0

0 0 0 1 0
 y � k(t)

y3

y4
  �

k(t)y3

k(t)y4
 ,

(47)

where K � k(t)BT and _k(t) � − ‖y‖2.
)erefore,

u � 1 i( ∝U � 1 i( ∝
k(t)y3

k(t)y4
  � k(t)z2. (48)

Numerical simulation is performed with the initial
conditions: y(0) � [− 5, 3, − 2, − 6, 7, − 8], k(0) � − 1. Figure 6
shows y1, y2, andy3 are asymptotically stable, and Figure 7
shows y4, y5, andy6 are asymptotically stable, which means
that the z(t) and x(t) are stabilized. Figure 8 shows the
feedback gain k(t) tends to constant.

6. Conclusions

In conclusion, the stabilization problem of the complex
chaotic system has been studied in this paper. First, a sys-
tematic method has been proposed, which is applied to
transform the complex chaotic system into its equivalent real
chaotic system. )en, both simple and physical controllers
have been designed for the complex chaotic system by the
dynamic feedback control method and the linear feedback
control method, respectively. Finally, two illustrative ex-
amples with numerical simulations have been performed to
verify the validity and effectiveness of the theoretical results.
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Chaotification can be employed to weaken or eliminate the feature of line spectra of waterborne noise. -e efficiency of this
method lies on the use of small control. -e analysis reveals that the critical control gain depends on the stiffness of vibration
isolation systems. -us, an isolation raft system based on quasi-zero-stiffness (QZS) property is proposed for line spectrum
chaotification. A nonlinear time-delay controller is derived accordingly. Comparative analysis shows that the new approach allows
much smaller control, and the intensity of line spectra is further reduced. Numerical simulations also indicate other advantages
with the introduction of QZS system into chaotification.

1. Introduction

-e spectra of the radiated waterborne noises of underwater
vehicles are usually divided into two categories. One is
continuous broadband spectra corresponding to noise in-
duced by water current and bubble burst. -e other is
discrete narrowband line spectra mainly caused by propeller
and machinery vibrations. Line spectra consist of closely
spaced spectral lines that characterize the intensity of noise
components. Line spectra of radiated noise from machinery
vibration signify the features of operating underwater ve-
hicles, such as the speed and distance of moving objects.
-us, line spectra have been generally utilized for identifying
underwater vehicles and thus regarded as harmful signals for
the vehicle safety.

Extensive efforts have been made to attenuate machinery
vibrations for the reduction of noise spectra through vi-
bration isolation techniques [1–3]. It has been known that
the linear vibration isolation techniques can reduce the
intensity of line spectra in a certain frequency bandwidth but
cannot change the structure of line spectra of vibration
noises due to the frequency fidelity. It means that a sinu-
soidal input of vibration source to an isolation system will
simply turn out a sinusoidal output unable to eliminate the
line spike at the frequency. To cope with the problem, an

innovative idea [4] was proposed to change the spectra
configuration by chaotification [4–7] rather than only rely
on vibration attenuation. With a special mechanism, the
response of the simple harmonic excitation from the vi-
bration source to the base can present a chaotic state. -e
process can be called line spectrum chaotification, and the
line spectrum structure without control and the line spec-
trum structure with control are shown in Figure 1. Cha-
otification is a new technique of making use of broadband
nature of chaos to blur and change the feature of line spectra.
-emechanism is that a nonlinear isolation system, installed
in between the vibrating machine and supporting base, is
designed with control which enables to convert a periodic
excitation (narrowband input of machinery vibration) into a
chaotic one (broadband output on a supporting base) to
improve the concealment capability of underwater vehicles.

Lou et al. [4] first reported that a Duffing-type vibration
isolator excited by harmonic forces might generate a broad-
band continuous spectrum at special parameter settings.
-rough a chaotification process, the intensity of line spectra
transmitted to the base could be reduced. -e feasibility of this
approach was verified thoroughly in an experiment [5]. To
enable chaotification for wider range of parameter settings, a
parametric perturbation scheme [6] was proposed by using
generalized chaos synchronization [8]. However, the
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persistence of chaotification may not be guaranteed since this
scheme could deteriorate the system installation stability. -is
problem could be avoided by using a state perturbation ap-
proach [9]. Inspired by the work [8], chaotification [10] could
be realized by employing the projective synchronization
method [11], where a nonlinear vibration isolation system
(VIS) is driven into a chaotic state by coupling a Duffing
system. However, this approach requires large control energy
and seems impractical for applications. We will elaborate later
that control energy is very much concerned because not only
there is a limitation of energy on board but also larger control
energy may result in poor quality when reconstructing line
spectra. A discrete impact method [12] based on Lyapunov
exponents was proposed for chaotifying a Duffing type of VIS.
-is method also suffers the limitation for chaotification
persistence and small controls.

It is known that the existence of time-delay feedback can
extend a simple dynamic system into high dimensional one.
-is nature could make chaotification of a time-delay system
readily applicable. In this regard, a new strategy by using
time-delay feedback control was introduced for line spec-
trum chaotification [13–18]. Stability analysis [14] of a
double-layer vibration isolation floating raft system (VIFRS)
with a linear time-delay feedback control was carried out,
and a set of critical criteria for stability switches are derived.
-ese criteria provide a theoretical guidance for the setting
of the system parameters and control parameters to achieve
chaotification. Strictly speaking, these criteria are not nec-
essary conditions but chaotification of VIFRS seems more
likely with the criteria. For a better understanding, Li et al.
[16] studied the dynamic behavior of the double-layer
nonlinear isolation raft and revealed a variety of response
solutions under time-delay control. Furthermore, chaotifi-
cation of a two-dimensional VIFRS with dual time-delay
feedback control was investigated [18]. A more sophisticated
methodology originally developed from antichaos control
[19, 20] could be employed for line spectrum reconstruction
[17] of double-layer VIFRS. -e significance of this work
[17] is to provide a standard procedure for time-delay

controller design which promises the occurrence of chaot-
ification in the sense of Li and Yoke criteria [19]. -is
method based on nonlinear time-delay control notably
outperforms the linear time-delay approaches [14, 18], es-
pecially in the requirement of small control. Different from
the previous ideas, Zhou et al. [15] proposed a chaotification
method totally based on spectrum optimization. -is
method can realize chaotification of VIFRS without exactly
knowing system parameter settings or operational condi-
tions, which is effective, easy to use, and handy in real
applications.

-e existing research works mainly focus on the gen-
eration of chaotic response in the floating raft isolation
systems. In the purpose of altering the line spectrum con-
figuration and eliminating spectrum line spikes, abundant
results from numerical simulations [13, 15, 17] indicate that
small control energy can lead to a better quality of chaot-
ification in terms of the line spectrum intensity and
broadness of spectrum bandwidth. Pursuing small control
for chaotification is one of the key issues in the line spectrum
reconfiguration. In this paper, we will propose time-delay
control on a quasi-zero-stiffness (QZS) raft system for the
improvement of both chaotification and isolation efficiency.
-e QZS system is a kind of nonlinear VIS with the char-
acteristics of high static and low dynamic stiffness [21–25].
In the following study, we will first elaborate what factors
affect the control energy. -en, we will introduce a newly
developed QZS system [26] for line spectra control. Based on
the new system, we will derive the nonlinear time-delay
controller for chaotification. Numerical simulation will
show the advance of the approach. By combining time-delay
scheme with the QZS system, we can significantly decrease
the critical control gain and meanwhile can effectively
change the line spectrum configuration.

2. Critical Control Gain

In this section, we will state the key factors that dominate the
minimum required control gain for chaotification, which is
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Figure 1: Comparison of line spectrum structure before (a) and after (b) chaotification.
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referred to as critical control gain. Firstly, we look into a
single degree-of-freedom (DOF) VIS and then extend the
discussion to a double-layer VIS. Consider a nonlinear
isolation system with a time-delay control:

_x � f(x) + g(x)Ktφ τd( , (1)

where x is a state vector, f(x) and g(x) ∈ Rn are vector field,
Kt is a control gain, and φ(τd) is a time-delay feedback
control function. -e form of φ(τd) is not restricted which
may be either linear or nonlinear function.

As shown in Figure 2(a), the mass m is supported by a
nonlinear spring with quadratic and cubic nonlinearity, a
linear damper, and an actuator which is utilized to imple-
ment time-delay feedback control. -e governing equation
of the single DOF mass-spring system with time-delay
feedback control can be written as

M €x + C _x + K1(x − Δx) + K3(x − Δx)
3

� F0 cos ω0t(  + Ktφ τd( ,
(2)

where Kt is the feedback gain, φ(τd) is the time-delay
feedback control function, C is the damping coefficient, K1
and K3 are the stiffness coefficients, F0 and ω0 are the
amplitude and frequency of the harmonic excitation, re-
spectively, and Δx denotes the static deformation of the
spring subjected to the system static weight.

We define the following nondimensional parameters,
and setting X � x − Δx,

ωn �

���
K1

M



,

ξ �
C

2Mωn

,

η �
K3

M
,

f0 �
F0

M
,

ωt �

���
Kt

M



,

(3)

the governing equation can be rewritten as
€X + 2ξωn

_X + ω2
nX + ηX

3
� f0 cosω0t + ω2

tφ τd( . (4)

By defining x1 � X and x2 � _X, the equation of motion
without external excitation force can be written in the au-
tonomous form:

_x1 � x2,

_x2 � −2ξωnx2 − ω2
nx1 − ηx3

1 + ω2
tφ τd( .

 (5)

-e system possess the equilibrium point A(0, 0). Giving
a perturbed motion (Δx1,Δx2) at the equilibrium point
A(0, 0), it may yield two linearized time-delay differential
equations:

Δ _x1 � Δx2,

Δ _x2 � −2ξωnΔx2 − ω2
nΔx1 + ω2

tΔx1 t − τd( .
 (6)

Note that the form of time-delay feedback control
function φ(τd) may be arbitrary. If it is linear, the linearized
part of φ(τd) is Δx1(t − τd). If it is nonlinear, φ(τd) can be
expressed in Taylor series of  anΔxn

1(t − τd). Because of the
vibration amplitude of a real VIS is often very small, the high
order terms can be ignored and the dominant term is still
Δx1(t − τd). A very useful method for determining system
stability is bifurcation analysis. According to the theorem
proposed [27], the characteristic equation can be written as

P1(λ) + P2(λ)e
− λτ

� 0, (7)

where

P1 � λ2 + 2ξωnλ + ω2
n,

P2 � −ω2
t .

(8)

When the real part of a certain eigenvalue changes from
negative to zero or even to positive, the time-delay increased
may cause the occurrence of Hopf bifurcation.-at is to say,
there exists a critical time-delayτdc, at which the system with
time-delay feedback control will loose stability and then the
following characteristic equation has a purely imaginary root
[27]. Suppose that λ � i] is the purely imaginary root of the
characteristic equation:

R1(]) + iQ1(]) + R2(]) + iQ2(]) [cos(]τ) − i sin(]τ)] � 0,

(9)

where

R1(]) � −]2 + ω2
n,

R2(]) � −ω2
t ,

Q1(]) � 2ξωn],

Q2(]) � 0.

(10)

Separating the real and imaginary parts of the above-
mentioned equation may give

R1(]) + R2(])cos(]τ) + Q2(])sin(]τ) � 0,

Q1(]) − R2(])sin(]τ) + Q2(])cos(]τ) � 0.
(11)

By squaring the above equations and then summing the
results, we may obtain a quadratic equation after defining a
new variable μ � ]2:

μ2 + 4ξ2 − 2 ω2
nμ + ω4

n − ω4
t  � 0. (12)

-e roots of equation (12) can be obtained as

μ1,2 �
2 − 4ξ2 ω2

n ±
������������������
16ξ2 ξ2 − 1 ω4

n + 4ω4
t



2
� 1 − 2ξ2 ω2

n ±
��
Δ

√
.

(13)

Due to the fact that 1 − 2ξ2 > 0 is always satisfied for
engineering applications and if Δ≥ 0 equation (12) has one
positive root at least, then the critical time-delayτdc can also

Complexity 3



be acquired. So, the system goes into the state of chaos
through Hopf bifurcation only when

Ktc ≥ 2ξ
�������

1 − ξ2 



K1, (14)

where ξ is the damping ratio. -e relationship in equation
(14) reveals that the critical control gain Ktc is only related to
ξ and K1 of the isolation system.

Figure 3 plots the variation of the critical control gain
versus the equivalent linear stiffness for different damping
ratios. Obviously, Ktc is linearly dependent on system
stiffness K1 and nonlinearly dependent on the damping ratio
ξ. It delivers an important clue that the system can be much
easily disturbed into the chaotic state when the system’s
stiffness and damping are small. -is finding motivates us to
look for small stiffness isolation system, which is beneficial
not only for chaotification but also for vibration attenuation.
We will show later that small control gain leads to small
control energy and results in low intensity of chaotified line
spectra.

-e nonlinear VIFRS [14] can be regarded as a double
DOF mass-spring system, as shown in Figure 4. M1 and M2
denote the isolated equipment and the floating raft, re-
spectively. M1 is supported by a linear damper and a
nonlinear spring which possesses quadric and cubic non-
linearity. M2 is supported by a linear damper and a linear
spring which are connected with a fixed ground base. -ere

is an actuator installed betweenM1 andM2, which is utilized
to implement time-delay feedback control for chaotification.

-e governing equations with time-delay feedback
control are given by

M1 €x1 � −C1 _x1 − _x2(  − K1 − 2U1H + 3U2H
2

  x1 − x2(  + U1 − 3U2H(  x1 − x2( 
2

− U2 x1 − x2( 
3

+ F0 cosω0t + Ktφ τd( ,

M2 €x2 � −C2 _x2 − K2x2 + C1 _x1 − _x2(  + K1 − 2U1H + 3U2H
2

  x1 − x2(  − U1 − 3U2H(  x1 − x2( 
2

+ U2 x1 − x2( 
3

− Ktφ τd( ,
(15)

where C1 is the damping coefficient of the nonlinear vi-
bration isolator; K1, U1, and U2 are the linear, quadric, and
cubic stiffness coefficients of the nonlinear vibration isolator,
respectively. -e equivalent linear stiffness at the static

equilibrium point is K0 � K1 − 2U1H + 3U2H
2, where

H � h1 − h2, C2 is the damping coefficient of the damper
between the floating raft and fixed ground, K2 is the stiffness
coefficient of the linear spring, F0 and ω0 are the amplitude
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and frequency of the harmonic excitation, respectively, Kt is
the feedback control gain, and φ(τd) is the time-delay
feedback control function.

For the double-layer VIS with time-delay control [14],
the derivation of critical control gain is much complicated,
and it can only be expressed in an implicit form. We are
interested in the critical boundary for the control gain where
chaotification can be implemented effectively. To find the
critical condition for chaotification in the time-delay system
(15), we firstly impose a linearization on the double-layer
nonlinear VIFRS at an equilibrium point. Giving a per-
turbation to the system, it yields a set of linearized time-
delay differential equations. By taking the Laplace transform,
we can get the characteristic equation from which the ei-
genvalues are investigated for the stability switches on the
parameter domain of time-delay settings and control gains.

Figure 5 illustrates the skeleton region for the stability
switches on the parameter plane of the time-delay and
control gain. -e white region indicates the feasible area
where we can apply chaotification, while the region marked
in gray color denotes the infeasible area for chaotification.
-e critical boundaries consist of a number of solid curves.
In Figure 5(a), there is a region bracketed by two dashed
lines in vertical direction. As the time-delay increases to
infinity τ⟶∞, these dashed lines define the boundary for
chaotification. -e corresponding value Ktc of the control
gain is the required minimum control gain, regarded as the
critical control gain. For the case where the system stiffness is
set at K0 � 9600(N/m), as shown in Figure 5(a), the critical
value of the control gain is |Ktc| � 2112(N/m). When the
system stiffness is decreased to K0 � 2400(N/m), as shown
Figure 5(b), the skeleton structure is similar but the critical
control gain becomes much smaller, as |Ktc| � 1224(N/m).
It reveals that when the system stiffness decreases the critical

control gain decreases as well, very similar to the case of the
single DOF system.

To understand the relationship between the critical
control gain and the system’s settings, Figure 6 shows the
effects of the variation of the equivalent linear stiffness and
damping on the critical control gains. With the increase of
the equivalent linear stiffness K0, the critical control gain Ktc

increases nonlinearly unlike the linear relationship of a
single DOF VIS. -e curve trend also shows the significant
effect for the variation of the damping coefficients C1 and C2
on the critical control gain. It strongly implies that small
control energy required for chaotification greatly depends
on small stiffness K0 and small damping of the system.
Especially, when K0 is small, Ktc drops quickly with the
decrease of K0.

We know that the feedback control gain Kt represents
the level of control energy to be inputted. -e increase of the
control gain leads to the increase of vibration amplitude
generally, and accordingly the intensity of the line spectra
increases as well, surely harmful to the concealment capa-
bility of underwater vehicles. In order to explain this fact
quantitatively, we define the intensity of line spectra as the
root mean square values of the normal difference between
the spectrum peak values with control and the spectrum
value at excitation frequency without control. We can obtain
the relationship between the intensity of the line spectra and
the feedback control gain, as shown in Figure 7.

Figure 7 plots the intensity of the line spectra under the
variation of feedback control gain Kt. Obviously, the in-
tensity of the line spectra is linearly dependent on the Kt

approximately. As the absolute value of control gain in-
creases, the intensity of line spectra increases proportionally.
-is diagram indicates that the smaller control leads to the
lower intensity of line spectra.

3. Controller for a QZS Vibration
Isolation System

In this section, the QZS system [26] is introduced to a
double-layer VIS for chaotification due to its favorable
feature of quasi-zero-stiffness. Based on this system, the
analytical function of time-delay feedback control is derived
by using the methodology [17].

In the double-layer isolation system, as shown in Fig-
ure 8, we consider a QZS system placed on the upper layer
and a linear isolation system placed on the bottom layer. It is
known that the QZS system [26] has the characteristics of
high static and low dynamic stiffness. At the equilibrium
state, the QZS system theoretically has zero stiffness, which is
a perfect model for chaotification in terms of small energy
control.

-e QZS isolation system uses the negative stiffness of
magnetic springs to offset the positive stiffness at the
equilibrium state yielding the property of zero stiffness,
which offers high static stability but very low dynamic
stiffness around the equilibrium state. -e theoretical
analysis and experimental results [26] show the excellent
attenuation performance in terms of the force transmissi-
bility in comparison with conventional vibration isolation

Linear
spring

Nonlinear
spring

M1

M2

ActuatorC1

C2

x2

x1

F0 cos ω0t

Figure 4: -e structure diagram of a double DOF VIFRS.
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technology. Note that this mechanical property provides a
combination of two advantages. Number one, it can most
effectively isolate vibration due to its inherent low natural
frequency, especially outperform in the low-frequency band;
number two, it allows us to use small control for
chaotification.

-e stiffness of the QZS system can be modeled by a
unique cubic term of displacement [26], while there is no
linear stiffness. -e equations for the double-layer QZS
system with time-delay control can be formulated as follows:

M1 €x1 � −C1 _x1 − _x2(  − K x1 − x2( 
3

+ F0 cosω0t + Ktφ τd( ,

M2 €x2 � −C2 _x2 − K2x2 + C1 _x1 − _x2(  + K x1 − x2( 
3

− Ktφ τd( ,

(16)

where C1 and C2 are the damping coefficient of the QZS
isolator and the bottom isolator, respectively, K and K2 are
the stiffness coefficient of the QZS isolator and linear spring,
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respectively, F0 and ω0 are the amplitude and frequency of
the harmonic excitation, respectively, Kt is the feedback
control gain, and φ(τd) is the time-delay feedback control
function to be derived.

-e governing equations (16) can be transformed to a
standard form of the first-order governing equations, given by

_x1 � y1,

_y1 � −
C1

M1
y1 − y2(  −

K

M1
x1 − x2( 

3
+

F0

M1
cosω0t +

Kt

M1
φ τd( ,

_x2 � y2,

_y2 � −
C2

M2
y2 −

K2

M2
x2 +

C1

M2
y1 − y2(  +

K

M2
x1 − x2( 

3
−

Kt

M2
φ τd( .

(17)

We use vector x � x1 y1 x2 y2 
T to denote the

system state, where x1 and x2 are the displacements and y1
and y2 are the velocities of M1 and M2, respectively. -e
controlled system (17) can be expressed in a general form of
the single-input and single-output system given by

_x � f(x) + g(x)δx(t),

y � h(x),
(18)

where δx(t) � Ktφ(τd) is the input of the feedback control,
h(x) is the output function of the system, and

f(x) �

y1

−
C1 y1 − y2( 

M1
−

K x1 − x2( 
3

M1
+

F0 cosω0t

M1

y2

−
C2y2

M2
−

K2x2

M2
+

C1 y1 − y2( 

M2
+

K x1 − x2( 
3

M2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g(x) �

0

1
M1

0

−
1

M2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

A nonlinear time-delay feedback controller for cha-
otification can be derived based on the differential ge-
ometry theory and the definition of Li and Yoke Chaos
[19, 20]. It follows the procedure. Firstly, the above-
mentioned nonlinear isolation system (18) is transformed
into a standard linear system by a set of nonlinear
transformation functions. -e set of nonlinear transfor-
mation functions are defined by

z � Φ(x) �

φ1 x1, x2, · · ·, xn( 

φ2 x1, x2, · · ·, xn( 

⋮

φn x1, x2, · · ·, xn( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

h(x)

Lfh(x)

⋮

Ln−1
f h(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where Φ(x) is a partial diffeomorphism and
Lfh(x), . . . , Ln−1

f h(x) are Lie derivatives. If the relative de-
gree in a neighborhood of equilibrium point is exactly equal
to the degree of the system, the nonlinear isolation system
can be exactly transformed into a standard linear system as

_z � Az + Bv, (21)

where z is the state vector of the linear system, v is the
control function, A is the state coefficient matrix, and B is
the control coefficient matrix. A nonlinear time-delay
controller for chaotification in this linearized system can be
derived through the technique [19, 20].

Based on the lemma below, the output function of h(x)

can be obtained and the control function of δx(t) for
chaotification can be designed accordingly. -e Lemma
from nonlinear control theory is listed as follows.

Lemma 1. (see [28]) A nonlinear control system is feedback
linearizable on a neighborhood D of an equilibrium point if
and only if

(1) rank g(x) adfg(x) · · · adn−1
f g(x)  � n, x ∈ D

(2) span g(x), adfg(x), · · ·, adn−2
f g(x)  is involutive on

D

6en, a solution of output y � h(x) from the following
partial differential equations can be determined:

zh(x)

zx
g(x) adfg(x) . . . adn−2

f g(x)  � 0. (22)

Point A(0, 0, 0, 0) is an equilibrium point of system (17).
Based on this, we can acquire an analytical time-delay
control function with Lemma 1. According to the definition,
we can obtain adfg(x), ad2

fg(x), and ad3
fg(x), respectively.

Using the parameter a � x1 − x2, we have
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adfg(x) �
zg
zx

f −
zf
zx

g �

−
1

M1

C1

M2
1

+
C1

M1M2( 

1
M2

−
C1

M1M2( 
−

C1

M2
2

−
C2

M2
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

ad2f g(x) �
z adfg(x)( 

zx
f −

zf
zx

adfg(x)( 

�

−
C1 M1 + M2( 

M2
1M2( 

C1C2M
2
1 − 3a2KM1M2 M1 + M2(  + C2

1 M1 + M2( 
2

 

M3
1M

2
2( 

C2M1 + C1 M1 + M2(  

M1M
2
2( 

−C2
1 M1 + M2( 

2
− C1C2M1 2M1 + M2(  + M1 −C2

2M1 + M2 K2M1 + 3a2K M1 + M2( ( (  

M2
1M

3
2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

ad
3
fg(x) �

z ad2
fg(x) 

zx
f −

zf
zx

ad
2
fg(x)  �

Λ1
Λ2
Λ3
Λ4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where

Λ1 � −
C1C2M

2
1 − 3a2KM1M2 M1 + M2(  + C2

1 M1 + M2( 
2

 

M3
1M

2
2( 

,

Λ2 �
2C2

1C2M
2
1 M1 + M2(  + C3

1 M1 + M2( 
3

+ C1M1 C2
2M

2
1 − M2 K2M

2
1 + 6a2K M1 + M2( 

2
   − 3aKM2

1M2 aC2M1 + 2M2 M1 + M2(  y1 − y2( (  

M4
1M

3
2( 

,

Λ3 �
C2
1 M1 + M2( 

2
+ C1C2M1 2M1 + M2(  + M1 C2

2M1 − M2 K2M1 + 3a2K M1 + M2( ( (  

M2
1M

3
2( 

,

Λ4 � −C
3
1 M1 + M2( 

3
− C

2
1C2M1 3M

2
1 + 4M1M2 + M

2
1  + C1M1 −C

2
2M1 3M1 + M2(  + M2 6a

2
K M1 + M2( 

2
+ K2M1 2M1 + M2(   

+ M
2
1 −C

3
2M1 + C2M2 2K2M1 + 3a

2
K 2M1 + M2(   + 6aKM

2
2 M1 + M2(  y1 − y2(  / M

3
1M

4
2 .

(26)

After simplification of matrix transformation and
inserting the particular values of the system parameters, we
can determine the rank of matrix g adfg ad2

f g ad3
f g .

Next, we will determine the rank of matrix
g adfg ad2

f g [adfg, ad2f g]  in order to estimate the sec-
ond condition of Lemma 1:
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g, ad
2
fg  �

z ad2
fg(x) 

zx
g −

zg
zx

ad
2
fg(x)  �

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

adfg, ad2f g  �
z ad2f g(x) 

zx
adfg −

z adfg( 

zx
ad2f g(x)  �

0

6aK M1 + M2( 
2

M3
1M

2
2( 

0

−
6aK M1 + M2( 

2

M2
1M

3
2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

For system (16), we assign a set of parameters:

M1 � 85 kg,

M2 � 42.5 kg,

C1 � C2 � 260(Ns/m),

K � 2.80681 × 107 N/m3
 ,

K2 � 3.84 × 104(N/m),

(29)

and we can evaluate the relative degree:

rank g adfg ad2
f g ad3

f g  � 4. (30)

Based on equations (23)–(25) and (28) and the pa-
rameter values, we can obtain

rank g adfg ad2
f g adfg, ad2f g   � 3. (31)

Thus, we conclude that the linear subspace Δ �

span g adfg ad2
fg  is also involutive on a neighborhood

D of the equilibrium point A(0, 0, 0, 0). -e controlled
system (18) has a relative degree of 4 at A(0, 0, 0, 0).

From condition (22) in Lemma 1, we can derive the output
function of y � h(x) from the partial differential equations:

zh(x)

zx
g(x) �

1
M1

zh(x)

zy1
−

1
M2

zh(x)

zy2
� 0, (32)

zh(x)

zx
adfg(x) � −

1
M1

zh(x)

zx1
+

C1

M2
1

+
C1

M1M2
 

zh(x)

zy1
+

1
M2

zh(x)

zx2
−

C1

M1M2
+

C1

M2
2

+
C2

M2
2

 
zh(x)

zy2
� 0, (33)

zh(x)

zx
ad

2
f g(x) � −

C1

M2
1

+
C1

M1M2
 

zh(x)

zx1
+

C1 C2M
2
1 + C1 M1 + M2( 

2
 

M3
1M

2
2

⎛⎝ ⎞⎠
zh(x)

zy1

+
C1

M1M2
+

C1

M2
2

+
C2

M2
2

 
zh(x)

zx2
+

−C2
1 M1 + M2( 

2
− C1C2M1 2M1 + M2(  + M2

1 −C2
2 + K2M2( 

M2
1M

3
2

 
zh(x)

zy2
� 0.

(34)

There are multiple solutions for the set of equations
(32)–(34). One of the solutions for the abovementioned
equations could be derived as

y � h(x) � −
K2M1

C2M2
x1 −

K2M2 − C2
2

C2M2
x2 +

M1

M2
y1 + y2.

(35)

According to Wang et al. [19, 20], if the map associated
with δx(t) is a bounded chaotic map and the time-delay is
sufficiently large, then the output y(t) of the system
equation with time-delay (17) could be chaotic. -e solution
of y � h(x) is not unique and accordingly there are multiple
solutions for δx(t). We may choose various bounded
functional forms. Here, the sinusoidal form of
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δx(t) � Kt sin(σy(t − τd)) is utilized for the controller, and
we have

δx(t) � Kt sin σ −
K2M1

C2M2
x1 t − τd(  −

K2M2 − C2
2

C2M2
x2 t − τd(  +

M1

M2
_x1 t − τd(  + _x2 t − τd(   . (36)

By inserting the values of the system parameters, we
obtain the control function:

δx(t) � Kt sin σ −295.4x1 t − τd(  − 141.6x2 t − τd( (

+ 2 _x1 t − τd(  + _x2 t − τd( ,

(37)

where the control gain Kt, the feedback frequency σ, and the
time-delay τd are the control parameters for the nonlinear
time-delay feedback controller (37).

4. Chaotification on the QZS Vibration
Isolation System

We will illustrate the benefits by proposing the 2-DOF QZS
isolation system for chaotification, in comparison with the
case of nonlinear isolation system used in [17]. -e dis-
cussion will be focused on the three aspects including the
effective reduction of critical control gain, the suppression of
line spectra, and how the feature of line spectra of the system
would be weakened or even be eliminated by using the
approach.

4.1. Effective Reduction of Critical Control Gain. We are
interested in the actual reduction of the control gain when
applying chaotification on the 2-DOF QZS VIS. By setting
the control parameters at σ � 50 and τd � 20 s, we will
examine the persistence of chaotification across the variation
of control gain Kt, with particular concerns on the critical
control gain for the onset of chaos. We will compare the
difference between the nonlinear model in [14, 17] and the
QZS model proposed in this paper under the same loading
conditions.

Figure 9(a) shows the global bifurcation of the nonlinear
model [17], and Figure 9(b) shows the global bifurcation of
the QZS model (17). Line dots in the vicinity of the origin
represent periodic motions, and the cloudy dots represent
the onset of chaos. From Figure 9(a), we can see that
chaotification occurs when | Kt|≥ 0.452N. For the corre-
sponding QZS system (17), as shown in Figure 9(b), cha-
otification starts when | Kt|≥ 0.008N and maintains across
the whole parametric domain. Note that there is a significant
difference in the required control gain between the two
systems; the minimum control for the QZS system is only
about 1.77% of that, for the nonlinear system. It indicates
that the QZS system outperforms the nonlinear system [17]
in terms of using small control in chaotification.

Figure 9 also indicates that the small control gain gives
rise to relatively low amplitude of system responses, which
means small control for chaotification can lead to low in-
tensity of line spectra as well. Apart from the benefit of using
small control, the QZS system inherently enables to

attenuate vibration in low-frequency bandwidth. -us, the
utilization of the QZS system allows for the synergistic
benefits of both chaotification and vibration isolation and is
greatly favorable and attractive to applications.

4.2. Suppression of Line Spectra. We may benefit from the
introduction of the QZS system (17) into chaotification. A
comparison between the system [17] and the QZS system
(17) will be carried out to indicate the performance in the
reduction of the intensity of line spectra.

We show a numerical example in Figure 10, where the
power spectral density (PSD) of chaotified system responses
is plotted for system [17] and the QZS system (17), re-
spectively, under the same loading conditions and the ex-
ternal excitation. In general, the spike line of the power
spectra induced by the external excitation is covered by the
continuous power spectra of chaotified responses. -us,
there is no significant spike lines protruded from the base of
power spectra.-e profile of the power spectra also indicates
the broadband nature of system responses, implying the
effectiveness of chaotification for the both systems under
control.

Figure 10(a) shows that the peak value for system [17] is
about −71.68 dB, while Figure 10(b) shows that the peak
value for the QZS system is about −81.47 dB. Obviously, in
terms of line spectrum suppression, the QZS system out-
performs system [17] by about 10 dB. For the interval from 0
to 20 in the frequency domain, we can see that the QZS
system is more efficient in the reduction of the intensity of
line spectra.-is advantage lies on two factors. Number one,
the control gain required for system [17] is much larger than
that of the QZS system. Small control results in low intensity
of line spectra. Number two, the QZS system has better
attenuation ability, especially in the low-frequency band-
width. -is nature reduces the intensity of power spectra of
the response.

4.3. Reconstruction of Line Spectra. In the course of nu-
merical analysis of line spectrum reconstruction, we can
observe that chaotification on the QZS vibration isolation
system constantly persists across a large range of settings for
the time-delayτd and the feedback frequency σ.-e profile of
power spectra could be altered by choosing different settings
of the control parameter pair (τd, σ). We are interested in
the results where the reconstructed pattern of power spectra
is smooth and broadened without line spikes protruded
from the base of the power spectra when applying time-delay
control. -e whole purpose of chaotification is to eliminate
the signature of line spectra induced by vibration excitations.
In this regard, optimal design [15] of the control parameter
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pair (τd, σ) will be useful for obtaining a favorable config-
uration of line spectra.

In what follows, we will examine the effect of chaotifi-
cation on the reconstruction of power spectra. -ere is a
significant difference in the patterns of power spectra before
and after the implementation of control. Since the formation
of line spectra much depends on the excitation frequency, we
consider three typical frequencies at the low frequency at
1.6711 which is smaller than the first natural frequency at
1.7311 of system (17), the intermediate frequency at 4.7746
which is in between the first and second natural frequency,
and the high frequency at 22.2817 which is far away from the
second natural frequency at 5.7234. We will see how the line
spikes of power spectra induced by excitations, as shown in
the 1st row of Figure 10, can be masked by chaotification at
the three frequencies, as shown in the 2nd row of Figure 11.

Case 1. Chaotification at low-excitation frequency at
(ω/2π) � 1.6711.

Figure 11(a) illustrates the patterns of power spectra
without control. -ere are two line spikes protruded from
the base of power spectra, where the first peak represents a
periodic motion at the excitation frequency and the second
peak represents a subharmonic motion near the first reso-
nance induced by the excitation. Surely, the system expe-
riences periodic oscillations and the line feature of the power
spectra is obvious. On the contrary, Figure 11(b) shows the
reconstructed pattern of the power spectra after applying
control, where the parameter pair of optimal control [15] is
set at (τd, σ)opt � (0.8266, 1.8026) and the control gain
is Ktc � 50N. It can be observed that the new shape of the
power spectra completely masks the second line spike but is
unable to cover up the first spike. Based on extensive nu-
merical tests, we found that it is relatively difficult to
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Figure 10: Power spectral densities of chaotified responses for (a) the nonlinear system [17] and (b) the QZS system, under the excitation at
the frequency of (ω/2π) � 15.9155.
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Figure 9: -e system response versus feedback control gain Kt; the cloudy dots represent chaotic motion and line dots denote periodic
motion. (a) Response of nonlinear system [17] and (b) response of the QZS system (17).
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eliminate the line spikes in the low-frequency band in
comparison with high-frequency band. Nevertheless, cha-
otification can weaken the signature of line spectra in
general, and the feature of the second spike is completely
eliminated.

Case 2. Chaotification at intermediate frequency at (ω/2π) �

4.7746.
Similarly, Figure 11(c) shows the power spectra without

control when applying an excitation at (ω/2π) � 4.7746.-e
line spike protruded from the base indicates a periodic
motion of the system at excitation frequency, and the in-
tensity of the line spike is −68.98 dB. -is line spectrum
signifies the features of the machinery vibration of vehicles,
for example, the operating speed according to the frequency
of the line spike and the distance between the noise source
and signal detector by the intensity of the line spectrum. To
eliminate the features, we implement chaotification by
setting the parameter pair of optimal control at (τd, σ)opt �

(0.2789, 1.1964), and the control gain Ktc � 45N.
Figure 11(d) shows the reconstructed pattern of the power
spectra of the system with the control. It is clear to be seen
that the feature of the line spike is completely eliminated and
replaced by the chaotic broadband spectra. Moreover, the
intensity of the spectra around the excitation frequency is
reduced to −79.03 dB. -ere is about 10 dB reduction. It
means that, for certain frequency, the optimal chaotification
not only covers the line spectra but also is possible to de-
crease its intensity.

Case 3. Chaotification at high frequency at (ω/2π) �

22.2817.
Figure 11(e) shows the line spectrum without control

when excited at (ω/2π) � 22.2817, while Figure 11(f ) shows
the reformed pattern of the power spectra by applying the
control at (τd, σ)opt � (0.3970, 65.0355) and the control gain
Ktc � 8.7N.-e feature of the line spectrum at the excitation
frequency is covered by the chaotic broadband spectra.
However, the intensity of power spectra corresponding to
the low-frequency bandwidth increases in this case.
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Figure 11: Profiles of power spectral densities of the QZS system response transmitted to the base without control (the 1st row) and with
control (the 2nd row) at different excitation frequencies.
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Figure 12: -e required control gains for chaotification versus the
excitation frequency.
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Nevertheless, the power spectra after chaotification do not
carry the information of the signal feature of the vibration
source.

-e required control gain for effective chaotification in
general decreases as the external excitation frequency in-
creases. -is characteristic can be observed from Cases 1–3,
where the control gain for chaotification reduces corre-
sponding to the frequencies. Figure 12 plots the trend to
describe the relationship between the required control gains
and the excitation frequency for chaotification. In general,
the higher excitation frequency, the less control energy
required for chaotification. Meanwhile, the line spectra at
high excitation frequency can be eliminated more easily.

5. Conclusion

-e most valuable part of this paper is to propose a QZS
system for chaotification that can be used to reduce the
feature of line spectra induced by machinery vibration of
underwater vehicles. -is work combines the characteristic
of small stiffness of the QZS system with the need of small
control in chaotification, leading to the advantages of the
reduction of the intensity of line spectra and the im-
provement of efficiency in the reconstruction of line spectra.

A standard procedure has been presented for the cha-
otification on a double-layer QZS system. We have shown
the derivation of the nonlinear time-delay controller for
such a system. Numerical simulations have illustrated the
superior performance of the QZS system in terms of the
required critical control gain and the suppression of line
spectra in comparison with a nonlinear model previous
studied in [17], especially outperformed in low-frequency
band. In the reconstruction of line spectrum patterns,
chaotification can effectively change a narrowband line
spectrum induced by a harmonic excitation into a spectrum
pattern with broad bandwidth. We have examined the
performance of the new system in low-, intermediate-, and
high-frequency bands divided according to the natural
frequencies of the system. It showed that the feature of line
spectra could be completely eliminated for the intermediate-
and high-frequency bandwidth. It is relatively difficult to
remove the line spikes in the low-frequency band, but the
signal feature can be greatly weakened through a chaotifi-
cation process.
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In this paper, we study the existence and nonexistence of solutions to fractional elliptic equations with the Hardy potential
(− Δ)su − λ(u/|x|2s) � ur− 1 + δg(u), inΩ,

u(x)> 0, inΩ,

u(x) � 0, inRN \Ω,

⎧⎪⎨

⎪⎩
whereΩ ⊂ RN is a bounded Lipschitz domain with 0 ∈ Ω, (− Δ)s is a fractional

Laplace operator, s ∈ (0, 1), N> 2s, δ is a positive number, 2< r< r(λ, s) ≡ (N + 2s − 2αλ/N − 2s − 2αλ) + 1, αλ ∈ (0, ((N − 2s)/2))

is a parameter depending on λ, 0< λ<ΛN,s, and ΛN,s � 22s(Γ2((N + 2s)/4))/(Γ2((N − 2s)/4)) is the sharp constant of the Har-
dy–Sobolev inequality.

1. Introduction

In this paper, we consider the solvability of the following
fractional elliptic problem:

(− Δ)su − λ
u

|x|2s
� u

r− 1
+ δg(u), inΩ,

u> 0, inΩ,

u � 0, inRN \Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN is a bounded Lipschitz domain with 0 ∈ Ω,
s ∈ (0, 1), N>2s, 2<r<r(λ, s)≡ ((N +2s − 2αλ)/(N − 2s −

2αλ)) +1, 0<λ<ΛN,s, and ΛN,s � 22s((Γ2((N +2s)/
4))/(Γ2((N − 2s)/4))) is the sharp constant of the Har-
dy–Sobolev inequality; the fractional Laplace operator (− Δ)s

is defined by

(− Δ)s
u � C(N, s)P.V.

RN

u(x) − u(y)

|x − y|N+2s
dy, (2)

where P.V. stands for the Cauchy principal value and
constant C(N, s) is a constant.

Recently, much attention has been devoted to the study
of fractional Laplacian equations. One of the reasons comes
from the fact that the fractional Laplacian arises in various
areas and different applications, such as phase transitions,
finance, stratified materials, flame propagation, ultra-
relativistic limits of quantum mechanics, and water waves.
For more details, see [1–6] and references therein.

For fractional elliptic problems with the Hardy potential,
Abdellaoui et al. [7] obtained the existence and summability
of solutions to a class of nonlocal elliptic problem:

(− Δ)su − λ
u

|x|2s
� f(x, u), inΩ,

u> 0, inΩ,

u � 0, inRN \Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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with f ∈ Lm(Ω) and 0< λ<ΛN,s. *ey mainly considered
the summability of solutions to (3) with f(x, u) � f(x)

and the existence and regularity of solutions to (3) with
f(x, u) � h(x)/uσ . Mi et al. [8] obtained the combined
influence of the Hardy potential and lower order terms
on the existence and regularity of solutions to the
problem:

(− Δ)su − λ
u

|x|2s
+ u

p
� f(x), inΩ,

u> 0, inΩ,

u � 0, inRN \Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Barrios et al. [9] discussed the existence and multi-
plicity of solutions to the following fractional elliptic
equation:

(− Δ)su − λ
u

|x|2s
� u

p
+ μu

q
, inΩ,

u> 0, inΩ,

u � 0, inRN \Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where 0< λ<ΛN,s, 0< q< 1,

1<p<p(λ, s) �
N + 2s − 2αλ
N − 2s − 2αλ

, (6)

and αλ ∈ (0, (N − 2s/2)) is a parameter depending on λ.
*ey shown that problem (5) has at least one solution if
1<p<p(λ, s) and problem (5) has no solution if p>p(λ, s).

Recently, Shang et al. [10] studied the existence and
multiplicity of positive solutions to the following problem:

(− Δ)su − μ
u

|x|2s
� λg(x)u

p
+ K(x)u

2∗s − 1
, inRN

, (7)

where s ∈ (0, 1), N> 2s, 0<p< 2∗s − 1, and 0< μ<ΛN,s.
Some other results of fractional elliptic equations with the
Hardy potential, see [7, 9, 11–14] and references therein.

*e local version of quasilinear problem related to
problem (8) has been considered by Boccardo et al. [15].
*ey analyzed the existence of nontrivial solutions to the
following problem:

− Δpu � |u|r− 2u + λg(u), inΩ,

u> 0, inΩ,

u � 0, on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where Ω ⊂ RN is a smooth bounded domain, 1<p<N,
r>p, g: Ω × R⟶ R is a Carathéodory function, and there
exist constants c1 > 0 and q ∈ (1, p) such that g(s)≤ c1s

q− 1

for any s> 0.
Motivated by the above works, the aim of this paper is to

study the existence of solutions to problem (1) by themethod
of subsuper solutions and taking into advantage the com-
bined effect of concave and convex nonlinearity.

We make the following assumptions:

(F1)

2< r< r(λ, s) ≡
N + 2s − 2αλ
N − 2s − 2αλ

+ 1, (9)

where αλ ∈ (0, ((N − 2s)/2)) is a parameter depending
on λ.
(F2) g: Ω × R⟶ R is Carathéodory function, and
there exist constants c1 > 0 and q ∈ (1, 2), such that, for
any σ > 0,

g(σ)≤ c1σ
q− 1

. (10)

(F3) *e function

u⟶ u
r− 1

+ δg(u) is nondecreasing. (11)

(F4) Define

M0 � lim z⟶ 0+

g(z)

z
, (12)

for all τ > 0,

M1(τ) � inf
0≤z≤ τλ1( )

1/(r− 2)

g(z)

z
, (13)

where λ1 is the first eigenvalue of (− Δ)s in Ω.

Now, we state our main result.

Theorem 1. Suppose (F1) − (F4) hold. 7en, there exists a
positive constant δ0, such that, for all δ ∈ (λ1/M0, δ0],
problem (1) has at least a nonnegative solution if
M0 > (λ1/δ0), where M0 is defined by (12).

Remark 1. In order to prove the above theorem, we study
directly to the pseudodifferential operator, without the
harmonic extension to an extra dimension by transforming
the nonlocal problem into a local problem due to Caffarelli
and Silvestre [16].

Remark 2. To establish the upper bound for r (see (9)), we
consider a radial solution w � A|x|((2s− N)/2)+β with constant
A> 0 to the problem:

(− Δ)s
w − λ

w

|x|2s
� w

r− 1
. (14)

We obtain

Acβ|x|
− 2s+((2s− N)/2)+β

− λA|x|
− 2s+((2s− N)/2)+β

� A
r− 1

|x|
(((2s− N)/2)+β)(r− 1)

,
(15)
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where

cβ ≔
π2sΓ((N + 2s + 2β)/4)Γ((N + 2s − 2β)/4)

Γ((N − 2s − 2β)/4)Γ((N − 2s + 2β)/4)
. (16)

In order to have homogeneity, we have
2s − N

2
+ β �

− 2s

r − 2
. (17)

*us, we deduce that cβ − λ � Ar− 2. Since A> 0, we
conclude that cβ − λ> 0. Note that the map c: [0, ((N −

2s)/2))⟼ (0,ΛN,s] is decreasing about β, see [17, 18].
Hence, there is a unique element αλ such that cαλ � λ. *us,
we have αλ > β, that is,

αλ >
− 2s

r − 2
+

N − 2s

2
, (18)

which implies that

r<
N + 2s − 2αλ
N − 2s − 2αλ

+ 1 ≔ r(λ, s). (19)

*erefore, we can construct a supersolution to problem
(1) for r< r(λ, s), just modifying the w found above. *us,
r(λ, s) is the threshold for the existence to problem (1).

Now, we consider the nonexistence of solution to
problem (1).

Theorem 2. Suppose (F1) − (F4) hold. 7en, problem (1)
has no solution in Hs

0 if for some τ > 1, M1(τ)> 0, and
δ > λ1/M1(τ), where M0 and M1 are defined by (12) and (13),
respectively.

*e following two examples also appeared in [15].

Remark 3. An example of function g(σ) ≡ σq with 0< q< 1,
which satisfies conditions (10) and (11) for any δ ∈ (0, δ0],
such that problem (1) has at least one positive solution. In
this condition M0 �∞, by (52), we have
ηr− qc− 1

1 C
2− q
1 (C1 − Cr

1)≥ δ. Define

Φ C1(  � ηr− q
c

− 1
1 C

2− q
1 C1 − C

r
1( . (20)

It is easy to see that

d

dC1
Φ C1(  � 0⟺C1 � C1,0 ≔

3 − q

2 − q + r
 

1/(r− 1)

.

(21)

We have to prove that δ is smaller than the minimum of
Φ(C1). *erefore, we have

δ0 � Φ C1,0  � ηr− q
c

− 1
1

3 − q

2 − q + r
 

1/(r− 1) 3 − q

2 − q + r
 

(2− q)/(r− 1)

−
3 − q

2 − q + r
 

(1− q+r)/(r− 1)

⎡⎣ ⎤⎦. (22)

Moreover, by (10) and (13), we have for any τ > 1,

M1(τ)δ0 ≤M1(1)δ0 ≤ c1δ0 inf
0<z≤λ1/(r− 2)

1

|z|
q− 2 ≡ c1δ0λ

(q− 2)/(r− 2)
1 .

(23)

*us, for any τ > 1, M1(τ)≤ c1λ
(q− 2)/(r− 2)
1 . Hence, prob-

lem (1) has no solution at least δ > c1λ
(r− q)/(r− 2)
1 .*erefore, the

result of the above theorem is more general than [9].

Remark 4. We consider the function

g(σ) �
σ|σ|θ− 1

1 + σ|σ|α− 1, (24)

for 0< α< θ< 1. We easily deduce that conditions (10) and
(11) are fulfilled and M0 �∞. On the contrary,

M1(τ) � inf
0≤z≤ τλ1( )

1/(r− 2)

zθ− 1

1 + zα. (25)

If α> θ − 1, the function zθ− 1/(1 + zα) is monotone
decreasing for z≥ 0. *en,

M1(τ) �
τλ1( 

(θ− 1)/(r− 2)

1 + τλ1( 
α/(r− 2)

. (26)

Similarly, in this case, problem (1) has no solution
provided

δ > λ(r− θ− 1)/(r− 2)
1 1 + λα/(r− 2)

1 . (27)

Remark 5. *e function τ⟶M1(τ) is nonincreasing.
Hence, if δ > λ1/M1(τ0), for some τ0 > 1, the results of
*eorem 1 will be true for any τ > τ0.

*e paper is organized as follows. In Section 2, we
present some definitions and preliminary tools, which will
be used in the Proof of *eorems 1 and 2. *e Proof of
*eorems 1 and 2 are given in Section 3 and Section 4,
respectively.

2. Preliminaries and Function Setting

In this section, we recall some known results for reader’s
convenience.

Denote the space

L
s ≔ u: R

N⟶ R ismeasurable: 
RN

|u(x)|

1 +|x|N+2s
 

dx<∞
⎧⎨

⎩

⎫⎬

⎭,

(28)

equipped with the norm

‖u‖Ls ≔ 
RN

|u(x)|

1 +|x|N+2s 
dx. (29)
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LetΩ be an open subset ofRN. Given u ∈Ls and φ in the
Schwartz class, the distribution (− Δ)su inD′(Ω) is defined as

〈(− Δ)s
u,φ〉 � 

RN
u(− Δ)sφdx, for any φ ∈ C

∞
c (Ω).

(30)

We give some useful facts for the fractional Sobolev
space.

Definition 1. Let s ∈ (0, 1), and define the fractional Sobolev
space:

H
s
R

N
  � u ∈ L

2
R

N
 : |ξ|

s
u ∈ L

2
R

N
  . (31)

We need to consider the space Xs
0(Ω), which is defined

as

X
s
0(Ω) � u ∈ H

s
R

N
 , u � 0 a.e. inRN

\Ω , (32)

with the norm

‖u‖Xs
0(Ω) � 

Q

|u(x) − u(y)|2

|x − y|N+2s
dx dy 

1/2

, (33)

whereQ � R2N\(Ωc ×Ωc).*e pair (Xs
0(Ω), ‖.‖Xs

0(Ω)) yields
a Hilibert space (see Lemma 7 in [19]).

We have to use the classical Sobolev theorem.

Theorem 3 (see [20],*eorem 6.5). Let s ∈ (0, 1), then there
exists a positive constant S � S(N, s), such that, for any
measurable and compactly supported function u: RN⟶ R,
we have

‖u‖
2
L2∗s RN( )
≤ S

RN

RN

|u(x) − u(y)|2

|x − y|N+2s
dx dy, (34)

where 2∗s is the so-called Sobolev critical exponent.

In this paper, we consider the existences of energy so-
lution to problem (1) with the critical and subcritical cases.

Definition 2. We say that u ∈ Xs
0(Ω) is an energy solution to

problem (1), if for any φ ∈ Xs
0(Ω),


Ω

|u|
r− 2

uφdx<∞,


Ω

uφ
|x|2s

dx<∞,

C(N, s)

2


Q

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s
dx dy

− λ
Ω

uφ
|x|2s

dx

� 
Ω

u
r− 1φdx + δ

Ω
g(u)φdx.

(35)

We also need to consider the weak solution to problem (1).

Definition 3. We say that u ∈ L1(Ω) is a weak solution to
problem (1), if u≥ 0 a.e. in Ω, u � 0 in RN \Ω,


Ω

λ
u

|x|2s
+ u

r− 1
+ δg(u) δsdx<∞, (36)

and for all φ ∈ C2s+β(Ω)∩Cs(Ω), β> 0,


Ω

u(− Δ)sφdx � 
Ω

λ
u

|x|2s
+ u

r− 1
+ δg(u) φdx, (37)

where φ � 0 in RN \Ω and δ(x) ≔ dist(x, zΩ).

Definition 4. If u satisfies

(− Δ)su − λ
u

|x|2s
≥ u

r− 1
+ δg(u), inΩ,

u≥ 0, inRN \Ω,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

in the weak sense, we say that u is a supersolution to problem
(1).

If u satisfies

(− Δ)su − λ
u

|x|2s
≤ u

r− 1
+ δg(u), inΩ,

u≤ 0, inRN \Ω,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

in the weak sense, we say that u is a subsolution to problem
(1).

Now, we recall the comparison lemma.

Lemma 1 (see [9]). Let u ∈ Hs(RN) and v ∈ Hs(RN) be
solutions, respectively, to

(− Δ)su � f1, inΩ,

u � g1, inRN \Ω,


(− Δ)sv � f2, inΩ,

v � g2, inRN \Ω.


(40)

7en, u(x) ≤ v(x) for all x ∈ RN if f1 ≤f2 and g1 ≤g2.

For the supercritical case, we need a prior regularity
result, see [9], Lemma 2.2.

Lemma 2. Given f ∈ L1(Ω, δs(x)dx), where δ(x) �

dist(x, zΩ). 7ere exists a unique weak solution v(x) ∈
L1(Ω) to

(− Δ)sv � f, inΩ,

v � 0, inRN \Ω,
 (41)

in the sense that


Ω

v(− Δ)sϑ � 
Ω

fϑ, (42)

for all ϑ ∈ C2(Ω) with ϑ � 0 in RN \Ω.

Moreover, ‖v‖L1(Ω) ≤C‖f‖L1(Ω,δs(x)dx), for some constant
C independent of f. In addition, if f≥ 0

4 Complexity



(− Δ)sv � f, inΩ,

v≥ 0, inRN \Ω.
 (43)

*en, v≥ 0 a.e. inΩ.

3. The Existence Result

We are now ready to prove*eorem 1 by employing the idea
contained in [9, 15], whose proof will be split into several
steps.

Proof of 7eorem 1.
Step 1: subsolution to problem (1). We first consider the

eigenvalue problem:

(− Δ)sφ1 � λ1φ1, inΩ,

φ1 � 0, inRN \Ω.
 (44)

Note that the eigenfunction φ1 ≥ 0 belongs to
Xs

0 ∩L∞(Ω).
Suppose δM0 > λ1, where M0 is given in (12), by (F4),
for all δ ∈ (λ1/M0, δ0], taking t small enough, we have

g tφ1( 

tφ1
>
λ1
δ

. (45)

*erefore, for x ∈ Ω,

(− Δ)s
tφ1(  � λ1tφ1 < δg tφ1( ≤ δg tφ1(  + tφ1( 

r− 1
+ λ

tφ1

|x|2s
.

(46)

*erefore,

(− Δ)s tφ1( ≤ δg tφ1(  + tφ1( 
r− 1

+ λ
tφ1

|x|2s
, inΩ,

tφ1 � 0, inRN \Ω.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(47)

*us, u ≔ tφ1 is a subsolution to problem (1).
Next, we consider supersolution to problem (1) in the
subcritical and supercritical case, respectively.
Step 2: supersolution for subcritical and critical case:
2< r≤ 2∗s . We look for a supersolution of the form
w(x) ≔ A|x|− β with A≥ 0 and β> 0 as real parameters
and verify

β<
N − 2s

2
. (48)

Since r≤ 2∗s , we obtain

(r − 1)β< β + 2s, (49)

βr<N. (50)

By (49), we deduce that

(− Δ)s
w − λ

w

|x|2s
≥w

r− 1
, inΩ, (51)

for the appropriate choice of A.
Let η ≔ infΩw> 0. Taking u � C1w with 0<C1 < 1,
which is a suitable constant such that, for δ small
enough, and by (10) we have

ηr− p ≥
δc1

C
1− q
1 C1 − Cr

1( 
, (52)

where δ appears in (1).
By (52), we obtain

− Δs( )u − λ
u

|x|2s
≥ u

r− 1
+ δg(u), inΩ,

u≥ 0, inRN \Ω.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(53)

*us, we have concluded that C1w is a supersoution to
(1) for 2< r≤ 2∗s . Moreover, by (48) and (50), we obtain
that

u ∈ L
r
(Ω),

u2

|x|2s
∈ L

1
(Ω).

(54)

Define wj  in L1(RN) is the weak solution to

(− Δ)sωj+1 � wr− 1
j + λ

wj

|x|2s
+ δg wj , inΩ,

ωj+1 � 0, inRN \Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(55)

for j≥ 1 and w0 ≔ u. We now check that this definition
makes sense and wj  are monotone and satisfy

0≤ u ≤w1 ≤w2 ≤ · · · ≤wj ≤wj+1 ≤ · · · ≤ u a.e.Ω. (56)
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For u, there is nothing to prove. Suppose the result is
true up to order j. *en,

(− Δ)swj+1 � wr− 1
j + λ

wj

|x|2s
+ δg wj ,

≤ ur− 1 + λ
u

|x|2s
+ δg(u), inΩ,

ωj+1 � 0, inRN \Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

So wj  is well-defined by (54) and Lemma 2. By the
induction hypothesis, for x ∈ Ω,

(− Δ)s
wj+1 − wj 

� w
r− 1
j − w

r− 1
j− 1  + λ

wj − wj− 1 

x|2s


+ δ g wj  − g wj− 1  

≥ 0,

(58)

and wj+1 − wj � 0, inRN \Ω. *en, by Lemma 1, we
obtain wj+1 ≥wj inΩ.
Similarly, for any x ∈ Ω,

(− Δ)s
u − wj ≥ u

r− 1
− w

r− 1
j  + λ

u − wj 

|x|2s
+ δ g(u)(

− g wj ≥ 0,

(59)

and u − wj+1 ≥ 0 inRN \Ω. *en, wj+1 ≤ u a.e. inΩ. We
conclude that (56) holds.
We can define uδ ≔ limj⟶∞wj in L1(Ω). Moreover,
by (9), (54), and (56),

(− Δ)s/2
wj

�����

�����L2 RN( )
� λ
Ω

wjwj− 1

|x|2s
dx + 

Ω
wjw

r− 1
j− 1dx

+ δ
Ω

wjg wj− 1 dx

≤ λ
Ω

u2

|x|2s
dx + 

Ω
u

rdx

+ δc1
Ω

u
qdx≤C.

(60)

Hence, up to a subsequence, we know that wj⇀uδ in
Xs

0(Ω). By monotony, the whole sequence weakly con-
verges. *erefore, we can pass to the limit in (55) and
conclude that uδ ≥ 0 is a minimal energy solution of (1).
Step 3: supersolution for supercritical case:
2∗s < r< r(λ, s). If r< r(λ, s), where r(λ, s) is given in

(9). For constant A≥ 0, there exists a radial function
v(x) ≔ A|x|− 2s/(r− 2) such that

(− Δ)s
v − λ

v

|x|2s
� v

r− 1
, inRN

. (61)

Since r> 2∗s > ((2N − 2s)/(N − 2s)), then

v ∈ L
r− 1
loc R

N
 ,

v

|x|2s
∈ L

1
loc R

N
 .

(62)

Taking u � C1v, where the constant C1 > 0 is given by
(54), we obtain

(− Δ)su − λ
u

|x|2s
≥ u

r− 1
+ δg(u), inΩ,

u> 0, inRN \Ω.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(63)

Moreover by (62), u≥ 0 satisfies (36). By Lemma 2,
define wj  to be the weak solutions of (55). Moreover,
similarly, by the induction hypothesis, we can conclude
that

0≤ u ≤w1 ≤w2 ≤ · · · ≤wj ≤wj+1 ≤ · · · ≤ u a.e.Ω.

(64)

Note that (F2) and (F4) hold, for all δ ∈ (λ1/M0, δ0],
define w1 as the solution of

(− Δ)sw1 � ur− 1 + λ
u

|x|2s
+ δg u( , inΩ,

w1 > 0, inΩ,

w1 � 0, inRN \Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

Set

F u(  � ur− 1 + λ
u

|x|2s
+ δg u(  � tφ1( 

r− 1
+ λ

tφ1

|x|2s
+ δg tφ1( .

(66)

*en, w1 ∈W
1,p
0 ∩L∞(Ω). By (44), we obtain that

(− Δ)sw1 � F u( ≥ (− Δ)s u, inΩ,

w1 � 0, inRN \Ω.
 (67)

We deduce from the comparison principle that u ≤w1
in Ω.
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On the contrary, by (11), the function F is nonde-
creasing. *erefore,

(− Δ)su≥F(u)≥F u(  � (− Δ)sw1, inΩ,

u≥w1, inRN \Ω.


(68)

By the comparison principle we deduce that w1 ≤ u in Ω.
In particular, for all x ∈ Ω, wj  is a nondecreasing
sequence which is bounded. *erefore, wj  monotone
converges in L1(RN) to a weak nonnegative solution uδ
to (1) for 2∗s < r< r(λ, s).
*erefore, for δ small enough, we have built a minimal
solution in both subcritical and supercritical case. Let

M � sup δ > 0: problem (1) has a solution , (69)

that is, we show that M> 0.
Step 4: M<∞, for 2< r< r(λ, s). We consider the
following eigenvalue problem with the Hardy potential:

(− Δ)sψ1 − λ
ψ1

|x|2s
� λ1ψ1, inΩ,

ψ1 � 0, inRN \Ω.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(70)

Since 0< λ<ΛN,s, problem (70) is well defined. Taking
ψ1 as a test function in problem (1), we obtain that

C(N, s)

2


Q

ψ1(x) − ψ1(y)( (u(x) − u(y))

|x − y|N+2s
dx dy − λ

Ω

ψ1u

x|2s


dx

� 
Ω

u
r− 1ψ1dx + δ

Ω
g(u)ψ1dx.

(71)
Since ψ1 is a solution to (70), it follows that


Ω

u
r− 1

+ δg(u) ψ1dx � λ1
Ω

uψ1dx. (72)

If 2∗s < r< r(λ, s). Taking φ1 as a test function in (1),
where φ1 ≥ 0 is solution to problem (44), we have


Ω

u(− Δ)sφ1dx � 
Ω

λ
u

|x|2s
+ u

r− 1
+ δg(u) φ1dx

≥
Ω

u
r− 1

+ δg(u) φ1dx.

(73)

Moreover, φ1 is also a classical solution (see Remark 2.1
in [21]). From (72), we immediately deduce that

λ1
Ω

uφ1dx≥
Ω

u
r− 1

+ δg(u) φ1dx. (74)

Since there exist structural positive constants b0 and b1
such that |t|r− 2t + δg(t)> b0δ

b1t, for any t> 0. From
(70) and (73), we obtain that b0δ

b1 < λ1. *is implies
that M<∞ for r< r(λ, s).
We complete the Proof of *eorem 1. □

4. Nonexistence Result

In this section, we consider the nonexistence of solution to
problem (1) in Hs

0.

Proof of 7eorem 2. Suppose that problem (1) has a solution
u ∈ Hs

0 under the conditions of *eorem 2. *en, there
exists a constant δ > 0 such that δφ1 ≤ u inΩ, where φ1 is the
first eigenfunction of (− Δ)s, that is, φ1 satisfies (44).

Let μ ∈ (λ1, λ1 + ε), where ε> 0 is a small constant.
Denote ψ � δφ1. *en, we have

(− Δ)sψ � λ1ψ ≤ μψ < λ1 + ε( u, inΩ,

ψ � 0, inRN \Ω.
 (75)

Furthermore, for any τ > 1, δ < λ1/M1(τ); then, for ε
small enough, we deduce that

λ1 + ε( u≤ ur− 1 + δg(u) + λ
u

|x|2s
≡ (− Δ)s

u, inΩ,

u � 0, inRN \Ω.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(76)

*us, according to (75) and (76), we have
(− Δ)sψ ≤ μψ, inΩ,

(− Δ)su≥ μu, inΩ,

u≥ψ, inΩ,

u � ψ � 0, inRN \Ω.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(77)

Hence, it is possible to construct the subsolution and
supersolution to the problem:

(− Δ)su � μu, inΩ,

u � 0, inRN \Ω,
 (78)

with μ ∈ (λ1, λ1 + ε). However, this is impossible. □
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In this work, a novel 6D four-wing hyperchaotic system with a line equilibrium based on a flux-controlled memristor model is
proposed. ,e novel system is inspired from an existing 5D four-wing hyperchaotic system introduced by Zarei (2015).
Fundamental properties of the novel system are discussed, and its complex behaviors are characterized using phase portraits,
Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. When a suitable set of parameters are chosen, the
system exhibits a rich repertoire of dynamic behaviors including double-period bifurcation of the quasiperiod, a single two-wing,
and four-wing chaotic attractors. Further analysis of the novel system shows that themultiple coexisting attractors can be observed
with different system parameter values and initial values. Moreover, the feasibility of the proposed mathematical model is also
presented by using Multisim simulations based on an electronic analog of the model. Finally, the active control method is used to
design the appropriate controller to realize the synchronization between the proposed 6Dmemristive hyperchaotic system and the
6D hyperchaotic Yang system with different structures. ,e Routh–Hurwitz criterion is used to prove the rationality of the
controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations.

1. Introduction

Since the 1960s, nonlinear science has developed rapidly in
various branches of disciplines. ,e in-depth study of
nonlinear science not only has important theoretical value to
the academic community, but also has a broad prospect for
the practical application in life [1]. Chaos is one of the most
important subjects in nonlinear motion, which creates a new
situation of nonlinear science. Since the discovery of chaotic
motion, chaotic dynamics has made rapid progress, and
scientists from all over the world have made in-depth
analysis and research on the characteristics of chaos [2–7].
Chaotic motion is a random behavior occurring in a defined
nonlinear system. It is highly sensitive to initial conditions,

has complex dynamic properties, and is difficult to predict.
At present, it is widely used in complex networks [8–11],
electronic circuits [12–15], image processing [16–20], ran-
dom number generator [21–23], secure communication
[24, 25], and other engineering fields.

For the application of chaos in engineering, it is
sometimes a key problem to generate a chaotic attractor with
a complex topological structure. Most research in this field
has been focused on the multiwing attractors [26–28],
multiscroll attractors [29–32], and chaotic systems in the
fractional-order form [33–35]. More and more articles are
written on this topic every day, and numerous articles are
devoted to explain the new high-dimensional chaotic sys-
tems and more complicated topological structure.
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Compared with chaotic systems, hyperchaotic systems
have more complex dynamic behaviors, which have two or
more positive Lyapunov indices, more complex topological
structures, and more unpredictable dynamic behaviors and
are more difficult to crack. ,e most common method to
construct hyperchaotic systems is to introduce new variables
to the proposed chaotic systems to increase the dimensions
of the differential equations and increase the nonlinear
terms. Since the discovery of a first 4D hyperchaotic system
by Rossler in 1979 [36], many 4D hyperchaotic systems have
been found in the literature such as hyperchaotic Lorenz
system [37], hyperchaotic Chen system [38], hyperchaotic
Lü system [39], hyperchaotic Yu system [40], hyperchaotic
Wang system [41], and hyperchaotic Vaidyanathan system
[42]. Recently, people have developed a strong interest in
searching for 5D and 6D hyperchaotic systems with more
complex dynamic behavior and such 5D and 6D hyper-
chaotic systems have been found in the literature such as
hyperchaotic Vaidyanathan system [43], hyperchaotic
Kemih system [44], hyperchaotic Lorenz system [45], and
hyperchaotic Yang system [46]. Hyperchaotic systems can
also produce multiscroll or multiwing attractors, which is a
very important phenomenon. In recent years, some four-
wing hyperchaotic attractors have appeared [47, 48]. ,ese
attractors generally have five equilibrium points, and each
wing hovers near a nonzero equilibrium point. ,e three or
five equilibrium points of the chaotic system are very im-
portant, especially in the multiscroll or multiwing chaotic
system, but the multiscroll or multiwing hyperchaotic
attractor with a linear equilibrium point is exciting.

Memristor is a nonlinear passive element with nonlin-
earity and nonvolatility. In recent years, the research work
has made gratifying progress, and the application of various
memristors has become a research hotspot [49–51]. In 2008,
scientists at HP LABS successfully built the first physically
realized memristor [52], confirming the prediction of pro-
fessor Chua in 1971 [53]. Since then, memristors have re-
ceived extensive attention and research. Due to its small size
and low power consumption, a memristor is an ideal choice
for nonlinear circuits in chaos [54].,e commonmethods to
produce hyperchaos are the linear feedback method and the
nonlinear feedback method. Among them, the nonlinear
feedback method is better than the linear feedback method.
However, the product term of the nonlinear function makes
the realization circuit more complex. If the memristor is
used as the nonlinear feedback, it will greatly reduce the
difficulty of circuit realization. At the same time, the
memory ability of a memristor to flow through current is not
possessed by conventional chaotic circuit elements [55].
,erefore, it is of practical significance to study the appli-
cation of a memristor in a hyperchaotic system, and various
hyperchaotic systems based on memristors have been paid
close attention by researchers [56–59].

In order to construct memristive hyperchaotic systems
with more complex dynamics, some kind of 5D and 6D
memristive hyperchaotic systems have been proposed re-
cently [60–62]. In [60], a novel 5D hyperchaotic four-wing
memristive system (HFWMS) was proposed by introducing
a flux-controlled memristor with quadratic nonlinearity into

a 4D hyperchaotic system as a feedback term. ,e HFWMS
with multiline equilibrium and three positive Lyapunov
exponents presented very complex dynamic characteristics,
such as the existence of chaos, hyperchaos, limit cycles, and
periods. In [62], a 6D autonomous system was presented by
introducing a flux-controlled memristor model into an
existing 5D hyperchaotic autonomous system, which
exhibited hyperchaotic under a line or a plane of equilibria.
Some other attractive dynamics were also observed, like
hidden extreme multistability, transient chaos, bursting, and
offset boosting phenomenon. It can be seen that such super-
high-dimensional attractors cannot be ignored. Because of
their complexity, the generated signals are usually suitable
for secure communication and random number generation,
so the super-high-dimensional attractors will be an added
value to their randomness.

Coexistence of multiple attractors is a kind of singular
physical phenomenon often encountered in a nonlinear
dynamic system. Under the condition of constant system
parameters, when the initial state is changed, the trajectory
of the system may asymptotically approach different stable
states such as trend point, chaos, period, and quasiperiod
[15, 23, 46]. In some special coupling systems and novel
memristive chaotic systems, the coexistence of infinite
number of attractors can also be observed [62]. Common
multiple coexisting attractors generally have symmetry,
and there is symmetric coexistence of left and right or
upper and lower attractors. Recently, it has been found that
the coexistence of asymmetric multiattractors also exists in
some special systems, which is a new nonlinear phenom-
enon [61, 62]. Multiple coexisting attractors provide a great
degree of freedom for the engineering application of
nonlinear dynamic systems and also present a new chal-
lenge to the multistability state switching control tech-
nology. ,erefore, the study of multiple coexisting
attractors and their synchronization has important theo-
retical physical significance and engineering application
value.

With the rapid development of network communication
technology, the confidentiality of information and the se-
curity of the system is not considered complete, resulting in
increasingly serious information security problems. Infor-
mation security technology mainly includes monitoring,
scanning, detection, encryption, authentication, and attack
prevention [63–72]. Due to the characteristics of chaotic
systems such as aperiodic, continuous wideband, and noise-
like, the use of chaotic synchronization has more stringent
communication confidentiality, so it has received great at-
tention in the field of information security. Pecora and
Carroll [73] first proposed the concept of chaotic syn-
chronization in 1990 and observed the phenomenon of
chaotic synchronization on electronic circuits. ,is pio-
neering work greatly promoted the study of chaotic syn-
chronization theory. Since then, complete synchronization
[74], antisynchronization [40], generalized synchronization
[75], projection synchronization [76, 77], lag synchroniza-
tion [78], function projection synchronization [79], and
shape synchronization [80] methods have been widely
studied in the literature.
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In this paper, a novel 6D memristive hyperchaotic
system is proposed based on a flux-controlled memristor
model and the 5D hyperchaotic system introduced in [48].
Most importantly, the novel system generates the striking
phenomenon of multiple coexisting chaotic attractors and
exhibits hyperchaos with a line equilibrium. Under certain
parameters and initial conditions, the system exits double-
period bifurcation of the quasiperiod, which can produce
four-wing hyperchaotic and chaotic attractors. A notable
feature of the new system is the ability to generate two-wing
and four-wing smooth chaotic attractors with special ap-
pearance. ,en, an electronic circuit realization of the novel
6D memristive four-wing hyperchaotic system is presented
to confirm the feasibility of the theoretical model. Finally, an
adaptive active controller is designed to realize the global
hyperchaos synchronization of the novel 6D memristive
four-wing hyperchaotic systems and the 6D Yang hyper-
chaotic system with different structures.

,e rest of this work is structured as follows: In Section 2,
the mathematical model of the novel 6D memristive
hyperchaotic system that can generate two-wing and four-
wing attractors is introduced. Numerical findings of the
novel 6D memristive hyperchaotic system are carried out in
Section 3 by using classical nonlinear diagnostic tools. ,e
multiple coexisting attractors of the system are investigated,
and the spectral entropy complexity is also reported. Some
Multisim simulations based on a suitable designed electronic
analog circuit diagram of the model are carried out to show
its feasibility in Section 4. In Section 5, the novel chaotic
system’s active control synchronization is derived. Finally,
Section 6 draws the concluding remarks of this work.

2. A Novel 6D Memristive Four-Wing
Hyperchaotic System

Recently, Zarei [48] proposed a 5D hyperchaotic system,
whose differential equation can be described as

_x � − ax + yz,

_y � − by + fu,

_z � − cz + xy + gw,

_w � dw − hz,

_u � eu − x2y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x, y, z, w, and u are the state variables of the system
and a, b, c, d, e, f, g, and h are the system parameters. ,e
system has many interesting complex dynamical behaviors
such as periodic orbit, chaos, and hyperchaos with only one
equilibrium point. When proper system parameters and
initial values are selected, the system can exhibit four-wing
hyperchaotic attractors. ,e system has been well studied in
[48], which shows the coexistence attractor and hyper-
chaotic attractor of two positive Lyapunov exponents.
However, memristor chaos is not part of this feature. Our
goal is to construct a high-dimensional system with coex-
istence attractors and memristor, thus forming a system of
ordinary differential equations of memristive four-wing
high-dimensional hyperchaos.

Memristor is a passive two-terminal device that de-
scribes the relationship between magnetic flux φ and charge
q. ,e memristor used in this work is a flux-controlled
memristor, which is described by the nonlinear constitutive
relation between the terminal voltage u and the terminal
current i of the device, i.e.,

i � W(φ)u, _φ � u, (2)

where W(φ) is a memductance function which is called the
incremental memductance, defined as W(φ) ≡ dq(φ)/φ.

In this paper, the φ − q characteristic curve of the
memristor is given by a smooth continuous cubic mono-
tone-increasing nonlinearity, i.e., q(φ) � m + nφ3, where
m, n> 0. ,us, the memductance in this paper is given by

W(φ) � m + 3nφ2
. (3)

By introducing the lux-controlled memristor model (3)
into the second equation of system (1), a novel 6D mem-
ristive autonomous hyperchaotic system is constructed

_x � − ax + yz,

_y � − by + f m + 3nφ2( u,

_z � − cz + xy + gw,

_w � dw − hz,

_u � eu − x2y,

_φ � u,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where x, y, z, w, u, andφ are the state variables;
a, b, c, d, e, f, g, h, m, and n are the system parameters.
When a � 10, b � 60, c � 20, d � 15, e � 40, f � 1, g � 50,

h � 10, m � 1, 3n � 0.02, and the initial condition is set to
[1, 1, 1, 1, 1, 1], we use the Runge–Kutta algorithm (RK45)
to solve the differential equation. Figure 1 shows the
phase portraits of system (4) obtained through MATLAB
simulation. It can be seen from the figure that the pro-
posed system presents four-wing chaos in different phase
planes.

In general, symmetry is widespread in chaotic systems,
and system (4) is invariant under the coordinate transfor-
mation (x, y, z, w, u,φ)⟶ (− x, − y, z, w, − u, − φ) and has
the same symmetry as the original 5D system (1).

Let the six equations at the right end of system (4) be
zero, and the equilibrium point of system (4) can be obtained
by solving the following equations:

− ax + yz � 0,

− by + f m + 3nφ2( u � 0,

− cz + xy + gw � 0,

dw − hz � 0,

eu − x2y � 0,

u � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

According to equation (5), system (4) has a line equi-
librium point O � (x, y, z, w, u,φ) | x � y � z � w � 0,

u � 0,φ � l}, which means that every point on the φ-axis is
the system equilibrium point, where l is an arbitrary real
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constant.,e Jacobianmatrix at the line equilibrium pointO

of system (4) is

Jo �

− a z y 0 0 0

0 − b 0 0 f m + 3nφ2(  6fnφu

y x − c g 0 0

0 0 − h d 0 0

− 2xy − x2 0 0 e 0

0 0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

According to (6), the characteristic equation can be
obtained:

λ(λ − e)(λ + a)(λ + b) λ − m1(  λ − m2(  � 0, (7)

where

m1 �
(d − c) +

�����������������

(c − d)2 − 4(gh − cd)



2
,

m2 �
(d − c) −

�����������������

(c − d)2 − 4(gh − cd)



2
.

(8)

According to the characteristic equation and system
parameters, λ1 � 0, λ2 � 40, λ3 � − 10, λ4 � − 60, λ5 � − 2.5+

13.9194i, and λ6 � − 2.5 − 13.9194i can be obtained. ,ere-
fore, there are one positive eigenvalue, one zero eigenvalue,
and two negative eigenvalues, and the line equilibrium of
system (4) is unstable saddle points.

,e divergence of system (4) is given by

∇V �
d _x

dx
+

d _y

dy
+

d _z

dz
+

d _w

dw
+

d _u

du
+

d _φ
dφ

� − a − b − c + d + e,

(9)

since − a + b − c − e � − 35 satisfies ∇V< 0, system (4) is
dissipative and converges exponentially.

3. DynamicAnalysis of theNovel 6DMemristive
Chaotic System

In this section, with the help of a bifurcation diagram,
Lyapunov exponent spectrum, and phase portraits, we will
use the fourth-order Runge–Kutta algorithm to numerically
study the complex dynamic behavior of system (4) by
MATLAB.

3.1. Fix Other Parameters and Change Parameter a. Given
parameters b � 60, c � 20, d � 15, e � 40, f � 1, g � 50, h �

10, m � 1, and 3n � 0.02 and initial conditions (0) � 1,

y(0) � 1, z(0) � 1, w(0) � 1, u(0) � 1, andφ(0) � 1, let
parameter a be the bifurcation parameter of system (4),
where Figure 2(a) shows the bifurcation diagram when
system parameter a changes from 0 to 12, and Figure 2(b)
shows the corresponding Lyapunov exponent spectrum. It
can be seen from Figure 2 that the system is chaotic in
[0, 4.6] and hyperchaotic in (4.6, 12]. When a � 12, the
value of the Lyapunov exponent is 12.56, which is the
maximum value of the simulation interval and larger than
the maximum Lyapunov exponent of system (1)
(LEmax � 9.979). Suffice it to say, the introduction of a
memristor can make the system more complex. When
a � 10, we use the famous wolf method to calculate the
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Figure 1: ,e four-wing chaotic attractor of system (4) in the (a) y − u − x plane, (b) y − z plane, (c) x − z plane, and (d) time-domain
waveform of x − u.
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Lyapunov exponents. ,e LEs are LE1�10.16,LE2�2.187,

LE3�0.0136, LE4�− 0.5759, LE5�− 16.08, and LE6� − 18.86.
,ere are two positive Lyapunov exponents, so system (4) is
hyperchaotic. Based on the Lyapunov exponents, we also get
the Kaplan–Yorke dimension that describes the complexity
of the attractor. It can be computed by

DKY � D + 
D

i�1

LEi

LED



, (10)

where D is a constant satisfying 
D
i�1 LEi ≥ 0 and


D+1
i�1 LEi < 0. According to equation (10), the Kaplan–Yorke

dimension of system (4) is 4.7723, so the attractors generated
by the new system are strange attractors.

3.2. Fix Other Parameters and Change Parameter d.
Given parameters a � 10, b � 60, c � 20, e � 40, f � 1,

g � 50, h � 10, m � 1, and 3n � 0.02 and initial conditions
(0) � 1, y(0) � 1, z(0) � 1, w(0) � 1, u(0) � 1, andφ(0) �

1, when parameter d ∈ [− 10, 20], Figure 3(a) shows the
bifurcation diagram changing with parameter d, and
Figure 3(b) shows the corresponding Lyapunov exponent
spectrum. It can be seen from Figure 3 that the system has
doubly periodic bifurcation, chaos, and hyperchaos phe-
nomena. ,e double-period bifurcation simulated in this
paper is different from the simulation results of most papers,
which are double-period bifurcation of the period, while in
this paper, it is the double-period bifurcation of the qua-
siperiod. Table 1 gives a summary of dynamic characteristics
of parameter d. ,e following analysis shows the dynamic
behavior with respect to parameter d:

(i) When d � − 2, the maximum Lyapunov exponent of
system (4) is zero (LE1,2 � 0, LE3,4,5,6 < 0), and the
system is in a quasiperiodic 1 state. Figure 4(a)
shows the corresponding phase portraits;

(ii) When d � − 1, the maximum Lyapunov exponent of
system (4) is zero (LE1,2 � 0, LE3,4,5,6 < 0), and the
system is in a quasiperiodic 2 state. Figure 4(b)
shows the corresponding phase portraits;

(iii) When d � 0, system (4) has a positive Lyapunov
exponent (LE1 > 0, LE2 � 0, LE3,4,5,6 < 0), and the

system behaves as a two-wing chaotic attractor state.
,e corresponding phase portrait is shown in
Figure 4(c);

(iv) When d � 16, system (4) has two positive Lyapunov
exponents (LE1,2 > 0, LE3 � 0, and LE4,5,6 < 0), and
the system is in a four-wing hyperchaos state. ,e
corresponding four-wing phase portrait is shown in
Figure 4(d).

3.3. Multiple Coexisting Attractors. In this section, we will
study the multiple coexisting attractors of the proposed 6D
memristive hyperchaotic system. Fixed system parameters
are a � 10, b � 60, c � 20, e � 40, f � 1, g � 50, h � 10, m �

1, and 3n � 0.02. When d � − 3 and d � − 0.5, two different
initial conditions [1, 1, 1, 1, 1, 1] and [1, 1, − 1, 1, 1, 1] are
taken to observe the phenomenon of coexistence quasipe-
riodic 1 and coexistence quasiperiodic 2 as shown in
Figures 5(a) and 5(b). When d � 0, two different initial
conditions [1, 1, 1, 1, 1, 1] and [− 1, 1, 1, 1, 1, 1] are taken to
observe the coexistence of two-wing chaotic attractors
presented in Figure 5(c). Choosing d � 15 and taking two
different initial conditions [1, 1, 0.001, 1, 1, 1] and
[1, 1, − 0.001, 1, 1, 1], the coexistence of four-wing hyper-
chaotic attractors is observed in Figure 5(d).When d � − 7 is
selected, the initial conditions [1, 1, 1, 1, 1, 1],
[− 1, 1, 1, 1, 1, 1], [20, 1, 1, 1, 1, 1], and [− 20, 1, 1, 1, 1, 1] are
selected, as shown in Figure 5(e); there are four quasipe-
riodic attractors coexisting, and the four attractors are
symmetric.

When the system parameters are selected as a � 1, b �

8, c � 1, d � − 20, e � 1, f � 2, g � 1, h � − 1, m � 1, and 3n �

0.02, the phase portraits of system (4) under different initial
conditions are shown in Figure 6. Figure 6(a) shows the
coexistence of four one-wing period-1 attractors, Figure 6(b)
shows the coexistence of four one-wing multiperiod
attractors, Figure 6(c) shows the coexistence of two-wing
multiperiod attractors, and Figure 6(d) shows the coexis-
tence of four two-wing multiperiod attractors. When the
system parameters are selected as a � 1, b � 5,

c � 1, d � − 20, e � 1, f � 2, g � 1, h � − 1, m � 1, and 3n �

0.02, the phase portraits of system (4) under different initial
conditions are shown in Figure 7. In Figure 7(a), two-wing
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Figure 2: Lyapunov exponent spectrum and bifurcation diagram for parameter a ∈ [0, 12]: (a) bifurcation diagram; (b) Lyapunov exponent
spectrum.
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period-1 attractors coexist; in Figure 7(b), two-wing period-
1 attractors coexist; in Figure 7(c), four-wing period-1
attractors coexist; in Figure 7(d), two-wing multiperiod
attractors coexist, among which cyan, red, yellow, and earthy
yellow are one group; black, green, blue, andmagenta are the
other. Figure 8 shows the phase portraits of different
attractors when the initial conditions are [1, 1, 1, 1, 1, 1] and
[1, 1, − 1, 1, 1, 1], but the parameter values in Figures 8(a) and
8(b) are different. ,e parameter values in Figure 8(a) are

fixed to a � 2, b � 6, c � 1, d � − 20, e � 1, f � 2, g � 1, h �

− 1, m � 1, and 3n � 0.02. It can be seen from the figure that
the system has the coexistence of two-wing chaotic attrac-
tors. ,e parameter values in Figure 8(b) are fixed to a �

2, b � 6, c � 2, d � − 2, e � 2, f � 2, g � − 1, h � − 1, m � 1,

and 3n � 0.02. It can be seen from the Figure that the limit
cycle presented by the system is completely symmetric. In
conclusion, the attractors generated by the new system are
symmetric with respect to different initial conditions.

Table 1: Dynamical behavior and Lyapunov exponents under different parameter range of d.

d (LE1, LE2, LE3, LE4, LE5, LE6) Dynamic Figure

[− 10, − 1.2] (0, 0, − , − , − , − ) Quasiperiodic 1 Figure 4(a)
(− 1.2, 0) (0, 0, − , − , − , − ) Quasiperiodic 2 Figure 4(b)
[0, 5] (+, 0, − , − , − , − ) Chaotic Figure 4(c)
(5, 20] (+, +, 0, − , − , − ) Hyperchaotic Figure 4(d)
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Figure 4: ,e phase portraits: (a) quasiperiodic 1, (b) quasiperiodic 2, (c) two-wing chaotic attractor, and (d) four-wing hyperchaotic
attractor.

–500

0

500

x

–10 0 10 20
d

(a)

–10 0 10 20
d

–40

–20

0

20

Ly
ap

un
ov

 ex
po

ne
nt

s

(b)

Figure 3: Lyapunov exponent spectrum and bifurcation diagram for parameter d ∈ [− 10, 20]: (a) bifurcation diagram; (b) Lyapunov
exponent spectrum.
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3.4. Complexity Analysis of Spectral Entropy. Spectral en-
tropy (SE) algorithm is based on the Fourier transform to
calculate the relative power spectrum and the Shannon
entropy to calculate the SE complexity of the sequence,
which reflects the disorder of time series in the frequency
domain [81]. If the spectrum of the sequence is more
complex, the SE of the chaotic system will be larger, making

the system more complex, otherwise the system complexity
is low [82]. Generally, the SE algorithm can be described as
follows: given a chaotic random sequence
x(n), n � 0, 1, 2, . . . , N − 1{ } of length N, x(n) � x(n) − x is
adopted to remove the dc part, where x is the mean value of
the given sequence, and discrete Fourier transform is per-
formed on sequence x(n):
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Figure 5: Various coexisting attractors with different values of parameter d in the x − z plane: (a) d � − 3, (b) d � − 0.5, (c) d � 0, (d) d � 15,
and (e) d � − 7.
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Figure 6: Coexisting attractors in the memristive hyperchaotic system: projections of different attractors on the y − z plane for different
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Symmetric two-wing multiperiod, [− 1, 1, − 1, 1, − 1, − 1] (red), [− 1, − 1, 1, − 1, 1, 1] (blue), [1, − 1, − 1, 1, 1, 1] (green), and [1, 1, 1, − 1, − 1, − 1]

(yellow).
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X(k) � 
N− 1

n�0
x(n)e

− j2πnk/N
, (11)

where k � 0, 1, 2, . . . , N − 1. Taking half the total power of
the calculation sequence for X(k):

pt �
1
N



N/2− 1

k�0
|X(k)|

2
. (12)

According to the total power of the sequence, the relative
power spectrum probability of the sequence is obtained:

pk �
|X(k)|2


N/2− 1
k�0 |X(k)|2

. (13)

,e normalized SE is

SE �
se

ln(N/2)
, (14)

where se � − 
N/2− 1
k�0 Pk lnPk. Using pk and the Shannon

entropy, the spectral entropy of the system is obtained.
,e complexity of system (4) is analyzed by the SE al-

gorithm.,e control parameters a and d of the chaotic system

z

–10

0

10

0 10–10
y

(a)

z

–10

0

10

0 20–20
y

(b)

Figure 8: Various coexisting attractors in the y − z plane under initial conditions [1, 1, ±1, 1, 1, 1]: (a) coexistence of two-wing chaotic
attractors and (b) coexistence of limit cycles.
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Figure 7: Coexisting attractors in the memristive hyperchaotic system: projections of different attractors on the y − z plane for different
initial conditions. (a) Symmetric two-wing period-1, [1, 1, 1, 1, 1, 1] (blue) and [1, − 1, − 1, 1, − 1, 1] (red). (b) Symmetric two-wing mul-
tiperiod, [− 1, 1, 1, 1, 1, − 1] (red) and [− 1, − 1, − 1, − 1, − 1, 1] (blue). (c) Symmetric one-wing period-1, [− 1, − 1, − 1, − 1, − 1, − 1] (red),
[− 1, 1, 1, 1, 1, 1] (blue), [1, 1, 1, − 1, − 1, 1] (green), and [− 1, 1, − 1, − 1, − 1, − 1] (yellow). (d) Symmetric one-wing multiperiod,
[− 1, − 1, 1, − 1, 1, 1] (red), [1, − 1, 1, − 1, − 1, − 1] (blue), [1, 1, − 1, 1, 1, 1] (green), [1, − 1, − 1, 1, 1, 1] (yellow), [− 1, − 1, − 1, 1, − 1, − 1] (black),
[− 1, 1, − 1, 1, − 1, − 1] (khaki), [− 1, 1, 1, − 1, 1, 1] (magenta), and [1, 1, 1, − 1, − 1, − 1] (cyan).
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are divided into 101 × 101 parts, where a ∈ [0, 12] and
d ∈ [− 10, 20], and then the SE of each point (a, d) in the
parameter space is calculated. Figure 7 shows the SE diagram
of system (4) based on the previous algorithm. It can be seen
from the figure that Figures 9(a) and 9(b) well correspond to
the largest Lyapunov exponents in Figures 2 and 3.,e results
show that with the increase of parameters a and d, the higher
the complexity of the chaotic system is, the higher the
complexity of the system is mainly concentrated in
a ∈ [4.6, 12] and d ∈ (0, 20]. Figure 9(c) shows the SE
complexity in control parameters a and d planes. It can be
seen from the figure that the system has high complexity in a
large range, whichmeans chaos or hyperchaos in these ranges.

4. Circuit Design

In recent years, the implementation of a chaotic system by
hardware mainly includes analog discrete component circuit,
CMOS integrated circuit, and continuous chaotic signal by
modern digital signal processing technology, such as FPGA.
CMOS technology is used to realize the chaotic oscillator circuit,
which has the characteristics of low power consumption and
small area [12–14, 49], but the design needs a long period, high
cost, and difficult tuning [83–85]. Because of its large capacity
and high reliability, FPGA iswidely used inmodern digital signal
processing. However, FPGA needs a discrete continuous system,
writing the underlying hardware code and requiring the com-
putational intensive reading [15, 21, 60]. It is the most common
method to generate a chaotic signal by using discrete compo-
nents to design an analog circuit with simple structure, low cost,
and easy operation [26–28, 30–32, 57–59, 61]. To further verify
the dynamic characteristics of system (4), the system circuit was
designed using discrete components: resistors, capacitors, op-
erational amplifiers, andmultipliers. In the circuit design, LF347
is used as the operational amplifier, the multiplier is AD633JN,
and the multiplication factor is 0.1/V.,e operating voltage of
operational amplifier is ±E � ±15V, and the saturation
voltage measured by the operational amplifier and the
multiplier is ±|Vsat| ≈ ±13.5V. ,e relevant circuit equa-
tions are as follows:

_vx � −
1

R1Cx

vx +
1

10 · R2Cx

vyvz,

_vy � −
1

R3Cy

vy +
1

R4Cy

Rvu

R13
+

R

100R14
v
2
φvu ,

_vz �
1

10 · R5Cz

vxvy −
1

R6Cz

vz +
1

R7Cz

vw,

_vw �
1

R8Cw

vw −
1

R9Cw

vz,

_vu �
1

R10Cu

vu −
1

100 · R11Cu

v
2
xvy,

_vφ �
1

R12Cφ
vu,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where R1 � R/a, R3 � R/b, R4 � R/f, R6 � R/c, R7 � R/g,
R8 � R/d, R9 � R/h, R10 � R/e, R13 � R/fm, and
R14 � R/(100 · 3fn). ,e hardware experiment simulation
circuit of system (4) is shown in Figure 10. According to the
parameter values in the four cases given in Table 2, the
resistance values of the parameters in the equation are
calculated when Cx � Cy � Cz � Cw � Cu � Cφ � 10 nF,
R � 100 kΩ, R2 � R5 � 10 kΩ, R11 � 1 kΩ, and
R12 � 100 kΩ. Figure 11 shows a group of phase portraits
obtained by the Multisim simulator, which is basically
consistent with the MATLAB numerical simulation results
in the previous dynamic analysis and verifies the correctness
of the chaotic circuit.

5. Active Control Synchronization of the Novel
6D Memristive Hyperchaotic System

At present, many synchronization methods are based on
the synchronization between two identical systems, but
between practical engineering applications, many sys-
tems are of different structures, so it is very important to
realize the synchronization between two systems with
different structures. ,e system mainly consists of two
parts: one is the main system and the other is the slave
system. ,is section mainly uses the method of active
control to realize the synchronization of system (4). Set
the main system as

_x1 � a1x1 + y1z1,

_y1 � − b1y1 + f m + 3nφ2
1( l1,

_z1 � − c1z1 + x1y1 + g1w1,

_w1 � d1w1 − h1z1,

_l1 � el1 − x1
2y1,

_φ1 � l1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

,e slave system is different from the main system in
structure. ,e 6D hyperchaotic system designed by Yang
et al. [46] is used as the slave system:

_x2 � a2 y2 − x2(  + w2 + u1,

_y2 � c2x2 − y2 − x2z2 + l2 + u2,

_z2 � − b2z2 − x2y2 + u3,

_w2 � d2w2 − x2z2 + u4,

_l2 � − ky2 + u5,

_φ2 � h2φ2 + u6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where u � [u1, u2, u3, u4, u5, u6]
T is the active controller of

the synchronous system, which can make the main system
and the slave system tend to be synchronous under different
parameters and initial conditions. ,e error variable is made
as shown in the following equation:
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Figure 10: ,e circuit diagram of system (4).
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Figure 9: Spectral entropy (SE) complexity of system (4): (a) SE complexity versus a (d � 15); (b) SE complexity versus d (a � 10); (c) SE
complexity in the a − d plane.
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e1 � x2 − x1,

e2 � y2 − y1,

e3 � z2 − z1,

e4 � w2 − w1,

e5 � l2 − l1,

e6 � φ2 − φ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

,erefore, from the error variable, the main system (16),
and the slave system (17), the error system equation can be
obtained:

Table 2: Resistance values corresponding to different parameter values and simulation Figure 11.

Case Parameters Resistor Figure
Case
1

a � 1, b � 8, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 100kΩ, R3 � 12.5 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ Figure 11(a)

Case
2

a � 1, b � 5, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 100 kΩ, R3 � 20 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ

Figures 11(b)
and 11(c)

Case
3

a � 2, b � 6, c � 1, d � − 20, e � 1,
f � 2, g � 1, h � − 1, m � 1, 3n � 0.02

R1 � 50 kΩ, R3 � 16.5 kΩ, R4 � 50 kΩ, R6 � 100 kΩ,
R7 � 100 kΩ, R8 � 5 kΩ, R9 � 100 kΩ, R10 � 100 kΩ

Figures 11(d)
and 11(e)

Case
4

a � 2, b � 6, c � 2, d � − 2, e � 2,
f � 2, g � − 1, h � − 1, m � 1, 3n � 0.02

R1 � 50 kΩ, R3 � 16.5 kΩ, R4 � 50 kΩ, R6 � 50 kΩ,
R7 � 100 kΩ, R8 � 50 kΩ, R9 � 100 kΩ, R10 � 50 kΩ Figure 11(f )

(a) (b) (c)

(d) (e) (f)

Figure 11:,e circuit simulation diagram of system (4): (a) one-wingmultiperiod, (b) period-1, (c) two-wingmultiperiod, (d) two-wing, (e)
four-wing, and (f) limit cycle.
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_e1 � a2e2 − a2 + a1( e1 + e4 + a2y1 − a2x1 + a1x2 − y1z1 + w1 + u1,

_e2 � c2e1 + c2x1 − 1 + b1( e2 − y1 − x2z2 +(1 + fm)e5 + b1y2 − fml2 − 3nfφ2
1l1 + l1 + u2,

_e3 � − b2 − c1( e3 − b2z1 + x2y2 + c1z2 − x1y1 + g1e4 − g1w2 + u3,

_e4 � d2 + d1( e4 + d2w1 − h1e3 − x2z2 − d1w2 + h1z2 + u4,

_e5 � − ke2 + ee5 − ky1 − el2 + x1
2y1 + u5,

_e6 � h2e6 + g2e2 + e5 + h2φ1 + g2y1 + u6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

By simplifying the linear term of equation (19), the active
control function is obtained:

u1 � − a2y1 + a2x1 − a1x2 + y1z1 − w1 + v1,

u2 � − c2x1 + y1 + x2z2 − b1y2 + fml2 + 3nfφ2
1l1 − l1 + v2,

u3 � b2z1 − x2y2 − c1z2 + x1y1 + g1w2 + v3,

u4 � d2w1 + x2z2 + d1w2 − h1z2 + v4,

u5 � ky1 + el2 − x1
2y1 + v5,

u6 � − h2φ1 − g2y1 + v6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where v � [v1, v2, v3, v4, v5, v6]
T is the control input, and the

linear error system without an active controller can be
obtained by taking (20) into (19):

_e1 � a2e2 − a2 + a1( e1 + e4 + v1,

_e2 � c2e1 +(1 + fm)e5 − 1 + b1( e2 + v2,

_e3 � g1e4 + − b2 − c1( e3 + v3,

_e4 � d2 + d1( e4 − h1e3 + v4,

_e5 � − ke2 + ee5 + v5,

_e6 � h2e6 + g2e2 + e5 + v6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

To synchronize the system, we need to

lim
x⟶∞

ei � 0, (i � 1, 2, 3, 4, 5, 6). (22)

,e above formula shows that if system (21) tends to be
stable with time and under the control input
v � [v1, v2, v3, v4, v5, v6]

T, then the error variable
e � [e1, e2, e3, e4, e5, e6]

T tends to zero and then the main
system (16) and the slave system (17) are synchronized. To
achieve this goal, we define a matrix A to express the re-
lationship between the error system and the control input,
which can be expressed as

v � A · e. (23)

According to the criteria of Routh–Hurwitz, if equation
(19) is stable, all eigenvalues of a matrix must be negative.
,erefore, equation (19) can be expressed as

v1
v2
v3
v4
v5
v6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a1 + a2 − 1 − a2 0 1 0 0
− c2 b1 0 0 − fm − 1 0
0 0 b2 + c1 − 1 0 0 0
0 0 h1 − d1 − d2 − 1 0 0
0 k 0 0 − e − 1 0
0 − g2 0 0 − 1 − h2 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1
e2
e3
e4
e5
e6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

,en, the eigenvalue of the error system (21) is − 1, − 1,
− 1, − 1, − 1, and − 1, so equation (24) can be reduced to

v1 � a1 + a2 − 1(  x2 − x1(  + w2 − w1(  − a2 y2 − y1( ,

v2 � − c2 x2 − x1(  + b1 y2 − y1(  +(− fm − 1) l2 − l1( ,

v3 � b2 + c1 − 1(  z2 − z1( ,

v4 � h1 z2 − z1(  + − d1 − d2 − 1(  w2 − w1( ,

v5 � k y2 − y1(  +(− e − 1) l2 − l1( ,

v6 � − g2 y2 − y1(  − l2 − l1(  + − h2 − 1(  φ2 − φ1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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Figure 12: ,e trajectories of the synchronization errors e1, e2, e3, e4, e5, and e6.
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,emain slave system is simulated byMATLAB to verify
whether the proposed system can achieve synchronization.
According to the system equation, the parameters of the
main system (16) are given as a1 � 10, b1 � 60, c1 � 20, d1 �

15, e � 40, f � 1, g1 � 50, h1 � 10, m � 1, and 3n � 0.02, the
parameters of the slave system (17) are set as a2 � 10, b2 �

8/3, c2 � 28, d2 � 2, g2 � 1, k � 8.4, and h2 � 1, and the
initial conditions of the main slave system are set as
[1, 1, 1, 1, 1, 1] and [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], respectively.
Figure 12 shows a simulation diagram of the system error. It
can be seen from Figure 12 that when t> 2, two different
structure hyperchaotic systems realize global synchroniza-
tion. From Figure 13, it can also be seen from the six phase
planes that the two systems realize synchronization.

6. Conclusion

,is work presents a novel 6D memristive four-wing
hyperchaotic system. Dynamical analysis and numerical
simulation of the novel chaotic system were first carried
out. Further analysis of the novel system shows that the
multiple coexisting attractors can be observed with dif-
ferent system parameter values and initial values. ,en,
circuitry of the novel chaotic system was designed. ,e
numerical and electronic circuit simulation results were
found to be in good accordance. Besides, synchronization
between the proposed 6D memristive hyperchaotic system
and the 6D hyperchaotic Yang system with different
structures was realized by an active control approach for
secure communication applications, and the accuracy and
validity of the results were verified by theoretical analysis
and numerical simulations.
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,is paper deals with the global existence of solutions in a bounded domain for nonlinear viscoelastic Kirchhoff systemwith a time
varying delay by using the energy and Faedo–Galerkin method with respect to the delay termweight condition in the feedback and
the delay speed. Furthermore, by using some convex functions properties, we prove a uniform stability estimate.

1. Introduction

1.1. Model. Consider the following viscoelastic Kirchhoff
system:

ut



l
utt + αv − M ‖∇u‖2 Δu − Δutt + 

t

0
h1(t − s)Δu(s)ds − μ1Δut(x, t − τ(t)) � 0, inΩ ×]0, +∞[,

vt



l
vtt + αu − M ‖∇v‖2 Δv − Δvtt + 

t

0
h2(t − s)Δv(s)ds − μ2Δvt(x, t − τ(t)) � 0, inΩ ×]0, +∞[,

u(x, t) � v(x, t) � 0, on zΩ ×]0, +∞[,

(u(x, 0), v(x, 0)) � u0(x), v0(x)( , ut(x, 0), vt(x, 0)(  � u1(x), v1(x)( , inΩ,

ut(x, t − τ(0)), vt(x, t − ((0))(  � f0(x, t − τ(0)), g0(x, t − τ(0))( , inΩ ×]0, τ(0)[,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

whereΩ is a bounded domain in IRn, n ϵ IN∗, with a smooth
boundary zΩ, l> 0, α, μ1 and μ2 are positive real numbers, h1
and h2 are positive functions which decay exponentially,
τ(t)> 0 is a time varying delay, and the initial data
(u0, v0, u1, v1, f0, g0) are in a suitable function space.

M(r) � a + brc is a C1-function for r≥ 0, with a, b> 0, and
c≥ 1.

Time delay is often present in applications and practical
problems. In last few years, the control of PDEs with time
delay effects has become an active area of research (see, for
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example, [1–4] and the references therein). In [5], the au-
thors showed that a small delay in a boundary control could
turn a well-behaved hyperbolic system into a wild one and
therefore delay becomes a source of instability. However,
sometimes it can also improve the performance of the
system.

By using the Faedo–Galerkin method, Wu in [6] proved
the result of local existence and established the decay result
by suitable Lyapunov functionals according to appropriate
conditions on μ1, μ2 and on the kernel h.

Daewook [7] studied the following viscoelastic Kirchhoff
equation with nonlinear source term and varying time delay:

utt − M x, t, ‖∇u‖
2

 Δu + 
t

0
h(t − s)div(a(x)∇u(s))ds

+|u|
m

u + μ1ut(x, t) + μ2ut(x, t − τ(t)) � 0,

inΩ ×]0, +∞[,

(2)

which is a description of axially moving viscoelastic mate-
rials. According to the smallness condition taking into ac-
count of Kirchhoff coefficient and the relaxation function
and by summing 0≤m≤ (2/(n − 2)) if n> 2 or 0≤m if n≤ 2,
he got the uniform decay rate of the Kirchhoff type energy.

Very recently, in [1], we have proved the global existence
and energy decay of solutions of the following viscoelastic
nondegenerate Kirchhoff equation:

ut



l
utt − M ‖∇u‖2 Δu − Δutt + 

t

0
h(t − s)Δu(s)ds + μ1g1 ut(x, t)(  + μ2g2 ut(x, t − τ(t))(  � 0, inΩ ×]0, +∞[,

u(x, t) � 0, on ]zΩ × [0, +∞,

u(x, 0) � u0(x), ut(x, 0) � u1(x), inΩ,

ut(x, t − τ(0)) � f0(x, t − τ(0)), inΩ ×]0, τ(0)[,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

with respect to some proposed assumptions. Under as-
sumption setting on g1, g2, σ, and τ, the authors have
obtained the global existence of solution and the decay rate
of energy.

Recently, Mezouar and Boulaaras [1] have studied vis-
coelastic nondegenerate Kirchhoff equation with varying
delay term in the internal feedback.

In the present paper, we extent our recent published
paper in [1] for a coupled system (3). ,e famous technique
using the presence of delay in PDE’s problem is to set a new
variable defined by velocity depending on delay, which will
give us new problem equivalent to our studied problem but
the last one is a coupled system without delay. After this, we
can prove the existence of global solutions in suitable
Sobolev spaces by combining the energy method with the
Faedo–Galerkin procedure, and under a choice of a suitable
Lyapunov functional, we establish an exponential decay
result.

,e outline of the paper is as follows. In Section 2, some
hypotheses related to problem are given and we state our
main result. ,en, in Section 3, the global existence of weak
solutions is proven. Finally, in Section 4, we give the uniform
energy decay.

1.2. Preliminaries and Assumptions. We denote by (.,.) the
inner product in L2(Ω).

Now, we introduce, as in [8], the new variables

z1(x, ρ, t) � ut(x, t − ρτ(t)), x ∈ Ω, ρ ∈ (0, 1), t> 0,

z2(x, ρ, t) � vt(x, t − ρτ(t)), x ∈ Ω, ρ ∈ (0, 1), t> 0.

(4)

,en, we have

τ(t)z1′(x, ρ, t) + 1 − ρτ′(t)( 
z

zρ
z1(x, ρ, t) � 0,

inΩ ×(0, 1) ×(0, +∞).

(5)

Similarly, we have

τ(t)z2′(x, ρ, t) + 1 − ρτ′(t)( 
z

zρ
z2(x, ρ, t) � 0,

inΩ ×(0, 1) ×(0, +∞).

(6)

,erefore, problem (3) is equivalent to
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ut



l
utt + αv − M ‖∇u‖2 Δu − Δutt + 

t

0
h1(t − s)Δu(s)ds − μ1Δz1(x, 1, t) � 0, inΩ ×]0, +∞[,

vt



l
utt + αu − M ‖∇v‖2 Δv − Δvtt + 

t

0
h2(t − s)Δv(s)ds − μ2Δz2(x, 1, t) � 0, inΩ ×]0, +∞[,

τ(t)z1′(x, ρ, t) + 1 − ρτ′(t)( 
z

zρ
z1(x, ρ, t) � 0, inΩ ×(0, 1) ×(0, +∞),

τ(t)z2′(x, ρ, t) + 1 − ρτ′(t)( 
z

zρ
z2(x, ρ, t) � 0, inΩ ×(0, 1) ×(0, +∞),

u(x, t) � v(x, t) � 0, on [zΩ × [0,∞,

z1(x, 0, t), z2(x, 0, t)(  � ut(x, t), vt(x, t)( , onΩ ×]0,∞[,

(u(x, 0), v(x, 0)) � u0(x), v0(x)( , ut(x, 0)( , vt(x, 0)(  � u1(x), v1(x)( , inΩ,

z1(x, ρ, 0), z2(x, ρ, 0)(  � f0(x, − ρτ(0)), g0(x, − ρτ(0))( , inΩ ×]0, 1[.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

To state and prove our result, we need some
assumptions.

Assumption 1. Assume that 0< l≤ c satisfies

c≤
2

n − 2
, if n> 2,

c<∞, if n≤ 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Assumption 2. For the relaxation functions,
hi : IR+⟶ IR+ are bounded C1 functions such that

a − 
∞

0
hi(s)ds≥ k> 0, (9)

and suppose that there exist positive constants ζ i satisfying

hi
′ (t)≤ − ζ ihi(t), (10)

for i � 1, 2.

Assumption 3. τ is a function in W2,∞([0, T]), T> 0, such
that

0< τ0 ≤ τ′(t)≤ τ1, ∀t> 0,

τ′(t)≤d< 1, ∀t> 0.
(11)

We define the energy associated to the solution of system
(7) by

E(t) �
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  + 2α

Ω
u(x, t)v(x, t)dx

+
b

2(c + 1)
‖∇u‖

2(c+1)
+‖∇v‖

2(c+1)
 

+
1
2

a − 
t

0
h1(s)ds ‖∇u‖

2
+
1
2

a − 
t

0
h2(s)ds 

· ‖∇v‖
2

+
1
2
∇ut

����
����
2

+ ∇vt

����
����
2

 

+
1
2

h1o∇u( (t) +
1
2

h2o∇v( (t)

+ ξτ(t) 
1

0
∇z1(x, ρ, t)

����
����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ,

(12)

where ξ is a positive constant such that
max μ1, μ2 

2(1 − d)
< ξ, (13)

hiow( (t) � 
t

0
hi(t − s)‖w(., t) − w(., s)‖

2ds, for i � 1, 2.

(14)

Theorem 1 (global existence). Let (u0, v0) ∈ (H2

(Ω)∩H1
0(Ω))2, s, and (f0, g0) ∈ (H1

0(Ω, H1(0, 1)))2 satisfy
the compatibility condition

f0(., 0), g0(., 0)(  � u1, v1( . (15)

Complexity 3



Assume that Assumptions 1–3 hold. 7en, problem (3)
admits a weak solution such that u, v ∈ L∞

((0,∞; H2(Ω)∩H1
0(Ω)), ut, vt ∈ L∞(0,∞; H1

0(Ω)), and
utt, vtt ∈ L2(0,∞, H1

0(Ω)).

Theorem 2 (decay rates of energy). Assume that Assump-
tions 1–3 hold. 7en, for every t0 > 0 there exist positive
constants K and c′ such that the energy defined by (12)
possesses the following decay:

E(t)≤Ke
− c′t

, ∀t≥ t0. (16)

2. Preliminaries

Lemma 1 (Sobolev − Poincareinequality). Let q be a
number with

2≤ q< +∞(n � 1, 2) or 2≤ q≤
2n

(n − 2)(n≥ 3)
. (17)

7en, there exists a constant Cs � Cs(Ω, q) such that

‖u‖q ≤Cs‖∇u‖2 for u ∈ H
1
0(Ω). (18)

,e following lemma states an important property of the
convolution operator.

Lemma 2 (see [9]). For h,φ ∈ C1([0, +∞[, IR), we have


Ω

h∗φφtdx � −
1
2

h(t)‖φ(t)‖
2

+
1
2

h′oφ( (t)

−
1
2

d

dt
(hoφ)(t) − 

t

0
h(s)ds ‖φ‖

2
 .

(19)

Lemma 3. Let (u, v, z1, z2) be a solution of problem (7).
7en, the energy functional defined by (12) satisfies

E(t)≤ − β ∇z1(x, 1, t)
����

����
2

+ ∇z2(x, 1, t)
����

����
2

 

+ λ ∇ut(x, t)
����

����
2

+ ∇vt(x, t)
����

����
2

 

+
1
2

h1′o∇u( (t) + h2′o∇v( (t) ,

(20)

where λ � ξ + (μ/2), β � ξ(1 − d) − μ/2, and μ � max μ1, μ2 

are positive.

Proof. Multiplying the first equation in (7) by ut, integrating
over Ω, and using integration by parts, we get

d
dt

1
l + 2

ut

����
����

l+2
l+2 +

b

2(c + 1)
‖∇u‖

2(c+1)
+
1
2

a‖∇u‖
2

+
1
2
∇ut

����
����
2

 

− 
Ω


t

0
h1(t − s)∇u(s)∇ut(t)ds dx

+ α
Ω

ut(x, t)v(x, t)dx + μ1
Ω
∇ut(x, t)∇z1(x, 1, t)dx � 0.

(21)

Consequently, by applying Lemma 2, equation (21)
becomes

d
dt

1
l + 2

ut

����
����

l+2
l+2 +

b

2(c + 1)
‖∇u‖

2(c+1)
+
1
2

a − 
t

0
h1(s)ds 

· ‖∇u‖
2

+
1
2
∇ut

����
����
2

+
1
2

h1o∇u( (t)

+
1
2
h1(t)‖∇u(t)‖

2
−
1
2

h1′o∇u( (t) + α
Ω

ut(x, t)v(x, t)dx

+ μ1
Ω
∇ut(x, t)∇z1(x, 1, t))dx � 0.

(22)

Similarly by multiplying the second equation in (7) by vt,
integrating over Ω, and using integration by parts, we get

d
dt

1
l + 2

vt

����
����

l+2
l+2 +

b

2(c + 1)
‖∇v‖

2(c+1)
+
1
2

a − 
t

0
h2(s)ds 

· ‖∇v‖
2

+
1
2
∇vt

����
����
2

+
1
2

h2o∇v( (t)

+
1
2
h2(t)‖∇v(t)‖

2
−
1
2

h2′o∇v( (t) + α
Ω

u(x, t)vt(x, t)dx

+ μ2
Ω
∇vt(x, t)∇z2(x, 1, t)dx � 0.

(23)

Multiply the third equation in (7) by ξΔz1 and integrate
the result over Ω × (0, 1) to obtain

ξτ(t)
Ω


1

0
z1′(x, ρ, t)Δz1(x, ρ, t)Ω ×(0, 1)dρ dx

� − ξ
Ω


1

0
1 − ρτ′(t)( 

z

zρ
z1(x, ρ, t)Δz1(x, ρ, t)dρ dx.

(24)

Consequently,
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d
dt

ξτ(t)
Ω


1

0
∇z1(x, ρ, t)



2dρdx 

� ξτ′(t)
Ω


1

0
∇z1(x, ρ, t)



2dρdx

− ξ
Ω


1

0
1 − ρτ′(t)( 

z

zρ
∇z1(x, ρ, t)



2dρ dx

� − ξ
Ω


1

0

z

zρ
(1 − ρτ(t)) ∇z1(x, ρ, t)



2

 dρ dx

� − ξ 1 − τ′(t)( 
Ω
∇z1(x, 1, t)



2dx + ξ

Ω
∇ut(x, t)



2dx.

(25)

Similarly, we get
d
dt

ξτ(t)
Ω


1

0
∇z2(x, ρ, t)



2dρdx 

� − ξ 1 − τ′(t)( 
Ω
∇z2(x, 1, t)



2dx + ξ

Ω
∇vt(x, t)



2dx.

(26)

Combining (22)–(26), we obtain

E′(t) � − ξ 1 − τ′(t)( 
Ω
∇z1(x, 1, t)



2

+ ∇z2(x, 1, t)



2

 dx

+ ξ
Ω
∇ut(x, t)



2

+ ∇vt(x, t)



2

 dx

−
1
2

h1(t)‖∇u(t)‖
2

+ h2(t)‖∇v(t)‖
2

 

+
1
2

h1′o∇u( (t) + h2′o∇v( (t) 

− μ1
Ω
∇ut(x, t)∇z1(x, 1, t)dx

− μ2
Ω
∇vt(x, t)∇z2(x, 1, t)dx.

(27)

From Assumption 3, we get

E′(t)≤ − ξ(1 − d) −
μ1
2

 
Ω
∇z1(x, 1, t)



2
dx

− ξ(1 − d) −
μ2
2

 
Ω
∇z2(x, 1, t)



2
dx

−
1
2
h1(t) ∇ut(t)

����
����
2

+ ξ +
μ1
2

  ∇ut(t)
����

����
2

−
1
2
h2(t)‖∇v(t)‖

2
+ ξ +

μ2
2

  ∇vt(t)
����

����
2

+
1
2

h1′o∇u( (t) + h2′o∇v( (t) .

(28)

Using (13), this completes the proof. □

3. Global Existence (Proof of Theorem 1)

,roughout this section we assume u0, v0 ∈ H2(Ω)∩
H1

0(Ω), u1, v1 ∈ H1
0(Ω), and f0, g0 ∈ H1

0(Ω, H1(0, 1)). We
will use the Faedo–Galerkin method to prove the existence
of global solutions. Let T> 0 be fixed and let wk, k ∈ IN be a
basis of H2(Ω)∩H1

0(Ω) and Vk be the space generated by
wk. Now, we define, for 1≤ j≤ k, the sequence ϕj(x, ρ) as
follows:

ϕj
(x, 0) � w

j
. (29)

,en, we may extend ϕj(x, 0) by ϕj(x, ρ) over L2(Ω ×

(0, 1)) such that (ϕj)j forms a basis of L2(Ω, H1(0, 1)) and
denote Zk the space generated by ϕk . We construct ap-
proximate solutions (uk, vk, zk

1, zk
2), k � 1, 2, 3, . . ., in the

form

u
k
(t) � 

k

j�1
a

jk
(t)w

j
,

v
k
(t) � 

k

j�1
b

jk
(t)w

j
,

z
k
1(t) � 

k

j�1
c

jk
(t)ϕj

,

z
k
2(t) � 

k

j�1
d

jk
(t)ϕj

,

(30)

where ajk, bjk, cjk, and djk(j � 1, 2, . . . , k) are determined by
the following ordinary differential equations:

uk
t





l
uk

tt, wj  + α vk, wj(  + M ∇uk(t)
����

����
2

  ∇uk,∇wj( 

+ ∇uk
tt,∇wj(  − 

t

0
h1(t − s) ∇uk

(s),∇wj
 ds

+ μ1 ∇zk
1(., 1),∇wj(  � 0, 1≤ j≤ k,

vk
t



l
vk

tt, wj  + α uk, wj(  + M ∇vk(t)
����

����
2

  ∇vk,∇wj( 

+ ∇vk
tt,∇wj(  − 

t

0
h2(t − s) ∇vk

(s),∇wj
 ds

+ μ2 ∇zk
2(., 1),∇wj(  � 0, 1≤ j≤ k,

zk
1(x, 0, t) � uk

t (x, t), zk
2(x, 0, t) � vk

t (x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

u
k
(0) � u

k
0 � 

k

j�1
u0, w

j
 w

j⟶ u0, inH
2
(Ω)∩H

1
0(Ω)as k

⟶ +∞,

(32)
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v
k
(0) � v

k
0 � 

k

j�1
v0, w

j
 w

j⟶ v0,

inH
2
(Ω)∩H

1
0(Ω)as k⟶ +∞,

(33)

u
k
t (0) � u

k
1 � 

k

j�1
u1, w

j
 w

j⟶ u1,

inH
1
0(Ω) as k⟶ +∞,

(34)

v
k
t (0) � v

k
1 � 

k

j�1
v1, w

j
 w

j⟶ v1,

inH
1
0(Ω) as k⟶ +∞,

(35)

τ(t)
z

zt
z

k
1 + 1 − ρτ′(t)( 

z

zρ
z

k
1, ϕ

j
  � 0, 1≤ j≤ k,

τ(t)
z

zt
z

k
2 + 1 − ρτ′(t)( 

z

zρ
tz

k
2n, qϕj

  � 0, 1≤ j≤ k,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

z
k
1(ρ, 0) � 

k

j�1
f0, ϕ

j
 ϕj⟶ f0,

inH
1
0 Ω, H

1
(0, 1)  as k⟶ +∞,

(37)

z
k
2(ρ, 0) � 

k

j�1
g0,ϕ

j
 ϕj⟶ g0,

inH
1
0 Ω, H

1
(0, 1)  as k⟶ +∞.

(38)

Noting that l/2(l + 1) + 1/2(l + 1) + 1/2 � 1, from the
generalized Hölder inequality, we obtain

u
k
t




l
u

k
tt, wj  � 

Ω
u

k
t




l
u

k
ttwjdx≤ 

Ω
u

k
t




2(l+1)

dx 
l/(2(l+1))

· u
k
tt

�����

�����2(l+1)
wj

�����

�����2
.

(39)

Since Assumption 2 holds, according to Sobolev em-
bedding, the nonlinear terms (|uk

t |luk
tt, wj) and (|vk

t |lvk
tt, wj)

in (31) make sense.
,e standard theory of ODE guarantees that systems

(31)–(38) have a unique solution in [0, tk), with 0< tk <T. In
the next step, we obtain a priori estimates for the solution of
systems (31)–(38), so that it can be extended outside [0, tk)

to obtain one solution defined for all t> 0, using a standard
compactness argument for the limiting procedure.

3.1.FirstEstimate. Since the sequences uk
0, vk

0, uk
1, vk

1, zk
1(ρ, 0),

and zk
2(ρ, 0) converge and from Lemma 3 with employing

Gronwall’s lemma, we can find a positive constant C1 in-
dependent of k such that

E
k
(t) + β

t

0
∇zk

1(x, 1, s)
�����

�����
2

+ ∇zk
2(x, 1, s)

�����

�����
2

 ds≤C1,

(40)

where

E
k
(t) �

1
l + 2

u
k
t

�����

�����
l+2

l+2
+ v

k
t

�����

�����
l+2

l+2
  + 2α

Ω
u

k
v

kdx

+
b

2(c + 1)
∇uk

�����

�����
2(c+1)

+ ∇vk
�����

�����
2(c+1)

 

+
1
2

a − 
t

0
h1(s)ds  ∇uk

�����

�����
2

+
1
2

a − 
t

0
h2(s)ds  ∇vk

�����

�����
2

+
1
2
∇uk

t

�����

�����
2

+ ∇vk
t

�����

�����
2

 

+
1
2

h1o∇u
k

 (t) + h2o∇v
k

 (t) 

+ ξτ(t) 
1

0
∇zk

1(x, ρ, t)
�����

����� 
2

+ ∇zk
2(x, ρ, t)

�����

����� 
2
dρ.

(41)

Noting Assumption 1 and estimate (40) yields that

u
k
, v

k are bounded in L
∞
loc 0,∞, H

1
0(Ω) ,

u
k
t , v

k
t are bounded in L

∞
loc 0,∞, H

1
0(Ω) ,

z
k
1(x, ρ, t), z

k
2(x, ρ, t) are bounded in L

∞
loc 0,∞, L

1 0, 1, H
1
0(Ω)  .

(42)

3.2. Second Estimate. Multiplying the first equation (re-
spectively, the second equation) in (31) by a

jk
tt (respectively,

by b
jk
tt ) and summing over j from 1 to k, it follows that


Ω

uk
t



l

uk
tt



2dx − α

Ω
vk

t uk
tdx + 

Ω
M ∇uk

����
����
2

 ∇uk∇uk
ttdx

+ ∇uk
tt

����
����
2

� 
t

0
h1(t − s)

Ω
∇uk

(s)∇uk
tt(t)dxds

− μ1
Ω
∇uk

tt∇ zk
1(x, 1, t)( dx,


Ω

vk
t



l

vk
tt



2dx − α

Ω
vk

t uk
tdx + 

Ω
M ∇vk

����
����
2

 ∇vk∇vk
ttdx

+ ∇vk
tt

����
����
2

� 
t

0
h2(t − s)

Ω
∇vk

(s)∇vk
tt(t)dxds

− μ2
Ω
∇vk

tt∇ zk
2(x, 1, t)( dx.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Differentiating (36) with respect to t, we get
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τ(t)

1− ρτ′(t)( )
 

′ z
zt

z
k
1 +

τ(t)

1 − ρτ′(t)( 

z2

zt2
z

k
1 +

z2

zt zρ
z

k
1,ϕj

  � 0,

τ(t)

1− ρτ′(t)( )
 

′ z
zt

z
k
2 +

τ(t)

1 − ρτ′(t)( 

z2

zt2
z

k
2 +

z2

zt zρ
z

k
2,ϕj

  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Multiplying the first equation by c
jk
t (respectively, the

second equation by d
jk
t ) and summing over j from 1 to k, it

follows that

τ(t)

1− ρτ′(t)( )
 

′ z
zt

zk
1

����
����
2

+
1
2

τ(t)

1 − ρτ′(t)( 

d
dt

z

zt
z

k
1

�������

�������

2

+
1
2

d
dρ

z

zt
z

k
1

�������

�������

2

� 0,

τ(t)

1− ρτ′(t)( )
 

′ z
zt

zk
2

����
����
2

+
1
2

τ(t)

1 − ρτ′(t)( 

d
dt

z

zt
z

k
2

�������

�������

2

+
1
2

d
dρ

z

zt
z

k
2

�������

�������

2

� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

and then we have
1
2

τ(t)

1 − ρτ′(t)( 
 

′ z

zt
z

k
1

�������

�������

2

+
1
2
d
dt

τ(t)

1 − ρτ′(t)( 

z

zt
z

k
1

�������

�������

2

 

+
1
2

d
dρ

z

zt
z

k
1

�������

�������

2
� 0,

1
2

τ(t)

1 − ρτ′(t)( 
 

′ z

zt
z

k
2
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Integrating over (0, 1) with respect to ρ, we obtain
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Summing (43) and (47) and as M(r)≥ a, we get
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Complexity 7



By Young’s inequality, the right hand side of (48) can be
estimated as follows:
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(49)

Using Cauchy–Schwarz inequality and Sobo-
lev–Poincare inequality, we obtain
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Similarly,
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By using (49)–(53) in (48), we deduce
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(54)

By using Assumption 3 and taking the first estimate (40)
into account, we infer
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where C2 is a positive constant which depends on
η, a, C1, Cs, α.

Integrating (55) over (0, t), we obtain
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For a suitable η> 0 such that
1 − (η(μ2i + 2)t + nC2

s /2))> 0 for i � 1, 2 and using Gron-
wall’s lemma, we obtain the second estimate
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We observe from estimates (40) and (57) that there exist
subsequences (um) of (uk) and (vm) of (vk) such that

u
m

, v
m

( ⇀ (u, v)weakly star in L
∞ 0, T, H

1
0(Ω) ,

(58)

u
m
t , v

m
t( ⇀ ut, vt( weakly star inL

∞ 0, T, H
1
0(Ω) ,

(59)

u
m
tt , v

m
tt( ⇀ utt, vtt( weakly in L

2 0, T, H
1
0(Ω) , (60)

z
m
1 ,z

m
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∞ 0,T,H
1
0 Ω,L

2
(0,1)  ,
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2
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(62)

In the following, we will treat the nonlinear term. From
the first estimate (40) and Lemma 1, we deduce
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On the other hand, from Aubin–Lions theorem (see

[10]), we deduce that there exists a subsequence of (um), still
denoted by (um) such that

u
m
t ⟶ ut strongly inL

2 0, T, L
2
(Ω) , (64)

which implies
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m
t ⟶ ut almost everywhere inA. (65)

Hence,
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ut almost everywhere inA, (66)
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z
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2
(Ω) , (69)
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which implies (zm
1 , zm

2 )⟶ (z1, z2) almost everywhere in
A.

By multiplying (31) and (36) by θ(t) ∈ D(0, T) and by
integrating over (0, T), it follows that
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for all j � 1 . . . k. ,e convergence condition in (58)–(62), (68) and (67) are
sufficient, thus we can pass to the limit in (70). ,en, we have
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z2 + 1 − ρτ′(t)( 

z

zρ
z2 ϕjθ(t)dx dρ dt � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

for all j � 1 . . . k. ,is completes the proof of ,eorem 1.

4. Uniform Decay of the Energy (Proof of
Theorem 2)

In this section we study the solution’s asymptotic behavior of
system (3).

To prove our main result, we construct a Lyapunov
functional equivalent to E. For this, we define some func-
tionals which allow us to obtain the desired estimate.

Lemma 4. Let (u, v, z1, z2) be a solution of problem (7).
7en, the functional

I(t) � τ(t) 
1

0
e

− 2τ(t)ρ ∇z1(x, ρ, t)
����

����
2

+ ∇z1(x, ρ, t)
����

����
2

 dρ,

(72)

satisfies the estimate

(i) |I(t)|≤ (1/ξ)E(t).
(ii) I′(t) ≤ − 2τ(t)e− 2τ1 

1
0(‖∇z1(x, ρ, t)‖2 + ‖∇z2(x, ρ,

t)‖2)dρ − (1 − d)e− 2τ1(‖∇z1(x, 1, t)‖2 + ‖∇z2(x, 1,

t)‖2) +‖∇ut(x, t)‖2 + ‖∇vt(x, t)‖2.

Proof. (ii) Differentiating (72) with respect to t and using
(5)-(6) and Assumption 3, we get
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d
dt

I(t) � τ′(t) 
1

0
e

− 2τ(t)ρ ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ

+ τ(t)
Ω


1

0
e

− 2τ(t)ρz ∇z1(x, ρ, t)



2

+ ∇z2(x, ρ, t)



2

 

zt
⎡⎢⎢⎣

− 2τ′(t)ρe
− 2τ(t)ρ ∇z1(x, ρ, t)



2

+ ∇z2(x, ρ, t)



2

 dρdx

� 
Ω


1

0
e

− 2τ(t)ρ τ′(t) ∇z1(x, ρ, t)



2

+ ∇z2(x, ρ, t)



2

  + τ(t)
z ∇z1(x, ρ, t)



2

+ ∇z2(x, ρ, t)



2

 

zt
⎡⎢⎢⎣ ⎤⎥⎥⎦ dρdx

− 2
Ω


1

0
τ(t)τ′(t)ρe

− 2τ(t)ρ ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ dx

� − 
1

0
e

− 2τ(t)ρ z

zρ
1 − ρτ′(t)(  ∇z1(x, ρ, t)

����
����
2

+ ∇z2(x, ρ, t)
����

����
2

  dρ

− 2
1

0
τ(t)τ′(t)ρe

− 2τ(t)ρ ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ

� − 
1

0

z

zρ
e

− 2τ(t)ρ 1 − τ′(t)ρ(  ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

  

− 2τ(t)e
− 2τ(t)ρ 1 − τ′(t)ρ(  ∇z1(x, ρ, t)

����
����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ

− 2τ(t)τ′(t) 
1

0
ρe

− 2τ(t)ρ ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ

� ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

  − e
− 2τ(t)ρ 1 − τ′(t)(  ∇z1(x, ρ, t)

����
����
2

+ ∇z2(x, ρ, t)
����

����
2

 

− 2τ(t)
Ω


1

0
1 − τ′(t)ρ(  + τ′(t)ρ e

− 2τ(t)ρ ∇z1(x, ρ, t)



2

+ ∇z2(x, ρ, t)



2

 dρ dx

≤ − 2I(t) + ∇ut(x, t)
����

����
2

+ ∇vt(x, t)
����

����
2

− e
− 2τ(t)ρ

(1 − d) ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 .

(73)

Since e− 2τ(t)ρ is a decreasing function for ρ ∈ [0, 1] and
τ(t) ∈ [τ0, τ1], we deduce

I(t)≥ τ(t) 
1

0
e

− 2τ1 ∇z1(x, ρ, t)
����

����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ.

(74)

,us, our proof is completed. □

Lemma 5. Let (u, v, z1, z2) be a solution of problem (7).
7en, the functional

ϕ(t) �
1

l + 1

Ω

ut



l
utu + vt



l
vtv dx

+ 
Ω
∇ut∇udx + 

Ω
∇vt∇vdx,

(75)

satisfies the estimate

(i) |ϕ(t)| ≤ (1/(l + 2))(‖ut‖
l+2
l+2 + ‖vt‖

l+2
l+2) + (((l + 1)− 1/

(l + 2))cl+2
s +(c/2))(‖∇u‖l+2+‖∇v‖l+2)+ (1/2)(‖∇u‖2

+ ‖∇v‖2).
(ii) ϕ′(t)≤ (1/(l + 1))(‖ut‖

l+2
l+2 + ‖vt‖

l+2
l+2) + (η(a − k +

1) + αCs − k)(‖∇u‖2 + ‖∇v‖2) + (1/4η)[(h1o∇u)(t)

+ (h1o∇u)(t)] + (μ21/4η)‖∇z1(x, 1, t)‖2 + (μ22/4η)

‖∇z2(x, 1, t)‖2 +‖∇ut‖
2 + ‖∇vt‖

2.

Proof

(i) From Young’s inequality, the Sobolev embedding,
and Ll+2⟶ L2, we deduce
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|ϕ(t)|≤
1

l + 2
ut

����
����

l+2
l+2 +

(l + 1)− 1

l + 2
‖u‖

l+2
l+2 +

1
l + 2

vt

����
����

l+2
l+2 +

(l + 1)− 1

l + 2
‖v‖

l+2
l+2

+
1
2
∇ut

����
����
2

+
1
2
‖∇u‖

2
+
1
2
∇vt

����
����
2

+
1
2
‖∇v‖

2

≤
1

l + 2
ut

����
����

l+2
l+2 +

(l + 1)− 1

l + 2
c

l+2
s ‖∇u‖

l+2
+

1
l + 2

vt

����
����

l+2
l+2 +

(l + 1)− 1

l + 2
c

l+2
s ‖∇v‖

l+2

+
1
2
∇ut

����
����
2

+
1
2
‖∇u‖

2
+
1
2
∇vt

����
����
2

+
1
2
‖∇v‖

2

≤
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

(l + 1)− 1

l + 2
c

l+2
s +

c

2
  ‖∇u‖

l+2
+‖∇v‖

l+2
  +

1
2
∇ut

����
����
2

+ ∇vt

����
����
2

 .

(76)

(i) Differentiating ϕ(t) with respect to t and using the
first and second equations of (7), we get

ϕ′(t) �
1

l + 1

Ω

ut



l
ut 
′udx +

1
l + 1


Ω

ut



l+2dx +

1
l + 1


Ω

vt



l
vt 
′vdx +

1
l + 1


Ω

vt



l+2dx

+ 
Ω
∇utt∇udx + 

Ω
∇ut∇utdx + 

Ω
∇vtt∇vdx + 

Ω
∇vt∇vtdx

� 
Ω

ut



l
ut udx +

1
l + 1

‖ut‖
l+2
l+2 + 

Ω
vt



l
vt vdx +

1
l + 1

vt

����
����

l+2
l+2

− 
Ω
∇uttudx + ∇ut

����
����
2

− 
Ω
∇vtt∇udx + ∇vt

����
����
2

�
1

l + 1
ut

����
����

l+2
l+2 + ut

����
����

l+2
l+2  + 

Ω
ut



l
ut − Δutt udx + 

Ω
vt



l
vt − Δvtt udx + ∇ut

����
����
2

+ ∇vt

����
����
2

�
1

l + 1
ut

����
����

l+2
l+2 + ut

����
����

l+2
l+2  + 

Ω
− αv + M ‖∇u‖

2
 Δu − 

t

0
h1(t − s)Δu(s)ds + μ1Δz1(x, 1, t) udx

+ 
Ω

− αu + M ‖∇v‖
2

 Δv − 
t

0
h1(t − s)Δv(s)ds + μ2Δz2(x, 1, t) udx + ∇ut

����
����
2

+ ∇vt

����
����
2

�
1

l + 1
ut

����
����

l+2
l+2 + ut

����
����

l+2
l+2  − M ∇ut

����
����
2

  ∇vt

����
����
2

+ 
Ω
∇u(t) 

t

0
h1(t − s)Δu(s)dsdx − μ1

Ω
∇z1(x, 1, t)∇udx

− M ‖∇v‖
2

 ‖∇v‖
2

+ 
Ω
∇v(t) 

t

0
h2(t − s)Δv(s)dsdx − μ2

Ω
∇z2(x, 1, t)∇vdx + ∇ut

����
����
2

+ ∇vt

����
����
2

− 2α
Ω

uvdx.

(77)

As M(r) ≥ a and making use Young’s inequality, we
obtain

ϕ′(t)≤
1

l + 1
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  − a‖∇u‖

2
+ 
Ω
∇u(t) 

t

0
h1(t − s)∇u(s)dsdx +

μ21
4η
∇z1(x, 1, t)

����
����
2

+ η‖∇u‖
2

− a‖∇v‖
2

+ 
Ω
∇v(t) 

t

0
h2(t − s)∇v(s)ds dx +

μ22
4η
∇z2(x, 1, t)

����
����
2

+ η‖∇v‖
2

+ ∇ut

����
����
2

+ ∇vt

����
����
2
.

(78)
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By use of Young’s inequality, we can estimate the third
term in the right side as follows:


Ω
∇u(t) 

t

0
h1(t − s)∇u(s)ds dx≤ 

t

0
h(t − s)

Ω
|∇u(t)∇u(s) − ∇u(t)|dx ds +‖∇u(t)‖

2


t

0
h1(t − s)ds

≤ η‖∇u(t)‖
2


t

0
h1(s)ds +

1
4η


t

0
h1(t − s)‖∇u(s) − ∇u(t)‖

2ds

+‖∇u(t)‖
2


t

0
h1(s)ds

≤ (1 + η)(a − k)‖∇u(t)‖
2

+
1
4η

h1o∇u( (t).

(79)

Similarly,


Ω
∇v(t) 

t

0
h2(t − s)∇v(s)dsdx≤ (1 + η)(a − k)‖∇v(t)‖

2
+

1
4η

h2o∇v( (t),

− 2α
Ω

uvdx≤ αCs ‖∇u‖
2

+‖∇v‖
2

 .

(80)

,us, our proof is completed. □ Lemma 6. Let (u, z) be a solution of problem (7). 7en, the
functional

ψ(t) � 
Ω
Δut −

1
l + 1

ut



l
ut  

t

0
h1(t − s)(u(t) − u(s))ds dx + 

Ω
Δvt −

1
l + 1

vt



l
vt  

t

0
h2(t − s)(v(t) − v(s))ds dx,

(81)

satisfies the estimates

(i) |ψ(t)| ≤ (1/2)(‖∇ut‖
2 + ‖∇vt‖

2) + (1/2)(a − k)(1+

((l + 1)− 1/(l + 2))(a − k)lcl+2
s )[(h1o∇u)(t) + (h2o

∇v)(t)] + ((l + 1)− 1/(l + 2))(a − k)l+2cl+2
s 22l+1(‖∇

u‖2(l+1) + ‖∇v‖2(l+1)) + (1/(l + 2))(‖ut‖
l+2
l+2 + ‖vt‖

l+2
l+2).

(ii) ψ(t)≤ δ[(a − k) + ((l + 1)− 1/(l + 2))(h1(0))l+2cl+2
s

22(l+1)]M(‖∇u‖2)‖∇u‖2 + ((αCs/2) + 2δ(a − k)2)

‖∇u‖2 + ((M(‖∇u‖2)/4δ) + ((αCs/2) + 2δ +(1/2δ))

(a − k))(h1o∇v)(t) − (h1(0)/4δ)(1+((l + 1)− 1/(l +

2))(h1(0))lcl+2
s )(h1′o ∇v)(t) + (δ − 

t

0 h1(s)ds)‖ ∇
ut‖

2 + μ21δ‖∇z1(x, 1, t)‖2 + (1 /(l + 1))(1 − 
t

0 h1(s)

ds) ‖ut‖
l+2
l+2 + δ[(a − k) + ((l + 1)− 1/(l + 2))(h2

(0))l+2cl+2
s 22(l+1)]M(‖∇v‖2) ‖∇v‖2 + ((αCs/2) + 2δ

(a − k)2)‖∇v‖2 + ((M(‖∇u‖2)/4δ)+((αCs/2) + 2δ +

(1/2δ))(a − k))(h2o∇v)(t) − (h2(0)/4δ)(1 + ((l +

1)− 1/(l + 2))(h2(0))lcl+2
s )(h2′o∇v)(t) + (δ − 

t

0 h2(s)

ds)‖∇vt‖
2 + μ22δ‖∇z2(x, 1, t)‖2 + (1/(l + 1))(1 − 

t

0
h2(s)ds)‖vt‖

l+2
l+2,

where δ > 0 and cs is the Sobolev embedding constant.

Proof

(i) ψ(t) � − Ω∇ut 
t

0 h2(t − s)(∇ u(t) − ∇u(s)) dsdx −

Ω(1/(l + 1))|ut|
lut 

t

0 h2(t − s)(u(t) − u(s)) dsdx −

Ω∇vt 
t

0 h2(t − s)(∇v(t) − ∇v(s))dsdx − Ω (1/(l +

1)) |vt|
lvt 

t

0 h2(t − s)(v(t) − v(s))dsdx.
We use Young’s inequality with the conjugate ex-
ponents p � (l + 2)/(l + 1) and q � l + 2, and the
second term in the right hand side can be estimated as
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− 
Ω

1
l + 1

ut



l
ut 

t

0
h1(t − s)(u(t) − u(s))dsdx




≤

1
l + 1


Ω

ut



l
ut  

t

0
h1((t − s)u(t) − u(s))ds dx





≤
1

l + 1
1
p


Ω

ut



l
ut




P

dx +
1
q

Ω


t

0
h1((t − s)u(t) − u(s))ds





q

dx 

≤
1

l + 1
1
p


Ω

ut



l+1


P

dx +
1
q


Ω


t

0
h1((t − s)u(t) − u(s))ds( 

qdx 

≤
1

l + 2
ut

����
����

l+2
l+2 +

(l + 1)− 1

l + 2

Ω


t

0
h1(t − s)( 

l+1
l+2 h1(t − s)( 

1
l+2|u(t) − u(s)| ds 

l+2

dx.

(82)

We have by Hölder’s inequality


Ω


t

0
h1(t − s)( 

((l+1)/(l+2))
h1(t − s)( 

(1/(l+2))
|u(t) − u(s)| ds 

l+2

dx

≤
Ω


t

0
h1(t − s)( 

((l+1)/(l+2))
 

P
ds 

1/P


t

0
h1(t − s)( 

(1/(l+2))
|u(t) − u(s)| 

q
ds 

1/q
⎡⎣ ⎤⎦

l+2

dx

≤
Ω


t

0
h1(t − s)ds 

((l+1)/(l+2))


t

0
h1(t − s)ds|u(t) − u(s)|

l+2ds 

1/l+2
⎡⎣ ⎤⎦

l+2

dx

≤ 
t

0
h1(t − s)ds 

l+1


t

0
h1(t − s)‖u(t) − u(s)‖

l+2
l+2ds

≤ (a − k)
l+1

c
l+2
s 

t

0

�������

h1(t − s)

 �������

h1(t − s)



‖∇u(t) − ∇u(s)‖
l+1

‖∇u(t) − ∇u(s)‖ds

≤ (a − k)
l+1

c
l+2
s

1
2


t

0
h1(t − s)‖∇u(t) − ∇u(s)‖

2l+2ds +
1
2


t

0
h1(t − s)‖∇u(t) − ∇u(s)‖

2ds 

≤ (a − k)
l+1

c
l+2
s

1
2


t

0
h1(t − s)‖2∇u(t)‖

2l+2ds +
1
2

h1o∇u( (t) 

≤ (a − k)
l+1

c
l+2
s 22l+1

(a − k)‖∇u(t)‖
2(l+1)

+
1
2

h1o∇u( (t) .

(83)

Combining (83) with (82), we obtain

− 
Ω

1
l + 1

ut



l
ut 

t

0
h1(t − s)(u(t) − u(s))dsdx




≤

1
l + 2

ut

����
����

l+2
l+2

+
(l + 1)− 1

l + 2
(a − k)

l+1
c

l+2
s 22l+1

(a − k)‖∇u(t)‖
2(l+1)

+
1
2

h1o∇u( (t)  .

(84)
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Similarly, we get

− 
Ω
∇ut 

t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx




≤
1
2
∇ut

����
����
2

+
1
2


Ω


t

0
h1(t − s)|∇u(t) − ∇u(s)|ds 

2

dx

≤
1
2
∇ut

����
����
2

+
1
2

(a − k) h1o∇u( (t).

(85)

Similarly,

− 
Ω

1
l + 1

vt



l
vt 

t

0
h2(t − s)(v(t) − v(s))dsdx




≤

1
l + 2

vt

����
����

l+2

+
(l + 1)− 1

l + 2
(a − k)

l+1
c

l+2
s 22l+1

(a − k)‖∇v(t)‖
2(l+1)

+
1
2

h2o∇v( (t)  

− 
Ω
Ω∇vt 

t

0
h2(t − s)(∇v(t) − ∇v(s))dsdx




≤
1
2
‖∇v(t)‖

2
+
1
2

(a − k) h2o∇v( (t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(86)

Combining (84)–(86), we deduce (i).
(ii) Using the Leibniz formula and the first and second

equations of (7), we have

ψ′(t) � 
Ω
Δutt − ut



l
utt  

t

0
h1(t − s)(u(t) − u(s))dsdx

+ 
Ω
Δut −

1
l + 1

ut



l
ut  

t

0
h1′(t − s)(u(t) − u(s))(  + h1(t − s)ut(t)ds dx

+ 
Ω
Δvtt − vt



l
vtt  

t

0
h2(t − s)(v(t) − v(s))dsdx

+ 
Ω
Δvt −

1
l + 1

vt



l
vt  

t

0
h2′(t − s)(v(t) − v(s))(  + h2(t − s)vt(t)ds dx

� − α
Ω

v(t) 
t

0
h1(t − s)(u(t) − u(s))dsdx + 

Ω
M(‖∇u‖)

2∇u(t) 
t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx

− 
Ω


t

0
h1(t − s)∇u(s)ds 

t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx

+ μ1
Ω
∇z1(x, 1, t) 

t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx

− 
Ω
∇ut 

t

0
h1′(t − s)(∇u(t) − ∇u(s))dsdx −

1
l + 1


Ω

ut



l
ut 

t

0
h1′(t − s)(∇u(t) − ∇u(s))dsdx

− ∇ut

����
����
2


t

0
h1(s)ds −

1
l + 1

ut

����
����

l+2
l+2 

t

0
h1(s)ds
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− α
Ω

u(t) 
t

0
h2(t − s)(v(t) − v(s))dsdx + 

Ω
M(‖∇v‖)

2∇v(t) 
t

0
h2(t − s)(∇v(t) − ∇v(s))ds dx

− 
Ω


t

0
h2(t − s)∇v(s)ds 

t

0
h2(t − s)(∇v(t) − ∇v(s))dsdx

+ μ2
Ω
∇z2(x, 1, t) 

t

0
h2(t − s)(∇v(t) − ∇v(s))dsdx

− 
Ω
∇vt 

t

0
h2′(t − s)(∇v(t) − ∇v(s))dsdx −

1
l + 1


Ω

vt



l
vt 

t

0
h2′(t − s)(∇v(t) − ∇v(s))dsdx

− ∇vt

����
����
2


t

0
h2(s)ds −

1
l + 1

vt

����
����

l+2
l+2 

t

0
h2(s)ds

� I1 + I2 + I3 + I4 + I5 + I6 − ∇ut

����
����
2


t

0
h1(s)ds −

1
l + 1

ut

����
����

l+2


t

0
h1(s)ds

− ∇vt

����
����
2


t

0
h2(s)ds −

1
l + 1

vt

����
����

l+2


t

0
h2(s)ds,

(87)

where

I1 � 
Ω

M ‖∇u‖2 ∇u(t) 
t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx + 

Ω
M ‖∇v‖

2
 ∇v(t) 

t

0
h2(t − s)(∇v(t) − ∇v(s))dsdx

I2 � − 
Ω


t

0
h1(t − s)∇u(s)ds 

t

0
h1(t − s)(∇u(t) − ∇u(s))dsdx

− 
Ω


t

0
h2(t − s)∇v(s)ds 

t

0
h2(t − s)(∇v(t) − ∇v(s))dsdx

I3 � μ1
Ω
∇z1(x, 1, t) 

t

0
h1(t − s)(∇u(t) − ∇u(s))ds dx + μ2

Ω
∇z2(x, 1, t) 

t

0
h2(t − s)(∇v(t) − ∇v(s))ds dx

I4 � − 
Ω
∇ut 

t

0
h1′(t − s)(∇u(t) − ∇u(s))ds dx − 

Ω
∇vt 

t

0
h2′(t − s)(∇v(t) − ∇v(s))ds dx

I5 � −
1

l + 1

Ω

ut



l
ut 

t

0
h1′(t − s)(∇u(t) − ∇u(s))ds dx −

1
l + 1


Ω

vt



l
vt 

t

0
h2′(t − s)(∇v(t) − ∇v(s))ds dx

I6 � − α
Ω

v(t) 
t

0
h1′(t − s)(∇u(t) − ∇u(s))ds dx − α

Ω
u(t) 

t

0
h2′(t − s)(∇v(t) − ∇v(s))ds dx.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(88)

In what follows we will estimate I1, . . . , I6.
For I1, we use Hölder and Young’s inequalities with

p � q � 2, and we get
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I1


≤M ‖∇u‖
2

 
Ω

|∇u(t)| 
t

0
h1(s)ds 

1/2


t

0
h1(s)|∇u(t) − ∇u((s)|

2ds 

1/2

dx

+ M ‖∇v‖
2

 
Ω

|∇v(t)| 
t

0
h2(s)ds 

1/2


t

0
h2(t − s)|∇v(t) − ∇v(s)|

2ds 

1/2

dx

≤M ‖∇u‖
2

  δ
Ω

|∇u(t)|
2


t

0
h1(s)ds dx +

1
4δ


Ω


t

0
h1(t − s)|∇u(t) − ∇u(s)|

2dsdx 

+ M ‖∇v‖
2

  δ
Ω

|∇v(t)|
2


t

0
h2(s)ds dx +

1
4δ


Ω


t

0
h2(t − s)|∇v(t) − ∇v(s)|

2dsdx 

≤M ‖∇u‖
2

  δ(a − k)‖∇u(t)‖
2

+
1
4δ

h1o∇u( (t)  + M ‖∇v‖
2

  δ(a − k)‖∇v(t)‖
2

+
1
4δ

h1o∇v( (t) .

(89)

Similarly,

I2


≤ δ
Ω


t

0
h1(t − s)|∇u(s)|ds 

2

dx +
1
4δ


Ω


t

0
h1(t − s)|∇u(t) − ∇u(s)|ds 

2

dx

+ δ
Ω


t

0
h2(t − s)|∇v(s)|ds 

2

dx +
1
4δ


Ω


t

0
h2(t − s)|∇v(t) − ∇v(s)|ds 

2

dx

≤ δ
Ω


t

0
h1(t − s)(|∇u(s) − ∇u(t)| + |∇u(t)|)ds 

2

dx +
1
4δ


t

0
h1(s)ds h1o∇u( (t) 

+ δ
Ω


t

0
h2(t − s)(|∇v(s) − ∇v(t)| + |∇v(t)|)ds 

2

dx +
1
4δ


t

0
h2(s)ds h2o∇v( (t) 

≤ 2δ‖∇u(t)‖
2


t

0
h1(t)ds

2dx + 2δ +
1
4δ

   
t

0
h1((s)ds) h1o∇u( (t)

+ 2δ‖∇v(t)‖
2


t

0
h2(t)ds

2dx + 2δ +
1
4δ

   
t

0
h2((s)ds) h1o∇v( (t)

≤ 2δ‖∇u(t)‖
2
(a − k)

2
+ 2δ +

1
4δ

 (a − k) h1o∇u( (t) + 2δ‖∇v(t)‖
2
(a − k)

2
+ 2δ +

1
4δ

 (a − k) h2o∇v( (t),

(90)

I3


≤ δ μ21 ∇z1(x, 1, t)
����

����
2

+ μ22 ∇z2(x, 1, t)
����

����
2

  +
(a − k)

4δ
h1o∇u( (t) +

(a − k)

4δ
h2o∇v( (t), (91)

I4


≤ δ
Ω
∇ut



2dx +

1
4δ


Ω


t

0
h1′(t − s)


|∇u(t) − ∇u(s)|ds 

2

dx

+ δ
Ω
∇vt



2dx +

1
4δ


Ω


t

0
h2′(t − s)


|∇v(t) − ∇v(s)|ds 

2

dx

≤ δ ∇ut

����
����
2

+
1
4δ


t

0
− h1′(t − s)( ds

Ω


t

0
− h1′(t − s)( |∇u(t) − ∇u(s)|

2dsdx

+ δ ∇vt

����
����
2

+
1
4δ


t

0
− h2′(t − s)( ds

Ω


t

0
− h2′(t − s)( |∇v(t) − ∇v(s)|

2dsdx

≤ δ ∇ut

����
����
2

−
h1(0)

4δ
h1′o∇u( (t) + δ ∇vt

����
����
2

−
h2(0)

4δ
h2′o∇u( (t),

(92)

and since l≤ c, we follow almost the same steps to obtain
|ψ(t)|)
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I5


≤
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

(l + 1)− 1

l + 2
h1(0)( 

l+1


t

0
− h1′(t − s)( ‖u(t) − u(s)‖

l+2
l+2ds

+ h2(0)( 
l+1


t

0
− h2′(t − s)( ‖v(t) − v(s)‖

l+2
l+2ds

≤
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

(l + 1)− 1

l + 2
c

l+2
s h1(0)( 

l+1


t

0
− h1′(t − s)( ‖∇u(t) − ∇u(s)‖

l+2ds

+ h2(0)( 
l+1


t

0
− h2′(t − s)( ‖∇u(t) − ∇u(s)‖

l+2ds

≤
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

(l + 1)− 1

l + 2
c

l+2
s h1(0)( 

l+1 δ22(l+1)
h1(0)‖∇u(t)‖

2(l+1)
−

1
4δ

h1′o∇u( (t) 

+
(l + 1)− 1

l + 2
c

l+2
s h2(0)( 

l+1 δ22(l+1)
h2(0)‖∇v(t)‖

2(l+1)
−

1
4δ

h2′o∇v( (t) 

≤
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

(l + 1)− 1

l + 2
c

l+2
s h1(0)( 

l+1 δ22(l+1)
h1(0)M ‖∇u(t)‖

2
 ‖∇u(t)‖

2
−

1
4δ

h1′o∇u( (t) 

+
(l + 1)− 1

l + 2
c

l+2
s h2(0)( 

l+1 δ22(l+1)
h2(0)M ‖∇v(t)‖

2
 ‖∇v(t)‖

2
−

1
4δ

h2′o∇v( (t) ,

(93)

I6


≤
αCs

2
‖∇u(t)‖

2
+ ‖∇v(t)‖

2
+ (a − k) h1o∇u( (t) + h2o∇v( (t)  . (94)

Combining (87) and (89)–(94), we finish the proof. □

Proof of 7eorem 1.2. Now, for M, ε1 > 0, we introduce the
following functional:

F(t) � ME(t) + ε1ϕ(t) + ψ(t) + I(t) ∼ E(t). (95)

Indeed, to prove F(t) ∼ E(t), we show that there exist
two positive constants κ1 and κ2 such that

κ1E(t)≤F(t)≤ κ2E(t). (96)

From (i) of Lemmas 4–6 and recalling the fact that l≤ c,
we get

ε1ϕ(t) + ψ(t) + I(t)


≤
ε1 + 1
l + 2

ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  +

ε1 + 1
2
∇ut

����
����
2

  + ∇vt

����
����
2

 

+
ε1c
2

+
(l + 1)− 1

(l + 2)
c

l+2
s ε1 + 22l+1

(a − k)
l+2

   ‖∇u‖
2(c+1)

+‖∇v‖
2(c+1)

 

+
a − k

2
1 +

(l + 1)− 1

(l + 2)
(a − k)

l
c

l+2
s  h1o∇u( (t) + h2o∇v( (t)(  +

1
ξ

E(t)

≤ κE(t),

(97)

where κ> 0 depending on ε1, a, b, l, c, cs, k, ξ . If we choose
M � κ + ϵ, we can obtain our result.

By recalling Lemmas 3–6 and by Assumption 2, we
deduce that for t≥ t0 > 0,

18 Complexity



F′(t) � ME′(t) + ε1ϕ′(t) + ψ′(t) + I′(t)

≤ μ2δ + ε1
μ2

4η
− (1 − d)e

− 2τ1 − Mβ  ∇z1(x, 1, t)
����

����
2

+ ∇z2(x, 1, t)
����

����
2

 

− 2τ(t)e
− 2τ1 

1

0
∇z1(x, p, t)

����
����
2

+ ∇z2(x, p, t)
����

����
2

 dρ

− ε1[k − η(a − k + 1)] −
αCS

2
− 2δ(a − k)

2
− δ (a − k) +

(l + 1)− 1

(l + 2)
h2cs( 

l+222(l+1)
 M0  ‖∇u‖

2
+‖∇v‖

2
 

+
M

2
−

h1

4δ
 1 +

(l + 1)− 1

(l + 2)
h

l
1c

l+2
s  −

1
ζ

ε1
4η

+
M0

4δ
+

αCS

2
+ 2δ +

1
2δ

 (a − k)   h1′o∇u( (t) + h2′o∇u( (t)

−
1

l + 1
h0 − 1 − ε1(  ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  − h0 − δ − Mλ − 1 − ε1(  ∇ut

����
����
2

+ ∇vt

����
����
2

 ,

(98)

where M0 �max M(‖∇u‖2),M(‖∇v‖2) , h0 �min


t0

0 h1(s)ds,
t0

0 h2(s)ds , h1 �min h1(0),h2(0) , h2 �min
h1(0),h2(0) , and ζ �max ζ1,ζ1 .

Let ϵ > 0 be sufficiently small so M is fixed; we take h0 −

Mλ − 1> ε1 and δ small enough such that

a3 � h0 − 1 − ε1 > 0,

a4 � h0 − δ − Mλ − 1 − ε1.
(99)

Further, we choose η, α small enough such that

a1 � μ21δ + ε1
μ2

4η
− (1 − d)e

− 2τ1 − Mβ> 0,

a2 � ε1[k − η[a − k + 1]] −
αCS

2
− 2δ(a − k)

2
− δ (a − k) +

(l + 1)− 1

(l + 2)
h2cs( 

l+222(l+1)
 M0 > 0,

a5 �
M

2
−

h1

4δ
1 +

(l + 1)− 1

(l + 2)
h

l
1c

l+2
s  −

1
ζ

ε1
4η

+
M0

4δ
+

αCS

2
+ 2δ +

1
2δ

 (a − k) < 0.

(100)

,us,

F′(t)≤ − a3
1

l + 2
ut

����
����

l+2
l+2 + vt

����
����

l+2
l+2  − a2 ‖∇u‖

2
+‖∇v‖

2
  − 2τ(t)e

− 2τ1 
1

0
∇z1(x, ρ, t)

����
����
2

+ ∇z2(x, ρ, t)
����

����
2

 dρ

+ a1 ∇z1(x, 1, t)
����

����
2

+ ∇z2(x, 1, t)
����

����
2

  − a4 ∇ut

����
����
2

+ ∇vt

����
����
2

  + a5 h1′o∇u( (t) + h2′o∇v( (t) 

≤ − mE(t) − cE′(t),

(101)

where m � min (2e− 2τ1 /ξ), 2(a2/a), a3  and (a1/β)≤ c≤
min (a4/λ), − 2a5 .

Let L(t) � F(t) + cE(t) ∼ E(t). From (101), we get

L′(t)≤ − c′L(t), ∀t≥ t0, (102)

for some c′ > 0. A simple integration over (t0, t) yields

L(t)≤ L t0( e
− c′ t− t0( ), ∀t≥ t0. (103)

,anks to equivalence between L andE, we obtain (16). □
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+e fundamental dynamics of the deformed Rikitake two-disc dynamo system is explored in this paper. Memory effect on the
dynamical behavior of the generator system is studied by introducing a quadratic flux-controlled memristor. Hyperchaotic
oscillation in the deformed Rikitake two-disk coupled generator is therefore firstly found. Lyapunov exponents, bifurcation
diagram, and phase portraits prove the abundant dynamic behavior consistently.

1. Introduction

Memristor is a passive element with nonlinearity and
nonvolatility. According to the completeness of basic circuit
components, in 1971, Chua first predicted the existence of
the fourth circuit component, which describes the rela-
tionship between charge and flux [1]. In 2008, Hew-
lett–Packard Laboratory successfully fabricated the
nanoscale memristor based on metal and metal oxides [2],
which aroused great interest in the scientific and techno-
logical community. Recently, great progress has been made
in the research of memristors, and the application of
memristoralso has become a hot focus. Because of the small
size, low power consumption, nonlinearity, and non-vola-
tility, the memristor can be applied in many areas such as
nonlinear chaotic circuits [3–6], electronic engineering
[7–9], artificial intelligence [10–12], and neural networks
[13–15].

It is considered that the geomagnetic field is associated
with the conductive outer core, which has been proved by
some dynamical models. In 1958, T. Rikitake firstly pro-
posed a Two-Disc Dynamo System (RTDDS) and observed
this physical law [16]. RTDDS is a simple model to

demonstrate the polarity reversal of the earth’s magnetic
field, in which the current from each disc excites the coil of
the other [17]. In fact, it is a chaotic system [18] and exhibits
abundant dynamical behavior [19–21].

Recently, much attention has been paid to the RTDDS. A
new attractor synthesis algorithm was applied to model the
attractors in the Rikitake system [22]. By applying syn-
chronization technique based on control theory, an active
controller was designed for the synchronization of two
identical RTDDS [19]. A method to stabilize asymptotically
the nontrivial Lyapunov stable states of Rikitake two-disk
dynamo dynamics was given in [23]. It was proven that the
two non-hyperbolic equilibrium points of the Rikitake
system are all stable for all positive parameters [24]. A simple
realization of the symmetric Rikitake system was given in
[25]. A reduced-order projective synchronization system
was designed for the Rikitake system without any equilibria
or with two non-hyperbolic equilibrium points in [26]. In
[27], a 4-D hyperchaotic Rikitake dynamo system without
any equilibria was proposed. In [28], a 5-D hyperchaotic
Rikitake dynamo system with three positive Lyapunov ex-
ponents was proposed, which has a hidden attractor without
any equilibrium point. From aforementioned references, the
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hyperchaotic system of RTDDS was constructed by artificial
numerical methods directly through feedback and other
means.

With the continuous development of industrial auto-
mation, intelligent motors with control and learning capa-
bilities have also been realized. In this paper, a deformed
RTDDS is constructed by introducing an extra flux-controlled
memristor. +e motor can be controlled to avoid the chaotic
region through the combination of memristors and mem-
ristor control parameters. After the memristor is added, the
bifurcation point of the system is changed, and the original
behavior state of the RTDDS is also changed. +erefore, the
research in this paper provides an important idea for the
control of the double-disk motor. +is system is proven with
abundant dynamical behaviors, including a line of equilibria
and hyperchaos [29–33]. In Section 2, the brief introduction
of the flux-controlled memristor is given, thereafter a new
lossy RTDDS is given, and the deformed RTDDS is con-
structed by adding one extra flux-controlled memristor. Rich
dynamics of the presented system are analyzed in Section 3. In
Section 4, the analog circuit of the new memristive hyper-
chaotic system is implemented based onMultisim simulation.
Some conclusions are finally drawn in Section 5.

2. Modeling of the Deformed Two-
Disc Generator

2.1. Memristor Model. According to the relationship be-
tween voltage v and current of a flux-controlled memristor
[1, 34, 35], choose a cubic nonlinearity to describe the q
function [36–38], and then, W (φ) is

i � W(φ)y,

W(φ) � α + 3βφ2,

_φ � y,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where α and β are two positive constants. Figure 1 shows the
voltage-current relationship of the memristor with α� 2 and
β� 0.1 under the frequency f� 1Hz. +e hysteresis curve
agrees the inherent characteristics of the memristor.

In the following, the above memristor is applied to study
the memory effect of the deformed RTDDS.

2.2. Description of the Deformed RTDDS. In 1958, Rikitake
first proposed a two-disc generator, in which the dimen-
sionless equations are [16, 18]

_x1 � − μx1 + x2x3,

_x2 � − μx2 + x1 x3 − μ σ2 − σ − 2(  ,

_x3 � 1 − x1x2,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where x1 and x2 are dimensionless currents, x3 is the angular
velocity of the two discs, μ and σ are adjustable parameters.

In the chaotic double-disk generator, considering the
wear rate of the double-disk generator, the model of the
deformed double-disk coupled generator is constructed
under electromechanical coupling. +e new deformed
RTDDS is proposed as

_x � − ax + y(z + c),

_y � − by + x(z − c),

_z � dz − xy,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where a and b are the ratio of resistance to self-inductance of
the two loops, which represent the dissipative performance
of the generator, and are closely related to the working
conditions of the generator. Here, c is the difference in
angular velocity between two rotors of the coupled gener-
ators, d is the wear parameter, x and y represent the current
across the two loops, and z is the angular velocity of the
double discs. System (3) with a= 2, b = 3, c= 5, and d= 0.75
has a chaotic solution with Lyapunov exponents:
LE1 = 0.2825, LE2 = 0, and LE3 = − 4.4179 under the initial
condition (0.1, 0.1, 0.1), as shown in Figure 2. System (3)
shows rotational symmetry since it is recovered by the
transformation (x, y, z)⟶ (− x, − y, z).

2.3. Memristive Deformed RTDDS. In RTDDS, assume that
the loop current of the first disc depends on the change of the
current of the other disc, and the memory effect can be
indicated by the memristor. A flux-controlled memristor is
applied in RTDDS with α= 2 and β= 0.1, and the memristive
deformed RTDDS is

_x � − ax + yz + kW(φ)y,

_y � − by + x(z − c),

_z � dz − xy,

_φ � y,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where a, b, c, and d are positive parameters, and k is a
positive parameter representing the strength of the mem-
ristor. System (4) with a= 2, b= 3, c= 5, d= 0.75, and k= 1
has a hyperchaotic attractor with Lyapunov exponents
LE1 = 0.3784, LE2 = 0.0218, LE3 = 0.0000, and LE4 = − 4.6503,
two of which are positive indicating hyperchaos, as shown in
Figure 3. +e Kaplan–York dimension is DKY = 3.0861.
Poincaré map is a line representing chaos if the surface
represents hyperchaos, and the Poincaré map of the system
is shown in Figure 4; in this system, Poincaré map is surface,
so it is hyperchaos. +e invariance of system (4) under the
transformation (x, y, z, φ)⟶ (− x, − y, z, − φ) shows the

–2.0 –1.0 0.0 1.0 2.0
v(V)

600m

300m

0m

–300m

–600m

i (
A

)

Figure 1: Pinched hysteresis loop of the memristor with α� 2 and
β� 0.1 (f� 1Hz).
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rotational symmetric structure. +erefore, newly introduced
memristor transforms the system to be a hyperchaotic one.

3. Dynamical Behaviours of the Proposed
Chaotic System

3.1. Line of Equilibria and StabilityAnalysis. +e equilibrium
points of system (4) can be derived by solving the following
equations:

− ax + yz + kW(φ)y � 0,

− by + x(z − c) � 0,

dz − xy � 0,

y � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

System (5) has a line of equilibria [0, 0, 0, φ], where φ is a
real variable. By linearizing system (5) at the equilibria, the
Jacobian matrix can be obtained:
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Figure 2: Phase portraits of system (3) with a� 2, b� 3, c� 5, and d� 0.75: (a) x-y plane, (b) x-z plane, and (c) y-z plane.
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Figure 3: Phase portraits of system (4) with a� 2, b� 3, c� 5, d� 0.75, and k� 1: (a) x-y plane, (b) y-z plane, and (c) y-φ plane.

y

0 20–20
x

–20

–10

0

10

20

(a)

φ

–5

0

5

0 5–5
y

(b)

Figure 4: Poincaré map of system (4) with a� 2, b� 3, c� 5, d� 0.75, and k� 1: (a) x-y plane; (b) y-φ plane.

Complexity 3



Jo �

− a kW(φ) 0 0

− c − b 0 0

0 0 d 0

0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

According to equation (6), the characteristic equation
can be obtained as

λ(λ − d) λ2 +(a + b)λ + ab + ckW(φ)  � 0. (7)

So, the eigenvalues are

λ1 � 0,

λ2 � d,

λ3,4 �
− (a + b) ±

����������������

(a − b)2 − 4ckW(φ)



2
.

(8)

+erefore, the stability of the line equilibria is associated
with the values of a, b, c, k, and W (φ). From λ2 and λ3,4, it
can be seen that when a, b, and d are positive, the line
equilibria point is unstable, command Δk � (a − b)2−

4ckW(φ), where if Δk> 0, and the line equilibria are unstable
nodes or else if Δk< 0, the line equilibria are unstable saddle
foci. Specifically, when a� 2, b� 3, c� 5, d� 0.75, and k� 1,
the line equilibria are unstable saddle focus.

3.2. Dynamical Analysis. +e dynamic behavior of system
(4) will be further investigated with Lyapunov exponent
spectra and bifurcation diagram.

When b� 3, c� 5, d� 0.75, k� 1, and a varies in [2, 10],
set the initial condition IC� (0.1, 0.1, 0.1, 0.1), step size of a is
0.01, time step is 0.01 s, and running time is 300 s; the
corresponding Lyapunov exponent spectra and bifurcation
diagram are obtained as shown in Figure 5. As shown in
Figure 5(a), when a∈[0, 2.58), the largest Lyapunov exponent
is positive, so system (4) is chaotic; when a∈[2.58, 2.9), two of

the Lyapunov exponents are positive. +us, system (4) is
hyperchaotic; thereafter, system (4) enters into the periodic
mode at a� 2.9. It remains periodic when a ∈ [2.9, 3.42).
When a∈[3.42, 5.33)∪ [5.81, 6.4)∪ [7.24, 7.6), it stays in
chaos; system (4) drops in the periodic state occasionally
when a∈[5.33, 5.81)∪ [6.4, 7.24)∪ [7.6, 10). Bifurcation di-
agram shown in Figure 5(b) agrees with the Lyapunov ex-
ponents. Specific periodic oscillations are shown Figure 6,
and the detail information of Lyapunov exponents is shown
in Table 1. We noticed that system (4) sometimes provides a
symmetric oscillation and sometimes gives a symmetric pair
of limit cycles.

+e memristor bridges the loop current of two disks.
Different phase portraits can be obtained under different
initial values, as shown in Figure 7. A symmetric oscil-
lation or a symmetric pair of limit cycles is found
simultaneously.

Let a= 2, b= 3, d= 0.75, and k= 1, while c varies from 0 to
10, and the initial condition IC= (0.1, 0.1, 0.1, 0.1), the
Lyapunov exponent spectra, and the corresponding bifur-
cation diagram are shown in Figure 8. As shown in Figure 8,
when c ∈ [0, 1.9)∪ [4.6, 8)∪ [8.24, 10), system (4) is chaotic;
when c ∈ [2.7, 4.6), system (4) is hyperchaotic; and when c∈
[1.9, 2.64)∪ [8, 8.42), system (4) is periodic. Let a= 2, b= 3,
c= 5, and d= 0.75, while k varies in [0, 5], set the initial
condition IC= (0.1, 0.1, 0.1, 0.1), and the Lyapunov exponent
spectra and the corresponding bifurcation diagram are
shown in Figure 9, showing system (4) stays in chaos ro-
bustly. Usually, a memristive system shows multistability
induced by the memory effect, however when a= 2, b= 3,
c= 5, d= 0.75, and k= 1, let the initial condition IC= (0.1, 0.1,
0.1, φ), φ varies from − 5 to 5, the Lyapunov exponent spectra
and the corresponding bifurcation diagram are shown in
Figure 10, showing system (4) stays in chaotic orbit.

4. Circuit Simulation Based on Multisim

In order to further observe the specific hyperchaotic oscil-
lation behavior induced from the memory effect, a circuit
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Figure 5: Lyapunov exponent spectra and bifurcation of system (4) with b� 3, c� 5, d� 0.75, and k� 1, and a varies in [2, 10]: (a) Lyapunov
exponent spectra: LE1 is blue, LE2 is red, and LE3 is green; (b) bifurcation diagram.
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simulation is realized based on Multisim software [39]. In
the circuit design, resistors, capacitors, operational ampli-
fiers (OPA404AG), analog multipliers, and other elements
are applied. +e supply voltages for OPA404AG operational
amplifiers (with saturated voltages Vsat≈±13.5V) are ±15V.
In fact, the variable z is beyond the normal operating range

of the device. +erefore, here, the variables are transformed
by proportional compression, that is, vx � 10vx1, vy � 10vy1,
vz � 10vz1, and vφ � 10vφ1, where vx1, vy1, vz1, and vφ1 are the
voltages on the integral capacitor, respectively. By time
rescaling of system (4), the equations can be obtained as
follows:

z

0 5–5
y

2

4

6

8

10

(a)

z

–25

–20

–15

–10

–5

0

5

–10 0 10 20–20
y

(b)

z

–20

–10

0

10

0 20–20
y

(c)

z

–25

–20

–15

–10

–5

0

5

0 20–20
y

(d)

z

–20 0 20
y

–30

–20

–10

0

(e)

z

–30

–20

–10

0

0 20–20
y

(f )

Figure 6: Various periodic oscillations in system (4) with b� 2, c� 5, d� 0.75, and k� 1 and (a) a� 3.2, (b) a� 5.8, (c) a� 7, (d) a� 8.5, (e)
a� 9, and (f) a� 9.8, IC� (0.1, 0.1, 0.1, 0.1) is blue, (− 0 1, 0.1, 0.1, 0.1) is red, and (0.1, 0.1, − 0.1, 0.1) is green.

Table 1: Periodic oscillations in system (4) under different parameters of a.

Cases Parameter a Lyapunov exponents Solution type of system (4)
A a� 3.2 0.0002 − 0.0665 − 0.9399 − 4.4432 Symmetric attractor
B a� 5.8 0.1214 0.0000 − 0.3017 − 7.8699 Symmetric attractor
C a� 7 0.0005 − 0.1337 − 0.5036 − 8.6132 Asymmetric attractor
D a� 8.5 0.0000 − 0.4863 − 0.7792 − 9.4844 Asymmetric attractor
E a� 9 0.0014 − 0.5440 − 0.8858 − 9.8216 Asymmetric attractor
F a� 9.8 0.0006 − 0.2361 − 0.7574 − 11.0571 Asymmetric attractor
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Figure 7: Various periodic oscillations in system (4) with a� 7, b� 3, c� 5, d� 0.75, and k� 1: (a) IC� (0.1, 0.1, 0.1, 0.1) is blue, (0.1, − 0.1, 0.1,
0.1) is red, (b) IC� (0.1, 5, 0.1, 0.1) is blue, (0.1, − 5, 0.1, 0.1) is red, and (c) IC� (0.1, 10, 0.1, 0.1) is blue, (0.1, − 10, 0.1, 0.1) is red.
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Figure 9: Lyapunov exponent spectra and bifurcation diagram of system (4) with a� 2, b� 3, c� 5, and d� 0.75, while k varies in [0, 5]: (a)
Lyapunov exponent spectra: LE1 is blue, LE2 is red, and LE3 is green; (b) bifurcation diagram.
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Figure 10: Lyapunov exponent spectra and bifurcation diagram of system (4) with a� 2, b� 3, c� 5, d� 0.75, and k� 1, while φ varies in [− 5,
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Figure 11: +e analog circuit of the deformed RTDDS.
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C1 _vx � −
1

R13
vx +

1
R12

vyvz +
1

R11
W(φ)vy,

C2 _vy � −
1

R21
vy +

1
R22

vxvz −
1

R23
vx,

C3 _vz �
1

R31
vz −

1
R32

vxvy,

C4 _vφ �
1

R41
vy.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

+e corresponding analog circuit is shown in Figure 11.
+e circuit in Figure 11(a) represents the quadratic non-
linear flux-controlled memristor, which consists of an in-
tegration circuit and a proportional circuit. Resistor R41,
operational amplifier U2C, and capacitor C4 constitute an
integral circuit, which integrates the voltage v across the
memristor giving the magnetic flux through the memristor.

In Figure 11, the capacitances and resistances are
C1 �C2 �C3 �C4 �1 nF, R12 �R23 �R32 �R41 � 10 kΩ, R13 �

50 kΩ, R21 � 33.3 kΩ, R22 � 20 kΩ, R31 � 133.3 kΩ,
R42 �R44 � 30 kΩ, and R14 �R15 �R24 �R25 �R33 �R34 �

R43 �R11 � 100 kΩ. Figure 12 gives the phase trajectories
shown in the oscilloscopes.
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Figure 12: Simulation results obtained fromMultisim software: (a) attractor on the x-y plane, (b) attractor on the y-z plane, (c) attractor on
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In order to verify the memory effect in RTDDS, a new
flux-controlled memristor W (φ) = − m+ n|φ|, with m= 2
and n=5, is introduced. System (4) has a hyperchaotic
attractor with Lyapunov exponents LE1 = 0.3225,
LE2 = 0.0554, LE3 = 0.0000, and LE4 = − 4.6309 when a= 2,
b= 3, c= 5, d= 0.75, and k= 1, two of which are positive
indicating hyperchaos, as shown in Figure 13.

5. Conclusions and Discussion

+e deformed Rikitake two-disc dynamo system possesses
rich dynamics including chaos, hyperchaos, and different
periodic oscillations. A memristive deformed RTDDS was
constructed for observing the memory effect. Consequently,
an analog circuit based on the flux-controlled memristor was
designed for further verification. Circuit simulation agrees
with the theoretical analysis and numerical simulation. By
the memristor model built the control circuit, through
memristor and matching parameters of the memristor, the
RTDDS can be controlled to avoid the chaotic region and
realize the smooth operation. +is research provides a
meaningful reference for motor design and control.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported financially by the National Nature
Science Foundation of China (Grant nos. 61871230, 51974045,
and 61971228), the Natural Science Foundation of Jiangsu
Province (Grant no. BK20181410), the Startup Foundation for
Introducing Talent of NUIST (Grant no. 2016205), and a
project funded by the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions, Major Scien-
tifific and Technological Innovation Projects of Shandong
Province (Grant no. 2019JZZY010111), the Natural Science
Foundation of Shandong Province (Grant no. ZR2017PA008),
theKey Research andDevelopment Plan of Shandong Province
(Grant no. 2019GGX104092), and Science and Technology
Plan Projects of Universities of Shandong Province (Grant no.
J18KA381).

References

[1] L. Chua, “Memristor-+e missing circuit element,” IEEE
Transactions on Circuit Ceory, vol. 18, no. 5, pp. 507–519,
1971.

[2] D. B. Stukov, G. S. Snider, D. R. Stewart et al., “+e missing
memristor found,” Nature, vol. 453, pp. 80–83, 2008.

[3] B. C. Bao, Z. Liu, and J. P. Xu, “Steady periodic memristor
oscillator with transient chaotic behaviours,” Electronics
Letters, vol. 46, no. 3, p. 228, 2010.

[4] C. Li, W. Joo-Chen +io, H. Ho-Ching Iu, and T. Lu, “A
memristive chaotic oscillator with increasing amplitude and
frequency,” IEEE Access, vol. 6, pp. 12945–12950, 2018.

[5] J. Wang, G. Iu, and T. Fernando, IEEE Transactions on
Circuits System, vol. 28, 2018.

[6] G. Ella, International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, vol. 29, pp. 246–250, 2014.

[7] H. Chang, Z.Wang, Y. Li, and G. Chen, Semiconductor Science
and Technology, vol. 65, pp. 104004–104014, 2017.

[8] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and
K. Bertels, “A mapping methodology of boolean logic circuits
on memristor crossbar,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 2,
pp. 311–323, 2018.

[9] X. Wang, Q. Wu, Q. Chen, and Z. Zeng, “A novel design for
memristor-based multiplexer via NOT-material implication,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 7, pp. 1436–1444, 2018.

[10] M. Vaynshteyn and A. Lanis, “Applications of electrochemical
elements in systems of artificial intelligence,” Natural Science,
vol. 11, pp. 45–51, 2013.

[11] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, “A mem-
ristor-based optimization framework for artificial intelligence
applications,” IEEE Circuits and Systems Magazine, vol. 18,
no. 1, pp. 29–44, 2018.

[12] J. H. Yoon, Z.Wang, K. M. Kim et al., “An artificial nociceptor
based on a diffusive memristor,” Nature Communications,
vol. 9, p. 417, 2018.

[13] I. E. Ebong and P. Mazumder, “CMOS and memristor-based
neural network design for position detection,” Proceedings of
the IEEE, vol. 100, no. 6, pp. 2050–2060, 2012.

[14] B. Bao, H. Qian, J. Wang et al., “Numerical analyses and
experimental validations of coexisting multiple attractors in
Hopfield neural network,” Nonlinear Dynamics, vol. 90, no. 4,
pp. 2359–2369, 2017.

[15] M. Di Marco, M. Forti, and L. Pancioni, “New conditions for
global asymptotic stability of memristor neural networks,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 5, pp. 1822–1834, 2018.

[16] T. Rikitake, “Oscillations of a system of disk dynamos,”
Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 54, 1958.

[17] A. E. Cook and P. H. Roberts, “+e Rikitake two-disc dynamo
system,” Mathematical Proceedings of the Cambridge Philo-
sophical Society, vol. 68, no. 2, pp. 547–569, 1970.

[18] I. Keisuke, “Chaos in the Rikitake two-disc dynamo system,”
Earth and Planetary Science Letters, vol. 51, pp. 451–456, 1980.

[19] U. E. Vincent, “Synchronization of Rikitake chaotic attractor
using active control,” Physics Letters A, vol. 343, no. 1–3,
pp. 133–138, 2005.
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In this paper, by using subsuper solutions method, we study the existence of weak positive solutions for a new class of (p, q)

Laplacian nonlinear elliptic system in bounded domains, when a(x), b(x), α(x), and β(x) are sign-changing functions that maybe
negative near the boundary, without assuming sign conditions on f(0), g(0), h(0), and c(0).

1. Introduction

-e study of differential equations and variational
problems with nonstandard p(x)− growth conditions is a
new and interesting topic. It arises from nonlinear elas-
ticity theory, electrorheological fluids, etc. (see [1–15]).
Many existence results have been obtained on this kind of
problems, see, for example [10, 12, 16–18] and [19–30]. In
[31, 32], Fan et al. studied the regularity of solutions for
differential equations with nonstandard p(x)–-growth
conditions.

In this article, we consider the following system:

− △pu − |u|p− 2u � λ1a(x)f(v) + μ1α(x)h(u) inΩ,

− △qv − |v|q− 2v � λ2b(x)g(u) + μ2β(x)c(v) inΩ,

u � v � 0 on zΩ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Δsz � div(|∇z|s− 2∇z), s> 1,Ω ⊂ RN (N≥ 3) is a
bounded domain with smooth boundary zΩ, a(x), b(x),
α(x), β(x) ∈ C(Ω), and λ1, λ2, μ1, and μ2 are nonnegative
parameters.

In fact, we study the existence of positive solutions to
system (1) with sign-changing weight functions a(x), b(x),
α(x), and β(x). Due to these weight functions, the exten-
sions are challenging and nontrivial.

-ese problems arise in some physical models and are
interesting in applications at combustion, mathematical
biology, and chemical reactions. Our approach is based on
the method of sub- and supersolutions (see
[6, 23–25, 27, 30]).

We make the following assumptions:

(H1)f, g, h, c ∈ C1([0,∞)) are nondecreasing func-
tions such that lims⟶+∞f(s) � lims⟶+∞
g(s) � lims⟶+∞h(s) � lims⟶+∞c(s) � +∞

(H2)lims⟶+∞((f(M(g(s))(1/q− 1)))/sp− 1) � 0, ∀M> 0
(H3)lims⟶+∞(h(s)/sp− 1) � lims⟶+∞(c(s)/sq− 1) � 0

Let σr be the first eigenvalue of − Δr with Dirichlet
boundary conditions and ϕr be the corresponding eigen-
function with ϕr > 0 in Ω and ‖ϕr‖ � 1 for r � p, q. Let
m, η, δ > 0 be such that (|∇ϕr|

r − σrϕr ≥m) on
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Ωδ � x ∈ Ω, d(x, zΩ)≤ δ{ } and ϕr ≥ η on (Ω/Ωδ) for
r � p, q.

Here, we assume that the weights a(x), b(x), α(x), and
β(x) take negative values inΩδ but require a(x), b(x), α(x),
and β(x) to be strictly positive in (Ω/Ωδ). To be precise, we
assume that there exist positive constants a0, a1, b0, b1, α0,
α1, β0, and β1 such that

a(x)≥ − a0,

b(x)≥ − b0,

α(x)≥ − α0,

β(x)≥ − β0,

x ∈ Ωδ,

a(x)≥ a1,

b(x)≥ b1,

α(x)≥ α1,

β(x)≥ β1,

x ∈ Ω/Ωδ( .

(2)

Also, let s0 ≥ 0 be such that f(s0), g(s0), h(s0), c(s0)> 0,
and

K1 �
p − 1

p
 ηp/(p− 1)

,

K2 �
q − 1

q
 ηq/(q− 1)

,

θ0 � max
s0

K1
 

1/(p− 1)

,
s0

K2
 

q/(q− 1)⎧⎨

⎩

⎫⎬

⎭.

(3)

For θ> θ0, we define

λ1∗(θ) ≔
θσp

da1f θ1/(q − 1)K2 
,

λ∗1(θ) ≔
θm

da0f θ1/(q− 1)
 

,

μ1∗(θ) ≔
θσp

d′α1h θ1/(p− 1)K1 
,

μ∗1(θ) ≔
θm

d′α0h θ1/(q− 1)
 

,

λ2∗(θ) ≔
θσq

db1g θ1/(p− 1)K1 
,

λ∗2(θ) ≔
θm

db0g θ1/(p− 1)
 

,

μ2∗(θ) ≔
θσq

d′β1c θ1/(q− 1)K2 
,

μ∗2(θ) ≔
θm

d′β0c θ1/(q− 1)
 

,

(4)

where d> 1 and (1/d) + (1/d′) � 1; also assume

Λ � θ> θ0 : λ1∗(θ) < λ∗1(θ), μ1∗(θ) < μ∗1(θ), λ2∗(θ)

< λ∗2(θ), μ2∗(θ)< μ∗2(θ).
(5)

2. Existence Result

We give the following two definitions before we give our
main result.

Definition 1. Let (u, v) ∈W1,p(Ω)∩C(Ω) × W1,q(Ω)∩
C(Ω), (u, v) be said a weak solution of (1) if it satisfies

Ω|∇u|p− 2∇u · ∇ξdx − Ω|u|p− 2u · ξdx � λ1Ωa(x)f(v)ξdx + μ1Ωα(x)h(u) ξdx inΩ,

Ω|∇v|q− 2∇v · ∇ζdx − Ω|v|q− 2v · ζdx � λ2Ωb(x)g(u)ζdx + μ2Ωβ(x)c(v)ζdx inΩ,
(6)

for all (ξ, ζ) ∈W
1,p
0 (Ω) × W

1,q
0 (Ω).

Definition 2. A pair of nonnegative functions (u, v), (u, v) in
W1,p(Ω)∩C(Ω) × W1,q(Ω)∩C(Ω) is called a weak

subsolution and supersolution of (1) if they satisfy
(u, v), (u, v) � (0, 0) on zΩ:

Ω ∇ u


p− 2∇ u ·∇ξdx − Ω u


p− 2 u · ξdx ≤ λ1Ωa(x)f v( ξdx + μ1Ωα(x)h u( ξdx inΩ,

Ω ∇ v


q− 2∇ v ·∇ζdx − Ω v


q− 2 v · ζdx ≤ λ2Ωb(x)g u( ζdx + μ2Ωβ(x)c v( ζdx inΩ,

Ω|∇u|p− 2∇u · ∇ξdx − Ω|u|p− 2u · ξdx ≥ λ1Ωa(x)f v( ξdx + μ1Ωα(x)h(u)ξdx inΩ,

Ω|∇v|q− 2∇v · ∇ζdx − Ω|v|q− 2v · ζdx ≥ λ2Ωb(x)g(u)ζdx + μ2Ωβ(x)c(v)ζdx inΩ,

(7)
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for all (ξ, ζ) ∈W
1,p
0 (Ω) × W

1,q
0 (Ω).

We shall establish the following result.

Theorem 1. Assume that the conditions (H1) − (H3) hold,
a(x), b(x), α(x), and β(x) are in L∞(Ω) and Λ≠∅. Let
I � ∪θ∈Λ λ1∗(θ), λ∗1(θ)  × μ1∗(θ), μ∗1(θ)  × λ2∗(θ), λ∗2(θ) 

× μ2∗(θ), μ∗2(θ) .

(8)

:en, problem (1) has a positive weak solution for each
(λ1, μ1, λ2, μ2) ∈ I.

Proof of:eorem 1. Let (λ1, μ1, λ2, μ2) ∈ I and θ > θ0 be such
that (λ1, μ1, λ2, μ2) ∈ [λ1∗(θ), λ∗1(θ)] × [μ1∗(θ), μ∗1
(θ)] × [λ2∗(θ), λ∗2(θ)] × [μ2∗(θ), μ∗2(θ)].

We shall verify that

u � θ1/(p− 1) p − 1
p

 ϕp/(p− 1)
p ,

v � θ1/(q− 1) q − 1
q

 ϕq/(q− 1)
q ,

(9)

is a subsolution of (1). Let the test function ξ(x) ∈W
1,p
0 (Ω)

with ξ(x)≥ 0. We have


Ω
∇ u


p− 2∇ u ·∇ξdx − 

Ω
u


p− 2

u · ξdx≤
Ω
∇ u


p− 2∇ u ·∇ξdx

� θ
Ω
ϕp ∇ϕp




p− 2
∇ϕp · ∇ξdx

� θ
Ω
∇ϕp




p− 2
∇ϕp · ∇ ϕpξ  − ∇ϕp




p
ξ dx

� θ
Ω

σpϕ
p
p − ∇ϕp




p

 ξdx.

(10)

Similarly,


Ω
∇ v


q− 2∇ v ·∇ζdx − 

Ω
v


q− 2

v · ζdx≤ θ
Ω

σqϕ
q
q − ∇ϕq




q

 ζdx.

(11)

For all ζ(x) ∈W
1,q
0 (Ω) with ζ(x)≥ 0.

Now, on Ωδ we have

θ
Ωδ

σpϕ
p
p − ∇ϕp




p

 ξdx≤ − θm
Ωδ
ξdx

� − θm
1
d

+
1d

d′
 

Ωδ
ξdx

≤ − λ1a0f θ(1/q− 1)
  − μ1α0h θ(1/p− 1)

  
Ωδ
ξdx

≤
Ωδ

− λ1a0f θ(1/q− 1) q − 1
q

 ϕq/q− 1
q  − μ1α0h θ(1/p− 1) p − 1

p
 ϕp/p− 1

p  ξdx

≤
Ωδ

λ1a(x)f v(  + μ1α(x)h u(  ξdx

θ
Ωδ

σqϕ
q
q − ∇ϕq




q

 ζdx≤ − θm
Ωδ
ζdx,

�
− θm

d
−
θm

d′
 

Ωδ
ζdx

≤ − λ2b0g θ(1/p− 1)
  − μ2β0c θ(1/q− 1)

  
Ωδ
ζdx

≤
Ωδ

− λ2b0g θ(1/p− 1) p − 1
p

 ϕp/p− 1
p  − μ2β0c θ(1/q− 1) q − 1

q
 ϕq/q− 1

q  ζdx

≤
Ωδ

λ2b(x)g u(  + μ2β(x)c v(  ζdx.

(12)
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On the contrary, on (Ω/Ωδ) we have

θ
Ω/Ωδ( )

σpϕ
p
p − ∇ϕp




p

 ξdx≤ θσp
Ω/Ωδ( )

ξdx,

� θσp

1
d

+
1
d′

 
Ω/Ωδ( )

ξdx

≤ λ1a1f θ(1/q− 1)
K2  + μ1α0h θ(1/p− 1)

K1  
Ω/Ωδ( )

ξdx

≤
Ω/Ωδ( )

λ1a(x)f v(  + μ1α(x)h u(   ξdx,

(13)

and similarly,

θ
Ω/Ωδ( )

σqϕ
q
q − ∇ϕq




q

 ζdx≤
Ω/Ωδ( )

λ2b(x)g u(  + μ2β(x)c v(  ζdx.

(14)

-erefore, (u, v) is subsolution of problem (1).
Next, we construct a supersolution of (1). Let ωr be a

unique positive solution of
− △rωr � 1 inΩ,

ωr � 0 on zΩ,
 (15)

for r � p, q. We denote

u �
C

]p

λ1‖a‖∞ + μ1‖α‖∞

1 − ]p− 1
p

⎛⎝ ⎞⎠

1/(p− 1)

ωp,

v �
λ2‖b‖∞ + μ2‖β‖∞

1 − ]q− 1
q

⎛⎝ ⎞⎠g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p− 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠

1/(q− 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ωq,

(16)

where ]r � ‖ωr‖∞, r � p, q, and C> 0 is a large number to be
chosen later. We shall verify that (u, v) is a supersolution of
(1) such that (u, v)≥ (u, v). By (H2) − (H3), we can choose
C large enough so that

C

]p

 

p − 1

≥f
λ2‖b‖∞ + μ2‖β‖∞

1 − ]q− 1
q

⎛⎝ ⎞⎠g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p− 1
p

⎛⎝ ⎞⎠

(1/p− 1)

⎛⎜⎝ ⎞⎟⎠

(1/q− 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ωq

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

+ μ1h
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p− 1
p

⎛⎝ ⎞⎠

(1/p− 1)

ωp.

(17)

Hence,


Ω

|∇u|
p − 2∇u · ∇ξdx − 

Ω
|u|

p − 2
u · ξdx

�
C

]p

 

p− 1

λ1‖a‖∞ + μ1‖α‖∞( 
Ω
ξdx.

(18)

Using (17),


Ω

|∇u|
p − 2∇u · ∇ξdx − 

Ω
|u|

p − 2
u · ξdx

≥ λ1‖a‖∞f
λ2‖b‖∞ + μ2‖β‖∞

1 − ]q − 1
q

⎛⎝ ⎞⎠g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p − 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠

1/(q− 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ωq

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠
Ω
ξdx

+ μ1‖α‖∞ 

Ω

h C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p − 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠ξdx

≥
Ω

λ1a(x)f(v) + μ1α(x)h(u) ξdx .

(19)
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Next
Ω|∇v|q− 2∇v∇∇ζdx − Ω|v|q − 2v.ζdx

� λ2‖b‖∞ + μ2‖β‖∞( g C
λ1‖a‖∞+μ1‖α‖∞

1− ]p− 1
p

 
1/(p − 1)

  ωqΩξdx

≥

λ2‖b‖∞g C
λ1‖a‖∞+μ1‖α‖∞

1− ]p − 1
p

 
1/(p− 1)

 

+ μ2‖β‖∞g C
λ1‖a‖∞+μ1‖α‖∞

1− ]p − 1
p

 
1/(p− 1)

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ωξdx.

(20)

By (H3), choose C large so that

g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p − 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠

≥ c
λ2‖b‖∞ + μ2‖β‖∞

1 − ]q− 1
q

⎛⎝ ⎞⎠g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p − 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠

1/(q− 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ωq

�����

�����∞
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠.

(21)

-en, from (19), we have


Ω

|∇v|
q− 2∇v · ∇ζdx − 

Ω
|v|

q − 2
v · ζdx

≥ λ2‖b‖∞g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p− 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠

+ μ2‖β‖∞c
λ2‖b‖∞ + μ2‖β‖∞

1 − ]q − 1
q

⎛⎝ ⎞⎠g C
λ1‖a‖∞ + μ1‖α‖∞

1 − ]p − 1
p

⎛⎝ ⎞⎠

1/(p− 1)

⎛⎜⎝ ⎞⎟⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/(q− 1)

ωq

�����

�����∞
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

≥
Ω

b(x)g(u) + μ2β(x)c(v) ζdx.

(22)

According to (19) and (20), we can conclude that (u, v) is a
supersolution of (1). Furthermore, u≥ u and v≥ v for C large,
-us, there exists a solution (u, v) ∈W1,p(Ω)∩
C(Ω) × W1,q(Ω)∩C(Ω) of (1) with u ≤ u≤ u and v ≤ v≤ v.
-is completes the Proof of -eorem 1. □
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Conservative chaotic systems have potentials in engineering application because of their superiority over the dissipative systems in
terms of ergodicity and integer dimension. In this paper, five-dimension Euler equations are constructed by integrating two of
sub-Euler equations, which are contributory to the exploration of higher-dimensional systems.+ese Euler equations compose the
conservative parts from their antisymmetric structure, which have been proved to be both Hamiltonian and Casimir energy
conservative. Furthermore, a family of Hamiltonian conservative hyperchaotic systems are proposed by breaking the conservation
of Casimir energy. +e numerical analysis shows that the system displays some interesting behaviors, such as the coexistence of
quasi-periodic, chaotic, and hyperchaotic behaviors. Adaptive synchronization method is used to realize the hyperchaos syn-
chronization. Finally, the system passed the NIST tests successfully. Field programmable gate array (FPGA) platform is used to
implement the proposed Hamiltonian conservative hyperchaos.

1. Introduction

Since the discovery of Lorenz attractor in 1963 [1], the
interesting dynamic behavior of chaotic attractors has
attracted intensive attention, with various mathematical
analyses. Conventional analyses on the chaotic system in-
clude the determination of Lyapunov exponents (LEs), bi-
furcation diagram [2], phase portrait, ultimate boundary
estimation, and topological horseshoe analysis [3, 4], which
illustrate the chaotic state intuitively. LEs are commonly
used as an indicator of chaotic systems. +e bifurcation
diagram focuses on the evolution of the dynamics of a
chaotic system when parameters or initial values are
changed. +e phase portrait describes the phase space tra-
jectory of a chaotic system. +e ultimate boundary esti-
mation and topological horseshoe analysis [3, 4] reveal the
abundant characteristics of a chaotic system.

Generally, chaotic systems can be categorized into dis-
sipative or conservative chaotic systems. A dissipative
chaotic system (DCS) owns strange attractor that has sen-
sitive dependence on initial conditions. A conservative
chaotic system (CCS) does not even have any attractor with
integer dimension. +e ergodicity of CCS is usually greater
than DCS. According to the sign of the coefficients in the
dissipation term, the DCS can be further divided into two
types: Rayleigh and non-Rayleigh DCSs [5, 6], as there must
be at least one positive dissipation term in a non-Rayleigh
DCS [5]. +ere are two types of CCSs too. A Hamiltonian
CCS (HCCS) meets conditions of zero-sum LEs, and the
Hamiltonian energy and the phase space volume are both
conservative, while a non-Hamiltonian CCS (non-HCCS)
only meets zero-sum LE condition, such as Sprott A system
in [7] and Cang-case B system in [8]. HCCSs are further
categorized to traditional HCCS (traditional-HCCS) [9, 10]
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and generalized HCCS (generalized-HCCS) [11]. DCS has
received intensive attention but much little for CCS. In the
early stage of chaos research, there are few reports on the
mechanism of chaos. Recently, analyses on energy cycling in
chaotic systems have made some progresses. For instance,
Vinicio Pelino, Filippo Maimone, and Pasini described the
energy cycle of Lorenz attractor [12].+e energy cycle of the Qi
four-wing chaotic system [5] was explained by using the system
entropy and the Casimir function as the kernel of Lie–Poisson
bracket. In this process, the concerned systemwas converted to
Kolmogorov form containing the conservative term, dissipa-
tive term, and an external force [5, 12]. As ameasuring index of
the orbital mode, the rate of change of Casimir energy, Casimir
power, is analyzed in detail. +e conservative term is inter-
preted by Euler equations. As a basic equation in inviscid
hydrodynamics, Euler equation gives a Hamiltonian descrip-
tion in 3D form.However, higher-dimensional Euler equations
(such as 4D and 5D) are essential to be studied.

In research of chaotic systems, an important and useful
implementation is encryption algorithms [13–16] because of
the complex properties, such as extremely sensitive de-
pendency on initial conditions, topologically mixing and
density of periodic orbits, broadband, pseudo-randomness,
and white-noise-like phenomenon [16]. Since the first four-
dimensional hyperchaotic system [17] was proposed, re-
searchers found that a hyperchaotic system has potential in
engineering applications, especially in control [18, 19], en-
cryption [20, 21], communication [22], synchronization
[23], optical system [24], and biological network [25]. Re-
search on hyperchaotic systems has become a hot topic. One
of the most important phenomena in these dynamical
systems [26–28] is the multistability occurring in physics,
chemistry, biology [29], economics [30], and nature. +ere
are two kinds of systems with multistability including
hidden attractors [31] and infinite attractors [32, 33]. Both
display complex dynamical behavior such as the coexistence
attractor [11, 34]. All CCSs do not have attractors, but some
have line equilibrium which is referred as hidden attractors.
+erefore, it is interesting to test whether CCSs can show
multistability behavior as well. For application, chaos can be
controlled and synchronized, usually including designing a
controller to stabilize the chaotic system and tracking the
chaotic system. Chaos synchronization is of vital significance
to the practical application of chaos. Important works in
chaos synchronization for the chaotic system and its ap-
plications in control and tracking have been done recently
and in the past [35, 36]. Design and implementation of the
pseudo-random digital signal generator is one of the most
important chaos-based application. With the advantages of
digital integrated circuits, superior computing power, and
reconfigurable designs [37], FPGA is considered as one of
the most suitable platforms to implement a chaotic system.

While intensive research studies were made on 3D and 4D
chaotic systems, this paper focuses on the vital importance to
expand the research to higher-dimensional systems, for instance,
5D systems, which display rich dynamics and lay an important
foundation for higher-dimensional chaotic systems’ study.

+e rest of this paper is listed as follows: in Section 2, five
5D Euler equations are constructed, and a family of HCCSs

are proposed; in Section 3, the nonconservation property of
the proposed HCCS and dynamics are analyzed in detail by
numerical simulation; in Section 4, adaptive synchronization
is achieved for system ΣH3 ; in Section 5, FPGA digital de-
velopment platform is used to generate the pseudo-random
number generator; and Section 6 concludes the paper.

2. Modeling of HCCS

2.1. Model of 5D Euler Equations. Euler equations govern
the rotation of a rigid body and control the motion of an
inviscid fluid, which are also applicable to incompressible
fluid. 5D Euler equations are imperative to satisfy the
Lie–Poisson structure. +us, from the view point of the 3D
free rotational rigid body, 5D Euler equations governing the
5D rigid body or fluid systems can be constructed satisfying
the Lie–Poisson bracket for the generalized Hamiltonian
systems or Kolmogorov systems. In [10], six types Euler
equations are proposed but the modeling work just consid-
ering the four-dimensional case. On the contrary, only the
system dimension of a conservative chaotic system is greater
than or equal to 5, and the dynamics of the system may be
hyperchaotic state according to the requirements of LEs.

To construct the 5D Euler equations, the following 3D
rigid subbodies are considered: subbody Sijk defined in the
space spanned from the axes ijk (taking the values of 123, 124,
125, 145, 245, and 345). Suppose there is a 5D rigid body with
five axes, with the principle moment of inertia Ii, Πi � I− 1

i ,
and angular momentum xi � Iiωi, ωi is the angular velocity,
i� 1, 2, 3, 4, 5. +en, the six 3D rigid subbodies can be ex-
tended to 5D by leaving another two dimensions uncoupled,
and one gets the generalized 5D sub-Euler equations; these six
5D sub-Euler equations can be used to construct the five types
of 5D Euler equations as summarized in Table 1.

As an example of Table 1, by coupling subbody S123 and
subbody S345 with the third common axis, the 5D Euler
equation of body 3 is demonstrated in a Hamiltonian
vector field form as equation (1). Bodies 1, 2, 4, and 5
can be developed in the similar way. +e general form of the
five 5D Euler equations is i _x � Ji(x)∇H(x), where
i � 1, 2, 3, 4, and 5.


3

_x � J3(x)∇H(x), (1)

with

J3(x) �

0 − x3 x2 0 0

x3 0 − x1 0 0

− x2 x1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0 0 0 0

0 0 0 0 0

0 0 0 − x5 x4

0 0 x5 0 − x3

0 0 − x4 x3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 − x3 x2 0 0

x3 0 − x1 0 0

− x2 x1 0 − x5 x4

0 0 x5 0 − x3

0 0 − x4 x3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

and its cross-product form is
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3

_x � x123 × ∇H x123(  + x345 × ∇H x345( . (3)

+e Hamiltonian energy of these 5D systems is

H(x) �
1
2
Π1x

2
1 + Π2x

2
2 + Π3x

2
3 + Π4x

2
4 + Π5x

2
5 . (4)

As a significant physical quantity, similiar to the ens-
trophy or potential vorticity in the context of hydrody-
namics, the Casimir function, C, is a valid way in globally
describing a dynamical system and analyzing stability
conditions. +e Casimir function is defined as the kernel of
the Lie–Poisson bracket [38]:

F, H{ } � [∇F(x)]
T
J(x)∇H(x), (5)

in which J(x) is the structural matrix of a generalized
Hamiltonian system, which meets J(x) � − JT(x), i.e.,
C, G{ } � 0, ∀G ∈ C∞(g∗).

For a Hamiltonian system with a constant of the motion,
one gets C, H{ } � 0. +e Casimir energy is conservative
when there is no dissipative torque and external torque
[5, 39]. +e Casimir function (energy) of a generalized 5D
Euler equations can be defined as

C(x) �
1
2

x
2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 · (6)

+e rate of change of the Casimir energy is called the
Casimir power [10], which is defined as

_C � x
T

· _x � x
T

· J(x)∇H(x), (7)

in which J(x) is an antisymmetric matrix, which represents
the energy conservative part of a system.

Remark 1. +e constructed 5D Euler equations
(Tex translation failed) (i� 1, 2, 3, 4, 5) are both Hamilto-
nian and Casimir energy conservative.

+e proposed five 5D Euler equations satisfy the vector
field shown in equation (1), which provides the symplectic
structure. Because the proposed 5D Euler equations are
conservative for both the Hamiltonian and Casimir energy,
they cannot produce chaos. However, they can be used as the
basic framework to construct the HCCS.

2.2. �e Proposed 5D HCCS. To generate chaotic behavior,
conservation of the proposed generalized 5D Euler equa-
tions has to be broken. Replace one zero element by a in the
upper triangle and − a in the lower triangle of Ji(x), re-
spectively. Because JH

i (x) still keeps the skew-symmetric
form, the conservations of Hamiltonian are preserved, but

Casimir energy is broken. Correspondingly, the five systems
i generate a family of Hamiltonian conservative chaotic
systems:


H

i
_x � J

H
i (x)∇H(x). (8)

As an example, for JH
3 (x), one gets

J
H
3 (x) �

0 − x3 x2 0 0

x3 0 − x1 a 0

− x2 x1 0 − x5 x4

0 − a x5 0 − x3

0 0 − x4 x3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

with a is a constant. +e resulting system is a HCCS.
Force and energy analysis can be used to explain the

mechanism underlying chaos and its dynamic states [5]. For
system ΣH3 , the Casimir energy is not conservative, which
means there must exist an external torque that breaks the
conservation. According to Kolmogorov–Arnold–Moser
perturbation theorem [10], when a Hamiltonian system
whose H(x) function is perturbed by the inclusion of an
interaction term H1(x), the coupled Hamiltonian system
probably generates conservative chaos with Hamilton
function H2(x) � H(x) + εH1(x) because of the energy
exchange between the two Hamiltonian functions (H(x) and
H1(x)).

From equations (8) and (9), we have

 H

3
_x � J3(x)∇H(x) + J

H
(x)∇H1(x), (10)

with

J
H

(x) �

0 0 0 0 0

0 0 0 a 0

0 0 0 0 0

0 − a 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H1(x) �
1
2
Π2x

2
2 + Π4x

2
4 .

(11)

Consider H1(x) as a perturbation term, which repre-
sents a kind of external torque. According to equation (7),
the Casimir power of system ΣH3 is

_C � xT · _x

� xT · J3(x)∇H(x) + xT · JH(x)∇H1(x)

� a Π4 − Π2( x2x4.

(12)

+e term J3(x)∇H(x) of system ΣH3 is conservative in
both Hamiltonian and Casimir energy. +erefore, this term
is an inertial torque, which can be a kind of fictitious torque
generated by a free rotational rigid body without external
torque [5, 38]. But, the term JH(x)∇H1(x) �

0 Π4x4 0 Π2x2 0 
T is a nonconservative torque and

Table 1: Modeling coupling mode.

Type Subbody A Subbody B Common axis Coupled rigid
body

1 Subbody S123 Subbody S145 First axis Body 1
2 Subbody S123 Subbody S245 Second axis Body 2
3 Subbody S123 Subbody S345 +ird axis Body 3
4 Subbody S124 Subbody S345 Fourth axis Body 4
5 Subbody S125 Subbody S345 Fifth axis Body 5
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leads to the loss of Casimir energy conservation. Rewrite
system ΣH3 in vector form to illustrate the conservative and
nonconservative torque as

_x1

_x2

_x3

_x4

_x5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Π3 − Π2( x2x3

Π1 − Π3( x1x3

Π2 − Π1( x1x2 + Π5 − Π4( x4x5

Π3 − Π5( x3x5

Π4 − Π3( x3x4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0

aΠ4x4

0

− aΠ2x2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where the first vector term on the right is the initial torque,
and the second vector term is the external term causing the
energy exchanges between dissipative and supplied energy.

3. Dynamic Analysis on the Proposed 5D HCCS

For simplicity, we only analyze system 
H
3 :


H

3 :

_x1 � Π3 − Π2( x2x3

_x2 � Π1 − Π3( x1x3 + aΠ4x4

_x3 � Π2 − Π1( x1x2 + Π5 − Π4( x4x5

_x4 � Π3 − Π5( x3x5 − aΠ2x2

_x5 � Π4 − Π3( x3x4

. (14)

System has six adjustable parameters: Πi (i� 1, 2, 3, 4,
and 5) and a having influences on the system dynamic
motion. +e initial values xi0 determine Hamiltonian
equation (4) when Πi is fixed. From equation (12), pa-
rameters a and Πi determine the change rate of Casimir
energy, which will impact the degree of chaos with fixed xi0.

3.1. Equilibrium Point Analysis on System ΣH
3 . With

(Π1,Π2,Π3,Π4,Π5, a) � (14, 20, 10, 5, 30, 0.1), the equilib-
rium points of system ΣH3 are (p, 0, 0, 0, 0), (0, 0, r, 0, 0), (0, 0,
0, 0, q), and (p, 0, 0, 0, q), in which p, q, r ∈ R. +us, the
equilibrium points of system ΣH3 are in the form of three
lines and one plane. Substituting equilibrium points (0, 0, 0,
0, 0), (p, 0, 0, 0, 0), (0, 0, r, 0, 0), (0, 0, 0, 0, q), and (p, 0, 0, 0, q)
into the Jacobian matrix and calculating the characteristic
polynomial, one gets

f1(λ) � λ3 · λ2 + 1 , (15)

f2(λ) � λ3 · λ2 + 1 − 24 · x
2
1  , (16)

f3(λ) � λ · λ4 + 1 − 60 · x
2
3  · λ2 − 4000 · x

4
3 , (17)

f4(λ) � λ3 · λ2 + 1 + 500 · x
2
5  , (18)

f5(λ) � λ2 · λ3 + 1 + 500 · x
2
5 − 24 · x

2
1  · λ + 260 · x1 · x5 ,

(19)

respectively. Let these characteristic polynomials equal to
zero; then, we obtain the eigenvalues of these polynomials, as
shown in Table 2.

System ΣH3 has nonhyperbolic equilibrium points, which
are rare in chaotic systems [8]. Another finding from Table 2
is that different kinds of equilibrium points all have zero
eigenvalues, so the equilibrium points of ΣH3 are all unstable
(exponential) [40].

3.2. Numerical Investigations. Let (Π1,Π2,Π3,Π4,Π5) �

(14, 20, 10, 5, 30) and initial values (x10, x20, x30,

x40, x50) � (0.1, 0.5, 0.5, 0.5, 0.1). When a� 0, system ΣH3
becomes (Tex translation failed), it is both Hamiltonian
energy (H(t)� 4.595) and Casimir energy (C(t)� 0.385)
conservative with a periodic trajectory (the red curve shown
in Figure 1), and the Casimir power is zero (the red line in
Figure 2). When a� 0.1, ΣH3 is still Hamiltonian conservative
(H(t)� 4.595) but not Casimir energy, and the Casimir
power is not zero as the blue curve shown in Figure 2. +e
orbit becomes chaotic as shown by the blue trajectory in
Figure 1.

Usually, the bifurcation diagram evolution process is
“source—periodic orbit—double periodic orbits—multiperi-
odic orbits—chaos.” However, system ΣH3 does not. It
enters the chaotic orbit almost immediately when the pa-
rameter a>0, as shown in the bifurcation diagram in
Figure 3(a), a ∈ [0, 0.01]; correspondingly, Figure 3(b) shows
the Lyapunov exponent spectrum as a increases, in which
there are two LEs greater than 0.

Remark 2. When the Casimir energy is conservative, the
system may be either periodic or quasi-periodic states.

Considering Π2 � Π4 with a ≠ 0, we have _C � a(Π4−
Π2)x2x4 � 0; hence, the system remains conservative both in
the Hamiltonian and the Casimir energy with H(t)� 2.72
and C(t)� 0.385, whereΠ2 � Π4 � 5, a � 0.1, and the system
is quasi-periodic state with five zero Les; the corresponding
phase portrait and Poincare section are shown in Figure 4.

3.3. Coexistence of System ΣH
3 . +e dynamics of classical

chaotic systems contain periodic motion, quasi-periodic
motion, chaos, and hyperchaos, which can be verified by LEs
[41, 42]. A hyperchaotic system is characterized by the
presence of two or more positive LEs [41, 43]. For a dy-
namical system with conservative flows, the sum of all LEs
must be zero [43]. +ere must be two positive LEs for a 5D
autonomous conservative hyperchaotic system.

Basin of attraction is an important tool for analyzing the
dissipative coexisting attractors [44, 45], which change with
initial values. Various initial values can be used to get full
information about the typical regimes and their localization;
as the same idea of the basin of attraction, the dynamical
evolution map is used for this purpose.

+e dynamical evolution map is generated for system ΣH3
to study the coexistence phenomenon. Fixed system pa-
rameters (Π1,Π2,Π3,Π4,Π5, a) � (14, 20, 10, 5, 30, 1.5), the
sampling period� 0.1 s, and changed the third and fourth
initial values, i.e., (0.1, 0.5, x30, x40, 0.1), where x30 ∈ [− 8, 8]

and x40 ∈ [− 5, 5], the step of the initial values changing is
0.05. +e dynamical evolution map is shown in Figure 5,
which shows LE1, LE2, LE4, and LE5 of each point with
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LE3 � 0, respectively. Various coexisting orbits are high-
lighted with different colors in Figure 4. +e values of region
A are close to zero. +e rest area is denoted as region B,
where the values of LEs are greater than zero.

Comparing the dynamical evolution map, one finds that
the LEs are symmetric about their 0 LE, and the dynamics of
system switch among hyperchaos, chaos, and quasi-periodic

motion. When the initial values of x30 and x40 are located in
region A, all of the five LEs are approximating to zero, which
indicates the system undergoes a quasi-periodic motion.
When the initial values of x30 and x40 are located in region B,
the largest LE is greater larger than zero, and the second one
is greater than or equal to zero, which means the system is
chaotic or hyperchaotic. As a demonstration, Figures 6 and 7

Table 2: ΣH3 Hamiltonian conservative chaotic system.

System Equilibrium(p, q, r ∈ R) f(λ) Eigenvalue(σ,ω> 0) Hyperbolic or not

ΣH3

(0, 0, 0, 0, 0) f1(λ)
(0, 0, 0, j, − j) Nonhyperbolic

(0, 0, 0, jω1, − jω1) Nonhyperbolic
(p, 0, 0, 0, 0) f2(λ) (0, 0, 0, σ1, − σ1) Hyperbolic
(0, 0, r, 0, 0) f3(λ) (0, σ2, − σ2, jω2, − jω2) Nonhyperbolic

(0, 0, 0, 0, q) f4(λ)

(0, 0, 0, jω3, − jω3) Nonhyperbolic
(0, 0, σ3, − σ4 + jω1, − σ4 − jω1) Hyperbolic

(0, 0, σ3, σ4 + jω1, σ4 − jω1) Hyperbolic
(0, 0, 0, jω4, − jω4) Nonhyperbolic

(p, 0, 0, 0, q) f5(λ)

(0, 0, +σ5, − σ6, − σ7) Hyperbolic
(0, 0, − σ5, +σ6, +σ7) Nonhyperbolic

(0, 0, 0, σ8, − σ8) Nonhyperbolic
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Figure 1: Phase portraits of (a) x1 − x3 − x5 and (b) x2 − x3 − x4 with a� 0 (red orbit) and a� 0.1 (blue orbit).
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show the coexistence of quasi-periodic state with x30 � 0.9,
x40 � − 3.6, and hyperchaotic state (with the five LEs 4.4358,
0.1288, 0, − 0.1288, and − 4.4358) for x30 � 5.5 and x40 � 0.3.

When system ΣH3 evolves into the hyperchaotic state, the
system is still Hamiltonian conservative but not in Casimir
energy. +e phase portraits with Hamiltonian and Casimir
energy represented by color are shown in Figures 8(a) and
8(b) which confirm this point. +erefore, the break of the
conservation of Casimir energy is an effective indicator of
the chaos-generating mechanism.

4. Adaptive Synchronization of System ΣH
3

+e property of chaotic synchronization gives the ability to
exercise control over the dynamics of the chaotic system. As
a result, such systems are of vital importance for secure
communication. In this part, the adaptive synchronization
method is used to realize the synchronization. +e adaptive
synchronization method has a mature theoretical and ap-
plication basis, which is widely used in the electronic field
[36, 46, 47]. +is method has the following advantages: small
synchronization error, the control intensity can be adjusted

adaptively according to the error, and if it is applied to
chaotic communication, the security is strong.

Relabeling system ΣH3 as the master system, one gets

_x1 � c1x2x3,

_x2 � c2x1x3 + ax4,

_x3 � c3x1x2 + c4x4x5,

_x4 � c5x3x5 − bx2,

_x5 � c6x3x4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where x1, x2, x3, x4, x5 are state variables and c1, c2, c3,

c4, c5, c6, a, b are parameters. Consider the slave system as

_y1 � c1y2y3 + u1,

_y2 � c2y1y3 + ay4 + u2,

_y3 � c3y1y2 + c4y4y5 + u3,

_y4 � c5y3y5 − by2 + u4,

_y5 � c6y3y4 + u5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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Figure 3: (a) Bifurcation diagram of x3; (b) Lyapunov exponent spectrum with increase in a.
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where y1, y2, y3, y4, y5 are state variables and u1, u2,

u3, u4, u5 are controllers to be configured. +e synchroni-
zation errors are determined by ei(t) � yi(t) − xi(t), i �

1, 2, . . . , 5, and the adaptive controllers are set as
ui � − ki(yi − xi), i � 1, 2, . . . , 5, in which _ki � − (yi − xi)

2.

Lyapunov function is constructed as the following form:

V �
1
2



5

i�1
e
2
i + k

2
i , i � 1, 2, . . . , 5, (22)

and one gets
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_V � c1 + c2( x3e1e2 + c2 + c3( x1e2e3 + c1 + c3( x2e1e3
+ c4 + c5( x5e3e4

+ c5 + c6( x3e4e5 + c4 + c6( x4e3e5 +(a − b)e2e4 − 2
5

i�1
kie

2
i 

≤ c1 + c2( Mx3
e1e2 + c2 + c3( Mx1

e2e3 + c1 + c3( Mx2
e1e3

+ c4 + c5( Mx5
e3e4

+ c5 + c6( Mx3
e4e5 + c4 + c6( Mx4

e3e5 +(a − b)e2e4 − 2

5

i�1
kie

2
i 

� − e
T
Pe,

(23)

in which Mxi
, i � 1, 2, . . . , 5, are the upper bound of the

corresponding state variables, e � [e1, e2, e3, e4, e5]
T, and P is

the matrix corresponding to quadric form _V. Hence, to
guarantee the asymptotic stability of synchronization errors,
P must be a positive definite matrix, that is to say, _V is a
negative definite quadratic form, which means ei⟶ 0, i �

1, 2 . . . 5 exponentially as times goes on.
Set the control parameters for master system (22) and

slave system (23) as c1 � − 10, c2 � 4, c3 � − 6, c4 � 25,

c5 � − 20, c6 � − 5, a� 7.5, b� 30, the gains k1 � 40, k2 � 40,

k3 � 40, k4 � 45, k5 � 50, and the initial values are

(x10, x20, x30, x40, x50) � (0.1, 0.5, 5.5, 0.3, 0.1), under which
the master system keeps hyperchaotic states,
(y10, y20, y30, y40, y50) � (1, 0.5, 5, 3, 1), respectively. By
calculation, matrix P has five positive characteristic roots,
and _V is a negative definite quadratic form. To test the
validity of synchronization, simulations are implemented,
and the first 5 seconds are time sequences of master and slave
systems without synchronization. From the 5th second,
synchronization is achieved, see Figures 9(a)–9(c); for the
first 5 seconds, xi and yi conduct different time evolution,
and after synchronization is achieved, xi and yi carry on
synchronous evolution, and other two variables proceed the
similar evolution. Figure 9(d) depicts the time history of
e1, e2, e3, e4, e5, which converge to 0 quickly, and the state
variables move to be synchronized.

5. NIST Test and FPGA Implementation

5.1. NIST Test of System ΣH
3 . +e National Institute of

Standards and Technology (NIST) provides 15 statistical
tests for random or pseudo-random generators, namely, the
SP800-22 standard. Widely used in the test of pseudo-
random sequences, the SP800-22 standard is considered as a
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criterion for evaluating the statistical performance of
pseudo-random sequences [48, 49]. +e tests comprehen-
sively analyze the performance of the pseudo-random se-
quence. A sequence passes the test only when the following
conditions are satisfied: all P values are greater than the
significance level, α� 0.01; the relevant proportions are
within the acceptance interval [0.9601, 1.0298]; and the
distribution of P values obeys the uniformity.

From Table 3, all P values obtained in the statistical
tests are greater than the significance level, α � 0.01, so
condition one is met. +e relevant proportions lie within
the acceptance interval [0.9601, 1.0298], and hence, the
second condition holds. In addition, the distribution of P

values must pass the uniformity test. For simplicity, we
consider the nonoverlapping template (Test No. 8 in
Table 3) as an example. +e distribution of P values is
examined to validate the uniformity which can be visually
illustrated using the histogram. Figure 10 shows the
distribution of P values for the nonoverlapping template
which is uniform. Other 14 tests obtained a similar
uniformity. +erefore, the third condition is also satisfied.
+e conclusion is that the proposed Hamiltonian con-
servative hyperchaotic system ΣH3 is suitable as a pseudo-
random generator.

5.2. FPGA Implementation for System ΣH
3 . Although some

important works have been implemented on FPGA [37, 50],

hardware implementation of conservative chaotic systems is
more difficult than common dissipative chaotic systems
since the former is highly sensitive to initial conditions and
computational errors. In this section, we perform the
implementation of system ΣH3 , as an example, based on the
FPGA platform. In order to accommodate digital com-
puters, the first-order difference algorithm is used to discrete
the system [51]. For system ΣH3 with (Π1,Π2,Π3,
Π4,Π5, a) � (14, 20, 10, 5, 30, 1.5), one obtains
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Figure 9: Adaptive synchronization simulation results. (a) State variables of x1(blue); y1(red). (b) State variables of x2(blue); y2(red). (c) State
variables of x3(blue); y3(red). (d) Time series of synchronization errors.

Table 3: NIST test results of hyperchaotic system ΣH3 .

No. Statistical test P value Proportion
1 Frequency 0.334538 0.99
2 Block frequency 0.883171 1
3 Cumulative sums 0.637119 0.99
4 Runs 0.798139 1
5 Longest run 0.719747 0.98
6 Rank 0.153763 1
7 FFT 0.096578 0.98
8 Nonoverlapping template 0.437274 0.99
9 Overlapping template 0.595549 0.97
10 Universal 0.955835 1
11 Approximate entropy 0.181557 1
12 Random excursions 0.834308 1
13 Random excursion variant 0.671779 1
14 Serial 0.494392 0.98
15 Linear complexity 0.851383 0.99
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x1(k + 1) � Π3 − Π2( x2(k)x3(k) ΔT + x1(k),

x2(k + 1) � Π1 − Π3( x1(k)x3(k) + aΠ4x4(k) ΔT + x2(k),

x3(k + 1) � Π2 − Π1( x1(k)x2(k) + Π5 − Π4( x4(k)x5(k) ΔT + x3(k),

x4(k + 1) � Π3 − Π5( x3(k)x5(k) − aΠ2x2(k) ΔT + x4(k),

x5(k + 1) � Π4 − Π3( x3(k)x4(k) ΔT + x5(k).
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Figure 10: Probability distribution of P value for the nonoverlapping template.

(a) (b) (c)

Figure 11: Quasi-periodic orbit of system ΣH3 generated by FPGA. (a) (x1, x2) plane. (b) (x1, x4) plane. (c) (x3, x4) plane.

(a) (b) (c)

Figure 12: Hyperchaotic attractor of system ΣH3 generated by FPGA. (a) (x1, x2) plane. (b) (x1, x4) plane. (c) (x3, x4) plane.
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+e discrete model was built by DSP-builder in MATLAB
(R2015b). +en, system (24) is solved by the fourth-order the
Runge–Kutta method in Matlab/Simulink/DSP-builder, with
the fixed step of 10− 8 s, initial values set as Section 3.3, and
sampling time of 10− 6 s. +e system models in equation (24)
are converted to the VHDL code (Verilog hardware de-
scription language), synthesized, and compiled to the RTL
(register transfer level) code.

To compare the results of computer simulation with
digital circuit implementation, the phase portraits of system
ΣH3 are shown in Figures 11 and 12. It shows that the phase
portraits of system ΣH3 implemented by FPGA are roughly
consistent with the computer simulation (shown in Fig-
ure 5), which means the conservative hyperchaotic system is
implemented in the digital circuit with an acceptable error
level.

6. Conclusions

+is paper constructed a family of 5D Hamiltonian con-
servative hyperchaotic systems. Some interesting properties
are revealed by theoretical and numerical analyses. +e
paper started from extending the 3D Euler equations of rigid
bodies to generalized 5D sub-Euler equations. Five 5D Euler
equations were then obtained by combining any two of the
generalized 5D sub-Euler equations that with one common
axis. +ese 5D Euler equations were proved to be both
Hamiltonian and Casimir energy conservative, which can be
regarded as the conservative term in a Kolmogorov system
or a 5D generalized Hamiltonian system because of their
antisymmetric structure matrix. So, these generalized 5D
Euler equations are useful to study the dynamics of inviscid
fluid and quantum mechanics and rigid body dynamics
systems.

+e mechanism of the proposed 5D Hamiltonian
conservative chaotic systems was found by analyzing the
Casimir energy and the Casimir power, which is an effective
indicator of chaos generating. Using the dynamical evo-
lution map, the coexistence of quasi-periodic and hyper-
chaotic was revealed, which showed the abundant dynamic
characteristics of the proposed 5D Hamiltonian conser-
vative chaotic systems. By the adaptive synchronization
method, the hyperchaotic system was synchronized
effectively.

To validate the application value of the proposed sys-
tems, NIST tests on system ΣH3 were performed to verify the
feasibility as a random number sequence generator. +e
system is implemented based on FPGA digital development
platform, which was a contributing work for this field due to
the difficulties of hardware implementation of conservative
hyperchaos. +ese proposed systems are expected to be
further helpfully applied to secure communication, neural
network, and economics.

Data Availability
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/e equipment scheduling and propagation characteristics of vibration wave from vibratory roller⟶ filling material nonlinear
systems with multistability are the core problems of subgrade intelligent construction technology, and the logistics scheduling of
the equipment is directly related to the construction efficiency. Aiming at the shortages, one typical subgrade located at the Gu’an
station of Beijing-Xiong’an city railway is selected to research and finish the field tests; some findings are shown as follows: first,
some valuable suggestions about the logistics scheduling of intelligent equipment are proposed, which can break the barriers
between the organizations and improve construction efficiency; second, when the vibration wave propagates from the vibratory
roller⟶ surface of filling material⟶ different buried depths of filling material, the peak acceleration of vibration wave
gradually decreases and is hyperbolic distribution approximately. At the same time, the sensitive of attenuation is shown as
follows: Z<X≈Y, and the critical depth of vibration energy propagation is about 1.0m. At the same time, the peak acceleration of
vibration wave at the interface of different filling material layers exists in steps and is “side clock” distribution approximately with
the increase in buried depth. /ird, in the propagation process, with the increase in buried depth, the amplitude of fundamental,
primary, secondary, until fifth harmonics decreases exponentially (R2>0.9), and the concrete functional relationship among
different amplitudes of harmonics can be summarized as y�Ae−BX; fourth, the vibration energy is mainly concentrated near
10–30Hz in the vibratory roller, but when the vibration wave propagates from vibratory roller⟶filling material, the vibration
energy gradually decreases with the increase in depth, and the marginal spectrum gradually changes from one peak to two peaks,
that is, 30–50Hz and 50–100Hz; fifth, the vibration energy in the vibrational wheel is distributed averagely in the compaction
process, and the effective compaction time is two seconds, which will be helpful for revealing the propagation characteristics of
vibration wave, optimizing the compaction quality control models and providing some support for the development of intelligent
compaction theory of railway subgrade.

1. Introduction

China has built the world’s largest high-speed rail network
whose operating mileage reaches 22,000 kilometers and it
will be expected to reach 38,000 kilometers in 2030, which
will form a high-speed railway network with “eight-vertical
and eight-horizontal” as the main channel. /e ratio of
length of subgrade to total mileage of high-speed railway is

more than 30%, which has been an important part of railway
infrastructure and the basis for carrying the track structure
and trains. In recent years, intelligent compaction tech-
nology [1–3] is more and more widely used in practical
projects, such as Jingxiong high-speed railway.

Significant engineering achievements have been made in
terms of intelligent compaction, but its research on the basic
theory has just started; the propagation characteristics of
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vibration wave in the compaction process are still not clear
enough, and a lot of research studies mainly focus on nu-
merical simulation, theoretical analysis, and laboratory test
[4–11] [12].

At the same time, the recent research focuses on two
aspects, such as time domain and frequency, but there are
little studies on the joint time-frequency domain. However,
the vibration wave is a complex nonlinear signal; amplitude
and frequency of the vibration gradually change with time,
which will affect the reasonability of analysis results if it is
analyzed from the time domain or the frequency domain
alone./erefore, the propagation characteristics of vibration
wave should be studied from time domain, frequency do-
main, and joint time-frequency domain by some new signal
analysis technology.

Based on this, one typical subgrade section of Beijing-
Xiong’an Railway in Gu’an Station is selected to finish the
field test, and the intelligent compaction and the logistics
scheduling of equipment used in the typical subgrade section
are introduced briefly. And then, some valuable test data are
used to study the propagation characteristics among soil
layers in different depths during the vibration compaction
process from time domain, frequency domain, and joint
time-frequency domain by Hilbert–Huang transform, which
will be helpful for optimizing the compaction quality control
models and providing some support for the development of
intelligent compaction theory of railway subgrade.

2. Intelligent Compaction and Equipment
Deployment Technology

Subgrade intelligent compaction technology mainly inte-
grates automatic monitoring and control, satellite posi-
tioning, and informationmanagement, as shown in Figure 1.

2.1. Intelligent Compaction Technology. During the con-
struction process, the vibration characteristics of compac-
tion machinery and the compressed filling material are
collected in real time by control system, and the main pa-
rameters of vibratory roller are continuously adjusted based
on the collected information which can reflect the com-
paction quality in order to optimize compaction and meet
the required conditions, such as vibration amplitude, fre-
quency, excitation force, and walking speed. At the same
time, the satellite positioning system can accurately deter-
mine the position of vibratory roller and feedback the pa-
rameters such as modulus, stiffness, and resistance, which is
directly related to the compaction quality of filling material
to the control system in real time, so as to identify weak areas
of subgrade compaction, and then take targeted remedial
measures.

2.2. Logistics Scheduling of Intelligent Equipment. In actual
operations, the logistics scheduling of intelligent equip-
ment by relevant departments is still in a backward stage.
In the construction, because of the lack of modern lo-
gistics management knowledge, the integration level in
the current construction departments is low, and the

management implementation is weak so that the relevant
departments often have low utilization rates of resources
such as distribution of idle equipment, operations of smart
rollers, and dispatch of materials such as machinery and
equipment. Aiming at this practical operation problem,
this article proposes a scientific logistics scheduling
management method. /e key to effective scheduling and
configuration of intelligent vibratory rollers and other
equipment is the establishment of tacit cooperation be-
tween all parties, including numerous suppliers, different
contractors, and information supporters, connected with
the construction project. Due to the particularity of
project construction, a temporary and high-efficient
material scheduling center should be established, and the
collaboration of different organizations is supported by a
cross-organizational information platform, as shown in
Figure 2.

In the organizational logistics scheduling network, the
coordination mechanism is similar to the supply chain
network, that is, “To be flexible and rigidly both” [13].
First, each organization node should establish a trusting
and harmonious organizational environment. Second, the
authority of each organization should be appropriately
decentralized; meanwhile, the penetration and connection
between different organization subjects should be
strengthened via various levels of communication, in-
cluding information platforms and social network. /ird,
cross-organizational contracts and agreements in the or-
ganizational logistics scheduling network should be fin-
ished. Fourth, establishing a sophisticated talent selection
system and completing the assessment system are ex-
tremely necessary, where both valuing practical skills and
academic qualifications, rather than considering merely
one.

Based on this, the barriers between the organizations
can be broken, completely changing the state of “a pool of
standing water” of important materials. Relying on a fast
and efficient organizational logistics scheduling network,
materials and information flows can quickly transmit and
respond between nodes, becoming “live water” where
there is demand, and other nodes respond quickly.
Whether it is the contradiction between subjective orga-
nizations or the contradiction that too many sudden
factors cause the failure of resource allocation, it can be
solved fundamentally.

3. Test Design

/e test site is located in the subgrade section about 200m by
100m near the Gu’an Station of the Beijing-Xiong’an In-
tercity Railway as the test section, as shown in Figure 3. /e
whole height compacted filling is 1.5m, which is divided into
five layers. /e subgrade filling material is the AB group
coarse breccia, which is the mixture of A group material and
B group material, and the concrete parameters are regulated
in detail in the 《high-speed railway design specification》
(TB10621-2014). Its particle grading curves of five test re-
sults are shown in Figure 4. Figure 4 shows the test data have
good consistency.
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3.1. Test Equipment. /e vibratory compaction equipment
adopts Sany Heavy Industry Vibratory Roller (No. SSR260C-
6), the whole machine quality is 26.7 t, and its rated power is
180 kW. /e weak vibration parameters: vibration frequency
is 31Hz, and vibration amplitude is 1.03mm; the strong
vibration parameters: vibration frequency is 27Hz, and vi-
bration amplitude is 2.05mm. Based on a large number of
actual projects in the early stage, it is found that the weak

vibration is more conducive to the subgrade compaction after
its filler is loosely laid and statically pressed. Consequently, the
test adopts weak vibration conditions for research. At the
same time, the data acquisition adopts 64-channel Donghua
dynamic data acquisition equipment DH3823 and the ac-
celeration sensor adopts Donghua three-way acceleration
sensor 1C302 with a range of ±5.0 g. In order to ensure the fit
between the collected signal and the original signal, the
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Figure 1: Schematic diagram of the intelligent road roller in the Gu’an section of Beijing-Xiong’an Railway.
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Figure 2: Project organizational logistics scheduling network.
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sampling frequency of acceleration sensors was set to
2000Hz. And all the data acquisition system and sensors were
calibrated before the test.

3.2. Distribution of AccelerationMeasuring Points in the Filler
Material. /e correct installation and embedment of sen-
sors is decisive for the accuracy of test data. Before the
sensors are buried, some work should be finished, as shown
in Figure 5. At the same time, in order to study the vibration
characteristics in different depths in the compaction process,
the sensors are set on the vibratory wheel and its following
five layers. /e concrete distribution of acceleration mea-
suring points in the filler material and the overall coordinate
system in the field test are shown in Figures 6 and 7.

4. Test Results

In order to systematically analyse the propagation charac-
teristics of vibration wave in the vertical direction, this paper
will carry out the research from four aspects: time domain,
frequency domain, joint time-frequency domain, and energy
domain.

4.1. Propagation Characteristics of Peak Acceleration in the
Vertical Direction. /e duration of measured vibrational
signal is nearly 10 seconds, so 10 second time-history curve
is selected for analysis. /e peak acceleration of vibration
wave at each measuring point in the compaction process is
shown in Figure 8.

Figure 8 shows that when vibration wave propagates
from vibratory roller⟶ filler surface⟶ deep filler, the
shape of peak acceleration is hyperbolic with the increase
in buried depth and is also inversely proportional to buried
depth. When the vibration wave propagates from fra-
me⟶ filler surface, the peak acceleration in the Z, Y, and
X directions is, respectively, attenuated by 56.7%, 83.7%,
and 85.1% and, respectively, attenuated by 94.5%, 98.6%,
and 98.4% at a buried depth of 0.9m, which is basically
stable after that, and then, the vibration energy is nearly
zero at a buried depth of 1.50m in which the vibrational
energy is, respectively, attenuated by 96.1%, 99.3%, and
98.7%. /e above phenomenon may be caused by the
dissipation of energy by the damping of the filler itself, and
it can be seen that the critical depth of vibration energy
propagation during the vibration compaction process is
about 1.0m. At the same time, at the interface of the filler,
the vibration accelerations in different directions are
stepped, which is mainly caused by the differences in
physical and mechanical parameters between adjacent

Figure 3: Field test environment.
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Figure 4: Particle grading curves of five tests.
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filling material, especially the difference in wave imped-
ance between the two sides of interface, which causes a
large amount of reflection, transmission, and other scat-
tering phenomenon at the interface, which weakens the
downward propagation of vibration energy. Based on this,
in order to analyze the influence of the filler interface on
the vibration acceleration quantitatively, this paper as-
sumes that the measurement point on the upper surface of
each interface is used as the benchmark and uses the ratio

of the acceleration amplitude of the lower surface to the
benchmark as acceleration peak attenuation percentage,
and the result is shown in Figure 9.

(a) (b)

Figure 5: (a) Installation and embedment of sensors and (b) data acquisition in the field test.
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Figure 6: Acceleration measuring points in the filler material.

Figure 7: Schematic diagram of overall coordinate system in the
field test.
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Figure 9 shows that the attenuation characteristics of
vibration acceleration in different directions with the in-
crease in buried depth is basically consistent, showing a “side
clock” shape, the attenuation in the X direction is more
serious than the Y direction, and the Z direction is the
smallest. At the same time, due to the increase in buried
depth, the attenuation percentage at different interfaces
decreases firstly, reaching minimum when the buried depth
is 0.9m, about 55%, and then gradually increases./e reason
of the above phenomenon may be that the propagation
depth of vibration energy is about 1.0m, which can cause the
secondary compaction within 1m filling material in the
compaction process, whose density and rigidity can grad-
ually increase, and the compaction parts more than 1.0m
mainly depend on the inertial force generated by the vi-
bration of upper filler and the upper heaped load. Conse-
quently, the soil buried depth (0.6m–0.9m) realizes
secondary compaction by vibration and that more than
0.9m is compacted by inertia force and heaped load, and
then, the acceleration attenuation is the largest, which is
mainly due to the larger differences in the degree of com-
paction, and the density and stiffness of soil on both sides
cause a large wave impedance and reflection of vibration
energy, so the acceleration peak attenuation is small at the
interface of 1.2m buried depth (the soil within the range of
0.9m–1.2m/more than 1.2m), which is for the reason that
the soil density and stiffness on both sides of interface are
basically consistent, so the reflection for vibration wave is
small.

4.2. Propagation Characteristics of Acceleration Spectrum in
the Vertical Direction. In order to research the propagation
characteristics of acceleration spectrum in the vertical di-
rection, the vertical acceleration data of #1, #3, #5, #7, #9,
and #11 measuring points are selected for analysis. /e
results are shown in Figure 10.

Figure 10 shows that the frequency of fundamental wave
in the #1 measuring point is near 21Hz. When the vibration
wave propagates in the filling material, the first harmonic is
near 42Hz, the second harmonic is near 63Hz, the third
harmonic is near 84Hz, the fourth harmonic is near 105Hz,
and the fifth harmonic is stable at 130Hz. At the same time,
the dominant frequency of first harmonic is basic consistent,
but that of the other harmonics gradually increase, as shown
in Figure 11.

/e above phenomenon may be for the reason that the
density and stiffness of the filler gradually increase with the
increase in the buried depth, which causes the high-fre-
quency component of the vibration wave to gradually in-
crease and the low-frequency component to appropriately
lower, thereby causing the main frequency of the harmonic
to gradually change to a high frequency, and the ratio of the
amplitude of the harmonic wave to the fundamental wave is
also gradually increasing.

4.3. Propagation Characteristics of Vibration Wave Energy in
the Vertical Direction. In order to accurately describe the
propagation characteristics of vibration wave energy in the

vertical direction as shown in Figure 12, the measured ac-
celeration time-history curves at the monitoring points
#1–#11 are selected to calculate the acceleration marginal
spectrum at different depths, and the calculation results are
shown in Figures 13 and 14.

Figures 13 and 14 show that the vibration wave energy is
mainly concentrated near 10–30Hz in the vibratory roller,
which is basically consistent with the fundamental wave
frequency. However, the peak values of marginal spectrum
gradually change from one to two. /e vibration wave
energy is mainly concentrated near 30–50Hz and
50–100Hz, and the energy of signal gradually decreases with
the increase in buried depth. /e test phenomenon fully
shows that the vibration energy in the frequency appears as
large change with the increase in buried depth, and the
percentage of higher harmonic energy in the total energy
gradually increases. When the vibration energy is trans-
mitted from the roller to the surface of the filler, the vi-
bration energy is dissipated, and the transmission efficiency
is low; therefore, how to improve the energy transfer effi-
ciency is essential for energy saving and efficiency
improvement.

4.4. 5ree-Dimensional Propagation Characteristics of Vi-
brationWave inVerticalDirection. In order to fully describe
the propagation characteristics of vibration wave in the
vertical direction, the Hilbert–Huang spectrum at different
buried depths is calculated by using Hilbert–Huang
transform.

4.4.1. Introduction to Hilbert–Huang Transform. /e HHT
transform is an autoadaptive time-frequency analysis
method proposed by Norden E. Huang in 1998 for nonlinear
and unstable signal processing, which mainly includes
empirical mode decomposition and Hilbert spectrum
analysis [14]. /e EMD algorithm (Formula (1)) can de-
compose the complex vibration wave signal into multiple
intrinsic mode functions IMF, and the distribution law of
time-frequency-energy of each IMF signal can be obtained
by HHT transform (Formula (2)), that is, Hilbert spectrum,
and it is worth noting that the relevant parameters in
equations (1) and (2) are found in [15]:

cj(t) �
1
N



N

i�1
cij(t). (1)

H(w, t) � Re 
n+1

i�1
ai(t) · e

j
 wi(t)dt. (2)

4.4.2. Empirical Mode Decomposition of Vibration Wave.
/e measured acceleration time-history is selected to in-
troduce. First, EMD is performed on the original wave, and
several IMF signals and one residual moisture are obtained.
IMF4, IMF5, and IMF6 are selected to illustrate the fre-
quency component of measured acceleration time-history,
as shown in Figures 15–17.

6 Complexity



0.0

0.5

1.0

1.5

2.0

2.5

3.0
A

m
pl

itu
de

20 40 60 80 100 120 140 160 180 2000
Frequency

(a)

#3
#5
#7

#9
#11

0.10

0.08

A
m

pl
itu

de 0.06

0.04

0.02

0.00
0 50 100

Frequency
150 200

(b)

Figure 10: Distribution of Fourier spectrum in vertical direction: (a) Fourier spectrum of #1 measuring point; (b) Fourier spectrum of #3,
#5, #7, #9, and #11 measuring points.

1st
2nd

3rd
4th

5th
6th

–1.5

–1.2

–0.9

–0.6

–0.3

0.0

0.3

0.6

0.9

H
ei

gh
t (

m
)

20 40 60 80 100 120 1400
Frequency (Hz)

Figure 11: Evolution law of harmonic frequency along buried depth.

Eb

Ea

Ea — Compaction energy produced by vibratory roller
Eb — Compaction energy returned to vibratory roller

Figure 12: Energy interaction between vibratory roller and surface
of filling material.

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

100 100010
Frequency (Hz)

Figure 13: Distribution of vibration wave energy in vibrational
wheel.

#2
#3

#4
#5

#6
#7

#8
#9

#10
#11

0.00

0.02

0.04

0.06

0.08

A
m

pl
itu

de

100 100010
Frequency (Hz)

Figure 14: Distribution of vibration wave energy in different
buried depths.

Complexity 7



Among the abovementioned IMF components, the peak
value of IMF6 is biggest. Its waveform and dominant fre-
quency are consistent with that of original signal; IMF5
dominant frequency is the closest to the first harmonic. /e
frequencies with the largest amplitude of IMF4 are basically
consistent with that of second and third harmonic waves of

original vibration signal, and the remaining components are
high-frequency or low-frequency interference signals. /ere-
fore, the waveform of wheel is composed of IMF6, IMF5, and
IMF4. To some extent, EMD can identify the fundamental and
harmonic components of vibration signals and remove the
mechanical and environmental noise interference.
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Figure 15: IMF4 and its FFT spectrum.
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Figure 18: Continued.
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4.4.3. Hilbert–Huang Spectrum of Vibrational Wave. In
order to systematically analyze the propagation character-
istics of Hilbert spectrum in the different buried depths, this
paper selects the Hilbert–Huang spectrums of #1, #3, #5, #7,
#9, and #11 measuring points, as shown in Figure 18.

Figure 18 shows that the vibration energy in the vi-
bratory roller is distributed averagely in the compaction
process, and the corresponding frequency is between 10Hz

and 30Hz. /e vibration energy in the subgrade filling
mainly concentrates between T� 2.0 s and T� 4.0 s, and the
corresponding frequency is between 30Hz and 100Hz.
/erefore, the effective compaction time is two seconds.
Consequently, the Hilbert spectrum of vibration wave signal
can comprehensively and systematically reflect the spectral
characteristics and time-domain characteristics of the signal
at any time.
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4.5. Propagation Characteristics of VibrationHarmonicWave
in the Vertical Direction. In order to comprehensively study
the propagation characteristics of vibration harmonic wave
in the vertical direction, the frequency and amplitude of first,
second, third, fourth, and fifth harmonic waves in the
vertical direction are selected, as shown in Figures 19 and 20.

Figure 19 shows that, with the increase in buried depth,
the amplitude of every harmonic gradually decreases. At the
same time, the amplitude of fundamental, primary, sec-
ondary, until fifth harmonics decreases exponentially with
the order of harmonic (R2>0.9), and the attenuation models
are shown in Figure 20. /e concrete functional relationship
among different amplitudes of harmonics can be summa-
rized, as shown in y�Ae−BX; in formula, A and B represent

the coefficient, X represents the order of harmonic, and Y
represents the amplitude of harmonic when its order is X.

5. Conclusion

Aiming at the shortages, one typical subgrade located at the
Gu’an station of Beijing-Xiong’an city railway is selected to
research and finish the field tests, and some research results
are shown as follows.

First, when the vibration wave propagates from the vi-
bratory roller⟶ surface of filling material⟶different
buried depths of filling material, the peak acceleration of
vibration wave gradually decreases and is hyperbolic dis-
tribution approximately. At the same time, the sensitive of
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Figure 19: Different harmonic wave amplitudes in different buried depths.
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attenuation is shown as follows: Z<X≈Y, and the critical
depth of vibration energy propagation is about 1.0m. At the
same time, the peak acceleration of vibration wave at the
interface of different filling material layers exists in steps and
is “side clock” distribution approximately with the increase
in buried depth.

Second, in the propagation process, with the increase in
buried depth, the amplitude of fundamental, primary, sec-
ondary, until fifth harmonics decreases exponentially
(R2>0.9), and the concrete functional relationship among
different amplitudes of harmonics can be summarized as
y�Ae−BX.

/ird, the vibration energy is mainly concentrated near
10–30Hz in the vibratory roller, but when the vibration
wave propagates from vibratory roller⟶ filling material,
the vibration energy gradually decreases with the increase in
depth, and the marginal spectrum gradually changes from
one peak to two peaks that 30–50Hz and 50–100Hz; fourth,
the waveform of vibratory roller is composed of IMF6, IMF5,
and IMF4. At the same time, EMD can identify the fun-
damental and harmonic components of vibration signals
and remove the mechanical and environmental noise in-
terference. /e vibration energy in the vibrational wheel is
distributed averagely in the compaction process, and the
effective compaction time is two seconds, which will be
helpful for optimizing the compaction quality control
models of railway subgrade.
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In this paper, a nonlinear viscoelastic Kirchhoff equation in a bounded domain with a time-varying delay term and logarithmic
nonlinearity in the weakly nonlinear internal feedback is considered, where the global and local existence of solutions in suitable
Sobolev spaces by means of the energy method combined with Faedo-Galerkin procedure is proved with respect to the condition
of the weight of the delay term in the feedback and the weight of the term without delay and the speed of delay. Furthermore, a
general stability estimate using some properties of convex functions is given. /ese results extend and improve many results in
the literature.

1. Introduction

1.1. Model. In this paper, we consider the global existence
and decay properties of solutions for the initial boundary

value problem of the following viscoelastic nondegenerate
Kirchhoff equation of the form:

ut



l
utt − M ‖∇u‖2 Δu − Δutt + 

t

0
h(t − s)Δu(s)ds

+ μ1g1 ut(x, t)(  + μ2g2 ut(x, t − τ(t))(  � ]uln|u|, inΩ ×]0, +∞[,

u(x, t) � 0, on zΩ ×[0, +∞[,

u(x, 0) � u0(x), ut(x, 0) � u1(x), inΩ,

ut(x, t − τ(0)) � f0(x, t − τ(0)), inΩ ×]0, τ(0)[,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω is a bounded domain in Rn, n ∈ N∗, with a smooth
boundary zΩ, l> 0, ], μ1, and μ2 are positive real numbers, h is
a positive function which decays exponentially, τ(t)> 0 is a

time-varying delay, g1 and g2 are two functions, and the initial
data (u0, u1, f0) are in a suitable function space. M(r) � a +

brc is a C1-function for r≥ 0, with a, b> 0 and c≥ 1.
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In the absence of delay term (i.e., μ2 � 0), Han andWang
in [1] considered the following nonlinear viscoelastic
equation with damping:

ut



l
utt − Δu − Δutt + 

t

0
h(t − s)Δu(s)ds

+ ut(x, t) � 0, inΩ ×]0, +∞[.

(2)

Time delay is often present in applications and practical
problems. In recent years, the control of PDEs with time
delay effects has become an active area of research (see, for
example, [2–4]). For example, in [5], it has been proven that
a small delay in a boundary control could turn a well-be-
haved hyperbolic system into a wild one, thus showing that
delay can be a source of instability.

Wu [6] treated problem (1) for a constant time delay τ
and g1(x) � g2(x) � x. He proved the local existence result
using the Faedo-Galerkin method and established the decay
result employing suitable Lyapunov functionals under ap-
propriate conditions on μ1 and μ2 and on the kernel h.

Benaissa et al. [7] considered the case of constant time
delay τ, with l � 0 and M(r) � 1. /ey proved the global
existence and uniform decay for the following problem:

utt − Δu + 
t

0
h(t − s)Δu(s)ds + μ1g1 ut(x, t)( 

+ μ2g2 ut(x, t − τ)(  � 0, inΩ ×]0, +∞[.

(3)

/e same problem (3) was also treated by Kirane and
Said-Houari [8] for g1(x) � g2(x) � x and a homogeneous
right hand side with τ, a constant time delay. Daewook [9]
considered a viscoelastic Kirchhoff equation, with a time-
varying delay and a nonlinear source term, given as

utt − M x,t,‖∇u‖
2

 Δu + 
t

0
h(t − s)div(a(x)∇u(s))ds +|u|

m
u

+μ1ut(x,t) +μ2ut(x,t − τ(t)) � 0, inΩ×]0,+∞[,

(4)

/is equation describes axially moving viscoelastic
materials. Using the smallness condition with respect to
Kirchhoff coefficient and the relaxation function and by
assuming 0≤m≤ (2/(n − 2)) if n> 2 or 0≤m if n≤ 2, he
obtained the uniform decay rate of the Kirchhoff-type
energy.

In [10], the authors studied homogeneous problem (1)
without the viscoelastic term, with l � 0 and M(r) � 1. In
addition, μ1g1 and μ2g2 are multiplied by a positive non-
increasing function σ of C1(R+) satisfying 

+∞
0 σ(s)ds � +∞

and |σ′(t)|≤ cσ(t). /ey proved the global existence, and
using a multiplier method with some properties of convex
functions to get decay rate of the energy (when t goes to
infinity) depends on the function σ and on the function H

which represents the growth at the origin of g1.
Apart from the aforesaid attention given to polynomial

nonlinear terms, logarithmic nonlinearity has also received a
great deal of interest from both physicists and mathemati-
cians. /is type of nonlinearity was introduced in the
nonrelativistic wave equations describing spinning particles
moving in an external electromagnetic field and also in the

relativistic wave equation for spinless particles [11]. More-
over, the logarithmic nonlinearity appears in several
branches of physics such as inflationary cosmology [12],
nuclear physics [13], optics [14], and geophysics [15]. With
all this specific underlying meaning in physics, the global-in-
time well-posedness of solution to the problem of evolution
equation with such logarithmic-type nonlinearity captures
lots of attention. Birula and Mycielski [16, 17] studied the
following problem:

utt − uxx + u − εuln|u|2 � 0, in[a, b] ×(0, T),

u(a, t) � u(b, t) � 0, (0, T),

u(x, 0) � u0(x), ut(x, 0) � u1(x), in[a, b],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

which is a relativistic version of logarithmic quantum me-
chanics and can also be obtained by taking the limit p goes to
1 for the p-adic string equation [18, 19]. In [20], Cazenave
and Haraux considered

utt − Δu � u ln |u|
k
, inR3

, (6)

and they established the existence and uniqueness of the
solution for the Cauchy problem. Gorka [21] used some
compactness arguments and obtained the global existence of
weak solutions, for all

u0, u1(  ∈ H
1
0(Ω) × L

2
([a, b]), (7)

to initial boundary value problem (5) in the one-dimensional
case. Bartkowski and Górka [22] proved the existence of
classical solutions and investigated the weak solutions for the
corresponding one-dimensional Cauchy problem for equation
(6). Hiramatsu et al. [23] introduced the following equation:

utt − Δu + u + ut +|u|
2
u � uln|u|, (8)

to study the dynamics of Q-ball in theoretical physics and
presented a numerical study. However, there was no the-
oretical analysis for the problem. In [24], Han proved the
global existence of weak solutions, for all

u0, u1(  ∈ H
1
0(Ω) × L

2
(Ω), (9)

to initial boundary value problem (8) in R3.
In the present paper, we investigate the stabilization of a

dynamic model describing a string with a rigid surface and
an interior somehow permissive to slight deformations. /is
leads to a varying material density |ut|

l and a Kirchhoff
term M(‖∇u‖2) that depends on ‖∇u‖2. We prove the
existence of global solutions in suitable Sobolev spaces by
combining the energy method with the Fadeo-Galerkin
procedure. We also establish an explicit and general decay
result using a perturbed energy method with some tech-
niques due to Mustafa and Messaoudi [25], as well as some
properties of convex functions. /ese convexity arguments
were introduced and developed by Lasiecka et al. [26–28]
and used, with appropriate modifications, by Liu and
Zuazua [29], Alabau-Boussouira [30], and others.

/e paper is organized as follows: In Section 2, we give
some hypotheses and state ourmain result./en, in Section 3,
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we prove the global existence of weak solutions. Furthermore,
in Section 4, the uniform decay of the energy is derived.

1.2. Formulation of the Results. We denote by (., .) the inner
product in L2(Ω) and the corresponding norm by ‖.‖2. Now,
we introduce, as in [31], the new variable:

z(x, ρ, t) � ut(x, t − ρτ(t)), x ∈ Ω, ρ ∈ (0, 1), t> 0.

(10)

/en, we have

τ(t)zt(x, ρ, t) + 1 − ρτ′(t)( zρ(x, ρ, t) � 0,

inΩ ×(0, 1) ×(0, +∞).
(11)

/erefore, problem (1) is equivalent to

ut



l
utt − M ‖∇u‖2 Δu − Δutt + 

t

0
h(t − s)Δu(s)ds

+ μ1g1 ut(x, t)(  + μ2g2(z(x, 1, t)) � ]uln|u| inΩ ×]0, +∞[,

τ(t)zt(x, ρ, t) + 1 − ρτ′(t)( zρ(x, ρ, t) � 0, inΩ ×]0, 1[ ×]0, +∞[,

u(x, t) � 0, on zΩ ×[0,∞[,

z(x, 0, t) � ut(x, t), onΩ ×[0,∞[,

u(x, 0) � u0(x), ut(x, 0) � u1(x), inΩ,

z(x, ρ, 0) � f0(x, − ρτ(0)), inΩ ×]0, 1[.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

To state and prove our result, we need some
assumptions.

(A1) Assume that l satisfies

0< l≤
2

n − 2
, if n> 2,

0< l<∞, if n≤ 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

(A2) /e relaxation function h: R+⟶ R+ is a
bounded C1 function, such that

a − 
∞

0
h(s)ds � k> 0, h(0)> 0, (14)

and suppose that there exists a positive constant ζ
satisfying

h′(t)≤ − ζh(t). (15)

(A3) g1: R⟶ R is a nondecreasing function of class
C1 andH: R+⟶ R+ is convex, increasing and of class
C1(R+)∩C2(]0, +∞[), satisfying

H(0) � 0 andH is linear, on [0, ε] or

H′(0) � 0 andH″ > 0, on ]0, ε] such that

c1 s|≤ |g1(s)


≤ c2|s|, if |s|≥ ε

s2 + g1(s)2 ≤H− 1 sg1(s)( , if |s|≤ ε,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where ε, c1, and c2 are positive constants. g2: R⟶ R

is an odd nondecreasing function of class C1(R) such
that there exist c3, α1, and α2 > 0,

g2′(s)


≤ c3, (17)

α1sg2(s)≤G(s)≤ α2sg1(s),

G(s) � 
s

0
g2(r)dr.

⎧⎪⎨

⎪⎩
(18)

(A4) τ is a function in W2,∞([0, T]), T> 0, such that
0< τ0 ≤ τ(t)≤ τ1, ∀t> 0,

τ′(t)≤d< 1, ∀t> 0,
 (19)

where τ0 and τ1 are positive numbers.
(A5) We also assume that

μ2 <
α1(1 − d)

α2 1 − α1d( 
μ1. (20)

(A6)

1< ]< 2πke
3
. (21)

We define the energy associated to the solution of
system (12) by

E(t) �
1

l + 2
ut

����
����

l+2
l+2 +

b

2(c + 1)
‖∇u‖

2(c+1)

+
1
2

a − 
t

0
h(s)ds ‖∇u‖

2
+
1
2
∇ut

����
����
2

−
]
2


Ω

u
2ln|u|dx +

]
4
‖u‖

2
+
1
2

(ho∇u)(t)

+ ξτ(t)
Ω


1

0
G(z(x, ρ, t))dρ dx,

(22)
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where ξ is a positive constant such that
μ2 1 − α1( 

α1(1 − d)
< ξ <

μ1 − α2μ2
α2

, (23)

(hov)(t) � 
t

0
h(t − s)‖(v., t) − v(., s)‖

2ds. (24)

Theorem 1 (Global Existence). Let (u0, u1, f0) ∈
H2(Ω)∩H1

0(Ω) × H1
0(Ω) × H1

0((Ω), H1(0, 1)) satisfy the
compatibility condition:

f0(., 0) � u1. (25)

Assume that (A1)–(A6) hold under smallness condition
on the initial data (u0, u1). /en, problem (1) admits a weak
solution:

u∈ L∞ [0,∞); H2(Ω)∩H1
0(Ω)( ,

ut∈L∞ [0,∞); H1
0(Ω)( , utt ∈ L∞ [0,∞); L2(Ω)(  (26)

Theorem 2 (Uniform Decay Rates of Energy). Assume that
(A1)–(A6) hold and if E(0) is positive and bounded, then for
every t0 > 0, there exist positive constants w1, w2, w3, and ε0
such that the solution energy of (1) satisfies

E(t)≤w3H
− 1
1 w1t + w2( , ∀t≥ t0, (27)

where

H1(t) � 
1

t

1
H2(s)

ds,

H2(t) � tH′ ε0t( .

(28)

Here, H1 is strictly decreasing and convex on (0, 1] with
limt⟶0H1(t) � +∞.

2. Preliminaries

Lemma 1 (Sobolev–Poincaré’s Inequality). Let q be a
number with

2≤ q≤ +∞(n � 1, 2)

or
2≤ q≤ 2n

((n − 2)(n≥ 3))
.

(29)

7en, there exists a constant Cs � Cs(Ω, q) such that

‖u‖q ≤Cs‖∇u‖, for u ∈ H
1
0(Ω). (30)

Lemma 2 (see [32, 33]) (Logarithmic Sobolev Inequality).
Let u be any function in H1

0(Ω) and σ > 0 be any number.
7en,


Ω

u
2ln|u|dx≤

1
2
‖u‖

2ln‖u‖
2

+
σ2

2π
‖∇u‖

2
− (1+ lnσ)‖u‖

2
. (31)

Lemma 3 (see [20]) (Logarithmic Gronwall Inequality). Let
C> 0 and φ ∈ L1(0, T; R+) and assume that the function
w: [0, T]⟶ [1,∞) satisfies

w(t)≤C 1 + 
t

0
φ(s)w(s)ln(w(s))ds , ∀t ∈ [0, T].

(32)

7en,

w(t)≤C exp C 
t

0
φ(s)ds , ∀t ∈ [0, T]. (33)

Lemma 4. Let ϵ0 ∈ (0, 1). 7en, there exists dϵ0 > 0 such that

s|lns|≤ s
2

+ dϵ0s
1− ϵ0 , ∀s> 0. (34)

Proof. Let r(s) � sϵ0(|lns| − s). Notice that r is continuous
on (0,∞), and its limit at 0+ is 0+ and its limit at∞ is − ∞.
/en, r has a maximum dε0 on (0,∞), so the proof is
complete.

/e following lemma states an important property of the
convolution operator.

□

Lemma 5 (see [34]). For h,φ ∈ C1([0, +∞[,R), we have


Ω

h
∗φ( φtdx � −

1
2

h(t)‖φ(t)‖
2

+
1
2

h′oφ( (t)

−
1
2
d
dt

(hoφ)(t) − 
t

0
h(s)ds ‖φ‖

2
 .

(35)

Remark 1. Let us denote byΦ∗ the conjugate function of the
differentiable convex function Φ, i.e.,

Φ∗(s) � supt∈R+ (st − Φ(t)). (36)

/en, Φ∗ is the Legendre transform of Φ, which is given
by (see Arnold [35], p. 61-62)

Φ∗(s) � s Φ′− 1
(s)  − Φ Φ′− 1

(s) , if s ∈ 0,Φ′(r)( ,

(37)

and Φ∗ satisfies the generalized Young inequality:

AB≤Φ∗(A) +Φ(B), if A ∈ 0,Φ′(r)( B ∈ (0, r]. (38)

Lemma 6. Let (u, z) be a solution of problem (12). 7en, the
energy functional defined by (22) satisfies

E′(t)≤ − λ
Ω

utg1 ut( dx − β
Ω

z(x, 1, t)g2(z(x, 1, t))dx

−
1
2

h(t)‖∇u(t)‖
2

+
1
2

h′o∇u( (t)≤ 0,

(39)

where λ � μ1 − ξα2 − μ2α2 and β � ξ(1 − d)α1 − μ2(1 − α1).
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Proof. Multiplying the first equation in (12) by ut, inte-
grating over Ω, and using integration by parts, we get
d
dt

1
l +2

ut

����
����

l+2
l+2 +

b

2(c +1)
‖∇u‖

2(c+1)
+
1
2

a‖∇u‖
2

+
1
2
∇ut

����
����
2



−
]
2


Ω

|u|
2ln|u|dx +

]
4
‖u‖

2
 + 
Ω


t

0
h(t − s)∇u(s)∇ut(t)dsdx

+μ1
Ω

ut(x,t)g1 ut(x,t)( dx +μ2
Ω

ut(x,t)g2(z(x,1, t))dx � 0.

(40)

Consequently, by applying Lemma 5, equation (40) becomes
d
dt

1
l +2

ut

����
����

l+2
l+2 +

b

2(c +1)
‖∇u‖

2(c+1)


+
1
2

a − 
t

0
h(s)ds ‖∇u‖

2
+
1
2
∇ut

����
����
2

−
]
2


Ω

|u|
2ln|u|dx

+
]
4
‖u‖

2
+
1
2

(ho∇u)(t) +
1
2

h(t)‖∇u(t)‖
2

−
1
2

h′o∇u( (t)

+ μ1
Ω

ut(x,t)g1 ut(x,t)( dx +μ2
Ω

ut(x,t)g2(z(x,1, t))dx � 0.

(41)

Multiplying the second equation in (12) by ξg2(z) and
integrating the result over Ω × (0, 1), we obtain

ξτ(t)
Ω


1

0
zt(x, ρ, t)g2(z(x, ρ, t))dρ dx

� − ξ
Ω


1

0
1 − ρτ′(t)( 

z

zρ
G(z(x, ρ, t))dρ dx.

(42)

Consequently,
d
dt

ξτ(t)
Ω


1

0
G(z(x, ρ, t))dρ dx 

� ξτ′(t)
Ω


1

0
G(z(x, ρ, t))dρ dx

− ξ
Ω


1

0
1 − ρτ′(t)( 

z

zρ
G(z(x, ρ, t))dρ dx

� − ξ
Ω


1

0

z

zρ
1 − ρτ′(t)( G(z(x, ρ, t))( dρ dx

� − ξ 1 − τ′(t)( 
Ω

G(z(x, 1, t))dx + ξ
Ω

G ut(x, t)( dx.

(43)

Combining (41) and (43), we obtain

E′(t) � − ξ 1 − τ′(t)( 
Ω

G(z(x, 1, t))dx

+ ξ
Ω

G ut(x, t)( dx −
1
2

h(t)‖∇u(t)‖
2

+
1
2

h′o∇u( (t) − μ1
Ω

ut(x, t)g1 ut(x, t)( dx

− μ2
Ω

ut(x, t)g2(z(x, 1, t))dx.

(44)

From (18) and (A4), we get

E′(t)≤ − μ1 − ξα2( 
Ω

ut(x, t)g1 ut(x, t)( dx

− ξ(1 − d)α1
Ω

z(x, 1, t)g2(z(x, 1, t))dx

− μ2
Ω

ut(x, t)g2(z(x, 1, t))dx −
1
2

h(t)‖∇u(t)‖
2

+
1
2

h′o∇u( (t).

(45)

Using (18) and Remark 1, we obtain

G
∗
(s) � sg

− 1
2 (s) − G g

− 1
2 (s) , ∀s≥ 0. (46)

Hence,

G
∗

g2(z(x, 1, t))(  � z(x, 1, t)g2((x, 1, t)) − G(z(x, 1, t))

≤ 1 − α1( z(x, 1, t)g2(z(x, 1, t)).

(47)

Using (18) and (38) with A � g2(z(x, 1, t)) and
B � ut(x, t), we have from (45) that

E′(t)≤ − μ1 − ξα2( 
Ω

ut(x, t)g1 ut(x, t)( dx

− ξ(1 − d)α1
Ω

z(x,1, t)g2(z(x,1, t))dx

+μ2
Ω

G ut(x,t)(  + G
∗

g2(z(x,1, t))( ( dx

−
1
2

h(t)‖∇u(t)‖
2

+
1
2

h′o∇u( (t)

≤ − μ1 − ξα2 − μ2α2( 
Ω

ut(x,t)g1 ut(x,t)( dx

− ξ(1 − d)α1 − μ2 1 − α1( ( 
Ω

z(x,1, t)g2(z(x,1, t))dx

−
1
2

h(t)‖∇u(t)‖
2

+
1
2

h′o∇u( (t).

(48)

/is completes the proof.
□

3. Proof of Theorem 1

3.1. Local Existence. /roughout this section, we assume u0 ∈
H2(Ω)∩H1

0(Ω), u1 ∈ H1
0(Ω) and f0 ∈ H1

0(Ω, H1(0, 1)). We
will use the Faedo-Galerkin method to prove the existence of a
solution to problem (1). Let T> 0 be fixed and let wk, k ∈ N, be
a basis ofH2(Ω)∩H1

0(Ω), and letVk be the space generated by
wk . Now, we define, for 1≤ j≤ k, the sequence ϕj(x, ρ) as
follows:

ϕj
(x, 0) � w

j
. (49)
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/en, we may extend ϕj(x, 0) by ϕj(x, ρ) over L2(Ω ×

(0, 1)) such that (ϕj)j forms a basis of L2(Ω, H1(0, 1)) and
denote Zk as the space generated by ϕk . We construct
approximate solutions (uk, zk), k � 1, 2, 3, . . ., in the form

u
k
(t) � 

k

j�1
c

jk
(t)w

j
,

z
k
(t) � 

k

j�1
djk

(t)ϕj
,

(50)

where cjk and djk(j � 1, 2, . . . , k) are determined by the
following ordinary differential equations:

uk
t



l
uk

tt, wj  + M ∇uk(t)
����

����
2

  ∇uk,∇wj(  + ∇uk
tt,∇wj( 

− 
t

0
h(t − s) ∇uk

(s),∇wj
 ds + μ1 g1 u

k
t , w

j
 

+ μ2 g2 zk(., 1)( , wj(  � ]
Ω

wjukln uk


dx,

1≤ j≤ k,

zk(x, 0, t) � uk
t (x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

u
k
(0) � u

k
0 � 

k

j�1
u0, w

j
 w

j⟶ u0,

inH
2
(Ω)∩H1

0(Ω)as k⟶ +∞,

(52)

u
k
t (0) � u

k
1 � 

k

j�1
u1, w

j
 w

j⟶ u1,

inH
1
0(Ω) as k⟶ +∞,

(53)

τ(t)zk
t(  + 1 − ρτ′kρ , ϕj  � 0,

1≤ j≤ k,
 (54)

z
k
(ρ, 0) � z

k
0 � 

k

j�1
f0, ϕ

j
 ϕj⟶ f0,

inH
1
0 Ω, H

1
(0, 1)  as k⟶ +∞.

(55)

Noting that (l/(2(l + 1))) + (1/(2(l + 1))) + (1/2) � 1,
from the generalized Hölder inequality, we obtain

u
k
t




l
u

k
tt, wj  � 

Ω
u

k
t




l
u

k
ttwjdx

≤ 
Ω

u
k
t




2(l+1)

dx 
(l/2(l+1))

u
k
tt

�����

�����2(l+1)
wj

�����

�����2
.

(56)

Since (A1) holds, according to Sobolev, embedding the
nonlinear term (|uk

t |luk
tt, wj) in (51) makes sense.

/e standard theory of ODE guarantees that systems
(51)–(55) have a unique solution in [0, tk), with 0< tk <T, by
Zorn lemma since the nonlinear terms in (51) are locally
Lipschitz continuous. Note that uk(t) is of class C2. In the
next step, we obtain a priori estimate for the solution of

systems (51)–(55), so that it can be extended to [0, T) and
that the local solution is uniformly bounded independently
of k and t.

3.1.1. 7e First Estimate. Since the sequences uk
0, uk

1, and zk
0

converge and from Lemma 6, we can find a positive constant
C1 independent of k such that

E
k
(t) − E

k
(0)≤ − λ

t

0

Ω

u
k
t g1 u

k
t dxds

− β
t

0

Ω

z
k
(x,1, s)g2 z

k
(x,1, s) dxds

−
1
2


t

0
h(s) ∇uk

(s)
�����

�����
2
ds +

1
2


t

0
h′o∇uk

 (s)ds

≤ − λ
t

0

Ω

u
k
t g1 u

k
t dxds

− β
t

0

Ω

z
k
(x,1, s)g2 z

k
(x,1, s) dxds.

(57)

As h is a positive nonincreasing function, we get

E
k
(t) + λ

t

0

Ω

u
k
t g1 u

k
t dx ds

+ β
t

0

Ω

z
k
(x, 1, s)g2 z

k
(x, 1, s) dx ds≤E

k
(0)≤C1,

(58)

where

E
k
(t) �

1
l + 2

u
k
t

�����

�����
l+2

l+2
+
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By applying the Logarithmic Sobolev inequality, (58)
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where C2 is a positive constant depending only on
‖u0‖H1

0
, ‖u1‖H1

0
, l, c, ξ, τ1, λ, and β.

By choosing

e
(− 3/2) < σ <

����

2πk

]



, (61)

we obtain k − (]σ2/2π)> 0 and (]/2) + (](1 + lnσ))> 0.
/is selection is possible thanks to (A6). So we get
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Let us note that

u
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0
u

k
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/en, by using Cauchy Schwarz’s inequality, we get
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Hence, (62) gives
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where C � max 2Tc, 2‖uk(0)‖2 . Applying the Logarithmic
Gronwall inequality to (65), we obtain
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Hence, from (58), we obtain the first estimate:
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/e estimate implies that the solution (uk, zk) exists in
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3.1.2. 7e Second Estimate. Replacing wj by − Δwj in (51),
multiplying by c
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t , and summing over j from 1 to k, it

follows that
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Noting that M(‖∇uk‖2)≥ a and by using Lemma 5, we
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By using the Green formula, we have
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To estimate the term on the right-hand side of (76), we
apply Lemma 4 with ϵ0 � (1/2) and use repeatedly Young’s,

Cauchy-Schwartz’s, and the embedding inequalities as
follows:

]
Ω
Δuk

t u
kln u

k


dx




≤ ]
Ω
Δuk

t



 u
k




2

+ dϵ0
���

uk






 dx

≤ ] η
Ω
Δuk

t




2
dx +

1
4η


Ω

u
k




2

+ dϵ0
���

uk






 
2
dx 

≤ ]η
Ω
Δuk

t




2
dx +

c

4η

Ω

u
k




4
dx + 

Ω
u

k


dx 

≤ ]η Δuk
t

�����

�����
2

+
c

4η
∇uk

�����

�����
4

+ u
k

�����

����� , η> 0.

(77)

Combining (76) and (77) to have
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Replacing ϕj by − Δϕj in (54), multiplying by djk, and
summing over j from 1 to k, it follows that
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We integrate over (0, 1), and we find
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Combining (78) and (81) and using (A2), we get
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From the first estimate (67) and Young’s inequality, we
get
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Using (17) and Chaucy-Schwarz’s inequality, we obtain
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Taking into account (83) and (84) into (82) yields
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Multiplying (51) by c
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tt and summing over j from 1 to k,

it follows that
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Differentiating (54) with respect to t, we get
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Integrating over (0, 1) with respect to ρ, we obtain
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Summing (87) and (91), we get
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By Cauchy-Schwarz’s, Sobolev’s, and Young’s inequal-
ities, the right hand side of (92) can be estimated as follows:
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and from (16),
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Using Lemma 6, Jensen’s inequality, and the concavity of
H− 1, we obtain
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From (17) (that is, |g2(s)|≤ c|s|,∀s ∈ R), we get


Ω

u
k
ttg2 z

k
(x, 1, t) dx





≤
1
2


Ω

u
k
tt




2
dx +

1
2


Ω

g2 z
k
(x, 1, t) 




2
dx

≤
1
2

u
k
tt

�����

�����
2

+ c3
Ω

z
k
(x, 1, t)g2 z

k
(x, 1, t) dx

≤Cs ∇u
k
tt

�����

�����
2

+ c′ − E′( .

(97)

Similar to (77), we get
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Substituting (93)–(98) into (92) yields
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0

τ(t)

1 − ρτ′(t)
 

′
z

k
t

�����

�����
2
dρ

+ cη ∇uk
tt

�����

�����
2

+
c

4η
∇uk

�����

�����
4

+ u
k

�����

����� .

(99)

Combining (85) and (99), we get

1
2
d
dt

2
Ω

u
k
t (t)




l
∇uk

t




2
dx + a − 

t

0
h(s)ds  Δuk

�����

�����
2

+ Δuk
t

�����

�����
2

+ hoΔuk
 

+ 
1

0

τ(t)

1 − τ′(t)ρ
∇zk

(x, ρ, t)
�����

�����
2
dρ + 

1

0

τ(t)

1 − ρτ′(t)
z

k
t

�����

�����
2
dρ + cE(t) + 

Ω
u

k
t




l

u
k
tt




2
dx

+
1
2

z
k
t (x, 1, t)

�����

�����
2

+ 1 − (l + 3)η − 3Cs(  ∇uk
tt

�����

�����
2

+ μ1
Ω
∇uk

t




2
g1′ u

k
t dx + c ∇zk

(x, 1, t)
�����

�����
2

≤Cη′A1 +
1
2


1

0

τ(t)

1 − ρτ′(t)
 

′
∇zk

(x, ρ, t)
�����

�����
2
dρ + c′ ∇uk

t

�����

�����
2

+
m2

0
4η
∇uk

�����

�����
2

+ cη ∇uk
tt

�����

�����
2

+
c4

4η
∇uk

�����

�����
4

+ u
k

�����

�����  + ]η Δuk
t

�����

�����
2
.

(100)
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/en, from (67) and by integration over (0, t), (100)
yields

a − 
t

0
h(s)ds  Δuk

�����

�����
2

+ Δuk
t

�����

�����
2

+ hoΔuk
  + 

1

0

τ(t)

1 − τ′(t)ρ
∇zk

(x, ρ, t)
�����

�����
2
dρ + 

1

0

τ(t)

1 − ρτ′(t)
z

k
t

�����

�����
2
dρ

+ cE(t) + 2
Ω

u
k
t (t)




l
∇uk

t




2
dx + 2

t

0

Ω

u
k
t




l

u
k
tt




2
dx ds + c 

t

0
z

k
t (x, 1, t)

�����

�����
2
ds

+ 2 1 − (l + 3 − c)η − 3Cs(  
t

0
∇uk

tt

�����

�����
2
ds + c∗

t

0
∇zk

(x, 1, t)
�����

�����
2
ds

≤ Cη′A1 + c′ +
m2

0
2η

+
1
2η

(a − k)h(0)T T + E(0) + A2 + ]η
t

0
Δuk

t

�����

�����
2
ds

+ c
′′
∗ 

t

0

1

0

τ(t)

1 − τ′(t)ρ
 

′
∇zk

(x, ρ, t)
�����

�����
2
dρ ds + c′′ 

t

0

1

0

τ(t)

1 − ρτ′(t)
 

′
z

k
t

�����

�����
2
dρ ds.

(101)

For a suitable η, we get

Δuk
�����

�����
2

+ Δuk
t

�����

�����
2

+ hoΔuk
  + 

1

0

τ(t)

1 − τ′(t)ρ
∇zk

(x, ρ, t)
�����

�����
2
dρ + 

1

0

τ(t)

1 − ρτ′(t)
z

k
t

�����

�����
2
dρ + 

t

0
∇uk

tt

�����

�����
2
ds

≤ Cδ′A1 + A1′( T + A2′ + c
′′
∗ 

t

0

1

0

τ(t)

1 − ρτ′(t)
 

′
∇zk

(x, ρ, t)
�����

�����
2
dρ ds

+ c′′ 
1

0

τ(t)

1 − ρτ′(t)
 

′
z

k
t

�����

�����
2
dρ + c 

t

0
Δuk

t

�����

�����
2
ds.

(102)

Using Gronwall lemma, we obtain

Δuk
�����

�����
2

+ Δuk
t

�����

�����
2

+ hoΔuk
  + 

1

0

τ(t)

1 − τ′(t)ρ
∇zk

(x, ρ, t)
�����

�����
2
dρ

+ 
1

0

τ(t)

1 − ρτ′(t)( 
z

k
t

�����

�����
2
dρ + 

t

0
∇uk

tt

�����

�����
2
ds≤C3.

(103)

We observe from the estimates (67) and (103) that there
exists a subsequence um{ } of uk  and functions u, z, χ, andψ
such that

u
m⇀uweakly star in L

∞ 0, T, H
2
(Ω)∩H1

0(Ω) , (104)

u
m
t ⇀ut weakly star in L

∞ 0, T, H
2
0(Ω) , (105)

g1 u
m
t( ⇀χweakly star inL

2
(Ω ×(0, T)), (106)

u
m
tt⇀utt weakly star in L

2 0, T, H
1
0(Ω) , (107)

z
m⇀zweakly star in L

∞ 0, T, H
1
0 Ω, L

2
(0, 1)  , (108)

z
m
t ⇀zt weakly star in L

∞ 0, T, L
2
(Ω ×(0, 1)) , (109)

g2 z
m

(x, 1, t)( ⇀ψweakly star inL
2
(Ω ×(0, T)). (110)

Now, we will prove that u is the solution of (1). First, we
will treat the nonlinear terms.

(1) Term |uk
t |luk

t : from the first estimate (67) and Lemma
1, we deduce

u
k
t




l
u

k
t

������

������L2 0,T,L2(Ω)( )
� 

T

0
u

k
t

�����

�����
2(l+1)

2(l+1)
dt

≤C
2(l+1)
s 

T

0
∇uk

t

�����

�����
2(l+1)

dt≤C
2(l+1)
s A

2(l+1)
1 T.

(111)

On the other hand, from Aubin-Lions theorem (see
Lions [36]), we deduce that there exists a subsequence of
um{ }, still denoted by um{ } such that

u
m
t ⟶ ut strongly inL

2 0, T, L
2
(Ω) , (112)

which implies that

u
m
t ⟶ ut almost everywhere inA. (113)

Hence,

u
m
t



l
u

m
t ⟶ ut



l
ut almost everywhere inA, (114)

where A � Ω × (0, T). /us, using (117), (114), and Lions
Lemma, we derive
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u
m
t



l
u

m
t ⇀ ut



l
ut weakly inL

2 0, T, L
2
(Ω) , (115)

z
m⟶ z strongly inL

2 0, T, L
2
(Ω) , (116)

which implies zm⟶ z almost everywhere in A.
(2) Term ukln|uk|: using (103), we have uk  being

bounded in L∞(0, T, H2
0(Ω)) which implies the bounded-

ness of uk  in L2(A). Similarly, uk
t  is bounded in L2(A).

/en, from Aubin-Lions theorem, we find a subsequence
such that

u
m⟶ u strongly in L

2
(A), (117)

which implies

u
m⟶ u almost everywhere inA. (118)

Since the map s⟶ ]s ln|s| is continuous, we have the
following convergence:

]u
mln u

m


⟶ ]u ln|u|almost every where inA. (119)

Using the embedding of H1
0(Ω) in L∞(Ω), it is clear that

](um ln|um|) is bounded in L∞(Ω × (0, T)). Next, taking
into account the Lebesgue bounded convergence theorem
(Ω is bounded), we get

]u
mln u

m


⟶ ]u ln|u| strongly inL
2 0, T; L2(Ω) .

(120)

Lemma 7. For each T> 0, g1(ut), g2(z(x, 1, t)) ∈ L1(A),
and ‖g1(u′)‖L1(A), ‖g2(z(x, 1, t))‖L1(A)≤K, where K is a
constant independent of t.

Proof. By (A2) and (118), we have

g1 u
m
t (x, t)( ⟶ g1 ut(x, t)(  almost everywhere inA,

0≤ u
k
t (x, t)g1 u

m
t (x, t)( ⟶ ut(x, t)g1 ut(x, t)( 

almost everywhere inA.

(121)

Hence, by (71) and Fatou’s Lemma, we have


T

0

Ω

ut(x, t)g1 ut(x, t)( dxdt≤K1, forT> 0. (122)

By using Cauchy-Schwarz’s inequality, (96), and (122),
we have


T

0

Ω

g1 ut(x, t)( 


dxdt

≤ c|A|
(1/2)


T

0

Ω

ut(x, t)g1 ut(x, t)( dxdt 

(1/2)

≤ c|A|
(1/2)

K
(1/2)
1 ≡ K.

(123)

□
Lemma 8. We have g1(uk

t )⇀g1(ut)weak inL2(Ω × (0, T))

and g2(zk)⇀g2(z)weak inL2(Ω × (0, T)).

Proof. Let E ⊂ Ω × [0, T] and set

E1 � (x, t) ∈ E, g1 u
k
t (x, t) 



≤
1
���
|E|

√ , E2 �
E

E1
, (124)

where |E| is the measure of E. If M(r) � inf |s|,{

s ∈ R and |g(s)|≥ r},


E

g1 u
k
t 



dxdt≤ c
���
|E|


+ M

1
���
|E|

√  

− 1


E2

u
k
t g1 u

k
t 



dxdt.

(125)

By applying (71), we deduce that supk
E
|g1(uk

t )|dxdt⟶
0 as |E|⟶ 0. From Vitali’s convergence theorem, we deduce
that

g1 u
k
t ⟶ g1 ut(  inL

1
(Ω ×(0, T)). (126)

Hence,

g1 u
k
t ⇀g1 ut( weak inL

2
(Ω ×(0, T)). (127)

Similarly, we have

g2 z
k

 ⇀g2(z)weak inL
2
(Ω ×(0, T)). (128)

□
Remark 2. By using (103) and from (104) and (105)
combined with the Aubin-Lions compactness lemma, we
deduce


T

0
M ∇uk

(t)
�����

����� 
2
Δuk

(t), wθ(t) dt

⟶ 
T

0
M‖∇u(t)‖

2Δu(t), w θ(t)dt, as k⟶∞.

(129)

By multiplying (51) and (54) by θ(t) ∈ D(0, T) and by
integrating over (0, T), it follows that
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T

0
u

k
t (t)




l
u

k
tt(t), w

j
 θ(t)dt + 

T

0
M ∇uk

(t)
�����

�����
2

  ∇uk
(t),∇wj

 θ(t) dt

+ 
T

0
∇uk

tt,∇w
j

 θ(t)dt − 
T

0


t

0
h(t − s) ∇uk

(s),∇wj
 θ(t)ds dt + μ1 

T

0
g1 u

k
t , w

j
 θ(t)dt

+μ2 
T

0
g2 z

k
(., 1) , w

jθ(t) dt � ]
T

0
u

k
(s)ln u

k
(s)



, w
j

 θ(t)dt,


T

0

1

0

Ω

τ(t)z
k
t + 1 − ρτ′(t)( z

k
ρ ϕj

 θ(t)dx dρ dt � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(130)

for all j � 1, . . . , k. /e convergence of (104)–(110), (115), and (124)–(129) is
sufficient to pass to the limit in (130) in order to obtain


T

0

Ω

ut



l
utt − M ‖∇u(t)‖

2
 Δu − Δutt + 

t

0
h(t − s)Δu(s)ds + μ1g1 ut( 

+ μ2g2(z(., 1))wθ(t)ds dt � ]
T

0
(u(s)ln|u(s)|, w)θ(t)dt,


T

0

1

0

Ω

τ(t)zt + 1 − ρτ′(t)( zρ ϕjθ(t)dx dρ dt � 0.

(131)

/en, problem (1) has a weak solution on [0, T], T> 0.

3.2. Global Existence. To state and prove our global exis-
tence, we introduce the following functionals:

I(t) � a − 
t

0
h(s)ds ‖∇u‖

2
+ ∇ut

����
����
2

+(h o∇u)(t)

− 3]
Ω

u
2ln|u|dx,

(132)

J(t) �
1
2

a − 
t

0
h(s)ds ‖∇u‖

2
+
1
2
∇ut

����
����
2

+
1
2

(ho∇u)(t)

−
]
2


Ω

u
2 ln|u|dx +

]
4
‖u‖

2

�
1
3

a − 
t

0
h(s)ds ‖∇u‖

2
+ ∇ut

����
����
2



+(ho∇u)(t)] +
]
4
‖u‖

2
+
1
6

I(t).

(133)

We note that

E(t) �
1

l + 2
ut

����
����

l+2
l+2 +

b

2(c + 1)
‖∇u‖

2(c+1)
+ J(t)

+ ξτ(t)
Ω


1

0
G(z(x, ρ, t))dρ dx.

(134)

Lemma 9. 7e following inequalities hold:

− d0

������������

|Ω|c3s ‖∇u‖(3/2)



≤
Ω

u
2ln|u|dx≤ c

3
s ‖∇u‖

3
,

∀u ∈ H
1
0(Ω),

(135)

where d0 � sup0<s<1
�
s

√
|ln s| � (2/e), |Ω| is the Lesbegue

measure of Ω, and cs is the smallest embedding constant:

‖u‖3 ≤ cs‖∇u‖, ∀u ∈ H
1
0(Ω). (136)

Proof. Let Ω1 � x ∈ Ω: |u|≤ 1{ } and Ω2 � x ∈ Ω: |ut|> 1 .
By using (136), we have


Ω

u
2ln|u|dx � 

Ω1
u
2ln|u|dx + 

Ω2
u
2ln|u|dx

≤
Ω2

u
2ln|u|dx≤

Ω2
|u|

3dx

≤
Ω2

|u|
3dx≤ c

3
s ‖∇u‖

3
.

(137)

On the other hand, using Hölder’s inequality and (136),
we get
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− 
Ω

u
2ln|u|dx � − 

Ω1
u
2ln|u|dx − 

Ω2
u
2ln|u|dx

≤ − 
Ω1

u
2ln|u|dx � 

Ω1
u
2
|ln|u‖dx

≤d0
Ω1

|u|
(3/2)dx≤d0

���
|Ω|



Ω1

|u|
3dx 

(1/2)

≤d0

�����

|Ω|c3s



‖∇u‖
(3/2)

.

(138)

Hence, (135) is obtained.
□

Lemma 10. Assume that (A1)–(A6) hold. Let
(u0, u1) ∈ H2(Ω)∩H1

0(Ω) × H1
0(Ω) such that

I(0)> 0,

��
27

√
]c

3
s

E(0)

k
 

(1/2)

≤ k.

(139)

7en,

I(t)> 0, ∀t ∈ [0, T). (140)

Proof. Since I(0)> 0 and I is continuous on [0, T], there
exists t∗ ∈ (0, T] such that I(t)> 0, for all t ∈ [0, t∗]. Let us
denote by t0 the largest real number in (0, T] such that I> 0
on [0, t0). We assume by contradiction that t0 ≠T, so we
have I(t0) � 0 and from (133), we have

‖∇u(t)‖
2 ≤

3
k

J(t)≤
3
k

E(t)≤
3
k

E(0), ∀t ∈ 0, t0 . (141)

/e last inequality is obtained from Lemma 6. If
‖∇u(t0)‖

2 � 0, then (132) and (135) give

0 � I t0(  � a − 
t0

0
h(s)ds  ∇u t0( 

����
����
2

+ ∇ut t0( 
����

����
2

+(ho∇u) t0( 

− 3]
Ω

u
2

t0( ln u t0( 


dx � (ho∇u) t0( 

� 
t0

0
h(s)‖∇u(s)‖

2ds.

(142)

Consequently, if h> 0 on [0, t0), we get

‖∇u(s)‖
2

� 0, ∀s ∈ 0, t0 . (143)

/en,

I(t) � 0, ∀s ∈ 0, t0 , (144)

which is not true since I> 0 on [0, t0). If there exists t∗ in
[0, t0) such that h(t∗) � 0, then let t1 ∈ [0, t0) be the smallest
real number such that h(t1) � 0. Because h(0)> 0 and h is

positive, nonincreasing, and continuous on R+, then t1 > 0
and h � 0 on [t1, +∞)./erefore, from (142), we deduce that

0 � 
t0

0
h(s)‖∇u(s)‖

2ds � 
t1

0
h(s)‖∇u(s)‖

2ds. (145)

/en,
‖∇u(s)‖

2
� 0, ∀s ∈ 0, t1 . (146)

As given above, we get a contradiction with the fact that
I> 0 on [0, t0). /en, we conclude that ‖∇u(t0)‖

2 > 0. From
(132), we have

I t0( ≥ k ∇u t0( 
����

����
2

− 3]
Ω

u t0( 



2ln u t0( 


dx. (147)

By using (135) and (141), we have

I t0( ≥ k − 3]
3
k

E(0) 
(1/2)

  ∇u t0( 
����

����
2
. (148)

By recalling (139), we arrive at I(t0)> 0, which con-
tradicts the assumption that I(t0) � 0. Hence, t0 � T and
then I> 0 on [0, T).

/is completes the proof of /eorem 1.
□

4. Uniform Decay of the Energy Proof of
Theorem 2

In this section, we study the solution’s asymptotic behavior
of system (1).

To prove our main result, we construct a Lyapunov
functional F equivalent to E. For this, we define some
functionals which allow us to obtain the desired estimate.

Lemma 11. Let (u, z) be a solution of problem (12).7en, the
functional

χ(t) � τ(t)
Ω


1

0
e

− 2τ(t)ρ
G(z(x, ρ, t))dρ dx (149)

satisfies the estimates

(i) |χ(t)|≤
1
ξ

E(t),

(ii) χ′(t)≤ − 2τ(t)e− 2τ1
Ω


1

0
G(z(x, ρ, t))dρ dx

− α1(1 − d)e− 2τ1
Ω

z(x, 1, t)g2(z(x, 1, t))dx

+α2
Ω

ut(x, t)g1 ut(x, t)( dx.

(150)

Proof.

(ii) Differentiating (149) with respect to t and using (16),
(11), and (A4), we get
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d
dt

χ(t) � τ′(t)
Ω


1

0
e

− 2τ(t)ρ
(Gz(x, ρ, t))dρ dx

+ τ(t)
Ω


1

0
e

− 2τ(t)ρzG(z(x, ρ, t))

zt
− 2τ′(t)ρe

− 2τ(t)ρ
G(z(x, ρ, t)) dρ dx

� 
Ω


1

0
e

− 2τ(t)ρ τ′(t)G(z(x, ρ, t)) + τ(t)
zG(z(x, ρ, t))

zt
 dρ dx

− 2
Ω


1

0
τ(t)τ′(t)ρe

− 2τ(t)ρ
G(z(x, ρ, t))dρ dx

� − 
Ω


1

0
e

− 2τ(t)ρ z

zρ
1 − ρτ′(t)( G(z(x, ρ, t))( dρ dx

− 2
Ω


1

0
τ(t)τ′(t)ρe

− 2τ(t)ρ
G(z(x, ρ, t))dρ dx

� − 
Ω


1

0

z

zρ
e

− 2τ(t)ρ 1 − τ′(t)ρ( G(z(x, ρ, t)) 

+2τ(t)e
− 2τ(t)ρ 1 − τ′(t)ρ( G(z(x, ρ, t))dρ dx

− 2τ(t)τ′(t)
Ω


1

0
ρe

− 2τ(t)ρ
G(z(x, ρ, t))dρ dx

� 
Ω

G ut(x, t)( dx − e
− 2τ(t) 1 − τ′(t)( 

Ω
G(z(x, 1, t))dx

− 2τ(t)
Ω


1

0
1 − τ′(t)ρ(  + τ′(t) ρe

− 2τ(t)ρ
G(z(x, ρ, t))dρ dx

≤ − 2χ(t) + α2
Ω

ut(x, t)g1 ut(x, t)( dx

− e
− 2τ(t)

(1 − d)α1
Ω

z(x, 1, t)g2(z(x, 1, t))dx.

(151)

Since e− 2τ(t)ρ is a decreasing function for ρ ∈ [0, 1] and
τ(t) ∈ [τ0, τ1], we deduce

χ(t)≥ τ(t)
Ω


1

0
e

− 2τ1G(z(x, ρ, t))dρ dx. (152)

/us, our proof is completed.
□

Lemma 12. Let (u, z) be a solution of problem (12).7en, the
functional

ϕ(t) �
1

l + 1

Ω

ut



l
utu dx + 

Ω
∇ut∇udx (153)

satisfies the estimates

(i) |ϕ(t)| ≤
1

l + 2
ut

����
����

l+2
l+2 +

(l + 1)− 1

(l + 2)
c

l+2
s

2E(0)

a
 

(l/2)

+
1
2

⎛⎝ ⎞⎠‖∇u‖
2

+
1
2
∇ut

����
����
2
,

(ii) ϕ′(t) ≤
1

l + 1
ut

����
����

l+2
l+2 − Ma ‖∇u‖

2
 ‖∇u‖

2
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+
1
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u2ln|u|dx,

(154)
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where η> 0 and cs is the Sobolev embedding constant.

Proof.

(i) From Young’s inequality, Sobolev embedding, and
Lemma 6, we deduce

|ϕ(t)| ≤
1
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ut
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l+2
l+2 +
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2

+
1
2
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2

≤
1
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(l + 1)− 1
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c
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s
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a
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+
1
2
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+
1
2
∇ut

����
����
2
.

(155)

(ii) Differentiating ϕ(t) with respect to t and using the
first equation of (12), we get

ϕ′(t) �
1

l + 1

Ω

ut



l
ut 
′udx +

1
l + 1


Ω
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l+2dx + 

Ω
∇utt∇udx + 

Ω
∇ut∇utdx

� 
Ω
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l
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1
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����
����

l+2
l+2 − 

Ω
Δuttudx + ∇ut

����
����
2

�
1
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����

l+2
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Ω
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l
utt − Δutt udx + ∇ut

����
����
2

�
1

l + 1
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����
����

l+2
l+2 + 

Ω
M ‖∇u‖

2
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t
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h(t − s)Δu(s)ds − μ1g1 ut(x, t)(  − μ2g2(z(x, 1, t))

+ ]uln|u|]udx + ∇ut

����
����
2

�
1
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����
����

l+2
l+2 − M ∇u2����

���� ‖∇u‖
2

+ 
Ω
∇u(t) 

t

0
h(t − s)∇u(s)ds dx − μ1

Ω
ug1 ut(x, t)( dx

− μ2
Ω

ug2(z(x, 1, t))dx + ∇ut

����
����
2

+ ]
Ω

u
2ln|u|dx.

(156)

By using Young’s inequality and Sobolev embedding, we
can estimate the third term in the right side as follows:


Ω
∇u(t) 

t

0
h(t − s)∇u(s)ds dx≤ 

t

0
h(t − s)

Ω
|∇u(t)(∇u(s) − ∇u(t))|dx ds +‖∇u(t)‖

2


t

0
h(t − s)ds

≤ η‖∇u(t)‖
2


t

0
h(s)ds +

1
4η


t

0
h(t − s)‖(∇u(s) − ∇u(t))‖

2ds

+ ‖∇u(t)‖
2


t

0
h(s)ds

≤ (1 + η)(a − k)‖∇u(t)‖
2

+
1
4η

(ho∇u)(t).

(157)

/us, our proof is completed. □
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Lemma 13. Let (u, z) be a solution of problem (12).7en, the
functional

ψ(t) � 
Ω
Δut −

1
l + 1

ut



l
ut  

t

0
h(t − s)(u(t) − u(s))ds dx

(158)

satisfies the estimates

(i) |ψ(t)|≤
1
2
∇ut

����
����
2

+
1
2

(a − k) +
(l + 1)− 1

(l + 2)
(a − k)
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c
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s

4E(0)

a
 

(l/2)

⎛⎝ ⎞⎠(ho∇u)(t) +
1

l + 2
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����
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(ii)ψ′(t)≤ δ (a − k) + b0( M ‖∇u‖2 ‖∇u‖2 + 2δ(a − k)2‖∇u‖2

+
M0

4δ
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1
4δ

+ μ1 + μ2 + ]( 
c2s
4δ

 (a − k) (ho∇u)(t) −
h(0)

4δ
1 +

c2s
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  h′o∇u( (t)

+ δ +
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− 

t

0
h(s)ds  ∇ut

����
����
2

+ μ1δ g1 ut(x, t)( 
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2

+ μ2δ g2(z(x, 1, t))
����
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2

−
1
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t

0
h(s)ds ut

����
����
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(159)

where

M0 � a + b
2E(0)

a
 

c

,

a0 � c
2(l+1)
s

2E(0)

a
 

l

, η> 0, b0 �
]
2
c
2
s max

���
|Ω|

√

a
,
c2s
b

 ,

(160)

and cs is the Sobolev embedding constant.

Proof.
(i) We have

ψ(t) � − 
Ω
∇ut 

t

0
h(t − s)(∇u(t) − ∇u(s))ds dx

− 
Ω

1
l + 1

ut



l
ut 

t

0
h(t − s)(u(t) − u(s))ds dx.

(161)

We use Young’s and Hölder’s inequalities with the
conjugate exponents p � ((l + 2)/(l + 1)) and
q � l + 2; the second term in the right hand side can
be estimated as

− 
Ω

1
l + 1

ut



l
ut 

t

0
h(t − s)(u(t) − u(s))ds dx





≤
1
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����
����

l+2
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(l + 1)− 1
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Ω


t

0
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t
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Ω


t

0
h(t − s)|u(t) − u(s)|
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≤
1
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(a − k)
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c

l+2
s 4

E(0)

a
 

(l/2)

(ho∇u)(t).

(162)

We get the last inequality from (22) and Lemma 6.
Similarly, we use Young’s and Hölder’s inequalities
with p � q � 2, we get

− 
Ω
∇ut 

t

0
h(t − s)(∇u(t) − ∇u(s))ds dx




≤
1
2
∇ut

����
����
2

+
1
2


Ω


t

0
h(t − s)|∇u(t) − ∇u(s)|ds 

2

dx

≤
1
2
∇ut
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2

+
1
2

(a − k)(ho∇u)(t).

(163)
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Combining (162) and (163), we deduce

|ψ(t)|≤
1
2
∇ut

����
����
2

+
1
2

(a − k) +
(l + 1)− 1

(l + 2)
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⎛⎝ ⎞⎠(ho∇u)(t) +
1
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ut

����
����

l+2
l+2. (164)

(ii) We use the Leibniz formula and the first equation of
(12), and we have

ψ′(t) � 
Ω
Δutt − ut



l
utt  

t
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h(t − s)(u(t) − u(s))ds dx
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t

0
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(165)

In what follows, we will estimate I1, . . . , I7. For I1, we use
Hölder’s and Young’s inequalities with p � q � 2, and we get

I1


≤M ‖∇u‖
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Ω

|∇u(t)| 
t

0
h(s)ds 

(1/2)


t
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1
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t
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2ds dx 
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t

0
h(s)ds +

1
4δ

(ho∇u)(t) 

≤ δM ‖∇u‖
2

 ‖∇u(t)‖
2
(a − k) +

M0

4δ
(ho∇u)(t),

(166)

where M0 � (a + b)(2E(0)/a)c obtained by recalling (22)
and Lemma 6. Similarly,
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I2


≤ δ
Ω


t
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2
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1
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Ω


t

0
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2

dx
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Ω


t
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2
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t
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t
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t
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 (a − k)(ho∇u)(t),

(167)

I3


≤ δ g1 ut(x, t)( 
����

����
2

+
c2s
4δ

(a − k)(ho∇u)(t), (168)

I4


≤ δ g2(z(x, 1, t))
����

����
2

+
c2s
4δ

(a − k)(ho∇u)(t). (169)

To estimate I5, we apply Lemma 4 with ϵ0 � (1/2) and
use repeatedly Young’s, Cauchy-Schwartz’s, and the em-
bedding inequalities, as follows:
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≤ ]
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u
2

+ dϵ0
���
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t
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2
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2
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,

(170)

where b0 � (]/2)c2s max (
���
|Ω|

√
/a), (c2s /b) . Also,
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Ω
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2dx +

1
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Ω


t

0
h′(t − s)

����∇u(t) − ∇u(s)


ds 

2

dx

≤ δ ∇ut
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2
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t

0
h′(t − s)


ds
Ω


t

0
h′(t − s)

����∇u(t) − ∇u(s)



2ds dx.

(171)

As h is a positive decreasing function, |h′(t − s)| �

− h′(t − s) and then,
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≤ δ‖∇ut‖
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+
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t
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(172)

I7


≤
1
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δ
Ω
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t
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h′o∇u( (t),

(173)

where a0 � c2(l+1)
s (2E(0)/a)l obtained by recalling (22) and

Lemma 6. Combining (165) and (166)–(173), we finish the
proof. Now, for M, ε1 > 0, we introduce the following
functional:

F(t) � ME(t) + ε1ϕ(t) + ψ(t) + χ(t). (174)

□

Lemma 14. Let (u, z) be a solution of problem (12). Assume
that (A1)–(A6) hold and

0<E(0)<min
ekπ
4

,
k3

27]2c6∗
 . (175)

7en, F(t) satisfies, along the solution and for some
positive constants m, c> 0, the following estimate:

F′(t)≤ − mE(t) + c g1 ut(x, t)( 
����

����
2

+ g2(z(x, 1, t))
����

����
2



+
Ω

u(x, t)g1 ut(x, t)( 


dx

+ 
Ω

u(x, t)g2(z(x, 1, t))


dx

(176)

and F(t) ∼ E(t).

Proof. By (ii) of Lemmas 11–13 and Lemma 6 and by (A2),
we deduce that for t≥ t0 > 0:

F′(t) � ME′(t) + ε1ϕ′(t) + ψ′(t) + χ′(t)

≤ − Mλ − α2( 
Ω

ut(x, t)g1 ut(x, t)( dx − Mβ + α1(1 − d)e
− 2τ1 

Ω
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−
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Ω
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Ω
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Ω

u
2ln|u|dx,

(177)
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where

h0 � 
t0

0
h(s)ds,

h1 � min h(t), t≥ t0 > 0 .

(178)

We take h0 > ε1 and δ > 0 sufficiently small such that

a4 � h0 − δ 1 +
a0

l + 1
  − ε1 > 0,

a2 � ε1 − δ a − k + b0( > 0.

(179)

As long as ε1 and δ are fixed, we choose M large enough
such that

a1 � Mλ − α2 > 0,

a5 �
Mh1

2
− ε1(1 + η)(a − k) − 2δ(a − k)

2 > 0,

a6 � ζ
M

2
−
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4δ
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(180)

/us,

F′(t)≤ − a3
1

l + 1
ut

����
����

l+2
l+2 − a2M ‖∇u‖

2
 ‖∇u‖
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2
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Ω
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Ω
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Ω

u
2ln|u|dx
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2
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Ω
u
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2
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����
2

+ 
Ω
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dx + 
Ω

u(x, t)g2(z(x, 1, t))


dx ,

(181)

where

m1 � min 2a2, 2e
− 2τ1ξ, 2a4, a3 . (182)

Using the Logarithmic Sobolev inequality, we get

F′(t)≤ − m1E(t) − ε1 −
m1

2
 

]
2

2(1 + lnσ) − ln‖u‖
2

 ‖u‖
2

+ ε1 −
m1

2
 

σ2

2π
‖∇u‖

2
+

m1]
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‖u‖
2

+ c g1 ut(x, t)( 
����

����
2

+ g2(z(x, 1, t))
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2



+ 
Ω

u(x, t)g1 ut(x, t)( 


dx +
Ω

u(x, t)g2(z(x, 1, t))


dx.

(183)
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From (61) and for

m1 ≤ ε1 ≤
m1

2
(] + 1), (184)

we have

m2 �
m1

2
a − 

t

0
h(s)ds  − ε1 −

m1

2
 

σ2

2π

≥
m1

2
k − ε1 −

m1

2
 

k

]
> 0

m1]
4
≤ ε1 −

m1

2
 

]
2
.

(185)

/is selection is possible thanks to (A6). So we get

F′(t)≤ − mE(t) − ε1 −
m1

2
 

]
2

1+2lnσ − ln‖u‖
2

 ‖u‖
2

F′(t)≤ − mE(t) − ε1 −
m1

2
 

]
2

1+2lnσ − ln‖u‖
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 ‖u‖
2

+
Ω

u(x,t)g1 ut(x,t)( 


dx + 
Ω

u(x,t)g2(z(x,1, t))


dx,

(186)

where m � min m1, m2 . By recalling that E′ ≤ 0 and I(t)> 0
and using (133), (134), and (175), we obtain

ln‖u‖
2
2 ≤ ln

4
]

J(t) ≤ ln
4
]

E(t) 

≤ ln
4
]

E(0) ≤ ln
ekπ
]

 .

(187)

Taking σ satisfies

max e
− 3/2

,

���

kπ
]


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≤ σ ≤

����

2kπ
]



. (188)

(So (61) is satisfied), and we guarantee

1 + 2 ln σ − ln ‖u‖
2 ≥ 0, (189)

twhich completes the proof of (176). To prove F(t) ∼ E(t),
we show that there exist two positive constants κ1 and κ2
such that

κ1E(t)≤F(t)≤ κ2E(t). (190)

From (i) of Lemmas 11–13, (140), (133), and (134), we get
κ> 0 depending on ε1, a, l, cs, E(0), k, and ξ such that

ε1ϕ(t) + ψ(t) + χ(t)


≤ κE(t). (191)

For a choice of M large enough such that κ1 � M − κ> 0
and κ2 � M + κ> 0, we get our result. By the proof of
/eorem 2 as given by Komornik [37], we consider the
following partition of Ω:

Ω1 � x ∈ Ω: ut


≤ ε ,

Ω2 � x ∈ Ω: ut


> ε .

(192)

We use Young’s inequality (with p � q � 2), (22), and
Lemma 6, and we have
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ug1 ut( 
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2
+

1
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2

≤ δC
2
s ‖∇u‖

2
+

1
4δ

+ 1  
Ω1

H
− 1

utg1 ut( ( dx + c2
Ω2

utg1 ut( dx 

≤
2δC2

s

a
E(t) + cδ

Ω1
H

− 1
utg1 ut( ( dx − CδE′(t).

(193)

Similarly and by application of (17), we obtain


Ω

ug2(z(x, 1, t))


dx + g2(z(x, 1, t))
����

����
2 ≤ δC

2
s ‖∇u‖

2

+
1
4δ

+ 1 c3
Ω

z(x, 1, t)g2(z(x, 1, t))dx

≤
2δC2

s

a
E(t) − Cδ′E′(t).

(194)

Combining (193) and (194), (176) becomes

F′(t)≤ − m −
4δCs

a
 E(t) − C

′′
δE′(t) + cδ

Ω1
H

− 1
utg1 ut( ( dx,

(195)

where C′
′
δ � Cδ′ + Cδ. Now, for δ small enough such that

d � m − (4δCs/a)> 0, the function L(t) � F(t) + C′
′
δE(t)

satisfies

L′(t)≤ − dE(t) + c
Ω1

H
− 1

utg1 ut( ( dx, (196)

L(t) ∼ E(t). (197)

□
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Case 1. H is linear on [0, ε]; using (16) and Lemma 6, we
deduce that

L′(t)≤ − dE(t) − cE′(t). (198)

/us, R � L + cE ∼ E satisfies

R(t)≤R(0)e
− c′t

. (199)

Hence,

E(t)≤C(E(0))e
− c′t

. (200)

Case 2. H is nonlinear on [0, ε]; so we exploit Jensen’s
inequality (see [2]) and the concavity of H− 1 to obtain

H
− 1 1
Ω1




Ω1

utg1 ut( dx ≥ c
Ω1

H
− 1

utg1 ut( ( dx.

(201)

/en, (196) becomes

L′(t)≤ − dE(t) + H
− 1 1
Ω1




Ω1

utg1 ut( dx . (202)

For ε0 < ε and w0 > 0, we define L0 by

L0(t) � H′ ε0
E(t)

E(0)
 L(t) + w0E(t). (203)

/en, we easily see that for b1, b2 > 0,

b1L0(t)≤E(t)≤ b2L0(t). (204)

By recalling that E′ ≤ 0, H′ > 0, andH′′ > 0 on (0, ε] and
using (202), we obtain

L0′(t) � ε0
E′(t)

E(0)
H′′ ε0

E(t)

E(0)
 L(t) + H′ ε0

E(t)

E(0)
 L′(t) + w0E′(t)

≤ − dE(t)H′ ε0
E(t)

E(0)
  + cH′ ε0

E(t)

E(0)
 H

− 1 1
Ω1




Ω1

utg1 ut( dx  + w0E′(t).

(205)

Using Remark 1 with H∗, the convex conjugate of H in
the sense of Young, we obtain

L0′(t)≤ − dE(t)H′ ε0
E(t)

E(0)
  + cH

∗
H′ ε0

E(t)

E(0)
  

L0′(t)≤ − dE(t)H′ ε0
E(t)

E(0)
  + cH

∗
H′ ε0

E(t)

E(0)
  

≤ − dE(t)H′ ε0
E(t)

E(0)
  + cε0

E(t)

E(0)
H′ ε0

E(t)

E(0)
 

− w1E′(t) + w0E′(t),

(206)

where w1 is a positive constant depending of Ω1 and α2 . By
taking ε0 small enough such that dE(0) − cε0 > 0 and
w0 >w1, we obtain

L0′ (t)≤ − w
E(t)

E(0)
H′ ε0

E(t)

E(0)
  � − wH2

E(t)

E(0)
 , (207)

where H2(t) � tH′(ε0t) a positive increasing function on
(0, 1]. By setting L1(t) � (b1L0(t)/E(0)), we easily see that,
by (204), we have

L1(t) ∼ E(t). (208)

Using (207), we arrive at

L1′ (t)≤ − w1H2 L1(t)( . (209)

By recalling (28), we deduce

L1′ (t)≤w1
1

H1′ L1(t)( 
, (210)

which gives

H1 L1(t)(  ′ ≤w1. (211)

A simple integration leads to

H1 L1(t)( ≤w1t + H1 L1(0)( . (212)

Consequently,

L1(t)≤H
− 1
1 w1t + w2( . (213)

Using (208) and (213), we obtain (27). /e proof is
completed.
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*is paper proposes a new no-equilibrium chaotic system that has the ability to yield infinitely many coexisting hidden attractors.
Dynamic behaviors of the system with respect to the parameters and initial conditions are numerically studied. It shows that the
system has chaotic, quasiperiodic, and periodic motions for different parameters and coexists with a large number of hidden
attractors for different initial conditions. *e circuit and microcontroller implementations of the system are given for illustrating
its physical meaning. Also, the synchronization conditions of the system are established based on the adaptive control method.

1. Introduction

Encouraging progress has been made on chaos in the past
few decades. An important change is to recognize the great
application potential of chaos in engineering. Nowadays,
chaos generation has become an important research issue
arousing constant concern. Inspired by the well-known
Lorenz system [1], many different chaotic systems have
been created [2–7]. *ere are two interesting directions in
generating new chaotic systems. One is to discover chaos in
nonlinear systems with very simple mathematical models.
*e most representative work was made by Sprott who
established nineteen polynomial chaotic systems with ei-
ther five terms and two nonlinear terms or six terms and
one nonlinear term [8]. *e other is to construct chaotic
systems with special strange attractors including butterfly
attractor, multiscroll attractor, multiwing attractor, hidden
attractor, and coexisting attractors [9–14]. *e number and
type of equilibria play a decisive role in the dynamic
properties of chaotic system to some extent. A classic ar-
gument is that a dynamic system with one saddle focus
connected by homoclinic orbit or two saddle foci con-
nected by heteroclinic orbit generates horseshoe chaos [15].
It is generally recognized that no equilibrium chaotic

system may generate hidden attractor. Also, a lot of pre-
vious studies have shown that chaotic systems with mul-
tiple unstable equilibria usually have richer dynamic
behaviors and are more likely to produce coexisting
attractors. *erefore, many scholars tend to construct
chaotic systems and distinguish their dynamic properties
by configuring different quantities and types of equilibria.
Chaotic systems with no equilibrium, one stable equilib-
rium, one unstable node, two saddle foci, circular equi-
libria, a line equilibria, and other types of equilibria have
been reported [16–19].

Recently, the study of coexisting attractors and hidden
attractors in chaotic systems has aroused great enthusiasm
among scholars. Li et al. studied the coexisting attractors in
Lorenz systems by some numerical experiments and pro-
posed the conditional symmetry method to yield any
number of coexisting attractors [20, 21]. Kengne et al. put
forward some simple jerk systems with coexisting attractors
[22]. Lai et al. introduced some effective methods to con-
struct chaotic systems with infinitely many coexisting
strange attractors [23, 24]. Li et al. designed a programmable
chaotic circuit with infinitely many chaotic attractors and
established the coexistence of multiple attractors by simu-
lation methods [25]. Bao et al. found that memristor-based
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chaotic systems can generate different types of coexisting
attractors [26, 27]. Li et al. studied the coexisting
attractors in memristor-based chaotic circuit in depth and
considered its application in image encryption [28, 29].
Wei et al. studied the nonstationary chimeras in Hind-
marsh–Rose neuronal network and found that the net-
work coexists with periodic and chaotic states [30]. *e
history of studying the hidden attractors in dynamical
systems without equilibria dates back to the well-known
Sommerfeld effect, arising from feedback in the energy
exchange between vibrating systems [31]. *e electro-
mechanical and drilling systems without equilibria have
the ability to yield multiple hidden attractors [32, 33]. It is
very interesting to generate as many hidden attractors as
possible in chaotic system via some periodic functions
which can continuously replicate the attractors in phase
space. *e attractors produced by this method usually
have the same properties. Another interesting question is
how many nontrivial attractors can be coexist in phase
space of nonlinear system, which corresponds to a chaotic
generalization [34] of the second part of Hilbert’s 16th
problem. Recently, the study of hidden attractors in
chaotic systems has received increasing concern. Wei et al.
generated an extended Rikitake system with hidden
attractors [35] and investigated the hidden hyperchaos of
five-dimensional self-exciting homopolar disc dynamo via
analytical and numerical approaches [36]. Pham et al. did
many important works on hidden attractors and first
showed different families of hidden attractors in chaotic
systems [37, 38]. Danca et al. discovered the hidden
attractors of the classic Rabinovich–Fabrikant system
[39]. Hidden attractor that refers to attractor whose basin
of attraction does not intersect with small neighborhoods
of equilibria [40] embodies some mysterious unknown
dynamic behaviors of the system. *e phenomenon of
coexisting attractors that corresponds to the generation of
multiple attractors with independent basins of attractions
implies the strong influence of initial conditions on the
final state of system. Both hidden attractors and coexisting
attractors are interesting nonlinear dynamics worthy of
further study. *e construction of simple no-equilibrium
chaotic system with an infinite number of hidden
attractors is an interesting and challenging thing. It will be
of great significance to reveal the complex behaviors of
simple systems. However, most existing systems can
generate a limited number of attractors. So this paper aims
to present a new autonomous chaotic system with infi-
nitely many coexisting hidden attractors from the per-
spective of building complex behavior of simple system.
Necessary theoretical and experimental researches are
given to illustrate the dynamic properties of the proposed
system. *e circuit and microcontroller implementations
and synchronization control of the system are studied.*e
paper is organized as follows. Section 2 derives the model
of the new system. Section 3 presents the coexisting
hidden attractors of the system. Section 4 implements the
system for physically illustrating its dynamics. Section 5
considers its synchronization problem. Section 6 sum-
marizes the conclusions.

2. New Chaotic System

Looking back, an augmented Sprott B system is described by
the following differential equations [41]:

_x1 � a x2 − x1( ,

_x2 � x1x3 + x4,

_x3 � b − x1x2,

_x4 � − cx2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x1, x2, x3, and x4 are state variables and a, b, and c are
parameters. *e previous study has shown that system (1)
has no equilibrium and coexists with two symmetric strange
attractors. Replacing the nonlinear term x1x3 of system (1)
with kx1 sin(x3) (k> 0 is a real number), then the following
new chaotic system is established:

_x1 � a x2 − x1( ,

_x2 � kx1 sin x3(  + x4,

_x3 � b − x1x2,

_x4 � − cx2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

System (2) and system (1) have some similar properties
including the following: (i) they have no equilibrium because
there exists no point that satisfies _x1 � _x2 � _x3 � _x4 � 0; (ii)
they are dissipative with the divergence ∇V � z _x1/zx1 +

z _x2/zx2 + z _x3/zx3 + z _x4/zx4 � − a< 0 for a> 0; (iii) they
have the symmetry under the transformation (x1, x2,

x3, x4)⟶ (− x1, − x2, x3, − x4); and (iv) they have hidden
attractors whose basins of attraction do not intersect with
small neighborhoods of any equilibria. However, the re-
markable difference between them is that system (2) can
generate infinitely many coexisting hidden attractors while
system (1) only generates no more than three attractors for
given parameters. Also, to our best knowledge, system (2)
has never been reported before. *us, system (2) can be
classified as a new chaotic system. *e following section will
give an intuitive observation of the dynamic properties of
system (2).

3. Coexisting Hidden Attractors

Here, we will investigate the influence of the parameters and
initial conditions on the dynamic behaviors of system (2) by
simulation experiments, emphasizing the existence of infi-
nitely many hidden chaotic and periodic attractors in system
(2). We apply the well-known fourth-fifth-order Run-
ge–Kutta method to numerically solved system (2) on
Matlab platform. All the simulation results are obtained by
fixing the step size Δt � 0.01 and time region t ∈ [0, 300].
*e Lyapunov exponents are calculated along the trajecto-
ries of system (2) by using the Wolf method [42]. We also
can further consider the Lyapunov exponents by using the
method proposed in literature [43]. Here, the Lyapunov
exponents are used to distinguish the chaotic, periodic, and
stable states of system (2). So, we use the conventional
method to calculate them. *ere is no doubt that a system
with the positive largest Lyapunov exponent cannot be
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judged to be chaotic directly. It also requires that the system
is bounded. However, it is difficult to quantitatively establish
the boundedness of the system by using the analytical
method. In our simulations, we try many experiments to
demonstrate the boundedness of system (2). It shows that all
the state variables remain in a bounded range for a long
enough time in our simulations, which partially implies the
boundedness of system (2). Actually, the dissipativity of
system (2) for a> 0 can partially determine its boundedness.
Also, the literature [44] gives an interesting work corre-
sponding to a new idea on the boundedness of chaotic
systems.

Firstly, we study the dynamic evolution of system (2)
with respect to the parameters. It is easy to generate the
bifurcation diagram and Lyapunov exponents of system (2)
for the parameters a ∈ [4, 20], b � c � 1, and k � 12 and
initial value (1, 1, 1, 1). From Figure 1, we get that system (2)
makes chaotic, quasiperiodic, and periodic motions for
different values of a. When a � 4, system (2) has a strange
attractor shown in Figure 2. *e positive maximum Lya-
punov exponent L1 ≈ 0.4456 and fractal Lyapunov dimen-
sion DL ≈ 3.0996 imply the chaotic feature of the attractor.
When a � 12, system (2) performs quasiperiodic motion as
its first two Lyapunov exponents L1 � L2 ≈ 0. *e phase
portraits of the quasiperiodic attractor are given in Figure 3.
When a � 20, system (2) performs periodic motion as il-
lustrated in Figure 4.

We also can illustrate the dynamic evolution of system
(2) corresponding to the parameters a � 4, b � 1, c ∈ [1, 12],
and k � 12 and initial value (1, 1, 1, 1) via the bifurcation
diagram and Lyapunov exponents in Figure 5. It indicates
that the chaotic, quasiperiodic, and periodic motions will
generate with the variation of c. Figure 6 shows the chaotic
and quasiperiodic motions of system (2) with c � 6, 12.

Secondly, we will consider the influence of initial value
on the final state of system (2). Let the parameters a � 4,
b � c � 1, and k � 12 and initial value x0 � (x10, x20, x30,

x40) with x10 � x20 � x40 � 1; then we can plot the bifur-
cation diagram and Lyapunov exponents of system (2) for
x30 ∈ [0, 35], as given in Figure 7. It is easy to know that
system (2) coexists with six chaotic attractors for
x30 ∈ [0, 35] from Figure 7. We can obtain the attractors by
plotting the phase portraits of system (2) from initial values
(1, 1, 2jπ, 1), j � 0, 1, 2, , 3, 4, 5. As shown in Figure 8, the
attractors are generated along the x3-axis and all these
attractors have the same nature. Also, the coexisting qua-
siperiodic (or periodic) attractors can be obtained in system
(2) by fixing a � 12, b � c � 1, and k � 12 (or a � 20,
b � c � 1, and k � 12). Figure 9 shows six quasiperiodic (or
periodic) attractors of system (2) yielded from initial values
(1, 1, 2jπ, 1), j � 0, 1, 2, 3, 4, 5. As a matter of fact, system (2)
has the ability to generate infinitely many hidden attractors
from initial values (1, 1, 2jπ, 1), j � 0, ±1, ±2, . . . , ±n
along the x3-axis.

4. Circuit and Microcontroller Realization

From the theoretical study presented above, it is predicted
that system (2) exhibits a plethora of interesting dynamic

behaviors for suitable sets of parameters and initial condi-
tions. *e goal of this section is to investigate the practical
implementation of system (2). *e corresponding circuit in
Figure 10 is designed using commercially available off-the-
shelf electronic components, operational amplifiers, and
analog multipliers AD633 integrated circuits, all powered
by ±18V symmetric voltages.

*e state variables x1, x2, x3, and x4 are emulated by
output signals of integrators. Using the basic electrical
circuit’s laws, system (2) can be rewritten as

x1 �
R4

R1

1
RC1


R

R2
x2 −

R

R1
x1 dt,

x2 �
R8

R7

1
RC2


R

R5
x1 sin x3(  −

R

R6
x4 dt,

x3 �
R12

R11

1
RC3


R

R10
Vb −

R

R9
x1x2 dt,

x4 �
1

RC4


R

R13
x2 dt.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

By taking C1 � C2 � C3 � C4 � C, R6 � R9 � R10 � R,
R3 � R4 � R7 � R8 � R11 � R12 � 10 kΩ, and R1 � R2 � Ra,
we have the parameters a � R/Ra, k � R/R5, b � Vb, and c �

R/R13 and the time scaling factor τ � t/RC. From this point,
it is easy to demonstrate that the differentiation of system (3)
is equivalent to the original system (2). Let C � 10 nF,
R � 100 kΩ, Ra � 25 kΩ, R5 � 8.3333 kΩ, R13 � 100 kΩ, and
Vb � 1V; a chaotic behavior is observed in Figure 11. Pe-
riodic and quasiperiodic orbits are also noticed from the
analog circuit; see Figure 12. Other cases of chaotic and
quasiperiodic behaviors are also observed from the analog
circuit, as illustrated in Figures 13 and 14.

Up to five coexisting chaotic attractors, five coexisting
limit cycles, and five coexisting quasiperiodic orbits are
noticed for the initial voltage of the capacitor C3 successively
fixed as (1, 1, − 6π), (1, 1, − 4π), (1, 1, − 2π), (1, 1, 0),
(1, 1, 2π), and (1, 1, 4π) as illustrated in Figure 15.

Next, we will present the microcontroller-based imple-
mentation of system (2) by using an Arduino Mega 2650
board. It is a low-cost open-source and easy-to-use elec-
tronic board based on the ATMEGA2560 microcontroller.
*e designed system is simulated and realized using the
scheme on Figure 16. *e digital outputs of the micro-
controller board are connected to two R-2R ladders acting
here as Digital-to-Analog Converters (DAC). *e converted
analog signals corresponding to the state variables of system
(2) are simultaneously visualized on an oscilloscope and a
computer through a low-cost data acquisition module. *e
program is written in such a way that the magnitude of the
output signals can be adjusted within the voltage range
0 − 5V. Figure 17 shows the practical setup of the experi-
ment on the microcontroller-based implementation of
system (2).
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Figure 1: Bifurcation diagram and Lyapunov exponent of system (2) versus a ∈ [4, 20] from initial value (1, 1, 1, 1), where L1 > L2 >L3 >L4
are Lyapunov exponents of system (2) and L4 is always less than − 4.
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Figure 2: Chaotic attractor of system (2) with a � 4, b � c � 1, and k � 12: (a) x3 − x2 − x1; (b) x2 − x3 − x4; (c) x1 − x3; (d) x2 − x4.
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*e phase portraits and time series obtained from the
microcontroller-based implementation of system (2) con-
firm all the predicted dynamic behaviors. Chaotic, periodic,
and quasiperiodic motions are all observed as illustrated in
Figure 18. Other cases of chaotic and quasiperiodic motions
are also observed for appropriated sets of parameters, as
illustrated in Figure 19.

*e phase portraits obtained from the microcontroller-
based implementation, the analog circuit, and the numerical
study are all in accordance.*e new chaotic system is able to
generate a multitude of coexisting attractors under various
types of dynamic behaviors.

5. Synchronization Control

In various chaos-based technological applications like secure
communication or cryptography, synchronization is needed
between a master system (sender) and a slave system (re-
ceiver). *e practical realization of such mechanisms is
subject to many challenges. In electronic implementations,
the ageing, the temperature effects, the electromagnetic
activity of the environment, and the nonideal behavior of the
channel are some of the various factors which can induce
huge errors and undesirable consequences. *is is why it is
important to design an adaptive synchronization scheme for
chaotic system with unknown parameters. *e adaptive

synchronization of chaotic system has important practical
significance. It extends the engineering applications of
chaotic system and shows the ability of chaotic system to
change its own characteristics or use the external control
input to achieve synchronization when the information of
the system and environment has some uncertainty. Among
the several synchronization techniques, the adaptive method
appears to be one of the most interesting because of its
robustness and its simplicity of implementation. It has
proved to be an effective method to synchronize the chaotic
system with unknown parameters [45, 46]. In many practical
systems, the parameters of systems are probably unknown or
change from time to time. For such systems, the adaptive
control is a better choice to realize the synchronization. Also,
the adaptive control can be used in combination with other
control methods. In addition, no prior knowledge of pa-
rameters is needed for master system and slave system to be
synchronized [47, 48]. Because of these advantages, the
adaptive control is widely accepted in academic circles and
its application on synchronization has been reported by
many scholars [49, 50]. *is section will consider the
adaptive synchronization problem of system (2). *e result
is based on the Lyapunov stability theory. All the parameters
of the master system are accessible to measurements and
those of the slave system are unknown. Consider the fol-
lowing master system:
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Figure 3: Quasiperiodic motion of system (2) with a � 12, b � c � 1, and k � 12: (a) x3 − x2 − x1; (b) x2 − x3 − x4; (c) x1 − x3; (d) x2 − x4.
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Figure 4: Periodic motion of system (2) with a � 20, b � c � 1, and k � 12: (a) x3 − x2 − x1; (b) x2 − x3 − x4; (c) x1 − x3; (d) x2 − x4.
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Figure 5: Bifurcation diagram and Lyapunov exponents of system (2) versus c ∈ [1, 12] from initial value (1, 1, 1, 1), where L1 > L2 >L3 >L4
are Lyapunov exponents of system (2) and L4 is always less than − 4.
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Figure 6: Chaotic and quasiperiodic motions of system (2) with a � 4 and b � 1: (a, b) c � 6; (c, d) c � 12.
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Figure 7: Bifurcation diagram and Lyapunov exponent of system (2) with a � 4, b � c � 1, k � 12, and x30 ∈ [0, 35], where L1 > L2 >L3 >L4
are Lyapunov exponents of system (2) and L4 is always less than − 4.
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_x1 � a x2 − x1( ,

_x2 � kx1 sin x3(  + x4,

_x3 � b − x1x2,

_x4 � − cx2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

and the slave system is given by
_y1 � a y2 − y1(  + u1,

_y2 � ky1 sin y3(  + y4 + u2,

_y3 � b − y1y2 + u3,

_y4 � − cy2 + u4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where u � (u1, u2, u3, u4)
T is the adaptive control law to be

designed. *e parameters of the slave system are all un-
known and the design goal is to find the control feedback law

−10
0

10
20

30
40

−10
−5

0
5

10
−6

−4

−2

0

2

4

x2 x3

x1

(a)

−4 −3 −2 −1 0 1 2 3 4
−5

0

5

10

15

20

25

30

35

x3

x1

(b)

Figure 8: Coexisting six hidden strange attractors of system (2) with a � 4, b � c � 1, and k � 12 and initial values (1, 1, 2jπ, 1),
j � 0, 1, 2, 3, 4, 5.
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Figure 9: Coexisting six hidden attractors of system (2) from initial values (1, 1, 2jπ, 1), j � 0, 1, 2, 3, 4, 5. (a) Quasiperiodic attractors for
a � 12, b � c � 1, and k � 12. (b) Periodic attractors for a � 20, b � c � 1, and k � 12.
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Figure 11: A chaotic attractor of system (2) obtained from the analog circuit for Ra � 25 kΩ, R5 � 8.3333 kΩ, R13 � 100 kΩ, and Vb � 1V:
(a)x1 − x3; (b)x2 − x4.

–4.0V 3.0V–3.0V 2.0V–2.0V –1.0V 1.0V0.0V

1.2V

0.8V

0.4V

–0.0V

–0.4V

–0.8V

–1.2V

V(X1)

V(X3)

(a)

–5.0V –4.0V 4.0V–2.0V 2.0V0V

–4.6V

–5.0V

–5.5V

–6.0V

–6.5V

–6.9V

V(X2)

V(X4)

(b)

–5.0V –4.0V 4.0V 5.0V–2.0V 2.0V0V

1.3V

1.0V

0.5V

–0.0V

–0.5V

–1.0V

–1.3V

V(X1)

V(X3)

(c)

–5.0V –4.0V 4.0V 5.0V–2.0V 2.0V0V

–4.0V

–4.5V

–5.0V

–5.5V

–6.0V

–6.5V

–7.0V

V(X2)

V(X4)

(d)

Figure 12: Quasiperiodic motion observed for Ra � 10 kΩ, R5 � 8.3333 kΩ, R13 � 100 kΩ, and Vb � 1V: (a)x1 − x3; (b)x2 − x4. Periodic
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u to eliminate the error between the master system and
the slave system. *e synchronization error is defined as
follows:

e1 � y1 − x1,

e2 � y2 − x2,

e3 � y3 − x3,

e4 � y4 − x4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

*e corresponding error system is written as

_e1 � a e2 − e1(  + u1,

_e2 � k y1 sin y3(  − x1 sin x3( (  + e4 + u2,

_e3 � x1x2 − y1y2 + u3,

_e4 � − ce2 + u4.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Give the adaptive feedback control laws as follows:
u1 � − a(t) e2 − e1(  − g1e1,

u2 � − k(t) y1 sin y3(  − x1 sin x3( (  − e4 − g2e2,

u3 � − x1x2 + y1y2 − g3e3,

u4 � c(t)e2 − g4e4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)
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Figure 13: Chaotic behavior of system (2) observed for Ra � 25 kΩ, R5 � 8.3333 kΩ, R13 � 8.333 kΩ, and Vb � 0.8V: (a)x1 − x3; (b)x2 − x4.
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Figure 14: Periodic orbit observed from the analog circuit of the novel system for Ra � 25 kΩ, R5 � 8.33334 kΩ, R13 � 16.6667 kΩ, and
Vb � 0.8V: (a)x1 − x3; (b)x2 − x4.
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Figure 16: Scheme of the experiment on microcontroller-based implementation of system (2).
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where g1, g2, g3, and g4 are positive gain constants. By
substituting the control laws u1, u2, u3, and u4 into system
(7), we get

_e1 � (a − a(t)) e2 − e1(  − g1e1,

_e2 � (k − k(t)) y1 sin y3(  − x1 sin x3( (  − g2e2,

_e3 � − g3e3,

_e4 � − (c − c(t))e2 − g4e4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

*e errors in system (9) can be simplified by taking the
parameter estimation errors as

ea(t) � a − a(t),

eb(t) � b − b(t),

ec(t) � c − c(t),

ek(t) � k − k(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

It follows that

_ea � − a(t),

_eb � − b(t),

_ec � − c(t),

_ek � − k(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

*us, system (9) can be rewritten as
_e1 � ea e2 − e1(  − k1e1,

_e2 � ek y1 sin y3(  − x1 sin x3( (  − k2e2,

_e3 � − k3e3,

_e4 � − ece2 − k4e4.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

Next we will establish the synchronization conditions by
using the Lyapunov function. Consider the Lyapunov
function

(a) (b) (c)

(d) (e) (f )

Figure 18: Experimental phase portraits from the microcontroller-based implementation of system (2): (a, b) projections on x1 − x3 and
x2 − x4 planes for chaotic attractor; (c, d) projections on x1 − x3 and x2 − x4 planes for quasiperiodic attractor; (e, f ) projections on x1 − x3
and x2 − x4 planes for periodic attractor.

Figure 17: Practical setup for the experiment on the microcontroller-based on the implementation of system (2).
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Figure 19: Chaotic and quasiperiodic attractors from the microcontroller-based implementation of system (2).
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Figure 20: Continued.
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V �
1
2

e
2
1 + e

2
2 + e

2
3 + e

2
4 + e

2
a + e

2
b + e

2
c + e

2
k . (13)

Differentiating V along the trajectories, we have

_V � − g1e
2
1 − g2e

2
2 − g3e

2
3 − g4e

2
4 + ea e1 e2 − e1(  − _a 

− eb
_b − ec e2e4 + _c  + ek e2 y1 sin y3(  − x1 sin x3( (  −

_k .

(14)
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Figure 21: Time evolution of the synchronization errors e1, e2, e3, and e4 and the parameter estimation errors ea, eb, ec, and ek directly after
the activation of the adaptive control law.
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Figure 20: Time series x1(τ), x2(τ), x3(τ), and x4(τ) of master and slave systems showing the result of the adaptive law activated at τ � 60.
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Here, the parameter update laws are
_a � e1 e2 − e1(  + g5ea,

_b � g6eb,

_c � − e2e4 + g7ec,

_k � e2 y1 sin y3(  − x1 sin x3( (  + g8ek,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

with positive gain constants g5, g6, g7, and g8. By
substituting the parameter update law (15) into (14), we have

_V � − g1e
2
1 − g2e

2
2 − g3e

2
3 − g4e

2
4 − g5e

2
a − g6e

2
b − g7e

2
c − g8e

2
k.

(16)

Based on the Lyapunov stability theory, we can derive
that the synchronization errors e1, e2, e3, and e4 and the
parameter estimation errors ea, eb, ec, and ek globally and
exponentially converge to zero with time increasing. *us,
we obtained the following theorem.

Theorem 1. .e systems in (4) and (5) with unknown pa-
rameters are globally and exponentially synchronized for all
initial conditions by the adaptive feedback control law (8) and
the parameter update law (15), where gi, (i � 1, 2, . . . , 8) are
positive constants. .e parameter estimation errors ea, eb, ec,
and ek globally and exponentially converge to zero with time.

Next, we will verify the effectiveness of *eorem 1 via
numerical simulation. Suppose the parameters a � 6, b � 1,

c � 1, and k � 12 of system (4) and system (5). *e systems
are integrated via the fourth order Runge–Kutta method
from 0 to 100 with a time stepΔt � 0.001.*e control law (8)
is exactly applied at τ � 60. Initial values are randomly taken
as (1, 1, 0, 1) for system (4) and (4, 4, 0, 4) for system (5).*e
initial values of parameters are selected randomly as
a(0) � 8, b(0) � 2, c(0) � 2, and k(0) � 6.*e time series of
signals from the master and slave systems are shown in
Figure 19. *e synchronization errors and the parameters
estimations are also presented in Figure 20. From the nu-
merical simulations, one can see that the adaptive syn-
chronization between master system (4) and slave system (5)
is successfully achieved and the error signals asymptotically
approach zero. *e time evolution of the synchronization
errors and the parameter estimation errors is presented in
Figure 21. As one can see, after the activation of the control
law, the errors all converge to zero, showing that the pa-
rameters meet the instructed value and the master and slave
systems exhibit the same dynamic behavior.

6. Conclusions

*is paper focuses on the dynamic analysis, circuit, and
microcontroller realization and synchronization control of a
new chaotic system with infinite many coexisting hidden
attractors. *e system generated from an augmented Sprott
B system has no equilibrium. Its distinct feature is that it can
generate any number of hidden attractors for selecting
different initial values. Also, it exhibits chaotic, periodic, and
quasiperiodic motion with the variation of parameters. *e

circuit and microcontroller realization is given for illus-
trating the dynamic behaviors of the system. Moreover, the
adaptive synchronization conditions of the system are
theoretically and numerically established.
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