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The present special issue of Shock and Vibration journal
includes six papers presenting studies conducted in various
fields of vibration. Papers were selected among those pre-
sented at the Fifth International Conference on Advances
in Mechanical Engineering and Mechanics 2010 (ICAMEM
2010) held on December 18–20, 2010, in Hammamet, Tunisia.
All papers were reviewed by distinguished reviewers accord-
ing to the journal’s procedures and standards. Among the vast
number of papers that were presented at the conference, the
following studies were selected for this special issue.

Samaali et al. study the response of a capacitive
MEMS switch composed of two clamped-clamped flexible
microbeams. An electrostatic force is applied between the
microbeams to yield the switch to its ON and OFF states.
The equations of motion of the system and the associated
boundary conditions are derived and the static and dynamic
problems are solved using the differential quadratic method.
The obtained analytical results are validated using numer-
ical finite element results. The transient behavior of the
microswitch was then investigated, indicating a reduction in
actuation voltage, switching time, and power consumption
while maintaining a relatively good RF performance.

Jemai et al. develop a mathematical model that accurately
simulates the dynamic behavior of active fiber composites
(AFC). These composites are known for their flexibility and
relatively high actuation capacity compared with traditional
ceramic piezoelectric materials.The AFC’s energy harvesting
capabilities, however, are low. The model uses homogeniza-
tion techniques to describe piezoelectric properties of the
AFC. The developed model is incorporated into a vibration-
based energy harvesting system consisting on a cantilever

beam on top of which an AFC patch is attached. Analytical
solutions of the dynamic behavior and the harvested voltage
are proposed and validated with finite element simulations.

Gafsi et al. propose a new passive control strategy for
the vibration confinement in a flexible nonlinear beam by
considering an inverse eigenvalue problem. The strategy
consists of determining the geometric parameters of a beam
to yield a desired set of mode shapes and natural frequencies.
The beam dynamics is described by a nonlinear partial
differential equation that is linearized.The authors show that,
using the linear model, the strategy of vibration confinement
remains valid for the nonlinear beam. They also show that
having higher amplitude on a larger frequency interval in
conjunction with significant level of vibration confinement
on a smaller region of the spatial domain presents an efficient
design for energy harvesting.

El Ouni and Ben Kahla investigate numerically the active
tendon control of a cable-stayed bridge in a construction
phase. A linear finite elementmodel of a small-scalemock-up
of the bridge is first developed, coupled with a geometrically
nonlinear model for the cable. Active damping is added to
the structure by using pairs of collocated force actuator-
displacement sensors located on each active cable and con-
trolled by decentralized first order positive position feedback
(PPF) or direct velocity feedback (DVF). A decentralized
parallel PPF-DVF is proposed to obtain the best performance
from the two compensators. The authors show that the
proposed strategy can be used to control both deck and cable
vibrations induced by parametric excitation.

Jiang et al. propose a methodology for fault diagno-
sis of rotating machinery based on vibration multisensor
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information fusion. Three case studies are used to show the
effectiveness of the proposed methodology, namely, diagnos-
tic of faulty gear, rolling bearing, and identification of rotor
crack. For each case study, the sensibilities of the features are
analyzed.The obtained results indicate that the peak factor is
the most sensitive feature for identifying gear defect, among
the twelve time-domain features that are considered. The
mean, amplitude squared, root mean square, root amplitude,
and standard deviation are all suitable for identifying gear,
rolling bearing, and rotor crack defect on a comparative basis.

In identifying the modal signature of structures based
on output-only measurements, several algorithms have been
developed over the years among which is the family of
stochastic subspace identification techniques known for their
robustness and convergence. For large-scale structures, the
selection of the model order and the corresponding system
poles is often challenging. To address this problem, the
concept of the “stabilization diagram” is introduced. The
problem with these diagrams is that the resulting spurious
modes need to be eliminated. Mrabet et al. suggest a new
stabilization criterion obtained through a novel numerical
implementation of the stabilization diagram.The new imple-
mentation makes the alignment of the stabilization diagram
more robust, so that only the spurious modes are removed.
The authors apply the new stabilization diagram and the
implemented identification technique to identify the modal
signature of an aircraft structure.

Sami El-Borgi
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The use of active-fiber composites (AFC) instead of traditional ceramic piezoelectric materials is motivated by flexibility and
relatively high actuation capacity. Nevertheless, their energy harvesting capabilities remain low. As a first step toward the
enhancement ofAFC’s performances, amathematicalmodel that accurately simulates the dynamic behavior of theAFC is proposed.
In fact, most of the modeling approaches found in the literature for AFC are based on finite element methods. In this work, we use
homogenization techniques to mathematically describe piezoelectric properties taking into consideration the composite structure
of the AFC. We model the interdigitated electrodes as a series of capacitances and current sources linked in parallel; then we
integrate these properties into the structural model of the AFC.The proposed model is incorporated into a vibration based energy
harvesting system consisting of a cantilever beam on top of which an AFC patch is attached. Finally, analytical solutions of the
dynamic behavior and the harvested voltage are proposed and validated with finite element simulations.

1. Introduction

Recently advances in smart microsensors and microelec-
tronics contributed to the development of devices with
reduced size and low energy consumption.This development
encouraged researchers to innovate in the field of energy
sources in order to overcome the use of batteries. Given
that the technological evolutions of batteries were relatively
slow during the last decade, use of piezoelectric devices as
energy harvesters (EHs) has progressively attracted attention
of researchers. Indeed, many studies indicate the feasibility
of using piezoelectric materials as power sources at different
scales [1–3].

Nevertheless, monolithic piezoelectric materials, and
specifically piezoelectric ceramics such as PZT, present sev-
eral integration difficulties to structures characterized by
curved shapes and large displacements [4]. Furthermore, due
to the brittle nature of PZT, monolithic energy harvesters
cannot take advantage of relatively large stroke vibrations due

to their small allowable deformations. Thus, Bent et al. [5]
developed a new piezoelectric composite known as active-
fiber composite (AFC) which consists of PZT fibers with
circular cross-section embedded into an epoxy matrix and
sandwiched between two sets of interdigitated electrodes
(IDE). A similar one, macrofiber composite (MFC), was also
developed at NASA Langley Research Center, where PZT
fiber has a square cross-section [6]. These particular designs,
and thanks to the IDE, use the higher 𝑑

33
mode for actuators

[7] as well as energy harvesters [4].
When used as energy generators, piezocomposites with

IDE are still far from fulfilling the power consumption
requirements of most portable electronics, at present. In
fact, several researches showed limitation for their use for
energy harvesting applications [8, 9]. In order to improve
the performance of piezocomposites used as EH or actuator,
several studies were conducted to redesign AFC andMFC by
studying their behavior through simulations. Unfortunately,
most of the proposedmodels are based onFE analysis because
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of the complexity of the piezocomposite structure and the
presence of IDE which complicates the electric field solution
[10, 11]. Few analyticalmodels have been also reported onEHs
using IDE. Two approaches are proposed in the literature.The
first approach consists in studying a representative volume
element (RVE) of the piezocomposite by benefiting from the
periodicity of the material’s microstructure. Den Otter [12]
determined a polynomial analytic expression of the electric
field and the capacitance in piezocomposite with IDEs. Later,
Lloyd [13] determined an analytic solution of the electric
field and potential distribution using complex analysis based
on the Schwarz-Christoffel’s method. Schaur and Jakoby [14]
presented amore efficient and versatile semianalytical model,
which yields approximate expressions for the capacitance of
IDEs by integrating the electrode’s thickness and the covering
layer. The second approach consists in taking into account
the whole microstructure of the piezocomposite. Erturk et al.
[15] investigated the MFC configuration for EH by deriv-
ing a distributed-parameter electromechanical model. They
assumed an empirical model of the electric field distribution
in order to handle the nonuniform field. Using a quasistatic
analysis, Mo et al. [16] developed an analytical model for an
IDE energy harvester with monolithic piezoelectric material
assuming constant and unidirectional electric field. Later,
Knight et al. [17] developed an optimization of the IDE EH
based on analytical modeling developed by Mo et al. [16].

In this paper, we seek a parameterized mathematical
model, of an AFCmicrostructure, to be solved analytically in
order to estimate the amount of electrical voltage that could

be generated by the system when excited under harmonic
transversal displacement.

2. Homogenization of Piezoelectric
Fiber Composite

The first step toward the derivation of a mathematical
model of the proposed AFC based energy harvester (EH)
is to estimate the global effective physical properties of the
unidirectional (1–3 periodic) piezoelectric fiber composite by
homogenizing its internalmicrostructure in order to facilitate
its integration into the equation ofmotion of the EH.The pie-
zocomposite under study is formed by a transversely isotropic
material (PZT-5A) embedded into an isotropic Epoxy matrix
(see Table 1). Hence, the resulting composite is a transversely
isotropic piezoelectric material too (Figure 1(a)).

Thus, the associated linear constitutive equations may be
written as

Σ = EΞ, (1)

where in matrix form and using Voigt notation

Σ
𝑡
= [𝜎
1

𝜎
2

𝜎
3

𝜎
4

𝜎
5

𝜎
6

𝐷
1

𝐷
2

𝐷
3
] ,

Ξ
𝑡
= [𝜀
1

𝜀
2

𝜀
3

𝜀
4

𝜀
5

𝜀
6

−𝐸
1

−𝐸
2

−𝐸
3
]

(2)

and, for the IDE configuration, the electromechanical con-
stants matrix is given by

E =

(
(
(
(
(
(

(

𝐶
11

𝑒
𝐶
12

𝑒
𝐶
31

𝑒
0 0 0 0 0 𝑒

31

𝑒

𝐶
12

𝑒
𝐶
11

𝑒
𝐶
31

𝑒
0 0 0 0 0 𝑒

31

𝑒

𝐶
31

𝑒
𝐶
31

𝑒
𝐶
33

𝑒
0 0 0 0 0 𝑒

33

𝑒

0 0 0 𝐶
44

𝑒
0 0 0 𝑒

15

𝑒
0

0 0 0 0 𝐶
44

𝑒
0 𝑒

15

𝑒
0 0

0 0 0 0 0 𝐶
66

𝑒
0 0 0

0 0 0 0 𝑒
15

𝑒
0 −𝜖

11

𝑒
0 0

0 0 0 𝑒
15

𝑒
0 0 0 −𝜖

11

𝑒
0

𝑒
31

𝑒
𝑒
31

𝑒
𝑒
33

𝑒
0 0 0 0 0 −𝜖

33

𝑒

)
)
)
)
)
)

)

, (3)

where 𝜎
𝑖
, 𝐷
𝑖
, 𝜀
𝑖
, and 𝐸

𝑖
denote average values of the homog-

enized material for stress, electric displacement, strain,
and electric field components, respectively. 𝐶

𝑖𝑗

𝑒, 𝑒
𝑖𝑗

𝑒, and
𝜖
𝑖𝑗

𝑒 denote the effective coefficients of elastic stiffness and
piezoelectric and permittivity components at constant strain,
respectively.Themean value of an effective physical property,
bar notation, is defined as 𝑓 = (1/𝑉) ∫

𝑉
𝑓𝑑𝑉.

Various approaches were proposed in the literature
to calculate the homogenized parameters of a two-phase
piezocomposite using analytical and/or numerical homog-
enization techniques [18, 19]. In this paper, we use both
techniques to calculate the effective material coefficients of
the piezocomposite. The obtained values are compared to
each other for validation purposes. As an analytical approach,
we propose the use of the Mori-Tanaka method (MTM).
On the other hand, the finite element method (FEM),

with the commercial package ANSYS, will be used as a
numerical approach. In fact, several studies showed that these
approaches are suitable for piezocomposites with short and
long fibers [19, 20].

The use of the FEM as periodic homogenization tech-
nique consists of taking advantage of the periodicity of the
physical properties of the piezocomposite by reducing the
studied domain to a representative volume element (RVE)
that should faithfully emulate the behavior of the entire
piezocomposite. Here, the criterion for a good choice of the
RVE is the equality in strain energy for the piezocomposite
and homogenized structures. Figure 1(b) shows the finite
element meshed model used in ANSYS for the RVE using
a fiber volume fraction (FVF) of 50%. The 3D 8-node
coupled-field solid finite element SOLID5 was used to mesh
all volumes. Here, 2580 elements and 3216 nodes were used.
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(a) Unidirectional (1–3 periodic) piezoelectric fiber com-
posite

x2

x3

x1

(b) 3D model of the RVE (50% of fiber)

Figure 1: Schematic of the active-fiber composite and its RVE.

Table 1: Material properties of the piezocomposite constituents: Fiber (PZT-5A) and Matrix (Epoxy) [23].

𝐶
11
(GPa) 𝐶

12
(GPa) 𝐶

31
(GPa) 𝐶

33
(GPa) 𝐶

44
(GPa) 𝐶

66
(GPa)

PZT-5A 120.35 75.18 75.1 110.87 21.05 22.57
Epoxy 9.48 7.75 7.75 9.48 0.86 0.86

𝑒
31
(C/m2) 𝑒

33
(C/m2) 𝑒

15
(C/m2) 𝜖

11
(10−9 F/m) 𝜖

33
(10−9 F/m)

PZT-5A −5.35 15.78 12.3 9.16 8.30
Epoxy — — — 0.885 0.885

Next, we calculate the effective electroelastic coefficients
corresponding to tensile deformations of the chosen RVE,
using ANSYS for different FVF [21]. To do so, the symmetry
boundary conditions are firstly imposed on the planes 𝑥

1
= 0

and 𝑥
2
= 0. For a particular loading situation, only one value

in the strain or electric field tensors is nonzero and all others
become zero [19, 21].

In Figure 2, we plot the mechanical, electrical, and piezo-
electric ratios between the effective values and the purely
piezoelectric values, as a function of the FVF. We note that
for high values of the FVF, the MTM is less relevant than
FEM, because it assumes that the stress and strain fields
inside the inclusions (fiber) are supposed to be constant,
which is not the case of the FEM [19]. Thus, the FEM
values corresponding to tensile deformations will be retained
for the rest of this paper. However, since this FEM is not
suitable to evaluate shear coefficients, where it results in a
large overestimation [22], these coefficients (𝑒

15
, 𝐶
44

and
𝐶
66
) will be only determined by the MTM. In fact, while

the high aspect ratio EH at hand is excited in the bending
mode, structural shear deformations are not expected to be
pronounced [15]. These latter will be used for 3D FEM of the
EH.

3. Electric Field Considerations in the
Homogenized AFC

In the case of homogenized AFC with IDEs, the corre-
sponding electric field forms a set of curved lines, in the
(𝑥
3

− 𝑥
2
) plane, along the direction of the fiber. Previous

studies have shown that the electric field direction within
the RVE is inhomogeneous and anisotropic [11]. In our case,
for simplification purposes, the homogenized material is
considered to be uniformly poled in the 𝑥

3
-direction [10].

This simplification is adequate for large electrodes distances,
as shown later.

An appropriate electrical representative volume element
(eRVE) is chosen for the electric field analysis, in which
we take advantage of the symmetry inside the AFC and
the associated IDE. The eRVE is composed of a monolithic
homogenized material with 50% of FVF. The corresponding
material properties are shown in Table 2 where the material
properties corresponding to shear deformation are computed
using the MTM. The electrodes were not modeled explicitly,
but voltages were applied directly on nodes located at the sur-
face where electrodes are patterned.The symmetry boundary
conditions are imposed on the eRVE at the planes 𝑥

1
= 0 and
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Figure 2: Material mechanical, piezoelectric, and electrical properties of the piezocomposite as a function of the fiber volume fraction.

Table 2: Material properties of the homogenized material with 50% of fiber.

𝐶
𝑒

11
(GPa) 𝐶

𝑒

12
(GPa) 𝐶

𝑒

31
(GPa) 𝐶

𝑒

33
(GPa) 𝐶

𝑒

44
(GPa) 𝐶

𝑒

66
(GPa)

19.97 12.77 13.59 39 2.42 3.8
𝑒
𝑒

31
(C/m2) 𝑒

𝑒

33
(C/m2) 𝑒

𝑒

15
(C/m2) 𝜖

𝑒

11
(10−9 F/m) 𝜖

𝑒

33
(10−9 F/m)

−0.465 9.485 0.172 2.33 4.69

𝑥
2
= 0 (Figure 6) and coupled displacements are applied on

plane 𝑥
3
= 0 of the eRVE. The eRVE is meshed using 64256

nodes and 56250 elements with a 3D coupled-field element
SOLID5 (Figure 3(a)).

For modeling purposes, we consider that the electric field
is significant and homogeneous in the 𝑥

3
direction only.

To justify this hypothesis, we study the effect of electrode
separation 𝑑 for a range of electrode width 𝑏

𝑒
on the field-

elongation coefficient 𝛼 that characterizes the electric field
shape’s curvature in the 𝑥

3
direction

𝛼 =

󵄨󵄨󵄨󵄨󵄨
𝐸
3

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝐸
2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐸
3

󵄨󵄨󵄨󵄨󵄨

. (4)

In Figure 3(b), we can note that as the electrode separation
is increased, 𝛼 increases significantly. For large values of
electrode separation 𝑑, the electric field becomes globally
unidirectional and uniform along the 𝑥

3
-axis. Thus, we can

model the homogenized AFC as a piezoelectric material with
transverse and parallel electrodes, in which the electrical field
is uniform and aligned in the 𝑥

3
-direction (Figure 5(a)). This

component is formed by a series of constant electric fields

connected through the electrodes separated by the distance
𝑑 and electric potential 𝑉, that is,

𝐸
3
=

𝑉

𝑑
ℎ (𝑥
3
) (𝐻 (𝑥

2
) − 𝐻 (𝑥

2
− ℎ
𝑝
)) , (5)

where ℎ(𝑥
3
) accounts for the spatial distribution of the

electric field in the 𝑥
3
-direction, and

ℎ (𝑥
3
) =

(𝑁−1)/2

∑

𝑖=1

{2𝐻 (𝑥
3
− (2𝑖 − 1) 𝑑) − 𝐻 (𝑥

3
− 2𝑖𝑑)

− 𝐻 (𝑥
3
− (2𝑖 − 2) 𝑑)} .

(6)

Here 𝑁 is the number of electrodes (odd number), 𝐻 is the
Heaviside step function, and 𝑉(𝑡) is the resulting potential
difference between negative and positive electrodes.

4. Energy Harvester Model and
Analytical Solution

We consider a bilayered cantilever beam in which one layer
is made of aluminum and the other layer is made of an
AFC piezocomposite patch partially covering the length of
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Figure 3: Electric field studies in the homogenized AFC.

the beam and placed near the clamped end. For modeling
purposes, the piezocomposite is replaced by a homogenized
material at 50% of FVF and crossed by 𝑁 transversal IDEs
perpendicular to the 𝑥

3
-direction, which corresponds to the

𝑥-axis of the beam, as shown in Figure 4(a). The clamped
end of the beam is excited using a transverse harmonic
displacement 𝑌(𝑡) = 𝑌

0
sin(Ω𝑡), where Ω is the driving

frequency and 𝑌
0
= 0.1mm. In Table 3, we give the material

and geometrical properties of the bilayered cantilever beam,
where the subscript 𝑎 refers to the aluminum layer and the
subscript 𝑝 refers to the piezoelectric layer.

The constitutive equations of an isotropic material (alu-
minum layer) and transversely isotropic (piezoelectric layer)
material are, respectively, represented by

𝜎
11

𝑎
= 𝐸
𝑎

∗
𝜀
11

=
𝐸
𝑎

1 − ]
𝑎
2
𝜀
11
,

𝜎
11

𝑝
= 𝐸
𝑝

∗
𝜀
11

− 𝑒
𝑒

33
𝐸
1
,

(7)

where 𝐸
𝑝

∗ is the effective Young’s modulus and 𝑒
𝑒

33
is the

piezoelectric constant at the plane-stress assumption.
To analytically model our system, we start by assuming

a beam that undergoes out-of-plane bending motion only
characterized by the following displacement vector:

R = (V + 𝑌) y + 𝑦 y
1
, (8)

where V(𝑥, 𝑡) is the transverse displacement. (x, y, z) is the
inertial base frame, while the (x1, y1, z) is the local frame
attached to the beam’s cross-section obtained by a rotation
with respect to the 𝑧-axis. Assuming small displacements,

neglecting the rotary inertia, and applying Hamilton’s prin-
ciple, we use the Euler-Bernoulli beam theory to write the
equation of motion

[𝐻
1
𝐸𝑦
3
+ 𝐻
2
𝐸
𝑎

∗ 𝑏

3
(𝑦
3

1
− 𝑦
3

0
)] V(4)

+ [𝐻
1
𝑒
𝑒

33

𝑉 (𝑡)

2𝑑
𝑏ℎ
󸀠󸀠
(𝑥) (𝑦

2

2
− 𝑦
2

1
)]

+ [𝐻
1
𝑚
1
+ 𝐻
2
𝑚
2
] ( ̈V + ̈𝑌) = 0,

(9)

where 𝑚
1
= 𝜌
𝑎
𝑏(𝑦
0
− 𝑦
1
) + 𝜌
𝑝
𝑏(𝑦
2
− 𝑦
1
), 𝑚
2
= 𝜌
𝑎
𝑏ℎ
𝑎
, 𝐸𝑦
3
=

𝑏𝐸
𝑎

∗
∫
𝑦
1

𝑦
0

𝑦
2
𝑑𝑦 + 𝑏𝐸

𝑃

∗
∫
𝑦
2

𝑦
1

𝑦
2
𝑑𝑦,𝐻

1
= 𝐻(𝑥) −𝐻(𝑥 − 𝐿

1
), and

𝐻
2

= 𝐻(𝑥 − 𝐿
1
) − 𝐻(𝑥 − 𝐿). 𝑦

𝑖
denotes the different layers

positions (see Figure 4(b)).
To develop a reduced-order model of the system, we use

the Galerkin procedure and let the displacement V(𝑥, 𝑡) be
expressed as follows:

V (𝑥, 𝑡) =

∞

∑

𝑟=1

𝜙
𝑟 (𝑥) 𝜂𝑟 (𝑡) , (10)

where 𝜙
𝑟
(𝑥) is the 𝑟th normalized mode shape of the free

undamped eigenvalue problem associated with (9), when
𝐿
1
= 𝐿 and 𝜂

𝑟
(𝑡) is the modal displacement [24].

Equation (10) is substituted into the equation of motion
(9) and multiplied by the mode shape function; we use
the orthogonality conditions and integrate over the beam’s
length. The coupled electromechanical ordinary differential
equation of the modal response of the EH is obtained as

𝑀
𝑟

̈𝜂
𝑟
(𝑡) + 𝐶

𝑟
̇𝜂
𝑟
(𝑡) + 𝐾

𝑟
𝜂
𝑟
(𝑡) + 𝐹

𝑟
= 0, (11)
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(a) Schematic of the bilayered cantilever beam
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Figure 4: Schematic of the energy harvester with its neutral axis position.

Table 3: Material and geometrical properties of the bi-layered cantilever beam.

𝐿 (mm) 𝐿
1
(mm) 𝑏 (mm) ℎ

𝑝
(mm) ℎ

𝑎
(mm) 𝜌

𝑝
(kg/m3) 𝜌

𝑎
(kg/m3) 𝐸

𝑎
(GPa) ]

𝑎

100 60 20 0.33 1 4475 2700 68 0.35

where the modal mass term is

𝑀
𝑟
= ∫

𝐿

0

[𝐻
1
𝑚
1
+ 𝐻
2
𝑚
2
] 𝜙
𝑟

2
(𝑥) 𝑑𝑥, (12)

the modal damping coefficient is

𝐶
𝑟
= 2 𝜁
𝑟
𝜔
𝑟
𝑀
𝑟
, (13)

where 𝜔
𝑟
is the 𝑟th natural frequency and 𝜁

𝑟
is the modal

damping ratio (𝜁
1

= 0.017), the modal mechanical stiffness
term is

𝐾
𝑟
= ∫

𝐿

0

[𝐻
1
𝐸𝑦
3
+ 𝐻
2
𝐸
𝑎

∗ 𝑏

3
(𝑦
1

3
− 𝑦
0

3
)] 𝛽
𝑟

4
𝜙
𝑟

2
(𝑥) 𝑑𝑥,

(14)

where 𝛽
𝑟
is the 𝑟th frequency number given in [24], and the

modal electromechanical force is expressed as

𝐹
𝑟
= ∫

𝐿

0

𝐻
1
𝑒
𝑒

33

𝑏

2𝑑
(𝑦
2

2
− 𝑦
2

1
) ℎ
󸀠󸀠
(𝑥) 𝜙𝑟 (𝑥) 𝑑𝑥𝑉 (𝑡)

+ ∫

𝐿

0

[𝐻
1
𝑚
1
+ 𝐻
2
𝑚
2
] 𝜙
𝑟
(𝑥) 𝑑𝑥 ̈𝑌 (𝑡) .

(15)

For the electrical modeling of the homogenized AFC,
we use the simplification adopted in this paper when the
electrical field is parallel to the 𝑥-axis. Therefore, we can
model the AFC as a series of capacitors and current sources
connected in parallel (Figure 5(b)).

The output voltage 𝑉(𝑡), also shown in Figure 5(b),
represents the harvested voltage from the proposed EH. This
voltage is measured across the external resistor 𝑅 represent-
ing the external load. Applying Gauss’s law on the whole
piezoelectric patch yields

𝑑

𝑑𝑡

𝑁−1

∑

𝑗=1

∫
𝐴
𝑗

D
𝑗
⋅ n
𝑗
𝑑𝐴
𝑗
=

𝑉 (𝑡)

𝑅
, (16)

where D
𝑗
is the electrical displacement vector between

the electrodes, n
𝑗
is the electrodes normal vector, and the

integration is performed over the electrode area 𝐴
𝑗
. Taking

into account that the electrodes are parallel to the (y, z) plane
and considering the homogenized piezoelectric constitutive
equation, we obtain

D
𝑗
⋅ n
𝑗
= 𝐷
1
= 𝑒
𝑒

33
𝜀
11

− 𝜖
𝑒

33

𝑉 (𝑡)

𝑑
, (17)

where 𝜖
𝑒

33
is the permittivity component at constant strain

with the plane-stress assumption. Therefore, (15) is rewritten
as

(𝑁 − 1) 𝜖
𝑒

33

𝑏

𝑑
(𝑦
1
− 𝑦
2
) 𝑉 (𝑡)

+

𝑁−1

∑

𝑗=1

∫

𝑗𝑑

(𝑗−1)𝑑
𝑒
𝑒

33
(𝑦
1

2
− 𝑦
2

2
)

𝑏

2𝑑
̇V󸀠󸀠 (𝑥, 𝑡) 𝑑𝑥 =

𝑉 (𝑡)

𝑅
.

(18)

Applying Kirchhoff laws to the equivalent electrical
circuit and using Galerkin decomposition, we obtain the
following equation:

𝐶
𝑃
𝑉 (𝑡) +

𝑉 (𝑡)

𝑅
= 𝑖 (𝑡) , (19)

where the internal equivalent capacitance term is expressed
as

𝐶
𝑃
= (𝑁 − 1) 𝜖

𝑒

33

𝑏

𝑑
(𝑦
2
− 𝑦
1
) , (20)

and the equivalent current source is expressed as

𝑖 (𝑡) =

∞

∑

𝑟=1

(

𝑁−1

∑

𝑗=1

𝑒
𝑒

33
(𝑦
1

2
− 𝑦
2

2
)

𝑏

2𝑑

𝑑𝜙
𝑟 (𝑥)

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥=𝑗𝑑

𝑥=(𝑗−1)𝑑

) ̇𝜂
𝑟
(𝑡) .

(21)
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Figure 5: Modeling of the AFC patch.

Since the system is assumed to be linear, we assume that
𝜂
𝑟
(𝑡) = 𝐼𝑚(𝜂

0

𝑟
𝑒
𝑗Ω𝑡

) and 𝑉(𝑡) = 𝐼𝑚(𝑉
0
𝑒
𝑗Ω𝑡

), where 𝐼𝑚

stands for the imaginary part, 𝑗 = √−1 is the unit imag-
inary number, 𝜂

0

𝑟
is the complex modal amplitude of the

transverse displacement, and 𝑉
0
is the complex amplitude

of the harmonic voltage across the resistive load. Solving
the previous system analytically, we obtain the voltage 𝑉

0

amplitude as

𝑉
0
=

∑
∞

𝑟=1
(𝑘
𝑟
𝑚
𝑟
Ω
2
𝑌
0
/ (𝑗Ω𝐶

𝑟
− 𝑀
𝑟
Ω
2
+ 𝐾
𝑟
))

𝐶
𝑝
− (𝑗/Ω𝑅) + ∑

∞

𝑟=1
(𝑘
𝑟
𝑓
𝑟
/ (𝑗Ω𝐶

𝑟
− 𝑀
𝑟
Ω2 + 𝐾

𝑟
))

.

(22)

Assuming that excitation frequencies from the environment
are usually low, the fundamental mode response will be
dominant and constitute our main concern in this study (𝑟 =

1).

5. Typical Results and FE Validation

5.1. FEModel. TheFEM is used to validate the harvested volt-
age for different excitations near the fundamental frequency.
To do so, a 3D FE model with 17 electrodes (𝑁 = 17 and 𝛼 =

0.92) is developed using ANSYS. Solid coupled field elements
(SOLID5) are used for the piezoelectric behavior and circuit
element (CIRCU94) for the piezoelectric-circuit analysis.
A nil potential is applied at the nodes belonging to the
negative electrodes. Also, we use equipotentiality condition
for the positive electrodes’ nodes. We then relate the resistive
element 𝑅 to the electrodes through two active nodes located
on the surfaces of negative and positive electrodes of the EH.
A base displacement 𝑌

0
is applied to the clamped side of

the beam at frequency Ω. The model, shown in Figure 6, has
22800 elements and 26313 nodes.

We start by calculating the mode shape and the natural
frequencies of the system according to the FE model. The
corresponding natural frequencies are shown in Table 4; they
are compared to the ones obtained by the analytical model.
As observed a mismatch of 10% is obtained. It is mainly due
to the fact that the length of the AFC patch was taken to be
equal to the aluminum beam in the analytical model.

5.2. Typical Results. Now, we study the response of the system
to a harmonic excitation using the proposed analyticalmodel,
with onemode approximation in theGalerkin procedure, and
compare the obtained results with those obtained using FE
model at the same excitation conditions.

The results are given as a function of the normalized
excitation frequency, obtained by dividing Ω by a factor so
that the corresponding natural frequency is normalized to the
FE short circuit natural frequency 𝜔SC, given in Table 4.

We plot in Figure 7(a) the frequency response curves of
the maximum output amplitude voltage 𝑉max for different
values of load resistance 𝑅, when the number of electrodes
is 𝑁 = 17. In Figure 7(b), we vary the load resistance
and look at the variation of 𝑉max at the peak of the first
resonant frequency; we denote this value by 𝑉

𝜔
1

max. As shown
in Figure 7, a good agreement is obtained between analytical
and FE simulations demonstrating the effectiveness of the
proposed model. However, the proposed model is limited to
an IDE EH with relatively large electrode’s distance and very
small electrode’s width. The IDE EH performances could be
improved by selecting the correct design parameters. Hence,
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Figure 6: FE electromechanical model of the EH for 𝑁 = 17 electrodes (P: poling direction).
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Table 4: Natural frequencies for open-circuit and short-circuit
configurations when 𝑁 = 17 electrodes.

𝜔
1
/2Π (FE) 𝜔

1
/2Π

Short-circuit frequency (Hz) 100.95 89.21
Open-circuit frequency (Hz) 109.62 101.41

the theoretically developed model can be used as basis for
optimal design analysis.

6. Conclusion

In this paper, an analytical model of a vibrating struc-
ture, composed of an aluminum beam on top of which

a piezoelectric composite patch, namely, AFC, has been
attached, is derived and a closed-form solution is proposed.
We use homogenization techniques to determine the effec-
tive properties of the piezoelectric composite, leading to a
homogeneous model based on properties of the fiber and
matrix constituents. We then used numerical simulations
with ANSYS to extract the homogenized mechanical and
electrical properties of the AFC. A simplified electrical field
model is proposed in order to overcome the difficulty of
resolving Gauss’s equation for interdigitated-electrode con-
figuration. We show that the proposed procedure could be
applied to a complex piezoelectric microstructure in order to
analytically derive and solve the equations of motion of such
systems.We proposed closed-form solutions of the harvested
electrical voltage. The proposed solutions were validated
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using finite element analysis for the same homogenized
material. We demonstrated that the proposed solution is in
good agreement with the finite element one even for critical
load resistances.
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In this paper, we propose a novel strategy for controlling a flexible nonlinear beam with the confinement of vibrations. We focus
principally on design issues related to the passive control of the beam by proper selection of its geometrical and physical parameters.
Due to large deflections within the regions where the vibrations are to be confined, we admit a nonlinear model that describes with
precision the beam dynamics. In order to design a set of physical and geometrical parameters of the beam, we first formulate an
inverse eigenvalue problem. To this end, we linearize the beam model and determine the linearly assumed modes that guarantee
vibration confinement in selected spatial zones and satisfy the boundary conditions of the beam to be controlled.The approximation
of the physical and geometrical parameters is based on the orthogonality of the assumed linearmode shapes. To validate the strategy,
we input the resulting parameters into the nonlinear integral-partial differential equation that describes the beam dynamics.
The nonlinear frequency response curves of the beam are approximated using the differential quadrature method and the finite
difference method. We confirm that using the linear model, the strategy of vibration confinement remains valid for the nonlinear
beam.

1. Introduction

Vibration is one of the major problems that influence the
performance of flexible structures. Vibration is a natural
phenomenon that is unavoidable whatever its size may be,
including conventional systems, such as aircraft wings, robot
manipulators, blades in turning engines, crank mechanisms,
and nonconventional systems that include large space struc-
tures, arm-type positioning mechanisms of magnetic disk
drives, and microbeams in microelectromechanical systems.
In certain cases, vibration excites unwanted resonances char-
acterized by intolerable amplitudes. Because of the need for
controlling structural vibrations and satisfying the increasing
demand on security, accuracy, and long-life of these struc-
tures, researches focused on synthesizing control strategies,
which are classified into three types: active [1, 2], passive
[3, 4], and hybrid [5, 6]. Allaei [7] showed that vibration
confinement is a superior control issue over the conventional
control in isolating the sensitive parts of a structure. It has
the potential to confine the vibrational energy, to reduce

the control effort, and to optimize the required sensors and
actuators. Choura et al. [8] proposed a design methodology
for vibration confinement in nonhomogeneous rods. They
established conditions for selecting the rod’s material and
geometrical properties by constructing positive Lyapunov
functions whose derivative with respect to the space variable
is required to be negative. Baccouch et al. [3] and Gafsi et
al. [4] used the orthogonality conditions of mode shapes, for
approximating the physical and geometrical parameters of
an inhomogeneous beam for the purpose of confining the
vibratory motion in prespecified parts of its spatial domain.

Structural regions, where vibrations are to be confined,
experience large amplitudes [9]. These structures must be
described by nonlinear models, since linear models fail to
depict their dynamical behavior. Nonlinear models are char-
acterized by natural nonlinear phenomena, such as multiple
solutions, jumps, frequency entrainments, natural frequency
shifts, and modal interactions resulting in energy exchanges
among modes.
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Figure 1: Flexible beam.

The aim of this paper is to develop a passive control
strategy for the vibration confinement in a flexible nonlinear
beam via the inverse eigenvalue problem. This strategy con-
sists of determining the geometric and physical parameters
of the structure to yield a desired set mode shapes and
associated natural frequencies. Here, we consider a geometric
nonlinearity due to large deflections of the beam.

2. Problem Formulation and Objectives

We consider a flexible beam composed of 𝑚 regions that are
sensitive to vibrations.These regions are characterized by the
spatial subdomains𝐷

𝑠𝑖
(𝑖 = 1, 2, . . . , 𝑚), as shown in Figure 1.

The principal objective of this study is to find sets of
spatially varying geometric and physical parameters that
reduce the amplitudes of vibration in its sensitive regions
while confining the vibrational energy in the remainder of
regions. In general, vibration confinement yields an increase
of vibration amplitudes in the less sensitive parts of the beam,
and thus, a nonlinear model must be considered. For this,
we adopt the dynamic model for beams given by [10] based
on the nonlinear 2D Euler-Bernoulli beam theory (Figure 2).
They included three-dimensional stress effects (due to the
out-of-plane and in-plane warpings) and geometric nonlin-
earities as well as anisotropy and initial curvatures, which
result in linear elastic couplings. The dynamic behavior is
described by

𝜌𝐴 ̈V̂ + 𝑐 ̇V̂ − 𝑗
3
̈V̂
󸀠󸀠

+ (𝐸𝐼V̂󸀠󸀠)
󸀠󸀠

= [𝐸𝐴(𝑢̂
󸀠V̂󸀠 − 𝑢̂

󸀠2V̂󸀠 +
1

2
V̂󸀠3)]
󸀠

+ {[𝐸𝐼(𝑢̂
󸀠V̂󸀠)
󸀠

]
󸀠

(1 − 𝑢̂
󸀠
) + (𝐸𝐼V̂󸀠󸀠)

󸀠

(𝑢̂
󸀠
− 𝑢̂
󸀠2
+ V̂󸀠2)

− [𝐸𝐼(𝑢̂
󸀠2V̂󸀠 −

1

3
V̂󸀠3)
󸀠

]

󸀠

}

󸀠

+ 𝑞
2
,

𝜌𝐴 ̈𝑢̂ − (𝐸𝐴𝑢̂
󸀠
)
󸀠

= [𝐸𝐴V̂󸀠2 (
1

2
− 𝑢̂
󸀠
)]

󸀠

+ {V󸀠[𝐸𝐼(V̂󸀠 − 𝑢̂
󸀠V̂󸀠)
󸀠

]
󸀠

− 2𝑢̂
󸀠V̂󸀠(𝐸𝐼V󸀠󸀠)

󸀠

}

󸀠

,

(1)

where 𝐸(𝑥) is the Young modulus, 𝜌(𝑥) is the mass density,
𝐼(𝑥) is the second moment of area, 𝐴(𝑥) is the cross section
area, 𝑐 is the damping coefficient, 𝑗

3
is the rotary inertia,

and 𝑞
2
is the external excitation. The prime and dot denote,

x

y

𝜉

𝜂

s

�

u

Figure 2:The nonlinear Euler-Bernoulli beam theory: undeformed
coordinate system xy and the deformed coordinate system 𝜉𝜂.

respectively, the spatial and time derivatives. We assume
that the longitudinal deflection 𝑢̂ is mainly induced by the
transverse deformation V̂ [10]; that is,

𝑢̂
󸀠󸀠
= −(

1

2
V̂󸀠2)
󸀠

+ 𝑂 (V̂2) . (2)

Integrating (2) with respect to 𝑥, we obtain

𝑢̂
󸀠
= −

1

2
V̂󸀠2 + 𝑐

1
(𝑡) , (3)

where c
1
is determined by applying the boundary conditions

associated with 𝑢̂.

3. Inverse Eigenvalue Problem

In this work, the basic idea of the proposed strategy for
vibration confinement consists of altering the mode shapes
and/or natural frequencies to maintain at lower levels the
vibration amplitudes in the sensitive regions of the structure
and allow the less sensitive regions to vibrate at relatively
higher level amplitudes. Therefore, the main objective of
this study is to devise a methodology for approximating
a set of physical and geometrical parameters that produce
vibration confinement in nonlinear structures. In this paper,
we develop the methodology for controlling vibrations of
beams described by the nonlinear equations (1). The strategy
of vibration confinement applied to nonlinear beams consists
of linearizing (1) and neglecting the axial deformation.

For convenience we define the following nondimensional
variables and parameters:

𝐸 (𝜉) =
𝐸 (𝑥)

𝐸
0

, 𝜌 (𝜉) =
𝜌 (𝑥)

𝜌
0

, 𝐼 (𝜉) =
𝐼 (𝑥)

𝐼
0

,

𝐴 (𝜉) =
𝐴 (𝑥)

𝐴
0

, 𝜉 =
𝑥

𝐿
, 𝑢 =

𝑢̂

𝐿
, V =

V̂
𝐿
,

𝜏 =
𝑡

𝐿2
√

𝐸
0
𝐼
0

𝜌
0
𝐴
0

,

𝑝
1
(𝜉) = 𝐸 (𝜉) 𝐼 (𝜉) , 𝑝

2
(𝜉) = 𝜌 (𝜉) 𝐴 (𝜉) ,

𝑝
3
(𝜉) = 𝐸 (𝜉) 𝐴 (𝜉) ,

(4)
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where 𝐸
0
, 𝜌
0
, 𝐼
0
, and𝐴

0
are the values of 𝐸, 𝜌, 𝐼, and𝐴 at 𝑥 =

0, respectively.
Therefore, the nondimensional linear model describing

the beam flexure is

𝜌𝐴 ̈V + 𝑐 ̇V + (𝐸𝐼V󸀠󸀠)
󸀠󸀠

= 𝑞
2
. (5)

We now apply the strategy of vibration confinement for linear
structures based on the orthogonality of linear mode shapes
[4]. This strategy outputs a set of physical and geometrical
parameters for the confinement of vibrations in desired
regions of the structure to be controlled. Consequently, these
parameters are substituted in (1) to examine the dynamical
behavior of the nonlinear model that experience relatively
large deflections due to confining the vibration energy around
the less sensitive regions.

Without loss of generality, we consider the case of a
spatially varying parameter beam clamped at both ends with
vibration confinement in the middle. We consider the case
of assumedmodes that are constructed by premultiplying the
confining function Γ(𝜉) by the modes Ψ

𝑖
(𝜉) (𝑖 = 1, 2, . . . , 𝑛)

associated with the spatially invariant beam subjected to the
same boundary conditions; that is,

Ψ
𝑖
(𝜉) = Γ (𝜉) 𝜓

𝑖
(𝜉) , (6)

where 𝜓
𝑖
(𝑥) = 𝐶

1
sin(𝛽
𝑖
𝜉) + 𝐶

2
cos(𝛽
𝑖
𝜉) + 𝐶

3
sinh(𝛽

𝑖
𝜉) +

𝐶
4
cosh(𝛽

𝑖
𝜉) (𝑖 = 1, 2, . . . 𝑛). The constants 𝐶

𝑗
(𝑗 =

1, 2, . . . , 4) and 𝛽
𝑖
(𝑖 = 1, 2, . . . 𝑛) can be determined by using

the boundary conditions. In order to confine the vibration
in the middle of the beam, we consider, for instance, the
confining function in the following Gaussian distribution
Γ(𝜉) = 𝑒

−𝛼𝜉(1−𝜉), where 𝐿 is the total length of the beam. This
type of function gives the possibility to set the location and
the amplitude of the peak of the required confinement. The
interest here is to examine the effect of vibration confinement
on the nonlinear behavior of the beam. In particular, we
study the influence of the confinement parameter 𝛼 on the
frequency responses of the nonlinear beam. For this, we select
a set of confinement parameters given by −2, −1, −0.5, 0, 0.5,
1, and 2. Figure 3 displays the first four assumedmode shapes
of the beam for the different values of 𝛼.

We now apply the inverse eigenvalue problem to each
of the values of 𝛼 to determine the beam spatially varying
geometry. To this end, 𝑝

1
(𝜉) and 𝑝

2
(𝜉) are written as linear

combinations of simple polynomials [4]:

𝑝
1
(𝜉) = 𝑎

0
+

𝑝

∑

𝑘=1

𝑎
𝑘
𝜉
𝑘
, 𝑝

2
(𝜉) = 𝑏

0
+

𝑞

∑

𝑙=1

𝑏
𝑙
𝜉
𝑙
. (7)

To obtain accurate results, the inverse eigenvalue problem
is numerically solved using the first 5 assumed modes (𝑛 =

5) [4]. Figures 4 and 5 show the resulting nondimensional
stiffness 𝑝

1
(𝜉) and mass functions 𝑝

2
(𝜉).

With reference to Nayfeh and Pai [10], the expression of
𝑐
1
(𝑡) for the clamped-clamped beam is given by

𝑐
1
=

1

2
∫

1

0

V󸀠2𝑑𝜉. (8)

Therefore,

𝑢
󸀠
= −

1

2
V󸀠2 +

1

2
∫

1

0

V󸀠2𝑑𝜉. (9)

Using (9), we reduce (1) into one equation in V; the equation
of motion in nondimensional form is given by

𝑝
2
̈V + 𝑐 ̇V − 𝑗

3
̈V󸀠󸀠 + (𝑝

1
V󸀠󸀠)
󸀠󸀠

= [𝑝
3
V󸀠(

1

2
∫

1

0

V󸀠2𝑑𝜉 −
1

4
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2)
2

)]

󸀠

+
{

{

{

[𝑝
1
(
V󸀠

2
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2))
󸀠

]

󸀠

× (1 −
1

4
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2))

+ (𝑝
1
V󸀠󸀠)
󸀠

(
1

2
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2)

−
1

4
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2)
2

+ V󸀠2)

− [

[

𝑝
1
(
1

4
(∫

1

0

V󸀠2𝑑𝜉 − V󸀠2)
2

V󸀠 −
1

3
V󸀠3)
󸀠

]

]

󸀠

}

}

}

+
𝐿
3

𝐸
0
𝐼
0

𝑞
2

(10)

with 𝑞
2
(𝜉, 𝜏) = 𝑓

0
cos(Ω𝜏)𝛿(𝜉 − 1/2).

In order to examine the nonlinear behavior of the beam,
we propose to discretize (10) using an efficient numerical
technique for variable cross section beams [11, 12]. To this
end, we use the differential quadrature method (DQM) to
transform the integral-partial differential equation into a set
of ordinary differential equations and the finite difference
method (FDM) to compute a limit-cycle solution for the
nonlinear beam model.

The DQM is used to solve the space dependent partial
differential equation by transforming it into ordinary dif-
ferential equations describing the motion of the beam with
respect to time at 𝑛 preselected grid points

𝜉
𝑖
=

1

2
[1 − cos( 𝑖 − 1

𝑛 − 1
𝜋)] . (11)

Following Najar et al. [11], the derivatives of the deflection
with respect to space variable are expressed as a weighted
linear sum of the deflection at all grid points; that is,

[
𝜕
𝑟V (𝜉, 𝑡)
𝜕𝜉𝑟

]

𝜉=𝜉
𝑖

=

𝑛

∑

𝑗=1

𝐴
(𝑟)

𝑖,𝑗
V
𝑗
(𝑡) . (12)
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Figure 3: First four mode shapes of the linear clamped-clamped beam for different values of 𝛼.

The integral terms are discretized using the Newton-Cotes
formula at the same grid points:

∫

1

0

V󸀠2𝑑𝜉 = −∫

1

0

VV󸀠󸀠𝑑𝜉 = −

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝐶
𝑖
V
𝑖
𝐴
(2)

𝑖,𝑗
V
𝑗

where 𝐶
𝑖
= ∫

1

0

(

𝑛

∏

𝑗=1;𝑗 ̸= 𝑖

𝜉 − 𝜉
𝑗

𝜉
𝑖
− 𝜉
𝑗

)𝑑𝜉.

(13)

Using the boundary conditions, neglecting the rotary inertia,
and keeping terms only to the third order, we end up with the
following 𝑛 − 4 ODEs:

𝑝
2 (𝜉) ̈V

𝑖
+ 𝑐 ̇V
𝑖
+ 𝑝
󸀠󸀠

1
(𝜉)

𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗

+ 2𝑝
󸀠

1
(𝜉)

𝑛

∑

𝑗=1

𝐴
(3)

𝑖,𝑗
V
𝑗
+ 𝑝
1
(𝜉)

𝑛

∑

𝑗=1

𝐴
(4)

𝑖,𝑗
V
𝑗

= −2𝑝
󸀠

1
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(3)

𝑖,𝑗
V
𝑗
)(

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝐶
𝑗
𝐴
(2)

𝑗,𝑘
V
𝑗
V
𝑘
)

+ 2𝑝
1 (𝜉)(

𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗
)

3

−
1

2
𝑝
󸀠

3
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)

× (

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝐶
𝑗
𝐴
(2)

𝑗,𝑘
V
𝑗
V
𝑘
) + 𝑝

3 (𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)

2
𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗

− 𝑝
󸀠󸀠

1
(𝜉)

𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗
(

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝐶
𝑗
𝐴
(2)

𝑗,𝑘
V
𝑗
V
𝑘
)

+ 𝑝
󸀠󸀠

1
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)

2
𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗
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Figure 4: Variation of the beam stiffness for different values of 𝛼.

−
1

2
𝑝
3
(𝜉)

𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗
(

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝐶
𝑗
𝐴
(2)

𝑗,𝑘
V
𝑗
V
𝑘
)

+ 𝑝
1
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)

2

(

𝑛

∑

𝑗=1

𝐴
(4)

𝑖,𝑗
V
𝑗
)

− 𝑝
1
(𝜉)

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝑛

∑

𝑙=1

𝐶
𝑗
𝐴
(2)

𝑗,𝑘
𝐴
(4)

𝑖,𝑙
V
𝑘
V
𝑗
V
𝑙

+ 8𝑝
1 (𝜉)

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝑛

∑

𝑙=1

𝐴
(1)

𝑖,𝑗
𝐴
(2)

𝑖,𝑙
𝐴
(3)

𝑖,𝑘
V
𝑗
V
𝑘
V
𝑙

+ 6𝑝
󸀠

1
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)(

𝑛

∑

𝑗=1

𝐴
(2)

𝑖,𝑗
V
𝑗
)

2

+ 2𝑝
󸀠

1
(𝜉)(

𝑛

∑

𝑗=1

𝐴
(1)

𝑖,𝑗
V
𝑗
)

2

(

𝑛

∑

𝑗=1

𝐴
(3)

𝑖,𝑗
V
𝑗
) + 𝑞

2

𝑖 = 3, . . . , 𝑛 − 2.

(14)

To obtain the limit-cycle solutions associated with the ODE
system (14), we have to solve the set of equations obtained
by the DQM. Using the symmetry of the problem, we end
up with (𝑛 − 3)/2 ODEs describing the motion of the
system. The limit-cycle solutions are obtained by assuming
that the periodic orbits have the same frequency (Ω) than
the excitation. The time is normalized to 1 then discretized
along one period to 100 time steps. The FDM is now applied
to discretize the time. In addition we enforce the condition
that the first and last solution along the orbit are equal;
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Figure 5: Variation of the beam mass for different values of 𝛼.
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Figure 6: Frequency response convergence of a nonlinear beam 𝛼 =

−2.

this will satisfy the periodicity condition of the limit-cycle
solution. The final algebraic nonlinear system is solved using
a Newton-Raphson technique [12].

Before proceeding with simulating the frequency
response of the nonlinear beam for different 𝛼, we test the
convergence of the DQM-FDM discretization scheme. For
this, we take 𝛼 = −2, 𝑓

0
= 1000, and 𝑐 = 60. The resulting

frequency response curves with different DQM grid points
and fixed FDM grid points are shown in Figure 6. We note
that the frequency response curves for 𝑛 = 19, 21, 23 are
comparable. For computational reasons, the number of 19
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Figure 7: Frequency response of a nonlinear uniform beam 𝛼 = 0.

grid points is adopted for the rest of the simulations. For
𝑛 = 19, the vibration amplitude is small when the forcing
frequency is away from the first resonant frequency (𝜔

1
=

24.658) of the linear spatially varying beam. However,
when the forcing frequency comes closer to (𝜔

1
= 24.658),

relatively higher amplitudes occur while the frequency curve
tilts to the right, indicating a hardening behavior of the
beam.

We now investigate the influence of 𝛼 on the non-
linear behavior of the spatially varying beam. Structural
nonlinearities become significant when the spatially varying
beam experiences large deflections.This nonlinearity is likely
to introduce multitude of phenomena, such as parametric
resonance, multivalued responses and jumps, and secondary
resonances [13]. Figure 7 displays the frequency response
curves associated with the linear and nonlinear models of a
uniform beam (𝛼 = 0). We observe that both models depict
similar amplitudes of vibration away from the fundamental
frequency (𝜔

1
= 22.431). As the frequency approaches (𝜔

1
=

22.431) either from left or right, the frequency response
curves veer from each other.The nonlinear model introduces
two jumps in the frequency response curves at two cyclic-
fold bifurcation points leading to hysteresis. Figure 8 displays
the maximum deflection of the midpoint Vmax for different
values of 𝛼 as the excitation frequency Ω is varied near
the corresponding fundamental frequencies (24.568, 23.058,
22.757, 22.431, 24.193, 25.145, and 40.937).

In order to compare the resulting frequency response
curves at different values of 𝛼, we maintain the forcing
frequency interval length at 12. We present all frequency
response curves by shifting their linear natural frequencies
to zero. We note that, as 𝛼 is more negative, the maximum
amplitude increases and the frequency response curvewidens
in the neighborhood of the first linear natural frequency
and bends more to the right. To quantify these observations,
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Figure 8: Comparison between the frequency responses for differ-
ent values of 𝛼.

Table 1: Variation of the inverse fundamental frequency 𝜔
0
and the

bifurcation pointsΩ
𝑏1
and Ω

𝑏2
with respect to 𝛼.

𝛼 𝜔
0

Ω
𝑏1

Ω
𝑏2

ΔΩ
𝑏

Max amplitude
−2.0 24.658 26.84 31.01 4.17 0.009
−1.0 23.058 24.8 29.18 4.38 0.01
−0.5 22.757 24.2 28.27 4.07 0.01
0.0 22.431 23.66 27.3 3.64 0.00975
+0.5 24.193 25.2 27.7 2.5 0.009
+1.0 25.145 25.85 27.88 2.03 0.0084
+2.0 40.937 41.25 41.35 0.1 0.0052

Table 1 provides for each value of 𝛼 the frequencies Ω
𝑏1

and Ω
𝑏2

corresponding to the two bifurcation points, their
differences, and the maximum amplitude.

We conclude that the vibrations are more confined for
more negative values of 𝛼, which lead to more concentrated
mode shapes in the middle. For lower values of the force
amplitude 𝑓

0
, the linear and nonlinear frequency responses

are nearly similar (comparable amplitudes and the nonlinear
frequency curve bends slightly to the right).

4. Conclusions

In this study, we addressed the issue of vibration confinement
in a nonlinear flexible beam. In particular, we considered the
design of geometrical parameters of a beam whose dynamics
is described by a nonlinear integral-partial differential equa-
tion. The design of these parameters was based on the linear
dynamics associated with the nonlinear beam, and thus,
the design of linear structures developed by Gafsi et al. [4]
was adopted to approximate the geometry of the beam. The
resulting parameters were then inputted into the nonlinear
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integral-partial differential equation. In order to approximate
the nonlinear frequency response curves of the beam as
function of the confinement parameter, we discretized the
nonlinear equation in space and time using DQM and FDM,
respectively. In all simulations, we considered vibration con-
finement in the middle of the nonlinear beam.We confirmed
that the strategy of vibration confinement and suppression
remains valid for the nonlinear beam.We also concluded that
having higher amplitudes on a larger frequency interval in
conjunction with significant level of vibration confinement
on a smaller region of the spatial domain presents a viable
design for energy harvesting.
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This paper investigates numerically the active tendon control of a cable-stayed bridge in a construction phase. A linear Finite
Element model of small scale mock-up of the bridge is first presented. Active damping is added to the structure by using pairs
of collocated force actuator-displacement sensors located on each active cable and decentralized first order positive position
feedback (PPF) or direct velocity feedback (DVF). A comparison between these two compensators showed that each one has good
performance for some modes and performs inadequately with the other modes. A decentralized parallel PPF-DVF is proposed
to get the better of the two compensators. The proposed strategy is then compared to the one using decentralized integral force
feedback (IFF) and showed better performance. The Finite Element model of the bridge is coupled with a nonlinear cable taking
into account sag effect, general support movements, and quadratic and cubic nonlinear couplings between in-plane and out-of-
plane motions. Finally, the proposed strategy is used to control both deck and cable vibrations induced by parametric excitation.
Both cable and deck vibrations are attractively damped.

1. Introduction

In the past few decades, design and construction of civil
structures showed a very deep evolution because of the
technological progress inmaterials and devices. Cable-stayed
bridges increased considerably their center span from 182.6m
(Stromsund Bridge in Sweden) to 1104m (Russky Bridge in
Russia). These structures are getting more slender, light, and
flexible which makes them sensitive to vibrations induced
by wind, traffic, waves, or even earthquakes. Consequently,
vibration control has become a major issue in civil engineer-
ing.

Vibrations in cable-stayed bridges may be reduced using
passive [1–4], semiactive [5–12], and active methods [13].
Active control uses a set of actuators and sensors connected
by feedback or feed forward loops. Among the proposed
devices to control vibrations of cable-stayed bridges are the
active mass dampers [14], active aerodynamic appendages

[15], and active tendons. Several strategies have been pro-
posed for the active tendon control of the global modes of
bridges, as well as for the in-plane and out-of-plane cable
vibrations. Yang and Giannopolous [16] were the first to
propose active tendon control to reduce vibration induced
by strong wind gusts. They studied the feedback control of a
simple continuous beammodel suspended by four stay cables
using four active tendons equipped with servohydraulic
actuators. With respect to the motion of the bridge deck
detected by the sensors installed at the anchorage of each
cable, the actuators actively change the cable tension and
apply time-varying forces to the deck in order to reduce
the vibrations. Fujino and Susumpow [17] carried out an
experimental study on active control of planar cable vibration
by axial support motion. Using a cable-supported cantilever
beam model, Warnitchai et al. [18] performed an analytical
and experimental study on active tendon control of cable-
stayed bridges. They demonstrated that the vertical global

Hindawi Publishing Corporation
Shock and Vibration
Volume 2014, Article ID 937541, 10 pages
http://dx.doi.org/10.1155/2014/937541

http://dx.doi.org/10.1155/2014/937541
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mode of the bridge can be damped with a linear feedback of
the girder velocity on the active tendon displacement and that
the in-plane local cable vibration can be controlled efficiently
by sag induced forces. Kobayashi et al. [19] studied the tendon
control of cable-stayed bridges by setting active cables parallel
to stay cables. They conducted an experimental study on a
1/100 scale half-span model of a 410m center span cable-
stayed bridge to demonstrate the effectiveness of their control
strategy using a tendon control force proportional to the
velocity of the girder.

All the studies on active tendon control presented above
used noncollocated pairs of actuator sensor which may
destabilize the structure for certain gain values and may also
cause spillover instability. Achkire and Preumont [20] solved
this problem using a collocated displacement actuator-force
sensor configuration. They considered the active vibration
control of cable-stayed bridges with an active tendon con-
trolling the axial displacement of the cable anchor point. By
using a piezoelectric actuator collocated with a force sensor
measuring the cable tension, integral force feedback (IFF) is
applied to offer an active damping control. An experimental
setup consisting of a cable in connection with a spring-
mass systemwas tested to evaluate control efficiency. Bossens
and Preumont [21] proposed a simplified linear theory to
predict the closed-loop poles with a root locus technique and
reported an experimental study of two cable-stayed bridge
models using active tendon control. The first one is a small
size mock-up (3m-length) representative of a cable-stayed
bridge in a construction phase. The second mock-up is a
30m length cable-stayed cantilever structure, equipped with
hydraulic actuators. The experimental results showed that
the active tendon control brought a substantial reduction
in the deck and cable vibration amplitudes. Using the same
control strategy (decentralized collocated IFF), El Ouni et al.
[22, 23] studied numerically and experimentally the effect of
active tendon control on the principal parametric resonance
of a stay cable using a small scale mock-up of a cable-
stayed bridge [24].They showed that the threshold excitation
amplitude of the deck, needed to trigger the parametric
excitation, increases by an increase of the active damping in
the structure. Other active control laws can be also used in
a similar way as the IFF, such us first order positive position
feedback (PPF) proposed by Baz et al. [25] and direct velocity
feedback (DVF) proposed by Balas [26].

This paper investigates numerically the active tendon
control of a small scale mock-up of a cable-stayed bridge in a
construction phase. Active damping is added to the structure
by using pairs of collocated force actuator-displacement
sensors located on each active cable. This configuration is
first examined with decentralized PPF and DVF. Then, a
parallel PPF-DVF is proposed to get the better of the two
compensators and compared to the one using decentralized
IFF. A Finite Element model of the bridge is coupled with a
nonlinear cable which takes into account sag effect, general
support movements, and quadratic and cubic nonlinear cou-
plings between in-plane and out-of-plane motions. Finally,
the proposed strategy is used to control both deck and cable
vibrations induced by parametric excitations.

Cable

Rectangular
stiffener

Pillar

U-shaped beam

Concrete base

Masses

Figure 1: Description of the main components of the bridge.

(1)

(2)
(3)

(4)

(5)
(6)(7)

(8)

A
B

Figure 2: FE model of the bridge created by Matlab/SDT.

2. The 3D Finite Element Model

A model of a smart cable-stayed bridge was developed in
Active Structure Laboratory at ULB [24]. This mock-up
represents a small scale model of the bridge in a construction
phase. The bridge is made of a central steel pillar resting on
a concrete block and a deck supported by 8 stainless steel
cables. The deck is made of two U-shaped aluminum beams,
steel rectangular stiffeners, and forty additional masses (see
Figure 1). The height of the pillar is 1.6m; the total length
and width of the deck are, respectively, 3 and 0.32m. The
Matlab/SDTools software has been used to build a 3D Finite
Element (FE) model of the bridge (see Figure 2). Shell
elements are used to model the pillar, the U-shaped beams,
and the stiffeners. The additional masses are modeled by 3D
elements and the cables are represented by linear bars. A
clamped support condition at the lower end of the pillar is
adopted. Thus, the final bridge model is composed of 29172
nodes and 23743 elements and has 112980 degrees of freedom.
The natural damping of all modes of the structure is equal to
1%. For more details about the bridge demonstrator, the FE
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model, and the numerical and experimental modal analysis
see [23, 24].

3. Active Tendon Control Using Decentralized
PPF and DVF

The global equation of motion of the linear cable-stayed
bridge equipped with pairs of a force actuator and a displace-
ment sensor in the chosen active cables (n) can be written as
follows:

𝑀 ̈𝑥 + 𝐶 ̇𝑥 + 𝐾𝑥 = 𝐵
𝑛
𝐹cont + 𝐹excit, (1)

where 𝑀, 𝐶, and 𝐾 are, respectively, the mass, damping,
and the stiffness of the bridge. ̈𝑥, ̇𝑥, and 𝑥 are, respectively,
the acceleration, velocity, and displacement vectors. B is the
influence matrix relating the local coordinate systems of the
active tendons to the global coordinates.𝐹excit is the excitation
force vector. 𝑛𝐹cont are the control forces.

The control forces of the decentralized DVF [27] are
𝑛
𝐹cont =

𝑛
𝐻
1
(𝑠) (
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
) = −

𝑛𝑔
1
𝑠 (
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
) , (2)

where 𝑛𝐻
1
(𝑠) is the feedback control law of the DVF, s is the

Laplace variable, 𝑛𝑔
1
are the controller gains, and ( 𝑛𝑥

𝑖
−
𝑛
𝑥
𝑗
)

are the relative displacements of the extremities (𝑖 and 𝑗) of
the cables projected on the chord lines.

The control forces of the decentralized first order PPF [27]
are

𝑛
𝐹cont =

𝑛
𝐻
2
(𝑠) (
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
) =

𝑛𝑔
2

1 + 𝜏𝑠
(
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
) , (3)

where 𝑛𝐻
2
(𝑠) is the feedback controller law of the PPF, 𝑛𝑔

2

are the controller gains, and 𝜏 is a design parameter which
decides the damping ratio, defines the position of the pole
of the first order PPF on the real axis, and fixes the stability
margin.

Themain idea in developing a decentralized parallel PPF-
DVF strategy is as follows: can we get the better of the two
compensators in order to control the maximum of modes?

The control forces of the proposed decentralized parallel
PPF-DVF strategy are

𝑛
𝐹cont =

𝑛
𝐻
3
(𝑠) (
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
)

= [−
𝑛𝑔
1
𝑠 +

𝑛𝑔
2

1 + 𝜏 𝑠
] (
𝑛
𝑥
𝑖
−
𝑛
𝑥
𝑗
) ,

(4)

where 𝑛𝐻
3
(𝑠) is the feedback controller law of the proposed

concept and the controller gains 𝑛𝑔
1
and 𝑛𝑔

2
can be tuned to

get optimal damping on the target modes.The block diagram
of the proposed control system is given in Figure 3.

4. Comparison between Different
Control Strategies

Figure 4(a) shows the root locus of the DVF added through
the four small tendons. This control law is unconditionally

System

Performance metric

PPF

DVF

Fexcit
n

ng2
1 + 𝜏s

−ng1s

nxi −
nxjFcont ( )

Figure 3: Block diagram of the proposed control system.

stable for all gain values, since all loops are contained in
the left side of the imaginary axis. Figure 4(b) shows the
root locus of the first order PPF added through the four
small tendons. The PPF is conditionally stable and has the
same poles and zeros as in the DVF case, because the two
controllers use the same actuator and sensor configuration.
When the pole travelling on the real axis reaches the origin
(the stability limit), the controller becomes unstable. In fact,
when the pole reaches the stability limit the negative stiffness
of the controller should exceed the static stiffness of the
system, which leads to the static collapse of the bridge. For
some modes, only the initial part of the loop is available,
because of the stability condition. Note also that in the PPF
case, the loops do not leave the open loop poles orthogonal
to the imaginary axis as in the DVF case (as a result of the
negative stiffness which softens the system), which suggests
that the control effort may be larger [27].

Figure 4(c) shows the root locus of the proposed strategy.
It is also conditionally stable but the loops of the high
frequencies are wider than those of the PPF and similarly for
the low frequencies which seemwider than those of the DVF.
The major advantage of the proposed strategy is that the size
of the loops can be tuned not only through 𝜏 but also through
𝑛𝑔
1
and 𝑛𝑔

2
.

Themaximumdamping ratio for decentralizedDVF, PPF,
and parallel PPF-DVF is determined for the first 17 modes
using the root locus technique and is plotted in Figure 5 as
a function of mode number. The PPF seems more efficient
for modes 1, 3, 5, 6, and 9. The DVF is more efficient for
modes 8, 10, 11, 13, 14, and 15. The parallel PPF-DVF has
important damping for many modes. With all the control
strategies, weak controllability is observed for modes 2, 4, 12,
16, and 17. Figure 6 shows the FRF between the white noise
excitation (𝐹excit) through the cable number 2 and the vertical
displacement of the girder (𝑈

𝑧
) in point A with different

control strategies. Using the parallel PPF-DVF, the negative
stiffness effect of the PPF is reduced and an average FRF is
obtained between the FRF with PPF and the one with DVF.

5. Comparison between Parallel PPF-DVF
and IFF

The decentralized IFF [21] uses a collocated pairs of dis-
placement actuator-force sensor in each active cable. The IFF
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Figure 4: Root locus of the DVF (a), the first order PPF (b), and the parallel PPF-DVF (c) added through four small tendons.

is unconditionally stable but suffers from negative stiffness
problem which may be solved by adding a 2nd order high
pass filter (2Hz) in series with the IFF [21]. The maximum
damping ratio for decentralized IFF and parallel PPF-DVF
are compared for the first 17 modes (see Figure 7). Both
strategies successfully provide the cable-stayed bridge with

active damping but the parallel PPF-DVF shows better per-
formance for all modes except mode number 7.The proposed
strategy is conditionally stable and also has a problem of
negative stiffness which must be treated carefully for real
applications. The FRF between the force of excitation (𝐹excit)
and the vertical displacement of the deck (Uz) in point A is
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Figure 5: Maximum damping ratio as a function of mode number
for different active control strategies.
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Figure 6: FRF between the force of excitation (Fexcit) and the
vertical displacement of the deck (𝑈
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) in point A, for different active

control strategies.

plotted in Figure 8 for the two strategies with a maximum
damping on mode number 1.

6. Active Tendon Control of
a Nonlinear Cable-Stayed Bridge
under Parametric Excitation

6.1. Nonlinear Modelling of an Inclined Small Sag Cable. The
nonlinear model of the inclined cable takes into account
general support movement, sag effect, and quadratic and
cubic nonlinear couplings between in-plane and out-of-plane
motions. The cable model is presented in Figure 9. The local
coordinate system is chosen such that the x-axis is defined
along the chord line and y-axis in the horizontal plane.
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Figure 7: Maximum damping ratio as a function of mode number
for IFF and parallel PPF-DVF concepts.
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Figure 8: FRF between the force of excitation (Fexcit) and the
vertical displacement of the deck (𝑈

𝑧
) in point A for IFF and parallel

PPF-DVF concepts.

The z-axis is then taken perpendicular to the chord line,
in the gravity plane. The cable displacements are separated
into three parts: the static, the quasi-static, and the dynamic
contributions (for more details see [28]).

6.1.1. Out-of-Plane Cable Motion. The transverse out-of-
plane displacements of the cable are described by the follow-
ing equation ofmotion governing the generalized coordinates
yn of the nth out-of-plane mode of vibration:

1

2
𝑚𝑙 { ̈𝑦

𝑛
+ 2𝜉
𝑦𝑛
𝜔
𝑦
𝑛

̇𝑦
𝑛
+
𝑛
2
𝜋
2

𝑚𝑙2
(𝑇
0
+ 𝑇
𝑞
+ 𝑇
𝑑
) 𝑦
𝑛
}

= 𝐹
𝑦
𝑛

−
𝑚𝑙

𝑛𝜋
( ̈V
𝑎
+ (−1)

𝑛+1
̈V
𝑏
) ,

(5)
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Figure 9: 3D model of an inclined cable with general support
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wherem is the mass per unit length; is the chord length of the
cable; 𝜉

𝑦
𝑛

, 𝜔
𝑦
𝑛

, and 𝐹
𝑦
𝑛

are, respectively, the modal damping,
the frequency, and the modal component of the external
forces applied to the cable, associated with the generalized
coordinates 𝑦

𝑛
of the cable mode n; 𝑇

0
, 𝑇
𝑞
, and 𝑇

𝑑
are,

respectively, the static tension in the cable at its equilibrium,
the tension increment induced by the supportmovement, and
the tension increment induced by the dynamic motion of the
cable; 𝑇

𝑑
is responsible for the quadratic and cubic nonlinear

couplings between in-plane and out-of-plane motions; ̈V
𝑎

and ̈V
𝑏
are, respectively, the transverse acceleration of the

anchorage points a and b according to the y-axis.
The expressions of 𝑇

𝑞
and 𝑇

𝑑
are given in the Appendix.

6.1.2. In-Plane Cable Motion. The in-plane displacements of
the cable (perpendicular to its chord line) is described by
the following equation of motion governing the generalized
coordinates 𝑧

𝑛
of the nth in-plane mode of vibration and

accounting for the gravity effect (𝛾 = 𝜌𝑔 cos 𝜃):

1

2
𝑚𝑙 { ̈𝑧

𝑛
+ 2𝜉
𝑧
𝑛

𝜔
𝑧
𝑛

̇𝑧
𝑛
+
𝑛
2
𝜋
2

𝑚𝑙2
(𝑇
0
+ 𝑇
𝑞
+ 𝑇
𝑑
) 𝑧
𝑛
}

= 𝐹
𝑧
𝑛

−
𝑚𝑙

𝑛𝜋
( ̈𝑤
𝑎
+ (−1)

𝑛+1
̈𝑤
𝑏
)

+
𝑚𝑙
2
𝐸
𝑞
𝛾

(𝜎𝑠)
2

(1 + (−1)
𝑛+1

)

(𝑛𝜋)
3

( ̈𝑢
𝑏
− ̈𝑢
𝑎
)

−
𝛾𝐴𝑙

𝑇
0

(1 + (−1)
𝑛+1

)

𝑛𝜋
𝑇
𝑑
,

(6)

where𝐸
𝑞
is the effectivemodulus of elasticity (see Appendix),

𝛾 is the component of distributed weight along the cable,
𝜌 is the cable density, 𝑔 is the gravity, 𝜃 is the angle of
the chord line with respect to the horizontal, A is the cross
section of the cable and 𝜎𝑠 is the static stress, 𝜉

𝑧
𝑛

, 𝜔
𝑧
𝑛

, and 𝐹
𝑧
𝑛

are, respectively, the modal damping, the frequency, and the

Nonlinear cables

FE model of the
bridge without cables

Reaction forces applied by the cables 
to the pylon and the deck

Anchorage displacements
applied by the pylon and the deck

Figure 10: Principle of coupling between the FEmodel of the bridge
and the nonlinear cables.

modal component of the external forces applied to the cable,
associated with the generalized coordinates 𝑧

𝑛
of the cable

mode n. ̈𝑤
𝑎
and ̈𝑤

𝑏
are, respectively, the in-plane acceleration

of the anchorage points a and b according to the z-axis. ̈𝑢
𝑎

and ̈𝑢
𝑏
are, respectively, the longitudinal acceleration of the

anchorage points a and b according to the y-axis.

6.2. Coupling between the Nonlinear Cables and the FE
Model of the Bridge. As an alternative to a general nonlinear
Finite Element approach which would be extremely time
consuming, we had developed, using SDTools [29] and
Matlab/Simulink, software which combines a Finite Element
model of the linear structure with a nonlinear analytical
model of the cables accounting for general supportmovement
and cubic and quadratic couplings between in-plane and out-
of-plane motions of the cable. Figure 10 shows the principle
of coupling between the FE model of the bridge and the non-
linear cables: the structure motion imposes displacements to
the cables supports and the reactions of the cables supports
act like external forces to the structure. Using SDTools, it
can be achieved numerically by creating pairs of collocated
force actuator-displacement sensors in the anchorage points
and coupling the cables to the rest of the structure through
Simulink (for more details about the coupling see [23]).

Taking into account the nonlinear dynamics of the nc
cables and active damping, the global equation of motion of
the cable-stayed bridge can be expressed in modal coordi-
nates as follows:

𝜇
𝑖
{ ̈𝑒
𝑖
+ 2𝜉
𝑖
𝜔
𝑖
̇𝑒
𝑖
+ 𝜔
2

𝑖
𝑒
𝑖
}

= 𝐹
𝑖
+ 𝜙
𝑇

𝑖
𝐵
𝑛
𝐹cont

− 𝜙
𝑇

𝑖

𝑛
𝑐

∑

𝑘

[(𝐿
𝑘𝑇

𝑎
, 𝐿
𝑘𝑇

𝑏
) (𝐹
𝑘

𝑢
𝑎

𝐹
𝑘

V
𝑎

𝐹
𝑘

𝑤
𝑎

𝐹
𝑘

𝑢
𝑏

𝐹
𝑘

V
𝑏

𝐹
𝑘

𝑤
𝑏

)
𝑇

] ,

(7)

where 𝜇
𝑖
, 𝜉
𝑖
, 𝜔
𝑖
, and 𝐹

𝑖
are, respectively, the modal mass, the

modal damping, the frequency, and the modal component
of the external forces applied to the bridge without cables,
associated with the generalized coordinates 𝑒

𝑖
of the bridge

mode i. 𝜙
𝑖
represents the mode shapes of the bridge without

cables. 𝐿𝑘𝑇
𝑎

and 𝐿
𝑘𝑇

𝑏
are the transformation matrices allowing

the transformation from the global coordinates of the bridge
to the local coordinates of the cable k.𝐹𝑘

𝑢
𝑎

, 𝐹
𝑘

V
𝑎

, 𝐹
𝑘

𝑤
𝑎

, 𝐹
𝑘

𝑢
𝑏

, 𝐹
𝑘

V
𝑏

,
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f/2

Figure 11: Description of the numerical experience.

and 𝐹
𝑘

𝑤
𝑏

are the reaction forces on the anchorage points (a
and b) written in the local coordinates of the cable k (see
Appendix). 𝑛𝐹cont are the control forces of the n active cables
and are given in (4).

The equations of motions of the cables and the bridge are
solved simultaneously and interactively using the fourth and
fifth order Dormand-Prince Runge-Kutta method.

6.3. Parametric Excitation. In cable-stayed bridges, the pres-
ence of many low frequencies in the deck or tower and in
the stay cables may give rise to parametric excitation. The
coupling between a local cable and a global structure makes
the bridge sensitive to very small motion of the deck or
tower which may cause dynamic instabilities and very large
oscillations of the stay cables (see Figure 11). This may occur
when the frequency of the anchorage motion is close to the
fundamental frequency or twice the first natural frequency of
the cable.

In order to produce a principal (first order) parametric
excitation corresponding to a fundamental natural frequency
of the in-plane mode (6.77Hz) equal to the half of the
frequency of the first symmetric flexural mode shape of the
bridge (13.55Hz), the tension of cable number 2 is tuned.
Active damping is added through the four short active cables
using decentralized parallel PPF-DVF strategy. Then, the
global flexural mode had been harmonically excited by a
frequency equal to 13.55Hz and force amplitude of 2N
through the actuator of cable number 1. Finally, the in-plane
midspan motion of cable number 2 and the deck vibration
in the anchorage point A in the vertical direction had been
recorded. Figure 11 describes the principle of the numerical
experience. In order to produce a fundamental (second
order) parametric excitation, the same numerical experience
described above is repeated but the cable tension is tuned to
obtain a fundamental natural frequency of the in-planemode
equal to the frequency of the first symmetric flexural mode
shape of the bridge. The evolution in time of the in-plane
motion of cable number 2 at midspan (L/2) and the deck
vibration in the anchorage point A in the vertical direction,
under principal and fundamental parametric excitations, are
plotted in Figures 12(a) and 13(a) for both cases, with and
without active control. The amplitude of the deck is well

damped and the parametric resonance is cancelled. Figures
12(b) and 13(b) show the trajectory of the cable at midspan
before control triggering and then during the first 10 seconds
after switching on the control and finally during the last 10
seconds. The cable is attractively damped for both in-plane
and out-of-plane motions.

7. Conclusions

The active tendon control of a cable-stayed bridge in a
construction phase had been investigated numerically. Active
damping is added to the structure by using pairs of collocated
force actuator-displacement sensor located on each active
cable and decentralized first order positive position feedback
(PPF) or direct velocity feedback (DVF). A comparison
between these two compensators showed that each one has
good performance for some modes and performs inade-
quately with the other modes. A parallel PPF-DVF is pro-
posed to get the better of the two compensators.Theproposed
strategy is then compared to the one using decentralized
integral force feedback and showed better performance.
Finally, the proposed strategy is applied to a nonlinear model
of a cable-stayed bridge in order to control both deck and
cable vibrations induced by parametric excitation. Both cable
and deck vibrations are attractively damped. As a futurework,
a modal analysis of the cable-stayed bridge will be carried
out during all the construction phases. The proposed control
strategy will be improved to be adaptive to different phases
of construction and semiactive tendon control of the cable-
stayed bridge using MR dampers will also be investigated.

Appendix

The Irvine parameter is

𝜆
2
= (

𝜌𝑙𝑔 cos 𝜃
𝜎𝑠

)

2
𝐸

𝜎𝑠
, (A.1)

where 𝜌 is the cable density, 𝑔 is the gravity, 𝜃 is the angle of
the chord line with respect to the horizontal,𝐸 is themodulus
of elasticity, and 𝜎

𝑠 is the static stress.
The effective modulus of elasticity is

𝐸
𝑞
=

1

1 + (𝜆2/12)
𝐸. (A.2)

The tension increment induced by the supportmovement
is

𝑇
𝑞
= 𝑇
(1)

𝑞
+ 𝑇
(2)

𝑞
, (A.3)

where

𝑇
(1)

𝑞
= 𝐸
𝑞
𝐴

𝑢
𝑏
− 𝑢
𝑎

𝑙
,

𝑇
(2)

𝑞
= 𝐸𝐴(1 +

𝐸
𝑞

𝜎𝑠

𝜆
2

12 + 𝜆2
)
(𝑢
𝑏
− 𝑢
𝑎
)
2

2𝑙2
+ 𝐸𝐴

(V
𝑏
− V
𝑎
)
2

2𝑙2

+ 𝐸𝐴(1 +
𝜆
2
𝜎
𝑠

12𝐸
)
(𝑤
𝑏
− 𝑤
𝑎
)
2

2𝑙2
,

(A.4)
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Figure 12: (a) Evolution in time of the vertical deck vibration and the in-plane cable vibration at L/2 (control on at 20 s); (b) cable trajectory
at L/2 before and after control (case of principal parametric excitation).
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where 𝑢
𝑎
, 𝑢
𝑏
, V
𝑎
, V
𝑏
, 𝑤
𝑎
, and 𝑤

𝑏
are the movements imposed

to anchorage points.
The tension increment induced by the dynamicmotion of

the cable is

𝑇
𝑑
= 𝑇
(1)

𝑑
+ 𝑇
(2)

𝑑
, (A.5)

where

𝑇
(1)

𝑑
=

𝐸𝐴
2
𝛾

𝑇
0

∑

𝑛

[
𝑧
𝑛

𝑛𝜋
(1 + (−1)

𝑛+1
)] ,

𝑇
(2)

𝑑
=

𝐸𝐴

2
∑

𝑛

(𝑦
2

𝑛

𝑛
2
𝜋
2

2𝑙2
) +

𝐸𝐴

2
∑

𝑛

(𝑧
2

𝑛

𝑛
2
𝜋
2

2𝑙2
)

−
𝐸
𝑞
𝐸𝐴𝛾

(𝜎𝑠)
2

𝑢
𝑏
− 𝑢
𝑎

𝑙
∑

𝑛

[
𝑧
𝑛

𝑛𝜋
(1 + (−1)

𝑛+1
)] .

(A.6)

The reaction forces on the cable anchorage points a and b
are expressed as follow:

𝐹
𝑢
𝑎

=
1

2
𝑚𝑙{𝑐
1
( ̈𝑢
𝑏
− ̈𝑢
𝑎
) + ̈𝑢
𝑏
+ 𝑐
2
( ̈𝑤
𝑏
− ̈𝑤
𝑎
)

+𝑐
3

̈𝑤
𝑎
+ 𝑐
4
∑

𝑛

1 + (−1)
𝑛+1

(𝑛𝜋)
3

̈𝑧
𝑛
}

+ (𝑇
0
+ 𝑇
𝑞
+ 𝑇
𝑑
)

× {𝑐
5
+ 𝑐
6
∑

𝑛

1 + (−1)
𝑛+1

(𝑛𝜋)
𝑧
𝑛
+ 𝑐
7
(𝑢
𝑏
− 𝑢
𝑎
)} ,

𝐹
𝑢
𝑏

=
1

2
𝑚𝑙{ − 𝑐

1
( ̈𝑢
𝑏
− ̈𝑢
𝑎
) + ̈𝑢
𝑏
+ 𝑐
8
( ̈𝑤
𝑏
− ̈𝑤
𝑎
)

−𝑐
3

̈𝑤
𝑎
− 𝑐
4
∑

𝑛

1 + (−1)
𝑛+1

(𝑛𝜋)
3

̈𝑧
𝑛
}

− (𝑇
0
+ 𝑇
𝑞
+ 𝑇
𝑑
)

× {𝑐
5
+ 𝑐
6
∑

𝑛

1 + (−1)
𝑛+1

(𝑛𝜋)
𝑧
𝑛
+ 𝑐
7
(𝑢
𝑏
− 𝑢
𝑎
)} ,

𝐹V
𝑎

=
1

2
𝑚𝑙{−

2

3
( ̈V
𝑏
− ̈V
𝑎
) + ̈V
𝑏
+ 2∑

𝑛

1

𝑛𝜋
̈𝑦
𝑛
}
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0
+ 𝑇
𝑞
+ 𝑇
𝑑
)
V
𝑏
− V
𝑎

𝑙
,

𝐹V
𝑏
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1

2
𝑚𝑙{

2

3
( ̈V
𝑏
− ̈V
𝑎
) + ̈V
𝑎
+ 2∑

𝑛

(−1)
𝑛+1

𝑛𝜋
̈𝑦
𝑛
}
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0
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𝑞
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𝑑
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𝑏
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𝑎
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𝑤
𝑎

=
1

2
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( ̈𝑤
𝑏
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(A.7)

where

𝑐
1
= − 2(

1

1 + (𝜆2/12)
)

2

(
1

3
+
𝜆
2
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+

𝜆
4

432
+

𝜆
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120
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𝑐
2
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𝜆
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𝜎
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𝜆
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3
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𝑐
9
= −
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𝜎
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𝜎
𝑠

𝐸
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(A.8)
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Multisensor information fusion, when applied to fault diagnosis, the time-space scope, and the quantity of information are
expanded compared to what could be acquired by a single sensor, so the diagnostic object can be described more comprehensively.
This paper presents a methodology of fault diagnosis in rotating machinery using multisensor information fusion that all the
features are calculated using vibration data in time domain to constitute fusional vector and the support vector machine (SVM) is
used for classification.The effectiveness of the presentedmethodology is tested by three case studies: diagnostic of faulty gear, rolling
bearing, and identification of rotor crack. For each case study, the sensibilities of the features are analyzed. The results indicate that
the peak factor is the most sensitive feature in the twelve time-domain features for identifying gear defect, and the mean, amplitude
square, root mean square, root amplitude, and standard deviation are all sensitive for identifying gear, rolling bearing, and rotor
crack defect comparatively.

1. Introduction

Typical rotating machinery systems such as water turbine,
steam turbine, wind turbine, and rotary kiln are critical
core equipment support of the important industries of the
national economy [1, 2]. The safety, reliability, efficiency, and
performance of rotating machinery are major concerns in
industry, so, the task of condition monitoring and fault diag-
nosis of rotating machinery is significant [3]. The common
mechanical defects of rotating machinery are divided into
three categories: (1) rotor body defects, such as unbalance,
misalignment, rubbing, and rotor crack; (2) rotor support-
bearing defects, such as inner race, outer race or ball defect
of rolling bearing, and oil whirl or oil whip of sliding bearing;
(3) transmission gear defects, such as chipped tooth defect or
missing tooth defect. In-process monitoring and diagnostics
of rotating machinery require reasoning about defect and
process states from sensor readings. Often the relationship

between the sensor readings and the process states is complex
and nondeterministic. For a complex system, a single sensor
is incapable of collecting enough data for accurate condition
monitoring and fault diagnosis. Multiple sensors are needed
in order to do a better job. When multiple sensors are used,
data collected from different sensors may contain different
partial information about the same machine condition. The
diagnostic object can be describedmore comprehensively [4–
6]. Compared with single sensor, the time-space scope and
the quantity of information are expanded. The diagnostic
accuracy and reliability can be improved. Multisensor infor-
mation fusion can be categorized into three levels [7, 8]: data-
level fusion, feature-level fusion, and decision-level fusion.

At data-level fusion, all sensor data from a measured
object are combined directly and features are then calculated
from the fused data. Fusion of data at this level contains
most information and can deliver good results. However, the
sensors used in this level must be commensurate.That means
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the measurement has to be the same or has similar physical
quantities or phenomena. During the most popular data-
level fusion methodology, such as weighted fusion [9], the
weighted value ofmultisensor signals is difficult to determine.
As a consequence, data-level applications are limited in
real environment. At feature-level fusion, the features are
calculated from each sensor according to the type of raw
data. Then, these noncommensurate sensors features are
combined at the feature level. All features are combined in
turn into a bigger single feature set, which are then used
in a special classification model such as artificial neural
network (ANN), support vector machine (SVM), and cluster
algorithm for decisions [10]. The feature-level fusion is a
compromise form of data-level fusion and decision-level
fusion. Its data alignment requirements are not strict as the
data-level fusion that heterogeneous sensors are allowed, and
its information loss is less serious than the decision-level
fusion but still achieved a better information compression.
As a consequence, feature-level applications are flexible and
popular. At decision-level fusion, the processes of features
calculation and pattern recognition are applied in sequence
for single-source data obtained from each sensor. The deci-
sion vectors are then fused using decision-level fusion tech-
niques such as voting strategy, Bayesian method, behavior-
knowledge space, andDempster-Shafer theory [11]. Relatively
speaking, there is maximum amount of information loss
at decision-level.

This paper proposes a feature-level fusion method for
rotating machinery fault diagnosis. Generally, heterogeneous
information fusion is executed at feature-level fusion for
mechanical condition monitoring and fault diagnosis in the
present literature. For example, Barad et al. put forward the
development of an ANN based model for condition moni-
toring of a power turbine that blends parameters belonging
to performance, vibration, and lubrication [8]; Loutas et al.
combined use of vibration, acoustic emission, and oil debris
monitoring of rotating machinery [6]. The condition of
mechanical system may be described in more detail by
using heterogeneous information fusion, but this process
needs multiclass sensors and its matching data acquisition
systems, which would lead to higher monitoring costs and
inconvenient operation of data acquisition in the real envi-
ronment. ANN and SVM are the most popular classification
models to execute decision at feature-level fusion [12, 13].
The main difference between ANN and SVM is in their risk
minimization. SVM is based on structural risk minimization
principle, whereas ANN is based on traditional empirical risk
minimization principle. The difference in risk minimization
leads to a better generalization performance for SVM than
that of ANN [14, 15]. SVM is powerful for solving the
problem with small sampling, nonlinear and high dimension
in machinery condition classification. In this paper, the
proposed feature-level fusionmethod belongs to homologous
information fusion that the raw data all come from vibration
sensors, so only a vibration testing system is needed for
raw signal collected, which makes the process simpler. In
this method, time-domain features are calculated from each
vibration signal to compose a multidimensional feature set,
and the SVM is selected as the classification model to process

information fusion. In order to verify the effectiveness of
the proposedmethod, fault diagnostic cases are tested, which
include fault diagnosis of rolling bearing (identifying normal,
inner race defect, outer race defect, and ball defect), fault
diagnosis of gear (identifying normal, chipped tooth, and
missing tooth), and fault diagnosis of rotor crack (identifying
normal, crack depth of 3mm, and crack depth of 5mm). For
each case study, the sensibilities of the features are analyzed.

2. Theory

2.1. Support Vector Machine (SVM). The SVM is a machine
learning method based on the statistical learning theory and
structural risk minimization principle. Given two category
sample sets (𝑥

𝑖
, 𝑦
𝑖
) (𝑥
𝑖
∈ 𝑅
𝑑; 𝑦
𝑖
∈ {−1, +1}; 𝑖 = 1, 2, . . . , 𝑛), 𝑛 is

the number of samples. The optimal hyperplane separating
the data can be obtained as a solution to the following
optimization problem [15, 16]:

Min 1
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‖𝜛‖
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(1)

where 𝜔 is weight vector, 𝑏 is scalar, 𝜉
𝑖
is slack variable, and 𝐶

is error penalty.
The dual quadratic optimization description can be

obtained by converting the problem with Kuhn-Tucker con-
dition into the equivalent Lagrangian dual problem:
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where 𝛼
𝑖
is Lagrange coefficient, which must meet the

following equation:

𝛼
𝑖
{𝑦
𝑖
[(𝜛 ⋅ 𝑥

𝑖
) + 𝑏] − 1 + 𝜉

𝑖
} = 0. (3)

The support vector is the sample which satisfies the
equation 𝑦

𝑖
[(𝜔 ⋅ 𝑥

𝑖
) + 𝑏] = 1 − 𝜉

𝑖
at the time of the nonzero

𝛼
𝑖
. It reveals that the samples at the edge of distribution

are essential for classification. This leads to the optimal
classification decision function:

𝑓 (𝑥) = sgn{
𝑙
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𝛼
∗

𝑖
𝑦
𝑖
(𝑥
𝑖
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where 𝑙 is the number of support vectors.
In linear inseparable condition, the samples (𝑥

𝑖
, 𝑦
𝑖
) (𝑥
𝑖
∈

𝑅
𝑑; 𝑦
𝑖
∈ {−1, +1}; 𝑖 = 1, 2, . . . , 𝑛) in input space are mapped

into high dimensional space 𝐻 where the optimal classi-
fication surface can be established through the nonlinear
mapping Φ : 𝑅

𝑑
→ 𝐻. The nonlinear mapping Φ is

usually difficult to be solved while kernel functions𝐾(𝑥
𝑖
, 𝑥
𝑗
)
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meeting Mercer conditions can be used to solve this problem
dexterously. The kernel function is described as follows:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = ⟨Φ (𝑥

𝑖
) ⋅ Φ (𝑥

𝑗
)⟩ . (5)

The optimal classification decision function of linear
inseparable samples is obtained using (5) into (4):
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∗
} .

(6)

The common kernel functions include linear kernel
function, poly kernel function, radial basis function (RBF)
kernel function, and sigmoid kernel function.

The traditional SVM was originally designed for binary
classification problems. However, many practical problems
in fault diagnosis field are multiclassification. Now some
effective multiclass support vector machines were proposed
which include “one-against-one,” “one-against-all,” directed
acyclic graph (DAG), and so on [15]. Hsu et al. have given a
comparison of these methods and pointed out that the “one-
against-one” method is more suitable for practical use than
other methods [17, 18].

2.2. Time-Domain Features. When the running conditions of
the rotating machinery deviate from the normal condition,
the time-domain statistical features of the vibration signal
will be different from the normal condition. Furthermore, the
time-domain statistical features will be also different under
different defect models.Therefore, the time-domain statistics
contain abundant defect information, and they can be used
as sensitive character applied to fault diagnosis of rotating
machinery. The time-domain statistical features used in this
study are shown in Table 1.

2.3. Multisensors Information Fusion Model. The model of
multisensor information fusion is used in this study and
shown in Figure 1. The same character of different sensors
is extracted to constitute a multidimensional vector and the
SVM is used for pattern recognition. Twelve different time-
domain features are analyzed one by one.

3. Case Studies

3.1. Data Acquisition. Experiments were performed on the
machinery fault simulator (MFS) from SpectraQuest, Inc.,
shown in Figure 2. It can simulate most of faults that
commonly occur in rotating machinery, such as rotor body
defects, bearing defects, and gearbox defects. The shaft rotat-
ing speed was obtained by a laser speedometer. Acceleration
signals were collected using the Dewetron 16 channels data
acquisition system and IMI 608A11 accelerometers.

In the vibration testing experiments for roller bearing
fault diagnosis, the simulator is composed of a motor,

Table 1: The statistic features in time domain.

Code name Feature Equation
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|
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Waveform factor
(SF)

SF =
𝑥rms

𝑥

𝑓
10

Peak factor
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𝑥𝑖 in the table is discrete time series signal.

a coupling, a testing roller bearing fitted on the left of the shaft
near the motor, a working roller bearing on the other side, a
bearing load, and a shaft.TheMFS provides a rolling bearing
fault kit consisting of one normal, one inner race defect, one
outer race defect, one with ball defect, and one combination
of defects for performing experiments and studying bearing
fault diagnosis. The acquisition frequency rate is 10 kHz. The
sensors layout is depicted schematically in Figure 2(a) that a
total of 8 sensors from 𝑡

1
to 𝑡
8
are used.

In the vibration testing experiments for gear fault diag-
nosis, the drive from the motor transmits to the gearbox
through bearing-rotor system and belt. The gearbox consists
of a two-stage parallel shaft with rolling bearings, helical
gears, and a magnetic brake. The simplified diagram of
gearbox transmission is shown in Figure 3, where 𝑧

1
is the

testing gear. The MFS provides a gear fault kit consisting of
one normal, one chipped tooth, and one missing tooth for
performing experiments and studying gear fault diagnosis.
The acquisition frequency rate is 20 kHz.The sensors layout is
depicted schematically in Figure 2(b) that a total of 8 sensors
from 𝑠

1
to 𝑠
8
are used.

In the vibration testing experiments for rotor crack fault
diagnosis, the rotor-bearing system is driven by the motor. In
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Figure 1: The multisensor information fusion process model.

t1 t2

t3 t4

t5 t6 t7 t8

(a) The front view

(S1)
S2

S3

S4

S6(S5)S7(S8)

(b) The side view

Figure 2: The machinery fault simulator.
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Figure 3: The simplified diagram of gearbox transmission.

order to simulate the expanding of crack, crack faults were
introduced to the test rotor by using the electrodischarge
machining.The defect with crack width of 0.12mm and crack
depth of 3mm represents slight defect, and that with crack
width of 0.12mm and crack depth of 5mm represents serious
defect. The acquisition frequency rate is 10 kHz. The sensors
layout is depicted schematically in Figure 2(a) that a total of
4 sensors from 𝑡

1
to 𝑡
4
are used.

3.2. Fault Diagnostic Case of Gear. Vibration signals of gear
with three fault models including normal, chipped tooth,
and missing tooth are taken for analysis. A certain time-
domain feature is calculated from eight sensors (𝑠

1
to 𝑠
8
) to

constitute an eight-dimensional vector as a fault sample. One
hundred and ten fault samples from each model, a total of

three hundred and thirty samples, are used to constitute the
fault sample sets. Sixty fault samples from each model, a total
of one hundred and eighty samples, are selected randomly as
training samples and the others are used as testing samples.
Twelve time-domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. LibSVM
is developed by Lin Chih-Jen from Taiwan [19]. It is a simple
and easy-to-use SVMs tool for classification. RBF kernel
function is chosen as kernel function shown as follows:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝑔󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , 𝑔 ≻ 0. (7)

The cross-validation combination with network search
method is used to search the best parameters: the error
penalty 𝐶 of SVM and 𝑔 of RFB. One-against-one multiclas-
sification is chosen for pattern recognition. The diagnostic
results of gear by using different time-domain features are
listed in Table 2.

It can be found from Table 2 that the highest diagnostic
accuracy is 93.33% by using the peak factor as feature to
constitute fusional vector for gear fault diagnosis. Sensitivity
of the features can be indicated by diagnostic accuracy when
using the same classifier SVM, so, the peak factor is the
most sensitive feature in the twelve time-domain features for
identifying gear defect, followed by the amplitude square,
root amplitude, mean, root mean square, standard deviation,
and peak. The diagnostic accuracy is all above 80% by using
these features. The skewness, kurtosis, waveform factor, and
margin factor are less sensitive comparatively.The diagnostic
accuracy is all under 70% by using these features.
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Table 2: Diagnostic results of gear by using different features for fusion.

Feature The best parameter Diagnostic accuracy (%)
𝐶 𝑔 Normal Chipped tooth Missing tooth All testing samples

Mean 26.5 215 98 82 84 88.00
Peak 21 28 98 86 66 83.33
Amplitude square 212 20 98 82 88 89.33
Root mean square 214 23 98 78 86 87.33
Root amplitude 211.5 211.5 100 88 76 88.00
Standard deviation 27.5 29.5 98 78 86 87.33
Skewness 28 2−1 98 30 58 62.00
Kurtosis 22.5 2−3 94 68 40 67.33
Waveform factor 2−1.5 29 92 42 30 55.33
Peak factor 20.5 2−1 94 92 94 93.33
Pulse factor 2−0.5 2−2 96 64 60 73.33
Margin factor 20 2−3 96 57 55 69.33

Table 3: Diagnostic results of gear by using different single sensors.

Sensor The best parameter Diagnostic accuracy (%)
𝐶 𝑔 Normal Chipped tooth Missing tooth All testing samples

𝑠1 25.5 28 40 28 86 51.33
𝑠2 23.5 213.5 22 94 100 72.00
𝑠3 21 24 84 82 76 80.67
𝑠4 23 28.5 54 80 94 76.00
𝑠5 215 20.5 64 90 100 84.67
𝑠6 213.5 26.5 92 96 56 81.33
𝑠7 211.5 27.5 90 96 64 83.33
𝑠8 215 24 78 86 58 74.00

It also can be found from Table 2 that the accuracy of
normal testing samples is all above 90% by using any feature.
During the analysis, we also found that the samples of defect
with chipped tooth and defect with missing tooth are easy
to be misclassified with each other, but defect samples are
seldom mistakenly regarded as normal samples, so it can
be deduced that normal and defect gear are always easy to
distinguish.

In order to compare with single sensor for gear fault diag-
nosis, take eight features from a single sensor to constitute an
eight-dimensional vector as a fault sample. The eight features
are the peak factor, amplitude square, root amplitude, mean,
root mean square, standard deviation, peak, and pulse factor,
which are the first eight sensitive features for identifying
gear defect selected on the basis of the above analysis result.
In order to avoid the orders of magnitude difference of
different features, normalized eigenvector is processed before
inputting SVM. In fact, during the proposed multisensors
information analysis, the fault sample is constituted by the
same feature from multisensors, so the orders of magnitude
difference are nonexistent and normalized eigenvector is
not needed. The sensors 𝑠

1
to 𝑠
8
are analyzed one by one.

The diagnostic results of gear by using different single sensors
are listed in Table 3.

Comparing with Tables 2 and 3, it can be found that
there is higher diagnostic accuracy by using multisensors
information fusion method than using single sensor method
as a whole.

3.3. Fault Diagnostic Case of Rolling Bearing. Vibration sig-
nals of rolling bearing with four fault models including
normal, inner race defect, outer race defect, and ball defect
are taken for analysis. A certain time-domain feature is
calculated from eight sensors (𝑡

1
to 𝑡
8
) to constitute an eight-

dimensional vector as a fault sample. One hundred and ten
fault samples from each model, a total of four hundred
and forty samples, are used to constitute the fault sample
sets. Fifty fault samples from each model, a total of two
hundred samples, are selected randomly as training samples
and the others are used as testing samples. Twelve time-
domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. Gaus-
sian kernel function is chosen as kernel function. The cross-
validation combination with network search method is used
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Table 4: Diagnostic results of rolling bearing by using different features for fusion.

Feature The best parameter Diagnostic accuracy (%)
𝐶 𝑔 Normal Inner race defect Outer race defect Ball defect All testing samples

Mean 2−3 215 100 100 100 100 100
Peak 23 27 94.29 94.29 100 100 97.14
Amplitude square 2−3 25 100 100 100 100 100
Root mean square 24.5 215 100 100 100 100 100
Root amplitude 2−2 215 100 100 100 100 100
Standard deviation 24.5 215 100 100 100 100 100
Skewness 22 24 65.71 84.29 62.86 80 73.21
Kurtosis 26 2−2 90.00 72.86 82.86 97.14 85.71
Waveform factor 22 29 81.43 70.00 80.00 98.57 82.50
Peak factor 23 2−3 64.29 64.29 78.57 95.71 75.71
Pulse factor 22 2−3 71.43 64.29 81.43 95.71 78.21
Margin factor 25 2−4.5 71.43 68.57 80 95.71 78.93

Table 5: Diagnostic results of rolling bearing by using different single sensors.

Sensor The best parameter Diagnostic accuracy (%)
𝐶 𝑔 Normal Inner race defect Outer race defect Ball defect All testing samples

𝑡1 214.5 2−1.5 85.56 88.89 100 98.89 93.33
𝑡2 211 25.5 58.89 58.89 100 100 79.44
𝑡3 23.5 24 96.67 78.89 100 98.89 93.67
𝑡4 214.5 20.5 100 85.56 83.33 98.89 91.94
𝑡5 22 27.5 100 96.67 100 100 99.17
𝑡6 22 27.5 97.7 96.67 100 91.11 96.39
𝑡7 211 23.5 98.89 90 100 88.89 94.44
𝑡8 210 2−1.5 61.11 51.11 53.33 87.78 63.33

to search the parameters𝐶 and 𝑔. One-against-onemulticlas-
sification is chosen for pattern recognition. The diagnostic
results of rolling bearing by using different time-domain
features are listed in Table 4.

It can be found from Table 4 that the mean, amplitude
square, root mean square, root amplitude, and standard
deviation are the first five sensitive features for identifying
rolling bearing defect. The diagnostic accuracy is all 100%
by using these features. Comparing with Tables 4 and 2, it
can be found that there is a higher diagnostic accuracy for
rolling bearing fault diagnosis than for gear fault diagnosis by
using the proposed information fusion method as a whole.
The main cause is that the way from the defect position of
rolling bearing to the sensor installation position is shorter
and simpler than the way from the defect position of gear.

In order to compare with single sensor for rolling bearing
fault diagnosis, take eight features from a single sensor to
constitute an eight-dimensional vector as a fault sample. The
eight features are the mean, amplitude square, root mean
square, root amplitude, standard deviation, peak, kurtosis,
and waveform factor, which are the first eight sensitive
features for identifying rolling bearing defect selected on the
basis of the above analysis result. In order to avoid the orders
of magnitude difference of different features, normalized

eigenvector is processed before inputting SVM.The sensors 𝑡
1

to 𝑡
8
are analyzed one by one.The diagnostic results of rolling

bearing by using different single sensor are listed in Table 5.
Comparing with Tables 4 and 5, it can be found that

there is higher diagnostic accuracy by using multisensors
information fusion method than using single sensor method
as a whole.

3.4. Fault Diagnostic Case of Rotor Crack. Vibration signals
of rotor crack with three fault models including normal,
crack depth of 3mm, and crack depth of 5mm are taken for
analysis. A certain time-domain feature is calculated from
four sensors (𝑡

1
to 𝑡
4
) to constitute a four-dimensional vector

as a fault sample. One hundred fault samples from each
model, a total of three hundred samples, are used to constitute
the fault sample sets. Fifty fault samples from each model,
total of one hundred and fifty samples, are selected randomly
as training samples and the others are used as testing samples.
Twelve time-domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. Gaus-
sian kernel function is chosen as kernel function. The cross-
validation combination with network search method is used
to search the parameters𝐶 and𝑔. One-against-onemulticlas-
sification is chosen for pattern recognition. The diagnostic
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Table 6: Diagnostic results of rotor crack by using different features for fusion.

Feature The best parameter Diagnostic accuracy (%)
𝐶 𝑔 Normal Crack depth of 3mm Crack depth of 5mm All testing samples

Mean 24.5 212 98 94 100 98.67
Peak 20 29.5 72 86 88 85.33
Amplitude square 27 22 100 96 94 96.67
Root mean square 26 24 100 98 100 99.67
Root amplitude 25.5 23 100 92 100 97.33
Standard deviation 24 28 98 96 98 98.67
Skewness 25 2−2 58 44 46 58.00
Kurtosis 23.5 2−1 44 74 84 71.00
Waveform factor 22 23 34 80 84 72.33
Peak factor 22.5 2−1.5 42 46 62 69.33
Pulse factor 2−3 2−1 28 74 76 64.00
Margin factor 21 2−3 32 72 74 64.67

results of gear by using different time-domain features are
listed in Table 6.

It can be found from Table 5 that the mean, amplitude
square, root mean square, root amplitude, and standard
deviation are the first five sensitive features for identifying
rotor crack defect.The diagnostic accuracy is all 90% by using
these features. The result is similar to fault diagnostic case of
rolling bearing.

4. Conclusion

In this paper, a feature-level information fusionmethodology
is proposed that all the features are calculated using vibration
data in time domain to constitute fusional vector and the
SVM is used for classification. Only a vibration testing
system is needed for raw signal collected in this method,
so the process is simpler. The effectiveness of the proposed
methodology is tested with examples of gear, rolling bearing,
and rotor crack fault diagnosis. Sensitivities of the twelve
time-domain features are discussed in each case study. The
analyzed results indicate that the peak factor is themost sensi-
tive feature in the twelve time-domain features for identifying
gear defect, but it is not very sensitive for identifying rolling
bearing and rotor crack defect. The mean, amplitude square,
root mean square, root amplitude, and standard deviation are
all sensitive for identifying gear, rolling bearing, and rotor
crack defect comparatively.

The features used and discussed in this paper are all in
time domain; however, features in frequency domain also
can be used for fault diagnosis of rotating machinery and
the sensibilities of the features for identifying rolling bearing,
gear, and rotor defect are also worth studying in the future.
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We study a capacitiveMEMS switch composed of two clamped-clamped exiblemicrobeams.We first develop amathematicalmodel
for theMEMS switch where the upper microbeam represents the ground transmission line and the lower one represents the central
transmission line. An electrostatic force is applied between the two microbeams to yield the switch to its ON and OFF states.
We derive the equations of motion of the system and associated boundary conditions and solve the static and dynamic problems
using the differential quadraticmethod.We show that using only nine grid points gives relatively accurate results when compared to
those obtained using FEM.We also examine the transient behavior of themicroswitch and obtain results indicating that subsequent
reduction in actuation voltage, switching time, and power consumption are expected along with relatively good RF performances.
ANSYSHFSS simulator is used in this paper to extract the RF characteristics of the microswitch. HFSS simulation results show that
the insertion loss is as low as −0.31 dB and that the return loss is better than −12.41 dB at 10GHz in the ON state. At the OFF state,
the isolation is lower than −23 dB in the range of 10 to 50GHz.

1. Introduction

In telecommunication, MEMS devices offer a multitude of
components to replace the classical semiconductor circuits
elements. Microswitches and microresonators are used in
a series of applications extending from the mobile phone
and wireless networks to fiber-optic communication and
multiplexed networks [1–3]. The major tasks of these devices
are switching, filtering, and tuning. The equivalent cir-
cuit elements to these devices (PIN diode and Field-Effect
Transistors FET) are generally characterized by high power
consumption, low reliability, and high-manufacturing costs.
In addition, they present unsatisfactory performance for high
signal frequencies [4]; they give a high insertion loss and
inadequate isolation at ON and OFF switching state.

Radio frequency MEMS (RF-MEMS) components have
been recently widely developed and used in several appli-
cations. In particular, RF-MEMS microswitches are used in
telecommunication applications to replace the traditional

microelectronic switches (diodes and transistors). These
microswitches present an improved insertion loss and good
isolation during the “ON/OFF” switching states [4].However,
they are limited by the high actuation voltage (up to 30 volts)
and slow switching time (nearly 300 microseconds). As a
result, several researchers want to ameliorate the switching
time, minimize the actuation voltage, and integrate RF-
MEMS switches with IC [5]. To satisfy this integration, RF
MEMS switches must satisfy the following conditions: (a)
have very small size, (b) have low actuation voltage, and (c)
present low power consumption.

Several mechanisms of actuation have been used to
actuate RF-MEMS switches such as electromagnetic [6],
electrostatic [7], thermal [8], and piezoelectric [9]. Due to
its simplicity of integration, electrostatic actuation represents
the most used actuation technique at the present time [10].
This is also due to its low power consumption, as well as
small electrode size, in addition it is easy to be integrated with
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IC circuits and it provides short switching time compared
with the other mechanisms. However, it requires relatively
high DC voltage, and thus, requires an additional CMOS
integrated upconverter to raise the typical 5 V control voltage
to the required level.

Electrostatically actuated structures present several non-
linearities and can become unstable. These nonlinearities are
mainly due to the nature of the electrostatic force which is
inversely proportional to the square of the distance between
the two electrodes. A sudden collapse of the moving part can
be observed at critical voltage (pull-in) of the microswitch
achieving its ON or OFF state. In the literature the pull-
in instability is classified into static and dynamic pull-in.
Static pull-in occurs when theDC voltage exceeds a threshold
value with maximum displacements varying from 33% to
41% of the original electrode gap distance. On the other
hand, dynamic pull-in takes place when the system is excited
using a combination of AC and DC voltages. In this case,
the dynamic pull-in instability occurs before static pull-
in [11, 12]. Nayfeh et al. [13] showed that dynamic pull-
in occurs at voltages as low as 25% of the static pull-in
voltage around the resonant frequency. Recently Khater et al.
[14] validated experimentally this approach; they developed
dynamic actuation methods based on frequency sweep to
shunt a capacitive microswitch. The proposed technique lead
to 60% reduction of the actuation voltage of the microswitch.

The decrease of actuation voltage of electrostatic RF-
MEMS switches can be accomplished by (i) using different
mechanical properties which reduce the microbeam rigidity,
(ii) increasing the electrostatic surface, and/or (iii) decreasing
the electrostatic gap. These variations degrade the principal
parameters of the RF-MEMS switches, such as isolation.
Abbaspour-Sani and Afrang proposed the decrease of the
equivalent rigidity of the microswitch whose structure is
composed of two displaceable microplates [15]; this preserves
the microswitch parameters while increasing its lifetime.
Similarly, Chaffey and Austin [16] decreased the equivalent
rigidity of the microsystem and concluded that the use of
a double cantilever microbeam structure, compared to a
single microbeam structure, reduces significantly the pull-
in voltage. Recently Samaali et al. [17] demonstrated that
when we use a double cantilever microbeam to design an RF
microswitch, a reduction of the pull-in voltage, the switching
time and the power consumption are observed.

The present paper examines the static and dynamic
behaviors of an electrostatically actuated capacitive contact
RF microswitch. The proposed design consists of a pair of
bridgemicrobeams with clamped ends. An electrostatic force
is applied between the two microbeams (electrodes) causing
their deflections and the collapse of the upper microbeam
onto the lower one when the pull-in voltage is reached.
We investigate the static and transient responses of the RF
microswitch as we vary the applied DC voltage and study its
ON-OFF cycle.The power requirement of the actuation cycle
is also studied and compared with the classical single beam
design.

2. Model Description and
Reduced-Order Model

2.1. Problem Formulation. The schematic view of the capac-
itive microswitch is given in Figure 1. It consists of double
suspended bridges that represent the ground and the central
transmission lines. Both upper and lower beams are clamped
at their ends to the substrate. A dielectric layer is used to
separate the electrodes and prevent electrical short circuit.
The microbeams are modeled using Euler-Bernoulli beam
theory using the following nondimensional coupled-integral-
partial-differential equations and their associated boundary
conditions [18]:

̈𝑤
𝑖
+ 𝑐
𝑖
̇𝑤
𝑖
+ 𝑤
󸀠󸀠󸀠󸀠

𝑖

= [𝐹
𝑖
+ 𝛼
1
∫

1

0

(𝑤
𝑖
(𝑥
𝑖
, 𝑡))
2
𝑑𝑥
𝑖
]𝑤
󸀠󸀠

𝑖

+ 𝛼
2

𝑉
2

DC

(1 − 𝑑
𝑤
)
2
, 𝑖 = 1, 2

𝑤
𝑖 (0, 𝑡) = 0, 𝑤

𝑖 (1, 𝑡) = 0,

𝑤
󸀠

𝑖
(0, 𝑡) = 0, 𝑤

󸀠

𝑖
(1, 𝑡) = 0,

(1)

where 𝑤
𝑖
(𝑥
𝑖
, 𝑡) is the nondimensional deflection of each

microbeam at the nondimensional time 𝑡 and at nondi-
mensional locations 𝑥

𝑖
and 𝑑

𝑤
= 𝑤
1
(𝑥
1
, 𝑡) + 𝑤

2
(𝑥
2
, 𝑡).

The dot denotes the derivative with respect to 𝑡 and the
prime derivatives with respect to 𝑥

𝑖
. 𝑐
𝑖
represents the beam’s

nondimensional damping related to the quality factor by𝑄 =
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nondimensional axial force generated by residual stresses,
𝑉DC is theDCvoltage, and𝐿 is the length of bothmicrobeams.
The variables are nondimensionalized using the following
form:
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where the hats denote the corresponding dimensional quan-
tities. Here 𝜌 is the density, 𝐸 is the modulus of elasticity,
𝑏, ℎ, 𝐴 = 𝑏ℎ, and 𝐼 = 𝑏ℎ3/12 are beam’s width, thickness,
cross-section area, and second moment of area, respectively.
𝑑 is the initial gap distance between both microbeams and ℎ

𝑑

is the dielectric layer thickness. The geometric and physical
parameters of the microswitch are given in Table 1.

2.2. Discretization and Reduced-Order Model. DQM trans-
forms a PDE into a set of ODEs describing the motion of
a set of prespecified discrete points (a grid) corresponding
to discrete values of the continuous space variable. This is
accomplished by expressing, at each grid point, the derivative
of the deflection function with respect to the space variable
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Table 1: Geometric and physical parameters of the beam.

𝐿 𝑏 ℎ 𝑑 𝜌 𝐸 𝜀 ℎ
𝑑

510 𝜇m 100𝜇m 1.5𝜇m 1.18 𝜇m 2300Kg/m3 166GPa 8.851 10−12 F/m 0.236 𝜇m

L
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h
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Figure 1: Capacitive contact RF-MEMS switch.

as a weighted linear sum of the values of this function at all 𝑛
grid points [19]. That is,
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Lagrange interpolation polynomials as test functions in (3).
They are given by [20, 21]
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where [𝐴(𝑟)] is the matrix corresponding to the 𝑟th-order
derivative.Thesematrices are centrosymmetricwhen 𝑟 is even
and skew-centrosymmetric when 𝑟 is odd.

According to the previously published works [18, 22],
the DQM is a suitable method to produce reduced-order
models (ROM) in the case of clamped-clamped microbeam
with nonlinear electrostatic force. We use 𝑛 grid points to
discretize the space and obtain a ROM given by the following
𝑛 − 3 coupled second-order ordinary differential equations

(ODEs) and associated boundary conditions, describing the
motion of the microswitch:
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static algebraic nonlinear system is solved using the Newton-
Raphson in Mathematica. The transient analysis is obtained
using Long Time Integration (LTI) obtained by the Runge-
Kutta method.

3. Response of the Microswitch under
DC Voltage

3.1. Static Response under DC Voltage. Figure 2 shows the
variation of the static deflections at the center of the
microbeams as the applied DC voltage is increased. Here
due to symmetry of the problem only the deflection of one
microbeam will be shown. The static response is obtained
using the DQM (9 grid points) and validated with finite
element (FE) analysis of the static responses obtained using
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Figure 2: Microbeams deflection under an applied DC voltage and
validation with ANSYS results.

the commercial software ANSYS. A comparison of the static
response of the proposed system with a classical microswitch
using one microbeam is shown in Figure 2. The computed
static pull-in voltages associated with the single and double
microbeams are 3.01 V and 4.38V, respectively. Consequently
for the static analysis a 32% reduction of the actuation voltage
is observed. However, the pull-out voltage, also shown in
Figure 2, requires more voltage reduction than the single
beam case. In fact, the required voltage reduction is 0.37V for
the double beam case, while it requires only 0.26V reduction
for the single case to pull-out. This difference is due to the
overall stiffness reduction of the system.

3.2. Transient Response underDCVoltage. The transient anal-
ysis of the microswitch under different applied DC voltages
are shown in Figure 3. Long time integration is used here
with the Runge-Kutta discretization technique to calculate
the transient response of one of the twomicrobeams to a step
DC voltage. In Figure 3 we show variation of the transient
response as we vary the applied DC voltage. As shown the
solution diverges as the applied voltage reaches 2.75V and the
microbeam pulls-in. Here we observe a difference between
the static pull-in value (3.01 V) and the transient pull-in value
(2.75V), this mismatch is essentially due to the inertial effects
of the microbeam, not taking into account the static analysis.

4. Pull-In Time and Power Requirement Using
Transient Pull-In

Switching time and power consumption (switching power)
are important parameters in RF MEMS Switches, and they
constitute the main limitation for microswitches [23]. When
the applied voltage increases the electrostatic force becomes
higher than the elastic restoring force of the microbeam and

the upper beam touches the lower beam causing pull-in. The
time taken by the switch to pull-in is called the switching
time or the pull-in time. Here in the proposed design each
microbeam travels only 50% of the gap distance to reach the
OFF state of the microswitch. Therefore, the switching time
is shorter when compared to the single beam design.

The mean value of the electrostatic power 𝑃 is defined
by (6). This power corresponds to the mean value of the
sum of instantaneous electrostatic power over the pull-in
time 𝑇

𝑠
, given by the approximated parallel capacitances

shown in Figure 4. The chosen capacitances are related to
the selected DQM grid points to discretize the equation of
motion. Equation (6) is then solved numerically at each time
instant for the instantaneous power then integrated over the
pull-in time period. 𝐶

𝑘
is the discretized capacitance for a

given applied voltage.

𝑃 =

𝑛−1

∑

𝑖=2

𝑃
𝑖
= 𝑃
2
+
1

𝑇
𝑠

𝑛−2

∑

𝑘=3

∫

𝑇
𝑠

0

𝐶
𝑖
𝑑𝑉
2

DC ̇𝑤
𝑘
𝑑𝑡̂ + 𝑃

𝑛−1
, (6)

where

𝑃
2
=
1

2𝑇
𝑠

∫

𝑇
𝑠

0

𝜀𝑏𝐿

(1 − 𝑤
2
)
(𝑥
3
+ 𝑥
2
) 𝑉
2

DC ̇𝑤
2
𝑑𝑡,

𝑃
𝑛−1
=
1

𝑇
𝑠

∫

𝑇
𝑠

0

𝜀𝑏𝐿

(1 − 𝑤
𝑛−1
)
(𝑥
𝑛
−
𝑥
𝑛−1
+ 𝑥
𝑛−2

2
)𝑉
2

DC ̇𝑤
𝑛−1
𝑑𝑡̂,

𝐶
𝑖
=

𝜀𝑏𝐿

𝑑 (1 − 𝑤
𝑖
)
(
𝑥
𝑖+1
− 𝑥
𝑖−1

2
) .

(7)

In Figure 5 we study the influence of the applied DC
voltage on the pull-in time. In this figure, we show that
this latter is reduced significantly by increasing the applied
voltage in both single and double beam configurations. It is
clear that using DC voltage to actuate the microswitch offers
significantly improved performances for the double beam
design.

We examine also the electrostatic power requirement of
both designs. We note, in Figure 6, that the double beam
switch requires lower actuated power when compared to the
single beam design. Also we remark in Figure 6 that the
minimum electrostatic power is obtained at 4.22V for the
single beam design and 2.92V for the double beam design
which is higher than the transient pull-in voltage in both
cases. In Figure 7 we show the variation of the electrostatic
power versus the pull-in time, as observed for the minimum
used power in the single and double beam designs; almost the
same transient pull-in time is obtained. However, the power
used in this case is lower for the double beam designs.

5. Electromagnetic Model Analysis

In this section,we focus on the shunt capacitiveMEMS switch
behavior described above. The full wave electromagnetic
simulation of the switch is done using Ansys HFSS. S-
parameters are extracted in the frequency range going from
0.1 GHz to 50GHz for different positions of the microswitch.
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In the simulation an air box size of 710 × 1000 × 900 𝜇m
is used and boundary radiation conditions are imposed on
the four sides of the box, two waves ports are placed in the
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Figure 6: Influence of DC voltage on the electrostatic energy for
simple and double beam microswitch designs.

two other sides of the box. The wave ports are the boundary
condition that permits energy to flow into and from the
microswitch’s structure.
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The used substrate has a relative dielectric constant corre-
spondent to Silicon.The thickness of the substrate is 100 𝜇m.
TheCPW conductors (ground and center transmission lines)
are supposed to be perfect conductors. The central transmis-
sion line conductor of the CPW is assumed to be coated with
silicon nitrate (Si

3
N
4
) having relative dielectric constant of

7 and thickness of 0.236 𝜇m. The microswitch is modeled
by two short sections of transmission lines with character-
istic impedance 𝑍

0
, and a lumped resistance-inductance-

capacitance (RLC) model of the bridge with capacitance
having an upstate or downstate value. The equivalent circuit
of the switch is shown in Figure 8. In the upstate, the switch
behaves as a capacitor when the frequency is below the
inductance-capacitance (LC) series resonant frequency and
as an inductor when the frequency is above the LC series
resonant frequency, and at resonance, it reduces to pure
resistance [24]. The transmission coefficients (𝑆

12
and 𝑆

21
)

are commonly called gain or attenuation, and the reflection
coefficients (𝑆

11
and 𝑆

22
) are directly related to impedance

[25]. In the ON state the value of the coupling capacitance
is very small due to the large separation between upper and
lower beams. The S-parameters (𝑆

21
and 𝑆
11
) were extracted

in the range 0.1 to 50GHz.
In Figure 9 the insertion loss (𝑆

21
) of the microswitch in

the ON state is varied from −0.31 dB to −0.1 dB at 10GHz
with gap distance 𝑑 varying from 1.18 to 5.18 𝜇m. The
return loss (𝑆

11
) varies from −12.41 to −20.36 dB at 10GHz

for the same range of the gap 𝑑. We conclude that as we
increase the distance that separates upper and lower beams,
we minimize the coupling capacitance and we increase and
decrease, respectively, the return loss and the insertion loss.
With a sufficient applied voltage, the ground transmission
line and central transmission line of the microswitch deflect
and create a large coupling capacitance; the microswitch is in
the OFF state. The isolation (𝑆

21
) is lower than −23 dB in the

range of 10 to 50GHz, as shown in Figure 10.
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6. Conclusion

We propose a design of a capacitive RFmicroswitch with two
flexible microbeams. The new design allows a 32% reduction
in the actuation voltage compared to a classical single beam
design. A mathematical model was developed to analyze
the static and transient behavior under different applied DC
voltages. We observe that transient pull-in occurs before
static pull-in at voltage as low as 8.6%. Then we studied
and compared the switching times and switching power for
both single and double beam designs under different DC
actuations. We showed that the new double beam design
gives significant improvement in switching time and power
requirement. Finally, the Ansys HFSS simulator is used to
extract the RF characteristics of the switch. Simulations
results showed that an insertion loss of −0.31 dB and a return
loss of −12.41 dB at 10GHz for gap distance of 1.18 𝜇m
have been achieved in the ON state. These results can be
ameliorated by increasing the gap distance. At the OFF state
isolation lower than −23 dB in the range of 10 to 50GHz is
extracted by the Ansys HFSS simulator.
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Themodal parameters of a structure that is estimated from ambient vibrationmeasurements are always subject to bias and variance
errors. Accordingly the concept of the stabilization diagram is introduced to help users identify the correct model. One of the
most important problems using this diagram is the appearance of spurious modes that should be discriminated to simplify modes
selections.This study presents a new stabilization criterion obtained through a novel numerical implementation of the stabilization
diagram and the discussion of model validation employing the power spectral density. As an application, an aircraft skeleton is
used.

1. Introduction

The vibration and acoustical behaviors of a mechanical
structure are determined by its dynamic characteristics.

This dynamic behavior is typically described with a linear
system model. The procedure for the estimation of modal
parameters of structures frommeasured data can be split into
three distinct steps [1]: data collection, system identification,
and determination of modal parameters from the identified
system description.

Stochastic identification methods for systems with
unknown input have been introduced decades ago. Among
the most robust and accurate system identification methods
for output-only modal analysis of mechanical structures is
the stochastic subspace identification method. Two types of
implementation are available: the covariance-driven (SSI-
cov) [2] implementation and the data-driven (SSI-data) [3]
implementation. For the first one (SSI-cov), three methods
can be implemented: the balanced realization (BR), the
principal component (PC), and the canonical variate analysis
(CVA).

For dynamic structures such as the aircraft skeleton
studied in this paper, the major setback in applying system

identification for large-scale structures is the selection of the
model order and the corresponding system poles.

To address this problem, the concept of the “stabilization
diagram” is introduced, overestimating the structure model
order. Therefore, spurious modes are going to surface out
and we have to discriminate them. For this matter, many
stabilization criteria have been implemented.Themost recent
one was the modal transform norm [4]. In this paper, a
new stabilization criterion is implemented and a validation
method is discussed. The stochastic subspace identification
method used is the balanced realization.

2. Stochastic State Space Models for
Vibrating Structures

The finite element method [4] is one of the most common
tools for modeling mechanical structures. In the case of a
linear dynamical model, one has the following system of
ordinary differential equations:

𝑀 ̈𝑢 + 𝐷 ̇𝑢 + 𝐾𝑢 = 𝑓 (𝑡) ,

𝑌 (𝑡) = 𝐿𝑢 (𝑡) ,

(1)
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where𝑀,𝐷,𝐾 ∈ R𝑛×𝑛, and𝐿 are themass, damping, stiffness,
and selectionmatrices, respectively;𝑓 is the stochastic vector
of nodal forces; 𝑢(𝑡) is the vector of nodal displacement; 𝑌 is
the sensorsmeasurements vector; “𝑛” is the number of degree
of freedom. In the case of nonproportional damping, (1) is
written into a continuous time state spacemodel.The classical
form of this model is

̇𝑥 (𝑡) = 𝐴
𝑐
𝑥 (𝑡) + 𝐵

𝑐
𝑓 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑐𝑥 (𝑡) ,

(2)

where 𝐴
𝑐
= [

0 𝐼

−𝑀
−1
𝐾 −𝑀

−1
𝐷
], 𝐵
𝑐
= [
0

𝑀
−1 ], 𝐶𝑐 = [𝐿 0] and

𝑥(𝑡) = (
𝑢

̇𝑢 ).
The vector 𝑥(𝑡) is called the state of the structure; 𝑦(𝑡) is

themeasurements vector.The discrete time statemodel of the
mechanical system is expressed as

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑓
𝑘
,

𝑦
𝑘
= 𝐶𝑥
𝑘
,

(3)

where𝐴 = 𝑒𝐴𝑐𝑇,𝐵 = (𝐴−𝐼)𝐴−1
𝑐
𝐵
𝑐
and𝑇 is the time sampling.

For simplicity, the model given by (3) can be also written,
when the output vector is noised, as follows:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝑤
𝑘

𝑦
𝑘
= 𝐶𝑥
𝑘
+ V
𝑘
,

(4)

where 𝐴 and 𝐶 are, respectively, the state transition and the
output matrices; 𝑥

𝑘
is the discrete state vector; 𝑦

𝑘
is the

discrete measured output vector; 𝑤
𝑘
and V
𝑘
are, respectively,

the process and measurement noises.
These stochastic terms are unknown but it is assumed that

they have a discrete white noise nature with an expected value
equal to zero and that they have covariance matrices equal to

𝐸{(
𝑤
𝑝

V
𝑝

)(
𝑤
𝑞

V
𝑞

)

𝑇

} = (
𝑄 𝑆

𝑆
𝑇
𝑅
)𝛿
𝑝𝑞
; ∀𝑝, 𝑞 ∈ Z, (5)

where 𝛿
𝑝𝑞

denotes the Kronecker delta.

3. Identification of the System Matrices (𝐴, 𝐶)
and Balanced Realization Algorithm

The starting point of the identification of the system matri-
ces is based on the covariance matrices of the measured
structural responses time series 𝑦

𝑘
which are assumed to be

realization of a stationary stochastic process. The covariance
matrices are given by the following formula [2]:

𝑅
𝑚
= 𝐸 {𝑦

𝑘+𝑚
𝑦
𝑇

𝑘
} . (6)

An estimate of the covariance matrices is given [2] as follows:

𝑅̂
𝑚
=

1

𝑁 − 𝑚

𝑁−𝑚

∑

𝑘=1

(𝑦
𝑘+𝑚
𝑦
𝑇

𝑘
) = 𝐶𝐴

𝑚
𝐺, (7)

where 𝑁 is the number of points of the time series, 𝐺 =

𝐸{𝑥
𝑘
𝑦
𝑇

𝑘
}, and superscript 𝑇 means transpose. These covari-

ance matrices can be organized in a Hankel matrix 𝐻̂(𝑝, 𝑞)
that can be factorized as follows:

𝐻̂ (𝑝, 𝑞) =

[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑝−1

]
]
]
]

]

⋅ [𝐺 𝐴𝐺 𝐴
2
𝐺 ⋅ ⋅ ⋅ 𝐴

𝑞−1
𝐺 ] , (8)

where 𝑝 and 𝑞 denote the number of rows and columns,
respectively, of the Hankel matrix. The first bloc matrix is
called the observability matrix 𝑂; the second one is the
controllability matrix 𝐶. For all covariance-driven stochastic
subspace identification, the estimation of𝐴 and𝐶 is based on
the singular values decomposition of theHankelmatrix [5, 6].

For the balanced realization method, the decomposition
gives

𝐻̂ (𝑝, 𝑞) = 𝑈 ⋅ 𝑆 ⋅ 𝑉
𝑇
= [𝑈1 𝑈2] [

𝑆
1
0

0 𝑆
2

]
[
[

[

𝑉
𝑇

1

𝑉
𝑇

2

]
]

]

≅ 𝑈
1
⋅ 𝑆
1
⋅ 𝑉
𝑇

1
= (𝑈
1
⋅ 𝑆
1/2

1
) (𝑆
1/2

1
⋅ 𝑉
𝑇

1
) = 𝑂 ⋅ 𝐶,

(9)

where 𝑈, 𝑆, and 𝑉𝑇are the left singular vector, the singular
values matrix, and the right singular vector, respectively; 𝑆

1

is the dominant singular bloc matrix 𝑆
2
≺≺ 𝑆
1
. Afterwards,

the observability and controllability matrices can be written
as the following formulas:

𝑂 = (𝑈
1
⋅ 𝑆
1/2

1
) , 𝐶 = (𝑆

1/2

1
⋅ 𝑉
𝑇

1
) . (10)

The system matrix 𝐶 is immediately extracted from the
observability matrix by taking the “𝑟” first rows; “𝑟” denotes
the numbers of sensors used in the structure:

𝐶 = 𝑂 (1 : 𝑟, :) . (11)

The system matrix 𝐴 is extracted from the observability
matrix as follows:

𝐴 = (𝑂
↓
)
+

(𝑂
↑
) , (12)

where 𝑂
↓

= [ 𝐶 𝐶𝐴 𝐶𝐴
2
⋅ ⋅ ⋅ 𝐶𝐴

𝑞−2
]
𝑇

, 𝑂
↑

=

[𝐶𝐴 𝐶𝐴
2
⋅ ⋅ ⋅ 𝐶𝐴

𝑞−1
]
𝑇, and the superscript (+) means

the generalized inverse.
The system matrix 𝐺 is immediately extracted from the

controllability matrix by taking the “𝑟” first columns:

𝐺 = 𝐶 (:, 1 : 𝑟) . (13)

4. Modal Analysis

With the assumption of low damping ratios and distinct
eigenvalues, natural frequencies are obtained from 𝐴 as
follows:

𝑓
𝑝
=
1

2𝜋

√(
ln (󵄨󵄨󵄨󵄨󵄨𝜇𝑝

󵄨󵄨󵄨󵄨󵄨
)

𝑇
)

2

+ (
arg(𝜇
𝑝
)

𝑇
)

2

. (14)
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The damping ratios are also obtained from 𝐴 as follows:

𝜉
𝑝
=

− ln (󵄨󵄨󵄨󵄨󵄨𝜇𝑝
󵄨󵄨󵄨󵄨󵄨
)

√(ln (󵄨󵄨󵄨󵄨󵄨𝜇𝑝
󵄨󵄨󵄨󵄨󵄨
))
2

+ (arg(𝜇
𝑝
))
2

. (15)

From 𝐶, the modes shapes are expressed as

𝜙
𝑝
= C𝜓
𝑝
, (16)

where 𝜇
𝑝
and 𝜓

𝑝
are the eigenvalues and eigenvectors of 𝐴

and arg(⋅) denotes the phase angle.

5. The Stabilization Diagram

The SSI-cov, as it happens with the balanced realization
method, does not yield exact values for the parameters
but only estimates with uncertainties. The origins of these
uncertainties [4] can be described from two points of view:

(i) From the Operational/Experimental Point of View:
the number of data samples is finite, the input might
not be white noise and real structure can’t always be
modeled into stationary linear system.

(ii) From a Statistical Point of View: uncertainties can be
induced either by the bias of the model or by the bias
of the mode and the variance of the mode.

These uncertainties are responsible for the appearance of
spurious modes. One of the primary challenges related to
modal analysis is to remove these spurious modes. For this
purpose, the concept of stabilization diagram is introduced.

The stabilization diagram is a graphical tool used to help
in the manual selection of the modes that are more likely
to represent the structure physical modes. The quality of a
stabilization diagram [2] depends on the algorithm used in
the identification, on the values of the input parameters of the
algorithm, and also on noise ratio of the time series under
analysis. The basic idea is that several runs of the complete
pole identification process are made, by using models of
increasing order.The stabilization diagram has frequencies in
the horizontal axis and orders on the vertical one. Physical
poles should readily appear into alignments. However, not
only physical modes will come into view in this diagram but
also spuriousmodes.Most of spuriousmodes can be removed
by using the so-called stabilization criteria.These criteria can
be split into two types.

(i) Preliminary Criteria.The frequencies𝑓
𝑖
and damping

𝜉
𝑖
ratios are expected to be obtained in certain ranges

𝑓min ≤ 𝑓
𝑖
≤ 𝑓max and 𝜉min ≤ 𝜉

𝑖
≤ 𝜉max; all

modes having frequencies 𝑓
𝑖
and damping ratios 𝜉

𝑖

out of these ranges will be discriminated. Onlymodes
verifying these criteria are plotted in the stabilization
diagram.

(ii) Stabilization Criteria. Modes, for which the differ-
ences in modal parameters between two consecutive
model orders [4] are higher than certain threshold
values, are not in the diagram.

In the classical implementation of the stabilization dia-
gram, the typical stability criteria values [3] are as follows:
𝜀
𝑓
= 1% for frequency, 𝜀

𝜉
= 5% for damping, and the modal

assurance criterion (MAC) MAC
𝜙
= 98% for eigenvectors.

Two modes identified in certain two orders, “𝑖” and “𝑖 + 1,”
will be plotted in the stabilization diagram if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑖
− 𝑓
𝑖+1

𝑓
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀
𝑓
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜉
𝑖
− 𝜉
𝑖+1

𝜉
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀
𝜉
,

MAC (𝜙
𝑖
, 𝜙
𝑖+1
) =

󵄨󵄨󵄨󵄨𝜙
∗

𝑖
⋅ 𝜙
𝑖+1

󵄨󵄨󵄨󵄨
2

𝜙∗
𝑖
⋅ 𝜙
𝑖
⋅ 𝜙∗
𝑖+1
⋅ 𝜙
𝑖+1

≥ MAC
𝜙
,

(17)

where subscript (∗) denotes complex conjugate transpose.
This manner of plotting the stabilization diagram is not

the only one. In [7], the authors present a new approach to
establish the diagram. The method estimates model order in
terms of component energy index (CEI); then the diagram is
plotted in increasing Hankel matrix rows.

6. An Alternative Numerical Implementation
for the Stabilization Diagram

When working with the stabilization diagram, the perfect
situation is an utter disappearance of all spurious modes
and only the alignments (corresponding to physical system
modes) are plotted in the diagram. Using the classical
numerical implementation and taking into account the bias
and variance modes, if we minimize the thresholds values
𝜀
𝑓
, 𝜀
𝜉
, and (1 − MAC

𝜙
), most of the spurious modes will

disappear; nonetheless, the diagram is likely to lose some
alignments.

This present study suggests an alternative numerical
implementation of the stabilization diagram that intends not
to calculate the difference between consecutive modal order
parameters but to compare everymodal order parameterwith
all the other modal orders (see Figure 1).

For a certain model orders “𝑚” and “𝑛”, 𝑚 ̸=𝑛, having
“𝑝
𝑚
” and “𝑝

𝑛
” identified modes, the criteria will be trans-

formed for all 𝑖 ∈ {1, . . . , 𝑝
𝑚
}, 𝑗 ∈ {1, . . . , 𝑝

𝑛
} as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑖
− 𝑓
𝑗

𝑓
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
𝑓
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜉
𝑖
− 𝜉
𝑗

𝜉
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
𝜉
,

MAC (𝜙
𝑖
, 𝜙
𝑗
) =

󵄨󵄨󵄨󵄨󵄨
𝜙
∗

𝑖
⋅ 𝜙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝜙∗
𝑖
⋅ 𝜙
𝑖
⋅ 𝜙∗
𝑗
⋅ 𝜙
𝑗1

≥ MAC
𝜙
.

(18)

The basic idea behind this algorithm is that in the
simulated cases when the output is not noised, if a mode
appears into an order of the diagram, it should show up for
all the following orders too.
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Figure 1: Flow chart, stabilization diagram implementation.

7. Application: The Aircraft Skeleton

To put this numerical implementation with the BR method
into operation, an aircraft Skeleton is considered. The test rig
and the model of the aircraft skeleton structure [8] are shown
in Figure 2. The structure is excited by a white noise. Only
seven sensors measurements and a sampling frequency 𝑓

𝑠
=

256Hz are available for the identification.
Figure 3 shows the aircraft stabilization diagram with

only preliminaries stabilization criteria. The diagram is plot-
ted with frequencies and damping ranges (0, 120Hz) and (0,
15%), respectively. The numbers of rows and columns of the
Hankel matrix are 𝑝 = 𝑞 = 25, the maximal model order is
taken as 𝑂max = 53, and the time lags used are 𝑁lag = 128.

(a)
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5
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11

12

X
Y

Z

(b)

Figure 2: (a) The test rig; (b) the schema of the aircraft skeleton
structure [8].
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Figure 3: The aircraft stabilization diagram with only preliminaries
criteria.

In this diagram, 14 alignments are seen and seeming to be the
physical system modes.

Figure 4 shows the stabilization diagram plotted with the
following criteria: 𝜀

𝑓
= 1% for frequencies, 𝜀

𝜉
= 5% for

damping, andMAC
𝜙
= 98% for eigenvectors.The diagram is

plotted by using the classical numerical implementation.The
inspection of this diagram shows that there is discrimination
of several spurious modes, certain alignments are affected
(frequencies close to 3 and 80Hz), and the modes selections
become difficult. Using the suggested numerical implemen-
tation with the same values for the criteria, the stabilization
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Figure 4: The aircraft stabilization diagram with classical imple-
mentation.
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Figure 5: The stabilization diagram with new implementation.

diagram is shown in Figure 5. The alignments are already
existent in spite of the fact that certain spurious modes are
already there.

8. How to Improve the Stabilization
Diagram Quality?

In order tomake the stabilization diagram cleaner, a criterion
is introduced in this study. It is based on the expression of
the covariance matrix 𝑅

𝑚
= 𝐶𝐴
𝑚
𝐺 that can be written in the

identified base as follows:

𝑅
𝑚
= 𝐶𝐴
𝑚
𝐺 = (𝐶Ψ)Λ

𝑚
(Ψ
−1
𝐺) = ΦΛ

𝑚
𝐺

= [Φ
1
Φ
1
] [
Λ
1
0

0 Λ
1

]
[
[

[

𝐺
𝑇

1

𝐺
𝑇

1

]
]

]

,

(19)

where 𝐶Ψ = Φ are the modes shapes expressed in the
identified base and Ψ−1𝐺 = 𝐺 is the covariance matrix
between the state and the system output expressed also in the
same base; it takes the form

𝐺 = [
𝐺
𝑇

1

𝐺
𝑇

1

] = [𝑔
𝑇

1
𝑔
𝑇

2
⋅ ⋅ ⋅ 𝑔
𝑇

𝑛
𝑔
𝑇

1
𝑔
𝑇

2
⋅ ⋅ ⋅ 𝑔
𝑇

𝑛
]
𝑇

. (20)
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Figure 6: The stabilization diagram with the new stabilization
criterion.

The stabilization criteria described up to now are derived
from the vectors Φ if the MAC

Φ
is used and from the

eigenvalue matrix Λ if frequencies and damping criteria are
employed.

The new criterion is based on the calculation of the
MAC (modal assurance criterion) between two identified
covariance vectors (𝑔

𝑖
, 𝑔
𝑗
):

󵄨󵄨󵄨󵄨󵄨
𝑔
∗

𝑖
⋅ 𝑔
𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑔
𝑖
∗ ⋅ 𝑔
𝑖
⋅ 𝑔∗
𝑗
⋅ 𝑔
𝑗

≤ 1 −MAC
𝑔
. (21)

For all 𝑖 ∈ {1, . . . , 𝑝
𝑚
}, 𝑗 ∈ {1, . . . , 𝑝

𝑛
}, these covariance

vectors 𝑔 should be the same, at least theoretically, for
every identified mode onto an alignment in the stabilization
diagram. For the aircraft diagram shown in Figure 6, the
criteria were 𝜀

𝑓
= 1%, 𝜀

𝜉
= 3%, MAC

𝜙
= 99%, and MAC

𝑔
=

99.95%.
In Figure 6, it is clear that 12 alignments are already stable

in spite of the fact that the criteria are considered severe and
most of the spurious modes have been discriminated. The
structure has likely 12 vibration modes.

9. Balanced Realization (BR) Results and
Comparison with Other Stochastic Subspace
Identification Algorithms

For the model order 24, stable modes, belonging to align-
ments, are taken and the identification is presented in Table 1.
In order to validate this system identification, the balanced
realization results are compared with others obtained by two
different algorithms implemented into a commercial modal
analysis software, the ARTeMIS Extractor pro 2009 [9]. The
algorithms are the canonical variate analysis (CVA) and the
unweighted principal component (UPC), which are two data-
SSI methods. Table 1 shows that both BR and CVA methods
present the same identified parameters. Among the 12 modes
identified by these two algorithms, 9 are also identified in
frequencies by the UPCmethod in which 7 are also identified
in damping.
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Table 1: The identified frequencies and damping using several algorithms.

Modes Frequencies: 𝑓 (Hz) Damping: 𝜉 (%) BR/UPC (%) BR/CVA (%)
BR CVA UPC BR CVA UPC 𝑓 𝜉 𝑓 𝜉

1 3.71 3.69 ∗ ∗ ∗ 4.90 6.57 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.54 34.08
2 6.13 6.18 ∗ ∗ ∗ 3.60 3.17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.82 11.94
3 16.06 16.02 16.07 4.05 4.07 3.94 0.06 2.54 0.25 0.49
4 21.71 21.77 ∗ ∗ ∗ 5.73 5.40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.28 5.76
5 39.87 39.87 39.86 0.38 0.38 0.40 0.02 5.26 0.00 0.00
6 44.33 44.34 44.37 0.03 0.02 0.06 0.09 106.66 0.02 33.33
7 54.35 54.36 54.37 0.11 0.10 0.09 0.03 16.36 0.02 9.09
8 55.42 55.42 55.39 0.22 0.20 0.31 0.05 40.90 0.00 9.09
9 58.44 58.47 58.49 0.38 0.39 0.47 0.08 23.68 0.05 2.63
10 ∗ ∗ ∗ ∗ ∗ ∗ 63.83 ∗ ∗ ∗ ∗ ∗ ∗ 3.93 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

11 69.41 69.37 69.42 1.12 1.18 1.25 0.01 11.60 0.06 5.36
12 80.06 80.15 79.8 0.09 0.09 0.72 0.32 700 0.11 0.00
13 ∗ ∗ ∗ ∗ ∗ ∗ 86.18 ∗ ∗ ∗ ∗ ∗ ∗ 3.00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

14 100.25 100.3 100.3 0.11 0.11 0.12 0.04 9.09 0.05 0.00
15 ∗ ∗ ∗ ∗ ∗ ∗ 107.6 ∗ ∗ ∗ ∗ ∗ ∗ 4.51 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

16 ∗ ∗ ∗ ∗ ∗ ∗ 114.5 ∗ ∗ ∗ ∗ ∗ ∗ 1.63 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗∗∗Unidentified mode.
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Figure 7: Repartition of damping ratios.

These differences between the first two algorithms and the
third are understood given the fact that all of them can gener-
ate uncertainties.Moreover, it is known that the identification
of the damping ratio is difficult even in simulated cases.

Figure 7 shows the repartition of the damping ratios
corresponding to the stabilization diagram of Figure 6 and
the dashed lines represent the first four identifiedmodes.The
inspection of Figure 7 shows that the damping identification
presents a large dispersion along the model order range,
mainly, for the first identified mode (3.71Hz), in which the
damping ratio varies between, about, 4% and 14% which is
considered as large dispersion. These facts justify the relative
damping error (BR/CVA) for the first mode (34.08%) which
is considered as acceptable.

Consequently, the results comparison of the BR algorithm
identification with the others confirms that our results are
satisfactory.

10. Spectral Analysis

10.1. Expression of the Power Spectral Densities Matrix. Once
a state space is identified, it is possible to compute the power
spectral densities 𝐺(𝑧) which are written into the identified
base for 𝑧 = exp(𝑗𝜔𝑇) as follows:

𝐺 (𝑧) =

+∞

∑

−∞

𝑅
𝑖
𝑧
−𝑖
=
1

2
Φ𝑔 + Φ(𝑧𝐼 − Λ)

−1
Λ𝑔

+ (
1

2
Φ𝑔 + Φ(

1

𝑧
𝐼 − Λ)

−1

Λ𝑔)

𝑇

.

(22)

Proof. Consider

𝐺 (𝑧) =

+∞

∑

−∞

𝑅
𝑖
𝑧
−𝑖
=

0

∑

−∞

𝑅
𝑖
𝑧
−𝑖
+

+∞

∑

0

𝑅
𝑖
𝑧
−𝑖

= (
1

2
𝑅
0
+

1

∑

−∞

𝑅
𝑖
𝑧
−𝑖
) + (

1

2
𝑅
0
+

+∞

∑

1

𝑅
𝑖
𝑧
−𝑖
) .

(23)

Let the half PSD 𝐺
+
(𝑧) = ((1/2)𝑅

0
+ ∑
1

−∞
𝑅
𝑖
𝑧
−𝑖
), 𝐺(𝑧) =

𝐺
+
(𝑧) + (𝐺

+
(1/𝑧))

𝑇;

+∞

∑

1

𝑅
𝑖
𝑧
−𝑖
=

+∞

∑

1

𝐶 ⋅ 𝐴
𝑖
⋅ 𝐺 ⋅ 𝑧

−𝑖

= 𝐶{

+∞

∑

1

𝐴
𝑖−1

𝑧𝑖−1
𝑧
−1
}𝐴 ⋅ 𝐺

= 𝐶{

+∞

∑

1

(
𝐴

𝑧
)

𝑖−1

}𝑧
−1
⋅ 𝐴 ⋅ 𝐺.

(24)
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Figure 8: Cross spectrum between sensors 3 and 4.

The matrix 𝐴 is stochastic, so for all eigenvalue, |𝜆| ≤ 1;
therefore, we have

+∞

∑

1

(
𝐴

𝑧
)

𝑖−1

= (𝐼 − (
𝐴

𝑧
))

−1

,

𝐺
+
(𝑧) =

1

2
𝑅
0
+ 𝐶(𝑧𝐼 − 𝐴)

−1
⋅ 𝐴 ⋅ 𝐺.

(25)

Finally, after substitution of the expression of the matrices
into the identified base, we have

𝐺
+
(𝑧) =

1

2
Φ𝑔 + Φ(𝑧𝐼 − Λ)

−1
Λ𝑔. (26)

10.2. The Positive Real Sequences Conditions. A sequence 𝑅
𝑖

cannot be always considered as a valid output covariance
sequence [3]. The sequence has to satisfy the positive real
sequence condition.The following statements are equivalent:

(i) 𝑅
𝑖
is a positive real sequence.

(ii) The double infinite matrix 𝐿
∞

is positive definite:

𝐿
∞
= (

𝑅
0
𝑅
−1
𝑅
−2
⋅ ⋅ ⋅

𝑅
1
𝑅
0
𝑅
−1
. . .

𝑅
2
𝑅
1
𝑅
0
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d

) ≻ 0. (27)

(iii) The power spectral densities𝐺(𝑧) are positive definite
matrix for all 𝑧 = exp(𝑗𝜔𝑇):

𝐺 (𝑧) = (
1

2
Φ𝑔 + Φ(𝑧𝐼 − Λ)

−1
Λ𝑔)

+ (
1

2
Φ𝑔 + Φ(

1

𝑧
𝐼 − Λ)

−1

Λ𝑔)

𝑇

≻ 0.

(28)

11. Validation of the Identification by
Spectral Analysis

A second procedure to validate the system identification is
the spectral analysis. Four spectra are presented in Figures
8, 9, 10, and 11. They are compared with those obtained by
applying FFT to measurements.
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Figure 9: Autospectrum sensor 5.
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Figure 10: Cross spectrum between sensors 1 and 5.
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Figure 11: Cross spectrum between sensors 3 and 7.

From these comparisons, it is clear that the structure
model parameters are well identified because the model and
data spectra fit in spite of the divergence in the autospectrum
of sensor 5 and the cross spectrum between sensors 3 and
7. Figures 8 and 10 show that both peaks and valleys are
well superposed which implies a perfect identification of the
model. The inspection of Figure 9 shows that all peaks and
valleys are well superposed except the valley close to the
Nyquist frequency (120Hz).The same remark can be done for
Figure 11 wheremodel and data peaks arewell superposed but
not all the valleys over the frequencies range. In effect, model
valleys on the frequencies range [40Hz, 55Hz] and close to
the Nyquist frequency do not fit the data spectrum valley.

From these facts, we can conclude that peaks in all data
and model spectra are better identified than the valleys. This
can be understood from the implementation of the SSI-cov
method that does not guarantee the positive real sequence
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condition [3], in case, the inequality (28). Therefore, the
extended covariance matrices [10] might not be positive.
Thus, the spectrum divergences are well justified.

12. Conclusions

Anew stabilization criterion associated with a new numerical
implementation of the stabilization diagram has been pre-
sented using the BR (SSI-cov) method.

The new stabilization implementation makes the align-
ments in the diagram more robust and only spurious modes
were removed. However, some other spurious modes are not
removed and modes selection is still difficult. To remedy
to this fact, the new stabilization criterion, based on the
calculation of the modal assurance criterion (MAC) between
the identified covariance vectors, was associated with the
new numerical implementation. The obtained diagram is
cleaner, most of the spurious modes were removed, and
only alignments corresponding to physical modes are already
there; then the modes selections are easier.

The validation by comparison with other results derived
through the CVA and UPC algorithms gave satisfactory
results in spite of some large errors in the damping identi-
fication. This fact has been justified in the previous section
and we can conclude that the BR algorithm was a robust
identification method when used with the new numerical
implementation associated with the new criterion.

The validation by spectral analysis also confirms the
quality of the model identification and the divergences into
some spectra have been well justified.
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