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An integrable variable coefficient nonlocal nonlinear Schrödinger equation (NNLS) is studied; by employing the Hirota’s bilinear
method, the bilinear form is obtained, and the N-soliton solutions are constructed. In addition, some singular solutions and period
solutions of the addressed equation with specific coefficients are shown. Finally, under certain conditions, the asymptotic behavior
of the two-soliton solution is analyzed to prove that the collision of the two-soliton is elastic.

1. Introduction

In 1998, Bender and coworker first proposed the PT - (par-
ity-time-) symmetry for non-Hermitian quantum mechanics
[1]. Now, PT -symmetry has been extensively studied in
diverse areas such as lasers [2], acoustics [3], nonlinear optics
[4], Bose-Einstein condensation [5], and quantum mechanics
[6, 7]. The nonlinear Schrödinger equation has been regarded
as the basic model to describe the propagation of solitons in
optical fiber, and its spatial solitons have become the research
frontier of nonlinear science [8, 9]. In 2013, Ablowitz and
Musslimani incorporated the PT -symmetry with nonlinear
integrable systems and proposed the nonlocal or PT -sym-
metry nonlinear Schrödinger equation (NLS) [10],

iqt x, tð Þ + qxx x, tð Þ + 2q2 x, tð Þq∗ −x, tð Þ = 0, ð1Þ

where ∗ represents complex conjugation. Obviously, Equation
(1) is invariant under the parity-time (PT) transformation,
and its solution is evaluated at (x, t) and (−x, t). Since Equa-
tion (1) was proposed, many researchers have carried out a
lot of work on it. The integrability [10, 11], the Cauchy prob-
lem [12], the inverse scattering transform [13], and exact solu-
tions, such as breathers, periodic, and rational solutions [14],
general rogue waves [15], multiple bright soliton [16], higher
order rational solutions [17], and N-soliton solutions [18] of

(1) have been derived. Moreover, other nonlocal integrable
systems have also been investigated like nonlocal modified
Korteweg-de Vries equation [19, 20], nonlocal KP equation
[21], nonlocal vector nonlinear nonlinear Schrödinger equa-
tion [22, 23], nonlocal discrete nonlinear Schrödinger equa-
tion [24–26], nonlocal Davey-Stewartson I equation [27], etc.

Although much advance has been made in nonlocal sys-
tems, there are very few studies on nonlocal equations with
variable coefficients. From the realistic point of view, it is
more accurate to describe the physical phenomena by using
the variable coefficient equations in many physics situations
[28]. So it is a meaningful work to study the exact solutions
for nonlocal equations with variable coefficients. In [29],
authors constructed the soliton solutions for the variable
coefficient nonlocal NLS equation by using Darboux trans-
formation. In [30], analytical matter wave solutions of a
(2 + 1)-dimensional nonlocal Gross-Pitaevskii equation are
investigated. In this paper, we consider the variable coeffi-
cient nonlocal NLS equation,

iqt x, tð Þ − δ tð Þqxx x, tð Þ − 2δ tð Þq x, tð Þ2q∗ −x, tð Þ + α tð Þq x, tð Þ = 0,
ð2Þ

where the dispersion coefficient δðtÞ and the gain/loss coef-
ficient αðtÞ are arbitrary real continuous even functions of
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variable t. Obviously, Equation (2) keeps the parity-time
transformation x⟶ −x, t⟶ −t, qðx, tÞ⟶ q∗ð−x,−tÞ
invariant, so it is PT -symmetric. When δðtÞ = −1 and
αðtÞ = 0, Equation (2) reduces to the constant coefficient
self-focusing nonlocal NLS equation (1). When αðtÞ = 0,
Equation (2) becomes variable coefficient nonlocal NLS
equation which has been solved by Darboux transforma-
tions in [29]. The novelty of this paper is that the vari-
able coefficient NLS equation is firstly solved by Hirota’s
bilinear method, the more general two-soliton solution
and N-soliton solution are reported, and the collision of
the two solitons is firstly discussed.

The paper is organized as follows: In Section 2, the bilin-
ear form and the one-soliton, two-soliton, and N-soliton
solutions of Equation (2) are obtained based on the Hirota’s
direct method. In Section 3, the asymptotic behavior is stud-
ied to prove that the two-soliton collision is elastic. Finally,
conclusions are given in Section 4.

2. The Bilinear Form and Soliton Solutions

We implement the following dependent variable transfor-
mation to Equation (2)

q = eiβ tð Þ g
f
, ð3Þ

where g and f are complex functions and βðtÞ is a real func-
tion; then, the following bilinear equations of Equation (2)
are obtained as follows:

iDt − δ tð ÞD2
x

� �
g · f = 0,

f ∗ −x, tð ÞD2
x f · f = 2f gg∗ −x, tð Þ,

ð4Þ

where βðtÞ = Ð αðtÞdt and D is the bilinear operator [24]:

Dl
tD

m
x f x, tð Þ · g x, tð Þ = ∂

∂t
−

∂
∂t ′

� �l ∂
∂x

−
∂
∂x′

� �m

f x, tð Þg x′, t ′
� ������

x

′=x,t′=t:

ð5Þ

2.1. One-Soliton Solution. In order to construct the soliton
solutions for Equation (2), we expend f and g as follows:

f = 1 + ε2 f2 + ε4 f4 + ε6 f6+⋯,
g = εg1 + ε3g3 + ε5g5+⋯,

ð6Þ

where ε is an arbitrary small parameter. Then, substituting
Equation (6) into the bilinear equations (4) and collecting
the same power coefficients in ε, we get the following
equations:

ε1 : iDt − δ tð ÞD2
x

� �
g1 · 1 = 0, ð7Þ

ε2 : D2
x f2 · 1 + 1 · f2ð Þ = 2g1g∗1 −x, tð Þ, ð8Þ

ε3 : iDt − δ tð ÞD2
x

� �
g3 · 1 + g1 · f2ð Þ = 0, ð9Þ

ε4 : D2
x 1 · f4 + f4 · 1 + f2 · f2ð Þ + f ∗2 −x, tð ÞD2

x 1 · f2 + f2 · 1ð Þ
= 2 g1g

∗
3 −x, tð Þ + g∗1 −x, tð Þg3ð Þ + 2f2g1g

∗
1 −x, tð Þ,

ð10Þ
ε5 : iDt − δ tð ÞD2

x

� �
g5 · 1 + g3 · f2 + g1 · f4ð Þ = 0, ð11Þ

ε6 : D2
x 1 · f6 + f6 · 1 + f2 · f4 + f4 · f2ð Þ + f ∗2 −x, tð ÞD2

x 1 · f4ð
+ f4 · 1 + f2 f2Þ + f ∗4 −x, tð Þ ×D2

x 1 · f2 + f2 · 1ð Þ
= 2 g5g

∗
1 −x, tð Þ + g3g

∗
3 −x, tð Þ + g1g

∗
5 −x, tð Þð Þ

+ 2f2 g1g
∗
3 −x, tð Þ + g3g

∗
1 −x, tð Þð Þ + 2f4g1g∗

1 −x, tð Þ:
ð12Þ

Now, we construct the one-soliton solution for
Equation (2). Assuming g1 = eη with η = kx +wðtÞ, η∗ð−x, tÞ
= −k∗x +w∗ðtÞ, Equation (7) yields the dispersive relation
with wðtÞ = −ik2

Ð
δðtÞdt. Then, substituting the obtained g1

into Equation (8), we get f2 = Aeη+η
∗ð−x,tÞ with A = 1/

ðk − k∗Þ2. Hence, g1 and f2 can be expressed as

g1 = ekx−ik
2
Ð

δ tð Þdt ,

f2 =
1

k − k∗ð Þ2
e k−k∗ð Þx−i k2−k∗2ð Þ Ð δ tð Þdt:

ð13Þ

Other left equations are satisfied if we set g3 = g5 =⋯ = 0
and f4 = f6 =⋯ = 0. Hence, we get the one-soliton solution for
Equation (2) as

q = e
i
Ð
α tð Þdt εe

kx−ik2
Ð

δ tð Þdt /1+ε2 1/ k−k∗ð Þ2ð Þe k−k∗ð Þx−i k2−k∗2ð ÞÐ δ tð Þdt
� �

:

ð14Þ

Now, setting ε = 1 and αðtÞ = 0, we get several special solu-
tions for Equation (2):

(i) If k = −2λ2i and −4λ2i = γ2, where λ2 is a real num-
ber, Equation (14) turns into the following period
solution which has been reported in [29],

q = −
4iλ2γ2e

4iλ22
Ð

δ tð Þdt

γ22e2iλ2x + e−2iλ2x
: ð15Þ

(ii) If k = a + ib (a, b ∈ R, and ab ≠ 0), Equation (14)
becomes

q = eax+2ab
Ð

δ tð Þdtei bx+
Ð

α tð Þ− a2−b2ð Þδ tð Þð Þdt
� �

1 − 1/4b2
� �

e4ab
Ð

δ tð Þdte2ibx
: ð16Þ

Obviously, Equation (16) is the one-soliton solution
with the singular point ðx0, t0Þ = ðlπ/b, t0Þ, where t0 satisfiesÐ
δðtÞdt = −ln 4b2/4ab, and l ∈ Z.
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(iii) If k = ib, b ∈ R, and b ≠ 0, we get the spatial period
solution

qj j = 4b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b4 − 8b2 cos 2bx + 1

p , ð17Þ

where the period M = π/b.
To show the characteristics of the one-soliton solution,

we illustrate the singular solution (16) and the period solu-
tion (17) in Figure 1 (when δðtÞ = −1) and Figure 2 (when
δðtÞ = t2).

2.2. Two-Soliton Solution. To get the two-soliton solution,
we let g1 = eη1 + eη2 with η j = kjx +wjðtÞ, η∗j ð−x, tÞ = −k∗j x
+w∗

j ðtÞ, j = 1, 2. From Equation (7), we have wjðtÞ = −ik2Ð
δðtÞdt, j = 1, 2. Plugging the obtained g1 into Equation

(8) leads to

f2 = a 1, 1∗ð Þeη1+η∗1 −x,tð Þ + a 1, 2∗ð Þeη1+η∗2 −x,tð Þ

+ a 2, 1∗ð Þeη2+η∗1 −x,tð Þ + a 2, 2∗ð Þeη2+η∗2 −x,tð Þ,
ð18Þ

where aðl,m∗Þ = 1/ðkl − k∗mÞ2, l,m = 1, 2.

Then, plugging the known g1 and f2 into Equation (9)
and Equation (10), we derive g3 and f4 as

g3 = a 1, 2, 1∗ð Þeη1+η2+η∗1 −x,tð Þ + a 1, 2, 2∗ð Þeη1+η2+η∗2 −x,tð Þ,

f4 = a 1, 2, 1∗, 2∗ð Þeη1+η2+η∗1 −x,tð Þ+η∗2 −x,tð Þ:

ð19Þ

where

a l,mð Þ = 1
kl − kmð Þ2 , a l,m ∗ð Þ = 1

kl − k∗mð Þ2
, l,m = 1, 2,

a 1, 2, 1∗ð Þ = a 1, 2ð Þa 1, 1∗ð Þa 2, 1∗ð Þ,
a 1, 2, 2∗ð Þ = a 1, 2ð Þa 1, 2∗ð Þa 2, 2∗ð Þ,

a 1, 2, 1∗, 2∗ð Þ = a 1, 2ð Þa 1, 1∗ð Þa 1, 2∗ð Þa 2, 1∗ð Þa 2, 2∗ð Þa 1∗, 2∗ð Þ:
ð20Þ

Other equations are satisfied if we let f6 = f8 =⋯ = 0 and
g5 = g7 =⋯ = 0. Therefore, for ε = 1, we get the two-soliton
solution as
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Figure 1: (a) Soliton solution with singularity with parameters a = 0:12 and b = −0:35. (b) Spatial period soliton solution with parameters
a = 0 and b = 0:2, period M = 5π.
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, period M = 5π.
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q = ei
Ð

α tð Þdt eη1 + eη2 + γ1e
η1+η2+η∗1 −x,tð Þ + γ2e

η1+η2+η∗2 −x,tð Þ

1 + ρ1e
η1+η∗1 + ρ2e

η1+η∗2 + ρ3e
η2+η∗1 + ρ4e

η2+η∗2 + θeη1+η2+η
∗
1 +η∗2

:

ð21Þ

where γ1 = að1, 2, 1∗Þ, γ2 = að1, 2, 2∗Þ, ρ1 = að1, 1∗Þ, ρ2 =
að1, 2∗Þ, ρ3 = að2, 1∗Þ, ρ4 = að2, 2∗Þ, ρ5 = að1, 2Þ, and θ =
að1, 2, 1∗, 2∗Þ. Specially, if k1 = b1i and k2 = b2i, the solu-
tion Equation (21) becomes a double spatial-period solu-
tion which is illustrated in Figure 3 (when δðtÞ = t2).

2.3. N-Soliton Solution. The N-soliton solution for Equation
(2) can be shown as follows:

q = ei
Ð

α tð Þdt g
f
, ð22Þ

where

f = 〠
eð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

g = 〠
oð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

g∗ −x, tð Þ = 〠
cð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

ð23Þ

where

ηl = klx + ωl tð Þ, ωl tð Þ = −ik2
ð
δ tð Þdt,

ηl+N = η∗l −x, tð Þ, kl+N = k∗l l = 1, 2,⋯,Nð Þ,

Alm = ln 1
kl − kmð Þ2 l = 1, 2,⋯,N ,m =N + 1,⋯,2Nð Þ,

Alm = ln kl − kmð Þ2 l,m = 1, 2,⋯,N , orl,m =N + 1,⋯,2Nð Þ,
ð24Þ

and for μl = 0 or 1 (l = 1, 2,⋯N), ∑ðeÞ
μ=0,1 , ∑

ðoÞ
μ=0,1 , and ∑ðcÞ

μ=0,1
satisfy the following conditions, respectively,

〠
N

l=1
μl = 〠

N

l=1
μl+N , 〠

N

l=1
μl = 1 + 〠

N

l=1
μl+N , 1 + 〠

N

l=1
μl = 〠

N

l=1
μl+N :

ð25Þ

3. Asymptotic Analysis on Two-Soliton Solution

The asymptotic behavior of the two-soliton solution is
dependent on δðtÞ. In this section, under certain assumption
that lim

t⟶+∞

Ð
δðtÞdt = +∞, we investigate the asymptotic

behavior of the two-soliton solution. Since δðtÞ is an even
real function, we have lim

t⟶−∞

Ð
δðtÞdt = −∞. For simplicity,

we denote −ik2j by ωj, j = 1, 2, then η j = kjx + ωj
Ð
δðtÞdt,

j = 1, 2.
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Figure 3: (a) Double spatial-period soliton solution with parameters: k1 = 0:4i, k2 = 0:6i. (b) Cross-sectional shots of solution (a) at t = 0
(red), t = 5 (blue), and t = 10 (green).
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For fixed η1, we get

η2 =
k2
k1

η1 + w2 −
k2
k1

w1

� �ð
δ tð Þdt,

η∗2 −x, tð Þ = k∗2
k∗1

η∗1 −x, tð Þ + w∗
2 −

k∗2
k∗1

w∗
1

� �ð
δ tð Þdt,

η2 + η∗2 −x, tð Þ = 2 Re k2
k1

ξ1

� �
+ 2 Re w2 −

k2
k1

w1

� �ð
δ tð Þdt:

ð26Þ

where w2 − ðk2/k1Þw1 = ið−k22 + k2k1Þ.
Suppose that Re ðw2 − ðk2/k1Þw1Þ > 0, that is, Im ðk22 −

k2k1Þ < 0. The two-soliton solution asymptotically tends to
be one-soliton solution as follows:

q ~ 1
2 e

η1−η
∗
1 −x,tð Þ−ln ρ1/2ð Þ+i

Ð
δ tð Þdt sec h η1 + η∗1 −x, tð Þ + ln ρ1

2 , t⟶ −∞,

ð27Þ

q ~ ρ2ρ5
2 e η1−η

∗
1 −x,tð Þ−ln θ/ρ4ð Þ/2ð Þ+i

Ð
δ tð Þdt sec h ξ1 + ξ∗1 −x, tð Þ + ln θ/ρ4ð Þ

2 , t⟶ +∞:

ð28Þ
For fixed η2, suppose that Re ðw2 − ðk2/k1Þw1Þ > 0, in

a similar way, we get the asymptotic expressions of
Equation (21):

q ~ 1
2 e

η2+η∗2 −x,tð Þ−ln ρ4/2ð Þ+i
Ð

δ tð Þdt sec h η2 + η∗2 −x, tð Þ + ln ρ4
2 , t⟶ −∞,

ð29Þ

q ~ ρ3ρ5
2 e η2+η∗2 −x,tð Þ−ln θ/ρ1ð Þ/2ð Þ+i

Ð
δ tð Þdt sec h η2 + η∗2 −x, tð Þ + ln θ/ρ1ð Þ

2 , t⟶ +∞:

ð30Þ
We can see that the asymptotic solutions Equation (27)

and Equation (28), Equation (29) and Equation (30) have
the same form, which implies that the two-soliton collision is
elastic. But the two-soliton solution is not a travelling wave.
If we suppose that lim

t⟶+∞

Ð
δðtÞdt = −∞, the same conclusion

can be drawn.

4. Conclusion and Remarks

In the current paper, we studied an integrable variable
coefficient nonlocal nonlinear Schrödinger equation via the
Hirota’s bilinear method. We first constructed the bilinear
form and then the N-soliton solution. Furthermore, under
certain conditions, we analyzed the asymptotic behavior of
the two-soliton solution and proved that the collision of
the two soliton is elastic. Also, we demonstrated that by
choosing different special parameters, the obtained soliton
solutions can reduce to spatial period solution or singular
solution. We know that sometimes the higher-dimensional
nonlinear systems are more suitable to model the physical
phenomena such as ultrafast nonlinear optics, so we hope
to investigate the ð2 + 1Þ-dimensional variable coefficient
nonlocal partial equations in the future.
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Using the bifurcation method of dynamical systems, we investigate the nonlinear waves and their limit properties for the
generalized KdV-mKdV-like equation. We obtain the following results: (i) three types of new explicit expressions of
nonlinear waves are obtained. (ii) Under different parameter conditions, we point out these expressions represent different
waves, such as the solitary waves, the 1-blow-up waves, and the 2-blow-up waves. (iii) We revealed a kind of new
interesting bifurcation phenomenon. The phenomenon is that the 1-blow-up waves can be bifurcated from 2-blow-up
waves. Also, we gain other interesting bifurcation phenomena. We also show that our expressions include existing results.

1. Introduction

Most relationships in nature and human society are intrinsi-
cally nonlinear rather than linear in nature, so many phe-
nomena in nature and human society can be described by
nonlinear equations, such as automatic control, meteorol-
ogy, engineering calculation, engineering budget, economy,
and finance [1, 2]. Nowadays, many scientists are very inter-
ested in nonlinear equations and their solutions and have
done a lot of related work [3–5].

In the paper, we consider the generalized KdV-mKdV-
like equation [6, 7].

ut + α + β up + γ u2p
� �

ux + uxxx = 0, ð1Þ

where p > 0, α, β, γ ≠ 0 are real constants. By using appropri-
ate parameters, the generalized KdV-mKdV-like equation
becomes the classical KdV equation [8–11], the mKdV equa-
tion [12–16], the KdV-like equation [17–20], and the gener-
alized mKdV equation [21].

Up to now, many authors have been interested in the
study of the many forms of KdV-like equations [22–25],
and there are several explicit solutions results of the general-

ized KdV-mKdV-like equation based on the significant
physical background. For example, Li and Wang [6] gave
the following traveling wave solution:

uw ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

" #1/p
, ð2Þ

where β < 0, γ > 0, ξ = x − α t.
In recent years, the bifurcation method of dynamical sys-

tems has been widely used in investigating the nonlinear
partial differential equations, for instance [26–29].

In this paper, we study the nonlinear wave solutions and
the bifurcation phenomena for Eq. (1). First, we obtain three
types of explicit waves which represent the solitary waves,
the 1-blow-up waves, and the 2-blow-up waves. Second, we
reveal the new bifurcation phenomena which are introduced
in the abstract above. Furthermore, we obtain other interest-
ing bifurcation phenomena. The first phenomenon is that
the 1-blow-up waves can be bifurcated from the solitary
waves. The second phenomenon is that the trivial waves
can be bifurcated from the solitary waves.

This paper is organized as follows. In Section 2, we give
some notations and state our main results. Our main
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derivations are listed in Section 3. A brief conclusion is given
in Section 4.

2. Our Main Results

In this paper, p is odd and the situation of even is similar to
study. In this section, we state our main results. In order to
state these results conveniently, we give some notations
which will be used in the latter statement and the
derivations.

The zones Aj (j = 1, 2, 3, 4) are given in Figure 1, and κ is
an arbitrary real constant. In this article, we only consider
the case α − c = 0. For other cases, due to the complexity,
we will investigate them in our future works.

Proposition 1. If α − c = 0, then, the explicit solutions are

u1 ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξ + κð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð3Þ

and

u2 ξð Þ = 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ/ p + 1ð Þ p + 2ð Þp

ξ + κ

 !1/p

, ð4Þ

(a) A1 : β < 0, γ > 0 (b) β = 0, γ > 0

(c) A2 : β > 0, γ > 0 (d) β < 0, γ = 0

(e) β > 0, γ = 0 (f) A3 : β < 0, γ < 0

(g) β = 0, γ < 0 (h) A4 : β > 0, γ < 0

Figure 1: The phase portraits of the system (12).
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when κ = 0, u1 becomes

u01 ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þ β p ξð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð5Þ

After selecting the appropriate parameters, u01 is equiva-
lent to uw.

when γ = 0, u1 becomes

u11 ξð Þ = −2 p + 1ð Þ p + 2ð Þ
β p ξ + κð Þ2

�
0
@

1
A

1/p

, ð6Þ

(i) If ðβ, γÞ ∈ A1 or A2, then, u1 is symmetric solitary
wave (the example is given in Figure 2(a) or
Figure 3(a)). Specially, when γ⟶ 0 + 0, then, the
symmetric solitary wave u1 becomes single-side 1-
blow-up wave u11 (the example is given in
Figure 2(c)), and for the varying process of the exam-
ple, see Figure 2. When β⟶ 0 ± 0, then, the sym-
metric solitary wave u1 becomes the trivial wave
(the example is given in Figure 3(c)), and for the
varying process of the example, see Figure 3

(ii) If ðβ, γÞ ∈ A3 or A4, then, u1 is 2-blow-up solitary
wave (the example is given in Figure 4(a)). Specially,
when γ⟶ 0 − 0, then, the 2-blow-up wave u1
becomes the single-side 1-blow-up wave u11 (the
example is given in Figure 4(c)), and for the varying
process of the example, see Figure 4

(iii) If β = 0, γ < 0, then, u2 is 1-blow-up solitary wave

3. The Derivation of Main Results

To derive our results, we give some preliminaries in this sec-
tion. For simplicity of the derived expression, we use the fol-
lowing notation

A = γ

2 p + 1ð Þ 2p + 1ð Þ , ð7Þ

B = β

p + 1ð Þ p + 2ð Þ , ð8Þ

C = α − c
2 : ð9Þ

then we derive our main results.

3.1. The Derivations to Proposition 1. For given constant c
and c − α = 0, substituting u = φðξÞ with ξ = x − ct into
Eq.(1), it follows that

βφpφ′ + γ φ2pφ′ + φ′′′ = 0: ð10Þ

Integrating (10) once and letting the integral constant be
zero, we get

β

p + 1 φp+1 + γ

2p + 1 φ2p+1 + φ′′ = 0: ð11Þ

Letting ψ = φ′, we obtain a planar system

dφ
dξ = ψ,

dψ
dξ = −

γ

2p + 1 φ2p+1 −
β

p + 1φ
p+1,

8>>><
>>>:

ð12Þ

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 2: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 5, α − c = 0, β = −3, and γ⟶ 0 + 0.
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with the first integral

H φ, ψð Þ = 1
2ψ

2 + γ

2 p + 1ð Þ 2p + 1ð Þφ
2p+2 + β

p + 1ð Þ p + 2ð Þφ
p+2 = h,

ð13Þ

where h is the integral constant. According to the qualitative
theory, we obtain the bifurcation phase portraits of system
(12) as Figure 1. By means of the bifurcation phase portraits,
we can derive Proposition 1.

In the first integral (13), letting h =Hð0, 0Þ, we obtain

ψ2 = −2φ2 Aφ2p + Bφp� �
, ð14Þ

Substituting (14) into the first equation of (12) and inte-

grating it, we get

ðφ
l

ds

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As2p + Bsp

p = ξj j, ð15Þ

where l is an arbitrary constant or ±∞.
When β ≠ 0 and completing the integral above and solv-

ing the equation for φ, it will follow that

φ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξ + κð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð16Þ

and letting κ = 0, we can obtain (5) from (3). Similarly, when
β = 0 and completing the integral above and solving the
equation for φ, we gain (4). Therefore, we have completed
the derivations for Proposition 1.

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 4: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 9, α − c = 0, γ = 1, and β⟶ 0 − 0.

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 3: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 9, α − c = 0, γ = 1, and β⟶ 0 − 0.
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4. Conclusion

In this paper, we have investigated the explicit expressions of
the nonlinear waves and their bifurcations in Eq. (1).

First, we obtained three types of new expressions. And
they represent different waves, such as the solitary waves,
the 1-blow-up waves, and the 2-blow-up waves.

Second, we revealed three kinds of bifurcation phenom-
ena which include a new bifurcation phenomena. The first
phenomenon which is new bifurcation phenomenon is that
1-blow-up waves can be bifurcated from 2-blow-up waves.
The second phenomenon is that the trivial waves can be
bifurcated from the solitary waves. The third phenomenon
is that the 1-blow-up waves can be bifurcated from the soli-
tary waves.

Third, we showed that a previous result is our special
case, that is, uw is included in u01.

Furthermore, the bifurcation method of dynamical sys-
tems can be used to find the new traveling solutions and
bifurcations of many nonlinear equations such as the
extended quantum Zakharov-Kuznetsov equation [37], the
Fujimoto-Watanabe equation [38], and b-family-like equa-
tion [39]. We will continue to use the bifurcation method
of dynamical systems to study other important nonlinear
equations.
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In this work, computational analysis of generalized Burger’s-Fisher and generalized Burger’s-Huxley equation is carried out using
the sixth-order compact finite difference method. This technique deals with the nonstandard discretization of the spatial
derivatives and optimized time integration using the strong stability-preserving Runge-Kutta method. This scheme inculcates
four stages and third-order accuracy in the time domain. The stability analysis is discussed using eigenvalues of the coefficient
matrix. Several examples are discussed for their approximate solution, and comparisons are made to show the efficiency and
accuracy of CFDM6 with the results available in the literature. It is found that the present method is easy to implement with
less computational effort and is highly accurate also.

1. Introduction

The excerpt approximation of the Navier-Stokes equation is
represented by a prominent nonlinear mathematical model
known as Burger’s equation. It is the perfect combination
of advection and diffusion terms. This equation was intro-
duced by Bateman [1]. Later, Burger [2] extensively worked
on this problem, considering the turbulence effect and the
statistical aspects. Burger’s equation describes the process of
simulating shock wave phenomena, dispersion in a porous
medium, heat conduction, diffusion flow, modeling of gas
dynamics, traffic flow, propagation and reflection of the
nonlinear fluid, boundary layer flow, electrohydrodynamics,
sound waves, oil reservoir simulation, etc. The spreading of
any species due to the favorable environment of the invasive
species or predicting the pattern of spreading was an important
issue in the early twenties. The great researcher Fisher [3] pro-
posed amodel for the temporal and spatial propagation, depict-
ing thewave of increase in gene frequency in an infinitemedium
and termed it as Fisher’s equation. It represents the biological
processes, ecological systems, pattern formation, etc. Petrovskii
and Shigesada [4] combined both the models by assuming that

the distribution of species is symmetrical and the environment
is homogeneous. The following 1D equation was proposed:

∂z
∂t

= ∂2z
∂x2

+ f x, t, z, zxð Þ, inΦ =Φx ×Φt , ð1Þ

with the initial and boundary conditions:

z = z0, in �Φx × t0,
Bz =Ω, on ∂Φx × �Φt ,

ð2Þ

whereΦx = ða, bÞ,Φt = ð0, tÞ, andB is the boundary operator.
A mathematical model for fðx, t, z, zxÞ = −βzδzx + γzð1 − zδÞ
in (1) with the above conditions is known as the generalized
Burger’s-Fisher (gBF) equation and is expressed as follows:

∂z
∂t

−
∂2z
∂x2

+ βzδ
∂z
∂x

− γz 1 − zδ
� �

= 0,  0 ≤ x ≤ 1, t ≥ 0,

ð3Þ

subject to the initial condition:
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z x, 0ð Þ = 1
2 + 1

2 tanh −βδx
2 1 + δð Þ
� �� �1/δ

, ð4Þ

and the boundary conditions:

z 0, tð Þ = 1
2 + 1

2 tanh βδ

2 1 + δð Þ
β2 + γ 1 + δð Þ2

β 1 + δð Þ t

 !" # ! !1/δ

, t ≥ 0,

ð5Þ

z 1, tð Þ = 1
2 + 1

2 tanh −βδ
2 1 + δð Þ 1 − β2 + γ 1 + δð Þ2

β 1 + δð Þ t

 !" # ! !1/δ

,

ð6Þ
where β, γ, and δ are the constants. The choice of the value of
these constants reduces the model to different forms of PDEs.
For γ = 0, it reduces to the generalized Burger’s equation.
Taking β = 0, it becomes the generalized Fisher’s equation.
The exact solution of Equation (3) was given by Chen and
Zhang [5] as follows:

z x, tð Þ = 1
2 + 1

2 tanh −βδ
2 1 + δð Þ x −

β2 + γ 1 + δð Þ2
β 1 + δð Þ t

 !" # ! !1/δ

:

ð7Þ

Over the past many years, work has been done for the
explicit solution of Equation (3). Numerical methods provide
a tool for the physical behaviour of the system, although theoret-
ical results are available in the literature. Sari et al. [6] applied the
compact finite difference method along with the third-order
total variation-diminishing Runge-Kutta scheme in the time
domain. Zhao et al. [7] implemented the pseudospectral
method using the time discretization by Crank-Nicolson as well
as the leapfrog scheme and space discretization by Legendre-
Galerkin and Chebyshev-Gauss-Lobatto for nodes. Moham-
madi [8] proposed the exponential spline and finite difference
approximations. Tatari et al. [9] analyzed the radial basis func-
tion collocation techniquewith the predictor-correctormethod.
Malik et al. [10] discussed the hybridization of the Exp-function
method with the nature-inspired algorithm. Yadav and Jiwari
[11] analyzed the finite element analysis with the existence
and uniqueness of the weak solution using Galerkin’s finite ele-
mentmethod.Macias-Diaz andGonzalez [12] implemented the
finite difference method. Soori [13] obtained the exact solution
of the Burger’s-Fisher equation using the variational iteration
method and homotopy perturbation method. An exponential
time differencing scheme using the method of lines was devel-
oped by Bratsos and Khaliq [14]. Gurbuz and Sezer [15]
discussed the modified Laguerre matrix-collocation method.

The significance and various applications motivated the
researchers to compute the analytical and numerical solu-
tions of the Burger’s-Fisher equation. Recently, the dynami-
cal behaviour and exact parametric representations of the
traveling wave solutions under different parametric condi-
tions have been discussed by Li [16]. In the findings, the
exact monotonic and nonmonotonic kink wave solutions,
two-peak solitary wave solutions, and periodic wave solu-

tions, as well as unbounded traveling wave solutions have
been obtained. Onyejekwe et al. [17] applied a boundary
integral element-based numerical technique, in which the
boundary and domain values calculate the fundamental
integral inside the domain. The domain integrals due to non-
linearity are considered for computing the solution. Investi-
gation of the global existence and uniqueness of a periodic
wave solution has been conducted by Zhang et al. [18].

Another important nonlinear equation, describing the
interaction between reaction mechanism, convection effect,
and diffusion transport is the 1D generalized Burger’s-
Huxley (gBH) equation, for which fðx, t, z, zxÞ = −βzδzx + γ
zð1 − zδÞðzδ − ηÞ. The equation is expressed as follows:

∂z
∂t

−
∂2z
∂x2

+ βzδ
∂z
∂x

= γz 1 − zδ
� �

zδ − η
� �

, a ≤ x ≤ b, t ≥ 0:

ð8Þ

The parametersβ, γ, andδ are the constants andparameter
η ∈ ð0, 1Þ. The initial and boundary conditions are as follows:

z x, 0ð Þ = η

2 + η

2 tanh A1xð Þ
� �1/δ

, ð9Þ

z a, tð Þ = η

2 + η

2 tanh A1 a − A2tð Þð Þ
h i1/δ

, z b, tð Þ

= η

2 + η

2 tanh A1 b − A2tð Þð Þ
h i1/δ

:

ð10Þ

The exact solution derived by Wang [19], using nonlinear
transformations, is reproduced hereunder:

z x, tð Þ = η

2 + η

2 tanh A1 x − A2tð Þð Þ
h i1/δ

, ð11Þ

where

A1 = ηδ
−β +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 + 4γ 1 + δð Þ

q
4 δ + 1ð Þ

0
@

1
A, A2

= βη

δ + 1 −
1 − η + δð Þ −β +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 + 4γ δ + 1ð Þ

q� �
2 δ + 1ð Þ :

ð12Þ

For γ = 0, the above model conforms to the generalized
Burger’s equation, and considering β = 0 and δ = 1, the Huxley
equation [20] is obtained. For β = 0, γ = 1, and δ = 1, it corre-
sponds to the Fitzhugh-Nagoma equation [21]. Yefimova and
Kudryashov [22] applied the Hopf-Cole transformation for
solving the gBH equation. The Adomian decomposition
method was implemented by Ismail et al. [23]. Gao and Zhao
[24] proposed the Exp-function method for a series of exact
solutions of the gBH equation. A high-order difference scheme
using Taylor’s series expansionwas presented by Sari et al. [25].
Celik [26] introduced a numerical method based on the Haar
wavelet approach.
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Zhang et al. [27] reduced the Burger’s-Huxley and
Burger’s-Fisher equations into first-order systems and then
applied the discontinuous Galerkin method. A numerical
scheme based on the finite differences for time integration
and cubic B-spline for space integration was proposed by
Mohammadi [28]. A fourth-order finite difference method
was implemented by Bratsos [29] in a two-time level recur-
rence relation for the solution of the gBH equation. El-Kady
et al. [30] discussed the methods based on cardinal Chebyshev
and Legendre basis functions with the Galerkinmethod, Gauss
quadrature formula, and El-Gendi method to convert the
problem into ordinary differential equations. Technique based
on modified cubic B-spline as the basis function with differen-
tial quadrature method was discussed by Singh et al. [31]. The
nonstandard finite difference method was analyzed by Zibaei
et al. [32]. Bukhari [33] applied local radial basis function dif-
ferential collocation method. Macias-Diaz [34] used the
explicit exponential method. Gilani and Saeed [35] applied
the CAS wavelet in conjunction with the Picard technique.
Cardinal B-spline wavelet numerical method was used by
Shiralashetti and Kumbinarasaiah [36]. A technique based
on the hyperbolic-trigonometric tension B-spline method
was applied by Alinia and Zarebnia [37]. Loyinmi and Akinfe
[38] proposed an algorithm using the coupling of the Elzaki
transform with the homotopy perturbation method.

Recently, the exact solution has been computed by
Kushner and Matviichuk [39] using the theory of finite-
dimensional dynamics. Shukla and Kumar [40] applied the
numerical scheme based on the Crank-Nicolson finite differ-
ence method in collaboration with the Haar wavelet analysis,
to obtain the numerical solution. A feed-forward artificial
neural network technique is applied by Panghal and Kumar
[41] in which the constructed error function is minimized
using the quasi-Newton algorithm.

Based on the traditional finite difference approxima-
tions, Lele [42] proposed well-regulated compact schemes
to provide a better representation of shorter proportionate
lengths. Many researchers have extended the compact finite
difference scheme for linear/nonlinear differential equations,
partial differential equations having Dirichlet or Neumann
boundary conditions. Ansari et al. [43] implemented the
CFD6 scheme for free vibration phenomena of nanobeams
in an elastic medium. A similar scheme for incompressible
Navier-Stokes and scalar transport equation was analyzed
by Boersma [44], a reaction-diffusion equation with delay
was approximated by Li et al. [45] and the modified Burger’s
equation by Kaur et al. [46].

In this work, a numerical scheme based on the sixth-
order compact finite difference method (CFDM6) followed
by the strong stability-preserving Runge-Kutta method
(SSP-RK43) for time integration is used to solve gBF and
gBH equations. The advantage of CFDM6 with the SSP-
RK43 method is that it computes the results at more mesh
points, giving a better approximate solution. The proposed
method gives the sixth order of convergence in the spatial
domain and the third order in the temporal domain. The
proposed method is easy to implement and has less compu-
tational cost. The future scope of the method is to solve
various arduous linear and nonlinear PDEs.

The paper is organized as follows: in Section 2, first- and
second-order spatial derivatives of the CFDM6 are derived.
In Section 3, the proposed method is implemented followed
by SSP-RK43. In Section 4, convergence is discussed. In
Section 5, stability analysis for the proposed scheme is
presented. In Section 6, several test problems are discussed
to demonstrate and justify the applicability of the proposed
scheme. In Section 7, the conclusion explaining the effi-
ciency of CFDM6 is given.

2. Compact Finite Difference Method

The spatial domain ϕx = ða, bÞ is divided into uniform mesh
with step iteration xi = a + ih, i = 0, 1, 2,⋯,N , h = ðb − aÞ/N
and for time domain ϕt = ðt0, tÞ, with t0 = 0, a uniform step
of size Δt = t j+1 − t j such that t j = t0 + jΔt, j = 0, 1, 2,⋯, is
followed. The method for calculating first-order and
second-order derivatives using the compact finite difference
scheme is given hereunder.

2.1. Spatial Derivatives of First Order. The first-order spatial
derivatives for CFDM6 at the inner nodes are calculated as
follows [42]:

φz′i−1 + z′i + φz′i+1 = χ
zi+2 − zi−2

4h
� �

+ ψ
zi+1 − zi−1

2h
� �

: ð13Þ

For the optimality of the scheme with higher-order accu-
racy, consider φ = 1/3 representing the implicit form of the
first-order derivative. The unknown parameters on the other
side are calculated by the relation χ = ð1/3Þð4φ − 1Þ and ψ
= ð2/3Þð2 + φÞ. By simple calculation, Equation (13) reduces
to a sixth-order tridiagonal matrix as a linear system of

equations given below with truncation error ð4/7!Þh6zð7Þi :

z′i−1 + 3z′i + z′i+1 =
−zi−2 − 28zi−1 + 28zi+1 + zi+2

12h ,  i = 2, 3,⋯,N − 2:

ð14Þ

For the value of the derivative at x0, x1, xN−1, and xN ,
one-sided forward and backward schemes have been imple-
mented, which produce following results:

z′0 + 5z′1 =
1
60h −197z0 − 25z1 + 300z2 − 100z3 + 25z4 − 3z5ð Þ,

2z′0 + 11z′1 + 2z′2 =
1
12h −80z0 − 35z1 + 136z2 − 28z3 + 8z4 − z5ð Þ,

2z′N−2 + 11z′N−1 + 2z′N = 1
12h zN−5 − 8zN−4 + 28zN−3ð

− 136zN−2 + 35zN−1 + 80zNÞ,

5z′N−1 + z′N = 1
60h 3zN−5 − 25zN−4 + 100zN−3ð

− 300zN−2 + 25zN−1 + 197zNÞ:
ð15Þ

The relations (14) and (15) can be represented in the
form of a matrix system as

Az′ =Bz, ð16Þ
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where

Az′ =

1 5
2 11 2

1 3 1
: : :

: : :

1 3 1
2 11 2

5 1

2
666666666666666664

3
777777777777777775

z′0
z′1
z′2
:

:

z′N−2

z′N−1

z′N

2
666666666666666664

3
777777777777777775

,

Bz = 1
h

−
197
60 −

25
60

300
60 −

100
60

25
60 −

3
60

−
80
12 −

35
12

136
12 −

28
12

8
12 −

1
12

−
1
12 −

28
12 0 28

12
1
12

−
1
12 −

28
12 0 28

12
1
12

: : :

: : :

−
1
12 −

28
12 0 28

12
1
12

−
1
12 −

28
12 0 28

12
1
12

1
12 −

8
12

28
12 −

136
12

35
12

80
12

3
60 −

25
60

100
60 −

300
60

25
60

197
60

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

z0

z1

z2

z3

:

:

zN−3

zN−2

zN−1

zN

2
666666666666666666666664

3
777777777777777777777775

:

ð17Þ

2.2. Spatial Derivatives of Second Order. Similarly, the
second-order derivative is calculated as

τz′′i−1 + z′′i + τz′′i+1 = σ
zi+2 − 2zi + zi−2

4h2
� �

+ ς
zi+1 − 2zi + zi−1

h2

� �
:

ð18Þ

For τ = 0, this equation represents the explicit method to
calculate the derivative, and for τ = 1/10, it will represent the
implicit scheme of the second-order derivative. The
unknown constants on the R.H.S. are calculated as ς = ð4/3Þ
ð1 − τÞ and σ = ð1/3Þð−1 + 10τÞ. This reduces Equation (18)
to a tridiagonal system as follows:

z′′i−1 + 10z′′i + z′′i+1 =
12
h2

zi+1 − 2zi + zi−1ð Þ: ð19Þ

For the boundary points, one-sided forward and back-
ward schemes have been implemented, which gives the
following results:

10z′′0 + z′′1 =
12
h2

115
36 z0 −

1555
144 z1 +

89
6 z2 −

773
72 z3 +

151
36 z4 −

11
16 z5

� �
,

z′′N−1 + 10z′′N = 12
h2

115
36 zN −

1555
144 zN−1 +

89
6 zN−2

�

−
773
72 zN−3 +

151
36 zN−4 −

11
16 zN−5

�
:

ð20Þ

The second-order derivative can be written in the matrix
form as

ℂz′′ =Dz,

ℂz′′ =

10 1
1 10 1

1 10 1
: : :

: : :

: : :

1 10 1
1 10 1

1 10

2
666666666666666666664

3
777777777777777777775

z′′0
z′′1
z′′2
:

:

:

z′′N−2

z′′N−1

z′′N

2
666666666666666666664

3
777777777777777777775

,

Dz = 12
h2

115
36

−1555
144

89
6

−773
72

151
36

−11
16

1 −2 1
1 −2 1

: : :

: : :

: : :

1 −2 1
1 −2 1

−11
16

151
36

−773
72

89
6

−1555
144

115
36

2
66666666666666666666664

3
77777777777777777777775

z0

z1

z2

z3

:

zN−3

zN−2

zN−1

zN

2
666666666666666666664

3
777777777777777777775

:

ð21Þ

3. Implementation of CFDM6

By substituting the values of first-order and second-order
derivatives in Equations (3) and (8), a linear system of equa-
tions are obtained for i = 0, 1,⋯,N :

(i) Model-I: generalized Burger’s-Fisher equation:

∂zi
∂t

=ℂ−1Dzi − βzδi A
−1Bzi + γzi 1 − zδi

� �
≡L zið Þ: ð22Þ

(ii) Model-II: generalized Burger’s-Huxley equation:

∂zi
∂t

=ℂ−1Dzi − βzδi A
−1Bzi + γzi 1 − zδi

� �
zδi − η
� �

≡L zið Þ:
ð23Þ
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3.1. SSP-RK43 Scheme. Let

dzi
dt

=L zið Þ, i = 0, 1, 2⋯ ,N , ð24Þ

where L represents the nonlinear differential operator as
defined above. In order to solve this system of ODE’s from
the t j to t j+1 time level, SSP-RK43 is applied using the
following operations:

z 1ð Þ = zj + Δt
2 L zj

	 

,

z 2ð Þ = z 1ð Þ + Δt
2 L z 1ð Þ

� �
,

z 3ð Þ = 2
3 z

j + 1
3 z

2ð Þ + Δt
6 L z 2ð Þ

� �
,

zj+1 = z 3ð Þ + Δt
2 L z 3ð Þ

� �
:

ð25Þ

By using the initial condition, zðx, tÞ at every required
time level can be calculated.

4. Convergence Analysis

Convergence of the model is investigated below for the
desired Equations (22) and (23).

Theorem 1. It is an assumption that the given initial value
problem dz/dt =LðzÞ has a unique solution if LðzÞ satisfies
the following conditions:

(1) LðzÞ is a real function

(2) LðzÞ is well defined and continuous in the domain of
t ∈Φt and z ∈ ð−∞,∞Þ

(3) There exists a constant called the Lipschitz constant κ
such that jLðz, t, ΔtÞ −Lð _z, t, ΔtÞj ≤ κjz − _zj, where
t ∈Φt and z and _z be any two different points

It is clearly seen that LðzÞ for the generalized Burger’s-
Fisher equation and generalized Burger’s-Huxley equation
is real, well defined, and continuous. Hence, above theorem
is satisfied.

Lemma 2. A single-step method (25) is said to be regular, if
the incremental function ϕðz, t, ΔtÞ satisfies the following
conditions:

(1) The function is well defined and is continuous in the
given time and space domain

(2) For every t ∈Φt and z, _z ∈ ð−∞,∞Þ, there exit a con-
stant κ such that

ϕ z, t, Δtð Þ − ϕ _z, t, Δtð Þj j ≤ κ z − _zj j: ð26Þ

Lemma 3. Any single-step method is consistent if ϕðz, t, 0Þ
=Lðz, tÞ.

Theorem 4. The consistency is the necessary and sufficient
condition for the convergence of a regular single-step method
with the order (say) p ≥ 1.

Proof. This theorem ensures that the approximate solution
converges to the exact solution. For the proof, consider the
specific incremental function ϕðz, t, ΔtÞ. Assume that the
given differential equation zt ≡Lz has a unique solution
zðtÞ on Φt and also zðtÞ ∈ Cðp+1ÞΦt for p ≥ 1. Using Tay-
lor’s series expansion about any point t j,

z tð Þ = z t j
	 


+ t − t j
	 


z′ t j
	 


+ 1
2! t − t j
	 
2

z′′ t j
	 


+⋯+ 1
p!

t − t j
	 
p

zp t j
	 


+ 1
p + 1ð Þ! t − t j

	 
p+1
zp+1 ξj

� �
,

ð27Þ

where ξ ∈ ðt j, tÞ. Taking t = t j+1, one gets

z t j+1
	 


− z t j
	 


= Δtz′ t j
	 


: ð28Þ

Thus, the incremental function is defined as

ϕ z t j
	 


, t j, Δt
	 


= Δtð Þz′ t j
	 


+ 1
2! Δtð Þ2z′′ t j	 
+⋯+ 1

p!
Δtð Þpzp t j

	 

:

ð29Þ

It is computed using the approximate value of zj

where the exact value zðt jÞ is required. Hence, zj+1 = zj +
Δtϕðzðt jÞ, t j, ΔtÞ, j = 0, 1, 2,⋯,m − 1. To compute the error
using Taylor’s series,

zj+1 = zj + Δtz′ j + Δtð Þ2
2! z′′j + Δtð Þ3

3! z′′′j

+⋯+ Δtð Þp
p!

zp j + Δtð Þp+1
p + 1ð Þ! z

p+1 ξð Þj:
ð30Þ

The approximate value using the SSP-RK43 scheme is

zj+1 = zj + ΔtL zj
	 


+ Δtð Þ2
2! L2 zj

	 

+ Δtð Þ3

3! L3 zj
	 


+⋯+ Δtð Þp
p!

Lp zj
	 


:

ð31Þ

The following relation is obtained:

Δtϕ z t j
	 


, t j, Δt
	 


= Δtz′ t j
	 


+ Δtð Þ2
2! L2 zj

	 

+ Δtð Þ3

3! L3 zj
	 


+⋯+ Δtð Þp
p!

Lp zj
	 


:

ð32Þ
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The value of Δtϕðzj, t j, ΔtÞ is obtained from Δtϕðzðt jÞ,
t j, ΔtÞ by using the exact approximate value of zj in place of
the exact value of zðt jÞ. According to the SSP-RK43, the
approximate value of zðt j+1Þ is obtained as follows:

zj+1 = zj + Δtϕ zj, t j, Δt
	 


+ Δtð Þ2
2! ϕ′ zj, t j, Δt

	 

+ Δtð Þ3

3! ϕ′′ zj, t j, Δt
	 


+⋯:

ð33Þ

For the above relation, compute the values of zðt jÞ, z′ðt jÞ,
z′′ðt jÞ⋯ zpðt jÞ as follows:

z′ t j
	 


=L z t j
	 


, t j
	 


,

z′′ t j
	 


=L t +LLz ,

z′′′ t j
	 


=L tt + 2′L tz +L2Lzz + Lz L t +LLzð Þ:
⋮

ð34Þ

Thus, from these computed values taking t = t j, the error
term is obtained as follows:

Δtp+1

p + 1ð Þ! z
p+1 ξj
� �

< ε: ð35Þ

Hence, on simplification,

Δtp+1zp+1 ξj
� �

< ε p + 1ð Þ!: ð36Þ

In other words,

Δtp+1Lp ξj
� �

< ε p + 1ð Þ!: ð37Þ

Thus, the given value of pwill give the upper bound, and for
the computational purpose, the value of LpðξjÞ in Equation
(37) is replacedwith themax ∣LpðξjÞ ∣ in the temporal domain
Φt. The SSP-RK43 as discussed above is rewritten as
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(a) β = 0:001, γ = 0:001
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(b) β = 1, γ = 1
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(c) β = 0:1, γ = −0:0025

Figure 1: Plot of eigenvalues corresponding to gBF equation with Δt = 0:0001 and δ = 8.
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Q1 = zj + Δt
2 L zj, t j

	 

,

Q2 =Q1 +
Δt
2 L Q1ð Þ,

Q3 =
2
3 z

j + 1
3Q2 +

Δt
6 L Q2ð Þ,

zj+1 =Q3 +
Δt
2 L Q3ð Þ:

ð38Þ

The iterated value of zj+1 can be written as

zj+1 = zj + c1Q1 + c2Q2 + c3Q3: ð39Þ

Using Taylor’s series expansion, the incremental function
becomes

ϕ zj, t j, Δt
	 


= Δtð Þ−1 c1Q1 + c2Q2 + c3Q3ð Þ: ð40Þ

From the Theorem 1, the proof for convergence is elabo-
rated as follows:

Q1 −Q1
∗ = zj + Δt

2 L zj
	 


− zj
∗ + Δt

2 L zj
∗

� �
,

Q1 −Q1
∗j j ≤ zj − zj

∗
��� ��� + Δt

2 L zj
	 


−L zj
∗

� ���� ��� ≤ 1 + Δt
2 κ

� �
zj − zj

∗
��� ���,

Q2 −Q2
∗ =Q1 +

Δt
2 L Q1ð Þ −Q1

∗ −
Δt
2 L Q1

∗ð Þ,

Q2 −Q2
∗j j ≤ Q1 −Q1

∗j j + Δt
2 L Q1ð Þ −L Q1

∗ð Þj j

= Q1 −Q1
∗j j + Δt

2 L zj + Δt
2 L zj

	 
� �
−L zj

∗ + Δt
2 L zj

∗
� �� �����

����
≤ 1 + Δt

2 κ

� �
zj − zj

∗
��� ���

+ Δt
2 L zj

	 

+ Δt

2 L zj
	 


Lz z j
	 


+ Δt
2 L zj

	 
� �2
Lzz z j

	 
"

+⋯−L zj
∗

� �
−
Δt
2 L zj

∗
� �

Lz z j
∗

� �
−

Δt
2 L zj

∗
� �� �2

Lzz z j
∗

� �#

≤ 1 + Δt
2 κ

� �
zj − zj

∗
��� ��� + Δt

2 L zj
	 


−L zj
∗

� �h i

+ Δt
2

� �2
L zj
	 


Lz z j
	 


−L zj
∗

� �
Lz z j

∗
� ���� ���

+ Δt
2

� �3
L zj
	 
	 
2

Lzz z j
	 


− L zj
∗

� �� �2
Lzz z j

∗
� �����

����+⋯
≤ 1 + Δtκð Þ zj − zj

∗
��� ��� + Δt

2

� �2
κ2 zj − zj

∗
��� ���

= 1 + Δtκ + Δt
2 κ

� �2
" #

zj − zj
∗

��� ���,

0 0.2 0.4 0.6 0.8 1

x

–2.5

–2

–1.5

–1

–0.5

0

0.5
Ei

ge
nv

al
ue

s

(a) β = γ = 1,η = 0:001

0 0.2 0.4 0.6 0.8 1

x

–2.5

–2

–1.5

–1

–0.5

0

0.5

Ei
ge

nv
al

ue
s

(b) β = 0:1, γ = 0:001, η = 0:0001
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0 0.2 0.4 0.6 0.8 1

x

–2.5

–2

–1.5

–1

–0.5

0

0.5

Ei
ge

nv
al

ue
s

N=20
N=30

N=40
N=60

(d) β = 0γ = 1, η = 0:001

Figure 2: Plot of eigenvalues corresponding to gBH equation with Δt = 0:0001 and δ = 8.
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Q3 −Q3
∗ = 2

3 z
j + Q2

3 + Δt
2 L Q2ð Þ − 2

3 z
j∗ −

Q2
∗

3 −
Δt
2 L Q2

∗ð ÞÞ,

Q3 −Q3
∗j j = 2

3 zj − zj
∗

��� ��� + 1
3 Q2 −Q2

∗j j + Δt
2 L Q2ð Þ −L Q2

∗ð Þj j

≤
2
3 zj − zj

∗
��� ��� + 1

3 Q2 −Q2
∗j j

+ Δt
2 L Q1 +

Δt
2 L Q1ð Þ

� �
−L Q∗

1 +
Δt
2 L Q∗

1ð Þ
� �� �����

����
≤
2
3 zj − zj

∗
��� ��� + 1

3 Q2 −Q2
∗j j

+ Δt
2 L zj

	 

−L zj

∗
� �� ���� ��� + Δt

2 L zj
	 


Lz zj
	 


−Lz zj
∗

� ���� ���� �

≤ zj − zj
∗

��� ��� + Δt
2 κ 2 + Δt

2 κ

� �
zj − zj

∗
��� ���

+ Δt
2 κ zj − zj

∗
��� ��� + Δt

2 κ

� �2
zj − zj

∗
��� ���

≤ zj − zj
∗

��� ��� + 3Δt
2 κ + 2 Δt

2 κ

� �2
" #

zj − zj
∗

��� ���,
ð41Þ

As discussed by [47], the free parameters are largely taken
according to the range of absolute stability. The other possibility
isminimizing the sumof the absolute value of the coefficients of

the truncation error. ThusLz < κ andLzz < κ2/M whereM is
the upper bound of convergence. For the incremental function,

ϕ zj, t j, Δt
	 


− ϕ zj
∗, t j, Δt

� ���� ���
= Δtð Þ−1 c1Q1 + c2Q2 + c3Q3 − c1Q1

∗ − c2Q2
∗ − c3Q3

∗j j
= Δtð Þ−1 c1 Q1 −Q1

∗j j + c2 Q2 −Q2
∗j j + c3 Q3 −Q3

∗j jð Þ

≤ Δtð Þ−1 c1 1 + Δt
2 κ

� �
zj − zj

∗
��� ��� + c2 1 + Δtκ + Δt

2 κ

� �2
" #

zj − zj
∗

��� ���
 !"

+ c3 zj − zj
∗

��� ��� + 3Δt
2 κ + 2 Δt

2 κ

� �2
" #

zj − zj
∗

��� ���
 !#

≤ Δtð Þ−1 c1 + c2 + c3ð Þ + c1 + 2c2 + c3½ � κ2 + c2 + 2c3½ �Δt κ

2
� �2� �

zj − zj
∗

��� ���:
ð42Þ

The backward substitution of (38) and its comparison with
general Taylor’s series [47] gives c1 = 1/4, c2 = 1/2, c3 = 1/4.
Hence, these values generate the inequality as

ϕ zj, t j, Δt
	 


− ϕ zj
∗, t j, Δt

� ���� ��� ≤ κ 1 + 1
2Δtκ +

1
6 Δtκð Þ2

� �
zj − zj

∗
��� ���:

ð43Þ

Table 1: Comparison of absolute error of Example 1 with β = 0:001, γ = 0:001, h = 0:1, and Δt = 0:0001.

t x
δ = 1 δ = 4

CFDM6 ADM [23] CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.001

0.1 2.2204E-16 1.94E-06 1.01E-07 1.15E-08 1.1102E-16 1.75E-08 7.71E-09

0.5 1.1102E-16 1.94E-06 1.04E-07 3.07E-13 1.1102E-16 1.75E-08 2.07E-13

0.9 4.4409E-17 1.94E-06 1.01E-07 1.15E-08 3.3307E-16 1.75E-08 7.71E-09

0.010

0.1 5.8818E-16 1.94E-05 7.53E-07 6.02E-08 4.4409E-15 1.27E-06 4.05E-08

0.5 1.6653E-16 1.94E-05 1.04E-06 8.96E-13 4.2188E-15 1.75E-06 5.56E-13

0.9 1.1102E-15 1.94E-05 7.53E-07 6.02E-08 4.8850E-15 1.27E-06 4.05E-08

100

0.1 2.2204E-16 — 7.53E-07 1.01E-07 5.5511E-16 — 5.73E-08

0.5 1.1102E-15 — 1.04E-06 1.50E-11 2.7756E-15 — 3.51E-12

0.9 1.1102E-16 — 7.53E-07 1.01E-07 1.3323E-15 — 5.73E-08
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(b) Surface plot of numerical solution

Figure 3: Graphical representation of solutions corresponding to Example 1 with N = 10 and Δt = 0:001.
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It is observed that jϕðzj, t j, ΔtÞj satisfies the Lipschitz condi-
tion in zj and is a continuous function in Δt. Thus, it is con-
cluded that SSP-RK43 is convergent.

5. Stability Analysis

The stability analysis of both the models is discussed below
by taking nonlinearity coefficient z =m (say), where m =
max z, in the entire process to handle the nonlinear term
in Equations (22) and (23). The eigenvalue-based technique
[45] is followed to establish the stability of the system.

(1) Model-I: generalized Burger’s-Fisher equation:

∂z
∂t

=ℂ−1Dzi − βmδA−1Bzi + γ 1 −mδ
� �

zi,

zt = ℂ−1D − βmδA−1B + γ 1 −mδ
� �� �

I
� �

zi ≡Tzi:

ð44Þ

(2) Model-II: generalized Burger’s-Huxley equation:

∂zi
∂t

=ℂ−1Dzi − βmδA−1Bzi + γ 1 −mδ
� �

mδ − η
� �

zi, ð45Þ

zt = ℂ−1D − βmδA−1Bzi + γ 1 −mδ
� �

mδ − η
� �� �

I
� �

zi ≡Tzi,
dz
dt

=Tz:

ð46Þ

The matrix T is constant for both the Model-I and
Model-II with the assumption that it has distinct or possibly
complex eigenvalues with a negative real part. Using the
given initial condition for the analytic solution, the relation
becomes

z tð Þ = exp Ttð Þz0, ð47Þ

whereas on expanding the exponent as a matrix function
where I is the identity matrix,

exp Ttð Þ = I +Tt + Ttð Þ2
2! + Ttð Þ3

3! +⋯: ð48Þ

For Model-I and Model-II, consider the transformation
matrix P such that P−1TP =D where D is the diagonal
matrix; thus, the relation becomes

P−1 exp Ttð ÞP = exp Dtð Þ, ð49Þ

Table 2: Comparison of absolute error of Example 2 with β = 1, γ = 1, h = 0:1, and Δt = 0:0001.

t x
δ = 2 δ = 8

CFDM6 ADM [23] CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.0005

0.1 2.2547E-11 1.40E-03 7.62E-05 5.67E-06 4.8073E-11 1.02E-04 2.44E-06

0.5 8.4710E-14 1.35E-03 9.14E-05 5.75E-09 1.6162E-12 1.37E-04 1.82E-10

0.9 1.8019E-11 1.28E-03 1.02E-04 5.95E-06 6.3383E-13 1.69E-04 3.15E-06

0.0010

0.1 4.3846E-11 2.80E-03 1.50E-04 1.08E-05 9.3434E-11 2.00E-04 4.65E-06

0.5 1.8086E-13 2.69E-03 1.83E-04 1.15E-08 3.2596E-12 2.74E-04 4.02E-10

0.9 3.5862E-12 2.55E-03 2.00E-04 1.14E-05 1.6023E-12 3.31E-04 6.00E-06
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Figure 4: Graphical representation of solutions corresponding to Example 2 with N = 10 and Δt = 0:001.
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Table 3: Comparison of absolute error of Example 3 with β = 0:1, γ = −0:0025, h = 0:1, and Δt = 0:0001.

t x
δ = 2 δ = 4 δ = 8

CFDM6 CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.1

0.1 6.661E-16 1.21E-05 9.47E-06 2.220E-16 1.34E-05 6.76E-06 1.110E-15 1.47E-05 4.09E-06

0.5 6.661E-16 2.90E-05 2.74E-08 5.551E-16 3.49E-05 1.03E-08 6.661E-16 3.83E-05 1.84E-08

0.9 2.220E-16 1.54E-05 9.57E-06 7.772E-16 1.39E-05 6.92E-08 3.331E-16 1.53E-05 4.24E-06

0.5

0.1 1.341E-16 1.67E-05 9.58E-06 6.661E-16 2.00E-05 6.83E-06 4.441E-16 2.20E-05 4.14E-06

0.5 1.887E-15 4.69E-05 5.18E-08 2.331E-15 5.64E-05 1.93E-08 6.661E-16 6.22E-05 3.47E-08

0.9 4.441E-16 1.71E-05 9.66E-06 1.665E-15 2.07E-05 7.01E-06 1.332E-15 2.28E-05 4.30E-06

2.0

0.1 5.551E-16 — 9.59E-06 1.221E-15 — 6.86E-06 1.221E-15 — 4.20E-06

0.5 3.331E-15 — 5.26E-08 1.776E-15 — 1.89E-08 3.997E-15 — 3.45E-08

0.9 6.661E-16 — 9.67E-06 7.772E-16 — 7.04E-06 3.331E-16 — 4.35E-06

Table 4: Comparison of absolute error of Example 4 with β = 1, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:0001.

Method
t = 0:1 t = 1

x = 0:1 x = 0:5 x = 0:9 x = 0:1 x = 0:5 x = 0:9
CFDM6 (Δt = 0:1) 6.4123E-08 6.4126E-08 6.4129E-08 6.4099E-07 6.4102E-07 6.4105E-07

EFD [49] 2.0510E-06 5.2339E-06 2.0511E-06 3.0562E-06 8.4901E-06 3.0564E-06

HSCM [50] 5.1820E-07 1.3220E-06 5.1820E-07 7.7340E-07 2.1480E-06 7.7340E-07

UAHT [37] 2.8510E-07 7.8223E-07 2.8507E-07 3.0616E-07 8.5042E-07 3.0614E-07

UAH [37] 5.2629E-07 1.3423E-06 5.2620E-07 7.8705E-07 2.1860E-06 7.8690E-07

UAT [37] 5.3131E-07 1.3585E-06 5.3121E-07 7.8706E-07 2.1861E-06 7.8691E-07
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Figure 5: Graphical representation of solutions corresponding to Example 3 with N = 10 and Δt = 0:001.

Table 5: Comparison of L∞ error norm of Example 4 with β = 1, γ = 1, η = 0:001, h = 0:1, and Δt = 0:001.

Method
t = 0:2 t = 1

δ = 1 δ = 4 δ = 8 δ = 1 δ = 4 δ = 8
CFDM6 (Δt = 0:1) 7.4965E-08 1.3207E-07 1.3587E-07 3.7494E-07 6.6011E-07 6.7896E-07

MCSCM [51] 3.7487E-08 1.2271E-05 3.3191E-05 4.2940E-08 1.4046E-05 3.7949E-05

MGT [52] 4.0305E-08 1.3193E-05 3.5687E-05 4.6849E-08 1.5325E-05 4.1407E-05

UAHT [37] 1.8104E-08 5.9274E-06 1.6034E-05 1.8219E-08 5.9602E-06 1.6102E-05

UAH [37] 4.0069E-08 1.3118E-05 3.5485E-05 4.6833E-08 1.5321E-05 4.1400E-05

UAT [37] 4.0326E-08 1.3202E-05 3.5712E-05 4.6834E-08 1.5322E-05 4.1400E-05
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where

D =

η1

η2

η

: : :

: : :

ηn−2

ηn−1

ηn

2
666666666666666666664

3
777777777777777777775

: ð50Þ

Taking P−1z = v in Equation (46), the differential equa-
tion becomes

dv
dt

=Dv: ð51Þ

Similarly, as discussed above, the solution of Equation
(52) is v = exp ðDtÞv0, and the recursive relation is

vj+1 = E DΔtð Þvj: ð52Þ

In this diagonal matrix, EðDΔtÞ is an approximate
matrix of exp ðDΔtÞ. The diagonal elements of the approxi-
mated matrix are EjðηjΔtÞ. Implementing Equation (25) on
the scalar Equation (44),

z′ = ηjz: ð53Þ

Thus, the method discussed in Equation (25) is abso-
lutely stable if

Ej η jΔt
	 
�� �� < 1, ð54Þ

where Re ðηÞ < 0. The stability of the system exclusively
depends on the eigenvalues of the coefficient matrix T of
the form ∑4

m=0ðTΔtÞm/m! which should satisfy Equation
(54). The necessary conditions that eigenvalues of T should
satisfy are given below [47]:

Table 6: Comparison of error norms of Example 4 with β = 1, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:01.

Method Error (time) t = 0:05 t = 0:1 t = 1 t = 5

CFDM6
L∞ 3.2065E-08 6.4129E-08 6.4105E-07 3.1999E-06

L2 3.0418E-08 6.0835E-08 6.0812E-07 3.0355E-06

UAHT [37]
L∞ 6.0735E-07 7.8321E-07 8.5042E-07 8.4946E-07

L2 4.4929E-07 5.7352E-07 6.2103E-07 6.2033E-07

UAH [37]
L∞ 8.0770E-07 1.3430E-06 2.1860E-06 2.1837E-06

L2 6.2288E-07 1.0009E-06 1.5964E-06 1.5947E-06

UAT [37]
L∞ 8.2028E-07 1.3587E-06 2.1861E-06 2.1837E-06

L2 6.3230E-07 1.0124E-06 1.5964E-06 1.5947E-06
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Figure 6: Error and solution profile of Example 4 with N = 50 and Δt = 0:01.
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(i) For real η j::−2:78 < Δtηj < 0

(ii) For pure imaginary ηj : −2
ffiffiffi
2

p
< Δtη j < 2

ffiffiffi
2

p

(iii) For complex ηj : Δtηj should lie in the region as
given by [48]

For different values of parameters, eigenvalues correspond-
ing to gBF and gBH equations are given in Figures 1 and 2,
respectively. It can be clearly observed that the eigenvalues of
all the consideredproblems satisfy the above defined conditions;
therefore, the proposed technique is unconditionally stable.

6. Numerical Experiments

The accuracy of compact finite difference scheme is mea-
sured using the L2 and L∞ error norms, which are defined
as follows:

L∞ = max
0≤i≤N

zi − Zij j, L2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h〠

N

i=0
zi − Zið Þ2

vuut , ð55Þ
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Figure 7: Error and solution profile of Example 5 with N = 50 and Δt = 0:01.

Table 8: Comparison of L∞ error norm of Example 5 with β = 0:1, γ = 0:001, η = 0:0001, h = 0:1, and Δt = 0:001 for different values of δ.

Method
t = 0:2 t = 1

δ = 1 δ = 4 δ = 8 δ = 1 δ = 4 δ = 8
CFDM6 (Δt = 0:1) 5.7337E-13 1.1345E-12 1.1825E-12 2.8669E-12 5.6727E-12 5.9123E-12

MCSCM [51] 3.0271E-13 5.6344E-10 2.0904E-09 3.4889E-13 6.4937E-10 2.4085E-09

MGT [52] 3.0804E-13 5.7325E-10 2.1267E-09 3.5806E-13 6.6634E-10 2.4720E-09

UAHT [37] 1.3929E-13 2.5756E-10 9.5551E-10 1.4017E-13 2.5918E-10 9.6154E-10

UAH [37] 3.0631E-13 5.7006E-10 2.1148E-09 3.5847E-13 6.6629E-10 2.4718E-09

UAT [37] 3.0790E-13 5.7372E-10 2.1284E-09 3.5746E-13 6.6630E-10 2.4719E-09

Table 7: Comparison of absolute error of Example 5 with β = 0:1, γ = 0:001, η = 0:0001, δ = 2, h = 0:1, and Δt = 0:0001.

Method
t = 0:5 t = 0:8

x = 0:1 x = 0:5 x = 0:9 x = 0:1 x = 0:5 x = 0:9
CFDM6 (Δt = 0:1) 2.7448E-12 2.7405E-12 2.7442E-12 4.3917E-12 4.3848E-12 4.3908E-12

EFD [49] 4.3493E-11 1.2069E-10 4.3494E-11 4.3758E-11 1.2154E-10 4.3759E-11

HSCM [50] 2.1847E-11 6.0620E-11 2.1840E-11 2.1980E-11 6.1050E-11 2.1980E-11

UAHT [37] 7.3920E-12 2.0534E-11 7.3920E-12 7.3920E-12 2.0534E-11 7.3920E-12

UAH [37] 1.8881E-11 5.2390E-11 1.8881E-11 1.8998E-11 5.2769E-11 1.8998E-11

UAT [37] 1.8892E-11 5.2427E-11 1.8892E-11 1.8999E-11 5.2772E-11 1.8999E-11
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where zi and Zi represent the exact and numerical solutions,
respectively, at the node point xi for some fixed time.

Example 1. Consider gBF Equation (3) with the parameters
β = 0:001 and γ = 0:001 for the initial condition as Equation
(4) and the boundary conditions as (5) and (6). The exact

solution is given by Equation (7). Table 1 gives a comparison
of the absolute error for fixed spatial step size h = 0:1 and
temporal step size Δt = 0:0001. Absolute error is calculated
at time levels t = 0:001, 0:010, 100 with δ = 1 and δ = 4. The
results are found to be more accurate in comparison to the
Adomian decomposition method [23], compact FDM [25],

Table 9: Comparison of absolute error of Example 6 with β = 5, γ = 10, η = 0:0001, δ = 2, h = 0:1, and Δt = 0:0001.

t x CFDM6 (Δt = 0:1) EFD [49] HSCM [50] UAHT [37]

0.2

0.1 1.2065E-08 6.58058E-07 1.971E-07 8.69755E-08

0.5 1.2065E-08 1.78564E-06 5.350E-07 2.41380E-07

0.9 1.2065E-08 6.58087E-07 1.971E-07 8.69729E-08

0.5

0.1 3.0158E-08 7.45354E-07 2.233E-07 8.74403E-08

0.5 3.0158E-08 2.06834E-06 6.198E-07 2.42887E-07

0.9 3.0159E-08 7.45392E-07 2.233E-07 8.74376E-08

0.8

0.1 4.8246E-08 7.49483E-07 2.247E-07 8.74351E-08

0.5 4.8247E-08 2.08190E-06 6.242E-07 2.42873E-07

0.9 4.8247E-08 7.49521E-07 2.247E-07 8.74324E-08

Table 10: Comparison of absolute error of Example 6 with β = 5, γ = 10, η = 0:00001, δ = 2, h = 0:1, and Δt = 0:0001.

t x CFDM6 (Δt = 0:1) EFD [49] HSCM [50] UAHT [37]

0.2

0.1 1.2066E-10 2.08154E-08 6.235E-09 2.75063E-09

0.5 1.2066E-10 5.64806E-08 1.692E-08 7.63381E-09

0.9 1.2066E-10 2.08155E-08 6.235E-09 2.75062E-09

0.5

0.1 3.0164E-10 2.35874E-08 7.065E-09 2.76548E-09

0.5 3.0164E-10 6.54514E-08 1.960E-08 7.68188E-09

0.9 3.0164E-10 2.35875E-08 7.065E-09 2.76547E-09

0.8

0.1 4.8262E-10 2.37299E-08 7.108E-09 2.76547E-09

0.5 4.8262E-10 6.59132E-08 1.974E-08 7.68186E-09

0.9 4.8262E-10 2.37300E-08 7.108E-09 2.76546E-09
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Figure 8: Error and solution profile of Example 6 with N = 50 and Δt = 0:01.
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and exponential time differencing method of lines [29].
Figure 3(a) compares numerical and exact solution at differ-
ent time levels, and Figure 3(b) presents the 3D behaviour of
the numerical solution with N = 10, Δt = 0:01, and δ = 8.

Example 2. Consider Equation (3) for β = γ = 1 with the ini-
tial condition (4) and boundary conditions (5) and (6). The
absolute error is compared in Table 2 with those of previous
investigators Ismail et al. [23], Sari et al. [25], and Bratsos

Table 12: Comparison of absolute error of Example 7 with β = 0, γ = 1, η = 0:001, δ = 3, h = 0:1, and Δt = 0:0001:

t x CFDM6 ADM [23] FDS4 [29] MCSDQM [31]

0.05

0.1 3.7499E-08 1.9841E-06 3.9673E-06 1.5946E-06

0.5 3.7499E-08 1.9837E-06 3.9665E-06 3.6584E-06

0.9 3.7499E-08 1.9833E-06 3.9657E-06 1.5942E-06

0.10

0.1 7.4996E-08 3.9681E-06 7.9346E-06 2.3479E-06

0.5 7.4996E-08 3.9673E-06 7.9330E-06 6.0721E-06

0.9 7.4996E-08 3.9665E-06 7.9314E-06 2.3475E-06

1.00

0.1 7.4962E-07 3.9663E-05 7.9346E-05 3.5221E-06

0.5 7.4962E-07 3.9655E-05 7.9330E-05 9.8610E-06

0.9 7.4962E-07 3.9647E-05 7.9314E-05 3.5217E-06

Table 11: Comparison of absolute error of Example 7 with β = 0, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:0001:

t x CFDM6 ADM [23] FDS4 [29] GCG [30] MCQDQM [31]

0.05

0.1 3.7491E-08 5.5890E-07 1.1176E-06 4.8110E-07 4.4924E-07

0.5 3.7493E-08 5.5884E-07 1.1175E-06 3.9966E-07 1.0307E-06

0.9 3.7494E-08 5.5877E-07 1.1174E-06 3.9240E-07 4.4917E-07

0.10

0.1 7.4981E-08 1.1178E-06 2.2353E-06 1.0397E-06 6.6147E-07

0.5 7.4984E-08 1.1177E-06 2.2350E-06 9.5823E-07 1.7107E-06

0.9 7.4987E-08 1.1175E-06 2.2347E-06 9.5091E-07 6.6139E-07

1.00

0.1 7.4953E-07 1.1175E-05 2.2353E-05 1.1021E-05 9.9267E-07

0.5 7.4956E-07 1.0074E-05 2.2350E-05 1.1057E-05 2.7793E-06

0.9 7.4959E-07 1.1173E-05 2.2347E-05 1.0841E-05 9.9260E-07
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Figure 9: Error and solution profile of Example 7 with N = 50 and Δt = 0:01.
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[29] for h = 0:1, Δt = 0:0001, and δ = 2, 8 at t = 0:0005 and
t = 0:0010. Figure 4(a) compares the numerical and exact
solution at different time levels, and Figure 4(b) represents
the 3D behaviour of numerical solution with N = 10, Δt =
0:01, and δ = 8.

Example 3. Consider Equation (3) for the initial and
boundary conditions (4) and (6) with β = 0:1 and γ = −
0:0025. Table 3 depicts the accuracy of the results
obtained by CFDM6, by comparing the absolute error
with literature data for h = 0:1, Δt = 0:0001, and δ = 2, 4,
8. Figure 5(a) compares the numerical and exact solution
at different time levels, and Figure 5(b) represents the
3D behaviour of the numerical solution with N = 10, Δt
= 0:01, and δ = 8.

Example 4. Consider gBH Equation (8) with the initial and
boundary conditions (9) and (10) for parametric values β
= γ = 1 and η = 0:001. The exact solution is given by (11).
The absolute error at node points x = 0:1, 0:5, 0:9 is given
in Table 4 at t = 0:1 and t = 1 for h = 0:1, Δt = 0:0001, and
δ = 2. Comparison shows that results are better than expo-
nential finite difference scheme [49], hybrid B-spline [50],
and tension B-spline collocation method [37]. Table 5 gives
a comparison of L∞ error norm for δ = 1, 4, and 8. Table 6
gives a comparison of L2 and L∞ error norms with δ = 2, h
= 0:1, η = 0:001, Δt = 0:01 at t = 0:05, 0:1, 1, 5. Figure 6(a)
represents the absolute error at different time levels with N
= 10, and Figure 6(b) gives the 3D profile of numerical solu-
tion with N = 50, Δt = 0:01, and δ = 8.

Example 5. The gBH Equation (8) is considered for the ini-
tial and boundary conditions (9) and (10). The CFDM6
results are evaluated forβ = 0:1andγ = 0:001, andη = 0:0001
,h = 0:1,Δt = 0:0001, andδ = 2at timet = 0:5andt = 0:8are
given in Table 7. The absolute error is compared with [37,
49, 50]. The L∞ error norm is compared for CFDM6 with
the collocation of cubic B-splines [51], multiscale Runge-
Kutta Galerkin method (MGT) [52], and a new kind of
tension B-spline function [37] and is presented in Table 8
at different values of δ = 1, 4, 8. Figure 7(a) represents the
absolute error at different time levels with N = 10, and
Figure 7(b) gives the 3D profile of numerical solution with
N = 50, Δt = 0:01, and δ = 8.

Example 6. Consider gBH Equation (8) with initial and
boundary conditions (9) and (10). The absolute error is
compared with the schemes discussed by [37, 49, 50] for β
= 5, γ = 10, η = 0:0001, Δt = 0:0001, and δ = 2 at different
node points for time t = 0:2, 0:5, and 0:8. Tables 9 and 10
give a comparison of absolute error for η = 0:0001 and η =
0:00001, respectively. Remarkable closeness of numerical
and exact solutions can be seen in the tables. Figure 8(a) rep-
resents the absolute error at different time levels with N = 10,
and Figure 8(b) gives the 3D profile of numerical solution
with N = 50, Δt = 0:01, and δ = 8.

Example 7. The gBH Equation (8) is subjected to initial
and boundary conditions (9) and (10) for β = 0, γ = 1,
and η = 0:001. Table 11 compares absolute error of
CFDM6 with the Adomian decomposition method
(ADM) [23], fourth-order numerical scheme (FDS4) [29],
Gauss Chebyshev Galerkin (GCG) [30], and modified
cubic B-spline differential quadrature method (MCSDQM)
[31] at δ = 2, h = 0:1, and Δt = 0:0001. Table 12 gives the
comparison of absolute error for δ = 3. The efficiency of
the numerical solution to approach the exact solution
can be easily seen, and the results are better than those
of other methods. Figure 9(a) represents the absolute error
at different time levels with N = 10, and Figure 9(b) gives
the 3D profile of the numerical solution with N = 50, Δt
= 0:01, and δ = 8.

7. Conclusion

Compact FDM along with the SSP-RK43 scheme has been
implemented to solve gBF and gBH equations. Several exam-
ples of both the equations are successfully solved with the
proposed technique. Absolute error and L2 and L∞ error
norms are calculated and compared with the previous
results. The results with CFDM6 are found to be better than
those with many techniques like the Adomian decomposi-
tion method, exponential time differencing method of lines,
cubic B-spline collocation method, exponential finite differ-
ence scheme, hybrid B-spline collocation, tension B-spline
collocation, multiscale Runge-Kutta Galerkin method, and
modified cubic B-spline differential quadrature method.
Comparison shows that the technique is providing highly
accurate results with ease in implementation and less
computational effort.
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This paper is aimed at investigating the soliton solutions of the hyperbolic nonlinear Schrödinger equation. Exact analytical
solutions of the model are acquired through applying an integration method, namely, the Sine-Gordon method. It is observed
that the method is able to efficiently determine the exact solutions for this equation. Graphical simulations corresponding to
some of the results obtained in the paper are also drawn. These results can help us better understand the behavior and
performance of this model. The procedure implemented in this paper can be recommended in solving other equations in the
field. All calculations and graphing are performed using powerful symbolic computational packages in Mathematica software.

1. Introduction

Finding exact solutions for differential equations, including
ordinary or partial derivatives, is always an important chal-
lenge in mathematics, physics, and engineering. This process
is very difficult or even impossible for some of these equa-
tions. Therefore, any method that helps us determine these
solutions is of great importance and use. Exact solutions
can be used to illustrate many nonlinear phenomena
observed in mathematical physics. One of the most appro-
priate tools for describing many events in nature is to
employ differential equations. This importance has made
the traces to such equations tangible in many branches of
science, including mathematics, physics [1–3], electrical
engineering, astronomy, mechanics, economics, and many
other existing disciplines [4–6]. Based on these remarkable
effects, several analytical methods have been successfully
applied to obtain exact solutions of such equations. Some
of these methods are the homotopy analysis method [7],
the variational iteration method [8], the exp-function
method [9], the logistic function method [10], the
generalized G′/G-expansion [11], the elliptic finder method
[12–14], the exponential rational function idea [15], the

modified Kudryashov technique [16], and the subequation
method [17]. To see more methods, please refer to
[18–20], including, biology, nonlinear optics, economy, and
applied science [1, 20–34]. In this article, the authors study
the HNSE, which is given in the form [35]:

iDα
yu +

1
2 D2α

x −D2α
t

� �
u + uj j2u = 0, 0 < α ≤ 1: ð1Þ

It is notable that this equation encompasses a wide range
of well-known equations through some specific selection of
parameters. So far, a variety of techniques have been used
successfully to find the exact solutions to the HNS equation
(1). This article contains the following sections. A brief
mathematical description of the conformable derivative used
in this paper is provided in the second section of this paper.
Then, the method used is introduced in the third section.
The fourth section involved the exact solutions obtained by
employing the analytical method equation and graphical
behavior are discovered. Finally, conclusions are presented
in the last section of the article.
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2. The Conformable Derivative

Biswas proposed an interesting definition of derivative called
conformable derivative [1]. This derivative can be consid-
ered to be a natural extension of the classical derivative. Fur-
thermore, conformable derivative satisfies all the properties
of the standard calculus, for instance, the chain rule.

Definition 1. Let f : ½0,∞Þ⟶ℝ, the conformable derivative
of a function f ðtÞ of order α, is defined as

Dα
t f tð Þ = lim

∈⟶0

f t+∈t1−α
� �

− f tð Þ
∈

, α ∈ 0, 1ð �, t > 0: ð2Þ

This new definition satisfies the following properties.

Definition 2. Suppose that c ≥ 0 and t ≥ c, let h be a function
defined on c, t as well as α ∈ R. Then, the α-fractional inte-
gral of h is given by

tI
α
c h tð Þ =

ðα
c

h xð Þ
x1−α

dx, ð3Þ

if the Riemann improper integral exists.

Theorem 3. Let α ∈ ð0, 1�, f , g be α-differentiable at a point t,
then

Dα
t af + bgð Þ = aDα

t fð Þ + bDα
t gð Þ, for a, b ∈ℝ,

Dα
t tμð Þ = μtμ−α, for μ ∈ℝ,

Dα
t f gð Þ = f Dα

t gð Þ + gDα
t fð Þ,

Dα
t

g
g

� �
= gDα

t fð Þ − f Dα
t gð Þ

g2
:

ð4Þ

Theorem 4. Let h be a differentiable function and _ is the
order of the conformable derivative. Let g be a differentiable
function defined in the range of h, then

Dα
t fogð Þ tð Þ = t1−αg tð Þα−1g′ tð ÞDα

t f tð Þð Þt=g tð Þ, ð5Þ

where “prime” is the classical derivative with respect to t.

3. Structure of the Sine-Gordon Method

In order, we consider the Sine-Gordon equation as follows:

ψxyt = α sin ψð Þ ; ð6Þ

here, α is a nonzero constant. We exert the change

ψ x, y, tð Þ =U ξð Þ,  ξ = η x + y + υtð Þ ; ð7Þ

here, υ is the traveling wave velocity. Replace Equation (8) in
Equation (7)

U″ = α

υμ2
sin u ξð Þð Þ: ð8Þ

By simplifying Equation (8), we have

U
2

� �
′

� �2
= α

υμ2
sin2 U ξð Þ

2

� �
+ C: ð9Þ

In Equation (9), C is the integration constant. We sup-
pose C = 0,wðξÞ =UðξÞ/2, and f 2 = α/υμ2, so Equation (9)
detracts to

w′ ξð Þ2 = f 2 sin2 w ξð Þð Þ: ð10Þ

In simple terms, we have

w′ ξð Þ = f sin w ξð Þð Þ: ð11Þ

Inserting f = 1, we have

w′ ξð Þ = sin w ξð Þð Þ: ð12Þ

We have solutions of Equation (12) as follows:

sin w ξð Þð Þ = sech ξð Þ or cos w ξð Þð Þ = tanh ξð Þ,
sin w ξð Þð Þ = icsch ξð Þ or cos w ξð Þð Þ = coth ξð Þ:

ð13Þ

For constructing the solutions of NLPDE as follows:

N ψ, ψt , ψx, ψy, ψtt , ::⋯
� 	

= 0: ð14Þ

Using the following variation:

U wð Þ = 〠
n

j=1
cosj−1 wð Þ × Bj sin wð Þ + Aj cos wð Þ
 �

+ A0,

ð15Þ

by using Equation (13), we have the solution of Equation
(15) as follows:

U1 ξð Þ = 〠
n

j=1
tanhj−1 ξð Þ × Bj sech ξð Þ + Aj tanh ξð Þ
 �

+ A0,

U2 ξð Þ = 〠
n

j=1
cothj−1 ξð Þ × Bj csch ξð Þ + Aj coth ξð Þ
 �

+ A0:

ð16Þ

We obtain n by balancing in [10]. Then, by substituting
Equation (15) into ODE concluded from Equation (14), we
have a system of algebraic equations of siniðξÞ and cosiðξÞ.
Then, by equating of coefficients, we obtain the necessary
coefficients. By substituting these coefficients in (15), we
extract the solutions of Equation (14).
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4. Solution Procedure

To determine the solitary solution of Equation (1), we first
define the following new variables:

u x, y, tð Þ = ℏ ξð Þeiθ,

ξ = 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα,

θ = a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0:

ð17Þ

Substituting Equation (2) in Equation (1) and comparing
real and imaginary parts, respectively, one can obtain

a2 + 2b − d2
� �

ℏ − 2ℏ3 + σ2 − 1
� �

ℏ″ = 0,
μ = − a + dσð Þ:

ð18Þ

Taking balance principles between ℏ″ and ℏ3 into
account in Equation (10) yields m = 1. Immediately, the gen-
eral structure for the solution to the problem, which is pre-
sented in (7), is determined as follows:

ℏ ξð Þ = B1 sin ξð Þ + A1 cos ξð Þ + A0: ð19Þ

Following the steps mentioned for the method by
substituting Equation (15) along with Equation (8) into
Equation (10), we get a polynomial in sin ðξÞ, cos ðξÞ. Equat-
ing the coefficient of same power of siniðξÞ, cosiðξÞði = 0, 1,
2,⋯Þ, we obtain the system of algebraic equations, and by
solving this system, we obtained equations for A0,A1, B1, a
, b, d, μ, and σ. Now, by solving obtained systems, we get
the following values:

Set 1:

A0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 − 3σ2 + 4b + 3

p

2 ,

A1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 ,

B1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 :

ð20Þ

So, we obtain the following dark optical soliton:

ℏ1 ξð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 sech ξð Þ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 tanh ξð Þ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 − 3σ2 + 4b + 3

p

2 :

ð21Þ

So we have optical dark soliton solution of (1) as follows:

u1 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 sech
"

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 tanh

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 − 3σ2 + 4b + 3

p

2

#
exp

� i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð22Þ
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Figure 1: Dynamic behaviors of solution u1ðx, y, tÞ given by (22)
for t = 0::5, x = −π::π, for α = 0:8.
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Figure 2: Dynamic behaviors of solution u1ðx, y, tÞ given by (22)
for t = 0::5, x = −π::π, for α = 0:5.
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And the dark singular soliton is

u2 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 csch
"

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 coth

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 − 3σ2 + 4b + 3

p

2

#
exp

� i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð23Þ

Set 2:

A0 = 0,

A1 =
ffiffiffi
3

p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
,

B1 =
1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
:

ð24Þ

The optical dark soliton solution is

u3 x, y, tð Þ = 1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
sech

�

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffi
3

p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
tanh

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� ��

× exp i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð25Þ

And dark singular soliton is

u4 x, y, tð Þ = 1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
csch

�

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� �

+
ffiffiffi
3

p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − 6d2 − 6σ2 + 12b + 6

p
coth

� 1
α

� �
xα + μ

α

� 	
yα −

σ

α

� 	
tα

� ��

× exp i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð26Þ

Set 3:

A0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + 4b

p

2 ,

A1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4 ,

B1 = 0:

ð27Þ

The optical dark soliton solution is

u5 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4

"
tanh

� 1
α

� �
xα

+ μ

α

� 	
yα −

σ

α

� 	
tα
�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + 4b

p

2

#
exp

� i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð28Þ
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Figure 3: Graphical representation of solution u1ðx, y, tÞ given by
(22) for t = 0::5, x = −π::π, for α = 0:2.
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Figure 4: Graphical representation of solution u2ðx, y, tÞ given by
(23) for t = 0::5, x = −π::π, for α = 0:8.
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And dark singular soliton is

u6 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + σ2 + 4b − 1

p

4

"
coth

� 1
α

� �
xα

+ μ

α

� 	
yα −

σ

α

� 	
tα
�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 − 2d2 + 4b

p

2

#
exp

� i
a
α

� 	
xα + b

α

� �
yα + d

α

� �
tα + θ0

� �� �
:

ð29Þ

In Figures 1–9, we see that the graphs of the answers are
very similar and the only difference is in the degree of oscil-
lation of the graph.

5. Concluding Remarks

In this study, some new solitary exact solutions of the hyper-
bolic Schrödinger equation are obtained with the aid of an
efficient analytic method. The structure considered for the
equation consists of a series of arbitrary parameters that lead
to many well-known models by considering certain options
for them. One of the main advantages of this method is
the determination of different categories of solutions for
the equation in a single framework; this means that the
method can determine different types of solutions for the
equation in a single process. Furthermore, one can easily
deduce that the methods used in this study are very simple
but very efficient methodologies for solving NPDEs. We
have performed all necessary calculations for obtaining and
plotting Figures 1–9 through the implementation of the
symbolic computations in Mathematica software.
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Figure 7: Graphical representation of solution u6ðx, y, tÞ given by
(29) for t = 0::5, x = −π::π, for α = 0:8.
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In this article, we discussed the Lie symmetry analysis of C1ðm, a, bÞ fractional and integer order differential equations. The
symmetry algebra of both differential equations is obtained and utilized to find the similarity reductions, invariant solutions,
and conservation laws. In both cases, the symmetry algebra is of low dimensions.

1. Introduction

In the last century, fractional partial differential equations
(FPDEs) have played important rules in the fields of science
and engineering, for instance, physics, chemistry, biology,
andcontrol theory. Recently, those class of differential equa-
tions has also attracted much more interest of mathemati-
cians and physicists [1–6].

Finding the best methods of obtaining the exact solutions
of differential equations remains one of the unanswered ques-
tions in the field. Many approaches have been developed by
mathematicians to study the solutions of PFDEs, such as
Adomian decomposition method, the fractional subequation
method, numerical method, the first integral method, and
Lie symmetry method [7–14]. In this article, we consider one
of the powerful techniques of solving and analyzing differen-
tial equations, i.e., the Lie symmetry method. The Lie symme-
try method is widely used to transformed partial differential
equations (PDEs) into ordinary differential equations (ODEs),
and the ODE is later solve numerically or analytically using
similarity invariant [7, 9, 10, 12, 14–22]. Lie symmetry is also
utilized in obtaining the conservation laws (Cls) [23]. The
method developed by Noether theorem [24] and Ibraginov’s
[25] is one of the best and simplest methods of evaluating
Cls of differential equations.

Consider general forms of fractional differential equations:

∂αu
∂tα

= F u½ �, ð1Þ

where u = uðx, tÞ denotes the unknown function, and F½u�
= Fðx, u, ux , uxx,⋯Þ is a known function. The fractional
order α is a real number and ∂αu/∂tα denotes Riemann-
Liouville(R-L) derivative defined in [1, 3, 26] as

Dα
t u =

∂nu
∂tn

, α = n ∈ℕ,

1
Γ n − αð Þ

∂n

∂tn

ðt
0

u τ, xð Þ
t − τð Þα+1−n dτ, n − 1 < a < n, n ∈ℕ,

8>>><
>>>:

ð2Þ

where ΓðxÞ denotes the standard gamma function defined by

Γ xð Þ =
ð∞
0
e−t tx−1dt: ð3Þ
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The CNðm, a, bÞ partial differential equations

ut + umð Þx +
1
b

ua∇2ub
h i

x
= 0,m > 1, 1 < n = a + b, ð4Þ

whereN denotes the spatial dimension , have been introduced
in [27]. In particular, if N = 1, it becomes

ut + umð Þx + 1
b

ua ub
� �

xx
h i

x = 0, ð5Þ

which is equivalent to

ut +mum−1ux + b − 1ð Þ a + b − 2ð Þua+b−3u3x
+ a + 3b − 3ð Þua+b−2uxuxx + ua+b−1uxxx = 0:

ð6Þ

Therefore, the fractional form of C1ðm, a, bÞ differential
equation is define as

∂αu
∂ta

= −mum−1ux − b − 1ð Þ a + b − 2ð Þua+b−3u3x
− a + 3b − 3ð Þua+b−2uxuxx − ua+b−1uxxx,

ð7Þ

where ∂au/∂ta is given by (2).

2. Lie Symmetries of Eq. (6)

In this section, we first consider the Lie symmetry analysis of
Eq.(6). To obtained the Lie symmetry analysis, we first
consider a one-parameter Lie group of transformations

�x = x + εξ x, t, uð Þ +O ε2
� �

,
�t = t + ετ x, t, uð Þ +O ε2

� �
,

�u = u + εφ x, t, uð Þ +O ε2
� �

,

ð8Þ

with a small parameter ε≪ 1. The vector field associated
with the one-parameter group of transformation is

V = ξ x, t, uð Þ ∂
∂x

+ τ x, t, uð Þ ∂∂t + ϕ x, t, uð Þ ∂
∂u

: ð9Þ

Thus, expanding the infinitesimals generator to include
the transformation of the derivatives, we obtained the
following third prolongation prð3ÞV

pr 3ð ÞV =V + ϕx
∂
∂ux

+ ϕt
∂
∂ut

+ ϕxx
∂

∂uxx
+ ϕxxx

∂
∂uxxx

: ð10Þ

In (10), ϕx, ϕt , ϕxx, and ϕxxx are all undetermined func-
tions, which are given by the following formulae

ϕx =Dx ϕ − ξux − τutð Þ + ξuxx + τuxt , ð11Þ

ϕt =Dt ϕ − ξux − τutð Þ + ξuxt + τutt , ð12Þ

ϕxx =Dx
2 ϕ − ξux − τutð Þ + ξuxxx + τuxxt , ð13Þ

ϕxxx =D2
x ϕ − ξux − τutð Þ + ξuxxx + τuxxxt , ð14Þ

where Dx and Dt represent the total derivatives with respect
to x and t, respectively. e refers the reader(s) to [28] for
details of how to evaluate the prolongation formulae.

If the vector field (9) forms a symmetry of Eq.(6), the
infinitesimal generator V must satisfy the following invari-
ance criterion for Eq.(6), given as

pr 3ð ÞV Δð Þ
���
Δ=0

= 0, ð15Þ

where

Δ = ut +mum−1ux + b − 1ð Þ a + b − 2ð Þua+b−3u3x
+ a + 3b − 3ð Þua+b−2uxuxx + ua+b−1uxxx:

ð16Þ

Substituting Eqs. (11)–(14) into Eq. (15) and equating
the coefficients of various powers of partial derivatives of u
to zero, an overdetermined system of equations known as
determining equations is obtained. Solving the determining
equations the following infinitesimals for C1ðm, a, bÞ has
been derived

ξ x, t, uð Þ = pc1x + c2,
τ x, t, uð Þ = qc1t + c3,
ϕ x, t, uð Þ = c1u,

ð17Þ

where c1, c2, and c3 are arbitrary constants, and throughout
this paper, we denote

p = a + b −m
2 , q a + b − 3m + 2

2 : ð18Þ

Therefore, we have the following conclusion.

Theorem 1. For the arbitrary parameters m, a, b, if m > 1,
a + b > 1, the vector field admitted by the differential
equation (6) is

V1 = ∂x, V2 = ∂t , V3 = px∂x + qt∂t + u∂u: ð19Þ

The sketch of the proof has been stated above. In
details, we should divide it into the following four cases.
Obviously, the vector fields of each case are the special
cases of (19)

(i) If a + b = 2, a + 3b ≠ 3, the vector field is

V1 = ∂x, V2 = ∂t ,V3 = 1 − m
2

� �
x∂x + 2 − 3m

2

� �
t∂t + u∂u

ð20Þ

(ii) If a + b = 2, a + 3b = 3, the vector field is the same
as (i)
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(iii) If a + b ≠ 2, a + 3b = 3, the vector field is

V1 = ∂x ,V2 = ∂t , V3 = px∂x + qt∂t + u∂u ð21Þ

(iv) If a + b ≠ 2, a + 3b ≠ 3, b ≠ 1, the vector field is the
same as (iii).

The vector fields V1, V2, and V3 form a Lie algebra
under the following Lie bracket

f ∂i, g∂j

	 

= f ∂i gð Þ∂j − g∂j fð Þ∂i, ð22Þ

where i and j stand for x, t, u.
That is to say

V1, V2½ � = 0,  V1, V3½ � = pV3,  V2, V3½ � = qV3: ð23Þ

By solving the following ordinary differential equations
with the initial conditions:

dx∗

dε
= ξ x∗, t∗, u∗ð Þ, x∗ ε=0 = x,j

dt∗

dε
= τ x∗, t∗, u∗ð Þ, t∗ ε=0 = t,j

du∗

dε
= ϕ x∗, t∗, u∗ð Þ, u∗ ε=0 = u:j

ð24Þ

We therefore obtain the group transformation which is
generated by infinitesimal generators V1, V2, V3, respectively

G1 : x, t, uð Þ↦ x + ε, t, uð Þ, ð25Þ

G2 : x, t, uð Þ↦ x, t + ε, uð Þ, ð26Þ

G3 : x, t, uð Þ↦ epεx, eqεt, eεuð Þ: ð27Þ
Remark 2. In (25)–(27), an arbitrary element in Giði = 1, 2, 3Þ
can transfer one solution of Eq. (6) to another one, so do the
products of the elements from G1, G2, and G3.

Remark 3. The Lie group G1 ×G2 is a normal Lie subgroup
of G1G2G3. The Lie algebra generated by V1 and V2 is an
ideal of L.

Theorem 4. If u = f ðx, tÞ is a solution of Eq. (1.3), then uð1Þ,
uð2Þ, and uð3Þ as follows are solutions of Eq. (6) as well.

u 1ð Þ = f x − ε, tð Þ,
u 2ð Þ = f x, t − εð Þ,
u 3ð Þ = eε f e−pεx, e−qεtð Þ:

ð28Þ

3. Similarity Reductions to Eq. (6)

In the preceding section, we obtained the group symmetry
analysis of Eq. (6). In this section, the characteristic equa-

tions of vector fields are obtained by making use of (19)
and utilized to perform the symmetry reduction.

For V =V1, the characteristic equation can be presented
as follows:

dx
1 = dt

0 = du
0 : ð29Þ

Solving the characteristic equation (29), we have u = f
ðξÞ, where ξ = t which yields a trivial solution.

For V =V2, the characteristic equation can be expressed
as follows:

dx
0 = dt

1 = du
0 , ð30Þ

from which we have u = f ðξÞ, where ξ = x which trans-
formed (6) to an ODE

mfm−1 f ′ + b − 1ð Þ a + b − 2ð Þf a+b−3 f ′3

+ a + 3b − 3ð Þf a+b−2 f ′ f ″ + f a+b−1 f ‴ = 0:
ð31Þ

For V = V3, the characteristic equation can be written as
follows:

dx
px

= dt
qt

= du
u
: ð32Þ

Solving the characteristic equation, we have the follow-
ing invariants ξ = xt−p/q, u = t1/q f ðξÞ, which transformed
(6) to an ODE

1
q
t
1
q−1 f −

p
q

xt−
p
q

� �
t
1
q−1 − f ′ +mt

p
q−1 f m−1 f ′

+ b − 1ð Þ a + b − 2ð Þta+b−2mq f a+b−3 f ′3

+ a + 3b − 3ð Þta+b−3pq f ′ f ″ + t
a+b−3p

q f ′ f ″

+ t
a+b−3p

q f a+b−1 f ‴ = 0:

ð33Þ

4. Nonlinear Self-Adjointness of Eq. (6)

In this section, we shall show that Eq. (6) is nonlinearly self-
adjoint. Let it start by presenting the definitions of nonlinear
self-adjointness of differential equations according to Ibragi-
mov’s [13, 25].

Definition 5. Given a differential function F and the new
dependent variable v = vðxÞ known as the adjoint variable
or local variable [13, 25], the formal Lagrangian for the dif-
ferential equation F = 0 is the differential function given by

F∗ ≔ vF: ð34Þ
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Definition 6. [25]. The differential equation (6) is said to be
nonlinearly selfadjoint if there exists a substitution

v = ϕ x, t, uð Þ ≠ 0, ð35Þ

such that

F∗
v=φ x,t,uð Þ
��� = λF, ð36Þ

for some undermine function λ.

Theorem 7. The differential equation (6) is self-adjoint.

Proof. The formal Lagrangian is

L = v ut +mum−1ux + b − 1ð Þ a + b − 2ð Þua+b−3u3x
�
+ a + 3b − 3ð Þua+b−2uxuxx + ua+b−1uxxx

�
:

ð37Þ

Substituting into ð36Þ = 0, we have the adjoint equation
to Eq. (6)

−mum−1vx−a a + b − 2ð Þua+b−3vxu2x − 2aua+b−2vxuxx
− vt − 2aua+b−2vxxux − ua+b−1vxxx = 0:

ð38Þ

Let v = ϕðx, t, uÞ and the left hand of (38) be λ · Δ, we
shall get λ = −φu, and

φ = c1u + c2, b = a + 1,
φ = c3u

b−a−1, b ≠ a + 1:

(
ð39Þ

Then, we prove that Eq. (6) is self-adjoint. ☐

Generally speaking, we are now to calculate the con-
served vectors. However, by using the method of Ibragimov
[25], so we here omit the process.

5. Lie Symmetry and Reductions of Eq. (7)

In this section, we deal with all of the point symmetries of Eq.
(7). We now assume that n − 1 < α < n in this section. Thus,
Eq. (1.4) is an FPDE with the infinitesimal generator given
by (2.2). If the vector field (9) generates a symmetry of Eq.
(7), thenV must satisfy the following Lie symmetry condition:

pr 3ð ÞV Δ1ð Þ
���
Δ1=0

= 0, ð40Þ

where

Δ1 =
∂αu
∂tα

+mum−1ux + b − 1ð Þ a + b − 2ð Þua+b−3u3x
+ a + 3b − 3ð Þua+b−2uxuxx + ua+b−1uxxx:

ð41Þ

Also, the invariant condition yields [29]

τ x, t, uð Þjt=0 = 0, ð42Þ

and the αth extended infinitesimal related to Riemann-
Liouville fractional time derivative with (42) is given by
[30, 31].

ϕ0α =
∂αϕ
∂tφ

+ ϕu − αDt τð Þð Þ ∂
αu
∂tα

− u
∂αϕu
∂tα

+ μ

− 〠
∞

n−1

α

n

 !
Dn
t ξð ÞDα−n

t uxð Þ

+ 〠
∞

n−1

α

n

 !
∂αϕu
∂tα

−
α

n + 1

 !
Dn+1

t τð Þ
" #

Dα−n
t uð Þ,

ð43Þ

where

μ = 〠
∞

n=2
〠
n

m=2
〠
m

k=2
〠
k−1

r=0

α

n

 !
n

m

 !
k

r

 !
1
k!

tn−α

Γ n + 1 − αð Þ

� −u½ �n−α ∂
∂tm

× uk−r
h i ∂n−m+kϕ

∂tn−m∂uk
:

ð44Þ

The expression of μ is complicated; however, it should
converges to zero when the infinitesimal φ is linear in u,
because of the existence of the derivatives ∂n−m+k/∂tn−m∂
uk, k ≥ 2 in the above expression (44).

Thus, the Lie group classification method for the FPDE
leads to the following result.

Theorem 8. The infinitesimal symmetry group of the equa-
tion (7) is spanned by the two vector fields

V1 = ∂x V2 = px∂x +
1
α
qt∂t + u∂u: ð45Þ

Proof. Considering the invariance criterion (40), we have

ϕ0α +m m − 1ð Þum−2ϕux +mum−1ϕx + b − 1ð Þ a + b − 2ð Þ
� a + b − 3ð Þua+b−4ϕu3x + 3 b − 1ð Þ a + b − 2ð Þua+b−3ϕxu2x
+ a + 3b − 3ð Þ a + b − 2ð Þua+b−3ϕuxuxx + a + 3b − 3ð Þϕxuxx
+ a + 3b − 3ð Þϕxxux + a + b − 1ð Þϕua+b−2uxxx + ua+b−1ϕxxx = 0

ð46Þ

solving the determining equation (46), and we obtained the
following infinitesimals

ξ x, t, uð Þ = pc1x + c2,

τ x, t, uð Þ = 1
α
qc1t,

ϕ x, t, uð Þ = c1u,

ð47Þ
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which follows that the fractional differential equation (7)
admitted two dimensional symmetries and is spanned
by (45). ☐

Next, we utilized the admitted Lie symmetry and per-
form similarity reductions, present the reduced nonlinear
fractional ordinary differential equations (FODEs), and
classify the corresponding group-invariant solutions of the
fractional C1ðm, a, bÞ.

Case 9. For V1 = ∂/∂x, the characteristic equation is

dx
1 = dt

0 = du
0 , ð48Þ

and the following similarity variables are obtained by solving
the characteristic equation u = f ðζÞ, ζ = t, which yields the
following reduced ODE

∂αt f tð Þ = 0: ð49Þ

The fractional ODE has a polynomial general group-
invariant solution

u = a1t
α−1, ð50Þ

where a1 is an arbitrary constant of integration [6, 15, 16].

Case 10. For V2 = px∂x + 1/2qt∂t + u∂u, the characteristic
equation is

dx
px

= αdt
qt

= du
u
, ð51Þ

and by solving the above equation, we get the group-
invariant solution

u = t
α
qg ζð Þ, ζ = xt−

pα
q , ð52Þ

where g is an arbitrary function of ζ. Using these invariants,
Eq. (7) transforms to a special nonlinear ODE of fractional
order. Thus, we have the following theorem corresponding
to this case.

Theorem 11. The transformation (52) reduces (7) to the fol-
lowing nonlinear ordinary differential equation of fractional
order with the Erd’elyi-Kober fractional differential operator
Pτ,α
β of order [5]

Pτ+α,n−α
β g

� �
≔
Yn−1
j=0

τ + j −
1
β
ζ
d
dζ

� �
Kτ,α

β g
� �

ζð Þ, n =
αj j + 1, α ≠ℕ

α, α ∈ℕ

(
,

ð53Þ

where

Kτ,α
β g

� �
ζð Þ≔

1
Γ αð Þ

ð∞
1

u − 1ð Þα−1u−u τ+αð Þg ζu
1
β

� �
du, α > 0,

g ζð Þ, α = 0:

8><
>:

ð54Þ

is the Erd’elyi-Kober fractional integral operator.

Proof. Let n − 1 < α < n, n = 1, 2, 3,⋯, according to the
Riemann-Liouville fractional derivative, and one can obtain

∂αu
∂tα

= ∂n

∂tn
1

Γ n − αð Þ
ðt
0
t − sð Þn−α−1sαqg xs−

pα
q

� �
ds

� �
: ð55Þ

Let v = t/s, and then ds = −ðt/v2Þdv;so, (55) can be writ-
ten as

∂αu
∂tα

= ∂n

∂tn
tn−α+

α
q

1
Γ n − αð Þ

ð∞
1

v − 1ð Þn−α−1v− n−α+α
q+1ð Þg ζv

pα
q

� �
dv

� �
:

ð56Þ

In view of the Erd’elyi-Kober fractional integral operator
(54), one can get

∂αu
∂tα

= ∂n

∂tn
tn−α+

α
q K

1+α
q,n−α

q
pα

g
� �

ζð Þ
h i

: ð57Þ

Therefore, the right hand side of (57) becomes

∂n

∂tn
tn−α+

α
q K

1+α
q,n−α

q
pα

g
� �

ζð Þ
h i

= ∂n−1

∂tn−1
∂
∂t

tn−α+
α
q K

1+α
q,n−α

q
pα

g
� �

ζð Þ
� �� �

= ∂n−1

∂tn−1
tn−α+

α
q−1 n − α + α

q
− 1 − pα

q
ζ
d
f ζ

� �
K

1+α
q,n−α

q
pα

g
� �

ζð Þ
� �

:

ð58Þ

Repeating the same procedure n − 1 times, one can
obtain

∂n

∂tn
tn−α+

α
q K

1+α
q,n−α

q
pα

g
� �

ζð Þ
h i

= t−α+
α
q
Yn−1
j=0

� 1 − α + α

q
+ j −

pα
q
ζ
d
dζ

� �
K

1+α
q,n−α

q
pα

g
� �

ζð Þ:
ð59Þ

Using the definition of the Erd’elyi-Kober fractional
differential operator (53), we get

∂n

∂tn
tn−α+

α
q K

1+α
q,n−α

q
pα

g
� �

ζð Þ
h i

= t−α+
α
q P

1−α+α
q,α

q
pα

g
� �

ζð Þ: ð60Þ

Substituting (60) into (57), we obtain an expression for
the time fractional derivative

∂αu
∂tα

= t−α+
α
q P

1−α+α
q,α

q
pα

g
� �

ζð Þ: ð61Þ
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Thus, the fractional C1ðm, a, bÞ equation (7) can be
reduced into a fractional order.

ODE:

P
1−α+α

q,α
q
pα

g
� �

ζð Þ = −mgm−1gζ − b − 1ð Þ a + b − 2ð Þga+b−3g3ζ

− a + 3b − 3ð Þga+b−2g3ζ

− a + 3b − 3ð Þga+b−2gζuζζ − ga+b−1gζζζ:

ð62Þ

☐

6. Conservation Law of Eq. (7)

In this section, we will construct the conservation laws of the
fractional C1ðm, a, bÞ differential equation (7).

Let L be the formal Lagrangian of Eq. (7) written as
L = vΔ1, where v = vðx, tÞ is the new introduced dependent
variable; so, the adjoint equation of (1.4) is written as δL /
δu = 0, where δ/δu is the Euler-Lagrange operator with
respect to u and defined by

δ

δu
= ∂
∂u

+ Dα
tð Þ∗ ∂

∂Dα
t u

+ 〠
∞

k=1
−1ð ÞkDi1

Di2
⋯Dik

∂
∂u1i2⋯ik

,

ð63Þ

and ðDα
t Þ∗ is the adjoint operator of Dα

t . For Riemann-
Liouville fractional differential operators, we have

Dα
tð Þ∗ = −1ð ÞnIn−αr Dn

tð Þ =〠C
t D

α
r , ð64Þ

where

In−αr Dn
tð Þ = 1

Γ n − αð Þ
ðr
t
τ − tð Þn−α−1 f x, τð Þdτ, n = α½ � + 1

ð65Þ

is the right-sided fractional integral operators of order α.
In this case, the formal Lagrangian of Eq. (7) is written as

L = v x, tð Þ ∂αu
∂tα

+mum−1ux + b − 1ð Þ a + b − 2ð Þua+b−3u3x
�

+ a + 3b − 3ð Þua+b−2uxuxx + ua+b−1uxxx

�
:

ð66Þ

Every Lie point symmetry (45) admitted by the Eq. (7)

leads to a conservation law DiðCiÞ = 0 where the compo-
nents Ci constructed by the following formula [5, 32]:

Ct = 〠
n−1

k=0
−1ð ÞkDα−1−k

t Wð ÞDk ∂L
∂Dα

t u
− J W,Dn

t
∂L
∂Dα

t u

� �
,

Cx =W
∂L
∂ux

−Dx
∂L
∂uxx

� �
+D2

x
∂L
∂uxxx

� �� �

+Dx Wð Þ ∂L
∂uxx

−Dx
∂L
∂uxxx

� �
+D2

x Wð Þ ∂L
∂uxxx

,
ð67Þ

where W = ϕ − ξux − τut and L are the formal Lagrangian
which are written in the symmetric form, and the mixed
derivatives J are given by the integral:

J f , gð Þ = 1
Γ n − αð Þ

ðt
0

ðr
t
f x, ξð Þg x, μð Þ μ − ξð Þn−α−1dμdξ,

ð68Þ

for 0 < α < 1. For other cases, the calculations of conserved
vector components are similar. In this case,

Ct =Dα−1
t Wð Þ ∂L

∂Dα
t u

− J W,Dt
∂L
∂Dα

t u

� �
: ð69Þ

The conserved vector components Ct , Cx are as follows:

Ct =Dα−1
t Wið Þv − J Wi,vtð Þ,

Cx =Wi mvum−1 + 3 b − 1ð Þ a + b − 2ð Þua+b−3vu2x
h

+ a + 3b − 3ð Þua+b−2vuxx − a + 3b − 3ð Þ a + b − 2ð Þ:ua+b−3vu2x
− a + 3b − 3ð Þua+b−2vxux − a + 3b − 3ð Þua+b−2vuxx
+ a + b − 1ð Þua+b−2vux + ua+b−1vx + a + b − 1ð Þ
� a + b − 2ð Þua+b−3vu2x + 2 a + b − 1ð Þua+b−2vxux
+ a + b − 1ð Þua+b−2vuxx + ua+b−1vxx� +Dx Wið Þ
� a + 3b − 3ð Þua+b−2vux − a + b − 1ð Þua+b−2vux − ua+b−1vx
h i
+D2

x Wið Þ ua+b−1v
� �

:

ð70Þ

where W1 = −ux, W2 = u − pxux − ð1/αÞqtut .
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In this study, a fuzzy Meir-Keeler’s contraction theorem for complete FMS based on George and Veeramani idea is established. Then,
we characterize fuzzyMeir-Keeler’s contractions as contractive types induced by functions called fuzzy L-function.Moreover, we show
that the converse of it is true. Finally, we bring some examples and corollaries certify our results and new improvement.

1. Introduction

Fixed point theory and related topics are an active research
field with a wide range of applications in mathematics,
engineering, chemistry, physics, economics, and computer
sciences. Many authors have been studied this theory in
hyperstructure spaces alongside the classical metric spaces
and normed spaces. Among them, it could be cited probabilis-
tic (and fuzzy) metric spaces. The phrase of fuzzy metric space
(FMS), introduced by Kramosil andMichalek [1], thenGeorge
and Veeramani [2], modified this idea which has applications
in quantum particle physics [3] and in the two-slit experiment
[4, 5]. Also, the theory of FMS is, in this framework, very dis-
parate from the usual theory of metric best approximation and
completion, e.g., see [6] and [7–9], respectively. Grabiec [10]
developed and extended fixed point theory to probabilistic
metric space. Later on, several authors have participated to
the growth of this theory (see [10–17]).

In 2006, Lim [18] introduced L-functions (LF) and char-
acterized Meir-Keeler’s contractive as a self-map T onM that
satisfies dðTðpÞ, TðqÞÞ < φðdðp, qÞÞ, p ≠ q ∈ X for some LF φ
(see also [19]). This characterization prepares it easy to com-
pare such maps with those satisfying Boyd-Wong’s condition
(see [20]). Then, Meir-Keeler [21] developed Boyd-Wong’s
result as follows

∀ε > 0;∃δ > 0, ε ≤ d p, qð Þ < ε + δ⇒ d T pð Þ, T qð Þð Þ < ε: ð1Þ

In 2005, Razani ([22], Theorem 2.2) introduced a con-
traction theorem in FMS. Our main result in this paper is
to extend this Theorem to fuzzy Meir-Keeler’s contraction.
We assert that if ðX,M,∗Þ is a FMS and T on X be a fuzzy
Meir-Keeler’s contractive self-mapping, then, T has a unique
fixed point in X. Our works are an extension of some recent
results that we notice them. Then, we characterize fuzzy
Meir-Keeler’s contractive map as a map so that

1
M T pð Þ, T qð Þ, tð Þ − 1 < φ

1
M p, q, tð Þ − 1

� �
,∀p, q ∈ X, p ≠ q, t > 0,

ð2Þ

where φ is a fuzzy LF and ∗ is the minimum t-norm, i.e.,
r ∗ s =min fr, sg, r, s ∈ I ≔ ½0, 1�.

2. Preliminaries

In what follows, we mention some reported results,
definitions, and examples related to the theory of FMS
which are needed. More details and explanations can be
followed in [2, 6–9, 23, 24].

Definition 1 (see [24]). A t-norm is a function ∗ : I × I ⟶ I
such that ∗ is continuous, commutative, associative, s ∗ 1 = s
, s ∈ I, and p ∗ q ≤ t ∗ s, where p ≤ t and q ≤ s, and p, q, t, s ∈ I.
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In the study of probabilistic and FM spaces, the presenta-
tion of t-norms was raised by the requirement to assign the
triangle inequality (condition (iv) below) in the setting of
metric spaces to that of fuzzy metric spaces. Numerous
examples of this concept have been cited by various
researchers, for instance, one may be found in [14, 15].

Definition 2 (George and Veeramani [2]). ðX,M,∗Þ is said
FMS where X ≠∅ is a set, ∗ is a continuous t-norm, and M
on X2 × �0,+∞½⟶ I is a function with

(1) Mðp, q, tÞ > 0, for all t > 0
(2) Mðp, q, tÞ = 1, for all t > 0 iff p = q

(3) Mðp, q, tÞ =Mðq, p, tÞ
(4) Mðp, q, tÞ ∗Mðq, r, sÞ ≤Mðp, r, t + sÞ,
(5) Mðp, q, ⋅ Þ: �0,+∞½⟶ I be a continuous fuzzy set-

where p, q, r ∈ X and t, s > 0.

Now, we bring two theorems and definitions that play as
key roles in this paper, and we continue the next sections
based on these concepts to reach our aims.

Theorem 3 (see [2]). In a FMS ðX,M,∗Þ, pn ⟶ p (i.e., pn
converges to p) iff,∀t > 0,Mðpn, p, tÞ⟶ 1 as n⟶∞.

Definition 4 (see [2]). ðpnÞn≥1 is said a Cauchy sequence in ð
X,M,∗Þ if for all t > 0 and ε ∈ ð0, 1Þ, ∃n0 = n0ðε, tÞ ∈ℕ so
that Mðpn, pm, tÞ > 1 − ε whenever n,m ≥ n0. Also, we call it
complete if every Cauchy sequence is convergent.

Theorem 5 (see [9, 17, 23]). In a FMS ðX,M,∗Þ, M : X ×
X × ð0,+∞Þ⟶ I is a continuous function.

Definition 6 (see [22]). In a FMS ðX,M,∗Þ, T on X is said a
fuzzy contractive self-mapping (FCM), if

1
M T pð Þ, T qð Þ, tð Þ − 1 < 1

M p, q, tð Þ − 1,∀p, q ∈ X, p ≠ q, t > 0:

ð3Þ

3. Main Results

In this section, we discuss concerning fuzzy Meir-Keeler’s
contractive self-mapping. We give a proof of Meir-Keeler’s
fixed point theorem in FMS. Here, we consider fuzzy Meir-
Keeler’s contraction (FMK) to state our main results.

Definition 7. In a FMS ðX,M,∗Þ, T on X is a (FMK), if for all
ε ∈ ð0, 1Þ, ∃δ > 0 such that for all p ≠ q ∈ X, t > 0,

Mp, q, tÞ > 1
ε + δ + 1 implies M T pð Þ, T qð Þ, tð Þ > 1

ε + 1 :

ð4Þ

Remark 8. Each FMK is a FCM but the inverse is not neces-
sarily true. To prove this claim, we bring the flowing example.

Example 1. It is precise that FMK implies fuzzy contraction
but note the inverse is not true because assume that

T pð Þ =
3 pj j > 1,
4 p = 0:

(
ð5Þ

andMd defined as Example 2.9 of [2] with ∗ =min. If ∣p ∣ >1
and q = 0 then TðpÞ = 3 and TðqÞ = 4. Thus, ∣TðpÞ −
TðqÞ ∣ = 1 < ∣p ∣ = ∣p − q∣. Therefore, we get ∣TðpÞ − Tðq
Þ ∣ < ∣ p − q ∣ , for all p, q, p ≠ q, i.e., T is a FCM. But if ∣p ∣ >
1, q = 0, and ε = 1/2, then, there exists δ > 0 so that

M p, q, tð Þ = t
t+∣p ∣

> 1
1 + 1/2 + δ

,
ð6Þ

holds. Hence, if T be a FMK, we easily have that

M T pð Þ, T qð Þ, tð Þ = t
t+∣T pð Þ − T qð Þ ∣

= t
t + 1

> 1
1 + 1/2 ,

ð7Þ

for all p ≠ q ∈ X. It means that t > 2, which is a contra-
diction. Thus, T does not satisfy FMK, and this proves
our claim.

Theorem 9. If ðX,M,∗Þ is a complete FMS, where t-norm is
defined as ∗ =min. Suppose self-mapping T on X is a FMK.
Then, T has a unique fixed point.

Proof. For all p ≠ q ∈ X and t > 0, we get MðTðpÞ, TðqÞ, tÞ >
Mðp, q, tÞ. Since if there are p0, q0 ∈ X and t0 > 0 so that
MðTðp0Þ, Tðq0Þ, t0Þ ≤Mðp0, q0, t0Þ. For simplicity, we put
M2 =MðTðp0Þ, Tðq0Þ, t0Þ and M1 =Mðp0, q0, t0Þ. Hence,
for each δ > 0

M1 ≥M2 ≥
M2

1 + δM2

= 1
1/M2 − 1ð Þ + δ + 1 :

ð8Þ

Then, by (4), M1 >M2, which is a contradiction. Let
p0 ∈ X. Set pn+1 = TðpnÞ, n ∈ℕ and suppose that pn+1 ≠ pn,
∀n ∈ℕ, since otherwise T has a fixed point. Assume that
t > 0 be arbitrary and fixed after choosing. Now, let cn = 1
/Mðpn+1, pn, tÞ − 1. ðcnÞ is a nonincreasing sequence. So,
ðcnÞconverges to η. Thus, ∃N ∈ℕ such that, ∣cn − η ∣ <r, for
all n ≥N. We claim that η = 0. If 0 < η, there is d > 0 such that,
for all p, q ∈ X and t > 0, where Mðp, q, tÞ > 1/1 + η + d,
we have MðTðpÞ, TðqÞ, tÞ > 1/1 + η. Select r > 0 such that
ðd/2 − r, d/2 + rÞ ⊂ ½0,+∞Þ. We have

∣d/2 − cn − ηð Þ − d/2∣ < r, ð9Þ
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thus

d
2 − cn − ηð Þ ∈ d

2 − r, d2 + r
� �

, ð10Þ

so 1/Mðpn+1, pn, tÞ − 1 − η < d. It means that Mðpn+1, pn, tÞ
> 1/1 + η + d. Hence by 2, Mðpn+2, pn+1, tÞ > 1/1 + η, which
is a contradiction, since cj = 1/Mðpj+1, pj, tÞ − 1 ≥ η, for all
j ∈ℕ.

Now, we prove that ðpnÞ is a Cauchy sequence. If ðpnÞ is
not, then there is 0 < ε0 < 1, so that, for any m ∈ℕ,
there are im, jm >m such that Mðpim , pjm , tÞ ≤ 1 − ε0. For
each 0 < e < ε0, there is d > 0 such that for any p, q ∈ X
and t > 0, if Mðp, q, tÞ > 1/1 + e + d then MðTðpÞ, TðqÞ, tÞ
> 1/1 + e. There exists M > 0 such that for all i ≥M
and t > 0, Mðpi, pi+1, tÞ ≥ 1 − e + d/1 + e + d. Take jM > iM
≥M such that

M pjM , piM , t
� �

≤ 1 − ε0: ð11Þ

Then, we get

M piM−1
, piM+1

, t
� �

>M piM−1
, piM ,

t
2

� �
∗M piM , piM+1

, t2

� �

≥ 1 − e + d
1 + e + d

� �
∗ 1 − e + d

1 + e + d

� �

= 1
1 + e + d

:

ð12Þ

It presents that 1/MðpiM−1
, piM+1

, tÞ − 1 < e + d. Thus, by
(4), 1/MðpiM , piM+2

, tÞ − 1 < e. Also,

M piM−1
, piM+2

, t
� �

>M piM−1
, piM ,

t
2

� �
∗M piM , piM+2

, t2

� �

≥ 1 − e + d
1 + e + d

� �
∗

1
1 + e

� �

= 1
1 + e + d

:

ð13Þ

In other words, MðpiM−1
, piM+2

, tÞ > 1/1 + e + d. Thus,
by (4), MðpiM , piM+3

, tÞ > 1/1 + e. By induction, MðpiM , pjM , tÞ
> 1/1 + ε0. By (11), 1 − ε0 > 1/1 + ε0, i.e., 1 − ε20 > 1, which is
a contradiction. Thus, ðpnÞ is convergent to p∗ ∈ X. We get

M pn+1, Tp∗, tð Þ =M Tpn, Tp∗, tð Þ >M pn, p∗, tð Þ⟶ 1:
ð14Þ

Then, Mðpn+1, Tp∗, tÞ⟶ 1. So, Tp∗ = p∗.

For proving the uniqueness of p∗, suppose there is a
q∗ ≠ p∗ with Tðq∗Þ = q∗, it follows that

M p∗, q∗, tð Þ =M T p∗ð Þ, T q∗ð Þ, tð Þ >M p∗, q∗, tð Þ: ð15Þ

This is a contradiction, then, the uniqueness is proved.
Note that Theorem 9 is a generalization of ([22], Theo-

rem 2.2); when we consider t-norm ∗ =min, this shows one
of the most reason of improvement of [22]. ☐

4. Characterization of Fuzzy Meir-
Keeler’s Contractions

In this part of the paper, we characterize FMK maps. In The-
orem 11, we provided a sufficient and necessary condition for
FMKmaps by tools of fuzzy L-function. Also, this generalizes
Theorem 1 of [21]. More precisely, we show that if a self-
mapping T on X be a FMK then there is a fuzzy L-function
ϕ from ð0, +∞Þ into itself such that, for all t > 0, p ≠ q ∈ X,
1/MðTðpÞ, TðqÞ, tÞ − 1 < ϕð1/Mðp, q, tÞ − 1Þ. Also, we show
that the converse of it is true. In some sense, our work is very
close to Suzuki [19], and Lim [18].

Definition 10 (see [18]). Function φ from ½0, +∞Þ into itself is
said to be a fuzzy LF if φ−1ð0Þ = 0 and ∀s ∈ ð0,+∞Þ, ∃δ > 0 so
that φðtÞ ≤ s, ∀t ∈ ½s, s + δ�.

In the following, we bring a theorem to show the condi-
tion of reaching a self-map T on X in a FMS to FMK.

Theorem 11. Suppose ðX,M,∗Þ is a FMS, and the t-norm is
defined as ∗ =min. Then, a self-map T on X is FMK iff there
exists a (nondecreasing) fuzzy LF φ as (2) is satisfied.

Proof.Assume that T is a FMK. By Definition 7, let a function
η from ð0, 1Þ into ð0, +∞Þ is defined such that

1
M p, q, tð Þ − 1 < ε + 2η εð Þimplies 1

M T pð Þ, T qð Þ, tð Þ − 1 < ε,

ð16Þ

for ε ∈ ð0, 1Þ. With such η, let present a nondecreasing func-
tion κ from ð0, 1Þ into ½0, +∞Þ by

κ tð Þ = inf ε > 0 : t ≤ η εð Þ + εf g, ð17Þ

for any t ∈ ð0, 1Þ, p, q ∈ X, p ≠ q. Since t ≤ t + ηðtÞ, we get κðtÞ
≤ t for t ∈ ð0,+∞Þ. Suppose that the function �φ : ½0,+∞Þ
⟶ ½0,+∞Þ is defined by

�φ tð Þ =

κ tð Þ if min ε > 0 : t ≤ η εð Þ + εf gexists, wheret > 0,
0 if t = 0,
t + κ tð Þ
2 otherwise:

8>>><
>>>:

ð18Þ

It is obvious that �φð0Þ = 0. 0 < �φðsÞ ≤ s for s ∈ ð0,+∞Þ. Let
s ∈ ð0,+∞Þ be fixed. If �φðtÞ ≤ s, where t ∈ ðs, s + ηðsÞ�, one can
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put δ = κðsÞ. Otherwise, ∃σ ∈ ðs, s + ηðsÞ� with s < �φðσÞ. But
σ ≤ s + ηðsÞ, then, we get κðσÞ ≤ s, and if κðσÞ = s then

�φ σð Þ = κ σð Þ = s: ð19Þ

Thus, we get s = �φðσÞ. This is a contradiction. Thus, it is
concluded that

κ σð Þ < s < �φ σð Þ = σ + κ σð Þ
2 : ð20Þ

Now, we shall select u ∈ ðκðσÞ, sÞ with σ ≤ u + ηðuÞ, and
let δ = s − u > 0. Consider t ∈ ½s, s + δ�. Since

u + η uð Þ ≥ σ = 2 σ + κ σð Þ
2 − κ σð Þ > 2s − u = δ + s ≥ t, ð21Þ

we obtain κðtÞ ≤ u. Therefore

s = u + s + δ

2 ≥
κ tð Þ + t

2 ≥ �φ tð Þ: ð22Þ

Hence, �φ is a fuzzy LF. If we consider p, q ∈ X with p ≠ q
and fixed. The definition of �φ implies that ∀t > 0 there is
ε ∈ ð0, �φðtÞ� in which t ≤ ηðεÞ + ε. Thus, ∃ε ∈ ð0, φð1/Mðp, q
, lÞ − 1ÞÞ where 1/Mðp, q, lÞ − 1 ≤ ε + ηðεÞ. Therefore,

1
M T pð Þ, T qð Þ, lð Þ − 1 ≤ ε ≤ �φ

1
M p, q, lð Þ − 1

� �
, ð23Þ

holds. Therefore, �φ satisfies (2). We define function ��φ as

��φ tð Þ = sup �φ sð Þ: s ≤ tf g, ð24Þ

for any t ∈ ð0, 1Þ, we get

0 < �φ tð Þ ≤ ��φ tð Þ ≤ t,∀t ∈ 0, 1ð Þ: ð25Þ

Hence, ��φ also satisfies (2). Easily can be verified that ��φ is
a nondecreasing fuzzy LF. This completes the proof. ☐

Considering the following example, we briefly explain the
Theorems 9 and 11.

Example 2. Let X = I ∪ f3n, 3n + 1gn∈ℕ with usual distance
on ℝ and T on X be defined as follows:

T pð Þ =

p
2 0 ≤ p ≤ 1,

1 − 1
n + 2 p = 3n + 1,

0 p = 3n:

8>>>><
>>>>:

ð26Þ

Let we set M as Example 2.9 of [2] and ∗ =min then,

δ εð Þ =
2ε 0 < ε ≤

1
2 ,

1 1
2 < ε < 1:

8>><
>>: ð27Þ

Therefore, T satisfies the conditions of Theorem 9.
Hence, T has a (unique) fixed point in X. Also, if we consider

φ tð Þ =

2
3 t 0 ≤ t ≤

3
4 ,

2t − 1 3
4 < t ≤ 1,

1 1 ≤ t<∞:

8>>>><
>>>>:

ð28Þ

Thus, φ is a fuzzy LF and

1
M T pð Þ, T qð Þ, tð Þ − 1 = ∣T pð Þ − T qð Þ ∣

t
,

≤ φ
∣p − q ∣

t

� �
,

= φ
1

M p, q, tð Þ − 1
� �

:

ð29Þ

In this step, we can easily reach to the following
corollaries.

Corollary 12. Suppose ðX,M,∗Þ is a FMS, where ∗ =min and
T are a self-mapping on X. If there exists a fuzzy L-function
φ : ð0,+∞Þ⟶ ð0,+∞Þ where (2) is satisfied, then, T has a
unique fixed point.

Proof. Let ε > 0 has given. By Definition 10 there is δ > 0 such
that for all t ∈ ½ε, ε + δ�, φðtÞ ≤ ε. It means that if

ε ≤
1

M p, q, tð Þ − 1 < ε + δ, ð30Þ

then by (2)

1
M T pð Þ, T qð Þ, tð Þ − 1 < φ

1
M p, q, tð Þ − 1

� �
< ε: ð31Þ

It means that (4) holds. Thus, T has a (unique) fixed
point. ☐

Based on theorems in Section 3 and 4, we have the follow-
ing result:

Corollary 13. Suppose that ðX,M,∗Þ be a FMS where ∗ =min
and T is a self-mapping on X. The followings statements are
equivalent:

(1) T is a FMK

(2) There is a fuzzy LF φ such that (2) satisfies
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Proof. By Theorem 11 and Corollary 12, we easily obtain the
desired results. ☐

5. Conclusion

In this paper motivated by the results of Razani [22], a new
class of FMK contractions in a complete FMS was introduced
by reducing the contractive condition of the so-called Meir-
Keeler’s contractive maps. In Theorems 9, we established a
fixed point theorem; and in Theorem 11, we provided a suf-
ficient and necessary condition for fuzzy FMK maps. Our
work generalizes Theorem 1.1 of [22] and Theorem 1 of [21].
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In this article, we are concerned with a problem for the p-Laplacian parabolic equation with logarithmic nonlinearity; the blow-up
result of the solution is proven. This work is completed Boulaaras’ work in Math. Methods Appl. Sci., (2020), where the author did
not study the blowup of the solution.

1. Introduction

In the current manuscript, we consider the following
initial-boundary value problem for a nonlinear p-Laplacian
equation:

ut − div ∇uj jp−2∇u� �
+ uj jp−2u = uj jp−2u ln uj j, x ∈Ω, t > 0,

u x, 0ð Þ = u0 xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ≥ 0,

8>><
>>:

ð1Þ

where Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω and u0 is the initial data p satisfying

2 < p<∞, if n ≤ p,

2 < p < np
n − p

, if n > p:

8<
: ð2Þ

The terminology of nonlinear polynomials is among the
work that researchers have focused on recently. For example,
it is found in edge detection and optical elasticity, materials
science, engineering, physics, and photonics. In addition,
many works and problems in applied sciences have been
designed and proposed by means of partial differential
equations, including the modeling of some dynamic systems
in physics and engineering ([1–13]).

The same is said for the evolutionary partial differential
equations associated with pðxÞ-Laplacian (see [8, 14, 15]).

We also note that logarithmic nonlinearity has been
concerned by many scientists and researchers, and it
has introduced many issues, including the wave equation
(see [3, 16–18]).

And for more information on some of the other
works to which this term was introduced, we refer the
reader to [13, 14, 16–24].

Later on, in [25], the authors by the multiplier method
gave the energy decay of the solution of the following problem:

utt − div ∇uj jp−2∇u� �
− Δut + utj jq−1ut = uj jp−1u: ð3Þ

In addition, the authors in [14] proved the decay rate of
solutions (exponential and polynomial) by using the inequal-
ity of Nakao for the seminar problem (3).

On the other hand, for the Laplacian parabolic equation
with the logarithmic source term in [21], Chen et al. studied
the following problem:

ut − Δu − Δut = u ln u: ð4Þ
Then, in [23], the authors proved the global existence, the

decay, and the blowup of the solutions of the problem:

ut − div ∇uj jp−2∇u� �
− Δut = uj jp−2u ln uj j, ð5Þ

where p > 2:
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Also, in [14], the authors established the global bounded-
ness and the blowup of the solution of the problem (5) for
1 < p < 2.

Motivated by the last recent mentioned works, here, we
investigated problem (1) with the nonlinear diffusion Δp =
div ðj∇ujp−2∇uÞ and logarithmic nonlinearity jujp−2u ln juj
which extends problem in [14]. Our goal is to blow up solu-
tions for problem (1) in order to put some preliminaries.
More precisely, we give the blow-up result.

2. Preliminaries

As a starting point, we gave some essential definitions and
lemmas.

uk kp = uk kLp Ωð Þ, uk k1,p = uk kW1,p
0 Ωð Þ = uk kp + ∇uk kp

� �1/p
,

ð6Þ

for 1 < p <∞, and we symbolize the positive constants by C
and Ci (i = 1, 2,⋯).

Lemma 1 [7] (logarithmic Sobolev inequality). Let u be all
function u ∈W1,p

0 ðRnÞ \ f0g. Then, for p > 1, μ > 0,

p
ð
Rn
up ln uj j

uk kLp Rnð Þ

 !
dx ≤ μ

ð
Rn

∇uj jpdx

−
n
p
ln pμe

nLp

 !ð
Rn

uj jpdx,

ð7Þ

where

Lp =
p
n

p − 1
e

� �p−1

π−p/2 Γ n/2ð Þ + 1ð Þ
Γ n p − 1ð Þ/pð Þ + 1ð Þ
� 	p/n

: ð8Þ

Remark 2. Let u ∈W1,p
0 ðΩÞ \ f0g, and by defining uðxÞ = 0

for x ∈ Rn \Ω, we can write

p
ð
Ω

up ln uj j
uk kLp Ωð Þ

 !
dx ≤ μ

ð
Ω

∇uj jpdx

−
n
p
ln pμe

nLp

 !ð
Ω

uj jpdx:
ð9Þ

3. Blowup

In this third section, we gave the proof of blowup of solution
of our problem.

Theorem 3. For any initial data u0 ∈H , the problem (1) has a
unique weak solution:

u ∈ C 0, T½ � ;Hð Þ, ð10Þ

for some T > 0.

First, we introduce the energy functional in the following
lemma.

Lemma 4. Let uðtÞ be a solution of (1), then EðtÞ is nonin-
creasing; that is,

E tð Þ = 1
p

∇uk kpp −
1
p

ð
Ω

ln uj jupdx + p + 1
p2

uk kpp ð11Þ

satisfies

E′ tð Þ = − utk k22: ð12Þ

Proof. Multiplying (1) by ut and integrating on Ω, we have

−
ð
Ω

div ∇uj jp−2∇u� �
utdx +

ð
Ω

uj jp−2uutdx +
ð
Ω

ututdx

=
ð
Ω

up−2u ln uj jutdx,

d
dt

1
p

∇uk kpp +
1
p

uk kpp −
1
p

ð
Ω

ln uj jupdx + 1
p2

uk kpp
� �
= − utk k2:

ð13Þ

Thus,

E′ tð Þ = − utk k2: ð14Þ

☐

To get to our goal of proving the main result, we define
the functional

H tð Þ = −E tð Þ = −
1
p

∇uk kpp +
1
p

ð
Ω

ln uj jupdx − p + 1
p2

uk kpp:

ð15Þ

Theorem 5. Assume that Eð0Þ < 0, then the solution of prob-
lem (1) blows up in finite time.

Proof. From (12), we have

E tð Þ ≤ E 0ð Þ ≤ 0: ð16Þ
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Hence,

H ′ tð Þ = −E′ tð Þ = utk k22 ≥ 0,

0 ≤H 0ð Þ ≤H tð Þ ≤ 1
p

ð
Ω

ln uj jupdx:
ð17Þ

We set

K tð Þ =H1−α + ε

2

ð
Ω

u2dx, ð18Þ

where ε > 0 and

0 < α < p − 2
p

< 1: ð19Þ

Multiplying (1) by u and the derivative of (18) gives

K ′−αH ′ tð Þ − ε ∇uk kpp − ε ∇uk kpp + ε
ð
Ω

uj jp ln uj jdx: ð20Þ

Adding and subtracting εδHðtÞ into (20) (δ > 0), we
obtain

K ′−αH ′ tð Þ + ε
δ − p
p

� �
∇uk kpp

+ ε
δ − p
p

+ 1
p2

� �
uk kpp − ε

δ − p
p

� �ð
Ω

ln uj jupdx + εδH tð Þ:

ð21Þ

Applying the logarithmic Sobolev inequality gives

K ′−αH ′ tð Þ + εδH tð Þ + ε
δ − p
p

� �
1 − μ

p

� �
∇uk kpp + ε

δ − p
p

� �

: 1 + δ

p δ − pð Þ − ln uk kp +
n
p2

ln pμe
nLp

 ! !" #
uk kpp:

ð22Þ

Setting μ = p/2 and taking δ > p give

1 + δ

p δ − pð Þ − ln uk kp +
n
p2

ln p2e
2nLp

 ! !" #
> 0, ð23Þ

since

uk kp > e 1+ δ
p δ−pð Þ

� �
p2e

2nLp

 !n/p2

: ð24Þ

Consequently, for some β > 0, inequality (25) gives

K ′ tð Þ ≥ β H tð Þ + uk kpp + ∇uk kpp
n o

, ð25Þ

K tð Þ ≥K 0ð Þ > 0, t > 0: ð26Þ

Next, by (18), we have

K tð Þ =H1−α + ε

2

ð
Ω

u2dx ≤H1−α + εC uk k2p

≤H1−α + εC uk kpp
� �2/p

:

ð27Þ

Therefore,

K1/1−α tð Þ ≤H1−α + εC uk kpp
� �2/p 1−αð Þ

, ð28Þ

where 0 < 2/pð1 − αÞ < 1,

uk k2p
� �2/p 1−αð Þ

≤ C uk kpp
� �p

+H tð Þ
� �

: ð29Þ

Hence,

K1/1−α tð Þ ≤ C1 H tð Þ + uk kpp
h i

≤ C1 H tð Þ + ∇uk kpp + uk kpp
h i

:

ð30Þ

According to (25) and (30), we get

K ′ tð Þ ≥ λK1/1−α tð Þ, ð31Þ

where λ = C1/β > 0, depending only on β and C1.
Finally, by integrating (31), we obtain

Kα/1−α tð Þ ≥ 1
K−α/ 1−αð Þ 0ð Þ − λ α/ 1 − αð Þð Þt

: ð32Þ

Hence, KðtÞ blows up in time:

T ≤ T∗ = 1 − α

λαKα/ 1−αð Þ 0ð Þ
: ð33Þ

As a result, the proof is completed. ☐
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In this manuscript, a semianalytical solution of the time-fractional Navier-Stokes equation under Caputo fractional derivatives
using Optimal Homotopy Asymptotic Method (OHAM) is proposed. The above-mentioned technique produces an accurate
approximation of the desired solutions and hence is known as the semianalytical approach. The main advantage of OHAM is
that it does not require any small perturbations, linearization, or discretization and many reductions of the computations. Here,
the proposed approach’s reliability and efficiency are demonstrated by two applications of one-dimensional motion of a viscous
fluid in a tube governed by the flow field by converting them to time-fractional Navier-Stokes equations in cylindrical
coordinates using fractional derivatives in the sense of Caputo. For the first problem, OHAM provides the exact solution, and
for the second problem, it performs a highly accurate numerical approximation of the solution compare with the exact solution.
The presented simulation results of OHAM comparison with analytical and numerical approaches reveal that the method is an
efficient technique to simulate the solution of time-fractional types of Navier-Stokes equation.

1. Introduction

Partial differential equations (PDEs) are utilized to mathe-
matically formulate and thus help solve physical and other
problems involving functions of several variables, such as
the propagation of sound or heat, electrostatics, fluid flow,
elasticity, and electrodynamics. In fluid mechanics, the
Navier-Stokes equation is a PDE that illustrates incompress-
ible fluids’ flow. This equation is a generalization of the
equation developed to illustrate the flow of frictionless and
incompressible fluids by Euler in the eighteenth century. In
1821, Navier added the viscosity (friction) element to make
viscous fluids more realistic and complex. The British physi-
cist and mathematician Stokes improved it during the middle
of the nineteenth century, though complete solutions were
achieved only for simple two-dimensional flows [1]. That is
why the equation is called the Navier-Stokes equation. The

mathematical model of the above-mentioned equation is
given by:

∂U s, tð Þ
∂t

+ U s, tð Þ ⋅ ∇ð ÞU s, tð Þ = −
1
ρ
∇p + ϑ∇2U s, tð Þ, ð1Þ

where U is the velocity, t is the time, ρ is the density, s is the
spatial variable, ϑ is the kinematics viscosity, p is the pressure,
and ∇ denotes the gradient differential operator.

Fractional differential equations have proven to be a
powerful tool for modeling real-world problems in the
literature. It was noticed that time-fractional derivatives
usually appear as infinitesimal generators of the time evolu-
tion when choosing a long-time scaling limit. Several essen-
tial phenomena in physics and polymer technology [2],
electrical circuits [3], electrochemistry [4], electrodynamics
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of complex medium [5], control theory [6], thermodynamics
[7], viscoelasticity [8], aerodynamics [9], capacitor theory
[10], biology [11], blood flow [12], and fitting of experimen-
tal data [13], are well described by the aforesaid equations.
Equation (1) can be converted to time-fractional derivative
of order α ∈ ð0, 1�, as given by:

∂αU s, tð Þ
∂tα

+ U s, tð Þ ⋅ ∇ð ÞU s, tð Þ = −
1
ρ
∇p + ϑ∇2U s, tð Þ: ð2Þ

Here, ∂α/∂tα is the Caputo fractional derivative. As the
equation mentioned above is nonlinear, there is no known
general method for resolving it. There are very few cases
where it is possible to achieve the exact solution of Equation
(2), making some predictions about the fluid’s state and a
simple arrangement considered for the flow pattern; for
detail, see [14].

Analytical and numerical techniques are extensively uti-
lized to solve nonlinear differential equations modeling phys-
ical phenomena. This is because the exact solutions of the
above-mentioned equations are challenging to achieve. In
recent decades, a new variety of perturbation methods have
developed, which is loosely based on Poincare’s homotopy
applied in topology. Liao [15] introduced the Homotopy
Analysis Method (HAM) in 1992. In 1998, He [16] followed
Liao’s work and developed the Homotopy Perturbation
Method (HPM). Both methods have been successfully imple-
mented to the problems, which exist in engineering and
science fields. For example, Ganji and Rafei [17] solved non-
linear Hirota-Satsuma coupled Korteweg-De Vries equation
by HPM. Lu and Liu [18] solved the Korteweg-De Vries-
Burgers equation via the help of HAM. Siddiqui et al. [19]
utilized HPM and examined the irregular 2D flow of a vis-
cous magnetohydrodynamics fluid within two parallel plates.

In [20], Marinca and Herisanu proposed a technique
called OHAM. The benefit of the above-mentioned tech-
nique is in the built-in convergence criteria alike to HAM
but extraflexible. The researchers have successfully imple-
mented this approach to solving essential science problems
and have also explained its reliability and effectiveness, for
example, the dynamics of an electrical machine exhibiting
nonlinear vibration [21], the oscillations of a particle that
moves on a rotating parabola [22], the explicit solutions for
some oscillators with discontinuities and a fractional power
restoring force [23], and nonlinear equations arising in heat
transfer [20], in an application to the steady flow of a
fourth-grade fluid [24]. The above-mentioned technique is
the HAM’s modification, which is based on minimizing the
residual error. In OHAM, the adjustment and control of
the convergence region are provided conveniently.

In [14], Momani and Odibat considered unsteady one-
dimensional motion of a viscous fluid in a tube. The equa-
tions of motion which govern the flow field in the tube are
the Navier-Stokes equations in cylindrical coordinates. They
converted Equation (2) to the operator form as:

∂αU s, tð Þ
∂tα

= P + ϑ
∂2U s, tð Þ

∂s2
+ 1

s
∂U s, tð Þ

∂s

 !
, ð3Þ

where 0 < α ≤ 1 is the fractional order derivative and
P = −∂p/ρ∂z. For α = 1, we can get the standard Navier-
Stokes equation. For the analytical solution, they have
utilized the Adomian decomposition method. Lately, several
powerful analytical techniques have been utilized to achieve
the solution of Equation (3), such as the modified Laplace
decomposition method [25], the q-homotopy analysis trans-
form scheme [26], the new homotopy perturbation trans-
form method [27], the iterative Elzaki transform method
[28], the natural homotopy perturbation method [29], Elzaki
transform with homotopy perturbation technique [30], and
He’s homotopy perturbation and variational iteration
methods [31]. The aforementioned methods are called ana-
lytical, and no one has used the semianalytical technique
for the solution of Equation (3) in the previous studies.
Therefore, the objective of this manuscript is to present the
semianalytical solution of Equation (3) by a semianalytical
approach called OHAM.

The rest of the manuscript is structured as follows: in
Section 2, we recall some definitions and properties of nonin-
teger order operators. Section 3 is devoted to the basic formu-
lation of OHAM. In Section 4, we apply the above-mentioned
technique to time-fractional Navier-Stokes type of equations
and discuss the method reliability through tables and plots.
Section 5 is devoted to the conclusion.

2. Definitions and Properties

This section deals with some definitions and properties that
are used in the manuscript.

Definition 1. A real function ψðtÞ, t > 0 is supposed to be in
the space Cκ ðκ > 0Þ if it can express as ψðtÞ = tpψ1ðtÞ for cer-
tain p > κ where ψ1ðtÞ ∈ C½0,∞Þ, and it is supposed to be in
the space Cm

κ ⇔ ψm ∈ Cκ,m ∈ℕ.

Definition 2 (see [32]). The α ≥ 0 order integral operator for a
function ψ ∈ Cκ, κ ≥ −1 in the Riemann-Liouville sense is
defined as:

Iαψ tð Þ = 1
Γ αð Þ

ðt
0

ψ θð Þ
t − θð Þ1−α dθ: ð4Þ

Let ψ ∈ Cκ, κ ≥ −1, α,γ ≥ 0, and μ > −1, then we have the
properties [32] given by:

IαIγψ tð Þ = Iα+γψ tð Þ,
IαIγψ tð Þ = IγIαψ tð Þ,

Iαtμ = Γ μ + 1ð Þ
Γ μ + α + 1ð Þ t

μ+α:

ð5Þ

Definition 3 (see [32]). The α > 0 order Caputo derivative
operator for a function ψ ∈ Cm

−1,m ∈ℕ is defined as:

cDαψ tð Þ = 1
Γ n − αð Þ

ðt
0

ψ nð Þ θð Þ
t − θð Þα−n+1

dθ, t > 0, ð6Þ
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where ½α� is the integer part of α and n = ½α� + 1. For ψ,
ϕ ∈ Cm

κ , κ ≥ −1, we have the properties [32] given by:

cDα aψ tð Þ + bϕ tð Þð Þ = acDαψ tð Þ + bcDαϕ tð Þ, a, b ∈ IR,
cDαIαψ tð Þ = ψ tð Þ,

Iα cDα½ �ψ tð Þ = ψ tð Þ − 〠
k−1

j=0
ψ jð Þ 0ð Þ xj

j!
:

ð7Þ

3. Basic Formulation of the OHAM

We formulate OHAM for PDEs with boundary condition, in
the steps given by [33]:

L U s, tð Þð Þ +N U s, tð Þð Þ + ℏ s, tð Þ = 0,B U, ∂U
∂t

� �
= 0, s ∈ϒ ,

ð8Þ

where L and N are the linear and nonlinear operators,
respectively. Uðs, tÞ is an unknown function, the boundary
operator denoted by B, s and t denote spatial and time
variables, respectively, ℏðs, tÞ is known function, and ϒ is
the domain of the problem.

By OHAM, we construct the homotopy ωðs, t;℘Þ:
ϒ × J ⟶ R, where J = ½0, 1�, which satisfies:

1−℘ð Þ L ω s, t;℘ð Þð Þ + ℏ s, tð Þf g =H ℘ð Þ L ω s, t;℘ð Þð Þf
+N ω s, t;℘ð Þð Þ + ℏ s, tð Þg,

ð9Þ

where ℘∈J is an embedding parameter andHð℘Þ is a nonzero

auxiliary function for ℘≠ 0 andHð0Þ = 0. Equation (9) is to be
the optimal homotopy equation. Obviously,

℘ = 0⇒L ω s, t;℘ð Þð Þ + ℏ s, tð Þ = 0,
℘ = 1⇒L ω s, t;℘ð Þð Þ +N ω s, t;℘ð Þð Þ + ℏ s, tð Þ:

ð10Þ

For ℘ = 0, we can obtain ωðs, t ; 0Þ =U0ðs, tÞ, and for
℘ = 1, we can get ωðs, t ; 1Þ =Uðs, tÞ. Therefore, as ℘ extend
from 0 to 1, then ωðs, t;℘Þ moves from U0ðs, tÞ to Uðs, tÞ,
where U0ðs, tÞ is got from Equation (9) for ℘ = 0:

L U0 s, t;℘ð Þð Þ + ℏ s, tð Þ = 0,B U0,
∂U0
∂t

� �
= 0: ð11Þ

Now, we take Hð℘Þ, which is called auxiliary function,
in the following form:

H ℘ð Þ = ℘C1 + ℘2C2 + ℘3C3+⋯+℘mCm: ð12Þ

For the numerical solution, we utilize Taylor’s series
about ℘ and expand ωðs, t;℘,CpÞ in the following way:

ω s, t;℘,Cp

� �
=U0 s, tð Þ + 〠

∞

q−1
Uq s, t ; Cp

� �
℘q, p = 1, 2, 3,⋯:

ð13Þ

Plugging Equation (13) in Equation (9) and equating the
coefficient of like powers of ℘, we get the problem of zerothor-
der; given in (11), the problems of the first and second order
are given by the Equations (14) and (15), respectively, and
the general governing equations for Uqðs, tÞ are given in
Equation (16):

L U1 s, tð Þð Þ = C1N 0 U1 s, tð Þð Þ,B U1,
∂U1
∂t

� �
= 0, ð14Þ

L U2 s, tð Þð Þ −L U1 s, tð Þð Þ = C2N 0 U0 s, tð Þð Þ + C1 L U1 s, tð Þð Þ +N 1 U0 s, tð Þ,U1 s, tð Þð Þ½ �,B U2,
∂U2
∂t

� �
= 0,

⋮
ð15Þ

L Uq s, tð Þ� �
−L Uq−1 s, tð Þ� �

= CqN 0 U0 s, tð Þð Þ + 〠
q−1

p=1
Cp L Uq−p s, tð Þ� ��

+N q−p U0 s, tð Þ,U1 s, tð Þ,U2 s, tð Þ,⋯,Uq−p s, tð Þ� ��,B Uq,
∂Uq

∂t

� �
, q = 2, 3,⋯,

ð16Þ
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where N q−pðU0ðs, tÞ,U1ðs, tÞ,⋯,Uq−pðs, tÞÞ is the coeffi-
cient of ℘q−p in the expansion of N ðωðs, t;℘ÞÞ about the
embedding parameter ℘.

N ω s, t;℘,Cp

� �� �
=N 0 U0 s, tð Þð Þ +〠

q≥1
N q U0,U1,⋯,Uq

� �
℘q:

ð17Þ

Here,Uq for q ≥ 0 is the set of linear equations with linear
boundary conditions, which can be solved very easily.

The series in Equation (13) depends on C1, C2,⋯. If it is
convergent at ℘ = 1, then:

~U s, t ; Cp

� �
=U0 s, tð Þ + 〠

m

q=1
Uq s, t, Cp

� �
: ð18Þ

Putting Equation (18) in Equation (8), one can obtain the
residual expression in the form:

R s, t ; Cp

� �
=L ~U s, t ; Cp

� �� �
+N ~U s, t ; Cp

� �� �
+ ℏ s, tð Þ:

ð19Þ

If Rðs, t ; CpÞ = 0, then ~Uðs, t ; CpÞ will be the exact solu-
tion. But generally, it is not possible in nonlinear problems.

For calculating the Cp, p = 1, 2,⋯,m, one can utilize the
least square technique as given by:

Φ Cp

� �
=
ðt
0

ð
ϒ

R2 s, t ; Cp

� �
dsdt, ð20Þ

where R is the residual given by Equation (19) and

∂Φ
∂C1

= ∂Φ
∂C2

= ∂Φ
∂C3

=⋯ = ∂Φ
∂Cm

= 0: ð21Þ

The convergence based on C1, C2, C3,⋯ can be identified
and minimized optimally by Equation (21).

4. Numerical Examples

In this section, the fractional OHAM is utilized to get the
solution of time-fractional Navier-Stokes equations.

Example 1. Suppose a time-fractional Navier-Stokes equation:

∂αU s, tð Þ
∂tα

= P + ∂2U s, tð Þ
∂s2

+ 1
s
∂U s, tð Þ

∂s
, ð22Þ

with the initial condition:

U s, 0ð Þ = 1 − s2, ð23Þ

where ∂α/∂tα is Caputo fractional derivative and 0 < α ≤ 1.
The exact solution of Equation (22) is given by [14]:

U s, tð Þ = 1 − s2 + P − 4ð Þt: ð24Þ

According to Section 3, we can set up the homotopy in the
following way:

1−℘ð Þ ∂
αω s, t;℘ð Þ
∂tα

=H ℘,Cp

� �
∂αω s, t;℘ð Þ

∂tα
− P −

∂2ω s, t;℘ð Þ
∂s2

−
1
s
∂ω s, t;℘ð Þ

∂s

" #
,

ð25Þ

where

ω s, t;℘ð Þ =U0 s, tð Þ + 〠
∞

q=1
Uq s, t ; Cp

� �
℘q, p = 1, 2, 3⋯ ,

ð26Þ

H ℘,Cp

� �
= ℘C1 + ℘2C2 + ℘3C3 + ℘4C4+⋯: ð27Þ

Plugging Equations (26) and (27) in (25) and equating the
coefficient of the same powers of ℘, one can get the simpler
problems, given as:

Zero-order problem:

∂αU0 s, tð Þ
∂tα

= 0, U0 s, 0ð Þ = 1 − s2: ð28Þ

First-order problem:

∂αU1 s, t ; C1ð Þ
∂tα

= 1 + C1ð Þ ∂
αU0 s, tð Þ
∂tα

− C1P − C1
∂2U0 s, tð Þ

∂s2

−
C1
s
∂U0 s, tð Þ

∂s
, U1 s, 0ð Þ = 0:

ð29Þ

Respective solutions of Equations (28) and (29) after
apply fractional integral and initial condition are given:

U0 s, tð Þ = 1 − s2,

U1 s, t ; C1ð Þ = −
C1 P − 4ð Þtα
Γ 1 + αð Þ :

ð30Þ

One can get the following expression:

~U s, tð Þ =U0 s, tð Þ +U1 s, t ; C1ð Þ +U2 s, t ; C1, C2ð Þ+⋯
= 1 − s2 −

C1 P − 4ð Þtα
Γ 1 + αð Þ :

ð31Þ

We used the least square method after finding the resid-
ual and then got the auxiliary constant value for α = 1; we
have C1 = −1. Putting the value of C1 in Equation (31), we get

~U s, tð Þ = 1 − s2 + P − 4ð Þtα
Γ 1 + αð Þ : ð32Þ
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The result (32) is in complete agreement with [14, 25–31].
Figure 1 shows the evaluation results of the semianalytical
solution for Example 1 when P = 1 and show the dynamics
of the obtained solution by OHAM for various noninteger
order Brownian motions and for standard motions, i.e.,
for α = 1. It can be seen that the solution acquired via the

above-mentioned technique is decreasing very swiftly with
the increase in t in Example 1, which is illustrated in
Figure 1(b). Figure 1(a) shows the efficiency of the above-
mentioned method. Figures 1(e) and 1(f) show the solution
behavior for α = 0:2 and α = 0:5. Besides, we have obtained
the exact solution by OHAM.
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Figure 1: Exact solution and OHAM solution behavior of Example 1.
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Example 2. Suppose a time-fractional Navier-Stokes equation:

∂αU s, tð Þ
∂tα

= ∂2U s, tð Þ
∂s2

+ 1
s
∂U s, tð Þ

∂s
, ð33Þ

with the initial condition

U s, 0ð Þ = s, ð34Þ

where ∂α/∂tα is Caputo fractional derivative and 0 < α ≤ 1. We
consider the first four terms of the exact solution of (33) from
[14] is given by:

U s, tð Þ = s + t
s
+ t2

2s3 + 9t3
6s5 : ð35Þ

According to Section 3, we can set up the homotopy in the
following way:

1−℘ð Þ ∂
αω s, t;℘ð Þ
∂tα

=H ℘,Cp

� � ∂αω s, t;℘ð Þ
∂tα

−
∂2ω s, t;℘ð Þ

∂s2
−
1
s
∂ω s, t;℘ð Þ

∂s

" #
,

ð36Þ

where

ω s, t;℘ð Þ =U0 s, tð Þ + 〠
∞

q=1
Uq s, t ; Cp

� �
℘q, p = 1, 2,3⋯

ð37Þ

H ℘,Cp

� �
= ℘C1 + ℘2C2 + ℘3C3 + ℘4C4+⋯: ð38Þ

Plugging Equations (37) and (38) in (36) and equating the
coefficient of the same powers of ℘, one can get the simpler
problems, given as:

Zero-order problem:

∂αU0 s, tð Þ
∂tα

= 0, U0 s, 0ð Þ = s: ð39Þ

First-order problem:

∂αU1 s, t ; C1ð Þ
∂tα

= 1 + C1ð Þ ∂
αU0 s, tð Þ
∂tα

− C1
∂2U0 s, tð Þ

∂s2

−
C1
s
∂U0 s, tð Þ

∂s
,  U1 s, 0ð Þ = 0:

ð40Þ

Second-order problem:

∂αU2 s, t ; C1, C2ð Þ
∂tα

= 1 + C1ð Þ ∂
αU1 s, t ; C1ð Þ

∂tα
− C1

∂2U1 s, t ; C1ð Þ
∂s2

−
C1
s
∂U1 s, t ; C1ð Þ

∂s
+ C2

∂αU0 s, tð Þ
∂tα

− C2
∂2U0 s, tð Þ

∂s2
−
C2
s
∂U0 s, tð Þ

∂s
, U2 s, 0ð Þ = 0:

ð41Þ

Third-order problem:

∂αU3 s, t ; C1, C2, C3ð Þ
∂tα

= 1 + C1ð Þ ∂
αU2 s, t ; C1, C2ð Þ

∂tα
− C1

∂2U2 s, t ; C1, C2ð Þ
∂s2

−
C1
s
∂U2 s, t ; C1, C2ð Þ

∂s
+ C2

∂αU1 s, t ; C1ð Þ
∂tα

− C2
∂2U1 s, t ; C1ð Þ

∂s2
−
C2
s
∂U1 s, t ; C1ð Þ

∂s

+ C3
∂αU0 s, tð Þ

∂tα
− C3

∂2U0 s, tð Þ
∂s2

−
C3
s
∂U0 s, tð Þ

∂s
,U3 s, 0ð Þ = 0:

ð42Þ

Respective solutions of Equations (39)–(42) after apply
fractional integral and initial condition are given:

U0 s, tð Þ = s,

U1 s, t ; C1ð Þ = −
C1t

α

sΓ 1 + αð Þ ,

U2 s, t ; C1, C2ð Þ = −
C1 + C2

1 + C2
� �

tα

sΓ 1 + αð Þ + C2
1t

2α

s3Γ 1 + 2αð Þ ,

U3 s, t ; C1, C2, C3ð Þ = −
C1 + 2C2

1 + C3
1 + 2C1C2 + C2 + C3

� �
tð Þα

sΓ 1 + αð Þ

+ 2C1 C1 + C2
1 + C2

� �
t2α

s3Γ 1 + 2αð Þ −
9C3

1t
3α

s5Γ 1 + 3αð Þ :

⋮

ð43Þ

One can calculate the next order problem solutions by
above similar process. In the end, we can get the expression:

Table 2: Comparison of exact and OHAM solution.

s Exact OHAM Abs error

1.0 2.94735999 2.94736040 4:04145499 × 10−7

1.2 3.05262208 3.05262204 3:73698401 × 10−8

1.4 3.16486784 3.16486694 8:94947017 × 10−7

1.6 3.28483456 3.28483228 2:27227761 × 10−6

1.8 3.41325952 3.41325524 4:27305321 × 10−6

2.0 3.55088000 3.55087299 7:00096540 × 10−6

Table 1: C1, C2, C3 for various values of α.

α C1 C2 C3

0.7 -1.036692817879 -0.001240278601 −4:24687 × 10−5

0.8 -1.020447062606 -0.000376864638 −7:02931 × 10−6

0.9 -1.010550021386 -0.000101578844 −9:88500 × 10−7

0.10 -0.999953117565 -0.000040256679 3:30467 × 10−8
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~U s, tð Þ =U0 s, tð Þ +U1 s, t ; C1ð Þ +U2 s, t ; C1, C2ð Þ
+U3 s, t ; C1, C2, C3ð Þ+⋯

= s −
3C1 + 3C2

1 + C3
1 + 2C2 + 2C1C2 + C3

� �
tα

sΓ 1 + αð Þ

+ C1 3C1 + 2C2
1 + 2C2

� �
t2α

s3Γ 1 + 2αð Þ −
9C3

1t
3α

s5Γ 1 + 3αð Þ⋯:

ð44Þ

We used the least square method after finding the resid-
ual and then got the auxiliary constant value for α (see
Table 1). The absolute error of both solutions can be seen
in Table 2.

Putting the values of C1, C2, and C3 for α = 1 in Equation
(44), we get

~U s, tð Þ = s + tα

sΓ 1 + αð Þ + 1:00008t2α
s3Γ 1 + 2αð Þ + 8:99873t3α

s5Γ 1 + 3αð Þ : ð45Þ

Figure 2 shows the solution behavior of the time-fractional
order Navier-Stokes equation by OHAM. In Figure 2(a), the
solution curves are decreasing rapidly for higher fractional
orders until we get the standard motion of fluid for α = 1,
and Figure 2(b) shows the proposed method’s effectiveness
and reliability. Figures 2(e) and 2(f) show the OHAM solution
behavior for α = 0:2 and α = 0:5, respectively. The obtained
results reveal that the method mentioned above is an efficient
tool to study such types of fractional order fluid mechanics
problems, which can be seen in Table 2.

5. Conclusion

In this study, fractional-order OHAM is successfully
implemented to obtain the optimal solutions of time-
fractional Navier-Stokes equation. From the acquired results,
it can be seen that OHAM is an efficient and reliable semia-
nalytical technique to approximate the solution of different
fractional-order linear and nonlinear problems appearing in
engineering and science. The above-mentioned technique
provides a simple approach to control and adjust the conver-
gence of the series solution utilizing the constants Cp

’s which
are determined optimally. Two examples have been studied
to illustrate the efficiency and versatility of this approach.
The OHAM solution of the first example is the same as the
exact solution, and for the OHAM solution of the second
example, the obtained numerical approximation of the solu-
tion has a strong agreement with the exact solution. Besides,
when the order of approximation increases, the error accu-
racy of the numerical solution decreases and becomes closer
to the exact solutions. The proposed technique’s fast accuracy
and convergence are valid reasons for the researcher to use it
for various problems in science and technology. It has been
noted that the semianalytical solutions by extended formula-
tion are in remarkable agreement with the exact solutions.
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This research paper focuses on the application of the tanh function method to find the soliton solutions of the (2+1)-dimensional
nonlinear electrical transmission line model. Materials used to form a transmitting line are very important to transmit electric
charge. In this sense, we find some new voltage behaviors such as dark, trigonometric, and complex function solutions.
Choosing some suitable values of parameters, we present some various surfaces of results obtained in this paper. These results
play an important role in telecommunications lines used to stand for wave propagations.

1. Introduction

Nonlinear partial differential equations (NPDEs) are recently
used to investigate the meanings of physical problems such as
fluid dynamics, mathematics, physics and quantum field the-
ory, and nonlinear fiber optics. Systems of NPDEs are also
considered as a main tool to investigate in chemical and bio-
logical experiments. Some methods such as index the
extended tanh method [1, 2], the sine cosine method [3],
the inverse scattering transform method [4], finite difference
method [5], tanh and extended tanh methods [6–8], Jacobi
elliptic function expansion method [9], modified expansion
method [10], generalized tanh method [11, 12], sine-
Gordon expansion method [13], extended mean value theo-
rem [14], and interval-valued fuzzy topsis method [15] to
obtain various solutions of such NPDEs have been presented

in the literatures. Cordero et al. have observed the stability
analysis of the fourth-order iterative method in [16]. The (3
+1) Dimensional Boiti-Leon-Manna-Pempinelli equation
has been deeply studied in [17]. Using time scale calculus,
discrete normal vector field approximation has been pre-
sented in [18]. A Handy Technique has been handled in
[19]. Classical Boussinesq equations have been immensely
studied in [20]. Traveling wave solutions of nonlinear Klein
Gordon equation were observed in [21] and so on [15, 17,
18, 22–43].

The contents of this paper are as follows. Section 2 pre-
sents the general properties of the tanh function method
(TFM) [44]. This TFM has been proposed as a strong and
creditable method for finding the solutions of the nonlinear
models. Section 3 introduces some new complex dark, trigo-
nometric, and hyperbolic soliton solutions to the nonlinear
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electrical transmission line. To express physical properties in
terms of mathematical dynamics, such as wave propagation
of electrical transmission lines, has been presented by equa-
tion defined as [9]

vtt − α v2
� �

tt
+ β v3
� �

tt
−w2

0δ
2
1vxx −w2

0
δ41
12

vxxxx − ω2
0δ

2
2vyy − ω2

0
δ22
12

vyyyy = 0,

ð1Þ

where v = vðx, y, tÞ is used to explain the tightness
throughout the electrical line and x and y are interpreted like
the promulgation distance. t is the period, and α and β are
constants with nonzero. δ1 is the space between two proxi-
mate sections in during longitudinally flank, while δ2 is the
space between two proximate sections in the transversal flank
[9]. With the help of some computational programs, we are
able to plot in terms of 2D, 3D, and contour surfaces of the
results theoretically found. Finally, the main conclusions
are given in the last section of the paper.

2. The Tanh Function Method

In this part of the paper, we present the general properties of
the tanh function method in a detailed manner [45–48].

P u, ux, uy , ut , uxx, uuxyt ,⋯
� �

= 0, ð2Þ

where P is a polynomial in the dependent variable u. Consid-
ering the traveling wave transformation as u = uðx, y, tÞ =U
ðξÞ, ξ = kðx + y − ctÞ, we obtain the following nonlinear ordi-
nary differential equation

N U ,U2,U ′,U ′′,U ′′′,⋯
� �

= 0, ð3Þ

with N is a polynomial of U =UðξÞ. Now, finding the travel-
ing wave solutions to Eq. (2) is equivalent to obtain the solu-
tion to reduced ordinary differential Eq. (3), and it can be
introduced a new independent variable defined as

Y ξð Þ = Tanh ξð Þ: ð4Þ

We can find the following for some derivations as

d
dξ

:ð Þ = 1 − Y2� � d
dY

:ð Þ,

d2

dξ2
:ð Þ = 1 − Y2� �

−2Y
d
dY

:ð Þ + 1 − Y2� � d2

dY2 :ð Þ
" #

,

d3

dξ3
:ð Þ =⋯,

⋮:

ð5Þ

As the last step, we present the tanh series as being

U ξð Þ = S Yð Þ = 〠
m

i=0
aiY

i, ð6Þ

where m is a positive integers. The values of m, generally,
with the help of the balance principle can be determined.

3. Mathematical Analysis

In this part of the paper, we find some new complex dark,
trigonometric, and hyperbolic function solutions of Eq. (1)
by using TFM. First of all, we consider the traveling wave
transformation defined as

v =V ξð Þ, ξ = k x + y − ctð Þ, ð7Þ

where k, c are nonzero constants or complex-valued param-
eters. When considering Eq. (7) into Eq. (1), we find

c2Vξξ − αc2 V2� �
ξξ
+ βc2 V3� �

ξξ
−w2

0δ
2
1Vξξ

− k2w2
0
δ41
12

Vξξξξ − ω2
0δ

2
2Vξξ − k2ω2

0
δ22
12

Vξξξξ = 0:
ð8Þ

Integrating Eq. (8) twice with regard to ξ, setting the con-
stants of integrations to zero yields

12 c2 −w2
0δ

2
1 − ω2

0δ
2
2

� �
V + 12βc2V3 − 12αc2V2 − k2 w2

0δ
4
1 + ω2

0δ
4
2

� �
V ′′ = 0:

ð9Þ

According to the general properties of TFM, it can be
considered as

V = S = 〠
M

m=0
amY

m, ð10Þ

Substituting Eqs. (5), (10) into Eq. (9) gives

12 c2 −w2
0δ

2
1 − ω2

0δ
2
2

� �
S + 12βc2S3 − 12αc2S2

�

− k2 w2
0δ

4
1 + ω2

0δ
4
2

� �
1 − Y2� �

−2Y
dS
dY

+ 1 − Y2� � d2S
dY

 !
� = 0:

ð11Þ

Using the balance rule, M can be found as

M = 1, ð12Þ

which result in

S = a0 + a1Y : ð13Þ

Substituting Eq. (13) into Eq. (11) by getting necessary
derivations presents

12 c2 −w2
0δ

2
1 − ω2

0δ
2
2

� �
a0 + a1Yð Þ + 12βc2 a0 + a1Yð Þ3�

− 12αc2 a0 + a1Yð Þ2 − k2 w2
0δ

4
1 + ω2

0δ
4
2

� �
1 − Y2� �

−2a1Yð Þ� = 0:

ð14Þ

After some calculations, it can be obtained as follows:
Y0: 12ðc2a0 −w2

0δ
2
1a0 − ω2

0δ
2
2a0Þ + 12βc2a30 − 12αc2a20 = 0,
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Y1: 12ðc2a1 −w2
0δ

2
1a1 − ω2

0δ
2
2a1Þ + 36βc2a20a1 − 24αc2a0a1

+ 2k2ω2
0δ

4
2a1 + 2k2w2

0δ
4
1a1 = 0,

Y2: 36βc2a0a21 − 12c2αa21 = 0,
Y3: 12βc2a31 − 2k2ω2

0δ
4
2a1 − 2k2w2

0δ
4
1a1 = 0.

Solving this system yields the following cases:

Case 1. When

a0 =
α

3β
; a1 =

α

3β
; k =

i
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ δ41w2

0 − δ42ω
2
0

� �q ; c

=
3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p ,

ð15Þ

we get the following complex trigonometric function solu-
tion

v1 x, y, tð Þ = α

3β
+

iα
3β

tan

�
i
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
x + y − 3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p	 

t

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ w2

0δ
4
1 + δ42ω

2
0

� �q
2
664

3
775,

ð16Þ

in which α, β, δ1, δ2, and ω0 are constant and nonzero.
Choosing suitable values of coefficients in Eq. (16), we can
observe some (Figures 1 and 2).

Case 2. Choosing as

a0 =
α

3β
; a1 =

α

3β
; c =

3ikδ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β δ21 − δ22
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2 2α2 − 9βð Þδ21

q ,w0

=
iδ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2δ22 2α2 − 9βð Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2δ21 + k2 2α2 − 9βð Þδ41

q ,

ð17Þ

we get another new complex dark function solution

v2 x, y, tð Þ = α

3β
+

α

3β
tanh kx + ky −

3ik2δ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β δ21 − δ22
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2 2α2 − 9βð Þδ21

q t

2
64

3
75,

ð18Þ

with strain conditions are 2α2 − 9β > 0, βðδ21 − δ22Þ > 0, and
also α, β, k, δ1, ω0, δ2 are real constants and nonzero or
complex-valued parameters. Considering some values of
parameters under the strain conditions, different wave pat-
terns can be observed from (Figures 3 and 4) for Eq. (18).

Case 3. Selecting

a0 =
α

3β
; a1 =

α

3β
; c =

−3ikδ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β δ21 − δ22
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2 2α2 − 9βð Þδ21

q ,w0

=
−iδ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2δ22 2α2 − 9βð Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2δ21 + k2 2α2 − 9βð Þδ41

q ,

ð19Þ
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Figure 1: 2D and 3D surfaces of imaginary part of Eq. (16).
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we get conjugate new complex dark function solution as

v3 x, y, tð Þ = α

3β
+

α

3β
tanh kx + ky +

3ik2δ2ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β δ21 − δ22
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 + k2 2α2 − 9βð Þδ21

q t

2
64

3
75,

ð20Þ

with strain conditions are 2α2 − 9β > 0, βðδ21 − δ22Þ > 0, and
also α, β, k, δ1, ω0, δ2 are real constants and nonzero or
complex-valued parameters. 3D, 2D, and contour surfaces
of Eq. (20) can be also seen (Figures 5–7) with the strain
conditions.

Case 4. Choosing as

a0 = a1 =
3k2 w2

0δ
4
1 + δ42ω

2
0

� �
2α w2

0δ
2
1 3 + k2δ21
� �

+ δ22 3 + k2δ22
� �� � , c

=
−1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0δ
2
1 3 + k2δ21
� �

+ δ22ω
2
0 3 + k2δ22
� �q

,

β =
2α2

9k2 w2
0δ

4
1 + δ42ω

2
0

� � w2
0δ

2
1 3 + k2δ21
� �

+ δ22ω
2
0 3 + k2δ22
� �� �

,

ð21Þ
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produces the following dark soliton solution

v4 x, y, tð Þ = 3k2 w2
0δ

4
1 + δ42ω

2
0

� �
2α w2

0δ
2
1 3 + k2δ21
� �

+ δ22 3 + k2δ22
� �� �

� 1 + tan h kx + ky + kffiffiffi
3

p ϖt
� �	 
 ð22Þ

in which ϖ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0δ
2
1ð3 + k2δ21Þ + δ22ω

2
0ð3 + k2δ22Þ

q
and strain

conditions are α, k, δ1, ω0, δ2 are real constants and nonzero.
3D, 2D, and contour surfaces of Eq. (22) can be also observed
(Figures 8 and 9).

Case 5. Taking as

a0 =
α

3β
, a1 =

α

3β
, k =

−i
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ δ41w2

0 + δ42ω
2
0

� �q , c

=
−3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p ,

ð23Þ

produces another complex dark traveling wave solution to
the governing model

v5 x, y, tð Þ = α

3β
−

iα
3β

tan

�
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
x + y + 3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p	 

t

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ w2

0δ
4
1 + δ42ω

2
0

� �q
2
664

3
775,

ð24Þ

with strain conditions β > 0, 2α2 > 9β and α, β, ω0, δ1, δ2
are real constants and nonzero. 3D, 2D, and contour surfaces
of Eq. (24) can be also observed in (Figures 10–12).

Case 6. Once we select other coefficients given as

a0 =
α

3β
, a1 =

α

3β
, k =

−i
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ δ41w2

0 + δ42ω
2
0

� �q , c

=
3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p ,

ð25Þ
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results in another complex dark traveling wave solution to
the Eq. (1)

v6 x, y, tð Þ = α

3β
−

iα
3β

tan

�
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 w2

0δ
2
1 + δ22ω

2
0

� �q
x + y − 3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β w2

0δ
2
1 + δ22ω

2
0

� �q
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9β

p	 

t

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 − 9βð Þ w2

0δ
4
1 + δ42ω

2
0

� �q
2
664

3
775,

ð26Þ

with strain conditions β > 0, 2α2 > 9β and α, β, ω0, δ1, δ2 are
real constants and nonzero. Various surfaces of Eq. (26) with
the considering suitable values of parameters can be also pre-
sented as (Figures 13–15).

4. Conclusions

In this manuscript, TFM being one of the powerful tech-
niques has been successfully used to Eq. (1). Many new trig-
onometric, complex, and hyperbolic function solutions have
been extracted, afterwards. The conditions which guarantee
the existence of the valid solutions to this model are also
given in a detailed manner. Considering the strain conditions
of coefficients of results, various simulations have been also
plotted by using some computational programs. These solu-
tions are of various physical properties of the electrical trans-
mission line. For example, the tanh function arises in
gravitational potential as a dark structure [49]. Hence, it is
estimated that the solution of v4 is of such physical property.
From (Figures 1–15), it can be also seen that the results sim-
ulate estimated wave behaviors. TFM used in this paper can
be considered to solve other nonlinear problems arising in
the theory of solitons and other areas of nonlinear science
[50–56].
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Nowadays, data are generated in the world with high speed; therefore, recognizing features and dimensions reduction of data
without losing useful information is of high importance. There are many ways to dimension reduction, including principal
component analysis (PCA) method, which is by identifying effective dimensions in an acceptable level, reducing dimension of
data. In the usual method of principal component analysis, data are usually normal, or we normalize data; then, the principal
component analysis method is used. Many studies have been done on the principal component analysis method as a step of data
preparation. In this paper, we propose a method that improves the principal component analysis method and makes data
analysis easier and more efficient. Also, we first identify the relationships between the data by fitting the multivariate copula
function to data and simulate new data using the estimated parameters; then, we reduce the dimensions of new data by
principal component analysis method; the aim is to improve the performance of the principal component analysis method to
find effective dimensions.

1. Introduction

In many real-world programs, reduction of high-volume
data is of high importance and necessity as a prestage of data
processing. For example, in data mining programs, dimen-
sionality reduction is considered one of the most important
stages to remove data redundancy, to increase precision of
measurement, and to improve decision making process.
Analyzing high-volume data is intrinsically difficult via
high-volume computations for many learning algorithms
as well as data processing. In dimensionality reduction
methods, extraction of data features is highly important. A
highly used method to reduce dimension reduction of data
in data mining and in the data preparing phase is the princi-
pal component analysis method. The PCA method can be
used if the original variables are correlated, homogeneous,

if each component is guaranteed to be independent and if
the dataset is normally distributed [1, 2]. The critical issues
for the majority of dimensionality reduction studies are
how to provide a convenient way to generate correlated mul-
tivariate random variables without imposing constrain to
specific types of marginal distributions. An appropriate
approach to this problem is to use Copula’s theory [3, 4].
In this paper, we first use the copula function to study the
correlation and relationships between data to determine
and eliminate irrelevant properties and simulate new data
using the estimated parameter; then, by using the PCA
method, we reduce the dimensions of data [4–6].

1.1. Principal Component Analysis (PCA). Principal compo-
nent analysis method has been first developed by Karl
Pearson in 1901. The analysis includes analyzing special

Hindawi
Advances in Mathematical Physics
Volume 2021, Article ID 9967368, 8 pages
https://doi.org/10.1155/2021/9967368

https://orcid.org/0000-0003-1793-5665
https://orcid.org/0000-0002-2633-3300
https://orcid.org/0000-0002-9058-2491
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9967368


values of the covariance matrix. Analyzing principal com-
ponents upon mathematics definition is an orthogonal
transformation taking data to a new system of coordinates
so that the largest data variance would be placed on the
first coordinate axis; the second largest variance would
be placed on the second coordinate axis and etc. Principal
component analysis is aimed at transferring dataset X with
m dimensions to data Y with l dimensions. Therefore, it is
assumed that matrix X is formed of vectors X1, X2,⋯, Xn
each of which placed in m column in matrix X. So, the
data matrix would be in form of m × n. Principal compo-
nents are just related to covariance matrix Σ (correlation
matrix p) of random variables X1, X2,⋯, Xn [7].

1.2. Calculating Empirical Mean and Covariance Matrix and
Data Normalization. To calculate covariance matrix, data
have to be normalized first. To do so, the primarily vector
of empirical mean would be calculated as follows:

Um =
1
n
〠
n

i=1
X m,i½ �: ð1Þ

Clearly, the empirical mean would be applied on matrix
lines.

Then, the distance matrix to mean would be obtained as
follows:

B = X − uh, ð2Þ

where h is a vector with size of 1 × n and value equal to 1 in
each of the entries.

Covariance matrix Σ with m ×m dimensions would be
obtained as follows:

〠 = E B ⊗ B½ � = E B ⋅ B∗½ � = 1
n
B ⋅ B∗, ð3Þ

where E is arithmetic mean,⨂ is an external coefficient, and
B∗ is the matrix B conjugate transpose.

Consider X ′ = ½X1, X2,⋯, Xn� random vector and assume
that this random vector has matrix covariance Σ with spe-
cial values λ1 ≥ λ2 ≥⋯ ≥ λn ≥ 0. Consider following linear
compositions:

Y1 = l1′X = l11X1 + l21X2+⋯+ln1Xn,

Y2 = l2′X = l12X1 + l22X2+⋯+ln2Xn,

⋮

Yn = ln′X = l1nX1 + l2nX2+⋯+lnnXn:

8>>>>><
>>>>>:

ð4Þ

Using relationship (4), we have

var Yið Þ = li′〠li,  cov Yi, Ykð Þ = li′〠lk, i, k = 1, 2,⋯, n:
ð5Þ

Its principal components are Y1, Y2,⋯, Yn unrelated
linear compositions; variances of which in relationship

(5) would be large to the extent possible. The first principal
component of a linear composition has maximum variance.
Clearly, var ðY1Þ = l1′Σl1 can be maximized through multiply-
ing each l1 by a constant. That is, the first principal component
of linear composition is l1′X which maximizes var ðY1Þ with
consideration of l1′l1′ = 1. The second principal component of
linear composition is l2′X which maximizes var ðY2Þ with con-
sideration of l2′ l2 = 1 and cov ðl1′X, l2′XÞ = 0, continuously to
the nth principal component.

According to relationship (5), we have

〠
n

i=1
var Xið Þ = σ11 + σ22+⋯+σnn = λ1 + λ2+⋯+λn = 〠

n

i=1
var Yið Þ,

ð6Þ

and ratio of total variance toKth component ðk = 1, 2,⋯, nÞ is

Total share of population variance related to principalK th component
� �

=
λk

λ1 + λ2+⋯+λn
:

ð7Þ

If for large n, the highest maximum variance of total pop-
ulation (80 or 90%) could be attributed to the first several
components; these components can be replaced by n primary
variables, losing not much information [2, 8–10].

2. Copula Function

In general, the copula function is the link function of multi-
variate distributions and their marginal distributions. The
copula function is a multivariate distribution, marginal dis-
tribution which follows uniform distribution of [0,1] interval
[11–13].

2.1. Characteristics of Copula Function.Assume the following
characteristics for C : I2 ⟶ I:

(1) For every u, v ∈ ½0, 1�, we will have

C u, 0ð Þ = C 0, vð Þ = 0, C u, 1ð Þ = u, C 1, vð Þ = v ð8Þ

(2) For every 0 ≤ v1 < v2 ≤ 1, 0 ≤ u1 < u2 ≤ 1, we will have

C U2, v2ð Þ + C U1, v1ð Þ − C U1, v2ð Þ − C U2, v1ð Þ ≥ 0
ð9Þ

Such function like C implied in the two above conditions
is called the copula function [14].

2.2. Sklar’s Theorem. It is indicated by Sklar’s theorem that if
joint distribution function like H would be available with
marginal distributions F and G, then, there would be copula
function C available. That is, for every Xi, Xj ∈ℝ, we have

H Xi, Xj

� �
= C F Xið Þ,G Xj

� �� �
, ð10Þ
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and if F and G would be continuous, then, copula function C
would be unique. Otherwise, C would be defined as unique
on RangðFÞ × RangðGÞ.

The most important application of the copula func-
tion is formulation of a proper method to produce distri-
bution of random related multivariate variables and to
provide a solution for the problem of density estimation
transformation [15].

For reversible transformation of n continuous random
variables X1, X2,⋯, Xn based on their distribution function
to n independent variables with uniform distribution U1 =
F1ðX1Þ, U2 = F2ðX2Þ,⋯,Un = FnðXnÞ, the probability den-
sity function X1, X2,⋯, Xn would be equal to f ðX1,⋯, XnÞ
and joint probability density function U1, U2,⋯,Un would
be equal to CðU1,⋯,UnÞ. Therefore, probability density
function f ðX1,⋯, XnÞ can provide a nonparametric form
(unknown distribution). Here, probability density function
CðU1,⋯,UnÞ for U1,U2,⋯,Un would be estimated instead
of X1, X2,⋯, Xn, so that problem of density estimation
becomes simpler. Then, it would be simulated so that ran-
dom samples X1, X2,⋯, Xn would be obtained through
reverse transformation Xi = F−1ðUiÞ.

According to Sklar’s theorem, one copula function with n
unique dimensions C is available in ½0, 1�n with uniformmar-
ginal distribution U1,U2,⋯,Un. That is, every function F
with margins F1, F2,⋯, Fn can be written as follows:

∀ X1,⋯, Xnð Þ ∈ℝn, F X1,⋯, Xnð Þ = C F1 X1ð Þ,⋯, Fn Xnð Þð Þ:
ð11Þ

To evaluate a copula function selected via an estimated
parameter and to avoid defining any hypothesis on distribu-
tions, empirical distribution function can be used. An empir-
ical copula function is useful to study the dependence
structure of multivariate random vectors. In general, empiri-
cal copula function is as follows:

Cij =
1
n
〠
n

k=1
I Ukj≤Uijð Þ, ð12Þ

where Ið∙Þ would be an indicator function [16].

2.3. Gaussian Copula Function. Difference between Gaussian
copula function and normal joint distribution function is
that the first one authorizes various distribution functions
to be used for joint distribution [14]. However, in proba-
bility theory and statistics, normal multivariate distribution
is considered the generalization of one-dimensional nor-
mal distribution [17].

Gaussian copula function is defined as

C Φ X1ð Þ,⋯,Φ Xnð Þð Þ = 1
∑j j1/2

exp
−1
2
Xt 〠

−1
− I

 !
X

( )
,

ð13Þ

whereΦðXiÞ is a standard Gaussian function and Xi has stan-
dard normal distribution and Σ is a correlation matrix. As a
result, CðU1,⋯UnÞ copula function would be called a Gauss-
ian copula function.

3. Methodology

In the research, a two-stage method would be used for
dimensionality reduction. That is, primarily empirical cop-
ula function and fit of Gaussian copula function to data
would be used to estimate parameter p for variables X1,
X2,⋯, Xn. Important advantages of using the copula func-
tion in multivariate distributions is that correlation
between variables would be considered by these functions,
and in fact, there would be no need for independence of
variables; instead, the correlation structure between vari-
ables would be even considered by these functions [18].
For estimation purposes, generating function is available
with dependence unscaled value available in it. The corre-
lation coefficient value has to be specified. To do so, the
Pearson correlation coefficient will be used and defined
as follows for two Xi and Xj variables:

ρ =
cov Xi, Xj

� �
σXi

σXj

, ð14Þ

where σXi
and σXj

are standard deviations of Xi and Xj,

respectively.
Then, those data with lower correlation compared to

others would be eliminated and using estimated function
and Gaussian copula function for X1, X2,⋯, Xm, where
m uniform variables U1 = F1ðX1Þ, U2 = F2ðX2Þ,⋯,Un =
FmðXmÞ would be generated ðm ≤ nÞ and placed instead
of X1, X2,⋯, Xm in the principal component analysis
method. After dimensionality reduction, the results would
be compared through applying the method on raw data
[16, 19].

4. Numerical Results

During past 30 years, increasing prevalence of urinary stone
disease has been observed. About 80% of kidney stones are
from calcium oxalate type. Here, 79 urine samples would be
analyzed to see if some of physical features of urine are
related to formation of calcium oxalate or not. These data
include following columns (variables), which is available at
https://cran.r-project.org/web/packages/cond.

Using Gaussian copula function, correlation values of
variables would be obtained as follows:

Considering Table 1, it is observed that correlation of var-
iable X2 is lower than other variables; so, it would be elimi-
nated at the first stage. After estimation of parameters, new
data would be generated. Figure 1 shows the copula function
for main data and data generated by this method.

Now, data would be generated based on estimated
parameters. To specify whether data are generated correctly
or not, diagram QQPlot would be drawn.
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Correct data generation is shown by Figure 2. In the sec-
ond stage, after elimination of the X2 variable on data gener-
ated, principal component analysis would be done. In
Figure 2, principal components for primary data and those
generated by copula function are shown after reduction of

the X2 variable. Figure 3 shows principal components for
main data and the data generated.

Ratios of population variance related to principal compo-
nents are provided in following table. Its screen plot is as
follows.
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Figure 1: Diagram of copula function for generated data based on main and reduced data.
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Figure 2: QQ Plot diagram of real and generated data for data of example 1.

Table 1: Estimation of parameter ρ for variables of urine.

X1 X2 X3 X4 X5 X6

X1 1 -0.30856 0.83231 0.57256 0.81165 0.54872

X2 1 -0.25167 -0.09762 -0.27985 -0.12147

X3 1 0.77226 0.81012 0.58452

X4 1 0.45542 0.43444

X5 1 0.58813

X6 1

X1is urine gravity, X2 is urine pH, X3 is urine osmolarity (it is corresponding to unit of solute concentration), X4 is urine conductivity (it is corresponding to
concentration of charged ions in solution), X5 is urea concentration (mM/liter), and X6 is calcium concentration (mM/liter).
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Considering Tables 2 and 3 as well as Figure 4, it is
observed that in dimensionality reduction method presented
in the research, two first components include more than 80%
of population variances and first component includes more
than 70% of population.

Example 1. To recognize image resolution in a rectangular
monitor, its display would be divided into different boxes
and numbers of black and white dots in these boxes would

be measured. Images of these characters have been made
based on 20 different images, and each box from within
these 20 boxes has been randomly selected. A file includ-
ing 20000 unique simulators have been produced. Each
stimulator has been transformed and scaled to 7 following
numerical variables so that they would be placed within 0-
15 range, (which is available at https://cran.r-project.org/
web/packages/mlbench/index.html).

There are 2000 observations available from these variables.
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Figure 4: Diagram of population variance ration related to principal components for main data and generated data through recommended
method.

Table 2: Ratios of population variance related to principal components for main data.

PC1 PC2 PC3 PC4 PC5 PC6

0.61817360 0.15701415 0.11567297 0.07879801 0.02912841 0.00121285

Table 3: Ratios of population variance related to principal components for data generated through the recommended method.

PC1 PC2 PC3 PC4 PC5

0.73414280 0.07840848 0.07583399 0.06866719 0.04294755
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Figure 3: Diagram of principal components for raw and generated data through recommended method.
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Using Gaussian copula function, correlation values of
variables would be obtained as follows:

X is the box. X1 is the horizontal location of box, X2 is the
vertical location of box (y.box), X3is width of box (width), X4
is the height of box (height), X5 is the total numbers of dots in
the box (onpix), X6 is the mean value of x in dots of the box (x
.bar), and X7 is the mean value of y in dots of box (y.bar).

Considering Table 4, it is observed that correlation
between variables X6 and X7 is less compared to other vari-

ables. So, these two would be eliminated at first stage and
then Gaussian copula function would be fitted to reduced
data and new data would be generated through estimated
parameter, which is shown in Figure 5.

Now, data would be generated. QQPlot would be as
follows.

Now, principal component analysis would be done on
generated data. Diagrams of principal components are as fol-
lows (Figure 6).
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Figure 6: QQ Plot diagram of real and generated data for data of example 2.

Table 4: Estimation of parameter ρ for variables of resolution in a rectangular monitor.

X1 X2 X3 X4 X5 X6 X7

X1 1 0,7960 0,8788 0,7439 0,7282 -0,0263 0,0296

X2 1 0,7044 0,8203 0,6148 0,0784 -0,0754

X3 1 0,7089 0,8156 0,0648 0.0119

X4 1 0.0119 0,0618 -0,0190

X5 1 0,1196 -0,0278

X6 1 -0,4227

X7 1
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Screen plot of population variance ratio related to princi-
pal components for both methods are as follows.

According to Tables 5 and 6 as well as Figure 7, it is
observed that ratio of population variance for the first two
components in the recommended method includes almost
85% of population and the first component includes almost
80% of population, whereas, for main data, ratio of popula-
tion variance for the three first components includes almost
85% of population.

5. Conclusion

Considering the two aforementioned examples, it has been
observed that data generated according to the estimated
parameters of the Gaussian copula distribution are consistent
with the original data (see Figures 2 and 8) by using the rec-
ommended method in the research and copula function to
recognize dependencies and structural dependence between
variables in addition to elimination of redundant data will
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Figure 7: Diagrams of population variance ratios related to principal components for main data and recommended method.
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Figure 8: QQPlot diagram of real and generated data.

Table 5: Ratio of population variance related to principal components for main data.

PC1 PC2 PC3 PC4 PC5 PC6

0.55123270 0.20018487 0.09008126 0.07169468 0.05074973 0.02071375

Table 6: Ratio of population variance related to principal components for data reduced through recommended method.

PC1 PC2 PC3 PC4 PC5

0.79028555 0.05470965 0.05363693 0.05154868 0.0498199
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increase efficiency of principal component analysis method
as well as speed of obtaining analysis results (see Figures 4
and 7, Tables 2, 3, 5, and 6). Considering the point that now-
adays data are generated with high-speed, appropriate, and
efficient methods for dimensionality reduction without los-
ing information are of high importance and necessity, and
recommended method in the research is a useful one to do
so. The recommended method in the research can be also
used for other dimensionality reduction techniques so that
data would be prepared for more analysis, for example in
data mining.
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In this work, we study a plate equation with time delay in the velocity, frictional damping, and logarithmic source term. Firstly, we
obtain the local and global existence of solutions by the logarithmic Sobolev inequality and the Faedo-Galerkin method. Moreover,
we prove the stability and nonexistence results by the perturbed energy and potential well methods.

1. Introduction

In this article, we consider a plate equation with frictional
damping, delay, and logarithmic terms as follows:

utt + Δ2u + αut tð Þ + βut x, t − τð Þ = u ln uj jγ for x, tð Þ ∈Ω × 0,∞ð Þ,

u x, tð Þ = ∂u x, tð Þ
∂υ

= 0 for x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ for x ∈Ω,
ut x, tð Þ = j0 x, tð Þ for x, tð Þ ∈Ω × −τ, 0ð Þ,

8>>>>>><
>>>>>>:

ð1Þ

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth
boundary ∂Ω. τ > 0 denotes time delay, and α, β, and γ are
real numbers that will be specified later. Generally, logarith-
mic nonlinearity seems to be in supersymmetric field theories
and in cosmological inflation. From quantum field theory,
that kind of (ujujp−2 ln jujk) logarithmic source term seems
to be in nuclear physics, inflation cosmology, geophysics,
and optics (see [1, 2]). Time delays often appear in various
problems, such as thermal, economic, biological, chemical,

and physical phenomena. Recently, partial differential
equations have become an active area with time delay (see
[3, 4]). In 1986, Datko et al. [5] indicated that, in boundary
control, a small delay effect is a source of instability. Gener-
ally, a small delay can destabilize a system which is uniformly
stable [6]. To stabilize hyperbolic systems with time delay,
some control terms will be needed (see [7–9] and references
therein).

For the literature review, firstly, we begin with the studies
of Bialynicki-Birula and Mycielski [10, 11]. The authors
investigated the equation with the logarithmic term as
follows:

utt − uxx + u − εu ln uj j2 = 0, ð2Þ

where the authors proved that, in any number of dimensions,
wave equations including the logarithmic term have local-
ized, stable, soliton-like solutions.

In 1980, Cazenave and Haraux [12] studied the equation
as follows:

utt − Δu = u ln uj jk, ð3Þ
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where the authors in [12] proved the existence and unique-
ness of the solutions for equation (3). Gorka [2] obtained
the global existence results of solutions for one-dimensional
equation (3). Bartkowski and Gŏrka [1] considered the weak
solutions and obtained the existence results.

In [13], Hiramatsu et al. studied the equation as follows:

utt − Δu + u + ut + u2
�� ��u = u ln u: ð4Þ

In [14], Han established the global existence of solutions
for equation (4).

In [15], Al-Gharabli and Messaoudi were concerned with
the plate equation with the logarithmic term as follows:

utt + Δ2u + u + h utð Þ = ku ln uj j: ð5Þ

They established the existence results by the Galerkin
method and obtained the explicit and decay of solutions uti-
lizing the multiplier method for equation (5).

In [16], Liu introduced the plate equation with the loga-
rithmic term as follows:

utt + Δ2u + utj jm−2ut = uj jp−2u log uj jk: ð6Þ

The author proved the local existence by the contraction
mapping principle. Also, he studied the global existence and
decay results. Moreover, under suitable conditions, the
author proved the blow-up results with Eð0Þ < 0.

In [17], Messaoudi studied the equation as follows:

utt + Δ2u + utj jm−2ut = uj jp−2u, ð7Þ

and obtained the existence results and obtained that, ifm ≥ p,
the solution is global and blows up in finite time if m < p.
Later, Chen and Zhou [18] extended this result. In the pres-
ence of the strong damping term (−Δut), Pișkin and Polat
[19] proved the global existence and decay of solutions for
equation (7). For more results about plate problems, see
[20–22].

In [7], Nicaise and Pignotti studied the equation as
follows:

utt − Δu + a0ut x, tð Þ + aut x, t − τð Þ = 0, ð8Þ

where a0, a > 0. They proved that, under the condition 0 ≤ a
≤ a0, the system is exponentially stable. The authors
obtained a sequence of delays that shows the solution is
unstable in the case a ≥ a0. In the absence of delay, some
other authors [23, 24] looked into exponential stability for
equation (8). In [9], Xu et al., by using the spectral analysis
approach, established the same result similar to [7] for the
one space dimension.

In [25], Nicaise et al. studied the wave equation in one
space dimension in the presence of time-varying delay. In
this article, the authors showed the exponential stability
results with the condition

a ≤
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
a0, ð9Þ

where d is a constant and

τ′ tð Þ ≤ d < 1, ∀t > 0: ð10Þ

In [26], Kafini and Messaoudi studied wave equations
with delay and logarithmic terms as follows:

utt − Δu + μ1ut x, tð Þ + μ2ut x, t − τð Þ = uj jp−2u log uj jk:
ð11Þ

The authors proved the local existence and blow-up
results for equation (11).

In [27], Park considered the equation with delay and
logarithmic terms as follows:

utt − Δu + αut tð Þ + βut x, t − τð Þ = u ln uj jγ: ð12Þ

The author showed the local and global existence results
for equation (12). Also, the author investigated the decay
and nonexistence results for equation (12). In recent years,
some other authors investigate hyperbolic-type equations
with delay terms (see [28–33]).

In this work, we studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay ðβutðx, t − τÞÞ term and
logarithmic (u ln jujγ) source term; hence, our work is the
generalization of the above studies.

This work consists of five sections in addition to the
introduction. Firstly, in Section 2, we recall some assump-
tions and lemmas. Then, in Section 3, we obtain the local
and global existence of solutions. Moreover, in Section 4,
we establish the nonexistence results. Finally, in Section 5,
we get the stability of solutions.

2. Preliminaries

In this part, we show the norm of X by k·kX for a Banach
space X. We give the scalar product in L2ðΩÞ by ð·, · Þ. We
show k·k2 by k·k, for brevity. Let B1 be the constant of the
embedding inequality

uk k2 ≤ B1 Δuk k2 for u ∈H2
0 Ωð Þ: ð13Þ

Wehave the following assumptions related to problem (1):

(H1). The weights of delay and dissipation satisfy

0 < βj j < α: ð14Þ

(H2). The constant γ in (1) satisfies

0 < γ < πe 2 N+1ð Þð Þ/N : ð15Þ

To get the main result, we have the lemmas as follows.
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Lemma 1 (see [34, 35]) (Logarithmic Sobolev inequality). For
any u ∈H1

0ðΩÞ,
ð
Ω

u2 ln uj jdx ≤ 1
2

uk k2 ln uk k2 + k2

2π
∇uk k2 − N

2
1 + ln kð Þ uk k2,

ð16Þ

where k is a positive real number.

Corollary 2. For any u ∈H2
0ðΩÞ,

ð
Ω

u2 ln uj jdx ≤ 1
2

uk k2 ln uk k2 + k2

2π
Δuk k22 −

N
2

1 + ln kð Þ uk k2,

ð17Þ

where k is a positive real number.

Remark 3.Assume that inequality (17) holds for all k > 0, and
we choose the constant k that satisfies

ρ =max e− N+1ð Þ/N , μ1/N
ffiffiffi
π

γ

r� �
< k <

ffiffiffi
π

γ

r
, ð18Þ

where μ is any real number with

0 < μ < 1: ð19Þ

Lemma 4 (see [12]) (Logarithmic Gronwall inequality). Sup-
pose that c > 0 and l ∈ L1ð0, T ; R+Þ. If a function f : ½0, T�
⟶ ½1,∞Þ satisfies

f tð Þ ≤ c 1 +
ðt
0
l sð Þf sð Þ ln f sð Þds

� �
, 0 ≤ t ≤ T , ð20Þ

then

f tð Þ ≤ cec
Ð t

0
l sð Þds, 0 ≤ t ≤ T: ð21Þ

We define

J vð Þ = 1
2

Δvk k2 − 1
2

ð
Ω

v2 ln vj jγdx + γ

4
vk k2, ð22Þ

I vð Þ = Δvk k2 −
ð
Ω

v2 ln vj jγdx, ð23Þ

for v ∈H2
0ðΩÞ; then,

J vð Þ = 1
2
I vð Þ + γ

4
vk k2: ð24Þ

Suppose that

d = inf
v∈H2

0 Ωð Þ\ 0f g
sup
λ≥0

J λvð Þ: ð25Þ

Then, it satisfies (see, e.g., [36–38])

0 < d = inf
v∈N

J vð Þ, ð26Þ

where N is the well-known Nehari manifold, denoted by

N = v ∈H2
0 Ωð Þ \ 0f g ∣ I vð Þ = 0

� 	
: ð27Þ

Lemma 5. I and J are the functions that satisfy

I λvð Þ = λ
∂J λvð Þ
λv

>0, 0 < λ < λ∗,
= 0, λ = λ∗,
<0, λ > λ∗,

8>><
>>: ð28Þ

for any v ∈H2
0ðΩÞ with kvk ≠ 0, where

λ∗ = exp Δvk k2 − ÐΩv2 ln vj jγdx
γ vk k2

 !
: ð29Þ

Proof. We obtain, for λ ≥ 0,

λ
∂
∂λ

J λvð Þ = λ λ Δvk k2 − λ
ð
Ω

v2 ln vj jγdx + γλ

2 vk k2
�

−λ
ð
Ω

v2 ln λj jγdx − γλ

2

ð
Ω

v2dx
�

= λ2 Δvk k2 −
ð
Ω

v2 ln vj jγdx − γ ln λj j
ð
Ω

v2dx
� �

= I λvð Þ,
ð30Þ

and therefore, we obtain the desired result. ☐

Remark 6. JðλvÞ has the absolute maximum value at λ∗, such
that

sup
λ≥0

J λvð Þ = J λ∗vð Þ = exp 2 Δvk k2 − 2Ð
Ω
v2 ln vj jγdx

γ vk k2
 !

γ

4 vk k2,

ð31Þ

for v ∈H2
0ðΩÞ.

Lemma 7. The potential depth d in (25) satisfies

d ≥
γ

4
eN

π

γ

� �N/2
= E1: ð32Þ
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Proof. By Corollary 2, (13), and (18), we have

I vð Þ ≥ 1 − k2γ
2π

 !
Δvk k2 + Nγ

2 1 + ln kð Þ vk k2 − γ

2 vk k2 ln vk k2

> Nγ

2 1 + ln kð Þ vk k2 − γ

2 vk k2 ln vk k2:
ð33Þ

Taking the limit k⟶
ffiffiffiffiffiffiffi
π/γp

, we obtain

I vð Þ ≥ Nγ

2 1 + ln
ffiffiffi
π

γ

r� �
−
γ

2 ln vk k2
� �

vk k2: ð34Þ

Taking into consideration this and (28), we get

0 = I λ∗vð Þ ≥ Nγ

2 1 + ln
ffiffiffi
π

γ

r� �
−
γ

2 ln λ∗vk k2 λ∗vk k2
� �

,

ð35Þ

and therefore,

λ∗vk k2 ≥ eN
π

γ

� �N/2
: ð36Þ

Hence, we have by (24) and (31)

sup
λ≥0

J λvð Þ = J λ∗vð Þ = 1
2 I λ∗vð Þ + γ

4 λ∗vk k2 = γ

4 λ∗vk k2 ≥ γ

4 e
N π

γ

� �N/2
:

ð37Þ

From the definition of d given in (25), we obtain the
result. ☐

3. Existence

In this part, we have studied the local existence, global exis-
tence, nonexistence, and stability results of plate equation
(1) with delay and logarithmic terms, motivated by the above
works. There is no research, to our best knowledge, related to
plate equation (1) with the delay (βutðx, t − τÞ) term and
logarithmic (u ln jujγ) source term; hence, our work is the
generalization of the above studies. Firstly, we introduce the
new function

y x, η, tð Þ = ut x, t − ητð Þ for x, η, tð Þ ∈Ω × 0, 1½ � × 0,∞ð Þ:
ð38Þ

Hence, problem (1) takes the form

utt + Δ2u + αut x, tð Þ + βy x, 1, tð Þ = u ln uj jγ for x, tð Þ ∈Ω × 0,∞ð Þ,
τyt x, η, tð Þ + yη x, η, tð Þ = 0 for x, η, tð Þ ∈Ω × 0, 1ð Þ × 0,∞ð Þ,

u x, tð Þ = ∂u x, tð Þ
∂υ

= 0 for x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ for x ∈Ω,
y x, η, 0ð Þ = j0 x,−ητð Þ = y0 x, ηð Þ for x, ηð Þ ∈Ω × 0, 1ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð39Þ

Definition 8. Assume that T > 0. ðu, yÞ is a local solution of
problem (39) if it satisfies

u ∈ C 0, T½ � ;H2
0 Ωð Þ
 �

∩ C1 0, T½ � ; L2 Ωð Þ
 �
∩ C2 0, T½ � ;H−2 Ωð Þ
 �

,

utt , vð Þ + Δu, Δvð Þ + α ut tð Þ, vð Þ + β y 1, tð Þ, vð Þ
= u ln uj jγ, vð Þ for any v ∈H2

0 Ωð Þ,

τ
ð1
0
yt η, tð Þ, φ ηð Þð Þdη +

ð1
0
yη η, tð Þ, φ ηð Þ
� 


dη

= 0 for any φ ∈ L2 Ω × 0, 1ð Þð Þ,

u 0ð Þ = u0 inH2
0 Ωð Þ,

ut 0ð Þ = u1 in L2 Ωð Þ,

y 0ð Þ = y0 in L2 Ω × 0, 1ð Þð Þ: ð40Þ

3.1. Local Existence. In this part, we establish the local exis-
tence results similar to [8, 39].

Theorem 9. Suppose that (H1) and (H2) are satisfied. Then,
for the initial data u0 ∈H2

0ðΩÞ, u1 ∈ L2ðΩÞ, and y0 ∈ L
2ðΩ ×

ð0, 1ÞÞ, there exists a local solution ðu, yÞ for problem (39).

Proof. Let fvigi∈N be the orthogonal basis of H2
0ðΩÞ that is

orthonormal in L2ðΩÞ. Define φiðx, 0Þ = viðxÞ, and we extend
φiðx, 0Þ by φiðx, ηÞ over L2ðΩ × ð0, 1ÞÞ. We denote Vn =
spanfv1, v2,⋯,vng and Wn = spanfφ1, φ2,⋯,φng for n ≥ 1.
We consider the Faedo-Galerkin approximation solution
ðun, ynÞ ∈ Vn ×Wn of the form

un =〠
n

i=1
hni tð Þvi xð Þ,

yn x, η, tð Þ =〠
n

i=1
gn
i tð Þφi x, ηð Þ, n = 1, 2,⋯,

ð41Þ

solving the approximate system

untt , vð Þ + Δun, Δvð Þ + α unt tð Þ, vð Þ + β yn 1, tð Þ, vð Þ
=
ð
Ω

un ln unj jγvdx for v ∈ Vn,
ð42Þ
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τ
ð1
0
ynt η, tð Þ, φ ηð Þð Þdη +

ð1
0
ynη η, tð Þ, φ ηð Þ
� 


dη = 0 for φ ∈Wn,

ð43Þ
un 0ð Þ = un0 ,
unt 0ð Þ = un1 ,
yn 0ð Þ = yn0 ,

ð44Þ

where

un0 ⟶ u0 inH2
0 Ωð Þ,

un1 ⟶ u1 in L2 Ωð Þ,
yn0 ⟶ y0 in L2 Ω × 0, 1ð Þð Þ:

ð45Þ

Since problem (42)–(44) is a normal system of ordinary
differential equations, there exists a solution ðun, ynÞ on the
interval ½0, tnÞ, tn ∈ ð0, T�. The extension of that solution to
the ½0, TÞ is a consequence of the estimate below.

By replacing v by unt ðtÞ in (42) and by using the relation

ð
Ω

un ln unj jγunt dx =
d
dt

1
2

ð
Ω

unð Þ2 ln unj jγdx − γ

4 unk k2
� �

,

ð46Þ

we have

d
dt

1
2 untk k2 + 1

2 Δunk k2 + γ

4 unk k2
�

−
1
2

ð
Ω

unð Þ2 ln unj jγdx
�

= −α unt tð Þk k2 − β yn 1, tð Þ, unt tð Þð Þ:
ð47Þ

By replacing φ by ωynðη, tÞ in (43), we see that

ωτ

2
d
dt

ð
Ω

ð1
0
yn x, η, tð Þð Þ2dηdx = −

ω

2 yn 1, tð Þk k2 + ω

2 yn 0, tð Þk k2:

ð48Þ

Summing (47) and (48), we obtain

d
dt

En tð Þ = −α untk k2 − β yn 1, tð Þ, unt tð Þð Þ − ω

2 yn 1, tð Þk k2 + ω

2 yn 0, tð Þk k2,
ð49Þ

where

En tð Þ = 1
2 untk k2 + 1

2 Δunk k2 + γ

4 unk k2 − 1
2

ð
Ω

unð Þ2 ln unj jγdx

+ ωτ

2 ynk k2L2 Ω× 0,1ð Þð Þ,

ð50Þ

where

βj j < ω < 2α − βj j: ð51Þ

Utilizing Young’s inequality and the fact that ynðx, 0, tÞ
= unt ðx, tÞ, we obtain

d
dt

En tð Þ ≤ − α −
βj j
2 −

ω

2

� �
untk k2 − ω

2 −
βj j
2

� �
yn 1, tð Þk k2 ≤ 0,

ð52Þ

En tð Þ + C1

ðt
0
unt sð Þk k2ds + C2

ðt
0
yn 1, sð Þk k2ds ≤ En 0ð Þ,

ð53Þ

where

C1 = α −
βj j
2 −

ω

2 > 0,

C2 =
ω

2 −
βj j
2 > 0:

ð54Þ

Taking into consideration this and Corollary 2, we have

untk k2 + 1 − γk2

2π

 !
Δunk k2 + γ

2 1 +N 1 + ln kð Þð Þ unk k2

+ 2C1

ðt
0
unt sð Þk k2ds + 2C2

ðt
0
yn 1, sð Þk k2ds + ωτ ynk k2L2 Ω× 0,1ð Þð Þ

≤ 2En 0ð Þ + γ

2 unk k2 ln unk k2:
ð55Þ

By using (18), we obtain

1 − γk2

2π > 0,
γ

2 1 +N 1 + ln kð Þð Þ > 0,
ð56Þ

and therefore,

untk k2 + Δunk k2 + unk k2 +
ðt
0
unt sð Þk k2ds +

ðt
0
yn 1, sð Þk k2ds

+ ynk k2L2 Ω× 0,1ð Þð Þ ≤ c1 1 + unk k2 ln unk k2
� 


,

ð57Þ

where the sequel cj, j = 1, 2,⋯, shows a positive constant.
Also, we know that

un x, tð Þ = un x, 0ð Þ +
ðt
0
unt x, sð Þds: ð58Þ

Utilizing Cauchy-Schwarz’s inequality and (57), we
obtain

5Advances in Mathematical Physics



un tð Þk k2 = 2 un 0ð Þk k2 + 2T
ðt
0
unt sð Þk k2ds

≤ 2 un 0ð Þk k2 + 2T
ðt
0
c1 1 + un sð Þk k2 ln un sð Þk k2
� 


ds

≤ c2 1 +
ðt
0
un sð Þk k2 ln un sð Þk k2ds

� �
:

ð59Þ

From Lemma 4, we arrive at

un tð Þk k2 ≤ c3e
c4T : ð60Þ

f ðsÞ = s ln s is the function which is continuous on ð0,∞Þ
, lims⟶0+ f ðsÞ = 0, lims⟶+∞ f ðsÞ = +∞, and f decreases on
ð0, e−1Þ and increases on ðe−1,+∞Þ; hence, we get by (57)
and (60)

untk k2 + Δunk k2 + unk k2 +
ðt
0
unt sð Þk k2ds +

ðt
0
yn 1, sð Þk k2ds

+ ynk k2L2 Ω× 0,1ð Þð Þ ≤ c5:

ð61Þ

Hence, there exists a subsequence of fðun, ynÞg, which we
still denote fðun, ynÞg, such that

un ⟶ u weakly star in L∞ 0, T ;H2
0 Ωð Þ
 �

,

unt ⟶ ut weakly star in L∞ 0, T ; L2 Ωð Þ
 �
,

yn ⟶ y weakly star in L∞ 0, T ; L2 Ω × 0, 1ð Þð Þ
 �
,

yn 1ð Þ⟶ y 1ð Þ weakly in L2 0, T ; L2 Ωð Þ
 �
:

ð62Þ

Utilizing the Aubin-Lions compactness theorem, we con-
clude that

un ⟶ u strongly in L2 0, T ; L2 Ωð Þ
 �
,

un ⟶ u a:e:inΩ × 0, Tð Þ:
ð63Þ

The function s⟶ s ln jsjγ is continuous on R; hence,

un ln unj jγ ⟶ u ln uj jγ a:e:inΩ × 0, Tð Þ: ð64Þ

Let

Ω1 = x ∈Ω ∣ unj j < 1f g,
Ω2 = x ∈Ω ∣ unj j ≥ 1f g:

ð65Þ

Thus, we obtain

ð
Ω

un ln unj jγð Þ2dx = γ2
ð
Ω1

un ln unj jð Þ2dx +
ð
Ω2

un ln unj jð Þ2dx
( )

≤ γ2 e−2 Ω1j j + e−2
2

q − 2

� �2ð
Ω2

unð Þqdx
( )

 for any q > 2,

ð66Þ

where we used

s ln sj j ≤ 1
e
 for 0 < s < 1,

s−κ ln s ≤
1
eκ

 for s ≥ 1 and κ > 0:
ð67Þ

By (57) and (66), we conclude that

ð
Ω

un ln unj jγð Þ2dx ≤ γ2 e−2 Ω1j j + e−2
2

q − 2

� �2
Bq
2 Δunk kq

( )
≤ c6,

ð68Þ

where B2 is the Sobolev imbedding constant of

H2
0 Ωð Þ ⊂ Lq Ωð Þ for q > 2, if N = 1, 2, 3, 4 ; 2 < q < 2N

N − 4 , if N ≥ 5:

ð69Þ

Therefore, we get from (68)

un ln unj jγ which is uniformly bounded in L∞ 0, T ; L2 Ωð Þ
 �
:

ð70Þ

From the Lebesgue bounded convergence theorem, (64),
and (70), we arrive at

un ln unj jγ ⟶ u ln uj jγ strongly in L2 0, T ; L2 Ωð Þ
 �
:

ð71Þ

We pass the limitm⟶∞ in (42) and (43). The remain-
der of the proof is standard and similar to [39, 40]. ☐

3.2. Global Existence. In this part, we obtain the global exis-
tence results for problem (39). For this goal, we define the
energy functional of problem (39):

E tð Þ = 1
2 utk k2 + 1

2 Δuk k2 + γ

4 uk k2 − 1
2

ð
Ω

u2 ln uj jγdx

+ ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ,

ð72Þ

where ω is the positive constant given in (51). We see that

E tð Þ = 1
2 utk k2 + J u tð Þð Þ + ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ =
1
2 utk k2

+ 1
2 I u tð Þð Þ + γ

4 uk k2 + ωτ

2 yk k2L2 Ω× 0,1ð Þð Þ:
ð73Þ
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By the same arguments similar to (52), we infer that

d
dt

E tð Þ ≤ −C1 utk k2 − C2 y 1, tð Þk k2 ≤ 0, ð74Þ

where C1 and C2, given in (54), are positive constants.

Lemma 10. Suppose that (H1) and (H2) are satisfied. If Eð0
Þ < d and Iðu0Þ > 0, then the solution u of problem (1) satisfies

I u tð Þð Þ > 0 for t ∈ 0, T½ Þ, ð75Þ

where T is the maximal existence time of the solutions.

Proof.We know that Iðu0Þ > 0 and u is continuous on ½0, TÞ;
hence, we have

I u tð Þð Þ > 0 for some interval 0, t1½ Þ ∈ 0, T½ Þ: ð76Þ

Let t0 be the maximum of t1 satisfying (76). Assume that
t0 < T ; then, Iðuðt0ÞÞ = 0, that is,

u t0ð Þ ∈N : ð77Þ

Therefore, we obtain by (26)

J u t0ð Þð Þ ≥ inf
v∈N

J vð Þ = d: ð78Þ

We see that this is in contradiction to the relation as fol-
lows:

J u t0ð Þð Þ ≤ E t0ð Þ ≤ E 0ð Þ < d: ð79Þ

By (74) and Lemma 10, we see that EðtÞ is a nonincreas-
ing function. ☐

Theorem 11. The solution u is global, under the conditions of
Lemma 10.

Proof. It suffices to show that kutk2 + kΔuk2 is bounded inde-
pendent of t. By Lemma 10, (73), and (74), we get

utk k2 ≤ utk k2 + I u tð Þð Þ ≤ 2E tð Þ ≤ 2E 0ð Þ < 2d: ð80Þ

In a similar way, we get

uk k2 < uk k2 + 2
γ
I u tð Þð Þ = 4

γ
J u tð Þð Þ ≤ 4

γ
E tð Þ ≤ 4

γ
E 0ð Þ < 4d

γ
:

ð81Þ

By Corollary 2 and (23), we conclude that

Δuk k2 = I u tð Þð Þ + γ
ð
Ω

u2 ln uj jdx ≤ 2E tð Þ + γ

2 uk k2 ln uk k2

+ k2γ
2π Δuk k2 − Nγ

2 1 + ln kð Þ uk k2:
ð82Þ

By taking the limit k⟶ ρ+ in this inequality and from
(81), we obtain

1 − ρ2γ

2π

� �
Δuk k2 ≤ 2E tð Þ + γ

2 ln uk k2 −N 1 + ln ρð Þ
 �
uk k2

< 2d + γ

2 ln 4d
γ

� �� �
−N 1 + ln ρð Þ uk k2

= 2d + γ

2 ln 4d
γ
e−Nρ−N

� �� �
uk k2:

ð83Þ

By Lemma 7 and (18), we get

ln 4d
γ
e−Nρ−N

� �
≥ ln π

γ

� �N/2
ρ−N

 !

= ln
ffiffiffi
π

γ

r
ρ−1

� �N
 !

ln 1 = 0:
ð84Þ

Therefore, we see by (81) and (83) that

1 − ρ2γ

2π

� �
Δuk k2 ≤ 2d + 2d ln 4d

γ
e−Nρ−N

� �
: ð85Þ

Hence, we conclude that

Δuk k2 < 2d 1 − ρ2γ

2π

� �−1
1 + ln 4d

γ
e−Nρ−N

� �� �
: ð86Þ

Therefore, we complete the proof by (80) and (86). ☐

4. Nonexistence

In this part, similar to [41–43], we get the nonexistence
results for problem (1). Firstly, we need the lemma as follows.

Lemma 12. Assume that (H1) and (H2) are satisfied. If Eð0Þ
< E1 and Iðu0Þ < 0, then the solution u of problem (1) satisfies

I u tð Þð Þ < 0 for t ∈ 0, T½ Þ, ð87Þ

u tð Þk k2 > 4E1

γ
 for t ∈ 0, T½ Þ, ð88Þ

where T is the maximal existence time of the solutions.

Proof.We know that Iðu0Þ < 0 and u is continuous on ½0, TÞ;
hence, we have

I u tð Þð Þ < 0 for some interval 0, t1½ Þ ⊂ 0, T½ Þ: ð89Þ

Let t0 be the maximal time satisfying (89) and assume
that t0 < T ; then, Iðu0Þ = 0, such that

u t0ð Þ ∈N : ð90Þ
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Therefore, we obtain

d ≤ J u t0ð Þð Þ = 1
2 I u t0ð Þð Þ + γ

4 u t0ð Þk k2 ≤ E u t0ð Þð Þ ≤ E 0ð Þ < E1:

ð91Þ

This is in contradiction to Lemma 7. Thus, (87) is proved.
By Lemma 7, (31), and (87), we conclude that

E1 ≤ d ≤ J λ∗u tð Þð Þ = exp 2 Δuk k2 − 2
Ð
Ω
u2 ln uj jγdx

γ uk k2
 !

γ

4 uk k2

< γ

4 uk k2:
ð92Þ

Therefore, the proof is completed. ☐

Theorem 13. Suppose that (H1) and (H2) are satisfied. Let
Eð0Þ < ζE1, where 0 < ζ < 1, and Iðu0Þ < 0. Then, the solution
of problem (1) blows up at infinity.

Proof. Firstly, we set

F tð Þ = ζE1 − E tð Þ: ð93Þ

By (74), we obtain

F ′ tð Þ = −E′ tð Þ ≥ C1 utk k2 + C2 y 1, tð Þk k2 ≥ 0: ð94Þ

Utilizing (72), (88), and (94), we see that

0 < F 0ð Þ ≤ F tð Þ ≤ ζE1 +
1
2

ð
Ω

u2 ln uj jγdx < γ

4 uk k2

+ 1
2

ð
Ω

u2 ln uj jγdx:
ð95Þ

We define

G tð Þ = F tð Þ + ε u, utð Þ + εα

2 uk k2: ð96Þ

By (39) and (72), we get

G′ tð Þ = F ′ tð Þ + ε utk k2 − ε Δuk k2 − εβ u, y 1, tð Þð Þ
+ ε
ð
Ω

u2 ln uj jγdx = F ′ tð Þ + 2ε utk k2 − εβ u, y 1, tð Þð Þ

− 2εE tð Þ + εγ

2 uk k2 + ωτ yk k2L2 Ω× 0,1ð Þð Þ:

ð97Þ

Utilizing Young’s inequality and (94), we obtain

β u, y 1, tð Þð Þ ≤ βj j δ uk k2 + 1
4δ y 1, tð Þk k2

� �
≤ δ βj j uk k2 + βj j

4δC2
F ′ tð Þ:

ð98Þ

By adapting this to (97) and from (88) and (93), we have

G′ tð Þ ≥ 1 − ε βj j
4δC2

� �
F ′ tð Þ + 2ε utk k2 + εγ

2 − ε βj jδ
� 


uk k2

+ 2εF tð Þ − 2εζE1 + ωτ yk k2L2 Ω× 0,1ð Þð Þ

≥ 1 − ε βj j
4δC2

� �
F ′ tð Þ + 2ε utk k2 + ε 1 − ζð Þ γ2 − βj jδ

� 

uk k2

+ 2εF tð Þ + ωτ yk k2L2 Ω× 0,1ð Þð Þ:

ð99Þ

Firstly, fix δ > 0 such that ð1 − ζÞðγ/2Þ − jβjδ > 0 and then
choose ε > 0 small enough so that 1 − ðεjβj/4δC2Þ > 0. Then,
by (94), we get

G′ tð Þ ≥ c8 F tð Þ + utk k2 + uk k2
 �
≥ 0: ð100Þ

Also, we conclude that

G tð Þ ≤ c9 F tð Þ + utk k2 + uk k2
 �
: ð101Þ

Taking ε > 0 small enough again, we obtain

G 0ð Þ = F 0ð Þ + ε u0, u1ð Þ + εα

2 u0k k2 > 0: ð102Þ

By (100) and (102), we get

G tð Þ ≥ G 0ð Þ > 0: ð103Þ

Utilizing (100) and (101), we see that

G′ tð Þ ≥ c10G tð Þ, ð104Þ

and therefore,

G tð Þ ≥ ec10tG 0ð Þ > 0: ð105Þ

Therefore, GðtÞ blows up at infinity. Consequently, the
proof is completed. ☐

5. Stability

In this part, we obtain the stability of global solutions. Firstly,
we define the perturbed energy by

Ψ tð Þ = E tð Þ + εΦ tð Þ + εΞ tð Þ, ð106Þ

where ε > 0, ΦðtÞ = ðut , uÞ, and ΞðtÞ = Ð
Ω

Ð 1
0e

−τηy2ðx, η, tÞdη
dx.

Lemma 14.Under the conditions of Lemma 10, for C3, C4 > 0,
we obtain

C3E tð Þ ≤Ψ tð Þ ≤ C4E tð Þ: ð107Þ
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Proof. Utilizing Lemma 10 and Young’s inequality, we have

Φ tð Þ + Ξ tð Þj j ≤ 1
2 utk k2 + 1

2 uk k2 + yk k2L2 Ω× 0,1ð Þð Þ

≤
1
2 utk k2 + 2

γ

γ

4 uk k2 + 1
2 I u tð Þð Þ

� �

+ yk k2L2 Ω× 0,1ð Þð Þ =
1
2 utk k2 + 2

γ
J u tð Þð Þ

+ yk k2L2 Ω× 0,1ð Þð Þ ≤ c7E tð Þ:
ð108Þ

Taking ε > 0 small enough, we complete the proof. ☐

Theorem 15. Assume that (H1) and (H2) are satisfied. Sup-
pose that Eð0Þ < E1 and Iðu0Þ > 0. Hence, for C0, C5 > 0, we
obtain

0 < E tð Þ ≤ C0e
−C5t for t ≥ 0: ð109Þ

Proof. From (39) and Young’s inequality, we get

Φ′ tð Þ = utk k2 − Δuk k2 − α ut tð Þ, u tð Þð Þ − β y 1, tð Þ, u tð Þð Þ
+
ð
Ω

u2 ln uj jγdx ≤ utk k2 − 1
2 Δuk k2 + α2B1 ut tð Þk k2

+ β2B1 y 1, tð Þk k2 +
ð
Ω

u2 ln uj jγdx:

ð110Þ

By using the second equation of (39) and the integration
by parts, we obtain

Ξ′ tð Þ = −
2
τ

ð
Ω

ð1
0
e−τηy x, η, tð Þyη x, η, tð Þdηdx

= −
1
τ

ð
Ω

ð1
0
e−τη

∂
∂η

y2 x, η, tð Þdηdx

= −
e−τ

τ
y 1, tð Þk k2 + 1

τ
y 0, tð Þk k2 −

ð
Ω

ð1
0
e−τηy2 x, η, tð Þdηdx

≤
1
τ

utk k2 − e−τ
ð
Ω

ð1
0
y2 x, η, tð Þdηdx:

ð111Þ

Summing these and (74), we obtain

Ψ′ tð Þ ≤ − C1 − ε − εα2B1 −
ε

τ

� 

utk k2 − ε

2 Δuk k2

− C2 − εβ2B1

 �

y 1, tð Þk k2 + ε
ð
Ω

u2 ln uj jγdx

− εe−τ yk k2L2 Ω× 0,1ð Þð Þ:

ð112Þ

Adding and subtracting ξEðtÞ with 0 < ξ < 2ε, we get

Ψ′ tð Þ ≤ −ξE tð Þ − C1 − ε − εα2B1 −
ε

τ
−
ξ

2

� �
utk k2

−
ε

2 −
ξ

2 −
ξγB1
4

� �
Δuk k2 − C2 − εβ2B1


 �
y 1, tð Þk k2

+ ε −
ξ

2

� �ð
Ω

u2 ln uj jγdx − εe−τ −
ξωτ

2

� �
yk k2L2 Ω× 0,1ð Þð Þ:

ð113Þ

Utilizing the logarithmic Sobolev inequality, we have

Ψ′ tð Þ ≤ −ξE tð Þ − C1 − ε − εα2B1 −
ε

τ
−
ξ

2

� �
utk k2

− ε
1
2 −

γk2

2π

 !
−
ξ

2 1 − γk2

2π

 !
−
ξγB1
4

( )
Δuk k2

+ γ

2 ε −
ξ

2

� �
ln uk k2 −N 1 + ln kð Þ� 	

uk k2

− C2 − εβ2B1

 �

y 1, tð Þk k2 − εe−τ −
ξωτ

2

� �
yk k2L2 Ω× 0,1ð Þð Þ:

ð114Þ

Now, choose ε > 0 small enough, such that

C1 − ε − εα2B1 −
ε

τ
> 0,

C2 − εβ2B1 > 0:
ð115Þ

By taking ξ > 0 sufficiently small and noting that ð1/2Þ
− ðγk2/2πÞ > 0 (see (18)), we infer that

Ψ′ tð Þ ≤ −ξE tð Þ + γ

2 ε −
ξ

2

� �
ln uk k2 −N 1 + ln kð Þ� 	

uk k2,

ð116Þ

where 0 < Eð0Þ < E1; therefore, there exists 0 < μ < 1, that is,
Eð0Þ = μE1. Therefore, we obtain by (81)

ln uk k2 < ln 4
γ
E tð Þ

� �
≤ ln 4

γ
E 0ð Þ

� �
= ln 4μE1

γ

� �

= ln μeN
π

γ

� �N/2
 !

:

ð117Þ

Hence, by (18), we arrive at

ln uk k2 −N 1 + ln kð Þ ≤ ln μeN
π

γ

� �N/2
 !

−N 1 + ln kð Þ

=N ln μ1/N
ffiffiffi
π

γ

r
k−1

� �
<N ln 1 = 0:

ð118Þ
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Substituting this into (116), we arrive at

Ψ′ tð Þ ≤ −ξE tð Þ: ð119Þ

As a result, from Lemma 14, we completed the proof. ☐

6. Conclusions

Recently, there have been many published works related to
wave equations with time delay. There were no local exis-
tence, global existence, nonexistence, and stability results of
the plate equation with delay and logarithmic source terms,
to the best of our knowledge. Firstly, we have obtained the
local and global existence results. Then, we have obtained
the nonexistence of solutions. Finally, we have proved stabil-
ity results under sufficient conditions.
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The ð2 + 1Þ-dimensional elliptic Toda equation is a higher dimensional generalization of the Toda lattice and also a discrete version
of the Kadomtsev-Petviashvili-1 (KP1) equation. In this paper, we derive theM-breather solution in the determinant form for the
ð2 + 1Þ-dimensional elliptic Toda equation via Bäcklund transformation and nonlinear superposition formulae. The lump solutions
of the ð2 + 1Þ-dimensional elliptic Toda equation are derived from the breather solutions through the degeneration process. Hybrid
solutions composed of two line solitons and one breather/lump are constructed. By introducing the velocity resonance to the N
-soliton solution, it is found that the ð2 + 1Þ-dimensional elliptic Toda equation possesses line soliton molecules, breather-
soliton molecules, and breather molecules. Based on the N-soliton solution, we also demonstrate the interactions between a
soliton/breather-soliton molecule and a lump and the interaction between a soliton molecule and a breather. It is interesting to
find that the KP1 equation does not possess a line soliton molecule, but its discrete version—the ð2 + 1Þ-dimensional elliptic
Toda equation—exhibits line soliton molecules.

1. Introduction

The Toda lattice is an integrable one-dimensional lattice
model which originally describes the motion of a chain of par-
ticles due to nearest neighbor interaction through an exponen-
tial potential function [1]. The Toda equation takes the form

vtt nð Þ = ev n−1ð Þ−v nð Þ − ev nð Þ−v n+1ð Þ, n ∈ Z, ð1Þ

which is the equation of motion for the nth particle. Here, we
denote vðn, tÞ as vðnÞ for simplicity. This equation also
describes nonlinear wave propagation in many areas of phys-
ics such as ladder circuits [2], biophysics [3], and elementary
particle physics [4]. The ð2 + 1Þ-dimensional elliptic Toda lat-
tice which is a natural dimensional generalization of the Toda
lattice (1) reads

Δv nð Þ = ev n−1ð Þ−v nð Þ − ev nð Þ−v n+1ð Þ, n ∈ Z, ð2Þ

where Δ = ∂xx + ∂yy is a two-dimensional Laplacian operator.
It first appears in connection with Laplace-Darboux transfor-

mation for general second-order partial differential equations
in the work of Darboux in 1887 [5]. In 1979, the integrability
of the ð2 + 1Þ-dimensional Toda lattice was established
through the inverse scattering method [6, 7] and Lie group
theory [8]. The ð2 + 1Þ-dimensional Toda lattice and its rel-
atives have important applications in 2D gravity [9, 10],
string theory [11, 12], differential geometry [13], and ran-
dom matrices and orthogonal polynomials [14, 15]. The
Bessel-type solutions for the ð2 + 1Þ-dimensional elliptic
Toda lattice (1) were derived in [16], and its various classes
of special solutions such as lump-type solutions, periodic
solutions, and line solitons were investigated via the inverse
scattering transform in [17]. In [18], the rational solution
and breather solution for (2) were studied applying the Hir-
ota bilinear method. Nakamura derived exact solutions for
the ð2 + 1Þ-dimensional cylindrical Toda equation and the
ð3 + 1Þ-dimensional elliptic Toda equation in [19, 20]. In
[21], three classes of lump solutions for (2) were constructed
through symbolic computation.

The study of the nonlinear localized waves such as soli-
tons, breathers, lumps, and rough waves has attracted great
attention due to their important applications in nonlinear

Hindawi
Advances in Mathematical Physics
Volume 2021, Article ID 5211451, 18 pages
https://doi.org/10.1155/2021/5211451

https://orcid.org/0000-0002-1867-9512
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5211451


physical areas such as nonlinear optics, biophysics, oceanog-
raphy, Bose-Einstein condensates, and plasma [22–27]. A
breather is a special localized solitary wave that is periodic
in space or time. Breathers have important applications in
many physical areas such as optics, hydrodynamics, and
quantized superfluid [28–30]. A lump solution is a kind of
two-dimensional localized wave that decays algebraically in
all directions [31]. Bäcklund transformation, which owes its
origin to classical differential geometry in the 19th century,
is an important tool in studying nonlinear integrable equa-
tions [32, 33]. The Bäcklund transformations and their asso-
ciated nonlinear superposition formulae allow the generation
of the various solutions of the nonlinear equations by purely
algebraic procedures. In Hirota bilinear formalism, the orig-
inal bilinear equation is bilinear in the dependent variables,
whereas its bilinear Bäcklund transformations are linear in
both the old and new dependent variables; therefore, one
only needs to solve a set of linear partial differential equations
to obtain new solutions from old ones [34]. Combining the
bilinear Bäcklund transformation and associated nonlinear
superposition formulae, we may derive an infinite sequence
of solutions for nonlinear equations. In this paper, we derive
an M-breather solution in the determinant form for the
ð2 + 1Þ-dimensional elliptic Toda equation (2) by applying
the bilinear Bäcklund transformation and associated non-
linear superposition formulae. We also obtain its lump
solutions by taking the infinite period of the breathers.
Some bound states of solitons such as soliton molecules,
breather molecules, and breather-soliton molecules have
been theoretically and experimentally found in optics [35,
36] and Bose-Einstein condensation [37]. They are of great
interest for applications in optical technologies because they
would provide a doubling of the data-carrying capacity of
the fiber [38, 39]. The velocity resonance mechanism has
been proposed in [40] to study the soliton molecule. Many
novel soliton molecules such as dark soliton molecules, dro-
mion molecules, breather molecules, and breather-soliton
molecules for continuous nonlinear wave equations have
been found by utilizing this method [41–43]. However, the
soliton molecules for the discrete nonlinear wave equations
have not been reported yet. In this paper, we discuss the res-
onant structures for the solitons such as line soliton mole-
cules, breather-soliton molecules, and breather molecules
for the ð2 + 1Þ-dimensional elliptic Toda equation via the
velocity resonance.

The paper is organized as follows. In Section 2, theM
-breather solution and hybrid solution composed of line sol-
itons and breathers for theð2 + 1Þ-dimensional elliptic Toda
equation are derived via the Bäcklund transformation and
nonlinear superposition formulae. In addition, we analyze
the dynamical properties of 1-breather and 2-breather. In
Section 3, we derive the lump solutions for the ð2 + 1Þ
-dimensional elliptic Toda equation by taking the infinite
period of the breathers. Furthermore, we construct hybrid
solutions consisting of line solitons, breathers, and lumps.
In Section 4, line soliton molecules, breather-soliton mole-
cules, and breather molecules for the ð2 + 1Þ-dimensional
elliptic Toda equation are investigated through the velocity
resonance mechanism, and interactions between soliton mol-

ecules and breathers/lumps are illustrated. A summary and
discussion are given in Section 5.

2. M-Breather of the ð2 + 1Þ-Dimensional
Elliptic Toda Equation

By introducing uðnÞ = evðn−1Þ−vðnÞ, the ð2 + 1Þ-dimensional
elliptic Toda equation (2) can be written as

∂2

∂x2
+ ∂2

∂y2

 !
ln u nð Þ = u n + 1ð Þ − 2u nð Þ + u n − 1ð Þ, ð3Þ

where we denote uðn, x, yÞ as uðnÞ for simplicity. Through
the dependent variable transformation uðnÞ = ð f ðn + 1Þf ðn
− 1ÞÞ/f ðnÞ2, equation (3) can be transformed into the bilinear
form

D2
x +D2

y

� �
f nð Þ · f nð Þ = 2eDn − 2

� �
f nð Þ · f nð Þ: ð4Þ

The bilinear equation (4) admits the following Bäcklund
transformation:

Dx + iDy + λ−1e−Dn + μ
� �

f nð Þ · g nð Þ = 0,

Dx − iDy

� �
e−1/2Dn − λe1/2Dn + γe−1/2Dn

� �
f nð Þ · g nð Þ = 0:

ð5Þ

Here, the bilinear operators Dm
x D

n
t and eDn are defined

by [44]

Dm
x D

n
t f · g = ∂m

∂ym
∂n

∂sn
f x + y, t + sð Þg x − y, t − sð Þ

����
s=0,y=0

,

eDnf nð Þ · g nð Þ = f n + 1ð Þ · g n − 1ð Þ,
e−Dnf nð Þ · g nð Þ = f n − 1ð Þ · g n + 1ð Þ:

ð6Þ

If we take f ðnÞ = 1, μ = −λ−1, and γ = λ in equation (5),
then we obtain gðnÞ = 1 + eη, η = px + qy + rn + β0, and λ =
ðp − iqÞ/ð1 − e−rÞ and the dispersion relation for the ð2 + 1Þ
-dimensional elliptic Toda equation (3):

p2 + q2 = 4 sinh2 r2 : ð7Þ

We apply the following nonlinear superposition formula
presented in [45] to derive the 1-breather solution for
equation (3).

Proposition 1. Let f0ðnÞ be a nonzero solution of equation (5)
and suppose that f1ðnÞ and f2ðnÞ are solutions of (5) such that
f0ðnÞ⟶λi f iðnÞði = 1, 2Þ; then, there exists the following non-
linear superposition formula:
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Figure 1: (a) 1-breather. (b) Density picture of 1-breather.
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Figure 2: Propagation of 2-breather for L1L2 > 0 at different times: (a) n = −30, (b) n = −8, and (c) n = 35.
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e−1/2Dn f0 nð Þ · f12 nð Þ = c λ1e
−1/2Dn − λ2e

1/2Dn
� �

f1 nð Þ · f2 nð Þ,
ð8Þ

where f12ðnÞ is a new solution of (4) related to f1ðnÞ and f2ðnÞ
with parameters λ2 and λ1, respectively. Here, c is a nonzero
constant.

By taking c = 1/ðλ1 − λ2Þ, f0ðnÞ = 1, and f iðnÞ = 1 + eηi
ði = 1, 2Þ in nonlinear superposition formula (8), we derive

f12 nð Þ = 1 + eη1 + eη2 + A12e
η1+η2 , ð9Þ

where λi = ðpi − iqiÞ/ð1 − e−riÞ and ηi = pix + qiy + rin + β0
i

ði = 1, 2Þ. According to dispersion relation (7), we may take
pi = 2 sinh ki cos li, qi = 2 sinh ki sin li, and ri = 2kiði = 1, 2Þ.
Consequently,

A12 =
cos l1 − l2ð Þ − cosh k1 − k2ð Þ
cos l1 − l2ð Þ − cosh k1 + k2ð Þ : ð10Þ

Furthermore, if we take k1 = k∗2 = α1 + β1i, l1 = l∗2 = γ1 +
δ1i, β0

1 = β0∗
2 = ln ða/2Þ + iθ1, and eiθ1 = −ð1/b2Þeσ1+iθ1 in

equation (9), we get

f 1b nð Þ = 1 −
a

b2
eR1 cos I1 +

A12a
2

4b4
e2R1 , ð11Þ

where

R1 = 2 â1x + b̂1y + α1n
� �

+ σ1,

I1 = 2 ĉ1x + d̂1y + β1n
� �

+ θ1,

â1 = P1 cos γ1 +Q1 sin γ1ð Þ,
b̂1 = P1 sin γ1 −Qi cos γ1ð Þ,
ĉ1 = ξ1 cos γ1 − ζ1 sin γ1ð Þ,
d̂1 = ξ1 sin γ1 + ζ1 cos γ1ð Þ,
P1 = sinh α1 cosh δ1 cos β1,
Q1 = cosh α1 sinh δ1 sin β1,
ξ1 = cosh α1 cosh δ1 sin β1,
ζ1 = sinh α1 sinh δ1 cos β1,

ð12Þ

and α1, β1, γ1, δ1, σ1, and θ1 are arbitrary real-valued
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Figure 3: Propagation of hybrid solution composed of two line solitons and one breather at different times: (a) n = −40, (b) n = 0, and (c)
n = 40.
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constants. Since k1 = k∗2 = α1 + β1i and l1 = l∗2 = γ1 + δ1i, we
can get

A12 =
cosh 2δ1 − cos 2β1

cosh 2δ1 − cos 2α1
: ð13Þ

By substituting equation (11) into uðnÞ = ð f ðn + 1Þf ðn −
1ÞÞ/f ðnÞ2, we derive the 1-breather solution for equation (3)
as follows:

u nð Þ1b = A12 cosh2 R1 + εð Þ + sinh22α1
� �

+ cos2I1 − sin22β1 − 2
ffiffiffiffiffiffiffi
A12

p
κffiffiffiffiffiffiffi

A12
p cosh R1 + εð Þ − cos I1
� �2 ,

ð14Þ

where κ = cos 2β1 cosh 2α1 cos I1 cosh ðR1 + εÞ + sin 2β1

sinh 2α1 sin I1 sinh ðR1 + εÞ and ε = ln ða ffiffiffiffiffiffiffi
A12

p /2b2Þ.

To obtain the nonsingular solution, we impose the condi-
tion A12 > 1. Figure 1 shows the 1-breather (14) with α1 = 0:5,
β1 = 0:5, γ1 = 5, δ1 = 1, n = 0, a = 1, b = 1, σ = 0, and θ = 0.

Its top trace is a line l1 on the ðx, yÞ-plane for a given time
n (see Figure 1(b)), which is defined by l1 : 2ðâ1x + b̂1y +
α1nÞ + σ1 + ε = 0. The period of 1-breather (14) is T ½x� =
ðQ1 cos γ1 − P1 sin γ1Þπ/W along the x-direction and T ½y�
= ðP1 cos γ1 +Q1 sin γ1Þπ/W for the y-direction, where W
= sinh δ1 cosh δ1ðsinh2α1 cos2β1 + cosh2α1 sin2β1Þ. Then,
the distance of two neighboring peaks in 1-breather (14) is

T = π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 +Q2

1
p

W
: ð15Þ

Note that T is the period of 1-breather uðnÞ1b.

Proposition 2. The elliptic Toda equation admits the general
nonlinear superposition formula [45]

e−1/2Dn f N−1 nð Þ · f N+1 nð Þ
= cN λNe

−1/2Dn − λN+1e
1/2Dn

� �
f N nð Þ · f̂ N nð Þ,

ð16Þ
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Figure 4: The degeneration of 1-breather (14) with γ = 0:1 and δ = 0:7: (a) α = β = 1/4, (b) α = β = 1/10, (c) α = β = 1/60, and (d) 1-lump.
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where

f N ≔ cN 1 nð Þ,⋯,N nð Þj j, ð17Þ

f̂ N nð Þ = 1 nð Þ,⋯,N − 1 nð Þ,N + 1 nð Þj j, ð18Þ

j nð Þ = φj nð Þ,⋯, −λ j

� �N−1φj n −N + 1ð Þ
� �T

: ð19Þ

If we take cN =Q1≤i<j≤N1/ðλj − λiÞ, φjðnÞ = 1 + eη j , λj =
ðpj − iqjÞ/ð1 − e−r jÞ, and ηj = pjx + qjy + r jn + β0

j = 2 sinh kj
cos l jx + 2 sinh kj sin l jy + 2kjn + β0

j ðj = 1, 2,⋯,NÞ in non-
linear superposition formula (17), we derive N-soliton as

f = 〠
μ=0,1

exp 〠
N

i<j
μiμjAij + 〠

N

i=1
μiηi

 !
, ð20Þ

where eAij ≜ Aij = ðcos ðli − l jÞ − cosh ðki − kjÞÞ/ðcos ðli − l jÞ
− cosh ðki + kjÞÞ, ∑μ=0,1 implies the summation over all
possible combinations of μ1 = 0:1, μ2 = 0:1,⋯, μN = 0:1, and

∑ðNÞ
j<m indicates the summation over all possible pairs chosen

from N elements.
By taking N = 2M, cN =Q1≤i<j≤N1/ðλj − λiÞ, φjðnÞ = 1 +

eη j , kj+M = k∗j , l j+M = l∗j , and β0
j+M = β0∗

j ðj = 1, 2,⋯,MÞ in
equation (17), we derive the determinant form of M
-breather for the ð2 + 1Þ-dimensional elliptic Toda equation
(3) under certain nonsingular conditions. When M = 2, we
derive the following 2-breather for equation (3):

f = 1 −
eR1 cos I1

b21
−
eR2 cos I2

b22
+ K1

4b41
e2R1 + K2

4b42
e2R2

+ K1K2 L21 +M2
1

� �
L22 +M2

2

� �
16b41b

4
2

e2R1+2R2

+ eR1+R2

2b21b
2
2

L1 cos I1 + I2ð Þ −M1 sin I1 + I2ð Þð Þ

+ eR1+R2

2b21b
2
2

L2 cos I1 − I2ð Þ −M2 sin I1 − I2ð Þð Þ
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−
K1e

2R1+R2

4b41b
2
2

L1L2 +M1M2ð Þ cos I2 − L2M1 − L1M2ð Þ sin I2ð Þ

−
K2e

R1+2R2

4b21b
4
2

L1L2 −M1M2ð Þ cos I1 − L2M1 + L1M2ð Þ sin I1ð Þ,

ð21Þ

where

Ri = 2 âix + b̂iy + αin
� �

+ σi,

Ii = 2 ĉix + d̂iy + βin
� �

+ θi,

âi = Pi cos γi +Qi sin γið Þ,
b̂i = Pi sin γi −Qi cos γið Þ,
ĉi = ξi cos γi − ζi sin γið Þ,
d̂i = ξi sin γi + ζi cos γið Þ,
Pi = sinh αi cosh δi cos βi,
Qi = cosh αi sinh δi sin βi,

ξi = cosh αi cosh δi sin βi,

ζi = sinh αi sinh δi cos βi  i = 1, 2ð Þ,

L1 = Re A12ð Þ,

L2 = Re A14ð Þ,

K1 = A13,

K2 = A24,

M1 = Im A12ð Þ,

M2 = Im A14ð Þ, ð22Þ

and αi, βi, γi, δi, σi, and θiði = 1, 2Þ are arbitrary real-valued
constants.

Now, we show that the interaction of two breathers is
elastic and calculate their phase shift before and after the
interaction. We consider y-periodic 2-breather-soliton (i.e.,
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Figure 6: Propagation of hybrid solution composed of two line solitons and one lump at different times: (a) n = −10, (b) n = 0, and (c) n = 10.
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βi = γi = 0 (i = 1, 2) in equation (21)):

f = 1 + K1
4b41

e2R1 + K2
4b42

e2R2 + K1K2L
2
1L

2
2

16b41b42
e2R1+2R2

−
eR1 cos I1

b21

L1L2K2
4b42

e2R2 + 1
� 	

−
eR2 cos I2

b22

L1L2K1
4b41

e2R1 + 1
� 	

+ eR1+R2

2b21b22
L1 cos I1 + I2ð Þ + L2 cos I1 − I2ð Þð Þ,

ð23Þ

where

L1 =
cosh δ1 − δ2ð Þ − cosh α1 − α2ð Þ
cosh δ1 − δ2ð Þ − cosh α1 + α2ð Þ ,

L2 =
cosh δ1 + δ2ð Þ − cosh α1 − α2ð Þ
cosh δ1 + δ2ð Þ − cosh α1 + α2ð Þ ,

K1 =
cosh 2δ1 − 1

cosh 2δ1 − cosh 2α1
,

K2 =
cosh 2δ2 − 1

cosh 2δ2 − cosh 2α2
,

upj = 2b2j K j

1 − 1/ ffiffiffiffiffi
Kj

p� �
cosh Rj cos I jffiffiffiffiffi

K j
p cosh Rj − cos I j
� �2   j = 1, 2ð Þ: ð24Þ

Assuming that α1 > 0, α2 > 0, and α1/sinh α1 cosh δ1 >
α2/sinh α2 cosh δ2, we show that the interaction of two
breathers is elastic and obtain the phase shift between two
breathers after the interaction:

(1) Before interaction (n⟶ −∞)

Breather 1 (R1 is finite, and R2 ⟶ −∞):

f1 R1, I1ð Þ = 1 + K1
4b41

e2R1 −
1
b21

eR1 cos I1: ð25Þ
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Figure 7: Propagation of hybrid solution composed of a breather and a lump at different times: (a) n = −20, (b) n = 0, and (c) n = 20.

8 Advances in Mathematical Physics



Breather 2 (R1 ⟶ −∞, and R2 is finite):

f2 R2, I2ð Þ = K1
4b41

e2R1 1 + K2L
2
1L

2
2

4b42
e2R2 −

L1L2 cos I2
b22

eR2

� 	
:

ð26Þ

(2) After interaction (n⟶∞)

Breather 1 (R1 is finite, and R2 ⟶∞):

f1 R2, I1ð Þ = K2
4b42

e2R2 1 + K1L
2
1L

2
2

4b42
e2R1 −

L1L2 cos I1
b22

eR1

� 	
:

ð27Þ

Breather 2 (R1 ⟶∞, and R2 is finite):

f2 R2, I2ð Þ = 1 + K2
4b42

e2R2 −
1
b22

eR2 cos I2: ð28Þ

Taking into account ujðnÞ = ð f jðn + 1Þf jðn − 1ÞÞ/f jðnÞ2
ðj = 1, 2Þ, we find that the two separated breathers before

and after the interaction are of the form

u1 R1, I1ð Þ, u2 R2 + ln ∣ L1L2∣,I2ð Þ½ �
⟶ u1 R1 + ln ∣ L1L2∣,I1ð Þ, u2 R2, I2ð Þ½ �, L1L2 > 0,

⟶ u1 R1 + ln ∣ L1L2∣,I1 + πð Þ, u2 R2, I2 − πð Þ½ �, L1L2 < 0:
ð29Þ

From the above expression, we conclude that whether
L1L2 > 0 or L1L2 < 0, the interaction of two breathers in 2-
breather (23) is elastic. The interaction of 2-breather solution
(23) for L1L2 > 0 is depicted in Figure 2 by taking α1 = 0:2,
α2 = 0:15, β1 = 0, β2 = 0, γ1 = 0, γ2 = 0, δ1 = 0:75, δ2 = 1:5,
σ1 = 0, σ2 = 0, θ1 = 0, and θ2 = 0. The sequence of snapshots
of Figure 2 shows the interaction between two y-periodic
breathers under the case β1 = γ1 = 0 or β2 = γ2 = 0, while
the two y-periodic breathers propagate in the negative direc-
tion of the x-coordinate. The humps of the second breather
pass through between the humps of the first breather as
shown in Figure 2(b). After that, they begin to separate and
recover the initial shapes and velocities in Figure 2(c).

Now, we construct a hybrid solution composed of two
line solitons and one breather. By taking N = 4, k3 = k∗4 , l3
= l∗4 , and β0

3 = β0∗
4 in N-soliton (20), we obtain the hybrid
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Figure 8: Propagation of hybrid solution composed of two breathers and a lump at different times: (a) n = −180, (b) n = −50, and (c) n = −10.
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solution of two line solitons and one breather which is shown
in Figure 3 with k1 = 0:2, k2 = 0:3, k3 = k∗4 = 0:2 + 0:2i, l1 = 0:5
, l2 = −0:5, l3 = l∗4 = 4:5 + 0:4i, β0

1 = −5, β0
2 = 15, β0

3 = 0, and
β0
4 = 0. In addition, we find that two line solitons propagate

along the negative direction of the x-coordinate; then, the
1-breather propagates along the positive direction of the x
-coordinate. In Figure 3(a) at n = −40, two line solitons are
in front of the 1-breather. Then, the 1-breather overtakes
and collides with two line solitons in Figure 3(b) at n = 0.
After that, they become farther and farther without changing
their shapes and directions of movement in Figure 3(c) at n
= 40.

3. Degeneration of Breathers

In this section, we derive lump solutions for the ð2 + 1Þ
-dimensional elliptic Toda equation (3) by taking the limit
of an infinitely large period of breathers derived in the previ-
ous section. We also construct the hybrid solution composed
of two line solitons and one lump and the hybrid solution
composed of one breather and one lump.

By taking the limits α1 ⟶ 0 and β1 ⟶ 0 in the 1-
breather (14), the period (15) of 1-breather tends to infinity.

Under these limits, 1-breather (14) has degenerated into 1-
lump which is given by

u 1½ �
l = f 1½ �

l n + 1ð Þ · f 1½ �
l n − 1ð Þ

f 1½ �
l nð Þ

� �2
= 1/ cosh 2δ1 − 1ð Þð Þ + 4ω2 + v2 + 4
� �2 − 64ω2

1/ cosh 2δ1 − 1ð Þð Þ + 4ω2 + v2ð Þ2
,

ð30Þ

where f ½1�l ðnÞ = ð1/ðcosh 2δ1 − 1ÞÞ + 4ω2 + 4v2, ω = cosh δ1
ðcos γ1x + sin γ1yÞ + n, and v = sinh δ1ðsin γ1x − cos γ1yÞ.

Figures 4(a)–4(c) show the degeneration process of 1-
breather (14) along the line l1 : 2ðâ1x + b̂1y + α1nÞ + σ1 + ε
= 0 at n = 0. Figure 4 shows the density pictures of the degen-
eration process of 1-breather (14) by taking the parameters
γ = 0:1, δ = 0:7, a = 1, b = 1, σ = θ = 0, and n = 0. The degen-
eration of the 1-breather given in Figure 4(c) is very similar
to that of the 1-lump (30) depicted in Figure 4(d) with the
parameter selection of γ = 0:1, δ = 0:7, and n = 0, and thus,
the former is a good approximation of the latter.

–100

–100
–50

–50
0

50
100 50 0

1

1.01

1.02

1.03

1.04

u

y

x

00

–1
–50

50
0

0

(a)

–100
–100–50

–500
50

100 50 0

1

1.01

1.02

1.03

u

y
x

00
–1–50

500

(b)

–100

–100
–50

–500
50

100 50 0

1

1.01

1.02

1.03

1.04

u

y

x

00

–10
–50

500

(c)

Figure 9: (a) Soliton molecule in β0
1 = 15 and β0

2 = 0. (b) Asymmetric soliton in β0
1 = 0 and β0

2 = 0. (c) Soliton molecule in β0
1 = −15 and β0

2 = 0.
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Similarly, if we let α1, α2 ⟶ 0 and β1, β2 ⟶ 0 in 2-
breather (21), we obtain the following 2-lump solution for
(3):

f = ω2
1 + v21

� �
ω2
2 + v22

� �
+ ω2

2 + v22
2 cosh δ1 − 2 + ω2

1 + v21
2 cosh δ2 − 2

+ 1 + 2H
2Q1

+ 1 + 2h
2Q2

+ 1
2 cosh δ1 − 2ð Þ 2 cosh δ2 − 2ð Þ ,

ð31Þ

where

ωj = cosh δj cos γjx + sin γjy
� �

+ n,

vj = sinh δj sin γjx − cos γjy
� �

  j = 1, 2ð Þ,

Q1 = cos 2 γ1 − γ2ð Þ + cosh 2 δ1 − δ2ð Þ
− 4 cos γ1 − γ2ð Þ cosh δ1 − δ2ð Þ + 2,

Q2 = cos 2 γ1 − γ2ð Þ + cosh 2 δ1 + δ2ð Þ
− 4 cos γ1 − γ2ð Þ cosh δ1 + δ2ð Þ + 2,

h = 2 x cos γ1 + y sin γ1ð Þ x cos γ2 + y sin γ2ð Þ cosh δ2ð
+ x cos γ2 + y sin γ2ð Þn cosh δ2
− sinh δ1 sinh δ2y x sin γ2 − y cos γ2ð Þ cos γ1
+ sin γ1 sin γ2 sinh δ1 sinh δ2x

2

−sin γ1 cos γ2 sinh δ1 sinh δ2xy + n2
�
cosh δ1 + δ2ð Þ

� cos γ1 − γ1ð Þ − 2 sinh δ1 + δ2ð Þ −x sinh δ2 sin γ1ð
− y cos γ2Þ x cos γ1 + y sin γ1ð Þ cosh δ2
+n x sin γ1 sinh δ1 − y sinh δ1 cos γ1 − sinh δ2 cos γ2ð Þð
− sin γ2 sinh δ2ÞÞ sin γ1 − γ2ð Þ − 2 y sin γ1 + x cos γ1ð Þ
� y sin γ2 + x cos γ2ð Þ cosh δ2 + nð Þ cosh δ1
− 2n x cos γ2 + y sin γ2ð Þ cosh δ2
+ 2y sinh δ1 sinh δ2 x sin γ2 − y cos γ2ð Þ cos γ1
− 2 sin γ1 sin γ2 sinh δ1 sinh δ2x

2

+ 2 sin γ1 cos γ2 sinh δ1 sinh δ2xy − 2n2,
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Figure 10: Propagation of hybrid solution composed of a soliton molecule and a breather at different times: (a) n = −30, (b) n = 0, and (c)
n = 30.
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H = 2 cos γ1 − γ2ð Þ x cos γ1 + y sin γ1ð Þ x cos γ2ððð
+ y sin γ2Þ cosh δ2 + nÞ cosh δ1 + n x cos γ2ð
+ y sin γ2Þ cosh δ2 + y sinh δ1 sinh δ2 x sin γ2ð
+ y cos γ2Þ cos γ1−sin γ1 sin γ2 sinh δ1 sinh δ2x

2

+ sin γ1 cos γ1 sinh δ1 sinh δ2xy + n2Þ cosh δ1 − δ2ð Þ
− 2 sinh δ2 x cos γ2 − y sin γ2ð Þ x cos γ1 + y sin γ1ð Þð
� cosh δ1 + sinh δ1 x cos γ2 + y sin γ2ð Þ x sin γ1ð
− y cos γ1Þ cosh δ2 + n x sin γ1 sinh δ1ð Þð
+ sin γ2 sinh δ2−y sinh δ1 cos γ1 + sinh δ2 cos γ2ð Þ
+ sin γ2 sinh δ2Þ sin γ1 − γ2ð Þ sinh δ1 − δ2ð Þ
− 2 x cos γ1 + y sin γ1ð Þ x cos γ2 cosh δ2 + y sin γ2 + nð Þ
− 2n x cos γ2 + y sin γ2ð Þ cosh δ2
− 2y sinh δ1 sinh δ2 x sin γ2 + y cos γ2ð Þ cos γ1
+ 2x2 sin γ1 sin γ2 sinh δ1 sinh δ2
− 2xy sin γ1 cos γ2 sinh δ1 sinh δ2 − 2n2:

ð32Þ

Here, we take the parameters β1 = β2 = 0, γ1 = γ2 = 0, δ1
= 1:7/

ffiffiffi
3

p
, δ2 = 1:6/

ffiffiffi
3

p
, θ1 = 0, θ2 = π, and n = 0 in y-peri-

odic 2-breather (23) and show the degeneration process of
the 2-breather in Figures 5(a)–5(c). The degeneration of the
2-breather given in Figure 5(c) is very similar to that of the
2-lump (31) depicted in Figure 5(d) with the parameter selec-
tion of γ1 = 0, γ2 = 0, δ1 = 1:7/

ffiffiffi
3

p
, δ2 = 1:6/

ffiffiffi
3

p
, and n = 0,

and thus, the former is a good approximation of the latter.
Therefore, we find that an M-lump can be degenerated from
an M-breather in the same way.

By taking αi ⟶ 0 and βi ⟶ 0ði = 1, 2Þ in the 4-soliton
solution (N = 4 for (20)), we derive the hybrid solution com-
posed of two line solitons and one lump:

f = B12
2 + θ1θ2

� 	
1 + eη3 + eη4 + A34e

η3+η4ð Þ
+ M33 +N23θ1 +N13θ2ð Þeη3
+ M44 +N24θ1 +N14θ2ð Þeη4
+ G34 +N234θ1 +N134θ2ð ÞA34e

η3+η4 ,

ð33Þ

where B12 = 1/ðcos ðl1 − l2Þ − 1Þ, B13 = 1/ðcos ðl1 − l3Þ − cosh
ðk3ÞÞ, B14 = 1/ðcos ðl1 − l4Þ − cosh ðk4ÞÞ, B23 = 1/ðcos ðl2 − l3
Þ − cosh ðk3ÞÞ, B24 = 1/ðcos ðl2 − l4Þ − cosh ðk4ÞÞ, θm = sin ð
lmÞx + cos ðlmÞy + n, Mij = sinh ðkiÞ sinh ðkjÞB1iB2j, Nmi =
sinh ðkiÞBmi, Nmij = sinh ðkiÞBmi + sinh ðkjÞBmj, and G34 =
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Figure 11: Propagation of hybrid solution composed of a soliton molecule and a lump at different times: (a) n = −20, (b) n = 0, and (c) n = 25.
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M33 +M34 +M43 +M44ði, j = 3, 4,m = 1, 2Þ. As shown in
Figure 6, a 4-soliton solution exhibits the interaction between
two line solitons and one lump under the longwave limits
with the parameter selection of l1 = l∗2 = 3:5 + i, k3 = 0:5, k4
= 0:8, l3 = 0:5, l4 = 0:75, and β3 = β4 = 0 in (33). At first, they
move toward each other at n = −10 in Figure 6(a); then, the
lump is collided and swallowed by two line solitons at n = 0
in Figure 6(b). After that, they keep moving forward without
changing their shapes and directions of movement.

The hybrid solution of one breather and one lump was
constructed by equation (33) with the conjugation of two sol-
itons by taking k3 = k∗4 , l3 = l∗4 , and β0

3 = β0∗
4 . Figure 7 depicts

the hybrid solution of one breather and one lump from equa-
tion (33) with the parameter selection of l1 = l∗2 = 1:5 + 0:85i,
l3 = l∗4 = 0:8 + 0:5i, k3 = k∗4 = 0:2 + 0:2i, and β0

3 = β0∗
4 = 0. In

Figure 7, we find that both the breather and the lump propa-
gate along the negative direction of the x-coordinate. They
start to interact and become in a line at n = 0 in Figure 7(b).
Then, they form a separate state and keep initial directions
of movement and shapes at n = 20 in Figure 7(c).

In the same way of obtaining equation (33), we construct
the hybrid solution composed of three line solitons and one
lump:

f = B12
2 + θ1θ2

� 	
〠
μ=0,1

exp 〠
3≤j<m≤5

Ajmμjμm + 〠
5

j=3
μjηj

 ! !

+ 〠
3≤j≤5

Mjj +N2jθ1 +N1jθ2
� �

eη j + 〠
3≤i<j≤5

Gij +N2ijθ1 +N1ijθ2
� �

Aije
ηi+η j

+ G345 +N2345θ1 +N1345θ2ð Þ
Y

3≤i<j≤5
Aije

η3+η4+η5 ,

ð34Þ

and we also construct the hybrid solution of four line solitons
and one lump:

f = B12
2 + θ1θ2

� 	
〠
μ=0,1

exp 〠
3≤j<m≤6

Ajmμjμm + 〠
6

j=3
μjηj

 ! !

+ 〠
6

j=3
Mjj +N2jθ1 +N1jθ2
� �

eη j + 〠
3≤i<j≤6

Gij +N2ijθ1 +N1ijθ2
� �

Aije
ηi+η j

+ 〠
3≤i< j<l≤6

Gijl +N2ijlθ1 +N1ijlθ2
� �

AijAilAjle
ηi+η j+ηl

+ G3456 +N23456θ1 +N13456θ2ð Þ
Y

3≤i<j≤6
Aije

η3+η4+η5+η6 ,

ð35Þ
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Figure 12: (a) Breather-soliton molecule in β0
1 = −10, β0

2 = −10, and β0
3 = 10. (b) Breather-soliton molecule in β0

1 = 0, β0
2 = 0, and β0

3 = 10. (c)
Breather-soliton molecule in β0

1 = 10, β0
2 = 10, and β0

3 = −10.
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where

θm = sin lmð Þx + cos lmð Þy + n,
Mij = sinh kið Þ sinh kj

� �
B1iB2j,

Gij = 〠
·=i,j

〠
·=i,j

M··,

Nmi = sinh kið ÞBmi,
Nmij =Nmi +Nmj,

Gijl = 〠
·=i,j,l

〠
·=i,j,l

M··,

Nm3456 = 〠
3≤i≤6

Nmi,

Nmijl =Nmi +Nmj +Nml,

G3456 = 〠
·=3,4,5,6

〠
·=3,4,5,6

M··  i, j, l = 3, 4, 5, 6,m = 1, 2ð Þ,

Bsn =
1

cos ls − lnð Þ − cosh ks + knð Þ
  s, n = 1, 2, 3, 4, 5, 6, k1 = k2 = 0ð Þ:

ð36Þ

Figure 8 describes the interaction between two breathers
and one lump in (35) by taking the parameters k3 = k∗4 =
0:828 + 0:2i, k5 = k∗6 = 0:134 + 5i, l1 = l∗2 = 0:1 + 0:7i, l3 = l∗4
= 1 + 0:750i, l5 = l∗6 = 8 + 0:275i, β0

3 = −15, β0
4 = −15, β0

5 = 15
, and β0

6 = 15. It can be observed in Figure 8 that the two
breathers move in opposite directions on the x-coordinate
and the lump propagates in the negative direction of the x
-coordinate; then, the direction of two breathers becomes
smaller. Figure 8(a) depicts the lump gradually approaching
the two breathers at n = −180; then, they collide at n = −50
in Figure 8(b), and Figure 8(c) shows their separation with
initial structures at n = −10.

4. Soliton Molecules and Breather Molecules

In this section, we investigate the soliton molecules, the
breather-soliton molecules, the breather molecules, the inter-
action between soliton/breather-soliton molecules and
lumps, and the interaction between soliton molecules and
breathers for the ð2 + 1Þ-dimensional elliptic Toda equation
(3) via the velocity resonant method and degeneration of
breathers.

Case 1. Soliton molecule. The soliton molecule is constructed
by imposing the velocity resonance condition on a 2-soliton
solution (N = 2 in (20)). The velocity resonance condition
for 2-soliton is

r1
p1

= r2
p2

,

r1
q1

= r2
q2

,
ð37Þ

where pi = 2 sinh ki cos li, qi = 2 sinh ki sin li, and ri = 2ki
ði = 1, 2Þ.

The 2-soliton solution (N = 2 in (20)) exhibits one soliton
molecule shape under the velocity resonance (37) in Figure 9
with the parameter selection of k1 = 0:1, k2 = 0:2, l1 = arcsin
ðk1 sinh ðk2ÞÞ − π/4, l2 = arcsin ðk2 sinh ðk1ÞÞ − π/4, and n
= 0. It can be observed in Figures 9(a)–9(c) that the sizes of
the soliton molecule depend on the parameters β0

1 and β0
2.

In addition, the two line solitons in the soliton molecule are
different because of k1 ≠ k2 and l1 ≠ l2, although the velocities
of the two solitons are the same. Comparing Figures 9(a)–
9(c), we can find that an asymmetric soliton can be obtained
by changing the size decided by parameters β0

1 and β0
2 in the

molecule. The height of the asymmetric soliton (see in
Figure 9(b)) is between the heights of the two solitons, and
the wave width of the asymmetric soliton is widened.

Now, we describe the interaction between a soliton mol-
ecule and a breather under the velocity resonance condition
(37) and the conjugation of two solitons (k3 = k∗4 , l3 = l∗4 ,
and β0

3 = β0∗
4 ) in 4-soliton (N = 4 in (20)). Figure 10 depicts

the hybrid solution composed of a soliton molecule and a
breather with k1 = 0:5, k2 = 0:4, k3 = k∗4 = 0:1 + 0:2i, l1 =
arcsin ðk1 sinh ðk2ÞÞ − π/4, l2 = arcsin ðk2 sinh ðk1ÞÞ − π/4,
l3 = l∗4 = 4:5 + 0:4i, β0

1 = −15, β0
2 = 15, and β0

3 = β0∗
4 = 0 in 4-

soliton. As the breather is approaching the soliton molecule
in Figure 10(a), we can see that the four humps of the
breather collide with the soliton molecule in Figure 10(b);
then, the breather and the soliton molecule still propagate
in their original directions and keep their original shapes
after they separated in Figure 10(c).

If two solitons satisfy the velocity resonance condition
(37) in equation (33), we can get a hybrid solution composed
of a soliton molecule and a lump in Figure 11 with k3 = 0:8,
k4 = 0:5, l1 = l∗2 = 2:5 + i, l3 = arcsin ðk3 sinh ðk4ÞÞ − π/4, l4 =
arcsin ðk4 sinh ðk3ÞÞ − π/4, β0

3 = 15, and β0
4 = 15. At first, they

move toward each other at n = −20 in Figure 11(a), and then,
the lump collided with the soliton molecule at n = 0 in
Figure 11(b). After that, they have not changed the directions
of movement and shapes at n = 25 in Figure 11(c).

Case 2. Breather-soliton molecule. The breather-soliton mol-
ecule is constructed by imposing the velocity resonance con-
dition on a 3-soliton solution (N = 3 in (20)). The velocity
resonance condition for 3-soliton is

Re r1ð Þ
Re p1ð Þ =

r3
p3

,

Re r1ð Þ
Re q1ð Þ =

r3
q3

,
ð38Þ

where pi = 2 sinh ki cos li, qi = 2 sinh ki sin li, and ri = 2ki
ði = 1, 2, 3Þ. To derive the breather-soliton molecule in
Figure 12, we need to take N = 3 in (20) and choose the
parameters k1 = k∗2 = 0:1 + 0:25i, l1 = l∗2 = 1:1 + i, k3 = 2:117,
l3 = Reðsinh ðk1Þ sin ð11Þ/Re ðsinh k1Þ cos ð11Þ, and n = 0.
Similarly, it can be observed that the size of the breather-
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soliton molecule is controlled by the parameters β0
1, β

0
2, and

β0
3. Figures 12(a) and 12(c) are breather-soliton molecules

of different sizes, and Figure 12(b) can be regarded as a colli-
sion between a soliton and a breather.

The hybrid solution of a breather-soliton molecule and a
lump can be constructed by the condition of velocity reso-
nance (38) in equation (34). The interaction between a
breather-soliton molecule and a lump can be obtained, which
is depicted in Figure 13 with k3 = k∗4 = 0:2 + 0:4i, k5 = 0:2, l1
= l2 = 1:5 + 0:7i, l3 = l∗4 = 0:5 + 0:35i, l5 = Reðsinh ðk3Þ sin ð
13Þ/Re ðsinh k3Þ cos ð13Þ, β0

3 = −10, β0
4 = −10, and β0

5 = 10.
As time n goes on, the breather-soliton molecule and the
lump move closer both along the negative direction of the x
-coordinate; then, they interact with each other at n = 0 in
Figure 13(b). Finally, they move apart, keeping their shapes
and directions of movement, but the size of the breather-
soliton molecule becomes larger.

Case 3. Breather-breather molecule. The breather-breather
molecule is constructed by imposing the velocity resonance

condition on a 4-soliton solution (N = 4 in (20)). The velocity
resonance condition for 4-soliton is

Re k1ð Þ
Re sinh k1 cos l1ð Þ = Re k3ð Þ

Re sinh k3 cos l3ð Þ ,

Re k1ð Þ
Re sinh k1 sin l1ð Þ = Re k3ð Þ

Re sinh k3 sin l3ð Þ ,
ð39Þ

where pi = 2 sinh ki cos li, qi = 2 sinh ki sin li, and ri = 2ki
ði = 1, 2, 3, 4Þ. Figure 14 illustrates a breather-breather
molecule with the parameter selection of k1 = k∗2 = −
0:0326551718 + 0:2i, k3 = k∗4 = 0:1340192245 + 5i, l1 = l∗2 =
1:8 + 0:848416875i, l3 = l∗4 = 8 + 0:2746749837i, and n = 0
in a 4-soliton solution. Similarly, Figures 14(a)–14(c), respec-
tively, show the breather-breather molecules with different
sizes depending on β0

1, β
0
2, β

0
3, and β0

4. In Figure 14(b), two
breathers of the breather-breather molecule become in line
and also can be regarded as a collision between a breather
and a breather.
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Figure 13: Propagation of hybrid solution composed of a breather-soliton molecule and a lump at different times: (a) n = −60, (b) n = 0, and
(c) n = 65.
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5. Conclusion and Discussion

In this paper, we have considered a variety of solutions for
the ð2 + 1Þ-dimensional elliptic Toda equation. This equa-
tion is investigated to search forM-breather, lumps, possible
molecules constructed by solitons and breathers, and hybrid
solutions of them. It is interesting to find that the ð2 + 1Þ
-dimensional elliptic Toda equation possesses the line soliton
molecules, but its continuous version KP1 does not exhibit
soliton molecule structures. This shows that the discrete non-
linear wave equations have more diverse molecule structures
than their continuous counterparts. We expect that the
method of bilinear Bäcklund transformation and nonlinear
superposition formulae can be applied to more continuous
and discrete nonlinear wave equations to investigate various
nonlinear wave phenomena.
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The exact traveling wave solution of the fractional Sharma-Tasso-Olever equation can be obtained by using the function expansion
method, but the general traveling wave solution cannot be obtained. After transforming it into the Sharma-Tasso-Olever equation of
the integer order by the fractional complex transformation, the general solution of its traveling wave is obtained by a specific function
transformation. Through parameter setting, the solution of the kinked solitary wave is found from the general solution of the traveling
wave, and it is found that when the two fractional derivatives become smaller synchronically, the waveform becomes more smooth,
but the position is basically unchanged. The reason for this phenomenon is that the kink solitary wave reaches equilibrium in the
counterclockwise and clockwise rotation, and the stretching phenomenon is accompanied in the process of reaching equilibrium. This
is a further development of our previous work, and this kind of detailed causative analysis is rare in previous papers.

1. Introduction

Because of many phenomena, integer-order differential equa-
tions cannot be well described, whichmakes fractional nonlin-
ear differential equations have research significance. As an
effective mathematical modeling tool, it is widely used in the
mathematical modeling of nonlinear phenomena in biology,
physics, signal processing, control theory, system recognition,
and other scientific fields. The widely studied fractional
Sharma-Tasso-Olever (STO) equation in space and time [1–4]

∂αu
∂tα

+ 3ρu2
∂βu
∂xβ

+ 3ρ
∂βu
∂xβ

" #2
+u

∂2βu
∂x2β

! !

+ ρ
∂3βu
∂x3β

= 0, 0 < α ≤ 1, 0 < β ≤ 1:

ð1Þ

In equation (1), if α = β, we get [5]

∂αu
∂tα

+ 3ρu2
∂αu
∂xα

+ 3ρ
∂αu
∂xα

� �2
+ u

∂2αu
∂x2α

! !
+ ρ

∂3αu
∂x3α

= 0:

ð2Þ

In equation (1), if β = 1, we get the time-fractional STO
equation [6, 7]

Dα
t u + 3ρu2ux + 3ρu2x + 3ρuuxx + ρuxxx = 0, 0 < α ≤ 1: ð3Þ

In equations (1)–(3), u = uðx, tÞ is the function to be
solved, ρ is an arbitrary real parameter, and α, β are conform-
able fractional derivatives.
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Recently, we have looked at some papers that obtain the
exact solutions of the traveling wave of fractional-order equa-
tions and have illustrated some solitary wave solutions con-
tained in the exact traveling wave solutions. These articles
used different methods to obtain a large number of accurate
traveling wave solutions in various forms. In order to better
understand our work, we present the definitions and proper-
ties of the conformable fractional derivative as follows.

Given a function f : ½0,∞�→ R. Then, the conformable
fractional derivative of f of order 0 < α < 1 is defined as [8]

Tα fð Þ tð Þ = lim
ε→0

f t + εt1−α
� �

− f tð Þ
ε

: ð4Þ

The conformable derivative is a fractal derivative [9].
According to the fractal derivative theory, the influence of
environmental abnormal fluctuation on physical behavior is
equivalent to the influence of fractal space-time transforma-
tion [10, 11]. Several properties of conformable fractional
derivative definition are as follows:

Tα af + bgð Þ = aTα fð Þ + bTα gð Þ, for all a, b ∈ R,
Tα Cð Þ = 0,

Tα tb
� �

= btb−α, for all b ∈ R,

Tα f gð Þ = gTα fð Þ + fTα gð Þ,

if f is differentiable, Tα fð Þ tð Þ = t1−a
df
dt

tð Þ:

ð5Þ

These properties have been proved in literature [8], and
there is no need to repeat them here. The physical interpreta-
tion of the conformable fractional derivative can be found in
the literature [12].

According to Theorem 2.11 (chain Rule) in literature
[13], we show the following properties of consistent frac-
tional derivatives.

Tt
α f g tð Þð Þ = f g′ g tð Þð Þg′ tð Þt1−α: ð6Þ

For more detailed knowledge, refer to literature [13]. For-
mula (6) is briefly proved as follows.

Proof. Set u = t + εt1−α in the definition, and you get

Tt
α f g tð Þð Þ = lim

u→t

f g uð Þð Þ − f g tð Þð Þ
u − t

t1−α

= lim
u→t

f g uð Þð Þ − f g tð Þð Þ
g uð Þ − g tð Þ ⋅ lim

u→t

g uð Þ − g tð Þ
u − t

t1−α

= lim
g uð Þ→g tð Þ

f g uð Þð Þ − f g tð Þð Þ
g uð Þ − g tð Þ ⋅ lim

u→t

g uð Þ − g tð Þ
u − t

t1−α

= f g′ g tð Þð Þg′ tð Þt1−α:
ð7Þ

Now, let us look at some of the work with the STO equation
of fractional order to find the exact traveling wave solution.

In literature [1], the author used fractional complex
transformation for equation (1) and then used the exp-
function method to obtain its precise traveling wave solution.

In literature [2], the author used fractional complex
transformation on equation (1) and then used ðG′/G2Þ
-expansion method to obtain the precise traveling wave solu-
tion of equation (1).

In literature [3], the author used fractional complex
transformation on equation (1) and then used the novel
ðG′/GÞ-expansion method to obtain the exact traveling
wave solution of equation (1); the generalized Kudryashov
method was also used to obtain the precise traveling wave
solution of equation (1).

In literature [4], the author used the improved ðG′/GÞ
-expansion method to get the exact traveling wave solution
of equation (1) after using the complex fractional
transformation.

In literature [5], the author used fractional complex
transformation for equation (2), and then extended tanh-
coth method was used to obtain the precise traveling wave
solution of equation (2).

In literature [6], the author used fractional complex
transformation for equation (3) and then used the Riccadi
function expansion method to obtain the exact traveling
wave solution of fractional-order equation (3).

In literature [7], the author used fractional complex
transformation in equation (3) and then used a new general-
ized ðG′/GÞ-expansion method to obtain the precise travel-
ing wave solution of the fractal equation (3).

Here, we have just listed some of the articles on the accu-
rate line-wave solution to the STO equation of fractional
order. It can be seen from literature [1–7] that the first step
of these authors was to reduce the STO equation of the frac-
tional order to a nonlinear ordinary differential equation by
using fractional complex transformation and then to solve
the reduced equation by various methods to obtain the solu-
tion of the original fractional-order equation. In addition to
the methods provided in literature [1–7], there are other
techniques that can be used to obtain wave solutions of dif-
ferent structures [14–19]. It can be seen from equations
(1)–(3) that the most general equation is equation (1), so
we only discuss the accurate general traveling wave solution
of equation (1).

For equation (1), α, β are conformable fractional deriva-
tives and the fractional complex transformation used is [20]

u x, tð Þ =U ξð Þ, ξ = ctα

α
+
kxβ

β
, ð8Þ

where c, k are parameters to be determined. Through equa-
tion (8), equation (1) can be transformed into

cU ′ + 3k2ρ U ′
� �2

+ 3k2ρUU″ + 3kρU2U ′ + k3ρU‴ = 0:

ð9Þ

In literature [1–7], some articles integrate equation (13)
once and then assume that the integral constant is zero,
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which will lead to the exact solution obtained being less gen-
eral than its original one [21, 22]. Equation (9) is a third-
order differential equation, and in general, its general solu-
tion should contain three arbitrary constants. From this per-
spective, the exact line-wave solutions obtained in the article
[1–7] we mentioned are not general solutions, but only par-
tial solutions. In this paper, we consider the integrability of
equation (9) and combine with the fractional complex trans-
formation to obtain the general traveling wave solution of the
fractional STO equation, which is different from the exact
solution obtained by using the function expansion method
in known literature. As we all know, from the exact solutions
of traveling waves, various forms of solutions can be obtained
by choosing appropriate parameters, such as soliton solu-
tions and periodic wave solutions. This conclusion can be
obtained by bifurcation analysis of the first integral equation
of equation (9) [23]. If the reader wants to know how the
exact linear wave solutions of equation (9) are bifurcated
and how the exact traveling wave solutions correspond to dif-
ferent forms of solutions, please refer to [23]. We selected
from the general solution of traveling wave a kink solitary
wave to fractional-order parameter change on the influence
of the waveform, found that when two fractional-order
parameters decrease at the same time, the kink soliton will
become more smooth, but the location remains the same
basic phenomenon, through the analysis found that the cause
of this phenomenon is a kink soliton in the clockwise and
counterclockwise to balance. Papers with such detailed anal-
ysis are rare.

2. The General Solution of the Fractional STO
Equation in Space and Time in the
Traveling Wave

Substituting equation (8) into equation (1) for transforma-
tion, we get

cU ′ + 3k2ρ U ′
� �2

+ 3k2ρUU″ + 3kρU2U ′ + k3ρU‴ = 0:

ð10Þ

Integrate equation (10) once, and we get

cU + 3k2ρUU ′ + kρU3 + k3ρU″ + C0 = 0, ð11Þ

where }U ′} = dU/dξ, C0 is the integral constant.
Considering the specific function transformation,

U =
kF ′
F

, ð12Þ

where }F ′} = dF/dξ,F = FðξÞ, we can easily get the following
equation.

U ′ = k
F″F − F ′

� �2
F2 ,

UU ′ = k2
F″F ′F − F ′

� �3
F3 ,

ð13Þ

U″ = k
F‴F + F″F ′ − 2F ′F″
� �

F − F″F − F ′
� �2� 	

2F ′

F3 :

ð14Þ
Substituting equations (13) and (14) into equation (11),

we get

ck
F ′
F
+ 3k4ρ

F″F ′F − F ′
� �3

F3 + ρk4
F ′
� �3
F3

+ ρk4
F‴F + F″F ′ − 2F ′F″
� �

F − F″F − F ′
� �2� 	

2F ′

F3

+ C0 = 0:

ð15Þ

Arrange equation (15) to get

k
F ′
F

+ ρk4
F‴

F
+ C0 = 0⇒ F‴ +

c

ρk3
F ′ + C0

ρk4
F = 0 ð16Þ

Equation (16) is a familiar three-differential equation,
and its general solution can be easily obtained, denoted
as p = c/ρk3 ≠ 0, q = C0/ρk

4; then, equation (16) has a
characteristic equation

r3 + pr + q = 0 ð17Þ

The three roots of equation (17) can be obtained by
Cardin formula in the following order:

r1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
,

ð18Þ

r2 = ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
+ ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
,

ð19Þ

r3 = ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
+ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
+

p
3

� �3r
3

s
,

ð20Þ

where ω = ð−1 + ffiffiffi
3

p
iÞ/2.
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(1) When discriminant Δ = ðq/2Þ2 + ðp/3Þ3 = 0, that is,
ðC0Þ2 = 4c3/27ρk, the three roots of equation (17)
are reduced to

r1 = 2
ffiffiffiffiffiffi
−
q
2

3

r
, r2 = r3 =

ffiffiffi
q
2

3

r
: ð21Þ

equation (16) has the following general solution:

F ξð Þ = C1e
2
ffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
ξ + C2 + C3ξð Þe

ffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ, ð22Þ

where C1, C2, andC3 are arbitrary constants
Without loss of generality, we can assume C1 is not equal

to zero. By substituting equation (22) into equation (12) and
combining with complex transformation equation (8), the
general traveling wave solution of the original equation (1)
is expressed as

U = k
C12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
e2
ffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
ξ + C2

ffiffiffiffiffiffiffi
q/23

p
+ C3

ffiffiffiffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ + C3

� �
e
ffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ

C1e
2
ffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
ξ + C2 + C3ξð Þe

ffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ

= k
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
e2
ffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
ξ + C2/C1

ffiffiffiffiffiffiffi
q/23

p
+ C3/C1

ffiffiffiffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ + C3/C1ð Þ

� �
e
ffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ

e2
ffiffiffiffiffiffiffiffiffi
− q/2ð Þ3

p
ξ + C2/C1ð Þ + C3/C1ð Þξð Þe

ffiffiffiffiffiffiffi
q/2ð Þ3

p
ξ

:

ð23Þ

In equation (23), there are only two arbitrary constants,
which is caused by the fixed arbitrary constant C0. Without
loss of generality, we could writeC4 = C2/C1, C5 = C3/C1.

(2) When discriminant Δ = ðq/2Þ2 + ðp/3Þ3 ≠ 0, equation
(19) has the following general solution:

F ξð Þ = C1e
r1ξ + C2e

r2ξ + C3e
r3ξ, ð24Þ

where C1, C2, andC3 are arbitrary constants
Without loss of generality, we can assume C1 is not equal

to zero. By substituting equation (24) into equation (12) and
combining with complex transformation equation (8), the
general traveling wave solution of the original equation (1)
is expressed as

U = k
C1r1e

r1ξ + C2r2e
r2ξ + C3r3e

r3ξ

C1er1ξ + C2er2ξ + C3er3ξ

= k
r1e

r1ξ + C2/C1ð Þr2er2ξ + Ce/C1ð Þr3er3ξ
er1ξ + C2/C1ð Þer2ξ + C3/C1ð Þer3ξ :

ð25Þ

Without loss of generality, we could write C4 = C2/C1,
C5 = C3/C1, and we have an arbitrary constant C0 hidden in
the parameter q.

3. The Discussion and Explanation

We observed some articles about the STO equation of frac-
tional order and found that they more or less ignored the
properties of the equation itself in the solution process, and

the exact solution of the traveling wave obtained by various
function expansion methods was not the general solution.
Because in general, it makes sense that the precise general
solution to equation (10) should contain three arbitrary con-
stants. In the following part, we will find the kinked solitary
wave solution from the general solution obtained in this
paper and analyze the influence of the synchronous change
of two fractional derivatives on the kinked solitary wave solu-
tion waveform and the reasons for this phenomenon.

Let ξ in equation (25) be the expression in equation (8),
namely,

ξ = ctα

α
+
kxβ

β
: ð26Þ

We take the integral constant C0 in equation (11) as
zero; then, r1, r2, and r3 in equation (25) are valued as
r1 = 0, r2 =

ffiffiffiffiffiffi−pp =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
, r3 = − ffiffiffiffiffiffi−pp = −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
; then,

equation (25) is rewritten as

U = k
r1e

r1ξ + C2/C1ð Þr2er2ξ + C3/C1ð Þr3er3ξ
er1ξ + C2/C1ð Þer2ξ + C3/C1ð Þer3ξ

= k
C4r2e

r2ξ + C5r3e
r3ξ

1 + C4er2ξ + C5er3ξ

= k
C4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
2e

ffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
ctα/αð Þ+ kxβ/βð Þð Þ − C5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
e−

ffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
ctα/αð Þ+ kxβ/βð Þð Þ

1 + C4e
ffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
ctα/αð Þ+ kxβ/βð Þð Þ + C5e

−
ffiffiffiffiffiffiffiffiffiffi
−c/ρk3

p
ctα/αð Þ+ kxβ/βð Þð Þ :

ð27Þ

In equation (27), take k = 1, ρ = 2, c = −1:2, C4 = C5 = 1;
then, the diagram of solution (27) of equation (1) chang-
ing with α = β is shown in Figure 1. This is the kink sol-
itary wave solution, which is a particular solution of the
general solution (25) of equation (1). When α = β = 1,
the fractional-order STO equation degenerates into an
equation of integer order. At this point, the diagram of
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Figure 1: 3D plot of solution (27) for various values of α = β, and
k = 1, ρ = 2, c = −1:2, C4 = C5 = 1.
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equation (27) is taken from Figure 1, as shown in
Figure 2. After setting values for other parameters,
Figure 1 explains the perspective view of the solution
(27), when the values of α = β are 1, 0.7, and 0.4 in turn.

As can be seen from Figure 1, as the fractional derivative
α and β become smaller synchronically, the twist of the kink
solitary wave becomes smoothed, but the position of the twist
of the kink solitary wave basically remains at the straight line
x = t on the t‐x plane. In order to further explain this phe-
nomenon and promote our previous work [24], this paper
conducts a more detailed study of the influence of fractional
derivative on the shape of kink solitary wave in two steps.
First, the value of the time fractional derivative α is fixed,
and only the change of the spatial fractional derivative β is
observed. The result is shown in Figure 3. It can be seen from
Figure 3 that the spatial fractional derivative β values 1, 0.7,
and 0.4 in turn, and the kinked solitary wave rotates at the

kinked position in the t‐x plane, and the direction of rotation
is close to the line t = 0 inside the t‐x plane. Secondly, the
value of the spatial fractional derivative β is fixed, and only
the change of the time fractional derivative α is observed.
The result is shown in Figure 4. It can be seen from
Figure 4 that the time fractional derivative α is 1, 0.7, and
0.4 in turn, and the kinking position of the kink solitary wave
in the t‐x plane also rotates, with the direction approaching
the line x = 0 in the x‐t plane.

By comparing Figures 3 and 4, it is found that the spatial
fractional derivative β becomes smaller, making the kink of
the kink isolated wave as shown in the figure rotate clockwise
in the t‐x plane, while the time fractional derivative α
becomes smaller, making the kink of the kink isolated wave
as shown in the figure rotate counterclockwise in the t‐x
plane. When the fractional derivatives change synchroni-
cally, the kinks of the isolated wave in Figure 1 reach a bal-
ance in the clockwise rotation and counterclockwise
rotation, and the position of the kinks almost stays the same.
Meanwhile, the kinks of the isolated wave stretch together in
the clockwise and counterclockwise rotation, which makes
the kinks of the isolated wave smoothen.

4. Conclusion

The exact traveling wave solutions obtained by the function
expansion method are usually not the general traveling wave
solutions of fractional-order nonlinear partial differential
equations. In this paper, the fractional-order STO equation
is transformed into an integer-order STO equation through
the complex fractional-order transformation, and then, the
general traveling wave solution of the fractional-order STO
equation is obtained through the transformation of a specific
function, which will make our understanding of the traveling
wave solution of the fractional-order STO equation more
comprehensive. By setting parameters, a kinked solitary wave
solution is extracted from the general traveling wave solution,

0.6

0.4

0.2

0

–0.2

u

t

x

–0.4

–0.6

0
010 1020 2030 3040 40

50

Figure 2: 3D plot of solution (27) for values of α = β = 1, and
k = 1, ρ = 2, c = −1:2, C4 = C5 = 1.
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and the influence of the fractional derivative on the kinked
solitary wave is analyzed in detail. It is found that the kinked
solitary wave becomes more smooth when the fractional-
order parameters are synchronized, but the position of the
kinked solitary wave is basically unchanged. The position of
the kinked solitary wave is basically unchanged because we
have two fractional-order parameters, one of which becomes
smaller so that the kinked waveform rotates clockwise, and
the other fractional-order parameter becomes smaller so that
the kinked waveform rotates counterclockwise. Such clock-
wise rotation and counterclockwise rotation achieve a bal-
ance. The kink solitary wave becomes smoother because of
the tugging phenomenon that accompanies the process of
reaching equilibrium.
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This article intends to review quasirandom sequences, especially the Faure sequence to introduce a new version of scrambled of this
sequence based on irrational numbers, as follows to prove the success of this version of the random number sequence generator and
use it in future calculations. We introduce this scramble of the Faure sequence and show the performance of this sequence in
employed numerical codes to obtain successful test integrals. Here, we define a scrambling matrix so that its elements are
irrational numbers. In addition, a new form of radical inverse function has been defined, which by combining it with our new
matrix, we will have a sequence that not only has a better close uniform distribution than the previous sequences but also is a
more accurate and efficient tool in estimating test integrals.

1. Introduction

It is well known that Monte Carlo calculations are based on
the generation of random numbers on interval (0,1). There-
fore, the generation of random numbers that have more
uniformity on (0,1) guarantees better approximations in
these calculations. In recent years, some researchers have
employed quasirandom sequences instead of random num-
bers to aim producing extra uniformity of the randomly gen-
erated numbers on (0,1). Due to the breadth and complexity
of some problems that are mostly unsolvable by classical
mathematical methods or solving them with classical
methods is associated with more time and computational
cost, the stochastic solving of such cases with numerical
methods and using the Monte Carlo method plays a key role.
The quasirandom sequences are common in Monte Carlo
calculations such as Faure, Halton, Niederreiter, and Sobol
sequences, but due to the lack of complete success of these
sequences in Monte Carlo computation, we use scrambled
versions of them, all of which are designed to increase the
uniformity of randomly (quasirandom) generated numbers

on (0,1), so that we can estimate the obtained solution to
the desired unknown solution of the problem.

To resolve this problem, researchers are competing on
the use of scrambled quasirandom generators based on their
version of random number generation to provide more accu-
rate results in Monte Carlo calculations.

Today, Monte Carlo and quasi-Monte Carlo methods are
widely used to solve the computations of physical and math-
ematical problems. Quasi-Monte Carlo (QMC) methods play
an alternative role for Monte Carlo methods. The advantage
of these methods is that they use numbers to provide extera
uniformity on unit hypercube. This feature has led to the
use of these methods to estimate high-dimensional integrals
(Niederreiter, 1992; Spanier and Maize, 1994) [1].

So far, several quasirandom sequences (or low discrep-
ancy sequences) have been introduced for the QMC method.
Such as the Faure sequence, the Halton sequence, and the
Sobol sequence. Despite the fact that among these three
sequences, the Faure sequence has better features in terms
of discrepancy bound, but in practice, it is less used. Because,
the convergence rate of this class of sequences is not so good
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compared with the other sequences [2]. In addition, due to
the correlation between the different dimensions of the Faure
sequence, the distribution of the sequence points is not very
favorable, and we see poor two-dimensional projections
(Figure 1). To overcome this problem, many scrambling
methods have been proposed for the Faure sequence (see
[3]). In almost all of these scrambles, there are attempts to
define a new matrix by shifting numbers in the generating
matrix or the placement of the elements, and there has been
less talk about the properties of irrational numbers. The
matrix that we introduce in this paper has been selected from

several proposed matrices. Because it has good two-
dimensional projections and it is also at a very high level in
terms of integral estimation.

In the next section, the structure of the original Faure
sequence is given. We then briefly list the scramblers that
have already been introduced in Section 3. In Section 4,
we have brought our proposed matrix. Sections 5 and 6
give the evaluation criteria for the quality of the sequence
generated by our proposed matrix and compare it with
previous sequences, and in Section 7, the conclusion is
stated.
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Figure 1: 512 points from the original Faure sequence in several bases.
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2. The Faure Sequence

Suppose p ≥ 2 is a prime number, and suppose N is the num-
ber of points we want to generate, and n = ða0, a1,⋯, am−1ÞT
is a vector of integers whose components are from the expan-
sion of the number n on the base p, where 0 ≤ aj ≤ p and m
= dlogp Ne. We define the radical inverse function, ϕpðnÞ, as

ϕp nð Þ = a0
p

+ a1
p2

+⋯+ am−1
pm

: ð1Þ

For the Faure sequence, we define a different generator
matrix for each dimension. If P be the Pascal matrix, then
for a s-dimensional Faure sequence the generator matrix of
the jth dimension is CðjÞ = P j−1, 1 ≤ j ≤ s, where the member
on the row c and the column r is defined as follows:

P j−1 =
c − 1
r − 1

 !
j − 1ð Þc−r mod pð Þ, c ≥ 1, r ≥ 1: ð2Þ

Thus, let xðjÞn be represents the number n in the dimension
j in the Faure sequence, then

x jð Þ
n = ϕp P j−1n

� �
, ð3Þ

and so the s-dimensional Faure sequence is ðϕpðP0nÞ, ϕp

ðP1nÞ,⋯, ϕpðPs−1nÞÞ:

3. Scrambling the Faure Sequence

Since the introduction of the Faure sequence, several
methods were proposed to scramble it. In this section, we
give an overview of some of such scrambles.

3.1. The Generalized Faure Sequence. Tezuka [2] proposed
the generalized Faure sequence, GFaure, with the jth dimen-
sion generator matrix CðjÞ = AðjÞP j−1 and the AðjÞ for j = 1, 2
,⋯, s are arbitrary nonsingular lower triangular matrices
over Fp. A special case for AðjÞ is that all members are one
for all dimensions [4].

3.2. Random Linear (Digit) Scrambling. After reviewing dif-
ferent versions of the Owen’s method, Matoušek introduced
a scramble matrix and a transfer vector for various dimen-
sions [5]. The sequences obtained by Matoušek have the
following general form:

xn = ϕp A 1ð ÞP0n + g1

� �
, ϕp A 2ð ÞP1n + g2

� �
,⋯, ϕp A sð ÞPs−1n + gs

� �� �
:

ð4Þ

For the random linear scrambling, the matrices AðjÞ and
the vectors gj for j = 1,⋯, s are of the form

A jð Þ =

h1,1 0 0 0
h2,1 h2,2 0 0
h3,1 h3,2 h3,3 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
, gj =

g1

g2

g3

⋮

0
BBBBBBBB@

1
CCCCCCCCA
, ð5Þ

where the gj’s and the hi,j with i ≥ j are chosen randomly and
independently from f0, 1,⋯, b1g, the hj,j’s are chosen ran-
domly and independently from f1, 2,⋯, p − 1g.
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Figure 2: 1000 points from the original Faure sequence.
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Random linear digit method is the basis of other scram-
bles that will follow. Even the GFaure method is a subset of
this method in which the members of the shift vectors are
all zero.

3.3. I-Binomial Scrambling. A subset of the family of random
linear scrambling methods is called left I-binomial scram-
bling [6]. Here, the AðjÞ is defined as

A jð Þ =

h1 0 0 0 0
h2 h1 0 0 0
h3 h2 h1 0 0
h4 h3 h2 h1 0
⋱ ⋱ ⋱ ⋱ ⋱

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, ð6Þ
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Figure 4: L2-discrepancy for various randomized scramblings of a 40-dimensional Faure sequence.
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Figure 3: 1000 points from our scrambled Faure sequence.
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where h1 is chosen randomly and independently from f1, 2
,⋯, p − 1g and also hi’s ði > 1Þ are chosen randomly and
independently from f0, 1,⋯, p − 1g.

3.4. Striped Matrix Scrambling. The scrambling matrix AðjÞ

for Striped Matrix Scrambling method, has the following
form:

A jð Þ =

h1 0 0 0 0
h1 h2 0 0 0
h1 h2 h3 0 0
h1 h2 h3 h4 0
⋮ ⋮ ⋮ ⋮ ⋮

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, ð7Þ
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Figure 5: Estimates of the integral I1ð f Þ by using various Faure sequences.
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where the hi’s are chosen randomly and independently from
f1, 2,⋯, p − 1g. The different types of this scramble are
examined in [7], only for problems in the first dimension.
Of course, it does not say what changes should be made to
the matrix for higher dimensions.

3.5. Chi’s Optimal Scramble. When we use the I-binomial
method to scramble the Faure sequence, the value of (num-
ber) h1 causes all the expansion digits of each number to be

replaced (permuted). Now, if we leave out the first digit, the
value of (number) h2 causes all the remaining digits to be
replaced (permuted).

So by cleverly selecting these two members, we can
achieve better Faure sequences.

In [8], Chi has shown that the best choice for these
two values can be obtained based on the primitive roots
of the p. Finally, the Chi’s optimal scramble matrix is as
follows:
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Figure 6: Estimates of the integral I2ð f Þ with ai = 1 by using various Faure sequences.
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Figure 7: Estimates of the integral I2ð f Þ with ai = i by using various Faure sequences.
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Figure 8: Estimates of the integral I2ð f Þ with ai = i2 by using various Faure sequences.
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A jð Þ =

hj−11 0 0 0

h2 hj−11 0 0

0 h2 hj−11 0

0 0 h2 hj−11

⋮ ⋮ ⋮ ⋱

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
, ð8Þ

3.6. Inverse Scrambling. Fathi and Eskandari [9] adapted
Chi’s optimal matrix and introduced two kind of matrix
AðjÞ as follows:

A jð Þ
1 =

dj−1 0 0 0
0 dj−1 0 0
0 0 dj−1 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
, A jð Þ

2 =

dj−1 0 0 0
0 dj 0 0
0 0 dj+1 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
,

ð9Þ

where d is chosen from f1, 2,⋯, p − 1g for j = 1,⋯, s.
Based on nonlinear congruential method, they proposed

another scrambling method for the Faure sequence for which
the jth coordinate of the nth point has the general form

x jð Þ
n = ϕp Φ−1 A jð ÞΨ P j−1n

� �
+ gj

� �� �
, ð10Þ

where ΦðxÞ and ΨðxÞ are bijections that map a digit vector x
to another digit vector.

4. Scrambling Matrix with Irrational Members

In this section, corresponding to the method of random lin-
ear digits, we introduce a scrambling matrix that its members
are a function of square root of base p (that is, they are
irrational numbers).

After testing many functions, we found the following
function that has the most performance:

A jð Þ =

ffiffiffi
p

p
− 1 0 0 0ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 0 0ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1 0ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1

0
BBBBBBBB@

1
CCCCCCCCA
: ð11Þ

In (1), we introduced the common form of radical inverse
function ϕ for base p. Now, we define a new form of this func-
tion as follows:

ϕp′ nð Þ = a0
pm

+ a1
pm−1 +⋯+ am−1

p
: ð12Þ

We call this as reverse radical inverse function, and we
denote the sequences that are made in this way, with the
suffix “rev.” Therefore, by combining the matrix AðjÞ and
function ϕ′, the general form of number n in dimension j will
be as follows:

x jð Þ
n = ϕ′p A jð ÞP j−1n

� �
: ð13Þ

So, for example, we denote the 40-dimensional Faure
sequence generated on the base 41 by the scrambled matrix
AðjÞ and the function ϕ′ with AðjÞ.41rev.

In the following sections, we have examined (studied) the
quality of this sequence along with its performance compared
to other sequences.

5. Investigation of the Uniformity of
Generated Sequences

5.1. Two-Dimensional Projections. The first step in evaluating
the performance of a sequence is to see how the points in the
2D projections are distributed. From Figure 2, in these
designs, the Faure sequence points are located within parallel

Table 1: Estimates of I1ð f Þ by using Faure sequences.
Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.2175 2.2301 13.402 2.6464 0.0001

IB 500 0.0017 0.0016 0.0014 0.0006 0.0002

RLD 500 0.0013 0.0013 0.0011 0.0006 0.0001

Aj-41rev 500 1.0392 1.0439 1.5286 0.8095 1.1542

Faure 5000 0.9803 1.0128 3.1585 0.7848 0.0314

IB 5000 0.0340 0.0397 0.0443 0.0402 0.0306

RLD 5000 0.0469 0.0475 0.0548 0.0737 0.0341

Aj-41rev 5000 1.0015 1.0154 1.0219 1.1401 0.6935

Faure 10000 0.9584 0.9445 1.9919 0.6583 0.0464

IB 10000 0.0569 0.0564 0.0593 0.0774 0.0496

RLD 10000 0.0539 0.0541 0.0566 0.0758 0.0418

Aj-41rev 10000 0.9992 0.9959 1.0182 0.8780 0.5630

Faure 20000 0.9943 1.0522 1.4909 0.5440 0.0575

IB 20000 0.0610 0.0607 0.0628 0.0791 0.0561

RLD 20000 0.0583 0.0585 0.0592 0.0670 0.0637

Aj-41rev 20000 0.9999 1.0021 1.0614 0.9301 0.7249

Faure 50000 0.9965 1.0127 0.9972 0.5159 0.0674

IB 50000 0.0617 0.0618 0.0621 0.0683 0.0628

RLD 50000 0.0604 0.0605 0.0582 0.0657 0.0587

Aj-41rev 50000 0.9984 0.9983 1.0241 0.9901 0.9173

Faure 70000 0.9964 1.0058 0.9680 0.5029 0.0669

IB 70000 0.0809 0.0806 0.0877 0.2000 2.3467

RLD 70000 0.0711 0.0713 0.0671 0.0702 0.0583

Aj-41rev 70000 0.9985 0.9954 1.0260 1.0841 0.9623

Faure 100000 1.0008 1.0248 1.0459 0.5466 0.1665

IB 100000 0.4610 0.4616 0.4667 0.4694 1.7654

RLD 100000 0.2742 0.2746 0.2772 0.2529 0.1366

Aj-41rev 100000 0.9979 1.0007 1.0215 1.1251 1.3969
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lines, which shows that there is a linear correlation between
points in successive dimensions. Also in these designs, we
see a lot of empty spaces. Therefore, the distribution of good
points has not been done. In Figure 3, we draw the same
designs using the by AðjÞ:41rev.

These figures show that two-dimensional projections of
AðjÞ:41rev sequence are better than two-dimensional projec-
tions of the original Faure sequence.

5.2. Discrepancy. One way to measure the quality of a
sequence is to calculate its discrepancy [10]. Warnock
shows that

TNð Þ2 = 1
N2 〠

N

k=1
〠
N

m=1

Ys
i=1

1 −max x ið Þ
k , x ið Þ

m

� �� �
−
21−s
N

〠
N

k=1

Ys
i=1

1 − x ið Þ2
k

� �
+ 3−s:

ð14Þ

where xðiÞk is the ith component of the point xk.
Figure 4 compares TN between the original Faure

sequence and the some scrambled Faure sequences that
introduced in Section 3. From Figure 4, we see that the dis-

crepancy p diagram for our new sequence is at all points
below the other sequences. This is a good indication of the
high quality of our sequence points.

6. Numerical Integration

Another way to compare the quality of sequences is to use
them to solve high-dimensional integration problems with
numerical methods. Consider the following test integrals:

I1 fð Þ =
ð1
0
⋯
ð1
0

Ys
i=1

π

2 sin πxið Þdx1 ⋯ dxs = 1, ð15Þ

I2 fð Þ =
ð1
0
⋯
ð1
0

Ys
i=1

4xi − 2j j + ai
1 + ai

dx1 ⋯ dxs = 1, ð16Þ

where the ai are parameters. There are four choices of param-
eters as follows:

(1) ai = 0 for 1 ≤ i ≤ s

(2) ai = 1 for 1 ≤ i ≤ s

Table 2: Estimates of I2ð f Þ with ai = 1 by using Faure sequences.

Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.0759 1.2370 1.7994 0.6913 0.1727

IB 500 1.5015 1.5000 1.5572 1.3445 1.1510

RLD 500 1.5123 1.4820 1.5456 1.4661 1.2191

Aj-41rev 500 0.9879 0.9014 0.9347 0.8930 0.9629

Faure 5000 0.9963 0.9908 1.0342 0.7406 0.4475

IB 5000 1.4836 1.4785 1.4787 1.4212 1.2841

RLD 5000 1.4807 1.4770 1.4840 1.4455 1.2824

Aj-41rev 5000 0.9976 0.9840 0.9964 0.9898 1.0902

Faure 10000 0.9935 0.9864 1.0062 0.7860 0.5359

IB 10000 1.4769 1.4750 1.4697 1.4370 1.3296

RLD 10000 1.4779 1.4759 1.4784 1.4438 1.3261

Aj-41rev 10000 0.9990 0.9865 0.9925 0.9968 1.0920

Faure 20000 0.9945 0.9954 0.9861 0.8140 0.5897

IB 20000 1.4753 1.4755 1.4706 1.4244 1.3306

RLD 20000 1.4763 1.4752 1.4640 1.4288 1.3271

Aj-41rev 20000 1.0000 1.0002 1.0151 1.0336 1.0965

Faure 50000 0.9992 0.9969 0.9609 0.8397 0.6360

IB 50000 1.4750 1.4744 1.4697 1.4397 1.3342

RLD 50000 1.4755 1.4751 1.4725 1.4398 1.3372

Aj-41rev 50000 1.0015 1.0039 1.0192 1.0222 1.0509

Faure 70000 0.9983 0.9935 0.9613 0.8428 0.6458

IB 70000 1.4654 1.4650 1.4582 1.4249 1.3238

RLD 70000 1.4710 1.4705 1.4653 1.4362 1.3491

Aj-41rev 70000 1.0020 1.0040 1.0237 1.0418 1.1168

Faure 100000 0.9997 1.0003 0.9798 0.8856 0.7312

IB 100000 1.2785 1.2783 1.2727 1.2476 1.1649

RLD 100000 1.3848 1.3844 1.3821 1.3508 1.2698

Aj-41rev 100000 1.0027 1.0050 1.0233 1.0371 1.1048

Table 3: Estimates of I2ð f Þ with ai = i by using Faure sequences.

Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.0243 1.0200 1.0077 0.9945 0.9817

IB 500 1.5010 1.5022 1.5031 1.5030 1.5023

RLD 500 1.5055 1.5029 1.5043 1.5051 1.5045

Aj-41rev 500 0.9951 0.9746 0.9768 0.9761 0.9770

Faure 5000 0.9972 0.9944 0.9908 0.9877 0.9851

IB 5000 1.4837 1.4835 1.4833 1.4833 1.4832

RLD 5000 1.4810 1.4809 1.4807 1.4806 1.4804

Aj-41rev 5000 0.9990 0.9957 0.9963 0.9968 0.9974

Faure 10000 0.9977 0.9964 0.9946 0.9929 0.9915

IB 10000 1.4770 1.4769 1.4768 1.4768 1.4766

RLD 10000 1.4781 1.4780 1.4779 1.4778 1.4777

Aj-41rev 10000 0.9998 0.9971 0.9973 0.9977 0.9984

Faure 20000 0.9979 0.9977 0.9965 0.9956 0.9949

IB 20000 1.4752 1.4753 1.4753 1.4752 1.4752

RLD 20000 1.4764 1.4763 1.4763 1.4762 1.4762

Aj-41rev 20000 1.0002 1.0002 1.0007 1.0012 1.0017

Faure 50000 0.9999 0.9996 0.9991 0.9987 0.9983

IB 50000 1.4750 1.4750 1.4750 1.4750 1.4749

RLD 50000 1.4755 1.4755 1.4755 1.4755 1.4755

Aj-41rev 50000 1.0009 1.0012 1.0019 1.0024 1.0027

Faure 70000 0.9993 0.9989 0.9986 0.9983 0.9980

IB 70000 1.4654 1.4654 1.4654 1.4654 1.4653

RLD 70000 1.4710 1.4710 1.4709 1.4709 1.4709

Aj-41rev 70000 1.0011 1.0013 1.0021 1.0026 1.0029

Faure 100000 0.9997 0.9996 0.9993 0.9990 0.9989

IB 100000 1.2785 1.2785 1.2785 1.2785 1.2784

RLD 100000 1.3848 1.3848 1.3848 1.3848 1.3848

Aj-41rev 100000 1.0013 1.0016 1.0024 1.0028 1.0032
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(3) ai = i for 1 ≤ i ≤ s

(4) ai = i2 for 1 ≤ i ≤ s

Note that the most difficult case is when a = 0. Because in
this case, the importance of all variables is the same and the
superposition dimension is approximately the same as the
truncation dimension. It is important to know that the larger
ai, the less important the variables are, and therefore, the
effective dimension becomes smaller. The last three choices
of the parameters will be considered here [11].

In numerical solution of problems with qMC methods,
an accepted procedure is to omit the starting points of the
sequence. For example, Fox [12] has suggested that we con-
sider the starting point of the sequence as n =QS4 − 1.
Although, this may lead to better results, note that with this
selection, a large amount of points must be omitted. For
example, for s = 40, we have to skip the initial 2825760 points
with this formula, which is practically impossible. We found
in our research that if we select the p as the starting point, it
will significantly improve the results. We will probably get
the best result when we start from the ðp2 + 1Þth point.

Therefore, we skip the first 41 points and start n = 42 in
our calculations. For comparison purposes, we present
numerical results for original Faure (Faure), our sequence
(Aj-41rev), and two types of scrambled Faure sequences, I-
binomial (IB) and random linear digits (RLD).

Now, we compare the numerical results of different
scrambled Faure sequences presented in this paper. The
estimated values for the test functions are given in
Figures 5–8. These figures show that our proposed scramble
has a very acceptable convergence compared to other
scrambles.

An observation is that estimated values by the matrix Aj-
41rev very close to the actual value. This can be seen in
Tables 1–4. The estimation error obtained with this scramble
in dimension 40, for the function (16) with parameters ai = 1,
ai = i, and ai = i2 are at most 11.68%, 0.32%, and 0.64%,
respectively. However, there are some exceptions. For exam-
ple, in the first function, when the number of dimensions
increases, the accuracy of the estimation decreases. So that,
for the dimension 40, the maximum estimated relative error
value is 43.7%.

7. Conclusion

We studied the original Faure sequence and some of its
recent years introduced scrambles. Then, we introduced a
new scrambling matrix based on irrational numbers that its
elements are function of square root of base p. In
Figures 5–8, we have shown that this modified scrambled
Faure sequence provides better results than the previous ver-
sions of its scrambles. Also, we presented that this modified
scrambled Faure sequence has greatly improved the distribu-
tion of points. The 2D designs confirm this claim, good two-
dimensional projections in successive dimensions. As
mentioned in the previous section, using this scramble leads
to very small estimated relative errors that can often be
ignored. In our next research, we will use deterministic
scrambling matrices based on another irrational numbers
and primitive roots. The results proved the improvements
of accuracy using our new scramble.
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In this paper, the Kudryashov method to construct the new exact solitary wave solutions for the newly developed (2 + 1
)-dimensional Benjamin-Ono equation is successfully employed. In the same vein, also the new (2 + 1)-dimensional Benjamin-
Ono equation to (3 + 1)-dimensional spaces is extended and then analyzed and investigated. Different forms of exact solitary
wave solutions to this new equation were also determined. Graphical illustrations for certain solutions in both equations are
provided. We alternatively offer that the determining method is general, impressive, outspoken, and powerful and can be
exerted to create exact solutions of various kinds of nonlinear models originated in mathematical physics and engineering.

1. Introduction

Nonlinear evolution equations have been known for their
vital roles in many fields of engineering and nonlinear sci-
ences for long. A lot of these equations are famous in fluid
flow problems and shallow water waves applications. A very
good example for such equations is the Benjamin-Ono equa-
tion [1] that describes inner waves of deep-stratified fluids
that reads

utt + α u2
� �

xx
+ βuxxxx = 0, ð1Þ

where α and β are nonzero constants for monitoring the
nonlinear term and depth of the fluid, respectively. Fur-
ther, different studies have been carried out on this impor-
tant model ranging from analytical solution, numerical
solution, stability, and well-posedness among others. For
instance, the multisoliton solution and time-periodic solu-
tions of the Benjamin-Ono equation were presented by
Matsuno [2] and Ambrose and Wilkening [3], respectively
(see also Angulo et al. [4] for the stability, Tutiya and
Shiraishi [5] for discrete solutions, and [6–11] for other
related studies).

Additionally, the (2 + 1)-dimensional version of
Benjamin-Ono equation Eq. (1) was recently introduced by
Wazwaz [12]. The new equations has the form

utt + α u2
� �

xx
+ βuxxxx + γuyyyy = 0, ð2Þ

where α, β, and γ are nonzero constants. Note that γ should
not be zero; otherwise, we recover Eq. (1). In [12], the Hirota
bilinear method and certain ansatzs methods have been used
to construct a variety of multiple and complex soliton solu-
tions and also checked the Painlevé integrality condition.

However, in this paper, we further extend the new
(2 + 1)-dimensional Benjamin-Ono equation [12] given in
Eq. (2) to (3 + 1)-dimensional spaces and call it the
(3 + 1)-dimensional Benjamin-Ono equation given by

utt + α u2
� �

xx
+ βuxxxx + γuyyyy + δuzzzz = 0, ð3Þ

where α, β, γ, and δ are nonzero constants. Furthermore,
to present more new solitary wave solutions for the
(2 + 1)-dimensional Benjamin-Ono equation in Eq. (2)
and also to study the (3 + 1)-dimensional Benjamin-Ono
equation, we developed Eq. (3), to employ the Kudryashov
method [13, 14] as a powerful integration method for
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treating various nonlinear evolution equations (see also
[15–23] for other methods). The Kudryashov method
and its modified versions have been investigated by capa-
ble authors in the plenty of nonlinear models such as
the nonlinear differential equations [24], higher-order local
and nonlocal nonlinear equations in optical fibers [25], some
(2 + 1)-dimensional nonlinear evolution equations [26],
exact traveling wave solutions of the PHI-four equation,
and the Fisher equation [27]. As we all know, some novel
and important developments for searching the analytical sol-
itary wave solutions for PDE were investigated. Hence, there
are fascinating results on some models in which are pre-
sented in research works containing the new iterative projec-
tion method for approximating fixed point problems and
variational inequality problems [28], weighted inequalities
for the Dunkl fractional maximal function and Dunkl frac-
tional integrals [29], the Painlevé analysis, soliton molecule,
and lump solution of the higher-order Boussinesq equation
[30], and the Darboux solutions of the classical Painlevé sec-
ond equation [31]. The structure of this paper is as follows:
the analysis of the method has been summed up in “Analysis
of the Method.” In “Applications,” the applications of “Anal-
ysis of the Method” for considered equation are investigated.
Also, in “Some Graphical Illustrations,” the graphical illus-
trations for nonlinear equations will be used. In “Conclu-
sion,” the conclusions have been given.

2. Analysis of the Method

To illustrate the idea of the Kudryashov method [13, 14], we
consider the following system of nonlinear differential
equations:

F u, Txu, Txxu, Tttu, Txxxxu,⋯ð Þ = 0: ð4Þ

Applying the transformation

u x, tð Þ = f ξð Þ, ξ = ax − ct − x0, ð5Þ

where a and c are nonzero constants and x0 is arbitrary con-
stant, converts Eq. (4) to a nonlinear ordinary differential
equations as follows

H f ′, f ″, f ″′,⋯
� �

= 0, ð6Þ

where the derivatives are with respect to ξ. It is assumed that
the solutions of Eq. (6) are presented as a finite series, say

f ξð Þ = a0 + 〠
N

i=1
aiΦ

i ξð Þ, ð7Þ

where ai, i = 1, 2,⋯,N ðaN ≠ 0Þ, are constants to be com-
puted, and ΦðξÞ is given by the following function:

Φ ξð Þ = 1
1 +weξ

, ð8Þ

which satisfies the ordinary differential equation

Φ′ ξð Þ =Φ ξð Þ Φ ξð Þ − 1ð Þ: ð9Þ

Also, the value ofN is determined by homogenous balan-
cing method (see [13, 14]). Substituting Eq. (7) and its neces-
sary derivatives like

f ′ = 〠
N

i=1
aiΦ

i Φ − 1ð Þ,

f ″ = 〠
N

i=1
aiΦ

i Φ − 1ð Þ 1 + ið ÞΦ − ið Þ,

⋮

ð10Þ

into Eq. (6) gives

P Φ ξð Þð Þ = 0, ð11Þ

where PðΦðξÞÞ is a polynomial in ΦðξÞ: Equating the coeffi-
cient of each power of ΦðξÞ in Eq. (11) to zero, a system of
algebraic equations will be obtained whose solution yields
the exact solutions of Eq. (4).

3. Applications

In this section, some new solitary wave solutions of the
(2 + 1)-dimensional and (3 + 1)-dimensional Benjamin-Ono
equations are constructed using the Kudryashov method
presented above.

3.1. The (2 + 1)-Dimensional Benjamin-Ono Equation. In this
section, we will study the (2 + 1)-dimensional Benjamin-Ono
equation given by Eq. (2)

utt + α u2
� �

xx
+ βuxxxx + γuyyyy = 0, ð12Þ

where uðx, y, tÞ is a sufficiently often a differentiable function
and α, β, and γ are nonzero parameters.

To determine certain solitary wave solutions, we first
substitute

u x, y, tð Þ = f ξð Þ, ξ = ax + by − ct − x0, ð13Þ

into Eq. (12) where

Tttu = c2 f ′ ξð Þ, Txu = af ′ ξð Þ, Txxu = a2 f ″ ξð Þ,
Txxxxu = a4 f ″″ ξð Þ, Tyyyyu = b4 f ″″ ξð Þ,

ð14Þ

and convert Eq. (12) to a nonlinear ordinary differential
equation given below:

c2 f ″ + αa2 f 2
� �″ + βa4 f ″″ + γb4 f ″″ = 0: ð15Þ

Integrating Eq. (15) twice with respect to ξ, yields

c2 f + αa2 f 2
� �

+ βa4 f ″ + γb4 f ″ = 0, ð16Þ

where the integrating constant is considered zero. Balancing
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f 2 and f ″ in Eq. (12) gives 2N =N + 2, soN = 2. We integrate
Eq. (15) with

f ξð Þ = a0 + a1Φ ξð Þ + a2Φ
2 ξð Þ: ð17Þ

Substituting Eq. (17) into Eq. (16) and equating the
coefficient of each power of ΦðξÞ to zero, we get a system of
algebraic equations given below:

c2a0 + a2αa20 = 0,

c2a1 + a4βa1 + b4γa1 + 2a2αa0a1 = 0,

−3a4βa1 − 3b4γa1 + a2αa21 + c2a2
+ 4a4βa2 + 4b4γa2 + 2a2αa0a2 = 0,

2a4βa1 + 2b4γa1 − 10a4βa2 − 10b4γa2 + 2a2αa1a2 = 0,

6a4βa2 + 6b4γa2 + a2αa22 = 0:

ð18Þ

Solving the above nonlinear algebraic system, the follow-
ing results will be concluded as follows.

Case 1.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
−c2 − a4β
� �1/4

γ1/4
: ð19Þ

Hence, the solution is formed as

u1,2 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ = ax + by − ct − x0:

ð20Þ

Case 2.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
c2 − a4β
� �1/4

γ1/4
: ð21Þ

Hence, the solution is formed as

u3,4 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by − ct − x0:

ð22Þ

Case 3.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
i −c2 − a4β
� �1/4

γ1/4
: ð23Þ

Hence, the solution is formed as

u5,6 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ = ax + by − ct − x0:

ð24Þ

Case 4.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
i c2 − a4β
� �1/4

γ1/4
: ð25Þ

Hence, the solution is formed as:

u7,8 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by − ct − x0:

ð26Þ

The corresponding dynamic characteristics of the peri-
odic wave solution are plotted in Figures 1 and 2 and arise
at spaces y = −1, y = 0, and y = 1, in Figure 3, they arise at
spaces y = −10, y = −7, and y = 1, and also in Figure 4, they
arise at spaces y = −10, y = 0, and y = 1 with the following
special parameters:

a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20, ð27Þ

with considering time t = 20.

3.2. The (3 + 1)-Dimensional Benjamin-Ono Equation. In this
section, we will study the (3 + 1)-dimensional Benjamin-Ono
equation which we give as

utt + α u2
� �

xx
+ βuxxxx + γuyyyy + δuzzzz = 0, ð28Þ

where uðx, y, z, tÞ is a sufficiently often differentiable func-
tion and α, β, γ and δ are nonzero parameters. Also to deter-
mine some soliton solutions, we first substitute the
transformation

u x, y, z, tð Þ = f ξð Þ, ξ = ax + by + dz − ct − x0, ð29Þ

into Eq. (28) where

Tttu = c2 f ′ ξð Þ, Txu = af ′ ξð Þ, Txxu = a2 f ″ ξð Þ,
Txxxxu = a4 f ″″ ξð Þ, Tyyyyu = b4 f ″″ ξð Þ, Tzzzzu = d4 f ″″ ξð Þ,

ð30Þ

which converts Eq. (28) into a nonlinear ordinary differential
equation as follows:

c2 f ″ + αa2 f 2
� �″ + βa4 f ″″ + γb4 f ″″ + δd4 f ″″ = 0: ð31Þ
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Integrating (31) once with respect to ξ and setting the
integrating constant zero yield

c2 f + αa2 f 2
� �

+ βa4 f ″ + γb4 f ″ + δd4 f ″ = 0: ð32Þ

Balancing f 2 and f ″ in Eq. (32) results to 2N =N + 2, so
N = 2. This offers a truncated series as the following form:

f ξð Þ = a0 + a1Φ ξð Þ + a2Φ
2 ξð Þ: ð33Þ

Substituting Eq. (33) into Eq. (32) and equating the coef-
ficient of each power of ΦðξÞ to zero, we get the following
system of algebraic equations:

c2a0 + a2αa20 = 0,

c2a1 + a4βa1 + b4γa1 + d4δa1 + 2a2αa0a1 = 0,

−3a4βa1 − 3b4γa1 − 3d4δa1 + a2αa21 + c2a2 + 4a4βa2
+ 4b4γa2 + 4d4δa2 + 2a2αa0a2 = 0,

2a4βa1 + 2b4γa1 + 2d4δa1 − 10a4βa2 − 10b4γa2
− 10d4δa2 + 2a2αa1a2 = 0,

6a4βa2 + 6b4γa2 + 6d4δa2 + a2αa22 = 0: ð34Þ

Solving the above system, yields the following.
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Figure 1: Graph of Eq. (20) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20 and
for 2 plot spaces y = −1, 0, 1.
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Figure 2: Graph of Eq. (22) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20 and
for 2 plot spaces y = −1, 0, 1.
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Case 1.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
−c2 − a4β − d4δ
� �1/4

γ1/4
:

ð35Þ

Hence, the solution is formed as

u1,2 x, y, z, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð36Þ

Case 2.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
c2 − a4β − d4δ
� �1/4

γ1/4
:

ð37Þ

Hence, the solution is formed as

u3,4 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð38Þ
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Figure 3: Graph of the absolute value of Eq. (24) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r
= 1,w = 0:3, t = 20 and for 2 plot spaces y = −10, −7, 1.
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= 1,w = 0:3, t = 20 and for 2 plot spaces y = −10, 0, 1.
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Case 3.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
i −c2 − a4β − d4δ
� �1/4

γ1/4
:

ð39Þ

Hence, the solution is formed as

u5,6 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð40Þ

Case 4.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
i c2 − a4β − d4δ
� �1/4

γ1/4
: ð41Þ

Hence, the solution is formed as

u7,8 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 + we ξð Þ −

6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð42Þ

The corresponding dynamic characteristics of the peri-
odic wave solution are plotted in Figures 5 and 6 and arise
at spaces y = −1, y = 0, and y = 1, in Figure 7, they arise at
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Figure 6: Graph of Eq. (38) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, d = 2, δ
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spaces y = −10, y = −7, and y = 1, and also in Figure 4, they
arise at spaces y = −10, y = 0, and y = 1 with the following
special parameters:

a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, d = 2, δ = −2,
ð43Þ

considering space and time z = 1, t = 20.

4. Some Graphical Illustrations

We depict in this section some graphical illustrations of the
obtained solutions for the (2 + 1)- and (3 + 1)-dimensional
extensions of the Benjamin-Ono equations, both the two

and three dimensional plots for the solutions are plotted.
Figures 1 and 4 show the graph of the solutions (20)–(26)
for the (2 + 1)-dimensional Benjamin-Ono equation, respec-
tively. Figures 5 and 8 show the behavior of the solutions
(36)–(42) for the (3 + 1)-dimensional Benjamin-Ono equa-
tion, respectively.

5. Conclusion

In conclusion, we have presented new solitary wave solu-
tions for the (2 + 1)-dimensional Benjamin-Ono equation
introduced recently by Wazwaz and also extended it to
(3 + 1)-dimensional spaces called the (3 + 1)-dimensional
Benjamin-Ono equation. While constructing the solitary
wave solutions, we make use of the Kudryashov method
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Figure 7: Graph of the absolute value of Eq. (40) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2,
r = 1,w = 0:3, d = 2, δ = −2, z = 1, t = 20 and for 2 plot spaces y = −10, −7, 1.

4040

30
30

20
20 10

–10
10 0

0

0

x

4

y

9

(f1)

17 1918 20 21 22 23 24

x

0

2

1

3

4

5

6

7

8

(f2)

Figure 8: Graph of the absolute value of Eq. (42) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2,
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being one of the powerful integration methods for treating
various nonlinear evolution equations and construct various
exponential solutions to both equations. The development of
offered method may allow the extensions of the Benjamin-
Ono equations to be used in more general configurations.
The solutions are all verified by putting them back into the
original equations with the aid of the Maple symbolic com-
putation package 18.
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The soliton molecules, as bound states of solitons, have attracted considerable attention in several areas. In this paper, the ð2 + 1Þ
-dimensional higher-order Boussinesq equation is constructed by introducing two high-order Hirota operators in the usual ð2 + 1Þ
-dimensional Boussinesq equation. By the velocity resonance mechanism, the soliton molecule and the asymmetric soliton of the
higher-order Boussinesq equation are constructed. The soliton molecule does not exist for the usual ð2 + 1Þ-dimensional
Boussinesq equation. As a special kind of rational solution, the lump wave is localized in all directions and decays algebraically.
The lump solution of the higher-order Boussinesq equation is obtained by using a quadratic function. This lump wave is just the
bright form by some detail analysis. The graphics in this study are carried out by selecting appropriate parameters. The results
in this work may enrich the variety of the dynamics of the high-dimensional nonlinear wave field.

1. Introduction

The ð2 + 1Þ-dimensional Boussinesq equation can describe
the propagation of small-amplitude long waves in shallow
water. The physical and dynamical structures of the ð2 + 1Þ
-dimensional Boussinesq equation are investigated by using
various methods [1–4]. The ð2 + 1Þ-dimensional Boussinesq
equation reads

utt + γuxx + 3γ u2
� �

xx
− αuxxxx + μuyy = 0, ð1Þ

where α, γ, and μ are arbitrary constants. It can be trans-
formed into the Hirota form:

D2
t + γD2

x − αD4
x + μD2

y

� �
f · f = 0, ð2Þ

with the dependent variable transformation:

u = 2 ln fð Þxx: ð3Þ

The ð2 + 1Þ-dimensional Boussinesq equation reduces
the ð1 + 1Þ-dimensional Boussinesq form with μ = 0. The
ð1 + 1Þ-dimensional Boussinesq equation includes the
“good” Boussinesq form and “bad” Boussinesq form with
α < 0 and α > 0, respectively [5]. Investigating deeper into
properties of this model (1), the extended ð2 + 1Þ-dimen-
sional Boussinesq equations are introduced based on the
usual Boussinesq equation (1) [6, 7]. The topological
kink-type soliton solutions of the extended ð2 + 1Þ
-dimensional Boussinesq equation are obtained by the
sine-Gordon expansion method [6]. The modified expo-
nential expansion method is applied to the coupled Bous-
sinesq equation [7]. The multisoliton solutions, breather
solutions, and rogue waves of the generalized Boussinesq
equation are obtained via the symbolic computation
method [8] and the polynomial functions in the bilinear
form [9]. Generally, seeking exact solutions to nonlinear
evolution equations is a vital task in soliton theory. Many
methods have been proved effective in finding the exact
solutions of the soliton equation [10–12]. By using the
extended auxiliary equation method and the extended
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direct algebraic method, the solitary traveling wave solu-
tions and the stability of these solutions are analyzed
[10–12]. In this work, we shall study the soliton molecule
and lump wave of the higher-order Boussinesq equation
by solving the bilinear form of the higher-order Boussi-
nesq equation.

The soliton molecule which is formed by the balance of
repulsive and attractive forces between solitons is treated as
a boundary state [13]. It was first predicted within the frame-
work of the nonlinear Schrödinger-Ginzburg-Landau equa-
tion [14]. Many effects including nonlinear and dispersive
effects are a key role in the soliton molecule. The soliton
molecule has become a focus of intense research in both
experiment and simulation [13–17]. The theoretical frame-
works to address the soliton molecule have been intro-
duced [18, 19]. Recently, Lou proposed the velocity
resonance mechanism to construct the soliton molecules
of the ð1 + 1Þ-dimensional nonlinear systems [20]. The
velocity resonance mechanism is one of the useful
methods to form the soliton molecule [20]. To balance
the nonlinear effects, the high-order dispersive terms may
play a key role in the velocity resonance mechanism
[21]. The soliton molecule of a variety of integrable sys-
tems has been verified with the velocity resonance mecha-
nism: the fifth-order Korteweg-de Vries (KdV) equation
[22, 23], the modified KdV equation [24, 25], the ð3 + 1Þ
-dimensional Boiti-Leon-Manna-Pempinelli equation [26],
and so on [27]. The dynamics between soliton molecules
and breather solutions and between soliton molecules
and dromions are presented by the velocity resonance
mechanism, the Darboux transformation, and the variable
separation approach [25–28].

In this paper, we try to construct the ð2 + 1Þ-dimensional
higher-order Boussinesq equation which possesses the soli-
ton molecule. The soliton molecule is absent in the usual ð2
+ 1Þ-dimensional Boussinesq equation. This paper is orga-
nized as follows. In Section 2, the soliton molecule and the
asymmetric soliton of the ð2 + 1Þ-dimensional higher-order
Boussinesq equation are constructed by the velocity reso-

nance condition. In Section 3, the lump solution of the
higher-order Boussinesq equation is obtained by solving the
corresponding Hirota bilinear form. Finally, the conclusions
of this paper follow in the last section.

2. Soliton Molecule for the ð2 + 1Þ-Dimensional
Higher-Order Boussinesq Equation

Based on the bilinear form of the ð2 + 1Þ-dimensional
Boussinesq equation, we can construct the higher-order
form by introducing the high-order Hirota operators (D6

x
and D4

y):

D2
t + γD2

x − αD4
x − βD6

x + μD2
y + νD4

y

� �
f · f = 0, ð4Þ

where D is the bilinear derivative operator [29]:

Dl
xD

n
yD

m
t f · gð Þ = ∂

∂x
−

∂
∂x′

� �l ∂
∂y

−
∂
∂y′

� �n

∂
∂t

−
∂
∂t ′

� �m

f x, y, tð Þ

· g x′, y′, t ′
� ����

x
′=x,y=y′,t′=t : 

ð5Þ

Two-soliton solution of the higher-order Boussinesq
equation can be calculated as

f = 1 + exp η1ð Þ + exp η2ð Þ + a12 exp η1 + η2ð Þ, ð6Þ

where ηi = kix + liy + ωit + ci ði = 1, 2Þ. By substituting (6)
into (4), the phase shift a12 and the dispersion relation
are written as

a12 =
2γk1k2 + 2μl1l2 + 2νl1l2 2L − 3l1l2ð Þ − 2αk1k2 2K − 3k1k2ð Þ − k1k2 6K2 − 15k1k2K + 8k21k22

� �
+ 2ω1ω2

2γk1k2 + 2μl1l2 + 2νl1l2 2L + 3l1l2ð Þ − 2αk1k2 2K + 3k1k2ð Þ − k1k2 6K2 + 15k1k2K + 8k21k22
� �

+ 2ω1ω2
,

K = k21 + k22,
L = l21 + l22,

ω2
i + γk2i − αk4i − βk6i + μl2i + νl4i = 0:

ð7Þ
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The soliton molecule can be constructed with the velocity
resonance condition [30]. The velocity resonance condition
ðki ≠ kjÞ reads

ki
kj

= li
l j
= ωi

ωj
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αk4i + βk6i − γk2i − μl2i − νl4i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αk4j + βk6j − γk2j − μl2j − νl4j

q : ð8Þ

By solving condition (8), the velocity resonant condition
becomes

kj = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β νl4i − αk4i − βk6i
� �r

k2i
,

l j = ±
li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β νl4i − αk4i − βk6i
� �r

k3i
:

ð9Þ

Above velocity resonant condition (9) cannot be obtained
while equation (4) is absent in the high-order Hirota opera-
tors D6

x and D4
y . A soliton molecule and an asymmetric soli-

ton can be constructed by selecting appropriate parameters

in (8) or (9). These phenomena are shown in Figures 1 and
2. We select the same parameters and different phases for
Figures 1 and 2. The parameters are

k1 =
1
2 ,

k2 =
ffiffiffi
2

p

8 ,

l1 =
1
4 ,

l2 =
ffiffiffi
2

p

16 ,

α = −
1
4 ,

β = 1,
γ = −1,
μ = 1,

ν = 1
2 :

ð10Þ

The phases of Figures 1 and 2 are c1 = 0, c2 = 10 and c1
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Figure 1: (a) Soliton molecule of the ð2 + 1Þ-dimensional higher-order Boussinesq equation. (b) Density plot of the corresponding soliton
molecule.
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Figure 2: (a) Asymmetric soliton of the ð2 + 1Þ-dimensional higher-order Boussinesq equation. (b) The wave propagation pattern along the x
-axis by selecting different times t = 60, t = 0, and t = −60 (from left to right).
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= 0, c2 = 1, respectively. The soliton molecule and the asym-
metric soliton are described in Figures 1 and 2. The soliton
molecule and the asymmetric soliton can be transformed
with each other by selecting different parameters. Two soli-
tons in the molecule have different amplitudes, while two sol-
itons in the molecule possess the same velocity.

3. Lump Solution of the ð2 + 1Þ-Dimensional
Higher-Order Boussinesq Equation

Lump solutions, which can be considered a kind of rational
function solutions, decay polynomially in all directions of
space [31–36]. One can construct lump solutions by the Hir-
ota bilinear method and the Darboux transformation [37–
45]. Lump waves of the high-dimensional nonlinear systems
are constructed by solving the Hirota bilinear method [46–
49]. A symbolic computation approach is one of the useful
methods to search the lump wave [31]. The interaction
between the lump waves and other complicated waves is pre-
sented by the symbolic computation approach [38–43]. In
this section, we shall study the dynamics of lump waves by
using the symbolic computation approach.

To obtain the lump solution of the ð2 + 1Þ-dimensional
higher-order Boussinesq equation, a quadratic function of f
is shown as

f = a1x + a2y + a3tð Þ2 + a4x + a5y + a6tð Þ2 + a7, ð11Þ

where ai ði = 1, 2,⋯,7Þ are arbitrary constants. By substitut-
ing (11) into the Hirota bilinear form (4) and balancing the
different powers of x, y, and t, the parameters are constrained
as the following three cases.

Case 1.

a1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa25 + a26

γ

s
,

a2 =
a3a5
a6

,

a4 =
a3
a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa25 + a26

γ

s
,

a7 = −
3νa45 a23 + a26

� �
a26 μa25 + a26
� � + 3α a23 + a26

� �
μa25 + a26
� �

γ2a26
:

ð12Þ

The solution of u can be localized in the ðx, yÞ-plane with
the parameters satisfying

μν > 0,
a7 > 0:

ð13Þ

Case 2.

a1 =
−μa25 + a26

γ
,

a2 = −a5,

a4 =
−μa25 + a26

γ
,

a7 =
6α μa25 − a26
� �2
γ2a26

−
6νa45
a26

:

ð14Þ

Case 3.

a1 =
−μa25 + a26

γ
,

a3 = −a6,

a4 =
−μa25 + a26

γ
,

a7 =
6α μa25 − a26
� �2
γ2a26

−
6νa45
a26

:

ð15Þ

In order to localize the solution of u in the ðx, yÞ-plane for
Cases 2 and 3, the parameters should be satisfied:

α μa25 − a26
� �2 − νγ2a45 > 0: ð16Þ

Take Case 1 as an example to describe the dynamics of
lump waves. By substituting (11) into (3), the lump wave of
the ð2 + 1Þ-dimensional higher-order Boussinesq equation
in Case 1 is generated:

u = 4 a23 + a26
� �

μa25 + a26
� �

γa26 f
−
8 a23 + a26
� �2

μa25 + a26
� �2x2

γ2a46 f
2 :

ð17Þ

To describe the lump wave of the ð2 + 1Þ-dimensional
higher-order Boussinesq equation, the parameters are
selected as

α = 1,
γ = 1,
a3 = 1,
a5 = 3,
a6 = 2,
μ = 1,

ν = 1
2 :

ð18Þ

The spatiotemporal structure and the density of a lump
wave are described in Figures 3(a) and 3(b), respectively.
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The critical points of the lump wave are solved:

∂u x, y, tð Þ
∂x

= 0,

∂u x, y, tð Þ
∂y

= 0:
ð19Þ

By solving above condition (19), we find that the function
u reaches the maximum value at the point ð0,−ða6/a5ÞtÞ and
the minimum values at two points ð±ð3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðμa25 + a26Þ2 − νγ2a25

q
Þ/ð ffiffiffi

γ
p ðμa25 + a26ÞÞ,−ða6/a5ÞtÞ. By

substituting above three points values into (17), the maxi-
mum and minimum values of the function u are ð4γ
ðμa25 + a26Þ2Þ/ð3ðαðμa25 + a26Þ2 − νγ2a25ÞÞ and −ðγðμa25 + a26Þ2Þ/
ð6ðαðμa25 + a26Þ2 − νγ2a25ÞÞ, respectively. The value of the
maximum point is bigger than zero due to a7 > 0. The ratio
between the maximum and minimum amplitudes is 8. The
lump wave of the higher-order Boussinesq equation is just
the bright form by the above detail analysis.

4. Conclusion

In summary, the soliton molecule and lump solution of the
ð2 + 1Þ-dimensional higher-order Boussinesq equation are
studied by solving the Hirota bilinear form (4). The soliton
molecule and the asymmetric soliton are obtained by the
velocity resonance mechanism. The lump solution can be
derived by using a positive quadratic function. The lump
wave of the higher-order Boussinesq equation is just the
bright form after some detail analysis. Figures 1–3 show the
dynamics of the soliton molecule and lump wave by putting
suitable parameters. The soliton molecule and the asymmet-
ric soliton can be transformed with each other by selecting
different phases. The soliton molecule and the asymmetric
soliton cannot be derived in the ð2 + 1Þ-dimensional Boussi-
nesq equation (1).

In this paper, the ð2 + 1Þ-dimensional higher-order
Boussinesq equation is constructed by introducing the

high-order Hirota bilinear operators D6
x and D4

y based on
the usual ð2 + 1Þ-dimensional Boussinesq equation. Similar
to introducing the high-order Hirota bilinear operator proce-
dure, we propose one equation

D2
t + γD2

x − 〠
n

i=1
αiD

2+2i
x

� �
+ 〠

m

j=1
βjD

2j
y

� � !
f · f = 0, ð20Þ

with αi and βj being arbitrary constants. The soliton mole-
cule and lump wave of (20) are worthy of study by the veloc-
ity resonance mechanism and the symbolic computation
approach. Rogue waves are unexpectedly high-amplitude
single waves that have been reported by using the Hirota
bilinear method [50, 51]. These nonlinear excitations of
(20) are valuable to increase understanding of the phenom-
ena between different nonlinear waves.
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In this manuscript, we consider the fourth order of the Moore–Gibson–Thompson equation by using Galerkin’s method to prove
the solvability of the given nonlocal problem.

1. Introduction

Research on the nonlinear propagation of sound in a situa-
tion of high amplitude waves has shown literature on physi-
cally well-founded partial differential models (see, e.g., [1–
23]). This still very active field of research is carried by a wide
range of applications such as the medical and industrial use
of high-intensity ultrasound in lithotripsy, thermotherapy,
ultrasound cleaning, and sonochemistry. The classical
models of nonlinear acoustics are Kuznetsov’s equation, the
Westervelt equation, and the KZK (Kokhlov-Zabolotskaya-
Kuznetsov) equation. For a mathematical existence and
uniqueness analysis of several types of initial boundary value
problems for these nonlinear second order in time PDEs, we
refer to [24–44]. Focusing on the study of the propagation of
acoustic waves, it should be noted that the MGT equation is
one of the equations of nonlinear acoustics describing acous-
tic wave propagation in gases and liquids. The behavior of
acoustic waves depends strongly on the medium property
related to dispersion, dissipation, and nonlinear effects. It
arises from modeling high-frequency ultrasound (HFU)
waves (see [10, 12, 34]). The derivation of the equation, based
on continuum and fluid mechanics, takes into account vis-

cosity and heat conductivity as well as effect of the radiation
of heat on the propagation of sound. The original derivation
dates back to [44]. This model is realized through the third-
order hyperbolic equation:

τuttt + utt − c2Δu − bΔut = 0: ð1Þ

The unknown function u = uðx, tÞ denotes the scalar
acoustic velocity, c denotes the speed of sound, and τ denotes
the thermal relaxation. Besides, the coefficient b = βc2 is
related to the diffusively of the sound with β ∈ ð0, τ�. In [44],
Chen and Palmieri studied the blow-up result for the semi-
linear Moore–Gibson–Thompson equation with nonlinearity
of derivative type in the conservative case defined as follows:

βuttt + utt − Δu − βΔut = utj jp, x ∈ℝn, t > 0: ð2Þ

This paper is related to the following works (see [16, 39]).
Now, when we talk about the ðMGTÞ equation with memory
term, we have Lasieka and Wang in [17] who studied the
exponential decay of the energy of the temporally third-
order (Moore–Gibson–Thompson) equation with a memory
term as follows:
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τuttt + αutt − c2Au − bAut −
ðt
0
g t − sð ÞAw sð Þds = 0, ð3Þ

where τ, α, b, c2 are physical parameters and A is a positive
self-adjoint operator on a Hilbert space H: The convolution
term

Ð t
0gðt − sÞAwðsÞds reflects the memory effects of mate-

rials due to viscoelasticity. In [18], Lasieka and Wang studied
the general decay of solution of same problem above. The
Moore–Gibson–Thompson equation with a nonlocal condi-
tion is a new posed problem. Existence and uniqueness of
the generalized solution are established by using the Galerkin
method. These problems can be encountered in many scien-
tific domains and many engineering models (see previous
works [5, 25–32, 35, 36, 40, 41]). Mesloub and Mesloub in
[33] have applied the Galerkin method to a higher dimension
mixed with nonlocal problem for a Boussinesq equation, while
Boulaaras et al. investigated the Moore–Gibson–Thompson
equation with the integral condition in [4]. Motivated by these
outcomes, we improve the existence and uniqueness by the
Galerkin method of the fourth-order equation of the Moore–
Gibson–Thompson type with integral condition; this problem
was cited by the work of Dell’Oro and Pata in [9].

We define the problem as follows:

utttt + αuttt + βutt − ρΔu − δΔut − γΔutt = 0,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, utt x, 0ð Þ = u2 xð Þ, uttt x, 0ð Þ = u3 xð Þ
∂u
∂η

=
ðt
0

ð
Ω

u ξ, τð Þdξdτ, x ∈ ∂Ω:

8>>>><
>>>>:

ð4Þ

The aim of this manuscript is to consider the following
nonlocal mixed boundary value problem for the Moore–Gib-
son–Thompson (MGT) equation for all ðx ; tÞ ∈QT = ð0, TÞ,
where Ω ⊂ℝn is a bounded domain with sufficiently smooth
boundary ∂Ω. solution of the posed problem.

We divide this paper into the following: In “Preliminar-
ies,” some definitions and appropriate spaces have been
given. Then in “Solvability of the Problem,”we use Galerkin’s
method to prove the existence, and in “Uniqueness of Solu-
tion,” we demonstrate the uniqueness.

2. Preliminaries

LetVðQTÞ andWðQTÞ be the set spaces defined, respectively, by

V QTð Þ = u ∈W1
2 QTð Þ: ut ∈W1

2 QTð Þ: utt ∈W1
2 QTð Þ� �

,
W QTð Þ = u ∈ V QTð Þ: u x, Tð Þ = 0f g:

ð5Þ

Consider the equation

utttt , vð ÞL2 QTð Þ + α uttt , vð ÞL2 QTð Þ + β utt , vð ÞL2 QTð Þ − ϱ Δu, vð ÞL2 QTð Þ
− δ Δut , vð ÞL2 QTð Þγ Δutt , vð ÞL2 QTð Þ = 0,

ð6Þ

where ð:, :ÞL2ðQT Þ depend on the inner product in L2ðQTÞ, u is

supposed to be a solution of (1), and v ∈WðQTÞ. Upon using
(6) and (1), we find

− uttt , vtð ÞL2 QTð Þ − α utt , vtð ÞL2 QTð Þ − β ut , vtð ÞL2 QTð Þ + ϱ ∇u,∇vð ÞL2 QTð Þ
+ δ ∇ut ,∇vð ÞL2 QTð Þ − γ ∇ut ,∇vtð ÞL2 QTð Þ

= ϱ
ðT
0

ð
∂Ω
v

ðt
0

ð
Ω

u ξ, τð Þdξdτ
� �

dsxdt + δ
ðT
0

ð
∂Ω
v
ð
Ω

u ξ, tð Þdξdsxdt

− δ
ðT
0

ð
∂Ω
v
ð
Ω

u0 ξð Þdξdsxdt − γ
ðT
0

ð
∂Ω
vt

ðt
0

ð
Ω

uτ ξ, τð Þdξdτ
� �

dsxdt

+ u3 xð Þ, v x, 0ð Þð ÞL2 Ωð Þ + α u2 xð Þ, v x, 0ð Þð ÞL2 Ωð Þ + β u1 xð Þ, v x, 0ð Þð ÞL2 Ωð Þ
− γ Δu1, v x, 0ð Þð ÞL2 Ωð Þ:

ð7Þ

Now, we give two useful inequalities:

(i) Gronwall inequality: if for any t ∈ I, we have

y tð Þ ≤ h tð Þ + c
ðt
0
y sð Þds, ð8Þ

where hðtÞ and yðtÞ are two nonnegative integrable functions
on the interval I with hðtÞ nondecreasing and c is constant,
then

y tð Þ ≤ h tð Þ exp ctð Þ ð9Þ

(ii) Trace inequality: when w ∈W2
1ðΩÞ, we have

wk k2L2 ∂Ωð Þ ≤ ε ∇wk k2L2 Ωð Þ + l εð Þ wk k2L2 Ωð Þ, ð10Þ

where Ω is a bounded domain in ℝn with smooth boundary
∂Ω, and lðεÞ is a positive constant.

Definition 1. If a function u ∈ VðQTÞ satisfies Equation (3),
each v ∈WðQTÞ is called a generalized solution of problem (1).

3. Solvability of the Problem

Here, by using Galerkin’s method, we give the existence of
problem (1).

Theorem 2. If u0 ∈ , u1 ∈ and u2 ∈ , u3 ∈ , then there is at least
one generalized solution in VðQTÞ to problem (1).

Proof. Let fZkðxÞgk≥1 be a fundamental system in W1
2ðΩÞ,

such that ðZk, ZlÞL2ðΩÞ = δk,l. Now, we will find an approxi-
mate solution of the problem (1) in the form

uN x, tð Þ = 〠
N

k=1
Ck tð ÞZk xð Þ, ð11Þ

where the constants CkðtÞ are defined by the conditions
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Ck tð Þ = uN x, tð Þ, Zk xð Þ� �
L2 Ωð Þ, k = 1,⋯,N , ð12Þ

and can be determined from the relations

uNtttt , Zl xð Þ� �
L2 Ωð Þ + α uNttt , Zl xð Þ� �

L2 Ωð Þ + β uNtt , Zl xð Þ� �
L2 Ωð Þ

+ ϱ ∇uN ,∇Zl xð Þ� �
L2 Ωð Þ + δ ∇uNt ,∇Zl xð Þ� �

L2 Ωð Þ + γ ∇uNtt ,∇Zl xð Þ� �
L2 Ωð Þ

= ϱ
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτ
� �

dsx + δ
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

uNτ ξ, τð Þdξdτ
� �

dsx

+ γ
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

uNττ ξ, τð Þdξdτ
� �

dsx:

ð13Þ

Invoking to (11) in (6) gives for l = 1,⋯,N .

ð
Ω

〠
N

k=1
Ck′′′′ tð ÞZk xð ÞZl xð Þ + αCk′′′ tð ÞZk xð ÞZl xð Þ + βCk′′ tð ÞZk xð ÞZl xð Þ

n
+ ϱCk tð Þ∇Zk xð Þ:∇Zl xð Þ + δCk′ tð Þ∇Zk xð Þ:∇Zl xð Þ + γCk′′ tð Þ∇Zk:∇Zl

o
dx

= ϱ〠
N

k=1

ðt
0
Ck τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ + δ〠
N

k=1

ðt
0
Ck′ τð Þ

�
ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ + γ〠
N

k=1

ðt
0

Ck′′ τð Þ
ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ:

ð14Þ

From (7), it follows that

〠
N

k=1
Ck′′′′ tð Þ Zk xð Þ, Zl xð Þð ÞL2 Ωð Þ + αCk′′′ tð Þ Zk xð Þ, Zl xð Þð ÞL2 Ωð Þ

+ βCk′′ tð Þ Zk xð Þ, Zl xð Þð ÞL2 Ωð Þ + ϱCk tð Þ ∇Zk,∇Zlð ÞL2 Ωð Þ
+ δCk′ tð Þ ∇Zk xð Þ,∇Zl xð Þð ÞL2 Ωð Þ + γCk′′ tð Þ ∇Zk xð Þ,∇Zl xð Þð ÞL2 Ωð Þ

= ϱ〠
N

k=1

ðt
0
Ck τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ δ〠
N

k=1

ðt
0
Ck′ τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ γ〠
N

k=1

ðt
0

Ck′′ τð Þ
ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξds
� �

dτ, l = 1,⋯,N:

ð15Þ

Let

Zk, Zlð ÞL2 Ωð Þ = δkl =
1, k = l

0, k ≠ l,

(

∇Zk,∇Zlð ÞL2 Ωð Þ = γkl ,ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξds = χkl:

ð16Þ

Then (8) can be written as

〠
N

k=1
Ck′′′′ tð Þδkl + αCk′′′ tð Þδkl + Ck′′ tð Þ βδkl + γγklð Þ + δCk′ tð Þγkl

+ ϱCk tð Þγkl −
ðt
0
ϱCk τð Þχkl + δCk′ τð Þχkl + γCk′′ τð Þχkl = 0

�
:

ð17Þ

A differentiation with respect to t yields

Thus, for every n, there exists a function uNðxÞ satisfying (6).
Now, we will demonstrate that the sequence uN is bounded. To
do this, we multiply each equation of (6) by the appropriate Ck
′ðtÞ summing over k from 1 to N then integrating the resultant
equality with respect to t from 0 to τ, with τ ≤ T, which yields

uNtttt , uNt
� �

L2 Qτð Þ + α uNttt , uNt
� �

L2 Qτð Þ + β uNtt , uNt
� �

L2 Qτð Þ + ϱ ∇uN ,∇uNt
� �

L2 Qτð Þ

+ δ ∇uNt ,∇uNt
� �

L2 Qτð Þ + γ ∇uNtt ,∇uNt
� �

L2 Qτð Þ = ϱ
ðτ
0

ð
∂Ω
uNt x, tð Þ

�
ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt + δ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

+ γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt:

ð19Þ

After simplification of the LHS of (19), we observe that

uNtttt , uNt
� �

L2 Qτð Þ = −
ðτ
0
uNttt , uNtt
� �

L2 Ωð Þdt

+ uNτττ x, τð Þ, uNτ x, τð Þ� �
L2 Ωð Þ

− uNttt x, 0ð Þ, uNt x, 0ð Þ� �
L2 Ωð Þ,

ð20Þ

α uNttt , uNt
� �

L2 Qτð Þ = α uNττ x, τð Þ, uNτ x, τð Þ� �
L2 Ωð Þ − uNtt x, 0ð Þ, uNt x, 0ð Þ� �

L2 Ωð Þ

−α
ðτ
0
utt x, tð Þk k2L2 Ωð Þdt,

8><
>:

ð21Þ

〠
N

k=1
Ck′′′′′ tð Þδkl + αCk′′′′ tð Þδkl + Ck′′′ tð Þ βδkl + γγklð Þ + Ck′′ tð Þ δγkl − γχklð Þ + Ck′ tð Þ ϱγkl − δχklð Þγkl − ϱCk tð Þχkl = 0,

〠
N

k=1
Ck′′′′ 0ð Þδkl + αCk′′′ 0ð Þδkl + Ck′′ 0ð Þ βδkl + γγklð Þ + δCk′ 0ð Þγkl + ϱCk 0ð Þγkl
h i

= 0

Ck 0ð Þ = Zk, u0ð ÞL2 Ωð Þ, Ck′ 0ð Þ = Zk, u1 xð Þð ÞL2 Ωð Þ, Ck′′ tð Þ = Zk, u2 xð Þð ÞL2 Ωð Þ, Ck′′′ tð Þ = Zk, u3 xð Þð ÞL2 Ωð Þ:

8>><
>>:

ð18Þ
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β uNtt , uNt
� �

L2 Qτð Þ =
β

2 uNτ x, τð Þ		 		2
L2 Ωð Þ −

β

2 uNt x, 0ð Þ		 		2
L2 Ωð Þ,

ð22Þ

ϱ ∇uN ,∇uNt
� �

L2 Qτð Þ =
ϱ

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ −

ϱ

2 ∇uN x, 0ð Þ		 		2
L2 Ωð Þ,

ð23Þ

δ ∇uNt ,∇uNt
� �

L2 Qτð Þ = δ
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt, ð24Þ

γ ∇uNtt ,∇uNt
� �

L2 Qτð Þ =
γ

2 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ −

γ

2 ∇uNt x, 0ð Þ		 		2
L2 Ωð Þ,

ð25Þ

ϱ
ðτ
0

ð
∂Ω
uNt

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt = ϱ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− ϱ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

ð26Þ

δ
ðτ
0

ð
∂Ω
uNt

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

= δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

− δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx,

ð27Þ

γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt

= γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξ
� �

dsxdt

− γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ð
Ω

uNt ξ, 0ð Þdξ
� �

dsxdt:

ð28Þ

Taking into account the equalities (20) and (21) in (12), we
obtain

uNτττ x, τð Þ, uNτ x, τð Þ� �
L2 Ωð Þ + α uNττ x, τð Þ, uNτ x, τð Þ� �

L2 Ωð Þ

+ β

2 uNτ x, τð Þ		 		2
L2 Ωð Þ +

ϱ

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ +

γ

2 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ

= uNttt x, 0ð Þ, uNt x, 0ð Þ� �
L2 Ωð Þ + α uNtt x, 0ð Þ, uNt x, 0ð Þ� �

L2 Ωð Þ

+ β

2 uNt x, 0ð Þ		 		2
L2 Ωð Þ +

ϱ

2 ∇uN x, 0ð Þ		 		2
L2 Ωð Þ +

γ

2 ∇uNt x, 0ð Þ		 		2
L2 Ωð Þ

+
ðτ
0
uNttt , uNtt
� �

L2 Ωð Þdt + α
ðτ
0
utt x, tð Þk k2L2 Ωð Þdt − δ

ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt

+ ϱ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx − ϱ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

+ δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx − δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

+ γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξ
� �

dsxdt − γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

�
ð
Ω

uNt ξ, 0ð Þdξ
� �

dsxdt:

ð29Þ

Now, multiplying each equation of (6) by the appropriate
Ck′′ðtÞ, we add them up from 1 to N and then integrate with

respect to t from 0 to τ, with τ ≤ T, and we obtain

uNtttt , uNtt
� �

L2 Qτð Þ + α uNttt , uNtt
� �

L2 Qτð Þ + β uNtt , uNtt
� �

L2 Qτð Þ
+ ϱ ∇uN ,∇uNtt

� �
L2 Qτð Þ + δ ∇uNt ,∇uNtt

� �
L2 Qτð Þ + γ ∇uNtt ,∇uNtt

� �
L2 Qτð Þ

= ϱ
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

+ δ
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

+ γ
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt:

ð30Þ

With the same reasoning in (12), we find

uNtttt , uNtt
� �

L2 Qτð Þ = −
ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þdt + uNτττ x, τð Þ, uNττ x, τð Þ� �
L2 Ωð Þ

− uNttt x, 0ð Þ, uNtt x, 0ð Þ� �
L2 Ωð Þ,

ð31Þ

α uNttt , uNtt
� �

L2 Qτð Þ =
α

2 uNττ x, τð Þ		 		2
L2 Ωð Þ −

α

2 uNtt x, 0ð Þ		 		2
L2 Ωð Þ,

ð32Þ

β uNtt , uNtt
� �

L2 Qτð Þ = β
ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt, ð33Þ

ϱ ∇uN ,∇uNtt
� �

L2 Qτð Þ = ϱ ∇uN x, τð Þ,∇uNτ x, τð Þ� �
L2 Qτð Þ

− ϱ ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� �
L2 Ωð Þ

− ϱ
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt,

ð34Þ

δ ∇uNt ,∇uNtt
� �

L2 Qτð Þ =
δ

2 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ −

δ

2 ∇uNt x, 0ð Þ		 		2
L2 Ωð Þ,

ð35Þ

γ ∇uNtt ,∇uNtt
� �

L2 Qτð Þ = γ
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt, ð36Þ

ϱ
ðτ
0

ð
∂Ω
uNtt

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

= ϱ
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− ϱ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

ð37Þ

δ
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

= δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx − δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

− δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtds,

ð38Þ
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γ
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt

= γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx − γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx

− γ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtds,

ð39Þ
Upon using (31) and (32) into (23), we have

uNτττ x, τð Þ, uNττ x, τð Þ� �
L2 Ωð Þ +

α

2 uNττ x, τð Þ		 		2
L2 Ωð Þ +

δ

2 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ

+ ϱ ∇uN x, τð Þ,∇uNτ x, τð Þ� �
L2 Ωð Þ =

ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þdt

+ uNttt x, 0ð Þ, uNtt x, 0ð Þ� �
L2 Ωð Þ +

α

2 uNtt x, 0ð Þ		 		2
L2 Ωð Þ − β

ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt

+ ϱ ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� �
L2 Ωð Þ + ϱ

ðτ
0
∇ut x, tð Þk k2L2 Ωð Þdt

+ δ

2 ∇uNt x, 0ð Þ		 		2
L2 Ωð Þ − γ

ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt

+ ϱ
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− ϱ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx + δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

− δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx − δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtdsx

+ γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx − γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx

− γ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtdsx:

ð40Þ

Now, multiplying each equation of (6) by the appropriate
Ck′′′ðtÞ, we add them up from 1 to N and then integrate with
respect to t from 0 to τ, with τ ≤ T, and we obtain

uNtttt , uNttt
� �

L2 Qτð Þ + α uNttt , uNttt
� �

L2 Qτð Þ + β uNtt , uNttt
� �

L2 Qτð Þ + ϱ ∇uN ,∇uNttt
� �

L2 Qτð Þ
+ δ ∇uNt ,∇uNttt

� �
L2 Qτð Þ + γ ∇uNtt ,∇uNttt

� �
L2 Qτð Þ

= ϱ
ðτ
0

ð
∂Ω
uNttt x, tð Þ

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

+ δ
ðτ
0

ð
∂Ω
uNttt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

+ γ
ðτ
0

ð
∂Ω
uNttt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt:

ð41Þ

With the same reasoning in (12), we find

uNtttt , uNttt
� �

L2 Qτð Þ =
1
2 uNτττ x, τð Þ		 		2

L2 Ωð Þ −
1
2 uNttt x, 0ð Þ		 		2

L2 Ωð Þ,

ð42Þ

α uNttt , uNttt
� �

L2 Qτð Þ = α
ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þ, ð43Þ

β uNtt , uNttt
� �

L2 Qτð Þ =
β

2 uNττ x, τð Þ		 		2
L2 Ωð Þ −

β

2 uNtt x, 0ð Þ		 		2
L2 Ωð Þ,

ð44Þ

ϱ ∇uN ,∇uNttt
� �

L2 Qτð Þ = ϱ ∇uN x, τð Þ,∇uNττ x, τð Þ� �
L2 Ωð Þ

− ϱ ∇uN x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ

− ϱ
ðτ
0
∇uNt ,∇uNtt
� �

L2 Ωð Þdt,

ð45Þ

δ ∇uNt ,∇uNttt
� �

L2 Qτð Þ = −δ
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt + δ ∇uNτ x, τð Þ,∇uNττ x, τð Þ� �
L2 Ωð Þ

− δ ∇uNt x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ,

ð46Þ

γ ∇uNtt ,∇uNttt
� �

L2 Qτð Þ =
γ

2 ∇uNττ x, τð Þ		 		2
L2 Ωð Þ −

γ

2 ∇uNtt x, 0ð Þ		 		2
L2 Ωð Þ,

ð47Þ

ϱ
ðτ
0

ð
∂Ω
uNttt

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

= ϱ
ð
∂Ω
uNττ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− ϱ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

ð48Þ

δ
ðτ
0

ð
∂Ω
uNttt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

= δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx − δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

− δ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtds,

ð49Þ

γ
ðτ
0

ð
∂Ω
uNttt x, tð Þ

ðt
0

ð
Ω

uNtt ξ, ηð Þdξdη
� �

dsxdt

= γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx − γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx

− γ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtds,

ð50Þ
A substitution of equalities (42) and (43) in (34) gives

1
2 uNτττ x, τð Þ		 		2

L2 Ωð Þ +
β

2 uNττ x, τð Þ		 		2
L2 Ωð Þ + ϱ ∇uN x, τð Þ,∇uNττ x, τð Þ� �

L2 Ωð Þ

+δ ∇uNτ x, τð Þ,∇uNττ x, τð Þ� �
L2 Ωð Þ +

γ

2 ∇uNττ x, τð Þ		 		2
L2 Ωð Þ

= 1
2 uNttt x, 0ð Þ		 		2

L2 Ωð Þ − α
ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þ −
β

2 uNtt x, 0ð Þ		 		2
L2 Ωð Þ

+ϱ ∇uN x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ + ϱ

ðτ
0
∇uNt ,∇uNtt
� �

L2 Ωð Þdt

+δ
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt + δ ∇uNt x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ −

γ

2 ∇uNtt x, 0ð Þ		 		2
L2 Ωð Þ

+ϱ
ð
∂Ω
uNττ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx − ϱ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

+δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx − δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx
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−δ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtdsγ +
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx

−γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx − γ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtds:

ð51Þ

Multiplying (22) by λ1, (33) by λ2, and (44) by λ3, we get

λ1 uNτττ x, τð Þ, uNτ x, τð Þ� �
L2 Ωð Þ + λ1α uNττ x, τð Þ, uNτ x, τð Þ� �

L2 Ωð Þ

+ λ1β

2 uNτ x, τð Þ		 		2
L2 Ωð Þ

+ λ1ϱ

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ +

λ1γ

2 + λ2δ

2

� �
∇uNτ x, τð Þ		 		2

L2 Ωð Þ

+ λ2 uNτττ x, τð Þ, uNττ x, τð Þ� �
L2 Ωð Þ

+ λ2α

2 + λ3β

2

� �
uNττ x, τð Þ		 		2

L2 Ωð Þ + λ2ϱ ∇uN x, τð Þ,∇uNτ x, τð Þ� �
L2 Ωð Þ

+ λ3
2 uNτττ x, τð Þ		 		2

L2 Ωð Þ

+λ3ϱ ∇uN x, τð Þ,∇uNττ x, τð Þ� �
L2 Ωð Þ + λ3δ ∇uNτ x, τð Þ,∇uNττ x, τð Þ� �

L2 Ωð Þ

+ λ3γ

2 ∇uNττ x, τð Þ		 		2
L2 Ωð Þ

= λ1 uNttt x, 0ð Þ, uNt x, 0ð Þ� �
L2 Ωð Þ + λ1α uNtt x, 0ð Þ, uNt x, 0ð Þ� �

L2 Ωð Þ

+ λ1β

2 uNt x, 0ð Þ		 		2
L2 Ωð Þ

+ λ1ϱ

2 ∇uN x, 0ð Þ		 		2
L2 Ωð Þ +

λ1γ

2 + λ2δ

2

� �
∇uNt x, 0ð Þ		 		2

L2 Ωð Þ

+ λ1

ðτ
0
uNttt , uNtt
� �

L2 Ωð Þdt

+ λ1α − λ2βð Þ
ðτ
0
utt x, tð Þk k2L2 Ωð Þdt + λ2ϱ − λ1δð Þ

ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt

+ λ2 − λ3αð Þ
ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þdt + λ2 uNttt x, 0ð Þ, uNtt x, 0ð Þ� �
L2 Ωð Þ

+ λ2α

2 −
λ3β

2

� �
uNtt x, 0ð Þ		 		2

L2 Ωð Þ

+λ2ϱ ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� �
L2 Ωð Þ + λ3δ − λ2γð Þ

ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt

+ λ3
2 uNttt x, 0ð Þ		 		2

L2 Ωð Þ

+λ3ϱ ∇uN x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ + λ3ϱ

ðτ
0
∇uNt ,∇uNtt
� �

L2 Ωð Þdt,

+λ3δ ∇uNt x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ −

λ3γ

2 ∇uNtt x, 0ð Þ		 		2
L2 Ωð Þ

+λ1ϱ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx − λ1ϱ
ð
∂Ω

ðτ
0
uN x, tð Þ

�
ð
Ω

uN ξ, tð Þdξdtdsx

+ λ1δ − λ2ϱð Þ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx − λ1δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

�
ð
Ω

uN ξ, 0ð Þdξdtdsx

+ λ1γ − λ2δð Þ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξ
� �

dsxdt − λ1γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

�
ð
Ω

uNt ξ, 0ð Þdξ
� �

dsxdt:

+λ2ϱ
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx + λ2δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

−λ2δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx + λ2γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx

−λ2γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx − λ2γ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtdsx

+λ3ϱ
ð
∂Ω
uNττ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx − λ3ϱ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

+λ3δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx − λ3δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

−λ3δ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtds + λ3γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx

−λ3γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx − λ3γ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtds:

ð52Þ

We can estimate all the terms in the right-hand side of (45) as
follows:

λ1ϱ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ1ϱ

2ε1
ε ∇uN x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uN x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ1ϱ2 ε1T Ωj j ∂Ωj j
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

−λ1ϱ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ1ϱ

2 ε
ðτ
0
∇uN x, tð Þ		 		2

L2 Ωð Þdt

+ λ1ϱ2 l εð Þ + Ωj j ∂Ωj jð Þ
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

λ1δ − λ2ϱð Þ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ1δ + λ2ϱð Þ

2ðεÐ τ0k∇uNt ðx, tÞk2L2ðΩÞdt + lðεÞÐ τ0kuNt ðx, tÞk2L2ðΩÞdtÞ
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+ λ1δ + λ2ϱð Þ
2 Ωj j ∂Ωj j

ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

−λ1δ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

≤
λ1δ

2 ε
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt + l εð Þ
ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt
� �

+ λ1δ

2 Ωj j ∂Ωj jT uN x, 0ð Þ		 		2
L2 Ωð Þ,

λ2ϱ
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ2ϱ

2
ε

ε2
∇uNτ x, τð Þ		 		2

L2 Ωð Þ +
l εð Þ
ε2

uNτ x, τð Þ		 		2
L2 Ωð Þ

� �

+ λ2ϱ

2 ε2 Ωj j ∂Ωj jT
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

λ2δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

≤
λ2δ

2ε3
ε ∇uNτ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNτ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ2δ2 ε3 Ωj j ∂Ωj j uN x, τð Þ		 		2
L2 Ωð Þ,

−λ2δ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

≤
λ2δ

2ε4
ε ∇uNτ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNτ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ2δ

2 ε4 Ωj j ∂Ωj j uN x, 0ð Þ		 		2
L2 Ωð Þ,

λ1γ − λ2δð Þ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtdsx

≤
λ1γ + λ2δð Þ

2 ε
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt

+ λ1γ + λ2δð Þ
2 l εð Þ + Ωj j ∂Ωj jð Þ

ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt, ð53Þ

−λ1γ
ðτ
0

ð
∂Ω
uNt x, tð Þ

ð
Ω

uNt ξ, 0ð Þdξ
� �

dsxdt

≤
λ1γ

2 ε
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt + l εð Þ
ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt
� �

+ λ1γ

2 Ωj j ∂Ωj jT uNt x, 0ð Þ		 		2
L2 Ωð Þ,

λ2γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx

≤
λ2γ

2ε5
ε ∇uNτ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNτ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ2γ

2 ε5 Ωj j ∂Ωj j uNτ x, τð Þ		 		2
L2 Ωð Þ,

−λ2γ
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx

≤
λ2γ

2ε6
ε ∇uNτ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNτ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ2γ

2 ε6 Ωj j ∂Ωj j uNt x, 0ð Þ		 		2
L2 Ωð Þ,

−λ2γ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtdsx

≤
λ2γ

2 ε
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt +
λ2γ

2 l εð Þ
ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt

+ λ2γ

2 Ωj j ∂Ωj j
ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt,

λ3ϱ
ð
∂Ω
uNττ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ3ϱ

2
ε

ε7
∇uNττ x, τð Þ		 		2

L2 Ωð Þ +
l εð Þ
ε7

uNττ x, τð Þ		 		2
L2 Ωð Þ

� �

+ λ3ϱ

2 ε7 Ωj j ∂Ωj jT
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

−λ3ϱ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

≤
λ3ϱ

2 ε
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt + l εð Þ
ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt
� �

+ λ3ϱ

2 Ωj j ∂Ωj j
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt,

λ3δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

≤
λ3δ

2ε8
ε ∇uNττ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNττ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ3δ

2 ε8 Ωj j ∂Ωj j uN x, τð Þ		 		2
L2 Ωð Þ,

ð54Þ

−λ3δ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

≤
λ3δ

2ε9
ε ∇uNττ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNττ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ3δ

2 ε9 Ωj j ∂Ωj j uN x, 0ð Þ		 		2
L2 Ωð Þ,

ð55Þ

−λ3δ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtdsx

≤
λ3δ

2 ε
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt + l εð Þ
ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt
� �

+ λ3δ

2 Ωj j ∂Ωj j
ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt,

7Advances in Mathematical Physics



λ3γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNτ ξ, τð Þdξdsx

≤
λ3γ

2ε10
ε ∇uNττ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNττ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ3γ

2 ε10 Ωj j ∂Ωj j uNτ x, τð Þ		 		2
L2 Ωð Þ,

ð56Þ

−λ3γ
ð
∂Ω
uNττ x, τð Þ

ð
Ω

uNt ξ, 0ð Þdξdsx

≤
λ3γ

2ε11
ε ∇uNττ x, τð Þ		 		2

L2 Ωð Þ + l εð Þ uNττ x, τð Þ		 		2
L2 Ωð Þ

� 


+ λ3γ

2 ε11 Ωj j ∂Ωj j uNt x, 0ð Þ		 		2
L2 Ωð Þ,

−λ3γ
ð
∂Ω

ðτ
0
uNtt x, tð Þ

ð
Ω

uNtt ξ, tð Þdξdtdsx

≤
λ3γ

2 ε
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt

+ λ3γ

2 l εð Þ + Ωj j ∂Ωj jð Þ
ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt,

−
λ1
2 uNτττ x, τð Þ		 		2

L2 Ωð Þ −
λ1
2 uNτ x, τð Þ		 		2

L2 Ωð Þ
≤ λ1 uNτττ x, τð Þ, uNτ x, τð Þ� �

L2 Ωð Þ,
ð57Þ

−
λ2
2 uNτττ x, τð Þ		 		2

L2 Ωð Þ −
λ2
2 uNττ x, τð Þ		 		2

L2 Ωð Þ
≤ λ2 uNτττ x, τð Þ, uNττ x, τð Þ� �

L2 Ωð Þ,

−
λ1α

2 uNττ x, τð Þ		 		2
L2 Ωð Þ −

λ1α

2 uNτ x, τð Þ		 		2
L2 Ωð Þ

≤ λ1α uNττ x, τð Þ, uNτ x, τð Þ� �
L2 Ωð Þ,

−
λ2ϱε12

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ −

λ2ϱ

2ε12
∇uNτ x, τð Þ		 		2

L2 Ωð Þ

≤ λ2ϱ ∇uN x, τð Þ,∇uNτ x, τð Þ� �
L2 Ωð Þ,

−
λ2ϱε13

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ −

λ2ϱ

2ε13
∇uNττ x, τð Þ		 		2

L2 Ωð Þ

≤ λ3ϱ ∇uN x, τð Þ,∇uNττ x, τð Þ� �
L2 Ωð Þ,

−
λ3δε14

2 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ −

λ3δε14
2 ∇uNττ x, τð Þ		 		2

L2 Ωð Þ
≤ λ3δ ∇uNτ x, τð Þ,∇uNττ x, τð Þ� �

L2 Ωð Þ,

λ1 uNttt x, 0ð Þ, uNt x, 0ð Þ� �
L2 Ωð Þ

≤
λ1
2 uNttt x, 0ð Þ		 		2

L2 Ωð Þ +
λ1
2 uNt x, 0ð Þ		 		2

L2 Ωð Þ,

λ1α uNtt x, 0ð Þ, uNt x, 0ð Þ� �
L2 Ωð Þ

≤
λ1α

2 uNtt x, 0ð Þ		 		2
L2 Ωð Þ +

λ1α

2 uNt x, 0ð Þ		 		2
L2 Ωð Þ,

λ2 uNttt x, 0ð Þ, uNtt x, 0ð Þ� �
L2 Ωð Þ

≤
λ2
2 uNttt x, 0ð Þ		 		2

L2 Ωð Þ +
λ2
2 uNtt x, 0ð Þ		 		2

L2 Ωð Þ,

λ2ϱ ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� �
L2 Ωð Þ

≤
λ2
2 ϱ ∇uN x, 0ð Þ		 		2

L2 Ωð Þ +
λ2
2 ϱ ∇uNt x, 0ð Þ		 		2

L2 Ωð Þ,

λ3ϱ ∇uN x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ

≤
λ3
2 ϱ ∇uN x, 0ð Þ		 		2

L2 Ωð Þ +
λ3
2 ϱ ∇uNtt x, 0ð Þ		 		2

L2 Ωð Þ,

λ3δ ∇uNt x, 0ð Þ,∇uNtt x, 0ð Þ� �
L2 Ωð Þ

≤
λ3
2 δ ∇uNt x, 0ð Þ		 		2

L2 Ωð Þ +
λ3
2 δ ∇uNtt x, 0ð Þ		 		2

L2 Ωð Þ,
ð58Þ

λ1

ðτ
0
uNttt , uNtt
� �

L2 Ωð Þdt ≤
λ1
2

ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þdt

+ λ1
2

ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt,
ð59Þ

λ3ϱ
ðτ
0
∇uNt ,∇uNtt
� �

L2 Ωð Þdt ≤
λ3ϱ

2

ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt

+ λ3ϱ

2

ðτ
0
uNtt x, tð Þ		 		2

L2 Ωð Þdt:

ð60Þ
Combining inequalities (46)–(79) and equality (45) and

making use of the following inequality:

m1 uN x, τð Þ		 		2
L2 Ωð Þ ≤m1 uN x, tð Þ		 		2

L2 Qτð Þ +m1 uNt x, tð Þ		 		2
L2 Qτð Þ

+m1 uN x, 0ð Þ		 		2
L2 Ωð Þ,

m2 uNτ x, τð Þ		 		2
L2 Ωð Þ ≤m2 uNt x, tð Þ		 		2

L2 Qτð Þ +m2 uNtt x, tð Þ		 		2
L2 Qτð Þ

+m2 uNt x, 0ð Þ		 		2
L2 Ωð Þ,

m3 uNττ x, τð Þ		 		2
L2 Ωð Þ ≤m3 uNtt x, tð Þ		 		2

L2 Qτð Þ +m3 uNttt x, tð Þ		 		2
L2 Qτð Þ

+m3 uNtt x, 0ð Þ		 		2
L2 Ωð Þ,

m4 ∇uN x, τð Þ		 		2
L2 Ωð Þ ≤m4 ∇uN x, tð Þ		 		2

L2 Qτð Þ

+m4 ∇uNt x, tð Þ		 		2
L2 Qτð Þ +m4 ∇uN x, 0ð Þ		 		2

L2 Ωð Þ,

m5 ∇uNτ x, τð Þ		 		2
L2 Ωð Þ ≤m5 ∇uNt x, tð Þ		 		2

L2 Qτð Þ

+m5 ∇uNtt x, tð Þ		 		2
L2 Qτð Þ +m5 ∇uNt x, 0ð Þ		 		2

L2 Ωð Þ,
ð61Þ
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where

m1 =
λ2δ

2 ε3 Ωj j ∂Ωj j + λ3δ

2 ε8 Ωj j ∂Ωj j,

m2 =
λ2ϱ

2
l εð Þ
ε2

+ λ2δ

2
l εð Þ
ε3

+ λ2δ

2
l εð Þ
ε4

+ λ2γ

2
l εð Þ
ε5

+ ε5 Ωj j ∂Ωj j
� �

+ λ2γ

2
l εð Þ
ε6

+ λ3γ

2 ε10 Ωj j ∂Ωj j + λ1
2 ,

m3 =
λ3ϱ

2
l εð Þ
ε7

+ λ3δ

2
l εð Þ
ε8

+ λ3δ

2
l εð Þ
ε9

+ λ3γ

2
l εð Þ
ε10

+ λ3γ

2
l εð Þ
ε11

+ λ2
2 + λ1α

2 ,

m4 =
λ1ϱ

2ε1
ε + λ2ϱ

2 ε12 +
λ2ϱ

2 ε13,

m5 =
λ2ϱ

2
ε

ε2
+ λ2δ

2
ε

ε3
+ λ2δ

2
ε

ε4
+ λ2γ

2
ε

ε5
+ λ2γ

2
ε

ε6
+ λ2ϱ

2ε12
+ λ3δε14

2 ,

ð62Þ

we have

λ1ϱ

2ε1
l εð Þ uN x, τð Þ		 		2

L2 Ωð Þ +
λ1β

2 uNτ x, τð Þ		 		2
L2 Ωð Þ

+ λ2α

2 + λ3β

2

� �
uNττ x, τð Þ		 		2

L2 Ωð Þ

+ λ3
2 −

λ1
2 −

λ2
2

� �
uNτττ x, τð Þ		 		2

L2 Ωð Þ +
λ1ϱ

2 ∇uN x, τð Þ		 		2
L2 Ωð Þ

+ λ1γ

2 + λ2δ

2

� �
∇uNτ x, τð Þ		 		2

L2 Ωð Þ

+ −
λ3ϱ

2
ε

ε7
−
λ3δ

2
ε

ε8
−
λ3δ

2
ε

ε9
−
λ3γ

2
ε

ε10
−
λ3γ

2
ε

ε11
−

λ2ϱ

2ε13
−

λ3δ

2ε14
+ λ3γ

2

� �

� ∇uNττ x, τð Þ		 		2
L2 Ωð Þ

≤
λ1δ

2 Ωj j ∂Ωj jT + λ2δ

2 ε4 Ωj j ∂Ωj j + λ3δ

2 ε9 Ωj j ∂Ωj j +m1

� �

� uN x, 0ð Þ		 		2
L2 Ωð Þ

λ1γ

2 Ωj j ∂Ωj jT + λ2γ

2 ε6 Ωj j ∂Ωj j + λ3γ

2 ε11 Ωj j ∂Ωj j + λ1
2 + λ1α

2 + λ1β

2 +m2

� �

� uNt x, 0ð Þ		 		2
L2 Ωð Þ

+ λ2
2 + λ1α

2 + λ2α

2 −
λ3β

2

� �
+m3

� �
uNtt x, 0ð Þ		 		2

L2 Ωð Þ

+ λ1
2 + λ2

2 + λ3
2

� �
uNttt x, 0ð Þ		 		2

L2 Ωð Þ

+ λ1ϱ

2 + λ2ϱ

2 + λ3ϱ

2 +m4

� �
∇uN x, 0ð Þ		 		2

L2 Ωð Þ

+ λ2ϱ

2 + λ3δ

2 + λ1γ

2 + λ2δ

2 +m5

� �
∇uNt x, 0ð Þ		 		2

L2 Ωð Þ,

+ λ3ϱ

2 + λ3δ

2 −
λ3γ

2

� �
∇uNtt x, 0ð Þ		 		2

L2 Ωð Þ

+ γ1 +m1ð Þ
ðτ
0
uN x, tð Þ		 		2

L2 Ωð Þdt

+ γ2 +m1 +m2ð Þ
ðτ
0
uNt x, tð Þ		 		2

L2 Ωð Þdt + γ3 +m2 +m3ð Þ
ðτ
0

� uNtt x, tð Þ		 		2
L2 Ωð Þdt

+ λ1
2 + λ2 − λ3α +m3

� �ðτ
0
uNttt x, tð Þ		 		2

L2 Ωð Þdt

+ λ1ϱ

2 ε +m4

� �ðτ
0
∇uN x, tð Þ		 		2

L2 Ωð Þdt

+ γ4 +m4 +m5ð Þ
ðτ
0
∇uNt x, tð Þ		 		2

L2 Ωð Þdt

+ γ5 +m5ð Þ
ðτ
0
∇uNtt x, tð Þ		 		2

L2 Ωð Þdt,
ð63Þ

where

γ1 =
λ1ϱ

2 ε1T Ωj j ∂Ωj j + λ1ϱ

2 l εð Þ + Ωj j ∂Ωj jð Þ

+ λ1δ + λ2ϱ

2

� �
Ωj j ∂Ωj j + λ2ϱ

2 ε2T Ωj j ∂Ωj j

+ λ3ϱ

2 ε7T Ωj j ∂Ωj j + λ3ϱ

2 Ωj j ∂Ωj j,

γ2 =
λ1δ + λ2ϱ

2

� �
l εð Þ + λ1δ

2 l εð Þ + λ1γ + λ2δ

2

� �
l εð Þ + Ωj j ∂Ωj jð Þ

+ λ1γ

2 l εð Þ + λ2γ

2 l εð Þ + λ3δ

2 Ωj j ∂Ωj j,

γ3 =
λ2γ

2 Ωj j ∂Ωj j + λ3ϱ

2 l εð Þ + λ3δ

2 l εð Þ + λ3γ

2 l εð Þ + Ωj j ∂Ωj jð Þ

+ λ1
2 + λ1α − λ2βð Þ,

γ4 =
λ1δ + λ2ϱ

2

� �
ε + λ1δ

2 ε + λ1γ + λ2δ

2

� �
ε + λ1γ

2 ε + λ2γ

2 ε

+ λ3ϱ

2 + λ2ρ − λ1δð Þ,

γ5 =
λ3δ

2 ε + λ3γ

2 ε + λ3ϱ

2 + λ3δ − λ2γð Þ: ð64Þ
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Choosing ε7, ε8, ε9, ε10, ε11, ε113, and ε14 sufficiently large

λ3ϱ

2
ε

ε7
+ λ3δ

2
ε

ε8
+ λ3δ

2
ε

ε9
+ λ3γ

2
ε

ε10
+ λ3γ

2
ε

ε11
+ λ3δ

2ε14
+ λ2ϱ

2ε13
< λ3γ

2 ,

ð65Þ

the relation (80) reduces to

uN x, τð Þ		 		2
L2 Ωð Þ + ∇uN x, τð Þ		 		2

L2 Ωð Þ + uNτ x, τð Þ		 		2
L2 Ωð Þ

n
+ ∇uNτ x, τð Þ		 		2

L2 Ωð Þ

+ uNττ x, τð Þ		 		2
L2 Ωð Þ + ∇uNττ x, τð Þ		 		2

L2 Ωð Þ + uNτττ x, τð Þ		 		2
L2 Ωð Þ

o

≤D
ðτ
0

uN x, tð Þ		 		2
L2 Ωð Þ + ∇uN x, tð Þ		 		2

L2 Ωð Þ + uNt x, tð Þ		 		2
L2 Ωð Þ

n

+ ∇uNt x, tð Þ		 		2
L2 Ωð Þ + uNtt x, tð Þ		 		2

L2 Ωð Þ + ∇uNtt x, tð Þ		 		2
L2 Ωð Þ

+ uNttt x, tð Þ		 		2
L2 Ωð Þ

o
dt

+D uN x, 0ð Þ		 		2
W1

2 Ωð Þ + uNt x, 0ð Þ		 		2
W1

2 Ωð Þ

n

+ uNtt x, 0ð Þ		 		2
W1

2 Ωð Þ + uNttt x, 0ð Þ		 		2
L2 Ωð Þ

o
, ð66Þ

where

Applying the Gronwall inequality to (60) and then inte-
grating from 0 to τ, it appears that

uN x, tð Þ		 		2
W1

2 Qτð Þ + uNt x, tð Þ		 		2
W1

2 Qτð Þ + uNtt x, tð Þ		 		2
W1

2 Qτð Þ

≤DeDT u0 xð Þk k2W1
2 Ωð Þ + u1 xð Þk k2W1

2 Ωð Þ + u2 xð Þk k2L2 Ωð Þ + u3 xð Þk k2L2 Ωð Þ
n o

:

8><
>:

ð68Þ

We deduce from (84) that

uN x, tð Þ		 		2
w1
2 Qτð Þ + uNt x, tð Þ		 		2

w1
2 Qτð Þ + uNtt x, tð Þ		 		2

w1
2 Qτð Þ ≤ A:

ð69Þ

Therefore, the sequence fuNgN≥1 is bounded in VðQTÞ,
and we can extract from it a subsequence for which we use
the same notation which converges weakly in VðQTÞ to a
limit function uðx, tÞ; we have to show that uðx, tÞ is a gener-
alized solution of (4). Since uNðx, tÞ→ uðx, tÞ in L2ðQTÞ and
uNðx, 0Þ→ ζðxÞ in L2ðΩÞ, then uðx, 0Þ = ζðxÞ:

Now to prove that (3) holds, we multiply each relation in
(15) by a function plðtÞ ∈W1

2ð0, TÞ, plðtÞ = 0, then add up the
obtained equalities ranging from l = 1 to l =N , and integrate

over t on ð0, TÞ. If we let ηN =∑N
k=1pkðtÞZkðxÞ, then we have

− uNttt , ηNt
� �

L2 QTð Þ − α uNtt , ηNt
� �

L2 QTð Þ − β uNt , ηNt
� �

L2 QTð Þ

+ϱ ∇uN ,∇ηN
� �

L2 QTð Þ + δ ∇uNt ,∇ηN
� �

L2 QTð Þ − γ ∇uNt ,∇ηNt
� �

L2 QTð Þ

= ϱ
ð
∂Ω

ðT
0
ηN x, tð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτ
� �

dtdsx

+ δ
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

−δ
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

− γ
ðT
0

ð
∂Ω
ηNt

ð
Ω

uN ξ, tð Þdξ
� �

dsxdt

+γ
ðT
0

ð
∂Ω
ηNt

ð
Ω

uN ξ, 0ð Þdξ
� �

dsxdt

− γ ΔuNt x, 0ð Þ, ηN 0ð Þ� �
L2 Ωð Þ

D≔

max λ1δ/2ð Þ Ωj j ∂Ωj jT + λ2δ/2ð Þε4 Ωj j ∂Ωj j + λ3δ/2ð Þε9 Ωj j ∂Ωj j +m1, λ1γ/2ð Þ Ωj j ∂Ωj jT + λ2γ/2ð Þε6 Ωj j ∂Ωj jf
+ λ3γ/2ð Þε11 Ωj j ∂Ωj j + λ1/2ð Þ + λ1α/2ð Þ + λ1β/2ð Þ +m2, λ2/2ð Þ + λ1α/2ð Þ + λ2α/2ð Þ − λ3β/2ð Þ +m3, λ1/2ð Þ + λ2/2ð Þ + λ3/2ð Þ

λ1ϱ/2ð Þ + λ2ϱ/2ð Þ + λ3ϱ/2ð Þ +m4, λ2ϱ/2ð Þ + λ3δ/2ð Þ + λ1γ/2ð Þ + λ2δ/2ð Þ +m5, λ3ϱ/2ð Þ + λ3δ/2ð Þ − λ3γ/2,
γ1 +m1, γ2 +m1 +m2, γ3 +m2 +m3, λ1/2ð Þ + λ2 − λ3α +m3,

λ1ϱ/2ð Þε +m4, γ4 +m4 +m5, γ5 +m5g
min λ1ϱ/2ε1ð Þl εð Þ, λ1β/2ð Þ, λ2α/2ð Þ + λ3β/2ð Þ,f
λ3/2 − λ1/2 − λ2/2, λ1ϱ/2, λ1γ/2ð Þ + λ2δ/2ð Þ,

, − λ3ϱ/2ð Þ ε/ε7ð Þ − λ3δ/2ð Þ ε/ε8ð Þ − λ3δ/2ð Þ ε/ε9ð Þ − λ3γ/2ð Þ ε/ε10ð Þ − λ3γ/2ð Þ ε/ε11ð Þ − λ2ϱ/2ε13 − λ3δ/2ε14 − λ3γ/2g

:

ð67Þ
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+ uNttt x, 0ð Þ, ηN 0ð Þ� �
L2 Ωð Þ + α uNtt x, 0ð Þ, ηN 0ð Þ� �

L2 Ωð Þ
+ β uNtt x, 0ð Þ, ηN 0ð Þ� �

L2 Ωð Þ,
ð70Þ

for all ηN of the form ∑N
k=1plðtÞZkðxÞ.

Since

ðt
0

ð
Ω

uN ξ, τð Þ − u ξ, τð Þ� ��
dξdτ ≤

ffiffiffiffiffiffiffiffiffiffi
T Ωj j

p
uN − u

		 		
L2 QTð Þ,

ðT
0
ηN x, tð Þ

ð
Ω

uNt ξ, tð Þ − ut ξ, tð Þ� �
dξdt

≤
ffiffiffiffiffiffiffi
Ωj j

p ðT
0
ηN x, tð Þ� �2

dt
� �1/2

uNt − ut
		 		

L2 QTð Þ,

ðT
0
ηN x, tð Þ

ð
Ω

uð N ξ, 0ð Þ − u ξ, 0ð Þ� �
dξdt

≤
ffiffiffiffiffiffiffi
Ωj j

p ðT
0
ηN x, tð Þ� �2� �1/2

uN x, 0ð Þ		 		
L2 QTð Þ,

uN − u
		 		

L2 QTð Þ → 0, asN →∞, ð71Þ

therefore, we have

ϱ
ð
∂Ω

ðT
0
ηN x, tð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτdtdsx,

→ ϱ
ð
∂Ω

ðT
0
η x, tð Þ

ðt
0

ð
Ω

u ξ, τð Þdξdτdtdsx,

δ
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

→ δ
ð
∂Ω

ðT
0
η x, tð Þ

ð
Ω

u ξ, tð Þdξdtdsx,

−δ
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtds,

→ −δ
ð
∂Ω

ðT
0
η x, tð Þ

ð
Ω

u ξ, 0ð Þdξdtds,

−γ
ðT
0

ð
∂Ω
ηNt

ð
Ω

uN ξ, tð Þdξ
� �

dsxdt,

→ −γ
ðT
0

ð
∂Ω
ηt

ð
Ω

u ξ, tð Þdξ
� �

dsxdt,

γ
ðT
0

ð
∂Ω
ηNt

ð
Ω

uN ξ, 0ð Þdξ
� �

dsxdt,

→ γ
ðT
0

ð
∂Ω
ηt

ð
Ω

u ξ, 0ð Þdξ
� �

dsxdt:

ð72Þ

Thus, the limit function u satisfies (3) for every ηN =
∑N

k=1plðtÞZkðxÞ. We denote byℚN the totality of all functions

of the form ηN =∑N
k=1plðtÞZkðxÞ, with plðtÞ ∈W1

2ð0, TÞ, plðt
Þ = 0:

But ∪N
l=1ℚN is dense in WðQTÞ, and then relation (3)

holds for all u∈WðQTÞ. Thus, we have shown that the limit
function uðx, tÞ is a generalized solution of problem (4) in
VðQTÞ.

4. Uniqueness of Solution

Theorem 3. The problem (4) cannot have more than one gen-
eralized solution in VðQTÞ.

Proof. Suppose that there exist two different generalized solu-
tions u1 ∈ VðQTÞ and u2 ∈ VðQTÞ for the problem (1). Then,
the difference U = u1 − u2 solves

Utttt + αUttt + βUtt − ϱΔU − δΔUt − γΔUtt = 0,

U x, 0ð Þ =Ut x, 0ð Þ =Utt x, 0ð Þ =Uttt x, 0ð Þ = 0

∂u
∂η

=
ðt
0

ð
Ω

u ξ, τð Þdξdτ, x ∈ ∂Ω,

8>>>>>>>>><
>>>>>>>>>:

ð73Þ

and (3) gives

− Uttt , vtð ÞL2 QTð Þ − α Utt , vtð ÞL2 QTð Þ − β Ut , vtð ÞL2 QTð Þ
+ ϱ ∇U ,∇vð ÞL2 QTð Þ + δ ∇Ut ,∇vð ÞL2 QTð Þ − γ ∇Ut ,∇vtð ÞL2 QTð Þ

= ϱ
ðT
0

ð
∂Ω
v

ðt
0

ð
Ω

u ξ, τð Þdξdτ
� �

dsxdt

+ δ
ðT
0

ð
∂Ω
v
ð
Ω

u ξ, tð Þdξdsxdt − γ
ðT
0

ð
∂Ω
vt

ð
Ω

uτ ξ, tð Þdξdt
� �

dsxdt:

ð74Þ

Consider the function

v x, tð Þ =
ðτ
t
U x, sð Þds, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T:

8<
: ð75Þ

It is obvious that v ∈WðQTÞ and vtðx, tÞ = −Uðx, tÞ for all
t ∈ ½0, τ�. Integration by parts in the left hand side of (75)
gives

− Uttt , vtð ÞL2 QTð Þ = Uττ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ −
1
2 Uτ x, τð Þk k2L2 Ωð Þ,

ð76Þ

−α Utt , vtð ÞL2 QTð Þ = α Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ − α
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt,

ð77Þ

−β Ut , vtð ÞL2 QTð Þ =
β

2 U x, τð Þk k2L2 Ωð Þ, ð78Þ
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ϱ ∇U ,∇vð ÞL2 QTð Þ =
ϱ

2 ∇v x, 0ð Þk k2L2 Ωð Þ, ð79Þ

δ ∇Ut ,∇vð ÞL2 QTð Þ = δ
ðτ
0
∇vt x, tð Þk k2L2 Ωð Þdt, ð80Þ

−γ ∇Ut ,∇vtð ÞL2 QTð Þ =
γ

2 ∇U x, τð Þk k2L2 Ωð Þ, ð81Þ

Plugging (76)–(95) into (88), we obtain

Uττ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ + α Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ

+ β

2 U x, τð Þk k2L2 Ωð Þ +
ϱ

2 ∇v x, 0ð Þk k2L2 Ωð Þ

+ γ

2 ∇U x, τð Þk k2L2 Ωð Þ −
1
2 Uτ x, τð Þk k2L2 Ωð Þ

= α
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt − δ

ðτ
0
∇vt x, tð Þk k2L2 Ωð Þdt

+ ϱ
ðT
0

ð
∂Ω
v

ðt
0

ð
Ω

U ξ, τð Þdξdτ
� �

dsxdt

+ δ
ðT
0

ð
∂Ω
v
ð
Ω

U ξ, tð Þdξdsxdt

− γ
ðT
0

ð
∂Ω
vt

ð
Ω

U ξ, tð Þdξ
� �

dsdt:

ð82Þ

Now, since

v2 x, tð Þ =
ðτ
t
U x, sð Þds

� �2
≤ τ

ðτ
0
U2 x, sð Þds, ð83Þ

then

vk k2L2 Qτð Þ ≤ τ2 Uk k2L2 Qτð Þ ≤ T2 Uk k2L2 Qτð Þ: ð84Þ

Using the trace inequality, the right-hand side of (96) can
be estimated as follows:

ϱ
ðT
0

ð
∂Ω
v

ðt
0

ð
Ω

U ξ, τð Þdξdτ
� �

dsxdt

≤
ϱ

2T
2 l εð Þ + Ωj j ∂Ωj jf g

ðτ
0
U x, tð Þk k2L2 Ωð Þdt +

ϱ

2 ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt,

δ
ðT
0

ð
∂Ω
v
ð
Ω

U ξ, tð Þdξdsxdt ≤
δ

2 T2l εð Þ + Ωj j ∂Ωj j� �ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ δ

2 ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt,

−γ
ðT
0

ð
∂Ω
vt

ð
Ω

U ξ, tð Þdξ
� �

dsdt = γ
ðT
0

ð
∂Ω
v

ð
Ω

Ut ξ, tð Þdξ
� �

dsdt

= γ
ðτ
0

ð
∂Ω
v

ð
Ω

Ut ξ, tð Þdξ
� �

dsdt ≤
γ Ωj j ∂Ωj j

2 Utk k2L2 Qτð Þ

+ η2

2 ε ∇vk k2L2 Qτð Þ +
γ

2 l εð ÞT2 Uk k2L2 Qτð Þ:

ð85Þ

Combining the relations (98)-(101) and (96), we get

Uττ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ + α Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ

+ β

2 U x, τð Þk k2L2 Ωð Þ

+ ϱ2 ∇v x, 0ð Þk k2L2 Ωð Þ +
γ

2 ∇U x, τð Þk k2L2 Ωð Þ −
1
2 Uτ x, τð Þk k2L2 Ωð Þ

≤
ϱ

2T
2 l εð Þ + Ωj j ∂Ωj jð Þ + δ

2 T2l εð Þ + Ωj j ∂Ωj j� �
+ γ

2 l εð ÞT2
� �

�
ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ α + γ Ωj j ∂Ωj j
2

� �ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt +

1
2

ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt

+ ϱ + δ + γ

2

� �
ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt: ð86Þ

Next, multiplying the differential equation in (73) by Uttt
and integrating over Qτ =Ω × ð0, τÞ, we obtain

Utttt ,Utttð ÞL2 Qτð Þ + α Uttt ,Utttð ÞL2 Qτð Þ + β Utt ,Utttð ÞL2 Qτð Þ
− ϱ ΔU ,Utttð ÞL2 Qτð Þ − δ ΔUt ,Utttð ÞL2 Qτð Þ − γ ΔUt ,Utttð ÞL2 Qτð Þ = 0:

ð87Þ

An integration by parts in (102) yields

Utttt ,Utttð ÞL2 Qτð Þ =
1
2 Uτττ x, τð Þk k2L2 Ωð Þ, ð88Þ

α Uttt ,Utttð ÞL2 Qτð Þ = α
ðτ
0
Uttt x, tð Þk k2L2 Ωð Þdt, ð89Þ

β Utt ,Utttð ÞL2 Qτð Þ =
β

2 Uττ x, τð Þk k2L2 Ωð Þ, ð90Þ

−ϱ ΔU ,Utttð ÞL2 Qτð Þ = ϱ∇U x, τð Þ,∇Uττ x, τð ÞL2 Ωð Þ

−
ϱ

2 ∇Uτ x, τð Þk k2L2 Ωð Þ − ϱ
ð
∂Ω
Uττ x, τð Þ

�
ðτ
0

ð
Ω

U ξ, ηð Þdξdη
� �

dsx

+ ϱ
ð
∂Ω

ðτ
0
Utt x, tð Þ

ð
Ω

U ξ, tð Þdξdtdsx,

ð91Þ
−δ ΔUt ,Utttð ÞL2 Qτð Þ = δ ∇Uτ x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ

− δ
ðτ
0
∇Utt x,ð Þk k2L2 Ωð Þdt − δ

ð
∂Ω
Uττ x, τð Þ

�
ð
Ω

U ξ, τð Þdξdsx + δ
ðτ
0

ð
∂Ω
Utt x, tð Þ

�
ð
Ω

Ut ξ, tð Þdξdsxdt,

ð92Þ
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−γ ΔUtt ,Utttð ÞL2 Qτð Þ =
γ

2 ∇Uττ x, τð Þk k2L2 Ωð Þ − γ
ð
∂Ω
Uττ x, τð Þ

�
ð
Ω

Uτ ξ, τð Þdξdsx + γ
ðτ
0

ð
∂Ω
Utt x, tð Þ

�
ð
Ω

Utt ξ, tð Þdξdsxdt:

ð93Þ
Substituting (88)–(108) into (102), we get the equality

1
2 Uτττ x, τð Þk k2L2 Ωð Þ +

β

2 Uττ x, τð Þk k2L2 Ωð Þ + ϱ ∇U x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ

+δ ∇Uτ x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ +
γ

2 ∇Uττ x, τð Þk k2L2 Ωð Þ −
ϱ

2 ∇Uτ x,τð Þk k2L2 Ωð Þ

= −α
ðτ
0
Uttt x, tð Þk k2L2 Ωð Þdt + δ

ðτ
0
∇Utt x,ð Þk k2L2 Ωð Þdt

+ϱ
ð
∂Ω
Uττ x, τð Þ

ðτ
0

ð
Ω

U ξ, ηð Þdξdη
� �

dsx − ϱ
ð
∂Ω

ðτ
0
Utt x, tð Þ

ð
Ω

U ξ, tð Þdξdtdsx

+δ
ð
∂Ω
Uττ x, τð Þ

ð
Ω

U ξ, τð Þdξdsx − δ
ðτ
0

ð
∂Ω
Utt x, tð Þ

ð
Ω

Ut ξ, tð Þdξdsxdt

+γ
ð
∂Ω
Uττ x, τð Þ

ð
Ω

Uτ ξ, τð Þdξdsx − γ
ðτ
0

ð
∂Ω
Utt x, tð Þ

ð
Ω

Utt ξ, tð Þdξdsxdt:

ð94Þ

The right-hand side of (109) can be bounded as follows:

ϱ
ð
∂Ω
Uττ x, τð Þ

ðτ
0

ð
Ω

U ξ, ηð Þdξdη
� �

dsx

≤
ϱ

2ε1′
ε ∇Uττ x, τð Þk k2L2 Ωð Þ + l εð Þ Uττ x, τð Þk k2L2 Ωð Þ

� 


+ ϱ

2 ε1
′T ∂Ωj j Ωj j

ðτ
0
U x, tð Þk k2L2 Ωð Þdt,

−ϱ
ð
∂Ω

ðτ
0
Utt x, tð Þ

ð
Ω

U ξ, tð Þdξdtdsx

≤
ϱ

2

ðτ
0

ε ∇Utt x, tð Þk k2L2 Ωð Þ + l εð Þ Utt x, tð Þk k2L2 Ωð Þ
n o

dt

+ ϱ

2 Ωj j ∂Ωj j
ðτ
0
U x, tð Þk k2L2 Ωð Þdt,

δ
ð
∂Ω
Uττ x, τð Þ

ð
Ω

U ξ, τð Þdξdsx

≤
δ

2ε2′
ε ∇Uττ x, τð Þk k2L2 Ωð Þ + l εð Þ Uττ x, τð Þk k2L2 Ωð Þ

� 


+ δ

2 ε2
′T Ωj j ∂Ωj j U x, τð Þk k2L2 Ωð Þ,

−δ
ðτ
0

ð
∂Ω
Utt x, tð Þ

ð
Ω

Ut ξ, tð Þdξdsxdt

≤
δ

2 ε
ðτ
0
∇Utt x, tð Þk k2L2 Ωð Þdt +

δ

2 l εð Þ
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt

+ δ

2 T Ωj j ∂Ωj j
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt,

γ
ð
∂Ω
Uττ x, τð Þ

ð
Ω

Uτ ξ, τð Þdξdsx

≤
γ

2ε3′
ε ∇Uττ x, τð Þk k2L2 Ωð Þ + l εð Þ Uττ x, τð Þk k2L2 Ωð Þ

� 

+ γ

2 ε3
′T Ωj j ∂Ωj j Uτ x, τð Þk k2L2 Ωð Þ,

−γ
ðτ
0

ð
∂Ω
Utt x, tð Þ

ð
Ω

Utt ξ, tð Þdξdsxdt

≤
γ

2 l εð Þ
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt +

γ

2 ε
ðτ
0
∇Utt x, tð Þk k2L2 Ωð Þdt

+ γ

2 T Ωj j ∂Ωj j
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt:

ð95Þ

So, combining inequalities (110)–(115) and equality
(109), we obtain

1
2 Uτττ x, τð Þk k2L2 Ωð Þ +

β

2 −
ϱ

2ε1′
l εð Þ − δ

2ε2′
l εð Þ − δ

2 ε εð Þ
� �

Uττ x, τð Þk k2L2 Ωð Þ

−
γ

2 ε3
′T Ωj j ∂Ωj j Uτ x, τð Þk k2L2 Ωð Þ −

δ

2 ε2
′T Ωj j ∂Ωj j U x, τð Þk k2L2 Ωð Þ

+ γ

2 −
ϱ

2ε1′
ε −

δ

2ε2′
ε −

γ

2ε3′
ε

� �
∇Uττ x, τð Þk k2L2 Ωð Þ −

ϱ

2 ∇Uτ x, τð Þk k2L2 Ωð Þ

+ϱ ∇U x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ + δ ∇Uτ x, τð Þ,∇Uττ x,τð Þð ÞL2 Ωð Þ

≤−α
ðτ
0
Uttt x, tð Þk k2L2 Ωð Þdt +

ϱ

2 l εð Þ + δ

2 l εð Þ + γ

2 l εð Þ + γ

2T Ωj j ∂Ωj j
� �

�
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt

+ ϱ

2 ε1
′T ∂Ωj j Ωj j + ϱ

2 Ωj j ∂Ωj j
n oðτ

0
U x, tð Þk k2L2 Ωð Þdt

+ δ

2 T Ωj j ∂Ωj j
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt

+ δ + ϱ

2 ε +
δ

2 ε +
γ

2 ε
� �ðτ

0
∇Utt x,ð Þk k2L2 Ωð Þdt: ð96Þ

Adding side to side (101) and (116), we obtain

β

2 −
δ

2 ε2
′T Ωj j ∂Ωj j

� �
U x, τð Þk k2L2 Ωð Þ + −

1
2 −

γ

2 ε3
′T Ωj j ∂Ωj j

� �
� Uτ x, τð Þk k2L2 Ωð Þ

+ β

2 −
ϱ

2ε1′
l εð Þ − l εð Þ δ

2ε2′
−

γ

2ε3′
l εð Þ

� �
Uττ x, τð Þk k2L2 Ωð Þ

+ 1
2 Uτττ x, τð Þk k2L2 Ωð Þ

+ Uττ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ + α Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ

+ ϱ

2 ∇v x, 0ð Þk k2L2 Ωð Þ
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+ϱ ∇U x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ
+ δ ∇Uτ x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ

+ γ

2 ∇U x, τð Þk k2L2 Ωð Þ −
ϱ

2 ∇Uτ x, τð Þk k2L2 Ωð Þ

+ γ

2 −
ϱ

2ε1′
ε −

δ

2ε2′
−

γ

2ε3′
ε

� �
∇Uττ x, τð Þk k2L2 Ωð Þ

≤
ϱ

2 ε1
′T ∂Ωj j Ωj j + ϱ

2 Ωj j ∂Ωj j + ϱ

2 T
2 l εð Þ + Ωj j ∂Ωj jð Þ

n
+ δ

2 T2l εð Þ + Ωj j ∂Ωj j� �

+ γ

2 l εð ÞT2
oðτ

0
U x, tð Þk k2L2 Ωð Þdt

+ α + γ Ωj j ∂Ωj j
2 + δ

2 T Ωj j ∂Ωj j
� �ðτ

0
Ut x, tð Þk k2L2 Ωð Þdt

+ 1
2 + l εð Þ ϱ2 + δ

2 l εð Þ + γ

2 l εð Þ + γ

2T Ωj j ∂Ωj j
� �ðτ

0

� Utt x, tð Þk k2L2 Ωð Þdt − α
ðτ
0
Uttt x, tð Þk k2L2 Ωð Þdt

+ δ

2 ε +
γ

2 ε + ε
ϱ

2 + δ

� �ðτ
0
∇Utt x, tð Þk k2L2 Ωð Þdt

+ ϱ + δ + γ

2

� �
ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt:

ð97Þ

Now, to deal with the last term on the right-hand side of
(117), we define the function θðx, tÞ by the relation

θ x, tð Þ≔
ðt
0
U x, sð Þds: ð98Þ

Hence, using (89), it follows that

v x, tð Þ = θ x, τð Þ − θ x, tð Þ, ∇v x, 0ð Þ = ∇θ x, τð Þ,

∇vk k2L2 Qτð Þ = ∇θ x, τð Þ−∇θ x, tð Þk k2L2 Ωð Þ

≤ 2 τ ∇θ x, τð Þk k2L2 Ωð Þ + ∇θ x, tð Þk k2L2 Qτð Þ
� 


:
ð99Þ

And we make use of the following inequality:

−
α

2 Uτ x, τð Þk k2L2 Ωð Þ −
α

2 U x, τð Þk k2L2 Ωð Þ ≤ α Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ,

−
1
2 Uττ x, τð Þk k2L2 Ωð Þ −

1
2 U x, τð Þk k2L2 Ωð Þ ≤ Uττ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ,

−
ϱ

2ε4′
∇Uττ x, τð Þk k2L2 Ωð Þ −

ϱ

2 ε4
′ ∇U x, τð Þk k2L2 Ωð Þ ≤ ϱ ∇U x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ,

−
δ

2ε5′
∇Uττ x, τð Þk k2L2 Ωð Þ −

δ

2 ε5
′ ∇Uτ x, τð Þk k2L2 Ωð Þ ≤ δ ∇Uτ x, τð Þ,∇Uττ x, τð Þð ÞL2 Ωð Þ,

m1 U x, τð Þk k2L2 Ωð Þ ≤m1 U x, tð Þk k2L2 Qτð Þ +m1 Ut x, tð Þk k2L2 Qτð Þ,

m2 Uτ x, τð Þk k2L2 Ωð Þ ≤m2 Ut x, tð Þk k2L2 Qτð Þ +m2 Utt x, tð Þk k2L2 Qτð Þ,

m3 Uττ x, τð Þk k2L2 Ωð Þ ≤m3 Utt x, tð Þk k2L2 Qτð Þ +m3 Uttt x, tð Þk k2L2 Qτð Þ,

m4 ∇U x, τð Þk k2L2 Ωð Þ ≤m4 ∇U x, tð Þk k2L2 Qτð Þ +m4 ∇Ut x, tð Þk k2L2 Qτð Þ,

m5 ∇Uτ x, τð Þk k2L2 Ωð Þ ≤m5 ∇Ut x, tð Þk k2L2 Qτð Þ +m5 ∇Utt x, tð Þk k2L2 Qτð Þ:

ð100Þ

Let

m1 ≔
1
2 + δ

2 ε2
′T Ωj j ∂Ωj j + α

2

m2 ≔ 1 + γ

2 ε3
′T Ωj j ∂Ωj j + α

2

m3 ≔
ϱ

2ε1′
l εð Þ + l εð Þ δ

2ε2′
+ γ

2ε3′
l εð Þ + 1

2

m4 ≔
ϱ

2 ε4
′

m5 ≔ 1 + ϱ

2 + δ

2ε5′
,

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð101Þ

choosing ε1′ , ε2′, ε3′, ε4′, and ε5′ sufficiently large:

ϱ

2ε1′
ε + δ

2ε2′
+ γ

2ε3′
ε + ϱ

2ε4′
+ δ

2ε5′
< γ

2 : ð102Þ

Since τ is arbitrary, we get that ϱ/2 − τεðϱ + δ + γÞ > 0;
thus, inequality (117) takes the form

β

2 U x, τð Þk k2L2 Ωð Þ +
1
2 Uτ x, τð Þk k2L2 Ωð Þ +

β

2 Uττ x, τð Þk k2L2 Ωð Þ

+ 1
2 Uτττ x, τð Þk k2L2 Ωð Þ

+ ϱ

2 − τε ϱ + δ + γð Þ
n o

∇θ x, τð Þk k2L2 Ωð Þ +
γ

2 ∇U x, τð Þk k2L2 Ωð Þ

+ ∇Uτ x, τð Þk k2L2 Ωð Þ

+ γ

2 −
ϱ

2ε1′
ε −

δ

2ε2′
−

γ

2ε3′
ε −

ϱ

2ε4′
−

δ

2ε5′

� �
∇Uττ x, τð Þk k2L2 Ωð Þ
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≤ γ1′ +m1
n oðτ

0
U x, tð Þk k2L2 Ωð Þdt + γ2′ +m1 +m2

� 
ðτ
0

� Ut x, tð Þk k2L2 Ωð Þdt

+ γ3′ +m2 +m3
n oðτ

0
Utt x, tð Þk k2L2 Ωð Þdt + m3 − αð Þ

ðτ
0

� Uttt x, tð Þk k2L2 Ωð Þdt

+ε ϱ + δ + γð Þ
ðτ
0
∇θ x, tð Þk k2L2 Ωð Þdt

+m4

ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt + m4 +m5ð Þ

ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt

+ δ

2 ε +
γ

2 ε + ε
ϱ

2 + δ +m5

� �ðτ
0
∇Utt x, tð Þk k2L2 Ωð Þdt, ð103Þ

where

We obtain

U x, τð Þk k2L2 Ωð Þ + Uτ x, τð Þk k2L2 Ωð Þ + Uττ x, τð Þk k2L2 Ωð Þ + Uτττ x, τð Þk k2L2 Ωð Þ
+ ∇U x, τð Þk k2L2 Ωð Þ + ∇Uτ x, τð Þk k2L2 Ωð Þ + ∇Uττ x, τð Þk k2L2 Ωð Þ

+ ∇θ x, τð Þk k2L2 Ωð Þ ≤D
ðτ
0

U x, tð Þk k2L2 Ωð Þ + Ut x, tð Þk k2L2 Ωð Þ + Utt x, tð Þk k2L2 Ωð Þ
n

+ Uttt x, tð Þk k2L2 Ωð Þ + ∇U x, tð Þk k2L2 Ωð Þ + ∇Ut x, tð Þk k2L2 Ωð Þ+ ∇Utt x, tð Þk k2L2 Ωð Þ

+ ∇θ x, tð Þk k2L2 Ωð Þ
o
dt,

ð105Þ

where

Further, applying Gronwall’s lemma to (133), we deduce
that

U x, τð Þk k2L2 Ωð Þ + Uτ x, τð Þk k2L2 Ωð Þ + Uττ x, τð Þk k2L2 Ωð Þ + Uτττ x, τð Þk k2L2 Ωð Þ

+ ∇U x, τð Þk k2L2 Ωð Þ + ∇Uτ x, τð Þk k2L2 Ωð Þ + ∇Uττ x, τð Þk k2L2 Ωð Þ + ∇θ x, τð Þk k2L2 Ωð Þ

≤0,∀τ ∈ 0, ϱ

2ε ρ + δ + γð Þ
� �

:

ð107Þ

We proceed in the same way for the intervals τ ∈ ½ððm
− 1Þϱ/2εðϱ + δ + γÞÞ, ðmϱ/2εðϱ + δ + γÞÞ� to cover the whole
interval ½0, T�, and thus proving that Uðx, τÞ = 0, for all τ in
½0, T�. Thus, the uniqueness is proved.

5. Conclusion

In the study of the propagation of acoustic waves, it should be
noted that the Moore–Gibson–Thompson equation is one of
the equations of nonlinear acoustics describing acoustic wave

γ1′≔
ϱ

2 ε1
′T ∂Ωj j Ωj j + ϱ

2 Ωj j ∂Ωj j + ϱ

2T
2 l εð Þ + Ωj j ∂Ωj jð Þ + δ

2 T2l εð Þ + Ωj j ∂Ωj j� �
+ γ

2 l εð ÞT2

γ2′≔ α + γ Ωj j ∂Ωj j
2 + δ

2 T Ωj j ∂Ωj j

γ3′≔
1
2 + l εð Þ ϱ2 + δ

2 l εð Þ + γ

2 l εð Þ + γ

2 T Ωj j ∂Ωj j:

8>>>>>>>>><
>>>>>>>>>:

ð104Þ

D≔

max γ1′ +m1
� 


, γ2′ +m1 +m2
� 


4
, γ3′ +m2 +m3,m3 − α,m4

n
,m4 +m5, δ/2ð Þε + γ/2ð Þε + ε ϱ/2ð Þ + δ +m5, ε ϱ + δ + γð Þg

min β/2ð Þ, 1/2; ; γ/2ð Þ, γ/2 − ϱ/2ε1′
� 


ε − δ/2ε2′ − γ/2ε3′
� 


ε − ϱ/2ε4′ − δ/2ε5′
n o

,
n

, ϱ/2 − τε ϱ + δ + γð Þf gg

: ð106Þ
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propagation in gases and liquids. The behavior of acoustic
waves depends strongly on the medium property related to
dispersion, dissipation, and nonlinear effects. It arises from
modeling high-frequency ultrasound (HFU) waves (see [10,
12, 34]). In this work, we have studied the solvability of the
nonlocal mixed boundary value problem for the fourth order
of the Moore–Gibson–Thompson equation. Galerkin’s
method was the main used tool for proving the solvability
of the given nonlocal problem. In the next work, we will try
to use the same method with the Hall-MHD equations which
are nonlinear partial differential equation that arises in
hydrodynamics and some physical applications. It was subse-
quently applied to problems in the percolation of water in
porous subsurface strata (see for example [45–48]) by using
some famous algorithms (see [49–51])
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In this paper, we study the different types of new soliton solutions to the Landau–Lifshitz equation with the aid of the auxiliary
equation method. Then, we get some special soliton solutions for this equation. Without the Gilbert damping term, we present a
travelling wave solution with a finite energy in the initial time. The parameters of the soliton envelope are obtained as a function
of the dependent model coefficients.

1. Introduction

Nonlinear partial differential equations have different types
of equations; one of them is the Landau–Lifshitz equation
that is relevant to the classical and quantummechanics. Non-
linear evolution equations (NEEs) which describe many
physical phenomena are often illustrated by nonlinear partial
differential equations. So, the exact solutions of NLPDE are
explored in detail in order to understand the physical
structure of natural phenomena that are described by such
equations. A variety of powerful methods have been used to
study the nonlinear evolution equations, for the analytic
and numerical solutions. Some of these methods, the
Riccati Equation method [1], Hirota’s bilinear operators
[2], exponential rational function method [3], the Jacobi
elliptic function expansion [4], the homogeneous balance
method [5], the tanh-function expansion [6], first integral
method [7, 8], the subequation method [9], the exp-
function method [10], the Backlund transformation, and
similarity reduction [11–29], are used to obtain the exact
solutions of NLPDE.

In physics, the Landau–Lifshitz–Gilbert equation, named
for Lev Landau, Evgeny Lifshitz, and T. L. Gilbert, is a name
used for a differential equation describing the processional
motion of magnetization M in a solid. It is a modification

by Gilbert of the original equation of LLG equation (see
[30]) can be written down as

∂
∂t

S = αSΛΔS − βSΛ SΛΔSð Þ, ð1Þ

here, S = ðS1ðt, x!Þ, S2ðt, x!Þ, S3ðt, x!ÞÞ ∈ S2↪R3, α ≥ 0, α2 + β2

= 1, Λ denotes the cross product. The term multiplying with
α represents the exchange interaction, while the β term
denotes the Gilbert damping term. Especially, two extreme
cases of (1) (β = 0 and α = 0, respectively) include as special
cases the well-known Schrödinger map equation and har-
monic map heat flow, respectively. The well-posedness prob-
lem of the LL(G) equation are intensively studied in
mathematics, to list a few, in 1986, of the weak solution of
the LL(G) equation. Under the small initial value, the global
existence of the solution in different spaces [31–33] was
proved. The first progress on the existence of partially regular
solutions to the LLG equation was found [30, 33–36]. Even
for the small initial data, the exact form of the solution is still
unknown. On the other hand, whether the LLG equation
admits a global solution will develop a finite time singularity
from the large initial data is an open equation.
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2. Auxiliary Equation Method

Let us consider a typical nonlinear PDE for q = qðx, tÞ,
given by

U qx, qt ,⋯:ð Þ = 0: ð2Þ

Under the wave transformations of qðx, tÞ =QðξÞ and
ξ = σx − lt, Equation (2) becomes an ordinary differential
equation given by

U Q, σQ′,−lQ′,⋯:
� �

= 0: ð3Þ

We assume that the solution ϕðξÞ of the nonlinear Equation
(18) can be presented as

Q ξð Þ = 〠
M

i=0
Aiϒ

i ξð Þ, ð4Þ

in which Aiði = 0,⋯, nÞ are all real constants to be deter-
mined, the balancing number M is a positive integer which
can be determined by balancing the highest order derivative
terms with the highest power nonlinear terms in Equation
(2) andϒ iðξÞ expresses the solutions of the following auxiliary
ordinary differential equation:

dϒ
dξ

� �2
= s1ϒ

2 ξð Þ + s2ϒ
3 ξð Þ + s3ϒ

4 ξð Þ, ð5Þ

where s1, s2, and s3 are real parameters. Equations (6), (7), (8),
(9), (10), (11), (12), (13), (14), (15), (16), (17), (18), and (19)
with Δ = s22 − 4s1s3 give the following solutions:

Case 1. For s1 > 0,

−s1s2 sech2
ffiffiffiffiffiffiffiffiffiffiffi
s1/2ð Þp

ξ
� �

s22 − s1s3 1 + ξ tanh
ffiffiffiffiffiffiffiffiffiffiffi
s1/2ð Þp

ξ
� �� � : ð6Þ

Case 2. For s1 > 0,

−s1s2 csch2
ffiffiffiffiffiffiffiffiffiffiffi
s1/2ð Þp

ξ
� �

s22 − s1s3 1 + ξ tanh
ffiffiffiffiffiffiffiffiffiffiffi
s1/2ð Þp

ξ
� �� � : ð7Þ

Case 3. For s1 > 0, Δ > 0,

2s1 sech
ffiffiffiffi
s1

p
ξ

� �
ε
ffiffiffiffi
Δ

p
− s2 sech

ffiffiffiffi
s1

p
ξ

� � : ð8Þ

Case 4. For s1 < 0, Δ > 0,

2s1 sec
ffiffiffiffiffiffiffi−s1

p
ξ

� �
ε
ffiffiffiffi
Δ

p
− s2 sec

ffiffiffiffiffiffiffi−s1
p

ξ
� � : ð9Þ

Case 5. For s1 > 0, Δ < 0,

2s1 csch
ffiffiffiffi
s1

p
ξ

� �
ε
ffiffiffiffiffiffi
−Δ

p
− s2 csch

ffiffiffiffi
s1

p
ξ

� � : ð10Þ

Case 6. For s1 < 0, Δ > 0,

2s1 csc
ffiffiffiffiffiffiffi−s1

p
ξ

� �
ε
ffiffiffiffi
Δ

p
− s2 csc

ffiffiffiffiffiffiffi−s1
p

ξ
� � : ð11Þ

Case 7. For s1 > 0, s3 > 0

−s1 sech2
ffiffiffiffi
s1

p /2
� �

ξ
� �

s2 + 2ξ ffiffiffiffiffiffiffi
s1s3

p tanh ffiffiffiffi
s1

p /2
� �

ξ
� � : ð12Þ

Case 8. For s1 < 0, s3 > 0,

−s1 sec2
ffiffiffiffiffiffiffi−s1

p /2
� �

ξ
� �

s2 + 2ξ ffiffiffiffiffiffiffiffiffiffi−s1s3
p tan ffiffiffiffiffiffiffi−s1

p /2
� �

ξ
� � : ð13Þ

Case 9. For s1 > 0, s3 > 0

s1 csch2
ffiffiffiffi
s1

p /2
� �

ξ
� �

s2 + 2ξ ffiffiffiffiffiffiffi
s1s3

p coth ffiffiffiffi
s1

p /2
� �

ξ
� � : ð14Þ

Case 10. For s1 < 0, s3 > 0,

−s1 csc2
ffiffiffiffiffiffiffi−s1

p /2
� �

ξ
� �

s2 + 2ξ ffiffiffiffiffiffiffiffiffiffi−s1s3
p cot ffiffiffiffiffiffiffi−s1

p /2
� �

ξ
� � : ð15Þ

Case 11. For s1 > 0, Δ = 0,

−
s1
s2

1 + ξ tanh
ffiffiffiffi
s1

p
2 ξ

� �� �
: ð16Þ

Case 12. For s1 > 0, Δ = 0,

−
s1
s2

1 + ξ coth
ffiffiffiffi
s1

p
2 ξ

� �� �
: ð17Þ

Case 13. For s1 > 0,

4s1eε
ffiffiffi
s1

p ξ

eε
ffiffiffi
s1

p ξ − s2
� �2 − 4s1s2

: ð18Þ

Case 14. For s1 > 0, s2 = 0,

±4s1εeε
ffiffiffi
s1

p ξ

1 − 4s1s3e2ε
ffiffiffi
s1

p ξ
: ð19Þ

Stage 2: substituting Equations (4) and (5) into Equation
(3) and collecting all terms with the same order of ϒ j

together, we convert the left-hand side of Equation (3) into
a polynomial in ϒ j. Setting each coefficient of each polyno-
mial to zero, we derive a set of algebraic equations for A0,
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A1, andA2. By solving these algebraic equations, we obtain
several cases of variables solutions [15, 37]

Stage 3: by substituting the obtained solutions in stage 2
into Equation (4) along with general solutions of Equations
(6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17),
(18), and (19), it finally generates new exact solutions for
the nonlinear PDE (1)

3. Travelling Wave Solutions of the LL Equation
via Aem

In this section, we construct a travelling wave solution with-
out the Gilbert term [30]. Under the condition of the auxil-
iary equation method, we consider the following wave
transformations:

Wc,w t,�rð Þ = e−iwtϕ �r − ctð Þeiψ �r−ctð Þ, ð20Þ

where c and w are constants undetermined.
Here, we assume −c2 + 4w > 0: Substitute (5) into (1)

[30], the separate real and the virtual parts, respectively, as

ϕ ξð Þ w − 2 ξð Þ2 + cψ′ ξð Þ − ψ′ ξð Þ2
� �
+ ϕ ξð Þ3 w + cψ′ ξð Þ + ψ′ ξð Þ2

� �
+ ϕ ξð Þ2ϕ′′ ξð Þ = 0,

ð21Þ

ϕ′ ξð Þ −c + 2ψ′ ξð Þ
� �

− ϕ ξð Þ2ϕ′ ξð Þ c + 2ψ′ ξð Þ
� �

+ ϕ ξð Þψ′′ ξð Þ + ϕ ξð Þ3ψ′′ ξð Þ = 0,
ð22Þ

where ξ =�r − ct. (21) and (22) are the nonlinear constant
coefficients of ordinary differential equation system with
the variable ξ. According to (22), we can obtain a relationship
between ψ and ϕ:

ψ′ ξð Þ =
1 + ϕ ξð Þ2
� �

−c + 2C1 + 2C1 ξð Þ2
� �
2ϕ ξð Þ2

, ð23Þ

where C1 is the arbitrary constant. If we set C1=0, we have

ψ′ ξð Þ = −
c 1 + ϕ ξð Þ2
� �
2ϕ ξð Þ2

: ð24Þ

Substituting (24) into (21), we get

c2 + 3c2 ϕ ξð Þ2 + c2 − 4w
� �

ϕ ξð Þ6 + ϕ ξð Þ2 3c2 − 4w + 8ϕ′ ξð Þ2
� �

− 4ϕ ξð Þ3 1 + ϕ ξð Þ2
� �

ϕ′′ ξð Þ = 0:

ð25Þ

4. Results

By the auxiliary equation method, the solution of (25) is
assumed as

ϕ ξð Þ = A1ϒ ξð Þ + A0: ð26Þ

From (5), we have

ϒ ′
� �2

= s1ϒ
2 ξð Þ + s2ϒ

3 ξð Þ + s3ϒ
4 ξð Þ,

ϒ″ = 1
2 s1ϒ ξð Þ + 3s2ϒ 2 ξð Þ + 4s3ϒ 3 ξð Þ� �

,
ð27Þ

where A1 and A0 are constants. Substituting (26) into (25)
along with (27) and comparing the coefficients of alike
powers of ϒðξÞ provides an algebraic system of equations,
and solving this set of algebraic equations by used of the
Maple, we obtain several case solutions. For example is
as follows.

Set 1:

A1 = −
20
3 s3

3s1 − 12s2
240s3 − 4w

� �
,

A0 =
3s1 − 12s2
240s3 − 4w ,

s2 = 0,

c = 1
30


10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25s3 3s1ð Þ2 + −3120w − 10800s3ð Þs3 3s1ð Þ + 144 w + 90s3ð Þ2

q
+ 150s1 − 10800ð Þs3 + 480w

r !
: ð28Þ
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From set 1 and Eq. (26), we have

ϕ ξð Þ = −
20
3 s3

3s1
240s3 − 4w

� �
ϒ ξð Þ + 3s1

240s3 − 4w : ð29Þ

So, solutions of Equation (5) are obtained in (6), (7), (8),
(9), (10), (11), (12), (13), (14), (15), (16), (17), (18), and (19),
we have final solutions of Equation (1) and Equation (25) as
follows:

ϕ1 �r, tð Þ = −
20
3 s3

3s1
240s3 − 4w

� �

× −s1 csc2
ffiffiffiffiffiffiffi−s1

p /2
� �

�r − ctð Þ� �
2ε ffiffiffiffiffiffiffiffiffiffi−s1s3
p cot ffiffiffiffiffiffiffi−s1

p /2
� �

�r − ctð Þ� � + 3s1 − 12s2
240s3 − 4w :

ð30Þ

In Figure 1, the graphical behavior of solutions ϕ1 for
s1 = −1, s3 = 1, andw = 1 in different values of �r and t is
illustrated.

ϕ2 �r, tð Þ = −
20
3 s3

3s1
240s3 − 4w

� �
× 2s1 sec

ffiffiffiffiffiffiffi−s1
p

�r − ctð Þ� �
ε
ffiffiffiffiffiffiffiffiffiffiffiffi
−4s1s3

p

+ 3s1 − 12s2
240s3 − 4w :

ð31Þ

In Figure 2, the graphical behavior of solutions ϕ2 for
s1 = −1, s3 = 1, andw = 1 in different values of �r and t is
illustrated.

ϕ3 �r, tð Þ = −
20
3 s3

3s1
240s3 − 4w

� �

× s1 csch2
ffiffiffiffi
s1

p /2
� �

�r − ctð Þ� �
2ε ffiffiffiffiffiffiffi

s1s3
p coth ffiffiffiffi

s1
p /2
� �

�r − ctð Þ� � + 3s1
240s3 − 4w :

ð32Þ
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In Figure 3, the graphical behavior of solutions ϕ3 for s1 =
1, s3 = 1, andw = 1 in different values of �r and t is illustrated.

Set 2:

A1 =
−s12 s1

2 + 225s22
� �

−90s2 + s1ð Þ
12w 2s14 − 75s13s2 + 118125s24ð Þ ,

A0 = −
1
15

s1
s2
,

s3 = 0,

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
15

s1
s2

+ 4
� �

w/ 6 − 1
15

s1
s2

� �s
:

ð35Þ

From set 2 and Eq. (26), we have

ϕ ξð Þ = −s12 s1
2 + 225s22

� �
−90s2 + s1ð Þ

12w 2s14 − 75s13s2 + 118125s24ð Þϒ ξð Þ − 1
15

s1
s2
: ð36Þ

So, solutions of Equation (5) are obtained in (6), (7), (8),
(9), (10), (11), (12), (13), (14), (15), (16), (17), (18), and (19),
we have final solutions of Equation (1) and Equation (25) as
follows:

ϕ4 �r, tð Þ = −
20
3 s3

3s1
240s3 − 4w

� �
× 4s1eε

ffiffiffi
s1

p �r−ctð Þ

eε
ffiffiffi
s1

p �r−ctð Þ� �2 + 3s1
240s3 − 4w ,

ϕ5 �r, tð Þ = −
20
3 s3

3s1
240s3 − 4w

� �
× ±4s1εeε

ffiffiffi
s1

p �r−ctð Þ

1 − 4s1s3e2ε
ffiffiffi
s1

p �r−ctð Þ +
3s1

240s3 − 4w , ð33Þ

Wc,w t,�rð Þ = e−iwtϕ �r − ctð Þeiψ �r−ctð Þ,

ψ′ ξð Þ = −
c 1 + ϕ ξð Þ2
� �
2ϕ ξð Þ2

soψ ξð Þ = −
ð c 1 + ϕ ξð Þ2
� �
2ϕ ξð Þ2

dξ,

c = 1
30


10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25s3 3s1ð Þ2 + −3120w − 10800s3ð Þs3 3s1ð Þ + 144 w + 90s3ð Þ2

q
+ 150s1 − 10800ð Þs3 + 480w

r !
: ð34Þ
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ϕ6 �r, tð Þ = −s12 s1
2 + 225s22

� �
−90s2 + s1ð Þ

12w 2s14 − 75s13s2 + 118125s24ð Þ

× −s1s2 sech2
ffiffiffiffiffiffiffiffi
s1/2

p
�r − ctð Þ� �

s22
−

1
15

s1
s2
:

ð37Þ

In Figure 4, the graphical behavior of solutions ϕ6 for
s1 = 1, s2 = 1 in different values of �r and t is illustrated.

ϕ7 �r, tð Þ = −s12 s1
2 + 225s22

� �
−90s2 + s1ð Þ

12w 2s14 − 75s13s2 + 118125s24ð Þ

× −s1s2 csch2
ffiffiffiffiffiffiffiffi
s1/2

p
�r − ctð Þ� �

s22
−

1
15

s1
s2
:

ð38Þ

In Figure 5, the graphical behavior of solutions ϕ7 for
s1 = 1, s3 = 1 in different values of �r and t is illustrated.

ϕ8 �r, tð Þ = −s12 s1
2 + 225s22

� �
−90s2 + s1ð Þ

12w 2s14 − 75s13s2 + 118125s24ð Þ

× 2s1 sech
ffiffiffiffi
s1

p
�r − ctð Þ� �

εs2 − s2 sech
ffiffiffiffi
s1

p
�r − ctð Þ� � − 1

15
s1
s2
,

ϕ9 �r, tð Þ = −s12 s1
2 + 225s22

� �
−90s2 + s1ð Þ

12w 2s14 − 75s13s2 + 118125s24ð Þ

× 4s1eε
ffiffiffi
s1

p �r−ctð Þ

eε
ffiffiffi
s1

p �r−ctð Þ − s2
� �2 − 4s1s2

−
1
15

s1
s2
,

ð39Þ

Wc,w t,�rð Þ = e−iwtϕ �r − ctð Þeiψ �r−ctð Þ,

ψ′ ξð Þ = −
c 1 + ϕ ξð Þ2
� �
2ϕ ξð Þ2

soψ ξð Þ = −
ð c 1 + ϕ ξð Þ2
� �
2ϕ ξð Þ2

dξ,

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
15

s1
s2

+ 4
� �

w/ 6 − 1
15

s1
s2

� �s
:

ð40Þ
For more convenience and understanding, the graphical

behavior of the answers is considered (see Figures 1–5).

5. Conclusions

This paper derived new optical soliton solutions of the
Landau–Lifshitz equation, which describe the propagation
of ultrashort pulses in nonlinear optical fibers by using
the auxiliary equation method. We boldly say that the
work here is valuable and may be beneficial for studying
in other nonlinear science. The exact solutions obtained
from the model equations provide important insight into
the dynamics of solitary waves. The solutions obtained in
this paper have not been reported in the old research.
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In this paper, the Crank–Nicolson (CN) and rotated four-point fractional explicit decoupled group (EDG) methods are introduced
to solve the two-dimensional time–fractional Burgers’ equation. The EDG method is derived by the Taylor expansion and 45°

rotation of the Crank–Nicolson method around the x and y axes. The local truncation error of CN and EDG is presented. Also,
the stability and convergence of the proposed methods are proved. Some numerical experiments are performed to show the
efficiency of the presented methods in terms of accuracy and CPU time.

1. Introduction

Fractional calculus is a generalization of the integration and
derivation of integer order operators to fractional order that
allows us to describe a real system more accurately than inte-
gers. Although the fractional order of a real system may be
low, it is yet considered as a fractional system. An important
feature of fractional calculus is its nonlocality. The fractional
derivative (and integrals) of a function is given by a definite
integral, thus, it depends on the value of the function over
the entire interval [1]. Researchers confirm the existence of
interesting phenomena in nature, which cannot be modeled
by classical differential equations. To cope with this problem,
the nonlocality property of fractional derivative could be a
beneficial tool to study our considered system. Fractional cal-
culus has recently been used in various scientific and engi-
neering fields [2–4]. Some fractional calculus applications
in modeling and design of control systems are introduced
in [5]. The most recent developments and trends in the use

of fractional calculus in biomedicine and biology are pre-
sented by Ionescu et al. [6]. Based on the fractional calculate,
Tang et al. [7] proposed a new four-element creep model; this
model accords well with the experimental data of Changshan
rock salt. Fractional calculus has an extraordinary potential
in signal denoising [8]. Gong et al. discussed the generation
conditions of chaotic behavior and proposed the adaptive
synchronization control method for a class of fractional-
order financial system [9]. Numerous definitions of frac-
tional derivative have been introduced in the literature,
amongst are Riemann–Liouville, Caputo, and Caputo–Fabri-
zio [10]. The Caputo–Fabrizio fractional derivative on the
contrary of other derivatives has a nonsingular kernel.
Hence, it has been considered by many researchers [11–15].
Since to obtain the exact solution of fractional differential
equations is very difficult and sometimes impossible, it is
usually approximated by a numerical method such as finite
difference method [16–18], finite volume methods [19], and
spectral method [20].
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Burgers’ equation as a nonlinear partial differential equa-
tion is widely used in various areas such as fluid mechanics,
gas dynamics, and traffic flow which combine nonlinear
propagation effects with diffusive one.

In this paper, we consider the following two dimensional
time-fractional Burgers’ equation:

∂αu
∂tα

+ u
∂u
∂x

+ ∂u
∂y

� �
= ν

∂2u
∂x2

+ ∂2u
∂y2

 !
+ f x, y, tð Þ,

x, yð Þ ∈Ω, 0 < t < T ,
ð1Þ

with the initial condition

u x, y, 0ð Þ = u0 x, yð Þ, x, yð Þ ∈Ω, ð2Þ

and the boundary condition

u x, y, tð Þ = 0, x, yð Þ ∈ ∂Ω, 0 ≤ t ≤ T , ð3Þ

where ν = 1/Re, Re is Reynolds number characterizing
the strength of viscosity, Ω = ð0, 1Þ × ð0, 1Þ, 0 < α < 1, and
the term ∂αu/∂tα denotes the α order Caputo-Fabrizio frac-
tional derivative of the function uðx, y, tÞ defined as:

∂αu x, y, tð Þ
∂tα

= M αð Þ
1 − α

ðt
0

∂u x, y, sð Þ
∂s

e−
α

1−α t−sð Þds, ð4Þ

where MðαÞ is a normalization function such that Mð0Þ
=Mð1Þ = 1.

We apply the finite difference method to solve Equations
(1)–(3). In finite difference, to find the value corresponding
to each grid point, it is used natural ordering (indexing the
grid of point from left to right and bottom to top by point
to point) or group to group. There are several different
methods to order the interior mesh point such as natural
ordering, diagonal ordering, and alternating diagonal order-
ing [21]. Different linear systems would be produced by dif-
ferent arrangements of the grid points.

We propose two finite difference schemes. The first
scheme is given by the Crank–Nicolson difference method
(by natural ordering). In this scheme, to obtain a more accu-
rate numerical solution, we should use a smaller mesh size,
which requires more storage space and computing time. In
order to fix this problem and accelerate the convergence,
we use the explicit decoupled group (EDG) method intro-
duced by Abdullah in 1990 [22]. Many studies have been
done in reference to the EDG method for examples [23–
26]. The EDG method is based on rotating the Crank–Nicol-
son difference scheme and group ordering of grid points.
Applying the EDGmethod to the Crank–Nicolson difference
scheme result in a new scheme in which the dimension of the
system is half of the dimension of the system generated by the
Crank–Nicolson difference scheme. On this account, half of
the grid points are obtained and the rest can be calculated
directly. Consequently, the EDG method can be favourably
used to reduce the computational cost. In addition, it is worth

to notice that we can take advantage of parallel computers to
run it.

The rest of the paper is organized as follows. In Section 2,
the Crank–Nicolson difference scheme will be applied to
Equations (1)–(3), and also, we give the truncation error. In
Section 3, we describe the formulation of the EDG method.
The stability of these schemes is discussed in Section 4. In
Section 5, we analyze the convergence of these schemes.
Numerical examples are carried out to verify the high effi-
ciency of our method in Section 6. Finally, the paper ends
with a brief conclusion in Section 7.

2. Ù‘The Crank–Nicolson Difference Scheme

For the numerical solution of Equations (1)–(3), we intro-
duce a uniform grid of mesh points ðxi, yj, tnÞ with xi = iΔx,
i = 0, 1,⋯, I, yj = jΔy, j = 0, 1,⋯, J , and tn = nΔt, n = 0, 1,
⋯,N .

Using the Crank–Nicolson approximation to Equations
(1)–(3), we have

∂αu
∂tα

� �n+1/2

i,j
+

uuxð Þn+1i,j + uuxð Þni,j
2 +

uuy
� �n+1

i,j + uuy
� �n

i,j
2

= ν
uxxð Þn+1i,j + uxxð Þni,j

2 +
uyy
� �n+1

i,j + uyy
� �n

i,j
2

0
@

1
A

+ f n+1/2i,j :

ð5Þ

We use the following linearization technique for nonlin-
ear term ðuuxÞn+1 and ðuuyÞn+1 [27]

uuxð Þn+1 ≈ un+1unx + unun+1x − ununx ,

uuy
� �n+1 ≈ un+1uny + unun+1y − ununy :

ð6Þ

Substituting the above approximation into Equation (5),
we yield

∂αu
∂tα

� �n+1/2

i,j
+
un+1i,j uxð Þni,j + uni,j uxð Þn+1i,j

2 +
un+1i,j uy

� �n
i,j + uni,j uy

� �n+1
i,j

2

= ν
uxxð Þn+1i,j + uxxð Þni,j

2 +
uyy
� �n+1

i,j + uyy
� �n

i,j
2

0
@

1
A

+ f n+1/2i,j :

ð7Þ

A discrete approximation to the CF
0 Dα

t uðx, y, tÞ at ðxi, yj,
tn+1/2Þ can be obtained by the following approximation
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∂αu xi, yj, tn+1/2
� �

∂tα
= 1
1 − α

ðtn+12
0

∂u xi, yj, s
� �
∂s

e
− α
1−α tn+12

−s
� �

ds

= 1
1 − α

ðtn
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∂u xi, yj, s
� �
∂s

e
− α
1−α tn+12

−s
� �
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ðtn+12
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− α
1−α tn+12

−s
� �

ds

2
4

3
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〠
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k=1

ðtk
tk−1

uki,j − uk−1i,j
Δt

+ s − tk−1
2

� �
utt xi, yj, ck
� � !
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− α
1−α tn+12

−s
� �

ds

2
4

+
ðtn+12
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un+1/2i, j − uni,j
Δt/2 +O Δtð Þ

 !
e
− α
1−α tn+12

−s
� �
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#
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1 − α

〠
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ðtk
tk−1
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Δt
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2

� �
utt xi, yj, ck
� � !

e
− α
1−α tn+12

−s
� �
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2
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ðtn+12
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un+1i, j + uni,j/2 − uni,j
Δt/2 +O Δtð Þ

 !
e
− α
1−α tn+12

−s
� �

ds

#
,

ð8Þ

where ck ∈ ðtk−1, tkÞ. Then,

∂αu xi, yj, tn+1/2
� �

∂tα
= 1
1 − α

〠
n

k=1

ðtk
tk−1

uki,j − uk−1i,j
Δt

e
− α
1−α tn+12

−s
� �

ds

+ 1
1 − α

〠
n

k=1

ðtk
tk−1

s − tk−1
2

� �
utt xi, yj, ck
� �

e
− α
1−α tn+12

−s
� �

ds

+ 1
1 − α

ðtn+12
tn

un+1i,j − uni,j
Δt

+O Δtð Þ
 !

e
− α
1−α tn+12

−s
� �

ds

= 1
αΔt

un+1i,j − uni,j
� �

1 − e−
α

1−α
1
2ð ÞΔt� �

+ 〠
n

k=1
uki,j − uk−1i,j

h i(

� e−
α

1−α n−k+1
2ð ÞΔt − e−

α
1−α n−k+3

2ð ÞΔth i)
+ R1 + R2,

ð9Þ

which

R1 =
1

1 − α
〠
n

k=1

ðtk
tk−1

s − tk−1
2

� �
utt xi, yj, ck
� �

e
− α
1−α tn+12

−s
� �

ds,

ð10Þ

and

R2 =
1
α

1 − e−
α

1−α
1
2ð ÞΔt� �

O Δtð Þ: ð11Þ

Therefore, we have

R1 =
1

1 − α
〠
n

k=1

ðtk
tk−1

s − tk−1
2

� �
utt xi, yj, ck
� �

e
− α
1−α tn+12

−s
� �

ds

= 1
1 − α

〠
n

k=1
utt xi, yj, ck
� �ðtk

tk−1

s − tk−1
2

� �
e
− α
1−α tn+12

−s
� �

ds

≤
max
1≤k≤n

utt xi, yj, ck
� ���� ���Δt
2 1 − αð Þ 〠

n

k=1

ðtk
tk−1

e
− α
1−α tn+12

−s
� �

ds

=
max
1≤k≤n

utt xi, yj, ck
� ���� ���Δt
2α 〠

n

k=1
e−

α
1−α n−k+1

2ð ÞΔt − e−
α

1−α n−k+3
2ð ÞΔt� �

=
max
1≤k≤n

utt xi, yj, ck
� ���� ���Δt
2α e−

α
1−α

1
2ð ÞΔt − e−

α
1−α n+1

2ð ÞΔt� �

≈

max
1≤k≤n

utt xi, yj, ck
� ���� ���Δt
2α

α

1 − α
n + 1

2 −
1
2

� �
Δt

� �

=
max
1≤k≤n

utt xi, yj, ck
� ���� ���Δt

2 1 − αð Þ nΔt

=
max
1≤k≤n

utt xi, yj, ck
� ���� ���TΔt

2 1 − αð Þ =O Δtð Þ:

ð12Þ

By setting

wk = e−
α

1−α k−1
2ð ÞΔt − e−

α
1−α k+1

2ð ÞΔt , ð13Þ

finally, we obtain

∂αu xi, yj, tn+1/2
� �

∂tα
= 1
αΔt

−wnu
0
i,j + 〠

n−1

k=1
wn−k+1 −wn−kð Þuki,j

"

+w1u
n
i,j + un+1i,j − uni,j

� �
1 − e−

α
1−α

1
2ð ÞΔt� �#

+O Δtð Þ:
ð14Þ

Besides, utilizing the Taylor expansion, we have

∂2u xi, yj, tn+1/2
� �

∂x2
= 1
2

un+1i+1, j − 2un+1i, j + un+1i−1, j

Δxð Þ2 +
uni+1, j − 2uni, j + uni−1, j

Δxð Þ2
" #

+O Δt2 + Δx2
� �

,
ð15Þ

∂2u xi, yj, tn+1/2
� �

∂y2
= 1
2

un+1i,j+1 − 2un+1i, j + un+1i,j−1

Δyð Þ2 +
uni,j+1 − 2uni, j + uni,j−1

Δyð Þ2
" #

+O Δt2 + Δy2
� �

,
ð16Þ
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u xi, yj, tn+1
2

� � ∂u xi, yj, tk+1/2
� �

∂x

= 1
4Δx uni,j un+1i+1,j − un+1i−1,j

� �
+ un+1i,j uni+1,j − uni−1,j

� �h i
+O Δt2 + Δx2
� �

,
ð17Þ

u xi, yj, tn+1
2

� � ∂u xi, yj, tn+1/2
� �

∂y

= 1
4Δy uni,j un+1i,j+1 − un+1i,j−1

� �
+ un+1i,j uni,j+1 − uni,j−1

� �h i
+O Δt2 + Δy2
� �

:

ð18Þ
Using the Equations (14)–(18), we derive the following

difference scheme which is accurate of the order OðΔt + Δx2

+ Δy2Þ,

1
αΔt

−wnU
0
i,j + 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j +w1U
n
i,j + Un+1

i,j −Un
i,j

� �
D0

" #

= ν

2
Un+1

i+1,j − 2Un+1
i,j +Un+1

i−1,j

Δxð Þ2 +
Un

i+1,j − 2Un
i,j +Un

i−1,j

Δxð Þ2
" #

+ ν

2
Un+1

i,j+1 − 2Un+1
i,j +Un+1

i,j−1

Δyð Þ2 +
Un

i,j+1 − 2Un
i,j +Un

i,j−1

Δyð Þ2
" #

−
1

4Δx Un
i,j Un+1

i+1,j −Un+1
i−1,j

� �
+Un+1

i,j Un
i+1,j −Un

i−1,j

� �h i
−

1
4Δy Un

i,j Un+1
i,j+1 −Un+1

i,j−1

� �
+Un+1

i,j Un
i,j+1 −Un

i,j−1

� �h i
+ f xi, yj, tn+1

2

� �
,

ð19Þ

where D0 = ð1 − e−ðα/1−αÞð1/2ÞΔtÞ and Un
i,j represents the

approximate solution of Equation (1).
After simplification, we obtain

D0 +
αΔt
4Δx Un

i+1,j −Un
i−1,j

� �
+ αΔt
4Δy Un

i,j+1 −Un
i,j−1

� �
+ αΔtν

Δxð Þ2 + αΔtν

Δyð Þ2
 !

Un+1
i,j

−
αΔtν

2 Δxð Þ2 −Un
i,j
αΔt
4Δx

 !
Un+1

i+1,j −
αΔtν

2 Δxð Þ2 +Un
i,j
αΔt
4Δx

 !
Un+1

i−1,j

−
αΔtν

2 Δyð Þ2 −Un
i,j
αΔt
4Δy

 !
Un+1

i,j+1 −
αΔtν

2 Δyð Þ2 +Un
i,j
αΔt
4Δy

 !
Un+1

i,j−1

= D0 −
αΔtν

Δxð Þ2 −
αΔtν

Δyð Þ2 −w1

 !
Un

i,j +
αΔtν

2 Δxð Þ2 U
n
i+1,j +

αΔtν

2 Δxð Þ2 U
n
i−1,j

+ αΔtν

2 Δyð Þ2 U
n
i,j+1 +

αΔtν

2 Δyð Þ2 U
n
i,j−1 +wnU

0
i,j − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j + αΔtð Þf n+
1
2

i,j :

ð20Þ

3. Fractional Explicit Decoupled Group Method

Another approximate formula for Equation (1) is obtained
by Taylor’s expansion and rotating Equation (20), 45°

degrees clockwise around the x − y axis. The Crank–Nicolson
rotation formula for Equation (1) is as follows

1
αΔt

−wnU
0
i,j + 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j +w1U
n
i,j + Un+1

i,j −Un
i,j

� �
D0

" #

= ν

4
Un+1

i−1, j+1 − 2Un+1
i,j +Un+1

i+1,j−1

h2
+
Un

i−1,j+1 − 2Un
i,j +Un

i+1, j−1

h2

" #

+ ν

4
Un+1

i+1,j+1 − 2Un+1
i,j +Un+1

i−1,j−1

h2
+
Un

i+1,j+1 − 2Un
i, j +Un

i−1,j−1

h2

" #

−
1
4h

Un
i,j
2 Un+1

i+1,j+1 +Un+1
i+1,j−1

� �
− Un+1

i−1,j−1 +Un+1
i−1,j+1

� �� �	

+
Un+1

i,j
2 Un

i+1, j+1 +Un
i+1,j−1

� �
− Un

i−1,j−1 +Un
i−1,j+1

� �� �#

−
1
4h

Un
i,j
2 Un+1

i−1,j+1 +Un+1
i+1,j+1

� �
− Un+1

i−1,j−1 +Un+1
i+1,j−1

� �� �	

+
Un+1

i,j
2 Un

i−1, j+1 +Un
i+1,j+1

� �
− Un

i−1,j−1 +Un
i+1,j−1

� �� �#

+ f xi, yj, tn+1
2

� �
,

ð21Þ

where h = Δx = Δy. Similarly, the above-rotated differ-
ence scheme is accurate of order OðΔt + Δx2 + Δy2Þ. On sim-
plification with rx = αΔt/4h and rxx = αΔtν/2h2, the following
equation is obtained

D0 + rx Un
i+1,j+1 −Un

i−1,j−1

� �
+ 2rxx

� �
Un+1

i,j −
rxx
2 Un+1

i+1,j−1

−
rxx
2 Un+1

i−1,j+1 −
rxx
2 − rxU

n
i,j

� �
Un+1

i+1,j+1 −
rxx
2 + rxU

n
i,j

� �
Un+1

i−1,j−1

= D0 − 2rxx −w1ð ÞUn
i,j +

rxx
2 Un

i+1,j−1 +
rxx
2 Un

i−1,j+1 +
rxx
2 Un

i+1,j+1

+ rxx
2 Un

i−1,j−1 +wnU
0
i,j − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j + αΔtð Þf n+1/2i,j :

ð22Þ

Utilizing Equation (22) to any group of four points on the
solution domain gives a ð4 × 4Þ system as follows

ai,j −ci,j 0 0
−di+1,j+1 ai+1,j+1 0 0

0 0 ai+1,j −b

0 0 −b ai,j+1

2
666664

3
777775

Un+1
i,j

Un+1
i+1,j+1

Un+1
i+1,j

Un+1
i,j+1

2
6666664

3
7777775
=

rhsi,j

rhsi+1,j+1

rhsi+1,j

rhsi,j+1

2
666664

3
777775,

ð23Þ

where

ai,j =D0 + rx Un
i+1,j+1 −Un

i−1,j−1

� �
+ 2rxx, ci,j =

rxx
2 − rxU

n
i,j, di,j

= rxx
2 + rxU

n
i,j, b =

rxx
2 ,

ð24Þ
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with

and

τi,j

τi+1,j+1

τi+1,j

τi,j+1

2
666664

3
777775 =

wnU
0
i,j − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j + αΔtð Þf n+
1
2

i,j

wnU
0
i+1,j+1 − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i+1,j+1 + αΔtð Þf n+
1
2

i+1,j+1

wnU
0
i+1,j − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i+1,j + αΔtð Þf n+
1
2

i+1,j

wnU
0
i,j+1 − 〠

n−1

k=1
wn−k+1 −wn−kð ÞUk

i,j+1 + αΔtð Þf n+
1
2

i,j+1

2
666666666666666664

3
777777777777777775

:

ð26Þ

Equation (23) leads to a decoupled system of 2 × 2 equa-
tions in explicit form

ai,j −ci,j
−di+1,j+1 ai+1,j+1

" #
Un+1

i,j

Un+1
i+1,j+1

2
4

3
5 =

rhsi,j

rhsi+1,j+1

" #
, ð27Þ

and

ai+1,j −b

−b ai,j+1

" #
Un+1

i+1,j

Un+1
i,j+1

2
4

3
5 =

rhsi+1,j

rhsi,j+1

" #
: ð28Þ

The computational molecule of Equations (27) and (28)
is shown in Figure 1.

From Figure 1(a), it can be seen that Equation (27) is exe-
cuted only by considering the green dots. On the contrary,
Equation (28) only runs with red dots. Therefore, the imple-
mentation of these two equations is independent of each
other, which makes the solution of Equation (1) consume less
time.

In the EDG method, the grid points are divided into sev-
eral groups. Each group consists of only two points of the
grid (shown in Figure 2). We apply one of the Equation
(27) or Equation (28) for each group in Figure 2. Therefore,
half of the grid points (green dots) are calculated by the
rotated finite-difference Equation (22). Before going to the
next time level, we obtain other points of the grid (red dots)
directly once by taking the Equation (20).

i,j

i,j+2 i+2,j+2

i+1,j+1i–1,j+1

i+2,j

i+1,j–1i–1,j–1

(a)

i+1,j

i–1,j+2 i+1,j+2

i+2,j+1i,j+1

i–1,j

i+2,j–1i,j–1

(b)

Figure 1: Grid point on x − y plane. Computational molecule of Equation (27) (a) and computational molecule of Equation (28) (b).

rhsi, j

rhsi+1, j+1

rhsi+1, j

rhsi, j+1

2
666664

3
777775 =

b Un+1
i+1,j−1 +Un+1

i−1,j+1

� �
+ di,jU

n+1
i−1,j−1

� �
+ D0 − 2rxx −w1ð ÞUn

i,j + b Un
i+1,j−1 +Un

i−1,j+1 +Un
i+1,j+1 +Un

i−1,j−1

� �
+ τi,j

b Un+1
i+2,j +Un+1

i,j+2

� �
+ ci+1,j+1U

n+1
i+2,j+2

� �
+ D0 − 2rxx −w1ð ÞUn

i+1,j+1 + b Un
i+2,j +Un

i,j+2 +Un
i+2,j+2 +Un

i,j

� �
+ τi+1,j+1

bUn+1
i+2,j−1 + ci+1,jU

n+1
i+2,j+1 + di+1,jU

n+1
i,j−1

� �
+ D0 − 2rxx −w1ð ÞUn

i+1,j + b Un
i+2,j−1 +Un

i,j+1 +Un
i+2,j+1 +Un

i,j−1

� �
+ τi+1,j

bUn+1
i−1,j+2 + ci,j+1U

n+1
i+1,j+2 + di,j+1U

n+1
i−1,j

� �
+ D0 − 2rxx −w1ð ÞUn

i+1,j + b Un
i+1,j +Un

i−1,j+2 +Un
i+1,j+2 +Un

i−1,j

� �
+ τi,j+1

2
6666666664

3
7777777775
,

ð25Þ
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4. Stability Analysis

In this section, the stability of the finite difference method is
investigated with the Von-Neumann analysis. We first give a
lemma about wj, which will be used in the stability analysis.

Lemma 1 (see [28]). The coefficients wj in Equation (13) sat-
isfy the following properties.

0 ≤wj ≤ CΔt, ð29Þ

and

0 ≤wj −wj+1 ≤ CΔtwj: ð30Þ

To investigate the stability of the difference scheme, the
nonlinear term uðux + uyÞ in Equations (1)–(3) has been line-
arized by making the quantity u to a local constant. Thus, the
nonlinear term in Equation (1) converts into ûðux + uyÞ, and
Equation (1) becomes:

∂αu
∂tα

+ û
∂u
∂x

+ ∂u
∂y

� �
= ν

∂2u
∂x2

+ ∂2u
∂y2

 !
+ f x, y, tð Þ: ð31Þ

Let ~U
n
i,j and �Un

i,j be the approximate solutions of Equations
(20) and (22), respectively, and define

ρni,j =Un
i,j − ~U

n
i,j, ð32Þ

ϕni,j =Un
i,j − �Un

i,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ n ≤N: ð33Þ

Then, by substituting Equation (32) into Equation (20),
we have

ναΔt

Δxð Þ2 + ναΔt

Δyð Þ2 +D0

 !
ρn+1i,j + αΔtû

4Δx
−

ναΔt

2 Δxð Þ2
 !

ρn+1i+1,j

+ −
αΔtû
4Δx

−
ναΔt

2 Δxð Þ2
 !

ρn+1i−1,j +
αΔtû
4Δy

−
ναΔt

2 Δyð Þ2
 !

ρn+1i,j+1

+ −
αΔtû
4Δy

−
ναΔt

2 Δyð Þ2
 !

ρn+1i,j−1 = −
ναΔt

Δxð Þ2 −
ναΔt

Δyð Þ2 −w1 +D0

 !
ρni,j

+ −
αΔtû
4Δx

+ ναΔt

2 Δxð Þ2
 !

ρni+1,j +
αΔtû
4Δx

+ ναΔt

2 Δxð Þ2
 !

ρni−1,j

+ −
αΔtû
4Δy

+ ναΔt

2 Δyð Þ2
 !

ρni,j+1 +
αΔtû
4Δy

+ ναΔt

2 Δyð Þ2
 !

ρni,j−1 +wnρ
0
i,j

− 〠
n−1

k=1
wn−k+1 −wn−kð Þρki,j:

ð34Þ

Also by putting Equation (33) in Equation (22), we get

D0 + 2rxxð Þϕn+1i, j −
rxx
2

ϕn+1i+1, j−1 − ϕn+1i−1,j+1

� �
−

rxx
2

− ûrx
� �

ϕn+1i+1,j+1

−
rxx
2

+ ûrx
� �

ϕn+1i−1,j−1 = D0 −w1 + 2rxxð Þϕni,j
+ rxx

2
ϕni+1,j−1 + ϕni−1,j+1

� �
+ rxx

2
− ûrx

� �
ϕni+1,j+1

+ rxx
2

+ ûrx
� �

ϕni−1,j−1 +wnϕ
0
i,j − 〠

n−1

k=1
wn−k+1 −wn−kð Þϕki,j:

ð35Þ

The Fourier series for ρnðx, yÞ and ϕnðx, yÞ is

ρn x, yð Þ = 〠
∞

m2=−∞
〠
∞

m1=−∞
ξn m1,m2ð Þeι2π m1x+m2yf g,

ϕn x, yð Þ = 〠
∞

m2=−∞
〠
∞

m1=−∞
ηn m1,m2ð Þeι2π m1x+m2yf g,

ð36Þ

where ι =
ffiffiffiffiffiffi
−1

p
and the amplication factors ξn and ηn are

defined by

ξn m1,m2ð Þ =
ð1
0

ð1
0
e−ι2π m1τ+m2εf gρn τ, εð Þdτdε, ð37Þ

ηn m1,m2ð Þ =
ð1
0

ð1
0
e−ι2π m1τ+m2εf gϕn τ, εð Þdτdε: ð38Þ

Introducing the following norm

ρnk k2 = 〠
J−1

j=1
〠
I−1

i=1
ΔxΔy ρni,j

��� ���2
 !1/2

=
ð1
0

ð1
0
ρni,j

��� ���2dτdε� �1/2
,

ϕnk k2 = 〠
J−1

j=1
〠
I−1

i=1
ΔxΔy ϕni,j

��� ���2
 !1/2

=
ð1
0

ð1
0
ϕni,j

��� ���2dτdε� �1/2
:

ð39Þ

4

2

3

1

Figure 2: Group ordering for EDG method for N = 5.
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By applying the Parseval’s equality

ð1
0

ð1
0
ρn τ, εð Þj j2dτdε = 〠

∞

m2=−∞
〠
∞

m1=−∞
ξn m1,m2ð Þj j2,

ð1
0

ð1
0
ϕn τ, εð Þj j2dτdε = 〠

∞

m2=−∞
〠
∞

m1=−∞
ηn m1,m2ð Þj j2,

ð40Þ

we obtain

ρnk k22 = 〠
∞

m2=−∞
〠
∞

m1=−∞
ξn m1,m2ð Þj j2,

ϕnk k22 = 〠
∞

m2=−∞
〠
∞

m1=−∞
ηn m1,m2ð Þj j2:

ð41Þ

According to the above analysis, we can suppose that the
solution of Equations (34) and (35) has the following form

ρni,j = ξne
ι σxiΔx+σy jΔyð Þ,

ϕni,j = ηne
ι σxiΔx+σy jΔyð Þ,

ð42Þ

where σx = 2m1π, σy = 2m2π.

Lemma 2. If w1 ≤D0 in Equation (20) and α ∈ ð0, 1Þ, then we
have

ξnj j ≤ ξ0j j, n = 1, 2,⋯,N , ð43Þ

where ξn is defined in Equation (37).

Proof. Substituting ρni,j = ξne
ιðσxiΔx+σy jΔyÞ into Equation (34),

we have

ναΔt

Δxð Þ2 + ναΔt

Δyð Þ2 +D0

 !
ξn+1e

ι σxiΔx+σy jΔyð Þ

+ αΔtû
4Δx −

ναΔt
2Δx2

� �
ξn+1e

ι σx i+1ð ÞΔx+σy jΔyð Þ

+ −
αΔtû
4Δx −

ναΔt
2Δx2

� �
ξn+1e

ι σx i−1ð ÞΔx+σy jΔyð Þ

+ αΔtû
4Δy −

ναΔt
2Δy2

� �
ξn+1e

ι σxiΔx+σy j+1ð ÞΔyð Þ

+ −
αΔtû
4Δy −

ναΔt
2Δy2

� �
ξn+1e

ι σxiΔx+σy j−1ð ÞΔyð Þ

= −
ναΔt

Δxð Þ2 −
ναΔt

Δyð Þ2 −w1 +D0

 !
ξne

ι σxiΔx+σy jΔyð Þ

+ −
αΔtû
4Δx + ναΔt

2 Δxð Þ2
 !

ξne
ι σx i+1ð ÞΔx+σy jΔyð Þ

+ αΔtû
4Δx + ναΔt

2 Δxð Þ2
 !

ξne
ι σx i−1ð ÞΔx+σy jΔyð Þ

+ −
αΔtû
4Δy + ναΔt

2 Δyð Þ2
 !

ξne
ι σxiΔx+σy j+1ð ÞΔyð Þ

+ αΔtû
4Δy + ναΔt

2 Δyð Þ2
 !

ξne
ι σxiΔx+σy j−1ð ÞΔyð Þ

+wnξ0e
ι σxiΔx+σy jΔyð Þ

− 〠
n−1

k=1
wn−k+1 −wn−kð Þξkeι σxiΔx+σy jΔyð Þ,

ð44Þ

after simplifications, we can get

ξn+1 −ναΔt −
1

Δxð Þ2 −
1

Δyð Þ2 + cos σxΔxð Þ
Δxð Þ2 +

cos σyΔy
� �
Δyð Þ2

 !"

+D0 + ι
αΔtû
2

sin σxΔxð Þ
Δx

+
sin σyΔy
� �
Δy

 !#

= ξn ναΔt −
1

Δxð Þ2 −
1

Δyð Þ2 + cos σxΔxð Þ
Δxð Þ2 +

cos σyΔy
� �
Δyð Þ2

 !"

+D0 −w1 − ι
αΔtû
2

sin σxΔxð Þ
Δx

+
sin σyΔy
� �
Δy

 !#

+wnξ0 − 〠
n−1

k=1
wn−k+1 −wn−kð Þξk:

ð45Þ

First, letting n = 0 in Equation (45), we obtain

ξ1j j = γj j ξ0j j, ð46Þ

where

γ = ναΔtA +D0 − ι αΔtû/2ð ÞB
−ναΔtA +D0 + ι αΔtû/2ð ÞB ,

A = −
1

Δxð Þ2 −
1
Δyð Þ2 + cos σxΔxð Þ

Δxð Þ2 +
cos σyΔy
� �
Δyð Þ2 ,

B = sin σxΔxð Þ
Δx

+
sin σyΔy
� �
Δy

:

ð47Þ

In the above expression, it is clear that the real part of the
numerator is smaller than the real part of the denominator.
Thus, the magnitude of the numerator is smaller than the
denominator. So we have

ξ1j j ≤ ξ0j j: ð48Þ

Now, suppose that we have proved that jξnj ≤ jξ0j, n = 1,
2,⋯,m:
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We should prove this for n =m + 1. Using Equation (45),
we get

ξm+1j j ≤ ναΔtA +D0 −w1 − ι αΔtû/2ð ÞB
−ναΔtA +D0 + ι αΔtû/2ð ÞB

����
���� ξ0j j

+ wm −∑m−1
k=1 wm−k+1 −wm−kð Þ

−ναΔtA +D0 + ι αΔtû/2ð ÞB

�����
����� ξ0j j:

ð49Þ

Using Lemma 1, we have

ξm+1j j ≤ ναΔtA +D0 −w1 − ι αΔtû/2ð ÞBj j +w1
−ναΔtA +D0 + ι αΔtû/2ð ÞBj j ξ0j j:

ð50Þ

Consider the following two cases:

Case 3. If ναΔtA +D0 −w1 > 0, then, we have

ξm+1j j ≤ ναΔtA +D0
−ναΔtA +D0

� �
ξ0j j ≤ ξ0j j: ð51Þ

Case 4. If ναΔtA +D0 −w1 ≤ 0, then, we have

ξm+1j j ≤ 2w1 − ναΔtA −D0
−ναΔtA +D0

� �
ξ0j j: ð52Þ

Therefore,

2w1 − ναΔtA −D0
−ναΔtA +D0

≤ 1, ð53Þ

That is, w1 ≤D0, or ∣ξm+1 ∣ ≤ ∣ ξ0 ∣ .
By mathematical induction, we finish the proof.

Theorem 5. For α ∈ ð0, 1Þ, the finite difference scheme Equa-
tion (20) is stable if w1 ≤D0.

Proof. Let w1 ≤D0, using Lemma 2 and Parseval’s equality,
we get

ρnk k2 = 〠
J−1

j=1
〠
I−1

i=1
ΔyΔx ρni,j

��� ���2 = ΔyΔx〠
J−1

j=1
〠
I−1

i=1
ξne

ι σxiΔx+σy jΔyð Þ��� ���2

= ΔyΔx〠
J−1

j=1
〠
I−1

i=1
ξnj j2 ≤ ΔyΔx〠

J−1

j=1
〠
I−1

i=1
ξ0j j2

= ΔyΔx〠
J−1

j=1
〠
I−1

i=1
ξ0e

ι σxiΔx+σy jΔyð Þ��� ���2 = ρ0
�� ��

2:

ð54Þ

So the difference scheme Equation (20) is conditionally
stable.

Lemma 6. If w1 ≤D0 in Equation (22) and α ∈ ð0, 1Þ, then, we
have

ηnj j ≤ η0j j, n = 1, 2,⋯,N , ð55Þ

where ηn is defined in Equation (38).

Proof. Substituting ϕni,j = ηne
ιðσxiΔx+σy jΔyÞ into Equation (35),

we have

D0 + 2rxxð Þηn+1eι σxiΔx+σy jΔyð Þ − rxx
2 ηn+1e

ι σx i+1ð ÞΔx+σy j−1ð ÞΔyð Þ

−
rxx
2 ηn+1e

ι σx i−1ð ÞΔx+σy j+1ð ÞΔyð Þ

−
rxx
2 − ûrx

� �
ηn+1e

ι σx i+1ð ÞΔx+σy j+1ð ÞΔyð Þ

−
rxx
2 + ûrx

� �
ηn+1e

ι σx i−1ð ÞΔx+σy j−1ð ÞΔyð Þ

= D0 −w1 − 2rxxð Þηneι σxiΔx+σy jΔyð Þ + rxx
2 ηne

ι σx i+1ð ÞΔx+σy j−1ð ÞΔyð Þ

+ rxx
2 ηne

ι σx i−1ð ÞΔx+σy j+1ð ÞΔyð Þ + rxx
2 − ûrx

� �
ηne

ι σx i+1ð ÞΔx+σy j+1ð ÞΔyð Þ

+ rxx
2 + ûrx

� �
ηne

ι σx i−1ð ÞΔx+σy j−1ð ÞΔyð Þ +wnη0e
ι σxiΔx+σy jΔyð Þ

− 〠
n−1

k=1
wn−k+1 −wn−kð Þηkeι σxiΔx+σy jΔyð Þ,

ð56Þ

by simple computation and noticing that eιβ + e−ιβ = 2
cos ðβÞ and eιβ − e−ιβ = 2ιsinðβÞ, we can get

ηn+1 D0 + rxx 2 − Að Þ + 2ιûrxBð Þ = ηn D0 −w1 − rxx 2 − Að Þ − 2ιûrxBð Þ

+wnη0 + 〠
n−1

k=1
wn−k −wn−k+1ð Þηk,

ð57Þ

where

A = cos σxΔx − σyΔy
� �

+ cos σxΔx + σyΔy
� �

,

B = sin σxΔx + σyΔy
� �

:
ð58Þ

First, setting n = 0 in Equation (57), we obtain

η1j j = D0 − rxx 2 − Að Þ − 2ιûrxB
D0 + rxx 2 − Að Þ + 2ιûrxB

����
���� η0j j

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 − rxx 2 − Að Þð Þ2 + 2u∧rxBð Þ2
D0 + rxx 2 − Að Þð Þ2 + 2u∧rxBð Þ2

s
η0j j ≤ η0j j:

ð59Þ

Now, assume that we have proved that jηnj ≤ jη0j, n = 1,
2,⋯,m:

8 Advances in Mathematical Physics



We should prove this for n =m + 1. Utilizing Equation
(57), we obtain

ηm+1j j ≤ D0 −w1 − rxx 2 − Að Þ − 2ιûrxB
D0 + rxx 2 − Að Þ + 2ιûrxB

����
���� η0j j

+ wm +∑m−1
k=1 wm−k −wm−k+1ð Þ

D0 + rxx 2 − Að Þ + 2ιûrxB

�����
����� η0j j:

ð60Þ

According to Lemma 1, we have

ηm+1j j ≤ D0 −w1 − rxx 2 − Að Þ − 2ιûrxBj j +w1
D0 + rxx 2 − Að Þ + 2ιûrxBj j η0j j: ð61Þ

Consider the following two cases:

Case 7. If D0 −w1 − rxxð2 − AÞ > 0, then, we have

ηm+1j j ≤ D0 − rxx 2 − Að Þ
D0 + rxx 2 − Að Þ
� �

η0j j ≤ η0j j: ð62Þ

Case 8. If D0 −w1 − rxxð2 − AÞ ≤ 0, then, we have

ηm+1j j ≤ 2w1 −D0 + rxx 2 − Að Þ
D0 + rxx 2 − Að Þ

� �
η0j j: ð63Þ

So that,

2w1 −D0 + rxx 2 − Að Þ
D0 + rxx 2 − Að Þ ≤ 1, ð64Þ

This means w1 ≤D0, or ∣ηm+1 ∣ ≤ ∣ η0 ∣ .
By mathematical induction, the proof is complete.

Theorem 9. For α ∈ ð0, 1Þ, the finite difference scheme Equa-
tion (22) is stable if w1 ≤D0.

Proof. Suppose w1 ≤D0, from Lemma 6 and Parseval’s equal-
ity, we get

ϕnk k2 = 〠
J−1

j=1
〠
I−1

i=1
ΔyΔx ϕni,j

��� ���2 = ΔyΔx〠
J−1

j=1
〠
I−1

i=1
ηne

ι σxiΔx+σy jΔyð Þ��� ���2

= ΔyΔx〠
J−1

j=1
〠
I−1

i=1
ηnj j2 ≤ ΔyΔx〠

J−1

j=1
〠
I−1

i=1
η0j j2

= ΔyΔx〠
J−1

j=1
〠
I−1

i=1
η0e

ι σxiΔx+σy jΔyð Þ��� ���2 = ϕ0
�� ��

2:

ð65Þ

So the difference scheme Equation (22) is conditionally
stable.

5. Convergence Analysis

We first introduce some notations and lemmas which will be
used in the convergence analysis.

δ2xv
n
i,j =

vni+1,j − 2vni,j + vni−1,j
Δxð Þ2 , δ2yvni,j =

vni,j+1 − 2vni,j + vni,j−1
Δyð Þ2 ,

Δ0
xv

n
i,j =

vni+1,j − vni−1,j
2Δx , Δ0

yv
n
i,j =

vni,j+1 − vni,j−1
2Δy ,

v,wð Þ = ΔxΔy〠
J−1

j=1
〠
I−1

i=1
vijwij, vk k = ΔxΔy〠

J−1

j=1
〠
I−1

i=1
vij
� �2" #1/2

,

c0 = max
x,y,tð Þ∈ 0,L½ �× 0,L½ �× 0,Tð Þ

u x, y, tð Þj j, ∂u∂x x, y, tð Þ
����

����, ∂u∂y x, y, tð Þ
����

����
� 


:

ð66Þ

It is straightforward to show

Δ0
xv, v

�� �� = 0, Δ0
yv, v

��� ��� = 0: ð67Þ

Notice that in this section we suppose C stands for a pos-
itive constant independent of Δt, Δx, Δy, i, j, and n, which
may take different values at different places.

Lemma 10. (Discrete Gronwall’s inequality [29]).
Suppose d be a nonnegetive constant, fzng and f f ng are

nonnegative sequences. Let

zn ≤ d + 〠
0≤k<n

f kzk, n ≥ 0, ð68Þ

then

zn ≤ d exp 〠
0≤j<n

f j

 !
, n ≥ 0: ð69Þ

Theorem 11. The Crank–Nicolson scheme Equation (20) is
convergent and the order of convergence is OðΔt + Δx2 + Δy2Þ.

Proof. Let eni,j be the error at ðxi, yj, tnÞ as defined below

eni,j = u xi, yj, tn
� �

−Un
i,j

= uni,j −Un
i,j, 1 ≤ j ≤ J , 1 ≤ i ≤ I, 1 ≤ n ≤N:

ð70Þ

Substituting Equation (70) in Equation (19), we get the
following error equations
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−wne
0
ij + 〠

n−1

k=1
wn−k+1 −wn−kð Þekij +w1e

n
ij + en+1ij − enij
� �

D0

= ναΔt
2 δ2x en+1i,j + eni,j

� �
+ δ2y en+1i,j + eni,j

� �� �
−
αΔt
2 σ4 + σ5ð Þ + αΔtR

n+1
2

i,j ,

1 ≤ j ≤ J − 1, 1 ≤ i ≤ I − 1, 1 ≤ n ≤N ,

en0,j = enI,j = 0, 1 ≤ n ≤N , 0 ≤ j ≤ J ,

eni,0 = eni,J = 0, 1 ≤ n ≤N , 0 ≤ i ≤ I,

e0i,j = 0, 0 ≤ j ≤ J , 1 ≤ i ≤ I, ð71Þ

where

R
n+1

2
i,j =O Δt + Δx2 + Δy2

� �
,

σ4 = eni,jΔ
0
xu

n+1
i,j + uni,jΔ

0
xe

n+1
i,j + en+1i,j Δ0

xu
n
i,j + un+1i,j Δ0

xe
n
i,j,

σ5 = eni,jΔ
0
yu

n+1
i,j + uni,jΔ

0
ye

n+1
i,j + en+1i,j Δ0

yu
n
i,j + un+1i,j Δ0

ye
n
i,j:

ð72Þ

Multiplying Equation (71) by ΔxΔyðen+1i,j + eni,jÞ and sum-
ming up for i from 1 to I − 1 and j from 1 to J − 1, we obtain

〠
n−1

k=1
wn−k+1 −wn−kð Þek +w1e

n + en+1 − en
� �

D0, en+1 + en
�����

�����
= ναΔt

2 δ2x en+1 + en
� �

, en+1 + en
�� �� + δ2y en+1 + en

� �
, en+1 + en

��� ���� �
−
αΔt
2 σ4 + σ5, en+1 + en
�� �� + αΔt Rn+1

2, en+1 + en
��� ���, 1 ≤ n ≤N:

ð73Þ

It is clear that jδ2xðen+1 + enÞ, en+1 + enj ≤ 0 and jδ2yðen+1
+ enÞ, en+1 + enj ≤ 0, so we have

D0 en+1
�� ��2 ≤ D0 −w1ð Þ enk k2 +w1 en+1, en

�� ���� ��
+ 〠

n−1

k=1
wn−k −wn−k+1ð Þek, en+1 + en

�����
�����

+ αΔt
2 σ4 + σ5, en+1 + en
�� ���� ��

+ αΔt Rn+1
2, en+1 + en

��� ���, 1 ≤ n ≤N:

ð74Þ

Now, we estimate the third, fourth, and fifth terms of the
right-hand side of Equation (74), respectively

〠
n−1

k=1
wn−k −wn−k+1ð Þek, en+1 + en

�����
�����

= 〠
n−1

k=1
wn−k −wn−k+1ð Þ ek, en+1

��� ��� + 〠
n−1

k=1
wn−k −wn−k+1ð Þ ek, en

��� ���:
ð75Þ

Using Young inequality ab ≤ εa2 + ð1/4εÞb2, a, b ∈ℝ, and
Lemma 1, we have

〠
n−1

k=1
wn−k −wn−k+1ð Þek, en+1 + en

�����
����� ≤ CΔt2 〠

n−1

k=1
ek
��� ���2

+ CΔt enk k2 + en+1
�� ��2� �

:

ð76Þ

For the fourth term, utilizing Young inequality and Equa-
tion (67), we obtain

Table 1: Absolute errors of Example 13 at T = 1 for Re = 10, Δt = 0:01, α = 0:1, and α = 0:3.

N
α = 0:1 α = 0:3

CN Time EDG Time CN Time EDG Time

9 4:2593e − 03 0.75 6:1387e − 03 0.74 3:9001e − 03 0.22 6:0143e − 03 0.11

19 9:8379e − 04 0.93 1:6263e − 03 0.69 9:0356e − 04 1.01 1:6124e − 03 0.51

49 1:9672e − 04 9.82 2:6073e − 04 4.69 1:8465e − 04 10.61 2:6040e − 04 4.73

99 9:1297e − 05 123.15 9:7575e − 05 39.87 8:8260e − 05 118.02 9:3869e − 05 42.01

Table 2: Absolute errors of Example 13 at T = 1 for Re = 10, Δt = 0:01, α = 0:7, and α = 0:9.

N
α = 0:7 α = 0:9

CN Time EDG Time CN Time EDG Time

9 2:7474e − 03 0.16 5:6163e − 03 0.12 1:8409e − 03 0.17 5:2940e − 03 0.12

19 6:6801e − 04 0.84 1:5736e − 03 0.60 4:8985e − 04 0.86 1:5707e − 03 0.59

49 1:5163e − 04 10.26 2:5934e − 04 5.68 1:4882e − 04 10.38 2:5869e − 04 5.35

99 8:2965e − 05 119.25 8:6473e − 05 41.44 1:0295e − 04 121.48 1:0451e − 04 42.37
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Figure 3: The exact, Crank–Nicolson, and EDG solutions in different values of t and y = 0:5 (a) and the absolute error of Crank–Nicolson
method at T = 1 (b) of Example 13 for Δt = 0:01, Re = 100, N = 49, and α = 0:5.
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Figure 4: The exact, Crank–Nicolson and EDG solutions in different values of t and y = 0:5 (a) and the absolute error of Crank–Nicolson
method at T = 1 (b) of Example 14 for Δt = 0:01, Re = 50, N = 49, and α = 0:5.
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σ4, en+1 + en
� ��� �� ≤ c0 1 + ε1 + ε2 + ε3 + ε4 + ε5ð Þ en+1

�� ��2
+ c0 1 + 1

4ε1
+ 1
4ε2

+ 1
4ε3

+ 1
4ε4

+ 1
4ε5

� �
enk k2:

ð77Þ

Similarly, we get

σ5, en+1 + en
� ��� �� ≤ c0 1 + ε6 + ε7 + ε8 + ε9 + ε10ð Þ en+1

�� ��2
+ c0 1 + 1

4ε6
+ 1
4ε7

+ 1
4ε8

+ 1
4ε9

+ 1
4ε10

� �
enk k2:

ð78Þ

Also for the fifth term, we have

Rn+1
2, en+1 + en

��� ��� ≤ ε11 +
1

4ε12

� �
Rn+1

2
��� ���2 + ε12 en+1

�� ��2 + 1
4ε11

enk k2:

ð79Þ

For the second term on the right-hand side of Equation
(74), we get

w1 en+1, en
�� ���� �� ≤w1 ε13 en+1

�� ��2 + 1
4ε13

enk k2
� �

: ð80Þ

Combining Equations (76)–(80) in Equation (74) and
using Lemma 1, we obtain

Table 3: Absolute errors of Example 14 at T = 1 for Re = 100, Δt = 0:01, α = 0:1, and α = 0:3.

N
α = 0:1 α = 0:3

CN Time EDG Time CN Time EDG Time

9 4:1318e − 03 0.40 1:0556e − 02 0.26 3:7717e − 03 0.53 9:8104e − 03 0.28

19 8:8813e − 04 1.04 2:6531e − 03 0.73 8:1156e − 04 1.17 2:5458e − 03 0.73

49 1:3364e − 04 12.14 4:1507e − 04 4.81 1:2247e − 04 15.24 4:0109e − 04 4.86

99 3:4588e − 05 122.31 1:0389e − 04 40.55 3:1779e − 05 130.36 1:0045e − 04 40.71

Table 4: Absolute errors of Example 14 at T = 1 for Re = 100, Δt = 0:01, α = 0:7, and α = 0:9.

N
α = 0:7 α = 0:9

CN Time EDG Time CN Time EDG Time

9 2:9459e − 03 0.57 8:2550e − 03 0.34 2:4730e − 03 0.96 7:5148e − 03 0.26

19 6:3611e − 04 1.39 2:3322e − 03 0.84 5:4346e − 04 1.56 2:2536e − 03 0.84

49 9:7981e − 05 15.19 3:7198e − 04 5.69 8:6200e − 05 17.26 3:5924e − 04 5.32

99 2:5774e − 05 126.65 9:3273e − 05 44.77 2:4146e − 05 136.80 9:1092e − 05 43.01

Table 5: Absolute errors of Example 15 at T = 1 for Re = 5, Δt = 0:01, α = 0:1, and α = 0:3.

N
α = 0:1 α = 0:3

CN Time EDG Time CN Time EDG Time

9 2:1509 − 03 0.51 7:1351e − 03 0.24 2:0937e − 03 0.19 6:9914e − 03 0.12

19 4:8726e − 04 1.09 1:7356e − 03 0.59 4:7437e − 04 0.91 1:7078e − 03 0.56

49 7:3239e − 05 11.88 2:6457e − 04 4.86 7:1213e − 05 11.80 2:6032e − 04 5.04

99 1:7989e − 05 121.06 6:4817e − 05 40.01 1:7399e − 05 120.95 6:3688e − 05 40.27

Table 6: Absolute errors of Example 15 at T = 1 for Re = 5, Δt = 0:01, α = 0:7, and α = 0:9.

N
α = 0:7 α = 0:9

CN Time EDG Time CN Time EDG Time

9 1:9317e − 03 0.21 6:5894e − 03 0.12 1:8282e − 03 0.23 6:3412e − 03 0.13

19 4:3742e − 04 0.97 1:6292e − 03 0.60 4:1260e − 04 1.01 1:5796e − 03 0.61

49 6:4857e − 05 12.21 2:4776e − 04 5.29 5:9238e − 05 12.58 2:3834e − 04 5.35

99 1:5095e − 05 123.57 5:9878e − 05 41.38 1:2086e − 05 124.23 5:5847e − 05 41.61
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Figure 5: The exact, Crank–Nicolson and EDG solutions in different values of t and y = 0:5 (a) and the absolute error of Crank–Nicolson
method at T = 1 (b) of Example 15 for Δt = 0:01, Re = 20, N = 49, and α = 0:5.
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D0∥e
n+1∥2 ≤ CΔt2 〠
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ek
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�� ��2 + λ2 enk k2
� �

+ αΔt ε11 +
1

4ε12

� �
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where

λ1 =
αc0
2 2 + ε1 + ε2 + ε3 + ε4 + ε5 + ε6 + ε7 + ε8 + ε9 + ε10ð Þ
+ αε12 + Cε13 + C,
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αc0
2 2 + 1

4ε1
+ 1
4ε2

+ 1
4ε3

+ 1
4ε4

+ 1
4ε5

+ 1
4ε6

+ 1
4ε7

�

+ 1
4ε8

+ 1
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+ 1
4ε10

�
+ C
4ε13
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4ε11
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Therefore, we get

C − λ1ð Þ en+1
�� ��2 ≤ CΔt 〠

n−1

k=1
ek
��� ���2 + λ2 enk k2

+ α ε11 +
1

4ε12

� �
Rn+1/2�� ��2, 1 ≤ n ≤N:

ð83Þ

In the definition of λ1, we choose epsilons which C − λ1
be positive, so we have

en+1
�� ��2 ≤ CΔt 〠

n−1

k=1
ek
��� ���2 + C enk k2 + αC Rn+1/2�� ��2, 1 ≤ n ≤N:

ð84Þ

Using Lemma 10 and nΔt = T , we get

en+1
�� ��2 ≤ C Rn+1/2�� ��2 ≤O Δt + Δx2 + Δy2

� �
, 1 ≤ n ≤N ,

ð85Þ

and this completes the proof.

Theorem 12. The EDG method Equation (22) is convergent
and the order of convergence is OðΔt + Δx2 + Δy2Þ.

Proof. The proof is similar to Theorem 11.

6. Numerical Results

In this section, some numerical examples are considered to
demonstrate the efficiency and accuracy of the proposed
methods.

In numerical examples, we suppose that uðx, tÞ, UCNðx,
tÞ, and UEDGðx, tÞ denote the exact, Crank–Nicolson, and
the EDG solution, respectively. Also in all Tables, the CN is
an abbreviation for Crank–Nicolson Method.

The results obtained in this study show that the suggested
methods have excellent stability, and they have verified the
validity and effectiveness of the presented methods. Notably,
we perform all of the computations by MATLAB R2019a
software on a 64-bit PC with 2.30GHz processor and 8GB
memory.

Example 13. Consider Equation (1) with the exact solution

u x, y, tð Þ = t3 1 − x2
� �2 1 − y2

� �2, 0 ≤ x, y, t ≤ 1: ð86Þ

In Tables 1 and 2, the maximum of absolute errors and
CPU Times for Crank–Nicolson and EDG methods for α =
0:1, 0.3, and α = 0:7, 0.9 with T = 1, Δt = 0:01, Re = 10, and
different values of N are tabulated, respectively. These results
confirm the convergent results. In Figure 3(a), the exact,
Crank–Nicolson, and EDG solutions for y = 0:5, Re = 100,

Table 7: Absolute errors of Example 16 at T = 1 for Re = 2, Δt = 0:01, α = 0:2, and α = 0:4.

N
α = 0:2 α = 0:4

CN Time EDG Time CN Time EDG Time

9 2:5900e − 03 0.21 2:1227e − 02 0.19 2:5752e − 03 0.20 2:1177e − 02 0.18

19 5:9920e − 04 0.83 5:3687e − 03 0.44 5:9600e − 04 0.84 5:3597e − 03 0.59

49 9:3436e − 05 9.41 8:2492e − 04 5.19 9:2993e − 05 9.70 8:2383e − 04 5.12

99 2:5225e − 05 117.52 2:0397e − 04 39.94 2:5145e − 05 119.21 2:0376e − 04 39.86

Table 8: Absolute errors of Example 16 at T = 1 for Re = 2, Δt = 0:01, α = 0:6, and α = 0:8.

N
α = 0:6 α = 0:8

CN Time EDG Time CN Time EDG Time

9 2:5546e − 03 0.22 2:1112e − 02 0.20 2:5253e − 03 0.24 2:1039e − 02 0.22

19 5:9150e − 04 0.84 5:3476e − 03 0.60 5:8469e − 04 0.88 5:3318e − 03 0.62

49 9:2340e − 05 9.88 8:2234e − 04 5.05 9:0870e − 05 10.19 8:2010e − 04 5.51

99 2:5001e − 05 119.14 2:0348e − 04 41.28 2:4238e − 05 123.96 2:0280e − 04 41.67
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Figure 6: The exact, Crank–Nicolson, and EDG solutions in different values of t (a) and the absolute error of Crank–Nicolson method at
T = 1 (b) of Example 16 for Δt = 0:01, Re = 10, N = 49, and α = 0:5.
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Figure 7: The exact, Crank–Nicolson and EDG solutions in different values of t (a) and the absolute error of Crank–Nicolsonmethod at T = 1
(b) of Example 16 for Δt = 0:01, Re = 60, N = 49, and α = 0:5.
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N = 49, and Δt = 0:01 in different values of t are illustrated.
Furthermore in Figure 3(b), the absolute error at T = 1 for
Re = 100,N = 49, Δt = 0:01, and α = 0:5 is portrayed. Accord-
ing to the Figures, we can see that our numerical solutions
correspond to the exact solutions.

Example 14. In this example, we assume that the exact solu-
tion of Equation (1) is

u x, y, tð Þ = x2y2 sin πxð Þ sin πyð Þ sin tð Þ, 0 ≤ x, y, t ≤ 1:
ð87Þ

The values of initial and boundary conditions and f can
be achieved using the exact solution. The exact, Crank–Nic-
olson, and EDG solutions for y = 0:5, Re = 50, N = 49, and
Δt = 0:01 in different values of t are shown in Figure 4(a)
and in Figure 4(b), the absolute error of Crank–Nicolson
method at T = 1 for Re = 50, N = 49, Δt = 0:01, and α = 0:5
is depicted. Based on the Figures, we can see that the numer-
ical solutions are a good approximation of the exact solu-
tions. In Tables 3 and 4, the maximum of absolute errors
and CPU Times for Crank–Nicolson and EDG methods for
α = 0:1, 0.3, and α = 0:7, 0.9 with T = 1, Δt = 0:01, Re = 100,
and different values of N are tabulated, respectively. The
EDG method generates the numerical solution with almost
the same accuracy as the Crank–Nicolson method, but uses
less time-consuming in comparison to the Crank–Nicolson
method.

Example 15.Assume that the exact solution of Equation (1) is
as follows:

u x, y, tð Þ = t2x2 1 − xð Þ3 sin πyð Þ exp x + yð Þ, 0 ≤ x, y, t ≤ 1:
ð88Þ

The maximum of absolute errors and CPU Times for
Crank–Nicolson and EDG methods for α = 0:1, 0.3, 0.7, 0.9
with T = 1, Δt = 0:01, Re = 5, and different values of N are

shown in Tables 5 and 6, respectively. In Figure 5(a), the
exact, Crank–Nicolson, and EDG solutions for y = 0:5, Re
= 20, N = 49, and Δt = 0:01 in different values of t are illus-
trated. Also, the absolute error of Crank–Nicolson method
at T = 1 for Re = 20, N = 49, Δt = 0:01, and α = 0:5 is por-
trayed in Figure 5(b). The numerical experiments verified
our theoretical results once again.

Example 16. Consider Equation (1) with the exact solution

u x, y, tð Þ = t2 cos πxð Þ cos πyð Þ, 0 ≤ x, y, t ≤ 1: ð89Þ

This example does not apply to the initial and boundary
conditions of the article, but the results of this example are
as good as other examples.

In Tables 7 and 8, the maximum of absolute errors and
the CPU time consumed by our proposed methods for α =
0:2, 0.4, and 0.6, 0.8 at T = 1, Δt = 0:01, Re = 2 with different
mesh sizes are presented, respectively. Similar to other exam-
ples, the EDG method is faster than the Crank–Nicolson
method. The exact, Crank–Nicolson, and EDG solutions for
y = 0:5, Re = 10, N = 49, α = 0:5, and Δt = 0:01 in different
values of t are displayed in Figure 6(a). In addition, the abso-
lute error of the Crank–Nicolson method at T = 1, α = 0:5,
Re = 10, N = 49, and Δt = 0:01 is displayed in Figure 6(b).

Example 17. In this example, we assume that the exact solu-
tion of Equation (1) is

u x, y, tð Þ = t2 x − x2
� �2

y − y2
� �2, 0 ≤ x, y, t ≤ 1: ð90Þ

In Figure 7(a), the exact, Crank–Nicolson, and EDG solu-
tions for y = 0:5, Re = 60, N = 49, and Δt = 0:01 in different
values of t are shown. Besides, the absolute error of Crank–
Nicolson is demonstrated in Figure 7(b). Obviously, our
schemes are very accurate and quickly converge to the exact
solution. The maximum of absolute errors and CPU Times
for Crank–Nicolson and EDG methods for α = 0:2, 0.4, and

Table 9: Absolute errors of Example 17 at T = 1 for Re = 100, Δt = 0:01, α = 0:2, and α = 0:4.

N
α = 0:2 α = 0:4

CN Time EDG Time CN Time EDG Time

9 2:3544e − 05 0.37 1:2078e − 04 0.15 2:0308e − 05 0.32 1:1028e − 04 0.14

19 5:3089e − 06 0.89 3:7501e − 05 0.55 4:5547e − 06 0.90 3:5462e − 05 0.73

49 7:8572e − 07 9.70 6:1862e − 06 4.84 6:5077e − 07 9.72 5:9056e − 06 5.23

99 1:9520e − 07 117.73 1:5238e − 06 39.65 1:9513e − 07 118.38 1:4377e − 06 40.22

Table 10: Absolute errors of Example 17 at T = 1 for Re = 100, Δt = 0:01, α = 0:6, and α = 0:8.

N
α = 0:6 α = 0:8

CN Time EDG Time CN Time EDG Time

9 1:6919e − 05 0.32 9:8582e − 05 0.26 1:3331e − 05 0.37 8:5506e − 05 0.27

19 3:7515e − 06 0.89 3:3183e − 05 0.82 2:8606e − 06 0.94 3:0637e − 05 0.79

49 4:9131e − 07 9.91 5:5845e − 06 5.41 2:7513e − 07 10.06 5:1849e − 06 5.50

99 1:9501e − 07 118.22 1:3268e − 06 41.16 1:9462e − 07 119 1:1529e − 06 41.91
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0.6, 0.8 at T = 1, Δt = 0:01, and Re = 100 with various mesh
sizes are expressed in Tables 9 and 10, respectively.

7. Conclusion

In this paper, we introduced the Crank–Nicolson method
and the EDG method which derived from 45° rotation of
the Crank–Nicolson approximation point and Taylor expan-
sion to solve the 2D time-fractional Burgers’ equation with
Caputo-Fabrizio derivative. The error analysis and local
truncation error of these methods gave in detail. The stability
of the proposed numerical methods is analyzed by the
Von-Neumann method. The convergence analysis of the
CN and EDG methods proved. Some test problems chose
to investigate the applicability and practical efficiency. From
Tables 1–10, the results showed a good agreement with the
exact solution, and the EDG method was faster than the
CN method. Numerical experiments showed the efficiency
of the proposed methods in terms of CPU time and accuracy.
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In this paper, the boundary value inverse problem related to the generalized Burgers–Fisher and generalized Burgers–Huxley
equations is solved numerically based on a spline approximation tool. B-splines with quasilinearization and Tikhonov
regularization methods are used to obtain new numerical solutions to this problem. First, a quasilinearization method is used to
linearize the equation in a specific time step. Then, a linear combination of B-splines is used to approximate the largest order of
derivatives in the equation. By integrating from this linear combination, some approximations have been obtained for each of
the functions and derivatives with respect to time and space. The boundary and additional conditions of the problem are also
applied in these approximations. The Tikhonov regularization method is used to solve the system of linear equations using
noisy data. Several numerical examples are provided to illustrate the accuracy and efficiency of the method.

1. Introduction

Most of the physical problems arising in various fields of
physical science and engineering are modeled by nonlinear
partial differential equations (NLPDEs) [1]. Two of the most
famous NLPDEs are the generalized Burgers–Huxley and
generalized Burgers–Fisher equations [2]. These equations
describe the interaction between diffusion, convection, and
reaction [3].

The generalized Burgers–Huxley and generalized Bur-
gers–Fisher equations are of the form

ut = εuxx − αuδux + βu 1 − uδ
� �

ηuδ − γ
� �

, a < x < b, t > 0,

ð1Þ

with the initial condition

u x, 0ð Þ = f xð Þ, a ≤ x ≤ b, ð2Þ

and Dirichlet boundary conditions

u a, tð Þ = q tð Þ, t ≥ 0, ð3Þ

u b, tð Þ = g tð Þ, t ≥ 0: ð4Þ
Also, in order to determine q, we consider an additional

condition given at the interior point, x = l of the region

u l, tð Þ = p tð Þ, a < l < b, t ≥ 0, ð5Þ

where ε, α, β, γ, δ, and η are constants such that 0 < ε ≤ 1, β
≥ 0, δ > 0, γ ∈ ð0, 1Þ, and η = 0, 1, and g and f are considered
known functions, while q and u are unknown functions.

If η = 1, (1) describes the generalized Burgers–Huxley
equation, and in the case that η = γ = 0, (1) describes the gen-
eralized Burgers–Fisher equation.

In some cases, the exact solitary wave solutions of equa-
tion (1) are obtained using the relevant nonlinear transfor-
mations [4]. In the case that η = 1 and ε = 1, the exact
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solution of the generalized Burgers–Huxley equation (1) is
taken from [2], given by

u x, tð Þ = γ

2 + γ

2 tanh w1 x −w2tð Þð Þ
� �1/δ

, ð6Þ

where

w1 =
vγδ

4 1 + δð Þ ,

w2 =
αγ

1 + δ
−
v 1 + δ − γð Þ
2 1 + δð Þ , ð7Þ

and v = −α +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + 4βð1 + δÞp

.
Note that, in here, to get the exact solution, we first

assume that u =w1/δ. Then, by assuming wðx, tÞ =wðx − ctÞ
=wðζÞ, the equation transforms into an ordinary differential
equation as the form d2w/dζ2 = a2ð2w − γÞwðw − γÞ, which
can be easily solvable.

If η = 0, ε = 1, and γ = −1, the exact solution of the gener-
alized Burgers–Fisher equation (1) is taken from [2], given by

u x, tð Þ = 1
2 + 1

2 tanh θ1 x − θ2tð Þð Þ
� �1/δ

, ð8Þ

where

θ1 =
−αδ

2 1 + δð Þ ,

θ2 =
α

1 + δ
+ β 1 + δð Þ

α
: ð9Þ

The boundary conditions are taken from the exact solution.
Burgers’ equation was first introduced by Bateman [5] when he

mentioned it as worthy of study and gave its steady solutions. Later
on, Burgers [6] treated it as a mathematical model for turbulence
and after whom such an equation is widely referred to as Burgers’
equation. The study of Burgers’ equation is important since it arises
in the approximate theory of flow through a shockwave propagating
in a viscous fluid and in themodeling of turbulence [7]. The general-
ized Burgers–Huxley equation describes a wide class of physical non-
linear phenomena, for instance, a prototypemodel for describing the
interaction between reactionmechanisms, convection effects, and dif-
fusion transports [8]. It has found its applications inmany fields such
as biology, metallurgy, chemistry, combustion, mathematics, and
engineering [8, 9]. The generalized Burgers–Fisher equation has been
found in many applications in fields such as gas dynamics, number
theory, heat conduction, and elasticity [10]. The following are some
works on these equations. Yadav and Jiwari [11] developed a finite
element analysis and approximation of the Burgers–Fisher equation.
Jiwrai and Mittal [12] presented a high-order numerical scheme for
the singularly perturbed Burgers–Huxley equation. Also, they have
a numerical study of the Burgers–Huxley equation by the differential
quadraturemethod [13]. TheLie symmetry analysis and explicit solu-
tions for the time fractional generalized Burgers–Huxley equation

were studied by Inc et al. [14]. Korpinar et al. [15] studied the exact
special solutions for the stochastic regularized long wave–Burgers
equation. Dhawan et al. have a contemporary review of techniques
for the solution of the nonlinear Burgers equation [16] (also, see
[17, 18]).

In this article, for the first time, a boundary value inverse
problem for the generalized Burgers–Huxley and generalized
Burgers–Fisher equations will be studied. For this purpose,
first, a quasilinearization method is used to linearize the equa-
tion in a specific time step. Then, a linear combination of B-
splines is used to approximate the largest order of derivatives
in the equation. By integrating from this linear combination,
some new approximations have been obtained for each of the
functions and derivatives with respect to time and space. In this
new method, the boundary and additional conditions of the
problem are also applied in these approximations. Then, the
Tikhonov regularization method is used to solve the system
of linear equations using noisy data. In the end, several numer-
ical examples are provided and 2D and 3D graphical illustra-
tions are reported to show the accuracy and efficiency of the
method.

The rest of the article is organized as follows. In the first
subsection of Section 2, the B-spline functions and their first-
and second-order integrals are introduced. In the continua-
tion of this section, the quasilinearization method is pre-
sented. The solution method is presented to solve the
inverse problem (1), (2), (4), and (5) in Section 3. Some
numerical experiments are given with graphical and tabular
illustrations in Section 4. The conclusion of the presented
method is given at the end of the paper in Section 5.

2. Preliminaries

In this section, first, the spline approximation, used in this
article, is introduced and then the quasilinearization approx-
imation will be obtained.

2.1. Cubic B-Spline. In this approach, the space derivatives are
approximated using the cubic B-splinemethod. AmeshΩ, which
is equally divided by knots xi into M subintervals ½xi, xi+1�, i =
0, 1,⋯,M − 1, such that Ω : a = x0 < x1 <⋯<xM = b, is used.
Also, let S4ðΩÞ be the space of cubic splines on Ω. The corre-
sponding set of cubic B-splines fB−1, B0,⋯, BM+1g, which is a
basis for S4ðΩÞ, is defined using the recursive relation [19]:

bj,p xð Þ = x − xj
xj+p − xj

bj,p−1 xð Þ + xj+p+1 − x

xj+p+1 − xj+1
bj+1,p−1 xð Þ, ð10Þ

starting from

bj,0 xð Þ =
1, xj ≤ x < xj+1,
0, otherwise,

(
ð11Þ

where j = −3, −2,⋯,M − 1, x−3 = x−2 = x−1 = a, xM+1 = xM+2
= xM+3 = b, p = 1, 2,⋯, and BkðxÞ = bk−2,3ðxÞ, k = −1, 0,⋯,
M + 1, under the convention that fractions with zero denomi-
nators have the value zero. With the above definition, all the
B-splines take the value zero at the endpoint b. Therefore, in
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order to avoid asymmetry over the interval ½a, b�, it is common
to assume the B-splines to be left continuous at b.Wewill follow
suit.

Using induction on recurrence relation (10), we deduce
immediately the following basic properties of a B-spline [20]:

(i) A B-spline is right continuous; i.e., the value at a
point x is obtained by taking the limit from the right

(ii) A B-spline is locally supported on the interval given by
the extreme knots used in its definition. More precisely,

Bj xð Þ = 0, x ∉ xj, xj+4
� �

: ð12Þ

(iii) A B-spline is nonnegative everywhere and positive
inside its support, i.e.,

Bj xð Þ ≥ 0, x ∈ℝ,

Bj xð Þ > 0, x ∈ xj, xj+4
	 �

:
ð13Þ

(iv) From recurrence relation (10), one can find that the
following formula for cubic B-splines:

Bj xð Þ =

x − xj
	 �3

xj+1 − xj
	 �

xj+2 − xj
	 �

xj+3 − xj
	 � , x ∈ xj, xj+1

��
,

x − xj
	 �2 xj+2 − x

	 �
xj+2 − xj
	 �

xj+2 − xj+1
	 �

xj+3 − xj
	 �

+
x − xj
	 �

xj+3 − x
	 �

x − xj+1
	 �

xj+3 − xj
	 �

xj+3 − xj+1
	 �

xj+2 − xj+1
	 �

+
xj+4 − x
	 �

x − xj+1
	 �2

xj+2 − xj+1
	 �

xj+3 − xj+1
	 �

xj+4 − xj+1
	 � , x ∈ xj+1, xj+2

��
,

x − xj
	 �

xj+3 − x
	 �2

xj+3 − xj
	 �

xj+3 − xj+1
	 �

xj+3 − xj+2
	 �

+
x − xj+1
	 �

xj+3 − x
	 �

xj+4 − x
	 �

xj+3 − xj+1
	 �

xj+3 − xj+2
	 �

xj+4 − xj+1
	 �

+
xj+4 − x
	 �2 x − xj+2

	 �
xj+4 − xj+1
	 �

xj+4 − xj+2
	 �

xj+3 − xj+2
	 � , x ∈ xj+2, xj+3

��
,

xj+4 − x
	 �3

xj+4 − xj+1
	 �

xj+4 − xj+2
	 �

xj+4 − xj+3
	 � , x ∈ xj+3, xj+4

��
,

0, o:w:,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð14Þ

for j = −3, −2,⋯,M − 1.
Many other properties can be found in [19, 20] and refer-

ences therein.

2.2. Spline Approximation. Now, let f ∈ C½a, b�; we consider a
linear combination of B-splines SMð f ÞðxÞ, as an approxima-
tion of f ðxÞ, as follows:

SM fð Þ xð Þ = 〠
M+1

k=−1
ckBk xð Þ = CT

MΠM xð Þ, ð15Þ

where CM = ðc−1, c0,⋯, cM+1ÞT and ΠMðxÞ =
ðB−1ðxÞ, B0ðxÞ,⋯, BM+1ðxÞÞT . Furthermore, in order to
achieve a square system in numerical computations, the set
of the nodes Ω∗ = ðξiÞM+1

i=−1 is used, where

ξ−1 = x0, ξ0 = x0 +
h
2 ,

ξ1 = x1, ξ2 = x2,⋯, ξM−2 = xM−2,

ξM−1 = xM−1, ξM = xM −
h
2 , ξM+1 = xM ,

0
BBBBB@ ð16Þ

where h = ðb − qÞ/M.

Definition 1. Assume that B, I1B, and I2B are ðM + 3Þ-square
matrices defined by

Bð Þi,j = Bi ξj
	 �

,

I1Bð Þi,j =
ðξ j
a
Bi yð Þdy,

I2Bð Þi,j =
ðξ j
a

ðz
a
Bi yð Þdydz, ð17Þ

where i, j = −1, 0,⋯,M + 1. According to the definition of Bk
, we have

B =

1 1
8
19
32

1
4

25
96

7
12

1
6

1
48

1
6

2
3

1
6

1
6

2
3

1
6

⋱ ⋱ ⋱
1
6

2
3

1
6

1
6

2
3

1
6

1
48

1
6

7
12

25
96

1
4

19
32
1
8 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð18Þ

The matrices I1B and I2B are listed in the appendix.
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Thus, we can write

ðξ j
a
SM fð Þ yð Þdy = CT

n I
j
1, ð19Þ

ðξ j
ya

ðz
a
SM fð Þ yð Þdydz = CT

n I
j
2, ð20Þ

where I jν is the jth column of matrix IνB, ν = 1, 2.

2.3. The Quasilinearization Method. In equation (1), we have
three nonlinear terms such as uδux, u

δu, and u2δu. In this sec-
tion, a quasilinearization method is presented to linearize
these terms. The quasilinearization technique is an applica-
tion of the Newton–Raphson–Kantorovich approximation
in function space [21–24].

Let 0 ≤ t ≤ T and tn = nΔt, n = 0, 1,⋯,N , are the equal
parts of ½0, T�, where Δt = T/N . Also, assume that t ∈ ½tn,
tn+1�, u, v ∈ C½a, b� × C½0, T�, and hðu, vÞ = uζv. Using two-
variable Taylor series for h in some open neighborhood
around ðu, vÞ = ðun, vnÞ, there is c = ðc1, c2Þ, where c1, c2 ∈ C½
a, b� × C½0, T�, so that

h xð Þ = h að Þ + x − að Þ · ∇h að Þ + x − að Þ ·H cð Þ · x − að Þ, ð21Þ

where x = ðu, vÞ, a = ðun, vnÞ, un = uðx, tnÞ, vn = vðx, tnÞ, and
H is the Hessian matrix:

H cð Þ =
hc1c1 cð Þ hc1c2 cð Þ
hc1c2 cð Þ hc2c2 cð Þ

 !
: ð22Þ

Upon ignoring two-order terms, equation (21) becomes

h xð Þ ≈ h að Þ + x − að Þ · ∇h að Þ: ð23Þ

Therefore,

h u, vð Þ ≈ uζ
� �n

vn + u − un, v − vnð Þ · ζ uζ−1
� �n

vn, uζ
� �n� �

= ζ uζ−1
� �n

vnu − ζ uζ
� �n

vn + uζ
� �n

v:

ð24Þ

By placing ðζ, vÞ = ðδ, uxÞ, ðζ, vÞ = ðδ, uÞ, and ðζ, vÞ = ð2
δ, uÞ in (24), we obtain linear approximations for uδux, u

δu,
and u2δu, respectively, as follows:

uδux ≈ δ uδ−1
� �n

uxð Þnu − δ uδ
� �n

uxð Þn + uδ
� �n

ux, ð25Þ

uδu ≈ δ uδ
� �n

u − δ uδ+1
� �n

+ uδ
� �n

u, ð26Þ

u2δu ≈ 2δ u2δ
� �n

u − 2δ u2δ+1
� �n

+ u2δ
� �n

u: ð27Þ

3. Solution Method for the Burgers–Huxley and
Burgers–Fisher Equations

In this section, the inverse problem (1)–(5) is solved using SM
as an approximation tool. Assume that in (16), l = ξυ, υ ∈ f
−1, 0,⋯,M + 1g.

To discretize (1), the method of [25, 26] is used. We
assume that utxxðx, tÞ can be expanded in terms of linear
combination of cubic B-splines (15) as follows:

utxx x, tð Þ = 〠
M+1

k=−1
cnkBk xð Þ = CT

MΠM xð Þ, ð28Þ

where t ∈ ½tn, tn+1�, and the row vector CT
M is assumed con-

stant in the subinterval ½tn, tn+1�. By integrating (28) with
respect to t from tn to t, we obtain

uxx x, tð Þ = uxx x, tnð Þ + t − tnð ÞCT
MΠM xð Þ: ð29Þ

Also, by integrating (28) with respect to x from l to x, we
have

utx x, tð Þ = utx l, tð Þ + 〠
M+1

k=−1
cnk

ðx
l
Bk yð Þdy: ð30Þ

Integrating (30) with respect to x from l to x gives

ux x, tð Þ = ux x, tnð Þ + ux l, tð Þ − ux l, tnð Þ

+ t − tnð Þ 〠
M+1

k=−1
cnk

ðx
l
Bk yð Þdy:

ð31Þ

Again, by integrating (31) with respect to x from l to x, we
gain

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − lð Þ ux l, tð Þ − ux l, tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

ðx
l

ðz
l
Bk yð Þdydz:

ð32Þ

Putting x = b in (32), we get

ux l, tð Þ − ux l, tnð Þ = 1
b − l

g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½

− t − tnð Þ 〠
M+1

k=−1
cnk

ðb
l

ðz
l
Bk yð Þdydz�:

ð33Þ
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Substituting equation (33) into (31) and (32) and using
(4) and (5) held

ux x, tð Þ = ux x, tnð Þ + 1
b − l

g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

�
ðx
l
Bk yð Þdy − 1

b − l

ðb
l

ðz
l
Bk yð Þdydz

� �
,

ð34Þ

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − l
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

�
ðx
l

ðz
l
Bk yð Þdydz −

ðb
l

ðz
l
Bk yð Þdydz

� �
:

ð35Þ

By integrating (28) twice with respect to x from l to x and
using (5), we obtain

ut x, tð Þ = _p tð Þ + x − lð Þutx l, tð Þ + 〠
M+1

k=−1
cnk

ðx
l

ðz
l
Bk yð Þdydz,

ð36Þ

where  denotes the differentiation with respect to t. By
substituting x = b in equation (36) and using (4), we get

utx l, tð Þ = 1
b − l

_g tð Þ − _p tð Þ − 〠
M+1

k=−1
cnk

ðb
l

ðz
l
Bk yð Þdydz

" #
:

ð37Þ

Substituting equation (37) into (36) held

ut x, tð Þ = _p tð Þ + x − l
b − l

_g tð Þ − _p tð Þ½ � + 〠
M+1

k=−1
cnk

�
ðx
l

ðz
l
Bk yð Þdydz − x − l

b − l

ðb
l

ðz
l
Bk yð Þdydz

� �
:

ð38Þ

Since

ðx
l

ðz
l
Bk yð Þdydz =

ðx
a

ðz
a
Bk yð Þdydz − x − lð Þ

ðl
a
Bk yð Þdy

−
ðl
a

ðz
a
Bk yð Þdydz,

ð39Þ

from (34), (35), and (38), we obtain

ux x, tð Þ = ux x, tnð Þ + 1
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnkI ,

ð40Þ

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − l
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnkJ ,

ð41Þ

ut x, tð Þ = _p tð Þ + x − l
b − l

_g tð Þ − _p tð Þ½ � + 〠
M+1

k=−1
cnkJ , ð42Þ

where

I =
ðx
a
Bk yð Þdy − 1

b − l

ðb
a

ðz
a
Bk yð Þdydz −

ð l
a

ðz
a
Bk yð Þdydz

� �
,

J =
ðx
a

ðz
a
Bk yð Þdydz + x − b

b − l

ðl
a

ðz
a
Bk yð Þdydz

−
x − l
b − l

ðb
a

ðz
a
Bk yð Þdydz:

ð43Þ

Further, by discretizing (29), (40), (41), and (42), assum-
ing x→ ξj and t→ tn+1, and using (19) and (20), we get

uxxð Þn+1i = uxxð Þni + ΔtCT
MΠM ξið Þ, ð44Þ

uxð Þn+1i = uxð Þni +
1

b − l
φn + ΔtCT

ML
i, ð45Þ

utð Þn+1i = _p tn+1ð Þ + di _g tn+1ð Þ − _p tn+1ð Þ½ � + CT
MS

i, ð46Þ
un+1i = uni + p tn+1ð Þ − p tnð Þ + diφn + ΔtCT

MS
i, ð47Þ

where

Si = Ii2 + viI
υ
2 − diI

M+1
2 ,

Li = Ii1 −
1

b − l
IM+1
2 − Iυ2

	 �
,

vi =
ξi − b
b − l

,

di =
ξi − l
b − l

,

φn = g tn+1ð Þ − g tnð Þ − p tn+1ð Þ + p tnð Þ,

uxxð Þn+1i = uxx xi, tn+1ð Þ,

uxð Þn+1i = ux xi, tn+1ð Þ,
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utð Þn+1i = ut xi, tn+1ð Þ,

uð Þn+1i = u xi, tn+1ð Þ: ð48Þ

By substituting quasilinearization formulas (25)–(27) in
(1), we get

ut = εuxx − α δ unð Þδ−1 uxð Þnu + unð Þδux
� �

+ β η + γð Þ δ + 1ð Þ unð Þδ − η 2δ + 1ð Þ unð Þ2δ − γ
h i

u

+ αδ unð Þδ uxð Þn + β 2ηδ unð Þ2δ+1 − η + γð Þδ unð Þδ+1
h i

:

ð49Þ

Finally, substituting the approximation formulas
(44)–(47) into (49) yields

CT
MZ

n
i = σni , ð50Þ

where

Zn
i = Δt α unið ÞδLi − εΠM ξið Þ

� �
+ 1 − Δtwn

ið ÞSi,

σn
i = rni + ε uxxð Þni − _p tn+1ð Þ

− di _g tn+1ð Þ − _p tn+1ð Þð Þ
− α unið Þδ uxð Þni +

1
b − l

φn

� �
+wn

i uni + p tn+1ð Þð
− p tnð Þ + diφnÞ,

rni = αδ unið Þδ uxð Þni + β

� 2ηδ unið Þ2δ+1 − η + γð Þδ unið Þδ+1
h i

,

wn
i = β η + γð Þ δ + 1ð Þ unið Þδ

h
− η 2δ + 1ð Þ unið Þ2δ − γ

i
− αδ unið Þδ−1 uxð Þni :

ð51Þ

By organizing (50) with respect to i = −1, 0,⋯,M + 1, we
obtain

ZnCM = Rn, ð52Þ

where

Zn = Zn
−1, Zn

0 ,⋯, Zn
M+1ð ÞT ,

Rn = σn−1, σn0 ,⋯, σn
M+1ð ÞT :

ð53Þ

Note that for n = 0, we use equation (2) as uxxðxi, t0Þ =
f ′′ðxiÞ, uxðxi, t0Þ = f ′ðxiÞ, and uðxi, t0Þ = f ðxiÞ; otherwise,
uxxðxi, tnÞ, uxðxi, tnÞ, and uðxi, tnÞ, are updated using (44),
(45), and (47), respectively.

4. Numerical Examples

All examples in this section are solved once with the exact
values of the right-hand metallurgy side vector R0 and again
by adding noise to it. We add the noise to the vector Rn in the
form Rn

ε = Rn + ϑ × randnðM + 3Þ, where ϑ is an absolute
noise level and randnðM + 3Þ is a normal distribution vector
with zero mean and unit standard deviation, and it is realized
using the MATLAB function randn. In this article, we con-
sider four noise levels ϑ = 0:0001, 0:001, 0:01, and 0:1.

In the case that noise is added to the system (52), we will
use the Tikhonov regularization method [27] to solve the sys-
tem. By this technique, we have a minimization problem as
follows:

min
x∈ℝM+3

ZnCM − Rn
ϑk k22 + λ CMk k22, ð54Þ

where λ > 0 is the regularization parameter, which controls
the trade-off between fidelity to the data and smoothness of
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Figure 1: The exact solution (left) and the absolute error (right) of Example 1 with Δt = 0:001 and h = 0:01, without noise.
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Figure 2: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 1 using
Δt = 0:001 and h = 0:05.
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Table 1: L∞ errors of Example 1 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 2:814715e − 05 2:583762e − 06 6:155098e − 07 3:141230e − 07
0:0001 Exact 3:621854e − 05 1:145132e − 05 1:462985e − 05 3:314704e − 05
0:0001 Regularization 4:802055e − 05 1:106724e − 05 4:894096e − 03 5:889474e − 03
0:001 Exact 1:049879e − 04 1:147022e − 04 1:588327e − 04 3:328792e − 04
0:001 Regularization 1:198265e − 04 1:262147e − 04 4:903954e − 03 6:321994e − 03
0:01 Exact 7:991674e − 04 1:013317e − 03 1:543202e − 03 3:522300e − 03
0:01 Regularization 6:676744e − 04 1:020415e − 03 5:201666e − 03 6:770758e − 03
0:1 Exact 1:134644e − 02 1:124839e − 02 1:672706e − 02 3:645521e − 02
0:1 Regularization 8:608509e − 03 8:209530e − 03 1:927866e − 02 2:575360e − 02
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Figure 3: The exact solution (left) and the absolute error (right) of Example 2 with Δt = 0:001 and h = 0:01, without noise.

Table 2: L∞ errors of Example 2 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 3:612476e − 05 2:959095e − 06 6:619158e − 07 3:353989e − 07
0:0001 Exact 4:699528e − 05 1:248949e − 05 2:062944e − 05 3:238930e − 05
0:0001 Regularization 2:624024e − 05 1:202468e − 05 2:387568e − 04 2:749732e − 04
0:001 Exact 1:183073e − 04 1:362642e − 04 1:925736e − 04 4:107127e − 04
0:001 Regularization 1:363059e − 04 8:611165e − 05 2:450763e − 04 3:206762e − 04
0:01 Exact 1:525685e − 03 1:297835e − 03 1:956289e − 03 3:485143e − 03
0:01 Regularization 7:281806e − 04 6:885447e − 04 7:839071e − 04 2:761185e − 03
0:1 Exact 7:399248e − 03 1:083570e − 02 2:062804e − 02 3:805156e − 02
0:1 Regularization 9:402128e − 03 9:843907e − 03 1:193822e − 02 2:510321e − 02
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Figure 4: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 2 using
Δt = 0:001 and h = 0:05.
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the solution. In this word, the generalized cross-validation
(GCV) method [28] is used to determine the regularization
parameter λ. In our computations, we will use the MATLAB
codes developed by Hansen [29] for solving the ill-
conditioned systems.

In numerical examples, we suppose that ~uðx, tÞ denotes
the exact solution and uðx, tÞ denotes the estimated solution.

The versatility and accuracy of the methods are measured
using the maximum absolute error norm L∞, defined by [30]:

L∞ = max
0≤n≤N

~u a, tnð Þ − u a, tnð Þj j: ð55Þ

In all examples and for all different values of n and h, the
conditional numbers of the coefficient matrices Zn are less
than 1000 but their smallest singular values are about 10−5
and relatively small. For this reason, we expect the ill-
posedness of the systems to increase with increasing ϑ.

In all examples, solving the system by the decomposition
method (Cholesky et al.) is called the “exact method” and
solving the system using the Tikhonov regularization method
is called the “regularization method.”

It is notable that we perform all of the computations by
MATLAB® R2019a software (V9.6.0.1072779, 64-bit
(win64), License Number: 968398, MathWorks Inc., Natick,
MA) running on a Sony VAIO Laptop (Intel® Core™ i5-

2410M Processor 2.30GHz with Turbo Boost up to
2.90GHz, 8GB of RAM, 64-bit) PC.

Example 1. We consider the problem (1)–(5) in the domain
½0, 1� with ε = 1, l = 0:1, T = 5, η = 1, α = 1, β = 1, γ = 2, and
δ = 1. The exact solution will be obtained using equation (6).

The exact solution and the absolute error using Δt =
0:001 and h = 0:01 are depicted in Figure 1. Also, the absolute
errors j~uða, tÞ − uða, tÞj, by applying the exact and regulariza-
tion methods and different values of ϑ with Δt = 0:001 and
h = 0:05, are shown in Figure 2. In Table 1, the maximum
absolute errors L∞ are tabulated using h = 0:05 and different
values of ϑ and Δt.

Example 2. In this example, we consider the problem (1)–(5)
with ε = 1, l = −0:9, T = 1, η = 0, α = 1, β = 1, γ = −1, and δ = 1
in the domain ½−1, 1�. The exact solution will be obtained
using equation (8).

In Figure 3, the exact solution and the absolute error
using Δt = 0:001 and h = 0:01 are presented. In addition,
the absolute errors j~uða, tÞ − uða, tÞj, using the exact and
regularization methods and different values of ϑ with Δt
= 0:001 and h = 0:05, are displayed in Figure 4. The L∞
are shown using different values of ϑ and Δt and h =
0:05 in Table 2.

Table 3: L∞ errors of Example 3 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 4:816528e − 06 4:792704e − 07 9:580090e − 08 4:789637e − 08
0:0001 Exact 2:351403e − 05 2:514832e − 05 4:071947e − 05 7:494035e − 05
0:0001 Regularization 2:801648e − 05 5:715366e − 05 1:121469e − 04 1:220928e − 04
0:001 Exact 1:306283e − 04 2:291344e − 04 3:901340e − 04 7:325559e − 04
0:001 Regularization 7:512398e − 05 1:175376e − 04 1:169995e − 04 2:451920e − 04
0:01 Exact 2:557327e − 03 2:312663e − 03 3:491372e − 03 6:974782e − 03
0:01 Regularization 1:193753e − 03 4:763686e − 04 4:462170e − 04 2:318261e − 03
0:1 Exact 1:812669e − 02 2:584793e − 02 3:202167e − 02 7:193698e − 02
0:1 Regularization 7:477861e − 03 1:372036e − 02 4:073468e − 03 2:030713e − 02
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Figure 5: The exact solution (left) and the absolute error (right) of Example 3 with Δt = 0:001 and h = 0:01, without noise.
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Figure 6: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 3 using
Δt = 0:001 and h = 0:05.
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Figure 7: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 4 using
Δt = 0:001 and h = 0:05.

12 Advances in Mathematical Physics



Example 3. Let a = −1, b = 5, ε = 1, l = −0:9, T = 1, η = 1, α = 0,
β = 1, and δ = 1, in the problem (1)–(5). The exact solution of
this example is given as [31]

u x, tð Þ = γb1e
1/2ð Þ ffiffi

2
p

γx+γ2tð Þ + b2e
1/2ð Þ ffiffi

2
p

x+tð Þ

b1e
1/2ð Þ ffiffi

2
p

γx+γ2tð Þ + b2e
1/2ð Þ ffiffi

2
p

x+tð Þ + b3eγt
, ð56Þ

where b1, b2, and b3 are arbitrary constants. For the compu-
tation, we take γ = 1/2, b1 = 1, b2 = 1, and b3 = 1.

The error norms L∞ are tabulated using different values
of ϑ and Δt and h = 0:05 in Table 3. The exact solution and
the absolute error using Δt = 0:001 and h = 0:01 are pre-
sented in Figure 5. Moreover, the absolute errors j~uða, tÞ −
uða, tÞj, using the exact and regularization methods and dif-
ferent values of ϑ with Δt = 0:001 and h = 0:05, are shown
in Figure 6.

Example 4. We consider the problem (1)–(5) with ε = 1, l =
0:1, T = 3, η = 0, α = 0, γ = −1, δ = 1, a = 0, and b = 1. The
exact solution is given by [32] as follows:

u x, tð Þ = 1 + e
ffiffiffiffiffi
β/6

p
x− 5β/6ð Þt

� �−2
, ð57Þ

and we assume that β = 6.

In Figure 7, the absolute errors j~uða, tÞ − uða, tÞj, using
the exact and regularization methods and different values of
ϑ with Δt = 0:001 and h = 0:05, are depicted. In Figure 8,
the exact solution and the absolute error using Δt = 0:001
and h = 0:01 are presented. The maximum absolute errors
L∞ are tabulated using h = 0:05 and different values of ϑ
and Δt in Table 4.

5. Conclusions

The boundary value inverse problem related to the general-
ized Burgers–Fisher and generalized Burgers–Huxley equa-
tions was solved numerically. We considered the equation
in a small time interval and then applied quasilinearization
in time. We approximated the largest order of derivatives in
the equation using a linear combination of B-splines. By inte-
grating several times with respect to the time and space var-
iables, we obtain approximations for the function and its
partial derivatives. By substituting quasilinearization and
the obtained approximations in the equation, a desired
numerical scheme was obtained. In numerical examples, we
saw that the obtained linear system from the numerical
scheme has a relatively small condition number. The numer-
ical results show that the solutions are very accurate. By add-
ing large noise levels to the system, it was observed that the
solutions were still appropriate.
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Figure 8: The exact solution (left) and the absolute error (right) of Example 4 with Δt = 0:001 and h = 0:01, without noise.

Table 4: L∞ errors of Example 4 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 5:686819e − 03 1:263590e − 04 1:769301e − 05 8:381687e − 06
0:0001 Exact 5:685089e − 03 1:327687e − 04 3:060667e − 05 3:335971e − 05
0:0001 Regularization 5:332308e − 03 1:069778e − 04 5:492670e − 03 6:108492e − 03
0:001 Exact 5:701673e − 03 1:770599e − 04 1:672482e − 04 2:856058e − 04
0:001 Regularization 5:308533e − 03 1:018102e − 04 5:505681e − 03 6:212021e − 03
0:01 Exact 6:142029e − 03 9:728911e − 04 1:744781e − 03 2:566482e − 03
0:01 Regularization 5:132815e − 03 1:078324e − 03 4:795718e − 03 6:132190e − 03
0:1 Exact 1:584424e − 02 1:078511e − 02 1:603969e − 02 3:379878e − 02
0:1 Regularization 7:376052e − 03 7:101563e − 03 1:218363e − 02 3:157183e − 02
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Appendix

The matrices I1B and I2B are listed below.

I1B = h

0 15
64

1
4

1
4

1
4

1
4

1
4 ⋯

1
4

1
4

1
4

0 55
256

7
16

1
2

1
2

1
2

1
2 ⋯

1
2

1
2

1
2

0 37
768

13
48

17
24

3
4

3
4

3
4 ⋯

3
4

3
4

3
4

0 1
384

1
24

1
2

23
24 1 1 ⋯ 1 1 1

1
24

1
2

23
24 1 ⋯ 1 1 1

⋱ ⋱ ⋱ ⋱ 1
1
24

1
2

23
24 1 1 1

1
24

1
2

23
24

383
384 1

1
24

23
48

539
768

3
4

1
16

73
256

1
2

1
64

1
4

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

I2B = h2

0 49
640

4
20

9
20

14
20

19
20

24
20 ⋯

4 + 5 2n� 2ð Þ
20

20n� 7
40

4 + 5 2n� 1ð Þ
20

0 107
2560

17
80

7
10

12
10

17
10

22
10 ⋯

7 + 5 2n� 3ð Þ
10

20n� 11
20

7 + 5 2n� 2ð Þ
10

0 49
7680

19
240

73
120

27
20

42
20

57
20 ⋯

27 + 15 2n� 4ð Þ
20

60n� 51
40

27 + 15 2n� 3ð Þ
20

0 1
3840

1
120

7
30

121
120 2 3 ⋯ 2n� 3 4n� 5

2 2n� 2

1
120

7
30

121
120 2 2n� 4 4n� 7

2 2n� 3

⋱ ⋱ ⋱ ⋱
1
120

7
30

121
120 2 5

2 3

1
120

7
30

121
120

5761
3840 2

1
120

11
48

4081
7680

9
10

1
80

47
512

3
10

1
640

1
20

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ðA:1Þ
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This paper deals with the existence of solutions for a new class of nonlinear fractional boundary value systems involving the
left and right Riemann-Liouville fractional derivatives. More precisely, we establish the existence of at least three weak
solutions for the problem using variational methods combined with the critical point theorem due to Bonano and Marano.
In addition, some examples in ℝ3 and ℝ4 are given to illustrate the theoritical results.

1. Introduction

Fractional differential equations (FDEs) are a generaliza-
tion of ordinary differential equations (ODEs), as they
contain fractional derivatives whose degree is not necessar-
ily an integer. This is what makes it receive great attention
from researchers due to its ability to model some difficult
and complex phenomena in many fields, including engi-
neering, science, biology, economics, and physics (for
more information, see [1–22]). One of the most investi-
gated issues is the existence of solutions for the fractional
initial and boundary value problems by using some fixed
point theorems, coincidence degree theory, and monotone
interactive method. Among the most important of these
are the works mentioned in Oldham and Spanier and
Podlubny’s books (see [13, 23]) and the work of Metzler

and Klafter (see [24]). Furthermore, the first to use the
critical point theorem was Jiao and Zhou in [6] to study
the following problem:

tD
α
T 0D

α
t u tð Þð Þ = ∇F t, u tð Þð Þ, a:e t ∈ 0, T½ �,

 u 0ð Þ = u tð Þ = 0,

(
ð1Þ

where 0D
α
T and tD

α
T are the left and right Riemann-Liouville

fractional derivatives with 0 < α ≤ 1, respectively, and F : ½0,
T� ×ℝ⟶ℝn is a suitable function satisfying some hypothe-
sis and Fðt, xÞ is the gradient of F with respect to x:

In [22], the authors have used variational methods to
investigate the existence of weak solutions for the following
system:
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tD
α
T a tð Þ0Dα

t u tð Þð Þ = λFu t, u tð Þ, v tð Þð Þ, a:e t ∈ 0, T½ �,

tD
β
T b tð Þ0Dβ

t v tð Þ
� �

= λFv t, u tð Þ, v tð Þð Þ, a:e t ∈ 0, T½ �,
 u 0ð Þ = u Tð Þ = 0, v 0ð Þ = v Tð Þ = 0,

8>>><
>>>:

ð2Þ

for 0D
α
T and tD

α
T are the left and right Riemann-Liouville

fractional derivatives with 0 < α ≤ 1 and Fs denotes the par-

tial derivative of F with respect to s: In [?], Zhao et al.
obtained the existence of infinitely many solutions for system
(2) with perturbed functions hi, i = 1, 2.

Yet, there are a few findings for fractional boundary value
problems which were established exploiting this approach
due to its difficulty in establishing a suitable space and varia-
tional functional for fractional problems.

In this work, we shall study the existence of three weak
solutions for the following system:

for 1 ≤ i ≤ n, where αi ∈ ð0 ; 1�, 0Dαi
T and tD

αi
T are the left and

right Riemann–Liouville fractional derivatives of order αi,
respectively, ai ∈ L∞ð½0, T�Þ with

ai0 = ess inf
0,T½ �

ai > 0, for 1 ≤ i ≤ n, ð4Þ

λ > 0, F : ½0, T� ×ℝn ⟶ℝ is a measurable function for
all ðx1,⋯, xnÞ ∈ℝn and is C1 with respect to ðx1,⋯, xnÞ ∈
ℝn for a.e. t ∈ ½0, T�, Fui

denotes the partial derivative of F
with respect to ui, respectively, and hi : ℝ⟶ℝ are
Lipschitz continuous functions with the Lipschitz constants
Li > 0, for 1 ≤ i ≤ n, i.e.,

hi x1ð Þ − hi x2ð Þj j ≤ Li x1 − x2j j, ð5Þ

for all x1, x2 ∈ℝ and hið0Þ = 0, for 1 ≤ i ≤ n. In order to state
the main results, we introduce the following conditions:

(F0) For all C > 0 and any 1 ≤ i ≤ n

sup
x1,⋯,xnð Þj j≤C

Fui
t, x1,⋯, xnð Þ�� �� ∈ L1 0, T½ �ð Þ: ð6Þ

(F1) Fðt ; 0,⋯, 0Þ = 0, for a.e. t ∈ ½0 ; T�.
In the present study, motivated by the results introduced

in [12, 13, 25], using the three critical point theorems due to
Ricceri ([26], see Theorem 2.6 in the next section), we ensure
the existence of at least three solutions for system (3). For
other applications of Ricceri’s result for perturbed boundary
value problems, the interested readers are referred to the
papers [11–13, 23–25, 27].

We divided the paper as follows: in the second section, we
put some preliminary facts, while in the third section we pre-
sented the main result and its proof. Finally, we proposed two
practical examples of our theorem.

2. Preliminaries

In this section, introducing some necessary definitions and
preliminary facts.

Definition 1 [28]. Let u be a function defined on ½0, T� and
αi > 0 for 1 ≤ i ≤ n: The left and right Riemann–Liouville frac-
tional integrals of order αi for the function u are defined by

0D
−αi
t u tð Þ = 1

Γ αið Þ
ðt
0
t − sð Þαi−1u sð Þds, t ∈ 0, T½ �,

0D
−αi
t u tð Þ = 1

Γ αið Þ
ðT
t
s − tð Þαi−1u sð Þds, t ∈ 0, T½ �,

ð7Þ

for 1 ≤ i ≤ n, provided the RHS are pointwise given on ½0, T�,
where ΓðαiÞ is the standard gamma function defined by

Γ zð Þ =
ð+∞
0

zαi−1e−zdz: ð8Þ

Definition 2 [25]. Let 0 < αi ≤ 1 for 1 ≤ i ≤ n: The fractional
derivative spaceHαi

0 is given by the closureC∞
0 ð½0, T�,ℝÞ, that is

Hαi
0 = �C∞

0 0, T½ �,ℝð Þ, ð9Þ

with the norm

uik kαi =
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt + ðT
0
ui tð Þj j2dt

� �1/2
, ð10Þ

for every ui ∈H
αi
0 and for 1 ≤ i ≤ n:

We point out that Hαi
0 (0 < αi ≤ 1) is a reflexive and sepa-

rable Banach space (see [22], Proposition 3.1) for details.
For every ui ∈H

αi
0 , set

uik kLs ≔
ðT
0
ui tð Þj jsdt

� �1/s
, s ≥ 1

uik k∞ = max
t∈ 0,T½ �

ui tð Þj j:
ð11Þ

Definition 3 [27]. We mean by a weak solution of system
(3), any u = ðu1, u2,⋯, unÞ ∈ X such that for all v = ðv1, v2
,⋯, vnÞ ∈ X,

tD
αi
T ai tð Þ0Dαi

t ui tð Þ
� �

= λFui
t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ + hi ui tð Þð Þ, a:e t ∈ 0, T½ �,

 ui 0ð Þ = ui Tð Þ = 0,

(
ð3Þ
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ðT
0
〠
n

i=1
ai tð Þ0Dαi

t ui tð Þ0Dαi
t vi tð Þdt

− λ
ðT
0
〠
n

i=1
Fui

t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þvi tð Þdt

−
ðT
0
〠
n

i=1
hi uið Þvi tð Þdt = 0:

ð12Þ

Lemma 4 [27]. Let 0 < αi ≤ 1, for 1 ≤ i ≤ n. ∀ui ∈H
αi
0 , we

have

uik k L2ð Þ ≤
Tαi

Γ αi + 1ð Þ 0D
αi
t ui

		 		
L2
: ð13Þ

Moreover,

uik k∞ ≤
Tαi

Γ αið Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αi − 1ð Þp 0D

αi
t ui

		 		
L2
: ð14Þ

From Lemma 4, we easily observe that

uik kL2 ≤
Tαi

Γ αi + 1ð Þ ffiffiffiffiffiffi
αi0

p
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
: ð15Þ

for 0 < αi ≤ 1, and

uik k∞ ≤
Tαi− 1/2ð Þ

Γ αið Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai0 2αi − 1ð Þp ðT

0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
:

ð16Þ

By using (15), the norm of (10) is equivalent to

uik kαi
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
, ∀ui ∈H

αi
0 : ð17Þ

Throughout this paper, let X be the Cartesian product
of the n spaces Hαi

0 for 1 ≤ i ≤ n, i.e., X =Hα1
0 ×Hα2

0 ×⋯×
Hαn

0 ; we equip X with the norm defined by

uk k = 〠
n

i=1
uik kHαi

0
, u = u1, u2,⋯, unð Þ, ð18Þ

where kuikHαi
0

is given in (17). We have X compactly

embedded in Cð½0, T�,ℝÞn:

Theorem 5 [25]. Let X be a reflexive real Banach space and
Φ : X ⟶ℝ be a coercive, continuously Gâteaux differentia-
ble sequentially weakly lower semicontinuous functional

whose Gâteaux derivative admits a continuous inverse on
X∗, bounded on bounded subsets of X,Ψ : X ⟶ℝ a continu-
ously Gâteaux differentiable functional whose Gâteaux deriv-
ative is compact such that

Φ 0ð Þ =Ψ 0ð Þ = 0: ð19Þ

Suppose that ∃r > 0 and �x ∈ X, with r <Φð�xÞ, satisfying
(a1) sup

ΦðuÞ≤r
ðΨðuÞ/rÞ < ðΦð�xÞ/Ψð�xÞÞ.

(a2) For each λ ∈Λλ ; = ðΦð�xÞ/Ψð�xÞ, r/ sup
ΦðuÞ≤r

ΨðuÞÞ, the
functional Φ − λΨ is coercive.

Hence, ∀λ ∈Λλ, the functional Φ − λΨ has at least three
critical points in the space X.

3. Main Results

In this section, by applying Theorem 5, we examine the exis-
tence of multiple solutions for system (3). For any σ > 0, let
us define

π σð Þ = x1,⋯, xnð Þ ∈ℝn :
1
2〠

n

i=1
xij j2 ≤ σ

( )
: ð20Þ

This set will be used in some of our hypotheses with
appropriate choices of σ. For u = ðu1, u2,⋯, unÞ ∈ X, we
define

Y uð Þ≔ 〠
n

i=1
Yi uið Þ ð21Þ

where YiðxÞ =
Ð T
0HiðxðsÞÞds and HiðxÞ =

Ð x
0hiðzÞdz 1 ≤ i ≤ n,

∀t ∈ ½0 ; T� and x ∈ℝ.
Furthermore, let

k≔max
1≤i≤n

T2αi−1

Γ αið Þð Þ2ai0 2αi − 1ð Þ

( )
,

M ≔ min
1≤i≤n

1 − LiT
2αi

Γ αi + 1ð Þð Þ2ai0

( )
,

~k≔max
1≤i≤n

1 + LiT
2αi

Γ αi + 1ð Þð Þ2ai0

( )
: ð22Þ

Theorem 6. Let 1/2 < αi ≤ 1, for 1 ≤ i ≤ n, and suppose that
M > 0 and the conditions (F0) and (F1) are satisfied. Further-
more, assume that ∃r > 0 and a function ω = ðω1, ω2,⋯, ωnÞ
∈ X satisfying

ið Þ 〠
n

i=1

ωik k2αi
2

> r
M

,
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iið Þ 2r
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω2,⋯, ωnð Þ

−
ðT
0

max
x1 ,⋯,xnð Þ∈π kr

Mð Þ
, F t, x1,⋯, xnð Þdt > 0,

iiið Þ lim
x1j j,⋯, xnj jð Þ⟶ +∞,⋯,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1,⋯, xnð Þ

∑n
i=1 xij j2/2 ≤ 0:

ð23Þ

Then, setting

∀λ ∈Λ system (3) admits at least 3 weak solutions in X.

Proof. For each u = ðu1, u2,⋯, unÞ ∈ X, we introduce the
functionals Φ,Ψ : X⟶ℝ as

Φ uð Þ = 〠
n

i=1

uik k2αi
2 − Y uð Þ, ð25Þ

Ψ uð Þ =
ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt: ð26Þ

It is clear that Φ and Ψ are continuously Gâteaux differ-
entiable functionals whose Gâteaux derivatives at the point
u ∈ X are defined by

Φ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
ai tð Þ0Dαi

t ui tð Þ0Dαi
t vi tð Þdt

−
ðT
0
〠
n

i=1
hi ui tð Þð Þvi tð Þdt

Ψ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
Fui

t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þvi tð Þdt, ð27Þ

for every v = ðv1, v2,⋯, vnÞ ∈ X:
We have Φ′ðuÞ,Ψ′ðuÞ ∈ X∗, where X∗ is the dual space

of X. And the functionalΦ is sequentially weakly lower semi-
continuous and its Gâteaux derivative admits a continuous
inverse on X∗; also lim

kukX⟶+∞
ΦðuÞ = +∞ it is coercive.

Now, we show that the functional Ψ is sequentially weakly
upper semicontinuous and its derivative Ψ′ : X⟶ X∗ is a
compact operator. Let um ⇀ u in X, where umðtÞ = ðum,1ðtÞ,
um,2ðtÞ,⋯, um,nðtÞÞ; then certainly um converges uniformly
to u on the interval ½0, T�. Then,

lim sup
m⟶+∞

Ψ umð Þ ≤
ðT
0
lim sup
m⟶+∞

F t, um,1 tð Þ, um,2 tð Þ,⋯, um,n tð Þð Þdt

=
ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt =Ψ uð Þ,

ð28Þ

which gets that Ψ is sequentially weakly upper
semicontinuous.

Moreover, we have

lim
m⟶+∞

F t, um,1 tð Þ, um,2 tð Þ,⋯, um,n tð Þð Þ
= F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ, for all t ∈ 0, T½ �:

ð29Þ

Note that Fðt, ·, ⋯ , · Þ ∈ C1ðℝnÞ. The Lebesgue control
convergence theorem implies that Ψm′ ðuÞ⟶Ψ′ðuÞ
strongly, hence yielding that Ψ′ is strongly continuous on
X. Then, Ψ′ : X⟶ X∗ is a compact operator.

We show that required hypothesis Φð�xÞ > r follows from
(i) and the definition ofΦ by taking �x = ω: Indeed, as (5) holds
for all x1 ; x2 ∈ℝ and h1ð0Þ =⋯ = hnð0Þ = 0; one has jhiðxÞj
≤ Lijxj, 1 ≤ i ≤ n, for any x ∈ℝ. It follows from (15) that

Φ ωð Þ ≥
∑n

i=1 ωik k2αi
2 −

ðT
0
〠
n

i=1
Hi ωi tð Þð Þdt

�����
�����

≥
∑n

i=1 ωik k2αi
2 − 〠

n

i=1

Li
2

ðT
0
ωi tð Þj j2dt

≥ 〠
n

i=1

1
2 −

LiT
2αi

Γ αi + 1ð Þð Þ2ai0

 !
ωik k2αi

≥
M
2 〠

n

i=1
ωik k2αi :

ð30Þ

Λ =
∑n

i=1 ωik k2αi /2
� �

− Y ω1, ω2,⋯, ωnð ÞÐ T
0 F t, ω1 tð Þ, ω2 tð Þ,⋯, ωn tð Þð Þdt

, rÐ T
0 max

x1,⋯,xnð Þ∈π M/krð Þ
F t, x1,⋯, xnð Þdt

0
B@

1
CA: ð24Þ
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From (16), for every ui ∈H
αi
0 , we have

max
t∈ 0,T½ �

ui tð Þj j2 ≤ k uik kαi , ð31Þ

for 1 ≤ i ≤ n. Hence,

max
t∈ 0,T½ �

〠
n

i=1
ui tð Þj j2 ≤ k〠

n

i=1
uik kαi : ð32Þ

Assume that u0ðtÞ = ð0,⋯, 0Þ and the supposition (i)
deduces that 0 < r <ΦðωÞ and they hold Φðu0ðtÞÞ =Ψðu0ðtÞ
Þ = 0 from definitions (25) and (26), which are required
assumptions in Theorem 5. Applying relations (16), (17),
and (22) gives the following relation:

Φ−1 −∞;rð �ð Þ = u = u1, u2,⋯, unð Þ ∈ X : Φ uð Þ ≤ rf g

= u = u1, u2,⋯, unð Þ ∈ X : 〠
n

i=1

uik k2αi
2 ≤

r
M

( )

⊆ u = u1, u2,⋯, unð Þ ∈ X : 〠
n

i=1

(

� Γ αið Þð Þ2a10 2αi − 1ð Þ
2T2αi−1

uik k2∞ ≤
r
M

)

⊆ u = u1, u2,⋯, unð Þ ∈ X :
1
2〠

n

i=1
ui tð Þj j2 ≤ kr

M

( )
,

ð33Þ

which implies that

sup
u∈Φ−1 −∞;rð �ð Þ

Ψ uð Þ = sup
u∈Φ−1 −∞;rð �ð Þ

ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt

≤
ðT
0

max
x1,⋯,xnð Þ∈π kr

Mð Þ
F t, x1,⋯, xnð Þdt:

ð34Þ

Hence, under the condition (ii), we get the following
inequality

sup
u∈Φ−1 −∞;rð �ð Þ

Ψ uð Þ

r
≤
ðT
0

max
x1,⋯,xnð Þ∈π kr

Mð Þ
F t, x1,⋯, xnð Þdt

< 2r
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω2,⋯, ωnð Þ

= r

Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi /2
� �

− Y ω1, ω2,⋯, ωnð Þ

= Ψ ωð Þ
Φ ωð Þ :

ð35Þ

Thus, the hypothesis (a1) of Theorem 5 holds.

On the other hand, fix 0 < ε < ð1/2TkλÞ. From (iii) into
account, there exist constants τε ∈ℝ such that

F t, x1,⋯, xnð Þ ≤ ε〠
n

i=1
xij j2 + τε, ð36Þ

for any t ∈ ½0, T� and ðx1,⋯, xnÞ ∈ℝn, by using (36) and (15)
yields, it follows that, for each u ∈ X,

Φ uð Þ − λΨ uð Þ = 1
2〠

n

i=1
uik k2αi − λ

ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt

≥
1
2〠

n

i=1
uik k2αi − Tλkε〠

n

i=1
uik k2αi − λτε

≥
1
2 − Tλkε
� �

〠
n

i=1
uik k2αi − λτε:

ð37Þ

And from him,

lim
uk kX⟶+∞

Φ uð Þ − λΨ uð Þ = +∞: ð38Þ

Moreover, analogous to the case of τε > 0, we imply that
ΦðuÞ − λΨðuÞ⟶ +∞ as kukX⟶+∞ with τε ≤ 0. Then,
the hypotheses of Theorem 5 hold, which means that system
(3) admits at least 3 weak solutions in X, which completes the
proof.

Now, we present some notations, before the corollary of
Theorem 6.

Put

Ai αið Þ = 16
T2

ðT
0
ai tð Þt2 1−αið Þdt +

ðT
T/4

ai tð Þ t −
T
4

� �2 1−αið Þ
dt

(

+
ðT
3T/4

ai tð Þ t −
3T
4

� �2 1−αið Þ
dt − 2

ðT
T/4

ai tð Þ

� t2 −
T
4 t

� �1−αi
dt − 2

ðT
3T/4

ai tð Þ t2 −
3T
4 t

� �1−αi
dt

+ 2
ðT
3T/4

ai tð Þ t2 − Tt + 3T2

16 t
� �1−αi

dt

)
,

Δ1 = min
1≤i≤n

Ai αið Þ: for1 ≤ i ≤ nf g,

Δ2 = max
1≤i≤n

Ai αið Þ: for1 ≤ i ≤ nf g: ð39Þ

Corollary 7. Let 1/2 < αi ≤ 1, 1 ≤ i ≤ n and supposition (iii) in
Theorem 6 holds. Suppose that ∃τ > 0 and d such that ðτ/Δ1

kMnÞ < d2, and also

i′
� �

F t, x1,⋯, xnð Þ ≥ 0, for t, x1,⋯, xnð Þ

∈ 0, T
4

� �
∪

3T
4
, T

� ��
× 0,+∞½ Þ ×⋯ × 0,+∞½ ÞÞ,
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ii′
� � Ð T0 max

x1 ,⋯,xnð Þ∈π τð Þ
F t, x1,⋯, xnð Þdt
τM

<
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

nk~kΔ2d
2

,

iii′
� �

lim
x1j j,⋯, xnj jð Þ⟶ +∞,⋯,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1,⋯, xnð Þ

∑n
i=1 xij j2/2 ≤ 0:

ð40Þ

Then, setting

Thus, system (3) admits at least three weak solutions in X
.

Proof. Choose

ωi tð Þ =

4Γ 2 − αið Þd
T

t, t ∈ 0, T4

� �
,

Γ 2 − αið Þd, t ∈
T
4 ,

3T
4

� �
,

4Γ 2 − αið Þd
hT

T − tð Þ, t ∈
3T
4 , T

� �
:

8>>>>>>>><
>>>>>>>>:

ð42Þ

We derive

0D
αi
t ωi tð Þ =

4d
T

t1−αi , t ∈ 0, T4

� �
,

4d
T

t1−αi − t −
T
4

� �1−αi
 !

, t ∈
T
4 ,

3T
4

� �
,

4d
T

t1−αi − t −
T
4

� �1−αi
− t −

3T
4

� �1−αi
 !

, t ∈
3T
4 , T

� �
:

8>>>>>>>>>><
>>>>>>>>>>:

ð43Þ

Moreover,

ðT
0
ai tð Þ 0D

αi
t ωi tð Þ

�� ��2dt
=
ðT/4
0

+
ð3T/4
T/4

+
ðT
3T/4

ai tð Þ 0D
αi
t ωi tð Þ

�� ��pdt
= 2Ai αið Þd2:

ð44Þ

Then, ωið0Þ = ωiðTÞ = 0, ωiðtÞ,0Dαi
t ωiðtÞ ∈ L2½0, T�, i = 1,

2,⋯, n; hence, ω = ðω1, ω2,⋯, ωnÞ ∈ X, and we have

ωik k2αi =
ðT
0
ai tð Þ 0D

αi
t ωi tð Þ

�� ��2dt = 2Ai αið Þd2: ð45Þ

By (25), for 1 ≤ i ≤ n, imply that

Φ ωð Þ =Φ ω1, ω2,⋯, ωnð Þ

= 〠
n

i=1

ωik k2αi
2 − Y ωð Þ

≥
M
2 〠

n

i=1
ωik k2αi

=Md2 〠
n

i=1
A αið Þ

≥ nMΔ1d
2:

ð46Þ

Similar to (30) and (46), we have ΦðωÞ ≤ n~kΔ2d
2.

Let r = τM/k. From ðτ/Δ1kMnÞ < d2, we have

:〠
n

i=1

ωik k2αi
2 ≥Φ ωð Þ ≥ nMΔ1d

2 > nMΔ1 ×
τ

Δ1kMn
= r
M

:

ð47Þ

Thus, the assumption (ii) of Theorem 6 holds.
(i ′) implies that

Ψ ωð Þ =
ðT
0
F t, ω1, ω2,⋯, ωnð Þdt

=
ðT/4
0

F t, ω1, ω2,⋯, ωnð Þdt

+
ð3T/4
T/4

F t, ω1, ω2,⋯, ωnð Þdt

+
ðT
3T/4

F t, ω1, ω2,⋯, ωnð Þdt

≥
ð3T/4
T/4

F t, ω1, ω2,⋯, ωnð Þdt:

ð48Þ

λ ∈Λ′ = n~kΔ2d
2Ð 3T/4

T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt
, τ

k
Ð T
0 max

x1,⋯,xnð Þ∈π τð Þ
F t, x1,⋯, xnð Þdt

0
B@

1
CA ð41Þ
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Moreover, by condition (ii ′), we have
Ð T
0 max

x1,⋯,xnð Þ∈π kr/Mð Þ
F t, x1,⋯, xnð Þdt
r

=
k
Ð T
0 max

x1,⋯,xnð Þ∈π kr/Mð Þ
F t, x1,⋯, xnð Þdt

τM

<
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

n~kΔ2d
2

≤
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

Φ ωð Þ

≤
2
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω,⋯, ωnð Þ :

ð49Þ

Hence, the supposition (ii) of Theorem 6 is verified.
Moreover, the supposition (iii) of Theorem 6 holds

under (iii ′) from Λ′ ⊆Λ. Theorem 6 is successfully
employed to ensure the existence of at least 3 weak solu-
tions for system (3). This completes of the proof.

4. Examples

In this section, we propose two practical examples of Theorem 6.

Example 1. Let α1 = 0:7, α2 = 0:65, α3 = 0:6,
a1ðtÞ = 1 + t2, a2ðtÞ = 0:5 + t, a3ðtÞ = 1 + t, T = 1. Then, sys-

tem (3) gets the following form:

tD
0:7
1 1 + t2
� �

0D
0:7
t u1 tð Þ� �

= λFu1
t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h1 u1ð Þ, t ∈ 0, 1½ �,

tD
0:65
1 0:5 + tð Þ0D0:65

t u2 tð Þ� �
= λFu2

t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h2 u2ð Þ, t ∈ 0, 1½ �,

tD
0:6
1 1 + tð Þ0D0:6

t u3 tð Þ� �
= λFu3

t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h3 u3ð Þ, t ∈ 0, 1½ �,
 u1 0ð Þ = u1 1ð Þ = 0, u2 0ð Þ = u2 1ð Þ = 0, u3 0ð Þ = u3 1ð Þ = 0,

8>>>>><
>>>>>:

ð50Þ

where h1ðu1Þ = 1/4 sin u1,h2ðu2Þ = u2/2, and h3ðu3Þ = 1/20
arctan u3.

Furthermore, ∀ðt ; x1, x2, x3Þ ∈ ½0 ; 1� × R3; put

F t, x1 tð Þ, x2 tð Þ, x3 tð Þð Þ = 1 + t2
� �

G x1, x2, x3ð Þ, ð51Þ

where

G x1, x2, x3ð Þ

=
x21 + x22 + x23
� �2, x21 + x22 + x23 ≤ 1,

10 x21 + x22 + x23
� �1

2 − 9 x21 + x22 + x23
� �1/3, x21 + x22 + x23 > 1:

8><
>:

ð52Þ

Obviously h1, h1, h3 ⟶ℝ are three Lipschitz continu-
ous functions with Lipschitz constants L1 = 1/4, L2 = 1/2, L3
= 1/20 and h1ð0Þ = h2ð0Þ = h3ð0Þ = 0. Clearly, Fðt, 0, 0, 0Þ =
0, ∀t ∈ ½0, 1�, by the direct calculation, we have a10 = 1, a20
= 1, and a30 = 0:5

Taking

ω1 tð Þ = Γ 1:3ð Þt 1 − tð Þ, ω2 tð Þ
= Γ 1:35ð Þt 1 − tð Þ, ω3 tð Þ
= Γ 1:4ð Þt 1 − tð Þ

0D
0:7
t ω1 tð Þ = t0:3 −

2Γ 1:3ð Þ
Γ 2:3ð Þ t1:3,

0D
0:65
t ω2 tð Þ = t0:35 −

2Γ 1:35ð Þ
Γ 2:35ð Þ t1:35,

0D
0:6
t ω3 tð Þ = t0:4 −

2Γ 1:4ð Þ
Γ 2:4ð Þ t1:4: ð54Þ

By a simple calculation, we obtain

ω1 tð Þk k20:7 ≈ 0:130566, ω2 tð Þk k20:65
≈ 0:078559, ω3 tð Þk k20:6
≈ 0:102638:

ð55Þ

Select r = 1 × 10−3, we find

ω1 tð Þk k20:7 + ω2 tð Þk k20:65 + ω3 tð Þk k20:6
≈ 0:311763 > 2r

M
≈ 0:002192:

ð56Þ

k =max 1
Γ 0:7ð Þð Þ2 2 × 0:7 − 1ð Þ ,

1
Γ 0:65ð Þð Þ2 2 × 0:65 − 1ð Þ ,

1
Γ 0:6ð Þð Þ2 × 0:5 2 × 0:6 − 1ð Þ

( )
≈ 4:509191,

M =min 1 − L1
Γ 0:7ð Þ + 1ð Þ2 , 1 −

L2
Γ 0:65ð Þ + 1ð Þ2 , 1 −

L3
Γ 0:6ð Þ + 1ð Þ2 × 0:5

( )
≈ 0:912084 ð53Þ
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We deduce that the supposition (i) holds, and

Ð 1
0 max

x1,x2,x3ð Þ∈π kr/Mð Þ
F t, x1, x2, x3ð Þdt
r

= 16k2r
3M2 ≈ 0:130355

< 2
Ð 1
0 F t, ω1, ω2, ω3ð Þdt

ω1 tð Þk k20:7 + ω2 tð Þk k20:65 + ω3 tð Þk k20:6
� �

− Y ω1, ω2, ω3ð Þ
≈ 0:365517,

lim
x1j j, x2j j, x3j jð Þ⟶ +∞,+∞,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1, x2, x3ð Þ

x1j j2/2� �
+ x2j j2/2� �

+ x3j j2/2� � = 0:

ð57Þ

Then, suppositions (ii) and (iii) are verified. Hence, in view
of Theorem 6 for every λ ∈ �2:7359,7:6714½, system (50) has at
least 3 weak solutions in the space X =H0:7

0 ×H0:65
0 ×H0:6

0 .

Example 2. Let α1 = 0:65, α2 = 0:75, α3 = 0:85, α4 = 0:95, a1ðt
Þ = 1 + t3, a2ðtÞ = 1 + t2, a3ðtÞ = 0:5 + t, a4ðtÞ = 1 + t, T = 1:

Hence, system (3) gives

Taking

ω1 tð Þ = Γ 1:35ð Þt 1 − tð Þ, ω2 tð Þ
= Γ 1:25ð Þt 1 − tð Þ, ω3 tð Þ
= Γ 1:15ð Þt 1 − tð Þ, ω4 tð Þ
= Γ 1:05ð Þt 1 − tð Þ:

ð59Þ

Moreover, for all ðt ; x1, x2, x3, x4Þ ∈ ½0 ; 1� × R4, put

F t, x1 tð Þ, x2 tð Þ, x3 tð Þ, x4 tð Þð Þ = 1 + t2
� �

G x1, x2, x3, x4ð Þ,
ð60Þ

where

Obviously h1, h1, h3, h4 ⟶ℝ are three Lipschitz contin-
uous functions, h1ðu1Þ = 1/4 sin u1,h2ðu2Þ = u2/20 and h3ðu3
Þ = 1/100 arctan u3, h4ðu4Þ = 1/10 ln ðu4 + 1Þ for all u1, u2,
u3, u4 ∈ℝ with Lipschitz constants L1 = 1/4, L2 = 1/20, L3 =
1/100, L4 = 1/10 and h1ð0Þ = h2ð0Þ = h3ð0Þ = h4ð0Þ = 0.
Clearly, Fðt, 0, 0, 0, 0Þ = 0 for any t ∈ ½0, 1�, a10 = 1, a20 = 0:5,
a30 = 1, and a40 = 1

The direct calculation, gives

k =max

1
Γ 0:65ð Þð Þ2 2 × 0:65 − 1ð Þ ,

1
Γ 0:75ð Þð Þ2 × 0:5 2 × 0:75 − 1ð Þ

, 1
Γ 0:85ð Þð Þ2 2 × 0:85 − 1ð Þ ,

1
Γ 0:95ð Þð Þ2 2 × 0:95 − 1ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

≈ 2:663742,

M =min
1 − L1

Γ 0:65ð Þ + 1ð Þ2 , 1 −
L2

Γ 0:75ð Þ + 1ð Þ2 × 0:5

, 1 − L3
Γ 0:85ð Þ + 1ð Þ2 , 1 −

L4
Γ 0:95ð Þ + 1ð Þ2

8>>>><
>>>>:

9>>>>=
>>>>;

≈ 0:956042,

0D
0:65
t ω1 tð Þ = t0:35 −

2Γ 1:35ð Þ
Γ 2:35ð Þ t1:35,

0D
0:75
t ω2 tð Þ = t0:25 −

2Γ 1:25ð Þ
Γ 2:25ð Þ t1:25,

0D
0:85
t ω3 tð Þ = t0:15 −

2Γ 1:15ð Þ
Γ 2:15ð Þ t1:15,

tD
0:65
1 1 + t3

� �
0D

0:65
t u1 tð Þ� �

= λFu1
t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h1 u1ð Þ, t ∈ 0, 1½ �,

tD
0:75
1 1 + t2

� �
0D

0:75
t u2 tð Þ� �

= λFu2
t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h2 u2ð Þ, t ∈ 0, 1½ �,

tD
0:85
1 0:5 + tð Þ0D0:85

t u3 tð Þ� �
= λFu3

t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h3 u3ð Þ, t ∈ 0, 1½ �,

tD
0:95
1 1 + tð Þ0D0:95

t u4 tð Þ� �
= λFu4

t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h4 u4ð Þ, t ∈ 0, 1½ �,
 u1 0ð Þ = u1 1ð Þ = 0, u2 0ð Þ = u2 1ð Þ = 0, u3 0ð Þ = u3 1ð Þ = 0, u4 0ð Þ = u4 1ð Þ = 0:

8>>>>>>>>><
>>>>>>>>>:

ð58Þ

G x1, x2, x3, x4ð Þ =
x21 + x22 + x23 + x24
� �2, x21 + x22 + x23 + x24 ≤ 1,

10 x21 + x22 + x23 + x24
� �1

2 − 9 x21 + x22 + x23 + x24
� �1

3, x21 + x22 + x23 + x24 > 1:

8<
: ð61Þ
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0D
0:95
t ω3 tð Þ = t0:05 −

2Γ 1:05ð Þ
Γ 2:05ð Þ t1:05: ð62Þ

So that

ω1 tð Þk k20:65 ≈ 0:104555, ω2 tð Þk k20:75
≈ 0:158153, ω3 tð Þk k20:85
≈ 0:170894, ω4 tð Þk k20:95
≈ 0:397611:

ð63Þ

Select r = 1 × 10−3; we find

ω1 tð Þk k20:65 + ω2 tð Þk k20:75
+ ω3 tð Þk k20:85 + ω4 tð Þk k20:95

≈ 0:831213 > 2r
M

≈ 0:002092:
ð64Þ

We deduce that the supposition (i) holds, and

Then, suppositions (ii) and (iii) are verified. Hence, in
view of Theorem 6 for every λ ∈ �7:3922,24:1528½, system
(58) has at least 3 weak solutions in the space X =H0:65

0 ×
H0:75

0 ×H0:85
0 ×H0:95

0 .

5. Conclusion

In this work, at least 3 weak solutions were obtained for a
new class of nonlinear fractional BVPs using a critical
three-point theorem due to Bonano and Marano. Some
appropriate function spaces and variational frameworks
were successfully created for system (3). Finally, we sug-
gested two practical examples of Theorem 6 with a special
case discussion ℝ3. As for case ℝ4, it was discussed. This
makes our results prominent and distinct than previous
ones. In the next work, we extend our recent work to
the coupled system for this important problem. Also some
numerical examples will be given in order to ensure the
theory study by using some famous algorithms which are
presented in ([28, 29]).
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This paper is devoted to the initial and boundary value problems for a class of nonlinear metaparabolic equations ut − βuxx − k
uxxt + γuxxxx = f ðuxÞx . At low initial energy level (Jðu0Þ < d), we not only prove the existence of global weak solutions for these
problems by the combination of the Galerkin approximation and potential well methods but also obtain the finite time blow-up
result by adopting the potential well and improved concavity skills. Finally, we also discussed the finite time blow-up
phenomenon for certain solutions of these problems with high initial energy.

1. Introduction

In this paper, we study the initial and boundary value prob-
lems for the following nonlinear metaparabolic equations

ut − βuxx − kuxxt + γuxxxx = f uxð Þx , x ∈Ω, t > 0, ð1Þ

u x, 0ð Þ = u0 xð Þ, x ∈Ω, ð2Þ
u 0, tð Þ = u 1, tð Þ = 0, uxx 0, tð Þ = uxx 1, tð Þ = 0, t ≥ 0, ð3Þ
in a bounded domain Ω = ð0, 1Þ, where u0ðxÞ is the initial
value function defined on Ω, k > 0 is the viscosity coefficient,
γ > 0 is the interfacial energy parameter, and the nonlinear
smooth function f ðsÞ satisfies the following assumptions:

ið Þ f sð Þj j ≤ α sj jq, α > 0, 1 < q < +∞, ∀s ∈ R,

iið Þ p + 1ð ÞF sð Þ ≥ sf sð Þ for some p > 1, ∀s ∈ R, F sð Þ =
ðs
0
f τð Þdτ:

8><
>:

ð4Þ

Equation (1) is a typical higher-order metaparabolic
equation [1, 2], which has extensive physical background
and rich theoretical connotation. This type of equation can

be regarded as the regularization of Sobolev-Galpern equa-
tion by adding a fourth-order term uxxxx. The Sobolev-
Galpern equation appear in the study of various problems
of fluid mechanics, solid mechanics, and heat conduction
theory [3–5]. There have been many outstanding results
about the qualitative theory for Sobolev-Galpern which
include the existence, nonexistence, asymptotic behavior,
regularities, and other some special properties of solutions.
We also refer the reader to see [6, 7] and the papers cited
therein. In (1), u is the concentration of one of the two
phases, the fourth-order term γuxxxx denotes the capillarity-
driven surface diffusion, and the nonlinear term f ðuxÞx is
an intrinsic chemical potential. For example, differentiating
(1) with respect to x and taking v = ux, β = 0, then Equa-
tion (1) reduces to the well-known viscous Cahn-Hilliard
equation

vt − vxxt + vxxxx = φ vð Þxx, x ∈Ω, t > 0: ð5Þ

Equation (5) appears in the dynamics of viscous first-
order phase transitions in cooling binary solutions such
as glasses, alloys, and polymer mixtures [8–10]. On the
other hand, Equation (5) appears in the study of the reg-
ularization of nonclassical diffusion equations by adding a
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fourth-order term vxxxx. There have been many outstand-
ing results about the qualitative theory for this type of
equations [11–15]. For example, Liu and Yin [13] studied
Equation (5) for φðvÞ = −v + γ1v

2 + γ2v
3 in R3; they proved

the existence and nonexistence of global classical solutions
and pointed out that the sign of γ2 is crucial to the global
existence of solutions. In [14], Grinfeld and Novick-Cohen
studied a Morse decomposition of the stationary solutions
of the one-dimensional viscous Cahn-Hilliard equation by
explicit energy calculations. They also proved a partial pic-
ture of the variation in the structure of the attractor (n = 1
) for the viscous Cahn-Hilliard equation as the mass con-
straint and homotopy parameter are varied. Zhao and Liu
[15] considered the initial boundary problem for the vis-
cous Cahn-Hilliard Equation (5). In their paper, the opti-
mal control under boundary condition was given, and
the existence of optimal solution was proved.

Let us mention that there is an abounding literature
about the initial and boundary value problems or Cauchy
problem to nonlinear parabolic and hyperbolic equations.
We refer the reader to the monographs [16, 17] which
devoted to the second-order parabolic and pseudoparabolic
problems. For the fourth-order nonlinear parabolic and
hyperbolic equations, there are also some results about the ini-
tial boundary value and Cauchy problems, especially on global
existence/nonexistence, uniqueness/nonuniqueness, and
asymptotic behavior [18–25]. Bakiyevich and Shadrin [21]
studied the Cauchy problem of the metaparabolic equation

ut − αuxx − γuxxt + βuxxxx = f t, xð Þ, x ∈ℝ, t > 0,
u x, 0ð Þ = φ xð Þ, x ∈ℝ,

(

ð6Þ

where α > 0, β ≥ 0, and γ > 0 are constants. They proved that
the solutions are expressed through the sum of convolutions
of functions φðxÞ and f ðt, xÞ with corresponding fundamental
solutions.

In [22], Liu considered the metaparabolic equation

ut − kuxxt + A uð Þxxxx = f x, tð Þ, 0 ≤ x ≤ 1, 0 ≤ t ≤ T < +∞,
ð7Þ

where AðuÞ = Ð u
0aðsÞds, a0 + a1jsjb ≤ aðsÞ, and ja″ðsÞj ≤ a2jsjb

(a0, a1, a2, and b are positive constants). He proved the exis-
tence of weak solutions by using the method of continuity.

Khudaverdiyev and Farhadova [23] discussed the follow-
ing fourth-order semilinear pseudoparabolic equation

ut − αuxxt + uxxxx = f t, x, u, ux, uxx, uxxxð Þ,
 0 ≤ x ≤ 1, 0 ≤ t ≤ T < +∞,

ð8Þ

where α > 0 is a fixed number. They proved the existence in
large theorem (i.e., true for sufficiently large values of T) for
generalized solution by means of Schauder stronger fixed-
point principle.

In [24], Zhao and Xuan studied the generalized BBM-
Burgers equation

ut − αuxx − γuxxt + βuxxxx + f uð Þx = 0, x ∈ℝ, t > 0: ð9Þ

They obtained the existence and convergence behavior of
the global smooth solutions for Equation (9).

Philippin [25] studied the following fourth-order para-
bolic equation

ut − k1 tð ÞΔu + k2 tð ÞΔ2u = k3 tð Þu uj jp−1, x ∈Ω, t > 0, ð10Þ

where ki, i = 1, 2, 3 are positive constants or in general posi-
tive derivable functions of time t. Under appropriate assump-
tions on the data, he proved that the solutions u cannot exist
for all time, and an upper bound is derived.

Equation (1) is also closely connected with many equa-
tions [26–29]. For example, Yang [26] considered the initial
and boundary value problems of the following equation

utt + λut + αuxxxx = f uxð Þx, x ∈ 0, 1ð Þ, t > 0: ð11Þ

He studied the asymptotic property of the solution and
gave some sufficient conditions of the blow-up. When the
weak damping term ut of Equation (11) is replaced by the
strong damping term −uxxt , we have the following fourth-
order wave equation

utt − 2buxxt + αuxxxx = f uxð Þx , x ∈ 0, 1ð Þ, t > 0: ð12Þ

Chen and Lu [27] studied the initial and boundary value
problems of Equation (12). They proved the existence and
uniqueness of the global generalized solution and global
classical solution by the Galerkin method. Furthermore, Xu
et al. [28] considered the initial and boundary value prob-
lems and proved the global existence and nonexistence of
solutions by adopting and modifying the so called concavity
method under some conditions with low initial energy. Ali
Khelghati and Khadijeh Baghaei [29] proved that the blow
up for Equation (12) occurs in finite time for arbitrary pos-
itive initial energy.

Motivated by the above researches, in the present work,
we mainly study the initial and boundary value problems
(1)–(3) of metaparabolic equations. Hereafter, for simplicity,
we set α = β = γ = 1. Especially, the appearance of the disper-
sion term uxxt and nonlinearity f ðuxÞx for these problems
cause some difficulties such that we cannot apply the normal
Galerkin approximation, concavity, and potential methods
directly; we have to invent some new skills and methods to
overcome these difficulties.

Our paper is organized as follows. In Section 2, we intro-
duce some functionals and potential wells and discuss the
invariance of some sets which are needed for our work. In
Sections 3 and 4, the existence and nonexistence of global
weak solutions for problems (1)–(3) are proved by the Galer-
kin approximation and potential well and improved concav-
ity methods at low initial energy (Jðu0Þ < d). Especially, the
threshold result between global existence and nonexistence
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is obtained under certain conditions. In the last section, we
investigate the finite time blow-up for certain solutions of
problems (1)–(3) with high initial energy.

2. Preliminaries

In this section, we introduce some functionals, potential
wells, and important lemmas that will be needed in this
paper. Throughout this paper, the following abbreviations
are used for precise statement:

Lq Ωð Þ = Lq,Wm,q Ωð Þ =Wm,q,
Hm Ωð Þ =Wm,2 Ωð Þ =Hm,Hm

0 Ωð Þ =Hm
0 ,

D = u ∈H2 Ωð Þ u 0, tð Þ = u 1, tð Þj�
= 0, uxx 0, tð Þ = uxx 1, tð Þ = 0g,

uk kLq Ωð Þ = uk kq, uk kWm,q Ωð Þ
= uk kWm,q , uk kHm

0 Ωð Þ = uk kHm
0
:

ð13Þ

And the notation ð·, · Þ for the L2-inner product will also
be used for the notation of duality paring between dual
spaces.

First of all, let us consider the functionals as follows. The
“total energy” and “potential energy” associated with the
problems (1)–(3) are defined by

E tð Þ≔ E u tð Þð Þ =
ðt
0
ut τð Þk k2H1dτ +

1
2 uxk k2H1 +

ð
Ω

F uxð Þdx,

J uð Þ = 1
2 uxk k2H1 +

ð
Ω

F uxð Þdx,

I uð Þ = uxk k2H1 +
ð
Ω

f uxð Þuxdx:

ð14Þ

Then, by simple calculation, it follows that

J ′ uð Þ = d
dt

J uð Þ = − ut tð Þk k2H1 ≤ 0, ð15Þ

E tð Þ = J uð Þ +
ðt
0
ut τð Þk k2H1dτ = J u0ð Þ = E 0ð Þ: ð16Þ

The corresponding “Nehari manifold” and “potential
well depth” are given by

N = u ∈D ∩W1,q+1 Ωð Þ I uð Þ = 0, u ≠ 0j� �
,

d = inf
u∈N

J uð Þð Þ: ð17Þ

In addition, we define

N+ = u ∈D ∩W1,q+1 Ωð Þ I uð Þj > 0
� �

∪ 0f g,
N− = u ∈D ∩W1,q+1 Ωð Þ I uð Þ < 0j� �

:
ð18Þ

To obtain the results of this paper, we also introduce so
called stable and unstable sets:

W = u ∈D ∩W1,q+1 Ωð Þ I uð Þ > 0, J uð Þ < dj� �
∪ 0f g,

V = u ∈D ∩W1,q+1 Ωð Þ I uð Þ < 0, J uð Þ < dj� �
:

ð19Þ

Next, we shall give the following some essential lemmas
which are important to obtain the main results of this paper.

Lemma 1. Let f ðsÞ satisfy (4), u ∈D ∩W1,q+1ðΩÞ, then the fol-
lowing hold:

(1) If 0 < kuxkH1 < γ0, then u ∈N+(u ≠ 0);

(2) If u ∈N−, then kuxkH1 > γ0

(3) If u ∈N , then kuxkH1 ≥ γ0, where

γ0 =
1

αCq+1
∗

� �1/ q−1ð Þ
,

C∗ = sup
uxk kq+1
uxk kH1

,

u ∈D ∩W1,q+1 Ωð Þ, u ≠ 0
� �

:

ð20Þ

Proof.

(1) If 0 < kuxkH1 < γ0, then

−
ð
Ω

f uxð Þuxdx ≤
ð
Ω

f uxð Þuxj jdx ≤ α
ð
Ω

uxj jq+1dx

≤ αCq+1
∗ uxk kq+1H1 = αCq+1

∗ uxk kq−1H1 uxk k2H1

< uxk k2H1 ,

ð21Þ

which gives IðuÞ > 0 or u ∈N+(u ≠ 0).
(2) If u ∈N−, then u ≠ 0 and

uxk k2H1 < −
ð
Ω

f uxð Þuxdx ≤ αCq+1
∗ uxk kq−1H1 uxk k2H1 , ð22Þ

which gives ∥ux∥H1 > γ0.

(3) If u ∈N , then from

∥ux∥
2
H1 = −

ð
Ω

f uxð Þuxdx ≤ αCq+1
∗ ∥ux∥

q−1
H1 ∥ux∥

2
H1 , ð23Þ

we have ∥ux∥H1 ≥ γ0.

Lemma 2. Let f ðsÞ satisfy (4) and u ∈N , then

d ≥ d0 =
p − 1

2 p + 1ð Þ γ
2
0 =

p − 1
2 p + 1ð Þ

1

αCq+1
∗

� �2/ q−1ð Þ
: ð24Þ
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Proof. For any u ∈N , we have by Lemma 1 (3) that ∥ux∥H1

≥ γ0. Hence, from

J uð Þ = 1
2 uxk k2H1 +

ð
Ω

F uxð Þdx

≥
1
2 uxk k2H1 +

1
p + 1

ð
Ω

f uxð Þuxdx

= p − 1
2 p + 1ð Þ uxk k2H1 +

1
p + 1 I uð Þ

= p − 1
2 p + 1ð Þ uxk k2H1 ≥

p − 1
2 p + 1ð Þ γ

2
0,

ð25Þ

and the definition of potential depth d, we get d ≥ d0.

For simplicity, we define the weak solution of (1)–(3)
over the interval Ω × ½0, TÞ, but it is to be understood that
T is either infinity or the limit of the existence interval.

Definition 3. We say that uðx, tÞ is called a weak solution
of the problems (1)–(3) on the interval Ω × ½0, TÞ. If u ∈ L∞
ð½0, T� ;D ∩W1,q+1ðΩÞÞ, with ut ∈ L2ð½0, T� ;H1

0ðΩÞÞ satisfy
the following conditions

(i) For any v ∈D ∩W1,q+1ðΩÞ, such that

ut , vð Þ + uxt , vxð Þ + ux, vxð Þ + uxx, vxxð Þ = − f uxð Þ, vxð Þ: ð26Þ

(ii) uðx, 0Þ = u0 in D ∩W1,q+1ðΩÞ.
(iii) The following energy inequality holds

J uð Þ ≤ J u0ð Þ, ð27Þ

for any 0 ≤ t < T .

Lemma 4. Let f ðsÞ satisfy (4) and uðx, tÞ be a solution of
(1)–(3) over the interval ½0, TÞ. If there exists a time t0 ∈ ½0,
TÞ such that uðt0Þ ∈W, then uðtÞ ∈W for any t ∈ ½t0, TÞ,
where T is either infinity or the limit of the existence interval.

Proof. Arguing by contradiction and considering the time
continuity of IðuÞ and JðuÞ, we suppose that there exists
a time t1 ∈ ½t0, TÞ such that uðx, tÞ ∈W for any t ∈ ½t0, t1Þ,
but uðt1Þ ∈ ∂W, which means that (1) Jðuðt1ÞÞ = d or (2)
Iðuðt1ÞÞ = 0, kuðt1ÞkH2 ≠ 0. By (15) and uðt0Þ ∈W, we have
Jðuðt1ÞÞ ≤ Jðuðt0ÞÞ < d. It follows that case (1) is impossible.
If Iðuðt1ÞÞ = 0, kuðt1ÞkH2 ≠ 0, then by the definition of d, we
have Jðuðt1ÞÞ > d which contradicts Jðuðt1ÞÞ ≤ Jðuðt0ÞÞ < d.
The case (2) is also impossible.

Lemma 5. Let f ðsÞ satisfy (4) and uðx, tÞ be a solution of
(1)–(3) over the interval ½0, TÞ. If there exists a time t0 ∈ ½0, TÞ
such that uðt0Þ ∈ V , then uðtÞ ∈ V for any t ∈ ½t0, TÞ, where T
is either infinity or the limit of the existence interval.

Proof. The proof of Lemma 5 is similar to Lemma 4.

Lemma 6 (see [29, 30]). Assume that the function ϕðtÞ ∈ C2,
ϕðtÞ ≥ 0 satisfies

ϕ tð Þϕ″ tð Þ − 1 + δð Þϕ′2 tð Þ ≥ 0, ð28Þ

for certain real number δ > 0, ϕð0Þ > 0, and ϕ′ð0Þ > 0. Then,
there exists a real number ~T with 0 < ~T ≤ ðϕð0ÞÞ/ðαϕ′ð0ÞÞ
such that

ϕ tð Þ⟶∞, ast⟶ ~T
−
: ð29Þ

We construct an approximate weak solution of the prob-
lems (1)-(3) by the Galerkin¡¯s method. Let fwjg∞j=1 be the

eigenfunction system of problem

−wjxx = λwj, inΩ,wj 0ð Þ =wj 1ð Þ = 0, j = 1, 2,⋯: ð30Þ

Obviously, there exist some basis such that fwjg∞j=1 ⊆D

∩W1,q+1ðΩÞ, and it is dense inD ∩W1,q+1ðΩÞ. Now, suppose
that the approximate weak solution of the problems (1)–(3)
can be written

um x, tð Þ = 〠
m

j=1
dj
m tð Þwj xð Þ: ð31Þ

According to Galerkin’s method, these coefficients dj
mðtÞ

need to satisfy the following initial value problem of the non-
linear differential equations

umt ,wj

� �
+ umxt ,wjx

� �
+ umx ,wjx

� �
+ umxx ,wjxx

� �
= − f umxð Þ,wjx

� �
,

umjt=0 = u0m xð Þ,

(

ð32Þ

where u0mðxÞ =∑m
j=1d

j
mð0ÞwjðxÞ, u0mðxÞ⟶ u0ðxÞ, in D ∩

W1,q+1ðΩÞ.
The initial value problem (32) possesses a local solution

in ½0, tmÞ, 0 < tm < T for an arbitrary T > 0. Under some
appropriate assumptions on the nonlinear terms and the ini-
tial data, we prove that the system (32) has global weak solu-
tions in the interval ½0, T�. Furthermore, we show that the
solutions of the problems (1)–(3) can be approximated by
the functions umðx, tÞ.

3. Existence of Global Weak Solutions

In this section, we shall prove the existence of global weak
solution by the combination of the Galerkin approximation
and potential well methods.

Theorem 7. Assume that f satisfy (4), and u0 ∈W, then the
problems (1)–(3) admits a global weak solution u ∈ L∞ð½0,
∞Þ ;D ∩W1,q+1ðΩÞÞ, with ut ∈ L2ð½0,∞Þ ;H1

0ðΩÞÞ and u ∈
W for all 0 ≤ t <∞.
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Proof. Multiplying (32) by dj
mðtÞ′ and summing for j = 1,

⋯,m, then we have

umt , umtð Þ + umx , umxtð Þ + umxt , umxtð Þ + umxx, umxxtð Þ
= − f umxð Þ, umxtð Þ: ð33Þ

By a direct calculation, it follows that

ðt
0
um τð Þk k2H1dτ + J umð Þ = J u0mð Þ, ð34Þ

where

J umð Þ = 1
2 umxk k2H1 +

ð
Ω

F umxð Þdx: ð35Þ

Utilizing the strong convergence of u0m inD ∩W1,q+1ðΩÞ,
we note that Jðu0mÞ⟶ Jðu0Þ < d. Hence, we get Jðu0mÞ < d
for sufficiently large m. On the other hand, from u0 ∈W and
u0mðxÞ⟶ u0ðxÞ in D ∩W1,q+1ðΩÞ, it follows that u0m ∈W
for sufficiently large m. Similar to the proof of Lemma 4, we
have that the solution um constructed by (31) remains in W
for 0 ≤ t <∞ and sufficiently large m.

Thus, from (4) and

d > J umð Þ = 1
2 umxk k2H1 +

ð
Ω

F umxð Þdx

≥
1
2 umxk k2H1 + 1

p + 1

ð
Ω

f umxð Þumxdx

≥
p − 1

2 p + 1ð Þ umxk k2H1 + 1
p + 1 I umð Þ ≥ 0,

ð36Þ

we obtain

ðt
0
um τð Þk k2H1dτ < d, 0 ≤ t <∞,

umxk k2H1 <
2 p + 1ð Þ
p − 1 d, 0 ≤ t <∞,

umxk k2q+1 ≤ C2
∗ umxk k2H1 < C2

∗
2 p + 1ð Þ
p − 1 d, 0 ≤ t <∞,

f umxð Þk krr ≤ αr umxk kr+1r+1

< αrCr+1
∗

2 p + 1ð Þ
p − 1 d

� � r+1ð Þ/2
, 0 ≤ t <∞,

ð37Þ

where r = ðq + 1Þ/q, 1/ðq + 1Þ + ð1/rÞ = 1. Therefore, there
exist a subsequence of fumg which from now on will be also
denoted by fumg such that as m⟶∞

um ⟶ u in L∞ 0,∞½ Þ ;D ∩W1,q+1 Ωð Þ� �
weakly star, ð38Þ

um ⟶ u a:e:Q =Ω × 0,∞½ Þ, ð39Þ
umt ⟶ ut in L2 0,∞½ Þ ;H1

0 Ωð Þ� �
weakly, ð40Þ

umx ⟶ ux in L∞ 0,∞½ Þ ; Lq+1 Ωð Þ� �
weakly star, ð41Þ

f umxð Þ⟶ χ = f uxð Þ in L∞ 0,∞½ Þ ; Lr Ωð Þð Þweakly star:
ð42Þ

Convergences (38)–(42) permit us to pass to the limit in
(32). Taking m⟶∞, we obtain

ut ,wj

� �
+ uxt ,wjx

� �
+ ux,wjx

� �
+ uxx ,wjxx

� �
= − f uxð Þ,wjx

� �
,

ð43Þ

for j = 1, 2⋯ : Considering that the basis fwjg∞j=1 are

dense in D ∩W1,q+1ðΩÞ, we choose a function v ∈ L∞ð½0,
∞Þ ;D ∩W1,q+1ðΩÞÞ having the form vðtÞ =∑∞

j=1d
jðtÞwj,

where fdjðtÞg∞j=1 are given functions. Multiplying (43) by dj

ðtÞ and summing j = 1, 2,⋯, then we have

ut , vð Þ + uxt , vxð Þ + ux, vxð Þ + uxx, vxxð Þ = − f uxð Þ, vxð Þ: ð44Þ

Moreover, (32) gives uðx, 0Þ = u0ðxÞ in D ∩W1,q+1ðΩÞ.
Next, we will prove that u satisfies (27). Taking into account
the nonlinear term of the functional JðuÞ, we deduce

ð
Ω

F umxð Þdx −
ð
Ω

F uxð Þdx
����

����
=

ð
Ω

f ux + θmumxð Þ umx − uxð Þdx
����

����
≤ ∥f ux + θmumxð Þ∥q+1/q∥umx − u∥q+1
≤ C∥umx − ux∥q+1 ⟶ 0,

ð45Þ

as m⟶∞, where 0 < θm < 1. Hence, we have

lim
m⟶∞

ð
Ω

F umxð Þdx =
ð
Ω

F uxð Þdx: ð46Þ

Then, making use of Fatou’s Lemma and (34), (46), we
deduce

1
2 ∥ux∥

2
H1 ≤ liminf

m⟶∞

1
2 ∥umx∥

2
H1 = liminf

m⟶∞
J umð Þ −

ð
Ω

F umxð Þdx
	 


≤ lim
m⟶∞

J u0mð Þ −
ð
Ω

F umxð Þdx
	 


= J u0ð Þ −
ð
Ω

F uxð Þdx,

ð47Þ

which yields (27). Thus, we obtain that u is a global weak
solution of problems (1)–(3). Finally, making use of Lemma
4 again, we get uðtÞ ∈W for 0 ≤ t <∞.
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4. Finite Time Blow-up of
Solutions with Jðu0Þ < d0

In this section, we consider the finite time blow up of solu-
tions with Eð0Þ = Jðu0Þ < d0 for the problems (1)–(3).

Theorem 8. Let f satisfy (4), and u0 ∈D ∩W1,q+1ðΩÞ. Assume
that Iðu0Þ < 0 and Eð0Þ = Jðu0Þ < d0, where d0 is defined in
Lemma 2, then the weak solution uðtÞ of problems (1)–(3)
blow-up in finite time.

Proof. Let uðtÞ be any weak solution of the problems (1)–(3)
with Iðu0Þ < 0 and Eð0Þ = Jðu0Þ < d0, ~T be the maximal exis-
tence time of uðtÞ. Next, we will prove ~T < +∞. Arguing by
contradiction, we suppose ~T = +∞. We define the function
Ψ : ½0, T1�⟶ R+ by

Ψ tð Þ =
ðt
0
∥u τð Þ∥2H1dτ + T1 − tð Þ∥u0∥2H1 + b t + T0ð Þ2, ð48Þ

where b, T0, and T1 are positive constants to be chosen
later. By simple calculation, we have

Ψ′ tð Þ = ∥u tð Þ∥2H1−∥u0∥
2
H1 + 2b t + T0ð Þ

= 2
ðt
0

ð
Ω

u τð Þut τð Þdxdτ

+ 2
ðt
0

ð
Ω

ux τð Þuxt τð Þdxdτ + 2b t + T0ð Þ,

Ψ″ tð Þ = 2
ð
Ω

u tð Þut tð Þdx + 2
ð
Ω

ux tð Þuxt tð Þdx + 2b:

ð49Þ

By (1), we obtain

Ψ″ tð Þ = 2
ð
Ω

u uxx − uxxxx + f uxð Þx
� �

dx + 2b

= −2∥ux∥2H1 − 2
ð
Ω

ux f uxð Þdx + 2b:
ð50Þ

Therefore, we can get

Ψ tð ÞΨ″ tð Þ − p + 3
4 Ψ′ tð Þ2

=Ψ tð Þ −2∥ux∥2H1 − 2
ð
Ω

ux f uxð Þdx + 2b
	 


− p + 3ð Þ
	ðt

0

ð
Ω

u τð Þut τð Þdxdτ

+
ðt
0

ð
Ω

ux τð Þuxt τð Þdxdτ + b t + T0ð Þ

2

=Ψ tð Þ −2∥ux∥2H1 − 2
ð
Ω

ux f uxð Þdx + 2b
	 


+ p + 3ð Þ


η tð Þ − Ψ tð Þ − T1 − tð Þ∥u0∥2H1

� �
�

ðt
0
∥ut τð Þ∥2H1dτ + b

	 
�
,

ð51Þ

where

η tð Þ =
ðt
0
∥u τð Þ∥2H1dτ + b t + T0ð Þ2

	 
 ðt
0
∥ut τð Þ∥2H1dτ + b

	 


−
	ðt

0

ð
Ω

u τð Þut τð Þdxdτ +
ðt
0

ð
Ω

ux τð Þuxt τð Þdxdτ

+ b t + T0ð Þ

2
:

ð52Þ

Using the Schwarz and Young inequalities, we have

ðt
0
u τð Þ, ut τð Þð Þdτ

� �2
≤
ðt
0
∥u τð Þ∥22dτ

ðt
0
∥ut τð Þ∥22dτ, ð53Þ

ðt
0
ux τð Þ, uxt τð Þð Þdτ

� �2
≤
ðt
0
∥ux τð Þ∥22dτ

ðt
0
∥uxt τð Þ∥22dτ, ð54Þ

ðt
0
u τð Þ, ut τð Þð Þdτ

ðt
0
ux τð Þ, uxt τð Þð Þdτ

≤
1
2

ðt
0
u τð Þk k22dτ

ðt
0
uxt τð Þk k22dτ +

1
2

ðt
0
∥ut∥

2
2dτ

ðt
0
∥∇u∥22dτ:

ð55Þ
Inserting (53)–(55) into (52), we have

η tð Þ ≥ 0, t ∈ 0, T1½ �: ð56Þ

Thus,

Ψ″ tð ÞΨ tð Þ − p + 3
4 Ψ′ tð Þ2 ≥Ψ tð Þξ tð Þ, ð57Þ

where

ξ tð Þ = −2∥ux∥2H1 − 2
ð
Ω

ux f uxð Þdx + 2b

− p + 3ð Þ
ðt
0
∥ut τð Þ∥2H1dτ + b

	 


≥ − p + 3ð Þ
ðt
0
∥ut τð Þ∥2H1dτ − p + 1ð Þb

− 2 p + 1ð Þ
ð
Ω

F uxð Þdx − 2∥ux∥2H1

= −2 p + 1ð Þ E tð Þ − 1
2 ∥ux∥

2
H1 −

ðt
0
∥ut τð Þ∥H1dτ

	 


− p + 3ð Þ
ðt
0
∥ut τð Þ∥2H1dτ − p + 1ð Þb − 2∥ux∥2H1

≥ −2 p + 1ð ÞE 0ð Þ + p − 1ð Þ∥ux∥2H1

+ p − 1ð Þ
ðt
0
∥ut τð Þ∥2H1dτ − p + 1ð Þb:

ð58Þ

From Iðu0Þ < 0, Eð0Þ = Jðu0Þ < d0 and Lemma 5, we have
IðuÞ < 0 for all t ∈ ½0,∞Þ. Hence, by Lemma 1, it follows that
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∥ux∥
2
H1 > γ20 = ðð2ðp + 1ÞÞ/ðp − 1ÞÞd0 = ð1/ðαCp+1

∗ ÞÞ2/ðp−1Þ. Thus,
we have from (58) that

ξ tð Þ > 2 p + 1ð Þ d0 − J u0ð Þð Þ − p + 1ð Þb: ð59Þ

We choose b small enough such that b ≤ 2ðd0 − Jðu0ÞÞ,
then we have

Ψ″ tð ÞΨ tð Þ − p + 3
4 Ψ′ tð Þ2 ≥Ψ tð Þξ tð Þ > 0, ð60Þ

for all t ∈ ½0, T1�. From IðuÞ < 0 for all t ∈ ½0, T1Þ and (50),
we get Ψ″ðtÞ > 0. Hence, we have Ψ′ðtÞ >Ψ′ð0Þ = 2bT0 > 0
for all t ∈ ð0, T1Þ.

From what has been discussed above, using Lemma 6 and
letting δ = ðp − 1Þ/4, we can obtain that there exists a finite
time ~T > 0 such that

lim
t⟶~T

−
Ψ tð Þ = +∞, ð61Þ

or

lim
t⟶~T

−

ðt
0
∥u τð Þ∥2H1dτ + T1 − tð Þ∥u0∥2H1 + b t + T0ð Þ2

� �
= +∞,

ð62Þ

where

~T ≤
Ψ 0ð Þ
γΨ′ 0ð Þ

= 2 T1∥u0∥
2
H1 + bT2

0
� �

p − 1ð ÞbT0
: ð63Þ

which contradicts ~T = +∞. Hence, the desired assertion
immediately follows.

From the discussed above in Sections 3 and 4, a threshold
result of global existence and nonexistence of solutions for
problems (1)–(3) has been obtained as follows.

Corollary 9. Let f satisfy (4), and u0 ∈D ∩W1,q+1ðΩÞ.
Assume that Eð0Þ = Jðu0Þ < d0. Then, problems (1)–(3) admits
a global weak solution provided Iðu0Þ ≥ 0 (includes u0 = 0);
Problems (1)–(3) dose not admit any global solution provided
Iðu0Þ < 0.

5. Finite Time Blow-up of Solutions with High
Initial Energy

In this section, we shall state and prove the finite time blow-
up result with high initial energy for the problems (1)–(3).

Theorem 10. Let f satisfy (4), and u0 ∈D ∩W1,q+1ðΩÞ.
Assume that

0 ≤ J u0ð Þ ≤ p − 1ð Þλ1
2 p + 1ð Þ 1 + λ1ð Þ ∥u0∥

2
H1 , ð64Þ

where λ1 is the optimal constant satisfying the Poincáre
inequality ∥ux∥

2
2 ≥ λ1∥u∥

2
2, then the weak solution uðtÞ of prob-

lems (1)–(3) blow-up in finite time.

Proof. Arguing by contradiction, we suppose that uðtÞ is a
global weak solution of the problems (1)–(3). Considering
that

ðt
0
ut τð Þdτ = u tð Þ − u0, ∀t ∈ 0,∞Þ½ , ð65Þ

so we have

ðt
0
∥ut τð Þ∥H1dτ ≥ ∥

ðt
0
ut τð Þdτ∥H1 = ∥u tð Þ − u0∥H1

≥ ∥u tð Þ∥H1−∥u0∥H1 :

ð66Þ

From (16), (66) and Hölder’s inequality, we obtain

∥u tð Þ∥H1 ≤ ∥u0∥H1 +
ðt
0
∥ut τð Þ∥H1dτ

≤ ∥u0∥H1 + t1/2
ðt
0
∥ut τð Þ∥2H1dτ

� �1/2

≤ ∥u0∥H1 + t1/2 J u0ð Þ − J u tð Þð Þð Þ1/2:

ð67Þ

Since assume that uðtÞ is a global weak solution of the
problems (1)–(3), we get JðuðtÞÞ ≥ 0 for all t ∈ ½0,∞Þ. Other-
wise, there exists a time t0 ∈ ½0,∞Þ such that Jðuðt0ÞÞ < 0.
Hence, from

0 > J u t0ð Þð Þ = 1
2 ∥ux t0ð Þ∥2H1 +

ð
Ω

F ux t0ð Þð Þdx

≥
1
2 ∥ux t0ð Þ∥2H1 + 1

p + 1

ð
Ω

f ux t0ð Þð Þux t0ð Þdx

≥
p − 1

2 p + 1ð Þ ∥ux t0ð Þ∥2H1 + 1
p + 1 I u t0ð Þð Þ,

ð68Þ

we have Iðuðt0ÞÞ < 0 and Jðuðt0ÞÞ < 0 which implies that
uðt0Þ ∈ V . Therefore, by the results of Theorem 8, we obtain
that uðx, t ; uðt0ÞÞ = uðx, t − t0 ; u0Þ blows up in finite time,
which is a contradiction. Thus, we have

J u0ð Þ ≥ J u tð Þð Þ ≥ 0, for all t ∈ 0,∞Þ½ : ð69Þ

Next, combining (67) and (69), we get

∥u tð Þ∥H1 ≤ ∥u0∥H1 + t1/2 J u0ð Þ − J u tð Þð Þð Þ1/2
≤ ∥u0∥H1 + t1/2 J u0ð Þð Þ1/2,

ð70Þ

for all t ∈ ½0,∞Þ.
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On the other hand, multiplying u on two sides of Equa-
tion (1) and integrating by parts, we have

ut , uð Þ + uxt , uxð Þ + ux, uxð Þ + uxx, uxxð Þ = − f uxð Þ, uxð Þ:
ð71Þ

The Poinca’re inequality gives ∥ux∥
2
2 ≥ λ1∥u∥

2
2, where λ1 is

the first eigenvalue of the problem

wxx + λw = 0, inΩ,
w = 0, on ∂Ω:

(
ð72Þ

Thus, we have

∥u∥2H1 = ∥u∥22+∥ux∥22 ≤
1 + λ1
λ1

∥ux∥
2
2 ≤

1 + λ1
λ1

∥ux∥
2
H1 : ð73Þ

By the combination of (4), (73), and Sobolev’s inequality,
we can get that

d
dt

1
2 ∥u∥

2
H1

� �
= −∥ux∥

2
H1 − f uxð Þ, uxð Þ

≥ −∥ux∥
2
H1 − p + 1ð Þ

ð
Ω

F uxð Þdx

= p − 1
2 ∥ux∥

2
H1 − p + 1ð ÞJ u tð Þð Þ

≥
p − 1ð Þλ1
2 1 + λ1ð Þ ∥u∥

2
H1 − p + 1ð ÞJ u tð Þð Þ:

ð74Þ

Since ðd/dtÞJðuðtÞÞ ≤ 0, for ∀k > 0, we have

d
dt

1
2 ∥u∥

2
H1 − kJ u tð Þð Þ

� �

≥
d
dt

1
2 ∥u∥

2
H1

� �
≥

p − 1ð Þλ1
2 1 + λ1ð Þ ∥u∥

2
H1 − p + 1ð ÞJ u tð Þð Þ,

= p − 1ð Þλ1
1 + λ1

1
2 ∥u∥

2
H1 −

p + 1ð Þ 1 + λ1ð Þ
p − 1ð Þλ1

J u tð Þð Þ
	 


:

ð75Þ

Taking k = ððp + 1Þð1 + λ1ÞÞ/ððp − 1Þλ1Þ in (75) and GðtÞ
= 1/2∥u∥2H1 − ðððp + 1Þð1 + λ1ÞÞ/ððp − 1Þλ1ÞÞJðuðtÞÞ, then we
have

d
dt

G tð Þ ≥ p − 1ð Þλ1
1 + λ1

G tð Þ: ð76Þ

Integrating the inequality (76) from 0 to t, we see

G tð Þ ≥ e p−1ð Þλ1ð Þ/ 1+λ1ð Þð ÞtG 0ð Þ, t ∈ 0,∞Þ½ , ð77Þ

which means that

∥u∥2H1 ≥
2 p + 1ð Þλ1
p − 1ð Þ 1 + λ1ð Þ J u tð Þð Þ

+ 2e p−1ð Þλ1ð Þ/ 1+λ1ð Þð ÞtG 0ð Þ, t ∈ 0,∞Þ½ :

ð78Þ

From the assumption condition (64), we have Gð0Þ > 0.
Hence, we get from (69) and (78) that ∥u∥2H1 ≥ 2
eðððp−1Þλ1Þ/ð1+λ1ÞÞtGð0Þ, i.e.,

∥u∥H1 ≥ 2G 0ð Þ½ �1/2e p−1ð Þλ1ð Þ/ 2 1+λ1ð Þð Þð Þt , t ∈ 0,∞Þ½ : ð79Þ

From the combination of (70) and (79), we have

2G 0ð Þ½ �1/2e p−1ð Þλ1ð Þ/ 2 1+λ1ð Þð Þð Þt ≤ ∥u0∥H1 + t1/2 J u0ð Þð Þ1/2: ð80Þ

Clearly, the above inequality cannot hold for t large
enough, this means that the solution u of problems (1)–(3)
cannot exist all time.

Furthermore, by (80) and eðððp−1Þλ1Þ/ð2ð1+λ1ÞÞÞt ≥ ðððp − 1Þ
λ1Þ/ð2ð1 + λ1ÞÞÞt, we can obtain the inequality

ffiffiffiffiffiffiffiffiffiffiffiffi
2G 0ð Þp

p − 1ð Þλ1
2 1 + λ1ð Þ t − J u0ð Þð Þ1/2t1/2−∥u0∥H1 ≤ 0, ð81Þ

which implies that there exists a finite time ~T > 0 such that

lim
t⟶~T

−
∥u∥2H1 = +∞, ð82Þ

and ~T
1/2

is the largest root of the following equation

ffiffiffiffiffiffiffiffiffiffiffiffi
2G 0ð Þp

p − 1ð Þλ1
2 1 + λ1ð Þ t2 − J u0ð Þð Þ1/2t−∥u0∥H1 = 0: ð83Þ

This completes the proof.

6. Conclusion and Future Work

In our work, we mainly study the qualitative properties of the
solutions for the initial and boundary value problems (1)–(3).
It is well known that Equation (1) is a typical higher-order
metaparabolic equation, which has extensive practical back-
ground and rich theoretical connotation. For example, the
solutions u of (1) can be used to denote the concentration
of one of the two phases, the fourth-order term γuxxxx pre-
sents the capillarity-driven surface diffusion, and the nonlin-
ear term f ðuxÞx is an intrinsic chemical potential. Especially,
the interaction between the dispersion term uxxt and nonlin-
earity f ðuxÞx of these problems cause some difficulties such
that we cannot apply the normal Galerkin approximation,
concavity, and potential methods directly. Considering the
above situation, at low initial energy level, we first prove the
existence of global weak solutions for these problems by the
Galerkin approximation and potential well methods and
obtain the finite time blow-up result by the potential well
and improved concavity skills. In addition, we establish the
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finite time blow-up result for certain solutions with high ini-
tial energy. However, as far as we know, there is little infor-
mation on the long-time behavior of global solutions for
above problems. Whether the global solutions will exhibit a
long-time dynamic behavior at low initial energy? Do both
problems (1)–(3) have the global solutions and asymptotic
property at high initial energy level? These questions are all
opening, and we are now working on these problems. On
the other hand, we note that the fractional partial differential
equations have been applied in various areas of science, and
their related theoretical results and applications have been
investigated by some authors (see [31–33] and the references
therein). The study of their qualitative properties is one of the
hot topics. Do the conclusions of present paper also hold for
the initial and boundary value problems of the fractional
nonlinear metaparabolic equations? This question is very
interesting and opening.
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The interaction of the solitary wave with an oil platform composed of four vertical circular cylinders is investigated for two attack
angle of the solitary wave β = 0° (square arrangement) and β = 45° (diamond arrangement). The solitary wave is generated using an
internal source line as proposed by Hafsia et al. (2009). This generation method is extended to three-dimensional wave flow and is
integrated into the PHOENICS code. The volume of fluid approach is used to capture the free surface evolution. The present model
is validated in the case of a solitary wave propagating on a flat bottom for H/h = 0:25 where H is the wave height and h is the water
depth. Compared to the analytical solution, the pseudowavelength and the wave crest are well reproduced. For a solitary wave
interacting with square and diamond cylinders, the simulated results show that the maximum run-ups are well reproduced. For
the diamond arrangements, the diffraction process seems to not affect the maximum run-ups, which approached the isolated
cylinder. For the square arrangement, the shielding effect leads to a maximum wave force more pronounced for the upstream
cylinder array.

1. Introduction

In the last decades, many researchers have focused on search-
ing different wave structures of nonlinear partial differential
equations. The interested readers can see [1–4]. The offshore
oil platforms and the coastal bridges are composed of multi-
ple cylinders disposed in different arrangements. When the
wave run-up and the following wave forces exceed the
expected values, the safety of these structures is compro-
mised. The available analytical solutions in the literature are
only valuable under some limiting assumptions. For this rea-
son, experimental and numerical methods are adopted to
solve this wave-platform interaction problem.

The interaction of a solitary wave (representing a real tsu-
nami wave) with a single circular cylinder was studied exper-
imentally by Yates and Wang (1994) in [5]. The effect of a
single row of circular cylinders on the transmission and
reflected coefficients is studied experimentally by Huang
(2010) in [6]. The consequent results are that the wave force
acting on a coastal structure protected by these cylinders can
be reduced to about 60% for S = 1:2D, where S is the distance
between the centers of adjacent cylinders, and D is the cylin-
der diameter. An experimental study was conducted by
Huang (2007) in [7] to measure the reflection and transmis-
sion coefficients in the case of single and twin rows of rectan-
gular cylinders, and simplified analytical expressions of these
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coefficients are proposed. Wang et al. (2021) in [8] investi-
gate experimentally, the back and front run-up and wave
forces induced by solitary wave for different truncated verti-
cal cylinders. Secondary peak for both the front run-up and
wave forces are observed due to the return flow.

An alternative method to the experimental measure-
ments of the free surface evolution is the use of a two-
dimensional (2-D) or three-dimensional (3-D) numerical
method. The first one is based on the depth averaged Boussi-
nesq equations and can be used for a long-term simulation.
Lin and Man (2007) in [9] validate the Boussinesq model
for one-dimensional and two-dimensional wave transforma-
tions. Mohapatra et al. (2020) in [10] studied the regular
wave diffraction by a floating fixed vertical cylinder by two
methods: using a CFD code and analytically based on a Bous-
sinesq model. Among the various Boussinesq models existing
in the literature, the nonlinear effects cannot well be repro-
duced (Zhao et al., 2007 in [11], Wang and Ren, 1999 in
[12], and Liu et al., 2012 in [13]). Hence, a full three-
dimensional (3-D) Navier-Stokes model is required. In order
to study the regular wave run-ups for a single and a group of
vertical cylinders, numerical virtual wave probes were used
by Cao and Wan (2017) in [14]. Frantzis et al. (2020) in
[15] adopted a (3-D) numerical wave tank (NWT) to study
the wave breaking induced by a single row of vertical cylin-
ders for different ranges of cylinder diameter to depth ratios.
The large eddy simulation (LES) model was used to repro-
duce the small scales of turbulence. Numerical results show
that the effect of the cylinder diameter is more significant
for larger values of solitary wave heights. Wang et al. (2018)
in [16] conducted a series of laboratory experiments on the
internal solitary wave (ISW) loads upon semisubmersible
platforms in a density stratified fluid tank, and investigated
the load components induced by different factors. The wave
loads on a platform composed of 2 × 2 circular cylinders in
side-by-side and tandem arrangements are numerically stud-
ied using the Reynolds-Averaged Navier-Stokes equations by
Yang et al. (2015) in [17]. The desired monochromatic wave
was generated by the prescribed velocity components at the
inlet of the computational domain. Using a CFD code,
Kamath et al. (2015) in [18] investigate the diffraction of
sinusoidal wave by 3 × 3 square array cylinders placed in
proximity and show that the wave force is highest when the
distance between the cylinder center is less than half of the
incident sinusoidal wave. The numerical results show that if
S > 4D, there is no interaction between the platform cylin-
ders. Xie et al. in [19] used a cut-cell method in a fully (3-
D) code to simulate solitary wave interaction with a vertical
circular cylinder and a thin horizontal plate. Several compu-
tational fluid dynamics (CFD) implemented a cut-cell algo-
rithm permitting to identify the contribution of a portion of
a rectangular grid to the convective and diffusive fluxes.

The main task of the present study is to investigate the
interaction of the solitary wave with one or four circular cyl-
inders in a square or diamond arrangement using a (3-D)
numerical wave tank (NWT). The proposed wave generation
method is based on an internal mass source. The cut-cell
implemented in the PHOENICS code is used to reproduce
the circular cylinder shape.

2. Mathematical Formulation

2.1. Computational Domain. The position of the still water
level h and the location of the mass source line for solitary
wave generation are shown in Figure 1(a). The direction of
propagation of the solitary wave is the positive x-direction.
In all simulated cases, the depth to cylinder radius ratio is
taken: h/a = 1, and the distance from the center of cylinders
is S = 3 a. For the square platform, there is one cylinder in
each corner of the square as indicated in Figure 1(b). The
two upstream cylinders are denoted 3 and 4, and the two
downstream cylinders are 1 and 2. The square arrangement
corresponding to the attack angle of solitary wave β = 0. This
angle is measured between the propagating direction and the
symmetric line of the platform (the line parallel to the line
joining 1 and 3). The diamond configuration of the platform
is shown in Figure 1(c) and corresponds to β = 45°. The effec-
tive computational domain has a length of L = 55 a. Two dis-
sipative zones are added in each open boundary to avoid
wave reflection having a length of ð25 aÞ. The considered
width is ð10 aÞ, ð13 aÞ, and ð12:25 aÞ, respectively, for a single
cylinder, square platform, and diamond platform.

The overall grid and the grid around the oil platform are
shown in Figure 2 for the diamond arrangement. Fine grids
are adopted around the four cylinders, and coarse grids are
imposed in the two dissipation regions. The cut-cell method
is used to mesh the circular cylinders in the Cartesian coordi-
nates system. Figure 2(b) shows the details of the cut-cell
grids around the four cylinders. The number of grid in x, y,
and z directions is, respectively NX ×NY ×NZ = 220 × 110
× 102 for the diamond arrangement and 220 × 100 × 102
for the square arrangement. For these two arrangements,
the time step is Δt = 0:01 s.

2.2. Governing Transport Equations. The proposed (NWT)
was based on the full three-dimensional (3-D) Navier-Stokes
transport equations coupled to the volume of liquid (VOF)
convective transport equation to reproduce the water wave
interface. For unsteady flow and incompressible fluid, the
mass and momentum conservation equations are written as:

(i) The mass conservation equation:

∂ρ
∂t

+ ∂ui
∂xi

= 0: ð1Þ

(ii) The momentum transport equation:

∂ui
∂t

+ uj
∂ui
∂xj

= −
1
ρ

∂p
∂xi

+ ∂
∂xj

ν
∂ui
∂xj

+
∂uj

∂xi

 !" #
+ gi + sd,i,

ð2Þ

where xi is the Cartesian coordinates, ui is the velocity
components, ρ is the density of the mixture, p is the pressure,
ν is the kinematic viscosity of the mixture, g is the
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acceleration due to gravity, and sd,z is a momentum source
term added to the momentum equation along z-direction to
avoid wave reflection at the open boundaries given by:

sd,z = γ xð Þw, ð3Þ

where γðxÞ is a linear damping function and w is the velocity
component along the z-vertical direction.

2.3. Free Surface Capture. The air-water interface is modeled
using the mixture model flow. If αq denoted the volume frac-
tion of the qth fluid in a cell, then,

(i) The density of the mixture is given by:

ρ = 〠
2

q=1
ρq αq, ð4Þ

where ρq is the density of the water when ðq = 1Þ and air
when ðq = 2Þ.

(ii) And dynamic viscosity of the mixture is

μ = 〠
2

q=1
μq αq, ð5Þ

where μq is the dynamic viscosity of the water if ðq = 1Þ
and air when ðq = 2Þ.

The volume fraction of fluid is determined by the follow-
ing mass conservation equation for each phase:

∂αq
∂t

+
∂ αq ui
� �
∂xi

= 0: ð6Þ

When αq = 0, the cell is occupied by air, αq = 1, the cell is
occupied by water, and 0 < αq < 1, the cell contains the inter-
face (Hirt and Nichols, 1981 in [20]).

2.4. Wave Generation. The desired solitary wave was gener-
ated by an internal source inlet across a source line as pro-
posed by Hafsia et al. (2009) in [21]. The inlet vertical
velocity is prescribed as a time-dependent inlet boundary
condition:

wI = 2 c η xs, tð Þ
Ls

, ð7Þ

where Ls is the length of the internal source line.
The wave celerity is given by (Dominguez et al., 2019 in

[22]):

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H + hð Þ

p
: ð8Þ

The solitary wave surface elevation ηðxs, tÞ is given by the
following equation:

η =H sech2 k xs − c tð Þ½ �, ð9Þ

whereH is the incident wave height and t is the time. The
distance xs permitting to have a negligible source at t = 0 s is
determined by the following equation:

xs =
4 hffiffiffiffiffiffiffiffi
H/h

p : ð10Þ

The equivalent wave number k is

k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3H
4 h2 H + hð Þ :

s
ð11Þ

h
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0.5 h

Ls
Dissipation

zone

xO

yz

(a)

y

xO

S
D

(4) (2)

(3) (1)

(b)

S

(4) (1)

(2)

(3)

(c)

Figure 1: The computational domain and wave source line location; (a) side view; (b) top view.
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Following this equivalent wave number, the pseudowave-
length can be determined by:

L = 2π
k

: ð12Þ

The length Ls and the position of the source line are
determined by the calibration procedure as indicated by Haf-
sia et al. (2009) in [21].

2.5. Wave Force. The wave force F
!
acting on the cylinder is

computed by integrating the water pressure p and the normal
component of the viscous stress tensor τ on the wetted sur-
face of the cylinder S:

F
!
=
ð
S
−n! p + n!:τ
� �

dS, ð13Þ

where n! is the normal unit vector pointing into the water.
From the component of this wave force along the x

-direction, the force coefficient can be calculated as:

Cf ,x =
Fx

ρg h2 a
: ð14Þ

2.6. Initial and Boundary Conditions. The following initial
and boundary conditions are adopted for the governing
transport equations. The imposed initial condition is still
water with a depth h. For the top boundary, the pressure P
is set equal to the atmospheric pressure. Two dissipation
zones are adopted at the open boundaries (Figure 1). At all
the other boundaries of the computational domain, symmet-
ric boundary conditions are imposed.

2.7. Numerical Schemes. To solve this proposed model, we
adopt the PHOENICS code (Parabolic Hyperbolic or Elliptic
Numerical Integration Code Series). In this code, the SIM-
PLEST iterative algorithm is used to solve the pressure and
velocity coupling in the Navier-Stokes equations (Artemov
et al., 2009 in [23]). The upwind scheme is used for nonlinear
convection terms and an implicit formulation for the tran-
sient term. The (VOF) method is used to predict the interface
between the water wave and air. For all the presented simula-
tion results, the cut-cell within the PARSOL (PARtial SOLid)
treatment detects the solid-fluid interface, which is not
aligned with the Cartesian grid. The proposed three-

dimensional wave generation method is implemented in the
PHOENICS code.

3. Numerical Results

3.1. Solitary Wave on a Single Cylinder. The proposed wave
generation method based on an internal source line is vali-
dated for the nondimensional height H/h = 0:25: The
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Figure 3: Comparison between the numerical and analytical free
surface profiles at the centerline of the computational domain for
H/h = 0:25.
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Figure 4: Time evolution of the in-line force on a single cylinder.
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Figure 2: The grid of computational domain for the diamond arrangement of the four circular cylinders; (a) side view; (b) top view of the grid
details around the cylinders by cut-cell method.
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simulated results show that before reaching the vertical cylin-
der, the wave profile is invariant in the transverse direction
and can be represented by two-dimensional profiles.
Figure 3 represents the simulated wave profiles at the center
of the computational domain before impacting the cylinder.
The wave is not affected by the cylinder, and the free surface
profiles agree very well with the analytical one. The wave
crest and the pseudowavelength are in accordance with the
analytical one.

When a solitary wave passes around the cylinder, run-up
occurs at the front of the cylinder and the maximum run-up
depended on the incident wave energy. Then, the water level
drops at the front producing the rise of the water level at the

rear of the cylinder by wave diffraction. In order to validate
the cut-cell method, the maximum run-up is compared to
the available literature. The maximum wave run-up is

(a) (b)

Figure 5: A three-dimensional free-surface elevation at the maximum run-up of the cylinder 1 for H/h = 0:25: (a) square arrangement; (b)
diamond arrangement.

10 11 12 13 14

x (m)

z (
m

)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

3 1

(a)

10 11 12 13 14

x (m)

z (
m

)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

4 2

(b)

10 11 12 13 14

x (m)

z (
m

)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

3 1

(c)

10 11 12 13 14

x (m)

z (
m

)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

4 2

(d)

Figure 6: The maximum solitary wave run-ups at each cylinder for the square arrangement; (a) cylinder 1; (b) cylinder 2; (c) cylinder 3; (d)
cylinder 4.

Table 1: Comparison of the simulated maximum run-up to the
wave height ratio with Zhao et al. (2007) in [11] for a diamond
arrangement.

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

Present study 1.36 1.38 1.38 1.36

Zhao et al. (2007)
in [11]

1.33 1.37 1.38 1.37
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determined from the evolution of the solitary wave profiles
along the centerline and is equal to Rmax = 0:068m corre-
sponding to the ratio Rmax/H = 1:36. Following the numerical
study of Zhao et al. (2007) in [11] for the same H/h = 0:25
and h/a = 1, this ratio is found equal to 1.37. There is no sig-
nificant difference between this nondimensional run-up. The
maximum wave force occurs at the same time as the maxi-
mum run-up that is equal to t = 2:9 s. Figure 4 shows the time
histories of the computed wave force on the x-direction act-
ing on an isolated cylinder. The maximum wave force at this
instant is equal to Fmax = 37:5N corresponding to the follow-
ing force coefficient Cf ,x = 0:479. The isolated cylinder is
taken as a reference case for the computed force coefficient
acting on each cylinder of the platform in the two studied
configurations.

3.2. Solitary Wave Diffraction by an Oil Platform. The flow
field due to the solitary wave diffraction by square and dia-
mond platform is analyzed at the instant of the maximum
run-up in terms of the free surface elevation, the maximum
run-up Rmax at each cylinder, and the maximum wave force
Fmax.

The perspective view of the free surface elevation is
shown in Figure 5 at the instant of the maximum run-up at
cylinder 1. The solitary wave crest has been altered by the dif-
fraction process. Impacting the cylinder obstacle, the wave
run-up is observed due to the transformation of the incident
wave to potential energy. The Rmax depends on the incoming
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Figure 7: The maximum solitary wave run-ups at each cylinder for the diamond arrangement; (a) cylinder 1; (b) cylinder 2; (c) cylinder 3; (d)
cylinder 4.

Table 2: Comparison of the simulated maximum run-up to the
wave height ratio with Zhao et al. (2007) for a square arrangement.

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

Present study 1.29 1.28 1.42 1.42

Zhao et al. (2007)
in [11]

1.37 1.37 1.40 1.40
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Figure 8: Time evolution of the in-line force on the square
arrangement for H/h = 0:25.
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wave and the nature of the obstacle. This interaction leads to
a complicated flow field as shown in Figure 5.

For square arrangement, the Rmax for the first array (cylin-
ders 3 and 4) occurs at the instant t = 2:90s and the for second
array (cylinders 1 and 2) at t = 3:45s. For diamond arrange-
ment, the first Rmax is observed for the most upstream cylinder
(cylinder 4) at t = 2:88s. The maximum run-ups for cylinders
2 and 3 occur at the same instant (t = 3:16s) and due to non-
linear effect, the Rmax for cylinder 1 is observed at t = 3:48s.

Figure 6 represents the free surface elevation at the
instant of the maximum run-up Rmax for each cylinder in
the square arrangement (zero solitary wave incidence). The
Rmax on the downstream cylinders (1 and 2) is smaller than
those on the upstream cylinders (3 and 4). The Rmax on cyl-
inders 1 and 2 is smaller than on the corresponding isolated
cylinder. This can be explained by the fact that some of the
incident wave energy has been reflected back by other cylin-
ders before the solitary wave impacting the downstream cyl-
inders array. The numerical results of Zhao et al. (2007) in
[11] confirm these conclusions, and the calculated Rmax/H
is closely the same as shown by Table 1.

The free surface elevation at the instant of the maximum
run-up Rmax for each cylinder in the diamond arrangement is
shown in Figure 7. The Rmax/H for cylinders 4 and 1 is
located at the centerline approach to that on the isolated cyl-
inder. The Rmax/H for cylinders 2 and 3 is slightly greater
than on the isolated cylinder. Table 2 shows good agreement
between the present simulations and Zhao et al. in [11]
results for the diamond arrangement.

The time evolution of the wave force in the positive x–
direction for each cylinder is presented in Figure 8 for the
square arrangement. The maximum wave force Fmax on
the most downstream array of the cylinders (1 and 2) is
slightly greater than on the isolated cylinder. The increase
of the Fmax relative to the isolated cylinder is more pro-
nounced for the first cylinder array (cylinders 3 and 4).
The platform and wave interactions lead to Fmax for the
first cylinders (3 and 4) array greater than on the second
array (cylinders 1 and 2). This can be attributed to the

shielding effect of the upstream cylinder array. These con-
clusions are in concordance with the computed run-ups
previously discussed.

For the diamond arrangement, Figure 9 presents the time
evolution of the wave force for each cylinder. The aligned cyl-
inders 4 and 1 have the same Fmax. Compared to the isolated
cylinder, this Fmax is significantly smaller. The two symmet-
ric cylinders about the centerline of the computational
domain are having the same Fmax as the isolated cylinder.
The approaching solitary wave for these cylinders seems to
be not disturbed by the diffraction process.

4. Conclusions

A full three-dimensional numerical wave tank (NWT) was
integrated on the PHOENICS code in order to study the sol-
itary wave diffraction with diamond or square cylinders
arrangements. The solitary wave was generated by an inter-
nal line source, and the cylinder structures are discretized
using the cut-cell method. For the diamond platform
arrangement, the maximum wave run-ups approach to that
on the isolated cylinder indicating that the diffraction process
does not affect the four cylinders. However, for a square
arrangement, the shielding effect of the upstream cylinders
leads to a maximum wave force for the first cylinders array
greater than the most downstream array.

The cut-cell method can be generalized for more complex
geometric coastal structures in the Cartesian coordinates sys-
tem. The proposed model based on an internal line source for
wave generation can be used to study the combined effects of
wave and current on the forces acting on multiple cylinders.
Different incident waves can be tested (monochromatic,
Stokes, and cnoidal waves). The present model can be used
to test the effect of the turbulence model, the effect of the
wave height, and the distance between the cylinders on the
wave forces and wave run-ups. Further wave-structure inter-
action cases can be studied such as the wave diffraction with
floating structures.
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By energy estimate approach and the method of upper and lower solutions, we give the conditions on the occurrence of the
extinction and nonextinction behaviors of the solutions for a quasilinear parabolic equation with nonlinear source. Moreover,
the decay estimates of the solutions are studied.

1. Introduction

The main goal of this article is to investigate the extinction
behavior and decay estimate of the following parabolic initial
boundary value problem

ut = div uα ∇uj jm−1∇u
� �

+ λup
ð
Ω

uqdx, x, tð Þ ∈Ω × 0,+∞ð Þ,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,+∞ð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈ �Ω:

8>>>><
>>>>:

ð1Þ

Here, Ω ⊂ RN , N ≥m + 1, is an open bounded domain with
smooth boundary ∂Ω,m, p, q, and λ that are positive param-
eters, 0 <m + α < 1, and um+α/m

0 ∈ L∞ðΩÞ ∩W1,m+1
0 ðΩÞ is a

nonzero nonnegative function.
It is well known that this type of equation describes lots of

phenomena in nature, such as heat transfer, chemical reac-
tions, and population dynamics (one can see [1–4] for more
detailed physical background). In particular, problem (1) can
be used to describe the nonstationary flows in a porous
medium of fluids with a power dependence of the tangential
stress on the velocity of displacement under polytropic con-
ditions. In this physical context, uðx, tÞ is the density of the
fluid, uαj∇ujm−1∇u denotes the momentum velocity, and

λup
Ð
Ω
uqdx stands for the nonlinear nonlocal source. The

parameter m acts as a characteristic of the medium, to be
exact, the medium with m = 1 is called Newtonian fluid, the
medium with m > 1 is called dilatant fluid, and that with 0
<m < 1 is called pseudoplastic.

Extinction phenomenon, as one of the most remarkable
properties that distinguish nonlinear parabolic problems
from the linear ones, attracted extensive attentions of
mathematicians in the past few decades (see [5–16] and the
references therein). Especially, many authors devoted to con-
cern with the extinction behavior of the following parabolic
problem

ut − div a x, t, u,∇φ uð Þð Þð Þ = f x, t, uð Þ, x, tð Þ ∈Ω × 0,+∞ð Þ,
u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,+∞ð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈ �Ω:

8>><
>>:

ð2Þ

Gu [17] discussed (2) with aðx, t, u,∇φðuÞÞ = ∇u and
f ðx, t, uÞ = −up, and concluded that the extinction phenome-
non occurs if and only if p ∈ ð0, 1Þ. Tian and Mu [18] dealt
with problem (2) with aðx, t, u,∇φðuÞÞ = j∇ujp−2∇u and f ðx
, t, uÞ = λup, and derived that q = p − 1 is the critical extinc-
tion exponent of problem (2). The authors of [19, 20] gener-
alized the results in [18] to aðx, t, u,∇φðuÞÞ = j∇umjp−2∇um.
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The authors of [5, 21] concerned with the extinction behavior
of problem (2) with aðx, t, u,∇φðuÞÞ = j∇umjp−2∇um and f ðx
, t, uÞ = λ

Ð
Ω
uqdx, and they pointed out that the effect of the

nonlocal source term λ
Ð
Ω
uqdx on the extinction behavior is

very different from that of the local source λuq. Recently,
Zhou and Yang [22] dealt with the extinction singularity of
problem (2) in the case aðx, t, u,∇φðuÞÞ = ∇um and f ðx, t, uÞ
= λup

Ð
Ω
uqdx. For some relevant works on other types of

nonlinear evolution equations, the readers can refer to the
references [23–28].

However, to our best knowledge, there is no literature on
the study of the extinction and decay estimate of the solutions
for problem (1). Motivated by those works above, we con-
sider the extinction property of problem (1). More precisely,
our purpose is to understand how the nonlinear nonlocal
source affects the extinction behavior of problem (1). In other
words, the aim of this article is to evaluate the competition
between the diffusion term which may produce extinction
phenomenon and the nonlinear nonlocal source which may
prevent the occurrence of the extinction phenomenon. We
want to find a critical extinction exponent and give a com-
plete classification on the extinction and nonextinction cases
of the solutions to problem (1). Meanwhile, we will deal with
the decay estimates of the extinction solutions.

Since equation (1) is degenerate (or singular) at the
points where u = 0 or ∇u = 0, there is no classical solution
in general, and hence we consider the nonnegative solution
of (1) in some weak sense.

Definition 1. Let ΣT =Ω × ð0, TÞ, and

S =
n
u ∈ L2p ΣTð Þ ∩ L2q ΣTð Þ ∩ L2 ΣTð Þ ; u ∈ C

· 0, T½ � ; L1 Ωð Þ� �
;∇um+α

m ∈ Lm+1 ΣTð Þ
o
:

ð3Þ

We say that a function uðx, tÞ ∈S is a weak lower solu-
tion of problem (1) if

ð
Ω

u x, Tð Þζ x, Tð Þdx +∬
ΣT

uα ∇uj jm−1∇u · ∇ζ − uζt
� �

dxdt

≤
ð
Ω

u x, 0ð Þζ x, 0ð Þdx +∬
ΣT

λup
ð
Ω

uqdx
� �

ζdxdt

ð4Þ

holds for any T > 0 and any nonnegative test function

ζ ∈ u ∈ L2 ΣTð Þ ; u ∈ C 0, T½ � ; L2 Ωð Þ� �
; ut ∈ L2 ΣTð Þ;∇u ∈ Lm+1 ΣTð Þ ; u��∂Ω = 0

n o
:

ð5Þ

Moreover,

u x, 0ð Þ ≤ u0 xð Þ for x ∈ �Ω, and u x, tð Þ ≤ 0 for x, tð Þ ∈ ∂Ω × 0, Tð Þ:
ð6Þ

Replacing ‘‘ ≤ } by ‘‘ ≥ } in the inequalities (4) and (6)

leads to the definition of the weak upper solution of problem
(1). We say that u is a weak solution of problem (1) in ΣT if it
is both a weak lower solution and a weak upper solution of
problem (1) in ΣT .

Proposition 2. Assume that u0ðxÞ is a nonzero nonnegative
function satisfying um+α/m

0 ∈ L∞ðΩÞ ∩W1,m+1
0 ðΩÞ. Then,

problem (1) has at least one local weak solution uðx, tÞ ∈S.

Remark 3. The proof of Proposition 2 is based on an approx-
imation procedure and the Leray-Schauder fixed-point theo-
rem, and it is standard and lengthy; so, we omit it here, while
one can refer to the proof of Proposition 2.1 in [5] (or Prop-
osition 2.3 in [19]) for more details. On the other hand, it is
necessary to point out that the weak solution of problem
(1) is unique for p ≥ 1 and q ≥ 1. In the non-Lipschitz case 0
< p < 1 or 0 < q < 1, the uniqueness of the weak solution
seems to be unknown (See Remark 44.1 of §44.1 in [29]).

The main results of this article are stated as follows.

Theorem 4.Assume that 0 <m + α < p + q. Then, the nonneg-
ative weak solution of problem (1) vanishes in finite time pro-
vided that the nonnegative initial datum u0ðxÞ is sufficiently
small. Moreover,

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α, t ∈ 0, T1½ Þ,

uk k2m+α
m

≡ 0, t ∈ T1,+∞½ Þ,

8<
: ð7Þ

for mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1, and kuf
kNð1−m−αÞ/m+1 ≤ ku0kNð1−m−αÞ/m+1ð1 − d8tÞ1/1−ðm+αÞ,t ∈ ½0, T2Þ,
kukNð1−m−αÞ/m+1 ≡ 0,t ∈ ½T2,+∞Þ,

for −m < α <mðN −m − 1/Nm +m + 1 − 1Þ, where T1 =
d−14 , T2 = d−18 , d4, and d8 are positive constants, given in Sec-
tion 2.

Theorem 5. Assume that 0 < p + q <m + α < 1 and λ are suf-
ficiently large. Then, for any nonnegative initial datum u0ðxÞ,
problem (1) admits at least one nonextinction weak solution.

Theorem 6. Assume that 0 <m + α = p + q < 1.

(1) The nonnegative weak solution of problem (1) van-
ishes in finite time provided that λ is sufficiently small.
Moreover,

uk k2m+α
m

≤ u0k k2m+α
m

1 − d14tð Þ 1
1−m−α, t ∈ 0, T3½ Þ,

uk k2m+α
m

≡ 0, t ∈ T3,+∞½ Þ,

8<
: ð8Þ

for mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1, and kuf
kNð1−m−αÞ/m+1 ≤ ku0kNð1−m−αÞ/m+1ð1 − d15tÞ1/1−m−α,t ∈ ½0, T4Þ,
kukNð1−m−αÞ/m+1 ≡ 0,t ∈ ½T4,+∞Þ,
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for −m < α <mðN −m − 1/Nm +m + 1 − 1Þ, where T3 =
d−114 , T4 = d−115 , d14, and d15 are positive constants, given in
Section 2.

(2) Problem (1) admits at least one non-extinction weak
solution for any nonnegative initial datum u0ðxÞ pro-
vided that λ is sufficiently large

2. Proofs of the Main Results

In this section, based on energy estimates approach and the
method of upper and lower solutions, we will give the proofs
of our main results.

Proof of Theorem 4. Multiplying equation (1) by us and
integrating over Ω, one has

1
s + 1

d
dt

ð
Ω

us+1dx + s
m + 1

m + α + s

� �m+1ð
Ω

∇u
m+α+s
m+1

��� ���m+1
dx

= λ
ð
Ω

up+sdx
ð
Ω

uqdx,
ð9Þ

where

s =

m + α

m
, if m N −m − 1

Nm +m + 1 − 1
� �

≤ α < 1,

N 1 −m − αð Þ −m − 1
m + 1 , if −m < α <m

N −m − 1
Nm +m + 1 − 1
� �

:

8>>><
>>>:

ð10Þ

We now divide the proof into two cases according to the
different values of p + q.

Case 1. m + α < p + q ≤ 1. For mðN −m − 1/Nm +m + 1 − 1Þ
≤ α < 1. It follows from Hölder inequality and (9) that

m
2m + α

d
dt

ð
Ω

u
2m+α
m dx + m

m + α

	 
mð
Ω

∇u
m+α
m

��� ���m+1
dx

≤ λ Ωj j2−m p+qð Þ+m+α
2m+α

ð
Ω

u
2m+α
m dx

� �m p+qð Þ+m+α
2m+α

:

ð11Þ

Using Hölder inequality and Sobolev embedding theo-
rem, one has

ð
Ω

u
2m+α
m dx ≤ Ωj j1−

2m+αð Þ N−m−1ð Þ
N m+1ð Þ m+αð Þ

ð
Ω

u
m+α
m ·N m+1ð Þ

N−m−1dx
� �2m+α

m+α ·N−m−1
N m+1ð Þ

≤ κ1 Ωj j1−
2m+αð Þ N−m−1ð Þ
N m+1ð Þ m+αð Þ

ð
Ω

∇u
m+α
m

��� ���m+1
dx

� � 2m+α
m+1ð Þ m+αð Þ

,

ð12Þ

which is equivalent to

κ
− m+1ð Þ m+αð Þ

2m+α
1 Ωj j1−m+1

N − m+1ð Þ m+αð Þ
2m+α

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤
ð
Ω

∇u
m+α
m

��� ���m+1
dx,

ð13Þ

where κ1 = κ1ðα,m,NÞ is the embedding constant. Insert-
ing (13) into (11) yields

d
dt

ð
Ω

u
2m+α
m dx + d1

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ d2

ð
Ω

u
2m+α
m dx

� �m p+qð Þ+m+α
2m+α

,

ð14Þ

where

d1 = 2m + αð Þmm−1 m + αð Þ−mκ−
m+1ð Þ m+αð Þ

2m+α
1 Ωj j1−m+1

N − m+1ð Þ m+αð Þ
2m+α ,

d2 = λ 2m + αð Þm−1 Ωj j2−m p+qð Þ+m+α
2m+α :

ð15Þ

Now, if u0ðxÞ is sufficiently small satisfying

d3 = d1 − d2

ð
Ω

u
2m+α
m

0 dx
� �m p+q−m−αð Þ

2m+α
> 0, ð16Þ

then (14) leads to

d
dt

ð
Ω

u
2m+α
m dx + d3

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ 0: ð17Þ

By integration, one can deduce that

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α
+ , ð18Þ

which tells us that uðx, tÞ vanishes in finite time T1 = d−14 ,
where

d4 =md3 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð19Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. By Sobolev
embedding theorem, one obtains

ð
Ω

us+1dx
� � m+α+s

m+1ð Þ s+1ð Þ
=
ð
Ω

u
N α+m+sð Þ
N−m−1 dx

� �N−m−1
N m+1ð Þ

≤ κ2

ð
Ω

∇u
α+m+s
m+1

��� ���m+1
dx

� � 1
m+1
:

ð20Þ

Here, κ2 = κ2ðα,m,NÞ is the embedding constant. Com-
bining (9) and (20), and in view of Hölder inequality, one
arrives at

d
dt

ð
Ω

us+1dx + d5

ð
Ω

us+1dx
� �m+α+s

s+1
≤ d6

ð
Ω

us+1dx
� �p+q+s

s+1
,

ð21Þ
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where

d5 = s s + 1ð Þ m + 1ð Þ κ2 m + α + sð Þð Þ−1� �m+1,

d6 = λ s + 1ð Þ Ωj j2−p+q+s
s+1 :

ð22Þ

Next, choosing u0ðxÞ sufficiently small such that

d7 = d5 − d6

ð
Ω

us+10 dx
� �p+q−m−α

s+1
> 0, ð23Þ

then from (21), one has

d
dt

ð
Ω

us+1dx + d7

ð
Ω

us+1dx
� �m+α+s

s+1
≤ 0: ð24Þ

Integrating (24) from 0 to t gives us that

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d8tð Þ 1
1−m−α
+ , ð25Þ

which means that uðx, tÞ vanishes in finite time T2 = d−18 ,
where

d8 = d7 m + 1ð Þ 1 −m − αð Þ N 1 −m − αð Þ½ �−1 u0k km+α−1
N 1−m−αð Þ

m+1
:

ð26Þ

Case 2. m + α < 1 < p + q. If p < 1 or q < s + 1, then the proof
is the same as that in Case 1. We only need to focus our atten-
tion on the subcase p ≥ 1 and q ≥ s + 1. Let ~Ω be a bounded
domain in RN satisfyingΩ ⊂ ⊂~Ω. Denote ~λ1 be the first eigen-
value and ~ΨðxÞ be the corresponding eigenfunction of prob-
lem (One can see Lemma 2.3 of [18] for more details on the
properties of the first eigenvalue and the corresponding
eigenfunction of (27).)

−div Uα ∇Uj jm−1∇U
� �

= λUα+1 Uj jm−1, x ∈ ~Ω,

U xð Þ = 0, x ∈ ∂~Ω:

(

ð27Þ

We assume that max
x∈~Ω

~ΨðxÞ = 1. Put

U1 x, tð Þ = μ~Ψ xð Þwith μ ∈ max
x∈ �Ω

u0 xð Þ
~Ψ xð Þ

, min
x∈ �Ω

~λ1 ~Ψ
m+α

xð Þ
λ Ωj j

 ! 1
p+q−m−α

0
@

1
A:

ð28Þ

Then, it is not difficult to show that U1ðx, tÞ is an upper
solution of problem (1). Therefore, one has uðx, tÞ ≤ μ~ΨðxÞ
≤ μ and

λ
ð
Ω

up+sdx
ð
Ω

uqdx ≤ λ Ωj jμp+q−1
ð
Ω

us+1dx: ð29Þ

It follows from (9) and (29) that

1
s + 1

d
dt

ð
Ω

us+1dx + s
m + 1

m + α + s

� �m+1ð
Ω

∇u
m+α+s
m+1

��� ���m+1
dx

≤ λ Ωj jμp+q−1
ð
Ω

us+1dx:

ð30Þ

For mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1. It follows
from (13) and (30) that

d
dt

ð
Ω

u
2m+α
m dx + d1

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ d9

ð
Ω

u
2m+α
m dx,

ð31Þ

where

d9 = λ Ωj j 2m + αð Þm−1μp+q−1: ð32Þ

Now, selecting u0ðxÞ sufficiently small satisfying

d10 = d1 − d9

ð
Ω

u
2m+α
m

0 dx
� �m 1−m−αð Þ

2m+α
> 0, ð33Þ

then (31) tells us that

d
dt

ð
Ω

u
2m+α
m dx + d10

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ 0: ð34Þ

A simple integration of (34) over ð0, tÞ gives

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α
+ , ð35Þ

which means that uðx, tÞ vanishes in finite time, where

d4 =md10 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð36Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. Recalling
(20) and (30), one obtains

d
dt

ð
Ω

us+1dx + d5

ð
Ω

us+1dx
� �m+α+s

s+1
≤ d11

ð
Ω

us+1dx, ð37Þ

where

d11 = λ s + 1ð Þ Ωj jμp+q−1: ð38Þ

Next, if u0ðxÞ is sufficiently small such that

d12 = d5 − d11

ð
Ω

us+10 dx
� �1−m−α

s+1
> 0, ð39Þ
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then from (37), one arrives at

d
dt

ð
Ω

us+1dx + d12

ð
Ω

us+1dx
� �m+α+s

s+1
≤ 0: ð40Þ

Integrating (40), one can claim that

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d8tð Þ 1
1−m−α
+ , ð41Þ

which tells us that uðx, tÞ vanishes in finite time, where

d8 = d12 m + 1ð ÞN−1 u0k km+α−1
N 1−m−αð Þ

m+1
: ð42Þ

The proof of Theorem 4 is complete.

Proof of Theorem 5. Let λ1 be the first eigenvalue andΨðxÞ be
the corresponding eigenfunction of the following problem

−div Uα ∇Uj jm−1∇U
� �

= λUα+1 Uj jm−1, x ∈Ω,
U xð Þ = 0, x ∈ ∂Ω:

(

ð43Þ

In what follows, we assume that ΨðxÞ > 0 and max
x∈Ω

ΨðxÞ
= 1. Define f ðtÞ = ð1 − e−ctÞ1/1−p−q, where c ∈ ð0, ð1 − p − qÞ
ðλ∥Ψ∥qq − λ1ÞÞ. Then, it is easy to check that

f 0ð Þ = 0, and f tð Þ ∈ 0, 1ð Þ for t > 0: ð44Þ

In addition, one has

f ′ tð Þ + λ1 f
m+α tð Þ − λ∥Ψ∥qq f

p+q tð Þ ≤ 0: ð45Þ

Define U2ðx, tÞ = f ðtÞΨðxÞ: Then, one can verify that

U2t − div Uα
2 ∇U2j jm−1∇U2

� �
− λUp

2

ð
Ω

Uq
2dx

= f ′ tð ÞΨ xð Þ + λ1 f
m+α tð ÞΨm+α xð Þ − λ∥Ψ∥qq f

p+q tð ÞΨp xð Þ
< f ′ tð Þ + λ1 f

m+α tð Þ − λ∥Ψ∥qq f
p+q tð Þ

	 

Ψp xð Þ ≤ 0,

ð46Þ

which implies that U2ðx, tÞ is a strict weak lower solution
of problem (1) if λ > λ1∥Ψ∥−qq :

Now, consider the following problem

ut = div uα ∇uj jm−1∇u
� �

+ λ u+ + 1ð Þp
ð
Ω

u+ + 1ð Þqdx, x, tð Þ ∈Ω × 0,∞ð Þ,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ ≥ 0, x ∈ �Ω:

8>>>><
>>>>:

ð47Þ

Using Leray-Schauder fixed-point theorem, we can prove
that problem (47) admits at least one weak solution U3ðx, tÞ,
and we know that U3ðx, tÞ ≥ 0 by the weak maximum princi-

ple. In addition, the weak solution U3ðx, tÞ is also a weak
upper solution of problem (1).

Up to now, we have constructed a pair of weak upper and
lower solutions U3ðx, tÞ, U2ðx, tÞ. If U2ðx, tÞ ≤U3ðx, tÞ, then
problem (1) admits a weak solution ~u satisfying U2 ≤ ~u ≤
U3. By the definitions of U2 and U3, one has

ð
Ω

U2 x, tð Þ −U3 x, tð Þð Þζ x, tð Þdx −
ð
Ω

· U2 x, 0ð Þ −U3 x, 0ð Þð Þζ x, 0ð Þdx
+∬

Σt
Uα

2 ∇U2j jm−1∇U2 −Uα
3 ∇U3j jm−1∇U3

� �
· ∇ζdxdτ

−∬
Σt

U2 −U3ð Þζτdxdτ

≤ λ∬
Σt

Up
2

ð
Ω

Uq
2dx − U3+ + 1ð Þp

ð
Ω

U3+ + 1ð Þqdx
� �

ζdxdτ

= λ∬
Σt

Up
2

ð
Ω

Uq
2 − U3+ + 1ð Þq� �

dx + Up
2 − U3+ + 1ð Þp� ��

·
ð
Ω

U3+ + 1ð Þqdx
�
ζdxdτ:

ð48Þ

Take ζðx, tÞ =HεðUm+α/m
2 −Um+α/m

3 Þ, where HεðrÞ is a
monotone increasing smooth approximation of the following
function

H rð Þ =
1, r > 0,
0, otherwise:

(
ð49Þ

It is easy to check that Hε
′ðrÞ→ δðrÞ as ε→ 0. Letting ε

→ 0, it follows from (48) that

ð
Ω

U2 −U3ð Þ+dx ≤ λ∬
Σt

Up
2

ð
Ω

Uq
2 − U3+ + 1ð Þq� �

dx
� �

H

� U
m+α
m
2 −U

m+α
m
3

	 

dxdτ + λ∬

Σt

� Up
2 − U3+ + 1ð Þp� �ð

Ω

U3+ + 1ð Þqdx
� �

H

� U
m+α
m
2 −U

m+α
m
3

	 

dxdτ

≤ d13∬Σt
U2 −U3ð Þ+dxdτ,

ð50Þ

where d13 is a positive constant. Using Gronwall’s inequality,
one can conclude that U2ðx, tÞ ≤U3ðx, tÞ, a.e., in Ω × ð0,∞Þ.
Furthermore, since U2 does not vanish, neither does ~u. The
proof of Theorem 5 is complete.

Proof of Theorem 6.

(1) For mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1. It follows
from (14) that
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d
dt

ð
Ω

u
2m+α
m dx ≤ d2 − d1ð Þ

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

: ð51Þ

If λ is sufficiently small such that d1 − d2 ≥ 0, then above
inequality tells us that

uk k2m+α
m

≤ u0k k2m+α
m

1 − d14tð Þ 1
1−m−α
+ , ð52Þ

which means that uðx, tÞ vanishes in finite time T3 = d−114 ,
where

d14 =m d1 − d2ð Þ 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð53Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. It follows
from (21) that

d
dt

ð
Ω

u
N 1−m−αð Þ

m+1 dx ≤ d6 − d5ð Þ
ð
Ω

u
N 1−m−αð Þ

m+1 dx
� �N−m−1

N

: ð54Þ

If λ is sufficiently small such that d5 − d6 ≥ 0, then (54)
leads to

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d15tð Þ 1
1−m−α
+ , ð55Þ

which implies that uðx, tÞ vanishes in finite time T4 = d−115 ,
where

d15 = m + 1ð Þ d5 − d6ð ÞN−1 u0k km+α−1
2m+α
m

: ð56Þ

(2) Let

U4 x, tð Þ = 1 − p − qð Þ λ∥Ψ∥qq − λ1
	 


t
h i 1

1−p−q
Ψ xð Þ: ð57Þ

One can easily prove that U4ðx, tÞ is a weak nonextinc-
tion lower solution of problem (1) if λ > λ1∥Ψ∥−qq . On the
other hand, let U5ðx, tÞ be a weak solution of problem (47)
with p + q =m + α; then, U5ðx, tÞ is a weak upper solution
of problem (1). Similar to the process of proof of Theorem
5, one can claim that problem (1) has at least one nonextinc-
tion weak solution ~u. The proof of Theorem 6 is complete.

3. Conclusion

In the present article, we mainly focus on the extinction phe-
nomenon and the decay estimates of the solution to a quasi-
linear parabolic equation with a coupled nonlinear source. By
analyzing the competition between the coupled nonlinear
source term and the fast diffusion term, along with energy
estimates approach and the method of upper and lower solu-
tions, we show that p + q =m + α is the critical extinction
exponent of the solutions. That is, if m + α < p + q, then for
sufficiently small initial datum, the solution possesses extinc-

tion property, while if p + q <m + α, then for any nonnega-
tive initial datum, problem (1) admits at least one
nonextinction solution provided that λ is sufficiently large.
In the critical case p + q =m + α, whether the solution
vanishes or not depends on the size of the parameter λ.

Our next work is to study the numerical extinction phe-
nomenon of the parabolic problems like (1). We hope to give
some numerical examples for our theoretical researches in
the near future.
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This paper is concerned with a problem of a logarithmic nonuniform flexible structure with time delay, where the heat flux is given
by Cattaneo’s law. We show that the energy of any weak solution blows up infinite time if the initial energy is negative.

1. Introduction

In this work, we consider the vibrations of an inhomoge-
neous flexible structure system with a constant internal delay
and logarithmic nonlinear source term:

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx + ηθx + μut x, t − τ0ð Þ = u uj jp−2 ln uj jγ, x ∈ 0, Lð Þ, t > 0,
θt + kqx + ηutx = 0 x ∈ 0, Lð Þ, t > 0,
τqt + βq + kθx = 0 x ∈ 0, Lð Þ, t > 0,

8>><
>>:

ð1Þ

with boundary conditions

u 0, tð Þ = u L, tð Þ = 0 ; θ 0, tð Þ = θ L, tð Þ = 0, t ≥ 0, ð2Þ

and initial conditions

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ ; θ x, 0ð Þ = θ0 xð Þ ; q x, 0ð Þ = q0 xð Þ, x ∈ 0, L½ �,
ð3Þ

where uðx, tÞ is the displacement of a particle at position x
∈ ½0, L�, and the time t > 0. η > 0 is the coupling constant
depending on the heating effect,p ≥ 2,γ, β, and k are positive

constants, and μ is a real number. τ > 0 is the relaxation time
describing the time lag in the response for the temperature,
and τ0 > 0 represents the time delay in particular if τ = 0ð
1:1Þ reduces to the viscothermoelastic system with delay, in
which the heat flux is given by Fourier’s law instead of Catta-
neo’s law, where q = qðx, tÞ is the heat flux, and mðxÞ, δðxÞ,
and pðxÞ are responsible for the inhomogeneous structure
of the beam and, respectively, denote mass per unit length
of structure, coefficient of internal material damping (visco-
elastic property), and a positive function related to the stress
acting on the body at a point x. The model of heat condition,
originally due to Cattaneo, is of hyperbolic type. We recall the
assumptions of mðxÞ, δðxÞ, and pðxÞ in [1, 2] such that

m, δ, p ∈W1,∞ 0, Lð Þ,m xð Þ, δ xð Þ and p xð Þ > 0,∀x ∈ 0, L½ �:
ð4Þ

In these kinds of problems, Gorain [3] in 2013 has estab-
lished uniform exponential stability of the problem

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx = f xð Þ, on 0, Lð Þ ×ℝ+, ð5Þ

which describes the vibrations of an inhomogeneous flexible
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structure with an exterior disturbing force. More recently,
Misra et al. [4] showed the exponential stability of the vibra-
tions of a inhomogeneous flexible structure with thermal
effect governed by the Fourier law.

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx − kθx = f xð Þ,
θt − θxx − kuxt = 0:

ð6Þ

In addition, we can cite other works in the same form like
the system in [5]; Racke studied the exponential stability in
linear and nonlinear 1d of thermoelasticity system with sec-
ond sound given by

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx − kθx = 0, on 0, Lð Þ ×ℝ+

θt + kqx + ηutx = 0, on 0, Lð Þ ×ℝ+

τqt + βq + kθx = 0, on 0, Lð Þ ×ℝ+,

8>><
>>:

ð7Þ

Now for the multidimensional system, Messaoudi in [6]
established a local existence and a blow-up result for a multi-
dimensional nonlinear system of thermoelasticity with sec-
ond sound (see in this regard Refs. [7–10]); for the same
problem above, Alves et al. proved that system (7) is polyno-
mial decay (see [1]), with boundary and initial conditions:

u 0, tð Þ = u L, tð Þ = 0 ; θ 0, tð Þ = θ L, tð Þ = 0, t ≥ 0,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ ;

θ x, 0ð Þ = θ0 xð Þ ; q x, 0ð Þ = q0 xð Þ, x ∈ 0, L½ �:
ð8Þ

We know that the dynamic systems with delay terms
have become a significant examination subject in differential
condition since the 1970s of the only remaining century. The
delay effect that is similar to memory processes is important
in the research of applied mathematics such as physics, non-
instant transmission phenomena, and biological motivation;
model (7) is related to the following problem with delay
terms:

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx + ηθx + μut x, t − τ0ð Þ = 0 x ∈ 0, Lð Þ, t > 0,
θt + kqx + ηutx = 0 x ∈ 0, Lð Þ, t > 0,
τqt + βq + kθx = 0 x ∈ 0, Lð Þ, t > 0,
u 0, tð Þ = u L, tð Þ = 0 ; θ 0, tð Þ = θ L, tð Þ = 0, t ≥ 0,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ ;
θ x, 0ð Þ = θ0 xð Þ ; q x, 0ð Þ = q0 xð Þ, x ∈ 0, L½ �:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

The authors prove that the system (9) is well posed and
exponential decay under a small condition on time delay
(see [2]). Now in the presence of source term, the system
(9) becomes the system studied in this work with a logarith-
mic source term; this type of problems is encountered in
many branches of physics such as nuclear physics, optics,
and geophysics. It is well known, from the quantum field the-
ory, that such kind of logarithmic nonlinearity appears natu-

rally in inflation cosmology and in supersymmetric field
theories (see [11–13]).

This work is organized as follows: In “Statement of Prob-
lem,” we talk briefly about the local existence of the systems
(1), (2), and (3), and we define some space and theorem used.
In “Blow-up of Solution,” the blow-up result is proved.

2. Statement of Problem

Let us introduce the function

z x, ρ, tð Þ = ut x, t − ρτ0ð Þ, x ∈ 0, Lð Þ, ρ ∈ 0, 1ð Þ, t > 0: ð10Þ

Thus, we have

τ0zt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0, x ∈ 0, Lð Þ, ρ ∈ 0, 1ð Þ, t > 0:
ð11Þ

Then, problems (1)–(3) are equivalent to

m xð Þutt − p xð Þux + 2δ xð Þutxð Þx + ηθx

+μz x, 1, tð Þ = u uj jp−2 ln uj jγ, x ∈ 0, Lð Þ, t > 0,
τ0zt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0 x ∈ 0, Lð Þ, ρ ∈ 0, 1ð Þ, t > 0,
θt + kqx + ηutx = 0 x ∈ 0, Lð Þ, t > 0,
τqt + βq + kθx = 0 x ∈ 0, Lð Þ, t > 0,

8>>>>>>>><
>>>>>>>>:

ð12Þ

u 0, tð Þ = u L, tð Þ = 0 ; θ 0, tð Þ = θ L, tð Þ = 0, t ≥ 0,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ ; θ x, 0ð Þ = θ0 xð Þ, x ∈ 0, L½ �
q x, 0ð Þ = q0 xð Þ, x ∈ 0, L½ �
z x, 0, tð Þ = ut x, tð Þ, x ∈ 0, Lð Þ, t > 0,
z x, ρ, 0ð Þ = f0 x,−ρτ0ð Þ, x ∈ 0, Lð Þ, ρ ∈ 0, 1ð Þ:

8>>>>>>>><
>>>>>>>>:

ð13Þ
We first state a local existence theorem that can be estab-

lished by combining the arguments of related works 10,6:
Let v = ut and denote by

Φ = u, v, θ, q, zð ÞT ,Φ 0ð Þ =Φ0 = u0, u1, θ0, q0, f0ð ÞT : ð14Þ

The state space of Φ is the Hilbert space

=H1
0 0, Lð Þ × L2 0, Lð Þ × L2∗ 0, Lð Þ × L2 0, 1ð Þ × 0, Lð Þð Þ: ð15Þ

Theorem 1. Assume that

2 < p ≤
2n
n − 2

, if n ≥ 3: ð16Þ

Then, for every Φ0 ∈ , there exists a unique local solution
in the class Φ ∈ Cð½0, T�,Þ:

2 Advances in Mathematical Physics



3. Blow-up of Solution

In this section, we prove that the solutions for the problems
(12)–(13) blow up in a finite time when the initial energy is
negative. We use the improved method of Salim and Mes-
saoudi [6]: We define the energy associated with problems
(12)–(13) by

E tð Þ = 1
2 m xð Þk k∞ ut tð Þk k22
� �

+ 1
2 p xð Þk k∞ uxk k22
� �

+ τ

2 qk k22 +
1
2 θk k22 +

τ0 μj j
2

ð1
0
z x, ρ, tð Þk k2dρ

+ γ

p2
uk kpp −

1
p

ðL
0
uj jp ln uj jγdx:

ð17Þ

Lemma 2. Suppose that

2 < p ≤
2n
n − 2

, n ≥ 3: ð18Þ

Then, there exists a positive constant C > 0 depending on
½0:L� only, such that

ðL
0
uj jp ln uj jγdx

� �s
p

≤ C
ðL
0
uj jp ln uj jγdx + uxk k22

� �
, ð19Þ

for any u ∈H1
0ð0, LÞ and 2 ≤ s ≤ p, provided that

Ð L
0 juj

p ln
jujγdx ≥ 0:

Proof. If
Ð L
0 jujp ln jujγdx > 1, then

ðL
0
uj jp ln uj jγdx

� �s
p

≤
ðL
0
uj jp ln uj jγdx: ð20Þ

If
Ð L
0 jujp ln jujγdx ≤ 1, then we set

Γ1 = x ∈ 0, L½ � uj j > 1jf g, ð21Þ

and, for anyβ ≤ 2, we have

ðL
0
uj jp ln uj jγdx

� �s
p

≤
ðL
0
uj jp ln uj jγdx

� �β
p

≤
ð
Γ1

uj jp ln uj jγdx
" #β

p

≤
ð
Γ1

uj jp+1dx
" #β

p

≤
ðL
0
uj jp+1dx

� �β
p

= uk k
β p+1ð Þ

p

p+1 :

ð22Þ

We choose β =2p/ðp + 1Þ < 2 to get

ðL
0
uj jp ln uj jγdx

� �s
p

≤ uk k2p+1 ≤ C uxk k22: ð23Þ

Combining (20) and (23), the result was obtained.

Lemma 3. There exists a positive constant C > 0 depending on
½0, L� only, such that

uk kpp ≤ C
ðL
0
uj jp ln uj jγdx + uxk k22

� �
, ð24Þ

for any u ∈H1
0ð0, LÞ, provided that

Ð L
0 juj

p ln jujγdx ≥ 0:

Proof. We set

Γ+ = x ∈ 0, L½ � uj j > ejf g andΓ− = x ∈ 0, L½ � uj j ≤ ejf g, ð25Þ

thus

uk kpp =
ð
Γ+

uj jpdx +
ð
Γ−

uj jpdx ≤
ð
Γ+

uj jp ln uj jγdx +
ð
Γ−

ep
u
e

��� ���pdx
≤
ð
Γ+

uj jp ln uj jγdx + ep
ð
Γ−

u
e

��� ���2dx
≤
ðL
0
uj jp ln uj jγdx + ep−2

ðL
0
uj j2dx

≤ C
ðL
0
uj jp ln uj jγdx + uxk k22

� �
:

ð26Þ

By using the inequalitieskuk22 ≤ Ckuk2p ≤ CðkukppÞ2/p, we
have the following corollary.

Corollary 4. There exists a positive constant C > 0 depending
on ½0, L� only, such that

uk k22 ≤ C
ðL
0
uj jp ln uj jγdx

	 
2
p

+ uxk k
4
p

2

" #
: ð27Þ

provided that
Ð L
0 juj

p ln jujγdx ≥ 0:

Lemma 5. There exists a positive constant C > 0 depending on
½0, L� only, such that

uk ksp ≤ C uk kpp + uxk k22
h i

, ð28Þ

for any u ∈H1
0ð0, LÞ and 2 ≤ s ≤ p.

Proof. If kukp ≥ 1, then

uk ksp ≤ uk kpp: ð29Þ

If kukp ≤ 1, then kuksp ≤ kuk2p: Using the Sobolev embed-
ding theorems, we have

uk ksp ≤ uk k2p ≤ C uxk k22: ð30Þ

Now we are ready to state and prove our main result. For
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this purpose, we define

H tð Þ = −E tð Þ = −
1
2 m xð Þk k∞ ut tð Þk k22
� �

−
1
2 p xð Þk k∞ uxk k22
� �

−
τ

2 qk k22 −
1
2 θk k22 −

τ0 μj j
2

ð1
0
z x, ρ, tð Þk k2dρ

−
γ

p2
uk kpp +

1
p

ðL
0
uj jp ln uj jγdx:

ð31Þ

Corollary 6. Assume that (18) holds. Then

uk ksp ≤ C 1 −
γ

p p xð Þk k∞

	 

uk kpp −

2
p xð Þk k∞

	 

H tð Þ

�

−
m xð Þk k∞
p xð Þk k∞

	 

ut tð Þk k22 −

τ

p xð Þk k∞

	 

qk k22

−
1

p xð Þk k∞

	 

θk k22 −

τ0 μj j
p xð Þk k∞

ð1
0
z x, ρ, tð Þk k2dρ

+ 2
p p xð Þk k∞

ðL
0
uj jp ln uj jγdx

�
,

ð32Þ

for any u ∈ ðH1
0ð0, LÞÞn and 2 ≤ s ≤ p:

Theorem 7. Assume that (18) holds. Assume further that

E 0ð Þ = 1
2

m xð Þk k∞ u1 tð Þk k22
� �

+ 1
2

p xð Þk k∞ ∇u0k k22
� �

+ τ

2
q0k k22 +

1
2

θ0k k22 +
τ0 μj j
2

ðL
0

ð1
0
f0 x,−ρτ0ð Þj j2dρdx

+ γ

p2
u0k kpp −

1
p

ðL
0
u0j jp ln u0j jγdx < 0:

ð33Þ

Then, the solution of (12) blows up in finite time.

Proof. we have

E tð Þ ≤ E 0ð Þ < 0, ð34Þ

and

H ′ tð Þ = −E′ tð Þ = 2 δ xð Þk k∞ uxt tð Þk k22
� �

+ β qk k22 + μj j
ðL
0
z x, 1, tð Þj j2dx:

ð35Þ

Hence

H ′ tð Þ ≥ C0 δ xð Þk k∞ uxt tð Þk k22
� �

+ μj j
ðL
0
z2 x, 1, tð Þdx

� �
≥ 0;∀t ∈ 0, T½ Þ:

ð36Þ

Consequently, we get

0 <H 0ð Þ ≤H tð Þ ≤
ðL
0
uj jp ln uj jγdx;∀t ∈ 0, T½ Þ, ð37Þ

by virtue of (17) and (31). We then introduce

L tð Þ =H1−α tð Þ + ε
ðL
0
m xð Þut tð Þu tð Þ + 4δ xð Þ uxj j2� �

dx + ε
ðL
0

nτ
k
uqdx,

ð38Þ

where ε > 0 to be specified later and

2 p − 2ð Þ
p2

< α < p − 2
2p < 1: ð39Þ

A direct differentiation of LðtÞ gives

L′ tð Þ = 1 − αð ÞH−α tð ÞH ′ tð Þ + ε
ðL
0
m xð Þ utj j2dx

+ ε
ητ

k

ðL
0
qut tð Þdx − ε

ðL
0
p xð Þ uxj j2dx + 2εη

ðL
0
θuxdx

− ε
ðL
0
μz x, 1, tð Þudx + ε

ðL
0
uj jp ln uj jγ − ε

ηβ

k

ðL
0
qudx,

ð40Þ

using the inequality of young

2εη
ðL
0
θuxdx ≥ −εη θk k22 − εη uxk k22, ð41Þ

−ε
ðL
0
p xð Þ uxj j2dx ≥ −ε p xð Þk k∞ uxk k22, ð42Þ

ε
ðL
0
m xð Þ utj j2dx ≥ ε m xð Þk k∞ utk k22, ð43Þ

ε
ητ

k

ðL
0
qut tð Þdx ≥ −ε

ητ

2k utk k22 − ε
ητ

2k qk k22, ð44Þ

and

−ε
ðL
0
μz x, 1, tð Þudx ≥ −ε μj j ξ1

2

ðL
0
z x, 1, tð Þj j2dx + 1

2ξ1
uk k22

� �
,∀ξ1 > 0,

ð45Þ

−ε
ηβ

k

ðL
0
qudx ≥ ε

ηβ

k
ξ2
2 qk k22 +

1
2ξ2

uk k22
� �

,∀ξ2 > 0:

ð46Þ

Substituting (41), (42), (43), (44), (45), and (46) in (40),
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we get

L′ tð Þ ≥ 1 − αð ÞH−α tð ÞH ′ tð Þ + ε m xð Þk k∞ −
ητ

2k
n o

utk k22
− ε p xð Þk k∞ + η


 �
uxk k22 − εη θk k22

− ε
τη + βηξ2

2k

� �
qk k22 + ε

ðL
0
uj jp ln uj jγdx

− ε μj j ξ12
ðL
0
z x, 1, tð Þj j2dx − ε uk k22

μj j
2ξ1

+ ηβ

2ξ2k

� �
:

ð47Þ

We obtain from (35) and (47) the following:

L′ tð Þ ≥ 1 − αð ÞH−α tð Þ − ε
kξ1 + ηξ2

2k

	 
� �
H ′ tð Þ

+ ε m xð Þk k∞ −
ητ

2k
n o

utk k22 − ε p xð Þk k∞ + η

 �

uxk k22

− εη θk k22 − ε
τη

2k qk k22 + ε
ðL
0
uj jp ln uj jγdx

− ε
μj jk
2ξ1k

+ ηβ

2ξ2k

� �
uk k22:

ð48Þ

We also set ξ1 = ξ2 =H−αðtÞ ; hence, (48) gives

L′ tð Þ ≥ 1 − αð Þ − εCf gH−α tð ÞH ′ tð Þ + ε m xð Þk k∞ −
ητ

2k
n o

utk k22
− ε p xð Þk k∞ + η


 �
uxk k22 − εη θk k22 − ε

τη

2k qk k22

+ ε
ðL
0
uj jp ln uj jγdx − ε

M
2kH

α tð Þ uk k22,

ð49Þ

where C andM are strictly positive constants depending only
on k, η, β, jμj:

For 0 < a < 1, we have

L′ tð Þ ≥ 1 − αð Þ − εCf gH−α tð ÞH ′ tð Þ
+ ε m xð Þk k∞ 1 + p

2 1 − að Þ
� �

−
ητ

2k
n o

utk k22
+ ε p xð Þk k∞

p
2 1 − að Þ − 1

� �
+ η

n o
uxk k22

+ ε −η + pε 1 − að Þ
2

� �
θk k22 + εa

ðL
0
uj jp ln uj jγdx

+ ε −
τη

2k + pτ 1 − að Þ
2

� �
qk k22 +

γε 1 − að Þ
2 uk kpp

+ ε
τ0p 1 − að Þ

2 μj j
ðL
0

ð1
0
z x, ρ, tð Þj j2dρdx

− ε
M
2kH

α tð Þ uk k22 + pε 1 − að ÞH tð Þ:
ð50Þ

Using (27), (37) and Young’s inequality, we find

Hα tð Þ uk k22 ≤
ðL
0
uj jp ln uj jγdx

	 
α

uk k22

≤ C
ðL
0
uj jp ln uj jγdx

	 
α+2
p

+
ðL
0
uj jp ln uj jγdx

	 
α

uxk k
4
p

2

" #

≤ C
ðL
0
uj jp ln uj jγdx

	 
 αp+2ð Þ
p

+ uxk k22 +
ðL
0
uj jp ln uj jγdx

	 
 αp
p−2

2
4

3
5:

ð51Þ

Exploiting (39), we have

2 < αp + 2 ≤ p and 2 < αp2

p − 2 ≤ p: ð52Þ

Thus, lemma 1 yields

Hα tð Þ uk k22 ≤ C
ðL
0
uj jp ln uj jγdx + uxk k22

� �
: ð53Þ

Combining (50) and (53), we obtain

L′ tð Þ ≥ 1 − αð Þ − εCf gH−α tð ÞH ′ tð Þ
+ ε m xð Þk k∞ 1 + p

2 1 − að Þ
� �

−
ητ

2k
n o

utk k22

+ ε p xð Þk k∞
p
2 1 − að Þ − 1

� �
+ η − C

M
2k

� �
uxk k22

+ ε −η + pε 1 − að Þ
2

� �
θk k22

+ ε a − C
M
2k

� �ðL
0
uj jp ln uj jγdx

+ ε −
τη

2k + pτ 1 − að Þ
2

� �
qk k22 +

γε 1 − að Þ
2 uk kpp

+ ε
τ0p 1 − að Þ

2 μj j
ðL
0

ð1
0
z x, ρ, tð Þj j2dρdx + pε 1 − að ÞH tð Þ:

ð54Þ

At this point, we choose a > 0 so small that

−η + pε 1 − að Þ
2 > 0,

p
2 1 − að Þ − 1

� �
> 0,

τ0p 1 − að Þ
2 > 0,

ð55Þ

and k so large that
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p xð Þk k∞
p
2 1 − að Þ − 1

� �
+ η − C

M
2k > 0,

a − C
M
2k > 0,

m xð Þk k∞ 1 + p
2 1 − að Þ

� �
−
ητ

2k > 0,

−
τη

2k + pτ 1 − að Þ
2 > 0:

ð56Þ

Once C and a are fixed, we pick ε so small so that

1 − αð Þ − εC > 0: ð57Þ

Hence, (54) becomes

L′ tð Þ ≥ 1 − αð Þ − εCf gH−α tð ÞH ′ tð Þ + εA1 utk k22 + εA2 uxk k22
+ εA3 θk k22 + εA4 qk k22 + ε a − C

M
2k

� �ðL
0
uj jp ln uj jγdx

+ ε
τ0p 1 − að Þ

2 μj j
ðL
0

ð1
0
z x, ρ, tð Þj j2dρdx

+ γε 1 − að Þ
2 uk kpp + pε 1 − að ÞH tð Þ,

ð58Þ

where A1 − A4 are strictly positive constants depending only
on p, τ, η, k, a:

Thus, for some A0 > 0, estimate (58) becomes

L′ tð Þ ≥ A0 H tð Þ + utk k22 + uxk k22 + uk kpp qk k22 + θk k22
n

+
ðL
0
uj jp ln uj jγdx +

ðL
0

ð1
0
z x, ρ, tð Þj j2dρdx

�
,

ð59Þ

and

L tð Þ ≥ L 0ð Þ > 0,∀t ≥ 0: ð60Þ

Next, using Hôlder’s inequality and the embedding
kuk2 ≤ Ckukp, we have

ðL
0
m xð Þuutdx

����
���� ≤ m xð Þk k∞ uk k2 utk k2 ≤ C uk k2 utk k2, ð61Þ

and exploiting Young’s inequality, we obtain

ðL
0
m xð Þuutdx

����
����

1
1−α

≤ C uk k
r

1−α
p + utk k

r ′
1−α
2

� �
, For 1

r
+ 1
r′

= 1:

ð62Þ

To be able to use Lemma 5, we take r′ = 2ð1 − αÞ which
gives r/1 − α = 2/1 − 2α ≤ p:

Therefore, for s = 2/1 − 2α, estimate (62) yields

ðL
0
m xð Þuutdx

����
����

1
1−α

≤ C uk ksp + utk k22
� �

: ð63Þ

Hence, Lemma 5 gives

ðL
0
m xð Þuutdx

����
����

1
1−α

≤ C1 uk kpp + utk k22 + uxk k22
� �

,∀C1 > 0,

ð64Þ

and with the same way, we get

ε
ðL
0

nτ
k
uqdx

����
����

1
1−α

≤ C2 uk kpp + qk k22
� �

,∀C2 > 0, ð65Þ

ε
ðL
0
4δ xð Þ uxj j2dx

����
����

1
1−α

≤ C3 uxk k22,∀C3 > 0: ð66Þ

From (64), (65), and (66) we obtain

L
1

1−α tð Þ ≤ C H tð Þ + uk kpp + qk k22 + uxk k22 + utk k22
n o

;∀t ≥ 0,∀C > 0:

ð67Þ

Combining (67) and (59), we arrive at

L′ tð Þ ≥ a0L
1

1−α tð Þ,∀t ≥ 0, ð68Þ

where a0 is a positive constant depending only on A0 and C.
A simple integration of (68) over ð0, tÞ yields

L
α

1−α tð Þ ≥ 1
L−α/1−α 0ð Þ − αa0t/ 1 − αð Þ : ð69Þ

Therefore, LðtÞ blows up in time

T∗ ≤
1 − α

αa0L
α/1−α 0ð Þ : ð70Þ

The proof is completed.

4. Conclusion

In this work, we are interested with a problem of a logarith-
mic nonuniform flexible structure with time delay, where
the heat flux is given by Cattaneo’s law. We show that the
energy of any weak solution blows up infinite time if the ini-
tial energy is negative. The delay effect that is similar to mem-
ory processes is important in the research of applied
mathematics such as physics, noninstant transmission phe-
nomena, and biological motivation. In the future work, we
will try to study the local existence for this problem with
respect to some proposal conditions.
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Evaluating efficiency according to the different states of returns to scale (RTS) is crucial to resource allocation and scientific decision
for decision-making units (DMUs), but this kind of evaluation will become very difficult when the DMUs are in an uncertain
random environment. In this paper, we attempt to explore the uncertain random data envelopment analysis approach so as to
solve the problem that the inputs and outputs of DMUs are uncertain random variables. Chance theory is applied to handling
the uncertain random variables, and hence, two evaluating models, one for increasing returns to scale (IRS) and the other for
decreasing returns to scale (DRS), are proposed, respectively. Along with converting the two uncertain random models into
corresponding equivalent forms, we also provide a numerical example to illustrate the evaluation results of these models.

1. Introduction

Data envelopment analysis (DEA) initiated by Charnes et al.
[1], known as the CCR (Charnes, Cooper, and Rhodes)
model, is one of the effective tools to evaluate efficiencies of
DMUs with multiple inputs and multiple outputs. However,
Banker [2] demonstrated that the CCR model only regarded
that DMUs with constant returns to scale (CRS) were effi-
cient. CRS is one of the states of returns to scale (RTS). Based
on the RTS theory, RTS can be divided into three states as
CRS, IRS (increasing returns to scale), and DRS (decreasing
returns to scale) in accordance with the difference of output
increment caused by input increment [3]. Subsequently,
Banker et al. [4] proposed the BCC (Banker, Charnes, and
Cooper) model to identify the efficient DMUs in the three
states of RTS. The results revealed that the different states
of RTS would affect the results of efficiency evaluation
indeed. Afterwards, Fare and Grosskopf [5] refined the
approach on measuring efficiencies of DMUs which exhibits
DRS, and Seiford and Thrall [6] further estimated DMU’s
efficiency under IRS.

Along with the states of RTS affecting the results of effi-
ciency evaluation, the inputs and outputs of DMUs that are

not always observed accurately may affect the efficiency
results as well. For example, early studies in DEA considered
that such inputs and outputs as capital and labor are regarded
as precise data. With more factors like carbon emission and
social benefit taken into account in inputs and outputs now-
adays, the traditional models are not suitable for dealing with
these imprecise data. Then, some scholars regard these vari-
ables as random variables and treat them with probability
theory. Therefore, many stochastic DEA models have been
put forward including Li [7], Khodabakhshi et al. [8], and
Cooper et al. [9].

However, some other scholars claim that these variables
should be considered as uncertain variables because the
uncertainty theory demonstrated that if the distribution
function of a variable is not close enough to its real frequency,
then it is better to treat it as an uncertain variable rather than
a random variable [10]. Therefore, some uncertain DEA
models are proposed via the application of uncertainty the-
ory (Wen et al. [11], Lio and Liu [12], Jiang et al. [13], and
Alireza and Lio [14]).

When the external environment becomes more complex,
the imprecise inputs and outputs of DMUs may be not only a
single random variable or uncertain variable but also both of
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them. In this case, some scholars attempt to take the uncer-
tain random variables into account and propose uncertain
random DEA models to estimate DMU’s overall efficiency
(Jiang et al. [15]) and technical efficiency (Jiang et al. [16]).
However, a specific uncertain random model of examining
the influence of RTS on efficiency evaluation does not exist
currently. Motivated by this, this paper proposes two uncer-
tain random models by applying chance theory [17] to deal-
ing with uncertain random variables. One model is for
estimating the DMUs’ efficiency under IRS, and the other
one is for DRS.

The remainder of this article is organized as follows. The
second section will present a number of basic knowledge of
uncertainty theory and chance theory. The third section will
introduce the new uncertain random DEA model for IRS,
and the equivalent form will be verified. The fourth section
will introduce the new uncertain random DEA model for
DRS, and the equivalent form will be verified as well. A
numerical example to test two new uncertain random DEA
models will be provided in the fifth section. The final section
will make concluding remarks.

2. Preliminaries

In this part, we will briefly introduce the primary concepts
and theorems of uncertainty theory and chance theory for
the preparation to structure the new uncertain random
DEA models in the next two sections.

2.1. Uncertainty Theory. As a powerful mathematical tool for
dealing with uncertain variables and analyzing the belief
degree, uncertainty theory was founded by Liu [10] in 2007.
The uncertain measure M was defined as a set function on
a σ-algebra L over a nonempty set Γ by the following
axioms:

Axiom 1 (normality axiom).MfΓg = 1 for the universal set Γ.

Axiom 2 (duality axiom). MfΛg +MfΛcg = 1 for any event
Λ.

Axiom 3 (subadditivity axiom). For every countable sequence
of events Λ1,Λ2,⋯, we have

M ∪
∞

i=1
Λi

n o
≤ 〠

∞

i=1
M Λif g: ð1Þ

Then, Liu [18] proposed a product axiom in 2009.

Axiom 4 (product axiom). Let ðΓk,Lk,MkÞ be uncertainty
spaces for k = 1, 2,⋯. The product uncertain measure M is
an uncertain measure satisfying

M
Y∞
k=1

Λk

( )
= ∧

k=1

∞
Mk Λkf g, ð2Þ

where Λk are arbitrarily chosen events from Lk for k = 1, 2,
⋯, respectively.

Definition 5 (Liu [10]). An uncertain variable is a function ξ
from an uncertainty space ðΓ,L ,MÞ to the set of real num-
bers such that fξ ∈ Bg is an event for any Borel set B of real
numbers.

Definition 6 (Liu [19]). An uncertain variable ξ is called linear
if it has a linear uncertainty distribution

Φ xð Þ =
0, if x ≤ a,
x − a
b − a

, if a < x ≤ b,

1, if x > b,

8>><
>>: ð3Þ

denoted byLða, bÞ where a and b are real numbers with
a < b.

Definition 7 (Liu [19]). Let ξ be an uncertain variable with
regular uncertainty distributionΦðxÞ . Then, the inverse func-
tion Φ−1ðαÞ is called the inverse uncertainty distribution of ξ.

Theorem 8 (Liu [19]). Let ξ1, ξ2,⋯, ξn be independent uncer-
tain variables with regular uncertainty distributions Φ1,Φ2,
⋯,Φn, respectively. If f ðx1, x2,⋯,xnÞ is continuous, strictly
increasing with respect to x1, x2,⋯, xm and strictly decreasing
with respect to xm+1, xm+2,⋯, xn, then

ξ = f ξ1, ξ2,⋯,ξnð Þ ð4Þ

has an inverse uncertainty distribution

Ψ−1 αð Þ = f Φ−1
1 αð Þ,⋯,Φ−1

m αð Þ,Φ−1
m+1 1 − αð Þ,⋯,Φ−1

n 1 − αð Þ� �
:

ð5Þ

Theorem 9 (Liu and Ha [20]). Assume ξ1, ξ2,⋯, ξn are inde-
pendent uncertain variables with regular uncertainty distribu-
tions Φ1,Φ2,⋯,Φn, respectively. If f ðξ1, ξ2,⋯,ξnÞ is strictly
increasing with respect to ξ1, ξ2,⋯, ξm and strictly decreasing
with respect to ξm+1, ξm+2,⋯, ξn, then

ξ = f ξ1, ξ2,⋯,ξnð Þ ð6Þ

has an expected value

E ξ½ � =
ð1
0
f Φ−1

1 αð Þ,⋯,Φ−1
m αð Þ,Φ−1

m+1 1 − αð Þ,⋯,Φ−1
n 1 − αð Þ� �

dα:

ð7Þ

Uncertainty theory was subsequently studied by many
researchers over the past decades, and many scholars have
used uncertainty theory to model dynamic systems with
uncertainty.

2.2. Chance Theory. Chance theory was put forward by Liu
[17] in 2013 for modeling a complex system with the coexis-
tence of uncertainty and randomness. Some elementary
features and properties on uncertain random variables are
defined as follows.
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Definition 10 (Liu [21]). An uncertain random variable is a
function ξ from a chance space ðΓ,L ,MÞ × ðΩ,A , PrÞ to
the set of real numbers such that fξ ∈ Bg is an event in L ×
A for any Borel set B of real numbers.

Definition 11 (Liu [21]). Let ξ be an uncertain random
variable. Then, its chance distribution is defined by

Φ xð Þ = Ch ξ ≤ xf g ð8Þ

for any x ∈R:

Theorem 12 (Liu [17]). Let η1, η2,⋯, ηm be independent ran-
dom variables with probability distributions Ψ1,Ψ2,⋯,Ψm ,
and let τ1, τ2,⋯, τn be independent uncertain variables with
regular uncertainty distributions Y1, Y2,⋯, Yn , respectively.
Assume f ðη1, η2,⋯,ηm, τ1, τ2,⋯,τnÞ is continuous, strictly
increasing with respect to τ1, τ2,⋯, τk and strictly decreasing
with respect to τk+1, τk+2,⋯, τn . Then, the uncertain random
variable

ξ = f η1, η2,⋯,ηm, τ1, τ2,⋯,τnð Þ ð9Þ

has a chance distribution

Φ xð Þ =
ð
Rm

F x ; y1, y2,⋯,ymð ÞdΨ1 y1ð ÞdΨ2 y2ð Þ⋯ dΨm ymð Þ,

ð10Þ

where Fðx ; y1, y2,⋯,ymÞ is the root α of the equation

f y1, y2,⋯,ym, Y−1
1 αð Þ,⋯,Y−1

k αð Þ, Y−1
k+1 1 − αð Þ,⋯,Y−1

n 1 − αð Þ� �
= x:

ð11Þ

Theorem 13 (Liu [17]). Let η1, η2,⋯, ηm be independent ran-
dom variables with probability distributions Ψ1,Ψ2,⋯,Ψm ,
and let τ1, τ2,⋯, τn be independent uncertain variables with
regular uncertainty distributions Y1, Y2,⋯, Yn , respectively.
If f is a measurable function, then

ξ = f η1, η2,⋯,ηm, τ1, τ2,⋯,τnð Þ ð12Þ

has an expected value

E ξ½ � =
ð
Rm

G y1, y2,⋯,ymð ÞdΨ1 y1ð ÞdΨ2 y2ð Þ⋯ dΨm ymð Þ,

ð13Þ

where

G y1, y2,⋯,ymð Þ = E f y1, y2,⋯,ym, τ1, τ2,⋯,τnð Þ½ � ð14Þ

is the expected value of the uncertain variable f ðy1, y2,⋯,ym,
τ1, τ2,⋯,τnÞ for any real numbers y1, y2,⋯, ym and is deter-
mined by Y1, Y2,⋯, Yn.

Theorem 14 (Liu [17]). Let η1, η2,⋯, ηm be independent
random variables with probability distributions Ψ1,Ψ2,⋯,
Ψm , and let τ1, τ2,⋯, τn be independent uncertain variables
with regular uncertainty distributions Y1, Y2,⋯, Yn , respec-
tively. If f ðη1,⋯,ηm, τ1,⋯,τnÞ is a continuous and strictly
increasing function (or strictly decreasing function) with
respect to τ1,⋯, τn , then the expected function

E f η1,⋯,ηm, τ1,⋯,τnð Þ½ � ð15Þ

is equal to

ð
Rm

ð1
0
f y1,⋯,ym, Y−1

1 αð Þ,⋯,Y−1
n αð Þ� �

dαdΨ1 y1ð Þ⋯ dΨm ymð Þ:

ð16Þ

Based on the knowledge above, the two new uncertain
random DEA models will be created in the following section.

3. Uncertain Random DEA Model for IRS

When the inputs and outputs of DMUs cannot be observed
precisely, some of them were regarded as random variables
and treated by probability theory, while some others were
regarded as uncertain variables and treated by uncertainty
theory. But in a more complex environment, the coexistence
of random variables and uncertain variables in DMUs may
occur. Therefore, a new approach to deal with uncertain ran-
dom variables in estimating efficiency is necessary.

Suppose the number of DMUs is r. For each k with 1 ≤
k ≤ r, the kth DMU consumes a random input vector xk
and an uncertain input vector ~xk to produce a random output
vector yk and an uncertain output vector ~yk. For each DMU k,
we artificially set the expected ratio of weighted outputs to
weighted inputs which is always less than or equal to unity,
i.e.,

E
vT~yk + vTyk
~uT~xk + uTxk

� �
≤ 1, k = 1, 2,⋯, r, ð17Þ

where ~u, u, ~v, and v are nonnegative weight vectors. Sub-
ject to constraint (17), only a DMU which has CRS can find
out a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that the
expected ratio of this DMU reaches up to 1, by which a
DMU can be regarded as efficiency. The reason is that the
increment of inputs of the DMU which exhibits CRS is equal
to that of outputs.

According to the RTS theory, if the proportionate
increases in outputs are larger than the proportionate
increases in inputs, then the state of increasing returns to
scale (IRS) arises [3]. In order to clarify the influence of IRS
on efficiency values, we artificially set a factor, denoted as w
, to adjust the proportion difference among input increment
and output increment caused by IRS, and then, the constraint
(17) is modified to
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E
vT~yk + vTyk −w

~uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r, ð18Þ

where w is less than or equal to 0, i.e., w≤0: The new con-
straint (18) allows a DMU which exhibits IRS to also find out
a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that the
expected ratio of this DMU reaches up to 1. In this way, the
DMUs under IRS can be considered efficient as well. In order
to verify if the target DMU, distinguished by subscript “o,” is
efficient under IRS, we may solve the following uncertain
random DEA model:

max
~u,u,~v,v,w

ϑIRS = E
vT~yo + vTyo −w
uT~xo + uTxo

� �

subject to :

E
vT~yk + vTyk −w
uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r,

u, u, v, v ≥ 0,
w ≤ 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

where ~xk, ~yk, xk, and yk are uncertain input vectors,
uncertain output vectors, random input vectors, and random
output vectors of DMU k, k = 1, 2,⋯, r, respectively; u, v, ~u,
and ~v are nonnegative weight vectors; and w ≤ 0.

Definition 15 (IRS efficiency).DMU o is regarded IRS efficient
if the optimal value ϑ∗IRS of ((19)) reaches up to 1.

Theorem 16. Let uncertain variables ~xk1,⋯, ~xkj, ~yk1,⋯, ~ykn
be independent with uncertainty distributions ~Yk1,⋯, ~Ykj,
~Πk1,⋯, ~Πkn , and let random variables xk1,⋯, xki, yk1,⋯,
ykm be independent with probability distributions Φk1,⋯,
Φki, Ψk1,⋯,Ψkm, k = 1, 2,⋯, r , respectively. Then, the new
uncertain random DEA model for IRS ((19)) can be indicated
as follows:

max
~u,u,~v,v,w

ϑIRS =
ð
R+

m+i

ð1
0

∑m
p=1vpzop +∑n

t=1~vt ~Π
−1
ot αð Þ −w

∑i
q=1uqhoq +∑j

s=1~us~Y
−1
os 1 − αð Þ

dαdΦo hoð ÞdΨo zoð Þ

subject to :ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαdΦk hkð ÞdΨk zkð Þ ≤ 1,

k = 1, 2,⋯, r,
~u = ~u1, ~u2,⋯,~uj

� �
≥ 0,

u = u1, u2,⋯,uið Þ ≥ 0,
~v = ~v1, ~v2,⋯,~vnð Þ ≥ 0,
v = v1, v2,⋯,vmð Þ ≥ 0,
w ≤ 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

where

dΦo hoð Þ = dΦo1 ho1ð Þ, dΦo2 ho2ð Þ⋯ dΦoi hoið Þ,
dΨo zoð Þ = dΨo1 zo1ð Þ, dΨo2 zo2ð Þ⋯ dΨom zomð Þ,
dΦk hkð Þ = dΦk1 hk1ð Þ, dΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð Þ, dΨk2 zk2ð Þ⋯ dΨkm hkmð Þ:

ð21Þ

The uncertainty distributions of ~xo1,⋯, ~xoj, ~yo1,⋯, ~yon
are ~Yo1,⋯, ~Yoj and ~Πo1,⋯, ~Πon, and the probability distri-
butions of xo1,⋯, xoi, yo1,⋯, yom are Φo1,⋯,Φoi, Ψo1,⋯,
Ψom, respectively.

Proof. Since the function ðvTyk + ~vT~yk −wÞ/ðuTxk + ~uT~xkÞ is
a measurable function for each k with 1 ≤ k ≤ r, it follows
from Theorem 13 and we can obtain

ξ = vTyk + ~vT~yk −w

uTxk + ~uT~xk
ð22Þ

has an expected value

E ξ½ � =
ð
R+

m+i

G hk1,⋯, hki, zk1,⋯, zkmð ÞdΦk hkð ÞdΨk zkð Þ

ð23Þ

for k = 1, 2,⋯, r, where

G hk1,⋯, hki, zk1,⋯, zkmð Þ = E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
,

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð24Þ

k = 1, 2,⋯, r.
For each k with 1 ≤ k ≤ r, since the function ðvTzk + ~vT

~yk −wÞ/ðuThk + ~uT~xkÞ is strictly increasing with respect to
~yk and strictly decreasing with respect to ~xk, by using Theo-
rem 8, we can get the inverse uncertainty distribution is

R−1
k αð Þ = ∑m

p=1vpzkp +∑n
t=1~vt ~Π

−1
kt αð Þ −w

∑i
q=1uqhkq +∑ j

s=1~us~Y
−1
ks 1 − αð Þ

: ð25Þ

Moreover, from Theorem 14, we can obtain

E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
=
ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dα,

ð26Þ

4 Advances in Mathematical Physics



k = 1, 2,⋯, r. Then, the equivalent form of equation (23) is

E ξ½ � =
ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαΦk hkð ÞdΨk zkð Þ,

ð27Þ

where

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð28Þ

k = 1, 2,⋯, r. The proof is completed.

4. Uncertain Random DEA Model for DRS

In this part, we propose the uncertain random DEA model
for DRS. According to RTS theory, if the proportionate
increases in outputs are smaller than the proportionate
increases in inputs, then the state of decreasing returns to
scale (DRS) prevails [3]. Then, the constraint (17) is modified
to

E
vT~yk + vTyk −w

~uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r, ð29Þ

where w is greater than or equal to 0, i.e., w ≥ 0: The new
constraint (29) allows a DMU which exhibits DRS to also
find out a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that
the expected ratio of this DMU reaches up to 1. In this way,
the DMUs under DRS can be considered efficient as well.
We still distinguish target DMU by subscript “o,” then verify
if it is efficient under DRS, and may solve the following
uncertain random DEA model:

max
~u,u,~v,v,w

ϑDRS = E
vT~yo + vTyo −w
uT~xo + uTxo

� �

subject to :

E
vT~yk + vTyk −w
uT ~xk + uTxk

� �
≤ 1, k = 1, 2,⋯, r,

u, u, v, v ≥ 0,
w ≥ 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð30Þ

where ~xk, ~yk, xk, and yk are uncertain input vectors,
uncertain output vectors, random input vectors, and random
output vectors of DMUk, k = 1, 2,⋯, r, respectively; u, v, ~u,
and ~v are nonnegative weight vectors; and w ≥ 0:

Definition 17 (DRS efficiency). DMU o is regarded DRS
efficient if the optimal value ϑ∗DRS of ((30)) reaches up to 1.

Theorem 18. Let uncertain variables ~xk1,⋯, ~xkj, ~yk1,⋯, ~ykn
be independent with uncertainty distributions ~Yk1,⋯, ~Ykj,
~Πk1,⋯, ~Πkn , and let random variables xk1,⋯, xki, yk1,⋯,
ykm be independent with probability distributions Φk1,⋯,

Φki, Ψk1,⋯,Ψkm, k = 1, 2,⋯, r , respectively. Then, the new
uncertain random DEAmodel for DRS ((30)) can be indicated
as follows:

max
~u,u,~v,v,w

ϑDRS =
ð
R+

m+i

ð1
0

∑m
p=1vpzop +∑n

t=1~vt ~Π
−1
ot αð Þ −w

∑i
q=1uqhoq +∑j

s=1~us~Y
−1
os 1 − αð Þ

dαdΦo hoð ÞdΨo zoð Þ

subject to :ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαdΦk hkð ÞdΨk zkð Þ ≤ 1,

k = 1, 2,⋯, r,
~u = ~u1, ~u2,⋯,~uj

� �
≥ 0,

u = u1, u2,⋯,uið Þ ≥ 0,
~v = ~v1, ~v2,⋯,~vnð Þ ≥ 0,
v = v1, v2,⋯,vmð Þ ≥ 0,
w ≥ 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

where

dΦo hoð Þ = dΦo1 ho1ð Þ, dΦo2 ho2ð Þ⋯ dΦoi hoið Þ,
dΨo zoð Þ = dΨo1 zo1ð Þ, dΨo2 zo2ð Þ⋯ dΨom zomð Þ,
dΦk hkð Þ = dΦk1 hk1ð Þ, dΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð Þ, dΨk2 zk2ð Þ⋯ dΨkm hkmð Þ:

ð32Þ

The uncertainty distributions of ~xo1,⋯, ~xoj, ~yo1,⋯, ~yon
are ~Yo1,⋯, ~Yoj and ~Πo1,⋯, ~Πon, and the probability distri-
butions of xo1,⋯, xoi, yo1,⋯, yom are Φo1,⋯,Φoi, Ψo1,⋯,
Ψom, respectively.

Proof. Since the function ðvTyk + ~vT~yk −wÞ/ðuTxk + ~uT~xkÞ is
a measurable function for each k with 1 ≤ k ≤ r, it follows
from Theorem 13 and we can obtain

ς = vTyk + ~vT~yk −w

uTxk + ~uT~xk
ð33Þ

has an expected value

E ς½ � =
ð
R+

m+i

G hk1,⋯, hki, zk1,⋯, zkmð ÞdΦk hkð ÞdΨk zkð Þ

ð34Þ

for k = 1, 2,⋯, r, where

G hk1,⋯, hki, zk1,⋯, zkmð Þ = E
vTzk + ~vT ~yk −w

uThk + ~uT~xk

" #
,

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð35Þ

k = 1, 2,⋯, r.
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For each k with 1 ≤ k ≤ r, since the function ðvTzk + ~vT

~yk −wÞ/ðuThk + ~uT~xkÞ is strictly increasing with respect to
~yk and strictly decreasing with respect to ~xk, by using Theo-
rem 8, we can get the inverse uncertainty distribution is

R−1
k αð Þ = ∑m

p=1vpzkp +∑n
t=1~vt ~Π

−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

: ð36Þ

Moreover, from Theorem 14, we can obtain

E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
=
ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dα,

ð37Þ

k = 1, 2,⋯, r. Then, the equivalent form of equation (34) is

E ς½ � =
ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαΦk hkð ÞdΨk zkð Þ,

ð38Þ

where

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð39Þ

k = 1, 2,⋯, r. The proof is completed.

5. A Numerical Example

In order to examine the two new uncertain random DEA
models, this section presents fifteen DMUs with three inputs
and three outputs to demonstrate an illustrative example.
Among these inputs and outputs, two inputs and two outputs
are uncertain variables subject to linear uncertainty distribu-
tions represented as Lða, bÞ, and one input and one output
are random variables subject to uniform distributions repre-
sented as Uða, bÞ. The original data of these DMUs are pro-
vided in Table 1.

According to the data in Table 1, we can obtain each
DMU’s IRS efficiency by calculating the optimal value ϑ∗IRS
of model (19) and DRS efficiency by calculating the optimal
value ϑ∗DRS of model (30). In addition, to further clarify the
influence of RTS on efficiency values, we have also examined
two other cases, one for overall efficiency and the other for
technical efficiency. If w = 0, overall efficiencies of DMUs
can be calculated, represented as η∗, and technical efficiencies
of DMUs, represented as φ∗, can be gained under the condi-
tion that w is unconstrained in sign. The results of the four
kinds of efficiencies of each DMU are shown in Table 2.

As shown in Table 2, the second column represents
DMUs’ IRS efficiencies. It is obvious that the five DMUs
are IRS efficient because the optimal values ϑ∗IRS of them reach
up to 1, and the other ten are IRS inefficient. Similarly, four
DMUs are DRS efficient shown in the third column. Among
these efficient DMUs, some like DMU 3, DMU 8, and DMU 9
are IRS efficient but DRS inefficient, while some like DMU 1
and DMU 2 are DRS efficient but IRS inefficient. However,
there are also two DMUs (DMU 12 and DMU 13) that are
both IRS efficient and DRS efficient. Does it mean that these
two DMUs are overall efficient as well?

Table 1: Fifteen DMUs with three inputs and three outputs.

DMU k
Output variables Input variables

~y1 (uncertain) ~y2 (uncertain) y3 (random) ~x1 (uncertain) ~x2 (uncertain) x3 (random)

1 L 51, 65ð Þ L 45, 55ð Þ U 60, 78ð Þ L 8, 13ð Þ L 10, 15ð Þ U 9, 14ð Þ
2 L 64, 71ð Þ L 60, 69ð Þ U 76, 88ð Þ L 17, 20ð Þ L 12, 19ð Þ U 10, 16ð Þ
3 L 55, 60ð Þ L 80, 96ð Þ U 77, 89ð Þ L 10, 19ð Þ L 11, 20ð Þ U 10, 21ð Þ
4 L 47, 55ð Þ L 79, 95ð Þ U 62, 80ð Þ L 15, 24ð Þ L 12, 21ð Þ U 12, 23ð Þ
5 L 49, 62ð Þ L 54, 67ð Þ U 60, 75ð Þ L 10, 16ð Þ L 13, 19ð Þ U 14, 17ð Þ
6 L 46, 52ð Þ L 55, 68ð Þ U 65, 76ð Þ L 11, 19ð Þ L 16, 22ð Þ U 13, 19ð Þ
7 L 52, 60ð Þ L 67, 80ð Þ U 70, 83ð Þ L 13, 21ð Þ L 10, 17ð Þ U 12, 18ð Þ
8 L 54, 67ð Þ L 65, 75ð Þ U 55, 69ð Þ L 11, 16ð Þ L 14, 20ð Þ U 8, 16ð Þ
9 L 45, 55ð Þ L 62, 76ð Þ U 63, 78ð Þ L 10, 15ð Þ L 8, 12ð Þ U 14, 21ð Þ
10 L 48, 57ð Þ L 54, 63ð Þ U 60, 73ð Þ L 11, 17ð Þ L 9, 18ð Þ U 8, 17ð Þ
11 L 56, 69ð Þ L 64, 76ð Þ U 66, 83ð Þ L 8, 12ð Þ L 10, 20ð Þ U 11, 18ð Þ
12 L 60, 78ð Þ L 63, 70ð Þ U 74, 83ð Þ L 6, 13ð Þ L 7, 15ð Þ U 15, 20ð Þ
13 L 58, 66ð Þ L 80, 97ð Þ U 78, 90ð Þ L 5, 11ð Þ L 12, 25ð Þ U 10, 17ð Þ
14 L 47, 58ð Þ L 68, 78ð Þ U 70, 88ð Þ L 12, 19ð Þ L 14, 22ð Þ U 14, 25ð Þ
15 L 44, 53ð Þ L 53, 69ð Þ U 63, 72ð Þ L 14, 20ð Þ L 9, 15ð Þ U 13, 21ð Þ
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Overall efficiencies of DMUs are exhibited in the fourth
column of Table 2, represented as η∗. It is clear that only
two DMUs, DMU 12 and DMU 13, can be regarded as overall
efficient among fifteen DMUs. Therefore, it can be inferred
that if a DMU prevails IRS efficiency and DRS efficiency
simultaneously, it prevails overall efficiency as well. The
result is in accordance with the assumption that the efficiency
value is affected by the RTS state.

The last column shows DMUs’ technical efficiencies, rep-
resented as φ∗. There are a total of seven DMUs that can be
considered technical efficient. The number is just the aggre-
gation of DMUs which are both IRS efficient and DRS effi-
cient. This phenomenon demonstrates that the technical
efficiency compounds three kinds of different efficiencies
caused by RTS, although it cannot differ IRS efficiency and
DRS efficiency.

6. Conclusions

In this paper, we introduced two new models, uncertain ran-
dom DEA model for IRS and uncertain random DEA model
for DRS, so as to focus on efficiency evaluation of DMUs
under the uncertain random environment. Meanwhile, we
presented the equivalent forms of the two new models and
provided detailed proof processes. Finally, a numerical exam-
ple was given to demonstrate the evaluation results of these
two models. Considering the situation that uncertain vari-
ables and random variables coexist in the inputs and outputs
of DMUs simultaneously, our work broadens the application
of chance theory in efficiency evaluation in practice. In addi-
tion, this paper is also expected to be applied in the field of
logistics in the future.
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In this article, Box-Cox and Yeo-Johnson transformation models are applied to two time series datasets of monthly temperature
averages to improve the forecast ability. An application algorithm was proposed to transform the positive original responses
using the first model and the stationary responses using the second model to improve the nonparametric estimation of the
functional time series. The Box-Cox model contributed to improving the results of the nonparametric estimation of the original
data, but the results become somewhat confusing after attempting to make the transformed response variable stationary in the
mean, while the functional time series predictions were more accurate using the transformed stationary datasets using the Yeo-
Johnson model.

1. Introduction

Forecasting the future is the main function of time series
analysis. Proceeding from this idea, researchers have devel-
oped several techniques that are concerned with the
improvement of accuracy of forecasts by treating the time
series as a stochastic process. A functional data analytic
approach or so-called a stochastic forecast [1] allows dealing
with the observations as a function [2] freely outside of the
conditions of parametric and fully nonparametric modeling.
This handling of observations in time series data makes it
sequential and can be separated into successive time periods
[3]. Thus, the dimensions of the time series are reduced with
a limited loss of information [4] and represent the data in a
linear combination of a few functions (carefully selected)
instead of treating the data in its original form as a single vec-
tor of values [2], that is, processing and transforming the
structure of time series data in line with the structure of
regression models. Shang in 2019 showed that with the time
dependence of observations in some datasets, the principal

component method may lead to erroneous estimates. There-
fore, the two authors believe that this problem may be exac-
erbated in some time series data, especially those that are
characterized by the presence of seasonal changes. However,
it has become known in practical applications of time series
that they are rarely stationary and that seasonal changes,
trend, and dependence on external factors have become the
rules, not the exception [5]. For this reason, it can be said that
the data transformation has become a part of the traditional
parametric and nonparametric analysis of complex time
series.

In this article, the two authors have used the Yeo-Johnson
transformations to improve the nonparametric estimation of
the functional time series. The use of both approaches, trans-
formation, and functional analysis without considering the
modeling conditions is an attempt to focus the analyzing goal
and the efficiency criterion in the context of forecast ability.

The rest of the article is organized as follows. The Box-
Cox and Yeo-Johnson transformations are presented in the
next section. The third section contains the formulation of
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the problem and the proposed application methodology. The
practical examples are included in the fourth section, while
the fifth section contained some conclusions.

2. Box-Cox and Yeo-Johnson Transformations

Box and Cox [6] suggested the Box-Cox transformation
(BCT) methodology in regression models to reduce anoma-
lies in data, reduce nonlinearity, and achieve normality ran-
dom errors. The methodology assumes, for any response
variable Z > 0 and λ ∈ R, the transformed variable ΨðZÞ =
ðZλ − 1Þ/λ when λ ≠ 0 and ΨðZÞ = LnZ when λ = 0. And
when λ is equal to 1, the data is analyzed in its original
scale, whereas the case λ = 0 corresponds to the natural loga-
rithmic transformation of the data. BCT is based on the
assumption of the transformed response normality and then
defining the probability density function of the original
response as a “backward transformed” of change of variables
technique.

Yeo and Johnson [7] generalized the BCT to include neg-
ative and positive values in datasets [7]. They used a smooth-
ness condition to combine the transformations for positive
and negative observations, thus obtaining a one-parameter
transformation family [8]. For Z ∈ R, the YJT is given by

ψ Zð Þ =

Z + 1ð Þλ − 1
λ

, λ ≠ 0 andZ ≥ 0,

Ln Z + 1ð Þ, λ = 0 andZ ≥ 0,

− −Z + 1ð Þ2−λ − 1
� �

2 − λ
, λ ≠ 2 andZ < 0,

Ln −Z + 1ð Þ, λ = 2 andZ < 0:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

This transformation is appropriate for correcting both
left and right skew when λ > 1 and λ < 1, respectively, while
the linear relationship is achieved when λ = 1 [9]. Also,
Yeo-Johnson transformations (YJT) can hold the properties
of the log-mean standardization after the inverse transforma-
tion since ΨðZÞ is invertible [10].

In 1970, Box and Jenkins recommended for the first time
the use of power transformation in ARIMA models [11].
After that date, many authors took up this topic and made
numerous proposals in many mathematical and applied
aspects of the time series. Also, some of them indicated some
failures in practical cases, for example, the success limitation
of the normality assumption of the transformed data, and
that it could lead to noticeable improvements in the simplic-
ity of the data models and the accuracy of the estimate [12]
especially in the models with skewness for variables [10].
Cook and Olive, [13] and Atkinson [8] also point out that
the estimation of the transformation parameter can be partic-
ularly sensitive to outliers. And in some practical cases of
time series, the BCTmay not lead to an improvement in fore-
casting performance [11], or as Chen and Lee [14] say, it does
not consistently produce superior forecasts.

Some problems in practical applications occur for two
reasons: the first is the difficulty in obtaining an optimum

value of the transformation parameter, so that at the same
time, the conditions of the fitting of assumed distribution of
the transformed data are met, and the model errors are min-
imal, while the second is that the transformations lead to a
change in the nature of the relationships between the vari-
ables of the model, which may lead to a lack of balance
between the efficiency of statistical inference and the ability
to interpret the sizes of the variables’ influence [15].

3. Formulation of the Problem

Let us consider a univariate time series {Zt , t ∈ Rg, by redivid-
ing the time series sample into (p − 1) statistical samples of
size ðn =N − s − p + 1Þ. This division allows the time series
to be redefined as functional data fðXi, YiÞgi=1,::,n in such
the variation trends between times of the series are diagnosed
through the functional analysis tools [1]. Thus, the relation-
ship can be described as a standard regression model.

Y =m Xð Þ + ε, ð2Þ

where mðXÞ is the smooth functional data, ε is a sequence of
independent identically distributed function white noise
sequence in such Eðε/XÞ = 0. X1,X2,⋯,Xn are identically
distributed as the functional random variable Xi = ðZi−p+1,
⋯, ZiÞ and Yi = Zi+s, i = p,⋯,N − s as a scalar response. In
order to characterize the relationship, the response Y , given
the functional variable X, assumes that N = nτ for some n ϵ
N and some τ > 0. And then, we get a statistical sample of
curves Xi = fZðtÞ, ði − 1Þτ < t ≤ iτg of size ðn − 1Þ and the
response Yi = Zðiτ + sÞ, i = 1,⋯, n − 1 [16, 17]. The usual
nonparametric estimation of the functional relation has sev-
eral advantages and can be very well adapted to local features
of time series data [18] and robustness to functional form
misspecification [19]. The kernel regression estimator is eval-
uated at a given function mðXÞ by

m̂ Xð Þ = ∑n
i=1YiK h−1 d X,Xið Þ� �

∑n
i=1K h−1 d X,Xið Þ� � , ð3Þ

where K is a kernel function, h (depending on n) is a positive
real bandwidth, and d ðX,XiÞ denotes any semimetric (index
of proximity) between the observed curves. The authors
suggest several ways to find equation (3) including kernel
regression estimator, functional conditional quantiles, and
conditional mode.

A number of useful explanatory methods can be used
to measure the closeness (proximities) between the curves
of the functional variables in a reduced dimensional
space. Ferraty and Vieu [16] refer to at least three fami-
lies of semimetrics to measure d ðX,XiÞ, for example, the
functional principal component analysis (FPCA) in which
the proximity is measured by the square root of the
quantity

Ð ðXiðtÞ −X jðtÞÞ2dt. Also, there is another mea-
sure which is based on the second derivative, where the
proximity is measured by the square root of the quantityÐ ðXð2Þ

i ðtÞ −Xð2Þ
j ðtÞÞ2dt (Dauxois et al. (1982), Castre et al.
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(1986), Ferraty and Vieu [16], and Febrero-Bande and
Oviedo de la Fuente (2012)).

Regarding the kernel estimator (3), Wand et al. [20] indi-
cated that it is not working well when the data are asymmet-
ric, as for the standard PCA which may not be the suitable
technique to apply when the data distribution is skewed or
there are outliers [21]. Therefore, power transformation is
considered one of the important alternatives to improve the
efficiency of nonparametric estimation of functional data
(for more details, see [12, 22, 23]).

Most transformation approaches have a common analyt-
ical path, which is the choice of the power transformation
model, and propose an algorithm for estimating the power
parameters in parallel with the mechanisms of estimating
the traditional parameters of the model. Also, there are two
common directions of the power parameter’s estimation;
the first is the parametric direction in which the power
parameters are estimated under the statistical modeling
assumptions. The most important methodology of this direc-
tion is the Box-Cox transformation (BCT) to improve the
efficiency of the multiple linear regression model under the
normality assumption of transformed response [6]. Also,
Wand et al. [20] used the same methodology of Box-Cox to
improve the efficiency of density estimation under the
assumption of some distributions of the transformed variable
[20] (see also [24, 25, 26]).

The second direction is the nonparametric estimation of
power parameters without any assumptions about the
response and error distributions or what might be called
the model-independent approach [27] (see also [28, 29]). In
this direction, the power parameters can estimate according
to some decision rules such as minimizing or maximizing
some indicators of model efficiency.

4. Application Methodology

It is known that the power transformations are important for
making the time series stationary in the variance, while the
differencing is useful for making the time series stationary
in the mean. Generally, none of these approaches can be a
substitute for the other. However, sometimes power transfor-
mations can make the time series stationary. And because the
BCT is used to transform the positive responses, it becomes
important to use it to transform the original data as a first
stage and then calculate the differences to achieve the station-
ary of the time series. And as a result, the variance stabilizing
obtained from the power transformation will be affected by
the differencing process. In this regard, Dittmann and
Granger [30] indicate that for every nonstationary process,
the polynomial transformations are also nonstationary and
have a stochastic trend in mean and invariance. To overcome
these problems, the authors believe that the use of YJT will be
appropriate to improve forecastability, because it can be used
to stabilize the variance in stationary time series. Also, the
estimation of the power parameter according to a certain
decision rule that we have referred to would be appropriate
as long as the issue is related to the nonparametric functional
analysis.

The application methodology includes estimating the
smooth functional data mðXÞ in the regression equation (2)
according to the kernel estimator equation (3) after trans-
forming the time series dataset. The BCT was applied to the
original time series dataset, while the YJT was applied to
the stationary time series dataset. So, the statistical sample
of curves was redefined by the expression

Ψλ Xið Þ = Ψλ Z tð Þð Þ, i − 1ð Þτ < t ≤ iτf g, ð4Þ

and the response by the expression

Ψλ Yið Þ =Ψλ Z iτ + sð Þð Þ, ð5Þ

where i = 1,⋯, n − 1 and Ψλ represents a data transfor-
mation function by the power parameter λ.

For each transformation model, the decision rule adopted
for selecting the optimal estimate of power parameter λ is
that which corresponds to the lowest estimates of the mean
squares of the forecasting errors of the last curve of functional
variable according to the equation MSEðXnÞ = ð1/sÞ∑s

j=1
ðZ∧

j − ZjÞ2, where Z∧
j and Zj are the j-th estimated and real

values in the last curve. As for Z∧
j values, they are computed

from the inversions of BCT and YJT, or what we might call
the retransformation from the transformed data metric to
the original metric.

So, the application algorithm of BCT and YJT models
and nonparametric estimation of the transformed functional
time series were as follows:

(1) Fix τ to define expressions (4) and (5)

(2) Remove the seasonality patterns by taking the differ-
ences to make the time series stationary

(3) Fix λ ϵ Λ, where Λ = f−3, 3g
(4) For each λ ϵ Λ, BCT is used to transform the original

time series ZðtÞ and YJT is used to transform the
stationary time series of k differences ΔkZðtÞ to get
the two explanatory functional matrices ΨλðXÞ =
½ΨλðZÞ�nxτ and ΨλðXÞ = ½ΨλðΔkZÞ�nxτ, (for more
details about the matrices fille organizing in R pro-
gram, see [16, 31]).

(5) Evaluate the explanatory function estimation of the
relationship ΨλðYiÞ =mðΨλðXÞÞ + ε according to
the following kernel estimator:

m̂ Ψλ Xð Þð Þ = ∑n
i=1Ψλ Yið ÞK h−1 d Ψλ Xð Þ,Ψλ Xið Þð Þ� �

∑n
i=1K h−1 d Ψλ Xð Þ,Ψλ Xið Þð Þ� : ð6Þ

The optimal value λ∗ of the power parameter λ is the one
that minimizes the MSEðXnÞ of the last functional variable.
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Figure 1: Plots of the monthly temperature averages series: (a) Nineveh City in Iraq for the period 1976 to 2000; (b) Tunisia (TSN) for the
period 1991 to 2015.
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Figure 2: The ACF plots of the two time series: (a) TSN; (b) TST.

Table 1: Optimal parameters of the BCT model and MSE estimates of the last curve of functional variable for the two time series datasets.

Time series TSN TST
Power parameters λ = 1 λ∗ = 2:1 λ = 1 λ∗ = 1:7
MSE Xnð Þ of the original and transferred time series 2.0365 1.5620 0.5214 0.3402

MSE Xnð Þ after making the original and transferred time series stationary 1.7616 1.7494 0.4303 0.5118

Table 2: Optimal parameters of the two transformation models andMSE estimates of the last curve of functional variable Xn for the two time
series datasets.

Time series TSN TST
Transformation models BCT YJT BCT YJT

Power parameters
λ λ∗ λ λ∗ λ λ∗ λ λ∗

1 2:1 1 −1:9 1 1:7 1 0:3
MSE Xnð Þ 1.7616 1.7494 1.7616 0.8955 0.4303 0.5118 0.4303 0.1706

TSN (YJT).λ⁎ = –1.9: MSE = 0.8955
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Figure 3: The plots of the original (blue) and predicted values (red) for the latest curve (25th year) of the inverse of the data transformed by
the YJT model for the two time series: (a) TSN; (b) TST.
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5. Applications

The two transformation models, BCT and YJT, were applied
to two time series examples of monthly temperature aver-
ages, and an R program was used to analyze the data. The
first time series has a size of 200 observations of Nineveh
City in Iraq (TSN) for the eight rainy months in every year.
We take the monthly average of the meteorological station
of Nineveh for the period 1976 to 2000 (Figure 1(a)). The
second has a size of 300 observations of Tunisia (TST)
for all months of the period 1991 to 2015. The data can
be found at https://climateknowledgeportal.worldbank.org
(Figure 1(b)).

It was found that the two time series are not stationary,
and this is clearly demonstrated by the values of the autocor-
relation functions (ACF) outside the confidence levels in
Figure 2.

By applying BCT model to the two time series according
to the five-step algorithm suggested in Section 4, we obtained
the results shown in Table 1.

As expected, it is evident from the results shown in
Table 1 that the estimate of MSE has decreased when using
BCT compared to its value resulting from the analysis of
the original data when λ = 1: These confusing results were
overcome when the YJT model was used according to the
same five-step algorithm.

As for the attempt to make the original and trans-
formed time series stationary by the first-order differences,
the MSE estimation increased in the two transformed
series and decreased in the original series. By applying
the YJT model according to the same five-step algorithm,
more accurate predictions of fewer errors were obtained
compared to the error estimates obtained by using the
BCT model (Table 2). Figure 3 shows the plots of the
original and predicted values for the latest curve (25th
year) after smoothing the data using the YJT model for
the two time series.

6. Conclusions

It is important to note that the optimum power parameters
λ∗ for both transformation models are significantly different
even though YJT represents the extended version of the BCT
model. The authors believe that this difference and the
amount of displacement in the original data generated by
both models were due to the use of a nonparametric estima-
tion method to choose the optimal power parameter as an
alternative to the parametric method for the hypothesis of
normality of transformed response, in addition to the differ-
ences in the level of homogeneity between stationary and
nonstationary time series datasets.

The application methodology in this article demonstrates
that YGT could be a successful alternative to BCT to improve
the nonparametric estimation of the functional time series.
Also, the nonparametric estimation of the power parameters
not restricted by the conditions of the probability distribu-
tion provides the researcher with wide options to ensure
the accuracy of the prediction.
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In this article, the exact wave structures are discussed to the Caudrey-Dodd-Gibbon equation with the assistance of Maple based on
the Hirota bilinear form. It is investigated that the equation exhibits the trigonometric, hyperbolic, and exponential function
solutions. We first construct a combination of the general exponential function, periodic function, and hyperbolic function in
order to derive the general periodic-kink solution for this equation. Then, the more periodic wave solutions are presented with
more arbitrary autocephalous parameters, in which the periodic-kink solution localized in all directions in space. Furthermore,
the modulation instability is employed to discuss the stability of the available solutions, and the special theorem is also
introduced. Moreover, the constraint conditions are also reported which validate the existence of solutions. Furthermore, 2-
dimensional graphs are presented for the physical movement of the earned solutions under the appropriate selection of the
parameters for stability analysis. The concluded results are helpful for the understanding of the investigation of nonlinear waves
and are also vital for numerical and experimental verification in engineering sciences and nonlinear physics.

1. Introduction

It is known that these exact solutions of nonlinear evolution
equations (NLEEs), especially the soliton solutions [1–3], can
be given by using a variety of different methods [4, 5], such as
Jacobi elliptic function expansion method [6], inverse scat-
tering transformation (IST) [7, 8], Darboux transformation
(DT) [9], extended generalized DT [10], Lax pair (LP) [11],
Lie symmetry analysis [12], Hirota bilinear method [13],
and others [14, 15]. The Hirota bilinear method is an efficient
tool to construct exact solutions of NLEEs, and there exists
plenty of completely integrable equations which are studied
in this way. For instance, generalized bilinear equations
[16], the lump-type solutions in a homogenous-dispersive
medium [17], the (2 + 1)-dimensional KdV equation [18],
the (3 + 1)-D potential-YTSF equation [19], the generalized

BKP equation [20], the (3 + 1)-dimensional BKP-
Boussinesq equation [21], the (3 + 1) dimensional general-
ized KP-Boussinesq equation [22], the (2 + 1)-dimensional
integrable Boussinesq model [23], and the (2 + 1)-dimen-
sional Breaking Soliton equation [24, 25]. More recently,
lump waves and rogue waves have attracted a growing
amount of attention, and many theoretical and experimental
studies of lump waves are mentioned [26–33]. A novel
method for finding the special rogue waves with predictabil-
ity of NLEEs is proposed by using the Hirota bilinear method
by powerful researchers in Refs. [34, 35], in which some
results are very helpful for us to study some physical phe-
nomena in engineering.

The Caudrey-Dodd-Gibbon equation introduced by
Aiyer et al. [36] who describes the inelastic interactions
between the solitary waves under strong physical contexts
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in certain integrable or nonintegrable systems and has been
investigated the related dynamic behavior [37], which reads

Φt +Φxxxxx + 30ΦΦxxx + 30ΦxΦxx + 180Φ2Φx = 0: ð1Þ

In 2006, the tanh solutions of the equation [38] and, in
2008, the multiple-soliton solutions utilizing the Hirota bilin-
ear method combined with the simplified Hereman method
[39] for the above equation are derived by Wazwaz. Also,
the physical comprehension of Equation (1) was demon-
strated by plenty of scholars who investigated its solitary type
solutions and given in Refs. [40] and [41]. The homotopy
perturbation method has been utilized to find solutions for
the aforementioned equation [42–44]. Based on the obtained
transformation of integrating Equation (1), we get to the fol-
lowing nonlinear PDE [45]:

Λt + 60Λ3
x + 30ΛxΛxxx +Λxxxxx = 0: ð2Þ

According to [46], the Hirota bilinear from of the CDG
equation reads

Λ = 2 ln Γð Þx, Φ =Λxð Þ ð3Þ

and, also by applying the dependent variable transformation,
turns into the Hirota bilinear form

Dxt +D6
x

� �
Γ:Γ = 0, ð4Þ

where D is a bilinear operator. By deeming the D-operator
defined with the aid of the functions Γ1 and Γ2, we get to
the following relation:

Dπ1
x Dπ2

t Γ1:Γ2ð Þ = ∂
∂x

−
∂
∂x′

� �π1 ∂
∂t

−
∂
∂t ′

� �π2

Γ1 x, tð Þ:Γ2 x′, t ′
� �����

x

′=x,t′=t:

ð5Þ

With the help of the transformation Equation (3), the
general periodic-kink solutions of Equation (1) can be given.
We get to the bilinear form the of Γ as

ΓΓxt − ΓxΓt + ΓΓxxxxxx − 6ΓxΓxxxxx + 15ΓxxΓxxxx − 10Γ2
xxx = 0:

ð6Þ

Moreover, the stability analysis and the more general
periodic-wave solutions and special rogue waves with pre-
dictability are investigated in our paper, which have never
been studied. Various types of studies were investigated by
capable authors in which some of them can be mentioned,
for example, the Caudrey–Dodd–Gibbon equation [47], the
pZK equation using Lie point symmetries [48], group-
invariant solutions of the (3 + 1)-dimensional generalized
KP equation [49], optimal system and dynamics of solitons
for a higher-dimensional Fokas equation [50], dynamics of
solitons for (2 + 1)-dimensional NNV equations [51], the
combined MCBS-nMCBS equation [52], Lie symmetry
reductions for (2 + 1)-dimensional Pavlov equation [53],
Schrödinger-Hirota equation with variable coefficients [54],

the (2 + 1)-dimension paraxial wave equation [55], the
fractional Drinfeld-Sokolov-Wilson equation [56], the
(3 + 1)-dimensional extended Jimbo-Miwa equations [57],
and a high-order partial differential equation with fractional
derivatives [58]. In the valuable work, the capable authors
studied the periodic wave solutions and stability analysis for
the KP-BBM equation [59] and breather and periodic wave
solution for generalized Bogoyavlensky-Konopelchenko
equation [60] with the aid of Hirota operator.

To make this paper more self-contained, a combination
of general exponential function, periodic function, and
hyperbolic function of the (3 + 1)-dimensional CDG equa-
tion is constructed with the help of a bilinear operator, which
is crucial to obtain the periodic-wave solution of Equation
(1). Based on the Hirota bilinear form Equation (6), the gen-
eral periodic-wave solution is derived in Section 2 and the
novel periodic solutions which can be arisen with twenty
one classes. In Section 4, we shall investigate the stability
analysis to obtain the modulation stability spectrum of this
equation. The final section will be reserved for the conclu-
sions and the discussions.

2. Multiple Exp-Function Method

In this section, according to [61–63] so that it can be further
employed to the nonlinear partial differential equation
(NLPDE) in order to furnish its exact solutions, it can be pre-
sented as:

Step 1. The following is the NLPDE:

P x, y, t,Ψ,Ψx ,Ψy,Ψz ,Ψt ,Ψxx,Ψtt ,⋯
� �

= 0: ð7Þ

We commence a sequence of new variables ξi = ξiðx, tÞ,
1 ≤ i ≤ n, by solvable PDEs, for example, the linear ones,

ξi,x = αiξi, ξi,t = δiξi, 1 ≤ i ≤ n, ð8Þ

where αi, 1 ≤ i ≤ n, is the angular wave number and δi, 1 ≤ i
≤ n, is the wave frequency. It should be pointed that this is
frequently the initiating step for constructing the exact solu-
tions to NLPDEs, and moreover, solving such linear equa-
tions redounds to the exponential function solutions:

ξi = ϖie
θi , θi = αix − δit, 1 ≤ i ≤ n, ð9Þ

in which ϖi, 1 ≤ i ≤ n, are undetermined constants.

Step 2. Determine the solution of Equation (7) as the follow-
ing form in terms of the new variables ξi, 1 ≤ i ≤ n:

Ψ x, tð Þ = Δ ξ1, ξ2,⋯, ξnð Þ
Ω ξ1, ξ2,⋯, ξnð Þ , Δ = 〠

n

r,s=1
〠
M

i,j=0
Δrs,ijξ

i
rξ

j
s,Ω = 〠

n

r,s=1
〠
N

i,j=0
Ωrs,ijξ

i
rξ

j
s,

ð10Þ

in which Δrs,ij and Ωrs,ij are the amounts to be settled.
Appending Equation (10) into Equation (7) and ordering
the numerator of the rational function to zero, we can achieve
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a series of nonlinear algebraic equations about the variables
αi, δi, Δrs,ij and Ωrs,ij. Solving the solutions for these nonlin-
ear algebraic equations and putting these solutions into
Equation (10), the multiple soliton solutions to Equation
(7) can be obtained in the below form as

Ψ x, tð Þ = Δ ϖ1e
α1x−δ1t ,⋯, ϖne

αnx−δnt
� �

Ω ϖ1eα1x−δ1t ,⋯, ϖneαnx−δnt
� � , ð11Þ

in which Ω ≠ 0, and also, we have

Δt = 〠
n

i=1
Δξi

ξi,t ,Ωt = 〠
n

i=1
Ωξi

ξi,t , Δx = 〠
n

i=1
Δξi

ξi,x,Ωx = 〠
n

i=1
Ωξi

ξi,x ,

Ψt =
Ω∑n

i=1Δξi
ξi,t − Δ∑n

i=1Ωξi
ξi,t

Ω2 ,Ψx =
Ω∑n

i=1Δξi
ξi,x − Δ∑n

i=1Ωξi
ξi,x

Ω2 :

ð12Þ

3. Multiple Soliton Solutions for the
CDG Equation

3.1. Set I: One-Wave Solution. We start up with one-wave
function based on the explanation in Step 2 in the previous
section, we deem that Equation (1) has the below form of
one-wave solution as

Ψ x, tð Þ = η1
η2

, η1 = σ1 + σ2e
α1x−δ1t , η2 = 1 + ρ1 + ρ2e

α1x−δ1t ,

ð13Þ

in which ρ1, ρ2, σ1, and σ2 are the unfound constants. Plug-
ging (13) into Equation (1), we get to the following cases:

Case 1.

α1 = α1, β1 = β1, ρ1 =
ρ2σ1 − σ2

σ2
, ρ2 = ρ2,

σ1 = σ1, σ2 = σ2, δ1 = α51:
ð14Þ

Case 2.

α1 = α1, β1 = β1, ρ1 = −1, ρ2 = ρ2,
σ1 = σ1, σ2 = σ2, δ1 = α51:

ð15Þ

Case 3.

α1 = α1, β1 = β1, ρ1 = ρ1, ρ2 =
σ2 1 + ρ1ð Þ

σ1
,

σ1 = σ1, σ2 = σ2, δ1 = δ1:

ð16Þ

For example, the resulting one-wave solution for Cases 1
to 3 will be read, respectively, as

Ψ1 x, tð Þ = σ1 + σ2e
−tα15+xα1

1 + ρ2σ1 − σ2ð Þ/σ2ð Þ + ρ2e
−tα15+xα1

,

Ψ2 x, tð Þ = σ1 + σ2e
−tα15+xα1

ρ2e
−tα15+xα1

,

Ψ1 x, tð Þ = σ1 + σ2e
−tδ1+xα1

1 + ρ1 + σ2 1 + ρ1ð Þe−tδ1+xα1� �
/σ1

� � :
ð17Þ

3.2. Set II: Two-Wave Solutions. We start up with two-wave
functions based on the explanations in Step 2 in the previous
section; we deem that Equation (1) has the bellow form of
two-wave solutions as

Ψ x, tð Þ = η1
η2

, ð18Þ

η1 = ρ0 + ρ1e
α1x−δ1t + ρ2e

α2x−δ2t + ρ1ρ2ρ12e
α1+α2ð Þx− δ1+δ2ð Þt ,

ð19Þ

η2 = 1 + σ1e
α1x−δ1t + σ2e

α2x−δ2t + σ1σ2σ12e
α1+α2ð Þx− δ1+δ2ð Þt:

ð20Þ
Plugging (18) along with (19) into Equation (1), we gain

the following cases:

Case 1.

α1 = 0, α2 = α2, δ1 = δ1, δ1 = δ1, ρ0 =
ρ2
σ2

,

ρ1 = 0, ρ2 = ρ2, ρ12 = ρ12, σ1 = σ1, σ2 = σ2, σ12 = 1:
ð21Þ

Case 2.

α1 = 0, α2 = α2, δ1 = δ1, δ2 = δ2, ρ0 =
1
ρ12

,

ρ1 = ρ1, ρ2 =
σ2
ρ12

, ρ12 = ρ12, σ1 = 0, σ2 = σ2, σ12 = σ12:

ð22Þ

Case 3.

α1 = 0, α2 = α2, δ1 = δ1, δ2 = α52, ρ0 =
1
ρ12

,

ρ1 = ρ1, ρ2 = ρ2, ρ12 = ρ12, σ1 = σ1, σ2 = 0, σ12 = σ12:

ð23Þ

Case 4.

α1 = 0, α2 = α2, δ1 = δ1, δ2 = δ2, ρ0 =
ρ2
σ2

,

ρ1 = ρ1, ρ2 = ρ2, ρ12 =
σ2
ρ2

, σ1 = σ1, σ2 = σ2, σ12 = 1:
ð24Þ
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Case 5.

α1 = α1, α2 = α2, δ1 = α51, δ2 = α52,

ρ0 =
α1

4 − 3 α13α2 + 4 α12α22 − 3 α1α23 + α2
4

ρ12 α1
2 + α1α2 + α2

2ð Þ α1 + α2ð Þ2 ,

ρ1 = ρ1, ρ2 = ρ2, ρ12 = ρ12, σ1 = 0, σ2 = 0, σ12 = σ12:
ð25Þ

Case 6.

α1 = α1, α2 = α2, δ1 = α51, δ2 = δ2, ρ0 =
1
ρ12

,

ρ1 = ρ1, ρ2 =
σ2
ρ12

, ρ12 = ρ12,

σ1 = 0, σ2 = σ2, σ12 = σ12:

ð26Þ

Case 7.

α1 = α1, α2 = α2, δ1 = δ1, δ2 = δ2, ρ0 =
ρ2
σ2

,

ρ1 =
ρ2σ1
σ2

, ρ2 = ρ2, ρ12 =
σ2σ12
ρ2

, σ1 = 0, σ2 = σ2, σ12 = σ12:

ð27Þ

For example, the resulting two-wave solution for Cases
1–7 will be read, respectively, as

Ψ1 x, tð Þ = ρ2/σ2ð Þ + ρ2e
−tδ2+xα2

1 + σ1e−tδ1 + σ2e−tδ2+xα2 + σ1σ2e−tδ1−tδ2+xα2
,

Ψ2 x, tð Þ = ρ12
−1 + ρ1e

−tδ1 + σ2e
−tδ2+xα2

� �
/ρ12

� �
+ ρ1σ2e

−tδ1−tδ2+xα2

1 + σ2e−tδ2+xα2
,

Ψ3 x, tð Þ = ρ12
−1 + ρ1e

−tδ1 + ρ2e
−tα25+xα2 + ρ1ρ2ρ12e

−tα25−tδ1+xα2

1 + σ1e−tδ1
,

Ψ4 x, tð Þ = ρ2/σ2ð Þ + ρ1e
−tδ1 + ρ2e

−tδ2+xα2 + ρ1σ2e
−tδ1−tδ2+xα2

1 + σ1e−tδ1 + σ2e−tδ2+xα2 + σ1σ2e−tδ1−tδ2+xα2
,

Ψ5 x, tð Þ = α1
4 − 3 α13α2 + 4 α12α22 − 3 α1α23 + α2

4

ρ12 α1
2 + α1α2 + α2

2ð Þ α1 + α2ð Þ2
+ ρ1e

−tα15+xα1 + ρ2e
−tα25+xα2 + ρ1ρ2ρ12e

−tα15−tα25+xα1+xα2 ,

Ψ6 x, tð Þ = ρ12
−1 + ρ1e

−tα15+xα1 + σ2e
−tδ2+xα2

� �
/ρ12

� �
+ ρ1σ2e

−tα15−tδ2+xα1+xα2

1 + σ2e−tδ2+xα2
,

Ψ7 x, tð Þ = ρ2/σ2ð Þ + ρ2σ1e
−tδ1+xα1

� �
/σ2

� �
+ ρ2e

−tδ2+xα2 + ρ2σ1σ12e
−tδ1−tδ2+xα1+xα2

1 + σ1e−tδ1+xα1 + σ2e−tδ2+xα2 + σ1σ2σ12e−tδ1−tδ2+xα1+xα2
:

ð28Þ

3.3. Set III: Three-Wave Solutions. We start up with three-
wave functions according to the given explanations in Step
2 in the previous section, we deem that Equation (1) has
the below form of three-wave solutions as

Ψ x, tð Þ = df η1ð Þ/dx
η1

, ð29Þ

η1 = 1 + ρ1e
Λ1 + ρ2e

Λ2 + ρ3e
Λ3

+ ρ1ρ2ρ12e
Λ1+Λ2

+ ρ1ρ3ρ13e
Λ1+Λ3 + ρ2ρ3ρ23e

Λ2+Λ3

+ ρ1ρ2ρ3ρ12ρ13ρ23e
Λ1+Λ2+Λ3 ,

ð30Þ

in which Λi = αix − δit, i = 1, 2, 3. Appending (29) along
with (30) into Equation (1), we obtain the following
case:

αi = αi, δi = α5i , i = 1, 2, 3,
ρij = ρij, i, j = 1, 2, 3, i ≠ j:

ð31Þ

Therefore, three-wave solution will be as

Ψ1 x, tð Þ = ρ1α1e
−tα15+xα1 + ρ2α2e

−tα25+xα2 + ρ3α3e
−tα35+xα3

+ ρ1ρ2ρ12 α1 + α2ð Þe−tα15−tα25+xα1+xα2
+ ρ1ρ3ρ13 α1 + α3ð Þe−tα15−tα35+xα1+xα3
+ ρ2ρ3ρ23 α2 + α3ð Þe−tα25−tα35+xα2+xα3
+ ρ1ρ2ρ3ρ12ρ13ρ23 α1 + α2 + α3ð Þe−tα15−tα25−tα35+xα1+xα2+xα3 /
� 1 + ρ1e

−tα15+xα1
�

+ ρ2e
−tα25+xα2 + ρ3e

−tα35+xα3

+ ρ1ρ2ρ12e
−tα15−tα25+xα1+xα2 + ρ1ρ3ρ13e

−tα15−tα35+xα1+xα3

+ρ2ρ3ρ23e−tα2
5−tα35+xα2+xα3

+ ρ1ρ2ρ3ρ12ρ13ρ23e
−tα15−tα25−tα35+xα1+xα2+xα3Þ:

ð32Þ

3.4. Cross-Kink Solutions. Here, we will consider the
cross-kink wave solution with selecting the below func-
tion which for Equation (1) has been taken as

f = exp τ1ð Þ + θ10 exp −τ1ð Þ + sinh τ2ð Þ
+ sin τ3ð Þ + θ11, τ1 = θ1x + θ2t

+ θ3, τ2 = θ4x + θ5t

+ θ6, τ3 = θ7x + θ8t + θ9,

ð33Þ

Ψ x, tð Þ = ln fð Þxx, ð34Þ

where θi, i = 1,⋯, 11, are undetermined amounts which
should be detected. Appending (34) into Equation (1)
and afterwards collecting the coefficients, we obtain the
following consequences:

Case 1.

θ1 = θ4 = iθ7, θ2 = θ5 = −16iθ57,
θ8 = −16θ57, θ11 = 0, i2 = −1:

ð35Þ
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Substituting (35) into (33) and (34), we achieve a cross-
kink wave solution of Equation (1) as follows:

Case 2.

θ1 =
ffiffiffi
3

p
θ7 = i

ffiffiffi
3

p
θ4, θ2 = −

ffiffiffi
3

p
θ8 = 16

ffiffiffi
3

p
iθ54,

θ5 = −16θ54, θ10 = 0, θ11 = 0, i2 = −1:
ð37Þ

Substituting (37) into (33) and (34), we achieve a cross-
kink wave solution of Equation (1) which can be written as
follows:

3.5. Periodic-Kink Wave Solutions.Here, we will consider the
periodic-kink wave solution with selecting the below func-
tion which for Equation (1) has been taken as

f = exp τ1ð Þ + θ10 exp −τ1ð Þ + cosh τ2ð Þ + cos τ3ð Þ
+ θ11, τ1 = θ1x + θ2t + θ3, τ2 = θ4x + θ5t

+ θ6, τ3 = θ7x + θ8t + θ9,
ð39Þ

Ψ x, tð Þ = ln fð Þxx, ð40Þ
where θi, i = 1,⋯, 11, are undetermined amounts which
should be detected. Appending (40) into Equation (1) and

afterwards collecting the coefficients, we obtain the following
consequences:

Case 1.

θ1 = θ4 = iθ7, θ2 = θ5 = −16iθ57, θ8 = −16θ57, θ11 = 0, i2 = −1:
ð41Þ

Substituting (41) into (39) and (40), we achieve a
periodic-kink wave solution of Equation (1) which can be
written as follows:

f = e−16 iθ7
5t+iθ7x+θ3 + θ10e

16 iθ75t−iθ7x−θ3 − sinh 16 iθ75t − iθ7x − θ6
� �

− sin 16 θ75t − θ7x − θ9
� �

,

Ψ1 =
−θ7

2e−16 iθ7
5t+iθ7x+θ3 − θ10θ7

2e16 iθ7
5t−iθ7x−θ3 + sinh 16 iθ75t − iθ7x − θ6

� �
θ7

2 + sin 16 θ75t − θ7x − θ9
� �

θ7
2

e−16 iθ7
5t+iθ7x+θ3 + θ10e16 iθ7

5t−iθ7x−θ3 − sinh 16 iθ75t − iθ7x − θ6
� �

− sin 16 θ75t − θ7x − θ9
� �

−
iθ7e

−16 iθ75t+iθ7x+θ3 − iθ10θ7e
16 iθ75t−iθ7x−θ3 + i cosh 16 iθ75t − iθ7x − θ6

� �
θ7 + cos 16 θ75t − θ7x − θ9

� �
θ7

� �2
e−16 iθ7

5t+iθ7x+θ3 + θ10e16 iθ7
5t−iθ7x−θ3 − sinh 16 iθ75t − iθ7x − θ6

� �
− sin 16 θ75t − θ7x − θ9

� �� �2 :

ð36Þ

f = e16
ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 − sinh 16 tθ45 − xθ4 − θ6

� �
− sin 16 θ45it − iθ4x − θ9

� �
,

Ψ1 =
3 i2θ42e16

ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 − sinh 16 tθ45 − xθ4 − θ6

� �
θ4

2 + sin 16 θ45it − iθ4x − θ9
� �

i2θ4
2

e16
ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 − sinh 16 tθ45 − xθ4 − θ6

� �
− sin 16 θ45it − iθ4x − θ9

� �

−

ffiffiffi
3

p
iθ4e

16 ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 + cosh 16 tθ45 − xθ4 − θ6

� �
θ4 + cos 16 θ45it − iθ4x − θ9

� �
iθ4

� �2
e16

ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 − sinh 16 tθ45 − xθ4 − θ6

� �
− sin 16 θ45it − iθ4x − θ9

� �� �2 :

ð38Þ

f = e−16 iθ7
5t+iθ7x+θ3 + θ10e

16 iθ75t−iθ7x−θ3 + cosh −16 iθ75t + iθ7x + θ6
� �

+ cos −16 θ75t + θ7x + θ9
� �

,

Ψ2 =
i2θ7

2e−16 iθ7
5t+iθ7x+θ3 + θ10i

2θ7
2e16 iθ7

5t−iθ7x−θ3 + cosh 16 iθ75t − iθ7x − θ6
� �

i2θ7
2 − cos 16 tθ75 − xθ7 − θ9

� �
θ7

2

e−16 iθ7
5t+iθ7x+θ3 + θ10e16 iθ7

5t−iθ7x−θ3 + cosh 16 iθ75t − iθ7x − θ6
� �

+ cos 16 tθ75 − xθ7 − θ9
� �

−
iθ7e

−16 iθ75t+iθ7x+θ3 − θ10iθ7e
16 iθ75t−iθ7x−θ3 − sinh 16 iθ75t − iθ7x − θ6

� �
iθ7 + sin 16 tθ75 − xθ7 − θ9

� �
θ7

� �2
e−16 iθ7

5t+iθ7x+θ3 + θ10e16 iθ7
5t−iθ7x−θ3 + cosh 16 iθ75t − iθ7x − θ6

� �
+ cos 16 tθ75 − xθ7 − θ9

� �� �2 :

ð42Þ
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Case 2.

θ1 =
ffiffiffi
3

p
θ7 = i

ffiffiffi
3

p
θ4, θ2 = −

ffiffiffi
3

p
θ8 = 16

ffiffiffi
3

p
iθ54,

θ5 = −16θ54, θ10 = 0, θ11 = 0, i2 = −1:
ð43Þ

Substituting (43) into (39) and (40), we achieve a
periodic-kink wave solution of Equation (1) as follows:

3.6. Periodic Type Wave Solutions-I. Here, we will consider
the periodic type wave solution with selecting the below func-
tion which for Equation (1) has been taken as

f = θ10 exp τ1ð Þ + θ11 exp −τ2ð Þ + θ12 cos τ3ð Þ, τ1 = θ1x

+ θ2t + θ3, τ2 = θ4x + θ5t + θ6, τ3 = θ7x + θ8t + θ9,
ð45Þ

Ψ x, tð Þ = ln fð Þxx, ð46Þ
where θi, i = 1,⋯, 11, are undetermined amounts which
should be detected. Appending (46) into Equation (1) and
afterwards collecting the coefficients, we obtain the following
consequences:

Case 1.

θ1 =
ffiffiffi
3

p
θ7, θ2 = 16

ffiffiffi
3

p
θ57, θ8 = −16θ57, θ11 = 0: ð47Þ

Substituting (47) into (45) and (46), a periodic type wave
solution of Equation (1) can be obtained as follows:

f = θ10e
16 θ75

ffiffi
3

p
t+
ffiffi
3

p
θ7x+θ3 + θ12 cos 16 tθ75 − xθ7 − θ9

� �
,

Ψ1 =
3 θ10θ72e16 θ7

5 ffiffi3p
t+
ffiffi
3

p
θ7x+θ3 − θ12 cos 16 tθ75 − xθ7 − θ9

� �
θ7

2

θ10e16 θ7
5 ffiffi3p

t+
ffiffi
3

p
θ7x+θ3 + θ12 cos 16 tθ75 − xθ7 − θ9

� �

−
θ10

ffiffiffi
3

p
θ7e

16 θ75
ffiffi
3

p
t+
ffiffi
3

p
θ7x+θ3 + θ12 sin 16 tθ75 − xθ7 − θ9

� �
θ7

� �2
θ10e16 θ7

5 ffiffi3p
t+
ffiffi
3

p
θ7x+θ3 + θ12 cos 16 tθ75 − xθ7 − θ9

� �� �2 :

ð48Þ

Case 2.

θ1 = −θ4 = −
ffiffiffi
3

p
θ7, θ2 = −θ5 = −16

ffiffiffi
3

p
θ57, θ8 = −16θ57: ð49Þ

Substituting (49) into (45) and (46), a periodic type wave
solution of Equation (1) can be obtained as follows:

3.7. Periodic Type Wave Solutions-II. Here, we will consider
the periodic wave solution with selecting the below function
which for Equation (1) has been taken as

f = θ10 exp τ1ð Þ + θ11 exp −τ2ð Þ + θ12 sin τ3ð Þ, τ1 = θ1x

+ θ2t + θ3, τ2 = θ4x + θ5t + θ6, τ3 = θ7x + θ8t + θ9,
ð51Þ

f = e16
ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 + sinh −16 tθ45 + xθ4 + θ6

� �
+ sin −16 θ45it + iθ4x + θ9

� �
,

Ψ2 =
3 i2θ42e16

ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 + cosh 16 tθ45 − xθ4 − θ6

� �
θ4

2 − cos 16 θ45it − iθ4x − θ9
� �

i2θ4
2

e16
ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 + cosh 16 tθ45 − xθ4 − θ6

� �
+ cos 16 θ45it − iθ4x − θ9

� �

−

ffiffiffi
3

p
iθ4e

16 ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 − sinh 16 tθ45 − xθ4 − θ6

� �
θ4 + sin 16 θ45it − iθ4x − θ9

� �
iθ4

� �2
e16

ffiffi
3

p
θ4

5it+
ffiffi
3

p
iθ4x+θ3 + cosh 16 tθ45 − xθ4 − θ6

� �
+ cos 16 θ45it − iθ4x − θ9

� �� �2 :

ð44Þ

f = θ10e
−16 θ75

ffiffi
3

p
t−
ffiffi
3

p
θ7x+θ3 + θ11e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x−θ6 + θ12 cos 16 tθ75 − xθ7 − θ9

� �
,

Ψ2 =
3 θ10θ72e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x+θ3 + 3 θ11θ72e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 − θ12 cos 16 tθ75 − xθ7 − θ9

� �
θ7

2

θ10e−16 θ7
5 ffiffi3p

t−
ffiffi
3

p
θ7x+θ3 + θ11e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 + θ12 cos 16 tθ75 − xθ7 − θ9

� �

−
−θ10

ffiffiffi
3

p
θ7e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x+θ3 − θ11

ffiffiffi
3

p
θ7e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x−θ6 + θ12 sin 16 tθ75 − xθ7 − θ9

� �
θ7

� �2
θ10e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x+θ3 + θ11e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 + θ12 cos 16 tθ75 − xθ7 − θ9

� �� �2 :

ð50Þ
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Ψ x, tð Þ = ln fð Þxx, ð52Þ

where θi, i = 1,⋯, 11, are undetermined amounts which
should be detected. Appending (52) into Equation (1) and
afterwards collecting the coefficients, we obtain the following
consequences:

Case 1.

θ1 =
ffiffiffi
3

p
θ7, θ2 = 16

ffiffiffi
3

p
θ57, θ8 = −16θ57, θ11 = 0: ð53Þ

Substituting (53) into (51) and (52), a periodic type wave
solution of Equation (1) can be obtained as follows:

f = θ10e
16 θ75

ffiffi
3

p
t+
ffiffi
3

p
θ7x+θ3 + θ12 sin −16 tθ75 + xθ7 + θ9

� �
,

Ψ1 =
3 θ11θ72e16 θ7

5 ffiffi3p
t+
ffiffi
3

p
θ7x+θ3 + θ12 sin 16 tθ75 − xθ7 − θ9

� �
θ7

2

θ11e16 θ7
5 ffiffi3p

t+
ffiffi
3

p
θ7x+θ3 − θ12 sin 16 tθ75 − xθ7 − θ9

� �

−
θ11

ffiffiffi
3

p
θ7e

16 θ75
ffiffi
3

p
t+
ffiffi
3

p
θ7x+θ3 + θ12 cos 16 tθ75 − xθ7 − θ9

� �
θ7

� �2
θ11e16 θ7

5 ffiffi3p
t+
ffiffi
3

p
θ7x+θ3 − θ12 sin 16 tθ75 − xθ7 − θ9

� �� �2 :

ð54Þ

Case 2.

θ1 = −θ4 = −
ffiffiffi
3

p
θ7, θ2 = −θ5 = −16

ffiffiffi
3

p
θ57, θ8 = −16θ57: ð55Þ

Substituting (55) into (51) and (52), a periodic type wave
solution of Equation (1) can be obtained as follows:

3.8. Solitary Wave Solutions. Here, we will consider the soli-
tary wave solution with selecting the below function which
for Equation (1) has been taken as

f = θ7 + θ8 exp τ1ð Þ + θ9 exp −τ2ð Þ, τ1 = θ1x

+ θ2t + θ3, τ2 = θ4x + θ5t + θ6,
ð57Þ

Ψ x, tð Þ = ln fð Þxx, ð58Þ
where θi, i = 1,⋯, 9, are undetermined amounts which
should be detected. Appending (58) into Equation (1) and
afterwards collecting the coefficients, we obtain the below
consequences:

Case 1.

θ2 = −θ1
5 − 5 θ14θ4 − 10 θ13θ42 − 10 θ12θ43

− 5 θ1θ44 − θ4
5 − θ5, θ7 = 0:

ð59Þ

Substituting (59) into (57) and (58), a solitary wave solu-
tion of Equation (1) can be written as follows:

f = θ8e
−θ1

5−5 θ14θ4−10 θ13θ42−10 θ12θ43−5 θ1θ44−θ45−θ5ð Þt+θ1x+θ3
+ θ9e

−tθ5−xθ4−θ6 ,
ð60Þ

Ψ1 =
θ8θ1

2e −θ1
5−5 θ14θ4−10 θ13θ42−10 θ12θ43−5 θ1θ44−θ45−θ5ð Þt+θ1x+θ3 + θ9θ4

2e−tθ5−xθ4−θ6

θ8e
−θ1

5−5 θ14θ4−10 θ13θ42−10 θ12θ43−5 θ1θ44−θ45−θ5ð Þt+θ1x+θ3 + θ9e−tθ5−xθ4−θ6

−
θ8θ1e

−θ1
5−5 θ14θ4−10 θ13θ42−10 θ12θ43−5 θ1θ44−θ45−θ5ð Þt+θ1x+θ3 − θ9θ4e

−tθ5−xθ4−θ6
� �2

θ8e
−θ1

5−5 θ14θ4−10 θ13θ42−10 θ12θ43−5 θ1θ44−θ45−θ5ð Þt+θ1x+θ3 + θ9e−tθ5−xθ4−θ6
� �2 :

ð61Þ

By using suitable values of parameters, the analytical
treatment of periodic wave solution is presented in Figure 1
including 3D plot and 2D plot with three points of time
including t = 0, t = 0:02, and t = 0:04.

Case 2.

θ1 = −θ4, θ2 = θ54, θ5 = −θ54: ð62Þ

Substituting (62) into (57) and (58), a solitary wave solu-
tion of Equation (1) can be obtained as follows:

f = θ7 + θ8e
tθ4

5−xθ4+θ3 + θ9e
tθ4

5−xθ4−θ6 ,

Ψ2 =
θ4

2 θ8e
tθ4

5−xθ4+θ3 + θ9e
tθ4

5−xθ4−θ6
� �

θ7

θ7 + θ8etθ4
5−xθ4+θ3 + θ9etθ4

5−xθ4−θ6
� �2 : ð63Þ

f = θ10e
−16 θ75

ffiffi
3

p
t−
ffiffi
3

p
θ7x+θ3 + θ11e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x−θ6 − θ12 sin 16 tθ75 − xθ7 − θ9

� �
,

Ψ2 =
3 θ10θ72e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x+θ3 + 3 θ11θ72e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 + θ12 sin 16 tθ75 − xθ7 − θ9

� �
θ7

2

θ10e−16 θ7
5 ffiffi3p

t−
ffiffi
3

p
θ7x+θ3 + θ11e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 − θ12 sin 16 tθ75 − xθ7 − θ9

� �

−
−θ10

ffiffiffi
3

p
θ7e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x+θ3 − θ11

ffiffiffi
3

p
θ7e

−16 θ75
ffiffi
3

p
t−
ffiffi
3

p
θ7x−θ6 + θ12 cos 16 tθ75 − xθ7 − θ9

� �
θ7

� �2
θ10e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x+θ3 + θ11e−16 θ7

5 ffiffi3p
t−
ffiffi
3

p
θ7x−θ6 − θ12 sin 16 tθ75 − xθ7 − θ9

� �� �2 :

ð56Þ
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By using suitable values of parameters, the analytical
treatment of periodic wave solution is presented in Figure 2
including 3D plot and 2D plot with three points of time
including t = 0, t = 0:02, and t = 0:04.

Case 3.

θ1 = −
1
2 −1 ±

ffiffiffi
3

p
i

� �
θ4, θ2 =

1
2 1 ±

ffiffiffi
3

p
i

� �
θ54, θ5 = −θ54: ð64Þ

Substituting (64) into (57) and (58), we achieve a solitary
wave solution of Equation (1) as follows:

f = θ7 + θ8e
1/2ð Þ tθ45 i

ffiffi
3

p
+1ð Þ− 1/2ð Þ xθ4 i

ffiffi
3

p
−1ð Þ+θ3 + θ9e

tθ4
5−xθ4−θ6 , 

Ψ3 =
1/4ð Þ θ8θ42 i

ffiffiffi
3

p
− 1

� �2
e 1/2ð Þ tθ45 i

ffiffi
3

p
+1ð Þ− 1/2ð Þ xθ4 i

ffiffi
3

p
−1ð Þ+θ3 + θ9θ4

2etθ4
5−xθ4−θ6

θ7 + θ8e
1/2ð Þ tθ45 i

ffiffi
3

p
+1ð Þ− 1/2ð Þ xθ4 i

ffiffi
3

p
−1ð Þ+θ3 + θ9etθ4

5−xθ4−θ6
 

−
− 1/2ð Þ θ8θ4 i

ffiffiffi
3

p
− 1

� �
e 1/2ð Þ tθ45 i

ffiffi
3

p
+1ð Þ− 1/2ð Þ xθ4 i

ffiffi
3

p
−1ð Þ+θ3 − θ9θ4etθ4

5−xθ4−θ6
� �2

θ7 + θ8e
1/2ð Þ tθ45 i

ffiffi
3

p
+1ð Þ− 1/2ð Þ xθ4 i

ffiffi
3

p
−1ð Þ+θ3 + θ9etθ4

5−xθ4−θ6
� �2 :

ð65Þ

4. Stability Analysis of CDG Equation

According to [59], in order to analyze the propagation char-
acteristics of the rogue wave in detail, we choose the linear
stability analysis for the CDG equation via the following
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Figure 1: The solitary wave (61) at θ1 = 1, θ4 = 2, θ3 = 2, θ5 = :5, θ6 = 3, θ8 = 1:3, θ9 = 2:4.
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Figure 2: The solitary wave (63) at θ4 = 2, θ3 = 2, θ6 = 3, θ7 = 1:3, θ8 = 2, θ9 = 2:4.
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function along with appropriate parameters:

Φ x, tð Þ = θ + δΩ x, tð Þ, ð66Þ

where the relation constant θ is a steady state solution of
Equation (66). Appending (66) into Equation (1), one can
obtain

δ
∂
∂t

Ω x, tð Þ + δ
∂5

∂x5
Ω x, tð Þ + 30δ ∂3

∂x3
Ω x, tð Þ

 !
θ

+ 30δ2 ∂3

∂x3
Ω x, tð Þ

 !
Ω x, tð Þ + 30δ2 ∂

∂x
Ω x, tð Þ

� �

� ∂
2

∂x2
Ω x, tð Þ + 180δ ∂

∂x
Ω x, tð Þ

� �
θ2 + 360δ2 ∂

∂x
Ω x, tð Þ

� �

� θΩ x, tð Þ + 180δ3 ∂
∂x

Ω x, tð Þ
� �

Ω x, tð Þð Þ2 = 0:

ð67Þ

By linearization of Equation (67), we get

δ
∂
∂t

Ω x, tð Þ + δ
∂5

∂x5
Ω x, tð Þ + 30δ ∂3

∂x3
Ω x, tð Þ

 !
θ

+ 180δ ∂
∂x

Ω x, tð Þ
� �

θ2 = 0:
ð68Þ

Theorem 1. Presume that the solution of Equation (68) has
the following form:

Ω x, tð Þ = ρ1e
i αx+βtð Þ, ð69Þ

where α, β are the normalized wave numbers, by putting (69)
into Equation (68), then by solving for β, we can achieve the
following form

β αð Þ = −α5 + 30 α3θ − 180αθ2: ð70Þ

Proof. By appending the equality (69) in the linear PDE (68),
we obtain

δ
∂
∂t

Ω x, tð Þ + δ
∂5

∂x5
Ω x, tð Þ + 30δ ∂3

∂x3
Ω x, tð Þ

 !
θ

+ 180δ ∂
∂x

Ω x, tð Þ
� �

θ2 = iei α x+β tð Þ

� δ ρ1 α5 − 30 α3θ + 180 α θ2 + β
� �

= 0:

ð71Þ

By solving and simplifying, we can find the value of βðαÞ
as follows:

β αð Þ = −α5 + 30α3θ − 180αθ2: ð72Þ

After that, we get to the needed solution. Hence, the proof
of the theorem is complete.

In Figures 3–5, it can be seen that when the sign of βðαÞ is
positive for all amounts of α, then any superposition of solu-
tions of the form eiðαx+βtÞ will come to ascent, while the sign
of βðαÞ is negative for all amounts of α, then any superposi-
tion of solutions of the form eiðαx+βtÞ will come to decay and
the steady condition is stable. After that, in Figures 3 and 4,
it can be observed that if the βðαÞ is positive or negative for
some amounts of α, then with increasing time some compo-
nents of a superposition will become descent, and the steady
condition is stable. Finally, in Figure 5, it can be perceived
that when the sign of βðαÞ is positive for all amounts of α,
then any superposition of solutions of the form eiðαx+βtÞ will
come to ascent, while the sign of βðαÞ is negative for all
amounts of α, then any superposition of solutions of the form
eiðαx+βtÞ will come to decay and the steady condition is stable.
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Figure 3: The behavior of stability analysis βðαÞ and wave number
α with the disparate amounts θ = 1, θ = 2, θ = 3.
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Figure 4: The behavior of stability analysis βðαÞ and wave number
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5. Conclusion

In this work, the multiple exp-function, cross-kink, periodic-
kink, and solitary wave methods with predictability of the
(1 + 1)-dimensional CDG equation are investigated with
more arbitrary autocephalous parameters. It is not hard to
see that the general periodic-kink solution is an algebraically
wave solution, and we noticed that some obtained solutions
are singular periodic solitary wave solution which is periodic
wave or periodic-kink, or solitary wave solutions in x − t
direction. Also, the other presented solution is a breather
type of two-solitary wave solution which contains a periodic
wave and two solitary waves, whose amplitude periodically
oscillates with the evolution of time. Moreover, the kink
and periodic solutions were analyzed and investigated. In
addition, the periodic-kink waves appeared when the peri-
odic solution cut by a stripe soliton before or after a special
time. Meanwhile, the modulation instability was applied to
discuss the stability of earned solutions. Finally, we show
some graphs to explain these solutions.
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