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�e unsteady �ow of Williamson �uid with the e�ect of bioconvection in the heat and mass transfer occurring over a stretching
sheet is investigated. A uniform magnetic �eld, thermal radiation, thermal dissipation, and chemical reactions are taken into
account as additional e�ects. �e physical problem is formulated in the form of a system of partial di�erential equations and
solved numerically. For this purpose, similarity functions are involved to transmute these equations into corresponding ordinary
di�erential equations. After that, the Runge-Kutta method with shooting technique is employed to evaluate the desired �ndings
with the utilization of a MATLAB script. As a result, the e�ects of various physical parameters on the velocity, temperature, and
nanoparticle concentration pro�les as well as on the skin friction coe�cient and rate of heat transfer are discussed with the aid of
graphs and tables. �e parameters of Brownian motion and thermophoresis are responsible for the rise in temperature and
bioconvection Rayleigh number diminishes the velocity �eld. �is study on nano�uid bioconvection has been directly applied in
the pharmaceutical industry, micro�uidic technology, microbial improved oil recovery, modelling oil and gas-bearing sedi-
mentary basins, and many other �elds. Further, to check the accuracy and validation of the present results, satisfactory con-
currence is observed with the existing literature.

1. Introduction

�e complicated and fast processes in heavy machinery and
small gadgets have created a serious problem of thermal
imbalance. Various extraneous techniques, such as �ns and
fans, have been employed, but their utility is limited due to
their large size. In 1995, Choi and Eastman [1] introduced
nano-sized particles mixed in the �uid called nano�uid,
which has more capacity for heat transfer as compared to
�uid without nano-sized particles. Nano�uid has attained
impressive consideration because of its huge applications in
the �elds of technology and engineering. Das et al. [2]
discuss recent and future applications of �uids containing
nano-sized particles. Turkyilmazoglu and Pop [3] examined

the thermal and mass transportation in�uences on some
natural convection streams of unsteady MHD nano�uids
with the e�ect of radiation taken into account. Khan et al. [4]
used the shooting method analyzed �ow features of Wil-
liamson nano�uid in�uenced by variable viscosity
depending on temperature and Lorentz force past an in-
clined nonlinear extending surface and also via graphically
discussed the variable viscosity, mixed convection, Brow-
nian motion, Lewis number, Prandtl number, Sherwood
number, and Nusselt number. Sui et al. [5] introduced the
Cattaneo-Christov model with double di�usion to analyze
the signi�cance of slip velocity, Brownian motion, ther-
mophoresis, mass, thermal transportation, and variable
viscosity in the stream of Maxwell upper convected
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nanofluid over an extending surface using HAM. Izadi et al.
[6] investigated the numerically thermogravitational con-
vection of micropolar MHD nanofluid having thermal ra-
diation and a magnetic field past a porous chamber in the
presence of an elliptical heated cylinder.

Aman et al. [7] investigated the effects of a magnetic
field, heat transfer, and slip conditions on the flow of MHD
incompressible and viscous fluid through a converging/di-
verging medium. Hsiao [8] described the flow property of a
2-D electrically conducting micropolar nanofluid past an
extending permeable surface with the magnetic field, mass,
thermal transportation, viscous dissipation, and MHD ef-
fects taken into account. *e significance of chemical re-
action, heat source, viscous dissipation, thermal radiation,
suction, and magnetic field on mixed convection flow of
hydromagnetic Casson nanofluid through a nonlinear
extending porous medium has been discussed by Ibrahim
et al. [9]. Fatunmbi et al. [10] examined the reactive stream of
micropolar MHD fluid through a permeable extending sheet
having effects on concentration and thermal slip boundary
conditions. Hayat et al. [11] studied the flow features of
third-grade electrically conducting MHD nanofluid over a
stretching sheet in the presence of activation energy,
chemical reaction, convective boundary, and magnetic field
effects. Mousavi et al. [12] described a novel combination of
theoretical and experimental models that provides dual
solutions for Casson hybrid nanofluid flow caused by a
stretching/shrinking sheet. Jabbarpour et al. [13] investi-
gated the issue of stable general three-dimensional mag-
netohydrodynamics stagnation-point boundary layer flow
via an impermeable wavy circular cylinder using an alu-
minum-copper/water hybrid nanofluid as the working fluid
and boundary conditions of velocity slip and temperature
jump. Izady et al. [14] scrutinized the development of the
Falkner-Skan problem is the flow of an aqueous Fe2O3-
CuO/water hybrid nanofluid across a permeable stretching/
shrinking wedge.

Hayat et al. [15] described the impact of second-grade
magnetized nanofluid and the characteristics of mass and
heat transfer due to stretching sheets using convective
boundary conditions. Goud et al. [16] examined stagnation-
point magnetohydrodynamics flow past an extending sur-
face because of a slip boundary and thermal radiation.
Srinivasulu and Goud [17] calculated mass and thermal
transport in aWilliamson nanofluid stream past a stretching
surface with convective boundary and magnetic field effects.
Khan and Nadeem [18] scrutinized the rotating stream of
Maxwell nanofluid with activation energy and double dif-
fusion through stretching sheets influenced by centrifugal,
thermophoresis, and Coriolis forces.

Bioconvection describes the phenomenon in which
living microorganisms denser than water swim upward in
suspensions.*ese microorganisms pileup in the layer of the
upper surface and, because of this pileup, the lower surface
becomes less dense than the upper surface and the distri-
bution of density becomes unstable due to the microor-
ganisms falling into it, and phenomena of bioconvection
occur. Bioconvection has applications in biological systems
and biotechnology, such as purifying cultures, enzyme

biosensors, and separating dead and living cells [19]. Raees
et al. [20] examined the unsteady stream of bioconvection-
mixed nanofluid containing gyrostatic motile microorgan-
isms through a horizontal channel. Siddiqa et al. [21] nu-
merically studied the bioconvection flow of nanofluid having
mass and thermal transportation along with gyrotactic
microorganisms through a curved vertical cone.

Abbasi et al. [22] introduced the bioconvection stream of
viscoelastic nanofluid because of gyrotactic microorganisms
past a rotating extending disc having zero-mass flux and
convective boundary condition and also described the re-
latable parameters’ influences on velocity, temperature, local
density, Sherwood number, and Nusselt number in detail.
Chu et al. [23] developed the Buongiorno model to analyze
the stream of 2-D MHD bioconvection third-grade fluid
along an extending sheet with the significance of motile
microorganisms, activation energy, thermophoresis diffu-
sion, Brownian motion, chemical reaction, and magnetic
field taken into account. Henda et al. [24] examined the
magnetized bioconvection flow of third-grade fluid past an
extending cylinder with thermal radiation, activation energy,
and a heat source. *e effects of thermophoresis and
Brownian motion are also discussed. Khan et al. [25] applied
the numerical method bpv4c to a scrutinized stream of
viscous bioconvection nanofluid through multiple geome-
tries with heat flux, cross-diffusion, and Cattaneo-Christov,
as well as Brownian motion, thermophoresis diffusion, and
concentration gradients.

Because of its importance in engineering and industrial
processes, non-Newtonian fluids compel researchers to
investigate the phenomena of mass and heat transport.
Shampoos, jelly, sugar, honey, human blood, pulps, and
other non-Newtonian fluids are examples. Williamson fluid
is also a category of the fluid model that is pseudo-plastic.
Pseudo-plastic fluids have applications in the engineering
and industrial fields, such as food processing, blood cells,
photographic films, and inkjet printing. Li et al. [26] ex-
amined the combined effects of MHD and magnetic field on
the stream of Williamson nanofluid through exponentially
extending permeable sheets with heat generation/absorp-
tion. Hamid [27] investigated the influence of Brownian
motion and thermophoresis onWilliamsonMHD nanofluid
flow through a wedge using the zero-mass flux and con-
vective boundary. Rasool et al. [28] scrutinized the Buon-
giorno model to discuss the flow behavior of reactive
Williamson MHD nanofluid because of Brownian motion
and thermophoresis over a nonlinear permeable sheet.
Kumar et al. [29] introduced viscous dissipation, thermal
radiation nonlinearly, joule heating, and magnetic field to
analyze the stream of Williamson nanofluid past an
extending sheet influenced by chemical reactions. Shateyi
and Muzara [30] analyzed a thorough and detailed study of
the incompressible conductive Williamson nanofluid on the
extending permeable sheet. Ali et al. [31] investigated the
effects of thermal diffusion, thermal radiation, and MHD on
the time-dependent flow of a Maxwell nanofluid past an
extending geometry using FEM.

Sindhu and Atangana [32] discussed the framework to
model the efficiency and functionality lifespan of electronic
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equipment with reliability analysis. Rehman et al. [33]
discussed time-censored data and statistical inference for the
Burr type X distribution in an accelerated life testing design
using a geometric process. Shafiq et al. [34] simulated an
effective statistical distribution to examine COVID-19 death
rates in Canada and the Netherlands. Sindhu et al. [35]
studied modelling of COVID-19 data using an expo-
nentiated transformation of the Gumbel Type-II distribu-
tion. Shafiq et al. [36] scrutinized artificial neural network
optimization of Darcy-Forchheimer squeezing flow in a
nonlinear stratified fluid under convective conditions. Shafiq
et al. [37] studied numerical and artificial neural network
models to estimate unsteady hydromagnetic Williamson
fluid flow on a radiative surface.

In most of the previous studies, the bioconvection of an
unsteady Williamson nanofluid was rarely studied. *e key
aim of the current work is to examine the behavior of
bioconvection impacts on Williamson MHD nanofluid
transportation over an extending permeable sheet with the
insertion of gyrotactic auto-motile organisms to avoid
possible settling of nano entities. *is investigation is rel-
evant to high-temperature nanomaterial processing tech-
nology. Actually, common base fluids bear low thermal
conductivity and thus, lose their practical importance.
Nanoparticles may improve thermal transport in emerging
sophisticated heat exchanger electronics. Bioconvection is
presumed to inhibit the sedimentation of nano entities. *e
connotation of such meaningful attributes can be a useful
extension and the results can be utilized for the desired
effective thermal transportation in the heat exchanger of
various technological processes.

2. Problem Formulation

Here we consider the flow of non-Newtonian Williamson
nanofluids on the wall of sheet stretches with velocity 􏽦Uw �

cx/(1 − at) along the x-axis and y-axis taken to be normal,

where c> 0 is the rate of stretching along the x-axis. B
→

�

(0, B0, 0) denotes the magnetic field applied to the flow
region and acts in the y-direction. A mild diffusion of
microorganisms and nanoparticles is set in the non-New-
tonian base fluid. *ermal radiation is considered and
bioconvection takes place because of microorganism’s
movement as shown in Figure 1 [38]. *e fluid velocity
component for two dimensional flow is 􏽥u, 􏽥v the temperature
is 􏽥T, nanoparticle concentration is 􏽥C, and microorganisms
density is 􏽥N. *e appropriate governing equations are given
[30, 31, 39].

Continuity equation:

z􏽥u

zx
+

z􏽥v

zy
� 0. (1)

Momentum equation:

z􏽥u
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+ 􏽥u
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Heat equation

z􏽥T

zt
+ 􏽥u

z􏽥T

zx
+ 􏽥v

z􏽥T

zy
�

K

ρCp

z
2􏽥T

zy
2 +

μ
ρCp

z􏽥u

zy
􏼠 􏼡

2

+
μΓ
ρCp

z􏽥u

zy
􏼠 􏼡

3

+
σ

ρCp

β0􏽥u( 􏼁
2

−
1

ρCp

zqr

zy
+ τ DB

z􏽥T

zy

z􏽥C

zy
+

DT

􏽦T∞

z􏽥T

zy
􏼠 􏼡

2
⎛⎝ ⎞⎠. (3)

Concentration equation
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Bioconvection equation
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Figure 1: Geometry of the problem [38].
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with the boundary conditions
􏽥u(x, 0) � 􏽥Uw,

􏽥v(x, 0) � 􏽥Vw,

􏽥T(x, 0) � 􏽥Tw,

􏽥C(x, 0) � 􏽥Cw,

􏽥N(x, 0) � 􏽥Nw,

􏽥u⟶ 0, 􏽥T⟶ 􏽥T∞, 􏽥C⟶ 􏽥C∞,

􏽥N⟶ 􏽥N∞, asy⟶∞,

􏽥Tw(x, t) � 􏽥T∞ +
cx

2ϑ(1 − at)
2
􏽥T0,

􏽥Cw(x, t) � 􏽥C∞ +
cx

2ϑ(1 − at)
2
􏽥C0,

􏽥Nw(x, t) � 􏽥N∞ +
cx

2ϑ(1 − at)
2

􏽥N0,

(6)

where 􏽥c⩾0. 􏽥T0(0⩽􏽥T0⩽􏽥Tw), 􏽥C0(0⩽􏽥C0⩽􏽥Cw), and
􏽥N0(0⩽ 􏽥N0⩽ 􏽥Nw) are the reference temperature, concentra-
tion, and bioconvection, respectively.

Roseland approximations [30],

qr �
4o
∗

3k1

z􏽥T
4

zy
, (7)

where σ∗ is the Stefan-Boltzmann constant and k1 is the
mean absorption coefficient. Applying Taylor’s series, we
have 􏽥T

4≃4􏽥T
3
∞

􏽥T − 3􏽥T
4
∞, where 􏽥T∞, is the ambient temper-

ature and the energy (3) becomes
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(8)

Consider the following similarity transformation
[30, 39]:

η �

���
􏽥Uw

xϑ

􏽳

y,

ψ �

�����

ϑx 􏽥Uw

􏽱

f(η),

θ(η) �
􏽥T − 􏽥T∞

􏽥Tw − 􏽥T∞
,

ϕ(η) �
􏽥C − 􏽥C∞

􏽥Cw − 􏽥C∞
,

χ(η) �
􏽥N − 􏽥N∞

􏽥Nw − 􏽥N∞
.

(9)

With the velocity components given by 􏽥u � zψ/zy and
􏽥v � − zψ/zx where ψ is the stream function.

Dimensionless momentum equation:

1 + 2Wef″( 􏼁f′′′ + ff″ − f′( 􏼁
2

− S f′ +
η
2
f″􏼒 􏼓

− M
2

f′( 􏼁 + λ(θ − Nrϕ − Rbχ) � 0.

(10)

Dimensionless energy equation:

1
Pr

1 +
4R

3
􏼒 􏼓θ″ + fθ′ −

Sη
2
θ′ − 2S + f′( 􏼁θ

+ Ec f″( 􏼁
2

+ We f″( 􏼁
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􏼐 􏼑 + M
2
Ec f′( 􏼁

2

+ Nbθ′ϕ′ + Nt θ′( 􏼁
2
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(11)

Dimensionless concentration equation:

1
Sc
ϕ″ + f −

Sη
2

􏼒 􏼓ϕ′ + 2S − f′ − c( 􏼁ϕ � 0. (12)

Dimensionless bioconvection equation

χ″ + LbPrfχ′ − LbPrf′χ − Peσϕ″ + χϕ″ + χ′ϕ′ � 0. (13)

*e corresponding boundary conditions becomes

f(0) � fw,

f′(0) � 1,

ϕ(0) � 1,

χ(0) � 1,

f′(∞)⟶ 0, f″(∞)⟶ 0, θ(∞)⟶ 0,

ϕ(∞)⟶ 0, χ(∞)⟶ 0.

(14)

*e flow characteristics which are of engineering sig-
nificance are the skin friction coefficient, the local Nusselt
number, and the Sherwood number, which are defined,
respectively:

Cf �
τw

ρU
2
w

,

Nux �
xqw

K 􏽦Tw − 􏽦T∞􏼐 􏼑
,

Shx �
xjw

k∞
􏽦Cw − 􏽦C∞􏼐 􏼑

.

(15)

Upon applying the necessary expressions for τw, qw, and
jw, we get the following:
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Cf � Re− 1/2
x f″(0) + Wef′

2
(0)􏼔 􏼕,

Nux � − Re1/2x 1 +
4R

3
􏼒 􏼓θ′(0),

Shx � − Re1/2x ϕ′(0).

(16)

*e basic discretization methods are FDM (finite dif-
ference method), FVM (finite difference method), and FEM
(finite element method). However, the computational cost
and time of these methods are much higher for the deter-
mination of the unknowns, but the Runge-Kutta method is
cost-effective and efficient. *e Runge-Kutta method is
widely used to solve ordinary differential equations. Runge-
Kutta (R-K) methods with shooting techniques have been
widely utilized for the solution of flow problems. *is
method with the shooting technique is a powerful scheme
for solving ODEs. In short, the Runge-Kutta method solves
the boundary value problems adequately, rapidly, and
precisely. *us, the relative simplicity and low computa-
tional cost have made this numeric scheme widely applied in
the nonlinear analysis of applied science.

3. Results and Discussion

*e physical meanings of the final nondimensional for-
mulation of time-dependent MHD flow of Williamson
nanofluid due to the stretch of a horizontal sheet in the
presence of bioconvection and chemical reaction along the
boundary constraints are solved numerically as described in
the above segment. It is because inherent nonlinearity and
coupling make the boundary value problem difficult to yield
an exact solution. *e pertinent parameters are varied in an
appropriate range to reveal their influence on dependent
variables for the concentration of nanoparticles, fluid
temperature, microorganism distribution, and fluid velocity.

Table 1: Comparison of CfRe(1/2)
x (skin friction coefficient) -f″(0) with variation of magnetic parameter M when fw , λ , Nr, Rb, We,S� 0.

M Ali et al. [31] using FEM Our results using R-K
0.0 1.0000080 1.0000084
0.2 1.0954458 1.0954460
0.5 1.2247446 1.2247449
1.0 1.4142132 1.4142136
1.2 1.4832393 1.4832397
1.5 1.5811384 1.5811388
2.0 1.7320504 1.7320508

Table 2: Comparison of NuxRe− (1/2)
x (Nusselt number) − θ′(0) values for Prandtl number Pr and other parameter fw , λ , Nr, Rb,S, Ec, Nb,

Nt,R, We,M, δ2 � 0.

Pr Mabood and Shateyi, [40] using FDM Ali et al. [31] using FEM Our results using R-K
0.72 0.8088 0.8086339299 0.808834203980
1.00 1.0000 1.0000080213 1.000008368634
3.00 1.9237 1.9236777221 1.923678653470
10.00 3.7207 3.7206681683 3.720671163991
100.00 12.294051659 12.294081083857
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Figure 2: Influence of fw on f′ where M � 0.5, S � 0.5, R d �

1.0,Pr � 1.1, Nb � 0.1, Nt � 0.1, Le � 1, Nr � 0.3, Rb � 0.1, We
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To ensure the validation of the numeric procedure, current
results are compared with those in the existing literature as
limiting cases. �e comparative output for skin friction
factor − f″(0) is shown in Table 1. For the present case and
those of Ali et al. [31]. Table 2 contains present results for
Nusselt number − θ′(0) when compared with Fazle and
Shateyi [40] and Ali et al. [31]. A comparison of the results as
depicted in these tables indicates acceptable agreement to
validate this numeric procedure.

�e velocity plot in Figure 2 depicts the slowing velocity
of the �uid as the mass suction attributed with fw is in-
creased. From Figure 3, the impact of magnetic parameterM
on the Williamson nano�uid velocity function is observed.
�e velocity of the �ow seems to be reduced signi�cantly
when M(0.1≤M≤ 0.3) is increased. �e opposing force,
known as the Lorentz force, inhibits the �ow.

As shown in Figure 4, increasing the mixed convection
parameter λ causes the �ow velocity to increase tof′(η).�e
sketches of velocity f′(η) as drawn in Figure 5 indicate the
slowing pattern of the �ow for buoyancy ratio parameterNr.

(T̃w − T̃∞) is the reciprocal of the buoyancy ratio parameter.
In the boundary layer regime, buoyancy e�ects are decreased
to better display the �ow.

�e progressive value of the radiation parameter Rd
causes a signi�cant increase in the temperature �eld θ(η) in
Figure 6. �e greater Rd means a strong radiation mode of
heat transfer which helps to raise the temperature.

Because the Prandtl number is inversely proportional to
thermal di�usivity, a higher value decreases the degree of
temperature θ(η) as shown in Figure 7. Signi�cant rising
behavior of θ(η) is observed in Figures 8 and 9 with in-
creased values of Brownian motion parameter Nb and
thermophoresis parameter Nt. �e fast random motion of
nanoparticles characterized by larger Nb is responsible for
enhanced heat transfer to raise θ(η). Similarly, the higher Nt
means a greater thermophoretic e�ect, which moves the
nanoparticles from the hotter regime to the colder one and
increases the thermal distribution.
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Figure 4: In�uence of λ on f′ where M � 0.5, fw � 0.5,
S � 0.5, R d � 1.0, Pr � 1.1, Nb � 0.1, Nt � 0.1, Le � 1, Nr � 0.3,
Rb � 0.1,We � 0.1, pe � 1.0.
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Figure 5: In�uence of Nr on f′ whereM � 0.5, fw � 0.5, S � 0.5,
R d � 1.0,Pr � 1.1, Nb � 0.1, Nt � 0.1, Le � 1, Rb � 0.1,We � 0.1,
pe � 1.0.
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Figure 6: In�uence of Rd on θ where M � 0.5, fw � 0.5, S � 0.5,
Pr � 1.1, Nb � 0.1, Nt � 0.1, Le � 1, Rb � 0.1,We � 0.1, pe � 1.0.
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Figure 7: In�uence of Pr on θ where M � 0.5, fw � 0.5, S � 0.5,
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Figure 10: Influence of S on ϕ where M � 0.5, fw � 0.5, Nb � 0.1,

Nt � 0.1, Le � 1, Pr � 1.1, Rb � 0.1, We � 0.1, pe � 1.0.

Lb = 0.1, 0.2, 0.3, 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
χ (

η)

5 83 41 6 720 109
η

Figure 12: Influence of Lb on χ where M � 0.5, fw � 0.5,

Nb � 0.1, Nt � 0.1, Le � 1,Pr � 1.1, Rb � 0.1, We � 0.1, pe � 1.0.
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Figure 13: Influence of Pr on χ where M � 0.5, fw � 0.5,

Nb � 0.1, Nt � 0.1, Le � 1, Rb � 0.1, We � 0.1, pe � 1.0.
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Figure 8: Influence of Nb on θ where M � 0.5, fw � 0.5, S � 0.5,
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Figure 9: Influence of Nt on θ where M � 0.5, fw � 0.5,

S � 0.5, Nb � 0.1, Le � 1,Pr � 1.1, Rb � 0.1, We � 0.1, pe � 1.0.
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Figure 11: Influence of Sc on ϕwhere M � 0.5, fw � 0.5, Nb � 0.1,

Nt � 0.1, Le � 1,Pr � 1.1, Rb � 0.1, We � 0.1, pe � 1.0.
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In Figure 10 shows the rising behavior of concentration
ϕ(η) indirect relation to the unsteady parameter S. Figure 11
displays the decrement in ϕ(η) due to the larger value of
Schmidt number Sc. *e larger Schmidt number means less
mass diffusivity to decrease ϕ(η). From Figure 12, the
significant reduction of microorganisms’ distribution
function χ(η) is attained against improved inputs of bio-
convection Lewis number Lb, which is reciprocal to the mass
diffusivity of microorganisms. As seems from Figure 13,
Prandtl number Pr causes the microorganism’s distribution
to decline. *e bioconvection Rayleigh Rb is responsible for
giving a direct increment to χ(η) as demonstrated in Fig-
ure 14. As it seems in Figure 15, the larger values of the Peclet
number Pe cause the microorganism’s distribution to
decline.

4. Conclusions

*eoretical and numeric analysis for the magnetohydro-
dynamics of Williamson nanofluid owing to sudden
stretching in a horizontal sheet has been presented in this
communication. On the physical field, namely, velocity,

temperature, concentration, and microorganism distribu-
tion, the effects of the emerging parameters are enumerated.
Significant outcomes are summarised as follows:

(i) *e velocity, temperature, concentration, and bio-
convection parameters are boosted with λ, Rb, Nb,
and Nt.

(ii) *e velocity, temperature, concentration, and bio-
convection parameters reduce with Nr, Lb, and Pe.

(iii) *e conclusion of nanoparticles characterized by
parameters Nb and Nt shows an increment in the
temperature profile. Also, the parameters due to
bioconvection have a significant influence on the
flow of fluid.

(iv) Further, a study can be carried out with an incre-
ment in volume fraction and a non-Newtonian base
flow of fluid.

(v) Validation of significant findings and results is
debated in Section 3. In the results, satisfactory
concurrence is observed when compared with
existing literature.

Nomenclature

S � a/c: Unsteadiness parameter
fw � v0/

��
cϑ

√
: Suction/injection

parameter
M2 � σB0(1 − at)/ρa: Magnetic parameter
R � 4σ∗􏽥T3

∞/kK: *ermal radiation
parameter

Sc � ϑ/D: Schmidt number
Lb � α/Dn: Bioconvection lewis

number
Pe � dWc/Dn: Peclet number
σ � 􏽧N∞/􏽦Nw − 􏽧N∞: Bioconvection

parameter
Pr � μcp/K: Prandtl number
c � Kr(1 − at)/c: Chemical reaction

parameter
Ec � 􏽥U

2
w/cp(􏽥Tw − 􏽥T0): Eckert number

We � Γ􏽥Uw

���������
c/ϑ(1 − at)

􏽰
: Weissenberg number

λ � (1 − 􏽥C∞)βg(􏽦Tw − 􏽦T∞)2l/U2
w: Mixed convection

parameter
Nr � (ρp − ρf)(􏽦Cw − 􏽦C∞)/β(1

− 􏽦C∞)ρ(􏽦Tw − 􏽦T∞)

:

Buoyancy ratio
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Rb � (ρm − ρf)( 􏽥Nw − 􏽥N∞)

/β(1 − 􏽦C∞)ρ(􏽥Tw − 􏽥T∞)

:

Rayleigh number of
bioconvection

Nt � τDT(􏽦Tw − 􏽦T∞)/ρ􏽦T∞: *ermophoresis
diffusion

Nb � τDB(􏽦Cw − 􏽦C∞)/ρ: Brownian factor
Re: Reynold’s number
􏽥T: Fluid temperature
􏽥Tw: Wall temperature
􏽥T∞:
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Figure 14: Influence of Rb on χ where M � 0.5, fw � 0.5,

Nb � 0.1, Nt � 0.1, Le � 1, Pr � 1.1, We � 0.1, pe � 1.0.
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Temperature far away
from the plate

u: Velocity component
along x direction

μ: Dynamic viscosity
]: Kinematic viscosity.
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�e present involvement is the theoretical use of the thermal extrusion structure accompanying with the various industrial
progressions. �e problem is composed by exploiting the MHD aspect on �ow of Maxwell �uid. �e properties of chemically
reactive �ow of magneto Maxwell �uid with e�ects of viscous dissipation over stretching sheet in stagnation region are elaborated
here. �e governing equations of phenomena are given in set of partial di�erential equations, and further these equations are
reduced to set of ordinary di�erential equations using similarity transformations. MATLAB built in solver bvp4c is employed to
solve obtained nonlinear boundary value problem.�e solver uses the 4th and 5th order discretization scheme, and the outcomes in
the form of velocity, temperature, and concentration pro�les with variations of magnetic parameter, Maxwell parameter, heat
generation parameter, Eckert number, Prandtl number, Schmidt number and reaction rate parameter are deliberated
through graphs.

1. Introduction

During the last few decades, some of the researchers took
great interest in the non-Newtonian �uid �ow due to its
practical applications. �eir research accelerated due to the
involvement of its applications in several chemical engi-
neering processes, life sciences, and petroleum industries.
Some important industrial �uids such as polymers, fossil
fuels, pulps, food, and molten plastics show non-Newtonian
�uids. �e �ow characteristics of both types of �uids
(Newtonian and non-Newtonian) are explained in the form
of constitutive equations. It is important to examine the �ow
behavior using these �uids and their several applications. A
single equation is not capable of de�ning all the properties of
non-Newtonian �uids and to overcome this de�ciency,
researchers have proposed di�erent �uid models. �e
simplest models as discussed by researchers involve power

law and grade �uid models. �ere is a major drawback of
these simple models: the results obtained by these models are
not compatible with �ows. It is not able to guess the e�ects of
elasticity. However, there is a special type of viscoelastic �uid
called Maxwell �uid which explains the viscosity and elastic
behavior of �uid which gains the attention of researchers.
Aliakbar et al. [1] analyses its e�ect by considering the �ow
in applied magnetic �elds with thermal radiation e�ects.
Hayat and Qasim [2] extended their research by considering
the same �uid with Joule heating e�ect. Sha�q and Khalique
[3] examine upper convected Maxwell �ow of stretching
surface by using the Lie group methodology.

Stagnation point is the point during the �uid �ow where
the �uid velocity becomes zero. A conventional �ow
problem involved in the application of �uid mechanics is the
two-dimensional �ow near a stagnation point. Hiemenz [4]
was the �rst to propose the work on stagnation point.
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Homann [5] extended this work for an axisymmetric flow.
Mahapatra and Gupta [6] investigated the effects of heat
transfer during the stagnation point flow over the stretching
surface, whereas its effects over shrinking sheet were ana-
lysed by Wang [7]. Mansur et al. [8] considered Buon-
giorno’s model and analysed the effects of stagnation flow in
nanofluids. Slip effects of the boundary layer flow near a
stagnation point in the presence of magnetic field was
discussed by Aman et al. [9]. Bachok and Ishak [10] con-
sidered the flow over nonlinearly stretching sheet and
proposed a similarity solution for his model. Carbon
nanotubes with single- and multiwalls influencing magne-
tohydrodynamic stagnation point nanofluid flow over var-
iable thicker surfaces with concave and convex effects was
studied by Shafiq et al. [11]. Considerable attention and a
good amount of literature have been generated on this
problem.

Viscous dissipation is a process in which the viscosity of
fluid plays a significant role as it stores some amount of the
kinetic energy of fluid particles during motion to its thermal
energy and this process is an irreversible process. Brickman
[12] primarily considered the effects of viscous dissipation.
In his pioneer work, he considered the Newtonian fluid flow
in a straight circular tube and proposed the result that the
special effects were formed in the close region. Chand and Jat
[13] considered the electrically conducting fluid and ana-
lysed thermal radiation effects together with viscous dissi-
pation when the fluid is taken through a porous medium.
Kishan and Deepa [14] considered the permeable sheet and
drawn the numerical results of increasing the temperature of
fluid due to the presence of viscous dissipation effects during
the flow of micropolar fluid near the stagnation point. )e
effects of viscous dissipation and variable viscosity on
moving vertical porous plate were reported by Singh [15].
Malik et al. [16] considered the Sisko fluid model for ana-
lyzing the effects contributed by viscous dissipation during
the flow over a stretching cylinder. Shafiq et al. [17] studied
the effects of viscous dissipation and Joule heating on
Williamson fluid over stretching surface.

)emajor applications of the chemical reaction involved
in chemical engineering processes are fibrous insulation,
atmospheric flows, etc. Hayat et al. [18] discussed the impact
on velocity and concentration of chemical species during the
flow of upper [17] convective Maxwell fluid and used HAM
to obtain the results of the proposed model. Bhattacharyya
and Layek [19] reported the effects of chemical reaction by
considering the electrically conducting fluid in a magnetic
field over a vertical porous sheet and considered the same
effects along with stagnation point in [20]. For more detail
about this, see [21–23].

Keeping in view of the literature, the main aim of this
study is to propose amodel for the flow ofMaxwell fluid over
a stretching surface with combined effects of stagnation
point and viscous dissipation in the presence of chemical
species. )e investigation will perform numerically with the
help of computational software MATLAB. Possible flow
patterns will also be drawn to visualize the flow behavior.

2. Problem Formulation

Consider the laminar incompressible, two-dimensional
stagnation point flow of Maxwell fluid over a stretched plate.
Let the plate be stretched with velocity Uw � ax and Ue � bx

be the velocity at free stream. It is assumed that the x-
axisx − axis be taken along the plate and y-axisy − axis be
taken perpendicular to the plate and themotion of the flow is
considered towards positive x-axis. x − axis.Amagnetic field
of constant strength B0 is acting perpendicular to the plate.
Let u and v be the horizontal and vertical components of
velocity along x and y direction, respectively, T be tem-
perature, and C be the concentration of the fluid. )e ge-
ometry of this problem can be seen in Figure 1.

Under the boundary layer approximation and consid-
ering the effects of temperature-based thermal conductivity,
viscous dissipation, heat generation, and chemical reaction,
the governing Maxwell equations are expressed by [2, 3, 18]
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Subject to the boundary conditions
u � Uw, v � 0, T � Tw, C � Cw aty � 0

u � Ue, T � T∞, C � C∞ at y⟶∞
􏼩, (5)
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where k(T) � k∞(1 − ϵθ) is the variable conductivity, ] is
the kinematic viscosity, σ is the electrical conductivity, λ1 is
the relaxation time, ρ is the fluid density, and k1 is the
reaction rate.

2.1. Transformation of the Governing System of Equations.
By using nondimensional variables,

η �

���
Ue

]x

􏽲

y,

u � Uef′(η),

v � −

����
]Ue

x

􏽲

f(η),

θ �
T − T∞

Tw − T∞
,

φ �
C − C∞

Cw − C∞
.

(6)

Continuity equation is identically satisfied, equations
(2)–(4) can be written as follows:

f′′′ − λf
2
f′′′ + ff″ + λM

2
ff″

+ 1 − f′
2

+ M
2 1 − f′( 􏼁 + 2λff′f″ � 0,

(7)

(1 − ϵθ)θ″ + pr δθ + Ecf″
2

+ fθ′ −
θ′2

Pr
⎛⎝ ⎞⎠ � 0,

φ″ − Sc(cφ − fφ′) � 0.

(8)

Subject to the boundary conditions,

f′(η) � ϵ1, θ(η) � 1, f(η) � 0, φ(η) � 1 at η⟶ 0

θ(η) � 0, f′(η) � 1, φ(η) � 0 at η⟶∞
⎫⎬

⎭,

(9)

where λ � aλ1 is the magnetic parameter, M2 � (σB2
0/ρa) is

the Maxwell parameter, Pr � (Cpμ∞/k∞) is the Prandtl
number, Sc � (]/D) is the Schmidt number, δ � (Q0/aρCp)

is the heat absorption/generation parameter,
Ec � (U2

e/Cp(Tw − T∞)) is the Eckert number, and ϵ1 is the
ratio of stretching and free stream velocities.

3. Computational Procedure

Since the similarity method only gives the nondimensional
equations which are further needed to be solved using some
analytical or numerical method. In this section, the arise
coupled nonlinear equations (2) to (4) together with
boundary condition (5) are tackled numerically by MAT-
LAB built in utility bvp4c. )e MATLAB solver bvp4c solve
scalar or system of differential equations using three-stage
Lobatto IIIa formula. For giving the information of differ-
ential equations to the MATLAB solver, the conversion of
the system of second- or higher-order differential equations
into system of first-order ordinary differential equations is

T∞ T∞

UeUe

Tw

Uw

Tw

Uw

Figure 1: Geometry of the problem.
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required. For this purpose, nonlinear equations are con-
verted into first-order odes by invoking transformations in
the following manners:

f′ � f2,

f″ � f3,

f′′′ �
1

1 − λf1
2

􏼐 􏼑
1 + λM

2
􏼐 􏼑f1f3 + 1 − f

2
2􏼐 􏼑􏼐

− M
2

f2 − 1( 􏼁 + 2λf1f2f3􏼑,

θ′ � f5,

θ″ � −
pr

a 1 − ϵf4( 􏼁
􏼠 􏼡 δf4 + Ecf

2
3 + af1f5 −

af
2
5

Pr
􏼠 􏼡,

φ′ � f7,

φ″ � Sc cf6 − ff7( 􏼁,

(10)

where f � f1, θ � f4, and φ � f6, and the boundary con-
ditions can be specified by

f0,1, f0,2 − ϵ1, finf ,2 − 1, f0,4 − 1, finf ,4, f0,6 − 1, finf ,6􏽨 􏽩
t
,

(11)

where f0 is used to describe the boundary condition for the
left end point of the domain and finf is used to describe
boundary conditions on the right end point of the domain
for the equations (6)–(8) with boundary conditions (9).

4. Results and Discussions

)e dimensionless sets of nonlinear ordinary differential
equations have been solved by MATLAB solver bvp4c. )is
solver uses fourth and fifth order numerical method to solve
given differential equations. It requires one set of initial
guesses, to start the solving procedure. )e set of first-order
differential equations and set of boundary conditions are two
of its inputs and the result can be seen through graphs. A
one-dimension mesh may depend upon the user to choose
grid points. Also, the mesh for initial conditions can be
different from the mesh of the obtained solution.
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Figure 10: (a) Surface velocity plot. (b) Streamlines. (c) Temperature surface plot. (d) Isothermal contours using Ue � 0.1, Uw �

0.1 andUw � −0.1 where ′+′&′−′ shows left and right translation respectively.
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Figure 2 elucidates the impact of the magnetic parameter
on velocity profile. )e momentum boundary layer thick-
ness decays by upraising the values of the magnetic pa-
rameter due to generation of the Lorentz force which is
responsible for providing resistance to the velocity. Figure 3
elucidates the impact of Maxwell parameter on the velocity
profile. )e velocity de-escalates by raising the Maxwell
parameter.

Figure 4 shows the impact of Prandtl number on
temperature profile. )e temperature de-escalates by en-
hancing the values of the Prandtl number. )is happens
due to decay of thermal diffusivity, and this decay is re-
sponsible for de-escalation of thermal conductivity and
therefore the temperature of the fluid decreases. Figure 5
elucidates the impact of Eckert number on temperature
profile. By looking at this Figure 5, it can be observed that
the temperature is enhanced by upraising the values of the
Eckert number. Figure 6 deliberates the impact of heat
generation parameter on temperature profile. Temperature
of the fluid escalates by enhancing the values of the heat
generation parameter and this is happening due to an
attached heat source that produces heat to the fluid and so
the temperature of the fluid escalates. Figure 7 shows the

impact of parameter ϵ on the temperature profile. By
looking at Figure 7, it seems that the temperature enhanced
by upraising the values of parameter ϵ. Physically, it de-
scribes the temperature gradients inside the material at the
time of progress in addition to inside the materials. When ϵ
increase, the magnitude of temperature also increases,
which enhances the temperature field.

Figure 8 elucidates the behavior of concentration profile
when Schmidt number varies. Figure 8 shows concentration
decays by increasing the values of Schmidt number. )e
decrease of concentration is the consequence of using Fick’s
law because increasing values of the Schmidt number leads
to slow down molecular flux and consequently molecular
diffusion process becomes slow and so the concentration de-
escalates. Figure 9 elucidates the impact of reaction rate
parameter on concentration profile. From Figure 9, it can be
observed that concentration decreases by upraising the
values of reaction rate parameter.

Figures 10–12 are drawn using software which uses the
finite element method to solve the partial differential
equations. In these figures, variations of wall’s velocity and
free stream velocity are considered and found that the
velocity of the fluid near to the plate is escalating by
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Figure 11: (a) Surface velocity plot (b) streamlines (c) temperature surface plot (d) Isothermal contours using
Ue � 0.5, Uw � 0.5 , and Uw � −0.5 where ’ + ′ and ’ − ′ shows left and right translation, respectively.
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enhancing the velocity of wall and free stream velocity.
)e temperature also rises by upraising the velocity of wall
and free stream velocity when varying the values from to

0.1 to 0.5, whereas the surface of temperature is ap-
proximately unchanged by increasing wall and free stream
velocities from to 0.5 to 0.1.

(a)

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

(b)

0.
01

0.
05

0.
09

0.
14

0.
18

0.
22

0.
26

0.
31

0.
35

0.
39

0.
44

0.
48

0.
52

0.
56

0.
61

0.
65

0.
69

0.
74

0.
78

0.
82

0.
86

0.
91

0.
95

0.
99

(c)

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

(d)

Figure 12: (a) Surface velocity plot. (b) Streamlines. (c) Temperature surface plot. (d) Isothermal contours using Ue � 1, Uw �

1 , andUw � −1 where ′+′ and ′−′ shows left and right translation, respectively.

Table 1: Numerical values of local Nusselt number and local Sherwood number with variation of parameters using ϵ1 � 0.1.

M λ Pr Ec Sc c δ ϵ −θ′(0) −ϕ′(0)

0.4 07 0.5 0.7 0.7 0.1 0.1 0.2 0.6118 0.5381
0.5 07 0.5 0.7 0.7 0.1 0.1 0.2 0.6113 0.5390
0.5 7.1 0.5 0.7 0.7 0.1 0.1 0.2 0.6113 0.5389
0.5 7.2 0.5 0.7 0.7 0.1 0.1 0.2 0.6114 0.5388
0.5 7.2 0.6 0.7 0.7 0.1 0.1 0.2 0.6080 0.5388
0.5 7.2 0.7 0.7 0.7 0.1 0.1 0.2 0.6045 0.5388
0.5 7.2 0.7 0.8 0.7 0.1 0.1 0.2 0.5722 0.5388
0.5 7.2 0.7 0.9 0.7 0.1 0.1 0.2 0.5404 0.5388
0.5 7.2 0.7 0.9 0.8 0.1 0.1 0.2 0.5404 0.5635
0.5 7.2 0.7 0.9 0.9 0.1 0.1 0.2 0.5404 0.5872
0.5 7.2 0.7 0.9 0.9 0.2 0.1 0.2 0.5404 0.6467
0.5 7.2 0.7 0.9 0.9 0.3 0.1 0.2 0.5404 0.7030
0.5 7.2 0.7 0.9 0.9 0.3 0.3 0.2 0.3663 0.7030
0.5 7.2 0.7 0.9 0.9 0.3 0.4 0.2 0.2725 0.7030
0.5 7.2 0.7 0.9 0.9 0.3 0.4 0.3 0.2581 0.7030
0.5 7.2 0.7 0.9 0.9 0.3 0.4 0.4 0.2351 0.7030
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Table 1 shows the numerical values for local Nusselt and
local Sherwood numbers. From Table 1, it seems to be that
the local Sherwood number escalates and de-escalates by
growing values of magnetic parameter and Maxwell pa-
rameter, respectively. Local Nusselt number decays by the
growth of the Prandtl number and Eckert number. Local
Sherwood number increases by the rising Schmidt number.
For validation and accuracy of our computations, Table 2 is
presented in a limiting manner. Good agreement is achieved
with the existing results.

5. Conclusion

)e current study was comprised of mathematical model for
two-dimensional, laminar, stagnation point flow of steady
incompressible fluid with temperature-based thermal con-
ductivity. )is mathematical model was modified by using
the similarity method and further governing system of
equations are converted to set of ordinary differential
equations (ODEs). MATLAB built in solver bvp4c has been
implemented to solve set of ordinary differential equations.
)e major findings of this study are as follows:

(i) Velocity profile of the fluid was de-escalated by
choosing larger values of the magnetic parameter.

(ii) Temperature profile was de-escalated by upraising
the values of Prandtl number.

(iii) Concentration profile was decreased by upraising
the values of Schmidt numbers.
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�is research focuses on Ostrowski type inequality in the form of classical Mercer inequality via ψ-Riemann–Liouville
fractional integral (F-I) operators. Using the ψ-Riemann–Liouville F-I operator, we �rst develop and demonstrate a new
generalized lemma for di�erentiable functions. Based on this lemma, we derive some fractional Mercer–Ostrowski type
inequalities by using the convexity theory. �ese new �ndings extend and recapture previous published results. Finally, we
presented applications of our work via the known special functions of real numbers such as q-digamma functions and
Bessel function.

1. Introduction and Preliminaries

�e well-known Ostrowski inequality, developed in 1938,
established the following helpful and noteworthy integral
inequality (see [1], page 468).

Suppose a mapping λ: [a, b]⟶ R is continuous on
[a, b] and di�erentiable on (a, b). If |λ′(z)|≤M, for all
z ∈ [a, b], then, the following inequality holds:

λ(z) −
1

b − a
∫
b

a
λ(v)dv

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≤M(b − a)
1
4
+
(z − (a + b)/2)2

(b − a)2
[ ]. (1)

�is �nding is known as the Ostrowski inequality in the
literature. Some generalizations, variations, and extensions
of the Ostrowski inequality have been proposed in light of
current �ndings and their related generalizations, variants,
and extensions (see [2–4]).

�is inequality yields an upper bound for the approxi-
mation of the integral average 1/(b − a)∫b

a
λ(v)dv by the

value of λ(v) at the point v ∈ [a, b].
In recent years, because of the widespread interest in the

theory of inequalities, the theory of convex functions is now
at the center of many studies. Convex functions are the topic
of research in a number of disciplines due to their appli-
cability in inequality theory [5–8] and de�ned as:

De�nition 1. [5] A mapping λ: I ⊂ R⟶ R is called to be
convex on I, if

λ (1 − ζ)y1 + ζy2( )≤ (1 − ζ)λ y1( ) + ζλ y2( ), (2)

holds for every y1, y2 ∈ I and ζ ∈ [0, 1].
Kian and Moslehian used the Jensen–Mercer inequality

and demonstrated the Hermite–Hadamard Mercer in-
equality in [9] as:
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λ a + b −
y1 + y2

2
􏼒 􏼓≤

1
y2 − y1

􏽚
y2

y1

λ(a + b − ζ)dζ

≤
λ a + b − y1( 􏼁 + λ a + b − y2( 􏼁

2
≤ λ(a) + λ(b) −

λ y1( 􏼁 + λ y2( 􏼁

2
,

(3)

where λ is convex function on [a, b].
(e famous Jensen inequality, (see [5], Ch. 1) in the

literature states that, if λ is convex function on the interval
[y1, y2], then

λ 􏽘
n

i�1
σiℓi

⎛⎝ ⎞⎠≤ 􏽘
n

i�1
σiλ ℓi( 􏼁⎛⎝ ⎞⎠, (4)

holds for all ℓi ∈ [y1, y2] and all σi ∈ [0, 1], 􏽐
n
i�1 σi � 1.

Jensen’s inequality was modified by Mercer (see [10]) as

λ y1 + y2 − 􏽘
n

i�1
σiℓi

⎛⎝ ⎞⎠≤ λ y1( 􏼁 + λ y2( 􏼁 − 􏽘
n

i�1
σiλ ℓi( 􏼁, (5)

where λ is a convex function on [y1, y2] holds for all
ℓi ∈ [y1, y2] and

σi ∈ [0, 1], 􏽘
n

i�1
σi � 1. (6)

Jensen and Hermite–Hadamard type inequalities are the
most dynamic inequalities pertaining convex functions.
Jensen and its related inequalities are well-known and sig-
nificant inequalities in mathematical analysis due to its
diverse applications and useability in applied and infor-
mation sciences. Some recent discoveries can be found in
[11, 12].

Jensen-type Mercer’s inequality is an effective inequality
since it provides additional information with specific
boundary constraints. (e study of generalizations and
improvements of Mercer’s variants of Hermite–Hadamard
type inequalities considering the variety of fractional integral
(F-I) operators have been of great interest for researchers in
recent years, as evidenced by a large amount of research on it
(see [13–15]).

(e fractional calculus has been extensively studied by
many researchers from the last few decades to generalize,
improve, and extend several classic inequalities in order to
obtain new variants in different dimensions. (ere are not
only global derivatives in so called fractional calculus (for
example: Riemann–Liouville and Caputo), but also local
fractional derivatives (Khalil and Almeida, among others)
(see [16–18]).

Yue [19], in 2013, discovered new Ostrowski inequalities
for fractional integral (F-I) operators along with its asso-
ciated fractional inequalities. Later in 2014, Aljinović [20]
first developed Montgomery identity for fractional integrals
of one function with respect to another function and then
derived generalized fractional Ostrowski inequality from it.
In the same article, he also presented the associated
Ostrowski fractional inequalities for fractional integrals of
functions with first derivatives in Lp spaces and computed

sharp bounds. In the same year, Yildirim and Kirtay [21]
used the generalized Riemann–Liouville F-I to establish new
variants for Ostrowski inequalities. Some recent develop-
ment about weighted Ostrowski fractional inequalities can
be observed in [22].

Vanterler da Costa Sousa and Capelas de Oliveira in [23]
recently introduced the ψ-Hilfer fractional derivative with
respect to another function. Also, they investigate some
Gronwall inequalities and Cauchy–type problem using the
newly introduced ψ-Hilfer operator.

Definition 2. ([24], p.3) Let (y1, y2)(− ∞≤y1 <y2 ≤∞) be
finite or infinite interval in R and ϱ > 0. Also, let
ψ: (y1, y2)⟶ R+ be positive strictly increasing function
possessing continuous derivative ψ′ on (y1, y2). (en, left-
and right-sided ψ-Riemann–Liouville F-I of a function λ
with respect to another function ψ on [y1, y2] can be given
as

I
ϱ:ψ
y1+􏼐 􏼑λ(ℓ) �

1
Γ(ϱ)

􏽚
ℓ

y1

ψ′(ζ)(ψ(ℓ) − ψ(ζ))
ϱ− 1λ(ζ)dζ, y1 < ℓ,

(7)

and

I
ϱ:ψ
y2−􏼐 􏼑λ(ℓ) �

1
Γ(ϱ)

􏽚
y2

ℓ
ψ′(ζ)(ψ(ζ) − ψ(ℓ))ϱ− 1λ(ζ)dζ, ℓ <y2.

(8)

Remark 1. F-I operators elaborated in (7) and (8) yield
several known F-I operators corresponding to various
suitable selections of function ψ (see [25]), that are inde-
pendently introduced by several authors with related results.

(i) By taking ψ(y) � y as an identity function in (7)
and (8), we get Riemann–Liouville F-I operators
[24].

(ii) For ψ(y) � yϱ/ϱ, ϱ > 0 in (7) and (8) produce
Katugampola F-I operators defined by Chen and
Katugampola in [26].

(iii) For ψ(y) � yτ+s/τ + s, τ > 0, s> 0 in (7) and (8)
produce generalized conformable F-I operators
defined by Khan and Khan in [27].

(iv) For ψ(y) � (y − y1)
s/s, s> 0, in (7), and

ψ(y) � − (y2 − y)s/s, s> 0, in (8), one can get con-
formable F-I operators presented by Jarad et al. in [28].

(e main good articles about Hermite–Hadamard in-
equalities involving ψ-Riemann–Liouville F-I operators are
in references [29–31]. Some recent results about Hermi-
te–Jensen–Mercer inequalities for ψ-Riemann–Liouville F-I
operators can be seen in [14, 15].

(e striking motive of this study is to develop gener-
alized fractional equality for ψ-Riemann–Liouville F-I op-
erators, which has a unique place among fractional integral
operators, and to use this identity to generate some new
Mercer–Ostrowski type inequalities for convex functions.
(e study also included applications of the findings, taking
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into account several specific circumstances of the primary
conclusions.

2. New Mercer–Ostrowski Type Inequalities

(roughout this portion, Mercer–Ostrowski inequalities for
the ψ-Riemann–Liouville F-I operators are obtained for
differentiable functions on (a, b). As a result, we present a
novel identity pertaining ψ-Riemann–Liouville F-I opera-
tors, that will serve as an auxiliary equality to produce
subsequent inequalities.

Lemma 1. Consider λ: [a, b] ⊂ (0,∞)⟶ R be a differ-
entiable function and λ′ ∈L1[a, b], with b> a. If ψ is a
strictly increasing, positive monotone function on (a, b] with
continuous derivative ψ′ on (a, b), then, for all
ϰ, y1, y2, ] ∈ [a, b] and ϱ > 0, the following identity holds

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁

�
1

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
(ψ(ζ) − (ϰ + a − v))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ

+
1

y2 − y1
􏽚
ψ− 1(ϰ+b− v)

ψ− 1 ϰ+b− y2( )
((ϰ + b − v) − ψ(ζ))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ ,

(9)

where

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁 �
v − y1( 􏼁

ϱ

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v( 􏼁
ϱ

y2 − y1
λ ϰ + b − y2( 􏼁

−
Γ(ϱ + 1)

y2 − y1
I
ϱ:ψ
ψ− 1 ϰ+a− y1( )

− λ°ψ( 􏼁 ψ− 1
(ϰ + a − v)􏼐 􏼑􏼚

+I
ϱ:ψ
ψ− 1 ϰ+b− y2( )

+ λ°ψ( 􏼁 ψ− 1
(ϰ + b − v)􏼐 􏼑􏼛.

(10)

Proof. Let us start with

I1: �
Γ(ϱ + 1)

y2 − y1
I
ϱ:ψ
ψ− 1 ϰ+a− y1( )

− λ°ψ( 􏼁 ψ− 1
(ϰ + a − v)􏼐 􏼑, (11)

�
ϱ

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
(ψ(ζ) − (ϰ + a − v))

ϱ− 1ψ′(ζ) λ°ψ( 􏼁(ζ)dζ

�
1

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
λ°ψ( 􏼁(ζ)d(ψ(ζ) − (ϰ + a − v))

ϱ
dζ

�
v − y1( 􏼁

ϱ

y2 − y1
λ ϰ + a − y1( 􏼁

−
1

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
(ψ(ζ) − (ϰ + a − v))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ,

(12)

and similarly, we get

I2: �
Γ(ϱ + 1)

y2 − y1
I
ϱ:ψ
ψ− 1 ϰ+b− y2( )

+ λ°ψ( 􏼁 ψ− 1
(ϰ + b − v)􏼐 􏼑

�
y2 − v( 􏼁

ϱ

y2 − y1
λ ϰ + b − y2( 􏼁

−
1

y2 − y1
􏽚
ψ− 1(ϰ+b− v)

ψ− 1 ϰ+b− y2( )

((ϰ + b − v) − ψ(ζ))
ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ .

(13)

It follows from (11) and (13) that

v − y1( 􏼁
ϱ

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v( 􏼁
ϱ

y2 − y1
λ ϰ + b − y2( 􏼁 − I1 − I2

�
1

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
(ψ(ζ) − (ϰ + a − v))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ

+
1

y2 − y1
􏽚
ψ− 1(ϰ+b− v)

ψ− 1 ϰ+b− y2( )
((ϰ + b − v) − ψ(ζ))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ.

(14)

By simplifying, we get the required result. □

Remark 2. Placing identity function ψ(y) � y in (9), then,
we get Lemma 2.1 given in [32].

Remark 3. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
(9), it reduces to Lemma 2 in [33].

Remark 4. Setting ψ(y) � y, y1 � a, y2 � b, v � ϰ, and ϱ � 1
in (9), it recaptures Lemma 1 proved in [2].

Theorem 1. Under the assumptions of Lemma 1, if |λ′| is
convex function on [a, b], then for all ϱ > 0, the following
inequality is valid.

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼨

−
1
ϱ + 2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼢 􏼣􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼨

−
1
ϱ + 2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼢 􏼣􏼩.

(15)

Proof. By means of (9),
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Ξϱ,ψλ y1, y2, ϰ, v( 􏼁

�
1

y2 − y1
􏽚
ψ− 1 ϰ+a− y1( )

ψ− 1(ϰ+a− v)
(ψ(ζ) − (ϰ + a − v))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ

+
1

y2 − y1
􏽚
ψ− 1(ϰ+b− v)

ψ− 1 ϰ+b− y2( )
((ϰ + b − v) − ψ(ζ))

ϱψ′(ζ) λ′°ψ( 􏼁(ζ)dζ.

(16)

Change of variables s1 � ψ(ζ) − (ϰ + a − v)/v − y1 and
s2 � (ϰ + b − v) − ψ(ζ)/y2 − v and then ζ � s1 � s2 into the
resulting equality, we get

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁

�
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ.

(17)

Since |λ′| is convex function on [a, b], we obtain

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + λ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ζ λ′ y1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1 − ζ) λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩􏽮 􏽯dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + λ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ζ λ′ y2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1 − ζ) λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩􏽮 􏽯dζ

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
1
ϱ + 2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼢 􏼣􏼨 􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
1
ϱ + 2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼢 􏼣􏼨 􏼩.

(18)

□
Remark 5. If we set ψ(y) � y in (eorem 1, one can get
above inequality for Riemann–Liouville F-I operators given
in (eorem 2.1 [32].

Remark 6. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
(eorem 1, it reduces to (eorem 7 in [33] that yields the
same results with s � 1.

Corollary 1. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ
with ϱ � 1 in :eorem 1, we get the following inequality

λ(ϰ) −
1

b − a
􏽚

b

a
λ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϰ − a)

2

3(b − a)

1
2
λ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼚 􏼛 +

(b − ϰ)2

3(b − a)

1
2
λ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼚 􏼛.

(19)

Corollary 2. If we set ψ(y) � y and ϱ � 1 in :eorem 1, we
get the following Mercer–Ostrowski inequality:

v − y1

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
λ ϰ + b − y2( 􏼁􏼨 􏼩 −

1
y2 − y1

􏽚
ϰ+a− y1

ϰ+a− v
λ(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

λ(ζ)dζ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
2

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
1
3
λ′ y1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
6
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼔 􏼕􏼚 􏼛

+
y2 − v( 􏼁

2

y2 − y1

1
2

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
1
3
λ′ y2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
6
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼔 􏼕􏼚 􏼛.

(20)
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Corollary 3. :e following Mercer–Ostrowski inequality can
be found in :eorem 1 with |λ′|≤M

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
M

y2 − y1( 􏼁(ϱ + 1)
v − y1( 􏼁

ϱ+1
+ y2 − v( 􏼁

ϱ+1
􏽮 􏽯.

(21)

Proof. (e result can be obtained by using
|λ′(ϰ + a − [ζy1 + (1 − ζ)v])|≤M and |λ′(ϰ + b − [ζy2+

(1 − ζ)v])|≤M. □

Remark 7. If we set ψ(y) � y, y1 � a, y2 � b and v � ϰ in
Corollary 3, it reduces to Corollary 1 in [33].

Remark 8. If we set ψ(y) � y, y1 � a, y2 � b and v � ϰ and
ϱ � 1 in Corollary 3, it reduces to (eorem 2 in [2] that
yields the same result with s � 1.

Theorem 2. We assume that all the conditions of Lemma 1
hold. If |λ′|q is convex function on [a, b], then, for all ϱ > 0, the
following inequality

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱp + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱp + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

,

(22)

holds, where p, q> 1 are conjugate exponents. Proof. Applying classical Hölder integral inequality and the
convexity of |λ′|q on the right side of (9), we get

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ.

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

􏽚
1

0
λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

􏽚
1

0
λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

× 􏽚
1

0
λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏽮 􏽯dζ􏼠 􏼡

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

× 􏽚
1

0
λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏽮 􏽯dζ􏼠 􏼡

(1/q)

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱp + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱp + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

.

(23)
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(at finish the proof. □

Remark 9. If we set ψ(y) � y in (eorem 2, it reduces to
(eorem 2.2 in [32].

Remark 10. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
(eorem 2, it reduces to (eorem 8 in [33] that yields the
same results with s � 1.

Corollary 4. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ
with ϱ � 1 in :eorem 2, we have the following inequality:

λ(ϰ) −
1

b − a
􏽚

b

a
λ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
2(1/q)

(b − a)

1
p + 1

􏼠 􏼡

(1/p)

× (ϰ − a)
2 λ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽮 􏽯
(1/q)

􏼔

+(b − ϰ)2 λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽮 􏽯
(1/q)

􏼕.

(24)

Corollary 5. If we set ψ(y) � y and ϱ � 1 in :eorem 2, we
lead to following Mercer–Ostrowski inequality:

|
v − y1

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
λ ϰ + b − y2( 􏼁􏼨 􏼩

−
1

y2 − y1
􏽚
ϰ+a− y1

ϰ+a− v
λ(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

λ(ζ)dζ􏼨 􏼩|

≤
v − y1( 􏼁

2

y2 − y1

1
p + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

+
y2 − v( 􏼁

2

y2 − y1

1
p + 1

􏼠 􏼡

(1/p)

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼚 􏼛
(1/q)

.

(25)

Corollary 6. Let the function |λ′| in :eorem 2 is assumed to
be bounded that is |λ′|≤M, then the following result holds:

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
M

y2 − y1

1
ϱp + 1

􏼠 􏼡

1
p

v − y1( 􏼁
ϱ+1

+ y2 − v( 􏼁
ϱ+1

􏽮 􏽯.

(26)

Proof. (e result can be demonstrated by using |λ′(ϰ + a −

[ζy1 + (1 − ζ)v])|≤M and
|λ′(ϰ + b − [ζy2 + (1 − ζ)v])|≤M. □

Remark 11. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
Corollary 6, it reduces to Corollary 2 in [33].

Remark 12. If we set ψ(y) � y, y1 � a, y2 � b, v � ϰ and ϱ �

1 in Corollary 6, it reduces to(eorem 3 in [2] that yields the
same result with s � 1.

Theorem 3. We assume that all the conditions of Lemma 1
hold. If |λ′|q is convex function on [a, b], q≥ 1, then for all
ϱ > 0, the following inequality

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

􏼠 􏼡

1− (1/q)

×
1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
ϱ + 2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼢 􏼣􏼨 􏼩

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

􏼠 􏼡

1− (1/q)

×
1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
ϱ + 2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼢 􏼣􏼨 􏼩

(1/q)

,

(27)
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is valid. Proof. Applying power-mean integral inequality and the
convexity of |λ′|q on the right side of (9), we get

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱdζ􏼠 􏼡

1− (1/q)

􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱdζ􏼠 􏼡

1− (1/q)

􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱdζ􏼠 􏼡

1− (1/q)

× 􏽚
1

0
ζϱ λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩􏽮 􏽯
q
dζ􏼠 􏼡

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱdζ􏼠 􏼡

1− (1/q)

× 􏽚
1

0
ζϱ λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏽮 􏽯dζ􏼠 􏼡

(1/q)

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

􏼠 􏼡

1− (1/q)

×
1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
ϱ + 2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼢 􏼣􏼨 􏼩

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
ϱ + 1

􏼠 􏼡

1− (1/q)

×
1
ϱ + 1

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
ϱ + 2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
1

(ϱ + 1)(ϱ + 2)
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼢 􏼣􏼨 􏼩

(1/q)

.

(28)

Which ends the proof. □

Remark 13. If we set ψ(y) � y in (eorem 3, it reduces to
(eorem 2.3 in [32].

Remark 14. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
(eorem 3, it reduces to (eorem 9 in [33] that yields the
same results with s � 1.

Corollary 7. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ
with ϱ � 1 in :eorem 3, we have the following inequality:

λ(ϰ) −
1

b − a
􏽚

b

a
λ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

(b − a)

1
2

􏼒 􏼓
1− (1/q)

×
1
3

(ϰ − a)
2 1
2
λ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼚 􏼛
(1/q)

􏼢

+(b − ϰ)2
1
2
λ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼚 􏼛
(1/q)

􏼣.

(29)
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Corollary 8. If we choose ψ(y) � y and ϱ � 1 in :eorem 3,
we have the following Mercer–Ostrowski inequality:

v − y1

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
λ ϰ + b − y2( 􏼁􏼨 􏼩 −

1
y2 − y1

􏽚
ϰ+a− y1

ϰ+a− v
λ(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

λ(ζ)dζ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q) 1

2
λ′(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
3
λ′ y1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
1
6
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼔 􏼕􏼚 􏼛
(1/q)

+
y2 − v( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q) 1

2
λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 −
1
3
λ′ y2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
1
6
λ′(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼔 􏼕􏼚 􏼛
(1/q)

.

(30)

Corollary 9. Assuming that |λ′|≤M, in :eorem 3, the
following Mercer–Ostrowski inequality holds:

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
M

y2 − y1( 􏼁(ϱ + 1)
v − y1( 􏼁

ϱ+1
+ y2 − v( 􏼁

ϱ+1
􏽮 􏽯.

(31)

Proof. Under the assumed conditions, we have |λ′(ϰ + a −

[ζy1 + (1 − ζ)v])|≤M and |λ′(ϰ + b − [ζy2+

(1 − ζ)v])|≤M. (us, inequality (27) in (eorem 3 leads to
inequality (31). □

Remark 15. If we set ψ(y) � y, y1 � a, y2 � b, and v � ϰ in
Corollary 9, it reduces to Corollary 3 in [33].

Remark 16. If we set ψ(y) � y, y1 � a, y2 � b, v � ϰ, and
ϱ � 1 in Corollary 9, it reduces to (eorem 4 in [2] that
yields the same result with s � 1.

Theorem 4. We assume that all the assumptions of Lemma 1
holds. If |λ′|q is convex function on [a, b], for all ϱ > 0, the
following inequality

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
(ϱp + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
q

􏼒 􏼓􏼨 􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
(ϱp + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
q

􏼒 􏼓􏼨 􏼩,

(32)

holds where p, q> 1 are conjugate exponents.

Proof. From (9), we obtain

Ξϱ,ψλ y1, y2, x, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ.

(33)

Utilizing Young’s inequality as

uv<
1
p

u
p

+
1
q
v

q
.

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
p

􏽚
1

0
ζϱpdζ􏼨

+
1
q

􏽚
1

0
λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
p

􏽚
1

0
ζϱpdζ􏼨

+
1
q

􏽚
1

0
λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼩.

(34)

By the convexity of |λ′|q, we have
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Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
v − y1( 􏼁

ϱ+1

y2 − y1

×
1
p

􏽚
1

0
ζϱpdζ +

1
q

􏽚
1

0
λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏽮 􏽯dζ􏼨 􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

×
1
p

􏽚
1

0
ζϱpdζ +

1
q

􏽚
1

0
λ′(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

− ζ λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(1 − ζ) λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏽮 􏽯dζ􏼨 􏼩

≤
v − y1( 􏼁

ϱ+1

y2 − y1

1
(ϱp + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼒 􏼓􏼨 􏼩

+
y2 − v( 􏼁

ϱ+1

y2 − y1

1
(ϱp + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼒 􏼓􏼨 􏼩,

(35)

and the proof is done. □

Remark 17. In (eorem 4, putting ψ(y) � y, then, one can
get Mercer–Ostrowski inequality pertaining Rie-
mann–Liouville F-I operators given in [32].

Corollary 10. If we choose ψ(y) � y and ϱ � 1 in:eorem 4,
the following Mercer–Ostrowski inequality holds:

v − y1

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
λ ϰ + b − y2( 􏼁􏼨 􏼩 −

1
y2 − y1

􏽚
ϰ+a− y1

ϰ+a− v
λ(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

λ(ζ)dζ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
(p + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
q

􏼒 􏼓􏼨 􏼩

+
y2 − v( 􏼁

2

y2 − y1

1
(p + 1)p

+
1
q

λ′(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
1
2

λ′ y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ λ′(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩􏼒 􏼓􏼨 􏼩.

(36)

Corollary 11. :e following Mercer–Ostrowski inequality
can be obtained from :eorem 4 by assuming |λ′|≤M:

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
1

y2 − y1

1
(ϱp + 1)p

+
1
q
M

q
􏼨 􏼩 v − y1( 􏼁

ϱ+1
+ y2 − v( 􏼁

ϱ+1
􏽨 􏽩.

(37)

Theorem 5. We assume that all the assumptions of Lemma 1
hold. If |λ′|q is concave function on [a, b], q> 1, for all ϱ > 0,
the following inequality holds:

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
1
ϱp + 1

􏼠 􏼡

1
p

×
v − y1( 􏼁

ϱ+1

y2 − y1
λ′ ϰ + a −

y1 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨

+
y2 − v( 􏼁

ϱ+1

y2 − y1
λ′ ϰ + b −

y2 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼩,

(38)

where p, q> 1 are conjugate exponents.
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Proof. From (9), by using the Hölder’s inequality, we obtain

Ξϱ,ψλ y1, y2, ϰ, v( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱ λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

≤
v − y1( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

􏽚
1

0
λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

+
y2 − v( 􏼁

ϱ+1

y2 − y1
􏽚
1

0
ζϱpdζ􏼠 􏼡

(1/p)

􏽚
1

0
λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

(1/q)

.

(39)

Since |λ′|q is concave mapping, therefore from (3), we
obtain

􏽚
1

0
λ′ ϰ + a − ζy1 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ ≤ λ′ ϰ + a −

y1 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

,

(40)

and

􏽚
1

0
λ′ ϰ + b − ζy2 +(1 − ζ)v􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ ≤ λ′ ϰ + b −

y2 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

.

(41)

By placing the inequalities (40) and (41) in (39), leads to
(38). □

Remark 18. If we set ψ(y) � y in (eorem 5, it reduces to
(eorem 2.5 in [32].

Remark 19. If we set ψ(y) � y, y1 � a, y2 � b, v � ϰ, and
ϱ � 1 in(eorem 5, it reduces to(eorem 5 in [2] that yields
the same result with s � 1.

Corollary 12. If we choose ψ(y) � y and ϱ � 1 in:eorem 5,
we deduce the Mercer–Ostrowski inequality as

v − y1

y2 − y1
λ ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
λ ϰ + b − y2( 􏼁􏼨 􏼩 −

1
y2 − y1

􏽚
ϰ+a− y1

ϰ+a− v
λ(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

λ(ζ)dζ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

p + 1
􏼠 􏼡

1
p v − y1( 􏼁

2

y2 − y1
λ′ ϰ + a −

y1 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

y2 − v( 􏼁
2

y2 − y1
λ′ ϰ + b −

y2 + v

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩.

(42)

3. Some Applications

3.1. Applications toMeans. For two real numbers 0< κ1 < κ2,
consider the following two important means:

(e arithmetic mean:

A κ1, κ2( 􏼁 �
κ1 + κ2

2
. (43)
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(e generalized logarithmic-mean:

Lm κ1, κ2( 􏼁 �
κm+1
2 − κm+1

1
(m + 1) κ2 − κ1( 􏼁

􏼢 􏼣

(1/m)

; m ∈ R∖ − 1, 0{ }.

(44)

Proposition 1. Suppose a, b> 0, then, we have the following
inequality

v − y1

y2 − y1
2A(ϰ, a) − y1( 􏼁

n
+

y2 − v

y2 − y1
2A(ϰ, b) − y2( 􏼁

n
􏼨 􏼩

−
1

y2 − y1
v − y1( 􏼁L

m
m ϰ + a − y1, ϰ + a − v( 􏼁 + v − y2( 􏼁L

m
m ϰ + b − v, ϰ + a − y2( 􏼁􏼈 􏼉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
n v − y1( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q)

A |ϰ|(n− 1)q
, |a|

(n− 1)q
􏼐 􏼑 −

1
3

y1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(n− 1)q

+
1
6
|v|

(n− 1)q
􏼒 􏼓􏼚 􏼛

(1/q)

+
n y2 − v( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q)

A |ϰ|(n− 1)q
, |b|

(n− 1)q
􏼐 􏼑 −

1
3

y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(n− 1)q

+
1
6
|v|

(n− 1)q
􏼒 􏼓􏼚 􏼛

(1/q)

.

(45)

Proof. (e result can be obtained immediately by taking into
account Corollary 8 along with the convex function
λ(ϰ) � ϰn, ϰ> 0. □

Proposition 2. Suppose a, b> 0, then, we have the following
inequality:

v − y1

y2 − y1
2A(ϰ, a) − y1( 􏼁

n
+

y2 − v

y2 − y1
2A(ϰ, b) − y2( 􏼁

n
􏼨 􏼩

−
1

y2 − y1
v − y1( 􏼁L

m
m ϰ + a − y1, ϰ + a − v( 􏼁 + v − y2( 􏼁L

m
m ϰ + b − v, ϰ + a − y2( 􏼁􏼈 􏼉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
(p + 1)p

+
n

q
2A |ϰ|(n− 1)q

, |a|
(n− 1)q

􏼐 􏼑 − A y1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(n− 1)q

, |v|
(n− 1)q

􏼒 􏼓􏼚 􏼛􏼢 􏼣

+
y2 − v( 􏼁

2

y2 − y1

1
(p + 1)p

+
n

q
2A |ϰ|(n− 1)q

, |b|
(n− 1)q

􏼐 􏼑 − A y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(n− 1)q

, |v|
(n− 1)q

􏼒 􏼓􏼚 􏼛􏼢 􏼣.

(46)

Proof. (e proof is the direct consequence of Corollary 10
by considering the convex function λ(ϰ) � ϰn, ϰ> 0. □

3.2. q-DigammaFunction. (e φq-digamma function, which
is described as the logarithmic derivative of the q-gamma
function, is an essential function related to the q-gamma
function (see [34]) given as

φq � − ln(1 − q) + ln q 􏽘
∞

k�0

qk+ζ

1 − qk+ζ

� − ln(1 − q) + ln q 􏽘

∞

k�0

qkζ

1 − qkζ .

(47)

For q> 1 and ζ > 0, q-digamma function φq can be given
as

φq � − ln(q − 1) + ln q ζ −
1
2

− 􏽘
∞

k�0

q− (k+ζ)

1 − q− (k+ζ)
⎡⎣ ⎤⎦

� − ln(q − 1) + ln q ζ −
1
2

− 􏽘

∞

k�0

q− kζ

1 − q− kζ
⎡⎣ ⎤⎦.

(48)

Proposition 3. Assume that a and b are the real numbers
such that 0< a< b, q> 1, 0< q< 1, and q− 1 � 1 − p− 1. :en,
the following inequality is valid:
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v − y1

y2 − y1
φq ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
φq ϰ + b − y2( 􏼁􏼨 􏼩

−
1

y2 − y1
􏽚
ϰ+a− y1

ϰ+a− v
φq(ζ)dζ + 􏽚

ϰ+b− v

ϰ+b− y2

φq(ζ)dζ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q)

A φq′(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
, φq
′(a)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼒 􏼓 −
1
3
φq′ y1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+
1
6
φq′(v)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼔 􏼕􏼚 􏼛
(1/q)

+
y2 − v( 􏼁

2

y2 − y1

1
2

􏼒 􏼓
1− (1/q)

A φq′(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
, φq′(b)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼒 􏼓 −
1
3
φq′ y2( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+
1
6
φq′(v)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼔 􏼕􏼚 􏼛
(1/q)

.

(49)

Proof. (e statement can be obtained by using Corollary 8
by considering λ(ζ)⟶ φq(ζ). Since, φq′(ζ) is a com-
pletely monotone function on (0,∞) for all ζ > 0, con-
sequently, λ′(ζ): � φq′(ζ) is convex on the same interval
(0,∞), (see [34]). □

3.3. Bounds Involving Modified Bessel Function. We know
the first type of modified Bessel function Bτ1, which has the
series interpretation (see [35], p.77)

Bτ1(ϰ) � 􏽘
n≥ 0

(ϰ/2)
τ1+2n

n!Γ τ1 + n + 1( 􏼁
, (50)

where ϰ ∈ R and τ1 > − 1, while the second kind modified
Bessel function Zτ1 (see [35], p.78) is usually defined as

ϕτ1(ϰ) �
π
2
B− τ1(ϰ) − Bτ1(ϰ)

sin τ1π
. (51)

Consider the function Ψτ1: R⟶ [1,∞) defined by

Ψτ1(ϰ) � 2τ1Γ τ1 + 1( 􏼁ϰ− τ1Bτ1(ϰ). (52)

(e first- and second-order derivative formula of Ψτ1(ϰ)
is given as [35]:

Ψτ1′(ϰ) �
ϰ

2 τ1 + 1( 􏼁
Ψτ1+1(ϰ), (53)

Ψ′′τ1(ϰ) �
ϰ2Ψτ1+2(ϰ)

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1(ϰ)
2 τ1 + 1( 􏼁

. (54)

Proposition 4. Suppose that τ1 > − 1 and 0< a< b, q> 1.
:en, we have

v − y1

y2 − y1
.
ϰ + a − y1

2 τ1 + 1( 􏼁
.Ψτ1+1 ϰ + a − y1( 􏼁 +

y2 − v

y2 − y1
.
ϰ + b − y2

2 τ1 + 1( 􏼁
.Ψτ1+1 ϰ + b − y2( 􏼁􏼨 􏼩

−
1

y2 − y1
Ψτ1 ϰ + a − y1( 􏼁 − Ψτ1(ϰ + a − v)􏼐 􏼑 + Ψτ1(ϰ + b − v) − Ψτ1 ϰ + b − y2( 􏼁􏼐 􏼑􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
v − y1( 􏼁

2

y2 − y1

1
(p + 1)p

􏼨

+
1
q

ϰ2Ψτ1+2(ϰ)
4 τ1 + 1( 􏼁 τ1 + 2( 􏼁

+
Ψτ1+1(ϰ)
2 τ1 + 1( 􏼁

􏼠 􏼡

q

+
a2Ψτ1+2(a)

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1(a)

2 τ1 + 1( 􏼁
􏼠 􏼡􏼠 􏼡

q

−
1
2

y2
1Ψτ1+2 y1( 􏼁

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1 y1( 􏼁

2 τ1 + 1( 􏼁
􏼠 􏼡

q

+
v2Ψτ1+2(v)

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1(v)

2 τ1 + 1( 􏼁
􏼠 􏼡

q

􏼢 􏼣􏼩

+
y2 − v( 􏼁

2

y2 − y1

1
(p + 1)p

􏼨

+
1
q

ϰ2Ψτ1+2(ϰ)
4 τ1 + 1( 􏼁 τ1 + 2( 􏼁

+
Ψτ1+1(ϰ)
2 τ1 + 1( 􏼁

􏼠 􏼡

q

+
b2Ψτ1+2(b)

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1(b)

2 τ1 + 1( 􏼁
􏼠 􏼡

q

􏼠 􏼡

−
1
2

y2
2Ψτ1+2 y2( 􏼁

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1 y2( 􏼁

2 τ1 + 1( 􏼁
􏼠 􏼡

q

+
v2Ψτ1+2(v)

4 τ1 + 1( 􏼁 τ1 + 2( 􏼁
+
Ψτ1+1(v)

2 τ1 + 1( 􏼁
􏼠 􏼡

q

􏼢 􏼣􏼩.

(55)
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Proof. Substituting the mapping λ⟶Ψτ1′ to the inequality
in Corollary 10. Note that all assumptions of Corollary 10 are
satisfied (see [34]). (erefore, using the identities (53) and
(54) gives required result. □

4. Conclusions

(e objective of this study is to introduce the idea of new
generalized fractional variants of Ostrowski inequality by
employing Jensen–Mercer inequality for differentiable
convex functions. (e obtained results are intersting and
generalized in a sense that by substituting identity function
ψ(y) � y and special value of ϱ � 1, we get connected to
previously established results in the literature. Also, one can
get variety of fractional Mercer–Ostrowski inequalities for
different F-I operators by considering particular values of
function ψ as mentioned in Remark 1. In addition, another
motivating aspect of the study is that we try to give appli-
cations of means, q-digamma function, and Bessel function
for Mercer–Ostrowski inequality in the similar passion as
considered for Hermite–Hadamard type inequalities given
in [8, 30]. Based on this study, researchers may contribute to
the development of such results for twice differentiable
functions.

Data Availability

No data are available.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References
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In this research study, the generalized di�erential transform scheme has been applied to simulate impulsive di�erential equations
with the noninteger order. One speci�c tool of the implemented scheme is that it converts the problems into a recurrence equation
that �nally leads easily to the solution of the considered problem. e validity and reliability of this method have successfully been
accomplished by applying it to simulate the solution of some equations. It is shown that the consideredmethod is very suitable and
e�cient for solving classes of fractional-order initial value problems for impulsive di�erential equations and might �nd
wide applications.

1. Introduction

Present, impulsive di�erential equations are treated as a
basic system to explore the structures of various phenomena
that are subjected to unexpected variations in their states.
Many evolution processes which are simulated in applied
sciences are de�ned by di�erential equations with the im-
pulse e�ect.  e theory and applications addressing such
problems have been reported [1–6]. Recently, some inter-
esting solutions’ existence results for impulsive di�erential
equations have been explored largely; we suggest the reader
to [7–11] and the papers therein.

Over the last few years, the applications of fractional
derivatives are sharply increasing and a huge quantity of
mathematical systems has been explored by using these
operators in di�erent regions of science and engineering
[12–18]. In the theory of fractional calculus, we talk about
the noninteger orders of di�erential operators.  e frac-
tional calculus is just a generalization of classical calculus

and uses similar methods and features, but is more useful in
the application �eld.  e memory e�ects and hereditary
natures of di�erent types of processes and materials can be
studied by fractional-order operators much more accurately.
 ese operators involve the complete history of that function
in the given domain or span, which we say memory e�ects.
 at is why fractional-order operators are the best �t to
describe dynamical systems or various real-life problems.
Also, the nonlocal characteristic is one of the beauties of
fractional operators.  is justi�es that the future state of a
model depends not only upon the present stage but also
upon all past states. All features make the importance of
noninteger order systems and that is why an active area of
research.

Nowadays, impulsive fractional di�erential equations, as
generalizations of impulsive classical di�erential equations,
are applied to model various important dynamical phe-
nomena containing evolutionary structures speci�ed by
abrupt variations of the position at particular instants. Some
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recent developments in the stability, existence, and
uniqueness of solutions for classes of impulsive fractional
differential equations are investigated [19–27]. To date, a
number of computational methods have been proposed to
solve various types of noninteger order differential equa-
tions. Najafi and Allahviranloo [28] solved the linear and
nonlinear fuzzy impulsive fractional differential equations
by using the combination of reproducing kernel Hilbert
space and fractional differential transform methods. A
block-by-block numerical method is constructed for the
impulsive fractional ordinary differential equations by
carrying out a series of numerical examples in [29]. In [30],
the Adomian decomposition method was applied to solve
impulsive nonclassical type differential equations with the
Caputo fractional operator. Very recently, a number of
studies in the direction of efficiency and performance of
various computational methods have been given by re-
searchers [31–39]. In [40], authors have defined a novel
fractional-order Lagrangian to study the motion of a beam
on a nanowire. Some applications of noninteger order
numerical methods in epidemiology and ecology can be seen
[41, 42]. In the works presented in [20, 23, 26], we can
observe a conflict between the obtained solutions for a
particular impulsive fractional-order differential equation.
In fact, they use different definitions for the Caputo frac-
tional differential operators. However, to our knowledge,
analytical or numerical techniques for solving impulsive
fractional differential equations have not yet been suffi-
ciently established. ,erefore, the aim of this work is to
implement the generalized differential transform scheme for
analytically solving the initial value problem for the im-
pulsive fractional differential equations:

D
α
0F(t) � f(t, F(t)),

t ∈ [0, T]

t1, t2, . . . , tk􏼈 􏼉
,

ΔF tm( 􏼁 � F t
+
m( 􏼁 − F t

−
m( 􏼁 � Im F t

−
m( 􏼁( 􏼁, m � 1, 2, . . . , k,

F(0) � F0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Dα
0 is the Caputo fractional differential operator of

order α with 0< α≤ 1, described in Section 2, f: [0, T] ×

R⟶ R is the appropriate continuous function, and
Im: R⟶ R, tm satisfying 0 � t0 < t1 < · · · < tk < tk+1 � T

and F0 ∈ R. ,e numbers tm are called instants (or mo-
ments) of impulse, Im shows the jump of the state tm, and
F(t+

m) � limh⟶0+F(tm + h) and F(t−
m) � limh⟶0− F(tm + h)

specify the right and the left limits, respectively, of the state
tm.

2. Preliminaries and Notations

In this portion, first, we write few important definitions of
fractional-order operators and generalized Taylor’s formula.
Next, we recall some relevant results which are applied in
this research.

Definition 1. ,e Caputo fractional derivative operator of
order α with α> 0 is specified by

D
α
af(t) � J

n− α
a D

n
f(t), (2)

where n − 1< α≤ n, n ∈ N, and Dn is the classical differential
operator of order n and Jμ is the Riemann-Liouville frac-
tional integral operator of order μ with μ> 0.

Definition 2. ,e definition of Riemann-Liouville fractional
integral operator of order μ with μ> 0 is given by

J
μ
af(t) �

1
Γ(μ)

􏽚
t

a
(t − τ)

μ− 1
f(τ)dτ, t> a. (3)

Brief discussion on the characteristics of the above given
fractional derivative operators can be learned from [12–18].

It is worth mentioning that there are some differences
between Caputo fractional differential operator Dα

a, given in
Definition 1, and the usual integer differential operator Dn

regarding the memory property. Caputo fractional operator
of function f, Dα

af(t), captures the complete history of the
function f starting from t � a, while the classical derivative
operator of the function f, Dnf(t), only considers the
nearby points. So, Caputo definition has long-term memory
and long-span spatial interactions. In [43], the authors in-
troduced the generalized Taylor’s formula. ,is general-
ization is a derivation of a function as an infinite sum of
terms that is simulated from the fractional derivative values
of a function at a single point.

Theorem 1. Assume that (Dα
a)mf(t) ∈ C(a, b] for

m � 0, 1, . . . , k + 1, where 0< α≤ 1; then, we have [43]

f(x) � 􏽘
k

i�0

(t − a)
αi

Γ(αi + 1)
D

α
a( 􏼁

i
f􏼐 􏼑(a+) + R

α
k(t, a), (4)

where

R
α
k(t, a) �

D
α
a( 􏼁

1+k
f􏼐 􏼑(ξ)

Γ((1 + k)α + 1)
(t − a)

(1+k)α
. (5)

With a≤ ξ ≤ t, for each t ∈ (a, b], and Dα
a is the Caputo

derivative operator of order α, with (Dα
a)k � Dα

a · Dα
a · · · Dα

a.
In some recent studies, number of results have been

proposed to find the sufficient conditions regarding the
solution existence for the Caputo-type IVPs for impulsive
differential equations [20–22, 24, 25]. One of the most
important results is given in the following theorem which
establishes the connection between the IVP for the Caputo-
type impulsive differential equation given in equation (1)
and a class of integral equations.

Theorem 2. Let 0< α≤ 1 and f: [0, T] × R⟶ R be Leb-
esgue measurable function with respect to t on [0, T]. A
function x(t) is a solution of IVP (1) if and only if x(t) is a
solution of the following integral equations [25]:
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x(t) �

x0 +
1
Γ(α)

􏽚
t

0
(t − v)f(v, x(v))dv, 0≤ t≤ t1,

x0 + I1 x t
−
1( 􏼁( 􏼁 +

1
Γ(α)

􏽚
t

0
(t − v)

1− α
f(v, x(v))dv, t1 < t≤ t2,

⋮

x0 + 􏽘
m

i�1
Ii x t

−
i( 􏼁( 􏼁 +

1
Γ(α)

􏽚
t

0
(t − v)

1− α
f(v, x(v))dv, tm < t≤T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

3. Generalized Differential Transform Scheme

,e differential transformmethod (DTM), proposed by Zhou
[44] in 1986, was given for simulating ordinary and partial
differential equations. ,is scheme produces approximations
based on an iterative method for calculating power series
solutions in the form of initial value constraints of differential
equation.,e scheme, which is well addressed in [45, 46], can
be taken as an alternative method for constructing the so-
lution as formal Taylor series without linearization, dis-
cretization, perturbation, or large computational work. More
recently, for solving the noninteger order differential equa-
tions, the DTM was generalized by using generalized Taylor’s
formula ([47]) to calculate the solutions of such equations in
the terms of fractional power series.,e new extension, which
is known as the generalized differential transform method
(GDTM), gives a useful feature for getting fractional power
series expansions for the solutions of nonlinear systems
having nonclassical derivatives. For understanding of the
learners, we give a review on the GDTM. We define the
generalized differential transformation of themth derivative of
the function f(x) as follows [48]:

Fα(m) �
1

Γ(αm + 1)
D

α
x0

􏼐 􏼑f(x)􏽨 􏽩|x�x0′
, (7)

where 0< α≤ 1, (Dα
x0

)m � Dα
x0

· Dα
x0

· · · Dα
x0
, (m-times), and

the generalized differential inverse transform of Fα(m) is
defined as

f(x) � 􏽘
∞

m�0
Fα(m) x − x0( 􏼁

αm
. (8)

When we put (7) into (8), applying the generalized
Taylor’s formula, we receive

􏽘

∞

m�0
Fα(m) x − x0( 􏼁

αm
� 􏽘

∞

m�0

x − x0( 􏼁
αm

Γ(αm + 1)
D

α
x0

􏼐 􏼑
m

f(x)􏽨 􏽩|x�x0

� f(x).

(9)

So, (8) is the inverse transformation of the generalized
differential transform (7). ,e GDTM consisting of the
generalized differential transformation (7) and its inverse
transform (8) has increased the applications of the DTM to
fractional differential equations. ,e basic simulations done

by generalized differential transformation can be learned
from [48], and the mostly applicable characteristics are
specified by the following theorems.

Theorem 3. If Gα(k), Vα(k), and Wα(k) are the generalized
differential transformations of the functions g(x), v(x), and
w(x), respectively, then [48]

(i) If g(x) � v(x)∓w(x), then Gα(k) � Vα(k)∓Wα(k);
(ii) If g(x) � av(x), where a ∈ R, then Gα(k) � aVα(k);
(iii) If g(x) � v(x) · w(x), then

Gα(k) � 􏽐
k
l�0 Vα(l) · Wα(k − l);

(iv) If g(x) � Dα
x0

v(x), then
Gα(k) � (Γ(α(k + 1) + 1)/Γ(αk + 1))Vα(k + 1);

(v) If g(x) � (x − x0)
mα, then Gα(k) � δ(k − m), where

δ(k) �
1, k � 0
0, k≠ 0􏼨 .

Theorem 4. Suppose that Gα(n) and Vα(n) are the gener-
alized differential transforms of the functions g(x) and v(x),
simultaneously. Ien, if g(x) � D

β
x0v(x), m − 1< β≤m,

where Dαn
x0

D
β
x0v(x) � D

αn+β
x0 v(x), for n � 0, 1, 2, . . ., then [48]

Gα(n) �
Γ(αn + 1 + β)

Γ(αn + 1)
Vα

n + β
α

􏼠 􏼡. (10)

4. GDTM for Impulsive Fractional
Differential Equations

,is section presents the applications of GDTM to solve IVP
for the impulsive Caputo-type differential equations given in
(1). ,e obtained piecewise continuous solutions of such
IVPs demonstrate the performance and reliability of the
method. Initially, one can verify that, using Definition 1 and
,eorem 2, the solution of IVP (1) can be obtained as

y(t) �

y1(t), 0≤ t≤ t1,

y2(t), t1 < t≤ t2,

⋮

ym+1(t), tm < t≤T,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where the solution component yk(t) satisfies IVP:
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D
α
0yk(t) � f t, yk(t)( 􏼁, t> 0, (12)

For k � 1, 2, . . . , m + 1, respect to the initial constraints,

y1(0) � y0,

y2(0) � y0 + I1 y t
−
i( 􏼁( 􏼁,

y3(0) � y0 + I1 y t
−
i( 􏼁( 􏼁 + I2 y t

−
2( 􏼁( 􏼁,

⋮

ym+1(0) � y0 + 􏽘
m

i�1
Ii y t

−
i( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

,e main steps of the GDTM for simulating the non-
classical differential equations are as follows: first, we employ
the generalized differential transformation, specified in (7),
to IVP (1); then, the output is a recurrence relation. Second,
simulating this relation by applying the inverse generalized
differential transformation, given in (8), we get the solution
component yj(t) of IVP (1) as

yj(t) � 􏽘
∞

k�0
Yj(k) · t

αk
, (14)

where Yj(k) stratifies the recurrence relation:

Γ((1 + k)α + 1)

Γ(kα + 1)
Yj(1 + k) � F k, Yj(k)􏼐 􏼑, (15)

where Y1(0) � y0, Yj+1(0) � y0 + 􏽐
j
i�1 Ii(y(t−

i )), j �

1, 2, . . . , m, and F(k, Yj(k)) is the generalized differential
transformation of the function f(t, yj(t)). Now, by
implementing the above analysis, piecewise continuous
solutions of some illustrative IVPs for impulsive fractional-
order differential equations are derived.

Furthermore, we will investigate the sufficient condition
for the convergence of the series solution, given in (11).
Based on these simulations, maximum absolute truncated
error estimations for the solutions will also be addressed.
Following the work presented in [49], we can establish the
following results.

Theorem 5. Let the solution of IVP (1) is obtained as given in
(11), where the components yj(t) of the solution are evaluated
as given in (14), and let Ij � [tj− 1, tj].

(a) ,e series 􏽐
∞
k�0 Yj(k) · tαk, given in (14), converges if

∃0< cj < 1, such that ‖Yj(k + 1) · tα/Yj(k)‖< cj,
∀ k≥ k0, for some k0 ∈ N and t ∈ Ij, where
‖f(t)‖ � max

t∈Ij

|f(t)|, that is, the solution component

yj(t) converges if lim
k⟶∞

|Yj(k + 1)/
Yj(k)| · max

t∈Ij

tα < 1.
(b) Let the series 􏽐

∞
k�0 Yj(k) · tαk converges to the so-

lution component yj(t). If the truncated series
􏽐

n
k�0 Yj(k) · tαk is considered as an approximation to

the solutions yj(t), then the maximum absolute
truncated error is calculated as ‖yj(t) −

􏽐
n
k�0 Yj(k) · tαk‖< c

n− n0+1
j /1 − cj max

t∈Ij

|Yj(n0) · tαn0 |,
for any n0 ≥ 0, where Yj(n0)≠ 0.

Another way, we derive, for each i≥ k0 and t ∈ Ij, the
parameters cj(i) as

cj(i + 1) �

Yj(i + 1) · t
α

Yj(i)

���������

���������
, Yj(i)

�����

�����≠ 0,

0, Yj(i)
�����

����� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

i ∈ N∪ 0{ }; then, the series 􏽐
∞
k�0 Yj(k) · tαk converges to

an exact solution, yj(t), when 0≤ cj(i)< 1, ∀ i≥ k0.
To show the reliability, applicability, and performance of

this scheme as an efficient tool in obtaining series solutions,
some initial value problems for impulsive Caputo-type
differential equations will be examined in the following
examples.

Example 1. First, we recall the following IVP for the im-
pulsive differential equation in the sense of Caputo deriv-
ative [50, 51]:

D
(1/4)
0 g(t) � t,

t ∈ (0, 2]

1{ }
,

g 1+
( 􏼁 � g 1−

( ) + 1,

g(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Using generalized differential transformation along with
its properties, on both sides of (17), we get

Gj(k + 1) �
Γ(k/4 + 1)

Γ(k/(4 + 5)/4)
[δ(k − 4)], j � 1, 2, (18)

where G1(0) � 0 and G2(0) � 1. Using the recurrence re-
lation (18) and the transformed initial conditions, some
initial components of the generalized differential transform
solution for equation (17) can be written as follows:
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G1(0) � G1(1)

� G1(2)

� G1(3)

� G1(4)

� 0,

G1(5) �
1
Γ(9/4)

,

G2(0) � 1,

G2(1) � G2(2)

� G2(3)

� G2(4)

� 0,

G2(5) �
1
Γ(9/4)

,

(19)

where G1(k) � G2(k) � 0, for k> 5. So, the solution to the
IVP for the impulsive Caputo-type differential equation
given in (17) can be obtained as

g(t) �

16
5Γ(1/4)

t
(5/4)

, 0≤ t≤ 1,

1 +
16

5Γ(1/4)
t
(5/4)

, 1< t≤ 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

which is the same solution of the initial value problem for the
impulsive fractional differential (17) obtained in [50].

Example 2. We next adopt IVP for the impulsive Caputo-
type differential equation:

D
α
0y(t) � 1 − y

2
(t),

t ∈ (0, 2]

1{ }
,

y 1+
( 􏼁 � y 1−

( ) + 2,

y(0) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where 0< α≤ 1. Using the generalized differential trans-
formation to both sides of (21) and applying the features of
the given transform, we obtain

Yj(1 + k) �
Γ(kα + 1)

Γ(α(1 + k) + 1)
δ(k) − 􏽘

k

l�0
Yj(l)Yj(k − l)

⎧⎨

⎩

⎫⎬

⎭, j � 1, 2,

(22)

where Y1(0) � 0 and Y2(0) � 1. Using the recurrence re-
lation (22) and the transformed initial conditions, the

approximate solution to IVP for the impulsive equation
given in equation (21) can be derived as

y(t) �
y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2.
􏼨 (23)

Here,

y1(t) �
1
Γ(α + 1)

t
α

−
1

Γ(α + 1)
2
Γ(2α + 1)

Γ(3α + 1)
t
3α

+
2

Γ(α + 1)
3
Γ(2α + 1)

Γ(3α + 1)

Γ(4α + 1)

Γ(5α + 1)
t
5α

− · · · ,

y2(t) � 1.

(24)

Since Y2(0) � 1 and Y2(k) � 0, for k≥ 2. ,e exact
solution of the Caputo-type differential equation Dα

0y(t) �

1 − y2(t) with respect to the initial constraint y(0) � 0 when
α � 1 is y(t) � ((e2t − 1)/(e2t + 1)). In Table 1, the obtained
numerical solutions 􏽐

n
k�0 Y1(k) · tαk, when n � 21, for the

solution component y1(t) of the initial value problems given
in (21), over the interval 0< t< 1, are compared with those
obtained in [50] using the second kind Chebyshev wavelet
scheme, the numerical solutions obtained in [51] using the
double perturbation collocation method, and the exact so-
lutions when α � 1. It is clear from Table 1 that our ap-
proximate solutions are very close in favor with the exact
solutions and are much accurate as compared to the solu-
tions given in [50, 51]. Definitely, the accuracy of our ap-
proach can be dramatically improved by simulating further
terms of y1(t).

Example 3. Now, we consider the following initial value
impulsive Caputo-type differential equation:

D
α
0y(t) � − y(t) + 0.5y

2
(t) + 1,

t ∈ (0, 2]

1{ }
,

y 1+
( 􏼁 � y 1−

( ) + 1.25,

y(0) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where 0< α≤ 1. Using the generalized differential trans-
formation on both the sides of (25) with the characteristics of
the generalized differential transformation, we obtain

Yj(k + 1) �
Γ(αk + 1)

Γ(α(k + 1) + 1)
− Yj(k) + 0.5􏽘

k

l�0
Yj(l)Yj(k − l) + δ(k)

⎧⎨

⎩

⎫⎬

⎭, j � 1, 2,

(26)

where Y1(0) � 0 and Y2(0) � 1.25. Applying the recurrence
relation (27) and the transformed initial values, the ap-
proximate solution to the initial value impulsive fractional-
order (25) can be derived by

y(t) �
y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2,
􏼨 (27)

where

Mathematical Problems in Engineering 5



y1(t) �
1
Γ(α + 1)

t
α

−
1

Γ(2α + 1)
t
2α

+
1

Γ(3α + 1)
1 +
Γ(2α + 1)

2Γ(α + 1)
2􏼠 􏼡 t

3α
+ · · · ,

y2(t) � 1.25 +
17
32

1
Γ(α + 1)

t
α

+
17
128

1
Γ(2α + 1)

t
2α

+ · · · .

(28)

In Figures 1 and 2, we compute c1(i)’s and c2(i)’s
(defined in (16)), for different values of α, that correspond to
the solution components y1(t) and y2(t), respectively, of
(25) where x-axis shows the index i and y-axis shows the
parameter ci. From Figures 1 and 2, since c1(i)< 1 and
c2(i)< 1 for i≥ 1, we observe that the components y1(t) and
y2(t) of the series solution converge to the exact solution for
(25), at α � 1, 0.90 and 0.80. Also, we conclude that c1(i)’s
and c2(i)’s are not less than 1, if α � 0.7, and so, the series
solution components may diverge when α � 0.7. In the same
way, we can perform the numerical simulations to show that
the nonclassical type power series solution of (25) may
diverge at the fractional-order.

For big value of n, if the truncated series 􏽐
n
k�0 Y1(k) · tαk

and 􏽐
n
k�0 Y2(k) · tαk are used as approximations to the exact

solution components y1(t) and y2(t) over 0< t≤ 1 and
1< t≤ 2, respectively, according to Figures 1 and 2, the max.
absolute truncation error can be estimated as

y1(t) − 􏽘
n

k�0
Y1(k) · t

αk

���������

���������
≤

1
1 − 0.6368

(0.6368)
n
, α � 1,

1
Γ(1.9)

1
1 − 0.7659

(0.7659)
n
, α � 0.9,

1
Γ(1.8)

1
1 − 0.9145

(0.9145)
n
, α � 0.8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

and

y2(t) − 􏽘
n

k�0
Y2(k) · t

αk

���������

���������
≤

1.25
1 − 0.7545

(0.7545)
n
, α � 1,

1.25
1 − 0.8389

(0.8389)
n
, α � 0.9,

1.25
1 − 0.9257

(0.9257)
n
, α � 0.8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

As a result, we can observe that the domain of con-
vergence becomes large as the order of the fractional de-
rivative increases. ,e performed numerical simulations
justify that the series solutions of given impulsive fractional-
order differential equation may diverge when the fractional
derivative order is α≪ 1.

Example 4. Finally, we adopt the initial value problem for
the impulsive Caputo-type differential equation.

D
β
0y(t) � − t − y − t

2
y
2

+
te

− t
+ t

2
e

− 3t
􏼐 􏼑

y
,

t ∈ (0, 3]

1, 2{ }
, 0< β≤ 1,

y 1+
( 􏼁 � 1 + y 1−

( ),

y 2+
( 􏼁 � 1 + y 2−

( ),

y(0) � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

,e exact solution of the system,

D
β
0y(t) � − t − y − t

2
y
2

+
te

− t
+ t

2
e

− 3t
􏼐 􏼑

y
, t ∈ [0, 1], 0< β≤ 1,

y(0) � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

is given in [52, 53] by y(t) � e− t when β � 1. Using the
characteristics of the generalized differential transformation
of order α, (30) can be transformed to the following re-
currence relation:

Yj

k + β
α

􏼠 􏼡 �
Γ(αk + 1)

Γ(αk + β + 1)
− δ

k − 1
α

􏼠 􏼡 − Yj(k)􏼢

− 􏽘
k

k2�0
􏽘

k2

k1�0
δ

k1 − 2
α

􏼠 􏼡Yj k2 − k1( 􏼁Yj k − k2( 􏼁 + F(k)⎤⎥⎥⎥⎦,

(33)

for j � 1, 2, 3, F(k) � ([H(k) − 􏽐
k− 1
λ�0F(λ)(k − λ)]/(0)),

H(k) � P(k) + S(k), P(k) � 􏽐
k
p�0 E1(p)δ(k − p − (1/α)),

and S(k) � 􏽐
k
p�0 E2(p)δ(k − p − (2/α)). Moreover, E1(k)

and E2(k) represent the generalized transformations of e− t

and e− 3t that can be expressed, respectively, as follows:

E1(k) �

(− 1)
αk

(αk)!
, αk ∈ Z+

,

0, αk ∉ Z+
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E2(k) �

(− 3)
αk

(αk)!
, αk ∈ Z+

,

0, αk ∉ Z+
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

Table 1: Numerical outputs for equation (21) over 0< t< 1, when
α � 1.

t Exact solution Present method Ref. [50] Ref. [50]
0.1 0.099668 0.099668 0.099667 0.099694
0.2 0.197375 0.197375 0.197358 0.197437
0.3 0.291312 0.291313 0.291289 0.291345
0.4 0.379949 0.379949 0.379946 0.379928
0.5 0.462117 0.462117 0.462172 0.462074
0.6 0.537050 0.537050 0.537048 0.537033
0.7 0.604368 0.604368 0.604338 0.604397
0.8 0.664037 0.664037 0.664009 0.664082
0.9 0.716298 0.716300 0.716300 0.716314
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Figure 2: Numerical outputs of c1(i)’s for y2(t) of equation (26). (a) α � 1. (b) α � 0.9. (c) α � 0.8. (d) α � 0.7.
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Figure 1: Numerical results of c1(i)’s for y1(t) of problem (26). (a) α � 1. (b) α � 0.9. (c) α � 0.8. (d) α � 0.7.
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,e initial condition and the jumps of the states of (30)
are transformed as

Y1(0) � 1, Y1(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡,

Y2(0) � 2, Y2(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡,

Y3(0) � 3, Y3(k) � 0, for k � 1, 2, . . . ,
β

α − 1
􏼠 􏼡.

(35)

For β � 0.8, solving the recurrence relation (33) using
the transformed conditions given in equation (35) up to
k � 18, the approximate solution to IVP for the impulsive
Caputo-type differential given in equation (31) can be de-
rived as

y(t) �

y1(t), 0≤ t≤ 1,

y2(t), 1< t≤ 2,

y3(t), 2< t≤ 3,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (36)

where

y1(t) � 1 − 1.0737t
(4/5)

+ 0.69948t
(8/5)

− 0.33543t
(12/5)

+ 0.48426t
(13/5)

− 0.4261t
(14/5)

+ 0.12892t
(16/5)

− 0.011358t
(17/5)

+ 0.90275t
(18/5)

+ · · · ,

y2(t) � 2 − 2.14734t
(4/5)

+ 1.39897t
(8/5)

− 0.298242t
9/5

− 0.670869t
(12/5)

+ 0.376645t
(13/5)

− 1.70424t
(14/5)

+ 0.257842t
(16/5)

− 0.0550077t
(17/5)

+

+ 3.63717t
(18/5)

+ · · · ,

y3(t) � 3 − 3.22101t
(4/5)

+ 2.09845t
(8/5)

− 0.397656t
9/5

− 1.0063t
(12/5)

+ 0.340774t
(13/5)

− 3.83454t
(14/5)

+ 0.386763t
(16/5)

− 0.0695575t
(17/5)

+ 8.14028t
(18/5)

+ · · · .

(37)

For β � 0.85, the approximate solutions y1(t), y2(t), and
y3(t) can be evaluated as

y1(t) � 1 − 1.0575t
(17/20)

+ 0.64738t
(17/10)

− 0.28464t
(51/20)

+ 0.44357t
(27/10)

− 0.40114t
(57/20)

+ 0.098657t
(17/5)

+ 0.0091578t
(71/20)

+ 0.81295t
(37/10)

+ · · · ,

y2(t) � 2 − 2.11503t
(17/20)

+ 1.29476t
(17/10)

− 0.285815t
(37/20)

− 0.569273t
(51/20)

+ 0.341673t
(27/10)

− 1.60458t
(57/20)

+ 0.197315t
(17/5)

− 0.0355107t
(71/20)

+ 3.27489t
(37/10)

+ · · · ,

y3(t) � 3 − 3.17255t
(17/20)

+ 1.94214t
(17/10)

− 0.381087t
(37/20)

− 0.85391t
(51/20)

+ 0.307706t
(27/10)

− 3.610t
(57/20)

+ 0.295972t
(17/5)

− 0.0504003t
(71/20)

+ 7.33025t
(37/10)

+ · · · .

(38)

While when β � 1, the approximate solutions y1(t),
y2(t), and y3(t) can be evaluated as

y1(t) � 1 − t +
t
2

2
−

t
3

6
+

t
4

24
−

t
5

120
+

t
6

720
−

t
7

5040
+

tx
8

40320
−

t
9

362880
+

t
10

3628800
− · · · ,

y2(t) � 2 − 2t + 0.75 t
2

− 1.41667t
3

+ 2.11979 t
4

− 1.54479 t
5

+ 1.59232 t
6

− 2.3723 t
7

+ 2.50693 t
8

− 2.35509t
9

+ 2.73001t
10

− · · · ,

y3(t) � 3 − 3t + 1.16667t
2 3.27778t

3
+ 5.16204t

4
− 4.02253t

5

+ 5.04799t
6

+ 8.22138t
7

+ 9.0091t
8

− 9.70313t
9

+ 13.3388t
10

− · · · .

(39)

8 Mathematical Problems in Engineering



Table 2 provides the exact solution and the absolute
errors for the approximate solutions of y1(t), over 0< t< 1,
obtained using the GDTM, Chebyshev method [52], and
Padé approximation method [53] when β � 1. From Table 2,
we can conclude that the absolute errors are so small, and the
approximate solutions simulated from GDTM are so closed
to the exact solutions. Here, the comparison is made in the
first subinterval because, to our knowledge, techniques for
solving IVPs for impulsive Caputo-type differential equa-
tions have not yet been sufficiently introduced.

5. Conclusion

In this research, the application and performance of the
generalized differential transform scheme to simulate initial
value problems for Caputo-type differential equations are
addressed. ,e reliability of the given technique has been
demonstrated through some illustrative examples, and the
obtained results show perfect agreements with other methods
over the first subinterval. ,e sufficient condition for con-
vergence of the scheme is presented. ,e main property of the
method, as shown in this study, is that it deforms the impulsive
differential equations of fractional order into a set of recurrence
equations which gives several successive approximations, and
hence, the procedure is direct and straightforward. ,is work
illustrates the flexibility of the method as a tool to solve the
classes of nonlinear problems containing fractional derivatives,
effectively, easily, and accurately.
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�e goal of this study is to use the fast algorithm to solve the Rayleigh–Stokes problem for heated generalized second-grade �uid
(RSP-HGSGF) with Riemann–Liouville time fractional derivative using the fast algorithm.�emodi�ed implicit scheme, which is
formulated by the Riemann–Liouville integral formula and applied to the fractional RSP-HGSGF, is proposed. Numerical
experiments will be carried out to demonstrate that the scheme is simple to implement, and the results will reveal the best way to
implement the suggested technique. �e proposed scheme’s stability and convergence will be examined using the Fourier series.
�e method is stable, and the approximation solution approaches the exact solution. A numerical demonstration will be provided
to demonstrate the applicability and viability of the suggested strategy.

1. Introduction

�e study and application of arbitrary-order derivatives
and integrals are associated with fractional calculus. �e
use of fractional-order calculus in a variety of �elds of
science and engineering, including geometric phenom-
ena, has sparked a lot of interest in this area [1]. �e �rst
discussion of fractional calculus took place between
Leibniz and L’Hospital at the end of the seventeenth
century [2]. �e great mathematicians Erdelyi, Abel,
Riemann, Laplace, Heaviside, Levy, Liouville, Riesz,
Gunwald, Letnikov, and Fourier worked on it and had
contributed [3]. Fractional-order integrals and derivatives
play an important role in solving some chemical prob-
lems, and this �eld has been paid much attention since
1968. �e most well-known book in the �eld of fractional
calculus, originally written by Ross and Miller and Ross
[4], Spanier and Oldham [5], Podlubny [6], and Samko

et al. [7], explains the underlying theory of fractional
calculus as well as its applications and solutions.

Many researchers have solved fractional-order problems
using various methods. For example, Shivanian and Ja¢er-
abadi [8] used fractional derivatives to �nd the numerical
solution for the RSP-HGSGF using spectral meshless radial
point interpolation. �e time-fractional derivative has been
de�ned in the Riemann–Liouville sense.�e Shape functions
are created by using a point interpolation method and radial
basis functions as basic functions. An e£cient numerical
approach for approximating RSP-HGSGF in a bounded
domain is described by Liu et al. [9]. �ey investigated the
proposed scheme’s stability and convergence. To solve SFP-
HGSGF, Wu [10] used a numerical approach. �e stability,
convergence, and consistency of the INAS for the SFP
HGSGF have been investigated. RSPHGSGF was studied in a
�ow on a heated �at plate and within a heated edge by Shen
et al. [11]. A viscoelastic �uid was described using the
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fractional calculus technique in the constitutive relationship
model. For the exact solution of the velocity and temperature
fields, the Fourier transform on fractional-order Laplace
operator is used. Yu et al. [12] used the Adomian decom-
position method to solve the RSP-HGSGF. In general,
without discretizing the problem, such series solutions
converge quickly and the Adomian decomposition approach
yields very precise numerical solutions. In this study, Chen
et al. [13] presented two numerical methods for solving a
two-dimensional variable-order subdiffusion anomalous
problem. +eir stability, convergence, and solvability were
investigated using Fourier analysis. +e numerical approx-
imation for the Riemann–Liouville fractional-order deriva-
tive for the fractional SFP-HGSGF was studied by Yu et al.
[14]. +ey used the implicit scheme with Riemann–Liouville
fractional derivative to solve the direct and inverse problems.
Lin and Jiang [15] devised a straightforward method for
calculating the fractional derivative of an RSP-HGSG. +ey
created the series of the exact solution to the problem using
kernel theory and established the approximate solution of its
fractional derivative using truncating series, which are
uniformly convergent. Meanwhile, their method includes
error estimation and stability analysis. Chen et al. [16]
proposed the implicit and explicit techniques for solving the
RSP-HGSGF of fractional order. +e convergence, stability,
and solvability of the problem have all been determined. In
recent years, Chen et al. [17] discussed Stokes’ initial chal-
lenge attention.+e variable-order nonlinear RSP-HGSGF is
investigated, and the fourth-order numerical technique is
discussed. +e Fourier approach is used to investigate the
numerical scheme’s theoretical analysis. Dehghan and Abbas
Zadeh [18] developed a numerical solution for 2D fractional-
order RSP-HGSGF on rectangular domains such as circular,
L-shaped, and a unit square with circular holes. +e RL
principle is used to calculate the fractional derivatives. +ey
used the Galerkin FEM to obtain a fully discrete scheme for
the space direction by integrating the equation for the time
variable. Finally, we compare the results of Galerkin FEM to
those of other numerical techniques. +e Rayleigh–Stokes
problem for an edge in a generalized Oldroyd-B fluid was
solved by Nikan and Avazzadeh et al. [19] using the radial
basis function and fractional derivatives. +e temporal de-
rivative terms are discretized using the finite difference
technique, while the spatial derivative terms are discretized
using the local RBF-FD.

To maintain a constant number of nodes, they evaluate
the distribution of data nodes within the local support area.
+e stability and convergence of the proposed method are
also investigated. +e RBF-FD results are compared to those
of previous approaches on irregular domains, demonstrating
the novel methodology’s viability and efficiency. RSP-
HGSGF flow was investigated by Zhai et al. [20] on a heated
flat plate and within a heated edge. To describe such a
viscoelastic fluid, a fractional calculus methodology was used
in the constitutive relationship model. +e velocity and
temperature fields were solved in closed form using the
Fourier transform and the fractional Laplace operator.
Another study looked at the same model to describe a
viscoelastic fluid [21, 22]. For the finite difference/finite

element technique, Guan et al. [23] provided an enhanced
version of a nonlinear source term with a fractional RSP.+e
backward difference formula and second-order
Grünwald–Letnikov derivative are used to discretize the
first-order time derivative. +ey use the Galerkin finite el-
ement approach to define a fully discrete strategy for the
fractional RSP-HGSGF with a nonlinear source term in the
space direction. A novel analytical technique is used to
calculate the level of accuracy in the L2 norm in great detail.
For the 2D modified anomalous fractional subdiffusion
equation, Ali et al. [24] used a modified implicit difference
approximation. +e proposed scheme’s convergence and
stability are investigated using the Fourier series approach. It
is shown that the scheme is unconditionally stable, and that
the approximate solution converges to the exact solution.
Bazhlekova et al. [25] investigated the RSP-HGSGF in time
using the RL fractional derivative, and the problem was
analysed in space using semidiscrete, continuous, and
completely discrete formulations. Mohebbi et al. [26]
compared the meshless approach to a fourth-order ap-
proximation for 2D fractional RSP and generated a com-
pletely discrete implicit scheme. Sun et al [27] contributed a
review article on important fractional calculus information.
+ey talked about the most important real-world applica-
tions as well as powerful mathematical tools. +e numerical
solution of a nonlinear fractional-order reaction-sub-
diffusion model was investigated by Nikan et al. [28]. For
spatial discretization, they used the radial base function-
finite difference method, and for time discretization, they
used a weighted discrete scheme. +ey discussed theoretical
analysis and tested two numerical examples for the com-
putational efficiency of the proposed scheme, which yielded
accurate results. In a separate study [29], the author pro-
posed a meshless scheme for the fractional-order diffusion
model. +ey eliminated the time derivative by integrating
both sides of the proposed model and used local hybrid-
ization of cubic and radial basis functions for space deriv-
atives. Nikan et al. [30] investigated the local hybrid kernel
meshless approach for fractional-order model approxima-
tion. To approximate the time and space directions, they
used the central difference approximation and Gaussian
kernels, respectively. +ey verified the validity of the pro-
posed method using numerical examples that are both ac-
curate and efficient. Liu et al. [31] discussed the fractional
dynamics modelled from the fractional-order PDEs. Frac-
tional-order systems have importance in the field of elec-
trochemistry, chaotic systems, biology etc. Ahmad et al. [32]
formulated a new methodology named as variational iter-
ation method I and successfully applied to a nonlinear
model. +ey explained the compactness of the method and
compared their results with the existed literature and found
that the proposed method is more productive and reliable
than others. Khan et al. [33] considered the numerical
approach based on the collocation method for the inverse
heat source problem and tasted the method both on regular
and irregular domain. Different researchers discussed var-
ious numerical approaches for time and space fractional-
order models in the research [27, 30, 34–38]. +e goal of this
research is to propose a new scheme for this model modified
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implicit scheme for fractional-order RSP-HGSGF. It lowers
the computational cost and allows for easy theoretical
analysis using any method for the final scheme. In the
procedure, the discretized form of the Riemann–Liouville
integral operator is used to replace the Riemann–Liouville
derivative with the first-order time derivative. +e partial
derivative with respect to time is then eliminated using
backward difference approximation. Additionally, we use
the Fourier series method to investigate the established
method’s stability and convergence criterion. Finally, nu-
merical examples are presented and solved using the pro-
posed method to verify the method’s accuracy and
feasibility. Maple 15 is used to code the numerical examples.

+e following is how the rest of the paper is organized:
+e methodology of the proposed scheme is discussed in

Section 2, followed by stability and convergence analysis in
Sections 2.1 and 2.2. +e numerical experiments and results
are presented in Section 3 and discussed in Section 4. +e
conclusion is discussed in Section 5 of the report.

+e aim of this study is to propose a modified implicit
scheme for fractional RSP-HGSGF based on the formulated
Riemann–Liouville integral operator. +e partial derivative
w.r.t. time is eliminated by backward difference approxi-
mation. Additionally, we investigate the stability and con-
vergence criterion of the established method by the Fourier
series method.

Here, we consider the following two-dimensional RSP-
HGSGF with fractional derivative [22].

zY(x, y, t)

zt
� D

1−β
t

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2􏼠 􏼡 +

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2 + H(x, y, t). (1)

Initial and boundary conditions are as follows:

Y(x, y, t) � φ(x, y), (2)

Y(0, y, t) � Ω1(y, t),Y(L, y, t)
� Ω2(y, t),

Y(x, 0, t) � Ω3(y, t)Y(x, L, t)

� Ω4(x, t),

0≤ x, y≤ L, 0≤ t≤T,

(3)

where 0D
1−β
t Y(x, y, t) represents the fractional-order Rie-

mann–Liouville derivative of order 1 − β.

Lemma 1. �e β (0〈β〈1)-order Riemann–Liouville frac-
tional integral of the function Y(x, y, t) on [0,T] can be
defined in discretized form as

I
β
0Y x, y, tm( 􏼁 �

τβ

Γ(β + 1)
􏽘

m−1

j�0
d

(β)

j Y x, y, tm−j􏼐 􏼑. (4)

Lemma 2. �e coefficients constant d
(β)
m (m � 0, 1, 2, . . . .)

fulfils the following properties [29]:

(i) d
β
0 � 1, d

β
m〉0, m � 0, 1, 2 . . .

(ii) d
β
m−1〉d

β
m, m � 1, 2 . . .

(iii) �ere exists a positive constant C〉0, such that
τ ≤Cd

β
mτβ, m � 1, 2, . . .

(iv) 􏽐
m
j�0 d

(β)

j τβ � (m + 1)β ≤Tβ

2. Methodology of the Proposed Scheme

+e 2D RSP-HGSGF in equations (1)–(3) is solved by the
modified implicit scheme. We utilized the Riemann–Liouville
approximation for time-fractional and central difference for
space derivative and partitioned the bounded domain into
subintervals of lengths Δx and Δy. +e space steps are
xi � iΔx, in the x-direction with i � 1, . . . , M1
−1, Δx � L/M1 , andyj � jΔy, in the y-direction with j �

1, . . . , M2 − 1, Δy � L/M2. +e time step is tm � mτ, m

� 1, . . . , N where τ � T/N. Let Ym
i,j be the numerical ap-

proximation to Y(xi, yj, tm); by applying (2) to (1), we obtain

zY(x, y, t)

zt
�

z

zt
I
β
0

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2􏼠 􏼡 +

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2 + H(x, y, t). (5)

Applying Lemma 1 and backward difference approxi-
mation w.r.t. time, we obtain

Y
m
i,j − Y

m−1
i,j � R1 􏽘

m−1

j�o

d
(β)

j δx
2
Y

m−j
I,j − δx

2
Y

m−j−i
i,j􏼐 􏼑 + R2 􏽘

m−1

j�o

d
(β)

j δx
2
Y

m−j
I,j − δx

2
Y

m−j−i
i,j􏼐 􏼑 + R3

Y
m
i,j

Δx2􏼠 􏼡 + R4
Y

m
i,j

Δy2􏼠 􏼡 + H(x, y, t), (6)
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where

R1 �
τβ

Γ(β + 1)Δx2,

R2 �
τβ

Γ(β + 1)Δy2,

R3 �
τ
Δx2,

R4 �
τ
Δy2.

(7)

δx
2
Y

m
i,j � Y

m
i+1,j − 2Y

m
i,j + Y

m
i−1,j. (8)

+e simplified form of the proposed scheme for 2D RSP-
HGSGF (1)-(3) and the conditions are as follows:

Y
m
i,j − Y

m−1
i,j � R1 δx

2
Y

m
I,j − R1 d

(β)
m−1δx

2
Y
0
I,j − R1 􏽘

m−1

s�1
d

(β)

s−β − d
(β)
s􏼒 􏼓δx

2
Y

m−s
I,j + R2 δy

2
Y

m
I,j + R2 􏽘

m−1

s�1
d

(β)

s−β − d
(β)
s􏼒 􏼓 δy

2
Y

m−s
I,j

+ R3 δx
2
Y

m
I,j + R4δy

2
Y

m
I,j + τH

m
i,j,

(9)

where i � 1, 2, . . . , M1 − 1 , j � 1, 2, . . . , M2 − 1, and
m � 1, 2, . . . , N − 1.

Y
0
I,j � Ω xi, yj􏼐 􏼑,

Y
m
0,j � Ω1 yj, tm􏼐 􏼑, Y

m
i,0 � Ω2 xi, tm( 􏼁,

Y
m
M1 ,j � Ω3 yj, tm􏼐 􏼑, Y

m
i,M2

� Ω4 xi, tm( 􏼁,

0≤ x, y≤ L, 0≤ t≤T.

(10)

2.1. Stability. We find the stability of the proposed scheme
by Fourier technique. Let the approximate solution be Ψm

i,j

for (9); we have

Ψm
i,j − Ψm−1

i,j � R1 Ψ
m
i+1,j − 2Ψm

i,j + Ψm
i−1,j􏼐 􏼑 − R1d

(β)
m−1 Ψ

0
i+1,j − 2Ψ0i,j + Ψ0i−1,j􏼐 􏼑 − R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Ψm−s

i+1,j − 2Ψm−s
i,j + Ψm−s

i,j+1􏼐 􏼑+

R2 Ψ
m−s
i,j − 2Ψm−s

i,j + Ψm−s
i,j−1􏼐 􏼑 + R2d

(β)
m−1 Ψ

0
i,j+1 − 2Ψ0i,j + Ψ0i,j−1􏼐 􏼑 − R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Ψm−s

i,j+1 − 2Ψm−s
i,j + Ψm−s

i,j−1􏼐 􏼑

+ R3 Ψ
m
i+1,j − 2Ψm

i,j + Ψm
i−1,j􏼐 􏼑

+ R4 Ψ
m
i,j+1 − 2Ψm

i,j + Ψm
i,j−1􏼐 􏼑.

(11)

Next, the error is defined as

φm
i,j � Y

m
i,j − Ψm

i,j. (12)

where φm
i,j satisfies (11) and

φm
i,j − φm−1

i,j � R1 φm
i+1,j − 2φm

i,j + φm
i−1,j􏼐 􏼑 − R1 d

(β)
m−1 φ0

i+1,j − 2φ0
i,j + φ0

i−1,j􏼐 􏼑 − R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 φm−s

i+1,j − 2φm−s
i,j + φm−s

i,j+1􏼐 􏼑

+ R2 φm−s
i,j+1 − 2φm−s

i,j + φm−s
i,j−1􏼐 􏼑 + R2d

(β)
m−1 φ0

i,j+1 − 2φ0
i,j + φ0

i,j−1􏼐 􏼑 − R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 φm−s

i,j+1 − 2φm−s
i,j + φm−s

i,j−1􏼐 􏼑+

R3 φm
i+1,j − 2φm

i,j + φm
i−1,j􏼐 􏼑 + R4 φm

i,j+1 − 2φm
i,j + φm

i,j−1􏼐 􏼑.

(13)
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+e error initial and boundary conditions are given as

φm
0,j � φm

M1 ,j

� φm
i,0

� φm
i,M2

� φ0
i,j

� 0.

(14)

Define the following grid functions for m � 1, 2 . . . , N:

φm
(x, y) �

φm
i,j, whenx

i−
Δx
2

<x≤x
i+
Δx
2

, y
j−
Δy
2

<y≤ y
i+
Δy
2

,

0,when 0≤ x≤
Δx
2

or L −
Δx
2
≤x≤L,

0,when 0≤y≤
Δy
2

or L −
Δy
2
≤y≤ L.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)

+en, φm(x, y) can be expanded in Fourier series such as

φm
(x, y) � 􏽘

α

l1 ,l2�−α
Χm

l1, l2( 􏼁e

��
− 1

2√
π

l1x

L
+

l2y

L
􏼠 􏼡

, (16)

where

Χm
l1, l2( 􏼁 �

1
L

􏽚
L

0
􏽚

L

0
φm

(x, y)e

��
− 1

− 2√
π

l1x

L
+

l2y

L
􏼠 􏼡

dxdy.

(17)

From the definition of l2 norm and Parseval equality, we
have

φm
����

����
2
α � 􏽘

M1−1

i�1
􏽘

M2−1

j�1
ΔxΔy φm

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 􏽘
α

l1 ,l2�−α
Χm

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (18)

Suppose that

φm
i,j � Χm

e
��
− 1

√
α1iΔx+α2jΔy( ), (19)

where α1 � 2πl1/L and α2 � 2πl2/L , and substituting (19) in
(13), we getΧme

��
− 1

√
(α1iΔx+α2jΔy) − Χme

��
− 1

√
(α1iΔx+α2jΔy) � R1

(Χme
��
− 1

√
(α1(i+1)Δx+α2jΔy) − 2Χme

��
− 1

√
(α1iΔx+α2jΔy) + Χm e

��
− 1

√

(α1(i − 1)Δx + α2jΔy)) − R1 d
(β)
m−1(Χ0e

��
−1

√
(α1(i+1)Δx+α2jΔy) −

2 Χ0e
��
−1

√
(α1iΔx+α2jΔy) + Χ0e

��
−1

√
(α1(i−1)Δx+α2jΔy)) − R1 􏽐

m−1
s�1

(d
(β)
s−1 − d

(β)
s )(Χm−se

��
−1

√
(α1(i+1)Δx+α2jΔy) − 2Χm−s e

��
−1

√
(α1iΔx+α2

jΔy) + Χm−se
��
−1

√
(α1(i−1)Δx+α2jΔy)) + R2(Χm e

��
−1

√
(α1iΔx+α2(j+1)

Δy) − 2Χme
��
−1

√
(α1iΔx+α2jΔy) + Χm e

��
−1

√
(α1iΔx+α2(j−1)Δy) + R2

d
(β)
m−1(Χ0e

��
−1

√
(α1iΔx+α2jΔy) − 2Χ0 e

��
−1

√
(α1iΔx+α2jΔy) + Χ0

e
��
−1

√
(α1iΔx+α2jΔy)) − R2􏽐

m−1
s�1 (d

(β)
s−1 − d

(β)
s )(Χm−se

��
−1

√
(α1iΔx+α2

(j + 1)Δy) − 2Χm−se
��
−1

√
(α1iΔx+α2jΔy) + Χm−se

��
−1

√
(α1iΔx+α2 (j −

1)Δy)) + R3(Χme
��
−1

√
(α1(i+1)Δx+α2jΔy) − 2Χme

��
−1

√
(α1iΔx+α2jΔy)

+Χme
��
−1

√
(α1(i−1)Δx+α2jΔy)) + R4(Χme

��
−1

√
(α1iΔx+α2(j+1)Δy) −

2Χme
��
−1

√
(α1iΔx+α2jΔy) + Χme

��
−1

√
(α1iΔx+α2(j−1)Δy)).

After simplifying, we get

Χm 1 + ]1 + ]2􏼂 􏼃 � Χm− 1
+ Χ0d(β)

m−1]1 + ]1􏽘
m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑Χm− s

,

Χm
�
Χm− 1

+ Χ0d(β)
m−1]1 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑Χm− s

1 + ]1 + ]2􏼂 􏼃
,

(20)

where ]1 � [4R1 sin α1Δx/2 + 4R2 sin α2Δy/2] and
]2 � [4R3 sin α1Δx/2 + 4R4 sin α2Δy/2].

Proposition 1. If Χm (m � 1, 2, . . . , N) satisfies (20), then
|Χm+1|≤ |Χ0|.

Proof: By using mathematical induction, we take m � 1 in
(20).

Χ1 �
1 + d

(β)
0 ]1􏼐 􏼑Χ0

1 + ]1 + ]2( 􏼁
, (21)
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and as ]1, ]2 ≥ 0, b
(β)
0 � 1, then

Χ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (22)

Now, assume that

Χn
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌; n � 1, 2, . . . , m − 1, (23)

and as 0 <β< 1, from (20) and Lemma 2, we obtain

Χm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
Χm− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b
(β)
m−1]1 Χ

0􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑Χm− s

1 + ]1 + ]2
, ≤

1 + d
(β)
m−1]1 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑

1 + ]1 + ]2( 􏼁
Χ0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

�
1 + d

(β)
m−1]1 + ]2 1 − d

(β)
m−1􏼐 􏼑

1 + ]1 + ]2( 􏼁
Χ0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

�
1 + ]1

1 + ]1 + ]2
Χ0,

Χm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(24)

+is completes the proof.
Based on the above proof, it can be summarized that the

solution of (5) satisfies the following inequality:
Χm₂≤Χ0₂.
And, we demonstrated that the proposed scheme is

unconditionally stable. □

2.2. Convergence. Here, we use a similar method to examine
the convergence of the scheme. Let Y(xi, yj, tm) represent
the exact solution; then, the truncation error of the scheme is
obtained as follows: from (3),

T
m
i,j � Y xi, yj, tm􏼐 􏼑 − Y xi, yj, tm−1􏼐 􏼑 − R1 􏽘

m−1

j�o

d
(β)
s δx

2
Y xi, yj, tm−s􏼐 􏼑 − Y xi, yj, tm−s−1􏼐 􏼑􏼐 􏼑,

+ R2 􏽘

k−1

j�o

d
(β)
s δy

2
Y xi, yj, tm−s􏼐 􏼑 − Y xi, yj, tm−s−1􏼐 􏼑􏼐 􏼑 + R3δx

2
Y xi, yj, tm􏼐 􏼑 + R4δy

2
Y xi, yj, tm􏼐 􏼑 − τh xi, yj, tm􏼐 􏼑.

(25)

From (1), we have

T
m
i,j �

Y
m
i,j − Y

m−1
i,j

τ
−

zY xi, yj, tm􏼐 􏼑

zt
+

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R1 􏽘

m−1

s�0
d

(β)
s δx

2
Y

m−s
i,j − Y

m−s−1
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zy
2

⎛⎝ ⎞⎠

− R2 􏽘

m−1

s�0
b

(β)
s δy

2
Y

m−s
i,j − Y

m−s−1
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R3δx
2

Y
m
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R4δy
2

Y
m
i,j􏼐 􏼑

� O(τ +(τ(Δx)) + τ(Δy)).

(26)

Since i, j, an d m are finite, there is a positive constant
C1, for all i, j , an d m , which then have

T
m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C1(τ + τ(Δx)) +τ(Δy)). (27)

+e error is defined as

ϕm
i,j � Y xi , yj, tm􏼐 􏼑 − Y

m
i,j. (28)

From (25), we have
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Y xi, yj, tm􏼐 􏼑 � Y xi, yj, tm−1􏼐 􏼑 + R1 Y xi, yj, tm􏼐 􏼑 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj, tm􏼐 􏼑􏼐 􏼑−

R1d
(β)
m−1 Y xi+1, yj, t0􏼐 􏼑􏼐􏼐 − 2Y xi, yj, t0􏼐 􏼑 + Y xi−1, yj, t0􏼐 􏼑−

R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Y xi+1, yj, tm−s􏼐 􏼑 − 2Y xi, yj, tm−s􏼐 􏼑 − Y xi−1, yj, tm−s􏼐 􏼑􏼐 􏼑

+ R2 Y xi, yj+1, tm􏼐 􏼑􏼐 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑−

R2d
(β)
m−1 Y xi, yj+1, tm􏼐 􏼑􏼐􏼐 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑

− R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Y xi, yj+1, tm−s􏼐 􏼑 − 2Y xi, yj, tm−s􏼐 􏼑 + Y xi, yj−1, tm−s􏼐 􏼑􏼐 􏼑

+ R3 Y xi+1, yj+1, tm􏼐 􏼑 − 2Y xi, yj+1, tm􏼐 􏼑 + Y xi−1, yj+1, tm􏼐 􏼑􏼐 􏼑

+ R4 Y xi, yj+1, tm􏼐 􏼑 − 2Y xi, yj+1, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑􏼐 􏼑 + τh xi, yj, tm􏼐 􏼑.

(29)

To obtain the error equation, subtract (29) from (5) to
obtain

ϕm
i,j − ϕm−1

i,j � R1 ϕm
i+1,j − 2ϕm−1

i,j + ϕm
i−1,j􏼐 􏼑 − R1d

(β)
m−1 ϕm

i+1,j􏼐 − 2ϕm−1
i,j + ϕm

i−1,j − R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 ϕm

i+1,j − 2ϕm−1
i,j + ϕm

i−1,j􏼐 􏼑

+ R2 ϕm
i,j − 2ϕm−1

i,j + ϕm
i,j􏼐 􏼑−

R2d
(β)
m−1 ϕ0i,j+1 − 2ϕ0i,j + ϕ0i,j−1􏼐 􏼑 − R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 ϕm−s

i,j+12 − ϕm−s
i,j + ϕm−s

i,j−1􏼐 􏼑 + R3 ϕm
i+1,j − 2ϕm−1

i,j + ϕm
i−1,j􏼐 􏼑

+ R4 ϕm−s
i,j+1 − 2ϕm−s

i,j + ϕm−s
i,j−1􏼐 􏼑 + τT

m
i,j.

(30)

With error boundary conditions,

ϕm
0,j � ϕm

M1 ,j � ϕm
0,j � ϕm

i,M2
� 0, m � 1, 2, . . . , N. (31)

And, the initial condition

ϕ0
i,j � 0, i � 1, 2, . . . , M1 − 1, j � 1, 2, . . . , M2 − 1. (32)

Next, we define the following grid functions for
m � 1, 2, . . . , N:

ϕm
(x, y) �

ϕm
i,j , when x

i−
Δx
2

<x≤x
i+
Δx
2

, y
j−
Δy
2

〈 y≤y
j+
Δy
2

,

0, when 0≤ x≤
Δx
2

or L −
Δx
2
≤x≤L,

0, when0 ≤y≤
Δy
2

or L −
Δy
2
≤y≤L.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (33)
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T
m

(x, y) �

T
m
i,j, whenx

i−
Δx
2

< x≤x
i+
Δx
2

, y
j−
Δy
2

<y≤y
j+
Δy
2

,

0, when 0≤ x≤
Δx
2

or L −
Δx
2
≤x≤L,

0, when 0≤y≤
Δy
2

or L −
Δy
2
≤y≤L.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (34)

Here, the ϕm(x, y) an d Tm(x, y) can be expanded in
Fourier series such as

ϕm
(x, y) � 􏽘

α

l1 ,l2�−α
ζm

l1, l2( 􏼁e
2

��
− 1

√
π l1x/L+l2y/L( ), m � 1, 2, . . . , N,

T
m

(x, y) � 􏽘
α

l1 ,l2�−α
φm

l1, l2( 􏼁e
2

��
− 1

√
π l1x/L+l2y/L( ), m � 1, 2, . . . , N,

(35)

where

ζm
l1, l2( 􏼁 �

1
L

􏽚
L

0
􏽚

L

0
ϕm

(x, y)e
2

��
− 1

√
π

l1x

L
+

l2y

L
􏼠 􏼡

dxdy,

(36)

φm
l1, l2( 􏼁 �

1
L

􏽚
L

0
􏽚

L

0
ϕm

(x, y)e
2

��
− 1

√
π l1x/L+l2y/L( )dxdy.

(37)

From the definition of l2 norm and the Parseval equality,
we have

ϕm
����

����
2
l2� 􏽘

M1−1

i�1
􏽘

M2−1

j�1
ΔxΔy e

m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌� 􏽘
α

l1 ,l2�−α
ρm

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (38)

T
m2

l2� 􏽘

M1−1

i�1
􏽘

M2−1

j�1
ΔxΔy e

m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌� 􏽘
α

l1 ,l2�−α
φm

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (39)

Based on the previous equations, suppose that

φm
i � ζm

e
��
− 1

√
α1iΔx+α2iΔy( ), (40)

T
m
i � φm

e
��
− 1

√
α1iΔx+α2iΔy( ). (41)

Respectively, we have α1 � 2πl1/L and α2 � 2πl2/L;
substitute (40) and (41) into (30) and we getζm

e
��
− 1

√
(α1iΔx+α2jΔy) − ζm

e
��
− 1

√
(α1iΔx+α2jΔy) � R1 (ζm

e
��
− 1

√
(α1(i+1)

Δx + α2jΔy) − 2ζm
e

��
− 1

√
(α1iΔx+α2jΔy) + ζm

e
��
− 1

√
(α1(i− 1)Δx+α2

jΔy)) − R1 d
(β)
m−1(ζ

m
e

��
−1

√
(α1(i+1)Δx+α2jΔy) − 2ζm

e
��
−1

√
(α1iΔx+α2j

Δy) + ζm
e

��
−1

√
(α1(i−1)Δx+α2jΔy)) − R1 􏽐

m−1
s�1 (d

(β)
s−1 − d

(β)
s )(ζm

e��
−1

√
(α1(i+1)Δx+α2jΔy) − 2ζm

e
��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1(i−1)

Δx + α2jΔy)) + R2(ζ
m

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+

α2jΔy) + ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy) + R2d

(β)
m−1 (ζm

e
��
−1

√
(α1iΔx+

α2jΔy) − 2ζm
e

��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1iΔx+α2jΔy)) − R2

􏽐
m−1
s�1 (d

(β)
s−1 − d

(β)
s ) (ζm

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+

α2jΔy) + ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy)) + R3(ζ

m
e

��
−1

√
(α1(i+1)

Δx + α2jΔy) − 2ζm
e

��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1(i−1)Δx+α2j

Δy)) + R4(ζ
m

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+α2jΔy) +

ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy)) + τ(φme

��
−1

√
(α1iΔx+α2jΔy)),

Simplifying the previous equation, we obtain

ζm
�
ζm− 1

+ ζ0b(β)
m−1]1 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑ζm− s

1 + ]1 + ]2􏼂 􏼃
, (42)

where

]1 �4R1 sin
α1Δx
2

+ 4R2 sin
α2Δy
2

􏼣,

]2 �4R3 sin
α1Δx
2

+ 4R4 sin
α2Δy
2

􏼣.

(43)

Proposition 2. Let ζm
(m � 1, 2, . . . , N) be the solution of

(42); then, there is a positive constant C2 so that

|ζm
|≤C2mτ|φ1|.

Proof: From ϕ0 � 0 and (36), we have

ζo
� ζo

l1, l2( 􏼁 � 0. (44)

From (37) and (39), then there is a positive constant C2,
such that

φm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2 φ
1

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (45)

Usingmathematical induction, for m � 1, then from (42)
and (44), we obtain

ζ1 � 1/1 + ]1 + ]2 τφ1
􏼐 􏼑. (46)

Since ]1, ]2 ≥ 0, from (45), we get

ζ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ τ φ1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C2τ φ

1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (47)

Now, suppose that

ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2mτ φ1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, n � 1, 2, . . . , m − 1. (48)

As 0 <β< 1, ]1, ]2 ≥ 0.
From (41) and (44) and Lemma 2, we have

8 Mathematical Problems in Engineering



ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
|ζ|

m− 1
+ ]1 􏽐

m−1
s�1 d

β
s−1 − d

β
s􏼐 􏼑|ζ|

m− s
+ τ|φ|

m

1 + ]1 + ]2( 􏼁
,

ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
C2(m − 1)τ|φ|

1
+ ]1 􏽐

m−1
s�1 d

β
s−1 − d

β
s􏼐 􏼑C2(m − s)τ|φ|

1
+ C2τ|φ|

1

1 + ]1 + ]2( 􏼁
,

≤
(m − 1) + ]1(m − 1) 􏽐

m−1
s�1 b

β
s−1 − b

β
s􏼐 􏼑 + 1

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

�
m + ]1(m − 1) 􏽐

m−1
s�1 b

β
s−1 − b

β
s􏼐 􏼑 + 1

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

�
m + ]1(m − 1) + 1 − b

(β)
m−1􏼐 􏼑

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

≤mC2τ φ
1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(49)

+e proof is completed via the induction method. □

Theorem 1. �e modified implicit difference scheme l2 is
convergent, and the order of convergence is
O(τ + τ(Δx)2 + τ(Δy)2).

Proof: From (27) and (39), we obtain

T
k ≤

������
MxΔx

􏽰 ������
MyΔy

􏽱
C1 τ + τ(Δx)

2
+ τ(Δy)

2
􏼐 􏼑 � LC1 τ + τ(Δx)

2
+ τ(Δy)

2
􏼐 􏼑

φk
l2 ≤ kC2τT

1 ≤C1C2kτL τ + τ Δx2
􏼐 􏼑 + τ Δy2

􏼐 􏼑􏼐 􏼑.

(50)

As kτ ≤T, thus

φk
l2 ≤C1C2kτL τ + τ Δx2

􏼐 􏼑 + τ Δy2
􏼐 􏼑􏼐 􏼑, (51)

where C � C1C2TL. □

3. Numerical Experiment

Example 1. Consider the following two-dimensional Ray-
leigh–Stokes problem for heated generalized second-grade
fluid with the fractional derivative [22]:

zY(x, y, t)

zt
� 0D

1−β
t

z
2
Y(x, y, t)

zx
2 +

zY(x, y, t

zy
2􏼠 􏼡 +

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2 + h(x, y, t), 0≤ β≤ 1, 0≤ t≤T, (52)

with initial and boundary conditions

Y(x, y, 0) � 0, 0≤x, y≤ 1,

Y(0, y, t) � e
y
t
1+β

, Y(1, y, t)

� e
1+y

t
1+β

,

Y(x, 0, t)) � e
x
t
1+β

, Y(x, 1, t)

� e
1+x

t
1+β

, 0≤ t≤T.

(53)

Here, h(x, y, t) � ((1 + β)tβ − 2Γ(2 + β)/Γ(1 + 2β)t2β

−2t1+β)ex+y and the exact solution of (52) is given by

Y(x, y, t) � e
x+y

t
1+β

. (54)

+e error between the numerical solution and exact
solution is defined as follows:

E∞ � max
0≤i,j≤M,0≤m≤N

Y xi, yj, tm􏼐 􏼑 − Y
m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (55)

And, the rate of convergence for space variable can be
defined as

� −order � log2
E∞(16τ, 2Δx)

����
����

E∞(τ, Δx)
����

����
􏼠 􏼡. (56)
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+e developed modified implicit scheme is applied to
problems (52) to (54).

Tables 1–4 show the errors E∞ for values of space step
size (Δx,Δy) and τ. Here, time step τ is defined by τ � T/N.

Tables 1–4 indicate that, as we reduce the time and space
step size τ and (Δx,Δy), the error decreases for a fixed value

of c.+is shows that the method converges to the exact
solution.

Example 2. Consider the following Cable equation:

zY(x, t)

zt
� 0D

1−ρ1
t K

z
2
Y(x, t)

zx
2􏼠 􏼡 − μ20D

1−ρ2
t Y(x, t) + 2 t +

π2
t
1+ρ1

Γ 2 + ρ1( 􏼁
+

t
1+ρ2

Γ 2 + ρ2( 􏼁
􏼠 􏼡sin(πx), (57)

with initial and boundary conditions

Y(x, 0) � 0, 0≤x≤ L,

Y(0, t) � t
2 sin( πx), Y(L, t) � β2(t) , 0〈 t≤T.

(58)

+e exact solution is Y(x, t) � t2 sin(πx).

4. Results and Discussion

A modified implicit scheme is developed and applied on
RSP-HGSGF. Numerical example is given to support the-
oretical study. +e error between the exact and numerical

solution is calculated using different values of N and M.
Also, at different values of c, Tables 1–4 are created to show
the comparison of the numerical scheme with the exact
solution in terms of maximum error. In example 2, we solved
the fractional-order Cable equation, and the numerical re-
sults are shown in Table 5 for various values of space and
time step size. +e values of ρ1 and ρ2 are also changed, and
the obtained results are converging with reduced step sizes.
Here, the error is calculated using Maple15 software with the
increase in the number of space and time steps. Figures 1–3
are plotted for different values of M and N, and fractional
order c shows good agreement with the exact solution.

Table 1: +e error table for different values at τ,Δx,Δy, and c.

τ Δx � Δy c � 0.5 c � 0.6 c � 0.7 c � 0.8 c � 0.9
1/4 1/2 2.180E− 2 1.316E− 2 1.601E− 2 1.889E− 2 2.481E− 2
1/16 1/4 4.573E− 3 5.267E− 3 5.934E− 3 6.606E− 2 7.312E− 2
1/64 1/8 1.330E− 3 1.484E− 3 1.634E− 3 1.789E− 3 1.958E− 3
1/128 1/10 7.701E− 4 8.426E− 4 9.141E− 4 9.898E− 4 1.073E− 4

Table 2: +e error table for different values at τ,Δx,Δy, and c.

τ � Δx � Δy c � 0.35 c � 0.65 c � 0.85
1/2 7.9899E− 3 2.4671E− 2 3.8181E− 2
¼ 4.5383E− 3 1.4258E− 2 2.1050E− 2
1/6 3.3873E− 3 9.9350E− 3 1.4272E− 2
1/8 2.8140E− 3 7.7703E− 3 1.0965E− 2
1/10 2.4289E− 3 6.3977E− 3 8.9159E− 3

Table 3: +e error table for different values at τ,Δx,Δy, and c.

τ Δx � Δy c � 0.5 c � 0.6 c � 0.7 c � 0.8 c � 0.9
1/16 1/4 5.0794E− 3 5.9521E− 3 6.7049E− 3 0.00746352 8.2610E− 3
1/8 1/8 1.4043E− 3 1.6387E− 3 8.5596E− 3 1.0150E− 3 1.8575E− 3
1/144 1/12 6.2458E− 4 6.8873E− 4 7.5239E− 4 8.1996E− 4 8.9478E− 4

Table 4: +e error table for different values at τ,Δx, andΔy and at a fixed value of c � 0.25.

N Δx � Δy � 1/5 Δx � Δy � 1/10 Δx � Δy � 1/15 Δx � Δy � 1/20
20 1.9274E− 3 9.5392E− 4 7.6704E− 4 7.0147E− 4
40 1.7467E− 3 1.6060E− 3 5.7985E− 4 4.3020E− 4
60 1.6504E− 3 6.6854E− 4 5.4537E− 4 3.2953E− 4
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Table 5: Numerical results of example 2 of the proposed scheme for various values of ρ1, ρ2, N , and Δx.

Δx N ρ1, ρ2 � 0.25 ρ1, ρ2 � 0.5 ρ1, ρ2 � 0.95

1/10
40 1.173E− 2 8.131E− 2 6.552E− 3
80 8.032E− 3 6.452E− 3 5.762E− 3
110 5.912E− 3 5.528E− 3 5.171E− 3

1/20
40 8.146E− 3 6.312E− 3 3.272E− 3
80 4.537E− 3 2.989E− 3 2.409E− 3
110 2.428E− 3 2.015E− 3 9.146E− 4

1/40
40 7.294E− 3 3.781E− 3 2.491E− 3
80 3.639E− 3 2.173E− 3 1.591E− 3
110 1.578E− 3 1.257E− 3 9.015E− 4

0.3 0.4
x

0.5 0.6 0.7

exact sol
approximate sol

u 
(x

, y
, t

)

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

Figure 1: Comparing equations (52) and (54) at M � 4, N � 2, and c � 0.25.

5

4.5

4

3.5

3

u 
(x

, y
, t

)

0.2 0.3 0.4
x

0.5 0.6 0.7 0.8

exact sol
approximate sol

Figure 2: Comparing equations (52) and (54) at M � 6, N � 6, and c � 0.35.
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5. Conclusion

A modified implicit difference scheme is formulated for
2D RSP-HGSGF, and a derivative of fractional order has
been described in this paper. +e modified scheme has
the improvement of low computational cost and can be
easily applied. +e Fourier technique has been used for
the theoretical analysis stability, and convergence with
order (τ + (Δx) + (Δy)) is unconditionally stable and
convergent. +e numerical experiment for the 2D RSP-
HGSGF and 1D Cable equation is conducted, which
shows that the modified implicit scheme is easy to im-
plement, and the results show good performance of the
proposed schemes [39].

Abbreviations

RSP-
HGSGF:

Rayleigh–Stokes problem for heated
generalized second-grade fluid

SFP: Stokes first problem
INAS: Implicit numerical approximation scheme
RBF-FD: Radial basis function finite difference
FEM: Finite element method
2D: Two-dimensional
RL: Riemann–Liouville.
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Two different frames’ temperature creates thermal transport that gives advantage in energy fabrication in the power sector,
burning in microscopic devices, and for remedy transport through heat transfer in materials. Here the article scrutinizes the
transport of head utilizing the thermo-sloutal time’s relaxation, and aspects of non-Fick’s flux with variable conductivity and mass
diffusivity in Carreau fluid have been elaborated. +e magnetic aspect is also examined in a bidirectional stretched surface. +e
numerical procedure of ODEs via bvp4c method has been aimed at the solutions of influential parameters. +e portrayal of
influential factors is also presented. +e intensifying behavior has been noted on concentration and temperature scattering when
inconsistent thermal conductivity and variable mass diffusivity boost up. Furthermore, the temperature and concentration
relaxation times are incorporated for the better understanding of the flow problem.+e assessments of current article with former
literature are also presented for the endorsement of outcomes.

1. Introduction

+roughout the past years, it has been noticed that many
substances of industrial importance, particularly of multi-
phase behavior like polymeric melts, foams, emulsions,
suspensions, dispersions, and slurries do not validate the
Newtonian law of viscosity. In the literature, such fluids are
named as, non-Newtonian liquids, nonlinear liquids, and
rheological complex liquids. In non-Newtonian fluids
[1–10], the apparent viscosity is not persistent and is a
function of shear rate, and shear stress. In fact, under
suitable conditions, the apparent viscosity of nonlinear
materials is a function of kinematic history of fluid elements,

flow geometry and shear rate. Non-Newtonian models come
into play when major variations in the shear rate of fluid
elements. Various rheological models had been considered
to cater the behavior of non-Newtonian materials. In 1972,
Carreau suggested the Carreau fluid model; for instance see
Carreau [11] and Carreau et al. [12]. It remains with this
physical model that the viscosity can be characterized for a
boundless shear rates range. Carreau fluid viscosity is
considered as a function of shear rate, infinite shear rate,
relaxation time, power law index, and zero shear rates.
Pantokratoras [13] elucidated a particular Carreau model
with the help of controlling number “n.” For, 0< n< 1, fluid
behavior is considered as shear-thinning, shear-thickening
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for n> 1, and for n� 1, Newtonian. So, the Carreau fluid acts
as the classical Newtonian fluid at smaller values of shear rate
and power law fluid at larger values of shear rate. Recently,
Salahuddin [14] considered the numerical solutions of
Carreau fluid flow and the flow was generated by the
stretching cylinder. Transport mechanism in MHD nano-
Carreau fluid flow with microorganism’s gyrotactic flow was
discussed by Elayarani et al. [15].

In literature, analysis of transport mechanisms in the
Carreau fluid flow mainly considered classical Fourier equa-
tions for heat and mass distributions. Classical Fourier equa-
tions are parabolic equations that lead to a paradox of heat and
mass flux, i.e. an initial contribution of energy and concen-
tration delivers an immediate experience by a whole system.
+e paradox was addressed by Cattaneo [16] with the addition
of relaxation time. Christov [17] contributed to the theory of
Cattaneo with the introduction of Oldroyd, an upper-con-
vected derivative in place of an unsteady rate of change. So in
this article, instead of classical Fourier equations we have
adopted the Cattaneo–Christov transport mechanism for
standard Carreau fluid flow. Reddy and Kumar [18] analyzed
the stream line study of heat transfer in micro-polar fluid flow
above a melting boundary. Ibrahim and Gadisa [19] discussed
the simulations for transfer of heat in convective Oldroyd-B
fluid flow using Finite Element Method (FEM). Flow was
generated by a stretching sheet with heat absorption. Utilizing
the theory of Cattaneo-Christov numerous researchers have
analyzed these aspects in diverse models [20–24].

Here disclose the properties of thermo-sloutal time’s
relaxation in 3D magneto Carreau fluid considering variable
mass diffusivity and variable conductivity. +e existent
Carreau fluid model is proficient in describing the phe-
nomena of shear thinning and shear thickening. +e blood
flow via tapered arteries with stenosis is the noteworthy
application of Carreau fluid. Moreover, blood flow via ta-
pered arteries with stenosis has fascinated the consideration
of numerous researchers. Because flows via arteries pose
grave healthiness threats and are a foremost reason of hu-
manity and sickness in the technologically advanced do-
main. Reduction of an artery, or stenosis, can outcome from
considerable plaque pledge, and possibly will reason a severe
decline in blood flow. +e plaques possibly will also be
disrupted off into elements, or emboli, which might be
lodged in an artery downstream. In intellectual arteries the
threat of embolism is that the cracked spots are passed into
the brain, frustrating neurological indications or a stroke.
+e impacts of numerous factors are examined graphically.
Additionally, assessment tables via limiting sense with
(bvp4c) and analytically (HAM) are reported.

2. Development of Physical Model

2.1. Rheological Models. +e reported Carreau fluid model
has the following Cauchy stress tensor (τ∗):

τ∗ � −pI + μ(c
·
)A1, (1)

with

μ(c
·
) � μ0 − μ∞( 􏼁 1 +(Γc· )2􏽨 􏽩
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2.2. Problem Description. Here examine the characteristics
of inconsistent thermal conductivity and variable diffusivity
of mass in Carreau fluid flow to bidirectional stretched
surface. Velocities of the fluid in x−and y−directions are
reflected to be u � ax and along the vertical direction v � by;
where a, b> 0 and occurrence of flow exists in area z> 0 see
Figure 1. +e non-Fick’s mass, and non-Fourier’s heat fluxes
scheme considering magnetic influence have been studied.
+ese norm yields the following Carreau fluid equations
[2, 3, 5]:
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Uw(x) � u � ax, Vw(y) � v � by, w � 0, T � Tw, C � Cw at z � 0,

u⟶ 0, v⟶ 0, w⟶ 0, T⟶ T∞, C⟶ C∞, asz⟶∞.

(5)

+e variable aspect of thermal conductivity K(T) and
mass diffusivity D(C), respectively, elaborated as

K(T) � k1 1 + ε1
T − T∞
ΔT

􏼒 􏼓, D(C) � k2 1 + ε2
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(6)

2.3. Appropriate Transformations. Letting
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(6) and (7) yield the following expressions:
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f(0) � 0, g(0) � 0, f′(0) � 1, g′(0) � α, θ(0) � 1, ϕ(0) � 1 . (12)
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f′ ⟶ 0, g′ ⟶ 0, θ⟶ 0, ϕ⟶ 0, as η⟶∞ . (13)

Here, (We1, We2) � (

�������
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) signify the
local Weissenberg numbers, M(� σB2

0/ρfa) magnetic field,
(δT, δC) � (aΓT, aΓC) thermal and concentration relaxation
time factors, α(� b/a) ratio of stretching rates factor, and
Sc(� v/D) the Schmidt number and.

3. Physical Amounts

3.1. Be Coefficients of Skin Friction Cfx and Cfy. +e
quantities of this interest are

Cfx �
τxz

1/2ρU
2
w

and Cfy �
τyz

1/2ρU
2
w

. (14)

Dimensionless form of the above equation:

1
2
CfxRe

1/2
x � f″(0) 1 + We

2
1f′′

2
(0)􏼔 􏼕

n− 1/2
,

1
2

Uw

Vw

􏼠 􏼡CfyRe
1/2
x � g″(0) 1 + We

2
2g′′

2
(0)􏼔 􏼕

n− 1/2
.

(15)
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Figure 2: (a, b) Plot of η vs. f′(η) for M.

z

Vw (y) = by

Uw (x) = ax

Figure 1: Flow configuration and coordinate system.
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Here, Rex � ax2/] stands for Reynolds number. 4. Numerical Approach (bvp4c)

+e numerical procedure of ODEs via bvp4c method has
been disclosed here by discretize procedure and we revise the
equations (8)–(13) into first-order differential systems:

f � p1, f′ � p2, f″ � p3, f
‴

� p3′, g � p4, g′ � p5, g″ � p6, g
‴

� p6′, θ � p7, θ′ � p8, θ″ � p8′,ϕ � p9, ϕ′ � y10,ϕ″ � p10′,

p3′ �
− p1 + p4( 􏼁p3 + p

2
2 − M

2
p2

Ω1
; Ω1 � 1 + nWe

2
1p

2
3􏼑∗ 1 + We

2
1p

2
3􏼐􏼐 􏼑

n − 3
2 ,

p6′ �
− p1 + p4( 􏼁p6 + p

2
5 − M

2
p5

Ω2
; Ω2 � 1 + nWe

2
2p

2
6􏼑∗ 1 + We

2
2p

2
6􏼐􏼐 􏼑

n − 3
2

p8′ �
−Pr p1 + p4( 􏼁p8 − ε1p

2
8 + PrδT p1 + p4( 􏼁 p2 + p5( 􏼁p8􏼂 􏼃

Ω3
;Ω3 � 1 + ε1p7( 􏼁 − PrδT p1 + p4( 􏼁

2
,

p10′ �
−Sc p1 + p4( 􏼁p10 + ScδC p1 + p4( 􏼁 p2 + p5( 􏼁p10􏼂 􏼃

Ω4
;Ω4 � 1 + ε2p9( 􏼁 − ScδC p1 + p4( 􏼁

2
,

p1(0) � 0, p2(0) � 1, p2(∞) � 0; p4(0) � 0, p5(0) � α, p5(∞) � 0; p7(0) � 1, p7(∞) � 0; p9(0) � 1, p9(∞) � 0.

(16)

5. Analysis of Results

Here, variable aspects of mass diffusivity and thermal
conductivity considering non-Fick’s mass, and non-
Fourier’s heat and fluxes have been studied with magnetic
properties. Here ΓT � ΓC � 0.1, ε1 � ε2 � 0.4, M � α � 0.5,

Pr � Sc � 1.5, We1 � We2 � 2.5 have been stated fixed
values excepting particular in graphs for
n � 0.7 and n � 1.7.

5.1. Velocity f′(η) for M. Figures 2(a) and 2(b) determine
the performance of magnetic factor M on velocity com-
ponent f′(η). +e higher M falloff the velocity component
for both cases (n � 0.7) and (n � 1.7). Physically, higher
magnetic field creates a body force named as Lorentz force,
which faces the fluid gesture and, therefore, it diminishes the
fluid independence of movement. Consequently, when
magnetic flux growths, the retardation force rises and this
struggle existing to the flow is accountable for diminishing
the liquid velocity.

5.2. Temperature θ(η) for M, ε1, Pr, and ΓT. Figures 3(a),
3(b), 4(a), and 4(b) envision the plots of magnetic factor M

and variable conductivity factor ε1 on Carreau fluid tem-
perature scattering. Here noted that θ(η) intensifies when M

and ε1 enhances. When M increases, the Carreau fluid
temperature rises and similar performance is acknowledged
for ε1. When M intensify the Lorentz force improves which
form additional struggle to the liquid motion to convert the
energy into heat. +is information reasons to the intensi-
fying of θ(η). Significantly, θ(η) growths for augmenting
values of ε1 as a consequence of enormous heat transport

amount from the sheet to the solid and as a result the θ(η)

boosts up.
Figures 5(a), 5(b), 6(a), and 6(b) explore temperature of

the Carreau fluid with the values of the Prandtl number Pr
and the thermo relaxation factor ΓT which falloff θ(η). +e
Carreau fluid temperature decays for larger Pr. As thermal
diffusivity and Pr have differing relationship, this fact decays
θ(η). When Pr≫ 1, the momentum diffusivity controls the
performance; however, Pr≪ 1, the thermal diffusivity
controls. Furthermore, ΓT decline θ(η). Physically, the fluid
material needs an extra interval for heat transportation to its
neighboring fundamentals which improves the gradient of
temperature. Hence, θ(η) decay for ΓT.

5.3. Concentration ϕ(η) for ΓC, ε2, and Sc. +e portrayals of
Figures 7(a) and 7(b) along with Figures 8(a) and 8(b)
scrutinize performance of mass relaxation factor ΓC and
mass diffusivity ε2 concentration field. +e field of con-
centration, ϕ(η) decays for ΓC; but, enhances for ε2. Here
conflicting enactments have been noted for ΓC and ε2 for
both values of (n � 0.7) and (n � 1.7). When ΓC raised the
concentration field falls. Physically, the mass relaxation time
factor is high and liquid elements need much time to diffuse
when ΓC enhancing which display declining behavior of
ϕ(η). +e advanced mass diffusivity factor increases the
mass diffusivity which causes the higher mass trans-
portation. +erefore ϕ(η) intensifies. +e performance of
Schmith number Sc for the values of (n � 0.7) and (n � 1.7)

has been examined in Figures 9(a) and 9(b) on concen-
tration. +e solute of Carreau fluid decays for intensifying
Sc. Physically, Sc is the relation between mass and mo-
mentum diffusivities. When Sc upturned, the mass diffu-
sivity falls off. +erefore, the concentration field declines.
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5.4. Table of Skin Friction Coefficients. Table 1 structured for
larger values of M an d α for 1/2CfxRe1/2x and
1/2(Uw/Vw)CfyRe1/2x for both instances n � 0.7 and n � 1.7.
Here noted that the magnitude of 1/2CfxRe1/2x and
1/2(Uw/Vw)CfyRe1/2x increases when M an d α intensifies.

5.5. Comparison of bvp4c andHAM. Additionally, the HAM
and bvp4c graphical comparisons for Newtonian case are
reported in Figure 10 for f′(η) an d g′(η). Here, excellent
portrayal are noted between both the methodologies.

To elaborate the comparison of −θ′(0) in limiting cir-
cumstances for diverse values of ε1, Pr, and α, respectively,
Tables 2 and 3 are acknowledged. +ese tables indicate a
brilliant outcome associated with former literatures.

6. Closing Remarks

Here the essentials of thermo-sloutal time’s relaxation in
magnetite Carreau liquid with inconsistent aspects of mass
diffusivity and thermal conductivity have been examined.
+e upcoming direction and significance of this model is
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Figure 3: (a, b) Plot of η vs. θ(η) for M.
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Figure 4: (a, b) Plot of η vs. θ(η) for ε1.
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that blood flow via tapered arteries with a stenosis is the
essential use of Carreau fluid model because this model deals
with the phenomena of shear thinning/thickening fluids.
Furthermore, this model is extended for calculating the
multiple solutions and also for curved surfaces. +e salient
particulars of this analysis are acknowledged as

(i) +e magnetic factor M declined the velocity field.
(ii) +e Carreau fluid temperature exaggerated for ε1,

however falloffs for δT.

(iii) +e larger M the temperature field is improved for
n � 0.7 an d n � 1.7.

(iv) Opposite influences were noted for ΓC an d ε2 on
concentration scattering.

(v) Outstanding outcomes have been examined in
limiting cases for −θ′(0).

(vi) +e exceptional graphical depictions are plotted for
comparisons of HAM and bvp4c of Carreau fluid
model.
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Figure 5: (a, b) Plot of η vs. θ(η) for Pr.
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Figure 6: (a, b) Plot of η vs. θ(η) for δT.
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Table 1: Outcomes of skin friction coefficients when We1 � We2 � 2.5.

M α
1/2CfxRe1/2x 1/2(Uw/Vw)CfyRe1/2x

n � 0.7 n � 1.7 n � 0.7 n � 1.7

0.5 0.5 −2.75267 −6.28875 −0.735299 −1.17469
1.0 −3.91194 −9.92461 −1.097060 −1.88793
1.5 −5.72221 −16.5755 −1.666760 −3.15998
0.5 0.7 −2.85709 −6.69579 −1.41209 −2.70100

0.8 −2.90692 −6.90700 −1.86225 −3.87658
0.9 −2.95537 −7.12294 −2.39147 −5.40309
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Figure 10: (a, b) Plot of η vs. f′(η) an d g′(η) for HAM and bvp4c comparison.

Mathematical Problems in Engineering 9



Abbreviations

Γ: Material constant
n: Power law index
μ0: Zero and infinity shear rate viscosities
p: Pressure
μ∞: Infinity shear rate viscosities
c
·
: Shear rate

(u, v, w): Velocity components [ms− 1]

(x, y, z): Space coordinates [ms− 1]

(ρc)f: Heat capacity of fluid [JK− 1.m− 3]

]: Kinematic viscosity [m2s− 1]

T: Temperature of fluid [K]

C: Concentration of fluid [K]

K(T): Variable thermal conductivity
D(C): Variable mass diffusivity
k1: +ermal conductivity of (W/m.K) surrounding
k2: Mass diffusivity of surrounding
T∞: Ambient fluid temperature [K]

C∞: Ambient fluid concentration [K]

Tw: Wall temperature [K]

Cw: Wall concentration [K]

δT: +ermal relaxation time
δC: Solutal relaxation time
Cfx, Cfy: Skin friction coefficients
τxz, τyz: Surface shear stresses
We1, We2: Local Weissenberg numbers
α: Ratio of stretching rates parameter
ΓT, ΓC: +ermal and concentration relaxation time

factors
M: Magnetic factor
Pr: Prandtl number
ε1: +ermal conductivity factor
Sc: Schmidt number
ε2: Mass diffusivity factor
HAM: Homotopy analysis method
ODEs: Ordinary differential equations

tr: Trace of a tensor
PDEs: Partial differential equations
α: Ratio of stretching rates parameter.
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with Navier’s slip and cattaneo-christov heat flux,” Case Studies
in Bermal Engineering, vol. 28, Article ID 101666, 2021.

[24] P. S. Reddy and P. Sreedevi, “Effect of Cattaneo - christov heat
flux on heat and mass transfer characteristics of Maxwell
hybrid nanofluid flow over stretching/shrinking sheet,”
Physica Scripta, vol. 96, no. 12, Article ID 125237, 2021.

[25] W. A. Khan, M. Irfan, and M. Khan, “An improved heat
conduction and mass diffusion models for rotating flow of an
Oldroyd-B fluid,”Results in Physics, vol. 7, pp. 3583–3589, 2017.

[26] I.-C. Liu and H. I. Andersson, “Heat transfer over a bidi-
rectional stretching sheet with variable thermal conditions,”
International Journal of Heat and Mass Transfer, vol. 51,
no. 15-16, pp. 4018–4024, 2008.

[27] A. Munir, A. Shahzad, and M. Khan, “Convective flow of
Sisko fluid over a bidirectional stretching surface,” PLoS One,
vol. 10, no. 6, Article ID e0130342, 2015.

Mathematical Problems in Engineering 11



Research Article
Generalization of Tangential Complexes of Weight Three and
Their Connections with Grassmannian Complex

Sadaqat Hussain ,1 Nasreen Kausar ,2 Sajida Kousar ,3 Parameshwari Kattel ,4

and Tahir Shahzad 5

1Department Mathematics, University of Baltistan Skardu, Gilgit Baltistan, Skardu, Pakistan
2Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Esenler 34210, Istanbul, Turkey
3Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad, Pakistan
4Department of Mathematics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
5Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore 54890, Pakistan

Correspondence should be addressed to Parameshwari Kattel; parameshwari.kattel@trc.tu.edu.np

Received 3 November 2021; Revised 3 March 2022; Accepted 4 March 2022; Published 11 April 2022

Academic Editor: Ardashir Mohammadzadeh

Copyright © 2022 Sadaqat Hussain et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Following earlier work by Gangl, Cathelineaue, and others, Siddiqui defined the Siegel’s cross-ratio identity and Goncharov’s
triple ratios over the truncated polynomial ring F[ε]]. ,ey used these constructions to introduce both dialogarithmic and
trilogarithmic tangential complexes of first order. ,ey proposed various maps to relate first-order tangent complex to the
Grassmannian complex. Later, we extended all the notions related to dialogarithmic complexes to a general order n. Now, this
study is aimed to generalize all of the constructions associated to trilogarithmic tangential complexes to higher orders. We also
propose morphisms between the tangent to Goncharov’s complex and Grassmannian subcomplex for general order. Moreover,
we connect both of these complexes by demonstrating that the resulting diagrams are commutative. In this generalization process,
the classical Newton’s identities are used.,e results reveal that the tangent group TBn

3(F) of a higher order and defining relations
are feasible for all orders.

1. Introduction

Polylogarithms have been known for almost three centuries
in various disciplines of mathematics such as Feynman
integrals, volume functions of hyperbolic tetrahedrons,
quantum field theory, and Dedikend Zeta functions. Since
the last two decades, it became important after Bloch’s work,
in which he introduced a group (Bloch Group) and found
connections of this group with algebraicK theory (see [1, 2]).
Suslin introduced the well-known Grassmannian Complex
and Bloch–Suslin complex (see [3, 4]). Later, Goncharov
used geometric configurations in order to define the motivic
complexes and to prove Zagier’s conjecture on poly-
logarithms and special L values for weight 2 and 3 (see [4]).
He also introduced the triple ratio together with Zagier by
antisymmetrization of his own formula f

(3)
2 . Moreover, he

related the Grassmannian subcomplexes to his trilogar-
ithmic motivic complexes by introducing several homo-
morphisms of the form f

(3)
i (see [2, 5, 6]). Cathelineau

studied variants (infinitesimal and tangential) of these
motivic complexes and presented a tangent group TB2(F)

which is, in fact, a F vector space (see [7]). Siddiqui defined
the tangent group TB3(F) and its complexes for the first
order. He used geometric configurations to construct cross-
ratio, triple-ratio, and Siegel cross-ratio identity for dual
numbers and then proposed various maps to relate Grass-
mannian complex and first-order tangent complex (see
[8, 9]). He himself attempted to extend his constructions to
the second-order tangent complex and gave some results for
a special case.

Hussain and Siddiqui [10] discussed the tangent group
and its associated complexes for the second order by
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introducing second-order tangent group, denoted by
TB2

2(F). ,ey extended cross-ratio, Goncharov’s triple-
ratio, and Siegel’s cross-ratio identity of the first order to
second order. ,ey also proposed morphisms such as τ20,ε2
and τ21,ε2 for weight two and τ30,ε2 , τ

3
1,ε2 , and τ32,ε2 for weight

three, in order to connect the second-order tangential
complex with the Grassmannian complex. Recently, the
degree of the tangent group of weight 2 is generalized by
introducing a group TBn

2(F) [11]. ,is group is used to
construct a generalized tangent complex:

TB
n
2(F)⟶

zεn
F ⊗∧

2
F

×
􏼒 􏼓⊕ ∧

3
F􏼒 􏼓. (1)

,is complex is further related to the Grassmannian
complex by introducingmaps π20,εn and π2

1,εn . As the order of the
tangent group is generalized only for weight two, it is still a
matter of great concern and motivates to introduce and analyse
higher order tangent groups of weight three which will even-
tually be used for the establishment of generalized tangent
complexes of weight three. In this work, we construct higher
order tangent to Goncharov’s complexes and its associated
algebraic constructions (cross ratio, Siegel’s identity, triple ratio,
etc.) of weight three and to obtain a generalized formula for the
order n≥ 3. We also propose general formula for the maps
which connect the trilogarithmic tangential complexes of order
greater than two to the Grassmannian complexes. For this, we
define nth-order tangent group TBn

3(F) of weight 3 along with
its functional equations. We define a map zεn to construct the
following tangent complex of general order:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( 􏼁⊕ F ⊗B2(F)( 􏼁⟶
zεn

F ⊗∧
2
F

×
􏼒 􏼓⊕ ∧

3
F􏼒 􏼓.

(2)

Our next goal is to connect the above complex to the
well-known Grassmannian complex. ,is will be achieved
through an inductive approach and using Newton–Girard
identities (see Section 2.4). Using the results from Siddiqui
[9], we will determine the coefficients of the cross-ratio and
Siegel cross-ratio identity and determinants of order n. After
these constructions, we will move to find morphisms of the
connection π30,εn , π31,εn , and π3

2,εn so as to relate Grassmannian
complex to Cathelineau’s trilogarithmic complex. ,e
consequence of this connection is the formation of diagram
(D), and at the end, we prove that this diagram is
commutative.

2. Materials and Methods

,is section is devoted to give brief introduction to certain
concepts and constructions related to this work. Many of the
terms also found in [1, 4, 9, 10, 12, 13] can be consulted for
more details.

2.1. Complex. Suppose that

Ai⟶
fi

A(i− 1)⟶
fi− 1

. . .⟶
f0

A0
(3)

is a chain of abelian groups with corresponding maps fk;
then, such a chain is said to be a complex if

f(i− 1) ∘fi � 0. (4)

2.2. Grassmannian Complex. Let X be any nonempty set.
Consider Cm(X) be any free Abelian group generated by the
elements of G/Xm, where G is a group which acts on X; then,
we define a differential map d: Cm(X)⟶ Cm− 1(X) as

d: x1, . . . , xm( 􏼁↦􏽘
m

i�0
(− 1)

m
x1, . . . , 􏽢xi, . . . , xm( 􏼁. (5)

Also, if we denote Cm(n) to be a free Abelian group
generated by the configurations of the elements of an n

dimensional vector space Vn and (xi|x1, . . . , 􏽢xi, . . . , xm) be
the projective configuration of the jth component xj along
the ith component xi, where i≠ j, j � 1, . . . , m, then we
define a projective differential map
d′: C(m+1)(n + 1)⟶ Cm(n) as

d′: x1, . . . , xm( 􏼁↦􏽘

m

i�0
(− 1)

m
xi|x1, . . . , 􏽢xi, . . . , xm( 􏼁. (6)

By using these differential maps and free Abelian groups
generated by configurations, we have a bicomplex of the
form called Grassmannian bicomplex.

From this bicomplex, we can form many subcomplexes
such as

Cm+2(n + 2)⟶d
′

Cm+1(n + 1)⟶d
′

Cm(n) (7)

or

Cm+2(n)⟶d Cm+1(n)⟶d Cm(n). (8)

,ese subcomplexes are known as Grassmannian
complexes.

2.3. Tensor Product. Let A and B be two free Abelian groups
(Z—modules); then, the tensor product of A and B is
denoted as A⊗B and defined as a free Abelian group with
generators a⊗ b for a ∈ A and b ∈ B, satisfying the relations

a1 + a2( 􏼁⊗ b � a1 ⊗ b + a2 ⊗ b,

a⊗ b1 + b2( 􏼁 � a⊗ b1 + a⊗ b2,

ra⊗ b � r(a⊗ b) � a⊗ rb,

(9)

where a, a1, a2 ∈ A, b, b1, b2 ∈ B, and r ∈ F.

2.4. Newton–Girard Identities. Girard introduced some
identities which describe relationship between roots of a
polynomial and its coefficients (see [14, 15]). Later, Newton
generalized these identities and gave a recursive formula. Today
these identities are known as Newton–Girard identities whose
explanation is as follows. Suppose f(y) is a polynomial like

g(y) � y
n

+ c1y
n− 1

+ c2y
n− 2

+ c3y
n− 3

+ . . . . . . + cn− 1y + cn,

(10)

with n of its roots r1, r2, . . . . . . rn. We use the notation δk for
the sum of the kth powers of roots as
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δk � r
k
1 + r

k
2 + . . . . . . + r

k
n, (11)

where k ∈ Z+ and δk � 0 for k〉n. And

δk + c1δk− 1 + c2δk− 2 + s3ck− 3 + . . . . . . + ck− 1δ1 + kck � 0.

(12)

,is identity allows us to deduce the relations:

δ1 + c1 � 0,

δ2 + c1δ1 + 2c2 � 0,

δ3 + c1δ2 + c2δ1 + 3c3 � 0,

δ4 + c1δ3 + c2δ2 + c3δ1 + 4c4 � 0.

(13)

Now, considering the most generalized form of the
polynomial,

f(y) � 􏽘
n

i�0
tiy

i
. (14)

And with the assumption that tk � 0 for k〈 0, we define
δk, for k⩾0, as

δk � r
k
1 + r

k
2 + . . . . . . + r

k
n. (15)

By interchanging “k” to “(− k),” we obtain

δ− k � r
− k
1 + r

− k
2 + . . . . . . + r

− k
n . (16)

Finally, we can conclude the general form of Newton’s
identity as

tj(n − j) + tj+1δ− 1 + tj+2δ− 2 + tj+3δ− 3 + . . . . . . + tnδj− n � 0; j⩽n.

(17)

Furthermore, we can deduct the following results:

M1 �
t1

s
,

M2 �
2t2

s
−

t
2
1

s
2,

M3 �
3t3

s
−
3t1t2

s
2 +

t
3
1

s
3,

M4 �
4t4

s
−
4t1t3

s
2 −

2t
2
2

s
2 +

4t
2
1t2

s
3 −

t
4
1

s
4.

(18)

In general notation,

Mn �
ntn

s
− 􏽘

n− 1

r�1

tn− r

s
Mr, (19)

here we used Mi � − δ− k, ∀i � 0, 1, 2, . . . and t0 � s.
When we consider the case t0 � 1 − s, the above iden-

tities will become

N1 �
− t1

s − 1
,

N2 �
− 2t2

s − 1
−

t
2
1

(s − 1)
2,

N3 �
− 3t3

s − 1
−

3t1t2

(s − 1)
2 −

t
3
1

(s − 1)
3,

N4 �
− 4t4

s − 1
−

4t1t3

(s − 1)
2 −

2t
2
2

(s − 1)
2 −

4t
2
1t2

(s − 1)
3 −

t
4
1

(s − 1)
4.

(20)

,e general form will be

Nn �
ntn

1 − s
− 􏽘

n− 1

r�1

tn− r

1 − s
Nr. (21)

In [10], we have extended the idea of trilogarithmic
tangent group up to the second order by proposing a group
TB2

3(F) and its complex. It is quite natural to think for the
generalization of the degree of this group and other con-
structions (complexes, morphisms, cross ratio, etc.) related
to this group. Let us define the following.

2.5. First-Order Tangent Group of Weight 3. A first-order
tangent group, denoted by TB2(F), is aZmodule generated
by the elements of the form 〈 s; s′] ∈ Z[F[ε]2], a quotient by
the expression,

s; s′􏼊 􏼃 − t; t′􏼊 􏼃 +
t

s
;

t

s
􏼒 􏼓
′

􏼜 􏼕 −
1 − t

1 − s
;

1 − t

1 − s
􏼒 􏼓

′
􏼜 􏼕 +

s(1 − t)

t(1 − s)
;

s(1 − t)

t(1 − s)
􏼠 􏼡

′
􏼪 􏼣, (22)
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where s, t≠ 0, 1, s≠ t, 〈 s; s′] � [s + s′ε] − [s]; (s, s′ ∈ F),

t

s
􏼒 􏼓
′

�
st′ − s′t

s
2 ,

1 − t

1 − s
􏼒 􏼓

′
�

(1 − t)s′ − (1 − s)t′

(1 − s)
2 ,

(23)

and

s(1 − t)

t(1 − s)
􏼠 􏼡

′
�

t(1 − t)s′ − s(1 − s)t′

(t(1 − s))
2 . (24)

As the second order is discussed in [10], we define the
third order directly.

2.6. ?ird-Order Tangent Group of Weight 3. We denote
TB3

3(F) to be the trilogarithmic tangent group of order
three which is a Z module over the truncated polynomial
ring F[ε]4 whose generators are the elements of the form
〈 s; t1, t2, t3] ∈ Z[F[ε]4], where
〈 s; t1, t2, t3] � [s + t1ε + t2ε2 + t3ε3] − [s], (s, t1, t2, t3 ∈ F)

and quotient by the kernel of map

z: Z F[ε]4􏼂 􏼃⟶ TB
3
2(F)⊗ F×

􏼐 􏼑⊕ F ⊗B2(F)( 􏼁, (25)

such that

z a; b1, b2, b3􏼊 􏼃2( 􏼁 � s; t1, t2, t3􏼊 􏼃
3
2 ⊗ s +

3t3

s
−
3t1t2

s
2 +

t
3
1

s
3􏼠 􏼡⊗ [s]2,

(26)

where ⊕ and ⊗ , respectively, represent the direct sum and
tensor product of free Abelian groups or modules’ tensor
product of the free Abelian groups.

2.7. Generalized Tangent Group of Weight 3. Let the char-
acteristic of the field F be zero and F[ε]n+1 represent the ring
of truncated polynomials. We call TBn

3(F) the tangent
group of weight 3 and order n which can be defined as a Z
module over F[ε]n+1 with generators of the form
〈 s; t1, t2, . . . , tn] ∈ Z[F[ε]n+], where 〈 s; t1, t2, . . . , tn] � [s +

t1ε + t2ε2 + · · · + tnεn] − [s], (s, t1, t2, . . . , tn ∈ F) and quo-
tient by Kerz:

z: Z F[ε]n+1􏼂 􏼃⟶ TB
n
2(F)⊗ F×

( 􏼁⊕ F ⊗B2(F)( 􏼁, (27)

where z can be written as

z s; t1, t2, . . . , tn􏼊 􏼃2( 􏼁 � s; t1, t2, . . . , tn􏼊 􏼃
n
2 ⊗ s + Mn ⊗ [s]2.

(28)

,e factor Mn is given in (8). For n � 1, 2, we obtain the
groups TB3(F) and TB2

3(F). ,e former is defined in [9]
and later is in [10]. By using the group TBn

3(F), the fol-
lowing tangential complex can be obtained:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( 􏼁⊕ F ⊗B2(F)( 􏼁⟶
zεn

F ⊗∧
2
F

×
􏼒 􏼓⊕ ∧

3
F􏼒 􏼓. (29)

2.8.TripleRatio. ,e triple ratio r(u0, . . . , u5) of six points is
given in [12] as

r3 u0, . . . , u5( 􏼁 �
u0u1u3( 􏼁 u1u2u4( 􏼁 u2u0u5( 􏼁

u0u1u4( 􏼁 u1u2u5( 􏼁 u2u0u3( 􏼁
, (30)

whose tangential version for ] � 2 can be traced in [8, 10] as

r3,ε l
∗
0 , . . . , l

∗
5( 􏼁 �

l
∗
0 l
∗
1 l
∗
3( 􏼁 l
∗
1 l
∗
2 l
∗
4( 􏼁 l
∗
2 l
∗
0 l
∗
5( 􏼁􏼈 􏼉ε

l0l1l4( 􏼁 l1l2l5( 􏼁 l2l0l3( 􏼁
−

l0l1l3( 􏼁 l1l2l4( 􏼁 l2l0l5( 􏼁

l0l1l4( 􏼁 l1l2l5( 􏼁 l2l0l3( 􏼁

l
∗
0 l
∗
1 l
∗
4( 􏼁 l
∗
1 l
∗
2 l
∗
5( 􏼁 l
∗
2 l
∗
0 l
∗
3( 􏼁􏼈 􏼉ε

l0l1l4( 􏼁 l1l2l5( 􏼁 l2l0l3( 􏼁
. (31)

We extend this notion for ] � n + 1 as

r3,εn u
∗
0 , . . . , u

∗
5( 􏼁􏼁 � Alt6

u
∗
0u
∗
1u
∗
3( 􏼁 u
∗
1u
∗
2u
∗
4( 􏼁 u
∗
2u
∗
0u
∗
5( 􏼁􏼈 􏼉εn

u0u1u4( 􏼁 u1u2u5( 􏼁 u2u0u3( 􏼁
− r3,εn− 1 u

∗
0 , . . . , u

∗
5( 􏼁

u
∗
0u
∗
1u
∗
4( 􏼁 u
∗
1u
∗
2u
∗
5( 􏼁 u
∗
2u
∗
0u
∗
3( 􏼁􏼈 􏼉ε

u0u1u4( 􏼁 u1u2u5( 􏼁 u2u0u3( 􏼁
􏼨

− r3,εn− 2 u
∗
0 , . . . , u

∗
5( 􏼁

u
∗
0u
∗
1u
∗
4( 􏼁 u
∗
1u
∗
2u
∗
5( 􏼁 u
∗
2u
∗
0u
∗
3( 􏼁􏼈 􏼉ε2

u0u1u4( 􏼁 u1u2u5( 􏼁 u2u0u3( 􏼁
− . . . − r3 u0, . . . , u5( 􏼁

u
∗
0u
∗
1u
∗
4( 􏼁 u
∗
1u
∗
2u
∗
5( 􏼁 u
∗
2u
∗
0u
∗
3( 􏼁􏼈 􏼉εn

u0u1u4( 􏼁 u1u2u5( 􏼁 u2u0u3( 􏼁
􏼩.

(32)
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3. Main Results and Discussion

3.1. Dilogarithmic Bicomplexes. In this section, we will
connect the Grassmannian bicomplex to the tangent to the
Bloch–Suslin complex. ,is connection can be displayed
through the figure.

,e maps π30,εn , π31,εn , π32,εn , and zεn are defined for n � 1, 2
in [9, 10], respectively. Here, we redefine these maps using
Newton identities which will enable us to propose these
maps for order “ n.” For this, we suppose the following
notations. Δ(u∗0 , . . . , 􏽢u∗i , . . . , u∗3 )εj � λij, Δ(u∗0 , . . . ,

􏽢u∗i+1, . . . , u∗3 )εj � λ(i+1)j, Δ(u∗0 , . . . , 􏽢u∗i+2, . . . , u∗3 )εj � λ(i+2)j,
andΔ(u∗0 , . . . , 􏽢u∗i+3, . . . , u∗3 )εj � λ(i+3)j for all i � 0, 1, 2, 3, j �

0, 1, 2, 3, . . . .n with λi0 � Δ(u0, . . . , 􏽢ui, . . . , u3) and λ(i+1)0 �

Δ(u0, . . . , 􏽢ui+1, . . . , u3) λ(i+2)0 � Δ(u0, . . . , 􏽢ui+2, . . . , u3)

λ(i+3)0 � Δ(u0, . . . , 􏽢ui+3, . . . , u3). Note that we write
Δ(u∗)ε0 � Δ(u).

Newton’s theorem associates a power sum Pij function
for every polynomial with coefficients λij and gives the
following relations (see Section 2.4):

Pi1 �
λi1

λi0
,

Pi2 �
2λi2

λi0
−
λ2i1
λ2i0

,

Pi3 �
3λi3

λi0
−
3λi1λi2

λ2i0
+
λ3i1
λ3i0

,

Pi4 �
4λi4

λi0
−
4λi1λi3

λ2i0
−
2λ2i2
λ2i0

+
4λ2i1λi2

λ3i0
−
λ4i1
λ4i0

,

(33)

with the general term,

Pin �
nλin

λi0
− 􏽘

n− 1

r�1

λi(n− r)

λi0
Pir. (34)

Above constructions enable us to rewrite the maps π3
0,ε

and π30,ε2 in a precise form as

π3
0,ε u
∗
0 , . . . , u

∗
3( 􏼁 � 􏽘

3

i�0
(− 1)

i
Pi1 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk1
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4,

π30,ε2 u
∗
0 , . . . , u

∗
3( 􏼁 � 􏽘

3

i�0
(− 1)

i
Pi2 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4.

(35)

For n � 3, we propose

π30,ε3 u
∗
0 , . . . , u

∗
3( 􏼁 � 􏽘

3

i�0
(− 1)

i
Pi3 ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pk3
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4. (36)

Using an inductive approach, one can write
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π3
0,εn u
∗
0 , . . . , u

∗
3( 􏼁 � 􏽘

3

i�0
(− 1)

i
Pin ⊗

λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0
+ ∧

3

k�0
k≠ i

Pkn
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, imod 4. (37)

Next, we move to describe π31,εn (u∗0 , . . . , u∗3 ). We follow an
inductive approach to generalize this map because already we
have the definitions of π3

1,εn (u∗0 , . . . , u∗3 ), for n � 1, 2, 3 (see
[8, 10]). ,ere, we observe that the complexity of this map
increases when its order become higher and higher. So, to
overcome this situation, we introduce some notations as fol-
lows. Let Δ(u∗0 , . . . , 􏽢u∗i , . . . , 􏽢u∗j , . . . , u∗4 )εr � δijr with
Δ(u0, . . . , 􏽢ui, . . . , 􏽢uj, . . . , u4) � δij0 and r � 0, . . . ., n; then, for
a polynomial whose coefficients are δijr, there should be an rth
power sum say Sijr satisfying the identities below:

Sij1 �
δij1

δij0
,

Sij2 �
2δij2

δij0
−
δ2ij1
δ2ij0

,

Sij3 �
3δij3

δij0
−
3δij1δij2

δ2ij0
+
δ3ij1
δ3ij0

,

Sij4 �
4δij4

δij0
−
4δij1δij3

δ2ij0
−
2δ2ij2
δ2ij0

+
4δ2ij1δij2

δ3ij0
−
δ4ij1
δ4ij0

.

(38)

And in general,

Sijn �
nδijn

δij0
− 􏽘

n− 1

m�1

δij(n− m)

δij0
Sijm. (39)

Again, we rewrite the maps π31,ε and π31,ε2 , which are
defined in [9, 10], respectively, in current settings as

π3
1,ε u
∗
0 , . . . , u

∗
4( 􏼁

� −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i

r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁; rε u
∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁􏼊 􏼃2(

⊗􏽙
i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sij1􏼐 􏼑⊗ r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁􏼂 􏼃2
⎞⎠,

π3
1,ε2 u
∗
0 , . . . , u

∗
4( 􏼁

� −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i

r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁; rε u
∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁, rε2 u

∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁􏼊 􏼃

2
2􏼐

⊗􏽙
i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sij2􏼐 􏼑⊗ r ui|l0, . . . , 􏽢ui, . . . , l4( 􏼁􏼂 􏼃2
⎞⎠.

(40)
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For n � 3, we also propose

π3
1,ε3 u
∗
0 , . . . , u

∗
4( 􏼁

� −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i
􏼠〈r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁; rε u

∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁, . . . , rε3 u

∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁􏼃

3
2

⊗􏽙
i≠j
Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sij3􏼐 􏼑⊗ r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁􏼂 􏼃2

⎞⎠.

(41)

It is now easy to express π31,εn as

π31,εn u
∗
0 , . . . , u

∗
4( 􏼁

� −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i
􏼠〈 r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁; rε u

∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁, . . . , rεn u

∗
i |u
∗
0 , . . . , 􏽢u∗i, . . . , u

∗
4( 􏼁􏼃

n

2

⊗􏽙
i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sijn􏼐 􏼑⊗ r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁􏼂 􏼃2
⎞⎠.

(42)

,e map π3
2,εn can simply be defined as the triple ratio

which is given in (17). For ] � 2, 3, it is given in [8, 10] as

π3
2,ε u
∗
0 , . . . , u

∗
5( 􏼁 �

2
45
Alt6 r3 u0, . . . , u5( 􏼁; r3,ε u

∗
0 , . . . , u

∗
5( 􏼁􏽄 􏽩3,

π3
2,ε2 u
∗
0 , . . . , u

∗
5( 􏼁 �

2
45
Alt6 r3 u0, . . . , u5( 􏼁; r3,ε u

∗
0 , . . . , u

∗
5( 􏼁, r3,ε2 u

∗
0 , . . . , u

∗
5( 􏼁􏽄 􏽩3.

(43)

And, for n � 3, we propose

π32,ε3 u
∗
0 , . . . , u

∗
5( 􏼁 �

2
45
Alt6 r3 u0, . . . , u5( 􏼁; r3,ε u

∗
0 , . . . , u

∗
5( 􏼁, r3,ε2 u

∗
0 , . . . , u

∗
5( 􏼁, r3,ε3 u

∗
0 , . . . , u

∗
5( 􏼁􏽄 􏽩3.

(44)

,erefore, in general, it may be
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π3
2,εn u
∗
0 , . . . , u

∗
5( 􏼁

�
2
45
Alt6〈 r3 u0, . . . , u5( 􏼁; r3,ε u

∗
0 , . . . , u

∗
5( 􏼁, r3,ε2 u

∗
0 , . . . , u

∗
5( 􏼁, . . . , r3,εn u

∗
0 , . . . , u

∗
5( 􏼁􏼕

3
.

(45)

,e horizontal map zεn of the diagram (D) works in two
ways. First is when it sends the members of TBn

3(F) to
(TBn

2(F)⊗F×)⊕(F⊗B2(F)) and second way is when it

sends elements of (TBn
2(F)⊗F×)⊕(F⊗B2(F)) into

(F⊗∧
2

F×)⊕(∧
3

F). ,is map is defined in [9, 10], for n � 1, 2,
as

zε 〈 s; t]2 ⊗ c + x⊗ [y]2( 􏼁

�
t

s
⊗ (1 − s)∧c −

t

(1 − s)
⊗ s∧c + x⊗ (1 − y)∧y +

t

s
∧

t

(1 − s)
∧x,

zε2 〈 s; t1, t2􏼃2⊗ c + x⊗ [y]2( 􏼁

�
2t2

s
−

t
2
1

s
2􏼠 􏼡⊗ (1 − s)∧c −

2t2

(1 − s)
+

t
2
1

(1 − s)
2􏼠 􏼡⊗ s∧c

+x⊗ (1 − y)∧y +
2t2

s
−

t
2
1

s
2􏼠 􏼡∧

2t2

(1 − s)
+

t
2
1

(1 − s)
2􏼠 􏼡∧x.

(46)

And, for n � 3, we propose this map as

zε3 〈 s; t1, t2, t􏼃3
3
2 ⊗ c + x⊗ [y]2􏼐 􏼑,

�
3t3

a
−

3t1t2

s
2 −

t
3
1

s
3􏼠 􏼡􏼠 􏼡⊗ (1 − s)∧c −

3t3

1 − s
−

3t1t2

(1 − s)
2 −

t
3
1

(1 − s)
3􏼠 􏼡􏼠 􏼡⊗ s∧c,

+ x⊗ (1 − y)∧y +
3t3
s

−
3t1t2

s
2 −

t
3
1

s
3􏼠 􏼡􏼠 􏼡∧

3t3
1 − s

−
3t1t2

(1 − s)
2 −

t
3
1

(1 − s)
3􏼠 􏼡􏼠 􏼡∧x.

(47)

We can make these definitions more precise using
identities of Newton, i.e.,

zε2 s; t1, t2􏼊 􏼃2⊗ c + a⊗ [b]2( 􏼁

� M1 ⊗ (1 − s)∧c − N1 ⊗ s∧c + a⊗ (1 − b)∧b + M1∧N1∧a,

zε3 s; t1, t2, t3􏼊 􏼃2⊗ c + a⊗ [b]2( 􏼁

� M3 ⊗ (1 − s)∧c − N3 ⊗ s∧c + a⊗ (1 − b)∧b + M3∧N3∧a.

(48)

,erefore, we can write

zεn s; t1, t2, . . . , tn􏼊 􏼃2⊗ c + a⊗ [b]2( 􏼁,

� Mn ⊗ (1 − s)∧c − Nn ⊗ s∧c + a⊗ (1 − b)∧b + Mn∧Nn∧a.

(49)

,e map zεn of right square of the diagram (D) has
already been defined in [9, 10] for order 1 and 2 as

zε 〈 s; t]3( 􏼁 � 〈 s; t]2 ⊗ s +
t

s
⊗ [s]2,

zε2 s; t1, t2􏼊 􏼃
2
3􏼐 􏼑 � 〈 s; t1, t2􏼃

2
2 ⊗ s +

2t2

s
−

t
2
1

s
2􏼠 􏼡⊗ [s]2.

(50)

And, for order 3, we propose
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zε3 s; t1, t2, t3􏼊 􏼃
3
3􏼐 􏼑 � s; t1, t2, t3􏼊 􏼃

3
2 ⊗ s

+
3t3

s
−

3t1t2

s
2 −

t
3
1

s
3􏼠 􏼡􏼠 􏼡⊗ [s]2.

(51)

If we consider a polynomial having coefficients ti to-
gether with a kth power sum function Tk, then we can
express the above maps in a precise form like

zε t0; t1􏼊 􏼃
2
3􏼐 􏼑 � t0; t1􏼊 􏼃2⊗ t0 + T1 ⊗ t0􏼂 􏼃2,

zε2 t0; t1, t2􏼊 􏼃
2
3􏼐 􏼑 � t0; t1, t2􏼊 􏼃

2
2 ⊗ t0 + T2 ⊗ t0􏼂 􏼃2,

zε3 t0; t1, t2, t3􏼊 􏼃
3
3􏼐 􏼑 � t0; t1, t2, t3􏼊 􏼃

3
2 ⊗ t0 + T3 ⊗ t0􏼂 􏼃2.

(52)

,erefore,

zεn t0; t1, t2, t3, . . . , tn􏼊 􏼃
n
3( 􏼁 � t0; t1, t2, t3, . . . , tn􏼊 􏼃

n
2 ⊗ t0 + Tn ⊗ t0􏼂 􏼃2,

(53)

where ti � r3,εi (u∗0 , . . . , u∗5 ), i � 0, . . . , n, and

Tn �
ntn

t
− 􏽘

n− 1

r�1

tn− r

t
Tr. (54)

Theorem 1. ?e right square of (D) commutes, that is,

zεn ∘ π3
1,εn � π3

0,εn ∘ d. (55)

Proof. We split the map,

π30,εn : C4 A
3
F[ε]n+1

􏼐 􏼑⟶ F ⊗∧2F×
􏼐 􏼑⊕ ∧3F􏼐 􏼑, (56)

into the sum of two maps:

ϕn
1: C4 A

3
F[ε]n+1

􏼐 􏼑⟶ F ⊗∧2F×
􏼐 􏼑 (57)

and

ϕn
2: C4 A

3
F[ε]n+1

􏼐 􏼑⟶ ∧3F􏼐 􏼑. (58)

,en, we write

π30,εn � ϕn
1 + ϕn

2. (59)

,e definitions of d and π3
0,εn allow us to write

ϕn
1 ∘ d u

∗
0 , . . . , u

∗
4( 􏼁 � ϕn

1 􏽘

4

i�0
(− 1)

i
u
∗
0 , . . . , 􏽢u

∗
i , . . . , u

∗
4( 􏼁⎛⎝ ⎞⎠

􏽧� Alt(01234) 􏽘

3

i�0
(− 1)

i nλin

λi0
− 􏽘

n− 1

r�1

λi(n− r)

λi0
Pir

⎛⎝ ⎞⎠⊗
λ(i+1)0

λ(i+2)0
∧
λ(i+3)0

λ(i+2)0

⎛⎝ ⎞⎠,

ϕn
2 ∘ d u

∗
0 , . . . , u

∗
4( 􏼁 � ϕn

2 􏽘

4

i�0
(− 1)

i
u
∗
0 , . . . , 􏽢u

∗
i , . . . , u

∗
4( 􏼁( )⎛⎝ ⎞⎠

� 􏽦Alt(01234) 􏽘

3

i�0
(− 1)

i ∧
3

k�0
k≠ i

nλkn

λk0
− 􏽘

n− 1

r�1

λk(n− r)

λk0
Pkr

⎛⎝ ⎞⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(60)

,e inner expression of (37) will gives us terms such as
(a1)εn/a1 ⊗ b∧c, (a1)εi(a2)εj/a2

1 ⊗ b∧c, i + j � n, and
(a1)εi(a2)εj(a3)εk/a3

1 ⊗ b∧c, i + j + k � n. Moreover, the
simplification process vanishes the terms with
xα ≠ xβ ≠xc . . . and remains only those terms whose xi

′s are
the same. Next, we expand the outer sum and use some
arithmetic to simplify the result. We can use the same al-
gorithm on the other part ϕn

2 ∘ d(u∗0 , . . . , u∗4 ) and get the
result in precise form and hence will get the value of π3

0,εn ∘d.
Next, we move to evaluate zεn ∘ π3

1,εn . For this, we take
(u∗0 , . . . , u∗4 ) ∈ C5(A

3
F[ε]n+1

) so that

zεn ∘ π31,εn u
∗
0 , . . . , u

∗
4( 􏼁,

� zεn −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i

a; b1, b2, . . . , bn􏼊 􏼃
n
2 ⊗􏽙

i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sijn􏼐 􏼑⊗ r ui|u0, . . . , 􏽢ui, . . . , u4( 􏼁2􏼂 􏼃⎛⎝ ⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(61)
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where s � r(ui|u0, . . . , 􏽢ui, . . . , u4), t1 � rε(u∗i |u∗0 , . . . ,
􏽢u∗i, . . . , u∗4 ), t2 � rε2(u∗i |su∗0 , . . . , 􏽢u∗i, . . . , u∗4 ), and

tn � rεn (u∗i |u∗0 , . . . , 􏽢u∗i, . . . , u∗4 ) and Sijn is defined in (22).
Using definition of zεn and settings of (8) and (10), we can
write as

� −
1
3

􏽘

4

i,j�0
j≠ i

(− 1)
i ntn

s
− 􏽘

n− 1

r�1

tn− r

s
Mr

⎛⎝ ⎞⎠⊗ (1 − s)∧􏽙
i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑

⎧⎪⎨

⎪⎩

−
ntn

1 − s
− 􏽘

n− 1

r�1

tn− r

1 − s
Nr

⎛⎝ ⎞⎠⊗ s∧􏽙
i≠ j

Δ 􏽢ui, 􏽢uj􏼐 􏼑 + Sijn ⊗ (1 − y)∧y

+
nbn

s
− 􏽘

n− 1

r�1

tn− r

s
Mr

⎛⎝ ⎞⎠∧
ntn

1 − s
− 􏽘

n− 1

r�1

tn− r

1 − s
Nr

⎛⎝ ⎞⎠∧Sijn

⎫⎬

⎭,

(62)

where y � [r(ui|u0, . . . , 􏽢ui, . . . , u4)]2. ,is expression can
further be transformed into a simpler form by using first the
axioms of tensor and wedge product and then expanding
through summation. ,is will give us a precise value of
zεn ∘ π3

1,εn (u∗0 , . . . , u∗4 ) which will be exactly equal to the value
π3
1,εn ∘ d(u∗0 , . . . , u∗4 ). □

Theorem 2. ?e left part of the diagram (D) commutes, that
is,

zεn ∘ π3
2,εn � π31,εn ∘d. (63)

Proof. ,e maps π31,εn , zεn , and π3
2,εn are explained in (25),

(35), and (28), respectively. Taking
(u∗0 , . . . , u∗5 ) ∈ C6(A

3
F[ε]n+1

) and applying (28), we have

zεn ∘ π3
2,εn u
∗
0 , . . . , u

∗
5( 􏼁

� zεn

2
45
Alt6 r3 u0, . . . , u5( 􏼁; r3,ε u

∗
0 , . . . , u

∗
5( 􏼁, r3,ε2 u

∗
0 , . . . , u

∗
5( 􏼁, . . . , r3,εn u

∗
0 , . . . , u

∗
5( 􏼁􏽄 􏽩

n

3􏼒 􏼓.

(64)

Applying definition (35) and using (36), we obtain

�
2
45
Alt6 c; c1, c2, . . . , cn􏼊 􏼃

n
2 ⊗ c +

ncn

c
− 􏽘

n− 1

r�1

cn− r

c
Tr

⎛⎝ ⎞⎠⊗ [c]2
⎧⎨

⎩

⎫⎬

⎭, (65)

where ci � r3,εi (u∗0 , . . . , u∗5 ), i � 0, 1, 2, . . . , n, and T1 � c1/c
Here, we can use the combinatorial techniques which are

used in the proof of ,eorem 5.6 of [9] and can write
equation (42) as

�
1
3
Alt6 c; c1, c2, . . . , cn􏼊 􏼃

n
2 ⊗ u0u1u3( 􏼁 +

n u
∗
0u
∗
1u
∗
3( 􏼁εn

l0l1l3( 􏼁
− 􏽘

n− 1

r�1

u
∗
0u
∗
1u
∗
3( 􏼁εn− r

u0u1u3( 􏼁
Vr

⎛⎝ ⎞⎠⊗ [c]2
⎧⎨

⎩

⎫⎬

⎭, (66)

where Vr represents the rth sum of powers of the polynomial
having coefficients (u∗0u∗1u∗3 )εi and V1 � (u∗0u∗1u∗3 )ε/

(u0u1u3). To attain RHS, we express the map π31,εn as an
alternation sum:

π31,εn u
∗
0 , . . . , u

∗
5( 􏼁 �

1
3
Alt6 r u0|u1u2u3u4( 􏼁; rε u

∗
0 |u
∗
1u
∗
2u
∗
3u
∗
4( 􏼁, . . . , rεn u

∗
0 |u
∗
1u
∗
2u
∗
3u
∗
4( 􏼁􏼊 􏼃

2
2 ⊗ u0u1u2( 􏼁􏽮

+
n u
∗
0u
∗
1u
∗
3( 􏼁εn

u0u1u3( 􏼁
− 􏽘

n− 1

r�1

u
∗
0u
∗
1u
∗
3( 􏼁εn− r

u0u1u3( 􏼁
Vr

⎛⎝ ⎞⎠⊗ [c]2
⎫⎬

⎭.

(67)
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Now, it becomes easy to attain the value of
π31,εn ∘ d(u∗0 , . . . , u∗5 ) with the help of (44). For this, we
proceed by enforcing d and then applying π31,εn . Now, we are
going to follow the procedure of ,eorem 5.6 of [8] which
will provide us a result exactly the same as (43). □

4. Conclusion

Polylogarithmic groups have been studied by several re-
nowned mathematicians such as Goncharove, Zagier, Bloch,
Suslin, and Cathelineaue. A tangential version of these
groups of weight two and three is studied by Siddiqui for the
first order. Recently, the study of tangential groups of weight
two and their associated maps are extended to a general
order n. In this work, we have shown that the notions as-
sociated to trilogarithmic tangential groups TBn

3(F) such as
cross ratio, triple ratio, Siegel’s identity and other relations
are valid for higher orders. All these notions are being
constructed for the trilogarithmic tangential groups of
higher order. Using the groups TBn

3(F) and a map zεn , we
formed the following complexes:

TB
n
3(F)⟶

zεn
TB

n
2(F)⊗ F×

( 􏼁⊕ F ⊗B2(F)( 􏼁⟶
zεn

F ⊗∧
2
F

×
􏼒 􏼓⊕ ∧

3
F􏼒 􏼓.

(68)

Moreover, we have proposed morphisms, π30,εn , π3
1,εn , and

π32,εn in order to connect Grassmannian complexes to the
trilogarithmic tangential complexes for higher orders. ,is
generalization process has been carried out with the help of
Newton’s identities. Lastly, we proved that the resulting
diagrams of connectivity are commutative.

,e above results motivate us to compute higher order
tangent groups for weight n≥ 4 and use it to construct the
higher order tangent to Goncharov’s complex for weight 4 or
even higher [16].
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*is study examines viscoelastic fractional nanofluid flow through Darcy medium. Memory characteristics due to elasticity are
explored with noninteger time derivatives. *e unsteady motion of MHD flow is modeled by nonlinear differential equations.
Buoyancy forces are incorporated via convection parameters in the flow domain. Fractional relaxation time is considered to
control the propagation speed of temperature. A finite difference, along with finite element, a numerical algorithm has been
developed for the computation of governing flow equations. Friction coefficient, Sherwood numbers, and Nusselt numbers are
computed for the noninteger derivative model. Simulations revealed that noninteger numbers have congruous behavior for
concentration, temperature, and velocity fields. It is also noted that heat flux, δ1, and mass flux, δ2, numbers have contradictory
effects on the friction coefficient. Various flows, particularly in polymer industries and electrospinning for the production of
nanofibers, can be tackled in a comparable pattern.

1. Introduction

In this communication, we have described the transport of
momentum, heat, and concentration with the help of
mathematical relations. Mathematical relations are formu-
lated with constitutive expressions that handle fluxes of the
above-prescribed quantities [1]. Formulated equations,
remained helpful to analyze the transport of heat, diffusion
of chemical species, movement of geological flows, engi-
neering applications, meteorology, material science, and
medicines [2, 3]. Molecular contact and Brownian motion
[1] characterized the conductivity, diffusivity, and viscosity
for the nanofluid in the flow domain. Particularly, transfer of
heat is an analog of mass transfer in the constitutive ex-
pressions for fluxes. Fick’s law governs the diffusion in mass
transport, and Fourier’s law handles the conduction

mechanism in heat transfer. Here we have considered the
generalized Fourier and Fick laws to incorporate relaxation
times. Transport phenomena in Newtonian and non-
Newtonian flows can be seen in heat exchangers, thermal
devices, granular insulation, fiber technology, nuclear re-
positories, fermentation processes, geothermal extractions,
and the production of crude oil [4–11]. In the literature, the
transfer of heat and mass is widely reported by distinguished
researchers. For example, Salama et al. [12] discussed the
solution of a flow problem through porous media with flux
approximations. In this communication, the viscoelastic
fluid model of second grade is analyzed for the transport
mechanism with suspended nanoparticles. Viscoelastic
second-grade fluid model exhibits differential type nature.
For differential fluids, stress is expressed by an explicit
velocity gradient. Differential models describe the fluids in
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terms of their shear thickening and thinning effects, normal
stress effects, thixotropy exhibition, and nonlinear behavior
of creeping and yielding. Flow problems, which include
polymer suspensions and slurries, in fiber handling can be
discussed with a given mathematical model [13].

Governing flow equations with noninteger time deriv-
atives have been proven for useful analysis of viscoelastic
trends [14]. Nowadays, mathematical modeling with non-
integer derivatives have gained importance in various
branches of science. For example, valuable impact can be
seen in fluid mechanics. Moreover, the influence of non-
integer modeling is seen in viscoelasticity, control theory,
and electrochemistry [15–17]. Advancements in fractional
modeling are carried out with the passage of time and the
inclusion of new fractional derivatives in the literature, for
example, Yang’s fractional derivative, Atangana–Baleanu
derivatives, and Caputo derivatives [18, 19]. Both natural
and artificial systems can be analyzed in a better way via
noninteger time derivatives as they describe hereditary as-
pects of materials [20–24]. Simulations of anomalous
nonlinear models can be used to approximate experimental
data in a better way when compared to usual rheological
models [25–30].

Porous medium flows occur in soil mechanics, ceramics,
and industrial andmineral processing.*e complexity of the
flow problem is increased with the presence of a porous
medium.*is is mainly due to the interface between packing
particles and fluid molecules. Darcy flow is analyzed by
various researchers. Nonlinear Darcy flow is examined by
Ervin et al. [31]. *e Lorentz force shows a significant role in
viscoelastic problems such as in MHD generators and
control theory. Magnetic field impacts can be seen in porous
medium flows that are encountered in metallurgical systems,
extrusion and penetration practices, etc. *e flow domain is
greatly influenced by convection as a transport mechanism,
is greatly changed by both buoyancy and gravitational forces.
Convection’s importance can be seen in boilers, nuclear
reactors, and heat exchangers. Zhou and Liang [32] dis-
cussed convection in unsteady flow problems.

*e industrial importance of nanofluids is significant in
lightweight materials production, the breakdown of organic
pollutants, and in the production of nanofibers [33, 34]. Here,
under consideration, flow is unidirectional through a channel
of infinite extent. By this configuration, fluid velocity and its
gradient are orthogonal to each other, which may lead to the
addition of a nonlinear convection term in the governing
equations.*ese flows aremostly observed in the long narrow
channels. Many microchannel flows are described by these
solutions, their superposition, and by the small perturbation
of these flows [35, 36]. Viscoelastic flows can also be used in
electrospinning for nanofibers production. Nanofibers are
formulated by an electric charged jet of polymer solution that
is of viscoelastic nature. An increase of yield stress along with
a viscoelastic jet causes a decrease in fluid elongation [37, 38].
*e structure of nanoparticles is between atomic and bulk.
*e possibility of nano particles’ inclusion is due to their
strong interaction with base fluid. Inclusion of these particles
effectively changes the characteristics of the base fluid. For
instance, nanoparticle suspension increases the thermal

conductivity of the base fluid. Wang and Zhang [39] analyzed
heat transfer in nanofluid flow. With the passage of time,
fractional nanofluid flows require more attention in literature.
Solutions to fractional flow problems are usually discussed
with integral transforms. But integral transforms are not
helpful for solving nonlinear coupled fractional equations.
Due to this, numerical solutions are proposed for flow
problems(see [40–43]). In this article, we have tackled the
problem with finite element and finite difference techniques
to solve the described fractional flow configuration.

Particularly in this communication, we have considered
modeling with noninteger derivatives of nanofluid flow. Due
to this, we have achieved more control over the flow sim-
ulations with the help of fractional derivatives when com-
pared with the classical mathematical flow models. Flux
conditions are imposed at y � 0, while quadratic variations
are observed at the fixed boundary. A Darcy flow medium is
observed with an applied magnetic field to the flow domain.
Moreover, here we have proposed a scheme with numerical
discretization to obtain the stable results of the coupled
nonlinear fractional equations. Space variable is discretized
by finite element while time variable is discretized by finite
difference scheme. *e influence of the involved physical
parameters is discussed appropriately. In Section 2, mod-
eling with noninteger time derivatives is discussed. *e flow
field is approximated by the proposed scheme in Section 3. A
numerical approximation of the flow problem is given in
Section 4. Finally, key results are given in Section 5.

2. Mathematical Description

In this study, we considered heat transfer in the MHD flow
of the nanoliquid with noninteger derivatives of time.
Modeling with noninteger derivatives helps to achieve more
control over the flow simulations when compared with the
classical models that contain ordinary derivatives. A
nanofluid is formed with nanoparticles and base liquid. *e
medium of fluid flowing is considered to be a Darcy porous
medium. Moreover, Neumann boundary conditions are
supposed to be in the heating domain. At the start, there is
no movement in the medium. At that time, the whole
configuration is at constant temperature θ0 and concen-
tration ϕ0. With the passage of time, disturbance in the
liquid is observed due to the lower domain. We consider the
velocity field to be a function of y and t only. *en we
consider

U � u(y, t)ex. (1)

For the Cauchy stress tensor, Rivlin–Ericksen tensors,
Darcy law and thermodynamic stability conditions of dif-
ferential type second grade fluid (see [21] and references
therein). *e fractional formalism of thermal and concen-
tration gradients can be seen in [45, 46].

Here is a brief description of the mathematical modeling.
In order to formulate an energy equation with Caputo
fractional derivative α including nanoparticles, consider the
classical energy equation for incompressible fluid of the
Buongiorno article (see [46]).
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ρfcf

zθ
zt

� − ∇ · q + hp∇ · Jp, (2)

where q, Jp denote fluxes of energy and diffusion and for
definition (see [46]). Temperature and concentration
propagation of infinite order can be seen with q, Jp in
Buongiorno article (see [46]). We can overcome this situ-
ation with the introduction of fractional relaxation times
using reference [45], so we define q, Jp as
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Now using (2) and (3) and ∇hp � cp∇θ [46], we obtained
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Similarly using the equation of concentration in
Buongiorno model [46], we get
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1
ρp

∇ · Jp, (6)

reduces to
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Finally, governing present flow equations are

∇ · U � 0, (8)
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where S stands for the Cauchy tensor of stress for fluid of
second grade (see [21]), r is the Darcy resistance of porous
medium (see [21]), and b denotes body force.

*e pressure gradient is assumed to be negligible.

2.1. Governing Equations. *e equations that modeled the
flow problem along with their conditions are given here.
Continuity (8) will reduce to identity with velocity given in
(1). After some mathematical simplifications, modeled
equations reduce to

zu

zt
� ] +

α1
ρf

z

zt
􏼠 􏼡

z
2
u

zy
2􏼢 􏼣 −

ψ
K

] +
α1
ρf

z

zt
􏼠 􏼡u −

σB
2
0

ρf

u + g β1 θ − θ0( 􏼁 + β2 θ − θ0( 􏼁
2

􏽨 􏽩, (12)

z

zt
1 +

τα1
Γ(1 + α)

z
α

zt
α􏼠 􏼡θ � α3

z
2θ

zy
2 + τ 1 +

τα1
Γ(1 + α)

z
α

zt
α􏼠 􏼡 DB

zθ
zy

zϕ
zy

+
Dθ

θ0

zθ
zy

􏼠 􏼡

2
⎛⎝ ⎞⎠, (13)

z

zt
1 +

τβ2
Γ(1 + β)

z
β

zt
β

⎛⎝ ⎞⎠ϕ � DB

z
2ϕ

zy
2 +

Dθ

θ0

z
2θ

zy
2. (14)

Mathematical Problems in Engineering 3



2.1.1. Flow Problem Conditions. Here we are considering the
flow in a channel separated by a distance L. At the start, the
whole flow configuration is still with constant temperature
θ0 and constant concentration ϕ0. Flow is generated by the
movement of the domain at y � 0, while the pressure
gradient is assumed to be zero in that case. For temperature
and concentration, domain at y � 0 is connected to a source,
and the change in temperature is also changing with time,
while in the domain at y � L, only temperature changes with
time. *e case for concentration is similar. Flow conditions
are given as

u(0, t) � A
]2

L
4t

2
, u(L, t) � 0, (15)
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u(y, 0) � 0, θ(y, 0) � θ0,ϕ(y, 0) � ϕ0and
zθ
zt

(y, 0)

� 0 �
zϕ
zt

(y, 0), |y|≤ L.

(18)

A complete description of the flow domain is identified
via equations (12)–(18).

2.1.2. Skin Friction Coefficients. Friction among fluid and
solid boundaries is of great importance in the analysis of flow
domains bounded by solid boundaries. Coefficients of
friction are mathematically defined as

Cf ≔
2τw

ρA
2, (19)

where shear stress at the wall is

τw � μ + α1
z

zt
􏼠 􏼡

zu

zy
􏼢 􏼣

y�0,L

. (20)

2.1.3. Nusselt Numbers. Change of temperature at y � 0 and
y � L are determined by the dimensionless, Nusselt number.
Present flow domain, Nusselt numbers are given as

Nu1 �
− L(zθ/zy)y�L

θs1
− θ0

, (21)

where θs1
is constant temperature, at y � L. At y � 0, the

Nusselt number is given by

Nu2 �
− L(zθ/zy)y�0

θs2
− θ0

, (22)

here θs2
is the temperature, at y � 0.

2.1.4. Mass Transfer Nusselt Numbers. Change of concen-
tration at y � 0 and y � L is determined by mass transfer
Nusselt, Sherwood numbers. *e present flow domain and
Sherwood numbers are given as

Sh1 �
− L(zϕ/zy)y�L

ϕs1
− ϕ0

, (23)

where ϕs1
is the constant concentration at y � L. At y � 0,

the Sherwood number is given by

Sh2 �
− L(zϕ/zy)y�0

ϕs2
− ϕ0

, (24)

here ϕs2
is the concentration at y � 0.

2.1.5. Problem in Nondimensionalization. We have defined
the following dimensionless quantities to make mathe-
matical problem (12)–(18) as nondimensionalized.
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(26)

and problem conditions are given by
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Here dimensionless numbers are given as
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Moreover, the dimensionless coefficients of friction,
Nusselt, and mass transfer Nusselt numbers are defined by
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3. Numerical Discretization Scheme

Numerical discretization of the flow problems (26) and (27)
is presented here. *e finite difference scheme(FDS) is used
to discretize the fractional time derivative as given by
[15, 21, 43], while the derivative with respect to space
variable is discretized with the finite element scheme(FES)
proposed in [15, 21].*e well-posedness of the flow problem
can be checked in appropriate spaces [43]. Precisely, we note
no ill-posedness in the defined flow problem.

Functional spaces are incorporated in the discretization
of the model (26) and (27).

We point out that L2(Ω), square-integrable space of
functions on Ω � (0, 1) along with L2, norm and inner
space product. Further,Hp(Ω) stands for the Sobolev space,
with p> 0, Hp

0(Ω) is defined as the closure of C∞0 (Ω) in
Hp(Ω) and C∞0 (Ω) represents infinite differentiable con-
tinuous functions, with proper compact support, in Ω [44].
Also, we use the space
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Furthermore, C0([0, tf];V(Ω)) is the space of con-
tinuous functions u: [0, tf]⟶V with
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Analogously, for k ∈ N,
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and also, we denote by Ck([0, tf]; V(Ω)) � [Ck([0, tf];

V(Ω))]3.

3.1. Approximations using FDS. Fractional time derivative in
(26) and (27) is discretized by FDS. *e interval of time,
[0, tf] is partitioned by time step τ ≔ tf/m so that tk ≔ kτ,
and k � 0, 1, 2, . . . , m. Estimation of the derivative of time at
some fixed, tk, 0< k<m
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Initial conditions of flow (27) give
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Fractional derivative of time, zαt (0< α< 1), 0≤ k<m,
estimated with the Caputo derivative [43].
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and the Gamma function Γ(·) is given as
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Fractional derivative of time zαt ϕ agrees with ordinary
derivative zm

t ϕ as α⟶ m, m − 1< α<m, for an integer m.
Also, we specify the following operators

L
α
t [θ(·)](t) ≔

z

zt
+ δ2

z
(α+1)

zt
(α+1)

􏼠 􏼡[θ(t)],

Q
α
t [θ(·)](t) ≔ 1 + δ2

z
α

zt
α􏼠 􏼡[θ(t)].

(40)

Estimations with FDS of operators Lα
t [θ], Qα

t [θ] can be
taken as (please see [26])

L
α
t [θ] tk+1( 􏼁 �

z

zt
+ δ2

z
α+1

zt
α+1􏼠 􏼡[θ] tk+1( 􏼁,

≃
θ tk+1( 􏼁 − θ tk( 􏼁

τ
+ Cα θ tk+1( 􏼁 − 2θ tk( 􏼁 + θ tk− 1( 􏼁􏼂 􏼃 + Cα ψα

k[θ] − ψα
k− 1[θ]( 􏼁,

(41)

and

Q
α
t [θ] tk+1( 􏼁 � 1 + δ2

z
α

zt
α􏼠 􏼡[θ] tk+1( 􏼁,

≃ θ tk+1( 􏼁 + δ2Cα θ tk+1( 􏼁 − θ tk( 􏼁􏼂 􏼃 + δ2Cαψ
α
k[θ],

(42)

with cα � τ− α/Γ(2 − α) and where bαs ≔ (s + 1)1− α − (s)1− α,
for 0≤ s≤m, with

ψα
k[θ] ≔ 􏽘

k

s�1
b
α
s θ y, tk+1− s( 􏼁 − θ y, tk− s( 􏼁􏼂 􏼃withψα

0[θ] ≔ 0.

(43)

3.2. Approximations using FES. In this section, the FES
discretization of space variables is discussed in detail. It can
be achieved by the partition of domain Ω � [0, 1] with n

subdomains Ωi � (yi, yi+1) such that i � 1, 2, . . . , n,
satisfying

Ω � 􏽛

n

i�1
Ωi andΩi 􏽜Ωj � ∅,∀i≠ j. (44)

*e defined elements Ωi of width h are constant, i.e.,
h ≔ 2/n ≔ yi+1 − yi. Considering subspace of finite dimension
Vh

0(Ω)􏽮 􏽯
h> 0 of H1

0(Ω) and Vh
1(Ω)􏽮 􏽯

h> 0 of H1
1(Ω)

V
h
0(Ω) ≔ ϕ ∈H1

0(Ω)ϕΩi
∈ Pr Ωi( 􏼁,∀i � 1, 2, . . . , n􏽮 􏽯,

V
h
1(Ω) ≔ ϕ ∈H1

1(Ω)ϕΩi
∈ Pr Ωi( 􏼁,∀i � 1, 2, . . . , n􏽮 􏽯,

(45)

Pr(Ωi) is the Lagrange polynomial space of degree less or
equal to r over Ωi with i � 1, 2, . . . , n. Also, we note that
Vh(Ω) � Vh

0(Ω) × Vh
1(Ω) × Vh

1(Ω).
*e weak form of the flow model (26) and (27) can be

taken as.
Weak form: We need to find (u, θ, ϕ) ∈ C1([0, T];

H(Ω)) such that
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(1 + ϵ)
z

zt
(u, v) + 1 + c

z

zt
􏼠 􏼡〈u, v〉 +(λ + Ha)(u, v) − λ1 + λ2θ( 􏼁θ, v( 􏼁 � 0,

PrLα
t (θ, ζ) +〈θ, ζ〉 − PrQα

t (θ, ζ) Nb
zθ
zy

zϕ
zy

, ζ􏼠 􏼡 + Nt
zθ
zy

􏼠 􏼡

2

, ζ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � − δ1t, ζ(0)( 􏼁,

ScL
β
t (ϕ,ψ) +〈ϕ,ψ〉 +

Nt

Nb
􏼒 􏼓〈θ,ψ〉 � − δ1t − δ2t,ψ(0)( 􏼁,

u(y, 0) �, θ(y, 0) � 0 �
zθ
zt

(y, 0), andϕ(y, 0) � 0 �
zϕ
zt

(y, 0),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

for all (v, ζ,ψ) ∈ H(Ω). Weak form (46) is used to incorporate, discrete weak
form, at t � tk, 0< k<m

Find uh ·, tk+1( 􏼁, θ ·, tk+1( 􏼁,ϕ ·, tk+1( 􏼁( 􏼁 ∈ Vh
(Ω)s.t.∀(v, ς, ϕ) ∈ Vh

(Ω)

(1 + ϵ)
z

zt
uh y, tk+1( 􏼁, v( 􏼁 + 1 + c

z

zt
􏼠 􏼡〈uh y, tk+1( 􏼁( 􏼁, v〉 +(λ + Ha) uh y, tk+1( 􏼁, v( 􏼁

− λ1 + λ2θh y, tk+1( 􏼁( 􏼁θh y, tk+1( 􏼁, v( 􏼁 � 0,

PrLα
t θh y, tk+1( 􏼁, ζ( 􏼁 +〈θh y, tk+1( 􏼁, ζ〉 − PrNbQ

α
t

zθh y, tk+1( 􏼁

zy

zϕh y, tk+1( 􏼁

zy
, ζ􏼠 􏼡

− PrNtQ
α
t

zθh y, tk+1( 􏼁

zy
􏼠 􏼡

2

, ζ⎛⎝ ⎞⎠ � − δ1t, ζ(0)( 􏼁,

ScL
β
t ϕh y, tk+1( 􏼁,ψ( 􏼁 +〈ϕh y, tk+1( 􏼁,ψ〉 +

Nt

Nb
〈θh y, tk+1( 􏼁,ψ〉 � − δ1t − δ2t,ψ(0)( 􏼁,

u
0
h(y) � 0, θ0h(y) � 0 � θ1h(y), ϕ0h(y) � 0 � ϕ1h(y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where u0
h(·) � uh(·, t0), θ1h(·) � θh(·, t1), ϕ1h(·) � ϕh(·, t1),

θ0h(·) � θ(·, t0), and ϕ0h(·) � ϕ(·, t0). *e numerical solution
(uh, θh, ϕh) to (47) is given as
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uh y, tk+1( 􏼁 � 􏽘

Nh

p�1
up tk+1( 􏼁W

p

0h(y), y ∈ Ω,

θh y, tk+1( 􏼁 � 􏽘

Nh

l�1
θl tk+1( 􏼁W

l
1h(y), y ∈ Ω,

ϕh y, tk+1( 􏼁 � 􏽘

Nh

l�1
ϕl tk+1( 􏼁W

l
1h(y), y ∈ Ω,

(48)

where W0h � W
p

0h|p � 1, 2, . . . , N0h􏽮 􏽯 defines a basis,
Vh

0(Ω) along with N0h ≔ dim(Vh
0), W1h � Wl

1h|l �􏼈

1, 2, . . . , N1h} forms a basis ofVh
1(Ω) with N1h ≔ dim(Vh

1)

and (up, θl, ϕl) are yet to be determined. Further, consid-
ering v as W

q

0h for various values of q as q � 1, 2, . . . , N0h, ζ ,
and ψ, Wm

1h for various values of m as m � 1, 2, . . . , N1h,
consequently we obtain the following nonlinear algebraic
system of equations:

(1 + ϵ)Ah
0

d

dt
Uh􏼂 􏼃 + τBh

0 1 + c
d

dt
􏼠 􏼡 Uh􏼂 􏼃 + τ(λ + Ha)M

h
0Uh + τλ1M

h
0Θh + τλ2Θh tk( 􏼁M

h
0Θh � 0,

PrAh
1L

α
k+1 Θh􏼂 􏼃 + τBh

1Θh − τPrNbΦh tk( 􏼁C
h
1Q

α
k+1 Θh􏼂 􏼃 − τPrNtθh tk( 􏼁C

h
1Q

α
k+1 Θh􏼂 􏼃 � − δ1tI,

ScA
h
1L

β
k+1 Φh􏼂 􏼃 + τBh

1Φh + τ
Nt

Nb
B

h
1Θh � − δ1t − δ2t( 􏼁I,

U0
h � 0,Θ0

h � 0 � Θ1
h,Φ0

h � 0 � Φ1
h,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

where for all p, q � 1, 2, . . . , N0h and l, m � 1, 2, . . . , N1h.

Uh( 􏼁p ≔ up, Θh( 􏼁l ≔ θl, Φh( 􏼁l ≔ ϕl,

A
h
0􏼐 􏼑

qp
≔ W

p

0h, W
q

0h􏼐 􏼑, B
h
0􏼐 􏼑

qp
≔ 〈Wp

0h, W
q

0h〉, M
h
0􏼐 􏼑

qp
≔ W

p

0h, W
q

0h􏼐 􏼑,

A
h
1􏼐 􏼑

lm
≔ W

l
1h, W

m
1h􏼐 􏼑, B

h
1􏼐 􏼑

lm
≔ 〈Wl

1h, W
m
1h〉, C

h
1􏼐 􏼑

lm
≔ 〈Wl

1h, W
m
1h〉(I)m ≔ (1, 0, 0, . . . , 0)

†
.

(50)

*e system of algebraic equations, (50) has been com-
puted by Newton’s method. Linear Lagrange elements have
been applied to get matrices in the defined system (50).

3.3.ConvergenceofProposedScheme. Here we have given the
validation of the proposed numerical scheme so that one can
confidently perform simulations of real scenarios. A com-
parison of numerical and theoretical error estimates is
presented here. We postulate the proposed mathematical
model will satisfy the given error estimates.

ζh tk( 􏼁 − ζex tk( 􏼁
����

����L2(Ω)
≤D1 h

r+1
+ τα􏼐 􏼑,

ζh tk( 􏼁 − ζex tk( 􏼁
����

����H1(Ω)
≤D2 h

r
+ τα( 􏼁,

(51)

here constants D1 > 0 andD2 > 0 are not dependent of h, step
size, and τ (see [43]).

*eoretical and numerical error estimates are compared
with the induction of source terms Ffab1 in the momentum
equation, Ffab2 in the energy equation, and Ffab3 in the
concentration equation of model (26) to obtain an exact
fabricated solution.
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(1 + ϵ)
zu

zt
� 1 + c

z

zt
􏼠 􏼡

z
2
u

zy
2􏼢 􏼣 − (λ + Ha)u + λ1 + λ2θ( 􏼁θ + Ffab1(y, t),

Pr
z

zt
1 + δ3

z
α

zt
α􏼠 􏼡θ �

z
2θ

zy
2 + Pr 1 + δ3

z
α

zt
α􏼠 􏼡 Nb

zθ
zy

zϕ
zy

+ Nt
zθ
zy

􏼠 􏼡

2
⎛⎝ ⎞⎠ + Ffab2(y, t),

Sc
z

zt
1 + δ4

z
β

zt
β􏼠 􏼡ϕ �

z
2ϕ

zy
2 +

Nt

Nb
􏼒 􏼓

z
2θ

zy
2 + Ffab3(y, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

with given conditions. *e fabricated solutions completely
satisfied the given equations, uex(y, t), θex(y, t), and
ϕex(y, t) along with conditions. For the validation of the
proposed scheme, we have inserted Ffab1, Ffab2, and Ffab3 in
the system (50). Error curves have been plotted and they are
shown in Figures 1(a), 1(b), and 2.

Errors are presented in norms on log scales of H1(Ω)

and L2(Ω) for different values of h.*e slopes of error curves
are nearly equal to 2 in the case of H1(Ω) and 3 in case of
L2(Ω). *eoretically, in 3.15 and 3.16, Lagrange polynomials
are of degrees r + 1 and r, respectively. In the proposed
scheme we have incorporated a second-degree Lagrange
polynomial, so exact values must be equal to 2 in case of
H1(Ω) and 3 in case of L2(Ω). *is shows the agreement
between theoretical and numerical error estimates. So, the
proposed scheme (50), is convergent and can efficiently
handle real simulations of proposed model (26). *e error
estimates for velocity, temperature, and concentration are
given in Tables 1 and 2.

4. Approximate Simulated Results

*is section deals with the results of the velocity field,
temperature field, and concentration of nanofluid with
nonlinear convection and flux conditions using MATLAB
R2017a. Brownian phenomena of motion and thermopho-
resis are analyzed while evaluating this study. Fluid is
flowing through the Darcy porous medium. Flow and
magnetic fields are orthogonal. *e proposed algorithm is
employed for numerical solutions of governing nonlinear
fractional equations. Discretization of time and space var-
iables is carried out by FDS and FES, respectively. We an-
alyze the characteristics of physical numbers on flow field
generation. Transfer of heat and mass are also discussed for
various pertinent numbers. Variations of flow quantities
with the variation of different nondimensional numbers help
to understand the problem. Simulated results are seen over
intervals of time [0, 2], and [0,

�
2

√
]. Figure 3, is used for

demonstration of velocity behavior with the variation of
0< α< 1. It is observed that for higher values of α, velocity
increases (see Figure 3(a)). However, this occurrence is
hereditary in character and cannot be considered to be other
variations of pertinent parameters.

Change in velocity with the variation of 0.1≤Ha≤ 3, and
0.1≤ c≤ 0.8 are plotted in Figure 3(b). *e plot showed that
a decrease in velocity is noted for higher values of Ha and

opposite behavior is obtained for the viscoelastic parameter,
c. As Ha increases, Lorentz force decreases, which slows
down fluid motion. As a result, velocity decreases for higher
values of Ha. Porosity parameter 0≤ λ≤ 7 and convection
number 0.1≤ λ1 ≤ 3.5 influence on the velocity, which is
plotted in Figure 4. It is noted that velocity decreases for
higher values of λ, while an opposite trend is noted for λ1 in
Figure 4(a). With the increase of λ, permeability decreases
while porosity increases. So, the velocity profile decreases
with the increase of λ. Force of inertia is inversely related to
λ1 and direct influence is given for buoyancy force. As λ1 > 0,
heat transfers from plates to fluid. So, (θs1

− θ0) and (θs2
−

θ0) increase. Consequently, the increase in λ1 increases
buoyancy forces, (θs1

− θ0) and (θs2
− θ0). So, increase in

fluid velocity is noted in this case.
Similar behavior of nonlinear convection number

0.1≤ λ2 ≤ 6.5 is noted in Figure 4(b). When there is con-
vection, it is nonlinear in nature, so as noted, the same
results are observed for the convection parameter λ1. It is
noted that an increase in the Darcy resistance number,
0.1≤ ϵ≤ 6.5 reflects a decrease in velocity. *is is because an
increase in ϵ permeability decreases while porosity increases.
Hence, a decrease in velocity with an increase in Darcy
resistance number is noted.

Figure 5 is plotted to observe the temperature profile, for
several values of α. Temperature profile, increases as α in-
creases in Figure 5(a). Temperature profile behavior with the
increase of pedesis number 0.1≤Nb≤ 4, Schmidt parameter
0.1≤ Sc≤ 4 are observed via Figure 5(b). It is noted that
temperature increases. as Sc, Nb increase. Momentum
diffusivity enhances with the increase of Sc, which increases
friction between different layers of the flow domain. As a
result, an increase in temperature is seen with the increase of
Sc. A decrease of temperature with the decrease of base fluid
heat capacity is noted with an increase of Nb.

*e influence of 0.1≤Pr≤ 7, Prandtl number,
0.1≤Nt≤ 4 thermophoresis number, on temperature is
plotted in Figure 6. With the increase of Nt, the temperature
profile increases, while the opposite trend is observed in the
case of Pr in Figure 6(a). With the increase of Nt, the heat
capacity of the nanofluid decreases, as a result, the tem-
perature profile increases, for higher values of Nt. With the
increase of Pr, thermal diffusivity, decreases so temperature
decreases with the increase of Pr. Figure 6(b) is plotted to
show the influence of heat flux, 0.1≤ δ1 ≤ 0.8 and mass flux,
0.1≤ δ2 ≤ 0.8 numbers on temperature. It is noted
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Figure 1: Error estimates for temperature and velocity. (a) Velocity H1 and L2 error curves. (b) Temperature H1 and L2 error curves.
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Figure 2: Concentration H1 and L2 error curves.

Table 1: Error estimates for velocity and temperature.

n h
Error estimates of velocity Error estimates of temperature

‖u − uex‖L2(Ω) ‖u − uex‖H1(Ω) ‖θ − θex‖L2(Ω) ‖θ − θex‖H1(Ω)

7 0.3000 2.5816528 × 10− 5 1.2760729 × 10− 1 1.211254 × 10− 4 1.4354533 × 10− 1

10 0.2360 1.7530926 × 10− 5 1.0335894 × 10− 1 3.809745 × 10− 5 8.0745776 × 10− 2

13 0.1807 1.2588759 × 10− 5 8.5420742 × 10− 2 1.584725 × 10− 5 5.1678524 × 10− 2

16 0.1728 9.5167115 × 10− 6 7.1777154 × 10− 2 7.961548 × 10− 6 3.5888249 × 10− 2

19 0.1529 7.5460756 × 10− 6 6.1157856 × 10− 2 4.640422 × 10− 6 2.6367821 × 10− 2

22 0.1502 6.2508125 × 10− 6 5.2734257 × 10− 2 3.080778 × 10− 6 2.0187853 × 10− 2

25 0.1456 5.3821874 × 10− 6 4.5938245 × 10− 2 2.2959072 × 10− 6 1.5949251 × 10− 2

28 0.1378 4.7890743 × 10− 6 4.0375489 × 10− 2 1.8817548 × 10− 6 1.2918457 × 10− 2
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Table 2: Error estimates for concentration.

n h
Error estimates of concentration

‖u − uex‖L2(Ω) ‖u − uex‖H1(Ω)

7 0.3000 3.6875492 × 10− 4 2.2760729 × 10− 2

10 0.2360 1.7254876 × 10− 4 1.0335894 × 10− 2

13 0.1807 1.4258149 × 10− 4 9.5124783 × 10− 3

16 0.1728 8.1568473 × 10− 5 8.2549678 × 10− 3

19 0.1529 6.4582167 × 10− 5 6.3548962 × 10− 3

22 0.1502 4.8723459 × 10− 5 5.7854216 × 10− 3

25 0.1456 3.1248753 × 10− 5 4.3698524 × 10− 3

28 0.1378 2.4529751 × 10− 5 3.9645871 × 10− 3
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Figure 3: Influence of noninteger number, Hartmann number, and viscoelastic number on velocity. (a) Change in velocity with α.
(b) Change in velocity with Ha and Υ.
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Figure 4: Influence of porosity, Darcy resistance, and convection numbers on velocity. (a) Change in velocity with λ and λ1. (b) Change in
velocity with λ2 and ε.
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temperature increases for higher values of δ1 while opposite
trends are seen for the case of δ2. With the increase of δ1,
thermal conductivity, the fluid decreases which decreases the
heat passage rate through the base fluid, so temperature
increases for higher values of δ1.

Figure 7 is outlined to observe concentration change for
various values of α. Concentration is at a higher level for
higher values of α in Figure 7(a). Effects of thermophoresis,
Nt, pedesis, Nb numbers on concentration are plotted in
Figure 7(b). Concentration increases, for higher values of
Nt, while the opposite behavior is noted for Nb. An increase
in concentration, is because of an increase in the coefficient
of thermophoretic diffusion.

*e influence of Prandtl Pr, and Schmidt Sc numbers on
concentration can be seen via Figure 8. Concentration in-
creases for higher values of Pr, while the opposite behavior is
noted in the case of Sc as shown in Figure 8(a). Momentum
diffusivity increases for higher values of Pr, as a result,
concentration is at a greater level for higher values of Pr. *e
viscosity of fluid increases, and the Brownian diffusion
coefficient decreases for higher values of Sc. So, the con-
centration remains at a lower level for higher values of Sc.
Figure 8(b) is outlined to observe the impact of heat flux δ1,
and mass flux δ2 numbers on concentration. Concentration
increases for higher values of δ1 and δ2. *e rate of transfer
of concentration decreases for higher values of δ2. So, the
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Figure 5: Influence of noninteger number, pedesis parameter, and Schmidt number on temperature. (a) Change in temperature with α.
(b) Change in temperature with Sc and Nb.
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concentration increases for higher values of δ2. At the end
Figures 9(a) and 9(b)–12(a) and 12(b) are plotted for time
dependent velocity, temperature, and concentration profiles.
*ese figures showed anomalous character of noninteger
nanofluid.

Variations of skin friction with pertinent fractional
model parameters are examined via Tables 3 and 4. Skin
friction magnitude increases with the increase of α, β, λ, δ2,
Pr, and Ha , while it decreases with the increase of c, λ1, λ2,
δ1, Sc, Nt, and Nb.
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Figure 9: Unsteady velocity for various values of physical parameters over the interval [0, 2].

10.80.6
0.4 y0.200

0.5
t
1

1.5

0

1.5

1

2

0.5

2

θ 
(y

, t
)

Nt = 3, β = 0.4 

Nb = 3, δ4 = 0.7

Sc = 2, Pr = 4

δ1 = 0.5

δ2 = 0.6

δ3 = 0.4

α = 0.7

(a)

θ 
(y

, t
)

10.80.60.4
y0.200

0.5t
1

1.5
0

1

2

3

4

5

6

2

Nt = 1, β = 0.7

Nb = 2, δ4 = 0.6

Sc = 4, Pr = 3

δ1 = 0.4

δ2 = 0.5

δ3 = 0.7

α = 0.6

(b)

Figure 10: Unsteady temperature and concentration for various values of physical parameters over the interval [0,
�
2

√
].

14 Mathematical Problems in Engineering



0 0.2 0.4 0.6 0.8 1
y

0

0.2

0.4

0.6

0.8

1
u 

(y
, t

)
β = 0.5, γ = 0.8

λ = 0.4, λ1 = 0.8

λ2 = 0.9, Ha =1.5

t = 1

t = 0.8

t = 0.6

t = 0.4

t = 0.2

(a)

0 0.2 0.4 0.6 0.8 1
y

β = 0.3, γ = 0.4

λ = 0.2, λ1 = 0.5

λ2 = 0.7, Ha =0.9

0

1

2

3

4

u 
(y

, t
)

t = 2

t = 1.2

t = 1.4

t = 1.8

t = 1.6

(b)

Figure 11: Velocity profiles for various final times for Nt � 0.6, Sc � 0.5, Nb � 0.7, δ1 � 0.5, Pr � 0.8, δ2 � 0.3, δ3 � 0.1, and δ4 � 0.1.
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Table 3: Influence of fractional flow numbers on the coefficient of friction at (y, t) � (0, 0.1) for Sc � 0.5, Nt � 0.3, Pr � 0.4, Nb � 0.4,
δ1 � 0.4, δ2 � 0.6, δ3 � 0.01, δ4 � 0.01, α � 0.5, and β � 0.5.

ϵ c λ λ1 λ2 Ha ReCf/2

0.1 0.2 0.1 0.2 0.1 0.2 − 2.351733
0.2 − 2.430800
0.3 0.2 − 2.507821

0.3 − 2.305209
0.4 0.1 − 2.168051

0.2 − 2.177760
0.3 0.2 − 2.187445
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5. Conclusion

*e flow of a nanofluid with a fractional derivative of time
and nonlinear convection is studied in this communication.
*e fractional derivative of time is used to analyze the
memory characteristics. Applications of Darcy porous
medium can be encountered in numerous industries.
Brownian motion effects are also considered while formu-
lating the flow domain. A numerical algorithm is incor-
porated to estimate variations in the flow field. Flow is
carried out by variable acceleration of the lower boundary.
*e flow direction and the applied magnetic field are or-
thogonal. Conditions for heat and mass gradients are
considered at the bottom boundary, while quadratic vari-
ation is seen at the upper boundary. Enhancement in ve-
locity is noted, for higher values of α, λ1, c, andλ2, and
opposite behavior is seen in case of λ, Ha, and β. Also, the
enhancement of temperature profiles are observed for higher
values of Nt, Nb, Sc, α, and δ1, and opposite behavior is
noted in case of Pr and δ2. Concentration increases with the
increase of α, Nt, Pr, δ1, and δ2, and decreasing behavior is
observed for Nb and Sc. It is believed that fractional porous
medium flows of nanofluids can be tackled with the current
study. Flow, discussed in this communication, can be tackled
in the manufacture of fiber and in geology. Moreover, the
current study can be extended to Maxwell fluid flow. An
analysis can also be performed to tackle nonlinear radiation
effects in a fluid of differential type with fractional derivative.

Nomenclature

u: Velocity component
t: Time
ϕ: Fluid concentration
ϕ0: Initial concentration
cp: Nanoparticles specific heat
hp: Nanoparticles enthalpy
α, β: Fractional derivatives
α3: *ermal diffusivity
g: Gravitational acceleration
τ: Heat capacities ratio
σ: Electrical conductivity
ψ: Porosity
α1: Second-grade fluid material parameter
k: *ermal conductivity
qθ: Heat flux
ϵ: Darcy resistance parameter
λ: Porosity parameter
λ1, λ2: Convection parameters
Nt: *ermophoresis parameter
δ1: Heat flux parameter
δ3, δ4: Relaxation time parameters
Pr: Prandtl parameter
y: Space coordinate
θ: Fluid temperature
θ0: Initial temperature
cf: Specific heat

Table 3: Continued.

ϵ c λ λ1 λ2 Ha ReCf/2

0.3 − 2.133404
0.4 0.1 − 2.079362

0.2 − 2.078998
0.3 0.2 − 2.078633

0.3 − 2.088548
0.4 − 2.098437

Table 4: Influence of fractional flow numbers on the coefficient of friction at (y, t) � (0, 0.1) for ϵ � 0.3, β � 0.3, c � 0.4, λ � 0.1, Ha � 0.5,
δ3 � 0.01, δ4 � 0.01, λ1 � 0.5, and λ2 � 0.7.

α δ1 δ2 Pr Sc Nt Nb ReCf/2

0.1 0.5 0.4 0.6 0.5 0.4 0.5 − 0.314325
0.2 − 0.567381
0.3 0.5 − 0.936514

0.6 − 0.890553
0.7 0.4 − 0.844409

0.5 − 0.844564
0.6 0.6 − 0.844719

0.7 − 0.870374
0.8 0.5 − 0.892903

0.6 − 0.892822
0.7 0.4 − 0.892728

0.5 − 0.892449
0.6 0.5 − 0.892164

0.6 − 0.891937
0.7 − 0.891685
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ρf: Fluid density
ρp: Nanoparticles density
τ1, τ2: Relaxation times
DB: Diffusion coefficient
Dθ: *ermophoretic coefficient
β1, β2: *ermal expansion coefficients
K: Permeability
B0: Applied magnetic field
A: Dimensional constant
]: Kinematic viscosity
qϕ: Concentration flux
c: Viscoelastic parameter
λ: Magnetic parameter
Nb: Pedesis parameter
Nb: Pedesis parameter
δ2: Mass flux parameter
Sc: Schmidt parameter
Re: Reynold parameter.
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In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied
by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex
functions involving fractional integral operators with exponential kernel. *en, weighted Hadamard–Fejér–Mercer-type in-
equalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of
harmonically convex functions via fractional integral operators with exponential kernel are constructed.

1. Introduction

Integral inequalities have been widely used in various sci-
ences, including mathematical sciences, applied sciences,
differential equations, and functional analysis. In the last two
decades, these inequalities have gained attention from re-
searchers. In most mathematical analysis areas, many types
of integral inequalities are used. *ey are very important in
approximation theory and numerical analysis, which esti-
mate the error’s approximation. Integral inequalities are
useful tools in the study of different classes of differential
equations and integral equations. *ey are today employed
not only in mathematics but also in physics, computer
science, and biology.

Convexity has several uses in business, medicine, in-
dustry, and art that have a significant impact on our daily
lives. One of the most important applications of the convex
function is the formulation of inequalities. Many equalities
and inequalities have been defined for convex functions, but
Jensen’s inequality and the Hermite–Hadamard integral
inequality are the most notable results [1–3]. *e following

notion of convex function plays a significant role in opti-
mization theory and in other fields of sciences.

Definition 1. A function Ω: I ⊂ R⟶ R is called a convex
function on I, if

Ω ηa1 +(1 − η)a2( 􏼁≤ ηΩ a1( 􏼁 +(1 − η)Ω a2( 􏼁, (1)

for all a1, a2 ∈ I and η ∈ [0, 1], holds.
*e following classical Jensen’s inequality is defined as

generalization of convex functions.

Theorem 1 (see [1]). Suppose that Ω is a convex function on
[a1, a2]; then,

Ω 􏽘
n

ℓ�1
ηℓϰℓ⎛⎝ ⎞⎠≤ 􏽘

n

ℓ�1
ηℓΩ ϰℓ( 􏼁, (2)

for all ϰℓ ∈ [a1, a2] and ηℓ ∈ [0, 1], where ℓ � 1, 2, . . . , n with
􏽐

n
ℓ�1 ηℓ � 1.

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 7269033, 19 pages
https://doi.org/10.1155/2022/7269033

mailto:rostin.mabela@unikin.ac.cd
https://orcid.org/0000-0001-7192-8269
https://orcid.org/0000-0001-8196-4108
https://orcid.org/0000-0002-3468-2295
https://orcid.org/0000-0002-7669-2141
https://orcid.org/0000-0001-5208-5200
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7269033


Inequality (2) is a key to extract applications in infor-
mation theory. It is very useful in computing optimal bounds
for joint and conditional entropies and mutual information
(for instance, see [4–6] and the references therein).

Hermite–Hadamard inequalities may be considered as a
refinement of the concept of convexity, and it is simply
inferred from Jensen’s inequality as follows.

Theorem 2 (see [2]). IfΩ is a convex function on the interval
[a1, a2] with a1 < a2, then

Ω
a1 + a2

2
􏼒 􏼓≤

1
a2 − a1

􏽚
a2

a1

Ω(ϰ)dϰ ≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
. (3)

It has been applied in several branches such as finance,
engineering, and science (see [2]). In recent years, Hermi-
te–Hadamard inequalities for convex functions have gotten
a lot of attention, and as a result, there have been a lot of
refinements and generalizations.

In 2003, Mercer presented a variant of Jensen’s in-
equality as follows.

Theorem 3 (see [7]). Suppose that Ω is a convex function on
the interval [θ1, θ2]; then,

Ω θ1 + θ2 − 􏽘
n

ℓ�1
ηℓϰℓ⎛⎝ ⎞⎠≤Ω θ1( 􏼁 +Ω θ2( 􏼁 − 􏽘

n

ℓ�1
ηℓΩ ϰℓ( 􏼁, (4)

for all ϰℓ ∈ [θ1, θ2] and ηℓ ∈ [0, 1], where ℓ � 1, 2, . . . , n with
􏽐

n
ℓ�1 ηℓ � 1.

Over the years, the Jensen–Mercer inequality became a
topic of foremost interest for many scholars as they have
investigated and studied in various ways including bringing
it to a higher dimension and acquiring it for convex op-
erators along with its several refinements, operator variants
for superquadratic functions, improvements, and many
generalizations with applications in information theory (see
[8–10]).

In [11], Íşcan gave the definition of harmonic convexity
as follows.

Definition 2. A function Ω: I ⊂ R\ 0{ }⟶ R is said to be
harmonically convex on I, if

Ω
a1a2

ηa1 +(1 − η)a2
􏼠 􏼡≤ ηΩ a2( 􏼁 +(1 − η)Ω a1( 􏼁, (5)

holds for all a1, a2 ∈ I and η ∈ [0, 1].
In [11], Íşcan for the first time introduced the Hermi-

te–Hadamard inequality for harmonically convex function
along with the following identity.

Theorem 4 (see [11]). Suppose thatΩ: I⊆ (0,∞)⟶ R is a
harmonically convex function and a1, a2 ∈ I with a1 < a2. If
Ω ∈ L[a1, a2], then

Ω
2a1a2
a1 + a2

􏼠 􏼡≤
a1a2

a2 − a1
􏽚
a2

a1

Ω(ϰ)
ϰ2

dϰ≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
. (6)

Lemma 1 (see [11]). If Ω: I⊆ (0,∞)⟶ R is a differen-
tiable function on Io and a1, a2 ∈ I with a1 < a2 and
Ω′ ∈ L[a1, a2], then

Ω a1( 􏼁 +Ω a2( 􏼁

2
−

a1a2
a2 − a1

􏽚
a2

a1

Ω(ϰ)
ϰ2

dϰ

�
a1a2 a2 − a1( 􏼁

2
􏽚
1

0

1 − 2η
ηa2 +(1 − η)a1( 􏼁

2Ω′

·
a1a2

ηa2 +(1 − η)a1
􏼠 􏼡dη.

(7)

*e most prominent inequalities connected to the in-
tegral mean of a harmonically convex function are the
Hermite–Hadamard inequalities or their weighted versions
which are called Hermite–Hadamard–Fejér inequalities for
harmonically convex functions. In [12], Chen and Wu
established the Hermite–Hadamard–Fejér inequality for
harmonically convex functions.

Theorem 5 (see [12]). Let Ω: I⊆ (0,∞)⟶ R be a har-
monically convex function and a1, a2 ∈ I with a1 < a2. If
Ω ∈ L[a1, a2] and ω: [a1, a2]⊆ (0,∞)⟶ R is non-nega-
tive, integrable, and harmonically symmetric with respect to
2a1a2/a1 + a2, that is, ω(ϰ) � ω(1/(1/a1) + (1/a2) − (1/ϰ)),
then

Ω
2a1a2
a1 + a2

􏼠 􏼡 􏽚
a2

a1

ω(ϰ)
ϰ2

dϰ≤ 􏽚
a2

a1

Ω(x)ω(ϰ)
ϰ2

dϰ

≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
􏽚
a2

a1

ω(ϰ)
ϰ2

dϰ.

(8)

In [13], Chen and Wu obtained two Hermi-
te–Hadamard-type inequalities for products of harmonically
convex functions as follows.

Theorem 6 (see [13]). Let Ω,ω: [a1, a2]⊆ (0,∞)⟶
[0,∞), a1, a2 ∈ (0,∞), be functions such that
Ω,ω,Ωω ∈ L[a1, a2]. If Ω and ω are harmonically convex on
[a1, a2], then

a1a2
a2 − a1

􏽚
a2

a1

Ω(ϰ)ω(ϰ)
ϰ2

dϰ≤
1
3

M a1, a2( 􏼁 +
1
6

N a1, a2( 􏼁,

(9)

2Ω
2a1a2
a1 + a2

􏼠 􏼡ω
2a1a2
a1 + a2

􏼠 􏼡≤
a1a2

a2 − a1
􏽚
a2

a1

Ω(ϰ)ω(ϰ)
ϰ2

dϰ

+
1
6

M a1, a2( 􏼁 +
1
3

N a1, a2( 􏼁,

(10)

where M(a1, a2) � Ω(a1)ω(a1) +Ω(a2)ω(a2) and N(a1,

a2) � Ω(a1)ω(a2) +Ω(a2)ω(a1).
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Fractional calculus is an extension of classical calculus.
Fractional calculus is now a well-known technique in engi-
neering science, with wide range of applications in material
modeling. A growing number of degree considerations have
recently been given to fractional calculus and its numerous
applications. Fractional integral/derivative operators are ex-
tremely important in the development of fractional calculus.
Fractional differential equations and dynamical frameworks
were established a few decades ago as key tools for exhibiting a
variety of phenomena in various branches of pure and applied
sciences. Many physical problems can be modeled using
fractional differential equations, including heat equations,
wave equations, Poisson equations, and Laplace equations,
biological populations, fluid mechanics, thermodynamics,
viscoelasticity, vibration, advection-diffusion, groundwater
flow with memory, and signal processing [14, 15]. Several
studies have shown that fractional operators can accurately
explain complex long memory and multiscale phenomena in
materials that are difficult to capture using standard math-
ematical methods including classical differential calculus. *e
significance of fractional calculus can be more understand-
able, and several works involving fractional calculus have been
done.

Several well-known inequalities and related results can
be generalized and extended via fractional integral operators
(see [16–19] and the references therein).

Definition 3 (see [15]). Let Ω ∈ L[a1, a2]. *e Rie-
mann–Liouville fractional integrals Jαa+

1
Ω and Jαa−

2
Ω of order

α> 0 with a1 ≥ 0 are defined by

J
α
a+
1
Ω(ϰ) �

1
Γ(α)

􏽚
ϰ

a1

(ϰ − u)
α− 1Ω(u)du, ϰ> a1,

J
α
a−
2
Ω(ϰ) �

1
Γ(α)

􏽚
a2

ϰ
(u − ϰ)α− 1Ω(u)du, ϰ< a2,

(11)

respectively. Here, Γ(α) is the gamma function defined by
Γ(α) � 􏽒

∞
0 e− uuα− 1du and J0a+

1
Ω(ϰ) � J0a−

2
Ω(ϰ) � Ω(ϰ).

In [20], Iscan and Wu for the first time introduced
Hermite–Hadamard-type inequalities for harmonically
convex functions for Riemann–Liouville fractional integral
operators along with the following integral identity.

Theorem 7 (see [20]). Let Ω: [a1, a2]⊆ (0,∞)⟶ R be a
function with a1 < a2 and Ω ∈ L[a1, a2]. If Ω is a harmon-
ically convex function, then

Ω
2a1a2
a1 + a2

􏼠 􏼡≤
Γ(α + 1)

2
a1a2

a2 − a1
􏼠 􏼡

α

J
α
1/a−

1
(Ω∘ g)

1
a2

􏼠 􏼡 + I
α
1/a+

2
(Ω ∘ g)

1
a1

􏼠 􏼡􏼢 􏼣≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
, (12)

where g(u) � 1/u. Lemma 2 (see [20]). Suppose that Ω: [a1, a2]⊆
(0,∞)⟶ R is a differentiable function on Io and
Ω′ ∈ L[a1, a2]; then,

Ω a1( 􏼁 +Ω a2( 􏼁

2
−
Γ(α + 1)

2
a1a2

a2 − a1
􏼠 􏼡

α

J
α
1/a−

1
(Ω∘ g)

1
a2

􏼠 􏼡 + I
α
1/a+

2
(Ω ∘ g)

1
a1

􏼠 􏼡􏼢 􏼣

�
a1a2 a2 − a1( 􏼁

2
􏽚
1

0

ηα − (1 − η)
α

􏼂 􏼃

ηa1 +(1 − η)a2( 􏼁
2Ω′

a1a2
ηa1 +(1 − η)a2

􏼠 􏼡dη,

(13)

where g(u) � 1/u.

In [21], İşcan and Kunt represented the
Hermite–Hadamard–Fejér-type inequality for harmonically
convex functions in Riemann–Liouville fractional integral
forms as follows.

Theorem 8 (see [21]). Let Ω: I⊆ (0,∞)⟶ R be a har-
monically convex function and a1, a2 ∈ I with a1 < a2. If
Ω ∈ L[a1, a2] and ω: [a1, a2]⊆ (0,∞)⟶ R is nonnegative,
integrable, and harmonically symmetric with respect to
2a1a2/a1 + a2, that is, ω(ϰ) � ω(1/(1/a1) + (1/a2) − (1/ϰ)),
then

Ω
2a1a2
a1 + a2

􏼠 􏼡 J
α
1/a−

1
(ω ∘ g)

1
a2

􏼠 􏼡 + J
α
1/a+

2
(ω ∘ g)

1
a1

􏼠 􏼡􏼢 􏼣

≤ J
α
1/a−

1
(Ωω ∘ g)

1
a2

􏼠 􏼡 + J
α
1/a+

2
(Ωω ∘ g)

1
a1

􏼠 􏼡􏼢 􏼣

≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
J
α
1/a−

1
(ω ∘ g)

1
a2

􏼠 􏼡 + J
α
1/a+

2
(ω ∘ g)

1
a1

􏼠 􏼡􏼢 􏼣,

(14)

where α> 0 g(u) � 1/u, u ∈ [1/a2, 1/a1].
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*e importance of Hadamard-type inequalities is due to
their roles in various fields of modern mathematics such as
numerical analysis, probability, mathematical analysis, and re-
lated fields [2, 22]. Many researchers generalize and extend their
studies to Hermite–Hadamard, Hermite–Hadamard–Fejér, and
Pachpatte-type inequalities involving fractional integrals for
various classes of convex functions (see [20, 21, 23, 24] and the
references therein).

Recently (from 2020 to 2021), some new kinds of fractional
treatment of Hermite–Jensen–Mercer-type inequalities for a
variety of fractional integral operators were presented in
[25–27]. All these results were investigated for convex func-
tions or s-convex functions, and many applications to special
functions like Bessel and q-digamma functions were obtained.

Since there a is massive literature about the development
of fractional Mercer integral inequalities involving convex
functions but still there exist many gaps to be filled for
fractional integral inequalities for other classes of convex
functions. *erefore, the basic aim of this paper is to present
three new Hadamard–Mercer-type inequalities for har-
monically convex functions using fractional integral oper-
ators with exponential kernel.We also give fractional Mercer
integral inequalities for product of two harmonically convex
functions. We hope that the new techniques formulated in
this paper are more energizing than the accessible one.

Ahmad et al. [23] gave the definition of two new frac-
tional integral operators with an exponential kernel.

Definition 4. Let Ω ∈ L(a1, a2). *e fractional integral op-
erators Iαa1Ω(ϰ) and Iαa2Ω(ϰ) of order α ∈ (0, 1) are, re-
spectively, defined by

I
α
a1
Ω(ϰ) �

1
α

􏽚
ϰ

a1

exp −
1 − α
α

(ϰ − u)􏼒 􏼓Ω(u)du, ϰ> a1,

I
α
a2
Ω(ϰ) �

1
α

􏽚
a2

ϰ
exp −

1 − α
α

(u − ϰ)􏼒 􏼓Ω(u)du, ϰ< a2.

(15)

Remark 1. If α � 1, then

lim
α⟶1

I
α
a1
Ω(ϰ) � 􏽚

ϰ

a1

Ω(u)du,

lim
α⟶1

I
α
a2
Ω(ϰ) � 􏽚

a2

ϰ
Ω(u)du.

(16)

For the convenience of expression, throughout the pa-
per, we set

ρ �
1 − α
α

a2 − a1
a1a2

􏼠 􏼡. (17)

2. Hermite–Hadamard–Mercer-Type
Inequalities for Harmonically
Convex Function

Theorem 9. Suppose that Ω: [θ1, θ2]⊆ (0,∞)⟶ R is a
positive function with 0≤ θ1 < θ2. If Ω is a harmonically
convex function on [θ1, θ2] and Ω ∈ L[θ1, θ2], then

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −

1 − α
2[1 − exp(− ρ)]

I
α
1/a1

(Ω ∘ g)
1
a2

􏼠 􏼡 + I
α
1/a2

(Ω ∘ g)
1
a1

􏼠 􏼡􏼢 􏼣

≤Ω θ1( 􏼁 +Ω θ2( 􏼁 − Ω
2a1a2
a1 + a2

􏼠 􏼡,

(18)

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤

1 − α
2[1 − exp(− ρ)]

· I
α

1/θ1( )+ 1/θ2( )− 1/a1( )( )(Ω ∘ g)
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼢

+ I
α

1/θ1( )+ 1/θ2( )− 1/a2( )( )(Ω∘ g)
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2
􏼠 􏼡􏼢 􏼣

≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −
Ω a1( 􏼁 +Ω a2( 􏼁

2
,

(19)

for all a1, a2 ∈ [θ1, θ2], α> 0, g(u) � 1/u, u ∈ [1/θ2, 1/θ1]
and ρ is defined in (17).

Proof. Using the Jensen–Mercer inequality for harmonically
convex function, we have

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a1( 􏼁
􏼠 􏼡≤Ω θ1( 􏼁 +Ω θ2( 􏼁

−
Ω a1( 􏼁 +Ω a2( 􏼁

2
,

(20)
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for all a1, a2 ∈ [θ1, θ2]. By changing of the variables
a1 � a1a2/ηa1 + (1 − η)a2, a2 � a1a2/ηa2 + (1 − η)a1 for all
a1, a2 ∈ [θ1, θ2] and η ∈ [0, 1] in (20), we obtain

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −

1
2
Ω

a1a2
ηa1 +(1 − η)a2

􏼠 􏼡 +Ω
a1a2

ηa2 +(1 − η)a1
􏼠 􏼡􏼢 􏼣. (21)

Multiplying by exp(− ρη) on both sides of (21) and then
integrating with respect to η over [0, 1], we have

[1 − exp(− ρ)]

ρ
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
[1 − exp(− ρ)]

ρ
Ω a1( 􏼁 +Ω a2( 􏼁􏼂 􏼃 −

1
2

􏽚
1

0
exp(− ρη)

· Ω
a1a2

ηa1 +(1 − η)a2
􏼠 􏼡 +Ω

a1a2
ηa2 +(1 − η)a1

􏼠 􏼡􏼢 􏼣dη

�
[1 − exp(− ρ)]

ρ
Ω θ1( 􏼁 +Ω θ2( 􏼁􏼂 􏼃 −

a1a2
2 a2 − a1( 􏼁

􏽚
1/a1

1/a2
exp −

1 − α
α

1
a1

− u􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼢

+ 􏽚
1/a1

1/a2
exp −

1 − α
α

u −
1
a2

􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼣

�
[1 − exp(− ρ)]

ρ
Ω θ1( 􏼁 +Ω θ2( 􏼁􏼂 􏼃 −

αa1a2
2 a2 − a1( 􏼁

I
α
1/a2(Ω∘ g)

1
a1

􏼠 􏼡 + I
α
1/a1(Ω ∘ g)

1
a2

􏼠 􏼡􏼢 􏼣.

(22)

Multiplying by ρ/[1 − exp(− ρ)] on both sides of above
equation and putting the value of ρ which is given in (17), we
get

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2
􏼠 􏼡≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −

1 − α
2[1 − exp(− ρ)]

I
α
1/a1

(Ω ∘ g)
1
a2

􏼠 􏼡 + I
α
1/a2

(Ω∘ g)
1
a1

􏼠 􏼡􏼢 􏼣. (23)

*us, the first inequality of (18) is proved. Now we prove
the second inequality in (18); since Ω is a harmonically
convex function, then, for η ∈ [0, 1], it yields

Ω
2a1a2
a1 + a2

􏼠 􏼡 � Ω
2

η/a1( 􏼁 + 1 − η/a2( 􏼁 + 1 − η/a1( 􏼁 + η/a2( 􏼁
􏼠 􏼡

≤
1
2
Ω

a1a2
ηa2 +(1 − η)a1

􏼠 􏼡 + Ω
a1a2

ηa1 +(1 − η)a2
􏼠 􏼡􏼢 􏼣.

(24)

Multiplying by exp(− ρη) on both sides of (24) and then
integrating with respect to η over [0, 1], we have

[1 − exp(− ρ)]

ρ
Ω

2a1a2
a1 + a2

􏼠 􏼡

≤
1
2

􏽚
1

0
exp(− ρη)Ω

a1a2
ηa2 +(1 − η)a1

􏼠 􏼡􏼢

+Ω
a1a2

ηa1 +(1 − η)a2
􏼠 􏼡dη􏼣

�
αa1a2

2 a2 − a1( 􏼁
I
α
1/a1(Ω∘ g)

1
a2

􏼠 􏼡 + I
α
1/a2(Ω∘ g)

1
a1

􏼠 􏼡􏼢 􏼣.

(25)
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*en,

− Ω
2a1a2
a1 + a2

􏼠 􏼡≥ −
1 − α

2[1 − exp(− ρ)]

· I
α
1/a1

(Ω∘ g)
1
a2

􏼠 􏼡 + I
α
1/a2

(Ω∘ g)
1
a1

􏼠 􏼡􏼢 􏼣.

(26)

Adding Ω(a1) +Ω(a2) to both sides of (26), we find the
second inequality of (18).

Now, we prove inequality (19). SinceΩ is a harmonically
convex function, then, we have that for any a1, a2 ∈ [θ1, θ2],

Ω
2a1a2
a1 + a2

􏼠 􏼡 � Ω
1

1/2 η/a1( 􏼁 + 1 − η/a2( 􏼁 + 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡

≤
1
2
Ω

1
η/a1( 􏼁 + 1 − η/a2( 􏼁

􏼠 􏼡 +Ω
1

1 − η/a1( 􏼁 + η/a2( 􏼁
􏼠 􏼡􏼢 􏼣

≤
Ω a1( 􏼁 +Ω a2( 􏼁

2
.

(27)

Replacing a1 and a2 by 1/(1/θ1) + (1/θ2) − (1/a1) and
1/(1/θ1) + (1/θ2) − (1/a2), respectively, in (27), we get

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1 + 1 − η/a2( 􏼁

􏼠 􏼡 + Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1 + η/a2( 􏼁
􏼠 􏼡􏼢 􏼣

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣.

(28)

Multiplying by exp(− ρη) on both sides of (28) and then
integrating with respect to η over [0, 1], we obtain

[1 − exp(− ρ)]

ρ
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
1
2

􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1 + 1 − η/a2( 􏼁

􏼠 􏼡dη􏼢

+ 􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1 + η/a2( 􏼁

􏼠 􏼡dη]

≤
[1 − exp(− ρ)]

2ρ
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣.

(29)

It is obvious that
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1
2

􏽚
1

0
exp(− ρη)Ω

1
1/θ1 + 1/θ2 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡dη + 􏽚
1

0
exp(− ρη)Ω

1
1/θ1 + 1/θ2 − 1 − η/a1 + η/a2( 􏼁

􏼠 􏼡dη􏼢 􏼣

�
a1a2

2 a2 − a1( 􏼁
􏽚

1/θ1( )+ 1/θ2( )− 1/a2( )

1/θ1( )+ 1/θ2( )− 1/a1( )
exp −

1 − α
α

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 − u􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼢

+ 􏽚
1/θ1( )+ 1/θ2( )− 1/a2( )

1/θ1( )+ 1/θ2( )− 1/a1( )
exp −

1 − α
α

u −
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼣

�
αa1a2

2 a2 − a1( 􏼁
I
α

1/θ1( )+ 1/θ2( )− 1/a1( )( )(Ω∘ g)
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α

1/θ1( )+ 1/θ2( )− 1/a2( )( )(Ω ∘ g)
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣.

(30)

Using the Jensen–Mercer inequality for harmonically
convex function, we conclude that

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡

≤
1 − α

2[1 − exp(− ρ)]
I
α

1/θ1( )+ 1/θ2( )− 1/a1( )( )(Ω∘ g)
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α

1/θ1( )+ 1/θ2( )− 1/a2( )( )(Ω∘ g)
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤
1
2
Ω

1
1/θ1 + 1/θ1 − 1/a1

􏼠 􏼡 +Ω
1

1/θ1 + 1/θ1 − 1/a2
􏼠 􏼡􏼢 􏼣

≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −
Ω a1( 􏼁 +Ω a2( 􏼁

2
.

(31)

So, inequality (19) is proved. □

Remark 2. If we take a1 � θ1 and a2 � θ2 in*eorem 9, then
we have *eorem 2.1 in [24].

Remark 3. For α⟶ 1, we have

lim
α⟶1

1 − α
2[1 − exp(− ρ)]

�
a1a2

2 a2 − a1( 􏼁
. (32)

Under the assumptions of*eorem 9 with α � 1, one has

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤Ω θ1( 􏼁 +Ω θ2( 􏼁 − 􏽚

1

0
Ω

a1a2
ηa1 +(1 − η)a2

􏼠 􏼡dη

≤Ω θ1( 􏼁 +Ω θ2( 􏼁 − Ω
2a1a2
a1 + a2

􏼠 􏼡,

(33)

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤

a1a2
a2 − a1

􏽚
a2

a1

1
η2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − (1/η)

􏼠 􏼡dη

≤Ω θ1( 􏼁 +Ω θ2( 􏼁 −
Ω a1( 􏼁 +Ω a2( 􏼁

2
,

(34)

for all a1, a2 ∈ [θ1, θ2]. Inequalities (33) and (34) were
proved by Baloch et al. in [28, *eorem 3.5] and [29,
*eorem 2.1].

Remark 4. If α⟶ 1, a1 � θ1, and a2 � θ2 in *eorem 9,
then we have Hermite–Hadamard inequality (6) for har-
monically convex function which was proved by Íşcan in [11].
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Lemma 3. LetΩ: [θ1, θ2]⊆ (0,∞)⟶ R be a differentiable
function on (θ1, θ2) with θ1 < θ2. If Ω′ ∈ L[θ1, θ2], then

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 −

1 − α
2[1 − exp(− ρ)]

· I
α
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡

Ω°g( 􏼁
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡

Ω°g( 􏼁
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1

0

exp(− ρ(1 − η))

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
2Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡dη⎡⎣

− 􏽚
1

0

exp(− ρη)

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁( 􏼁
2Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡dη⎤⎦,

(35)

for all a1, a2 ∈ [θ1, θ2], α> 0, and g(u) � 1/u,
u ∈ [1/θ2, 1/θ1].

Proof. Let Aη � 1/θ1 + 1/θ2 − (η/a1 + 1 − η/a2). It suffices to
note that

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 −

1 − α
2[1 − exp(− ρ)]

· I
α
1/θ1+1/θ1− 1/a1( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ1− 1/a2( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

�
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1

0

exp(− ρ(1 − η))

A
2
η
Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡dη⎡⎢⎢⎣

− 􏽚
1

0

exp(− ρη)

A
2
η
Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡dη⎤⎥⎥⎦ � I1 − I2.

(36)

By integrating by part, we have

I1 �
1

2[1 − exp(− ρ)]
exp(− ρ(1 − η))Ω

1
Aη

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1

0
− ρ􏽚

1

0
exp(− ρη)Ω

1
Aη

􏼠 􏼡dη⎡⎣ ⎤⎦

�
1

2[1 − exp(− ρ)]
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 − exp(− ρ)Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢

− ρ
a1a2

a2 − a1
􏼠 􏼡 􏽚

1/θ1+1/θ2− 1/a2

1/θ1+1/θ2− 1/a1
exp −

1 − α
α

u −
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼣

�
1

2[1 − exp(− ρ)]
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 − exp(− ρ)Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢

− ρ
αa1a2
a2 − a1

􏼠 􏼡I
α
1/θ1+1/θ2− 1/a2( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣,

(37)
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and similarly we get

I2 �
1

2[1 − exp(− ρ)]
exp(− ρη)Ω

1
Aη

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1

0
− (− ρ) 􏽚

1

0
exp(− ρη)Ω

1
Aη

􏼠 􏼡dη⎡⎣ ⎤⎦

�
1

2[1 − exp(− ρ)]
exp(− ρ)Ω

1
1/θ1( 􏼁 + 1/θ1( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 − Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢

+ ρ
a1a2

a2 − a1
􏼠 􏼡 􏽚

1/θ1( )+ 1/θ1( )− 1/a2( )

1/θ1( )+ 1/θ1( )− 1/a1( )
exp −

1 − α
α

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 − u􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓du􏼣

�
1

2[1 − exp(− ρ)]
exp(− ρ)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 − Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢

+ ρ
αa1a2
a2 − a1

􏼠 􏼡I
α
1/θ1( )+ 1/θ1( )− 1/a1( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼣.

(38)

Using (37) and (40) in (36), we get equality (35). □

Remark 5. From Lemma 2 with α⟶ 1, a1 � θ1, and
a2 � θ2, we indeed have Lemma 1 which was proved by Íşcan
in [11].

Theorem 10. If Ω: I � [θ1, θ2]⊆ (0,∞)⟶ R is a differ-
entiable function on (θ1, θ2) with θ1 < θ2 and Ω′ ∈ L[θ1, θ2].
If |Ω′| is a harmonically convex on [θ1, θ2], then

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 −

1 − α
2[1 − exp(− ρ)]

I
α
1/θ1+1/θ2− 1/a1( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼢

+ I
α
1/θ1+1/θ2− 1/a2( )(Ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1/2

0
[exp(− ρη) − exp(− ρ(1 − η))]

η
μ21

+
1 − η
μ22

􏼠 􏼡 Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢

+
1 − η
μ21

+
η
μ22

􏼠 􏼡 Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼣dη ,

(39)

where
μ1 �

1
θ1

+
1
θ2

−
η
a1

+
1 − η
a2

􏼠 􏼡, (40)

μ2 �
1
θ1

+
1
θ2

−
1 − η
a1

+
η
a2

􏼠 􏼡, (41)

for all a1, a2 ∈ [θ1, θ2], α> 0, and g(u) � 1/u,
u ∈ [1/θ2, 1/θ1].

Proof. Since |Ω′| is a harmonically convex on [θ1, θ2], using
Lemma 2, we can obtain
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 −

1 − α
2[1 − exp(− ρ)]

I
α
1/θ1+1/θ2− 1/a1( )(Ω∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼢

+ I
α
1/θ1+1/θ2− 1/a2( )(Ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣|

≤
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1

0

|exp(− ρη) − exp(− ρ(1 − η))|

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁( 􏼁
2 Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dη

≤
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1/2

0

[exp(− ρη) − exp(− ρ(1 − η))]

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁( 􏼁
2 η Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠⎡⎣

+(1 − η) Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼡dη + 􏽚

1

1/2

[exp(− ρ(1 − η)) − exp(− ρη)]

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁( 􏼁
2

· η Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠

+(1 − η) Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼡dη􏼣≤

a2 − a1
2a1a2[1 − exp(− ρ)]

· 􏽚
1/2

0

[exp(− ρη) − exp(− ρ(1 − η))]

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁( 􏼁
2 η Ω′

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠⎡⎣

+(1 − η) Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼡dη + 􏽚

1/2

0

[exp(− ρη) − exp(− ρ(1 − η))]

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁( 􏼁
2

· (1 − η) Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠

+ η Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼡dη􏼣

�
a2 − a1

2a1a2[1 − exp(− ρ)]
􏽚
1/2

0
[exp(− ρη) − exp(− ρ(1 − η))]

·
η
μ21

+
1 − η
μ22

􏼠 􏼡 Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡 +

1 − η
μ21

+
η
μ22

􏼠 􏼡 Ω′
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼣dη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.􏼢

(42)

*is completes the proof. □

Remark 6. For α⟶ 1, we have

lim
α⟶1

1 − α
2[1 − exp(− ρ)]

�
a1a2

2 a2 − a1( 􏼁
,

lim
α⟶1

exp(− ρη) − exp(− ρ(1 − η))

2[1 − exp(− ρ)]
�
1 − 2η

2
.

(43)

If α⟶ 1, a1 � θ1, and a2 � θ2 in *eorem 10, then we
get *eorem 2.6 which was proved by İşcan in [11].

3. Fejér–Hadamard–Mercer-TypeInequality for
Harmonically Convex Function

Theorem 11. If Ω: I⊆ (0,∞)⟶ R is a harmonically
convex function for θ1, θ2 ∈ I with θ1 < θ2. such that If
Ω ∈ L[θ1, θ2] and ω: [θ1, θ2]⊆ (0,∞)⟶ R is nonnegative,
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integrable, and harmonically symmetric with respect to
2θ1θ2/θ1 + θ2, that is, ω(ϰ) � ω(1/(1/θ1) + (1/θ2) − (1/ϰ)),
then

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡 I

α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤ I
α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 I

α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼢

+ I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣,

(44)

for all a1, a2 ∈ [θ1, θ2], α> 0, and g(u) � 1/u,
u ∈ [1/θ2, 1/θ1].

Proof. If Ω is a harmonically convex function on [θ1, θ2],
then for all a1, a2 ∈ [θ1, θ2],

Ω
2a1a2
a1 + a2

􏼠 􏼡 � Ω
1

1/2 η/a1( 􏼁 + 1 − η/a2( 􏼁 + 1 − η/a1( 􏼁 + η/a2( 􏼁
􏼠 􏼡

≤
1
2
Ω

1
η/a1( 􏼁 + 1 − η/a2( 􏼁

􏼠 􏼡 +Ω
1

1 − η/a1( 􏼁 + η/a2( 􏼁
􏼠 􏼡􏼢 􏼣≤

Ω a1( 􏼁 +Ω a2( 􏼁

2
.

(45)

Replacing a1 and a2 by 1/(1/θ1) + (1/θ2) − (1/a1) and
1/(1/θ1) + (1/θ2) − (1/a2), respectively, we get

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡≤

1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡􏼢

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼣

≤ Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡 +Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼢 􏼣.

(46)

Multiplying by

exp(− ρη)ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡, (47)

on both sides of (46) and then integrating with respect to η
over [0, 1], we obtain
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2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡 􏽚

1

0
exp(− ρη)ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡dη

≤ 􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη

+ 􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη

≤ Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡 +Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼢 􏼣 􏽚
1

0
exp(− ρη)ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡dη,

(48)

where

􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη

+ 􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη

�
a1a2

a2 − a1
􏽚
1/θ1+1/θ2− 1/a2

1/θ1+1/θ2− 1/a1
exp −

1 − α
α

u −
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼠 􏼡􏼠 􏼡Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁( 􏼁 + 1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁( 􏼁 − u
􏼠 􏼡􏼢

ω
1
u

􏼒 􏼓du + 􏽚
1/θ1+1/θ2 − 1/a2

1/θ1+1/θ2 − 1/a1
exp −

1 − α
α

u −
1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓ω
1
u

􏼒 􏼓du􏼣

�
a1a2

a2 − a1
􏽚
1/θ1+1/θ2− 1/a2

1/θ1+1/θ2− 1/a1
exp −

1 − α
α

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 − u􏼠 􏼡􏼠 􏼡Ω
1
u

􏼒 􏼓ω􏼢

·
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁( 􏼁 + 1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁( 􏼁 − u
􏼠 􏼡du

+ 􏽚
1/θ1+1/θ2 − 1/a2

1/θ1+1/θ2 − 1/a1
exp −

1 − α
α

u − 1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁( 􏼁( 􏼁􏼒 􏼓Ω
1
u

􏼒 􏼓ω
1
u

􏼒 􏼓du􏼕

�
αa1a2
a2 − a1

I
α
1/θ1+1/θ2 − 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣.

(49)

*at is,

2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡 􏽚

1

0
exp(− ρη)ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡dη

≤
αa1a2
a2 − a1

I
α
1/θ1+1/θ2− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤ Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡 +Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼢 􏼣 􏽚
1

0
exp(− ρη)

· ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη.

(50)
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Since ω is symmetric with respect to 2θ1θ2/θ1 + θ2, we
have

I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡

� I
α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡

�
1
2

I
α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣.

(51)

*erefore, we have

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡 I

α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤ I
α
1/θ1+1/θ2− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ1( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ1( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 I

α
1/θ1+1/θ2− 1/a1( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡􏼢

+I
α
1/θ1+1/θ2− 1/a2( )(ω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼣.

(52)

*us, the proof of *eorem 11 is complete. □

Remark 7. If we take a1 � θ1 and a2 � θ2 in *eorem 11, we
will get *eorem 3.2 in [24].

Remark 8. Under the assumptions of *eorem 11 with
α � 1, we have

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡 􏽚

1/θ1+1/θ2− 1/a2( )

1/θ1+1/θ2− 1/a1( )

ω(ϰ)
ϰ2

dϰ

≤ 􏽚
1/θ1+1/θ2− 1/a2( )

1/θ1+1/θ2− 1/a1( )

Ω(ϰ)
ϰ2

ω(ϰ)dϰ

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡􏼢 􏼣 􏽚

1/θ1+1/θ2− 1/a2( )

1/θ1+1/θ2− 1/a1( )

ω(ϰ)
ϰ2

dϰ.

(53)
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Remark 9. If α � 1, a1 � θ1, and a2 � θ2 in*eorem 11, then
we can get Hermite–Hadamard–Fejér inequality (8) for
harmonically convex function which was proved by Chen
and Wu in [12].

4. Pachpatte–Mercer-Type Inequality for
Harmonically Convex Function

Theorem 12. Let Ω,ω: [θ1, θ2]⊆ (0,∞)⟶ R be functions
such that Ω,ω,Ωω ∈ L[θ1, θ2]. If Ω and ω are harmonically
convex on [θ1, θ2], then

αa1a2
2 a2 − a1( 􏼁

I
α

1/θ1+1/θ2− 1/a1( )( )(Ωω ∘ g)
1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤
ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

2ρ3
M θ1, θ2, a1, a2( 􏼁 +

ρ − 2 + exp(− ρ)(ρ + 2)

ρ3
N θ1, θ2, a1, a2( 􏼁,

(54)

2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
1 − α

2[1 − exp(− ρ)]
I
α
1/θ1+1/θ2− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

+
ρ − 2 + exp(− ρ)(ρ + 2)

ρ2[1 − exp(− ρ)]
M θ1, θ2, a1, a2( 􏼁 +

ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

2ρ2[1 − exp(− ρ)]
N θ1, θ2, a1, a2( 􏼁,

(55)

where

M θ1, θ2, a1, a2( 􏼁 � Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡,

N θ1, θ2, a1, a2( 􏼁 � Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡,

(56)

for all a1, a2 ∈ [θ1, θ2], α> 0, and g(u) � 1/u,
u ∈ [1/θ2, 1/θ1].

Proof. Since Ω and ω are harmonically convex on [θ1, θ2],
then for all η ∈ [0, 1], we have

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡

≤ η2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡

+(1 − η)
2Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡
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+ η(1 − η) Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼢

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡􏼣,

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡

≤ η2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡

+(1 − η)
2Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡

+ η(1 − η) Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a1( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼢

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1/a2( 􏼁

􏼠 􏼡􏼣. (57)

Adding these inequalities, we have

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡

+Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡

≤ 2η2 − 2η + 1􏼐 􏼑M θ1, θ2, a1, a2( 􏼁 + 2η(1 − η)N θ1, θ2, a1, a2( 􏼁.

(58)

Multiplying by exp(− ρη) on both sides of (58) and then
integrating with respect to η ∈ [0, 1], we have

􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡dη

+ 􏽚
1

0
exp(− ρη)Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡dη

≤M θ1, θ2, a1, a2( 􏼁 􏽚
1

0
exp(− ρη) 2η2 − 2η + 1􏼐 􏼑dη + N θ1, θ2, a1, a2( 􏼁 􏽚

1

0
exp(− ρη)2η(1 − η)dη

�
ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

ρ3
M θ1, θ2, a1, a2( 􏼁 + 2

ρ − 2 + exp(− ρ)(ρ + 2)

ρ3
􏼠 􏼡N θ1, θ2, a1, a2( 􏼁.

(59)

*us, we have

αa1a2
2 a2 − a1( 􏼁

I
α
1/θ1+1/θ2− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

≤
ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

2ρ3
M θ1, θ2, a1, a2( 􏼁 +

ρ − 2 + exp(− ρ)(ρ + 2)

ρ3
N θ1, θ2, a1, a2( 􏼁.

(60)
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*us, inequality (54) is proved. Now we prove inequality
(55). By using harmonic convexity of the function Ω on
[θ1, θ2], we have

Ω
2a1a2
a1 + a2

􏼠 􏼡ω
2a1a2
a1 + a2

􏼠 􏼡 � Ω
1

1/2 η/a1( 􏼁 + 1 − η/a2( 􏼁 + 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡

· ω
1

1/2 η/a1( 􏼁 + 1 − η/a2( 􏼁 + 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡

≤
1
2
Ω

1
η/a1( 􏼁 + 1 − η/a2( 􏼁

􏼠 􏼡 +Ω
1

1 − η/a1( 􏼁 + η/a2( 􏼁
􏼠 􏼡􏼢 􏼣

·
1
2

ω
1

η/a1( 􏼁 + 1 − η/a2( 􏼁
􏼠 􏼡 + ω

1
1 − η/a1( 􏼁 + η/a2( 􏼁

􏼠 􏼡􏼢 􏼣.

(61)

Replacing a1 and a2 by 1/(1/θ1) + (1/θ2) − (1/a1) and
1/(1/θ1) + (1/θ2) − (1/a2), respectively, we get

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
1
2
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡 +Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢 􏼣

·
1
2

ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢

+ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼣

≤
1
4
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢 􏼣

+
1
4
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡􏼢

· ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼣 +

η(1 − η)

2
M θ1, θ2, a1, a2( 􏼁 +

2η2 − 2η + 1
4

N θ1, θ2, a1, a2( 􏼁.

(62)

*us,

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
1
4
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢 􏼣

+
1
4
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡􏼢

· ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼣 +

η(1 − η)

2
M θ1, θ2, a1, a2( 􏼁 +

2η2 − 2η + 1
4

N θ1, θ2, a1, a2( 􏼁.

(63)
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Multiplying by exp(− ρη) on both sides of (63) and then
integrating with respect to η ∈ [0, 1], we obtain

1 − exp(− ρ)

ρ
Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡

≤
1
4

􏽚
1

0
exp(− ρη) Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − η/a1( 􏼁 + 1 − η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢 􏼣dη

+
1
4

􏽚
1

0
exp(− ρη) Ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁

􏼠 􏼡ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − 1 − η/a1( 􏼁 + η/a2( 􏼁( 􏼁
􏼠 􏼡􏼢 􏼣dη

+ M θ1, θ2, a1, a2( 􏼁 􏽚
1

0
exp(− ρη)

η(1 − η)

2
dη + N θ1, θ2, a1, a2( 􏼁 􏽚

1

0
exp(− ρη)

2η2 − 2η + 1
4

dη

�
αa1a2

4 a2 − a1( 􏼁
I
α
1/θ1+1/θ2− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ2− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

+
ρ − 2 + exp(− ρ)(ρ + 2)

2ρ3
M θ1, θ2, a1, a2( 􏼁 +

ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

4ρ3
N θ1, θ2, a1, a2( 􏼁.

(64)

*us,

Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
1 − α

4[1 − exp(− ρ)]
I
α
1/θ1+1/θ1− 1/a1( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a2

􏼠 􏼡 + I
α
1/θ1+1/θ1− 1/a2( )(Ωω ∘ g)

1
θ1

+
1
θ2

−
1
a1

􏼠 􏼡􏼢 􏼣

+
ρ − 2 + exp(− ρ)(ρ + 2)

2ρ2[1 − exp(− ρ)]
M θ1, θ2, a1, a2( 􏼁 +

ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

4ρ2[1 − exp(− ρ)]
N θ1, θ2, a1, a2( 􏼁.

(65)

□
Remark 10. If we take a1 � θ1 and a2 � θ2 in *eorem 12,
then we get *eorem 12 in [24].

Remark 11. For α⟶ 1, we have

lim
α⟶1

1 − α
2[1 − exp(− ρ)]

�
a1a2

2 a2 − a1( 􏼁
,

lim
α⟶1

ρ − 2 + exp(− ρ)(ρ + 2)

ρ3
�
1
6
,

lim
α⟶1

ρ2 − 2ρ + 4 − ρ2 + 2ρ + 4􏼐 􏼑exp(− ρ)

2ρ2[1 − exp(− ρ)]
�
1
3
.

(66)
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Under the assumptions of *eorem 12 with α � 1, we
have

a1a2
a2 − a1

􏽚
1/θ1+1/θ2− 1/a2

1/θ1+1/θ2− 1/a1

Ω(ϰ)
ϰ2

ω(ϰ)dϰ≤
M θ1, θ2, a1, a2( 􏼁

3
+

N θ1, θ2, a1, a2( 􏼁

6
,

2Ω
1

1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁
􏼠 􏼡ω

1
1/θ1( 􏼁 + 1/θ2( 􏼁 − a1 + a2/2a1a2( 􏼁

􏼠 􏼡

≤
a1a2

a2 − a1
􏽚
1/θ1+1/θ2− 1/a2

1/θ1+1/θ2− 1/a1

Ω(ϰ)
ϰ2

ω(ϰ)dϰ +
M θ1, θ2, a1, a2( 􏼁

6
+

N θ1, θ2, a1, a2( 􏼁

3
.

(67)

Remark 12. If α � 1, a1 � θ1, and a2 � θ2 in *eorem 12,
then we obtain inequalities (9) and (10) for harmonically
convex functions proved by Chen and Wu in [13].

5. Concluding Remarks and Future Directions

In this study, we introduce for the first time the unified
variants of Hermite–Hadamard, Fejér–Hadamard, and
Pachpatte–Mercer-type inequalities for harmonically con-
vex functions for fractional integral operators with the ex-
ponential kernel. New integral identity involving fractional
integral operators with exponential kernel is developed. A
compact analysis of newly obtained results and their con-
nections is explained in Remarks 2–12. As special cases, we
get Hermite–Hadamard, Fejér–Hadamard, and Pachpat-
te–Mercer-type inequalities for classical calculus with ex-
plicit boundary values. Some particular cases reflect the
related existing results. One of the direct impact and utili-
zation of the results extracted in this paper is to obtain
inequalities involving following new fractional integral
operators containing Mittag-Leffler nonsingular kernels:

I
α
a1
Ω(ϰ) �

1
α

􏽚
ϰ

a1

Eα,1 −
1 − α
α

(ϰ − u)
α

􏼒 􏼓Ω(u)du, ϰ> a1,

I
α
a2
Ω(ϰ) �

1
α

􏽚
a2

ϰ
Eα,1 −

1 − α
α

(u − ϰ)α􏼒 􏼓Ω(u)du, ϰ< a2,

(68)

for α ∈ (0, 1) and Ω ∈ L(a1, a2), where Eα,](ξ) is a Mittag-
Leffler-type function:

Eα,](ξ) � 􏽘
∞

ι�0

ξι

Γ(αι + ])
. (69)

*ese integral inequalities may be helpful in the cir-
cumstances where upper and lower bounds matter for
fractional integral operators involving nonlocal kernels. It is
natural to investigate such results for other general con-
vexities like harmonically h− convex functions introduced by
Noor et al. in [30]. Also, it is interesting to construct such
inequalities over fractal domains where we may get optimal
and sharp local fractional integral inequalities involving
Mittag-Leffler kernel.
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Enhancement of heat transfer due to stretching sheets can be appropriately controlled by the movement of the nanofluids. ,e
concentration and settling of the nanoparticles in the viscous MHD fluid and bioconvection are addressed. In this scenario, the
fluid flow occurring in the presence of a normal and uniformmagnetic field, thermal radiation, and chemical reaction is taken into
account. For the two-dimensional flow with heat and mass transfer, five dependent variables and three independent variables
constitute the system of partial differential equations. For this purpose, similarity functions are involved to convert these equations
to corresponding ODEs.,en, the Runge–Kutta method with shooting technique is used to evaluate the required findings with the
utilization of MATLAB script. ,e fluid velocity becomes slow against the strength of the magnetic parameter. ,e temperature
rises with the parameter of Brownian motion and thermophoresis. ,e bioconvection Lewis number diminishes the velocity field.
Compared with the existing literature, the results show satisfactory congruences.

1. Introduction

,e convoluted and quick process in massive machinery and
little gadgets has produced a significant problem of thermal
imbalance. Varied extraneous techniques like fins and fans
are used; however, their utility is restricted because of their
giant size. In 1995, the scientist Choi and Eastman [1] in-
troduced that the nanosized particles mixed in the fluid
called nanofluid have more capacity of heat transfer as
compared with fluid without nanosized particles. Das et al.
[2] explained the recent and future applications of fluid
involving nanosized particles. Khan et al. [3] using the
shooting method analyzed flow features of Williamson
nanofluid influenced by variable viscosity depending on
temperature and Lorentz force past an inclined nonlinear
extending surface. Koo and Kleinstreuer [4] described in-
fluences of convection, conduction, viscous dissipation, and

thermal transportation on nanofluid flow in a microchannel.
Sui et al. [5] introduced the CattaneoeChristov model with
double diffusion to analyze the influence of slip velocity,
Brownian motion, and variable viscosity on the trans-
portation of an upper convected Maxwell nanofluid through
stretching sheet. Imran et al. [6] determined an unsteady
stream of Maxwell fluid through an accelerated exponen-
tially vertical surface with influences of radiation, Newtonian
heating, MHD, and slip condition taken into account. Khan
et al. [7] investigated the flow of micropolar base nanofluid
through stretching sheet with thermal radiation and mag-
netic dipole. Sheikholeslami and Rokni [8] scrutinized
magnetic field impacts on the thermal transport rate in a
nanofluid. Seyyedi et al. [9] analyzed the entropy generation
for Cu-water nanofluid having a semi-annulus porous wavy
cavity in the presence of a magnetic field. Molana et al. [10]
discussed the characteristics of heat transfer and natural
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convection of nanofluid past a porous cavity with a constant
inclined magnetic field. Dogonchi et al. [11] explained the
characteristics of natural convection and magnetic field on
nanofluid flow through porous medium with effects of
Hartmann number, Rayleigh number, and Darcy number
taken into account. Shaw et al. [12] scrutinized the impact of
nonlinear thermal and entropy generation on Casson
nanofluid flow with rotating disk and also described the
brain function. Chamkha et al. [13] explained MHD
nanofluid flow through cavity using the control-volume-
based finite element method with effects of natural con-
vection, thermal radiation, and shape factor of nanoparticles
taken into account. Dogonchi et al. [14] numerically in-
troduced the importance of the Cattaneo–Christov theory of
heat conduction through triangular semicircular heater with
viscosity dependent on the magnetic field. Seyyedi et al. [15]
described the entropy generation and natural convection
heat transfer of Cu-water nanoliquid through the hexagonal
cavity. Sadeghi et al. [16] analyzed the thermal behavior of
magnetic buoyancy-driven flow in ferrofluid-filled wavy
enclosure furnished with two circular cylinders.

Stretching sheets because of their wide applications like
plastic film, metal drawing and spinning, glass fiber, paper
processing, and heat moving have become an important
topic in the past decades. Recently, some researchers in-
vestigated the magnetohydrodynamic flow with the different
effects such as viscous dissipation and chemical reaction
using stretching sheet (see Ismail et al. [17], Rajput et al. [18],
Swain et al. [19], Reddy et al. [20], Jat and Chand [21], Sajid
and Hayat [22], Ishak [23], Abd El-Aziz [24], Makinde [25],
and Goud et al. [26]).

Bioconvection described the phenomena in which living
microorganisms denser than water swim upward in sus-
pensions. ,ese microorganisms pile up in the layer of the
upper surface and lower surface becomes less dense. ,e
microorganisims fall down due to unstability of density
distribution. Bioconvection has applications in biological
systems and biotechnology such as purifying cultures, en-
zyme biosensors, and separating dead and living cells [27].
Raees et al. [28] examined the unsteady stream of bio-
convection mixed nanofluid having gyrostatic motile mi-
croorganisms through a horizontal channel. Siddiqa et al.
[29] numerically studied the bioconvection flow of nanofluid
having mass and thermal transportation along with gyro-
tactic microorganisms through a curved vertical cone.

Abbasi et al. [30] introduced the bioconvection stream of
viscoelastic nanofluid because of gyrotactic microorganisms
past a rotating extending disk having zero mass flux and
convective boundary condition and also described the re-
latable parameters influences on velocity, temperature, local
density, Sherwood number, and Nusselt number in detail.
Chu et al. [31] analyzed the stream of bioconvection MHD
fluid through extending sheet with the significance of motile
microorganisms, activation energy, thermophoresis diffu-
sion, Brownian motion, and chemical reaction taken into
account. Henda et al. [32] examined the magnetized bio-
convection flow of fluid past an extending cylinder with
thermal radiation, activation energy, and heat source. Khan
et al. [33] scrutinized bioconvection stream of viscous
nanofluid through (cone, wedge, and plate) multiple ge-
ometries with effects of heat flux, cross-diffusion, and
Cattaneo–Christov.

Inspired by the above literature survey, our interest
pertains to extending the results of Goud et al. [26] to in-
vestigate a more general problem, including bioconvection
of nanofluid transportation with the effects of chemical
reaction and radiation to avoid probable settling of nano-
entities. ,e connotation of such meaningful attributes can
be a useful extension, and the results can be utilized for
desired effective thermal transportation in the heat ex-
changer of various technological processes.

2. Problem Formulation

Here, we considered steady incompressible magnetohy-
drodynamic nanofluid flow through exponentially stretching
sheet along the x-axis and y-axis taken to be normal with
velocity 􏽥Uw � a0e

x/l as shown in Figure 1. A magnetic field is
applied to the flow region and acts in the y-direction. A mild
diffusion of microorganisms and nanoparticles is set in the
fluid. ,ermal radiation is considered, and bioconvection
takes place because of microorganisms’ movement.,e fluid
velocity for two-dimensional flow is 􏽥u, 􏽥v.

Under the above conditions, the governing equations are
as follows [20, 26]. Continuity equation is as follows:

􏽥ux + 􏽥vy � 0, (1)

momentum equation is as follows:

􏽥u􏽥ux + 􏽥v􏽥uy � ]􏽥uyy −
σ
ρ

B
2
0􏽥u􏼐 􏼑 +

1
ρ

gβρ 1 − 􏽥C∞􏼐 􏼑 􏽥T − 􏽥T∞􏼐 􏼑 − g ρp − ρf􏼐 􏼑 􏽥C − 􏽥C∞􏼐 􏼑 − gc ρm − ρf􏼐 􏼑 􏽥N − 􏽥N∞( 􏼁􏽨 􏽩, (2)

energy equation is as follows:
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􏽥u􏽥Tx + 􏽥v􏽥Ty � α􏽥Tyy −
1

ρCp

zqr

zy
+ τ DB

􏽥Ty
􏽥Cy +

DT

􏽥T∞

􏽥Ty􏼐 􏼑
2

􏼠 􏼡,

(3)

concentration equation is as follows:

􏽥u􏽥Cx + 􏽥v􏽥Cy � D􏽥Cyy − Kr
􏽥C − 􏽥C∞􏼐 􏼑 − K

2
r

􏽥C − 􏽥C∞􏼐 􏼑
􏽥T

􏽥T∞
􏼠 􏼡

n

exp
−Ea

k􏽥T
􏼒 􏼓 +

DT

􏽥T∞

􏽥Tyy, (4)

bioconvection equation is as follows:

􏽥u 􏽥Nx + 􏽥v 􏽥Ny + dWc

z

zy

􏽥N

Δ􏽥C
􏽥Cy􏼠 􏼡 � 􏽥NyyDn, (5)

with constraints

􏽥u � 􏽥Uw, 􏽥v � 0, 􏽥T � 􏽥Tw, 􏽥C � 􏽥Cw, 􏽥N � 􏽥Nw at y⟶ 0,

􏽥u⟶ 0, 􏽥T⟶ 􏽥T∞, 􏽥C⟶ 􏽥C∞, 􏽥N⟶ 􏽥N∞ as y⟶∞.
(6)

Now, introducing

􏽥Uw � a0e
x/l

, 􏽥Tw � 􏽥T∞ + 􏽥T0e
x/2l

, 􏽥Cw � 􏽥C∞ + 􏽥C0e
x/2l

, 􏽥Nw � 􏽥N∞ + 􏽥N0e
x/2l

, (7)

under the Rosseland approximation qr [26], equation (3) can
be written as

Concentration-Boundary Layer
Momentum-Boundary Layer
�ermal-Boundary Layer
Motile microorganism-

Boundary Layer
Nano-particles
Motile microorganism

y, v

x, u

Slit

Fo
rc

e

B
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T∞

vw
C∞

N∞

Tw
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Figure 1: Geometry of the problem.
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􏽥u􏽥Tx + 􏽥v􏽥Ty � 􏽥Tyy α +
16σ∗T3

∞
ρCp3k1

􏼠 􏼡 + τ DB
􏽥Ty

􏽥Cy +
DT

􏽥T∞

􏽥Ty􏼐 􏼑
2

􏼠 􏼡. (8)

Introducing similarity transformation,

η � y

���
a0

2]ℓ

􏽲

e
x/2l

, 􏽥u � a0e
x/l

f′(η), 􏽥v � −

���
a0]
2ℓ

􏽲

e
x/2l

f(η) + ηf′(η)􏼂 􏼃,

ψ �
�����
2]La0

􏽰
f(η)e

x/2l
, 􏽥T � 􏽥T∞ + 􏽥T0e

x/2l
, 􏽥C � 􏽥C∞ + 􏽥C0e

x/2l
, 􏽥N � 􏽥N∞ + 􏽥N0e

x/2l
.

(9)

In view of the above appropriate relations, equation (1) is
satisfied identically and equations (2)–(5), respectively,
become

f″′ − Mf′ − 2f′
2

+ ff″ + λ(θ − Nrϕ − Rbχ) � 0, (10)

1 +
4
3

K􏼒 􏼓θ″ + Prfθ′ − Prθf′ + θ′ Nbϕ′ + Ntθ′( 􏼁 � 0, (11)

ϕ″ + fϕ′ − Crϕ − ϕf′ − σmϕ(1 + δθ)
n exp

−E

1 + δθ
􏼒 􏼓􏼔 􏼕Sc +

Nt

Nb
θ″ � 0, (12)

χ″(ξ) + LbPrf(ξ)χ′(ξ) − LbPrf′(ξ)χ(ξ) − Pe σ1ϕ″(ξ) + χ(ξ)ϕ″(ξ) + χ′(ξ)ϕ′(ξ)( 􏼁 � 0, (13)

and the constraints reduce to

f′(0) � 1, f(0) � 0, ϕ(0) � 1, θ(0) � 1, χ(0) � 1, at η � 0, (14)

f′(∞)⟶ 0, ϕ(∞)⟶ 0, θ(∞)⟶ 0, χ(∞)⟶ 0. as η⟶∞. (15)

,e associated parameters are

M �
2σB

2
0ℓ

ρ􏽥Uw

,

Pr �
]
α

,

λ �
1 − C∞( 􏼁βg Tw − T∞( 􏼁2ℓ

􏽥U
2
w

,

Nr �
ρp − ρf􏼐 􏼑 Cw − C∞( 􏼁

β 1 − C∞( 􏼁ρ Tw − T∞( 􏼁
,

Rb �
ρm − ρf􏼐 􏼑c Nw − N∞( 􏼁

ρ 1 − C∞( 􏼁β Tw − T∞( 􏼁
,

Nt �
τDT Tw − T∞( 􏼁

]T∞
,

Nb �
τDB Cw − C∞( 􏼁

]
,

σm �
2K

2
rℓ

􏽥Uw

,

δ �
Tw − T∞( 􏼁

T∞
,

K �
4σ∗T3
∞

k
∗
K

,

σ1 �
N∞

Nw − N∞
,
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Table 1: Comparison of θ′(0) with changed values of K, M, and Pr.

K M Pr Ishak [23] Goud et al. [26] Bidin and Nazar [34] Our results

0.0 0

1.0 0.954 8 0.954 784 0.954 7 0.954 810 6
2.0 1.471 5 1.471 462 1.471 4 1.471 454 0
3.0 1.8691 1.869 073 1.8691 1.869 068 8
5.0 2.5001 2.500111 2.500128 0
10.0 3.660 4 3.660 346 3.660 369 3

1.0 1.0 0.861 1 0.861 097 0.861 508 6

1.0 0.0 0.531 2 0.531 17 0 0.531 311 2
1.0 0.450 5 0.450 687 0 0.450 695 5
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Figure 2: Influences of M on f′.
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Figure 3: Influences of λ on f′.
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E �
Ea

kT∞
,

Sc �
]
D

,

Lb �
α

Dn

,

Pe �
dWc

Dn

,

Cr �
2ℓKr

􏽥Uw

,

(16)

where M is the magnetic field parameter, Pr is the Prandtl
number, λ is the mixed convection parameter, Nr is the
buoyancy ratio number, Rb is the bioconvection Rayleigh
number, Nt is the thermopherosis diffusion factor, Nb is the
Brownian factor, σm denotes the dimensionless reaction rate,
δ is used as the temperature distinction parameter, K is the
radiation parameter, σ1 is the bioconvective difference pa-
rameter, E means the nondimensional energy activation, Sc
is the Schmidt number, Lb is the bioconvection Lewis
number, Pe is the peclet number, and Cr is the chemical
reaction parameter.

,e wall shear stress, thermal flux, and mass flux, re-
spectively, are given as

τw − μ
z􏽥u

zy
􏼠 􏼡

y�0
� 0, qw + k

z􏽥T

zy
􏼠 􏼡

y�0
� 0, jw + D

z􏽥c

zy
􏼠 􏼡

y�0
� 0.

(17)

Cf (skin friction), Nux (Nusselt number), and Shx

(sherwood number) in dimensionless form are

Cf �
f′′(0)

����
2Rex

􏽰 , Nux � −
���
Rex

􏽰
( 􏼁θ′(0), ShxRe

− 1/2
� −ϕ′(0).

(18)

3. Results and Discussion

Physical meanings of the final nondimensional formulation
of time-independent MHD flow of nanofluid due to stretch
of an exponential sheet in the presence of chemical reaction
along the boundary constraints are solved numerically.
Table 1 contains results for −θ′(0) (Nusselt number).
Comparison of the results indicates acceptable agreement to
validate this numeric procedure. In Figure 2, the velocity of
the flow seems to be reduced significantly when magnetic
parameter M (0.0≤M≤ 2.5) is increased because high
values of magnetic field parameter improve the contradic-
tory force known as Lorentz force. ,e improvement of

mixed convection parameter λ causes to boost the flow
velocity f′(η) as shown in Figure 3. From Figures 4 and 5,
significant rising behavior of θ(η) is noticed with an en-
hanced value of Brownian motion parameter Nb and
thermophoresis parameter Nt. ,e fast random motion of
nanoparticles characterized by larger Nb is responsible for
enhanced heat transfer to raise θ(η). Similarly, the higher Nt
means a greater thermophoretic effect which moves the
nanoparticles hotter regime to the colder one and increases
the thermal distribution. ,e similarly larger value of E
provides strength to ϕ(η) as depicted in Figure 6. Figure 7
displays the decrement in ϕ(η) due to the larger value of
chemical reaction, and the chemical reaction becomes faster
to recede nanoparticles concentration. ,e bioconvection
Rayleigh Rb and parameter are responsible for given direct
increment to χ(η) as demonstrated in Figure 8.
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Figure 5: Influence of Nt on ϕ.
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4. Conclusions

,eoretical and numeric analysis for magnetohydrodynamic
of nanofluid owing to sudden stretched in an exponential
sheet has been made in this communication. Effects of the
emerging parameters are enumerated on the physical field,
namely, velocity, temperature, and microorganisms distri-
bution. Significant outcomes are summarized as follows:

(i) ,e velocity reduces with M and boosts with λ
(ii) ,e conclusion of nanoparticles characterized by

parameters Nb and Nt shows an increment in the
temperature profile

(iii) Concentration recurses withCr and is enhancedwithE
(iv) Bioconvection parameter is increased with Rb

Nomenclature

B0: Coefficient of magnetic field
C: Concentration
T: Temperature

N: Concentration of microorganisms
Nt: ,ermopherosis parameter
(x, y): Cartesian coordinates
Cr: Chemical reaction parameter
(u, v): Velocity components along (x, y)-axes
τ: Heat capacity ratio
ξ: Similarity variable
DT: ,ermophoretic diffusion coefficient
ϕ: Dimensionless concentration
qr: Radiative heat flux
ρ: Density
K2

r : Chemical reaction rate constant
μ: Dynamic viscosity of the fluid
Kr: Rate of chemical reaction
σ: Electrical conductivity
DB: Brownian diffusivity
ψ: Stream function
K: Radiation parameter
δ: Temperature distinction parameter
Sc: Schmidt number
λ: Mixed convection parameter
Uw: Stretching velocity
]: Kinematic viscosity
Pr: Prandtl number
θ: Dimensionless temperature
Pe: Peclet number
χ: Dimensionless microorganism factor
M: Magnetic parameter
ρf: Density of nanofluid
Nr: Buoyancy ratio number
ρm: Density of microorganisms particle
Rb: Bioconvection Rayleigh number
ρp: Density of nanoparticles
Nb: Brownian motion parameter
κ: ,ermal conductivity
n: Fitted rate constant parameter
α: ,ermal diffusivity
g: Gravity
β: Volumetric coefficient of thermal expansion
E: Nondimensional activation energy
c: Average volume of microorganism
Lb: Bioconvection Lewis number
Shx: Local Sherwood Number
Wc: Maximum cell swimming speed
σm: Dimensionless reaction rate
Dn: Microorganisms diffusion coefficient
σ1: Bioconvection diffrrence parameter
σ∗: Stefan Boltzman constant
Nux: Local Nusselt number
Cf: Local skin friction number
Rex: Local Reynolds number.

Data Availability

,e data used to support this study are included within this
article.
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In this article, the approximate analytical solutions of four different types of conformable partial differential equations are in-
vestigated. First, the conformable Laplace transform homotopy perturbation method is reformulated. +en, the approximate
analytical solution of four types of conformable partial differential equations is presented via the proposed technique. To check the
accuracy of the proposed technique, the numerical and exact solutions are compared with each other. From this comparison, we
conclude that the proposed technique is very efficient and easy to apply to various types of conformable partial differential equations.

1. Introduction

+e initial idea of fractional derivative in history goes back to
the late 17th century, when the French mathematician
L’Hopital concerned with the meaning of (dny/dxn), when
n� 1/2. Since then, various definitions of this concept have
been formulated from two conceptions: one of a global
nature and the other one of a local nature. +e global
formulation of the fractional derivative is linked to the
appearance of the fractional calculus itself, and the Caputo
and Riemann–Liouville definitions are the best known [1, 2].

Khalil et al. suggested recently an alternative fractional
derivative of local type, named as conformable derivative [3]
to solve some issues concerning the challenge of solving
fractional differential equations (F-DEs) of nonlocal type.
+e physical and geometrical interpretations of conformable
derivatives have been discussed in [4, 5], respectively.

In several research studies, the methods of homotopy
perturbation and Adomian decomposition have been
employed to solve various types of F-DEs [6, 7]. Further-
more, a new numerical technique that is relied on the
homotopy perturbation method (HPM) and Laplace
transform (LT) has been proposed in [8] to solve F-DEs.

Madani et al. employed the Laplace transform homotopy
perturbation method (LTHPM) to solve one-dimensional
in-homogeneous partial differential equations (PDEs) with a
variable coefficient [9]. In [10], LTHPM is discussed to
obtain the approximate analytical solution of space-frac-
tional and time-fractional Burgers equations.

Fall et al. [11] implemented the homotopy perturbation
method to obtain the analytical solution of time-fractional
Black–Scholes (T-BSEs) and the generalized fractional BSEs.
+ey have displayed both the solution graphically and
discussed the effect of the order ρ of the generalized frac-
tional BSEs in the diffusion processes.

In [12], Yavuz and Ozdemir proposed a novel definition
of the Adomian decomposition method (ADM) to get an
accurate and quick solution of T-FBSEs and generalized
fractional BSEs utilizing initial condition. +ey obtained an
approximate analytical solution to these equations.

Moreover, Ahmed and Elbadri [13] carried out the
Sumudu decomposition method (SDM) coupled with the
Adomian decomposition method to solve the fractional
Newell-Whitehead-Segal equations (F-NWSEs). From their
numerical results, they concluded that the proposed tech-
nique is straightforward to enforce and provide exact results.

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 2573067, 13 pages
https://doi.org/10.1155/2021/2573067

mailto:mohammed.kaabar@wsu.edu
https://orcid.org/0000-0003-4461-105X
https://orcid.org/0000-0003-2260-0341
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2573067


For solving the Newell-Whitehead-Segal equations [14],
the authors presented two alternative exponential finite
difference methods: implicit exponential finite difference
scheme and fully implicit exponential finite difference
scheme. Both techniques are demonstrated to be consistent.
Furthermore, the local truncation errors are accurate to the
first order in time and the second order in space. +e ap-
proaches described are more accurate than other methods
because they are computationally consistent, stable, and
convergent.

Yavuz et al. constructed the conformable ADM and
HPM, using the aforementioned conformable derivatives to
solve various F-DEs such as diffusion equation, Black-
–Scholes equation (BSEs), and cable equation [15, 16]. In
[12], the authors proposed a novel definition of ADM to get
an accurate and quick solution of the Black–Scholes equa-
tion of time-fractional order (F-BSEs) and the generalized
Black–Scholes equation of fractional order (G-FBSEs) uti-
lizing initial condition.

+emain purpose of our study is to construct the Laplace
transform homotopy perturbation method (LTHPM) for
F-DEs using conformable derivatives.

+e article is outlined as follows: some fundamental
notions of conformable derivatives are revisited in Section 2.
Subsequently, HPM is constructed using con-LT in Section
3. Finally, we apply in Section 4 the algorithm which is
important to partial derivative equations (F-PDEs). +e
conclusion of this work is discussed in Section 5.

2. Basic Notions

+is section presents some essential concepts of conform-
able derivatives, which will be necessary in our investigation.

Definition 1. Given f: [0,∞)⟶ R as a function.+en, the
αth order conformable derivatives [1] is expressed as

Tαf( 􏼁(t) � lim
ε⟶0

f t + εt1−α
􏼐 􏼑 − f(t)

ε
, (1)

∀ t> 0, α ∈ (0, 1]. If f is α-differentiable (α-DifF) in some
(0, a), a> 0, and (Tαf)(t) exists, then it is expressed as

Tαf( 􏼁(0) � lim
t⟶0+

Tαf( 􏼁(t). (2)

Theorem 1 (See [1]). If a function f: [0,∞)⟶ R is α-DifF
at t0 > 0, α ∈ (0, 1], then f is continuous (ContF) at t0.

Theorem 2 (See [1]). Suppose that α ∈ (0, 1], and f, h are
α-DifFs at a point t> 0. ;en, we get

(i) Tα(mf + wh) � m (Tαf) + w (Tαh), ∀m, w ∈ R

(ii) Tα(tv) � vtv−α, ∀ v ∈ R

(iii) Tα(ϑ) � 0, ∀ constant function f(t) � ϑ
(iv) Tα(fh) � f(Tαh) + h(Tαf)

(v) Tα(f/h) � ((h(Tαf) − f(Tαh))/h2)

(vi) If f is DifF, then (Tαf)(t) � t1−α(df/dt)(t)

From the above definition, the conformable derivatives of
some functions are expressed as

(i) Tα(1) � 0
(ii) Tα(sin (at) ) � at1−α cos(at)

(iii) Tα(cos (at) ) � at1−α sin(at)

(iv) Tα(eat) � aeat, a ∈ R

In addition, some helpful formulas are expressed as

(i) Tα((1/α)tα) � 1
(ii) Tα(e(1/α)tα) � e(1/α)tα

(iii) Tα(sin ((1/α)tα) ) � cos((1/α)tα)

(iv) Tα(cos ((1/α)tα) ) � −sin((1/α)tα)

Definition 2. +e left-conformable derivative beginning
from a of function f: [a,∞)⟶ R of order α ∈ (0, 1] is
expressed as [2]

T
a
αf( 􏼁(t) � lim

ε⟶0

f t + ε(t − a)
1−α

􏼐 􏼑 − f(t)

ε
, (3)

when a � 0, we have (Tαf)(t). If f is α-DifF in some (a, b),
then we get

T
a
αf( 􏼁(a) � lim

t⟶a+
T

a
αf( 􏼁(t). (4)

Theorem 3 (Chain Rule) [2]. Suppose that
f, h: (a,∞)⟶ R be left α-DifFs, where α ∈ (0, 1]. Assume
that s(t) � f(h(t)). s(t) is α − Dif F∀t≠ a and h(t)≠ 0.
;us, we obtain

T
a
αs( 􏼁(t) � T

a
αf( 􏼁(h(t)) · T

a
αh( 􏼁(t). (5)

If t � a, then

T
a
αs( 􏼁(a) � lim

t⟶a+
T

a
αf( 􏼁(h(t)) · T

a
αh( 􏼁(t) · (h(t))

α− 1
. (6)

Theorem 4 (See [2]). Supposed that f is infinitely α-DifF, for
some α ∈ (0, 1] at a neighborhood of a point t0. ;en, f has a
conformable power series expansion as

f(t) � 􏽘

∞

k�0

(k)T
t0
α􏼐 􏼑 t0( 􏼁

αk
k!

t − t0( 􏼁
kα

, t0 < t< t0 + R
(1/α)

.

(7)

Hence, ((k)T
t0
α )(t0) implies the application of con-

formable derivatives k times.
+e α-conformable integral of a function f is beginning

from a≥ 0.

Definition 3 (See [1]). Ia
α(f)(t) � 􏽒

t

a
(f(x)/x1−α) · dx,

where this is a usual Riemann improper integral, α ∈ (0, 1].
As a result, we have

Theorem 5. Ta
αIa

α(f)(t) � f(t), for t≥ a, where f is any
ContF in Iα′s domain.
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Lemma 1. Suppose that f: (a, b)⟶ R is DifF and
α ∈ (0, 1]. ;en, ∀ a> 0, we get [2]

I
a
α T

a
α(f)(t) � f(t) − f(a). (8)

Finally, we recall the fractional Laplace transform (F-LT)
[2]. In [3], a sufficient condition was accomplished to solve
constant coefficient F-DEs via the con-LT method.

Definition 4. Suppose that α ∈ (0, 1] and f: [0,∞)⟶ R

are real valued functions. +en, the F-LT of order α be-
ginning from 0 of f is expressed as

Lα[f(t)](s) � 􏽚
∞

0
e

−s tα/α( )
f(t)

dt

t
1−α. (9)

Remark 1. +e F-LT for the conformable derivatives is
expressed as

Lα Tαf( 􏼁(t)􏼂 􏼃(s) � sLα[f(t)](s) − f(0). (10)

+us, we have

Theorem 6. If Fα(s) � Lα[f(t)](s) exists for s> 0, then

(i) If c a constant, then

Lα[c](s) �
c

s
. (11)

(ii) Let q be a constant:

Lα t
q

􏼂 􏼃(s) � α(q/α)Γ(1 +(q/α))

s
1+(q/α)

. (12)

(iii) If c and q are arbitrary constants,

Lα t
q
e

c tα/α( )
􏽨 􏽩(s) � α(q/α)Γ(1 +(q/α))

(s − c)
1+(q/α)

. (13)

Definition 5. A function f is considered as a conformable
exponentially bounded if it satisfies |f(t)|≤Mec(tα/α), where
M and c are the positive real constants and α ∈ (0, 1], ∀
sufficiently large t.

3. Conformable Laplace Transform HPM

A conformable version of HPM using LT has been intro-
duced by Madani and Fathizadeh in [17]. In their research
work, these authors discuss the effectiveness and ease of this
technique to solve ordinary or partial differential equations
(PDEs). In our case, a con-PDEs is given as follows:

Mαu(x, t) + Nu(x, t) + Ru(x, t) � g(x, t), (14)

with the initial condition (I.C):

u(x, 0) � f(x), (15)

where u is the two variables function, Mα � (zα/ztα) is a
linear operator (LO) with conformable derivative of order
α ∈ (0, 1], R is the LO’s other part, N is a nonlinear operator
(NLO), and g(x, t) is a nonhomogeneous term. By solving
for Mαu(x, t), equation (14) can be written as

Mαu(x, t) � g − Nu − Ru. (16)

By applying the con-LT to equation (16), we obtain

Lα Mαu(x, t)􏼂 􏼃 � Lα[g − Nu − Ru]. (17)

From Remark 1, the above equations can be rewritten as

sLα[u(x, t)](s) − u(x, 0) � Lα[g − Nu − Ru]. (18)

By substituting I.C, equation (18) can be written as

Lα[u(x, t)](s) �
f(x)

s
+
1
s
Lα[g] −

1
s
Lα[Nu] −

1
s
Lα[Ru].

(19)

Furthermore, by applying inverse con-LT to equation
(19), we get

u(x, t) � G(x, t) − L
−1
α

1
s
Lα[Nu(x, t) + Ru(x, t)]􏼔 􏼕, (20)

where the term has been arisen from the source term, and
the prescribed I.C is denoted by G(x, t).

+eHPM suggests the solution u(x, t) to be decomposed
into the infinite series of components [18, 19]:

u(x, t) � 􏽘
∞

n�0
p

n
un(x, t), (21)

and nonlinear term Nu(x, t) is decomposed to

Nu(x, t) � 􏽘
∞

n�0
p

n
Hn(u), (22)

for someHe’s polynomialsHn(u) [17, 20] which are given by

Hn u0, u1, . . . , un( 􏼁 �
1
n!

z
n

zp
n N 􏽘

∞

i�0
p

i
ui

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, n � 0, 1, 2, 3, . . . .

(23)

By the substitution of equations (21) and (22) into
equation (20), we have

􏽘

∞

n�0
p

n
un(x, t) � G(x, t) − p L

−1
α

1
s
Lα R 􏽘

∞

n�0
p

n
un(x, t) + 􏽘

∞

n�0
p

n
Hn(u)⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (24)
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which is the coupled con-FLT and HPM via He’s polyno-
mials. +e approximation can be easily obtained by a
comparison of all coefficients like powers of p as follows:

p
0

: u0(x, t) � G(x, t),

p
1

: u1(x, t) � −L
−1
α

1
s
Lα Ru0(x, t) + H0(u)􏼂 􏼃􏼔 􏼕,

p
2

: u2(x, t) � −L
−1
α

1
s
Lα Ru1(x, t) + H1(u)􏼂 􏼃􏼔 􏼕,

p
3

: u1(x, t) � −L
−1
α

1
s
Lα Ru2(x, t) + H2(u)􏼂 􏼃􏼔 􏼕,

⋮.

(25)

4. Illustrative Examples

+e effectiveness of the con-LTHPM is shown in this section
through four different problems: the time-fractional non-
linear homogeneous gas dynamics equation (F-GDEs), the
time-fractional linear Newell-Whitehead-Segel equation (F-
NWSEs), the time-fractional diffusion-convection equation
(F-DCEs), and the time-fractional linear Black–Scholes
option pricing equation.

Example 1. Consider F-GDEs as follows:

z
α
v(x, t)

zt
α + v(x, t)

zv(x, t)

zx
− v(x, t)(1 − v(x, t)) � 0, t≥ 0, 0≤x≤ 1, 0< α≤ 1, (26)

with I.C: v(x, 0) � ae−x. If α � 1, then equation (26) be-
comes the classical nonlinear homogeneous GDEs [21].

Remark 2. Note that the mathematical expression of the
classical GDEs is based on the physical laws of conservation.

By taking con-LT on equation (26) both sides and from
the properties of con-LT, equation (26) reduces to

Lα[v(x, t)](s) �
v(x, 0)

s
+
1
s
Lα v − v

2
− v

zv

zx
􏼢 􏼣. (27)

Using I.C and inverse con-LT, equation (27) reduces to

v(x, t) � ae
−x

+ L
−1
α

1
s
Lα v − v

2
− v

zv

zx
􏼢 􏼣􏼢 􏼣. (28)

+e HPM is applied to obtain

􏽘

∞

n�0
p

n
vn(x, t) � ae

−x
+ p L

−1
α

1
s
Lα 􏽘

∞

n�0
p

n
vn(x, t) − 􏽘

∞

n�0
p

n
Hn(v)⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (29)

where Hn(v) represents He’s polynomials. +e 1st three parts of Hn(v) are

H0(v) � v
2
0 + v0

zv0

zx
,

H1(v) � 2v0v1 + v0
zv1

zx
+ v1

zv0

zx
,

H2(v) � 2v0v2 + v0
zv2

zx
+ v1

zv1

zx
+ v2

zv0

zx
+ v

2
1,

(30)
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and so on. +e coefficient of power of p is equated in equation (33)
to get

p
0

: v0(x, t) � ae
−x

,

p
1

: v1(x, t) � L
−1
α

1
s
Lα v0 − H0(v)􏼂 􏼃􏼔 􏼕 � L

−1
α

1
s
Lα v0 − v

2
0 − v0

zv0

zx
􏼢 􏼣􏼢 􏼣 � ae

− xt
α

α
,

p
2

: v2(x, t) � L
−1
α

1
s
Lα v1 − H1(v)􏼂 􏼃􏼔 􏼕 � L

−1
α

1
s
Lα v1 − 2v0v1 − v0

zv1

zx
− v1

zv0

zx
􏼢 􏼣􏼢 􏼣 � ae

− x 1
2!

tα

α
􏼠 􏼡

2

,

p
3

: v3(x, t) � L
−1
α

1
s
Lα v2 − H2(v)􏼂 􏼃􏼔 􏼕 � L

−1
α

1
s
Lα v1 − 2v0v2 − v0

zv2

zx
− v1

zv1

zx
− v2

zv0

zx
+ v

2
1􏼢 􏼣􏼢 􏼣 � ae

−x 1
3!

tα

α
􏼠 􏼡

3

.

(31)

Similarly, the approximations can further be obtained as
follows:

p
4
: v4(x, t) � ae

−x 1
4!

tα

α
􏼠 􏼡

4

,

p
5
: v5(x, t) � ae

−x 1
5!

tα

α
􏼠 􏼡

5

,

(32)

and so on.
Substitute the above values in the following equation:

v(x, t) � v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

� a e
−x

+ e
− xt

α

α
+ e

− x 1
2!

tα

α
􏼠 􏼡

2

+ e
− x 1
3!

tα

α
􏼠 􏼡

3

+ e
− x 1
4!

tα

α
􏼠 􏼡

4

+ · · ·⎛⎝ ⎞⎠

� ae
−x 1 +

t
α

α
+
1
2!

tα

α
􏼠 􏼡

2

+
1
3!

tα

α
􏼠 􏼡

3

+
1
4!

tα

α
􏼠 􏼡

4

+
1
5!

tα

α
􏼠 􏼡

5

+ · · ·⎛⎝ ⎞⎠

� ae
tα/α( )− x

.

(33)

+e equation (26) exact solution with I.C: v(x, 0) � ae−x

for α � 1 as a special case is found as follows:

v(x, t) � ae
t− x

, (34)

which is the same solution in [21]. +is result is verified
graphically in Figure 1.

In Figure 2, the con-LTHPM’s solution for various
values of α, i.e., α � 0.7, 0.9 is represented. +e F-GDEs is
considered here with parameter a � 1.

Example 2. Consider F-NWSEs as follows:

z
α
v(x, t)

zt
α �

z
2
v(x, t)

zx
2 − 3v(x, t), (35)

with I.C: v(x, 0) � e2x. If α � 1, then equation (35) becomes
an example of the classical linear NWSEs [22].

Remark 3. +is equation has been applied in a wide variety
of problems. For example, Faraday instability, nonlinear
optics, Rayleigh-Bernard convection, or chemical reactions.

By taking con-LT on equation (45) both sides and from
the properties of con-LT, equation (35) reduces to

Lα[v(x, t)](s) �
v(x, 0)

s + 3
+

1
s + 3

Lα
z
2
v(x, t)

zx
2􏼢 􏼣. (36)

Using I.C and inverse con-LT, equation (36) reduces to
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v(x, t) � e
2x− 3 tα/α( )

+ L
−1
α

1
s + 3

Lα
z
2
v(x, t)

zx
2􏼢 􏼣􏼢 􏼣. (37)

+e HPM is applied to obtain

􏽘

∞

n�0
p

n
vn(x, t) � e

2x− 3 tα/α( )

+ p L
−1
α

1
s + 3

Lα 􏽘

∞

n�0
p

nz
2
vn(x, t)

zx
2

⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠.

(38)

+e coefficients of the power of p are compared as
follows:

p
0

: v0(x, t) � e
2x− 3 tα/α( )

,

p
1

: v1(x, t) � L
−1
α

1
s + 3

Lα
z
2
v0(x, t)

zx
2􏼢 􏼣􏼢 􏼣 � 4

t
α

α
e
2x− 3 tα/α( )

,

p
2

: v2(x, t) � L
−1
α

1
s + 3

Lα
z
2
v1(x, t)

zx
2􏼢 􏼣􏼢 􏼣 � 16

1
2!

tα

α
􏼠 􏼡

2

e
2x− 3 tα/α( )

,

p
3

: v3(x, t) � L
−1
α

1
s + 3

Lα
z
2
v2(x, t)

zx
2􏼢 􏼣􏼢 􏼣 � 64

1
3!

tα

α
􏼠 􏼡

3

e
2x− 3 tα/α( )

.

(39)

Similarly, approximations can further be obtained as
follows:

p
4
: v4(x, t) � 256

1
4!

tα

α
􏼠 􏼡

4

e
2x− 3 tα/α( )

,

p
5
: v5(x, t) � 512

1
5!

tα

α
􏼠 􏼡

5

e
2x− 3 tα/α( )

,

(40)

and so on.
Substitute the above values into the following equation:

v(x, t) � v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

� e
2x− 3 tα/α( )

+ e
2x− 3 tα/α( )4t

α

α
+ e

2x− 3 tα/α( ) 1
2!

4tα

α
􏼠 􏼡

2

+ e
2x− 3 tα/α( ) 1

3!

4tα

α
􏼠 􏼡

3

+ e
2x− 3 tα/α( ) 1

4!

4tα

α
􏼠 􏼡

4

+ · · ·

� e
2x− 3 tα/α( ) 1 +

4t
α

α
+
1
2!

4tα

α
􏼠 􏼡

2

+
1
3!

4tα

α
􏼠 􏼡

3

+
1
4!

4tα

α
􏼠 􏼡

4

+
1
5!

4tα

α
􏼠 􏼡

5

+ · · ·⎛⎝ ⎞⎠ � e
2x+3 tα/α( )

.

(41)

+e equation (35) exact solution with I v(x, 0) � e2x, for
α � 1 as a special case, is found as follows:

v(x, t) � e
2x+t

, (42)

which is the same solution in [22]. +is result is verified
graphically, as shown in Figure 3.

In Figure 4, the con-LTHPM’s solution for various
values of α, i.e., α � 0.7, 0.9 is represented.
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Example 3. Consider F-DCEs as follows:

z
α
v(x, t)

zt
α �

z
2
v(x, t)

zx
2 + cosx − sin2 x − 1􏼐 􏼑v(x, t), (43)

with I.C: v(x, 0) � (1/10)ecos x− 11. If α � 1, then equation
(43) becomes an example of the classical DCEs [23].

Remark 4. +e DCEs describe physical phenomena where
particles, energy, or other physical quantities are transferred
inside a physical system due to two processes: diffusion and
convection.

By taking con-LT on equation (43) both sides and from
the properties of con-LT, equation (43) reduces to

Lα[v(x, t)](s) �
v(x, 0)

s

+
1
s
Lα

z
2
v(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑v(x, t)􏼢 􏼣.

(44)

Using I.C and inverse con-LT, equation (44) reduces to

v(x, t) �
1
10

e
cos x− 11

+ L
−1
α

1
s
Lα

z
2
v(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑v(x, t)􏼢 􏼣􏼢 􏼣.

(45)

+e HPM is applied to obtain

􏽘

∞

n�0
p

n
vn(x, t) �

1
10

e
cos x− 11

+ p L
−1
α

1
s
Lα 􏽘

∞

n�0
p

nz
2
vn(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑 􏽘

∞

n�0
p

n
vn(x, t)⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠. (46)

+e coefficients of the power of p are compared here as
follows:

p
0

: v0(x, t) �
1
10

e
cos x− 11

,

p
1

: v1(x, t) � L
−1
α

1
s
Lα

z
2
v0(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑v0(x, t)􏼢 􏼣􏼢 􏼣 � −

1
10

e
cos x− 11t

α

α
,

p
2

: v2(x, t) � L
−1
α

1
s
Lα

z
2
v1(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑v1(x, t)􏼢 􏼣􏼢 􏼣 �

1
10

e
cos x− 11 1

2!

tα

α
􏼠 􏼡

2

,

p
3

: v3(x, t) � L
−1
α

1
s
Lα

z
2
v2(x, t)

zx
2 + cos x − sin2 x − 1􏼐 􏼑v2(x, t)􏼢 􏼣􏼢 􏼣 � −

1
10

e
cos x− 11 1

3!

tα

α
􏼠 􏼡

3

.

(47)
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Figure 1: Comparison of the numerical solution and exact solution for α � 1.
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Figure 3: Comparison of the numerical solution and exact solution for α � 1.

8 Mathematical Problems in Engineering



Similarly, approximations can further be obtained as
follows:

p
4
: v4(x, t) �

1
10

e
cos x− 11 1

4!

tα

α
􏼠 􏼡

4

,

p
5
: v5(x, t) � −

1
10

e
cos x− 11 1

5!

tα

α
􏼠 􏼡

5

,

(48)

and so on.
Substitute the above values in the following equation:

v(x, t) � v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

�
1
10

e
cos x− 11 1 −

t
α

α
+
1
2!

tα

α
􏼠 􏼡

2

−
1
3!

tα

α
􏼠 􏼡

3

+
1
4!

tα

α
􏼠 􏼡

4

−
1
5!

tα

α
􏼠 􏼡

5

+ · · ·⎛⎝ ⎞⎠ �
1
10

e
cos x− 11− tα/α( )

.

(49)

+e equation (43) exact solution with I.C:
v(x, 0) � (1/10)ecos x−11, for α � 1 as a special case, is found
as follows:

v(x, t) �
1
10

e
cos x−11− t

, (50)

which is the same solution with [23]. +is result is also
verified graphically, as shown in Figure 5.

In Figure 6, the con-LTHPM’s solution for various
values of α , i.e., α � 0.7, 0.9 is represented.

Example 4. Consider the F-BSEs:

z
α
v(x, t)

zt
α �

z
2
v(x, t)

zx
2 +(k − 1)

zv(x, t)

zx
− kv(x, t), t> 0, x ∈ R, 0< α≤ 1, (51)

with I.C: v(x, 0) � max ex − 1, 0{ } . If α � 1, then equation
(51) becomes the classical linear BSEs [24].

Remark 5. Equation (51) contains only two dimensionless
parameters k � (2r/σ2), where k represents the balance
between the rates of interest and the variability of the return
on stocks and the dimensionless time to expiry (σ2T/2).

By taking con-LT on equation (51) both sides and from
the properties of con-LT, equation (51) reduces to

Lα[v(x, t)](s) �
v(x, 0)

s + k
+

1
s + k

Lα
z
2
v(x, t)

zx
2 +(k − 1)

zv(x, t)

zx
􏼢 􏼣.

(52)

Using I.C and inverse con-LT, equation (52) reduces to

v(x, t) � max e
x

− 1, 0􏼈 􏼉 e
− k tα/α( )

+ L
−1
α

1
s + k

Lα
z
2
v(x, t)

zx
2 +(k − 1)

zv(x, t)

zx
􏼢 􏼣􏼢 􏼣. (53)

+e HPM is applied to obtain

􏽘

∞

n�0
p

n
vn(x, t) � max e

x
− 1, 0􏼈 􏼉 e

− k tα/α( )
+ p L

−1
α

1
s + k

Lα 􏽘

∞

n�0
p

nz
2
vn(x, t)

zx
2 +(k − 1) 􏽘

∞

n�0
p

nzvn(x, t)

zx
⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠. (54)
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+e coefficients of the power of p are compared to get

p
0

: v0(x, t) � max e
x

− 1, 0􏼈 􏼉 e
− k tα/α( )

,

p
1

: v1(x, t) � L
−1
α

1
s + k

Lα
z
2
v0(x, t)

zx
2 +(k − 1)

zv0(x, t)

zx
􏼢 􏼣􏼢 􏼣 �

kt
α

α
e

x− k tα/α( )
,

p
2

: v2(x, t) � L
−1
α

1
s + k

Lα
z
2
v1(x, t)

zx
2 +(k − 1)

zv1(x, t)

zx
􏼢 􏼣􏼢 􏼣 �

1
2!

Ktα

α
􏼠 􏼡

2

e
x− k tα/α( )

,

p
3

: v3(x, t) � L
−1
α

1
s + k

Lα
z
2
v2(x, t)

zx
2 +(k − 1)

zv2(x, t)

zx
􏼢 􏼣􏼢 􏼣 �

1
3!

ktα

α
􏼠 􏼡

3

e
x− k tα/α( )

.

(55)
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Figure 4: Con-LTHPM’s solutions of the F-NWSEs.

Solution using CLTHMP
Exact solution

0 5 10 15 20 25 30
x

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

v 
(x

,t)

×10-6

Figure 5: Comparison of the numerical solution and exact solution for α � 1.
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Similarly, approximations can further be obtained as
follows:

p
4
: v4(x, t) �

1
4!

ktα

α
􏼠 􏼡

4

e
x− k tα/α( )

,

p
5
: v5(x, t) �

1
5!

ktα

α
􏼠 􏼡

5

e
x− k tα/α( )

,

(56)

and so on.
Substitute the above values in the following equation:

v(x, t) � v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

� max e
x

− 1, 0􏼈 􏼉 e
− k tα/α( )

+ e
x− k tα/α( ) kt

α

α
+
1
2!

ktα

α
􏼠 􏼡

2

+
1
3!

ktα

α
􏼠 􏼡

3

+
1
4!

ktα

α
􏼠 􏼡

4

+ · · ·⎛⎝ ⎞⎠

� max e
x

− 1, 0􏼈 􏼉 e
− k tα/α( )

+ e
x 1 − e

− k tα/α( )
􏼐 􏼑.

(57)
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Figure 6: Con-LTHPM’s solutions of the F-DCEs.
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+e equation (35) exact solution with I.C:
v(x, 0) � ex − 1, 0{ } , for α � 1 as a special case, is found as
follows:

v(x, t) � e
x

− 1, 0􏼈 􏼉 e
−kt

+ e
x 1 − e

−kt
􏼐 􏼑, (58)

which is the same solution in [24].
In Figure 7, the con-LTHPM’s solution for various

values of α , i.e., α � 0.5, 0.7, 0.9, 1 is represented. In this
example, F-BSEs is considered for 0< α≤ 1.

5. Conclusion

+e approximate analytical solutions have been obtained in this
work for time F-PDEs, using a numerical method based on the
con derivatives, a concept widely used in the field of applications
in recent years. We have constructed a con-version of the HPM
via LT.+is technique’s efficiency and approximation have been
verified through four important problems. From the illustrative
examples, the results using this technique coincide the corre-
sponding exact solution. As a result, our technique can be
applicable tomany initial-value problems and F-PDEs including
linear and nonlinear ones. In fact, future research will focus on
studying this conformable methodology of important classic
problems such as the in-homogeneous fractional cable equation,
the Burgers equation with fractional order of space and time, or
the in-homogeneous nonlinear Klein–Gordon equation.
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lution of different type of the partial differential equation by
differential transform method and adomian’s decomposition
method,” Applied Mathematics and Computation, vol. 172,
no. 1, pp. 551–567, 2006.

[8] M. Javidi and B. Ahmad, “Numerical solution of fractional
partial differential equations by numerical laplace inversion
technique,” Advances in Difference Equations, vol. 2013, no. 1,
375 pages, 2013.

[9] M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, “On the
coupling of the homotopy perturbation method and laplace
transformation,” Mathematical and Computer Modelling,
vol. 53, no. 9, pp. 1937–1945, 2011.

[10] S. J. Johnston, H. Jafari, S. P. Moshokoa, V. M. Ariyan, and
D. Baleanu, “Laplace homotopy perturbation method for
burgers equation with space-and time-fractional order,” Open
Physics, vol. 14, no. 1, pp. 247–252, 2016.

[11] A. N. Fall, S. N. Ndiaye, and N. Sene, “Black–scholes option
pricing equations described by the caputo generalized frac-
tional derivative,” Chaos, Solitons & Fractals, vol. 125,
pp. 108–118, 2019.
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)is paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative
which includes the most types of fractional derivatives with nonsingular kernels. )e stability analysis is obtained by means of the
Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study.
Furthermore, the results related to exponential andMittag–Leffler stability existing in recent studies are extended and generalized.
Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.

1. Introduction

Fractional differential equations (FDEs) are recently de-
veloped in order to describe and model the dynamics of
systems having memory or hereditary properties. )ese
types of equations have been used and applied in various
areas of science and engineering such as epidemiology [1],
cancerology [2], viral immunology [3, 4], and viscoelastic
fluid flows [5], as well as adaptive control engineering [6].

It is well known that there are two main methods to
analyze the stability of ordinary differential equations
(ODEs).)e first one is called the Lyapunov indirect method
that aims to study the local stability by means of the line-
arization of a system around its steady state (equilibrium
point). )e second method called the Lyapunov direct
method consists to find or construct an appropriate auxiliary
function, named a Lyapunov candidate function. Further-
more, the Lyapunov direct method provides a substantial
tool for stability analysis of nonlinear systems. It can be used
to determine the global dynamical behaviors of these sys-
tems without the need to solve explicitly the solutions of
ODEs.

)e stability of FDEs has attracted the attention of
several researchers. In 2010, Li et al. [7] studied the stability
of nonlinear systems of FDEs involving the Caputo frac-
tional derivative with singular kernel [8]. )ey extended the

Lyapunov direct method to the case of FDEs. In the same
year, Sadati et al. [9] extended the Mittag–Leffler stability
theorem for fractional nonlinear systems of FDEs with delay.
)e stability of a class of nonlinear systems of FDEs in-
volving the Hadamard fractional derivative [10] was in-
vestigated in [11] by using a fractional comparison principle.

)e theory of the stability of FDEs involving fractional
derivatives with nonsingular kernels is new, and it requires
an important development in order to study the dynamical
behaviors of several systems available in the literature and
using such derivatives. For these reasons, the main purpose
of this paper is to extend the Lyapunov direct method for
systems of FDEs involving the new generalized Hattaf
fractional (GHF) derivative [12], which covers the most
famous fractional derivatives with nonsingular kernels
existing in the literature such as the Caputo–Fabrizio
fractional derivative [13], the Atangana–Baleanu fractional
derivative [14], and the weighted Atangana–Baleanu frac-
tional derivative [15].

)emain advantage of using the GHF derivative is that it
is a nonlocal operator and it has a nonsingular kernel
formulated by the Mittag–Leffler function with a parameter
different to the order of the fractional derivative. Further-
more, this operator is a weighted fractional derivative which
can be used to solve various types of integral equations with
elegant ways as in [16–18]. On the other hand, the novelties
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of this article are the study of the stability of FDEs with the
new GHF operator by means of the Lyapunov direct method
and the extension and generalization of the results related to
exponential and Mittag–Leffler stability presented in [7, 19],
as well as the establishment of some interesting properties
and inequalities of GHF derivative in order to easily prove
the Lyapunov stability theorems and construct Lyapunov
candidate functions of quadratic-type, which are frequently
used for demonstrating the global stability of many frac-
tional order systems.

)e outline of this paper is organized as follows. After an
introductory part, Section 2 introduces the basic definitions
and provides some lemmas and fundamental properties of
the GHF derivative with nonsingular kernel in Caputo sense
necessary to achieve the objective of this study. Section 3 is
devoted to stability analysis. Finally, Section 4 presents some
applications of our main results in the field of epidemiology
as well as in the fractional linear systems theory.

2. Fundamental Results

In this section of the paper, we present the definitions and
provide some fundamental results related to the GHF de-
rivative with nonsingular kernel.

Definition 1 (see [12]). Let α ∈ [0, 1), β, c> 0, and
f ∈ H1(a, b). )e GHF derivative of order α in Caputo sense
of the function f(t) with respect to the weight function w(t)

is defined as follows:

C
D

α,β,c

a,t,wf(t) �
N(α)

1 − α
1

w(t)
􏽚

t

a
Eβ − μα(t − τ)

c
􏼂 􏼃

d
dτ

(wf)(τ)dτ,

(1)

where w ∈ C1(a, b), w, w′ > 0 on [a, b], N(α) is a normal-
ization function obeying N(0) � N(1) � 1, μα � α/(1 − α),
and Eβ(t) � 􏽐

+∞
k�0tk/Γ(βk + 1) is the Mittag–Leffler function

of parameter β.
)e GHF derivative introduced in the above definition

generalizes and extends many special cases available in the
literature. For instance, when w(t) � 1 and β � c � 1, (1)
reduced to the Caputo–Fabrizio fractional derivative [13]
given by

C
D

α,1,1
a,t,1 f(t) �

N(α)

1 − α
􏽚

t

a
exp − μα(t − τ)􏼂 􏼃f′(τ)dτ. (2)

When w(t) � 1 and β � c � α, (1) reduced to the
Atangana–Baleanu fractional derivative [14] given by

C
D

α,α,α
a,t,1 f(t) �

N(α)

1 − α
􏽚

t

a
Eα − μα(t − τ)

α
􏼂 􏼃f′(τ)dτ. (3)

Furthermore, the weighted Atangana–Baleanu fractional
derivative [15], given by

C
D

α,α,α
a,t,wf(t) �

N(α)

1 − α
1

w(t)
􏽚

t

a
Eα − μα(t − τ)

α
􏼂 􏼃

d
dτ

(wf)(τ)dτ,

(4)

is a special case of GHF derivative; it suffices to take
β � c � α.

Considering the importance of weighted fractional de-
rivatives to write and solve many integral equations in an
elegant way, the function w has been introduced in equation
(1). For instance, we consider the following integral
equation:

λ􏽚
t

0
e

− λ(t− τ)
Eβ − ρ(t − τ)

c
􏼂 􏼃f(τ)dτ + 􏽚

t

0
e

− λ(t− τ)
Eβ − ρ(t − τ)

c
􏼂 􏼃f′(τ)dτ � Λ − δf(t), (5)

where λ, ρ,Λ, δ > 0. In terms of the GHF operator, this
equation can be written as follows:

C
D

α,β,c

a,t,wf(t) � A − μf(t), (6)

where w(t) � eλt, N(α) � 1, α � ρ/(1 + ρ), A � Λ/(1 − α),
and μ � δ/(1 − α). Similar to the example of HIV infection
presented in [12], the solution of the above integral equation
when c � β is given by

f(t) �
A

μ
+

N(α)w(0)

aαw(t)
f(0) −

A

μ
􏼠 􏼡Eβ −

αμ
aα

t
β

􏼠 􏼡

−
AN(α)

μaαw(t)
Eβ −

αμ
aα

t
β

􏼠 􏼡∗w′(t),

(7)

where aα � N(α) + μ(1 − α).
In various areas of science and engineering, the method

of constructing Lyapunov functions is often based on

quadratic-type functions. So, we provide the following
lemma that estimates the GHF derivative of these types of
Lyapunov candidate functions.

Lemma 1. Let x(.) ∈ IRn be a continuously differentiable
function and P ∈ IRn×n be a symmetric positive definite
matrix. 3en, for any time t≥ t0, we have

C
D

α,β,c

t0 ,t,1 x(t)
T
Px(t)􏼐 􏼑≤ 2x(t)

T
P

C
D

α,β,c
t0 ,t,1x(t). (8)

Proof. Similar to [19, 20], we consider the following
function:

g(t)�
C

D
α,β,c
t0 ,t,1 x(t)

T
Px(t)􏼐 􏼑 − 2x(t)

T
P

C
D

α,β,c
t0,t,1x(t). (9)

)en,
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g(t) �
N(α)

1 − α
􏽚

t

t0

Eβ − μα(t − τ)
c

􏼂 􏼃 2x(τ)
T
P _x(τ) − 2x(t)

T
P _x(τ)􏼐 􏼑dτ

�
N(α)

1 − α
􏽚

t

t0

Eβ − μα(t − τ)
c

􏼂 􏼃 2y(τ)
T
P _y(τ)􏼐 􏼑dτ

�
N(α)

1 − α
􏽚

t

t0

Eβ − μα(t − τ)
c

􏼂 􏼃 y(τ)
T
Py(τ)􏼐 􏼑′dτ,

(10)

where y(τ) � x(τ) − x(t). Integrating by parts, we obtain

g(t) �
N(α)

1 − α
Eβ − μα(t − τ)

c
􏼂 􏼃y(τ)

T
Py(τ)|

τ�t
τ�t0

−
αcN(α)

(1 − α)
2 􏽚

t

t0

(t − τ)
c− 1

E
2
β,β+1 − μα(t − τ)

c
􏼂 􏼃y(τ)

T
Py(τ)dτ.

(11)

Since limτ⟶tEβ[− μα(t − τ)c]y(τ)TPy(τ) � y(t)TPy(t)

� 0, we have

g(t) � −
N(α)

1 − α
Eβ − μα t − t0( 􏼁

c
􏼂 􏼃y t0( 􏼁

T
Py t0( 􏼁

−
αcN(α)

(1 − α)
2 􏽚

t

t0

(t − τ)
c− 1

E
2
β,β+1 − μα(t − τ)

c
􏼂 􏼃y(τ)

T
Py(τ)dτ.

(12)

)is follows that g(t)≤ 0, for all t≥ t0, and the proof is
completed. □

Remark 1. It is important to note that the above lemma
extends the recent results presented in Lemma 2 of [19] and
Corollary 1 of [20]. Moreover, the results presented in
Lemma 3.1 of [21] to estimate the Atangana–Baleanu Caputo
derivative of quadratic Lyapunov functions is extended to
the case of GHF derivative.

For simplicity, denote CD
α,β,β
a,t,w by Dα,β

a,w. By [12], the
generalized fractional integral associated toDα,β

a,w is given by
the following definition.

Definition 2 (see [12]). )e generalized fractional integral
operator associated to Dα,β

a,w is defined by

I
α,β
a,wf(t) �

1 − α
N(α)

f(t) +
α

N(α)

RL
I

β
a,wf(t), (13)

where RLI
β
a,w is the standard weighted Riemann–Liouville

fractional integral of order β defined

RL
I

β
a,wf(t) �

1
Γ(β)

1
w(t)

􏽚
t

a
(t − τ)

β− 1
w(τ)f(τ)dx.

(14)

Remark 2. )e Atangana–Baleanu fractional integral op-
erator is a particular case of (7), and it suffices to take w(t) �

1 and β � α.
Now, we recall an important theorem that we will need

in the following. )is theorem extends the Newton–Leibniz
formula introduced in [22, 23].

Theorem 1 (see [20]). Let α ∈ [0, 1), β> 0, and
f ∈ H1(a, b). 3en, we have the following properties:

I
α,β
a,w D

α,β
a,wf􏼐 􏼑(t) � f(t) −

w(a)f(a)

w(t)
, (15)

D
α,β
a,w I

α,β
a,wf􏼐 􏼑(t) � f(t) −

w(a)f(a)

w(t)
. (16)

On the contrary, we need the following results.

Lemma 2. Let y(.) ∈ IRn. 3e solution of the following
Cauchy problem

D
α,β
0,wy(t) � λy(t) + u(t), (17)

with initial boundary condition y(0) � y0, is given by

y(t) �
N(α)w(0)y0

aαw(t)
Eβ

αλ
aα

t
β

􏼠 􏼡 +
1 − α

aα
u(t)

+
N(α)

λaαw(t)

d
dt

Eβ
αλ
aα

t
β

􏼠 􏼡∗ (wu)(t),

(18)

where aα � N(α) − λ(1 − α)≠ 0 and λ≠ 0.

Proof. By (11), we have

w(t)D
α,β
0,wy(t) � λw(t)y(t) + w(t)u(t). (19)

By applying Laplace transform and using )eorem 2 in
[12], we obtain

L w(t)y(t)􏼈 􏼉 �
(1 − α) s

β
+ μα􏼐 􏼑

[N(α) − λ(1 − α)]s
β

− λα
L w(t)u(t){ }

+
N(α)w(0)y(0)s

β− 1

[N(α) − λ(1 − α)]s
β

− λα
.

(20)

)en,
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L w(t)y(t)􏼈 􏼉 �
N(α)w(0)y(0)

aα

s
β− 1

s
β

− αλ/aα( 􏼁
+
1 − α

aα

s
β− 1

s
β

− αλ/aα( 􏼁
sL w(t)u(t){ }

+
α
aα

1
s
β

− αλ/aα( 􏼁
L w(t)u(t){ }

�
N(α)w(0)y(0)

aα
L Eβ

αλ
aα

t
β

􏼠 􏼡􏼨 􏼩 +
1 − α

aα
L Eβ

αλ
aα

t
β

􏼠 􏼡􏼨 􏼩 L (wu)′(t)􏼈 􏼉 + w(0)u(0)􏼂 􏼃

+
1
λ
L

d
dt

Eβ
αλ
aα

t
β

􏼠 􏼡􏼨 􏼩L w(t)u(t){ }.

(21)

)e passage to the inverse Laplace gives

w(t)y(t) �
N(α)w(0)y(0)

aα
Eβ

αλ
aα

t
β

􏼠 􏼡 +
1 − α

aα
w(t)u(t)

+
N(α)

λaα

d
dt

Eβ
αλ
aα

t
β

􏼠 􏼡∗ (wu)(t).

(22)

From integration by parts, we have

d
dt

Eβ
αλ
aα

t
β

􏼠 􏼡∗ (wu)(t) � Eβ
αλ
aα

t
β

􏼠 􏼡(wu)(0) − (wu)(t)

+ Eβ
αλ
aα

t
β

􏼠 􏼡∗ (wu)′(t).

(23)

Hence,

y(t) �
N(α)w(0)y0

aαw(t)
Eβ

αλ
aα

t
β

􏼠 􏼡 +
1 − α

aα
u(t)

+
N(α)

λaαw(t)

d
dt

Eβ
αλ
aα

t
β

􏼠 􏼡∗ (wu)(t).

(24)

)is completes the proof. □

Remark 3. By using (12), the solution of (11) can be re-
written as follows:

y(t) �
λy0 + u(0)( 􏼁N(α)w(0)

λaαw(t)
Eβ

αλ
aα

t
β

􏼠 􏼡 −
1
λ

u(t)

+
N(α)

λaαw(t)
Eβ

αλ
aα

t
β

􏼠 􏼡∗ (wu)′(t).

(25)

Corollary 1. Let λ> 0 and f(t) be a function satisfying the
following inequality:

D
α,β
0,wf(t)≤ − λf(t). (26)

)en,

f(t)≤f(0)Eβ
− αλt

β

N(α) + λ(1 − α)
􏼠 􏼡. (27)

Proof. From (14), we deduce that there exists a nonnegative
function u(t) such that

D
α,β
0,wf(t) � − λf(t) − u(t). (28)

By applying Lemma 2, we obtain

f(t) �
N(α)w(0)f(0)

[N(α) + λ(1 − α)]w(t)
Eβ

− αλt
β

N(α) + λ(1 − α)
􏼠 􏼡 −

(1 − α)u(t)

N(α) + λ(1 − α)

+
N(α)

λ[N(α) + λ(1 − α)]w(t)

d
dt

Eβ
− αλt

β

[N(α) + λ(1 − α)]
􏼠 􏼡∗ (wu)(t)

�
N(α)w(0)f(0)

[N(α) + λ(1 − α)]w(t)
Eβ

− αλt
β

N(α) + λ(1 − α)
􏼠 􏼡 −

(1 − α)u(t)

N(α) + λ(1 − α)

−
αβN(α)

λ[N(α) + λ(1 − α)]
2
w(t)

t
β− 1

E
2
β,β+1

− αλt
β

[N(α) + λ(1 − α)]
􏼠 􏼡∗ (wu)(t)􏼠 􏼡.

(29)

)en,
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f(t)≤
N(α)w(0)f(0)

[N(α) + λ(1 − α)]w(t)
Eβ

− αλt
β

N(α) + λ(1 − α)
􏼠 􏼡.

(30)

Since N(α)≤N(α) + λ(1 − α) and w(0)≤w(t), we
easily have (27). □

3. Stability Analysis

In this section, we focus on the stability analysis of the
fractional differential equations with the GHF derivative.

Consider the following fractional differential nonau-
tonomous equation:

D
α,β
0,wx(t) � f(t, x(t)), (31)

where x(t) ∈ IRn is the state variable and
f: [0, +∞) ×Ω⟶ IRn is a continuous locally Lipschitz
function and Ω is a domain of IRn containing the origin
x � 0.

System (31) is said to be autonomous if f(t, x) � f(x).
In this case, (31) becomes

D
α,β
0,wx(t) � f(x(t)). (32)

First, we give some definitions that we will need in the
following.

Definition 3. )e trivial equilibrium point x � 0 of (31) is
said to be stable if, for each ϵ> 0, there exists a η> 0 such
that, for any initial condition x(t0) � x0 satisfying ‖x0‖< η,
the solution x(t) of (31) satisfies ‖x(t)‖< ϵ, for all t≥ t0.
Furthermore, x � 0 is said to be asymptotically stable if it is
stable and limt⟶+∞x(t) � 0.

Definition 4. A scalar function V(x) is called a Lyapunov
candidate function of autonomous system (32) if it is a
positive definite in a neighborhood U of the origin, i.e.,
V(0) � 0 and V(x)> 0, for all x ∈ U∖ 0{ }. In addition, a
scalar function V(t, x) is a Lyapunov candidate function of
nonautonomous system (31) if it is positive definite, i.e.,
V(t, 0) � 0, for all t≥ t0, and if there is a time-invariant
function V0(x) which is positive definite such that
V(t, x)≥V0(x), for all t≥ t0.

Also, we introduce the definition of stability in the
Mittag–Leffler sense.

Definition 5. )e trivial solution of (31) is called Mit-
tag–Leffler stable if

‖x(t)‖≤ m x t0( 􏼁( 􏼁Eβ − λ t − t0( 􏼁
β

􏼐 􏼑􏽨 􏽩
]
, (33)

where t0 is the initial time, λ≥ 0, ]> 0, m(0) � 0, m(x)≥ 0,
and m(x) is locally Lipschitz on x ∈ IRn with the Lipschitz
constant m0.

Remark 4. Mittag–Leffler stability generalizes the expo-
nential stability and it implies asymptotic stability.

Theorem 2. Let x � 0 be an equilibrium point for system
(31). Let V(t, x): [0, +∞) ×Ω⟶ IR be a continuously
differentiable function and locally Lipschitz with respect to x

such that

k‖x‖
p ≤V(t, x), (34)

D
α,β
0,wV(t, x)≤ − qV(t, x), (35)

where t≥ 0, x ∈ Ω, and k, p, and q are arbitrary positive
constants. 3en, x � 0 is Mittag–Leffler stable. If (34) and
(35) hold globally on IRn, then x � 0 is globally Mittag–Leffler
stable.

Proof. From (35) and according to Corollary 1, we deduce
that

V(t, x)≤V(0, x(0))Eβ
− qαt

β

N(α) + q(1 − α)
􏼠 􏼡. (36)

From (34), we obtain

k‖x(t)‖
p ≤V(0, x(0))Eβ

− qαt
β

N(α) + q(1 − α)
􏼠 􏼡, (37)

which leads to

‖x(t)‖ ≤ m1(x(0))Eβ − λt
β

􏼐 􏼑􏽨 􏽩
1/p

, (38)

where m1(x) � V(0, x)/k and λ � qα/(N(α) + q(1 − α)).
Clearly, m1(0) � 0 and m1(x)≥ 0. Since V(t, x) is locally
Lipschitz with respect to x, we deduce that m1(x) is locally
Lipschitz on x. )erefore, the equilibrium x � 0 is globally
Mittag–Leffler stable. □

Remark 5. )eorem 2 generalizes the result of the expo-
nential stability presented in )eorem 2 of [19]. Indeed, it
suffices to take w(t) � 1, β � c � 1, and k � 1.

Theorem 3. Let x � 0 be an equilibrium point for system
(31). Let V(t, x): [0, +∞) ×Ω⟶ IR be a continuously
differentiable function and locally Lipschitz with respect to x

such that

k1‖x‖
p ≤V(t, x)≤ k2‖x‖

pq
, (39)

D
α,β
0,wV(t, x)≤ − k3‖x‖

pq
, (40)

where t≥ 0, x ∈ Ω, and k1, k2, k3, p, and q are arbitrary
positive constants. 3en, x � 0 is Mittag–Leffler stable. If (39)
and (40) hold globally on IRn, then x � 0 is globally Mit-
tag–Leffler stable.

Proof. According to (39) and (40), we have

D
α,β
0,wV(t, x)≤ −

k3

k2
V(t, x). (41)

By applying Corollary 1, we have

V(t, x)≤V(0, x(0))Eβ − κt
β

􏼐 􏼑, (42)
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where κ � k3α/(k2N(α) + k3(1 − α)). By (39), we obtain

k1‖x(t)‖
p ≤V(0, x(0))Eβ − κt

β
􏼐 􏼑, (43)

which implies that

‖x(t)‖≤ m2(x(0))Eβ − κt
β

􏼐 􏼑􏽨 􏽩
1/p

, (44)

where m2(x) � V(0, x)/k1. )is completes the proof. □

Remark 6. )eorem 3 extends the result of the Mit-
tag–Leffler stability presented in )eorem 5.1 of [7] for the
GHF derivative with nonsingular kernel. Moreover, the
result given in )eorem 4 of [19] for Caputo–Fabrizio
fractional derivative is recovered when w(t) � 1, β � c � 1,
p � 2, and q � 1.

4. Applications

In this section, we apply the main results obtained in this
paper to investigate the stability of the following examples of
fractional systems.

Example 1. Consider the following fractional linear system:

D
α,β
0,wx(t) � Ax(t), (45)

where x(t) ∈ IRn is the state variable and A ∈ IRn×n.
To establish the stability of (45), we define the Lyapunov

candidate function as follows:

V(t, x) � x
T
Px, (46)

where P ∈ IRn×n is a symmetric positive definite matrix.
Hence,

λmin(P)‖x‖
2 ≤V(t, x)≤ λmax(P)‖x‖

2
, (47)

where λmin(P) and λmax(P) are the minimum and the
maximum eigenvalues of the matrix P, respectively. Since P

is positive definite, we have λmin(P)> 0 and λmax(P)> 0.
According to Lemma 1, the GHF derivative of the

Lyapunov function V along the trajectories of (45) satisfies

D
α,β
0,1V(t, x)≤ 2x

T
PD

α,β
0,wx

� x
T

A
T
P + PA􏼐 􏼑x

� − x
T
Qx,

(48)

where Q � − (ATP + PA). It is obvious that Q is a symmetric
matrix. Assume that Q is a positive definite matrix and let
λmin(Q) be the minimum of its positive eigenvalues. )en,
we have

D
α,β
0,1V(t, x)≤ − λmin(Q)‖x‖

2
. (49)

By applying )eorem 3, we deduce that the trivial so-
lution of system (45) is globally Mittag–Leffler stable under
the condition that Q is positive definite. )is condition is
satisfied when A is Hurwitz, i.e., all the eigenvalues of A have
negative real parts.

Example 2. Consider the following fractional epidemic
model:

D
α,β
0,1S(t) � A − ]S(t) − F(S(t), I(t))I(t),

D
α,β
0,1I(t) � F(S(t), I(t))I(t) − (] + d + r)I(t),

D
α,β
0,1R(t) � rI(t) − ]R(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(50)

where S(t), I(t), and R(t) are the susceptible, infected, and
recovered individuals at time t, respectively. Here, the
susceptible individuals are recruited at a constant rateA and
become infected by effective contact with infected indi-
viduals at rate F(S, I)I. )e natural death rate in all classes
is denoted by ], while d is the death rate due to the disease.
Furthermore, r is the recovery rate of the infected
individuals.

Obviously, the first two equations of (50) do not depend
on the variable R. )en, model (50) can be rewritten by the
following system:

D
α,β
0,1S(t) � A − ]S(t) − F(S(t), I(t))I(t),

D
α,β
0,1I(t) � F(S(t), I(t))I(t) − (] + d + r)I(t).

⎧⎪⎨

⎪⎩
(51)

As in [24], we assume that the general incidence F is
continuously differentiable in the interior of IR2

+ and satisfies
the following conditions:

(H)F(0, S) � 0,

zF

zS
(S, I)> 0,

zF

zI
(S, I)≤ 0, for all S, I≥ 0.

(52)

It is clear thatE0 � (S0, 0) is the disease-free equilibrium
of (51), where S0 � A/]. )en, the basic reproduction
number of (51) is defined as follows:

R0 �
F S

0
, 0􏼐 􏼑

(] + d + r)
, (53)

which epidemiologically represents the number of second-
ary infections produced by a single infected individual
throughout the period of infection when all individuals are
uninfected. Based on the same technique in [24], we can
easily prove that model (51) has another equilibrium when
R0 > 1.

Let Ω � (S, I) ∈ IR2
+: S≤ S0􏼈 􏼉. Assume that R0 < 1 and

consider the following Lyapunov function:

L(S, I) � ϖ S
0

− S􏼐 􏼑 + I, (54)

where ϖ � (1 − R0)/2R0. Obviously, L is a candidate
Lyapunov function. Indeed, we have L(E0) � 0 and
L(S, I)> 0, for all (S, I) ∈ Ω∖ E0􏼈 􏼉. Moreover, we have

D
α,β
0,1L(S, I) � − ϖDα,β

0,1S + D
α,β
0,1I

≤ − ϖ] S
0

− S􏼐 􏼑 −
δ 1 − R0( 􏼁

2
I,

(55)

where δ � ] + d + r. Hence,

D
α,β
0,1L(S, I)≤ − ϱ1L(S, I), (56)
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where ϱ1 � min ], δ(1 − R0)/2􏼈 􏼉.
Let X � (S, I) ∈ IR2 with the norm ‖X‖ � |S| + |I|. )en,

ϱ2 X − E
0����
����≤L(S, I), (57)

where ϱ2 � min ϖ, 1{ }. By applying )eorem 2, we conclude
that the disease-free equilibrium E0 of (51) is Mittag–Leffler
stable in Ω when R0 < 1.
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Geometry, electrostatics, and single-electron tunneling contribute to the nonlinearity in the quantum dot embedded nano-
mechanical resonator, while “Duffing term” is a kind of mathematics describing the third-order nonlinearity of the system as a
whole. We study theoretically the influence of a variation of a mathematical parameter Fuffing term on the actual physical effect.
-e position probability distribution, the average current, and the displacement fluctuation spectrum with the different Duffing
parameter and electromechanical coupling are obtained through numerically calculating the Fokker Planck equation. -e
mechanical bistability has been described by these quantities under different electromechanical coupling and Duffing parameters.
We conclude that the nonlinearities of the nanotube resonator contribute to the mechanical bistability, which induces the
asymmetry of the position probability distribution, compresses the current, and softens or stiffens the mechanical resonance
frequency as the same as the electromechanical coupling to use it in mechanical engineering.

1. Introduction

-e linear dynamic description of nanoelectromechanical
systems (NEMS) is well understood when the electrome-
chanical coupling is rather weak [1–9]; meanwhile, the
existence of the nonlinearities induces too many interesting
consequences such as the nonlinear dynamic response in the
two-dimensional material membranes, the mechanical
bistability in the carbon nanotube (CNT)-based resonator,
[10–13], and unusual mechanical response [8, 14–16]. -e
CNT quantum dot embedded resonators have been widely
investigated as ultrasensitive detectors and sensors [17–19];
the experimental research group reported higher record
sensitivity in mass and force sensing [20, 21]. Recently,
people have found that strong coupling induces strong

nonlinear signals in the mechanical resonance frequency
and the mechanical noise in the single- or two-level
quantum nanomechanical oscillator [22–24]. -e strong
coupling dominates the quadratic term in the restore force
than the geometry, electrostatics, and single-electron tun-
neling. -e nonlinear response of the system contains a
mechanical resonator at nanoscale coupled to a transistor of
single electron under the external drive which behaves like
the Duffing oscillator [25].

-e intrinsic nonlinearities of the carbon nanotube have
been ignored by most of these research studies. For the given
carbon nanotube-based resonators, the nonlinearities come
not only from the electromechanical coupling but also from
the parent materials themselves. It is significant to consider
the intrinsic nonlinearities of the carbon nanotube. In this
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work, we pay attention to the term of the Duffing under the
force of the restoring with the cubic structure of the con-
sidered displacement.We are also interested in the nonlinear
CNT-based resonators which will be described by the po-
sition probability distribution, the current, and the dis-
placement fluctuations with the different coupling and
Duffing parameter [26].

In particular, nonlinearities examine the quantum co-
herence pure substance which is a pure state of matter that
can be quite sensitive. When two identical particles do not
overlap, they each have their perfect quantum system de-
scribed by the quantum oscillator. However, the measured
nonlinearities may have been in a miniature form or even
stay purest after the quantum mechanical overlapping. It is
related to the strength, density, and temperature of the
considered system (quantum entanglement). During tran-
sition times, when the density concentration is high,
bouncing may potentially play a role in quantum wave-
particle duality. Hydrodynamics is frequently used to
characterize the extremely dense medium formed, which
implies local thermodynamic equilibrium and quantum
decoherence well above thermal length scale [27].

In this curious and unique research work, we probe the
nonlinearities, consequences of average current flow, and in-
trinsic fluctuations of the probability distributions, as well as
the suppression of the displacement under the properties of the
considered pioneer quantum system with nanotubes. -e
creation of a useable source which inflates relativistic interior of
the considered field potential about the special oscillator that
evaluates over time in the phase of quantum temperature
regimes, and we also compute the various parameters for
numerous order quantum characteristics by applying the one
and two nanotubes for the mentioned phases at distinct
temperature and momenta regimes. -e nonlinearity of pro-
duction systems influences the critical parameter significantly
under the considered measurements at miscellaneous tem-
peratures’ dependence noise which are explored to use in
thermal and mechanical applications of engineering.

-e study is organized as follows. In Section 2, we in-
troduce our model with the description of the system which
consists of the carbon nanotube quantum dot embedded
resonator; then, the numerical method is introduced, the
Langevin equation are given, and the Fokker Planck
equation is discretized to obtain the stationary solution. In
Section 3, we study three physical quantities such as the
position probability distribution, the average current, and
the displacement fluctuations spectrum with the presence of
nonlinearity of the CNT and different electromechanical
couplings. -e mechanical bistability has been described by
them. Finally, in Section 4, we present our conclusions.

2. Methods

-e Hamiltonian is introduced by William Rowan Hamil-
ton, who created a ground breaking reconceptualization of
Newtonian mechanics called as Hamiltonian dynamics,
which was substantially vital to the future of quantum
physics. -erefore, the Hamiltonian of the quantum dot
embedded CNT mechanical resonator (see Figure 1).

We obtain

H � Hre + HQ + Hc, (1)

where the first term denotes the single-mode mechanical
resonator. Specifically, in this study, we consider the in-
fluences of the force of restoring under the Duffing term
which is cubic within displacement x. -e restoring force is
illustrated as

Fr � − kx − αx
3
, (2)

where α is the Duffing parameter and then the first term
reads:

Hre �
p
2

2m
+

mω2

2
x
2

+ αx
4
, (3)

where the considered mass m, momentum p, and especially
the resonating frequency which possess the inverse relation
with the mass can be illustrated as ω2 � (k/m). In the second
term, the Hamiltonian is composed of three parts; two of
them are with the specific energy of the quantum dot and
electrons, respectively.We consider the CNTas a single-level
quantum dot mentioned in [30] with the width of the single
level with the dependence of density of the considered states.
Such mathematical representations can be manipulated as
Γ � Γl + Γr, and the last one is the energy of tunneling [28].
-e detail expression of the second term is written as
HQ � 􏽐α,k(εαk − μα)c†αkcαk + ϵ0d†d + 􏽐ktαkc†αkd + H · c,
which possess the factor α � L(r), and εαk determines the
electrons energy summation in the exaggeration and the
energy of chemical potential is μα. However, the terms d as
well as c represent the dot and destruction operator, re-
spectively. When the tunnel of electron appears at the CNTs,
the corresponding rate of tunneling can be mentioned as

Γα � πt
2
αρα, (4)

where ρα represents the density of the considered states. We
consider the symmetric system to simplify our findings, and
in such techniques, we have to write Γ/2 � Γl � Γr.

-e last term that is more crucial and interesting in the
nanomechanical systems gives the coupling strength of
electromechanical for the aforementioned system, and one
can read it as [30]

Hc � − F0xd
†
d. (5)

One could find that the coupling strength is the function
of the vibration displacement within the CNTs. In such
quantum calculations, the factor n � d†d denotes the
numbering of electrons at the average under the tunneling in
CNTs, and F0 represents the active force for the oscillator at
that moment when an electron is tunneling just at the top of
the CNTs.

In particular, we consider the electron tunnel in the
coherent regime under the condition kBT≪Γ. In such
circumstances, the factor Γ represents the rate of tunneling,
and Tmeasures the strength of the considered temperature.
Especially, Z as well as kB denote the Planck and the
Boltzmann important constants, respectively. In particular,
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the mechanical mode dynamics with the displacement can
be illustrated by a famous equation of Langevin [14]:

m €x + A(x) _x + mω2
0x � eta(t) + Fe(x), (6)

where A(x) represents the dissipation and η(t) is a force of
stochastic that obeys the 〈η(t)η(t′)〉 � C(x)δ(t − t′). Be-
cause the effect of the time interval of the correlations
functions can denote Γ− 1, in such circumstances, the ac-
quired Γ≫ω0. So, we approximate the considered calcu-
lations by using the function of Dirac delta and the force at
an average manipulates as Fe(x) � F0nd(x) and
C(x) � F2

0Snn(x,ω ∼ 0), and similarly, the expression of
A(x) � − F2

0(zSnn/zω)(x,ω)|ω�0, within the limit of
nd � 〈d†d〉 which examines the mean of the population of
our considered dot. m also measures the effectiveness of the
mass for the oscillator mode considered. -e obvious ex-
pressions for nd, Snn, and A have been derived in detail in the
Appendix of [15]. With the equation of Langevin, one can
obtain the probability distributions Q(x, p, t) within the
framework of the Fokker Planck form:

ztQ �
p

m
zxQ − FzpQ +

A

m
zp(pQ) +

D

2
z
2
p(Q), (7)

where F(x) � Fr + Fe(x).

3. Results and Discussion

-e main object of this research is to explore the nature of
the nanomechanical system which is originated by quantum
mechanical systems at an extraordinary momentum, and it
can be feasible by using the system of carbon nanotubes’
resonator with numerous cavities and their corresponding
mechanical restoring force consistently. Here, we elucidate
our model results about nonlinearities of the system, po-
sition probability distribution, average current, and dis-
placement fluctuations. We are also interested to examine
the characteristics of the position probability, mechanical
noise, and average current which behaved meaningful

significantly during the considered quantum systems at
various energies and momenta, and we presume that the
produced sources consist of the debris of frequencies that
behave as the nanomechanical system to use in the thermal
as well as in mechanical engineering.

3.1.Nonlinearities of theSystem. In this section, we introduce
nonlinearity in our study; the nonlinearity can have various
sources. Here, we are interested to explore in the famous and
unique sources which are the two within the main unit. One
is directly from the electron tunneling, which contributes the
Fe in the total force and exhibits from the electromechanical
coupling αSET. Another source is from the geometryαG and
electrostatic αES indirectly. In recent CNT resonator-based
experiments [27], one can estimate the Duffing parameter
α � − 1/(6m)d3F/dx3, when Vg � 1V, αSET � 8∗ 1031N
/(kg∗m3), αG � 9.6∗ 1034N/(kg∗m3), and αES �

− 3.2∗ 1028N /(kg∗m3). One can write the Duffing term in
the restoring force as the nonlinearities. Now, the total
resultant force F(x) exerts at the considered oscillator, and
such force can be seen in [30]. We also here considered that
the vanishing temperature factor which implies kBT≪Γ, as
well as the lowest voltages which are bias and demonstrate
eV≪Γ, could be acquired with the summation of the force
restoring factor within the mechanical system and the
electronic contribution as mentioned in equation (2). -e
force due to the electronic contribution refers to [15] and can
be illustrated as

Fe(x) � f x, ε0, εP( 􏼁. (8)

One could see that the Duffing parameter α, the variation
of the gate energy ε0, and coupling εP could contribute the
nonlinearities for the system.

3.2. Position Probability Distribution. In this section, we
discuss the mechanical motion by the position probability
distribution of the CNTwith the Duffing parameter and the

Vs (t)

Vg (t)

Vd (t)
Cg (x)

x

CL CR

+

+

+

ΓL ΓR

Figure 1: Schematics of the quantum dot embedded nanomechanical resonator. -e mentioned CNT is clamped doubly between a drain
electrode and source which has been suspended just above the given gate electrode; then, the CNTacts as a quantum dot, and single-electron
tunneling is the dominant transport mechanism.
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electromechanical coupling. In order to solve the considered
equation of Fokker Planck, we examine and investigate the
given equation to solve sophistically and numerically within
the linear problem. Defining the operator of the famous
Fokker Planck as mentioned L in the acquired equation,

ztQ � 􏽥LQ. (9)

For the stationary solution, ztQ � 0, we consider the
oscillator of quantum mechanical systems in the presence of
the symmetry, where the gate energy ε0 � εP/2 shows the
special characteristics, and it also corresponds to adopting
the most new point of electron hole symmetry for the
aforementioned system [15]. Moreover, the parameters
ω0/Γ � 10− 3 and kBT/Γ � 10− 2 also can be useful in the
measured calculation. -e units of the t, x, p, and α are ω− 1

0 ,
(mω0)

− 1/2, (mω0)
1/2, and F0(mω0)

3/2 in this paper. From
Figure 2, the mechanical bistability of this system has been
described when Duffing parameter, α � 0; these results work
well with the conclusions of [15]. We discuss our results
from the mechanical view when the Duffing parameter
α � 0; the total force is

F(􏽥x) � − k􏽥x +
F0

π
arctan

F0􏽥x

Γ
. (10)

where 􏽥x � x − x0 and x0 � F0/2k. One can verify that the
acquiring force is not symmetric corresponding to the ac-
quiring points of x0 � F0/2k and linear with 􏽥x. -e position
probability distribution shows that the coupling increases
over the critical coupling value εc � πΓ. -e position
probability distribution displays a strong nonlinear signal
which is that merely one curious sharp-peak turns to double
peaks which show that the coupling induces strong non-
linear effect and the considered system tilts into the regimes
of the bistable 􏽥εp > 1 which originate from basic single stable
regime εp ≤ εc. For the critical value, our system distribution
possess flat and wider sharp peaks. All these interesting
consequences could be explained by the potential of the
system. One could see that the nonlinear effect from the
coupling is dominant in the tunneling process than the
Duffing nonlinearity. -e position probability distribution
with different Duffing parameters shows that the nonline-
arity of the nanotube resonator also contributes to the
mechanical state’s transition; it induces the asymmetric of
the position probability distribution with x0. It could push or
slow down the process of electron tunneling.

3.3.,eAverageCurrent. Because of its mobility, a quantum
particle like an electron generates an electric current. -e
flow of its likelihood is linked to that current. -ese currents
are determined by the wave function that explains a par-
ticle’s state. At a higher level, the quantum operator that can
operate between states or interact with a density matrix to
determine currents even in scenarios such mixed levels of
thermodynamic equilibrium which can be found. Here are
the concepts and equations which were used to utilize these
themes. -e current in our model under the coherent

tunneling regime shows kBT≪Γ and under the certain
condition implies V, T≪Γ [29]. In such circumstances, the
limit of the lower voltage obeys the condition of eV≪ kBT,
and it can manipulate as [30]

I �
e
2
V

2π
τ(z), (11)

where τ � 1/(1 + z2) and z � (μ − ϵ0 + F0x)/Γ. It is easier to
commute the average of the current ω≪Γ with the distri-
bution of the probability Pst by integrating x:

I �
e
2
V

2π
􏽚 dxdpQ(x, p, t)τ(x). (12)

From Figure 3, one could see that the strong electro-
mechanical coupling strongly suppresses the current, which
is called the current blockade. -e presence of the Duffing
nonlinearities could accelerate or slow down the current’s
declining, especially in the region of the bistable state.

3.4. Displacement Fluctuations. In this section, we investi-
gate the effect of the electromechanical coupling and the
Duffing nonlinearity on the system from the displacement
fluctuations spectrum. -e displacement fluctuations’
spectrum is as [13]

Sxx(ω) � − 2Tr 􏽢􏽥x
􏽢L

ω2
+ 􏽢L

2
􏽢􏽥xQst􏼢 􏼣. (13)

Here, it is crucial to indicate that the whole terms which
acquired a hat in (13) represent the super quantum operators
those acting in the regime of the probability space and can be
illustrated as 􏽢􏽥x(t) � 􏽢x(t) − 〈x〉.

From Figure 4, one could see that, in the mechanical
frequency ω0 region when the system contains only
monostable state, there is appearing unit resonance fre-
quency with the sharpness peak. Once the considering
coupling increases over the certain value, the mentioned
sharp-peak transference to the extremely low frequency and
the corresponding width of mentioned peak becomes
broaden and broaden with the softening of an interesting
frequency which represents the mechanical phenomena.-e
Duffing nonlinearity can contribute to the resonance fre-
quency shift under the specific condition that the considered
system goes to that regime which is bistable. However, the
appearance of the doublet peak originates as the electrons
can transform from one identical state to distinct another
state. -erefore, the identical fluctuation of displacement
spectrum features has also been obtained in [15] and [22].
Both situations appear for a system of nanomechanical
within the regime of the semiclassical and the Frank-
–Condon principle [11]. When the Duffing term α is neg-
ative, the resonance frequency shifts to a higher frequency,
meaning the stiffening spring behavior. Conversely, within
the limit of α which took positive and the corresponding
resonance certain peak shifts towards the critical lower
frequency, meaning the softening-spring behavior.
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Figure 2: -e position probability distribution Px versus displacement with different coupling (εP � 0.6πΓ, 1πΓ, 1.2πΓ) and three Duffing
parameters (α� − 5∗ 10− 5, 0, 5∗ 10− 5).
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Figure 3: -e average current 〈τ〉 versus the electromechanical coupling with three Duffing parameters (α� − 5∗ 10− 5, 0, 5∗ 10− 5).
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Figure 4: Continued.
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4. Conclusions

We afford the research of the nonlinearities in the nano-
mechanical system of a carbon nanotube resonator strongly
coupled to a quantum dot. -e two main sources of the
nonlinearities are given from the mechanical restoring force;
one comes from directly the single-electron tunneling, es-
pecially with the presence of the strong electromechanical
coupling; another nonlinearity is from geometry, electro-
statics, and electron tunneling. -e Duffing term is con-
sidered that is cubic in displacement included in the
restoring force in our paper. -e position probability, the
average current, and the mechanical noise with different
Duffing parameters have been studied. It is found that the
Duffing nonlinearities of the CNT-based resonator could
induce the asymmetry of the probability distribution of the
current blockade, soften, or stiffen the mechanical resonance
frequency that is important as the electromechanical cou-
pling in the nanomechanical systems.

We have explored the nonlinearities of the system,
position probability distribution, average current, and dis-
placement fluctuations. We have also investigated the
characteristics of the position probability, mechanical noise,
and average current with various factors which behaved
meaningful during the considered quantum systems at
distinct energies, momenta in the short, and wide tem-
perature regimes. One persuasive explication of this rami-
fication is that our considered quantum system possessed the
asymmetry of the probability distribution.
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A generalized fractional derivative (GFD) definition is proposed in this work. For a differentiable function expanded by a Taylor series, we
show that DαDβf(t) � Dα+βf(t); 0< α≤ 1; 0< β≤ 1. GFD is applied for some functions to investigate that the GFD coincides with the
results fromCaputo andRiemann–Liouville fractional derivatives.)e solutions of the Riccati fractional differential equation are obtained
via the GFD. A comparison with the Bernstein polynomial method (BPM), enhanced homotopy perturbation method (EHPM), and
conformable derivative (CD) is also discussed. Our results show that the proposed definition gives a much better accuracy than the well-
known definition of the conformable derivative. )erefore, GFD has advantages in comparison with other related definitions.)is work
provides a new path for a simple tool for obtaining analytical solutions of many problems in the context of fractional calculus.

1. Introduction

Fractional calculus theory is a natural extension of the
ordinary derivative which has become an attractive topic of
research due to its applications in various fields of science
and engineering. )e integral inequalities in fractional
models play an important role in different fields. Massive
attention on the advantages of integral inequalities has
been paid for considering economics [1], continuum and
statistical mechanics [2], solid mechanics [3], electro-
chemistry [4], biology [5], and acoustics [6]. Fractional-
order derivatives of a given function involve the entire
function history where the following state of a fractional-
order system is not only dependent on its current state but
also all its historical states [7, 8]. Nonlocality plays a very
important role in several fractional derivative models
[9, 10]. Many studies deal with the discrete versions of this
fractional calculus by employing the theory of time scales
such as [11, 12]. In the literature, some definitions have
been introduced such as Riemann–Liouville, Caputo,
Jumarie, Hadamard, and Weyl, but all of these definitions

have their advantages and disadvantages. )e most com-
monly used definition is Riemann–Liouville which is de-
fined as follows [13].

For α ∈ [n − 1, n), the α-derivative of f(t) is

D
RL

f(t) �
1
Γ(n − α)

d
n

dx
n 􏽚
∞

a

f(x)

(t − x)
(α−n+1)

dx. (1)

)e Caputo definition is defined as follows.
For α ∈ [n − 1, n), the α-derivative of f(t) is

D
C

f(t) �
1
Γ(n − α)

􏽚
∞

a

d
n
f(x)/dx

n

(t − x)
(α−n+1)

dx. (2)

All definitions including the above (1) and (2) satisfy the
linear property of fractional derivatives. )ese fractional
derivatives have several advantages, but they are not suitable
for all cases. On the one hand, in the Riemann–Liouville
type, when the fractional differential equations are used to
describe real-world processes, the Riemann–Liouville de-
rivative has some drawbacks. )e Riemann–Liouville de-
rivative of a constant is not zero. Additionally, if an arbitrary
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function is a constant at the origin, its fractional derivation
has a singularity at the origin for instant exponential and
Mittag-Leffler functions. Due to these drawbacks, the ap-
plicability range of Riemann–Liouville fractional derivatives
is limited. For differentiability, Caputo derivative requires
higher regularity conditions: to calculate the fractional de-
rivative of a function in the Caputo type, we should first
obtain its derivative. Caputo derivatives are defined only for
differentiable functions, while the functions that do not have
first-order derivative may have fractional derivatives of all
orders less than one in the Riemann–Liouville sense (see
[13]).

In [14], a new well-behaved simple fractional derivative,
named conformable derivative, was defined by relying only
on the basic limit definition of the derivative. )e con-
formable derivative satisfies some important properties that
cannot be satisfied in Riemann–Liouville and Caputo def-
initions. However, in [15], the author proved that the
conformable definition in [14] cannot provide good results
in comparison with the Caputo definition for some
functions.

)is work aims to provide a new generalized definition
of the fractional derivative that has advantages in com-
parison with other previous definitions in order to obtain
simple solutions of fractional differential equations.

)e paper is organized as follows: in Section 2, the basic
definitions and tools are introduced. In Section 3, some
applications are presented. In Section 4, the conclusion is
given.

2. Basic Definitions and Tools

Definition 1. For a function f: (0,∞)⟶ R, the general-
ized fractional derivative of order 0< α≤ 1 of f(t) at t> 0 is
defined as

D
GFD

f(t) � lim
ε⟶0

f t + Γ(β)/Γ(β − α + 1)εt1− α
􏼐 􏼑 − f(t)

ε
; β> − 1, β ∈ R

+
,

(3)

and the fractional derivative at 0 is defined as
DGFDf(0) � limε⟶0+ DGF Df(t).

Theorem 1. If f(t) is an α−differentiable function, then
DGFDf(t) � Γ(β)/Γ(β − α+ 1)t1− αdf(t)/dt; β> − 1, β ∈
R+.

Proof. By using the definition in equation (3), we have

D
GFD

f(t) � lim
ε⟶0

f t + Γ(β)/Γ(β − α + 1)εt1− α
􏼐 􏼑 − f(t)

ε
;

β> − 1, β ∈ R
+
,

(4)

where at α � β � 1, the classical limit of a derivative function
is obtained. Now, let

h �
Γ(β)

Γ(β − α + 1)
εt1− α

, (5)

ε �
Γ(β − α + 1)

Γ(β)
ht

α− 1
. (6)

By substituting equation (6) into equation (4), we get

D
GFD

f(t) �
Γ(β)

Γ(β − α + 1)
t
1− α lim

h⟶0

f(t + h) − f(t)

h
. (7)

)us,

D
GFD

f(t) �
Γ(β)

Γ(β − α + 1)
t
1− αdf(t)

dt
. (8)

For a function f(t) � tk, k> − 1, k ∈ R+, we prove that

D
GFD

f(t) �
Γ(β + 1)

Γ(β − α + 1)
t
β− α

. (9)

By using equation (8), we obtain

D
GFD

f(t) �
Γ(β)

Γ(β − α + 1)
t
1− α

kt
k− 1

,

D
GFD

f(t) �
kΓ(β)

Γ(β − α + 1)
t
k− α

.

(10)

By taking k � β, we get

D
GFD

t
β

�
βΓ(β)

Γ(β − α + 1)
t
β− α

, (11)

and then

D
GFD

t
β

�
Γ(β + 1)

Γ(β − α + 1)
t
β− α

. (12)

Equation (12) is compatible with the results of Caputo
and Riemann–Liouville derivatives [16]. □

Theorem 2. For a function derivative of f(t) � tk, k ∈ R+,
we obtainDαDβtk � Dα+βtk.

Proof. By using equation (12), we get

D
β
t
k

�
Γ(k + 1)

Γ(k − β + 1)
t
k− β

,

D
α
D

β
t
k

�
Γ(k + 1)

Γ(k − β + 1)
D

α
t
k− β

,

D
α
D

β
t
k

�
Γ(k + 1)

Γ(k − β + 1)

Γ(k − β + 1)

Γ(k − β − α + 1)
t
k− β− α

.

(13)

L.H.S � D
α
D

β
t
k

�
Γ(k + 1)

Γ(k − β − α + 1)
t
k− β− α

. (14)

Also, we have

R.H.S � D
α+β

t
k

�
Γ(k + 1)

Γ(k − β − α + 1)
t
k− β− α

. (15)
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)us, by (14) and (15), we get

D
α
D

β
t
k

� D
α+β

t
k
. (16)

)is property is not satisfied in the conformable de-
rivative [14]. □

Theorem 3. For a differentiable function f(t) that expands
about a point such as f(t) � 􏽐

∞
k�0 fk(0)/k!tk, we have

DαDβf(t) � Dα+βf(t).

Proof. )e expanded function by Taylor theory is given by
f(t) � 􏽐

∞
k�0 fk(0)/k!tk,

D
β
f(t) � 􏽘

∞

k�0

f
k
(0)

k!
D

β
t
k
,

D
β
f(t) � 􏽘

∞

k�0

f
k
(0)

k!

Γ(k + 1)

Γ(k − β + 1)
t
k− β

,

D
α
D

β
f(t) � 􏽘

∞

k�0

f
k
(0)

k!

Γ(k + 1)

Γ(k − β + 1)
D

α
t
k− β

,

D
α
D

β
f(t) � 􏽘

∞

k�0

f
k
(0)

k!

Γ(k + 1)

Γ(k − β + 1)

Γ(k − β + 1)

Γ(k − β − α + 1)
t
k− β− α

,

(17)

L.H.S � D
α
D

β
f(t) � 􏽘

∞

k�0

f
k
(0)

k!

Γ(k + 1)

Γ(k − β − α + 1)
t
k− β− α

,

(18)

R.H.S � D
α+β

f(t) � 􏽘

∞

k�0

f
k
(0)

k!
D

α+β
t
k
, (19)

R.H.S � D
α+β

f(t) � 􏽘
∞

k�0

f
k
(0)

k!

Γ(k + 1)

Γ(k − β − α + 1)
t
k− β− α

.

(20)

)us, by equations (18) and (20), we have

D
α
D

β
f(t) � D

α+β
f(t). (21)

)is property is not satisfied in the conformable de-
rivative [14]. □

Theorem 4. Let α ∈ (0, 1] and f, g be α−differentiable
functions; then,

(i) D
GFD

(fg) � fD
GFD

(g) + gD
GFD

(f), (22)

(ii) D
GFD f

g
􏼠 􏼡 �

gD
GFD

(f) − fD
GFD

(g)

g
2 . (23)

Proof. By using equation (8), we have

L.H.S � D
GFD

(fg), (24)

�
Γ(β)

Γ(β − α + 1)
t
1− αd(fg)

dt
, (25)

�
Γ(β)

Γ(β − α + 1)
t
1− α

f
dg

dt
+ g

df

dt
􏼢 􏼣, (26)

� f
Γ(β)

Γ(β − α + 1)
t
1− αdg

dt

+g
Γ(β)

Γ(β − α + 1)
t
1− αdf

dt
,

(27)

� FDGFD
(g) + gD

GFD
(f) � R.H.S. (28)

)is proves (i).
Now, to prove (ii), we use equation (8) as follows:

L.H.S � D
GFD f

g
􏼠 􏼡

�
Γ(β)

Γ(β − α + 1)
t
1− α d

dt

f

g
􏼠 􏼡,

�
Γ(β)

Γ(β − α + 1)
t
1− α gdf/dt − fdg/dt

g
2􏼢 􏼣,

�
g Γ(β)/Γ(β − α + 1)t

1− α
df/dt􏽨 􏽩 − f Γ(β)/Γ(β − α + 1)t

1− α
dg/dt􏽨 􏽩

g
2 ,

�
gD

GFD
(f) − fD

GFD
(g)

g
2 � R.H.S.

(29)
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Rules (i) and (ii) are not satisfied in the Caputo and
Riemann–Liouville definitions. □

Theorem 5. (Rolle’s theorem for the generalized fractional
differential function). Let a> 0 and f: [a, b]⟶ R be a given
function that satisfies the following:

(i) f is continuous on [a, b]
(ii) f is α−differentiable for some α ∈ (0, 1]

(iii) f(a) � f(b)

Aen, there exists c ∈ [a, b] such that f(α)(c) � 0.

Proof. Since f is continuous on [a, b] and f(a) � f(b),
there is c ∈ (a, b), which is a point of local extrema, and c is
assumed to be a point of local minimum. So, we have

D
GFD

f c
+

( 􏼁 � lim
ε⟶0+

f c + Γ(β)/Γ(β − α + 1)εc1− α
􏼐 􏼑 − f(c)

ε
; β> − 1, β ∈ R

+
,

D
GFD

f c
−

( ) � lim
ε⟶0−

f c + Γ(β)/Γ(β − α + 1)εc1− α
􏼐 􏼑 − f(c)

ε
; β> − 1, β ∈ R

+
.

(30)

However, DGFDf(c+) and DGFDf(c− ) have opposite
signs. Hence, DGFDf(c) � 0. □

Theorem 6. (mean value theorem for the generalized frac-
tional differential function). Let a> 0 and f: [a, b]⟶ R be
a given function that satisfies the following:

(i) f is continuous on [a, b]
(ii) f is α−differentiable for some α ∈ (0, 1)

Aen, there exists c ∈ [a, b] such that

D
GFD

f(c) �
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣. (31)

Proof. Consider a function such as in [25].

g(t) � f(t) − f(a) −
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣 ht

α
− ha

α
( 􏼁, (32)

where h � 1/Γ(α).

D
GFD

g(t) � D
GFD

f(t) − D
GFD

f(a)

−
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣 hD

GFD
t
α

− hD
GFD

a
α

􏼐 􏼑.

(33)

By using equation (8), we get

D
GFD

g(t) � D
GFD

f(t) −
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣, (34)

at c ∈ [a, b].

D
GFD

g(c) � D
GFD

f(c) −
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣, (35)

and the auxiliary function g(c) satisfies all conditions of
)eorem 5. )erefore, there exists c ∈ [a, b] such that
DGFDg(c) � 0. )en, we have

D
GFD

f(c) �
f(b) − f(a)

h b
α

− a
α

( 􏼁
􏼢 􏼣. (36)

□

Definition 2. Ia
α(f)(t) � I01(tα− 1f(x)) � Γ(β − α + 1)/Γ(β)

􏽒
t

0 f(x)/x1−α dx and α ∈ (0, 1).

Theorem 7. DαIα(f)(t) � f(t) for t≥ 0 where fis any
continuous function in the domain.

Proof. Since f is continuous, Ia
α(f)(t) is differentiable.

Hence,

D
α
Iα(f)(t) �

Γ(β)

Γ(β − α + 1)
t
1− α d

dt
Iα(f)(t),

D
α
Iα(f)(t) �

Γ(β)

Γ(β − α + 1)
t
1− α d

dt

Γ(β − α + 1)

Γ(β)
􏽚
∞

0

f(x)

x
1−α dx,

D
α
Iα(f)(t) � t

1− α d

dt
􏽚

t

0

f(x)

x
1−α dx,

D
α
Iα(f)(t) � t

1− αf(t)

t
1−α ,

D
α
Iα(f)(t) � f(t).

(37)
□

3. Applications

3.1. Fractional Derivative of the Exponential Function
f(t) � eλt, λ ∈ c.

e
λt

� 􏽘
∞

k�0

λk

k!
t
k
,

D
GFD

e
λt

� 􏽘
∞

k�0

λk

k!
D

GFD
t
k
.

(38)

From equation (12), we get
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D
GFD

t
k

� D
C

t
k
. (39)

Let us now write equation (23) as

D
GFD

e
λt

� 􏽘
∞

k�0

λk

k!
D

C
t
k
,

D
GFD

e
λt

� D
C

e
λt

.

(40)

3.2. Fractional Derivative of Sine and Cosine Functions.
For the sine function, we define f(t) � sin ωt as

sin ωt �
1
2!

e
iωt

− e
− iωt

􏼐 􏼑,

D
GFD sin ωt �

1
2!

D
GFD

e
iωt

− D
GFD

e
− iωt

􏼐 􏼑.

(41)

From equation (26), we obtain

D
GFD sin ωt �

1
2!

D
C

e
iiωt

− D
C

e
− iiωt

􏼒 􏼓,

GFD
D

α sin ωt �
C

D
α 1
2!

e
iωt

− e
− iωt

􏼐 􏼑,

GFD
D

α sin ωt �
C

D
α sinωt.

(42)

Similarly, we can prove the following for f(t) � cos ωt:
GFD

D
α cos ωt �

C
D

α cos ωt. (43)

Let us now solve some fractional differential equations in
the sense of GFD.

Example 1. D1/2y(x) � ekx, y(0) � 0.

Solution 1. Let us find the solution of the above example
where ekx � 􏽐

∞
n�0 kn/k!xn.

By using equation (8), we obtain

D
1/2

y(x) � e
kx

,

Γ(β)

Γ(β + 1/2)
x
1/2dy(x)

dx
� 􏽘
∞

n�0

k
n

k!
x

n
,

dy(x)

dx
�
Γ(β + 1/2)

Γ(β)
􏽘

∞

n�0

k
n

n!
x

n− 1/2
,

􏽚 dy(x) �
Γ(β + 1/2)

Γ(β)
􏽘

∞

n�0

k
n

n!
􏽚 x

n− 1/2
dx,

y(x) �
Γ(β + 1/2)

Γ(β)
􏽘

∞

n�0

k
n

n!

x
n+1/2

n + 1/2
+ c,

y(x) � 􏽘

∞

n�0

k
n

n!

Γ(β + 1/2)

Γ(β)

x
n+1/2

n + 1/2
+ c.

(44)

By taking β � n + 1/2, we have

y(x) � 􏽘
∞

n�0

k
n

n!

Γ(n + 1)

(n + 1/2)Γ(n + 1/2)
x

n+1/2
+ c,

y(x) � 􏽘
∞

n�0

k
n

Γ(n + 3/2)
x

n+1/2
+ c,

(45)

since y(0) � 0.

y(x) � 􏽘
∞

n�0

k
n

Γ(n + 3/2)
x

n+1/2
. (46)

)is solution is consistent with the Caputo solution.

Example 2. D1/2y(x) � x2 sin x, y(0) � 0.

Solution 2. Let us find the solution of the above example
where sin x � 􏽐

∞
n�0 x2n+1/(2n + 1)!.

By applying equation (1), we get

Γ(β)

Γ(β + 1/2)
x
1/2dy(x)

dx
� 􏽘

∞

n�0

x
2n+3

(2n + 1)!
,

dy(x)

dx
�
Γ(β + 1/2)

Γ(β)
􏽘

∞

n�0

x
2n+5/2

(2n + 1)!
,

􏽚 dy �
Γ(β + 1/2)

Γ(β)
􏽘

∞

n�0
􏽚

x
2n+5/2

(2n + 1)!
dx,

y(x) � 􏽘

∞

n�0

Γ(β + 1/2)

Γ(β)

x
2n+7/2

(2n + 7/2)(2n + 1)!
+ c.

(47)

By taking β � 2n + 7/2, we get

y(x) � 􏽘
∞

n�0

Γ(2n + 4)

Γ(2n + 7/2)

x
2n+7/2

(2n + 7/2)(2n + 1)!
+ c,

y(x) � 􏽘
∞

n�0

(2n + 3)!

(2n + 7/2)Γ(2n + 7/2)

x
2n+7/2

(2n + 1)!
+ c,

y(x) � 􏽘
∞

n�0

(2n + 3)(2n + 2)

Γ(2n + 9/2)
x
2n+7/2

+ c,

(48)

since y(0) � 0.

y(x) � 􏽘
∞

n�0

(2n + 3)(2n + 2)

Γ(2n + 9/2)
x
2n+7/2

. (49)

)is solution is consistent with the Caputo solution.

Example 3. D1/2y(x) + y(x) � x2 + 2/Γ(2.5)x3/2.

Solution 3. By applying equation (8), we obtain

Γ(β)

Γ(β + 1/2)
x
1/2dy

dx
+ y(x) � x

2
+

2
Γ(2.5)

x
3/2

. (50)
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)e following is a nonlinear differential equation of first
order in which we can obtain its solution with the help of
Mathematica package.

y(x) �

9A
4 ��

π
√

− 6A
3
(2 + 3

��
π

√ ��
x

√
)

��
π

√ ��
x

√
− 12A(2 +

��
π

√ ��
x

√
)x + 16x

3/2

+6
��
π

√
x
2

+ 6A
2
(4

��
x

√
+ 3

��
π

√
x)

6
��
π

√ + c1e
− 2

�
x

√
/A

.

(51)

To determine A � Γ(β)/(Γ(β + 1/2)), we take α � β �

1/2 as in [19].

Example 4. d/dx (1 −
��
x

√
)(y(x) + 1)􏼈 􏼉 + λD1/2y(x) � 0.

Solution 4. By applying equation (8), we obtain

d

dx
(1 −

��
x

√
)(y(x) + 1)􏼈 􏼉 + λ

Γ(β)

Γ(β + 1/2)
x
1/2dy

dx
� 0. (52)

)e following is a nonlinear differential equation of first
order in which its solution can be obtained using Mathe-
matica package as mentioned in our previous example.

Example 5. Consider the fractional Riccati differential
equation [17]:

D
α
y(x) + y

2
(x) � 1, y(0) � 0, 0< α≤ 1. (53)

Solution 5. By applying equation (8), we obtain

Γ(β)

Γ(β − α + 1)
x
1− αdy

dx
+ y

2
(x) � 1, y(0) � 0, 0< α≤ 1.

(54)

To solve this equation at α � 3/4 and α � 9/10, the
package of Mathematica has been used to obtain the
following:

y(x) �
−1 + e

8x3/4/sA

1 + e
8x3/4/sA

, (55)

where A � Γ(β)/Γ(β + 1/4) and β � α � 3/4 as in [28].

Table 1: Comparison of the results of the GFD with other works at α � 3/4.

t Present work BPM [17] EHPM [18] IABMM [18] CD [14]
0 0 0 0 0 0
0.2 0.31439 0.30996891 0.3214 0.3117 0.37889
0.4 0.49848 0.48162749 0.5077 0.4855 0.58539
0.6 0.63022 0.59777979 0.6259 0.6045 0.72064
0.8 0.72609 0.67884745 0.7028 0.6880 0.81029
1.0 0.79618 0.73684181 0.7542 0.7478 0.87006

Table 2: Comparison of the results of the GFD with other works at α � 9/10.

t Present work at α � 9/10 BPM [17] MHPM [18] IABMM [18] CD [14]
0 0 0 0 0 0
0.2 0.23952 0.23878798 0.2391 0.2393 0.25526
0.4 0.42667 0.42258214 0.4229 0.4234 0.45191
0.6 0.57607 0.56617082 0.5653 0.5679 0.60539
0.8 0.69138 0.67462642 0.6740 0.6774 0.72063
1.0 0.7778 0.75460256 0.7569 0.7584 0.80445

Table 3: Comparison of the results of the GFD with other works at α � 9/10 for equation (43).

t Present work BPM [17] FTBM [18] IABMM [18] CD [14]
0 0 0 0 0 0
0.2 0.30718 0.31488815 0.31485423 — 0.33295
0.4 0.67131 0.69756771 0.69751826 — 0.73105
0.6 1.0666 1.10789047 0.90364539 — 1.1561
0.8 1.4397 1.47772823 1.47768008 — 1.5422
1.0 1.7485 1.76542008 1.76525852 1.7356 1.8457
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y(x) �
−1 + e

20x9/10/9A

1 + e
20x9/10/9A

, (56)

where A � Γ(β)/Γ(β + 1/4) and β � α � 9/10 as in [19].

Example 6. Consider the following Riccati fractional dif-
ferential equation [17]:

D
α
y(x) � 2y(x) − y

2
(x) + 1, y(0) � 0, 0< α≤ 1. (57)

Solution 6. By applying equation (8), we obtain
Γ(β)

Γ(β − α + 1)
x
1− αdy

dx
� 2y(x) − y

2
(x) + 1, y(0) � 0, 0< α≤ 1.

(58)

To solve this equation at α � 9/10, the package of
Mathematica has been used to obtain the following:

y(x) � −
−1 −

�
2

√
− e

S
+

�
2

√
e

S

1 + e
S

􏼠 􏼡, (59)

where

s �
2

�
2

√
−10x

9/10
+ 9A ln(1 +

�
2

√
)/

�
2

√
􏼐 􏼑

9A
, (60)

A � Γ(β)/Γ(β + 1/4) and β � α � 9/10 as in [19].

4. Discussion of Results

In this section, we show some results for the Riccati
fractional differential equation in Tables 1–3 for different
values of α, where parameters are taken as β � α [19]. As a
result, we have obtained a good accuracy in the present
calculations, where α � 3/4 is taken in Table 1, and α � 9/10
is taken in Tables 2 and 3. By comparing our results from
the GFD definition with the Bernstein polynomial method
(BPM) [17], enhanced homotopy perturbation method
(EHPM) [18], IABMM [12], and conformable derivative
(CD) [14], it is noticeable that the present results are in
good agreement with BPM, EHPM, and IABMM results. In
addition, the conformable derivative [14] has been used to
solve the fractional Riccati differential equation. However,
the results of the conformable derivative do not coincide
with other works and our present results. A similar situ-
ation is in Table 2, by taking α � 9/10, where the present
results are compared with the Bernstein polynomial
method (BPM) [17], enhanced homotopy perturbation
method (EHPM) [18], IABMM [18], and conformable
derivative (CD). )e obtained results that have been
calculated analytically via the GFD are in good agreement
with other methods. However, in comparison with the CD,
the present results are better than CD results as suggested
in [14]. In Figure 1, the absolute relative error shows that
the present results of the Riccati fractional differential
equation are exactly obtained at α � 1 in [17] by comparing
it with α � 3/4 using the proposed definition and the
conformable one. )e figure shows a good accuracy for the
results of the proposed definition in comparison with the
conformable one. A similar situation is provided in Fig-
ure 2 at α � 9/10.
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Figure 1: )e absolute relative error is plotted for the Riccati
fractional differential equation for the conformable derivative and
GFD at α � 0.75.
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Figure 2: )e absolute relative error is plotted for the Riccati
fractional differential equation for the conformable derivative and
GFD at α � 0.90.
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In Table 3, one compares the present results obtained
from the GFD definition with the Bernstein polynomial
method (BPM) [6], fractional Taylor basis method (FTBM)

[7], IABMM [8], and conformable derivative (CD) [2]. )e
results from numerical methods in [6–8] are in agreement
with the present results in the context of GFD. In com-
parison with the conformable derivative results, CD gives
more errors than our results that have been obtained in the
sense of the GFD. Also, in Figure 3, the results of the GFD
give less error in comparison with the conformable deriv-
ative definition. )erefore, the present results of the GFD
give compatible results with other works.

5. Conclusion

In this work, GFD has been suggested to provide more
advantages than other classical Caputo and Rie-
mann–Liouville definitions such as the derivative of two
functions, the derivative of the quotient of two functions,
Rolle’s theorem, and the mean value theorem which have
been satisfied in the GFD. )e present definition satisfies
DαDβf(t) � Dα+βf(t) for a differentiable function f(t)

expanded by Taylor series. )e fractional integral is intro-
duced. Compatible results with Caputo and Rie-
mann–Liouville results have been obtained for functions
that are given in Sections 3.1 and 3.2. Also, a comparison
with the conformable derivative is studied.

Some fractional differential equations can be solved
analytically in a simple way with the help of our proposed
definition which exactly agrees with the classical Caputo and
Riemann–Liouville derivatives’ results. In comparison with
the conformable derivative, less error has been obtained in
our GFD results by calculating the absolute relative error as

in Figures 1–3 for the given Riccati fractional differential
equation. Also, our results from the GFD definition are
compared with the Bernstein polynomial method (BPM),
enhanced homotopy perturbation method (EHPM),
IABMM, and conformable fractional derivative (CD) [14].
)e present results are in good agreement with BPM, EHPM,
and IABMM.

We conclude that the present definition gives a new
direction for solving fractional differential equations in a
simple manner in which the results of the Caputo and
Riemann–Liouville definitions are exactly deduced. In ad-
dition, GFD has advantages in comparison with the con-
formable derivative definition.
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Normalized chaotic parameters examine the characterization of the particle production fluids produced at unusual energies and
investigate a remarkable behavior in quantummeasurement.&e analogous characterization can be analyzed to probe the chaotic
systems of boson particles creating sources of extraordinary energy. We observe that the bosons appear to be the appropriate
aspirants of chaos fractions, and the normalized chaotic parameters evaluate the presence of such conglomerate phases sig-
nificantly. &e core point of this manuscript is that we calculate and examine the normalized chaotic parameters by differential
equations to analyze the characteristics of the chaotic systems and their applications in thermal as well as in mechanical en-
gineering. With such an efficient and distinctive approach, we perceive significant consequences for the correlator at higher
temperature regimes.

1. Introduction

&e femtoscopy is extensively studied to investigate the
characteristics of the chaotic and coherence systems created
during the smashing of heavy nuclei at unprecedented
energies [1–5]. &e chaotic parameter is enormously used to
extract the consequences of the hybrid systems under
consideration that the boson particles are ejected usually
from the partially chaotic sources to analyze the two particles
interferometry. Such a unique chaotic parameter possesses
the numerical values zero and one for the coherence and
chaotic sources, respectively. On the other hand, it

approaches unity for the chaotic emissions [1, 2, 6].
Moreover, various factors influence the lower order chaotic
parameter like the misidentification of particles, laser
emissions as well as the resonances of long-lived [1, 5, 7, 8].
Perpetually, two particles quantum interferences are de-
termined experimentally to investigate the heat chaotic
components and the coherence characterization. It is dis-
tinguished; if the chaotic fraction is assessed more than fifty
percent, then the two particles’ chaotic parameter suppresses
roughly twenty-five percent ratio. &is is the compelling
cause to probe the chaotic and coherence properties asso-
ciated with the produced systems using two particles
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interferences alone [9]. Particularly, the quantum correla-
tions for higher ranks interferences contain extra particulars
which cannot be probed from the lower order interference.
&e experimental data about pion correlations investigation
have evaluated that the reduction of chaoticity is increased
appreciably at third-order correlations than that of the
second-order interferences [9–11].

In particular, the femtoscopy at higher order investigates the
source chaotic-coherence fractions significantly and also
possesses advantages about experimental dominance by the
elimination of Fourier phase and resonances decays which
appeared long-lived [6, 12–16]. &e interferences of third-order
measured data results are illustrated experimentally and
graphically that the normalized chaotic parameters of third-
order correlations report an obvious suppression from the given
chaotic limit [15]. Such an obvious suppression of the chaos
limit may occur due to the consequences of the coherence at
lower temperature and momenta regimes [16]. &ere are
multiple sources of nonchaotic emissions such as coherence of
the pions and the pulse radiations which provoke the coherence
of the numerous shapes [17–19].

&is research work is unique because we have evaluated
the chaotic and coherence properties of the thermal system
with particles creating a boson gas source. It inflates rela-
tivistically by the interior region of the field potential for the
special harmonic oscillator that drops out with the specific
intervals of time in the hadronic phase temperature regime.
Especially, the normalized chaotic parameters for third-
order particles interferences are investigated with the ap-
plications of the one and two particles density matrices for
hadronic phases at disparate temperature regimes. &e
nonchaotic particulars of production systems influence the
chaotic parameter significantly under the considered mea-
surements at miscellaneous temperatures and are explored
to use them in thermal engineering [20–22].

&is manuscript is organized into 5 sections. We in-
vestigate the correlations and chaotic parameters of differ-
ential equations in Section 2. In Section 3, we calculate and
investigate the normalized chaotic parameter applications.

We analyze our model results in Section 4. Finally, in Section
5, we summarize our findings.

2. Correlations and Normalized
Chaotic Parameters

2.1. Two and /ree Particles Correlation Functions. &e two
and three particles correlation functions in momentum
space can be written in terms of the density matrices [21, 22]
as follows:

C2 p1, p2( 􏼁 �
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p1, p2; p1, p2( 􏼁
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.

(1)

Correlations in the experimental analysis of two and
three particles are achieved by considering the ratio of all
particles correlated and divided by the product of the un-
correlated in the momentum space:
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&e condensation of Bose–Einstein influences the
quantum correlations significantly, and the correlation
functions depend crucially on the condensation. However,
the effect of higher orders correlations is extensively larger
than that of the lower order condensations. &e conden-
sation in the case of three particles plays a vital role during
the interference of three bosons. In addition, the extraction
of coherence from the experimental data possesses the
several advantages during the analysis of heat exchange in
the thermal and mechanical engineering [22, 23].
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Here, it is more important to mention that the quantum
correlation functions of higher order contained the corre-
sponding correlators which are manipulated for two par-
ticles interferences:
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where Λ2(12), Λ2(23), and Λ2(13) are the correlators of the
two particles correlations which played the quantum sta-
tistical role in three particles interferences. Specifically, the
genuine three particles correlator Λ3(123) can be extracted
with the subtraction of lower orders correlators like two
particles interferences. &us, the mathematical expression
for genuine three particle correlator can be expressed as
Λ3(123) � C3(123) − Λ2(12) − Λ2(23) − Λ2(13).

&e genuine three particles correlator possesses the
peculiar properties about the behavior of chaos and co-
herence in the radiated system which has been copiously
used in the thermal engineering. Equation (3) can be written
for the true three particles correlator in order to show the
importance in the field of thermal and mechanical engi-
neering, respectively.
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It is obvious that in the absence of the three particles
quantum phases, the normalized chaos correlator w3(q3) is
numerically measured to 2 at all zero relative momenta. We
have been able to proceed and check the model proposed for
two as well as three particles correlations [24].

2.2. Normalized Chaotic Parameter with Classical Methods.
&e condensation of Bose–Einstein has hypercritical effect
on the three particles correlations, and the exaction of such
coherence from experimental data of three particles has the
advantage that the phase as well as the resonance problems
can be minimized by using the normalized chaotic pa-
rameter. &e normalized chaotic parameter of three particle
w3(q3) � w3(p1, p2, p3) is obtained by dividing the genuine
three particles correlatorΛ3(123) with the square root of the
product of two particles correlators:
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In addition, one may also isolate the Fourier phase of
three particles by normalizing the genuine three particle
correlation with the product of the two particles correlations:
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It has been mentioned that the genuine three particles
correlator can be expressed in terms of the momentum-
dependent density matrices given as follows:
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In the aforementioned equations, Nco and Uco(p) ex-
press the particles number and the corresponding wave
functions in the ground state. Moreover, the product of the
two particles correlators for the quantum statistical inter-
ference can be manipulated as

Λ2(12)Λ2(23)Λ2(13) � ρ(1)
p1, p2( 􏼁ρ(1)

p2, p3( 􏼁ρ(1)
p1, p3( 􏼁 × P.

(10)

It is crucial to mention that the multiplier factor P
represents the square root of the product of the three
particles correlators, and it can be expressed as�������������������������������������

[1 − g(p1, p2)][1 − g(p2, p3)][1 − g(p1, p3)]
􏽰

. Moreover,
the relative coherence probability can be measured by using
the partially coherence probability to the total probability
during the emissions of particles:
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2

ρ(1)
p2, p3( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 ,

g p1, p3( 􏼁 �
N

2
co Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

Uco p3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

ρ(1)
p1, p3( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 .

(11)

In particular, when we substitute the values of equations
(8) and (10) into equation (6) under the important as-
sumption that the emissions of three particles possess the
identical momenta p1 � p2 � p3 � p, then the corre-
sponding results can be written as

g(p, p, p) �
N

3
co Uco(p)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
6

ρ(1)
(p)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3 �

ρco(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

|ρ(p)|
3 , (12)

g(p, p) �
N

2
co Uco(p)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

ρ(1)
(p, p)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 �

ρco(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

|ρ(p)|
2 . (13)

&e genuine three particles correlator in the higher
correlations contains the excessive information about the
particle ejecting sources, and it acquired the sophisticated
form with the substitution of equation (12) into equation (8):

Λ3 q3( 􏼁 � 2.ρ(1)
(p, p)ρ(1)

(p, p)ρ(1)
(p, p) 1 −

ρco(p)

ρ(p)
􏼢 􏼣

3
⎡⎣ ⎤⎦.

(14)

In addition, the product of the two particles correlator
acquires the fruitful results when we use equation (18) into
equation (13) for the three particles ejection. Such useful
results can be obtained by using the difference equations,
and the application of the analytical techniques become

Λ2(12)Λ2(23)Λ2(13) � ρ(1)
(p, p)ρ(1)

(p, p)ρ(1)
(p, p)

��������������

1 −
ρco(p)

ρ(p)
􏼢 􏼣

2
⎡⎣ ⎤⎦

3
􏽶
􏽴

.

(15)

Consequently, the results of normalized three particles
chaotic parameter possess the sophistical shape after the
eradication of some unusual terms, and it can be happen
when we substitute the values of equations (14) and (15) into
equation (6):

w3(p) � 2
1 − ρco(p)/ρ(p)

􏽨 􏽩
3

􏼔 􏼕
������������������

1 − ρco(p)/ρ(p)
􏽨 􏽩

2
􏼔 􏼕

3
􏽲 . (16)

&e sensitive parameter of the coherence fraction
D(p) � ρco(p)/ρ(p) and the expression for normalized
three particles chaotic parameter can be written in terms of
coherence fraction as follows:

w3(p) � 2
1 − [D(p)]

3
􏽨 􏽩

1 − [D(p)]
2

􏽨 􏽩
3/2. (17)

In particular, the chaotic parameter w3(p) indicates that
the value of correlator becomes 2 for the complete chaotic
sources but it reflects to infinity for complete coherence
sources. &e results of w3(p) may not explain the experi-
mental data of chaos fraction. Here, the question is that what
can we do to explain the experimental data in order to
examine the chaos fraction? We can achieve our goal to
modify the old model in order to use the new techniques
which compelled us to study the higher order quantum
correlations in particular direction [24, 25].

3. Characteristics of Normalized
Chaotic Parameter

&e correlations of two particles are untrammelled about FT
phase but it persists in the correlations of three particles
considerably. However, such kind of considered phase is
potentially isolated by weighing up the cumulant interfer-
ences of three particles cumulant to two particles correla-
tions. It is prevailed by the division of three particles
correlator under root of computed two particles correlators.
Now, we have been able to express the normalized chaotic
three particles correlator for aforementioned sources by
using the expressions of two as well as three particles cor-
relators. It has been observed that the systems of particles
emission behave partially chaotic, and the density matrix for
such systems possess the partially coherence as well as
partially chaotic components. &e mathematical expression
for the particle emitted fluid can be illustrated as the sum of
the chaotic and coherence components [25–28]:

ρ(1)
p1, p2( 􏼁 � ρ(1)

ch p1, p2( 􏼁 + ρ(1)
co p1, p2( 􏼁, (18)

where ρ(1)
ch (p1, p2) represents the density matrix for the

chaotic component of the particles ejected sources and
ρ(1)

co (p1, p2) shows the one particle density matrix of the
corresponding coherence component. It is more crucial to
mention that the density matrices at higher order can be
written in terms of two particles density matrices in order to
calculate the correlation functions at higher order. We can
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expand our mathematical expression of two particles in-
terferences into three particles quantum correlations so-
phistically given as follows:

ρ(1)
p1, p2( 􏼁 × ρ(1)

p2, p3( 􏼁 × ρ(1)
p1, p3( 􏼁 � ρ(1)

ch p1, p2( 􏼁 + ρ(1)
co p1, p2( 􏼁􏽨 􏽩

× ρ(1)
ch p2, p3( 􏼁 + ρ(1)

co p2, p3( 􏼁􏽨 􏽩

× ρ(1)
ch p1, p3( 􏼁 + ρ(1)

co p1, p3( 􏼁􏽨 􏽩.

(19)

&ese density matrices can be multiplied in order to
obtain the normalized chaotic parameter, and the adopted

methodology of differential equations leads for the multi-
plication purposes:

ρ(1)
p1, p2( 􏼁 × ρ(1)

p2, p3( 􏼁 × ρ(1)
p1, p3( 􏼁 � ρ(1)

ch p1, p2( 􏼁.ρ(1)
ch p2, p3( 􏼁.ρ(1)

ch p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁.

(20)

In particular, the possessions of the quantum statistical
correlations can be exhibited for the symmetrization of the
particles emission points. It has been substantiated that the
symmetrization only exists for independently ejected boson
particles, and such effect is missing for the coherence particle
creations [29, 30]. It has been noted that the productions of
bosons from the coherence state behave collectively, and the
symmetrization does not occur for pairs of the ejected co-
herence bosons. Such phenomena can also appear for the
mixed pairs of particles from the coherence pool and the
other from the chaotic pools of particles production. &us,
the required density matrix can be expressed in terms of the
lower energy ground state wave function:

ρ(1)
co p1, p2( 􏼁 � NcoUco p1( 􏼁Uco p2( 􏼁

ρ(1)
co p2, p3( 􏼁 � NcoUco p2( 􏼁Uco p3( 􏼁

ρ(1)
co p1, p3( 􏼁 � NcoUco p1( 􏼁Uco p3( 􏼁

ρ(1)
co p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁 � N
2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

ρ(1)
co p1, p2( 􏼁.ρ(1)

co p1, p3( 􏼁 � N
2
co Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Uco p2( 􏼁Uco p3( 􏼁

ρ(1)
co p2, p3( 􏼁.ρ(1)

co p1, p3( 􏼁 � N
2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

(21)

where Nco and Uco represent the coherence particles number
and their associated coherence wave functions, respectively.
Here, the above expressions can be manipulated for the
further calculations as follows:

ρ(1)
co p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

� N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(22)

Furthermore, the density matrix for the chaotic emis-
sions can be written in the form of the coherence density
components as well as the total density matrix by using the
following equation:

ρ(1)
ch p1, p2( 􏼁 � ρ(1)

p1, p2( 􏼁 − ρ(1)
co p1, p2( 􏼁,

ρ(1)
ch p2, p3( 􏼁 � ρ(1)

p2, p3( 􏼁 − ρ(1)
co p2, p3( 􏼁,

ρ(1)
ch p1, p3( 􏼁 � ρ(1)

p1, p3( 􏼁 − ρ(1)
co p1, p3( 􏼁.

(23)

Specifically, the emissions of three particles illustrate in
such a way that the two density matrices for coherence
emissions and one for the chaotic emission.&ese results can
be expressed in terms of the wave functions:
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ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁 � ρ(1)

p1, p2( 􏼁 − ρ(1)
co p1, p2( 􏼁􏽨 􏽩

× N
2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩.
(24)

&e aforementioned equations can be transformed into
the symmetrical shape to perform the basic multiplications,

and such expression can be expressed in terms of nonchaotic
emission:

ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁 � ρ(1)

p1, p2( 􏼁N
2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co|Uco p1( 􏼁 Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(25)

On the other hand, the density matrices for the sym-
metrization of the other triplet manipulated in the form of
nonchaotic emissions are as follows:

ρ(1)
ch p2, p3( 􏼁.ρ(1)

co p1, p2( 􏼁.ρ(1)
co p1, p3( 􏼁 � N

2
coρ

(1)
p2, p3( 􏼁Uco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co|Uco p1( 􏼁 Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(26)

Similarly, the density matrices for the chaotic and co-
herent particles emissions can also be expressed as follows:

ρ(1)
ch p1, p3( 􏼁.ρ(1)

co p1, p2( 􏼁.ρ(1)
co p1, p3( 􏼁 � N

2
coρ

(1)
p1, p3( 􏼁Uco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co|Uco p1( 􏼁 Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(27)

We are able to generalize the density distributions
method to examine the solutions of the chaos fraction by
using the differential equations. Different techniques of such
fractional differential equations play a vital role in order to

probe the types of chaos, coherence, and implicit solutions
[31, 32].

In addition, we substitute the mentioned values in
equation (20) in order to adopt the proper mathematical
expression in sophisticated shape:

ρ(1)
p1, p2( 􏼁.ρ(1)

p2, p3( 􏼁.ρ(1)
p1, p3( 􏼁 � ρ(1)

ch p1, p2( 􏼁.ρ(1)
ch p2, p3( 􏼁.ρ(1)

ch p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
p1, p2( 􏼁N

2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ρ(1)
p2, p3( 􏼁N

2
coUco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
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+ ρ(1)
p1, p3( 􏼁N

2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

ρ(1)
p1, p2( 􏼁.ρ(1)

p2, p3( 􏼁.ρ(1)
p1, p3( 􏼁 � ρ(1)

ch p1, p2( 􏼁.ρ(1)
ch p2, p3( 􏼁.ρ(1)

ch p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
p1, p2( 􏼁N

2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 2N
3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ρ(1)
p2, p3( 􏼁N

2
coUco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ρ(1)
p1, p3( 􏼁N

2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (28)

&e possible terms can be represented for the expla-
nation of the experimental data which play a vital role in the

quantum interferences, and these selected components are
expressed as follows:

ρ(1)
p1, p2( 􏼁ρ(1)

p2, p3( 􏼁.ρ(1)
p1, p3( 􏼁 + 2N

3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ρ(1)
p1, p2( 􏼁N

2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ρ(1)
p2, p3( 􏼁N

2
coUco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ρ(1)
p1, p3( 􏼁N

2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� ρ(1)
ch p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁􏽨 􏽩

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
co p1, p3( 􏼁

+ ρ(1)
ch p1, p2( 􏼁.ρ(1)

co p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁

+ ρ(1)
co p1, p2( 􏼁.ρ(1)

ch p2, p3( 􏼁.ρ(1)
ch p1, p3( 􏼁.

(29)

Basically chaotic fluid is utilized to enhance the thermal
nature in the corresponding equipment such as heat ex-
changer, electronic, and nuclear systems. &e transfer of
energy, momentum, and heat in the partially chaotic fluids
has been discussed with the density matrices by several
researchers in order to control the aforementioned phe-
nomena [33–35]. It is obvious that the source of ejected
particles may be the pure chaotic or partially coherence but

this equation plays a versatile role in all considerable cases.
We can check the acquired equation for normalized three
particles chaotic parameter (correlator) whether it follows
the experimental results to examine the chaotic and co-
herence fractions of the particles ejected sources. Particu-
larly, the three particles correlator can be written in the
meaningful way when we use the expression of equations
(29) and (5), respectively.
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Λ3(123) � 2 ρ(1)
p1, p2( 􏼁.ρ(1)

p2, p3( 􏼁.ρ(1)
p1, p3( 􏼁 + 2N

3
co Uco p1( 􏼁Uco p2( 􏼁Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨

− ρ(1)
p1, p2( 􏼁N

2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ρ(1)
p2, p3( 􏼁N

2
coUco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ρ(1)
p1, p3( 􏼁N

2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
􏽩,

Λ3(123) � 2.ρ(1)
p1, p2( 􏼁.ρ(1)

p2, p3( 􏼁.ρ(1)
p3, p1( 􏼁

· 1 + 2
N

3
co Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

Uco p2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

Uco p3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

ρ1 p1, p1( 􏼁ρ(1)
p3, p3( 􏼁ρ(1)

p2, p2( 􏼁
−
ρ(1)

p1, p2( 􏼁N
2
coUco p1( 􏼁Uco p2( 􏼁 Uco p3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

ρ1 p1, p1( 􏼁ρ(1)
p3, p3( 􏼁ρ(1)

p2, p2( 􏼁
⎡⎣

−
ρ(1)

p2, p3( 􏼁N
2
coUco p2( 􏼁Uco p3( 􏼁 Uco p1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

ρ1 p1, p1( 􏼁ρ(1)
p3, p3( 􏼁ρ(1)

p2, p2( 􏼁
−
ρ(1)

p1, p3( 􏼁N
2
coUco p1( 􏼁Uco p3( 􏼁 Uco p2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

ρ1 p1, p1( 􏼁ρ(1)
p3, p3( 􏼁ρ(1)

p2, p2( 􏼁
⎤⎦.

(30)

In particular, the aforementioned expressions indicate
that when we substitute the value of Λ3(123) into equation
(6), then the corresponding expression acquires the most
sophisticated shape under the assumption that the momenta
of all emitted particles are identical, i.e., p1 � p2 � p3 � p.
&erefore, the normalized chaotic parameter can be ma-
nipulated as

w3(p) � 2.
1 + 2 ρco(p)/ρ(p)􏼂 􏼃

3
− 3 ρco(p)/ρ(p)􏼂 􏼃

2
􏽨 􏽩

������������������

1 − ρco(p)/ρ(p)􏼂 􏼃
2

􏽨 􏽩
3

􏽱 .

(31)

&e parameter which measures the chaotic and coher-
ence components is called the chaotic fraction, and we define
the chaotic fraction in terms of the coherence and chaotic
components in order to write the normalized three particles
chaotic parameter:

ε(p) �
ρch(p)

ρco(p) + ρch(p)
, (32)

where ρch(p) and ρco(p) represent the chaotic and coher-
ence fractions, respectively. Furthermore, the coherence
fraction can be illustrated in terms of the chaos fraction as
follows:

ρco(p)

ρco(p) + ρch(p)
�
ρco(p)

ρ(p)
� 1 − ε(p). (33)

In particular, the special specification of the chaotic
parameter can be obtained by substituting the value of
equation (33) into equation (31). We can express the
mathematical expression for the normalized chaotic pa-
rameter of three particles in terms of the chaotic fractions:

w3(p) � 2
1 + 2[1 − ε(p)]

3
− 3[1 − ε(p)]

2
􏽨 􏽩

1 − [1 − ε(p)]
2

􏽨 􏽩
3/2 . (34)

In addition, the normalized chaotic parameter can be
simplified by applying some basic algebraic calculations, and
it can be written in versatile form as follows:

w3(p) � 2
����
ε(p)

􏽰
[3 − 2ε(p)]

[2 − ε(p)]
3/2 . (35)

From the aforementioned expression, it is obvious that
the numerical value of the chaotic fraction ε(p) � 1 for the
complete chaotic sources and the normalized chaotic pa-
rameter for three particles w3(p) acquire the chaotic limit 2.
Similarly, the chaos fraction for the completely coherence
sources is ε(p) � 0, and it means that the value of w3(p)

becomes zero for an ideal condition of the coherence sources
but it cannot proceed to infinity in any usual case. &is
formula can explain the experimental data in very well way
for all kind of sources which are studied in thermal as well as
in mechanical engineering. We can check the consequences
of such unique formula and the model results for two and
three bosons which are consistent with the experimental
data. &e experimental results of the normalized chaos
parameter can be proceeded to extract the chaotic and
coherence fractions at various temperatures and momenta
regimes. &e derived formula is correct in all cases: (a) if a
source behaves as fully chaotic and (b) the source may be
partially coherent or fully coherent. Our mathematical ex-
pressions can illustrate the experimental data about two and
three particles emission for the partial coherence in order to
use it in the artificial intelligence.

In addition, the intercept of the normalized three par-
ticles chaotic parameter can be written in terms of the
coherence fraction:

I3(p) � w3(p) � 2
���������

1 − fco(p)

􏽱 1 + 2fco(p)􏼂 􏼃

1 + fco(p)􏼂 􏼃
3/2. (36)

&is expression shows that if the source is completely
chaotic, i.e., fco � 0, then the intercept of w3 attains its
maximum value 2. On the other hand, the corresponding
intercept of w3 appears to be 0 for a complete coherent
source fco � 1.

4. Results and Discussion

&e core point of this research work is to probe the intrinsic
properties of the particle production sources created by the
impact of nuclei at higher energy. Statistical correlations of
three particles and the corresponding normalized chaotic
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Figure 1: &ree particles normalized chaotic parameter w3 versus q3 at various temperatures with different particles number NT: (a)
Ks � 0.35 and NT � 600; (b) Ks � 0.35 and NT � 800; (c) Ks � 0.35 and NT �1000; (d) Ks � 0.40 and NT � 800; (e) Ks � 0.40 and NT �1000; (f )
Ks � 0.35 and NT �1200.
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parameters make it feasible consistently to quantify the
temperament of the radiation sources by differential equa-
tions to use in thermal and mechanical engineering. We
explicate our results about the partially chaotic source with
temperature dependence characteristics and postulate that
the particle ejection sources are comprised of the fluid
clusters which act as the chaotic sources at a higher
temperature.

Figure 1 illustrates the normalized chaotic parameter w3
of three particles with relative momenta q3 for the ejected
sources with various temperatures T and the given particles
numbers NT. w3 for the sources possesses NT � 600, 800,
and 1000 for the smaller size sources of parameter Ks � 0.35
as shown in Figures 1(a)–1(c). &e chaotic parameter of the
three particles suppresses considerably by increasing NT by
fixing the temperature T. &e reason is obvious because the
plenty of particles have the probability to exist the bosons
nonchaotically at lower temperature regimes. Such phe-
nomena of temperature reduction with fixed particles NT

reduce considerably the kinetic energy of the particles
K.E∝T, and the bosons continue to condensate at the
lowest energy level and lead to produce the Bose–Einstein
coherence which affects the bosons normalized chaotic
parameter consistently. &e unique results appear for small
sources with Ks � 0.35 due to the absence of the quantum
interference, and the results approach zero in the presence of
large NT �1000 as illustrated in Figure 1(c). Furthermore,
Figures 1(d) and 1(e) represent the changes of w3 when the
particle ejected sources possess excess particles with large
size parameter Ks � 0.40 which contain NT � 800, 1000, and
1200. &e chaotic parameter decreases with increasing NT

because the source with higher particles amount acquired
the large coherence effect. Such chaotic parameters increase
with increasing the temperature T continuously for fixing
NT due to the reason that at extremely higher temperatures,
the particles shifted at higher energy levels and the coherence
effect appears negligibly. &e normalized chaotic parameter
approaches to its chaotic limit 2 at intercepts.

In particular, one can observe that results of w3 are
suppressed notably at the lower temperatures for the fixed
NT under the study of both sources. &e chaotic parameter
of three particles shows an obvious peak with Ks � 0.40 than
that for small sources with size Ks � 0.35 contains fixed NT

and the temperature T. Such variations happen due to fact
that the source with large Ks seems to be large. &e cor-
responding energy levels also seem to narrow which leads to
pushing the maximum bosons to shift from lower to high
energy states and also possess the large characteristic lengths
which suppress the coherence fraction significantly.

5. Summary and Conclusion

&e normalization of three particle cumulants to the two
particles cumulant is quantified with the normalized chaotic
parameter w3. We find an obvious suppression below the
chaotic limit in the measurement of w3 at lower temperature
and momentum, respectively. Such suppression appears to
recommend nonchaotic components to particle production
to use in thermal and mechanical engineering. It is crucial at

lower temperature, and such consideration is qualitatively
compatible with the origination of Bose–Einstein coherence
which is contemplated to emit coherently at lower energies.

In particular, w3 is applicable for examining the
chaotic and coherence fractions at unusual energies. We
evaluated w3 at various temperatures and momentum
regions and explored the consequences of the particle
number and source size on the considered chaotic pa-
rameter. We have observed that the normalized three
particles chaotic parameters are correlated to the chaos
thermal limit of the two particle interferences and also
delicate to the thermalization of the particle emissions
sources.

Specifically, the possession of w3 at temperature T and
the number of particles NT become sensitive in the high
momentum regions, which contemplate the salient fea-
tures of the particles emission sources from higher energy
levels even the sources accompanied a substantial co-
herence fraction. Although the considered model
explained the usual particle ejecting source which en-
larged spherically, it produced the characteristics of the
chaotic source and coherence fractions in the collisions. In
this research work, we analyzed that the considered model
confers the normalized chaotic parameter in basic
agreement with the experimental applications of the chaos
and coherence measurements to use in the field of thermal
engineering. We realized that the chaotic parameters are
suppressed crucially in the small temperature regimes at
small momenta. One plausible reason for this conse-
quence is that the production of particles from the ra-
diated source created in the collision possesses a fraction
of coherence which is nonchaotic.
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In this paper, we study the blow-up of solutions for wave equation involving the fractional Laplacian with nonlinear source.

1. Introduction and Brief History of
Fractional Integrodifferentiation

Let Ω ⊂ Rn, n≥ 1 be an open domain with Lipschitz
boundary zΩ. In this article, we consider the hyperbolic
initial-boundary value problem involving the fractional
Laplacian; for w � w(x, t), we consider the wave equation
with power nonlinearity:

z
2
t w +(− Δ)r

w +(− Δ)r
ztw � w|w|

p− 2
, x ∈ Ω, t> 0,

w � 0, x ∈ zΩ, t> 0,

w(x, 0) � w0(x), ztw(x, 0) � w1(x), x ∈ Ω,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where (− Δ)r is the fractional Laplacian such that r ∈ (0, 1).
*e exponent p satisfies

2<p≤
2n

n − 2r
� 2∗r, n> 2r. (2)

*e fractional integrodifferentiation operation is a
generalization of the differentiation operations. *e idea of
fractional differentiation as a generalization of the concept of
the derivative to the noninteger value of a arose almost
simultaneously with the very concept of differentiation. *e
first mention of this idea occurs in the correspondence of

G. W. Leibniz and Marquis de l’Hospital in 1695 (see [1]).
*e idea of fractional integrodifferentiation was further
developed in the works of L. Euler, who in 1738 noticed that
an expression can be given meaning even for noninteger
values (see [2]). An explicit calculation formula was given in
the treatise by S. Lacroix in 1820 (see [3]). Also in 1812, P.S.
Laplace put forward the idea of the possibility of differen-
tiating noninteger order for some functions. *e first def-
inition of the derivative of noninteger order was given by
J. Fourier in 1822. In its modern form, fractional inte-
grodifferentiation was formed in the works of N.H. Abel and
J. Liouville. In 1823, in connection with the problem of
tautochrone—a curve, when sliding along which, under the
influence of gravitational forces, a body reaches its lowest
point in the same time, regardless of its initial position. *e
idea of considering fractional differentiation as an operation
inverse to fractional integration was first proposed by
Holmgren in 1865 (see [4–6]). A year later, Grunwald, who
was not familiar with Holmgren’s work, came to the same
idea of Letnikov in 1868 (see [7–13]).

In [14], an efficient novel technique, namely, the
q-homotopy analysis transform method (q-HATM), is ap-
plied to find the solution for the time-fractional
Kaup–Kupershmidt (KK) equation and the study of frac-
tional Emden–Fowler (FEF) equations by utilizing a new
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adequate procedure; specifically, the q-homotopy analysis
transform method (q-HATM) is considered in [15].

Fractional wave systems with continuous nonlinearities
are possessed by a large number of researchers. In [16], the
authors considered initial-boundary value problem of de-
generate Kirchhoff-type

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w � |w|
p− 1

w, inΩ × R+, (3)

where Ω ⊂ Rn, n≥ 1 is a bounded domain with Lipschitz
boundary, θ ∈ [1, 2∗], and [w]r is the Gagliardo seminorm
of w defined by

[w]r � 􏽚
Ω

􏽚
Ω

|w(x) − w(z)|2

|x − z|n+2r
dxdz􏼠 􏼡

1/2

. (4)

*e authors obtained, under appropriate conditions, the
global existence in time and finite blow-up of solutions for
(3) owing to the Galerkin method combined with the po-
tential wells. *ey also showed the global existence of so-
lutions under critical initial conditions. In [17], the authors
studied the following damped degenerate Kirchhoff
equation:

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w + ztw
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α− 1

ztw

+ w � |w|
p− 2

w, inΩ × R+,
(5)

where 2< α< 2θ<p< 2∗ < r. *e global existence, behavior
of solutions, and blow-up in time for (4) are obtained, under
appropriate assumptions. In [18], the IBVP of Kirchhoff
wave equation is considered. Under some sufficient con-
ditions, the blow-up in finite time is shown by using a
modified concavity method; for more details, see [19–27].

z
2
t w +[w]

2(θ− 1)
r (− Δ)r

w � |w|
p− 2

w, inΩ × R+. (6)

We highlight here the novelty of the problem:

(1) It is interesting to note that simultaneously with the
theoretical developments of classical nonlinear wave
operation, practical applications of fractional inte-
grodifferentiation operation can also be found

(2) It is shown that when the nonlinear source domi-
nates the fractional Laplacian in (2), this ensures the
global nonexistence in time (blow-up) of solutions

(3) Our results extend many recent results in the
literature

2. Auxiliary Results and Function Spaces

*e fractional Laplacian (− Δ)rw of the function w is given
by

(− Δ)r
w(x) � C􏽚

Rn

w(x) − w(z)

|x − z|
n+2r

dz , ∀x ∈ Rn
, (7)

where

C
− 1

� 􏽚
Rn

1 − cos ζ1( 􏼁

|ζ|
n+2r

dζ. (8)

We define the fractional-order Sobolev space by

W
r,2

(Ω) � v ∈ L
2
(Ω): 􏽚

Ω
􏽚
Ω

|v(x) − v(z)|
2

|x − z|
n+2r

dxdz<∞􏼨 􏼩,

(9)

equipped with the norm

‖w‖Wr,2(Ω) � 􏽚
Ω

|w|
2dx + 􏽚

Ω
􏽚
Ω

|v(x) − v(z)|2

|x − z|n+2r
dxdz􏼠 􏼡

1/2

.

(10)

Let

W
r,2
0 (Ω) � w ∈W

r,2
(Ω): w � 0, x ∈ zΩ􏽮 􏽯, (11)

be a closed linear subspace of Wr,2(Ω), and its norm is given
by

‖w‖Wr,2
0 (Ω) � 􏽚

Ω
􏽚
Ω

|v(x) − v(z)|2

|x − z|n+2r
dxdz􏼠 􏼡

1/2

. (12)

*e space Wr,2
0 (Ω) is a Hilbert space with inner product

〈w, u〉Wr,2
0 (Ω) � 􏽚

Ω
􏽚
Ω

(w(x) − w(z))(u(x) − u(z))

|x − z|
n+2r

dxdz.

(13)

3. The Potential Wells

For simplicity, in this section, we consider problem (1) in
stationary case. In fact, if we replace w in this section by w(t)

for any t ∈ [0, T), all the facts are still valid. We define

J(w) �
1
2
‖w‖

2
Wr,2

0 (Ω) −
1
p

‖w‖
p
p. (14)

We denote

I(w) � ‖w‖
2
Wr,2

0 (Ω) − ‖w‖
p
p. (15)

We introduce now the stable set as follows:

W � w ∈W
r,2
0 (Ω): I(w)> 0, J(w)<d􏽮 􏽯∪ 0{ }, (16)

where the mountain pass level d is defined as

d � inf
w∈Wr,2

0 (Ω)∖ 0{ }

sup
μ≥0

J(μw)
⎧⎨

⎩

⎫⎬

⎭. (17)

We introduce the so-called Nehari manifold:

N � w ∈W
r,2
0 (Ω)∖ 0{ }: I(w) � 0􏽮 􏽯. (18)

*en potential depth d is characterized by

d � inf
w∈N

J(w), (19)

which implies that

dist(0,N) � min
w∈N

‖w‖Wr,2
0 (Ω). (20)

We will prove the invariance of the set W.
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For the reader’s convenience, we recall the main em-
bedding results for the fractional Sobolev spaces; see [28] for
details.

Lemma 1. Let Ω be bounded domain. 8en

(1) 8e embedding Wr,2
0 (Ω)↪Lp(Ω) is compact for any

p ∈ [1, 2∗r )

(2) 8e embedding Wr,2
0 (Ω)↪L2∗r (Ω) is continuous

Lemma 2

(1) For any s ∈ [1, 2∗r ], there exists a positive constant
C0 � C0(n, s, r) such that for any u ∈Wr,2

0 (Ω)

‖w‖Ls(Ω) ≤C0􏽚
Ω

􏽚
Ω

|u(x) − u(z)|
2

|x − y|
n+2r

dxdy. (21)

(2) For any s ∈ [1, 2∗r ] and any bounded sequence (uj)j

in Wr,2
0 (Ω), there exists u in Ls(Rn), with u � 0 a.e.

in Rn − Ω, such that up to a subsequence, still
denoted by (uj)j

uj⟶ u strongly inL
s
(Ω)asj⟶∞. (22)

Definition 1. A function w � w(x, t) is said to be a global
(weak) solution of problem (1), if

w ∈ L
∞ 0,∞, W

r,2
0 (Ω)􏼐 􏼑, wt ∈ L

∞ 0,∞, L
2
(Ω)􏼐 􏼑,

wo ∈ L
∞ 0,∞, W

r,2
0 (Ω)􏼐 􏼑, wt ∈ L

∞ 0,∞, L
2
(Ω)􏼐 􏼑

w1 ∈ L
∞ 0,∞, L

2
(Ω)􏼐 􏼑,

(23)

and for any ϕ ∈ L∞(0,∞, Wr,2
0 (Ω)), t ∈ R∗+,

wt(., t), ϕ(., t)( 􏼁 +
1
2

􏽚
t

0
wt(., t), ϕ(., t)Wr,2

0 (Ω)􏼒 􏼓dτ + 􏽚
t

0
wt(., t), ϕ(., t)Wr,2

0 (Ω)􏼒 􏼓dτ

� w1, ϕ(., 0)( 􏼁 + 􏽚
t

0
w(., τ)|w(., τ)|

p− 2
,ϕ(., τ)􏼐 􏼑dτ.

(24)

If a (weak) global solution w belongs to C(0,∞;

Wr,2
0 (Ω)), we say that u is a strong global solution of problem

(1).
*e energy E of solution at time t to (1) is given by

E(t) �
1
2

ztw(t)
����

����
2
2 + J(w). (25)

Lemma 3. Let w(x, t) be a weak solution of problem (1). If
w0 ∈W, w1 ∈ L2(Ω), then E(t)≤E(0).

4. Blow-Up Result

In this section, we prove the blow-up result to problem (1)

Lemma 4. Let w(x, t) is the weak solution of problem (1). If
w0 ∈W andw1 ∈ L2(Ω) satisfying that

‖w‖
2 ≥

2p

p − 2
KE(0), (26)

ztw, w( 􏼁Wr,2
0 (Ω)< 0, (27)

w0 ∈M, (28)

􏽚
Ω

w0w1dx> 0, (29)

then any solution of (1) belongs to M.

Proof. We claim that w ∈M for t ∈ [0, T); by contradic-
tion, we suppose that t0 ∈ (0, T) is the first time such that

I w t0( 􏼁( 􏼁 � 0, (30)

I(w(t)) < 0 for t ∈ 0, t0􏼂 􏼁. (31)

We first introduce an auxiliary function,

M(t) � ‖w‖
2
, (32)

and directly

M′(t) � ztw, w( 􏼁 + w, ztw( 􏼁 � 2 ztw, w( 􏼁, (33)

M″(t) � 2 z
2
t w, w􏼐 􏼑 + 2 ztw

����
����
2
. (34)

Multiplying (1) 1 by w and then by integration over Rn,
we have

(z)t
2
w, w +(w, w)W

r,20(Ω) +(zt)w, wW
r,20(Ω)

� 􏽚Ωw
p− 2

wdx,
(35)

so that

zt
2
w, w􏼐 􏼑 � − ‖w‖Wr,2

0 (Ω) − ztw, w( 􏼁Wr,2
0 (Ω) + 􏽚

Ω
w|w|

p− 2
wdx.

(36)

Substituting (27) into (36), we obtain
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M″(t) � 2 ztw
����

����
r,2
W
0(Ω) − 2wWr,20(Ω) − 2ztw, w􏼁Wr,20(Ω)

+ 2􏽚
Ω

w|w
p− 2

wdx.

(37)

By (27), we have

M″(t)≥ 2 ztw
����

����
2

− 2I(w). (38)

By (31), we have M″(t)> 0 for any t ∈ [0, t0); then,
M′(t) is strictly increasing on [0, t0). *us

M′(t)>M′(0)> 0 for t ∈ 0, t0􏼂 􏼁. (39)

We have M(t) is also strictly increasing on [0, t0).
We have

M(t)>M(0)≥
2p

p − 2
KE(0) for all t ∈ 0, t0􏼂 􏼁. (40)

From the continuity of w at t � t0, it follows that

M t0( 􏼁 � w t0( 􏼁
����

����
2 > 2

p

p − 2
KE(0). (41)

On the other hand,

E(0)≥E(t) �
1
2

ztw
����

����
2
2 +

1
2
‖w‖

2
Wr,2

0 (Ω) −
1
p

‖w‖
p
p

�
1
2

ztw
����

����
2
2 +

1
2

−
1
p

􏼠 􏼡‖w‖
2
Wr,2

0 (Ω) +
1
p
I(w).

(42)

Together with (30) and Lemma 2, we get

Ε(0)≥
1
2

ztw ., t0( 􏼁
����

����
2
2 +

1
2

−
1
p

􏼠 􏼡 w ., t0( 􏼁
����

����
2
Wr,2

0 (Ω)

≥
1
2

ztw ., t0( 􏼁
����

����
2
2 +

p − 2
2p

K
− 1

w ., t0( 􏼁
����

����
2
2

≥
p − 2
2p

K
− 1

w ., t0( 􏼁
����

����
2
2,

(43)

which contradicts (41). *is completes the proof. □

We are now ready to prove the finite time blow-up of
solution to (1) when E(0)> 0.

Definition 2. We say that the function w(x, t) blows up in
finite time if there exists t∗ ∈ (0,∞) such that

‖w(x, t)‖L2(Ω)⟶∞ as t⟶ t
∗
. (44)

Theorem 1. Let w0 ∈Wr,2
0 (Ω) and w1 ∈ L2(Ω). Assume

that w0 ∈M,E(0)> 0, and 􏽒Ωw0w1dx > 0, then any solution
of (1) blows-up in finite time.

Proof. We have w ∈M; arguing by contradiction, we
suppose that w is weak global solution , for any t ∈ [0,∞).
From (34) and Cauchy–Schwarts inequality, we get

M′
2
(t) � 4 w, zt( 􏼁

2 ≤ ‖w‖
2

ztw
����

����
2
, t ∈ [0,∞), (45)

which together with (36) implies that

M″(t)M(t) − (1 + α) M′(t)( 􏼁
2

≥ 2 ztw
����

����
2

− 2‖w‖
2
r,2
0 (Ω) + 2􏽚

Ω
w|w|

p− 2
wdx􏼒 􏼓M(t) − 4(1 + α) w, ztw( 􏼁

2

≥ 2 ztw
����

����
2

− 2‖w‖
2
r,2
0 (Ω) + 2􏽚

Ω
w|w|

p− 2
wdx􏼒 􏼓M(t) − 4(1 + α)‖w‖

2
ztw

����
����
2

� − 2‖w‖
2
r,2
0 (Ω) + 2􏽚

Ω
w|w|

p− 2
wdx − 2(1 + 2α) ztw

����
����
2

􏼒 􏼓M(t) � A(t)M(t),

(46)

where α> 0. We notice that

A(t) ≔ − 2‖w‖
2
Wr,2

0 (Ω) + 2‖w‖
p
p − 2(1 + 2α) ztw

����
����
2

≥ − 2(1 + 2α) ztw
����

����
2

− 2‖w‖
2
Wr,2

0 (Ω) + p ztw
����

����
2

+ p‖w‖
2
Wr,2

0 (Ω) − 2pΕ(0)

� − (4α − p + 2) ztw
����

����
2

+(p − 2)‖w‖
2
Wr,2

0 (Ω) − 2pΕ(0)

≥ − (4α − p + 2) ztw
����

����
2

+(p − 2)K
− 1

‖w‖
2
2 − 2pΕ(0),

(47)
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for t ∈ [t,∞). Set α � (p − 2)/4> 0, and then (4α − p+

2)‖ztw‖2 � 0. So from (47), we get

A(t)≥K
− 1

(p − 2)‖w‖
2

− 2pE(0)≥ 0. (48)

At this point, by (33)–(48), we obtain

M″(t)M(t) − (1 + α) M′(t)( 􏼁
2 > 0, t ∈ [0,∞), (49)

where α> 0. *is implies that

M
− α

( 􏼁′ � − αM
− α− 1

M′(t)< 0, (50)

M
− α

( 􏼁″ � − αM
− α− 2

M″(t)M(t) − (1 + α) M′(t)( 􏼁
2

􏼐 􏼑< 0,

(51)

for all t ∈ [0,∞), which means that the function M− α is
concave. Obviously, M(0)> 0; then, there must exist a T> 0
such that

lim
t⟶TM− a

(t) � 0, (52)

so that

lim
t⟶T−

M(t) �∞ i.e., lim
t⟶T−

‖w‖
2

�∞. (53)

*us, the proof is completed. □
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