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)is paper employed wavelet coherence and partial wavelet coherence to investigate the time-frequency effect of global economic
policy uncertainty on the comovement of five agricultural commodities such as maize, oat, rice, soybean, and wheat usingmonthly
data from January 1997 to December 2019. In general, we observed heterogeneity in comovement structures of the agricultural
commodities market at different time-frequency scales which are profound at high frequencies from the bivariate wavelet
coherence. )e partial wavelet coherence analysis shows that global economic policy uncertainty is a driver of agricultural
commodity market connectedness. )is implies that extreme changes in economic policy uncertainty have the tendency to
influence commodity price comovement. )is poses risk to the stability of the agricultural commodities market, which requires
the policymaker’s intervention to protect against the spillover risk contagion effect in uncertain times.

1. Introduction

)e surge in price and price volatility of agricultural
commodities, especially food prices, has attracted the at-
tention of academics, policymakers, investors, farmers, and
consumers to this market because of its immediate impact
on food security around the world, particularly low-income
food-deficit countries. )e prices of agricultural com-
modities have experienced long-term and sharp fluctua-
tions since the year 2000. )e prices of major agricultural
commodities, from 2006, have generally exhibited upward
trends with a sharp fluctuation in 2013 and 2014. )ese
behaviours have attributed to external factors such as
macroeconomic uncertainties, agricultural production, fi-
nancial crises, large and persistent demand, biofuels de-
mand, different stock market phases, and climate warming
[1–6]. For example, the outbreak of COVID-19 in 2019
has overturned the stagnation in food prices after its
downward trend in 2015-2016. )e Food and Agricultural

Organisation Food Price Index surged to its highest level
since 2014.

Moreover, the financialization in commodity markets
has changed the dependency structure of agricultural
commodity markets [7, 8]. Consequently, the traditional
description of commodities in general as an asset class that
reliably delivers returns with low correlation to the stock
market has changed [9–13]. It instructive to note that ag-
ricultural commodity financialization has increased the
comovement and volatility spillover within its market and
with the traditional asset classes, limiting its diversification
benefits [14–17]. )e interest of academics and market
participants has therefore been drawn to the level of
comovement and predictors of commodity prices and
volatility spillover [7, 17, 18]. )e comovement or otherwise
of these commodities provides important information to
portfolio investors on diversification opportunities and
policymakers on policy interventions to mitigate price
fluctuations on the world poorest people.
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Several studies have examined the drivers of agricultural
commodities, and different external factors have been
identified which include crude oil prices, stock market
phases, exchange rate, and production indices [14]. )e
interdependency structure of agricultural commodity prices
has been studied and observed with varying degrees of
interdependence [1, 17]. For example, Živkov et al. [7]
analysed the comovement structure of five agricultural
commodities (corn, wheat, soybean, rice, and oats) using
wavelet coherence and phase difference and observed low
coherence at shorter time-horizons among the commodities,
while periodic coherence at longer time-horizons was found.
In the work of Amrouk et al. [17], a multivariate Copula-
DCC-GARCH model was employed to investigate the price
dynamics among maize, wheat, soybeans, cotton, coffee,
cocoa, and sugar futures prices. )e results show that the
intensity of interaction varies considerably over the sample
time but is generally positive and stronger during the period
2007–2012 associated with high commodity prices and fi-
nancial market stress. A recent study by Yuan [19] showed
that agricultural commodity markets of corn, wheat, soy-
beans, soya oil, cotton, and oats tend to crash (boom) to-
gether during extreme events using the Copula-GARCH
model.

)ese strands of findings bring to the fore the funda-
mental question of what drives commodity price interde-
pendence. )e 2007–2011 general boom in international
commodity prices has not only been cited as the cause of
agricultural commodity hikes but also increases the inter-
dependency [5, 18–20]. Similarly, Wang et al. [6] linked
episodes of crisis such as adverse weather, export bans, fi-
nancial crisis, and depreciation of dollars to the changing
behaviour of agricultural commodities (food prices). )ese
have heightened the interest of uncertainty on the behaviour
of agricultural commodities.

)e theoretical evidence of Keynes [21] and Working
[22] identified term structure, hedging pressure, and risk
factors as the main drivers of commodity return behaviour.
Economic policy uncertainty represents information about
the future state of the economy with regards to regulation,
fiscal policy, and monetary policy. Pastor and Veronesi [23]
theoretical model showed that government economic policy
uncertain will lead to both correlations in stock prices and
increases in volatilities. By analogy, we expect that global
economic policy uncertainty will lead to similar asset price
comovements in global financial markets. Frankel [24]
showed the importance of monetary policy for commodity
prices. As an element of economic policy, Frankel [24]
argument on monetary policy also supported the links be-
tween economic policy uncertain and commodity prices.

While the above views support the commodity price and
economic policy uncertain linkage, one may still ask what
about comovement of commodity prices? Policy uncertainty
is also found related to corporate investment [25, 26]. From
an investment perspective, global economic policy uncer-
tainty affects investment in the agricultural produces af-
fecting supply and hence the commodity price comovement.
Global economic uncertainty also increases calls and at-
tempts for global policy coordination [27]. Such policy

coordination in response to global economic policy un-
certainty implies that commodity prices may share common
shocks. Another channel through which global economic
policy uncertain may drive commodity price comovements
is the domestic agricultural policy response to global eco-
nomic policy uncertainty. )e intuition is that not all
countries are dominant producers of all commodities, and
with global economic uncertainty affecting terms of trade,
commodity prices comovements will result in the equilib-
rium as the countries adjust to the global economic policy
uncertainty. Based on the number of newspaper articles
regarding policy uncertainty from national or regional
leading newspapers, Baker et al. [28, 29] developed an index
to measure EPU, which is more universal and applicable for
comparison and can continuously track policy uncertainty.

Subsequently, numerous studies provide ample evidence
on the EPU effect on commodity returns (Wang et al. [30];
Reboredo et al. [31]; Shahzad et al. [32]) and economic
agents that affect commodity markets such as oil prices and
stock returns [33–37]. )e role of EPU as the driver of the
time variation in asset correlations has also received at-
tention. Fang et al. [38] showed that EPU harms U.S. stock
and bond market correlations, while Fang et al. [39]
documented a positive policy uncertainty effect on the long-
run oil-stock correlation. Recently, Badshah et al. [40]
documented that the EPU effect on stock-commodity cor-
relation is stronger during weak economic conditions. As far
as we know, there is no previous study that analysis the EPU
effect on agricultural commodity price comovement.

)is study extends the literature on the EPU effect on
asset correlations comovement and examines the effect of
EPU on the comovement of agricultural commodities
(maize, wheat, soya bean, rice, and oats) returns. )e focus
on agricultural commodities is motivated by the importance
of risk mitigation of food prices to food security concerns.
Correlation plays an important role in asset allocation de-
cisions, risk management, and analysis of risk transmission
across assets. Specifically, the study provides new evidence
by adjusting for the possible influence of EPU using partial
wavelet coherence and wavelet coherence, which is lacking
in the comovement of agricultural commodities in previous
studies (see, for example, Živkov et al. [7]; Amrouk et al.
[17]). )e advantage of the use of wavelet-based methods is
well documented in the literature (see [41–44]). )is paper,
therefore, investigates the partial correlations in the agri-
cultural commodity prices by including (excluding) the
influence of EPU.

2. Methodology

)e application of wavelet transforms is widespread in time
series econometrics to deal with nonstationary problems in
time series. Wavelet transforms come in two forms, namely,
discrete wavelet transforms (DWT) and continuous wavelet
transforms (CWTs). In this paper, we employ only CWT for
our analysis since DWT is useful for noise reduction and
data compression, while CWTallows for good identification
and isolation of periodic signals, by providing a balance
between localisation of time and frequency and appears to
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provide a better trade-off between detecting oscillations and
peaks or discontinuities [41, 43, 45].

2.1. Continuous Wavelet Transform and Wavelet Coherence.
)e CWT is a powerful technique to assess the dynamics of
nonstationary variables over frequency and time domain
space. As required, the localized time-frequency space and
zero mean must be ensured in the wavelet function de-
composition of the time series. )is allows for information
from the local neighbourhood based on decomposition to be
obtained. We specifically employ wavelet coherence under
Morlet specification, which is defined as follows:

Ψu,s(t) � s
− 1/2Ψ

t − u

s
􏼒 􏼓, Ψ(·) ∈ L

2
(R), (1)

where s− 1/2 is the normalization factor, which ensures that
the unit variance of the waveletΨu,s(t)2 � 1; u is the location
parameter, which provides the exact position of the wavelet;
and s is the scale dilation parameter, defining how the
wavelet is stretched or dilated. )us, the Morlet wavelet can
be defined as follows:

φM
(t) � π− 1/4

e
iωot

e
− t2/2

, (2)

where ωo is the central frequency of the wavelet. We follow
the extant literature to set ωo � 6 [42, 45, 46].

A continuous wavelet transform Wx(u, s) is obtained via
the projection of a wavelet Ψ(·) on the examined series x(t)

so that

Wx(u, s) � 􏽚
∞

−∞
x(t) s

− 1/2Ψ∗
t − u

s
􏼒 􏼓dt, (3)

where Ψ∗(·) is a complex conjugate of Ψ(·). By projecting
the specific wavelet Ψ(·) onto the selected time series, we
easily obtain Wx(u, s). )e main advantage of a CWT is its
ability to decompose and reconstruct the function x(t) ∈
L2(R) as follows:

x(t) �
1

Cφ
􏽚
∞

0
􏽚
∞

0
Wx(u, s)Ψu,s(t)du􏼔 􏼕

ds

s
2 , s> 0. (4)

)e power spectrum analysis can then be calculated
using Equation (4), with the specification of the variance
being

x
2

�
1

Cφ
􏽚
∞

0
􏽚
∞

0
Wx(u, s)

2
du􏼔 􏼕

ds

s
2 , s> 0. (5)

)e red noise background spectrum is employed to
define the null hypothesis in significance tests for peaks in
the wavelet power spectrum. Following Torrence et al. [47]
and Torrence et al. [48], the red noise background spectrum
is computed using Monte Carlo simulations. )erefore, the
corresponding local wavelet power spectrum distribution for
each time n and scale s can be

D
W

x
n(s)

2

δ2x
<p􏼠 􏼡⇒

1
2
PfX

2
v, (6)

where the mean spectrum at Fourier frequency f is denoted
by Pf. )e wavelet scale s corresponds to the Fourier

frequency (s 1/f). )e real wavelet has v � 1, and the complex
wavelet v � 2. )e variance of the corresponding variable is
denoted by δ2x.

Following Rua et al. [44], we define the cross-wavelet
transform of two commodities market series (X) and (Y) as
follows:

W
XY
n (s) � W

X
n (s)W

Y∗

n (s), (7)

where WX
n (s) and WY

n (s) are individual wavelet spectra, u
denotes the position, s denotes the scale, and ∗ indicates
complex conjugation. )e cross-wavelet transform shows
the area in time-space with high common power. )erefore,
WY∗

n (s) is the complex conjugate of WY
n (s). )e cross-

wavelet power |WXY
n (s)| measures the mutual local co-

variance on each scale. )erefore, the wavelet coherence of
the two time series and y � yn􏼈 􏼉 is defined by searching the
frequency bands and time intervals in which they covary.
)is provides a useful tool for detecting comovement in
commodities markets. Grinsted et al. [38] defined it as the
squared absolute value of normalizing a wavelet cross-
spectrum to a single wavelet power spectrum. Similarly, we
define wavelet coherence as squared wavelet coefficient as
follows:

R
2
(x, y) �

S s
− 1

Wxy(u, s)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

S s
−1

Wx(u, s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑S s
−1

Wy(u, s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓

, (8)

where S denotes the smoothing parameter, which balances
resolution and significance. Also, the bias problem in the
wavelet power spectrum and wavelet cross-spectrum is
eliminated by the normalizing function of the wavelet co-
herence. )e values of the wavelet coherence coefficient
satisfy the inequality 0≤R2(x, y)≤ 1. Wavelet coherence
close to one shows a higher similarity between the time
series, while coherence near-zero depicts no relationship.

As indicated by Madaleno et al. [49] and Torrence et al.
[47], the phase for wavelet depicts any lead/lag linkages
between two time series and can be defined as follows:

∅xy � tan− 1 J W
xy
n􏼈 􏼉

R W
xy
n􏼈 􏼉

􏼠 􏼡, ∅xy ∈ [−π, π], (9)

where J and R are the imaginary and real parts of the
smoothed cross-wavelet transform, respectively. In the
wavelet coherence map, directional arrows are used to
distinguish different phase patterns. For instance, if x(t) and
y(t) are in phase (antiphase), the arrow points to the right
(left). Similarly, if the arrow points down (or up), this
implies that y(t) (or x(t)) is leading.

2.2. Partial Wavelet Coherence. Wavelet coherence reveals
intermittent correlations and provides the significant map
when a correlation is real [43, 50, 51]. In the case where there
is an intervening effect from a different variable, wavelet
coherence is unable to give an accurate correlation. Partial
wavelet coherence (PWC) is a technique similar to the
partial correlation that helps find the resulting WTC be-
tween two time series x and y after eliminating the influence
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of the time series z. Similarly, in wavelet applications, PWC
can help to eliminate the influence of time series z(t) on the
wavelet coherence between x(t) and y(t). Mihanović et al.
[52] extended the concept of simple linear correlation and
suggested that the PWC can be defined using an equation
similar to the partial correlation squared as follows:

R
2
p(x, y, z) �

R(x, y) − R(x, z) · R(x, y)
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

[1 − R(x, z)]
2
[1 − R(y, z)]

2 , (10)

where R2
p(x, y, z) ranges from 0 to 1 and has a similar

interpretation as R2(x, y). Specifically, a low R2
p region

observed where a high R2 region is found indicates that the
time series y does not have a significant influence on x.
Instead, the time series z dominates the variance of x. If there
is no difference between R2

p and R2, both y and z have a
significant influence on x. In this paper, x and y denote the
agricultural commodities market returns while z denotes the
EPU returns.

2.3. Data andAnalysis. )e data set for this analysis consists
of monthly data on global economic policy uncertainty
(EPU) index and monthly period average price of the five
major agricultural commodities—maize, wheat, soybean,
rice, and oats from January 1997 to December
2019—yielding 276 observations. )e period is characterised
by considerable global uncertainty, such as the global fi-
nancial crisis, the sovereign debt crisis in Europe, Brexit, the
US presidential election, and US-China trade tension,
making it an ideal period for the study. )e EPU developed
by Baker et al. [28] was obtained from the website https://
www.policyuncertainty.com/index.html and commodity
prices from IMF Primary Commodity Prices Database. )e
analysis was based on the returns of monthly prices/indexes
given as

rt � lnPt − lnPt−1, (11)

where rt is the continuously compounded return and Pt and
Pt−1 are the respective current and previous prices/indexes.

We began the analysis by investigating the statistical
distribution of returns; it is appropriate to have quick
behavioural trajectories of the agricultural commodity prices
and returns as well as EPU indices. Figure 1 shows the
graphical representation of the trend of the time series plot
of both indices and returns of the five agricultural com-
modities and EPU over the study period. A glance shows that
all the commodity indices were trending upward and
exhibited quite a similarity in dynamic patterns until the
outbreak of the global financial crisis and then plunged in
2008. Recovery was observed between 2010 and 2013 and
then nosedived until 2018. )e recovery from 2018 has been
one of a mixed.

)e EPU, however, generally showed an upward trend
over the study period except between 2003 and 2007. )is is
expected because of episodes of global financial and political
uncertainty in recent years. )is trajectory behaviour of all
indices might induce correlations among them. Table 1
presents the pairwise correlation among the indices, and

the results showed low to moderate correlation among the
agricultural commodities and no correlation with EPU.

A glance at the descriptive statistics of the return pre-
sented in Table 2 reveals key features of the return rates of
the series included in the study. All the return series had
positive means in the period considered, and only two out of
the six series had negative skewness. )e negatively skewed
returns indicate that higher losses are more frequent than
higher gains. )e returns of all series are relatively sym-
metrical except for rice. All the series depart from normality
with high kurtosis except for oats, which means that the
returns are heavy-tailed relative to a normal distribution.
)is is not surprising as it is a well-known stylized fact of
assets in the financial literature [53].

In the first step, the pairwise wavelet coherence plots of
the five selected agricultural commodities are presented as a
benchmark before investigating the partial wavelet coher-
ence. )e wavelet coherence maps are used in this study to
assess the strength of the interdependence both in time and
frequency domains. )e time component is displayed on the
horizontal axis, while the vertical axis displays the frequency
(the lower the frequency, the higher the scale). )e region in
time-frequency space where the pair-wise time series covary
is indicated by the warm colour. )e strength of the in-
terdependence between paired series is indicated by the
colour of the surface and depicted by the colour pallet. )e
warmer colour (red) represents regions with significant
interrelation, while the colder colour (blue) signifies a lower
dependence between the series. )e crosshatch indicates
regions inside the cone of influence, and the thick black
contour indicates a 95% confidence level obtained from the
Monte Carlo simulations, whereby cold regions beyond the
significant areas represent time and frequency with no
dependence in the series. An arrow in the wavelet coherence
plot shows the lead/lag phase relations between the paired
series. A zero-phase difference means that the two paired
time series move together on a particular scale. When the
arrows point to the right, the paired time series are said to be
in phase (move in the same direction), while the arrows to
the left indicate antiphase (move in the opposite direction).
Arrows pointing to the right-down or left-up indicate that
the first variable is leading, while arrows pointing to the
right-up or left-down show that the second variable is
leading.

Figure 2 shows the partial and bivariate wavelet co-
herence explaining the pairwise coherence plots between
maize, wheat, soybean, rice, and oats with EPU as a covariate
variable. )e results of bivariate wavelet coherence are
presented on the left-hand side, whereas that of partial
wavelet coherence on the right-hand side. )e wavelet co-
herence map in Figure 2(a) shows that the comovement
between oats and the rest of the agricultural commodities
such as maize, wheat, soybean, and rice is primarily con-
centrated in 0–32 month cycles. Several small islands were
observed in a period of 0–8 month cycles throughout the
study period and extended to 32 month cycles with intense
connectedness between 2007 and 2013. Maize, however,
showed strong interdependence with rice, soya bean, and
wheat. It is worthy to note that maize perfectly serves as both
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a substitute and complements to these classes of cereals and
therefore not a surprise to have its price returns highly
connected. )e coherence is very strong at 64–128 month
cycle for all periods of study and gradually for all months’
cycle after 2018. )e comovements between rice, soya bean,
and wheat are not different from the interrelations of maize
with rice, soybean, and wheat. In general, the pattern of

pairewise comovements among the agricultural commodi-
ties is in phase, but it is not clear which leads the market. It is
important to note that in all cases, the correlations were
profound during the period characterising the commodity
price boom and the global financial crisis.)is observation is
consistent with the findings of prior studies that the price
returns of related agricultural commodities move together
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Figure 1: )e plot of the raw series (left) and returns series (right).
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Table 2: Descriptive statistics.

EPU Maize Oat Rice Soya Wheat
Mean 0.0044 0.0013 0.0024 0.0004 0.0008 0.0001
Median -0.0061 0.0010 0.0026 -0.0027 0.0019 -0.0009
Maximum 0.7690 0.2197 0.2242 0.4116 0.1656 0.2502
Minimum -0.4964 -0.2455 -0.2205 -0.1901 -0.2495 -0.2602
Std. dev. 0.1770 0.0583 0.0745 0.0553 0.0589 0.0695
Skewness 0.6474 -0.2158 0.1281 2.1990 -0.4524 0.0787
Kurtosis 4.9170 5.1900 3.4231 18.4220 5.0797 4.6689
Jarque–Bera 61.5388∗∗∗ 57.3005∗∗∗ 2.8136 2957.5670∗∗∗ 59.1504∗∗∗ 32.3154∗∗∗
Observations 275 275 275 275 275 275
∗, ∗∗, and ∗∗∗ indicate 10%, 5%, and 1% significance level, respectively.

Table 1: Correlation matrix of EPU and selected agricultural commodities.

EPU Maize Oats Rice Soya bean Wheat
EPU 1.0000
Maize 0.0089 1.0000
Oats −0.0005 0.4965∗∗∗ 1.0000
Rice −0.0086 0.1077∗ 0.1098∗ 1.0000
Soya beans −0.0755 0.6555∗∗∗ 0.3685∗∗∗ 0.0446 1.0000
Wheat −0.0076 0.5588∗∗∗ 0.3572∗∗∗ -0.0663 0.4931∗∗∗ 1.0000
∗, ∗∗, and ∗∗∗ represent 10%, 5%, and 1% significance levels, respectively.
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Wavelet coherence: maize-rice Partial wavelet coherence: maize-rice | EPU
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[19, 54]. In particular, we detected a high correlation during
the financial crisis between the five agricultural commodities
(corn, wheat, soybean, rice, and oats) similar to Živkov et al.
[7] and Yuan [19] but more profound coherence. )e dif-
ference in comovement structure emanates from the fre-
quency of the data used; daily data are susceptible to
speculation and noisy behaviour. )e right side of Figure 2
illustrates the partial wavelet coherence among the com-
modities prices such as maize, wheat, soybean, rice, and oats
with EPU as a covariate variable (i.e., excluding the influence
of EPU). A substantial decrease in the strength of the co-
herence area among the commodities in all cases for the
partial wavelet coherence indicates that EPU is a key driver
of the comovement of the selected commodity prices. )e
finding highlights the importance of economic policy un-
certainty as a driver of assets prices connectedness across
financial markets, particularly commodity prices following
the financialization of commodity markets [17, 55–57]. )e

financialization of commodity markets has affected the in-
formation transfer, improves market liquidity, and
strengthens the commodity equity market comovement,
making commodity prices susceptible to drivers of financial
markets [4, 15, 17, 19, 20, 58, 59]. In summary, uncertainty
in global economic policy as a significant driver of
comovement between agricultural commodities price
returns has policy implications. It suggests a greater inte-
gration of agricultural commodity markets with prices
booming and crashing together during uncertain times. )is
calls for policymakers to devise strategies to mitigate eco-
nomic policy uncertainty shocks to agricultural commodity
prices. Again, the interdependency in the market poses risk
to the stability of the agricultural commodities market,
which requires the policymaker’s intervention to protect
against the spillover risk contagion effect in uncertain times.
)e correlation of assets is key in portfolio construction,
diversification, and risk management in asset markets. )e
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Figure 2: )e left side plots bivariate wavelet coherence between commodity markets. )e right side illustrates the plots of partial wavelet
coherence between commodities markets when the effect of global economic policy is removed.
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differences in correlation structure at different time scales
present unique information on both contagion and inter-
dependence which are critical for commodity traders who
desired to form a portfolio of agricultural commodities. )e
wavelet coherence at high frequency signifies contagion
and interdependence at low frequencies. Consequently,
investors must employ different trading strategies for
different investment horizons. For example, oats correlate
less with all other commodities in high time scales, and
therefore the inclusion of oats in commodities portfolio
will require a longer investment horizon to minimise the
variance of the portfolio. By applying partial wavelet co-
herence using global economic policy uncertainty as a
covariate, new information is provided to investors. A
sharp decline of the comovement in any paired com-
modities suggests that economic policy uncertainties limit
the diversification benefits of the agricultural commodities
portfolio. It is therefore important that investors pay at-
tention to global risk factors which tend to create uncer-
tainty in economic policies. )e comovement of
agricultural commodities, especially upward movement,
poses a threat to food insecurity to the poorest population.
)e evidence of sizable price spikes in times of uncertainty
requires the government to implement policy interventions
to minimise its impact on the poorest populations which
will be enhanced through policy intervention.

3. Conclusion

)is paper investigates the time-frequency effect of eco-
nomic policy uncertainty on the comovement of five agri-
cultural commodities using wavelet coherence and partial
wavelet coherence. A monthly average price of maize, oat,
rice, soybeans, and wheat from January 1997 to December
2019 as well as global economic policy uncertainty of the
same frequency for the same period was used. )e use of
bivariate wavelet coherence together with partial wavelet
coherence overcomes the problems of variation in time-
frequency space and traditional two-variable methods of
calculating comovement. )e use of economic policy un-
certainty as a covariate for the comovement between agri-
cultural commodity returns provides a better understanding
and information on the interaction of agricultural com-
modities markets.

)e result from bivariate wavelet coherence shows
heterogeneity in the comovement structure of the agricul-
tural commodities market at different time-frequency scales
which are profound at high frequencies. It is also evident that
maize correlates strongly with all agricultural commodities
studied. Similar to partial correlation, partial wavelet co-
herence analysis provides the resulting wavelet coherence
between agricultural commodity prices after eliminating
common factors of dependency of global economic policy
uncertainty. By removing the effect of global economic
policy uncertainty, a substantial decrease in the strength of
the coherence area among the commodities in all cases was
observed. )us, according to the partial wavelet coherence
analysis, global economic policy uncertainty drives the
comovement of commodity prices.

)e heterogeneity of correlation structure at different
time scales presents unique information to commodity
traders desired to form a portfolio of agricultural com-
modities for trading strategies to adopt. A sharp decline in
the comovement of any paired commodities suggests that
economic policy uncertainties limit the diversification
benefits of the agricultural commodities portfolio. It is
therefore important that investors pay attention to global
risk factors, which tends to create uncertainty in economic
policies. )e comovement of agricultural commodities, es-
pecially upward movement, poses a threat to food insecurity
to the poorest population. )e evidence of sizable price
spikes in times of uncertainty requires the government to
implement policy interventions to minimise its impact on
the poorest populations which will be enhanced through
policy intervention.
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[23] L. Pástor and P. Veronesi, “Uncertainty about government
policy and stock prices,”0e Journal of Finance, vol. 67, no. 4,
pp. 1219–1264, 2012.

[24] J. A. Frankel, “)e effect of monetary policy on real com-
modity prices,” in Asset Prices and Monetary Policy,
J. Campbell, Ed., pp. 291–333, 2008.

[25] H. Gulen and M. Ion, “Policy uncertainty and corporate
investment,” 0e Review of Financial Studies, vol. 29, no. 3,
pp. 523–564, 2016.

[26] D. Rodrik, “Policy uncertainty and private investment,”
Journal of Development Economics, vol. 36, no. 2, pp. 229–242,
1991.

[27] J. A. Frankel, International Coordination (No. W21878),
National Bureau of Economic Research, Cambridge, Mas-
sachusetts, USA, 2016.

[28] S. R. Baker, N. Bloom, and S. J. Davis, “Measuring economic
policy uncertainty∗,” 0e Quarterly Journal of Economics,
vol. 131, no. 4, pp. 1593–1636, 2016.

[29] S. R. Baker, N. Bloom, and S. J. Davis, “Measuring economic
policy uncertainty,” National Bureau of Economic Research,
vol. 131, 2015.

[30] Y. Wang, B. Zhang, X. Diao, and C. Wu, “Commodity price
changes and the predictability of economic policy uncer-
tainty,” Economics Letters, vol. 127, pp. 39–42, 2015.

[31] J. C. Reboredo and X. Wen, “Are China’s new energy stock
prices driven by new energy policies?” Renewable and Sus-
tainable Energy Reviews, vol. 45, pp. 624–636, 2015.

[32] S. J. H. Shahzad, N. Raza, M. Balcilar, S. Ali, and M. Shahbaz,
“Can economic policy uncertainty and investors sentiment
predict commodities returns and volatility?” Resources Policy,
vol. 53, pp. 208–218, 2017.

[33] T. P. Wisniewski and B. J. Lambe, “Does economic policy
uncertainty drive CDS spreads?” International Review of Fi-
nancial Analysis, vol. 42, pp. 447–458, 2015.

[34] M. Arouri, C. Estay, C. Rault, and D. Roubaud, “Economic
policy uncertainty and stock markets: long-run evidence from
the US,” Finance Research Letters, vol. 18, pp. 136–141, 2016.

[35] Z. Liu, Y. Ye, F. Ma, and J. Liu, “Can economic policy un-
certainty help to forecast the volatility: a multifractal per-
spective,” Physica A: Statistical Mechanics and Its
Applications, vol. 482, pp. 181–188, 2017.

[36] C. T. Albulescu, R. Demirer, I. D. Raheem, and A. K. Tiwari,
“Does the U.S. economic policy uncertainty connect financial
markets? Evidence from oil and commodity currencies,”
Energy Economics, vol. 83, pp. 375–388, 2019.

[37] A. M. Adam, “Susceptibility of stock market returns to in-
ternational economic policy: evidence from effective transfer
entropy of Africa with the implication for open innovation,”
Journal of Open Innovation: Technology, Market, and Com-
plexity, vol. 6, no. 3, p. 71, 2020.

[38] L. Fang, H. Yu, and L. Li, “)e effect of economic policy
uncertainty on the long-term correlation between U.S. stock
and bond markets,” Economic Modelling, vol. 66, pp. 139–145,
2017.

[39] H. Yu, L. Fang, B. Sun, and D. Du, “Risk contribution of the
Chinese stock market to developed markets in the post-crisis
period,” Emerging Markets Review, vol. 34, pp. 87–97, 2018.

[40] I. Badshah, R. Demirer, and M. T. Suleman, “)e effect of
economic policy uncertainty on stock-commodity correla-
tions and its implications on optimal hedging,” Energy Eco-
nomics, vol. 84, Article ID 104553, 2019.

[41] P. Owusu Junior, A. M. Adam, and G. Tweneboah, “Co-
movement of real exchange rates in the west african monetary
zone,” Cogent Economics & Finance, vol. 5, no. 1, Article ID
1351807, 2017.

[42] P. Owusu junior, G. Tweneboah, and A. M. Adam, “Inter-
dependence of major exchange rates in Ghana: a wavelet
coherence analysis,” Journal of African Business, vol. 20, no. 3,
2019.

[43] K. Wu, J. Zhu, M. Xu, and L. Yang, “Can crude oil drive the
co-movement in the international stock market? Evidence
from partial wavelet coherence analysis,”0e North American
Journal of Economics and Finance, vol. 53, Article ID 101194,
2020.

[44] E. Asafo-Adjei, D. Agyapong, S. K. Agyei, S. Frimpong,
R. Djimatey, and A. M. Adam, “Economic policy uncertainty
and stock returns of Africa: a wavelet coherence analysis,”
Discrete Dynamics in Nature and Society, vol. 2020, Article ID
8846507, 8 pages, 2020.

[45] A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the
cross wavelet transform and wavelet coherence to geophysical

12 Complexity



time series,” Nonlinear Processes in Geophysics, vol. 11, no. 6,
pp. 561–566, 2004.

[46] A. Rua and L. C. Nunes, “International comovement of stock
market returns: a wavelet analysis,” Journal of Empirical Fi-
nance, vol. 16, no. 4, pp. 632–639, 2009.

[47] C. Torrence and G. P. Compo, “A practical guide to wavelet
analysis,” Bulletin of the American Meteorological Society,
vol. 79, no. 1, pp. 61–78, 1998.

[48] C. Torrence and P. J. Webster, “Interdecadal changes in the
ENSO-monsoon system,” Journal of Climate, vol. 12, no. 8,
pp. 2679–2690, 1999.

[49] M. Madaleno and C. Pinho, “International stock market
indices comovements: a new look,” International Journal of
Finance & Economics, vol. 17, no. 1, pp. 89–102, 2012.

[50] K. Gurley and A. Kareem, “Discussion,” Engineering Struc-
tures, vol. 21, no. 2, pp. 149–167, 1999.

[51] K. Gurley, T. Kijewski, and A. Kareem, “First- and higher-
order correlation detection using wavelet transforms,” Journal
of Engineering Mechanics, vol. 129, no. 2, pp. 188–201, 2003.
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Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a
static base station forward data more frequently than others, which results in the problem of energy holes and makes networks
fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained
networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel
strategy is proposed to reduce the latency of mobile data gathering in aWSN while the routing strategies and tour planning of MS
are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated.
A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection.
Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data.+e
proposed method is simulated in aMATLAB platform to show the overall performance of the developed system. Furthermore, the
physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our
laboratory. +e test results validate the feasibility and effectiveness of the method proposed.

1. Introduction

In recent years, the prosperous development in the Internet
of +ings has been validated where wireless sensor networks
(WSNs) become ubiquitous. WSNs are widely used in the
fields, such as intelligent transportation, agriculture, medical
treatment, aerospace exploration, and other emerging ap-
plications, whereas they can contain a large number of static
and mobile nodes in a self-organizing way [1–3]. Tradi-
tionally, a sink node in aWSN is fixed where the other sensor
nodes (SNs) transmit data to the sink through either single-
hop or multihop communication. +us, the SNs close to the
sink tend to carry more data transmission or forwarding
tasks which leads to unbalanced energy consumption and

results in poor data delivery in networks. +e issues of
energy holes and data collision may occur in such appli-
cations [4–7].

Mobile data gathering is regarded as a promising so-
lution to tackle the problems aforementioned. In applica-
tions, mobile sinks (MSs) as data collectors gather sensing
data in an efficient manner [8–15].+e issues associated with
the tour planning of MS have been actively discussed in the
existing literature that is crucially important to determine
the performance of networks. +e concern of energy con-
sumption due to long-distance transmission is discussed in
[16]. A maximum cache mechanism is proposed to enhance
the transmission capability by adopting MS. In [17], an
architecture of single-hop with single MS for mobile data
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gathering has been investigated. +e proposed scheme has
the benefit of energy-saving in line with the optimal tour
trajectory of MS. In the study, a heuristic optimization al-
gorithm is employed. A joint scheme for both charging and
tour planning in a MS-based WSN is proposed in [18].
Energy consumption of each sensor is leveraged which in
turn mitigates energy exhaustion. To strike the balance
between energy consumption and latency of data gathering,
an algorithm to find the optimal number and position of
cluster head nodes for data collection is proposed in [19].
+e simulation results verify the effectiveness of the scheme
in favor of adopting the optimal path length of MS. In order
to create a robust WSN, clustering techniques are also
important for energy-saving and delay reduction where SNs
are partitioned into subnetworks. Taking into account the
kinematic constraints of mobile nodes of similar vehicles, in
[20], a mobile data acquisition algorithm based on clustering
Dubins smooth curve is proposed. Aiming at the problem of
sensor node data aggregation and node energy imbalance, as
well as the space problem being often ignored, a heuristic
search algorithm (HLSA) is proposed in [21]. A dynamic
clustering algorithm to divide the SNs into clusters is
employed in [22]. By using the clustering mechanism, the
energy efficiency and packet reception rate are improved.
Our previous work has also shown the importance of sensor
clustering in WSNs [23, 24]. A WSN with respect to mobile
data gathering where the work has a special focus on
clustering mechanism before mobile data gathering is
committed by the MS is developed in [23]. A data gathering
scheme by using multiple mobile sink nodes is proposed in
[24]. +e average path length is dramatically shortened in
this way, thereby reducing energy expenditure.

As an extension of the recent work, this study includes
the main contributions as follows:

(1) We investigate the data gathering mechanism by
considering energy constraints in a WSN system
where the path length is minimized.

(2) +e network coverage is discussed and formulated to
an optimization problem. As a result, suitable node
numbers are defined to strike the balance of theWSN
scale and network coverage.

(3) A predicted trajectory is developed to assist the tour
planning of a MS. In this manner, the overall data
gathering is divided into several stages. +is mech-
anism gives a chance to theMS to be recharged at the
end of each stage to prevent energy exhaustion for a
MS with insufficient power while heavy data load
being required.

(4) Besides the extensive simulation on MATLAB, the
trail tests are committed to verify the effectiveness of
the proposed scheme where an unmanned aerial
vehicle (UAV) serving as a MS is employed in a
WSN.

+e rest of this paper is organized as follows. Section
2 presents the systematic configuration with extensive

discussion on energy constraints associated with MS
traveling, activities, and the network architecture. Sec-
tion 3 develops the optimization formulation for max-
imising network coverage while minimizing energy
expenditure and path length for each cycle. Simulation
setup and trail tests are both presented in Section 4
following the outcome demonstration and analysis
corresponding to them.+e key conclusions are drawn in
Section 5.

2. Problem Formulation

+e sensor network consists of a base station, a certain
number of SNs, and a MS. After the sensors acquire data
from the sensing field, they wait to be polled by the MS to
deliver the information in each round.+eWSN is shown in
Figure 1.

It is assumed that there are N SNs in the network, N�

{1,......,n}, i≠ j, i, j ∈ N; V represents a virtual cluster, V�

{1, . . ., v}; and trajectory between the virtual cluster head
nodes is M� {V (i, j) i≠ j}. Let dij represent the Euclidean
distance between the two virtual cluster head and ley xm

ij

indicate whetherV (i, j) is included in the tour of theMS.We
have the following equation:

xij

1, if data gathering tour containsV( i, j ),

0, otherwise.
􏼨 (1)

A MS gathers data periodically. +e overall time in each
cycle contains two segments: traveling and sojourn time
[25]. Traveling time also includes two parts. One is in line
with traversing time from one cluster to another.+e second
part is relevant to returning to the base station. Moreover,
since the MS has the duty to poll the cluster head nodes, it
stays on the cluster head nodes until completing data
collection.

2.1. Traveling Time. In one cycle, the tour length can be
calculated by

D � 􏽘
V

i�1
􏽘

V

j�1
xijdij. (2)

+e total moving time is then calculated by

tm �
D

v
, (3)

where v is the moving speed.

2.2. Sojourn Time. In a cycle, the MS reaches sensor node i;
the amount of data isCi; τi is staying time at each rendezvous
point; G represents the transmission rate. +erefore, there is
a relationship as follows:

τi �
Ci

G
. (4)
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According to equations (3) and (4), the period of a cycle
is obtained by

T � tm + 􏽘

v

i�1
τi. (5)

+e tour planning is formulated to an optimization
problem with the following equations:

Minimize tm + 􏽘
v

i�1
τi, (6)

subject to􏽘
V

i�1
xij � 1 , j ∈ V, j≠ 1, (7)

􏽘

V

j�1
xij � 1, i ∈ V, i≠ 1, (8)

􏽘

V

i�1
xip − 􏽘

V

j�1
xip � 0, p ∈ v, p≠ 1, (9)

􏽘

V

j�2
x1j � 1, (10)

􏽘
i�2

xi1 � 1, (11)

TMN ≤TD, (12)

Lsum ≤Lmax. (13)

Equations (7) and (8) ensure that each cluster head node
is accessed only once per round. Equation (9) guarantees
tour continuity. Equation (10) guarantees that the MS starts
from the base station. Equation (11) guarantees that the final
destination of MS is the base station. Equation (12) is the
time limit per round. Equation (13) is the limit of tour length
per round, which in turn determines the energy limit.

Since the MS consumes the most energy on traversing
through the sensing field, the energy cost is closely related to
the tour range. +is paper mainly takes energy expenditure
on traveling into account. +erefore, the objective function
in optimization is replaced by the target to minimize the tour
length as follows:

Minimize􏽘
V

i�1
􏽘

V

j�1
xijdij. (14)

3. Tour Planning

3.1. Coverage Issue with an Adjacency Matrix. +e coverage
issue is essential for a WSN. On the one hand, visiting
fewer nodes will reduce the MS burden for data collec-
tion. On the other hand, a WSN needs enough nodes to
achieve the expected monitoring quality. +us, there is a
balance to strike between the node number and the
communication quality. In this paper, the network cov-
erage with nodes deployment in random order is con-
cerned. For simplicity purpose, the optimal density of the

MS

Virtual cluster head
node

Member node in the cluster

MS Mobile sink

Tour path
Data transmission

Base
station

Figure 1: A wireless sensor network.
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deployment is determined by the communication radius,
which is the basis for calculating the number of de-
ployment nodes.

+is paper uses an adjacency matrix graph to define the
connectivity of deployed nodes [22–26]. We consider the
network as a graphG� (V E) whereV refers to the SNs and E
represents the edge between the two SNs which can com-
municate with each other.

In some conditions, we can convert G into a square
matrix A � (aij)m×m with M-order (m � |V|) if
aij � |ek|, ek � <vi, vj> ∈ E. +erefore, the adjacency matrix
G can be represented by matrix A.

Furthermore, we define Ak � (a
(k)
ij )m×m,

( a
(k)
ij ) � 􏽐

m
k�1 ak−1

ih ahj. If aih • ahj ≠ 0, aih ≠ 0, and ahj ≠ 0,
there are k routes from the node vi via vh to vj. For instance,
a

(2)
ij demonstrates there are two paths that can start from vi

via an intermediate node vh to the node vj. +erefore, if
􏽐

m−1
k�1 a

(k)
ij � 0, there is no path communication between the

node vi and the node vj.
+erefore, we use a new matrix S � (Sij)m×m � 􏽐

m−1
k�1 Ak.

If all the elements inmatrix S are nonzero elements, thenG is
a fully connected graph. Otherwise, if there is only an ele-
ment in matrix S, then G is a disconnected graph.

3.2. Cluster Forming. We uniformly deploy the nodes in the
regionwhere they are grouped into clusters. In this way, the SNs
can have balanced energy consumption since they can share the
workload in clusters s [27]. Moreover, it ensures that each
cluster head has almost the same energy expenditure in each
cluster. +ere are many useful and advanced algorithms to
realize the deployment, for example, neighbor clustering and
fuzzy clustering. In order to implement real-world tests, we
want a simpler and efficient algorithm as our solution.
+erefore, the K-means algorithm is adopted. We use K-means
based dynamic clustering algorithm to partition the nodes into
the monitoring area [24].

+e K-means algorithm aims to minimize the total
distance Jj between the SNs and the center of the cluster.
+e distance can be presented by

Jj � 􏽘

Nj

i�1
‖Xi − Zj‖

2
, Xi ∈ Sj, (15)

where Sj is cluster j; Zj is the center of the cluster j; and Nj

is the sample number in the cluster j. Since the selection of
the cluster center should make Jj extremely small [1], then
zJj/zZj � 0. +us, equation (14) can be rewritten by

z

zZj

􏽘

N

i�1
‖Xi − Zj‖

2
� 0. (16)

+erefore,

Zj �
1

Nj

􏽘

Nj

i�1
Xi. (17)

+e algorithm is committed in the following way:

Step 1: initializing the clusters with randomly picked
nodes. A cluster head is selected to be as the center. All
centers are recorded by Z1(1), Z2(1), ........, Zk(1).
Step 2: allocating the rest of the SNs in cluster k around
the centers according to equation (17) where Euclidean
distance is applied.
Step 3: recalculating Zj(k + 1), j� 1, 2, ..., k for each
cluster.
Step 4: judging if Zj(k + 1) � Zj(k), the clustering
ends. Otherwise, return to Step 2 and regroup the
sample iteratively.

Afterwards, the calculation completes while the results
are recorded. Now, the nodes are partitioned to k clusters
where k virtual cluster centers are generated at the same
time. Via k-means algorithm, the overall distance from the
SNs to the cluster centers reaches the least. Since the in-
tercluster communication uses single-hop transmission,
the communication costs the least energy consumption
through this arrangement. +e nodes are then manually
placed to the locations of these virtual cluster centers where
the cluster head nodes play the roles of the center. After a
head node being defined, a broadcast message is sent to the
members in the cluster to confirm the location of the cluster
head node. Now, the location of these virtual cluster centers
will be a rendezvous point for the MS. +e MS starts to
gather data by the members in the cluster after the MS
reaches the location.

3.3. Energy Consumption Prediction. Due to the limited
energy capacity of the MS, it is difficult for a single MS to
complete all the data gathering without interruption in one
cycle. +erefore, the whole tour planning is divided into
several segments where the division method is defined by the
prediction result based on the ant colony system (ACS)
optimization. +e algorithm follows the steps below:

Step 1: to determine the accessible order of each
cluster where the access nodes are defined by
1, 2, . . . , v{ }. +ese orders are determined by the ant
colony algorithm [8–27]. +e calculation is based on
equations (18)–(20).
Step 2: judgement. If the length of the whole tour is
within the maximum range of MS, the MS completes
the data gathering at once. Otherwise, the tour is cut
into multiple segments and executed in turn.

4 Complexity



Assuming j represents the next hop point from the
current i point, the possibilities of visiting point j are
s that can be presented by the following equations
[27]:

j �
argmax τij(t)􏽨 􏽩 ηij(t)􏽨 􏽩

β
􏼚 􏼛, q< q0,

S,

⎧⎪⎪⎨

⎪⎪⎩
(18)

S �

τij( t )􏽨 􏽩 ηij( t )􏽨 􏽩
β

􏽐k∈allowedk
τij( t )􏽨 􏽩 ηij( t )􏽨 􏽩

β, j ∈ allowed k

0, else

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

where τij(t) represents pheromone variables; ηij(t)

is the heuristic desirability; β> 0 represents the
relative strength of heuristic factors; q0 ∈ (0, 1) is the
initial parameters; and q ∈ (0, 1) is a random
number. Local update strategy is to make the selected
edges have a better influence on the later ants, as
shown in the following formula:

τij(t + 1) � (1 − ζ)τij(t) + ζ · τ0, (20)

where ζ is the pheromone decay parameter within (0,
1) and τ0 is a constant. +e global update strategy is
to find the shortest path for traversing the rest of the
points and return to the base station within the MS
energy capability that belongs to the edges on the
optimal path, as shown in the following equation:

τij(t + 1) � (1 − ρ)τij(t) + ρ · Δτij(t), (21)

Δτij �

1
Lk

, ( i, j ) on the optimal path,

0, else,

⎧⎪⎪⎨

⎪⎪⎩

(22)

where Δτij is the added pheromone on the trail from
point i to j; ρ represents the evaporation coefficient,
ρ ∈ (0, 1); and Lk is the optimal path length.
Step 3: the total energy carried by the MS is E. At the
beginning of the cycle, the MS arrives at the first
sensor node for data collection. Afterwards, the MS
measures its own remaining energy for the next
stage. If the remaining energy is enough to be
consumed in the next stage, the MS travels to the
next node for data gathering. Otherwise, it returns
directly to the base station for recharging.+e energy
consumption in the next stage is expected to be
sufficient for visiting the remaining nodes, data
collecting, and returning to the base station.

(1) Energy consumption for visiting:
It refers to the energy consumed over the traveling
from node i to node j:

eij � em • dij. (23)

(2) Energy consumption for collecting data from node j:

erej � rerx • tj − t0􏼐 􏼑. (24)

tj is the time to arrive at node j, and t0 is the starting
time of the cycle.

(3) Energy consumption for returning to the base
station:

ejs � em • djs. (25)

+e total energy consumption for the next stage is
predicted at node i expressed by the following
equation:

Ni � eij + erej + ejs. (26)

Assuming the remaining energy when the MS rea-
ches the node i is equal to q, the remaining energy of
the MS after the completion of the data gathering is
Ri. So,

Ri � Q − erei − echi, (27)

If Ri >Ni when MS travels to node j for data col-
lection, MS goes on its journey to the next node.
Otherwise, the MS returns to the base station for
recharging.
Step 4: tour replanning.
After the MS completes the recharge, the tour plan-
ning to the remaining nodes in the next subcycle will
be recalculated. +e new trajectory and visiting order
are calculated. Afterwards, the data gathering con-
tinues according to the updating results from Step 2.
Step 5: repeat the above process until all the cluster
fields are traversed. +e remaining nodes not polled
are abandoned. In order to simplify the algorithm,
the maximum tour length is used to represent the
energy limit of the MS.

4. Results and Analysis

4.1. Simulation Environment. To verify the effectiveness of
the algorithm, the simulation is carried out on a MATLAB
platform. +e key simulation parameters are summarized in
Table 1.

4.2. Outcomes and Analysis. First, the problem of node
coverage is simulated. Assuming the node number is 90 and
the communication radius is 15m, the coverage area is
shown in Figure 2. After a large number of experiments
being committed, the relationship between node number,
communication radius, and coverage are obtained. +e
results are shown in Figure 3. +e relationship between
node density and coverage is shown in Figure 4. By syn-
thetically analyzing these outcomes, we define the
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communication radius and the node density as 15 and
0.007, respectively.

According to the coverage plan, 70 nodes are randomly
placed in the sensor field as shown in Figure 5. After ap-
plying the dynamic clustering algorithm, 10 virtual cluster
head nodes are generated as shown in Figure 6.

Afterwards, the ant colony optimization is used to plan
the shortest path over the ten cluster head nodes, and the
node path is shown in Figure 7. However, the shortest length
on the tour is 348.63 according to the measurement from
Figure 8. It exceeds the energy limit of the MS. +e access
order can be obtained as shown in Figure 9. Nevertheless, the

Table 1: Parameters of the simulation.

Parameter name Parameter values
Number of sensor nodes 70
Number of virtual cluster head nodes 10
Number of MS 1
Heuristic factor (α) 1
Expectation heuristic factor (β) 5
Information intensity (Q) 500
Pheromone volatile factor (η) 0.5
Number of ant colonies (m) 18
Required coverage (%) 0.95
Maximum endurance mileage (m) 200
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Figure 2: Coverage area in the field.
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Figure 6: Node clustering and the cluster heads.
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node starts the data gathering for the first subcycle from the
base station (node 0).

+eMS starts the tour. However, when it reaches node 3,
it is found that the remaining energy is not enough to
support it to complete the next stage of data collection tasks;
that is, it reaches node 4 for data collection tasks and returns
to the base station. +us, it returns to the base station for
energy replenishment to continue the second subcycle. After
the MS is fully charged, the tour planning for traversing the
remaining nodes is recalculated as shown in Figure 10. +e
shortest path is shown in Figure 11. At this time, traversing
the remaining nodes costs more energy than the MS ca-
pacity.+ere will be a third subcycle for theMS.+e updated

access order in the second subcycle can be found in
Figure 12.

Again, the MS arrives at the head node of the first virtual
cluster in the second subcycle. After node 3 being poll, the
MS needs more energy to reach node 4. +erefore, it returns
to the base station for preparing the third subcycle.

After being fully charged, the remaining tour is reor-
ganized. +e third subcycle is then defined as shown in
Figure 13. +e searching map for the optimal trajectory is
shown in Figure 14. +e shortest length over the field cannot
be completed by the MS in one cycle. +erefore, the fourth
subcycle is needed.+e calculation for the third subcycle with
the optimal is executed and the result is shown in Figure 15.
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Figure 7: +e planned trajectory of a MS at the beginning.
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Figure 8: Predicted path distance based on prediction.
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+e plan for the traversing, the predicted path length,
and the node access order of the fourth subcycle are shown
in Figures 16–18

In the fourth subcycle, it is slightly different from the
previous subcycles. After polling node 2, the MS cannot
reach node 3. It returns to the base station to be recharged.
However, the energy cannot support it traveling to node 3.
+erefore, node 3 is abandoned. +e tour planning, tra-
jectory, and the visiting order for the fourth subcycle are
demonstrated in Figures 19 and 20.

+e simulation results have shown the initial energy of the
MS cannot support completing data collection.+erefore, the

initial energy is then increased to 300. By repeating the
process above, the tour planning in the final two periods can
be obtained as shown in Figure 21. +e path lengths of each
subcycle are shown in Figure 22. With the updated initial
energy, the MS can complete the data gathering by traversing
all cluster head nodes over the sensing field. +erefore, the
optimal energy capacity of the MS is determined by 300m.

+e simulation is carried out with the optimal tour
planning with the shortest length where energy constraints
and efficient data gathering are considered as a priority.
+rough the simulation, we also find the process of data
gathering is closely related to the initial energy of the MS.
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Figure 9: Planned access order for the first round prediction.
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Figure 10: Planned trajectory at the beginning of the second subcycle.
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+erefore, a comparative evaluation for the relationship
between the tour planning and battery capacity of the MS
is carried out. +e key indicators are summarized in
Table 2.

It is noted that the larger initial energy can lead to a
smaller number of subcycles. Moreover, the shorter length
means the shorter latency over data gathering.

In practice, the energy capacity of a MS is limited.
+erefore, consideration is needed to strike the balance
between the delay and the initial energy.

4.3. Trail Tests in a Small WSN. Trail tests are carried out in
the laboratory to verify the reliability of data transition based
on a small scale WSN while only the first subcycle is tested.
+ree SNs are placed as the terminal nodes to collect data.
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Figure 12: Planned access order in the second subcycle.
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subcycle.
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+eMS is responsible for polling the SNs and completes data
gathering. +e device in the experiment includes a UAV
carrying the MS and three DHT11 temperature-humidity
sensors as the SNs. +e images of these devices are shown in
Figure 23. Test results are summarized in Table 3.

Furthermore, three rounds of experiments are com-
mitted. +e results are summarized in Table 4. +e results
show that the experimental system can effectively collect
temperature and humidity data, and the data transmission
is reliable.
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Figure 15: Planned access order at the beginning of the third subcycle.
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Figure 17: Predicted path length at the beginning of the fourth subcycle.
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Figure 20: Continued.
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Figure 19: +e whole tour planning over the four subcycles.
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Figure 21: +e first two subtours with a limitation of a maximum continuation length of 300 meters.
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Figure 20: Tour length for each subcycle.
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Figure 22: +e path length of the first two subtours with a limitation of a maximum continuation length of 300 meters.

Figure 23: Device for sensing and data gathering.

Table 3: Test results of communication quality.

Distance (m) Number of packets sent Number of packets lost Packet loss rate
10 1000 0 0
15 1000 0 0
20 1000 1 0.001
25 1000 23 0.022
30 1000 101 0.121
35 1000 382 0.394
40 1000 1000 1

Table 2: Tour planning with different battery capacities.

Round Maximum range (m) Number of cycles Data gathering rate (%) Total length of the route (m)
1 200 4 90 736
2 300 2 100 490
3 400 1 100 350

Table 4: +e experimental values of the system.

Number of experimental rounds Node 1 Node 2 Node 3
1 21/59 19/69 22/56
2 24/50 24/55 24/51
3 22/53 21/59 24/51
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5. Conclusion

+is paper presents a prediction-based tour planning for
data gathering in WSNs. +e scheme primarily aims to
mitigate the challenge when a single MS cannot complete
data gathering or traverse all cluster head nodes at once.
First, the issue of the network coverage is discussed in favor
of a decent arrangement with the optimal number of sensor
nodes across the field. Afterwards, a dynamic clustering
algorithm is proposed to generate sensor clusters where the
cluster head nodes are defined as the MS sojourns. +e
methodology of the predictive trajectory is developed for
finding the optimal tour before a MS traverses the sensing
field. In the study, the single tour of data gathering is divided
into several subcycles to prevent energy exhaustion. Both the
MATLAB simulation and physical tests are committed to
demonstrating the whole procedure for data gathering under
the proposed scheme. +e results have proved the effec-
tiveness and reliability of the methodology. +e study
outcomes provide a useful solution for tour planning in
energy-constrained WSNs.
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In this paper, a stochastic simulation model for a standalone PV system sizing is replicated and extended to supply a dairy’s power
demand. A detailed hourly-based simulation is conducted considering an hourly load profile and global solar radiation prediction
model. (e stochastic simulation model is based on a thorough statistical analysis of the solar radiation data and simulates the
energy yield, the excess energy curtailed, and the state of charge of the batteries for the sizing month and the whole year, providing
the designer autonomy factor values d to properly size the PV system, finding the optimum combination of installed peak power
(Pm) and battery storage capacity (CL) that meets the application load requirements, considering a preset reliability level at
minimum cost.(emodel makes use of the NASA’S SurfaceMeteorology and Solar Energy database to obtain solar radiation data.
Results show a substantial reduction of 44% in installed peak power and battery storage capacity when compared to conventional
methodologies, considering three days of autonomy, and an 85% reduction considering four days. Considering the goodness of fit
test results, the Wakeby distribution best represents the behavior of historical solar radiation data for the site in almost half of the
months. (is article seeks to contribute to the literature gap in the application of methodologies for the multicomponent power
supply in the dairy industry through the use of renewable energy.

1. Introduction

Over the last decades, the amount of energy consumed by
different types of industries has been growing enormously
due to the economic growth of different countries, which in
turn is triggered by the increase of world population and
consumption patterns [1]. (e environmental impact of
human activities is contributing to rapid climate change due
to CO2 emissions, released as a result of fossil fuel com-
bustion [2]. Solar energy is freely available and environ-
mentally friendly, being widely adopted as an alternative for
conventional electricity generation.

(e sizing of standalone PV systems is an important task
for the designers to find the most reliable and profitable
combination of peak power and battery storage capacity that
properly meets load demand, avoiding an equipment failure
occurrence, considering the random behavior of solar

radiation [3]. (erefore, the objective is to improve energy
efficiency in terms of economic performance and reliability
standards to ensure system autonomy.

In this sense, several methods have been proposed and
developed in the literature to size standalone PV systems,
which differ according to the approach used.

Before PV system sizing, in the design step, it is essential
to identify the inherent losses present in the whole system to
adequately size the system components. As for PV panels,
the input energy may be reduced by shading, reflection due
to the angle of incidence, dust, degradation (ageing), tem-
perature effects, etc. Before the converted energy reaches the
load demand, power losses due to the efficiency of the power
conditioning units (inverters and charge controllers) need to
be considered [4]. As for batteries, the charge/discharge
process may lead to some power losses due to its internal
resistance [5] and others in the battery storage system due to

Hindawi
Complexity
Volume 2020, Article ID 5792782, 17 pages
https://doi.org/10.1155/2020/5792782

mailto:pablo.viveros@usm.cl
https://orcid.org/0000-0003-3059-1684
https://orcid.org/0000-0002-2127-3062
https://orcid.org/0000-0001-8970-9371
https://orcid.org/0000-0003-4422-7680
https://orcid.org/0000-0001-9088-1267
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5792782


the natural degradation of battery capacity [5]. Since the
above thing directly affects PV system performance, the task
consists of controlling the system operation to minimize
output power losses.

It is also important to take into account the balance
between energy yield by the PV array and energy consumed
by the load. Any short-term mismatch between them must
be counterbalanced usually by rechargeable batteries. It is for
this reason that a factor of autonomy days or days of battery
backup, d, has been proposed in the literature [5] to rep-
resent the number of days on which the PV system can meet
the load demand in the absence of power generation and
Peak Sun Hours (PSH). In other words, d represents the
maximum number of days that the PV system can supply
energy to loads independently.

In this sense, the research carried out by Kaplani and
Kaplanis [6] presents a stochastic simulation model to de-
termine the size of autonomous photovoltaic systems in terms
of peak power (Pm) and battery storage capacity (CL) for the
critical month, thus ensuring compliance with annual reli-
ability standards. (e model, in addition to considering the
days of autonomy as an exogenous variable, we consider as
main inputs the analysis and simulation of daily-based solar
radiation and the load profile, obtaining, as a result, the state
of charge of the battery, the excess energy burnt, the energy
losses, and the Pm and CL results for sizing the system.

(emain contribution of this article lies in the lack of the
literature that focuses exclusively on standalone photovoltaic
system sizingmethods and their implementation in the dairy
industry, using direct primary energy to satisfy the simul-
taneous demand of multiple components for the milking
process [7]. Although research such as [8, 9] addresses the
sizing of PV systems in dairies, they only focus on supplying
certain specific components of the milking process, unlike
this research. On the other hand, this article seeks to extend
the original method of [6], incorporating an hourly load
profile, and extending the stochastic simulation elaborated
in this article to consider an hourly basis for the determi-
nation of the capacity indicators. In order to meet these
goals, there were three primary objectives of this study:

(1) To size a standalone PV system for a dairy in the
south of Chile by replicating themethod proposed by
[6], in conjunction with reliable hourly solar radi-
ation prediction data, performing a detailed hourly-
based simulation and deepening, thus, the model
proposed by these authors

(2) To test the hourly-based proposed model for a dif-
ferent geographical location than the original study
to supplement and extend its findings

(3) To validate if the results obtained from the hourly-
based method reach similar reductions in installed
peak power and battery storage capacity as compared
to conventional methodologies, as demonstrated by
the daily-based method proposed by [6]

(e methodology is based on stochastic modeling of the
performance of both of the PV array and the battery storage
system and provides the energy delivered, the excess energy

curtailed, the load profiles, and the state of charge of the
batteries for the sizing month and the whole year, as well as
data on the success rate for the determination of the au-
tonomy factor d and the sizing of the system. To generate
hourly solar radiation data, the model proposed in [10] is
employed.

2. Literature Review

2.1. Standalone Photovoltaic Systems. Photovoltaic (PV)
power generation systems are currently one of the systems
with the fastest growth in the use of direct solar energy,
considering the latter a clean, environmentally friendly
source of energy, and abundantly available in most locations
in the world [11]. (ese systems are fundamentally designed
to transform solar radiation useful energy into electricity,
through the use of photovoltaic panels. In addition to the
panels, PV systems are composed of a current controller, an
inverter to supply direct and alternating current loads, and a
storage battery.

Although PV systems generally require a high initial
investment, they can offer a cost-effective alternative to
certain isolated off-grid locations, in comparison to the
installation of power lines with central distribution [11]. In
such scenarios, standalone photovoltaic (SAPV) systems
become a plausible alternative since they can supply off-grid
power generation. (erefore, the reliability of these systems
becomes a relevant aspect to address, understanding it as the
system capacity to satisfy load demand during a certain
evaluation period [12].

(e sizing of photovoltaic systems seeks to determine the
optimal combination of variables associated with the ar-
rangement of photovoltaic panels, battery storage capacity,
and tilt angle, among other parameters related to the
components, to obtain the best compromise between power
reliability and system cost. Given the vast diversity of ap-
proaches, Khatib et al. [11] classify the different sizing
methods reviewed in the literature into intuitive methods,
numerical methods, analytical methods, computational
tools, computational intelligence methods, and hybrid
methods. Likewise, the evaluation criteria are classified into
technical parameters, considering the loss of load proba-
bility, loss of power supply probability, the state of charge
(SOC), among others; economic parameters, considering the
net present value (NPV) and the annualized cost; and social
parameters, such as portfolio risk or even social acceptance.

Regarding the restrictions related to SAPV, the literature
review developed by Fouad et al. [13] reveals that the factors
with the greatest impact on the performance of photovoltaic
systems analyzed are related to the battery efficiency and
physical photovoltaic panels structure. Meanwhile, Khatib
et al. [11] add physical space budget and energy constraints
related with load profile fulfillment in the case of SAPV as
essential aspects considered in the reviewed literature.

2.2. PV Systems on Daily Farms. (e use of PV systems can
offer more than just a cost-efficient alternative versus
conventional electricity generation systems. Recently, these
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types of alternatives also respond effectively to a requirement
promoted both by the scientific community and by inter-
national organizations for the mitigation of anthropogenic
emissions. One of the strategies recommended in research
such as [14] is the proposal of primary energy saving
measures through the implementation of PV systems for
power generation and consumption in dairy farms.

In this sense, research such as developed by Breen et al.
([15], cited in [7]) reveals the potential of photovoltaic
systems to substantially reduce carbon dioxide emissions in
dairy farms, one of the main current anthropogenic emis-
sions. In the particular case of this industry, a growth of 22%
in milk production is expected for the 2018–2027 period
[16], and 19% in its consumption by 2050 ([17], cited in [7]).
From the energy consumption perspective, it is added the
fact that electrical energy represents one of the items with the
highest consumption for both conventional and organic
dairy farms, representing 14% and 24% of total primary
energy consumption, respectively, according to [18]. Con-
sidering the above, the incentives for photovoltaic system
installation, particularly in the dairy industry, are
considerable.

Regarding the review of related research, case studies
such as De Blas et al. [8] and Zhang et al. [19] address the
implementation and sizing of photovoltaic systems sup-
plying certain components or subsystems within diary
productive system, namely, the pumping system and the
cooling system, respectively. Breen et al. [7], meanwhile,
elaborate a generalizable and scalable optimization model
for PV system sizing in dairy farms, using for the definition
of the objective function the weighted sum method, con-
sidering both a financial criterion and the contribution ratio
in terms of autoconsumed energy with respect to gross
annual electricity consumption, using a trade-off parameter
to search for and analyze Pareto-optimal solutions. Unlike
the previously reviewed models, the model implemented in
this research considers an autonomous system, which is why
the need to ensure reliability and autonomy arises before the
consideration of financial evaluation criteria or the contri-
bution from renewable energy.

2.3. Estimation of Global Solar Radiation. Solar radiation
measuring results are essential for the design and operation
of solar energy technologies, especially for the imple-
mentation of solar collectors and the sizing of photovoltaic
systems. However, the measurement of this magnitude,
despite being accurate, is not always available for modeling
and forecasting, mainly due to the high initial investment
and maintenance costs for its measurement and recording
instruments [20]. For this reason, the alternative that arises
within the scientific community is to correlate radiation with
other available meteorological parameters, developing a
wide variety of models based on this approach.

One of the first empirical models is the one developed by
Angstrom [21] for the measurement of monthly average
daily global radiation, developing an empirical correlation
model considering the effect of the daily average of clear-sky
radiation and the sunlight duration fraction. Meanwhile,

Page [9] decides to modify the correlation model, replacing
the clear-sky radiation with the daily average extraterrestrial
radiation on a horizontal surface. Since then, a series of
empirical models have been developed that have modified
and extended the Angstrom–Page model, including new
parameters or different mathematical expressions to es-
tablish empirical relationships. See, for example, [22, 23]
reviews that demonstrate the great variety of empirical
models carried out to date, as well as the location depen-
dence of the parameters.

Another alternative that has emerged in recent decades
for estimating and forecasting global radiation is the use of
artificial neural networks, where the inputs usually corre-
spond to a great variety of meteorological and geographical
parameters, while the output corresponds to the global solar
radiation for different time scales [24]. (e main advantages
of these models for estimating global radiation are their
location adaptability, and a perceptible accuracy improve-
ment compared to traditional empirical models. However,
the disadvantage of these models is its complexity and the
high number of parameters in order to achieve such ac-
curacy, not clearly establishing the effect of this inclusion, in
comparison to empirical models [20].

In an attempt to classify for the first time the vast variety
of models for global radiation in terms of the time span
contemplated and the type of method approached, Zhang
et al. [20] develop a literature review classifying them
according to the output into monthly average of daily global
radiation, daily global radiation, and hourly global radiation
method. (e authors also consider two main categories
regarding the type of estimation: empirical models, which
are disaggregated into sunlight duration fraction (SDF)
models, modified models (MSDF), nonsunshine duration
fraction (NSDF) models, and artificial neural networks
(ANNs). (e study also presents performance indicators
such as the root mean squared error (RMSE) and the mean
absolute percentage error (MAPE) to determine the accu-
racy of each reviewed model based on observed and pre-
dicted values. (e research concludes that the classical
models of fraction of solar duration (SDF), as well as arti-
ficial neural networks (ANNs), have the best performance in
terms of RMSE and MAPE. Although SDF models have
slightly lower performance than ANN models, the latter
generally requires a large amount of data for the training
phase to improve the performance indicators presented.

Considering this last classification, the model developed
by Kaplani and Kaplanis [6] falls into the category of the
long-run monthly average daily global radiation. (e
methodology obtains a representative value of global daily
radiation throughout a month, then averaging the values
obtained year by year, for each month. (e summarized
methodology associated with this model, as well as the
nomenclature used and replicated in this investigation, is
presented in Section 6 and Appendix A, respectively.

(e aforementioned sizing method considers a monthly
fitting for daily solar radiation using probability distribu-
tions. In this regard, specialized distributions such as the
Wakeby distribution have proven their effectiveness in
particular for power generation modeling in planning
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applications of PV power systems [25]. Also, the Johnson SB
and Generalized Extreme Value distributions are usually
considered for modeling meteorological measurements such
as wind speed, generally providing a superior fit to one-
component probability density functions [26].

3. Design of the Dairy

(e case study is carried out in a dairy located in the city of
Rı́o Bueno, in the south of Chile, with coordinates south
latitude 40.331 and east longitude 72.498. In the economic
field, agricultural equipment prices have substantially in-
creased and, conversely, milk prices have continued to
decrease considering the producer’s perspective. (ere are
few cost-saving opportunities in these industries, being
necessary to analyze more cost-effective options for power
generation. In this respect, Chile is endowed with abundant
solar radiation, and the amount of electrical energy that can
be generated from solar panels is potentially significant.

(e electrical load of the diary consists of equipment for
milking, cooling, cleaning, water heating, illuminating, and
ventilation, among others, such as milking machine, vacuum
and water pump, cooling tank, cleaning systems, and light
bulbs.(e dairy performs twomilkings per day, from 5:30 to
7:15 and from 15:30 to 17:15 considering ordinal hours. (e
milking process is described below, as well as the energy
consumption required by the dairy equipment for this case
study:

(i) Milking machine: its main function is the aspiration
to activate the teat cups, directing the milk obtained
towards the cold tank for subsequent accumulation.
(e machine has 14 units and is equipped with a
vacuum pump, which has a 2.2 kW electric motor
including an additional 10% for the operation of the
pulsators. Also, a 0.5 HPmotor is added to drive the
milk to the cold tank. Its operation time matches the
milking process, from 5:30 to 7:15 and from 15:30 to
17:15.

(ii) Cold tank: it is the device that allows the storage of
milk in optimal conditions. It is equipped with a
4 kW engine and has a capacity of 4,275 liters. It has
two 70W agitators each and a ventilation system,
which consists of two 200W fans each. (e oper-
ation time takes place after the milking, and all its
components operate simultaneously. (e period is
between 7:15 and 11:00 and between 17:45 and 22:
00.

(iii) Lighting: the lighting includes the use of luminaires
for the milking room, a corridor, and the machine
room that contain the devices described above. (is
item gives a total of 472W, but it is estimated that it
reaches around 600W by adding the warehouse and
surroundings. (e lighting schedule coincides with
the milking in the morning, that is, between 5:30
and 7:15 hrs.

(iv) Hot water: the warm water is used for machine
cleaning and to wash the cow’s udders. (e water

heater demands 1500W power supply, and it is
estimated that it works approximately 6.4 hours per
day, to maintain the water temperature at about
65°C. Schedules in which the water heater operates
are between 06:45 and 08:25 and between 16:45 and
18:25 hrs (milking process), and between 13:00
and15:45 hrs (cold tank).

(v) Water pump: in order to supply the dairy with
water, a 1 HP submersible pump is used. It exceeds a
total height of 25 meters, with a flow of 3m3/hr.
Average daily water consumption corresponds to
11m3.(erefore, the pump operates for 3 hours and
40 minutes, consuming approximately 2.74 kW per
day. (e hours are usually between 06: 45 and 09:15
and between 16:45 and 17:55.

(vi) Machine washing: to keep the tank in optimal
conditions, it must be washed after milk collection.
(e closed tanks have an automatic washing system,
which uses hot and cold water combined with acidic
and basic cleaning products. (e motor that allows
this is 1 HP. (e duration of the tank washing is 45
minutes, immediately after the collection by the
collection truck, which occurs around 12:30 pm. In
the case of the milking machine, the washing seeks
to remove organic matter, fats, and minerals for the
milk. (e purpose is to prevent the proliferation of
bacteria. (e automatic washing is carried out,
using a 0.5 HP automatic machine minutes after
each milking. (e period of milking machine
washing is 30 minutes, at 08:00 hrs and 18:00 hrs.

Table 1 summarizes the consumption and operating
times associated with dairy equipment.

(e total load demand for the dairy was estimated to be
59.83 kWh/day, which corresponds to the peak summer
demand. Summer has the highest energy consumption
compared to other seasons. (is is because the cooling tank
has to operate for a longer period to keep milk at an ap-
propriate temperature. Since the dairy operates at certain
times of the day, especially during milking, the building of a
detailed hourly load profile is required and presented in
Figure 1.

4. Solar Radiation

4.1. Solar Radiation Data Analysis. In this study, based on
the model proposed by [6], the daily global solar radiation
data (H) were obtained from the NASA’s Surface Meteo-
rology and Solar Energy database [27] for the dairy located at
south latitude 40.331 and west longitude 72.948, considering
the period between 1985 and 2004. For each of the 20 years,
based on the recommended average days for months [28] as
cited in [29], the average day for each month, including the
day both before and after the average day (i.e., three con-
secutive days), was taken to form the global solar radiation
data for the analysis. (e global solar radiation H for each
month at the site concerned is shown in Figure 2.

For each month, solar radiation data were fitted by MLE
(see Appendix C) considering six continuous probability
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distributions, namely, Beta, Generalized Extreme Value,
Johnson SB, Normal, Wakeby, and Weibull distributions
(see Table 2), and were tested according to the Kolmogor-
ov–Smirnov test (K-S test). (e K-S statistic values are
shown in Table 3. (en, the p value is obtained and used as
selection criteria. It is important to notice that in this case,
the null hypothesis H0 establishes that the data follow the
specified distribution for each distribution; therefore, the
selection must consider a p value that cannot reject that
hypothesis (see Appendix D). Following this observation,

the distribution with the highest possible p value is chosen
for each month.

(e p value was calculated using a novel method named
Exact-KS-FFT, expressing the p value as a double-boundary
noncrossing probability for a homogeneous Poisson process,
which is then efficiently computed using fast Fourier
transform [30]. (e method has proved his accuracy and
numerical efficiency versus the algorithm proposed by
Marsaglia et al. [31]. (e results for the fitted distributions
are presented in Table 4.

Table 1: Consumption and operation times of the diary’s equipment.

Equipment Consumption (kW) Operation times
Cold tank 4.54 07:15–11:00; 17:45–22:00
Milking Machine 2.573 05:30–07:15; 15:30–17:15

Hot water 1.5 06:45–08:23; 16:45–18:23 (milking)
13:00–15:45 (tank)

Lighting 0.6 05:30–07:15
Water pump 0.746 06:45–9:15; 16:45–17:55

Others (Machine washing) 0.373–0.746 08:00–08:30; 18:00–18:30 (milking)
12:30–13:15 (tank)
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Figure 1: Load profile of the dairy.
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Figure 2: Daily global solar radiation H on an average day, including the day both before and after the daily average per month for the years
1985–2004 for the site concerned.
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For the months of January, August, September, October,
and December, theWakeby distribution provides the best fit,
while for the months of February, May, July, and November,
the Gen. Extreme Value distribution works best. For March
and June, the Johnson SB distribution is the most appro-
priate. Finally, for April the Beta distribution provides the
best fit. Although the Normal distribution is often chosen to
fit the data, in this case, it does not present substantial
differences in terms of the statistic for the rest of the fitted
distributions. It has to be emphasized that while this study
considers only these six types of distributions, other alter-
natives may eventually improve the fit.

As already stated, to achieve yearly performance, PV
system sizing is carried out based on the “worst month”
method, i.e., the month with the lowest average solar ra-
diation levels. (us, June is selected for sizing in the fol-
lowing sections.

4.2. Model for Estimating the Hourly Global Solar Radiation.
When hour-by-hour performance calculations need to be
done, it may be necessary to start with daily data and then
obtain hourly values from daily solar radiation estimation.
(e ratio of hourly global solar radiation in a day nj, I(h; nj),
to daily global solar radiation, H(nj), is calculated from
equation (1) [29]. Baig et al. [10] modified the model

proposed by Jain et al. [32] which tries to fit solar radiation to
a Gaussian-type function, to better fit the recorded data
during the start and the end periods of a day, as cited in [33].
In this model, rh is estimated by equation (2), where h is the
solar time, σG is the standard deviation of the Gaussian
curve, and So is the day length of the day nj, at a site with
latitude ϕ, given by equation (3), where δ is the sun’s
declination. So correlates with σG, equations (4) and (5),
based on the second version of the new approach to Jain’s
model as cited in [33]. I(h; nj) is determined from equation
(1), leading to equation (6). (e equations used in this
section are listed as follows:

rh �
I h; nj􏼐 􏼑

H nj􏼐 􏼑
, (1)

rh �
1

2σG
���
2π

√ exp −
(h − 12)

2

2σG
􏼠 􏼡 + cos 180

(h − 12)

So − 1( 􏼁
􏼢 􏼣􏼨 􏼩,

(2)

So �
2
15
cos− 1

(− tanϕ · tan δ), (3)

So � 4.054 · σG, (4)

Table 2: Probability distributions to average daily global solar radiation modeling, for each month.

Distribution Probability density function Parameters

Beta f(x; a, b, α1, α2) � (1/(B(α1, α2))) · ((x − a)α1 − 1(b − x)α2 − 1/(b − a)α1+α2− 1),
B(α1, α2) � 􏽒

1
0 tα1 − 1(1 − t)α2 − 1dt;

a, b: distribution Limits
α1, α2 > 0

Generalized Extreme Value f(x, k, μ, σ) �
(1/σ)exp(− (1 + kz)

− (1/k)
(1 + kz)

− 1− (1/k)
), k≠ 0

(1/σ)exp(− z − exp(− z)), k � 0
􏼨

z � ((x − μ)/σ)

k, μ, σ

Johnson SB f(x; y, δ, c, ξ) � (σ/(λ
���
2π

√
z(1 − z)))exp(− (1/2)( c + δ ln(z/(1 − z)))2)

z � ((x − ξ)/λ)

y, δ, c, ξ
Normal f(x; μ, σ) � (1/(σ

���
2π

√
))e((− (x− μ)2)/(2σ2)) μ, σ

Wakeby f(F; α, β, c, δ, ξ) � ξ + (α/β)(1 − (1 − F)β) − (c/δ)(1 − (1 − F)− δ) α, β, c, δ, ξ
Weibull f(x; α, β) � (α/β)(x/β)α− 1 exp(− (x/β)α) α, β

Table 3: (e K-S statistic values of the fitted distributions on the pdf of each month for the site.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Beta 0.115 0.114 0.093 0.054 0.147 0.079 0.122 0.057 0.052 0.126 0.099 0.079
Gen. Extreme Value 0.073 0.080 0.076 0.074 0.067 0.082 0.061 0.091 0.093 0.086 0.064 0.080
Johnson SB 0.055 0.106 0.072 0.062 0.076 0.055 0.081 0.055 0.050 0.094 0.075 0.085
Normal 0.096 0.175 0.097 0.083 0.071 0.089 0.105 0.107 0.124 0.084 0.072 0.103
Wakeby 0.053 0.107 0.079 0.062 0.069 N/A 0.075 0.054 0.048 0.078 0.081 0.068
Weibull 0.082 0.166 0.111 0.100 0.126 0.087 0.136 0.086 0.172 0.144 0.077 0.166

Table 4: p values associated to the K-S statistic value for the fitted distributions.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Beta 0.377 0.387 0.643 0.991 0.135 0.820 0.308 0.984 0.994 0.273 0.565 0.820
Gen. Extreme Value 0.883 0.808 0.853 0.873 0.934 0.784 0.969 0.669 0.643 0.734 0.953 0.808
Johnson SB 0.989 0.478 0.893 0.964 0.853 0.989 0.796 0.989 0.997 0.630 0.863 0.747
Normal 0.604 0.045 0.591 0.772 0.902 0.695 0.490 0.466 0.290 0.759 0.893 0.515
Wakeby 0.993 0.466 0.820 0.964 0.919 N/A 0.863 0.991 0.998 0.831 0.796 0.926
Weibull 0.784 0.065 0.420 0.552 0.273 0.721 0.198 0.734 0.051 0.150 0.842 0.065
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σG � 0.246 · So, (5)

I h, nj􏼐 􏼑 � rh · H nj􏼐 􏼑. (6)

5. Proposed Standalone PV System

(e schematic representation of the proposed standalone PV
system is shown in Figure 3. (e main components are PV
generator, battery system, and power conditioning units
(inverters and charge controllers).

6. Stochastic PV Sizing Simulation Model

(e stochastic PV sizing methodology corresponds to the
model developed by [6], but considering some modifica-
tions specifically in steps 3 and 6 since a detailed hourly-
based simulation is carried out. It consists of the following
steps:

(1) An essential first step is to obtain a reliable database
that contains appropriate solar radiation and tem-
perature data for the years under consideration. (e
application site is defined by entering latitude and
longitude values. Based on a thorough statistical
analysis of the global solar radiation data H, a
probability density function (pdf) is generated for
each month in such a way as to find the best fitting
curve to the solar radiation data for the site.(en, the
parameters of the fitted distribution are extracted for
all months.

(2) (e global solar radiation mean (Hm) and the
standard deviation (σH) are calculated for each
month.(e one that exhibits the lowest average daily
solar radiation levels is selected for sizing.

(3) Depending on the application type, estimation of the
energy demand is carried out based on technical
datasheets and expert judgment. Unlike [6], an
hourly load profile is used for amore detailed hourly-
based simulation.

(4) Estimation of the correction factor F, which refers to
the energy lost along the path from the PV generator
to the loads during day-to-day operations, and of the
correction factor F′ for the operation route battery-
DC/AC inverter-loads, calculated accordingly to [6].
Estimation of Rm, based on the beam and diffuse
components of the monthly radiation data according
to the Collares-Pereira and Rabl model as cited in
[29] and stated in [6]. To estimate F, CTc is calculated
from equation (7), where TC is the cell temperature
and TC is the temperature coefficient, obtained from
the manufacturer’s specifications. TC is calculated
using equation (8) and can be estimated from the
maximum average ambient temperature Ta, the ir-
radiance G under standard test conditions (STCs),
and the nominal operating cell temperature (NOCT)

as cited in [29]. Combining these two equations leads
to equation (9):

CTc
� TC − 25°C( 􏼁 · TC,

(7)

TC � Ta +
NOCT − 20°C
0.8 kW/m2

􏼐 􏼑
⎛⎝ ⎞⎠ · G,

(8)

CTc
� Ta +

NOCT − 20°C
0.8 kW/m2

􏼐 􏼑
⎛⎝ ⎞⎠ · G⎛⎝ ⎞⎠ − 25°C⎛⎝ ⎞⎠ · TC. (9)

(5) (e lower and upper range values for the autonomy
factor d are set depending on climatic conditions and
the application in question. (e higher the solar
radiation, the lower the autonomy factor. d is set
from dstart to dend, ranging from 1 to 10. (e range
values are taken from [6].

(6) (e simulation algorithm starts with iterating d from
dstart to dend. After each iteration, the corrected peak
power Pm,cor and the corrected battery storage ca-
pacity CL,cor are calculated with the Hm and σH
previously calculated in step 2, as stated in [6]. Each
iteration of d is comprised of 100 simulations for
which the energy delivered EPV, the hourly load
demand QL,h, the energy loss Eloss, and the battery
state of charge SOC are registered, for all hours of the
month selected for sizing, to estimate the success rate
in percentage provided by the specific value of d, for
every hour of the month.
For each day of the month, the global solar radiation
H(nj) is sampled from the selected distribution with
parameters extracted in step 1. (erefore, for all
hours of the month rh is calculated using equation
(2), thus obtaining hourly global radiation I(h, nj)

for a particular day nj . (e hourly clearness index kT
is calculated using equation (10), where Iext is the
hourly extraterrestrial radiation on a horizontal
surface for an hour between hour angles ω1 and ω2
[29]. For converting the hourly solar radiation from
the horizontal surface to the inclined plane, tilted at

PV generator

Charge controller

Inverter

Battery 
system

–

+

DC loads

AC loads

Figure 3: Standalone PV system configuration.
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slope β from the horizontal, R is calculated using the
isotropic diffuse model as derived by [34] from the
isotropic model proposed by [35], as cited in [29],
given by equation (11), where (Ib/I) is the fraction of
the hourly radiation on a horizontal plane which is
the direct beam, Rb is the geometric factor, i.e., the
ratio of beam radiation on the tilted surface to that
on a horizontal surface at any time, calculated based
on the hour angle ω evaluated at the midpoint of the

hour, declination δ for the sampling day, site latitude
ϕ, and slope β, Id/I is the fraction of the hourly
radiation on a horizontal plane which is diffuse,
based on the Erbs et al. correlation [36] as cited in
[10], given by equation (12), and ρg is the reflectance
(the albedo) of the ground:

kT �
I h, nj􏼐 􏼑

Iext
, (10)

R �
Ib

I
Rb +

Id

I

1 + cos(β)

2
􏼠 􏼡 + ρg

1 − cos(β)

2
􏼠 􏼡, (11)

Id

I
�

1.0 − 0.09kT, kT ≤ 0,

0.9511 − 0.1604kT + 4.388k
2
T − 16.638k

3
T + 12.336k

4
T, 0.22< kT ≤ 0.80,

0.165, kT > 0.

⎧⎪⎪⎨

⎪⎪⎩
(12)

For each hour, the energy delivered by the PV array EPV
is calculated using equation (13), and the remaining
amount of energy after satisfying all load requirements
is denoted by DE:

EPV � Pm,cor · I · R. (13)

To express the amount of energy remaining after
consumption as a percentage, the auxiliary variable
AUX is defined. In cases where the PV system is not
generating any electricity (EPV � 0), DE is estimated
from equation (14), as the battery system is supplying
the demand loads and AUX is estimated from equation
(15):

DE � EPV − QL,h · F′, (14)

AUX �
DE

CL,cor · V
. (15)

Alternatively, in cases where the PV system is gener-
ating power (EPV > 0), DE is then estimated from
equation (16). For the latter, three different cases are
considered:

DE � EPV − QL,h · F. (16)

(a) If DE< 0, then AUX is calculated using equation (17)
since the battery bank must satisfy the load demand
and the SOC of the battery is decreased:

AUX �
DE · F′

CL,cor · V
. (17)

(b) If DE � 0, then AUX is equal to zero since the energy
yield by the PV system perfectly matches the load
requirements.

(c) If DE> 0, then AUX is estimated using equation (15),
since the PV system managed to cover all the loads
and the SOC of the battery is increased.

(us, the battery state of charge SOC is calculated from
equation (18), considering the remaining energy, where
SOCa is the SOC at the moment immediately before the
current period, that is, the previous hour, considering a
simulation on an hourly basis. Any excess energy
generated by the system is dissipated and is represented
by Eloss, given by equation (19). For each simulation
hour, the SOC is evaluated. If the value drops below the
critical level 1-DOD, then a failure occurs and the
simulation stops. (e same process is repeated until the
last hour of the month, recording the success rate for
each value of d, from dstart to dend:

SOC � SOCa + AUX, (18)

Eloss � (SOC − 1) · CL,cor · V. (19)

(7) Depending on the percentage of the time, it is desired
to meet the load demand, and the minimum value of
d that fulfills the system reliability criterion is
selected.
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(8) Based on the selected value of d obtained in step 7,
the system sizing is carried out by substituting d into

Pm,cor � QL · F ·
1 +

��
d

√
· 2 · σH/Hm( 􏼁( 􏼁

PSHm · Rm( 􏼁
, (20)

CL,cor � QL · F′ ·
1 +

��
d

√
· 2 · σH/Hm( 􏼁( 􏼁

VDC · DOD( 􏼁
, (21)

calculating Pm,cor and CL,cor, as stated in [6].
(9) (e simulation is performed for the remaining

months of the year, taking into account the sizing
parameters obtained in step 8. For each month, the
goal is to obtain the success rate and the system’s
performance, that is, the EPV, QL,h, Eloss, and SOC.

For each month, if simulation findings show that the
system reliability criterion (success rate) for the selected
value of d was not met, then return to step 7 and select the
next incremented d.

(ese last two methodology steps correspond to a
general vision of the system’s performance during the whole
year while ensuring the fulfillment of the criterion of “system
reliability.” (e whole simulation model is presented in
Appendix B. Please note that both flowchart and method-
ology correspond to the model proposed by [6], but with
some modifications consistent with a detailed hourly-based
simulation.

7. Simulation Results

Based on the “worst month” method, the month selected for
sizing is June. (e load demand was estimated to be
59.84 kWh/day. Assuming a maximum average ambient
temperature in the daytime Ta of 8°C, calculated from the
NASA’s database for the years in question (1995 to 2004), as
mentioned in the beginning of this study, the NOCT and the
temperature coefficient TC are taken as (for example, from
the technical specifications for the module PV-UD185MF5)
47.5°C and 0.452%/°C, respectively. Based on equation (9),
CTc is calculated as 0.9215. Ccharger, Cinverter, Cbat− c, Cbat− d,
Cpv− ag, and Cbat− ag are taken as 0.98 [37], 0.9 [37], 0.95 [5],
0.95 [5], 0.9936 [38], and 0.8 [39], respectively. (us, cor-
rection factors F and F′ of 1.30 and 1.46, respectively, were
calculated, based on [6]. It should be kept in mind that these
values are customized to the application in question and are
subject to the design, equipment, and technology used. (e
conversion factor R was calculated considering the photo-
voltaic panels inclined at an angle of 25° above the hori-
zontal. (is slope was calculated based on maximizing the
total estimated energy for the winter months [29]. (e
batteries’ discharge depth DOD was set to 80%, and the DC
transfer voltage V was 120V. (e autonomy factor d was set
from dstart to dend, ranging from 1 to 10, which was increased
by 0.5 each iteration. (e success rates obtained for the
corresponding iteration value of d with the Pm,cor and CL,cor
calculated using equations (20) and (21), respectively, are

shown in Figure 4. From this figure, the minimum value of d

is selected to achieve at least 95% success for noncritical
loads and at least 99% for critical loads. (e success rates
obtained for the Pm,cor and CL,cor, calculated by replacing d

with its corresponding iteration value, are, respectively,
depicted in Figures 5 and 6. It is worth highlighting that the
PV system sizing, apart from being affected by the autonomy
factor d, strongly depends on the weather conditions, since
the Pm,cor and CL,cor are also affected by the correction
parameter (σH/Hm), that is, the global solar radiation data at
the site. Regarding the first claim, it is logical

that the more autonomy days a PV system has, the larger
the size of the PV generator and battery bank will be.

For June, an autonomy factor d of 3 assures at least an
average of 97% success for noncritical loads. (e Pm,cor
calculated is 97.074 kWp and CL,cor is calculated to be
2.308 kAh. Contrasting the results with the conventional
methodology [5], dcr is calculated from linear equation from
[6]. For noncritical loads, dn− cr is estimated to be 4.532.
(us, Pm and CL of 173.443 kWp and 4.124 kAh, respec-
tively, are calculated, based on equations (1) and (2) from
[6]. (e proposed stochastic methodology, based on the
model proposed by [6], far exceeds the conventional
methodology, achieving a 44% reduction in installed peak
power and battery storage capacity. Repeating the same
analysis, for d � 4, the proposed methodology assures at least
an average of 99% success for critical loads for June. In this
case, the Pm,cor and CL,cor obtained are 106.171 kWp and
2.525 kAh, respectively, as summarized in Table 5. From the
conventional point of view, d is calculated using dcr linear
equation from [6], which results in dcr � 18.11 and gives
Pm � 693.083 kWp, based on equation (1) and
CL � 16.481 kAh, based on equation (2) from [6], as sum-
marized in Table 6. Comparing the results, an 85% reduction
in installed peak power and battery storage capacity is
achieved with the proposed methodology, getting better
results than with the conventional methodology.

(e hourly performance of the proposed system
throughout the sizing month June and d � 3, in terms of EPV,
QL,h, Eloss, and SOC, is shown in Figure 7. It can be seen from
Figure 7 that the proposed standalone PV system success-
fully meets the load demand without the SOC falling below
60%. (e battery bank was able to cover the energy demand
for those hours at which no energy was generated by the PV
modules. Besides, the amount of energy dissipated was
considerable.

Conversely, Figure 8 shows a failed case where the low
levels of solar radiation and, thus, the EPV value caused the
batteries to be unable to meet the demand in loads with a
SOC falling below 20%.

7.1. Designed Standalone PV System Hourly Performance for
the Other Months. (e algorithm is run for the remaining
months using the corresponding values of d, Pm,cor, and
CL,cor, as previously calculated, in such a way to achieve at
least 95% and 99% of system autonomy. As the sizing is
based on the month with the lowest solar radiation, it is
expected to perform better.(e success rates for each month
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Table 5: Success rates SR%, corrected peak power Pm,cor, and corrected battery storage capacity CL,cor values for different values of the
autonomy factor d for the proposed stochastic methodology.

d 1 1, 5 2 2, 5 3 3, 5 4 4, 5 5
SR% 39 70 84 94 97 100 100 100 100
Pm,cor (kWp) 72.22 79.85 86.28 91.95 97.07 101.79 106.17 110.29 114.2
CL,cor (kAh) 1.72 1.90 2.05 2.19 2.31 2.42 2.52 2.62 2.72

Table 6: Success rates SR%, peak power Pm, and battery storage capacity CL values for different values of the autonomy factor d for the
conventional methodology.

d dn− cr � 4.53 dn− cr � 18.11

SR% 95 99
Pm (kWp) 173.44 693.08
CL (kWA) 4.12 16.48
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Figure 7: Designed system hourly performance for all hours of June, with d � 3, in terms of the energy delivered EPV, load demand QL,h,
excess energy curtailed Eloss, and state of charge of the batteries SOC. (a) EPV, (b) QL, (c) SOC, and (d) ELOSS.

Complexity 11



are shown in Table 7, including both critical and noncritical
operation. Although the values are not identical, these
success rates assure a minimum of 95% when operating with
noncritical loads.

8. Discussion

(e results obtained by adopting the proposed methodology
reveal substantive differences with respect to the forecast
made using the conventional approach. However, it is
necessary to discuss the assumptions and considerations

made throughout the research to elucidate the causes of this
difference.

Regarding the estimation of solar radiation, the same
period was considered both for the adjustment using
probability distributions and for determining the Kolmo-
gorov–Smirnov statistic to measure the goodness of the fit.
On the other hand, the number of parameters of the different
distributions was not considered when performing the
statistical test. (is can result in overfitting based on the
period analyzed, affecting its adaptability to estimate or
forecast more recent data.
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Figure 8: Designed system hourly performance for a failed case for June, with d � 3, in terms of the delivered energy EPV, load demand QL,h,
excess energy curtailed Eloss, and state of charge of the batteries SOC. (a) EPV, (b) QL, (c) SOC, and (d) ELOSS.
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(e method considered for estimating radiation is
classified into long-term monthly average of daily solar
radiation. According to the research carried out by [20], this
type of estimate can result in lower estimation errors for the
contemplated period, although the superiority and usability
of the model are questionable. It is mainly because of the
estimation error that a relatively stable and long enough
period was considered in the radiation data to avoid the
problems that the method itself entails. (e aforementioned
one may partially explain the difference between the results
obtained versus conventional methodology. Another addi-
tional aspect to consider is the uncertainty that the use of
meteorological data from sources such as NASA or
METEONORM can provide, according to [40], precisely
because the radiation data have not been routinely observed
in most of the world’s meteorological stations due to the
high cost of instruments and technical requirements.

In the design phase of the dairy, it is necessary to
mention that the proposed scenario combines the month
with the lowest average daily global radiation according to
the data provided, with the summer month with peak
consumption. (erefore, the capacity required to meet the
energy demand is being overestimated. (e scenario,
therefore, delivers a solution that is overestimating the
storage capacity and thus becoming suboptimal, at least for
the critical month, to meet the reliability standards at the
lowest cost.

As in the research proposed in [6], this case considers a
daily estimation method for solar radiation, but the main
difference lies in the update of the different state variables
involved to measure the compliance of reliability standards.
In this sense, while the base method has a daily scale, the
method proposed in this research updates the state variables
and decomposes the global solar radiation considering an
hourly scale. Furthermore, the extended method is not
validated by a real implementation of the case study, not
being able to determine which sizing method is more
accurate.

9. Conclusions

(e results obtained from the stochastic simulation model
show that the proposed standalone PV system can suc-
cessfully meet the dairy’s load demand at specified reliability,
achieving a reduction of 44% in installed peak power and
battery storage capacity for noncritical operation, and an
85% reduction for critical operation, as compared to con-
ventional methodology, which is consistent with the results
obtained in base research, thus validating the hourly-based
method for a different geographical location.

However, given the characteristics of the sizing method,
its result has to be contrasted with sophisticated and highly
accurate models for the estimation and designing phase in
order to overcome the limitations previously analyzed. In
this sense, another aspect that can be expanded is the
consideration of stochastic components for solar radiation
on an hourly scale. (e conditions for the design of this case
study may also consider the possibility of simulating the
energy supplied by the PV system with the estimated load
profile for each month of the year, thus avoiding capacity
overestimation.

One of the characteristics of the sizing of autonomous
photovoltaic systems is the compliance with certain reli-
ability levels; in this sense, it is possible to consider for future
research the incorporation of a multiobjective function that
considers not only the storage capacity, but also the
implementation costs and other relevant performance in-
dicators, as well as the incorporation of budget or size
constraints for the installation of PV modules.

Given the current world energy scenario, it is now de-
sirable to think of different sustainable alternatives for
electricity generation in such a way as to minimize the
environmental impact. Solar energy is widely available, and
its use is increasing enormously, which leads to new chal-
lenges in improving the efficiency of PV systems and bal-
ancing supply and demand. If some loads can be shifted
from night to day, better results can be obtained. (us, the
concept of load management becomes relevant to sizing
standalone PV systems. In this sense, dynamic load man-
agement functionality can be introduced. In more recent
studies, the effect of load profile uncertainty on the off-grid
PV systems optimum design is analyzed, highlighting the
importance when defining load profiles for off-grid PV-
battery systems.

Finally, it is therefore recommended to perform an
hourly, or even a more detailed simulation (e.g., simulation
at minutely resolution), to have better control of the load
profile and the power output fluctuations, clearly identifying
the time when peak demand occurs, and utilize this valuable
information for getting optimal results.

Appendix

A. Nomenclature Used, Based on Kaplanis and
Kaplani [6]

Nomenclature

AUX: auxiliary variable
a: lower bound of beta distribution
b: upper bound of beta distribution

Table 7: Success rates SR% for all months of the year in order to achieve at least 95% and 99% of system autonomy.

d Pm,cor (kWp) CL,cor (kAh)
SR%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Noncritical loads 3 97.07 2.31 100 100 100 100 96 97 99 100 100 100 100 99
Critical loads 4 106.17 2.52 100 100 100 100 99 100 100 100 100 100 100 100
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Cbat− ag: for the ageing of the battery system due to
cycling
Cbat− c: the efficiency of the batteries during charging
process
Cbat− d: efficiency of the batteries during the dis-
charging process
Ccharger: efficiency of the charger
Cinverter: efficiency of the inverter
CL: battery storage capacity (kAh)
CL,cor: CL corrected (kAh)
Cpv− ag: for the effect of the ageing of the PV
CTc: correction term for the temperature effect on PV
efficiency
DE: the remaining amount of energy after satisfying
all load requirements
DOD: depth of discharge of battery (dimensionless)
d: number of days of autonomy of a PV system
dcr: number of days of autonomy of a PV system
operating with critical loads
dn− cr: number of days of autonomy of a PV system
operating with noncritical loads
Eloss: energy dissipated due to excess energy and fully
charged battery (kWh)
EPV: energy delivered by the PV system (kWh)
F: loss of energy between the route of the PV gen-
erator and load demand (dimensionless)
F′: loss of energy between the route of the battery
bank and loads (dimensionless)
G: irradiance under standard test conditions (STC)
(1 kW/m2)
H: daily global solar radiation on the horizontal
(kWh/m2)
Hm: mean value of H (kWh/m2)
I: hourly global solar radiation on the horizontal in a
day nj (kWh/m2)
Ib: hourly direct beam radiation
Id: hourly diffuse radiation
Iext: hourly extraterrestrial radiation on a horizontal
surface for an hour period
k: shape parameter of Gen. Extreme Value
distribution
kT: hourly clearness index
NOCT: nominal operating cell temperature (°C)
Pm: peak power (kWp)
Pm,cor: Pm corrected (kWp)
PSH: Peak Sun Hours (h/day)
PSHm: mean value of PSH (h/day)

PSHmin: minimum value of PSH (h/day)
QL: total loads in a day (Wh/day)
QL,h: load demand at any time (kWh)
rh: ratio of hourly global solar radiation to daily global
solar radiation (dimensionless)
Rm: factor for converting the global solar radiation
from the horizontal to the inclined plane of the PV
panels, mean value for a specific month
(dimensionless)
R: factor for converting the hourly solar radiation
from the horizontal surface to the inclined plane, for a
specific hour (dimensionless)
Rb: ratio of beam radiation on the tilted surface to that
on a horizontal surface at any time
So: length of the day (h)
SOC: state of charge of battery % (dimensionless)
SOCa: the remaining SOC carried onto the next hour
(dimensionless)
TC: temperature coefficient
Ta: maximum average ambient temperature in the
daytime for the sizing month (°C)
TC: cell temperature (°C)
V: DC transfer voltage. Also, nominal battery oper-
ating voltage (V)

Greek letters

α: scale parameter of Wakeby distribution; shape
parameter of Weibull distribution
α1, α2: shape parameters of beta distribution
β: shape parameter of Wakeby distribution; scale
parameter of Weibull distribution; slope
c: shape parameter of Johnson SB distribution; scale
parameter of Wakeby distribution
δ: declination; shape parameter of Johnson SB dis-
tribution; shape parameter of Wakeby distribution
λ: scale parameter of Johnson SB distribution
ξ: location parameter of Johnson SB and Wakeby
distributions
μ: location parameter of Gen. Extreme Value and
Normal distributions
ρg: albedo
σ: scale parameter of Normal and Gen. Extreme Value
distributions
σH: standard deviation of H
σG: standard deviation of the Gaussian curve
ϕ: site latitude
ω: hour angle
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B. Flowchart of the Stochastic Proposed
Methodology, Based on Kaplani and
Kaplanis [6]

Start

Read month’s data

Calculate Hm and sdH for month.
Calculate parameters of fitted distribution.

Calculate Rm for month.

PSHm = Hm

Set value for QL, DOD, V, F, F′

Nsuccess = 0, Pmcor = 0, CLcor = 0

Pmcor = QL
∗F∗(1+sqrt(d)∗2∗sdH/Hm)/(Rm

∗PSHm)
CLcor = QL

∗F∗(1+sqrt(d)∗2∗sdH/Hm)/(V∗DOD)

SOC = 1, SOCa = 1, Npass = 0, Nfail = 0

Sample PSH from fitted distribution with
specified parameters

I < 0?

SOC_indication

Npass = daysofmonth?

Print Nsuccess for d

End

Nsuccess = Nsuccess + 1

No

No

Yes

Yes

I = 0

n = 1 :100

nhours = 1 :hoursofmonth

I = rh·PSH

d = dstart:dend

SOC_indication begin

EPV = Pm,cor·I·R

DE = EPV – QL,h·F′

AUX = (DE/CL,corV)

AUX = (DE/CL,corV) AUX = (DE·F′/CL,corV) AUX = (DE/CL,corV)

SOC = SOCa + AUXSOC = SOCa + AUX

Yes

Yes

No

No

DE = EPV – QL,h·F

¿EPV?
> 0

> 0

< 0

= 0

= 0

¿DE?

¿SOC ≤
1?

¿SOC < –
DOD?

Passcode = “fail”
Eloss = 0

Passcode = “pass”
Eloss = 0

SOCa = SOC

Passcode = “pass with energy loss”
Eloss = (SOC – 1)·CL,cor·V

SOCa = 1

Store SOC, Eloss, EFV, DE, QL,h

Check
passcode

“fail”“Other”

Npass = Npass + 1 Nfail = Nfail + 1

SOC_indication end

C. Maximum Log-Likelihood Estimation

To adjust the distributions for the subsequent comparison of
the goodness of fit, the parametric estimation of the distri-
butions is performed using the maximum likelihood esti-
mation (MLE). Considering the set Xi, i � 1, . . . , n􏼈 􏼉 of n

independent and identically distributed random variables,
taken from a continuous probability distribution character-
ized by the distribution parameter θ, and representing its
probability density function as f(x|θ), the likelihood func-
tion L is given by the following joint probability function P:

L x1, x2, . . . , xn|θ( 􏼁 � P X1 � x1, X2 � x2, . . . , Xn � xn|θ( 􏼁,

(C.1)

where the realization of said random variables, that is, the
observations, is represented by the set xi􏼈 􏼉n. Developing the
previous expression and considering the condition of ran-
dom variables (iid), the likelihood function is given by

L x1, x2, . . . , xn|θ( 􏼁 � f x1, x2, . . . , xn|θ( 􏼁 � f x1|θ( 􏼁f x2|θ( 􏼁, . . . , f xn|θ( 􏼁.

(C.2)

(erefore, the maximum likelihood estimator 􏽢θML is the
estimator of the parameter θ that maximizes the value of this
joint probability function. (at is,

L x1, x2, . . . , xn|􏽢θML􏼐 􏼑 � max
θ

L x1, x2, . . . , xn|θ( 􏼁. (C.3)

(e above sentence applies without loss of generality for
the parameter vector θ � (θ1, θ2, . . . , θm).

D. Kolmogorov–Smirnov Test

(e Kolmogorov–Smirnov (K-S) test is commonly used to
decide if a sample from a population comes from a deter-
mined continuous probability distribution, from which its
specification parameters are known. (e test is defined by
the hypotheses:

H0: the sample follows a specified distribution
Ha: the sample does not follow a specified distribution

And the K-S statistic Dn is defined as

Dn � sup
x

Fn(x) − F(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (D.1)
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where Fn(x) is the empirical distribution and F(x) is the
theoretical cumulative distribution function calculated over
ordered observations Xi, i � 1, . . . , n􏼈 􏼉 of the sample. (is
value is compared with the K-S tables of two-tailed critical
values Dcr,α for a given significance percentage α, which
usually takes a value of 5%. (erefore, the null hypothesis is
rejected when the condition Dn >Dcr,α is satisfied. To
quantify this decision, avoiding the dependence of the
significance value set a priori by the researcher to reject the
null hypothesis, the p value is calculated to choose between
the fitted distributions.

Data Availability

(e information used in this study is referenced, respec-
tively, and the data from the case study are obtained from a
dairy in southern Chile.
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“Buildings roofs photovoltaic potential assessment based on
LiDAR (light detection and ranging) data,” Energy, vol. 66,
pp. 598–609, 2014.

[39] A. Green, “Life cycle costing for batteries in telecom appli-
cations,” in Proceedings of the INTELEC—Twentieth Inter-
national Telecommunications Energy Conference (Cat.
No.98CH36263), pp. 1–7, San Francisco, CA, USA, October
1998.

[40] L. Wang, O. Kisi, M. Zounemat-Kermani, G. A. Salazar,
Z. Zhu, and W. Gong, “Solar radiation prediction using
different techniques: model evaluation and comparison,”
Renewable and Sustainable Energy Reviews, vol. 61, pp. 384–
397, 2016.

Complexity 17

http://org/commodities/Agricultural-Outlook-2018-Dairy.pdf
http://org/commodities/Agricultural-Outlook-2018-Dairy.pdf


Research Article
Bioinspired Mitigation Scheme for Cascading Failures in
Farmland Wireless Sensor Networks

Jun Wang ,1 Zhuangzhuang Du ,2 Xunyang Wang ,3,4 and Zhengkun He 5

1School of Electrical Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
2School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China
3Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
4Postdoctoral Research Station in Gansu Electric Power Research Institute, Wanxin South Road, Anning District, Lanzhou,
Gansu 730000, China
5School of Computer Science and Engineering, Central South University, Changsha, Hunan 410000, China

Correspondence should be addressed to Xunyang Wang; 12198114@163.com

Received 12 June 2020; Accepted 16 October 2020; Published 5 November 2020

Academic Editor: Fran ois P r s

Copyright © 2020 Jun Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Existing mitigation strategies on wireless sensor networks (WSNs) against cascading failures cannot appropriately adapt the
particular characteristics of farmland WSNs. Spider web provides a new reference for improving network invulnerability. In this
study, a bionic network scheme is built based on symmetric analysis of a series of spider-web vibration transmission trials, which
include networking methodology, communication rules, and load capacity model. +e basic idea of this scheme is to apply the
cascading-failure coping mechanism inspired by spider web into the construction and operation of farmland WSNs. We found
that the link backup contributed by a topological structure and communication rules had positive effects on suppressing the
spread of cascading failures. +e study showed that the damages of cascading failures can be efficiently lowered by regulating the
adjustment coefficient of the load capacity model. +e difference between the inner-layer node failures and outer-layer node
failures for network invulnerability was verified under deliberate attack circumstances. Based on these results, the proposed
network scheme can be utilized to enhance the invulnerability performance of farmland WSNs.

1. Introduction

Wireless sensor networks (WSNs) are a distributed network
system consisting of a large number of sensor nodes to
wirelessly cooperate in perceiving and processing various in-
formation [1, 2]. Due to the coupling relationship between
node traffics, failure nodes will lead to malfunctions of
neighboring nodes resulting in a cascading effect [3]. Cascading
faults inevitably lead to topological segmentation, reduced
communication connectivity, limited network coverage, and
increased likelihood of network paralysis [4]. +erefore, cas-
cading failures are an essential factor affecting network in-
vulnerability and should be widely investigated both by
theoretical analyses and experimental characterizations.

Some aspects of cascading failures in WSNs have been
discussed in recent works, such as the cascade control,

defense strategy, and analytical calculation of load distri-
bution [5, 6]. Identification and reinforcement of the critical
nodes that guarantee the network functionality have been
proved to have an inhibiting effect on the network dis-
ruptions produced by cascading failures [7, 8]. However, it is
still challenging to assure the accuracy of quantifying the
node importance and the stability of the network topology
after adding redundant nodes [9]. Predetected attack mode
or dynamic topology repair has been discovered to improve
the response efficiency for cascading failures [10, 11].
Nevertheless, the targeted repairs based on the real-time
detection of attacks are more feasible [12]. Furthermore, it is
revealed that the initial load assignment of nodes and the
load distribution strategy of fault nodes have a positive
impact on avoiding the spread of cascading failures [13]. But
for different application scenarios, these established load
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capacity models demonstrate notable performance differ-
ences [14].

As an innovative data acquisition method in precision
agriculture, farmland WSNs can continuously monitor in-
dispensable environmental factors for crop growth and
generate remarkable labor-saving benefits to farmers [15].
Compared with other WSN applications, influenced by the
agriculture productionmode, farmlandWSNs present unique
characteristics in terms of network topology, information
transmission, and load capacity [16]. First, due to the large-
scale monitoring area, multiple transmission constraints, and
limited cost budget, it is essential to introduce multilevel relay
nodes to achieve reliable data transfer with low-density de-
ployment, and the network topology displays the feature of
hierarchical clustering [17, 18]. +e combined factors of node
mobility, network heterogeneity, and chain-directed trans-
mission dramatically boost the dynamic uncertainty of net-
work behavior, which make farmland WSNs exhibit
substantial topological variability [19]. Besides, the pattern of
multinode collaborative monitoring causes overlap and in-
teraction between interlayer nodes, intercluster nodes, and
communication links, resulting in network transmission with
both interlayer coupling association and intersecting coupling
association [20]. Lastly, the entire network shows multilevel
differences in load capacity, as a consequence of differences in
detecting tasks and monitoring frequencies for nodes [21]. In
summary, farmland WSNs are a complex network system
with the characteristics of coupling and vulnerability, and a
few node or link faults are prone to provoke cascading failure
disasters. +e current mitigation techniques of cascading
failures have the shortcoming of overidealized assumptions
and sole coping means [22]. It is an urgent requirement to
develop a specialized countermeasure scheme for farmland
WSNs by systematic consideration of cascading failure
mechanism and mitigation measures.

Over hundreds of millions of years, the spider web has
evolved an elegant, ultralight, and destruction-resistant
structure [23]. +e previous studies tested the hypothesis
that the orb spider web has a stunning similarity in topo-
logical structures and component functions with farmland
WSNs and can be used to promote the network capability
against cascading failures [24]. +e existing research focuses
on the invulnerability performance of artificial spider-web
topology, but the enlightenment of vibration transmission
characteristics of destructed spider web on the alleviation of
cascading failures has not been discussed [25]. By investi-
gating the transmission mechanism of spider-web vibration,
we can develop a bioinspired network scheme for improving
the invulnerability of farmland WSNs.

+e objective of this study is to build a bionic network
scheme of cascading-failure mitigation for farmland WSNs
inspired by the vibration transmission reactions of artificial
spider web under various destruction cases. +e major
contributions of this study are summarized as follows:

(1) To properly characterize the response process of
spider web to cascading damages, an experimental
method based on artificial spider-web vibration
testbed is proposed.

(2) A network scheme comprised of networking
methodology, communication rules, and load ca-
pacity model is presented in the face of random and
deliberate attacks on nodes.

(3) +rough extensive trials, the soundness and effec-
tiveness of the network scheme against cascading
failures are verified. +e impact of scheme param-
eters on invulnerability is also been explored.

+e remainder of this paper is arranged as follows: the
damage experiments of artificial spider web and the sup-
pression mechanism of cascading propagation are given in
Section 2; the details of the proposed network scheme for
farmland WSNs are displayed in Section 3; the evaluations
on the performances of network scheme and the impacts of
key parameters are exhibited in Section 4; finally, conclu-
sions are shown in Section 5.

2. Artificial Spider-Web Experiments and
Mechanism Analysis

We use the developed artificial spider-web vibration testbed
(Figure 1) to clarify the cascading spread characteristics of
spider web after damage to partial components [26]. In the
experiments, a rubber ball with a mass of 20 g and a diameter
of 50mm is utilized as the excitation source. Each radius line
from the central node and the horizontal connection line of
each layer that encircled the central node are defined as a
radial line and a spiral line, respectively. +e intersection of a
radial line and a spiral line is designated as a node. Moreover,
the radial line between adjacent spiral lines is described as a
radial path, and the spiral line between adjacent radial lines is
identified as a spiral path. Moreover, radial paths, spiral paths,
and nodes constitute the artificial spider-web topology.

2.1. NodeDamage. Figure 2 indicates the variations in peak-
to-peak values of longitudinal vibrations of 51 nodes on
radial lines 6–10 before and after cutting off four nodes at
intersections of radial lines 6−7 and spiral lines 1−2. It can be
noticed that the vibrations at these nodes decrease from the
inner layers to the outer layers without changing the atten-
uation characteristics of nodes on a radial line, except the
vibrations of each node increase insignificantly. +e peak-to-
peak values of node vibrations in areas A1 and B1 are 1.20 and
1.10 times of that in the complete web, and the vibrations of
nodes in areas C1, D1, and D2 are consistent with that of the
complete web.+ese results show that the node failures have a
slight effect on the vibration transmission of spider web, and
the affected area is within the adjacent layers, manifesting that
the cascading propagation range is limited. Furthermore, in
trapezoid area A1 and triangle area B1, the amplitude in-
crements of vibrations for six nodes are the same, showing
that the triangle and trapezoid structures can play the role of
dissipation and inhibition of cascading spread.

2.2. Radial Line Damage. Figure 3 displays the variations in
peak-to-peak values of longitudinal vibrations of nodes on
radial lines 6–10, 7–11, and 8–12 as cutting out radial line 5,

2 Complexity



radial lines 5–6, and radial lines 5–7, respectively. As can be
seen from Figures 3(a) and 3(b), with the elimination of
radial line 5, the node vibrations on radial lines 6–10 dra-
matically enhance. In areas A1, B1, C1, D1, and E1, the peak-
to-peak values rise to 2.0, 1.9, 1.8, 1.6, and 1.4 times of that in
the complete web on average, respectively. For areas F1 and
G1, the values grow to 1.3 and 1.2 times of that in the
complete web on average, respectively. It can be concluded
that the closer to the failure positions, the more intense the
vibrations of nodes on the radial lines, and vice versa. In
Figures 3(c) and 3(d), with radial lines 5–6 being destroyed,
the increments of peak-to-peak values of nodes on radial
lines 7–11 are observable. Compared with the corresponding
positions of the complete web, the average peak-to-peak
values increase by 1.2, 1.0, 0.8, 0.6, and 0.6 times in areas A1,
B1, C1, D1, and E1, raise by 1.4, 1.2, 0.4, and 0.3 times in
areas B2, C2, D2, and E2, and boost by 1.1 and 0.8 times in
areas D3 and E3. It can be found that, with the increase in
damaged radial lines, the coupling relationship between

layers and adjacent radial lines causes the cascading spread
of the radial-line failure effect. As shown in Figures 3(e) and
3(f ), when the number of damaged radial lines jumps to 3,
the average peak-to-peak values of nodes in areas A1, B1, C1,
D1, and E1 enhance by 1.31, 1.07, 0.80, 0.61, and 0.57 times
and that in areas A2, B2, C2, D2, and E2 grow by 2.30, 1.83,
0.60, 0.33, and 0.31 times, respectively. It can be recognized
that the nodes of layers 1–5 with dense deployment mutually
undertake the cascading propagation generated by radial
line damages, which results in the vibrations lower than that
of nodes at layers 6–11 with sparse deployment.

+e results show that, with the growth of the number of
damaged radial lines, the node vibrations on the remaining
radial lines raise and obey the principle of nearby sharing,
which is identical to the phenomenon of cascading-failure
spread in WSNs. Besides, the difference between the vi-
bration tracking areas increase with the increment of the
number of failed radial lines. Furthermore, the increasing
deviations of node vibrations in these triangle and trapezoid

Phantom high-speed camera

 Image capturing area

Tracked node 

Analysis so�ware

Artificial spider web
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Displacement

Speed

(a)

(b)

Figure 1: Artificial spider-web vibration testbed.
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Figure 2: Differences in peak-to-peak values of longitudinal vibrations for nodes on radial lines 6–10 before and after node damages.
(a) Analysis area division. Z1 denoted the node failure area, and A1, B1, C1, D1, and D2 expressed a vibration tracking area, respectively.
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areas are comparatively small, which illustrates that the
triangle and trapezoid structures can accomplish the hier-
archical reduction of vibrations in the inner layers.

2.3. Spiral Line Damage. Figure 4 manifests the differences
in peak-to-peak values of longitudinal vibrations for the
nodes on radial lines 8-9 under the condition that the spiral
lines 1–5 are removed layer by layer. It can be observed that
as the spiral lines 1–5 are destroyed one by one, the node

vibrations of radial lines 8–9 strengthen gradually. +e
average peak-to-peak values of nodes on radial line 8 reach
1.10, 1.30, 1.46, 1.56, and 1.70 times of the complete web,
respectively. +e average peak-to-peak values of nodes on
radial line 9 become 1.16, 1.30, 1.39, 1.51, and 1.62 times of
the complete web, respectively. It is obvious that the number
of broken spiral lines is positively correlated with the vi-
bration intensity of the tracked nodes. Meanwhile, the in-
fluence of the damaged spiral lines on the cascading
propagation lies between node failures and radial-line
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Figure 3: Variations in peak-to-peak values of longitudinal vibrations for nodes on radial lines 6–10, radial lines 7–11, and radial lines 8–12
before and after radial line damages: (a) division of tracking areas at the failure of radial line 5; (b) peak-to-peak values of longitudinal
vibrations of the tracked nodes on radial lines 6–10; (c) distribution of tracking areas at the failure of radial lines 5–6; (d) peak-to-peak values
of longitudinal vibrations of the tracked nodes on radial lines 7–11; (e) allocation of tracking areas under the damage condition of radial lines
5–7; (f ) peak-to-peak values of longitudinal vibrations of the tracked nodes on radial lines 8–12.
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failures, indicating that the spiral lines only serve as an aid to
the vibration transmission.

By analyzing the influences of different component
failures on the vibration distributions, we can summarize the
mitigation mechanism of cascade failures in the artificial
spider web as follows:

(1) +e hierarchical redundancy arrangement of nodes
and the internal-external differentiation of node
densities can share the burden of inner-layer nodes
to cope with the cascading spread.

(2) In the case of node and path damages, the peripheral
nodes and pathswill carry the vastmajority of vibration
variations, and the topological structures of triangles
and trapezoids can reduce the cascading diffusion effect
by using the hierarchical weakening process.

(3) Except for the central node and the outermost nodes,
all the other nodes simultaneously connect with the
four ambient nodes through radial paths and spiral
paths, which has distinct feature of link backup. In
addition, radial paths shoulder more transmission
responsibilities than spiral paths.

+erefore, on the basis of the inspirations of artificial
spider-web topology against cascading failures (topological
structures, node deployment mode, and link backup
mechanism), combining with the characteristics of farmland
WSNs, we should be able to develop a bionic network
scheme to alleviate the cascading effect for potential network
attacks. Furthermore, the artificial spider-web topology has
been proven to be more invulnerable than other traditional
topologies in harsh network environments, with the pos-
sibility for improving the capability of farmland WSNs
against cascading failures [27].

3. Network Scheme for Mitigating the
Cascading Failures

In this section, through characterizing the mitigation pro-
cess of cascading spread in artificial spider web, we describe
how to establish a comprehensive network scheme for
cascade control guidance of farmland WSNs by assembling
networking methodology, communication rules, and load
capacity model.

3.1. Networking Methodology. To discuss the network for-
mation procedure, the assumptions are presented as follows:

(1) Each node in the network has a unique physical
coordinate, the physical coordinates of the sink node
are set to (0, 0), and the physical coordinates of other
nodes are determined by the communication with
the sink node.

(2) +e sink node has the capacity to communicate
throughout the network, and other nodes barely
interact with nodes in the adjacent areas.

(3) +e nodes are in gradient distribution according to
the distance from the sink node, and the deployment
density gradually increases from the inside out to
ensure network coverage. In addition, no isolated
nodes exist in the network, and every communica-
tion link is symmetrical.

(4) +e network adopts carrier monitoring multiple access
with collision avoidance (CSMA/CA) protocol to
prevent channel conflicts during data transmission [28].

In this premise, we propose the networking methodology
of farmland WSNs to perform the hierarchical clustering
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Figure 4: Changes in peak-to-peak values of longitudinal vibrations for nodes on radial lines 8–9 under situation of successive failures of
spiral lines 1–5: (a) peak-to-peak values of longitudinal vibrations of nodes on radial line 8; (b) peak-to-peak values of longitudinal
vibrations of nodes on radial line 9.
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routing protocol and topological frame structures composed of
triangle and trapezoid units, which are motivated by spider
web. +e detailed networking steps are listed as follows:

(1) +e layer number of the sink node is initialed as 0.+e
sink node broadcasts the networking packets to the
whole network for discovering child nodes. All nodes
that have received packets are regarded as child nodes
of the sink node and automatically estimate individual
physical coordinates by measuring the distances and
orientations from the sink node [29]. Afterwards, the
physical coordinates of each child node are added into
the corresponding routing table (Table 1).

(2) Each child node acquires its layer number by Eu-
clidean distance from the sink node and stores the
layer number in the routing table. +e layer number
coding of child node positively correlates with the
distance from the sink node, and the interlayer
spacing division can be regulated to balance the
number of nodes in each layer. Followed by the as-
signments of layer numbers, the sink node is indicated
asN0. Besides, the nodes of the nth layer uniformly are
coded in the clockwise direction according to ori-
entations and expressed as Nn−1, Nn−2, Nn−3, etc.

(3) Once the layer numbers and physical coordinates of
the whole-network nodes are fixed, the networking
frames of sink node are sent out layer by layer
starting from the child nodes in the first layer.
Apparently, the nodes not only transmit the net-
working frames to the neighboring child nodes in
different layers but also receive the frames from other
child nodes in the same layer. By comparing its layer
number with the layer number of source nodes, each
child node receiving the network frames can be
classified into three categories as follows:

(a) +e two-layer numbers were equal, it means
that the sender and the receiver are in the same
layer, and the distance between the two child
nodes is recorded. If the networking process of
the first layer is accomplished, the two senders
closest to each receiver will be registered as
nodes of transverse links in the routing table of
receiver.

(b) +e layer number of the receiver is less than that
of the sender; it indicates that the receiver be-
longs to the upper layer, and then. the distance
between the two nodes is noted. At the end of the
networking process of the first layer, the node
with the smallest distance from the sender
among all the receiving nodes is designated in the
routing table as the radial-link node of the
sender.

(c) +e number of layers of the receivers is higher than
that of the senders, and no operation will be done.

(4) +rough iterating step (3), all the layers can finish the
networking processes in turn, and a topological

framework modeled from spider web is developed
(Figure 5).

As shown in Figure 5, the farmland WSNs topology is
formed of numerous topological units of triangles and
trapezoids. +e basic triangle structure is constituted of the
child node in the first layer and its transverse-link node, the
sink node, and the corresponding links. +e fundamental
trapezoid structure is included of any two adjacent-layer
nodes with a radial link, their transverse-link nodes, and
related links. It can be perceived that the triangle and
trapezoid structures in the same area have interlayer cou-
pling and intersecting coupling relations, and the radial-link
coupling relationship exists between adjacent triangle or
trapezoid structures.

3.2. Communication Rules. +e link backup and differential
distribution of load are the core methods of artificial spider-
web topology to overcome cascading failures. +us, the
communication rules of the farmland WSNs based on the
invulnerability characteristics of spider web are defined as
follows:

(1) In the network, a nonsink node connects with three
neighboring nodes by transmission logic, including a
radial-link node in the upper layer and two trans-
verse-link nodes in the same layer. +e transfer
probability of radial link and transverse links is
defined as α and β (1≥ α> β> 0 and α+ 2β�1),
respectively, and that of a failure link is set as 0.

(2) If the node traffic exceeds its load capacity, the node
is assessed to be a failure node, and the associated
outer node transmits data to the sink node through
its transverse-link nodes.

(3) In the occurrence of a node failure, all the links
connect with it failed, and data receiving and de-
livering cannot be carried out. +e function of the
failed node is assumed by its transverse-link nodes.
Assuming that the communication reliability be-
tween a certain node and the three linked nodes is λ
(0≤ λ≤1), the transfer probabilities and transmis-
sion success rates of the node under different cir-
cumstances are assigned in Table 2.

(4) At the time that the ratio of the failure nodes to the
whole-network nodes surpasses the upper limit of
node failure rate c, the sink node will rebroadcast the
networking request.

Table 1: Routing table for child node.

Index labels Categories Lengths
1 Layer number 8
2 Physical coordinates 32
3 Node of radial link 8
4 Node 1 of transverse link 8
5 Node 2 of transverse link 8
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Furthermore, we select a triangle structure and a trap-
ezoid structure to analyze the cascading-failure mitigation
means of the particular topological structures stimulated by
artificial spider-web topology.

Figure 6 shows the triangle structure comprised of nodes
N0, N1−1-N1−3, radial links L1-L3, and transverse links L4-L5.

In traditional point-to-point mode, the data transmission
between nodes is entirely dependent on the link between
them. In contrast, the radial and transverse links of nodes in
the triangle structure can both participate in data transfer,
and the link backup improves the invulnerability of the
network. For instance, the transmission success rate between
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Figure 5: Bionic networking for farmland WSNs based on artificial spider-web topology.

Table 2: Node communication settings in various conditions.

Categories Descriptions Transfer probability Transmission success rate
Normal condition Trouble-free operation of nodes and links α+ 2β�1 αλ+ 2βλ

Node failures

Failure of radial-link node 2β�1 2βλ
Failures of both transverse-link nodes α� 1 αλ

Failures of radial-link node and a transverse-link node β� 1 βλ
Failures of radial-link node and transverse-link nodes 0 0

Link failures

Failure of radial link 2β�1 2βλ
Failures of both transverse links α� 1 αλ

Failures of radial-link and a transverse link β� 1 βλ
Failures of radial link and transverse links 0 0
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N1-2 and N0 is αλ+ 2βαλ under normal case, while in the
situation of radial link L2 damaged, N1−2 can transfer data to
N0 through the relay nodes N1−1 and N1−3, and the trans-
mission success rate becomes 2βαλ.

Figure 7 displays the trapezoid structure composed of
nodesN1−4-N1−6,N2−4-N2−6, andN3−4-N3−6 and links L6-L17.
+e transmission success rates of N3−5⟶N2−5,
N2−5⟶N1−5, and N3−5⟶N1−5 are computed in state of the
normal condition, L14 failed,N2−5 damaged, L7 disabled, and
N1−5 corrupted, respectively.

It can be seen that the failure of nodes or links at different
positions on the radial link will not cause the communi-
cation interruption depending on the trapezoidal structure.
+e analysis indicates that the trapezoid structure can lessen
the cascading-failure effect of failed nodes or links to
guarantee data transmission by utilizing link backup.

Normal condition:

P N3− 5⟶ N2−5( 􏼁 � α · λ + 2β · α · λ2,

P N2− 5⟶ N1−5( 􏼁 � α · λ + 2β · α · λ2,

P N3− 5⟶ N1−5( 􏼁 � α2 · λ2 + α · λ · α · λ + 2β · α · λ2􏼐 􏼑 + 2α · β · λ2 α · λ + β · α · λ2􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

L14 failed:

P N3−5⟶ N2−5( 􏼁 � 2β · α · λ2,

P N2−5⟶ N1−5( 􏼁 � 2α · λ + 2β · α · λ2,

P N3−5⟶ N1−5( 􏼁 � 4β · α · λ2 · α · λ + α · β · λ2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

N2-5 damaged:

P N3−5⟶ N2−4 andN2−6( 􏼁 � 2α · β · λ2,

P N2−4 andN2−6⟶ N1−5( 􏼁 � 2α · λ,

P N3−5⟶ N1−5( 􏼁 � 2β · α2 · λ3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

L7 disabled:

P N3−5⟶ N2−5( 􏼁 � α · λ + 2β · α · λ2,

P N2−5⟶ N1−5( 􏼁 � 2β · α · λ2,

P N3−5⟶ N1−5( 􏼁 � 4β · α2 · λ3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

N1−5 corrupted:

P N3−5⟶ N2−5( 􏼁 � α · λ + 2α · β · λ2,

P N2−5⟶ N1−4 andN1−6( 􏼁 � 2α · β · λ2,

P N3−5⟶ N1−4 andN1−6( 􏼁 � 4α2 · β · λ3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

3.3. Load Capacity Model. +e hierarchical clustering of
farmland WSNs makes the nodes closer to the sink node
undertake more communication tasks, and preventing the
premature failures of these nodes is the premise of network
invulnerability. Due to the gradient distribution of nodes,
the inner layers have fewer nodes than the outer layers, and
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the inner-layer nodes with higher load capacities can offset
the negative impact of more extra traffic.+erefore, based on
the classical load capacity model and the topological
properties of constructed farmland WSNs, we address the
load capacity model to optimize the distribution of traffic
and promote the network capabilities against cascade fail-
ures in this section.

+e load capacity of a single node is described as follows:

Cn � 1 +
ε
n

􏼒 􏼓Ln, n � 1, 2, . . . , H, (6)

whereCn is the capacity of a single node in the nth layer, Ln is
the initial load of a single node of the nth layer, ε is the
adjustment coefficient used to regulate the node capacity
value, n represents the layer number, andH denotes the total
number of layers in the network.

+e initial load Ln of a single node in the nth layer is
computed by

Ln �
Sn+1

Tn

, (7)

where Ln is the initial load of a single node at the nth layer,
Sn + 1 is the total initial load of all nodes at the n+ 1th layer,
and Tn signifies the total number of nodes in the nth layer.

Hence, the load capacity model can be defined as

Cn � 1 +
ε
n

􏼒 􏼓 ·
Sn+1

Tn

, n � 1, 2, . . . , H. (8)

4. Analysis on the Invulnerability of
Farmland WSNs

4.1. Simulation Settings. In the simulations, the number of
layers of farmland WSNs is set to 5, the interval distance
between layers is 15m, and the sink node is placed at the
center of the simulation area. A total of 200 nodes are
distributed in the simulation area. We configure the initial
traffic of each node to be 1 unit and the communication
reliability λ to be 0.8. +e transfer probability of radial link α
and the transfer probability of transverse link β are initially
set to 0.6 and 0.2, respectively. Each node in the initial
network is in a normal state before attacks. In our model, we
assume that cascading failures are triggered by the faulty
nodes caused by overload of load capacity. All the simulation
results are the average of 50 simulations.

To assess the performance of mitigation of cascading
failures for the built farmland WSNs, the number of sim-
ulation rounds and network efficiency ratio are adopted as
evaluation metrics:

(1) A simulation round is defined as the period for all
normal nodes to complete data transmissions to the
sink node. +e number of simulation rounds while
the termination condition of node failure rate is
satisfied can be expressed as R.

(2) Network efficiency ratio is applied to measure the
damage degree of cascading failures and can be
achieved by

M �
Enormal

Einitial
�

1/Nnormal Nnormal − 1( 􏼁( 􏼁􏽐i≠j1/dij
′

1/Ninitial Ninitial − 1( 􏼁( 􏼁􏽐i≠j1/dij

, (9)

where Einitial and Enormal represent the network efficiency
before and after network damage, respectively; Nnormal is the
number of normal nodes, and Ninitial is the total number of
nodes in the initial network; and dij and dij

′ denote the
number of hops along the shortest path from node i to node j
in the initial network and the faulty network, respectively.

4.2. Invulnerability for RandomAttacks. Figure 8 depicts the
number of simulation rounds R and network efficiency ratio
M with varying adjustment coefficient ε under different
levels of node failure rate c. From Figure 8(a), It can be
observed that, with the growth of c from 0.1 to 0.3, R raises
less with ε rising from 0 to 40 (average number of nodes per
layer) but more with c increasing from 0.4 to 0.9. In par-
ticular, when c increases from 0.7 to 0.9, R rises 23.2, 26.8,
and 37.5 rounds, respectively. Moreover, when ε is in the
range of 25 to 40, the trend of R growing with ε is more
obvious. +erefore, to weak the impact of cascading failures,
the designer should choose ε as large as possible. Meanwhile,
as ε stays the same and c grows, the increments in R increase
gradually. +e performance of inhibiting the spread of
cascading failures may benefit from the spiderweb-like to-
pology and communication rules. As is shown in
Figure 8(b), when c is within the range [0.1, 0.6], with the
growth of ε from 0 to 40, M increases by 11.94%, 16.35%,
12.31%, 23.93%, 20.19%, and 27.74%, respectively. M is
comparatively small, while c varies from 0.7 to 0.9, but the
rise is up to 53.5%. +e results suggest that the farmland
WSNs with a higher ε can lower the damages caused by
cascading failures.

Figure 9 demonstrates the relationship between R andM,
in the case that c � 0.8. It can be noticed that M continually
decreases with the increase of R, indicating that M is in-
versely proportional to R. For different ε, when R raises from
0 to 50, M rapidly declines from 0.8 to about 0.1, and the
smaller the ε is, the more notableM reduces. Taking R� 50 as
an example, with the growth of ε from 0 to 40, M decreases
by 97.29%, 89.48%, 88.37%, 85.49%, 85.54%, 85.67%,
85.87%, 84.19%, and 84.00%, respectively. +us, ε has the
function of regulating M. However, as R continues to go up
from 50, M drops slowly. It can be concluded that, after a
certain degree of damage generated by cascading failures, the
network scheme for farmland WSNs can improve R with
trifling effect on M.

4.3. Invulnerability for Deliberate Attacks.
Figures 10(a)–10(j) show R and M with varying ε after the
failures of the same number of nodes from the 1st layer to the
5th layer caused by deliberate attacks when c � 0.8, re-
spectively. As shown in Figures 10(a), 10(c), 10(e), 10(g), and
10(i), it can be easily discovered that when ε is fixed, R
declines with the increase in the number of failure nodes for
each layer. For instance, when ε� 10, the failure nodes in the
3r d layer grow from 1 to 11, and R is 69.8, 67, 61, 60.4, 57.4,
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and 56.6, respectively. With the growth of ε, R has an in-
creasing trend under the number of failure nodes is the
same. For the 1st layer, in the case that the number of failure
nodes is 5, Rwith ε rising from 0 to 40 is 66.6, 66.8, 69.4, 68.2,
70, 70.2, 80.4, 86.2, and 98.8, respectively. +e results infer
that the farmland WSNs adopting the network scheme can
mitigate the cascading failures in the event of node failures
caused by targeted attacks. Furthermore, it can be also
observed that when ε and the number of failure nodes are
maintained the same, R reduces more drastically in the inner
layers than that in the outer layers. +e result shows that ε
has a greater influence on the inner layers by ensuring the

load capacity of inner-layer nodes in the spiderweb-like
hierarchical topology, and the effect of outer-layer nodes on
network invulnerability is less. Besides, ε is within the range
(30, 40), and R is improved significantly for the different
numbers of failure nodes in each layer. Taking the 2nd layer
as an instance, when ε is in this range, the average increment
of R for each number of failure nodes reaches 16.26%,
24.01%, and 32.04%, respectively.

From Figures 10(b), 10(d), 10(f ), 10(h) and 10(j), we
can note that, under the identical ε, with the rise of the
number of failure nodes, the fluctuation of M is insignif-
icant, which is the result of the link backup mechanism in
the farmlandWSNs to assure network connectivity at small
hop costs. Moreover, it can be seen that M boosts with the
increase in ε for each layer under the circumstance that the
number of failure nodes stays the same. For example, when
the number of failure nodes in the 5th layer is 7 and ε raises
from 0 to 40, M is 0.035, 0.037, 0.046, 0.063, 0.072, 0.086,
0.113, 0.116, and 0.135, respectively. +e performance of
cascading-failure reduction may originate from the balance
of load and traffic of nodes with the continuous growth of ε.
Meanwhile, with the same ε and the same number of failure
nodes,M in the inner layers is smaller than that in the outer
layers. Due to the more limited influence of edge-layer
nodes on the shortest paths between nodes, the results are
contrary to the variation characteristics of R under the
same condition and consistent with the inversely pro-
portional relationship between R and M in the random-
failure simulations.

To distinguish the difference in cascading invulnerability
between different degrees of deliberate attacks with varying
ε, when c � 0.8, we investigate the influence of ε after the
failure of 2, 4, 6, 8, and 10 nodes and 10, 8, 6, 4, and 2 nodes
from the 1st layer to the 5th layer on the evaluation metrics,
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Figure 9: Relevance between R andM for random failure (c � 0.8).
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Figure 10: Evaluation metrics with varying ε for the failures of the same number of nodes in each layer (c � 0.8): (a) R with varying ε in the
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respectively. As shown in Figures 11(a) and 11(c), R
demonstrates an upward trend with the increase in ε for
the different number of failure nodes in each layer. When
the number of failure nodes rises from the inner layers to
the outer layers, compared with that of ε� 0, R under the
case of ε� 40 increases by 32.63%, 37.39%, 28.49%,
45.25%, and 20.14%, respectively. While the number of
failure nodes reduces from the inner layers to the outer
layers, compared with that of ε� 0, R under the circum-
stance of ε� 40 grows by 57.66%, 57.55%, 28.49%, 39.52%,
and 19.23%, respectively. It can be discovered that, with
the increase in the number of failure nodes in the 1st and
2nd layers, R raises markedly with the growth of ε. +e
results manifest that the more the number of failure nodes
in the inner layers, the more the R is affected by ε, which is
the result of rising the load capacity of the normal nodes in
the inner layers. Nevertheless, for the outermost layer, R is
lightly affected by ε, and the number of failure nodes
slightly impacts the effect of ε on R. Our data imply that
the greater ε in the face of severe deliberate attacks will
promote the network invulnerability. From Figures 11(b)
and 11(d), when the number of failure nodes increases
from the inside out, in the case that ε� 40, M is 3.03, 2.96,
2.77, 2.34, and 2.34 times higher than that of ε� 0, re-
spectively. In the condition that the number of failure
nodes lessens from inside to outside, compared with the
case of ε� 0,M of each layer when ε� 40 enhances by 2.20,
1.91, 2.77, 2.39, and 1.70 times, respectively. +erefore, for
the two modes of deliberate attacks, M presents a re-
markable positive correlation with the increase in ε and
negatively correlates with the number of failure nodes.
Moreover, the detection method of deliberate attack
should be added in the future to avoid the catastrophic
cascading damages induced by a large number of failure
nodes.

5. Conclusions

Aiming to relieve cascading failures in farmland WSNs, we
introduce a bionic research method in this study. On the
basis of the destructive vibration testing, the mitigation
mechanism of cascade failures of artificial spider web in-
cluding topological structures, node deployment mode, and
link backup is analyzed theoretically. +e network scheme
consisting of networking methodology, communication
rules, and load capacity model is proposed based on the
combination of the characteristics of farmland WSNs and
the inspirations of artificial spider web. We verified the
performance of the developed network scheme by using the
number of simulation rounds and network efficiency ratio as
evaluation metrics. +e results showed that the network
scheme achieved the ideal invulnerability for both random
and deliberate attacks. +e adjustment coefficient in the load
capacity model was confirmed for the regulatory effect on
network invulnerability. Furthermore, the use of the to-
pology and communication rules inspired by spider web
should be advised for lowering the damages of cascading
failures. +e nodes in the inner layers had a greater impact
on the propagation of cascading failures. Our results suggest
that the bionic network scheme is an effective approach of
cascading-failure mitigation for farmland WSNs.
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and José Luis Ruiz-Real1

1Faculty of Economics and Business, University of Almeria, Ctra. De Sacramento, s/n, Almeŕıa 04120, Spain
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An understanding of the intracommunity trade is essential for the agents involved in the fresh tomato market (farmers, en-
trepreneurs, public administrations, and consumers). ,e purpose of this paper is to analyze the interdependent relationships
between exporting and importing countries within the European Union for a specific product such as fresh tomatoes and thus
understand which have been the key countries in three specific years (2002–2007–2017). ,e methodology used to study the
interrelationships of trade flows in the countries of the European Union (EU) is that of triangulation by means of the Leontief
input-output model. Artificial intelligence techniques are used to process and triangulate the data based on pathfinding techniques
using a cost function. ,e triangulation results have created a hierarchy of countries (suppliers and customers). ,is type of
methodology has not been applied to the field of foreign trade. ,e results show that Netherlands and Spain are key countries in
intracommunity trade as they have a strong impact both with regard to their exports and their imports and are fundamental when
analyzing the growth of specific sectors and how they are able to stimulate the economies of other countries.

1. Introduction

According to Leontief [1], input-product matrices are a
fundamental tool for studying the interrelationships of
economic structures and for finding the best way to activate
the economy. In particular, there has been a long tradition of
using them for establishing hierarchies in economic struc-
tures, although their use has proven to be very complex,
since it is impossible to arrive at a strictly hierarchical
structure in view of the persistence of both direct (binary)
and indirect induction cycles (circular interrelations).
,erefore, it is necessary to reorganize the branches that
form the whole economic structure in order to preserve the
hierarchical classification to the extent possible.

Input-out triangulation studies are based on the idea of
inter-industrial transactions can be recorded in a matrix
between the origin (in our case, exporting countries) and
destination (importing countries).

,e years analyzed in this study are 2002, 2007, and 2017.
,e reason for choosing these years is to consider whether
the economic and financial crisis that began in 2007 and that
affected the economies of the European Union had an
impact on the hierarchy of tomato producing countries and
their customers with regard to intracommunity trade. It
should be borne in mind that there is a close relationship
between exporting countries, importing countries and
several other countries that act as forwarders within the
intra-EU market itself.

As can be seen in Table 1, in 2017, the main intra-
community destinations and importing countries were
Germany, the United Kingdom, France, and the Neth-
erlands. ,ese four countries account for 57.18% of the
total. In 2002, the participation was 73.95%. ,is re-
duction is due to the fact that Poland, Spain, Italy, and
Lithuania have increased their participation as import
destinations.
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With regard to the countries of origin (Table 2), in 2017,
the Netherlands and Spain represent 70.33% of the total
market, while in 2002, this figure rose to 76.03%. ,e lead
exporting country in 2002 was Spain although it has sub-
sequently been replaced by the Netherlands.

,e purpose of this paper is to analyze the interde-
pendent relations of the transactions between exporting and
importing countries of different member states of the EU, in
a specific product market such as that of tomatoes and to
understand which were the key countries in three specific
years (2002–2007–2017). ,is vegetable is considered the
most important fresh products within the EU market, both
in terms of production and commercialization.

2. Materials and Methods

In the analysis of relationships between data, the scientific
literature is extensive and varied. DEMATEL-based ap-
proaches to the analysis of financial risks in banks are
current, as demonstrated in the works of [2–4]. ,e use of
Influence Network Relation Map (INMR) is a working
tool that has been proven in the analysis of complex
processes of sustainable urbanism, as shown by the works
of [5, 6]. Against this, the analysis of economic variables
by input-output table triangulation has been for many

years the preferred tool of economic researchers. Our
work is an improvement on this last method, without
diverting attention, in future studies, in the comparison
with other procedures of analysis of relationships between
variables.

,e input-output methodology has been applied in
various fields, including industry [7–13], energy [14], water
[15, 16], price systems [17], structural changes [18, 19], and
human capital [20], among others. It has also been used to
analyze key sectors, such as the work by Haji [21] related to
key sectors in Kuwait’s productive structure, the article by
Cassetti [22] which identifies sectors by transactions in
different countries, and the work by Dı́az et al. [23] who
identify key sectors by means of multiplier, diffusion, to-
pological hierarchy, technological level, diffusion of inno-
vation, and polluting capacity.

To learn about the interdependent relationships within a
matrix, it must be based on a structural analysis that presents
the following situations (Figure 1):

(i) Total dependency or interdependency is defined as
each sector depending on the rest of the sectors,
acting as a supplier and receiver of inputs.

(ii) Interdependence occurs when some sectors depend
on others, even if some can act independently.

(iii) Hierarchy corresponds to a nonreal situation but
rather is obtained by rearranging of certain criteria.
In the case of a perfectly triangular matrix, the
sectors that are above and below the row corre-
sponding to a given sector have very different re-
lationships [24]. ,ose located below are suppliers
of the sector, causing an increase in the final de-
mand of their product which then generates indirect
demands that are precipitated by the main diagonal
of the matrix without affecting the sectors located
above the sector in question. ,ose located above
the row are considered to be customers. Any in-
crease in demand corresponding to the output of
any of them generates indirect demand for the
output of the sector in question.

Table 1: Evolution in the participation percentage of importing
countries in the intra-EU tomato market (2002–2007–2017).

Participation of importing countries (%)
2002 2007 2017 Var

Austria 1.82 2.01 1.86 0.04
Belgium 2.96 2.76 3.72 0.76
Bulgaria 0.01 0.05 0.8 0.87
Cyprus 0.00 0.01 0.02 0.02
Czech Republic 3.01 3.41 3.50 0.49
Denmark 1.09 1.31 1.36 0.27
Estonia 0.35 0.40 0.52 0.17
Finland 0.91 0.86 1.14 0.23
France 11.20 10.44 9.02 −2.18
Germany 34.87 29.87 28.72 −6.15
Greece 0.15 0.28 0.26 0.11
Hungary 0.33 0.61 0.49 0.16
Ireland 1.04 1.08 1.11 0.07
Italy 2.94 4.23 4.51 1.58
Latvia 0.53 0.57 1.06 0.53
Lithuania 0.34 0.61 4.06 3.72
Luxembourg 0.20 0.22 0.20 0.00
Malta 0.00 0.02 0.05 0.05
Netherlands 11.89 9.13 5.81 −6.07
Poland 2.15 2.58 5.30 3.16
Portugal 2.32 1.15 1.29 −1.03
Romania 0.02 0.17 1.27 1.26
Slovakia 0.40 0.66 1.10 0.70
Slovenia 0.31 0.29 0.51 0.20
Spain 2.10 5.24 5.08 2.99
Sweden 3.08 3.58 3.51 0.43
United Kingdom 15.99 18.46 13.62 −2.37
Source: European Commission. Documents from the forecast working
group. https://ec.europa.eu/agriculture/fruit-and-vegetables/product-
reports/tomatoes_en.

Table 2: Evolution in the participation percentage of exporting
countries in the intra-EU tomato market (2002–2007–2017).

Participation of exporting countries (%)
2002 2007 2017 Var

Austria 0.26 0.55 0.32 0.06
Belgium 8.31 8.31 7.82 −0.50
Czech Republic 0.00 0.27 0.29 0.29
France 5.52 5.00 8.81 3.29
Germany 1.35 1.58 0.71 −0.65
Italy 5.37 3.88 3.96 −1.41
Netherlands 29.95 33.60 36.08 6.13
Poland 0.00 2.46 1.35 1.35
Portugal 1.71 2.33 4.01 2.30
Spain 46.08 41.17 34.25 −11.83
Others 1.44 0.85 2.41 0.97
Source: European Commission. Documents from the forecast working
group. https://ec.europa.eu/agriculture/fruit-and-vegetables/product-
reports/tomatoes_en.
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(iv) Circularity is where perfect triangulation is not
achieved and the asymmetry is broken due to an-
other demand and supply sector or multiregional
interdependence.

,is study will focus on creating a hierarchy through the
triangulation methodology. According to Korte and
Oberhofer [25], this methodology performs, among others,
the following tasks:

(i) Sheds light on the functioning of the economy from
a structural point of view

(ii) Facilitates comparison between the economies of
different countries and periods

(iii) Optimally influences cycle and growth
(iv) Makes matrix inversion easier
(v) Useful for forecasting and economic planning

,is method of triangulation by means of input-output
tables was pioneered by Korte and Oberhofer [25, 26] al-
though it has since been subject to a number of variations
[27–33]. Grötschel et al. [34] utilizes new polyhedral results
for the triangulation problem in a linear programming
cutting plane framework. Professor Göram Östblom [35]
introduced the alternative approach of maximizing the sum
of negative differences between the elements below and the
symmetrical elements above the principal diagonal. A series
of suboptimal solutions, converging to the optimal solutions,
is proposed as an approximate solution for tables of large
dimension.

In order to study the interrelationships of trade flows in
the tomato market in EU countries, three matrices
(M11× 11) have been developed, namely, through the trade
flows corresponding to 2002, 2007, and 2017 (Tables 3–5).

An outline of the trade flows can be seen in Table 6. ,e
columns correspond to imports (tons), and the rows cor-
respond to exports (tons). ,e total sum of the transactions
of the exporting and importing countries coincide. ,e data
have been obtained from Eurostat [36] and from the reports
of the European Working Group in “tomatoes” [37].

Once the table of commercial transactions is com-
pleted, the technical coefficients table (A) is retrieved. ,e
components of this table represent the direct commercial
effort carried out by country i per unit of consumption of
country j. ,e value of each of the coefficients would be ai
j �Mij/cj.

From the matrix of coefficients, we develop the tech-
nological matrix which is the difference between the identity
matrix and that of the technical coefficients. In a classic
input-output analysis [1], (A) would be a technical matrix
used to analyze the direct relationships between total de-
mand (internal and external) and trade flows. ,e Leontief
inverse matrix is defined as B� (I–A) −1 (Tables 7–9).

To determine the hierarchy of specific countries
according to the impact that they could have on a specific
economic sector in other countries, Chenery–Watanabe
coefficients have been traditionally used [38], but these have
significant limitations [39]:

(a) ,ey use the direct coefficients of the transaction
matrix without taking into account the indirect
effects

(b) ,e coefficients obtained represent measures with-
out regard to their deviations

(c) ,ese indices are not weighted

Given these limitations, another form of triangulation is
proposed by means of artificial intelligence based on
pathfinding techniques using cost functions.

,e use of cost functions for the minimization of
functions is a technique widely used in artificial intelligence,
statistics, and other technical disciplines when it comes to
solving an optimization problem iteratively where the
gradient calculation of the cost function is used to determine
the direction of modification of the problem resolution
parameters.

,ere is extensive literature on this subject, whether it
be generally about these techniques, their application, or as
a way to optimize functions in economics [40–42]. ,e
search for optimal paths has continued its development in

Intermediate demand greater
than 1/n, where n is the
number of branches.

(a)

Intermediate demand greater
than 1/n, where n is the
number of branches.

(b)

Intermediate demand greater
than 1/n, where n is the
number of branches.

(c)

Intermediate demand greater
than 1/n, where n is the
number of branches.

(d)

Figure 1: Basic concepts of structural analysis: (a) interdependence; (b) independence; (c) hierarchy; (d) circularity.
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Table 3: Matrix of trade transactions 2002.

NL ES FR BE IT DE PT PL EL UK REU
NL 0 1429 20160 21558 21507 308731 1 66317 609 106501 195761
ES 202873 0 156883 21742 21915 204400 42676 270520 183431 617299
FR 3182 2286 0 0 7629 27913 36 1361 382 5089 67692
BE 11519 1047 29495 0 1932 73583 56 28904 1007 4168 12625
IT 776 46 7375 1365 0 66118 0 36319 401 8886 124268
DE 13326 1889 5082 1106 4475 0 2675 193 1902 2607 7875
PT 0 34217 22 0 8 7 0 0 0 1022 26
PL 47 0 0 54 0 315 0 0 137 0 160347
EL 0 0 176 0 3 80 0 1000 0 93 1738
UK 325 114 9 81 0 428 0 564 0 0 6432
REU 856 0 129 12103 31 1319 0 15311 14 1415 65289
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 4: Matrix of trade transactions 2007.

NL ES FR BE IT DE PT PL EL UK REU
NL 0 7049 28488 22742 30278 376111 149 14499 3154 174265 173305
ES 138203 0 128124 21177 24931 158701 29180 44742 7 159568 109599
FR 6311 3716 0 22508 16189 49390 449 5308 571 8555 16172
BE 21472 2701 44924 0 2102 60145 25 2005 3333 6123 10527
IT 3759 210 8622 739 0 50398 7 2004 1674 14302 31319
DE 14239 36 3855 0 6977 0 2801 7756 3678 16187 30254
PT 0 205201 1341 0 160 7 0 0 0 1342 66
PL 1210 546 2862 306 996 1768 0 0 2050 26832 37849
EL 33 0 16 0 0 437 0 288 0 1613 1747
UK 1595 474 747 0 0 338 0 32 0 0 5047
REU 1038 94 359 1380 292 5044 0 796 312 1356 0
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 5: Matrix of trade transactions 2017.

NL ES FR BE IT DE PT PL EL UK REU
NL 0 14195 33206 39547 46763 415675 104 33665 154 176984 273235
ES 118008 0 150798 16385 37233 169804 32255 57324 16 143183 130053
FR 19488 5558 0 29545 20100 68153 626 16739 0 12319 30139
BE 24372 2289 57325 0 5395 47936 0 1306 689 7081 17081
IT 1759 695 6397 1401 0 35896 0 4141 1175 9759 43478
DE 4867 900 4670 5105 7804 0 1141 17888 1608 18296 34469
PT 216 58902 1883 118 411 0 0 599 0 2736 107
PL 524 4219 915 110 1057 2441 83 0 501 5806 13160
EL 0 28 0 0 0 183 0 48 0 0 17803
UK 2387 1451 913 72 0 131 1 22 0 0 9785
REU 2725 179 158 535 247 4405 1 741 363 1117 0
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 6: Trade flows.

Country 1 Country 2 Country n XI ID�C+XE DT�XE+XI +C
Country 1 M11 M12 M1n X1 ID1 DT1
Country 2 M21 M22 M2n X2 ID2 DT2
Country n Mn1 Mn2 Mnn Xn IDn DTn
II II1 II2 IIn
IE IE2 IE2 IEn
P P1 P2 Pn
C C1 C2 Cn
ID� intermediate demand; IIi � imports from other EU countries (intra-EU) to country “ i;” IEi � imports from countries outside the EU to country “i;”
XIi � exports to other EU countries from country “i;” XEi � exports to countries outside the EU from country “i;” Pi � production of country “i;” Ci � apparent
consumption of country “i;” Ci �Pi −XIi −XEi + IIi + IEi.
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works using genetic algorithm techniques, distributed
programming, and colony-based algorithm models
[43–46].

In the present work, the number of elements we have to
deal with (the set of countries on which the interdependence
analysis is performed) is small enough to rule out a mini-
mum distributed path search model or one based on genetic
algorithms. Instead, we will follow the idea of generating a
triangulation path through permutations of rows/columns
in the matrix directed by a cost calculation function.

,is function is constructed in such a manner as to
create a theoretical global minimum to a perfectly

triangulated matrix, with all zeros above the diagonal. In
reality, however, this state may not be attainable. ,e value
of the cost function will give us, in this case, the level of
triangulation achieved.

In order to develop this technique, a definition of the
series of concepts in our problem is needed.

U is defined as the space of possible solutions to a
problem f.

y ∈U is the possible solution that satisfies the conditions
of f.

J(y) is defined as U⟶ R as a cost function of f if it
meets the following conditions:

Table 7: Inverse matrix 2002.

NL ES FR BE IT DE PT PL EL UK REU
NL 1.08153 0.00227 0.03774 0.21442 0.02440 0.50196 0.01480 0.29490 0.00184 0.28758 0.09892
ES 1.88948 1.01532 0.26784 0.59621 0.06643 1.20549 0.47438 1.55313 0.00427 0.96260 0.46674
FR 0.03673 0.00174 1.00204 0.01074 0.00814 0.05834 0.00272 0.01941 0.00052 0.02343 0.02917
BE 0.11798 0.00125 0.04072 1.02594 0.00519 0.16167 0.00555 0.13963 0.00141 0.04321 0.02312
IT 0.02140 0.00029 0.01096 0.02241 1.00100 0.10651 0.00305 0.14302 0.00065 0.02852 0.05540
DE 0.12321 0.00222 0.01123 0.03469 0.00706 1.05952 0.02984 0.03814 0.00208 0.04035 0.01524
PT 0.04391 0.02359 0.00625 0.01386 0.00155 0.02802 1.01102 0.03609 0.00010 0.02485 0.01086
PL 0.00169 0.00001 0.00031 0.00679 0.00006 0.00203 0.00006 1.00438 0.00015 0.00073 0.05820
EL 0.00004 0.00000 0.00022 0.00010 0.00001 0.00016 0.00000 0.00370 1.00000 0.00024 0.00085
UK 0.00323 0.00009 0.00018 0.00161 0.00008 0.00224 0.00010 0.00325 0.00001 1.00092 0.00278
REU 0.02055 0.00015 0.00476 0.11018 0.00077 0.02282 0.00075 0.07406 0.00019 0.01027 1.03003
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 8: Inverse matrix 2007.

NL ES FR BE IT DE PT PL EL UK REU
NL 1.72267 0.02251 0.08597 0.45347 0.05109 0.94586 0.10963 0.47000 0.01403 0.67010 0.29166
ES 7.29160 1.22545 0.54313 2.22485 0.24469 4.29244 1.49188 2.72100 0.06397 3.25458 1.37238
FR 0.60625 0.01410 1.04419 0.40714 0.03262 0.42493 0.06588 0.25817 0.00731 0.26656 0.12427
BE 1.02650 0.01671 0.10211 1.28364 0.03348 0.65199 0.07722 0.32236 0.01299 0.41885 0.18708
IT 0.23077 0.00414 0.02214 0.07208 1.00747 0.19824 0.02213 0.09937 0.00438 0.12330 0.06792
DE 0.70427 0.02137 0.04195 0.19067 0.02710 1.39118 0.14106 0.30508 0.01053 0.31694 0.14900
PT 0.91546 0.15369 0.06966 0.27965 0.03087 0.53903 1.18719 0.34165 0.00803 0.41127 0.17238
PL 0.06745 0.00134 0.00688 0.02248 0.00291 0.04051 0.00505 1.01981 0.00308 0.08024 0.04271
EL 0.00244 0.00004 0.00016 0.00069 0.00008 0.00197 0.00022 0.00462 1.00003 0.00440 0.00199
UK 0.07173 0.00128 0.00447 0.01924 0.00215 0.04005 0.00493 0.02039 0.00059 1.02811 0.01634
REU 0.06632 0.00107 0.00456 0.03270 0.00231 0.04480 0.00514 0.03029 0.00105 0.02971 1.01200
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 9: Inverse matrix 2017.

NL ES FR BE IT DE PT PL EL UK REU
NL 1.9387 0.0293 0.1260 0.7894 0.1263 1.0925 0.0198 0.5585 0.0053 0.7270 0.4568
ES 7.0214 1.1219 0.6308 3.0707 0.5102 4.2069 0.3331 2.4324 0.0206 2.9344 1.7747
FR 1.5104 0.0289 1.1166 0.8947 0.1256 0.9588 0.0231 0.5575 0.0049 0.6016 0.3883
BE 1.4360 0.0241 0.1549 1.6050 0.1022 0.8774 0.0162 0.4370 0.0053 0.5573 0.3555
IT 0.1521 0.0031 0.0180 0.0794 1.0107 0.1333 0.0023 0.0761 0.0026 0.0785 0.0707
DE 0.3599 0.0072 0.0317 0.1960 0.0334 1.2079 0.0133 0.2169 0.0039 0.1731 0.1136
PT 0.3559 0.0544 0.0336 0.1568 0.0263 0.2129 1.0163 0.1263 0.0010 0.1534 0.0899
PL 0.0598 0.0045 0.0056 0.0266 0.0054 0.0380 0.0022 1.0193 0.0010 0.0348 0.0247
EL 0.0024 0.0001 0.0002 0.0010 0.0002 0.0016 0.0000 0.0011 1.0000 0.0009 0.0139
UK 0.1398 0.0033 0.0103 0.0582 0.0092 0.0795 0.0018 0.0411 0.0004 1.0529 0.0405
REU 0.1569 0.0026 0.0107 0.0692 0.0106 0.0944 0.0017 0.0506 0.0011 0.0614 1.0373
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.
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(1) ∀a, b ∈U⟶ J(a)<J(b)↔ a is a better solution than b
for problem f

(2) J, at least a minimum, corresponds to the optimal
solution at the local level

,e process of minimizing J can be straightforward if it is
defined as a derivable and continuous analytical function
and there is an analytical procedure to determine the
minimums of said function. Conversely, it can be an iterative
procedure, when J does not have an analytical form or there
is no direct procedure to achieve its minimum values.

For the problem at hand, U is defined as a set of possible
solutions to the problem of triangulation of an input-output
matrix (f ).

We define the cost function J (y) on a matrix yϵU as the
number of “zeros” above the main normalized diagonal
according to the following expression:

J(y) � 1 −
nzeros

(1/2)lines∗ columns
. (1)

,e cost function will define the level of triangulation of
the matrix in each iteration. In order to select the best
permutation, the cost function will be the discriminating
element. ,is function has a maximum value of 1 for a
perfectly triangulated matrix.

,is cost function meets the conditions defined above
although it requires the definition of the concept of zero in
an input-output matrix.

In this work, the concept of zero is fundamental for the
operation of the algorithm. ,ere are general two
possibilities:

(i) An absolute threshold based on the nature of the
interdependence matrix data

(ii) A relative threshold related to the minimally sig-
nificant interrelation factor for a study of these
characteristics

For the present work, we have opted for the second
option and define zero as that value of the matrix that is
below the ten percentiles in an analysis of the distribution of
values. ,is definition has been taken into account, com-
pared to other possible ones (for example, a minimum
threshold) as it allows the process of selecting interdepen-
dence values not relevant to the study to be automated.

,e matrix triangulation process is as follows:

Step 1. Determine the threshold value of zero to tri-
angulate on the matrix.
Step 2. Repeat this step a predetermined number of
times or until a stop condition is met.

Step 2.1. Swap two rows of the array randomly.
Step 2.2. Calculate the value of J for the new matrix.
Step 2.3. If the value of J is less than that of the original
matrix, replace the original with the permuted one.

,e choice of rows and columns to be exchanged is
methodical in order to test all possible permutations.

,e stop criteria for Step 2 are, either by time, or a
situation where the cost function does not decrease despite
having tried all possible permutations. When this occurs, the
gradient of function J is close to zero, and a minimum has
been found for the cost function.

,e implementation of this process has been carried out
using Matlab, as computing support to develop numerous
tests, with different values for execution times and stop
conditions and obtaining the results set out below.

3. Results

,e results are displayed in Tables 10–12. ,e countries that
lead the table are those that depend on the imports from
other countries, while those at the base are clearly the
exporting countries, and their activity is essential for the
operation of the system.

For the year 2002 (Figure 2), France, Germany, and the
United Kingdom are the main clients leading the table, while
Spain, Italy, the Netherlands, and the rest of EU countries
are located at the bottom, the majority of these being
exporters.

For 2007 (Figure 3), the top of the table is headed by
Poland, the United Kingdom, and the Netherlands and at the
bottom by Spain, France, and Belgium.

For 2017 (Figure 4), the countries leading the table are
Germany, Belgium, and France with the lower quadrant
being occupied by the Netherlands, the United Kingdom,
and Spain.

When comparing the years 2002 and 2007, a significant
change is observed in the intra-EU tomato trade and how the

Table 10: Triangulated matrix 2002.

FR DE UK BE EL PL PT ES IT NL REU
FR 1.00204 0.05834 0.01941 0.02343 0.00052 0.01074 0.00272 0.00174 0.00814 0.03673 0.02917
DE 0.01123 1.05952 0.03814 0.04035 0.00208 0.03469 0.02984 0.00222 0.00706 0.12321 0.01524
UK 0.00031 0.00203 1.00438 0.00073 0.00015 0.00679 0.00006 0.00001 0.00006 0.00169 0.05820
BE 0.00018 0.00224 0.00325 1.00092 0.00001 0.00161 0.00010 0.00009 0.00008 0.00323 0.00278
EL 0.00022 0.00016 0.00370 0.00024 1.00000 0.00010 0.00000 0.00000 0.00001 0.00004 0.00085
PL 0.04072 0.16167 0.13963 0.04321 0.00141 1.02594 0.00555 0.00125 0.00519 0.11798 0.02312
PT 0.00625 0.02802 0.03609 0.02485 0.00010 0.01386 1.01102 0.02359 0.00155 0.04391 0.01086
ES 0.26784 1.20549 1.55313 0.96260 0.00427 0.59621 0.47438 1.01532 0.06643 1.88948 0.46674
IT 0.01096 0.10651 0.14302 0.02852 0.00065 0.02241 0.00305 0.00029 1.00100 0.02140 0.05540
NL 0.03774 0.50196 0.29490 0.28758 0.00184 0.21442 0.01480 0.00227 0.02440 1.08153 0.09892
REU 0.00476 0.02282 0.07406 0.01027 0.00019 0.11018 0.00075 0.00015 0.00077 0.02055 1.03003
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.
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crisis of 2017–13 has caused a virtual return to the initial
situation of 2002 in terms of the main customers and suppliers.
In this sense, Germany, France, and Belgium stand out in the

upper part as importing countries, particularly during the
winter season. At the base of the matrix, the Netherlands and
Spain are shown to be principal intracommunity exporters.

Table 11: Triangulated matrix 2007.

PL UK NL REU IT DE PT EL ES FR BE
PL 1.72267 0.67010 0.01403 0.29166 0.05109 0.94586 0.10963 0.47000 0.02251 0.08597 0.45347
UK 0.07173 1.02811 0.00059 0.01634 0.00215 0.04005 0.00493 0.02039 0.00128 0.00447 0.01924
NL 0.00244 0.00440 1.00003 0.00199 0.00008 0.00197 0.00022 0.00462 0.00004 0.00016 0.00069
REU 0.06632 0.02971 0.00105 1.01200 0.00231 0.04480 0.00514 0.03029 0.00107 0.00456 0.03270
IT 0.23077 0.12330 0.00438 0.06792 1.00747 0.19824 0.02213 0.09937 0.00414 0.02214 0.07208
DE 0.70427 0.31694 0.01053 0.14900 0.02710 1.39118 0.14106 0.30508 0.02137 0.04195 0.19067
PT 0.91546 0.41127 0.00803 0.17238 0.03087 0.53903 1.18719 0.34165 0.15369 0.06966 0.27965
EL 0.06745 0.08024 0.00308 0.04271 0.00291 0.04051 0.00505 1.01981 0.00134 0.00688 0.02248
ES 7.29160 3.25458 0.06397 1.37238 0.24469 4.29244 1.49188 2.72100 1.22545 0.54313 2.22485
FR 0.60625 0.26656 0.00731 0.12427 0.03262 0.42493 0.06588 0.25817 0.01410 1.04419 0.40714
BE 1.02650 0.41885 0.01299 0.18708 0.03348 0.65199 0.07722 0.32236 0.01671 0.10211 1.28364
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.

Table 12: Triangulated matrix 2017.

DE BE FR EL IT REU PT PL NL UK ES
DE 1.93870 0.45680 0.00530 0.72696 0.02929 0.12598 0.78945 0.12631 1.09254 0.01983 0.55853
BE 0.15686 1.03731 0.00106 0.06138 0.00256 0.01074 0.06920 0.01063 0.09441 0.00172 0.05061
FR 0.00236 0.01394 1.00002 0.00094 0.00006 0.00017 0.00105 0.00016 0.00165 0.00003 0.00108
EL 0.13982 0.04048 0.00039 1.05286 0.00333 0.01031 0.05817 0.00921 0.07945 0.00176 0.04109
IT 7.02141 1.77472 0.02064 2.93438 1.12189 0.63081 3.07072 0.51019 4.20686 0.33312 2.43237
REU 1.51040 0.38826 0.00491 0.60161 0.02891 1.11663 0.89468 0.12558 0.95885 0.02306 0.55750
PT 1.43599 0.35550 0.00532 0.55727 0.02412 0.15490 1.60500 0.10222 0.87738 0.01624 0.43697
PL 0.15211 0.07073 0.00256 0.07852 0.00315 0.01800 0.07939 1.01073 0.13332 0.00226 0.07609
NL 0.35994 0.11357 0.00385 0.17311 0.00722 0.03173 0.19605 0.03338 1.20790 0.01328 0.21695
UK 0.35587 0.08991 0.00105 0.15338 0.05442 0.03362 0.15678 0.02628 0.21294 1.01627 0.12627
ES 0.05984 0.02468 0.00102 0.03484 0.00448 0.00558 0.02663 0.00539 0.03799 0.00222 1.01926
NL, Netherlands; ES, Spain; FR, France; BE, Belgium; IT, Italy; DE, Germany; PT, Portugal; PL, Poland; EL, Greece; UK, United Kingdom; REU, rest EU.
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Figure 2: Triangulation of inverse matrix 2002. Source: own
compilation.
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4. Discussion

Traditional triangularizing methods that considery–Watanabe
coefficients give acceptable results, but they present a series
of limitations as discussed in the methodology section.

,e implementation of pathfinding techniques is in line
with other works such as that of Kondo [7] who proposes a
new method to triangulate input-output tables based on
mixed integer programs to compare the production struc-
tures of multiple economies.

,e identification of key sectors/countries is essential to
understand the operation of the system, as reflected in the
works of Haji [16], Cassetti [17], Dı́az et al. [18], and Garcı́a
Muñiz et al. [47]. In principle, the leading country in
tomato exports within the EU is Spain; however, despite
this fact, it is not considered to be a key player. ,e same
cannot be said for the Netherlands and Belgium which are
considered to be key players and operate efficiently with
regard to their own trade transactions as well as in the
reexportation of products from other countries. ,e
question that arises and that should be identified is which
process is the most profitable, production or commer-
cialization. In the present case, the answer is clearly
commercialization.

In the case of Spain, it is losing a great opportunity to act
as an exporting country to Morocco. Despite being the lead
exporter of tomatoes within the EU and a net exporting
country, Spain is also becoming an import market. ,e
reason for this is shift in purchasing patterns from tradi-
tional channels to that of large distributors: discount stores,
supermarkets, and small independent stores are strongly
committed to fresh food. Likewise, as reflected in the latest
MERCASA study [48], these establishments, through their
platforms, buy fresh products outside Spain. On the con-
trary, Table 13 shows how the Mercadona supermarket,
regional chains such as IFA and Euromandi, and the Lidl
discount store are becoming major market drivers as they
continue to increase their market share.

5. Conclusions

,e application of pathfinding techniques using a cost function
is a consistent tool for the triangulation process of input-output
tables. Consequently, the choice of a suitable cost function is
essential to obtain a solution to triangulation.

,e algorithm used for triangulation makes it possible to
carry out the triangulation process by avoiding local min-
imums in the cost function by exploring time paths with a
cost function value worse than the best found until a certain
moment. ,is feature substantially improves the result. ,e
size of this speculative scan slows the process by a factor
dependent on the number of rows (columns) in the matrix.

Developing a table which displays the trade flows of
intraindustrial tomato trade between the main countries of
the European Union is a starting point for obtaining later the
tables of technical coefficients and Leontief´s inverse matrix.
Likewise, comparing several years gives us an in-depth look
at how these countries perform.

A structural analysis is essential to understand the in-
terrelationships of a sector or an economy. ,e present case
study has focused on hierarchy through triangulation. ,e
sectors shown below the diagonal in the matrix are suppliers
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Figure 4: Triangulation of inverse matrix 2017. Source: own compilation.

Table 13: Market share of supermarket chains in Spain (2018–15).

Market share
(%)

Variation
(2018–2015)

Auchan group 3.5 0.9
Carrefour 8.4 −0.6
Dia group 7.5 −1.7
Eroski group 5.3 −1.0
Lidl 4.8 2.5
Mercadona 24.9 0.6
Regional
supermarkets∗ 11.8 1.1

∗Regional supermarkets do not include Eroski or Arbol supermarkets.
Source: Kantar Worldpanel, Data to end of 2018.
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of the tomato sector, resulting in an increase in the final
demand while those above the diagonal are considered to be
customers in said sector.

,e leading supplier countries are the Netherlands and
Spain, with the former also acting as an export forwarder. As
for customers, Germany stands out above the rest.

,e tendency for the loss of power of wholesale markets
at the expense of large distributors has been particularly
noticeable in Spain which had traditionally been a net to-
mato exporter since it is the largest producer of fresh to-
matoes and, but which in recent years, has seen the level of
imports gradually increase.
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