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We propose and experimentally validate a hybrid energy harvester embedded in a wearable system used to measure real-time
information, such as body temperature, heartbeat, blood oxygen saturation (SpO2), and movement (or acceleration) of human
body in real time. This hybrid energy harvester, or in short eMeD, has a unique design that can improve the energy efficiency
of the overall wearable system and extract more energy from ambient sources. Specifically, the wearable system is integrated
with a hybrid photovoltaic-radio frequency (RF) energy harvester as the power source to prolong its lifetime and reduce the
dependence on battery energy. Experimentally, the current consumption of the wearable system with load switching and event
management algorithm improved from 31mA to 18.6mA. In addition, the maximum conversion efficiency is 14.35%. The
experimental results illustrate a sustainable and long-term monitoring operation for Internet of Medical Things systems.

1. Introduction

Wearable system constitutes a new technological paradigm
for Internet of Medical Things (IoMT). According to Cisco
Systems [1], the number of connected wearable devices is
expected to increase from 395 million in 2018 to 1,105 mil-
lion in 2022. Further, IoMT growth of 21% from $72.5 bil-
lion in 2020 to $188.2 billion by 2025 has been estimated
by Markets and Markets [2]. IoMT enables new creations
and opportunities in the medical domain to improve the
quality of people’s lives while reducing healthcare cost. The
creation of new application areas has changed the process
in healthcare services such as data acquisition [3], clinical
decision-making, and patient record management [4].

One of the critical issues in the development of IoMT is
power consumption and supply in the long-term use of
wearable devices [5]. To ensure user adoption, it is crucial
that next-generation power sources increase the wearable
device lifetime while greater functional capabilities and com-

fort are provided. The stagnated battery technology has
prompted scientists to find ways to get the most out of their
battery-powered devices. Scavenging energy from the environ-
ment is important from the viewpoint of wearable devices to
reduce their dependence on battery energy [6–8]. The combi-
nation of wearable devices and the energy-harvesting technol-
ogy has created opportunities. According to Brandessence, the
energy-harvesting market is valued at $467.1 million in 2020
and it is expected to reach $881.7 million by 2027 [9]. In short,
the challenges of IoMT are to achieve lower power require-
ments, use tiny devices that blend into the body, and reduce
maintenance.

To provide a reliable power source containing a large
energy density, the power management system of the wear-
able device must optimize energy conversion and deliver
high efficiency and reliable energy. For outdoor applications,
solar energy generally offers the best achievable energy den-
sity, but it is too dependent of the environment whereby it
has energy shortage during night time. With the upsurge
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of radio frequency (RF) applications, there has been a strong
interest in the RF energy-harvesting technique. Because solar
and RF sources are not available at a stable level at all times,
it is necessary to design the power management system
properly so that the wearable devices can draw power from
multiple sources to increase its power availability.

The focus of this research is to design an effective
energy-harvesting solution extracting energy from hybrid
sources for wearable systems. The combination of hardware
and software (i.e., the power management system) can form
high-efficiency and sustainable energy supply for wearable
systems. Specifically, this research integrates the low-power
and state-retentive shutdown mechanism, aggressive power
management, and high-efficiency environmental energy
conversion into a single wearable system.

There are two main contributions in this research:

(1) An autonomous wearable system powered by hybrid
energy. Solar and RF energy harvesters are used to
maximize energy harvested so that the wearable sys-
tem can be used in both indoor and outdoor envi-
ronments. Due to the novelty of the proposed
method, users do not need to consider the illumina-
tion effect of the environment

(2) An event-driven sensor management algorithm to
preserve energy and meet the requirement of IoMT
such as real-time tracking of patients’ vital sign

2. Related Work

An energy harvester converts and stores energy from the
ambient source to provide continuous power supply to elec-
tronic systems, including wearable systems. The energy
source can be converted to electrical energy using transduc-
ers or converters. The energy sources can be classified into
two broad categories, namely, ambient and external sources,
as shown in Figure 1 [10]. Ambient sources, such as solar
power, thermoelectric power, and RF are available in the
surroundings at almost no cost. The characteristics of vari-
ous ambient sources are unique in terms of predictability,
controllability, and conversion efficiency [11]. This is

because these sources are affected by time, location, and
weather conditions. In contrast, external sources emit energy
to the environment with the intent for the energy to be har-
vested by energy-harvesting system. Such energy sources are
predictable and controllable because they are deployed
explicitly in the environment.

To add the diversity of energy sources, several hybrid
energy-harvesting systems have been proposed in the
literature.

Saraereh et al. [12] propose an energy-harvesting proto-
col that harvests energy from 2.4GHz RF energy and ther-
moelectric energy for a network of healthcare devices. The
hybrid energy harvester has shown to increase network life-
time by 24% compared to a network without using any
energy harvester. Colomer et al. [13] propose the integrated
power conditioning circuit, which is designed using the
0.13μm technology and a full-wave NMOS rectifier, to har-
vest biomechanical and solar energy. Simulation results
show that the rectifier achieves an average efficiency of
around 70%.

Mohsen et al. [14] propose a photovoltaic-thermoelectric
hybrid energy harvester for wearable systems. The harvester
provides energy to power temperature, heartbeats, and accel-
erator sensors. Nevertheless, the system uses the Bluetooth
Low Energy (BLE) module as wireless communication,
which is power hungry, to increase the lifetime of the sensor
system up to 46 hours only. Zhang et al. [8] propose a hybrid
RF-solar energy-harvesting systems that utilise transparent
multiport micromeshed antennas for indoor applications.
The integration of transparent antennas with photovoltaic
(PV) cells has shown to enhance transparency and conduc-
tivity. The transparent approach allows space saving since
the antenna can be integrated with solar panel and at the
same time achieve good antenna efficiency.

Yu et al. [15] propose a flexible transparent antenna
with flexible transparent rectifying circuit and an amor-
phous PV cell. The flexible antenna shows an impedance
matching bandwidth of 3.5-3.578GHz and 4.79-5.09GHz.
The transparent stacked structure enables the wearable
device to achieve a higher RF-to-DC conversion efficiency
at 13 dBm RF input power. Although it is designed for
wearable system, the proposed system has not been tested

Energy sources

Ambient External

Biochemical

Human

Biomechanical

RfThermoelectricSolar

Figure 1: Energy sources for wearable systems [10].
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in actual IoMT environment. The design does not include
wearable sensors, and the RF electromagnetic power density
is artificially adjusted.

Table 1 shows the comparison between different wear-
able system with its characteristics.

3. Proposed System Design

Figure 2 presents the overall eMeD system. The eMeD sys-
tem consists of wearable eMeD devices embedded with vital
sign sensors, such as heart rate, temperature, and accelerom-
eter. The eMeD devices are embedded with sensors with a
low-power wireless communication module and a hybrid
energy harvester. One of the innovations of this system is
that the energy harvester is robust against changes of the
environment. Specifically, the system consists of a PV panel
to harvest energy from the irradiance of sunlight and a RF
submodule to harvest energy from external RF. The combi-
nation of solar energy and RF energy is exploited to provide
a stable energy source to the wearable system from predict-
able RF energy source and unpredictable solar energy
source. In the power management unit, the maximum power
point tracking and closed-loop voltage feedback control are

used to achieve the highest possible total output power
from different energy-harvesting subsystems. Specifically,
the input impedance of two different converters is tuned
dynamically to optimize the output power transferred from
different energy-harvesting sources to the wearable device
under a wide range of operating conditions. In addition,
the power management unit, which operates at an input
voltage spanning from 80mV to 3.3V, provides efficient
conversion. Specifically, it has a minimum operation
threshold whereby a specific condition can trigger a boost
shutdown. For example, when solar energy harvester
detected low light condition, an efficient power manage-
ment helps to prolong the battery life and increase the life
of wearable devices.

To maximize power efficiency, task execution is opti-
mized in wearable eMeD devices using software. The eMeD
device transmits sensing outcomes to an IoT gateway using
the ZigBee technology. Conventionally, wearable devices
are directly connected to mobile phones via BLE, but it con-
sumes a high amount of energy, making it unsuitable for
IoMT applications. The fast duty cycling is implemented in
ZigBee, making the eMeD device to consume low power.
There are two different profiles, namely, sleep end nodes

Table 1: Comparison between different wearable systems with its characteristics.

Reference Methodology Energy sources Power management
Energy preservation

algorithm

[12]
Using simulator to simulate performance of

hybrid energy-harvesting protocol
RF and thermoelectric Conceptual (simulated) NA

[13]
Integrated power conditioning using 0.13μm
technology and full-wave NMOS rectifier to

harvest biomechanical and photovoltaic energy

Biomechanical and
photovoltaic

Conceptual (simulated) NA

[14]
Wearable system that measures vital signs and

powered using hybrid energy
Photovoltaic and
thermoelectric

Simple DC-DC
boost converter

NA

[8]
Using transparent multiport

micromeshed antennas
Photovoltaic and RF

Parallel DC-DC
boost converter

NA

[15]
Flexible transparent antenna with transparent

rectifying circuit and photovoltaic cell
Photovoltaic and RF ADP5091 only NA

Proposed eMeD
Wearable system that measures vital signs and

powered using hybrid RF and
photovoltaic energy

Photovoltaic and RF
ADP5091 with
load switch

Yes

IoMT Gateway
Client deviceCloud services

RF Transmitter

Solar energy
eMeD Device

eMeD Device

Figure 2: The overall eMeD system.
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and line-powered nodes. Firstly, a sleep end node performs
power management by means of duty cycling with two main
states, namely, hibernation and transmission. A node is
inactive in the hibernation state. A node is active in the
transmission state. During the transmission state, the hard-
ware abstraction layer is activated, and peripherals such as
sensors and microcontroller are enabled for data collection.
The node’s radio uses carrier collision avoidance to ensure
that a channel is available, sends data, and then switches
to the sleep mode. Secondly, a line-powered node does
not perform power management by means of duty cycling
because the node is always awake to act as both parent
and end node. Instead, the node uses software optimization
to minimize the data transmission time, reduce power con-
sumption, and optimize the power generated by energy
harvesters. In contrast to many existing systems in the mar-
ket, eMeD focuses on achieving an ultralow power in self-
sustainable devices. WSN is integrated into eMeD devices
so that they can send data to neighboring nodes, which
can relay it to the IoT gateway, when patients move to dif-
ferent rooms or areas in a building and become discon-
nected from the IoT gateway.

In the eMeD system, an IoMT gateway is implemented
using Raspberry Pi to handle IoMT devices and filter, pre-
process, and encrypt data in the local stage as illustrated in
Figure 3. Simple actions are performed at the IoMT gateway
because this can reduce the bandwidth required for trans-
mitting a large volume of data to the cloud server. An inte-

grated application layer at the cloud server is also
implemented to store a large amount of data and process it
so that the data can be visualised in the mobile and web
applications. This enables medical practitioners to interact
with the platforms. A lightweight messaging protocol
(MQTT) is used in the application layer because of its capa-
bilities in providing different quality of service (QoS) levels,
message persistence, and multicasting.

This paper presents the embodiment of technologies,
including hardware and software, for building a new embed-
ded system as part of the Internet of Medical Things. eMeD
makes up for the shortcomings of using numerous cables
and cords in the hospital while improving communication
efficiency between medical practitioners and patients.

3.1. Hardware Design. eMeD has three subsystems, namely,
the sensing and processing unit, the communication unit,
and the energy harvester unit, as illustrated in Figure 4.

3.2. Sensing and Processing Unit. The sensing and processing
unit consists of a microcontroller unit (MCU) and three
(3) on-board sensors, namely, temperature sensor, heart
rate sensor, and accelerometer. The core of the sensing
and processing unit is the ATMEGA3028P-based MCU
that is used to collect and process sensor data. The MCU
is also used to run the event-driven sensor management
algorithm to reduce the overall power consumption. The
low-power, low-cost, and high-performance MCU is

eMeD Device

eMeD Device

eMeD Device

IoMT Gateway
(Raspberry Pi with ZigBee

coordinator

Figure 3: Wireless sensor network in eMeD.

Vital sign sensors

RF Energy harvester

Microcontroller unit
(MCU) Transceiver

Solar energy
harvester

Power management
unit

Energy harvester unit

Sensing and processing
unit

Communication unit

Switching
unit

Power management
unit

Supercapacitor

Figure 4: eMeD hardware design.
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configured to 8MHz at 3.3V, and it can be throttled down
to 1MHz at 1.8V for extremely low-power applications.
The MCU has a 32KB flash memory with a 2KB SRAM,
6 analog input pins, and 14 digital I/O pins, which are con-
nected to on-board sensors. It also comes with 16MHz
oscillators onboard.

Low-power temperature sensor (MAX30205) [16] is
integrated to the eMeD device to measure skin temperature,
which is one of the most fundamental monitoring measure-
ments of patients. Intrinsic factors, such as infection or met-
abolic disturbances, can cause temperature instability in
patients. The temperature data is sent to the MCU via the
I2C serial interface. It has a very low power consumption
with a typical operating current of 600μA and supply volt-
age of 3.0V. A photoplethysmograph (PPG) heart rate sen-
sor (MAX30102) is also connected to the eMeD device to
monitor a patient’s heart rate and peripheral capillary oxy-
gen saturation (SpO2). The PPG sensor measures changes
in blood vessel contraction and expansion using LEDs and

photodiodes. As arterial pulsations fill the capillary bed,
the volumetric changes of the blood vessels modify the
absorption, reflection, or scattering of the incident lights,
such that the resultant reflective and transmittal lights repre-
sent the timing of cardiovascular events, including heart rate
and oxygen saturation [17].

A 3-axis microelectromechanical system (MEMS) accel-
erometer (ADXL362) [18] is integrated into eMeD device so
that it can capture motion rhythms used for artifact removal.
ADXL362 is an ultralow power sensor that consumes (a) less
than 2μA when the output data rate is 100Hz and (b) only
270 nA when it is in the motion-triggered wake-up mode,
which has an adjustable threshold of the sleep/wake motion
activation. It utilises capacitive sensing to sense the displace-
ment of the proof mass, which is proportional to the applied
acceleration. Therefore, the presence of acceleration above a
threshold for a specified time period represents a motion (or
activity), and the motion remains until there is a lack of
acceleration above the threshold. In this project, the

Healthcare service
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Hospital room

Data centre

IoMT
Gateway

Hospital area

Figure 5: eMeD system deployment in IoMT setting.
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Figure 6: Energy harvester unit embedded in eMeD.
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motion-triggered wake-up mode is used to detect the pres-
ence of motion at extremely low power consumption of
270nA at a supply voltage of 2.0V. Using the motion-
triggered wake-up mode allows the eMeD device to be

switched off and powered down until activity is detected.
The accelerometer measures acceleration only about six
times per second to determine whether motion is present.
When a motion is detected, the accelerometer (a) switches

Power management
unit

RF source RF to DC Converter
(PCC110)

Voltage monitor

Boost converter

Vout

VCAP

Vset

RF energy harvester

VINT

Figure 7: Block diagram of RF energy harvester in eMeD.

1st charge pump

2nd charge pump

pwm logic

4X clk gen

IL saturation detection

2X clk gen

Figure 8: Power management unit [22].
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Figure 9: Flowchart illustrating activity and inactivity operation of accelerometer that is utilised in the event-driven sensor management
algorithm.
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into the full bandwidth measurement mode, (b) triggers an
interruption signal called the AWAKE bit to MCU, and (c)
wakes up downstream circuitry based on the configuration.
In the wake-up mode, all accelerometer features are avail-
able except the activity timer. All registers can be accessed,
and real-time data can be read and/or stored through FIFO.
Such activity and inactivity detection using accelerometer
can be used to trigger the wake-up mode of the heart rate
and temperature sensors.

3.3. Communication Unit. To help the healthcare service
provider in obtaining data from eMeD devices, a ZigBee
transceiver transmits the sensor data of a patient to an IoMT
gateway through wireless communication. The ZigBee-based
module XBee-Pro, which follows the IEEE 802.15.4 standard
for the RF module, enables a low-cost and low-power WSN.
The ZigBee module is built with Silicon Labs EM357 system-
on-chip [19] that operates in the 2.4GHz ISM radio bands
and offers low latency solutions with low power. The ZigBee
module is also equipped with a NXP MC9S08QE32 [20]
application processor that supports bootloader and controls
the EM357 radio. The ZigBee module interfaces with the
MCU through the universal asynchronous receiver/trans-
mitter (UART) serial connection.

The eMeD system supports the tree configuration to
increase the reliability and availability of the system. The
transceiver of eMeD devices is set to the router mode whereas
the transceiver of the IoMT gateway is set to the coordinator
mode. The selection of different modes for the eMeD system
allows the expansion of multipatient monitoring in a medical
center as shown in Figure 5. eMeD devices can join an existing
IoMT network and send, receive, and forward information.
So, each eMeD device can act as a messenger for communica-
tion with other eMeD devices which are located outside the
transmission range of the IoMT gateway. Nevertheless, to
preserve the harvested energy, a separate router relays mes-
sages from one node to another node if patients are located
outside the transmission range of the IoMT gateway. Unlike
eMeD device that can go into the sleep mode, a ZigBee router
is set up to always on mode so that it is always available for
routing and forwarding packets. The IoMT gateway acts as a
ZigBee coordinator to gather data from eMeD devices and for-
ward it to the data center using TCP/IP sockets over an Ether-
net network.

For data security, all data is encrypted using 128-bit
symmetric encryption called AES. When new eMeD device
is added to the network, AES authenticate and encrypt the
data without interfering neighboring eMeD devices.

3.4. Energy Harvester Unit. To prolong IoMT operation, the
energy harvester unit collects and stores a limited amount of
energy extracted from two energy sources. Using two differ-
ent kinds of energy sources reduces their effects to the envi-
ronment condition. RF energy is used to charge the
supercapacitor and operate eMeD devices when patients
are inside the hospital building, and solar energy is used
when patients are outside the hospital building. Such design
reduces the dependence on a single energy source and the
needs to manually recharge the eMeD devices. Using hybrid

energy sources, the eMeD system can be deployed in both
indoor and outdoor environments.

Figure 6 illustrates the block diagram of the energy har-
vester unit for eMeD devices. The energy harvester unit con-
sists of two (2) power management units (PMUs), RF energy
harvester, solar energy harvester, and load switch.

3.4.1. Supercapacitor. Unlike the conventional rechargeable
battery-based energy storage systems that (a) require fre-
quent periodic maintenance and (b) have limited number
of recharge/discharge cycles, eMeD utilises a supercapacitor
to store the harvested energy. The supercapacitors have
unlimited charging cycles; thus, it can minimize the need
to change the battery once it reaches the maximum number
of recharge/discharge cycles. In addition, supercapacitors
can minimize the environmental impact when batteries are
not disposed of properly.

3.4.2. RF Energy Harvester. The RF energy harvester harvests
energy from RF signals, and it consists of a RF-to-DC con-
verter, voltage monitor, and boost converter. The RF-to-
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End

Activate the
accelerometer

Calculate
temperature and
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Figure 10: Event-driven sensor management algorithm to improve
the accuracy of eMeD devices.
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DC-integrated circuit Powercast P2110 is used to capture
energy from a 915MHz-centered RF transmitter. RF energy
reaches the RF-to-DC converter IC (PCC110) of an eMeD
device as illustrated in Figure 7. Energy is stored in a capac-
itor connected to Vcap or fed to the boost converter
(PCC210). The DC-DC boost converter is used to boost
and regulate the output voltage of the RF rectifier. The boost
converter has a default output of 3.3V, and it can be
adjusted by adding resistors to V set. The impedance match-
ing circuit maximizes the received power at the antenna,
the RF-to-DC converter transforms the AC RF signals into
DC voltage, and the DC-to-DC converter amplifies the DC
voltage level from the RF-to-DC conversion unit to allow
ultralow voltage operations. When V cap reaches its maxi-
mum value, a digital line V INT is set to high by the voltage
monitor and the boost converter turns on, so Vout rises to
the predetermined output voltage of the DC-DC boost con-
verter. The supercapacitor then discharges until it reaches its
minimum value, causing the voltage monitor to set the V INT
value to low. This causes the boost converter to switch off
until the supercapacitor charges up to its maximum value.
This strategy allows the RF energy harvester unit to be

decoupled from the load (e.g., sensors and microcontroller)
and, successively, to decouple the load from the harvester,
giving the voltage regulator enough energy to be manipu-
lated. Generally, the conversion efficiency is determined
for a defined input power signal level, at a given frequency
once the load impedance is specified. To have good values
of this characteristic, the input RF power matching is one
of the more delicate aspects in the design of the antenna-
rectifier circuitry.

3.4.3. Load Switch. The load switch limits the current drawn
from the supercapacitor from the harvester to ensure the
current is not discharged from the supercapacitor during
when energy is not harvested. Since the output voltage from
the RF energy harvester depends on the amount of traffic in
cellular communications or on the DTT power in the scav-
enging area, there is a need to control the output voltage
delivered to precharge supercapacitor from the front-end
circuit. The minimum voltage that the precharge capacitor
needs to achieve to initiate the procedure from the buck-
boost circuit is 1.8V, whereas the maximum voltage must
be no more than the voltage the supercapacitor bank is
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Figure 11: Output power versus output voltage using different light intensities.

Table 2: Conversion efficiencies of the photovoltaic cell.

Lux 2000 4000 6000 8000 10000 12000

Lux in mW/m2 conversion 15.8 31.6 47.4 63.2 79.0 94.8

Input power (mW/cm2) 0.0608 0.1217 0.1825 0.2433 0.3042 0.3650

Output power (mW/cm2) 0.0069 0.0156 0.0241 0.0324 0.0436 0.0482

Conversion efficiency 11.40 12.81 13.18 13.31 14.35 13.19
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designed for. In terms of voltage supply, the buck-boost cir-
cuit takes a maximum tolerance of ~5%, while the maximum
output ripple will be at most 2%. The RF energy is fed into
the device where it reaches the RF-to-DC converter IC.
There, the energy is stored in a capacitor connected to
VCAP.

3.4.4. Power Management Unit. An integrated circuit PMU
by Analog Devices, ADP5091 [21], is connected to PV panel
and RF energy harvester submodules to extract the maxi-
mum possible energy from both energy sources. The PMU
integrates the maximum power point tracking circuit
(MPPT) to continuously adapt the input impedance of the
connected PV panels so that the maximum power can be
extracted and efficiently transferred to the supercapacitor.
The MPPT control keeps the input voltage ripple within a
fixed range to maintain a stable DC-to-DC boost conversion.
The dynamic sensing mode and no sensing mode, both pro-
gramming regulation points of the input voltage, allow
extraction of the highest possible energy from the harvester.
It provides efficient conversion of the harvested limited
power from a 6μW to 600mW range with submicrowatt
operation losses.

An efficient energy-harvesting method is required to
generate subthreshold voltage levels because the internal
voltage-voltage conversion circuitry must be energized. The
cold start-up circuitry in the PMU contains two charge
pumps to allow the regulator to start operating at an input
voltage of 380mV as shown in Figure 8. The first charge
pump controls cascading devices to protect the voltage
threshold start-up switch which the second charge pump is
used to make sure that the output voltage is good. The
inductor saturation detection is used to minimize the start-
up current. Such cold start-up circuitry design can bootstrap
conversion circuits when the voltage level falls below the
minimum level. As input voltage rises, the PMU disables

the start-up converter and allows operations to proceed with
the boost converter, which is very helpful in suboptimal
situations.

3.5. System Software Design. Besides hardware design, the
software design plays an important role to preserve the
energy of the eMeD system comprised of eMeD devices,
the IoMT gateway, and WSN. The software design is sepa-
rated into two (2) segments, namely, an event-driven sensor
management algorithm implemented in MCU and the com-
munication software stack in IoMT.

In eMeD devices, event-driven sensor management is
implemented in the MCU. The benefit for such design is
twofold. Firstly, the event-driven sensor management
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algorithm assigns a minimum set of active components at
any time and invokes new components only when state tran-
sitions happen. The ZigBee module spends majority of its
time in the sleep mode to minimize power consumption
and wakes up only when data transmission. To minimize
the amount of time ZigBee wake-ups, the data acquisition
and the transmission are made subsequent of each other.
This can prolong the lifetime of the energy storage.

Secondly, before data can be acquired from the patient,
the sensor data must be accurate. The event-driven sensor
management algorithm fuses data from multiple sensors in
managing sensors and providing accurate readings. PPG

and temperature sensors are commonly worn on fingers
which provide the strongest signal strength. Nevertheless,
motion artifact due to body movements may cause temper-
ature and heart noise estimation error [23]. Since eMeD is
designed to be worn by patient, large magnitude accelera-
tions will occur due to human movement, causing noise in
the heart rate data.

In the event-driven sensor management algorithm,
eMeD utilises 3-axis accelerometer to automatically recog-
nise user’s movement state before capturing vital sign data.
The activity and inactivity detection functions in accelerom-
eter are used concurrently and configured to process in the

Figure 14: Current consumption of eMeD during active and idle modes.

Figure 15: Voltage of eMeD during active and idle modes with event-driven management algorithm.
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linked mode. In the linked mode, activity and inactivity
detection are linked to each other such that only one of the
functions is enabled at any given time. As soon as an activity
is detected, the device is assumed to be moving. Inactivity
detection operates when inactivity is detected, and the eMeD
device is assumed to be stationary as shown in Figure 9.

Heart rate and temperature sensors are activated when
the accelerometer detects the user is in the static mode as
illustrated in Figure 10. The processor operates in the active
mode, but it does not activate the heart rate and temperate
sensors because human movement may affect the readings
of the heart rate.

4. Experimental Results and Analysis

Figure 11 shows the power-voltage characteristics of the
energy harvester unit under different light intensity. The
output power and output voltage are measured using a dig-
ital multimeter and light sensor to measure the lux of the
light. The system is able to perform maximum power point
tracking (MPPT) with the power curves achieving peak near
the solar panel output voltage of 3.3V. The maximum power
point (MPP) of the solar panel is between 2.5V and 3.5V
depending on the light intensity. This shows that the output
voltage should be fixed at 3.3V so that the maximum possi-
ble output power can be harvested from the solar panel.
With the outdoor conditions being 8,000 to 10,000 lux, the
maximum electrical power that the solar panel can harvest
ranges from 1,200 to 1,800μW. Figure 11 illustrates the sim-
ulated value track closely with measured value.

Table 2 shows measured conversion efficiencies of the
photovoltaic cell at different input power values with solar
energy harvester area of 38.5 cm2. As shown in the table,
the maximum conversion efficiency is 14.35%. The conver-
sion efficiency is high as compared to existing work by Moh-
sen et al. [14] due to the efficient power management design.

As shown in Figure 12, S11 for an eMeD device at
915MHz is -4.791 dB. Based on these results, the actual RF
energy harvested by the embedded eMeD system is 66.9%
of the incident power.

Figure 13 shows the far-field 3D radiation pattern of the
designed dipole antenna at 915MHz that is used in the
hybrid energy harvester. The antenna is perfectly omnidirec-
tional with a linear gain of 1.52 and a peak realized gain of
1.82 dBi at 915MHz. The radiation from the RF antenna
decreases to zero along its axis, as is typical for any dipole
antenna. The radiation pattern envelope of points with iden-
tical radiation intensities for a doughnut-like form, with the
antenna axis flowing through the hole in the middle of the
doughnut, which is comparable to an omnidirectional
antenna, may be seen in the three-dimensional graphic.
When the source outputs unbalanced power, the sleeve
balun in the antenna removes impedance mismatches.

Oscilloscope and current sense amplifier are used to ver-
ify the overall current consumption. The sensing resistor
value is 0.1Ω. For this measurement, the sensing resistor
value of 0.1Ω was selected to minimize voltage drop across
it, and the selected current sense amplifier has gain of
500V/V. In this case, the constant multiplier is equal to 0:

1∗500 = 50V/A. The oscilloscope plot without event-driven
sensor management algorithm is show in Figure 14. The idle
current is 245:92mV/50V/A = 4:92mA, busy current =
707:28mV/50V/A = 14:14mA, and transmit current = 1:55
V/50V/A = 31mA.

When event-driven management algorithm is used, volt-
age for the eMeD system dropped as illustrated in Figure 15.
Since the oscilloscope probe used for this testing is N2873A
10:1, the actual reading is attenuated by 10 times. Thus, the
constant multiplier reduced to 5V/A. During the idle state,
the current consumption is 32:25mV/5V/A = 6:45mA, busy
current = 84:49mV/5V/A = 16:90mA, and transmit current
= 93mV/5V/A = 18:6mA. This shows that the power con-
sumption improved when event-driven management algo-
rithm is used, making it attractive for IoMT application.

5. Conclusions

This research presents a sustainable photovoltaic-radio fre-
quency PV-RF hybrid energy harvester, and it has been suc-
cessfully developed and implemented for a self-powered
IoMT system. The proposed harvester is implemented to
enable eMeD to operate autonomously. The experimental
results illustrate the sustainable and long-term monitoring
operation for Internet of Medical Things systems through
monitoring body temperature, heart rate, SpO2, and acceler-
ation. The system can be used in both indoor and outdoor
environments, making it ideal for IoMT applications.
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Network technology plays an increasingly important role in all aspects of social life. The Internet has brought a new round of
industrial revolution and industrial upgrading. The arrival of the “Internet” era is accompanied by a large-scale increase in
network applications and the number of netizens. At the same time, the number and severity of cyberattacks continue to
increase. Therefore, intrusion detection systems (IDSs) have become an important part of the current network security
infrastructure in various industries. Anomaly detection of network traffic data is an effective method for network protection. In
order to better realize the detection of network traffic anomalies, several algorithms have been successfully applied. Most of
them come from artificial intelligence (AI), but there is a general problem of excessive model execution processing time and
low detection rates. And through a lot of research, it is found that most models do not pay enough attention to the data
processing in the early stage. Therefore, in this paper, we optimize the data normalization process through a series of
experiments and combine the PCA feature selection method to propose an optimized MaxAbs-DT classifier model. To train
and measure the performance of the model, we used the NSL-KDD dataset, which is the benchmark dataset for most network
anomaly detection models. The experimental results show that MaxAbs-DT outperforms other existing models and validates
the effectiveness of the method. In addition, its execution time is greatly reduced compared to many models.

1. Introduction

At the beginning of the development of the Internet and
industrial networks, network security issues have attracted
much attention. Although network administrators have
deployed various security mechanisms over time, such as
packet encryption technology and firewalls, most networks
are still not immune to attacks because security breaches
are proliferating [1]. Among the many defense methods,
intrusion detection systems (IDSs) are one of the best solu-
tions for protecting systems from malicious attacks [2].
Commonly used methods are based on anomaly detection
and misuse detection [3]. Misuse detection performs com-
parison and detection based on predefined abnormal fea-
tures, which is equivalent to a blacklist mechanism.
Anomaly detection mainly detects abnormality based on
normal behavior, which is equivalent to a whitelist mecha-
nism, and everything outside the whitelist is abnormal.
Now, intrusion detection plays a vital and increasingly
important role in network defense, most notably to allow
network security administrators to warn of intrusions,

attacks, and malicious behaviors such as malware. Having
an IDS system is a mandatory line of defense to protect crit-
ical internal networks from these ever-increasing malicious
intrusion activities. Therefore, in order to propose better
intrusion detection systems, the research in the field of
intrusion detection has been vigorously developed in recent
years. The network traffic detection part, which aims to
maintain network security through the analysis of network
traffic data, is the most important part of IDSs. In order to
implement IDS, class methods are required. It is the process
of classifying objects with knowledge extracted from a set of
data during the learning step.

In the early days, based on the principle of network com-
munication, we focused on some specific characteristics of
network traffic data for abnormal detection and classifica-
tion, and a relatively complete intrusion detection system
appeared. Subsequently, network traffic data anomaly detec-
tion methods that combine network information such as
network status, transmission packets, frequency of occur-
rence of specific data emerge in an endless stream, and var-
ious anomaly detection technologies based on supervised,
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unsupervised, and clustering methods have also been suc-
cessfully used in network traffic. Data anomaly detection.
However, with the rapid development of network technol-
ogy, most of the classical methods are no longer suitable
for today’s network traffic data with more complex struc-
tures and can no longer meet the huge demand for abnormal
detection of network traffic data. At present, most of the
research work aims to improve the accuracy and reduce
the consumption of time resources. Because machine learn-
ing and deep learning can well meet the accuracy require-
ments, and the development of computer hardware has
also greatly reduced the model calculation time, in recent
years, most relevant scholars have focused on exploring net-
work traffic data anomalies based on machine learning or
deep learning. It is well known that data preprocessing and
feature selection are an important step in the training of
intelligent classifiers, but many research works have not
done enough in-depth research here.

Since the NSL-KDD dataset [4] we used is labeled, we
employ a supervised classification approach throughout the
work. Each piece of data in this dataset contains 41 attri-
butes, some of which are more informative and more impor-
tant for classification prediction, while some unimportant
features interfere with the detection process. Feature selec-
tion is a primitive preprocessing stage in which irrelevant
features are ignored. To accomplish this task, we use the
dimensionality reduction method by PCA (principal compo-
nent analysis) to select suitable features.

This paper proposes a network intrusion detection
(NIDS) method using decision tree classifier. In this study,
we developed MaxAbs-DT, a computational predictor for
predicting abnormal network traffic using machine learning.
In this predictor, we choose the optimal data preprocessing
method as well as the PCA feature selection method, tune
the decision tree, and finally train the DT-based prediction
model. Our main goal is to maximize detection rates and
reduce false alarms while considering processing time, a very
important factor in real-time applications. The rest of the
paper is organized as follows: Section 2 presents related
research work on different types of NIDs. Section 3 describes
the datasets used in experiments, the feature processing
method, and the proposed method. Section 4 summarizes
the obtained results and comparisons. Section 5 gives con-
clusion and outlook that are drawn.

2. Related Works

In order to determine whether the traffic samples belong to
the intrusion behavior, the researchers explored different
binary classification algorithms to obtain better detection
results.

The paper [5] introduced a number of methods for net-
work anomaly detection using decision trees (DT), support
vector machines (SVM), and Naive Bayesian networks
(NB). Kevric et al. [6] pointed out that combining two tree
algorithm models can achieve better performance than sep-
arate tree classification models, the best combination they
reported was random tree and NB tree, the model was tested
on the KDD dataset, and an accuracy of 89.24% was

obtained. In the field of machine learning classifier research,
feature selection is a key component that selects important
features from a dataset. Alazzam et al. [7] proposed a feature
selection method based on a wrapper method using a
pigeon-inspired optimizer that selects informative attributes
from a feature set. This method was tested on UNSW-NB15,
KDDCUP 99, and NLS-KDD, respectively, and good exper-
imental results were successfully obtained. Support vector
machines have been widely used to detect intrusions in net-
works, Bachar et al. [8] stated that using support vector
machines to detect network anomalies, the model was tested
on the UNSW-NB15 dataset, which achieved an accuracy
rate of 94%, and compared it with some machine learning
classifiers such as MLP, REPTree, and RF.

Some IDS classifiers utilize ANN as a pattern recognition
technique. ANNs are implemented using feedforward prop-
agation, and during the learning step, their parameters are
optimized so that the output matches the corresponding
input model. The authors [9] proposed an artificial neural
network (ANN) model, proposed a hybrid model that
improves detection performance by combining different
state-of-the-art algorithms, and achieved 81.2% accuracy
for the NSL-KDD dataset. Gautam and Om [10] proposed
two neural network classification models for host ID
(HIDS), namely, generalized regression neural network
(GRNN) and multilayer perceptron (MLP), and obtained
relatively good results. Autoencoder (AE) methods com-
monly used for feature extraction are now widely used in
the first stage of mixture models, existing as preprocessing
work for downstream classifiers. It generates an efficient
compressed representation of the original input by removing
noisy features ([11, 12]. Al-Qatf et al. [13] successfully com-
bined upstream AE and downstream SVM, and the model
obtained 84.96% binary classification accuracy when tested
on KDD dataset. Niyaz et al. [14] proposed a sparse autoen-
coder method for feature learning combined with a neural
network classifier, which finally achieved 88.39% accuracy
on KDD dataset.

3. Materials and Methods

In this section, we first describe the NSL-KDD dataset used
to train the model and then introduce the classic decision
tree classifier. Then, we introduce other variants of decision
tree. In this paper, we only carry out the experimental pro-
cess of binary classification and introduce several classical
classifier performance indicators in the binary classification
model.

3.1. Datasets. The NSL-KDD dataset [15, 16] generated in
2009 is widely used in intrusion detection experiments. It
is an enhanced form of the KDD Cup 1999 dataset. The
dataset covers the KDDTrain+ dataset as the training set
and KDDTest+ dataset as the testing set, which has different
normal records and four different types of attack records, as
shown in Table 1.

In addition, in order to make intrusion detection more
realistic, the test data set includes many attack categories
that do not appear in the training set. In the several data sets
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used, in addition to the 22 attack types in the training set,
there are 17 different attack types in the test set.

The NSL-KDD dataset contains 41 features, including 3
nonnumeric features and 38 numeric features (i.e., proto-
col_type, service, and flag), as shown in Table 2. It has a clas-
sification label, which is divided into two categories
(abnormal and normal) for binary classification. For multi-
class classification experiments, labels can be divided into
five categories (i.e., normal, denial of service (DoS), user-
to-root (U2R), remote-to-local (R2L), and probe), but in this
paper, we only do binary classification experiments.

3.2. Evaluation Metrics. Before introducing the evaluation
indicators, we first introduce several concepts: TP, FP, TN,
and FN. TP represents the actual positive example, and the
prediction is positive example; FP represents that the actual
is a negative example, and the prediction is a positive exam-
ple; TN represents the actual negative example, the predic-
tion is the negative example, FN represents the actual
positive example, and the prediction is the negative example.
After understanding these concepts, we will then introduce
the concepts of ACC, recall, precision, F1-score, MCC,
kappa, and AUC. Their definitions are given below:

Accuracy (ACC): this is the ratio of the number of cor-
rectly detected intrusions to the total number of traffic
records:

ACC = TP + TN
TP + TN + FN + FP

: ð1Þ

Recall: it refers to the ratio of the number of intrusion
records correctly detected as an intrusion to the overall
anomaly:

Recall =
TP

TP + FN
: ð2Þ

Precision: this is the ratio of true anomaly records to
total traffic records identified as intrusions

Precision =
TP

TP + FP
: ð3Þ

F1-score: it refers to the harmonic average of accuracy
and true positive rate and is a relatively comprehensive eval-
uation mark

F1 − Score =
2 ∗ recall ∗ precision
recall + precision

: ð4Þ

Matthews correlation coefficient (MCC): it will return a
value between -1 and+1. Its meaning is to describe the cor-

relation coefficient between the actual classification and the
prediction classification, and the value range is -1 to 1. A
value of 1 indicates the perfect prediction of the tested
object, and a value of 0 indicates that the prediction result
is not as good as the random prediction result; -1 means that
the prediction classification is completely inconsistent with

Table 1: Breakdown of traffic records in the NSL-KDD.

Dataset Total Normal Abnormal

KDDTrain+ 125973 67343 58630

KDDTest+ 22544 9711 12833

Table 2: Features of NSL-KDD dataset.

No. Feature Type

1 duration Numeric

2 protocol_type Nonnumeric

3 service Nonnumeric

4 flag Nonnumeric

5 src_bytes Numeric

6 dst_bytes Numeric

7 land Numeric

8 wrong_fragment Numeric

9 urgent Numeric

10 hot Numeric

11 num_failed_logins Numeric

12 logged_in Numeric

13 num_compromised Numeric

14 root_shell Numeric

15 su_attempted Numeric

16 num_root Numeric

17 num_file_creations Numeric

18 num_shells Numeric

19 num_access_files Numeric

20 num_outbound_cmds Numeric

21 is_host_login Numeric

22 is_guest_login Numeric

23 count Numeric

24 srv_count Numeric

25 serror_rate Numeric

26 srv_error_rate Numeric

27 rerror_rate Numeric

28 srv_rerror_rate Numeric

29 same_srv_rate Numeric

30 diff_srv_rate Numeric

31 srv_diff_host_rate Numeric

32 dst_host_count Numeric

33 dst_host_srv_count Numeric

34 dst_host_same_srv_rate Numeric

35 dst_host diff_srv_rate Numeric

36 dst_host_same_src_port_rate Numeric

37 dst_host_srv_diff_host_rate Numeric

38 dst_host_serror_rate Numeric

39 dst_host_srv_serror_rate Numeric

40 dst_host_rerror_rate Numeric

41 dst_host_srv_rerror_rate Numeric
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the actual classification

MCC =
TP ∗ TN − FN ∗ FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ ∗ TP + FPð Þ ∗ TN + FPð Þ ∗ TN + FNð Þp
:

ð5Þ

Kappa: kappa coefficient is an index for consistency test,
which can be used to measure the effect of classification. For
classification problems, the so-called consistency is whether
the predicted results of the model are consistent with the
actual classification results. The calculation of kappa coeffi-
cient is based on the confusion matrix, and the value is
between -1 and 1, usually greater than 0, where PO is the
overall accuracy and Pe is the accidental consistency error

kappa =
PO − Pe

1 − Pe
: ð6Þ

Area under the curve (AUC): ROC (receiver operating
characteristic) is a curve connected by the points of FPR
and TPR. The horizontal axis is fpr, which means the pro-
portion of negative samples is wrongly classified as positive
samples in all positive samples, and the vertical axis is
TPR, that is, Sn mentioned above, which means the propor-
tion of positive samples is correctly classified in all positive
samples. The often mentioned AUC value is the area under
the ROC curve. In other words, AUC is the area formed by
the ROC “curve” and the straight line x = 0 and y = 1.
AUC is mainly used to measure the performance or general-
ization ability of algorithms in binary classification prob-
lems. As a numerical value, we can intuitively evaluate the
quality of the classifier. The larger the value, the better

FPR =
FP

FP + TN
,

TPR =
TP

TP + FN
:

ð7Þ

TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) are the number of true positive, true
negative, false positive, and false negative samples, respec-
tively. TP means true positive, that is, the number of positive
cases predicted; TN indicates true positive, that is, the num-
ber of positive cases predicted as negative cases; FP indicates
false positive, that is, the number of negative cases predicted
to be positive; and FN means false negative, that is, the num-
ber of positive cases predicted as negative cases.

3.3. Experimental Method

3.3.1. Crossvalidation. In this study, tenfold crossvalidation
was selected to measure the performance of the model. The
process of this verification method is described as follows:
first, the entire data set will be randomly divided into ten
copies, and the contents will not be repeated. Then, a single
subset is randomly selected and retained as validation data
to test the model, while the remaining 9 are used as training
data to train the prediction model. This process goes
through 10 times; that is, every piece of data will be used

as a test data. Finally, the 10 results are averaged to obtain
the final prediction results. Crossvalidation is often used in
machine learning model evaluation, and it is rarely used in
the field of deep learning. Because it is expensive to train
and verify many times in the process of deep learning, it
can be used when the amount of data is small.

3.3.2. Independent Testing. Compared with crossvalidation,
independent testing is time-consuming and logically simple.
First, the algorithm is trained on the training set. Secondly,
the parameters of the model are adjusted by observing the
performance of the model according to the evaluation indi-
cators each time. At the same time, independent testing is
also a method to test the effect of the model. Generally, inde-
pendent test sets are used to verify the effect of the model in
the end of experiments. The specific way is to use indepen-
dent test sets as common data to compare with other
methods. The above two experimental methods have been
applied in this study. Generally, crossvalidation and inde-
pendent testing experiments at the same time will make
the experimental results more convincing.

3.4. The Proposed Predictive Framework. The prediction pro-
cess can be concluded as two stages: (1) model training and
(2) prediction. In the training phase, training samples are
encoded and integrated by the feature representation algo-
rithm. Then, the features are optimized to obtain the best
feature subset and then fed into the decision tree algorithm
to train the prediction model MaxAbs-DT. In the prediction
stage, given the uncharacteristic traffic samples, we follow a
similar process to encode the samples and use a trained
model to predict whether the query sequence is an abnormal
sample. The decision tree model gives a score for each traffic
sample to measure the probability of its normal traffic. If the
score is higher than 0.5, it is considered as a normal sample,
otherwise, no.

3.5. Classification Algorithm. The decision tree [17] is con-
verted into an if-then rule: a rule is constructed from each
path from the root node of the decision tree to the leaf node;
the characteristics of the internal nodes on the path corre-
spond to the conditions of the rule, and the class label of
the leaf node corresponds to the conclusion of the rule. It
is also the final result of the decision.

The basic principle of the construction of the decision
tree is the following strategy. A recursive process from root
to leaf is looking for a “partition” attribute at each interme-
diate node.

(1) Start: build the root node, all training data are placed
at the root node, select an optimal feature, divide the
training data set into subsets according to this fea-
ture, and enter the child nodes

(2) All subsets are recursively divided according to the
attributes of internal nodes

(3) If these subsets have been basically correctly classi-
fied, then construct leaf nodes and assign these sub-
sets to the corresponding leaf nodes
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(4) Each subset is assigned to leaf nodes; that is, it has a
clear class, thus generating a decision tree

The depth of the tree structure is a very important
parameter. Generally speaking, the deeper the tree structure,
the better the fitting effect on the data, but it may also lead to
overfitting. In this study, we implemented the DT algorithm
(version 2.7.15) using the DT library in Python. In this
study, we finally set the depth of the tree to 15 through a
series of experiments, which can better capture the informa-
tion of the data. The classification algorithm optimization
results can be seen in “Classifier Optimization.”

3.6. One-Hot Feature Representation. In many experimental
studies, using one hot coding, the value of discrete features
of data can be extended to European space, and a value of
discrete features will correspond to a point in European
space. In this way, if the discrete features are encoded by
one-hot, the distance calculation between features will be
more reasonable and easier to understand. The one hot fea-
ture extraction method [18] is often used in the field of
sequence recognition and NLP and other related fields. In
most cases, it can obtain excellent experimental results.

As mentioned above, the NSL-KDD dataset has 38
numeric and 3 nonnumeric features. Like many models,
the proposed decision tree model only deals with numerical
data input. Therefore, we need to convert all nondigital fea-
tures into digital representation. Features (protocol_type,
service, flag) are nondigital features that needs to be con-
verted to digital form in NSL-KDD dataset. In the training
set, features, protocol_type, service, and flag, have 3, 70,
and 11 categories, respectively. In the test set, features, pro-
tocol_type, service, and flag, have 3, 64, and 11 categories,
respectively. For the consistency of data, we uniformly set
protocol_type, service, and flag as 3, 70, and 11 categories,
respectively, and then perform the one-hot encoding
process.

3.7. Feature Scaling. After successfully converting these fea-
tures into digital form, the next appropriate thing is feature
scaling. Feature scaling ensures that the dataset is in a nor-
malized form. The values of some features (such as “src_
bytes” and “dst_bytes”) in NSL-KDD dataset are unevenly
distributed; so, it is necessary for us to use feature scaling
technology. In this way, we can ensure that our classifier will
not produce biased results. There are several feature scaling
methods as follows:

Z-score normalization: The Z-score method is standard-
ized based on the average value (mean) and standard devia-
tion of the original data. The average data after processing is
0, and the square difference is 1, which meets the standard
normal distribution. The main purpose is to unify different
dimensions of data into the same order of magnitude and
measure the calculated Z-score value uniformly to ensure
comparability between data. The formula is as follows

xnormalization =
x − μ

O
: ð8Þ

Among them, x represents the original data, μ repre-
sents the mean value of the original data, O represents the
standard deviation of the original data, and xnormalization rep-
resents the data after the normalization process.

min-max standardization: min-max standardization
refers to the linear transformation of the original data, and
the value is mapped between [0, 1]

xnormalization =
X − Xmin

Xmax − Xmin
: ð9Þ

MaxAbs normalization: it is usually used for sparse
matrices. Using this method for standardization, the data
can fall into the specified range of [-1, 1], and the original
structure of the data will not be damaged. The formula is
as follows

xnormalization =
X

Xmaxj j : ð10Þ

Robust scaler normalization: for data with outliers, if the
Z-score method is used for standardization, the characteris-
tics of outliers are often lost after standardization; so, the
standardized data is not ideal. In this case, the robust scaler
method can be considered. Robust scaler has a standardized
processing method for outliers, which has stronger parame-
ter control for data centralization and data scaling robust-
ness

xnormalization =
X − Xmedian

IQR
: ð11Þ

Xmedian is the median of the sample, and IQR is the inter-
quartile distance of it.

3.8. Feature Selection. PCA (principal component analysis) is
a commonly used data analysis method. PCA transforms the
original data into a set of linearly independent representa-
tions of each dimension through linear transformation,
which can be used to extract the main feature components
of the data, and is often used for dimensionality reduction
of high-dimensional data.

4. Results and Discussion

4.1. Classifier Optimization. To achieve the best perfor-
mance, we conducted the following experiments to optimize
the DT classifier. We performed parameter optimization on
the depth of the decision tree in order to find the optimal
max-depth value. Figure 1 shows the classifier evaluation
index curves under different decision tree depths. Next, we
need to determine which depth of the decision tree model
is best for our dataset. Therefore, we compared the perfor-
mance of the three cores. We can observe in Figure 1 that
when the max depth of the tree goes from 15 onwards, all
performance indicators basically do not change, and all the
curves are in a parallel state. Consequently, the DT with
max depth 15 was used to train this model in our predictor.
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In order to obtain the optimal feature subset, we conduct
the following experiments to optimize the features. We per-
form parameter optimization on DT classifier using the PCA
feature selection method to find the best number of features
to keep. Figure 2 shows the classifier evaluation index curves
under different numbers of retained features. We can
observe in Figure 2 that when the number of features is at

the position of 10, all the performance indicators basically
reach the highest level. Consequently, the number of features
to retain is set to 10 by the PCA method in our predictor.

4.2. Scale and Transform. There are generally four methods
for data normalization. In order to get the optimal normali-
zation method, we carried out the following experiments to
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Figure 1: Evaluation indicator curves of different max depths in DT.
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determine. We use 4 data normalization methods, namely, Z
-score, min-max, MaxAbs, and robust scaler on the test
dataset to compare the metrics of the models to determine
the best data normalization method. Figure 3 shows the clas-
sifier evaluation index curves under different normalization
methods. We observed in Figure 3 that when the normaliza-
tion method is MaxAbs, all performance indicators basically
reached the highest value, specifically ACC, F1, and recall
obtained the highest value and obtained the second highest
value on Prec. The results are listed in Table 3. As can be
seen, amongst the four individual normalization methods,
the method called MaxAbs performs the best than the other
three. This indicates that the MaxAbs method is more useful
for NSL-KDD abnormal prediction.

4.3. Comparison with Different Classification Algorithms. To
measure the effectiveness of our proposed work, we com-
pared its performance with several well-known classifiers,
such as the extra trees classifier [19], random forest (rf)
[20], SVM with RBF core (rbfsvm) [21], SVM with linear
core (svm) [22], K-nearest Neighbor (knn) [23], gradient
boosting classifier (gbc) [24] and AdaBoost classifier (ada)
[25]. For a fair comparison, we trained classifiers on the
same train dataset KDDTrain+ with our feature set and then
fine-tuned the classifiers one by one to achieve the optimal
performance. The classifiers are also evaluated by tenfold
crossvalidation, and the evaluation results on the same test
dataset KDDTest+ are presented in Table 4. We can see that
DT achieved the highest value in three indicators, namely,
ACC reached 81.86%, F1 reached 81.68%, and recall reached
71.04% outperforming other classifiers in three of the four
metrics. Specifically, the performance of DT classifier on
ACC, F1, and recall was higher than the second-place classi-
fier ET by 2.67%, 3.46%, and 5.39%, respectively. The results
presented in Figure 4 show that compared with the other
seven classifiers in this study, the DT classifier has better dis-
criminative ability to distinguish abnormal traffic from nor-
mal traffic.

As shown in Figure 5, in terms of the consumption time
of the classification model, which is an important consider-
ation in the actual industrial application, our proposed work
takes the least time compared to other classifiers and has
high practical significance. The specific values are shown in
Table 5.

4.4. Comparison with Existing Classifiers. To better demon-
strate the performance of our proposed MaxAbs-DT model,
we compared its performance with seven existing intrusion
detection techniques. As shown in Table 6, we compared
the performance with other techniques mentioned in Taval-
laee et al. [16] and Yin et al. [26]. The results prove that the
MaxAbs-DT classifier is superior in detecting network
anomalies. From Table 6, the MaxAbs-DT model improves
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Figure 3: Evaluation indicator curves of different normalization
methods in DT.

Table 3: Performance of different normalization methods.

Classifier Accuracy Prec. F1 Recall

Z-score 0.7999 0.9344 0.7988 0.6975

min-max 0.8182 0.9332 0.8211 0.733

MaxAbs 0.8364 0.9452 0.8404 0.7565

Robust 0.7807 0.9682 0.7675 0.6357

Table 4: Performance of different classifiers.

Classifier Accuracy Prec. F1 Recall

et 0.7919 0.9675 0.7822 0.6565

rf 0.7616 0.9681 0.7416 0.601

rbfsvm 0.7847 0.9233 0.7819 0.6781

knn 0.772 0.9231 0.7656 0.654

dt 0.8364 0.9452 0.8404 0.7565

gbc 0.7796 0.9684 0.766 0.6335

ada 0.7819 0.9225 0.7786 0.6735

svm 0.7569 0.9178 0.7466 0.6292
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Figure 4: Evaluation indicator curves of different classifiers on
KDDTest+.
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the detection accuracy of the RNN model by 0.44% on the
KDDTest+ datasets.

The results clearly demonstrate that the detection perfor-
mances of the proposed model are more effective. Although
the processing time of decision tree classifier is short, the
overall classification accuracy is not significantly increased.
On the contrary, deep learning may take a long time, but it
may have a better ability to capture other potential features
of data. For this, it is worth further exploring in the future
research work. For scenarios where the response time is
required to be as short as possible, the classifier proposed
in this paper may be more useful.

5. Conclusions

This work proposed the application of an improved decision
tree classifier to detect network intrusions. The proposed
work showed good performance and achieved nice results.
To validate the performance of our model, we train and val-
idate the model using the NSL-KDD dataset, which is cur-
rently widely used as a benchmark dataset for intrusion
detection by most researchers. After the experiment, the
MaxAbs-DT model obtained a higher accuracy, recall, and
F-score and less execution time than other models, and it
also outperforms other existing models on the accuracy met-
ric in literature. However, there are many deep learning
technologies that may have potential optimization capabili-
ties for this research. In the future, we plan to integrate some
optimal feature selection methods with novel deep learning
models, such as graph convolutional neural networks, to
explore better network anomaly classifier performance.
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Table 5: Time consumption of between different classifiers.

Classifier Time consumption (sec)

et 99.1

rf 270.448

rbfsvm 3265.208

knn 75.077

dt 67.582

gbc 294.056

ada 111.741

svm 69.829

Table 6: Comparison between existing methods using KDDTest+

for binary classification.
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Analyzing human muscle states has attracted extensive attention. EMG (electromyography) pattern recognition methods based on
these works have been proposed for many years. However, uncomfortable wearing and high prices make it inconvenient for
motion tracking and muscle analysis by using robotic arms and inertial sensors in daily life. In this study, we propose to use
smart clothes integrated with flexible sensors to collect arm motion data, estimate the kinematic information of continuous
arm motion, and predict the EMG signal of each arm muscle. Firstly, the neural network regression model integrated with the
LSTM (long short-term memory) module is used to continuously estimate the sensor resistances collected by the smart clothes
and the angles collected by Kinect. Then, six types of shoulder and elbow movements’ angles and the corresponding EMG
signals of 5 subjects are preprocessed and aligned. The stacked regression model based on extremely randomized trees (extra
trees) is used for regression. Our experimental results show that the average estimation absolute error from the sensor
resistances to the joint angle is 3.45 degrees, and the absolute percentage error from the joint angle to the EMG signal is only
1.82%.

1. Introduction

Human motion posture tracking and muscle analysis cap-
ture the continuous motion of bone joints by various types
of sensors or multiple types of cameras to continuously esti-
mate the value of muscle activity at the moving parts [1]. It is
of great significance in medical rehabilitation, military and
national defense, animated cartoon, and other fields. Take
the postoperative rehabilitation of patients with cerebral
stroke as an example, there are about 2 million new stroke
patients in China every year, and up to 80 percent of stroke
patients have the sequelae of dyskinesia [2]. The existing
rehabilitation treatment is mainly concentrated in the hospi-
tal environment [3], under the guidance of professional
rehabilitation therapists. In contrast, the rehabilitation train-
ing of patients in the home environment lacks effective and
accurate monitoring methods. Unscientific rehabilitation
training may lead to an abnormal movement, leading to
poor recovery and even secondary physical impairment.

So, it is of great value to accurately track the movement pos-
ture of these people and analyze the muscle exercise situa-
tion for the development of personalized rehabilitation
programs.

A lot of early work is based on mechanical arm [4–6]
mechanical inertial sensor (MEMS) [7–9] to capture human
motion posture. The human motion posture tracking based
on an inertial sensor unit (IMU) is the current mainstream,
wearable method [10, 11]. IMU has the advantages of low
cost, small size, no interference, etc. It is suitable for human
motion posture tracking outdoors. Nevertheless, there are
three main problems: foreign-body sensation when wearing,
requiring calibration, and data drift. One reason for the
widespread use of inertial sensor units (IMUs) is that wear-
ing foreign body sensations is severely constrained, and
researchers are looking for ways to collect physiological data
in ways that make subjects more comfortable [12, 13]. In
recent years, the use of intelligent wearable sensors with
integrated flexible sensors to monitor human health state
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has aroused widespread interest [14, 15]. They provide good
user experience and comfortable wearing [16] with cheap
price [17].

Our work proposes a method of human posture tracking
based on a flexible sensor. The captured posture is calculated
to obtain the joint angle of the upper limb, which is used to
estimate the electromyographic signals of the upper limb
movement continuously.

Our work is aimed at solving the problem of muscle
analysis on a smart clothing platform. Muscle analysis using
a smart jacket is defined as two key subproblems:

(1) Using flexible sensors to track human body posture
so as to calculate upper limb joint angles

(2) Using the joint angle of the upper limb movement to
estimate the myoelectric signal continuously

There are two main contributions to this study:

(1) We provide a complete human posture tracking and
joint angle calculation solution. We use flexible sen-
sors to minimize interference with the users’ daily
activities and ensure the best comfort possible in
their experience. And the novelty of the method is
that it is not affected by the light, and the user does
not need to consider the illumination effect of the
environment

(2) We introduce a stacked regression model based on
the extreme random tree for continuous estimating
joint angles and EMG signals. Compared with other
traditional machine learning methods and regression
networks with short and long memory modules, this
regression model has a better regression effect

2. Related Work

2.1. Motion Tracking Based on Flexible Sensor. The main
scope of monitoring human movement is divided into two
kinds. One is a large range of individual position movement;
the other is the individual joint movement, temperature, and
other physiological indicators. Because of its physical char-
acteristics, flexible sensors are mainly used to detect human
body states. And flexible sensors used for human body state
monitoring mainly convert the signals to be monitored into
the stretching and bending of the sensor through mechanical
deformation [18] or use the physicochemical mechanism
driven by temperature, humidity, and chemical reaction to
measure the changes in resistance or capacitance to achieve
monitoring purposes [19, 20]. Its functions mainly include
motion posture tracking and physical skin deformation.
Representative works are listed as follows. The Massachu-
setts Institute of Technology (MIT) group uses high-
density array-type pressure sensor gloves for object recogni-
tion [21]; Northwestern University research uses a wireless
passive flexible vibrator to realize tactile feedback in virtual
reality scene [22]; the Swiss Federal Institute of Technology
in Zurich uses the flexible gloves on finger movement track-
ing [23]; the United States Dartmouth College team uses the

flexible sheath on elbow motion tracking [24]; the National
University of Singapore research uses the sensor fusion of
leap motion controller and flexible sensor to track human
finger using Kalman filter [25]; Tsinghua University
researchers use the array-type pressure membrane to iden-
tify the interaction between the human body and the object,
etc. [26]; Northwestern Polytechnical University research
uses a small set of wearable sensors to estimate whole-body
pose in human bicycle riding [27]; Chinese Academy of Sci-
ences research uses micro flow on the skin surface tactile
sensing [28]; Institute of electronics, Chinese Academy of
Sciences research uses flexible pressure sensor to 3-
dimension force recognition [29]; Shenzhen University
research group realized noncontact human-computer inter-
action by using short-range capacitance sensor [30]; etc.

The human body motion posture tracking method based
on flexible (nonfabric) sensors achieves the target of finger
motion posture tracking [31] and arm deformation recon-
struction [32]. In the above work, the researchers collected
training data and established a deep neural network and
then realized the prediction of joint posture and skin defor-
mation. The human motion posture tracking method based
on the fabric sensor realizes the tracking of the whole body
[33], elbow [34], and back and shoulder [33]. The
researchers used a neural network of short- and long-
duration memory to interpret stretch sensor signals as body
posture but only did error analysis for specific movements
such as squatting and bending. Another work used stretch
sensors to track the posture of upper body movements (back
and shoulders). The researchers also used stretch sensors to
track elbow motion and analyzed motion tracking errors for
different arm circumferences and sensor position offset (up
to 1 cm). The pliable and flexible characteristics of the flexi-
ble sensor provide a convenient way of wearing and a com-
fortable user experience and provide more possibilities for
human motion posture tracking [17].

2.2. Muscle Analysis. According to the International Classifi-
cation of Functioning, Disability, and Health [35], muscle
power is the maximum power that can be released by a test
muscle under certain limits [36, 37]. And muscle power con-
trols the movement of our limbs. These forces must be esti-
mated by indirect means since the direct measurement is
usually neither possible nor practical. Therefore, many stud-
ies measure muscle strength through inverse kinematics [38,
39], including the fingers [40], upper limbs [41], and lower
limbs [42–44]. In experimental studies of human movement,
muscle strength tests are useful in assessing the recovery of
stroke patients [45]. And EMG signals are measured to
determine the electrical current generated by muscle con-
tractions in neuromuscular activity [46]. Therefore, electro-
myography (EMG) is often used as a tool to determine
muscle activity [47–50]. Bogey et al. [44, 51] recently devel-
oped a method to estimate force from EMG signals and
based on normalization of activation during maximum vol-
untary contraction to record maximum muscle force. Heintz
and Gutierrez-Farewik [52] adopted the numerical algo-
rithm established based on the traditional optimization tech-
nology, that is, the constraint minimization technology
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using the Lagrange multiplier method to solve constraints.
Lloyd and Besier [53] used EMG to predict knee torques
through inverse dynamic calculations under different
dynamic contraction conditions. They used a modified
Hill-type muscle model to better estimate living muscle
strength during exercise tasks. Amarantini et al. [54] used
two-step EMG and optimization methods to estimate mus-
cle forces under dynamic conditions. This method has the
ability to propose a method to account for agonist/antago-
nist cocontraction properly. In addition, the method can
improve the confidence of muscle force estimation. Hashemi
et al. [55] combined angle-based EMG amplitude calibration
and parallel cascade identification (PCI) modeling for EMG-
based force estimation in dynamic contractions, including
concentric and eccentric contractions of the biceps and tri-
ceps, in order to enhance dynamic EMG-force estimation.
Hsu et al. [47] used EMG sensors to study the sequence of
muscle contractions in patients from sitting to standing
(STS) after stroke. Kim et al. [56] estimated the muscle
strength of nine muscle groups of the lower limbs using a
static optimization method with inverse dynamics based on
motion data and compared it with EMG signals. It is proved
that establishing the relationship between EMG signal and
muscle force calculated by inverse kinematics is a practical
method to measure muscle strength in vivo.

3. Method

We built a sparse sensor network on the smart jacket to cap-
ture the sensor resistance value of human right upper limb
movement to estimate the EMG signal continuously. The
workflow of our algorithm is shown in Figure 1.

We split the task into two subtasks:

(1) Prediction from sensor signal to joint angle

(2) Continuous estimation from joint angle to EMG sig-
nal. We use a neural network with long short-term
memory (LSTM) [57–59] module to regress the sen-
sor data and joint angle data to solve the nonlinear
and hysteretic problems of the sensor itself. Joint
angle data and EMG data were fitted by stacking a
regression model based on extreme random tree.
Thus, a new method of continuous estimation from
sensor signal to EMG signal is provided

3.1. Hardware Preparation. We prepared a smart jacket pro-
totype (Figure 2(a)) with integrated, flexible sensors to com-
plete our study. The smart jacket cloth has five flexible,
stretchable sensors, four around the shoulder and one under
the elbow, as shown in Figure 2(b). And the above parts con-
tain 20 cm sensors, respectively, as the total cost is about
15.1488 dollars. Sensors are fixed to the garment by hand
sewing. The clothes are tight tracksuits, ensuring the sensors
fit snuggly and better capture shoulder and elbow move-
ment. The fabric is made of 80% polyester fiber and 20%
polyurethane fiber. The sensor we use is a conductive rubber
wire stretch sensor manufactured by Adafruit [60, 61]. The
sensor is 2mm in diameter and made of carbon-black
impregnated rubber. As for the traditional sensor, multi-

point instruments need to be used; the production and use
are complex; the experimental conditions are not conve-
nient; also users cannot use them directly at home. In addi-
tion, traditional sensors are more expensive compared to
flexible, stretchable sensors. As a result of fact, the conduc-
tive rubber wire stretch sensor is more suitable and practical,
and for the sensor, in the relaxed state, the resistance is
about 350 ohms per inch. The human body posture tracking
is realized by monitoring the resistance changes of the five
flexible sensors. At the elbow, for example, when the user
bends the elbow, the sensor is stretched and its resistance
increases. The resistance sampling frequency of the sensor
is 32Hz. The server receives sensor data through the Ardu-
ino UNO3 development board and is responsible for all sub-
sequent calculations. The server comes with Intel Core I7 (6
cores), 16GB of RAM, and NVIDIA GTX 1080Ti.

3.2. Sensor Resistance and Joint Angle Data Collection. For
the participant, the experiment involved a 30-year-old doc-
toral student in the lab. The participant is familiar with the
whole experimental design and the experimental process
before the investigation. For the collection process, before
the experiment, the participant got to know the purpose of
the experiment, put on the intelligent jacket with integrated,
flexible sensors; and took part in some guiding activities to
get familiar with the collection system and experimental
process. The participant started and stopped the data collec-
tion experiment by listening to voice instructions. He
adjusted his position towards a Kinect camera that could
collect depth information, allowing the camera to capture
the full movements of his right upper limbs. If the partici-
pant gets tired during the collection process, he can termi-
nate the collection process at any time.

The data collected each time is saved to the server. The
sensor resistance data includes the collection time and resis-
tance values of five sensors. The data collected by Kinect
includes the collection time and three-dimensional position
of each node of the right upper limb. The joint angles of each
part were calculated according to ISB (International Society
of Biomechanics) convention [62]. These angles are calcu-
lated by the following methods. First, create local coordinate
systems based on marker points and then, decompose the
rotation matrix into Euler sequences proposed by ISB for a
particular skeleton. The data are in the y-axis upward direc-
tion, which is consistent with the joint angle data introduced
in the next section.

3.3. Joint Angle and EMG Data Alignment Preprocessing.We
used the data set published by Bolsterlee et al. [63], Shoulder
Database, for continuous estimation from shoulder elbow
angle to EMG signal. The data set contained data on six
movements of five healthy young adults. No one has uncom-
fortable shoulder joints or has been specially trained. Kine-
matic data were collected using a four-device Optotrak
system (Northern Digital, Inc., Waterloo, Ontario, Canada)
to collect marker location information for six groups of
markers in the subjects’ chest, scapula, humerus, forearm,
and hands. The acquisition frequency is 100Hz. EMG data
were collected using surface electrodes (Ambu N-00-SECG)
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and a 16-channel Porti system (TMS International,
Enschede, the Netherlands, Sampling frequency: 1000Hz).
EMG data were collected from 14 muscles, including the tri-
ceps and biceps (Figure 3). The electrodes are placed as rec-
ommended by SENIAM [64]. Since the frequency of
kinematic data and EMG data are not the same, we need
to preprocess the data for alignment. Due to the fast-
sampling frequency of EMG data, we first performed linear
interpolation on the joint angle data to obtain 1000 pieces
of data per second and then aligned the joint angle data with
EMG data through the acquisition time.

3.4. Regress from Sensor Signal to Joint Angle. From the
description of the sensor manufacturer and our experiments,
it is found that the relationship between the resistances of
the sensors is nonlinear when subjected to tension. More-
over, the sensor has a lag problem, and it needs to be station-

ary for a period of time to return to the initial state.
Therefore, we propose to use the LSTM model to regress
sensor signals and joint angles in order to obtain more accu-
rate angle prediction values.

LSTM is an artificial recursive neural network (RNN),
which can effectively process temporal data. The network
model we designed has an LSTM layer with five hidden cells,
followed by a full connection layer with ten cells, and finally,
a full connection layer with only one cell as output. The
input to the network is a vector:

S
!
= St− Np−1ð Þδt ,⋯, St−δt , St
n o

, ð1Þ

where St is the sensor resistance at a specific time t, δt is the
time step read by the sensor signal, and Np is the number of
sampling points. In our experiment, δt and Np were set to
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Figure 2: Smart jacket with five flexible sensors: (a) smart jacket prototype; (b) sensor layout.
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0.286 and 50, respectively. The output of the LSTM network
is the estimated joint angle. LSTM regression model is used
to solve the nonlinear and hysteresis characteristics of the
sensor, which realizes the precise prediction of the joint
angle.

3.5. Regress from Joint Angle to EMG Signal.We chose to use
a stacked regression model based on extra trees [65] to pro-
cess from joint angle to EMG signal. The extreme random
tree algorithm builds a set of nonrunning decision trees or
regression trees based on the classical top-down process.
The two main differences between it and other tree-based
integration approaches are that it splits nodes by randomly
selecting complete pointcuts and uses the entire learning
sample to grow the tree. From the perspective of the bias dif-
ference, the basic principle behind the extreme random tree
approach is that explicit randomization of pointcuts and
attributes combined with integrated average should be able
to reduce variance more effectively than the weaker random-
ization schemes used by other methods. Using the complete
original learning sample rather than the boot stringing copy
is aimed at minimizing bias. From a computational point of
view, suppose there is a balanced tree, the complexity of the
tree growth is order N log N with respect to the learning
sample size, just like most other tree growth processes. Our
stacked model (Figure 4) integrates extreme random tree,
random forest [66–68], and K-nearest neighbor [69] algo-
rithm as the basic model and uses a linear regression model
in the metalearner [70]. The metamodel is trained based on
the prediction results of the training samples output by the
basic model. The stacked model can solve the problem of
the prediction errors made by different models which are
not correlated or have low correlations.

4. Result Analysis

4.1. Evaluation Criteria. The following six evaluation criteria
were used to evaluate our experimental results: mean abso-
lute error (MAE), mean square error (MSE), root mean
square error (RMSE), R square (R2), root mean square loga-
rithmic error (RMSLE), and mean absolute percentage error
(MAPE). The values of MAE, MSE, RMSE, and MAPE are in
the range of ½0,∞Þ; when the predicted value is exactly the
same as the true value, the value is 0; the larger the error,
the larger the value. MAE and RMSE can roughly estimate
the difference between the predicted value and the true
value; when the predicted value is entirely consistent with
the true value, the value is 1; when each predicted value of
the sample is equal to the mean value, the value is 0; it
may also be negative, and the regression effect is poor.

4.2. Regression Results of Short- and Long-Term Memory
Network Regression Model. Sensor data is composed of resis-
tance signals from five sensors numbered 1-5 (Figure 2(b)).
Joint angle data is calculated by the spine points, shoulder
points, elbow points, and wrist points collected by Kinect,
including shoulder angle and elbow angle. We defined that
the elbow angle has only one degree of freedom, and the
shoulder angle has three degrees of freedom. Then, the
LSTM regression model was used to perform training
regression on sensor data and joint angle data. 70% of the
collected data were trained in the front segment, and the rest
was used for predictive testing.

We compare the LSTM regression model with the tradi-
tional machine learning regression model and polynomial
regression model, and the true value is also involved. In this
paper, the gradient lifting decision tree (GBR) with the best
regression effect in the traditional machine learning regres-
sion model and the regression results of the fourth-order
polynomial regression are selected for comparative display,
as shown in Figure 5.

It can be seen from the experimental results that the
LSTM regression model (red curve) fits the real value curve
(black curve) well, and there is a smooth transition between
each point. While the regression results of the gradient lift-
ing decision tree (blue curve) are consistent with the real
curve at some points, it fluctuates greatly at many points.
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Figure 4: The stack model which includes extra trees, random
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Although the fitting result of the fourth-order polynomial
(green curve) is relatively smooth, the error between some
values and the real values is huge.

We also conducted absolute error statistics for these
three regression models, as shown in Figure 6. The mean
absolute errors of the LSTM regression model, GBR regres-
sion model, and polynomial regression method are 3.45,
7.48, and 7.98, respectively. The LSTM regression model
has the smallest overall regression error range.

Table 1 shows the statistics of LSTM regression model
prediction results. It can be seen from the table that all error
evaluation criteria are quite small, R2 value reaches 0.9839,
the absolute error value is only 3.45 degrees, and the average
absolute error percentage is only 3.17%. Therefore, the
LSTM regression model can get accurate angle prediction
results.

4.3. Comparison of Regression Results between Extreme
Random Tree Regression Model and Other Traditional
Machine Learning Regression Models. In this section, we
show the results of comparing the first subject’s elbow’s
slow-motion data and EMG data when using extreme ran-
dom tree regression models with other traditional machine
learning regression models in the Regression Shoulder Data-
base. The objective of regression was the EMG signal of the
coracobrachialis. There are 18,729 pieces of data set shown
in Figure 7(a). We select 70% of the data as the training set
and the rest as the test set. The number of folds in cross-
validation is 10. Data is normalized using Z-score.

The regression results are shown in Table 2. We show
the three models, extreme random tree (ET), random forest
(RF), and K-nearest neighbor (KNN) regression models,
with the best regression effect among the traditional
machine learning regression methods; the extreme random
tree takes 4.06 seconds in training time. However, the final
R2 value of extreme random tree regression is the highest,
and other error evaluation items are the smallest. We can
intuitively see the estimated difference between the predicted
value and the actual value through the mean absolute error
(MAE) and root mean square error (RMSE). The extreme
random tree regression error is the smallest, and it is almost
54% of the regression error of the random forest model,
which has the second-best regression effect. Finally,
Figure 7(b) shows the residual prediction results and resid-
ual distribution of the extreme random tree regression
model. The residual is concentrated below the absolute value
of 1000 (about 3% of the original EMG data).

Table 3 shows the prediction results of the extreme ran-
dom tree regression model on the test set. The data are even
better than the training results. Therefore, in the experiment,
the extreme random tree regression model has the best
regression effect and is much better than any other tradi-
tional machine learning regression model.

4.4. Stacked Regression Model. In order to further reduce the
regression error, we designed a stacking model based on the
extreme random tree (Figure 4), stacked the three regression
models in Table 2 (including extreme random tree, random
forest, and K-nearest neighbor regression model), and then
trained and predicted the data.

The first row (beginning with T) of Table 4 shows the
training results of the stacking model. The average absolute
error and root mean square error are more than 100 smaller
than the extreme random tree regression method in the tra-
ditional machine learning method (see Table 2), indicating
that our stacking model effectively reduces the regression
error. Moreover, from the second row of Table 4 (beginning
with P), we can see that the stacked regression model also
achieved 312 as the results of average absolute error and
457 as the root mean square error, which is about 22% less
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Table 1: LSTM regression model prediction results statistics.

MAE MSE RMSE R2 RMSLE MAPE

3.45 18.95 4.35 0.9839 0.0186 0.0317
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than the regression model with only extreme random tree.
The average absolute percentage error is only 0.96%.

4.5. Stacked Regression Model Regression Results on Different
Person Data. We used the stacked regression model to carry
out the regression test on the joint angle and EMG signal of
shoulder and elbow activity data of different people. The
results are shown in Table 5. It can be seen from the average
absolute error and root mean square error that the average
difference between the predicted value and the real value is
within 370; while MAPE showed that the absolute errors of
the five subjects were about 1.14%, 0.08%, 0.08%, 2.61%,
and 5.18% of the original EMG signal, respectively. The
experimental results show that the stacking model can well

regress the joint angle and EMG data. Due to the large indi-
vidual differences of each person, there will be great differ-
ences in the relationship between each person’s joint angle
data and EMG data. Therefore, before using the smart coat
for daily activity tracking and EMG signal prediction, users
are required to collect standard angle data and correspond-
ing EMG signal data in the hospital according to profes-
sional guidance [26] to build a stacked regression model.
Therefore, everyone needs to train a unique stacked regres-
sion model to facilitate the subsequent regression and anal-
ysis of EMG signals.

4.6. Comparison between the Stacking Regression Model and
LSTM Regression Effect. We compared the stacking model
with the regression model with LSTM module. Table 6
shows the statistics of regression results of the LSTM regres-
sion model.

Compared to the regression prediction results of the
stacking model in Table 4, better regression results cannot
be obtained on this data set by the LSTM regression model
than by the stacked regression model. The MAE value of
the LSTM regression model reached 547.39, which was
235.45 higher than 311.94 of the stacked regression model.
Moreover, the average absolute percentage error of the
LSTM regression model is 13.23%, while that of the stacked
regression model is only 0.96%. Combining the results of
this section with the analysis in Section 4.2, the LSTM
regression model is dominant in solving the problems of
nonlinearity and hysteresis of flexible sensors, but not in
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Figure 7: (a) EMG distribution of the first subject’s elbow in slow motion; (b) the extreme random tree regression model predicts residual
results and their distribution.

Table 2: Comparison of regression results among extreme random tree (ET), random forest (RF), and K-nearest neighbor (KNN)
regression models.

Model MAE MSE RMSE R2 RMSLE MAPE TT (sec)

ET 470.03 443522.74 665.71 0.9281 0.0205 0.0145 4.06

RF 867.68 1168076.13 1080.65 0.8108 0.0333 0.0268 4.37

KNN 1180.42 2146966.71 1465.03 0.6522 0.0451 0.0365 0.75

Table 3: Extreme random tree regression model prediction results
statistics.

MAE MSE RMSE R2 RMSLE MAPE

404.43 313466.77 559.88 0.9492 0.0172 0.0125

Table 4: Stack regression model training and predicted results (T:
train; P: predicted).

MAE MSE RMSE R2 RMSLE MAPE

T 369.24 297341.21 544.81 0.9518 0.0168 0.0114

P 311.74 208847.27 457.00 0.9661 0.0140 0.0096
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the data set of this section, which requires us to select an
appropriate regression model for the data from different
sources. Our method also has some limitations. Because
the training data is limited to the data collected by profes-
sional equipment in a short time, it is impossible to predict
the irregular changes of myoelectric signals caused by mus-
cle fatigue due to long-term exercise.

5. Conclusions

This paper presents a method for continuously estimating
upper limb EMG signals by using an intelligent jacket with
integrated, flexible sensors. Firstly, we use the long short-
term memory network regression model to continuously
estimate the sensor signals collected by the smart coat and
the joint angle information collected by Kinect. Then, the
shoulder elbow angle information and the corresponding
EMG signals of five subjects were aligned and preprocessed,
and the stacked regression model based on the extreme ran-
dom tree was used for regression. The experimental results
show that the long short-term memory network can effec-
tively solve the nonlinearity and hysteresis of flexible sen-
sors, and the stacking model can well regress the joint
angle data and EMG signal data. This method provides more
possibilities for home health monitoring and exercise guid-
ance in the future; for example, users can achieve online
medical treatment and online diagnosis based on this sys-
tem. However, there are still some problems to be solved
and studied, such as the sensor position offset and the defor-
mation caused by clothing wrinkles, which will affect the
accuracy of the prediction results. Therefore, we will con-
tinue to solve the above problems in the follow-up work
and the proposed machine learning based pipeline can be
applied to other fields, such as bioinformatics and computa-
tional biology [67, 71–74].
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